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PREFACE 
 

 

 

In the last thirty or so years, microeconomics has increasingly become a behavioural science. A 

large number of researchers now uses the tools of mathematical modelling that microeconomics 

offers to arrive at a deeper understanding of what drives human behaviour in economically 

relevant settings. Traditional microeconomics (Mas-Colell et al, 1995) often took preferences 

for granted. More emphasis was put on the formal analysis of decision problems with given 

preferences than asking how real persons would act in such situations, i.e., how they would 

conceive of the situation, what their motives would be, what expectations they would have 

about events affecting their decisions etc. 

Microeconomics as a behavioural theory, which is often referred to as behavioural 

economics, addresses such questions without relinquishing the traditional strengths of 

microeconomics like rigorous formal modelling or theoretical parsimony (Rabin, 2002). In this 

quest, it has been aided by its sister field experimental economics, which by now offers a wealth 

of data about human behaviour generated in controlled laboratory experiments involving real 

monetary stakes. 

This dissertation aims to situate itself within the field of behavioural microeconomics. In it, I 

develop (and in part test using data from experimental economics) models of human behaviour 

pertaining to two topics: On the one hand, reciprocity, which is a fundamental concept about 

human motivation. On the other hand, information processing, which addresses how people deal 

with new information that has become available to them. 

Consider first reciprocity. The key idea here is that people’s attitude towards others and in 

particular their willingness to help or hurt them at a material cost depends on how these others 

have behaved or can be expected to behave towards them. Reciprocity has been shown to be an 

important force in economic decision making (Fehr and Schmidt, 2006). In this dissertation, I 

put forward a new model of reciprocity and use it to explain various experimental phenomena. 

Chapter 1 proposes an explanation for forgone-option effects. Forgone-option effects refer to 

the phenomenon that individuals (“players”) choose differently from the same set of outcomes 

in different situations because the individuals with whom they interact have had different 



PREFACE 

2 

 

alternatives to their actual behaviour (different “forgone options”). For example, a player might 

reject an offer in a bargaining situation if a better offer could have been made, but accept the 

same offer if all available alternatives would have been inferior. 

I explain forgone-option effects by a behavioural model entitled net-loss reciprocation. Net-

loss reciprocation means that a player’s willingness to impose a loss on some other player 

increases in the loss that the player derives from the other player’s behaviour. Likewise, the 

willingness to impose a gain increases in the gain derived from the other. Taking the two 

together yields net losses, which are simply losses minus gains (where losses may loom larger). 

We can therefore summarise the above by saying that the player’s willingness to impose a net 

loss on the other increases in the net loss derived from the other’s behaviour. 

Both imposed and derived losses and gains have a material and a fairness component. For 

example, the loss from receiving some offer in a bargaining situation not only depends on how 

much more one could have earned under the alternatives, but also on whether these alternatives 

are fairer than the actual offer. If some alternative offer from which one could have earned more 

is fairer, one derives a fairness loss on top of one’s material loss. 

As I argue in detail below, material and fairness considerations need not coincide. The 

alternative under which one could have earned most need not be the fairest alternative. As a 

result, overall losses being the sum of material and fairness losses, the highest overall loss need 

not derive from the alternative creating the highest material loss. Falk et al (2003) provide 

experimental evidence for the validity of this assumption in a bargaining context: They find that 

responders to some fixed offer do not reject it most in the situation where they derive the 

highest material loss. Rather, they reject it most if they derive an intermediate material loss that 

results from an alternative that is clearly fairer than what they are being offered. This suggests 

that losses are not a monotonic function of material losses, but should include a fairness 

component. A similar case can be made for gains. 

I show that net-loss reciprocation can explain the forgone-option effects documented in a 

number of experimental studies, whereas existing models of intention-based reciprocity 

(Dufwenberg and Kirchsteiger, 2004; Falk and Fischbacher, 2006) or outcome-based social 

preferences (Fehr and Schmidt, 1999; Charness and Rabin, 2002) fail to explain all the 

evidence. The evidence includes the bargaining experiments by Falk et al (2003) mentioned in 

the previous paragraph. 
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A second piece of evidence is the “hidden cost of control” (Falk and Kosfeld, 2006), which 

refers to the phenomenon that people dislike seeing their choice set restricted even if they would 

not have chosen the eliminated elements. In an organisational context, even agents who do not 

intend to cheat or steal may resent being too closely monitored by the organisation’s principal 

causing them to become less cooperative than otherwise. The hidden cost of control can be 

thought of as a forgone-option effect: Agents whose choice set the principal has restricted, but 

could have left unrestricted, behave less cooperatively than agents facing the same restricted 

choice set in a game where the principal has had no alternative. In the experiment of Falk and 

Kosfeld (2006), this kind of forgone-option effect occurs despite the fact that the restriction only 

eliminates the most glaringly unfair options from the agents’ choice set. In terms of my model, 

agents derive no fairness loss from the restriction. Nevertheless, net-loss reciprocation can 

explain the difference in agents’ behaviour because of their material loss. All in all, Chapter 1 

makes clear that both fairness and material factors play a crucial part in net losses. 

In Chapter 2, I apply the model of net-loss reciprocation to a different economic problem, 

namely, the delegation of decision rights. I focus on a reason for delegation that has only 

recently received attention from economists, namely, delegation as a means to avoid 

responsibility and hence punishment for decisions imposing negative externalities on others. 

Recent experimental work confirms the validity of this particular delegation motive: As shown 

by Bartling and Fischbacher (2011), a principal can avoid most of the punishment for an 

unpopular decision by delegating the latter to an agent (whose material interests are aligned with 

hers). For this reason, the principal is usually better off delegating than taking the decision 

herself despite the loss of control that delegation entails. I refer to this phenomenon as the 

power of delegation and show that the multi-player version of net-loss reciprocation can explain 

the punishment patterns sustaining it well. This is also true in comparison to existing theories 

like intention-based reciprocity or the responsibility model of Bartling and Fischbacher (2011). 

The multi-player (including Nature) version of net-loss reciprocation uses the same building 

blocks as the two-player version, namely, material and fairness losses and gains, where the 

definition of fairness has been adjusted accordingly. A critical issue that emerges is how a 

player’s loss or gain from some other player’s strategy depends on the behaviour of third 

parties. To address this, I posit that each player holds a belief about the likely behaviour of third 

parties, which affects his sense of loss and gain from the other’s behaviour. Such beliefs about 
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third parties were measured by Bartling and Fischbacher (2011). In the analysis of their 

punishment data, I find that the distinction between material and fairness factors, which turned 

out to be crucial in Chapter 1, is somewhat blurred by the fact that material and fairness 

considerations point into the same direction in the delegation games. Nevertheless, the preferred 

parameterisation in Chapter 2 for explaining the punishment data largely confirms the 

specification that best fits the data in Chapter 1. 

The second topic that this dissertation touches upon is that of information processing, which 

refers to how people take into account new information about uncertain events affecting them. 

As is customary, these events are referred to as “states of the world” or simply “states”. The 

traditional assumption in microeconomics is that people are Bayesians, which means that they 

use Bayes’ rule to calculate the conditional probability of the different states given their new 

information and make decisions based on this updated probability called the “Bayesian 

posterior”. In contrast, the probability assigned to the different states before receiving the 

information is called the “prior belief” or simply “prior”. Instead of presuming that people apply 

Bayes’ rule mechanically, Chapter 3, which is joint work with Johannes Maier, advances the 

idea that people respond to new information by choosing a new belief about the world. The 

proposed choice procedure is entirely instrumental because it discriminates among beliefs based 

solely on the actions that the decision maker would take if adopting these beliefs. In contrast, 

existing models of belief choice assume that beliefs have non-instrumental value, which may 

derive from such motives as wanting to feel good about the action implemented by one’s belief 

ex ante (Brunnermeier and Parker, 2005). No such assumptions are needed in our model. 

The instrumental value of beliefs has two components: One is objective performance, which 

means that the decision maker prefers beliefs implementing actions that perform as well as 

possible under the correct Bayesian posterior containing the new information. The second 

objective in belief choice involves the decision maker’s prior belief. The thought here is that the 

decision maker regrets giving up her prior in the light of the new information if it turns out 

afterward that holding on to her prior would have been preferable. More specifically, the 

decision maker considers each state and asks herself how the action that she would choose if 

holding on to her prior compares to the action that she would choose if adopting some 

alternative belief. For every alternative belief implementing a different action than the prior, at 

least one state exists where the prior performs better, which creates scope for prior regret. 
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Optimal beliefs achieve the best balance between objective performance and regret avoidance, 

i.e., minimising expected regret relative to the reference action implemented by the prior.  

We use our model of belief choice under prior regret to account for asymmetric information 

processing, which means that a person who is confident in some good (for his or her “ego”) 

state of the world ignores news indicating an alternative bad state more than does a person who 

is equally confident in the bad state and receives news indicating the good state (which is at 

odds with Bayes’ Rule). We also consider preferences for consistency, which refers to a 

propensity to replicate earlier behaviour irrespective of new information. Finally, we study the 

conditions under which over- or underconfidence (too optimistic or too pessimistic beliefs 

relative to the Bayesian benchmark) occurs in a dynamic setting. 

Disparate though the topics covered in this dissertation may seem, there is a theme shared by 

them, which is that of reference dependence. Reference dependence means that the 

consequences of decisions are evaluated relative to a reference point. A prominent example is 

loss aversion (Kahnemann and Tversky, 1979; Köszegi and Rabin, 2006). Chapter 3 uses a 

similar idea: The reference point for the evaluation of beliefs is an action, namely, the action 

induced by the prior. In net-loss reciprocation, the reference point is the actual strategy chosen 

by the other player, relative to which losses and gains are calculated. 

Both models proposed in this dissertation are consistent with the asymmetry between losses 

and gains that is a cornerstone of the literature on reference-dependent preferences, namely, that 

“losses loom larger than gains”. In the belief choice model, the focus is on regret (i.e., losses) 

alone, which suffices to generate the desired results. In the analysis of net-loss reciprocation, it 

turns out that losses are more important. 

Nevertheless, it would be incorrect to regard net-loss reciprocation as a model of loss aversion 

in the conventional sense. Loss aversion presupposes some baseline utility attached to the 

outcomes of decisions. Deviations of baseline utility from the reference level then translate into 

sensations of loss or gain. In contrast, net-loss reciprocation is a theory about baseline utility 

itself. It asks how people evaluate the different outcomes of the game available to them given 

the behaviour of others. 
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1 FORGONE-OPTION EFFECTS IN TWO-PLAYER 
GAMES AND NET-LOSS RECIPROCATION 

 

 

 

1.1 Introduction 
 

This chapter studies forgone-option effects in two-player games. Its point of departure is a basic 

decision problem faced by each player: Choosing an outcome of the game from the opportunity 

set created by the other player’s strategy. A forgone-option effect arises if a player’s choice 

from a fixed opportunity set of this kind is not constant across games, but varies with the other 

player’s forgone options, which are simply the alternative strategies at the other’s disposal. 

Examples are provided below. They show that forgone-option effects may occur both in the 

context of negative reciprocity (punishment for unkind behaviour) and positive reciprocity 

(reward for kind behaviour). While experimental evidence suggests an important role for 

forgone-option effects in negative reciprocity, experimental studies of positive reciprocity have 

not established strong forgone-option effects.1 In this chapter, I propose a new behavioural 

theory called net-loss reciprocation that can explain these apparently contradictory findings. 

A new theory is called for because existing theories struggle to explain forgone-option 

effects. According to outcome-based theories of behaviour, players are motivated by a single 

preference ordering on outcomes, which directly rules out any forgone-option effects.2 Existing 

theories that are not outcome-based also fail to explain all the evidence.3 From an economic 

point of view, forgone-option effects are important because they impact the possibility of 

                                                      

1 See Brandts and Solá (2001) and Falk et al (2003) for evidence on negative reciprocity and Dufwenberg 
and Gneezy (2000), Charness and Rabin (2002), McCabe et al (2003), Cox (2004), Servatka and Vadovic 
(2009) and Cox et al (2010) for evidence on positive reciprocity. 

2 Outcome-based theories leave open the possibility that several outcomes are most preferred in a given 
opportunity set. This can rationalise isolated instances of forgone-option effects, but can hardly be 
regarded as a systematic explanation for their prevalence. Outcome-based theories include Fehr and 
Schmidt (1999) and Charness and Rabin (2002). 

3 Below, I focus on the intention-based models of reciprocity by Dufwenberg and Kirchsteiger (2004) and 
Falk and Fischbacher (2006). 
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reaching (materially) efficient outcomes in strategic interactions. Forgone-option effects 

strongly influence the occurrence of punishment, which in itself harms efficiency, but may 

improve the overall efficiency of the interaction.4 Positive reciprocity, which promotes efficient 

behaviour like trust in trading relationships, appears less affected by forgone-option effects. Yet, 

it is interesting to explore mechanisms behind this, which may also shed light on robustness. 

Net-loss reciprocation builds on two key concepts: Firstly, the loss and gain that players 

derive from the other player’s strategy. Secondly, the loss and gain that players themselves 

impose on the other through their own choice from the feasible set given the other’s strategy. 

Net-loss reciprocation means that players’ willingness to pay for increasing the net loss imposed 

on the other increases in the net loss derived from the other’s strategy.5 Net losses are simply 

losses minus gains, where the two need not count for the same. Net-loss reciprocation is 

consistent with an intuitive notion of reciprocity, according to which people’s kindness to others 

increases in these others’ kindness to them. More importantly, net-loss reciprocation can explain 

forgone-option effects because players may derive different net losses from two strategies 

creating the same opportunity set because of different alternatives at the other’s disposal. As a 

result, their preferences on the same opportunity set may differ. 

For an illustration of forgone-option effects in the domain of negative reciprocity, consider 

the ultimatum mini games studied by Falk et al (2003). In all of them, the proposer can make a 

fixed offer of dividing the surplus, namely, “8 for the proposer, 2 for the responder”, and one 

alternative offer (his forgone option) that varies. The responder can accept or reject any offer. 

Consider two games: One where the alternative is “5 for both” and one where it is “2 for the 

proposer, 8 for the responder”. Since the opportunity sets after the fixed offer are the same, we 

have a forgone-option effect if responders are more likely to reject the fixed offer in one game 

than the other. Falk et al (2003) report significantly more rejection in the first game. 

For an illustration in the context of positive reciprocity, consider the trust games studied by 

Dufwenberg and Gneezy (2000). In all of them, the second mover can share 20 between himself 

and the first mover in the event of trust, while the games differ regarding the outcome in case of 

                                                      

4 The efficiency-promoting role of punishment has been extensively studied in the context of public good 
games (Fehr and Gächter, 2000). The evidence on whether punishment opportunities promote overall 
material efficiency in these games is mixed. 

5 This willingness to pay may be negative or positive. 
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no trust. Consider two games: One where the no-trust outcome is “4 for the first mover, 0 for 

the second mover” and one where it is “16 for the first mover, 0 for the second mover”. Since 

sharing opportunities are identical, we have a forgone-option effect if second movers share the 

20 differentially in the two games. Despite the fact that the no-trust outcomes differ 

considerably, Dufwenberg and Gneezy (2000) report no significant difference in sharing. 

Below, I put forward a utility model to explain these and other experimental findings. I now 

sketch the basic features of the calculus of losses and gains underlying net-loss reciprocation. I 

focus on the loss and gain that a player derives from the other player’s strategy. Analogous 

procedures are used for determining the loss and gain imposed on the other. 

