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Abstract

The advances in medical imaging have enabled the large-scale generation of
medical image data in hospitals and private clinics. While taking a high-reso-
lution scan of a troubling body part has been rather exceptional in the past,
it is now common practise for a large variety of patient conditions.

The research project THESEUS MEDICO aims at the re-organization of
medical picture archiving and communication systems (PACS) such that they
can be efficiently queried for more advanced image meta-data than a small set
of common identifiers. As a complement to keyword-based retrieval queries,
MEDICO also offers a variety of content-based image retrieval (CBIR) appli-
cations.

Two use cases employing CBIR techniques for answering clinical queries on
Computed Tomography (CT) scans have been developed in the course of this
thesis. The first application provides a standardized body coordinate system
using image-based landmarks and further image information for automatically
providing an anatomical context for any given scan region and for greatly
accelerating retrieval queries. The second application is a more direct form of
CBIR, enabling the specification of a visual query template which is used for
retrieving similar image patterns.

This thesis introduces a variety of newly-developed similarity search compo-
nents and it evaluates the generated medical search framework at the example
of the two search applications.
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Zusammenfassung

Durch die Fortschritte in der medizinischen Bildgebung fällt in Krankenhäusern
und privaten Arztpraxen in zunehmendem Maße medizinisches Bildmaterial
an. Im Gegensatz zu früher ist es mittlerweile bei vielen Krankheitsbildern
üblich, hochauflösende Aufnahmen einer auffälligen Körperregion zu verord-
nen.

Eines der Ziele des Forschungsprojektes THESEUS MEDICO ist es, die
im klinischen Alltag üblichen Bildarchive (PACS, picture archiving and com-
munication systems) derart zu strukturieren, dass sie effizient nach komplex-
eren Bildeigenschaften als den bisher üblichen Kennungen durchsucht werden
können. Als Ergänzung zu einer Stichwort-basierten Suche bietet MEDICO
auch eine Auswahl an bildbasierten Abfragemöglichkeiten (CBIR, content-
based image retrieval).

Im Zuge dieser Dissertation wurden zwei Anwendungsfälle von bildbasierten
Anfragen auf Computertomographie (CT) Aufnahmen entwickelt. Die erste
Anwendung erstellt ein standardisiertes Koordinatentystem für den menschli-
chen Körper, welches automatisch einen anatomischen Kontext zu einer be-
liebigen Aufnahmeregion bestimmen und somit Anfragezeiten drastisch re-
duzieren kann. Dies wird sowohl durch die Suche nach charakteristischen
Punkten als auch durch direkte Bildähnlichkeitssuche ermöglicht. Der zweite
Anwendungsfall stellt eine direktere Form des CBIR dar und erlaubt die vi-
suelle Ähnlichkeitssuche in einer Datenbank auffälliger Bildregionen mit ma-
nuell definierten Bildausschnitten.

Diese Dissertation stellt eine Reihe neuentwickelter Ähnlichkeitssuchkom-
ponenten vor und sie evaluiert das entwickelte medizinische Bildsuchesystem
am Beispiel der beiden vorgestellten Anwendungsfälle.
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1

Chapter 1

Preliminaries on Medical Image
Queries

In hospitals and medical centers, the use of modern medical imaging options
has increased enormously over the past decades. Any type of medical image
is usually stored in a centralized picture archiving and communication sys-
tem (PACS). Since these PACS are very user-specialized and manufacturer-
dependent, they usually only fulfill a minimum amount of standardization [117,
50], and thus, they only permit a limited variety of retrieval queries.

Computed Tomography (CT) is a typical example of an increasingly fre-
quented examination method. A CT scan can be considered to be a stack of
2D photographs taken from within the human body. Depending on the used
image resolution and the size of the scanned body range, the disk space for one
CT scan ranges between few megabytes and multiple gigabytes. Current PACS
usually store these datasets as uncompressed image material, solely structured
by a set of acquisition and patient identifiers.

Recently, multiple research groups intensified their efforts for re-organizing
conventional PACS such that they can also be queried for more advanced image
meta-data or additional manual or automatically-generated annotations linked
the image. The common goal of these inquiries is to facilitate keyword-based
retrieval queries, like the request for a list of all scans for patients related with
a specific viral infection. This is also one of the targets of Theseus MEDICO,
a research project sponsored by the German Federal Ministry of Economics
and Technology. Besides providing a framework enabling the user-friendly
specification of standardized keyword queries, MEDICO also offers a variety
of content-based image similarity search applications.

This thesis introduces two major use cases, which employ content-based
image retrieval (CBIR) techniques for answering clinical queries on CT scans.
The first application provides a standardized body coordinate system using
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image-based landmarks and further image information for automatically pro-
viding anatomical context information of a given scan region and for greatly
accelerating retrieval queries. The second application provides a more direct
form of CBIR by enabling the specification of a visual query template, which
is used for retrieving similar image patterns.

Both use cases require a search framework allowing both efficient image
indexing (both in the sense of image processing and spatial indexing) and
context-sensitive query processing. The search framework integrated into the
MEDICO system makes use of state of the art similarity concepts and spatial
indexing systems. Additionally, it provides a variety of newly-developed or
specialized similarity search components, which will be presented in the first
part of this thesis. The second part describes the application of these meth-
ods in the two medical use cases and provides a thorough evaluation of the
generated search framework.

1.1 Introduction to Medical Image Retrieval

Medical image retrieval is a special case of information retrieval. In this thesis,
we will focus on similarity aspects of medical image queries. The following
sections will hence give a short overview on existing image retrieval applications
and the special challenges of medical image retrieval. This chapter will close
with a guide to the structure of the thesis.

For the interested reader missing a comprehensive survey on similarity
search and information retrieval we refer to [181] and [78] for guides on sim-
ilarity search and data mining as well as to [110, 23] for introductions to
information retrieval.

1.1.1 Other Image Retrieval Applications

Image retrieval is a fast-growing area within the similarity search commu-
nity. [39] The leading web search engines (google, bing, yahoo and others) all
support some form of image search. Query specification is usually text-based
and uses meta-information associated to the potential result images. The con-
tent of the images is mostly used as a result filter for user-defined attributes
like color or size.

Most search engines also offer a query-refinement option which focuses the
result set on images which are supposed to be similar to a chosen candidate. A
real query-by-example, where the user can actively provide a query template
image, however, is mostly offered by specialized commercial vendors of stock
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photography.1 Since the search mechanisms behind those services are predom-
inantly based on color characteristics, they are not applicable in the medical
domain, which primarily features intensity-based grey-value images.

Another large field of application for image similarity search is facial recog-
nition. Various implementations are already in use, e.g. for detecting suspects
via matching mug shots to surveillance videos. This area of research is highly
specialized and it usually involves the computation of biometric markers de-
fined by heavy use of expert knowledge. Certainly, expert information is also
required for queries on medical images. However, facial recognition is closer
to the field of object tracking than to similarity search. The goal is to reliably
recognize a given facial template under any number of lighting conditions or
disguise events and not to raise an alert whenever similar-looking persons are
detected. Therefore, even though this technique also involves the human body,
the philosophy of exact object matching can only be directly applied to the
medical imaging domain in special cases.

Other applications for image retrieval are provided by interesting-point
detection approaches. They are based on the detection of characteristic points
within an image. The interesting points are then described such that they can
be matched to similar image regions within other images, or similar regions
within the same image. The most prominent examples for interesting-point
procedures are SIFT [106] and SURF [10]. They are usually employed in
object tracking applications or for image stitching procedures, where multiple
images are to be combined to form a panoramic image. This approach also
follows an exact-matching scheme, and therefore, its medical use is mostly
located in tracking applications like automatic cartographic computations for
camera-based internal examinations.

Another area of image retrieval actually involves adult photography. The
most conservative reader will agree that there is a market for similarity queries
in erotic image material. Today’s research, however, mostly focuses on the pro-
tection of minors by automatically categorizing potentially offensive pictures,
e.g. via skin detection approaches [91, 11] or hand-tracking [43]. Even though
there are multiple applications of similarity search in dermatology, [174, 90]
they again rely heavily on expert knowledge.

We thus conclude that image retrieval is very application-specific and that
it takes a large amount of careful consideration to choose among the algorith-
mic components to be used.

1For examples see http://www.fotofinder.com or http://www.ideeinc.com/

http://www.fotofinder.com
http://www.ideeinc.com/
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1.1.2 Query by Medical Image

CBIR can be a valuable tool for radiologists or other physicians in the clinical
routine. Finding similar patient cases based on visual correlations facilitates
the comparison of a current patient’s status with earlier patient histories. Even
though automatic suggestions can hardly replace the valuable practise of per-
sonally conferring with other medical specialists, computational support sys-
tems will be able to recommend the best-suited specialist for a given problem.
Additionally, an up-to-date retrieval system can enable the identification of
ongoing studies which may be suitable for participation of the current patient.

1.1.2.1 Challenges in Medical Image Retrieval

For a general review on medical content-based image retrieval (CBIR), please
refer to Müller and Deserno [114]. They emphasize the challenges posed by
the large variety of possible image types (ranging from 1D measurements like
electrocardiograms to collections of videos of 3D volume data taken in multiple
image modalities). Consequently, a flexible framework for clinical image re-
trieval must also be able to deal with multiple modalities and support a broad
range of query types. A major focus in the preparation of this thesis was
therefore the exploration of various types of object representations. This thesis
will test retrieval options for simple real-valued feature vectors (Chapter 3),
multi-instance features (Chapter 4) and graph-based object representations
(Chapter 2). The practical realizations of the medical use cases in Part II
additionally explore methods of multi-represented objects.

Besides habitual obstacles like rejection by the users [4] and technical prob-
lems like varying image quality and characteristics or legal barriers [114, 2],
CBIR in medicine is challenged by the semantic gap. The semantic gap sum-
marizes the general observation that image properties which can be efficiently
represented electronically do not necessarily correspond to an actual medically
relevant content. Chapter 5 will therefore introduce an approach for closing
the gap between well-structured but self contained medical ontologies and a
subgroup of image-based queries.

An additional constraint on any CBIR application is the high annotation
effort. As image annotations usually require time-costly drawing interactions,
the annotations of the same finding by multiple users or even by the same user
vary greatly. Very early, this problem inspired semi-automatic annotation ap-
proaches as in [14], however, the time costs could not yet be satisfyingly solved.
The exact segmentation of a three-dimensional object like the liver within a
CT scan can still take an experienced annotator up to 20 minutes. In order
to minimize this obstruction on 3D annotations, various CBIR systems only
offer regions of interests (ROIs) with a minimum bounding box (abbreviated
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as MBR for minimum bounding rectangle) representation. [35, 138]. MBRs
are very convenient for visual examination, since any 3D ROI is usually loaded
and visually presented in a bounding box. However, capturing a ROI as an
MBR will lead to the inclusion of false positive (background) regions compared
to a precisely selected region of arbitrary complexity. Chapter 6 will present
solutions for resolving the diluted adequacy of MBR representations for 3D
queries.

Furthermore, even if there is a suitable collection of annotations to be
queried, the actual performance of any retrieval system is very hard to vali-
date. The quality assessment of a query’s result set necessitates an additional
annotation effort for defining an ideally expected result set. As an additional
complication, this ideal result set is going to vary strongly, depending on the
medical query context. This thesis therefore explores various ways of training
similarity measures with respect to varying ground truth annotations in the
Chapters 2, 3 and 5.

In addition to the goal of retrieval accuracy, clinical queries are mostly
asked under enormous time-pressure. The daily routine of a radiologist does
not allow for long waiting times of a query system as it is already restricted
by loading times due to slow intranet connections. Efficient query processing
is thus an integral part of any medical retrieval system. Chapter 6 exploits
database filtering techniques for speeding up similarity queries, while the re-
trieval approach in Chapter 5 uses spatial index structures. Moreover, one of
the main benefits of the retrieval approach of Chapter 5 is the reduction of
loading times of 3D images.

During this thesis we also investigated alternative ways of query acceler-
ation: in [53], we examined solutions of all-nearest-neighbor queries and the
presentation in [52] summarized effects of spatial index structures on the new
storage medium of SSD (solid state disk) flash storage. In order to keep the
focus of this thesis as concise as possible in this multi-disciplinary field, these
results will not be presented in the following.

Finally, there is the practical problem of distributed sources of informa-
tion. By far not all patient-specific data in a hospital is stored in the PACS. A
variety of additional database systems like the Radiology Information System
(RIS), or the Laboratory Information System (LIS) may contain relevant in-
formation for an image-related query. Together with any number of specialized
decision support systems and additional hospital data collections, these form
an immense cloud of data sources, which are only partially and incompletely
connected by a large variety of standards like HL7 [50] or DICOM (Digital
Imaging and Communications in Medicine) [117]. Hence, the success of future
holistic medical software strongly depends on the progress of further standard-
ization and the ability to efficiently connect various types of data sources.
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One way of connecting inhomogeneous databases is surveyed in Chapter 6 at
the example of combining image-based similarity search and a semantic query
system.

It is therefore hardly surprising that medical CBIR today is mainly focused
on special cases like photographs of skin lesions [6] or the cervix [175], where
they can be optimized for their given use case.

Currently, medical PACS only support a small choice of query options.
According to the DICOM standard, [117] it is possible to list examinations
per patient with additional filter options on standardized meta-information
like the date of examination or the picture modality. Depending on the PACS
vendor, these result lists show carefully-chosen meta-information, optimally
featuring a representative screenshot. As soon as an image has been selected
by the user, it usually has to be completely loaded from the server. For 3D
images, the system offers a preview, usually in the form of a 2D topogram.

1.1.2.2 Query for Image

A feature which is missing from most PACS are actual image-related queries:

1. concept-based retrieval queries, requiring a textual list of requested image
properties, or

2. similarity queries by example, enabling the user to provide a template
image for which to find similar images.

For concept-based queries, it is easy to see why current radiology systems
do not support them: they require a duplicate annotation overhead for first
outlining the region of interest and then for tagging it with an exhaustive list
of descriptive expressions. However, in the wake of the success of the semantic
web and an increasing interest in taking standardization efforts, [142] this
form of image queries is still the most common in medical information systems
research. Semantic queries as proposed in [94, 137] have the advantage of being
well-defined and self-contained, i.e. they do not need to actually analyze the
raw image material.

It is for this reason that the idea of structured reporting is finally arriving
in the medical routine. Medical experts analyzing any clinical examination,
usually file a report about their observations and their professional diagnosis.
In structured reporting, the examining experts have to obey a specific and
standardized report structure for recording their findings. The main obstacle
of this new reporting technique is to ensure that the additional information gain
by structured reporting outweighs the additional time required for generating
the report. [37] In addition to the improved query possibilities, this way of
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reporting offers the great potential of visual links between a single report item
and its actual position in the described image. A wealth of ontologies for
categorizing anatomical properties, [127] visual findings [103] or diseases [171,
86] is available. The Theseus MEDICO Ontology provides links between these
ontologies in order to facilitate the annotation and query process. [137]

A real query-by-image is harder to specify. In order to provide a general
query system, it must be able to deal with both 3D and 2D queries, potentially
even with collections of multiple query regions. It is therefore not sufficient to
test various types of image descriptors on their suitability [44], but a generic
image query system also needs to support various types of query representation
which are to be queried as efficiently as possible. The image query framework
of the Theseus MEDICO system therefore integrates various descriptor types
in a generic plug-in fashion for multiple image modalities and query scenarios.
Additionally, it provides various ways of training application-specific similarity
measures and optimizing retrieval times.

1.1.2.3 Partial Image Retrieval

Another retrieval option not offered on the market so far is the efficient re-
trieval of partial image volumes. As modern radiological scanners produce
increasingly large images, the communication times for loading these volumes
from the PACS quickly grows to several minutes in a system under heavy
communication load. In many cases, it is not necessary to load the complete
volume but only a region of interest (ROI) taking only a fraction of the scan,
e.g. an excerpt of the body region that the current user is specialized in. This
problem can be solved by raster databases, however, the queried coordinates
are rarely pre-defined but only available as an anatomic concept or an ex-
ample ROI. Consequently, a partial volume retrieval system requires a more
sophisticated localization estimation procedure.

Anatomical positioning is not a new problem in the field of medical imag-
ing. The research category image registration comprises methods for map-
ping the medical images of various patients or various acquisition times to
each other. [108, 82] This may happen by using a template image or by direct
intensity-based image alignment. However, most image registration approaches
are computationally demanding and runtime extensive. Furthermore, they re-
quire the availability of the complete image material, thereby limiting their
use in partial image retrieval to a pre-processing step.

The Theseus MEDICO framework contains a retrieval system for CT scans
which makes use of a fast, registration-like anatomical mapping approach. The
main advantage of this new approach w.r.t. exhaustive registration techniques
is that it can be quickly computed on previously un-processed images, and that
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it can choose the optimal retrieval policy based on the amount of pre-processed
data already available. As a helpful by-product, this retrieval system also pro-
vides a general body height atlas, which summarizes the expected distribution
of anatomically relevant landmarks and organs. On the one hand, such an
atlas offers the possibility to query a 3D volume by anatomical concepts. On
the other hand, it can be used as a convenient means of fully-automatic im-
age annotation, by displaying information about the physiological context of
a currently visible image excerpt.

1.2 Summary and Thesis Structure

We conclude that similarity search in medical images is a wide field touching
a large diversity of scientific research areas. This thesis cannot provide a
complete evaluation of all required components, thus it is primarily focused on
the choice of the similarity concepts used for image retrieval and its practical
application. It is structured as follows:

Part I presents methods on feature transformation and distance learning for
various types of object representations. The most complex representation type
handled here are graphs: Chapter 2 surveys a method on discriminative sub-
graph mining, which integrates a feature selection criterion into the subgraph
mining process. In contrast, Chapter 3 deals with conventional real-valued
feature vectors and ways how to transform them into a more meaningful space
and to consequently improve the notion of object similarity. In Chapter 4, we
review existing distance measures on multi-instance objects and explore ways
of how to improve their precision and efficiency in large retrieval datasets.

The practical part of this thesis, Part II, demonstrates two concrete ap-
plications of similarity search in medical image databases, which have been
integrated into the Theseus MEDICO prototype. The first application in
Chapter 5 presents a flexible image retrieval system which allows the user
to load sub-regions of a volume by either verbally specifying an anatomical re-
gion of interest or by asking for a similar anatomical scope already opened in a
template volume. Chapter 6 gives a general overview on the similarity search
components of the MEDICO prototype at the example of a classical query-by-
example for three-dimensional sub-volume queries, which can be complemented
by adding semantically-defined filtering constraints.

The final chapter summarizes the methods and algorithms proposed in this
thesis and concludes with an outlook on future research paths opened by its
findings.
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Part I

Feature Transformation and
Distance Learning
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Part I of this thesis presents the advances in algorithmic foundations of
similarity search gained in the course of the practical investigations of medical
image queries presented in Part II. As the academic field of similarity search
is widely spread, this category holds any subject between the contribution of
new machine learning constructs and similarity concepts to retrieval-related
discoveries like query optimization or database indexing approaches.

In order to keep the scope of this thesis at a manageable degree of multidis-
ciplinarity, its theoretical part is focused on findings about feature transforma-
tion and distance learning for various types of data objects, mostly skipping
over advances in the field of spatial indexing. A flexible representation of
similarity queries is a demanding but worthwhile. Medical images have been
represented by real-valued feature vectors [44], sets of feature vectors [59],
trees, [105] or graphs [61].

Therefore, the following chapters will cover a number of optimizations on
the similarity among three different feature types. Chapter 2 introduces the
feature mining and feature selection approach CORK [153] in the domain of
graphs. The BED algorithm [54] presented in Chapter 3 is a flexible similarity
learning framework for real-valued feature vectors. Finally, Chapter 4 presents
a survey on multi-instance distance measures, which are needed for multiple
types of image representations.
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Chapter 2

Discriminative Frequent
Subgraph Mining with
Optimality Guarantees

The goal of frequent subgraph mining is to detect subgraphs that frequently
occur in a dataset of graphs. In classification settings, one is often interested
in discovering discriminative frequent subgraphs, whose presence or absence is
indicative of the class membership of a graph.

In this chapter, we survey an approach to feature selection on frequent
subgraphs, called CORK (correspondence-based quality criterion), that com-
bines two central advantages. First, it optimizes a submodular quality cri-
terion, which means that we can yield a near-optimal solution using greedy
feature selection. Second, our submodular quality criterion can be integrated
into gSpan, the state-of-the-art tool for frequent subgraph mining, and help
to prune the search space for discriminative frequent subgraphs even during
frequent subgraph mining.

This work was published in [152] after positive feedback on a workshop
contribution in [18]. An extended journal version, generalizing the method
to multi-class problems and augmenting it by an alternative feature selection
pipeline was later published in [153].

2.1 Introduction

In a graph classification problem, we are given a set of n training graphs
G = {G(1), . . . , G(n)} with class labels {G(i), y(i)}ni=1, y

(i) ∈ {1, . . . , K}. Given
these training examples, our task is to train a classifier for correctly predicting
the labels of unclassified test graphs.
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Such graph classification algorithms have a wide variety of real world ap-
plications. In biology and chemistry, for example, graph classification quanti-
tatively correlates chemical structures with biological and chemical processes,
such as active or inactive in an anti-cancer screen, toxic or non-toxic to human
beings [100]. This makes graph classification scientifically and commercially
valuable (e.g. in drug discovery).

In computer vision, images can be abstracted as graphs, where nodes are
spatial entities and edges are their mutual relationships. Such models can be
used to identify the type of foreground objects in an image. An example from
medical imaging was presented in [61].

In software engineering, a program can also be modeled as a graph, where
program blocks are nodes and flows of the program are edges. Static and dy-
namic analysis of program behaviors can then be carried out in these graphs.
For instance, anomaly detection of control flows is essentially a graph classifi-
cation problem.

Recent research in graph classification comprises three branches:

1. first, the family of frequent pattern approaches [95, 45, 30]. Each graph
is represented by its frequent subgraphs, i.e. its set of subgraphs that oc-
cur in at least σ% of all graphs in the database for a manually-specified
threshold σ. This frequent pattern approach is also referred to as the (fre-
quent) substructure or fragment approach, and we will use these terms
interchangeably.

2. second, the family of approaches that consider all subgraphs of a certain
type in a graph [92, 159, 139]. For instance, the graph kernels by [92, 139]
belong to this class and they count common walks and subtree patterns
in two graphs, respectively.

3. third, the family of wrapper approaches that select informative subgraphs
for classification during the training phase. Typical instances of this fam-
ily are the boosting approach by [101] and the lasso-approach by [154].

In this work, we are concerned with the first of these three families, the
family of frequent subgraph approaches. There are two reasons for adapting
frequent subgraphs in graph classification. First, it is computationally difficult
to enumerate all of the substructures existing in a large graph dataset, while
it is possible to mine frequent patterns due to the recent development of effi-
cient graph mining algorithms. Second, the discriminative power of extremely
infrequent substructures is small due to their limited coverage in the dataset.
Therefore, it is a promising approach to use frequent substructures as features
in classification models.

However, the vast number of substructures poses three challenges.
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1. Redundancy: Most frequent substructures only differ slightly in structure
and co-occur in the same graphs.

2. Statistical significance: Frequency alone is not a good measure of the
discriminative power of a subgraph, as both frequent and infrequent sub-
graphs may be uniformly distributed over all classes. Only frequent sub-
graphs whose presence is statistically significantly correlated with class
membership are promising contributors for classification.

3. Efficiency: Very frequent subgraphs are not useful for classification due
to lack of discriminative power. Therefore, frequent subgraph based clas-
sification usually sets an extremely low frequency threshold, resulting in
thousands or even millions of features. Given such a tremendous number
of features, any runtime or memory-intensive feature selection algorithm
will fail.

Consequently, we need an efficient algorithm to select discriminative fea-
tures among a large number of frequent subgraphs. In [152], we introduced
a near-optimal approach to feature selection among frequent subgraphs gen-
erated by gSpan [177] for two-class problems. Our method greedily chooses
frequent subgraphs according to the submodular quality criterion CORK (Co-
rrespondence-based Quality Criterion). The use of a submodular function in a
greedy approach ensures a solution close to the optimal solution [118]. We fur-
thermore showed that CORK can be integrated into gSpan, the state-of-the-art
tool for frequent subgraph mining.

Other approaches use heuristic strategies for feature selection (such as [30,
57]) or do not provide optimality guarantees [101, 132, 131, 154, 176, 89]. We
will present an overview on related algorithms in Section 2.3.1.

This chapter will present the idea of near-optimal feature selection in sub-
graph patterns and introduce improvements for future use. We will first for-
malize the optimization problem to be solved (Section 2.2.1) and then, we will
summarize the essential ingredients of our graph feature selector: first, sub-
modularity and its use in feature selection (Section 2.2.2); second, gSpan, the
method to find frequent subgraphs (Section 2.2.3). We will review our selection
criterion CORK for two-class problems in Section 2.2.4, detail its computation
in Section 2.2.5 and explain its integration as additional pruning criterion into
pattern growth based graph miners like gSpan in Section 2.2.6.

Many applications for graph learning actually define more than the co-
mmonly-used two classes: Biological molecules can be categorized into a wide
catalog of functional or structural classes, social network communities are in-
volved with various topics and process flows can be analyzed with respect to
multiple attributes. We will thus generalize CORK to multi-class problems in
Section 2.2.7.
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Finally, for increasing the flexibility of our algorithm, in Section 2.2.8, we
will also provide an extension for using the proposed pruning approach on
pre-mined graphs. After a review of related work in Section 2.3 we thoroughly
evaluate the proposed algorithms in Section 2.4 on 11 real-world datasets and
conclude with a discussion and outlook in Section 2.5.

2.2 Near-Optimal Feature Selection in Frequent

Subgraphs

We formalize the given dataset as a collection of graphs G = ∪Ki=i Ki that
each belong to one of the K classes Ki. In this thesis we exclude overlapping
classes, however, the proposed selection approach can be easily extended to
graphs with multiple labels.

As a notational convention, the vertex set of a graph G ∈ G is denoted
by V (G) and the edge set by E(G). A label function, l, maps a vertex or an
edge to a label. A graph G is a subgraph of another graph G′ if there exists
a subgraph isomorphism from G to G′, denoted by G v G′. Accordingly, G′

is called a super-graph of G (G′ w G). Due to its importance for this chapter,
we here recite the definition of a subgraph isomorphism.

Definition 1 (Subgraph Isomorphism) A subgraph isomorphism is an in-
jective function f : V (G)→ V (G′), such that

1. ∀u ∈ V (G), l(u) = l′(f(u)), and

2. ∀(u, v) ∈ E(G), (f(u), f(v)) ∈ E(G′) and l(u, v) = l′(f(u), f(v)),

where l and l′ are the label function of G and G′, respectively. f is called an
embedding of G in G′.

Given a graph database G, we denote by GG1 the number of graphs in G of
which G is a subgraph and by GG0 the number of graphs in G of which G is not
a subgraph. GG1 is called the (absolute) support. A graph G is frequent if its
support is no less than a minimum support threshold, σ. Hence, the frequent
graph is a relative concept: whether or not a graph is frequent depends on the
value of σ and on the number of elements |G| contained in G.

2.2.1 Combinatorial Optimization Problem

Feature selection among frequent subgraphs can be defined as a combinatorial
optimization problem. We denote by D the full set of features, which in our
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case will correspond to the frequent subgraphs generated by gSpan. When
using these features to predict the class membership of individual graph in-
stances, clearly, only a subset E ⊆ D of features will be relevant. We denote
the relevance of a feature set for class membership by q(E), where q is a quality
criterion measuring the discriminative power of E . It is computed by restrict-
ing the dataset’s representation to the features in E . We then formulate feature
selection as:

D‡ = arg max
E⊆D

q(E) s.t. | E | ≤ s (2.1)

where | · | computes the cardinality of a set and s is the maximally allowed
number of selected features.

The optimal solution of this problem would require us to search all possible
subsets of features exhaustively. Due to the exponential number of all feature
combinations this approach is prohibitive for large feature sets like frequent
subgraphs. The common remedy is to resort to heuristic alternatives, the
solutions of which cannot be guaranteed to be globally optimal or even close
to the global optimal solution. Hence, the key point in this chapter is to employ
a heuristic approach which does allow for these quality guarantees, namely a
greedy strategy which achieves near-optimal results.

2.2.2 Feature Selection and Submodularity

Assume that we are measuring the discriminative power q(E) of a feature set
E in terms of a quality function q. A near-optimality solution is reached for a
submodular quality function q when used in combination with greedy feature
selection. Greedy forward feature selection consists in iteratively picking the
feature that – in union with the features selected so far – maximises the quality
function q over the prospective feature set. In general, this strategy will not
yield an optimal solution, but it can be shown to yield a near-optimal solution
if q is submodular:

Definition 2 (Submodular set function) A quality function q is said to
be submodular on a set D if for E ′ ⊆ E ⊆ D and X ∈ D:

q(E ′ ∪ {X})− q(E ′) ≥ q(E ∪ {X})− q(E) (2.2)

Thus, the quality increase for incorporating X into a set E ′ is higher than
(or equal to) the increase that can be reached by adding X to any superset E
of E ′.

If q is submodular and we employ greedy forward feature selection, then
we can exploit the following theorem from [118]:
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Theorem 3 If q is a submodular, non-decreasing set function on a set D and
q(∅) = 0, then greedy forward feature selection is guaranteed to find a set of
features E† ⊆ D such that

q(E†) ≥
(

1− 1

e

)
max

E⊆D: |E|=s
q(E) , (2.3)

where s is the number of features to be selected.

As a direct consequence, the result from greedy feature selection achieves
at least

(
1− 1

e

)
≈ 63% of the score of the optimal solution to the feature

selection problem. This property is referred to as being near-optimal in the
literature (e.g. [73]).

2.2.3 gSpan

If we found a useful submodular criterion for feature selection on frequent
subgraphs, we could yield a near-optimal solution to problem (2.1). But how
do we determine the frequent subgraphs in the first place? For this purpose,
we use the frequent subgraph algorithm gSpan [177], which we will outline in
the following.

The discovery of frequent graphs usually consists of two steps. In the first
step, we generate frequent subgraph candidates, while in the second step, we
check the frequency of each candidate. The second step involves a subgraph
isomorphism test, which is NP-complete. Fortunately, efficient isomorphism
testing algorithms have been developed, making such testing affordable in
practice. Most studies of frequent subgraph discovery pay attention to the
first step; that is, how to generate as few frequent subgraph candidates as
possible, and as fast as possible.

The initial frequent graph mining algorithms, such as AGM [85], FSG [102]
and the path-join algorithm [156], share similar characteristics with the Apriori-
based itemset mining [1]. All of them require a join operation to merge two (or
more) frequent substructures into one larger substructure candidate. To avoid
this overhead, non-Apriori-based algorithms such as gSpan [177], MoFa [16],
FFSM [84], and Gaston [121] adopt the pattern-growth methodology, which
attempts to generate candidate graphs from a single graph. For each discov-
ered graph G, these methods recursively add new edges until all the frequent
supergraphs of G have been discovered. The recursion stops once no more
frequent graph can be generated.

gSpan introduced a sophisticated extension method, which is built on a
depth first search (DFS) tree. Given a graph G we label the root, i.e. the
starting vertex of the DFS tree, as v0, and the last visited vertex as vn. vn is
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also called the rightmost vertex. Consequently, the straight path from v0 to vn
is the rightmost path. Figure 2.1 shows an example. The darkened edges form
a DFS tree. The vertices are discovered in the order v0, v1, v2, v3, thus v3 is the
rightmost vertex. The rightmost path is (v0, v1, v3).
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Figure 2.1: gSpan: Rightmost Extension

This method, called rightmost extension, restricts the extension of new
edges in a graph as follows: For a given graph and a DFS tree, a new edge e
can be added between the rightmost vertex and other vertices on the rightmost
path (backward extension), or it can introduce a new vertex originating from
a vertex on the rightmost path (forward extension). As we do not allow du-
plicate connections, the only legal backward extension candidate of the graph
in Figure 2.1 is (v3, v0). The forward extension candidates can be edges from
v3, v1, or v0 introducing a new vertex. Since there may be multiple DFS trees
for one graph, gSpan establishes a set of rules to select one of them as repre-
sentative so that the backward and forward extensions will only take place in
one DFS tree. One of those rules is the restriction of newly generated edges
to the vertices along the rightmost path. Another rule, the minimality test,
checks whether the currently examined graph has not been treated before. For
a detailed description of gSpan, see [177].

Algorithm 1 outlines the pseudocode of gSpan. G �r e denotes that an
edge e extends graph G via rightmost extension. Step 2 is the minimality
test, where dfs(G), the canonical form of graph G [177] is compared to the
edge order of G. Therefore, G is only proceeded at the first encounter. The
embedding of the candidate set of rightmost extended supergraphs G �r e and
the maintenance of their support |{G′ ∈ G |G �r e v G′}| is generated in steps 7
and 8. Only frequent candidates are then tested on their validity as actual
frequent subgraphs and may be themselves rightmost extended in a further
call of gSpan (step 10).

Once we have determined the frequent subgraphs using gSpan, a natural
way of representing each graph G is in terms of a binary indicator vector of
length |S|:
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Algorithm 1 gSpan

Input: Graph G, graph dataset G, threshold σ, set of subgraphs S
1: function gSpan(G, G, σ, S)
2: if G 6= dfs(G) then
3: return S . G is not minimal
4: end if
5: insert G into S
6: C ← ∅ . initialize candidate map
7: scan G for all edges e such that G can be rightmost extended to G �r e
8: insert all G �r e into C and record their support
9: for all G �r e ∈ C : |{G′ ∈ G |G �r e v G′}| ≥ σ do

10: call gSpan(G �r e, G, σ, S) . crawl frequent supergraphs of G
11: end for
12: return S
13: end function

Output: The set of frequent subgraphs S.

Definition 4 (Indicator vector) Given a graph Gi from a dataset G and a
set of frequent subgraph features S discovered by gSpan. We then define an
indicator vector v(i) for Gi as

v
(i)
d =

{
1 if Sd v Gi (Sd is a subgraph of Gi)
0 otherwise

, (2.4)

where v
(i)
d is the d-th component of v(i) and Sd is the d-th graph in S.

2.2.4 Definition of CORK

We now define our feature selection criterion q for two-class problems. It will
be generalized to multi-class problems in Section 2.2.7.

Definition 5 Let G be a dataset of binary vectors, consisting of two disjunct
classes G = A∪B. Let D denote a set of features of the data objects in G,
represented by indicator vector v(i) for graphs Gi ∈ G.

As we aim to separate the two classes, we pay specific attention to pairs
of inter-class instances with the same pattern in the given feature set. These
instance pairs are correspondences:

Definition 6 (Correspondence) A pair of data objects (v(i), v(j)) is called
a correspondence in a set of features indicated by the feature indices U ⊆
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{1, . . . , |D|} (or, w.r.t. a set of features U) iff

(v(i) ∈ A) ∧ (v(j) ∈ B) ∧ ∀d ∈ U : (v
(i)
d = v

(j)
d ), (2.5)

where v
(i)
d is the value of feature d in vector v(i).

Our quality criterion consequently punishes the number of correspondences
remaining for feature set D.

Definition 7 (CORK) We define a quality criterion q, called CORK (Corres-
pondence-based Quality Criterion), for a subset of features E as

q(E) = (−1) ∗ number of correspondences in E (2.6)

Theorem 8 q is submodular.

Proof For q to be submodular, adding feature X ∈ D to a feature set
E ′ ⊆ E ⊆ D has to increase q(E ′) at least as much as adding feature X to E in-
creases q(E). This law of diminishing returns is obviously fulfilled if removing
a correspondence from E by adding feature X also results in a correspondence
being eliminated in E ′ by adding feature X.

Let us first state that an instance pair (v(i), v(j)), that is a correspondence in
E must also be a correspondence in E ′. Note that the opposite is not necessarily
true.

In the following, let x be the index of feature X in D. Whenever adding
a feature X to E removes the above correspondence from E , this means that
v
(i)
x 6= v

(j)
x , since the other features in E must match. Therefore, the two for-

merly corresponding feature patterns for (v(i), v(j)) cannot match in E ′ ∪ {X}
either. Thus, if a feature X eliminates a correspondence from E , this very cor-
respondence (possibly together with further correspondences) is also removed
from E ′, and we satisfy the submodularity condition of Equation 2.2. �

This submodular criterion can be turned (by adding the constant |A| · |B|)
into a submodular set function fulfilling the conditions of Theorem 3.

