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Zusammenfassung v

Zusammenfassung

Biomolekulare Wechselwirkungen, zum Beispiel zwischen DNA und Proteinen, sind sehr vielfältig.
Ihre Charakterisierung erfordert hochgradig parallele und universal einsetzbare Untersuchungs-
methoden. Kraftmessungen an einzelnen Molekülen können die Wechselwirkungen unterschiedlicher
molekularer Komplexe auch in dichten Medien quantifizieren ohne die molekulare Bindung durch
eine Farbstoffmarkierung zu beinflussen. In den meisten Fällen haben diese Methoden allerdings
einen sehr geringen Durchsatz. Die Technik des Molecular Force Assay (MFA) umgeht diesen
Nachteil, indem zwei molekulare Bindungen miteinander verglichen werden. So können tausende
molekulare Wechselwirkungen parallel untersucht werden, ohne dass die Messung den Einzel-
molekül-Charakter verliert. Ziel dieser Arbeit war eine Weiterentwicklung des MFA, um dessen
Anwendbarkeit auf aktuelle biologische Fragestellungen zu erweitern.

Als erstes wird ein Aptamer-Sensor für die Charakterisierung kleiner Moleküle beschrieben.
Aptamere sind Oligonukleotide, die spezifisch einen bestimmten Liganden binden. Eine Ap-
tamersequenz als Teil einer der beiden molekularen Komplexe führt zu dessen Stabilisierung durch
die Bindung mit dem Liganden, so dass das bindende Molekül auch in komplexen Flüssigkeiten
analysiert werden kann. Dieser kraftbasierte Nachweis der Aptamer-Ligand Wechselwirkung
ermöglicht auch eine Charakterisierung von kleinen oder nur schwach bindenden Molekülen, da
auf zusätzliche Techniken zur Signalverstärkung oder Waschprozeduren verzichtet werden kann.
Die Dissoziationskonstante kann dank des Parallelformats in einer einzigen Messung bestimmt
werden. Ein kraftbasierter Aptamer-Sensor ist somit ein vielversprechendes Instrument für eine
schnelle Charakterisierung kleiner Moleküle in dichten Medien.

Des Weiteren wird gezeigt, dass sich der MFA zur Suche RNA-bindender Moleküle eignet, die
gleichzeitig das Protein Dicer inhibieren. Dicer spielt bei der RNA Interferenz, ein Mechanismus
der Genregulation mit Hilfe kurzer Stücke nichtkodierender RNA, eine entscheidende Rolle, in-
dem er lange, doppelsträngige RNA in kurze Segmente von 19-22 Basenpaaren schneidet. Diesen
Vorgang gezielt zu verhindern ist ein vielversprechender Ansatz bei der Entwicklung neuer medi-
zinischer Therapien. Der MFA kann sowohl verlässlich die Dicer-Aktivität messen als auch die
Dissoziationskonstante des RNA-Liganden bestimmen. Werden die molekularen Komplexe des
MFA mit dem RNA-bindenden Molekül und Dicer inkubiert, kann eine gezielte Hemmung von
Dicer beobachtet werden, die mit der Konzentration des Liganden korreliert. Dies zeigt, dass der
MFA eine effektive Methode zur Suche von RNA-bindenden Molekülen ist, die gleichzeitig das
Protein Dicer an der Produktion kleiner RNA Segmente für die RNA Interferenz hindern.

Als drittes wird die Eignung des MFA zur Quantifizierung von Protein-DNA Wechselwirkung-
en untersucht. Um den komplexen Vorgang der Transkription zu verstehen, ist es unabdingbar,
die Wechselwirkungen der beteiligten Proteine mit der DNA im Nukleus genau zu bestimmen.
Durch die große Zahl von Wechselwirkungen sind Methoden mit hohem Durchsatz unerlässlich.
In einer Weiterentwicklung des MFA kann die Bindungsstärke eines Zinkfinger-Proteins mit drei
verschiedenen DNA-Motiven durch den Vergleich mit zwei unterschiedlichen Referenzen in einer
einzigen Messung quantifiziert werden. Dieses Experiment zeigt eindrucksvoll das Potential des
MFA, zum Verständnis des komplexen Mechanismus der Transkription beizutragen.

Zusammenfassend präsentiert diese Arbeit drei Anwendungen des MFA, die zur Lösung sehr
unterschiedlicher biologischer Fragestellungen beitragen können.
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Summary

Biomolecular interactions like protein-DNA binding are very diverse. Their analysis requires
highly parallel assays that are easily adaptable for the characterization of various molecular
complexes. Single-molecule force measurements can quantify the interaction of different molecules
even in complex ambients without disturbing the molecular bond by labeling, but are in most cases
low throughput. The technique of the Molecular Force Assay (MFA) overcomes this drawback by
comparing two molecular bonds with each other. It allows the analysis of thousands of molecular
interactions in parallel without losing the single-molecule character. The objective of this thesis
was to adapt the technique of the MFA for new applications that have the potential to contribute
significantly to the solution of current biological problems.

First, a force-based aptamer sensor for the characterization of small molecules is described.
Aptamers are oligonucleotides that are selected for their ability to bind a certain ligand with high
specificity. Implementing an aptamer into one of the bonds of the MFA enables the detection
of its ligand even in complex fluids by a strengthening of this bond upon ligand binding. The
force-based detection of the interaction between aptamer and ligand enables the characterization
of low affinity binders or small molecules without relying on signal amplification or stringent
washing requirements. The parallel format allows the determination of the dissociation constant
in a single measurement. Thus, a force-based aptamer sensor is a promising analytical tool for a
fast characterization of analytes in complex fluids.

Second, the application of the MFA as a screening tool for RNA binders that selectively
inhibit the protein Dicer is demonstrated. Dicer is a fundamental part of the RNA interference
mechanism that regulates gene expression with small non-coding RNA sequences. Dicer matures
the small RNAs by cutting the precursor molecules into pieces of 19-22 base pairs. The selective
inhibition of Dicer by a ligand that binds specifically to a certain precursor molecule has a
great potential for future medical therapeutics. The MFA can reliably detect Dicer activity and
characterize possible RNA binders by determining the dissociation constant. If both the ligand
and Dicer are added to a MFA sample, Dicer is clearly inhibited upon ligand binding in relation
to the ligand concentration. Hence, the technique of the MFA is a valuable tool to screen for
RNA binders that selectively hinder Dicer from maturing the precursor molecule upon ligand
binding.

Third, the MFA is applied to quantify DNA-protein interactions by measuring their binding
strength. In order to understand transcription, identifying how strong a protein binds to the
genomic DNA is essential. Due to the huge number of DNA-protein interactions that participate
in transcriptional regulation, high throughput methods for the analysis of these interactions are
highly desirable. As a proof-of-principle, the MFA quantifies the interactions of a zinc finger
protein with three DNA motifs by comparing them to various reference bonds within a single
measurement. Further miniaturization can easily extend the setup’s capacity in terms of mul-
tiplexing. This illustrates the potential of the MFA to quantify protein-DNA interactions in a
highly parallel format in order to contribute to the understanding of transcriptional regulation.

Conclusively, this thesis demonstrates the various applications of the Molecular Force Assay

in biological sciences by means of three distinct examples that cover a wide area of biological

problems.
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Chapter 1

Introduction

Biological processes are very complex due to the multitude of involved molecules and

molecular interactions. Examples are cell division, photosynthesis or the interplay of cells

in multicellular organisms. Signals from the environment are absorbed and converted

into actions like movement in a certain direction or the synthesis of certain proteins to

metabolise a new nutrient. Understanding these processes and, one step further, influencing

them is the aim of biological sciences. A combination of techniques and perspectives,

biological, chemical, but also physical or computational, offer the greatest chance to achieve

this aim. This has already been proven in the past with the human genome project as

the most prominent example. Between 1990 and 2003, several institutes and reasearch

groups from multiple countries and with different scientific background combined their

efforts and techniques to decipher the human DNA code. In April 2003, a consortium

presented 99 % of the sequence of the 20600 human genes. Additionally, the human

genome project deciphered the genomes of several model organisms and, importantly, led

to the development of new and the improvement of existing sequencing techniques (for

more information see [1]). Some of these methods and developments are based on physical

principles, for instance gel electrophoresis or fluorescence-based sequencing techniques. The

application of physical knowledge in biology has a far-reaching tradition of several decades.

A prominent example is the discovery of the helical structure of double-stranded DNA

molecules by x-ray diffraction [2][3][4]. Today, structural analysis of biological molecules

like proteins by x-ray diffraction or nuclear magnetic resonance is a standard method and

has helped to elucidate the binding properties of many molecular complexes.

Another physical application that has made a great contribution to our understanding

of biological processes is the development of the atomic force microscope (AFM) by Gerd
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Binnig et al. in 1986 [5]. This technique enables the measurement of very small forces

(piconewton) between a surface and a cantilever tip and was developed to image surfaces

by scanning the very sharp tip over the sample while the interaction force between surface

and tip is measured via cantilever deflection. If the interaction force is held constant, it can

be used to create a topographical image. For biological systems, the stability and inter-

action forces between single molecules are of utmost importance. Those quantities can be

determined by attaching the molecule or molecular complex under investigation between

surface and tip. Removing the tip from the surface, the molecule is loaded with a force that

is measured by monitoring the cantilever deflection. Additionally, the distance between

surface and tip is determined. The resulting force-extension-curve is analyzed for informa-

tion like the elasticity of a molecule, the unfolding of single molecular domains or the most

probable rupture force. The ability to characterize a single molecule or bond renders this

application of the AFM especially powerful as it offers the possibility to detect rare events,

transient phenomena, conformational changes and molecular heterogeneity, aspects that

are not accessible in bulk measurements. Examples for the successful investigation of bio-

logical structures and processes by AFM are the analysis of DNA melting [6][7][8], ligand

and receptor pairs [9][10][11], protein unfolding[12] or cell adhesion[13][14]. Furthermore,

the AFM can also be applied to position single DNA molecules or proteins with nanometer

precision [15][16][17]. Despite the unprecedented insights into biological systems and the

great potential, AFM suffers from some severe drawbacks. One is the limited force resolu-

tion (around 10pN) that is determined by the size of the cantilever [18]. This problem can

be partly circumvented by measuring forces with optical or magnetic tweezers. But these

two techniques come with other limitations. Optical tweezers operate in a very small force

range of 0.1pN − 100pN and the optical trapping itself might heat or photodamage the

sample. Magnetic tweezers can apply forces over a broad range but those forces are only

constant in a very small area due to the steep gradient of the magnetic field. In addition,

a force control similar to AFM requires sophisticated technical components [19]. But the

most severe limitation for all force spectroscopy techniques is the great effort necessary to

measure and analyze unbinding forces that makes them unsuited for large-scale investiga-

tions. In contrast, biological processes might follow common principles but the individual

interplay of molecules differs greatly in the details. Examples are protein-protein interac-

tion or DNA-protein binding. Furthermore, force-based techniques offer unique advantages

like probing the molecule or molecular interaction itself without labeling or being sensi-

tive to complex backgrounds. In addition, quantification of the binding strength between
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molecular complexes cannot be accessed by other methods. Hence, force-based techniques

that are compatible with high-throughput systems are highly desirable.

A possible realization for a parallel, force-based technique is the Molecular Force Assay

(MFA). In the MFA, the macroscopic force transducer, the cantilever or bead, is replaced

by a molecular bond, in most cases a well-characterized DNA duplex which acts as refer-

ence bond. This reference bond is connected in series with the sample bond, the molecular

complex in question. If a force is applied to this whole construct of sample and reference

bond, the weaker one will rupture with a higher probability and a fluorophore attached

to the linker polymer between the two bonds will indicate the intact molecular complex.

Thus, the MFA does not record forces or extensions, but compares the two molecular bonds

with each other. As the binding strength of the two complexes are of the same order of

magnitude, very small differences in molecular stability can be resolved. A skillful choice

of sample and reference complex enables a good characterization of the sample bond. The

molecular construct of sample and reference bond is connected to two surfaces that are

separated in order to apply a force to the bonds. Since every sample bond is only compared

to its own reference without being disturbed by other molecules attached nearby to the

surfaces, thousands of molecular constructs can be tested within several square microme-

ters. Hence, the statistics of a single measurement already allow to draw valid conclusions.

Depending on the technical implementation, several sample bonds can be tested against

multiple references so that a single experiment enables the characterization of the molecule

under investigation. So far, the MFA was applied to detect single nucleotide polymorphism

[20], study differences in antibody/antigen interactions [21], investigate the chiral binding

selectivity of small peptides [22][23] and analyse the interaction of the proteins EcoR1 and

p53 with different DNA sequences [24][25].

The objective of this thesis was to adapt the MFA for further applications in biological

science that have the potential to contribute significantly to the solution of current bio-

logical problems. This was achieved for very different biological problems. Publication P1

demonstrates the characterization of an analyte in a complex background by the implemen-

tation of a split aptamer into the sample bond. An aptamer is an artificial oligonucleotide

that is selected from a random pool for its specificity to its ligand. Here, an adenosine-

selective aptamer was integrated into the sample bond. Its ligand was reliably detected by

the stabilization of the sample bond upon ligand binding. Furthermore, the measurement

is not affected by complex ambients and does not require stringent washing steps that

often makes it difficult to detect transient interactions and low affinity binders. Varying
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the ligand concentration allowed the determination of the dissociation constant in a single

MFA measurement. Techniques that can capture analytes in complex fluids and quantify

their concentration are highly desirable for diagnostic purposes. P1 describes a proof-of-

principle for the detection and characterization of a small molecule by an aptamer in a

force-based assay. The parallel design allowes to extend the assay easily for the analysis of

multiple small molecules by the integration of additional aptamers.

The RNA interference mechanism is the motivation for publication P2. Small RNA

duplexes are matured by the protein Dicer that cuts double-stranded RNA into pieces of

19-22 base pairs independently of their sequence. One of the matured RNA strands is

integrated in a protein complex known as RNA-induced-silencing-complex that binds to

messengerRNA at least partly complementary to the small RNA strand and, in most cases,

hinders protein translation [26]. Several classes of small RNAs exist that differ in their

origin and function, for instance short-interfering RNA (siRNA) or microRNA (miRNA).

Number and kind of the naturally occuring miRNAs in a cell depend on the stage of

the cell cycle and health status. The quantity of some miRNAs is greatly increased in

connection with severe illnesses like cancer [27]. Hence, the selective inhibition of single

microRNA precursors might be a first step in the development of a new generation of

medical therapeutics. Here, the application of the MFA comprised a screening assay for

RNA ligands that selectively inhibit Dicer from cleaving and, thus, maturing the small RNA

precursor. The activity of the protein Dicer can easily be detected in a force-based assay as

it greatly destabilizes the sample bond by cutting off about 20 basepairs in comparison to a

DNA reference that Dicer cannot process. As a proof-of-principle, a RNA aptamer for the

aminoglycoside paromomycin was integrated into the RNA duplex and a selective inhibition

of Dicer processing upon ligand binding was detected by means of the MFA. Additionally,

the dissociation constant of paromomycin to its aptamer was measured. Hence, the MFA

can be applied to screen for and analyze miRNA ligands that selectively hinder Dicer from

cleaving. The parallel format of the MFA offers the possibility to screen for several ligands

or multiple miRNAs within a single experiment.

A great part of gene expression is regulated at the transcription stage by protein-DNA

interaction. These transcription factors bind to some DNA sequences with high affinity,

to others with only low affinity or not at all. Recent studies demonstrate that not only

strong interactions control transcription but that weak protein-DNA binding contributes

significantly to transcriptional regulation [28][29]. In order to understand and influence the

regulation network that governs transcription, a quantification of the interaction of the ma-
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jority of transcription factors with genomic DNA is of utmost importance. But not only the

gigantic number of interactions is a challenge. Low affinity binders might easily be missed,

especially by methods that rely on stringent washing procedures. Furthermore, affinity or

thermodynamic constants might not be the best quantities to characterize protein-DNA

interaction in a nuclear environment, where a transcription factor will probably always be

bound to some DNA sequence due to the high concentration of DNA inside the nucleus.

Specificity that comprises the discrimination between high and low or no binding sequences

is better suited to characterize the binding properties of a protein. Binding strength is a

quantity analogous to the specificity and is accessible in force measurements. Manuscript

M1 describes an adaptation of the MFA which enables the quantification of the binding

properties of a six zinc finger construct against three sample sequences, a high affinity, a

low affinity and a no binding DNA sequence in comparison to two reference DNA duplexes

in a single measurement. Weak interactions can also be detected without problems since

the force measurement is performed under equilibrium conditions. Furthermore, the par-

allel format of the MFA allows its extension to the testing of additional DNA sequences

or proteins within a single experiment. Thus, with further miniaturization and paralleliza-

tion, the MFA has a great potential to contribute to the understanding of transcriptional

regulation.

Conclusively, this thesis demonstrates three new applications for the technique of the

Molecular Force Assay in biological science in order to contribute to the understanding

of biological processes like gene expression. For this purpose, chapter 2 introduces the

relevant biological molecules and processes, while chapter 3 describes the Molecular Force

Assay in greater detail. Chapter 4 summarizes the results of the publications P1 and P2

as well as of manuscript M1. A short outlook describes additional possibilities for the

application of the MFA in biological science.
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Chapter 2

Biological Background

Gene expression can be summarized in the phrase ”from DNA to RNA to protein”. After

a very short introduction into the mechanism of gene expression, this chapter describes

the molecules of interest for this thesis, especially the oligonulceotides DNA, RNA and

aptamers, and the cellular processes that gave the motivation for the experiments of this

thesis.

2.1 Very short introduction into gene expression

The genetic information is stored in the DNA sequence of a cell. In order to use this

information, the cell has to translate the genetic code into functional units, the proteins.

In a process called transcription an RNA copy of a DNA sequence is produced. This

RNA can be translated in an amino acid polypeptide that folds into a three-dimensional

structure and forms the functional protein. This flow of information from DNA to RNA

to protein is called gene expression and is valid for all living cells. Proteins are the main

constituents of a cell and are engaged in nearly every task that is performed in and by

the cell, from structure, signaling or transport to metabolism. Different tasks in a cell’s

life or changing environmental conditions require different proteins so that the regulation

of gene expression is of utmost importance for the cell. Especially in multicellular or-

ganisms, differentiation between various cell types like muscle or nerve cells arises by the

expression of different RNA molecules and proteins. Gene expression can be influenced at

every stage from transcriptional initiation to post-translational modifications. Compared

to prokaryotes that lack cellular compartments, eukaryotes offer additional possibilites for

gene regulation due to their intracellular structure of nucleus and cytoplasma. Differences
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in chromatin structures caused by histone modifications change the accessibility of certain

DNA sequences. After transcription, modulation of capping, splicing and polyadenylation

of the messengerRNA as well as the nuclear export rate or sequestration of the RNA tran-

script alter the rate of gene expression. Thus, gene expression is an extremely complex

mechanism that requires a multitude of molecular interactions.

2.2 Oligonucleotides

The oligonucleotides DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) are also

known as the molecules of life and are crucial for the transmission, expression and con-

servation of genetic information. DNA as the carrier of the genetic information has to be

very robust against external influences. RNA is the bridge between the genome and the

functional protein. The information stored in the DNA is transcribed into messengerRNA

(mRNA), which in turn is translated into a protein. Additionally, non-coding RNA plays

a vital role in the processes that regulate transcription and translation.

2.2.1 DNA

A DNA molecule is a polymer chain consisting of nucleotides. A nucleotide is composed of

the pentose sugar 2-deoxy-D-ribose, a phosphate residue and one of four different nitrogen

heterocyclic bases. Cytosine and thymine are monocyclic pyrimidine derivatives, while

adenine and guanine are bicyclic purines (see Figure 2.1 A). Nucleotides are covalently

linked together by phosphodiester bonds between the phosphate group attached to the 5’

hydroxyl group of the pentose sugar molecule and the 3’ hydroxyl group of the next pentose.

Hence, a DNA polymer has a 5’ end and a 3’ end (see [30] for additional information).

Typically, two antiparallel DNA strands compose a double helix as was shown in 1953

by J. Watson and F. Crick [4]. The negatively charged sugarphosphate groups constitute

the backbone of the helix, while the opposing nucleobases form pairs in the core of the

helix (see Figure 2.1 B). In the most stable configuration adenine binds thymine via two

hydrogen bonds and guanine pairs with cytosine via three hydrogen bonds. This is known

as Watson-Crick base pairing.

Three variants of the double helix are possible, A-form, B-form or Z-form that differ

in chirality, tilt and depth of major and minor groove [30]. Under physiological salt condi-

tions, the B-form dominates and is displayed in Figure 2.1 B. These three structures occur

in many variations, for example the rise per base pair depends on the sequence. The irreg-
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Figure 2.1: Double-stranded DNA. (A) The nucleotides are joined via phosphodiester
bonds. Two strands are connected antiparallely by hydrogen bonds between the Watson-
Crick base pairs and form a double helix. (B) Depending on the environmental conditions,
the DNA duplex can adopt different helical variants. The B-form dominates under physi-
ological conditions (adapted from [31]).
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ularities in the double helical structure are assumed to play an important role in protein

recognition and binding or in other interactions involved in the process of transcription

and replication [30]. Non-Watson-Crick base pairing and base mismatches also alter the

double-strand structure and are especially relevant for synthesized oligonucleotides and

aptamers described in detail in Chapter 2.2.4.

The specific sequence of the four nucleobases codes the genetic information. This system

is very simple but also very versatile since a DNA molecule of n nucleotides can consist of 4n

different sequences. Additionally, the double-stranded nature and the backbone structure

account for the robustness of a DNA molecule. These properties, specificity, simplicity and

robustness, render the DNA so special and are the reason for its usage in nanotechnological

applications. Its ability to build programmable sequence-specific duplexes by self-assembly

enables the construction of two and three-dimensional structures, DNA origami, [32][33]

and molecular nanodevices [34][35]. Furthermore, DNA duplexes can be applied as force

sensors in force-based techniques like the Molecular Force Assay (see Chapter 3).

2.2.2 DNA as a force sensor

Several factors influence the thermal stability of a DNA duplex. Watson-Crick base pairing

and stacking interactions [36] between the nucleobases stabilize the DNA structure. Hence,

sequences with a majority of CG pairs melt at higher temperatures compared to strands

with a majority of AT pairs. Mismatches and bulges disrupt the double-stranded structure

and weaken the complex. The negatively charged phosphate backbones reject each other

depending on the salt concentration of the buffer system and can have a destabilizing effect.

Furthermore, two entropic effects weaken the DNA duplex. First, double-stranded DNA

has a persistence length of 50nm at a [Na+] concentration of around 0.1M [37] and is,

thus, rather rigid. Single-stranded DNA is considerably more flexible and environmental

conditions influence its mechanical properties significantly stronger. As a consequence, the

persistence length of single-stranded DNA varies from of 0.75nm at high salt concentra-

tions to 10nm at low ionic strength [35]. Second, the entropy of the solvent also has a

destabilizing effect since the hydration shell of a DNA duplex is greater than of two single

strands. Both effects counteract the formation of a DNA duplex and reduce its stability.

Summarizing, all these effects influence the thermal stability of a DNA duplex and have

to be taken into account when analyzing the behavior of DNA under force.

There are two geometries to melt a DNA duplex under force. In shear geometry, the

force is applied parallely to the long axis of the DNA helix and all base pairs are stretched
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Figure 2.2: Two geometries to melt a DNA helix. (A) In shear geometry the force ~F is
applied in the direction of the longitudinal axis of the duplex and the entire helix is loaded.
(B) In zipper geometry, the base pairs are melted separately from one end to the other.

simultaneously, as displayed in Figure 2.2 A. Thus, an elongation of the DNA duplex leads

to higher rupture forces. Additionally, the rupture force depends on the force loading

rate [38]. For this work, DNA sequences between 20 and 40 base pairs were used that

melt between 35pN and 50pN [38]. It is important to notice that the force is applied to

either the two 5’ ends or the 3’ ends since the stretching mode of the helix and, thus, the

unbinding pathway differs according to the direction the force is applied as was shown by

[39]. In zipper geometry, the DNA is melted from one end and one base pair at a time is

ruptured (see Figure 2.2 B) in a quasi-equilibrium process. The forces needed to separate

the individual base pairs could be determined to 10pN for A-T and 20pN for C-G and

are independent of the force loading rate [7][40]. Consequently, the forces to melt double-

stranded DNA depend on the unbinding geometry. This principle is used in a technique

known as Single Molecule Cut & Paste (SMC&P) that applies a hierarchical rupture force

system in order to position individual molecules with nanometer precision [15][16]. Both

unbinding modes can be utilized in the Molecular Force Assay. They are chosen according

to the properties of the system to be investigated.
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thymidine uridine

DNA RNA

Figure 2.3: Structural differences between DNA and RNA molecules. DNA is composed
of 2-deoxy D-ribose, while RNA is built of D-ribose molecules. The base thymine in DNA
is replaced by uracil in RNA (adapted from [42]).

2.2.3 RNA

On the molecular level, ribonucleic acid (RNA) differs from DNA in two aspects. Instead

of 2-deoxy-D-ribose RNA is composed of the pentose sugar D-ribose and the base thymine

in DNA is replaced by uracil in RNA, which, like thymine, forms Watson-Crick base pairs

with adenine. Figure 2.3 displays the nucleotides of RNA and DNA in a direct comparison.

These structural differences cause RNA to be more susceptible to hydrolysis but are also

responsible for a greater diversity in RNA secondary structure, since the extra hydroxyl

group can be an additional binding site for forming branched polynucleotides. While for

DNA Watson-Crick base pairing and the double-stranded helix inside the cell dominates,

base pairing in RNA structures is very diverse. A good overview of these structures is

given by Leontis et al. [41]. RNA molecules in the cell are mostly single-stranded, but can

be found to form double helices, for which the A-form predominates [30]. Additionally,

other structures like bulges, hairpins, loops or pseudoknots appear and are determined by

the function of the particular RNA molecule. These conformations can be as diverse as

the different tasks RNA can perform.

2.2.4 Aptamers

Aptamers are single-stranded, artificial oligonucleotide sequences that recognize their par-

ticular ligand with high affinity and specificity. They were discovered in 1990 independently

by Andrew D. Ellington and Jack W. Szostak [44], as well as Craig Tuerk and Larry Gold
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Figure 2.4: The SELEX process. Starting point is a large random DNA or RNA library.
The single-stranded oligonucleotides are incubated with the target of choice. Strongly
bound complexes are separated and these oligonucleotides are amplified. This enriched
pool of sequences can be modified to enhance certain characteristics and is the starting
point for the next round. Several cycles produce a small number of oligonucleotides that
bind specificly and with great affinity to the target under the conditions chosen for the
binding and partition step (adapted from [43]).
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[45]. Tuerk and Gold developed a new method named SELEX - systematic evolution of

ligands by exponential enrichment - to select RNA oligonucleotides from a large library

with the property to bind a certain ligand tightly and with high specificity. Andrew D.

Ellington and Jack W. Szostak used a similar technique to find RNA molecules that bind

specifically to a variety of organic dyes and termed these oligonucleotides aptamers after

the Latin expression ”aptus” meaning ”fitting” [44]. Shortly after, single-stranded DNA

aptamers were discovered [46]. The SELEX technique is an iterative process to find ap-

tamers for all kinds of ligands under different conditions (see Figure 2.4) . The selection

process starts with a large, random DNA library (about 1015 different sequences) that can

either be directly used or transferred via in vitro transcription into an RNA library. The

oligonucleotides are incubated with the target molecule of choice and the ligand-aptamer

complexes are separated from unbound or weakly bound molecules. This step and the

methods used for it, e.g. immobilization of the target on a matrix or on magnetic beads or

ultrafiltration, is decisive for the binding characteristics of the aptamer to be selected. The

so-found oligonucleotides are eluted and amplified and are the basis of a new, enriched pool

of DNA or RNA sequences that is used for the next cycle. After 6 to 20 rounds of SELEX,

the initially large oligonucleotide library is greatly reduced to relatively few sequences that

bind to the ligand with strong selectivity and affinity under the conditions chosen for the

incubation and separation step. These sequences can now be further analyzed, for exam-

ple by sequencing or in binding studies [43]. Aptamers greatly resemble antibody-antigen

complexes in their binding properties, but differ in their composition and, most impor-

tantly, in their fabrication. While antibodies are expressed in cells and differ from species

to species, aptamers are produced completely in vitro. Nevertheless, oligonucleotides are

present in all cells so that aptamers are non-toxic and do not provoke immune reactions.

Furthermore, the in vitro fabrication enables the selection of aptamers against all kind of

natural or non-natural compounds including toxins. In this work, aptamers are used in

a force-based assay for the detection and characterization of analytes (see Chapter 4.1)

and as docking station for an RNA ligand that selectively inhibits the protein Dicer (see

Chapter 4.2).
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2.3 Transcriptional Regulation by Proteins in Eukary-

otes

Transcription describes the process, in which a DNA sequence is copied into an RNA

molecule by the enzyme RNA polymerase. In eukaryotes, three kinds of RNA polymerase

can be discerned that produce different kinds of RNA, mostly messengerRNA, transfer-

RNA and ribosomalRNA. Transcription is the first step in gene expression and, thus, the

first possibility for the cell to regulate protein levels. It comprises the three steps initiation,

elongation and termination. Initation denotes the binding procedure of the protein RNA

polymerase to the promoter sequence next to the gene. Elongation is the process in which

the DNA sequence is read and the RNA copy is extended according to the bases of the DNA

code. Last, the RNA polymerase is stopped and leaves the DNA strand. Every step as well

as the rate of transcription is controlled by different proteins. The very first possibility in

eukaryotes for gene regulation is to modify the accessibility of the DNA strand for tran-

scription initiation. The DNA is wrapped around histone proteins and forms nucleosomes.

The chain of DNA-nucleosomes constitutes the chromatin. Histone modifications influ-

ence how the DNA is wrapped around the histone proteins and alters chromatin structure.

Thereby some parts of the DNA are exposed while others are concealed. DNA methyla-

tion converts cytosine to 5-methylcytosine that behaves like regular cytosine except that

highly methylated areas show reduced transcriptional activity. Histone modifications and

DNA methylation belong to the epigenetic regulational mechanisms and can be preserved

in cell division. Thus, daugther cells of a differentiated cell remain differentiated and do

not change back into stem cells (for details see [47]). In eukaryotes, RNA polymerase has

only very low affinity for the promoter sequences, but needs general transcription factors

that bind to the DNA and the RNA polymerase. Additionally, several other proteins bind

to the DNA and build together with the RNA polymerase the transcription initiation com-

plex. These other proteins can bind in close proximity to the gene to be transcribed but

also to regions thousands of base pairs away from the gene. Looping of the DNA enables

proteins bound to a distant DNA sequence to interact with the protein complex at the

promoter region and to activate or to repress the initiation of transcription. This highly

elaborate network of protein-protein and protein-DNA interactions regulates in its entirety

if and when a gene is transcribed. Nevertheless, a single protein in this network can make

a difference and can stop or start transcription. In elongation, RNA polymerase unwinds

the DNA double helix at its active site and moves stepwise along the DNA molecule adding
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ribonucleotides to the RNA strand that are complementary to the DNA template strand.

Elongation factors prevent the RNA polymerase from dissociation before the end of the

gene and assist in unwinding of the DNA. Beside producing the RNA molecule, RNA poly-

merase assembles proteins on its tail that can process the RNA into the functional mRNA.

