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1. INTRODUCTION 

Vertebrates possess an immune system that ensures the recognition of a multitude of 

exogenous and endogenous pathogens. In order to battle pathogens without causing severe 

immune-mediated tissue damage, sophisticated mechanisms have evolved to regulate immune 

cell functions. Depending on the kind of immune reaction, leukocytes can either be activated 

to eliminate infected or transformed cells, or be suppressed to terminate an immune response, 

to prevent autoreactivity and unrestrained host tissue damage. These two mechanisms, namely 

activation and inhibition, are achieved by an arsenal of activating and inhibitory receptors 

which can be mostly assigned to two groups of immunoregulatory receptor families, the C-

type lectin superfamily and the immunoglobulin superfamily (IgSF). Many genes encoding C-

type lectin receptors are clustered in the “natural killer gene complex” (NKC), a genomic 

region found on human chromosome 12p13.1 and murine chromosome 6, respectively [1, 2]. 

This locus harbors firstly genes found in both species, such as the receptors NKG2D and 

CD94/NKG2A, and secondly the Ly49 family which is abundant in mice but a non-functional 

gene complex in humans [3]. In contrast, the immunoglobulin superfamily comprises over 

850 genes found throughout the genome. The “leukocyte receptor complex” (LRC) on human 

chromosome 19q13.4 constitutes a major locus of IgSF-related genes [4]. It harbors several 

multigene families including the killer cell Ig-like receptors (KIR), the leukocyte 

immunoglobulin-like receptors (LILR) as well as the leukocyte associated Ig-like receptors 

(LAIR). Other genes affiliated to the so called extended LRC include the osteoclast-associated 

receptor (OSCAR), the platelet collagen receptor glycoprotein VI (GPVI) and the natural 

cytotoxicity receptor 1 (NCR1, also known as NKp46). Synteny to human LRC is mapped to 

mouse chromosome 7, albeit structural orthologues to the KIR genes are missing. Instead, the 

murine LRC harbors genes encoding paired Ig-like receptors (PIR) which are closely related 

to the human KIRs, LILRs and LAIRs and thus might share common ancestors [4, 5].  

In general, activating receptors classically possess a basic amino acid in the transmembrane 

region that interacts with immunoreceptor tyrosine-based activating motif (ITAM)-containing 

adaptors such as the DNAX-activating protein of 12 kDa (DAP12, also named killer cell-

activating receptor-associated protein (KARAP)) and 10 kDa (DAP10), respectively, and the 

Fc receptor common  chain (FcR [6-11]. This interaction initiates an intracellular signaling 

cascade resulting in cellular activation.  

In contrast, inhibitory receptors contain a similar motif in their long cytoplasmic domain, an 

immunoreceptor tyrosine-based inhibitory sequence (ITIM) [12]. Here, ligand engagement 

results in the phosphorylation of motif-based tyrosine residues, which impede cellular 
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activation by recruiting inhibitory Src homology 2 (SH2)-domain containing phosphatases 

[13-15].  

Besides these two major genomic regions, several other though smaller gene families 

involved in immune regulation are found throughout the genome, such as the natural 

cytotoxicity receptors (NCR), the signal-regulatory protein (SIRP) family, the triggering 

receptor expressed on myeloid cells (TREM) family, the CD300 receptor family or genes 

related to the signaling lymphocytic activation molecule (SLAM) family. In mouse and man, 

the SLAM locus has been mapped to chromosome 1 and currently harbors nine family 

members, SLAMF1 to SLAMF9 [16-20].  
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2. OBJECTIVE 

Mammals and aves have a similar immune system, albeit both diverged from a common 

ancestor about 300 million years ago, and comparative studies provide new insights into the 

evolution and development of the vertebrate immune system. Over the past years, several 

immunoregulatory receptor families have been described in the chicken. The syntenic locus to 

the human NKC has been mapped to chicken chromosome 1, although this region comprises 

only two C-type lectin-like genes, namely orthologues to mammalian CD69 and CLEC-2 [21, 

22]. Two additional C-type lectin-like genes, chicken orthologues to mammalian NKR-P1 and 

lectin-like transcript 1 (LLT1), B-NK and B-Lec, respectively, are mapped to the chicken 

major histocompatibility complex (MHC) on chromosome 16 [23, 24]. In contrast, 

immunoregulatory receptors assigned to the immunoglobulin superfamily (IgSF) are found 

throughout the chicken genome. The chicken orthologue to the human LRC, for instance, is 

broadly expanded and located on microchromosome 31. Only one multigene family encoding 

chicken Ig-like receptors (CHIR) has been mapped to this chromosomal site [25, 26]. The 

CHIR locus contains over 100 genes and functional homology to KIRs, LILRs and LAIRs, 

gene families clustered on the human LRC, has been proposed [27-30]. Genes assigned to the 

extended human LRC, however, such as OSCAR, NCR1 (NKp46) or GPVI, are missing or 

have not been identified in chickens yet. In addition, several other immunoregulatory receptor 

families have been documented in the chicken, in particular the SIRP family, the TREM 

family, the CD200 receptor (CD200R) family and the CD300 antigen like (CD300L) family, 

respectively [31-33]. 

So far, the SLAM family of membrane receptors has been only documented in mammals and 

in Xenopus tropicalis, recently [18, 34, 35]. The present study had two objectives. The first 

part was conducted to clarify if SLAM- and SLAM-associated adaptor protein (SAP)-related 

genes exist in the chicken genome, which would provide new insights in the phylogeny of this 

immunoregulatory receptor family. Therefore, the chicken genome was searched for the 

presence of SLAM- and SAP-related genes, which were subsequently cloned, sequenced, 

analyzed and compared to putative murine and human homologues. The second part included 

the generation of a specific monoclonal antibody (mab) against SLAMF4 (CD244, 2B4) with 

the aim to study the expression pattern of SLAMF4 on chicken leukocytes, to determine 

presumed ligands as well as to clarify functional aspects on distinct immune cells. 
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3. LITERATURE 

3.1 The SLAM family 

The signaling lymphocytic activation molecule (SLAM) family of membrane receptors 

constitutes a subset of the greater CD2 family within the immunoglobulin superfamily (IgSF). 

The SLAM family currently includes nine members: SLAMF1 (CD150, IPO-3), SLAMF2 

(CD48), SLAMF3 (CD229, Ly9), SLAMF4 (CD244, 2B4), SLAMF5 (CD84), SLAMF6 

(CD352, NTB-A, Ly108, SF2000), SLAMF7 (CD319, CRACC, CS1), SLAMF8 (CD353, 

BLAME) and SLAMF9 (CD84-H1, SF2001) [18, 34, 36]. Most receptors are homophilic 

adhesion molecules, whereas SLAMF4 engages SLAMF2 in a heterophilic manner [37]. 

Affiliation to the SLAM family is primarily based on a similar structure of the extracellular 

domain, in particular an amino-terminal Ig variable (V)-like domain and a membrane-proximal 

Ig constant 2 (C2)-like domain. In addition, a key feature of most SLAM family members 

except SLAMF2 (CD48), SLAMF8 (CD353, BLAME) and SLAMF9 (CD84-H1, SF2001) is 

the presence of one or more copies of immunoreceptor tyrosine-based switch motifs (ITSM) 

T-I/V-Y-x-x-V/I in the cytoplasmic tail [where T represents threonine, I isoleucine, V valine, 

Y tyrosine and x any amino acid] (Fig. 1) [18, 34, 36]. Depending on the physiological 

condition, these motifs serve as docking sites (or switch) for both activatory and inhibitory 

intracellular SH2 domain-containing adaptor molecules [38-41]. Adaptor proteins involved in 

SLAM receptor signaling include the SLAM-associated adaptor protein (SAP, also named 

SH2D1A), Ewing`s sarcoma-associated transcript-2 (EAT-2, also named SH2D1B1) and 

EAT-2 related transducer (ERT, also named SH2D1B2), respectively. [18, 34, 36]. All SLAM 

receptors bind SAP and/or EAT-2/ERT, except SLAMF8 and SLAMF9, which lack 

cytoplasmic motifs, as well as SLAMF2, which represents a glycosyl-phosphatidylinositol 

(GPI)-anchored protein. Genes encoding SLAM family receptors are clustered in the SLAM 

locus on human and murine chromosome 1. In addition, genes encoding EAT-2 and ERT, the 

latter a pseudogene in humans, are located in the vicinity of the SLAM locus on chromosome 

1 while the SAP gene has been mapped to human and murine chromosome X (Fig. 2) [36, 42]. 
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Figure 1 Schematic representation of mammalian SLAM receptors. 

Family affiliation is based on homologies of the extracellular domain, each consisting of an N-terminal Ig variable (IgV)-like domain and a membrane-proximal constant 2 

(C2)-like domain. Other structural elements include a single transmembrane region and a cytoplasmic tail containing the consensus motif TxYxxV/I, the latter refered to as 

immunoreceptor tyrosine-based switch motif (ITSM) (where T represents threonine, Y tyrosine, V valine, I isoleucine and x represents any amino acid). Modified according 

to [18]. 
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The importance of the SLAM-SAP interaction is best illustrated by a genetic disorder called 

X-linked lymphoproliferative disease (XLP, also known as Duncan`s disease) [43]. The 

underlying mechanism is a mutation in the SAP gene, resulting in an increased susceptibility 

to Epstein-Barr virus (EBV) infection [44]. Patients suffering from XLP exhibit an 

uncontrolled B cell proliferation, leading to malignant B cell lymphomas as well as infiltration 

and failure of multiple organs. The syndrome is further characterized by both T and Natural 

Killer (NK) cell dysfunction to clear EBV-infected B cells. Since SAP is expressed by T and 

NK cells, defective SAP affects T and NK cell functions to curtail EBV infection [42, 45]. 

SLAM family receptors are generally involved in cytokine production, costimulation, 

cytotoxicity, cell development, differentiation and proliferation. XLP is therefore a good 

example for the important role of the SLAM family and SAP adaptors in the regulation of 

immune responses. Furthermore, it demonstrates how an impairment of this fine-tuned system 

may result in severe immunodeficiencies and autoimmune diseases, for example rheumatoid 

arthritis or multiple sclerosis [46-48]. Individual receptors are subsequently discussed in detail. 

An overview of SLAM family members, including the number of ITSM motifs, expression 

pattern, function, ligand(s) as well as intracellular adaptor molecules is given in table 1.  

 

 

 

 

 

 

 

 

 

Figure 2 Schematic representation of the mammalian SLAM locus. 

SLAM genes are clustered in syntenic regions on human and mouse chromosome 1. Genes 

encoding EAT-2 and ERT, the latter representing a pseudogene in humans, are located in the 

vicinity of the SLAM locus. Note that the scheme is not drawn to scale. Modified according to 

[18]. 
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Table 1 The Signaling Lymphocytic Activation Molecule (SLAM) Family. 

 

Abbreviations: 
B: B lymphocyte; BLAME: B lymphocyte activator macrophage expressed; CRACC: CD2-like receptor-activating cytotoxic cells; DC: Dentritic cell; EAT-2: Ewing`s sarcoma-

associated transcript-2; EPO: eosinophil peroxidase; ERT: EAT-2 related transducer; H: Human; HSC: Hematopoietic stem cell; HPC: Hematopoietic progenitor cells; IFN-: 

Interferon-gamma; IL: Interleukin; iNKT: invariant Natural killer T cell; ITSM: immunoreceptor-tyrosine based switch motif; T: T lymphocyte; M: Mouse; Mф: Macrophage; 

Mo: Monocyte; MPP: Multipotential progenitor NK: Natural killer cell; NO: Nitric oxide; NTB-A: NK-, T- and B-cell antigen; SAP: SLAM-associated adaptor protein; SLAM: 

Signaling lymphocytic activation molecule; TNF: Tumor necrosis factor. Modified according [18, 36].  

 Interaction with 

Family 

name 
Alternative name ITSMs Expression Function Ligand SAP 

EAT-2/ 

(ERT) 

SLAMF1 SLAM, CD150 2 

B, T, Mo, Mф, DC, 

thymocytes, platelets, HSC, 
HPC 

T: IFN- proliferation↑ 

B: proliferation + differentiation↑ 

Mф: IL-12, TNF + NO↑ 
DC: IL-12 + IL-8↑ 

Platelets: aggregation↑ 

HSC: development + differentiation 

Self,  

Measles virus,  
Gram-negative OmpC + OmpF 

+ + 

SLAMF2 CD48 None 
Hematopoietic cells, HSC, 

MPP, HPC 

NK: cytotoxicity↑; IFN-↑ 
CD4 T: proliferation ↑ 

HSC: development + differentiation 

SLAMF4, CD2 + + 

SLAMF3 Ly9, CD229 
H: 2 

M:1 

Thymocytes, T, B, NK, Mo, 

HSC, MPP  

T: IFN-, IL-2, IL-4, IL-6, IL-10 + TNF↓ 

iNKT: proliferation↓; IL-4↓ 
HSC: development + differentiation 

Self + + 

SLAMF4 2B4, CD244 4 
NK,  T, CD8 T, Mo, 

basophils, eosinophils, MPP 

NK: IFN-↑; cytotoxicity↑ 

Eosinophils: cytotoxicity↑; IFN-IL-4 + EPO↑ 

 T: cytotoxicity↑, IFN- + IL-2↑ 
CD8+ T: 

SLAMF4low/SAPhigh: proliferation↑; cytotoxicity↑ 

SLAMF4high/SAPlow: proliferation↓; cytotoxicity↓ 
MPP: development + differentiation 

SLAMF2 + + 

SLAMF5 CD84 2 
T, B, Mo, DCs, thymocytes, 

platelets 
T: proliferation↑; IFN-↑ 

Platelets: aggregation↑ 
Self + + 

SLAMF6 

CD352, SF200 

human: NTB-A, 
mouse: Ly108 

2 T, B, NK 

NK: cytotoxicity↑; proliferation↑; IFN- + TNF-↑ 

T: proliferation↑; IFN-↑ 
B: isotype switching to IgG2a + IgG3↑ 

Self + + 

SLAMF7 CD319, CRACC, CS1, 
H:1 

M:0 

T, NK, B, plasma cells, mature 

DCs, malignant hematopoietic 
cells 

NK cell: dependent on the co-expression of EAT-2 

      EAT-2+
 cytotoxicity↑  

      EAT-2-  cytotoxicity↓ 
CD4+T: proliferation + cytokines production↓ 

B: proliferation↑ 

Self - + 

SLAMF8 BLAME, CD353 None DC, Mф  Mф: Nox-2 activity↓ Unknown - - 

SLAMF9 CD84-H1, SF2001 None T, B, DCs, Mo  Unknown Unknown - - 
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3.1.1 SLAMF1 (SLAM, CD150, IPO-3) 

In 1993, a novel cell surface receptor was identified on B and T cells and associated with the 

regulation of activated T cells [49]. The receptor was named SLAM to emphasize its role as a 

costimulatory activation molecule [50]. In the meantime, the SLAM family has broadly 

expanded and the nomenclature had to be adopted, hence the name SLAMF1 to distinguish 

from other SLAM family receptors. 

SLAMF1 is expressed on distinct immune cells, including immature thymocytes, CD45RO
high

 

memory T cells, subsets of CD4
+
 T cells, peripheral B cells and murine hematopoietic 

precursors, but also on B and T cells following activation. Moreover, cell surface expression 

has been documented in several non-lymphoid cells, in particular monocytes, platelets and 

dentritic cells (DCs) [49-54]. 

SLAMF1 is a homophilic adhesion molecule and the cellular entry-receptor for measles virus 

[55, 56]. Furthermore, SLAMF1 on macrophages is important for the recognition of the outer 

membrane components OmpC and OmpF of gram-negative bacteria. Upon contact, the 

SLAMF1-bacteria complex is transfered to the phagosome and degraded enzymatically, which 

contributes to the clearance of bacterial infections [57]. Macrophages also seem to regulate the 

secretion of interleukin-12 (IL-12), tumor necrosis factor (TNF) and nitric oxide (NO) through 

SLAMF1. This has been demonstrated in an infection model where SLAMF1
-/-

 macrophages 

failed to clear an infection with the parasite Leishmania major due to an impaired production 

of IL-12, TNF, and NO, respectively [51].  

SLAMF1 was initially described to function as costimulatory receptor in T cell receptor 

(TCR)-induced proliferation and interferon-gamma (IFN-) secretion [49, 50]. In contrast, 

SLAMF1
-/-

 T cells produce normal levels of IFN- while the release of the TH2-associated 

cytokines IL-4 and IL-13 is affected [51]. These phenotypic alterations are explained by (a) 

the inability of antibody-mediated ligation to reflect the physiological condition of SLAMF1 

engagement or (b) the capability of other SLAM family receptors to replace SLAMF1 receptor 

function, at least partially [58]. In B lymphocytes, mab cross-linking amplifies both B cell 

proliferation and differentiation [49].  

Moreover, SLAMF1 also regulates the cytokine profile of DCs and monocytes. SLAMF1 

receptor engagement on dentritic cells intensifies the production of IL-12 and IL-8 [53]. The 

comprehensive function of SLAMF1 in immune regulation is completed by its role in 

promoting platelet aggregation stability [52].  

Beyond that, SLAMF1 is involved in the development and differentiation of hematopoietic 

cells. Murine multipotential stem cells are generally defined as Lineage
-/low

 Sca-1
+
 c-Kit

+
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(LSK) cells and several SLAM family members, including SLAMF1, are suitable markers to 

divide LSK cells into several subpopulations [59-64].  

Initial studies demonstrated that murine hematopoietic stem cells (HSCs) coexpress SLAMF1 

during early hematopoiesis while lacking other SLAM-related receptors [59, 64]. Subsequent 

development stages, in particular multipotential progenitors (MPPs) and restricted 

hematopoietic progenitor cells (HPCs) become SLAMF1 negative while mounting other 

SLAM receptors at the cell surface. This observation prompted Kiel and colleagues to propose 

the “SLAM code”, in order to specify distinct subpopulations during hematopoiesis [59]. 

Recent studies allow the classification of LSK cells on the basis of the expression of SLAMF1, 

SLAMF2, SLAMF3 and SLAMF4, respectively, into functionally distinct fractions [60]. 

In conclusion, SLAMF1 functions as an important co-stimulator for cells of both innate and 

adaptive immunity involved in host defense against pathogens by contributing to their 

recognition and elimination. 

 

3.1.2 SLAMF2 (CD48)  

SLAMF2 represents a classical glycosyl-phosphatidylinositol (GPI)-anchored cell surface 

molecule lacking a cytoplasmic domain and the consensus motif ITSM present in most SLAM 

members (Fig. 1). SLAMF2 is broadly expressed in the hematopoietic system and binds the 

adhesion molecules CD2 and SLAMF4 [18, 34, 37, 59, 65-68].  

The identification of SLAMF4 (CD244, 2B4) as high-affinity ligand has shifted the primary 

research focus towards the role of SLAMF4 in immune regulation. Yet, data exist which 

delineate a role not only as ligand of SLAMF4, but also as cellular activator. In this context, 

proliferative responses to different stimuli are impaired in SLAMF2
-/-

 CD4
+
 T cells [69].  

In NK cells, SLAMF2 also functions as costimulatory receptor by promoting target cell lysis 

as demonstrated in a redirected killing assay. Furthermore, SLAMF2 engagement on NK cells 

enhances IFN- production, a finding that corresponds to data of a SLAMF2 involvement in 

the IL-18 signaling pathway [70, 71]. IL-18 stimulates NK cells and T cells to produce IFN-

which in turn functions as potent activator of macrophages (thus originally named 

macrophage-activating factor), inhibitor of viral replication and promotor of hematopoiesis 

[72-75].  

Based on its capacity to modulate IFN-secretion, its expression on hematopoietic progenitor 

cells and the role of IFN- in hematopoiesis, SLAMF2 consequently plays an important role in 

stem cell development and differentiation. This was confirmed in knockout studies where 

proliferation and IFN- secretion of SLAMF2
-/-

 hematopoietic stem cells (HSC) are impaired. 
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At the same time, SLAMF2
-/-

 mice are more likely to develop malignancies, a phenotype that 

has been associated with an overexpression of the p21 activated kinase (PAK) [76]. PAK is 

known to be involved in cancer development and the occurrence of these malignancies is 

explained by PAK overexpression to compensate for the missing SLAMF2-SLAMF4 

signaling pathway [76-78]. 

