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Abstract 1 

1 Abstract 
 

The neuropeptide corticotropin-releasing hormone (CRH) coordinates 

neuroendocrine and behavioral responses to stress. Its prolonged hypersecretion 

produces several signs and symptoms of depression, and is associated with a severe 

impairment of sleep, in particular reduced sleep intensity, disinhibition of rapid eye 

movement sleep (REMS), and early morning awakenings. It was recently 

demonstrated that REMS is upregulated in a conditional mouse model that 

overexpresses CRH in the forebrain including limbic structures. The results suggest 

that overexpression of CRH in the forebrain including limbic structures contributes to 

enhanced REMS, which may apply similarly to the case of depressed patients. 

However, how limbic CRH affects REMS is still not clear. In general, during REMS, 

dynamic changes in neurotransmitter activity occur. For example, monoaminergic 

systems are low, while cholinergic activity becomes high. REMS upregulation seen in 

depressed patients might be the product of complex interactions between CRH and a 

neurotransmitter system known to play a role in REMS regulation. 

 
In this thesis the role of CRH in the regulation of REMS was further explored. 

Polysomnographic recordings combined with microinjections, quantitative 

microdialysis and immunohistochemistry were used to examine whether 

overexpressed CRH in the forebrain contributes to REMS enhancement by altering 

the cholinergic system known to play a role in REMS generation. Since CRH 

overexpression is also present in the limbic system, the present study mainly focused 

on the amygdala. This limbic structure is strongly implicated in emotional responses 

closely related to REMS, although only few studies so far have described its 

interaction with REMS. 

 
The results show that injection of a muscarinic antagonist into the central nucleus of 

the amygdala (CeA) decreases upregulated REMS of homozygous forebrain-specific 

CRH (CRH-COE Cam) overexpressing mice. Furthermore, homozygous CRH-COE 

Cam mice possess higher extracellular levels of acetylcholine (ACh) in the CeA than 

their control littermates, whereas spontaneous locomotor activity is comparable in 

both genotypes. This suggests that higher ACh is not due to an increase in locomotor 

activity but is reflected by REMS enhancement. These results indicate that CRH 
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overexpression appears capable of stimulating the cholinergic activity in the 

amygdala which in turn may lead to upregulated REMS. As seen in depressed 

patients, this animal model may possess hyper-cholinergic sensitivity that may 

contribute to REMS disinhibition. 

 
Immunohistochemical studies were carried out to confirm this hypothesis: Activation 

of CRH receptors by microinjection of CRH into the CeA induced an increase of c-

Fos expression in cholinergic structures in the brainstem in normal C57BL/6J mice, 

suggesting that amygdaloid CRH is able to influence the neuronal activity in REMS 

regulating structures such as the laterodorsal tegmental nucleus (LDT) and the 

sublaterodorsal tegmental nucleus (SLD). Further, cholinergic neurons in the LDT 

become more active in homozygous CRH-COE Cam mice than controls in response 

to sleep deprivation, when REMS rebound occurs, indicating that in this animal 

model CRH intensifies the mesopontine cholinergic system, which may at least in 

part result in upregulated REMS. 

 
This thesis emphasizes that REMS upregulation seen in depressed patients might be 

the product of complex interactions between CRH and the cholinergic system. 

Further investigations will need to complete a detailed picture of the underlying 

mechanism by which CRH influences REMS. 
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2 Introduction 

2.1 What is sleep and why do we need it? 

 

Sleep is a complex behavior characterized by significantly reduced sensory 

responsiveness, the adoption of a specific posture, and the occupation of a sheltered 

site. In the physiological sense, sleep is a state characterized by rapid reversibility to 

the wakeful condition, characteristic changes in the electroencephalogram (EEG), 

and a compensatory sleep rebound following deprivation of the state. The 

physiological definition is valid for birds and mammals, but in other animals whose 

central nervous system (CNS) is not well developed, the behavioral definition is more 

often used (Tobler, 1995, Zeppelin et al., 2005, Siegel, 2008). An important property 

of sleep is its spontaneous occurrence with endogenous periodicity that is 

independent of other corporal needs and environmental signs, including variations in 

ambient temperature. This distinguishes sleep from hibernation and torpor, both 

associated with variations in temperature and accessibility of food and water 

(Zeppelin et al., 2005). 

 
More than 100 species have been studied in order to describe this particular behavior. 

Among all the studied species, humans, cats, rats, and, more recently, many mouse 

strains have been the most frequent subjects of sleep research (Zeppelin et al., 

2005). Despite intense investigations, it is very surprising that almost 85 years after 

the EEG discovery by Hans Berger (Berger, 1929) and 75 years after the first sleep 

research application by Frédéric Bremer (Bremer, 1935), the key function of sleep 

still remains unclear.  

 
Sleep is frequently viewed as an extremely vulnerable state that endangers the 

propagation of the species. The fact that sleeping situations are potentially 

dangerous has led to the assumption that sleep has been conserved in evolution 

because of its fundamental vital function (Siegel, 2009). As a matter of fact, animals 

cannot survive without sleep (Rechtschaffen, 1998). Indeed, Rechtschaffen and 

colleagues demonstrated in a series of experiments that sleep deprivation (SD) 

produces a serious syndrome including death when rats were sleep deprived more 

than 11 days (Everson et al., 1989, Rechtschaffen et al., 1989). The significance of 
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this syndrome caused by interfering with the function of sleep is not entirely clear, but 

the physiological changes caused by chronic SD suggested that sleep may be 

necessary for effective thermoregulation (Rechtschaffen et al., 1989). Besides the 

homeothermal aspect of sleep (Parmeggiani, 2003, Krauchi and Deboer, 2010) other 

functions have been suggested: energy conservation (Walker and Berger, 1980, 

Berger and Phillips, 1995), memory consolidation (Stickgold, 2005, Diekelmann and 

Born, 2010), neuronal plasticity (Tononi and Cirelli, 2006), tissue turnover and 

immune restoration (Krueger and Obal, 2003).  

 
Taken together, this great variety of theories that attempt to explain the function of 

sleep indicates that sleep is vitally requisite for us. 

 

 

2.2 Regulation of sleep and wakefulness 

2.2.1 Classification of vigilance states 

 

Vigilance states in rodents are defined similarly as in humans. Thus, based on EEG 

and electromyogram (EMG) recordings, three distinct vigilance states can be 

identified in mammals and birds: wakefulness, non-rapid eye movement sleep 

(NREMS) or slow wave sleep, and paradoxical or rapid eye movement sleep (REMS). 

In humans, NREMS can be further divided into light (S1-S2) and deep (S3-S4) 

stages. During the night, NREMS and REMS stages appear cyclically.  

 
Human sleep begins with S1, continues through S2, S3 and S4, and is concluded 

with REMS. This cycle is repeated every 90 to 110 minutes, four to five times a night 

(Rechtschaffen, 1968, Carskadon, 2011).  

 
In rodents, the length of a sleep-cycle is only ~10 to 12 minutes. They spend ~50 to 

65% of their time asleep per day, while their sleeping phase primarily occurs the light 

period of the day (80% of the day and 20% of the night are spent asleep). The 

sleeping phase is not consolidated like in humans, and the periods of NREMS and 

REMS are interrupted by activity bouts, a phenomenon recognized as polyphasic 

sleep (Tobler, 1995) (Figure 1). 
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Figure 1: Representative hypnograms from a human (A) and a mouse (B).  
Humans have a monophasic sleep pattern. Typically one main sleeping phase occurs with four to six 

regular cycles of shallow to deep NREMS followed by REMS (y axis indicates vigilance states). 

Rodents on the other hand display polyphasic sleep. Their sleep cycles are shorter (white areas: 

wake; grey bars: NREMS; black bars: REMS), occur more frequently, and are distributed throughout 

24h, even though the greater amount of sleep takes place in the light (inactive) period. The x axes 

indicate time in hours (h), the white and the black horizontal bars represent the light and dark period, 

respectively. Note that the human hypnogram shows only the sleeping dark phase, while the mouse 

hypnogram exhibits both the inactive light and the active dark period. Human hypnogram adapted 

from Kamel, 2006; mouse hypnogram, own data, unpublished. 

 

 

Wakefulness is determined by low-amplitude, fast activity in the EEG and the 

presence of muscle tone in the EMG. Active exploratory behaviors and attentive 

wakefulness are dominated by high theta activity (above 7 Hz), nevertheless, the 

beta (15-30 Hz) and gamma (30-60 Hz) ranges are also present in the waking EEG 

(Steriade, 2006). In transition to the drowsy state, when the sleep pressure is 

increasing, the slower EEG frequencies become more prevalent: delta (0.5-4 Hz) and 

low theta (4-7 Hz) waves occur. 
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NREMS is defined by high voltage, low frequency synchronized cortical activity in the 

EEG, and decreased muscle tonus. Normally, three main EEG components are 

associated with NREMS: slow oscillations (0.5-1 Hz), delta waves (1-5 Hz), and sleep 

spindles (12-15 Hz). The amount of slow oscillations and delta waves is referred to 

as slow wave activity (SWA), and also indicates sleep intensity. In human sleep, 

spindles are present in stage 2 of NREMS (Dijk, 2009), and in rodents they occur 

shortly before the transition from NREMS to REMS (Vyazovskiy et al., 2004). 

 
REMS was first described nearly 60 years ago (Aserinsky and Kleitman, 1953, 

Dement, 1958, Jouvet and Michel, 1959). This sleep state is defined by the 

appearance of fast, theta activity dominant (6-9 Hz), desynchronized, low voltage 

rhythm in the cortical EEG, rapid eye movements, limb twitching, and complete loss 

of muscle tone. Since the REMS EEG resembles that of the waking state, REMS has 

been alternatively named paradoxical sleep. To distinguish these two sleep states, 

EMG recordings are required (Jouvet and Michel, 1959) (Figure 2).  

 

 
Figure 2: Vigilance state-specific polygraphic recording of rodent sleep  

EEG and EMG traces recorded from a mouse during states of wakefulness (A), NREMS (B), and 

REMS (C) Each representative sample consists of a 10 seconds (sec) trance. Adapted from Datta, 

2007. 
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2.2.2 The two process model of sleep regulation 

 

Sleep regulation depends on three different processes: The (1) homeostatic process; 

(2) circadian, and (3) ultradian process occurring during sleep timing. The timing and 

structure of sleep are established by the interaction of the homeostatic and the 

circadian process, as described in the two-process model of sleep regulation 

(Borbély, 1982, Borbély and Achermann, 1999) (Figure 3).  

 

 
Figure 3: The two process model  

Sleep is regulated by an interaction of homeostatic sleep pressure (Process S; upper curve) and the 

circadian rhythm (Process C; lower curve), leading to alternating periods of wakefulness (white areas) 

and sleep (black bars). During wake, Process S increases in an exponential way. Sleep is initiated 

when Process S reaches plateau and Process C declines whereas when sleep is initiated Process S 

decreases exponentially. Adapted from Borbély and Achermann, 2000. 

 

 

In this model the homeostatic process (Process S) increases during waking when the 

sleep demand becomes higher and decreases during sleep. The circadian process 

(Process C) does not depend directly on previous sleep-wake amount, but affects the 

timing of sleep according to the intrinsic circadian rhythm of about 24 hours 

(Takahashi et al., 2008). In humans the circadian rhythm is slightly longer, whereas 

that of rodents is slightly shorter than 24 hours. Brain lesion studies have shown that 

the suprachiasmatic nucleus (SCN), located in the anterior hypothalamus, is an 

important brain area that regulates the circadian rhythm (Moore and Eichler, 1972, 

Edgar et al., 1993). 

 
Process C and Process S work together to control the timing and intensity of sleep. 

During the active period the circadian signal induces wakefulness, resulting in the 
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elevation of homeostatic sleep pressure. When the homeostatic sleep propensity 

reaches a critical level and simultaneously the circadian signal reaches its nadir, 

sleep will be induced. 

 

2.2.3 Neuronal mechanisms of sleep and wakefulness 

 

At the beginning of the twentieth century, von Economo provided the most important 

insight on neuronal structures involved in the control of sleep and wake. While 

investigating the pandemic flu of 1917-1920, he observed patients suffering from 

excessive sleepiness or extreme insomnia following encephalitis lethargica (Von 

Economo, 1926). Examination of their brains allowed him to conclude that the 

anterior hypothalamus contains sleep-inducing centers whereas the posterior 

hypothalamus contains the wake promoting areas. However, current knowledge of 

brain circuitry and neurotransmitters that shape the sleep-wake cycle has mostly 

been generated by neurochemical studies in cats and more recently in rats and mice, 

the latter being more accessible for electrophysiological/genetic approaches. 

Fortunately, results in these animals can often be applied to humans since the basic 

neuronal system implicated in sleep-wake regulation seems to be well conserved 

throughout evolution (Brown et al., 2008). 

 
Wake regulation 
Moruzzi and Magoun were the first to describe the ascending reticular activating 

system, a brainstem netlike core of neurons that is capable of inducing low-voltage 

fast EEG activity in the cortex typical for wakefulness (Moruzzi and Magoun, 1949). 

Studies in the 1970s and 1980s revealed that the wake inducing neurons were not 

part of the undifferentiated reticular formation but consisted of monoaminergic and 

cholinergic neurons of specific cell groups (Jones, 2003). The ascending arousal 

system has two main pathways that project to the cerebral cortex (Starzl et al., 1951, 

Jones, 2003). The first pathway is relayed in the thalamus and the major input comes 

from the cholinergic pedunculopontine and laterodorsal tegmental nuclei (PPT and 

LDT, respectively) (Satoh and Fibiger, 1986, Hallanger et al., 1987). The firing rate of 

PPT/LDT neurons is high during wake and REMS and the lowest during NREMS, 

indicating their contribution to cortical activation during wake and REMS (el Mansari 

et al., 1989, Steriade, 1993). The second pathway extends through the hypothalamus, 



Introduction 9 

bypasses the thalamus and is conveyed to the cerebral cortex by the basal forebrain 

(Saper, 1985, Saper et al., 2001, Jones, 2003). It includes the serotonergic dorsal 

and median raphe nuclei (DR/MRN), the noradrenergic locus coeruleus (LC), 

dopaminergic neurons from the ventral periaqueductal gray (vPAG), and the 

histaminergic neurons from the tuberomammillary nucleus (TMN) (Dahlstrom and 

Fuxe, 1964, Panula et al., 1989, Kocsis et al., 2006, Lu et al., 2006a). In general, 

monoaminergic neurons fire most actively during wake, fire less active during 

NREMS, and stop firing during REMS (Aston-Jones and Bloom, 1981, Fornal et al., 

1985, Steininger et al., 1999). Other important subparts in the wake regulatory 

systems are a group of orexinergic neurons found in the lateral hypothalamus (LH) 

(de Lecea et al., 1998, Peyron et al., 1998), which fires only during wake (Lee et al., 

2005), and a cluster of cholinergic and GABAergic neurons in the basal forebrain 

(Gritti et al., 1997). 

 
REM sleep regulation 
The circuitry responsible for the generation of REMS is very different and intricate 

from that generating wake or NREMS. Furthermore after more than 50 years 

following the discovery of this unique state, the exact identification of REMS 

regulatory brain structures and their respective neurotransmitters is still under debate. 

One of the most influential studies which could enable the allocation of important 

REMS promoting centers to the lower brainstem, was a transection study conducted 

on cats in 1962 (Jouvet, 1962). Afterwards, pharmacological experiments suggested 

that the cholinergic and the monoaminergic systems interact in the control of REMS 

generation (Karczmar et al., 1970). 

 
The early studies by Jouvet and others guided the development of McCarley and 

Hobson’s “reciprocal interaction” model in 1975 (McCarley and Hobson, 1975) 

(Figure 4), which has since been the most widely accepted explanation for REMS 

regulation (Pace-Schott and Hobson, 2002). Their model described an interplay 

among the monoaminergic (LC and DR) and cholinergic LDT and pedunculopontine 

PPT, and medial pontine reticular formation) neurons at the synaptic level 

responsible for the rhythmic cycling of NREMS and REMS (McCarley and Hobson, 

1975, Pace-Schott and Hobson, 2002) The essence of this model is represented by a 

group of cholinergic REM-on neurons in the LDT and PPT of the brainstem. Activated 

cholinergic neurons are inhibited by REM-off monoaminergic neurons located in the 
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serotonergic DR and noradrenergic LC during other vigilance states, either through 

direct projections or excitation of inhibitory GABAergic interneurons (Jones and Yang, 

1985, Vertes and Kocsis, 1994, Berridge and Waterhouse, 2003). As REM-off 

neurons reduce their firing during NREMS, REM-on neurons are disinhibited and 

REMS is generated (Brown, 2008). The REMS state is stabilized reciprocally through 

excitatory interactions between cholinergic neurons in the LDT/PPT and 

glutamatergic effector neurons in the reticular formation that are responsible for 

generating REMS-specific features such as muscle atonia, rapid eye movements and 

cortical activation (Mitani et al., 1988, Semba, 1993, Brown, 2008). Further, there is 

also evidence that REM-on neurons from LDT/PPT might send excitatory projections 

to LC, and DR neurons so that monoaminergic REM-off neurons gradually become 

more active when the REM state extends (McCarley and Hobson, 1975, Aston-Jones 

and Bloom, 1981, Sakai et al., 1983, Berridge and Waterhouse, 2003). A more 

sophisticated version incorporates an intrinsic pacemaker function of neurons in the 

LC which might be responsible for monoaminergic REM-off cell activation. 

Furthermore, GABAergic neurons are hypothesized to control both the 

monoaminergic REM-off and the glutamatergic REM-on neurons (Datta and Maclean, 

2007). In turn, GABAergic neurons may be under the control of LDT/PPT neurons 

(McCarley and Massaquoi, 1986, McCarley, 2004). 
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Figure 4: Schematic representation of the reciprocal interaction model of REMS regulation  

REM-on neurons in the laterodorsal (LDT) and pedunculopontine (PPT) nuclei are inhibited by REM-

off aminergic neurons in the serotonergic dorsal raphe (DR) and the noradrenergic locus coeruleus 

(LC) during NREMS and wake. REMS is stabilized by reciprocally excitatory interactions between the 

cholinergic and glutamatergic effector neurons in the reticular formation. REMS is ended by renewed 

activity in aminergic neurons, produced by excitatory projections from the cholinergic neurons. 