2.2.5 Computation of CORK

The CORK value for one feature X in a dataset of the classes A and B can
be computed as the number of inter-class pairs of objects that both contain X
(with AX1 instances in A and BX1 instances in B) or that both do not contain
X (AX0 and BX0 objects).

q({X}) = − (AX0 · BX0 +AX1 · BX1) (2.7)

For feature sets CORK can be efficiently computed by recursively dividing
the dataset into equivalence classes:
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Definition 9 (Equivalence Classes) Given a two-class dataset G = A∪B
represented as binary indicator vectors over the feature set U . Let P ⊆ 2U be
the set of all unique binary indicator vectors occurring in G with |P| = l. Then
the equivalence class of an indicator vector v(i) ∈ G is defined as the set

{v(j)|v(j) ∈ G ∧ ∀ d ∈ U : v
(i)
d = v

(j)
d } (2.8)

Each of these unique indicator vectors Pc forms an equivalence class Ec(c ∈
{1, ..., l}) containing all graphs of with an indicator vector equal to Pc.

We denote by

APc =
∣∣∣{v(i) ∈ A | ∀d ∈ U : v

(i)
d = Pc[d]}

∣∣∣ (2.9)

the number of instances of equivalence class Ec in A and by

BPc =
∣∣∣{v(i) ∈ B | ∀d ∈ U : v

(i)
d = Pc[d]}

∣∣∣ (2.10)

the number of instances of equivalence class Ec in B.

In each greedy iteration step, those equivalence classes can be efficiently
split into hits and misses. The CORK score for a feature set U ⊆ {1, . . . , |D|}
can thus be calculated by adding up the correspondences of all occurring equiv-
alence classes Ec in U :

q(U) = (−1) ·

(∑
Pc∈P

APc · BPc

)
(2.11)

We can now use q for greedy forward feature selection on a pre-mined set
S of frequent subgraphs in G and receive a result set S† ⊆ S of discrimina-
tive subgraphs with a guaranteed quality bound. However, the success of S†
strongly depends on the choice of the minimum support σ. If σ is chosen
too low, we can quickly generate too many features for the selection step to
finish in a reasonable runtime. Setting σ too high can cause the loss of all
informative features. In the following, we will introduce a selection approach
which directly mines only discriminative subgraphs, which is nested in gSpan
and which can act independently from a frequency threshold.

2.2.6 Pruning gSpan’s Search Space via CORK

gSpan exploits the fact that the frequency of a subgraph S ∈ S is an upper
bound for the frequency of all of its supergraphs T w S (all subgraphs contain-
ing S) when pruning the search space for frequent subgraphs. We will show
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original hits: A B
S 0 1 0 1

↓ Eliminate hits in A,
(2.14): T 0 0 1

or eliminate hits in B, ↓
(2.15): T 0 1 0

or keep all hits.
original hits (un-modified): A B
(2.7): S ⇔ T 0 1 0 1

Figure 2.2: Possible change scenarios for the number of hits of supergraphs
T for given hit distributions of S v T : Hits (“1”) can change into misses
(“0”). The resulting extreme cases are illustrated for eliminating all hits from
A (2.14) or from B (2.15), or for the case where keeping all hits is the best
choice as in (2.7)

how to derive an upper bound for the CORK-values of all supergraphs of a
subgraph S, which allows us to further prune the search space.

Let us emphasize that this technique can also be applied in other graph
miners which employ a kind of hierarchical subgraph pattern growth [16, 84,
121] or Apriori-based join [85, 102, 84]. The only necessary pre-condition for
including CORK as pruning step is a supergraph relation (T w S) for patterns
mined at a later stage.

Theorem 10 Let S, T ∈ S be frequent subgraphs, and T be a supergraph of S.
Let AS1 denote the number of graphs in class A that contain S (‘hits’), AS0

the number of graphs in A that do not contain S (‘misses’) and define BS0,
BS1 analogously. Then

q({T}) ≤ q({S}) + max


AS1 · (BS1 −BS0)
(AS1 −AS0) · BS1

0

 (2.12)

Proof We note that the gSpan pruning criterion is also valid for each class:

AS1 ≥ AT1 ∧BS1 ≥ BT1 . (2.13)

If we want to asses how many correspondences may be eliminated by T , we
can take into account, that T can never create new hits but can only decrement
the number of hits in both classes. Naturally, the best improvement for S is
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made, when T eliminates all hits in one of the two classes and maintains the
hits in the other class. This is illustrated in the first two cases of Figure 2.2.
When all hits of T disappear from A, AS0 increases by AS1 and thus:

q({T}) = −

 |A|︷ ︸︸ ︷
(AS0 +AS1) · BS0 + 0 · BS1

 = − |A| · BS0 (2.14)

The same holds for the elimination of all hits from B:

q({T}) = −

AS0 ·
|B|︷ ︸︸ ︷

(BS0 +BS1) +AS1 · 0

 = −AS0 · |B| (2.15)

Finally, we observe a third scenario when T does not cause any change at all,
i.e. q({T}) = q({S}). This provides an additional bound if the decrease of hits
in any class results in more correspondences than for S alone (cf. the last case
in Figure 2.2). Our maximal CORK value of T is thus

q({T}) ≤ max


− |A| · BS0

−AS0 · |B|
q({S})

 eq. 2.7
= q({S}) + max


AS1 · (BS1 −BS0)
(AS1 −AS0) · BS1

0


(2.16)

�
We can now use inequality (2.12) to provide an upper bound for the CORK

values of supergraphs T of a given subgraph S and exploit this information for
pruning the search space in a branch-and-bound fashion.

Inequality (2.12) can be directly applied in the first iteration of greedy
selection. For later iterations of greedy selection, we derive a similar bound on
a set of features.

The bound of Equation 2.12 then extends to:

q(U ∪ {T}) ≤ q(U ∪ {S}) + (2.17)∑
Pc∈P

max


APc ∪ {S1} ·

(
BPc ∪ {S1}−BPc ∪ {S0}

)(
APc ∪ {S1}−APc ∪ {S0}

)
· BPc ∪ {S1}

0


The main difference to (2.12) is that in later iterations of greedy selection,

we only have to consider those graphs which are part of a correspondence
(rather than all graphs). We can thus define an additional pruning bound for
subgraph enumeration:
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Definition 11 (CORK Upper Bound) Given a subgraph set U and a sub-
graph S. The CORK value of any supergraph T of S (T w S) cannot exceed
the bound MAXCORK(U , S):

MAXCORK(U , S) = q(U ∪ {S}) + (2.18)∑
Pc∈P

max


APc ∪{S1} ·

(
BPc ∪{S1}−BPc ∪{S0}

)(
APc ∪{S1}−APc ∪{S0}

)
· BPc ∪{S1}

0

 .

Algorithm 2 gSpanCORK

Input: Graph set G, optional threshold σ.

1: function gSpanCORK(G, σ = 0)
2: S† = ∅
3: S = best subgraph for q(S† ∪ {S}) . gSpan call
4: if q(S† ∪ {S}) > q(S†) then
5: S† = S† ∪ {S} . S is an improvement
6: goto 3
7: end if
8: return S†
9: end function

Output: Set of discriminative (frequent) subgraphs S†.

The new feature mining process is defined in Algorithm 2 as greedy for-
ward selection approach:1 We initialize the set of selected subgraphs as an
empty set S† and follow a recursive operation. In step 2, we require the next
best subgraph S with q(S† ∪ {S}) = maxT∈S q(S† ∪ {T}). It can be ob-
tained by running gSpan, always maintaining the currently best subgraph S
according to q. Whenever in the course of mining, we reach a subgraph T
with MAXCORK(S†, T ) ≤ q(S† ∪ {S}), we can prune all branches originating
from T . Else, the candidate subgraph S might still be replaced by any of T ’s
children. As long as the resulting subgraph S actually improves q(S†), it is
accepted as a discriminative feature and we start looking for the next best
subgraph.

In contrast to the definition in Equation 2.1, this setting does not require
a selection threshold s for the maximal number of features (subgraphs) since
it automatically terminates when no new discriminative subgraph is found. In
our experiments, we further noticed that on most datasets, CORK provides
such a strong bound that it is even possible to omit the support threshold σ

1An implementation of gSpanCORK is available at http://www.dbs.ifi.lmu.de/

~thoma/pub/sam2010/sam2010.zip.

http://www.dbs.ifi.lmu.de/~thoma/pub/sam2010/sam2010.zip
http://www.dbs.ifi.lmu.de/~thoma/pub/sam2010/sam2010.zip
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and still receive a discriminative set of (not necessarily frequent) subgraphs
within a reasonable amount of time.

2.2.7 CORK for Multi-Class Problems

So far, we have restricted our attention to settings with two classes. Now
we will show how to extend gSpanCORK to multi-class problems. The key
challenges here are to extend CORK’s definition for handling multiple classes,
and to then prove that this multi-class CORK (mcCORK) is still submodular
and that it can still be integrated into gSpan.

Definition 12 (pairwise CORK) Assume we are given a graph dataset G :=
∪Ki=1 Ki with K disjunct classes. qi,j(U) shall denote the CORK value restrict-
ing the dataset to classes Ki and Kj for a feature set U . Then pairwise multi-
class CORK (mcCORKpw) is defined as

mcCORKpw(U) :=
K−1∑
i=1

K∑
j=i+1

qi,j(U) = (−1) ·
∑
Pc∈P

K−1∑
i=1

K∑
j=i+1

Ki,Pc ·Kj,Pc ,

(2.19)

i.e. as the sum over CORK values for all pairs of classes, where Ki,Pc is the
number of matches of pattern Pc for U in class i and Kj,Pc is the number of
Pc’s matches in class j, respectively.

Note that we restrict our definition to non-overlapping class labels. Of
course, if a graph G belongs to multiple classes, qi,j(U) can be modified such
that G is not considered when calculating the overall occurrences per equiva-
lence class. This can be achieved using an additional counter for each equiv-
alence class which is raised whenever a hit also belongs to another class and
which is later subtracted from the equivalence class count. However, as struc-
tured output is not the focus of this work, we will pause this line of thought
for now.

Since pairwise CORK requires a quadratic runtime in the number of classes,
we now show the ranking equivalence of pairwise CORK with the linear variant
1-vs.-rest CORK.

Definition 13 (1-vs.-rest CORK) Assume we are given a graph dataset
G := ∪Ki=1 Ki with K disjunct classes. qi(U) shall denote the CORK value
for a dataset consisting of class Ki and its complement (K¬i = ∪Kj=1,j 6=i Kj) as
artificial second class for a feature set U . Then 1-vs.-rest multi-class CORK
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(mcCORK1vr) is defined as

mcCORK1vr(U) :=
K∑
i=1

qi(U) = (−1) ·
∑
Pc∈P

K∑
i=1

Ki,Pc ·K¬i,Pc . (2.20)

Lemma 14 1-vs.-rest CORK and pairwise CORK result in the same ranking
of feature sets.

Proof As the classes i to K are disjunct and since CORK does not use relative
hit frequencies, the pairwise approach can be reduced to 1-vs.-rest as follows:

mcCORK1vr(U) = (−1) ·
∑
Pc∈P

K∑
i=1

Ki,Pc ·K¬i,Pc

= (−1) ·
∑
Pc∈P

K∑
i=1

(
Ki,Pc ·

(
−Ki,Pc +

K∑
j=1

Kj,Pc

))

= (−1) ·
∑
Pc∈P

(
K∑
i=1

K∑
j=1

Ki,Pc ·Kj,Pc −
K∑
i=1

K2
i,Pc

)

= (−1) ·
∑
Pc∈P

(
2 ·

K−1∑
i=1

K∑
j=i+1

Ki,Pc ·Kj,Pc

)
= 2 ·mcCORKpw(U)

�
We next show the submodularity of this multi-class extension of CORK.

Theorem 15 mcCORK is submodular.

Proof Both pairwise and 1-vs.-rest mcCORK are sums of pairwise CORK
values. As pairwise CORK was shown to be submodular in Theorem 8, mc-
CORK is a sum of submodular functions. As submodular functions are closed
under addition, mcCORK is also submodular. �

For the standard application of CORK-based greedy feature selection, we
can hence replace two-class CORK by multi-class CORK, and perform multi-
class feature selection with the same optimality guarantees. The question
that remains to be answered is whether we can still perform nested feature
selection with CORK in multi-class settings, that is whether we can integrate
multi-class CORK into gSpan. For this purpose, we require a bound akin to
equation (2.18). Since this bound is computed for all encountered frequent
subgraphs, we define the bound for the faster 1-vs.-rest mcCORK variant.
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Theorem 16 Let MAXCORK(i)(U , S) denote the CORK upper bound for the
subgraph set U and a subgraph S for class Ki and its complement K¬i =
∪Kj=1,j 6=i Kj. Then

mcCORK1vr(U ∪{T}) ≤
K∑
i=1

MAXCORK(i)(U , S) , (2.21)

where T is any supergraph of S (T w S).

Proof mcCORK(U ∪{T}) is a sum of pairwise CORK values qi(U ∪{T}), each
of which can be upper-bounded by MAXCORK(i)(U , S). As a consequence, the
sum of these upper bounds

K∑
i=1

MAXCORK(i)(U , S) (2.22)

provides an upper bound for the sum of pairwise CORK values

K∑
i=1

qi(U ∪{T}) , (2.23)

that is an upper bound for mcCORK1vr(U ∪{T}). �
Inequality (2.21) can be used for pruning subtrees in gSpan’s DFS search

tree, if the upper bound on mcCORK in this subtree is less than the subgraph
with maximum mcCORK score encountered so far.

2.2.8 Using Pre-Mined Subgraphs

The gSpanCORK algorithm introduced in Section 2.2.6 is intended to speed up
subgraph enumeration procedures which aim at generating features for classi-
fication. However, some datasets already allow for fast subgraph enumeration
even without explicitly giving additional pruning criteria such as CORK. Fur-
thermore, one could choose to use an alternative kind of enumeration, not
necessarily targeting frequent subgraphs [95, 140, 159]. We now show that
given an enumeration of subgraphs, we can convert Algorithm 2 into an offline
approach depicted in Algorithm 3.

We first require a conversion of the subgraph enumeration into the canon-
ical form of DFS Codes, such that the subgraphs can be sorted in the same
lexicographical order as used by the gSpan traversal (step 3). Then we use this
sorting to form a mapping N of each subgraph at sorting position i to the first
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Algorithm 3 Offline SelectCORK

Input: List of subgraphs S with occurrence patterns v
(i)
index of S for all i ∈

{1, . . . , |G|}
1: function offline selectCORK(S)
2: Generate DFS Codes for the graphs of S
3: Sort S lexicographically in ascending order
4: N = integer array of size |S| . map siblings
5: Fill N s.t. N [i] is the position of the next element in N of which S[i]

is not a prefix
6: S† = ∅
7: S = null . next best subgraph
8: i = 0
9: while i < |S| do

10: if q(S† ∪ {S[i]}) > q(S† ∪ {S}) then
11: S = S[i]
12: end if
13: if MAXCORK(S†,S[i]) ≤ q(S† ∪ {S}) then
14: i = N [i] . prune the children of S[i]
15: else
16: i++

17: end if
18: end while
19: if q(S† ∪ {S}) > q(S†) then
20: S† = S† ∪ {S}
21: goto 7 . next DFS Code traversal
22: end if
23: return S†
24: end function

Output: Set of discriminative subgraphs S†.

subgraph index > i which does not have the DFS Code of S[i] as a prefix (step
5). If S is the result of a gSpan run, N simply points from any DFS Code to
the next DFS Code with a lower or equal number of edges. For treating other
enumerations, an actual prefix test may become necessary. We now know that
all elements of S from i+ 1 to N [i] are children of S[i] in the DFS Search Tree
traversal, and thus supergraphs of S[i]. While now traversing S, looking for
the next best subgraph according to CORK, in step 14 we skip those graphs
if they can be pruned according to the CORK Upper Bound (2.18).

Using pre-mined subgraphs instead of applying the nested approach of Al-
gorithm 2 can be a strong runtime advantage over gSpanCORK if
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1. the number of frequent subgraphs is relatively low, since then the com-
plete enumeration can be faster than repeated enumerations of bounded
DFS code trees,

2. or if the frequent subgraphs are especially large, thus they repeatedly
slow down the DFS code minimality test.

2.3 Related Work

In this work, we combine two components to achieve our goal of efficient fea-
ture selection among frequent subgraphs with quality guarantees: i) frequent
subgraph mining and ii) a submodular quality function. We review related
work on both of these components in the following.

2.3.1 Discriminative Subgraph Mining

Discriminative frequent subgraph mining has evolved into a major direction
in graph mining research over recent years. We here summarize prominent
contributions to this branch of graph mining.

LeapSearch [176] speeds up subgraph mining by heuristically exploiting the
fact that structurally similar subgraph patterns tend to have similar frequencies
and statistical significance scores, resulting in orders of magnitude speed-up in
comparison with state-of-the-art methods.

gBoost [101, 132], is a nested boosting approach, which repeatedly mines a
set of frequent subgraphs while optimizing an LPBoost problem. This becomes
feasible by iteratively refining pruning bounds which restrict the search space.
In [131] Saigo et al. propose a faster version of gBoost using partial least
squares regression on frequent subgraphs (gPLS).

The MoSS subgraph mining approach by Borgelt et al. [17] explicitly mines
subgraphs which are frequent in the target class and infrequent in the control
class. In [89] Jin et al. propose COM, a method for discriminative mining
frequent subgraphs based on co-occurrence patterns. Using only one subgraph
mining cycle, they iteratively grow a set of rules from the subgraphs mined
so far, which is also designed for identifying a target class. Comparatively to
MoSS they also use a minimum support threshold for rules involving the target
class and a maximum support threshold for rules with patterns matching the
control class.

An excellent wrapper approach to the problem of discriminate frequent
subgraph mining was published by Koji Tsuda [154]. He uses the LASSO
algorithm for mining salient features while exploiting pruning criteria on the
used search path. Our approach differs from Tsuda’s in two ways: Our feature
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selection method is a filter method and hence independent from the choice of
the classifier and we can provide optimality guarantees for our solution.

Another class of discriminative pattern mining approaches for graph mining
was proposed by [186] and [57] who use a decision-tree-like classifier. For a
given dataset, [57] iteratively mine for the most meaningful feature according
to the information gain, and split this dataset into two separate problems.
They proceed until the subproblems are solved or are of a smaller size than a
given threshold.

2.3.2 Related Work on Correspondences

While we here present the first integration of a submodular quality function
into the frequent subgraph mining process, there is related work on the quality
function we employ. Correspondences were referred to as inconsistencies in
Dash et al. [38] and used to define another, non-submodular quality criterion.
In [19], Boros et al. derived CORK from families of Hamming distance measures
as

θ(U) =
∑

v(i)∈A, v(j)∈B

{
1 if ∃ d ∈ U : v

(i)
d 6= v

(j)
d

0 else
(2.24)

They recognized its beneficial greedy selection properties and evaluated other,
more involved submodular set functions on small datasets with at most 125
features. We examined whether any of these other submodular set functions
could be integrated into gSpan for efficient subgraph mining. However, it
turned out that only CORK can be represented in terms of equivalence classes
which allows for its efficient computation.

2.4 Experimental Evaluation

In this section, we conduct experiments to examine the effectiveness and ef-
ficiency of CORK in finding discriminative frequent subgraphs. After intro-
ducing the used graph datasets we will compare CORK to a number of other
filter approaches. We first use the number of features selected by CORK as
parametrization for all filters and later analyze how the competitors perform for
a larger variety of selected features. We continue with a runtime analysis of the
nested algorithm gSpanCORK, followed by an improvement recommendation
involving an additional threshold. We conclude the experimental section with
a comparison to some of the wrapper approaches introduced in Section 2.3.1.
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Table 2.1: Topologies of used graph sets; if available with their PubChem ID.

|G|: size of the dataset (also called n)
|V (G)|: average number of vertices per graph
|E(G)|: average number of edges per graph
|LV |: number of vertex labels
|LE|: number of edge labels
K: number of classes

Dataset G PubChem |G| |V (G)| |E(G)| |LV | |LE| K

NCI1 NCI-H23 4 117 29.8 32.3 43 3 2
NCI33 UACC257 3 298 30.1 32.6 39 3 2
NCI41 PC-3 3 108 30.2 32.8 28 3 2
NCI47 SF-295 4 068 29.8 32.4 44 3 2
NCI81 SW-620 4 812 29.1 31.6 44 3 2
NCI109 OVCAR-8 4 149 29.5 32.1 44 3 2
NCI145 SN12C 3 911 29.6 32.1 37 3 2
NCI330 P388 in CD2F1 4 608 24.9 26.6 47 3 2

DD 1 178 284.3 715.7 82 1 2

DD6C 664 357.9 909.7 63 1 6

AIDS 5 621 27.6 29.7 44 4 3

2.4.1 Datasets

To evaluate our algorithm, we employed the 11 real-world datasets summarized
in Table 2.1:2

• Anti-cancer screen datasets (NCI): we use 8 datasets collected from the
PubChem website as in [159]. They are selected from the bioassay records
for cancer cell lines. Each of the anti-cancer screens forms a classification
problem, where the class labels on these datasets are either active or in-
active in a screen for anti-cancer activity. The active class is extremely
rare compared to the inactive class. For a detailed description, please re-
fer to [159] and the website, http://pubchem.ncbi.nlm.nih.gov. Each
dataset can be retrieved by submitting queries in the above website.

In order to have a fair comparison on those unbalanced datasets, each
dataset has been re-sampled by forming 5 data subsets with balanced
classes, where excessive instances from the larger class have been re-
moved.

2All datasets (overall size 23.4 MB) are available at http://www.dbs.ifi.lmu.de/

~thoma/pub/sam2010/data.zip .

http://pubchem.ncbi.nlm.nih.gov
http://www.dbs.ifi.lmu.de/~thoma/pub/sam2010/data.zip
http://www.dbs.ifi.lmu.de/~thoma/pub/sam2010/data.zip
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• Dobson and Doig (DD) [47] molecule data set: it consists of 1 178 pro-
teins, which can again be divided up into two classes: 691 enzymes and
487 non-enzymes. The vertices of an extracted graph represent the Cα

atoms of the amino acids of the corresponding protein. Together with all
distinct special conformations, they sum up to 82 vertex labels and are
connected if they are at least within 6 Å of each other in the 3D protein
structure. In order to retrieve edge labels, discretizing those distances
would be possible, but prone to arbitrary thresholding. Consequently,
edge labels are omitted. Even in this compacted form, with an average
size of 285 vertices and 716 edges, these proteins are larger and more
densely connected than the molecules from the NCI screening.

• EC-number groups for DD (DD6C): We furthermore use the DD dataset
for differentiating the examples of the enzymes class into their EC num-
bers [5], a hierarchical categorization system for enzymes. We distinguish
between the 6 basic classes, thus transferring the dataset DD into a new
dataset DD6C consisting of 664 enzymes that could be mapped to an
EC number. Among the remaining enzymes 25 could not be mapped
and 2 caused duplicate matches and were thus excluded from DD6C.
The topology of this new dataset reveals that the non-enzymes in the
original DD dataset appear to be smaller on average than the enzymes
which also appear in the DD6C dataset. We thus consider the DD6C
problem as harder than the DD problem, not only because of the ad-
ditional classes, but also because of less pronounced variations between
the classes. The class distribution is summarized in Table 2.2.

• AIDS antiviral screen data (AIDS): it contains the activity test informa-
tion of 43 850 chemical compounds. Each chemical compound is labeled
as either active (CA), moderately active (CM) or inactive (CI) with re-
spect to the HIV virus. Among these compounds, 423 belong to CA,
1 081 are of CM, and the rest is in Class CI. This dataset is publicly
available on the website of the Developmental Therapeutics Program
(http://dtp.nci.nih.gov/docs/aids/aids_data.html). As with the
NCI datasets, we have transformed this data into a slightly more bal-
anced form of 10 splits, combining the active (CA) and moderately active
(CM) compounds with samples of the inactive compounds (CI). The av-
erage number of compounds per split is shown in Table 2.1.

In the experiments on these datasets, our CORK procedure selected be-
tween 11 and 66 subgraphs of sizes varying between 2 and 12 vertices (=atoms
or amino acids), approximately 5% of which contain cycles. This means that
subgraph mining procedures restricted to sub-classes of graphs like trees [95]

http://dtp.nci.nih.gov/docs/aids/aids_data.html
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Table 2.2: DD6C class distribution: Number of enzymes of the DD dataset by
EC number.

EC Name Count

1 Oxidoreductases 145
2 Transferases 175
3 Hydrolases 214
4 Lyases 66
5 Isomerases 37
6 Ligases 27

or graphs of restricted size [169, 124, 159, 140], which have been developed
for less complex outputs and faster runtimes, would not enable us to produce
results similar to those of gSpan, the graph mining approach we use.

2.4.2 Comparison to Filter Approaches

CORK is a filter method. Hence in the first experiment, we assessed whether
CORK selects subgraphs that generalise well on classification benchmarks,
comparing it to state-of-the-art filter methods for subgraph selection.

We use 10-fold cross-validation for classification. Each dataset is parti-
tioned into ten parts evenly. Each time, one part is used for testing and the
other nine are combined for frequent subgraph mining, feature selection and
model learning. In our current implementation, we use LIBSVM [26] to train
a C-SVM classifier based on the selected features. C is optimised within a
range of seven values {10−6, 10−4, 10−2, 1, 102, 104, 106} / (size of the dataset)
by cross-validation on the training dataset only. We employ a linear kernel on
the selected graph features, and normalise the resulting kernel matrix KM via

KMnorm(a, b) = KM(a,b)√
KM(a,a) KM(b,b)

. We repeat the whole experiment 10 times

and we report average results from these 10 runs.
We compare CORK to four state-of-the-art filter methods. Three of them

are rankers using Pearson’s Correlation Coefficient, the Delta Criterion which
is closely related to MoSS [17] and Information Gain as a ranking criterion,
and the fourth comparison partner is the Sequential Cover method [45].

2.4.2.1 Pearson’s Correlation

Pearson’s Correlation Coefficient (PC) is commonly used in microarray data
analysis [158, 51], where discriminative genes for phenotype prediction need to
be selected from thousands of uninformative ones. In order to deal with the
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vast amount of available features, the induced quality criterion is calculated
for each feature independently and a pre-defined number of the top-scoring
features are selected. The selection criterion is the squared correlation between
the occurrence pattern v

(i)
j of feature index j and the class label pattern y(i) ∈

{1, . . . , K}. It computes as

qPC(j) =

∑n
i=1(v

(i)
j − v̄j)(y(i) − ȳ)√∑n

i=1(v
(i)
j − v̄j)2

∑n
i=1(y

(i) − ȳ)2
, (2.25)

where v̄j = 1
n

∑n
i=1 v

(i)
j and ȳ = 1

n

∑n
i=1 y

(i).

2.4.2.2 Delta Criterion

The difference among subgraph frequencies in different classes is another pop-
ular feature selection criterion. For instance, the MoSS mining approach by
Borgelt et al. [17] is designed for pharmacological screenings which specifi-
cally aim for characterizing the positive class. Thus, the idea is to accept
only subgraphs which are frequent in the positive group, and infrequent in the
complement. From this, we derive the following delta criterion as

qdelta(S) = max (AS1 −BS1 ,BS1 −AS1) , (2.26)

which can be used as a ranker criterion, in a similar way as PC. We extend it
to multi-class by taking the difference between the number of hits in the class
with the maximum frequency and the remaining average hit count per class:

qdelta MC(S) = max
i∈{1,...,K}

(
Ki,S1 −

1

K − 1

K∑
j=1,j 6=i

Kj,S1

)
(2.27)

2.4.2.3 Information Gain

As a final ranking method, we compare CORK to the Information Gain (IG),
an entropy-based measure, which is frequently used in feature selection [180,
126]:

qIG(S) =
∑
i∈{0,1}

K∑
j=1

p(S = i, C = Kj) log2

p(S = i, C = Kj)

p(S = i) · p(C = Kj)
, (2.28)

where C is the class variable of the tested objects.
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2.4.2.4 Sequential Cover

Algorithm 4 outlines the sequential cover method (SC). Frequent graphs are
first ranked according to their relevance measure such as information gain,
Fisher score, or confidence. In this experiment, we use confidence as the rele-
vance measure:

qconf(S) = max
i∈{1,...,K}

Ki,S1∑K
j=1 Kj,S1

(2.29)

If a top-ranked frequent subgraph covers some of the uncovered training in-
stances, it will be accepted and removed from the feature set S. The algorithm
terminates if either all instances are covered or S becomes empty. SC can be
executed multiple times to make several covers on the instances.

Algorithm 4 Sequential Cover (SC)

Input: Set of frequent subgraphs S, training dataset G
1: function SC(S,G)
2: Sort subgraphs in S in decreasing order of the chosen relevance measure
3: while G 6= ∅ ∧ S 6= ∅ do
4: S = first subgraph of S
5: S = S \{S}
6: if S covers at least one graph in G then
7: S† = S† ∪ {S}
8: end if
9: for all graph G ∈ G covered by S do

10: G = G \{G}
11: end for
12: end while
13: return S†

14: end function

Output: Selected set of subgraphs S†

2.4.2.5 Filter Results

The results of the filter experiments are displayed in Table 2.3. Note that
for better comparability, the number of selected features for all experiments
was determined via CORK. Potential disadvantages for the other selection
approaches are addressed in the next section. Table 2.3(a) shows the number
of selected subgraphs

∣∣S†∣∣ among frequent subgraphs of σ = 10 %, together
with the average area under the receiver operating characteristic (ROC) curve
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(AUC) and its standard deviation (Std) over 100 conducted experiments. We
observe that in all but one dataset, CORK detects the best feature combination
for the two-class classification problems at hand.

Table 2.3(b) compares the filter selectors on the two multi-class datasets
DD6C and AIDS by their average pair-wise AUC estimate

ÂUCpw(G,U) =
K∑
a=1

∣∣{dUa,b(G) = a | G ∈ Ka, b ∈ {1, . . . , K} \ a
}∣∣

(K − 1) · |G|
(2.30)

as the fraction of pairwise inter-class decisions in the dataset G where the
decision function dUa,b of the SVM deciding between the classes a and b votes
for the correct class based on the selected subgraphs U . For further orientation,
we provide the classification accuracy. As can be seen, CORK performs best
for both datasets, although there are no significant differences in accuracy
compared to other methods.

It is not surprising that in the vast space of interdependent features spanned
by frequent subgraphs, feature combinations are more valuable than the simple
ranking approach we used with Pearson’s Correlation, the Delta method and
the Information Gain. The Sequential Cover method takes into account that
all instances should be covered by the selected set of features, yet, can never
compete with CORK. We have been rather surprised by the mightiness of the
Delta method since it actually scored better than Pearson Correlation.

However, the complexity of the graph classification problem obviously re-
quires the consideration of the various features’ interdependence. CORK re-
spects this interdependence by iteratively picking the subgraph feature which
optimally complements the set of features selected so far (in terms of resolving
correspondences).

2.4.3 Effect of Target Sizes

The number of selected features
∣∣S†∣∣ is an important parameter in feature

selection. CORK suggests an automatic bound for the number of selected fea-
tures, however, the selection procedure can be terminated earlier or restarted
for determining fewer or more features. In order to demonstrate the fairness
of our evaluation, Figure 2.3 displays screenings over the number of selected
features for the tested filter approaches on the two-class problem NCI330 and
the multi-class problem DD6C. We see that the number of subgraphs selected
by CORK does not represent the optimal number of features for any of the
criteria or datasets. However, in all cases, the larger the feature sets get, the
smaller the increases in accuracy by adding more features. Moreover, CORK
returns the best results for all tested feature sizes above the recommended
number of features.
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Figure 2.3: Screening of the feature quality over the number of selected fea-
tures

∣∣S†∣∣ for CORK selection, Pearson’s Correlation (PC), the Delta method,
Information Gain (IG), and Sequential Cover Selection (SC). The vertical line
marks the number of features originally chosen by CORK.

2.4.4 Experimental Runtime Analysis

In our third experiment, we evaluated the runtime performance of nested fea-
ture selection, i.e. features are acquired during mining, as opposed to un-nested
feature selection which takes place after mining. We run nested CORK on two
complete datasets (the DD dataset and the NCI1 screening in Figure 2.4) and
record the number of correspondences and the number of subgraphs examined
per iteration. Since previous mining experiments have been handled on train-
ing subsets, the number of iterations is slightly elevated (16 > 15 and 64 > 57)
as opposed to Table 2.3. All experiments were run on a machine with two Intel
Xeon 5160 3.00 GHz Dual-Core processors and 4 GB of main memory.

In the DD experiment (Figures 2.4(a) and 2.4(c)), we observe that in the be-
ginning, we achieve a steep decrease in the number of correspondences, whilst
enumerating a comparable number of subgraphs for each of the first 10 iter-
ations and thus maintain an almost constant runtime per iteration. In the
end, CORK prunes a larger percentage of the enumerated subgraphs and the
iterations speed up. The enumeration stops when all instances from the two
classes are separated.

This attractive behaviour can be observed if there exists a (small) subset
of subgraph features that eliminates all correspondences. In the other, insep-
arable case, CORK alone is not able to fully separate the two classes. This
does not present a problem in un-nested feature selection, as the procedure
simply ends when no new useful features can be identified. However, in the
gSpan-nested setting, it may happen, that the complete DFS search tree has
to be searched in order to discover that there is no better subgraph. This
is illustrated in Figures 2.4(b) and 2.4(d), where the search space cannot be
completely resolved, with 33 correspondences remaining.
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(b) NCI1 search space

2 4 6 8 10 12 14

Iterations

0
20

40
60

T
im

e 
[s

ec
]

0
20

40
60

80
10

0

C
or

re
sp

on
de

nc
e 

de
cr

ea
se

 [
%

]

runtime
relative correspondence reduction

(c) DD runtimes
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(d) NCI1 runtimes

Figure 2.4: Nested feature mining experiments on the complete datasets DD
and NCI1 (σ is set to 10%): each iteration corresponds to one selected fea-
ture. Upper plots: number of subgraphs (in 103) enumerated for the se-
lection of one feature (dotted-grey, left scale) and number of correspondences
(in 103) present at each iteration (black, right scale). Lower plots: runtime
per iteration (dashed-grey, left scale) percentaged decrease in the number of
correspondences due to the current feature (in black, right scale).

A way out of this problem is to allow CORK to terminate even if not all
correspondences have been resolved, i.e. to introduce a tolerance threshold on
the number of remaining correspondences.

2.4.5 Impact of a Tolerance Threshold for Correspon-
dences

In our fourth experiment, we assessed the impact of employing a tolerance
threshold t that leads to the termination of CORK, i.e. CORK feature selection
ends once the number of correspondences falls below t. As demonstrated in
Section 2.4.4, in later iterations on inseparable datasets, expensive subgraph
mining results in relatively few resolved correspondences. In order to improve
the effectiveness of CORK and to prevent over-fitting by meaningless features,
we define a tolerance threshold t on the number of correspondences that lead
to the termination of the nested mining procedure.

We used the same setting as for the validation runs in Section 2.4.2. For
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Table 2.4: Nested CORK versus the two variants of un-nested CORK feature
selection (“näıve”: no pruning structure, “offline”: the pruning approach of
Algorithm 3) with varying tolerance thresholds t. The un-nested runtimes are
omitting the time needed for the initial enumeration of frequent subgraphs (20
minutes for DD, one minute for NCI33).

(a) DD dataset

DD Screening time [min, s]

t
∣∣S†∣∣ AUC Std nested näıve offline

10000 5 0.745 0.036 3’27” 9’28” 23”
1000 8 0.761 0.039 6’01” 15’23” 39”
100 11 0.772 0.039 8’57” 18’41” 56”
10 13 0.776 0.037 10’09” 19’20” 1’01”
0 15 0.778 0.037 10’36” 19’28” 1’01”

(b) NCI33 dataset

NCI33 Screening time [min, s]

t
∣∣S†∣∣ AUC Std nested näıve offline

10000 10 0.679 0.032 1’21” 1’27” 3”
1000 18 0.707 0.031 3’43” 2’10” 7”
100 31 0.738 0.028 10’06” 2’34” 16”
10 54 0.765 0.023 21’19” 2’48” 30”
0 54 0.765 0.023 23’33” 2’48” 30”

showing the effect of the tolerance threshold, we also compare the runtimes
of the nested selection approach gSpanCORK to the un-nested variant off-
line selectCORK and the näıve approach of applying CORK as a common
forward feature selection criterion on a pre-mined subgraph set without addi-
tional pruning. All CORK selection runs are stopped as soon as they result in
less than t correspondences. The results are displayed in Table 2.4.

For the DD dataset (2.4(a)) this summary shows a slight advantage in
accuracy of the lower tolerance thresholds 100 and 10, however, the additional
runtime does not seem to be worth such an improvement over the quicker
alternative of using a threshold of 1000 correspondences. The by far lower
runtimes of the nested and offline experiments in comparison to the näıve
approach demonstrate the pruning power of MAXCORK over the conventional
un-nested variants.