 

3.1.3 SLAMF3 (CD229, Ly9) 

SLAMF3 is an exception within the SLAM family by displaying a duplication of the V-C2-

like domain in its extracellular domain (Fig. 2) [18, 34]. Like most SLAM receptors, SLAMF3 

is a self-ligand and broadly expressed on hematopoietic cells, including thymocytes, T and B 

cells, NK cells, HSCs, MPPs and monocytes, respectively [79, 80]. 

SLAMF3 is a predominantly negative regulator of activated T cells since mab cross-linking 

inhibits cytokine secretion and results in the downregulation of recognized activation markers 

including CD25 (IL-2 receptor -chain) and CD69 [79]. Besides its involvement in 

hematopoiesis (see 3.1.1), SLAMF3 plays a role in thymus development, in particular in the 

homeostasis of invariant Natural killer T (iNKT) cells. This has been shown in SLAMF3
-/-

 

mice, where the number of iNKT cells increases significantly. In addition, these cells also 

display elevated IL-4 levels upon activation. Both effects are explained by the loss of 

SLAMF3 to negatively regulate development and function of iNKT cells [81].  

In conclusion, SLAMF3 receptor is mainly a cellular inhibitor, particularly in thymocytes and 

T cells. 

 

3.1.4 SLAMF4 (CD244, 2B4) 

SLAMF4 is one of the best characterized receptors within the SLAM family and functional 

aspects have been best illustrated in NK cells. Initial studies suggested SLAMF4 to be an 

activator of human and murine NK cells when encountering its ligand SLAMF2 [37]. This has 

been primarily based on its potency to promote granule exocytosis and IFN- release [82-84].  

In contrast, new reports indicate a dichotomous role of SLAMF4 to function as either 

activating or inhibitory receptor, determined by the availability of the intracellular adaptor 

molecules SAP and EAT-2 as well as the expression levels of surface SLAMF4 [39, 85]. In 

the presence of SAP, SLAMF4 enhances NK cell-mediated killing whereas in SAP
-/- 

NK cells, 

SLAMF4 engagement fails to induce a potent cytotoxic reaction. In this respect, these 

observations indicate an inhibitory role of SLAMF4 in the absence of SAP [85]. A similar 

situation could be observed in activated CD8
+
 T cells where both the amount of surface 
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SLAMF4 and intracellular SAP determine cellular activation or inhibition [86].  

Like most SLAM family members, SLAMF4 is also present on other immune cells including 

 T cells, monocytes, basophils and eosinophils, respectively [87-89]. In contrast to NK and T 

cells however, no data exist indicating a similar bifunctional role in these cells, which is 

explained by the inability of these cells to express intracellular SAP adaptor molecules [42, 

90]. The expression of SLAMF4 on  T cells has been mainly studied in murine epithelial 

tissue-type  T cells where antibody cross-linking promotes cytokine production and killing 

of certain target cells [87, 91]. Similar functions are attributed to SLAMF4 in eosinophils 

where mab cross-linking amplifies both cytotoxicity and cytokine production, in particular the 

release of eosinophil peroxidase, a recognized marker of eosinophil activation [89]. 

Furthermore, SLAMF4 is involved in the development and differentiation of hematopoietic 

precursors as discussed earlier (see 3.1.1) [59]. Due to its bifunctional character, SLAMF4 is a 

good example for the “switching function” of SLAM family receptors as positive and negative 

immune cell regulators. 

 

3.1.5 SLAMF5 (CD84) 

SLAMF5 is a self-ligand expressed on thymocytes, T and B cells, platelets, DCs and 

monocytes [92, 93]. In activated T cells, SLAMF5 is a co-stimulator of proliferation and IFN- 

secretion as demonstrated by in vitro experiments with SLAMF5 specific mab [92]. Like other 

SLAM family receptors, SLAMF5 associates with SAP and EAT-2, respectively [94, 95]. 

Interestingly, cellular activation seems to be additionally initiated by a SAP-independent 

mechanism since similar effects are observed in SAP-defective T cells obtained from X-linked 

lymphoproliferative disease (XLP) patients [96]. 

Furthermore, SLAMF5 is part of a group of adhesion molecules involved in the stabilization of 

platelet aggregation, an effect similar to the one described for SLAMF1 [52]. In contrast, 

further functional aspects regarding thymocytes, B cells, monocytes and dentritic cells have 

not been defined so far. 

 

3.1.6 SLAMF6 (CD352, NTB-A, Ly108, SF2000) 

SLAMF6 was first described as a receptor expressed on all NK, T and B cells and thus termed 

NK-, T- and B-cell antigen (NTB-A) [97, 98]. SLAMF6 is a homophilic molecule and 

considered a costimulatory molecule in NK cells important for proliferation, cytokine 

production and granule exocytosis [99, 100]. Similar effects are observed in CD4
+
 T helper 

cells where a combinatory stimulation of SLAMF6 and CD3 increases both proliferation and 
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IFN- release.  

IFN- is a classical TH1-associated cytokine important for B cell isotype switching and 

blocking of SLAMF6 affected TH1-mediated isotype switching significantly [48]. A 

relationship between SLAMF6 and the TH1 phenotype was additionally proven in a murine 

model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). EAE is a 

TH1-mediated autoimmune disease and the onset of EAE is delayed when SLAMF6 is blocked 

with a fusion protein [48].  

In summary, SLAMF6 is a costimulatory molecule and regulator of TH1-related cytokine 

production. 

 

3.1.7 SLAMF7 (CD319, CRACC, CS1) 

SLAMF7 was described in 2001 as an activating receptor for NK cells, hence the initial name 

CD2-like receptor–activating cytotoxic cells (CRACC) [101]. It represents a membrane 

receptor which differs from other SLAM-related receptors in several ways. Firstly, SLAMF7 

contains only one ITSM motif in its cytoplasmic tail which enables binding to EAT-2, but not 

SAP (Fig. 1). Secondly, its function is strictly dependent on the availability of the intracellular 

adaptor protein EAT-2 [102]. And thirdly, SLAMF7 is frequently upregulated on malignant 

hematopoietic cells [103]. 

Like most SLAM family receptors, SLAMF7 is a self-ligand and expressed on a variety of 

immune cells, in particular NK cells, NK-T cells, cytotoxic CD8
+
 T cells, CD4

+
 T cells, 

plasma cells, B cells and mature DCs [101, 103-105].  

The bifunctionality of SLAMF7 has been investigated in NK cells carrying mutations in the 

EAT-2 gene. Accordingly, in the absence of EAT-2, SLAMF7 engagement inhibits target cell 

killing whereas in the presence of EAT-2, NK cell-mediated cytotoxicity is significantly 

increased [102].  

In contrast, little is known about the role of SLAMF7 in T cell regulation. One study 

documented an inhibitory effect in CD4
+
 T cells since mab cross-linking reduces both T cell 

proliferation and cytokine production, a notion supported by the inability of human CD4
+
 T 

cells to express EAT-2 [102].  

Human B cells also lack SAP. In this respect, these results are inconsistent with observations 

made in activated B cells where SLAMF7 engagement promotes cellular expansion [106]. 

An idiosyncrasy of SLAMF7 is its expression on malignant cells that has not been reported for 

other SLAM family members. Particularly its expression on multiple myeloma (MM) cells 

makes SLAMF7 an interesting target to an antibody-based cancer therapy. There are phase III 
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clinical studies in progress to investigate the potential of Elotuzumab
®
, a humanized anti-

SLAMF7 mab as new tool in cancer therapy. The idea is that Elotuzumab
®
 binds SLAMF7 on 

MM cells via its Fab fragment while simultaneously cross-linking the Fc receptor CD16 on 

NK cells via its Fc portion. The resulting effect is refered to as antibody-dependent cellular 

cytotoxicity (ADCC) where CD16 engagement activates NK cells to release cytotoxic granules 

and kill MM cells [103].  

In contrast to this promising approach, SLAMF7 functions in DCs, NK-T cells and CD8
+
 T 

cells have not been evaluated yet.  

In conclusion, SLAMF7 is involved in positive and negative immune cell regulation, albeit 

bifunctionality is restricted to certain cell types, e.g. NK cells. 

 

3.1.8 SLAMF8 (CD353, BLAME) 

SLAMF8, also named B lymphocyte activator macrophage expressed (BLAME), was assigned 

to the SLAM family due to its CD2-like extracellular domain and its genomic location on 

human chromosome 1q21 (the genomic region encoding the SLAM genes) albeit distinctive 

intracellular motifs are not apparent (Fig. 1, 2) [107]. Potential ligands are currently unknown, 

and likewise few data exist regarding functional properties. 

In contrast, expression on DCs and macrophages has been established. One report even implies 

a role of SLAMF8 as negative regulator of Nox2 activity in macrophages, an enzyme involved 

in the oxygen-dependent degradation and destruction of pathogens. Moreover, macrophages 

seem to upregulate SLAMF8 in response to IFN- exposure and it is being discussed whether 

this upregulation is mandatory to attenuate or even terminate innate immune responses [108]. 

In summary, SLAMF8 seems to negatively regulate macrophage function by inhibiting Nox-2 

activity. 

 

3.1.9 SLAMF9 (CD84-H1, SF2001) 

SLAMF9 was initially named CD84-H1 due to its close homology to SLAMF5 (CD84) and 

combines features characteristic for SLAM family members, in particular an extracellular 

region containing two Ig-like domains and a single transmembrane region. The short 

cytoplasmic tail however lacks ITSM motifs (Fig. 1). Potential ligands of SLAMF9 as well as 

functional aspects are currently unknown, likewise its expression pattern on leukocytes, albeit 

preliminary RNA analyses indicate an expression on monocytes, DCs, T cells, and B cells, 

respectively [109]. 
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3.2 The SLAM-associated protein (SAP) family 

The SAP family of adaptor molecules includes SAP (SH2D1A), Ewing`s sarcoma-associated 

transcript-2 (EAT-2, SH2D1B1) and EAT-2-related transducer (ERT; SH2D1B2). They are 

composed of a SH2 domain and a short carboxy-terminal tail. The SAP gene is located on 

human and murine chromosome X, whereas genes encoding EAT-2 and ERT, the latter 

representing a nonfunctional pseudogene in humans, are clustered in the vicinity of SLAM-

related genes on chromosome 1 in both species (Fig. 2) [36, 110, 111]. Six SLAM receptors 

are known to associate with either SAP or EAT-2/ERT. In contrast, this interaction has not 

been confirmed for SLAMF8 and SLAMF9, respectively, while SLAMF2 represents a GPI-

anchored protein [36, 110]. Therefore, signal transduction mediated by intracellular SAP 

adaptor molecules is essential for the functionality of SLAM receptors and thus immune 

regulation. 

 

3.2.1 SAP (SH2D1A) 

Human and murine SAP are expressed in T cells, B cells, eosinophils, NK cells and platelets 

[44, 52, 89, 112-115]. An initial report, published in 1998, defined SAP adaptors as “natural 

blockers” of other SH2 domain-containing molecules. Accordingly, SAP adaptors block the 

association of SLAM receptors to inhibitory transduction molecules, in particular SH2 

domain-containing protein tyrosine phosphatase-1 (SHP-1), SH2 domain-containing protein 

tyrosine phosphatase-2 (SHP-2), SH2 domain-containing inositol-5-phosphatase (SHIP-1) and 

the inhibitory kinase Csk, respectively [44]. Subsequent intracellular inhibitory signals are 

consequently prevented and cellular activation sustained. 

Another report challenged this notion by demonstrating the potential of SAP to directly couple 

SLAM receptors to the protein tyrosine kinase (PTK) Fyn. This is achieved by a motif 

centered around arginine 78 (R78), which has been shown to serve as docking site for other 

Src homology 3 (SH3) domain containing molecules, including Pak-interacting exchange 

factor (PIX), the adaptor Nck, and the protein kinase C-θ (PKC-θ) [116-119]. These 

interactions initiate a cascade of protein tyrosine phosphorylation events which directly 

correlate with functional activation.  

In the meantime, a seminal study investigating the role of SAP in NK cell activation confirmed 

the accuracy of both theories. Accordingly, SAP promotes NK cell activation via a dual 

mechanism of action. Firstly, SAP mediates the association of Fyn to SLAM receptors which 

in turn links SAP to Vav-1, an exchange factor essential for T cell development and activation. 

Secondly, SAP prevents the inhibition of SLAM family receptors by detaching the cellular 
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suppressor SHIP-1 [38]. 

These results correspond to data obtained from NK cells of genetically modified mice. Here, 

the recruitment site of Fyn in SAP, R78, is mutated to alanine (SAP R78A) and NK cells 

carrying this point mutation consequently fail to exhibit sufficient levels of granule exocytosis 

and IFN- secretion, respectively [38].  

In conclusion, SAP acts as positive regulator, at least in NK cells, albeit biochemical signaling 

pathways downstream of the SAP-Fyn-Vav-1 cascade are not completely resolved. 

 

3.2.2 EAT-2 (SH2D1B1)/ERT (SH2D1B2) 

EAT-2 expression has been reported in NK cells, DCs and macrophages, while ERT 

expression is restricted to murine NK cells and nonfunctional in humans [111, 120]. The 

biology of both molecules has been studied in EAT-2 and ERT deficient mice displaying a 

SAP
+
 phenotype. 

In response to several stimuli, including SLAMF4, EAT
-/-

 NK cells become activated as 

measured by the secretion of IFN- and the ability to kill certain target cells [111]. In addition, 

both effects are also observed in ERT
-/-

 NK cells. In contrast to SAP, EAT-2 and presumably 

ERT seem to transduce intracellular signals through tyrosine residues located in the C-terminal 

tail, albeit the nature of this interaction is not fully resolved [111]. 

Given that both EAT-2
-/-

 and ERT
-/-

 NK cells exhibit increased cytotoxicity and IFN- 

production, a role as negative regulators of NK cell function has been proposed.  

However, studies investigating the role of SLAMF7 (CD319, CRACC) in NK cells challenge 

this notion. Here, the cytotoxicity of EAT-2
-/-

 NK cells is impaired whereas NK cell 

cytotoxicity is significantly increased in the EAT-2
+
 phenotype [102]. 

In general, genetically modified mice offer many new insights although they do not reflect 

physiological conditions. Cellular responses to a variety of stimuli are orchestrated by a 

multitude of receptors and intracellular signaling molecules. Consequently, one cell type may 

harbor several SLAM receptors and SAP adaptors at the same time. NK cells, for instance, 

simultaneously express SLAMF2, SLAMF3, SLAMF4, SLAMF6 and SLAMF7 as well as the 

adaptors SAP and EAT-2/ERT [68, 71, 79, 82-84, 97, 101, 111, 121]. It is therefore 

conceivable that the complexity of these interactions is not completely understood and has yet 

to be investigated. 
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Abstract 

The signalling lymphocytic activation molecule (SLAM) family of receptors is critically 

involved in the immune regulation of lymphocytes, but has been only detected in mammals 

with one member being present in Xenopus. Here we describe the identification, cloning and 

analysis of the chicken homologues to the mammalian SLAMF1 (CD150), SLAMF2 (CD48), 

and SLAMF4 (CD244, 2B4). Two additional chicken SLAM genes were identified and 

designated SLAMF3like and SLAM5like in order to stress that those two receptors have no 

clear mammalian counterpart, but share some features with mammalian SLAMF3 and 

SLAMF5, respectively. Three of the chicken SLAM genes are located on chromosome 25, 

whereas two are currently not yet assigned. The mammalian and chicken receptors share a 

common structure with a V-like domain that lacks conserved cysteine residues and a C2-type 

Ig domain with four cysteines forming two disulfide bonds. Chicken SLAMF2 lacks like its 

mammalian counterpart a transmembrane and cytoplasmic domain and thus represents a 

glycosyl-phosphatidyl-inositol (GPI)-anchored protein. The cytoplasmic tails of SLAMF1 and 

SLAMF4 display two and four conserved immunoreceptor tyrosine-based switch motifs 

(ITSM), respectively, whereas chicken SLAMF3like and SLAMF5like both have only a single 

ITSM. We have also identified the chicken homologues of the SLAM associated protein-

family of adaptors (SAP), SAP and EAT-2. Chicken SAP shares about 70 % identity with 

mammalian SAP and chicken EAT-2 is homologous to mouse EAT-2, whereas human EAT-2 

is much shorter. The characterization of the chicken SLAM family of receptors and the SAP 

adaptors demonstrates the phylogenetic conservation of this family, in particular its signalling 

capacities. 
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Introduction 

Immune cell responses are fine tuned by a plethora of receptors that modulate the activity of 

the cells. The primary signal stems either from the antigen receptors in T- and B-cells or via 

NK cell receptors in NK cells. These initial activation events are subsequently modulated by a 

number of activating and inhibitory receptors, which play an important role in determining the 

immune response (Ravetch and Lanier 2000; Zhu et al. 2011). Immunoreceptors with 

activating or inhibitory function are frequently found within the same receptor family. A 

typical feature of inhibitory receptors is the immunoreceptor tyrosine-based inhibition motif 

(ITIM), a six amino acid sequence whose conserved tyrosine is phosphorylated upon ligand 

binding and thereby recruits tyrosine phosphatases (Daeron et al. 2008; Rhee and Veillette 

2012). Activating forms on the contrary may have a homologous extracellular domain, but 

they usually lack cytoplasmic ITIM but contain immunoreceptor tyrosine-based activation 

motifs (ITAM), where the tyrosine phosphorylation forms a docking site for kinases (Reth 

1989). Alternatively, the activating receptors display only a short cytoplasmic tail and have a 

positively charged transmembrane residue that allows the association with adaptor molecules 

containing ITAM. Immunreceptor families with inhibitory and activating members include Fc 

receptors, receptor families encoded by the leukocyte receptor cluster, and many others 

(Colonna 1997; Long 1999; Nimmerjahn and Ravetch 2008).  

A third group of receptors can transmit either positive or negative signals. This can be 

accomplished by binding to different ligands as is the case for CD28 (Odorizzi and Wherry 

2012). Alternatively, the presence or absence of intracellular adaptor proteins can be critical in 

either the activation or inhibition of cellular immune responses. This is the case for the 

signalling lymphocytic activation molecule (SLAM) family of receptors, a subgroup of the 

CD2 receptor family (Boles et al. 2001; Cannons et al. 2011; Sidorenko and Clark 2003; 

Veillette 2010).  

The SLAM family of receptors is composed of a group of type I transmembrane receptors, 

including SLAMF1 (SLAM; CD150), SLAMF3 (Ly9; CD229), SLAMF4 (2B4; CD244), 

SLAMF5 (CD84), SLAMF6 (NTB-A, Ly108-1), and SLAMF7 (CRACC). In man, the 

receptors are located on the long arm of chromosome 1, whereas the related receptors CD2 and 

CD58 are located on the short arm of chromosome 1. An additional receptor, SLAMF2 

(CD48) is also present in the genomic cluster; however, it is a glycosyl-phosphatidyl-inositol 

(GPI)-anchored protein. Several features are common to the SLAM family of receptors, such 

as the two Ig domains composed of a V-like Ig domain lacking disulfide bonds and a 

membrane proximal C2-type domain, with an additional pair of disulfide bonds. All SLAM 
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family receptors except SLAMF2 display cytoplasmic immunoreceptor tyrosine-based switch 

motif (ITSM) with the consensus motif T-I/V-Y-x-x-V/I (Shlapatska et al. 2001; Sidorenko 

and Clark 2003). This motif is essential for SLAM to associate with the SAP (SLAM 

associated proteins)-family of adaptors. The SAP-family of adaptors includes three members 

designated SAP, EAT-2 and ERT, the latter being a pseudogene in man (Cannons et al. 2011; 

Veillette 2010). They are composed of a Src homology 2 (SH2) domains and a short carboxy-

terminal region. It has been recently demonstrated that SLAM receptors can mediate positive 

as well as negative signalling which is dependent on the presence or absence of SAP adaptors 

(Dong et al. 2012; Kageyama et al. 2012; Zhao et al. 2012). A particular feature of all SLAM 

family receptors, which are found only on leukocytes is that they show homophilic interactions 

with the exception of SLAMF4 binding to SLAMF2.  