Examples are capping, which means the modification of the 5’ end of the RNA molecule

for the discriminaton of mRNA from other RNAs, and splicing that removes the introns,

non-coding sequences, from the pre-mRNA. Transcription termination is encoded in the

DNA so that the transcribed RNA can recruit proteins that end transcription and modify

the RNA 3’ end if necessary (for details see [48]). Summing up, every step in transcription

is regulated by proteins that can activate, accelerate or terminate transcription and thus

enable the cell to react very flexibly and rapidly to its needs. In this work, a force-assay is

presented that characterizes protein-DNA specificity via the binding strength (see Chap-

ter 4.3). This assay has the potential to contribute to the understanding of the complex

network of protein- DNA interactions that govern transcriptional regulation.

2.4 The role of the protein Dicer in the regulation of

gene expression

The enzyme Dicer is a multidomain RNAse III-related endonuclease of about 250kDA and

is responsible for cleaving double-stranded RNA into pieces of 19-22 base pairs. Dicer has

been found in the cytoplasm of all eukaryotes studied to date [49], sometimes in several

variants with different tasks. The L-shape of the protein seems to be well-conserved for

all variants. Recognition of dsRNA by a PAZ-domain occurs in the head of Dicer, which

is separated from the two RNAse III-domains by a ruler domain (see Figure 2.5). The

base of the L is formed by a helicase, whose function is not totally understood [49]. Dicer

cleaves long and short (more than 30 nucleotides) dsRNA strands with equal efficiency,

whereas duplexes of 21 nucleotides or less are not processed in vitro. A 3’ 2-nucleotide

long overhang increases Dicers efficiency compared to blunt ends [50].

In the last decade, Dicer has increasingly been attracting attention due to its crucial

role in the RNA interference (RNAi) pathway. The term RNAi describes the process

how pieces of short RNA strands control gene activity in a homology-dependent manner.

Dicer cuts the long double-stranded RNA precursors into pieces of 19-22 base pairs. These

short RNA strands are unwound and a single strand is loaded into a protein complex gen-

erally termed RNA-induced silencing complex (RISC) which varies according to species
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Figure 2.5: Schematics of the protein Dicer. The L-shape of the protein seems to be well-
conserved for all variants. The PAZ-domain in the head part recognizes dsRNA. The two
RNAse III domains are separated from the PAZ head by a ruler domain and cut the two
RNA strands. A helicase, whose function is not totally understood, forms the base of the
L.

and function. The short RNA in the RISC complex binds via Watson-Crick base pairs

to the mRNA and inhibits translation. Various classes of small, regulatory RNA have

been identified. Two main categories of single-stranded RNA involved in metazoan RNA

interference can be distinguished that differ in their origin and function but share process-

ing by Dicer: short-interfering RNA (siRNA) and microRNA (miRNA) (see Figure 2.6).

siRNA precursors are long, fully complementary double-stranded RNA molecules that are

either introduced directly into the cytoplasm or taken up from the environment, but may

also originate from endogenous sources like transposons [52]. Hence, the main task of the

siRNA-processing machinery seems to be the defense of genome integrity in response to

foreign or invasive nucleic acids [53]. In most cases, siRNA binds to a fully complementary

target mRNA which is subsequently degraded. miRNAs are transcribed and pre-processed

in the nucleus into incomplete base-paired stem-loop structures, known as pre-microRNAs.

They are then transferred to the cytoplasm, where Dicer matures the pre-miRNA by cleav-

ing the stem loop structure. The mature miRNA strand binds to the mRNA and inhibits

translation in combination with the RISC [54], although gene upregulation by the RISC

complex has also been reported [55][56]. In contrast to siRNA, which usually requires total

complementarity to its target sequence, miRNAs and their target mRNA do not need to

base-pair perfectly. However, a seed region between residues 2 to 8 seems to dominate

the mRNA recognition process. Consequently, a certain miRNA can bind and regulate a

variety of mRNA sequences. Several miRNAs may also play a role in the regulation of a
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Figure 2.6: Small RNA biogenesis. siRNA precursors are long double-stranded RNA se-
quences that are either taken up from the enviroment (1 and 5) or orginate from endoge-
neous sources like transposons (2). miRNA precursors are transcribed from genetic DNA
and form pre-microRNA hairpins that are transported into the cytoplasma (3). Dicer
processes siRNA and miRNA precursors into pieces of 19-22 base pairs. One of the two
strands is loaded into the RISC (RNA-induced-silencing-complex) and in most cases in-
hibits protein expression by different mechanisms like mRNA degradation. Additionally,
gene expression is influenced by the inhibition of RNA synthesis and chromatin condensa-
tion (4) (taken from [51]).
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single mRNA transcript. Thus, miRNA seems to fine-tune protein expression. Neverthe-

less, binding of a miRNA to a perfect complementary target leads to direct degradation

of the mRNA as would be the case for siRNA. Incomplete base pairing of a siRNA and a

mRNA only hinders translation without direct degradation of the mRNA. Thus, the in-

hibitory function of miRNA and siRNA seems to be interchangeable [53]. The variability

and diversity make small RNAs very adaptable to the current situation and contribute to

their importance for gene regulation. Malfunction of the RNAi machinery has a severe

impact on the cell and can lead to illnesses like cancer. One possiblity to influence RNAi

at the Dicer step is demonstrated in Chapter 4.2.
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Chapter 3

The Molecular Force Assay

This chapter describes the technique of the Molecular Force Assay (MFA) that enables

the parallelization of force measurements by comparing the mechanical stability of two

molecular bonds.

3.1 Basic principle

Two molecular bonds, a sample and a reference bond, are connected in series via a thymine-

linker to which a fluorophore is conjugated. The lower complex is covalently bound to a

functionalized glass slide, while the upper complex is attached to a soft PDMS surface. The

two surfaces are separated by a constant velocity so that the two molecular bonds are loaded

with a force until the weaker one ruptures. An alternative view is that the force greatly

enhances the off-rate of the bonds under investigation and reduces the otherwise extremely

long spontaneous dissociation times towards seconds [57]. The fluorophore conjugated

to the linker sequence indicates the intact bond. Hence, the ratio of the fluorescence

intensity before and after the force probe allows to determine the mechanical stability of

the sample bond in comparison to the reference bond. Every molecular complex under

load corresponds to a single molecule force experiment since the stability of every sample

bond is measured against its own reference bond. This enables about 104 parallel force

measurements per µm2 so that a single MFA experiment already provides a valid result

supported with very good statistics.

For most applications of the MFA, sample and reference bond are composed of DNA

or RNA duplexes. Three oligonucleotide strands are successively hybridized to form the

two bonds. The lowermost oligonucleotide strand is attached via an amino-modification to
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an aldehyde functionlized glass slide. Five HEGL (hexaethylene glycol) polymer units and

a poly-T stretch act as spacer between the surface and the molecular complex. Sample

and reference bond are also separated by a poly-thymine sequence to which a fluorophore

is conjugated. The uppermost strand is functionalized with a biotin that binds to the

streptavidin-coated PDMS stamp during the contact process. Figure 3.1 displays the

details of the molecular setup for two DNA duplexes.

3.2 Contact and separation process

Macroscopically, the contact and separation process is performed as described in the follow-

ing. The functionalized stamp adheres upside-down to a glass block glued to a closed-loop

piezoelectric actuator and a DC motorized translation stage (see Figure 3.2) . The slide

with the molecular constructs is fixed beneath the stamp on a stainless steel stage with

permanent magnets so that every stamp pillar meets a spot of 1mm diameter of molec-

ular complexes on the glass slide. The whole contact device is mounted on an inverted

microscope with an xy-DC motorized high-accuracy translation stage. Contact is made by

means of the piezo and care is taken that each individual pillar is not compressed more

than 3µm. The planar adjustment of stamp and slide as well as the contact process are

controlled by reflection interference contrast microscopy [58]. The contact between stamp

and slide is maintained for 10 minutes to ensure that the molecular complexes are coupled

to the surfaces. If DNA or RNA duplexes form sample and reference bond, the molecular

complex is completely built up on the glass slide before the contact and separation pro-

cess and the biotin modification of the uppermost strand binds to the streptavidin-coated

PDMS surface during the contact time. The piezo retracts the stamp with a constant

velocity of 1µm/s, and a force builds up in the molecular complexes until the weaker one

breaks with higher probability. In order to quantify the number of intact lower bonds in

relation to the total number of molecular constructs, images of the fluorescence intensity

on the glass slide are taken before and after the contact process.

3.3 Analysis

Calculating the ratio of intact lower bonds to the total number of molecular complexes, the

fluorescence intensities of the images are analyzed by subtracting the background signal and

subsequently determining the mean fluorescence intensity of the images measured before
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Figure 3.1: Molecular setup of the MFA for DNA duplexes. Sample and reference bond
are connected in series between two surfaces. The lowest strand is covalently bound to an
aldehyde-functionlized glass slide via an amino-modification. Five HEGL (hexaethylene
glycol) polymer units and a poly-T stretch act as spacer between the surface and the
molecular construct. Sample and reference bond are also separated by a poly-thymine
sequence to which a fluorophore is conjugated. The uppermost strand is modified at its 5’
end with a biotin that connects the whole construct with the streptavidin-functionalized
upper surface. Upon surface separation, one of the molecular complexes ruptures and the
fluorophor in the middle stays with the intact bond. This leads to a distribution of the
fluorescence signal between the two surfaces. The outcome of an example measurement is
shown on the right. As it cannot be assumed that all molecular complexes bound to the
PDMS surface, the uncoupled constructs have to be subtracted. Their number is either
determined by labeling the free biotins at the upper end (not shown) or by introducing a
FRET-pair into the molecular complexes. Thus, the fluorescence FRET signal is a measure
for the number of intact molecular constructs.
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Figure 3.2: Macroscopic setup of the MFA. The contact and separation unit consists of
a closed-loop piezo to which the PDMS stamp is attached via a glass block. Current
technical implementation allows the measurement of 16 molecular constructs in parallel
corresponding to 16 pillars of the stamp and the 4x4 pattern on the glass slide. Every
stamp pillar is microstructured with pads of 100µm × 100µm separated by 41µm wide
and 5µm deep rectangular trenches enabling the drainage of liquid during the contact and
separation process. The contact unit is mounted on an inverted microscope.

〈IStart〉 and after the separation process 〈IFinal〉. The quotient is given by

Fintact lower bonds =
〈IFinal〉
〈IStart〉

. (3.1)

In order to accurately determine the number of intact lower bonds, however, two additional

outcomes of the force probe have to be considered. First, it cannot be assumed that

every molecular construct couples via the biotin-streptavidin bond to the PDMS surface.

Second, instead of sample or reference bond a rupture of the biotin-streptavidin bond is

also possible, though not probable due to the high rupture force of the biotin-streptavidin

complex that lies around 250pN [10]. Both cases are taken into account by determining

the number of molecular complexes with intact sample as well as reference bond after

the separation process. This can be done in two ways. One possibility is to mark the

biotin modification of the molecular complexes on the glass slide with a streptavidin that

is labeled with a spectrally distinct second fluorophore. The fluorescence signal of the

labeled streptavidin is a measure for the number of molecular complexes that were not

tested. As the streptavidin can only be labeled after the force probe measurement, the mean
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fluorescence intensities are calculated from a single image. Due to the microstructure of

the PDMS stamp, every fluorescence image taken after the contact and separation process

will always show both contacted and non-contacted areas. Thus, the ratio of molecular

complexes that did not couple to the total number of molecular constructs is determined

by dividing the mean fluorescence intensity values of contacted to non-contacted areas

Fnon−coupled =
〈Icontacted〉
〈Inon−contacted〉

. (3.2)

This number is subtracted from Fintact lower bonds and the result is normalized to the total

number of molecules that have been under load, yielding the Normalized Fluorescence NF

NF =
Fintact lower bonds − Fnon−coupled

1− Fnon−coupled

. (3.3)

Thus, the Normalized Fluorescence is the mean number of intact lower bonds to the total

number of molecular complexes that have been tested. The data of the publications P1

(see Chapter 4.1) and P3 were analyzed according to this method.

An alternative method for the determination of molecular constructs that have not

coupled to the PDMS surface is the labeling of the uppermost strand with a fluorophore at

the lower end that constitutes a FRET-pair (Förster-Resonance-Energy-Transfer [59]) with

the fluorophore attached to the middle strand (see Figure 3.1) . For this thesis, the cyanine

dyes Cy3 and Cy5 were chosen as FRET-pair. Cy5 is conjugated to the middle strand and

indicates the number of intact lower bonds on the glass slide, while Cy3 is attached to

the uppermost strand so that a FRET-signal is only measured for molecular constructs

of intact sample and reference bond. This configuration enables the calculation of the

Normalized Fluorescence by analyzing the images pixel-by-pixel. In addition to the images

of the Cy5 fluorescence intensity that indicate the intact lower bonds, the FRET signal

is also detected before and after the contact and separation process. After background

subtraction, the fluorescence images of the Cy5 signal as well as of the FRET signal are

divided and corrected for bleaching, yielding

FCy5 =
IFinal
Cy5

IStartCy5

. (3.4)

and

FFRET =
IFinal
FRET

IStartFRET

. (3.5)
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An image of the Normalized Fluorescence is calculated according to equation 3.3 in the

form of

NF =
FCy5 − FFRET

1− FFRET

. (3.6)

The mean of the pixel intensities of the NF image is calculated and defined as NF value

that describes the fraction of intact lower bonds to the total number of molecules under

load. A huge advantage of the pixel-by-pixel analysis for the determination of the NF is

that it cancels out inhomogeneities due to the Gaussian illumination profile and surface

defects, rendering the MFA very robust. The data of publication P2 (see Chapter 4.2)

were analyzed according to this method. As manuscript M1 describes an application of

the MFA that does not compare DNA or RNA bonds with each other but a DNA-protein

complex to a DNA duplex, a different analysis is required and described in Chapter 4.3.



Chapter 4

Results

The objective of this thesis was to adapt the MFA for new forms of application that

contribute to the solution of current biological problems. The main results are shortly

presented in the following. Additional information can be found in publications P1 and P2

and manuscript M1. The utilization of aptamers in a force-based biochip for the capture

of small molecules is described in Chapter 4.1 and enables the detection of a broad range

of ligands that include toxins and low affinity binders. Due to the label-free detection,

complex fluids do not cause problems. The protein Dicer is one of the major protagonists

in the RNA interference pathway so that a selective inhibition of Dicer activity has a great

potential for the development of future medical therapeutics. Chapter 4.2 describes the

application of the MFA for the screening of small molecules that selectively bind a RNA

sequence and hinder Dicer from processing. Furthermore, the MFA can directly quantify

the binding strength of DNA-protein interactions. Chapter 4.3 describes the necessary

changes in the molecular setup as well as in the analysis and demonstrates in a proof-of-

principle experiment the potential of this application of the MFA.

4.1 DNA as a force sensor in an aptamer-based biochip

for adenosine

Bioanalytical methods that probe multiple interactions simultaneously in massively par-

allel assays with label-free detection are of great importance for the development of new

analytical tools [60]. The MFA offers the possibility to provide a label-free detection in a

highly parallel format by the implementation of aptamers. Aptamers are oligonucleotides
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that are selected to specifically bind their ligand with high affinity and specificity (see

Chapter 2.1.4). They are similar to antibodies but surpass them in terms of small molec-

ular weight, ease of modification and ability to detect toxins [61]. As a proof-of principle,

a split aptamer selective for adenosine [62][63][64] was introduced into the upper, sample

bond. Ligand binding stabilized the sample bond and led to a higher rupture probability

for the reference bond compared to a molecular complex without ligand. This resulted in

a decrease of the NF for increasing concentrations of ATP (adenosine triphosphate) and is

clearly visble in Figure 4.1 A. In order to determine the dissociation constant, every spot

of molecular complexes bound to the surface was incubated with a different concentration

of ATP ranging from 0µM to 2000µM . Fitting the ATP titration data to the Hill equation

[65]

θ =
Ln

Ln +KD

(4.1)

with θ the fraction of occupied binding sites to all possible binding sites, [L] the ligand

concentration, KD the dissociation constant and n = 2, yielded a half maximal effective

concentration of EC50 = 124.8µM with a 95% confidence interval of [102.8µM, 151.4µM ].

This agrees well with previously published values of the dissociation constant [62][63]. A

negative control measurement with GTP showed no stabilization of the sample bond (see

Figure 4.1 A). In order to prove the validity of the method, the geometry of sample and

reference bond was inverted so that the sample bond was attached to the glass slide. As

expected, an increase in ligand concentration now led to higher values for the NF (see

Figure 4.1 B). The same results were obtained for measurements in fetal bovine serum,

demonstrating the applicability of the assay in complex ambients. Although the outcome of

the MFA experiment is indicated by a fluorophore, the measurement itself, the comparison

of unbinding forces, is label-free. Hence, minor changes in the mechanical stability induced

by small molecules or low affinity binders can be detected without stringent washing re-

quirements or sophisticated signal amplification, which often makes it difficult for other

techniques to charaterize small molecules or low affinity binders. As aptamers can be se-

lected against virtually any target, this force-based aptamer sensor can easily be adapted

for the capture and analysis of any ligand. Further details are described in publication P1.
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Figure 4.1: Detection of the dissociation constant of ATP to its aptamer. (A) The aptamer
was implemented in the upper, sample bond. Addition of ATP resulted in the stabilization
of the sample bond and a higher rupture probability of the lower reference duplex. Thus,
the NF decreased. Fitting the ATP titration data to the Hill equation with n = 2 yielded
a half maximal effective concentration of EC50 = 124.8µM . The same result was obtained
for measurements in bovine fetal serum (FBS). Adding GTP as a ligand, no stabilization
effect was determined. (B) Inverting the geometry of sample and reference bond, the
outcome of the experiment was unchanged with an increase in mechanical stability of the
sample bond upon binding of ATP.
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4.2 Sequence specific inhibition of Dicer measured with

a force-based microarray for RNA ligands

RNA interference describes a mechanism for the regulation of gene expression at the level

of translation by small RNAs. The essential role of the protein Dicer is based on its

task to mature precursor molecules like hairpin structures or long RNA duplexes into

functional small RNAs. Dicer cleaves the precursors into pieces of 19-22 base pairs so that

the matured small RNAs can subsequently influence translation in combination with other

proteins. microRNAs (miRNA) are one class of small RNAs and an endogenous means in

eukaryotic cells to fine-tune gene expression. They are critical for many cellular processes

like developmental timing or cell proliferation. Many severe diseases are accompanied by

miRNA dysregulation. Thus, a selective inhibition of single miRNAs precursors might be a

good approach for the development of a new generation of medical therapeutics. Therefore,

parallel screening formats for RNA binders that, in addition, assess their potential for the

hindrance of Dicer activity are highly desirable. As part of this thesis, it was demonstrated

that the MFA can be utilized for both the screening of RNA ligands that inhibit Dicer

cleavage and the characterization of the ligand by the determination of the dissociation

constant. The results are published in publication P2.

As a proof-of-principle, a RNA duplex of 35 base pairs incorporating an aptamer against

the aminoglycoside paromomycin [66][67] in zipper geometry was used as sample bond and

compared against a DNA duplex. Again, measurements were performed in both configura-

tions with the RNA duplex constituting either the lower (RNA down) or upper bond (RNA

up). Dicer cleavage should be easily detectable by the MFA since Dicer cuts off around

20 base pairs from the sample bond, thus greatly destabilizing the RNA duplex. This is

clearly visible in Figure 4.2 A. Dicer activity caused a destabilization of the lower RNA

duplex so that the values of the Normalized Fluorescence decreased compared to the ini-

tial value at t = 0min. Dicer processes the RNA duplex in multiple enzymatic turnovers.

Consequently, the Normalized Fluorescence declined further with increasing incubation

time. The experimental design provided Dicer with an excess of substrate, dsRNA, so that

the substrate concentration could be assumed constant and the reaction rate of Dicer was

solely limited by the amount of Dicer present. Thus, a linear relation of the Normalized

Fluorescence to Dicer processing time was expected and verified. The slope of the fit was

used to quantify the rate of Dicer processing.

Incubation of every spot of immobilized molecular constructs with a different concen-
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Figure 4.2: Determination of Dicer activity and of the dissociation constant of paro-
momycin to its aptamer. (A) Dicer processing destabilizes the lower RNA duplex by
cutting off around 20 base pairs so that the Normalized Fluorescence decreased with incu-
bation time. Since Dicer was presented with an excess of substrate (dsRNA), its reaction
rate was only limited by its own concentration. Thus, a linear decline of the Normalized
Fluorescence with time was expected and verified in the presented measurement. (B) In-
cubation of every spot of immobilized molecular constructs with a different concentration
of the aptamer ligand paromomycin allowed to determine the dissociation constant by fit-
ting the data with the Hill equation. For the RNA duplex constituting the upper bond, a
dissociation constant of 2.55± 2.18mM was measured in agreement with literature values.
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tration of the aptamer ligand paromomycin allowed to determine the dissociation constant

by fitting the data with the Hill equation as described in chapter 4.1. Measurements in the

RNA up configuration yielded a dissociation constant of 2.55±2.18mM . Literature reports

values of 0.2mM−1mM depending on the technique [67][68], in agreement with the results

presented in this thesis (see Figure 4.2 B). Measurements with the RNA duplex attached

to the glass slide resulted in dissociation constants of about 100±70mM (data not shown),

which deviated by a factor of 50 from the other measurements with the inverted geometry.

As non-specific binding of the ligand to the surfaces or molecular complexes would af-

fect the measurements in both configurations, this increase in dissociation constant might

be attributed to the proximity of the RNA construct to the glass slide. Notwithstand-

ing the passivation of the glass slide, the RNA duplex as lower bond in zipper geometry

presumably stretches across the surface. This might reduce the accessibility of the RNA

aptamer binding pocket for the ligand, resulting in an apparent increase of the dissociation

constant. Consequently, this configuration with the ligand-binding part integrated in the

lower complex in the zipper geometry does not seem suited for the characterization of a

RNA-binding ligand. In contrast, providing the ligand-binding sequence with a spacer and

removing it from the surface by implementing it in the upper RNA duplex yielded reliable

values for the dissociation constant.

In the next step, the two measurements were combined to demonstrate Dicer inhibition

upon ligand binding. Figure 4.3 shows the single steps of the experiment. First, the initial

value of the Normalized Fluorescence was measured without the addition of Dicer nor

ligand. Next, the sample was incubated for a specified amount of time (1h) with 2.5µl

Dicer solution in 1ml buffer before the contact and separation process. Dicer processing

led to the destabilization of the RNA duplex and was thus detected. 1mM paromomycin

was added to another sample and strengthened the RNA duplex upon binding so that

the reference bond ruptured with higher probability. A fourth sample was incubated with

both, first with paromomycin, then with Dicer for one hour. Binding of the ligand to its

aptamer inhibited Dicer to process the RNA duplex and yielded a Normalized Fluorescence

close to the ligand-only case. The experiment was performed for both configurations, the

RNA duplex as upper bond as well as lower bond. The results are displayed in Figure 4.4.

Clearly, Dicer activity weakened the RNA duplex and shifted the Normalized Fluorescence

towards the reference bond. Binding of paromomycin strengthened the RNA duplex so

that the Normalized Fluorescence decreased in the RNA up configuration and increased in

the RNA down configuration, respectively. Dicer was blocked by paromomycin bound to
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Figure 4.3: The molecular setup for the detection of the selective inhibition of Dicer activity.
(A) The initial value of the Normalized Fluorescence is measured without the addition of
Dicer and ligand. (B) The sample is incubated for a specified amount of time (1h) with
Dicer before the force probe. Dicer processing leads to the destabilization of the RNA
duplex and is thus detected. (C) Paromomycin is added and strengthens the RNA duplex
upon binding so that the reference bond ruptures with higher probability. (D) The sample
is incubated with both, first with paromomycin, then with Dicer for one hour. Binding of
the ligand to its aptamer inhibits Dicer to process the RNA duplex and yields a Normalized
Fluorescence close to the ligand-only case.
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Figure 4.4: Dicer hindrance upon paromomycin binding. (A) In the RNA up configura-
tion, the initial value of NF = 0.34 ± 0.01 increased to NF = 0.40 ± 0.02 due to the
destabilization of the RNA duplex by Dicer cleavage. Paromomycin binding strengthened
the RNA duplex and decreased the Normalized Fluorescence to 0.27 ± 0.01. If the paro-
momycin binding blocks Dicer, a NF value close to 0.27 ± 0.01 was expected for the last
data point. The measured value 0.30±0.01 confirmed the capability of the assay to inhibit
Dicer by ligand binding. (B) The experiment in the RNA down configuration yielded the
same results and demonstrates the consistency of the assay.

the RNA aptamer but not completely which led to values of the Normalized Fluorescence

close to the ligand-only case. Furthermore, a minimum concentration of paromomycin for

Dicer inhibtion was determined. For 2.5µl Dicer solution in 1ml buffer, a partial hindrance

was observed at a concentration of 2.82µM paromomycin, whereas 52µM paromomycin

blocked most of Dicer activity. This result agrees nicely with the measured dissociation

constant of 2.55± 2.18mM .

This proof-of principle experiment demonstrates the applicability of the MFA to screen

for RNA ligands that specifically inhibit the protein Dicer from processing RNA duplexes

and to characterize those ligands. The MFA reliably detected Dicer processing of the RNA

duplex as well as the binding of a small ligand to RNA, which resulted in an inhibition of

Dicer. In contrast to other techniques [69], the MFA requires neither labeling of the target

sequence, nor the ligand or protein. It only needs fluorophores well-separated from the

area of interest so that the interaction of the molecules in question is not disrupted and

can be analysed undisturbed. The multiplexing capabilities of the MFA in the currrent

setup enable the analysis of 16 different systems, ligands or ligand concentrations, in one

measurement. Further standardization and miniaturization offers the possibility to extent
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this application of the MFA towards high throughput.

4.3 A force-based, parallel assay for the quantification

of protein-DNA interactions

Characterization of protein interactions with genomic DNA is essential to understand the

intricate system of the regulation of gene expression, especially transcription. Most tech-

niques can either measure protein-DNA interaction in detail but are very time consuming

and not suited to analyze great numbers of proteins or DNA sequences or can determine

a large amount of protein-DNA binding events but have difficulties to accurately quantify

those interactions. Furthermore, affinity or thermodynamic constants might not be the

best quantities to characterize protein-DNA interaction in a nuclear environment, where

a DNA-binding protein will probably always be attached to some DNA sequence due to

the high concentration of DNA inside the nucleus. Specificity that comprises the discrim-

ination between high and low or no binding sequences is better suited to characterize the

binding properties of a protein. This quantitiy can be measured in force measurements by

determining the binding strength between two molecules. An adaptation of the MFA that

enables the parallel quantification of protein-DNA interactions is described in the following

and in manuscript M1.

The standard MFA setup consists of two oligonucleotide duplexes that are compared

with each other. Ligand-oligonucleotide interaction is not directly probed, but the ligand

stabilizes the molecular bond and is thus detected. The new variant of the MFA probes the

protein-DNA interaction directly and compares it to different reference bonds in order to

quantify the interaction. As a proof-of-principle, the binding strength of a six zinc finger

construct with three different DNA motifs, a high affinity sequence, a low affinity sequence

and a no binding sequence, was determined by comparing the protein-DNA interaction to

two reference DNA duplexes of different strength (20 and 40 base pairs). Zinc finger motifs

are one of the most abundant DNA binding domains in eukaryotic transcription factors

[70]. The protein in our experiment Zif268/NRE is an artificial fusion protein of two zinc

fingers of the Cys2-His2 class [71]. Zif268 is a transcription factor in mouse and a popular

model system due to the existence of structural data of the protein-DNA complex [70][72].

NRE is an engineered variant of Zif268 that binds specifically and with high affinity to

a nuclear receptor element [73]. The six zinc finger construct ZIF268/NRE is modified

at the N-terminus with a ybbR-tag [74] followed by a superfolderGFP [75] variant and is
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Figure 4.5: The molecular setup for the quantification of protein-DNA binding strength.
(A) The geometries of the PDMS stamp and the 4x4 pattern of protein spots on the
glass slide are displayed. The zinc finger protein is covalently bound to an amino-coated
glass slide functionalized with Coenzyme A via a ybbR-tag. A superfolderGFP acts as
an additional spacer and helps to adjust the glass slide beneath the pads of the stamp.
Different combinations of reference sequences and DNA binding motifs are attached to
each pillar. (B) The PDMS stamp is carefully brought into contact with the glass slide
and the DNA sample bonds are allowed to bind to the protein. Subsequently, the PDMS
stamp is retracted with constant velocity so that a force builds up in the DNA-protein
complexes and the reference bonds until the weaker construct ruptures. (C) After the
force probe, the Cy5 fluorescence signal on the glass slide is a measure for the number of
intact protein-DNA bonds.
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Figure 4.6: Quantification of the binding strength of a six zinc finger construct to different
DNA sequences. (A) In order to quantify the binding strength, the fluorescence signal rep-
resenting the DNA transfer has to be normalized to the number of available protein binding
sites. For this purpose, protein binding sites are saturated by adding a Cy5-labeled 40 base
pair DNA duplex harboring a high affinity binding motif subsequently to the force measure-
ment. The fluorescence intensity of transferred DNA Ftransfer is divided by the fluorescence
signal corresponding to the saturated protein binding sites Fintact protein, yielding the Nor-
malized Fluorescence NF. (B) Histograms of every pad on the PDMS stamp sum up the
huge number of single-molecule experiments and are fitted by a Gaussian distribution in
order to calculate an average NF and the standard deviation. Here, the histogram of the
NF displayed in A is shown in detail. (C) Two experiments are summarized to validate
our approach as a proof-of-principle. Differences between low and high affinity as well as
the no binding motif are very pronounced.
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covalently attached via the ybbR-tag to a glass slide coated with Coenzyme A in a 4x4

pattern. The two double-stranded DNA complexes in series are covalently bound to the 16

pillars of a soft PDMS surface with the upper one as reference bond and the lower one as

sample bond (see Figure 4.5 A ). The DNA sequences in shear geometry are separated by

a linker sequence to which a Cy5 fluorophore is conjugated. Due to the macrostructure of

the PDMS stamp a maximum of 16 combinations of different reference sequences as well

as sample sequences can be tested within one experiment. The GFP signal of the fusion

protein is used to place the protein spots below the stamp pillars functionalized with the

different DNA sequences. The PDMS surface is carefully brought into contact with the

glass slide so that the sample sequence is able to bind to the protein on the glass slide

(Figure 4.5 B). After 10 minutes, the PDMS surface is retracted with constant velocity

by the Piezo actuator. Thereby, a force is applied to the protein-sample complex as well

as to the reference bond until the weaker one ruptures (Figure 4.5 C). The fluorescence

Cy5 signal on the glass slide is measured by an inverted epi-fluorescence microscope and

indicates the number of intact protein-DNA complexes. Thus, the protein-DNA interaction

is directly probed and compared to a well-characterized DNA double-strand. In order to

approximate the environment in a eukaryotic nucleus, the experiment was designed as a

competition assay and the zinc finger protein was pre-incubated with low-molecular weight

DNA from salmon sperm before the contact process.

As a first test of the assay, it was demonstrated that specific and unspecific interactions

can be discriminated. For that purpose, the zinc finger protein was presented with a no

binding sequence and a high affinity sequence implemented into the sample bond. The

interactions were compared to two reference DNA duplexes of 20 and 40 base pairs. For

both references, hardly any fluorescence intensity above the background signal was detected

for the no binding sequence. In contrast, the interaction of the protein with the high

affinity motif was very strong compared so that the reference bonds ruptured with higher

probability than the protein-DNA bond. Additionally, the 20 base pair reference duplex

ruptured more often than the 40 base pair reference bond, demonstrating the ability to

discriminate between specific and unspecific binding and to quantify the strength of the

protein-DNA bond. In order to calculate a single, comparable number for the binding

strength, environmental differences like the binding density of protein and oligonucleotide

constructs on the surfaces have to be taken into account. Correcting for differences in

protein density on the glass slide, 0.5µM of a Cy5-labeled 40 base pair DNA duplex

carrying a high affinity binding site for the protein in question was added subsequent
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to the force probe experiment to saturate all functional proteins bound to the surface.