Note that in Table 2.4(a) the runtimes of the nested approach are not only
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better than those of näıve forward selection, but they are also competitive
to the quick offline variant, since the näıve and offline approaches omit the
time necessary to first enumerate the set of frequent subgraphs. When thus
counting the enumeration times, gSpanCORK is the fastest selection approach.

This effect is due to the large number of 110 131 frequent subgraphs for
the DD dataset. For datasets which contain fewer frequent subgraphs, like the
2 893 subgraphs for the NCI33 molecule collection in Table 2.4(b), the offline
approach and even näıve forward selection can be faster. We also point out the
difference in the AUC value between the Tables 2.4(b) and 2.3(a): The CORK
evaluation of Table 2.3(a) was achieved by testing offline selectCORK on a
pre-mined set of frequent subgraphs for the complete dataset. Of course, we
separated the training instances from the test instances in the selection and
training phase, however, the frequency bound for the mining step can cause
variation in the number of frequent subgraphs between the complete and the
training graphs only (gSpanCORK) and can thus influence the classification
performance.

In our experiments, the offline approach has always been faster than the
näıve variant. We thus conclude that this algorithm is a useful example of
how the gSpan pruning structure can be exploited even after mining has been
completed.

2.4.6 Comparison to Wrapper Approaches

The last experiment compares CORK to state-of-the-art wrapper approaches.
These wrapper approaches allegedly outperform filter-based approaches in
graph mining [154], hence we wanted to get a feeling for the difference in
performance. We used the same experimental setup as in Section 2.4.2 and
compare CORK to LAR-LASSO and the decision-tree based classifiers of [57]
(Table 2.5).

In [57], a query is classified by either directly using the feature tree formed
by the subgraph mining routine (MbT), or by building a decision tree on the
selected features (DT MbT). We compare the published experiments on the
NCI screenings to ours in Table 2.5. Note, however, that the experiments
of [57] have been conducted on the complete graph sets, while ours are resulting
from balanced subsets of the whole dataset. CORK usually scores better than
the model-based search tree approaches MbT and DT MbT, even though these
employ by far more subgraphs than CORK. Let us note, that on average those
two feature selectors perform slightly better than the simple ranker approach
also employing Information Gain (cf. Tables 2.3(a) and 2.5). Information Gain
can be submodular, given certain pre-conditions [96]. This, however, is not
the case here, since subgraphs are neither independent nor do they represent a
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Table 2.5: Classification AUC values (with standard deviation (Std)) on the
8 NCI graph datasets and of the DD graphs (CORK = Correspondence-based
Quality Criterion, MbT and DT MbT = Model based search tree approaches –
results taken from [57], LAR-SVM = features selected (the same number

∣∣S†∣∣
as CORK) by LAR-LASSO evaluated via SVM). The frequency threshold σ is
set to 10%.

Filter Wrapper

CORK MbT AUC LAR-SVM

Dataset
∣∣S†∣∣ AUC Std

∣∣S†∣∣ MbT MbT DT MbT AUC Std

NCI1 57 0.769 0.023 77 0.685 0.74 0.805 0.021
NCI33 53 0.759 0.028 344 0.743 0.745 0.792 0.024
NCI41 49 0.763 0.027 376 0.765 0.763 0.802 0.025
NCI47 56 0.779 0.024 587 0.708 0.727 0.809 0.023
NCI81 64 0.770 0.022 685 0.696 0.723 0.792 0.021
NCI109 56 0.774 0.023 605 0.699 0.746 0.808 0.022
NCI145 55 0.773 0.029 491 0.747 0.752 0.807 0.022
NCI330 66 0.769 0.023 n.a. 0.797 0.020
DD 15 0.778 0.038 n.a. 0.789 0.039

subset of features mined previously. Thus, our less complex selection criterion
still leads to higher quality results.

CORK cannot yet fully compete with the LAR-LASSO wrapper approach
by [154]. The nested variant gSpanCORK, however, seems to be more successful
in matters of runtime on the Dobson & Doig problem, consisting of significantly
larger graphs (see Table 2.1). This observation suggests that CORK pruning
may be a useful alternative for datasets of large graphs. In addition, the
selection runtimes of offline selectCORK (between 30 and 60 seconds) are
constantly below the runtime of LAR-LASSO (1 to 15 minutes). Furthermore,
CORK as a filter method is useful when searching for features irrespective of
a specific classifier.

2.5 Summary and Outlook

In this chapter we have proposed a supervised feature selection approach for
multi-class classification problems using frequent subgraphs. Since we use a
submodular selection criterion, we can provide optimality guarantees for the
set of selected features obtained by greedy forward selection. Additionally,
we have explained how to integrate this criterion directly into the subgraph
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mining process by exploiting an upper bound for pattern-growth extension
miners like gSpan. Moreover, we show how to use this bound on a set of
pre-mined subgraphs, allowing for more flexibility in the choice of the type of
subgraph used.

Similar to information theoretic criteria used for decision trees, CORK
measures the quality of a set of features by means of its ability to separate
target classes. In our experiments on classification benchmark datasets, the
features selected by CORK reach the best accuracies among the filter meth-
ods. Among the wrapper methods, CORK outperforms MbT and DT MbT
in all but one cases. The LAR-LASSO method still achieves a more accurate
classification, however, CORK has runtime advantages on pre-mined patterns
and large subgraphs.

A strategy to further improve the runtime of our approach is to store the
DFS search tree for a set of previously mined frequent subgraphs [154]. When
restricting the mining procedure to a fixed minimum support value, this entails
much shorter mining times, since gSpan effectively only has to be called once
per feature selection step and not several times. Still, the feasibility of this
approach obviously depends on the size of the DFS tree that has to be stored.

The goal of future research is to find optimality guarantees for the hori-
zontal leap search strategy for pattern mining proposed in [176], and to speed
up CORK by employing this search strategy while maintaining its attractive
theoretical properties. Another exciting question is whether our results on the
optimality of supervised feature selection can be transferred to techniques for
unsupervised feature selection on frequent subgraphs [21] (S. Nijssen, personal
communication (2008, 2009)).

Finally, with regard to the overall scope of this thesis, we would like to
explore imaging applications of the graph theoretic insights gained in this
work.
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Chapter 3

Similarity Estimation using
Bayes Ensembles

Similarity search and data mining often rely on distance or similarity functions.
Queries using these functions should detect instances which are considered to
be similar on an intuitive level. Mostly, the underlying object representations,
e.g. image features or laboratory measurements, do not reflect this intuition
when being queried with standard distance measures like Lp norms. This
problem is also called the semantic gap. To bridge this gap between feature
representation and object similarity, the distance function has to be adjusted
to the current application context or the current user.

In [54], we have therefore proposed a probabilistic framework for estima-
ting a similarity value based on a Bayesian setting. Our framework provides
a train-able distance function for real-valued feature vectors. This function
consists in an ensemble of weak Bayesian learners, each corresponding to a di-
mension of an implicit feature space. In order to find this implicit feature space
with independent dimensions of maximum meaning for the current context, we
apply a space transformation based on eigenvalue decomposition.

In our experiments, we demonstrate that our new method shows promising
results compared to related Mahalanobis learners on several test datasets w.r.t.
nearest-neighbor classification and precision-recall-graphs.

3.1 Introduction

Learning similarity functions is an important task for image retrieval and data
mining in general. In data mining, distance measures can be used in various
algorithms for classification and clustering. In order to improve classification,
learned distance measures can be plugged into any instance-based learner like
a k-NN (k-nearest neighbor) classifiers. Though clustering is basically an un-
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supervised problem, learning a similarity function on a small set of manually
annotated objects is often sufficent to guide clustering algorithms into grouping
semantically similar objects.

Adaptive similarity measures provide a powerful tool to bridge the semantic
gap between object representations and user expectations. In most settings,
the similarity between two objects cannot be described by a standardized dis-
tance measure fitting all applications. Instead, it is often a matter of appli-
cation context and personal preference. Thus, two objects might be similar
in one context while they are not in another. For example, assume an image
collection of various general images of persons, vehicles, animals, and build-
ings. In this context, a picture showing a red Ferrari will be considered as
quite similar to a picture of a red Volkswagen. Now, take the same images and
put them into a different context like a catalogue of rental cars. In this more
specialized context, both pictures will most likely be considered as dissimilar.
An important assumption in this work is that there is no exact value specifying
object similarity. Instead, we consider object similarity as the probability that
a user would label the objects as similar.

Learning a distance or similarity function requires a general framework for
comparing objects. In most established approaches to similarity learning, this
framework is provided by using Mahalanobis distances or quadratic forms. In
general, a Mahalanobis distance can be considered to be the Euclidean distance
in a linear transformation of the original feature space. Thus, Mahalanobis dis-
tances are metric distance functions guaranteeing reflexivity, symmetry and the
triangular inequality. Furthermore, the computed dissimilarity of two objects
might be increased infinitely. We are going to argue that these mathematical
characteristics are unnecessarily strict and sometimes even against intuition
when trying to construct a similarity measure.

As an example, it is known from cognition science that humans do not
distinguish dissimilar objects to an infinite degree. A human would not care
whether object o1 is more dissimilar to the query object q than object o2 after
having decided that both objects o1, o2 have nothing in common with the query
object q. On the other hand, in most feature transformations, it is possible that
two different objects are mapped to the same feature representation. Thus,
even if we can guarantee that two objects having a zero distance are represented
by the same feature description, we have no guarantee that the corresponding
objects should be considered to be maximally similar as well.

Hence, inspired by an approach of [97], we describe similarity in a different
way by considering it as the probability that an object o is relevant for a
similarity query object q. The core idea of our similarity estimation approach
is to consider each feature as evidence for similarity or dissimilarity. Thus, we
can express the implication of a certain feature dimension i to the similarity
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of objects o and q as a probability p(similar(o, q) | (o[i]− q[i])). To calculate
this probability, we employ a simple one-dimensional Bayes estimate (BE).

However, in order to build a statement comprising all available informa-
tion about object similarity, we do not build the joint probability over all
features. We argue that in most applications, considering a single feature is
not sufficient to decide either similarity or dissimilarity. Thus, to derive a
joined estimation considering all available features, we average the probabili-
ties derived from each BE. Our new estimate is basically an ensemble of weak
Bayesian learners. Therefore, we call our new dissimilarity function Bayes En-
semble Distance (BED). A major benefit of BED is that dissimilarity is very
insensitive to outlier values in a single dimension which is a drawback of clas-
sical Lp-norm based measures. The major factors to successfully employing an
ensemble of learners are the quality and the independence of the underlying
weak classifiers. Therefore, we will introduce a new optimization problem that
derives a linear transformation of the feature space, allowing the construction
of more descriptive BEs. To conclude, the following sections will provide:

1. A discussion about Lp-norms and Mahalanobis distances for modelling
object similarity.

2. A new framework for similarity estimation that is built on an ensemble
of Bayes learners.

3. An optimization method for generating a linear transformation of the
feature space that is aimed at deriving independent features which are
suitable for training high quality weak classifiers.

The rest of this chapter is organized as follows. In Section 3.2, we discuss Lp
norms and Mahalanobis distances for modeling object similarity. Our frame-
work for modeling object similarity is described in Section 3.3. In Section 3.4,
we introduce an optimization problem to derive an affine transformation that
allows the training of more accurate Bayes estimates. Section 3.5 briefly re-
views related similarity learners. Afterwards, Section 3.6 illustrates the results
of our experimental evaluation comparing our new method with related metric
learners on several UCI classification datasets and two image retrieval datasets.
Finally, we will close Section 3.7 with a summary and some directions for future
work.

3.2 Lp-norms and Problem Definition

The task of similarity learning is to find a function, mapping a pair of objects
o1, o2 to a similarity value sim(o1, o2) describing how strongly the first object
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resembles the other one in the best possible way. To train this function, it
is necessary to have training examples representing the notion of similarity
which underlies the given application. Let us note that there might be various
notions of similarity on the same dataset depending on the application context
or even the current user. Thus, a similarity learner should be as flexible as
possible to adjust to any given example set.

Basically, there are two categories of examples used for learning similarity
functions. The first type is providing class labels to a training set indicating
that objects with equal labels are similar and objects with different labels are
considered as dissimilar. Most machine learning approaches in metric learn-
ing use class labels because most of the proposed methods in this area aim
at improving the accuracy of instance-based learners. One important advan-
tage of this type of labeling is that there is a large variety of classification
datasets available. Additionally, having n labeled objects results in n·(n−1)

2

labeled object pairs. Finally, in classification datasets, the labeling is usually
quite consistent because the classes are mostly reproducible by several persons.

As a drawback of this approach, it is required to find a universal set of
classes before learning a similarity function. Thus, this type of training exam-
ples is difficult to use when learning similarity measures for similarity search.
The second type of user feedback is direct relevance feedback providing a sim-
ilarity value for a set of object pairs. Using relevance feedback allows to deter-
mine a degree of similarity for each pair and thus, the similarity information
is not necessarily binary. Additionally, relevance feedback does not require to
define explicitly known classes and is thus more attractive for similarity search
systems.

A drawback of relevance feedback is that labelling a sufficiently large set
of object pairs with similarity scores is usually much more strenuous than
labelling objects with classes. Furthermore, it is often much more difficult to
generate a consistent labelling because there rarely are well-defined criteria for
object similarity.

After describing the labels of our examples, we will now formalize our object
descriptions, i.e. the feature vectors. A feature is a type of observation about
an object and the corresponding feature value describes how an object behaves
w.r.t. this type of observation. Mathematically, we will treat a feature F as a
numerical value xF ∈ R. Considering a predefined number of features d leads
to a feature vector x ∈ Rd. Formally, a training example in our setting is a
triple (x1, x2, y) where x1, x2 ∈ Rd are two d-dimensional feature vectors and
y ∈ [0, l] is a similarity score, i.e. y = l represents maximum similarity whereas
y = 0 describes maximum dissimilarity. In case of class labels, we assign 1 to
similar and 0 to dissimilar objects. The most common approach for describing
object similarity is to sum up the differences of feature values which is the
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basis of Lp-norm-based similarity. Given two feature vectors x1, x2 ∈ Rd, the
Lp-norms are defined as:

Lp(x1, x2) =

(
d∑
i=1

|x1,i − x2,i|p
) 1

p

(3.1)

For p = 2, the Lp-norm is called Euclidean distance which is the most
common distance metric in similarity search and distance-based data mining.
Semantically, we can interpret the Lp-norm as an evidence framework. Each
feature represents an observation about an object and the difference of feature
values determines how similar two objects behave with respect to this obser-
vation. Since a single observation is usually not enough to decide similarity,
all observations are combined. By summing up over the differences for each
observation, the Lp-norm describes the degree of dissimilarity of two objects.
The parameter p determines the influence of large difference values in some
dimensions to the complete distance. For p→∞, the object distance is com-
pletely determined by the largest object difference in any dimension. Let us
note that the exponent 1

p
is used for normalization reasons only. Therefore, it

is not required in algorithms that require a similarity ranking.

Given a specialized application context, the standard Lp-norms have several
drawbacks:

1. Correlated features are based on the same characteristics of an object
and thus, they implicitly increase the impact of this characteristics when
calculating the dissimilarity.

2. Not each observation is equally important when deciding about object
similarity. When, for instance, deciding between large and small people,
the height parameter will be more significant than the weight parameter.

3. In order to have a large distance w.r.t. an Lp-norm, it is sufficient to have
a considerably large difference in any single feature. Correspondingly, a
small dissimilarity requires that both vectors display small difference
values in each feature. On the other hand, to decide dissimilarity, any
single feature is sufficient. This effect is a serious drawback because
object similarity might not necessarily always depend on the same set of
features. Having an extraordinarily large difference w.r.t. a single rather
unimportant feature could thus prevent two otherwise identical objects
from being found in a similarity query. Thus, we argue that dissimilarity
as well as similarity should be decided based on a combination of several
features.
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To solve the problems (1) and (2), the Euclidean distance has been extended
to the Mahalanobis distance or quadratic form. The idea of this approach is to
employ an affine transformation of the original feature space which is applied
within the distance measure itself:

DMah(x1, x2) =
(
(x1 − x2)T · A · (x1 − x2)

) 1
2 (3.2)

In order to make DMah a metric, the transformation matrix A ∈ Rd×d has
to be positive definite. In this case, A implies an affine transformation of
the vector space B where the Euclidean distance is equivalent to DMah in the
original space.(

(x1 − x2)TA(x1 − x2)
) 1

2 =
(
(x1 − x2)TBTB(x1 − x2)

) 1
2 (3.3)

=
(
(Bx1 −Bx2)T (Bx1 −Bx2)

) 1
2 (3.4)

When properly derived, this matrix A can achieve that the directions in
the target space are uncorrelated. Additionally, the directions are weighted
by their importance to the given application. There are multiple methods to
learn a proper Mahalanobis distance like Fisherfaces [12], RCA [7], ITML [40]
or LMNN [164] which are described in Section 3.5.

However, the Mahalanobis distance does not adequately solve the third
problem named above because the feature values are only linearly scaled. Thus,
all observed difference values are decreased by the same factor. Therefore, by
preventing a too large impact in some distance calculations, we would generate
too small distance values in others. To conclude, Mahalanobis distances are
still equivalent to an Euclidean distance in a transformed data space and thus,
these methods are no solution to the third problem mentioned above.

3.3 Ensembles of Bayes Estimates

In the following, we formally describe our method. We start with the definition
of Bayes Estimates (BE) and Bayes Ensemble Distance (BED) on the original
feature dimensions. Afterwards, we introduce our solution to the problem of
correlated features and provide a new way to derive an affine transformation
of the feature space that allows the training of a meaningful BED.

3.3.1 Bayes Estimates and Bayes Ensemble Distance

As mentioned above, we want to learn a function having a pair of feature
vectors as input and returning a similarity score as output. Similar to the
Lp-norm, we describe the comparison between two feature vectors x1, x2 ∈
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Rd by their difference vectors (x1 − x2), or (x2 − x1). Thus, our method
assigns a similarity score to each difference vector. Since both difference vectors
should provide the same dissimilarity score, we have to make sure that our
similarity function is symmetric with respect to the direction of the input
difference vector. As mentioned before, our approach treats each dimension
of the input space separately. Thus, we define the Bayes Estimates (BE) for
feature dimension i as a Bayes classifier receiving a difference value x1,i − x2,i
as input.

This classifier distinguishes object comparisons of similar objects (sim)
from comparisons of dissimilar objects (dis). Thus, we learn two distribution
functions over the difference values for similar objects and dissimilar objects.
Additionally, we employ a prior distribution describing whether similarity is
less likely than dissimilarity. As a result, we can calculate the conditional
probability P (dis | x1,i − x2,i) describing the dissimilarity likelihood for two
objects under the condition of the observed difference value in dimension i.
Correspondingly, P (sim | x1,i − x2,i) expresses the likelihood that two objects
are similar and it can be used as a similarity function. Formally, the Bayes
Estimate (BE) for comparing two vectors x1, x2 ∈ Rd w.r.t. dimension i is
defined as:

Definition 17 (Bayes Estimate) Let x1, x2 ∈ Rd be two feature vectors. Let
ps and pd represent a prior distribution describing the general likelihood that
objects are considered to be similar. Then, the Bayes Estimate (BE) for x1
and x2 w.r.t. dimension i is defined as follows:

BEi(x1, x2) =
pd · P ((x1,i − x2,i) | dis)

Ptotal(x1,i, x2,i)
, (3.5)

where Ptotal(x1,i, x2,i) is the sum of the similarity and the dissimilarity proba-
bilities (ps · P ((x1,i − x2,i) | sim) and pd · P ((x1,i − x2,i) | dis)) in the ith di-
mension.

To combine these probabilities, we take the average estimates over all di-
mensions. Thus, we employ an ensemble approach combining the descriptive-
ness of all available features. Let us note that this approach is different from
building the joint probability for class dis like in an ordinary Näıve Bayes
classifier (NB):

NB(x1, x2) =
1

scale
·

d∏
i=1

BEi(x1, x2) (3.6)

The Näıve Bayes approach would imply that in order to be similar, two objects
have to be sufficiently similar in each dimension. Correspondingly, dissimilar-
ity would require a sufficiently large difference value in all dimensions. Thus,
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(a) Conf-hsv (D 20) (b) Conf-hsv (D 11)

Figure 3.1: Difference distributions for similar (orange bars) and dissimilar
(blue, dashed bars) objects in an image retrieval dataset in dimension 20 and
11. The green line corresponds to the second y-axis and it visualizes the Bayes
Estimate (BE) for the given difference.

the joint probability could again be determined by a single dimension. By us-
ing the average, our method offers a more flexible understanding of similarity:
neither a very large difference nor a very small difference in a single dimension
can imply similarity or dissimilarity on its own and hence, the resulting dis-
tance is more stable against outlier dimensions. Formally, we define the Bayes
Ensemble Distance (BED) in the following way:

Definition 18 (Bayes Ensemble Distance) Let x1, x2 ∈ Rd be two feature
vectors. The Bayes Ensemble Distance (BED) for x1 and x2 is defined as
follows:

BED(x1, x2) =
1

d
·

d∑
i=1

BEi(x1, x2) (3.7)

From a data mining point of view, the BED is an ensemble of d weak
Bayesian learners, each deriving a probabilistic statement from the correspond-
ing feature. Each learner distinguishes two classes, i.e. similarity and dissim-
ilarity. Let us note that our method does not directly distinguish degrees of
similarity. Instead, a quantitative view on object similarity is provided by the
average probability that both objects are similar.

An open issue to the use of BED is the type of probability distribution
being used to model the Bayes Estimate. To select a well-suited probability
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density function, we examined several data sets with respect to their difference
vector distribution for similar and dissimilar objects. We built histograms on
the observed difference values in each dimension. Remember that all distribu-
tions have to be symmetric to the origin because of the pairwise appearance
of positive and negative distance values. An example for the histograms de-
rived from two image retrieval datasets is displayed in Figure 3.1 with a badly
separable case in Figure 3.1(a) and a partially separable case in Figure 3.1(a).
For a description of the used dataset, please refer to Section 3.6.2.

In this dataset and many of the others we examined, we observed a normal
distribution for similar objects. Very similar or identical objects will usually
display similar feature values. For the distributions describing dissimilarity, we
sometimes observed distributions that also resemble a normal distribution but
displayed a larger variance. In cases having well separated classes, the dissim-
ilarity distribution is often split into three components, one for large positive,
one for low negative difference values and a bulk distribution centered around
the origin. Thus, the dissimilarity resembled a mixture model having two sym-
metric components of equal weight where the first has a positive mean value
and the second component has a negative mean value. In our experiments,
we employed Gaussians as basis distribution. However, the general method is
applicable for any other type of distribution function, e.g. exponential power
distributions.

3.3.2 Training Bayes Ensemble Distances

Training BEDs consists of determining the distribution parameters for each
dimension, e.g. mean and variance for a Gaussian. Furthermore, it is often
useful to determine prior probabilities for similarity and dissimilarity.

In case that the examples are provided with class labels, it is easy to decide
whether an object comparison is counted for the similar class (sim) or for the
dissimilarity class (dis). If both objects belong to the same class, the observed
difference value contributes to the sim distribution. If both objects belong to
different classes, the observed difference vector contributes to the distribution
describing dis.

For small data sets, it is possible to consider all possible difference vectors
occurring in the training set. However, this approach is not feasible for large
datasets because the number of difference vectors is increasing with the squared
number of training vectors. Thus, it is often advisable to select a subset of
the difference vectors instead of employing all available samples. To find this
subset, random sampling is applicable. In our experiments, we adapt the idea
of target neighbors from [164] and select the difference vectors corresponding to
the k-nearest neighbors of the same class and the k-nearest neighbors belonging
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to any other class for each training object. We employed the Euclidean distance
to determine the target neighbors.

In case of labeled pairs, selecting examples is usually not an option be-
cause each object comparison has to be manually labeled and thus, it is rather
unlikely that there will be too many examples for efficient training. How-
ever, labeling object pairs allows to distinguish several degrees of similarity
y ∈ [0..1], e.g. the label could indicate a similarity of 0.8 or 0.1. To employ
these more detailed labels, we propose to proceed in a similar way as in EM
clustering and let the training example contribute to both distributions. In
order to consider the class labels, we weight the contribution to the similar
distribution by y and the contribution to the dissimilar distribution by 1− y.
This way, undecidable comparisons having a label of 0.5 would equally con-
tribute to both distribution functions, whereas a comparison having a label of
1.0 would exclusively contribute to the similar distribution.

In many applications, using a prior distribution can improve the accuracy
of similarity search and object classification. Especially when using BED for
nearest neighbor classification, we can assume that we know how many objects
belong to the same class and how many objects belong to any other class. In
these cases, we can determine the frequency |ci| of examples for each class
ci ∈ C in the training set and easily derive the prior probability for similarity:

ps =

∑
ci∈C |ci|

2

(
∑

ci∈C |ci|)2
and thus: pd = 1− ps (3.8)

In other words, we know that there are |ci|2 comparisons of similar objects
within each class ci. Dividing the amount of these comparisons by all possible
comparisons computes the relative frequency of ps. Since we only distinguish
two cases, we can calculate pd as 1− ps.

In case of relevance feedback, directly determining the relative portion of
similarity in the training objects is also easily possible. However, depending
on the selection of the object pairs to be labeled it is often very unlikely that
the label distribution is representative for the distribution on the complete
database. Thus, it is often more useful to manually assign a value for the
occurrence of each class.

3.4 Optimizing the Feature Space for Bayes

Estimates

Employing BED on the original dimensions ensures that neither similarity
nor dissimilarity can be decided based on the difference value in a single di-
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Figure 3.2: Idealized distributions of similar (orange) and dissimilar (blue)
objects in a bivariate dataset. Isolines of multivariate Gaussians (left) and
projections onto different hyperplanes (right).

mension. Additionally, the importance of each dimension is indicated by the
distinction of both distribution functions. However, correlated features still
pose a problem for the performance of BED.

First of all, the advantage of using an ensemble of learners strongly de-
pends on their statistical independence. Additionally, it can occur that the
single BEs in the original dimension are not very informative. However, there
often exist projections of in the data space allowing a good separation of the
distribution function. An example is illustrated in Figure 3.2. In the displayed
case, the distributions of similar and dissimilar objects are modeled as mul-
tivariate Gaussians. If we consider the projection of both distributions onto
the x-axis, we cannot decide between the two distributions at all. Projecting
the Gaussians onto the main diagonal enables a clearer separation. In this
example, it can be assumed that the BE on the main diagonal has a much
stronger predictive quality. To conclude, analogously to the Euclidean dis-
tance, BED can be improved by a linear transformation of the input space
which decreases feature dependency and provides features allowing meaningful
similarity estimation.

Formally, we want to find a set of base vectors W = [w1, . . . , wd∗ ] for
transforming each original vector x ∈ Rd into another d∗-dimensional feature
space where each new dimension allows to build a better BE. Since we want
to have independent learners, we additionally require that wi ⊥ wj for i 6= j.

To determine the suitability of a dimension to train a useful BE, we need to
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find a criterion that is independent of the used type of distribution function.
A certain dimension in the feature space is useful in case that the distance
values between similar objects are in average smaller than the distance values
of dissimilar objects. Let us note that the mean value for both distributions
has to be zero regardless of the underlying density function. Since distance
values always occur in pairs of negative and positive values, the mean is always
zero in each dimension. Now, a direction is well-suited if the distance values
being observed for similar objects are grouped closer to the origin than the
values being observed for dissimilar objects. To quantify this intuition, we
calculate the variance of the samples for both distributions sim and dis in
dimension i and build the difference between both values:

qi =
1

n
·

(
n∑

xd∈dis

(
x2d,i − 0

)
−

n∑
xs∈sim

(
x2s,i − 0

))
=

=
1

n
·

(
n∑

xd∈dis

x2d,i −
n∑

xs∈sim

x2s,i

)
(3.9)

If qi is large, the difference values between similar objects are generally
grouped more closely around zero than the difference values between dissimilar
objects in dimension i. If qi converges to zero, dimension i will usually not
allow the training of a useful BE.

To describe the variance along all possible linear projections in the space of
distance values, we can build the covariance matrix for similar and dissimilar
difference vectors. We define Σsim as

(Σsim)i,j =
∑
xs∈sim

(xs,i − 0) · (xs,j − 0) =
∑
xs∈sim

xs,i · xs,j . (3.10)

Σdis is built correspondingly on the difference vectors of dissimilar objects.
Our task is to find a set of orthogonal dimensions for which the difference

between the variance of the dissimilar distribution and the variance of the
similar distribution is as large as possible. Formally, we can define the following
optimization problem:

Maximize L(wi) = wTi Σdiswi − wTi Σsimwi = wTi · (Σdis − Σsim)wi (3.11)

s.t. wi ⊥ wj

The following eigenvalue equation solves this problem:

λw = (Σdis − Σsim) · w . (3.12)
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To integrate the learned affine transformation into the training of BED,
we can either transform all feature vectors before training and testing by W
or integrate the transformation directly into the BE distance by rotating each
difference vector before it is processed.

A final aspect of this space transformation is that it allows to reduce the
number of considered dimensions. One way to do this, is to select a fixed num-
ber of features d∗ and to keep only the top d∗ dimensions w.r.t. the quality qi.
Alternatively we could determine a threshold τ and keep only those dimensions
offering a quality qi which is better than τ . The choice of τ , however, would
be completely dependent on the training dataset, thus we decided to test an
optional extension which enables the explicit naming of the desired dimension
d∗ of the implicit feature space.

To conclude, the training of a BED is summarized in Algorithm 5.

Algorithm 5 BED Training

Input: Difference vectors sim⊆ Rd of similar object pairs and dissimilar object
pairs dis ⊆ Rd, optional target dimension d∗.

1: function Train BED(sim, dis, d∗ = 0)
2: Derive Σsim and Σdis as in (3.10)
3: Compute W ∈ Rd×d by solving (3.12)
4: Get weights q ∈ Rd using (3.9) in the rotated feature space W TX
5: if d∗ > 0 then . reduce dimension?
6: W ∗ ← ∅, q∗ ← ∅ . initialize new parameters
7: for all i ∈ {1, . . . , d} : qi ∈ top d∗ weights of q do
8: W ∗ ← [W ∗, wi] . keep component i
9: q∗ ← [q∗T , qi] . and the decision weight

10: end for
11: (W, q)← (W ∗, q∗)
12: end if
13: return (W, q)
14: end function

Output: BED parameters for trained BED(x1, x2) of (3.13).

The new BED is then defined as follows:

Definition 19 (Trained Bayes Ensemble Distance) Let x1, x2 ∈ Rd be
two feature vectors. Let W ∈ Rd×d∗ be the rotation matrix and let q ∈ Rd∗ be
the trained dimension weights. Then, the Trained Bayes Ensemble Distance
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(BED) for x1 and x2 is defined as follows:

BED(x1, x2) =

(
d∗∑
i=1

qi

)−1
·

d∗∑
i=1

qi ·BEi(W
Tx1,W

Tx2) (3.13)

3.5 Related Work

In this section, we briefly review existing approaches to similarity learning.
We will focus on the field of related feature transformation techniques.

3.5.1 Metric Distance Learning

Most distance learning methods use the Mahalanobis distance, represented by
a semi-definite matrix. The shared principle among all of those approaches is
to ensure that the relations among a dataset’s objects are transformed such
that they best represent an underlying characteristic of the data.

In the following, we give a short summary of existing metric learning ap-
proaches. For detailed surveys, see [179, 178]. The main idea of unsupervised
approaches is to reduce the feature space to a lower-dimensional space in order
to eliminate noise and enable a more efficient object comparison. The crite-
ria for selecting such a subspace are manifold. Principal Component Analysis
(PCA) [68] builds an orthogonal basis aimed at best preserving the data’s vari-
ance, Multidimensional Scaling (MDS) [34] seeks the transformation which
best preserves the geodesic distances and Independent Component Analysis
(ICA) [33] targets a subspace that guarantees maximal statistical indepen-
dence. ISOMAP [151] by Tenenbaum et al. is a non-linear enhancement of the
MDS principle, in identifying the geodesic manifold of the data and preserving
its intrinsic geometry. Other unsupervised approaches (e.g. [129, 13]) try to
fulfill the above criteria on a local scale.

Among supervised approaches, the first to be named is Fisher’s Linear Dis-
criminant (FLD) [62]. It maximizes the ratio of the between-class variance
and the within-class variance using a generalized eigenvalue decomposition.
This method has been extended by Belhumeur et al. [12] to the Fisherfaces
approach. It precedes FLD with a reduction of the input space to its prin-
cipal components and can thus filter unreliable input dimensions. BED and
especially the target function L share several important ideas with Fisher-
faces. However, FLD assumes that the data is partitioned into classes which
are modeled using the Gaussian distribution function, whereas BED does not
require explicit object classes. Furthermore, the BED is not determined to
the use of Gaussian functions. Instead BEDs employ the difference vectors
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and always try to distinguish the two basic statements of object similarity and
object dissimilarity which can be modeled by an arbitrary symmetric density
function. Both methods generate covariance matrices of difference vectors rep-
resenting similarity (in FLD: the within-class scatter matrix) and dissimilarity
(in FLD: the between-class scatter matrix). However, in FLD the matrices are
built based on the difference vectors w.r.t. a mean value whereas BED directly
employs object-to-object comparisons. Where FLD tries to find dimensions
where the ratio between the variances of dissimilarity and similarity are as
large as possible, BED maximizes the difference between the variances of the
dissimilarity and the similarity distributions.

With RCA [7], Bar-Hillel et al. focus on the problem of minimizing within-
chunklet variance. They argue that between-class differences are less informa-
tive than within-class differences and that class assignments frequently occur in
such a way that only pairs of equally-labelled objects can be extracted. These
pairs are extended into chunklets (sets) of equivalent objects. The inverse
chunklet covariance matrix is used for calculating the Mahalanobis distance.
This step should usually be preceded by dimensionality reduction. The main
difference between BED and RCA is that RCA does not build a distribution
function for object comparison corresponding to dissimilarity. Correspond-
ingly, RCA only requires examples for comparison between the objects of the
same class. As a result, the optimization which is provided by RCA is not
aimed at distinguishing both classes of difference vectors. Instead, RCA is
mostly based on a whitening transformation of a matrix which is similar to
the within-class-scatter-matrix of FLD.

NCA [67] proposed by Goldberger et al. optimizes an objective function
based on a soft neighborhood assignment evaluated via the leave-one-out er-
ror. This setting makes it more resistant against multi-modal distributions.
The result of this optimization is a Mahalanobis distance directly aimed at
improving nearest-neighbor classification. The objective function is, however,
not guaranteed to be convex.

With Information-Theoretic Metric Learning (ITML) [40], Davis et al. pro-
pose a low-rank kernel learning problem which generates a Mahalanobis ma-
trix subject to an upper bound for inner-class distances and a lower bound
to between-class distances. They regularize by choosing the matrix closest to
the identity matrix and introduce a way to reduce the rank of the learning
problem.

LMNN (Large Margin Nearest Neighbor) [164] by Weinberger et al. is based
on a semi-definite program for directly learning a Mahalanobis matrix. They
require k-target neighbors for each input object x, specifying a list of objects,
usually of the same class as x, which should always be mapped closer to x than
any object of another class. These k-target neighbors are the within-class k-
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nearest neighbors. Hence, the loss function consists of two terms for all data
points x: the first penalizes the distance of x to its k-target neighbors and the
second penalizes close objects being closer to x than any of its target neighbors.
In [165], they propose several extensions, involving a more flexible handling
of the k-target neighbors, a multiple-metric variant, a kernelized version for
datasets of larger dimension than size and they deal with efficiency issues
arising from the repeated computation of close objects. Nonetheless, LMNN
requires a specialized solver in order to be run on larger datasets.

3.5.2 Non-Metric Distance Learning

In order to be metric, a distance has to fulfill the metric axioms (i.e. self-
similarity, symmetry, triangle inequality). In fact, several recent studies have
shown that these axioms (triangle inequality above all) are often not conform
with the perceptual distance of human beings [135, 155] and thus not suitable
for robust pattern recognition [87].

Most of the approaches learning a non-metric function as distance function
only use fragments of the objects for the similarity calculation between them
(e.g. [150, 87]). This can be useful for image retrieval and classification, where
only small parts (not a subset of features) of two images can yield to perception
of similarity, but is not applicable for object representations in general.

Another class of non-metric distance learners are Bayesian Learners as used
in [112], which are also designed for the special case of object recognition in
images. In this work, we do not want to restrict similarity to images, but
rather present a more general view on a broad range of applications.