NK cells have been mainly characterized in mammals and it would be of importance to 

identify NK cells in non-mammalian vertebrates as well. In the chicken, the two genomic 

regions encoding most of the inhibitory NK cell receptor genes have been identified (Göbel et 

al. 1996a; Rogers et al. 2008). Whereas the NK gene complex only encodes a small number of 

C-type lectins (Neulen and Göbel 2012), the synthetic locus of the mammalian leukocyte 

receptor complex has been massively expanded with a huge family of chicken Ig-like receptors 

(Viertlboeck et al. 2004; Viertlboeck and Göbel 2011). We initially hypothesized that the large 

number of CHIR could be split in smaller units that functionally represent various mammalian 

immunoregulatory families. In the meantime, however, we were able to identify various 

additional immunoreceptor families in the chicken with homology to the mammalian TREM, 

CD200R, CD300L and Fc receptor families (Viertlboeck et al. 2008; Viertlboeck et al. 2006; 

Viertlboeck et al. 2009). Here we have focused on the identification of the chicken SLAM 

family of receptors and characterized five members of the family, as well as the SAP adaptors. 
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Methods 

Database searches 

The identification of SLAM family members in chickens was accomplished by either keyword 

search using the gene database (http://www.ncbi.nlm.nih.gov) and the genome assemblies of 

chicken (http://www.ensembl.org/Gallus_gallus /index; 2.1 May 2006 release, and 

PreEnsembl chicken Galgal4, Nov 2011), turkey (Turkey_2.01, Sep 2010), zebrafinch 

(taeGut3.2.4, Aug 2008), and duck (PreEnsembl, version 1.0) or by BLAST searches (Altschul 

et al. 1997) with human nucleotide sequences of SLAM family receptors in the above 

databases or EST databases. The sequences found in the ENSEMBL database or NCBI 

database were successively subjected to homology search using the BLAST program limited 

to the “gallus gallus” EST database. Resulting ESTs were assembled into contigs and 

manually refined using the Lasergene software package (DNASTAR, Madison, USA). The 

longest open reading frame (ORF) was used for primer design. All oligonucleotides were 

custom synthesized by Eurofins, Ebersberg, Germany.  

Next, bioinformatic approaches were conducted to further characterize putative protein 

sequences. Structural elements such as signal peptides, immunoglobulin domains and 

transmembrane regions were identified using SMART (http://smart.embl-heidelberg.de/) and 

SignalP4.0 (http://www.cbs.dtu.dk/ services/SignalP/) (Bendtsen et al. 2004; Letunic et al. 

2012; Schultz et al. 1998). Protein alignments were conducted with CLUSTALW using the 

DNASTAR Lasergene software package (Madison, USA) and phylogenetic analyses were 

performed using the MEGA4 software (Tamura et al. 2007). 

Genomic sequences for chicken SLAMF1, SLAMF2, SLAMF3like and SLAMF5like were 

obtained from the gene database while the genomic structure of SLAMF4 was amplified from 

DNA using specific primers (see Table 1). 

 

Animals and cell preparation 

Fertilized eggs of the chicken line M11 (MHC Haplotype B2, a kind gift from S. Weigend, 

Mariensee, Germany) were hatched at the Institute of Animal Physiology, Munich, Germany 

and used for experiments at the age of 6 to 10 weeks. For RNA preparation, 100 mg of bursa, 

thymus, spleen and caecal tonsils were taken, frozen in liquid nitrogen and stored at -80°C. 

Peripheral blood leukocytes (PBL) from heparinized blood were prepared by slow-speed 

centrifugation as described before (Göbel et al. 1996b). Peripheral blood mononuclear cells 

(PBMC) were isolated from whole blood using density gradient centrifugation on Ficoll-
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Hypaque (Biochrom, Berlin, Germany) (Viertlboeck and Göbel 2007). 

 

Table 1 Oligonucleotides used for cloning. 

Number Sequence O
a
 Specifity 

17 TACCACAATGTACCCTGGC S Actin 

18 CTCGTCTTGTTTTATGCGC AS Actin 

1698 AGTGCACTGTTCTGGCTGTTCATCT S SLAMF1 

1683 GCTGATGGGCAGCATCACGC AS SLAMF1 

1239 GCTGAGAGGGGTTGTTTGAG S SLAMF2 

1240 GGAATGTGACAGTGGTTGGA AS SLAMF2 

1694 ACTCCACTATGCTGTGGGGTCG S SLAMF3like 

1695 GTGGGGTGGGGGAGCACATC AS SLAMF3like 

1241 GTCTCCCAGCTCTGTCTCCA S SLAMF4 

1242 CCAAGTCCGGATGTTCTCAT AS SLAMF4 

1692 TGGGGATGGAGAGATGGGGCAAC S SLAMF5like 

1693 CCGTGCTCCTGTGTGGGGAGG AS SLAMF5like 

1677 GCTGTGCCTCGTGCTGGGAG S genomic SLAMF4 

1678 GATGCCGCTGTCTGCCTGGG AS genomic SLAMF4 

1484 GGCAGACAGCGGCATCTATTAT S genomic SLAMF4 

1449 AAGTGTCTCCAGGCGTGGGC AS genomic SLAMF4 

1679 GGGCCACCGCTGTGTCCTAC S genomic SLAMF4 

1680 GCAGCAACACGGTCACTGCG AS genomic SLAMF4 

1681 CGCAGTGACCGTGTTGCTGC S genomic SLAMF4 

1242 CCAAGTCCGGATGTTCTCAT AS genomic SLAMF4 

a 
O = Orientation indicated as S sense and AS antisense 

 

Cloning procedures  

Total RNA was extracted using Trizol reagent (PEQLAB, Erlangen, Germany). The RNA 

quality was determined with the 2100 Bioanalyzer (Agilent Technologies, Waldbronn, 
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Germany). RNA with an integrity number above eight was treated with DNase I (Fermentas, 

St. Leon-Rot, Germany) and reverse-transcribed into cDNA using the Thermoscript RT-PCR 

system (Invitrogen, Karlsruhe, Germany). Herculase II Fusion DNA Polymerase (Agilent, 

Santa Clara, USA) was used for PCR. The cycling conditions were 2 min at 95°C for 

denaturation, followed by 30 cycles of 95°C for 40 s, an annealing time of 40 s at the primer 

specific temperature, 2 min at 72°C, and a final extension step of 5 min at 72°C to terminate 

reaction. Primer sequences used for cloning are summarized in Table 1. Each primer pair was 

tested on the different cDNAs and the amplicon with the best result was used for cloning. To 

verify the identity of the PCR products, they were cloned into the pCR2.1
®
 Topo vector 

(Invitrogen, Karlsruhe, Germany) according to the manufacturer’s instructions. The inserts 

were sequenced using vector-specific primers (GATC, Konstanz, Germany). 

 

Results and Discussion 

Identification of five chicken SLAM family members 

In order to identify chicken homologues of the mammalian SLAM family, the genomic and 

EST databases were searched for annotated SLAM genes. Three chicken SLAM genes 

(designated as SLAMF1, SLAMF3like, SLAMF5like) were readily identified on chromosome 

25 in the chicken genome. Corresponding EST sequences that originated from various tissues 

such as bursa, gut, activated T cells, and macrophages were found (Tab. 2). This indicates the 

wide expression of these SLAM receptors. Two additional chicken SLAM genes with 

homology to mammalian SLAMF2 and SLAMF4 sequences could initially only be identified 

in EST databases derived from intestine and pooled bursa, spleen and peyer’s patch cDNA, 

respectively, by searching with the respective human nucleotide sequence. As a next step we 

gathered all available sequence information coming from genomic predictions and various 

EST clones and aligned these sequences in order to obtain full length contigs. These were 

analyzed for the open reading frames that encoded the respective SLAM receptor and used this 

sequence to design specific oligonucleotides (Table 1). A panel of cDNA derived from total 

RNA isolated from different chicken tissues, such as bursa, thymus, PBL, PBMC, spleen, and 

caecal tonsils was then amplified with these SLAM specific primer pairs. In most cases, the 

oligonucleotides amplified a product of the expected size in all tissues, also indicating a wide 

expression of SLAM family members (suppl. Fig. 1). SLAMF4, however, could not be 

detected in bursa and SLAMF5 like was only weakly expressed in bursa and PBL and not 

detectable in PBMC, demonstrating that individual SLAM receptors may display differences 
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in the expression on leukocyte subsets. The amplicons obtained from the specific PCR were 

subcloned and sequenced to verify the predicted sequences. The full length sequences were 

transcribed into proteins which were further characterized and compared to human and mouse 

sequences. 

 

 

 

 

 

 

 

Five chicken SLAM receptors share common properties 

Common to all of the five chicken SLAM family members was the typical organization of the 

extracellular domain composed of a two Ig-like structure with an N-terminal V-like domain 

and a membrane-proximal C2-like domain (Figs. 1 to 5). As observed for all SLAM family 

a
 This record was derived from Pre-Ensembl (Gallus Gallus). 

Table 2 Accession numbers and origins of chicken SLAM receptors and SAP adaptors. 

 

Supplementary Figure 1 

SLAM genes are expressed in various tissues. The cDNA of the tissues indicated was amplified with chicken 

SLAM specific primers (Tab. 1) and analyzed on agarose gel. The identity of the amplicons was confirmed 

by sequencing. 
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members, the V-like domain lacked conserved cysteine residues to form an intradomain 

disulfide bond, whereas the C2-like domain contained four conserved residues that allow the 

formation of two intradomain disulfide bonds. These cysteine residues were regularly spaced, 

the first and second were always separated by five non conserved residues and the third and 

fourth by 17 (SLAMF1) or 18 residues. Out of the five chicken SLAM genes, three of them 

could be assigned to potential human counterparts and were therefore named accordingly as 

SLAMF1, SLAMF2 and SLAMF4 (Figs. 1 to 3). Although they only shared around 24 to 28 

% identity with the mammalian genes, they were identified by typical sequence features 

including highly conserved cytoplasmic motifs in the case of SLAMF1 and SLAMF4. With 

the exception of SLAMF2, the other members displayed a single transmembrane region devoid 

of basic or acidic residues. SLAMF2, however, lacked a detectable transmembrane region and 

most likely represents a GPI-anchored protein as has been described for mammalian SLAMF2 

(Boles et al. 2001). The two and four ITSM present in SLAMF1 and SLAMF4, respectively, 

have been entirely conserved and they are all equally spaced (Fig. 1, 2). Moreover, an 

additional tyrosine residue in SLAMF1 located between the two ITSM with the sequence 

TIYVAA was found to be identical in the chicken. Two additional chicken SLAM receptors 

(Figs. 4, 5) could be isolated and were designated as chicken SLAMF3like and chicken 

SLAMF5like. This nomenclature was chosen to stress the most likely assignment to 

mammalian homologues; however, this was not as obvious as for the other three SLAM 

members. The chicken SLAMF3like gene was also identified on chromosome 25, where it is 

annotated as SLAMF3. It shares about equal homology to both mammalian SLAMF3 and 

SLAMF6. In contrast to SLAMF3 that is the only mammalian SLAM with a duplicated V and 

C domain, the chicken SLAMF3like has only two Ig domains (Fig. 4). Chicken SLAMF3like 

has a single ITSM and a rather short cytoplasmic region, as opposed to two ITSM in 

mammalian SLAMF3 and SLAMF6. Chicken SLAMF3like is located in the genome between 

SLAMF1 and the conserved gene VANGL2 (Fig. 7A). The corresponding region in the 

mammalian genome encodes for SLAMF5 and SLAMF6. In summary, chicken SLAMF3like 

lacks the Ig domain duplication, has a single ITSM and is located in a position of mammalian 

SLAMF5 and SLAMF6, therefore it could represent mammalian SLAMF3 as it is currently 

annotated, but also SLAMF6. This will be clarified in the future, once the entire genomic locus 

has been sequenced. Meanwhile we suggest designating it SLAMF3like. A similar situation is 

found for the fifth chicken SLAM gene. It has been annotated as SLAMF8 and is found at a 

similar genomic position as mammalian SLAMF8 (Fig. 7A). The detailed sequence analyses 

have revealed that it harbours a single C-terminal ITSM that has been conserved in 

mammalian SLAMF5. Moreover, in the location of the membrane proximal ITSM of 
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mammalian SLAMF5 there is a conserved tyrosine in the chicken, but the ITSM consensus is 

not completely matched due to a proline at position -2 instead of a threonine (Fig. 5). In 

contrast, mammalian SLAMF8 has a short cytoplasmic region lacking ITSM (Fig. 5). 

Therefore, we suggest naming this chicken SLAM as SLAMF5like. Since the ITSM in four 

chicken SLAM receptors have been remarkably conserved, we next searched the genome for 

the presence of the SAP genes. Both, chicken SAP and EAT-2 were readily identified (Fig. 6). 

The alignment with human and mouse homologues revealed that EAT-2 was similar in all 

three species and chicken EAT-2 shared around 70 % identity with its mammalian 

counterparts (Fig.6). Chicken SAP was most similar to mouse SAP and shared an almost 

identical length and features defining the SRC homology domain, however, human SAP is 

much shorter (Fig. 6). These results confirm the presence of at least five chicken SLAM 

receptors and two SAP adaptor proteins and suggest that the chicken SLAM receptors utilize 

similar signal transduction pathways as described for mammals. 

 

Figure 1 Alignment of SLAMF1 sequences. 

The alignment was performed separately for the different domains as identified by exon boundaries as indicated 

by roman numbering with CLUSTAL W. The Ig domains are depicted in two lines due to space limitations. The 

signal peptide (SP), transmembrane region (TM), ITSM and cytsteine residues are marked above the sequence. 

Identical residues are boxed. Accession numbers: human, NP_003028.1; mouse, NP_038758.2; chicken, 

JX483812. 
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Figure 2 Alignment of SLAMF4 sequences. 

Decorations as in Fig. 1. Accession numbers: human, NP_057466.1; mouse, NP_061199.2; chicken, JX483813. 

 

 

 

Figure 3 Alignment of SLAMF2 sequences. 

Decorations as in Fig. 1. Accession numbers: human, NP_001769.2; mouse, NP_031675.1; chicken, JX483810. 
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Figure 4 Alignment of chicken SLAMF3like with mammalian SLAMF3 and SLAMF6. 

Decorations as in Fig. 1. Numbering of exons according to the human SLAMF3 with corresponding exons for 

SLAMF3like and SLAMF6 given in brackets. Accession numbers: human SLAMF3, NP_002339.2; chicken 

SLAMF3like, JX679216; human SLAMF6, NP_001171643.1. 

 

Figure 5 Alignment of chicken SLAMF5like with mammalian SLAMF5 and SLAMF8. 

Decorations as in Fig. 1. Accession numbers: human SLAMF5, NP_003865.1; chicken SLAMF5like, JX483811; 

human SLAMF8, AAI09195.1. 
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Figure 6 Alignment of EAT-2 and SAP sequences. 

The Src homology-2 (SH2) domains are indicated by dotted lines. The recruitment site in SAP for the protein 

tyrosine kinase Fyn, a motif centered on arginine 78 (R78) is highlighted by an arrow. Accession numbers are: 

human EAT-2,  AAH66595.1; mouse EAT-2, NP_036139.3; chicken EAT-2, ENSMGAT00000016176_1; 

human SAP, NP_002342.1; mouse SAP, AAI47368.1; chicken SAP, ENSGALT00000013763. 

 

Genomic organization of the chicken SLAM receptor genes 

The chicken SLAMF1, SLAMF3like and SLAMF5like genes were identified on chromosome 

25 (Fig. 7A). Moreover, SLAMF1 homologues could also be identified in the genomes from 

zebra finch (chromosome 25, ENSTGUT00000004485), turkey (ENSMGAT00000012089) 

and duck (ENSAPLT00000015980). Likewise, SLAMF5like was also identified on turkey 

chromosome 16 (ENSMGAT00000019933). For SLAMF2 and SLAMF4, we performed 

BLAST searches with the confirmed chicken sequences in the genome databases. For 

SLAMF2 we could find a matching entry in the pre-Ensembl of the chicken which was utilized 

to obtain the genomic sequence. For SLAMF4, several short matches on an unaligned contig 

were found. A concise sequence analyses revealed that at least two fragments (encoding the 

first exon) on the unaligned contig contained identical SLAMF4 sequences. A partial sequence 

was also found in the turkey genome (ENSMGAT00000020842). In order to obtain a complete 

genomic sequence, potential exons were identified in the chicken SLAMF4 cDNA sequence 

according to the information regarding the human sequence. Oligonucleotides located at exon 

boundaries amplifying each intron were designed (Tab. 1) and amplicons cloned and 

sequenced. In this way, we could finally assemble a genomic sequence of SLAMF4 

(supplementary Tab. 1). The newly established chicken cDNA sequences for each SLAM 

receptor were used in order to reanalyze the genomic sequences and to identify the genomic 

structure. All exon boundaries followed the GT-AG rule. The SLAMF2 gene consisted of four 

exons, with separate exons encoding the signal peptide, Ig domains and a C-terminus (Fig. 
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7B). For the other four chicken SLAM receptors, the signal peptide and the two Ig domains 

were also encoded by three separate exons, followed by one exon for the transmembrane 

region and a variable number of exons encoding parts of the cytoplasmic region (Fig. 7B). 

Each ITSM or likewise the tyrosine residues in SLAMF5like and SLAMF1 that did not 

conform to the consensus motif were all encoded by separate exons. In the case of the chicken 

SLAMF1, SLAMF2, SLAMF4 genes the number and boundaries of the exons is identical to 

those in man and mouse (Fig. 1 to 3, 7B). The chicken SLAMF3like is composed of six exons, 

whereas human SLAMF3 and SLAMF6 have 10 and 8 exons, respectively (Fig. 4). The 

chicken SLAMF5like is composed of 6 exons, while human SLAMF5 has 7 and human 

SLAMF8 has 5 exons (Fig. 5). In man and mouse, the genes encoding the SLAM receptors are 

located within a 400 kb cluster on chromosome 1 and it has been argued that the genes arose 

by successive gene duplication events. The situation in the chicken is not finally resolved, but 

it is presumed that the location on chromosome 25 where SLAMF1, SLAMF3like and 

SLAMF5like are located resembles the SLAM gene cluster in the chicken. The sequence 

identified as SLAMF4 genomic region is on an unassigned chromosome, which needs to be 

assembled into the SLAM cluster and SLAMF2 is only present in the new, pre-Ensembl 

version. Finally, the chicken CD2 gene, a distantly related member of the SLAM family is 

located on chromosome 1 in the chicken (ENSGALG00000015463), thus reflecting a situation 

similar to the mouse were the SLAM and CD2 genes are present on chromosomes 1 and 3, 

respectively. 

 

Phylogeny of the SLAM/CD2 family 

The overall identity between the chicken and mammalian SLAM receptors was rather low. In 

order to infer the phylogenetic relationships of the chicken and mammalian genes, a number of 

phylogenetic trees were generated using the MEGA4 software. Since either full length 

comparisons or separate alignments of the different domains of the proteins produced similar 

clustering with only slight differences in bootstrapping values, we concentrated on the full 

length comparison (Fig. 8). Besides the human, mouse and chicken SLAM receptors we also 

included the distantly related chicken CD2 gene identified on chromosome 1 and genes from 

S. tropicalis, where a large family of SLAM/CD2 like genes has been described, recently 

(Guselnikov et al. 2011). From those we picked two genes with close homology to CD2 

(sCD2-14) and SLAMF1 (sCD2-6), respectively (Fig. 8). As expected the CD2 genes formed 

a separate cluster. The SLAM genes were all related and two major branches of genes could be 
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distinguished. One branch contained SLAMF1, SLAMF2, SLAMF4 and SLAMF8 genes (Fig. 