Calibration measurements confirmed a complete saturation after 30 minutes incubation

time. After removing unbound fluorophores by a washing step, the fluorescence on the

glass slide was determined again. It is a measure for the maximum number of functional

proteins on the slide. Since the binding density of the DNA complexes on the PDMS

always exceeds the number of functional proteins on the glass slide, further corrections are

not necessary. The ratio of fluorescence signal on the glass slide directly after the rupture

event Ftransfer to the maximal number of functional proteins Fintact protein is defined as

the Normalized Fluorescence, NF. The NF was calculated by dividing the pictures after

background subtraction pixel-by-pixel (see Figure 4.6 A). Histograms of the NF picture

were generated and fitted by a Gaussian to yield the NF mean and standard deviation

(Figure 4.6 B). This number can be interpreted as the binding strength of the protein-

DNA interaction in comparison to a certain reference bond. A variation of the reference

bond will result in a different NF and refines the information about the DNA-protein

interaction. The zinc finger protein-DNA interaction was tested with three DNA double-

strands incorporating either a high affinity sequence, a low affinity sequence or a no binding

sequence against two reference bonds, a 20 base pair and a 40 base pair DNA duplex. The

data were analyzed in the way just described with the results depicted in Figure 4.6 C.

Due to the low DNA transfer for the no binding sequence, a calculation of the NF was not

possible, so these values were approximated with zero. Differences were clearly visible for

the NF values for the low and high affinity sequences as well as for the variations of the

reference bond. As expected, the highest value of 0.65 ± 0.07 was measured for the high

affinity sequence against the 20 base pair reference bond compared to 0.39 ± 0.15 for the

low affinity sequence against the same reference bond. The stronger reference bond lowered

the values to 0.32±0.01 and 0.20±0.02 for high and low affinity DNA motifs, respectively.

For both DNA binding motifs, the mean NF was reduced by half if the number of reference

base pairs was doubled: 0.65 (20 base pairs) to 0.32 (40 base pairs) for the high affinity

motif and 0.39 (20 base pairs) to 0.20 (40 base pairs) for the low affinity motif. Hence,

a linear relationship between the number of reference base pair and the mean NF can be

assumed in this range of reference bond length. Interestingly, the NF values for the low

affinity sequence against the 20 base pair reference bond, 0.39, and for the high affinity

sequence against the 40 base pair reference bond, 0.32, were equal within errors (see Figure

3C) . This allows the interpretation of a difference in binding strength of the zinc finger

protein with these two DNA motifs that corresponds to the average binding strength of a
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20 base pair DNA double strand.

Thus, it was demonstrated that the specificity of DNA-protein interactions can be

quantified via the binding strength in a force-based assay in a single measurement. Fur-

thermore, the binding strength can be characterized with a simple picture by correlating it

to the average binding strength of a certain number of DNA base pairs. The parallel for-

mat of the current assay allows the measurement of several proteins against multiple DNA

duplexes in a single experiment. Further development will extend the technique towards

high throughput by increasing the number of DNA duplexes on the stamp by means of a

microplotter and decreasing the protein spot size.



Chapter 5

Outlook

This thesis demonstrates various applications for the Molecular Force Assay that have a

great potential to contribute to the solution of current biological problems. Especially its

parallel format distinguishes the MFA from other force-based techniques and enables its

use for investigations that were so far unsuited for force measurements. The force-based

aptamer sensor (chapter 4.1) characterizes even small molecules and weak binders in buffer

solution as well as complex fluids within a single measurement. Additionally, labeling of

the molecules in question is unnecessary. Hence, its principle could be utilized in diagnostic

tools that analyze medical samples like blood for properties indicating a certain malfunction

or disease. Furthermore, the MFA can assist in the development of new medical therapeu-

tics that aim at the RNA interference pathway. Chapter 4.2 describes the use of the MFA

for the screening and characterization of RNA ligands that selectively inhibit the protein

Dicer. The third part of this thesis illustrates an application of the MFA that directly

quantifies the binding strength between proteins and DNA sequences. The specificity of

a protein to all kinds of genomic DNA is of utmost importance in order to understand

transcriptional regulation. The specificity correlates with the binding strength and is, thus

accessible in force measurements. Chapter 4.3 describes the quantification of the binding

strength of a zinc finger protein with several DNA motifs within one measurement. This

clearly proves that the binding strength of multiple interactions can be determined in a

single experiment.

All three applications will increase their potential with further standardization and

miniaturization. Particularly, some progress has already been made in the miniaturization

of the MFA. For the measurements in this thesis, the spots of molecular complexes on the

glass slide had an average diameter of 1mm. Severin et al. [24] could prove that a spot size
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of 25µm2 is sufficient to get valid results. Furthermore, the fabrication of DNA microarrays

is a standard procedure so that a further parallelization of the MFA seems feasible. Addi-

tionally, the possibility to incubate every of these miniature spot with a different ligand or

protein concentration would greatly enhance the multiplexing capabilities of the MFA. This

was realized only recently by implementing the MFA in a microfluidic device [76]. Another

possible development is the combination of in vitro protein expression on a microfluidic

chip with the MFA. Proteins could be directly expressed on the chip without the need to

store them and could be immediately attached to the surface via the ybbR-Coenzyme A

technology. A button valve functionlized with the DNA sample and reference bond could

come down and quantify the protein-DNA interaction similar as described by Otten et al.

[76]. The current microfluidic chip format would, thus, allow the measurement of hundreds

of interactions in a single experiment and could extend the potential of this application of

the MFA towards high throughput.

Thus, the Molecular Force Assay is a great tool for the quantification of biomolecular

interactions. Further developments, as are partly already realized, will greatly enhance its

potential to contribute to the solution of current biological problems.
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DNA as a Force Sensor in an Aptamer-Based
Biochip for Adenosine
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Without prior signal amplification, small molecules are
difficult to detect by current label-free biochip approaches.
In the present study, we developed a label-free capture
biochip based on the comparative measurement of un-
binding forces allowing for direct detection of small-
molecule-aptamer interactions. The principle of this
assay relies on increased unbinding forces of bipartite
aptamers due to complex formation with their cognate
ligands. The bipartite aptamers are immobilized on glass
support via short DNA duplexes that serve as references
to which unbinding forces can be compared. In a simple
model system, adenosine is captured from solution by an
adenosine-selective aptamer. Linking the molecular chains,
each consisting of a short DNA reference duplex and a
bipartite aptamer, between glass and a poly(dimethylsi-
loxane) (PDMS) surface and subsequently separating the
surfaces compares the unbinding forces of the two bonds
directly. Fluorescence readout allows for quantification
of the fractions of broken aptamer and broken reference
bonds. The presence of micromolar adenosine concentra-
tions reliably resulted in a shift toward larger fractions of
broken reference bonds. Because of the force-based
design, the interactions between the bipartite aptamer and
the target, rather than the presence of the target, are
detected and no washing step disturbing the equilibrium
state prior to probing and no reporter aptamer or antibody
is required. The assay exhibits excellent selectivity against
other nucleotides and detects adenosine in the presence
of a complex molecular background. Multiplexing was
demonstrated by performing whole titration experiments
on a single chip revealing an effective half-maximal
concentration of 124.8 µM agreeing well with literature
values.

A current goal within the field of bioanalytical methods is the
development of label-free detection formats, which probe multiple
interactions simultaneously employing massively parallel assays.1

High impact of DNA biochips on the field of biology provides
motivation to develop arrays for other classes of molecules,

including peptides, proteins, and small molecules.2 DNA or RNA
aptamers are promising candidates for fabrication of microarray
surfaces, which simply and effectively capture above-mentioned
analytes from solution. Numerous reports confirm that aptamers
specifically respond to all kinds of molecules3 such that they are
increasingly recognized as rivals for antibodies in in vitro diag-
nostics4 and molecular sensor applications,5-7 surpassing them
in terms of small molecular weight, ease of modification, and
ability to detect toxins.8 In contrast to proteins, which are difficult
to immobilize on surfaces due to their tendency to adsorb
unspecifically and thus lose activity,9 standard protocols for
oligonucleotide microarrays are used for aptamer biochips.

The development of such arrays has proven to be more difficult
than expected. Small molecules in particular are rarely detected
due to several reasons: First, their small size induces only small
signals using current biochip-compatible, label-free detection
techniques (e.g., surface plasmon resonance,10 electrochemical,11

or cantilever bending12 based sensors). Second, background
signals are generally large in biochip assays due to the tendency
of molecules to adsorb to basically all man-made surfaces.13-15

Third, aptamers developed against small molecules are generally
of low affinity,16 prohibiting washing steps that would increase
the signal-to-background ratio. The combination of small signal,
high background, and no option for stringent washes creates an
overwhelming technical hurdle for the quantification of small
molecules without prior signal amplification. Here, we present a
widely applicable strategy for the direct detection of small-
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molecule-aptamer complex formation. Our approach reports
interactions between small molecules and aptamers, rather than
the mere presence of small molecules close to a sensor surface.
Thereby, nonspecific adhesion, the major bottleneck in the
development of next-generation biochips, is rendered insignificant.

For detection of the bound analyte we applied the comparative
unbinding force assay (CUFA), which operates label-free and is
insensitive to nonspecifically adsorbed target molecules. CUFA
has already been applied to detect single-nucleotide polymor-
phisms,17 to study differences of antibody/antigen interactions,18

to eliminate cross-reactions on protein microarrays,19 and to
investigate the chiral selectivity of small peptides.20 Whereas
standard single-molecule force spectroscopy experiments measure
the unbinding forces of molecular complexes by a microscopic,
springlike object, e.g., an atomic force microscopy (AFM) canti-
lever21 or a bead in an optical trap,22 CUFA reduces the force
detector to a single DNA reference duplex. Many molecular
chains, each consisting of a bipartite aptamer and a DNA reference
duplex, are grafted between two surfaces. The linker between the
bonds is conjugated to a fluorophore. Upon separation of the
surfaces, a force gradually builds up within the molecular chain
and the unbinding forces of the bipartite aptamer structure are
compared directly against the unbinding forces of the short DNA
reference duplex. The result, i.e., the fractions of broken aptamer
and broken reference bonds, is stored in a binary fluorophore
distribution (fluorophore top or bottom surface). If complex
formation between aptamer and ligand results in increased
unbinding forces of the aptamer structure, a shift toward larger
fractions of broken reference bonds is expected. Thereby, CUFA
combines the advantages of fluorescence-based techniques, namely,
fast and sensitive detection employing commercially available
scanners or fluorescence microscopes, with the advantages of
label-free methods, namely, no undesirable label interactions and
the option for simultaneous detection of multiple analytes.
Importantly, high specificity when investigating molecular interac-
tions is a major strength of CUFA. Current fluorescent23 and label-
free biochip methods do not allow for discrimination between
specifically and nonspecifically adhered analytes, which may lead
to false-positives. Washing steps are performed to reduce non-
specific adhesion. However, if molecular interactions with equi-
librium dissociation constants in the micromolar range need to
be characterized, specifically but weakly interacting molecules are
also removed resulting in false-negatives. CUFA overcomes these
difficulties by detecting the interaction between the capture

aptamer and its target and not merely the presence of the target.
In the present study, we investigated the interaction between

adenosine and an adenosine-selective aptamer. This model system
isinstructiveforthereasonsthattheaptameriswell-characterized,24-26,28

the interaction is very weak, and the analyte is so small that it
cannot be detected directly with surface plasmon resonance.6

EXPERIMENTAL SECTION
Immobilization of Aptamer-DNA Unbinding Force Com-

plex on Slides (Bottom Surface). DNA oligomers 1, 2, and 3
were purchased HPLC grade from IBA GmbH (Göttingen,
Germany). Sequences and modifications of all oligonucleotides
are the following: 1, NH2-(hexaethyleneglycol)5-5′-TTT TTT TTT
TCG GTC TGT CGC GTA CTT GCA-3′; 2, 3′-GCC AGA CAG
CGC ATG AAC GTT TTT T-5′-5′-T(Cy3) TTT TTC AAC ATA
CCT GGG GGA GTA TAT AAT GAC TGA CCC C-3′; 3, biotin-
5′-TTT TTT TTT TGG GGT CAG TCA TTA TAG CGG AGG
AAG GTA TGT TG-3′. For the upside-down experiment the
NH2-(hexaethyleneglycol)5 (HEGL) and biotin modifications are
exchanged. The five HEGL linkers are connected via phosphate
groups. DNA oligomer 1 is amine-modified, which allows
covalent linkage to aldehyde-functionalized glass slides (Schott
GmbH, Jena, Germany). We spotted 2 µL drops of 5× SSC
(saline sodium citrate; Sigma-Aldrich GmbH, Munich, Ger-
many) containing 25 µM oligomer 1 on the aldehyde slide in
a 4 × 4 pattern and incubated the slide in a saturated NaCl
ddH2O atmosphere overnight. After washing the slide with
ddH2O containing 0.2% sodium dodecyl sulfate (SDS; VWR
Scientific GmbH, Darmstadt, Germany) and thoroughly rinsing
the slide with ddH2O we reduced the resulting Schiff bases
with 1% aqueous NaBH4 (VWR Scientific GmbH, Darmstadt,
Germany) for 20 min. Subsequently, the slide was washed with
1× SSC and thoroughly rinsed with ddH2O. In order to reduce
nonspecific binding, the slides were blocked in 1× SSC
containing 4% bovine serum albumin (BSA; Sigma-Aldrich
GmbH, Munich, Germany) for 30 min. Custom-made 16-well
silicone isolators (Grace-Biolabs, OR) were placed on top of
the immobilized DNA oligomer 1. The 0.1 µM Cy3-modified
oligomer 2 and 0.2 µM biotin-modified oligomer 3 were
hybridized to the latter for 1 h, completing the 1 ·2 ·3 complex
on the glass slide. The slides were washed with 1× SSC
containing 0.05% SDS and thoroughly rinsed with 1× SSC. The
silicone isolators stayed on the slide throughout the experi-
ment, and care was taken that after hybridization the slide
remained immersed in 1× SSC.

Ligand Incubation. The 16-well silicon isolators allow for
incubation with different concentrations of the ligand molecule
on one slide. An amount of 100 µL of the respective solutions
was circulated through the wells employing a self-made microf-
luidic system. The latter was driven by two 16-channel peristaltic
pumps (Ismatec GmbH, Wertheim-Mondfeld, Germany) pumping
the different solutions through tubing and blunt needles leading
into and out of the wells in a closed circuit. The tubing was

(17) Albrecht, C.; Blank, K.; Lalic-Multhaler, M.; Hirler, S.; Mai, T.; Gilbert, I.;
Schiffmann, S.; Bayer, T.; Clausen-Schaumann, H.; Gaub, H. E. Science
2003, 301, 367–370.

(18) Blank, K.; Mai, T.; Gilbert, I.; Schiffmann, S.; Rankl, J.; Zivin, R.; Tackney,
C.; Nicolaus, T.; Spinnler, K.; Oesterhelt, F.; Benoit, M.; Clausen-Schau-
mann, H.; Gaub, H. E. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 11356–
11360.

(19) Blank, K.; Lankenau, A.; Mai, T.; Schiffmann, S.; Gilbert, I.; Hirler, S.;
Albrecht, C.; Benoit, M.; Gaub, H. E.; Clausen-Schaumann, H. Anal. Bioanal.
Chem. 2004, 379, 974–981.

(20) Dose, C.; Ho, D.; Gaub, H. E.; Dervan, P. B.; Albrecht, C. Angew. Chem.,
Int. Ed. 2007, 46, 8384–8387.

(21) Florin, E. L.; Moy, V. T.; Gaub, H. E. Science 1994, 264, 415–417.
(22) Svoboda, K.; Schmidt, C. F.; Schnapp, B. J.; Block, S. M. Nature 1993,

365, 721–727.
(23) Warren, C.; Kratochvil, N.; Hauschild, K.; Foister, S.; Brezinski, M.; Dervan,

P.; Phillips, G., Jr.; Ansari, A. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 867–
872.

(24) Huizenga, D. E.; Szostak, J. W. Biochemistry 1995, 34, 656–665.
(25) Lin, C. H.; Patel, D. J. Chem. Biol. 1997, 4, 817–832.
(26) Stojanovic, M. N.; de Prada, P.; Landry, D. W. J. Am. Chem. Soc. 2000,

122, 11547–11548.
(28) Jhaveri, S. D.; Kirby, R.; Conrad, R.; Maglott, E. J.; Bowser, M.; Kennedy,

R. T.; Glick, G.; Ellington, A. D. J. Am. Chem. Soc. 2000, 122, 2469–2473.
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passivated prior to use with 1× SSC containing 4% BSA for 30 min.
Adenosine triphosphate (ATP), adenosine monophosphate (AMP),
and guanosine triphosphate (GTP) were obtained from Roche
(Roche GmbH, Grenzach, Germany).

Immobilization of Streptavidin on Poly(dimethylsiloxane)
Stamp (Top Surface). Micro- and macrostructered poly(dimeth-
ylsiloxane) (PDMS) stamps were fabricated by casting 1:10 cross-
linker/base (Sylgard, Dow Corning, MI) into a custom-made
Pyrex/silicon wafer (HSG-IMIT, Villingen-Schwenningen, Ger-
many) according to standard procedures.29 The resulting PDMS
stamp carries pillars of 1 mm diameter and 1 mm height in a
square pattern on a 3 mm thick basis. The spacing between two
adjacent pillars is 3 mm. The flat pillar surface is microstructured
with 100 µm × 100 µm pads separated by 41 µm wide and 5 µm
deep rectangular trenches allowing for drainage of liquid during
the contact and separation process. Before free polymers were
extracted from the device in toluene using a Soxhlet device, the
PDMS was cut in 4 × 4 pillar pieces. PDMS was then activated in
12.5% HCl overnight and derivatized with (3-glycidoxypropyl)-
trimethoxysilane (ABCR, Karlsruhe, Germany) in order to gener-
ate epoxide groups. NH2-PEG-biotin (3400 g/mol; Rapp
Polymere, Tübingen, Germany) was molten at 80 °C, and
roughly 1 µL was spotted on each pillar followed by overnight
incubation in argon atmosphere at 80 °C. The excess polymers
were thoroughly removed with ddH2O. Shortly before the
experiment the PDMS was incubated with 1 µg/mL strepta-
vidin (Thermo Fisher Scientific, Bonn, Germany) in 1× SSC
and 0.4% BSA for 30 min, washed with 1× SSC containing 0.05%
Tween 20 (VWR Scientific GmbH, Darmstadt, Germany), and
gently dried with N2 gas.

Contact Process and Fluorescence Readout. On an in-
verted microscope (Carl-Zeiss MicroImaging GmbH, Göttingen,
Germany) the slide was fixed on a stainless steel stage with
permanent magnets. The PDMS device was placed upside down
on a glass block connected to a xyz stepper motor system (OWIS
GmbH, Staufen, Germany) and a closed-loop piezo (Piezo Systems
Jena, Germany). Prior to the contact process, the slide and the
PDMS stamp were aligned parallel to each other, employing
reflection interference microscopy30 and a commercially available
gimbal adjustment system (OWIS GmbH, Germany) mounted to
the piezo. With the use of the latter, contact was established. Care
was taken that each individual pillar is compressed not more than
3 µm. The separation of the two surfaces was carried out at
constant velocity of 1 µm/s. Fluorescence images were recorded
before and after the contact process employing a Tecan microarray
scanner (Tecan Austria GmbH, Grödig, Austria).

RESULTS AND DISCUSSION
Detection Principle of the Force-Based Aptamer Sensor.

The implementation of this format is shown schematically in
Figure 1. Although the instrumentation is almost identical to a
microcontact printing setup,31 the key to the comparable unbind-
ing force assay lies within the molecular setup (Figure 1a). A short
DNA duplex in shear geometry serves as a force reference. One

strand, oligomer 1, is connected to glass support (bottom surface)
via a (hexaethyleneglycol)5 spacer. The complementary strand,
oligomer 2, which also carries a Cy3 fluorescence label,
possesses an overhang containing the sequence of one part of
the bipartite ATP aptamer. The complementary aptamer strand,
oligomer 3, is biotin-modified at the end of a polythymine linker
and completes the 1 ·2 ·3 complex on the glass slide. We chose
the reference force duplex and the stem regions flanking the
aptamer such that their calculated free energies32 are similar,
assuming that similar free energies also imply similar unbind-
ing forces under an external load. The spontaneous off-rates
are sufficiently slow such that the complex is stable for days
under physiological conditions.

In Figure 1b the 1 ·2 ·3 complex on the glass surface was
brought into contact with a PDMS surface functionalized with
streptavidin attached to 3400 g/mol PEG linkers, allowing for
biotin · streptavidin complexation. After 10 min, the surfaces were
separated at a constant velocity of 1 µm/s (Figure 1c). Thereby,
the polymeric anchors were stretched and a force gradually built
up until the chain of molecular complexes ruptured either at the

(29) Wilbur, J. L.; Kumar, A.; Kim, E.; Whitesides, G. M. Adv. Mater. 1994, 6,
600–604.

(30) Wiegand, G.; Neumaier, K. R.; Sackmann, E. Appl. Opt. 1998, 37, 6892–
6905.

(31) Bernard, A.; Renault, J. P.; Michel, B.; Bosshard, H. R. Adv. Mater. 2000,
12, 1067–1070. (32) Kibbe, W. A. Nucleic Acids Res. 2007, 35, 43–46.

Figure 1. Schematic representation of the comparative unbinding
force assay for the detection of small molecules. (a) DNA reference
duplexes 1 ·2 and bipartite aptamers 2 ·3 are bound in series via
PEG spacers to glass support. Depending on the presence of ATP,
the aptamer is in its bound or free state. A streptavidin-functionalized
PDMS surface is approached to the glass surface. (b) PDMS couples
to the 3 oligomers of the bipartite aptamers via biotin ·streptavidin
complex formation. (c) The two surfaces are separated, and an
increasing force builds up until either the reference duplex or the
bipartite aptamer breaks. (d) Aptamer-ATP complex formation
increases the unbinding forces of the bipartite aptamer. In comparison
to the case that no ATP is present, a larger fraction of linking DNA
strands conjugated to fluorophores is transferred from the glass to
the PDMS. (e) At 0 mM ATP the bipartite aptamer is present as a
loose bubble flanked by Watson-Crick base-paired stem regions.
(f) Fluorescence on glass after contact without prior incubation with
ATP. The squarelike features (100 × 100 µm2) correspond to the
area contacted with microstructured PDMS. (g) At 2 mM ATP the
bipartite aptamer bases show enhanced stacking upon binding of two
molecules of ATP. (h) Fluorescence on glass after contact with prior
incubation with 2 mM ATP. In comparison to the 0 mM ATP case, a
larger fraction of fluorescence was transferred from the glass to the
PDMS.
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1 ·2 reference or at the 2 ·3 aptamer. We neither recorded nor
analyzed the macroscopic force needed to pull the two surfaces
apart. The unbinding forces are compared intrinsically and
independently for each molecular chain. Aptamer-ATP complex
formation is expected to increase the aptamer unbinding forces
and as a result increase the fraction of the broken reference bonds
(Figure 1d). Macroscopically, the fractions of broken reference
bonds and broken aptamer bonds were determined via the location
of the fluorescently labeled oligomers 2. Parts f and h of Figure
1 show the fluorescence intensity of the DNA-hybrids after contact
with and without the presence of 2 mM ATP. The squarelike
features correspond to the contacted area. It is qualitatively
observed that without the presence of ATP a smaller fraction of
fluorophores is transferred from the glass slide to the PDMS
compared to the case when the spot is incubated with 2 mM ATP.
This is in agreement with ATP stabilizing the aptamer bond and
thus an increased probability that the reference bonds fail.
Consequently, the fraction of retained oligomers 2 and thus
fluorophores on the glass slide is reduced.

The breakage of the biotin · streptavidin bond may be neglected
since it unbinds at significantly higher forces than short double-
stranded DNA. However, unbinding forces strongly depend on
the applied force loading rates. Since in our case the force loading
rates were not recorded, they are estimated from single-molecule
experiments. For the combination of an applied separation velocity
of 1 µm/s, a combined PEG linker of 10 000 g/mol and a 20 bp
DNA duplex, a force-loading rate in the order of 103 pN/s is

typically obtained.33 Under these conditions a 20 bp DNA
duplex unbinds at around 40 pN,33 whereas biotin · streptavidin
unbinds at around 80 pN or even higher forces.34,35

Quantitative Fluorescence Analysis. Quantitative determi-
nation of the ratio between broken aptamer bonds and broken
reference bonds requires a more complex analysis, since it cannot
be assumed that all DNA-hybrids physically connect to both
surfaces via the biotin · streptavidin bond. Uncoupled DNA-hybrids
result in a background signal. In our experiments, we determined
and subtracted the latter for each squarelike feature individually
in order to calculate the normalized fluorescence (NF). The NF
is defined as the ratio between broken 2 ·3 complexes and total
amount of DNA-hybrids, to which a load was applied, and is
determined as follows: Initially, when the 1 ·2 ·3 DNA-hybrids
are immobilized on glass, a fluorescence image is taken (Figure
2, parts a and f). The DNA-hybrids are incubated with ATP (Figure
2b). The PDMS stamp is lowered toward the glass surface
allowingtheDNA-hybridstocoupletothePDMSviabiotin ·streptavidin
complexation. In the presence of the ATP the PDMS is retracted
(Figure 2c), and an increasing force is built up until one of the
links breaks. Not all of the DNA-hybrids are coupled via the
biotin · streptavidin bond. As illustrated in Figure 1d, the DNA-
hybrids appear in three different states 1 ·2 ·3 (S0), 1 ·2 (S1),

(33) Morfill, J.; Kuhner, F.; Blank, K.; Lugmaier, R.; Sedlmair, J.; Gaub, H. E.
Biophys. J. 2007, 93, 2400–2409.

(34) Merkel, R.; Nassoy, P.; Leung, A.; Ritchie, K.; Evans, E. Nature 1999, 397,
50–53.

(35) Pincet, J. Biophys. J. 2005, 89, 4374–4381.

Figure 2. Detailed schematic of data acquisition and processing. (a) Initially all DNA-hybrids are in the state S0. The chip fluorescence is
recorded at 550-600 nm (Cy3Start). (b) Incubation with ATP. (c) Coupling of the DNA-hybrids to a second surface and separation of the surfaces
in the presence of ATP. (d) DNA-hybrids appear in the states S0, S1, and S2. The chip fluorescence is recorded again at 550-600 nm (Cy3Rem).
(e) Labeling of noncoupled DNA-hybrids with streptavidin Alexa Fluor 647 (SAAF) and recording of fluorescence at 655-695 nm (SAAFRem). (f)
Cy3Start chip fluorescence image and corresponding line profile allowing for determination of the initial amount of DNA-hybrids. (g) Cy3Rem chip
fluorescence image and corresponding line profile allowing for determination of the fraction S2. (h) SAAFRem chip fluorescence image and
corresponding line profile allowing for determination of the fractions S0 and S1. The fluorescence line profiles are averaged over 40 µm.
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and 1 (S2) on the glass slide. For simplicity we refer to the
amounts of S0, S1, and S2 as fractions normalized to all DNA-
hybrids, i.e., the relation S0 + S1 + S2 ) 1 is always true. Only
molecules in state S1 and S2 were exposed to an unbinding force.
Molecules in the state S0 were not coupled to the PDMS surface
and therefore retained the biotinylated oligomer 3. From the Cy3
fluorescence intensity per unit area the fraction of S2 is determined
(Figure 2, parts d and g, eq 3). In order to distinguish S0 and S1,
the former is labeled with the spectrally distinct fluorescent
marker streptavidin Alexa Fluor 647 (SAAF, Figure 2, parts e and
h). The labeling is performed subsequent to the Cy3 readout in
order to avoid quenching or fluorescence resonance energy
transfer (FRET) effects. This allows us to determine the fractions
of S0 and S1 from SAAF fluorescence (eqs 1 and 2).

For the analysis only the Cy3Rem and SAAFRem fluorescence
images are employed. SAAFStart and Cy3Start are determined
from the noncontacted regions adjacent to each squarelike
feature. The NF is given by the fraction of broken 2 ·3 bonds
(S1) normalized to the fraction of bonds that have been under
load (S1 + S2).

The NF directly reflects the relative unbinding forces, a
physical quantity inherent to a pair of molecular complexes, and
is not influenced by the number of molecules under load. The
NF should not be confused with Cy3Ratio. For a fixed mechanical
stability, the latter depends on the fraction of coupled DNA-
hybrids, whereas the NF does not. The NFs presented in this
work are the averages of all squarelike features contacted
properly within an experiment. The NF experimental error is
estimated from repeated blank measurements yielding a
standard deviation of 0.018.

CUFA Detects the Concentration of Adenosine. Varying
concentrations of ATP (0-2000 µM) were applied to the different
DNA-hybrid spots on one slide (Figure 3a). This way a whole
concentration range was measured within a single experiment.
Under physiological buffer conditions (15 mM sodium citrate, 150
mM NaCl, 1 mM MgCl2, pH 7.4), the 1 ·2 ·3 sensor reliably
reported the presence of its target. At zero concentration the
normalized fluorescence was 0.792 ± 0.018. Upon addition of
micromolar concentrations of ATP, the normalized fluorescence
decreased and reached its minimum of 0.683 ± 0.018 at 0.5
mM as shown in Figure 3b. This is in agreement with a
stabilizing effect of ATP on the aptamer structure. Fitting the ATP
titration data to the Hill equation with slope n ) 2 revealed a half-

maximal effective concentration EC50 ) 124.8 µM with a 95%
confidence interval of [102.8 µM, 151.4 µM]. Huizenga and Szostak
demonstrated that the equilibrium dissociation constant of the
adenosine-aptamer interaction depends upon the specific salt and
Mg2+ concentrations.24 For the present buffer conditions, the
experimentally obtained EC50 value is in agreement with
previously published values of the equilibrium dissociation
constant.24-28

In order to ensure that the molecular setup responds as
expected, we investigated, analogously to the regular configuration
1 ·2 ·3, the upside-down configuration 3 ·2 ·1. Here, the position
of the target and reference bond is exchanged, and thus the
response to the addition of adenosine should be inverted. Indeed,
the NF increased from 0.353 ± 0.018 to a maximal NF of 0.489 ±
0.018 upon increasing the ATP concentration from 0 to 0.5 mM
(Figure 3c). The aptamer bond is now adjacent to the glass slide.
Upon binding of the target molecule, the aptamer is less likely to
break and a larger fraction of fluorophores remains on the glass
slide.

Sensitivity. The sensitivity of our assay is estimated from the
signal-to-noise ratio. For ATP concentrations below 53.5 µM the
latter is lower than 1, and thus ATP is not detectable. From 53.5

(27) Stojanovic, M. N.; de Prada, P.; Landry, D. W. J. Am. Chem. Soc. 2001,
123, 4928–4931.

S0 ) SAAFRatio (1)

S1 ) Cy3Ratio - SAAFRatio (2)

S2 ) 1 - Cy3Ratio (3)

Cy3Ratio )
Cy3Result

Cy3Start
(4a)

SAAFRatio )
SAAFResult

SAAFStart
(4b)

NF ) S1
S1 + S2

)
Cy3Ratio - SAAFRatio

1 - SAAFRatio
(5)

Figure 3. (a) Self-made microfluidic device allows incubation of 16
identical DNA-hybrid spots with different concentrations of ATP on a
single chip. In the presence of ATP, the chip is contacted with a 16
pillar PDMS contact device and read out via fluorescence. (b)
Normalized fluorescence for increasing concentrations of ATP and
GTP in the regular configuration 1 ·2 ·3. The solid line is the
corresponding fit to the Hill equation. (c) Upside-down configuration
3 ·2 ·1.