A player’s loss from some strategy of the other player (called henceforth the “status quo”) is 

composed of his material loss and his fairness loss. The player derives a material loss whenever 

there is an alternative strategy of the other under which the player could have earned more than 

what he can maximally earn under the status quo. Moreover, the player derives a fairness loss, 

which he adds to his material loss, if his forgone earnings (that make up his material loss) derive 

from outcomes that are fairer than the fairness of the status quo. The intuition is that the player 

in this case feels an entitlement (“fairness claim”) to his forgone earnings, which causes him to 

feel an additional loss. Since his fairness loss is added to his material loss, his total loss then 

exceeds his material loss. Fairness is measured by a function that ranks the outcomes of the 

game according to their fairness and incorporates considerations of material efficiency and a 

concern for the less well-off player. 

Likewise, a player’s gain from the status quo is composed of his material gain and his fairness 

gain. The player derives a material gain whenever he can earn more under the status quo than 

what he can maximally earn under some alternative. Moreover, the player derives a fairness 

gain, which is added to his material gain, if the earnings that make up his material gain derive 

from outcomes that are less fair than the fairness of the alternative. The intuition is that in the 

converse scenario, where the outcomes creating his material gain are fairer than the alternative, 

the player feels an entitlement to his material gain (“well deserved”), which causes him to feel 

no gain based on fairness considerations. 

To illustrate the implications of this approach, consider the examples discussed above. As for 

the ultimatum mini games, recall that significantly more responders reject the status quo offer 

“8 for the proposer, 2 for the responder” if the alternative is “5 for both” than if it is “2 for the 
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proposer, 8 for the responder”. The higher willingness of responders to impose a net loss by 

rejecting the status quo is explained by net-loss reciprocation if they derive a higher net loss 

from the status quo in the first game. And indeed, if the alternative is “5 for both”, responders 

derive both a material loss (of 3) and a fairness loss, while their loss is limited to their material 

loss (of 6) if the alternative is “2 for the proposer, 8 for the responder”. Intuitively, “5 for both” 

is fairer than the status quo, whereas “2 for the proposer, 8 for the responder” is only as fair. 

Below, I show that the sum of material and fairness loss in the first game can exceed the higher 

material loss in the second game. 

In the two trust games, Dufwenberg and Gneezy (2000) detect no forgone-option effect. Net-

loss reciprocation can explain this if the net loss experienced by second movers is the same in 

each case.6 Recall that the games differ regarding the no-trust outcome: No trust entails “4 for 

the first, 0 for the second mover” in the first game and “16 for the first, 0 for the second mover” 

in the second game. In each case, second movers suffer no loss from being trusted, and their 

material gain is the same (namely, 20) because they can earn up to 20 after trust, but earn zero 

after no trust. Their fairness gain is zero in both cases because there is no outcome after trust 

that is less fair than either no trust outcome, which means that second movers feel entitled to 

their additional earning possibilities after trust. Even the outcome “0 for the first, 20 for the 

second mover”, which second movers can implement after trust, is not less fair than either no 

trust outcome because it contains a larger total payoff and the same minimal payoff. As a result, 

second movers derive the same (negative) net loss from trust in each case. 

In contrast, existing models of social preferences struggle to account for forgone-option 

effects. Outcome-based models like the inequality aversion model of Fehr and Schmidt (1999) 

or the model of Charness and Rabin (2002), which combines a taste for material efficiency with 

generosity towards those who are least well-off, build on the idea that strategic behaviour 

derives from a single ranking of the outcomes of the interaction. For this reason, these models 

cannot provide a systematic explanation of forgone-option effects.7 

 

 

                                                      

6 Of course, an insignificant treatment effect can have other reasons such as too few observations. 

7 Forgone-option effects can only arise from several most preferred outcomes in the fixed opportunity set. 
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Such an explanation can in principle be provided by intention-based models of reciprocity 

making use of psychological game theory.8 Most widely used are Dufwenberg and Kirchsteiger 

(2004), who build on Rabin (1993), and Falk and Fischbacher (2006). The key feature of these 

models is their reliance on players’ second-order beliefs, i.e., their beliefs about the other 

player’s belief about their own choice of strategy. Thus, when faced with some strategy of the 

other player, players consult their second-order belief, which together with the strategy of the 

other pins down a unique outcome of the game, which serves to represent the other’s strategy. 

In contrast, my approach does not rely on second-order beliefs, but represents the other’s 

strategy and its alternatives by the entire sets of feasible outcomes that these strategies create. 

Consequently, my approach is more amenable to empirical testing using standard experimental 

data as it does not require measurement of higher-order beliefs.9 

Regarding predictions, both models assert that players’ willingness to be kind to the other 

increases in the kindness of the other’s status quo strategy. Problems arise in the 

conceptualisation of kindness. For instance, in Dufwenberg and Kirchsteiger (2004), if the 

outcome representing the status quo gives the player more (less) than half of what he maximally 

and minimally stands to earn under the alternatives, the status quo is perceived as kind (unkind). 

Thus, this approach limits itself to comparing earnings without allowing for players’ sense of 

entitlement to these earnings. The evidence from the ultimatum mini games makes clear that 

such a sense of entitlement may override material considerations. 

Also, reliance on second-order beliefs may lead to unintuitive predictions because it uses 

players’ (likely) reaction to the strategy of the other as a means to assess the strategy’s kindness. 

Yet, if players react to some strategy that they in fact perceive as unkind in a self-serving 

manner and more generously to some alternative they perceive as kind, they may end up with 

more own payoff when faced with the former, from which Dufwenberg and Kirchsteiger (2004) 

would conclude that the first strategy is kinder. This problem is also shared by Falk and 

                                                      

8 Psychological games were first defined and analysed by Geanakoplos, Pearce and Stacchetti (1989). A 
framework for dynamic psychological games is provided by Battigalli and Dufwenberg (2009). Another 
model of non-selfish preferences drawing on psychological game theory is guilt-aversion (Battigalli and 
Dufwenberg, 2007). 

9 Dhaene and Bouckaert (2010) investigate the performance of the model of Dufwenberg and Kirchsteiger 
(2004) using measured second-order beliefs in a setting unrelated to forgone-option effects. 
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Fischbacher (2006). When discussing applications, I explain in more detail this and other 

difficulties encountered by the two models, whose basic building blocks are laid out in more 

detail in Appendix B. All in all, net-loss reciprocation can account for larger parts of the 

evidence than either model of intention-based reciprocity. 

At first blush, the model of net-loss reciprocation introduced in this chapter could be thought 

of as a model of loss aversion (Kahnemann and Tversky, 1979; Shalev 2000; Köszegi and 

Rabin, 2006). While I allow for the possibility that “losses loom larger than gains”, which is the 

cornerstone of this literature, there are important differences. Loss aversion builds on the idea 

that the consequences of decisions are evaluated relative to some (deterministic or stochastic) 

reference point. If the utility of a consequence exceeds (falls short of) the reference point, 

individuals perceive a gain (loss). Loss aversion therefore presupposes some baseline utility 

attached to consequences from which losses and gains can be calculated. This is where net-loss 

reciprocation steps in, which is best described as a theory about how sensations of loss and gain 

derived from the other’s behaviour act as a source of (social) preferences and hence as a source 

of baseline utility attached to the different outcomes of the game.10 

That said, the utility model proposed below is qualitative in the sense that the details of the 

utility function up to the net-loss reciprocation property are left open. For this reason, there is 

also no equilibrium analysis.11 Equilibrium analysis is refrained from because it is not needed to 

explain the phenomena this chapter sets out to explain. The forgone-option effects addressed 

below relate to the behaviour of players who have certainty about the other player’s strategy 

because they are second movers in sequential games where each player has one move. As a 

result, these players’ beliefs are pinned down by the game’s information structure, and a notion 

of best response is enough to explain their choices.12 Regarding best responses, I take no stance 

on which specification of utility consistent with net-loss reciprocation is most appropriate. 
                                                      

10 In this sense, loss aversion is orthogonal to net-loss reciprocation. Shalev (2000) studies loss aversion 
in games. 

11 Cox et al (2008) propose a non-equilibrium model of reciprocity in sequential games. However, it is not 
suited to studying forgone-option effects. 

12 Of course, net-loss reciprocation could also be used to explain the behaviour of first movers with the 
added complication that their beliefs about the other‘s strategy are unobservable. These beliefs could be 
measured experimentally. However, there are to the best of my knowledge no economic experiments 
documenting forgone-option effects in the behaviour of players who must form beliefs about others. 
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There are several plausible ways of incorporating net-loss reciprocation into a full-fledged 

utility model.13 Comparing the relative performance of these modelling options is left for future 

work. The substantive question addressed in this chapter is: Can net-loss reciprocation together 

with the method for calculating losses and gains introduced below explain the forgone-option 

effects we observe in experiments? The answer is largely affirmative. 

The remainder of this chapter is structured as follows: I first show how to calculate the net 

loss that a player derives from the other player’s strategy, which is followed by the method for 

calculating the net loss that the player himself imposes on the other as well as the utility model 

incorporating net-loss reciprocation. I then show how this qualitative model can account for 

forgone-option effects in a number of well-known experimental studies and compare its 

performance to intention-based models of reciprocity. All proofs are in Appendix A. 

 

 

1.2 Losses and Gains From the Other Player’s Strategy 
 

I limit attention to finite-horizon two-player (i, j) multi-stage games with observable past 

actions.14 A player’s inactivity at a stage is modelled by the respective action set being 

singleton. Let H be the set of non-terminal histories of the game. Player i’s pure strategy i is S  

assigns to each history h H  an action available to i at h.15 I restrict attention to pure strategies. 

The set of pure strategy profiles is i jS S S . Outcomes i j,  of the game are two-

dimensional vectors of material payoffs. The function 2S  is the outcome function and 

s : s S  the set of attainable outcomes in the game. Moreover, the set of attainable 

outcomes or opportunity set for player i given that player j plays strategy j js S  is given by 
js

i j i is ,s : s S  with js . 

 

                                                      

13 E.g., players could be willing to sacrifice own payoff to match the net loss they impose on the other to 
the net loss imposed on them. Players could also be endowed with some baseline preferences on 
outcomes whose degree of altruism decreases in the net loss they derive from the other (although this 
specification does not perfectly fit the definition of net-loss reciprocation given below). 

14 I refer to i as “he” and j as “she”. 

15 Action sets are assumed to be finite. 
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I first define player i’s loss from j js S . Player i’s overall loss is derived from a more basic 

notion, namely, his loss from js  relative to a particular alternative j js S . I also refer to js  as 

the status quo and to js  as the alternative. The basic idea is the following: Player i suffers a loss 

from js  relative to js  only if he can earn more given js  than what he can maximally earn 

given js . Or, more formally and with a slight abuse of notation, let j js s  be the set of 

outcomes in js  that yield i a higher payoff than his highest attainable payoff in js . A 

necessary condition for i suffering a loss is then that j js s  is non-empty. The magnitude of his 

loss is determined by considering the different outcomes in j js s . For each j js s , i 

calculates both his material loss, which is the amount by which his payoff from  exceeds his 

maximal payoff in js , and his fairness loss, which tracks the extent to which  is fairer than 

the fairest outcomes in js . 

While i’s material loss is guaranteed to be positive by the definition of j js s ,  may or may 

not be fairer than the fairest outcomes in js . If  is not fairer, i perceives no fairness loss 

because he then has no fairness claim to  even though he could have earned more from it than 

what he can maximally earn given js . His loss is then limited to his material loss. In contrast, if 

 is fairer than the fairest outcomes in js , i suffers a fairness loss because he now has a 

fairness claim to his additional earnings from . All in all, i’s loss from js  relative to a 

particular j js s  is the weighted sum of his material and fairness loss, while his loss from 

js  relative to js  at large is his maximal loss from js  relative to the outcomes in j js s . 

I now put more formal structure on these ideas. As stated above, js  is the set of attainable 

outcomes given js . The set js
i  is the set of payoffs to player i contained in js . Its maximal 

element is j js s
i imax . Furthermore, j j j js s s s

i i:  is the set of attainable 

outcomes given js  that yield i more payoff than what he can maximally earn given js . Fairness 

is measured by a fairness function, isoquants of which are called fairness curves: 

 

DEFINITION 1 The fairness function 2f :  is given by 

 

2i jf  

 

where i jmin ,  and 0 1, . 
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For an interpretation of the parameter , consider the polar cases 1 and 0 : If 1, 

fairness boils down to material efficiency meaning that for any two outcomes  and  we have 

f f  if and only if i j i j . In contrast, if 0 , we have f f  if and 

only if . For fairness to increase in this case, the player with less payoff must receive 

more.16 In general, the lower , the smaller (larger) the relative weight attached to efficiency 

(equality) considerations in fairness assessments. Yet, it is not equality per se that enters the 

fairness function, but the payoff of the less well-off player. It is this payoff that must increase 

for fairness to increase. If equality as such mattered, we could also reduce the payoff of the 

better-off player for fairness to increase. 

Player i derives a fairness loss from js  relative to j js s  if and only if  lies on a higher 

fairness curve than the highest fairness curve reached in js . Moreover, i’s fairness loss 

increases in the extent to which the fairness of  exceeds the maximal fairness in js . To 

formalise this idea, let j
s j

sf max f  be the highest fairness level attained in js . The 

fairness gap between  and js  can then be expressed as jsf f .17 This lead to 

 

DEFINITION 2 Player i’s loss from strategy j js S  relative to strategy j js S  is given by 

 

 
1 0 if 

0 otherwise

j j j j
s sj j

s s s s
i i

i j j

max max f f ,
l s ,s  

 

 

with 0 1, . Moreover, i’s loss from js  is given by 
j ji j s S i j jl s max l s ,s . 

 

Thus, i assesses his loss from js  relative to js  by considering the set j js s . For each outcome 
j js s , he determines the weighted sum of his material loss 0js

i i  and his fairness loss 

0jsmax f f , . The weighting is provided by the parameter : If 1, i’s loss coincides 

                                                      

16 The second case is reminiscent of a Rawlsian (or max-min) social welfare function. The first case has a 
utilitarian flavour. 

17 The two terms can be thought of as the unique payoffs to i yielding the fairness levels f  and jsf , 
respectively, assuming that all other players earn the same. This reading of the fairness gap is invariant to 
rescalings of the fairness function. 
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with his material loss. Conversely, if 0 , i only pays heed to his fairness loss. Player i’s loss 

from js  relative to js  is the maximal sum of this kind with respect to all outcomes in j js s , 

while his loss from js  at large is his maximal loss relative to all alternatives in jS . 

I next address player i’s gain from js . Relative to a particular js , i derives a gain only if 
j js s , the set of feasible outcomes under js  that give him more payoff than what he can 

maximally earn under js , is non-empty. Regarding the magnitude of his gain, fairness curves 

again play a central role. Player i derives a fairness gain from a given j js s  if and only if 

 lies on a lower fairness curve than the highest curve reached in js . The intuition is that if  

lay on the same or a higher curve, i would consider his material gain from  to be well-

deserved for contributing to no decrease in fairness. This would lead him to feel no fairness 

gain, and his gain would be limited to his material gain. These considerations motivate 

 

DEFINITION 3 Player i’s gain from strategy j js S  relative to strategy j js S  is given by 

 

 
1 0 if 

0 otherwise

j j j j
s sj j

s s s s
i i

i j j

max max f f ,
g s ,s  

 

 

with 0 1, . Moreover, i’s gain from js  is given by 
j ji j s S i j jg s max g s ,s . 