8). SLAMF1 and SLAMF4 genes from all species both formed subgroups, reemphasizing the 

correct assignment of these chicken SLAMF receptors. Mammalian SLAMF2 and SLAMF8 

both formed separate subgroups and chicken SLAMF2 seemed to be closer to the SLAMF8 

cluster, however, due to the unique sequence lacking transmembrane and cytoplasmic 

domains, we are confident that it resembles SLAMF2 rather than SLAMF8. The second 

branch contained the other SLAM genes, where the mammalian SLAMF3, SLAMF5, 

SLAMF6 and SLAMF7 appeared to be closely related, while the chicken SLAMF3like and 

SLAMF5 like genes founded singletons outside this SLAM cluster (Fig. 8). In summary, the 

phylogenetic analysis confirmed the assignment of the various chicken SLAM receptors and 

emphasized both the close relationship of the SLAM receptors and the unique properties 

displayed by the individual SLAM groups. 

 

Figure 7 Genomic organization of the SLAM genes. 

 

(A) Schematic representation of the SLAM gene organization in man versus chicken. Note that the scheme is not 

drawn to scale.  

 

 

(B) The exon- intron structure of for SLAM genes is illustrated with differentially structured boxes representing 

exons encoding the signal peptide (SP), Ig-V-like (IgV) and C-2 like (IgC2) domains, transmembrane region 

(TM) and exons encoding an ITSM. The accession numbers for the genomic sequences are listed in Tab. 2, 

except for genomic SLAMF4, that was entirely sequenced as described in the text (accession number: JX483814). 
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Concluding remarks  

Here we present the first conclusive characterization of the chicken SLAM family and the SAP 

adaptors. Without any doubt the identification of homologous genes in non-mammalian 

vertebrates has become far easier, nevertheless limitations of databases still demand the critical 

analyses of all sources available. Although the primary amino acid identity was low as 

expected for a comparison of mammalian and chicken sequences, the SLAM receptors could 

be identified by their highly conserved properties such as the two Ig domain structure with 

unique Ig domains and their cytoplasmic regions. It is remarkable how stringent the 

cytoplasmic ITSM are conserved, but beyond that, even tyrosines and their adjacent residues 

that do not confirm to the ITSM consensus are also strikingly conserved as in the case of the 

second tyrosine in SLAMF1 (TIYVAA). In inhibitory or activating signaling molecules it is 

commonly seen that not only the residues with the consensus motifs, but also the adjacent 

Figure 8 Neighbour-joining phylogenetic tree of the entire proteins of the SLAM/CD2 

family in chicken, man, mouse and amphibian (S.tropicalis). 
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amino acid are highly conserved (Göbel and Bolliger 1998; Viertlboeck et al. 2005; 

Viertlboeck et al. 2007). The presence of both SAP and EAT-2 in the chicken genome also 

suggests that the SLAM receptors in the chicken have the ability to modulate the immune 

response in similar fashion as in mammals. It is of interest to characterize immune modulatory 

receptors on NK cells. So as next step in the analysis of the chicken SLAM family we will 

produce mab against chicken SLAMF4. Due to the large phylogenetic distance and the 

resulting low overall identity, this should be a feasible task, and will ultimatively allow 

studying the expression and function of SLAMF4 on NK cells in more detail. 

Supplementary Table 1 

Exon – Intron Organization of chicken CD244. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3' Intron Exon 5' Intron 

    ATG I CAA G GTGAG 

    Met (79) Gln G (1138) 

CCCAG GG ACT II TGG G GTGAG 

  ly Thr (321) Trp G (64) 

TGCAG AG CCC III AAA G GTGAT 

  lu Pro (258) Lys G (284) 

CCCAG GG GTG IV GCA G GTTTG 

  ly Leu (117) Ala G (334) 

CTCAG AA CAC V CCT   GTGAG 

  lu His (65) Pro   (131) 

TGCAG   AAC (VI) CAG   GTGGG 

    Asn (66) Gln   (112) 

GGCAG   AAG (VII) AAG   GTGAG 

    Lys (66) Lys   (128) 

GGCAG   CAG VIII GAG   GTAAC 

    Gln (102) Glu   (194) 

TGCAG   GTG IX TGA     

    Val (78) STOP   



Publication 1        35 

References 

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and 

PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402 

Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J. 

Mol. Biol. 340:783-795 

Boles KS, Stepp SE, Bennett M, Kumar V, Mathew PA (2001) 2B4 (CD244) and CS1: novel members of the 

CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other 

leukocytes. Immunol. Rev. 181:234-249 

Cannons JL, Tangye SG, Schwartzberg PL (2011) SLAM family receptors and SAP adaptors in immunity. Annu. 

Rev. Immunol. 29:665-705 

Colonna M (1997) Specificity and function of immunoglobulin superfamily NK cell inhibitory and stimulatory 

receptors. Immunol. Rev. 155:127-33 

Daeron M, Jaeger S, Du Pasquier L, Vivier E (2008) Immunoreceptor tyrosine-based inhibition motifs: a quest in 

the past and future. Immunol. Rev. 224:11-43 

Dong Z, Davidson D, Perez-Quintero LA, Kurosaki T, Swat W, Veillette A (2012) The Adaptor SAP Controls 

NK Cell Activation by Regulating the Enzymes Vav-1 and SHIP-1 and by Enhancing Conjugates with Target 

Cells. Immunity 36:974-985 

Göbel TW, Bolliger L (1998) The chicken TCR z-chain restores the function of a mouse T cell hybridoma. J. 

Immunol. 160:1552-4 

Göbel TW, Chen CH, Cooper MD (1996a) Avian natural killer cells. Curr. Top. Microbiol. Immunol. 212:107-17 

Göbel TW, Chen CH, Cooper MD (1996b) Expression of an avian CD6 candidate is restricted to ab T cells, 

splenic CD8+ gd T cells and embryonic natural killer cells. Eur. J. Immunol. 26:1743-7 

Guselnikov SV, Laktionov PP, Najakshin AM, Baranov KO, Taranin AV (2011) Expansion and diversification of 

the signaling capabilities of the CD2/SLAM family in Xenopodinae amphibians. Immunogenet. 63:679-689 

Kageyama R, Cannons JL, Zhao F, Yusuf I, Lao C, Locci M, Schwartzberg PL, Crotty S (2012) The Receptor 

Ly108 Functions as a SAP Adaptor-Dependent On-Off Switch for T Cell Help to B Cells and NKT Cell 

Development. Immunity 36:986-1002 

Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic 

Acids Res. 40:D302-305 

Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17:875-904 

Neulen ML, Göbel TW (2012) Identification of a chicken CLEC-2 homologue, an activating C-type lectin 

expressed by thrombocytes. Immunogenet. 64:389-397 

Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol. 

8:34-47 

Odorizzi PM, Wherry EJ (2012) Inhibitory receptors on lymphocytes: insights from infections. J. Immunol. 

188:2957-2965 

Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84-89 

Reth M (1989) Antigen receptor tail clue. Nature 338:383-384 

Rhee I, Veillette A (2012) Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat. 

Immunol. 13:439-447 

Rogers SL, Viertlboeck BC, Göbel TW, Kaufman J (2008) Avian NK activities, cells and receptors. Semin. 



Publication 1        36 

Immunol. 20:353-360 

Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: 

identification of signaling domains. Proc. Natl. Acad. Sci. U S A 95:5857-5864 

Shlapatska LM, Mikhalap SV, Berdova AG, Zelensky OM, Yun TJ, Nichols KE, Clark EA, Sidorenko SP (2001) 

CD150 association with either the SH2-containing inositol phosphatase or the SH2-containing protein tyrosine 

phosphatase is regulated by the adaptor protein SH2D1A. J. Immunol. 166:5480-5487 

Sidorenko SP, Clark EA (2003) The dual-function CD150 receptor subfamily: the viral attraction. Nat. Immunol. 

4:19-24 

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) 

software version 4.0. Mol. Biol. Evol. 24:1596-1599 

Veillette A (2010) SLAM-family receptors: immune regulators with or without SAP-family adaptors. Cold 

Spring Harb. Perspect. Biol. 2:1-15 

Viertlboeck BC, Crooijmans RP, Groenen MA, Göbel TW (2004) Chicken Ig-Like Receptor B2, a Member of a 

Multigene Family, Is Mainly Expressed on B Lymphocytes, Recruits Both Src Homology 2 Domain 

Containing Protein Tyrosine Phosphatase (SHP)-1 and SHP-2, and Inhibits Proliferation. J. Immunol. 

173:7385-7393 

Viertlboeck BC, Göbel TW (2007) Chicken thrombocytes express the CD51/CD61 integrin. Vet. Immunol. 

Immunopathol. 119:137-141 

Viertlboeck BC, Göbel TW (2011) The chicken leukocyte receptor cluster. Vet Immunol Immunopathol 144:1-10 

Viertlboeck BC, Habermann FA, Schmitt R, Groenen MA, Du Pasquier L, Göbel TW (2005) The chicken 

leukocyte receptor complex: a highly diverse multigene family encoding at least six structurally distinct 

receptor types. J. Immunol. 175:385-393 

Viertlboeck BC, Hanczaruk MA, Schmitt FC, Schmitt R, Göbel TW (2008) Characterization of the chicken 

CD200 receptor family. Mol. Immunol. 45:2097-2105 

Viertlboeck BC, Schmitt R, Göbel TW (2006) The chicken immunoregulatory receptor families SIRP, TREM, 

and CMRF35/CD300L. Immunogenet. 58:180-190 

Viertlboeck BC, Schmitt R, Hanczaruk MA, Crooijmans RP, Groenen MA, Göbel TW (2009) A novel activating 

chicken IgY FcR is related to leukocyte receptor complex (LRC) genes but is located on a chromosomal 

region distinct from the LRC and FcR gene clusters. J. Immunol. 182:1533-1540 

Viertlboeck BC, Schweinsberg S, Hanczaruk MA, Schmitt R, Du Pasquier L, Herberg FW, Göbel TW (2007) 

The chicken leukocyte receptor complex encodes a primordial, activating, high-affinity IgY Fc receptor. Proc. 

Natl. Acad. Sci. U S A 104:11718-11723 

Zhao F, Cannons JL, Dutta M, Griffiths GM, Schwartzberg PL (2012) Positive and Negative Signaling through 

SLAM Receptors Regulate Synapse Organization and Thresholds of Cytolysis. Immunity 36:1003-1016 

Zhu Y, Yao S, Chen L (2011) Cell surface signaling molecules in the control of immune responses: a tide model. 

Immunity 34:466-478 

 

 



Publication 2        37 

Chicken SLAMF4 (CD244, 2B4), a receptor expressed on 

thrombocytes, monocytes, NK cells, and subsets of -, - 

T cells and B cells binds SLAMF2 

Christian Straub
a
, Marie-Luise Neulen

a
, Birgit C. Viertlboeck

a
, Thomas W. Göbel

a* 

a
Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, 

Veterinärstr. 13, 80539 Munich, Germany 

Tel.: +49 89 2180 3827  

Fax: +49 89 2180 2552  

Email: goebel@lmu.de 

  

Supported by a grant of Deutsche Forschungsgemeinschaft DFG GO489/5-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:goebel@lmu.de


Publication 2        38 

Abstract 

The SLAM family of membrane receptors is involved in the regulation of immune responses 

by controlling cytokine production, cytotoxicity as well as cell development, differentiation 

and proliferation, but has only been described in chickens, recently. The aim of this study was 

to characterize the avian homologue to mammalian SLAMF4 (CD244, 2B4), a cell surface 

molecule which belongs to the SLAM family of membrane receptors. We generated a 

SLAMF4 specific monoclonal antibody (mab) designated 8C7 and analyzed the SLAMF4 

expression on cells isolated from various lymphoid organs. Subsets of  and  T cells found 

in peripheral blood lymphocytes (PBL) and spleen coexpressed SLAMF4. The expression was 

restricted to CD8
+
 T cells, whereas CD4

+
 T cells and all thymocytes showed little or no 

reactivity upon staining with the 8C7 mab. Blood and splenic γδ T cells could be further 

differentiated according to their expression levels of SLAMF4 into two and three subsets, 

respectively. SLAMF4 was absent from bursal and splenic B cells, however, it was expressed 

by a distinct fraction of circulating B cells that were characterized by high level expression of 

Bu1, Ig, and CD40. SLAMF4 was also present on NK cells isolated from intestine of adult 

chickens or embryonic splenocytes identified by their coexpression of the 28-4 NK cell 

marker. Moreover, SLAMF4 expression was found on thrombocytes and monocytes. The 

interaction of SLAMF4 with SLAMF2 was proven by a reporter assay and could be blocked 

with the 8C7 mab. In conclusion, the avian SLAMF4 expression markedly differs from 

mammals; it binds to SLAMF2 and will be an important tool to discriminate several T cell 

subsets. 
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Introduction 

SLAMF4 (CD244, 2B4) is a member of the signaling lymphocyte activation molecule 

(SLAM) family of membrane receptors that belongs to the CD2 subset of the immunoglobulin 

(Ig) superfamily (Cannons et al., 2011). Receptors related to this family also include SLAMF1 

(CD150, SLAM), SLAMF2 (CD48), SLAMF3 (Ly9, CD229), SLAMF5 (CD84), SLAMF6 

(NTB-A, CD352), SLAMF7 (CRACC, CD319) and SLAMF8 (BLAME, CD353) and family 

affiliation is primarily based on homologies of the extracellular domain, each consisting of an 

amino-terminal IgV-like domain and a membrane-proximal IgC2-like domain (Cannons et al., 

2011; Davis and van der Merwe, 1996; Schwartzberg et al., 2009). In addition, SLAMF1, 

SLAMF3, SLAMF4, SLAMF5, SLAMF6 and SLAMF7 share homologies within their 

cytoplasmic domains, in particular repeats of immunoreceptor-tyrosine based switch motifs 

(ITSM) (Shlapatska et al., 2001; Sidorenko and Clark, 2003). Like most other SLAM family 

members, SLAMF4 interacts through its cytoplasmic motifs with SLAM-associated protein 

(SAP)-related molecules (Sayos et al., 1998). SAP-related adaptors include SAP, EAT-2 and 

ERT, the latter being a pseudogene in humans. They are composed of a single Src homology 2 

(SH2) domain followed by a short C-terminal tail. Unlike most SLAM family members which 

form homophilic interactions, SLAMF4 interacts with SLAMF2, a glycosyl-phosphatidyl-

inositol (GPI)-anchored protein expressed on virtually all hematopoietic cells. The role of 

SLAMF4 has been best characterized in natural killer (NK) cells, where it is recognized to act 

both as activating and inhibitory receptor upon engagement by SLAMF2, although the nature 

of this bi-functional character is not completely solved. Initial studies showed that ligation of 

SLAMF4 with anti-SLAMF4 antibodies or its ligand SLAMF2 increased cytotoxicity and 

IFN-secretion exerted by NK cells (Tangye et al., 2000). New reports indicate that the level 

of surface SLAMF4 expression and the amount of intracellular SAP are the critical parameters 

involved in either activatory or inhibitory responses by NK cells (Zhao et al., 2012). 

Expression of SLAMF4 is not restricted to NK cells, but extends to a subset of activated CD8
+
 

 T cells, T cells, eosinophils, basophils and monocytes (Munitz et al., 2005; Nakajima et 

al., 1999; Schlaphoff et al., 2011; Schuhmachers et al., 1995). The dual function of SLAMF4 

also applies to CD8
+
 T cells where cross-linking of SLAMF4 mediates either inhibition or 

activation, again depending on the levels of expression of SLAMF4 and SAP, respectively 

(Schlaphoff et al., 2011). In contrast, SLAMF4 present on human eosinophils seems to have a 

predominantly activating character. Engagement of SLAMF4 resulted in cytotoxic effects 

toward the SLAMF2
+
 721.221 B cell lymphoma and the release of eosinophil peroxidase, a 

recognized marker of eosinophil activation (Munitz et al., 2005). The expression of SLAMF4 
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on T cells has been mainly studied on murine epidermal  T cells. Here, ligation with 

soluble anti-SLAMF4 mab caused rapid secretion of IFN- and enhanced the capacity of these 

cells to lyse YAC-1 target cells (Schuhmachers et al., 1995). These findings only refer to the 

current situation in mammals. The characterization of this receptor in non-mammalian 

vertebrates may provide novel aspects regarding expression and function. Previously, we have 

identified several members of the chicken SLAM family including SLAMF4 and SLAMF2, as 

well as the intracellular adaptor molecules SAP and EAT-2 (Straub et al., 2013). In the present 

study, we delineate the expression pattern of chicken SLAMF4 on leukocytes with a specific 

mab and confirm the conservation of the SLAMF4-SLAMF2 interaction in non-mammalian 

vertebrates. Our studies reveal that SLAMF4 levels discriminate distinct  T cell subsets. 

 

Materials and methods 

Animals 

Fertilized eggs of the chicken line M11 were kindly provided by S. Weigend (Federal 

Research Institute for Animal Health, Mariensee, Germany). Eggs were incubated and hatched 

at the Institute for Animal Physiology, University of Munich and chicks were used for 

experiments at the age of 3 to 10 weeks. Embryonic day 14 (ED14) was estimated by the 

duration of incubation. Balb/c mice were purchased from Charles River Wiga GmbH 

(Sulzfeld, Germany) and maintained at the institute facilities. All of the experimental 

procedures were in accordance with institutional, state and federal guidelines on animal 

welfare. 

 

Cell preparation 

Leukocytes were isolated from heparinized whole blood samples by two distinct methods. 

Peripheral blood lymphocytes (PBL) were prepared by slow-speed centrifugation whereas 

peripheral blood mononuclear cells (PBMC, thrombocytes, lymphocytes and monocytes) were 

segregated by density gradient centrifugation on Biocoll-Hypaque (Biochrom, Berlin, 

Germany) (Viertlboeck and Göbel, 2007). Single cell suspensions of thymus, bursa and spleen 

were obtained by passage through a stainless steel mesh and mononuclear cells (lymphocytes 

and macrophages) were isolated by density centrifugation over Biocoll-Hypaque (density 

1,077 g/ml; Biochrom, Berlin, Germany). Intestinal intraepithelial lymphocytes were isolated 
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from the duodenal loop according to a standard DTT/EDTA based protocol as described 

previously (Göbel, 2000). 

 

Cloning, Cell lines and Transfections                                                                                                                       

Expression constructs containing the extracellular region of SLAMF1, SLAMF2, 

SLAMF3like, SLAMF4 and SLAMF5like were generated using the genes described in a 

previous study (Straub et al., 2013). The plasmids for SLAMF1, SLAMF3like and 

SLAMF5like were amplified by PCR with primers designed to employ the Gibson Assembly 

TM
 Master Mix (New England BioLabs Inc., Massachusetts, USA). Briefly, primers were 

devised to amplify residues encoding the respective extracellular domain flanked by sequences 

recognizing residues of the cloning vector at the 5`UTR and the 3`UTR, respectively and thus 

creating overlapping ends. Resulting DNA fragments were gel extracted and linked to a 

modified pcDNA3.1/V5-His expression vector (Invitrogen, Karlsruhe, Germany) (Viertlboeck 

et al., 2004) by the Gibson Assembly 
TM

 Master Mix (New England BioLabs Inc., 

Massachusetts, USA), resulting in an N-terminally FLAG-tagged extracellular region of the 

respective SLAM member fused to the transmembrane region of chicken CD8α and the 

cytoplasmic domain of murine CD3δ. In contrast, expression constructs encoding the 

extracellular region for SLAMF2 and SLAMF4 were PCR-amplified using primers with 

EcoRI sites (SLAMF2: 1249-1250; SLAMF4: 1251-1252), EcoRI digested and ligated in the 

modified pcDNA3.1/V5-His Topo Vector. Primer sequences used for cloning are summarized 

in Table 1. All inserts were sequenced using vector-specific primers (GATC, Konstanz, 

Germany). For immunization and binding studies, a stable cell line was generated transfecting 

the mouse BWZ.36 reporter cell line by electroporation (Iizuka et al., 2003) with the 

SLAMF4-FLAG expression construct. After 24 h, cells were plated at 3×10
6
 cells/well in a 96-

well flat-bottom plate and cultured with RPMI 1640 medium supplemented with 10% low IgG 

FCS and 1% penicillin/streptomycin under standard growth conditions for a duration of 10 

days. G418 (Biochrom AG, Berlin, Germany) in a concentration of 0.8 mg/ml was added as 

selective antibiotic. Additional cell lines were established to perform molecular binding assays 

and to exclude mab cross-reactivity with other SLAM family members. For this purpose, 

HEK-293 cells were stably transduced with all five expression constructs using the 

Metafectene liposomal transfection reagent according to the manufacturer`s protocol (Biontex, 

Planegg, Germany). Transfected cells were incubated for 24 h (37°C, 5% CO2), subsequently 

seeded in a 96-well flat bottom plate and cultured with medium containing 0.8 mg/ml G418 
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(Biochrom AG, Berlin, Germany) for 2 weeks. Single colonies were screened by flow 

cytometry (FACS Canto II, Beckton Dickinson, USA) for expression of the FLAG epitope. 