3163Analytical Chemistry, Vol. 81, No. 8, April 15, 2009

D
ow

nl
oa

de
d 

by
 B

B
W

S 
C

O
N

SO
R

T
IA

 G
E

R
M

A
N

Y
 o

n 
Ju

ly
 1

5,
 2

00
9

Pu
bl

is
he

d 
on

 M
ar

ch
 1

9,
 2

00
9 

on
 h

ttp
://

pu
bs

.a
cs

.o
rg

 | 
do

i: 
10

.1
02

1/
ac

80
27

66
j



to 310.3 µM, ATP is quantified via the change in normalized
fluorescence. At higher ATP concentrations the change in normal-
ized fluorescence saturates, and thus ATP is detected; however,
it cannot be quantified. This is comparable to fluorescent sensors
based on aptamer assembly26 or folding.27,28 In recent publications,
several groups demonstrated the use of structure-switching
aptamer sensors in combination with signal amplification tech-
niques using gold nanoparticles. For these assays larger ranges
of sensitivity were reported.5,6

Selectivity. To demonstrate the selectivity of our force-based
assay, separate experiments were conducted on GTP (Roche
GmbH, Grenzach, Germany) and AMP (Roche GmbH, Grenzach,
Germany). Since the aptamer recognizes adenosine, the addition
of AMP resulted in a similar response like ATP (Supporting
Information Figure S1). Conversely GTP, where the adenosine
base is exchanged with a guanosine base, produced no detectable
response (Figure 3c). The results demonstrated that the developed
strategy has sufficient selectivity to detect the interaction between
adenosine and the antiadenosine aptamers immobilized on the
chip surface.

Detection of Adenosine in Molecular Crowded Environ-
ment. The experiments presented above were performed in pure
1× SSC buffer. However, because of the force-based design, the
experimental result should only be susceptible to molecules
interacting directly with the aptamer structure. In order to
demonstrate this, we repeated the ATP experiments in 1× SSC
buffer and 10% fetal bovine serum (FBS, Sigma-Aldrich, Germany).
While the force comparison was carried out in the presence of
the ligand and a molecular crowded solution, the readout of the
result occurred subsequently and is therefore insensitive to
additional washing steps, as long as these do not dissociate the
DNA-hybrids. As shown in Figure 3, parts b and c, the same
response is observed in the presence of FBS as for the FBS-free
measurements.

CONCLUSIONS
In the present study, we employed the CUFA as a label-free

aptamer-based capture biochip. The design relies on an increased
stability of bipartite aptamers upon binding of its target molecules.
The assay reliably reported the presence of adenosine for
concentrations above 53.5 µM and allowed quantitative detection
of adenosine for concentrations between 53.5 and 310.3 µM. The

Hill equation governs the response of the assay with an EC50 )
124.8 µM agreeing well with literature values for the equilibrium
dissociation constant of the antiadenosine aptamer.

The limited sensitivity range and the dependence of the
equilibrium constant (and thus of the assay response) upon
specific salt and Mg2+ concentrations renders quantitative
detection of adenosine impracticable. Ionic concentrations of
real samples are hardly ever known, and adenosine detection
assays with superior sensitivity ranges are available. The
strength of the assay lies within the fast and reliable charac-
terization of the equilibrium dissociation constant of the
interaction between a small molecule and a low-affinity aptamer.
This was demonstrated in pure SSC buffer as well as in a
molecular crowded solution. Producing reliable equilibrium
binding data within the micromolar regime still poses a
challenge for existing high-throughput techniques.36 Con-
versely, implementing aptamers of higher affinity can yield
more sensitive sensors for their cognate molecules. Due to the
label-free, microarray-compatible design, it is easily imaginable
to test the presence of various analytes in parallelsbasically
only limited by the number of available aptamer structures.
Detection of proteins and peptides, simultaneous detection of
multiple analytes, and miniaturization will be reported elsewhere.
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Experiments with AMP 

Additional to the experiments with ATP, we conducted experiments on the 1•2•3 molecular 

setup in presence and absence of 2 mM AMP. Within the experimental error, the change in 

normalized fluorescence was identical compared to the addition of 2 mM ATP. Explicitly, the 

normalized fluorescence was 0.80±0.018 for the 0 mM case and 0.67±0.018 for the 2 mM 

case. 

 

Figure S1. (a) Fluorescence on glass after contact without prior incubation with AMP. The 

square-like features (100x100 µm2) correspond to the area contacted with microstructured 

PDMS. (b) Fluorescence on glass after contact with prior incubation with 2 mM AMP. 

Compared to the 0 mM AMP case, a larger fraction of fluorescence was transferred from the 

glass to the PDMS. 



A.2 Publication 2: Sequence-specific inhibition of Dicer measured with a
force-based microarray for RNA ligands 53

A.2 Publication 2: Sequence-specific inhibition of Dicer

measured with a force-based microarray for RNA

ligands

Katja Limmer, Daniela Aschenbrenner and Hermann E. Gaub;

Nucleic Acids Research, 2013, Vol. 41, No. 6, e69



54 A. Publications



Sequence-specific inhibition of Dicer measured with
a force-based microarray for RNA ligands
Katja Limmer, Daniela Aschenbrenner and Hermann E. Gaub*

Lehrstuhl für Angewandte Physik and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität,
Amalienstrasse 54, 80799 Munich, Germany

Received September 17, 2012; Revised December 11, 2012; Accepted December 13, 2012

ABSTRACT

Malfunction of protein translation causes many
severe diseases, and suitable correction strategies
may become the basis of effective therapies. One
major regulatory element of protein translation is
the nuclease Dicer that cuts double-stranded RNA
independently of the sequence into pieces of 19–22
base pairs starting the RNA interference pathway
and activating miRNAs. Inhibiting Dicer is not desir-
able owing to its multifunctional influence on the
cell’s gene regulation. Blocking specific RNA se-
quences by small-molecule binding, however, is a
promising approach to affect the cell’s condition in
a controlled manner. A label-free assay for the
screening of site-specific interference of small mol-
ecules with Dicer activity is thus needed. We used
the Molecular Force Assay (MFA), recently de-
veloped in our lab, to measure the activity of Dicer.
As a model system, we used an RNA sequence that
forms an aptamer-binding site for paromomycin, a
615-dalton aminoglycoside. We show that Dicer
activity is modulated as a function of concentration
and incubation time: the addition of paromomycin
leads to a decrease of Dicer activity according to
the amount of ligand. The measured dissociation
constant of paromomycin to its aptamer was
found to agree well with literature values. The
parallel format of the MFA allows a large-scale
search and analysis for ligands for any RNA
sequence.

INTRODUCTION

The enzyme Dicer has increasingly been attracting atten-
tion owing to its crucial role in the RNA interference
(RNAi) pathway. RNAi is an endogenous means used
by cells to regulate protein translation at the
post-transcriptional level (1). Single-stranded RNA se-
quences of 18–25 nucleotides bind to specific mRNAs

and hinder protein translation. Although various classes
of small regulatory RNA have been identified, two main
categories of single-stranded RNA (ssRNA) involved in
metazoan RNA interference can be distinguished that
differ in their origin and function but share processing
by Dicer: short-interfering RNA (siRNA) and
microRNA (miRNA). siRNA precursors are long fully
complementary dsRNA that are typically introduced
directly into the cytoplasm or taken up from the environ-
ment, though recent findings suggest that siRNA may also
originate from endogenous sources like transposons (2).
Hence, the main task of the siRNA-processing machinery
seems to be the defense of genome integrity in response to
foreign or invasive nucleic acids (3). miRNAs are
transcribed and pre-processed in the nucleus into incom-
plete base-paired stem-loop structures, known as
pre-microRNAs. They are then transferred to the cyto-
plasm, where Dicer matures the pre-miRNA by cleaving
the stem loop structure. The mature miRNA strand binds
to the mRNA and usually inhibits translation in combin-
ation with a protein complex known as RNA-induced
silencing complex (RISC) (4), although gene up-regulation
by the RISC complex has also been reported (5,6). In
contrast to siRNA, which requires total complementarity
to its target sequence, miRNAs and their target mRNA do
not need to base-pair perfectly so that a certain miRNA
can bind and regulate a variety of mRNA sequences.
Several miRNAs may also play a role in the regulation
of a single mRNA transcript. Thus, miRNA seems to
fine-tune protein expression. The amount of the various
miRNA strands differs according to cell age, cell type and
health status (7). So miR-1 appears to be tissue specific
and was only found in heart tissue and somites of mice
embryos (8). Evidence is accumulating that miRNAs are
critical for many cellular processes such as developmental
timing, cell proliferation or stem cell division (9).
Consequently, many disease states occur or are sustained
by miRNA dysregulation (10). miR-21, for example, was
up-regulated in all tumour samples analysed by (11).
Therefore, targeting the RNAi pathway at the step of
Dicer cleavage is a promising approach for new therapies
against illnesses like cancer or metabolic diseases.
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A relatively small protein of <250 kDA, Dicer has been
found in the cytoplasm of all eukaryotes studied to date
(12), sometimes in several variants with different tasks.
For instance in Drosophila, Dicer-1 cuts pre-miRNA
while Dicer-2 generates siRNA from long dsRNA precur-
sors (13). The L-shape of the protein seems to be
well-conserved for all variants. Recognition of dsRNA
by a PAZ domain occurs in the head of Dicer, which is
separated from the two RNAse III domains by a ruler
domain (Figure 2A). The base of the L is formed by a
helicase, whose function is not totally understood (12).
Dicer cleaves long and short (>30 nt) dsRNA strands
with equal efficiency, whereas duplexes of �21 nt are not
processed in vitro. A 30 2-nucleotide-long overhang, a
characteristic of pre-microRNA molecules, increases
Dicer’s efficiency compared with blunt ends (14).
To interfere with RNAi, knocking out Dicer is not ad-

visable owing to Dicer’s crucial role for several cellular
processes. On the other hand, a small molecule that
binds to the pre-miRNA in question with high specificity
and hinders Dicer from maturing the miRNA in question
is a great drug candidate. The difficulty, herein, lies in
finding potential ligands that bind a certain RNA
sequence with high selectivity and also interfere with
Dicer cleavage. Krützfeldt et al. (15) demonstrated that
single-stranded cholesterol-conjugated 20-O-methyl
oligoribonucleotides, complementary to a certain
miRNA and termed antagomirs, could specifically
reduce the level of that miRNA in vivo. Elmen et al. (16)
could reversibly decrease the level of plasma cholesterol by
silencing miRNA-122 with a modified antagomir in
non-human primates, thus exemplifying the possible
therapeutic value of antagomirs. In both studies, already
mature miRNAs are silenced, which might impair the
potency of these molecules, as mature miRNA are
included in the protein complex RISC and are probably
less accessible than pre-miRNA. Cellular uptake of oligo-
nucleotides is another difficulty so that Krützfeldt et al.
needed high doses to see an effect. Thus, targeting
pre-miRNA structures with small molecules has several
advantages, but the research of small-molecule RNA
binding has encountered several problems [for a review
see (17)]. Especially an easy high-throughput technique
to screen for and characterize RNA binders could speed
up the progress of finding suitable molecules.
Our technique of the Molecular Force Assay (MFA)

provides a fast and reliable tool to screen for different
RNA binders, to characterize them and to quantify their
ability to prevent Dicer from cutting. The MFA is a highly
parallel technique, described in detail in (18) and (19), to
measure unbinding forces comparatively so that small
changes in the structural stability of molecular complexes
can be detected. Two molecular bonds, a sample and a
reference bond, are linked in series between two
surfaces. One surface is retracted and a force gradually
builds up in the molecular complexes until one of the
bonds breaks. A fluorophor attached to the linking
sequence between the two molecular complexes stays
with the intact bond (Figure 1A) so that a simple fluores-
cent measurement by means of a commercially available
epi-fluorescent microscope may detect the outcome. Thus,

the mechanical stability of two molecular interactions can
be probed and compared with each other. In contrast to
other force-probe techniques like atomic force microscopy
(AFM) or optical traps that measure the unbinding force
by a spring-like macroscopic object like a cantilever, the
MFA reduces the force detector to the microscopic scale
of another molecule, a known reference DNA duplex, so
that small differences in structural stability like the
binding of a ligand may be resolved. The setup of the
MFA is designed such that a large number of molecular
complexes are tested simultaneously in one experiment on
one chip, and the outcome of this experiment gives statis-
tically significant information on the nature of the molecu-
lar interaction in question. Furthermore, as the MFA
measures the interaction force between the molecules, un-
specific binding events or complex backgrounds like serum
do not alter the experimental outcome. Thus, the MFA
allows us to detect and characterize the binding of a small
molecule to a number of different oligonucleotides or of
many small molecules to a certain RNA or DNA sequence
in a format, where the analytes are not altered, e.g. by
labelling. So far, the MFA has been applied to detect
single-nucleotide polymorphism (20), study differences in
antibody/antigen interactions (21), investigate the chiral
selectivity of small peptides (22), characterize the binding
properties of an aptamer to its ligand in a molecularly
crowded ambient (23) and to analyse protein–DNA inter-
action (19).

Here, a 35bp RNA duplex functions as a substrate for
Dicer and is tested against a 22bp or 27bp DNA double
strand that does not interact with Dicer. The two molecular
complexes are linked in a zipper configuration so that a
force stretching the bonds unzips the two duplexes
(Figure 1A). The construct is covalently attached to the
glass slide at the bottom and via a biotin–streptavidin–
biotin complex to the upper poly(dimethylsiloxane)
(PDMS) stamp surface (Figure 1A). The cyanine dye Cy5
between the RNA and DNA duplex stays with the intact
bond after the rupture process, while a second fluorophor
Cy3, conjugated to the 30 end of the uppermost strand,
constitutes a Fluorescence Resonance Energy Transfer
(FRET) pair with the Cy5 and quantifies the constructs
that have not properly coupled to the upper surface and,
thus, have not been under force load. If Dicer cuts off
about 20bp of the RNA duplex, this bond is weakened
and breaks with higher probability. Thus, Dicer activity
can be detected and is quantified for different amounts of
Dicer and incubation times. As a proof of principle, the
RNA double strand incorporates an RNA aptamer
specific for the aminoglycoside paromomycin, which we
will characterize by measuring the dissociation constant.
It is to be expected that the interaction of paromomycin
with its aptamer will hinder Dicer from binding to the
RNA duplex and, thus, from cutting.

MATERIALS AND METHODS

DNA/RNA constructs

The molecular complexes consist of three strands that are
successively hybridized in our laboratory and are shown in
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Figure 1C. The lowermost is modified with an amino
group in order to covalenty attach the oligonucleotides
to a surface. Avoiding surface effects, 5 HEGL
(hexaethyleneglycol) molecules act as an additional
spacer between the amino group and the oligonucleotides.
Furthermore, poly-T separate the double-stranded
sequences from the surfaces and each other. The
cyanine dyes Cy5 and Cy3 are attached by a
N-hydroxysuccinimide ester to the middle and uppermost

strand, respectively, at a distance of six nucleobases in the
hybridized complex to act as a FRET pair. The medium
strand is inverted in the middle by inverse amidites since
the force to melt a DNA or RNA double strand depends
on the direction of the helix to which the force is applied.
The RNA complex features a two nucleotide overhang at
the 30 end in order to maximize Dicer processing (14).
Proving the validity of our results, we carried out all
experiments in parallel with both possible geometries.

Figure 1. Schematics of the Molecular Force Assay. (A) The molecular complex is built up by covalently attaching the lowest strand to a glass slide
and, subsequently, binding the pre-hybridized upper duplex to the lowest strand. The fluorophor Cy5 is conjugated to a poly-T sequence connecting
the two duplexes. The upper strand is labelled with Cy3 so that a FRET signal provides a measure for a correctly hybridized molecular construct.
The ‘RNA up’ geometry is defined with the DNA complex attached to the glass slide and the RNA duplex constituting the upper part. A biotin–
streptavidin–biotin bond links the molecular complex to the upper surface, a soft PDMS stamp. Upon retracting the PDMS stamp, a force builds up
in the molecular constructs and unzips the duplexes until the weaker of the two bonds in series ruptures. Note that in this format Cy5 serves as
marker for those molecular complexes which remain intact. (B) In the setup, the contact device is mounted on an inverted microscope. The PDMS
stamp features a micropattern that facilitates leveling and drainage of liquid during the contact and separation process. The oligonucleotide con-
structs are spotted in a 4� 4 pattern, and fluorescence intensities are measured before and after the contact and separation process. After separation
the fluorescence intensities of the molecules remaining on the glass and the PDMS surface add up to the total fluorescence intensity measured at the
beginning. (C) Nucleic acid sequences of the molecular constructs in both configurations.
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If the RNA target duplex is attached to the glass slide and
the DNA complex constitutes the upper part, we call this
configuration ‘RNA down’. The other geometry with the
RNA complex the upper part and the DNA duplex bound
to the glass slide we named ‘RNA up’ (Figure 1C). We
bought all oligonucleotides with the modifications from
IBA GmbH, Germany.

Slide preparation

All aqueous solutions necessary for the chemical proced-
ures described here were treated with 0.1% Diethyl
pyrocarbonate (DEPC) over night and were autoclaved
afterwards in order to avoid RNAse contamination. We
pipetted 1 ml of the lowermost strand in a concentration of
25 mM in 5� SSC buffer (saline sodium citrate;
Sigma-Aldrich GmbH, Germany) on an aldehydesilane-
coated glass slide (Nexterion Slide AL, Pequlab,
Germany) in a 4� 4 pattern and incubated it over night
in a humid atmosphere. The slide was rinsed thoroughly
with ddH2O and incubated in a 1% aqueous solution of
NaBH4 (VWR Scientific GmbH, Germany) for 90min in
order to reduce the Schiff bases and render the linkage of
the oligonucleotide to the slide covalent. Unreacted
groups were blocked in 1� SSC containing 4% bovine
serum albumin (Sigma-Aldrich GmbH; Germany),
minimizing unspecific binding. We placed a custom-made
16-well silicone isolator (Grace-Biolabs; USA) on top of
the immobilized lowermost oligomer and transferred to
each well 3 ml of 0.2 mM of the upper complex in 5�
SSC, which had been heated and cooled down over
several hours in a thermocycler beforehand to avoid un-
desired secondary structures. After an hour hybridization,
the molecular complexes as diplayed in Figure 1A were
completed. Unbound strands were removed by several
washing steps with different salt concentrations (2�
SSC, 0.2� SSC, 1� SSC). Care was taken that the
samples were kept in an aqueous environment at all times.

Incubation of ligands

For all measurements detecting Dicer activity, the glass
slide with the molecular bonds was fastened to a
custom-made PMMA well with a silicone lip seal.
According to the desired incubation time and quantity,
the recombinant human Dicer protein in a concentration
of 1U/ml (Life technologies, UK) was directly pipetted
into the PMMA well prior to the contact process. We
applied amounts between 0.5 and 5 ml Dicer solution.
For measurements with paromomycin and Dicer, the ap-
propriate amount of paromomycin (paromomycin
sulphate salt, Sigma, Germany) was directly mixed with
the solution of 1� SSC of the last washing step and, thus,
added before Dicer. The paromomycin titration experi-
ments were executed on one glass slide within the
spotted 4� 4 pattern of oligonucleotides. The
custom-made 16-well silicone isolator (Grace-Biolabs;
USA) allows the incubation of every spot with a different
solution by means of a self-made microfluidic system
driven by two 16-channel peristaltic pumps (Ismatec
GmBH; Germany). Hence, a whole titration curve can
be recorded within a single experiment.

Stamp preparation

Micro- and macrostructured PDMS stamps were
fabricated by casting 1:10 crosslinker/base (Sylgard,
Dow Corning, MI, USA) into a custom-made Pyrex/
silicon wafer (HSG-IMIT, Germany) according to
standard procedures (24). The resulting PDMS stamps
feature pillars of 1mm diameter and height with a
spacing of 3mm in a square pattern on a 3-mm-thick
basis and are cut in pieces of 4� 4 pillars. The flat
surface of the pillars is microstructured with 100� 100 mm
pads separated by 41 mm wide and 5 mm deep rectangular
trenches enabling the drainage of liquid during the contact
and separation process (Figure 1B). For the surface
functionalization, the cleaned stamp surface was first
activated in 12.5% HCl overnight and derivatized with
(3-glycidoxypropyl)-trimethoxysilane (ABCR, Germany)
in order to generate epoxide groups. 1:1
methoxy-PEG-NH2 (MW 2000 Dalton) and
Biotin-PEG-NH2 (MW 3400 Dalton) (Rapp-Polymere,
Germany) were melted at 80�C, and �1 ml was transferred
to each pillar followed by overnight incubation at 80�C in
an Argon atmosphere. The excess polymers were thor-
oughly removed by rinsing with ddH2O. Shortly before
the experiment, the stamps were incubated in 0.4% BSA
in 1� SSC containing 1 mg/ml Streptavidin (Thermo Fisher
Scientific, Germany) for 30min, washed with 0.05%
Tween 20 (VWR Scientific GmbH, Germany) in 0.2�
SSC and gently dried with N2 gas.

Contact process and fluorescence read-out

The functionalized stamp adheres upside-down to the
glass block glued to a closed-loop piezoelectric actuator
(PZ 400, Piezo Systems Jena, Germany) and a DC
motorized translation stage (Physik Instrumente GmbH,
Germany), as shown in Figure 1B. The slide with the
oligonucleotide constructs is fixed beneath the stamp on
a stainless steel stage with permanent magnets so that
every stamp pillar meets a 1–2 mm diameter spot of
oligonuclotides on the glass slide. The whole contact
device is mounted on an inverted microscope (Axio
Observer Z1, Carl Zeiss MicroImaging GmbH,
Germany) with an xy-DC motorized high-accuracy trans-
lation stage (Physik Instrumente GmbH, Germany).
Contact is made by means of the piezo, and care is
taken that each individual pillar is not compressed more
than 3 mm. The planar adjustment of stamp and slide as
well as the contact process are controlled by reflection
interference contrast microscopy (25). To let the biotin
of the oligonucleotides bind to the streptavidin coating
of the PDMS stamp, the contact between stamp and
slide is maintained for 10min. The piezo retracts the
stamp with a velocity of 1 mm/s in all experiments, and a
force builds up in the double strands until the weaker one
breaks with higher probability. Quantifying the number of
intact bonds in relation to total molecular constructs,
fluorescence images of the Cy5 intensity are taken before
and after the contact process. As it cannot be assumed
that all oligonucleotides have bound to the stamp, their
contribution has to be substracted. Therefore, a fluores-
cence picture of the FRET intensity between the Cy3 of
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the upper strand and the Cy5 label of the middle strand,
being a measure of the integrity of the upper molecular
complex, is taken before and after the contact process as
well. Three outcomes are possible: First, the lower bond
broke so that no fluorescence, neither Cy5 nor FRET
signal, can be detected. Second, the upper bond broke
so that the Cy5 intensity can be measured but no FRET
signal. Third, the molecular construct did not bind to the
stamp, which means that the Cy5 and FRET intensity are
unchanged except for bleaching. The quotient of the image
taken after the contact process to the image taken before,
FCy5 ¼ IFinalCy5 =I

Start
Cy5 and FFRET ¼ IFinalFRET=I

Start
FRET, cancels out

inhomogeneities due to the Gaussian illumination profile
and surface defects, rendering the MFA rather robust. The
normalized fluorescence is given by NF ¼

FCy5�FFRET

1�FFRET
. A

detailed description can be found in (26). The normalized
fluorescence is thus the fraction of intact lower bonds of
the total number of molecules under load.

RESULTS AND DISCUSSION

Characterization of Dicer activity

Initially, we developed a platform for analysing the
protein Dicer. The schematic outline and RNA sequences
are shown in Figure 1. We built a molecular complex
comprising a 35 bp double-stranded RNA duplex cova-
lently bound to a glass slide at one end, and covalently
attached to a 27 bp reference DNA duplex at the other
end. Dicer could be titrated in solution to the completed
molecular constructs, and the surfaces were separated
after incubation times varying between 60 and 300min.
Figure 2B depicts the results of such a measurement
upon addition of 1 ml of Dicer to every sample except
the first, which acts as a reference value. The normalized
fluorescence at time t=0 provided a value of
NF=0.79±0.01. An initial value at time t=0 of
NF=0.5, corresponding to two complexes nearly identi-
cal in their structural stability, would be desirable to
resolve small differences in stability induced through
binding of a ligand or mismatch. However, our system
was designed to quantify enzymatic RNAse activity.
Because Dicer cuts off around 20 bp, we designed our
sytem such that the RNA complex before Dicer cleavage
was stronger than the DNA, while the RNA complex after
Dicer cleavage was weaker than the reference DNA
duplex. As in our system the RNA construct is 8 bp
longer than the DNA complex, in the absence of Dicer,
the weaker DNA reference bond ruptures with higher
probability. In the ‘RNA down’ configuration, the RNA
complex is attached directly to the glass slide; therefore,
the likelihood for the Cy5 label to be found at the lower
surface is higher than at the upper surface, and the
normalized fluorescence lies around NF=0.8. If Dicer
cleaves off about 20 bp of the RNA double strand, the
lower molecular complex is weakened and the normalized
fluorescence decreases (Figure 2B). Dicer processes
the RNA duplex in multiple enzymatic turnovers.
Consequently the normalized fluorescence declined
further with increasing incubation time (Figure 2B). Our
experimental design provides Dicer with an excess of

substrate, dsRNA, so that the substrate concentration
can be assumed constant and the reaction rate of Dicer
is solely limited by the amount of Dicer present. Thus, a
linear relation of the normalized fluorescence to Dicer
processing time was expected and verified by our measure-
ment. The slope of the fit was used as a measure of the rate
of Dicer processing, allowing us to quantify Dicer activity.

Proof of Principle of the microarray test format for RNA
ligands

Next, we analysed the binding properties of the
aminoglycoside of the neomycin family, paromomycin,
to its RNA aptamer by means of the MFA. The structure
of this aptamer and its ligand-binding behaviour are
well-known and described in detail in (28) and (29). The
aptamer sequence was incorporated into our RNA duplex
11 nucleotides from the 30 end, and was located within the
portion of the RNA duplex cleaved by Dicer. We
hypothesized that this position could disrupt Dicer inter-
action with the RNA duplex. Every second spot in the 16-
spot pattern of oligonucleotide constructs bound to the
glass slide were incubated for at least 1 h with a different
concentration of paromomycin in 1� SSC, ranging from 0
to 1995 mM, so that a single experiment resulted in a full
titration curve with two values for every concentration
paromomycin. The experiment was carried out several
times for both the ‘RNA up’and ‘RNA down’ configur-
ations. From the resulting values for the normalized fluor-
escence, the mean and standard error of the mean were
calculated so that every data point represents between two
and four experiments. The data were fitted by a hill
equation isotherm that accounts for specific and non-
specific binding by means of the software package
GraphPad Prism 5 (GraphPad Software, San Diego,
CA, USA). The result for the ‘RNA up’ configuration is
shown in Figure 2D, which yielded a dissociation constant
of 2.55±2.18 mM and negligible unspecific binding.
Literature reports values of 0.2–1 mM depending on the
technique (29,30), in agreement with our results. The
measurements in the ‘RNA down’ geometry resulted in
dissociation constants of about 100±70 mM (data not
shown), which deviated by a factor 50 from our other
measurements with the inverted geometry. Non-specific
binding of the ligand to the surfaces or molecular
complexes would be indentical in both configurations, so
we attributed the increase in dissociation constant for the
‘RNA down’ configuration to the proximity of the RNA
construct to the glass slide. Notwithstanding the passiv-
ation of the glass slide, the RNA duplex in the ‘RNA
down’ configuration presumably stretches across the
surface, which might reduce the accessibility of the RNA
aptamer binding pocket for the ligand paromomycin, re-
sulting in an apparent increase in the dissociation
constant. Consequently, the ‘RNA down’ configuration
with the ligand-binding part integrated in the lower
complex does not seem suited for the characterization of
a RNA-binding ligand. In contrast, providing the
ligand-binding sequence with a spacer and locating away
from the surface by implementing it in the upper RNA
duplex yielded reliable values for the dissociation constant
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in agreement with literature values. Although the dissoci-
ation constants measured by other more laborious and
time-consuming techniques might be more accurate, our
assay provides sufficiant accuracy in a parallel screening
format for dissociation constants, ranging from the
picomolar (26) (chiral polyamides binding to DNA) to
the high micromolar scale (23) (DNA-aptamer specific
for ATP). Moreover, the current format with 16 spots
can be varied to titrate two ligands in parallel (eight
spots per ligand) or change the binding sequence in half
the spots in order to gain a deeper insight into the
ligand-binding sequence interaction in a one-shot
experiment.

Hinderance of Dicer processing by ligand binding

In the next step, we prepared four different slides with our
oligonulceotide constructs in the ‘RNA down’ configur-
ation as well as in the ‘RNA up’ configuration. The
initial value for NF was determined in pure buffer
(Figure 3A). To the second sample, we added 2.5 ml of
the Dicer solution and separated the surfaces after
60min, while we incubated the third sample with 1mM
paromomycin at least 1 h before the measurement
(Figure 3B and C). The buffer of the fourth sample con-
tained 1mM paromomycin, and 2.5 ml Dicer solution was
added 60min before separation of the surfaces
(Figure 3D). The first sample acted as reference and
gave NF=0.34±0.01 (standard deviation) in the ‘RNA
up’ configuration. The addition of Dicer weakened the

upper RNA double strand by cutting off around 20
basepairs so that the flurophor was found more often on
the lower side. Therefore, the NF increased to 0.40±0.02,
as displayed in Figure 3E. Upon binding of paromomycin,
the RNA duplex was stabilized and the NF decreased to
0.27±0.01 in the third case. If paromomycin hinders
Dicer from cutting the RNA duplex, we expect that the
fourth measurement yields NF close to the ligand-only
case, but at least below the NF=0.40 obtained for meas-
urement with only Dicer in the solution. As shown in
Figure 3E, we measured an NF of 0.30±0.01, which is
close to the result of only paromomycin. From these data,
we concluded that Dicer was definitely hindered by
binding of paromomycin, but not completely blocked.
The ‘RNA down’ configuration yielded the same
outcome (Figure 3F).

Correction of fluorescence data

During the measurments with the ‘RNA down’ configur-
ation, we found that the quantum yield of the fluorophors,
especially of the Cy5, varied slightly owing to the changing
local environment. In particular, the fluorescence intensity
of Cy5 increased if the upper strand ruptured leaving
behind the single-stranded overhang. This leads to the
phenomenon that the normalized fluorescence value can
adopt values above one in the ‘RNA down’ configuration
(see raw data in the Supplementary Data). Levitus and
co-workers reported a change of fluorescence intensity
upon interaction of Cy3 with single and double-stranded

Figure 2. Characterization of molecules in question. (A) Schematics of Dicer and its sub-domains. (B) The activity of Dicer is measured in an excess
of substrate so that the processing rate is constant. Accordingly, the normalized fluorescence decreases linearly with incubation time. The data were
measured in the ‘RNA down’ configuration. (C) Schematic picture of paromomycin (red) binding to its RNA aptamer. The two strands of the RNA
duplex are displayed in blue and green, while the bases interacting with the ligand are coloured in yellow [PDB: 1J7T by (27)]. (D) Titration of the
ligand paromomycin to the complexes in the ‘RNA up’ geometry increasingly stabilizes the upper RNA duplex so that the normalized fluorescence
decreases. The fluorescence data were fitted by a Hill equation isotherm.

e69 Nucleic Acids Research, 2013, Vol. 41, No. 6 PAGE 6 OF 9

 at U
niversitaetsbibliothek M

uenchen on N
ovem

ber 9, 2013
http://nar.oxfordjournals.org/

D
ow

nloaded from
 



DNA. They attributed this change to the blocking of
non-radiative decay pathways of the excited state
fluorophor by steric hindrance (31). In (32), a similar
behaviour for Cy5 is described. Although the Cy5 label
is, in our case, always conjugated to the middle single
strand and six basepairs away from both duplexes, an
interaction between the fluorophor and the oligonucleo-
tide duplex seems a plausible explanation for the observed
increase in fluorescence intensity. Because the Cy3 is only
measured as part of a duplex, any effect due to inter-
actions with the oligonucleotides cancels out in the ratio.
To correct the Cy5 fluorescence intensities, we measured
the intensity of its emisson spectrum in bulk solution in
both cases, the single middle strand and the complete
upper duplex, by fluorescence spectroscopy and calculated
a quenching factor F (see Supplementary Data).