3.6 Experimental Evaluation

In this section, we present the results of our experimental evaluation. As
comparison partner we selected the methods that are closest to our approach:
Relevant Component Analysis (RCA) and Fisher Faces (FF). Let us note that
RCA requires only chunks of data objects having the same class and no ex-
plicit class set. However, since we used datasets having class labels, we pro-
vided RCA with the complete set of training objects for each class as a chunk.
Furthermore, we compared Bayes Estimate Distance (BED) to the standard
Euclidean distance (Eucl) to have a baseline method. We evaluated all meth-
ods on several real-world datasets to test their performance for classification
and retrieval tasks. All methods were implemented in Java 1.6 and tests were
run on a dual core (3.0 Ghz) workstation with 2 GB main memory.
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Figure 3.3: NN-Classification results on several UCI datasets.

3.6.1 Nearest Neighbor Classification

As mentioned before, our similarity learner can be applied for different appli-
cations. A first, well-established method is improving the quality of nearest
neighbor classification. For the classification task, we used several datasets
from the UCI Machine Learning Repository [119]. Evaluation on the datasets
was performed using 10-fold cross-validation and all 4 distance measures were
used for basic nearest neighbor classification. To train BED, we employed
sampling based on the target neighbors. In other words, we took the differ-
ence vectors of all training objects to the k-nearest neighbors within the same
class and the k-nearest neighbors in all other classes. To find a suitable value
for k, we screened over a small set of numbers between 5 and 20s.

The results for k-NN classification are shown in Figure 3.3. BED displays
the largest accuracy in all 9 datasets. We observe strong variations in the
relative accuracies of the FF and RCA approach w.r.t. Eucl and BED. BED
leads to classification results which are up to 8% better than the best of Eucl,
FF and RCA. Thus, we can state that BED can improve the results of instance-
based learners.

3.6.2 Precision and Recall Graphs

We employed two image datasets for testing the performance of our new dis-
tance measures for retrieval applications. The Conf dataset was created by
ourselves and contains 183 images of 35 different motives. Please refer to Sec-
tion 4.5.2.2 for a sample of the contained images. The Flowers dataset was
introduced in [122] and consists of 1 360 images of 17 different types of flowers.
From these two datasets, we extracted color histograms (based on the HSV
color space), facet features [31] and Haralick features [79]. The characteristics
of the resulting feature datasets can be seen in Table 3.1.

We measured the retrieval performance on these datasets using Precision-
Recall graphs. We posed a ranking query for each image and measured the
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Table 3.1: Image Retrieval Datasets

Dataset Instances Attributes Classes

Conf-hsv 183 32 35
Conf-facet 183 24 35
Conf-har 183 65 35
Flowers-hsv 1360 32 17
Flowers-facet 1360 24 17
Flowers-har 1360 65 17

precision of the answer resulting from the remaining database for several levels
of recall. In the retrieval task, we employed very large numbers of difference
vectors for training, to adjust BED to achieving reasonable precision values
for large levels of recall.

On the Conf dataset, BED shows an impressive boost of the retrieval qual-
ity using hsv-color-histograms (Figure 3.4(a)), while it still leads to slightly
better results using facet or Haralick features (see Figures 3.4(b) and 3.4(c))
in contrast to RCA. FF does not appear to be well-suited for these datasets, as
it performs even worse than the Euclidean Distance. On the Flowers dataset,
retrieval quality can again be improved by BED when using Facet and Haralick
features respectively (see Figures 3.4(e) and 3.4(f)). On the feature dataset
consisting of the hsv-color-histograms of Flowers, Fisherfaces lead to a better
Precision-Recall-Graph (Figure 3.4(d)) than the other approaches. Note, how-
ever, that this is the only retrieval experiment where FF performed better than
the Euclidean distance. Thus, we can state the BED is suitable for retrieval
tasks as well as for data mining tasks.

3.6.3 Examination of the BED Components

In our last experiment, we examine the performance of BEDs compared to
their separated components. We trained BEs on the original dimensions (only
BE) of the feature space. Furthermore, we wanted to find out whether the
learned eigenvalue decomposition can be used for learning a Mahalanobis dis-
tance improving classification results. To create such a transformation, we
additionally multiplied each eigenvector w by its inverse eigenvalue. The com-
parison was performed for several retrieval datasets which all displayed similar
results. An example precision-recall graph of the Conf-hsv dataset is presented
in Figure 3.5

Using the BED without the rotation still increases the retrieval perfor-
mance compared to the plain Euclidean distance on the same feature space.
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Figure 3.4: Precision-Recall graphs on the Conf and Flowers dataset.
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Figure 3.5: Different versions of BE on Conf-hsv.

Thus, even without an affine transformation, the BED is capable of improv-
ing the retrieval quality. A second very interesting result is that the rotation
component of BEDs does not yield any performance advantage when used as
Mahalanobis learner. Though the learned directions do optimize the BEs be-
ing observed in the new dimensions, they seem to be unsuitable for improving
the results obtained by the Euclidean distance.

3.7 Summary

This chapter has introduced Bayes Ensemble Distance (BED) as an adaptable
dissimilarity measure. BED is applied to the difference vector of two feature
vectors. For each dimension, BED independently determines the likelihood
that both objects are dissimilar employing a simple Bayesian learner called
Bayes Estimate (BE). The results of the BEs are combined by computing a
weighted average prediction.

That way, the derived similarity score is less dependent on outlier values
in some of the dimensions. Since BED is dependent on the spatial rotation of
the data space, it is possible to optimize the vector space in order to derive a
feature space allowing the training of more descriptive and independent BEs.

In our experimental evaluation, we have demonstrated that BEDs can
largely increase the classification accuracy of instance-based learning. Addi-
tionally, we have demonstrated the suitability of BED for retrieval tasks.

For future work, we plan to investigate efficiency issues when using BED
for information retrieval in order to actually use it in medical image retrieval.
Furthermore, we plan to apply the idea of BEs to structured objects like
graphs. Finally, as by far not all feature differences are normally distributed,
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we would like to explore alternative distribution functions on their applicability
in our proposed learning scheme.
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Chapter 4

Multi-Instance Distance
Measures

Images are often represented by a set of representative regions or hotspots.
The elements of such a set usually are described by the same feature type,
only representing different excerpts of an image. As the number of represented
regions is mostly unknown for a new image, this poses a special challenge for
any similarity or distance measures applied on a database of images represented
by sets of sub-features.

An object representation consisting of a collection of data objects is called a
multi-instance object. Prominent examples for this feature type are interesting-
point or salient point procedures like SIFT [106] and SURF [10]. They auto-
matically discover a set of likely recognizable coordinates within a given image
and generate multi-dimensional real-valued feature vectors for each point.

For other applications, images are first segmented (either manually or
(semi-) automatically) into various image subregions, which again are collected
as an unordered set of sub-image representations. [116] Chapter 6 will introduce
a use case of medical image retrieval, where an object consists of a sequence of
2D images, each of which is represented by the same type of image descriptors.
The corresponding query scenario consequently employs a multi-instance view
on the examined query objects.

It was therefore necessary to investigate this special group of object rep-
resentations for suitable distance measures and ways of improving query pro-
cessing times.

4.1 Introduction

We will first clarify the notation and terms used in this chapter.
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Definition 20 (Multi-Instance Object, Instances) A multi-instance ob-
ject A ⊆ F on a domain F is a collection of data objects ai ∈ F of the same
type. The objects ai ∈ F are called the instances of A, i ∈ {1, . . . , |A|}, with
|A| being the number of instances in A. In favor of a simplified notation, the
index i will be omitted if the multi-instance relation ai ∈ A is evident.

Both, instances and multi-instances are thus objects, however, the instances
usually only represent part of an object.

Definition 21 (Distances) A distance function dI : F ×F 7→ R represent-
ing the degree of dissimilarity between two instances in F is denoted as an
instance distance measure. A distance function d : 2F × 2F 7→ R between two
multi-instance objects A,B ⊆ F is a multi-instance distance measure.

In the following, we will assume that dI is symmetric, i.e. ∀ a, b ∈ F :
dI(a, b) = dI(b, a).

4.2 Combination of Instance Distances

In this setting, the inter-instance distances are the only information available,
thus for this thesis, all multi-instance distance measures will be combinations
of distances among the objects’ instances.

4.2.1 Average Linkage (AvgLink)

A straightforward way to measure the distance between two sets is the mean
of all pairwise instance distances, also known as Average Linkage:

dAvg(A,B) = dAL(A,B) =

∑
a∈A

∑
b∈B dI(a, b)

|A| |B|
(4.1)

This distance measure is appropriate when all instances within an object are
equally important and all instances are drawn from the same distribution.
For more complex objects, which may be based on several distributions, this
approach is likely to fail: low instance distances among similar instance groups
of two multi-instance objects are bound to be cancelled out by the higher cross-
distribution distances. Thus, even though the two objects have similar subsets,
they will be considered to be dissimilar.
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4.2.2 Minimum Distance (MinDist)

For some kinds of data, only small subsets of all the available instances may
be useful at all. This leads us to the other extremal case, where we completely
focus on the minimal distance between all pairs of instances, the minimum
distance or single link:

dMinDist(A,B) = dSL(A,B) = min
a∈A,b∈B

dI(a, b) (4.2)

This approach is strongly prone to noise, since in the end, the distance value
depends on one instance pair only. Furthermore, it is not well suited for the
comparison of objects which consist of several characteristic distributions.

4.2.3 Half the Sum of Minimum Distances (HMD)

In order to attenuate the dependency on one particular instance per object, we
can average over the minimum distances of every instance in A to the instances
in B, thus receiving

dHMD(A,B) =
1

|A|
∑
a∈A

min
b∈B

dI(a, b) . (4.3)

This distance measure is the asymmetric combination of all minimum linkages
of A to B. Even if symmetry is not required, e.g. when searching for the most
similar objects B in a database D, this approach still suffers from variance in
the size of the objects in D – more instances raise the probability of a close
link, fewer instances lower the probability.

4.2.4 Sum of Minimum Distances (SMD)

The solution to the symmetry problem is the Sum of Minimum Distances
(SMD) which combines both directions of the HMD (hence the bulky name:
half-SMD).

dSMD(A,B) =
1

2
(dHMD(A,B) + dHMD(B,A)) . (4.4)

Note that this differs from another definition of SMD, frequently used in the
literature, [98, 42]

dSMD alt.(A,B) =
1

|A|+ |B|

(∑
a∈A

min
b∈B

dI(a, b) +
∑
b∈B

min
a∈A

dI(a, b)

)
, (4.5)

by allowing the same distance contribution to both objects instead of main-
taining a disequilibrium between the two distance sets.
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4.2.5 Hausdorff Distance (HD)

Another MinDist-related measure is the Hausdorff distance. It is defined as
the larger of the two maximum minimum links between two datasets, i.e. the
instances of two multi-instance objects.

dHD(A,B) = max{max
a∈A

min
b∈B

dI(a, b),max
b∈B

min
a∈A

dI(a, b)} (4.6)

Another possibility is to take only the maximum distance of query object A
to a candidate object B in the database:

dHD asym.(A,B) = max
a∈A

min
b∈B

dI(a, b) (4.7)

This family of distance measures is well-suited for compact geometric objects.
By identifying the weakest ( i.e. largest) minimal link, we can better incor-
porate the dissimilarity of two objects than in SMD. However, if the objects
are allowed to contain noise instances or if we are also interested in partial
matches, these measures will always result in too large distances.

4.2.6 Convolution Distance (CD)

The notion of similarity is frequently associated with kernel methods. A direct
way of using kernel functions k : F ×F 7→ R+ for multi-instance distance
calculations is the use of a convolution:

dCD(A,B) = 1−

( ∑
ai∈A,bj∈B

k(ai, bj)

)2

( ∑
ai,aj∈A

k(ai, aj)

)( ∑
bi,bj∈B

k(bi, bj)

) (4.8)

It results in a distance value in [0, 1] which makes it attractive for further
processing. Moreover, it can be flexibly fine-tuned by selecting the best-suited
kernel function for a given problem.

4.2.7 Maximum Mean Discrepancy (MMD)

Another kernel-based distance measure is the Maximum Mean Discrepancy
(MMD). [71] It reduces the distance problem among sets to the difference
between the mean instance values, possibly in a different feature space. Using
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a kernel function k : F ×F 7→ R+, the MMD can be written as:

dMMD(A,B) = (4.9) 1

|A|2
∑

ai,aj∈A

k(ai, aj)−
2

|A| |B|
∑

ai∈A,bj∈B

k(ai, bj) +
1

|B|2
∑

bi,bj∈B

k(bi, bj)

 1
2

This method can be applied on two-sample problems, where the distributions
of two sample sets are to be analyzed and may thus be considered to be an
approximation of the Average Linkage distance. However, this approach is
prone to carry the same disadvantages mentioned earlier in Section 4.2.1 when
dealing with objects formed from several distributions.

4.3 Instance Weighting Methods

In all distance measures introduced so far, every instance within an object
is allowed the same contribution to the overall distance. For some objects,
however, we may be able to identify instances of higher and lower importance
for the comparison to other objects. These notions of importance may be con-
verted into weights, which can be incorporated into the previously-mentioned
distance measures.

Definition 22 (Instance Weights) We call a multi-instance object A ⊆ F
weighted, if it is has assigned an instance weight vi ∈ R (with v ∈ R|A|) to
every instance ai ∈ A.

For convenience of notation, we will denote the instance weights of a second
multi-instance object B ⊆ F as w ∈ R|B|.

4.3.1 Weighting Distance Measures

The direct way to use instance weights is to include them into the chosen
multi-instance distance measure.

4.3.1.1 Weighted Average Linkage

Including weights into the average linkage distance (Section 4.2.1) can be
achieved by simply extending the instance distances by their instances’ weights
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and by then normalizing by the sum of used weighting combinations:

dWAvg(A,B) =

|A|∑
i=1

|B|∑
j=1

viwjdI(ai, bj)

|A|∑
i=1

|B|∑
j=1

viwj

(4.10)

This weighting procedure should assert a fair contribution of each instance to
the global distance in accordance with its weight.

4.3.1.2 Weighted Convolution Distance

The inclusion of weights in the convolution distance also can be done in a very
straightforward way:

dWCD(A,B) = 1−

( ∑
ai∈A,bj∈B

viwjk(ai, bj)

)2

( ∑
ai,aj∈A

vivjk(ai, aj)

)( ∑
bi,bj∈B

wiwjk(bi, bj)

) (4.11)

For other multi-instance distance measures, such an inclusion of weights is less
evident.

4.3.1.3 Weighted HMD / SMD

There are basically two ways of weighting the sum of minimum distances: only
taking the weights of the query-instances looking for their minimum distance
partners

dWHMD1(A,B) =

∑
ai∈A vi min

bj∈B
dI(ai, bj)

|A|∑
i∈1
vi

, (4.12)

or combining the weights of both of the minimum distance pairs’ partners:

dWHMD2(A,B) =

∑
ai∈A min

bj∈B
viwjdI(ai, bj)∑

(i,j): MinDist pairs

viwj
. (4.13)

For the second variant, in many cases, the weights w of the second multi-
instance object B may suggest different minimum distance pairs than the op-
timum assignment. Consequently, for the above distance definition, we are
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confronted with a third distance variant: the minimum distance partner bj,MIN

can be determined without the inclusion of any weights, only using the weight
for forming the overall distance:

dWHMD2′
(A,B) =

∑
ai∈A viwj,MIN min

bj∈B
dI(ai, bj)∑

(i,j)MinDist pairs

viwj
. (4.14)

This alternative, however, is probably counter-productive, since the choice of
the minimum distance partner can be influenced by noise. The idea of weights
is to dispose of meaningless pairs. Thus, we should choose the minimum part-
ners in correlation with the overall distance measure and discard variant (4.14).

4.3.1.4 Obstacles in Distance Weighting

The combinations of distance measures with instance weights introduced so
far raise the question about how to balance the weights’ distribution over the
objects. The straightforward approach of normalizing the weight vector w to
sum to 1 is bound to result in a bias of lower distances to objects with a larger
number of instances. Not normalizing it at all calls for a balanced way of
proceeding as with weighted average linkage.

The most important question is: how do we determine the weights? Does
a large weight generally indicate a stronger influence of an instance than a low
weight? In the cases of average linkage and the convolution distance, this is
definitely true. In case of a distance measure using minimum distances like
the SMD, one should rather invert this connotation in order to not disturb the
beneficial minimal linkage effect.

4.3.2 Using Instance Weights for Instance Selection

All the difficult questions of weight inclusion can be omitted, if we decide to
only use the weights as an instance filter. We discriminate between 3 ways of
weight-based instance selection:

1. Global Thresholding: We set a global weight threshold t to a value in the
range of the actual instance weights and discard any instance below (or,
if the lower weights are perceived as meaningful, above) t.

2. Frequency-based Thresholding: An object’s instances’ weights are treated
as a ranking, and only the top t, or, to be more flexible, the top t%
instances are included in the ensuing distance measures.
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3. Object-adapted Thresholding: The instance weights of an object are an-
alyzed by a given probabilistic statistic and this statistic determines the
appropriate weight threshold t, depending on the weights’ distribution.

Global thresholding requires the weighting method to return globally com-
parable weights. Thus, size-dependent-statistics like the Wilcoxon Test (see
Section 4.3.3.1) are not applicable. Furthermore, we must assert that for ev-
ery multi-instance object, we can retain at least one instance, else it will be
impossible to match this object to any other object.

This requirement is fulfilled by frequency-based thresholding. The main
question here is: do we want a fixed number of instances or a fixed fraction?
The first approach obviously opens possibilities for easier object handling,
when all objects have the same number of instances. However, for many ob-
jects, the number of instances is a helpful feature itself, and ought not to be
discarded. This observation speaks in favor of the fractional approach, select-
ing the top t% instances.

Object-adapted thresholds can be defined on a variety of statistics. The
fractional approach is just one of them, comparable to a quantile-based selec-
tion procedure. Other possibilities include gradient-based thresholds or Gaus-
sian mixture models. Such an approach can also be tightly coupled with the
process of weight generating.

4.3.3 Instance Weight Computation

The importance of an instance for its object depends on its ability to discern
between similar and dissimilar objects as well as on its affinity to the other
instances of the object. The first property can be judged by statistical tests,
measuring how often the current instance is consistent with the overall object
similarity.

The other requirement is more difficult to meet. If an object consists of
many, highly distinctive instances, we only need some of them in order not
to over-estimate the similarity between two well-described objects. If, on the
other hand, an object only consists of barely helpful instances, we still cannot
afford to discard them all. We may even have to artificially assign higher
weights than for instances of clearly described objects.

4.3.3.1 Wilcoxon Rank Sum Test

The Wilcoxon rank sum test is a non-parametric test on whether or not two
samples X, Y ⊆ O originate from the same distribution on ordinal values ∈ O,
i.e. values that can be compared. Originally proposed by [170] in 1945 for
equally-sized samples, it was extended to unbalanced samples [109] in 1947.
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The null hypothesis, stating that X and Y are equally distributed, is verified
by a t-test on the two samples’ ranks, that is: their positions in the samples’
sorted concatenation of size |X| + |Y |. This transformation has the great
advantage, that the samples do not have to be normally distributed and the
whole test is less prone to outliers.

In our instance weighting approach, we define X and Y to be two instance
distance distributions in R. In the interest of covering the more meaningful
distances, we focus on minimum instance distances which have proven to be a
valuable component in the more successful multi-instance distances. For any
instance to be weighted, X contains instance distances of similar instances
and Y contains instance distances of dissimilar instances. The decision of
which objects are similar is supervised on a database of multi-instance objects
labelled with class attributes: multi-instance objects of the same class (∈ C+)
are considered to be similar, multi-instance objects belonging to another class
(∈ C−) are supposed to be dissimilar.

An instance ai ∈ A ⊆ F is then rated according to the minimum instance
distance distribution X of objects of the same class and the distribution of
minimum instance distances to objects of other classes Y :

X =

{
min
bj∈B

dI(ai, bj) | B ∈ C+ \A
}

(4.15)

Y =

{
min
bj∈B

dI(ai, bj) | B ∈ C−
}

. (4.16)

The decision value for ai is a p-value on the divergence of the mean rank of
the distances of the smaller set of X and Y , from the expected rank

1

2
min {|X| , |Y |} · (|X|+ |Y |+ 1) (4.17)

according to the normal distribution. Due to the ranking procedure, these
p-values are comparable among each other for instances belonging to the same
class. An inter-class comparison of p-values should take into account the de-
pendency of the p-value to the sample sizes.

A major drawback of the Wilcoxon test is its independence from scale. It
is helpful for dealing with outliers, however, instances with very low minimum
distances get the same p-value as instances with minimum distances which
are multiple times higher than the previous values but happen to be ordered
similarly. Additionally, the assumption that an instance must have at least
one suitable minimum distance partner in any other multi-instance object of
the same class in order to be meaningful, is again a strong constraint on the
nature of the given dataset.
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4.3.3.2 Pearson Correlation

Inspired by a feature selection approach introduced in Section 2.4.2.1, we also
assessed the importance of an object’s instance via the class-based Pearson
Correlation. The covariance is a measure for linear dependence of two distri-
butions X, Y ⊆ R with expected values µX , µY :

Cov(X, Y ) = E ((X − µX)(Y − µY )) . (4.18)

It can be seen as a combined linear variance measure of two distributions. If
A and B are independent, their values’ strongest divergences from their means
will not coincide, thus cancel out: Cov(A,B) = 0. A positive covariance tells
us, that A and B are correlated in the same direction.

If we normalize the covariance by the two distributions’ standard deviations
σX and σY , we receive the Correlation Coefficient

ρX,Y =
Cov(X, Y )

σXσY
, (4.19)

which scales in [−1, 1]. We still have ρX,Y = 0 for independent distributions,
but now we can compare several correlations without having to re-scale.

The estimate for the correlation of two samples X = {x1, x2, . . . , xn} ∈ Rn

and Y = {y1, y2, . . . , yn} ∈ Rn is the Pearson Correlation Coefficient:

ρ̂X,Y =

∑n
i=1(xi − µX)(yi − µY )√∑n

i=1(xi − µX)2
∑n

i=1(yi − µY )2
, (4.20)

where µX = 1
n

∑n
i=1 xi and µY = 1

n

∑n
i=1 yi.

For testing whether or not the minimum distances of an instance ai to its
own class C+ are lower than the minimum distances to objects of the other
class C−, we can use an approach popular in feature selection. [75] We con-
catenate those distances and test their correlation to a vector containing 1 for
the distances of C+ and −1 for the distances of C−.

A resulting value close to −1 is then an indicator of a strong negative
correlation of the minimum distances with its class indicators and thus a useful
instance.

4.3.3.3 Other Weighting Strategies

In addition to the weighting schemes proposed above, we also tested a number
alternative weighting approaches.

Entropy Entropy-based criteria are frequently used in feature selection. [38,
75] Usually, it involves the discretization [49] of the possible feature values
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and the entropy calculation on the class-wise probability per discretized
value. In our tested setting, we discretized the sets of nearest-neighbor
or ε-range instances into instances resulting from the same class and
instances belonging to another class.

Good Count Triplets [65] suggested a method for faster weight calculation
by restricting the training data set to the closest objects within and out
of the class of the object to be trained. For training an object A, they
first generate triplets (A,B+, B−), containing close objects of A of the
same and close objects of another class, and perform their optimization
procedure on the set of resulting minimum distance pairs per instance ai:(
minbj∈B+ dI(ai, bj),minbj∈B− dI(ai, bj)

)
. A refined optimization problem

is formulated in [64].

A simple way of generating an instance weight for ai from those triplets is
to raise a counter c(ai) by one, whenever the minimum instance distance
of the within-class partner is lower than that of the outer class part-
ner. Else, the counter is lowered by one. The resulting weight is then

c(ai)

number of triplets , a value in [−1,+1], categorizing ai the more useful

the closer the weight is to +1.

Triplet Distance Differences The same triplets can also be used for de-
termining the average distance difference of within-class distances with
outer-class distances. This distance can be directly used as a pruning
weight in instance selection, since it defines a ranking over the instances
of a multi-instance object. Using it for weighted distances in cross-object
comparison, requires an additional normalization.

Difference Among Average Distances Another variant is to take an in-
stance’s average minimum distance avgd+ to objects of the same class
C+ and compare it to the average minimum distance avgd− to objects of
the complement C−. This alone should return comparable results as the
above method. It might, however, be further improved by including the
distance variances into the test: An instance may be accepted, if

avgd+ + stdevd+ < avgd− − stdevd− , (4.21)

where stdevd+ is the standard deviation of minimum distance pairs within
the same class and stdevd− is the standard deviation of minimum distance
pairs drawn from other classes, respectively.
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4.3.4 Limits of Supervised Instance Weighting

The described instance weighting approaches manage to define a measure of
reliability to the instances of an object with a known class affiliation. Such a
measure could be used as an interesting tool for the visual interpretation of a
multi-instance object derived from an image. However, the scope of this work
is to capture the similarity of objects with a so far unknown classification. Un-
fortunately, multi-instance objects proved to be complicated w.r.t. weighting
instances in an unsupervised or semi-supervised way.

When computing weights in the proposed supervised fashion, the train-
ing error is drastically decreased for any of the weighting approaches of Sec-
tion 4.3.3 for both the distance weighting schemes of Section 4.3.1 and the
instance selection variants of Section 4.3.2. In addition to a very good adap-
tation to the training dataset, the tested weighting procedures provide a good
interpretability of the instances’ relevances.

However, in a real-world test case, the class information will not be available
for the query object. Therefore, we cannot follow the same instance weight
computation strategy for the multi-instance query object as for the objects
stored in the training database.

We tested three solutions for generating weights for the query object:

Constant Weights In the first setting, we kept the weights of the query
instances at a constant value. The choice of the constant depends on
whether or not the instance weights of the training set have been nor-
malized. When using weight-induced instance selection, of course, no
instances can be discarded from the query object.

Intermediate Classification The second setting generates an intermediate
class label for the query object by using the training set. This may
happen either without using any weights at all, or by using weights gen-
erated with the Constant Weights approach sketched above. After the
intermediate class label is available, the instance weights are generated
by pretending it to be the ground truth.

Multi-Hypothesis Vote As the above approach is very dependent on a cor-
rect intermediate class label, we also tested a variant forming a con-
sensus classification. We generate instance weights for all possible class
hypotheses on the query object and keep the set of instance weights for
the hypothesis with the strongest indication of relevance. The decision
on relevance can either be generated from the weights if they have not
yet been normalized, or from a confidence measure on the ensuing clas-
sification of the query object. This approach only works for a finite set
of discrete class labels.
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Unsurprisingly, the worst results were generated by the intermediate clas-
sification approach, which has a strong tendency to emphasize the very bias
effects which we are trying to remove by using instance weights. By decid-
ing between multiple hypothesis, this problem should be avoided. Yet, we
observed that the best-performing weighting strategy was the use of constant
query weights. Obviously, when in doubt, multi-instance query weight labelling
should rather be omitted than artificially forced.

This conclusion alone would not harm the whole concept of instance weight-
ing. However, the overall results of the constant weights approach were hardly
any better than those of the basic, untrained multi-instance distance measures,
and they were extremely dependent on the dataset. The most plausible expla-
nation for this observation is that the datasets we used for testing were too
small for obtaining weights which are sufficiently regularized from the machine
learning point of view. However, also exemplary tests on larger datasets did
not lead to the expected improvement.

After an exhaustive number of experiments on various test sets and a mul-
titude of strategy configurations, we therefore closed the research efforts in
this direction and investigated alternative methods of multi-instance distance
measures.

4.3.5 Other Methods for Instance Selection

Instance selection does not necessarily have to be based on instance weighting.
Converting the multi-instance problem into another problem oftentimes results
in the implicit selection of instances.

4.3.5.1 k-SMD

The sum of minimum distances can be further refined by restricting the number
of minimum links to the k best, i.e. the k-lowest minimum distances. This turns
the HMD introduced on page 69 into the k-HMD:

dk-HMD(A,B) = avg{dMIN(ai, B) | ai ∈ A ∧ (4.22)

dMIN(ai, B) ≤ k-minimum distance of an aj ∈ A to B} .

This asymmetric distance measure can then be combined to a symmetric vari-
ant as in Equation (4.4), the k-SMD.

As a side effect, this transformation of using only the k-minimum distances
per object allows to treat the multi-instance problem as a multi-represented, or
multi-modal problem, which can be tackled by a series of alternative distance
measures such as MUSE [97].
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The advantage of k-SMD is its flexibility w.r.t. noise instances, which usu-
ally will provide larger distance contributions. However, only taking the k
lowest minimum distance pairs cannot ensure that all relevant distributions
forming a multi-instance object are represented. In addition, we now have to
deal with a parametrized distance measure.

4.3.5.2 MILES

Another transformation was used by [29] in MILES (Multiple-Instance Learn-
ing via Embedded Instance Selection). Their approach converts each instance
of a training database Dtrain into a real-valued feature for all objects in Dtrain,
and it applies a specialized learning algorithm on the resulting feature vec-
tors. These new feature vectors can, of course, also be treated by a variety
of conventional learning algorithms, such as an SVM or a common k-nearest
neighbor classifier. The instance-feature conversion used in [29] is to derive
a probability P (x|A) for every instance x ∈ F occurring in Dtrain, that it
represents a multi-instance object A based on a classical radial basis function
(RBF)

P (x|A) = max
ai∈A

exp

(
−dI(ai, x)2

σ2

)
, (4.23)

where σ is a a predefined, constant scaling factor.
Our experiments on MILES showed fine training errors which could be con-

verted to comparatively stable and good cross-validation test errors. When,
however, excluding the query objects’ representations from the training set,
thereby only representing the query objects by foreign instance representa-
tives, we ran into similar problems as with the instance weighting approaches
proposed in Section 4.3.

A related, but kernel-based learning approach was proposed by Gärtner
et al. in [66]. With MissSVM, [184] convert the problem of multi-instance
distance learning to a semi-supervised learning problem, which is solved via a
modified SVM formulation. It is, however, restricted to 2-class problems and
does not perform best among its competitors. MILES, for instance, always
scores better.

4.3.5.3 Integrated Region Matching (IRM)

Another variant of instance selection is not to select the instances themselves
but a set of instance pairs between the multi-instance objects to be compared.
In [161], Wang et al. describe Integrated Region Matching (IRM), a multi-
instance distance measure especially-designed for images represented by a set
of segmentations.
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They first use the relative size of the image segments as image-driven in-
stance weights vi and wj for the two objects A and B. Then, they iteratively
generate a matrix of significance values si,j of all instance pairs (ai, bj) as a
combination of the corresponding instance weights and the actual instance dis-
tances dI(ai, bj). In order to avoid comparisons between instance pairs which
are not relevant, many of the instance pairs are labelled with a significance
value of 0, i.e. the resulting significance matrix is sparse. The final distance
measure is then a variant of the weighted average linkage distance:

dIRM(A,B) =

|A|∑
i=1

|B|∑
j=1

si,jdI(ai, bj) . (4.24)

In the datasets we tested so far, we never had additional information like the
relative segment size which could be exploited to infer image-driven instance
weights. Therefore, this thesis will not present any tests on the IRM distance
measure. For an example of a successful application in an image retrieval
problem, see Nascimento et al. [116].

4.4 Indexing-based Distance Measures

Since all of the distance measures mentioned so far require at least a quadratic
runtime in the number of instances, for a large number of object comparisons
as required by database-retrieval queries, a speed-up of distance computation
becomes necessary.

4.4.1 Single-object Indexing

If a type of multi-instance objects generally consists of a large number of
instances, it can be a good idea to index one or both of the multi-instance ob-
jects to be compared. Using a sped-up version of all-k-nearest-neighbor queries
(e.g. as in [182] or our own approach in [53]) we can decrease the runtime for
k-nearest-neighbor-based multi-instance distance measures such as the SMD
or the Hausdorff distance. This advantage, however, is only effective, if the
number of instances per object is really high. So far, we have not yet encoun-
tered a data set which actually needs objects of such a large size. Usually,
they can be easily transformed into more compact data objects without loss
of descriptiveness.
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4.4.2 Instance Indexing

One solution suited for classification tasks is to simply index a database con-
taining all instances of a multi-instance database. In the following, we in-
troduce a strategy of combining multiple instance similarity queries for the
instances of a query object into a useful classification scheme.

4.4.2.1 Average k-Minimum Linkage Classification

In this approach, we derive the k-nearest neighbors for all query instances and
form a histogram H of the resulting instances’ class labels. The winner class
is then chosen as the predicted class label for the query object.

Algorithm 6 k-Minimum Linkage Classification

Input: multi-instance query object A, nearest neighbor parameter k, class-
labeled instance database DI ⊆ F

1: H ← empty histogram; . Initialize a class-wise histogram
2: for instances ai ∈ A do
3: KNNs ← {bi ∈ DI | bi is a k−nearest neighbor of ai in DI};
4: for j = 1; j ≤ KNNs.length; j++ do
5: raise(H, bj.class, j); . Account for this instance’s match
6: end for
7: end for
8: w ← null; b← −∞; . Determine the winner class
9: for i = 1; i ≤ H.length; i++ do . For all class weights

10: if b < H[i] then
11: b← H[i]; . Update maximum weight
12: w ← H[i].class; . Update winner class
13: end if
14: end for
15: return w;

Output: The predicted class label w for A.

Algorithm 6 describes this procedure. The average k-minimum linkage
classification is retrieved by setting function raise(H, bj.class, j) in step 5
s.t. it raises the bin of H for the given class label bj.class by one regardless
of the ranking position j.

Databases consisting of unequally-distributed classes can be specially han-
dled by weighting the histogram counts of H with the inverse class frequencies.
When doing so, however, remember to also account for statistical effects of the
k-parameter.
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In this setting, all instances of the query or the instance database DI are
handled as equals. The main disadvantage is the complete loss of the multi-
instance structure of the objects in the training database, however, the result-
ing classification experiments show that the accuracies are almost competitive
to conventional multi-instance distances, whereas runtimes can be drastically
decreased.

4.4.2.2 Geometric k-Minimum Linkage Classification

This procedure can be modified such that it also includes the instances’ ranks
into the decision finding process. In a new setting, we therefore change the
raise(H, bj.class, j) method of step 5 in Algorithm 5 s.t. it adds 1

j
to the bin

of bj.class in H.

4.4.2.3 Global k-Minimum Distance Classification

Another way to predict the class of a given query object is to derive the k-
nearest neighbors of any of the instances in the query to any of the instances in
the database and to form the class histogram from these matches. Given a good
index structure, this method is even faster than the two previous propositions,
since the number of candidates which remain to be tested can be decreased
with the number of instances which have already been tested.

This speed-up requires a ranking functionality of the index with a function
getNext(query, maxDist), which stops the retrieval of k-nearest neighbors as
soon as the next-nearest neighbor’s distance to the query is larger than a given
maxDist. During every classification query, we know the global k-minimum
distance for all instances queried so far, usually by using a priority queue, and
we can use it to provide an ever decreasing bound for the maxDist parameter
of the getNext function. In each step of querying the next instance’s k-
nearest neighbors, we can therefore skip the call of retrieving the next-nearest
neighbor whenever the instance’s minimum distance partner is farther away
than the currently k-best distance partner. When using a hierarchical tree-like
structure like the X-Tree [15], this bound can already be effective at a high
pruning level, therefore not requiring the exact distance computation to any
candidates.

Note that if k = 1, this method is equivalent to a 1-nearest-neighbor clas-
sifier using the MinDist introduced in Section 4.2.2.



84 4.4. Indexing-based Distance Measures

4.4.3 Alternative Accelerations on Multi-Instance Re-
trieval

We also explored alternative indexing approaches which maintained the multi-
instance structure of the database objects. By carefully deriving lower and
upper bounds for all encountered multi-instance candidate objects from the
single-instance distance rankings of a multi-instance query object, we can com-
pute a valid HMD ranking with a limited number of instance queries. This
query framework requires some overhead for organizing an additional index,
referencing any indexed instance’s parenting multi-instance object. In addi-
tion, the retrieval strategy has to be optimized such that the complete multi-
instance distance is computed instead of the instance-based bounds, whenever
computing the bounds becomes more computationally expensive. All of these
issues can be solved in a rather straightforward way.

In practise, we found the framework to be successful w.r.t. the early ex-
clusion of candidate nearest neighbors. However, in order for the bounds to
be effective, we needed to compute rather large single-instance rankings. The
overall runtime advantage in comparison to a complete sequential scan on
multi-instance objects was therefore marginal. On very large datasets, this
framework provided a larger runtime gain, yet, the retrieval times were too
high to be accepted in any real-world application.

The most common way of handling multi-instance objects in imaging is
to use visual words. The bag-of-words approach originates in text retrieval
and is based on counting word or term frequencies within a document and
in a global context. Using normalization procedures like the term frequency-
inverse document frequency, these retrieval approaches usually generate large
and sparse feature vectors which can still be efficiently handled, e.g. using an
inverted file structure.