 

Mab production   

The anti-chicken SLAMF4 mab was generated as described previously (Viertlboeck et al., 

2004) by repeatedly immunization of a Balb/c mouse with the SLAMF4-FLAG BWZ.36 cell 

line. Hybridoma supernatants were successively screened on SLAMF4-FLAG transfected 

HEK-293 cells. Our further studies were conducted with mab 8C7 (mouse IgG1). The mab 

was affinity purified on protein G coupled agarose from concentrated supernatants using 

standard procedures (Milipore, MA, USA) and subsequent flow cytometric analysis were 

performed with the unconjugated mab 8C7. 

 

Mab 

Mab used for staining were specific for T cells [TCR1 (Sowder et al., 1988), SBA, 

Birmingham, USA)], different subsets of T cells [TCR2; TCR3 (Chen et al., 1989; Cihak et 

al., 1988), SBA, Birmingham, USA], chicken homologues to CD8, CD4 and CD3 [CT8; 

CT4; CT3 (Chan et al., 1988; Chen et al., 1986), SBA, Birmingham, USA], monocytes and 

macrophages [KUL01 (Mast et al., 1998), SBA, Birmingham, USA], B cell marker Bu1 

[AV20 (Rothwell et al., 1996; Tregaskes et al., 1996), SBA, Birmingham, USA], intestinal NK 

cells [28-4, mouse IgG3; (Göbel et al., 2001)], thrombocytes [8G8; mouse IgG2a (Neulen and 

Göbel, 2012)], CD40 [AV79; mouse IgG2a (Kothlow et al., 2008)], L chain [11C6; mouse 

IgG3 (Ratcliffe, 1989)], MHCII [2G11 (Guillemot et al., 1986), SBA, Birmingham, USA], and 

IgM [M2; mouse IgG2a (Erhard et al., 1992)]. All commercially available mab were used as 

fluorochrome conjugates and IgG1 isotypes except where indicated. 

 

Staining procedures immunofluorescence analysis 

For single-cell staining, cells were incubated with the unconjugated anti-SLAMF4 mab, 

followed by an allophycocyanin-conjugated goat-anti-mouse IgG1 antibody (SBA, 

Birmingham, USA). 

For multi-color immunofluorescence analysis using mab of the IgG1 isotype, the cells were 

stained with the anti-SLAMF4 mab followed by incubation of an anti-mouse IgG1-APC 
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conjugate (SBA, Birmingham, USA). Free binding sites of the APC-conjugated second step 

were blocked by incubation with normal mouse serum (JacksonImmuno Research, West 

Grove, USA) before addition of the corresponding phycoerythrin-conjugated mab and/or 

fluorescein conjugated mab. 

When appropriate, cells were first treated with a mixture of primary mab, followed by 

incubation of a mixture of anti-mouse IgG1-APC and, depending on the isotype of the second 

mab either phycoerythrin anti-mouse IgG2a or IgG3 (all SBA, Birmingham, USA). The 

fluorochrome combinations as well as the staining procedure are summarized in Table 2. For 

each staining, appropriate isotype-matched controls were used. Additional controls were 

performed to exclude the possibility of crossreactivity of the anti-mouse IgG2a and IgG3 

conjugates with the IgG1 mab. Dead cells were stained with 7‐amino‐actinomycin D (7‐AAD, 

Sigma-Aldrich, Germany) at 25 µg/ml and the living cell population was analyzed by flow 

cytometry (FACS Canto II, Becton Dickinson, Heidelberg, Germany) applying the analysis 

software BD FACS DIVA 6.1.3 and FlowJo (Tree Star Inc., Oregon, USA). All figures are 

shown biexponentially. 

 

Table 1 Oligonucleotides used for cloning. 

Number Sequence O
a
 Specifity 

1742 GGACGATGACGATAAGTGTAGGACAGTGGAGACAG S SLAMF1 

1743 TGGATATCTGCAGAATTCCAGCAGCATCCCTGTCC AS SLAMF1 

1249 ATGAATTCCAGAAGGACCTGCAA S SLAMF2 

1250 ATGAATTCGATGGAGGCAGTGGG AS SLAMF2 

1246 GGACGATGACGATAAGGGTGATAGCACGGATGTAT S SLAMF3like 

1247 TGGATATCTGCAGAATTCATTTTGGCTGCTGGAGA AS SLAMF3like 

1251 ATGAATTCGGGACTGGAGAGTGC S SLAMF4 

1252 ATGAATTCCCATGGGACGGCACC AS SLAMF4 

1744 GGACGATGACGATAAGGTTCAGATCAAGCCAGTAA S SLAMF5like 

1

745 

TGGATATCTGCAGAATTCCCACCTGCGTGCCTCGT AS SLAMF5like 

 

 

 

 

 

 

 

a 
Primers were designed to be specific for the various SLAM genes indicated (sequence 

underlined) and also containing overlapping regions to the cloning vector according to the 

manufacturers protocol (Gibson Assembly
TM

 Master Mix, New England Biolabs Inc., USA); in 

case of SLAMF2 and SLAMF4, subcloning with restriction endonucleases was used 

(restriction sites are underlined). 
b
 O = Orientation indicated as S sense and AS antisense 
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Table 2 Staining procedures. 

 

 

BWZ.36 reporter assay 

The experimental setup was as follows: a total of 3 x 10
5
 cells were seeded in 24 well cell 

culture plates. The SLAMF4-FLAG BWZ.36 reporter cells were coincubated with stably 

expressing SLAMF2 Flag–HEK-293 cells at a concentration of 1.5 x 10
5
 cells each. As 

controls, we used both a mock-transfected HEK-293 cell line to exclude unspecific binding 

reactivity and addition of anti-SLAMF4 mab to block specific binding sites. Additionally, the 

reporter cell line was incubated in plates coated with the anti-FLAG mab (Sigma–Aldrich, 

Munich, Germany). After 24 hours, cells were lysed on ice and the β-galactosidase activity 

was measured using as substrate 130 l/well of chlorophenolred-ß-D-galactopyranosid 

(Roche, Mannheim, Germany) and quantified by optical density reading at 575 nm 18 hours 

after incubation. All experiments were performed in triplicates. 

 

 

 

 

Abbreviations: NMS, Normal Mouse Serum; mab, monoclonal antibody. 
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Results 

Generation of a mab specific for chicken SLAMF4 

For immunization and screening, two stable cell lines (HEK-293 cells and BWZ.36 cells) were 

generated by transfection of the extracellular SLAM4 domains linked to unrelated 

transmembrane and cytoplasmic domains. The N-terminal FLAG epitope allowed selection of 

positive clones by cytometric staining. Following immunization with SLAMF4-FLAG 

BWZ.36 cells and fusion, the hybridoma supernatants were differentially screened on HEK 

293-SLAMF4 cells and untransfected cells to identify SLAMF4 specific clones. The 

hybridoma producing the 8C7 mab (mouse IgG1) was identified by this strategy (Fig. 1). 

Since the different SLAM receptors as members of a superfamily share structural features, we 

next tested the ability of mab 8C7 to cross-react with other chicken SLAM family members. 

For this purpose, chicken SLAMF1, SLAMF2, SLAMF3like and SLAMF5like were stably 

transfected into HEK-293 cells as FLAG-tagged versions. Whereas anti-FLAG staining 

revealed surface expression of all receptors, none of these cell lines reacted with the 8C7 mab 

thus demonstrating that 8C7 is a SLAMF4 specific mab (Fig. 1). 
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Figure 1 8C7 specifically binds SLAMF4. 

HEK-293 cells stably expressing the FLAG epitope tagged extracellular regions of SLAMF1, SLAMF2, 

SLAMF3like, SLAMF4 and SLAMF5like, respectively, were incubated with an isotype matched control (left 

panels), an anti-FLAG mab as expression control (middle panels) and the 8C7 mab (right panels). One 

representative experiment of five is shown. 
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Chicken SLAMF4 is expressed on subsets of T and B cells 

In order to examine the tissue distribution of SLAMF4 in the chicken, we first analyzed 

lymphocyte preparations obtained from bursa, thymus, blood, and spleen. Thymocytes and 

bursal cells showed no reactivity upon staining with the 8C7 mab (data not shown). In PBL, 

SLAMF4 expression divided the CD3
+
 cells into three distinct subsets, namely CD3

+
 

SLAMF4
-
 cells, CD3

+
 SLAMF4

dim
 cells and CD3

+
 SLAMF4

bright
 cells (Fig. 2A). The analysis 

with TCR specific mab demonstrated that absent, dim or bright SLAMF4 expression was 

found in both - and  T cell subsets; however, most  cells were either SLAMF4
-
 or 

SLAMF4
bright

, whereas the  T cells were mostly SLAMF4
dim

 or SLAMF4
bright

 (Fig. 2A). 

SLAMF4 was further confined to the CD8
+
 lymphocytes, while it was barely detectable on 

CD4
+
 cells. Finally a subset of B-lymphocytes coexpressed SLAMF4 and this subset 

consistently expressed higher levels of the B cell marker Bu1 as compared to the SLAMF4
-
 B 

cell fraction (Fig. 2A).  

 

 

 

Figure 2 SLAMF4 is expressed on CD8
+
 lymphocytes and a blood B cell subset. 

Immunofluorescence analyses of the lymphocyte sized cells of (A) PBL and (B) splenocytes using the SLAMF4 

specific 8C7 mab in combination with several mab as indicated. Numbers indicate the percentage of cells in the 

respective quadrants. The markers were set according to isotype-matched negative controls. One representative 

experiment of five is shown.  
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The SLAMF4 expression on splenocytes differed in various aspects from that of PBL. 

SLAMF4 was detectable only on a minute fraction of B cells (Fig. 2B). Most of the CD8
+
 T 

cells expressed either dim or bright levels of SLAMF4. The  T cells could be divided into 

two subpopulations of SLAMF4
+ 

and SLAMF4
-
 cells, whereas most of the  T cells 

expressed SLAMF4 at high levels. As can be seen from the TCR staining and the CD3 staining 

in Fig. 2B, there was a correlation of SLAMF4 expression and TCR expression. In conclusion, 

SLAMF4 is expressed by CD8 T-lymphocytes at different levels and on a fraction of blood B 

cells. 

 

Subsets of T cells found in blood and spleen differ in their SLAMF4 

expression level 

It has been shown that avian  T cells can be classified on the basis of the degree of CD8 

expression into various subpopulations (Pieper et al., 2011). To elucidate whether SLAMF4 

expression on  T cells differs between the subpopulations defined by CD8, we performed 

triple immunofluorescence analyses. In all analyses, we employed the CT8 mab recognizing 

the CD8 chain, so both CD8 homodimer and CD8 heterodimer expressing cells are 

stained. In PBL and spleen, T cells were divided into two subpopulations depending on 

presence or absence of CD8 (Fig. 3). In blood, the CD8
-
  T cell subset expressed lower 

SLAMF4 cell surface levels (Fig. 3, gate I; MFI 710) as the CD8
+
 cells (Fig. 3, gate II; MFI 

3500). Likewise, the CD8
+
  T cells in the spleen expressed high SLAMF4 levels (Fig. 3, 

gate IV; MFI 2066). Within the subset of CD8
-
  splenocytes, two subsets based on low and 

high SLAMF4 expression could be further distinguished (Fig. 3, gate III, MFI 363 and MFI 

1243, respectively). In conclusion, two and three γδ T cell subpopulations can be defined in 

blood and spleen, respectively. In blood, these subpopulations represent CD8
-
 SLAMF4

dim
 

cells and CD8
+
 SLAMF4

bright
 cells, whereas in spleen, two subsets of CD8

-
 with either dim 

or intermediate SLAMF4 expression can be distinguished from a third population of cells 

expressing CD8 and bright SLAMF4 levels. 

 

 

 

 



Publication 2        50 

 

Figure 3 Subsets of  T cells differ in their SLAMF4 expression level.  

 T cells from (A) blood and (B) spleen were triple stained with mab directed against  TCR, CD8 and 

SLAMF4. Gates (I to IV) were set on CD8
-
 and CD8

+
  T cells and cells within gates were analyzed for their 

SLAM4 expression (filled histograms) as opposed to a negative control (open histograms). The mean 

fluorescence intensity (MFI) of SLAMF4 staining is indicated. One representative experiment of five is shown. 

 

The SLAMF4
+
 B cells display high surface Ig levels 

In blood but not in spleen, a fraction of B cells coexpressed SLAMF4. These cells were 

defined as B cells using the Bu1 marker and the plots revealed that the expression of Bu1 was 

higher on the SLAMF4
+
 B cells as compared to the SLAMF4

-
 fraction. To further characterize 

this B cell subset, we employed three color immunofluorescence analysis by gating on Bu1 

single positive and Bu1/SLAMF4 double positive cell populations, respectively (Fig. 4, gates I 

and II). Both populations expressed MHC class II at similar levels. In contrast, the SLAMF4
+
 

B cells expressed higher levels of IgM, Ig light chain and CD40. These results show that 

SLAMF4 is expressed on a B cells subset with high CD40 and Ig surface levels. 
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Figure 4 Differences between SLAMF4

+
 and SLAMF4

-
 B cells.  

B cells were gated according to their SLAMF4 and Bu1 expression into either Bu1 single positive (gate I) or 

double positive cells (gate II) and analyzed for various markers as indicated below the histograms. Dashed lines 

represent isotype matched control staining, dotted lines cells in gate I and shaded histograms double positive B 

cells in gate II. One representative experiment of five is shown. 

 

Expression of chicken SLAMF4 on thrombocytes and monocytes 

We next analyzed the expression profile of SLAMF4 on thrombocytes and monocytes. For this 

purpose, we prepared blood samples by density gradient centrifugation to obtain a cell 

suspension enriched with mononuclear cells, in particular nucleated thrombocytes and 

monocytes. Following gating on thrombocytes by characteristic forward/side scatter 

properties, SLAMF4 was coexpressed on virtually all cells labeled with the mab against 

CLEC-2 (Fig. 5), a molecule expressed on chicken thrombocytes (Neulen and Göbel, 2012). 

Likewise, gating on monocytes and successive analysis of the cells for the coexpression of 

SLAMF4 and KUL01, a known monocyte/macrophage marker revealed that virtually all 

monocytes expressed SLAMF4 (Fig. 5). These results indicate that SLAMF4 is not confined 

to the lymphocyte lineage, but is also expressed by other leukocytes. 

 
 

 

 

Figure 5 SLAMF4 expression on thrombocytes and monocytes. 

Mononuclear blood leukocytes were isolated by density centrifugation and gates were set on thrombocytes and 

monocytes according to forward/side scatter properties (suppl. Fig.1). SLAMF4 staining was combined with 

either the thrombocyte specific marker CLEC-2 (left panel) or the monocyte/macrophage specific marker KUL01 

(right panel). One representative experiment of five is shown. 



Publication 2        52 

SLAMF4 expression on NK cells 

In previous studies, avian NK cells have been mainly found in two distinct sites, the intestinal 

epithelium (IEL) and embryonic spleen (Göbel et al., 1994; Göbel et al., 2001). The 28-4 

marker specifically recognizes NK cells in these organs (Göbel et al., 2001). In embryonic 

spleen, most of the 28-4
+
 cells coexpressed SLAMF4, whereas a minority of cells displayed 

low or undetectable levels (Fig.5A). There was an additional subset of SLAMF4
+
 28-4

-
 cells 

not positive for T cell or B cell markers. They might represent hematopoietic precursors 

present in embryonic spleen. In the IEL population, we performed a three color staining to 

analyze SLAMF4 levels on CD3
+
 T cells and 28-4

+
 NK cells (Fig. 5B). The 28-4

+
 NK cells 

were all found to express SLAMF4 (Fig. 5B, gate I), and likewise the CD3
+
 IEL cells all 

expressed SLAMF4 (Fig. 5B, gate II). These CD3
+
 IEL cells mainly represent intestinal  T 

cells and with a low percentage of  T cells. Likewise, the low number of CD4
+
 IEL did not 

express SLAMF4 (data not shown). In conclusion, SLAMF4 is present on all major NK cell 

populations in the chicken and it is also expressed by intestinal T cells. 

 

Figure 6 SLAMF4 expression on NK cells and intestinal T cells.  

(A) ED14 splenocytes were analyzed for the dual expression of the NK cell marker 28-4 and SLAMF4. (B) Three 

color-imaging of IEL using mAbs specific for CD3, the 28-4 antigen and SLAMF4. Gates were set according to 

the 28-4/CD3 staining and analyzed for SLAMF4 expression (filled histograms) as compared to the negative 

control (open histograms). MFI of SLAMF4 is indicated. One representative experiment of five is shown. 

 

Conservation of SLAMF2 as counter-ligand of SLAMF4 

SLAMF2 has been identified as the high-affinity ligand of SLAMF4 in mammalian species 

(Brown et al., 1998). To test, whether chicken SLAMF4 is able to interact with SLAMF2, we 

employed a previously established reporter assay using SLAMF4 transfected BWZ.36 cells. 

As expected, plate bound anti-FLAG mab induced strong -galactosidase activity as a control 

of the assay (Fig. 7). When SLAMF4-BWZ.36 cells were coincubated with SLAMF2-293 
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cells, enzyme activity was higher as compared to the incubation of SLAMF4-BWZ.36 cells 

cocultured with 293 cells transfected with an irrelevant plasmid. Moreover, this interaction 

could be blocked by the addition of the SLAMF4 specific 8C7 mab (Fig. 7). In conclusion, our 

experiments demonstrate that avian SLAMF4 is the counter-ligand of SLAMF2. 

 

 

 

  

Discussion 

In this study, we generated a SLAMF4 specific mab to study its cellular distribution. The 

mammalian SLAM receptors are found on a wide variety of leukocytes (Cannons et al., 2011). 

Each receptor has a characteristic expression profile. Some of them like SLAMF2 have a wide 

expression pattern on hematopoietic cells. SLAMF4 in particular is expressed on NK cells, 

some T cell subsets, CD8
+
  T cells, basophils, eosinophils, and monocytes (Nakajima et 

al., 1999). Using the novel SLAMF4 specific mab, we establish that chicken SLAMF4 has an 

even wider expression pattern as compared to its mammalian homologue. The similarities of 

chicken and mammalian SLAMF4 expression include a CD8
+
  T cell subset, NK cells and 

the monocyte/macrophage lineage. An interesting finding is the expression of SLAMF4 on 

thrombocytes. While several SLAM members have been documented on mammalian platelets 

such as SLAMF1 (CD150) and SLAMF5 (CD84), this is not the case for SLAMF4. 

Thrombocytes are the nucleated homologue of mammalian platelets. We and others have 

recently documented that thrombocytes carry a number of distinct surface receptors involved 

in immune reactions such as a TREM molecule, CLEC-2, a chicken Fc receptor and several 

other Ig-like receptors and CD40 ligand (Neulen and Göbel, 2012; Tregaskes et al., 2005; 

Figure 7 SLAMF4 binds to SLAMF2.  