 

Thus, to assess his gain from js  relative to js , i determines for each j js s  the weighted 

sum of his material gain 0js
i i  and his fairness gain 0jsmax f f , . Crucially, for 

the fairness gain to be positive,  must be less fair than what is maximally achievable given js . 

If  were more fair, i would feel entitled to his material gain and perceive no fairness gain.18 

I assume that the same parameters  and  are used in the calculation of gains and losses. I 

allow for asymmetries between the two in defining net losses: 

 

DEFINITION 4 Player i’s net loss from strategy j js S  is given by 

 
                                                      

18 Hence, the expression “fairness gain” does not refer to an increase in fairness, but to a sensation of gain 
based on fairness considerations. 
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i j i j i jnl s l s g s  

 

with 0 1, . 

 

The case 1  allows for the possibility that “losses loom larger than gains”, which is a key 

assumption in the literature on loss aversion (Kahnemann and Tversky, 1979; Köszegi and 

Rabin, 2006). Yet, as discussed in the Introduction, this chapter is not about loss aversion as 

understood by that literature. The following is immediate: 

 

LEMMA 1 If j jS s , we have 0i jnl s . 

 

The lemma addresses the case where j is passive. If j has only one strategy, j js s  and j js s  

are empty for all j js S , which implies 0i jl s  and 0i jg s  and therefore 0i jnl s . 

 

 

1.3 Reciprocating the Other Player’s Strategy 
 

Given the strategy js  of player j, player i must choose an outcome from the opportunity set js  

created by js . In this section, I define a preference for net-loss reciprocation to explain this 

choice. Net-loss reciprocation means that i’s willingness to pay for increasing the net loss that 

he imposes on j increases in his own net loss from j’s strategy. 

I first define the net loss imposed on j. Let jsc  be the outcome chosen by i and let 
js c js c

j j:  and j js c s c
j j:  be the outcomes in js  yielding j 

more and less payoff than c , respectively. This leads to 

 

DEFINITION 5 Player j’s loss from jsc  is 

 
1 0 if 

0 otherwise

j
s cj

j

s cc c
j jsc

j

max max f f ,
l ,  

 

Moreover, j’s gain from c  is 
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1 0 if 

0 otherwise

j
s cj

j

s cc c
j jsc

j

max max f f ,
g ,  

 

Finally, j’s net loss from c  is 

 
j j js s sc c c

j j jnl , l , g , . 

 

The procedure for calculating j’s loss and gain from c  is analogous to calculating i’s loss and 

gain from js . In particular, c  takes the role of js  and the alternative outcomes js  the 

roles of the different js . I also assume that the same parameters ,  and  are used. 

I now turn to player i’s preferences governing his choice from js : 

 

ASSUMPTION 1 Player i’s preferences on the outcomes in js  are represented by 

 
js

i j i j i ju ,s v r nl , ,nl s  

 

where v :  and 2r :  are continuous and 0idv d  as well as 2 0j ir nl nl . 

 

Thus, given js , i’s utility from js  is additively separable into the utility from his own 

payoff and a reciprocation term that depends on the net loss that  imposes on j as well as the 

net loss that i himself derives from js . The marginal utility of i’s own payoff is always positive. 

Moreover, j iWTP r nl dv d , which is i’s willingness to pay for increasing the net loss 

imposed on j, increases in i’s net loss from js , where WTP  itself may be negative or positive. 

Whenever j jnl nl , we therefore have 0j i j i ir nl ,nl r nl ,nl nl , which means that 

the impact of an increase in i’s net loss from js  is such that for any two outcomes that differ in 

terms of the net loss that they impose on j the utility advantage (disadvantage) of the outcome 

imposing the larger net loss becomes larger (smaller).19 

 

 
                                                      

19 An example is 
2

i i j iu nl nl . The partial derivative of 
2 2

j i j inl nl nl nl  with respect to 

inl  is 2 2j i j inl nl nl nl , which is positive if and only if j jnl nl . 
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Furthermore, I follow McFadden (1974) and McKelvey and Palfrey (1995, 1996) in making 

 

ASSUMPTION 2 The probability of player i choosing outcome js  is given by 

 

s jj i j i jPr ,s exp u ,s exp u ,s . 

 

As explained by Goeree et al (2008), this quantal response structure can be justified by 

disturbances on individual decision making reflecting the effects of unobservables such as mood 

or perceptual variations. According to this interpretation, i ju ,s  corresponds to the average 

utility attached to js  with each player realising a mean-zero perturbation of i ju ,s .20 

Perturbations are assumed i.i.d. across outcomes and players.21 Assumption 2 implies that every 

player chooses every available outcome with positive probability. This helps in interpreting 

experimental data, where typically not all subjects facing a given opportunity set ˆ  choose the 

same outcome. In this context, a forgone-option effect refers to a statistically significant shift in 

the empirical choice distribution on ˆ  for two strategies js  and js  satisfying ˆj js s . 

Using Assumption 2, we can explain this shift if we can show a corresponding shift in the 

theoretical choice distributions. I draw extensively on this method in the following section. 

We conclude this section by the following lemma, which is useful in what follows: 

 

LEMMA 2 Consider any pair of strategies j j js ,s S  with ˆj js s  where ˆ  is a fixed 

set of outcomes and let Pr  and Pr  denote the probabilities of player i choosing a given 
ˆ  when faced with js  and js , respectively. Suppose that i j i jnl s nl s . We then have  

 

Pr Pr  

 

                                                      

20 In this setup, the choice of scale for utilities is not without loss of generality. In particular, 
multiplication of all utilities by some constant 1c  makes players likelier to choose the options yielding 
them the highest utility. For this reason, quantal response models contain a scaling parameter  intended 
to capture the degree of players’ “rationality”, i.e., their likelihood of choosing their most preferred 
options. Since the level of  does not affect the conclusions drawn below, I set  to 1. 

21 Moreover, in order to generate the assumed logit structure, the perturbations must take a particular 
stochastic form. See Goeree et al (2008) for details. 
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for all ˆ . Suppose next that i j i jnl s nl s . We then have 

 

Pr Pr Pr Pr  

 

for all ˆ  such that ˆ ˆ, ,j jnl nl . 

 

Thus, if i is faced with two strategies creating the same opportunity set ˆ  for him and from 

which he derives the same net loss, his probability of choosing any given outcome in ˆ  is the 

same across the two situations. If he does not derive the same net loss, his choice probability 

possesses the monotone likelihood ratio property for outcomes that can be ordered according to 

the net loss imposed on j. For any such pair, there is a relative shift in probability mass towards 

the outcome imposing the higher net loss in the situation where i derives the higher net loss. 

 

 

1.4 Applications 
 

In this section, I show that net loss reciprocation can explain the forgone-option effects that 

have been documented in a number of experimental studies. Each piece of evidence considered 

lends additional structure to the model: Firstly, the evidence from The Hidden Cost of Control 

suggests that material factors are not irrelevant in the calculation of losses and gains ( 0 ). 

Secondly, the evidence from Trust implies that gains are not fully discounted when calculating 

net losses ( 0 ). Thirdly, the evidence from Ultimatum Bargaining rules out a purely 

efficiency-oriented notion of fairness and provides an upper bound for the importance of 

material factors ( 1 2 1  and 0 5. ). Finally, the evidence from Lost Wallets 

pinpoints the fairness parameter  to equal 1 2 2 2 . 

Discussing each piece of evidence in turn, I also address the problems faced by the reciprocity 

models of Dufwenberg and Kirchsteiger (2004) and Falk and Fischbacher (2006) in accounting 

for these experimental results. Recall that both models make use of players’ second-order 

beliefs, i.e., their beliefs about the other player’s belief about their own choice of strategy. As 

the studies considered in this section do not measure these beliefs, I use the actual behaviour of 

experimental subjects as a “stand-in” for second-order beliefs. This is in keeping with the 
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equilibrium spirit of these models, which requires beliefs to coincide with actual behaviour. 

Although both models rely on second-order beliefs, they differ in how they define the 

kindness of the other player’s strategy. Suppose that we want to evaluate the kindness of js  to 

player i. To do so, Dufwenberg and Kirchsteiger (2004) compare i’s expected payoff from js  

given his second-order belief to what he could have minimally and maximally earned under the 

alternatives given again his second-order belief. The strategy is viewed as kind (unkind) if it 

gives i more (less) than half of what he could have minimally and maximally earned. In 

contrast, Falk and Fischbacher (2006) focus on the expected outcome implemented by js  given 

i’s second-order belief. If i earns more (less) than j under this outcome, js  is viewed as kind 

(unkind). The model also takes into account the alternatives available to j. For instance, if the 

outcome implemented by js  puts i ahead, this is only viewed as fully kind if there are 

alternatives under which i would have earned less. The intuition is that the kindness embodied 

by js  cannot be regarded as fully intentional otherwise. Appendix B contains a more detailed 

exposition of the two models. 

 

1.4.1 The Hidden Cost of Control 
 

Falk and Kosfeld (2006) study the reaction of agents (A) to a principal’s (P) decision to control 

their choice of how much productive effort to exert. Two of their treatments are directly relevant 

for us: In the control game (CG), the principal first decides whether to control the agent or not. 

If not controlled by the principal, the agent can exert any effort level 0 1 2 120e , , ,..., . Payoffs 

are given by 2e  for the principal and 120 e  for the agent. In contrast, if the principal has 

controlled the agent, effort is restricted to be at least ten, i.e., 10 11 120e , ,..., , the mapping 

from effort to payoffs being the same as after no control. The second treatment is a dictator 

game (DG) that is identical to the subgame of CG after control. As a result, the agent (who takes 

the role of player i) chooses from 120 2 10 11 120e, e : e , ,...,  both in DG and after control 

in CG.22 We have 

 

 

                                                      

22 Recall that outcomes have the format i j, . 
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PROPOSITION 1 Suppose that 0 . The net loss that the agent derives from the principal is 

given by 0CG
Anl  after control in CG and by 0DG CG

A Anl nl  in DG. The net loss that the 

agent imposes on the principal decreases in effort. Hence, average effort is higher in DG. 

 

The agent derives a net loss of zero in DG because the principal is passive in this treatment. 

After control in CG, the agent only derives a material loss (of 10) because control only rules out 

outcomes that are less fair than the outcomes attainable under control for being less efficient and 

containing a smaller minimal payoff. Hence, for the agent to derive a loss from control, the 

weight on his material loss must not be zero ( 0 ). Regarding the net loss that the agent 

imposes on the principal, a one-unit increase in effort decreases the principal’s material loss and 

increases her material gain. Fairness losses and gains do not counteract this: The principal’s 

fairness loss is non-increasing in effort. In fact, it decreases except for high effort, where the 

principal may not feel entitled to additional effort if her fairness notion leans toward a concern 

for the less well-off. Likewise, the principal’s fairness gain is non-decreasing in effort. It is zero 

for low effort levels, where the principal feels entitled to effort, but may increase for higher 

effort. As a result, as long as 0 , the principal’s net loss unambiguously decreases in effort. 

Lemma 2 then implies that the effort distributions in the two situations possess the monotone 

likelihood ratio property, with probability mass shifting towards higher effort in the situation 

where agents derive the lower net loss. Consequently, average effort is predicted to be higher in 

DG. This matches the results of Falk and Kosfeld (2006), who report that average effort is 

significantly lower after control in CG. The agents in their experiment provide a mean effort of 

17.5 after control in CG, but of 28.7 in DG.23 

The reciprocity model of Dufwenberg and Kirchsteiger (2004), referred to as DK in what 

follows, struggles to account for these findings. Given that agents in CG exert more effort after 

no control than after control and exerting more effort means less payoff for agents themselves,24 

DK view control (somewhat counter-intuitively) as kind to agents. Consequently, they predict 

more effort, which is kinder to principals, after control in CG than in DG, where the principal is 

                                                      

23 Falk and Kosfeld (2006) also study other control levels. However, they implement no corresponding 
dictator games, which means that no foregone-option effects can be studied. 

24 Falk and Kosfeld (2006) report a mean effort after no control of 23.0. 
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passive and hence neither kind nor unkind. Reliance on second-order beliefs has a perverse 

consequence here. From an intuitive viewpoint, it is clear agents are disgruntled at being 

controlled if the principal has had the choice of not controlling them. The effect of this 

disgruntlement, namely, that agents keep more money for themselves, is used by DK as 

“evidence” for the conclusion that they have no reason for being disgruntled. This confuses 

cause and effect of agents’ emotional response to the principal’s behaviour. My approach avoids 

this problem because it relies on agents’ opportunity sets given the principal’s strategy without 

taking into account their reaction to the latter. 

The reciprocity model of Falk and Fischbacher (2006), denoted FF in what follows, runs into 

similar problems. Given that responders exert less effort after control in CG than in DG, agents 

view themselves as being put further ahead of principals in CG. Moreover, principals could 

have put agents less ahead in CG by not controlling them. As a result, control in CG is kinder, 

which is at odds with the fact that agents are kinder to principals in DG by exerting more effort. 

 

1.4.2 Trust 
 

McCabe et al (2003) study a simple trust game (TG) in which the first mover (FM) can either 

implement the no-trust outcome 20 20,  or trust the second mover (SM). If trusted by the first 

mover, the second mover can choose between 30 15,  and 25 25, . The first entry in each 

payoff vector denotes the payoff to the second mover, who takes the role of player i in what 

follows. The authors compare second mover behaviour in this game to behaviour in a dictator 

game (DG) in which the first mover is passive and the second mover has a choice between the 

same two outcomes as after trust in TG. We have 

 

PROPOSITION 2 Suppose that 0  and either 2 3  or 0 . The net loss that the second 

mover derives from trust in TG is 10 1 5 7 5 0TG
SMnl max . , , while his net loss 

in DG is 0DG TG
SM SMnl nl . The net loss that the second mover imposes on the first mover is 

10FMnl  if the second mover chooses 25 25,  and 10 7 5 7 5FM FMnl . . nl  if he 

chooses 30 15, . Thus, second movers are more likely to choose 25 25,  after trust in TG. 

 

We have 0DG
SMnl  because the first mover is passive in DG. As for TG, for the second mover’s 
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net loss from trust to be negative, we must have 0  and either 2 3  or 0 . On the one 

hand, the gain from trust must not be fully discounted, which is guaranteed by 0 . Further, 

there are two ways for the gain from trust to be positive: Either we have 0 , which ensures 

that the second mover puts positive weight on his material gain of 10. Or we have 2 3 , 

which means that fairness does not lean too much towards efficiency. In this case, the second 

mover perceives 30 15, , which he can implement after trust, as less fair than the no-trust 

outcome 20 20,  because of the smaller minimal payoff. He then derives a fairness gain from 

trust, which makes his overall gain positive irrespective of . 