GABAergic neurons control both the monoaminergic REM-off and the glutamatergic REM-on neurons. 

Furthermore, GABAergic neurons may be in turn under the control of LDT/PPT neurons (dotted 

arrows). Adapted from Brown, 2008. 

 

 

In principal, neuropharmacological and electrophysiological studies have strongly 

supported the reciprocal interaction model. Nevertheless, more recent incongruities 

between this cholinergic-monoaminergic model and new experimental data 

encouraged Lu and colleagues to perform a series of experiments that delineate an 

alternative brainstem regulation model for REMS (i.e. the flip flop switch) (Lu et al., 

2006b, Fuller et al., 2007) (Figure 5). Their work has revealed an important role for 

non-cholinergic and non-monoaminergic REM-on and REM-off GABAergic cell 

populations in areas within the brainstem, whereas the cholinergic and 

monoaminergic cell groups are described as REMS modulator and not generators. 

Specifically, three REM-on groups with specific projections and neurotransmitters 
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have been postulated (Lu et al., 2006b). The first REM-on group is located in the 

sublaterodorsal tegmental nucleus (SLD) (Sakai et al., 2001, Boissard et al., 2002) 

and sends glutamatergic projections to the spinal cord and GABAergic projections to 

REM-off neurons in the vPAG and the lateral pontine tegmentum (LPT) (Lu et al., 

2006b). The second and third REM-on groups are contained in the precoeruleus 

(PC) and parabrachial nucleus (PB), respectively, with glutamatergic projections to 

the basal forebrain and medial septum (Lu et al., 2006b). In this alternative REM 

switching circuitry model, GABAergic REM-on neurons in the SLD inhibit GABAergic 

REM-off neurons in the vPAG/LPT and LPT, whereas GABAergic REM-off neurons 

in turn send inhibitory signals to all three REM-on groups (Lu et al., 2006b, Fuller et 

al., 2007). 

 
Figure 5: Schematic representation of the flip-flop switch model for REMS regulation  

REM-off neurons are located in the ventral periaqueductal grey (vPAG) and the lateral pontine 

tegmentum (LPT). REM-on neurons can be found in the sublaterodorsal tegmental nucleus (SLD) as 

well as the precoeruleus (PC) and parabrachial (PB) nucleus. According to the model, GABAergic 

REM-off neurons send inhibitory signals to all three REM-on groups. On the other hand GABAergic 

REMS-on SLD neurons in turn inactivate the REM-off neurons. Cholinergic neurons in the laterodorsal 

tegmental (LDT) and in the pedunculopontine (PPT) nuclei together with the serotonergic dorsal raphe 

(DR) and the noradrenergic locus coeruleus (LC), play a modulatory role by inhibiting or activating 

REM-off cells, respectively. Adapted from Lu et al., 2006. 

 

 

A further significant current research extends the study of REMS regulation 

mechanisms rostrally from the brainstem to the forebrain structures such as the 
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amygdala in the limbic system. Recent findings demonstrated that the amygdala has 

reciprocal connections with brainstem regions involved in REMS initiation (Pace-

Schott, 2002). Studies in cats showed a promotion of REMS in response to a 

cholinergic or electric stimulation of the central nucleus of the amygdala (CeA) (Smith 

and Miskiman, 1975, Calvo et al., 1996) and a spontaneous increase in the 

discharge rate of CeA neurons during REMS (Frysinger et al., 1988). Furthermore, 

inactivating the CeA with muscimol or tetrodotoxin (TTX) in rats was able to produce 

a significant decrease in REMS (Martin and Ghez, 1999, Sanford et al., 2002). An 

association between amygdala activation and REMS was also proposed by fMRI 

studies demonstrating that the amygdala is activated during this state in humans 

(Maquet et al., 1996). These findings prove that the amygdala might play a role in 

REMS regulation via modifying brainstem activity, thus in turn influencing REMS 

(Pace-Schott, 2002). 

 
Interestingly, another aspect of REMS is a commonality that might share a 

neurobiological mechanism with depressive phenomena, hypothesized by McCarley 

and supported by clinical data (McCarley, 1982). First, the brainstem aminergic 

system is able to suppress both REMS and depressive symptoms whereas the 

cholinergic system promotes both REMS and depression (Janowsky et al., 1980, 

Risch et al., 1980, Silberman et al., 1980). Furthermore as in REMS regulation, the 

control of depressive phenomena involves a balance between the monoaminergic 

and cholinergic systems, rather than absolute activity levels. As proposed by 

McCarley and Hobson in the reciprocal interaction model, REMS occurs when 

cholinergic activity becomes dominant with the gradual inhibition of the 

monoaminergic nuclei (LC and RN) (McCarley and Hobson, 1975). Therefore, 

weakened monoaminergic inhibition in depression results in a faster discharge from 

inhibition of the REMS-promoting cholinergic neurons, initiating a cycle of REMS 

(decreased REMS latency) with stronger REM activity, i.e., increased REM density 

(McCarley, 1982). 

 
NREM sleep regulation 
Unlike the intricate regulation of REMS, NREMS is initiated in a different but relatively 

simple pathway by the activation of two groups of inhibitory GABAergic neurons 

located in the ventrolateral preoptic area (VLPO) and the median preoptic area 

(MnPO) of the preoptic anterior hypothalamus (POAH) (Sherin et al., 1996, Suntsova 
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et al., 2002, Gong et al., 2004, Sakai, 2011). Both the sleep-inducing VLPO and 

MnPO send inhibitory GABAergic projections to the monoaminergic wake promoting 

brain areas including the orexinergic LH. Thus, by inhibiting the wake regulatory 

systems, the VLPO and MnPO can promote NREMS. Furthermore, it has been 

demonstrated that the presence of GABAergic interneurons and axons in the 

brainstem areas might inhibit wake-promoting neurons (Maloney et al., 1999, 2000). 

 

2.2.4 Humoral sleep-wake regulation 

 

The complexity of sleep and wake regulation is further increased by the actions of 

neuromodulators that compose humoral mechanisms. Modulators such as specific 

inflammatory factors, hormones, neuropeptides, and nucleosides are able to 

influence neuronal activities involved in sleep-wake regulation and thus affect sleep-

wake changes. The hypothesis that sleep is in part regulated by humoral factors was 

first proposed by Aristotle (Krueger et al., 1998) whereas the modern experimental 

pursuit began with Ishimori (Ishimori, 1909) and Piéron (Piéron, 1913). Both 

demonstrated the presence of a sleep promoting substance, named “hypnotoxin” in 

the cerebrospinal fluid (CSF) of sleep-deprived dogs. Afterwards several research 

groups pursued similar approaches to identify those substances (Pappenheimer et 

al., 1975, Inoué, 1989). Nowadays it is known that many neuromodulators can affect 

sleep, although persuasive evidence for the involvement in physiological sleep 

regulation is limited to only small number of these modulators. The list of sleep-

promoting substances includes cytokines, e.g. interleukin-1 (Krueger et al., 1984) 

and tumor necrosis factor (Fang et al., 1997), prostaglandin D2 (Hayaishi, 1988), 

adenosine (Porkka-Heiskanen, 1997), and hormones like prolactin (Roky et al., 1995), 

vasoactive intestinal peptide (Bourgin et al., 1997), galanin (Murck et al., 2004), 

ghrelin (Weikel et al., 2003), neuropeptide Y (Antonijevic et al., 2000) and growth 

hormone-releasing hormone (Steiger et al., 1992). Contrarily, other hormones such 

as corticotropin-releasing hormone (CRH) (Holsboer et al., 1988), vasopressin 

(Arnauld et al., 1989), and somatostatin (Ziegenbein et al., 2004) seem to impair 

sleep. Future studies are needed to clarify how these substances interact with 

various neural systems and their neurotransmitters, where they act to affect sleep, 

and what cell types are involved.  

 



Introduction 15 

2.3 The cholinergic system in the central nervous system 

2.3.1 Acetylcholine 

 

Acetylcholine (ACh) is an essential neurotransmitter which plays a crucial role in 

synaptic transmission in both the peripheral and central nervous system (CNS) 

(Webster, 2001, Halbach, 2002). ACh was discovered as the first neutransmitter. In 

1914 Dale could show that esters of choline produced physiological effects (Dale, 

1914). Later in 1921 Loewi demonstrated that stimulation of the vagus liberated the 

release of a chemical substance (Loewi, 1921). Five years later the chemical 

substance was confirmed to be choline ester and accordingly identified as ACh 

(Loewi and Navratil, 1926).  

 
The process of synthesis, storage, and release of ACh requires different specific 

enzymes (Figure 6): ACh is synthesized in a reaction catalyzed by the enzyme 

choline acetyltransferase (ChAT) in the cytosol of nerve terminals, using 

mitochondrial acetyl-coenzyme A supplied by glucose metabolism and choline 

derived from phosphatidylcholine and dietary sources (Tucek, 1966, Halbach, 2002). 

Following synthesis, ACh is taken up and subsequently stored in synaptic vesicles 

via the vesicular ACh transporter (VAChT) (Weihe et al., 1996, Arvidsson et al., 1997, 

Amenta and Tayebati, 2008). If an axon potential reaches the cholinergic axon 

terminal, the synaptic vesicles attach to the presynaptic membrane and release ACh 

into the synaptic cleft via exocytosis. From the synaptic cleft, ACh diffuses to the 

postsynaptic site and interacts with respective receptors (nicotinic or muscarinic). 
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Figure 6: Bionsynthesis and degradation of acetylcholine. 

Acetylcholine is synthesized by the enzyme choline acetyltransferase from the compounds choline 

and acetyl-coenzyme A. The enzyme acetylcholinesterase converts acetylcholine into the inactive 

metabolites choline and acetate. Adapted from Nirogi et al., 2009. 

 

 

Upon release, ACh is hydrolyzed by acetylcholinesterase (AChE) into choline and 

acetate. Liberated choline is transported back to the presynaptic terminal by a 

sodium-dependent, high affinity active transport system, and reutilized in ACh 

synthesis (Suszkiw and Pilar, 1976, Ducis and Whittaker, 1985). The remaining 

choline can be catabolised or incorporated into phospholipids, which can serve again 

as a source of choline (Amenta and Tayebati, 2008, Nirogi et al., 2010). 

 

2.3.2 Cholinergic receptors 

 

Cholinergic receptors, also known as ACh receptors (AChRs), consist of two groups: 

the muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs). 

They can be classified according to the binding activity by natural alkaloids, i.e., 

nicotine and muscarine, to mimic the effects of ACh as a neurotransmitter. This 

classification introduced originally in 1914 by Dale is still valid (Dale, 1914), even 
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though several subtypes of nicotinic and muscarinic receptors have been described 

in the meantime. 

 
The muscarinic receptors are monomers consisting of 440-540 amino acids folded 

into seven transmembrane-spanning domains, the N-terminus on the extracellular 

side and the C-terminus on the intracellular side (Halbach, 2002). The muscarinic 

receptors are coupled to G proteins which modulate a large group of effector 

responses including adenylate cyclase attenuation, guanylate cyclase stimulation, 

Ca2+ channel activity, K+ channel activity and phosphatidyl inositol turnover 

(Kerlavage et al., 1987). By the use of selective radioactively labeled agonist and 

antagonist substances, five subtypes of muscarinic receptors have been identified, 

named M1-M5 (Peralta et al., 1988). Muscarinic receptor subtypes M1, M3 and M5 are 

coupled to the Gq proteins, which activate several ion channels and phospholipases 

(A2, C and D), ultimately leading to the activation of different second messenger 

systems. Muscarinic receptor subtypes M2 and M4 are coupled to Gi proteins. 

Activation of these subtypes reduces the levels of cyclic adenosine monophosphate 

(cAMP) through the inhibition of adenylate cyclase (Felder, 1995, Halbach, 2002). 

Although the muscarinic receptor subtypes are distributed throughout the entire brain, 

their proportions vary in different areas. For example, RNA in situ hybridization 

studies revealed that messenger RNA (mRNA) of M1 is formed in the cerebral cortex, 

limbic area and in the striatum. By contrast, mRNA of M2 is more abundant in the 

basal forebrain, midbrain, medulla, pons region and cerebellum. mRNA of M3 is, 

similarly to M1, abundant in the cortex and hippocampus but not in the striatum, while 

M4 expression is highest in the striatum but low in the cortex and hippocampus. Only 

small amounts of the M5 subtype have been discovered, and its distribution in the 

CNS is not fully understood (Levey et al., 1991, Hersch et al., 1994, Wess, 1996, 

Webster, 2001, Halbach, 2002). Muscarinic receptors are activated by muscarine 

and are blocked by atropine and scopolamine. Further, amongst pharmacological 

agonists are carbachol, pilocarpine, arecholine and oxoremorine, while pirenzepine 

and telenzepine, exert antagonistic effects (Halbach, 2002, Tripathi, 2004). 

 
The nicotinic receptors are part of the ligand-gated ion channel superfamily and, in 

contrast to the muscarinic receptors, no second messengers are involved in the 

signal transduction. The receptor is composed of four distinct protein subunits (α, β, δ 

and γ) which form the ion channel (Halbach, 2002). In the CNS the nicotinic receptor 
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subunits can be composed of a combination of different heterodimers: α (2–7) and β 

(2–4). Homomeric assembled receptors are also found: α7, α8 and α9 (Karlin, 2002, 

Picciotto et al., 2012). To form a functional receptor, numerous combinations of 

subunits are possible, but so far the α4β2 heteromer and the α7 homomer showed 

the highest affinity for ACh (Zoli et al., 1995, Webster, 2001, Tripathi, 2004, Ferreira 

et al., 2008). In general, nicotinergic signaling is not nearly as prominent in the CNS 

as muscarinergic signaling. For example, some areas such as the limbic system 

seem to utilize only muscarinergic receptors. Nevertheless, they are present in the 

cerebral cortex, the hippocampus, the hypothalamus, the thalamus, the superior 

colliculus, and in some cholinergic nuclei of the brain stem and forebrain (Halbach, 

2002). Nicotinic receptors can be activated by nicotine and inhibited by curare. 

Additional pharmacological agonists are carbachol, butyrylcholine and 

tetramethylammonium, whereas hexamethonium, dihydri- β-erythroidine, 

mecamylamine and bungarotoxin are antagonists (Halbach, 2002, Tripathi, 2004). 

 

2.3.3 Cholinergic projections 

 

The two major cholinergic groups of projecting neurons, found in the basal forebrain 

and in the brainstem, have been identified by the use of immunohistochemical 

staining for ChAT. This specific enzyme is located in neurons that synthetize ACh for 

synaptic transmission, and therefore considered “cholinergic” (Mesulam et al., 1983, 

Woolf, 1991, Butcher, 1995 ). The first report describing cholinergic neurons and their 

projections was published by Lewis and Shute in 1967 (Lewis and Shute, 1967, 

Lewis et al., 1967, Shute and Lewis, 1967). Sixteen years later, Mesulam and 

coworkers established a nomenclature to distinguish different groups of cholinergic 

projecting neurons which is still widely used today (Mesulam et al., 1983).  

 
Based upon Mesulam’s nomenclature, the cholinergic system is divided into six 

major groups of projecting neurons (Ch1-Ch6; Figure 7).  
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Figure 7: Schematic representation of cholinergic neurons and their projections. 

Abbreviations: Ch, cholinergic group of neurons; DR, dorsal raphe; EC, entorhinal cortex; hdb, 

horizontal diagonal band nucleus; LC; locus coeruleus; ldt, laterodorsal tegmental nucleus; LH, lateral 

hypothalamus; ms, medial septal nucleus; nb, nucleus basalis; ppt, pedunculopontine nucleus; si, 

substantia innominata; SN, substantia nigra; vdb, vertical diagonal band nucleus. Adapted from Woolf, 

2011. 

 

 

The Ch1-Ch4 groups of cholinergic cells are located in the basal forebrain and 

innervate the entire cerebral cortex. The medial septum (MS) and the vertical limb of 

the diagonal band of Broca (VDB) (Ch1 and Ch2, respectively) are located in the 

most rostral part of the basal forebrain and send their projections mainly to the 

hippocampus, including CA1-CA4 and the dentate gyrus (Mesulam et al., 1983, 

Woolf and Butcher, 2011). Group Ch3 includes cholinergic neurons located in the 

horizontal limb of the diagonal band (HDB) and provides the major source of 

cholinergic projections to the olfactory bulb (Zaborszky et al., 1986). The last 

cholinergic group in the basal forebrain is referred to as Ch4, and it comprises 

neurons located in the magnocellular preoptic area, the nucleus basalis (NB) and the 

substantia innominata (SI). These neurons project to the amygdala and to the 

cerebral cortex (Mesulam et al., 1983, Woolf et al., 1984, Woolf, 1991).  

 
The Ch5-Ch6 groups of cholinergic projecting neurons are located in the brainstem. 

Members of groups Ch5 and Ch6 are situated in the PPT and in the LDT, 
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respectively. These nuclei have ascending projections to the hypothalamus, 

thalamus, basal forebrain and medial prefrontal cortex as well as descending 

projections to the pons, the nucleus vestibularis, the LC and the DR (Satoh and 

Fibiger, 1986, Steckler et al., 1994).  

 

2.3.4 Involvement of cholinergic centers in sleep-wake regulation 

 

In the context of control of sleep and waking the cholinergic system is well 

recognized to play a primary role in generating the brain-activated states of wake and 

REMS (Jones, 2005, Brown, 2008, Lydic, 2008, Watson et al., 2010). Specifically 

cholinergic projections from neurons located in the brainstem (LDT/PPT) and the 

basal forebrain are known to promote the cortically activated states of wake and 

REMS (Lydic, 2008). 