The SLAMF4-FLAG BWZ.36 reporter cell line was incubated with plate bound anti-FLAG mab as a positive 

control (anti-FLAG), with 293 cells expressing an irrelevant plasmid (293-Ctr) and with 293 cells expressing 

SLAMF2 (293-SLAMF2), either in the absence or in the presence of SLAMF4 specific mab (293-

SLAMF2+8C7). The β-galactosidase activity was measured using as substrate CPRG (Roche, Mannheim, 

Germany) and quantified by optical density reading at 575 nm. Mean ± SD of five independent assays is shown. 
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Viertlboeck et al., 2013; Viertlboeck et al., 2009; Windau et al., 2013). These findings point to 

a potential involvement of this very abundant cell type during immune responses in the 

chicken. In addition, we could also show in preliminary experiments an expression of 

SLAMF4 on a cell population that most likely resembles chicken heterophils. Due to the lack 

of a specific mab recognizing heterophils, these results have to be confirmed. 

In contrast to mammals, we found that a small subset of peripheral B cells expressed 

SLAMF4. This subset was further characterized as a population expressing high IgM levels 

and CD40 as compared to the SLAMF4 negative B cell subset. Studies evaluating SLAM 

expression on mammalian B cells have established that the majority of SLAM can be 

expressed by several B cell subsets with the exception of SLAMF4 that to our knowledge has 

not been reported on mammalian B cells. In summary, these expression differences may 

indicate that individual SLAM receptors in different species may have overlapping and partly 

redundant functions. It is important to note that in the chicken only five SLAM family 

members have been identified (Straub et al., 2013). This may either indicate that functions of 

several mammalian SLAM receptors are combined to one chicken receptor or that there are 

still more chicken SLAM members to be identified. Since SLAM genes form a tight cluster on 

chicken chromosome 25, it is very well possible that the higher number of genes found in 

mammals arose by gene duplications. 

A special feature of most SLAM receptors is their homophilic interaction. SLAMF4 is the only 

known exception interacting with SLAMF2 (CD48) (Brown et al., 1998). Since both receptors 

are present in the chicken, it was of importance to delineate whether the same interaction is 

true for the chicken counterparts. Using the BWZ.36 reporter assay we could demonstrate an 

interaction between chicken SLAMF4 and SLAMF2, which could be blocked by the addition 

of the 8C7 mab. This illustrates the conservation of a highly conserved receptor ligand pair. 

Although no chicken SLAMF2 specific mab is available, preliminary PCR data suggests that it 

is a widely expressed surface antigen (Straub et al., 2013), as is the case in mammals. This 

implies that the SLAMF4 ligand is expressed by most tissues and as a consequence there is a 

good chance of SLAMF4 to frequently bind its ligand. While initially SLAMF4 was 

characterized as an activatory receptor or a costimulatory receptor especially on NK cells 

important for granule exocytosis and cytokine secretion, recent publications have emphasized 

a dual SLAMF4 function, dependent on the amount of SLAMF4 surface expression as well as 

on the availability of the intracellular adaptor molecules SAP and EAT-2 (Waggoner and 

Kumar, 2012; Zhao et al., 2012).  

In this respect, the differential SLAMF4 expression on avian  T cells is an important finding. 

In contrast to mice and men, where  T cells are a low abundant T cell subset, chickens 
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display a high  T cell frequency in peripheral tissues (Sowder et al., 1988). The function of 

these cells is largely unknown; however, their high abundance suggests an important role in 

immune responses. With the help of the novel SLAMF4 mab, we could distinguish two and 

three  T cell subsets in blood and spleen, respectively. Blood  T cells were differentiated 

into CD8
-
 SLAMF4

dim
 and CD8

+ 
SLAMF4

bright
 cells. The initial reports on chicken  T 

cell specific mab TCR1 reported a lack of CD4 and CD8 on blood  T cells (Sowder et al., 

1988). This is in contrast to our finding of a CD8
+
  T cell subset in blood. Other reports 

also confirmed the finding of two  T cell subsets in blood (Pieper et al., 2008). These 

expression differences of CD8 on blood  T cells may be due to different chicken lines used 

for the experiments, different antigen exposure, or different age. In the spleen, three distinct  

T cell subsets could be distinguished by various expression levels of CD8 and SLAMF4. Other 

markers that are differentially regulated on chicken  T cells include CD5 with dim 

expression on blood and bright expression on splenic  T cells and CD6 with no expression 

on blood and high expression on a blood T cell subset (Göbel et al., 1996; Koskinen et al., 

1998). Taken together, these phenotypic differences could either identify distinct  T cell 

subsets with different functional properties or different activation states of  T cells. We 

hypothesize that the latter is correct and that the activation of  T cells leads to the 

upregulation of CD8 and SLAMF4. A further support of this hypothesis is the finding that 

virtually all intestinal T cells most of which represent  T cells coexpress CD8 and SLAMF4. 

Moreover, the CD8 expression on  T cells has been used to define cells with high 

proliferative capacity and high expression levels of FASL, IFN- and lymphotactin that are 

collectively features of activated T cells (Pieper et al., 2008). Similar to mammals, 

upregulation of SLAMF4 to high density levels on these CD8
+
  T cells could be 

responsible for an inhibitory effect on the cells thus terminating an activation program. 

In conclusion, we have characterized the tissue distribution of chicken SLAMF4 using a novel 

mab. The differential expression of SLAMF4 together with CD8 allows the delineation of 

several  T cell subsets that will be the focus of future studies. 
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Supplementary Figure 1 

FSC/SSC dot blots of (A) PBL and (B) PBMC. (I) Lymphocyte gate in a PBL preparation. (II) Lymphocyte, (III) 

thrombocyte, and (IV) monocyte gate in a PBMC preparation.  
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Abstract 

Natural killer cells are innate immune cells that destroy virally infected or transformed cells. 

They recognize these altered cells by a plethora of diverse receptors and thereby differ from 

other lymphocytes that use clonally distributed antigen receptors. To date, several receptor 

families that play a role in either activating or inhibiting NK cells have been identified in 

mammals. In the chicken, NK cells have been functionally and morphologically defined, 

however, a conclusive analysis of receptors involved in NK cell mediated functions has not 

been available. This is partly due to the low frequencies of NK cells in blood or spleen that has 

hampered their intensive characterization. Here we will review recent progress regarding the 

diverse NK cell receptor families, with special emphasis on novel families identified in the 

chicken genome with potential as chicken NK cell receptors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Publication 3        62 

1. Introduction 

Natural killer (NK) cells were first described in 1975 as cytotoxic lymphocytes specifically 

killing tumor cells without previous sensitization (Kiessling et al., 1975). Since then, they have 

been categorized as third lymphoid lineage that lack conventional rearranging receptors such 

as TCR or surface Ig. Instead, they display an arsenal of germline encoded receptors that 

regulate NK cell function. In general these receptors can be further characterized based on 

several criteria, such as biochemical nature of the extracellular domain, chromosomal location 

that defines an affiliation to a receptor family, ligands recognized by the NK cell receptor and 

their function.  

NK cells in man and mice although similar in function use structurally unrelated receptors that 

evolved independently. The human killer cell immunoglobulin-like receptors (KIR, CD158) 

are a family of Ig domain containing transmembrane receptors, whereas the Ly49 family in 

mice resembles type II transmembrane C-type lectins (Natarajan et al., 2002; Yokoyama and 

Seaman, 1993). The analyses of orthologous genes in mammals showed that either one of the 

families has been expanded, for instance various primates contain the KIR family, as it is also 

the case in cattle, while rats and horses have expanded the Ly49 family (Parham, 2005). It has 

been demonstrated that mice have two KIR genes on the X chromosome that are not expressed 

in NK cells, whereas the human KIR are located in the leukocyte receptor complex (LRC) on 

human chromosome 19q13.4 that harbours additional gene families involved in NK cell 

regulation, for instance leukocyte Ig-like receptors (LILR) (Barrow and Trowsdale, 2008). 

Vice versa, humans lack a functional Ly49 gene, whereas in mice the corresponding genomic 

region is heavily expanded. The genomic region containing the Ly49 genes on human 

chromosome 12p12-13 and mouse chromosome 6 also encodes a number of additional C type 

lectin NK receptors such as the NKG2D and CD94/NKG2A present in mouse and man and has 

therefore been designated “natural killer gene complex” (NKC) (Yokoyama and Seaman, 

1993). In addition to these two prominent genomic regions encoding many NK cell receptors, 

additional NK cell receptor genes are found throughout the genome either in the form of small 

gene families such as the SLAM family of receptors or single receptors as the natural 

cytotoxicity receptors (NCR). Despite the differences in extracellular domains of KIR and 

Ly49 receptors, both bind to MHC class I molecules. This is in particular true for the 

inhibitory receptors that upon MHC binding disarm NK cells and prevent cellular lysis. The 

corresponding activating receptors bind to diverse set of ligands which in some cases have not 

yet been molecularly identified. It is generally accepted that the activating receptors of NK 

cells can bind to three main groups of ligands, namely constitutively expressed molecules, 
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stress-induced molecules and pathogen derived ligands on target cells (Cheent and Khakoo, 

2009; Vivier and Malissen, 2005).  

Most of the receptors involved in NK cell function can also be categorized by distinctive 

features of their transmembrane and intracytoplasmic domains. Activating NK cell receptors 

generally display a short cytoplasmic tail with no signalling motifs, but instead display a 

charged transmembrane residue that promotes the association of adaptor molecules such as 

FcRI, DAP12, or CD3 (Campbell and Purdy, 2011). These adaptor proteins mediate signal 

transduction through a number of immunoreceptor tyrosine-based activation motifs (ITAM) 

(Reth, 1989). In contrast, inhibitory receptors lack a charged transmembrane residue and 

instead have a long cytoplasmic tail that contain variable numbers of immunoreceptor 

tyrosine-based inhibitory motifs (ITIM) or immunoreceptor tyrosine-based switch motifs 

(ITSM). The downstream signalling cascades of both activating and inhibitory receptors have 

been the focus of intense research and are summarized elsewhere (Campbell and Colonna, 

2001; Daeron et al., 2008; Lanier, 2008; Leibson, 1997). 

NK cell recognition of a virally infected cell or an altered self cell, where activating signals 

dominate over inhibitory signals, leads to a direct cytolytic attack mediated by secretion of 

cytolytic granules containing perforin and granzymes or by ligation of death domain-

containing receptors. NK cells are also potent producers of cytokines; in particular they are a 

rich source of interferon-, tumour necrosis factor- and granulocyte-macrophage colony-

stimulating factor. Thus, NK cell function extends far beyond being a simple killer cell to a 

magnitude of immunomodulatory activities that influence innate and adaptive immune 

responses. A concise knowledge of the array of NK cell receptors with antagonistic pathways 

that are ultimatively integrated is essential to understand the fine tuning of NK cell responses 

in different settings. Here we will focus on the description of various chicken 

immunoregulatory receptors with known relevance for NK cells or the potential of being NK 

cell receptors (Tab. 1). 
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Table 1 Immunomodulatory receptors with proven or probable NK cell expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Receptor 
Alternative 

Name 
Ligand Superfamily Signalling 

Chromo-

some 
mab Reference 

        

CHIR Family 

CHIR-A2   IgSF FcRI 31 13E2 
(Viertlboeck 

et al., 2005)  

CHIR-B2   IgSF ITIM 31 3H7 
(Viertlboeck 

et al., 2004) 

CHIR-AB1  IgY IgSF ITIM 31 8D12 
(Viertlboeck 

et al., 2007) 

        

C type lectins 

B-NK   
C-type 

lectin 
ITIM 16 8A11 

(Kaufman et 

al., 1999) 

B-Lec   
C-type 

lectin 
 16  

(Kaufman et 

al., 1999) 

CLEC-2 CD94/NKG2  
C-type 

lectin 
hemITAM 1 8G8 

(Neulen and 

Göbel, 

2012b) 

CD69   
C-type 

lectin 
 1  

(Chiang et 

al., 2007) 

        

SLAM Family 

SLAMF1 CD150  IgSF ITSM 25  

(Straub et al., 

2013) 

SLAMF2 CD48  IgSF  n.d.  

SLAMF3like   IgSF ITSM 25  

SLAMF4 CD244, 2B4 CD48 IgSF ITSM n.d. 8C7 

SLAMF5like   IgSF ITSM 25  

        

Receptors that interact with Nectins 

CRTAM cTADS Necl-2   24 8A10 
(Ruble and 

Foster, 2000) 

CD96     1   

CD226 DNAM-1    2   

        

Miscelleanous Receptors 

CD56 NCAM  IgSF  24 4B5 

(Neulen and 

Göbel, 

2012a) 
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2. The chicken leukocyte receptor complex 

The chicken LRC has been mapped to microchromosome 31, one of the smallest 

microchromosome which has not been annotated in the chicken genome project (Hillier et al., 

2004; Viertlboeck et al., 2005). So far, only a single multigene receptor family designated 

chicken Ig-like receptors (CHIR) has been located to this chromosome. The reason for the 

difficulties in annotation is caused by the highly polygenic nature of the CHIR family, since 

this chromosomal area is densely covered with many highly homologous CHIR genes and 

pseudogenes. We and others have not been able to completely assemble the entire CHIR locus 

and to draw conclusions regarding the number and polymorphism of the chicken LRC (Laun et 

al., 2006; Lochner et al., 2010). Also, other single genes or gene families corresponding to 

those represented by the extended LRC including LILR, NKp46, GPVI or DAP12 have not 

been identified in the chicken, yet. The CHIR family has been the subject of a recent review 

(Viertlboeck and Göbel, 2011), therefore, we will focus on aspects that identify CHIR as 

potential NK cell receptors. 

 

2.1 CHIR share features of typical NK cell receptor families 

The CHIR gene family is a polygenic and polymorphic gene family. The diversity found in the 

CHIR complex is still not fully resolved, but seems to be higher compared to KIR and Ly49. 

The sequence analysis of expressed CHIR in PBMC in two individual animals revealed 70 and 

98 different CHIR, respectively. Moreover, when these datasets were compared to each other, 

there were only few shared CHIR found to be expressed in both individuals (Viertlboeck et al., 

2010). These features resemble those of the LRC encoded KIR and the NKC encoded Ly49 

genes. As members of the LRC, CHIR are typical type I transmembrane receptors of the Ig 

superfamily that have one or two C2 type Ig domains. Comparisons of CHIR with related 

receptor types encoded by the mammalian LRC in terms of amino acid identity, position and 

nature of the basic transmembrane residue, associated adaptor molecule and genomic structure 

reveal that CHIR combine features of KIR and LILR. CHIR may thus represent functional 

homologues of the main receptor families encoded by the LRC (Viertlboeck and Göbel, 2011). 

One of the three NCR genes, NKp46, is located at the vicinity of the KIR cluster and has 

drawn special attention as a highly conserved NK cell marker in many species (Walzer et al., 

2007). The predicted CHIR structure shows close homology of CHIR and NKp46, so one of 

the CHIR may also represent a functional NKp46 homologue (Arnon et al., 2008).  
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KIR genes most likely evolved from a single ancestral gene (KIR3D) that subsequently 

evolved rapidly to form different KIR types caused by selection driven by pathogens and 

MHC diversity (Parham, 2008). Likewise, CHIR are highly diversified within chickens, with 

large sets of different CHIR expressed by individual animals and chicken lines. Moreover, we 

have recently identified CHIR homologues in turkeys, designated turkey Ig-like receptors, 

where a first analysis indicates that the number of TILR is smaller compared to chickens 

(Windau et al., 2013). The TILR have been annotated between highly conserved genes on 

chromosome 3 (Fig. 1). The comparison of this region between all available bird genomes 

indicates either a genomic rearrangement in the turkey genome placing the LRC into this 

region or more likely an annotation error. To date we were unable to identify CHIR 

homologues in other bird genomes, such as ducks and zebra finch. This could indicate that the 

LRC in these birds has not been extensively expanded or has been completely lost. In this 

context it is important to note that birds evolved over millions of years, enough time to create a 

situation similar to mammals where the loss of one NK receptor family is compensated by an 

alternative. 

 

Figure 1 Genomic organization of the CHIR. 

The chicken LRC is located on microchromosome 31 (upper part) with a large and variable number of CHIR 

genes present (for simplicity only five are shown). The turkey genome contains CHIR homologues designated 

TILR which are currently found on chromosome 3 (boxed region) and annotated with diverse names according to 

most homologous BLAST hits. As depicted, the syntenic regions in other birds contain several highly conserved 

genes on both sides of the TILR cluster, but lack any IgSF genes (orientation of genes is indicated by arrows). 

The number in brackets indicates the identity of the respective chromosome or scaffold. Gene abbreviations are 

according to the HUGO Gene Nomenclature. 
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2.2 CHIR types, expression and ligands 

CHIR can be classified into inhibitory CHIR-B and activating CHIR-A that display the typical 

features of corresponding NK cell receptors, namely CHIR-B have cytoplasmic ITIM, whereas 

CHIR-A have a short cytoplasmic tail and the basic transmembrane residue. A third receptor 

type, CHIR-AB combines inhibitory and activating features (Viertlboeck and Göbel, 2011; 

Viertlboeck et al., 2005). The adaptor protein associating with CHIR-A and CHIR-AB has 

been identified as FcRI chain, but interestingly it is essential for surface expression of 

CHIR-A2, but not for CHIR-AB1 (Viertlboeck et al., 2007). In contrast to the KIR that are 

mainly expressed by NK cells, individual CHIR have a much wider expression pattern as 

judged by specific RT-PCR, a finding closely resembling other LRC encoded families 

(Viertlboeck et al., 2005). Currently, three mab are available that bind to CHIR, the 8D12 

recognizes CHIR-AB1, 3H7 was made against CHIR-B2 and 13E2 was generated against 

CHIR-A2 expressing cells. Each of the mab has a unique expression pattern that is not limited 

to NK cells. For instance, the CHIR-B2 reactive 3H7 mab mainly stains B cells (Viertlboeck et 

al., 2004), whereas the CHIR-AB1 mab 8D12 shows a wider expression pattern, including NK 

cells (Viertlboeck et al., 2007). It should be noted that some mab against CHIR also crossreact 

with turkey cells, but interestingly these cells mainly represent thrombocytes (Windau et al., 

2013). Given that other LRC members in mammals (GPVI) are platelet receptors (He et al., 

2006); this could indicate that some CHIR have evolved as thrombocyte receptors with distinct 

functions. Alternatively, thrombocytes may not only be involved in hemostasis, but also 

immune functions as has been reported in terms of TLR expression and cytokine production 

(Scott and Owens, 2008; St Paul et al., 2012).  

The identification of CHIR ligands has been limited to one subset of CHIR, namely the CHIR-

AB1, that serves as an Fc receptor for chicken IgY (Viertlboeck et al., 2007; Viertlboeck et al., 

2009b). Interestingly, the IgY: CHIR-AB interaction mirrors that of human IgA to FcRI, a 

receptor that is also located in the LRC (Pürzel et al., 2009). We are currently investigating the 

nature of other CHIR ligands with the focus on MHC class I as potential CHIR ligands. In the 

chicken, the MHC class I molecules can be further separated into BF1 and BF2 molecules. 

Whereas the BF2 molecules most likely represent the homologues of human HLA-A and 

HLA-B, the BF1 shares features of HLA-C (O'Neill et al., 2009; Shaw et al., 2007). Since KIR 

are preferentially binding to HLA-C, BF1 molecules would be the prime candidates as CHIR 

ligands. In this respect it is interesting to note that the target cell line LSCC-RP9 used widely 

for functional chicken NK cell assays expresses high levels of MHC class I molecules, an 

observation that differs from classical mammalian MHC negative NK cell targets and that is in 
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contrast to the missing self hypothesis (Ljunggren and Karre, 1990). The RP9 cells originated 

from B
2
B

15
 birds, but even MHC matched cells are able to induce cytotoxicity of the RP9 cells 

(Sharma and Okazaki, 1981). If BF1 molecules are the main restriction elements of NK cells, 

this puzzling observation can be resolved, because the B
15

 haplotype lack BF1 molecules and 

the B2 haplotype has an unusual BF1 molecule (Walker et al., 2011). Thus, the RP9 may 

express BF2 molecules and unusual B
2
 derived BF1 molecule, both of which are not the 

proper restriction elements for inhibitory NK cell receptors. Since NK cell activation depends 

on the balance between inhibitory and activation signals, alternatively, the RP9 could express 

high levels of yet undefined ligands for activating NK cell receptors, that induce potent NK 

cell lysis even in the presence of MHC class I signals. 