Furthermore, the second mover clearly imposes a lower net loss on the first mover by 

choosing 25 25, . Net-loss reciprocation implies that the second mover is more likely to choose 

25 25,  instead of 30 15,  in TG because of his lower derived net loss This forgone-option 

effect is confirmed by McCabe et al (2003), who report that second movers choose 25 25,  

with a frequency of 0.65 after trust in TG and of only 0.33 in DG, this difference being 

significant.25 

 

1.4.3 Ultimatum Bargaining 
 

Falk et al (2003) study four binary ultimatum games in each of which the offer “2 for the 

responder, 8 for the proposer” is available to the proposer. The games differ regarding the 

second offer. In three, there exists a true alternative, namely, “5 for both”, “8 for the responder, 

2 for the proposer” and “0 for the responder, 10 for the proposer”, respectively. In the fourth, 

the proposer is effectively passive because the alternative offer is also “2 for the responder, 8 for 

the proposer”. Thus, letting the responder take the role of player i, acceptance of the alternative 

implements 5 5, , 8 2, , 0 10,  and 2 8, , respectively. In what follows, I refer to the four 

treatments by these outcomes. We have 

 

                                                      

25 The approaches of Dufwenberg and Kirchsteiger (2004) and Falk and Fischbacher (2006) can also 
account for this. Under the former, trust gives the second mover more in expected terms than no trust, 
which leads the second mover to view trust as kind, giving him an incentive to be kind to the first mover 
by repaying trust. Under the latter, given that trust is not always reciprocated, trust puts the second mover 
ahead of the first mover in expected terms. Moreover, the second mover would have earned less had he 
not been trusted. As a result, the kindness embodied by trust is fully intentional. 
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PROPOSITION 3 Suppose that 1 2 1 , 0 0 5.  and 0 . The net losses that 

the responder derives from “2 for the responder, 8 for the proposer” in the four treatments are 

given by 5 5 3 3 3,
Rnl , 8 2 6,

Rnl , 2 8 0,
Rnl  and 0 10,

Rnl , respectively, where 

we have 5 5 8 2 2 8 0 10, , , ,
R R R Rnl nl nl nl . The net loss that the responder imposes on the 

proposer by accepting “2 for the proposer, 8 for the responder” is Pnl 8 , while rejection 

imposes 2 3 6 3p pnl nl . We therefore have 5 5 8 2 2 8 0 10, , , ,Pr Pr Pr Pr , 

where xPr  denotes the rejection probability in treatment 5 5 8 2 2 8 0 10x , , , , , , , . 

 

Crucially, Proposition 3 asserts that losses do not track material losses. The responder derives 

the highest overall loss in treatment 5 5, , whereas his material loss is largest in 8 2, . To see 

this, notice that “2 for the responder, 8 for the proposer” means a material loss of 6 for the 

responder if the alternative has been “8 for the responder, 2 for the proposer”, but of only 3 if it 

has been “5 for both”. The responder’s fairness loss is 3 3  in 5 5, , but is necessarily zero in 

8 2,  because the outcome 8 2,  is always as fair as the outcome 2 8,  irrespective of . The 

dissociation of losses from material losses is achieved by the fairness loss in 5 5,  being 

sufficiently large and fairness losses playing a sufficiently large role. Formally, 5 5 8 2, ,
R Rnl nl  is 

equivalent to 3 3 3 6 1 2 1 . This can only be satisfied by 0  if 

we have 1 2 0 0 5. . 

Further, we have 2 8 0,
Rnl  because the proposer is passive in 2 8,  and 0 10,

Rnl  

because the responder derives no fairness gain in 0 10, . The reason is that he feels entitled to 

“2 for the responder, 8 for the proposer” if the alternative is “0 for the responder, 10 for the 

proposer”. We have 6 0 2  because of 0  and 0 . 

All in all, since rejection of the fixed offer “2 for the responder, 8 for the proposer” imposes a 

higher net loss on the proposer than acceptance, the responder is most likely to reject in 5 5, , 

second most likely in 8 2,  etc. This is largely consistent with the results of Falk et al (2003), 

who report the following rejection frequencies: 

 
5 5 8 2 2 8 0 100 44 0 27 0 18 0 09, , , ,Pr . Pr . Pr . Pr . , 

 

these differences being statistically significant except for the last one. Although the last 

difference has the right sign, my approach faces a difficulty here. The absence of a significant 
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difference would be explained by net-loss reciprocation if 2 8 0 10, ,
R Rnl nl . Since we have 

2 8 0,
Rnl  because the proposer is passive in this treatment, whereas 0 10,

Rnl , we would 

have to assume either 0  or 0  or both. Alternatively, if both  and  are positive but 

small, their product can be viewed as approximately zero. I return to this issue below. 

In contrast, DK face difficulties in rationalising the difference between the treatments 5 5,  

and 8 2, . According to DK, the status quo offer “2 for the responder, 8 for the proposer” is 

less kind in 8 2,  than 5 5,  for the following reason: In 5 5, , the status quo is accepted with 

a probability of 0 66.  and the alternative for sure, which makes for a kindness of the status quo 

of 0.66 2 0.5 5 0.66 2 1.84k .26 In 8 2, , the acceptance probabilities are 0 73.  for 

the status quo and 0 98.  for the alternative. The fact that the status quo is accepted with a higher 

probability tends to make the status quo kinder. However, what works in the opposite direction 

is that responders could have earned more under the alternative. This second effect dominates 

since we have 0.73 2 0.5 0.98 8 0.73 2 3.72 1.84k . What DK do not take into 

account is responders’ sense of entitlement, in particular, that they feel less entitled to their 

forgone earnings in 8 2,  because these forgone earnings derive from an outcome that is only 

as fair as status quo. Such considerations are at the heart of my approach. 

The basic model in FF also fails to explain the difference in responder behaviour between 

5 5,  and 8 2, . The reason is the binary nature of the intention factor (see Appendix B), 

which simply asks whether or not responders could have earned more in expected terms than 

under the status quo, which is the case in both treatments. Hence, the intention factor does not 

capture the fairness difference between the two alternatives and the differential sense of 

entitlement that this difference creates. The appendix in FF contains a richer version of their 

model designed to address this problem. 

 

1.4.4 Lost Wallets 
 

Dufwenberg and Gneezy (2000) fail to establish forgone-option effects in a series of trust games 

termed “Lost Wallet Games”. Their common feature is that the second mover can split 20 units 

of payoff between himself and the first mover in the event of trust. The games differ regarding 

                                                      

26 See Appendix B for a detailed exposition of the kindness function k. 
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the no-trust outcome, which, letting the second mover take the role of player i, is given by 

0, f  with 4 7 10 13 16f , , , , . That is, the no-trust payoff for the second mover is always zero, 

while the games differ with respect to the no-trust payoff for the first mover. For simplicity, I 

focus on the polar cases 4f  and 16f  because the absence of a forgone-option effect is 

most puzzling between them. I refer to the two treatments by the respective no-trust outcome, 

namely 0 4,  and 0 16, . Servatka and Vadovic (2009) draw on the basic setup of Dufwenberg 

and Gneezy (2000), while varying the inequality of the no-trust outcome. In their two 

treatments, the no-trust outcomes are given by 0 10,  and 5 5, . Like Dufwenberg and Gneezy 

(2000), they fail to establish a significant difference in return transfers, i.e., there is again no 

forgone-option effect. Consistent with these empirical findings, we have 

 

PROPOSITION 4 Suppose that we have either , 0 5.  and 1 2 2 2  or 

,  and 5.  or  The net loss that the second mover derives from the first 

mover’s trust is 0 4 0,
SMnl  if the no-trust outcome is 0 4,  and 0 16 0 40, ,

SM SMnl nl  if it 

is 0 16, . As a result, the repayment distributions do not differ between the two situations. If 

the no-trust outcome is 0 10, , the net loss derived from trust is 0 10 0,
SMnl , while it is 

5 5,
SMnl 0 101 5 10 0 ,

SMmax , nl  if the no-trust outcome is 5 5, . Again, the 

repayment distributions do not differ between the two situations. 

 

In the first two cases, the second mover’s gain from trust is limited to his material gain of 20 

because the no-trust outcomes 0 4,  and 0 16,  are not fairer than any outcome in the second 

mover’s opportunity set after trust. Representing a payoff sum of less than 20, both no-trust 

outcomes are less efficient than the outcomes available after trust. Moreover, the minimal 

payoff is zero in each case, which is also the minimal payoff available after trust (if the second 

mover shares nothing). As a result, the responder feels entitled to his material gain causing his 

gain to be limited to the latter. As there is no loss from trust, the net loss is 0  in each case. 

For the same reasons, the second mover’s net loss is 0  if the no-trust outcome is 0 10, . 

If it is 5 5, , the second mover’s material gain from trust is 15. For 5 5 20,
SMnl  to hold, we 

can impose  meaning that gains are fully discounted. Alternatively, if , we can let 

 and 5.  meaning that the weight on material gains is zero, but the second mover 

derives no fairness gain from trust. Indeed, if 5. , the least fair outcome after trust, namely, 



CHAPTER 1: FORGONE-OPTION EFFECTS IN TWO-PLAYER GAMES 

27 

 

20 0, , is at least as fair as 5 5,  because efficiency receives sufficient weight in the fairness 

function. Finally, if  and , the second mover must derive a positive fairness gain 

from trust in 5 5,  to offset his larger material gain in 0 10, . This is the case if  

because fairness then leans towards a concern for the less well-off. In these conditions, we have 
5 5 5 10 0 1,

SMnl , which equals 0  if and only if 1 2 2 2 . 

This equality can only be satisfied by  if 5. . Also, given ,  as assumed. 

Dufwenberg and Gneezy (2000) also implement a dictator treatment (DG) in which dictators 

face the same opportunity set as second movers after trust. The authors report no significant 

difference in transfers between DG on the one hand and the treatments 0 4,  and 0 16,  on the 

other. For net-loss reciprocation to explain this, we must have 20 0DG
SMnl . We can make 

the equality hold by imposing either 0  or 0 . I return to this issue below. 

Regarding the intention-based models, DK cannot account for there being no difference 

between 0 10,  and 5 5, . The problem is that DK pick up on second movers’ differential 

earnings from the no-trust outcome. Given that second movers behave in the same way after 

trust, this yields the conclusion that trust is kinder in 0 10,  because second movers gain more 

from it in expected terms. My approach can navigate around this problem because second 

movers’ higher material gain in 0 10,  can be offset by a higher fairness gain in 5 5, . 

In contrast, FF can explain most absences of treatment differences. Given that average 

second-mover behaviour is the same, second movers view first movers as intending the same 

expected outcome (putting them ahead of first movers) in all treatments. Moreover, first movers 

could have treated second movers worse by not trusting them (except in DG). Hence, first 

movers are equally kind to second movers in all treatments rationalising the absence of a 

forgone-option effect. FF (like my approach) only struggle to explain behaviour in DG relative 

to the other treatments because first movers are passive there, which should cause second 

movers to share less. 

 

 

1.5 Discussion 
 

The examples considered in the preceding section are instructive with regard to the calibration 

of the model. The preferred specification is 
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0 1, 0 0.5  and 1 2 2 2  

 

which is well-supported by the experimental data considered in this chapter. The interpretation 

is that gains are not fully discounted in the calculation of net losses ( 0 1) and that the 

weight on material losses and gains is neither zero nor too large ( 0 0.5 ). Given the 

restrictions on , the condition on  implies 0  meaning that fairness leans towards a 

concern for the less well-off. 

Imposing 0  and 0  fails to explain two pieces of evidence, namely, the treatment 

0 10,  from Ultimatum Bargaining and DG from Lost Wallets. To account for them, the above 

specification could be modified by setting 0 . This parameterisation, which implies that 

gains are fully discounted, can account for all the evidence except that from Trust. In particular, 

the evidence from Lost Wallets is explained almost trivially by reducing net losses to zero in all 

treatments. Effectively, this specification negates the importance of positive reciprocity by 

asserting that people do not react to gains that they derive from others. Charness and Rabin 

(2002) provide further evidence that positive reciprocity is a less important motivational force 

than negative reciprocity.27 

All in all, this section has demonstrated that net-loss reciprocation in conjunction with the 

method for calculating net losses developed in this chapter can by and large account for the 

existence or absence of forgone-option effects in a number of experimental studies. I have also 

shown that existing models of intention-based reciprocity face problems in explaining this 

evidence comprehensively. This is particularly true for the model of Dufwenberg and 

Kirchsteiger (2004), while at least the extended version of Falk and Fischbacher (2006) 

performs relatively well. Yet, even in its extended form, the latter only captures players’ sense 

of entitlement in an approximate, qualitative fashion. My approach allows to precisely quantify 

this sense via fairness losses and gains. 

                                                      

27 In applications of loss aversion, it is often assumed for the sake of simplicity that only losses count. In 
Chapter 3, I propose a model of belief choice under regret that also draws on losses only. 
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1.6 Conclusion 
 

This chapter presents a qualitative preference model for two-player interactions building on the 

idea of net-loss reciprocation. Net-loss reciprocation asserts that a player’s willingness to 

impose net losses on the other increases in the net loss that he derives from the other player’s 

strategy. The chapter shows that net-loss reciprocation can account for various forgone-option 

effects (or absences thereof) that arise in a number of experimental studies. 

The main difficulty faced by net-loss reciprocation relates to the status of positive reciprocity. 

In the light of the evidence considered in this chapter, it is not clear whether players fully 

discount any gain they derive from the other player’s strategy or whether they take this gains 

into account leading them to become less willing to impose a net loss on the other. Apart from 

this, I find conclusive evidence that both material and fairness considerations matter to the 

determination of net losses, with fairness being somewhat more important. I also establish that a 

regard for the less well-off as opposed to a pure concern for material efficiency plays an 

important role in fairness assessments. 

Given the relative success of my approach in explaining forgone-option effects when 

compared to existing models of intention-based reciprocity, the development of full-fledged 

utility models incorporating net-loss reciprocation seems worthwhile. These models could be 

used to analyse more general classes of games.28 An advantage of such models compared to 

intention-based models is their direct testability using standard experimental data as they do not 

rely on higher-order beliefs. 

                                                      

28 In Chapter 2 of this dissertation, an extension of the two-player model developed in this chapter to 
more players (including Nature) is proposed. 
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1.7 Appendix A: Proofs 
 

PROOF OF LEMMA 2 

 

Let i j inl s nl  and i j inl s nl . Also, let j j
ˆnl , nl  and j j

ˆnl , nl . The first part, 

where i inl nl , is immediate since we have 

 

ˆi j i i j iPr exp v r nl ,nl exp v r nl ,nl  

 

and 

 

ˆi j i i j iPr exp v r nl ,nl exp v r nl ,nl  

 

for all ˆ  by Assumptions 1 and 2. 

Next, I show that Pr Pr Pr Pr Pr Pr Pr Pr  for all 
ˆ  if i inl nl  and j jnl nl . By Assumption 2, we can express the second inequality as 

 
j i j i

j i j i

exp v exp r nl ,nl exp v exp r nl ,nl

exp v exp r nl ,nl exp v exp r nl ,nl
 

 

 
j i j i

j i j i

exp r nl ,nl exp r nl ,nl

exp r nl ,nl exp r nl ,nl
. 

 

Logarithmation of both sides yields 

 

j i j i j i j ir nl ,nl r nl ,nl r nl ,nl r nl ,nl , 

 

which holds by our assumptions on r .  

 

PROOF OF PROPOSITION 1 

 

The principal is passive in DG. By Lemma 1, we have 0DG
Anl . In CG, letting NC denote no 
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control, we have NC C 120 2 0 1 9e, e : e , ,..., . Thus, if not controlled, the agent can 

earn more than what he can maximally earn if controlled. As a result, 0CG
Ag  and 

 

110 1 0NC C
CG C
A Al max max f f , , 

 

where Cf  is the highest fairness level attained in C . However, the fairness of the outcomes in 
NC C  is below Cf  because both efficiency and a concern for the less well off mandate 

increasing effort to 40. Consequently, we have 0 0CG CG
A Al nl . 

