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Introduction 

 

The mysterious white phosphorus has most likely been discovered many times over 

the centuries, but in the last 350 years the knowledge has been lost over and over 

again. The author John Emsley writes in his book The sordid tale of Murder, Fire, and 

Phosphorus – the 13th element[1]: 

Phosphorus was discovered by the alchemists, researched by the early chemists, 

exploited by the industrialists of the nineteenth century and abused by the combatants 

of the twentieth. Its capacity for evil cursed all who tried to exploit it, from the would-

be murderer to the worldwide manufacturer. But set against this tale of woe are a few 

remarkable benefits that phosphorus brought and it is an important ingredient in 

many of the things we use in our everyday lives. 

 

It was one night in 1669 in Hamburg when Herr Doktor Henning Brandt accidentally 

discovered white phosphorus during one of his many failing attempts to synthesise the 

Sorcerer’s Stone. 

 

The Alchemist in Search of the Philosopher’s Stone discovers Phosphorus. 1771. Oil on canvas, 50 

x 40 in. Derby Museum and Art Gallery. Image copyright the Derby Museum. 
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Since that day, this element has made a great impression on the world. It became 

very popular during the industrialisation in the 19th century as the main ingredient in 

matches, the so called “Lucifers” and served as a horrible substance during the 

wartime of the 20th century. 

It is to be said that mankind itself brought this devastating element to the world, 

nature never planned on being this cruel, it provides phosphorus only in the form of its 

oxides, the phosphates. These binary phosphorus oxygen anions are essential for all 

life on Earth, as it is part of the DNA and ATP. 

This class of compounds has been investigated thoroughly over the last 200 years, 

but it was not until the first half of the 19th century when one of the most famous 

chemists started to take a closer look at the reactivity of phosphorus towards the 

heavier homologue of the oxygen, the sulfur. The swede Jöns Jacob Berzelius can be 

regarded as one of the founding fathers of modern chemistry along with John Dalton, 

Antoine Lavoisier and Robert Boyle. He invented the chemical formula notation 

alongside with the discovery of many new elements like selenium or silicon and 

others.  

 

Jöns Jacob Berzelius (1779 – 1848) 

 

When Berzelius heated white phosphorus in the presence of sulfur over 100 °C he 

lay the foundation of phosphorus sulfur chemistry by synthesising P2S5 in a literally 

explosive reaction. Until this moment it was not known if these two elements could 

engage in chemical interactions at all, rather than just being melt together.  
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In 1843 he published his results for the first time with the article Ueber die 

Verbindungen des Phosphors mit dem Schwefel in the journal Annalen der Physik. 

Berzelius began his work by apparently random melting together of the two elements 

until he started using stoichiometric amounts and produced various neutral binary 

phosphorus sulfides which became an indispensable part in inorganic chemistry. Of all 

the compounds he described only the P2S5, which today is known to exist in its dimeric 

form, P4S10, could be verified. This neutral compound adopts an adamantane like 

structure (Figure 2). The crystal structure was first described by Vos and co-workers 

in 1956.[3] 

 

Figure 2. Molecular structure of phosphorus(V) sulfide. 

 

The discovery that the phosphorus(V) pentasulfide inherits a dimeric structure was 

made by Stock and co-workers in 1905.[4] From that point on until 1913 there was a 

real rush on this molecule.[5] Then Stock patented its preparation alongside with the 

statement that there are probably only three compds. of P and S, P4S, P4S7 and 

P4S10.[6] That there are far more than those three compounds, however, shows an 

excerpt of the great variety of different phosphorus sulfides (Figure 3). 

The latest phosphorus sulfide which could be described, is the δ-P4S7. It was 

described by the group of Blachnik in 2007.[7] This contemporary discovery shows that 

there are yet more modifications of binary neutral phosphorus sulfides to be found. 

But what should be acknowledged, is that all of the above mentioned compounds 

inherit a polycyclic, cage-like structure. 
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Figure 3. Examples of known phosphorus sulfides. 

 

All these phosphorus sulfides can be regarded as anhydrides of thiophosphoric acids, 

which per se are rather unstable and therefore rather appear as their anions, the 

thiophosphates.[8] 

Until now a great variety of phosphates PxOy
z- has been described in the literature 

and constitutes an integral part in all fields of chemistry. In contrast to 

oxophosphates, anions of phosphorus and the heavier chalcogens are less thoroughly 

investigated. Comparing the bond energies of oxo- and thiophosphates, the P–P, P–S 

and S–S bonds are rather similar, while the P–O bond is much stronger (Table 1). This 

means that in oxophosphates, P–O connectivity is predominant while in 

thiophosphates a far greater structural diversity can be expected. Thiophosphates can 

build up not only acyclic but also mono and even polycyclic anions because of the 

element independent possible connectivity. 

Thiophosphates are extremely moisture and air sensitive, which presents great 

difficulties for their syntheses. Therefore, the list of known P,S anions is rather 

manageable and leaves great potential for developing new synthetic routes to unusual 

thiophosphate structures, and for exploring their coordination chemistry, acting as soft 

multidentate ligands.  
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Table 1. Electronegativity and bond energies in P,S and P,O compounds 

X P S O 

EN 2.06 2.44 3.50 

∆EN(P,X) - 0.38 1.44 

BE(P–X) 215 230 335 

BE(P=X) - 335 544 

BE(X–X) 215 213 139 
EN = electronegativity (Allred-Rochow). 

BE = bond energy in kJ/mol.[9] 

 

Based on the great sensitivity towards air, most synthetic routes to thiophosphates, 

and in general thiophosphate containing compounds, are reactions at high 

temperatures, starting from the elements. Metal containing anions in particular are 

still nearly exclusively a field of solid state chemistry. For example compounds like 

M2P2S6 (M = Mg, Ca, V, Mn, Fe, Co, Ni, Pd, Zn, Cd, Hg, Sn, Pb) are synthesised in 

temperature ranges between 450°C and 800°C, respectively.[10] Syntheses proceeding 

in the solution are a rarity, an example is the preparation of K3PS4 from H2S, P4S10 and 

KOH.[11]  

This reaction also shows the importance of P4S10 as starting material for the 

preparation of thiophosphates in solution under mild conditions and at low 

temperature. 

A new field in inorganic phosphorus sulfur chemistry is the adduct formation for 

stabilization of unsaturated anions in the unusual bonding situation σ3λ5. Such species 

oligomerize or, in the more interesting case, have to be stabilized by coordination with 

a base, like pyridine. The most famous representative of this class of compounds is 

the pyridine stabilized trithiometaphosphate anion PS3
−, which is described in the 

literature with many conflicting specifications.[12]  

Pyridine plays an unusual role in the case of stabilizing unsaturated phosphorus 

species and is of great importance in P,S chemistry in solution, especially with regard 

to the ever-growing field of organic inorganic hybrid open frameworks, which combine 

the advantages of both organic and inorganic chemistry to give rise to new materials 

with fascinating properties.[13] In these framework structures, the amine plays multiple 

roles, as it can act as space filler in the framework, as structure directing, templating 

factor and as hydrogen donor in its protonated form. 
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In the following work we focus on the chemistry of phosphorus in combination with 

sulfur, and pyridine, in its role as either cation or stabilizing factor. 
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Research Topics 

 

The synthesis of distinct neutral or anionic P,S compounds in solution provides a 

great challenge for chemists. Due to the similarity in the energies of the P–P, P–S and 

S–S bonds nearly solely a mixture of compounds with different composition and 

charge is obtained. Our interest focuses on the system consisting of phosphorus, 

sulfur and pyridine, with the aim of a greater selectivity of P,S compounds in solution. 

The combination of these three components offers the opportunity of stabilizing 

unusual P,S compounds as pyridine adducts or pyridinium salts, integration of main 

group and transition metals (formation of metal-thiophosphates) and the investigation 

of many more reactions of this class of compounds in a basic environment. 

 

In this work, our attention is drawn to the following five parts in particular: 

I. Anionic Phosphorus Sulfur Compounds 

The aim is to synthesise novel salts of thiophosphates, especially with nitrogen-

containing aromatic bases as organic cations under mild conditions in solution. 

Furthermore, more light should be shed on the trithiometaphosphate anion. Is it really 

only possible to stabilize this anion by coordination with pyridine or are there other 

possible adducts?  

 

II. Structures of Unusual Phosphate Derivatives 

Especially the partial substitution of sulfur with oxygen in neutral and anionic 

P,S derivatives is to be investigated, as it increases the possibility of different intra- 

and intermolecular interaction, and thus gives rise to more complex build-ups in the 

crystal. Such compounds could be of great interest as intermediates to organic 

inorganic hybrid open framework materials. 
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III. Pyridine Stabilized Metal Complexes of P,S,O Anions 

Is it possible to use oxo- and thiophosphates as ligands in metal-containing 

coordination complexes? What is the influence of pyridine on the composition and 

structures of the complexes? Furthermore, the overall structural build-up is important 

with regard to frameworks, as pointed out in the previous part. The synthesis in 

solution might lead to new stable coordination polymers, different from those 

accessible by solid state chemistry. The information from this study might provide the 

basis for a systematic study on thiophosphate metal frameworks from solution. 

 

IV. Acyclic Phosphorus Sulfides 

P4S10 and many other neutral phosphorus sulfides are well known and have been 

described in the literature several times. As all these compounds show cage-like cyclic 

structures, the question arises whether it is also possible to synthesise acyclic 

phosphorus sulfides. The possible stabilization of such species by coordination with 

suitable nitrogen-containing bases at the phosphorus represents an important point of 

interest. Such adducts are expected to be useful precursors for the generation of 

reactive neutral P,S species. 

 

V. Polyphosphides 

The synthesis of phosphorus rich binary P,S anions still represents a great challenge 

for chemists. One possible route can be the oxidation of polyphosphides with 

elemental sulfur. An aim of the present thesis was to develop a synthetic route to 

specific polyphosphides and to investigate their reaction behaviour towards S8. 

 

Motivation, concept, and accomplishment are discussed specifically in each chapter 
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New Salts of the Cyclic Thiophosphates 

PnS8
n−(n = 2–4) 

As to be submitted to Phosphorus, Sulfur Silicon Relat. Elem. 
 

 
 
 

Taking a look at the number of cyclic thiophosphate anions containing eight 

sulfur atoms, the three different anions P2S8
2− (I), P3S8

3− (II) and P4S8
4− (III) 

can be found in the literature. To the best of our knowledge, so far only the 

Et3NH+ salt of II could be synthesized and characterized using single crystal 

X-ray diffraction. Syntheses of new salts of these three anions are presented 

and their molecular and crystal structures are discussed in the following. Each 

of them could be isolated with a protonated nitrogen containing aromatic base 

as counter ion.  
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Introduction 

Comparing the number of known oxo- and thiophosphates, a rather great variety 

can be found for the P,S anions in contrast to the oxygen containing ones. This can be 

explained with the similar energies of the P–P, P–S and S–S single bonds (215, 230 

and 213 kJ/mol, respectively)[1], which leads to the formation of not only acyclic but 

also mono- and even polycyclic phosphorus sulfur anions. This however results in the 

disadvantage of unselective syntheses. In most cases the reaction solutions contain a 

mixture of different binary P,S anions with phosphorus in different oxidation states.[2] 

The composition depends strongly on the amount of polysulfidic sulfur and the 

phosphorus source used.  

On the contrary, oxophosphate anions show a strong preference of structures with 

exclusively P-O bonds because of the P–O bond energy being 335 kJ/mol.[1]  

Only a few salts of the eight sulfur atoms containing cyclic thiophosphates P2S8
2− (I), 

P3S8
3− (II) and P4S8

4− (III) (Figure 1) have been described in the literature so    

far.[2–12] The anion P2S8
2− displays two S–S bridges between the phosphorus atoms, 

whereas Ib contains a S1 and a S3 bridge.[2–4] 

 

Figure 1. The three different P,S anions P2S8
2− (I), P3S8

3− (II) and P4S8
4− (III). 

 

In 1978 Minshall et al. were the first to describe the crystal structure of Ia followed 

by Falius in 1992.[3] Karaghiosoff et al. investigated its behaviour via 31P EXSY 

spectroscopy. They could show that this anion exists in solution in a twist and a chair 
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conformation (Figure 2) in the ratio 4:1. Also their 31P NMR shifts could be determined 

with δ31P = 119.5 ppm (twist) and δ31P = 55.5 ppm (chair).[5] 

 

Figure 2. Two P2S8
2− conformers of isomer Ia. 

 

Thiophosphates in general are known to be rather moisture and air sensitive. This 

anion however has been proven to be stable over a long period of time when exposed 

to air.[5] Also the selectivity of the synthetic routes shows the stability of P2S8
2− 

(Scheme 1). 

 

Scheme 1. Possible synthetic routes for the P2S8
2− anion; a) Minshall et al.[3];  b) Falius et al.[2];   

c) Karaghiosoff et al.[5]. 

 

In 1992 the anion P3S8
3− (II) was described by Falius for the first time. He prepared 

its Et3NH+ salt by refluxing stoichiometric amounts of white phosphorus, sulfur and 

triethylamine in chloroform and obtained single crystals after recrystallization from 

acetonitrile.[2] A five-membered ring consisting of two sulfur and three phosphorus 

atoms forms the core of this anion. The remaining six sulfur atoms are bonded 

exocyclically to the phosphorus. [Et3NH][P3S8] is the only salt with the P3S8
3− anion 

described so far. The synthesis of further salts provides an interesting challenge to 

explore more about the properties and chemistry of this rare anion. 
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The P4S8
4− anion is well known and can be synthesized by the oxidation of white 

phosphorus by polysulfidic sulfur (Scheme 2). It has been described in the literature 

before.[6–9] The first salt, which was structurally characterized using single crystal X-

ray diffraction was [NH4]4[P4S8] ∙ 2 H2O.[6] 

Due to previous research it is already known, that thiophosphates with a four 

membered ring of phosphorus atoms can be synthesized by using elemental 

phosphorus and alkyl polysulfides in a nonaqueous medium. The reaction proceeds 

fast at ambient temperature yielding a mixture of different thiophosphates.[7] Falius 

and Krause proposed a reaction mechanism in which the polysulfide anions attack the 

P4 tetrahedron, forming different P,S anions. In most cases however a four membered 

ring of phosphorus atoms can be observed. Until now it has also been reported on the 

crystal structures of the salts [Et3NH]4[P4S8][8], [Et2NH2]4[P4S8] and 

[C5H10NH2]4[P4S8][9] (Scheme 2). 

 

Scheme 2. Possible synthetic routes to the P4S8
4− anion; a) Falius et al.[6] b) Badeeva et al.[8]; c) 

and d) Gubaidullin et al.[9] 

 

The results of Falius were complemented by the observations of Badeeva et al. in 

2005.[8] Further synthetic routes using mercaptanes, amines and copper complexes 

were described using quantum chemical calculations. [9–12]  

Summing up these results and observations it can be asserted that the oxidation of 

phosphorus by polysulfidic sulfur provides a challenging task for chemists to learn 

more about the complexity of cyclic thiophosphate anions. 
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Results and Discussion 

 

Molecular and Crystal Structure [2,6-Me2C5H3NH]2[P2S8] (1) 

The lutidinium salt 1 of the anion P2S8
2- was obtained by refluxing a solution of P4S10 

and elemental sulfur in benzonitrile and subsequent addition of 2,6-lutidine.  

P4S10 + 6/8 S8
1) PhCN, reflux

2) 4 2,6 lutidine
2 [C7H9NH]2[P2S8]

 

Scheme 3. Synthesis of [2,6-Me2C5H6N]2[P2S8] (1). 

 

Compound 1 is soluble in most common polar aprotic organic solvents like 

tetrahydrofuran or acetonitrile. 

The lutidinium salt 1 crystallizes in the form of colourless blocks in the monoclinic 

space group P21/n with four asymmetric units in the unit cell. Figure 3 shows the 

molecular structure of 1, selected atom distances and bond angles are listed.  

 

Figure 3. Molecular structure of 1. Thermal ellipsoids are set at 50% probability level. Symmetry 

operation i = 1−x, 1−y, 2−z. Selected atom distances [Å] and bond angles [°]: P1–S1 1.994(2), 

P1–S2 1.945(2), P1–S3 2.127(2), P1–S4i 2.125(2), S3–S4 2.049(2); S1–P1–S2 122.5(1), S1–P1–

S3 101.0(1), S1–P1–S4i 99.8(1), S2–P1–S3 112.7(1), S2–P1–S4i 114.4(1), S3–P1–S41 104.0(1), 

P1–S3–S4 102.5(1), P1–S4i–S3i 102.0(1); P1–S3–S4–P1i 72.6(1). 
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In Table 1 selected average atom distances of 1, [pyH]2[P2S8] and Na2[P2S8] are 

compared. In 1 the bond lengths of single coordinated sulfur and the phosphorus 

atoms (S1–P1, S2–P1) are only up to 3.9% longer than the ones found in the other 

two compounds. The distance between the bridging sulfur atoms and phosphorus  

(S3–P1, S4–P1) lies with 2.126(2) Å between the value found in the pyridinium 

(2.084(5) Å) and the sodium salt (2.130(4) Å). The value for the bond length between 

the two bridging sulfur atoms is with 2.049(2) Å in the same range as the one found 

in [pyH]2[P2S8] (2.047(7) Å), shorter than 2.059(4) Å as found in Na2P2S8 and longer 

than the average value of 2.031(17) Å for this type of bond as described by Allen et 

al.[13]. Taking a look at the bond angles within the P2S8
2− entity one will find, that they 

differ quite strongly in all three salts. It seems that the degree of contortion in every 

salt is different depending on the packing in the crystal.  

Figure 4 shows the unit cell of 1. Between the counterions electrostatic interactions 

can be found. The sulfur atom S1 has a distance to the nitrogen atom of the lutidinium 

cation of 3.281(4) Å, which is below the sum of the van der Waals radii of sulfur and 

nitrogen (3.35 Å[15]). The N–H distance has a value of 0.88(1) Å, a hydrogen acceptor 

distance of 2.41(1) Å and an N–H–S angle of 173°, which is very close to linearity.  

 

 
 

Figure 4. Unit cell of 1. View along c axis. Thermal ellipsoids are set at 50% probability level. 

Hydrogen, nitrogen and carbon atoms are omitted for clarity. 
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Table 1. Comparison of average atom distances and bond angles in 1.  

  1 [pyH]2[P2S8][a]
 Na2[P2S8][b] Ref.[13] 

distances[Å]     

P–S[oc] 1.970(2) 1.962(2) 1.956(4)  

P–S[tc] 2.126(2) 2.084(5) 2.130(4)  

S–S 

P–O 

2.049(2) 2.047(7) 2.059(4) 2.031(17) 

1.621(7) 

angles[°]     

S[oc]–P–S[oc] 122.5(1) 118.1(1) 122.1(2)  

S[oc]−P−S[tc] 113.5(1) 116.6(1) 112.6(2)  

S[oc]−P−S[tc] 100.4(1) 109.9(1) 101.9(2)  

S[tc]−P−S[tc] 104.0(2) 102.2(2) 107.1(2)  

ΣP−S−P  334.70 336.60  

torsion angle [°] 

P−S−S–P 72.6(1) 86.37(2) 72.8  
[a] Karaghiosoff et al., [b] Minshall et al.; [oc]= onefold coordinated, [tc] = twofold coordinated. 

 

 

Molecular and Crystal Structure of [pyH]3[P3S8] ∙ 2.5 py (2) 

The salt [pyH]3[P3S8] ∙ 2.5 py (2) could be synthesized by stirring a suspension of P4, 

Na2S and P4S10 in pyridine at ambient temperature. 

 

Scheme 4. Synthesis of [pyH]3 [P3S8] ∙ 2.5 py (2). 

 

This molecule is rather insoluble in common organic solvents and sensitive towards 

moisture and air. For this anion an A2X spin system can be observed (δA = 134.3 ppm, 

δA = 85.0 ppm, JAX = 15.1 Hz). 

Compound 2 crystallizes as yellow blocks in the triclinic space group P−1 with two 

formula units in the unit cell. The structure of the anion in 2 is shown in Figure 5 and 

selected atom distances and bond angles are given. 
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Figure 5. Structure of the anion in 2. Pyridinium and solvent molecules are omitted for clarity. 

Ellipsoids are drawn at 50% probability level. Selected bond distances [Å] and bond angles [°]: P1-

S1 1.973(3), P1-S2 1.981(3), P1-S3 2.127(3), P1-S8 2.124(3), P2-S3 2.124(3), P2-S4 1.976 (3), 

P2-S5 1.970(2), P2-P3 2.280(2), P3-S6 1.967(2), P3-S7 1.965(3), P3-S8 2.138(3);  

S1-P1-S2 117.7(2), S4-P2-S5 118.3(2), S6-P3-S7 119.1(2), S3-P1-S8 104.4(2), S3-P2-P3 

94.6(2), P2-P3-S8 94.1(2), P1-S3-P2 102.7(2), P1-S8-P3 104.3(2). 

 

The five membered ring of P3S8
3- consists of two sulfur and three phosphorus atoms. 

Within the ring two phosphorus atoms are connected directly while the third one is 

bridged by the sulfur atoms. Each phosphorus atom is further coordinated by two 

exocyclic sulfur atoms. The endocyclic P–S bond lengths within the ring are with an 

average value of 2.128(3) Å elongated compared to a single bond (2.11 Å)[14]. The 

exocyclic P–S atom distances, which have an average value of 1.972(2) Å, are 

however closer to a P–S double bond (1.954(5) Å)[13]. These results are in good 

accordance with those found by Falius.[2] By comparing the bond angles within the ring 

it can be asserted that the S–P–S bond angles are larger than the P–S–P angles. 

Furthermore the torsion angles have an average value of 72.3(2) °, which indicates a 

deviation from planarity. Obviously the five membered ring is not able to form a half 

chair conformation as proposed by Falius[2]. To find a compromise between the 

occurring strains, the anion is arranged in an envelope conformation, which allows the 

lowest total strain for the structure (Figure 6). 
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Figure 6. Envelope conformation of the anion in 2. 

 

The unit cell contains two formula units of the P3S8
3- anion. These two entities are 

oriented in opposite direction and are adjacent. The emerging space is filled with 

pyridinium cations and pyridine molecules. In the crystal structure only weak 

electrostatic interactions can be found. In Figure 7 the described unit cell of 2 is 

shown. 

 

 

 

Figure 7. Four formula units and the cell edges of the unit cell of 2 with view along the a axis. 

Pyridinium cations and solvent molecules are omitted for clarity. Ellipsoids are drawn at 50% 

probability level. 
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Molecular and Crystal Structure of [pyH]4[P4S8] ∙ py (3) 

The pyridinium salt of the P4S8
4- anion was obtained by suspending P4, Li2S and S8 in 

pyridine and stirring at ambient temperature. 

 

Scheme 5. Synthesis of [pyH]4[P4S8] ∙ py (3) 

 

The salt 3 is rather insoluble in common organic solvents but not quite as sensitive 

towards moisture and air as 2. 

 

Compound 3 crystallizes as colourless plates in the monoclinic space group C2/c with 

four formula units in the unit cell. Due to a high disorder in the pyridinium cations and 

solvent molecules all structural parameters of these species are afflicted with a high 

standard deviation. Figure 8 shows the structure of the anion in 3 and selected atom 

distances and bond angles are listed. 

 

 

Figure 8. Structure of the anion in 3. Pyridinium and solvent molecules are omitted for clarity. 

Ellipsoids are drawn at 50% probability level. Selected atom distances [Å] and bond angles [°]: P1-

S1 1.983(2), P1-S2 1.976(2), P2-S3 1.979(2), P2-S4 1.997(2), P3-S5 1.982(2), P3-S6 1.980(2), 

P4-S7 1.986(2), P4-S8 1.976(2), P1-P2 2.279(2), P2-P3 2.275(2), P3-P4 2.293(2), P4-P1 

2.283(2);  

S1-P1-S2 120.4(2), S3-P2-S4 116.4(2), S5-P3-S6 120.3(2), S7-P4-S8 118.6(2), P1-P2-P3 90.2(1), 

P2-P3-P4 90.0(1), P3-P4-P1 90.0(1), P4-P1-P2 90.1(1). 
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The phosphorus atoms form a four membered ring. Each one is further coordinated 

by two sulfur atoms. Within the ring the four P–P–P angles have values between 

90.0(1)  and 90.2(1) °. Because of an average P–P–P–P torsion angle of 1.7(1) ° this 

motive is very close to a planar square. Furthermore the distances between the PS3
− 

units have an average value of 2.283(2) Å, which is elongated compared to a single 

bond (2.256(5) Å)[13]. This can be explained by repulsions between the phosphorus 

atoms and the occurring ring strain. For the literature-known compounds the same 

observations can be ascertained (Table 2). Though there are little aberrations which 

can be explained by the use of different counterions and therefore varying strong 

interactions, which influence the P–P distances as well. In Table 2, atom distances and 

bond angles of the four known P4S8
2- salts are listed and compared with those of 3. 

The eight P–S bond lengths are with an average value of 1.982(3) Å closer to a P–S 

double (1.954(5) Å)[13] than a single bond (2.11 Å)[14], which fits very well with those 

observed in [a-d]. The four pyridinium counterions stabilize the anion by weak 

interactions and due to their position the unit is electrostatically shielded from the 

outside forming single entities.  

 

Table 2 Comparison of atom distances and bond angles in 3 with literature-known salts of 

P4S8
2-. 

  3 [NH4]4[P4S8] ∙  
2 H2O [6] 

[Et3NH]4 

[P4S8] [8] 

[Et2H2N]4 

[P4S8] [9] 

[C5H12N]4 

[P4S8] [9] 

average distances [Å]  

P–S 1.982(2) 1.976(1) 1.983(1) 1.976(1) 1.981(1) 

P–P 2.283(2) 2.284(1) 2.308(1) 2.289(1) 2.293(2) 

average angles [°]      

S–P–S 118.9(2) 118.6(1) 117.2(1) 118.5(5) 118.5(4) 

P–P–P 90.1(1) 90.0(1) 90.0(1) 90.4(3) 90.0(3) 

Falius et al.[6], Badeeva et al.[8], Gubaidullin et al.[9]. 

 

The P4S8
4- anions form aligned chains in which the molecules have the same 

orientation. These entities are stacked sequentially alternated and the emerging space 

is filled by pyridine. In Figure 9 the unit cell of 3 is shown. 
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Figure 9. Unit cell of 3 with view along the c axis. Pyridinium and solvent molecules are omitted 

for clarity - Ellipsoids are drawn at 50% probability level. 

 

Conclusion 

Three new ionic compounds ([2,6-Me2C5H6N]2[P2S8] (1), [pyH]3[P3S8] ∙ 2.5 py (2) 

and [pyH]4[P4S8] ∙ py (3)) of the cyclic, eight sulfur atoms containing anions PnS8
n- (n 

= 2–4) have been prepared and their structures elucidated by single crystal X-ray 

diffraction.  

                 

    1           2            3 

In the series of anions of PnS8
n− (n = 2–4), a clear trend towards a decrease in ring 

size is observed with the increase of the phosphorus content. 
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 The syntheses of 1–3 present new, straightforward, reproducible and selective 

routes with good yields, using convenient and easily accessible starting materials. 

Furthermore the reaction conditions are rather mild. These results extend our 

knowledge concerning previous studies on cyclic thiophosphates and provide further 

evidence for the variety of possible salts containing the above mentioned anions. 

Therefore these fundamental achievements complement the knowledge in this 

research area and provide the basis for a systematic investigation of the family of 

thiophosphates in basic solution and detailed studies of their chemistry. 

 

 

Experimental Section 

General. Na2S was obtained from Sigma-Aldrich Inc., used as supplied without 

further purification and stored under inert gas atmosphere. P4S10 was commercially 

obtained (Riedel-de Häen) and was purified by extraction with CS2 before use. P4 was 

commercially obtained from ThermPhos. All solvents were dried using commonly 

known methods and freshly distilled before use. 31P NMR chemical shifts are referred 

to 85% H3PO4 as external standard. All spectra were measured, if not mentioned 

otherwise, at 25 °C. The %-data correspond to the intensities in the 31P NMR spectra 

with respect to the total intensity. The difference to 100 % belongs to not assignable 

signals. IR spectra were recorded on a PerkinElmer BX FT IR spectrometer equipped 

with a Smiths DuraSamplIR II diamond ATR unit. Transmittance values are 

qualitatively described as “very strong” (vs), “strong” (s), “medium” (m), “weak” (w) 

and “very weak” (vw). Raman spectra were recorded on a Bruker RAM II 

spectrometer equipped with a Nd:YAG laser (200 mW) operating at 1064 nm and a 

reflection angle of 180 °. The intensities are reported as percentages of the most 

intense peak and are given in parentheses. Low resolution mass spectra were 

recorded on a JEOL MStation JMS-700 with 4-nitrobenzyl alcohol as matrix for FAB 

measurements. Elemental analyses (CHNS) were performed with an Elementar 

Vario EL instrument. Due to the formation of glassy (P2O5)x(H2O)yC during measument, 

the values deviate considerably from the calculated ones. Melting and 

decomposition points were determined by differential scanning calorimetry (Linseis 

DSC-PT10, calibrated with standard pure indium and zinc). Measurements were 

performed at a heating rate of 5 °C min−1 in closed aluminum sample pans with a 
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0.1 mm hole in the lid for gas release to avoid an unsafe increase in pressure under a 

nitrogen flow of 20 mL min−1 with an empty identical aluminum sample pan as a 

reference. Melting points were checked with a Büchi Melting Point B-540 in open glass 

capillaries. 