Determining the experimental error for F, we calculated
the maximum range of possible factors and re-analysed
our data measured by the MFA. Although all measured
data points are shifted to smaller NF values, the outcome
of the experiments and the corresponding conclusions
remain unchanged (see Supplementary Figure S1). For
further analysis, we therefore chose a medium value for
the quenching factor of F=1.19 for the ‘RNA down’
geometry, and F=1.06 for the ‘RNA up’ geometry and
corrected all measured data accordingly.

Minimum amount of ligand necessary for Dicer inhibition

We investigated what concentration of paromomycin is
nessecary to hinder Dicer from cleaving. We incubated
samples in the ‘RNA down’ configuration with

Figure 3. Dicer inhibition. (A) Separating the molecular constructs in the absence of Dicer or ligand provides an initial value in the ‘RNA up’
geometry for the NF of 0.34±0.01. (B) Upon addition of Dicer, the protein cleaves off around 20 bp of the RNA duplexes and weakens the upper
part so that the balance of the fluorophor distribution is shifted towards the lower side and the NF increases to 0.40±0.02. (C) Binding of the ligand
to its aptamer strengthens the RNA complex and the fluorophor distribution after rupture of the molecular complexes is shifted towards the upper
surface, decreasing the NF to 0.27±0.01. (D) Upon addition of Dicer and ligand, binding of the ligand to the RNA duplex blocks Dicer and
strengthens the upper complex so that the NF yields 0.30±0.01, which is close to the value we measured with ligand only. (E) Display of the data
measured in the experiment just described. (F) Inverting the geometry yields the same result in reverse. From an initial value of 0.78±0.02, the NF
decreases to 0.72±0.01 through the destabilization by Dicer. Ligand binding strengthens the lower RNA duplex and shifts the NF to higher values
of 0.96±0.01. If Dicer is hindered from cutting by ligand binding, the NF with 0.90±0.01 stays close to the value measured with ligand only.
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paromomycin, with the concentration ranging from 0.66
to 224 mM, and added 2.5 ml Dicer solution 1 h before the
separation. The result is displayed in Figure 4. The lowest
concentration of 0.66mM paromomycin did not affect
Dicer processing, but already a concentration of 2.82 mM
partially inhibited Dicer, whereas 52 mM paromomycin
hindered most of Dicer processing.The dissociation
constant, which we had determined in the previous
section to be 2.55±2.18mM, agrees nicely with the
finding here, that a paromomycin concentration in this
range leads to a partial inhibition of the cleavage
process. It points directly towards a close relationship
between the dissociation constant of a ligand and its po-
tential to hinder Dicer processing. For ligands that bind
thighter to their RNA sequence, we expect a blocking of
Dicer at lower concentrations of the ligand.

CONCLUSION

In a proof of principle, we demonstrated that the function
of the protein Dicer can be selectively blocked by a ligand
that sequence specifically binds to the RNA. Our MFA
reliably detected processing of the RNA duplex as well as
the binding of a small ligand to RNA, which resulted in an
inhibition of Dicer. In contrast to other techniques (33),
the MFA requires neither labelling of the target sequence,
nor the ligand or protein. It only needs flurophors
well-separated from the area of interest so that the inter-
action of the molecules in question is not disrupted and
can be analysed undisturbed. The localization of our mo-
lecular constructs between two surfaces is both an advan-
tage and a drawback at the same time. Because we
measure interaction forces rather than the mere presence
of a ligand, our assay can easily test different ligand–oligo-
nucleotide interactions in parallel without interfering
background signals from the bulk or the need for stringent
washing procedures. But possible surface effects e.g.
non-specific adhesion between ligand or oligonucleotides

and surface have to be carefully excluded. Furthermore,
our assay allows us to analyse the interaction of Dicer
with our RNA construct and the interaction of the
ligand to its binding sequence separately without
changing the molecular complexes. This ensures that
Dicer cleavage is blocked by hindering the protein to
bind to its substrate not by any interaction between
Dicer and the ligand. In addition, we illustrated the cap-
ability of our assay to characterize RNA-binding mol-
ecules in a one-shot experiment, enabling examination of
the binding behaviour of a large number of molecules with
moderate effort. The current setup allows to test 16 dif-
ferent systems in parallel, either one substance against 16
different DNA or RNA sequences or one oligonucleotide
construct against 16 different ligands or concentrations of
one ligand or a combination of both. To expand the multi-
plexing capabilities of our setup towards high throughput,
the amount of reacting agent has to be reduced to a
minimum and the number of RNA sequences have to be
increased. Microfluidic devices can drastically diminish
the reaction volume, and DNA/RNA spotting techniques
allowed us to test eight different systems within
100� 100 mm2 (19,34). With further standardization and
development, our technique of the MFA has the potential
to become the first force-based high throughput technique.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Method and Supplementary Figure 1.
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Characterization of fluorophores 

In order to quantify the interaction of the fluorophors with the oligonucleotides to which they are 

conjugated, the fluorescence intensities of the middle strand and and the upper duplex are measured 

by means of a Fluorometer (Fluorolog3, Horiba Jobin Yvon). The oligonucleotides are diluted in 

1xSSC to 0.5 µM and the duplex in a mixture of 1:1 is heated and cooled down over several hours. 

The excitation wavelength and emission spectra are set according to the parameters of the MFA 

setup. The resulting intensity curve is integrated and a quenching factor F is calculated by dividing the 

integrated intensity of the single strand by the integrated intensity of the duplex. Multiplying 

€ 

ICy5
Start  by 

this factor gives the corrected normalized fluorescence.  

Several repetitions yielded slightly different factors. Determining a maximum range of possible factors 

we could prove that the outcome of the experiment is not changed by correcting the NF with the 

different quenching factors. This is also visible in the Figure S1. Therefore, a medium factor was 

calculated and used for all analyses. 
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Figure S1: Proximity effects on the fluorescence intensities of Cy5.   

The Cy5 with the oligonucleotide bases requires a correction of the measured fluorescence intensity in 

order to calculate the actual NF. A quenching factor is determined by measuring the fluorescence 

intensity of Cy5 conjugated to the single, middle strand as well as to the complete upper duplex by 

means of a fluorometer. Re-analyzing the data with a maximum range of factors does not change the 

outcome of the experiment. Dicer destabilizes the RNA duplex, while binding of paromomycin 

strengthens it. Blocking of Dicer leads to NF values close to ones of paromomycin binding. This holds 

true for both geometries, the RNA complex attached to the glass slide with the DNA duplex 

constituting the upper part (A) as well as for the inverse (B). 
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Quantitative Detection of Small Molecule/DNA Complexes Employing
a Force-Based and Label-Free DNA-Microarray
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ABSTRACT Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiolog-
ical conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps,
are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited
application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA$ligand
interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target
DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA
duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imid-
azole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D-
and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not
in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration
dependence nanomolar to picomolar dissociation constants of dsDNA$ligand complexes were determined, agreeing well with
prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence
of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and
dsDNA$ligand complexes.

INTRODUCTION

Small DNA-binding molecules are in the spotlight of many

fields of research. Whether it is genomics, systems biology,

or molecular medicine, the knowledge if and how strong

a molecule interacts with a specific DNA sequence is of

utmost interest. The formation of such complexes is typically

linked to changes in the double-helical structure and may

even result in the displacement or blocking of other mole-

cules. This enables important functions in e.g., transcription,

recombination, and DNA repair (1,2).

Given the importance of understanding the basis of molec-

ular recognition, assays are needed that allow for fast, sensi-

tive, and quantitative detection of dsDNA$ligand complexes.

Traditionally, DNase footprinting experiments are employed

to identify the binding sites of a ligand on dsDNA and also

quantify the respective affinities. Although certainly power-

ful, DNase footprinting is a complex procedure and requires

several days of preparation (3). Very rapid and also label-free

quantification of even minuscule amounts of ligand becomes

possible with microcantilever arrays (4). They suffer,

however, from the costs associated with the fabrication and

chemical modification of large numbers of cantilevers.

It is often of importance to identify the full DNA recogni-

tion profile of a certain DNA binder to understand what kind

of role the binder plays within a living organism. Chip-based

methods accommodate the need for massively parallel anal-

ysis of dsDNA$ligand interactions: chromatin immunopre-

cipitation-on-chip (ChIP-on-chip) is a widespread technique

allowing for a genome-wide identification of protein-binding

sites (5,6). ChIP-on-chip relies on nonspecific cross-linking

of DNA with a DNA-binding molecule in vivo. Cross-link-

ing efficiencies vary from molecule to molecule, and some

interactions may even be missed (7). In particular, the detec-

tion of small molecules interacting with DNA is nontrivial.

Today, a growing number of in vitro chip-based assays are

available allowing for the analysis of dsDNA$ligand interac-

tions under controlled experimental conditions. In an exper-

iment by Warren et al. (8,9), all permutations of an eight

basepair dsDNA sequence were displayed on a single chip.

Ligand binding was detected directly by fluorescence and

the cognate sites were ranked in the order of increasing

affinity. However, fluorescence trades fast and sensitive

readout for a labeled ligand, and the label may alter the

sequence specificity profile of the ligand in an unbiased

manner. A widespread label-free detection method is surface

plasmon resonance imaging. Due to the small change in

refractive index, the detection of small molecules with

surface plasmon resonance imaging is complicated and

requires larger features compared to fluorescence-based

techniques (10,11). Depending on the application, the back-

ground signal caused by unwanted adsorption imposes

a substantially challenge to all chip-based methods. The
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fabrication of inert surfaces is even considered as the main

bottleneck for further development of the latter (12).

Here, we present a microarray compatible dsDNA$ligand

complex detection format, which is based on the comparative

unbinding force assay (CUFA). CUFA has already been

applied to detect single nucleotide polymorphisms (13), to

study differences of antibody/antigen interactions (14), to

eliminate cross-reactions on protein microarrays (15), and

to investigate the chiral selectivity of small peptides (16).

For dsDNA$ligand interaction detection, CUFA relies on

the alteration of the unbinding forces of a target dsDNA as

a result of ligand binding (17–19). This effect was demon-

strated in single molecule experiments employing atomic

force microscopy (AFM) (20) (21,22), optical tweezers (23),

and magnetic tweezers (24) (Fig. 1, a–c).

Instead of a microscopic, spring-like object, e.g., a canti-

lever or a trapped bead, CUFA employs a precisely defined

molecular bond as force sensor. Thereby, the target DNA

duplex is directly compared against a reference DNA duplex

and merely fluorescence is required to readout the experiment

(Fig. 1, d and e). In comparison with conventional force-based

measurements, many of the experimental uncertainties are

removed. With no calibration offsets or instrument drift the

comparative unbinding force experiments are more accurate

and independent of the experimental apparatus. Naturally,

such experiments are primed to be carried out in parallel by

using a chip format with many duplicates (in the order of

104/mm2) of the same experiment contributing to the excellent

sensitivity of the measurement. The resulting assay is fluores-

cence based; however, it does not require a labeled ligand.

Only the DNA linker between the target and reference DNA

duplex is conjugated to a fluorophore at a noninteracting base-

pair. Rather than detecting the mere presence of the ligand, the

change of unbinding forces of the target DNA duplex due to

ligand binding is detected. By this means the assay is insensi-

tive to nonspecific adsorption and deals with one of the major

bottlenecks of current biochips.

As a model system, we investigated sequence program-

mable pyrrole-imidazole hairpin polyamides (25). These

molecules recognize the minor groove of DNA with affini-

ties and specificities comparable to naturally occurring

DNA-binding proteins (26,27). The sequence specificity

arises from interactions of pairs of the aromatic amino acids

N-methylpyrrole (Py), N-methylimidazole (Im), and N-meth-

ylhydroxypyrrole (Hp) with the edges of the Watson-Crick

DNA basepairs. A pairing of Im opposite to Py targets

a G$C basepair, and Py/Im recognizes a C$G basepair,

whereas a Py/Py pair comprises a preference for both A$T

and T$A (28). The discrimination of T$A from A$T using

Hp/Py pairs completes the four basepair letter code (29).

Eight-ring hairpin polyamides provide a good compromise

between synthetic ease and molecular recognition properties.

In this binding motif, a g-aminobutyric acid residue connects

the carboxylic terminus of one strand to the amino terminus

of the other (30). The turn residue also serves as a DNA

recognition element for A$T and T$A basepairs. Further,

FIGURE 1 (a) Conventional, AFM-

based single molecule force spectros-

copy, in which the force required to

unbind a molecular bond, such as

a target DNA duplex, is measured with

a cantilever spring. (b) A ligand bound

to the target DNA duplex alters the

force required for unbinding. (c) Single

molecule force spectroscopy data are

typically presented as force-extension

traces. From two absolute force mea-

surements, the consequences of ligand

binding can be investigated. (d) The

CUFA replaces the cantilever spring

by a known reference bond. Upon

loading the chain of target DNA duplex

and reference DNA duplex, the weaker

of the two bonds has a higher proba-

bility of unbinding than the stronger

one. (e) In case a ligand forms a complex

with the target DNA duplex and stabi-

lizes it, significantly more fluorophores

end up on the side of the target DNA

duplex after separation of the two

surfaces.
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a b-alanine residue and a dimethylaminopropylamide tail at

the C-terminus each confer a specificity for A$T and T$A

basepairs (31). This general addressability of the DNA minor

groove is supported by x-ray and NMR structure studies

(32,33) and has been utilized in several applications,

including, for example, DNA nanostructures (34,35), recruit-

ment of DNA-binding proteins (36,37), and the inhibition of

gene expression within living cells (38–40).

Here we report the application of CUFA to accurately

determine the thermal dissociation constant KD of three

different dsDNA$polyamide interactions (Fig. 2 a). In partic-

ular, we investigated the influence of a chiral turn as well as

a single mismatch to the overall affinity of an eight-ring

hairpin polyamide to the same target DNA sequence

(Fig. 2 b).

MATERIALS AND METHODS

DNA constructs

DNA oligomers 1: NH2-(hexaethyleneglycol)5-50-TTT TTT TTT TCA GTC

GCT GAC CAA CCT CGT-30, 2: 30-GTC AGC GAC TGG TTG GAG CAC

TTT T(Cy3)-50-50- TTT TTC TGC TCC AAC CAG TCG CTG AC -30, 3:

Biotin-50-TTT TTT TTT TGT CAGCGACTGGTTGGAGCA, 4: 30-GTC

AGC GAC TGG TTG GAG CAC TTT T(Cy3)-50-50-TTT TTC ACG AGG
TTG GTC AGC GAC TG-30, and 5: Biotin-50-TTT TTT TTT TCA GTC

GCT GAC CAA CCT CGT-30 were purchased HPLC grade from IBA

GmbH (Goettingen, Germany). Italic letters in oligomers 4 and 5 represent

L-DNA bases. In upside-down experiments the NH2-(hexaethyleneglycol)5

(HEGL) and biotin modifications were exchanged.

Molecular setup preparation (DNA slide)

Each individual molecular chain consisting of a reference and a target DNA

duplex is referred to as a ‘‘molecular setup’’. Oligomer 1 is amine-modified

at the 50 end and allows covalent attachment to an aldehyde-functionalized

glass slide (Schott GmbH, Jena, Germany). Two microliter drops of 5�
phosphate buffered saline (PBS; Roche GmbH, Grenzach, Germany) con-

taining 25 mM oligomer 1 were spotted on an aldehyde glass slide in

a 4 � 4 pattern and were incubated in a saturated NaCl ddH2O atmosphere

overnight. After washing the slide with ddH2O containing 0.2% sodium

dodecyl sulfate (VWR Scientific GmbH, Darmstadt, Germany) and thoroughly

rinsing the slide in ddH2O, the resulting Schiff bases were reduced with 1%

aqueous NaBH4 (VWR Scientific GmbH, Darmstadt, Germany) for 20 min.

After thoroughly rinsing the slide in ddH2O, the slides were blocked in 1�
PBS containing 4% bovine serum albumin (Sigma-Aldrich GmbH, Munich,

Germany) for 30 min. A custom-made 16-well silicone isolator (Grace-

Biolabs, OR) was placed on the top of the immobilized DNA oligomer 1

spots. Three microliters of 1� PBS containing 1 mM oligomer 2 and 2 mM

oligomer 3 were added to each well and incubated for 1 h, completing the

1$2$3 molecular setups. Then, the slide was washed with 1� PBS containing

0.05% sodium dodecyl sulfate and thoroughly rinsed with 1� PBS. The

FIGURE 2 (a) Chemical structures of matched hairpin

polyamides P1, (R)-2, and (S)-2 as well as single basepair

mismatched compounds (R)-P3 and (S)-P3. The ball and

stick model represents imidazole and pyrrole as solid and

open circles, respectively. The b-alanine residue is shown

as a diamond, and the dimethylaminopropylamide tail is

shown as a half circle with a plus. The chiral diaminobuty-

ric acid turn residue is represented as a turn, to which

a semicircle with a plus is linked. R and S chirality is indi-

cated by a solid and dashed connection of the semicircle to

the turn, respectively. (b) Ball and stick representation for

the three different hairpin motifs bound to the same target

DNA sequence. P1 binds sequence specific to the target

DNA sequence. (R)-2 is modified with a chiral diaminobu-

tyric acid turn, which increases the overall binding affinity.

(R)-3 is also modified with a chiral diaminobutyric acid

turn, however contains a single basepair mismatch that

reduces the overall binding affinity.
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silicon isolator remained on the slide throughout the experiment, and care

was taken that after hybridization the slide always remained immersed

in 1� PBS. The 1$4$5 and upside-down molecular setups were prepared

accordingly.

PDMS stamp

The polydimethylsiloxane (PDMS) stamp was fabricated by casting 10:1

(base/crosslinker) (Sylgard, Dow Corning, MI) into a custom-made micro-

and millistructured silicon wafer (HSG-IMIT, Villingen-Schwenningen,

Germany) (41). After curing was complete, the PDMS was taken out of

the mold and cut into a 4 � 4 pillar arrangement. Each pillar is 1 mm diam-

eter, is 1 mm high, and carries a microstructure on the flat surface: 100 �
100 mm2 pads are separated by 41 mm wide and 5 mm deep trenches allowing

for liquid drainage during the contact and separation process. Free polymers

were extracted in toluene for at least 1 day (42). The PDMS was activated

overnight in 12.5% hydrochloric acid and subsequently derivatized with

(3-glycidoxypropyl)-trimethoxysilane (ABCR, Karlsruhe, Germany) to

generate epoxide groups. NH2-PEG-Biotin (3400 g/mol; Rapp Polymere,

Tübingen, Germany) was melted at 80�C, and ~1 mL was spotted on each

pillar followed by overnight incubation in argon atmosphere at 80�C. The

excess polymers were thoroughly removed with ddH2O. Shortly before

the experiment, the PDMS was incubated with 1 mg/ml streptavidin (Thermo

Fisher Scientific, Bonn, Germany) in 1� PBS and 0.4% bovine serum

albumin for 30 min, washed with 1� PBS containing 0.05% Tween 20

(VWR Scientific GmbH, Darmstadt, Germany), with 1� PBS and gently

dried with N2 gas.

Ligand incubation

Sixteen-well silicone isolators allowed the addition of up to 16 different

concentrations of the dsDNA ligands within a single experiment. Because

of technical convenience, we restricted ourselves to the addition of eight

different concentrations. Fifty millileters volume of polyamides in 1�
PBS was circulated through each well for at least 2 h using a self-made

fluidic system driven by a 16-channel peristaltic pump (Ismatec GmbH,

Wertheim-Mondfeld, Germany).

Coupling and separation

The streptavidin functionalized PDMS stamp was approached to the DNA

slide using high-precision stepper motors (OWIS GmbH, Staufen, Germany)

and a piezo actuator (Piezo Systems Jena, Jena, Germany), monitored by

reflection interference contrast microscopy (43). The biotinylated molecular

complexes and the multivalent streptavidin coated PDMS stamp were

allowed to couple via a biotin$streptavidin$biotin complex for 10 min, fol-

lowed by retraction of the PDMS stamp at a velocity of 5 mm/s. Biotin$strep-

tavidin is an extremely strong molecular interaction and is of significantly

greater stability than short dsDNA at the applied separation velocity

(44,45). In separate controls, we determined that no noteworthy amount of

fluorescently labeled streptavidin was transferred from the PDMS to the

DNA array during an experiment.

Analysis

Fluorescence images of the DNA slide were recorded in solution using

a confocal scanner with 4 mm resolution (Tecan Austria GmbH, Austria)

before and after the contact. The fluorescence per unit area was assumed

to be proportional to the fluorescently labeled species per unit area (see

Fig. S1 in the Supporting Material). The normalized fluorescence intensity

(NF) is defined as the number of broken reference bonds normalized to the

total number of individual molecular setups that have been under load. For

the 1$2$3 molecular setups, it was determined as follows: initially, all

molecular setups are present in the state S0 and were detected via the Cy3

labeled oligomer 2 (Fig. 3 a). After separation, the molecular setups on

the glass slide exist in three different states, S0 (1$2$3), S1 (1$2), and S2

(1), as shown in Fig. 3 b. An unbinding force was applied only to the molec-

ular setups in state S1 and S2. Molecular setups in state S0 did not couple to

the PDMS streptavidin surface and therefore retained the biotinylated olig-

omer 3. Because S1 and S0 cannot be distinguished, the latter was labeled

with the spectrally distinct fluorescent marker streptavidin Alexa Fluor

647 (AF; Fig. 3 c). The labeling was performed subsequent to the Cy3

readout to avoid quenching or fluorescence resonance energy transfer

effects. The Cy3 and AF fluorescence images allow the quantification of

the relative amounts of S0, S1, and S2 (Fig. 3, d and e). The Cy3 and AF

fluorescence images recorded after contact contain square-like features cor-

responding to the contacted area. From each square-like feature the Cy3Rem

and AFRem were determined individually. Cy3Initial and AFInitial were deter-

mined from the noncontacted regions adjacent to each square-like feature.

S0 ¼ AFRatio (1)

S1 ¼ Cy3Ratio � AFRatio (2)

S2 ¼ 1� Cy3Ratio (3)

Cy3Ratio ¼
Cy3Rem

Cy3Initial

; (4A)

AFRatio ¼
AFRem

AFInitial

(4B)

S0, S1, and S2 are normalized such that the relation S0 þ S1 þ S2 ¼ 1 is

always true. As defined above, the NF is given by the number of broken

2$3 bonds (S1) normalized to the number of bonds that have been under

load (S1 þ S2):

NF ¼ S1

S1 þ S2
¼ Cy3Ratio � AFRatio

1� AFRatio

: (5)

The NF directly reflects the relative mechanical stability, a physical quantity

inherent to a pair of molecular complexes, and is not influenced by the

amount of molecules under load. The NF should not be confused with the

Cy3Ratio. For a fixed mechanical stability, the latter depends on the number

of coupled molecular complexes, whereas the NF does not. The NFs pre-

sented in this work are the averages of the NFs determined from all

square-like features of an experiment. The 1$4$5 and upside-down molec-

ular setups were analyzed accordingly.

Polyamide synthesis

Polyamide conjugates were synthesized on solid-phase using published

Boc-based protocols and purified by reverse-phase HPLC (R95% purity)

(46). Ultraviolet-visible spectra were recorded in water on a Hewlett-Packard

Model 8452 A diode array spectrophotometer. All polyamide concentrations

were determined using an extinction coefficient of 69,200 M�1cm�1 at lmax

near 310 nm. Matrix-assisted, LASER desorption/ionization time-of-flight

mass spectrometry (MALDI-TOF MS) was performed using an Applied Bio-

systems Voyager DR Pro spectrometer. Polyamide P1: MALDI-TOF

[MþH]þ calcd for C57H71N22O10
þ ¼ 1223.6, observed ¼ 1223.4, (R)-P2:

MALDI-TOF [MþH]þ calcd for C57H72N23O10
þ ¼ 1238.6, observed ¼

1238.6, (S)-P2: MALDI-TOF [MþH]þ calcd for C57H72N23O10
þ ¼

1238.6, observed ¼ 1238.5, (R)-P3: MALDI-TOF [MþH]þ calcd for

C58H73N22O10
þ ¼ 1237.6, observed ¼ 1237.3, (S)-P3: MALDI-TOF

[MþH]þ calcd for C58H73N22O10
þ ¼ 1237.6, observed ¼ 1237.5.

Melting temperature analysis

Melting temperatures were monitored on a Beckman ultraviolet-visible

spectrometer at 260 nm within 25–90�C by applying a heating rate of
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0.5�C/min. Measurements were performed in a degassed buffer containing 2

mM DNA duplex/polyamide (1:1), 10 mM NaCl, and 100 mM NaH2PO4 at

pH 7.0. Tm-values are defined as the maximum of the first derivative of the

melting curve.

RESULTS AND DISCUSSION

Force-based ligand detection relies on the alteration of

unbinding forces due to dsDNA$ligand complex formation.

In the course of conventional single molecule experiments,

one strand of a DNA duplex is immobilized to solid support

via a polyethyleneglycole (PEG) linker. In the same way, the

complementary strand is immobilized to a microscopic force

detector such as an AFM cantilever. Upon contacting the

AFM cantilever with the solid support, the two complemen-

tary DNA strands hybridize. During separation of the

support and the detector surface, the PEG linkers act like

entropic springs (47,48), and an increasing force builds up

until the DNA duplex unbinds (Fig. 1, a and b). The force

extension curve is recorded and the unbinding force deter-

mined. Because unbinding is a thermally activated process

(49) and the force detector is limited by thermal noise (50),

several hundred experiments are typically performed to

determine the unbinding forces with sufficient accuracy.

As demonstrated by Krautbauer et al. (17) as well as Koch

et al. (18), complex formation of a DNA duplex with a small

FIGURE 3 Comparative unbinding

force experiment on the molecular level.

(a) Before separation of the two

surfaces, all molecular setups are in

the state S0. (b) After separation, either

target (state S2) or reference (state S1)

bond is broken or no coupling (state

S0) occurred. (c) Because states S0

and S1 cannot be distinguished by fluo-

rescence, the free biotin of state S0 is

labeled with streptavidin Alexa Fluor

647 (AF). (d) Fluorescence images of

the glass slide before and after separa-

tion as well as after incubation with

AF. The dark square-like features corre-

spond to the area contacted with

a microstructured PDMS stamp. (e)

Corresponding line plots. From the fluo-

rescence intensities the relative amounts

of the states S0, S1, and S2 can be deter-

mined.
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molecule or a protein is accompanied by a shift of the

unbinding forces (Fig. 1 c). In our comparative unbinding

force experiments, a known molecular bond carrying a fluo-

rescent label replaces the microscopic force detector (Fig. 1,

d and e).

Fig. 4 a illustrates the molecular setup schematically.

Target DNA duplex 1$2 is immobilized to glass support

via a (hexaethyleneglycol)5 linker of oligomer 1. Reference

DNA duplex 2$3 is bridged to 1$2 via a 10 basepair single

stranded polythymine linker carrying a Cy3 fluorescence

label. Oligomer 3 carries a biotin modification at the end

of another polythymine linker. Before the force experiment,

a fluidic system allows for incubation of the molecular setups

with different ligand concentrations (Fig. 4 b). In Fig. 4 c,

a soft PDMS stamp is brought in contact with the 1$2$3
complexes on the glass slide analogously to a microcon-

tact-printing experiment (51,52). 1$2$3 couples to the

PDMS stamp via biotin$streptavidin complex formation.

Upon retraction of the PDMS stamp at 5 mm/s force is built

up gradually acting along the molecular chain consisting of

the linkers as well as the 1$2 and 2$3 duplexes until either

1$2 or 2$3 breaks (Fig. 4 d).

Approximately 104 duplicates of the same experiment are

performed per mm2. The absolute force needed to pull the

two surfaces apart is neither recorded nor analyzed. Instead,

the unbinding force of each target DNA duplex is compared

individually against a separate reference duplex. For each

molecular chain, the two possible experimental outcomes

are distinguished by determining the location of the fluores-

cently labeled oligomer 2. In case the fluorophore remained

on the glass slide, the 2$3 DNA duplex is broken, and in case

the fluorophore was transferred to the PDMS stamp, the 1$2
DNA duplex is broken.

The target and the reference DNA duplex are comprised of

the same basepair composition, and the outcome ‘‘1$2 is

broken’’ should be close to equally likely to the outcome

‘‘2$3 is broken’’ (53). Experimentally, we determined

a NF (see Materials and Methods) of 38.4% with an error

of 1.6%, which we estimated from repeated measurements

(Fig. 5 a). We attribute this deviation from the expected

NF of 50% to the symmetry break due to the different

surfaces to which the oligomers are attached. DNA duplexes

are sensitive to solution conditions such as pH and ionic

strength (54), which may differ depending on the proximity

of the DNA duplex to the PDMS or the glass surface. This

minor imbalance does not affect the quantitative detection

of dsDNA$ligand complexes.

Nonchiral hairpin polyamide

To investigate whether the CUFA is applicable to determine

the thermal dissociation constant KD of dsDNA$ligand inter-

actions, we incubated 1$2$3 molecular setups with different

concentrations of hairpin polyamide P1. Thereby, we make

use of a symmetry breaking property, such that P1 only binds

to the target and not the reference DNA duplex: hairpin poly-

amides bind sequence specific with a preference for N/C

orientation with respect to the 50/30 direction of the adjacent

DNA strand (55,56). The preferred binding motif 50-TGAC-

CAA-30 of polyamide P1 is present in the 1$2 target DNA

duplex, whereas the 2$3 reference DNA duplex contains the

reverse-binding motif 50-AACCAGT-30, to which P1 binds

with significantly decreased affinity.

On a single chip, we incubated 16 identical spots of immo-

bilized 1$2$3 molecular setups with eight different P1 concen-

trations ranging from 0 to 2.7 nM and performed a CUFA

experiment as described above. The NF increased with

increasing polyamide concentration from 38.4% (Fig. 5 a)

until it saturated at 63.1% (Fig. 5 b). This is in agreement

with a stabilizing effect of P1 on the 1$2 duplex. As it is

common for quantitative dsDNA$polyamide interaction

studies, we fitted the titration data to the Hill equation isotherm

(a more detailed discussion follows at the end of this section)

(9,58). The apparent thermal dissociation constant KD was

determined to be 105 pM with a 95% confidence interval of

[65 pM, 169 pM] agreeing well with previously published

quantitative DNase footprinting and microarray data (58).

The NF data including the fit are shown in Fig. 5 c.

To ensure that the molecular setup responds as expected,

we investigated the upside-down molecular setup 3$2$1.

FIGURE 4 Schematics of CUFA

experiments. (a) The molecular setup

consists of two DNA duplexes, i.e.,

the 1$2 target and the 2$3 reference

DNA duplex, linked in series. (b) A

simple fluidic system allows incubation

of 16 identical DNA spots with eight

different polyamide P1 concentrations.

(c) The molecular setups are linked

between glass support and PDMS.