With the increased use of salient-point-based features like SIFT [106] and
SURF [10], this approach has been transferred to the imaging community by
defining visual words. One bag of visual words represents a cluster of similar
instances generated across a training dataset. Any multi-instance object (an
image represented by various instances) is then represented by frequency counts
of the clusters which are closest to the object’s instances. [141]

In [123], Nistér and Stewénius proposed the vocabulary tree as an index
structure for quickly retrieving objects with visual word characteristics similar
to a query object. As the k-means clustering strategy behind this approach was
not suitable for really large databases, we extended the vocabulary tree with
the BIRCH [183] clustering method in a Diploma thesis. [80] The retrieval times
showed a clear improvement w.r.t. previous visual word approaches, however,
the accuracies of the tested SIFT and SURF descriptors were not satisfying.
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Therefore, further work is needed for a publication of this otherwise successful
strategy.

4.5 Experimental Evaluation

In our setting, we validate multi-instance distance measures by using them for
classification of a multi-class database D ⊆

(
2F
)∗

, which can be partitioned

into disjoint sets C1, . . . , Cc ⊆
(
2F
)∗

of the classes 1 to c.

4.5.1 Classification Settings

The classification problem at hand is to predict the class of every object A ∈ D,
such that it is equal to the real class of A : C(A). Our experiments have been
conducted via y repetitions of x-fold cross-validation. If not stated otherwise,
y = x = 10. We have usually used a k-nearest-neighbor classifier.

4.5.2 Used Datasets

The multi-instance distance measures summarized in this survey have been
tested on a variety of data sets.

4.5.2.1 Musk Datasets

The musk data sets have first been introduced in [46]. They consist of two 2-
class problems on multi-instance data. They represent biological molecules via
sets of 166-dimensional feature vectors. Objects of the positive class possess
at least one instance each possessing a desired property. The classes of the
musk1 data set are more balanced than the musk2 data set, which consists of
more instances per object than the musk1 data. The datasets are summarized
in Table 4.1.

A major flaw of this data set is its simplicity. Since one representing in-
stance of the positive class is sufficient to indicate that the complete object is
positive, this problem cannot be regarded to be a real multi-instance problem,
but it is rather a special case of a one-class problem (in- and out-class).

4.5.2.2 Conf Datasets

The conf data set is an in-house collection of rather similar images, taken from
slightly different viewpoints. Figure 4.1 shows a number of example images.
Very similar objects are combined to form a total of 35 classes to conf35. These
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Table 4.1: Summary of the musk1 and musk2 datasets.

Data set |C1| |C2| # instances
# instances
|C1|+|C2|

musk1 45 47 476 5
musk2 63 39 6598 65

abe city night jellyfish monument panda temple

Figure 4.1: Example images of the conf dataset taken from 6 classes.

classes have also been summarized to form a more general class assignment of
8 classes (conf8).

For generating image descriptors, each image has been down-scaled to a
maximal width or height of 200 pixels in order to be efficiently processed by
the SIFT (Scale-Invariant Features Transform) Key point Detector by [106,
107]. This results in a set of so-called interesting points which are localized
at distinctive regions of the image and are represented by a 128-dimensional
feature vector describing the specific image region’s gradient distribution. The
number of interesting points (the instances) varies with the size and entropy
of an image. Their distribution is outlined in Table 4.2.

Note that for color images, we usually observe very good results when using
color-based image descriptors. Especially for this very homogeneous dataset,
we have noted better classification results using simple color histograms with
lower dimensionalities than the 128-dimensional SIFT descriptors. However,
the goal of the investigations of this thesis was the application similarity search
in medical images, which are mostly represented in grey-values. Therefore, we
use SIFT descriptors for validating the distance measures introduced in this
chapter.
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Original SIFT descriptor

Reduce to
⇒

Compressed SIFT descriptor

Figure 4.2: Reduction of SIFT descriptors from 128 to 32 dimensions: the
gradient histograms represented by 8 values each of the 16 original image
quadrants are summarized into 4 quadrants.

32D-SIFT Still, due to the high dimensionality of the SIFT descriptor’s
feature vectors, various attempts of dimensionality reduction have been made
(e.g. [93, 10]). In a number of testing trials, we have discovered a low-loss
reduction of the SIFT descriptor to 32 dimensions. The original descriptor
recursively divides the image patch to be described into 16 sub-windows by
first dividing the region of interest into 4 quadrants. Each sub-window is then
described by an 8-dimensional Histogram of Gradients [36] which is being
formed according to a Gaussian weighting kernel applied over the complete
image patch.

We found that joining those 16 groups again such that they form back into
the 4 original quadrants bears hardly any loss in matters of predictiveness.
Thus, all image datasets can also be represented by 32-dimensional, summa-
rized SIFT vectors. The compression step is illustrated in Figure 4.2.

4.5.2.3 Caltech Dataset

The Caltech 101 data set was first presented in [58]. It is an image dataset
of 9 144 images ordered into 102 object categories presenting various objects.
For the multi-instance experiments of this thesis, we restrict the tests on this
dataset to a small subset easyCT, containing 100 images of 10 image cate-
gories. The complete dataset was only used for runtime tests, but never for
a qualitative evaluation of multi-instance distance measures. The interested
reader should note that since 2007, there is also a Caltech 256 dataset available,
containing 30 607 images of 257 categories. [72] Besides an increased number
of images, it poses an additional challenge by providing more versatile lighting
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Table 4.2: Summary of the tested image datasets using SIFT descriptors (of
182 and 32 dimensions). c: number of classes, |D|: number of images.

Data set |D| c |D|
c

# instances
# instances

|D|

conf35 183 35 5 38 589 211
conf8 183 8 23 38 589 211
easyCT 100 10 10 50 648 506
Stock4B 1 743 80 22 335 583 193

and image background conditions.
As the Caltech 101 dataset already contains rather small images of approx-

imately 300 pixels width, we refrained from a further downscaling step before
extracting SIFT features. Due to the smaller image extension of 200 pixels
used in the conf dataset, the number of interesting points per image in the
easyCT is more than doubled.

4.5.2.4 Stock4B Data Set

Another image data set was made available to the LMU by STOCK4B [172],
an image stock agency in Munich. The Stock4B dataset consists of 1 743
images, loosely ordered into 80 categories. These categories, however, only
represent a small fraction of 1 300 boolean attributes which have been assigned
to matching images. The missing categories will not be taken into account for
the experiments of this thesis.

We again derived SIFT features on images scaled to a maximum width or
height of 200 pixels. Consequently, the number of interest points per image is
comparable to the conf datasets.

4.5.3 Results

The following experiments display accuracy and runtime screenings for the
basic distance measures introduced in Section 4.2 and the instance indexing
approaches of Section 4.4.2. Since none of the instance weighting strategies
introduced in Section 4.3 proved to be valuable in practical applications, the
corresponding experiments are omitted.

4.5.3.1 Ranking Quality

The results of the experiments of the basic multi-instance distance measures
are summarized in Table 4.3 (on page 90). The datasets musk1, musk2, conf8,
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conf35, easyCT and Stock4B have been tested by k-NN classification for a
range of k ∈ {1, 2, 3, 5} for the distance measures Average Linkage (AvgLink),
Minimum Distance (MinDist), Half the Sum of Minimum Distances (HMD),
Sum of Minimum Distances (SMD), the asymmetric Hausdorff distance (HD
asym.), Hausdorff Distance (HD) and the Convolution Distance (CD) for the
linear kernel (dot) and an RBF kernel (RBF). The RBF kernel is defined as

kRBF(a, b) = exp

(
−(a− b)T · (a− b)

2σ2

)
, (4.25)

for real-valued feature vectors a, b ∈ F = Rd, in a d-dimensional space. The
RBF kernel’s σ parameter has been estimated in a comparable manner as
in [70]: we sample a large number of instance pairs from the database and take
the median Euclidean distance of the sample as an estimate for σ. Naturally,
this is only a heuristic which can be further improved by excessive parameter
screening. Experiments for Maximum Mean Discrepancy (MMD) are omitted:
due to its assumption that multi-instance objects are drawn from a single
distribution, it performed worse than the comparable Convolution Distance
with an RBF kernel in any experimental setting.

Table 4.3 shows the best classification accuracies (Acc: number of correctly
classified objects / database size) per dataset and distance measure, together
with the k parameter that returned the best classification. All experiments
but the tests of the conf and Stock4B datasets are averaged over 10 repetitions
of 10-fold, stratified cross-validation. This setting was chosen for historical
reasons in order to allow a fair comparison to the trained distance measures
in Section 4.3. The actual accuracies of a leave-one-out setting are slightly
higher.

We see that for most datasets, the best experiments were achieved using
the Sum of Minimum Distances (SMD), whereas Hausdorff Distance (HD)
and Half the Sum of Minimum Distances (HMD) performed best for only one
dataset each. While the relative performance of SMD and HMD is rather stable
over most tested datasets, HD appears to be only suited for the musk datasets
and not for the SIFT-based test sets. The same observation holds for the
asymmetric Hausdorff distance (HD asym.) and Average Linkage (AvgLink).

The group of Convolution Distances (CD) appears to be well-suited for the
musk datasets, it has mediocre validation values on the conf datasets and it
is not appropriate for the less homogeneous Caltech (easyCT) and Stock4B
datasets.

In general, the 32-dimensional SIFT descriptors perform slightly worse than
the larger, 128-dimensional SIFT descriptors, but this is not always the case.
Overall, the variations in accuracy are rather strong within a set of cross-
validation experiments: the standard deviations of the accuracy range from
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Table 4.4: Accuracies of Indexing-based Multi-Instance Distance Measures.
Evaluated via 10x10-fold cross-validation (in case of conf, only 5-fold) for a
screening of k ∈ {1, 2, 3, 5, 10, 25}.

Avg. k-Min. Link. Geom. k-Min. Link. k-Min. Dist.

Dataset Acc k Acc k Acc k

musk1 0.864 2 0.870 3 0.851 25
musk2 0.816 10 0.802 25 0.784 25

conf35 32D 0.889 2 0.898 5 0.838 10
conf8 32D 0.854 3 0.861 3 0.890 2
easyCT 32D 0.556 1 0.556 1 0.252 25

1 % (in musk1) to 10 % (in musk2) to more than 30 % in many experiments on
noisy image-based datasets.

Table 4.4 validates the accuracies of the instance-indexing-based similarity
retrieval approaches introduced in Section 4.4.2. In order to provide realistic
runtime tests in the following section, the experiments are restricted to the
musk datasets and the dimensionally reduced image datasets. We see that the
performance of instance indexed retrieval is mostly competitive to the actual
multi-instance distance measures presented in Table 4.3. Even though the top
performers among the multi-instance distances are rarely excelled, on average,
this flat classification scheme completely ignoring the multi-instance structure
of the tested datasets appears to be sufficient for most applications.

4.5.3.2 Retrieval Runtime

We now want to verify that the indexing-based retrieval approaches are ac-
tually faster than the real multi-instance rankings conducted with a sequen-
tial scan. The experiments listed in Table 4.4 have been generated using
instance indexes organized as X-Trees [15]. Since the X-Tree is actually only
suited for medium-dimensional data, even the retrieval queries on the image
datasets with only 32 dimensions are not optimally sped up, let alone the
166-dimensional musk datasets. As, however, experiments with other index
structures which are better suited for high dimensions like the VA-File [163]
did not result in better runtimes, we decided to stay with the X-Tree.

Figure 4.3 show the query times per query object for four differently-sized
datasets. The grey bars display the number of multi-instance objects and
the total number of instances of the datasets, whereas the lines are query
runtime measurements. Note the logarithmic scale of the y-axes for correctly
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Figure 4.3: Runtimes per query for two types of multi-instance classification
queries on datasets of varying size. The continuous line represents multi-
instance (MI) distance measures; dashed and dotted lines represent runtimes
of instance-indexing approaches.

interpreting the results. We differ between three types of retrieval settings in
the runtime measurements:

MI The MI line summarizes runtimes of sequential scans using multi-instance
distance measures requiring the quadratic number of instance distance
computations, i.e. |A| |B| instance distances for two multi-instance ob-
jects A,B ⊆ F . Note that both the Sum of Minimum Distances (SMD)
and Hausdorff Distance (HD) actually require twice the computation
time of the other multi-instance distance measures, however, for expen-
sive distance computations like the high- to medium-dimensional fea-
tures vectors used in this setting, the instance distances can be cached
for avoiding a duplicate computation.

index min links The dashed line summarizes the query runtimes of the Av-
erage k-Minimum Linkage and the Geometric k-Minimum Linkage Clas-
sification experiments. By using the X-Tree on comparatively high-
dimensional datasets, there is nothing left of the runtime improvement
reached by avoiding the quadratic all-against-all complexity of the se-
quential multi-instance scan. In fact, runtimes on the larger image
datasets are even higher than the pure multi-instance approach.

index min links Finally, the dotted line displays the query runtimes of the
Global k-Minimum Distance Classification. Using this strategy, we fi-
nally see that index-based retrieval is faster than the scan-based retrieval
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Figure 4.4: Runtimes per query for lower-dimensional datasets with the same
settings as in Figure 4.3.

using real multi-instance distance measures. In general, this comes at the
price of slightly lower class prediction accuracies.

All experiments were executed in main memory. Therefore, you might ar-
gue that indexing-based queries will in the end profit more on larger databases
than sequential scan experiments. However, only an increased profit is not
sufficient for an application in the real world, if a user has to wait too long for
the classification of one image.

A much stronger argument in favor of the proposed indexing approaches
is their clear superiority to scan-based multi-instance distances in lower-di-
mensional spaces. When reducing the tested datasets to 5-dimensional feature
vectors, the retrieval times are strongly improved for both query approaches,
however, the instance-index methods profit by far more from the dimensional-
ity reduction. The runtimes are displayed in Figure 4.4. Similar observations
can be made on completely artificial datasets.

Note, however, that the accuracies of the underlying classification tasks
suffer enormously from the reduced information content of those simplified
datasets. Even when employing supervised dimensionality reduction methods
like Relevant Component Analysis (RCA) [7], the multi-distributed character
of multi-instance objects just fails to be adequately conserved into the new,
lower dimensional feature space. Image features usually are high-dimensional,
therefore, the attempt of reducing the complexity of an image descriptor can
only succeed in special cases as the approach introduced in Section 5.5.3.
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4.6 Summary

This chapter provided a survey over existing multi-instance distance measures
and suggested a number of improvements w.r.t. accuracy and runtime. Multi-
instance objects represent an entity as a set of sub-entities, the so-called in-
stances. Since multi-instance objects are a common form of image descriptors,
the author of this thesis thought it worthwhile to investigate this special field
of object representation.

The main approach of improving multi-instance distance measures was
based on computing instance weights either for weighting the instances’ contri-
butions to a global multi-instance distance or for selecting meaningful instances
from a dataset. After testing several weighting procedures and instance weight-
ing and selection methods, however, we had to realize that the idea of instance
weighting suffers from various obstacles related to finding the right weights for
the query instances.

Therefore, the experimental validation of this chapter is focused on a gen-
eral assessment of basic multi-instance distance measures on a variety of real-
world datasets and the exploration of runtime improvement possibilities. We
conclude that the qualitative performance of multi-instance distance measures
depends strongly on the properties of the dataset. It appears that minimum
distance-based measures have an advantage of stability over geometrically-
inspired measures like the Hausdorff distance. The overall best-performing
distance was the Sum of Minimum Distances (SMD), which also showed to be
successful in a content-based image retrieval application described in Chap-
ter 6.

In matters of runtime, the proposed improvement strategies of Section 4.4.2
succeeded in lower-dimensional datasets, which are suited for an efficient re-
trieval framework based on spatial indexes. As, however, most image descrip-
tors are high-dimensional, the value of the discoveries presented in this chapter
lies more within the theoretical implications than in an actual practical use for
medical imaging.

The second part of this thesis will thus be dedicated to the examination of
practical applications in medical image search instead of a further investigation
of the theoretical background of similarity search.
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Part II

Similarity Search in Medical
Image Repositories
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The theoretical knowledge on similarity search and image retrieval is steadily
widened and adapted to new application areas. Consequently, the feature
transformation and distance learning approaches introduced in this thesis can
very well be applied on standard imaging benchmarks (e.g. [81, 58, 134, 144])
and depending on their suitability, they will achieve good results. How-
ever, even benchmarks which are explicitly directed to medical image retrieval
tasks like this year’s ImageCLEF task (http://www.imageclef.org/2011/
medical) are abstracted too far from the medical routine for actually being
able to function as an effective test for a real-world medical content-based
image retrieval (CBIR) system.

The challenges in medical CBIR range from very large, unstructured data-
sets over complicated availability issues to a low quantity of adequately-anno-
tated training images. Even though modern hospitals quickly accumulate large
image repositories, in order to guarantee the privacy protection of their patients
they rarely share this data with non-medical research groups. Consequently,
the research project THESEUS MEDICO enjoys a special role in the field of
image retrieval, since it is actually able to use parts of a big real-world dataset
of 3D images collected at the Imaging Science Institute of the University Hos-
pital Erlangen. This data, however, has been thoroughly pseudonymized such
that valuable fields of meta-information like details on the used contrast agent
or even the patient’s age have been removed. As an additional implication,
the images are bare of any additional medical information, because any supple-
mentary repositories of the radiological information system (RIS) like textual
radiology reports or laboratory measurements may not be directly connected
to those pseudonymized volumes.

As mentioned before, CBIR is not yet very common in medicine. Even
in well-defined and technically advanced retrieval applications like cervico-
graphic imaging, the concept of example-based retrieval queries has not yet
been accepted by the users. [4] Therefore, it was a very demanding task to as-
sociate any useful labelling information to the dataset for defining a practically-
relevant use case of image similarity search.

We defined our first CBIR application around the only piece of meta-
information available: the body position of the given 3D volume. Since the
examined patients have varying body sizes and proportions, 3D scans of the
human body are not taken with respect to a standardized body coordinate
system but with respect to a scanner-specific real-world offset. The only infor-
mation available about the actual anatomical type of the scanned body region
is thus a short textual tag in the images’ meta-data and even that may be
wrong. [74] Chapter 5 therefore tackles the problem of automatic anatomical
localization in Computed Tomography (CT) scans by defining a standardized
body coordinate system for providing anatomical information about the scope

http://www.imageclef.org/2011/medical
http://www.imageclef.org/2011/medical
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of a volume. The MEDICO protoype can exploit this information for auto-
matically presenting corresponding body regions and for greatly speeding up
volume retrieval queries.

Additionally, another goal of the MEDICO project was to provide the func-
tionality for actual instance-based image queries. In order to distinguish our
new approach from retrieval systems which have been available at the start of
the project or which were expected to be on the market too soon, we decided
to support 3D queries, i.e. sub-volumes of a three-dimensional intensity grid
representing a CT scan. On the one hand, this posed the challenge of defin-
ing new 3D descriptors which can be efficiently queried in a large repository
of annotations. On the other hand, these 3D annotations to be queried first
had to be generated and labeled according to a medically relevant notion of
similarity. Hence, we defined our second use case as similarity retrieval task
on lesions visible in CT scans. This application is described in Chapter 6 and
it is integrated into the MEDICO protoype as a generic and versatile query
option.

In course of the problem-solving process for those two use cases, we also
tested the solutions for distance learning and feature transformation introduced
in the first part of this thesis. However, in most areas of the underlying
similarity search components, we had to develop alternative solutions due to
scalability or precision constraints. Hence, the bi-partite nature of this thesis.
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Chapter 5

Region of Interest Queries in
CT Scans

The first retrieval application on medical image databases described in this
thesis is a special type of volume retrieval queries. Depending on the required
degree of precision, medical images – and especially CT scans – can become
rather large data objects. In order to guard patient privacy and to guarantee a
centralized data store, all volumes of a hospital are usually stored in a central
Picture Archiving and Communication System (PACS). A user asking to see
a specific volume thus has to wait for the data to be loaded from this server.
Especially if there are multiple requests for large data transfers at the same
time, today’s hospital I/O environments are frequently exhausted and the
waiting times become a real obstactle to the clinical routine.

Additionally, the user frequently is not interested in the complete image
volume, but primarily wants to see a certain subregion, a Region of Interest
(ROI). This ROI may be a general body region like the head, a smaller body
structure like an organ, a specific 2D view of a volume intersection or the same
body part, already opened in another scan. Two possible query scenarios are
displayed in Figure 5.1. Using a standard PACS, the user needs to load the
complete volume and then has to manually navigate to the location of the
actual ROI.

The purpose of this work is to save time required for both actions: loading
the volume and finding the ROI. If the system knew where to find the ROI,
this ROI could be pre-loaded and readily displayed to the user for examination,
while the rest of the volume is either left on the server or loaded with a lower
priority than the ROI. The problem of this approach is that CT scans are not
normalized to a unified coordinate system, but they vary in image resolution, in
the body size and proportion of the examined patient and in the context of the
actually visualized body part. There already are multiple image registration
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Figure 5.1: Two examples for ROI queries: to the left, the user is interested
in the region of the body showing the kidneys. To the right, the user wants to
see the same body region already opened in a template or example scan.

approaches trying to map patient images into a standardized template space,
however, these are expensive to compute and usually they are specialized to a
local body part.

In this chapter, we review efficient methods of registering a CT scan into
a standardized height atlas, which enables the mapping of two volumes along
their height axis. This includes a landmark-based registration approach as well
as the similarity search application of [55], mapping single slices into a stan-
dardized height space. Thus, we are able to query both annotated datasets and
databases which have not yet been subject to any kind of pre-processing. [25]
Both methods can be applied on flexibly-defined ROIs and they are carefully
evaluated in matters of precision and runtime.

5.1 Introduction

Radiology centers all over the world currently collect large amounts of 3D body
images being generated with various scanning modalities like CT, PET-CT,
MRT or sonography. Each of these methods generates a three dimensional
image of the human body by transforming the echo of a different type of signal
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allowing a radiologist to examine the inner parts of a human body. In the
following, we will particularly focus on CT body scans. However, the methods
proposed in this chapter are generally applicable to other types of scans as
well.

Technically, the result of a CT scan is stored as a stack of 2D images
representing 3D slices of the human body, i.e. each slice is considered to have
a certain thickness. The scans in a radiology center are stored in a centralized
picture archiving and communication system (PACS) and they are transferred
via LAN to the workstation of a physician. In commercial PACS, querying CT
scans is currently restricted to retrieving complete scans being annotated with
certain meta information like patient name, date and type of the examination.
Therefore, each time a CT scan is queried, the complete scan, potentially
comprising several thousand high-resolution images, has to be loaded from
the image repository. For example, the data volume of a thorax scan being
generated by a modern scanner comprises around 1 GB of data. Considering
that several physicians will simultaneously query a PACS, the loading time of
a single CT scan is up to several minutes depending on network and server
traffic. Additionally, after loading the CT scan, it is necessary to manually
navigate to the region of interest (ROI) the physician needs to examine.

However, in many cases it is not necessary to display the complete scan.
For example, if a physician wants to see whether a certain liver lesion has
improved between two scans, the user primarily requires the portion of both
scans containing the liver. Therefore, the physician loses up to several minutes
by loading unnecessary information and searching for the liver within both
scans. Thus, a system retrieving the parts of both scans containing the liver,
would save valuable time and network bandwidth.

Parts of a CT scan can be efficiently loaded by raster databases [9] as long
as the coordinates of the ROI are specified. However, in the given context, the
ROI is rather defined by the image content. In other words, the coordinates of
organs and other anatomical regions may strongly vary because of differences
in the patients’ heights or in the scanned body region. Thus, raster coordinates
cannot be used to align to CT scans w.r.t. the image content.

We therefore propose to use an implicit, standardized coordinate system
which can be used to define a concept-based query (like the region containing
the liver or the fifth lumbar vertebra) or to standardize an example-based query
(comprising an ROI which is currently highlighted by the user in an example
scan) into the implicit coordinate system. The result of an ROI query contains
the part of the scan showing the hereby-defined, standardized query ROI in
one or multiple result scans.

The most established approach to answer these types of queries is based
on landmark detection. [137] A landmark is an anatomically unique location
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in the human body which is well-detectable by pattern recognition methods.
To use landmarks for query processing, it is first of all necessary to detect as
many landmarks as possible in the example scan and all result scans. Let us
note that landmark detection employs pattern recognition methods and thus,
there is a classification error, i.e. some of the predicted landmark positions
are error-prone. Furthermore, it can happen that some of the landmarks are
not detectable due to disturbances while recording the scan. Additionally, a
set of landmarks cannot be completely invariant for various patients due to
varying size and proportion. Neither will it be invariant for different scans of
the same patient as there will be distortions due to movement or varying body
conditions (state of digestion, breathing artifacts, loss or gain of weight).

Since these two sources of uncertainty (detection error and imperfect invari-
ance) cannot be completely eliminated in the ensuing volume alignment step
it must be regarded with care. However, having detected a sufficiently large
number of landmarks, it is possible to align both scans and afterwards select
the area from the target scan corresponding to the query. A method using the
principle of landmark-based volume alignment will be presented in Section 5.4.
Our approach is stabilized by using an additional standardized coordinate sys-
tem, which combines the landmark information of a large database of CT
scans. This combination results in an assessable set of standardized landmark
positions which can be also used for aligning volumes with non-complementing
sets of landmarks.

An important aspect of this approach is that landmark detection should
be done as a preprocessing step. Thus, the example scan of an example-
based query and the target scans need to be annotated with the landmark
position to allow efficient query processing. However, this causes a problem
when allowing example scans not being stored in the same PACS. In this
case, the query might not have any landmarks or it is not labelled with the
same set of landmarks. If the example scan and the result scan are taken by
CT scanners from different companies, the positioning systems might not be
compatible. Another problem of the landmark approach is the scope of the
scan. CT scans are often recorded for only a small part of the body. Thus,
it cannot be guaranteed that the scanned body region contains a sufficiently
large set of align-able landmarks for either the example scan and the set of
queried scans in the PACS. To conclude, a fixed and comparably small set of
landmarks is often not flexible enough to align arbitrary scans.

Consequently, we propose a more flexible approach being based on similar-
ity search on the particular slices of a CT scan. [55] This method does not rely
on any time-consuming preprocessing steps, but it can be directly applied on
any example and result scan. Whereas landmark-based approaches can only
align scans with respect to a limited amount of fixed points to be matched, our
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new approach can generate the positions in the scan to be matched on the fly.
Thus, we can even align scans being labelled with different types of landmarks
or scans not having any detectable landmarks at all.

The key idea behind our method is to map single slices of a CT scan to a
standardized height model describing the relative distances between concepts
w.r.t. the height axis of the human body. The height model is independent of
the individual size and proportions of a particular patient. Let us note that
it is possible to use width and depth axes as well. However, the height axis is
the predominantly used navigation axis for CT scans.

By mapping single slices to the model, we can better adjust to limited
information about the scan and we are independent from the distribution of
predefined landmark positions. Our prediction algorithm employs instance-
based regression for assigning a standardized height coordinate to a single
query slice. In order to efficiently answer k-nearest neighbor queries we use
Relevant Component Analysis [7] for dimension reduction of the input space
and then we index our training database using an X-Tree [15].

Landmark-independent ROI queries differ from landmark-based queries as
follows: Example-based queries employ instance-based regression to determine
the query ROI in the standardized height model instead of interpolating it from
a set of landmarks. Then, we need to identify the ROI in each non-annota-
ted target scan corresponding to the query ROI in the height model. Let
us note that this second step is more complicated, since we cannot directly
determine the slice belonging to a particular height value. One solution to
this problem would be to label all available slices with the height value in the
model. However, labelling all DICOM images in an average PACS would cause
an enormous overhead in preprocessing. Since the majority of images will never
be involved in answering an ROI query, we pursue a different strategy. Instead
of preprocessing each image in the PACS, we assign standardized height values
for a given slice on the fly. To make this type of processing efficient, we propose
a query algorithm that alternates regression and interpolation steps until the
queried ROI is found in the result scan.

Let us note that although the solutions proposed in this chapter are very
problem-oriented, the solution principle can be extended to other data as well.
For example, a similar processing scheme can be applied to video streams
(e.g. procedure timing in surveillance videos) or text mining (e.g. news tickers,
twitter streams, age classification in Internet forums).

The rest of the chapter is organized as follows. Section 5.2 surveys methods
that are related to our approach or parts of it. In Section 5.3, we formalize
the two types of ROI queries and give an overview of our system. Section 5.4
describes interpolation methods for aligning CT scans to a generalized height
model followed by an algorithm for learning a body atlas from annotated exam-
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ple scans. Afterwards, Section 5.5 introduces our method for predicting height
values for particular CT slices. Section 5.6 presents the query algorithm for
ROI queries without any pre-processing, and the results of our experimen-
tal evaluation are shown in Section 5.7. The chapter concludes with a brief
summary and ideas for future work in Section 5.8.

5.2 Related Work

In medical imaging, there are various localization or registration approaches.
Most of them are domain specific, like the Talairach space brain atlas [149],
the MNI space [56] or a more recent thorax atlas [160]. Nevertheless, as these
atlases are very specific to their domain, they were not designed to cover the
entire body and they can thus hardly be used for general ROI queries.

Position mapping via landmark-detector-based approaches like the THE-
SEUS MEDICO system presented in [137] are more appropriate for our pur-
pose. This prototype provides an image parsing system which automatically
detects 22 anatomically relevant landmarks, i.e. invariant points, and 9 or-
gans. [136] It is thus possible to query the database directly for ROIs which
are equivalent to these automatically-annotated image regions. However, gen-
eral queries for arbitrarily defined ROIs are not yet supported.

A more general, landmark-based interpolation approach for mapping a vol-
ume into a standardized height space has been proposed by [76]. However, it
is very patient-specific and dependent on the used landmarks. Another ap-
proach that uses partial volumes as query is described in [59]. It localizes
query volumes with sizes ranging from 4 cm to more than 20 cm by comparing
the partial volume with an implicit height atlas based on Haar-like features.
In [55], we presented an alternative method such that only a single query slice
is needed in order to achieve comparable results. We will examine this method
in Section 5.5.

Section 5.5.3 introduces an iterative interpolation and regression approach.
In contrast to established regression methods, [83, 120] we enhance our model
with newly generated information after each iteration in order to refine the
final model until convergence is reached.

We experimented with several regression methods from the Weka machine
learning package [77]. However, simple approaches like linear regression did
not yield a sufficient prediction accuracy and more complicated approaches
like support vector regression using non-linear kernel functions could not cope
with the enormous amount of training data. Therefore, we decided to employ
instance-based regression which is robust and sufficiently fast when employing
techniques of efficiently computing the k-nearest neighbors (k-NN). In partic-
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ular, we employ k-NN queries being based on the X-Tree [15]. Let us note that
there are multiple other index structures [133] for speeding up the same type
of query. We decided to employ the X-Tree because it represents an extension
of the standard R*-Tree [99] which is better suited for higher dimensionalities.

Current database systems like RasDaMan [9] already support conventional
region of interest queries in raster data like CT scans. Nevertheless, the system
needs to know the coordinate system in which the query is applied in order to
navigate to the requested region. As we do not know the complete coordinate
systems of the patients’ CT scans in advance and since patients differ in height
and body proportions, and thus, locations along the z-axis are not standard-
ized, a globally fixed coordinate system will not be available in our setting.
Therefore, our new approach represents a way to bridge the gap between the
coordinates in the query scan and the coordinate system of the result scan.

5.3 Workflow Overview

In this section, we specify the proposed query process and give an overview of
the proposed system.

Definition 23 (Volume Dataset, Standardized Height Space)
A volume dataset consists of n volumes vi ∈ Nx(i)×y(i)×z(i) with i ∈ {1, . . . , n}.
Each integer value within the grid of a volume is termed a voxel. Conseqeuntly,
x(i), y(i) and z(i) are referred to as voxel dimensions. The standardized height
space H ⊂ R is an interval [hmin, hmax] with hmin, hmax ∈ R representing the
extension of the human body in the z-axis.

Note that H is not equivalent to a patient’s real-world height in millimeters,
since the standardized height space is designed to be independent of any given
volume vi.

Definition 24 (Mapping Functions h and s)
A mapping function hi : N → H maps slices of volume vi to a standardized
height value h ∈ H. Correspondingly, the reverse mapping function si : H → N
maps a position h in the standardized height space to a slice number s in vi.

As a link between these two spaces, we define matching points:

Definition 25 (Matching Points) A triple p = (si,p,hp,wp) ∈ N×H × R
of a slice number si,p ∈ {0, . . . , z(i)− 1} in volume vi, its corresponding height
value hp in H and a reliability weight wp ∈ R is called a matching point. By
Pi, we denote the set of all available matching points of vi.
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Table 5.1: Notation of frequently used parameters.

n number of volumes

vi ∈ Nx(i)×y(i)×z(i) one volume (i ∈ {1, . . . , n})
H ⊂ R target space / height model
hj one height value in H
si,j one slice number of vi in {0, . . . , z(i)− 1}
wj reliability weight
p = (si,p,hp,wp) matching point
Pi set of matching points of vi
hi(s)Pi

mapping function of N→ H using a set Pi
hregi (s) regression function of N→ H
si(h)Pi

interpolation function of H → N using a set Pi
(ŝi,lb, . . . , ŝi,ub) slice range in vi
[hlb, hub] interval in H
k k-nearest neighbors (k-NN) parameter
F (si,j) : N→ F = Rd feature transformation of slice j of vi with d ∈ N
TA training set for atlas
TR training set for regression

Table 5.1 displays an overview of the most frequently used parameters
including some additional notations that will be introduced in the following
sections.

In our system, a region of interest (ROI) query results in the retrieval of a
consecutive sequence of CT slices (ŝi,lb, . . . , ŝi,ub) ⊆ {0, . . . , z(i)−1} for a query
range [hlb, hub] ⊆ H in the standardized height space from a volume vi. Here,
lb and ub are mnemonics of lower and upper bound, respectively. This query
range can be specified by either giving an example range in another example
volume ve or by defining an anatomical concept with a known standardized
height range.

Figure 5.2 illustrates the complete workflow of query processing for concept-
based queries and example-based ROI queries where the user provides an ex-
ample ROI.

5.3.1 Example-based Query Definition

Definition 26 (Example-based ROI Query) In example-based ROI que-
ries, the queried ROI is described by the content of an example set of consecu-
tive slices (ŝe,lb, . . . , ŝe,ub) ⊆ {0, . . . , z(e)− 1} in volume ve.
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Figure 5.2: Workflow of ROI retrieval for concept-based and example-based
queries.

In practise, the user specifies an ROI query on the client computer by
marking a region in an example scan ve. Additionally, the queried scan vi has
to be identified for the server.

The query interval [hlb, hub] ⊂ H of an example-based ROI query can be
determined using mapping function he on the slices of the given example ROI.
This chapter contains two ways of implementing he: Section 5.4 describes
an interpolation approach, which requires an existing mapping of ve to an
anatomical atlas of body landmarks. This mapping defines matching points
Pe with p = (se,p,hp,wp) ∈ Pe mapping the slice se,p of ve of landmark p to its
standardized atlas position hp and weight wp.

In Section 5.5, we describe a regression approach which derives the lower
and upper bounds hlb and hub via an instance-based regression function hrege (s).
This function derives image features for the lower and upper slice of the ex-
ample ROI. Thus, it is not necessary to transfer the complete marked subset
of slices of ve to the server. Instead, it is sufficient to transfer a scale-reduced
version of the first and the last slice of the subset. After receiving the slices,
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the server performs a feature extraction step generating image descriptors for
both slices. As an alternative, the client computer can also directly compute
the required image descriptors and only transfer the descriptors.

5.3.2 Concept-based Query Definition

Definition 27 (Concept-based ROI Query) In concept-based ROI que-
ries, the queried ROI is described by the named concept c ∈ C, e.g. an organ
like the heart or the liver. C is the set of all considered query concepts.

Concept-based queries require a global body atlas which contains a prob-
ability distribution Pc(H = h) for the standardized heights of each concept
c ∈ C. This allows to specify a query range [hlb, hub] ⊆ H as[

argmax
h
{Pc(H ≤ h) ≤ τ}, argmin

h
{Pc(H ≥ h) ≤ τ}

]
(5.1)

for any concept c and a threshold quantile τ . (By default, we use τ = 0.05).
Section 5.4.2.4 describes our way of obtaining the probability distribution

of such a standardized body atlas.

5.3.3 ROI retrieval for a standardized height range

With the query interval [hlb, hub] given, the server applies si(h) to determine
the result set of corresponding CT slices (si,lb, . . . , si,ub) ⊆ {0, . . . , z(i)− 1} in
the queried volume vi. Afterwards, the CT slices from si,lb to si,ub are trans-
ferred to the client computer. Let us note that si(h) returns an approximative
slice range (ŝi,lb, . . . , ŝi,ub), which is usually extended by the amount of slices
corresponding to 90 % of the expected prediction error in order to compensate
for the inaccuracy of the used mapping functions.