 
Cholinergic LDT/PPT neurons send their major projection to the thalamus, which in 

turn stimulate the cerebral cortex (Mesulam et al., 1983, Steriade et al., 1990, 

McCormick, 1992, Jones, 1995). ACh release in these areas has been shown to be 

maximal during wakefulness and REMS (Jasper and Tessier, 1971, Williams et al., 

1994, Leonard and Lydic, 1997). Similarly, single unit recording studies indicate that 

the activity of cholinergic neurons in the LDT/PPT is at their highest rates during 

wake and REMS (el Mansari et al., 1989, Steriade et al., 1990). Moreover c-Fos 

expression, which reflects neural activity, occurs in cholinergic LDT/PPT neurons 

following REMS rebound after SD (Maloney et al., 1999). Another important 

LDT/PPT projection acts on the brainstem reticular formation (Greene et al., 1989, 

Jones, 2005) through muscarinic receptors. Specifically, the M2 and M3 subtypes 

came out to be the most important ones in the reticular formation (Buckley et al., 

1988, Baghdoyan, 1997). Furthermore, pharmacological and genetic studies 

revealed that these are the major subtypes responsible for REMS regulation (Datta et 

al., 1993, Sakai and Onoe, 1997, Baghdoyan and Lydic, 1999, Marks and Birabil, 

2000, Goutagny et al., 2005). Several studies have performed injections of 

cholinergic agonists to the reticular formation, demonstrating that cholinergic input 

into the reticular formation generates REMS (Mitler and Dement, 1974, Sitaram et al., 

1976, Hobson et al., 1983, Baghdoyan et al., 1984, Vanni-Mercier et al., 1989, 

Yamamoto et al., 1990). When LDT/PPT is stimulated electrically, ACh release 
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increases in the reticular formation (Lydic and Baghdoyan, 1993) and REMS is 

enhanced (Thakkar et al., 1996). Moreover the release of ACh in the reticular 

formation is higher during REMS than the other behavioral states (Kodama et al., 

1990, Leonard and Lydic, 1997). Based on these studies it is evident that cholinergic 

projections from the LDT/PPT to the reticular formation induce REMS (Watson et al., 

2010). 

 
The basal forebrain cholinergic neurons project throughout the entire cerebral cortex 

and to the hippocampus (Mesulam et al., 1983). ACh release from the hippocampus 

has been shown to be maximal during both wake and REMS (Marrosu et al., 1995). 

Furthermore, ACh seems to act in the cortex mostly through muscarinic receptors 

(McCormick, 1992, Jones, 2004). A microdialysis study showed that ACh release in 

the basal forebrain is high during REMS, low during quiet wake, and lowest during 

NREMS (Vazquez and Baghdoyan, 2001). Similarly, cortical ACh release is 

enhanced during REMS and wake as compared to NREMS (Marrosu et al., 1995, 

Materi et al., 2000). Taken together, these studies support that cholinergic 

projections from the basal forebrain can induce cortical activation during wake and 

REMS (Watson et al., 2010). 

 

 

2.4 The hypothalamic-pituitary-adrenocortical (HPA) axis 

 

One of the most important requirements for a living organism is its capacity to 

maintain a dynamic equilibrium, or homeostasis. The concept of homeostasis was 

first introduced by Cannon in 1929. He emphasized the importance of all 

physiological processes in order to maintain such equilibrium operated by the 

organism (Cannon, 1929). In the classical idea of stress, this equilibrium is constantly 

challenged by specific physical and psychological adverse stimuli, termed “stressors” 

(Selye, 1936, Chrousos and Gold, 1992, de Kloet et al., 2005). Thus, stress can be 

defined as an actual disruption or an anticipated threatened homeostasis 

(Charmandari et al., 2005, Chrousos, 2009, Ulrich-Lai and Herman, 2009). The 

responses to stress intend to adjust physiological integrity by involving two major, 

highly conserved systems: the autonomic nervous system (ANS) and the HPA axis. 

The ANS activation represents the classical “fight or flight” response and provides an 



Introduction 22 

immediate and short-term response, whereas the HPA axis ensures a long-lasting 

and amplified response. Activation of these two systems provide complementary 

actions in the body, including energy mobilization and increased blood pressure, 

heart rate and cardiovascular tone (Ulrich-Lai and Herman, 2009). 

 
The HPA axis is an elaborate ensemble of interactions between the hypothalamus, 

the pituitary and the adrenal glands (Figure 8). Hypophysiotrophic neurons in the 

medial parvocellular subdivisions of the paraventricular nucleus (PVN) of the 

hypothalamus synthesize corticotropin-releasing hormone (CRH) and arginin 

vasopressin (AVP) (Landgraf, 2006). CRH is then transported axonally to the median 

eminence and released into the hypophyseal portal blood (Antoni, 1986, Arborelius et 

al., 1999). When CRH reaches the anterior pituitary, it binds to CRH receptor type 1 

on the corticotrophs and stimulates the expression of the precursor polypeptide pro-

opiomelanocortin (POMC) and subsequently the release of the POMC-derived 

peptide, adrenocorticotropin (ACTH), into the blood circulation (Arborelius et al., 1999, 

Engelmann et al., 2004). Moreover, AVP is a strong synergistic factor with CRH in 

potentiating ACTH release; however, AVP possesses little ACTH-releasing activity 

alone. Thus, CRH is normally considered as the major ACTH stimulator (Chang and 

Opp, 2001, Herman et al., 2002, Tsigos and Chrousos, 2002). ACTH then triggers 

the synthesis and the secretion of glucocorticoids: corticosterone in rodents and 

cortisol in primates (de Kloet et al., 1998) from the adrenal cortex, which operate as 

the last effectors of the HPA axis (Arborelius et al., 1999).  
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Figure 8: HPA axis. 

Activation of the HPA axis leads to CRH and AVP production in the paraventricular nucleus of the 

hypothalamus. These hormones are released into the blood circulation, leading to secretion of ACTH 

from the anterior pituitary. ACTH stimulates the synthesis and release of glucocorticoids from the 

adrenal cortex into the blood. Regulatory control over the HPA axis is mediated via a negative 

feedback by glucocorticoids acting on GR and MR receptors at the level of the pituitary as well as from 

the anterior hypothalamus and the hippocampus. ACTH: adrenocorticotropin; AVP: arginine 

vasopressin; CRH: corticotropin-releasing hormone; GR: glucocorticoid receptor; MR: 

mineralocorticoid receptor. Adapted from Schloesser, 2012. 

 

 

 

 



Introduction 24 

In nonstressful situations, CRH is released in a circadian, pulsatile fashion from the 

parvocellular cells of the PVN (Engler et al., 1989, Tsigos and Chrousos, 2002, 

Buckley and Schatzberg, 2005). In diurnal species, the amplitude of the CRH pulses 

increases early in the morning and becomes low towards the evening before the 

resting period starts (Horrocks et al., 1990). On the contrary, rats (nocturnal animals) 

show an opposite pattern: CRH levels rise throughout the nocturnal active period, 

drop in the morning and decrease during the daytime resting period (Watts et al., 

2004). During stressful events, the amplitude of the CRH pulsation in the 

hypophyseal portal blood markedly increases, leading to an increase of ACTH and 

glucocorticoid secretory episodes (Tsigos and Chrousos, 2002). 

 
The effects of glococorticoids are mediated via two types of receptors: the 

glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) (Reul and de 

Kloet, 1985, de Kloet et al., 1998, de Kloet et al., 2008). The distribution of MR 

receptors is mainly restricted to the limbic structures while GR are found throughout 

the brain (de Kloet, 1991, Arborelius et al., 1999). Glucocorticoids operate in a 

negative feedback to turn off neuroendocrine responses at two levels in the 

hypothalamus and the pituitary gland. This suppresses the synthesis and release of 

CRH and AVP, as well as the POMC-derived peptides in the pituitary (Gulyas et al., 

1995, Chang and Opp, 2001, Papadimitriou and Priftis, 2009). 

 
The HPA system is controlled by a various number of stress-sensitive brain regions 

located in the brainstem and forebrain limbic areas, which are able to send inhibitory 

or excitatory projections to neurons of the PVN. (Herman et al., 2003, Ulrich-Lai and 

Herman, 2009). The PVN receives a substantial stress-excitatory input from the 

nucleus of the solitary tract (Swanson and Kuypers, 1980, Cunningham and 

Sawchenko, 1988) as well as the DR, the TMN (Ulrich-Lai and Herman, 2009), and 

the anteroventral division of the bed nucleus of stria terminalis (Gray et al., 1993, 

Choi, 2007). Additional excitatory drive originates from the medial and basolateral 

amygdala (Canteras et al., 1995, Cullinan et al., 1996, Dayas et al., 2001). Activation 

of the PVN is inhibited by many hypothalamic circuits such as the medial preoptic 

area, the dorsomedial hypothalamus and local neurons in the peri-PVN (Herman et 

al., 2003, Cullinan et al., 2008). Further inhibitory input originates in forebrain limbic 

areas such as the hippocampus (Jacobson and Sapolsky, 1991, Herman et al., 2003), 

the medial prefrontal cortex (Diorio et al., 1993, Figueiredo et al., 2003, Gerrits, 2003), 
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the lateral septum (Risold and Swanson, 1996) and the posterior regions of the bed 

nucleus of stria terminalis (Cullinan et al., 1993). In general, many neurotransmitters 

are implicated in the regulation of CRH release. Glutamate, ACh, serotonin, 

noradrenalin and histamine stimulate the activation of the HPA axis, whereas GABA 

inhibits it (Decavel and Van Den Pol, 1990, Cole and Sawchenko, 2002, Majzoub, 

2006). 

 

 

2.5 The corticotropin releasing hormone (CRH) 

2.5.1 General aspects and distribution 

 

CRH is regarded as the major activator of the HPA axis and is also known as 

corticotropin-releasing factor (CRF) or corticoliberin. Besides controlling the HPA axis 

during baseline and under stress, CRH also acts as neurotransmitter in the brain, 

where it modulates for example anxiety-related behavior, the sleep-wake cycle, 

learning and memory as well as locomotor activity. It was first described by Guillemin 

and Rosenberg in 1955. They proved the presence of a hypothalamic factor, which 

was able to stimulate the secretion of ACTH from anterior pituitary cells in vitro 

(Guillemin, 1955). The chemical identification of CRH remained indefinable until 1981, 

when Vale and colleagues succeeded to isolate and characterize a 41 amino acid 

hypothalamic ovine CRH (Vale et al., 1981). The sequence of CRH has been 

identified in many other species including humans, rats, pigs, goats and cows (Dunn 

and Berridge, 1990). In all species, the primary protein structure of CRH is very much 

conserved in humans, rats and mice, differing from ovine CRH only by seven amino 

acids (De Souza, 2002, Halbach, 2002). In addition to original CRH, two 

nonmammalian CRH-related analogues have been identified in teleost fishes and 

frogs, named urotensin and sauvagine, respectively (Montecucchi and Henschen, 

1981, Lederis et al., 1982). Furthermore, there exist three mammalian CRH peptide 

analogues called Urocortin I, II and III, which have been demonstrated to share a 

high sequence homology with CRH (Vaughan et al., 1995, Donaldson et al., 1996). 
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Through immunohistochemical analysis, radioimmunoassay and mRNA expression 

studies, CRH was found to be widely distributed within the CNS (Swanson et al., 

1983, Sakanaka et al., 1987, Sawchenko, 1990) (Figure 9). 

 

 
 
Figure 9: Distribution of CRH-expressing cells in the central nervous system. 
Saggital section of a rodent brain, and structures where CRH (red dots) can be detected. The PVN 

represents the major source of CRH. Moreover, CRH is expressed in numerous cortical areas, the 

olfactory bulb, the supraoptic nucleus, the bed nucleus of the stria terminalis, the hippocamus, and the 

central nucleus of the amygdala. CRH can also be identified in brain areas that are involved in sleep-

wake regulation such as the laterodorsal tegmental nucleus, the locus coeruleus and the parabrachial 

nucleus. The most important abbreviations for the present study are indicated as follows: LDT: 

laterodorsal tegmentum nucleus; LC: locus coeruleus; PB: parabrachial nucleus; CeA: central nucleus 

of the amygdala. Adapted from Warnock 2006. 

 

 

It is clearly demonstrated that the major source of CRH is the PVN of the 

hypothalamus; within the hypothalamic area, CRH is also expressed in the medial 

preoptic area, dorsomedial nucleus, arcuate nucleus, posterior hypothalamus, and 

the mammillary nuclei (Sawchenko et al., 1983, Sakanaka et al., 1987, Sawchenko, 

1990, De Souza, 2002). Besides the hypothalamus, CRH-containing neurons are 

present in the central nucleus of the amygdala (CeA), the hippocampal formation, the 

thalamic nuclei, the lateral septum, the bed nucleus of stria terminalis (BNST), the 

nucleus accumbens, the olfactory bulb and the cerebellum. CRH expressing neurons 
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also locate in the brainstem, particularly in the RN, the LC, the LDT, the PPT, the 

substantia nigra, the periaqueductal grey and the nucleus of the solitary tract. 

Furthermore, scattered CRH-containing interneurons and neurons are found in the 

second and third layers of the cortex and in the neocortex (specifically the prefrontal, 

insular and cingulated areas), respectively (Merchenthaler, 1984, Sakanaka et al., 

1987, Sawchenko et al., 1990, Sawchenko, 1990, Holsboer, 1999, De Souza, 2002). 

 
Two main CRH pathways can be distinguished in the brain; the one within the HPA 

axis (hypothalamic pathways) and the other in non-HPA axis areas (extra-

hypothalamic pathways) (Holmes et al., 2003). Hypothalamic CRH pathways 

originate in the PVN and project to the anterior pituitary (as described in the section 

of the HPA axis). The extra hypothalamic pathways comprise axons from the CeA to 

the parvocellular regions of the PVN. Furthermore, the non-HPA axis circuits include 

descending fibers from the PVN, the BNST and the CeA to the brainstem areas, such 

as the LC (Van Bockstaele et al., 1998, Valentino and Van Bockstaele, 2008), the RN 

(Price et al., 1998) and the parabrachial nucleus (PBN) (Sawchenko, 1990). 

Additionally, CRH axons also interconnect the CeA with the BNST and the PVN. 

Other extra hypothalamic pathways consist of ascending fibers from the brainstem to 

a variety of anterior brain areas such as the lateral septum, the medial prefrontal 

cortex, the thalamus and the hypothalamus (Merchenthaler, 1984, Sakanaka et al., 

1987, Holsboer, 1999, De Souza, 2002). To date, not all of the CRH projections have 

been clearly examined, for example the brainstem possesses many adjacent CRH 

cell groups but it is uncertain if all of these receive inputs from the same projection 

originating from the CeA. As mentioned already, CRH has been hypothesized to act 

as both a neurohormone and a neurotransmitter within the CNS (Pavcovich and 

Valentino, 1997). In fact, a prerequisite for being considered a neurotransmitter is the 

localization within presynaptic terminals, as demonstrated for CRH by 

immunohistochemical studies (Cain et al., 1991) and a wide distribution of CRH 

expressing neurons and binding sites in the brain (Swanson et al., 1983, Sakanaka 

et al., 1987, De Souza, 1995, De Souza, 2002). Specific neuronal groups have been 

reported to coexpress CRH with classical neurotransmitters and to innervate various 

brain areas. For instance, CRH has been identified within cholinergic neurons in the 

LDT (Crawley et al., 1985) and PPT (Austin et al., 1995), and in glutamatergic and 

GABAergic neurons within the LC (Valentino et al., 2001). Furthermore, GABAergic 

neurons of the hippocampus have been reported to coexpress CRH (Yan et al., 



Introduction 28 

1998). Additionally CRH is known to colocalize and corelease with other 

neuropeptides such as angiotensin II, AVP, cholecystokin and neurotensin 

(Sawchenko, 1990, Cain et al., 1991). 

 

2.5.2 The CRH receptors 

 

A decade after the characterization of CRH, expression cloning technique identified 

and characterized the first CRH receptor from a human Cushing’s corticotropic 

adenoma (Chen et al., 1993). To date, two different CRH receptor subtypes have 

been described in humans and other mammals: the CRH receptor type 1 (CRHR1) 

and the CRH receptor type 2 (CRHR2) (Chang et al., 1993, Vita et al., 1993, 

Chalmers et al., 1995, Kishimoto et al., 1995, Lovenberg et al., 1995b, Liaw et al., 

1996). Different genes encode the two CRH receptor families, nevertheless they 

share 70% sequence homology with each other (Lovenberg et al., 1995b, 

Dautzenberg and Hauger, 2002, Grammatopoulos and Chrousos, 2002). Both 

subtypes contain seven transmembrane domains and appertain to the superfamily G 

protein coupled receptor, which includes other neuropeptides receptors such as the 

growth-hormone-releasing hormone (GHRH) receptor (De Souza, 2002, 

Grammatopoulos and Chrousos, 2002). The CRHR1 exists in different isoforms (i.e. 

CRHR1α, -R1β, -R1c, -R1d, R1e, -R1f, -R1g and -R1h) however, only the 415-amino 

acid protein CRHR1α seems to be functional (Grammatopoulos et al., 1999, 

Dautzenberg et al., 2001, Pisarchik and Slominski, 2001). The CRHR2 is currently 

known to exist in three different isoforms (CRHR2α, CRHR2β, and CRHR2γ). These 

subtypes are showing differences at their N-terminus; however their pharmacological 

characteristics are similar (Ross et al., 1994, Lovenberg et al., 1995b, Kostich et al., 

1998, Dautzenberg et al., 2001, De Souza, 2002). Recently, a possible third CRHR 

was characterized in catfish; however, this subtype still hasn’t been found in other 

species yet (Arai et al., 2001, Majzoub, 2006). 