Next, I show that the net loss that the agent imposes on the principal decreases in e. Suppose 

that the agent chooses 10 119e x ,..., . We then have 120 2c x, x , 

 

2 1 0C c
c

P Pl max x max f f ,  and 

 

2 1 0C c
c

P Pg max x max f f ,  

 

where 120 2 1 120C c e, e : e x ,...,  and 120 2 10 1C c e, e : e ,...,x . If 

effort increases by one unit, i.e., if 1e y x , we have 120 1 2 2c x , x  implying 

 

2 2 1 0C c'
c

P Pl max x max f f ,  and 

 

2 2 1 0C c'
c'

P Pg max x max f f ,  

 

where 120 2 2 120C c' e, e : e x ,...,  and 120 2 10C c' e, e : e ,...,x . 

Suppose first that 40x . We have c' cf f  because both efficiency and a concern 

for the less well off point towards increasing effort. As a result, P Pl l  because the 

maximisation for determining Pl  takes place on the set C c' , which is a subset of the set C c  

used for establishing Pl  and 0 . As for gains, the outcomes in C c  are less fair than c  

because they represent effort further away from 40. The same holds for C c'  and c' . As a 

result, gains are limited to material gains, and we have P Pg g  because C c'  is a super-set of 
C c  and 0 . All in all, e y  imposes a smaller net loss on the principal than e x . 
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Suppose next that 40x . Regarding losses, if c cf f  because the fairness function 

leans towards efficiency, we have P Pl l  for the same reasons as above. If c cf f  

because the fairness function leans towards a concern for the less well off, the linear nature of 

the fairness function implies that c  is fairer than all elements in C c  and likewise for c'  and 
C c' . As a result, losses are limited to material losses and we have P Pl l  because C c  is a 

super-set of C c'  and 0 . As for gains, if c cf f , all outcomes in C c  are not 

fairer than c  and likewise for C c'  and c' , which implies that there are only material gains. 

We have P Pg g  because C c'  is a super-set of C c  and 0 . For the same reason, we 

have P Pg g  if c cf f . Again, e y  imposes a smaller net loss on the principal. 

Since the principal’s net loss decreases in effort, Lemma 2 together with CG DG
A Anl nl  implies 

that the effort distribution in DG first-order stochastically dominates the distribution after 

control in CG, which implies that average effort is higher in DG.  

 

PROOF OF PROPOSITION 2 

 

Since first movers are passive in DG, we have 0DG
SMnl . In TG, second movers gain from trust 

in material terms, which implies their loss is zero. Their gain is given by 

 
TG
SMg 10 1 20 22 5 1 15 0 10 1 5 7 0max . , max ,  

 

because 30 15,  corresponds to a higher material and fairness gain than 25 25, . We have 

10 1 5 7 5 0 0TG
SMnl max . ,  because of our parameter assumptions. 

I next show that the net loss imposed on first movers through 30 15,  exceeds that imposed 

through 25 25, . First movers derive no loss from 25 25,  and a material gain of 10 . They 

derive no fairness gain because 25 25,  is superior from the viewpoint of both efficiency and a 

concern for the less well off. As a result, 10FMnl . From 30 15, , first movers derive a 

loss of 

 

10 1 25 22 5 1 15 10 1 10 7 5. . 10 7 5 7 5. .  

 

and no gain, which implies that 10 7 5 7 5FM FMnl . . nl . Lemma 2 together with 
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DG TG
SM SMnl nl  then implies that second movers are more likely to choose 25 25,  in TG.  

 

PROOF OF PROPOSITION 3 

 

I refer to the offer “2 for the responder, 8 for the proposer” as X and the alternative offer in a 

given treatment as Y. We have 2 8 0 0X , , , . In 5 5, , 5 5Y X , . As a result, 

responders derive no gain from X in this case and a material loss of 3. The highest fairness level 

reached in X  is 1 2f , whereas 5 5 5f , . As a result, 

 
5 5 3 1 5 1 2 3 3 3,

Rnl . 

 

In 8 2, , we have 8 2Y X , , which implies a material loss from X of 6 and no gain. 

Responders derive no fairness loss because 8 2,  and 2 8,  lie on the same fairness curve 

irrespective of . Consequently, 8 2 6,
Rnl . Since proposers are passive in 2 8, , 2 8 0,

Rnl . 

Finally, we have Y X , but 2 8X Y ,  in 0 10,  meaning that responders derive no 

loss from X and a material gain of 2. The highest fairness level reached in Y  is 5f . Since 

5 1 2 5 , responders feel entitled to their material gain. We thus have 0 10,
Rnl . 

From our parameter assumptions, it follows that 5 5 8 2 2 8 0 10, , , ,
R R R Rnl nl nl nl . 

I now turn to net losses imposed on proposers. Since 2 8 0 0X , , , , proposers derive no 

loss from acceptance. Their gain is limited to 8  because 2 8,  is fairer than 0 0, . All in all, 

Pnl 8 . Conversely, next to a material loss of 8 from rejection, proposers suffer a fairness 

loss of 2 8 0 0f , f , 5 1 2 2 3 . As a result, their net loss is given by 

8 1 2 3 2 3 6 3p pnl nl . From 5 5 8 2 2 8 0 10, , , ,
R R R Rnl nl nl nl  and 

Lemma 2, it then follows that 5 5 8 2 2 8 0 10, , , ,Pr Pr Pr Pr .  

 

PROOF OF PROPOSITION 4 

 

The opportunity set given trust is 20 0 1 20T r ,r : r , ,...,  where r is the amount 

shared. Denoting no trust by NT, we have 20 0 1 19T NT r ,r : r , ,...,  in both 

treatments because all outcomes in T  except 0 20,  give the second mover more than the no-

trust outcome. The fairness associated with no trust is 2f  in 0 4,  and 8f  in 0 16, , 
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while the fairness reached in T NT  as a function of 0 1 19r , ,...,  is given by 

 

1 20 8 2f min r, r , 

 

which implies that gains are limited to material gains. Hence, we have 0 4,
SMg 0 16,

SMg  and 
0 4 0 16, ,

SM SMnl nl . By Lemma 2, the repayment distributions are then the same. 

Next, we show that 0 10 5 5, ,
SM SMnl nl . In 0 10, , we have 0 10,

SMnl  for the same reasons 

as before. Since the second mover derives no loss from trust, 0 10 5 5, ,
SM SMnl nl  is trivially satisfied 

if  because all gains are then fully discounted. 

Suppose instead that , 0 5.  and 1 2 2 2  and notice that the last two 

conditions imply 0 5. . In 5 5, , we have 20 0 1 14T NT r ,r : r , ,..., . Given 

that , the least fair outcome in T NT , namely, 20 0, , is less fair than 5 5, , which 

implies a positive fairness gain from trust. As the maximisation of material and fairness gains 

points into the same direction, with 20 0,  maximising both, we obtain 

 
5 5 15 1 5 10,

SMg 5 1 0 1 . 

 

We then have 

 
5 5 0 10 5 10 0 1 1 2 2 2, ,

SM SMnl nl , 

 

as assumed. 

Finally, if , 0  and 0 5. , the second mover disregards his material gains, but his 

fairness gain from trust is zero in 5 5,  because fairness leans towards efficiency. This implies 
5 5 0 100, ,

SM SMnl nl .  

 

 

1.8 Appendix B: Intention-Based Models of Reciprocity 
 

In this section, I sketch the main features of the reciprocity models of Dufwenberg and 

Kirchsteiger (2004) and Falk and Fischbacher (2006). I focus on how player i evaluates the 
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kindness of player j’s pure strategy js . Conceptually, the kindness of js  plays the same role as 

i’s net loss from js  in my model. Since i observes js  in the applications considered in this 

chapter, i need not form a belief about js . At the same time, both approaches draw on what is 

called i’s second-order belief, i.e., i’s belief about j’s belief about i’s own strategy. Both allow 

this belief to refer to a behaviour strategy i . I denote i’s second-order belief about i  by iji . 

In this chapter, I use for iji  the empirically observed choices of players i. The justification is 

that both models are equilibrium models and hence require beliefs to coincide with actual 

behaviour. 

Dufwenberg and Kirchsteiger (2004) define 

 

, , e
j iji i j iji i ijik s s  

 

where ,i j ijis  is i’s expected payoff from j’s strategy js  given his second-order belief iji , 

i.e., the payoff to himself i thinks j intends him to receive, and e
i iji  the payoff to himself i 

views as “equitable” given iji . It is defined by 

 

0.5 max , min ,
j j j j

e
i iji s S i j iji s S i j ijis s . 

 

This formulation slightly simplifies the original model of Dufwenberg and Kirchsteiger (2004), 

which is inconsequential in the examples considered here. The interpretation is that i feels 

neutral about js  0k  if he believes j intends him to receive half of what he maximally and 

minimally stands to earn given j’s strategy set jS  and his second-order belief iji  and feels js  

is (un)kind whenever he receives more (less), to which correspond 0k 0k . A direct 

implication is that the kindness of js  equals zero if j is passive. Player i responds to the 

kindness of js  as follows: If js  is (un)kind, he is willing to increase the (un)kindness of his 

own behaviour to j at some material payoff cost to himself. 

The reciprocity model of Falk and Fischbacher (2006) differs from Dufwenberg and 

Kirchsteiger (2004) in that distributional concerns directly influence kindness perceptions. The 

kindness of strategy j js S  as perceived by player i is given by 

 

, , , ,j iji i j iji j j iji j ijik s s s s . 
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The first term is called the “outcome term”. It consists of the inequality associated with the 

outcome ,j ijis  implemented by js  given i’s second-order belief. If ,j ijis  puts player i 

ahead of (behind) j, i tends to view js  as (un)kind. At the same time, the outcome term does not 

reflect the alternatives to js  that j has at her disposal. This is where the second term (the 

“intention factor”) comes into play. It takes on either the value 1 or 0,1 . For example, if 

,j ijis  puts i ahead of j, the intention factor equals 1 if the feasible set of outcomes given 

iji  contains a payoff to i smaller than ,i j ijis  and  otherwise. The idea is that in the first 

case j could have treated i worse than giving him ,i j ijis , whereas no such option was 

available in the second case. As a result, i discounts his advantage , , 0i j iji j j ijis s  

in the second case, but not in the first. The procedure for the case where ,j ijis  puts i 

behind is analogous. 
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2 THE POWER OF DELEGATION 
 

 

 

2.1 Introduction 
 

In economic settings, decision rights may be delegated for various reasons.1 This chapter 

focuses on delegation as a means to avoid responsibility and hence punishment for hurtful or 

unpopular decisions. For example, external consultants are often used in organisations to devise 

restructuring measures that are painful for at least some members of the organisation. While 

such consultants may possess superior expertise and provide an outside perspective, an 

additional explanation for their use is that they attract most of the blame for the unpopular 

decisions they propose, allowing the organisation’s own management to avoid “punishment” 

(e.g., in the form of low effort or sabotage). The example points to what is called here the power 

of delegation. The power of delegation holds if a principal’s expected payoff from delegating 

her choice from a fixed set of options to an agent exceeds her expected payoff from choosing 

any of these options directly. Since delegation entails a loss of control for the principal, the 

power of delegation can only be satisfied if there are third parties who can punish (or reward) 

the principal.2 

This chapter sets out to explain the power of delegation in the presence of punishment 

opportunities. The main setting studied below is the following: A principal can either choose 

between a fair (“popular”) and unfair (“unpopular”) option herself or delegate this decision to an 

agent, where the unfair option yields a higher payoff to both the principal and agent and a lower 

payoff to two “recipients”, who can subsequently punish the principal or agent or both. In the 

experimental study by Bartling and Fischbacher (2011), the power of delegation is reported to 

hold in this setting. Next to the behaviour of agents, the key contributing factor to this result is 

the punishment behaviour of recipients. In particular, the principal is punished much less if the 

                                                      

1 Bartling and Fischbacher (2011) review the different strands of literature. 

2 Otherwise, the principal’s payoff from delegation cannot exceed her highest payoff from choosing 
directly. Note also that the power of delegation can hold both empirically and in theory. 
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agent has chosen the unfair option on her behalf than if she has done so herself. Below, I 

develop a theoretical model that can account for recipients’ punishment behaviour in this and 

related settings. 

The model builds on the following idea: When faced with some behaviour of the principal 

and agent (e.g., if the principal has delegated and the agent chosen the unfair option), recipients 

determine the net losses they derive from these behaviours. Net losses are simply losses minus 

gains, where the two need not count for the same.3 Recipients assess their net losses because of 

their preference for net-loss reciprocation: The higher their net loss from a player’s behaviour, 

the higher their willingness to impose a net loss on that player by punishing him or her. As a 

result, recipients punish more the player from whose behaviour they derive the higher net loss. 

This approach accounts for the punishment patterns constitutive of the power of delegation as 

follows: If the principal delegates and the agent chooses the unfair option, recipients derive a 

low net loss from the principal and a high net loss from the agent. The reason is that delegation 

leaves open the possibility that the fair option is chosen according to recipients’ ex-ante beliefs 

about the agent, while the agent rules out the fair option directly. On the other hand, if the 

principal chooses the unfair option, she rules out the fair option directly and hence imposes the 

same high net loss on recipients as the agent in the first situation, while the agent’s choice 

remains unobserved. Given their beliefs about the agent, recipients derive an expected net loss 

from the agent that equals their low net loss from the principal in the first situation. As a result, 

the two situations are mirror images in terms of net losses derived by recipients. This explains 

why the latter punish the agent severely and the principal lightly in the first situation, while this 

pattern is exactly inverted in the second situation (see Bartling and Fischbacher, 2011). 

The model of net-loss reciprocation developed in this chapter is a generalisation of the model 

of net-loss reciprocation developed in Chapter 1 to explain the context-dependency of social 

preferences in two-player games without moves of Nature (“forgone-option effects”). In 

contrast, the model proposed in this chapter involves 3n  players, one of whom is Nature. Yet, 

this setting nests the setting considered in Chapter 1 because it effectively collapses to a two-
                                                      

3 Losses and gains have a material as well as a fairness component. Broadly, recipients derive a material 
loss from some behaviour x of some player if there exists an alternative behaviour under which they could 
have earned more than what they can maximally earn under x. Moreover, recipients derive a fairness loss, 
which they add to their material loss, if their material loss derives from outcomes of the game that are 
fairer than the maximal fairness attainable under x. Material and fairness gains are defined similarly. 
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player game without Nature if 3n  and Nature is passive. The purpose of this chapter is 

therefore twofold: First and foremost, it aims to account for the punishment patterns sustaining 

the power of delegation, which is an important economic phenomenon in its own right. Yet, a 

second purpose is to demonstrate that the model developed in Chapter 1, which performs well in 

the specific class of situations considered there, can be extended and successfully applied to 

more complex settings like the delegation games considered in this chapter. 

Bartling and Fischbacher (2011) investigate how well existing behavioural theories perform 

in explaining their results on punishment patterns and find that these theories cannot account for 

all their evidence. For instance, outcome-based theories like the inequality-aversion model of 

Fehr and Schmidt (1999) cannot explain why punishment is targeted toward whichever player 

ultimately chooses the unfair option. The reason is that the principal and agent earn the same 

under the unfair option, which means that there is no difference between them from an outcome 

perspective. As a result, recipients have no systematic reason for punishing one player more 

than the other. Bartling and Fischbacher also propose their own model of responsibility for the 

unfair outcome to explain punishment choices, which they show to perform better than all 

existing approaches. In comparison to net-loss reciprocation, the responsibility model performs 

as well, but lacks the generality of net-loss reciprocation as a behavioural theory. 