Comparable to the query specification of a query-by example, we examine
two ways of implementing si(h). If volume vi is already registered into a
height atlas, the interpolation approach of Section 5.4 can also be used for the
mapping s : H 7→ N. Else, vi must first be transformed into the standardized
height space H. The straightforward way would be to map all slices of vi to
H with the regression approach introduced in Section 5.5. The resulting set
of z(i) matching points Pi would then be used for interpolating a compromise
result range – a necessary measure, since the matching points are prone to
contradict each other due the a given uncertainty of hregi (s). This approach,
however, is rather expensive, since it requires the slice retrieval and feature
computation for all slices of vi.
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A more efficient way of aligning volume vi to the height model H is an
algorithm described in Section 5.6. Its aim is to find the trade-off between
a low number of matching points and a high reliability of the resulting slice
range.

5.4 Interpolation using Matching Points

If a set of matching points Pi is available for a given volume vi, they can be used
for defining the functions s : H 7→ N and h : N 7→ H for mapping positions in
the standardized height space H to a specific slice number of vi and back. The
following section will present some interpolation functions which are suitable
for implementing s and h, whereas Section 5.4.2 introduces several ways for
obtaining standardized H coordinates of a set of landmarks which can be used
for defining such a set of matching points.

5.4.1 Interpolation Functions

The first interpolation approach maps a scan vi to the height model H based
on a set of available matching points Pi. Inspired by a setting of Haas et
al. [76], we tested various non-linear interpolation approaches for dealing with
varying body proportions and imprecise matching points.

The function hi(si,q)Pi
maps slice number si,q of volume vi to a height value

hq ∈ H. The dependency of hi(si,q)Pi
on the scan vi is determined by the set of

matching points Pi and the slice spacing δi describing the thickness of a slice
in the target space H. We approximate δi as the median slice spacing over all
pairs of matching points in Pi:

δ̂i = median(p,p′)∈Pi,si,p 6=si,p′
|hp−hp′| / |si,p− si,p′ | . (5.2)

Let us note that we use the median in order to achieve a higher stability against
outliers caused by unreliable matching points. Our interpolation functions for
predicting the standardized height of a slice si,q are based on a linear term
δi · si,q with a potentially non-linear offset. The mapping hi(si, q)Pi

is thus
defined by the following interpolation function

hi(si,q)Pi
= δi · si,q +

∑
p∈Pi

wp ·relp(si,q) · (hp−δi · si,p)∑
p∈Pi

wp ·relp(si,q)
, (5.3)

where relp(si,q) is a relevance term for the matching point p w.r.t. the input
slice si,q. Its flexible definition allows the realization of various characteristics
of the matching points’ local influence.
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The simplest relevance function is equivalent to a weighted linear interpo-
lation. Relevance function (lin) is defined as

rellinp (si,q) = 1 . (5.4)

When defining more sophisticated relevance functions, we aim to weight
matching points which are close to the query slice si,q higher than far away
matching points. This way, the influence of closer matching points is increased
in comparison to potentially irrelevant matching points. The relevance term
is thus used in a kernel smoothing manner.

We introduce the inverse absolute difference (abs) between the slice num-
ber of the matching point si,p and the query slice si,q. In order to limit the
maximal possible relevance, we additionally require a stabilizing parameter t:

relabsp (si,q) = min
(
t, |si,q− si,p|−1

)
. (5.5)

In our experiments, we usually set t = 1. A variant of this function is the
squared inverse difference (sqr):

relsqrp (si,q) = min
(
t, (si,q−si,p)−2

)
. (5.6)

Since we can also accumulate knowledge about the deviation σp of the under-
lying distribution function of a matching point p, we also test a radial basis
function as a relevance term (rbf):

relrbfp (si,q) = exp

(
−(si,q− si,p)

2

σ2
p

)
. (5.7)

The relevance terms are visualized in Figure 5.3(a). Their effects on the
mapping function of a toy dataset of matching points Pi are shown in Fig-
ure 5.3(b).

We also considered to use other interpolation families like bilinear interpo-
lation, locally-weighted polynomial regression [32] or other kernel smoothing
schemes. Since, however, our experiments showed a clear advantage of the
simpler interpolation schemes lin and abs in comparison to the more locally
adaptive sqr and rbf approaches, we concluded that the given use case does
not require any more complex interpolation procedures.

For mapping model positions in H to slices in N we transform the interpo-
lation function hi(si,q)Pi

to a reverse interpolation model si(hq)Pi
:

si(hq)Pi
=

hq
δi
−

∑
p∈Pi

wp ·rel′p(hq) ·
(

hp

δi
− si,p

)
∑

p∈Pi
wp ·rel′p(hq)

. (5.8)
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Figure 5.3: Relevance terms and exemplary behaviour of the proposed inter-
polation family.

The transformation inverts the spacing δi and swaps the mapping spaces N
and H. Additionally, a relevance function rel′ now uses position differences
in the model scale instead of slice differences like the relevance functions rel.

The following section will describe how the proposed interpolation ap-
proaches can be used for training an atlas of globally-available matching points.

5.4.2 Height Atlas Definition

The accuracies of the above query specifications are mainly dependent on the
quality of the matching points Pi of the given volume vi. A comfortable way to
generate these matching points is to use a standardized height atlas (h,w) ∈
H×R which maps standardized heights and reliability weights to a pre-defined
set of concepts C. In medical imaging, these concepts are usually landmarks,
which can be quickly detected and are located at anatomically meaningful and
physically stable regions in the body.

There are two principal ways to generate such an atlas: using the real-
world landmark positions of a template or example volume or by forming a
consensus model from a set of manually-aligned scans. Since these approaches
are biased, we additionally propose a refinement algorithm, which improves an
existing atlas by iterative adaption to a larger dataset.
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5.4.2.1 Model by Example (exmp)

A Model by Example atlas (exmp) is formed using a single, well-selected ex-
ample volume. Our example scan is a publicly available full body scan (http:
//pubimage.hcuge.ch:8080/, MELANIX) showing a 1.75 m tall woman. We
use the landmark detector of Seifert et al. [136] which annotates each scan with
up to 22 landmarks for defining a set of concepts C. In order to account for
inaccuracies of the detection process, we average the output of the landmark
detector over varying resolution scales as h and derive the weights w from the
variation of the detected coordinates for each landmark.

5.4.2.2 Manually Aligned Examples (align)

Another way of atlas generation is to use various versions of detected landmark
positions in a manually standardized volume set (align). [55] Our annotation
procedure of a scan vi consists in defining standardized height values h0 and
hz(i)−1 for the scan’s lower slice si,0 and its upper slice si,z(i)−1. Any remaining
height values are linearly interpolated between these two fix points.

The dataset used for the (align) atlas consists of 33 CT scans (12 female,
21 male patients) which were manually mapped into a standard [0, 1] scale
(0=feet, 1=head). On average, 16 of 22 landmarks were detected by the land-
mark detector of [136]. The standardized height hc of a concept c is defined
as the median of the annotated height values, and the weight wc is formed
from a combination of its inverse standard deviation and the number of scans
c occurs in. This model is less biased than exmp, but it can be subject to
annotation imprecision.

5.4.2.3 Learning a Standardized Height Atlas

The atlases exmp and align can both be further improved using an expec-
tation maximization (EM) like procedure (c.f. Algorithm 7) starting with an
initial atlas Mseed = (h,w) ∈ H |C| × R|C|. The algorithm requires an interpo-
lation function h and slice annotations (s)i,c ∈ Nn×|C| for the set of detectable
landmarks or concepts C within a database of n volumes. Note that there will
not be a concept annotation for every si,c, since not all volumes will show all
concepts and there may be false negatives of the detector.

In iteration step t, the concept slice positions s are combined with the
current atlas Mt to generate a set of induced matching points P̂i = Pi,Mt−1 =
(si,h,w) for each training scan vi. Applying hi(si,c)Pi,Mt−1

to determine a new
standardized height value in H for each scan vi and each concept c, we then
generate a new atlas model from step 4 to 11 in a similar way as the align
model: for every concept c, a new standardized height value ĥc is defined as

http://pubimage.hcuge.ch:8080/
http://pubimage.hcuge.ch:8080/
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Algorithm 7 Atlas Refinement

Input: s ∈ Nn×|C|: slice numbers for n volumes and |C| concepts (allowing
missing values), Mseed ∈ H |C| × R|C|: atlas of the concepts’ positions and
reliabilities, h: interpolation function, εA: minimum model improvement

1: function Adapt Model(s,Mseed, h)
2: M0 ←Mseed; err0 ← LossMSE (s,Mseed, h)
3: for t ∈ 1 : tmax do
4: P̂i ← Pi,Mt−1 . Generate matching points from s and Mt−1
5: for c ∈ 1 : C do . Generate new model using h

6: ĥc ← mediani∈{1,...,n}

{
hi(si,c)P̂i\{pi,c}

}
7: ŵsd

c ← 1/
(

stdevi∈{1,...,n}

{
hi(si,c)P̂i\{pi,c}

})
8: ŵocc

c ← size ({i ∈ {1, . . . , n}| si,c was found})
9: end for

10: ŵ← normalized ŵsd + 0.5 · normalized ŵocc . Combine weights
11: Mt ← (ĥ, ŵ) . File the new model
12: errt ← LossMSE (s,Mt, h) . Evaluate
13: if errt−1 − errt < εA then . No sufficient improvement
14: return Mt−1 . Previous model
15: end if
16: end for
17: return Mtmax

18: end function

Output: New height atlas adapted to the dataset s

the median standardized height as returned by the given interpolation function
hi(si,c)P̂i\{pi,c}. Note that the matching points pi,c = (si,c,hc,wc) are of course

excluded from the re-computation of concept c (step 6).
In order to form new relevance weights ŵ, we aim to attest a high relevance

to concepts which mostly map to the same standardized position and which
can be detected frequently. The concept weights ŵc (step 10) are thus con-
structed from a combination of the inverse standard deviation of the predicted
standardized heights (step 7) and the relative number of occurrences (step 8).

The quality of the new model is evaluated using a least squares error func-
tion: LossMSE (s,Mt, h):

LossMSE (s,Mt, h) =
n∑
i=0

∑
c∈C

(hi(si,c)Pi,Mt\{(si,c,hc,wc)} − hc)
2 (5.9)

If the new model is a significant improvement, the algorithm proceeds with
the next iteration t+1, else it returns the previous model Mt−1. The maximum
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Figure 5.4: Empirical density distributions of three landmarks and the organ
boundaries of the right kidney when mapped to the atlas scale via hi(si,q) using
abs interpolation based on an exmp seeding.

number of iterations tmax should be limited in case there are unexpected effects
of the optimization procedure.

5.4.2.4 Collecting the Atlas Distribution

We have now seen various ways to define a standardized height atlas (h,w)
for a set of concepts C. This atlas can be used for defining matching points
Pi for a volume vi for which a set of concepts could be successfully detected.
One question still remains: How to define the retrieval range [hlb, hub] for a
concept-based query as defined in Section 5.3.2?

This range can be extracted for a given confidence threshold if a standard-
ized height distribution Pc(H = h) for every concept c is available. In fact:
Algorithm 7 already uses these distributions for re-computing the atlas posi-
tions hc. The H coordinates hi(si,c)P̂i\{pi,c} of the matching points generated
in step 6 define the distribution of concept c.

In order to efficiently compute the quantile heights needed for deriving
a standardized query height range for a concept, it would be beneficial to
approximate these distributions as a distribution function like a normal dis-
tribution. When, however, generating the concept distributions for various
concepts, we quickly discarded this idea, since the concepts’ distributions are
too dissimilar. Density distributions of three exemplary landmarks as gen-
erated by Algorithm 7 on a repository of 371 CT volumes are displayed in
Figure 5.4. The figure additionally shows the density distribution of the right
kidney (in yellow). The landmark and organ detectors used here were provided
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Figure 5.5: The distribution of landmark and organ boundaries when mapped
to the atlas scale via hi(si,q) using abs interpolation based on an exmp seeding.

by Seifert et al. [136]. Evidently, the organ boundaries cannot be modeled in
the same way as the landmark boundaries.

The THESEUS MEDICO framework thus supports concept distributions
in the form of height distribution histograms. This flexible setting also enables
the description of non-point concepts, which are required for handling organ
height distributions.

Figure 5.5 displays the observed density distributions in H for the 22 land-
marks and 9 additional organs’ boundaries collected in a run of Algorithm 7
with the exmp mapping as seed model Mseed using abs interpolation.

5.5 Slice Localization via Instance-Based Re-

gression

This section introduces our method for mapping a single slice into the stan-
dardized height scale H. In order to answer ROI queries on a scan vi in the way
introduced in Section 5.4, it is necessary to have at least two matching points
as a set Pi. For the experiments within the THESEUS MEDICO project, we
use the landmark detector of [136], which detects up to 22 landmarks within
the thorax region. In roughly a third of our tested scans, however, the detector
does not return any or not enough matching points. The reason why the detec-
tor failed to find landmarks were the following: The image quality is too fuzzy
for the detector, the body region covered by the scan is not big enough or only
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Figure 5.6: Overview of content-based matching point generation using
instance-based regression. (The human model visualization is taken from
Patrick J. Lynch, medical illustrator and C. Carl Jaffe, MD, cardiolo-
gist at http://commons.wikimedia.org/wiki/File:Skeleton_whole_body_
ant_lat_views.svg)

a single slice is available. Further drawbacks of employing landmark detection
for generating matching points are the complexity and availability of reliable
detectors and that their runtimes are not suitable for interactive query pro-
cessing. In order to allow instant query processing on arbitrary scans, a faster
and more flexible method should be employed that can efficiently generate a
matching point for any given slice in the queried scan.

We thus use the instance-based regression technique we proposed in Emrich
et al. [55] for generating matching points if none are available. This approach
maps a single slice si,q into the standardized height scale H using 2D image
features for a pattern-based regression. To train the regression function, we
employ a training set of CT scans TR where each slice is labelled with a height
value h ∈ H. An overview of this approach using instance-based regression
can be see in Figure 5.6.

An example-based query as defined in Section 5.3.1 using this second kind
of matching points transfers a scale-reduced version of the first and the last
slice of the query ROI to the server and predicts the coordinates [hlb, hub] by
instance-based regression instead of landmark-based interpolation.

http://commons.wikimedia.org/wiki/File:Skeleton_whole_body_ant_lat_views.svg
http://commons.wikimedia.org/wiki/File:Skeleton_whole_body_ant_lat_views.svg
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5.5.1 Regression Features

We tested various feature types on their suitability for the slice localization
problem. A wealth of image features has already been tested in the field of
similarity search and information retrieval [44] also on medical images, [2]
however, every use case requires its own specialized feature type.

In the regression problem at hand we have to discard the third dimension of
the single slices’ source volumes. Even though this causes a loss of information,
it clearly facilitates the problem. In 2D, there are two general approaches of
generating image descriptors: global image descriptors generate one descriptor
per image, whereas patch-based image descriptors form a set of descriptors
describing a set of sub-images, the number of which is usually unknown.

Examples for global image descriptors are thumbnails or grey-value his-
tograms. They typically result in a single, d-dimensional feature vector can be
comfortably handled by most distance measures of classical retrieval systems.

A patch-based descriptor first identifies the image patches, the image sub-
regions which are to be described in more detail. Then, those patches are all
represented by any given (global) image descriptor. The resulting unordered
set of image descriptors forms a multi-instance object which must be handled by
special distance measures (see also Chapter 4). The best-known patch-based
descriptors are SIFT [107] and SURF [10]. Due to their high degree of detail,
they have been shown to be very effective in the fields of scene-recognition and
object tracking. For the usage in image retrieval, however, they tend to be too
inflexible in matters of descriptiveness and too demanding in their runtime
requirements.

Thus, a third group of image descriptors has evolved. Comparable to patch-
based descriptors, they also compartmentalize the image into subregions, how-
ever, they do so following a strict pattern. This ensures a constant number
of patches, which can be handled more easily by the retrieval query pipeline.
Among this group, we received good results when applying a spatial pyramid
kernel as in [104] for obtaining locally sensitive features.

5.5.1.1 Spatial Pyramid Kernel

A spatial pyramid kernel recursively divides the image into disjoint subregions.
In the original implementation [104], the division resembles the quad tree [60]
partitioning: the first sub-descriptor is generated from the complete image,
then it is divided into four disjoint, equally-sized subregions by a split along
the x and y axes which can then be further sub-divided (c.f. Figure 5.7(a)).
The resulting image features are normalized and concatenated into a single
feature vector. In order to ensure a better comparability among the various
levels of the partitioning, the authors of [104] additionally down-sample the
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image resolution of the higher levels in the division hierarchy (featuring fewer
divisions).

For our regression problem, we use the Pyramid of Histograms of Orien-
tation Gradients (PHOG), derived from Bosch et al. [20]. They employ a
Histogram of Oriented Gradients (HOG) [36] as image region descriptor and
they skip the down-scaling step for higher levels.

The original PHOG descriptor, however, suffers from two problems: First,
the dimensionality of the resulting feature vector increases exponentially with
the number of recursive sub-divisions. Since two recursive divisions as in Fig-
ure 5.7(a) showed to provide an insufficient level of detail, we would require a
descriptor formed from (1+4∗(1+4∗(1+4))) = 85 regions. Second, the center
split for every dimension is not well-suited for medical images, which usually
bear some axial symmetries but are rarely perfectly centered. Thus, even a
slight shift of the split axis can have a large effect on the resulting descriptor.

(a) Original pyramid kernel
using 21 regions. [20]

(b) Modified pyramid ker-
nel using 25 regions.

(c) Modified pyramid ker-
nel after BB detection.

0

50 
without BB

0

50

with BB

(d) PHOG descriptor for (b) (top, complete image) and (c) (bottom, using a Bounding
Box). Each plot displays the feature vector resulting for the given image.

Figure 5.7: Modified spatial pyramid kernels and the impact of Bounding Box
(BB) detection on the resulting feature vectors.

We thus use a modified version of the PHOG descriptor, which applies
an uneven number of recursive splits per axis. This mildens the centering
problem. Additionally, we found one split to be sufficiently descriptive for a
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(a) Metallic artifact. (b) Full HU window. (c) Bone window.

Figure 5.8: Examples for image distortion (in (a)) and varying grey-value
windows for an example head scan ((b) and (c)).

split dimension of 5 splits per axis. Thus, our new PHOG descriptor is formed
using 25 disjoint, equi-sized regions as in Figure 5.7.

5.5.1.2 Preprocessing

Before applying our chosen image descriptor, however, we have to consider a
couple of pre-processing steps. Since a CT scan is not a common photograph,
a number of obstacle may disturb the resulting images. In [8], Barrett et al.
present a survey on the variety of image distortions like movement artifacts or
disturbances by metallic objects. Many of these sources of error are already
treated by the hospital software, yet, some distortions cannot be completely
removed.

Figure 5.8(a) shows an exemplary metallic artifact caused by a dental inlay.
Such an artifact strongly distorts the resulting image features. Thus, our
strategy is to use as many data points as possible in our regression approach
in order to collect a great variety of special cases and to incorporate them into
the resulting decision function.

Grey Value Windowing Additionally, the perception of medical images
can be dramatically altered with the choice of the visible image value range.
In DICOM images, [117] the medical image standard, the grey value range of
CT scans is usually defined by the Hounsfield (HU) scale. [22] The Hounsfield
scale describes the attenuation coefficient as measured by radiological images,
with HU = 0 being calibrated to the attenuation of water and HU = −1000
corresponding to the attenuation of air. The resulting pixel range of a CT
scan is thus normally represented with 12 bit numbers spanning the HU values
in [−1024, 3071]. Since the human eye cannot distinguish 4096 grey values,
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this means that either a lot of granularity is lost when displaying an image
on the complete HU range (as in Figure 5.8(b)), or the used grey value range
is directly restricted to a grey value window of interest (c.f. the bone window
with HU values [50, 530] in Figure 5.8(c)).

In our first experiments, we especially tested the bone window on its suit-
ability for the slice localization task, since the bones can be assumed to be the
most invariant body element. Various body regions like the abdomen, how-
ever, showed to require more information than the bone structure in order to
be sufficiently resolved. Thus, we discarded the windowing approach as an
additionaly pre-processing step.

Bounding Box (BB) Detection Another method of image adjustment
showed to be more helpful: in Figure 5.7(b) on page 118, we see that the
applied grid of the spatial pyramid kernel contains various empty patches. As
already mentioned, medical images are not necessarily perfectly centered, and
they frequently display differently sized patients or measured regions. It is
thus sensible to only apply the image descriptor to the actual bounding box
(BB) of the visible body region. This way, we can avoid an excess of empty
image patches and the generated image descriptors can be better compared to
each other.

In the MEDICO framework, the bounding box borders of an image are
discovered from the original outer border of the image to its center. A border
(upper, lower, left or right) is defined, once at least 4 % consecutive pixel rows
(or columns) contain at least 20 % pixels with a HU value ≥ −600. This way,
regions containing mostly air are excluded from the image feature generation.

The effect of this BB detector is visualized in Figure 5.7(c). The resulting
feature vector in Figure 5.7(d) when using the detector strongly differs from
the feature vector generated without the BB detector.

5.5.1.3 Used Image Patch Features

Among a number of tested image patch descriptors, two have proven to be
especially well-suited for the slice localization task.

Haralick Texture Features Our first patch representation are Haralick
texture features. [79] We compute all 13 Haralick features for five different
window distance values (1, 3, 5, 7, 11). The resulting patch feature vector thus
contains 13·5 = 65 features. Haralick et al. [79] already stated that some of the
features are highly correlated. Hence, the resulting feature vector contains a lot
of redundant information. In our original publication, we tackled this effect by
applying Principal Component Analysis (PCA) on the resulting image features.
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Our current experiments show that the more advanced feature transformation
approach using Relevant Component Analysis (RCA), which will be described
in Section 5.5.3, is even better suited for eliminating redundant information.

Histograms of Oriented Gradients (HOG)s The second patch repre-
sentation is a Histogram of Oriented Gradients (HOG) [36] as also used in the
SIFT descriptors [107]. For obtaining a HOG, we first detect all relevant edges
with a Canny operator [24] and then determine the gradients’ angles for all
pixels featuring a relevant edge. The resulting angles are then summarized to
a HOG consisting of 7 equally-sized bins.

By aggregating the various image patches of a spatial pyramid kernel as
proposed in Section 5.5.1.1, we receive our version of a Pyramid of Histograms
of Orientation Gradients (PHOG), differing only in the kernel setting from the
approach proposed by Bosch et al. in [20].

Since our query algorithm requires multiple online feature extraction steps
per query, we down-scale the images before feature extraction for speeding
up feature generation. We use a 100x100 pixels resolution for the PHOG
descriptors and 200x200 pixels for the spatial pyramid of Haralick features.

5.5.2 Instance-Based Regression

In this section, we explain the use of our proposed regression scheme. We will
first deal with the regression problem using one object representation form and
then extend it to a multi-represented or multi-modal regression scheme.

5.5.2.1 Single-Feature Regression

We denote by F (si,j) : N → Rd the feature transformation of the sthi,j slice of
volume vi to the final, d-dimensional feature space. Our task is thus to map
a d-dimensional feature vector fi,j corresponding to the jth slice of the scan
vi to the height model H. The problem h : Rd → H could be handled with
any given regression function. However, in our experiments, the majority of
standard regression methods either required extensive training times on our
large datasets of up to 900 000 training examples or they did not yield an
acceptable prediction quality.

Therefore, we employ an instance-based approach to regression: we deter-
mine the k-nearest neighbors (k-NN) of the given feature vector in the training
set TR, consisting of image features r ∈ Rd with existing standardized height
labels h(r) ∈ H, w.r.t. Euclidean distance. In order to avoid distorting effects
of self-matches, the training set TR for any query slice si,j in scan vi may not
contain any of the other slices of vi. This leave-one-out scheme is necessary due
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to a high self-similarity of slices originating from the same scan. Afterwards,
the height of slice si,j is predicted using the following decision function:

hregi (si,j) = median {h(r) | r ∈ TR ∧ r ∈ k-NN of F (si,j)} . (5.10)

The precision of hregi (si,j) can be further improved by allowing only slices
r ∈ TR originating from disjunct volumes to form the k-NN candidate set.
Again, this effect is due to high within-volume similarities. Constraining the
contribution of each template volume in TR to at most one target value de-
creases the probability that the matches contained in the candidate set are
only similar to the query slice si,j due to similarities between the parenting
volumes and not due to an actual height accordance.

5.5.2.2 Multi-Represented Regression

This instance-based regression setting also offers interesting possibilities for
the usage of multiple image features. We can directly extend the learner to
base its prediction on a mixture of l input spaces. In our application, we
face the problem that certain feature representations are less suited for certain
regions of the body, while they provide excellent results in certain other regions.
PHOG descriptors, for instance, are well-suited for areas with a rich bone
structure resulting in various edges. However, they are less descriptive in the
abdomen area.

Thus, combining two or more image representations with a common en-
semble approach is not very promising. Neither is the direct concatenation
of various representations into a single, combined feature vector. Instead, we
propose to use an automatic representation selection approach.

We want to select the image feature representation that most probably
offers the best prediction quality for the current input image. Thus, we first
predict the position of the current input slice in each of the l available feature
representations F f (si,j) with f ∈ {1, . . . , l} and afterwards assign a reliability
value to each representation’s prediction. In instance-based learning, the re-
liability is closely coupled with the variance of the positions within the k-NN
candidate set of each representation

var(f, si,j) = var
{
h(r) | r ∈ T fR ∧ r ∈ k-NN of F f (si,j)

}
, (5.11)

with T fR containing training elements of representation f of the multi-represented
dataset TR.

For large variances, the k-nearest neighbors are localized in different parts
of the body and thus, representation f does not yield a consistent statement
about the slice’s position. If the labels of the k-nearest neighbors point to
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similar positions, var(f, si,j) is small and representation f offers a coherent
prediction.

Our new decision function for multi-represented objects is thus formed as
the prediction corresponding to the representation fmin

i,j providing the smallest
positional variance for a given target slice si,j of volume vi:

fmin
i,j = argmin

f∈{1,...,l}
{var(f, si,j)} , (5.12)

hregi (si,j) = median
{
h(r) | r ∈ k-NN of F fmin

i,j (si,j) in T
fmin
i,j

R

}
. (5.13)

Note that the same restrictions apply for the k-NN candidate set derived from
the various representation datasets T fR as for the single-feature prediction deci-
sion rule (5.10). Furthermore, the k-NN queries required for a prediction only
have to be performed once per representation and since the different represen-
tations are considered to be independent of each other, they can be computed
in parallel.

5.5.3 Query Acceleration by using a Spatial Index

Although instance-based regression does not suffer from extensive training
times, the cost for large example datasets has to be spent at prediction time.
However, the prediction rule does only require to process a single kNN query
per representation. This calls for the use of optimization methods for this
well-examined problem.

In order to allow efficient query processing, we transform the high-dimen-
sional feature space of the proposed image features into a lower-dimensional
space which can be indexed by suitable spatial index structures. For the tests
of this work, we use an X-Tree [15], which is well-suited for data of medium
dimension.

We reduce the input dimensionality d in a supervised way employing Rele-
vant Component Analysis (RCA) [7] with the goal of maintaining the principal
information of the original feature vectors r ∈ Rd. RCA transforms the data
into a space minimizing the co-variances within subsets of the data, which are
supposed to be similar, the so-called chunklets.

Chunklets can be defined by matching a set of class labels or by using clus-
ters. In our setting, we chose to use a purely supervised chunking procedure:
we sort the data points used for training the feature transformation accord-
ing to their height labels and retrieve a pre-defined number (150 chunklets
performed well) of equally-sized data subsets.

We also tested alternative grouping approaches. Usually, our training
datasets show varying support for the different body regions. Thus, using
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fixed bin widths (e.g. 5 mm steps) for grouping the height labels cannot be
recommended. We also tried to further improve our grouping procedure by
applying an additional similarity-based subclustering to chunklets already gen-
erated in a supervised manner. Our experiments, however, did not indicate
any significant improvement of this approach.

Let us note that in case of high-dimensional datasets with a relatively small
number of training instances, the chunklet sizes generated by our proposed
approach may become too small for retrieving an informative within-chunklet
covariance matrix. In our system, we require at least 10 instances per chunklet.
If this number cannot be ensured, either the number of chunklets needs to be
decreased, or we can artificially increase the number of chunklets by allowing
chunklets to overlap with their neighboring chunklets according to their height
label order. This workaround works fine up to a certain degree of information
recycling, however, it never became necessary in the experiments published in
this thesis.

For our datasets, using a 10-dimensional feature representation turned out
to be a viable trade-off between prediction time and accuracy. On the average,
a query took 20 ms while yielding an average prediction error of only 1.98 cm.

5.5.4 Generating Reliability Weights

When using positions ĥregi,j computed with hregi (si,j) as matching points for an-
swering ROI queries, we are also interested in how reliable they are. One way
to determine a position’s reliability was just presented in Section 5.5.2.2. We
could again use the variance of the k-nearest neighbors, with a low variance
indicating a reliable prediction. [55] However, in our setting, the best predic-
tions could often be observed with k = 1 or k = 2. Since building a deviation
on 1 or 2 samples does not make any sense, we had to develop an alternative
approach for approximating the prediction quality.

Therefore, we perform an additional pre-processing step assigning a weight
to all instances r in the training database TR. The weight w(r) of instance r
is determined in a leave-one-out run of hregi (r) on TR: we derive a predicted
height value ĥregr and compare it to the true position h(r). Finally, we deter-
mine the weight w(r) as follows:

w(r) = 0.1/
(

0.1 +
∣∣∣ĥregr − h(r)

∣∣∣) (5.14)

The reliability of a predicted value ĥregi (si,j) is now approximated by the
average weight w(r) over all k-nearest neighbors r of the queried instance si,j.
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5.6 An Online Retrieval Algorithm

In the following, we define a method for retrieving an ROI in a volume vi for
which no matching points are yet available. As mentioned before, the first step
of an ROI query is to determine the query interval [hlb, hub] in the standardized
space H. Depending on the query type, this information may be retrieved from
an example-based query via landmark-driven height interpolation (Section 5.4)
or instance-based regression as proposed in the previous section. Alternatively,
[hlb, hub] can be determined in a concept-based query (Section 5.3.2) by looking
up an anatomically meaningful body part or a set of anatomic regions as query
interval from a given atlas.

Once such a query interval is defined, we need to collect a set of at least two
matching points Pi ⊆ {0, . . . , z(i) − 1} ×H × R for being able to interpolate
from the standardized height space H to the volume space of a slice si,j ∈ N of
volume vi with an interpolation function si(h)Pi

. If a set of matching points is
already given – e.g. via a successful landmark retrieval which could be mapped
to a standardized height atlas – si(h)Pi

can be directly applied on hlb and hub.
The resulting slice numbers ŝlb = si(hlb)Pi

and ŝub = si(hub)Pi
define the result

range (ŝlb, . . . , ŝub) of ROI slices in vi.

In many cases, however, no landmark detector is available or it does not
return the minimally required number of two landmarks. If this is the case,
we propose to use the instance-based height regression approach hregi (s) of
Section 5.5 for manually generating matching points.

5.6.1 ROI Query Processing

Naturally, the quality of the mapping si(h)Pi
directly depends on the quality

of the matching points p ∈ Pi. Having a large set of matching points increases
the mapping quality because it increases the likelihood that reliable matching
points being close to hlb and hub are available. Furthermore, having more
matching points decreases the impact of low-quality matching points. However,
increasing the amount of matching points is connected with generating costs
for feature transformation, dimension reduction and regression.

Thus, we want to employ a minimal number of matching points while
attaining a high interpolation quality. The core idea of our method is to
start with a minimal set of matching points and to measure the quality of the
induced mapping function. As long as this quality is significantly increasing, we
select slices in the query scan and induce additional matching points using the
regression method hregi (s) proposed in Section 5.5. This process is illustrated
in Figure 5.9.

Once a result range (ŝlb, . . . , ŝub) has been determined, we validate its qual-
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height space H

CT scan vi (in PACS)
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ubî,slbî,s
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Figure 5.9: First steps of Algorithm 8: a query range [hlb, hub] is to be found
in a scan vi. In the initial step (1), the seed slices forming the matching
points Pi are selected and mapped to H with hregi . In step (2), Pi is used for
interpolating a result range (ŝlb, . . . , ŝub) in vi. Step (3) validates this result
range using hregi and decides whether a new range should be tested.

ity using the same mechanism of manually generating matching points via
regression hregi (s):

Definition 28 (Validation Error) The validation error of a prediction ŝc
for a value hc is defined as |hregi (ŝc)− hc|.

Since hregi (ŝc) is fixed during query processing, the only possible way to
reduce the error is to improve the quality of the matching points. This can
happen by either updating their weights wj or by adding further matching
points. Even though it is sensible to update weights in special cases, the core
component of our algorithm involves the second improvement variant.

For a given query interval [hlb,hub], our method proceeds as follows (see
also Algorithm 8): We select g equally-spaced seed slices si ⊂ {0, . . . , z(i)− 1}
to generate an initial set of g matching points by predicting their positions as
ĥ ∈ Hg using instance-based regression hregi (si). After deriving the weights
ŵ ∈ Rg obtained in the regression procedure as described in Section 5.5.4 we
can induce an initial set of matching points Pi = (si, ĥ, ŵ), thereby completing
the init(vi, h

reg
i ) step of Algorithm 8. We are now free to make our first

prediction of the result range.
We interpolate ŝ∗lb = si(hlb)Pi

and ŝ∗ub = si(hub)Pi
in the query scan using

the current set of matching points Pi with si, one of the interpolation methods
of Section 5.4. Next, we employ hregi (s) on the borders of the predicted slice
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Algorithm 8 Online ROI Query

Input: vi: Query volume, [hlb, hub]: query interval in H, hregi : height regres-
sion function N → H, si: interpolation function H → N, ε: tolerated result
range deviation

1: function Online ROI Query(vi, [hlb, hub], hregi , si, ε)
2: Pi = (si, ĥ, ŵ)← init(vi, h

reg
i ) . Initialize Pi

3: {errlb, errub} ← {∞,∞} . Errors for lb and ub
4: {ŝlb, ŝub} ← null . Resulting slice numbers
5: while errlb > ε or errub > ε do
6: {ŝ∗lb, ŝ∗ub} ← {si(hlb)Pi

, si(hub)Pi
} . Interpolation

7: {ĥreglb , ĥregub } ← {hregi (ŝ∗lb), hregi (ŝ∗ub)} . Regression

8: {err∗lb, err∗ub} ←
{∣∣∣ĥreglb − hlb

∣∣∣ , ∣∣∣ĥregub − hub
∣∣∣}

9: if errlb > err∗lb then . New lower bound
10: ŝlb ← ŝ∗lb; errlb ← err∗lb
11: end if
12: if errub > err∗ub then . New upper bound
13: ŝub ← ŝ∗ub; errub ← err∗ub
14: end if
15: Get weights ŵreg

lb , ŵreg
ub of new matching points

16: Pi.append
(

(ŝ∗lb, ĥ
reg
lb , ŵreg

lb ), (ŝ∗ub, ĥ
reg
ub , ŵ

reg
ub )

)
. Extend Pi

17: end while
18: return (ŝlb, . . . , ŝub)
19: end function

Output: Result range (ŝlb, . . . , ŝub)

range (ŝ∗lb, . . . , ŝ
∗
ub) and determine the validation error estimate (step 8). If the

lower or upper bound (ŝ∗lb or ŝ∗ub) has been improved compared to the minimal
error observed so far, we update the corresponding resulting slice number vari-
ables for the lower or upper bound (ŝlb or ŝub). Finally, we augment the set
of matching points Pi by the regression prediction hregi (s) for the boundaries
of the target range ŝ∗lb and ŝ∗ub . The algorithm terminates if the validation
errors on both sides of the target range is less than the tolerance threshold ε.
In our implementation, ε is set to the expected regression error of the training
database TR.

5.6.2 Handling Special Cases

For simplicity reasons, this algorithm omits a number of special cases. Since
the derivation of matching points via regression is expensive due to the over-
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head of feature generation, the algorithm has to ensure that no slice number of
vi is tested multiple times. The MEDICO implementation thus tests a neigh-
boring slice if a slice prediction ŝ∗lb or ŝ∗ub does not occur for the first time in
step 6.

Moreover, the search procedure should stop, once there is no more change
to the predicted slice bounds ŝ∗lb or ŝ∗ub, as this usually means that the volume
is not well enough resolved for perfectly matching the target range.

It is also beneficial to test for both bounds whether a new matching point
generated for the opposite bound is better suited w.r.t. the adapted validation

errors
∣∣∣ĥreglb − hub

∣∣∣ or
∣∣∣ĥregub − hlb

∣∣∣. This test is helpful in case of a strongly

erroneous initialization or if the query range is especially small. Additionally,
if only one bound has been established in an acceptable quality, but it remains
stable over a couple of iterations, one should refrain from trying to further
improve this bound by costly regression calls and only update the opposite
bound.

