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1. Introduction 

 

1.1 The pathogenesis of cancer 

 

Cancer is a complex disease which develops in multiple steps. Its occurrence and progression 

are typically characterized by aberrations of several molecular and subsequent phenotypic 

cellular mechanisms. These ‘hallmarks’, as defined by Hanahan and Weinberg {Hanahan et 

al., 2011; Hanahan et al., 2000; see Figure 1}, describe the complexity of tumor pathogenesis 

in the context of both cancer cells and their surrounding microenvironment. 

 

 

 

Figure 1. The six hallmarks of cancer as proposed by Hanahan and Weinberg {modified from Hanahan et al., 2011}. 

 

In the context of this work two major characteristics of tumors will be discussed in more 

detail: the inherent ability of transformed cells to sustain proliferation and become motile 

under certain circumstances as well as the impact of the tumor microenvironment on the 

properties of tumor cells. 

 

Tumor cells can maintain proliferative signaling through stimulation of ligand secretion by 

the surrounding stromal cells, i.e. paracrine activation, as well as through autocrine 
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production of growth factors {Lemmon et al., 2010; Witsch et al., 2010; Hynes et al., 2009; 

Perona, 2006; Cheng et al., 2008; Bhowmick et al., 2004}. An additional mechanism which 

maintains continuous tumor cell proliferation is the over-expression or gene amplification of 

oncogenic receptors which are responsible for the cellular response to external stimuli (i.e. 

pro-survival and anti-apoptotic signaling). These receptors are often mutated in cancer cells 

and can, under certain conditions, become capable of ligand independent signaling, 

transducing the signal to the downstream effector molecules without prior ligand binding. 

Cytoplasmic proteins implicated in cellular signaling and growth may also bear activating 

mutations, thus ensuring a sustained proliferative signaling independently from receptor 

activation. Prominent examples include the catalytic subunit of the phosphoinositide 3-kinase 

(PI3K) {Jiang et al., 2009; Yuan et al., 2008} or the signaling molecule B-Raf, which is 

mutated in up to 70% of human melanomas at position Val600 {Davies et al., 2010}. Cellular 

proliferative signaling is also affected by negative feedback mechanisms which are essential 

for the maintenance of homeostasis. These negative feedback loops are often compromised in 

tumor signaling. Loss of phosphatase and tensin homolog (PTEN) function, for example, 

causes continuous activation of the PI3K–AKT molecular pathway and contributes to the 

deregulation of normal cellular growth and tumor formation {Jiang et al., 2009; Yuan et al., 

2008}. Cancer cells may additionally sustain their proliferative phenotype by evading cellular 

checkpoint proteins involved in cell cycle progression and regulation as well as by 

counteracting the apoptotic machinery. These mechanisms would otherwise protect the body 

from highly mutated and malignant cells {Burkhart et al., 2008; Deshpande et al., 2005; Sherr 

et al., 2002}. 

 

Carcinoma cells can acquire an invasive phenotype which is defined by the ability of the 

tumor cell to overcome contact inhibition. A usually required step is the loss of expression of 
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the adhesion molecule E-cadherin {Berx et al., 2009; Cavallaro et al., 2004}. The underlying 

regulatory program is called epithelial to mesenchymal transition (EMT) {Klymkowsky et al., 

2009; Polyak et al., 2009; Thiery et al., 2009; Yilmaz ez al., 2009; Barrallo-Gimeno et al., 

2005}. This process is triggered by different transcription factors which are involved, among 

others, in the expression of matrix-degrading enzymes and enhanced motility {Micalizzi et al., 

2010; Taube et al., 2010; Yang et al., 2008}. The tumor microenvironment also plays an 

active role during metastasis induction, for instance by stimulating the tumor cells to express 

such transcription regulators {Karnoub et al., 2006-2007; Brabletz et al., 2001} and by 

supplying soluble factors under the direct stimulation of cancer cells {Qian et al., 2010; 

Karnoub et al., 2007; Wyckoff et al., 2007}. 

 

Other tumor growth promoting mechanisms include the reactivation of quiescent vasculature 

which is essential for provision of nutrients and oxygen to the growing neoplastic tissue 

{Hanahan et al., 1996}. This can be driven by oncogenes responsible for the up-regulation of 

angiogenic factors as well as by the tumor microenvironment. The latter plays a pivotal role 

in tumor progression by supporting tumor growth and invasion, protecting the tumor from 

host immunity, fostering therapeutic resistance, and providing niches for dormant metastases 

to thrive {Swartz et al., 2012}. 

 

Overall, this plethora of mechanisms involved in cancer formation and progression has made 

therapeutic interventions against tumors a highly challenging task, which has so far not lead 

to a cure for cancer. 
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1.2 Cancer drug treatments: molecular targeted therapies 

 

Therapeutic intervention in cancer therapy includes surgery, chemotherapy and radio-therapy. 

However, thanks to the improvement in the knowledge of cancer biology, molecular targeted 

therapies have rapidly emerged in the last decades and are now complementing the classical 

pillars of tumor treatments {Cepero et al., 2010; Imai et al., 2006}. These are based on drugs 

which specifically target molecules responsible for tumor formation or progression. Such a 

therapeutic strategy is applicable when a molecular target is known to be expressed and 

altered in a specific tumor type, or when it has been demonstrated that its inhibition can 

efficiently reduce cancer growth, without affecting the physiology of normal tissues {Cepero 

et al., 2010}. Mutations, amplification, or over-expression of the target molecule are usually 

the parameters used to select the tumor indication and the patient population which may 

respond to the targeted treatment. 

 

The concept and clinical adoption of targeted therapies is complicated by the notion that 

tumors are highly heterogeneous. In fact, many different factors are involved in cancer 

progression, from the alteration of normal cell growth and survival to the interaction between 

tumor cells and the surrounding environment. Due to this complexity, during the early days 

of the discovery and application of targeted therapies, oncogenes regulating cellular 

proliferation and anti-apoptotic pathways have been the most addressed targets. The majority 

of them include membrane-embedded receptor tyrosine kinase proteins (RTKs) {Carlomagno 

et al., 2005; Zwick et al., 2002; Robinson et al., 2000}. This class of protein receptors can be 

amplified, over-expressed or mutated, becoming capable of triggering proliferative signals 

inside the cells in a ligand dependent or independent fashion. 
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Drugs already approved or in development for the blockade of RTKs are either monoclonal 

antibodies (mAbs) or small molecules kinase inhibitors. Both have distinct mechanisms of 

action: mAbs can bind and block the activity of surface receptors or secreted molecules; 

small molecules, in contrast, can easily permeate the cell membrane and inhibit the activity of 

the intracellular protein kinases involved in cellular growth and proliferation {Zhang et al., 

2009; see Figure 2}. The latter are generally ATP competing enzyme blockers. They act by 

binding to the ATP binding site of the target kinase molecule’s catalytic domain, thus 

inhibiting its enzymatic activity. Since the catalytic domains of protein kinases are highly 

conserved, these drugs are often multi-specific and able to block multiple targets. Allosteric 

protein kinase inhibitors, instead, bind to other regions of the target molecules and are 

specific for unique targets {Imai et al., 2006}. 

 

To cite some examples, the antibody cetuximab (Erbitux) binds and blocks the activity of the 

epidermal growth factor receptor (EGFR) on the surface of cancer cells, by competitively 

inhibiting binding to the endogenous ligands epidermal growth factor (EGF) and 

transforming growth factor-alpha (TGFα). This results in inhibition of cell proliferation, 

enhanced apoptosis, and reduced angiogenesis, invasiveness and metastasis. Additionally, 

binding of cetuximab to EGFR induces internalization of the antibody-receptor complex, 

contributing to the down-regulation of EGFR expression {Harding et al., 2005}. Cetuximab 

is approved for the treatment of patients with metastatic colorectal cancer and head and neck 

squamous-cell carcinoma in combination with conventional therapy. Another example is the 

monovalent (one-armed) monoclonal antibody Onartuzumab (MetMAb) which inhibits the 

hepatocyte growth factor (HGF) receptor Met. MetMab binds to the Sema domain (e.g. 

structural domain of semaphorins) of Met, which is located in the extracellular portion of the 

receptor and is responsible for the interaction with its ligand {Kong-Beltran et al., 2004}. By 
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blocking the ligand-induced Met-dimerization and activation of the intracellular kinase 

domain, this therapeutic antibody prevents Met-driven tumor cell growth and metastasis 

{Martens et al., 2006}. Among the small molecules, erlotinib (Tarceva) is an EGFR specific 

protein kinase inhibitor approved for the treatment of patients affected by non-small cell lung 

cancer (NSCLC) and pancreatic cancer {Shepherd et al., 2005}. Erlotinib binds in a 

reversible fashion to the ATP binding site of EGFR thus inhibiting trans-phosphorylation of 

the receptor homodimers which is required for signal transmission to the downstream 

pathway. 

 

 

 

Figure 2. Schematic representation of distinct mechanisms of a therapeutic antibody and a small-molecule inhibitor for 

targeting a receptor tyrosine kinase protein - such as EGFR - in cancer cells {the scheme is modified from the publication by 

Imai et al., 2006}. TKI: small-molecule tyrosine kinase inhibitor (example: erlotinib); mAb: therapeutic monoclonal 

antibody (example: cetuximab). 

 

These examples illustrate the potential of targeted therapies but also underline their 

limitations, since a pre-requisite for the success of such therapies is an in-depth knowledge of 

the tumor type and its underlying molecular mechanisms. However, both solid and 

hematological tumors rely on more than one oncogene during the course of their development 

and thus a single, targeted treatment may prove insufficient. ‘Inherent’ resistance is often due 

to the constitutive activation of downstream pathways, which circumvent the upstream 
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receptor blockade by the therapeutic inhibitor. In colorectal cancer, for example, mutations in 

K-Ras (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog), which are present in about 

40% of colon tumors, play a profound role in the intrinsic resistance to cetuximab 

{Weickhardt et al., 2010}. In addition, tumors frequently develop ‘acquired’ resistance 

mechanisms, which allow them to escape from targeted treatments. Possible acquired 

resistance mechanisms include up-regulation and signaling via other RTKs, or additional 

aberrations of the target, as the secondary mutation T790M in EGFR, which has been 

correlated to the clinical resistance to erlotinib in NSCLC patients {Engelman et al., 2008}. 

Nevertheless, the basis of tumor resistance is still poorly understood {Scott et al., 2012; 

Pillay et al., 2009}. 

 

1.3 The biology of the receptor tyrosine kinases EGFR and Met: two molecular targets 

for anti-cancer drugs 

 

Among the different known RTKs, EGFR and Met receptors are relevant proteins playing a 

role in epithelial tumor formation. For this reason, they are both well described targets for 

targeted therapeutics. 

 

1.3.1 The epidermal growth factor receptor (EGFR/HER1) a member of the HER 

family of receptor tyrosine kinases 

 

EGFR is the first discovered member of the HER family of receptor tyrosine kinases, which 

additionally includes HER2 (ErbB2), HER3 (ErbB3) and HER4 {Yarden, 2001; Hynes et al., 

2009}. It is a single-pass, type I trans-membrane protein, composed by an N-terminal 

extracellular ligand binding domain (ectodomain), a hydrophobic region which resides in the 
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plasma membrane and a C-terminal cytoplasmic domain responsible for the catalytic activity 

of the receptor (Figure 3). 

 

 

 

Figure 3. Schematic representation of the EGF receptor structure (modified from The Biology of Cancer; RA Weinberg; 

Chapter 5; 2007). 

 

Several ligands have been described which may lead to homo- or hetero-dimerization of the 

HER receptors. With respect to EGFR, following EGF binding to the ectodomain, the 

monomeric receptor homo-dimerizes with another receptor partner. The two molecules 

phosphorylate each other in the intracellular portion called activation loop which normally 

prevents the activity of the catalytic domain. This ‘trans-phosphorylation’ induces a 

conformational change in the homo-dimers which allows the kinase domain to become active 

and phosphorylate its intracellular substrate molecules. Tyrosine residues in the C-terminal 

tail of the receptor are thereby phosphorylated and serve as docking site for adapter proteins 

which stimulate downstream signal transduction cascades. Downstream targets include the 

mitogen-activated protein kinase (MAPK) pathway or the PI3K pathway, which induce 

expression of genes ultimately responsible for cell proliferation, survival and migration. 

Internalization via endocytosis of the receptor-ligand complex is the physiologic mechanism 

of EGFR signal inactivation {Ullrich et al., 1990; Wells, 1999}.  
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Constitutive EGFR signaling plays a role in tumor biology by promoting survival and 

proliferation of tumor cells. This is achieved by specific genetic changes which have been 

reported in lung, breast, colon, head and neck cancer, as well as in glioblastoma multiforme 

{Holbro et al., 2004; Pines et al., 2010}. These genetic alterations include activating 

mutations in the kinase domain (i.e. exon 18-21), gene amplification leading to protein over-

expression and deletions in the extracellular domain {Shigematsu et al., 2006; Sharma et al., 

2009; Jorissen et al., 2003}. Approved EGFR-inhibitors for cancer treatment include two 

monoclonal antibodies (cetuximab and panitumumab), and the two small molecular weight 

compounds gefitinib and erlotinib. Gefitinib and erlotinib have been found to be particularly 

efficacious in lung cancer patients bearing tumors characterized by mutated forms of EGFR 

{Nedergaard et al., 2012; Johnson et al., 2005}. 

 

HER receptors have been targets for pharmacological intervention for many years in cancer 

research. Their role in tumor progression has been thoroughly dissected together with some 

of the underlying hypotheses of molecular resistance and tumor escape occurring when HER 

receptors are inhibited. As mentioned before, escape mechanisms of cancer cells developing 

in response to inhibition of a specific signaling node are often the cause of the limited 

efficacy of targeted single agent therapies {Alexander et al., 2012}. Understanding both 

acquired as well as inherent resistance mechanisms in tumor biology is crucial for future 

rational combination therapies.  

 

1.3.2 The HGF receptor Met and its role in tumor resistance to EGFR inhibition  

 

The receptor Met belongs to the HGF family of receptor tyrosine kinases together with Ron 

(recepteur d'origine nantais) and Sea. Although Met and Ron are activated by different 
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ligands, they share a common structure and are both involved in processes such as cell 

dissociation and motility {Comoglio et al., 1996}. Met and its ligand HGF are important 

mediators of tumor growth, survival, and metastasis {Trusolino et al., 2010; Gherardi et al., 

2012; Birchmeier et al., 2003}. Stimulated by HGF, Met triggers activation of several 

downstream signaling molecules responsible for proliferation, cell cycle progression, 

migration and invasion. 

 

 

 

Figure 4. Schematic representation of the HGF receptor Met {modified from Jung et al., 2012}. 