X–ray Crystallography. The single–crystal X-ray diffraction data were collected 

using an Oxford Xcalibur3 diffractometer equipped with a Spellman generator (voltage 

50 kV, current 40 mA), Enhance molybdenum Kα radiation source (λ = 71.073 pm), 

Oxford Cryosystems Cryostream cooling unit, four circle kappa platform and a 

Sapphire CCD detector. Data collection and reduction were performed with 

CrysAlisPro.[16] The structures were solved with SIR97[17], SIR2004[18] , refined with 

SHELXL-97[19], and checked with PLATON[20], all integrated into the WinGX software 

suite[21]. The finalized CIF files were checked with checkCIF.[22] All non-hydrogen 

atoms were refined anisotropically. The hydrogen atoms were located in difference 

Fourier maps and placed with a C–H distance of 0.98 Å for C–H bonds. Intra- and 

intermolecular contacts were analyzed with DIAMOND (version 3.2i), thermal ellipsoids 

are drawn at the 50% probability level. Selected crystallographic data and refinement 

details for the structure determination of compound 1–3 are summarized in Table 3.  

 

 

[2,6-Me2C5H3NH]2[P2S8] (1): P4S10 (108.8 mg, 0.24 mmol) and sulfur (31.0 mg, 

0.96 mmol) were suspended in benzonitrile (1.5 mL) and refluxed until a yellow-

brownish solution with yellow precipitate was observed. Afterwards 2,6-lutidine 

(111 mL, 4 eq) was added. The now brown solution was another time refluxed for 1 h. 

After two days a small amount of colourless block shaped crystals of 1 could be 

obtained. 

31P{1H} NMR (PhCN, lutidine, rt): δ [ppm] = 128.7 (s, 21%), 119.1 (1, s, 24%), 

55.7 (1, s, 6%). 

 

[pyH]3[P3S8] ∙ 2.5 py (2): Na2S (0.42 g, 5.32 mmol) was added to a suspension of 

P4 (390.0 mg, 2.65 mmol) in pyridine (15 mL). The yellow mixture was stirred for 

30 min and P4S10 (1.18 g, 2.66 mmol) was added. After another 48 h of stirring at 

ambient temperature the orange solution was separated and dried in vacuo yielding 

yellow blocks of 2. (Yield: 875.3 mg, 1.1 mmol, 56% with respect to P4) 
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31P NMR (pyridine, rt): δ [ppm] = 170.1 (PS3
−, s, br, 34%) 134.3 (2, d, 1JPP = 15.1 Hz, 

39%), 85.0 (2, t, 1JPP = 15.1 Hz 18%). Mass spectrometry m/z (ESI+) = 743.5 

([C25H25N5P3S8]+), 742.5 ([C25H24N5P3S8]+), 586.6 ([C15H15N3P3S8]+), 585.6 

([C15H14N3P3S8]+), 506.5 ([C10H9N2P3S8]+), 446.9 ([H4NP3S8]+), 427.1 ([C5H4NP3S8]+), 

405.8 ([C3H6NP3S8]+), 389.9 ([C3H5P3S8]+), 303.1 ([C2H11NP2S6]+), 126.7 ([PS3]+). 

m/z (ESI-) = 210.0 ([H6NP2S4]−), 206.9 ([H3NP2S4]−), 190.9 ([P2S4]−). Raman 

(500 mW, rt): ν [cm−1] = 3060 (100), 1590 (47), 1218 (29), 1034 (68), 999 (89), 

473 (30), 362 (79). IR (200 mW, rt): ν [cm-1] = 3075 (vw), 3034 (v), 1927 (br, v), 

1869 (br, v), 1633 (v), 1609 (v), 1588 (m), 1572 (vw), 1530 (v), 1484 (m), 1453 

(w), 1437 (s), 1258(br, w), 1216 (w), 1147 (m), 1067 (m), 1031 (m), 1013 (v), 997 

(m), 914 (br, m), 748 (s)700 (vs).  DSC (5 °C/min): Tdec = 103.9 °C. 

 

[pyH]4[P4S8] ∙ py (3): P4 (610.0 mg, 4.9 mmol) was suspended in pyridine (48 mL) 

and S8 (1.58 g, 49.3 mmol) and Li2S (1.33 g, 29.0 mmol) were added. The solution 

was stirred over night at ambient temperature. Afterwards the green precipitate was 

removed and the dark green solution was dried in vacuo yielding colourless crystals of 

3. (Yield:  3585.2 mg, 4.6 mmol, 93.9% with respect to P4) 

31P NMR (THF, rt): δ [ppm] = 119.4 (s, 99%). Elemental analysis [P4S8][pyH]4∙py: 

calcd. C 38.50, N 8.98, H 3.75, S 32.89; found: C 34.93, N 8.19, H 2.68, S 34.62. 

Mass spectrometry m/z (ESI+) = 519.0 ([C8H16N2P4S8]+), 509.3 ([C7H18N2P4S8]+), 

465.3 ([C5H12NP4S8]+), 429.1 ([C5H6NP3S8]+), 427.1 ([C5H4NP3S8]+), 409.3 

([H4NP4S8]+), 343.3 ([C3H9NP3S6]+), 303.1 ([H6P3S6]+), 126.7 ([PS3]+). m/z (ESI-) = 

287.7 ([H2P3S6]−), 218.8 ([H3NP2S4]−). Raman (500 mW, rt): ν [cm−1]= 3062 (7), 

1597 (3), 1574 (3), 1224 (3), 1032 (6), 1007 (9), 992 (7), 654 (4), 474 (59), 439 

(11), 248 (13), 220 (100), 187 (8), 154 (82). IR (200 mW, rt): ν [cm-1] = 3087 (w), 

3055 (br, w), 2996 (w),1931 (vw), 1871 (vw), 1627 (w), 1595 (s), 1580 (w), 1487 

(m), 1440 (s), 1216 (m), 1148 (m), 1097 (br, m), 1068 (m), 1033 (m), 1000 (s), 940 

(m), 750 (s), 698 (vs), 674 (vw). DSC (5 °C/min): Tdec = 123.1 °C. 
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Table 3 Structural and refinement data of compounds 1, 2, and 3. 

 1 2 3 

formula C7H10NPS4 C27.5H29.5N5.5P3S8 C50H58N10P8S16 

M [g/mol] 267.37 786.46 1558.78 

crystal system monoclinic triclinic monoclinic 

space group P21/n P−1 C2/c  

colour/Habit colourless block yellow block colourless plate 

crystal size 0.2x0.08x0.05 0.2x0.15x0.1 0.25x0.15x0.1 

a [Å] 9.2222(5) 8.619(5) 17.2108(10) 

b [Å] 7.9190(4) 13.476(5) 18.6899(8) 

c [Å] 15.9445(10) 16.177(5) 22.4809(12) 

 [°]  98.313(5)  

 [°] 96.079(5) 94.653(5) 103.826(6) 

 [°]  104.000(5)  

V [Å3] 1157.87(10) 1790.7(14) 7021.9(6) 

Z 4 2 4 

calc[g/cm−3] 1.534 1.459 1.474 

 [mm−1] 0.914 0.662 0.711 

F(000) 552 812 3216 

 range [°] 4.12–24.98 4.31–25.35 4.13–23.50 

T [K] 173(2) 173(2) 100(2) 

Index ranges −10 ≤ h ≤ 10 

−9 ≤ k ≤ 9 

−18 ≤ l ≤ 18 

−10 ≤ h ≤ 10 

−15 ≤ k ≤ 16 

−19 ≤ l ≤ 18 

−12 ≤ h ≤ 20 

−13 ≤ k ≤ 22 

−27 ≤ l ≤ 24 

data collected 10202 12687 10786 

data unique 2019 6444 5092 

data obs. 1322 3229 2475 

R (int) 0.0564 0.0694 0.0602 

GOOF 0.915 0.998 0.965 

R1, wR2 (I>2I0) 0.0501, 0.1244 0.0790, 0.1483 0.0589, 0.0906 

R1, wR2 (all data) 0.0776, 0.1318 0.1660, 0.1899 0.1407, 0.1207 

larg. diff peak/ hole 

(e/Å) 

1.590 

−0.357 

0.796 

−0.328 

0.640 

−0.382 
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The Truth about the 

Trithiometaphosphate PS3
−
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Two new salts containing the P2S6
2- anion have been prepared as well as three 

new salts of the donorstabilized trithiometaphosphate PS3
−. As educts, 

phosphorus sulfides (P4S3, P4S10), Na2S2 and elemental sulfur in common 

organic solvents like THF or acetonitrile are used. We are able to contribute 

new results to the question whether and if so how, the trithiometaphosphate 

anion can be stabilized in the crystal. Temperature dependent 31P NMR 

spectroscopy is performed, showing an equilibrium between the adduct 

stabilized and the free monomeric trithiometaphosphate anion in solution.  
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Introduction 

Comparing the variety of known oxophosphate anions with the one of 

thiophosphates, a rather great diversity for the latter can be found. This occurs due to 

the similar energies of the P–P, P–S and S–S bonds (215, 230, 213 KJ/mol) in 

contrary to the P–O bond (335 kJ/mol).[1,2] So it can be understood that even mono- 

and polycyclic phosphorus–sulfur anions can be formed by different combinations of 

the three possible linkages compared to only one possibility in the P–O anions, with a 

few exceptions. Despite this aspect, the formation of binary thiophosphates containing 

a central phosphorus atom with a low coordination number (σ2 or σ3) in the oxidation 

state III and V, respectively, is a rather unexplored area. These compounds show an 

electronic gap at the phosphorus atom and are therefore rather unstable. Recently we 

could contribute to the results on the stabilization of compounds containing such a 

phosphorus atom. We showed that oligomerisation can be avoided by filling the 

electronic gap at the phosphorus by coordination with a base like pyridine.[3] Most of 

the compounds containing a σ3λ5 phosphorus atom, however, can only be synthesised 

and isolated as the salts of their stable oligomers (Figure 1).  

For example, in the PS2
− anion the twofold coordination of the phosphorus atom is 

avoided by forming the cyclic oligomers P4S8
4−, P5S10

5−, P6S12
6−.[4] 

 

Figure 1. Binary phosphorus-sulfur anions. 
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According to the literature (see below), the tritihiometaphosphate anion seems to be 

an exception. But also the corresponding cyclic oligomers P2S6
2-, P3S9

3- and P4S12
4- 

have been described in the literature.[6]  

The phosphorus atom in PS3
− has the formal oxidation state +V, but is only threefold 

coordinated and has therefore an unsaturated coordination sphere. One possibility to 

stabilize compounds with a phosphorus atom in this situation was investigated by 

Yoshifuji et al..[11] They could show that big bulky substituents can stabilize a σ3λ5 

phosphorus atom (Figure 5). 

 

Figure 2. Example of a ditihiooxophosphorane stabilized by the bulky substituent supermesityl. 

 

But this sterical protection is missing in the PS3
– anion. Due to this reason, the 

synthesis of the trithiometaphosphate anion PS3
– is a very appealing preparative 

challenge. Obviously, Roesky and coworkers had the same idea and tried to find an 

answer for the problem.[5]  They investigated the nucleophilic degradation of P4S10 

with KCN/H2S in acetonitrile which resulted in the formation of the (NCPS2)2S2− anion, 

isolated as the nPr4N+ salt on addition of nPr4NBr in H2O/MeOH (Scheme 1). 

 

Scheme 1. Synthesis and isolation of a trithiometaphosphate salt by Roesky. 
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Most of the contributions to the investigation of the monomeric and dimeric 

trithiometaphosphate anions, the PS3
- and P2S6

2−, originate from the group of 

Brockner.[6d-i, 6m,n, 7] Our group showed that the selenium analogue, the PSe3
− anion, 

can be obtained in the solid state by filling the electronic gap at the phosphorus by 

coordination with a base.[8] We also determined the crystal structure of this anion as 

pyridine adduct in 2009.[9] For the sulfur analogue our group proposed the same 

stabilization, as we observed a 31P NMR shift of 300 ppm for the trithiometaphosphate. 

This anion was synthesised by the reaction of P4S3, Li2S2 and elemental sulfur in 

pyridine. The stabilization of this molecule could also be shown by the X-ray 

characterization of the Me2NH2
+, Et2NH2

+ and pyH+ salt of the pyridine adduct of the 

PS3
− , alongside with the discussion on the equilibrium between the mono-, di- and 

trimeric form of this unusual anion.[10] Dimitrov et al. claimed that at least one 

hydrogen bond between the cationic N–H group and the sulfur atoms is crucial for the 

stabilization of the adduct in the crystal. They further stated that at high temperature 

a second 31P NMR signal appears, which can be ascribed to the base free PS3
−. 31P 

NMR chemical shifts of 129–130 ppm for py→PS3
− and 210–230 ppm for the pyridine 

free PS3
− were reported.[10] 

Brocker et al. used high temperature synthesis starting from the elements 

phosphorus, sulfur and the alkali metals, yielding solids which are mostly insoluble in 

common solvents. In the case of Na2P2S6 and K2P2S6 they succeeded in dissolving the 

compounds in acetronitrile by adding the corresponding crown ether.[6g] Their 

characterization relied mostly on the use of X-ray diffraction methods and Raman 

spectroscopy. Interestingly, the Raman spectrum of a molten alkali bromide Tl2P2S6 

mixture measured at different temperatures indicated a dissociation of the anion into 

the monomeric form. Brocker et al. were therefore the first to postulate an equilibrium 

between the monomeric and dimeric form.  

In the following, this suggestion is confirmed by using 31P,31P EXSY NMR 

spectroscopy to investigate a solution of new P2S6
2− salts soluble in common organic 

solvents. During our studies, we were able to synthesise new salts of the two anions 

PS3
− and P2S6

2−, both of which are discussed in terms of single crystal X-ray 

diffraction. 
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Results and Discussion 

 

Molecular and Crystal Structures of [Ph4P]2[P2S6] · py (1) and 

[nBu4N]2[P2S6] · THF (2) 

The dimeric form of the trithiometaphosphate, the P2S6
2− anion, is easily accessible 

by mixing stoichiometric amounts of P4S3, Na2S2, elemental sulfur and the bromide 

salt of the counterion. For 1, pyridine was used as solvent and the educts were stirred 

for 1 d. In the case of 2, the solvent used was THF and the product was recrystallized 

from acetonitrile.  

Yellow block shaped crystals of 1, suitable for single crystal X-ray diffraction, could 

be isolated from the yellow reaction solution. Compound 1 crystallizes in the 

monoclinic space group P 21/c with four formula units in the unit cell. In Figure 3, the 

molecular structure of 1 is depicted, and selected atom distances and bond angles are 

listed. 

 

Figure 3. Molecular structure of 1 in the crystal. Thermal ellipsoids are set at 50% probability 

level. Hydrogen atoms are omitted for clarity. Selected atom distances [Å] and bond angles [°]: 

P2–S1/P2–S2 1.962(1)/1.964(1), P2–S3i/P2–S3 2.144(1)/2.159(1); S1–P2–S2 118.7(1), S1–P2–

S3i/S1–P2–S3 111.4(1)/111.3(1), S2–P2–S3i/S2–P2–S3 110.7(1)/110.0(1), S3i–P2–S3 91.5(1), 

P2–S3–P2 88.5(1). 

 

The P2S6
2− anion lies on a crystallographic inversion centre which is located in the 

middle of the four-membered ring. Therefore half of the anion is generated by 

symmetry. The exocyclic bonded sulfur atoms are arranged nearly orthogonal to the 
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plane of the four-membered P2S2 ring. The bond lengths between the phosphorus and 

the exocyclic sulfur atoms are 1.982(1) Å (P2–S1) and 1.964(1) Å (P2–S2) and 

therefore closer to a P–S double (1.922(14) Å) than a single bond, as found in 

phosphorus(V) compounds.[11] The endocyclic P–S distances correspond with 

2.159(1) Å (P2–S3) and 2.143(1) Å (P2(i)–S3) to P–S single bonds. The phosphorus 

atom is surrounded in a distorted tetrahedral arrangement by four sulfur atoms. The 

endocyclic S3–P2–S3i angle is 91.5(1)°, whereas the exocyclic S–P–S angles range 

from 110.0° to 118.7°. The angle at the endocyclic sulfur atom P2–S3–P2(i) is 

88.5(1)°.  

There are no significant interactions in the structure other than the electrostatic 

attraction between cations and anions. The pyridine solvent molecules are located 

between the cations. 

 

The compound [nBu4N]2[P2S6] · THF (2) crystallizes in the form of yellow blocks in 

the triclinic space group P−1. The unit cell contains three crystallographically 

independent P2S6
2−. 

The conformation of the P2S6
2– anion does not differ from the one reported for 

compound 1 or literature-known compounds. The anion consists of a planar four-

membered ring formed by two phosphorus and two sulfur atoms. Four further sulfur 

atoms are bonded exocyclically to the two phosphorus atoms standing orthogonal to 

the ring plane. The average endocyclic P–S distance is 2.149(1) Å, while and the 

exocyclic one is shorter with a value of 1.964(1) Å. Both phosphorus atoms are 

distorted tetrahedrally surrounded by four sulfur atoms. The average angles are Sexo–

P–Sexo 116.6(1)°, Sexo–P–Sendo 111.6(1)°. Figure 4 shows the molecular structure of 2 

and selected parameters of the anions are listed. 

As in the case of 1, in 2 no significant interaction other than the electrostatic 

attraction between cations and anions can be found in the crystal. 

All important crystallographic and refinement data for the crystal structures are 

provided in Table 2. 
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Figure 4. Molecular structure of 1 in the crystal. Thermal ellipsoids are set at 50% probability 

level. Hydrogen atoms are omitted for clarity. Symmetry operations: i = 1–x, 2−y, 1−z; ii = −x, 

2−y, 2−z. Selected atom distances [Å] and bond angles [°]: P1–S1/P1–S2 1.972(2)/1.968(2), P1–

S3/P1–S4 2.145(2)/2.149(2), P2–S3/P2–S4 2.148(2)/2.150(2), P2–S5/P2–S6 1.970(2)/ 1.967(2), 

P3–7/P3–S8 1.961(2)/1.969(2), P3–S9 1.967(2), P4–S10/P4–S11 1.968(2)/ 1.967(2) , P4–S12 

2.149(2); S1–P1–S2/S5–P2–S6 117.0(1)/116.4(1), S1–P1–S3/S1–P1–S4 110.9(1)/110.3(1), S2–

P1–S3/S2–P1–S4 111.8(1)/113.0(1), S5–P2–S3/S5–P2–S4 111.0(1)/112.4(1), S6–P2–S3/S6–P2–

S4 112.2(1)/111.2(1), S3–P1–S4/S3–P1–S4 91.1(1)/91.0(1) P1–S3–P2/P1–S4–P2 

88.5(1)/88.4(1), S7–P3–S8 117.1(1), S7–P3–S9/S7–P3–S9i 112.8(1)/110.0(1), S8–P3–S9/S8–P3–

S9i 111.3(1)/111.0(1), S9–P3–S9i 91.0(1), P3–S9–P3i 89.2(1), S10–P4–S11 116.3(1), S10–P4–

S12/S10–P4–S12ii 112.2(1)/111.3(1), S11–P4–S12/S11–P4–S12ii 111.5(1)/111.7(1), P4–S12–P4ii 

88.9(1). 
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31P NMR Spectroscopic Investigations 

As 2 is soluble in common polar solvents like pyridine, acetonitrile or propionitrile, it 

was now possible to determine the 31P NMR chemical shift of this anion, which has not 

been reliably reported until now.[2b] Surprisingly the 31P NMR spectrum consists of two 

signals with δ31P = 297.5 ppm and δ31P = 30.2 ppm (Figure 5). 

 

Figure 5. Observed 31P{1H} NMR spectrum of [nBu4N]2[P2S6] · THF dissolved in benzonitrile 

(0.16 m, 25 °C, 4096 scans with a PD = 0.5 s, 2 h measuring time, υ0 = 161.8347 MHz, 

broadband 1H decoupling, 0.5 Hz line broadening). 

 
 

The extremely unusual low field shift of 298.2 ppm for thiooxophosphoranes has 

been mentioned by Yoshifuji et al. before.[11] Those molecules contain a central 

phosphorus atom in a similar bonding situation as in the trithiometaphosphate PS3
−. 

Based on the assumption that the dimeric anion spontaneously dissociates into the 

PS3
−, the 31P NMR signal at 297.5 ppm was ascribed to the trithiometaphosphate. The 

31P NMR signal at 30.2 ppm was ascribed to the dimer P2S6
2−. 

P

S

S S
P
S

S
P

S

S S

S
2

 

Scheme 2. Equilibrium between the monomeric trithiometaphosphate PS3
− and the corresponding 

dimer P2S6
2−. 
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The 31P, 31P EXSY NMR spectrum (Figure 6) reveals that, because of the existence of 

crosspeaks between the two signals, interconversion between the 

trithiometaphosphate and the corresponding dimer is slow on the NMR time scale at 

ambient temperature (Scheme 2).  

 

Figure 6. 31P, 31P EXSY NMR spectrum of the P2S6
2− anion dissolved in propionitrile. Crosspeaks 

are marked with arrows (0.16 m, 25 °C, matrix 2048 × 2048, mixing time 0.5 sec). 

 

To justify the assignment of the 31P NMR chemical shift of the monomeric 

trithiometaphosphate PS3
− quantum chemical calculations at the MPW1PW91 level of 

theory using an augmented polarized quadruple-zeta basis set (aug-cc-pVQZ) were 

performed for phosphorus. The obtained 31P NMR chemical shift for PS3
− was 

299.2 ppm referring to H3PO4, which corresponds very well to the experimentally 

observed 31P NMR chemical shift of 297.5 ppm for neutral dithioxophosphoranes.[11] So 

the calculations underline our assumption about the equilibrium between the mono- 

and dimeric form of this unusual anion in the solution. 
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Molecular and Crystal Structure of [pyH][pyPS3] (3), 

[nBu4N][(CH3)2NC5H4NPS3]·EtCN (4) and [(N-MeIm)2H][N-

MeImPS3] (5) 

Colourless plates of (pyH)(pyPS3) 3 could be obtained by refluxing P4S10 in pyridine 

and subsequent addition of water. The compound crystallizes in the monoclinic space 

group P21/c with four formula units in the unit cell. Figure 7 shows the molecular 

structure and gives selected atom distances and bond angles. 

 

Figure 7. Molecular structure of 3 in the crystal. Thermal ellipsoids are set at 50% probability 

level. Hydrogen atoms are omitted for clarity. Selected atom distances [Å] and bond angles [°]: 

P1–S1 1.989(1), P1–S2 1.985(2), P1–S3 1.979(2), P1–N1 1.920(2), S1–P1–S2 114.6(1), S2–P1–

S3 117.2(2), S3–P1–S1 115.8(2), S1–P1–N1 103.1(2), S2–P1–N1 102.4(1), S3–P1–N1 100.2(1). 

 

After dissolving the yellow powder of [nBu4N]2P2S6 (2) in propionitrile, the addition 

of 4-dimethylaminopyridine, and storing the reaction solution at −25°C, yellow block 

shaped crystals of [4-Me2NC5H4NPS3)][nBu4N] · EtCN (4) were obtained. Compound 4 

crystallizes in the triclinic space group P−1 with two formula units in the unit cell. 

Figure 8 shows the molecular structure of 4 and selected atom distances and bond 

angles are listed. 

 

Colourless plate shaped crystals of [(N-MeIm)2H][N-MeImPS3] (5) were obtained by 

refluxing P4S10 in N–methyl imidazole. Compound 5 crystallizes in the monoclinic 

space group P21/c with four formula units in the unit cell. Figure 9 shows the 

molecular structure and gives selected atom distances and bond angles.  
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Figure 8. Molecular structure of 4 in the crystal. Thermal ellipsoids are set at 50% probability 

level. Hydrogen atoms are omitted for clarity. Selected atom distances [Å] and bond angles [°]:P1–

S1 1.983(1), P1–S2 1.986(1), P1–S3 1.984(1), P1–N1 1.886(1), S1–P1–S2 116.2(1), S2–P1–S3 

114.9(1), S3–P1–S1 115.9(1), S1–P1–N1 102.7(1), S2–P1–N1 101.1(1), S3–P1–N1 102.9(1). 

 

Figure 9. Molecular structure of 5. Ellipsoids are drawn at the 50% probability level. Hydrogen 

atoms are omitted for clarity. Selected atom distances [Å] and bond angles [°]: P1–S1 1.986(2), 

P1–S2 1.991(2), P1–S3 1.998(3), P1–N1 1.836(3), S1–P1–S2 117.2(1), S2–P1–S3 113.8(2), S3–

P1–S1 115.1(2), S1–P1–N1 101.7(2), S2–P1–N1 102.9(3), S3–P1–N1 103.3(2); 

N6–H19 0.91(5), H···N4i 1.76(5), N6···N4i 2.669(6); N6–H19···N4i 177(5). 
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In the structures 3–5 the phosphorus atom is surrounded distorted tetrahedrally by 

three sulfur atoms and one molecule of the coordinating aromatic nitrogen-containing 

base. In Table 1, the average values of the structural parameters are listed for ease of 

comparison. The P–S distances are with average values of 1.985(2) Å in 3, 1.984(1) Å 

in 4 and 1.994(3) Å observed in 5 well within the range for values expected for the 

weighted mean of two P–S double and one single bond (1.922(14) Å[12] and 2.11 Å[13], 

respectively). The distance expected for a P–N single bond is 1.652(24) Å[12]. The 

values found in compounds 3–5 are, however, longer with 1.920(2), 1.886(1) and 

1.836(3) Å respectively, indicating only weak coordination of the pyridine molecule to 

the phosphorus. Strongly elongated P–N distances similar to these have also been 

reported for the pyridine adduct of PS3
− (1.906(2) Å),[10] and the compounds py2P2S5 

(1.862(6) Å and 1.865(3) Å)[3a], the py2P2S7 (1.869(3) Å and 1.865(3) Å)[3b], in which 

an analogue bonding situation is found. The occurrence of elongated P–N bond in 

trichalcogenophosphate-pyridine anions has already been evaluated theoretically by 

Klapötke et al..[14] 

What attracts attention is the decrease in the P–N distance from 3 to 5. This can be 

explained by the increase of the basicity of the coordinating molecule and therefore its 

stronger electron donating character.  

Although an almost tetrahedral environment around the phosphorus atom might be 

expected, the sums of the S–P–S angles indicate a strong deviation towards a planar 

PS3 arrangement with values of 347.6°, 347.0° and 346.1°. A similar situation is 

found for py2P2S5
[3a], py2P2S7

[3b] and the pyridine adduct of the PS3
−[10] anion with 

values of 341.8°, 344° and 347°, respectively. This provides further evidence for a 

weak coordination of pyridine to phosphorus and also reflects the difference in the P–N 

distances of 3, 4 and 5. A decrease of this bond length leads to a trend of the 

surrounding of the phosphorus towards a tetrahedral arrangement. 

Table 1. Average values of structural parameters in the anions of 3–5. 

 3 4 5 

P–S 1.985(2) 1.984(1) 1.994(3) 

P–N 1.920(2) 1.886(1) 1.836(3) 

ΣS–P–S 347.6 347.0 346.1 

 

Comparing the structures 3–5 with the salts of the pyridine adduct of this anion 

described by Dimitrov et al., not only are the cell parameters different, but also the 
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whole build-up in the crystal. Dimitrov claimed that at least one hydrogen bond 

between the cationic N–H group and the sulfur atoms is crucial for the stabilization of 

the adduct in the crystal. He observed two P–S distances with similar values of 

1.980(2) Å and 1.986(2) Å. However, the third one is 2.004(1) Å, which occurs due to 

the formation of a N–H···S interaction between the pyridinium cation and the PS3
− 

entity. The values are 3.271(1) and 3.396(1) Å for the N···S distances, which is in the 

range of the sum of the van der Waals radii of nitrogen and sulfur (3.37 Å)[15] 

However, this interaction could not be observed in the structure of 3. The shortest 

N···S distance found has a value of 3.693(3) Å and can therefore not be regarded as 

an electrostatic interaction, much less a hydrogen bond. This also explains the 

elongation of the P–N bond length in 3 compared to the one described by Dimitrov 

(1.906(2) Å)[10]. Also in the structure 4, no interaction of the sulfur atoms with the NH 

groups of the cations could be observed. In 5, the shortest N···S distance found has a 

value of 3.840(4) Å, and in 4, the value is as high as 4.382(2) Å. 

This shows that the assumption of Dimitrov regarding the stability of the PS3
− adduct 

in the crystal cannot be confirmed, and that despite the lack of an electrostatic        

N–H···S interaction these compounds can be isolated and are stable in the solid state. 

All important crystallographic and refinement data for the crystal structures are 

provided in Table 2. 

Table 2. Details for X-ray data collection and structure refinement for 1–5. 

 1 2 3 4 5 

CCDC 967693 963617 937611 967697 938880 

Empirical 

formula 

C29H25NP2S3 C132H268N8O 

P8S24 

C10H11N2PS3 C26H51N4PS3 C12H19N6PS3 

Formula mass 545.65 3000.74 286.36 546.86 374.48 

T[K] 100(2) 100(2) 173(2) 200(2) 173(2) 

Crystal size 

[mm] 

0.3×0.3×0.25 0.4×0.12×0.08 0.25×0.18× 

0.09 

0.3×0.15×0.1 0.25×0.1×0.02 

Crystal 

description 

yellow block yellow needle yellow block colourless  

block 

colourless plate 

Crystal system monoclinic triclinic monoclinic triclinic monoclinic 

space group P21/c P−1 P21/n P−1 P21/c 

a [Å] 9.41741(11) 11.1073(8) 7.6813(3) 10.7269(5) 7.7400(4) 

b [Å] 12.31227(13) 15.4662(11) 21.2394(7) 10.8430(4) 9.4680(6) 

c [Å] 23.2297(3) 27.2591(19) 8.4530(3) 14.7239(6) 25.132(2) 
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 1 2 3 4 5 

 [°]  97.892(7) 90 98.584(3) 90 

 [°] 96.0144(11) 96.433(6) 109.272(4) 102.892(4) 95.083(6) 

 [°]  106.977(8) 90 105.500(4) 90 

V [Å3] 2678.64(5) 4378.7(5) 1301.79(8) 1568.40(13) 1834.5(2) 

Z 4 1 4 2 4 

calc[g/cm3] 1.353 1.138 1.461 1.158 1.356 

 [mm−1] 0.416 0.409 0.666 0.308 0.496 

F(000) 1136 1628 592 596 784 

θ range [°] 3.75–27.00 3.71–32.58 4.23–32.50 3.66– 27.00 4.33–25.96 

Index ranges −12≤h≤12 

−15≤k≤ 15 

−29≤l≤29 

−13≤h≤13 

−18≤k≤18 

−32≤l≤32 

−10≤h≤10 

−28≤k≤28 

−11≤l≤11 

−13≤h≤13 

−13≤k≤13 

−18≤l≤18 

−9≤h≤9 

−11≤k≤9 

−31≤l≤25 

Reflns.      

  collctd. 