Besides Bartling and Fischbacher (2011), there exists a small number of experimental studies 

on delegation. In Hamman et al (2010), principals have the possibility of selecting agents for 

choosing on their behalf among different allocations involving a passive recipient. The authors 

find that principals prefer agents who choose more unfair allocations (benefiting the principal at 

the expense of the recipient) than principals choose themselves if they do not have the option of 

using an agent. In this sense, the power of delegation holds: Principals seek out agents in such a 

way that delegation yields them a higher payoff than choosing from the same set of options 

themselves. However, the reason behind this is not punishment, but principals’ reluctance to 

make unfair choices, this reluctance disappearing if the same choices are made through agents. 

In contrast, this chapter focuses on the punishment behaviour of recipients, which helps sustain 

the power of delegation in settings with punishment opportunities. More in line with this 

chapter, Fershtman and Gneezy (2001) find that a principal’s payoff in an ultimatum game is 

higher if she makes offers through an agent (who she can incentivise to make unfair offers). The 

reason is that responders punish unfair offers less if they have been made through the agent. 
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Coffmann (2011) also studies delegation and finds that delegation helps the principal avoid 

(third-party) punishment for unfair allocations. However, the power of delegation as defined in 

this chapter does not apply to his setup because the agent cannot choose from the same set of 

options as the principal. Rather, the principal first divides a fixed sum of payoff between a 

passive recipient and herself. The principal can then delegate to the agent, which gives the agent 

the option of taking between nothing and everything from the recipient of what the principal has 

previously left to the latter. Strikingly, even if the principal has left nothing for the agent to take 

away from the recipient by keeping the entire sum for herself, which means that delegation has 

no impact on the final allocation, delegation still leads to less punishment for the principal. 

Clearly, this result must be due to framing effects, which are beyond the scope of this chapter. 

The remainder of this chapter is structured as follows. I first develop the model, which is 

followed by a detailed discussion of how the model can account for the punishment patterns 

constitutive of the power of delegation in Bartling and Fischbacher (2011) as well as a 

discussion of alternative approaches. All proofs are in Appendix A. 

 

 

2.2 The Model: Net-Loss Reciprocation 
 

The theoretical idea used in this chapter to explain the power of delegation is net-loss 

reciprocation. Net-loss reciprocation asserts that players’ willingness to pay for imposing a net 

loss on others (e.g., by punishing them) increases in the net loss that they derive from these 

others’ choice of strategy. Net losses are simply losses minus gains, where losses may loom 

larger. Before discussing derived and imposed net losses in turn, I first introduce the modelling 

framework (of which the delegation games considered below are special cases) as well as some 

elementary concepts. 

I limit attention to finite-horizon multi-stage games. The set of players is I where 3I n  

and one of the players is Nature (denoted N). A player’s inactivity at a stage is modelled by the 

respective action set being singleton. At every stage, players have certainty about what 

happened at the previous stages, i.e., the non-terminal history up to that stage. Let H be the set 

of non-terminal histories, which contains the empty history (or root of the game) . The pure 

strategy i is S  of player i I  assigns to each history h H  an action i ia A h  available to i 
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at h, whereas i’s behaviour strategy i i  assigns to each history a probability distribution on 

i’s available actions.4 The set of pure and behaviour strategy profiles are given by ii I
S S  

and ii I
, respectively. Outcomes  of the game are 1n -dimensional vectors of 

material payoffs.5 The function 1nS  is the outcome function. It assigns to each pure 

strategy profile the payoff vector implemented by it. From s , we can derive 1n , 

which assigns to each profile of behaviour strategies the vector of expected payoffs 

implemented by it. The set  contains the game’s feasible expected outcomes.6 

Moreover, a few non-standard concepts are drawn on below. Firstly, i iS h S  is the set of 

strategies of i that are consistent with history h H  in the following sense: If h , is  is part 

of iS h  if and only if it prescribes i’s actions contained in h . If h , we have i iS h S . 

The set i h  is defined analogously: All actions in h  must be prescribed with probability one 

for i i h . Secondly, i i is s ,h S  is the “update” of is  that coincides with is  except that it 

prescribes i’s actions contained in h  and likewise for i i ,h  where the actions in h  are 

prescribed with probability one. Finally, iH s H  is the set of histories that are consistent 

with is  in the sense that any h H  with h  is in iH s  if and only if i’s actions contained 

in h are also actions prescribed by is . Moreover, iH s  for all i is S . 

To illustrate the model developed in this section, I draw on a simple delegation game 

corresponding to the main treatment in Bartling and Fischbacher (2011). The game has four 

players:7 One principal (player A), one agent (player B) and two passive recipients, one of 

whom is called player C. The principal moves first. She can either implement a fair or unfair 

outcome directly or delegate this choice to the agent. The fair outcome yields 5 units of payoff 

to all parties, while the unfair outcome gives 9 units of payoff each to the principal and agent 

and 1 unit to each recipient. The punishment opportunities after A or A and B have made their 

choice are left out of the picture. This is done to simplify things, but does not affect the 

qualitative predictions of the model (see also the discussion in Section 2.3). 

                                                      

4 All action sets are assumed finite. 

5 Outcomes specify a payoff for each player except Nature. 

6 Note that S  since all pure strategy profiles are degenerate behaviour strategy profiles. As a result, 
all pure strategy profiles are in the domain of . 

7 Strictly speaking, Nature is the fifth player, who is however passive in this example. 
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2.2.1 Derived Net Losses 
 

Player i’s net loss from strategy js  of player j consists of his loss minus gain from js  where the 

two need not count for the same.8 Player i assesses his loss and gain by comparing the 

opportunity set of outcomes created by js  to the opportunity sets created by j’s alternative 

strategies. In our example, suppose that C evaluates A’s decision to delegate. He then compares 

the opportunity set created by A delegating to the opportunity sets created by A choosing the 

fair and unfair outcome directly. 

Defining such opportunity sets raises several modelling issues. Firstly, the question arises 

which (if any) restrictions to place on the behaviour of third parties, i.e., on the other players 

besides i and j. Player A’s decision to delegate is a case in point as its consequences depend on 

the behaviour of B, who is the third party in the relationship between A and C. In what follows, 

I assume that i considers the opportunity sets of expected outcomes created by js  and its 

alternatives taking as given i , j kk I\ i , j
, which is the profile of behaviour strategies of 

all other players including Nature and can be interpreted as i’s belief about these players’ 

average behaviour. The idea is that i, when assessing the opportunity sets created for him by js  

and its alternatives, has some sense of how third parties are likely to act, which affects his sense 

of opportunity.9 In the delegation example, B is expected to choose the unfair outcome after 

delegation with a probability of 0.34 according to the beliefs measured by Bartling and 

Fischbacher (2011). The opportunity set of expected outcomes created by delegation is therefore 

 

0 34 9 0 66 5 0 34 9 0 66 5 0 34 1 0 66 5 0 34 1 0 66 5 6 36 6 36 3 64 3 64. . , . . , . . , . . . , . , . , . , 

 

while A choosing the fair and unfair outcome directly entail 5 5 5 5, , ,  and 9 9 1 1, , , , 

respectively.10 As discussed before, these opportunity sets are singleton because C’s punishment 

options are ignored. 
                                                      

8 I refer to i as “he” and j as “she”. 

9 Alternatively, i , j  could be interpreted as i’s belief about j’s belief about the other players, i.e., i’s 
second-order belief. 

10 The first entry in payoff vectors refers to the payoff of A, the second to the payoff of B and the last two 
to the payoffs of the recipients. 
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A second issue is which perspective i adopts when assessing js  and its alternatives given i , j . 

On the one hand, i could evaluate js  from an ex-ante perspective meaning that he simply 

compares the opportunity set of expected outcomes created by js  to the opportunity sets created 

by its alternatives taking as given i , j . On the other hand, he could adopt the perspective of 

some history h  of the game and evaluate j’s updated strategy j js s ,h  against its 

alternatives in jS h  taking as given i , j i , j ,h . The importance of such conditioning on 

histories can be seen by considering a second example, namely, C’s evaluation of B choosing 

the unfair outcome after delegation, the alternative being choosing the fair outcome. From an 

ex-ante perspective, the opportunity sets of expected outcomes created by these two strategies 

depend on the belief about A, i.e., about how likely A is to delegate in the first place. In the 

most extreme scenario, where A is not believed ever to delegate, the two opportunity sets would 

be the same implying C’s net loss from the two strategies is the same, namely, zero. This 

dependence of the evaluation of B on the beliefs about A seems implausible. Intuitively, given 

the information structure, C knows that B knows that A has delegated when B chooses the 

unfair outcome and C wants to hold B to account for this knowledge. This consideration can be 

captured if we condition on the history “A has delegated”, which means that the likelihood of 

delegation is set to one. For this reason, I posit that i when evaluating js  adopts the perspective 

of all histories in the set jH s , which is the set of histories consistent with js . The idea is that 

i restricts attention to histories not ruled out by js , which has intuitive appeal.11 Consequently, I 

first define i’s loss and gain from js  for a given jh H s  and then define i’s overall loss and 

gain as his maximal history-contingent loss and gain with respect to jH s  as a whole.  

Finally, when adopting the perspective of some jh H s , the question arises if we should 

restrict i’s own behaviour to be in iS h  in establishing the opportunity sets created by js  and 

its alternatives. While the answer to this question is inconsequential in the setting considered 

below,12 I include it for completeness: Limiting i‘s behaviour to iS h  is not fully convincing 

                                                      

11 Limiting the conditioning to jH s  is also required for making the definition of i’s loss and gain 
consistent with the definition given in Chapter 1 for a two-player setting, where there is no conditioning 
on histories ruled out by js . Consistency means that in any n-player game where the players in I \ i, j  
are passive, i’s loss and gain from any given js  is the same as his loss and gain from the corresponding 

js  in the corresponding two-player game where the players in I \ i, j  are omitted. 

12 The reason is that the evaluating player C is passive implying that CS  is singleton 
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because i aims to assess the “elbow room” left for him by js  and its alternatives. From this 

angle, restricting attention to iS h  seems misguided. Intuitively, i holds j responsible for 

choosing js  rather than its alternatives in jS h  given that third parties behave according to 

i , j i , j ,h , but does not hold j responsible for ending up in h . Any part that j has played in 

bringing about h  is dealt with by considering the rest of jH s . Consequently, I define the 

opportunity set created by js  from the perspective of h  as i j i , j i , j i is ,s , ,h : s S  and 

likewise for the alternatives. 

In a first step, I now define player i’s loss and gain from j js S  (the “status quo”) relative to 

some alternative j js S  without conditioning on histories. The sets js  and js  are the 

opportunity sets of expected outcomes created by the two strategies. At this point, I only assume 

them to be non-empty without worrying about their precise definition, which is history-

dependent and introduced at a later stage. For the sake of illustration, I continue to draw on our 

example, where we have 6 36 6 36 3 64 3 64D . , . , . , .  for delegation, 5 5 5 5F , , ,  for 

choosing the fair outcome and 9 9 11U , , ,  for choosing the unfair outcome. 

I begin with losses.13 Player i derives a loss from js  relative to js  only if what he can earn 

from js  exceeds what he can maximally earn from js . To capture this idea, let j js s  be the set 

of outcomes in js  that yield i a higher payoff than his highest payoff in js . For i to derive a 

loss from js  relative to js , j js s  must be non-empty. The magnitude of i’s loss is established 

by considering the different outcomes in j js s . For each j js s , i calculates his material 

loss, which is the difference between his payoff from  and his highest payoff in js , and his 

fairness loss, which is the extent to which  is fairer than the highest fairness attained by the 

outcomes in js . While i’s material loss is always positive, the fairness of  may or may not 

exceed the maximal fairness in js . In the latter case, i derives no fairness loss because he has 

no fairness claim to  despite his higher earnings from it. All in all, i’s loss from js  relative to 

 is the weighted sum of his material and fairness loss, while his overall loss from js  relative 

to js  is his maximal loss from js  relative to all outcomes in j js s . 

To express these ideas more formally, let js
i  be the payoffs to i contained in js , 

j js s
i imax  i’s maximal payoff given js  and j j j js s s s

i i:  the set of feasible 

outcomes given js  yielding i more payoff than js
i . Fairness is measured by a fairness function, 

                                                      

13 The definition of losses (and gains) is analogous to the definition for two-player games in Chapter 1. 
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isoquants of which are called fairness curves: 

 

DEFINITION 1 The fairness function 1nf :  is given by 

 

1ii I\ N
f n  

 

with imin : i I \ N  and 0 1, . 

 

If 1, a one-unit increase of any player’s payoff above , the minimal payoff among all 

players, increases fairness by 1 1n , which is the concomitant increase in average payoff. 

Fairness in this case reduces to material efficiency meaning for any  and  we have 

f f  if and only if i ii I\ N i I\ N
. If 0 , we have f f  if and only 

if . Fairness in this case is identical to a concern for the least well off. For fairness to 

increase, all players with the least payoff must receive more. In general, the higher , the more 

weight is put on efficiency and the smaller the regard for the least well-off. Notice that this 

formulation of fairness leaves out considerations of payoff equality (Fehr and Schmidt, 1999) 

whenever an increase in the lowest payoffs does not coincide with a reduction in inequality. 

We can now define i’s loss from js  relative to js . For each j js s , i determines the 

weighted sum of his material loss 0js
i i  and his fairness loss 0jsmax f f ,  where 

j
s j

sf max f  is the highest fairness attained in js . Player i’s overall loss is the 

maximal weighted sum of this kind with respect to j js s . These ideas are summarised in 

 

DEFINITION 2 Player i’s loss from strategy j js S  relative to strategy j js S  is given by 

 

 
1 0 if 

0 otherwise

j j j j
s sj j

s s s s
i i

i j j

max max f f ,
l s ,s  

 

 

where 0 1, . 

 

In our example, the loss from delegation ( D ) relative to A choosing the unfair outcome (U ) is 
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zero because C can earn more after D , i.e., we have U D . But C could have earned more 

had A chosen the fair outcome ( F ) because 6 36 6 36 3 64 3 64D . , . , . , .  and 

5 5 5 5F , , , , which implies 5 5 5 5F D , , , . Accordingly, we have a material loss 

from D  relative to F  of 1 36. . The fairness of 5 5 5 5, , ,  is 5f , while the highest fairness in 
D  is 3 64 2 72 4 2 72 4f . . . . This makes for a fairness loss of 1 36 1 36. . , which is 

positive except if , in which case fairness coincides with material efficiency and 5 5 5 5, , ,  

is only as fair as 6 36 6 36 3 64 3 64. , . , . , . . In contrast, if , 5 5 5 5, , ,  is fairer because it 

contains a larger minimal payoff. All in all, 1 36 1 1 36 1 36Cl D,F . . . . 

I next turn to player i’s gain from js  relative to js . A necessary condition for i deriving a 

gain is that j js s  is non-empty, where j js s  contains the feasible outcomes given js  yielding 

i more payoff than what he can maximally earn given js . The level of i’s gain is determined by 

considering the different outcomes in j js s . From a given j js s , i derives a fairness gain, 

which he adds to his positive material gain, if and only if  lies on a lower fairness curve than 

the highest curve reached in js . Intuitively, if  instead lay on the same or a higher curve, i 

would consider his material gain to be well-deserved for leading to no decrease in fairness. 