 

The mature Met receptor is a single-pass, type I disulphide-linked heterodimer trans-

membrane protein consisting of a 45 kDa extracellular α-chain and the membrane spanning 

140 kDa β-chain. The β-subunit, which is also required for HGF binding, additionally 

comprises a trans-membrane region and the cytoplasmic domain where the catalytic ATP 

binding site and a C-terminal tail are located (Figure 4). The phospho-tyrosine residues of the 

C-terminal docking site interact with signaling adapter proteins such as the growth factor 
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receptor bound protein 2 (Grb2) and Grb2 associated binding protein 1 (Gab1) {Trusolino et 

al., 2010; Ponzetto et al., 1994; Weidner et al., 1996}. Phosphorylation of Gab1 induces 

among others the recruitment of the PI3K, which can also bind the receptor directly via its 

regulatory subunit p85. A negative regulator domain of Met, which includes a specific 

phospho-tyrosine residue in the juxtamembrane domain, is responsible for Met degradation 

and signal inactivation through the binding to the E3 Ubiquitin ligase Casitas B-lineage  

lymphoma (Cbl) {Jeffers et al., 1997}. 

 

Epithelial cells respond to Met activation by scattering, increased motility and by  

undergoing EMT {Weidner et al., 1990}. Both the MAPK and the PI3K pathways have been 

found to be involved in the motility phenotype driven by Met {Potempa et al., 1998} while 

survival is mainly dictated by the PI3K pathway via AKT {Xiao et al., 2001}. The expression 

of Met in healthy adult tissues is very low under physiological conditions. Its activation in 

cancer is often times HGF-dependent but it may also occur in a ligand-independent way, if 

the receptor is over-expressed on the surface of tumor cells. Known genetic changes which 

involve Met in cancer progression include duplication of a mutant Met allele {Zhuang et al., 

1998}, gene amplification, structural rearrangement and somatic mutations which have been 

found in different human cancers {Ma et al., 2008}. As for EGFR, a multitude of inhibitors, 

both low molecular weight compounds and monoclonal antibodies directed against Met, e.g. 

tivantinib (ARQ-197) or onartuzumab (MetMAb), are currently tested in clinical trials {Yap 

et al., 2011; Jung et al., 2012}. 

 

Met interacts with several other membrane proteins, such as EGFR {Guo et al., 2008; 

Hammond et al., 2010}. A cross-talk between EGFR and Met in transformed cells has been 

reported {Jo et al., 2000}. Furthermore, Met gene amplification has been demonstrated to 
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contribute to the EGFR inhibitor-mediated acquired resistance observed in approximately 

10% of NSCLC patients, presumably achieved through the PI3K pathway {Engelman et al., 

2007; Bean et al., 2007; Yamada et al., 2010; Engelman et al., 2008}. Recently, other studies 

have demonstrated that HGF-dependent activation of Met can induce EGFR tyrosine kinase 

inhibitors (TKI) resistance by restoring downstream MAPK and PI3K/AKT signaling 

{Okamoto et al., 2010; Donev et al., 2011}. In this context, transient inhibition of PI3K/AKT 

pathway by the PI3K inhibitor PI-103 and gefitinib has been shown to overcome this 

phenomenon by inducing apoptosis in EGFR mutant lung cancer cells {Donev et al., 2011}. 

The combination of Met and EGFR inhibitors is currently under pre-clinical and clinical 

evaluation. Co-treatment of erlotinib and SGX523 (a small molecule inhibitor of Met) has 

been tested in transgenic mice expressing human HGF and has been found to be more 

efficacious than the administration of either single agent {Zhang et al., 2010}. In a recent 

study, the simultaneous administration of WZ4002, a mutant EGFR-TKI and E7050, a 

mutant selective dual inhibitor of Met and vascular endothelial growth factor receptor -2 

(VEGFR-2) was shown to inhibit tumor growth in erlotinib resistant NSCLC cells in vitro 

and in vivo. This combination resulted in the successful inhibition of EGFR, Met, and the 

downstream PI3K-AKT pathway {Nakagawa et al., 2012}. In light of these preclinical data, 

early stage clinical trials combining EGFR and Met inhibitors are underway. 

 

The biology and cross-talk of HER family members with other RTKs (which can mediate 

clinically-relevant resistance) constitute a fundamental field of research aimed at generating 

novel anti-cancer compounds with increased clinical efficacy. EGFR and Met have been 

further characterized in this thesis for their pivotal role in cancer biology and resistance to 

targeted treatments. We have exploited the possibility to modulate these targets by means of 

antibody engineering technology.   



15 

 

1.4 Antibodies as drugs 

 

Antibodies are long established in clinical practice with more than 25 monoclonal antibodies 

currently approved by the FDA {An, 2010; Trikha et al., 2002; Adams et al., 2005}, half of 

which have been developed for the treatment of cancer {Nieri et al., 2009, Carter, 2001}. A 

therapeutic mAb is an IgG molecule, which in contrast to the native antibody repertoire, 

recognizes a self-antigen. The majority of approved mAbs belong to the IgG1 subclass 

characterized by a long half-life and potent molecule-associated effector functions (i.e. 

antibody-dependent cellular cytotoxicity, ADCC). A regular IgG contains two light chains 

(composed of one variable and one constant region) and two heavy chains (each composed of 

one variable and three constant regions). Complementarity-determining regions (CDRs) are 

responsible for antigen recognition and reside in the variable fragment (Fv) portion of the 

antigen-binding fragment (Fab). A therapeutic monoclonal antibody can contain CDRs which 

bind with high affinity to a tumor–associated target or molecule involved in tumor formation 

and progression {Beck et al., 2010}. 

 

Over the last years, antibody engineers have become more and more proficient in generating 

and improving the features of such molecules. The field has grown from the use of 

conventional hybridoma technology to produce murine monoclonal antibodies to the 

application of genetic engineering techniques to generate chimeric antibodies (containing 

mouse antigen-binding variable regions joined to human constant domains). A further 

improvement in minimizing immunogenicity to the antibody consisted in producing 

humanized antibodies in which the non-human CDRs constitute the only rodent sequences 

and are ‘grafted’ into a human IgG {Nieri et al., 2009; Carter 2001}. Generation of fully 

human antibodies is now possible by phage display (to screen libraries for human antibody 
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binding domains with high affinity to specific antigens) {Hoogenboom et al., 1998} as well 

as by transgenic technology {Brueggemann et al., 1997}. 

 

 
 

Figure 5. Schematic representation of murine, chimeric, humanized and human IgG {modified from Imai et al., 2006}. 

 

The modes of action of a monoclonal antibody generated as cancer therapeutic include 

inhibition of target RTKs, {Izumi et al., 2002; Harding et al., 2005}, apoptosis induction, 

pay-load delivery {Hudson et al., 2003}, or immune effector cell activation (i.e. ADCC). 

Nevertheless, as discussed above, inhibition of an oncogenic driver protein by a mono-

specific therapeutic antibody often results in rapid emergence of resistance, rendering the 

treatment ineffective {Pillay et al., 2009}. Therefore, it is not surprising that combinations of 

more than one antibody {Scheuer et al., 2009} or generation of alternative antibody scaffolds 

designed at targeting simultaneously more than one antigen are under evaluation. 

 

1.4.1 Bi- and multi–specific antibodies  

 

A native IgG is bivalent and monospecific because it contains two identical Fabs, both 

recognizing the same antigen. Antibodies in bi- or multi-specific formats can be generated to 

bind two or more different epitopes (usually on distinct antigens) within a single molecule. 

Depending on their design, multi-specific antibodies can be monovalent or bivalent for each 
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of the targets, if they are engineered to recognize their specific antigens with one or with two 

separate binding arms. 

 

Bi-specificity can be simply achieved by engineering molecules whereby the two binding 

arms can simultaneously recognize different antigens, with a structure and molecular weight 

resembling the ones of a regular IgG {Bostrom et al., 2009}. However, with respect to the 

structural properties and possible formats, a variety of bispecific constructs have been 

described in the past (Kontermann, 2010), produced by different technologies. The strategy 

used for the generation of bi- and multi-specific antibodies in this thesis is based on the 

“knobs into holes” approach {Ridgway et al., 1996; Carter, 2001; Merchant et al., 1998}, 

combined with single chain Fabs (ScFabs) and single chain Fvs (ScFvs) fusions at the N- and 

C- terminal of the IgG molecule. While developing a bispecific antibody in an IgG format 

constituted by two different heavy chains, it is essential to avoid generation of chain 

mispairing contaminants. A good approach consists in engineering the CH3 domain (the main 

part of the Fc domain responsible for the heavy chains interaction) in order to force hetero-

dimerization and reduce the formation of homo-dimers. The knobs into holes technique 

consists in replacing a small amino acid with a larger one in one of the CH3 domains (‘knob’) 

and simultaneously introducing smaller amino acids (‘hole’) into the CH3 domain of the 

second heavy-chain. By doing this, the residues of the CH3 of one chain can easily 

accommodate into the other one. The resulting hetero-dimeric Fc part can be further 

stabilized by artificially introduced disulfide bridges. Antibodies designed with this approach 

retain their effector functions {Carter, 2001} and a potentially extended half-life. In addition, 

since these mutations are hidden in the antibody structure, they are not expected to induce 

immunogenicity once such molecules are administered to patients. To increase the number of 

specificities, entities specific for additional targets can be fused at the N- or C-termini of the 
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antibody (single-chain disulfide stabilized Fvs or Fabs) {Metz et al., 2011; Schanzer et al., 

2011; Croasdale et al., 2012}. The use of ScFabs and ScFvs fusions additionally solves the 

problem of light chain mispairing. Exemplary schematic representations of the knobs into 

holes mutations, an N-terminal ScFab and a C-terminal ScFv fusion introduced to avoid light 

chain mispairing and increase specificities are shown are Figure 6. 

 

 

 

Figure 6. A): Knobs into holes mutations. B): N-terminal ScFab (VL-CL-Linker -VH-CH1). C): C-terminal ScFv fusion 

(VH-Linker-VL). 

 

Binding of bi- or multi-specific antibodies to their antigens depends on biochemical 

properties (i.e. affinity and avidity) as well as on the relative expression of the targets on the 

tumor cells. By blocking two or more pathways at the same time, multi-specific antibodies 

may provide potential synergistic effects compared to the combinations of single agents. The 

simultaneous targeting of at least two molecules may in fact improve their binding 

characteristics. Besides the relative affinity to the single targets which plays an essential role, 

once the first arm is bound to the respective antigen, the other arm/s is/are brought in close 

proximity to the plasma membrane. This condition favors a much faster interaction to the 

second/additional antigens. This phenomenon is called avidity {Dower et al., 1981 1 and 2} 

and represents a clear advantage of a multi-specific antibody versus the combination of single 
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agents. It can occur when one of the antigens, which is expressed at higher level, recruits the 

antibody to the cell surface, resulting in increased potency of the antibody itself towards the 

less expressed targets {Fitzgerald et al., 2011}. Since most of the targets are not ‘tumor-

specific’ but rather ‘tumor associated’, monovalent binding of certain multi-specific 

antibodies would additionally preserve the healthy cells which may express the targets at 

lower density from potential side effects of the therapeutic antibody targeting {Marvin et al., 

2006}. Avidity can also be influenced by the number of valencies of the antibody for the 

respective antigen (i.e. an antibody binding an antigen with two arms will show a higher 

potency compared to monovalent binding). At the same time, by bringing different receptor 

tyrosine kinases in close proximity on the surface of a tumor cell, a multi-specific antibody 

may show unwanted agonistic activity. For therapeutic applications, the selection of an 

appropriate targeting moiety is usually directed by the underlying biology, i.e. the expression 

of the targets of interest on the tumor cells. In the case of a multi-specific molecule, this 

should be combined with a deep biochemical characterization of the lead compound {Filpula, 

2007; Mansi et al., 2010} with a precise analysis of the antigen binding properties since these 

may strongly influence clinical efficacy. 

 

Only antibodies in bispecific formats are now emerging as effective therapeutics {Chames et 

al., 2009; Thakur et al., 2010}: some of these, (such as MM-111, targeting HER2/ErbB3 

heterodimers, and MEHD7945A, targeting EGFR/ErbB3 heterodimers) are in development 

for the treatment of diseases where HER-receptors dimerization is proposed to play a central 

role {Schaefer et al., 2011; Nielsen et al., 2008}. There is currently only one approved 

bispecific antibody: the EpCAMxCD3 mouse-rat chimeric catumaxomab, for the treatment of 

malignant ascites {Linke et al., 2010; Seimetz et al., 2010; Ströhlein et al., 2010}. Until 

recently, only bispecific effector cell recruiters entered clinical investigations. However,  
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compounds targeting angiogenic factors (VEGF and Angiopoietin 2) or RTKs, as the ones 

mentioned above, are currently under investigation {McDonagh et al., 2012; Doppalapudi et  

al., 2010}. 

 

Based on the currently known resistance mechanisms in HER signaling, namely activation of 

other RTKs such as Met and IGF1R (insulin-like growth factor 1 receptor) {Hynes et al., 

2005}, this thesis has been dedicated to the characterization of novel bi- and multi-specific 

antibodies which are either mono-, or bivalent for some of these targets. Simultaneous 

binding to all antigens, avidity properties, ability to inhibit targets and downstream molecules 

phosphorylation, as well as invasion and tumor cell growth both in vitro and in vivo were 

investigated to evaluate the feasibility of generating such molecules for future applications as 

anti-cancer agents in various therapeutic areas. 

  



21 

 

1.5 Abbreviations 

 

ADCC Antibody-dependent cellular cytotoxicity 

ATP Adenosine-5'-triphosphate 

Cbl Casitas B-lineage lymphoma 

CD3 Cluster of differentiation 3 

CDC Complement-dependent cytotoxicity 

CDRs Complementarity-determining regions 

CH  Constant heavy  

DAF Dual action Fab 

EGF Epidermal growth factor 

EGFR Epidermal growth factor receptor 

EMT Epithelial to mesenchymal transition 

EpCAM Epithelial cell adhesion molecule 

Fab Fragment, antigen binding 

Fc region Fragment crystallizable region 

FDA US Food and drug administration 

Fv Fragment, variable 

Gab1 Grb2 associated binding protein 1 

Grb2 Growth factor receptor bound protein 2 

HER Human epidermal growth factor receptor 

HGF Hepatocyte growth factor 

IGF1R Insulin-like growth factor 1 receptor 

IgG Immunoglobulin G 

kDa Kilo-Dalton 

K-Ras V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 

mAb Monoclonal antibody 

MAPK Mitogen-activated protein kinase 

NSCLC Non-small cell lung cancer 

PI3K Phosphoinositide 3-kinase 

PTEN Phosphatase and tensin homolog 

RB Retinoblastoma protein 

Ron Recepteur d'origine nantais 
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RTK Receptor tyrosine kinase protein 

ScFab Single chain Fab fragment 

ScFv Single chain variable fragment 

TGF-α Transforming growth factor-alpha 

TKI Tyrosine kinase inhibitor 

VEGF Vascular endothelial growth factor 

VEGFR Vascular endothelial growth factor receptor 
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2. Summary of the presented publications 

 

Cancer is a complex and heterogeneous disease characterized by specific tumor and 

individual genotypic and phenotypic alterations which accumulate during its development, 

treatment and progression. The importance of linking an associated tumor antigen with a 

targeted molecular treatment is becoming more and more evident and necessary from a 

clinical perspective. However, tumors are frequently hyper-mutated, driven by multiple 

molecular aberrations and adopt differentially defined escape mechanisms during the course 

of treatment. Such mechanisms are often based on modulation of one or more alternative 

molecular targets or pathways, alone or simultaneously. 