 

28478 

 

41863 

 

15434 

 

17264 

 

7462 

  obsd. 4832 10500 2886 4416 2189 

  unique 5827 15854 3219 6817 3735 

Rint 0.0287 0.0417 0.0239 0.0345 0.0712 

R1, wR2 [I > 

2σ] 

0.0368, 

0.0875 

0.0406, 

0.0962 

0.0252, 

0.0630 

0.0376, 

0.0873 

0.0622, 

0.1164 

R1, wR2 [all 

data] 

0.0483, 

0.0950 

0.0714, 

0.1110 

0.0297, 

0.0659 

0.0693, 

0.0973 

0.0930, 

0.1234 

GOOF on F2 1.052 0.975 1.053 0.928 0.966 

larg. diff 

peak/hole 

(e/Å) 

1.203 

−0.416 

0.872,  

−0.766 

0.300 

−0.191 

0.550 

−0.285 

0.372 

−0.376 

 

 

Temperature Dependent 31P NMR Spectroscopy 

The behaviour of 4 dissolved in propionitrile was investigated at different 

temperatures using 31P NMR spectroscopy. The appearance of the signal for the free 

monomeric anion at higher temperatures at the chemical shift reported by Dimitrov et 

al. could not be confirmed by our study. The 31P NMR spectra of 4, observed at 

different temperatures are shown in Figure 10.  

The 31P NMR signal of the anion in  4 shifts from high field (δ31P = 138.1 ppm) at low 

temperature (–80 °C) to lower field (δ31P = 286.6 ppm) at high temperature (80 °C). 
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Interestingly, the signal converges to the one observed for the free monomeric 

trithiometaphosphate anion in propionitrile at 297.5 ppm. As this solvent has a boiling 

point at about 90 °C, it was not possible to measure 31P NMR spectra above 80 °C.  

 

Figure 10. 31P{1H} NMR spectra of 4 dissolved in propionitrile at different temperatures (0.1 m, 

1024 scans with a PD = 0.5 s, broadband 1H decoupling). 

 

Nevertheless the signal observed for 4 in the 31P NMR spectra at different 

temperatures can be interpreted as an average signal between the adduct stabilized 

trithiometaphosphate anion and the free monomeric one. Depending on the 

temperature, the equilibrium between these two compounds, is either on the side of 

the adduct (at low temperatures), or on the side of the free anion (at high 

temperatures) (Scheme 3).  

 

Scheme 3. Temperature dependent equilibrium between the adduct stabilized 

trithiometaphosphate anion and the free monomeric trithiometaphosphate anion. 
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When 5 is dissolved in propionitrile and the solution is investigated by 31P NMR 

spectroscopy at different temperatures, the observations do not differ significantly 

from those discussed above (Figure 11). 

 

 

Figure 11. 31P{1H} NMR spectra of 5 dissolved in propionitrile at different temperatures (0.1 M, 

1024 scans with a PD = 0.5 s, broadband 1H decoupling). 

 

The 31P NMR signal is shifted from high field (δ31P = 122.6) at low temperatures      

(–80 °C) to low field (δ31P = 297.0 ppm) at 80 °C. The 31P NMR chemical shift at 

80 °C corresponds to the free monomeric trithiometaphosphate anion PS3
– as already 

shown before. This is conclusive evidence for the existence of a temperature 

dependent equilibrium between the adduct stabilized trithiometaphosphate and the 

free monomeric anion in solution. 

In contrast, at –80 °C the equilibrium is almost completely on the side of the adduct 

stabilized trithiometaphosphate anion in both cases because the 31P NMR shifts at –

50 °C don´t differ significantly to the values at –80 °C. 
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Conclusion 

Despite several investigations on the existence and stability of the 

trithiometaphosphate anion (PS3
−) described in the literature, there is still a lot of 

mystery connected to this simple, but intriguing anion. Our results show clearly, that 

PS3
− forms spontaneously and is stable as the monomer in solution.  

The thiophosphate anion P2S6
2−, formally the dimer of the PS3

−, turns out to be an 

ideal precursor for the monomeric form. Salts with organic cations (Ph4P+, nBu4N+) 

were readily obtained from the reaction of P4S3 with Na2S2 and elemental sulfur in the 

presence of the bromide salts of the cations. In contrast to metal salts of this anion, 

(like K2P2S6 or Na2P2S6), they are rather soluble in common polar organic solvents like 

pyridine, acetonitrile or propionitrile. In solution the P2S6
2− anion spontaneously 

dissociates and forms an equilibrium with the monomeric trithiometaphosphate 

 

The presence of this equilibrium has been proven without any doubt by a 31P,31P 

EXSY 2D-experiment. The 31P NMR chemical shift of the PS3
− anion 

(δ31P = 297.5 ppm) is in accordance with calculated value and also with the values 

observed for dithioxophosphoranes.  

The spontaneous formation of the PS3
− anion is nearly as remarkable as the low 

electrophilicity, which is quite unexpected for a σ3λ5 phosphorus atom. With strong 

nitrogen bases like pyridine (3), p-dimethylaminopyridine (Steglich´s base) (4) and             

N-methylimidazole (5) only weak adducts are formed. This is clearly demonstrated by 

variable temperature 31P NMR spectroscopy in solution and by strongly elongated P–N 

distances within the adducts in the solid state.  

In contrast to statements in the literature, our results show that hydrogen bonding 

between the sulfur atoms and the cations is not required to stabilize the adducts in the 

solid state. 
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3    4   5 

With these experimental results it becomes evident that the trithiometaphosphate 

anion exists as a stable species in solution. The adducts of PS3
− provide a convenient 

source of this anion and open the door to a systematic investigation of its reactivity. 

 

 

Experimental Section 

General conditions. All reactions were carried out under inert gas atmosphere 

using Argon (Messer Griesheim, purity 4.6 in 50 L steel cylinder) and working with 

Schlenk techniques. The glass vessels used were stored in a 130 °C drying oven. 

Before filling they were flame dried in vacuo at 10−3 mbar. Elemental sulfur was used 

as received (Acros Organics). P4S10 and P4S3 were commercially obtained (Riedel–de 

Häen) and purified by extraction with CS2 before use. All other chemicals were used as 

obtained. The solvents were dried with commonly known methods and freshly distilled 

before use. NMR Spectroscopy. NMR spectra were recorded using a Jeol EX 400 

Eclipse instrument operating at 161.997 MHz (31P). Chemical shifts are referred to 

85% H3PO4 as external standard. If not mentioned otherwise, all spectra were 

measured at 25 °C. The % data correspond to the intensities in the 31P NMR spectra 

with respect to the total intensity. The difference to 100% belongs to not assignable 

signals. Mass Spectrometry. The mass spectrometry was performed with a MStation 

JMS 700 (Jeol). Measurements were carried out using the ionisationmethode 

DEI+/EI+. This method involves the problem of exposing the compounds to air, while 

embedding them into the matrix (p–nitroalcohol). IR Spectroscopy. The spectra 

were recorded using a PerkinElmer Spektrum one FT–IR instrument (KBr); Perkin–

Elmer Spectrum BXII FT–IR instrument equipped with a Diamant–ATR Dura Sampler 

at 25 °C (neat). Raman spectra were recorded on a Bruker RAMII Raman instrument 



Trithiometaphosphate 

63 
 

(λ = 1064 nm, 200 mW, 25 °C) equipped with D418–T Detector at 200 mW at 25 °C. 

Melting and decomposition points were determined by differential scanning 

calorimetry (Linseis DSC-PT10, calibrated with standard pure indium and zinc). 

Measurements were performed at a heating rate of 5 °C min−1 in closed aluminum 

sample pans with a 0.1 mm hole in the lid for gas release to avoid an unsafe increase 

in pressure under a nitrogen flow of 20 mL min−1 with an empty identical aluminum 

sample pan as a reference. Melting points were checked with a Büchi Melting Point B-

540 in open glass capillaries. 

 

X–ray Crystallography. The single–crystal X-ray diffraction data were collected 

using an Oxford Xcalibur3 diffractometer equipped with a Spellman generator (voltage 

50 kV, current 40 mA), Enhance molybdenum Kα radiation source (λ = 71.073 pm), 

Oxford Cryosystems Cryostream cooling unit, four circle kappa platform and a 

Sapphire CCD detector. Data collection and reduction were performed with 

CrysAlisPro.[16] The structures were solved with SIR97[17], SIR2004[18] , refined with 

SHELXL-97[19], and checked with PLATON[20], all integrated into the WinGX software 

suite[21]. The finalized CIF files were checked with checkCIF.[22] All non-hydrogen 

atoms were refined anisotropically. The hydrogen atoms were located in difference 

Fourier maps and placed with a C–H distance of 0.98 Å for C–H bonds. Intra- and 

intermolecular contacts were analysed with DIAMOND (version 3.2i), thermal ellipsoids 

are drawn at the 50% probability level. Selected crystallographic data and refinement 

details for the structure determination of compounds 1–5 are summarized in Table 2. 

CCDC 967693, 963617, 937611, 967697, 938880 contains the supplementary 

crystallographic data for compounds 1–5. These data can be obtained free of charge 

from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 

 

 [Ph4P]2[P2S6]· py (1): P4S3 (880 mg, 4 mmol), Na2S2 (881 mg, 8 mmol) and 

sulfur (641 mg, 20 mmol) in pyridine (40 mL) were stirred for 24 h at room 

temperature yielding a yellow solution. Ph4PBr (6700 mg, 16 mmol) was added and 

the white precipitate of NaBr removed by filtration. The orange reaction solution was 

stored at +4 °C. After five days yellow crystals of [Ph4P]2[P2S6] · py were obtained. 

(Yield: 2.83 g, 5.2 mmol, 65%)  



PART I – Chapter 2 

64 
 

31P{1H} NMR (THF, rt): δ [ppm] = 237.9 (pyPS3
−, 83%),  128.8 (P2S7

2−, 36%). 

Tdec: decomposition at 173°C. 

 

[nBu4N]2[P2S6]·THF (2): P4S3 (4.4 g, 20.0 mmol), Na2S2 (3.2 g, 40.0 mmol) and 

sulfur (3.2 g, 12.5 mmol) were stirred in THF (80 mL) at room temperature. After one 

day, a solution of nBu4NBr (25.8 g, 80.0 mmol) in acetonitrile (20 mL) was added. The 

white precipitate of NaBr was removed and the yellow solution was stored at –25 °C. 

Within 24 h, yellow crystals of [nBu4N]2[P2S6]·THF formed, which were separated, 

washed twice with 10 mL of cold THF and dried in vacuo. (Yield: 15.67 g, 6.42 mmol, 

32 % with respect to P4S3)   

31P{1H} NMR (THF, rt): δ [ppm] = 297.5 (PS3
−, 38%),  30.2 (P2S6

2−, 36%). Mass 

spectrometry m/z (EI+) = 496.1 ([nBu4NP2S6]−), 482.4 ([M−CH3]−), 466.5 

([M−C2H5]−). 432.5 ([M−S2]−), 336.3 ([M−PS4]−) 297.5 ([M−C14H32]−), 280.3 

([M−C15H32]−), 266,5 ([M−C16H34]−), 253.5 ([P2S6]−), 153.4 ([PS4]−). Raman (200 

mW, rt): ν [cm−1] = 2942 (43), 2921 (41), 2872 (35), 1449 (27), 1325 (11), 879 

(11), 601 (21), 417 (100), 357 (27), 307 (38), 249 (29), 197 (21), 168 (16). IR (200 

mW, rt): ν [cm−1] = 2958 (ws), 2936 (s), 2872 (s), 1486 (m), 1462 (m), 1382 (w), 

1262 (ww), 1152 (ww), 1107 (ww), 1068 (ww), 1024 (ww), 880 (w), 803 (ww), 736 

(ww), 654 (s), 543 (ws), 520 (w). DSC (5 °C/min): Tdec = 186°C. 

 

[pyH][pyPS3] (3): P4S10 (3.00 g, 6.8 mmol) was stirred in pyridine (60 mL) over 

night at ambient temperature. The yellow solution was refluxed for 1 h. Subsequently 

water (10 mL) was added and the solution was stirred over night at ambient 

temperature. The precipitate was removed and the yellow solution was another time 

refluxed for 1 h. After two days yellow block shaped crystals of 3 could be obtained 

from the orange solution. 

31P NMR (pyridine, rt): δ [ppm] = 293.3 (PS3
−, 68%), 30.2 (P2S6

2−, 12%).  

Elemental analysis [pyH][pyPS3]: calcd. C 41.94, N 9.78, H 3.87, S 33.59; found: C 

40.29,N 9.78, H 4.09, S 31.10. Mass spectrometry m/z (FAB−) = 280.2 ([M-H]−), 

175.21 ([C5H6NPS2]−), 80.1 ([C5H6N]−), 79.0 (C5H5N). Raman (300 mW, rt): ν 

[cm−1] = 3057 (56), 2990 (6), 2955 (8), 2910 (4), 1598 (7), 1583 (13), 1483 (5), 

1218 (11), 1147 (5), 1031 (79), 992 (100). IR (200 mW, rt): ν [cm−1] = 3077 (w), 

3023 (w), 3000 (w), 1597 (m), 1580 (s), 1481 (m), 1436 (vs), 1216 (m), 1146 (m), 

1068 (m), 1030 (s), 990 (s),746 (s), 699 (vs). DSC (5 °C/min): Tdec = 108°C. 
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[nBu4N][4-(CH3)2NC5H4NPS3]·EtCN (4): One equivalent of [nBu4N]2[P2S6]·THF 

(2) (500 mg, 0.64 mmol) and one equivalent of 4-(CH3)2NC5H4N (75 mg, 0.64 mmol) 

were dissolved in propionitrile. The yellow suspension was refluxed for one h. The 

resulting yellow solution was stored at –25 °C. After one week, yellow crystals of 

[nBu4N][4-(CH3)2NC5H4NPS3] were obtained. The solution was dried in vacuo and the 

product recrystallized from THF, which was removed afterwards. (yield: 0.69 mmol, 

378,0 mg, 54%) 

31P{1H} NMR (PrCN, rt): δ [ppm] = 213.5 (s, br, PS3
−, 69%), 128.8 (s, P2S7

2−, 

7%), 30.2 (s, P2S6
2−, 8%). 

 

[(N-MeIm)2H][N-MeImPS3] (5): P4S10 (220.0 mg, 0.5 mmol) was refluxed in N-

methylimidazole (6 mL) to give a yellow solution, which was stored at +4 °C. After 

one day, a few colorless plate shaped crystals of 5 were obtained, therefore a yield 

could not be determined. 

31P{1H} NMR (THF, rt): δ [ppm] = 125.1 (s, br, 43%), 80.1 (s, PS4
3−, 36%), 79.3 

(ss, 12%), 70.5 (s, 15%). 
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Synthesis and Crystal Structure of a New Salt 

of the Water Stable Hexathiohypodiphosphate 

Anion: [py2Li]4[P2S6] · 2 py 

As submitted to Heteroatom. Chem. 
 
 
 

 
 
 
 

 

A new rare example of a synthetic route in solution to the 

hexathiohypodiphosphate anion P2S6
4– is presented. Starting from P4S3, Li2S 

and elemental sulfur in pyridine this reaction yields yellow block shaped 

crystals of [py2Li]4[P2S6] · 2 py (1). The molecular structure of this hitherto 

unknown compound was determined by single crystal X-ray diffraction and 

reveals a heteronorbornan skeleton within the Li4P2S6 entity. 
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Introduction 

The hexathiohypodiphosphate anion P2S6
4− has first been mentioned as early as 

1894 by Friedel.[1] He synthesized its Fe(II) salt starting from the elements at high 

temperature. Since then many more salts of this anion have been described with 

different metal cations. All of those compounds have been synthesised, using solid 

state reactions, mainly starting from red phosphorus, sulfur and the metal.  

In 1968 Falius was the first, who succeeded in developing a synthesis in solution. He 

started from PCl3 and Na2S in water and obtain the sodium salt Na4P2S6 · 6 H2O. With 

this, the 31P NMR chemical shift of δ31P = 110.7 ppm could be determined for this 

anion.[2] Salts of the hexathiohypodiphosphate anion P2S6
4– are subject of continuing 

research due to their physical properties like semi-conductivity, ferroelectricity or 

luminescence (depending on the metal cation used).[3] But also in matters of 

intercalation chemistry[4], nonlinear optical material processing[5] or the ever growing 

field of solid electrolytes suitable for lithium batteries[6] this anion is of great 

importance. On this account it was our goal to develop a new approach to synthesize 

metal thiophosphates under mild conditions like reaction in solution at low 

temperature, ideally at room temperature. This would have a series of advantages, for 

example it would be less energetically demanding and thus cheaper. Also the products 

would be purer, as the precipitation implies a purification step. As thiophosphate 

compounds are mostly a domain of typical solid state chemistry, the approach of 

working in solution would lower the production costs and efforts tremendously.  

The most important but not yet accomplished application is the use of 

thiophosphates as cathode or electrolyte material in modern lithium ion accumulators. 

So thiophosphates are especially in the focus of investigation concerning the 

improvement of the capacity of accumulators.[7] Until now primarily iron containing 

phosphates are used. To reduce the weight of the material a replacement for the 

redox active material is desired. This could be accomplished by the use of compounds 

containing an element-element bond, as does the P2S6
4− anion. A synthetic route to 

the lithium salt Li4P2S6, using common solid state methods, has already been 

described in the literature, starting from Li2S, phosphorus and sulfur or P2S5 in the 

melt at 900 °C (Scheme 1).[8] 
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Scheme 1. Solid state syntheses of Li4P2S6.[8] 

 

In the following a newly developed synthesis, fitting the criteria of mild reaction 

conditions, is presented. The cheap and easily accessible P4S3, Li2S and elemental 

sulfur are used as educts and the reaction proceeds in pyridine as reaction medium at 

ambient temperature. 

 

Results and Discussion 

The salt [py2Li]4[P2S6] · 2 py (1) was obtained in excellent yield as yellow crystals 

from the reaction of P4S3, Li2S and elemental sulfur in pyridine (Scheme 2). 

 

Scheme 2. Synthesis of 1.  

Compound 1 is soluble in highly polar solvents like HMPT, DMPU or water. It is 

remarkably stable in water over several days. In HMPT and DMPU decomposition takes 

place. 

 Compound 1 crystallizes in the monoclinic space group P21/c with two formula units 

in the unit cell. Figure 3 shows the molecular structure and contains selected atom 

distances and bond angles. 
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Figure 1. Molecular structure of 1. Thermal ellipsoids are set at 50% probability level. 

Hydrogen atoms are omitted for clarity. Symmetry operation: i = 1−x,−y,−z. Selected atom 

distances [Å] and bond angles [°]: P1–P1i  2.251(1),P1–S1 2.013(1), P1–S2 2.039(1), P1–S3 

2.015(2), Li1–S2i 2.491(3), Li1–S1 2.451(3), Li2– S2 2.490(3), Li2– S3i 2.438(3), Li1–N1 

2.070(3), Li1–N2 2.086(3), Li2–N3 2.083(3), Li2–N4 2.067(3);  

S1–P1–S2 112.5(1), S1–P1–S3 114.0(1), S2–P1–S3 111.4(1), Li1–S1–P1 92.5(1), Li1–S2i–P1i 

92.5(2), Li2–S2–P1 93.5(1), Li2–S3i–P1i 98.0(1), Li1–S2i–Li2i 103.1(2), S2i–Li1–S1 102.9(2), 

S3i–Li2–S2 104.8(2), N1–Li1–N2 103.8(2), N3–Li2–N4 97.5(2). 

The molecular structure of [py2Li]4[P2S6] · 2 py comprises a P2S6
4– anion, surrounded 

by four lithium cations. Each lithium cation is coordinated by two sulfur atoms bonded 

to the two different phosphorus atoms. The sulfur atoms S1 and S3 are connected to 

one phosphorus and one lithium atom, while S2 coordinates to two lithium atoms and 

is therefore threefold coordinated. This lead to a polycyclic arrangement of the Li4P2S6 

entity, which is built up by two hetero norbornan skeletons connected over one edge 

(Figure 2).  
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Figure 2. Two hetero norbornan skeletons connected over one edge in the Li4P2S6 entity. 

Pyridine molecules are omitted for clarity. 

 

The coordination sphere of the lithium cations is completed by two pyridine 

molecules, building isolated, neutral [py2Li]4[P2S6] units. 

The sulfur atoms of the P2S6
4– anion are arranged in a staggered conformation 

forming an ethane like structure. The P–P bond length is with 2.251(1) Å in good 

accordance with the expected value of 2.256(5) Å[9]. The distance of the threefold 

coordinated sulfur atom (S2) to the phosphorus is with a value of 2.039(1) Å slightly 

longer than the P1–S1 and P1–S3 distances with 2.013(1) and 2.015(1) Å. The 

average P–S bond length is with 2.022(1) Å well between a P–S single and a double 

bond (2.11 Å[10] and 1.954(5) Å[9] respectively). All these values do not differ 

significantly from those found in the literature for isolated hexathiohypodiphosphate 

anions like Na4P2S6 · 4 H2O[11] or K4P2S6 · 4 H2O[12].  

The structure of Li4P2S6, reported by Mercier et al., is built up by LiS6 octahedra, 

which are arranged in a stack with ABAB sequence along one axis. 

In this structure the Li–S distances have a value of 2.630(2) Å, which is significantly 

longer than the average bond length of 2.471(3) Å found in 1. This can be explained 

by a sixfold coordination in Li4P2S6 in compared to the four fold one of the lithium in 1.  

The Li–N distances in 1 are with an average value of 2.077(3) Å in very good 

accordance with the ones found in the structure of [PhSLi · py2]n
[13]. Also the N–Li–N 

bond angles of 100.2(3)°, observed there, fit very well with 100.7(2)°, as found in 1. 

The S–Li–S and Li–S–Li bond angles have values of 103.1(2)° and 103.9(2)° 

respectively. 
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In the crystal no interactions, other than those within one neutral 

[py2Li]4[P2S6] · 2 py entity, can be found. Two additional uncoordinated pyridine 

molecules can be found completing the unit cell (Figure 3). 

 

 
 

Figure 3. Unit cell of 1. Hydrogen atoms and carbon atoms partially omitted for clarity. 
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Conclusion 

The new lithium hexathiohypodiphosphate [py2Li]4[P2S6] · 2 py (1) was prepared in 

excellent yield (99%) starting from P4S3, Li2S and elemental sulfur in pyridine. The 

reaction proceeds at room temperature. 

 

The structure of 1 could be determined, using single crystal X-ray diffraction. 

According to these results the Li+ ions coordinate to the staggered P2S6
4− anion to 

form a novel Li4P2S6 polycycle, formally consisting of two heteronorbornanes. 

Compared to solvent free Li4P2S6 with LiS6 octahedra in 1 the lithium adopts its 

preferred tetrahedral coordination, with two pyridine molecules completing its 

coordination sphere. This concept is anticipated to be applicable for other metal 

thiophosphate systems. Remarkable is the water stability of the P2S6
4− anion which is 

an important property for the possible use of its salts in practical applications. 

The bond parameters and conformation determined for the P2S6
4– anion do not 

deviate significantly from those found in other metal salts reported in the literature. 

The observed Li–S distances correspond well to those found in [PhSLi · py2]n. 

Nevertheless it is the first time that the coordination sphere of the lithium cations is 

not only completed by P2S6
4– molecules. This opens up the possibility to occupy the 

free positions with further motives and thus increase the structural diversity.  
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Experimental Section 

General. Li2S was obtained from Sigma-Aldrich Inc. and used as supplied without 

further purification. Pyridine (Aldrich) was dried using commonly known methods. P4S3 

was commercially obtained (Riedel-de Häen), and was purified by extraction with CS2 

before use. 31P NMR Chemical shifts are referred to 85% H3PO4 as external standard. 

All spectra were measured, if not mentioned otherwise, at 25 °C. The % data 

correspond to the intensities in the 31P NMR spectra with respect to the total intensity. 

The difference to 100 % belongs to not assignable signals. Infrared spectra were 

recorded on a PerkinElmer BX FT IR spectrometer equipped with a Smiths 

DuraSamplIR II diamond ATR unit. Transmittance values are qualitatively described as 

“very strong” (vs), “strong” (s), “medium” (m), “weak” (w) and “very weak” (vw). 

Mass spectra were recorded on a JEOL MStation JMS-700 with 4-nitrobenzyl alcohol 

as matrix for DEI measurements. Melting and decomposition points were 

determined by differential scanning calorimetry (Linseis DSC-PT10, calibrated with 

standard pure indium and zinc). Measurements were performed at a heating rate of 

5 °C min−1 in closed aluminum sample pans with a 0.1 mm hole in the lid for gas 

release to avoid an unsafe increase in pressure under a nitrogen flow of 20 mL min−1 

with an empty identical aluminum sample pan as a reference. Melting points were 

checked with a Büchi Melting Point B-540 in open glass capillaries. 

X–ray Crystallography. The single–crystal X-ray diffraction data were collected 

using an Oxford Xcalibur3 diffractometer equipped with a Spellman generator (voltage 

50 kV, current 40 mA), Enhance molybdenum Kα radiation source (λ = 71.073 pm), 

Oxford Cryosystems Cryostream cooling unit, four circle kappa platform and a 

Sapphire CCD detector. Data collection and reduction were performed with 

CrysAlisPro.[14] The structures were solved with SIR97[15], SIR2004[16] , refined with 

SHELXL-97[17], and checked with PLATON[18], all integrated into the WinGX software 

suite[19]. The finalized CIF files were checked with checkCIF.[20] All non-hydrogen 

atoms were refined anisotropically. The hydrogen atoms were located in difference 

Fourier maps and placed with a C–H distance of 0.98 Å for C–H bonds. Intra- and 

intermolecular contacts were analyzed with DIAMOND (version 3.2i), thermal ellipsoids 

are drawn at the 50% probability level. Selected crystallographic data and refinement 

details for the structure determination of compound 1 are summarized in Table 3. 

CCDC 968437 contains the supplementary crystallographic data for compound 1. 

These data can be obtained free of charge from The Cambridge Crystallographic Data 

Centre via www.ccdc.cam.ac.uk/data_request/cif. 
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[py2Li]4[P2S6] · 2 py (1): P4S3 (220 mg, 1 mmol), sulfur (160 mg, 5 mmol) and 

Li2S (184 mg, 4 mmol) were suspended in pyridine (10 mL). The yellow reaction 

solution was stirred for 2 h and precipitates as colourless block shaped crystals. The 

product 1 was separated from the solution and dried in vacuo (yield: 99% 2.1 g, 

1.97 mmol, 99% with respect to P4S3). 

31P{1H} NMR (H2O, rt): δ [ppm] = 111.1 (s, 100%). Mass spectrometry m/z 

(DEI+) = 281.8 (MS = [Li4P2S6]+), 251.8 ([Ms−Li4]+), 219.9 ([MS− Li4S]+), 188.9 

([MS−Li4S2]+), 156.9 ([MS−Li4PS2]+), 125.0 ([MS−Li4PS3]+), 94.0 ([MS−Li4PS4]+), 64.0 

([Li4PS5]+). IR (200 mW, rt): ν [cm-1] = 3057 (w), 2950 (w), 1597 (w), 1573 (ww), 

1531 (ww), 1486 (w), 1442 (m), 1220 (ww), 1120 (w), 1034 (vs), 959 (m), 893 (w), 

751 (w), 702 (m), 625 (vs), 469 (m), 413 (m). DSC (5 °C/min): Tdec = 162.1 °C. 

Table 3. Crystallographic and refinement data for 1. 

 1   

empirical formula C50H50Li4N10P2S6 F(000) 1116 

formula mass 1073.06 Θ range [°] 4.15 – 32.36 

T [K] 173(2) index ranges −25 ≤ h ≤ 25 

crystal size [mm] 0.4 × 0.35 × 0.05  −10 ≤ k ≤ 11 

crystal description colourless block  −21 ≤ l ≤ 22 

crystal system monoclinic reflns. collected 39951 

space group P21/c reflns. obsd. 4040 

a [Ǻ] 10.6899(2) reflns. unique 5038 

b [Ǻ] 17.9376(4) Rint 0.0322 

c [Ǻ] 14.5311(3) R1, wR2 (2σ data) 0.0279, 0.0689 

β [°] 91.524(2) R1, wR2 (all data) 0.0365, 0.0707 

V [Ǻ3] 2785.37(10) GOOF on F2 1.015 

Z 2 larg. diff peak/ 0.286 

ρcalcd. [g cm−3] 1.279 hole (e/Å) −0.274 

μ [mm−1] 0.346   
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Synthesis and Crystal Structure of the  

Bis(ethoxo)tetrathio-µ-disulfido-diphosphate Salt:  

[pyH]2[P2S6(OEt)2] 

As accepted in Z. Anorg. Allg. Chem. (in parts).  
 