Separation of the surfaces applies

a load to the chain of duplexes until

the weaker fails. (d) The fluorescently

labeled linking DNA oligomer 2 is

more likely to remain on the side of

the more stable DNA$ligand complex.
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Here, the position of the target and the reference DNA

duplex is exchanged, and thus the response to the addition

of P1 should be inverted. Indeed, the NF decreased from

31.9% to 7.7% upon increasing the P1 concentration from

0 to 10 nM. In this case, the polyamide binds preferentially

to the DNA duplex adjacent to the PDMS stamp, and there-

fore the amount of fluorescently labeled oligomer 2 trans-

ferred to the PDMS stamp was increased in presence of P1.

Chiral hairpin polyamide

In previous work, we demonstrated that chiral hairpin poly-

amides distinguish between D- and L-DNA (16). Chiral selec-

tivitiy is introduced by an amine substituent on the g-turn

amino acid of the hairpin polyamide that was also shown to

lead to an increase in binding affinity (47). The chiral hairpin

polyamide (R)-P2, which recognizes the same sequence as

P1, was examined employing the 1$4$5 molecular setup.

1$4 is identical to the 1$2 target DNA duplex, and 4$5 is

the mirrored DNA duplex to 1$4. (R)-P2 binds preferentially

to the 1$4 50-TGACCAA-30 binding motif, whereas 4$5 pres-

ents less optimal binding sites due to its opposite chirality.

Analogous to the previous experiment, an increase in

concentration of (R)-P2 from 0 to 1 nM lead to an increase

of the NF from 47.1% to 80.3%, agreeing with a stabilizing

effect on the D-DNA duplex 1$4. Fitting the titration data to

a Hill equation isotherm revealed an apparent thermal disso-

ciation constant KD of 44 pM with a 95% confidence interval

of [23 pM, 83 pM]. The KD for the (R)-P2 hairpin polyamide

has not been reported yet. However, a lowered KD compared

to P1 is consistent with prior experiences with the addition of

an amine substituent to the g-turn amino acid of regular

polyamide hairpins (47). The NF data including the fit are

shown in Fig. 5 c.

For control, the 5$4$1 upside-down molecular setup in

combination with (R)-P2 was measured at 0 nM and 10 nM

yielding 32.8% and 12.9%, respectively. The regular molec-

ular setup 1$4$5 in combination with mirror imaged poly-

amide (S)-P2 was also measured at 0 nM and 10 nM

resulting in NF of 44.1% and 20.9%. The two controls

demonstrated that the response of the assay was as expected:

in the 5$4$1 upside-down molecular setup, the target and

reference DNA duplex are essentially mirrored (target and

reference are of identical sequence but opposite chirality).

FIGURE 5 (a) Cy3 fluorescence

image of 1$2$3 molecular setups on

a glass slide before and after contact

with a PDMS stamp in absence of P1.

(b) Cy3 fluorescence image of 1$2$3

molecular setups on a glass slide before

and after contact with a PDMS stamp in

presence of 1 nM P1. The fluorescence

intensity of the contacted area is higher

compared to the 0 nM case. (c) Relative

change in NF due to titration with three

different polyamide compounds.
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In this case, the ligand recognizes the DNA duplex adjacent

to the PDMS stamp and the change in NF due to ligand

binding was inverted. In case the ligand was mirrored and

incubated with the 1$4$5 molecular setup, the ligand recog-

nized the reference bond as its preferential binding motif and

the change in NF was also inverted.

Mismatched hairpin polyamide

Introducing the single basepair mismatched polyamide

(R)-P3 to the 1$4$5 molecular setup is expected to form

a DNA-ligand complex of lower affinity (57). In detail,

1$4 provides a binding motif for (R)-P3 with a single base-

pair mismatch. The affinity to 4$5 is even further decreased,

because the binding motif contains a single basepair

mismatch and, in addition, is of opposite chirality. Incuba-

tion of the 1$4$5 molecular setup with increasing concentra-

tions of (R)-P3 increased the NF from 47.1% at 0 nM to

71.2% at 27 nM. The apparent KD, determined from a fit

of the NF to the Hill equation isotherm, was 1442 pM with

a 95% confidence interval of [932 pM, 2169 pM]. The NF

data including the fit are shown in Fig. 5 c.

Controls were performed with the 5$4$1 upside-down

molecular setup in absence and presence of 10 nM (R)-P3,
yielding NF of 32.8% and 15.4%, respectively. For the

regular 1$4$5 molecular setup, the NF fluorescence also

decreased from 47.1% in absence to 25.6% in presence of

10 nM mirrored compound (S)-P3. Both controls, in which

either the molecular setup or the ligand was mirrored,

produced an inverted change in NF as response to the addi-

tion of the ligand.

Melting temperatures

To ensure that the differences in unbinding forces were

a result of target DNA duplex stabilization by hairpin poly-

amides, the melting temperatures of the dsDNA$polyamide

complexes were determined. The results clearly showed

a larger increase in melting temperature for the target

duplexes in presence of the polyamides compared to the

reference duplexes (Fig. 6).

Thermal dissociation constant

The affinity of a hairpin polyamide for its dsDNA binding

site is characterized by the thermal dissociation constant

KD. The experimental data suggest that the Hill equation

isotherm governs the response of the NF, from which the

KD characteristic for the dsDNA$polyamide complex under

investigation is easily determined. In the following, we

derive the response of CUFA beginning with the law of

mass action.

The law of mass action describes the amounts of

dsDNA$ligand complexes, unbound dsDNA, and free ligands

at chemical equilibrium with a dsDNA$ligand complex char-

acteristic thermal KD defined as

KD ¼
koff

kon

¼ ½dsDNA�½ligand�
½dsDNA , ligand�: (6)

In our experiments, the total amount of added ligand ex-

ceeded the available dsDNA binding sites by at least two

orders of magnitude. As a result, the probability p of

a dsDNA binding site to be occupied by a ligand is given

by the Hill equation isotherm and depends on the ligand

concentration and KD only (58):

p ¼ ½ligand�
½ligand� þ KD

: (7)

For further analysis, it is crucial to compare the timescale of

association to a single binding site to the timescale of the

force probing. The apparent KD determined from the

CUFA experiment may vary from the initial thermal KD, if

the system is allowed to equilibrate during the application

of the external force: at equilibrium and ligand concentra-

tions around the thermal KD the association rate, given by

[ligand]$kon, is of the same order of magnitude as the disso-

ciation rate koff. The lifetime or inverse dissociation rate for

a dsDNA$polyamide complex was experimentally deter-

mined to be ~500 s (59). At 5 mm/s separation velocity

and similar linker lengths, the force needed to rupture a 20

basepair DNA duplex is built up on timescales in the order

of t ¼ 0.01 s (44). The DNA duplex unbinding occurs there-

fore on a much faster timescale t than the association or

dissociation of the dsDNA$ligand complex at relevant ligand

concentrations:

t <<
1

½ligand� , kon

: (8)

Although the natural off-rate of polyamides is very low,

dissociation of the ligand from the DNA duplex during force

probing may be nonnegligible. Studies suggest that the B-S

transition of DNA under force can be explained by a tilt of

the basepairs and a significant reorganization of the helical

structure of the DNA (60–62). The B-S transition has not

been observed for 20 basepair duplexes yet (44). However,

even small deformations of the dsDNA helical structure

may lead to the dissociation of the ligand, especially because

hairpin polyamides are particularly sensitive to deformations

FIGURE 6 Melting temperatures of the target and reference DNA duplex

in presence and absence of polyamides. The polyamides and DNA duplexes

are mixed at a stoichiometry of 1:1 at 2 mM.
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of the minor groove. This results in a decreased fraction of

occupied binding sites at the time of dsDNA unbinding

compared to the initial situation before force is applied.

Given that the association rate is slow, rebinding of the

ligand to the dsDNA is neglected and the fraction of occu-

pied binding sites is reduced by a constant factor f.

p
0 ¼ f , p ¼ f ,

½ligand�
½ligand� þ KD

; (9)

where f lies within the interval [0,1]. The probability of

a binding site to be occupied by a ligand is still governed

by the Hill equation isotherm; however with increasing

ligand concentration, the probability p0 saturates at f < 1

instead of 1. Importantly, the apparent KD is identical with

the thermal KD.

The target DNA sequence was designed such that there is

only one preferred polyamide-binding site. Without loss of

generality, the no-ligand case is assumed to yield NF0,

whereas the bound-ligand case is assumed to yield NF1.

The fluorescence signals of these two states superimpose

each other, and the expected total fluorescence signal as

a function of the polyamide concentration is the sum of the

NFs of the two states weighted by their relative occurrence:

NF ¼ p
0
, NF1 þ

�
1� p

0�
, NF0

¼ NF0 þ f , ðNF1 � NF0Þ ,
½ligand�

½ligand� þ KD

: (10)

The dissociation of ligands from the DNA duplex results in

a decrease of the maximal change in NF, whereas the

apparent KD is not affected. To conclude, in case Eq. 8 holds,

the forced unbinding of dsDNA in presence of a ligand is

a nonequilibrium process that produces a snapshot of the

equilibrium distribution between dsDNA and dsDNA$ligand

complexes from which the thermal dissociation constant KD

can be determined.

CONCLUSION

The CUFA was successfully applied to quantify the thermal

dissociation constants of three different dsDNA-polyamide

complexes. For this purpose, polyamide concentrations as

low as 10 pM were detected. This level of sensitivity is

comparable to conventional chip methods, which work with

fluorescently labeled ligands (9). Labeling, however, may

alter the binding behavior compared with the unlabeled ligand

and is not always applicable. Label-free high-throughput

techniques, such as surface plasmon resonance, are chal-

lenged when they are confronted with small molecules like

polyamides, which are easily detected employing CUFA.

Our approach not only avoids labeling of the interacting mole-

cules (a label is attached to linking DNA strand at a noninter-

acting basepair), but also permits the combination of different

experiments as well as controls on one chip. The current

DNA-feature size is hundreds of micrometers but can be

reduced to several micrometers using conventional microar-

ray spotters. Miniaturization will allow for a high degree of

parallelization and significantly reduced sample volumes.

We foresee CUFA in combination with microarray tech-

nology to be used as a tool to rapidly determine and quantify

the sequence-recognition profile of small molecules like tran-

scription factors, drugs, or other DNA-binding molecules. In

separate experiments, we demonstrated that short-lived

molecular interactions are captured in molecular crowded

environments, as will be published elsewhere (63). Thus,

the sensitivity range covers molecular complexes with micro-

molar to picomolar thermal dissociation constants and CUFA

may prove to be the ideal tool for systems biologists, who

have a growing interest in techniques that obtain affinity

binder data with sufficient accuracy in a high-throughput

fashion (64,65). The experimental procedure is as simple as

contacting and separating two surfaces and can be imple-

mented in any laboratory equipped with a quantitative fluores-

cence microscope.
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DNA surface density. Quantitative analysis of the fluorescence images relies on the 

assumption that the amount of fluorescently labeled species per unit area is proportional to the 

obtained fluorescence intensity per unit area. To investigate this relationship, we titrated 

identically prepared oligomer 1 spots on a glass slide with different amounts of oligomer 2 

ranging from 0 to 0.6 pMol. After 2 hours of incubation the slide was washed thoroughly in 

1x PBS and read out via fluorescence. The fluorescence intensities were summed over all 

pixels of each well divided by the fluorescence spot area, which was on average 1.8 mm of 

diameter. The fluorescence intensity was proportional to the amount of added ligand for 

amounts of DNA oligomer 2 less than 0.4 pMol. At higher amounts the fluorescence intensity 

saturated and deviated significantly from a line fit. 

The observed saturation can be explained by electrostatic repulsion between the dsDNA. 

Short dsDNA is a rod like, cylindrical molecule, which is most densely packed in a parallel 

arrangement. Close packing of short dsDNA on a surface is thus equivalent to the problem of 

close packing of hard disks. The total hard disk radius is the sum of the dsDNA radius and the 

length of electrostatic repulsion. The former is known to be 0.95 nm [1] and the latter is best 

described by the Debye length that is approximately 0.62 nm at 147 mM Na+ [2]. The total 

disk radius is therefore 1.57 nm. Randomly packing discs results in a packing efficiency of 

82% [2]. The packing efficiency and the total disk radius yield the theoretical maximum in 

short dsDNA surface density ρDebye of 0.11 molecules per nm2 in good agreement with 

literature values [3]. 

To compare whether the onset of fluorescence intensity saturation coincides with ρDebye the 

densities of 1·2 complexes per unit area were determined from the fluorescence spot size and 

the assumption that all oligomers 2 hybridized to free oligomers 1 immobilized to the surface. 

Further, the expected maximal fluorescence intensity was determined by extrapolating the line 

fit for low densities to ρDebye yielding IDebye. In Figure S1 the fluorescence intensity ratio 

I/IDebye was plotted against the corresponding calculated surface density ranging from 0 to 

0.13 molecules per nm2. The observed saturation of fluorescence intensity at around 0.09 

molecules per nm2 is in good agreement with ρDebye. Remaining free ssDNA strands that also 

occupy a small fraction of the surface area may explain the slightly lower experimentally 

determined value. 

It is entirely possible that a non-linearity between amount of oligomer 2 per unit area and 

fluorescence signal at high surface densities contributes to the observed saturation effect. 

Hence, the molecular setups in the present study were prepared at ρ0 of 0.06 molecular setups 

per nm2. This is a surface density for which we have shown the fluorescence per unit area to 



 4

be proportional to the fluorescently labeled species per unit area. Nonetheless, the surface 

density is rather high: the Flory radius, which is deduced from the radius of gyration, is a 

good measure of the volume a polymer encompasses [1] [4]. From the actual lengths and the 

persistence lengths of dsDNA [5], ssDNA [6] and PEG [7] we calculate a Flory radius of 9.38 

nm for the 1·2·3 molecular setups used in our experiments. Assuming again a close packing of 

disks yields an upper limit of 0.003 molecular setups per nm2 for the regime wherein the 

constructs do not interact with each other. The densities used in our experiments are an order 

of magnitude higher than that. This is a fact that should be kept in mind if the binding of 

larger and less robust ligands like proteins to dsDNA is going to be investigated. In this case, 

the surface densities of the molecular setups may have to be decreased further in order to 

avoid steric hindrance and unwanted interactions.  
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Figure S1. Different amounts of oligomer 2 were incubated with identically prepared 

oligomer 1 spots. The fluorescence intensities per unit area are plotted against the calculated 

surface densities. The dashed line indicates the highest possible density of oligomer 2 per unit 

area based on the electrostatic repulsion argument. The CUFA experiments are performed at 

densities of oligomer 2 per unit area, wherein the fluorescence intensity per unit area is 

proportional to the presence of fluorescently labeled oligomer 2 per unit area (highlighted in 

grey). 
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ABSTRACT Short double-stranded DNA is used in a variety of nanotechnological applications, and for many of them, it is impor-
tant to know for which forces and which force loading rates the DNA duplex remains stable. In this work, we develop a theoretical
model that describes the force-dependent dissociation rate for DNA duplexes tens of basepairs long under tension along their axes
(‘‘shear geometry’’). Explicitly, we set up a three-state equilibrium model and apply the canonical transition state theory to calculate
the kinetic rates for strand unpairing and the rupture-force distribution as a function of the separation velocity of the end-to-end
distance. Theory is in excellent agreement with actual single-molecule force spectroscopy results and even allows for the predic-
tion of the rupture-force distribution for a given DNA duplex sequence and separation velocity. We further show that for describing
double-stranded DNA separation kinetics, our model is a significant refinement of the conventionally used Bell-Evans model.

INTRODUCTION

Double-stranded DNA (dsDNA) is an extensively studied

polymer offering a number of striking properties. Among these

properties are interstrand recognition according to the Watson-

Crick basepairing rules, stability under a broad range of condi-

tions, and ease of synthesis that allows for fast and cost-efficient

production of any desired sequence with almost any kind of

chemical modification. Within the past several years, various

areas of application of DNA have been identified, and nano-

technology, specifically, is increasingly harnessing the poten-

tial of this versatile polymer (1). Whereas in earlier published

work DNA merely served as simple molecular handles for

single-molecule experiments (2,3), today DNA serves as

molecular building blocks for complex self-assembled nano-

structures (4–7), as well as DNA computing (8). In our labora-

tory, DNA was even used as a programmable force sensor for

detection of single-nucleotide polymorphisms (9), multiplexed

antibody sandwich assays (10,11), investigation of chiral pref-

erence of small DNA-binding molecules (12), quantitative

detection of DNA-binding molecules (13), and aptamer sensors

(14). Recently, our laboratory applied this DNA force sensor

concept to ‘‘single-molecule cut and paste’’ experiments (15)

for the bottom-up assembly of nanoparticles (16) and for

single-molecule fluorescence applications (17). For many of

the abovementioned applications, it is insightful, if not critical,

to know what forces a given DNA duplex may withstand. In

particular, such knowledge would make it possible not only

to predict, tune, and analyze DNA force sensor experiments,

but also to design more stable DNA scaffolds.

The elastic response and force-dependent dissociation rate

of DNA duplexes has been extensively studied in microma-

nipulation experiments employing atomic force microscopy

(AFM) (18,19), magnetic beads (20), glass microneedles

(21), and optical tweezers (22,23). Here, we discuss the

stretching of dsDNA along its axis (‘‘shear geometry’’)

only in contrast to the gradual unzipping of DNA perpendic-

ular to its axis (‘‘unzip geometry’’). Stretching a DNA

duplex with thousands of basepairs along its axis results in

an elastic response with a distinct force plateau at 60–65

pN (18,21,22). During this elongation at almost constant

force, the DNA molecule stretches up to a factor of 1.7 of

its contour length. This behavior is highly reproducible,

independent of the stretching velocity, and commonly attrib-

uted to a highly cooperative conversion from regular B-DNA

into an overstretched conformation called S-DNA (24–27).

On the contrary, Rouzina and Bloomfield (28), as well as

Piana (29), argue that S-DNA is not a distinct conformation

of the polymer, but simply the melting of the dsDNA into

two single strands. However, not only does the B-S transition

appear to be too cooperative for a common melting process,

but it has been shown also that dsDNA remains stable at

forces significantly higher than 65 pN (30), with an elastic

response distinct from one single-stranded DNA (ssDNA)

polymer or two parallel ssDNA polymers (24). Further

support for S-DNA being a distinct conformation is provided

by the experimental observation of a second transition in the

range 150–200 pN, which is thought to be the final melting

transition (18,24) instead of the B-S transition. Based on the

assumption that S-DNA is in fact a distinct conformation,

several recent theoretical studies have modeled the elonga-

tion of DNA duplexes applying three-state (B-DNA, S-DNA,

and ssDNA) equilibrium approaches (24,25). These studies

concluded that S-DNA is the thermodynamically preferred

and stable state for forces between 65 and 130 pN.

Individual basepairing interactions are relatively weak

(free energy ~1–3 kBT), and thermal fluctuations cause

opening (‘‘breathing’’) of the DNA duplex from its ends,
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as well as the formation of bubbles, which are regions of

ssDNA (opened basepairs) between regions of dsDNA.

The shorter the DNA duplex, the more likely it is that all

basepairs open up for an instant and the two strands separate

even at forces well below 130 pN. For DNA duplexes tens of

basepairs long, Strunz and colleagues (31) and Morfill and

colleagues (32) observed strand separation at forces as low

as 40–70 pN. Repeated measurements resulted in rupture-

force distributions that were shifted to higher forces for

higher separation velocities. From a theoretical point of

view, this can be described as a thermally driven escape

process from a free-energy potential and has typically been

discussed within the framework of the Bell-Evans model.

Herein, the trapping potential is assumed to be a one-dimen-

sional harmonic free-energy potential, and strand separation

is treated as the crossing of an energy barrier according to

a time dependence similar to that described by the Arrhenius

law (31–35). Application of a force tilts the energy land-

scape, reduces the energy barrier proportional to the applied

force, and therefore increases the dissociation rate of the

DNA duplex. According to the experimental data, the model

predicts higher rupture forces for higher separation velocities

(33). Although the experiments are explained quite well by

the Bell-Evans model, that model does not allow for the

prediction of rupture forces for a given DNA duplex

sequence and separation velocity. Apart from the Bell-Evans

theory, molecular dynamics simulations, employing force

fields and initial molecular structures, provided insight into

the DNA separation process. Unfortunately, these simula-

tions cost a significant amount of computation time, such

that the timescales accessible for in silico experiments are

much shorter than what is experimentally observable (26,

27). Therefore, it is apparent that a theory is needed to fill

the gap between the Bell-Evans model, which is too

simplistic, and the detailed molecular dynamics simulations,

with which mechanics can currently be simulated on very

short timescales only.

In this work, we develop a model that describes and

predicts the DNA duplex rupture forces for any given

sequence and experimentally accessible pulling velocities.

To be specific, we derive the dissociation rate as a function

of the applied force based on a combination of recent work

on DNA equilibrium theory and the canonical transition state

theory. On this basis, we calculate the force-extension traces

and the rupture-force distribution for a 20- and a 30-basepair-

long DNA duplex and compare the obtained results to actual

single-molecule experimental data (Fig 1 a and b). Further,

we are able to show that for the description of double

stranded DNA separation kinetics, our model is a significant

refinement of the conventionally used Bell-Evans model.

RESULTS AND DISCUSSION

The result of this work is a theoretical model that predicts the

rupture force of dsDNA tens of basepairs long as it is applied

in a DNA force sensor, in DNA nanostructure, and in DNA

computing applications. For this purpose, we first set up

a three-state equilibrium model similar to a model used

previously to describe the force-extension traces of long

dsDNA (24). Second, we apply the canonical transition state

theory to this equilibrium model, which in turn permits cal-

culation of the rate of duplex dissociation at a given force f.
Theoretical results are compared to actual AFM experiments

on the 20-basepair (1 � 2) and the 30-basepair (1 � 3)

duplex. Details about DNA oligomers 1–3, as well as about

the experimental procedures, are provided in the Supporting

Material.

Equilibrium theory

Analogous to the Bragg-Zimm theory (36) and a variety of

work published recently on the force-induced opening of

dsDNA in unzip geometry (37–39,40) and shear geometry

(28), as well as the opening of coiled coils (41,42), we calcu-

late the equilibrium free energy of DNA duplexes: The DNA

duplex is described as a one-dimensional polymer for which

every basepair i is considered to be present in one of three

discrete states, namely, regular B-DNA (si ¼ 0), over-

stretched S-DNA (si ¼ 1), and single-stranded DNA (si ¼ 2)

conformations. Thus, any configuration s of an N-basepair

DNA duplex is represented by an N-tupel,

s ¼ ðs1; s2;.; sNÞ; (1)

FIGURE 1 (a) Schematic of a single-molecule DNA stretching experi-

ment. The 50 ends of a short, double-stranded DNA duplex are attached to

a surface and an atomic force microscope cantilever via elastic poly(ethylene

glycol) (PEG) polymers. Separation of the substrate and the cantilever at

constant velocity leads to an increasing end-to-end distance and thus to an

increasing force. (b) Superposition of 20 experimentally obtained force-

extension traces obtained from the same 30-basepair 1 � 2 DNA duplex

with a separation velocity of 1 mm/s. The duplex dissociates at ~60–65 pN.

(c) Schematic of the three-state model. Every basepair of the DNA duplex

appears in one of three states: B-DNA, S-DNA, or single-stranded DNA.

Every state s of an N-basepair-long DNA may thus be represented by

a list of length N with entries 0 (B-DNA), 1 (S-DNA), and 2 (ssDNA) for

every basepair.
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where the ith entry represents the state of the ith basepair,

counting from the 50 to the 30 end.
Two contributions to the free energy/basepair are taken

into account: w, the elastic free energy/basepair at a given

force f, and j, the basepairing free energy we derive from

a nearest-neighbor model and assume to be independent of

the applied force. The free energy of the ith basepair can

be determined by

gsi ;siþ 1
ðf Þ ¼ wsi ;siþ 1

ðf Þ þ jsi ;siþ 1
: (2)

These two energy contributions yield the total free energy,

Gtotal (s, f), for any possible configuration s at any force f,

Gtotalðs; f Þ ¼
XN�1

i¼ 1

gsi ;siþ 1
ðf Þ þ wsN

ðf Þ; (3)

where the term wsN
ðf Þ corresponds to the Nth basepair,

which does not have a next neighbor it can interact with

such that jsN ;sNþ1
¼ 0.

Elastic energy

The free energies due to the elastic deformation of the three

different DNA conformations are obtained by simply inte-

grating their extensions with respect to the force:

wðf Þ ¼ �
Z f

0

xðf 0Þdf 0: (4)

Phenomenological polymer extension models reproduce the

force-extension traces well (see Fig. 2 a). In the Supporting

Material, we derive the elastic free energy/basepair from

such polymer extension models for B-DNA (wB), S-DNA

(wS), and ssDNA (wss) explicitly. Assuming an average base-

pairing energy of 2.4 kBT, as is the case for the 1� 2 and 1� 3

DNA duplexes (Fig. 2 b), which DNA configuration is most

favorable for forces between 0 and 200 pN? B-DNA remains

thermodynamically stable for forces <60 pN. S-DNA is

stable between 60 and ~130 pN and ssDNA is the energeti-

cally most favorable state at forces >130 pN. Since we

employ a nearest-neighbor model to calculate the partition

sum of the system, it is convenient to represent the free energy

due to the elastic behavior of DNA in a 3 � 3 matrix form,

wsi ;siþ 1
ðf Þ ¼

2
4 wBðf Þ wBðf Þ wBðf Þ

wSðf Þ wSðf Þ wSðf Þ
wssðf Þ wssðf Þ wssðf Þ

3
5; (5)

where the rows correspond to the state of basepair i and the

columns to the state of basepair iþ 1. Thus, in our model, the

elastic free energy of basepair i is independent of the state of

basepair i þ 1.

Interaction free energy

It has been observed in experiments that the stability of

a given basepair depends not only on whether the basepair

itself is A$T or G$C, but also on the identity and orientation

of adjacent basepairs, presumably due to the differences in

free energy for the different possible stacking interactions

(43). In our model, we employ the nearest-neighbor model

of SantaLucia, which takes these experimental observations

into account (44). The stacking free energy between each

basepair i and i þ 1 is given by the constant Ji in case

both are either B-DNA or S-DNA. Although the stacking

free energies for B-DNA and S-DNA are independent

parameters, for simplicity, we assume them to be identical.

In addition, the boundaries between regions of different

states are associated with energy penalties. CB�S is the

energy cost associated with a boundary between B-DNA

and S-DNA regions. Cluzel and colleagues estimated the

B-S boundary energy from the cooperativity of the B-S tran-

sition to be close to 3.4 kBT (21). Unlike the non-nearest-

neighbor models for which the latter value was derived, for

FIGURE 2 (a) Force-extension traces obtained from phenomenological

models for the three different states of double-stranded DNA. (b) Corre-

sponding free-energy difference/basepair between B-DNA and ssDNA as

well as between S-DNA and ssDNA. A free-energy penalty of 2.4 kBT,

the average basepair free energy of the 1 � 2 and 1 � 3 DNA duplexes,

is introduced to the free energy of ssDNA due to the loss of basepairing inter-

actions. Highlighted in black is the state that is thermodynamically most

favorable. The most favorable state is B-DNA for forces <60 pN, S-DNA

for forces between 60 pN and 130 pN, and ssDNA for forces >130 pN.
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our nearest-neighbor model, the total energy penalty is given

by CB�S along with the loss of one additional base-stacking

interaction. The average energy lost in base-stacking interac-

tion is 2.4 kBT for the 1 � 2 as well as the 1 � 3 duplex,

which is why we set CB�S to 2.2 kBT (half a base-stacking

interaction free energy subtracted from each boundary).

Furthermore, the boundaries between double-stranded and

between single-stranded regions of DNA are associated with

the free-energy cost, Cds�ss. According to SantaLucia (44)

this value is close to 1 kBT. For any given state s, there are

always two boundaries at each side of the dsDNA region

and, therefore, the parameter Cds�ss has an impact only on

the likelihood of bubbles. Within polymer theory, the latter

are commonly referred to as loops. Since bubbles come

along with additional degrees of freedom, polymer theory

predicts an entropic energy contribution proportional to the

logarithm of the bubble size, which favors the creation of

bubbles:

DGloop

�
nloop

�
¼ kBTlnn�c

loop; (6)

where nloop is the number of opened basepairs within the

bubble and c is the loop exponent. The value of the loop

exponent is c ¼ 3/2 for an ideal loop and c ¼ 2.1 for

a self-avoiding loop (45). The exact value of c for dsDNA

is still under debate. Recent theoretical calculations by Einert

and colleagues imply that data for long dsDNA is best fit by

setting c ¼ 0, which may be explained by the fact that DNA

contains a significant numbers of nicks. Such a long-range

interaction cannot be implemented into our nearest-neighbor

model. Therefore, we simply chose the parameter such that

theory agreed best with actual experiments and estimated

a value of�0.25 kBT for Cds�ss, corresponding to an average

bubble size of 4 basepairs. Note that the theoretical predic-

tions (46–48) regarding longer-range entropic contribution

to partially melted DNA are in agreement with experimental

data obtained by Altan and colleagues (49). Based on Förster

energy transfer measurements on tracts of A$T basepairs,

they argue that initiating a bubble requires a free energy

much larger than kBT, whereas extending this bubble

requires only free energies in the range 0.05–1.0 kBT/

basepair.

In matrix form, the interaction free-energy contributions

based on the SantaLucia nearest-neighbor model and the

boundary free-energy penalties are

where the rows correspond to the state of basepair i and the

columns to the state of basepair i þ 1. Thus, if basepair i
and basepair iþ 1 are B-DNA then an energy gain of Ji is intro-

duced to the base-stacking interaction. The same is true for two

adjacent S-DNA basepairs. Boundaries between basepairs are

associated with an energy penalty CB�S or Cds�ss, where CB�S

is 3.4 kBT and Cds�ss is �0.25 kBT, as discussed above.

Partition sum

From the total free energy, Gtotal (Eqs. 2 and 3), of each

possible state s, we calculate the partition sum, which in

turn allows for determination of the force-extension trace

and the likelihood of the states s.

Thus, the partition sum may be considered as the sum over all

matrix elements of the product of N 3 � 3 matrices (50).

Thereby, the ith matrix of the N matrices represents the ith base-

pair containing nine entries. Each entry represents the Boltz-

mann factor of one of the nine possible combinations of states

that basepair i and basepair i þ 1 may adopt. We make two

corrections to Eq. 8, which we explain in more detail in the Sup-

porting Material. First, we introduce two additional basepairs at

i¼ 0 and i¼ Nþ 1, which are single-stranded. This takes care

of the boundary conditions at the end of the DNA duplex.

Second, we do not count the states for which two or fewer base-

pairs remain. These states, as we discuss in more detail in the

next section, correspond to already separated strands.

Stretching curves

From the partition sum of our model, we derive the force-

extension trace for a given sequence and compare it to exper-

imentally obtained data. The equilibrium force-extension

trace follows directly from the derivative of the partition

sum with respect to the force (51):

xDNA duplexðf Þ ¼ kBT
v ln Zðf Þ

vf
: (9)

The AFM experiments were prepared according to the Mate-

rials and Methods section (see Supporting Material) and are

Zðf Þ ¼
P

s

Pðs; f Þ ¼
P

s

expð � Gtotalðs; f ÞÞ ¼
P

s

QN
i¼ 1exp

�
� gsi;siþ 1

ðf Þ
�

¼
P

all matrix
elements

QN
i¼ 1

2
4 expð � wBðf Þ þ JiÞ expð � wBðf Þ � CB�SÞ expð � wBðf Þ � Cds�ssÞ

expð � wSðf Þ � CB�SÞ expð � wSðf Þ þ JiÞ expð � wSðf Þ � Cds�ssÞ
expð � wssðf Þ � Cds�ssÞ expð � wssðf Þ � Cds�ssÞ expð�wssðf ÞÞ

3
5 : (8)

jsi;siþ 1
¼

2
4 �Ji CB�S Cds�ss

CB-S �Ji Cds�ss

Cds�ss Cds�ss 0

3
5; (7)
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schematically shown in Fig. 1 a. The two complementary

single strands 1 and 2 were coupled to the cantilever tip

and a substrate via long poly(ethylene glycol) linkers

(5 kDa). In a typical experiment, the tip is brought into

contact with the glass slide, and the two complementary

strands hybridize and form the 1� 2 duplex. Upon retraction

at constant velocity, the PEG spacer and dsDNA elongates,

building up an increasing force until the duplex dissociates.