 

In the first paper, we studied and dissected in detail a mechanism whereby epithelial tumors 

escape targeted therapies: the cross-talk of receptor tyrosine kinases on the membrane surface 

of tumor cells, in this particular case the hepatocyte growth factor (HGF) receptor - Met - and 

the epidermal growth factor (EGF) receptor EGFR. We observed that treatment with EGFR 

inhibitors of various tumor cells stimulated with HGF and EGF, results in transient up-

regulation of phosphorylated AKT accompanied by a pro-invasive phenotype. Additionally, 

co-treatment with an AKT inhibitor strongly reverts the invasive phenotype, suggesting a 

connection between signaling and functional data. These findings imply that during treatment 

of tumors a balanced ratio of EGFR and Met inhibition is required to counteract both 

pathways. Hence, we employed antibody engineering technology to address the observed 

resistance phenomenon by designing a therapeutic compound targeting EGFR and Met 

(MetHer1). The bispecific antibody MetHer1 proved to inhibit tumor cell proliferation and 

displayed high potency in a migration assay. We showed that the bispecific construct 

suppresses invasive growth when both Met and EGFR pathways are active, in contrast to 
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treatment with the EGFR inhibitors alone. In an in vivo experiment MetHer1 bispecific 

antibody potently inhibits tumor growth in a non-small cell lung cancer xenograft model. 

These findings support a combination treatment with EGFR and Met inhibitors and further 

evaluation of clinically–relevant resistance mechanisms to EGFR inhibition in the context of 

an active ligand-dependent Met signaling. 

 

To go beyond bi-specificity, given that tumors may escape therapies by simultaneous up-

regulation of multiple targets, in the second paper we demonstrated the feasibility to generate 

multi-specific (i.e. tri-specific) antibodies for cancer therapy. By surface plasmon resonance 

techniques, we showed antigen-binding kinetic profiles comparable to the parental antibodies 

and proved that simultaneous binding to three large extracellular domains is feasible. By 

performing cellular and chip surface competition experiments we proved that the molecules 

display avidity and retain their effector cell recruitment potential. Agonistic activity might be 

expected from bringing different receptor tyrosine kinases in close proximity on the surface 

of a tumor cell. Therefore, we verified that the newly generated multi-specific molecules are 

devoid of this effect by testing their inhibitory profile both on the targets as well as on tumor 

cell proliferation. We hypothesize that administration of such molecules to patients – whose 

tumors would first need to be molecularly classified according to the expression of the 

respective targets - may result in effective therapy. 

 

This thesis demonstrates that generation and application of multi-target specific therapeutic 

antibodies – combined with in-depth biological understanding of the molecular features that 

grant tumor resistance to current targeted therapeutics - represent a powerful venue towards 

the discovery and development of novel anti-cancer drugs. Such biological drugs would 



35 

 

potently inhibit tumors and prevent resistance by addressing disease-associated de novo and 

acquired escape mechanisms. 
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3. Zusammenfassung der präsentierten Arbeiten 

 

Krebs ist eine komplexe und heterogene Erkrankung, die durch tumorspezifische aber auch 

individuell vererbte genotypische Veränderungen charakterisiert wird. Aus klinischer Sicht 

ist eine Behandlung, welche nur den Tumor trifft, wünschenswert, um den therapeutischen 

Effekt zu maximieren. Dies wird über assoziierte Tumorantigene als Zielstrukturen für eine 

gerichtete molekulare Behandlung erreicht. Allerdings sind Tumore, bedingt durch die 

zahlreichen molekularen Aberrationen, vergleichsweise leicht in der Lage, einer gerichteten 

Behandlung, durch Nutzung alternativer Signaltransduktionswege, auszuweichen (escape-

Mechanismus). 

 

In der ersten Publikation haben wir einen solchen escape-Mechanismus am Beispiel der 

Therapie von epithelialen Tumorzellen detailliert untersucht: den sogenannten cross-talk von 

Rezeptor-Tyrosin-Kinasen an der Membranoberfläche von Tumorzellen. Konkret wurde dies 

für den Hepatozyten-Wachstumsfaktor (HGF)-Rezeptor Met und den epidermalen 

Wachstumsfaktor (EGF)-Rezeptor EGFR betrachtet. Eine Behandlung von unterschiedlichen, 

mit HGF und EGF stimulierten, Tumorzellen mit EGFR-Inhibitoren induziert eine transiente 

Erhöhung von phosphoryliertem AKT über das Maß hinaus, welches mit den 

Wachstumsfaktoren allein beobachtet wird. Dies geht einher mit einem pro-invasiven 

Phänotyp. Die gleichzeitige Behandlung mit einem AKT-Hemmer kehrt den invasiven 

Phänotyp um, was auf eine Verbindung zwischen Signal- und funktionellen Eigenschaften 

hinweist. Diese Ergebnisse deuten darauf hin, dass bei einer Tumortherapie ein 

ausgewogenes Verhältnis von EGFR und Met Hemmung erforderlich ist, um beide 

Signalwege zu inhibieren. Ob jedoch Gabe von EGFR-Inhibitoren in der Gegenwart von 

aktivem Met Signalweg auch klinisch nachteilig ist, kann mit den erhobenen Daten nicht 
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geklärt werden. Um eine simultane Inhibition zu erreichen, wurde ein bispezifischer 

Antikörper, welcher EGFR und Met gleichzeitig binden kann (MetHer1), hergestellt. Dieser 

bi-spezifische Antikörper MetHer1 war in der Lage, die Proliferation der Tumorzellen zu 

hemmen und zeigte eine hohe Wirksamkeit in einem in vitro Migrations-Assay. Wir konnten 

ebenfalls zeigen, dass der bi-spezifische Antikörper invasives Wachstum unterdrückt, wenn 

sowohl der Met als auch der EGFR Signalweg aktiv sind, wohingegen EGFR-Inhibitoren 

allein dazu nicht in der Lage sind. In einem nicht-kleinzelligen Lungenkarzinom-

Xenotransplantat-Modell zeigte der bi-spezifische MetHer1 Antikörper eine starke Inhibition 

des Tumorwachstums. Diese Ergebnisse unterstützen die Kombination von EGFR- und Met-

Hemmer sowie weitere Untersuchungen zu klinisch relevanten Resistenzmechanismen gegen 

EGFR-Hemmung im Kontext eines aktiven Met-abhängigen Signalweges. 

 

Da Krebszellen einer gerichteten Therapie durch gleichzeitige Hochregulation mehrerer 

Signalwege entkommen können, haben wir die Generierung und den Einsatz multi-

spezifischer (z.B. tri-spezifischer) Antikörper für die Krebstherapie in der zweiten 

Publikation evaluiert. Durch Plasmonresonanz (SPR)-Spektroskopie konnten wir zeigen, dass 

die Bindungs-Kinetiken der multispezifischen Antikörper mit denen der monospezifischen 

Ursprungs-Antikörper vergleichbar sind. Außerdem wiesen wir nach, dass die gleichzeitige 

Bindung von drei großen extrazellulären Protein-Domänen möglich ist. Durch zelluläre und 

Chip-Oberflächen Kompetitions-Experimente konnten wir zeigen, dass die hergestellten 

Moleküle eine entsprechende Avidität zeigen, und ihre Fähigkeit Immunzellen zu rekrutieren, 

beibehalten haben. Durch die induzierte räumliche Nähe unterschiedlicher Rezeptor-Tyrosin-

Kinasen auf der Oberfläche einer Tumorzelle wäre eine agonistische Aktivität zu erwarten 

gewesen. Daher wurde in Proliferations-Assays ausgeschlossen, dass die hergestellten multi-

spezifischen Moleküle einen agonistischen Effekte besitzen .Wir glauben daher, dass die 
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klinische Verabreichung von tri-spezifischen Antikörpern eine wirksame Therapie besonders 

bei jenen Patienten darstellen kann, deren Tumoren eines oder mehrere der Antigene 

exprimieren. 

 

Diese Arbeit belegt, dass die Herstellung und in vitro Charakterisierung von multi-

spezifischen therapeutischen Antikörpern, kombiniert mit dem fundierten biologischen 

Verständnis der molekularen escape-Mechanismen, eine potente Plattform für die 

Entwicklung und Evaluation neuartiger Krebsmedikamente darstellt. Multi-spezifische 

Proteinbasierte Arzneimittel haben das Potenzial, das Tumorwachstum stark zu hemmen und 

die Entstehung von therapieresistenten Erkrankungen zu verhindern. 
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4. Results (publications) 
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A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects 

induced by resistance to EGFR inhibition and has potent antitumor activity 
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ORIGINAL ARTICLE

A novel bispecific EGFR/Met antibody blocks tumor-promoting
phenotypic effects induced by resistance to EGFR inhibition
and has potent antitumor activity
R Castoldi1, V Ecker1, L Wiehle1, M Majety1, R Busl-Schuller1, M Asmussen1, A Nopora1, U Jucknischke1, F Osl1, S Kobold2,
W Scheuer1, M Venturi1, C Klein3, G Niederfellner1 and C Sustmann1

Simultaneous targeting of epidermal growth factor receptor (EGFR) and Met in cancer therapy is under pre-clinical and clinical
evaluation. Here, we report the finding that treatment with EGFR inhibitors of various tumor cells, when stimulated with hepatocyte
growth factor (HGF) and EGF, results in transient upregulation of phosphorylated AKT. Furthermore, EGFR inhibition in this setting
stimulates a pro-invasive phenotype as assessed in Matrigel-based assays. Simultaneous treatment with AKT and EGFR inhibitors
abrogates this invasive growth, hence functionally linking signaling and phenotype. This observation implies that during treatment
of tumors a balanced ratio of EGFR and Met inhibition is required. To address this, we designed a bispecific antibody targeting EGFR
and Met, which has the advantage of a fixed 2:1 stoichiometry. This bispecific antibody inhibits proliferation in tumor cell cultures
and co-cultures with fibroblasts in an additive manner compared with treatment with both single agents. In addition, cell migration
assays reveal a higher potency of the bispecific antibody in comparison with the antibodies’ combination at low doses. We
demonstrate that the bispecific antibody inhibits invasive growth, which is specifically observed with cetuximab. Finally, the
bispecific antibody potently inhibits tumor growth in a non-small cell lung cancer xenograft model bearing a strong autocrine
HGF-loop. Together, our findings strongly support a combination treatment of EGFR and Met inhibitors and further evaluation of
resistance mechanisms to EGFR inhibition in the context of active Met signaling.

Oncogene (2013) 32, 5593–5601; doi:10.1038/onc.2013.245; published online 1 July 2013

Keywords: EGFR; Met; HGF; EGF; bispecific antibody

INTRODUCTION
Escape mechanisms occurring in cancer cells and which develop
in response to inhibition of a specific signaling pathway often limit
efficacy of targeted single-agent therapies.1 Understanding the
biology of such acquired but also intrinsic resistance mechanisms
in tumors is pivotal for devising future rational combination
therapies. The inhibition of a single receptor tyrosine kinase
signaling presents a good example of molecular networks, which
mediate tumor escape.2 A cross-talk of epidermal growth factor
receptor (EGFR) and Met in transformed cells was already
described in 2000 by Strom et al.3 EGFR is a member of the
ErbB family of receptor tyrosine kinases consisting of EGFR (ErbB1),
HER2/neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4).4 Constitutive
EGFR signaling has a role in tumor biology by promoting survival
and proliferation of cancer cells. Several EGFR-specific small
molecular weight inhibitors (for example, gefitinib or erlotinib)
as well as antibody modulators (cetuximab or panitumumab)
have been developed and are approved for clinical use.5 Met and
its ligand hepatocyte growth factor (HGF) are important mediators
of tumor growth, survival and metastasis.6,7 Similarly as for EGFR, a
multitude of inhibitors, small molecules or monoclonal antibodies
directed against Met (for example, tivantinib or onartuzumab
(MetMAb)), are currently tested in clinical trials.8 Increased HGF/
Met signaling can limit the effect of EGFR pathway inhibition and

has been linked with acquired resistance to EGFR-targeted drugs
in EGFR-mutant lung tumors.9,10 Although the incidence of
acquired resistance, as observed in non-small cell lung cancer, is
only about 10%, Met is considered to be a major escape route for
EGFR-targeted therapies.11,12 Not surprisingly, ErbB family
members may also confer resistance to Met tyrosine kinase
inhibition.13,14 Perturbation of both receptors’ activity suggests
that EGFR and Met signaling nodes are highly and dynamically
interconnected.15,16 These findings are further substantiated in
various cellular models and as such, may reflect a general
phenomenon.17–21 As murine HGF is only weakly cross-reactive
to human Met, a combination of erlotinib and SGX523, a small
molecule inhibitor of Met, was assessed in transgenic mice
expressing human HGF and found to be superior to both single-
agent treatment.22 In addition, results of a combination study of
erlotinib and onartuzumab strengthen the co-targeting
rationale.23 In this study, we demonstrate for the first time that,
under conditions of active EGFR and Met signaling, treatment with
specific EGFR inhibitors induces an increase in phosphorylated
AKT and most importantly enhances the invasive properties of
tumor cells. To test the hypothesis that combined inhibition of
both receptor activities is required to suppress invasiveness, we
generated a bispecific antibody based on the anti-EGFR antibody
cetuximab and the Met-specific 5D5 antibody. The selected format
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for the bispecific antibody was that of a 2þ 1 molecule, which
then allows fixed stoichiometry and consequent balanced
inhibition of both receptors.