 
Many studies have analyzed the distribution of CRHRs within the brain in different 

species of animals and have demonstrated a heterogeneous expression of the two 

subtypes. In situ hybridization, immunohistochemistry and RNAse protection assays 

showed an almost exclusive expression of CRHR1 in cortical areas, the amygdala 

(BLA and CeA), the cerebellum, the basal forebrain, the superior colliculus, the red 
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nucleus, the trigeminal nuclei, in the anterior lobe of the pituitary and the LC in 

rodents (Chalmers et al., 1995, Lacroix and Rivest, 1996, Ambrosio et al., 1997, 

Sanchez et al., 1999, Chen et al., 2000). Additionally, CRHR1 is also expressed in 

the brainstem cholinergic nuclei (LDT and PPT) (De Souza, 1987, Holsboer, 1999), 

which seem to be implicated in REMS modulation. On the other hand, CRHR2α, the 

major isoform located at neuronal membranes, is more strongly distributed in the 

PVN, the lateral septum, the ventromedial hypothalamus, the cortical and medial 

nuclei of the amygdala, and the RN. It has been further reported a mixed CRHR1α 

and CRHR2α population within the  hippocampus, the BNST, the periaqueductal grey 

(PAG) and the olfactory bulb (Chalmers et al., 1995, Lacroix and Rivest, 1996, 

Ambrosio et al., 1997, Sanchez et al., 1999, Van Pett et al., 2000). The CRHR2β, this 

splice variant is expressed predominantly in non-neuronal structures, i.e. the choroid 

plexus and arterioles, while in the periphery is detectable in the heart and skeletal 

muscle (Chalmers et al., 1995, Lovenberg et al., 1995a) The isoform CRHR2γ is 

expressed in the lateral septum, the hippocampus, the frontal cortex, the amygdala 

and in midbrain areas; however this form has been reported only in humans so far 

(Kostich et al., 1998).  

 
Using a double-immunocytochemical staining, it was shown that definite groups of 

neurons co-express CRHR1 with ACh. Specifically, all cholinergic basal forebrain 

nuclei except the NB were found to express CRHR1 (Sauvage and Steckler, 2001). A 

strong colocalization was also found in the brainstem such as the LDT and PPT. 

These results showed that the cholinergic system provides direct anatomical 

substrates for CRH action through the CRHR1 (Sauvage and Steckler, 2001, 

Warnock et al., 2006). Furthermore detection of CRHR1 immunoreactivity was found 

in dopaminargic and noradrenergic neurons within the LC, the ventral tegmental area 

and the substantia nigra (Sauvage and Steckler, 2001). 

 

2.5.3 Sleep-wake regulatory effects of CRH 

 

Accumulating evidences from human and animal studies support that CRH is 

involved in spontaneous and stressor-induced sleep-wake regulation. For example, 

in healthy humans, single intravenous (i.v.) injections and repetitive i.v. injections of 

CRH produced a decrease in SWS (Tsuchiyama et al., 1995) and REMS (Holsboer 
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et al., 1988). Contrary to this, cortisol application was shown to increase SWS and 

decrease REMS in humans. Hence, CRH and acute cortisol administration exert 

quite opposite sleep effects. It appears likely that the observed results were due to a 

negative feedback inhibition of central CRH (Born et al., 1991, Friess et al., 1994, 

Bohlhalter et al., 1997, Friess et al., 2004). Furthermore, since ACTH and cortisol 

application suppressed REMS (Steiger and Holsboer, 1997), REMS reduction 

observed after CRH application seems to be a result from increased cortisol levels 

after HPA axis activation. On the other hand, decreased SWS or increased 

wakefulness were due to a central action of CRH. Additional examples showing the 

participation of CRH in sleep-wake regulation are supported by animal studies. 

Intracerebroventricular (i.c.v) injection of CRH to rats, mice and rabbits resulted in 

enhanced wakefulness and decreased NREMS (Ehlers et al., 1986, Opp et al., 1989, 

Sanford et al., 2008, Romanowski et al., 2010). These results from both clinical and 

preclinical sides suggest that the activation of the HPA axis through CRH contributes 

to wake responses. However, it remained unclear whether central administration of 

CRH acted on sleep directly or indirectly through all the stress hormones. Transgenic 

mice centrally overexpressing CRH allowed unravelling the role of CRH in sleep-

wake regulation. These animals displayed increased wakefulness and REMS and 

vaguely decreased NREMS under baseline conditions compared to controls (Kimura 

et al., 2010). Literature is limited regarding the implication of the different CRH 

receptors in sleep-wake regulation. However, several studies in rats and mice were 

focussed on CRHR1 (Chang and Opp, 1998, Lancel et al., 2002, Kimura et al., 2010, 

Romanowski et al., 2010), while the functional role of CRHR2 still needs to be 

elucidated (Jakubcakova et al., 2011). 

 

2.5.4 Stress-related effects of CRH 

 

As already mentioned before, CRH is the major stress hormone. In fact, the most 

important role of CRH is to coordinate neuroendocrine responses to stress by 

activating the HPA axis, resulting in glococorticoids release from the adrenal cortex 

and subsequent physiological effects (Ulrich-Lai and Herman, 2009). It has been 

reviewed extensively that central CRH is also capable of mediating specific 

autonomic and behavioral responses to stress independently from HPA axis 

activation. For example, central administration of CRH in laboratory animals induced 
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alterations in the ANS such as increased heart rate, blood pressure and blood sugar. 

Additionally, i.c.v. administered CRH provoked behavioral effects, e.g., suppression 

of exploratory behavior in a new environment, increased conflict behavior, generation 

of grooming behavior, and decreased reproductive behavior and food intake (Dunn 

and Berridge, 1990, Owens and Nemeroff, 1991, Koob et al., 1993, Arborelius et al., 

1999, Holsboer, 1999, Bale and Vale, 2004, Guillemin, 2005). Currently, it is 

hypothesized that central CRH-mediated HPA hyperactivity is associated with major 

depression (Nemeroff, 1998, Arborelius et al., 1999, Holsboer, 1999, Reul and 

Holsboer, 2002). A compelling number of clinical reports in depressed patients 

documented elevated CSF CRH concentration, elevated CRH concentration in the 

PVN, decreased CRH receptor binding sites in the prefrontal cortex of suicide victims, 

supporting the hypothesis and suggesting that high levels of CRH could derive from 

both hypothalamic and extrahypothalamic neurons (Nemeroff et al., 1984, Nemeroff 

et al., 1988, Raadsheer et al., 1994). Similar changes seen in patients (i.e. long-

standing CRH hyperactivity) have also been found in animals that have been 

subjected to early-life stress (Plotsky and Meaney, 1993, Coplan et al., 1996, Ladd et 

al., 1996). Since centrally administered CRH has been shown to stimulate anxiogenic 

reactions, which can be blocked by either a CRH antisense oligodeoxynucleotide or a 

receptor antagonist, it seems likely that central CRH is also involved in anxiety 

disorders (Dunn and Berridge, 1990, Skutella et al., 1994, van Gaalen et al., 2002). 

Along this line, conventional transgenic mice that overexpress CRH exhibit increased 

anxiety-like behavior (Stenzel-Poore et al., 1994, van Gaalen et al., 2002). Overall, 

these findings evidence the role of central CRH in stress-related disorders such as 

depression and anxiety. Strongly supported by mouse genetic studies, CRHR1 was 

identified as the mediator of defensive and anxiogenic behavior (Smith et al., 1998, 

Timpl et al., 1998), whereas the role of CRHR2α would mediate anxiolytic effects 

(Bale et al., 2000, Kishimoto et al., 2000). 
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2.6 Animal models of stress-related disorders 

2.6.1 Stress and REM sleep 

 

Stress-related disorders such as depression and anxiety can be initiated by an 

overactivity of the HPA axis (de Kloet et al., 2005). These disorders are characterized 

by an enhanced stress hormone secretion (Arborelius et al., 1999, Holsboer, 1999) 

as well as alterations in the sleep-wake cycle (Steiger and Kimura, 2010). 

Polysomnographic sleep recordings have revealed that, besides disturbances of 

sleep continuity, stress-related disorders are associated with upregulated REMS and 

a reduction of SWS (Benca et al., 1992, Thase et al., 1997).  

 
In order to clarify the fundamental biological mechanisms that lead to depression, a 

great number of animal models for depression have been developed over the last 50 

years (Willner, 1991, McArthur and Borsini, 2006). These animals are interesting 

models for defining the interrelationships among depression and sleep disturbances. 

Of particular interest are selectively bred helplessness mice (El Yacoubi et al., 2003). 

They show sleep patterns that are similar to those observed in depressed patients, 

notably a lighter and fragmented sleep, with an increased pressure of REMS; 

compared to nonhelpless mice they further displayed higher basal corticosterone (El 

Yacoubi et al., 2003). Further interesting animal models which have been studied by 

Dugovic and colleagues are the Wistar-Kyoto (Gomez et al., 1996, Dugovic et al., 

2000, Solberg et al., 2001) and the prenatally stressed rats (Dugovic et al., 1999). 

Similarly to the helpless mouse line and to other animal models for depression, they 

both display increased spontaneous REMS including hyper responsiveness of the 

HPA axis to stress (Dugovic et al., 1999, Dugovic et al., 2000). 

 
Different studies focused on the influence of stress exposure on sleep changes and 

found similar variations in the sleep-wake cycle as reported in above mentioned 

animal models of depression (Rampin et al., 1991, Cespuglio et al., 1995, Meerlo et 

al., 2001). Rampin and colleagues were the first to describe that a stressful stimulus, 

such as immobilization stress (IS) is able to alter sleep in rats (Rampin et al., 1991). 

In fact one hour of IS, performed at the beginning of the dark period, was enough to 

induce an increase in REMS (Rampin et al., 1991). These results were confirmed by 

Gonzalez and colleagues who could also prove an involvement of CRH (Gonzalez 
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and Valatx, 1997). Indeed, they showed that the contribution of endogenous CRH in 

REMS enhancement depends on the environmental conditions (Gonzalez and Valatx, 

1997). 

 

2.6.2 The conditional CRH overexpressing mouse model 

 

Taken into account that stress-related disorders such as depression are 

accompanied with elevated CRH levels in humans CSF (Nemeroff et al., 1984), the 

investigation would be worthwhile in animal models that show high CRH activity. 

Several lines of CRH-overexpressing mice have been created so far (Stenzel-Poore 

et al., 1994, Kolber et al., 2010). Nevertheless, in all cases the unrestricted CRH 

overexpression resulted in increased corticosterone levels (Groenink et al., 2002) 

accompanied by symptoms of Cushing-like syndrome (Stenzel-Poore et al., 1992), 

therefore limiting their usefulness for studies of sleep physiology. This problem was 

circumvented by designing conditional mutants overexpressing CRH under the CNS-

specific Nestin and forebrain-specific Camk2α promotors (CRH-COE-Nes and CRH-

COE-Cam, respectively) (Lu et al., 2008). Both lines do not show explicit behavioural 

or endocrine abnormalities, under resting conditions, but react with increased active 

stress-coping behavior and corticosterone release under stress conditions (Lu et al., 

2008, Kimura et al., 2010). Furthermore, upregulated REMS has been demonstrated 

in both lines, suggesting that overexpressed CRH in the forebrain contributes to 

enhanced REMS. 

 
In the present study, CRH-COE-Cam mice were used in order to unravel the role of 

forebrain CRH on REMS regulation. Briefly, homologous recombination in embryonic 

stem cells was used to knock into the ubiquitously active ROSA26 (R26) locus a 

single copy of the murine CRH cDNA headed by a loxP-flanked (floxed) 

transcriptional stop sequence (Lu et al., 2008). To achieve forebrain-specific 

overexpression of CRH, homozygous mice carrying the altered R26 allele (R26 
flopCrh/flopCrh), which is Cre-recombinase sensitive, were bred with the Camk2α-Cre 

transgenic line (Lu et al., 2008). In this conditional mouse line, Cre expression is 

controlled by the Camk2α promotor (Cam) (Minichiello et al., 1999), which drives Cre 

mediated CRH overexpression to principal neurons of the anterior forebrain including 

limbic structures from around postnatal day 15 (Minichiello et al., 1999). Resulting 
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heterozygous R26 +/flopCrh and R26 +/flopCrh Cam-cre F1 were intercrossed to obtain the 

F2 generation of the desired genotypes: R26 flopCrh/flopCrh (CRH-COEcon-Cam; controls) 

and R26 flopCrh/flopCrh Camk2a-cre (CRH-COEhom-Cam; homozygous) (Lu et al., 2008). 
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3 Aim of the study 
 

Although it was previously suggested that CRH overexpression in the forebrain 

including limbic structures contributes to enhanced REMS, the mechanism of how 

CRH drives REMS increase and contributes to stress-related sleep disorders is not 

yet fully uncovered. Therefore, this thesis aimed to explore the role of CRH in the 

regulation of REMS by examining the involvement of an altered neurotransmitter 

system. 

 

This work addressed the following questions: 

 

Study I Can characteristically upregulated REMS in CRH-COE Cam mice be 

decreased with a muscarinic antagonist, and is this action mediated 

through the amygdala? 

 

Study II Do CRH-COE Cam mice have a higher cholinergic activity in the 

amygdala, and does CRH modulate ACh release via stimulation of the 

CRHR1? 

 

Study III Is the amygdala able to activate pontine REMS regulating structures 

after CRH stimulation? 

 

 

Study IV Does overexpressed CRH in the forebrain affect cholinergic neuronal 

activity in pontine REMS regulating structures in response to SD? 
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4 Materials and Methods 
 

4.1 Animals 

 

In the present study, adult (8-12 weeks old) male homozygous forebrain-specific 

CRH-overexpressing (CRH-COE Cam) and control littermates as well as C57BL/6J 

mice (Harlan Winkelmann GmbH, Borchen, Germany) were used. CRH-COE-Cam 

mice were provided by the research group “Molecular Neurogenetics” of the Max 

Planck Institute of Psychiatry, Munich, Germany. All animals were maintained under 

standard laboratory conditions (temperature 24°C ± 1°C; humidity 50% ± 10%) on a 

12h/12h light dark cycle (lights on at 09:00 h, lights off at 21:00 h). Standard rodent 

pellets and water were provided ad libitum. All animal experiments conducted in this 

thesis were approved by the local commission for the Care and Use of Laboratory 

Animals of the State Government of Upper Bavaria. Accordingly to different settings 

for each experiment, animals were housed as follows. 

 
Study I: Sleep recording and atropine microinjection 

CRH-COE-Cam mice (controls n=14; homozygous n=14) were single housed in 

Plexiglas cages (length x width x height = 25 x 25 x 35 cm) and placed in a sound-

attenuated recording chamber. 

 
Study II: Microdialysis for ACh measurement 

CRH-COE-Cam mice (controls n=12; homozygous n=12) were placed in the 

microdialysis experimental room which had similar environmental conditions as the 

recording chamber and single housed in Plexiglas cages (length x width x height = 25 

x 25 x 35 cm). The cages were divided into two compartments using a Plexiglas 

separation wall. Mice were housed in the large section of the cage (length x width = 

25 x 15 cm). 

 
Study III: CRH microinjection and ChAT/c-Fos Immunohistochemistry 

C57BL/6J mice (n=15) were single housed in Plexiglas cages (length x width x height 

= 25 x 25 x 35 cm) and placed in a sound-attenuated chamber. The open top side of 

the cages allowed free access to the animals for the microinjection procedure. 
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Study IV: SD and ChAT/c-Fos Immunohistochemistry 

CRH-COE-Cam mice (controls n=10; homozygous n=10) were single housed in 

transparent polycarbonate cages (type 2 – macrolone, 25.5 cm x 19.5 cm x 13.8 cm) 

and kept at the animal facility of the Max Planck Institute of Psychiatry in Munich, 

Germany. 

 

 

4.2 Surgeries (study I-III) 
 

Animals were anaesthetised using a custom-made inhalation narcosis device with an 

oxygen/sevoflurane mixture (Sevorane; Abbott, Wiesbaden, Germany), positioned 

into a stereotaxic apparatus (Stoelting Co., Wood Dale, USA) in order to maintain a 

stable head position, and placed on a heating pad to avoid a decrease of body 

temperature during the surgery. Before starting the surgery, mice received 

subcutaneously atropine sulfate (0.05mg/kg, Atropine; Braun Melsungen AG, 

Melsungen, Germany) to prevent bradycardia and meloxicam (0.5mg/kg, Metacam; 

Braun Melsungen AG, Melsungen, Germany) for postoperative pain reduction.  

 
For the sleep study, after an incision was made on the scalp, connectivity tissues 

were carefully removed, and then tiny holes to implant EEG electrodes were drilled in 

the cranial bone using a dental drill (KaVo-5 Type EWL4970; Kaltenbach und Voigt 

Elektronisches Werk GmbH, Leutkirch, Germany). EEG electrodes made of 3 gold 

wires with ball-shaped ends (one in the frontal and two in the parietal field; Figure 10) 

were placed through the skull epidurally. Subsequently, two additional gold wires with 

ball-shaped ends were inserted in the neck muscle for EMG recordings. All 

electrodes were soldered to a 5-pin miniature-connector (BCP socket connector; 

Compona, Switzerland) and affixed with 2 anchoring screws to the skull with a dental 

acrylic resin (Paladur; Heraeus Kulzer, Hanau, Germany). Two cannulae made of 

microdialysis peek tubing (13 mm long, outsider diameter: 0.4 mm, inner diameter: 

0.12 mm; Microbiotech, Stockholm, Sweden) were stereotaxically inserted into the 

bilateral CeA for atropine injections according to the mouse brain atlas by Franklin 

and Paxinos (Franklin and Paxinos, 1997), fixed to the skull with the resin and closed 

with a removable dummy cap. To further increase footing, all implants were fixed 

together with the resin.  
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Figure 10: Dorsal scheme of the mouse skull and the five-pin connector. 

On the left hand side are the locations of the holes for the EEG electrodes, the injection cannulae and 

the screws. On the right hand side a schematic draw of the 5-pin connector. Skull adapted from 

www.informatics.jax.org. 