Fig. 3 shows an average of 20 force-extension curves. Exper-

imentally, one measures the elasticity of a chain of four

elements: the dsDNA duplex, the PEG linker, the ssDNA

linker, and the cantilever. The force-extension trace is a

superposition of the extension profile of all four of them:

xðf Þ ¼ xDNA duplexðf Þ þ xDNA linkerðf Þ þ xPEG linkerðf Þ
þ xcantileverðf Þ; (10)

where xDNA duplex is specified by Eq. 9 and xcantilever is the

deflection of the cantilever, which is proportional to the

cantilever stiffness, kcantilever ¼ 8 pN/nm . The polymer

models from which xDNA linker and xPEG linker are derived

are described in the Supporting Material. We used the

number of monomers within the PEG polymer, NPEG, as

a fitting parameter, since PEG polymers are typically synthe-

sized with a rather broad size distribution (32). Fitting of the

whole system resulted in a monomer number of 255, which

agrees well with the expected monomer number of 227 for

a total PEG linker with a molecular mass of 10 kDa.

Fig. 3 shows that the theory fits the experimental data very

well for forces >30 pN. However, for lower forces, the theo-

retical fit underestimates the experimentally obtained forces.

The 10- to 15-pN plateau between 10 and 20 nm extension at

the beginning of the stretching curve is typical for a DNA

desorption process from a surface (52). For higher exten-

sions, we attribute this discrepancy between theory and

experiment to nonspecific interactions and entanglement of

the strands with each other on the surface. This is entirely

possible, since the contour length of the surface-anchored

DNA strands is >50 nm and the spacing between two of

these strands is typically ~10 nm (12,15,16).

Canonical transition state theory

For an average basepairing free energy of 2.4 kBT, dsDNA is

thermodynamically stable for forces <130 pN (18,24,25).

Still, Strunz and colleagues (31) and Morfill and colleagues

(32) observed bond breakage at forces between 40 and 70 pN

for 20- and 30-basepair dsDNA. They attributed this effect to

thermal fluctuations like the opening or ‘‘breathing’’ of

dsDNA from its ends, and to the formation of bubbles, which

are regions of ssDNA between regions of dsDNA. Some of

these fluctuations are so large that the whole duplex opens

and the two strands separate.

Such a thermally activated escape process can be described

by canonical transition state theory (53,54). This theory is

purely classical and based on two assumptions: 1), the bond

is trapped in a free-energy potential and thermodynamic equi-

librium prevails; and 2), once the system has crossed a

dividing surface in state space, i.e., the transition state, it

will not return to the metastable state. The rate of escape

follows directly from the flux through this dividing surface.

In the next paragraphs, we first define the dividing surface,

i.e., the transition states, for the dsDNA equilibrium model

described in the previous section. We then calculate the equi-

librium flux through this dividing surface and thus obtain the

rate of escape. We explicitly calculate the rupture-force

distributions for the two DNA duplexes 1 � 2 and 1 � 3

and compare them to experimental data. At the end of this

section, we discuss why the canonical transition state theory

is an appropriate description of our system.

Transition states

In the case of an N-basepair-long DNA duplex, the free-

energy potential is N-dimensional and the corresponding

coordinate is the state s. A dividing surface between the reac-

tants (dsDNA) and the products (ssDNA) has to be chosen

such that once the system has crossed this surface, the chan-

ces of recrossing are negligible. In our system, this dividing

surface is spanned by the states stst, for which there is exactly

one base-stacking interaction left. One base-stacking interac-

tion corresponds to two adjacent B-DNA or S-DNA base-

pairs. Therefore, there are 2(N – 1) distinct states through

which the reaction may occur. For illustrative purposes we

can collapse the free-energy landscape onto one coordinate:

n, the number of remaining basepairs. Within this picture

FIGURE 3 Force-extension data of short, double-stranded DNA attached

to a surface and an atomic force microscope cantilever via a 5-kDa poly(eth-

ylene glycol) linker for each strand. Data for 20 pulling experiments at

a separation velocity of 1 mm/s was binned into 1-pN intervals and averaged

(circles). The solid line is the corresponding fit of the model presented here.

The dashed line represents the fit in the case where the DNA duplex remains

in its canonical B-form. At <30 pN, the fit underestimates forces, an obser-

vation that we attribute to nonspecific interactions and entanglements with

neighboring constructs on the surface. (Inset) For forces >30 pN, theory

and experimental data agree within the experimental error.
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(Fig. S1 in the Supporting Material), we identify the transi-

tion state as ntst ¼ 2. If another basepair opens up, the two

DNA strands dissociate, i.e., the polymers will immediately

reduce their end-to-end distance and reannealing of the two

strands is literally impossible.

Equilibrium flux

The rate of escape is given by the equilibrium flux through

the transition states, stst, in the direction of the product

(two separate strands). The flux is essentially twice the base-

pair opening rate (either one of the two remaining basepairs

may open), which, for simplicity, we assume to be the same

for all stst. This allows us to use the collapsed free-energy

landscape with only one reaction coordinate, n, the number

of remaining basepairs. The equilibrium flux through the

transition states, stst, becomes the probability that the system

will be in the collapsed transition state, ntst, multiplied by

:nþ, twice the basepair opening rate. The result for the rate

of escape at a given force f is

kðf Þ ¼ hd½n� ntst�n: þ iequilibrium

¼ 1

Zðf Þ
X
StsT

n:þ expð � DGtotlaðstst; f ÞÞ: (11)

The calculations are shown explicitly in the Supporting

Material. To our knowledge, the basepair opening rate of

a single basepair-stacking interaction has never been deter-

mined experimentally. From the literature, we estimate the

basepair opening rate at the ends of dsDNA to be between

103 s�1 and 109 s�1: Bockelmann and colleagues performed

optical tweezers measurements from which we estimate an

opening rate of at least 103 s�1 (55). Fluorescence measure-

ments investigating the end fraying of the dsDNA could not

resolve any basepair opening rates on timescales <109 s�1

(56). In their report discussing the unzipping of DNA, Cocco

and colleagues assumed a value of 108 s�1 (24), and nuclear

magnetic resonance amino proton exchange studies yielded

rates in the order of 107 s�1 (57). For a basepair opening

rate of :nþ ¼ 5 � 108 s�1 our theory agrees very well with

the experimentally determined rupture forces (32). Note

that the rate depends on the applied force, but since the force

dependence is rather weak (40), we assume the rate to be

constant. In principle, all calculations could also be per-

formed with force- and sequence-dependent rates.

Rupture forces

Based on the canonical transition state theory, we derive the

rupture-force distributions obtained for two given sequences,

namely, the 1 � 2 as well as the 1 � 3 DNA duplex, and

different pulling velocities, v. In experiments, we control

the separation velocity between cantilever and substrate.

Thus, the end-to-end distance, x, of a system composed of

dsDNA, ssDNA linker, PEG linker, and AFM cantilever

continuously increases in time with constant velocity v.

From the end-to-end distance, x, we derive the force acting

along this chain of elastic elements. The force in turn allows

us to determine the escape rate, k, as a function of time. The

resulting differential equation describes the decay from a

metastable state, Nduplex, with a time-dependent rate (33):

dNduplex ¼ NduplexkðtÞdt; (12)

where k(t) ¼ k(f(v � t)), and f(x) follows from Eq. 10.

For both the 1 � 2 and the 1 � 3 DNA duplexes and

separation velocities between 10 nm/s and 10 mm/s, we

numerically solved this differential equation. The obtained

rupture-force distributions are shown in Fig. 4 a. A striking

finding was that the rupture-force distribution of the 1 � 2

DNA duplex broadens with increasing force loading rate,

whereas the rupture-force distribution of the 1 � 3 DNA

duplex is almost independent of this parameter. We attribute

this behavior to the crossing of the B-S transition at ~65 pN,

which is only observed for the 1 � 2 DNA duplex for the

experimentally applied force loading rates. For forces >65

pN, and thus above the B-S transition, the slope of the

force-extension profile increases significantly, resulting in

a wider distribution of the obtained rupture forces. To verify

that the broadening of the rupture-force distribution is indeed

due to the crossing of the B-S transition, we calculated the

1 � 3 DNA duplex rupture-force distributions for force

loading rates higher than those achievable by experiment.

In agreement with this interpretation, the rupture-force distri-

bution of the 1 � 3 DNA duplex broadens correspondingly

for rupture forces above the B-S transition (data not shown).

The experimentally obtained rupture-force distributions are

further broadened by the thermal and instrumentation noise

introduced to the cantilever. According to Morfill and

colleagues (32), the total experimental noise was Gaussian,

with a width of 4.7 pN. Therefore, to compare theory with

experiment, we convolved the theoretically obtained rupture-

force distribution with such a Gaussian distribution (Fig. 4 b).

From these distributions, we determined the most probable

rupture force via a Gaussian fit. Fig. 4 c shows this fit plotted

against the corresponding most probable force loading rate for

the theoretical predictions and the experimental data. The

theory reproduces the data quite well within the experimental

error.

Systematic errors on the experimental side are mainly due

to errors of the cantilever calibration, which introduces an

error of up to 5–10% (58). The presented AFM force data

were obtained with two different AFM cantilever tips, one

for all of the 1 � 2 DNA duplex data and one for all of

the 1 � 3 DNA duplex data. Therefore, the set of most prob-

able rupture forces may be shifted by up to 5–10%. Further,

a small error is introduced due to pulling angles that are not

perpendicular to the substrate, which is typically in the order

of 2% (59).

Systematic errors on the theoretical side include the

following: We chose the basepair opening rate for the

B-DNA and the S-DNA conformations to be identical,

Biophysical Journal 97(12) 3158–3167

Force-Driven dsDNA Separation 3163



although they are completely independent parameters.

Further, the S-DNA polymer elasticity model is very crude

for several other reasons. First, according to the methods of

Cocco and colleagues (24), we approximated the force-exten-

sion curve of S-DNA to be linear. Second, the basepair free

energy was assumed to be identical to the B-DNA interaction.

Furthermore, there are most likely two types of S-DNA,

depending on whether the force is applied at the 50 or the 30

ends of the dsDNA (26,60). Finally, the nearest-neighbor

model does not account for long-range interactions, as they

are experimentally observed in DNA bubbles, which has

a strong influence on the boundary energy, Css�ds, and thus

on how cooperative DNA strand separation occurs. From

our calculations, we observed that a more cooperative transi-

tion between single-stranded and double-stranded DNA, i.e.,

a larger value for Css�ds, leads to a reduced DNA duplex

length dependence on the rupture-force distribution. For

values of Css�ds in the range of a few kBT, the rupture-force

distributions of the 1 � 2 and the 1 � 3 DNA duplexes are

almost superimposed.

Thermodynamic equilibrium prevails

To appropriately describe the separation of dsDNA employ-

ing canonical transition state theory, thermodynamic equilib-

rium must prevail within the binding potential (54). Two

scenarios would contradict such an assumption: Either the

changes of state occur on timescales equal to or slower than

the rate of escape or, to reach the transition states, an interme-

diate free-energy barrier needs to be crossed. In the Support-

ing Material, we discuss these scenarios and conclude that,

for the experimentally observed force range between 0 and

100 pN, canonical transition state theory is applicable.

Comparison to the Bell-Evans model

Typically, the rupture of molecular bonds is described em-

ploying the Bell-Evans model (34). Like our model, the latter

is based on transition state theory assuming a thermally acti-

vated escape from a free-energy potential. In this section, we

discuss the differences between the Bell-Evans model and

our model, how they compare with each other, and why

our model is a significant refinement for the description of

force-induced separation of short dsDNA.

The main difference between the two models lies within

the approximation of the Bell-Evans trapping potential as

a harmonic free-energy landscape, which is simply tilted

by an external force. As a result of this approximation, the

free-energy difference between the equilibrium and the tran-

sition state decreases in proportion to the applied force:

DGðf Þ ¼ DG0 � f � xtst; (13)

where DG0 is the free-energy difference at zero force and xtst

is a force-independent distance between the equilibrium state

and the transition state. The force-dependent rate is given by

kðf Þ ¼ k0 � expð�DGðf ÞÞ; (14)

where k0 is the natural attempt frequency of the molecular

bond. In our work, we explicitly model the evolution of

FIGURE 4 (a) Calculated rupture-force distribution for the 1 � 2 and the

1� 3 duplex for 50, 500, and 5000 nm/s pulling velocity. (b) Comparison of

the experimental (gray bars) and calculated (lines) rupture-force distribution

for the 1� 2 and 1� 3 duplex at 895 nm/s and 1007 nm/s, respectively. The

calculated rupture-force distributions were convolved with a Gaussian canti-

lever detection noise of 4.7 pN. (c) Comparison of the experimental and

calculated most probable rupture forces for different most probable loading

rates. The gray data points refer to the experimental data and the black data

points to the theory data. Squares refer to the 30-basepair DNA 1� 2 duplex

and triangles to the 20-basepair 1 � 3 duplex.
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the DNA duplex free-energy landscape with increasing

force. To see what differences arise in comparison to the

Bell-Evans approach, we calculate an effective barrier height

of the transition state from the sum of the Boltzmann proba-

bilities for the states, stst.

DGðf Þ ¼ �ln

 X
stst

expð � DGtotalðstst; f ÞÞ
Z

!
: (15)

As shown in Fig. 5 a, the force-dependent evolution of the

effective barrier height according to Eq. 15 does exhibit

significant differences from the Bell-Evans approach

(Eq. 13). Below 10 pN the free-energy difference between

the equilibrium state and the transition state increases with

applied force. This is in agreement with Fig. 2 b, which

shows that for increasing applied force the absolute value

of the free-energy difference per basepair between B-DNA

(equilibrium state for low forces) and ssDNA (transition

state) increases for forces <10 pN before it decreases for

forces >10 pN. The microscopic origin of this effect is

that although the contour length of ssDNA is longer

compared to B-DNA, the contour length of ssDNA projected

onto the direction of applied force, i.e., the end-to-end

distance, is shorter for low forces due to its much shorter

persistence length. Thus, low forces stabilize DNA duplexes,

a result that was previously shown experimentally (61,62) and

discussed theoretically (28,63). Between 10 and 60 pN, the

free energy decreases roughly proportionally to the applied

force, f. Above 65 pN, i.e., above the B-S transition, the energy

decreases linearly again, yet with a smaller slope. Taking the

negative derivative of the calculated free-energy barrier height

with respect to the force yields an effective distance between

the equilibrium state and the transition state, xtst:

xtst ¼ �
vDGðf Þ

vf
:

xtst does exhibit a rather odd force dependency (Fig. 5 b),

which we explain according to geometrical considerations:

Strunz and colleagues estimated an upper limit for xtst

assuming that the equilibrium state is B-DNA with a contour

length of 0.34 nm/basepair and that the transition state is all

ssDNA (apart from two residual basepairs), with a contour

length of ~0.7 nm/basepair (31). In the case of the 30-

basepair 1 � 2 DNA duplex, this corresponds to a total

length difference between these two states of ~10 nm, which

is significantly larger than the corresponding values of xtst

obtained from our calculations, as well as those from actual

experiments (31,32). Two effects contribute to this devia-

tion. First, xtst is the projection of the distance between the

equilibrium state and the transition state onto the direction

of applied force. Therefore, a more accurate estimate of xtst

is the difference in end-to-end distance according to our

polymer models for B-DNA and ssDNA (Fig. 5 b). Second,

within the range 60–65 pN, the equilibrium state switches

from a predominantly B-DNA duplex to a predominantly

S-DNA duplex. The difference in end-to-end distance

between the equilibrium state and the transition states is

much smaller for an S-DNA duplex than for a B-DNA

FIGURE 5 (a) Calculated effective barrier height, according to the stan-

dard Bell-Evans model. At forces between 10 and 50 pN, the free energy

decreases proportionally to the applied force f. At forces >65 pN, when

B-DNA is converted into S-DNA, the energy again decreases linearly, yet

with a significantly smaller slope. (b) The negative derivative of the force

versus free energy profile yields xtst, the effective distance between the equi-

librium state and the transition state. The dashed line represents the differ-

ence in end-to-end distance for B-DNA and ssDNA for the 1 � 2 DNA

duplex as a function of force. (c) For forces <60 pN, xtst reflects the increase

in end-to-end distance from B-DNA to ssDNA. (d) For forces >65 pN, xtst

reflects the increase in end-to-end distance from S-DNA to ssDNA.
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duplex (Fig. 5 c). Consequently, xtst decreases to a fraction of

a nanometer during the B-S transition.

Due to the force dependence of xtst, we conclude that the

standard Bell-Evans model is only a good description of the

force-induced separation of DNA duplexes for forces between

10 and 50 pN and between 65 and ~100 pN. However, for both

scenarios, a different set of free-energy landscape parameters,

i.e., free-energy barrier at zero force and distance between

equilibrium and transition state, need to be chosen. Our

refined model, on the other hand, provides a reliable descrip-

tion for forces between 0 and ~100 pN. Our results are in

agreement with recent literature. Hyeon and Thirumalai (64)

argue that xtst changes considerably if the molecular bond is

soft or plastic, as is the case for dsDNA. Further, Dudko

and colleagues (65) report that the position of the equilibrium

state may depend on the applied force leading to a force

dependence of the distance between the equilibrium state

and the transition state and thus to a nonlinear dependence

of the barrier height on the applied force.

CONCLUSION

The result of this work is a theoretical model that employs

a combination of a three-state equilibrium model and the

canonical transition state theory to describe the force-

induced strand separation of dsDNA tens of basepairs

long. The three-state equilibrium model serves as a basis

for a free-energy trapping landscape. Double-strand separa-

tion occurs through transition states, which we identify as

the states with two adjacent basepairs remaining, i.e., one re-

maining stacking interaction. We calculated the rate of

escape as a function of force from the total flux through these

transition states, assuming a basepair opening rate of 5� 108

s�1. The rate of escape in turn allowed us to explicitly calcu-

late the rupture-force distribution for two DNA duplexes,

1� 2 and 1� 3. The theoretically obtained results and actual

single-molecule atomic force microscopy experiments are in

excellent agreement. We argue that in the case of the force-

induced DNA strand separation, our model is a significant

refinement of the Bell-Evans model and provides a reliable

description for forces between 0 and 100 pN. In the future,

we foresee this theory being applied to predict, tune, and

analyze the behavior of DNA force sensors.
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MATERIALS AND METHODS 

 

Theoretical calculations were performed using Mathematica version 5.1 (Wolfram Research, Champaign, 

IL). The experimental data presented in this study was obtained according to Morfill and colleagues [1]. In 

the following paragraphs we briefly discuss the experimental setup and data analysis. 

 

DNA constructs. DNA oligomers 1: SH-5’-TTT TTT TTT TTT TTT TTT TTC GTT GGT GCG GAT 

ATC TCG GTA GTG GGA TAC GAC GAT ACC GAA GAC AGC TCA TGT TAT ATT ATG-3’, 2: SH-

5’-TTT TTT TTT TTA TCC CAC TAC CGA GAT ATC CGC ACC AAC G-3’ and 3: SH-5’-TTT TTT 

TTT TCC GAG ATA TCC GCA CCA ACG-3’ were purchased HPLC grade from IBA GmbH (Goettingen, 

Germany). 

 

Preparation of slides and cantilevers. The used oligonucleotides modified with a thiol group at their 5’-

termini were immobilized on amino-functionalized surfaces using a hetero-bifunctional poly(ethylene 

glycol) (PEG) spacer [2]. Oligonucleotide 1 was immobilized on the cantilever and oligonucleotide 2, 

respectively 3, was coupled to the surface. Before use, the cantilevers (Bio-lever, Olympus) were cleaned as 

described earlier [3]. After this cleaning procedure, amino-modified cantilevers were prepared using 3-

aminopropyldimethylethoxysilane (ABCR GmbH, Karlsruhe, Germany). For the surface-coupling of 

oligonucleotide 2, respectively 3, commercially available amino-functionalized slides (Slide A, Nexterion, 

Mainz, Germany) were used. From now on, both surfaces (cantilever and slide) were treated in parallel as 

described previously [4]. They were incubated in borate buffer pH 8.5 for 1 h in order to deprotonate the 

amino groups to ensure coupling to the N-hydroxysuccinimide (NHS) groups of the heterobifunctional 

NHS-PEG-maleimide (molecular weigh, 5000 g/mol; Nektar, Huntsville, AL). After dissolving the PEG at 

a concentration of 50 mM in borate buffer at pH 8.5, this solution was incubated on the surfaces for 1 h. In 

parallel, the thiol groups of oligonucleotides 1, 2 and 3 were recovered from disulfide bonds. 

Oligonucleotides were reduced using tris (2-carboxyethyl) phosphine hydrochloride beads (Perbio Science, 

Bonn, Germany). After washing the surfaces with ultrapure water, a solution of the oligonucleotides 1 and 

2, respectively 3, (1.75 mM) was incubated on the cantilever tip and the surfaces for 1 h. During this 

incubation time, the free functional maleimide group of the PEG was allowed to react with the 5’-thiol end 

of the respective oligonucleotide, yielding a thioester bond. Finally, the cantilever and the surfaces were 

rinsed with PBS to remove noncovalently bound oligonucleotides and stored in PBS until use.  

 



S3 

Force spectroscopy. The force measurements were performed in PBS containing 150 mM NaCl at room 

temperature using an MFP-3D AFM (Asylum Research, Santa Barbara, CA). Cantilever spring constants 

were measured as described previously [5] [6]. During one experiment, the approach and retract velocity 

were held constant. To obtain measurements over a broad range of different loading rates, several 

experiments were performed each at a different retract velocity ranging from 50 nm/s to 10 mm/s.  

 

Data Analysis. The obtained data were converted into force-extension curves. From these force-extension 

curves, the rupture force (the force at which the dsDNA separates into two single strands) and the 

corresponding loading rate were determined using the software Igor Pro 5.0 (Wavemetrics, Lake Oswego, 

OR) and a custom-written set of procedures. The rupture force is defined as described previously [7]. To 

determine the loading rate, the freely jointed chain model was used, according to previous studies [9]. 
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POLYMER MODELS 

 

Herein, we employ polymer extension models for B-DNA, S-DNA and single stranded DNA according to 

the three-state equilibrium model of Cocco and colleagues [8]. The poly(ethylene-glycol) is modeled 

according to Oesterhelt and colleagues [9]. 

 

Double-stranded B-DNA. B-DNA elasticity is very well described by chain bending fluctuations leading 

to an entropic elasticity, while elastic stretching of the double helix generates the roughly linear stretching 

between 20 and 50 pN with a spring constant per base pair of fB/CB =1200/0.34 pN/nm. According to 

previous work [10], the extension per base-pair is 

! 

x B( f ) =CB 1"
kBT

4AB f
+
f

fB

# 

$ 
% 

& 

' 
( , 

where the persistence length is AB = 50 nm, the force constant fB = 1230 pN and the contour length CB = 

0.34 nm. The free energy correspondingly becomes 

! 

wB( f ) = " x B

# f =0

f

$ ( # f ) d # f  

Double-stranded S-DNA. For S-DNA elasticity a linear response to elongation was suggested [8] with an 

extension per base pair of 

! 

x S( f ) = x1 +
f " f1

S
. 

and a free energy function of 

! 

wS ( f ) = wB( f0) "
1

2
(xo + x1)( f1 " f0) +2x1( f " f1) + ( f " f1)

2
/S( ) 

where the parameters are x0 = 0.32 nm, x1 = 0.58 nm, f0 = 62 pN, f1 = 68 pN and S = 4700 pN/nm. The 

values for f0 and f1 are salt dependent parameters and given for a salt concentration of 500 mM. They shift 

down by 5 pN for each decade reduction in NaCl concentration. Thus the above set of parameters is chosen 

such that experimental data on the B-S transition, the salt dependence [11] and the stretching data for forces 

between 68 and 150 pN [12] are reproduced well. 

 

Single-stranded DNA. The ssDNA polymer model is phenomenological [8] and includes the logarithmic 

dependence of extension on force seen at >50 mM NaCl concentration [13] as well as the reduction in 

contour length generated at low force by self-adhesion (“folding”) of the chain. The extension per base pair 

is 
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! 

xss( f ) =Css
a1 ln f / f1( )

1+ a3Exp " f / f3( )

# 

$ 
% % 

& 

' 
( ( , 

where Css = 0.34 nm, a1 = 0.21, a2 = 0.34, f1 = 0.0037 pN, f2 = 2.9 pN and f3 = 8000 pN. The parameter a3 = 

2.1 ln(M/0.0025)/ln(0.15/0.0025)-0.1 depends on NaCl concentration M (mol). The free energy 

correspondingly becomes 

! 

wss( f ) = " xss

# f =0

f

$ ( # f ) d # f . 

Poly(ethylene glycol). For the PEG extension per monomer we used a two state model develop by 

Oesterhelt and colleagues [1].  

! 

xPEG ( f ) =
Cplanar

Exp "G( f ) /kBT( )+1
+

Chelical

Exp #"G( f ) /kBT( )+1

$ 

% 
& & 

' 

( 
) ) * coth

f * APEG
kBT

$ 

% 
& 

' 

( 
) #

kBT

f * APEG

$ 

% 
& 

' 

( 
) +

f

KPEG

, 

where Cplanar = 3.58 A, Chelical = 2.8 A, APEG of 7 A, KPEG = 150 N/m and  

! 

"G( f ) = "G0 # f Cplanar #Chelical( ), 

where 

! 

"G0  = 3.3 kBT. This model takes into account that the PEG monomers appear in two conformations.  
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PARTITION SUM CORRECTIONS 
 

Boundary Condition. The partition sum of Equation 8 does not account for the boundary conditions at the 

end of the DNA duplex yet. As boundary conditions, we therefore introduce two additional base-pairs at i = 

0 and i = N + 1, which are single stranded. The partition sum Z´ including the two boundary base pairs 

becomes 

! 

" Z =

0 0 0

0 0 0
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Strand-separated states. All states with less than two remaining base-pairs are already strand separated. 

We subtract the Boltzmann probabilities of these states from the partition sum such that the partition sum 

that we use for all further calculations becomes 
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TRANSITION STATE THEORY 
 

Equilibrium Flux. The equilibrium flux is simply the sum of the Boltzmann probabilities of al states stst 

times the base pair opening rate: 
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Thermodynamic Equilibrium Prevails. To appropriately describe the separation of dsDNA employing the 

canonical transition state theory, thermodynamic equilibrium must prevail within the binding potential. Two 

scenarios would contradict such an assumption: Either, the changes of state occurred on timescales equal to 

or slower than the rate of escape or if, in order to reach the transition states, an intermediate free energy 

barrier needs to be crossed. In the following, we discuss these scenarios and conclude that, for the 

experimentally observed force range between 0 and 100 pN, the canonical transition state theory is 

applicable. 

The changes in state from dsDNA to ssDNA occur at base-pair opening and closing rates. Within the 

present work, we assumed that these rates are in the order of 108 s-1. From our numerical calculations, we 

deduce that the base-pair opening rate is about two orders of magnitude faster than the rate at which short 

dsDNA dissociates for forces below 100 pN. We therefore conclude that the escape process does not 

critically disturb the thermodynamic equilibrium. 

Due to the base-pair heterogeneity the transition state might only be reached by crossing intermediate 

free energy barriers [8]. In this case, this intermediate barrier crossing would become rate limiting and the 
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populations of states would not be Boltzmann distributed. In order to investigate this effect, we calculated 

the free energy as a function of the open base-pairs explicitly for the two dsDNAs used here (Figure S1). 

Hereby, we neglected the simultaneous formation of more than one DNA bubble. Figure S1b illustrates that 

no significant energy barriers appear for forces up to 100 pN. 