RESULTS
EGFR inhibition triggers p-AKT and induces invasion in HGF-
stimulated tumor cell lines
H596 cells, on stimulation with EGF and HGF and treatment with
cetuximab, displayed an increase in phospho-AKT compared with
untreated stimulated cells. This effect was also observed with the
two alternative EGFR inhibitors panitumumab and erlotinib
(Figures 1a and b). This observation, made consistently in the
background of potent stimulation by HGF and EGF, was consistent
and reproducible over a large set of experiments with a mean
increase of 1.62 (Figure 1c). The EGFR inhibitors did not affect
phosphorylation by themselves in the absence of EGF and HGF
stimulation (Supplementary Figures S1A and B). Treatment with
HGF and cetuximab led to a very modest increase of phospho-AKT
in comparison with HGF-treatment only (Supplementary Figure
S1C). Furthermore, spatially restricted increase of AKT phosphor-
ylation was clearly observed in the membrane proximal region of
A549-stimulated cells as described for H596 cells and in the
context of EGFR inhibition (Figure 1d), which might be indicative
for a potential role in migration and invasion events. In order to
explore possible functional consequences, we tested the effect of
EGFR inhibitors in an invasion assay using HGF and EGF-stimulated
cells. Experiments were performed with A431 cells, as this cell line
is a good model to study motility in Matrigel chambers, it
responds to cetuximab treatment with an increase in phospho-
AKT when stimulated with HGF and also displays increased
invasion on treatment with HGF and/or EGF (data not shown).

Cetuximab treatment after stimulation with EGF and HGF
increased the invasive phenotype of A431 cells in a statistically
significant manner (Po0.001) and this effect was dose-depen-
dently reverted by co-treatment with an AKT inhibitor (AKTi-1/2
VIII; Figures 2a and c). A similar—albeit smaller—increase in
invasion was induced by panitumumab and erlotinib treatments,
and it was similarly impaired by the addition of an AKT inhibitor
(Figures 2b and c). The AKT inhibitor was used at 1 mM: at this
concentration it abrogated Ser473 phosphorylation, which is an
activation marker, and was not cytotoxic in the assay
(Supplementary Figures S2A and B).

MetHer1 impairs proliferation in selected cell lines
To test the hypothesis whether the increase in phospho-AKT and
the accompanying invasive phenotype, potentially mediating
resistance to EGFR inhibition in the presence of HGF, could be
reverted by the simultaneous inhibition of the HGF receptor Met,
we generated a bispecific antibody construct capable of blocking
EGFR and Met (MetHer1) (Supplementary Figures S3A–C). This was
achieved by cloning the variable regions of cetuximab into an
immunoglobulin G1 (IgG1) antibody backbone with a monovalent
anti-Met single chain Fab similar to the one-armed 5D5
(onartuzumab) fused at the C-terminus of one of the heavy
chains. Correct heavy chain hetero-dimerization was enforced
using the knobs-into-holes technology.24 The final product had a
purity 498% and was able to simultaneously bind to both
antigens (Supplementary Figures S3D and E), displaying binding
kinetics for each antigen in the nM range, comparable to those of
the parental monospecific antibodies (Supplementary Figures S4A
and B). As a side-product resulting in a bispecific antibody with
two single chain Fab fusions would be agonistic, the activating
marker phospho-Met was monitored in the presence of MetHer1

Figure 1. EGFR inhibition under EGF and HGF-stimulated conditions induces an increase in AKT phosphorylation. (a) AKT status in stimulated
H596, in the presence or absence of cetuximab. (b) AKT status after treatment with cetuximab, panitumumab or erlotinib. (c) Box plot
presentation of cetuximab-dependent pAKT stimulation. Analysis of the ratio of HGF/EGF (H/E) treatment versus H/E treatment in the
presence of cetuximab (n 11 biological replicates). The box indicates 25th, 50th (median) and 75th percentiles, as well as mean (green bar).
(d) Confocal microscopy at � 63 magnification of phospho-AKT and b-actin-stained A549 cells.
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and in comparison with the bivalent and agonistic Met
antibody. No agonism could be seen for MetHer1
(Supplementary Figures S3F).

MetHer1 was further characterized in vitro for its effect on
viability in basal conditions in A431, H596 and H322M cell lines
and efficacy was compared with the two parental antibodies given
as monotherapy or in combination (Figure 3a). Cells were
cultivated in medium supplemented with 10% fetal calf serum
(FCS) and HGF was added for comparison as it is essential for
the functionality of the ligand-dependent 5D5 component of
MetHer1. Treatment only with cetuximab was already efficacious
in A431 cells, which are known to be EGFR addicted, but efficacy
was completely lost on addition of HGF. In this setting, 5D5
antibody alone had no effect as well, whereas only MetHer1 or
the combination of both parental antibodies induced a clear
and significant reduction in cell viability (approximately 40%).
This suggests that only inhibiting both receptors simultaneously
may have therapeutic potential in tumor cells where both

pathways are active. A very similar result was obtained with
H322M, with MetHer1 showing a 60% growth inhibition. In this
cell line as well, addition of HGF per se did not enhance
proliferation, which 5D5 alone could also not block. However,
addition of HGF impaired the anti-proliferative effect of cetuximab
and only treatment with the combination of cetuximab and 5D5
or with MetHer1 restored growth inhibition. mRNA profiling data
suggest a very low expression of Met in this particular cell line,
compared with the other two (data not shown) and our results
imply that the growth inhibition induced by MetHer1 occurred
mainly via the EGFR-specific arm. Nevertheless, a comparable
effect was not observed, when HGF-stimulated cells were treated
with cetuximab alone.

In H596 cells stimulated with HGF, MetHer1 mediated 60%
growth inhibition, which was significantly greater than that
induced by 5D5 alone (Po0.001). Co-culture of H596 with normal
and tumor lung fibroblasts resulted in a higher proliferation rate
after 5 days, which was significantly reduced by treatment with

Figure 2. EGFR inhibition in the presence of HGF and EGF induces an invasive phenotype. (a, b) Invasive phenotype of HGF/EGF-stimulated
A431 after treatment with cetuximab, panitumumab and erlotinib±AKTi -1/2VIII. (c) Quantitation of percentage invasive cells compared with
untreated cells (statistics: treated versus untreated (*) or treated versus treated plus AKTi-1/2VIII (#) (xPo0.05; xxPo0.01; xxxPo0.001, where x,
xx, xxx are either * or #)).
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5D5 and MetHer1, but not by cetuximab (Figure 3b). The effect
was probably dependent on fibroblasts producing HGF
(Supplementary Figure S5A).

The anti-proliferative effect of MetHer1 was also evaluated in
combination with a sub-optimal dose of the chemotherapeutic
agent cisplatin in H596 and BxPC3. BxPC3 represents a pancreatic
model in which the bispecific showed only a weak effect on
viability (Supplementary Figure S5B). Nevertheless, combined
treatment was superior to the effect of cisplatin alone (Po0.001)
with an overall percentage growth inhibition of 460%.
A combination of MetHer1 and cisplatin in H596, which already
responded well to MetHer1 mono-treatment, had no additional
effect. This supports the rationale that a combination of bispecific
antibody with reduced and thus better tolerated doses
of a chemotherapeutic can improve efficacy and safety, particu-
larly in tumor models, which are less dependent on signaling
(that is, BxPC3).

MetHer1 prevents HGF-induced scattering
HGF is also a known motility factor, which induces scattering and
invasion of epithelial cells. This is phenotypically characterized by
a change in cell shape and the effect can be macroscopically
observed in Figure 4a showing DU145 after 24 h of treatment with
HGF. Cellular migration can be semi-quantitatively evaluated
with a real-time cell analyzer (RTCA system), which measures
impedance changes as surrogate parameter of cell adhesion. As
reported in Figure 4a, HGF-induced cell motility and dissemination
of DU145 cells, thus reducing the measured impedance, when
compared with control. Scattering was quantified in a graph
where a normalized cell index (compound addition) was plotted
against time. DU145 were treated with cetuximab and 5D5, the
combination of both and MetHer1 (at 200 and 10 nM) and
stimulated with EGF and HGF. At high dose, MetHer1 could
completely revert the HGF-induced scattering and to a smaller
extent also at the low dose. In the latter case, no efficacy was seen
instead for the combination of the monospecific antibodies.
Efficacy of 5D5 alone was reduced by the influence of EGF
treatment, which per se also showed an effect on cell adhesion
(Figure 4b). Viability analysis displayed no differences between
treatments, excluding any influence of cell viability or proliferation
on the interpretation of the results (data not shown). A human
IgG control antibody did not influence cellular scattering
(Supplementary Figures S6C and D), suggesting specificity of the
reported data. The potential superiority of MetHer1 at low doses
was further evaluated in a dose-response scatter experiment. The
percentage scatter inhibition for MetHer1 or the combination
(Combo) was calculated and the ratio of both determined.
MetHer1 displayed superior inhibitory activity over three logs of
antibody concentration with a sevenfold higher potency at doses
as low as 1 nM (Figure 4c).

To better assess the superiority of MetHer1 versus the
combination in preventing growth factor-induced cell dissociation
at a low dose, the kinetics of internalization of the two
single agents in comparison with MetHer1 was evaluated in a
fluorescence-activated cell sorting assay. Presence of the receptors
on the cell surface was measured after binding with the respective
antibodies for 2 h, versus t0 (Supplementary Figure S6A). The
amount of antigen–antibody complex on the cell surface was
unchanged within this time. Intracellular staining was only
visible as speckle-like structures after 4 h of incubation with
fluorescently labeled antibodies by confocal microscopy
(Figure 4e, Supplementary Figure S6B). Cetuximab binding
appeared to be stronger compared with 5D5, which may be a
consequence of differential antigen expression (Figure 4d). There
was no difference in the kinetics of internalization between the
molecules. Therefore, superiority of MetHer1 in the scatter assay
could not be explained by differential internalization.

MetHer1 inhibits EGFR and Met-related pathways
MetHer1 efficacy in proliferation experiments was accompanied
by a strong decrease of target phosphorylation in A431 and H596
(Figure 5a), as well as in other in vitro models (Supplementary
Figure S7A). In A431, phospho-ERK1/2 was blocked by MetHer1
but not or only minimally by treating with the single parental
antibodies. The level of phospho-AKT, which was found to be
increased in HGF/EGF-stimulated cells after treatment with
cetuximab alone reverted back to basal untreated values in the
presence of MetHer1 in five cancer cell lines of different tissue
origins (Figures 5a and b). In BxPC3, we observed phosphorylation
of Met after stimulation of cells with EGF, which might be due to a
cross-talk between EGFR and Met. MetHer1 also reduced invasion
induced by HGF and EGF and significantly counteracted the
effect induced by cetuximab parental antibody in equal settings
(Figures 5c and d). The effect of simultaneous treatment with
cetuximab and 5D5 is additionally shown for comparison.

Figure 3. MetHer1 efficacy in vitro: effect on tumor cell proliferation.
(a) Viability of indicated cell lines on antibody treatment. (b) Viability
of H596 cultivated alone (ct.), or in the presence of normal (LNF) and
tumor (LTF) lung fibroblasts. Cells were treated with MetHer1 and
parental antibodies for comparison.
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MetHer1 has a potent antitumor effect in vivo
To test the efficacy of MetHer1 in a mouse model, an A549 tumor
cell line overexpressing HGF was generated by viral transduction
with a vector-encoding human HGF to overcome the issue of non-
cross-reactivity of murine HGF to human Met and ensure an
efficacy contribution by the 5D5 component. Several clones were
generated and their ability to produce HGF in the presence and
absence of selection pressure was evaluated by enzyme-linked
immunosorbent assay over a period of 29 days to ascertain stable
expression (Supplementary Figure S8A). Clone20 was selected
because of high secretion levels of HGF and constitutive Met
phosphorylation (Supplementary Figures S8A and C). The RTK
signaling network in this clone was compared with parental A549
by using a phospho-RTK array and affymetrix profiling. Overall,
A549 clone20 was comparable in its mRNA expression profile but
displayed a slightly different activation pattern of receptor
tyrosine kinases (Supplementary Figure S8B and data not shown).
HGF-producing A549 clone20 was characterized by cell surface
binding of fluorescently labeled MetHer1, 5D5 and cetuximab.
Although cetuximab and MetHer1 displayed a strong binding
capacity, 5D5 binding was found to be reduced in the HGF-
overexpressing clone compared with un-transduced cells

(Supplementary Figure S8E). This might be a consequence of
competition with ligand and/or lower steady-state Met cell surface
expression levels because of constitutive internalization induced
by the ligand HGF (Supplementary Figure S8C). MetHer1 inhibited
in vitro phosphorylation of both EGFR and Met to the same extent
as the parental antibodies. When subcutaneously implanted into
mice, tumors produced HGF (7.4±2.71 ng/ml: average of 10
animals), which was further confirmed ex vivo, in tumor lysates
(Supplementary Figure S8D). MetHer1 efficacy was tested in vivo in
the subcutaneous setting and compared with the parental
antibodies, which were administered in an equimolar ratio as
monotherapy or in combination. Tumor growth inhibition at the
end of study was with 75% higher for MetHer1 but not statistically
significantly different from the combination (55%) after three
weekly cycles of treatment (tumor growth inhibition for cetuximab
and 5D5: 11% and 51%). Data are presented as tumor growth
inhibition and nonparametric treatment-to-control-ratio graph
(Figures 6a and b). Near infrared fluorescence analysis with
fluorescently labeled antibodies confirmed in vivo binding, as
shown with two representative animals per group (Figure 6c).
Human HGF measured in the tumors was strongly reduced in the
MetHer1 treatment group compared with the vehicle group,

Figure 4. MetHer1 effect on HGF-induced motility. (a) DU145 after 24-h treatment with 30 ng/ml HGF. Confocal microscopy analysis of calcein-
stained cells and effect on impedance measured by RTCA (white bar x, y: 50 mm). (b) Quantitation of MetHer1 effect on HGF-induced DU145
scattering. (c) Dose-response curve analysis of scatter assay in DU145. The efficacy of bispecific antibody and cetuximabþ 5D5-mediated
inhibition of cell dissemination was determined after 24 h and the ratio of both calculated. (d) Basal and on-treatment receptor status of EGFR
and Met. (e) Internalization of fluorescently labeled antibodies evaluated in DU145 cells after 4 h of incubation (white bar x, y: 50 mm).
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probably as a consequence of smaller tumor sizes (Figure 6d). The
low efficacy observed after treatment with cetuximab was
expected because of mutant KRAS status. To predict the effect
of a putative combination of MetHer1 with a MEK inhibitor, which
would block the pathway downstream of KRAS, the effect of
MetHer1 and the MEK inhibitor UO126 on proliferation was tested
in vitro in A549 clone20 cells. Figure 6e shows the results obtained
when UO126 was administered at the sub-optimal dose of 5 mM

alone or in combination with MetHer1 (UO126 IC50 for this cell
line: 12.7 mM; data not shown). In combination with the MEK
inhibitor, a fourfold increase in the percentage inhibition was
observed, supporting that the KRAS mutation strongly influences
treatment efficacy.