 

 

For the microdialysis study, mice were implanted with a guide cannula and two 

anchoring screws (Figure 11A). The custom-made sterile, stainless steel guide 

cannula (length: 13 mm; outsider diameter: 0.7 mm; insider diameter: 0.4 mm) was 

inserted slowly above the right CeA, (coordinates with bregma as reference: lateral -

3.2 mm, posterior -1.2 mm, ventral -4.8 mm) and closed with a removable silicon plug. 

Additionally, a small peg was attached to the skull in order to connect a liquid swivel 

system during the microdialysis experiment. Both the guide cannula and the peg 

were first fixed to the skull using ethyl cyanocrylate glue, followed by the dental resin 

for a better fixation and stabilization.  
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Figure 11: Dorsal scheme of mice skulls and locations of the holes in the microdialysis (A) and 

CRH injection study (B).  

Skull adapted from www.informatics.jax.org 

 

 

For the CRH injection study, C57BL/6J mice were implanted with a cannula made of 

microdialysis peek tubing (13 mm long, outsider diameter: 0.4 mm, inner diameter: 

0.12 mm, Microbiotech, Stockholm, Sweden) flanked by two anchoring screws 

(Figure 11B). The cannula was inserted slowly into the right CeA, (coordinates with 

bregma as reference: lateral -3.1 mm, posterior -1.2 mm, ventral -5.3 mm) and 

closed with a removable dummy cap. Cannula and screws were affixed to the skull 

with the resin. 

 

 

4.3 EEG/EMG recording and sleep data analysis (study I) 

 

After 10 days of recovery from surgery, a 5-pole recording cable was plugged into the 

micro-socket and connected to an electric swivel (Type SW-921.18; Precisor 

Messtechnik, Munich, Germany) which was counterbalanced by a mechanical 
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device; thus, the animals could move almost freely and were easily adapted prior to 

the beginning of recording. The EEG and EMG recording signals were pre- and main 

amplified (1000 fold and 10 fold, respectively), filtered (EEG 0.5-29 Hz, 48 dB per 

octave; non-filtered EMG underwent root mean square rectification), transformed via 

an analogue-to-digital converter card at a sampling rate of 64 Hz (National 

Instrument, Austin, TX) and stored on a computer. Polysomnographic data were then 

analyzed offline by a LabVIEW-based acquisition system (EGEra Vigilanz; SEA, 

Cologne, Germany), in which a Fast Fourier Transform (FFT) algorithm served for 

spectral analysis of the EEG power across particular EEG frequency bands that are, 

delta (0.5-5 Hz), theta (6-9 Hz), sigma (10-15 Hz) and beta (16-29 Hz). The spectral 

analysis enabled semiautomatic classification of sleep-wake vigilance states by 

applying the FFT algorithm, adapted from a report by Louis et al. (Louis et al., 2004). 

Vigilance states were defined in 4-second epochs and classified as wake, NREMS or 

REMS. The defined semi-automatically scored data were further confirmed visually 

and corrected if necessary. In case of high amplitude, low frequency (delta bands) 

EEG, epochs were rescored as NREMS; whereas if the EMG signal was low or 

absent (muscle atonia) and EEG theta activity was dominant, they were rescored as 

REMS. All other cases were rescored as wake. EEG/EMG recordings were made for 

23 hours per experimental day, allowing maintenance of the recording device and 

animal care during the remaining hour. 

 

 

4.4 Microinjections (study I and III) 

 

All microinjections for the atropine and CRH study were performed with the same 

apparatus and procedure. The microinjection apparatus consisted of a 50 cm long 

fluorethylenepolymer (FEP) microdialysis tubing (dead volume: 1.2 µL/10 cm length; 

outsider diameter: 0.4 mm; Microbiotech, Stockholm, Sweden), 2 FEP tubing 

adapters (no dead volume in the connections; Microbiotech, Stockholm, Sweden), a 

syringe needle (22 gauge, length: 51 mm, outsider diameter: 0.7 mm; Hamilton 

Company, Bonaduz, GR, Switzerland), a 10 µl Hamilton syringe (801 RN; Hamilton 

Company, Bonaduz, GR, Switzerland) and a plunger connected to a custom made 

control element (Figure 12). The control element consisted of a precision dial 
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allowing the delivery of the solution in steps of 0.17 µl/turn. An extra peek injection 

cannula, the tubing and the syringe were filled with distilled water, and a small air 

bubble drawn up into its distal end. This, separated the infused solution (drug 

dissolved in vehicle solution or vehicle solution only) from the water, and also acted 

as a suitable index of successful injection. During injection the animals were gently 

restraint, and the FEP tubing connected adapter was secured to the peek injection 

cannula. Solutions in a volume of 0.5 µl were slowly infused over 3 minutes, and the 

adapter was allowed to stay connected to the injection cannula 5 minutes after the 

microinjection was finished. Injections were always performed 10 days after surgery 

on maximum four mice at a time in order to complete the procedure within 1 hour. 

 

 

 
 
Figure 12: Microinjections apparatus 
 

 

 

Experimental procedures for testing atropine (study I) 

To test the hypothesis that cholinergic inhibition in the amygdala decreases REMS in 

CRH-COE-Cam mice, 14 mice (controls n=7; homozygous n=7) were bilaterally 

injected with a muscarinic antagonist (atropine) into the CeA and changes in REMS 

were analyzed. Each experimental animal was injected with a 10 µg dose of atropine 

(Braun Melsungen AG, Melsungen, Germany) whereas a different group of 14 mice 

(controls n = 7; homozygous n = 7) were used as a control and were injected with a 

saline solution (NaCl 0.9%; Berlin-Chemie AG, Berlin, Germany; Figure 13). All 

injections were completed before 15:00 (6 hours after the light onset). 
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Figure 13: Schematic representation of the atropine injection schedule. 

After 1 day of baseline EEG/EMG recording, all animals were bilaterally injected either with atropine or 

saline at zeitgeber time (ZT) 30. Recordings continued for 2 days (ZT 30 – ZT 72). Horizontal open bar, 

light period; horizontal filled bar, dark period. 

 

 

Experimental procedures for testing CRH (study II) 

In order to study the effects of limbic CRH on neuronal activity in REMS regulating 

brainstem structures, C57BL/6J mice were injected unilaterally with CRH (human/rat 

CRF, Bachem AG, Melsungen, Germany) into the CeA. A group of animal received a 

dose of 1 µg of CRH whereas a different group received a dose of 10 µg. All 

injections were completed before 13:00 (4 hours after the light onset). As control 

treatment, saline was injected at the same time to another group of mice. Sixty 

minutes after each treatment, animals were perfused. 

 

 

4.5 Sleep deprivation (SD) (study II and IV) 

 

To study the effects of SD on ACh release and on neuronal activity in REMS 

regulating structures, the animals were sleep-deprived for 6 hours from the beginning 

of the light period. SD was performed by gentle handling, which is a less stressful 

procedure than other SD approaches such as the rotating disk over water or “the 

flower pot” technique (Rechtschaffen et al., 1999). Whenever the animals appeared 

to be sleepy, examiners introduced novel objects into the home cage like cotton 
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swabs or tissue paper. Any direct contact with the animals was avoided. This method 

stimulates active wakefulness and results in increased sleep pressure (Jouvet et al., 

1964, Borbély et al., 1984). The increased sleep pressure increases sleep propensity 

and leads to a rebound sleep during recovery. In study IV, CRH-COE-Cam mice 

were divided into 2 groups with 9 animals each (controls n=5, homozygous n=4). 

One group was sleep-deprived for 6 hours (starting at 9:00 and finishing at 15:00) 

and the other one was used as a non-sleep-deprived control. All animals were then 

anesthetized for perfusion at approximately 15:00. The experimental protocol for 

study II will be described in the following microdialysis section. 

 

 

4.6 Immunohistochemistry (study III and IV) 

 

After the CRH microinjections or SD experiments, immuhistochemistry was carried 

out for the detection of the c-Fos protein (as a marker for neuronal activation) 

together with ChAT labeling (as a marker for cholinergic neurons) within the 

brainstem region to examine whether CRH or SD activates of cholinergic neurons. 

 
Animals were deeply anesthetized with an overdose of sodium pentobarbital (6,4 

mg/kg, intraperitoneal), and perfused through the ascending aorta with 5 ml of saline 

followed by 5 ml of fixative containing 2% paraformaldehyde (PFA) in 1 M phosphate-

buffered saline (PBS). Every perfusion was completed within 10 minutes from the 

injection of the anaesthetic. Brains were removed and stored at 4°C overnight in the 

fixative solution, after which they were submerged in a 30% sucrose solution at 4°C 

for three days for cryoprotection. After the brains were completely absorbed in the 

sucrose solution, they were rapidly frozen in methylbutane cooled with dry ice and 

stored at -80°C. Coronal sections were made through the entire brain at 30 µm 

thickness on a cryostat (Leica, Germany). Free-floating sections containing the 

amygdala, and brainstem structures were collected in cryoprotectant solution and 

stored at -20°C. 

 

Study III: fluorescent labeling 

To increase cell permeability the sections were incubated with 0.2 % Triton-X for 15 

minutes, and then treated with a blocking solution (5% goat serum in PBS for 1 hour); 
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in between the sections were washed in PBS. The sections were incubated overnight 

with a rabbit anti c-fos (1:5000; Calbiochem, PC38) and a chicken anti ChAT (1:200; 

Chemicon, AB15468) primary antibody. The next day, after being washed in PBS, 

sections were incubated with the fluorophore tagged secondary antibodies: anti 

rabbit IgG (Alexa Fluor 568; 1:5000) and anti chicken IgG (Alexa Fluor 488; 1:200). 

Sections were then washed in PBS and incubated for 10 minutes with the fluorescent 

stain DAPI which was used for visualization of the nucleus since it labels DNA. After 

staining, the sections were mounted on microscope slides (Super Frost Plus; VWR 

International, Leuven, Belgium), dried, and coverslipped with prolong gold mounting 

medium (antifade reagent; Invitrogen, Germany).  

 
The histochemical analysis was carried out under fluorescent microscopy. Dark-field 

photomicrographs were captured at a 20x magnification with Zeiss AxioCam MRm 

and AxioCam MRc5 digital cameras adapted to a Zeiss axioplan 2 imaging 

microscope and a stereomicroscope (Leica). Images were acquired simultaneously in 

three acquisition channels with the Axio Vision 4.5 and afterwards photomicrographs 

were integrated into plates using image-editing software. C-Fos positive cells were 

determined by a red punctuate nucleus whereas the cholinergic neurons were 

determined by a green cytoplasm. Single labeled c-Fos and double-labeled c-

Fos/ChAT cells in different brainstem regions were counted manually from the 

digitalized pictures in three sections per animal. The cell counts of these three 

sections were averaged and compared between the CRH injection and saline group. 

Digitalized sections of the amygdala were used to verify the location of the cannula 

within this area.  

 

Study IV: DAB/Nova Red labeling 

After being washed in PBS, brain sections were first blocked in a normal goat serum 

for one hour, and then incubated overnight in rabbit anti-c-Fos antibody (1:5000; 

Calbiochem, PC38). On the next day, the sections were washed and incubated with 

the secondary antibody (biotinylated goat anti rabbit IgG, 1:300; Vector, BA1000) for 

one hour, followed by one hour in Avidin-Biotin Complex (ABC; Vector Elite Kit, 

Vector laboratories). In order to visualize c-Fos positive cells, sections were washed 

and placed for 40 seconds in a solution of 3,3′-diaminobenzidine (DAB; 0.06%) with a 

mixture of nickel-ammonium sulphate (0.01%) and hydrogen peroxide (0.02%; DAB 

kit, Vector Laboratories). The sections were then washed and incubated overnight 
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with a chicken-anti-ChAT (1:250; Chemicon, AB15468) primary antibody. The 

following day, the sections were rinsed, incubated in Avidin-Biotin Vector blocking kit 

(15 minutes in Avidin and 15 minutes in Biotin), and followed by one hour incubation 

with the secondary antibody (biotinylated goat anti chicken IgG, 1:300; Vector, 

BA9010). The sections were then washed, followed with one hour incubation with 

Avidin-Biotin Complex (already described). For the visualization of cholinergic 

neurons Nova Red (Vector, SK4800) was applied for 1 minute and 15 seconds. After 

staining, the sections were mounted onto microscope slides (Super Frost Plus; VWR 

International, Leuven, Belgium), dried, and coverslipped with Eukitt quick-hardening 

mounting medium (Fluka; Sigma-Aldrich). 

 
Cholinergic cells that were also c-Fos positive (c-Fos/ChAT) were counted 

unilaterally at 120 µm intervals through the full rostrocaudal extend of the LDT using 

a light microscope (Leitz) at a 20x magnification; a 4x magnification was used to 

determine the outline of the structure. C-Fos/ChAT double-labeled cells were 

determined by the black punctuate nucleus (c-Fos positive) surrounded by 

brown/orange (ChAT-positive) cytoplasm.  

 
Sections that were used for c-Fos counting were analyzed under a Zeiss microscope 

equipped with a CCD camera attached to a computer. C-Fos cells were more 

numerous than dual immunostained cells and were counted unilaterally in three 

sections (interval 120 µm). Photomicrographs of each selected section were captured 

at a 10 x and 5x magnification; the outline of the structure was delineated at a 4x 

magnification and c-Fos cells were counted using a computer-based image analysis 

system (Imagepro Plus, version 6.3). 

 

 

4.7 In vivo brain microdialysis (study II) 

4.7.1 The technique 

 

We performed in vivo brain microdialysis to monitor the release of ACh in the 

extracellular space of the amygdala of CRH-COE-Cam mice. This technique is widely 

used in neuroscience to measure free, unbound neurotransmitter concentration in the 
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extrasynaptic space of freely moving animals (Ungerstedt and Pycock, 1974, Young, 

1993, Westerink, 1995, Mas et al., 1996, Bradberry, 2000). A microdialysis system 

consists of three components: the microdialysis pump, the microdialysis probe and a 

refrigerated fraction collector (Figure 14).  

 

 

 
 
Figure 14: Schematic diagram illustrating the microdialysis setup 

 

 

The technique requires brain insertion of a dialysis probe, which is designed to 

function mimicking a capillary blood vessel and consists of a semi permeable hollow 

membrane at its tip. The dialysis membrane is the key element of microdialysis. 

When it is perfused with a physiologically isotonic fluid, molecules are exchanged by 

diffusion in both directions along their concentration gradient, and generally, 

depending on filter size, the membrane excludes the transport of larger molecules 

which may interfere with the substances of interest (Hocht et al., 2007). Using the 

microdialysis pump set at a constant low flow rate, a perfusate solution goes into the 

probe through the inlet tubing, passes through the outlet tubing and is collected as a 

dialysate in a refrigerated fraction collector (Nirogi et al., 2010). Perfusion fluid, such 

as Ringer solution, is a solution that mimics the ionic constituents of the extracellular 
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fluid, and therefore circumvents the excessive migration of molecules into or out of 

the probe (Chefer et al., 2009). In general, the concentration of a neurotransmitter 

with one’s particular interest in the dialysate is a fraction of its real concentration in 

the probe. In fact, the ratio between the concentration in the dialysate and the 

concentration in the probe is referred to as relative recovery. The relative recovery 

depends mostly on a flow rate and molecular weight (Plock and Kloft, 2005, Chefer et 

al., 2009, Nirogi et al., 2010). The in vitro recovery of ACh (with a flow rate of 2 

µl/minute) is found to be 23 % (data not shown); however the data presented here 

are not corrected for recovery. 

 

4.7.2 Experimental procedures 

 

Following 14 recovery days after surgery, homozygous and control CRH-COE-Cam 

mice were lightly anaesthetized with sevoflurane, stereotaxically fixed and after 

removal of the silicon dummy tip, a 13 mm long concentric microdialysis probe (AZ-8-

03; Eicom corp., Kyoto, Japan; membrane: artificial cellulose, length 1 mm, molecular 

weight cutoff 50,000 Da, outer diameter 0.22 mm) was slowly inserted through the 

guide cannula. In order to keep the probe in a stable location, it was fixed to the 

guide cannula with a drop of ethyl cyanocrylate glue followed by dental resin. Prior to 

this procedure, the probe was examined in order to prevent leakage. FEP tubing with 

a dead volume of 1.2 µL/10 cm length (Microbiotech, Stockholm, Sweden) was 

employed for all connections. The microdialysis probe was perfused with Ringer’s 

solution (in mM: Na+ 147; K+ 4; Ca2+ 2.2; Cl− 155.5; pH 7; Delta Select, Germany) at 

a flow rate of 2 µL/minute via a microinfusion pump. After the probe implantation, the 

animals, connected to a double channel swivels (Microbiotech) through the peg on 

their head and a counterbalancing system (Instech Laboratories, Plymouth Meeting, 

PA, USA) were allowed to move freely in the experimental cages without tangling the 

dialysis tubing. Moreover, the dual channel swivels connected the inlet and outlet 

tubing from the animals with a refrigerated auto sampler (820 microsampler, 

Univentor, Malta). Sample collection was always performed with four mice 

simultaneously on day 2 (first experimental day; baseline collection) and on day 4 

(second experimental day: with SD) after the implantation of the microdialysis probe 

(Figure 15). To avoid rapid hydrolysis of ACh by AChE and to improve basal recovery 

of ACh, neostigmine bromide (2.5 µM; Research Biochemicals International, Natick, 



Material and Methods 48 

MA, USA), an acetylcholinesterase inhibitor, was added to the perfusion fluid 12 

hours before the start of the first experimental day and 3 hours before the start of the 

second experimental day. 