These considerations motivate 

 

DEFINITION 3 Player i’s gain from strategy j js S  relative to strategy j js S  is given by 

 

 
1 0 if 

0 otherwise

j j j j
s sj j

s s s s
i i

i j j

max max f f ,
g s ,s  

 

 

where 0 1, . 

 

In our example, we have 0Cg D,F  because C earns less after D  than after F . Moreover, 

we have 2 64Cg D,U .  because 6 36 6 36 3 64 3 64D . , . , . , .  and 9 9 1 1U , , ,  

implying 6 36 6 36 3 64 3 64D U . , . , . , . . This makes for a material gain from D  of 2 64. , but 

no fairness gain because 6 36 6 36 3 64 3 64. , . , . , .  is never less fair than 9 9 1 1, , , . 

I now address i’s loss and gain from js  at large. The two are established by considering all 

histories consistent with js , which are collected in jH s . 
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DEFINITION 4 From the perspective of history jh H s , player i’s loss and gain from 

j js S  given that the players in I \ i, j  follow i , j i , j  are given by 

 

j ji j i j js S hl s ,h max l s ,s  and 
j ji j i j js S hg s ,h max g s ,s , respectively, 

 

where js
i j i , j i , j i is ,s , ,h : s S  and likewise for each js . Moreover, i’s overall 

loss and gain from js  are given by 

 

j
i j i jh H sl s max l s ,h  and 

j
i j i jh H sg s max g s ,h . 

 

Thus, given i , j , i assesses his loss and gain from js  history-wise by considering each element 

in jH s . Adopting the perspective of some such history, i determines his maximal loss and 

gain from js  relative to its alternatives in jS h  taking as given i , j i , j ,h .14 Player i’s 

overall loss and gain from js  are given by his maximal history-contingent loss and gain with 

respect to jH s . In our example, 1 36 1 1 36 1 36Cl D . . .  and 2 64Cg D .  

because the root of the game is the only history at which A is active, which implies that C’s loss 

and gain from delegation conditional on the other histories consistent with delegation are zero.15 

In what follows, I suppose that players react to the net loss imposed on them by others: 

 

DEFINITION 5 Player i’s net loss from strategy j js S  is given by 

 

i j i j i jnl s l s g s  

 

with 0 1, . 

 

The case 1  allows for the possibility that “losses loom larger than gains”, which is key in the 

                                                      

14 jS h  is guaranteed to include js  since h is taken from jH s . 

15 The only non-terminal history besides the root consistent with D is “A has delegated”. There is only 
one strategy of A consistent with this history, namely, D itself, implying that A’s contingent strategy set 
is singleton. As a result, C’s loss and gain from D conditional on “A has delegated” equal zero. 
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literature on loss aversion (Kahnemann and Tversky, 1979; Köszegi and Rabin, 2006).16 The 

following is immediate: 

 

LEMMA 1 If j jS s , i.e., if player j is passive, we have 0i jnl s . 

 

The lemma follows from the fact that we have 0i jl s  and 0i jg s  if j jS s . 

 

2.2.2 Imposed Net Losses and Preferences 
 

In a second step, I turn to imposed net losses. Faced with some profile is  of the other players’ 

strategies, player i must choose an outcome from his opportunity set is
i i i is ,s : s S . 

Since each element in is  imposes a particular net loss on each other player, i’s choice from 
is  can be thought of as his reciprocation to his net losses from is . I now define the net loss 

that i imposes on j  through his choice from is .17 Let isc  be the outcome chosen by i 

and let i is c , j s c
j j:  and i is c , j s c

j j:  contain the outcomes in 
is  yielding player j more and less payoff than c , respectively. This leads to 

 

DEFINITION 6 Player j’s loss from isc  is 

 
1 0 if 

0 otherwise

i
s c , ji

i

s c , jc c
j j

sc
j

max max f f ,
l ,  

 

Moreover, j’s gain from isc  is 

 
1 0 if 

0 otherwise

i
s c , ji

i

s c , jc c
j j

sc
j

max max f f ,
g ,  

 

Finally, j’s net loss from isc  is 

                                                      

16 In Chapter 1, I discuss why net-loss reciprocation is not a model of loss aversion. Broadly, loss 
aversion asserts that not only the baseline utility of outcomes, but also the deviation of this utility from 
some reference level determines decision-making (with negative deviations being weighted more). In 
contrast, net-loss reciprocation should be thought of as a model of baseline utility attached to outcomes. 

17 The definition is again analogous to that in Chapter 1. 
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i i is s sc c c
j j jnl , l , g , . 

 

I next characterise i’s preferences governing his choice from is . 

 

ASSUMPTION 1 Player i’s preferences on the outcomes in is  are represented by 

 
is

i i i j i jj I\ i ,N
u ,s v r nl , ,nl s  

 

where the continuous v :  and 2r :  satisfy 0idv d  and 2 0j ir nl nl . 

 

Thus, i’s utility from is  can be separated into the utility from his own payoff and a 

reciprocation term for each other player that depends on the net loss that  imposes on that 

player as well as the net loss that i himself derives from that player’s choice of strategy. As a 

result, j iWTP r nl dv d , which is i’s willingness to pay for increasing j’s net loss, 

increases in the net loss that i himself derives from js . 

Below, i must sometimes choose from a deterministic set of outcomes ˆ  without having 

certainty about the strategy of all other players. Such a situation arises if one player’s choice of 

action precludes some other player from having a move, which is therefore not observed by i. In 

such cases, I assume that 
iji i j i jj I\ i ,N

ˆu v r nl , ,E nl s  where ij  is i’s belief 

about j’s choice of strategy. Preferences thus depend on expected net losses. In our example, if 

A chooses the fair or unfair outcome directly, C does not observe B’s strategy and must rely on 

his belief about B to determine his expected net loss from B’s behaviour. 

Moreover, I follow McFadden (1974) and McKelvey and Palfrey (1995, 1996) in making 

 

ASSUMPTION 2 The probability of player i choosing outcome is  is given by 

 

s ii i i i iPr ,s exp u ,s exp u ,s . 

 

This quantal response structure (see Goeree et al, 2008, and Chapter 1 for details) allows us to 

interpret the punishment data considered in the next section because it implies that each subject 

chooses each available outcome with positive probability. 
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2.3 The Power of Delegation 
 

In this section, I analyse in detail the experimental study of delegation by Bartling and 

Fischbacher (2011). Bartling and Fischbacher (BF) examine the following treatments: Their 

main treatment, entitled D&P (Delegation and Punishment), gives the principal (player A) the 

option of either choosing the fair or unfair outcome herself or delegating this choice to an agent 

(player B). The fair outcome yields 5 units of payoff to all parties, while the unfair outcome 

gives 9 units of payoff each to A and B and 1 unit to each of the two recipients. After A or A 

and B have made their choices, one of the two recipients (called player C) is given the following 

punishment opportunity: If he pays one unit of payoff, he can assign up to seven punishment 

points to his fellow players. Every punishment point assigned to a player reduces that player’s 

payoff by one unit. BF find that A attracts most of punishment if she chooses the unfair 

outcome herself, but is largely spared if B does the same on her behalf, the latter now receiving 

most of the punishment. In line with this, delegation gives A an expected payoff of 5.93, while 

choosing the fair and unfair outcome directly yield her 4.80 and 4.73, respectively. These 

differences being statistically significant, the power of delegation holds in D&P. 

The treatment Random replicates D&P except that B is now passive because A can only 

delegate to a random device (“die”). The die chooses the unfair outcome with a commonly 

known probability of 0.4, which corresponds to the rate at which subjects in the role of B 

choose the unfair outcome in D&P. BF find that A cannot evade punishment if delegation leads 

to the unfair outcome to the same degree as in D&P: If A has delegated her decision to the die 

and the unfair outcome results, she is punished significantly more than in the analogous 

situation in D&P. In fact, A now attracts more punishment than B, albeit less than if she 

implements the unfair outcome herself, to such an extent that the power of delegation continues 

to hold in Random: Delegation gives A an expected payoff of 5.07, while choosing the fair and 

unfair outcome directly give her 4.82 and 4.36, respectively.18 

Two further treatments are considered as robustness checks: The treatment Asymmetric 

eliminates A’s option of choosing the unfair outcome herself. Delegation appears more self-

serving than in D&P because it is the only way for A to attain the unfair outcome. And indeed, 
                                                      

18 These differences are significant at the 5% (delegation versus fair) and 10% level (delegation versus 
unfair). 



CHAPTER 2: THE POWER OF DELEGATION 

51 

 

if B chooses the unfair outcome after delegation, A is punished more and B less than in the 

corresponding situation in D&P.19 Finally, in NoD&P (No Delegation and Punishment) there is 

no delegation option meaning that B is passive like in Random. 

 

2.3.1 Negative Reciprocity 
 

I now show that net-loss reciprocation can account for the punishment patterns sustaining the 

power of delegation in the experiments conducted by BF. In this sub-section, I focus on 

punishments for the unfair outcome. Punishments for the fair outcome (which barely exist) are 

discussed in the following sub-section. 

Player C’s punishment decision after A or B has chosen the unfair outcome can be described 

as a choice from the set 

 

0 1 7 7A B A B A BP p , p : p , p , ,..., p p .20 

 

The option 0 0A Bp , p  corresponds to no punishment, which implements 9 9 1 1, , , .21 The 

other punishment vectors capture C’s decision to deduct up to seven units of payoff from A and 

B at a price of 1 to himself resulting in the final outcome 9 9 0 1A Bp , p , , . Consequently, P 

defines the common set of outcomes ˆ  from which punishing recipients choose in the 

situations considered in this sub-section. 

Adopting the perspective of net-loss reciprocation, the elements in P map into net losses as 

follows: 

 
7 if 0

1 1 3 4 4 if 0

A

A B
A A A B A A

p
nl p , p

p p p p p
 

 

                                                      

19 These differences are only significant in B’s case. Although the power of delegation does not apply 
because A’s and B’s choice sets (net of delegation) differ, delegation maximises A’s expected payoff. 

20 The experimental design of BF also allowed deductions from the other recipient. These are omitted 
because they (almost) never occurred. 

21 I omit C’s option of paying one unit of payoff but not deducting any punishment points, which is 
dominated by not paying and is not reported to have been chosen by any recipient. 
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and likewise for player B. If 0Ap , A bears no material loss and hence no overall loss. As for 

her gain, C could have reduced A’s payoff by up to seven units. Yet, any such punishment 

would have resulted in a less fair outcome than 9 9 1 1, , , .22 Consequently, A’s gain is limited to 

her material gain of 7 and her net loss equals 7 . If 0Ap , A derives a material loss of Ap . 

Her fairness loss is the extent to which 9 9 0 1A Bp , p , ,  is less fair than 9 9 1 1, , , . The 

fairness of the two is 0 9 4 9 4 4A Bf p p  and 1 8 4 8 4f , 

respectively. The latter exceeds the former by 1 3 4 4 0A Bp p  resulting in a total 

loss for A of 1 1 3 4 4A A Bp p p . Moreover, A’s gain is Ap  since 

C could have deducted up to seven punishment points. 

In what follows, I make 

 

ASSUMPTION 3 The following parameter restrictions are maintained throughout: 

 

0  and 4 4 5 5 . 

 

These a priori restrictions have intuitive appeal, as I now argue focusing again on A. Firstly, 

assuming , which implies that material factors play some role in the calculation of losses 

and gains, ensures 1 4 0A
Anl p  for all 0Ap  meaning that A’s net loss 

increases in the punishment points she receives.23 Moreover,  guarantees that 

1 4 0A B
A Anl p nl p  if 0Ap . As a result, a one-unit increase in own 

punishment increases A’s net loss more than a one-unit increase in B’s.24 Secondly, assuming 

4 4 5 5  ensures that for any two punishment vectors the one imposing the 

larger punishment on A also imposes the larger net loss. More specifically, it guarantees that 

                                                      

22 Since punishment costs the recipient one unit of payoff, both the minimal and average payoff are 
reduced by punishment, which implies that fairness decreases. Recall that fairness as defined in this paper 
does not value equality per se unlike in, e.g., Fehr and Schmidt (1999). Thus, reductions in inequality do 
not automatically lead to an increase in fairness. 

23 Also, since  implies 1 1 3 4 1 4 6Bp , it ensures that A’s net loss 
from 1Ap  exceeds that from 0Ap . 

24 The case 0B
Anl p  corresponds to “fairness spillovers”, which arise as follows: If Bp  increases 

for a given 0Ap , this leaves A’s material loss constant, but makes the implemented outcome less fair 
(except if  meaning that efficiency does not matter). This increases A’s fairness loss (if ). 
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A’s net loss from 2 0A Bp , p  exceeds that from 1 6A Bp , p  and likewise for all 

higher punishment levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 shows recipients’ punishment choices in the different treatments. The size of the 

circles corresponds to the frequency with which each punishment vector is chosen. I now 

present a series of propositions showing that my approach can account for the shifts in 

punishment across situations visualised in Figure 2.1. As argued above, these shifts help sustain 

the power of delegation in the experiment of BF. In deriving results, I follow BF in abstracting 

from the punishment stage. This means that the net loss that the punishing recipient (C) derives 

from A and B is determined by considering the game without punishment opportunities.25 

                                                      

25 Otherwise, we would have to allow for the fact that the role of punisher is assigned randomly to one of 
the two recipients. The recipient selected to be punisher (player C) would have to form a belief about the 
likely punishment behaviour of the other recipient had she instead been selected. These beliefs are not 
measured by BF. If we used actual punishment choices, we would get similar results to those derived 

FIGURE 2.1 Allocations of Punishment In All Unfair Situations 
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Delegation to a Human Being 

 

The top-left panel in Figure 2.1 shows the two “unfair” situations arising in D&P: A choosing 

the unfair outcome directly versus B choosing the unfair outcome after delegation. Here and in 

what follows, I say that the punishment of A dominates that of B if the (empirical or theoretical) 

distribution on A’s punishment points first-order stochastically dominates the distribution on 

B’s punishment points. We have 

 

PROPOSITION 1 In D&P, if A chooses the unfair outcome directly, recipients derive 
Anl 4 1  and 1 36 1 2 64B Anl . . nl . As a result, the punishment of A 

dominates that of B. If B chooses the unfair outcome after delegation, recipients derive 

1 36 1 2 64A Bnl . . nl  and 4 1B A Anl nl nl . As a result, the 

punishment of B dominates that of A. Moreover, the distribution of A’s punishment in the first 

situation equals the distribution of B’s punishment in the second situation and vice versa. 

 

In the first situation, recipients derive a high net loss from A because she directly rules out the 

fair outcome, while recipients have to rely on their beliefs to assess B’s behaviour. Given the 

beliefs measured by BF,26 B chooses the fair outcome with a probability of 0.66, which implies 

that recipients derive a relatively low expected net loss from B. Consequently, they target their 

punishment mainly towards A. In the second situation, delegation leaves open the possibility 

that the fair outcome is chosen. Using measured beliefs, delegation implements the expected 

outcome 6 36 6 36 3 64 3 64. , . , . , . , which yields the same low net loss as the expected net loss 

from B in the first situation. In contrast, B choosing the unfair outcome rules out the fair 

outcome, from which recipients derive the same high net loss as from A in the first situation.27 

Consequently, B is now the main punishment target. What is more, since the two situations are 

                                                                                                                                                            

below because punishment, which hurts fairness, mainly occurs after an unfair choice. Taking this fact 
into account would simply boost C’s fairness loss from the unfair choice. 