 

 
 

 
 
 

The new dithiophosphate anion P2S6(OEt)2
2− was obtained from the reaction of 

commercially available P4S10 with Na2S in pyridine and subsequent ethanolysis 

and isolated as the sstable bis(pyridinium) salt (1). The molecular structure of 

1 in the crystal was determined by single crystal X-ray diffraction and reveals 

a PSSP dihedral angle of 87.3(1)° within the anion. The compound is a rare 

representative of a thiodiphosphate anion with a disulfide bridge between the 

two phosphorus atoms. 
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Introduction 

In the family of thiopolyphosphate anions PnSm
x− representatives with a polysulfide 

bridge between the phosphorus atoms are quite rare. An example is provided by the 

thiodiphosphate anion P2S8
4− (III, Scheme 1). This species has been used as ligand in 

transition metal thiophosphates in the solid state, where it acts as a bridge between 

the metal atoms, yielding fascinating three-dimensional networks.[1] Also for the 

corresponding peroxodiphosphate anion, P2O8
4− (I), the salts of which are used for 

several applications, a very limited number of structures has been reported in the 

literature.[2] This is in contrast to the related peroxodisulfate S2O8
2− (II) and 

tetrathionate anion S4O6
2- (IV) 

 

Scheme 1. Diphosphates and disulfates with dichalcogenide bridges. 

 

A cyclic version of a thiodiphosphate anion with the PSSP structural motive is 

provided by the P2S8
2− anion (V)[3]. Structural information for several salts of this 

anion could be obtained by single crystal X-ray diffraction.[3b,4] Our group has shown 

that P2S8
2− exists in solution as an equilibrium mixture between the twist and the chair 

conformer.[4b] 
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Scheme 2. The two conformers of the P2S8
2− anion. 

 

Here we report on the synthesis of a new anion – P2S6(OEt)2
2− – with a disulfide 

bridge between the two phosphorus atoms, which has been isolated as the 

bis(pyridinium) salt (1) and characterized by single crystal X-ray diffraction.   

 

Results and Discussion 

Synthesis 

The pyridinium salt of the new anion P2S6(OEt)2
2− was readily obtained starting from 

commercially available P4S10. Reaction with 0.5 equivalents of Na2S in pyridine in 

moist air yields a yellow solution, containing according to 31P NMR, py2P2S5
[5], 

py2P2S4O[5] and the pyridine adduct of PS3
−[6] as main products, together with small 

amounts of P2S8
2−[4b] and P2S7

2−[7]. In addition a colourless crystalline precipitate was 

formed. In order to determine the identity of the precipitate it was dissolved in 

ethanol. Salt 1 crystallized from the ethanolic solution within 2–3 d at ambient 

temperature. The 31P NMR spectrum of the ethanolic solution showed the presence of 

(EtO)2PS2
− as the main species together with smaller amounts of PS(OH)(SH)O− and 

PS(OH)2O−.[8] 
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Compound 1 was isolated as colourless crystalline solid, which is quite air stable and 

hydrolyses completely when dissolved in water. The 31P NMR of the water solution 

indicates the presence of (EtO)2PS2
−, (EtO)PS(OH)O−, (EtO)P(OH)O2

− and H2PO4
−.[8] 

The anion in 1 represents a first example of an alcohol substituted derivative of the 

P2S8
4− anion. Thus it belongs to the family of anions, in which two phosphorus(V) or 

sulfur(VI) atoms are connected by a dichalcogenide group (Scheme 1). The anion 

P2S6(OEt)2
2− should exhibit interesting ligand properties due to the two phosphate 

groups being capable of coordination. In this context the molecular structure of 1 is of 

particular interest. In order to investigate the influence of the ethoxy groups on the 

molecular structure and conformation of the P,S-framework in the anion of 1 single 

crystal X-ray studies were performed.  

 

Molecular and Crystal Structure of (pyH)2[P2S6(OEt)2] (1) 

Colourless block shaped crystals of 1 were isolated by slow evaporation of an 

ethanolic solution. The compound crystallizes in the monoclinic space group C2/c with 

four formula units in the unit cell. The asymmetric unit contains half of the anion and 

one pyridinium cation. Figure 1 shows the molecular structure of the anion and gives 

selected atom distances and angles. 

 

Figure 1. Molecular structure of 1 in the crystal. Thermal ellipsoids are shown at 50% 

probability level. Symmetry operation i = 2−x, y, 0.5−z. Selected atom distances and bond 

angles: S1–P1 1.956 (2); S2–P1 1.985(2), P1–O1 1.606(2), P1–S3 2.128(2), S3–S3i 2.047(2), 

O1–C 1.460(1); O1–P1–S1 106.3(1), O1–P1–S2 111.2(2), S1–P1–S2 120.1(1), O1–P1–S3 

105.4(1), S1–P1–S3 113.7(2), S2–P1–S3 99.2(2), S3i–S3–P1 107.7(1), C–O1–P1 121.0(2). 
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In the anion P2S6(OEt)2
2− the phosphorus atoms display a slightly distorted 

tetrahedral environment. The observed P–S distances to the terminal sulfur atoms are 

with 1.956(2) Å and 1.985(2) Å between those reported for P,S single (2.11 Å[9]) and 

double (1.92 Å[4a]) bonds. The distance between phosphorus and the adjacent sulfur 

atom of the disulfide bridge corresponds with 2.128(2) Å to a P,S single bond. The S-S 

distance of 2.047(2) Å compares well to the corresponding one observed in disulfides. 

The P–O distance of 1.606(2) Å does not deviate substantially from the expected value 

(1.621(7) Å[4a]). The P–S–S–P torsion angle of 87.2(1)° lies in the same range of 

magnitude as the corresponding torsion angle in the P2S8
2− anion (Table 1); it is 

however smaller than those observed in the anions P2S8
4− (98.7°[1c], 96.7°[1a]) and 

S4O6
2- (108.4°)[10]. Comparing the data in Table 1 it is evident, that the opening of the 

sixmembered ring in P2S8
2− and substitution of two sulfur atoms with ethoxy groups 

has little influence on the conformation of the P,S framework.  

Table 1. Comparison of atom distances and angles of 1 with those found in salts of the P2S8
2− 

anion. 

 1 [PPN]2[P2S8][4b] [(py2)H]2[P2S8][3b] Ref.[4a] 

distances[Å] 

P–S 1.970(2) 1.962(2) 1.956(4)  

P–S3 2.128(2) 2.084(5) 2.130(4)  

S–S 

P–O 

2.047(2) 

1.606(2) 

2.047(7) 2.059(4) 2.031(17) 

1.621(7) 

angles[°]     

S1–P–S2 120.1(1) 118.1(1) 122.1(2)  

S1−P−S3 113.7(1) 116.6(1) 112.6(2)  

S2−P−S3 99.2(1) 109.9(1) 101.9(2)  

S3−S3i −P 107.7(1) 104.1(1) 104.6(2)  

torsion angle [°] 

P−S−Si –Pi  87.3(1) 86.4(1) 72.8(1)  
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Taking a look at the intra- and intermolecular interaction one finds that in the salts 

of the P2S8
2− anions the molecules are well defined and electrostatically shielded from 

the outside without any kind of interaction between each other, whereas in the 

product of their reaction with ethanol the situation is rather different.  

Table 2 and Figure 2 give an overview of all interactions found in and around the 

asymmetric unit of 1. 

Table 2. Intra- and intermolecular interaction in 1 (the sum of the van der Waals radii of 

hydrogen and sulfur atom mounts up to 3.00 Å). 

D–H∙∙∙A d(D–H) (Å)  d(H∙∙∙A) (Å)  d(D ∙∙∙A) (Å) ∠ D–H⋅⋅⋅A (°)  

N1iii–H1iii∙∙∙S2 0.81(4) 2.50(4) 3.264(3) 157(3) 

C2–H2A∙∙∙S2 0.93(4) 2.88(4) 3.391(3) 116(2) 

C1ii–H1Aii∙∙∙S1 0.96(3) 2.92(4) 3.801(4) 154(3) 

C3iv–H3iv∙∙∙S3 0.90(4) 2.87(4) 3.570(4) 137(3) 

 

Figure 2. Intra- and intermolecular interaction in 1. 
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The hydrogen at the nitrogen atom of the pyridinium cation is linked to the S2 atom 

of the (PS2OEt)2 unit. With a D∙∙∙A distance of 3.264(3) Å and a D–H∙∙∙A bond angle of 

157(3)° this can be regarded as a strong interaction, as the sum of the van der Waals 

radii of nitrogen and sulfur is 3.35 Å[6]. Due to sterical reasons the N–H∙∙∙S angle 

deviates from the expected 180°. The same sulfur atom is also connected 

intramolecularly to one of the hydrogen atoms of the ethoxy group. This interaction is 

very weak with a distance of 3.391(3) Å and has therefore electrostatic character. The 

same is true for the attraction between one hydrogen of the other carbon of the 

ethoxy group and the S1 atom (C1ii–H1Aii∙∙∙S1) with a H ∙∙∙A distance of 2.92(4) Å, 

which is just below the sum of the van der Waals radii of hydrogen and sulfur 

(3.00 Å).[6] 

 

Figure 3. Network of 1. 
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The bridging sulfur atom coordinates to the hydrogen atom at the C3 of the 

pyridinium ion with a barely shorter distance of 3.570(4) Å and an angle of 137(3)°.  

This variety of intra- and intermolecular interactions leads to the formation of a vast 

three dimensional network as can be seen in Figure 3 

 

Quantumchemical Calculations 

 

 

Figure 4. Computed structure of the di-anion [P2S6(OEt)2]2– at MPW1PW91/aug-cc-pVDZ level 

of theory. 

 

Due to the hydrolytic instability of 1 its 31P NMR chemical shift could not be 

determined. Information about the 31P NMR parameters was obtained from quantum-

chemical calculations. In order to compute the 31P NMR chemical shift of the dianion 

[C4H10O2P2S6]2−, the isotropic magnetic shieldings were computed using the GIAO 

(Gauge-Independent Atomic Orbital) method implemented in Gaussian 09.[11, 12] The 

structure was optimized in C2 symmetry (Figure 1) and the frequencies calculated 

(NIMAG = 0) at MPW1PW91/aug-cc-pVDZ level of theory, subsequently, the NMR 

shielding tensors were calculated at the same level of theory using the GIAO method 

and accounting for solvent (dipole) effects by placing the solute in a cavity within the 

solvent reaction field using the SMD method.[11] Table 2 summarizes the computed 

isotropic magnetic shieldings and relative 31P NMR chemical shifts (ppm) referenced to 

H3PO4.   

Table 3. Computed isotropic magnetic shieldings (GIAO method[9, 10], MPW1PW91/aug-cc-

pVDZ) and relative 31P chemical shifts (ppm) referenced to H3PO4. 
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compound [C4H10O2P2S6]2− H3PO4 

-E/ a.u. 3381.146718 644.135802 

NIMAG 0 0 

p.g. C2 C3 

δ31P / ppm, calcd. isotr. shielding 232.3 361.6 

δ 31P / ppm,  

calcd. (ref. to H3PO4) 

129.3 0.0 

 

Conclusion 

 

The synthesis of the new anion P2S6(OEt)2
2− and its isolation as the bis(pyridinium) 

salt 1 provides a route to a new thiodiphosphate anion with a high sulfur content. This 

anion is a rare example of a compound with a disulfide bridge between the two 

phosphorus atoms. Its molecular structure in the crystal shows a dihedral PSSP angle 

of 87.3(1)°. In the crystal electrostatic N–H···S and C–H···S interactions result in the 

formation of a complicated three-dimensional network. The new anion P2S6(OEt)2
2− is 

anticipated to display an interesting coordination chemistry. 

 

 

 

 



PART II – Chapter 1 

90 
 

Experimental Section 

General. Na2S and solvents were obtained from Sigma-Aldrich Inc. or Acros 

Organics (analytical grade) and were used as supplied without further purification. 

P4S10 was commercially obtained (Riedel-de Häen) and purified by recrystallization 

from CS2. NMR spectra were recorded using a Jeol EX 400 Eclipse instrument 

operating at 161.997 MHz (31P). Chemical shifts are referred to 85% H3PO4 as external 

standard. All spectra were measured, if not mentioned otherwise, at 25 °C. Infrared 

(IR) spectra were recorded on a PerkinElmer BX FT IR spectrometer equipped with a 

Smiths DuraSamplIR II diamond ATR unit. Transmittance values are qualitatively 

described as “very strong” (vs), “strong” (s), “medium” (m), “weak” (w) and “very 

weak” (vw). Raman spectra were recorded on a Bruker RAM II spectrometer equipped 

with a Nd:YAG laser (200 mW) operating at 1064 nm and a reflection angle of 180°. 

The intensities are reported as percentages of the most intense peak and are given in 

parentheses. Low resolution mass spectra were recorded on a JEOL MStation JMS-700 

with 4-nitrobenzyl alcohol as matrix for FAB measurements. Elemental analyses 

(CHNS) were performed with an Elementar Vario EL. Due to the formation of glassy 

(P2O5)x(H2O)yC during measument, the values deviate considerably from the calculated 

ones. Melting and decomposition points were determined by differential scanning 

calorimetry (Linseis DSC-PT10, calibrated with standard pure indium and zinc). 

Measurements were performed at a heating rate of 5 °C min−1 in closed aluminum 

sample pans with a 0.1 mm hole in the lid for gas release to avoid an unsafe increase 

in pressure under a nitrogen flow of 20 mL min−1 with an empty identical aluminum 

sample pan as a reference. Melting points were checked with a Büchi Melting Point B-

540 in open glass capillaries. 

X-ray Crystallography. For all compounds, an Oxford XCalibur3 diffractometer with 

a CCD area detector was employed for data collection using Mo-Kα radiation 

(λ = 0.71073 Å). The structures were solved using direct methods (SIR2004)[13] and 

refined by full-matrix least-squares on F2 (SHELXL-97)[14]. All non-hydrogen atoms 

were refined anisotropically. The hydrogen atoms were located in difference Fourier 

maps and placed with a C–H distance of 0.99 Å for CH2 groups. ORTEP plots are 

shown with thermal ellipsoids at the 50% probability level. CCDC 948131 contains the 

supplementary crystallographic data for this paper. These data can be obtained free of 

charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 
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 Table 3. Crystallographic and refinement data for 1. 

 1   

empirical formula C14H22N2O2P2S6 F(000) 1048 

formula mass 504.64 Θ range [°] 4.25 – 30.03 

T [K] 173(2) index ranges −25 ≤ h ≤ 25 

crystal size [mm] 0.4 × 0.35 × 0.05  −10 ≤ k ≤ 11 

crystal description colourless plate  −21 ≤ l ≤ 22 

crystal system monoclinic reflns. collected 11444 

space group C2/c reflns. obsd. 2424 

a [Ǻ] 18.125(2) reflns. unique 3309  

b [Ǻ] 8.131(1) Rint 0.0523 

c [Ǻ] 15.680(1) R1, wR2 (2σ data) 0.0401, 0.0824 

β [°] 100.341(5) R1, wR2 (all data) 0,0674, 0.0957 

V [Ǻ3] 2273.3(4) GOOF on F2 1.049 

Z 4 larg. diff peak/hole  0.405/−0.294 

ρcalcd. [g cm−3] 1.474 (e/Å)  

μ [mm-1] 0.755   

 

[P2S6O2C4H10][C5H6N]2: P4S10 (0.182 g, 0.409 mmol) and Na2S (0.015 g, 

0.192 mmol) were stirred in pyridine (5 mL) for 24 h. White powder precipitated from 

the yellow reaction mixture. The reaction solution was investigated by 31P NMR 

spectroscopy and showed the signals of pyPS3
- (δ31P = 183.1 ppm, 19%), P2S7

2- (δ31P 

= 129.5 ppm, 3%), P2S8
2- (δ31P = 120.0 ppm (twist), 56.3 ppm (chair), 4%), py2P2S5 

(δ31P = 104.5 ppm, 58%) and py2P2S4O (δ31P = 97.9 ppm, 16%). The precipitate was 

separated from the solution, dried in vacuo and dissolved in 6 mL of EtOH. After 12 h 

stirring at ambient temperature a yellow solution was obtained, from which after 2–

3 d colorless crystals of [pyH]2[P2S6(OEt)2] separated (58.7 mg, 29%). The 31P NMR 

spectrum of the mother liquor displayed signals at 113.4 ppm ((EtO)2PS2
-, 82%), 

96.8 ppm (PS(OH)(SH)O-,  16%) and 58.4 ppm (PS(OH)2O-, 2%).       

Elemental analysis ([pyH]2[P2S6O2C4H10]): calcd. C 33.32, N 5.55, H 4.39, S 

38.12; found C 30.45, N 4.75, H 3.95, S 36.73. Mass spectrometry m/z 

(FAB−) = 345.1 ([S6P2(OEt)2]−), 319.0 ([M−C2H5]−), 303.1 ([M−2C2H5]−), 299.0 

([M−C2H5O]−), 287.1 ([M−2C2H5]−), 271.0 ([M−PS3OEt]−), 205.1 ([M−PS2OC2H5]−), 

185.2 ([M−PS2OC3H8]−), 175.0 ([M−PS3OEt]−), 141.1 ([M−PS2OC2H5]−), 127.0 

([M−PS3]−), 46 ([M−P2S6OC2H5]−). Raman (200 mW, r.t.): ν [cm-1] = 3068 (35), 
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2975 (43), 2929 (69), 2885 (47), 1629 (41), 1455 (45), 1196 (34), 1009 (72), 883 

(39), 502 (45), 474 (65), 393 (56), 220 (100). IR (200 mW, r.t.): ν [cm-1] = 3413.9 

(br, vw), 3204.2 (vw), 3137.7 (vw), 3125.0 (vw), 3087.9 (w), 3057.8 (w), 2985.9 

(w), 2973.0 (w), 2943.4 (w), 2885.9 (w), 2757.0 (br, w), 2132.3 (vw), 2000.3 (vw), 

1893.9 (vw), 1839.4 (vw), 1630.9 (w), 1603.1 (w), 1529.3 (m), 1482.3 (m), 1441.8 

(vw), 1381.8 (w), 1330.3 (vw), 1247.1 (w), 1193.6 (m), 1152.7 (w), 1084.8 (w), 

1047.8 (w), 1017.0 (s), 930,3 (br, vs), 766.1 (s), 755.8 (m), 741.9 (vs),  712.0 (m), 

675.8 (vs), 666.4 (vs). M.p.: 298.6 °C. 
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Introduction 

The reaction of P4S10 with nitrogen containing nucleophiles represents a challenge for 

chemists since several years. Roesky et al. investigated the nucleophilic attack of 

different anions on P4S10 already in 1970.[1] Mainly alkali metal salts of cyanide, azide 

and thiocyanate were allowed to react with phosphorus(V) sulfide in acetonitrile. The 

reaction with [(n-C3H7)4N][(N3)2PS2] in MeCN yielded a white precipitate, which was 

characterized using IR- and 31P NMR spectroscopy. The 31P NMR spectrum of this 

compound showed two triplets of equal intensity (Table 1). For its structure a P4S10 

motive with one endocyclic sulfur being substituted by a nitrogen atom, resulting in the 

(n-C3H7)4N+ salt of the anion P4S9N− (I) was proposed (Figure 1).  

 

Figure 1. Structure of the P4S9N− anion (I) by Roesky[1] 

 

Eight years later Retuert et al. observed nearly identical 31P NMR signals, when they 

investigated a suspension of P4S10 in PhCN.[2] They claimed the structure of the orange 

crystalline product, resulting from this reaction, to be a neutral P4S10 adamantane-like 

cage, with two exocyclic sulfur atoms being substituted by =N–CS–C6H5 groups (Figure 

2). 

 

Figure 2. Structure of P4S8(NC(S)C6H5) (II) by Retuert. 

 

Neels and co-workers tried to answer the question, to which of the above mentioned 

compounds the observed 31P NMR shift can be assigned.[3] For the formation of the 
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product acetonitrile was used as solvent, so it is likely, that it is generally formed by 

reaction of P4S10 with nitriles. They reproduced the synthesis of Retuert and isolated 

crystals of the 3,5-diphenyl-l,2,4-dithiazolium salt of 2 and determined the structure 

using single crystal X-ray diffraction. 

Table 1. Comparison of 31P NMR shifts and coupling constants. 

Compound δP1 [ppm] δP2 [ppm] 2JP1P2 [Hz] 

P4S9N− [1] 67.8 32.8 21.5 

P4S8(NC(S)Ph)2 [2] 67 30 21 

P4S10 + 2 PhCN [3] 67.6 32.8 21.5 

α-P4S9 [4] 64.6 48.8 96.3 

β-P4S9 [5] 52.0 44.2 30.5 

P4S10 [4] 56.1 - - 

 

In the course of our investigations on the reactivity of P4S10 we took a closer look at the 

influence of different nitrogen containing basic solvents on its reaction behaviour. 

 

Results and Discussion 

P4S10 was dissolved in benzonitrile or propionitrile on prolonged heating. 31P NMR 

spectra of the reaction solutions showed the formation of complex mixtures of products. 

In both cases also 31P NMR signals indicating the presence of compound 2 were 

observed. This was also the case, when pyridine and 2,2'-bipyridine was added to the 

solution.  

The reaction of P4S10 with dimethyl cyanamide resulted in the isolation of an 

unexpected product. Refluxing P4S10 in dimethyl cyanamide yields a brown reaction 

solution. Here also a complex mixture of different products could be observed in the 31P 

NMR. From this solution a small amount of colourless crystals could be obtained. The 

product was identified by single crystal X-ray diffraction as the novel compound 4,4'-

oxybis(2,6-bis(dimethylamino)-4H-1,3,5,4-thiadiazaphosphinine 4-oxide) (1) (Figure 3). 
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Figure 3. Chemical structure of  4,4'-oxybis(2,6-bis(dimethylamino)-4H-1,3,5,4-

thiadiazaphosphinine 4-oxide) (1).  

 

In the literature only one compound has been reported, containing a 1,3,5,4-

thiadiazaphosphinine ring, which has been characterized in terms of single crystal X-ray 

diffraction. Woollins et al. described the formation of the P-ferrocenyl substituted 2,6-

bis(dimethylamino)-1,3,5,4-thiadiazaphosphorine-4-sulfide (5) in good yield together 

with small amounts of the thiocyanate (6) from the reaction of the corresponding 

ferrocenyl perthiophosphonic acid anhydride (4) with an excess of dimethyl cyanamide.[6] 

 

Scheme 1. Synthesis of compound 5.[6]  

 

Compound 1 crystallizes in the orthorhombic space group Pbcn with four formula units 

in the unit cell. Figure 4 shows the molecular structure and selected atom distances and 

bond angles are listed. 

 

 



 

 

Figur

50%

0.5−

N1/P1–

O1–P

 

The t

phosph

former 

thiadiaz

phosph

angles w

bond an

 

re 4. Molecu

 probability 

z. Selected 

–N2 1.626(3

P1–O2 108.0

erminal N–

orus atom 

CN group

zaphosphin

inine ring 

within the 

ngles of the

lar structure

level. Hydro

atom distan

3)/1.617(3),

0(2), P1–O2–

–C entities 

 at the nit

p, forming 

ine ring i

in 1 devia

ring betwee

e thiadiazap

Thiadia

e of 1 (two d

ogen atoms a

ces [Å] and 

 N1–C1/N2–

C1–N4/C2

–P1i 134.2(2

105.2(2

 of two dim

trogen end 

 a 1,3,5,4

n 5, whic

ates only s

en −3.9(4)

phosphinine

azaphos

99 

 

different view

are omitted 

 bond angles

–C2 1.273(4

2–N3 1.348(

2), O1–P1–N

2), O2–P1–N

methyl cya

 and by a 

4-thiadiaza

ch adopts 

slightly from

) and 1.1(5

e ring in 1 

phinine 

wing directio

for clarity. S

s [°]: P1–O1

)/1.295(4), 

(4)/1.342(4)

N1 123.9(2), 

2 104.5(2). 

anamide m

 sulfur ato

phosphinin

a distorte

m planarity

5)°. A comp

 and 5 is pr

 

 

 

ons). Therma

Symmetry op

1 1.496(2), P

S1–C1/S1–C

);  

 O1–P1–N2 

 

olecules ar

om at the c

e ring. In

d boat co

y with valu

parison of a

resented in

al ellipsoids 

peration: i =

P1–O2 1.607

C2 1.786(3)/

113.6(2), O

re connect

carbon end

n contrast 

onformation

ues of the

atom distan

 Table 2. 

are set at 

= 1−x, y, 

7(2), P1–

/1.774(3), 

2–P1–N1 

ed by a 

d of the 

 to the 

n[6], the 

 torsion 

nces and 



PART II – Chapter 2 

100 
 

Table 2. Comparison of atom distances (Å) and bond angles (°) within the thiadiazaphosphinine 

ring in compounds 1 and 5[6] and standard values compiled by Allen[7]. 

 1 5 Ref.[7] 

P–N 1.626(3)/1.617(3) 1.648(6)/1.664(4) 1.652(24) 

N–C 1.273(4)/1.295(4) 1.289(6)/1.290(6) 1.279(8) 

C–NMe2 1.348(4)/1.342(4) 1.365(6)/1.335(6) 1.419(17) 

C–S 1.786(3)/1.774(3) 1.788(5)/1.771(5) 1.712(13)  

N–P–N 111.7(2) 108.2(2)  

P–N–C 125.6(3)/126.4(3) 122.6(4)/121.0(4)  

N–C–S 126.8(3)/127.1(3) 125.4(5)/127.3(4)  

C–S–C 102.2(2) 101.0(2)  

 

What attracts attention is that the bond lengths found in 1 and 5 are all in about the 

same range. The P–N bond distances in 1 are in the range, expected for P–N single 

bonds and are slightly shorter compared to those in 5. The C–S bond lengths in both 

compounds are practically equal. The endocyclic C–N bond lengths within the ring of 1 

and 5 correspond to double bonds. The exocyclic C–N distances to the dimethylamino 

groups are clearly shortened compared to C–N single bonds. Together with the 

coplanarity of the methyl groups this indicates a delocalization of the nitrogen lone pair 

as shown in Scheme 2.  

 

Scheme 2. Mesomerism in the 1,3,5,4-thiadiazaphosphinine rings of 1. 

 

For a discussion of the structural parameters of the diphosphate moiety the closely 

related pyrophosphate derivative 7[8] and the diphosphoric tetraamides  8[9-11], 9[12] 

(Figure 5) can be consulted for comparative reasons. In the bridging O–P–O–P–O entity 

the bond length between phosphorus and the terminal oxygen atoms (1.496(2) Å) are 

shorter as compared to the P–O distance to the bridging oxygen atom (1.607(2) Å) as 

was to be expected. Both values are in good accordance with those of 1.444–1.497 Å and 

1.591–1.627 Å, respectively, reported for compounds 7–9.[8-12] The P–O–P angle 
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(134.2(2)°) is smaller compared to that observed in 7, probably as consequence of the 

bulkier substituents of the latter. The value of 1, however, fits well to those found in the 

tetraamides 8 and 9 (125.1–133.8°).[9-12]  

 

Figure 5. Structurally characterized diphosphoric tetraamides.[8-12] 

 

The three dimensional build-up of the structure is affected by several intra- and 

intermolecular interactions. An overview can be found in Table 3. 

Table 3. Intra- and intermolecular interaction in 1 (van der Waals radii [Å]: H: 1.20; C: 1.70; N: 

1.55; O: 1.52).[9] 

D–H∙∙∙A d(D–H) (Å)  d(H∙∙∙A) (Å)  d(D∙∙∙A) (Å) ∠ D–H⋅⋅⋅A (°)  

C3–H3A∙∙∙N3 0.98(1) 2.37(1) 2.717(5) 99.8(3) 

C6–H6A∙∙∙N2 0.98(1) 2.47(1) 2.715(5) 93.7(3) 

C3–H3C∙∙∙N5i 0.98(1) 2.58(1) 3.492(6) 155.0(3) 

C3ii–H3B ii ∙∙∙O1 0.98(1) 2.31(1) 3.260(5) 164.6(3) 

Symmetry operations: i = 1−x, y, 0.5−z, ii = 1.5−x, 0,5−y, z.  

 

One would expect the two thiadiazaphosphinine rings in 1 to be oriented trans to each 

other as they are rather bulky. However a cis orientation of the two phosphinine rings is 

observed. A similar arrangement in the solid state is found for the triazaphosphinine 

rings in 7.[8] The observed orientation is most probably caused by three different 

electrostatic interactions in the molecular unit (Figure 6).  
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Scheme 3. Proposed mechanism for the formation of 1. 

 

A similar intermediate has been considered for the formation of the 

thiadiazaphosphinine ring in 5.[6] This species reacts further with more dimethyl 

cyanamide, which is formally inserted into the P–S bond of the four-membered ring in II 

yielding III. In the presence of water, III is converted to the isolated product 1. 

 

 

Conclusion 

Herein the new pyrophosphate derivative 4,4'-oxybis(2,6-bis(dimethylamino)-4H-

1,3,5,4-thiadiazaphosphinine 4-oxide) (1) is presented. Its unexpected formation in the 

course of the reaction of P4S10 and dimethyl cyanamide shows the variable reactivity of 

P4S10 depending on the nitrogen base employed. Compound 1 is the second 

representative with a 1,3,5,4-thiadiazaphosphinine ring, which could be characterized 

using single crystal X-ray diffraction. 
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Table 3. Crystallographic and refinement data for 1. 