 

 

 
 
Figure 15: Schematic representation of the schedule for the microdialysis experiment 

 

 

First experimental day: baseline 

Two days after the implantation of the microdialysis probe, 1-hour dialysates samples 

were automatically collected for 24 hours (09:00-09:00) to monitor the diurnal 

changes in extracellular levels of ACh. During the baseline day, the animals (n=24) 

were allowed to sleep and wake undisturbed; therefore great attention was taken to 

avoid unexpected noise in the microdialysis room. The spontaneous locomotor 

activity of the mice in their cage was monitored and recorded on a video tape. The 

video recording equipment in our laboratory did not allow registering the behavior 

during the full 24 hours of the light/dark cycle. Therefore it was decided to monitor the 

locomotor activity only during two short periods; between 09:00 and 13:00 during the 

light period, and between 21:00 and 01:00 during the dark period.  

 

Second experimental day: SD 

Four days after inserting the probe, dialysates were automatically collected again 

every hour for 24 h (09:00-09:00). During the first 6 hours of the sampling time, the 

animals (n=12) were subjected to SD. At the end of SD, the animals were left 

undisturbed in their cage and spontaneous locomotor activity was monitored between 

d 0 d 14 d 16 d 18 d 19 

Recovery from surgery 

Surgery 

Probe implantation 

Baseline day 

SD day 
Sacrifice  

Sampling days 
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15:00 and 21:00 during the light period, and between 21:00 and 23:00 during the 

dark period. 

 

During sampling, dialysates were collected in plastic vials which were cooled in 

refrigerated auto sampler and were then stored at -80 °C for further ACh 

quantification by high performance liquid chromatography with electrochemical 

detection (see below). 

 

4.7.3 Quantification of ACh 
 

The concentration of ACh was determined from the microdialysis samples using 

high-pressure liquid chromatography (HPLC) combined with electrochemical 

detection (EC). The HPLC setup consisted of an isocratic pump (Sunflow 100, 

Sunchrom, Friedrichsdorf, Germany), a mobile phase degasser (Sunchrom, 

Friedrichsdorf, Germany), a thermostat (Mistral column, Spark Holland Instruments, 

Emmen, The Netherlands), an ACh/Ch analytical column (UniJet microbore, Antec 

Leyden, Zoeterwoude, The Netherlands), an ACh/Ch post column immobilized 

enzyme reactor (IMER; UniJet microbore, Antec Leyden, Zoeterwoude, The 

Netherlands) and an electrochemical detector (Antec Leyden, Zoeterwoude, The 

Netherlands). The mobile phase containing 5 mM sodium phosphate (NaH2PO4), 12 

mM potassium chloride (KCl) and 0, 5 mM EDTA (pH 8, 5) was filtered through a 

membrane (pore size: 0,22 µm; Durapore membrane filters, Millipore, Cork, Ireland). 

The eluent was delivered at a rate of 130 µl/minute, while the temperature in the 

column was maintained at 35°C. A volume of 10 µl of each sample was injected 

manually into the injector valve, which was directly connected to the stationary phase 

(a 530 mm long stainless steel tube with a 1/16 inch outside diameter and 1 mm 

inside diameter). After sample separation by ion-pairing mechanism in the analytical 

column (stationary phase), ACh and Ch were converted sequentially to betaine and 

hydrogen peroxide by the immobilized enzyme reactor (IMER, a 50 mm long 

stainless steel tube with a 1/16 inch outside diameter and 1 mm inside diameter, 

containing 2 covalently bounded enzymes: AChE and cholinoxidase [ChO]). The 

resultant hydrogen peroxide was oxidized on a platinum electrode, with the detector 

potential set at 550 mV with respect to an Ag/AgCl reference electrode (Figure 16).  
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Figure 16: Enzymatic conversion of acetylcholine and choline and electrochemical detection of 
hydrogen peroxide. 
 

 

For the ACh analysis, it was necessary to generate a calibration curve by injecting a 

set of 5 standards of known concentrations (in the range of femtomole) and 

computing response factors were based upon the linear regression of a plot of peak 

height vs. concentration (Figure 17). Every plot showed a good linearity with 

correlation coefficients of 0.998 (data not shown). The chromatograms were 

analyzed with the Clarity software (Data Apex, Prague, The Czech Republic), and 

ACh identification and peak quantification were achieved by comparison with the 5 

reference standards. 

 

 

 

 

acetylcholine + H2O  

choline + H2 O + 2O2   

AChE 

ChO 

choline + acetate 

betaine + 2H2O2 
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O2 + H + + 2e 
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Figure 17: Example of calibration curve for acetylcholine (A) and separation of acetylcholine 

and choline (B) 

(A) The linearity of the plot was obtained in the amount range of 1.25-50 fmol. The plot is showing a 

good linear detector response with correlation coefficients of 0.998 (data not shown). (B) Overlay of 

chromatograms of a dialysate and a reference standard 3. 

 

 

4.8 Video monitoring of behavior (study II) 

 

While measuring ACh release during the microdialysis study, the spontaneous 

locomotor activity of the animals in their cage was monitored with standard miniature 

infrared surveillance video cameras and recorded on a video tape for later scoring on 

a personal computer. The observer determined the spontaneous locomotor activity 

from the video tape by scoring as either “active” or “inactive” every 1 minute. Activity 

was defined as grooming, nest building, locomotion, climbing on the food rack, or 

activity along the separation wall while inactivity was defined as sleeping (lying with 

eyes closed), lying or sitting. The activity counts were then summed over 60 minutes 

intervals.  
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4.9 Verification of probe and cannula locations (study I and II) 
 

After the experiments, animals received a lethal dose of sodium pentobarbital (0.1 ml, 

160 mg/100 ml, intraperitoneal). The brains were removed, rapidly frozen in 

methylbutane cooled with dry ice, and stored at -80°C. Coronal sections were made 

at 20 µm thickness with a cryostat, stained with cresyl violet and visually inspected 

under a light microscope. Injection sites in CeA were verified by comparing sections 

to those in the stereotaxic atlas (Franklin and Paxinos, 1997). 

 

4.10 Statistical analysis 
 

All values are shown as a mean ± SEM. Statistical analyses were performed using 

GraphPad Prism (Version 6.01, GraphPad, San Diego, CA).  

 
In study I the time spent in each vigilance state or only REMS was calculated in 1 or 

2 hours averages. Differences in sleep-wake patterns during baseline were 

compared among the two different genotypes and analyzed by two-way ANOVA with 

factors ‘time’ and ‘genotype’. The effects of the muscarinic antagonist atropine on 

REMS were compared between vehicle and atropine treated mice and evaluated by 

two-way ANOVA with factors ‘treatment’ and ‘time’.  

 
In study II two-way ANOVA with factors ‘genotype’ and ‘time’ was used to determine 

whether overall significant differences existed between absolute extracellular levels 

of ACh of the different genotypes during the baseline day, SD and recovery period. 

To compare ‘genotype’ and ‘light-dark’ effects on 12 hours averaged amounts of ACh 

release during SD, recovery, light and dark periods, two-way ANOVA was used. In 

order to reveal significant differences in ACh release between the two experimental 

days in both genotypes, two-way ANOVA was performed. Furthermore a paired t test 

was used to determine the differences in 6 hours averaged amounts of ACh between 

baseline and recovery for each line. Finally the correlation analysis between 

normalized ACh levels and spontaneous locomotor activity in both genotypes was 

performed by the Pearson Product Moment Correlation.  
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In study III one-way ANOVA with factor ‘treatment’ was performed on the number of 

c-Fos labeled neurons for each structure and each experimental condition (saline, 1 

ng CRH, 10 ng CRH). 

 

In study VI an unpaired t test was used to determine the differences in c-Fos or c-

Fos/ChAT labeled cell numbers for each genotype across conditions (baseline and 

SD). 

 
If the F values reached statistical significance, the Bonferroni’s multiple comparison 

test was further applied for post-hoc analysis. P values <0.05 were considered 

significant. 
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5 Results 

5.1 REM sleep in CRH-COE-Cam mice (study I) 

5.1.1 Spontaneous sleep-wake patterns in CRH-COE Cam homozygous 
and control littermate mice 

 

Polysomnographic analysis of sleep-wake behavior in CRH-COE Cam mice during 

baseline recordings confirmed what has been previously demonstrated by our 

research group, namely characteristically upregulated REMS in homozygous mice 

(Kimura et al., 2010). As shown in Figure 18, both genotypes showed a clear 

circadian-dependent variation in distribution of each vigilance state, presenting a 

typical nocturnal sleep-wake cycle. Homozygous mice compared with their control 

littermates showed constantly elevated REMS levels, however significant differences 

were only found during the light period (P<0.05). In contrast, time course changes in 

NREMS and wakefulness were not significantly different between the two genotypes 

neither in the light period nor in the dark period.  
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Figure 18: Sleep-wake distribution in homozygous (hom; n=15) and control littermate (con; 

n=15) CRH-COE-Cam mice under baseline conditions. 

Data points represent 2 hour means ± SEM of time spent in REMS, NREMS and wake. The shaded 

areas indicate the dark period. Two-way ANOVA showed significant effects of ‘genotype’ for REMS 

across 24 hours (P<0.0001). Bonferroni’s test applied for post-hoc analysis, showed that the 

significant differences between genotypes we present during the light phase; *P<0.05. No statistical 

significance according to ‘genotype’ was found in respect to NREMS and wake.  
 

 

5.1.2 The effect of atropine on REM sleep 

 

Available evidences suggest that there is a major projection from the amygdala to 

REMS regulating brainstem areas (Amaral et al., 1992, Valentino et al., 1994, Gray 

and Bingaman, 1996, Quattrochi et al., 1998) and cholinergic activation of CeA may 

be important in REMS regulation (Calvo et al., 1996, Wiersma et al., 1998, Sanford et 

al., 2006). To determine whether enhanced REMS by limbic CRH overexpression is 
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mediated through the cholinergic system, atropine was microinjected into the CeA 

and the effects of locally applied atropine on sleep, especially on REMS were 

analyzed.  

 
In homozygous CRH-COE Cam mice, significant interaction effects of treatment and 

time were found during the 6 hours light period (P<0.0001) but not in the dark period. 

In control mice, no statistical significant differences were found, neither during the 

light phase nor in the dark phase. In both genotypes, compared to the baseline 

recording, the injection itself even with saline induced a decrease in REMS during the 

first hour because the animals were still awake from the gentle restraint. Afterwards, 

REMS levels of saline treated animals returned to and remained at baseline levels 

(Figure 19A and B). Atropine application in homozygous CRH-COE Cam mice, 

however, caused a significant decrease of REMS by postinjection hour 2 and 3 in 

comparison to saline and thus baseline (P<0.05). REMS levels remained decreased 

during most of the light period in homozygous mice (Figure 19A). In control animals, 

REMS declined only for two hours after atropine treatment, then returned rapidly to 

the baseline similar to the level after saline (Figure 19B). 
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Figure 19: Effects of atropine microinjection into the CeA on REMS in homozygous (atropine 

n=7, saline n=7) and control littermate (atropine n=7, saline n=7) CRH-COE-Cam mice. 

Data points represent 1 hour means ± SEM of time spent in REMS during 12 hours after injection. 

Animals received either saline or atropine treatment 6 hours after the light onset (clock time 15:00). 

The shaded areas indicate the dark period. (A) Two-way ANOVA showed significant interaction effects 

of ‘treatment’ and ‘time’ (P<0.0001) across 6 hours during the light phase. By comparing saline and 

baseline versus atropine treatment, significant differences assessed by Bonferroni’s test for post-hoc 

analysis were found, *P<0.05. During the subsequent 6 hours of dark period no statistical effects were 

found. (B) In control mice two-way ANOVA did not detect any statistical differences between 

treatments, neither during the first 6 hours nor in the second 6 hours recording periods.  
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Figure 20 shows the results from the histological validation of microinjection sites. 

Only CRH-COE-Cam mice that had the cannula positioned in the CeA were included 

in the following analysis. A series of three coronal diagrams indicates the atropine 

microinjection sites for each of the animals used for the analysis. Cannulae 

placements spanned along the rostro-caudal extend (1.22 to 1.70 posterior to 

bregma), though the locations were within the CeA. A representative coronal section 

is shown in Figure 20B. 
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Figure 20: Histological confirmation of the microinjection sites. 

(A) Coronal diagrams were modified from a mouse brain atlas (Franklin and Paxinos 1997) illustrating 

the placements of atropine-injected cannulae in 14 CRH-COE-Cam mice. Red squares and blue 

circles represent injection sites in homozygous and control animals, respectively. (B) A representative 

cresyl violet-stained coronal section. 
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5.2 Determination of extracellular ACh concentrations by 
quantitative microdialysis (study II) 

5.2.1 Histological verification of targeted sites 

 

Figure 21 shows the results from the histological analysis of microdialysis sites. Only 

CRH-COE-Cam mice that had the probe located within the CeA were included in the 

subsequent analysis. Probe locations spanned from 1.06 to 1.46 mm posterior to 

bregma. A series of three coronal diagrams indicates the location of microdialysis 

sites for each of the animals used for the ACh quantification (Figure 21A). A 

representative coronal section is shown in Figure 21B, with an arrow pointing to the 

tip of the microdialysis membrane. 

 

 
Figure 21: Histological confirmation of microdialysis sites. 

(A) Coronal diagrams were modified from a mouse brain atlas (Franklin and Paxos 1997) to show the 

locations of microdialysis sites from 24 CRH-COE-Cam mice. Red and blue vertical lines represent 

microdialysis probe membranes in homozygous and control animals, respectively. Numbers below 

each coronal diagram indicate 1.06 mm to 1.46 posterior to bregma. Vertical lines are drawn to scale. 

(B) A representative cresyl violet-stained coronal section with a black arrow pointing at the tip of the 

microdialysis membrane. 
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5.2.2 ACh release in the CeA of CRH-COE Cam mice 

 

To assess whether limbic ACh is differently released in homozygous CRH-COE Cam 

mice compared with control littermates, extracellular ACh levels were measured in 

the CeA during two experimental days. 

 
On the first experimental day, extracellular levels of ACh in the CeA were analysed 

under baseline conditions in homozygous (hom) and control (con) CRH-COE-Cam 

mice. Figure 22A shows the time course of changes in ACh release across 24 hours.  
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Figure 22: Basal ACh release from the CeA in homozygous (hom; n=12) and control littermate 
(con; n=12) CRH-COE-Cam mice. 

(A) Time course changes in ACh levels measured for 24 hours. Data points represent 1 hour mean ± 

SEM and the shaded area indicates the dark period. Two-way ANOVA, revealed significant effects of 

‘time’ (P<0.0001) and ‘genotype’ (P=0.0005) on ACh release and their interaction across 24 hours 

(P=0.002). Bonferroni’s test, applied for post-hoc analysis, showed that the significant difference in 

ACh release between the genotypes was greater during the dark period; *P<0.05, **P<0.01. (B) and 

(C) Mean ACh release during the 12 hours light and dark period. Values are the 12 hour means ± 

SEM. L and D indicate the light and dark period, respectively. *P<0.05, **P<0.0001, assessed by two-

way ANOVA followed Bonferroni’s test. 

 

 

In both genotypes, extracellular concentrations of ACh showed a clear diurnal rhythm 

with higher levels during the dark when compared to the light period of the 24 hours 

light-dark cycle (P<0.0001, Figure 22A and B). As shown in Figure 22A, ACh levels 

during the light period were constantly low with a slight increase towards the 
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beginning of the dark period. At dark onset, ACh levels increased rapidly during the 

first hours and remained at a constant high level until they further increased towards 

the end of the dark period. Extracellular levels of ACh in the pooled 12 hours sample 

from the light period significantly differed from the pooled ACh levels 12 hours 

sample obtained from the dark period (Figure 22B). Clearly, the ACh levels in the 

CeA were increased during the dark period in control and homozygous mice 

(P<0.0001). Even though the circadian rhythm was similarly represented in both 

groups of animals, significant differences were detected between lines (P=0.0005). In 

fact, homozygous mice showed constantly elevated ACh levels in comparison to 

controls with larger differences in the dark when compared to the light period (Figure 

22A). As shown in Figure 22C homozygous mice exhibited a greater overall 12 hour 

means of ACh release compared to controls during the light period (P<0.05), a 

finding observed more prominently in the dark period (P<0.001). 

 
On the second experimental day, the effects of SD on amygdala ACh release were 

analyzed in homozygous and control CRH-COE-Cam mice. SD immediately 

increased extracellular ACh levels within the first hour, which was sustained over the 

entire 6 hour procedure in both groups (Figure 23A). Significant differences were 

found in ACh release between SD and baseline in controls (P<0.05), which were 

even greater in homozygous mice (P<0.01). When SD ended, ACh release dropped 

immediately and in the subsequent 6 hours of recovery returned gradually to baseline 

levels. During the recovery period, only homozygous mice showed significantly 

higher ACh release when compared to baseline conditions (P<0.05). Paired t test 

revealed that 6 hours mean ACh release during the recovery period (15:00-21:00) 

was significantly greater than during baseline condition in homozygous mice (P<0.05) 

but not in controls (P=0.5383; Figure 23B). During the subsequent dark period, the 

SD effect was not detected and extracellular concentration of Ach returned to 

baseline levels in both control and homozygous mice (Figure 23A).  
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Figure 23: Comparison of amygdala ACh release between baseline and SD day in homozygous 

(hom; n=6) and control littermate (con; n=6) CRH-COE-Cam mice. 

(A) Time course of changes in ACh levels measured for 24 hours. Data points represent 1 hour mean 

± SEM and the shaded area indicates the dark period. Two-way ANOVA revealed significant 

differences in ACh release between day 1 and day 2 in control (P<0.05) and homozygous (P<0.01) 

mice during 6 hours of SD. Bonferroni’s test showed that the significant difference in ACh release 

between day 1 and 2 was greater in homozygous than controls; *P<0.05, **P<0.01. During recovery 

and the subsequent dark period, two-way ANOVA did not detect significant differences in controls, 

however homozygous mice did show significantly differences during recovery (P<0.05) but not in the 

dark period. (B) Mean ACh release during the 6 hours of recovery period. Values are the 6 hour 

means ± SEM. *P<0.01, assessed by paired t test. 
 