Since the changes in state occur much faster than the separation of the strands and, apart from the 

transition state, no significant energy barriers arises along the reaction coordinate, we conclude that the 

canonical transition state theory is appropriate for modeling the rate of strand separation for tens of base-

pair long dsDNA. However, for forces significantly higher than 100 pN, the requirements for the canonical 

transition state theory fail: The rate of escape becomes comparable to the timescale of internal fluctuations, 

i.e. the base-pair opening and closing rates. Further, rate-dominating barriers apart from the transition state 

arise. Both effects result in a significant perturbation of the equilibrium distribution and consequently in the 

breakdown of the canonical transition state theory. 
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Figure S1. (a) The calculated energy landscape collapsed onto one coordinate n, the number of remaining 

base pairs, is calculated from equilibrium theory. Thereby, we allow the double strand to open up from its 

ends as well as to form a bubble of ssDNA. In order to speed up the numerical calculations, we do not 

account for the simultaneous opening of more than one bubble. (b) Free energy landscape of the 1·2 DNA 

duplex at 60, 80 and 100 pN calculated from the partition sum. (c) Free energy landscape of the 1·2 DNA 

duplex at forces smaller than 60 pN. The transition state is located at ntst = 2 and no significant barriers 

apart from the transition state are observed for forces up to 100 pN. 
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Abstract 11 

Analysis of transcription factor binding to DNA sequences is of utmost importance to understand the 12 

intricate regulatory mechanisms that underlie gene expression. Several techniques exist that quantify 13 

DNA-protein affinity, but they are either very time-consuming or suffer from possible misinterpretation 14 

due to complicated algorithms or approximations like many high-throughput techniques. We present a 15 

more direct method to quantify DNA-protein interaction in a force-based assay. In contrast to single-16 

molecule force spectroscopy, our technique, the Molecular Force Assay (MFA), parallelizes force 17 

measurements so that it can test one or multiple proteins against several DNA sequences in a single 18 

experiment. The interaction strength is quantified by comparison to the well-defined rupture stability of 19 

different DNA duplexes. As a proof-of-principle, we measured the interaction of the zinc finger 20 

construct Zif268/NRE against six different DNA constructs. We could show the specificity of our 21 

approach and quantify the strength of the protein-DNA interaction. 22 

 23 

Introduction 24 

The sequence-specific interaction of certain proteins with the genomic DNA is prerequisite for the 25 

complex task of transcriptional regulation. Those transcription factors bind alone or in clusters to the 26 

DNA and can thus activate or impede transcription. Many of the transcription factors can bind to 27 

several, different DNA sequence motifs with varying strength [1]. Recent studies suggest that not only 28 

strong interactions between transcription factors and the DNA influence gene expression, but that 29 

weak interactions significantly contribute to transcriptional regulation and are evolutionary conserved 30 

[2].  Quantitative models support the importance of weak interactions and show that correct 31 



 2 

recapitulation of transcriptional processes is only possible by including low-affinity transcription factor 1 

binding sites in their calculations [3]. Hence, in order to get a comprehensive picture of transcriptional 2 

regulation, it is essential to quantify the interaction of a broad range of transcription factors with all 3 

possible DNA sequences.  4 

Recent developments in high-throughput techniques, for example the in vivo method chromatin 5 

immunoprecipitation combined with microarray analysis (ChIP-chip) [4,5] or sequencing (ChIP-seq) [6] 6 

or in vitro techniques like protein binding microarrays (PBM) [7-10] have greatly increased our 7 

knowledge about various transcription factor binding sites. However, in most instances these 8 

techniques lack the ability to accurately quantify the protein-DNA interaction or require complicated 9 

algorithms and approximations to do so. Various methods exist to characterize the protein-DNA 10 

interactions by measuring thermodynamic and kinetic constants, for example electrophoretic mobility 11 

shift assay (EMSA) or surface plasmon resonance. Yet their common drawback is the low throughput 12 

that makes it nearly impossible to analyze a transcription factor against a whole genome. Two 13 

techniques have made huge advances in bridging the gap between measuring thermodynamic 14 

constants and high throughput, namely mechanically induced trapping of molecular interactions 15 

(MITOMI) [11] and high-throughput sequencing - fluorescent ligand interaction profiling (HiTS-FLIP) 16 

[12]. Both can determine dissociation constants of several transcription factors against thousands of 17 

DNA sequences (MITOMI) or of one protein against millions of DNA motifs (HiTS-FLIP), but require 18 

some approximations in order to calculate dissociation constants in a high-throughput format 19 

(MITOMI) or need a washing step that interferes with the analysis of transient interactions (HiTS-20 

FLIP).  21 

Importantly, due to the high concentration of DNA in a bacterial cell or eukaryotic nucleus, the dynamic 22 

equilibrium between unbound and bound activated transcription factors is shifted towards DNA-protein 23 

complexes. Hence, affinity described by the dissociation constant might not be the best measure to 24 

characterize the protein-DNA interaction inside a nucleus. The specificity defined as the ability of a 25 

transcription factor to discriminate between a regulatory sequence and the vast majority of non-26 

regulating DNA might be a more suitable quantity. But quantification of the specificity in that sense 27 

means to determine the complete list of dissociation constants for all possible DNA sequences or a 28 

constant calculated from those dissociation constants [13]. Therefore, a method that determines the 29 

specificity in a single measurement is highly desirable considering the number of transcription factors 30 

and possible genomic sequences. Since the force required to break a bond increases with decreasing 31 



 3 

potential width, a more localized interaction between protein and DNA as it is expected for a sequence 1 

specific interaction will result in a higher unbinding force. Thus, a possibility for describing the 2 

specificity arises out of the binding strength between a protein and a DNA motif that is accessible in 3 

force-based measurements. Single-molecule force spectroscopy experiments allow the 4 

characterization of a protein-DNA bond in great detail [14-18] but are very time consuming and 5 

therefore not the appropriate tool to analyze the binding properties of a transcription factor against a 6 

whole genome.  7 

The Molecular Force Assay (MFA) developed in our lab [19,20] parallelizes single-molecule force 8 

experiments. It relies on the principle of comparing the interaction in question with a well-defined 9 

reference bond. We here describe a new application of the MFA to quantify binding strengths of 10 

several DNA-protein complexes directly and in parallel. This should contribute to a more conclusive 11 

and complete understanding of transcriptional regulation. In an adaptation of the original setup, we 12 

demonstrate in a proof-of principle experiment that we are able to determine the binding strength of a 13 

zinc finger protein against several DNA sequences in a single measurement.  14 

Zinc finger motifs are one of the most abundant DNA binding domains in eukaryotic transcription 15 

factors [21]. The protein in our experiment Zif268/NRE is an artificial fusion protein of two zinc fingers 16 

of the Cys2-His2 class [22]. Zif268 is a transcription factor in mouse and a popular model system due 17 

to the existence of structural data of the protein-DNA complex [21,23]. NRE is an engineered variant of 18 

Zif268 that binds specifically and with high affinity to a nuclear receptor element [24]. Our force-based 19 

design allows us to characterize the interaction of this six zinc finger protein with three DNA binding 20 

motifs, a high affinity sequence, a low affinity sequence and a no binding sequence, by a single value 21 

that can be directly correlated to the binding strength. Additionally, we show that we could gain further 22 

information about differences in the binding strength by varying the reference bond between a 20 base 23 

pair (bp) DNA sequence and a 40 bp DNA sequence. This demonstrates the possibility to convert the 24 

measured binding strength into intuitive units of DNA base pairs binding strength. Hence, this new 25 

variant of the MFA can quantify DNA-protein interaction and describe the binding strength in a simple 26 

picture by correlating it to the average binding strength of a certain number of DNA base pairs. 27 

 28 

 29 

Results and Discussion 30 



 4 

The standard Molecular Force Assay (MFA) consists of two molecular bonds in series, a reference 1 

and a sample bond, clamped between two surfaces. The two surfaces are separated with a constant 2 

velocity so that a force builds up in the two molecular bonds until the weaker one ruptures. A 3 

fluorophore conjugated to the linker sequence between the two molecular complexes indicates the 4 

intact molecular bond. Hence, the ratio of the fluorescence intensity before and after the force loading 5 

of the molecular constructs is a measure of the strength of the sample bond in comparison to the 6 

reference bond. An alternative view of this assay is that the force greatly enhances the off rate of the 7 

bond under investigation and reduces the otherwise extremely long spontaneous dissociation times 8 

towards seconds [25]. As every molecular complex is tested against its own reference bond, the 9 

measurement is a single-molecule experiment that can be conducted in parallel with several thousand 10 

constructs. If oligonucleotide sequences are used for sample and reference complex, different binding 11 

sequences for ligands can be introduced in the sample bond so that a strengthening of the sample 12 

bond can be detected upon binding. Thus, the dissociation constant for ligands like polyamides [26] or 13 

proteins [27] was determined and an ATP-aptamer [28] as well as the interaction of the protein Dicer 14 

with double-stranded RNA [29] was characterized. Additionally, the reference bond can be varied in 15 

length and thus in the binding strength the sample bond is compared to. Hence, it was possible in 16 

former studies to quantify the increase of the sample bond strength upon ligand binding to the stability 17 

of 9.5 base pairs for a polyamide and to 27.7 base pairs for the protein EcoRI [30]. In a subsequent 18 

experiment integrated in a microfluidic setup, the binding of EcoRI to two sample bonds with different 19 

affinity was tested against four different reference bonds in a single measurement and the stabilization 20 

of the sample bonds was quantified in units of DNA base pairs. [31]. 21 

In the configuration of the MFA used in all former studies, the ligand-DNA interaction is not directly 22 

probed, but the ligand stabilizes the molecular bond and is thus detected. We here describe our new 23 

variant of the MFA that can probe the protein-DNA interaction directly and compare it to a reference 24 

bond. For this purpose, the fusion protein construct consisting of an N-terminal ybbR-tag [32] followed 25 

by a superfolderGFP [33] variant and the six zinc finger construct ZIF268/NRE [22] (details can be 26 

found in the supplement) is covalently attached via the ybbR-tag to a glass slide coated with 27 

Coenzyme A in a 4x4 pattern [34]. The two double-stranded DNA complexes in series are covalently 28 

attached to the 16 pillars of a soft PDMS surface with the upper one as reference bond and the lower 29 

one as sample bond (see Figure 1A). The DNA sequences in shear geometry are separated by a 30 

linker sequence to which a Cy5 fluorophore is conjugated. Due to the macrostructure of the PDMS 31 
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stamp (see Figure 1A) a maximum of 16 combinations of different reference sequences as well as 1 

sample sequences can be tested within one experiment (Figure 1A). The PDMS surface is carefully 2 

brought into contact with the glass slide so that the sample sequence is able to bind to the protein on 3 

the glass slide (Figure 1B). This process is controlled via reflection interference contrast microscopy 4 

[35]. The GFP signal is used to place the protein spots below the stamp pillars functionalized with the 5 

different DNA sequences. After 10 minutes, the PDMS surface is retracted with constant velocity by a 6 

Piezo actuator. Thereby, a force is applied to the protein-sample complex as well as to the reference 7 

bond until the weaker one ruptures (Figure 1C). The fluorescence Cy5 signal on the glass slide is 8 

measured by an inverted epi-fluorescence microscope and indicates the number of intact protein-DNA 9 

complexes. Thus, the protein-DNA interaction is directly probed and compared to a well-characterized 10 

DNA double strand. In order to approximate the environment in a eukaryotic nucleus we designed our 11 

experiments as a competition assay and pre-incubated the zinc finger protein with low-molecular 12 

weight DNA from salmon sperm before the contact process. Details on the surface funtionalization, 13 

molecular constructs, contact and separation process as well as the fluorescence read-out are 14 

described in the supplement.  15 

In a first test of our assay, we determined the binding of the zinc finger protein to a no binding 16 

sequence and a high affinity binding motif. The bond strength was compared to two reference 17 

sequences, a 20 bp double-stranded DNA and a 40 bp double-stranded DNA, both in shear geometry, 18 

by measuring the Cy5 fluorescence intensity of the transferred DNA after the contact and separation 19 

process. Figure 2 displays the results for all possible combinations of sample and reference bond. For 20 

the no binding sequence, only very little signal is measured. It hardly exceeds the background value of 21 

about 1000 – 2000 counts of pixel intensity so that false positives of unspecific interactions between 22 

the zinc finger protein with no binding sequences can be excluded in our assay. The high affinity 23 

sequence on the other hand clearly bound to the protein and the upper reference bond ruptured in 24 

most cases so that Cy5 labeled DNA was transferred to the glass slide. Additionally, a difference 25 

between the two reference bonds is evident. The weaker reference of 20 bp ruptured more often, 26 

yielding 17000 counts of transferred DNA on the slide. The stronger reference exceeds the binding 27 

strength of the protein-high affinity sequence interaction in more cases than the weaker reference, 28 

yielding distinctly less fluorescence signal of 13000 counts. These results of our first test confirm the 29 

specificity and feasibility of our approach for quantifying DNA-protein binding strength by means of the 30 

MFA and varying reference bonds.  31 
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In order to calculate a single, comparable number for the binding strength, environmental differences 1 

like the binding density of protein and oligonucleotide constructs on the surfaces have to be taken into 2 

account. In order to correct for differences in protein density on the glass slide, 0.5µM of a Cy5 labeled 3 

40 bp DNA duplex carrying a high affinity binding site for the protein in question is added subsequent 4 

to the force probe experiment to saturate all functional proteins bound to the surface. Calibration 5 

measurements confirmed a complete saturation after 30 min incubation time. After removing unbound 6 

fluorophores by a washing step, the fluorescence on the glass slide is determined again. It is a 7 

measure for the maximum number of functional proteins on the slide. Since the binding density of the 8 

DNA complexes on the PDMS always exceeds the number of functional proteins on the glass slide, 9 

further corrections are not necessary. The ratio of fluorescence signal on the glass slide directly after 10 

the rupture event Ftransfer to the maximal number of functional proteins Fintact protein is defined as the 11 

Normalized Fluorescence, NF. The NF is calculated by dividing the pictures after background 12 

subtraction pixel-by-pixel (see Figure 3A), which cancels out inhomogeneities and renders this method 13 

robust. Histograms of the NF picture are generated and fitted by a Gaussian to yield the NF mean and 14 

standard deviation (Figure 3B). Thus, every mean value of the NF is the result of several million tested 15 

molecular constructs (more details about the statistics can be found in the supplement). This number 16 

can be interpreted as the binding strength of the protein-DNA interaction in comparison to a certain 17 

reference bond. A variation of the reference bond will result in a different NF and refines the 18 

information of the DNA-protein interaction. We tested our zinc finger protein against three DNA double 19 

strands incorporating either a high affinity sequence, a low affinity sequence or a no binding sequence 20 

against two reference bonds, a 20 bp and a 40 bp DNA double strand and analyzed the data in the 21 

way just described (the exact sequences are shown in the supplement in Figure S1). The results of 22 

one example experiment are depicted in Figure 3C. Due to the low DNA transfer for the no binding 23 

sequence, a calculation of the NF was not possible, so we set these values to zero. Differences are 24 

clearly visible for the NF values for the low and high affinity sequences as well as for the variations of 25 

the reference bond. As expected, we measured the highest value of 0.65±0.07 for the high affinity 26 

sequence against the 20 bp reference bond compared to 0.39±0.15 for the low affinity sequence 27 

against the same reference bond. The stronger reference bond lowers the values to 0.32±0.01 and 28 

0.20±0.02 for high and low affinity DNA motifs, respectively. For both DNA binding motifs, the mean 29 

NF is reduced by half if the number of reference base pairs is doubled: 0.65 (20bp) to 0.32 (40 bp) for 30 

the high affinity motif and 0.39 (20bp) to 0.20 (40bp). Hence, a linear relationship between the number 31 
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of reference base pair and the mean NF can be assumed in this range of reference bond length. This 1 

result does not mean that the strength of the protein-DNA bond is altered by different reference bonds. 2 

The comparison of the protein-DNA bond with different reference bonds yields different NF values that 3 

draw a more detailed picture of the protein-DNA interaction and enables to adjust the setup to the 4 

biological problem. A linear relationship between the NF and number of base pairs in the reference 5 

duplex makes it possible to adjust the reference duplexes until the NF yields a value of 0.5 so that the 6 

reference duplex of a certain number of base pairs has the same stability as the protein-DNA bond. 7 

Thus, the protein-DNA bond strength can be directly quantified with the stability of a certain number of 8 

base pairs. In our proof-of principle experiment, we compare the stability of a protein-DNA interaction 9 

with varying affinities to the stability of two DNA duplexes of different lengths. Interestingly, the NF 10 

values for the low affinity sequence against the 20 bp reference bond, 0.39, and for the high affinity 11 

sequence against the 40 bp reference bond, 0.32, are equal within errors (see Figure 3C). This allows 12 

the interpretation of a difference in binding strength of the zinc finger protein with these two DNA 13 

motifs that corresponds to the average binding strength of a 20 bp DNA double strand. Thus, we 14 

demonstrated that the specificity of DNA-protein interactions can be quantified via the binding strength 15 

in a force-based assay in a single measurement. Further, we can characterize the binding strength in 16 

a simple picture by correlating it to the average binding strength of a certain number of DNA base 17 

pairs. 18 

 19 

Conclusion 20 

We described a new variant of the MFA that allows to directly detect the binding strength of protein-21 

DNA interactions. This force-based format can test several DNA sequences against a protein in 22 

parallel with good statistics and can characterize the binding strength descriptively by correlating it to 23 

the average binding strength of a certain number of DNA base pairs. As a proof-of-principle, we could 24 

quantify the interactions of a zinc finger protein with three DNA sequences and compare them against 25 

two reference bonds. The resolution of the assay depends on the biological problem and the strength 26 

of the reference duplex. It was already demonstrated that the MFA can detect a single nucleotide 27 

polymorphism in a 20 base pair DNA duplex [19].  Shorter reference duplexes or a reference duplex in 28 

zipper geometry can discriminate between very small differences in the strength of the protein-DNA 29 

complexes invoked for example by a single base pair variation in the DNA target sequence. Further 30 

experiments will identify the capabilities and limitations of the assay for different DNA-protein 31 
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complexes. For a complete characterization of a protein’s binding specificity and affinity, it is 1 

necessary to probe the interactions with DNA sequences representative of a whole genome. This is, in 2 

principle, feasible with our force-based design. We have already shown that much smaller geometries 3 

for the DNA spots are sufficient to calculate the NF [27] and the fabrication of DNA microarrays is a 4 

standard procedure. Furthermore, our lab succeeded in integrating the MFA in a microfluidic chip [31]. 5 

The utilized surface chemistry also allows for the measurement of several proteins in a single 6 

experiment. Thus, our force-based assay can quantify protein-DNA interactions in a parallel format. It 7 

has the potential, with further developments in miniaturization and parallelization, to improve our 8 

understanding of transcriptional regulation.  9 
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 1 

Figure 1 2 

Description of the Molecular Force Assay (MFA). (A) The geometries of the PDMS stamp and the 3 

4x4 pattern of protein spots on the glass slide are displayed. The zinc finger protein is covalently 4 

bound to an amino-coated glass slide functionalized with Coenzyme A via a ybbR-tag. A 5 

superfolderGFP acts as an additional spacer and helps to adjust the glass slide beneath the pads of 6 

the stamp. Different combinations of reference sequences and DNA binding motifs are attached to 7 

each pillar. (B) The PDMS stamp is carefully brought into contact with the glass slide and the DNA 8 

sample bonds are allowed to bind to the protein. Subsequently, the PDMS stamp is retracted with 9 

constant velocity so that a force builds up in the DNA-protein complexes and the reference bonds until 10 

the weaker construct ruptures. (C) After the force probe, the fluorescence signal on the glass slide is a 11 

measure for the number of intact protein-DNA bonds. 12 

 13 

Figure 2 14 

Transfer of Cy5-labeled DNA to the glass slide. After the contact and separation process, the 15 

fluorescence intensity of Cy5 on the glass slide is determined. Histograms of selected areas (without 16 

prior background subtraction) show a very modest signal slightly above the background signal (1000-17 

2000 counts) for the DNA harboring the no binding sequences for the protein in question. DNA with a 18 

high affinity sequence did bind the protein in question and a transfer signal is clearly visible. The 19 

images are optimized in contrast to make the transfer of the no binding sequence as well as the 20 

difference in fluorescence signal between the no binding sequence and high affinity motif visible. A 21 

first assessment of the binding strength is possible by varying the reference bond. The weaker 22 

reference of 20 bp shows a higher fluorescence intensity of 17000 counts compared to the stronger 23 

reference of 40 bp with 13000 counts.   24 

 25 

Figure 3 26 

Quantification of the binding strength. (A) In order to quantify the binding strength, the 27 

flurorescence signal representing the DNA transfer has to be normalized to the number of available 28 

protein binding sites. For this purpose, a Cy5-labeled 40bp DNA duplex harboring a high affinity 29 

binding motif is added subsequently to the force measurement in order to saturate all functional 30 

proteins. Following a washing protocol to remove all unbound DNA strands, the fluorescence intensity 31 
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is measured a second time. After background subtraction, the fluorescence intensity of transferred 1 

DNA is divided by the signal corresponding to all functional proteins, yielding the Normalized 2 

Fluorescence NF. (B) Histograms of every pad on the PDMS stamp sum up the huge number of 3 

single-molecule experiments and are fitted by a Gaussian distribution in order to calculate an average 4 

NF and the standard deviation. Here, the histogram of the NF displayed in A is shown in detail. (C) 5 

One example measurement is displayed as a proof-of-principle. Details to the statistics are described 6 

in the supplement. The NF for the no binding sequences is too little to render fitting procedures 7 

possible. So we approximate the NF to be zero. Differences between low and high affinity binding 8 

motifs are very pronounced. A variation of the reference bond between 20 and 40 bp shear shows that 9 

the NF of the low affinity sequence against a 20 bp shear is about the same a the NF of the high 10 

affinity sequence against a 40 bp shear. This can be descriptively interpreted such that the difference 11 

in binding strength of the zinc finger protein with a low affinity sequence compared to a high affinity 12 

sequence corresponds to the stability of 20 bp DNA duplex.   13 
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Supplement 1 

 2 

Methods and Materials 3 

 4 

Oligonucleotide constructs 5 

The molecular complexes consist of three strands that are successively hybridized in shear geometry 6 

prior to usage. The uppermost strand which is covalently bound to the PDMS stamp is modified with 7 

an amino-group. Spacer18, a hexaethylene glycol chain of 18 atoms length, acts as an additional 8 

spacer between the amino-group and the oligonucleotides in order to avoid surface effects. 9 

Furthermore, poly-T stretches link the double-stranded sequences to the surfaces and each other. The 10 

cyanine dye Cy5 is attached by an N-Hydroxysuccinimide ester to the middle strand between the two 11 

duplexes.The reference bond is varied in length between 20 and 40 basepairs in order to test the 12 

protein-DNA bond against different strengths. The sample bond varies in its sequence in order to 13 

analyze the binding behavior of the protein against a high affinity DNA, 5’-14 

caacaggtaacaagggttcaggcgtgggcgttcgcgaagg-3', a low affinity DNA, 5'-15 

caacaggtaacaagtggtcaggcgaggtcgttcgcgaagg-3', and a no binding sequence, 5'-16 

caacagtaacagagtgcaagccgtgagcttgccgcgaagg-3'. The complete DNA constructs are 17 

dispalyed in Figure S1. All oligonulceotide constructs, including modified ones, were obtained from 18 

biomers.net GmbH, Germany.  19 

 20 

Protein construct 21 

A fusion protein construct consisting of an N-terminal ybbR-tag [1] (DSLEFIASKLA) followed by a 22 

superfolderGFP variant [2] and the six zinc finger protein construct Zif268/NRE (with an RQKDGERP 23 

linker sequence between the Zif268 and NRE moieties) [3] was cloned into pGEX6P2 between BamHI 24 

and XhoI sites similar to [4] . All construct fragments were amplified from synthetic templates (Mr.Gene 25 

or Geneart, Lifetechnologies, UK). The resulting fusion protein (ybbR-sfGFP-Zif268/NRE) harbored a 26 

GST-tag and was expressed in E.coli BL21 DE3 Codon Plus cells (Agilent Technologies, USA). One 27 

liter of SB medium was inoculated with 10ml of an overnight culture and grown at 37°C. When an 28 

OD600 of 0.7 had been reached, over night expression at 18°C was induced by adding 0.25mM IPTG. 29 

Cells were lyzed in 50mM TRIS-HCl (pH 7.5, 300 mM NaCl, 2mM DTT, 5% Glycerol, 10µM ZnCl2) by 30 

a French pressure cell press. The ybbR-GFP-zinc finger construct was obtained in the soluble fraction 31 



 2 

and purified by Glutathione affinity chromatography on GSTrap columns (GE Healthcare, Germany) 1 

according to standard procedures. After over night treatment with PreScission protease the GST-tag 2 

was removed and the protein further purified by Heparin cation exchange chromatography (HiTrap 3 

Heparin, GE Healthcare, Germany). Following preparative size exclusion chromatography on a HiLoad 4 

16/60 Superdex 75 column (GE Healthcare, Germany) in 50mM TRIS-HCl (pH7.5, 150mM NaCl, 2mM 5 

DTT, 10µM ZnCl2, 5% Glycerol) the protein construct was concentrated to 10µM by ultrafiltration in 6 

Amicon Ultra centrifugal filter units (Merck Millipore, USA) and stored at -80°C until further usage. 7 

 8 

Stamp preparation 9 

Micro-and macrostructured poly(dimethylsiloxane) (PDMS) stamps were fabricated by casting 1:10 10 

crosslinker/base (Sylgard, Dow Corning, MI, USA) into a custom-made Pyrex/silicon wafer (HSG-IMIT, 11 

Germany) according to standard procedures [5]. The resulting PDMS stamps feature pillars of 1mm 12 

diameter and height with a spacing of 3mm in a square pattern on a 3mm thick basis and are cut in 13 

pieces of 4x4 pillars. The flat surface of the pillars is microstructured with 100µm x 100µm pads 14 

separated by 41µm wide and 5µm deep rectangular trenches enabling the drainage of liquid during the 15 

contact and separation process (Figure 1A). For the surface functionalization, the cleaned stamp 16 

surface was first activated in 12.5% HCl overnight and derivatized with (3-glycidoxypropyl)-17 

trimethoxysilane (ABCR, Germany) in order to generate epoxide groups. After 30 minutes at 80°C in 18 

an Argon atmosphere, the functionalized stamp was allowed to cool down to room temperature. The 19 

amino-modified DNA strand, dissolved in water, was diluted 1:10 in a sodium borate-buffer (50mM 20 

H3BO3, 50mM Na2B4O7•10 H2O pH=9.0; Carl Roth GmbH & Co. KG, Germany) to a concentration of 21 

10µM and 1.5µl was transferred to every pillar on the stamp. Overnight incubation of the stamp under 22 

humid conditions allowed the amino-groups to react with the epoxide-groups. Oligonucleotides that did 23 

not bind to the stamp were washed off the next day in an aqueous solution of 0.01% SDS (sodium 24 

dodecyl sulphate; Sigma-Aldrich GmbH, Germany). The other two DNA strands were pre-incubated in 25 

5x SSC buffer (saline sodium citrate; 750mM sodium chloride, 75mM trisodium citrate; Sigma-Aldrich 26 

GmbH, Germany) in a concentration of 0.2µM. 1.5µl was transferred to every pillar of the stamp. After 27 

a minimum of 60 minutes incubation time the functionalized stamp was washed with 0.05% Tween 20 28 

(VWR Scientific GmbH, Germany) in 1x SSC and gently dried with N2 gas. 29 

 30 

Slide preparation  31 



 3 

Conventional glass slides for microscopy were aminosilanized in our lab: After thorough cleaning by  1 

sonication in 50% (v/v) 2-propanol in ddH20 for 15 min and oxidation in a solution of 50% (v/v) 2 

hydrogen peroxide (30%) and sulfuric acid for 30 min, they were washed with ddH2O and dried in a 3 

nitrogen stream. For the silanization, the glass slides were soaked for 1 h in a solution of 90% (v/v) 4 

ethanol, 8% ddH2O and 2% 3-aminopropyldimethylepoxysilane (ABCR, Germany). Subsequently they 5 

were washed twice in 2-propanol and ddH2O and dried at 80 °C for 40 min. They can be stored for 6 

several weeks in an Argon atmosphere at room temperature.  7 

For further functionalisation, the amino-silanized glass slide was first deprotonated in a sodium borate 8 

buffer (50mM H3BO3, 50mM Na2B4O7•10 H2O pH=8.5; Carl Roth GmbH & Co. KG, Germany)  for 30 9 

minutes, then a heterobifunctional PEG crosslinker with N-hydroxy succinimide and maleimide groups 10 

(MW 5000, Rapp Polymere, Germany) was applied for 1 h at 30mM. The slide was thoroughly washed 11 

with ddH20 and gently dried with N2, before it was incubated another hour with Coenzyme A (Merck 12 

Millipore, USA) dissolved in coupling buffer (50mM NaHPO4, 50mM NaCl, 10mM EDTA at pH=7.2). 13 

Again the slide was washed with ddH2O and gently dried with N2. At this stage, the slide can be stored 14 

up to several days.  15 

The Zif268/NRE protein aliquot at a concentration of 10µM is spun down in a table top centrifuge to 16 

remove agglomerates and the supernatant was diluted in a 50mM TRIS-HCl buffer (pH=7.5, 150mM 17 

NaCl, 10mM MgCl2, 10µM ZnCl2, 2mM DTT) to a final concentration of 2.5µM. Furthermore, low 18 

molecular weight DNA from salmon sperm (Sigma-Aldrich GmbH, Germany) was added in a 19 

concentration of 1g/ml. After a short incubation time of 15 minutes, 1,5 µl of 20 

Phosphopantetheinyltransferase Sfp was added to the sample and 2µl droplets of the mix were 21 

transferred to the functionalized glass slide in a 4x4 pattern. Sfp reacted the Coenzyme A on the glass 22 

slide to the ybbR-tag of the protein in humid atmosphere at room temperature during three hours 23 

incubation time. A PMMA mask with a well for the 4x4 pattern of spotted protein sample was fixed to 24 

the glass slide with a silicone lip seal. The mask prevented samples from drying out during following 25 

washing procedures and the MFA experiment. All protein that did not bind to the surface was washed 26 

off by 25ml 50mM TRIS-HCl buffer (pH=7.5, 150mM NaCl, 10µM ZnCl2), 25ml 100mM TRIS-HCl 27 

buffer (pH=7.5, 300mM NaCl, 10µM ZnCl2) and again 25ml 50mM TRIS-HCl buffer (pH=7.5, 150mM 28 

NaCl, 10µM ZnCl2). The last buffer was also used for the MFA experiments. After the washing 29 

procedure, the samples were measured within 3 hours. 30 

 31 
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Contact process and fluorescent read-out 1 

The functionalized stamp adhered upside-down to the glass block glued to a closed-loop piezoelectric 2 

actuator (PZ 400, Piezo Systems Jena, Germany) and a DC motorized translation stage (Physik 3 

Instrumente GmbH, Germany). The slide with the oligonucleotide constructs was fixed beneath the 4 

stamp on a stainless steel stage with permanent magnets. The fluorescent signal of the 5 

superfolderGFP fused between the ybbR-Tag and the zinc finger protein was used to place every 6 

protein spot beneath the right stamp pillar. The whole contact device is mounted on an inverted 7 

microscope (Axio Observer Z1, Carl Zeiss MicroImaging GmbH, Germany) with an xy-DC motorized 8 

high-accuracy translation stage (Physik Instrumente GmbH, Germany). Contact was made by means 9 

of the piezo and care was taken that each individual pillar is not compressed more than 3µm. The 10 

planar adjustment of stamp and slide as well as the contact process were controlled by reflection 11 

interference contrast microscopy [6]. In order to let the protein bind to the DNA sample sequence on 12 

the PDMS stamp, the contact between stamp and slide was maintained for 10 minutes. The piezo 13 

retracted the stamp with a velocity of 1µm/s in all experiments. A force buildt up in the molecular 14 

complexes until the weaker bond, either the protein-DNA complex or the reference bond, broke with 15 

higher probability. A Cy5 fluorophor conjugated to the linker sequence between the two DNA double 16 

strands indicated the intact bond. Hence, the Cy5 fluorescent intensity Ftransfer on the glass slide was 17 

measured with a CCD camera (ANDOR iXon, Andor, Northern Ireland) after the contact and 18 

separation process. In order to normalize the signal of the intact protein-DNA complexes to the protein 19 

density on the glass slide, the sample was subsequently incubated with a 40 bp double-stranded DNA 20 

sequence containing the high affinity binding site and labeled with a Cy5 fluorophor in a concentration 21 

of 0.5µM for 30 minutes. Unbound dsDNA was removed by the following washing procedure: 25ml 22 

50mM TRIS-HCl buffer (pH=7.5, 150mM NaCl, 10µM ZnCl2), 25ml 100mM TRIS-HCl buffer (pH=7.5, 23 

300mM NaCl, 10µM ZnCl2) and again 25ml 50mM TRIS-HCl buffer (pH=7.5, 150mM NaCl, 10µM 24 

ZnCl2). The Cy5 fluorescent intensity was measured again and gives the number of possible protein 25 

binding sites. Since the binding density of the DNA complexes on the PDMS always exceeds the 26 

number of functional proteins on the glass slide, further corrections are not necessary. The ratio of 27 

fluorescence signal on the glass slide directly after the rupture event Ftransfer to the maximal number of 28 

functional proteins Fintact protein is defined as the Normalized Fluorescence, NF. The NF is calculated by 29 

dividing the pictures after background subtraction pixel-by-pixel by a custom-built software written in 30 



 5 

Labview. Histograms of the NF picture are generated and fitted by a Gaussian to yield the NF mean 1 

and standard deviation.  2 

 3 

Statistics 4 

In every experiment, every pillar of the PDMS stamp can be functionalized with a different combination 5 

of reference and sample complex. In our proof-of principle measurements we usually bind the same 6 

combination of sample and reference bond to at least two pillars for better statistics. The contact area 7 

of a pillar is (100x100 µm2 x 25)= 25x104 µm2. From the fluorescence signal of the functional protein 8 

we can estimate a lower bound for the density of functional protein on the glass slide of 103 per µm2. 9 

Thus, every pillar tests around 25x107 molecular complexes and the NF is the mean of 25x107 tested 10 

molecular complexes. In order to demonstrate the validity of our approach to quantify the specificity of 11 

the protein-DNA interaction in a single measurement with good statistics, we show the result of one 12 

example measurement. Every data point is the average of two mean NF values. All NF values in this 13 

measurement are very close except the one for the low affinity binding motif against the 20bp 14 

reference. Other experiments yielded results in good agreement with the displayed experiment.  15 

 16 
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 1 

Figure S1 2 

DNA sequences. The molecular constructs with all modifications are displayed. The reference bond 3 

comprises the same sequence for all six constructs, but differs in the length of the middle strand. The 4 

ZIF268/NRE high affinity sequence is shown in red. The mutations for the low affinity sequence and 5 

the no binding sequence are colored green.  6 
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