 1   

formula C12H24N8O3P2S2 calc[g/cm−3] 1.497 

M [g/mol] 454.45  [mm−1] 0.454 

crystal system orthorhombic F(000) 952 

space group Pbcn  range [°] 4.17–26.00 

color/Habit colourless block T [K] 173(2) 

crystal size 0.2x0.25x0.020 data collected 9762 

a [Å] 11.4631(8) data unique 1978 

b [Å] 12.4813(8) data observed 903 

c [Å] 14.0977(11) R (int) 0.0920 

 [°] 90 GOOF 0.725 

 [°] 90 R1, wR2 (I>2I0) 0.0833, 0.0765 

 [°] 90 R1, wR2 (all data) 0.1041, 0.0415 

V [Å3] 2017.0(2) larg. diff peak/hole   

Z 4 (e/Å) 0.333/−0.260 

 

Reaction of P4S10 with Benzonitrile and Propionitrile 

P4S10 (0.25 mmol, 111 mg) in 1.5 mL of benzonitrile was heated to 120 °C for 3 h, 

when a dark yellow solution was obtained. The 31P NMR spectrum of the reaction solution 

showed the signals of an A2X2 spin system as main product (86%): δA = 68.9, δX = 33.9, 

JAX = 21.5 Hz. 

Similarly P4S10 (0.27 mmol, 121 mg) in propionitrile (1.5 mL) was heated to 100 °C for 

4 h. After cooling to ambient temperature the remaining P4S10 was separated by 

filtration. The 31P NMR spectrum of the dark yellow filtrate showed a series of signals in 

the range of δ = 155–20 ppm and with a relative intensity of 38% the signals of an A2X2 

spin system: δA = 70.2, δX = 34.4, JAX = 21.5 Hz. 

P4S10 (0.37 mmol, 168 mg) was refluxed for 3 h in dimethylcyanamide (1.5 mL, 

1300.5 mg) yielding a brown solution. Colourless block shaped crystals of 1 were 

obtained in the NMR tube. 
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Reaction of P4S10 With Dimethyl Cyanamide 

P4S10 (0.37 mmol, 168 mg) was refluxed for 3 h of dimethyl cyanamide (1.5 mL) 

yielding a dark yellow solution. The 31P NMR spectrum of the reaction solution indicated 

the presence of a complex mixture of products and displayed main signals at δ = 64.8, 

61.1, 18.2, 16.9 and 11.6 ppm. After 7 d a small amount of colourless block shaped 

crystals of 1 were obtained from the solution.  
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Introduction 

It was Linus Pauling, who defined hydrogen bonds as one of the first chemists in 

1940. In his book The nature of chemical bonds and the structure of molecules and 

crystals[1] he stated that under certain conditions an atom of hydrogen is attracted by 

rather strong forces to two atoms, instead of only one, so that it may be considered to 

be acting as a bond between them. This is called the hydrogen bond. Further he writes 

that it is formed only between the most electronegative atoms. Hereby the hydrogen 

is covalently bonded to a donor atom (D) and interacts in a mostly electrostatic way 

with an acceptor (A), which possesses at least one pair of free electrons. D and A are 

mostly oxygen, nitrogen, fluorine and in some cases also chlorine. In the recent time 

it has also been reported on sulfur acting as the acceptor and thus forming O–H∙∙∙S[2] 

and N–H∙∙∙S[3] hydrogen bonds but in this case the rather dispersive nature of the 

H∙∙∙S interaction has to be taken into consideration. C–H groups are also discussed as 

possible H-donors. Here mainly IR spectroscopical evidence and theoretical studies are 

offered.[4] 

In the book The hydrogen bond by Pimentel and McClellan[5], the basic concept and 

additionally the properties of this bonding type are summarized. Especially 

intermolecular H-bonds lead to great changes in the properties of compounds, such as 

increase in viscosity, thermal, acoustic and electrical conductivity, dielectric properties 

and the dipole moment. Furthermore they lead to a higher melting and boiling point, 

which in present times is rather important in the field of material science as phase 

transition is to be prevented in a certain temperature range.[6] Also the surface tension 

can be increased by the formation of these interactions.  

From the early 1960s also the interest in compounds containing very strong 

hydrogen bonds is ever growing.[7] Since then this type of bonding has been reviewed 

several times. Compounds forming strong H-bonds do not necessarily have to be 

anions but can also be neutral or cationic.[3] 

But what is the difference between weak and strong hydrogen bonds? In the first 

mentioned the interaction between the hydrogen and the acceptor is predominantly 

electrostatic, while in the latter the proton cannot clearly be assigned to either of the 

heteroatoms. In the following this system is noted X–H–Y[3] and can be explained as a 

three-centre-four electron bond, the proton being partially covalently linked to both, 

the X and the Y. Rough criteria for a distinction of weak and strong H-bonds are that 

d(D∙∙∙A) should be slightly smaller than the sum of the van der Waals radii of D and A 
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and the hydrogen atom is located nearer to the donor atom. In strong bonds, on the 

other hand, d(X∙∙∙Y) is at least 0.3 Å shorter than the sum of the van der Waals radii 

of X and Y and the proton should be rather centred between both heteroatoms.1 Thus 

the distance of O∙∙∙O should be slightly smaller than 3.04 Å for a weak and less than 

2.74 Å for a strong hydrogen bond. In the case of N∙∙∙O the values are 3.07 Å and 

2.77 Å respectively.[3] Theoretical studies by Grabowski on that topic declare the 

ranges to be 2.4–2.55 Å for O∙∙∙O and 2.5–2.6 Å for N∙∙∙O.[4a]  

This shows how fluctuating the specification of this kind of hydrogen bond is and that 

there are indeed no distinct rules or borderlines for a precise definition. 

Desiraju states that it is a mixture of four different forces, which is responsible for 

the formation of very strong hydrogen bonds. These forces are electrostatic, 

concerning the acid-base interaction, polarization, meaning how hard or soft X and Y 

are, van der Waals (dispersion and repulsion) and also the covalent force, leading to 

charge transfer.[9] 

Keeping all the above in mind, in the following a pyridinium salt of a mixed 

oxophosphate shall be discussed in terms of weak and strong hydrogen bonds. The 

impact on the structural build-up of such compounds in the solid state is enlightened. 

 

 

 

 

 

 

 

                                                            
1 Van der Waals radii [Å] important in this work: H: 1.20; C: 1.70; N: 1.55; O: 1.52; S: 1.80.[8]  A. Bondi, Journal 
of Physical Chemistry 1966, 70, 3006‐3007. 
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The anionic part of this compound consists of one H2P2O7
2− and two HPO4

2− entities. 

Each of these three is connected to two other anions by very strong hydrogen bonds 

(drawn in light blue). The dihydrogendiphosphate entity (A1) is connected to the 

monohydrogenphosphate one, containing P3 (A2), by the O7–H7–O10 interaction with 

X–H and H–Y distances of 1.15(1) and 1.37(1) Å respectively.  

The O∙∙∙O distance is rather short with a value of 2.523(6) Å and the bond is close to 

linearity with an angle of 178(1)°. A2 is connected to the monohydrogenphosphate 

anion, containing P4, (A3) via O11–H14–O14 interactions with X–H and H–Y distances 

of 1.24(1) and 1.25(8) Å and an angle of 178(7)°.  

In Table 1 all intra- and intermolecular interactions found in 1 are listed. 

Table 1. Intermolecular interaction in 1 (the sum of the van der Waals radii of hydrogen and 

sulfur atom mounts up to 3.00 Å, hydrogen and oxygen to 2.72 Å). 

X–H–Y d(X–H) (Å)  d(H–Y) (Å)  d(D∙∙∙A) (Å) ∠ X–H–Y (°)  

O7–H7∙∙∙O10 1.15(1) 1.37(1) 2.523(6) 178(1) 

O11–H14∙∙∙O14 1.24(1) 1.25(8) 2.484(6) 178(7) 

O15–H15∙∙∙O15i 1.23(1) 1.23(2) 2.468(5) 180(1) 

D–H∙∙∙A d(D–H) (Å)  d(H∙∙∙A) (Å)  d(D ∙∙∙A) (Å) ∠ D–H⋅⋅⋅A (°)  

O6–H6∙∙∙O1ii 0.87(7) 1.60(7) 2.459(5) 173(6) 

O13–H13∙∙∙O5iii 0.89(1) 1.69(1) 2.558(5) 165(1) 

O2–H2∙∙∙O9 0.89(1) 1.62(1) 2.475(5) 163(1) 

O8–H8∙∙∙O12*     
    *O8-H8∙∙∙O12A 1.03(1) 1.52(4) 2.47(5) 150(2) 

    O8-H8∙∙∙O12B_b 1.03(1)     1.52(2)    2.47(2) 171(1)     

N1 iv –H1 iv ∙∙∙O3 0.96(6) 1.69(6) 2.611(5) 161(5) 

N2 v –H4 v ∙∙∙O5 0.97(6) 1.68(7) 2.637(6) 169(7) 

N3vi–H3vi∙∙∙O12**     

** N3-H3∙∙∙O12B_b 1.03(6)     1.68(7)    2.68(2)     167(7)     

    N3-H3∙∙∙O12A_a 1.03(6)     1.79(8)    2.67(2)     143(7)     

Symmetry operations: i = −x,−y+2, −z+1; ii = -x, -y+2, -z+1; iii = x, y+1, z; iv = −1+x, y, z; 
v = 1−x, 1−y, 1−z; vi = −1+x, y, z.  

The dihydrogendiphosphate unit is connected to another inversion related 

diphosphate unit by an O6–H6∙∙∙O1ii contact (dark blue lines in Figure 2). A short 

donor acceptor distance of 2.459(5) Å can be found, as well as an angle of 173(6)°, 

which is very close to linearity. This arrangement leads to the formation of ten-

membered rings.  
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X–ray Crystallography. The single–crystal X-ray diffraction data were collected 

using an Oxford Xcalibur3 diffractometer equipped with a Spellman generator (voltage 

50 kV, current 40 mA), Enhance molybdenum Kα radiation source (λ = 71.073 pm), 

Oxford Cryosystems Cryostream cooling unit, four circle kappa platform and a 

Sapphire CCD detector. Data collection and reduction were performed with 

CrysAlisPro.[10] The structures were solved with SIR97[11], SIR2004[12] , refined with 

SHELXL-97[13], and checked with PLATON[14], all integrated into the WinGX software 

suite[15]. The finalized CIF files were checked with checkCIF.[16] All non-hydrogen 

atoms were refined anisotropically. The hydrogen atoms were located in difference 

Fourier maps and placed with a C–H distance of 0.98 Å for C–H bonds. Intra- and 

intermolecular contacts were analyzed with DIAMOND (version 3.2i), thermal ellipsoids 

are drawn at the 50% probability level. Selected crystallographic data and refinement 

details for the structure determination of compound 1 are summarized in Table 3.  

 

Table 3. Crystallographic and refinement data of 1. 

 1   

Formula C17.5H27N3.5P4O15 calc[g/cm−3] 1.609 

M [g/mol] 650.31  [mm−1] 0.360 

Crystal system triclinic F(000) 673 

Space group P−1  range [°] 4.21–25.35 

Colour/Habit colourless block T [K] 173(2) 

Crystal size 0.20x0.25x0.15 data collected 18232 

a [Å] 9.086(5) data unique 4860 

b [Å] 10.401(5) data observed 3781 

c [Å] 15.183(5) Rint 0.0452 

 [°] 98.746(5) GOOF 1.033 

 [°] 102.519(5) R1, wR2 (I>2I0) 0.0659, 0.1525 

 [°] 101.753(5) R1, wR2 (all data) 0.0858, 0.1714 

V [Å3] 1342.2(11) larg. diff peak/hole   

Z 2 (e/Å) 0.962/−0.723 

 

 

 

Synthesis of 1: py2P2S4O (2 mmol, 728.8 mg) (Part IV) was suspended in pyridine 

(30 mL) and water (2 mL) were added. After refluxing the suspension for 2 h the 

yellow precipitate was removed. After 9 d colourless block shaped crystals of 1 could 
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be obtained from the orange solution. A yield could not be determined, as only a few 

crystals were obtained. 

31P NMR (pyridine, rt): δ [ppm] = 41.9 (s, 58.4%), 1.7 (s, 41.6%).  
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These compounds have the additional advantage of showing no phase transition over 

a broad temperature range.[4] The diversity of potential topologies is enormous, as 

they can be designed based on the nature and number of intra- and intermolecular 

interactions. The organic cation can act as a hydrogen donor and therefore also 

influence the structure. It further stabilizes the whole entity and an additional 

advantage is the lowering of thermal conductivity. Therefore this material is claimed to 

be a third order non-linear optics, amongst many more possible applications.[4, 6]  

Consequently, the intra- and intermolecular interactions are the fundamental 

condition for the chemical and physical properties of these salts. Another very 

important structure directing factor is the π–π interaction, which is an attractive, non-

covalent force between two aromatic ring systems. Today this kind of assembly is 

used in many applications such as stabilizing protein and DNA structures, influencing 

molecular recognition, self-assembly, host guest systems or the design of organic 

electronics and many more.[7] 

Masse and Tordjman were able to synthesise the pyridinium dihydrogenphosphate 

phosphoric acid.[8] Their aim was to produce a layered structure with the pyridinium 

ions anchored inside the anionic framework, but claimed that this was not possible, as 

pyridinium is a single hydrogen donor. They never took into consideration that the 

substitution of oxygen with sulfur would make the difference. In the following the 

H2PO3S− anion is discussed and it is shown, that the substitution induces indeed a 

layered structure. This anion has first been described as its sodium salt in 1847.[9]  

Ziemer and Rabis were the first to describe a salt containing this anion and an 

organic cation, namely the pyridinium ion.[10] Their work however only includes the 

synthesis and a brief overview of the basic information on crystal refinement data, but 

lacks a proper discussion of the structure, especially the role of interactions and the 

arrangement in the crystal. In the following this void will be filled and the intra- and 

intermolecular interactions and their impact on the crystal structure of 

(C5H5N)(H2PO3S) are discussed extensively. 

Also a new salt is presented. It consists of two HPO3S2− fragments connected by a 

very strong hydrogen bond[11], yielding a H(HPO3S)3− entity. The organic counter ions 

are one single and one twofold protonated 4,4’-bipyridine molecule. This compound 

shows an even more remarkable build up, as a vast and very complex network is 

formed.  
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Results and Discussion 

 

Molecular and Crystal Structure of (pyH)(H2PO3S) (1) 

Compound 1 could be obtained from two different reactions. In reaction 1) P4S10 is 

refluxed in pyridine, leading to the formation of the bis(pyridine) stabilized P2S5 which 

is then stirred in water. Reaction 2) proceeds with py2P2S7 as intermediate which has 

to be suspended and stirred in acetone at room temperature.  

 

Scheme 1. Synthetic routes to 1. 

 

This salt crystallizes in the monoclinic space group P21/n with four asymmetric units 

in the unit cell. Figure 2 depicts the molecular structure of 1 and selected atom 

distances and bond angles are listed. 

The values of the atom distances and bond angles within the H2PO3S− entity are in 

good accordance with those found by Ziemer et al.[10].  

As imposed in the introduction the interactions in this molecule are essential for the 

structural composition of the crystal. The molecules are held together by N–H···O and 

O–H···O hydrogen bonds (Table 1), forming chains parallel to the b axis and O–H···S 

interaction, connecting the chains, along the c axis (Figure 3). This leads to the 

formation of layers. 
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This anion comprises two HPO3S2− entities which are held together by a very strong 

hydrogen bond (introduced in the previous chapter). The hydrogen (H2) is partially 

covalently linked to both oxygen atoms (O2 and O4).[11] With a X–H/H–Y distance of 

1.197(6)/1.324(7) Å, X∙∙∙Y of 2.517(5) Å and a X–H–Y angle of 172(6)°. The values 

for this connection are well within the range described for a strong hydrogen bond.[14] 

Table 2 summarizes the main intra- and intermolecular interactions found within 2. 

The average atom distances and bond angles around the phosphorus atoms do not 

differ substantially from those found in 1. 

Table 2. Intra- and intermolecular interaction in 2 (Van der Waals radii [Å]: H: 1.20; C: 1.70; 

N: 1.55; O: 1.52; S: 1.80)[12]. 

X–H–Y d(X–H) (Å)  d(H–Y) (Å)  d(X∙∙∙Y) (Å) ∠ X–H–Y (°)  

O2–H2∙∙∙O4 1.20(1) 1.32(1) 2.517(5) 172(6) 

D–H∙∙∙A d(D–H) (Å)  d(H∙∙∙A) (Å)  d(D ∙∙∙A) (Å) ∠ D–H⋅⋅⋅A (°)  

O1–H1∙∙∙S2i 0.84(1) 2.59(1) 3.348(5) 150.4(3) 

O6–H6∙∙∙S1ii 0.84(1) 2.39(1) 3.200(5) 159.8(3) 

N1–H21∙∙∙N2i 0.88(1) 1.77(1) 2.647(8) 173.0(3) 

N4–H4∙∙∙O3iii 0.88(1) 1.73(1) 2.603(7) 171.4(4) 

N3–H3∙∙∙O5iv 0.88(1) 1.72(1) 2.591(7) 173.2(4) 

C11v–H11v∙∙∙S2 0.95(1) 2.90(1) 3.645(7) 137.0(5) 

C10–H10∙∙∙S2 0.95(1) 2.91(1) 3.844(7) 170.4(4) 

C3vi–H25vi∙∙∙S2 0.95(1) 2.30(1) 3.6745 129.6(3) 

C4–H24∙∙∙S1 0.95 (1) 2.80(1) 3.660(6) 150.2(4) 

C13vii–H13vii∙∙∙O5 0.95(1) 2.50(1) 3.316(8) 144.7(4) 

C18viii–H18viii∙∙∙O3 0.95(1) 2.46(1) 3.387(7) 164.9(4) 

symmetry operations: i = 1-x, 1-y, 1-z; ii = 0.5−x, −0.5+y, 1.5−z; iii = 1-x, 1-y, 2-z; iv = x−1, y, z; v = 
1+x, y, z; vi = x, 1+y, z; vii = −1−x, 1−y, z; viii = x, 1+y, z. 

Each anion is connected to the next one, which adopts the same orientation, by O–

H∙∙∙S contacts. With a H6∙∙∙S1/H1∙∙∙S2 distance of 2.394(3)/2.591(2) Å, every 

H3P2O6S2
3− forms four such interactions, leading to infinite parallel chains. The N–H 

groups N4–H4 and N3–H3 of the bipyH2 counterions interact with O3 and O5 

respectively on either side of the cation which therefore acts as a bridge between two 

parallel strands. The values of the O–H∙∙∙N interactions are in good accordance with 

the expected ones (see 1). 
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of the most intense peak and are given in parentheses. Low resolution mass spectra 

were recorded on a JEOL MStation JMS-700 with 4-nitrobenzyl alcohol as matrix for 

FAB measurements. Elemental analyses (CHNS) were performed with an Elementar 

Vario EL. Due to the formation of glassy (P2O5)x(H2O)yC during measument, the values 

deviate considerably from the calculated ones. Melting and decomposition points 

were determined by differential scanning calorimetry (Linseis DSC-PT10, calibrated 

with standard pure indium and zinc). Measurements were performed at a heating rate 

of 5 °C min−1 in closed aluminum sample pans with a 0.1 mm hole in the lid for gas 

release to avoid an unsafe increase in pressure under a nitrogen flow of 20 mL min−1 

with an empty identical aluminum sample pan as a reference. Melting points were 

checked with a Büchi Melting Point B-540 in open glass capillaries. 

X–ray Crystallography. The single–crystal X-ray diffraction data were collected 

using an Oxford Xcalibur3 diffractometer equipped with a Spellman generator (voltage 

50 kV, current 40 mA), Enhance molybdenum Kα radiation source (λ = 71.073 pm), 

Oxford Cryosystems Cryostream cooling unit, four circle kappa platform and a 

Sapphire CCD detector. Data collection and reduction were performed with 

CrysAlisPro.[16] The structures were solved with SIR97[17], SIR2004[18] , refined with 

SHELXL-97[19], and checked with PLATON[20], all integrated into the WinGX software 

suite[21]. The finalized CIF files were checked with checkCIF.[22] All non-hydrogen 

atoms were refined anisotropically. The hydrogen atoms were located in difference 

Fourier maps and placed with a C–H distance of 0.98 Å for C–H bonds. Intra- and 

intermolecular contacts were analyzed with DIAMOND (version 3.2i), thermal ellipsoids 

are drawn at the 50% probability level. Selected crystallographic data and refinement 

details for the structure determination of compound 1 and 2 are summarized in Table 

3.  

 

(pyH)(H2PO3S) (1) 

1) P4S10 (444.5 mg, 1 mmol) was refluxed in pyridine (40 mL) for 2 h. Afterwards 

the yellow precipitate of py2P2S5  was separated from the solution, dried in vacuo. The 

yellow powder was dissolved in H2O and five drops of conc. HNO3 were added. 

Immediately yellow block shaped crystals of 1 could be observed. (yield: 82.8%, 

148.3 mg, 0.83 mmol) 

1P {1H} NMR (H2O, rt): δ [ppm] = 57.6 (1, 73.8%), 3.5 (s, 26.2%). 
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Table 3. Crystalographic and refinement data of 1 and 2. 

 1  2 

empirical formula C5H8NPO3S  C40H44N8O12P4S4 

formula mass 193.16  583.32 

T [K] 173(2)  173(2) 

crystal size [mm] 0.3× 0.2×0.15  0.1×0.1×0.05 

crystal description yellow block  yellow block 

crystal system monoclinic  triclinic 

space group P21/n  P−1 

a [Ǻ] 6.7949(11)  8.477(10) 

b [Ǻ] 9.0254(14)  9.609(10) 

c [Ǻ] 13.2563(17)  15.887(16) 

 [°]   92.192(8) 

 [°] 101.499(14)  97.370(9) 

 [°]   115.545(11) 

V [Ǻ3] 796.6(2)  1151.6(10) 

Z 4  2 

ρcalcd. [g cm−3] 1.610  1.682 

μ [mm-1] 0.563  0.961 

F(000) 400  583 

Θ range [°] 4.34–25.34  3.87–25.34 

index ranges −8 ≤ h ≤ 8  −10 ≤ h ≤ 10 

 −10 ≤ k ≤ 10  −11 ≤ k ≤ 11 

 −15 ≤ l ≤ 15  −19 ≤ l ≤ 19 

reflns. collected 7145  10234 

reflns. obsd. 872  1847 

reflns. unique 1456  4166 

Rint 0.0614  0.1264 

R1, wR2 (2σ data) 0.0347, 0.0807  0.0680/0.0894 

R1, wR2 (all data) 0.0672, 0.0859  0.1783/0.1107 

GOOF on F2 0.881  0.868 

larg. diff peak/hole (e/Å) 0.651/−0.247  0.442/−0.386 
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2) py2P2S7 (PART IV – Chapter 1) was suspended in acetone. After one day yellow 

crystals of 1 were observed in the solution. (yield: 91.4%, 163.7 mg, 0.91 mmol). 

31P{1H} NMR (acetone, rt): δ [ppm] = 46.1 (1, 89.5%), 0.7 (s, 10.5%). 

Elemental analysis. Calc. N 7.33, C 31.42, H 3.16, S 16.78; found. N 8.81, C 

37.35, H 4.82, S 1.90. IR  (200 mW, RT): ῦ [cm−1] = 3144 (9), 3058 (81), 2956 (12), 

2919 (9), 1599 (19), 1576 (22), 1483 (11), 1382 (11), 1217 (24), 1152 (11), 1065 

(14), 1032 (92), 1011 (53), 992 (100), 915 (12), 734 (10), 652 (20), 473 (18), 220 

(22). Raman (200 mW, RT): ῦ [cm−1] = 3052 (ww), 3000 (ww), 2367 (ww), 1921 

(ww), 1633 (ww), 1596 (w), 1580 (m), 1488 (w), 1482 (w), 1436 (s), 1354 (ww), 

1213 (w), 1146 (w), 1067 (m), 1030 (m), 990 (m), 941 (s), 903 (s), 747 (vs), 700 

(vs). Mass (FAB−): m/z = 113 ([PO3SH2]−), 97 ([PO2SH2]−), 79 ([pyridine]−), 46 

([PO]−).  

 

(4,4`-bipyH)(4,4`-bipyH2)H(HPO3S)2 (2) 

P4S3 (660 mg, 3 mmol) and Li (42 mg, 6 mmol) were refluxed in pyridine (9 mL) for 

10 min. The yellow precipitated was separated from the red solution, dried in vacuo 

and suspended in THF. After one day yellow block shaped crystals of 2 were obtained. 

31P{1H} NMR (THF, rt): δ [ppm] = 82.4 (2.2%), 35.0 (2, 96.0%), −7.5 (1.8%). 

Elemental analysis. Calc. N 10.40, C 44.61, H 3.74, S 11.91; found. N 14.26, C 

58.24, H 5.77, S 4.41. IR  (200 mW, RT): ῦ [cm−1] = 2964 (m), 2878 (w), 2363 (m), 

2122 (w), 1998 (ww), 1915 (w), 1638 (w), 1489 (w), 1404 (w), 1356 (ww), 1261 

(w), 1215 (m), 1192 (m), 1078 (vs), 1020 (vs), 800 (vs), 681 (s). Mass (FAB−): m/z 

= 195 ([P2O4S2H5]−), 177 ([P2O3S2H5]−), 159 ([P2O4SH2]−), 113 ([PO3SH2]−), 97 

([PO2SH2]−), 79 ([pyridine]−), 46 ([PO]−). 
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Pyridine Stabilized Mn(II) Thio- and 

Oxophosphate Complexes 

As to be submitted to Dalton Trans. 

 

 

 

In the field of organic inorganic hybrid open frameworks a great variety of 

transition metal complexes has been investigated in the past. But the number 

of compounds containing manganese(II) is still very limited. 

To gain a better insight into this matter in the following three new compounds 

containing Mn(II) are presented. With the help of the novel compounds 

[py2MnPS4]2[pyH]2 ∙ 4py (1), py4NaMnPS4 (2) and py4Mn(H2PO4)2 (3), the 

usefulness of thio- and oxophosphates as ligands is investigated. 

Further the importance of the participation of organic cations, especially 

amines, in the arrangement of the structure shall be enlightened. 
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Introduction 

As already mentioned in PART II – Chapter 4 inorganic open-framework materials 

become ever more important due to their various applications.[1] They are widely used 

in matters of catalysis, ion exchange and intercalation chemistry, but also in photo-

physics and the ever growing field of optical devices.[2] 

Organic inorganic hybrid open frameworks are built up based on strong semi ionic 

connections, while organic ligands in general have the advantage of being able to form 

various strong and weak intermolecular interactions. Over the past decades the 

insertion of transition metal atoms into phosphates has gained growing interest, as 

they increase the possible formation of new conformations and therefore topologies. 

The use of transition metal coordination complexes in this field of chemistry has the 

advantage of adding the properties of the d-block elements to the ones of the 

framework.[3] The number of manganese containing representatives with open 

frameworks, however, is still very limited.[1]  

In these compounds amines are widely used as organic component. They fulfil a 

bifunctional role. Not only are they structure directing but they can also act as organic 

templating ligands, occupying coordination space at the metal atom.    

Especially the linkage via H–N or M–N bonds is important for the arrangement in the 

crystal, therefore the number of those bonds has to be taken into consideration. So 

the structure and density of the framework can be manipulated by the choice of the 

organic ligand. This means that the compound can be specially tailored for every 

different guest molecule.  

Since 1989 also chalcogenide containing compounds have gained growing attraction 

as a new class of cluster forming material.[4] Combining the advantages of 

phosphorus, chalcogenides, transition metals in various coordination numbers and 

amines, in their templating role, the range of possibilities can be further extended. 

Our primary goal was to investigate the impact of pyridine as amine, manganese as 

transition metal and sulfur as substitution for oxygen in the phosphate entity, on the 

dimension of the network.  

. 
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Results and Discussion 

Molecular and Crystal Structure of [py2MnPS4]2[pyH]2 ∙ 4py (1) 

The first compound we could isolate fitting all the above mentioned criteria, is 

[py2MnPS4]2[pyH]2 ∙ 4py (1).  

 To the best of our knowledge only one ternary Mn,P,S compound has been 

described in the literature so far. Yamaguchi et at. characterized the MnPS3, which, in 

contrast to our compound adopts a neutral coordination polymeric structure rather 

than discrete molecules with ionic structure and is generally used as intercalation 

compound.[5] But the anionic PS3
− part in this structure has to be described rather as 

the hexathiohypodiphosphate, because of the observed P–P atom distance of 

2.187(2) Å, which is even shorter than 2.254 Å as described for Na2P2S6 · 6 H2O.[6] 

 

Compound 1 is rather stable, which shows the great diversity of different synthetic 

routs (Scheme 1). 

1) P4S10 + Na2S + 2 MnCl2 · H2O
pyridine
reflux

2) P4S3 + Na2S + 2 MnCl2 · H2O
pyridine
reflux

4) P4S10 + Na2S + 2 MnCl2 · H2O 82 °C
MeCN

reflux
+ 4, 4' bipy

pyridine

py2P2S5 + cp*Mn(CO)3 rt
pyridine

3)

Mn
S

S

S

S

MnS S

PPS S

NN

NN

N H
2

2

2

 

Scheme 1. Synthetic routes to 1. 

 

In reaction 1–3 the educts were refluxed in pyridine and dark yellow block shaped 

crystals of 1 could be obtained from the solution after removing the precipitate. In 

reaction 4 acetonitrile was used as solvent. After refluxing, the precipitate was 

removed and 4,4'-bipyridine, dissolved in pyridine, was added. It was only after the 

addition of the nitrogen containing aromatic base, that 1 was formed. This leads to the 
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conclusion that the coordination product of manganese(II) and PS4
3− can only be 

obtained by stabilization via complexation with pyridine.  

 

Compound 1 crystallizes in the monoclinic space group P21/c with two formula units 

in the unit cell. Figure 1 shows the molecular structure of 1 without the pyridinium 

cations, additionally selected bond lengths and angles are listed. 