 

2.3 CHIR-AB1, an Fc receptor expressed by NK cells 

Several features of CHIR-AB1 indicate that it may resemble a prime NK cell receptor 

candidate. As outlined above it functions as an IgY Fc receptor located within the LRC. 

Human NK cells also display CD16, a low affinity Fc receptor that is crucial to mediate 

ADCC responses. The CHIR-AB1 specific 8D12 has been instrumental in the recent 

characterization of a novel blood NK cell subset. In combination with the 8F2 mab (most 

likely recognizing a CD11 homologue, see 4.2), a 8D12
high

, 8F2
intermediate

 peripheral blood 

subset could be identified that expressed several other NK markers (Tab. 2). Moreover, this 

population exhibited typical NK cell features, such as CD107 expression and IFN- secretion 

(Viertlboeck, et al., submitted for publication). CHIR-AB1 is also expressed on NK cells 

present in the intestinal epithelium (IEL) and the embryonic spleen (Viertlboeck et al., 2007) 

(Tab. 2). The amino acid alignment of CHIR-AB1 with related human KIR shows some 

striking similarities in particular to KIR2DL4 (Fig. 2). 

 

Table 2 Phenotype of NK cell populations 

Antigen mab PBMC IEL E14 

CD8 CT8, 3-298 - + + 

CD25 AV142 + + n.d. 

CD56 4B5 - - + 

CD57 HNK1 + + n.d. 

CD244 8C7 + + + 

CHIR-AB1 8D12 + + + 

n.d 28-4 + + + 

n.d 20E5 + + + 

n.d 1G7 + + + 
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Both CHIR-AB1 and KIR2DL4 have a positive transmembrane residue at a similar position 

and they have a cytoplasmic ITIM, indicative of a putative activating as well as inhibitory 

function (Viertlboeck and Göbel, 2011). While the activating function has been demonstrated 

for CHIR-AB1, there is currently no assay available to examine a potential inhibitory capacity. 

The crystal structure of CHIR-AB1 has reemphasized its particular role as NK cell receptor. 

The closest structural homologues of CHIR-AB1 have been determined as KIR and NKp46 

(Arnon et al., 2008). Another FcR for IgY, ggFcR, is also related to CHIR-AB1. It is located 

on chromosome 20 and its importance for NK cells has not been examined due to the lack of a 

specific mab (Viertlboeck et al., 2009a). 

In conclusion, various characteristics such as the expression on NK cells, the function as Fc 

receptor, the chromosomal location within the LRC and the structural homology conclusively 

identify CHIR-AB1 as an important NK cell receptor. It is likely that other CHIR are also 

expressed on NK cells. 

 

 

Figure 2 CHIR-AB shares features with KIR2DL4. 

The two Ig domains KIR2DL4 which resembles a unique KIR with an arginine instead of a lysine in a different 

position compared to other KIR and as a consequence binding to the FcRI adaptor instead of DAP12 is 

compared with the single domain CHIR-AB1. The cytoplasmic motifs found in KIR2DL4 and CHIR are 

depicted. Note that KIR2DL4 and CHIR-AB1 contain only a single ITIM, while the membrane proximal and –

distal ITIM have been mutated in KIR2DL4 and CHIR-AB1, respectively.  

 

3. C-type lectins 

The chicken genome contains two distinct chromosomal sites with characterized C-type 

lectins, namely a syntenic region of the mammalian NKC on chicken chromosome 1 and 

several C-type lectins that are linked to the chicken MHC on chromosome 16 (Kaufman et al., 

1999; Rogers et al., 2008). The large C-type lectin superfamily can be divided into seven 

groups, where group V represent type II membrane-bound receptors with a CTLD domain that 

lack critical residues for calcium binding and thus does not function as carbohydrate receptor 
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(Weis et al., 1998). The C-type lectins present in the two genomic areas all share features of 

group V C-type lectins. In fact, using the chicken sequences, the group V C-type lectins were 

further divided into four subgroups (Rogers et al., 2005). Briefly, these include subgroup 1 

mainly expressed on NK cells and all with signalling capacity, subgroup 2 representing early 

lymphocyte activation antigens, subgroup 3 with variable leukocyte expression and subgroup 4 

created by multigene families with expression on T- and NK cells and most of them with 

MHC class I as ligand. Notably, only B-NK has an ITIM and none of the chicken C-type 

lectins identified so far are reported to have a basic transmembrane residue that would support 

the association of activating adaptor molecules. A neighbour joining analysis of selected C-

type lectins is shown in Fig. 3. 

 

Chicken natural killer gene complex 

A region on chromosome 1 has been identified as syntenic to the respective NKC on human 

chromosome 12 and mouse chromosome 6 (Chiang et al., 2007). Two C-type lectins have been 

characterized on this chromosomal area and according to the latest genome assembly (Dec 

2012 version), these two genes are 70 MB apart. Fluorescence in situ hybridization had 

already predicted a distance of at least 40 MB. Furthermore, when the gene composition in 

between these two C-type lectins was compared to human and mouse, it became evident that 

the chicken chromosome has undergone some rearrangements. Therefore, there could be 

additional C-type lectins that have been missed either within the 70 MB region or outside of 

this region.  

One of the C-type lectins which is actually located right at the beginning of chromosome 1 

was identified by means of sequence homology and molecular modelling as homologue to 

mammalian CD69 (Chiang et al., 2007). This receptor represents one of the early activation 

antigens. To date, no mab against this molecule has been described.  

The second C-type lectin present on chromosome 1 had been originally designated as chicken 

CD94/NKG2 homologue in order to stress its homology to both mammalian CD94 and NKG2 

(Chiang et al., 2007). This observation was based on primary sequence identity of the CTLD 

domain to human CD94 (62 %) and NKG2A (52 %) as well as phylogenetic trees (Fig. 3). In 

contrast to CD69, which is transcribed in a variety of tissues, the expression of the chicken 

CD94/NKG2 homologue was more restricted. We have recently generated a novel mab against 

chicken CD94/NKG2 in order to test its protein expression and its potential role as NK cell 

receptor. The mab 8G8 specifically recognizes this molecule and reacts almost exclusively 

with thrombocytes in chickens and turkeys. There may be some residual expression on a small 

NK cell subset. This expression pattern prompted us to re-evaluate the annotation of chicken 
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CD94/NKG2 (Neulen and Göbel, 2012b). Interestingly, lectins with similar expression pattern 

form a unique cluster within the NKC (Dectin cluster) (Bernard et al., 2007; Sattler et al., 

2012). The phylogenetic tree in Fig. 3 indeed shows the position of CD94/NKG2 between the 

mammalian CD94 and myeloid C-type lectins. The expression on thrombocytes and the 

presence of a signalling motif in the cytoplasmic domain that was initially classified as ITIM 

can now be identified as a special so called hemITAM, leading to the activation of 

thrombocytes upon crosslinking. The 8G8 mab indeed causes thrombocyte activation upon 

crosslinking. For these reasons, we suggested renaming the CD94/NKG2 as chicken CLEC-2 

homologue (Neulen and Göbel, 2012b).  

  

3.1 B-NK and B-Lec 

The chicken MHC represents a minimal essential MHC with only 19 genes in a 92 kb region. 

It was unexpected to find two C-type lectin genes, designated B-NK and B-Lec within this 

region (Kaufman et al., 1999). They are located next to each other and in opposite 

transcriptional orientation. Further analysis revealed that B-Lec is similar to mammalian 

lectin-like transcript 1. It is rapidly upregulated upon cellular activation and like LLTI contains 

an endocytosis motif (Rogers et al., 2005). Therefore it can be classified as a member of 

activation induced C-type lectins, such as CD69. Other C-type lectins found in the MHC and 

RFP-Y region such as chicken 17.5, chYLec-2, Blec1 and Blec3 share significant homology to 

B-Lec and represent members of this clade, too (Fig. 3) (Bernot et al., 1994; Mwangi et al., 

2012; Rogers et al., 2003).  

In contrast, B-NK is distantly related to the B-Lec group. It is most homologous to human 

NKRP-1 and it has a functional cytoplasmic ITIM (Fig. 3). Initial studies demonstrated mRNA 

expression an IL-2 expanded NK cells, however, after generating the specific mab 8A11, it 

was detected on small subsets of T-lymphocytes, on embryonic NK cells as well as on IL-2 in 

vitro expanded chicken NK cells (Viertlboeck et al., 2008b). So it is still the only chicken C-

type lectin with proven expression on chicken NK cells. B-NK and B-Lec thus resemble a 

conserved pair of C-type lectins such as NKR-P1 and LLT-1 in mammals, respectively. Both 

pairs are situated side by side in opposite orientation. NKR-P1 is a receptor expressed on NK 

cells and binds to LLT-1, a ligand found on activated T cells, a situation closely resembling B-

NK and B-Lec (Iizuka et al., 2003; Yokoyama and Plougastel, 2003). The direct interaction of 

B-NK and B-Lec has not been proven so far, but it was demonstrated that B-NK binds to a 

ligand on activated cells (Viertlboeck et al., 2008b). The inability to directly show the 

interaction of both molecules may be due to technical reasons, low avidity of binding or the 

result of the high polymorphic nature of B-NK. In this respect, several studies have revealed 
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nucleotide exchanges of the B-NK gene, that all represented non-synonymous changes in the 

coding region leading to amino acid variation with a very high dN/dS ratio, while the adjacent 

B-Lec gene also displayed a number of nucleotide variations, but most of them were 

synonymous (Mwangi et al., 2012; Rogers and Kaufman, 2008). Finally, the pair of two lectins 

is well conserved and also present with some variations in the turkey, pheasant, black grouse 

and quail MHC (Chaves et al., 2009; Shiina et al., 2004; Wang et al., 2012). The pheasant 

genome displays two B-NK and one B-Lec homologue (Ye et al., 2012). The quail locus 

harbours a total of four B-NK homologues (NK1 to NK4) and six B-Lec homologues (Lec1 to 

Lec6), however, all B-Lec homologues except Lec2 represent pseudogenes. Like for the 

chicken haplotypes the comparison of the chicken, turkey and quail B-NK homologues 

reemphasized a very high divergence, a situation also known for mammalian NK cell 

receptors.  

The conservation of the C-type lectin pair adjacent to the MHC has been the reason for the 

hypothesis that the ancestral MHC has been a major first site containing receptors and ligands 

involved in innate immune responses, which rapidly evolved under the pressure of pathogen 

selection. In this respect it is interesting to note that the FPV genome contains several open 

reading frames that encode C-type lectin sequences (Afonso et al., 2000). Moreover, at least 

one of them (P14372) has been detected on the surface of infected cells, indicating a potential 

role as immune evasion ligand that may prevent NK cell lysis (Wilcock et al., 1999). The 

phylogenetic tree (Fig. 3) documents that some of the fowl pox derived C-type lectins share 

homology to Ly-49. This could indicate that some birds possess homologous genes which 

were hijacked by the virus. It is not clear at this point, how the C-type lectins function on the 

surface of infected cells.  

In conclusion, most of the diverse C-type lectin groups are represented in the chicken. 

Homologues of Ly49 are currently only limited to viral ORFs. It could be argued that these 

receptors are functionally replaced by extended CHIR in the chicken. B-NK in particular 

seems to be a prime candidate as an important NK cell restriction element and needs further 

characterization. 
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Figure 3 Phylogenetic tree of selected C-type lectins. 

Neighbour-joining tree analysis of selected avian and mammalian C-type lectins as indicated. The entire proteins 

(accession numbers indicated) have been analysed. The four major groups are boxed. Species were denoted as c, 

chicken; cj, quail; cp, golden pheasant; h, human; m, mouse; mg, turkey; tt, black grouse; FPV, fowl pox virus 

ORF. Note that Blec2 is commonly used as alternative B-NK designation.  
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4. Other potential NK cell receptors 

4.1 SLAM family 

The signaling lymphocytic activation molecule (SLAM) family constitutes a subgroup of the 

CD2 receptor family and is differentially expressed on leukocytes. Members include SLAMF1 

(CD150, SLAMF), SLAMF2 (CD48), SLAMF3 (Ly9, CD229), SLAMF4 (2B4, CD244), 

SLAMF5 (CD84), SLAMF6 (NTB-A, CD352), SLAMF7 (CRACC, CD319) and SLAMF8 

(BLAME, CD353) (Cannons et al., 2011; MacDonald et al., 2008; Veillette et al., 2009). Five 

SLAM genes have been identified in chickens and three of them were named SLAMF1, 

SLAMF2 and SLAMF4 due to homologies with their corresponding human counterparts (Fig. 

4). In contrast, an unambiguous assignment was not possible for two additional chicken SLAM 

receptors – SLAMF3like and SALMF5like - and therefore, the current nomenclature was 

chosen to emphasize the most likely mammalian counterparts, SLAMF3 and SLAMF5, 

respectively (Straub et al., 2013). In man, the SLAM genes are located on the long arm of 

chromosome 1 whereas the related genes CD2 and CD58 are located on the short arm of 

chromosome 1. The genomic region encoding the chicken SLAM genes is not totally resolved 

since SLAMF2 and SLAMF4 are currently located on an unassigned chromosome. However, 

it may be presumed that the chicken SLAM gene cluster is located on chromosome 25 where 

genes encoding SLAMF1, SLAMF3like and SLAMF5like could be completely assigned to. 

The chicken CD2 gene is located on chromosome 1, a situation similar to that of mice where 

the SLAM and CD2 genes are present on chromosomes 1 and 3, respectively. Avian and 

mammalian SLAM-associated receptors share several components. First, they are composed of 

an extracellular region containing an amino-terminal IgV-like domain and a membrane-

proximal IgC2-like domain containing two conserved disulfide bonds. Second, all receptors 

compromise a single transmembrane region, except SLAMF2 which represents a GPI-

anchored protein. Third, the cytoplasmic tail contains at least one ITSM. In man, this motif 

interacts with activating and inhibitory SLAM-associated protein (SAP)-related molecules 

which in return orchestrate distinct cellular responses. SAP-related adaptors include SAP and 

EAT-2 which are composed of a single Src homology 2 (SH2) domain followed by short C-

terminal tail. Both SLAM-associated adaptor proteins were readily identified in chickens. 

Chicken SAP shares about 70% identity with mammalian SAP whereas chicken EAT-2 is 

much longer but still shares 52% identity with its mammalian counterpart (Straub et al., 2013). 

The identification of both receptors and adaptor molecules indicates a similar role of the 

SLAM-SAP interaction in non-mammalian vertebrates. SLAM family members generally 

form homophilic interactions, except SLAMF4 which binds SLAMF2 (Keestra et al., 2008). 
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SLAMF4 is of particular interest for NK cells. It is expressed on NK cells and it can either 

mediate activation or inhibition depending on the presence or absence of the adaptor molecules 

(Munitz et al., 2005; Sivori et al., 2000). We have recently generated a mab against SLAMF4, 

which stains NK cells in various organs (Tab. 2) (Straub, C. et al. in press). The function of 

SLAMF4 on chicken NK cells needs to be resolved in future studies.  

 

 

 

 

 

4.2 Adhesion molecules 

Target recognition by NK cells is not only confined to the interaction of activating or 

inhibitory receptors with their respective ligands, but it is strengthened by a number of 

adhesion molecules. In the chicken, several of these adhesion molecules have also been 

documented; however, their contribution to NK cell lysis has not been resolved.  

A group of several mab has been identified that seem to recognize an identical molecule 

expressed by a variety of lymphoid and myeloid cells. The mab were generated in different 

fusions using macrophages, IEL or in vitro expanded NK cells as immunogens. The group 

includes mab such as 8F2, 3-6, 6B5 among others. They react with various leukocyte 

subpopulations including lymphocyte subsets, dendritic cells, monocytes, IEL and also with 

NK cells (de Geus et al., 2012; Wu et al., 2010). Based on these and biochemical criteria, the 

antigen recognized by these mab was tentatively assigned as a CD11/CD18 leukocyte integrin 

(Göbel and Kaspers, unpublished). The final test whether this assignment is correct has been 

hampered by the lack of a full length annotation of the respective leukocyte integrins in the 

genome. In fact, we have so far not been able to clone a full length CD11 gene using the 

Figure 4 Chicken SLAM family. 

Schematic representation of the chicken SLAM family with ITSM sequences indicated.  
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partial information available in several databases. Moreover, it is not clear if the chicken CD11 

cluster also contains four different genes as in mammals or if duplications leading to this 

expansion occurred after the lineage split of chickens and mammals.  

Another group of receptors also expressed by NK cells is characterized by its binding to nectin 

and nectin-like proteins. A total of four receptors have been described to be mainly expressed 

on CD8
+
 T lymphocytes and NK cells, including CD96, CD226, TIGIT and CRTAM (Boles et 

al., 2005; Chan et al., 2012). We have identified homologous of all receptors except TIGIT in 

various avian genomes. The chicken CRTAM was actually described previously as chicken 

thymic activation and developmental sequence (cTADS) (Ruble and Foster, 2000). A novel 

mab generated against chicken CRTAM is currently being characterized. Initial experiments 

have revealed a staining pattern similar to its mammalian homologue which resembles an 

activation marker of CD8
+
 T lymphocytes.  

The neural adhesion molecule NCAM-1 or CD56 has been of particular use to characterize 

various subsets of human NK cells, which show distinct functional characteristics with 

CD56
dim

 NK cells representing 90 % of the circulating NK cells and CD56
bright

 NK cells. Since 

the chicken NCAM gene was identified a long time ago (Murray et al., 1984), we have 

generated a chicken CD56 specific mab and tested its expression on various chicken tissues. In 

contrast to previously published results that were generated using a polyclonal anti-human 

CD56 antiserum (Göbel et al., 1996a), CD56 is expressed on some cells in the embryonic 

spleen and also on lung cells, that may resemble NK cells, however, it is not a universal NK 

cell marker and its expression on NK cells is highly variable (Neulen and Göbel, 2012a).  

The receptors CD5 and CD6 have also been documented to be expressed on chicken NK cell 

subsets, however, their function is currently unknown (Göbel et al., 1996b; Katevuo et al., 

1999; Koskinen et al., 1998). 

Finally CD57 also known as HNK1 resembles a terminally sulphated glycan carbohydrate, 

which is expressed on chronically stimulated T lymphocytes (Brownlie et al., 2009). Recent 

analyses have revealed expression on a human NK cell subset, representing a mature, 

terminally differentiated subset that has limited proliferative and cytolytic capacity (Lopez-

Verges et al., 2010). The mab also crossreacts with chicken cells and recognizes the blood NK 

cell population defined by its expression of various NK cell markers (Tab. 2). This may 

indicate that the chicken blood mainly contains mature, terminally differentiated NK cells. In 

line with this assumption is the capacity of these cells to produce IFN- upon stimulation. 
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4.3 ggTREM-A1 

A cluster of IgSF members has been identified on chicken chromosome 26 (Viertlboeck et al., 

2006). The genes were identified as homologues to the mammalian TREM genes. A total of 

three chicken TREM homologues were identified, with two of them representing inhibitory 

and one an activating receptor. Our recent analysis with the help of a specific mab indicated 

that the activating ggTREM-A1 is indeed expressed on a subpopulation of blood NK cells 

(Viertlboeck et al. submitted for publication). A re-evaluation of its sequence properties 

together with the novel data concerning expression lead us to propose that it might resemble a 

molecule with features of both TREM and NKp44. NKp44 as one of three NCR receptors is 

located adjacent to the mammalian TREM cluster (Allcock et al., 2003). The most intriguing 

similarity between mammalian NKp44 and the ggTREM-A1 is the position of the basic 

transmembrane residue, which is located at a central position which differs from the position 

found in CHIR that is located close to the extracellular domain. This implies that an adaptor 

molecule different to the FcRI, that assembles to CHIR, is responsible for signal 

transduction. This most likely could be either the CD3 chain that has been identified in the 

chicken (Göbel and Bolliger, 1998) or the DAP12 adaptor, that is located in the mammalian 

extended LRC, but has so far not been described in the chicken. Future studies will resolve if 

the chicken ggTREM-A1 also represents a functional NKp44 homologue. There are several 

other IgSF families in the chicken genome, such as CD200R, SIRP and CD300L however; so 

far there is no evidence of expression on NK cells (Viertlboeck et al., 2008a; Viertlboeck et 

al., 2006).  