 

If compared with controls, homozygous CRH-COE-Cam mice showed constantly 

elevated ACh levels in comparison to controls during 6 hours of SD, recovery and the 

subsequent dark period (P<0.05). Furthermore, the significant difference between 

genotypes elicited by SD during the recovery period was larger than that during the 

baseline day (Figure 24A). In contrast to the baseline day, a further analysis on the 

SD experimental day revealed that the elevated ACh levels in homozygous mice 
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were greater during the light than the dark period. Moreover the mean values of the 

extracellular levels of ACh during SD (P<0.01) and recovery (P<0.05) in homozygous 

mice were significantly higher than in controls (Figure 24B).  
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Figure 24: ACh release from the CeA on a SD day in homozygous (hom; n=6) and control 

littermate (con; n=6) CRH-COE-Cam mice. 

(A) Time course changes in ACh levels measured on 24 hours. Data points represents 1 hour mean ± 

SEM, and the shaded area indicates the dark period. Two-way ANOVA revealed significant effects of 

‘genotype’ on ACh release during SD, recovery and the subsequent dark period (P<0.05). Bonferroni’s 

test, was applied for post-hoc analysis, *P<0.05, **P<0.01. (B) Mean ACh release during the SD and 

recovery period. Values are the 6 hour means ± SEM. *P<0.05, *P<0.01, assessed by two-way 

ANOVA followed by Bonferroni’s test. 
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5.2.2 Correlation of ACh levels with spontaneous locomotor activity 

 

In addition to ACh release measurements, spontaneous locomotor activity was 

monitored in the same subjects since locomotor activation appears to be associated 

with an increase in ACh levels (Pepeu and Giovannini, 2004)  

 
To investigate whether ACh release in the amygdala correlates with locomotor 

activity as previously shown for the release from the cerebral cortex, hippocampus, 

and striatum (Day et al., 1991, Mizuno et al., 1991), ACh levels during the 8 hours 

post-SD (15:00-23:00) were compared with locomotor activity counts. ACh levels 

determined from a 60-minutes microdialysis sample were matched with locomotor 

activity counts at their corresponding 60-minutes time bin for homozygous and 

control animals. To adjust interindividual differences in absolute ACh levels in 

dialysates, the 8 hours data were normalized (2 hours pool of 6 animals divided by 

the 8 hours mean of each animal). Figure 25 shows the positive correlation between 

extracellular ACh levels and spontaneous locomotor activity in homozygous (r=0.36) 

and control (r=0.33) mice. A simple regression line is drawn across the plot for each 

genotype (hom and con, n=48; Pearson product moment correlation P<0.0001).  

 

 

 
 
Figure 25: Graphical correlation between ACh levels and spontaneous locomotor activity in 

homozygous (n=6) and control littermate (n=6) CRH-COE-Cam mice. 
Comparison between ACh levels during the 8 hours post-SD period with locomotor activity counts. 

ACh levels in CeA from a 60 minutes sample were matched with the activity counts in their 

corresponding 60 minutes bin. A simple regression line is drawn across the plot for each genotype 

(hom and con, n= 48; Pearson product moment correlation P<0.0001). 
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After confirming a positive correlation between ACh levels and spontaneous 

locomotor activity in both genotypes, tests were carried out to investigate whether 

homozygous mice display increased behavioural activity affecting the ACh release in 

the amygdala. As shown in Table 1 during both light and dark period homozygous 

and control mice showed a similar magnitude in behavioral activity. Furthermore, 6 

hours of SD did not evoke any genotype effects on locomotor activity. Therefore, the 

elevated ACh measured in CRH-COE-Cam homozygous was not derived from the 

differences in locomotor activity. 

 

 

Parameter CON HOM 
 

Mean behavioral activity during 
the light period (counts/h) 

14.6 ± 1.5  n=6 16.3 ± 2.3  n=6 

Mean behavioral activity during 
the dark period (counts/h) 

45.9 ± 3,8  n=6 46.2 ± 5  n=6 

Mean behavioral activity after 6 h 
of SD (counts/h) 

20.6 ± 0,9  n=6 19.7 ± 2  n=6 

 
 
Table 1: Spontaneous locomotor activity during the light and dark period and after SD in 

homozygous (n=6) and controls littermates (n=6) CRH-COE-Cam mice. 

Behavioral activity (light: 09:00-13:00; dark: 21:00-01:00; after SD: 15:00-23:00) was scored from 

video imaging in 1 minute intervals. Maximal numbers of counts are 60 counts/h. Data represent mean 

± SEM. 
 

 

5.3 Efferent CRH activation from the amygdala to the brainstem 
(study III and IV) 

 

Previously neuroanatomical studies have described that CRH neurons from the 

central nucleus of the amygdala (CeA) have direct connections with REMS regulating 

brainstem areas (e.g. laterodorsal tegmental nucleus, parabrachial nucleus) (Amaral 

et al., 1992, Valentino et al., 1994, Gray and Bingaman, 1996, Quattrochi et al., 1998, 

Morrison et al., 2000). To further investigate the relationship between CRH and ACh 

upon REMS regulation, study III and IV examined how CRH in the limbic system 

influences neuronal activity in the brainstem where cholinergic neurons relevant for 

REMS regulation locate densely (Figure 26). 
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Figure 26: Location of important REM sleep regulating structures. 

(A) A vertical line on the sagittal diagram of the mouse brain (Franklin and Paxos 1997) delineates the 

site of the REMS regulating structures within the brainstem. (B) A coronal diagram was modified from 

a mouse brain (Franklin and Paxos 1997) to show the locations of the laterodorsal tegmental nucleus 

(LDT), the sublaterodorsal tegmental nucleus (SLD), the locus coeruleus (LC) and the parabrachial 

nucleus (PBN). 

 

 

5.3.1 The effect of CRH microinjection into the CeA on c-Fos expression  

 

In this study performed in C57BL/6J mice (n=15), c-Fos expression, used as an 

indirect marker of neuronal activity, was examined in two cholinergic brainstem 

REMS regulating structures 1 hour following unilateral CRH injection (1 ng or 10 ng) 

into the CeA. Furthermore, c-Fos immunostaining was combined with 

immunostaining for ACh transferase (ChAT) in order to identify colocalization with 

cholinergic neurons in two specific structures, which are the LDT and the SLD. 
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As shown in figure 27 and 28, c-Fos immunoreactivity observed in saline injected 

animals was low in the LDT and SLD areas; nevertheless when animals were 

injected with CRH at either dose the number of c-Fos positive cells significantly 

increased in a dose dependent manner. Specifically, there were significant 

differences in the number of c-Fos cells induced by the lower dose of CRH (1 ng; 

P<0.05) or the higher dose of CRH (10 ng; P<0.001) compared to saline in both LDT 

and SLD areas. A significant increase in the number of c-Fos positive cells was also 

found in 10 ng injected animals compared to 1 ng injected animals (P<0.01) in both 

areas. 
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Figure 27: Effects of CRH microinjection into the CeA on c-Fos expression in C57BL/6J mice 

(n=15). 
Height ± SEM of columns indicates number of c-Fos cells 1 hour after the injection in the laterodorsal 

tegmental nucleus (LDT) and in the sublaterodorsal tegmental nucleus (SLD). *P<0.05, **P<0.01, 

assessed by one-way ANOVA with the factor ‘treatment’ followed by Bonferroni’s test. 
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Figure 28: Example of c-Fos and ChAT positive neurons C57BL/6J mice. 

Dark-field photomicrographs showing c-Fos and ChAT positive neurons in LDT and SLD after saline 

or CRH (1 ng and 10 ng) microinjection into the amygdala. Microinjections at either dose increased the 

number of c-Fos positive cells but none of them were identified as cholinergic. 20x magnification. 

 

 

Even though CRH increased the number of c-Fos positive cells in the LDT and SLD, 

none of them were identified as cholinergic (Figure 27 and 28). As described in the 

Materials and Methods section, c-Fos positive cells were determined by a red 
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punctuate nucleus whereas the cholinergic neurons were determined by a green 

fluorescent cytoplasm (Figure 29). In case of double-labeled cells, the red punctuate 

nucleus should be surrounded by green fluorescent cytoplasm. However 

colocalization of c-Fos/ChAT positive neurons was not detected in any of the 15 mice 

tested in this study. 

 

 
Figure 29: Example of C-Fos and ChAT positive neurons 

Dark-field photomicrographs showing c-Fos and ChAT positive neurons at LDT level. C-fos/ChAT 

double-labeled neurons were not found in this study. 20x magnification. 

 

 

5.3.2 C-Fos expression in CRH-COE Cam mice elicited by SD 

 

The present study performed in CRH-COE Cam mice aimed to prove a different 

neuronal activation in cholinergic and non-cholinergic brainstem structures in 

response to 6 hours of SD across genotypes (controls con=5; homozygous hom=4). 

Differently from the previous study, c-Fos and ChAT cells were labeled with DAB and 

Nova Red, respectively (see Materials and Methods), with the intention to enhance 

the intensity of the staining. C-Fos expression was examined in the PBN, the LDT, 

the LC and in the amygdala as well. Furthermore, doubled-labeled c-Fos/Chat 

positive neurons were counted in the LDT.  

 
During baseline condition c-Fos expression was in general low, and no differences 

were found across genotypes in respect to the number of c-Fos cells in all brainstem 

structures analyzed (LDT, PBN, LC; Figure 30). However, in response to SD both 

genotypes showed an increase in c-Fos positive neurons (Figures 30, 31, 32 and 33), 

in comparison to baseline. Specifically, in homozygous mice the number of c-Fos 
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cells was significantly increased in LDT, PBN (P<0.01) and LC (P<0.05) compared to 

baseline, while in controls the number of c-Fos labeled cells was also significantly 

increased in the same structures (LDT and LC, P<0.01; PBN, P<0.05).  

 
Homozygous CRH-COE Cam mice with SD, however, showed significantly more c-

Fos cells expression within the LDT and PBN (P<0.01) in comparison to their control 

littermates, whereas in the noradrenergic LC the c-Fos expression was similarly seen 

in both genotypes (Figure 30). 

 
Within the cholinergic LDT, the number of c-Fos/ChAT positive neurons were 

undetectable in both genotypes during baseline condition but numerous in response 

to SD both genotypes showed a significant increase in comparison to baseline 

(P<0.001; Figure 34A). As illustrated in Figure 34, doubled-labeled cells were 

significantly increased after SD in homozygous mice as compared to their control 

littermates (P<0.01).  

 
Additionally, c-Fos expression within the amygdala was analyzed (Figure 35). 

Similarly to the brainstem structures, in response to SD both genotypes showed an 

increase in single c-Fos positive neurons in comparison to baseline (P<0.01; Figure 

35 and 36). However, homozygous mice showed higher c-Fos expression after SD 

when compared to their control littermates (P<0.05). No differences were found with 

respect to the number of c-Fos positive cells during baseline condition across 

genotypes. 
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Figure 30: c-Fos positive neurons in the (A) laterodorsal tegmental nucleus (LDT), (B) 

parabrachial nucleus (PBN) and in the (C) locus coeruleus (LC) in CRH-COE Cam mice. 

Number of c-Fos positive neurons counted in three sections in control (con; n=5) and homozygous 

(hom; n=4) mice during baseline (bas) and SD condition. Height ± SEM of columns indicates number 

of c-Fos cells. *P<0.05, **P<0.01 assessed by unpaired t-test. 
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LATERODORSAL TEGMENTAL NUCLEUS (LDT) 

 
 

Figure 31: Photomicrographs of SD-induced or spontaneous c-Fos expression in homozygous 

and control CRH-COE-Cam mice within the LDT. 
In non-SD (A and B) control and homozygous mice only few immunoreactive cells were detected, 

whereas abundant c-Fos positive cells were seen in both SD animals (B and C). 10x magnification. 
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PARABRACHIAL NUCLEUS (PBN) 

 
 

Figure 32: Photomicrographs of SD-induced or spontaneous c-Fos expression in homozygous 

and control CRH-COE-Cam mice within the PBN. 

In non-SD (A and B) control and homozygous mice only few immunoreactive cells were detected, 

whereas abundant c-Fos positive cells were seen in both SD animals (B and C). 5x magnification. 
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LOCUS COERULEUS (LC) 

 
 

Figure 33: Photomicrographs of SD-induced or spontaneous c-Fos expression in homozygous 

and control CRH-COE-Cam mice within the LC. 

In non-SD (A and B) control and homozygous mice few immunoreactive cells were seen, whereas 

abundant c-Fos positive cells are seen in both SD animals (B and C). 10x magnification. 
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Figure 34: c-Fos/ChAT positive neurons in the laterodorsal tegmental nucleus (LDT) in CRH-

COE Cam mice. 

(A) and (B) are photomicrographs of a representative homozygous mouse after SD, showing c-Fos 

(black punctuate nucleus) and ChAT (brown/orange cytoplasmic staining) double staining at LDT level. 

(B) is a higher magnification of the rectangular box in (A). Note the dense cluster of double-labeled 

neurons in the LDT of a homozygous mouse after SD. The black and the blue arrows indicate the 

single stained c-Fos and ChAT, respectively. The red arrows indicate the double-labeled neurons (c-

Fos/ChAT). 20x magnification in A and 40x magnification in B. (C) Number of double-labeled c-

Fos/ChAT positive neurons counted in 6 sections in control (con; n=5) and homozygous (hom; n=4) 

mice during baseline (bas) and SD condition. Height ± SEM of columns indicates number of c-

Fos/Chat cells *P<0.01, **P<0.001 assessed by unpaired t-test. 
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Figure 35: c-Fos positive neurons within the central nucleus (CeA) and the basolateral (BLA) 

amygdala in CRH-COE Cam mice. 
Number of c-Fos positive neurons counted in three sections in control (con; n=5) and homozygous 

(hom; n=4) mice during baseline (bas) and SD condition. Height ± SEM of columns indicates number 

of c-Fos cells. *P<0.05, **P<0.001 assessed by unpaired t-test. 
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AMYGDALA (BLA and CeA) 

 
 

Figure 36: Photomicrographs of SD-induced or spontaneous c-Fos expression in homozygous 

and control CRH-COE-Cam mice within the central nucleus (CeA) and the basolateral (BLA) 

amygdala. 

In non-SD (A and B) control and homozygous mice only few immunoreactive cells were detected, 

whereas abundant c-Fos positive cells were seen in both SD animals (B and C). 5x magnification. 
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6 Discussion 
 

Previous data characterizing the significant contribution to enhanced REM sleep 

(REMS) of corticotropin-releasing hormone (CRH) specific to the limbic region 

(Kimura et al., 2010) were confirmed in the present study. To further explore the role 

of CRH in REMS regulation and to contribute to a better understanding of the 

underlying mechanism, three different approaches were conducted to examine the 

possible involvement of an altered cholinergic activity in sleep alteration occurring in 

CRH-COE Cam mice. 

 
The main findings of the present study are that upregulated REMS in homozygous 

forebrain-specific CRH overexpressing mice can be decreased by injecting a 

muscarinic antagonist into the amygdala. Furthermore, these homozygous CRH-

COE Cam mice possess higher extracellular levels of ACh in comparison to their 

control littermates, whereas spontaneous locomotor activity is similar in both 

genotypes, thus suggesting that higher ACh release is reflected in REMS 

enhancement. Finally cholinergic neurons within the brainstem REMS regulating 

structures become more active in homozygous CRH-COE-Cam mice in response to 

SD. 

 
The results may indicate that CRH overexpression in the limbic system can lead to 

higher cholinergic activity and that it contributes to intensifying the mesopontine 

cholinergic system, which may at least in part result in upregulated REMS. 

 

 

6.1 Characteristic sleep phenotype in forebrain-specific CRH 
overexpressing mice 

6.1.1 Upregulated REM sleep  

 

Homozygous mice overexpressing CRH within the forebrain (CRH-COE Cam) have a 

characteristic upregulated REMS compared with controls (Kimura et al., 2010), which 

could be confirmed in the present study. The corroborated REMS enhancement can 
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be taken as an endophenotype of increased CRH levels in the forebrain, including 

limbic structures, which coincides with altered REMS seen in patients with 

depressive symptoms. Specifically, these patients show an early occurrence of the 

first REMS period that is represented by a shorter latency and a higher density of eye 

movement (Figure 37A) (McCarley, 1982, Gottesmann and Gottesman, 2007). 

Parallels between increased REMS and appearance of depressive phenomena can 

be generated by common neurobiological control systems which were hypothesized 

by McCarley and supported by clinical data (Figure 37B) (McCarley, 1982). As in 

REMS regulation, the control of depressive phenomena involves a balance between 

the monoaminergic and cholinergic systems. Since the cholinergic system promotes 

both REMS and depression (Janowsky et al., 1980, Risch et al., 1980, Silberman et 

al., 1980, Brown, 2008, Lydic, 2008, Watson et al., 2010), the present study 

hypothesized that CRH overexpression in the forebrain including the limbic structure 

such as the amygdala affects REMS via an interaction with the cholinergic system. 
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Figure 37: EEG measures and neuronal activity in the first cycle of normal and depressed 

subjects. 
(A) Depressed patients show a first REMS period that has shorter latency and a higher density of eye 

movement. (B) REMS occurs when cholinergic activity becomes dominant with the gradual inhibition 

of the monoaminergic nuclei. The hypothesized weakened monoaminergic inhibition in depression 

produces a faster discharge from inhibition of the REMS-promoting cholinergic neurons and a 

resulting faster onset of REMS with stronger REM activity. Adapted from McCarley, 1982. 