 

Figure 1. Molecular structure of 1 drawn without the solvent pyridine molecules. Ellipsoids are 

drawn at the 50% probability level. Symmetry operation: i = −x, −y, −z. Selected bond lengths 

[Å] and angles [°] for 1: Mn1–N1 2.277(4), Mn1–N2 2.280(4), Mn1–S1 2.570(1), Mn1–S1i 

2.646(1), Mn1–S2 2.584(1), Mn1–S3 2.582(1), P1–S1 2.075(2), P1–S2 2.043(2), P1–S3i 2.071(2), 

P1–S4 1.993(2);  

N1–Mn1–N2 94.19(14); N2–Mn1–S1i 87.72(10), N1–Mn1–S1 92.02(10), N1–Mn1–S2 93.74(10), 

N1–Mn1–S3 92.52(10), N2–Mn1–S2 91.75(10), N2–Mn1–S3 95.19(10), S2–Mn1–S1i 78.46(4), 

S3–Mn1–S1 93.91(4), S3–Mn1–S2 170.29(5), N1–Mn1–S1i 170.61(10), N2–Mn1–S1 168.74(10), 

S3–Mn1–S1 78.14(4), S2–Mn1–S1 95.39(4), S1–Mn1–S1i 87.67(4), Mn1–S1–Mn1 92.33(4). 

 

The crystal contains discrete (py2MnPS4)2
2- molecules, with the manganese being 

distorted octahedrally surrounded. The angles around the central metal atom range 

between 78.14(4) and 94.19(14)°. The bonding partners are four sulfur atoms and 

two pyridine molecules (Figure 2). 
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Figure 2. Octahedral surrounding of manganese. 

 

The distances of the manganese to the nitrogen atoms of the pyridine molecules are 

with 2.277(4) and 2.280(4) Å in the same range as those found in 

[Mnpy4(NO3)2] · 2 py (2.245(9), 2.303(6) Å)[7] the N–Mn–N angles, however, differ 

slightly with 94.2(2)° compared to 90°, which can be explained by the different 

conformations. 

The planar four membered ring of Mn2S2 forms the core of the anionic part. In the 

above mentioned compound MnPS3
[5] (I, Figure 3), the manganese atoms are 

surrounded distorted octahedrally by eight sulfur atoms with values of the S–Mn–S 

angles between 85.5(1) and 96.4(1)°. With the angles within the ring being 92.3(1) 

and 97.7(1)° in 1 this structural element is closer to a square base compared to 

95.5(1)  and 84.5(1)° as found in I. The Mn–S bonds are with an average value of 

2.608(1) Å, only slightly shorter than 2.622(1) Å in I, whereas the Mn–Mn distance is 

with 3.777(1) Å in 1 larger compared to 3.524(2) Å (I). 

 

Figure 3. Molecular structure of MnPS3 (I). Selected bond lengths [Å] and angles [°]: Mn–S1/S2 

2.622, Mn–S3 2.619, P–S 2.031; Mn–S1/S2–Mn 84.5(1) Mn–S3–P 103.4(1), S1–Mn–S2 95.5(1), 

S1–Mn–S4 92.6(1), S2–Mn1–S3 85.8(1).[5] 
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In the tretrathiophosphate entity one sulfur participates in a coordination to both 

manganese atoms. It is therefore threefold coordinated, building a bridge between the 

two cations, with a P–S distance of 2.075(2) Å. Two further sulfur atoms coordinate to 

one manganese each. Their distance to the manganese(II) is 2.583(1) Å in average. 

These values deviate just slightly from the Mn–S bond lengths found within the ring 

(av. 2.608(1) Å). Also all three S atoms, which engage in the coordination to the 

Mn(II) atoms show nearly the same distance to the phosphorus with (P1–S1 

2.075(2) Å, P1–S2 2.043(2) Å, P1–S3 2.071(2) Å) This leads to the conclusion, that 

the number of coordinative bonds to the manganese atom does not have an influence 

on the P–S bond length. The fourth P–S bond has a value of 1.993(2) Å, which is 

shortened compared to the 2.013(4) Å as found in the salt K2AuPS4.[8] This indicates a 

slightly higher ionic character for this bond. The coordination leads to a slight 

deviation from a regular tetrahedron of the PS4
3− but the S–P–S angles lie in the 

expected range compared to the potassium salt. 

 

Figure 4. Unit cell of 1 with view along the c axis. Ellipsoids are drawn at the 50% probability 

level. Coordinative pyridine molecules are drawn translucent and free pyridine molecules omitted 

for clarity. 
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The pyridinium cations interact electrostatically with the anionic part of 1 (Figure 1) 

with D–H∙∙∙A being N4–H4A∙∙∙S3. The value d(D ∙∙∙A) of 3.255(4) Å is below the sum 

of the van der Waals radii of sulfur and nitrogen (3.35 Å[14]). Additional values are: 

d(D–H) = 0.860(4) Å, d(H∙∙∙A) = 2.431 Å, ∠ D–H⋅⋅⋅A 160.6(3)°. The Mn2(PS4)2 entity is 

overall surrounded by four pyridine molecules acting as ligands at the manganese(II) 

atoms and two pyridinium cations. This leads to a shielding of the anionic part from 

the outside. 

The outward neutral monomeric moieties of 1 arrange staggered along the c axis 

with four additionally pyridine molecules per entity filling the free space between them 

(Figure 4). 

 

 

Molacular and Crystal Structure of py4NaMnPS4 (2) 

Originally sulfur was used, because it is softer than oxygen and therefore can 

coordinate to more than one metal atom (see 1). Using KMnO4 instead of MnCl2 ∙ 2 

H2O, with the intent to partially substitute sulfur with oxygen, yields the coordination 

polymeric structure py4NaMnPS4 (2). So the pyridinium was substituted as cation by 

sodium, which leads to the formation of a coordination polymer, due to its high 

coordination sphere. It can be reasoned that KMnO4 prohibits the pyridinium cation to 

coordinate to the PS4
3−, so the sodium can occupy this place. As Na+ has a higher 

coordination sphere it can increase the dimension of the structure from isolated 

clusters to one dimensional chains. 

Yellow block shaped crystals of 2 could be obtained from refluxing P4S10, Na2S and 

KMnO4 in pyridine. It crystallizes in the orthorhombic space group Pbca with 8 formula 

units in the unit cell. Figure 5 shows the molecular structure of 2 without the 

pyridinium cations, additionally selected atom distances and bond angles are listed. 

The asymmetric unit contains two metal atoms (M = Na/Mn). The positions are 

statistically distributed occupied by a sodium and a manganese atom. So this 

compound is overall neutral in contrast to the ionic molecule in 1.Thus 2 polymerizes 

along the b axis, prohibited in the other two directions by the pyridine molecules 

coordinated to the metal centre. 
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Figure 5. Molecular structure of 2 (M = Na/Mn). Ellipsoids are drawn at the 50% probability level. 

Symmetry operation: i = 1.5−x, −0.5+y, z, ii = 1.5−x, 0.5+y, z. Selected atom distances [Å] and 

bond angles (torsion)angles [°] for 2: M1–N1 2.434(3), M1–N2 2.445(4), M2–N3 2.397(3), M2–N4 

2.405(3), M1–S1 2.815(2), M1–S2 2.792(2), M2–S1 2.804(2), M2–S4 2.755(2), P1–S1 2.040(2), 

P1–S2 2.051(2), P1–S3 2.043(2), P1–S4 2.049(2); M1–S1–M2 85.2(2), N1–M1–N2 82.7(2), N1–

M1–S1 169.2(1), N2–M1–S1 99.2(2), N1–M1–S2 101.5(2), N2–M1–S2 91.2(1), S1–M1–S2 

89.1(1), S1–M1–S1i 93.8(2), S2–M1–S2i 161.2(2), S1i–M1–S2 106.5(2), N3–M2–S1 158.4(2), N4–

M2–S1 92.7(1), N3–M2–S4 85.5(2), N4–M2–S4 101.9(2), N3–M2–N4 87.3(2), S1–M2–S1i 92.7(2), 

S4–M2–S4 164.8(2), S1–M2–S4 73.3(2), S1i–M2–S4 111.6(2), M1–S2–M1ii 151.7(2), M2–S4–M2ii 

160.7(2), M1ii–S3–M2ii 88.4(2); S1–M1–S1i–M2 0.4(1). 
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The structures of 1 and 2 are very similar. Both contain two metal atoms 

coordinated by two pyridine rings each, connected by a bridging sulfur atom of two 

PS4
3− ions on both sides and further bonded to two sulfur atoms of these entities. M is 

distorted octahedrally surrounded by the ligands with angles between 82.7(2) and 

101.5(2)°. 

Because of the polymerisation the asymmetric units twist slightly in relation to each 

other because of the sterical hindrance of the pyridine rings (Figure 6). Therefore the 

N–M–N bond angles in 2 (av. 85.0(2)°) are smaller compared to the ones in 1 (av. 

94.2(2)°). The two pyridine molecules are avoiding each other, as reflected by 

elongated M–N distance compared to 1 (2.421(4) Å and 2.279(4) Å, respectively). 

Furthermore the N–M–M–N torsion angles have different values. Those are 32.6(2)° 

for N1–M1–M1i–N2i, 29.8(2)° for N2–M1–M1i–N1i, 16.7(2)° for N3–M2–M2i–N4i and 

17.8(2)° for N4–M2–M2i–N3i. 

 

Figure 6. Arrangement of the pyridine ligands in 2. 

 

Due to the higher ionic character of the Na–S interaction compared to the Mn–S 

bond, the overall metal–sulfur distance is elongated by an average 0.184(2) Å. The 

angles in the planar four membered M2S2 ring differ only by about 2° in both 

compounds, thus the M–M distance is with 3.802(2) Å only slightly longer than 

3.777(1) Å found in 1.  
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Figure 7 shows the unit cell of 2 with view along the chains along the b axis. It can 

be observed, that each chain is shielded from the other by the coordinating pyridine 

rings.  

 

Figure 7. Unit cell of 2. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms are 

omitted for clarity. 

 

 

Molecular and Crystal Structure of py4Mn(H2PO4)2 (3) 

The next step was to substitute Na2S with H2O to yield a substitution of sulfur with 

oxygen. Dissolving the precipitate of the reaction of P4S10 and KMnO4 in pyridine, 

yields colourless block shaped crystals of py4Mn(H2PO4)2 (3). 

This compound crystallizes in the tetragonal space group P−421/c with four formula 

units in the unit cell. Figure 8 shows the molecular structure of 3 and gives selected 

atom distances and bond angles. 
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Figure 8. Molecular structure of 3. Ellipsoids are drawn at the 50% probability level. Symmetry 

operation: i = 1−x, −y, z. Selected atom distances [Å] and bond angles [°]: Mn–N1 2.311(2), 

Mn1–N2 2.314(2), Mn–O1 2.075(2), P1–O1 1.491(2), P1–O2 1.580(3), P1–O3 1.517(2), P1–O4 

1.561(2); N1–Mn–N2 88.8(1); N1–Mn–N1i 90.6(1), N2–Mn–N2i 91.8(1), N1–Mn–O1 90.2(1), N1i–

Mn–O1 87.6(1), N2–Mn–O1 90.8(1), N2i–Mn–O1 91.3(1). 

 

The central manganese atom is octahedrally surrounded by two H2PO4
− anions and 

four pyridine rings. The octahedron deviates from regularity only very slightly, which 

confirms the range of the angles around the Mn(II) between 87.6(1) and 91.8(1)°.   

Only one other compound consisting of manganese(II) and dihydrogenphosphate 

has been found in the literature. In 2006 Tang et al. were able to synthesise a similar 

structure starting from MnCO3, H2O, H3PO4 and 2,2'-bipyridine.[10] The structure of 

[(bipy)Mn(H2PO4)2] (bipy = 2,2'-bipyridine) (II) is shown in Figure 9. 
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Figure 9. Structure of (bipy)Mn(H2PO4)2 (II), synthesized by Tang et al.. 
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It is built up by edge-sharing Mn(II) octahedra. In each case two asymmetric units 

share one edge and are connected to the next via one corner. Attention should be paid 

to the fact that II disposes four H2PO4
− entities and one 2,2'-bipyridine acting as 

chelating ligand, while 3 consists of four pyridine and two H2PO4
− ligands. Because of 

the compulsory bond angle of 73.4(1)° of the bipyridine skeleton the other angles of 

the octahedron at the central atom differ quite strongly from 90°. They are in the 

range of 75.6(2) and 99.6(1)°.  

The Mn–N bond lengths in 3 are with 2.311(2) and 2.314(2) Å in 3 longer compared 

to 2.239(2) and 2.247(3) Å in II, while the Mn–O distances (2.075(2) Å) are 

shortened compared to 2.144(2) and 2.157(2) Å. 

The H2PO4
− entity in py4Mn(H2PO4)2 deviates with 105.9(2) to 109.4(1)° only slightly 

from a regular tetrahedron, while the similar angles in II diverse strongly between 

102.4(2) and 113.7(2)°. This may be caused by the Mn(II) octahedron being partially 

connected over edges. 

Because of each bipyridine being 180° rotated to the previous one in II the H2PO4
− 

entities are sterically hindered from interacting with one another, which leads to the 

formation of chains. In 3 the four pyridine molecules coordinate to the manganese in a 

plane with the two H2PO4
− entities on either side of that plane. This situation gives the 

oxygen atoms the opportunity to form hydrogen bonds and therefore to arrange in 

layers. The hydrogen H1 is with a bond length of 0.85(3) Å connected to the O2 and 

interacts with the terminal O3 atom of the next moiety (d(HA)=1.72(4) Å). The 

distance of the donor to the acceptor has a value of 2.565(3) Å, with a O2–H11O3 

angles of 170(4)°. 

Figure 10a shows an excerpt of a layer, with the hydrogen bonds presented in 

dashed light blue lines. Ever four motives accumulate in such a manner forming 

channels throughout the layer (Figure 10b). Figure 10c shows the unit cell with view 

from the top of the layers. 
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Figure 10. Section of the layered structure of 3 (a, b) and unit cell (c). View along the c axis. 

Ellipsoids are drawn at the 50% probability level. In (c) pyridine molecules are omitted for clarity. 

 

The pyridine molecules arrange regularly on both sides of a layer. This shields the 

phosphate layers electrostatically against each other, so that no interaction between 

the levels can take place (Figure 11). 
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Figure 11. Molecular structure of 2 with view along the b axis. 

 

Figure 12 shows the view along the layers and the arrangement in the unit cell. 

 

Figure 12. View along the layers (upper picture) and unit cell with view along the b axis (lower 

picture). Ellipsoids are drawn at the 50% probability level. Pyridine molecules are omitted for 

clarity. 
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Conclusion 

Manganese(II) in combination with polydentate anions is often used to yield 

coordination polymers. The tetrathiophosphate anion PS4
3− provides four soft 

coordination sites and is a good candidate for the combination with a low valent 

transition metal. In the course of our investigations to introduce PS4
3− as a building 

block in coordination polymers prepared from solution, a first Mn(II) 

tetrathiophosphate complex [py2MnPS4]2[pyH]2 · 4 py (1) was obtained.  

 

Compound 1 has a high tendency of formation as it is obtained from several 

different reactions. In this complex manganese, tetrathiophosphate and pyridine 

together form isolated monomeric entities. The formal substitution of the organic 

cation pyH+ with a monovalent metal cation like Na+ leads to the formation of a one 

dimensional coordination polymer py4NaMnPS4 (2). This is caused by the higher 

coordination sphere at the sodium cation. 
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Complex 2 is obtained when P4S10, Na2S and KMnO4 are refluxed in pyridine. The 

chains, formed by the manganese and sodium cations and the PS4
3− anions are 

shielded by coordinated pyridine molecules, thus preventing the polymer from higher 

dimensionality. 

Using oxo- instead of a thiophosphate leads to a layered arrangement in the crystal. 

This can be achieved by the formation of hydrogen bonds, as shows the structural 

arrangement in py4Mn(H2PO4)2 (3). 

 

 

	

Experimental Section 

 

General conditions. All reactions were carried out under inert gas atmosphere 

using Argon (Messer Griesheim, purity 4.6 in 50 L steel cylinder) and working with 

Schlenk techniques. The glass vessels used were stored in a 130 °C drying oven. 

Before filling they were flame dried in vacuo at 10−3 mbar. Elemental sulfur was used 

as obtained (Acros Organics). P4S10 was commercially obtained (Riedel–de Häen) and 

purified by extraction with CS2 before use. All other chemicals were used as obtained 

(Sigma Aldrich). The solvents were dried with commonly known methods and freshly 

distilled before use. NMR Spectroscopy. NMR spectra were recorded using a Jeol EX 

400 Eclipse instrument operating at 161.997 MHz (31P). Chemical shifts are referred to 

85% H3PO4 as external standard. If not mentioned otherwise, all spectra were 
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measured at 25 °C. The % data correspond to the intensities in the 31P NMR spectra 

with respect to the total intensity. The difference to 100% belongs to not assignable 

signals. Mass Spectrometry. The mass spectrometry was performed with a MStation 

JMS 700 (Jeol). Measurements were carried out using the ionisationmethode 

DEI+/EI+. This method involves the problem of exposing the compounds to air, while 

embedding them into the matrix (p–nitroalcohol). IR Spectroscopy. The spectra 

were recorded using a PerkinElmer Spektrum one FT–IR instrument (KBr); Perkin–

Elmer Spectrum BXII FT–IR instrument equipped with a Diamant–ATR Dura Sampler 

at 25 °C (neat). Raman spectra were recorded on a Bruker RAMII Raman instrument 

(λ = 1064 nm, 200 mW, 25 °C) equipped with D418–T Detector at 200 mW at 25 °C. 

Melting and decomposition points were determined by differential scanning 

calorimetry (Linseis DSC-PT10, calibrated with standard pure indium and zinc). 

Measurements were performed at a heating rate of 5 °C min−1 in closed aluminum 

sample pans with a 0.1 mm hole in the lid for gas release to avoid an unsafe increase 

in pressure under a nitrogen flow of 20 mL min−1 with an empty identical aluminum 

sample pan as a reference. Melting points were checked with a Büchi Melting Point B-

540 in open glass capillaries. 

 

X–ray Crystallography. The single–crystal X-ray diffraction data were collected 

using an Oxford Xcalibur3 diffractometer equipped with a Spellman generator (voltage 

50 kV, current 40 mA), Enhance molybdenum Kα radiation source (λ = 71.073 pm), 

Oxford Cryosystems Cryostream cooling unit, four circle kappa platform and a 

Sapphire CCD detector. Data collection and reduction were performed with 

CrysAlisPro.[16] The structures were solved with SIR97[17], SIR2004[18] , refined with 

SHELXL-97[19], and checked with PLATON[20], all integrated into the WinGX software 

suite[21]. The finalized CIF files were checked with checkCIF.[22] All non-hydrogen 

atoms were refined anisotropically. The hydrogen atoms were located in difference 

Fourier maps and placed with a C–H distance of 0.98 Å for C–H bonds. Intra- and 

intermolecular contacts were analysed with DIAMOND (version 3.2i), thermal ellipsoids 

are drawn at the 50% probability level. Selected crystallographic data and refinement 

details for the structure determination of compounds 1–3 are summarized in Table 1. 

These data can be obtained free of charge from The Cambridge Crystallographic Data 

Centre via www.ccdc.cam.ac.uk/data_request/cif. 
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Table 1. Crystalographic and refinement data 

 [py2MnPS4]2 [pyH]2  

4 py 

py4NaMnPS4 py4Mn(H2PO4)2  

formula C50H52N10Mn2P2S8 C20H20N4 NaMnPS4 C20H24N4MnP2O8 

M [g/mol] 1221.32 546.59 565.31 

crystal system monoclinic orthorombic tetragonal 

space group P21/c Pbca P−421/c 

colour/habit orange block yellow block colourless block 

crystal size 0.25x0.25x0.05 0.25x0.25x0.15 0.4x0.35x0.3 

a [Å] 14.734(3) 16.7522(7) 12.26570(10) 

b [Å] 10.8245(9) 10.8304(5) 12.26570(10) 

c [Å] 18.064(2) 27.2171(11) 17.3552(3) 

 [°] 90 90 90 

 [°] 96.527(16) 90 90 

 [°] 90 90 90 

V [Å3] 2862.3(7) 4938.1(3) 2611.04(5) 

Z 2 8 4 

calc[g/cm−3] 1.417 1.470 1.438 

 [mm−1] 0.833 0.869 0.678 

F(000) 1260 2240 1164 

 range [°] 4.13–24.99 4.17–25.35 4.40–28.26  

T [K] 173(2) 173(2) 173(2) 

data collected 25210 43637 30383 

data unique 4983 4399 3226 

data observed 3256 3839 3007 

R (int) 0.0919 0.0551 0.0309 

GOOF 1.000 1.054 0.992 

R1, wR2 (I>2I0) 0.0564, 0.1367 0.0482, 0.0842 0.0289, 0.0720 

R1, wR2 (all data) 0.0988, 0.1591 0.0573, 0.0882 0.0327, 0.0756 

larg. diff 

peak/hole (e/Å) 

0.634 

−0.417 

0.572 

−0.775 

0.460 

−0.286 
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Syntheses 

[py2MnPS4]2[pyH]2  4py (1): P4S10 (542.3 mg, 1.2 mmol), Na2S (95.0 mg, 

1.2 mmol) and MnCl2 ∙ 2 H2O (395.0 mg, 2.4 mmol) were dissolved in pyridine 

(12 mL) and refluxed for 1 h. After one day the yellow precipitate is removed from the 

colourless solution by filtration. After another day orange block shaped crystals of 1 

could be observed together with colourless crystals of MnCl2  4 py. An exact yield 

could not be determined, as both products could not be separated.  

31P{1H} NMR (pyridine): δ [ppm] = 150.5 (s, 6.8%, br), 112.4 (s, 40.3%, br), 

59.8 (s, 53.0%). Elemental analysis calc. N 9.29, C 39.82, H 3.56, S 28.35; found. 

N 6.99, C 29.86, H 3.16, S 13.26. Raman (200 mW, rt): ν [cm-1] = 3229 (10), 3156 

(7), 3071 (50), 3021 (7), 3003 (8), 2969 (12), 2942 (8), 2930 (7), 2878 (8), 2543 

(14), 1770 (8), 1666 (8), 1630 (8), 1607 (29), 1573 (9), 1412 (12), 1229 (8), 1192 

(25), 1182 (12), 1152 (9), 1009 (100), 474 (81, PS4
3-), 426 (6), 387 (11), 305 (10), 

268 (9), 222 (75), 196 (6), 154 (58). IR (200 mW, rt): ν [cm-1] = 3060 (ww) 3038 

(ww) 3001 (ww) 2961 (ww) 1634 (ww) 1600(w) 1573 (ww) 1535 (ww), 1489 (w), 

1445 (s), 1364 (ww), 1260 (w), 1220(w), 1096 (w), 1080 (m), 1038 (s), 1077 (s), 

880 (s), 801 (w), 754 (vs), 692 (vs), 677 (s). Mass spectrometry m/z (ESI−) m/z = 

741 ([py4Mn2P2S8]−), 428 ([Mn2P2S8]−), 406 ([H10Mn2P2S7]−), 303 ([H2Mn2PS5]−), 283 

([H6MnPS6]−), 219 ([H7MnPS4]−). DSC (5 °C/min): Tdec =  196.1 °C. 

 

py4NaMnPS4 (2): One equivalent of P4S10 (444.5 mg, 1.0 mmol), Na2S (77.0 mg, 

1.0 mmol) and two equivalents KMnO4 (316.0 mg, 2.0 mmol) were dissolved in 

pyridine (10 mL) and refluxed for 1 h. 0.6 mL of the brownish solution were filled into 

an NMR tube for analytical reasons. After one week yellow block shaped crystals of 2 

were observed in the NMR tube. 

31P{1H} NMR (pyridine, rt): δ [ppm] = 174.7 (s, br, 80.1%), 104.4 (s, 13.3%). 

 

py4Mn(H2PO4)2 (3): A suspension of P4S10 (2716.0 mg, 6.1 mmol) in pyridine 

(40 mL) was refluxed for 1 h. The yellow precipitate was dissolved in water (30 mL) 

and again refluxed for 1h. KMnO4 was added and the suspension was stirred. Colorless 

block shaped crystals of 3 were obtained from the solution after 7 d.  
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31P{1H} NMR (pyridine, rt): no resonances detected. IR (200 mW, rt): ν [cm-1] = 

3371 (br, w), 1641 (ww), 1611 (ww), 1588 (s), 1581 (m), 1573 (w), 1484 (w), 1356 

(ww), 1215 (w), 1148 (m), 1068 (m), 1031 (s), 997 (s), 990 (m), 959 (m), 748 (vs), 

700 (vs). Mass spectrometry m/z (FAB+) = 539 ([py4MnP2O5H10]−), 461 

([py4MnPO4]−), 307 ([py2MnPO4]−), 233 ([H4MnP2O7]−), 154 ([H4MnPO4]−), 80 

([H2PO4]−). DSC (5 °C/min): Tdec =  223.7 °C. 
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Introduction 

The family of compounds, containing polysulfide linkages between phosphorus 

atoms, shows a remarkable diversity. But to the best of our knowledge only four 

acyclic compounds containing an S3 bridge have been described in the literature so far 

(Scheme 1).  

.  

Scheme 1. Diphosphorus compounds with polysulfidic linkage ( I[1], II[2], III[3], IV[4]) 

 

In recent times it has been reported on the ability of transition metals to induce 

polymerization in at least one dimension, so chains, layers or even three dimensional 

networks can be formed.[5] In many cases additionally amines are included into the 

structure as they show a rather great templating potential. In the following it is 

reported on a new compound containing a trisulfide bridge, manganese(II) and 

pyridine in the role of the structure directing amine.  
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Results and Discussion 

The compound py4Mn[(EtO(S)P(O)S)2S] (1) was prepared by stirring a suspension of 

P4S10, Na2S and KMnO4 in pyridine and subsequent dissolving of the precipitate in 

ethanol (Scheme 1). Compound 1 was isolated as colourless block shaped crystals, 

which are quite air and water stable and melt at 233.4 °C. 

 

 

Scheme 1. Synhesis of py4Mn[(EtO(S)P(O)S)2S] · py(1) 

 

The structure of 1 was determined using single-crystal X-ray diffraction. It 

crystallizes in the monoclinic space group C2/c with four formula units in the unit cell. 

Figure 1 shows the molecular structure of 1 and selected atom distances and bond 

angles are listed. 

Compound 1 consists of [(EtO(S)P(O)S)2S]2- dianions with one phosphorus atom 

being surrounded by an ethoxy group, an oxygen and two sulfur atoms. Two 

phosphorus atoms are connected by an S3 bridge. The dianions are connected via 

Mn(II) atoms with oxygen in the bridging position. Each manganese atom is 

coordinated by four pyridine molecules, which play a structure directing role and at 

the same time satisfy the coordination sphere at the manganese atom by acting as 

ligands. This leads to the formation of one dimensional coordination polymeres. 

Taking a look at the bonding situation at the phosphorus atom, a comparison of 

selected atom distances and bond angles with those described for compounds I–III 

can be found in Table 1. The distance of the phosphorus to the one-coordinated sulfur 

atom (S1) is with a value of 1.952(1) Å closer to a P–S double than a single bond 

(1.922(14) Å[6] and 2.11 Å[7] respectively). The bond between the twofold coordinated 

sulfur (S2) and the phosphorus atom has a length of 2.118(2) Å, which shows rather 

pure single bond character. The value for the S2–S3 distance, with S3 occupying the 

bridging position between two sulfur atoms, is 2.064(1) Å. It therefore lies in the 

range given for polysulfide chains (2.051(22) Å[6]) and is only slightly enlarged 

compared to the values found in I–III. 
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DEI+/EI+. This method involves the problem of exposing the compounds to air, while 

embedding them into the matrix (p–nitroalcohol). IR Spectroscopy. The spectra 

were recorded using a PerkinElmer Spektrum one FT–IR instrument (KBr); Perkin–

Elmer Spectrum BXII FT–IR instrument equipped with a Diamant–ATR Dura Sampler 

at 25 °C (neat). Raman spectra were recorded on a Bruker RAMII Raman instrument 

(λ = 1064 nm, 200 mW, 25 °C) equipped with D418–T Detector at 200 mW at 25 °C. 

Melting and decomposition points were determined by differential scanning 

calorimetry (Linseis DSC-PT10, calibrated with standard pure indium and zinc). 

Measurements were performed at a heating rate of 5 °C min−1 in closed aluminum 

sample pans with a 0.1 mm hole in the lid for gas release to avoid an unsafe increase 

in pressure under a nitrogen flow of 20 mL min−1 with an empty identical aluminum 

sample pan as a reference. Melting points were checked with a Büchi Melting Point B-

540 in open glass capillaries. 

X–ray Crystallography. The single–crystal X-ray diffraction data were collected 

using an Oxford Xcalibur3 diffractometer equipped with a Spellman generator (voltage 

50 kV, current 40 mA), Enhance molybdenum Kα radiation source (λ = 71.073 pm), 

Oxford Cryosystems Cryostream cooling unit, four circle kappa platform and a 

Sapphire CCD detector. Data collection and reduction were performed with 

CrysAlisPro.[10] The structures were solved with SIR97[11], SIR2004[12] , refined with 

SHELXL-97[13], and checked with PLATON[14], all integrated into the WinGX software 

suite[15]. The finalized CIF files were checked with checkCIF.[16] All non-hydrogen 

atoms were refined anisotropically. The hydrogen atoms were located in difference 

Fourier maps and placed with a C–H distance of 0.98 Å for C–H bonds. Intra- and 

intermolecular contacts were analysed with DIAMOND (version 3.2i), thermal ellipsoids 

are drawn at the 50% probability level. Selected crystallographic data and refinement 

details for the structure determination of compound 1 are summarized in Table 2. 