 

4.4 Mab against molecularly undefined antigens 

We have previously generated different panels of mab that were raised against either IEL or in 

vitro expanded sorted NK cells (Göbel et al., 2001; Jansen et al., 2010). Among these, three 

seem to be of particular use, although they are all not uniquely expressed by NK cells. The 28-

4 mab has originally been raised against IEL and it specifically reacts with a molecule 

expressed by CD8
+
 CD3

-
 that mediate spontaneous cytotoxicity (Göbel et al., 2001). The 

antigen recognized by 28-4 has not been molecularly identified and its expression is not 

limited to IEL, but it is also expressed by blood and embryonic NK cells. It is also upregulated 

upon activation on B- and T-cells (Göbel, unpublished).  

20E5 and 1G7 both were generated in a fusion against in vitro expanded sorted CD8
+
 CD3

- 

splenocytes (Jansen et al., 2010). Again the antigens recognized have not been molecularly 

identified and they are not exclusively expressed by NK cells. The 20E5 mab is present on NK 
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cell populations in embryonic spleen, IEL and blood and also reacts with macrophages and the 

chicken cell line HD11, whereas 1G7 antigen expression is not found on IEL. The future 

identification of the genes encoding the 28-4, 20E5 and 1G7 antigens will be helpful to further 

discriminate several NK cell subpopulations in the chicken. 

 

5. Future directions 

The recent developments in genomic databases have had an enormous impact in the 

identification of receptor families and single receptors that resemble homologues to 

mammalian NK cell receptors and therefore may be important chicken NK cell receptors as 

well (Tab. 1). We have just begun to exploit the potential of these receptors for the NK cell 

characterization, mainly by generating mab to some of these receptors. Nevertheless, even this 

limited number of mab available, now allows the phenotypic characterization of at least three 

distinct NK cell subsets (Tab. 2). The NK cells in the embryonic spleen were the first to be 

described (Bucy et al., 1989; Göbel et al., 1994). They are detectable early in the embryo and 

thus may represent immature cells, but once isolated and cultured, they are cytolytic. Their 

cytokine production has not been examined so far. The intestinal NK cell population 

represents the most frequent source of NK cells (Göbel et al., 2001). These cells 

predominantly found in the IEL population represent most likely a unique population with 

special functions adapted to the intestinal milieu. Finally the small PBMC NK cell population 

may turn out as terminally differentiated form as indicated by the CD57 expression (Tab. 2). 

Alternatively, it could represent a special subset since it is the only NK cell population that 

carries CD4. There are definitively more NK cell subsets to be identified, for example, we 

have found a small population in lung and liver preparations which are currently under 

investigation.  

As a next important step in the characterization of NK cells, there is a need to address potential 

cytokines which are either secreted by NK cells or that influence their proliferation, maturation 

and function. To this end, a multitude of cytokines has been cloned and expressed, recently, so 

it is only a matter of time to use these cytokines as tools for the NK cell characterization 

(Staeheli et al., 2001). In particular, this is true for type I and type II interferons, IL-2, IL-12, 

IL-15, IL-18 and IL-21. Single cytokines or combinations may be helpful to establish a robust 

in vitro culture system that would allow other types of NK cell assays and to test NK cell 

activity against various pathogens.  

It would also be very helpful to establish more assays to functionally characterize NK cells. 

Recently, a CD107 degranulation assay could be established that is easier to handle as the 
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classical chromium release assay (Jansen et al., 2010), however, CD107 surface expression is a 

relatively nonspecific phenomenon that can be seen in many different cell types. In terms of 

target cells, the LSCC-RP9 is momentarily the only available robust target cell. Finally, 

besides Elispot assay to detect IFN-, it would be of great importance to further establish other 

Elispot assays and methods for the intracellular detection of cytokines. All these tools together 

with a steadily growing number of surface markers ultimately enable the functional NK cell 

characterization in physiological conditions as well as during infections. 
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5. DISCUSSION 

The chicken genome was analyzed for annotated SLAM genes and five putative SLAM genes 

could be identified by this strategy. Three of them (named SLAMF1, SLAMF3like, and 

SLAMF5like) were mapped to chromosome 25, whereas genes encoding SLAMF2 and 

SLAMF4 were only identified in Expressed Sequence Tag (EST) databases and thus allocated 

to unassigned chromosomes.  

Given that the chicken genome harbors three SLAM genes on chromosome 25, it is 

reasonable to presume the entire SLAM locus on chromosome 25. This assumption is 

supported by findings made in the zebra finch genome, where SLAMF1 has also been 

allocated to chromosome 25, albeit this locus lacks other SLAM genes.  

In man and mice, all SLAM-encoding genes are tightly clustered within a 400 kb range on 

chromosome 1 (Fig. 2) and it has been argued that these genes arose by successive gene 

duplications. The existing chicken SLAM genes may thus combine functional properties 

which must have been in place prior to the divergence of both species 300 million years ago. 

During evolution, selection-pressure may have caused gene duplication events in mammals in 

order to battle a novel quality and quantity of pathogens. On the other hand, it cannot be ruled 

out that other genes may exist on yet unassigned chromosomes.  

Although overall identity of the chicken SLAM genes with their mammalian counterparts was 

rather low, ranging from 24 to 28%, an unambiguous assignment to the SLAM family was 

possible due to several structural analogies. Firstly, all chicken SLAM receptors are 

composed of an extracellular domain displaying the typical two-Ig-like structure, that is, an 

N-terminal Ig variable (V)-like domain lacking disulfide bonds and a membrane-proximal Ig 

constant 2 (C2)-like domain with an additional pair of disulfide bonds. Secondly, all chicken 

receptors comprise a single transmembrane region and at least one ITSM motif in their 

cytoplasmic tail, except SLAMF2, which lacks a transmembrane domain and instead 

represents a GPI-anchored protein (Fig. 3). 
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In this respect, three genes (SLAMF1, SLAMF2 and SLAMF4) could be univocally assigned 

to their mammalian orthologues which was not feasible for two additional SLAM receptors.  

Sequence comparisons revealed an almost equal homology of chicken SLAMF3like to both 

mammalian SLAMF3 and SLAMF6. SLAMF3like was initially annotated as SLAMF3 on 

chromosome 25. The syntenic region in the mammalian genome however encodes SLAMF6 

and SLAMF5, respectively. Furthermore, mammalian SLAMF3 is unique by displaying a 

duplication of the extracellular V-C2-like domain whereas chicken SLAMF3like only 

encompasses two Ig-like domains. In addition, chicken SLAMF3like comprises a single 

cytoplasmic ITSM motif, as opposed to two ITSMs in mammalian SLAMF3 and SLAMF6, 

respectively. Therefore, SLAMF3like could resemble both mammalian SLAMF3 and 

SLAMF5 and we chose the current nomenclature to emphasize its most likely counterpart, 

mammalian SLAMF3.  

A similar situation applied for SLAMF5like, originally annotated as SLAMF8 and mapped to 

the syntenic locus of mammalian SLAMF8. Chicken SLAMF5like comprises a single ITSM 

Figure 3 Comparison of SLAM family receptors in (A) man and (B) chicken. 

Human and chicken SLAM receptors share several structural analogies, in particular an extracellular two Ig-

like structure, a single transmembrane region and cytoplasmic ITSM motifs. Modified according to [18]. 
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in its C-terminal tail that has been conserved in mammalian SLAMF5. Moreover, at the 

position of the membrane-proximal ITSM of mammalian SLAMF5, chicken SLAMF5like 

harbors a conserved tyrosine residue, albeit the ITSM consensus is not completely matched 

due to a proline at position 1 instead of a threonine. Since mammalian SLAMF8 displays a 

rather short cytoplasmic tail devoid of typical ITSM motifs, we suggested naming it 

SLAMF5like. 

Unresolved questions concerning both the number and correct annotation of chicken SLAM 

genes may be addressed once the entire genomic region has been sequenced. 

The existence of several SLAM genes in the chicken genome consequently led to the 

identification of chicken orthologues to mammalian SAP and EAT-2, respectively. Sequence 

analyses revealed that chicken EAT-2 is most homologous to murine EAT-2 whereas human 

EAT-2 is much shorter. Mammalian EAT-2 seems to transduce intracellular signals through 

two tyrosine residues located at the C-terminus [111] and markedly, both tyrosine residues are 

conserved in chickens. Chicken SAP shares an almost identical length as well as structural 

features to human and murine SAP, in particular a SH2 domain and a short C-terminal tail. In 

addition, the recruitment site in SAP for the protein tyrosine kinase Fyn, a motif centered on 

arginine 78 (R78), has been highly conserved in chickens.  

In conclusion, both SAP and EAT-2 are preserved in the chicken genome, results that imply 

similar signal transduction pathways as in mammals, the latter supported by the conservation 

of key amino acids involved in SLAM receptor signaling.  

Another feature of mammalian SLAM family members is their expression on a variety of 

immune cells. Mammalian SLAMF4, for instance, is expressed on NK cells, some  T cell 

subsets, CD8
+
 T cells, basophils, eosinophils, and monocytes [88]. In this respect, 

preliminary PCR analyses of various lymphoid tissues also indicate a wide expression of 

chicken SLAM receptors. SLAMF4 in particular could not be detected in bursal cDNA and 

was weakly expressed in thymic cDNA. Using a novel SLAMF4 specific mab, flow 

cytometric analyses established an even wider tissue distribution of chicken SLAMF4 as its 

mammalian homologue. Similarities of both chicken and mammalian SLAMF4 expression 

include a CD8
+
  T cell subset,  T cells, NK cells, and monocytes.  

Furthermore, we found chicken SLAMF4 to be expressed on thrombocytes, the nucleated 

homologue to mammalian platelets. In mammals, only SLAMF1 and SLAMF5 are expressed 

on platelets, while SLAMF4 expression has not been documented [52]. Given that chicken 

thrombocytes carry a plethora of immunoregulatory receptors, including a TREM molecule, 

CLEC2, an Fc receptor, CD40 ligand and several other Ig-like receptors [22, 122-124], these 

findings indicate an involvement of chicken thrombocytes in immune regulation. 
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Another difference of chicken SLAMF4 was its detection on a small subset of peripheral B 

cells since mammalian SLAMF4 expression has not been reported on B cells. In addition, this 

B cell subpopulation was also marked by high levels of surface IgM and CD40, respectively.  

The expression differences of SLAMF4 in chickens and mammals may therefore indicate that 

chicken SLAMF4 combines functions exerted by several mammalian SLAM receptors. As 

discussed earlier, these findings support the notion that the higher number of mammalian 

SLAM genes arose by gene duplication events. Most mammalian SLAM receptors are self-

ligands whereas SLAMF4 binds with SLAMF2 [37], an interaction which could also be 

established in chickens. Although no SLAMF2 specific mab exists, preliminary PCR analyses 

indicate a wide tissue distribution. Since both chicken SLAMF4 and SLAMF2 seem to be 

expressed on a variety of leukocytes, it is conceivable that chicken SLAMF4 frequently 

encounters its ligand SLAMF2. 

Mammalian SLAMF4 was originally considered an activatory receptor on NK cells due to its 

capacity to enhance IFN- secretion and cytotoxicity [82-84]. In contrast, recent studies 

indicate that the level of surface SLAMF4 expression and the availability of intracellular SAP 

molecules are the critical parameters involved in either activatory or inhibitory cellular 

responses [39, 85]. Experiments with human CD8
+
 T cells demonstrated that a SLAMF4

high
 

SAPlow phenotype is predominantly inhibitory, whereas SLAMF4
low

 SAP
high

 expression 

levels markedly promote cytotoxicity and cytokine production [86].  

In this context, the expression of chicken SLAMF4 on different  T cell subsets is an 

important finding. In contrast to mice and men, where  T cells only constitute 1-10% of 

total T cells, chickens display a high  T cell frequency in peripheral tissues [125].  

Albeit little is known about  T cell function in chickens, the high abundance itself indicates 

an important role in immune regulation. The novel SLAMF4 specific mab allowed the 

differentiation of several  T cell subsets in blood and spleen, respectively, which also varied 

in the expression of CD8. Accordingly, blood  T cells were differentiated into CD8
-
 

SLAMF4
dim

 and CD8
+
 SLAMF4bright cells, whereas splenicT cells were defined into 

three subsets, namely CD8
+
 SLAMF4bright, CD8

-
 SLAMF4

dim
 and CD8

-
 SLAMF4

-
  T 

cells.  

The CD8 expression has been used to define T cells in terms of proliferation capacity and 

gene expression. Both splenic and blood CD8
+high

  T cells have been considered as 

activated due to their high expression levels of FasL, IFN- and lymphotactin, respectively 

[126]. Our results may thus hallmark a similar situation to mammals where high SLAMF4 

surface levels in conjunction with low SAP content result in cellular inhibition [86]. 
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6. SUMMARY 

The chicken signaling lymphocytic activation molecule (SLAM) 

family 
 

The signaling lymphocyte activation molecule (SLAM) family falls within the CD2 subset of 

the greater immunoglobulin superfamily and plays a crucial role in the immune regulation of 

leukocytes. Receptors related to this family have been best characterised in mouse and man. 

The first part of our study was aimed to search the chicken genome for the presence of 

SLAM-related genes and SLAM-associated adaptor proteins, respectively. We found three 

family members homologous to mammalian SLAMF1 (SLAM, CD150, IPO-3), SLAMF2 

(CD48) and SLAMF4 (2B4, CD244). Two additional receptors lacked an unambiguous 

assignment and were therefore named SLAMF3like (Ly-9, CD229) and SLAMF5like (CD84) 

to stress their most likely mammalian counterparts. Several structural features are conserved 

across species, in particular an extracellular domain comprising an amino-terminal IgV-like 

domain and a membrane proximal IgC2-like domain, a single transmembrane region and a 

cytoplasmic domain with several tyrosine-based switch motifs. Moreover, chicken 

homologues to the intracellular adaptor molecules SLAM-associated adaptor protein and 

Ewing`s sarcoma-associated transcript-2, respectively, were found to be highly conserved in 

the chicken genome. The second part was aimed to study the role of the cell surface molecule 

SLAMF4 (CD244, 2B4) in chicken immunity. We generated a novel SLAMF4 specific 

monoclonal antibody (named 8C7) and analyzed its expression on distinct immune cells. The 

expression was restricted to both CD8
+
  and  T cells, whereas CD4

+
 T helper cells and all 

thymocytes showed little or no reactivity when stained with the 8C7 monoclonal antibody. 

Blood and splenic T cells could be further discriminated into several subsets according to 

their SLAMF4 and CD8 expression. SLAMF4 was absent on B cells isolated from bursa, 

spleen and caecal tonsils, whereas a small fraction of peripheral B cells coexpressed SLAMF4 

which also displayed high expression levels of Bu1, Ig, and CD40, respectively. SLAMF4 

was also present on NK cells isolated from intestine of adult chickens or embryonic 

splenocytes as marked by coexpression of the 28-4 NK cell marker. Moreover, SLAMF4 was 

also detected on myeloid cells such as thrombocytes and monocytes. In addition, the 

heterotypic interaction of SLAMF4 and SLAMF2 was proven by a reporter assay. 

The novel SLAMF4 specific monoclonal antibody will be important in future experiments to 

distinguish several  T cell subsets as well as to gain new insights into chicken  T cell 

function.  
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7. ZUSAMMENFASSUNG 

Die signalgebende Lymphozyten-aktivierende Molekülfamilie 

(SLAM) des Haushuhns 
 

Die signalgebende Lymphozyten-aktivierende Molekülfamilie (SLAM) gehört als Teil der 

größeren Immunglobulin-Superfamilie der Unterfamilie der CD2-ähnlichen Rezeptoren an 

und leistet entscheidende Beiträge zur Immunregulation von Leukozyten. Die ihr 

zugeordneten Rezeptoren wurden am besten bei Menschen und Mäusen untersucht. Der erste 

Teil unserer Studie zielte darauf ab, das Hühnergenom auf Gene zu untersuchen, die der 

signalgebenden Lymphozyten-aktivierenden Molekülfamilie beziehungsweise den SLAM-

assoziierten Adapterproteinen angehören. Drei Familienmitglieder konnten auf diese Weise 

gefunden werden, die große Ähnlichkeiten zu den Rezeptoren SLAMF1 (SLAM, CD150, 

IPO-3), SLAMF2 (CD48) und SLAMF4 (CD244, 2B4) bei Säugetieren aufwiesen. Bei zwei 

weiteren Rezeptoren konnte keine eindeutige Verwandtschaftsbeziehung hergestellt werden, 

so dass sie als SLAMF3-ähnlich (Ly-9, CD229) beziehungsweise SLAMF5-ähnlich (CD84) 

bezeichnet wurden, um mögliche Verwandtschaften hervorzuheben. Es konnte gezeigt 

werden, dass verschiedene Strukturmerkmale artübergreifend konserviert sind, insbesondere 

die extrazelluläre Domäne mit einer N-terminalen IgV-ähnlichen Kette und einer membran-

proximalen IgC2-ähnlichen Kette, außerdem eine einzelne Transmembranregion sowie ein 

zytoplasmatischen Teil, der mehrere Immunrezeptor Tyrosin-basierende Wechselmotive 

(ITSM) enthält. Desweiteren gelang es uns, die beiden für die intrazelluläre 

Signalweiterleitung verantwortlichen Moleküle SLAM-assoziiertes Adapterprotein (SAP) 

beziehungsweise Ewing`s Sarkoma-assoziiertes Transkript 2 (EAT-2) zu identifizieren, die 

hoch konserviert im Hühnergenom vorliegen. Der zweite Teil verfolgte das Ziel, die Rolle, 

die das Zelloberflächenmolekül SLAMF4 (CD244, 2B4) im Immunsystem des Huhnes spielt, 

näher zu untersuchen. Hierfür wurde der spezifische monoklonale Antikörper 8C7 erzeugt 

und die Oberflächenexpression von SLAMF4 auf verschiedenen Immunzellen untersucht. Die 

Expression war auf CD8
+
  und  T-Zellen beschränkt, während CD4

+
 T-Helferzellen 

sowie Thymozyten kaum oder nur in sehr geringem Maße von dem monoklonalen Antikörper 

8C7 angefärbt wurden. Zusätzlich konnten  T-Zellen im Blut und der Milz anhand der 

Oberflächenmarker SLAMF4 und CD8 in mehrere Subpopulationen unterteilt werden. Auf B-

Zellen, die aus der Bursa, der Milz sowie den Caecaltonsillen gewonnen wurden, konnte der 

Rezeptor nicht nachgewiesen werden. Im Gegensatz dazu exprimierte nur ein geringer Teil 

der zirkulierenden B-Zellen SLAMF4, wobei diese Subpopulation zusätzlich durch eine hohe 
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Expression der Oberflächenmoleküle Bu1, Ig sowie CD40 gekennzeichnet war. Mithilfe des 

Antikörpers 28-4 gelang es uns auch, SLAMF4 auf Natürlichen Killerzellen nachzuweisen, 

die insbesondere im Darm erwachsener Hühner sowie in Embryonalmilzen zahlreich 

vorkommen. Ebenso konnte SLAMF4 auf der Zelloberfläche myeloider Zellen wie etwa 

Thrombozyten und Monozyten nachgewiesen werden und SLAMF2 als Ligand bestätigt 

werden. Der neue SLAMF4 spezifische monoklonale Antikörper wird es zukünftigen 

Arbeiten ermöglichen, verschiedene Populationen von  T-Zellen zu unterscheiden und so 

neue Einblicke in die Funktion der  T-Zellen des Haushuhns zu gewinnen. 
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