 
 

6.1.2 Effects of muscarinic antagonist on upregulated REM sleep 

 

Blocking the muscarinic receptors by atropine injection into the amygdala decreased 

REMS in CRH-COE Cam mice. A similar result was obtained in a previous study 

performed on mice overexpressing CRH in the entire nervous system (CRH-COE 

Nes). In that study REMS was reduced by atropine injected intraperitoneally in both 

control and homozygous mice, but its effects lasted longer with a bigger magnitude in 

homozygous mice (own data, unpublished). This effect suggested that CRH in the 

brain may intensify cholinergic activity that results in elevated REMS and raised the 

question whether enhanced CRH expression in the amygdala of homozygous CRH-
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COE Cam mice might similarly stimulate the cholinergic activity and would affect 

REMS. It is well known that the amygdala is implicated in emotional responses (Gray 

and Bingaman, 1996) that are closely related to REMS fluctuation. Several lines of 

evidence involve the amygdala, especially the central nucleus (CeA), in the 

regulation of REMS. For example inactivating the CeA with muscimol or TTX is able 

to produce a significant decrease in REMS in rats (Martin and Ghez, 1999, Sanford 

et al., 2002), whereas electric stimulation or cholinergic activation of the CeA 

promotes REMS in cats (Smith and Miskiman, 1975, Calvo et al., 1996). An 

association between amygdala activation and REMS is also proposed by an increase 

in the discharge rate of CeA neurons in cats during REMS (Frysinger et al., 1988), 

and by fMRI studies demonstrating that activity in the amygdala and appearance of 

REMS are correlated in humans (Maquet et al., 1996).  

 
The reduction of REMS found after local microinjection into the CeA of atropine 

strongly suggests that CeA plays an important role in REMS regulation and support 

the findings of Calvo and colleagues showing increases in REMS after 

microinjections of the cholinergic agonist carbachol into CeA in cats (Calvo et al., 

1996). A substrate for these effects could be provided by the brainstem REMS 

regulating areas (e.g. PPT, LDT, LC, PBN and SLD) since efferents from the 

amygdala are known to project to these areas (Krettek and Price, 1978, Moga and 

Gray, 1985, Rye et al., 1987, Semba and Fibiger, 1992). 

 
The cholinergic input into the CeA arises from either the basal forebrain or the upper 

brainstem (Ottersen, 1981, Woolf and Butcher, 1982, Hecker and Mesulam, 1994); 

alternatively, intrinsic amygdaloid cholinergic neurons might also provide the CeA 

with cholinergic afferent projections (Nitecka and Frotscher, 1989) which in turn send 

fibers to the pontine nuclei. Moreover, muscarinic receptors are also concentrated in 

the CeA indicating that cholinergic/cholinoceptive neurons in the CeA might project to 

pontine nuclei and may participate in the modulation of REMS (Cortes and Palacios, 

1986, Calvo et al., 1996). As shown in the present data, blocking the muscarinic 

receptor sites by atropine induces a reduction in REMS. Even though atropine has a 

high affinity for all 5 subtypes of muscarinic receptors (Rang, 2003), the amygdala 

contains only 3 subtypes, i.e., the inhibitory M2 and excitatory M1 and M3 receptors 

(Cortes and Palacios, 1986, Mash and Potter, 1986, Spencer et al., 1986, Smith et 

al., 1991). Muscarinic receptors might modulate the excitatory output from the 
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amygdala to brainstem REMS regulating areas, however the exact interaction 

between the inhibitory (M2) and excitatory (M1 or M3) muscarinic receptor types in the 

amygdala is not known. 

 
In homozygous mice, atropine injection reduced REMS up to 6 hours, whereas in 

control animals REMS declined only for 2 hours during postinjection time. This may 

indicate that the number of muscarinic receptors blocked by atropine is greater in 

homozygous than control mice, suggesting that CRH overexpression in the forebrain 

may intensify the cholinergic system which in turn leads to a decrease in number of 

functional muscarinic cholinergic receptors in the amygdala. 

 

 

6.2 Impacts of forebrain CRH overexpression on ACh release in the 
amygdala 

 

Present microdialysis findings also support the hypothesis that cholinergic activity is 

higher in forebrain-specific CRH overexpressing mice than controls. Specifically, 

homozygous CRH-COE Cam mice showed constantly elevated ACh levels in the 

amygdala compared to controls. ACh release measured in the amygdala might 

correspond to the release from the terminals of neurons projecting from structures in 

the forebrain which are providing the main source of cholinergic input to the 

amygdala (Woolf and Butcher, 2011). In particular, the greatest number of cholinergic 

projecting neurons is found in the SI, nevertheless scattered cholinergic neurons 

projecting to the amygdala are also found in the diagonal band of Broca, medial 

septum and the NB (Mesulam et al., 1983, Woolf et al., 1984). With the exception of 

the NB, all of the cholinergic forebrain nuclei that are projecting to the amygdala are 

found to have cholinergic neurons coexpressing the CRHR1 (Sauvage and Steckler, 

2001). This suggests that CRH is able to modulate ACh release in the CeA via 

stimulation of the CRHR1. In fact i.c.v. injections of CRH are reported to increase 

ACh release through CRHR1 receptor activation, although this was shown in the 

hippocampus. No directly confirming data are available regarding those effects in the 

amygdala (Day et al., 1998a, Day et al., 1998b). 
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To further clarify the effects of CRH on ACh release and to examine if CRH interacts 

with the cholinergic system through CRHR1, the present study examined the effects 

of a CRHR1 antagonist (DMP696) on ACh extracellular levels in the CeA in CRH-

COE Cam mice (data not shown). Unexpectedly, three days of treatment with 

CRHR1 antagonist dissolved into drinking water did not show any effects on ACh 

release in homozygous mice and in controls. This result was in contrast to other 

findings showing that selective CRHR1 antagonists partly suppress the CRH-induced 

release of ACh in the hippocampus (Gully et al., 2002, Desvignes et al., 2003). Our 

result that DMP696 failed to affect ACh release could be explained by a different 

manner how CRH modulates ACh release levels in the amygdala. Besides acting 

directly on the cholinergic system via the CRHR1, CRH has also been reported to 

decrease high-affinity choline uptake, resulting in increased ACh release (Lai and 

Carino, 1990). On the other hand, the antagonist dose used in the present study 

might not have been sufficient to block the CRH signalling. 

 
Present findings further demonstrated that both genotypes have a positive correlation 

with the levels of ACh in the CeA and spontaneous locomotor activity. As reported by 

Buzáki and colleagues, spontaneous movements are known to activate the 

cholinergic forebrain area in rodents; compared to the immobile condition neurons in 

this area are found to increase their firing frequency during spontaneous activity 

compared to the immobile condition (Buzsaki et al., 1988). Furthermore, behavioural 

arousal has been shown to induce increases in ACh release in the cerebral cortex, 

hippocampus and striatum (Day et al., 1991, Mizuno et al., 1991, Pepeu and 

Giovannini, 2004). Despite the considerable increase of ACh release in homozygous 

mice compared to their control littermates, both genotypes showed similar 

spontaneous locomotor activity. Therefore, enhanced ACh release in homozygous 

mice did not result from an increase in locomotor activity. Higher amount of ACh in 

homozygous mice might reflect their sleep phenotype of enhanced REMS but not 

locomotor activity. These results further emphasize that CRH overexpression in the 

amygdala may contribute to the enhanced affinity with the cholinergic system, 

resulting in a long-term enhancement of REMS. 

 

 



Discussion 86 

6.3 Amygdaloid CRH and pontine cholinergic activation 

 

The brainstem contains several key structures responsible for the initiation and 

maintenance of REMS (Jouvet, 1962), and is one of the targets of amygdaloid 

projections (Semba and Fibiger, 1992). Activation of CRH receptors (CRHR) by 

microinjection of CRH into CeA induced an increase of c-Fos expression in 

cholinergic structures such as the LDT and the sublaterodorsal tegmental nucleus 

(SLD) in normal C57BL/6J mice. This finding is in line with another study reporting an 

increase in single labeled c-Fos cells within the cholinergic brainstem after CRH 

infusion into the CeA of rats (Wiersma et al., 1998), supporting the hypothesis that 

limbic CRH projecting to brainstem REMS regulating structures is able to influence 

them. The CeA is known to project via the amygdalofugal pathway to several 

brainstem areas including the LDT area (Semba and Fibiger, 1992), the latter is 

known to coexpress CRH (Sauvage and Steckler, 2001). In addition, a major CRH 

pathway from the CeA projects to the cholinergic area within the brainstem (Amaral 

et al., 1992, Valentino et al., 1994). CRH is capable of activating these areas in the 

brainstem which results in muscle atonia that is one of the features accompanying 

REMS (Lai and Siegel, 1992).  

 
The amygdala contains an abundance of CRH and its receptors (Merchenthaler, 

1984, De Souza et al., 1985). Specifically, CRHR1 is the only subtype expressed in 

the CeA (Steckler and Holsboer, 1999), therefore the activation of brainstem 

structures in response to CRH injection could be mediated via this CRHR subtype. 

 
Unexpectedly, none of the activated cells in the LDT and SLD were identified as 

cholinergic in response to CRH injection. Considering the high increase of c-Fos 

expression within the cholinergic cell area in comparison to saline injection, the lack 

of cholinergic neurons coexpressing c-Fos is somewhat unexpected. Both structures 

contain many cholinergic neurons (Sakai, 2012) which can coexpress c-Fos even in 

control conditions (Maloney et al., 1999). Therefore, this lack of cholinergic/c-Fos 

coexpressing neurons might have been caused by a low intensity of fluorescence 

labeling. In addition, the c-Fos staining method can also fail to reveal activated 

neurons (Kovacs, 1998). Another explanation could be that the neurons within the 

LDT and SLD are composed of other than cholinergic cells. In fact, there is evidence 

that a great part of the SLD neurons is glutamatergic and is able to trigger REMS 
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when activated (Clement et al., 2011, Luppi et al., 2011, Luppi et al., 2012). 

Moreover cholinergic LDT neurons are also known to be codistributed with the 

GABAergic neurons (Ford et al., 1995). 

 

 

6.4 Effects of forebrain CRH overexpression on the cholinergic 
brainstem in response to SD 

 

After confirming a significant influence of amygdaloid CRH on REMS regulating 

brainstem area in normal C57BL/6J mice, further findings in CRH-COE Cam mice 

proved that CRH overexpression in the forebrain is able to intensify the cholinergic 

activity within the brainstem in response of SD. Consistent with several studies 

examining c-Fos expression after physiological sleep and SD (Cirelli et al., 1995, 

Ledoux et al., 1996, Basheer et al., 1997), all brain structures of both genotypes 

examined in the present study showed low c-Fos expression reflecting a very low 

neuronal activation during baseline, whereas we observed an increase when the 

animals were kept awake for 6 hours. These results suggest that neurons in these 

areas are activated by forced wakefulness and might reflect a sleep need.  

 
The low c-Fos staining after variable periods of sleep that included REMS episodes 

suggests that physiological REMS is not associated with c-Fos expression (Cirelli 

and Tononi, 2000). Nevertheless, a number of different non-pharmacological 

methods have been used to increase the duration of REMS periods in order to 

identify neuronal populations that are “activated” (Cirelli, 1999, Maloney et al., 1999, 

2000, Verret et al., 2005). Specifically, these methods use REMS deprivation 

techniques in order to induce a long REMS rebound period. However, most 

previously applied selective REM SD methods such as the inverted “flower pot 

technique” or the “disk-over-water apparatus” are in fact stressful procedures that can 

induce a distinct activation of the HPA axis (Kovalzon and Tsibulsky, 1984, Coenen 

and van Luijtelaar, 1985, Suchecki et al., 1998). In order to avoid an additional 

stressor that could interfere with the neuronal activity of the examined structures, the 

present study used the gentle handling total SD method as a tool for building REMS 

need. 
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Interestingly homozygous mice showed significantly more c-Fos expression in the 

amygdala in response to SD when compared to control littermates. Since CRH 

overexpressing mice posses a higher REMS drive (Kimura et al., 2010), the 

increased neuronal activity seen in the amygdala in homozygous mice might reflect a 

REMS need and could contribute to initiate REMS after SD by its influence on 

brainstem structures. Similarly, SD increased c-Fos expression more in homozygous 

mice in the cholinergic LDT and PBN in comparison to controls, whereas c-Fos 

expression in the noradrenergic LC was comparable in both genotypes. The greater 

c-Fos induction after SD seen in homozygous mice suggests that the degree of 

activated cells in the REMS-related areas could provide an index of REMS need. On 

the contrary, as confirmed by the reciprocal interaction model (McCarley and Hobson, 

1975), the noradrenergic LC in homozygous mice does not seem to play a major role 

in the regulation of REMS propensity and therefore no differences in genotype effects 

are observed after SD. Importantly, the higher number of c-Fos positive cells within 

the LDT in homozygous mice was found to be cholinergic, suggesting that the higher 

cholinergic activation could be responsible for the increased REMS drive found in the 

homozygous genotype. 

 
In this model, CRH in the forebrain intensifies the cholinergic system within the 

brainstem, which may at least in part result in upregulated REMS after SD. This 

pathway, as limbic CRH activates cholinergic brainstem cells, may also apply to a 

mechanism of how stress increases REMS during recovery from SD. 
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7 General conclusions and outlook 
 

The present study explored the role of CRH in REMS enhancement and provided a 

better understanding of the underlying mechanism. The confirmed REMS phenotype 

found in CRH-COE Cam mice suggested that overexpressed CRH in a specific 

structure of the limbic system could contribute to enhanced REMS by affecting a 

specific neurotransmitter activity known to play a role in REMS generation. In fact, 

CRH overexpression appears capable of stimulating the limbic cholinergic activity 

which in turn may lead to upregulated REMS. As seen in depressed patients, this 

animal model may possess hyper-cholinergic sensitivity that may contribute to REMS 

disinhibition. Furthermore, forebrain overexpressed CRH is also able to influence the 

neuronal activation in the brainstem where cholinergic and non-cholinergic neurons 

relevant for REMS regulation locate densely. Interestingly, in this animal model, CRH 

intensifies the mesopontine cholinergic system, whereas the monoaminergic system 

seems not to be affected, indicating the importance of ACh in mediating the effects of 

CRH on REMS-on cells. Increased activation of the cholinergic system by limbic 

CRH may thus be involved in REMS upregulation. 

 
This thesis emphasizes that REMS upregulation seen in depressed patients might be 

the product of complex interactions between CRH and the cholinergic system. 

Further investigations are still necessary to complete the picture of the mechanism by 

which CRH influence REMS regulating structures.  

 
According to the result, ACh release in the amygdala of CRH-COE Cam mice is 

increased, suggesting a higher cholinergic activity in the forebrain. A repetition of the 

microdialysis experiment targeting other cholinergic brain areas could confirm that 

CRH overexpression is able to induce ACh release. Since cholinergic neurons in the 

SI provide the major projections to the amygdala, immunohistochemistry for choline 

acetyltransferase could evidence a difference in the number of these neurons which 

contribute to the differential ACh release in homozygous amygdala. 

 
The role of CRHR1 in mediating the interactions between CRH and ACh in CRH-

COE Cam mice should be further explored. For instance, an i.p. pretreatment with 

the CRHR1 antagonist could reduce the CRH-mediated ACh release in the amygdala 
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and prove that this effect is CRHR1 mediated. Furthermore, a double-

immunohistochemical procedure could detect differences between genotypes in the 

number of cholinergic neurons co-expressing CRHR1 in the cholinergic basal 

forebrain. 

 
It was shown that the cholinergic system is affected by CRH overexpression; 

however further interactions of CRH and its receptors with other different 

neurotransmitter systems could exist in the CRH-COE Cam mouse model. Similarly 

to depression, a weakened monoamigergic system might also result in REMS 

disinhibition. 
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8 List of Abbreviations 
 

ACh   Acetylcholine 

AChE   Acetylcholinesterase 

AChRs  Acetylcholine receptors 

ACTH   Adrenocorticotropic hormone 

ANS   Autonomic nervous system 

AVP   Arginin vasopressin 

 

BNST   Bed nucleus of the stria terminalis 

 

cAMP   Cyclic adenosine monophosphate 

CeA   Central nucleus of the amygdala 

Ch   Choline 

ChAT   Choline acetyltransferase 

ChO   Choline oxidase 

CNS   Central nervous system 

Con   Control 

CRF   Corticotropin-releasing factor 

CRH   Corticotropin-releasing hormone 

CRHR1  Corticotropin-releasing hormone receptor type 1 

CRHR2  Corticotropin-releasing hormone receptor type 2 

CRHRs  Corticotropin-releasing hormone receptors 

CSF   Cerebrospinal fluid 

 

DR   Dorsal raphe 

EEG   Electroencelography 

EMG   Electromyography 

 

GHRH   Growth-hormone-releasing hormone 

GR   Glucocorticoid receptor 

 

HDB   Horizontal limb of the diagonal band of Broca 
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Hom   Homozygous 

HPA axis   Hypothalamic-pituitary-adrenal axis 

HPLC   High pressure liquid chromatography 
 

i.c.v.   Intracerebroventricular 

i.v.   Intravenous 

IS   Immobilization stress 

 

LC   Locus coeruleus 

LDT   Laterodorsal tegmental nucleus 

LH   Lateral hypothalamus 

LPT   Lateral pontine tegumentum 

 

MnPO   Median preoptic area 

MR   Mineralocorticoid receptor 

MRN   Median raphe nucleus 

mRNA   Messenger RNA 

 

AChRs  Nicotinic acetylcholine receptors 

NB   Nucleus basalis 

NREMS  Non-rapid eye movement sleep 

 

PAG   Periaqueductal grey 

PBN   Parabrachial nucleus 

PC   Precoeruleus 

POMC  Pro-opiomelanocortin 

PPT   Pedunculopontine tegmental nucleus 

PVN   Paraventricular nucleus 

 

REM   Rapid-eye movement 

REMS   Rapid-eye movement sleep 

RN   Raphe nucleus 

 

SI   Substantia innominata 

SLD   Sublaterodorsal tegmental nucleus 
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TMN   Tuberomammillary nucleus 

TTX   Tetrodotoxin 

 

VAChT  Vescicular acetylcholine transporter 

VDB   Vertical limb of the diagonal band of broca 

VLPO   Ventrolateral preoptic area 

VPAG   Ventral periaqueductal gray 
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