DISCUSSION
In this study, we investigated in detail the counterbalancing
mechanisms mediated by Met that confer resistance to targeted
inhibition of EGFR. We confirmed in tumor cell lines from different
origins that treatment with EGFR inhibitors results in a transient
upregulation of phospho-AKT under conditions of co-activation of
the EGFR and Met pathways. In the presence of active Met
signaling, EGFR inhibition also enhanced invasiveness (Figure 2a).
Invasive growth of tumor cells on stimulation with EGF or HGF is
well known.25 Although a variety of studies on the cross-talk of the
two receptors and their inhibition have been published,19,21,26 it
has not been previously described that addition of EGFR inhibitors
to HGF-stimulated cells can increase invasiveness in comparison
with growth factor treatment only. Bonine-Summers et al.27

previously published that the EGFR inhibitor gefitinib also inhibits
Met signaling, which is in contrast to our findings. It has been

shown that gefitinib very potently targets cyclin-G-associated
kinase also.28 Meanwhile, it is known that cyclin-G-associated
kinase regulates PP2A and clathrin-mediated endocytosis, both
also important for Met regulation, which might explain the
authors’ findings.29,30 A very comprehensive study by Gusenbauer
et al.31 demonstrates the intricate cell surface network for
EGFR and Met but also for a variety of membrane proteins,
which are involved in this signaling node. Interference by our
EGFR inhibitors, especially antibodies binding EGFR, might shift
the balance between these signaling nodes and thus produce the
observed effects.

Maseki et al.32 reported that gefitinib-resistant head and neck
squamous cell carcinoma can acquire an epithelial to
mesenchymal transition phenotype, which is accompanied by an
increase of phospho-AKT. A similar epithelial to mesenchymal
transition process might occur in our experimental setting,
accompanied by Twist and Snail-mediated repression of
E-cadherin.33 Alternatively, phosphatidylinositol 3 kinase/AKT
signaling could directly act on focal adhesion kinase.34 Focal
adhesion kinase and Src are known to modulate E-cadherin
and thereby promote cancer cell invasion.35 Further addition of an
AKT inhibitor reversed the invasive phenotype similarly to the
combined inhibition of EGFR and Met (Figures 2a, 5c and d).
This implies, but does not unambiguously prove, that the
transient increase of phospho-AKT is causally linked to the
increase in invasiveness. In this context, it is an intriguing recent
experimental finding that an artificial increase of phospho-AKT
results in loss of cetuximab sensitivity in various lung cancer
cell lines.36

Our findings could be clinically relevant in the setting of an
adjuvant anti-EGFR therapy given that, independently from the

Figure 5. MetHer1 inhibits downstream signaling and invasion. (a) Expression and phosphorylation status of indicated proteins in A431 and
H596 on treatment. A431 were stimulated with HGF, H596 with HGF and EGF. (b) Phosphorylation status of AKT in indicated cell lines
after antibody treatment. (c) Invasive A431 cells after treatment with MetHer1 (H/E HGF and EGF). (d) Percentage of invasive A431 after
stimulation with HGF/EGF and treatment with indicated antibodies. P-values were calculated versus stimulated cells; *Po0.05.
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well-known autocrine or paracrine HGF supply by tumor cells and/
or tumor associated fibroblasts, it has been shown that HGF serum
levels are elevated after surgery as part of the wound-healing
process.37–39 However, the duration of this process in patients is
unclear. Targeted EGFR inhibition in lung cancer, in an adjuvant
setting, has already been studied.40 In 2002, the JBR.19 trial
investigated gefitinib as maintenance treatment in resected
non-small lung cancer. However, this trial was prematurely
stopped because of negative results of the ISEL and SWOG 0023
trials with gefitinib. The ongoing RADIANT trial with erlotinib is
primed to demonstrate whether EGFR inhibition in the adjuvant
setting is beneficial.

Clinical trials with combinations of EGFR and Met inhibitors
are ongoing. In this co-targeting setting, our data suggest that
an imbalance of EGFR and Met-targeting activities in tumor
samples may pose the risk of increased tumor spread. This could
be of special concern if low molecular weight and antibody
inhibitors with different pharmacodynamics are co-administered,
thus making a stronger case for the development of the bispecific
antibody we described. We have generated a bispecific antibody
consisting of cetuximab and 5D5 in a 2þ 1 format under the
assumption that a fixed stoichiometry of both targeting com-
pounds should ensure simultaneous inhibition of both targets
even in poorly accessible solid tumors. Mechanistically, such a
bispecific antibody might for instance display differential avidity,
clustering and internalization or antibody-dependent cell-
mediated cytotoxicity properties in comparison with the combina-
tion of two antibodies. To our knowledge, MetHer1 presents the
first bispecific IgG-like antibody targeting Met and EGFR. The
antibody is non-agonistic and proves the concept of targeting

both receptors simultaneously with a bispecific antibody. Pre-
viously, bispecific antibodies targeting EGFR and IGF-1R have been
described with a similar co-targeting approach41–44 as well as
EGFR was used as targeting moiety for effector cell recruitment or
payload delivery.45,46 MetHer1 displays no agonistic activity in
cellular assays and the overall activity was mostly similar to the
combination of the parental antibodies cetuximab and 5D5.
We observed differences in cell dissemination in the presence of
low inhibitor concentrations. This could possibly be explained by
an avidity effect, which raises the local Met inhibitor concentration
and thereby enhances efficacy. We propose that in the presence
of EGFR binding, the Met component of MetHer1 is enriched
on the cell membrane and can better inhibit Met activity. A close
proximity of both receptors has been previously shown by
co-immunoprecipitation.3

In a ligand-dependent animal model, the overall activity of
MetHer1 was superior but not significantly better than the
combination of the parental antibodies cetuximab and 5D5
(Figure 6a). Efficacy of cetuximab is greatly impaired by the KRAS
mutation found in A549. Although the mAb does not confer much
antitumor activity, in the MetHer1construct, cetuximab could
function as targeting moiety leading to more efficient 5D5
recruitment. This could explain the modest superiority of MetHer1
over the combination of parental antibodies but needs further
investigation. The hypothesis is supported by our in vitro cell
dissemination experiments whereby at lower doses MetHer1 was
also more efficacious than the parental antibody combination
(Figures 4b and c).

In contrast to onartuzumab, MetHer1 is a fully glycosylated
human IgG1 antibody. Thus, MetHer1 retains effector function

Figure 6. MetHer1 is efficacious in vivo in a HGF-overexpressing A549 human lung adenocarcinoma xenograft model. (a) Mean tumor volume
(arrows treatment). The anti-IgE antibody Xolair was used as control antibody. (b) Nonparametric treatment-to-control-ratio (TCR) of tumor
growth inhibition at the end of study. (c) In vivo imaging in two representative animals per group. (d) Quantitation of human HGF from serum
samples at the end of study. (e) Growth inhibition of A549 cl.20 in vitro, with a sub-optimal dose of the MEK inhibitor UO126 and indicated
antibodies (**Po0.01, ***Po0.001).
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abilities and these are not affected by the C-terminal fusion of the
5D5 single chain Fab (data not shown). Cetuximab and 5D5, as
used herein, also have a glycosylated human IgG1 Fc-part. In the
A549 clone20 in vivo model, immune effector functions, for
example, by residual macrophages, may have a role. However,
theoretically, these effects should be stronger in the combination
group, as the total Fc load per tumor cell is presumably higher
than for the MetHer1 group.

Although inhibition of tumor growth is a primary parameter,
it remains to be shown if the number of metastases is affected in
models, which display stronger tumor spread, especially after
excision of the primary tumor. A major hurdle is the availability of
human HGF to activate Met in such a model. Transgenic mice
producing human HGF have been described in the past and might
help to address this problem.

In summary, the findings reported here highlight the complex-
ity of perturbing regulatory networks by the use of targeted
therapies, especially if multiple activating signals are present,
which is the case in the majority of solid tumors, either de novo or
as consequence of acquired resistance. Bispecific antibodies—as
exemplified by MetHer1—facilitate targeting of two pathways
without the risk of under-dosing one compound, efficiently
counteract resistance mechanisms at the molecular level and
yet retain the ability to effectively mediate antibody effector
functions. Potential liabilities of such bispecific antibodies, for
instance, cumulative toxicities or unanticipated modes of action,
would need to be carefully evaluated during the development
process.

MATERIALS AND METHODS
Cell culture
A431, A549 and BxPC3 were obtained from ATCC (Manassas, VA, USA);
DU145, OVCAR8 and H322M from the NCI (Bethesda, MD, USA); H596 from
Chugai Pharmaceuticals Co., Ltd. (Tokyo, Japan) and lung normal and
tumor fibroblasts from Asterand plc (Royston, Herts, UK). Except H596, all
cells were maintained in RPMI 1640 medium, supplemented with 10% FCS,
non essential amino acids, sodium pyruvate and L glutamine (Gibco,
Darmstadt, Germany). H596 were maintained in RPMI high glucose,
supplemented with L glutamine, 1 mM sodium pyruvate, 10 mM HEPES (PAN
Biotech, Aidenbach, Germany) and 10% FCS. Cells were propagated
according to standard cell culture protocols.

Proteins and inhibitors
The variable heavy and light chain domain sequences of cetuximab and
5D5.v2, herein referred as 5D5, were cloned based on published sequences
via gene synthesis in mammalian expression vectors. For cetuximab, a
human IgG1 framework and kappa light chain backbone was used. For
5D5, two heavy chain 5D5 plasmids were used which carried the knobs
into hole mutations47 and in which one was missing the VH CH1 domain.
MetHer1 was constructed from cetuximab with a human IgG1 backbone
with knobs into hole and a single chain Fab fusion of Met at the knob
heavy chain. Light and heavy chains were co transfected in HEK 293F
(Invitrogen/Life Technologies GmbH, Darmstadt, Germany) resulting in full
glycosylation of all antibodies, then purified as previously described.45

Purity was analyzed using an Agilent HPLC 1100 (Agilent Technologies,
Oberhaching, Germany) with a TSK GEL G3000SW column (Tosoh Corp.,
Tokyo, Japan). Identity was confirmed by mass spectrometry and binding
properties characterized by surface plasmon resonance (SPR). Cetuximab
parental antibody was purchased from Merck Serono (Darmstadt,
Germany), panitumumab from Amgen Inc. (Thousand Oaks, CA, USA).
Met and EGFR ectodomains were transiently expressed and purified from
HEK 293F supernatants. Recombinant huHGF and huEGF were obtained
from R&D Systems (Minneapolis, MN, USA) and Gibco. AKTi 1/2 VIII and
UO126 were bought from Calbiochem/Merck KgaA (Darmstadt, Germany).
Other antibodies: pEGFR, pAKT1 (Epitomics, Burlingame, CA, USA), EGFR
(Millipore/Merck KgaA, Darmstadt, Germany), pMet, Met, pMAPK, MAPK,
AKT (Cell Signaling Technology Inc., Danvers, MA, USA) and b actin
(Abcam, Cambridge, UK).

Immunoblot
Cells (5 8� 105 per well) were seeded in a six well plate in medium with
0.5% FCS and treated the following day with 0.07 mM of cetuximab,
panitumumab, 5D5 and MetHer1 and 5 mM erlotinib for 30 min (1 h for
erlotinib) prior stimulation (HGF 30 ng/ml and EGF 50 ng/ml). After 5 or
15 min of incubation at 37 1C, cells were washed with phosphate buffered
saline, lysed and subjected to immunoblot analysis. For statistical analysis,
a box plot analysis was applied.

Invasion assay
A431 (50 000 cells per well) were pre incubated for 15 min at 37 1C with
0.2mM antibodies, 5 mM erlotinib or AKT inhibitor in medium with 0.5% FCS
and seeded in Matrigel chambers (BD Biocoat Matrigel Invasion Chambers,
BD Biosciences, Heidelberg, Germany), which were beforehand rehydrated
and immersed in 24 well companion plates in medium with 10% FCS and/
or growth factors plus treatment. HGF and EGF were added in the
chambers before incubation for 43 h at 37 1C. Non invading cells were
removed from the upper surface of the membrane by scrubbing and cells
were fixed and stained (Diff Quick stain). Pictures were taken at a
magnification of � 100 and invasive cells counted in four different fields
each of quadruplicate membranes of two independent experiments.
Standard deviation was calculated as average of all values. In parallel,
100ml of the medium were used for a cytotoxicity assay (Promega,
Madison, WI, USA) according to the manufacturer’s instructions.

Proliferation assays
Cells (A431, H322M: 2500 cells per well; H596: 5000 cells per well; A549
clone20: 1000 cells per well) were seeded in medium with 10% FCS and
treated the following day with 0.2mM of the antibodies for 15 min before
stimulation with HGF 30 ng/ml. Viability was measured via Cell Titer Glo
(Promega) at 5 days (A431, H322M and H596) and 4 days after treatment
for A549 clone20. UO126 was added at 5 mM 24 h before measuring.

Migration assay
Changes in cell morphology were monitored using xCelligence (Roche
Applied Science, Mannheim, Germany). DU145 (3000 cells per well) were
seeded in a 96 well E plate in medium supplemented with 0.5% serum and
treated the following day with antibodies (200 and 10 nM) for 15 min
before HGF and EGF stimulation (30 and 50 ng/ml).

Xenograft study
To generate primary tumors, 1� 107 tumor cells in a volume of 100ml
phosphate buffered saline were injected subcutaneously into the right
flank of the mice. Animals were controlled 5� per week for their health
status. Tumor dimensions were measured by caliper on the staging day,
and twice weekly for the treatment period. Animals were treated on study
day 21, 28 and 35. All experiments were approved by the local regulatory
agency. Nonparametric treatment to control ratios based on end point
analysis and the two sided nonparametric confidence intervals compared
with vehicle group were calculated to assess statistical significance.
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Supplemental Figure Legends 

Supplemental Figure S1 

(A, B) Analysis of AKT phosphorylation upon treatment of H596 and A431 cells with the 

indicated antibodies. HGF and EGF stimulation was used as positive control. (C) Analysis of 

cetuximab treatment in H596 in the presence of one or both growth factors. Numbers below the 

immunoblot indicate relative quantitation of signals with HGF treatment only set to 1.0.  

Supplemental Figure S2 

(A) Cytotoxicity is presented versus untreated A431 after 43h of stimulation with HGF and EGF 

together with the indicated treatments. Cytotoxicity was directly determined in medium obtained 

from matrigel chambers before cell fixation. 3 µM Staurosporine was used as positive control for 

the assay. (B) Immunoblot of phosphorylated and total AKT in A431 cells stimulated for 10 min 

with HGF and EGF after 100 min treatment with two concentrations of AKT inhibitor (0.5 and 

1µM).  

Supplemental Figure S3 

Generation of MetHer1. (A) Schematic presentation of MetHer1. KiH and disulfide bridges are 

indicated. scFab: VL-CL-(G4S)6GG-VH-CH1, fusion via a (G4S)3 connector. (B) SDS-PAGE 



analysis of purified MetHer1 under non-reducing (NR) and reducing (R) conditions. (C) Size 

exclusion purification of MetHer1. (D) Analytical HPLC of MetHer1. (E) Simultaneous binding 

to recombinant Met and EGFR (Biacore). EGFR was amine-coupled to the chip surface. (F) 

Immunoblot analysis of Met phosphorylation by indicated antibodies in H596 after 30 min of 

incubation. 