Furthermore, a number of exceptions should be handled: both si and hregi

can be mapped outside of their allowed ranges. In the case of si, this may be
an indication that the query range is not contained in the volume. Repeated
range violations should thus terminate the algorithm with an indication of a
mismatch or a partial match. If hregi (s) goes astray, this can either be noise
in the regression function or it can be a reason for down-weighting the current
set Pi and for seeking further matching points. We specifically down-weight
the set of existing matching points, if the predicted slice number for the lower
bound ŝ∗lb is larger than the predicted slice number of the upper bound ŝ∗ub.

In our implementation, a down-weighting step simply multiplies all weights
wj of Pi with a constant factor 0.1. This way, the collected information – some
of which may be accurate – is not completely discarded, but it has a smaller
effect on any future predictions.

5.7 Experimental Validation

In the following, we present the results of our experimental evaluation by mea-
suring the quality of the retrieval system and by demonstrating the improved
query time of our complete system. All of our experiments were performed on
subsets of a repository of 4 479 CT scans provided by the Imaging Science Insti-
tute of the University Hospital Erlangen for the THESEUS MEDICO project.
The scans display various subregions of the human body, starting with the
coccyx and ending with the top of the head.

For generating a ground truth of height labels, we used the landmark de-
tector of [136] annotating each scan with up to 22 landmarks. This restricted
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the dataset to 2 476 scans where enough landmarks could be detected. The
complete repository contains more than a million single CT slices comprising
a data volume of 520 GB.

The MEDICO prototype is implemented in JAVA 1.6 and stores the scans
and their annotations in a MySQL database. To simulate the distributed
environment of a radiology center, we employed the LAN and the workstations
in our lab consisting of common workstations of varying type and configuration
being connected by a 100 Mb Ethernet.

5.7.1 Atlas Accuracy

For validating the quality of our atlas generation method, we evaluate all
combinations of atlas seedings and interpolation functions.

We use 371 scans of our repository providing at least 20 landmarks for train-
ing a reliable atlas. The atlas, built within a 4-fold cross-validation setting,
is validated in a leave-one-out testing scheme for each landmark. We mea-
sure the average localization errors

∣∣hj −hi(si,j)Pi\pj
∣∣ and

∣∣si,j −si(hj)Pi\pj
∣∣ of

a single landmark in volume vi forming the matching point pj = (hj, si,j,wj)
when predicted with the interpolation functions hi or si by using only the
remaining matching points Pi \ pj. The results are displayed in Figure 5.10
for the atlases exmp and align (dashes), as well as for atlases refined with
Algorithm 7 (boxes). As a baseline we also added a third seed atlas rand,
consisting of 22 random standardized height positions h and random weights
w, drawn from a uniform distribution. We transformed the error values to
the range of the initial exmp mapping covering a height range of 0-175 cm by
determining the scaling factor via linear interpolation between the different
atlases. This enables us to provide a meaningful and adequate comparison of
the different mappings in a real-life-scale.

Figure 5.10 shows that abs and lin interpolation are comparably successful
on trained atlases with average errors around 1 cm. Additionally, the locally
more adaptive mappings sqr and rbf (and other, more complex interpolation
approaches not shown here) have a stronger susceptibility to outliers. At-
lases based on exmp seedings converge to comparable errors as those based
on align seedings. However, the exmp seedings really profit more from the
atlas refinement algorithm than the align seedings, which were hardly im-
proved at all (cf. the original seed error displayed in dashes). Note that there
are no original errors for the random (rand) seedings, as it does not offer an
anatomically realistic model and thus, it cannot be properly evaluated. The
models resulting from Algorithm 7 for abs and lin interpolation, however, are
anatomically sound and competitive w.r.t. the anatomically meaningful seed-
ings align and exmp. In contrast, the more complex interpolation approaches
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Figure 5.10: Leave-one-out localization errors [in cm] of hi (scan to atlas)
and si (atlas to scan positions) for the seeding approaches exmp, align and
rand using 20 matching points. The number of iterations required for training
Algorithm 7 is displayed at the bottom of the bars.
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Figure 5.11: Leave-one-out localization errors [in cm] when using a variable
number of matching points in hi and si for the seeding approach exmp.

sqr and rbf failed to generate a useful mapping from the rand seeding: they
only reordered the landmarks into disjoint sub-clusters and got stuck in local
minima. Thus, the bars for this experimental setting are missing.

Figure 5.10 also displays the number of iterations required by Algorithm 7.
The number of iterations vary rather strongly from 2 to 40 for the various
seedings. Training times accordingly vary between less than two 2 and 17
minutes. In general, the align training times were the shortest, except for
linear interpolation (lin). lin usually converged the earliest with by far the
worst training error (LossMSE, not shown here). Since, however, the local-
ization error displayed in this section does not punish strong outliers with a
quadratic term, lin is still competitive to the other interpolation approaches.

In fact, the most surprising result of these experiments is the good perfor-
mance of the simple weighted linear interpolation lin. Let us note that for the
pre-dominant spacing in our database of 5 mm, an average precision of 1 cm is
only a deviation of two slices.

We now examine how many matching points are needed. We use the same
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experimental setting as before and only restrict the number of allowed match-
ing points used for the leave-one-out test. Figure 5.11 demonstrates the effect
of the number of available matching points for the exmp models. Other seed-
ings show the same trend: a strong decrease of the prediction errors when using
five instead of two matching points. Using even more matching points results
in further but smaller prediction improvements. A number of five match-
ing points appears to be a good compromise between the effort of generating
matching points and a good localization.

5.7.2 Validation of Regression Queries

In the following section, we first examine the used image features on their
suitability for k-NN regression. Afterwards, we describe the beneficial effects
of reducing the original image feature space using RCA.

5.7.2.1 Regression Ground Truth

For our regression experiments, we have to provide height labels h(r) as ground
truth for all entries of the required regression database, i.e. for each scan in
the training dataset TR. There are two methods for generating these labels.
The first is to manually mark the highest and the lowest point in all scans of
a database and to linearly interpolate the height values. [55] This procedure
has been used for generating the align height atlas evaluated in the previous
section. We refer to this method as manual labelling.

Since instance-based regression profits from a larger database, we also use
an automatic labelling method. It assigns height labels to the slices of a volume
with the interpolation model h : N → H introduced in Section 5.4 as (5.3)
based on detected landmarks which can be mapped to standardized positions as
matching points. In our regression experiments, we use abs interpolation with
an atlas refined from the align atlas with Algorithm 7. The matching point
types are again the 22 landmarks of [136], marking meaningful anatomical
points. They could be detected in 2 526 of our CT scans. These landmarks
are time-expensive to compute and their computation fails in the remaining
1 953 scans of our dataset. We will refer to the height labels generated with
this interpolation procedure as automatic labelling.

5.7.2.2 Regression Quality

Single Feature Performance In our first test, we measure the regression
performance of the original image descriptors, which have not yet been trans-
formed by RCA. We first examine a manually annotated dataset of 60 CT
scans of 45 patients with a total of 27 646 slices. The average leave-one-out
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prediction errors for the tested feature types are displayed in Table 5.2. Let
us note that leave-one-out in these experiments means that only slices from
other scans than the query scan are accepted as k-nearest neighbors in order
to exclude distorting effects of within-scan similarities.

We tested both the Haralick texture features and the Pyramid of His-
tograms of Orientation Gradients (PHOG) with our version of a 5× 5 spatial
pyramid kernel. As a baseline, we also tested thumbnail descriptors, repre-
senting the interpolated pixel values after re-scaling the input images to a grid
of 16× 16 pixels.

Additionally, in grey, we display the results for a new 2D image descriptor
especially developed by our group for the purpose of slice regression. [69] This
new image descriptor results in feature vectors of length 384 and it specifically
targets the pixel distributions characteristic for bone and air material using
radial image compartments. The performance of this new descriptor is clearly
better than that of any of the other image features. However, the time required
to generate the new descriptor is more than 25 times the runtime required for
generating the PHOG descriptor, which is also rather expensive with about
0.02 ms per slice. In the interest of a fast query processing, any further exper-
iments generated with this new descriptor are thus omitted from this thesis
even though they usually also show a better accuracy. As soon as the feature
generation can be sufficiently sped-up, we will exchange the current retrieval
pipeline in the MEDICO prototype for this improved descriptor.

Table 5.2 shows that the best results among the remaining descriptors could
be generated with the PHOG image descriptor after applying the preprocess-
ing step of bounding box detection (BB). Furthermore, BB detection has a
much more favorable effect on the PHOG and Thumbnail features than on the
Haralick descriptors. The Haralick texture features thus appear to be less de-
pendent on the exact geometry of the resulting spatial pyramid kernel than the
gradient-based PHOG features or the grey-value-based Thumbnail features.

PHOG image features thus appear to be best-suited for the regression task
at hand. The strong error variations between different kinds of preprocessing
and different k-nearest-neighbor parameters, however, suggest that the perfor-
mance of any feature type is rather dependent on the dataset. Furthermore,
the relatively strong performance of the simple Thumbnail features may raise
doubts about the suitability of the selected image features. As an additional
base-line image feature, we thus also tested grey-value histograms without any
spatial image information. The leave-one-out error for those histograms ranges
between 11 and 15 cm and is thus considerably worse than the above results.
When testing alternative datasets, we reached the same conclusions about the
suitability of the selected image features.

Still, our group continues the research for custom-designed image descrip-
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Table 5.2: Leave-one-out validation (LOO) errors [in cm] of k-NN slice map-
ping hregi (si,j) for various image feature types on a manually-labelled dataset
of 60 CT scans with 27 646 slices. Each feature type was tested once without
(noBB) and once with the preprocessing step of bounding box detection (BB).
Best results are marked in bold.

k = 1 k = 2 k = 3 k = 5

Feature type noBB BB noBB BB noBB BB noBB BB

Haralick 5.52 4.38 5.37 4.53 5.12 4.29 5.08 4.18
PHOG 5.91 3.49 6.19 3.63 6.01 3.35 5.93 3.55
Thumbnails 7.38 5.12 7.05 5.08 6.60 4.75 9.25 6.86

Ref. [69] 3.66 3.16 3.67 2.95 3.52 2.85 3.91 2.82

tors for our instance-based regression task. One example is the expensive
descriptor of Ref. [69] mentioned previously.

Combined Feature Performance When testing k-nearest-neighbor pa-
rameters between 1 and 5 on the 60 manually annotated CT scans of the previ-
ous experiments, we found varying values of k to perform the best for different
image representations. This observation collides with the requirements of our
multi-represented regression approach presented in Section 5.5.2.2, which uses
the variances in the candidate sets of the single features’ predictions in its
decision function. Even though it is possible to determine the reliability of the
separate representations’ predictions with different k parameters, represen-
tations requiring large k would obviously be underpriviledged due to higher
variances of the candidate sets.

Thus, we use a global k-parameter for our feature combination approach.
We combine the information of three image representations: the Haralick
features are extracted without bounding box preprocessing (noBB) and the
PHOG and Thumbnails features are extracted from detected bounding boxes
(BB). Note that even though the Haralick features generally perform better
when using the preprocessing step (BB), the version omitting the preprocess-
ing step is more stable in some body regions not perfectly covered by the
other descriptors. The combination results in an overall leave-one-out error of
2.89 cm for the best k = 4, which is lower than the errors of any of the single
representations listed in Table 5.2 (again discarding the results of Ref. [69],
which also profits from our combination approach).

Figure 5.12 explains this effect by discretizing the average error per anno-
tated body region. Each interval on the x-axis represents an annotated body
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Figure 5.12: Effect of multi-represented regression: the advantages of the single
image representations in different body regions are combined.

range of 3 cm. In order to facilitate the mapping of the x-axis to the body’s
anatomy, the top scale lists some landmark positions as expected in the atlas of
the MELANIX height space. The grey bars in the background display the data
abundance, whereas the solid lines show the average leave-one-out error per
image range of the single features. Our instance-based regression approach
requires a sufficient number of training examples for the body height to be
predicted. Thus, the elevated average leave-one-out errors at the lower body
region below the coccyx and the region near the top of the head are hardly
surprising. For all descriptors, we observe errors below 15 cm for body areas
with a broad coverage (with an average of at least one example per volume).
The observed qualitative variance is reduced by using the combined features
(dotted line). Nevertheless, the figure also shows that the combined approach
requires a sufficient number of training examples as well.

For more experiments on feature combination, see the results section in [55],
our corresponding regression publication. The following experiments all use
the single-represented PHOG image descriptors in order to limit the number of
experiments to be presented. All techniques analyzed from now on, however,
are also applicable on the multi-represented regression approach.

Gathering More Training Data with Automatic Labels Before eval-
uating our dimension reduction method, we need to analyze the regression
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Table 5.3: Leave-one-out validation (LOO) errors [in cm] of k-NN slice map-
ping hregi (si,j) for various database sizes of n CT scans with m slices. The last
column lists the best-performing k parameters.

Ground Truth n m Error [cm] Time / Query [ms] Best k

manual 29 12 529 4.18 13 1
automatic 29 12 529 3.95 13 3

automatic 100 46 063 2.96 44 8
automatic 150 72 190 2.33 65 10
automatic 300 143 284 2.15 142 3
automatic 500 235 159 1.82 220 3
automatic 1000 440 226 1.58 339 1

performance for automatically-labelled datasets. We will first show that the
atlas-based labelling approach yields comparable results as manual labels. This
allows us to increase the size of the training set in order to further improve
the quality of our height predictions.

We thus restrict our training dataset of 60 volumes to the 29 volumes with
12 529 slices for which at least two of the 22 landmarks could be detected with
the detector of [136]. The average leave-one-out prediction error of this data
subset is listed in the first row of Table 5.3.

The next row of Table 5.3 displays the error of the same dataset, which
has been labelled automatically. Our experiments show that the average regis-
tration error of 4.18 cm of the manual labelling is even lowered to 3.92 cm
when using the automatic labelling. Thus, we can safely test our regression
method on larger datasets, which have been automatically annotated. This
allows to fully exploit the strength of our instance-based regression approach.
For smaller databases, alternative regression approaches should be considered,
however, with the wealth of information available, our lazy learner is very hard
to beat.

We observe a steady improvement of the empirical errors down to 1.58 cm
for increasing database sizes, however, this comes at the price of longer run-
times. For a dataset of 500 volumes consisting of 235 159 slices, a single query
performed as sequential scan in main memory requires 220 ms. The additional
cost of keeping the complete training database in main memory poses a further
drawback. The following section will therefore evaluate our method of runtime
optimization by using an efficient indexing scheme.

As an interesting side observation, note the variation of the best-performing
k-nearest neighbor parameter for growing datasets. For each experiment, we
screened various k parameters between 1 and 20 and we display the error of the
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Table 5.4: LOO regression errors [in cm] for RCA-transformed data with query
times [in ms] and the best-scoring k-nearest neighbor parameters in X-Trees
representing 2 103 scans with 901 278 slices.

Dimension Error [cm] Time / Query [ms] Best k

5 2.68 6 15
10 1.98 20 7
25 1.33 209 1
50 1.15 2 598 1

best-performing k-paramtrization. For very small datasets, smaller k are more
successful than large k, as there is little choice of plausible nearest-neighbor
candidates. In medium-sized datasets, the best k parameters are rather high,
i.e. the consensus of many nearest-neighbors is more stable than just a few
nearest neighbors. For larger databases of more than 300 volumes, this effect is
reversed, since there is now a sufficient choice of very similar nearest neighbors,
which will only be distorted by forming a consensus regression vote. This effect
can also be observed for databases formed from dimensionally-reduced feature
vectors, however, due to an unavoidable loss of information caused by the
compression, the peak of large best k parameters is delayed to even larger
databases than 1000 volumes.

5.7.2.3 Speed-up via RCA and Indexing

In order to speed up regression, we index the training data in an X-Tree [15]
after reducing the dimensionality via RCA. We tested the target dimensions
5, 10, 25 and 50. Using an index, we could now employ the complete dataset
of 2 476 scans. We used a subset of 373 scans (= 163 376 slices) as training set
for the RCA and tested the performance on the remaining 2 103 scans (901 278
instances). Table 5.4 shows the average leave-one-out (LOO) errors and query
runtimes (excluding the time for feature generation) for the indexes generated
from the test set.

As can be been seen in Table 5.4, the curse of dimensionality causes the X-
Tree to lose much of its effectiveness for increasing dimensions. Additionally,
the error does only moderately increase for smaller descriptor dimensionalities.
Based on these observations, we consider the 10 dimensional data set as the
best trade-off, having a prediction error of 1.98 cm and a query time of 20 ms.
We use this dataset for all following experiments.

Note that the runtimes displayed in Table 5.4 are actual disk-based retrieval
measurements. Since, however, we tested 100 000 predictions in a row per ex-
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periment, the underlying caching mechanism of the used hard disk and of the
operating system caused a decrease in I/O costs. A single prediction query
for 10-dimensional image features will thus most likely require more time than
20 ms. For a more comprehensive analysis of this effect and additional obser-
vations on the use of hierarchical index structures in the advancing medium of
solid state disks (SSDs), please refer to our publication in [52].

The total runtime required for feature generation is combined from the
time of the actual feature generation for a down-scaled version of the query
slice (20 ms) and the time required for RCA transformation (0.1 ms). Thus,
our selected query configuration results in a total prediction time of 40 ms.

Next, in order to validate the performance of the proposed ROI query
workflow we will first analyze the accuracy of the retrieved ROIs and then
proceed with an examination of retrieval times.

5.7.3 Precision of ROI Queries

For validating the precision of a complete ROI Query, we could again use
automatically detected landmarks for defining a ground truth of lower and
upper bounds. However, we cannot guarantee for the correctness of these
matching points.

Therefore, we generated a new set of annotation points with five new land-
mark types: “lower bound of coccyx”, “sacral promontory”, “lower plate of
the twelfth thoracic vertebra”, “lower xiphoid process” and “cranial sternum”.
An annotation example is shown in Figure 5.13. These landmarks were hand-
annotated by a medical expert for providing a set of markers which have been
verified visually. The ground-truth positions hj(vi) of an annotated landmark
j in a volume vi are defined by the manual labelling scheme linearly interpo-
lating between two user-defined fix points.

In Table 5.5, we show the results of predicting all visible intervals with
ROI queries formed by pairs of these landmarks in a dataset of 33 manually
annotated volumes. As not all landmarks were visible in all volumes, only 158
of the 330 theoretically-possible intervals could be tested. Since the annotation
error – the deviation of these markers from their expected positions – is at
2.58 cm, we cannot expect the queries to produce more reliable predictions.

Still, the ranges predicted with the landmark-based interpolation approach
(again using the 22 landmarks of Seifert et al. [136] with a model trained from
the exmp atlas via abs interpolation) reduce this error to less than 2 cm.
Our manually-annotated landmarks are thus well-captured by the non-linear
interpolation approach.

Using Algorithm 8 with varying grid sizes g for the initial matching points
Pi also provides good predictions. We observe, however, that using a larger
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lower bound of coccyx

lower plate of the 12th thoracic vertebra

sacral promontory lower xiphoid process

cranial sternum

Figure 5.13: Annotation example for manually-defined thorax landmarks on a
sagittal body cross section.

number of seed points only mildly improves the accuracy of the predictions,
but it greatly increases the number of matching points being generated by
regression (q). We conclude that two seed points are sufficient for our simple
optimization scheme. Any more sophisticated optimization procedures should
rather involve an intelligent screening of the proposed result range (ŝlb, . . . , ŝub)
than use more seed points.

In Figure 5.14 we see the cumulative distribution function F (error ≤ x cm)
for the analyzed query intervals. The ‘Annotation’ bars show the performance
of the annotated ground truth landmarks, and the ‘Algorithm 8’ bars represent
our ROI query algorithm using two seed points. Again, the interpolation-based
retrieval approach performs best. Additionally, there is almost no difference
between the quality of the ground truth and our algorithm. The probability
that the total prediction error (err(ŝlb) + err(ŝub)) is at most 2 cm is almost
50 %. Again, with a height spacing of 5 mm, this means that in half of the
cases, the retrieved range deviates by only two slices for each the lower and
upper bound. When thus extending the returned query range by our pre-
defined safety range, most returned subvolumes will completely contain the
requested ROI.

Concerning the weighting procedure introduced in Section 5.5.4 for prior-
itizing the matching points generated by Algorithm 8, let us remark that our
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Table 5.5: Average deviation [in cm] of the result ROI of Algorithm 8 from
the manually marked ROIs (err(ŝlb) + err(ŝub)) with the average number of
regression queries q and the runtime per query.

Annotation:
Error: 2.58 cm

Interpolation:
Error: 1.96 cm
Runtime: 3 ms

(without land-
mark detection)

ROI prediction with Algorithm 8

g Error [cm] q Time / Query [ms]

2 2.66 6.8 1 273
5 2.55 9.2 1 951
10 2.43 15.2 3 032
25 2.57 30.0 5 946
50 2.39 55.5 10 081

1 2 3 4 5 6 7 8 9 10
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Interpolation
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error = err (ŝlb) + err (ŝub)  [in cm]
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Figure 5.14: Cumulative distribution function: F (error ≤ x cm) (the steeper
the better). It compares the error distributions of landmark-based ROI queries
with Algorithm 8 and it displays the quality of the used annotation points.

experiments show almost no difference in precision or runtime when using de-
fault constant weights for the matching points or using the weights coupled
with the reliability of the k-nearest neighbors. The weighting procedure of
Section 5.5.4 thus does not actually hurt the query process, but we rarely ob-
serve any significant improvement, so it can also be omitted from the query
pipeline.

We thus conclude that ROI queries can be efficiently answered by using
Algorithm 8 with two initial matching points. The query time for grid size
g = 2 is 1.3 seconds. Thus, our final experiments will show that the benefit of
reducing volume queries to a region of interest strongly outweighs this cost.
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Figure 5.15: Average runtimes (ten repetitions) and volume size reduction
using ROI queries with Algorithm 8. Each experiment tests 20 volumes with
a total of 12 240 slices. Loading the complete dataset takes 1 400 seconds.

5.7.4 Runtime of ROI Queries

While mapping into the height atlas with available matching points takes only
3 ms, the detection of the 22 landmarks of [136] usually requires between 3 to
10 seconds. In our group’s 100 Mb Ethernet, it takes 110 ms to load one slice
of 512×512 pixels. Thus, this time investment pays off if at least 30 slices can
be excluded from the retrieval query. Since the expected number of slices in
our repository is 424, it is very likely that in most retrieval queries at least 30
slices can be omitted. Moreover, one artificial matching point via regression
can be generated in only 40 ms. Hence, even if Algorithm 8 needs to generate
20 matching points, our retrieval approach is already faster than loading the
complete volume, if we can avoid the loading of 8 slices.

Our last experiment therefore simulates some real-world retrieval scenarios.
We chose a random set of 20 volumes from the database and tested them
against four ROI queries defined in an example scan. Two queries are aimed
at organs (“Left kidney” and “Urinary bladder”), one query ranges from the
top of the hip bone to the bottom back point of vertebra L5 and the final
query only requests the view of the arch of aorta. The four hereby defined
query ranges have heights of 16.8, 9.6, 4.7 and 0.9 centimeters.

In Figure 5.15, we display the retrieval times of the resulting ROIs and
their fraction of the complete dataset of 12 240 slices. Loading the complete
20 volumes from the server takes 1 400 seconds, whereas transferring only the
ROIs induced by the given concepts takes 60 to 400 seconds, including the
computation overhead for finding the ROI.
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To conclude, employing our system for answering ROI queries saved be-
tween 77− 99 % of the loading time compared to the retrieval of the complete
scan. If a set of matching points is already available, e.g. in the form of de-
tected landmarks, the decrease in retrieval time is even stronger. Thus, in the
clinical routine, our system is capable to save valuable time as well as hardware
resources.

5.8 Summary

This chapter discussed a retrieval pipeline for processing region of interest
(ROI) queries on a repository of CT scans. It allows example-based queries
specified by giving an example ROI in another CT scan as well as concept-
based queries which define the query range as an anatomical concept. Since
CT scans are usually stored as stacks of 2D images representing a horizontal
slice in the scan, the answer of an ROI query on a CT scan is a subset of the
slices in the target scan representing an ROI which is equivalent to the query
ROI. The goal of the ROI retrieval system is to shorten waiting times for the
user and to reduce I/O costs within the clinical network.

After query specification, the system defines a query range within a stan-
dardized height model of the human body which is designed to be independent
of the patient’s size or body proportions. Then, the query region in the height
model is mapped to a subregion of the queried scan containing the ROI. This
indirect mapping approach allows the use of the same retrieval mechanisms
for example-based and concept-based queries and it is faster and less I/O-
demanding than a complete pixel-based volume alignment to an example scan
or a template scan.

Technically, our system is based on an interpolation function using so-called
matching points linking a CT scan to the height model. These matching points
can be generated by standard landmark detection approaches. By detecting a
set of anatomically meaningful landmarks in a large database of CT scans, we
learn a standardized height atlas mapping of these landmarks, which also facil-
itates the query specification by anatomical concept. Still, landmark detection
frequently fails due to inappropriate image material (e.g. blurred or incomplete
scans). As an alternative, we can guarantee the availability of matching points
even for unannotated CT scans, by using content-based image descriptors and
regression for generating matching points for arbitrary slices in a scan. Finally,
we propose a query algorithm for finding a stable mapping while deriving a
minimal amount of matching points.

The experimental section validated the accuracy of all components of our
approach on a large database of 4 479 CT scans acquired within the THESEUS
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MEDICO project, of which 2 476 scans could be automatically labelled using
our atlas-based labelling system. Depending on the method used and the
amount of available information, we observe average deviations between 1 and
2 centimeters. We also presented experiments for the reduced transfer volume
of ROI queries being processed by our system. We conclude that loading
runtimes are greatly improved with acceptable error rates for clinical retrieval.

In future work, our system will be extended to handling ROIs in all three
dimensions and we will test further landmark types. Additionally, we would
like to test alternative learning approaches for the used image features and the
feature transformation by RCA. We also aim to apply our retrieval solution
to other types of 3D objects being stored in raster databases and to examine
further, more general regression or interpolation problems.
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Chapter 6

Medical Content-Based Image
Retrieval (CBIR)

The current diagnostic process at hospitals is mainly based on reviewing and
comparing images coming from multiple time points and modalities in order
to monitor disease progression over a period of time. However, for ambiguous
cases the radiologist deeply relies on reference literature or second opinion.
Although there is a vast amount of acquired images stored in PACS (picture
archiving and communication systems) which could be reused for decision sup-
port, these datasets suffer from weak search capabilities. Thus, there is a need
for a search methodology which enables the physician to fulfill intelligent search
scenarios on medical image databases combining ontology-based semantic and
appearance-based similarity search.

This chapter introduces the search capabilities developed within the THE-
SEUS MEDICO project. The MEDICO prototype includes the basic retrieval
mechanisms of any common PACS as well as more flexible semantic query
specifications for an advanced keyword search of the PACS and additional
meta-data like manual or automatically-generated annotations or literature
cross-references. Furthermore, it supports a content-based image similarity
search scenario by allowing the user to specify a query region of interest (ROI)
within a 3D volume which is then submitted to a ranking query within a
database of annotated conspicuous image regions. The different query types
can be combined by a method we introduced in Seifert et al. [138], thus allowing
for an even more flexible query specification. Details on the architecture used
for the query combination step have been published in Stegmaier et al. [146].
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6.1 Introduction

The original objective of the MEDICO research project is to improve the search
mechanisms currently available in clinical database at the use case of lym-
phoma patients. Lymphoma is a cancer that originates in the lymphatic cells
of the immune system. It is usually noticed in the form of a solid tumor of
lymphoid cells and sometimes affects abdominal organs1. Due to their com-
paratively small size, these tumors can only be made visible in computed to-
mography (CT) scans of a rather fine resolution. As the complete body needs
to be monitored in order to rule out any further organic manifestations, the
total data load required for a lymphoma patient grows quickly. Our database
consists of 4 479 CT scans with a total size of more than 700 GB. The devel-
opment of the ROI retrieval system described in the previous chapter is thus
a logical consequence of the data available.

A subset of 100 CT scans has been semantically annotated by medical ex-
perts in a semantic reporting process [137]. An image is annotated by first
using an image parsing system [136] for automatically generating spatial an-
notations of anatomical landmarks and organs and by then manually verifying
the automatic annotations. Next, further manual annotations are added, de-
scribing any image regions which are meaningful to the lymph node context or
which are medically conspicuous. These annotations are organized in a com-
prehensive medical ontology [113] and they can be queried with a semantically
flexible keyword search.

Furthermore, a medical expert annotated 1293 lesions (973 liver, 130 spleen,
190 kidneys) in 577 CT scans as 3D bounding boxes. These lesions form a
database which can be queried by specifying an example template ROI in a
CT scan currently opened in the MEDICO system. The resulting list contains
the visually most similar lesions contained in the database.

By combining the two search methodologies of semantic queries and visual
similarity search, MEDICO provides a content-based image retrieval system
that exploits query constraints on anatomical annotations in order to increase
the quality of an image search. Recent work [115, 3] tends toward the same
direction but often loses track of the global picture. The MEDICO system
provides its users with a holistic view on the patient, supporting them with a
tool to search for similar-appearing lesions restricted to an individual organ,
but additionally including extra-organ disease processes at the lymph nodes.
By using a generic framework modeling the logical connections between the
various types of queries and databases, our proposed query scheme enables
the early elimination of irrelevant search results. Thus, we save time normally

1In this work, the spleen is subordinated the abdominal organs, even if physicians con-
sider it to be a lymphatic structure and not an organ.
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required for manual result filtering and we additionally gain a speed-up in
query processing.

This concludes in a query functionality for similar patients, i.e. patients
showing similar anatomical and pathological characteristics. Investigating the
anamnesis and the successful treatment can then provide good advice for the
current patient. The ability to compare images with those obtained in other
patients has the potential to provide real-time decision support to practicing
radiologists by showing them similar images with associated diagnoses and,
where available, responses to various therapies and outcomes.

6.2 Combining Semantic and Similarity Search

We currently provide two complementing search mechanisms: query by concept
enables the user to query the image database by the use of regular expressions
where the terms are coming from the MEDICO-ontology. [113] The second
search mechanisms is called query by scribble: the query interface provides
the user with a drawing tool to define arbitrary regions. In our case, we
use it to enclose a reference lesion. Combining these two mechanisms, the
query language is tremendously extended w.r.t. classical content-based image
retrieval systems (CBIR). Subsequently, we explain the mechanism with the
following sample query:

“Find all patients with similar lesions in the liver and with thoracic
lymph nodes enlarged.”

The image database can be searched for images containing similar regions
based on the visual appearance. This is a close approach to classical content-
based image retrieval systems (CBIR). The main advantage of our system is
that the CBIR results can be restricted by the query by concept (here: enlarged
thoracic lymph nodes). This mechanism furthermore allows to fully automati-
cally limit the results to lesions within the organ which is currently of interest
(here: the liver).

6.2.1 Query by Concept

The semantic annotations are stored in the Annotation Ontology (see Fig-
ure 6.1), which is part of the MEDICO ontology stack. The arrows labeled with
‘mano:’ are used to depict property relations, rectangles represent classes and
‘isa’ arrows are inheritance dependencies. The annotation ontology scheme
sets the patient to the center. Every patient owns some studies defined by
a unique identifier and a specific time period. The MEDICO study is more
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Figure 6.1: MEDICO annotation (mano) ontology scheme supporting tempo-
ral, multi-modal and text-to-image relations.

than just a DICOM [117] study: it is a container for all annotations from im-
ages, texts, clinical data within a given time period. This is the cornerstone
to enable temporal queries as well as queries considering multiple modalities.

The annotation ontology scheme is illustrated in Figure 6.1 and the design
was driven by the following requirements:

• Link report text passages with related image regions: Annotations from
images and texts must be stored in the same model which should consider
the fact that reports summarize annotations from multiple images.

• Disease progression: Changes to anatomy due to a pathology over time
should be represented. A combined examination of studies with their
pre-studies needs temporal relations.

• Multi modality: Diagnosis often needs a synoptic view of images acquired
with different modalities, e.g., CT, MRI, US. Therefore, the underlying
annotation ontology should link annotations not only across time, but
also across different modalities.

• In order to adopt hospitals preferred wording, the stack of used ontolo-
gies should be extensible, e.g., some of the hospitals have already made
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experience with SNOMED CT [86] or AIM [27], or they use the World
Health Organization’s system for international classification of diseases
(ICD [171]). Therefore, the annotation scheme should not only incorpo-
rate RadLex [103] and FMA [127] but also support further ontologies.
For the ontology alignment required for mapping between these vari-
ous ontologies, the KEMM-methodology [168] was developed within the
MEDICO project.

An image region is an arbitrarily shaped spatial sub image which is de-
fined as landmark point, triangulated mesh or image mask. The triangulated
meshes are currently used to describe organs detected by the image parsing
system, [136] and image masks are used to define scribbles.

The class mano:Finding relates anatomical annotations, such as liver,
spleen with annotations describing the anatomy, such as enlarged, hypodense,
jagged margin. Currently, FMA and the anatomical tree of RadLex are used
to define the anatomy, whereas the imaging observation and visual modifier
trees of RadLex are used for finding descriptions. If an anatomical term of
a finding is missing in the existing vocabulary, spatial annotations allow the
user to paraphrase it with spatial relations such as nearTo or inBetween, e.g.,
the lymph node near to renal hilum.

If the finding is a specific area or volume, we can add a mano:Measurement

to store the values of the parameter. Any additional information can be
archived by mano:FreeText. To free the user from selecting the right anatomy
term, we added a query expansion mechanism which recursively infers sub-
classes in the FMA. Thus, the sample query Thoracic lymph node results in 90
sub-classes:

Thoracic lymph node → Mediastinal lymph node
→ Aortopulmonary lymph node
→ Pericardial lymph node
→ . . .

→ Esophageal lymph node
→ . . .

For further restricting query results to patients with lymphoma of a given
Ann-Arbor stage, we can furthermore make use of an integrated staging sys-
tem [185] implemented in OWL DL as a plug-in to the MEDICO-ontology.

6.2.2 Query by Scribble

The goal of MEDICO’s visual similarity search is to allow the user to quickly
outline a region of interest (ROI) and to ask the system for similar ROIs,



148 6.2. Combining Semantic and Similarity Search

Figure 6.2: Example for a query by scribble selected in three 2D projections
(top left: transverse plane, top right: sagittal plane, bottom left: coronal
plane) with a 3D projection of the displayed planes (bottom right). The ROI
actually used as query is outlined by the green box.

without having to take the time for an exact segmentation. We call such a quick
ROI specification a scribble. An example scribble is displayed in Figure 6.2.
In order to relieve the user from having to specify an exact 3D segmentation
of the query region, the ROI defined by a scribble is its minimum bounding
box.

6.2.2.1 Used Image Descriptors

We support 3D scribbles, however, in favor of a faster query specification, we
expect most queries to be posed as 2D selections. Since 2D image features will
have the highest descriptive power due to their maximized image resolution,
our first group of image descriptors is based on 2D image features.

Multi-instance Representations One way to generate 3D image descrip-
tors is to represent a 3D bounding box by a collection of 2D image features
generated from the 2D ROIs implied by the 3D ROI in the transversal plane.
We treat such a collection like a classical multi-instance problem, where one
object is represented by an unknown number of instances of a fixed represen-
tation. On the one hand, this causes a loss of information, since we discard
the slices’ order. On the other hand, the multi-instance perspective allows the



6.2. Combining Semantic and Similarity Search 149

comparison of various slice permutations, which can very well contribute to
lesion similarity.

Among the tested 2D image descriptors, the best-performing were simple
grey-value histograms and the Haralick [79] texture features already introduced
in Section 5.5.1.3. The grey-value histograms are formed from 150 bins (hist)
over the given Hounsfield space, and the Haralick descriptor is generated for
the 9 subwindows of a 3 by 3 grid imposed on each 2D ROI (har). Since one
Haralick descriptor for 5 different pixel distance values (1, 3, 5, 7, 11) contains
13 · 5 = 65 statistics, this amounts to descriptors of sizes 150 and 65 · 9 = 585
for each slice covered by the lesion’s bounding box.

Global Image Descriptors Naturally, we also wanted to use real global
image descriptors. A simple and plausible global image feature of a 3D an-
notation is its real-world size. We thus define a lesion representation (size)
consisting of the extension of the lesion’s bounding box in all three dimensions,
i.e. a vector (wx, wy, wz).

The main problem of deriving a 3D image descriptor on a minimum bound-
ing box annotation is that it is prone to be disturbed by the large background
quota of pixels which do not actually belong to the lesion. This obstacle can
be mildened in the case of multi-instance representations by using a tolerant
distance measure, but it can have very strong effects in a global context. Take
for example a grey value histogram over the complete bounding box: the de-
scriptor of any lesion located at the border of an organ is prone to be heavily
disturbed by surrounding air or neighboring bone structures.