CCDC 966118 contains the supplementary crystallographic data for compounds 1. 

These data can be obtained free of charge from The Cambridge Crystallographic Data 

Centre via www.ccdc.cam.ac.uk/data_request/cif. 

py4Mn[(EtO(S)P(O)S)2S] · py (1): P4S10 (284.9 mg, 0.641 mmol) and Na2S 

(15.0 mg, 0.192 mmol) and KMnO4 (50.6 mg, 0.320 mmol) were suspended in 

pyridine (5 mL) and stirred for 24 h at ambient temperature, yielding an orange 

reaction mixture and a white precipitate. The precipitate was separated from the 

solution, dried in vacuo and dissolved in EtOH (5 mL). After 7 d colourless crystals of 

1 could be obtained from the yellow solution.  
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31P {1H} NMR (Pyridine, rt): δ [ppm] = 173.2 (s, 41.7%, PS3
−), 129.3 (s, 4.0%, 

P2S7
2−), 120.2 (s, 5.6%, P2S8

2−(twist)), 104.3 (s, 40.8%, py2P2S5), 97.8 (s, 5.6%, 

py2P2S4O), 56.3 (s, 1.3%, P2S8
2−(chair)). Raman (300 mW, rt): ν [cm-1] = 3070 (32), 

2924 (12), 2889 (8), 1600 (18), 1574 (16), 1455 (7), 1228 (14), 1216 (8), 1149 (7), 

1040 (20), 1009 (88), 991 (17), 653 (24), 635 (47), 510 (12), 474 (73), 439 (12), 

371 (10), 248 (12), 220 (100). IR (200 mW, rt): ν [cm-1] = 3373.6 (br, vw), 3066.0 

(vw), 2977.1 (vw), 2935.2 (vw), 2890.0 (vw), 1954.8 (vw), 1872.9 (vw), 1633.6 

(vw), 1598.1 (m), 1574.2 (vw), 1486.0 (vw), 1441.9 (m), 1384.6 (vw), 1253.2 (vw), 

1232.7 (vw), 1218.1 (vw), 1135.0 (s), 1097.2 (w), 1065.3 (m), 1036.4 (s), 1005.9 

(m), 942.5 (m), 879.7 (w), 769.2 (m), 750.2 (s), 699.9 (vs). Mass spectrometry 

m/z (FAB−) 712.5 ([Mn(NC5H5)4[(EtO(S)P(O)S)2S]−), 376.3 ([Mn(NC5H5)]−), 185.3 

([(EtOP(O)S)2S]−), 153.2 ([EtOP(O)S2]−), 111.1 ([PS2O]−), 95.1 ([PS2]−), 32.1 ([S]−). 

DSC (5 °C/min): Tdec = 233.4°C 

 

Table 2. Details for X-ray data collection and structure refinement for 1. 

 1   

empirical formula C29H35MnN5O4P2S5  F(000) 1644 

formula mass 794.80  Θ range [°] 4.37 – 25.25 

T [K] 173(2)  index ranges −14≤ h ≤ 14 

crystal size [mm] 0.2 x 0.1 x 0.1  −21 ≤ k ≤ 21 

crystal description colourless needles  −22 ≤ l ≤ 22 

crystal system monoclinic  reflns. collected 24960 

space group C2/c  reflns. obsd. 2678 

a [Ǻ] 11.771(4)  reflns. unique 3305  

b [Ǻ] 17.505(5)  Rint 0.0481 

c [Ǻ] 18.520 (5)  R1, wR2 (2σ data) 0.0387, 0.0871 

β [°] 104.17 (3)  R1, wR2 (all data) 0.0523, 0.0952 

V [Ǻ3] 3700.1(2)  GOOF on F2 0.976 

Z 4  larg. diff peak  0.758/−0.365 

ρcalcd. [g cm−3] 1.427  hole (e/Å)  

μ [mm-1] 0.766   
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On the Synthesis and Structural 

Characterization of Pyridine-Stabilised 

Tin(II) Thiophosphates 

As to be submitted to Eur. J. Inorg. Chem. 

 

By reacting P4S10 with Na2S and SnCl2 in pyridine as solvent, the products 

py2Sn(pyPS3)2 ∙ 0.5 py (1) and [SnPS4][py2H] ∙ py (2) could be obtained.  

In compound 1 two pyridine stabilized PS3
- anions connected to a tin(II) atom which 

is further stabilized by two pyridine molecules resulting in a monomeric stannylene. 

This compound is the first to contain the pyPS3
- anion as a ligand and is a very rare 

example for a monomeric stannylene with Sn–S bonds. Compound 2 is a coordination 

polymer. The heteropolyanion consisting of [SnPS4
-]x, forms one dimensional chains, 

separated by free pyridine molecules and with [py2H]+ as counterion. The question, 

which arises from the simultaneous formation of a neutral monomeric and a charged 

polymeric structure in one reaction solution is, which role the ligand plays in the 

formation of mono- and polymeric tin(II) compounds. 
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Introduction 

Stannylenes are organotin(II) derivatives of the form SnR2. The first representative 

of this class of compounds was proposed to be Et2Sn by Löwig et al. in 1852.[1] It was 

synthesised by reacting ethyliodide on a tin alloy. In 1920 Krause et al. mentioned the 

Ph2Sn.[2] The existence of both these products however could not be verified. 

Because of the tin(II) being low valent and highly reactive such compounds may 

exist monomeric in solution but in the solid state they appear polymerized, whereas 

the degree of oligomerisation depends on the organic ligand.[3]  

With increasing quantum number the preference of M(II) over M(IV) in group 14 

elements gets significantly stronger. To explain this observation one has to have a 

deeper look into the quantum chemical properties of this group. Carbenes adopt a 

singlet or triplet ground state conditioned by the ligand. Due to the increasing energy 

difference between the two possible states, the heavier stannylenes prefer the singlet 

ground state. Here the lone pair is relatively inert due to its high s character. So the 

high reactivity of tin(II) can be explained with a vacant p orbital and an overall 

valence electron number of six. 

Heavier group 14 elements are likely to favour (ns)2(np)2 configuration, which 

means they lack the ability form hybrid orbitals. So it has to be understood, that in 

order to obtain monomeric Sn(II) compounds thermodynamic and/or kinetic 

stabilization of the vacant p orbital is necessary.[4] 

Lappert and co-workers were the first to be able to isolate a monomeric stannylene 

by using the sterically demanding ligand CH(SiMe3)2. 

The second possibility to receive monomeric SnR2 molecules in the solid state 

besides the use bulky ligands is the insertion of donor stabilizing ligands such as 

cyclobutadienyl derivatives or nitrogen containing compounds. Also chalcogen and 

pnictogen containing ligands have been found to be of great use. 

Over the last few years now a remarkable progress in the field of bivalent SnR2 

species has taken place. 

But still the search goes on. Especially for new examples of compounds which are 

monomeric in the solid state. These stannylenes can be used as precursors for the 

synthesis of organometallic complexes as well as heterocycles or even new 

coordination polymers which are rather attractive with regard to the ever growing 
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demand for open framework materials. Some representatives of the stannylenes have 

been found to show catalytic activity or are of pharmaceutical relevance.[5] 

Furthermore we were able to present new findings gained about the 

trithiometaphosphate ion. The PS3
− can be regarded as higher homologue of the 

nitrate ion. But because of the unfavourable bonding situation at the phosphorus 

atom, in the solid state it exists only coordinated by a base. First syntheses of various 

salts of these adducts have already been reported by our group (see PART I – Chapter 

2) and we could also contribute to its investigation with results of quantum chemical 

calculation on the structure and bonding situation within this molecule.[6, 7] Dimitrov et 

al. were able to describe the crystal structures of salts of the pyridine adduct.[8] 

Experimental investigations concerning this anion showed that the phosphorus atom is 

a rather poor electrophile, which shows the rather weak coordination to the base. So 

the logical next step was to analyse the nucleophilic character by attacking the sulfur 

atom. And we were indeed able to synthesise the compound 

py2Sn(pyPS3)2 ∙ 0.5 py (1), which, to the best of our knowledge, is the first to actually 

contain the pyPS3
− entity.  

Besides this rather stunning molecule a new salt could be obtained from the same 

reaction mixture, the [SnPS4][py2H] ∙ py (2). Sn(II) phosphates have been proposed 

to be unusually stable, making them attractive for the use in inorganic open 

frameworks. Such materials have already been described with organic counterions as 

structure directing elements.[9] The tin(II) is threefold coordinated by oxygen bridging 

to the phosphorus atoms, displaying eight-membered rings, which form channels. Also 

a quaternary divalent compounds ASnPS4 (A = K, Rb, Cs) have been described 

recently, forming rather exciting layered structures.[10]  

These results give a good insight into the role, the choice of ligand plays in the 

formation of mono- and polymeric tin(II) compounds. 

In the following a reaction mixture containing both species (1 and 2) shall be 

discussed. 
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Results and Discussion 

By refluxing P4S10 with Na2S and SnCl2 (1:1:2) in pyridine, two different sorts of 

crystals could be isolated (Scheme 1). They were characterized as py2Sn(pyPS3)2 ∙ py  

(1) and [SnPS4][py2H] ∙ py (2) using single crystal X-ray diffraction.  

P4S10 + Na2S + 2 SnCl2
pyridine

reflux
py2Sn(pyPS3)2 · 0.5 py + [SnPS4][py2H] · py

1 2

Sn
S S

PP

S

SS
S

NN

N

N
Sn

S

S

S
S

PS

S

S
S

P

S
S

S
S

P
SnSn

1 2

(py2H)+

 

Scheme 1. Synthesis of 1 and 2. 

 

Molecular and Crystal Structure of py2Sn(pyPS3)2 ∙ 0.5 py (1) 

Compound 1 was isolated as yellow block shaped crystals. This structure crystallizes 

in the monoclinic space group P21/n with four formula unit in the unit cell. The 

asymmetric unit consists of two crystallographically independent molecules of 1. The 

molecular structure, as well as selected atom distances and bond angles are given in 

Figure 1.  
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Figure 1. Molecular structure of 1. Ellipsoids are drawn at the 50% probability level. Hydrogen 

atoms are omitted for clarity. Selected atom distances [Å] and bond angles [°] for 1: Sn1–S3/Sn2–

S9 2.627(3)/ 2.625(3), Sn1–S4/ Sn2–S10 2.632(3)/ 2.637(3), Sn1–N2/ Sn2–N6 

2.501(8)/2.487(8), Sn1–N3/ Sn2–N7 2.501(8)/ 2.632(10), P1–S1/P1–S2 1.957(4)/ 1.982(4), P1–

S3/P2–S4 2.048(4)/ 2.050(4), P2–S5/P2–S6 1.969(4)/ 2.050(4), P1–N1/P2–N4 1.881(8)/ 

1.895(8); 

 S3–Sn1–S4 81.2(1) S3–Sn1–N2 85.6(2), S4–Sn1–N2 86.5(2), S3–Sn1–N3 81.3(2), S4–Sn1–N3 

83.9(2), N2–Sn1–N3 164.8(3), Sn1–S3–P1 95.93(12), Sn1–S4–P2 96.19(12), S1–P1–S3 

113.08(17), S1–P1–N1 103.5(3), S1–P1–S2 120.42(17), S2–P1–N1 104.6(3), S3–P1–N1 100.8(3), 

S2–P1–S3 111.6(2). 
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One molecule of 1 contains one tin(II) atom which is bonded to two pyridine 

stabilized PS3
− entities and coordinated by two pyridine rings. One additional solvent 

pyridine molecule is also incorporated in the crystal structure. 

This structure can be regarded as stannylene because the tin is bonded to one sulfur 

atom of each PS3
− entity so it has two covalent bonds and a free electron pair. The 

hence created electronic gap is filled by coordination of two pyridine molecules. 

For this compound a trigonal bipyramidale like structure (Figure 2a) is expected. The 

S–Sn–S angle of 81.2(1)° hint towards pure p character of the S–Sn bonds with the 

third p orbital being involved in the Sn–N interaction and the lone pair at Sn having s 

character. As can be seen in Figure 2b one additional sulfur atom of each PS3
− unit 

coordinates to the tin. So the covalent bonded sulfur atoms shift closer together 

resulting in the S–Sn–S angle deviating from 90°.  

 Because of the additional occupation of space in the horizontal plane by the two 

further sulfur atoms the free electron pair has to shift out of the plane causing a 

slightly bent N–Sn–N angle of 164.8(1)° (Figure 2c).  

 

                              

                      (a)                               (b)                                     (c) 

Figure 2. Bonding situation around the tin(II) atom. 
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Another question that has to be discussed is, how the pyPS3
− entity is influence by 

the altered bonding situation. In Table 1, all necessary atom distances and bond 

angles of compound 1, the pyridinium salt synthesised by our group and the one of 

Dimitrov et al. are listed.  

 

Table 1. Comparison of atom distances and bond angles in the pyPS3
− entity of 1, by 

Karaghiosoff (Ia) and Dimitrov (Ib). 

 py2Sn(pyPS3)2 ∙ py (1) (pyH)(pyPS3)[a] (pyH)(pyPS3)[b] 

bond lengths [Å]  

P1–S1/P2–S6 1.957(4)/ 1.956(4) 1.989(1) 1.980(2) 

P1–S2/P2–S5 1.982(4)/ 1.969(4) 1.985(1) 1.986(2) 

P1–S3/P2–S4 2.048(4)/ 2.050(4) 1.979(1) 2.004(1) 

P1–N1/P2–N4 1.881(8)/ 1.895(8) 1.920(1) 1.906(2) 

bond angles [°]  

S1–P1–S3 113.1(2) 117.2(1) 113.8(2) 

S1–P1–S2 120.4(2) 114.6(1) 116.7(1) 

S2–P1–S3 111.6(2) 115.8(1) 116.4(1) 

∑ S–P–S 345.1 347.6 346.9 

S1–P1–N1 103.5(3) 100.2(1)  

S2–P1–N1 104.6(3) 102.4(1)  

S3–P1–N1 100.8(3) 103.1(1)  

[a] see PART I – Chapter 2 [b] Dimitrov et al.. 

The bond lengths in the pyPS3
− unit in this compound differ from the free molecule. 

For Ia and Ib average P–S values of 1.984(1) and 1.990(2) Å are described, while the 

connection to the tin leads to deviated values (1.957(4), 1.982(4) and 2.048(4) Å). 

The bond between P1 and S3 is elongated with 2.048(4) Å compared to 1.979(1) Å 

and 2.004(1) Å, as expected with the sulfur being twofold covalently bonded. The 

smaller P1–S1 distance derives from the P–S double bond not being able to rotate 

freely anymore and also due to the electron withdrawing effect of the S3–Sn1 bond  

Comparing the S–P–S bond angles of 1 with the values found in the free pyPS3
− (Ia, 

Ib), the altered bonding situation in 1 causes a smaller angle between the phosphorus 

and the two twofold coordinated sulfur atoms with 111.6(1)° compared to 115.8(1)° 

and 116.4(1)°. Remarkably the sum of the S–P–S angles is with 345.1° rather 

coherent with the one we (347.6°) and Dimitrov (346.9°) observed, so the 

coordination to the tin has obviously no influence in this situation. This means that the 
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smaller S2–P1–S3 angle leaves more space causing an extremely enlarged S1–P1–S3 

angle with 120.4(2)° in comparison to 116.7(1)° and 114.6(1)°. 

 

Two other compounds containing a tin(II), being covalently bonded to two sulfur 

atoms, are described in the literature (Figure 3). In the bis(ethy-1-cysteinato)tin(II)[5] 

(II), with HCEE being L-cysteine ethyl ester, the tin is surrounded by two sulfur and 

two nitrogen atoms, while Sn(SAr), (Ar = C6H,But,-2,4,6)[11] (III) can be regarded as 

a real stannylene, with the tin being only covalently bonded to two sulfur atoms.  

 
 

 Figure 3. Comparison of 1, bis(ethy1cysteinato)tin(II), and Sn(SAr).  

 

Table 2. Comparison of selected atom distances and bond angles in 1, bis(ethy-1-

cysteinato)tin(II), and Sn(SAr). 

 py2Sn(pyPS3)2 ∙ py 

(1) 

Sn(CEE)2 [Sn(SAr)2]3 

Sn–S [Å] 2.630(3) 2.520(1) 2.435(1) 

Sn–N [Å] 2.570(8) 2.475(4)  

S–Sn–S [°] 81.2(1) 100.9(4) 85.4(1) 

N–Sn–N [°] 164.8(3) 146.3(1)  

 

Due to the chelating nature of the ligand in compound II the N–Sn–N bond angle is 

more acute with 146.3°. The consequence is a rather poor overlap of the p orbitals, 

which leads to a greater covalent character of the Sn–S bond, resulting in a shortened 

distance between these atoms (2.520(1) Å compared to 2.630(3) Å in 1) and an 

enlarged S–Sn–S angle. As 1 does not have to comply to chelating effects, the N–Sn–N 

angle is closer to linearity with 164.8°. 
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In contrast to the situation found in II, the tin atom in III is solely surrounded by 

two sulfur atoms and therefore a real stannylene. The S–Sn–S angle of 1 is in the 

same range as the one found in III (81.2° and 85.4° respectively). This indicates for 

1 to be a sp3 hybrid. Consequently 1 can be regarded as pyridine stabilized 

stannylene. 



Molecular and crystal structure of [SnPS4][py2H] ∙ py (2) 

Colourless block shaped crystals of 2 could be isolated and characterized via single 

crystal X–ray diffraction. The compound crystallizes in the triclinic space group P–1 

with two asymmetric units in the unit cell. The molecular structure and selected atom 

distances and bond angles are given in Figure 4. 

The structure of compound 2 consists of the P,S,Sn-heteropolyanion [(PS4Sn)−]x 

with [py2H]+ as counterion and contains one further pyridine molecule per formula 

unit. In the crystal tetrathiophosphate units (PS4) are linked by tin atoms. Every 

tin(II) is coordinated by three phosphorus atoms, bridged over sulfur atoms, so that 

every PS4
3− unit coordinates with three of its sulfur to three different tin atoms, while 

the fourth sulfur atoms remains single coordinate. This terminal atom interacts with 

the cations. This arrangement results in the formation of corrugated double chains 

parallel to the a axis, consisting of strongly twisted P2S4Sn2 eight-membered rings 

(Figure 5).  

Very recently, Kanatzidis and co-workers reported on similar structures. They were 

able to synthesize ASnPS4 (A = K, Rb, and Cs), which are rare examples of 

quarternary divalent tin thiophosphates.[10] These compounds are prepared by 

chalocophosphate flux technique at high temperature. In contrast to 2, they build up a 

layered structure because of the higher coordination sphere of the alkali metal cation. 

They report further on the glass formation properties and the semiconducting abilities 

of these compounds. As the potassium and rubidium representatives are isostructural, 

in the following compound 2 is compared with KSnPS4 (IV). 
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Figure 4. Molecular structure of 2. Ellipsoids are drawn at the 50% probability level. Symmetry 

operations: i = 1−x, 1−y, 2−z; ii = 2−x, 1−y, 2−z; iii = 1+x, y, z.  Selected atom distances [Å] 

and bond angles [°]: P1–S1 1.991(3), P1–S2 2.053(4), P1–S3i 2.094(3), P1–S4iii 2.058(3), Sn1–S2 

2.616(3), Sn1–S3 3.073(3), Sn1–S4 2.700(3);  

S1–P1–S2 112.8(2), S1–P1–S3i 110.0(2), S1–P1–S4 111.6(2), S2–P1–S3 107.5(2), S2–P1–S4iii 

107.6(2), S3i–P1–S4iii 107.0(2), Sn1–S2–P1 97.1(2), Sn1–S3–P1 83.5(1), S2–Sn1–S3 90.9(1), 

S2–Sn1–S4 86.8(1), S3–Sn1–S4 83.7(6).  

The coordination of the phosphorus atom in 2 deviates only slightly from a 

tetrahedral conformation (S–P–S angles between 107.5(2)° and 112.8(2)°). P–S 

distances to the bridging sulfur atoms are with values between 2.053(4) Å and 

2.094(3) Å closer to P–S single[12] than double bonds[13]. The P–S distance to the 

single coordinate sulfur atom is shorter with 1.991(3) Å compared to 2.054(2) Å (IV). 

This is conditioned by the different cations. While sulfur is not able to form strong 

hydrogen bonds because of its rather dispersive nature, the P–S distance is shorter 

compared to the strongly ionic character of the S–K interaction which leads to an 

electron withdrawing effect and thus an elongated P-S bond length. 

The tin atoms form covalent bonds to three sulfur atoms of three different PS4 units 

resulting in the formation of SnS3 pyramids, with the lone pair of the tin(II) 

completing a tetrahedral surrounding. The average Sn–S bond lengths are in very 

good accordance with 2.773(3) Å (2) and 2.775(1) Å (IV) but the discrepancy 
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between the values in 2 is rather high. All three Sn–S distances are different with 

values of 2.616(3) Å, Sn1–S3 3.073(3) Å and Sn1–S4 2.700(3) Å.  

The bond angles at the tin atom are close to 90°, in the range of 83.7(6)° – 

90.9(1)°. At the bridging sulfur atoms S2 and S3 the P–S–Sn bond angles are about 

100° (99.1(2)° and 97.0(1)°), while the corresponding angle at S4 is almost 90°. 

Remarkable about the structure of this heteropolyanion is the presence of quite 

strong intra- and interannular Sn–S interactions within the eight-membered rings 

consisting of Sn2P2S4 entities (Figure 5). These interactions are shorter than the sum 

of the van der Waals radii of sulfur and tin (3.90 Å[14]). With distances of 3.074(2) Å 

between Sn1 and S3 and 3.296(2) Å between Sn1 and S4, these interactions are 

obviously responsible for the strong bending of the eight-membered rings. Further, 

considerably weaker Sn–S interactions of 3.622(2) Å and 3.688(2) Å to S1 and S3, 

respectively, are observed. 

	

Figure 5. Bonding situation in 2. 

 

As already mentioned in the beginning, tin(II) phosphates are becoming ever more 

important in the field of open framework materials, as the tin shows a threefold 

coordination in these kinds of compounds. Mostly they are prepared with organic 

templating molecules.[15] It is reported on three-dimensional systems consisting of 

alternating PO4 and SnO3 entities, forming channels of eight- or even twelve-

membered rings.[9a, 9b] Taking a closer look at the overall structural build-up of 2 in 



PART III – Chapter 3 

184 
 

the crystal, the eight-membered rings consisting of Sn2P2S4 form channels 

perpendicular to the direction of propagation of the one-dimensional chains (Figure 6).  

 

Figure 6. Bonding situation in 2. 

 

Hereby the organic cations and solvent molecules act as spacers between those 

chains, as can be seen in Figure 7, showing the unit cell with view along the chains. 

 

Figure 7. Olsch view of the unit cell of 2 with view along c axis, hydrogen atoms omitted for 

clarity. 
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Conclusion 

The trithiometaphosphate anion, PS3
−, stabilized as its pyridine adduct, as well as 

the tetrathiophosphate anion PS4
3− are found to be good ligands for soft Lewis centres, 

like Sn(II). This is demonstrated by the synthesis and structural characterization of 

the neutral stannylene py2Sn(pyPS3)2 ∙ 0.5 py (1) and of the heteropolyanion 

[SnPS4][py2H] ∙ py (2). Compound 1 is the first example of the pyridine adduct of the 

trithiometaphosphate anion as a ligand towards metals and one of the very view 

thiosubstituted stannylenes.  

 

The Sn(II) tetrathiopohsphate 2 contains the remarkable chain-like [SnPS4
−]n  

heteropolyanion and complements the contribution of M. G. Kanatzidis on Sn(II) 

thiophosphates adding an organic cation containing compound to this family. The 

striking build-up in the crystal of 2 implies further use as inorganic organic hybrid 

open framework material.	
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Experimental Section 

Table 3. Details for X-ray data collection and structure refinement for 1 and 2. 

 1  2 

CCDC 940974  940973 

empirical formula C45H45N9Sn2P4S12  C15H16N3SnPS4 

formula mass 1457.88  515.20 

T [K] 173(2)  173(2) 

crystal size [mm] 0.3 × 0.2 × 0.15  0.1 × 0.1 × 0.05 

crystal description yellow block  yellow block 

crystal system monoclinic  triclinic 

space group P21/n  P−1 

a [Ǻ] 20.158(1)  6.471(1) 

b [Ǻ] 14.772(1)  11.553(2) 

c [Ǻ] 20.162(1)  13.831(1) 

 [°]   83.021(13) 

 [°] 93.952(2)  83.879(12) 

 [°]   76.679(12) 

V [Ǻ3] 5989(2)  995.4(2) 

Z 4  1 

ρcalcd. [g cm−3] 1.617  1.721 

μ [mm-1] 1.400  1.786 

F(000) 2920  511 

Θ range [°] 4.15–25.00  4.17–32.36 

index ranges −23 ≤ h ≤ 23  −7 ≤ h ≤ 7 

 −17 ≤ k ≤ 17  −13 ≤ k ≤ 13 

 −23 ≤ l ≤ 23  −16 ≤ l ≤ 16 

reflns. collected 23812  9192 

reflns. obsd. 9746  2665 

reflns. unique 10489  3500 

Rint 0.0320  0.0929 

R1, wR2 (2σ data) 0.0778, 0.1877  0.0586, 0.1380 

R1, wR2 (all data) 0.0814, 0.1885  0.0858, 0.1498 

GOOF on F2 1.354  1.060 

larg. diff peak/hole (e/Å) 1.810/−1.855  2.382/−1.291 
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General conditions. All reactions were carried out under inert gas atmosphere 

using Argon (Messer Griesheim, purity 4.6 in 50 L steel cylinder) and working with 

Schlenk techniques. The glass vessels used were stored in a 130 °C drying oven. 

Before filling they were flame dried in vacuo at 10−3 mbar. SnCl2 was used as obtained 

(Acros Organics). P4S10 was commercially obtained (Riedel–de Häen) and purified by 

extraction with CS2 before use. The solvents were dried with commonly known 

methods and freshly distilled before use. NMR Spectroscopy. NMR spectra were 

recorded using a Jeol EX 400 Eclipse instrument operating at 161.997 MHz (31P). 

Chemical shifts are referred to 85% H3PO4 as external standard. If not mentioned 

otherwise, all spectra were measured at 25 °C. The % data correspond to the 

intensities in the 31P NMR spectra with respect to the total intensity. The difference to 

100% belongs to not assignable signals. Mass Spectrometry. The mass 

spectrometry was performed with a MStation JMS 700 (Jeol). Measurements were 

carried out using the ionisationmethode DEI+/EI+. This method involves the problem 

of exposing the compounds to air, while embedding them into the matrix (p–

nitroalcohol). IR Spectroscopy. The spectra were recorded using a PerkinElmer 

Spektrum one FT–IR instrument (KBr); Perkin–Elmer Spectrum BXII FT–IR instrument 

equipped with a Diamant–ATR Dura Sampler at 25 °C (neat). Raman spectra were 

recorded on a Bruker RAMII Raman instrument (λ = 1064 nm, 200 mW, 25 °C) 

equipped with D418–T Detector at 200 mW at 25 °C. Melting and decomposition 

points were determined by differential scanning calorimetry (Linseis DSC-PT10, 

calibrated with standard pure indium and zinc). Measurements were performed at a 

heating rate of 5 °C min−1 in closed aluminum sample pans with a 0.1 mm hole in the 

lid for gas release to avoid an unsafe increase in pressure under a nitrogen flow of 

20 mL min−1 with an empty identical aluminum sample pan as a reference. Melting 

points were checked with a Büchi Melting Point B-540 in open glass capillaries. 

X–ray Crystallography. The single–crystal X-ray diffraction data were collected 

using an Oxford Xcalibur3 diffractometer equipped with a Spellman generator (voltage 

50 kV, current 40 mA), Enhance molybdenum Kα radiation source (λ = 71.073 pm), 

Oxford Cryosystems Cryostream cooling unit, four circle kappa platform and a 

Sapphire CCD detector. Data collection and reduction were performed with 

CrysAlisPro.[16] The structures were solved with SIR97[17], SIR2004[18] , refined with 

SHELXL-97[19], and checked with PLATON[20], all integrated into the WinGX software 

suite[21]. The finalized CIF files were checked with checkCIF.[22] All non-hydrogen 

atoms were refined anisotropically. The hydrogen atoms were located in difference 

Fourier maps and placed with a C–H distance of 0.98 Å for C–H bonds. Intra- and 

intermolecular contacts were analysed with DIAMOND (version 3.2i), thermal ellipsoids 
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are drawn at the 50% probability level. Selected crystallographic data and refinement 

details for the structure determination of compounds 1 and 2 are summarized in 

Table 3. CCDC 940974, 940973 contains the supplementary crystallographic data for 

compounds 1 and 2. These data can be obtained free of charge from The Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

Synthesis: P4S10 (685 mg, 1.54 mmol), Na2S (120 mg, 1.54 mmol) and SnCl2 

(584 mg, 3.08 mmol) were dissolved in pyridine (20 mL) and stirred at room 

temperature for 1 d. Afterwards the yellow suspension was refluxed for 1 h. Yellow 

blockshaped crystals of py2Sn(pyPS3)2 ∙ py and colorless needles of [SnPS4][pyH2] ∙ py 

precipitated from the orange reaction solution. 