Supplemental Figure S4 

SPR analysis of binding kinetics. (A) Concentration series of soluble receptor binding to the 

respective antibodies (cetuximab, 5D5, MetHer1). Sensorgrams were fitted to a Langmuir 1:1 

model, RI=0 (black lines). (B) Kinetic constants for soluble receptor binding to cetuximab, 5D5 

and MetHer1.  

 

Supplemental Figure S5 

(A) HGF concentrations in medium upon cultivation of H596 with or without lung normal 

fibroblasts (LNF) or lung tumor fibroblasts (LTF) for two (D2) and six (D6) days. All cells were 

maintained in the same volume of medium. (B) Percentage growth inhibition versus control of 

BxPC3 and H596 cell lines after treatment with a sub-optimal dose of cisplatin alone or in 

combination with MetHer1.  

Supplemental Figure S6 

(A) Left: Internalization of indicated antibodies measured by FACS as DU145 cell surface 

binding after two hours of incubation at 37°C. Right: Mean fluorescence intensity (MFI) values 

of the same experiment including also the time points 30 and 60 min. (B) Internalization of 

fluorescently-labeled antibodies evaluated in DU145 cells with confocal microscopy after 4h of 



incubation (white bar x,y: 50µm). (C) RTCA-based analysis of DU145 scattering in presence and 

absence of HGF. Addition of human IgG control in the absence of HGF was compared to PBS. 

(D) Effect of human IgG control antibody (0.2µM) on scattering induced by HGF and HGF+EGF 

in DU145 cells measured by RTCA. 

Supplemental Figure S7 

(A) Expression and phosphorylation of EGFR, HER2, HER3, Met, and the downstream signaling 

proteins MAPK and AKT in BxPC3, DU145, OVCAR8 cells after treatment with MetHer1, and 

parental antibodies cetuximab and 5D5 in the presence of HGF and EGF stimulation. This figure 

contains data already presented in Figure 4D and 5B. 

Supplemental Figure S8 

(A) Relative HGF amounts in the culture medium of A549 clones (numbers x-axis) stably 

transfected with human HGF after 29 days of in vitro culture. Cells maintained HGF expression 

in presence (black) and absence (grey) of neomycin. (B) Phospho-RTK array of HGF-transfected 

A549 clone20, versus A549 wild type (wt) cells. Receptors with visible differences in 

phosphorylation are shown in the squares. (C) Expression and phosphorylation of Met and EGFR 

in HGF-transfected A549 clone20, with respect to wild type A549 after treatment with MetHer1, 

and parental antibodies cetuximab and 5D5. (D) Human HGF levels in 10 untreated animals from 

the HGF-overexpressing subcutaneous A549 human lung adenocarcinoma xenograft model. Ex 

vivo immunoblot analysis of tumor lysates confirmed presence of HGF in A549 clone20 but not 

in wild type (wt) cells. (E) In vitro binding of Cy5-labeled MetHer1, cetuximab and 5D5 to A549 

clone20 versus A549 wild type cells. 



 

Supplemental Data: Materials and Methods 

Co-cultures 

H596 were seeded as mono-culture (5000 cells/well) or in co-culture with lung normal and tumor 

(adenocarcinoma) primary fibroblasts - 2000 cells/well with 3000 cells/well fibroblasts - in 5% 

PANEXIN NTA RPMI medium in 96 well-polyhema-coated plates, where cells could form 

spheroids and grow in suspension. Cells were treated with 30µg/mL antibodies and viability was 

measured after 5d. 

Confocal microscopy 

DU145 (1x10
4
/well) were seeded in ibidi 8-well µ slides and treated the following day either for 

24h with HGF (30ng/mL) or for 4h with 10µg/mL cetuximab-Alexa488, 5D5-Cy5, MetHer1-Cy5. 

Images were acquired by confocal laser scanning microscope (Nikon Eclipse TE-2000-E, Nikon 

D-Eclipse C1, 4 Laser System). Calcein (3µg/mL) was added 30min before analysis at T=37°C.  

Surface Plasmon Resonance 

Experiments were performed with a Biacore T200 instrument via standard amine-coupling to 

EDC/NHS activated chip surfaces. PBS 0.05% (v/v) Tween20 was used as running buffer and 

dilution buffer (with further addition of 1mg/mL BSA). For kinetic characterization of single 

antigen binding to MetHer1, the bispecific and parental antibodies were captured with an amine-

coupled goat anti-human IgG (CM5 chip). Dilution series (c ~ 4-1200nM Met, EGFR) were 

analyzed in duplicates with an association phase of 180s and a dissociation phase of 1200s, at 

T=37°C and with a flow rate of 50µL/min. Signals were double referenced against a flow cell 

containing only dilution buffer. Kinetic constants were calculated from fitting to Langmuir 1:1 



model (RI=0). For simultaneous binding evaluation, MetHer1 antibody (c=15nM) was captured 

by amine-coupled EGFR. Met (c=200/400nM) was subsequently injected at 25°C to minimize 

dissociation.  

Relative quantitation of HGF 

Relative quantitation of HGF levels out of serum from mice or cell culture medium was 

performed with a HGF ELISA (R&D Systems). Experiments were carried out as recommended 

by the manufacturer. Different dilutions were measured against an internal calibrator standard 

provided by the kit.   

Proliferation Assay (MetHer1 + Cisplatin) 

BxPC3, 2500 cells/well, and H596, 5000 cells/well, were seeded in medium with 10% FCS and 

treated the following day with 0.2µM MetHer1 for 15 min before stimulation with 30ng/mL HGF. 

Cisplatin (7µM and 14µM for BxPC3 and H596 respectively) was added 48h prior to measuring. 

Viability was evaluated via Cell Titer Glo, according to the manufacturer’s specifications 

(Promega) 5 days after treatment.  

FACS internalization assay 

DU145 cells (5x10
5
) were diluted in 50µL of the different antibody solutions (10µg/mL) and 

incubated at 37°C for 30, 60 or 120 min. Cells were kept on ice and stained with 5µg/mL anti-

human IgG AlexaFluor-488 (Invitrogen). Samples were fixed and measured (BD, FACS Canto). 

Generation of A549 cell line stably expressing human HGF 

The coding sequence of human hepatocyte growth factor was cloned in the retroviral pLXSN 

vector (Clontech). The pLXSN vector contains a neomycin cassette which allows selection of 



infected cells. Virions were generated by transient transfection of this plasmid with Fugene HD 

(Roche) in the PA317 (ATCC, CRL-9078) cell line. Cell supernatants were harvested after 3d 

and sterile filtered through 0.45µm cellulose acetate filters (Nalgene). A549 cells were seeded at 

1x10
6
 cells per 10 cm cell culture plate and allowed to attach overnight. The following day, 

medium was replaced by 4 mL of a logarithmic dilution series of the cell supernatant containing 

virions in medium containing 8µg/mL polybrene (Millipore). After 24h of infection, cells were 

washed and fresh complete medium without virions or polybrene was added. After additional 48h, 

selection medium containing 0.5 mg/mL G418 (Life Technologies) was added. Stable clones 

were picked using cloning rings and maintained under G418 selection. Absence of virion 

particles was confirmed by PCR on reverse transcribed mRNA of isolated clones.    

Phospho-RTK array with stably expressing HGF A549 clones 

A549 clones were maintained in medium containing 0.5 mg/mL G418. 80-90% confluent clones 

were harvested by detachment of cells with Accutase (Invitrogen). Cells were lysed in buffer 

containing 1% NP-40, 20mM Tris-HCl (pH 8.0), 137mM NaCl, 10% glycerol, 2mM EDTA, 

1mM sodium orthovanadate and protease inhibitors. 100µg of cell lysate, as quantified by the 

BCA method, were incubated overnight with a phospho RTK membrane (R&D Systems). 

Detection and image acquisition was performed as recommended by the manufacturer. 

Labeling of antibodies 

Fluorescently labeled antibodies were obtained by lysine linker chemistry. The antibody to 

fluorophore ratio was about 1:3 for all antibodies. Before use, fluorescently labeled antibodies 

were evaluated in Biacore to confirm that binding properties were unaltered. 

Imaging 



Tumor bearing SCID beige mice were injected i.v. with 50µg of Cy5-labeled Xolair and 

cetuximab, 33.3µg of 5D5 and 66.7µg of MetHer1 to assure equal molarity. NIRF signal was 

measured 48h after i.v. injection with the Maestro System (CRI) at optimal acquisition times. 

Images were processed and normalized to obtain optimal comparability. 

HGF-expressing A549 clone20 and A549 wild-type in vitro staining 

Wild type and HGF-expressing A549 clone20 cells were seeded at a concentration of 2x10
6
 

cells/mL into µ-slides VI (ibidi). After 24h, cells were washed with PBS and incubated for 30 

min with 50 µl of 2.5 mg/mL Cy5-labeled antibodies, as reported; nuclei were subsequently 

stained with 50 µl of a HOECHST33342 solution (10µg/ml) for 15 min. Slides were imaged 

multi-spectrally with the Nuance-System (CRi) and analyzed. The displayed pictures were 

normalized for optimal comparability. 
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Antibody Analyte ka [M -1s-1] kd [s-1] t (1/2) [min] KD [M]
MetHer1 EGFR 6.3E+05 3.7E-03 3.1 5.8E-09

cetuximab EGFR 6.7E+05 3.6E-03 3.2 5.4E-09

MetHer1 Met 2.9E+04 7.1E-04 16.3 2.4E-08

5D5 Met 6.6E+04 5.3E-04 16.8 8.0E-09
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Therapeutic antibodies are well established drugs in
diverse medical indications. Their success invigorates re-
search on multi-specific antibodies in order to enhance
drug efficacy by co-targeting of receptors and addressing
key questions of emerging resistance mechanisms. Despite
challenges in production, multi-specific antibodies are po-
tentially more potent biologics for cancer therapy.
However, so far only bispecific antibody formats have
entered clinical phase testing. For future design of anti-
bodies allowing even more targeting specificities, an
understanding of the antigen-binding properties of such
molecules is crucial. To this end, we have generated differ-
ent IgG-like TriMAbs (trispecific, trivalent and tetravalent
antibodies) directed against prominent cell surface anti-
gens often deregulated in tumor biology. A combination of
surface plasmon resonance and isothermal titration calor-
imetry techniques enables quantitative assessment of the
antigen-binding properties of TriMAbs. We demonstrate
that the kinetic profiles for the individual antigens are
similar to the parental antibodies and all antigens can be
bound simultaneously even in the presence of FcgRIIIa.
Furthermore, cooperative binding of TriMAbs to their
antigens was demonstrated. All antibodies are fully func-
tional and inhibit receptor phosphorylation and cellular
growth. TriMAbs are therefore ideal candidates for future
applications in various therapeutic areas.
Keywords: ITC/receptor tyrosine kinase/SPR/therapeutic
antibodies/trispecific antibodies

Introduction

Monoclonal antibodies (MAbs) are well established in clinic-
al practice and more than 25 MAbs are currently approved

by the Food and Drug Administration (An, 2010). Of these,
about half are in use for treatment of cancer (Nieri et al.,
2009). Despite these clinical successes, inhibition of an onco-
genic driver protein with a therapeutic antibody often results
in rapid emergence of resistance, rendering treatment in-
effective (Pillay et al., 2009). A paradigm illustrating this
concept is the ErbB receptor family, consisting of EGFR,
Her2/ErbB2, Her3/ErbB3 and ErbB4, which propagate
pro-survival signals by forming homo- or hetero-dimeric
complexes on the cell surface. Inhibition of one of these
receptors is often compensated by other human epidermal
growth factor receptor family members or activation of other
receptor tyrosine kinases (Yarden and Sliwkowski, 2001;
Hynes and Lane, 2005; Hynes and MacDonald, 2009). To
counter such tumor escape from single agent therapy, combi-
nations of targeted therapies, as well as multi-specific low
molecular weight inhibitors are being developed and have
already entered clinical trials (Pivot et al., 2011).

Bispecific antibodies (BiAbs) provide another option to
combine two tumor treatment approaches in a single thera-
peutic molecule. Using multi-specific antibodies rather than
exploiting the polypharmacology of certain small molecule
kinase inhibitors has the clear advantage that the target com-
bination can be freely chosen and is clearly defined, whereas
the combination of kinases that are hit by the same
ATP-competitive small molecule inhibitor is dictated by
similarities in sequence and structure of the ATP-binding site
(Vieth et al., 2005). While there is already clinical proof of
concept for BiAbs recruiting immune effector cells, like bis-
pecific T-cell engaging antibodies, BiAbs aimed at inhibiting
signaling of two different tumor cell surface targets are just
emerging in clinical trials (Chames and Baty, 2009a,b;
Thakur and Lum, 2010). This delay is due to our still incom-
plete understanding of the complex biology of signaling net-
works that allows tumors to escape from targeted therapy by
using certain alternative signaling routes. For treatment of
diseases where ErbB receptor signaling is supposed to play a
role, MM-111, targeting Her2/ErbB3 heterodimers (Nielsen
et al., 2008), and MEHD7945A, targeting EGFR/ErbB3 het-
erodimers (Schaefer et al., 2011), are considered promising
combinations and both molecules have entered clinical trials
(cf. clinicaltrials.gov).

Regarding the structural properties and possible formats of
such molecules, a variety of bispecific constructs have been
described in the past (Nieri et al., 2009; Kontermann, 2010;
Thakur and Lum, 2010). It has also been demonstrated that
BiAbs can bind to both antigens as well as FcgR family
members simultaneously and therefore retain effector func-
tions (Seimetz et al., 2010). For therapeutic applications, the
selection of an appropriate format is directed by the biology
of the targets (e.g. inhibitory, agonistic or downregulating†Both authors contributed equally to this work.
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antibody), as well as technical developability (Filpula, 2007;
Mansi et al., 2010). As a consequence of this, the complexity
of analyzing the binding properties of bi- or multi-specific
antibodies increases with each additional specificity. Yet a
thorough understanding of the binding properties is important
since they affect efficacy.

In this work, we examined currently known resistance
mechanisms in ErbB signaling, namely activation of the re-
ceptor tyrosine kinases cMet and IGF1R (Hynes and Lane,
2005), and evaluated the feasibility of generating novel tris-
pecific antibodies which are either mono- or bivalent for
some of these targets. For inhibition of ErbB signaling, in-
hibitory antibodies against EGFR and Her3 were selected
(Yarden and Sliwkowski, 2001). They were combined with
an antagonistic IGF1R antibody, since IGF1R can compen-
sate for inhibition of EGFR (Hendrickson and Haluska,
2009; van der Veeken et al., 2009). We also combined them
with a c-Met targeting antibody, since pre-clinical and clinic-
al findings underscore the importance of cMet activation in
ErbB signaling compromised tumor cells (Karamouzis et al.,
2009; Bonanno et al., 2011). To fully exploit all antibody
properties, Fc-containing scaffolds were chosen as these
retain all possible effector functions and maintain the regular
long serum half-life of an IgG antibody (Roopenian and
Akilesh, 2007; Nimmerjahn and Ravetch, 2008).