Wa have already introduced one way to deal with these local effects in
Section 5.5.1.1 with the spatial pyramid kernel. We could directly extend this
approach to 3D, however, usually the resolution in the z-axis will be by far
lower than in along the x- or y-axis, especially if only a 2D query is posed.
Additionally, the spatial pyramid kernel is not rotation invariant. This was not
a problem for the 2D query use case of slice localization, but in 3D, any minor
rotation of a lesion will cause it to be classified as dissimilar from a descriptor
derived from an un-rotated version of the same lesion.

We thus decided to use a rotation invariant shell kernel, fitting 3D ellipsoids
of decreasing radius within the 3D bounding box of a given ROI. The regions
between two succeeding ellipsoids form a shell from which we compute a global
image extractor. For now, we only tested a grey value histogram descriptor,
however, other decriptors modeling the shell’s texture should also be considered
as an option.

In addition to the shells, we observed a beneficial effect of including the
background pixels not covered by any of the ellipsoid kernel’s shells as an
additional container of image information. This effect can be explained by the
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BG
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S2

Figure 6.3: Visualization of the ellipsoid shell kernel using two shells (S1 and
S2) and a background selection region (BG). Any non-selected pixels are dis-
played as black.

nature of our validation procedure, where we compare feature-based similarity
rankings with manually-assigned pair-wise similarity labels. The annotator is
more likely going to qualify a pair of lesions to be similar if their backgrounds
are of a similar appearance. The background pixels can thus be qualified as a
rather valuable piece of information

Our descriptor (ehist) is thus defined as the concatenation of s h-dimen-
sional grey value histograms formed from the shells defined by s concentric
ellipsoids plus an h-dimensional grey value histogram formed from the remain-
ing background pixels.

In our experiments, the use of two shells and 60-dimensional grey value
histograms turned out to perform best. Figure 6.3 visualizes the pixel selection
kernels of a 3D ROI. The upper row displays the pixels selected as background
information (BG) in the 10 consecutive slices of a hypodense lesion. In the
middle row, we see all pixels of the lesion’s outer boundary approximation
(shell S1) and the bottom row visualizes the selected pixels of the innermost
shell (S2).

6.2.2.2 Image Feature Combination

In order to achieve the optimal combination of various types of image features,
we would have preferred to use an analogous approach to the multi-represented
regression scheme introduced in Section 5.5.2.2. In fact, when assuming an
existing labelling of the retrieval dataset consisting of pair-wise similarity labels
or a classification of the dataset into various classes, we could again use this
recipe: for R representations query the R separate databases and combine
the R result sets according to a criterion evaluating their label coherence.
However, first, we cannot assume to have a labelled retrieval dataset in a
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medical environment. Second, the result sets of various image representations
will usually be labelled in versatile ways and will thus be difficult to combine.

Therefore, we decided to use a classical weighted sum of distances over
the chosen representations’ distances. We require two kinds of weights: the
first weight, sr, represents the standard deviation of distances of represen-
tation r for ensuring a comparable distance scaling. Note that this simple
distance joining procedure assumes that the single representations’ distances
follow comparable distributions. This was the case for the distance measures
tested in our framework, however, other image representations might require a
more sophisticated scaling procedure. Additionally, the weights wr represent
an actual weighting factor to be manually assigned to representation r. The
combined distance measure dcombined for a set of lesion representations R is:

dcombined =
1∑R

r=1wr

R∑
r=1

wr
sr
dr . (6.1)

For each representation, we tested various distance measures on their suit-
ability for the image retrieval task. For global descriptors, i.e. d-dimensional,
real-valued feature vectors like the ones obtained with the size or the ehist
feature, we used two types of Lp norms (c.f. (3.1)): the Manhattan distance
(L1) and the Euclidean distance (L2). Note that for retrieval tasks, it is suf-
ficient to compute the squared Euclidean distance, consequently economizing
the time usually required for computing the square root.

The multi-instance representations hist and har were evaluated with var-
ious of the multi-instance distance measures surveyed in Chapter 4. The best-
performing distance measure were the sum of minimum distances (SMD, c.f.
Section 4.2.4) and its variant using only the k-lowest pair-wise minimum dis-
tances, the k-SMD introduced in Section 4.3.5.1. By also using the L1 or L2

norm as instance-distance in the selected multi-instance distances, we actually
receive comparable distance distributions for the multi-instance representa-
tions as for the global image representations and we can thus apply the feature
combination distance dcombined.

6.2.3 Combined Search

Even though our combined distance measure is well-suited for lesion compar-
ison, similarity among medical images remains a difficult application. The
appearance of a CT image depends on the setting of the image kernel, the
time and kind of the applied contrast agent and other factors like previous
organ excisions or medical implants. In many cases, this information is not
even available to the computer. Therefore, image similarity alone can hardly
be a significant indication of a similar patient case.
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The MEDICO system thus exploits all available, manually specified and
automatically generated meta-information of the query volume for restricting
the search space to annotations which are actually relevant. MEDICO can
automatically determine the position of the ROI w.r.t. a number of organs and
landmarks [137] or within a standardized body atlas [55, 25], as well as any
available information on the patient’s prior history in the accessible database
collection.

Figure 6.4 shows an example scribble and the position of a query by scribble
in the combined search workflow.

Query by Concept

Query by Scribble

Image Parsing
System

Annotated images,
Landmark and Organ Detection

Patient 1
o Volume 1

• Lesion 1
• Lesion 2
• Filter Finding 1

o Volume 2
• Lesion 3
• Filter Finding 2
• …

o …
Patient 2
• Lesion 1 … 
• …
…

Patient k

Image Feature 
Database

Semantic
Database

Finding UIDs
as filter

Finding UIDs

Ranked Finding List

A.I.R.
merge operator

Hierarchically
Ranked
Patient List

PACS

Referenced
Image Regions…

…

Figure 6.4: Query by Scribble: retrieve similar regions of interest (ROIs) via
a quick selection mark on an ROI. Query by Concept: retrieve an image list
using semantic filtering criteria, some of which can be automatically generated.
Combined Search: use (some of) the output of a Query by Concept as filter
list for a Query by Scribble and combine the two result lists.

The main advantage of a query by concept over a query by scribble is the
standardized way of query specification. By using the standardized vocabulary
of the MEDICO ontology, queries by concept can be easily combined (with and,
or or not) and extended to hypernyms. Thus, they allow a time-efficient query
processing.

However, even using a convenient search-as-you-type functionality, the use
of the expert vocabulary requires some training. As some terms do not di-
rectly induce a unique medical concept, they need to be verified by manually
inspecting the underlying type hierarchy. A more serious drawback is the fact
that the results of a query by concept are not ordered by relevance. In current
keyword-based search engines on the internet, the first hits are expected to be
the most relevant. This relevance is usually determined by combining knowl-
edge about user-specific interest profiles with the general demand on the result
pages. Such a ranking information is typically not available to a medical search
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engine, since the retrieval frequency of a patient should not impose any notion
of importance. If, however, a query returns thousands of randomly-ordered
results, the user will quickly lose interest in the search engine. A similarity
search as used in a query by scribble, however, does provide a ranking of the
result set. Additionally, it allows to specify a query without the need of giving
a detailed verbal description of the observed ROI.

In order to combine the best properties of the available search modalities,
we thus need to decide for the optimal order of query processing. The two
basic combination operators for two result sets are the merge or join operator
and the filter or intersect operator. Since a query by concept is expected to
be faster than a more computationally involved query by scribble, the most
efficient order is to first pose the query by concept and to then use the resulting
output as a filter for a query by scribble. This way, the expensive image search
only needs to rank relevant results.

Finally, we also use the merge operator for including any non-lesion results
of the query by concept into the final result set. This way, the unstructured
output of the semantic search receives a sensible order and the bare image
similarity ranking is enriched by an explanation of why the ranked lesions are
presented to the user.

An example of a combined query is presented in the experimental sec-
tion. Let us note that we also exploit further information available to the
MEDICO system: the MEDICO image parsing system [136] can initialize a
combined query by automatically detecting the organ context of the scribble.
The anatomical parsing system requires less than 2 minutes for detecting the
most important organs and landmarks – if this step has already been com-
pleted, when initializing a query, the user does not have to manually provide
the semantic expression for the anatomical location of the scribble as filter
criterion for the query by concept.

6.3 Search Infrastructure

MEDICO provides the user with an easy-to-use web-based form to describe a
search query. Currently, a search consists of a semantically rich data set com-
posed of DICOM tags, image annotations, text annotations and gray-value
based 3D CT images as reference. This leads to a heterogeneous multimedia
retrieval environment with multiple query languages for retrieval: DICOM in-
formation is stored directly in the PACS, image and text annotations are saved
in a triple store and the CT scans are accessible by an additional image search
engine performing instance-based similarity search in a relational database.

Apparently, all these retrieval services are using their own query languages
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for retrieval (e.g., SPARQL or SQL) as well as different ways of data repre-
sentation (e.g., OWL, numeric feature vectors). Beside all differences, they
form a common, semantically linked, global data set. To fulfill a meaningful
semantic search, these interoperability issues had to be solved. Furthermore, it
is essential to formulate queries that take the aforementioned diverse retrieval
paradigms into account. For this purpose, MEDICO integrates the AIR [145]
multimedia middleware framework which implements the MPEG Query For-
mat (MPQF), [48] which is currently the most specific query language for
multimedia retrieval. This framework has been especially designed to serve as
a mediator between a search interface and an arbitrary amount of back-ends.
AIR is able to support both, distributed query processing as well as local query
processing.

The current dataset of the MEDICO project consists of 5 493 anonymized
volumes (of which 4 479 are CT scans) which were taken of 333 lymphoma
patients for monitoring the progress of the disease. The volumes were collected
by our clinical partner at Friedrich Alexander University in Erlangen and they
sum up to a raw pixel dataset of more than 700 gigabytes. 100 volumes have
been semantically annotated with terms from the MEDICO-ontology [113],
combining expert knowledge represented in medical ontologies such as the
Foundational Model of Anatomy (FMA) [128] and RadLex [103]. Another
medical expert additionally annotated lesions within liver, spleen and kidney
in 574 volumes.

To avoid large efforts in annotating images the MEDICO project recently
proposed a semantic reporting process [137] which makes use of an image pars-
ing system [136] and a semi-automatic semantic reporting tool. The image
parsing system automatically detects anatomical structures and generates an
initial annotation list, whereas the reporting tool allows the radiologist to com-
plement them. This semantic reporting tool provides the user with context-
sensitive term suggestion, fast volume navigation by directly jumping to or
zooming into an anatomical region and hyperlink report text passages with
the appropriate image location.

The complete data store is split into the following three knowledge bases:
a PACS, a semantic database and an image feature database.

6.3.1 The PACS

The local PACS containing the raw images as well as any meta-information
generated by the used medical scanners is connected via DCM4CHE [41], a
strict implementation of the DICOM [117] standard. A DICOM document
consists of the actual image data as well as supplementary header information
about the image modalities and additional information like the acquisition



6.3. Search Infrastructure 155

time of the scan, a patient’s UID or any used contrast agent. Each scan gets
assigned a unique DICOM series UID. The system supports basic retrieval
queries like a request for all images belonging to a given patient.

6.3.2 The Semantic Database

The Semantic Database stores semantic image and text annotations. It is
implemented using a Jena text database (Jena TDB, http://www.openjena.
org/TDB/), which directly supports OWL/RDF and SPARQL. We selected
the Jena library because of its good scalability and runtime performance. [147]
See the MEDICO ontology in Figure 6.1 for the OWL developed to store the
semantic annotations. They are associated to so-called findings, which allow
the link to a text source or a specific image region. This database enables
more complex queries for those findings, fulfilling a given semantic constraint,
e.g. a lesion within a pre-defined body region. The findings are associated to
the volumes stored in the PACS via series UIDs and patient UIDs.

6.3.3 The Image Feature Database

Instance-based similarity queries are handled by the image feature database.
All required data is stored in a relational database (mySQL: http://dev.

mysql.com/). Its content is sketched in Table 6.1.

Table 6.1: Structure of the image feature database.

PACS information semantic image annotations

DICOM meta-data: landmarks
Data patient UIDs organs
references: volume UIDs regions of interest (ROIs):

radiology reports lesions

image features linked to a volume UID or an ROI UID

Image grey value histograms, histograms of gradients,
features: texture features, tissue classification histograms,

size measurements

In order to minimize the communication overhead with the PACS, this
database also contains selected fields of the DICOM meta-data. Addition-
ally, the database contains selected types of text and image annotations also
available in the semantic database. These annotations may be landmarks or or-
gans, [137] or manually-specified image regions, i.e. regions of interest (ROIs).

http://www.openjena.org/TDB/
http://www.openjena.org/TDB/
http://dev.mysql.com/
http://dev.mysql.com/
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The total number of annotations and the number of volumes associated to
such an annotation type is summarized in Table 6.2.

Table 6.2: Statistics on the data store within the image feature database con-
taining 4 479 CT scans.

Data type number of objects for the number of volumes

Landmarks 42 902 2 793
Organs 18 048 3 130
Radiology reports 2 722 2 722
Lesions 1 293 574

The main focus of this similarity search application is the fast and selective
availability of automatically-generated image features. The SQL tables enable
a quick retrieval of candidate lesions via the specification of a filter set of
candidate findings or volumes provided by the semantic database. If no filter
is specified, our system also supports spatial indexing structures for accelerated
ranking queries.

For more information on the query architecture of the MEDICO framework
and for details on the supported query processing mechanisms of the AIR query
broker please refer to Stegmaier et al. [146].

6.4 Related Work

This section gives a brief overview on existing semantic and image similarity
query approaches in medical database.

6.4.1 Query by Concept

A real query-by-concept as defined in this chapter is so far not available in stan-
dard medical databases. The well-established DICOM standard [117] supports
keyword-based search in special fields of meta-information, however, keywords
alone are not sufficient to form a flexible query exploiting the advantages of a
semantic structure.

In the boom of Web 2.0 technology, semantic search has received special
attention in the past years. Especially in medical environments, the hopes
about simplifying the complex process of standardization by using medical
ontologies have been high. [142] Consequently, concept-based queries [113, 137]
and the architectures required for extracting the required information from
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medical ontologies already available [168] lead to the first publications of the
MEDICO project.

Other research projects like IRMA (the Image Retrieval in Medical Ap-
plication)2 try to use existing mechanisms like DICOM Structured Reporting
(SR) for adding semantic annotations to images. [166] The main problem here
is that these structured documents are only occasionally supported by the
leading manufacturers and that it still requires an additional query system
organizing the selected conceptual tags.

This is one of the reasons why the research program AIM (Annotation
and Image Markup) also uses a comparable approach as the MEDICO project
for defining an annotation ontology on medical images. [27, 28] In [130], they
followed the strategy of examining web queries of radiologists for identifying
relevant search terms and their relations to various types of medical ontologies.

Progress in the field of semantic similarity search, however, has been rel-
atively small. In [94], Korenblum et al. introduce a similarity search system
which ranks images according to their intersection of keyword annotations.
The main drawback of such an approach is the implausible handling of miss-
ing annotations: it is highly unlikely that both the objects within the query
database and the query image itself have been completely annotated with all
relevant keywords, i.e. concepts. Thus, even though a match in any given con-
cept can be taken to be a positive contribution to object similarity, a lack of a
correspondence in another concept cannot necessarily be taken as an indication
of dissimilarity. Consequently, the MEDICO system refrains from employing a
ranking system as in [94], where a high rank of an image or a finding would be
rather correlated with its degree of annotation detail than with its similarity
to a query template.

6.4.2 Query by Scribble

In the past years, CBIR in medical databases was mostly restricted to special
cases like 2D skin lesions [6] or cervicographic images. [175] These specialized
systems are usually designed for decision support, i.e. they try to summarize
their results in a way equivalent to a classification system. In [162] for instance,
Wang et al. present an alternative classification system for lesion tissue classi-
fication using image patches via support vector machines. A recent summary
over retrieval-based classification systems is listed in [2].

However, also the classical idea of image retrieval has advanced in the
medical field. [114] A survey on medical image retrieval systems currently
available is presented at the begining of this thesis in Section 1.1.2. Our
use case is the selection of image subregions for use as a query template.

2http://irma-project.org
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In Seifert et al., [138] we presented our approach at the example of lesion
retrieval, with a lesion being any visually conspicuous part within a volume
scan. Napels et al. [115] describe similarity retrieval on liver lesions using an
electronic representation derived from an exact 2D segmentation of the lesion’s
center slice. The image descriptors used in their work are rather focused on
manually-annotated semantic ROI features than on automatically-generated
image features, as they elaborated in [94]. An extension using only automatic
image features still requires the exact segmentation of the lesion and it involves
the computation of 2D shape descriptors. [173] Other image query systems
based on structured reports as proposed in [166] are mostly focused on 2D
image annotations and therefore 2D queries as well.

Our query approach uses actual 3D annotations, however due to the high
annotation overhead of exact lesion segmentations, we only generate a rough
lesion representation by outlining bounding boxes. Since these bounding boxes
are not restricted to the target lesions, they also contain background informa-
tion of the liver or any bounding organs, bones or neighboring air.

Since by applying the 3D ellipsoid image kernel, we are using a quasi-
segmentation step in our feature generation approach, we also point out a
small sample of existing segmentation techniques in the field of liver lesions:
[14] describes a semi-automated watershed approach in 2D. In [143], Soler et al.
present a deformable model-based 3D liver segmentation approach, which also
outlines lesions in order to improve the quality of the organ segmentation. [148]
proposed a semi-supervised, iterative growth algorithm based on Gaussian
intensity estimates. [111] use a probabilistic boosting tree for detecting and
segmenting two types of liver lesions.

6.4.3 Combined Search

As already mentioned, Napel et al. [115] use image features and manually-
annotated semantic features for ranking liver lesions. Their modality aggrega-
tion approach is distance combination using adaptive boosting (AdaBoost [63]).
This way, they achieve a good performance on a dataset of 30 exactly seg-
mented 2D lesion annotations. It is hard to judge the effect of overfitting on
this rather small test set. Moreover, this approach also depends on a complete
semantic annotation of the data, not allowing for missing values which are
bound to be abundant in medical environments.

Welter et al. [167] propose to use DICOM [117] structured reporting doc-
uments for providing a better standardization of various CBIR-based CAD
(computer-aided diagnosis) systems. Given a properly-structured database
containg both image-based annotations and anatomical or disease-relevant
meta-information, combined queries will indeed be easier to handle than the
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combination of various knowledge bases as in the MEDICO project. For var-
ious reasons (vendor competition, privacy protection and other legal restric-
tions), however, the availability of such an integrated system is rather unlikely.
Therefore, most semantically-motivated image similarity retrieval approaches
are based on the exhaustive semantic annotation of a given database as in [94].

6.5 Experimental Evaluation

We validated our search procedure with respect to the quality of the visual
similarity ranking, as well as w.r.t. the gain achieved by combining the visual
query with automatically-derived and manually-specified semantic queries.

6.5.1 Datasets

A medical expert annotated the 3D bounding boxes of 1293 lesions (973 liver,
130 spleen, 190 kidneys) in 577 CT scans for 92 patients. For verifying the
quality of our visual similarity metric, we selected 111 liver lesions with a
bounding box volume ≥ 5 cm3 as validation set V1 (79 volumes of 26 patients)
and a medical expert annotated them with pair-wise similarity scores on a
5-step scale from 0 (completely dissimilar) to 100 (same lesion).

In order to reduce this significant annotation effort, we defined equivalence
classes for 21 lesions which occurred multiple times in the dataset in the context
of a scan taken another time. We only annotated a set of 62 lesions with
pair-wise similarity scores (= 62·61

2
= 1 891) and auto-extended these scores

by the known equivalence classes. This way, we lose some precision in the
annotation, since only a part of the final 111·110

2
= 6 105 pair-wise similarity

scores has been manually validated, however, we can generate a larger data
store at lower annotation costs. A screenshot of our similarity annotation tool
can be examined in Figure 6.5.

Furthermore, we randomly sampled 60 of the liver lesions of V1 and com-
bined them with 60 additional spleen lesions and 60 kidney lesions (all ≥
5 cm3) as dataset V2. This way we can evaluate the effect of omitting the
automatically-derived location knowledge obtained by the image parsing sys-
tem.

Additionally, our medical experts annotated 100 CT scans as set V3 in a
semantic reporting process [137] for visible radiological findings, mapped into
the MEDICO-ontology. [113] This set of volume annotations can be queried
by advanced semantic queries like enlarged thoracic lymph nodes.
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Figure 6.5: Screenshot of the annotation tool used for defining pair-wise le-
sion similarities. By displaying three consecutive slices which can be scrolled
and further visually explored, this tool enables a three-dimensional compari-
son. The presentation of three pairs at once facilitates the spontaneity of the
annotation process.

6.5.2 Visual Similarity Ranking Performance

In contrast to our fast box-annotation scheme, Napel et al. [115] proposed
a retrieval scheme for liver lesions which requires the exact segmentation of
the lesion and an additional, manual specification of 161 semantic properties.
They tested their approach on 30 lesion annotations. Our goal is to achieve
rankings of a comparable quality over a larger database with a considerably
smaller annotation effort (only box annotations, no semantic properties).

In order to minimize the annotation overhead for our large set of lesions,
we decided to restrict the validation of the visual similarity search to subset
V1 of 111 liver lesions. For every lesion, we generated a ranking of the remain-
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Query Lesion:
5 most similar lesions:

5 most dissimilar lesions:

Query Lesion:

5 most similar lesions:

5 most dissimilar lesions:

Figure 6.6: Example rankings for two queries by scribble. The annotations
are displayed by the red bounding box with a close-up to the top left. These
excerpts only show the center slice of the annotations, which may heavily vary
in depth.

ing lesions according to their automatically-determined visual similarity. The
first and the last ranked lesions of two such example rankings are depicted in
Figure 6.6. In both cases, the first (and best) match in the top row is actually
the same lesion, only originating from CT scans taken on another day.

Figure 6.7 shows the precision-recall (PR) curves (a pair is considered to
be relevant for a similarity score ≥ 75) and the normalized discounted cumu-
lative gain (nDCG) [88] aggregated over the complete set of 111 lesions. For
both validation statistics, optimal rankings would maintain their maximum
y-coordinate (either the precision or the nDCG) of 1 until the maximum value
of the x-axis. Obviously, the plots do not display optimal rankings, however,
they are clearly better than random, especially for the first k hits, which are
the most relevant.

6.7(a) and 6.7(b) display the performance of the single image features:
the 3D ellipsoid kernel of grey-value histogram ehist, slice-wise grey-value
histograms hist, a slice-wise pyramid kernel of Haralick textures har, and
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(b) nDCG [88] curves of single descriptors. The k-nearest neighbors validation statistics
are summarized in groups of 5.
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(c) PR Curves of combined descriptors.
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(d) nDCG curves of combined descriptors.

Figure 6.7: Evaluation of the rankings on V1 via box-plots, displaying the
median en-boxed by the first and third quantile. The whiskers represent the
farthest non-outliers. (a), (b): rankings based on single image descriptors. (c),
(d): rankings for the combined distance measure dcombined. The single distance
contributions are weighted ehist : har : size = 2 : 1 : 1.
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Table 6.3: Confusion matrix of ranking test on V2 (60 lesions each from the kid-
neys, the liver and the spleen) displaying the 10-nearest neighbors (excluding
the query) for the query organ in the rows.

(a) Confusion matrix: total precision 71.3 %

Kidneys Liver Spleen

Kidneys 525 33 42
Liver 19 362 219
Spleen 10 194 396

(b) Same experiment in percent

Kidneys Liver Spleen

Kidneys 87.5 5.5 7.0
Liver 3.2 60.3 36.5
Spleen 1.7 32.3 66.0

the simple size measure size. We clearly see the improvement of the 3D
ellipsoid kernel features ehist over the multi-instance representation of 2D
grey-value histograms hist, which we employed in [138]. Since the multi-
instance approach is also more expensive than the 3D lesion approximation,
the choice of which grey-value histogram descriptor to use is obvious.

Therefore, the figures 6.7(c) and 6.7(d) validate the combined distance
measure dcombined based on the three representations ehist, har, and size,
using manual contribution weights 2 : 1 : 1. The resulting rankings result
in a mean average precision of 0.78 and an average nDCG value for the 10th

retrieved lesion of 0.85.

This ranking procedure does not completely reach the quality of the valida-
tion results by Napel et al. [115], however, this is due to the rougher annotation
quality and due to the larger size (111 instead of 30 lesions) of our dataset.

6.5.3 Benefit of the Combined Search

The quality of the above results gained a lot from our information combination
approach. The information about the scribble’s anatomic position enables
to exclude all entities from the search space which are not localized within
the liver. To test our hypothesis, we generated rankings on the dataset V2
containing 60 lesions each from the liver, the spleen and the kidneys. When
querying V2 without using the semantic information about the organ context
of the query lesion, 29 % of the top ten hits originate from foreign organs (cf.
Table 6.3). The strongest error contribution arises from the general optical
similarity between spleen and liver tissue. The miss-placed lesions appear to
be similar for the image descriptors, but they are not useful in the context of
a lesion query.

This is a major advantage of the MEDICO query system in comparison to
other retrieval systems, where this information has to be filled in manually.
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Query lesion:

Ranking on all lesions of V2 (no filter constraints):

Ranking on spleen lesions only:

Figure 6.8: Example rankings for a spleen lesion query without (top row) and
with (bottom row) organ constraints. Ranking all of V2 returns only liver
lesions in the top 5 hits.

The effect is exemplified by Figure 6.8, where similar spleen lesions will only
appear in the top 5 ranks when applying an intelligent context filter.

The MEDICO system furthermore allows to specify manual semantic queries.
In our example case the user wants to see all patients with enlarged thoracic
lymph nodes. This query can be posed to the set of 100 semantically anno-
tated volumes V3 and it matches 34 patients in the Annotation Database. 10
patients have assigned lesion annotations and 9 of these patients show a total
of 35 liver lesions in 26 volumes. The joint datasets of V1 and V2 can thus
be restricted to a set of 35 instead of taking only the 111 liver lesions of V1
by requesting a similar patient history. An exemplary ranking is displayed in
Figure 6.9.

Besides the obvious benefit of restricting the result set to semantically valid
items, the combination with semantic filter properties also speeds up the visual
similarity ranking. A single query to V2 takes 1 330 ms when the database is
not cached for a quick main memory retrieval, including the time required for
generating the query lesion’s features (266 ms). The same query takes only
1 033 ms when adding the organ information “liver” (kidneys: 551 ms, spleen:
296 ms). When restricting the context to patients with enlarged lymph nodes,
one query only takes 675 ms.

Naturally, the query process can be greatly sped up by caching the query
database, however, in an environment not yet prepared for large-scale main
memory storage, this procedure would interfere with other services. Thus,
an intelligent filtering of the query database is an important step for a well-
performing similarity query.
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Query lesion:
Ranking on all lesions of V1 and V2 (no filter constraints):

Ranking on semantically-filtered set of 35 liver lesions:

Figure 6.9: Example rankings for a liver lesion query without (top row) and
with (bottom row) the semantic constraint “in liver, thoracic lymph nodes
enlarged”. The first two hits of both rankings each show the query lesion in
various stages. When all of V2 is queried, two kidney lesions are among the
top 5 hits.

6.6 Summary

This chapter presented search components of the MEDICO prototype, a com-
prehensive medical search framework which enables the user to accomplish vi-
sual similarity search combined with semantic search based on web 2.0 technol-
ogy. [138] Our approach significantly extends the search capabilities compared
with currently available content-based image retrieval systems and enables the
system to answer real-world questions.

The MEDICO prototype allows both semantic queries in the form of a query
by concept and instance-based image similarity queries. A query by concept is
an extension of a query by semantic keyword, allowing flexible concept com-
binations and the automatic query expansion of a more general concept to
its subclasses. In a query by scribble, our implementation of instance-based
similarity search, the user defines an arbitrary region of interest (ROI) within
a 3D volume and asks the system for similar ROI annotations. Additionally,
the two query types can be combined in order to complement the other query
type’s advantages and to provide an even more flexible query framework.

In our query scenario of intra-organ lesion search, the result set can be
automatically reduced by taking the semantic information about the contain-
ing organ of the lesion into account. Another reduction can be achieved by
reducing a result set of 111 to 35 liver lesions by including an additional se-
mantic search criterion (thoracic lymph nodes enlarged). On the one hand, this
approach increases the relevance of instance-based image similarity queries by
restricting the result according to a similar patient pathology. On the other
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hand, we can exploit this effect for greatly speeding up our similarity queries.
In future work we aim toward improving the quality of the image-based

query component by testing further image descriptors and similarity measures.
At the moment, we additionally try to improve the quality of our image de-
scriptors by incorporating a lesion segmentation step for detailing the imprecise
box annotations. In most cases, rather simple threshold-based segmentation
approaches are not sufficient for defining a reliable lesion boundary. By incor-
porating various improvements like image smoothing kernels, lesion probability
assumptions and clustering approaches, we were able to generate visually plau-
sible 3D lesion segmentations. Nevertheless, so far, this new knowledge about
whether or not an MBR voxel is within or outside of the lesion, did not suffi-
ciently improve the ranking quality to justify the additional cost required for
this fine-segmentation step.

Furthermore, we will look for ways of refining the query combination mech-
anism and we plan to test our system on larger sets of annotated data. Finally,
we are integrating alternative types of medical data sources like laboratory re-
ports into the query system.
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Chapter 7

Discussion and Outlook

In this thesis, the author summarized general findings about computer-based
similarity search with a special focus on the use in medical imaging. Most
paradigms of similarity search also hold in the field of medicine, however, a
number of additional constraints need to be considered.

7.1 Practical Barriers

Within the research and implementation work of this thesis, the main obstacles
on a successful image similarity search were:

Data Availability Even with a close cooperation to one of the leading radiol-
ogy centers in Germany it proved to be challenging to acquire a sufficient
or appropriate amount of medical image data. This general problem is
mostly due to privacy protection measures which are complicated by the
numerous image types and formats. The advances in imaging prove the
value of these sanctions. As there is hardly any kind of personal data
which is more private than medical data, no patient wants to see their
laboratory values posted on the web. And faces have been reconstructed
from bone surface scans [157] or CT scans [125] for a long time.

Data Standardization In addition to the availability issue of medical data,
an even more pressing problem is its state of standardization. Current
standards in medical imaging [117, 50] are either insufficient for providing
comparable image material or they are ignored by some manufacturers
of image scanning technology. Any information retrieval approach devel-
oped on medical datasets must thus be robust w.r.t. the manifold nature
of the expected input.



168 7.2. List of Scientific Contributions

Ground Truth Annotations Defining a solid ground truth on medical im-
ages showed to be a further hindrance on the way to a useful image
search application. A medical expert will rarely compare two images
solely based on the visual appearance. Usually some preliminary in-
formation about the patient’s background is known in order to better
place the image material to be examined. It is therefore very difficult
to get such an expert to make a clear statement about their perceived
impression of similarity if this information is missing.

Appropriate Pattern Mining Originally, the development of new image
descriptors was not within the scope of this work. There is already a
multitude of image descriptors available in the literature, however, these
are usually designed for rather specific retrieval approaches or they are
too complex for being suited for an efficient image retrieval. In order to
correctly represent the various special cases of medical images handled
within this thesis, we had to explore various strategies for generating
image descriptors.

Multidisciplinarity The most demanding challenge of our inquiries in the
field of medical image queries was the multiplicity of relevant fields of re-
search. Our developed solutions touch various areas of similarity search,
data mining, data indexing, machine learning, pattern mining and soft-
ware development. It therefore proved to be of utmost importance to
clearly define self-contained milestones and sub-projects when aiming
toward the goal of an integrated and holistic prototype, but to never
loose track of the global picture.

7.2 List of Scientific Contributions

Most of the contributions of this thesis have been directly integrated into the
THESEUS MEDICO image query framework. The following section gives a
brief summary of their main components.

7.2.1 Improved Data Integration

In [146], we introduced the architectural background of the THESEUS MEDI-
CO solution to the integration of various kinds of data sources. The crosslinks
between various types of databases can also be implemented manually, how-
ever, in order to enable the fast integration of a further data source, we use a
generic framework for query processing. Therefore, the relevant query options
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of the MEDICO image search components have been standardized according
to the MPEG query format (MPQF) [48] within the AIR [145] architecture.

7.2.2 Flexible Paths to Similarity Search

A major focus of this thesis was to ensure the flexibility of the developed simi-
larity search framework. We therefore tested various types of image descriptors
and object representations on their applicability within a similarity retrieval
system, ranging from classical, real-valued feature vectors [54] over set-valued
image descriptors [138] to graphs [153]. In the course of this research, we gener-
ated a new machine learning scheme of Bayes Ensembles [54], we investigated
feature selection and feature mining approaches in graph applications [153]
and we explored two types of feature combination mechanisms in similarity
ranking [138] and instance-based regression [55].

7.2.3 Definition and Solution of two CBIR Use Cases

The practical part of this work is mostly centered around two applications of
content-based image retrieval (CBIR) in medical data. In the first use case, [25]
we exploit visual properties of CT scans for defining a standardized body
height atlas. This atlas is employed for automatically providing anatomical
information on selected body regions and for accelerating volume retrieval. The
second use case is an example-based image query system, allowing the user to
define a region of interest (ROI) within a CT scan for which to retrieve the most
similar ROIs of a database. [138] In addition, we combine this image-based
similarity query option with a semantic query framework, allowing queries for
semantically-standardized anatomical keywords [137], disease stages [185] or
laboratory measurement ranges.1

7.2.4 Solutions for Efficient Image Retrieval

Finally, our research in the field of medical image similarity search always
emphasizes the necessity of efficient query runtimes. In order to respect the
special requirements of a medical environment, the precision of a search sys-
tem’s answers should not suffer, however, the daily routine in radiology does
not allow for long waiting times.

We therefore closely examined the runtime requirements of the feature se-
lection and subgraph mining approach introduced in [153] and provided guide-
lines for deciding, which selection variant to use under which given conditions.
The main gain of the multi-instance query approaches discussed in Chapter 4

1Patent pending.
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also consisted in a speed-up of similarity retrieval queries. Moreover, we in-
vestigated various methods for the special case of all-nearest-neighbor queries
in [53] and explored the behaviour of spatial index structures on solid state
disks [52]. For the brevity of this thesis, these results are only referenced.

Eventually, we established an algorithm for the accelerated retrieval of sub-
volumes [25] using spatial indexes and the abstraction layer of a standardized
body coordinate system. Additionally, in [138], we exploit information gen-
erated by an automatic anatomical image parsing system [136] and results of
semantic queries as filters for speeding up image-based similarity queries.

7.3 Summary

This thesis presented parts of the scientific results concerning similarity search
in medical image databases of the THESEUS MEDICO research project. It
gave an overview on the computational challenges of image-retrieval in a med-
ical environment and presented solutions for two chosen use cases.

Image retrieval in medical applications will remain a very active field of
research. Due to a rapidly growing data pool of medical images, the major
vendors of computational radiology equipment have intensified their efforts in
finding solutions for capitalizing this enormous source of medical information.
This will also necessitate the increased use of standardized reporting techniques
and the use of new electronic documentation media in hospitals. Both areas
of research also fall within the scope of the THESEUS MEDICO project.

In future work, we plan to improve the existing technologies of the two pro-
posed medical CBIR scenarios and to develop new applications for the image
retrieval components developed within this thesis. We aim toward tackling
new challenges of data collections like irregular time-series’ of volumetric im-
ages or videos of different modalities. And finally, we are going to look for
further, non-medical application domains of the similarity search techniques
developed for the use in medical image queries.
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Appendix A

List of Abbreviations

2D / 3D two-dimensional / three-dimensional
BE Bayes Estimate [54]
BED Bayes Ensemble Distance [54]
CBIR Content-based Image Retrieval
cm centimeters
CORK Correspondence-based Quality Criterion [153]
CT Computed Tomography
DFS Depth-First Search
DICOM Digital Imaging and Communications in Medicine [117]
GB gigabytes
gSpan graph-based Substructure pattern mining [177]
HL7 Health Level 7 [50]
HMD Half the Sum of Minimum Distances
HU Hounsfield Unit [22]
I/O input/output
LOO leave-one-out
MBR minimum bounding rectangle
MILES Multiple-Instance Learning via Embedded Instance Selection [29]
PACS Picture Archiving and Communication System
RCA Relevant Component Analysis [7]
ROI Region of Interest
SIFT Scale-Invariant Features Transform [106, 107]
SMD Sum of Minimum Distances
SURF Speeded Up Robust Features [10]
UID unique identifier
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