31P{1H} NMR (pyridine, rt): δ [ppm] = 146.2 (s, 61.8%), 104.4 (s, 18.6%), 98.8 

(s, 7.4%), 37.8 (m, 6.9%). 119Sn{1H} NMR (pyridine, rt): δ [ppm] = no 119Sn NMR 

resonances could be observed.  Elemental Analysis: calc. N 6.81, C 30.36, H 2.55, S 

23.08; found. N 4.85, C 30.97, H 2.30, S 21.73. Raman (200 mW, rt): ν [cm−1] = 

3072 (65), 1627 (20), 1607 (36), 1569 (16), 1192 (31), 1181 (27), 1155 (13), 1015 

(100), 640 (15), 609 (14), 474 (90), 415 (25), 340 (28), 307 (28), 268 (33), 210 

(33). IR  (200 mW, rt): ν [cm−1] = 3053 (ww), 1629 (s), 1607 (w), 1593 (w), 

1516 (m), 1475 (w), 1451 (ww), 1330 (s), 1258 (s), 1207 (s), 1193 (m), 1181 (s), 

1155 (s), 1091 (vs), 1056 (w), 1044 (w), 1013 (w), 914 (vs), 764 (m), 749 (w), 

713 (s), 683 (ww), 652 (ww), 643 (ww), 622 (w), 596 (ww), 469 (ww), 409 (vs). 

Mass spectrometry m/z (DEI+)  18 (4), 31 ([P]+), 32 ([S]+), 79 ([C5H5N]+), 

65([S2]+), 95 ([PS2]+), 127 ([PS3]+), 158 ([PS4]+), 173 ([C5H5NPS2]+), 283 ([SnPS4]+). 

(ESI−) 279 ([SnPS4]−), 478 ([SnPS3]−), 743 ([SnP2S10]−), 883 ([SnP3S12]−), 957 

([H2SnP3S14]−), 1116 ([H4Sn4P4S16]−), 1191 (HSnP3S12]−), 1273 ([Sn4P5S20]−), 1906 

([Sn7P7S35]−). m.p.: 146–152 °C 
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py2P2S7) 70±20; δ31P (glassy py2P2S7) 103±10).[5] One might think of py2P2S5 being 

the first member of a series py2P2S4(S)x (x = 1), due to the tendency of sulfur to form 

chains. 

 So we modified the reported syntheses and used P4S10 and elemental sulfur as 

educts (Scheme 3). On refluxing the educts in pyridine for 2 h py2P2S7 could be 

isolated in form of colourless blockshaped crystals which were characterized using 

single crystal X-ray diffraction. 

 

Scheme 3. Synthesis of py2P2S7. 

py2P2S7 crystallizes in the monoclinic space group P21/c (Figure 1 and 2).[6] 

 Each phosphorus atom is distorted tetrahedrally coordinated by three sulfur atoms 

a pyridine molecule. The P–S distances are within the range expected for P–S single 

bonds (211 pm) and P=S double bonds (191 pm).[1] The P–N distances with 

186.9(3) pm (P1–N1) and 186.4(3) pm (P2–N2) are significantly longer than P–N 

single bonds (176 pm) described in literature.[1] The S–S bond in the S3 bridge 

corresponds with 204.2(2) pm (S4–S5) and 206.3(2) pm (S3–S4) very well to the S–S 

bond distance found in elemental sulfur.[1] The S–P–S bond angles have values 

between 125° and 103°. The angle between the three sulfur atoms S3–S4–S5 is 107° 

thus forming a helix. The corresponding torsion angles P1–S3–S4–S5 (S3–S4–S5–P2) 

have values of 84.9(1)° (90.9(1)°). The sum of all S–P–S angles for each central 

phosphorus atom is 344° thus indicating only a slight deviation from planarity for the 

central phosphorus atoms. This suggests that py2P2S7 might be viewed as the new 

acyclic phosphorus sulfides P2S7, which is stabilized by weak coordination of pyridine 

to the σ3λ5 phosphorus atoms. 

 The corresponding torsion angles P1–S3–S4–S5 (S3–S4–S5–P2) have values of 

84.9(1)° (90.9(1)°) and are therefore in the same range like found in 

bis(diaryl/dialkylphosphoryl)trisulfides.[7,8] 

 In order to further investigate this point, quantum DFT calculations at the 

MPW1PW91 level of theory using an augmented polarized double-zeta basis set (aug-

cc-pVDZ) were performed. Interestingly the calculated values for the bond angles of 

the hypothetical compound P2S7 correspond very well to the determined values using 

single crystal X-ray diffraction. In contrast, the calculated values for py2P2S7 result in 



PART IV – Chapter 1 

196 
 

longer distances. This suggests that coordination of pyridine is indeed weak and does 

not affect the bond lengths within the molecule. 

Table 1 Calculated and experimentally observed distances [pm] and bond angles [°] of py2P2S7 

(average values). 

 Distances   

 observed 

py2P2S7 

calculated 

py2P2S7 

calculated 

P2S7 

P-N 187 196 - 

P-Soc
 193 196 192 

P-Stc
 212 217 213 

S-S 205 208 207 

 Angles   

 observed 

py2P2S7 

calculated 

py2P2S7 

calculated 

P2S7 

Soc-P-Soc 126 128 134 

Soc-P-Stc
 103/114 103/115 107/118 

S3-S4-S5 107 105 106 

 Torsion Angles  

 observed 

py2P2S7 

calculated 

py2P2S7 

calculated 

P2S7 

P1-S3-S4-S5 85 96 85 

S3-S4-S5-P2 91 96 85 
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Introduction 

Binary neutral phosphorus sulfides have been known for a long time. It was 

Berzelius, who in 1843 was the first to investigate the behaviour of sulfur towards 

phosphorus and synthesized the first representative of this class of compounds, the 

‘P2S5’.[1] This molecule was later discovered to be the dimer P4S10. Since then many 

more phosphorus sulfides P4Sx (x = 3–10) have been discovered.[2] It is striking that 

all these neutral compounds adopt a polycyclic structure. This occurs due to the 

problem of an unfavourable σ3λ5 bonding situation at the phosphorus atom in acyclic 

representatives. In order to stabilize the σ3λ5-phosphorus in such a molecule the 

missing forth coordination partner might be provided by adduct formation, for 

example by coordination of a base like pyridine. 

In fact 1967 Fluck and Binder were able to describe such a compound.[3] In the 

course of their investigations on perthiophosphonic acid anhydrides they discovered, 

that on heating P4S10 in pyridine the bis(pyridine) adduct of the monomeric unit P2S5 is 

formed. This system has been used as sulfur removing agent in organic chemistry 

before. Fluck et al. described the synthesis of the bis(pyridine) adduct of P2S5 and 

reported its 31P NMR chemical shift.  

Meisel and co-workers used this compound as educt to synthesize new betaines 

containing pyridine and one phosphorus atom.[4] In 1982 Wolf and Meisel attempted to 

synthesise the structurally analogue adduct py2P2O5.[5] They proposed this molecule to 

be generated by refluxing P4O10 in pyridine but could not identify the product of this 

reaction by any means. In our group this experiment was repeated several times; 

however we were also not able to verify the existence of this molecule. 

Shortly after this publication Wolf patented the compounds py2P2S5 and py2P2S4, 

which he claimed to have synthesized by refluxing P4S7 in pyridine.[6] Also in this case, 

however, no proper characterization of the products was given. 

In 2009 our group presented the crystal structures of py2P2S5 and py2P2S7 together 

with a full characterization of these compounds.[7] The py2P2S7 was synthesized by 

refluxing stoichiometric amounts of P4S10 and elemental sulfur in pyridine. Two years 

later the Swedish group of Prof Bergman also published the crystal structure of 

py2P2S5 and discussed its use as thionating agent.[8]  

In the following an improved synthesis and the new structure of py2P2S5 · 0.5 py are 

presented. Quantum chemical calculations at the MPW1PW91 level of theory using a 
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polarized double-zeta Basis Set (aug-cc-pVDZ) have been accomplished to verify the 
31P NMR spectroscopic properties and to enlighten the possible existence of a pyridine 

free acyclic phosphorus sulfide P2S5. Also the question whether analogous mixed 

phosphorus sulfide oxide molecules can be stabilized by pyridine coordination will be 

discussed. 

 

Results and Discussion 

 

The pyridine Adduct py2P2S5 (1a) 

In course of our investigations of py2P2S5 (1a) we found, that for its synthesis 

refluxing P4S10 in pyridine is not necessary; the yield of 1a can be improved by just 

stirring the starting material in pyridine at ambient temperature for a short period of 

time. Refluxing only causes the formation of larger amounts of py2P2S4O (3) as 

byproduct. This is shown in Figure 1, where the 31P NMR spectra of the respective 

reaction solutions are compared. We observed the 31P NMR shift of py2P2S5 at 

104.4 ppm and the one for py2P2S4O at 98.5 ppm. 

In the literature only one compound has been reported, containing a 1,3,5,4-

thiadiazaphosphinine ring, which has been characterized in terms of single crystal X-

ray diffraction. Woollins et al. described the formation of the P-ferrocenyl substituted 

2,6-bis(dimethylamino)-1,3,5,4-thiadiazaphosphorine-4-sulfide (5) in good yield 

together with small amounts of the thiocyanate (6) from the reaction of the 

corresponding ferrocenyl perthiophosphonic acid anhydride (4) with an excess of 

dimethyl cyanamide.[6] 
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The crystal contains both, the compound py2P2S5 and the related oxygen derivative 

py2P2S4O, with the oxygen atom in the bridging position. The two molecules occupy 

the same positions in the crystal except for the bridging O1 and S5 between the two 

phosphorus atoms, which results in a disorder in this position. Figure 3 shows the 

molecular structure and contains selected atom distances and bond angles. 

The phosphorus atoms are again surrounded distorted tetrahedrally by two single 

coordinated sulfur atoms, one molecule of pyridine and the bridging sulfur or oxygen 

atom, completing the tetrahedron. The oxygen can be found with 66%, while the 

sulfur is occupying the bridging position with 34%. Because of the different P–O and 

P–S distances and the deviation in the angles at the bridging chalcogen atoms, the 

positions of the two atoms could be identified and the atoms refined anisotropically. 

The distances between the phosphorus and the single coordinated sulfur atoms differ 

with a value of 1.930(2) Å only slightly from the distance expected for a P–S double 

bond (1.922(14) Å[9]). The P–O1 (1.691(11) Å) and P–S5 (1.991(9) Å) distances lie in 

the expected ranges for single bonds (1.621(7) Å[9]; 2.11 Å[2a]). Due to the disorder in 

the crystal all values are afflicted with higher standard uncertainties. 

The nitrogen atom of the pyridine molecule has a distance of 1.853(4) Å to the 

phosphorus atom, which is elongated compared to the expected 1.652(24) Å[9] for a 

P–N single bond. So this indicates again only a weak coordination of the pyridine 

molecules to the phosphorus. This is further supported by the sum of the S–P–S(O) 

angles of 341.0(5)° and 344.3(4)° respectively, which again show a deviation towards 

a planar surrounding of phosphorus by the chalcogen atoms. 
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Table 1. Details for X-ray data collection and structure refinement for compounds 1b and 2. 

 py2P2S5 ∙ 0.5 py (1b) py2P2S4,34O0,66 (2) 

CCDC 937614 940974 

formula C12.5H12.5N2.5P2S5 C10H10N2P2 S4.25O0.75 

M [g/mol] 419.99 368.40 

color, habit colorless block colorless block 

cryst. system triclinic monoclinic 

space group P−1 P21/c (No. 53) 

a [Å] 8.976(2) 14.564(1) 

b [Å] 9.203(2) 11.061(1) 

c [Å] 12.672(2) 9.884(1) 

 [°] 102.547(5) 90 

 [°] 90.241(4) 92.890(7) 

 [°] 118.501(6) 90 

V [Å3] 890.870(10) 1590.2(2) 

Z 2 4 

calc[g/cm3] 1.566 1.539 

 [mm−1] 0.826 0.346 

θ range [°] 4.44–28.28 4.20–25.00  

data collected 10688 17380 

data 4381 2786 

parameters 203 172 

Rint 0.0329 0.0748 

R1 [I > 2σ] 0.0370 0.0660 

wR2 [I > 2σ] 0.0830 0.1961 

R1 [all data] 0.0537 0.1097 

wR2 [all data] 0.0933 0.1961 

GOOF on F2 1.001 1.017 

larg. diff peak/hole (e/Å) 0.917/−0.464 0.557/−0.493 
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Table 3. Computed isotropic magnetic shieldings (GIAO method[11,12], MPW1PW91/aug-cc-

pVDZ) and relative 31P chemical shifts (ppm) referenced to H3PO4. 

compound py2P2S5 py2P2S4O H3PO4 

-E/ a.u. 3170.462064 2847.464794 644.135802 

NIMAG 0 0 0 

p.g. C2 C2 C3 

δ 31P / ppm, 

calcd. isotr. shielding 

249.9 260.8 364.3 

δ 31P / ppm,  

calcd. (ref. to H3PO4) 

114.3 103.5 0.0 

δ 31P / ppm,  

exptl., (ref. to H3PO4) 

104.4 98.5 0.0 

 

 

Thermal Analyses 

In order to gain further insight into the thermal stability of the pyridine adducts 1a, 

1b, 2 and py2P2S7 and investigate the possibility of generating the pyridine free 

phosphorus sulfides and sulfide oxides DTA/TG thermal analyses were performed. For 

this purpose the compounds were heated up to 400 °C in steps of 5 °C/min. In the 

thermograms (Figures 8–11) the dashed curve shows the weight signal while the black 

one represents the heat flow signal, which indicates changes in the energy at a certain 

temperature. 

The thermal analysis of the bis(pyridine) adduct of P2S5 1a is shown in Figure 8. The 

endothermic heat flow signal at 168 °C derives from the two pyridine molecules 

leaving the solid, while the sharp peak at 261 °C quotes the melting point of the 

resulting P,S material. The melting point of P4S10 is reported to be 288 °C[13] and thus 

differs by 27 °C from that observed for the P,S material obtained. The resulting 

material almost immediately starts to decompose releasing volatile products. 
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as received (Acros Organics). P4S10 and P4S3 were commercially obtained (Riedel-de 

Häen). The pyridine used was dried with commonly known methods and freshly 

distilled before use. 

X-ray Crystallography. The single-crystal X-ray diffraction data were collected 

using an Oxford Xcalibur3 diffractometer equipped with a Spellman generator (voltage 

50 kV, current 40 mA), Enhance molybdenum Kα radiation source (λ = 71.073 pm), 

Oxford Cryosystems Cryostream cooling unit, four circle kappa platform and a 

Sapphire CCD detector. Data collection and reduction were performed with 

CrysAlisPro.[14] The structures were solved with SIR97[15], refined with SHELXL-97[16], 

and checked with PLATON[17], all integrated into the WinGX software suite[18]. The 

finalized CIF files were checked with checkCIF.[19] Intra- and intermolecular contacts 

were analyzed with DIAMOND (version 3.2i), plots are shown with thermal ellipsoids at 

the 50% probability level. Details for data collection and structure refinement are 

summarized in Table 1. CCDC 937614 (1b) and 940974 (2) contain the 

supplementary crystallographic data for this paper. These data can be obtained free of 

charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

NMR Spectroscopy. NMR spectra were recorded using a Jeol EX 400 Eclipse 

instrument operating at 161.997 MHz (31P). Chemical shifts are referred to 85% H3PO4 

as external standard. All spectra were measured, if not mentioned otherwise, at 

25 °C. DTA/TG. Thermal analytic measurements were carried out with a 

Thermoanalyzer TG-DTA-92 (Setaram) under inert gas atmosphere (He). The 

compound was heated in a corundum melting pot up to a temperature of 750 °C in 

steps of 5 °C/min. Mass Spectrometry. Mass spectra were obtained with a MStation 

JMS 700 (Jeol) using the ionisation method DEI+/EI+. IR Spectroscopy. The spectra 

were recorded using a PerkinElmer Spektrum one FT-IR instrument (KBr pellets) 

equipped with a Diamant-ATR Dura Sampler at 25 °C (neat). Raman spectra were 

recorded on a Bruker RAMII Raman instrument (λ = 1064 nm, 200 mW, 25 °C) 

equipped with D418-T Detector at 200 mW at 25 °C. 

py2P2S5 (1a). P4S10 (889.2 mg, 2 mmol) was stirred in pyridine (40 mL) for 1 h. 

Colourless needles of 1a crystallized overnight they were separated by filtration and 

dried in vacuo. (Yield: 1415.4 mg, 93%). 

31P{1H} NMR (pyridine): δ [ppm] = 104.2 (s). Elemental analysis (py2P2S5): 

calcd. C 31.57, N 7.36, H 2.65, P 16.28, S 42.14; found C 32.92, N 7.69, H 3.30, S 

31.78. Mass (EI+) m/z = 379.8 ([C10H10N2P2S5]+), 347.8 ([M−S]+), 299.9 ([M−py]+), 
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221.9 ([M−py2]+), 191.9 ([M−py2S]+), 160.0 ([M−py2S2]+), 128.0 ([PS3]+), 96.0 

([PS2]+), 63.0 ([PS]+). Raman (200 mW, rt): ν [cm-1] = 3066 (31), 1609 (36), 1567 

(29), 2000 (43), 1014 (100), 468 (50), 448 (37). IR (200 mW, rt): ν [cm-1] = 1087 

(s), 3060 (m), 1633 (vw), 1606 (m), 1532 (vw), 1484 (vw), 1471 (vw), 1452 (vs), 

1330 (vw), 1262 (vw), 1194 (w), 1154 (vw), 1093 (vw), 1053 (m), 1044 (s), 1011 

(m), 762 (m), 734 (vs), 673 (vs), 655 (w), 642 (w), 575 (vs), 461 (w), 454 (w), 423 

(w). 

 

py2P2S5 ∙ 0.5 py (1b). 380.5 mg (1 mmol) of 1a was dissolved in refluxing pyridine 

(40 mL) for 2 h. The yellow reaction mixture turned orange when cooling down to 

ambient temperature and the formation of a colourless crystalline precipitate 

consisting of py2P2S5 could be observed. The needles were separated and dried in 

vacuo (Yield: 363.1 mg, 83%).  

31P{1H} NMR (pyridine): δ [ppm] = 104.3 (s). Elemental analysis 

((py2P2S5)2 ∙ py): calcd. C 35.76, N 8.35, H 3.00, P 14.77, S 38.12; found C 32.92, N 

7.74, H 2.86, S 40.76. Mass (EI+) m/z = 379.8 ([C10H10N2P2S5]+), 347.9 ([M−S]+), 

299.9 ([M−py]+), 221.9 ([M−py2]+), 191.9 ([M−py2S]+), 160.0 ([M−py2S2]+), 128.0 

([PS3]+), 63.0 ([PS]+). Raman (200 mW, rt): ν [cm-1] = 3068 (63), 1610 (23), 1565 

(5), 1202 (25), 1012 (100), 465 (37), 448 (14), 417 (30). IR (200 mW, rt): ν [cm-1] 

= 3094 (w), 3044 (w), 1610 (m), 1577 (vw), 1476 (vw), 1452 (vs), 1431 (m), 1342 

(vw), 1262 (vw), 1199 (vw), 1156 (vw), 1091 (ww), 1057 (m), 1045 (s), 1014 (m), 

843 (vw), 763 (vw), 748 (w), 739 (s), 720 (vs), 668 (vs), 642 (vw), 565 (vs), 468 

(vw), 457 (s), 421 (w). 

py2P2S4.34O0.66 (2). 220.1 mg P4S3 (1 mmol) were refluxed and dissolved in 10 mL 

of pyridine in the presence of traces of water. Afterwards 192.4 mg sulfur (0.75 mmol) 

were added to the yellow reaction mixture and refluxed for 1 h at a temperature of 

120 °C. Colorless crystals of py2P2S4.34O0.66 were obtained while cooling the solution to 

ambient temperature. The precipitate was separated from the solution and dried in 

vacuo (Yield: 299.4 mg, 43%).  

31P{1H} NMR (pyridine): δ [ppm] = 104.3 (s). Elemental analysis 

(py2P2S4.34O0.66): calcd. C 32.49, N 7.58, H 2.73, S 37.57; found C 32.60, N 8.48, H 

3.61, S 33.74. Mass (DEI+) m/z = 379.8 (MS = [C10H10N2P2S5]+), 363.6 

(MO = [C10H10N2P2S4O]+), 347.9 ([MS−S]+), 299.9 ([MS−py]+), 284.7 ([MO−py]+), 

252.8 ([MO−pyS]+), 221.9 ([M−py2]+), 188.8 ([MO−pyPS2]+), 128.0 ([PS3]+), 63.0 
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([PS]+). Raman (200 mW, rt): ν [cm-1] = 3068 (25), 1604 (46), 1182 (53), 1031 

(55), 1015 (100), 472 (84). IR (200 mW, rt): ν [cm-1] = 3009 (w), 2510 (w), 2124 

(w), 1629 (w), 1602 (m), 1596 (w), 1517 (m), 1484 (m), 1476 (s), 1447 (s), 1390 

(w), 1323 (w), 1252 (w), 1187 (m), 4481 (m), 1159 (m), 1129 (m), 1051 (m), 1023 

(w), 1041 (m), 1014 (m), 998 (m), 896 (br, vs), 767 (m), 743 (s), 731 (m), 718 (m), 

675 (vs). 

 

py2P2S4O (4): To 41.7mg (0.264 mmol) KMnO4 a solution of 46.8 mg 1 in pyridine 

(5 mL) was added and stirred for 48 h at room temperature. The precipitate was 

filtrated and the solvent was removed from the yellow solution in vacuo (Yield: 44 mg, 

98%). 

31P{1H} NMR (pyridine): δ [ppm] = 98.0 (s). Elemental analysis (py2P2S4O): 

calcd. C 32.96, N 7.69, H 2.77, S 35.20; found C 37.42, N 8.71, H 3.48, S 28.24. 

Mass (EI+) m/z = 363.9 ([C10H10N2P2S4O]+), 331.9 ([M−S]+), 284.7 ([M−py]+), 

252.9 ([M−pyS]+), 205.0 ([M−py2]), 190.0 ([M−pyS2]+), 173.0 ([M−pyPS2O]+),  

128.0 ([PS3]+), 63.0 ([PS]+). Raman (200 mW, rt): ν [cm-1] = 3062 (49), 1615 (48), 

1016 (100), 470 (60), 385 (52). IR (200 mW, rt): ν [cm-1] = 3056 (vw), 2397 (w), 

1631 (w), 1593 (w), 1532 (w), 1484 (m), 1444 (w), 1385 (vw), 1248 (w), 1211 (w), 

1151 (w), 1051 (w), 1033 (vw), 1021 (vw), 998 (w), 868 (br, vs), 743 (s), 680 (vs), 

666 (s). 
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Polyphosphorus Hydrides – Historical Notes 

In 1877, a compound with the formal composition “PhP“, the first cyclophosphane 

was described by Köhler and Michealis.[3] The compound was identified as 

cyclopentaphosphane (PPh)5 in the year 1969.[4] Since then, an unexpected variety of 

mono- and polycyclophosphanes have been discovered.[4,5] All compounds having a 

skeleton of phosphorus atoms can be regarded as derivates of phosphorus hydrides 

PnHn (phosphanes) and are of great interest for a better understanding of nucleophilic 

cleavage of white phosphorus.[6] 

Especially Marianne Baudler engaged herself in this field of chemistry, focussing on 

compounds inheriting P–P bonds. Her big goal was to synthesize polycyclic Pn
m- anions 

via reaction of white phosphorus with LiPH2 in THF or monoglyme.[2]  

Already in 1979 she reported on the synthesis and characterization of Li3P7. She used 
31P NMR spectroscopy to analyze the fluxional nature of the P7

3- cluster in THF which is 

explained in the next passage.[7] 

Three years later, in 1982, the polyphosphide P16
2- was obtained via nucleophilic 

cleavage of white phosphorus with lithium dihydrogenphosphide.[8] 

Also the group of von Schnering prepared the same anion P16
2-

 but this time via 

reaction of Na3P7 with (Ph4P)Cl.[9] 

In 1987 Baudler investigated the reaction of the alkalimetal sodium and white 

phosphorus in THF and observed the anion P5
-.[10] 

The reaction of white phosphorus with lithium dihydrogenphosphide or sodium 

results in the formation of the polycyclic anions P21
4- and P26

4-.[11] 

The major problem of the polyphosphide chemistry is, that always a great number of 

different polyphosphides together is obtained from one reaction in solution. All metal 

phosphides and polyphosphides are formed from the elements regardless of the 

stoichiometric ratio.[12] For example, Baudler received a mixture of Li3P19, Li2P16, Li3P21, 

Li4P26, Li2HP7, LiH2P7 and Li2H2P7 via the nucleophilic cleavage of P4 with LiPH2 in THF or 

1,2-dimethoxyethane and with the reaction of red phosphorus and KPH3 in hot DMF a 

mixture of PH3, KP5 and K2HP7 was formed.[13] Until now no method has been found to 

circumvent these problems. 
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Experimental Section 

General. All reactions were carried out under inert gas atmosphere using Schlenk 

techniques. 

Argon was used as inert gas received from Messer Griesheim. All glasses vessel were 

stored in a 120 °C drying oven and were flame dried three times in vacuo at 10-3 mbar 

before use. 

White phosphorus was peeled under water, washed with dry THF and TMS-Cl and 

dried in vacuo. Sodium was peeled under pentane, washed with THF and dried in 

vacuo. Sulfur, selenium, tellurium and lithium were used as received. Pyridine and N-

MeIm were stored under argon atmosphere and were dried over molecular sieve. Li2S 

was stored under nitrogen atmosphere in a glovebox. 

NMR Spectroscopy. NMR spectra were recorded using a Jeol EX 400 Eclipse 

instrument operating at 161.997 MHz (31P). Chemical shifts are referred to 85% H3PO4 

as external standard. If not mentioned otherwise, all spectra were measured at 25 °C. 

The % data correspond to the intensities in the 31P NMR spectra with respect to the 

total intensity. The difference to 100% belongs to not determinable signals. 

 

Reaction of P4 with Sodium  

White phosphorus (193.4 mg, 1.56 mmol), sodium (14.4 mg, 0.624 mmol) and 

naphthalene (288.0 mg, 2.25 mmol) were suspended in THF (60 mL) and stirred over 

night at ambient temperature. The brownish precipitate was removed from the red 

reaction solution and dissolved in different solvents (Table 5). 

From the solution, three NMR spectra were measured in three days in a row.  

1. day: 31P {1H} NMR (THF, rt): δ [ppm] = 3 (65%), 5 (35%). 

2. day: 31P {1H} NMR (THF, rt): δ [ppm] = 3 (25%), 5 (75%). 

3. day: 31P {1H} NMR (THF, rt): δ [ppm] = 3 (80%), 5 (20%). 

To the remaining solution an sulfur (12.5 mg, 0.4 mmol) was added. The red 

precipitate was insoluble in the solvents from Table 5 and the solution contained only 

not assignable signals in the 31P NMR along with P4S3. 
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31P{1H} NMR (THF, rt): δ [ppm] = 109 (m, 35%), 93.1 (m, 23%), 80.1 (m, 22%), 

68.9 (s P4S3, 2%), −124.0 (d, P4S3, 9%). 

 Table 5. Suspension of the brown precipitate in different solvents (”-“ refers to no phosphorus 

signal in the 31P{1H} NMR) 

Solvent Observation Result: 31P {1H} NMR (solvent, 

rt): δ [ppm]  

THF/15-crown-5 no reaction - 

dimethylformaide brown solution, red precipitate - 

N-Methylimidazole brown solution, brown precipitate 3 (34%), 5 (66%) (only small 

amounts) 

dimethylsulfoxide no reaction - 

BMIMBF4 (ionic 

liquid 

no reaction - 

pyridine solution turns yellow - 

 

Reaction of P4 with Lithium  

Introductory experiments: 

In Table 2, the reactions of white phosphorus (170.0 mg, 1.4 mmol) with lithium in 

different solvents are listed. 

In Table 3, the reactions of white phosphorus (200.0 mg, 1.6 mmol) with different 

forms of lithium are listed. 

Synthesis: 

White phosphorus (170.0 mg, 1.4 mmol) was suspended in THF (18 mL). In another 

glass vessel, lithium powder with an oxide layer (76.2 mg, 11.0 mmol) was suspended 

in N-MeIm (26 mL). This solution was added to the one containing white phosphorus. 

Immediately the solution turned brown. After stirring for five days lithium was not 

dissolved completely and was removed by filtration. 

2 mL of the solution were transferred into another glass vessel for crystallization and 

6 ml diethyl ether was diffused slowly into the solution. 
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The residual solution was divided into three parts and elemental sulfur, selenium and 

tellurium were added, respectively. 

31P {1H} NMR (THF/N-MeIm, rt): δ [ppm] = −143.1 (s, 5.8%); −131.5 (s, 11.4%); 

(1) (1.5%); (3) (25.4%); (5) (37.9%). 

To the solution was then added in different vessels: 

a) an excess of sulfur: 

31P {1H} NMR (THF/N-MeIm, RT): δ [ppm] = 36.3 (s, 38.3%, P2S6
2-); 55.5 (s, 

6.8%); 86.4 (s, 5.9%); 92.6 (s, 8.1%); 214.1 (s br, 4.0%, PS5
-). 

b) sulfur (ratio P4:S 1:1.4): 

31P {1H} NMR (THF/N-MeIm, RT): δ [ppm] = −2.2 (s, 12.3); 24.1 (s, 7.9%); 36,4 

(s, 12.4%); (1) (25.5%); (3) (19.9%); (5) (12.9%). 

c) selenium (ratio P4:Se 1:1.5): 

31P {1H} NMR (THF/N-MeIm, RT): δ [ppm] = −79.6 (s, 33.5%); (1) (29.7%); (3) 

(12.8%); (5) (16.9%). 

d) tellurium (ratio P4:Te 1:0.9): 

31P {1H} NMR (THF/N-MeIm, RT): δ [ppm] = (1) (40.1%); (3) (22.2%); (5) 

(29.1%). 
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