By means of comprehensively analyzing their molecular
features, we demonstrate the feasibility of generating trispecific
antibody molecules, and investigate their simultaneous binding
to all antigens, as well as provide evidence that these anti-
bodies can bind at least with two specificities simultaneously
on cells. Finally, the trispecific antibodies maintain all features
of their parental antibodies and inhibited receptor activation
equivalent to the parental antibodies, which makes them ideal
candidates for future applications as anti-cancer agents.

Materials and methods

Cell culture
BxPc3 were obtained from ATCC. Cells were maintained in
RPMI1640 medium supplemented with 10% fetal calf serum
(FCS), non-essential amino acids and 2 mM L-glutamine
(Gibco). Propagation of cells followed standard cell culture
protocols.

Antibodies and reagents
For immunoblot analysis p-EGFR (Epitomics), EGFR
(Millipore), Her3, IGF1R (Santa Cruz), p-Her3, p-cMet,
cMet, p-IGF1R (CST) and b-actin (Abcam) were purchased.
For fluorescence-activated cell sorting (FACS) analysis
human IgG1 Mab versions of the TriMAbs were used for the
determination of cell surface receptor expression. An
a-human Alexa488 antibody (Invitrogen) was used as sec-
ondary antibody. Ectodomain Fc-chimera of EGFR, Her3,
cMet with C-terminal His tag and FcgRIIIa were purified
from cell culture supernatants of transiently transfected eu-
karyotic cells. Recombinant IGF1R was purchased (R&D).
Human growth factor (HGF), heregulin, epidermal growth
factor (EGF) and insulin-like growth factor (IGF) were pur-
chased. Antibody sequences were derived from available
patents (Kuenkele et al., 2005; Dennis et al., 2007;
Bossenmaier et al., 2011; Umana and Mossner, 2011).

Design, cloning and production of TriMAbs
Sequences containing variable regions were ordered as gene
synthesis with flanking restriction sites (GeneArt). Sequences
were cloned in mammalian expression vectors with a cDNA
organization of the antibody backbone. Antibody chains
were transiently co-transfected in HEK-293F cells
(Invitrogen) and purified as described (Metz et al., 2011).
Antibody homogeneity was analyzed using an Agilent HPLC
1100 (Agilent Technologies) with a TSK-GEL G3000SW
column (TosoHaas Corp.). Individual specificities of the
MAbs are indicated by MAb ,specificity..

Dynamic light scattering analysis of TriMAbs
Molecule stability was determined by dynamic light scatter-
ing (DLS) using a DynaPro Plate Reader. Samples were fil-
tered through a 0.45 mm 384-well filter plate into a 384-well
clear bottom plate and covered with 15 ml of paraffin oil fol-
lowed by a centrifugation step (1 min/1000 � g). Five acqui-
sitions with 10 s acquisition time and five acquisitions with
20 s acquisition time were performed for temperature
ramping and temperature stability experiments, respectively.

FACS competition experiments
For competition experiments, a 3-fold dilution series of
either unlabeled Fabs or TriMAbs ranging from 100 to
0.002 mg/ml was prepared which also contained 1 mg/ml of
AlexaFluor647 (Invitrogen) labeled MAbs. This mixture was
added to a suspension of 2 � 105 BxPc3 cells. After 45 min
of incubation cells were washed twice and subjected to flow
cytometry (BD, FACS Canto).

Immunoblot
A total of 7 � 105 BxPc3 cells were seeded the day prior the
experiment in starvation medium containing 0.5% FCS. The
following day, cells were pre-incubated 30 min with
0.07 mM of the indicated antibodies upon which stimulation
for 10 min with growth factors EGF (50 ng/ml), HGF (30 ng/
ml), IGF (50 ng/ml) and Heregulin (500 ng/ml) followed.
Upon cell lysis protein lysates were subjected to immunoblot
analysis.

Proliferation assay
A total of 2500 BxPc3 cells per well were seeded the day
prior to the experiment in 96-well plates in medium with
10% FCS. The following day, TriMAbs were added in the
indicated concentrations and cells were maintained for a total
of 144 h after antibody addition at 378C/5% CO2.
Proliferation was assessed by cell titer glow assay (Promega)
in an Infinite M200 reader (Tecan).

Surface plasmon resonance
All experiments were performed on Biacore B3000, T100
and T200 instruments in running buffer phosphate-buffered
saline (PBS) containing 0.05% (v/v) Tween20. Dilution
buffer consisted of running buffer supplemented with 1 mg/
ml bovine serum albumin. Standard amine coupling to
1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochlor-
ide/N-hydroxysulfosuccinimide activated chip surfaces were
performed as recommended by the provider GE Healthcare.
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Kinetic characterization of single antigen binding to TriMAbs
Signals were double referenced against blank buffer and a
flow cell containing no ligand. Kinetic constants were calcu-
lated from fitting to a 1 : 1 Langmuir-binding model (RI 0).
TriMAbs or MAbs were captured via a-human kappa light
chain (Dako), human Fab binder (GE Healthcare) or
a-human Fc (JIR). Series with increasing antigen concentra-
tions were analyzed with an association phase of 180 s and
dissociation phase of 800 1800 s depending on the kd-rate.
Capture antibodies were regenerated with 10 mM glycine,
pH 1.5 (258C) or 1.75 (378C), or for human Fab binder as
recommended by the vendor. Monomeric cMet, Her3 and
EGFR were analyzed in concentrations from 4.94 to
1200 nM in triplicates on a CM5 sensor chip at 378C. For
the dimeric antigen IGF1R a sensor chip C1 was used at
258C, with concentrations of 2.7 400 nM, one of these as
duplicate.

Simultaneous in-solution binding of all antigens to TriMAbs
TriMAbs were captured via a-human Fc on a C1-Chip. Four
antigens were injected consecutively using two dual injects
with a contact time of 180 s each. The antigen concentration
was chosen for each antigen close to saturation (�90%) as
observed in the kinetics experiment. As control a second
inject of the identical antigen did not raise response level,
demonstrating equilibrium was reached (cMet: 1200 nM,
EGFR: 1000 nM, Her3: 1000 nM and IGF1R: 400 nM). A
temperature of 258C was chosen to minimize dissociation.

Binding of FcgRIIIa to TriMAbs in presence of all antigens
EGFR was amine coupled on a C1 sensor chip. TriMAb/
MAbs-binding EGFR were injected, followed by a dual
inject of the remaining antigens (first inject: Mix Her3/cMet,
second inject: IGF1R). The binding of FcgRIIIa was mea-
sured by a subsequent inject with 180 s association and 600 s
dissociation phase at 258C. Regeneration was performed with
15 mM NaOH.

Cooperative binding of TriMAbs to mixture of antigens on
the chip surface
PentaHis antibody (Qiagen) was immobilized on a CM5
sensor chip with high ligand density (15 000 RU).
His-tagged IGF1R and His-tagged Fc chimera of cMet,
EGFR and Her3 were captured either as single antigens or a
1 : 1 : 1 : 1 mixture by volume. Single antigen concentrations
were adjusted by a 1 : 3 dilution with buffer. MAbs and
TriMAbs were injected as analytes (c 30 nM) with an as-
sociation phase of 180 s and a dissociation phase of 1800 s.
To obtain faster dissociation and clear avidity effects the ex-
periment was performed at 378C. Regeneration: 10 mM
glycine pH 2.0

Isothermal titration calorimetry
Isothermal titration calorimetry (ITC) experiments were
carried out using an iTC200 from MicoCal Inc.
(Northampton, MA, USA) at 258C. To avoid buffer artifacts
all protein samples were dialyzed against PBS at 48C. For
further reference purposes the calorimetric dilution effect of
dialyzed buffer as well as every other particular titrant was
evaluated in advance. Eighteen automatically defined injec-
tions of 2 ml over 5 s and a syringe stirring of 600 rpm were

used as overall settings. While highest possible concentra-
tions (15 38 mM) were used for the soluble receptor titrants
in the syringe, 1.5 1.8 mM of the particular MAb in the
mess cell were applied. Data analysis was performed with
‘Origin’ (supplied by Microcal Inc.). Data points were fitted
to a theoretical titration curve, resulting in DH (binding en-
thalpy in kcal mol 1), KA (association constant) and n
(number of binding sites per monomer). In consecutive
injects of several titrants alterations in mess cell concentra-
tions were corrected (for any further titrant) by defining end

Fig. 1. Production of trispecific antibodies based on scFab and scFv. (a)
Schematic presentation of trispecific antibodies. HCs are distinguished by
knobs into hole technology. scFabs were constructed by VL CL (G4S)6

VH CH1 fusion to the constant regions of human IgG1. scFv were fused
with a (G4S)2 connector to the C terminus of the HC in the order of VH

(G4S)3 VL. (b) Sodium dodecyl sulfate polyacrylamide gel electrophoresis
analysis of protein A and size exclusion purified TriMAbs under
non reducing (NR) and reducing (R) conditions. (c) Analytical HPLC of
TriMAbs. A colour version of this figure is available as supplementary data
at PEDS online.
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point concentrations of one titration as starting concentrations
for the next titration.

Results

Generation of trispecific antibodies
We selected one TriMAb format which enabled monovalent
binding to each antigen and one which was bivalent for Her3
(Fig. 1a). To this end, the knobs-into-holes technology was
used to differentiate the IgG1 heavy chains (HCs) (Ridgway
et al., 1996; Atwell et al., 1997). Light chain mispairing was
prevented by employing the single chain Fab (scFab) and
single chain Fv (scFv) technology (Fig. 1a). scFab and scFv
formats have been described in the past (Kontermann, 2010).
Antibodies were transiently expressed in HEK-293F and

purified by standard Protein A and size-exclusion chromatog-
raphy. Gel electrophoresis, analytical high-performance
liquid chromatography and mass spectroscopy (Fig. 1b, c and
data not shown) confirmed homogeneity greater than 95%.

Kinetic characterization of single antigen binding to TriMAbs
For each of the four different antigens cMet, Her3, IGF1R
and EGFR recognition by the TriMAbs1, 2 and 3 was com-
pared with the corresponding parental antibodies using
surface plasmon resonance (SPR). TriMAbs were captured
on a sensor chip and the binding kinetics of the soluble
receptors was measured using a concentration series for each
antigen in separate runs. To verify that antigen binding was
not impaired by the capture method, three different setups
were examined. To this end, human specific antibodies

Fig. 2. (a) SPR sensorgrams (concentration series) of soluble receptor binding to parental MAb,Her3, EGFR, IGF1R. and TriMAb2. Sensorgrams were
fitted to a Langmuir 1 : 1 model, RI ¼ 0 (black lines). (b) Plot of the kinetic constants of TriMAb1, 2, 3 and their corresponding parental MAbs for binding
soluble receptors Her3, cMet, EGFR and IGF1R, as measured by SPR. Diagonals depict iso affinity lines. A colour version of this figure is available as
supplementary data at PEDS online.

Table I. Kinetic constants for binding of soluble receptors to parental MAb,Her3, EGFR, IGF1R. and TriMAbs

Ligand Analyte ka (M 1s 1) kd (s 1) t(1/2) (min) KD (M) % SE (ka) (%) % SE (kd) (%) T (8C)

MAb,Her3. Her3 2.1E þ 05 6.9E 04 16.7 3.2E 09 0.2 0.1 37
TriMAb2 Her3 1.5E þ 05 1.2E 03 9.8 8.0E 09 0.2 0.1 37
TriMAb3 Her3 1.2E þ 05 1.3E 03 9.0 1.0E 08 0.2 0.1 37
Mab,cMet. cMet 2.2E þ 04 3.4E 04 33.9 1.6E 08 0.1 0.2 37
TriMAb1 cMet 1.9E þ 04 6.1E 04 18.8 3.3E 08 0.2 0.2 37
Mab,EGFR. EGFR 4.3E þ 04 4.3E 04 27.1 1.0E 08 0.2 0.3 37
TriMAb1 EGFR 4.7E þ 04 4.0E 04 28.6 8.7E 09 0.2 0.2 37
TriMAb2 EGFR 4.5E þ 04 3.8E 04 30.2 8.5E 09 0.2 0.3 37
TriMAb3 EGFR 3.9E þ 04 4.1E 04 28.1 1.1E 08 0.2 0.3 37
Mab,IGF1R. IGF1R 6.6E þ 05 2.6E 03 4.4 4.0E 09 2.3 1.9 25
TriMAb1 IGF1R 6.6E þ 05 2.3E 03 5.0 3.5E 09 1.8 1.5 25
TriMAb2 IGF1R 6.7E þ 05 2.5E 03 4.7 3.7E 09 2.1 1.8 25
TriMAb3 IGF1R 6.7E þ 05 2.0E 03 5.8 3.0E 09 1.3 1.1 25
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against kappa light chain, the Fab moiety or the constant Fc
were used for antibody capturing. Exemplary binding of one
of the antigens (EGFR) showed only minimal changes in the
kinetic constants (data not shown). For IGF1R the assay
setup was modified to account for its homo-dimeric structure.
To obtain monovalent binding, a C1 chip with very low
ligand density and thus capture level of the antibodies was
chosen (�8 RU). In a control experiment it was demon-
strated with the Fab fragment of the parental IgG1 antibody
that the kd-rates of both are comparable under the selected
conditions. Similar results were obtained in a reversed assay
format with amine-coupled receptor and Fab fragment
(data not shown). For quantitation of IGF1R binding kinetics

the temperature was reduced to 258C to obtain ka-rates
within the instrument limitations, since the parental
MAb,IGF1R. has a very high ka. Upon capturing of
TriMAbs by Fc-specific antibodies, it was found that all
TriMAbs were functional in binding each of the single anti-
gens and moreover retained kinetic profiles comparable to
that of their parental MAbs as exemplarily shown for
TriMAb2 (Fig. 2a). To better visualize this and allow relative
comparison of all three TriMAbs we chose to deconvolute
kinetics in a log(ka) log(kd) plot (Fig. 2b). Whereas the
scFab moieties bound EGFR and IGF1R with virtually the
same affinity as the parental MAbs, we found that the affinity
of the scFv moieties for Her3 or cMet was slightly reduced

Fig. 3. (a) Overlay of SPR sensorgrams showing simultaneous binding of EGFR, IGF1R and Her3 (plus cMet as negative control) to TriMAb2. TriMAb2 was
captured onto the sensor chip and binding of antigens studied by four consecutive injects (with a technical lack phase after second inject) of soluble receptors,
permutating the order in different runs. Each run is highlighted by a different color. (b) Heat of receptor binding to MAbs measured by ITC and fitted to a 1 : 1
binding event curve. Top panel: soluble receptors titrated into a solution of their corresponding parental MAb in three independent experiments. Bottom panel:
the three receptors titrated one after the other into the same solution of TriMab2. The consecutive titrations are evaluated and depicted separately. A colour
version of this figure is available as supplementary data at PEDS online.
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by a factor of 2 3 (Table I). Slight deviation from Langmuir
1 : 1 fits (RI 0) or exceeding of the theoretical Rmax

observed in some cases was most likely due to small
amounts of aggregates in the antigen batches used, but no
difference between the parental and the TriMAbs was
observed. Deviations from Langmuir 1 : 1 binding were most
apparent for the IGF1R specificity, but are likely intrinsic to
the antibody clone as a different control antibody binding the
same epitope region did not show this phenomenon (data not
shown). Thus, we could demonstrate that all TriMAbs have
similar monospecific-binding properties like the correspond-
ing MAbs.

Simultaneous in-solution binding of all antigens to TriMAbs
Having shown that all antigen-binding moieties of the
TriMAbs were per se functional, we next addressed the ques-
tion whether several of the antigens could be bound simul-
taneously or whether steric hindrance between the large
receptor molecules would impede this. Antibodies were cap-
tured via their Fc part and exposed to soluble receptor
injected as analyte. Analyte concentrations were set to
achieve near saturation (.90% of theoretical Rmax) of all
MAb-binding sites during the �180 s association phase.
Immediately following the association of the first receptor,
the second receptor was injected in ‘dual injection mode’
leading to a ternary complex with the MAb. Finally, the
third receptor was injected leading to a stepwise rise in the
SPR signal (Fig. 3a). In several runs, the sequence of antigen
injections was permutated as exemplary shown for TriMAb2
(Fig. 3a). At 258C the concurrent dissociation of the first
antigens during the course of these experiments was general-
ly low and therefore a qualitative interpretation of the events
was possible. TriMAbs 1, 2 and 3 showed subsequent
binding of all three antigens (Table II). SPR signals were in
all cases close to the theoretical Rmax, which indicated that
binding of the second and third antigen was not significantly

hindered by already bound antigen. This was also valid for
TriMAb3 which can in theory bind a total of four receptor
molecules (IGF1R, EGFR, 2� Her3). Only with IGF1R,
which is a naturally cysteine-bridged homo-dimer, a slight
effect on subsequent cMet binding was observed for
TriMAb1. The findings have been summarized in a quantita-
tive manner for all TriMAbs in Table II. It is of note that for
homo-dimeric IGF1R the theoretical Rmax is between 50 and
100% since a significant portion of this antigen is bound
bivalently by two neighboring TriMAb molecules at the
chosen ligand density. In summary, we demonstrate that all
TriMAbs can simultaneously bind to all antigens.

Antigen binding to TriMAbs in solution via ITC
SPR-binding experiments were complemented by ITC which
yields a more direct measurement of the stoichiometry.
TriMAb2 in solution was titrated consecutively with all three
antigens, and compared with corresponding titrations of the
parental MAbs. Fitting of the observed heat effect to 1 : 1
binding events confirmed the simultaneous binding of all
three receptors to TriMAb2 (Fig. 3b). Binding enthalpies
were similar to those of the parental MAbs and in the same
range for all antigens. The dimeric IGF1R showed a molar
DH which was approximately twice that of the other mono-
meric receptors.

Cooperative binding of TriMAbs to a mixture of antigens
The aforementioned experiments confirmed that TriMAbs are
able to bind all their antigens simultaneously. On cells the
conformational freedom is much more restricted and anti-
body antigen interactions are limited to certain geometries.
To better approximate the steric situation on a cell surface,
we looked at cooperative binding of soluble MAbs to differ-
ent receptor molecules fixed on the sensor chip surface.
Cooperative binding should be detectable as much lower dis-
sociation rate of the MAb due to an avidity effect, compared
with monovalent binding of only a single antigen. A roughly
equimolar mixture of all receptor ectodomains (IGF1R,
EGFR, Her3 and cMet) or binary mixtures (IGF1R and
Her3, IGF1R and cMet) were captured onto the chip via
their His tag by a PentaHis-antibody. As control, single anti-
gens were captured on other flow cells. To demonstrate that
the chosen antigen density was high enough to allow avid
binding, each of the parental antibodies was analyzed as
positive control. The parental IgG antibodies indeed bound
bivalently to both their single antigen and the mixture of all
antigens, as judged by the observed low kd-rates compared
with previous experiments (Table I). TriMAbs 1 and 2 on
the contrary are only able to bind monovalently to each
antigen and showed marked dissociation (Fig. 4a) from
single antigen surfaces. In contrast, when a mixture of the
antigens was presented, the TriMAbs showed the expected
avidity effect and a significantly decreased dissociation rate
constant kd. These results imply cooperative binding of at
least two antigens. We sought to confirm these findings on
cells. A cell line expressing all four receptors, preferably
with one of the receptors, which can mediate the avidity
effect, in excess, was selected. BxPc3 cells were selected by
their mRNA profile and receptor expression confirmed by
flow cytometric analysis (Fig. 4b). To a suspension of these
cells, a dilution series containing a constant concentration of
labeled bivalent MAb,IGF1R. and increasing amounts of

Table II. Quantification of receptor molecules simultaneously bound by

TriMAbs

TriMAb First antigen
bound (%)

Second
antigen bound
(%)

Third antigen
bound (%)

Fourth
antigen bound
(%)

IGF1R cMet Her3 EGFR
TriMAb1 73 73 0 90
TriMAb2 72 0 89 108
TriMAb3 69 0 88 82

Her3 IGF1R EGFR cMet
TriMAb1 0 71 89 89
TriMAb2 99 69 85 0
TriMAb3 95 64 84 0

EGFR Her3 cMet IGF1R
TriMAb1 97 0 97 61
TriMAb2 97 90 0 71
TriMAb3 97 88 0 49

cMet EGFR IGF1R Her3
TriMAb1 103 87 60.5 0
TriMAb2 0 93 63 63
TriMAb3 0 92 61 59

Hundred percent theoretical maximum is deducted from the known capture
level of TriMAbs in this experiment, where response units are directly
proportional to molecular weight. A second inject of the same receptor did
not increase binding (not shown).
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unlabeled Fab or TriMAb molecules was added. The as-
sumption was that TriMAbs will much more efficiently
compete for IGF1R binding than the Fab,IGF1R. due to
additional avidity mediated by the EGFR, Her3 or cMet spe-
cificity. As expected, a 56-fold reduction in the EC50 for the
TriMAbs was found which implies avid binding on the cell
surface (Fig. 4c). These data were in accordance with the
findings on the sensor chip in which a strong avidity effect
was observed for the EGFR/IGF1R mixture in contrast to
IGF1R only. Finally, we obtained similar findings on cells, if
Her3 or cMet were targeted instead of the IGF1R

(Supplementary Fig. S1A and B). Thus, the artificial setup
on a sensor chip can mimic effects found on living cells.

Simultaneous in-solution binding of antigens and FcgRIIIa to
TriMAbs
To examine whether simultaneous complexation of several
antigens would impair binding of TriMAbs to FcgRIIIa, a
soluble construct of the FcgRIIIa ectodomain was injected as
the last analyte, subsequently to saturating the TriMAbs with
all other antigens. For this, the first antigen, EGFR, was
immobilized on the sensor chip and used to capture the

Fig. 4. (a) SPR sensorgrams showing association and dissociation of parental MAbs and TriMAbs to chip surfaces coated with single antigens or mixtures of
antigens in high density, as indicated by color code. Bivalent MAbs bind with avidity effect and dissociate slowly from either surface. TriMAbs dissociate
slowly only from surfaces with mixtures of antigens, indicating cooperative binding to different antigens. (b) FACS based analysis of cell surface receptor
expression in BxPc 3 cells (mfi ¼ mean fluorescence intensity). (c) FACS based avidity assay in BxPc 3 cells (red ¼ Fab,IGF1R.; green ¼ TriMAb1;
blue ¼ TriMAb2 and orange ¼ TriMAb3). (d) SPR sensorgrams of FcgRIIIa binding to TriMAb2 and parental MAb,EGFR. in the presence of antigens.
FcgRIIIa association and dissociation was detected in a rising concentration series. Because of very fast ka and kd rates, KD was calculated from steady state.
Averaged equilibrium response R(eq) at the indicated time point of the association phase were plotted against concentration of FcgRIIIa (fitted with
steady state model). A colour version of this figure is available as supplementary data at PEDS online.
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TriMAbs, since capturing via anti-human Fc antibodies par-
tially blocked the FcgRIIIa-binding site on the Fc part of the
IgG MAbs. After complexation of all antigens, the TriMAbs
still displayed high nanomolar affinity for FcgRIIIa
(TriMAb1/2/3 KD: 222, 232, 254 nM) which is in the range
of standard IgG1 antibodies (MAb,EGFR. KD: 120 nM)
(Fig. 4d). Thus, according to the nomenclature of Triomabs
(Trion) our TriMAbs could be called tetraspecific (Seimetz
et al., 2010).

Inhibition of receptor signaling and cellular growth by
TriMAbs
Cell surface expression and activation status of all receptors
was confirmed in BxPc3 in the presence or absence of supple-
mented growth factors (Fig. 5a). Addition of TriMAbs inhib-
ited ligand-dependent receptor phosphorylation. To further
address the functional activity of TriMAbs a proliferation
assay was performed and activity of individual antibodies or
combinations was compared with TriMAb activity (Fig. 5b).
We observed significant growth inhibitory effects for com-
bined targeting of EGFR, IGF1R and Her3 but not for TriMAb
1 containing a cMet specificity. Neither of the single parental
antibodies had significant effects on proliferation in BxPc3
(data not shown). In conclusion, TriMAbs were as efficacious
as the combination of all three parental antibodies (Fig. 5b).

Discussion

We present here the generation of trispecific antibodies for
cancer therapy. The chosen antibody scaffold admittedly
poses some challenges with regard to production and charac-
terization. Which titers and purity can be obtained in stable
chinese hamster ovary production cell lines remains to be
seen as this cannot be predicted from our results with transient
expression in HEK-293F. Stability analysis of the generated
TriMAbs revealed that TriMAb1 had a melting curve well
above 608C and displayed long-term stability at elevated tem-
peratures (Supplementary Fig. S2A and B). The other two
TriMAbs were less stable with partial unfolding already at
458C. Since stable and less stable TriMAbs only differed in
the Her3 scFv, clone specific variable region differences seem
to have affected the stability of our TriMAbs. Such clonal
variation is also observed for regular MAbs and does therefore
not pose a special threat for further development of this anti-
body format.

The characterization of TriMAbs with regard to their
binding and functional properties presents additional chal-
lenges in comparison to BiAbs. First and foremost, the ana-
lysis of antigen binding is more complex and the important
question, whether such molecules indeed have the capacity
to simultaneously bind to different tumor antigens has to be
addressed for each combination individually. Our findings
that simultaneous binding to three large extracellular
domains of receptor tyrosine kinases is in principle feasible
implies that there is a surprisingly high flexibility in the
binding of multiple antigens. Nevertheless, simultaneous
binding of three soluble target proteins certainly poses less
steric constraints than simultaneous binding to three mem-
brane anchored antigens on a living cell.

On the cell surface, lateral diffusion, steric hindrance by
other proteins or variable antigen availability due to endo-
cytosis or receptor shedding might impair accessibility. In

order to more closely mimic cell membrane conditions, we
developed an experimental approach in which different anti-
gens are simultaneously bound to a chip surface. We chal-
lenged this artificial setup by comparison with a cell line
expressing all receptors. In this cellular competition experi-
ment we found a good correlation with the data obtained by
SPR and could additionally demonstrate that our TriMAbs
display avidity due to at least bispecific binding. This sug-
gests that a mixture of antigens bound to the chip surface
can serve as a surrogate setup for direct cell surface analysis.

Furthermore, we confirmed binding of FcgRIIIa ectodo-
main to the Fc part of TriMAbs. It is particularly interesting
that the FcgRIIIa Fc interaction was not only unimpaired by
scFv fusions at the C-terminus of the HCs, but also tolerated
the concomitant presence of all three antigens. Hence, it can
be expected that TriMAbs retain their effector cell recruit-
ment potential also in cellular assays.

Based on these findings, we propose a novel technical ap-
proach whereby a combination of SPR, ITC and cellular

Fig. 5. Functional analysis of TriMAbs in BxPc3. (a) Immunoblot analysis
of receptor expression and phosphorylation in BxPc3. (b) Proliferation assay
with TriMAbs in comparison to the relative combinations of the three
parental antibodies. Percentage viability was evaluated versus controls (set
to 100%). Presented is the mean of two independent experiments.
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avidity assays quickly and accurately sheds light onto the
binding properties of a chosen TriMAb combination; such
data are of a quantitative nature when the first two methods
are applied and of a semi-quantitative nature for the cellular
assay setup. This novel approach can for instance support
format optimization by permutation of the order of antigen-
specificities on the Fab arms or on the HC fusion sides.

Interestingly, the presented TriMAbs did not exhibit agon-
istic activity as might have been expected from bringing dif-
ferent receptor tyrosine kinases in close proximity. This
suggests that receptor cross-activation either requires a very
specific spatial orientation of the interacting partners or that
the receptors have to adopt an active conformation not com-
patible with TriMAb binding. From the perspective of thera-
peutic benefit and health care costs TriMAbs appear
attractive, since we obtained similar functional activity with
them as a single therapeutic agent as with a combination of
three MAbs. However, other potential challenges that are
outside the scope of this study, like their technical develop-
ability, potential immunogenicity and adverse effects, need
to still be addressed before tri- or tetraspecific antibody
formats can enter into clinical trials. In conclusion, a com-
bined analysis of our data strongly supports the notion that
TriMAbs present a powerful avenue to follow on the way to
drugs which potently inhibit tumor and associated de novo
escape mechanisms.

Supplementary data

Supplementary data are available at PEDS online.
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Supplemental Figure 1

FACS-based avidity assay in BxPc-3. (A) Competition of a dilution series of Fab<cMet> (red) against

a constant concentration of bivalent MAb<cMet>. The competition curve for TriMAb1 (green)

against a constant concentration of bivalent MAb<cMet> is shown. (B) Competition of a dilution

series of Fab<Her3> (red) against a constant concentration of bivalent MAb<Her3>. The competition

curve for TriMAb2 against a constant concentration of bivalent MAb<Her3> (blue) is shown.

Supplemental Figure 2

Stability of TriMAbs measured by dynamic light scattering. (A) Plot of the change of the

hydrodynamic radius of TriMAb1, TriMAb2 and TriMAb3 upon incremental (0.05°C/min) increase

of temperature. (B) Temperature stability of TriMAb1 was measured over a period of 112 h at 50°C.
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