26 BF conducted a separate, incentivised belief elicitation session where they asked subjects about the 
likelihood of the different moves of players A and B. 

27 This holds from the perspective of the history where A has delegated. From an ex-ante perspective, 
recipients derive a smaller net loss from B because A does not delegate for sure. 
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mirror images in terms of net losses derived by recipients, the punishment distributions for A 

and B are also mirror images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposition 1 presupposes no parameter restrictions beyond those contained in Assumption 3. 

In particular, the proposition is consistent with  meaning that only material factors matter. 

The intuition for this is that fairness and material concerns point in the same direction. 

Recipients’ ranking of the different actions available to A and B is the same from a material and 

fairness perspective because recipients are the poorest players. 

The experimental results of BF are consistent with Proposition 1: To see this, consider Figure 

2.2, which contains the empirical punishment distributions in D&P, all of which are in line with 

Proposition 1. In particular, I can reject that the distribution pairs in the top panels are the same 

according to Kolmogorov-Smirnov (KS) tests ( 0 001p .  in each case), while I fail to reject that 

the distribution pairs in the bottom panels are the same according to KS tests with 0 481p .  for 

the bottom-left and 0 157p .  for the bottom-right panel. 

FIGURE 2.2 Punishment Distributions In the Unfair Situations in D&P 
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Delegation to a Random Device 

 

The top-right panel in Figure 2.1 compares the two unfair situations in the treatment Random. In 

the first one, A has chosen the unfair outcome directly. In the second one, A has delegated her 

decision to a die choosing the unfair outcome with a commonly known probability of 0.4, while 

B is passive in both situations. As previously discussed, the power of delegation holds in 

Random. This suggest that the power of delegation is not limited to delegation to humans, but 

also works if there is delegation to an appropriately chosen random device. Regarding the 

punishment patterns sustaining this result, we have 

 

PROPOSITION 2 Suppose that 1 1 5 1.  and 1 1 5. . In Random, if A 

chooses the unfair outcome directly, recipients derive Anl 4 1  and 0B Anl nl . As 

a result, the punishment of A dominates that of B. If A delegates to the die, recipients derive 
Anl 1 6 1 A. nl  and 0B B Anl nl nl . As a result, A’s punishment again 

dominates B’s. Moreover, the punishment of A in the first situation dominates her punishment 

in the second situation. 

 

Let us first focus on what happens across situations: Recipients’ net loss from B equals zero 

in both because B is passive. As for A, delegation leaves open the possibility that the fair 

outcome materialises, while choosing the unfair outcome rules out the fair outcome for sure. We 

therefore have A Anl nl , which is guaranteed by 0  alone (from Assumption 3). Since we 

also have B Bnl nl , A’s punishment in the first situation dominates her punishment in the 

second situation (as Lemma A2 in the Appendix makes clear). 

Let us now turn to the two within-situation comparisons: While 0Anl  follows directly from 

0 , 0Anl  only holds given the additional restrictions on  and . The intuition for  is 

the following: For recipients’ net loss from delegation to be positive, recipients’ fairness loss 

must be sufficiently large. This is achieved by fairness leaning sufficiently towards a concern 

for the least well-off, i.e., towards . If fairness instead coincided with material efficiency 

( 1), there would be no fairness loss because delegation does not affect total payoffs. As for 

the restriction on , the formal reason is that 1 1 5 1.  can only be satisfied by 

 if we have 1 1 5. . Intuitively, if the gain from delegation is discounted too little, 
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even  would not generate high enough fairness losses for the net loss from delegation to be 

positive. The upper bound for  falls in  because this problem becomes more acute as the 

weight on the material gain from delegation increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Is Proposition 2 supported by BF’s data? Figure 2.3 suggest this is the case. I can reject that the 

distribution pairs in it derive from the same data-generating process according to KS tests 

( 0 01p .  in each case). 

 

Robustness of the Theory 

 

I conclude this sub-section by carrying out two robustness checks for net-loss reciprocation. The 

first one explores the difference between being a passive player and being a player whose 

strategy has not been observed. Compare the following two situations: A choosing the unfair 

outcome in D&P and A choosing the unfair outcome in NoD&P. The difference between them 

FIGURE 2.3 Punishment Distributions In the Unfair Situations in Random 
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is that B is passive in the latter and active in the former. Yet, as previously discussed, B’s move 

in the first situation is not observed by recipients, who must therefore form a belief about how B 

would have acted had A chosen delegation. Given the beliefs measured by BF, we have 

 

PROPOSITION 3 Suppose that 1 36 2 64 1 36 1 36. . . .  and 1 36 2 64. . . In 

D&P, if A chooses the unfair outcome, recipients derive Anl 4 1  and 

1 36 1 2 64Bnl . . . In NoD&P, if A chooses the unfair outcome, recipients derive 
Anl 4 1 Anl  and 0B Bnl nl . Thus, B’s punishment in the first situation 

dominates his punishment in the second. 

 

The parameter restrictions ensure that the net loss that recipients derive from B in D&P is 

larger than zero and hence exceeds their net loss from B in NoD&P. The intuition is similar to 

that for Proposition 2: For recipients to derive a positive expected net loss from B, their loss 

from B choosing the unfair outcome after delegation must be sufficiently high, which is ensured 

by a sufficiently low  leading to a sufficiently large fairness loss. Furthermore, their material 

gain from B choosing the fair outcome must be sufficiently discounted. The top-left panel in 

Figure 2.4 contains evidence for Proposition 3 (see also the bottom-left panel in Figure 2.1). 

While the discrepancy between the two distributions has the direction suggested by the 

proposition, the difference is insignificant ( 0 803p . , KS test).28 

Finally, the bottom-right panel in Figure 2.1 compares B choosing the unfair outcome in D&P 

to B choosing the unfair outcome in Asymmetric. The net loss that recipients derive from B is 

the same in both situations, while the net loss from A is larger in Asymmetric. This is because 

the only alternative to delegation in Asymmetric is choosing the fair outcome. Unlike in D&P, 

there is therefore no gain from delegation. Also, recipients believe that agents are more likely to 

choose the unfair outcome in Asymmetric, which further boosts their net loss from delegation. 

These insights are summarised in 

 
                                                      

28 Imposing the same parameter restrictions, the model also predicts that B’s punishment if A has chosen 
the unfair outcome in D&P dominates that if A has chosen the unfair outcome in Random since B is also 
passive in the latter. The top-right panel in Figure 2.4 contains the associated empirical distributions, 
which are again consistent with my prediction. Yet, I fail to reject that the two distributions are the same 
( 0 135p . , KS test). 
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PROPOSITION 4 In D&P, if B chooses the unfair outcome, recipients derive Anl  

1 36 1 2 64. .  and 4 1Bnl . In Asymmetric, if B chooses the unfair 

outcome, recipients derive Anl 1 56 1 A. nl  and 4 1B Bnl nl . As a 

result, A’s punishment in the second situation dominates her punishment in the first. 

 

While the bottom panel in Figure 2.4 is broadly in line with Proposition 4, I cannot reject that 

the two distributions are the same ( 0 992p . , KS test). I return to this issue below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summing up, net-loss reciprocation can account for the most important punishment patterns 

sustaining the power of delegation in BF. I return to the problems encountered below. Before, I 

turn to positive reciprocity, i.e., the punishment behaviour of recipients if either A or B or the 

die have chosen the fair outcome. 

FIGURE 2.4 Punishment Distributions In Various Unfair Situations 
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FIGURE 2.5 Punishment Distributions In All Fair Situations 
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2.3.2 Positive Reciprocity 
 

Figure 2.5 displays the punishment of A and B in the “fair” situations examined by BF. 

Strikingly, all punishment distributions are very similar with the majority of recipients 

punishing neither player. This fact creates some problems for net-loss reciprocation: Consider 

for instance the right panel in the second row where the die has chosen the fair outcome after 

delegation. There is no significant difference between the punishments of A and B ( 0 925p . , 

KS test), which points to 1 6 1 0A Bnl . nl . This runs against Proposition 

2, which uses 1 6 1 0.  and was found well-supported by BF’s data. 

Recipients appear reluctant to punish whenever the fair outcome has materialised. In 

particular, they are reluctant to punish A for delegation if B or the die have ultimately chosen 

the fair outcome. BF term this the “no harm, no foul” principle. It means that recipients 

disregard the fact that A, by delegating, has left open the possibility that the unfair outcome 

results, which in my model translates into a loss for recipients from delegation relative to A 

choosing the fair outcome. Yet, recipients appear to pay no heed to this loss if B ends up 

choosing the fair outcome. 

 

2.3.3 Discussion 
 

Above, it was shown that the model of net-loss reciprocation defined in this chapter can by and 

large account for the punishment patterns constitutive of the power of delegation in the 

experimental study by BF. The following parameter restrictions are consistent with all results: 

 

, 1 36 2 64. .  and 1 36 2 64 1 36 1 36 4 4 5 5min . . . . , . 

 

This merges Assumption 3 with the parameter restrictions in Proposition 3 and implies the 

restrictions in Proposition 2. The interpretation is that material factors must not be irrelevant, 

gains must be sufficiently discounted and fairness must not coincide with material efficiency, 

but make sufficient allowance for the least well-off. That said, the constraint on  becomes 

irrelevant as  approaches one. Indeed, given a not too large , we may even set 1 

meaning that only material losses and gains matter. The intuition is that material and fairness 
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considerations point into the same direction for recipients. Thus, as long as gains are sufficiently 

discounted, recipients’ punishment choices can be explained by looking at material factors 

alone. In contrast, Chapter 1 has highlighted the importance of fairness losses and gains ruling 

out the case 1. At the end of this sub-section, I address in more detail how the preferred 

specification in Chapter 1 relates to the preferred specification in this chapter. 

The main problems faced by net-loss reciprocation in this chapter are recipients’ reluctance to 

punish the principal for delegation if the agent or die has chosen the fair outcome and the lack of 

clear-cut support for Propositions 3 and 4. An explanation for recipients’ reluctance to punish is 

collective responsibility: Applied by player i, collective responsibility means that i initially 

treats all other players (including Nature) as one individual by assessing his net loss from is  

relative to its alternatives in iS  using analogous methods to those proposed above. Doing so 

leads to a single net loss value that i assigns to his fellow players (excluding Nature) and to 

which he reciprocates. Collective responsibility can account for the fact that recipients treat A 

and B the same by if one of them (or the die) has chosen the fair outcome, but appears a lesser 

force in the domain of negative reciprocity, where there are significant differences in how 

recipients treat A and B. This asymmetry can be accounted for if the net-loss value established 

under collective responsibility acts as a cap on the individual net-loss values. Recipients can 

then differentiate between A and B if A has delegated and B chosen the unfair outcome because 

the relatively low net loss from delegation does not reach the cap. In contrast, if B has chosen 

the fair outcome, the cap limits the net loss from delegation. 

BF conduct an econometric comparison of how well existing behavioural theories explain 

their punishment results. They find that both outcome-based models of inequality aversion (Fehr 

and Schmidt, 1999) and intention-based models of reciprocity (Dufwenberg and Kirchsteiger, 

2004) face difficulties in accounting for their data. As previously mentioned, the former cannot 

explain why recipients systematically target their punishment towards the player who ultimately 

chooses the unfair outcome, while the latter cannot explain why recipients do not punish the 

principal if she delegates and the agent chooses the fair outcome. The latter (but not the former) 

difficulty is shared by my approach. 

BF also propose a model of responsibility, which they show to overcome the aforementioned 

difficulties. The main idea is the following: A player’s punishment increases in his or her 

responsibility for the unfair outcome, where responsibility is defined as the extent to which the 
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player’s actions increase the probability of the unfair outcome materialising given recipients’ 

beliefs about the behaviour of the other players. Two important additional features are the “no 

harm, no foul” principle, which asserts that no responsibility for the bad outcome exists on the 

part of the principal if the agent or die has chosen the fair outcome. As a result, recipients do not 

want to punish the principal in this event. Net-loss reciprocation achieves the same result by 

allowing for collective responsibility. A second noteworthy feature is that the agent’s 

responsibility is deemed to equal zero if the principal has chosen the unfair outcome directly. In 

contrast, my model asserts that recipients rely on their beliefs about the agent in this case. As 

discussed in the context of Proposition 3, BF’s punishment data point into direction suggested 

by my approach (without there being a significant difference in punishments). In general, the 

responsibility model lacks the generality of my approach as a behavioural theory. 

I conclude this section with a comparison between the preferred parameterisation derived in 

this chapter and Chapter 1. Chapter 1 suggests 1 2 2 2 , which may violate the 

caps on  derived in this chapter. At the same time, 1 2 2 2  is due to just one of 

the four applications considered in Chapter 1. The restrictions derived from the other 

applications are consistent with the preferred specification in this chapter, while putting more 

structure on the model: Fairness must play a sufficiently large role ( 0.5 ) and gains must not 

be fully discounted ( 0 ). In the delegation settings, material and fairness considerations point 

into the same direction, which means that fairness can be fully disregarded ( 1) provided 

that  is low enough. We can also have 0  meaning that only losses count.29 

 
 
2.4 Conclusion 
 

This chapter has analysed in depth the power of delegation in the experimental study by 

Bartling and Fischbacher (2011) by proposing a model of net-loss reciprocation for n-player 

games including Nature and showing the model’s ability to account for the punishment patterns 

sustaining the power of delegation. The main problems encountered by the model relate to 

situations of positive reciprocity, where the low net loss that the principal and agent as a 
                                                      

29 The possibility of 0  emerges as the “second-best” specification in Chapter 1. This is in line with 
the view that positive reciprocity is less important than negative reciprocity (Charness and Rabin, 2002). 
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collective impose on recipients appears to act as a cap on higher individual net losses. Given the 

success of the model in explaining punishments, it may be worthwhile applying net-loss 

reciprocation to other n-player settings. In doing so, one may want to put more structure on the 

v- and r-terms in the utility function, which in this chapter have been left unspecified up to 

qualitative features. 
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2.5 Appendix A: Proofs 
 

The following lemma is useful in what follows. I focus on the case A Bnl nl . An analogous 

result holds for B Anl nl . 

 

LEMMA A1 Consider one of the punishment situations after the unfair outcome has been 

chosen. Let APr p x  and BPr p x  denote the probability of recipients assigning 

0 1 6x , ,...,  or fewer punishment points to player A and B, respectively, and suppose that 

recipients derive the net losses Anl  and Bnl  where A Bnl nl . We have 

 
A BPr p x Pr p x  

 

for all 0 1 6x , ,...,  meaning that the distribution on punishment points assigned to A first-

order stochastically dominates the distribution on punishment points assigned to B. 

 

PROOF Consider first 0x  and let 0 , jˆ  be the set of outcomes consistent with assigning zero 

punishment points to player j A,B . We have 

 

0 00 0 A ,A B ,B
A B A B

ˆ ˆPr p Pr p Pr Pr . 

 

Notice that on each side of the inequality there is an equal number of terms owing to the 

symmetry of punishment options. I establish the inequality by a matching of left-hand side 

terms to right-hand side ones establishing the inequality for each pair. Recall that there is a one-

to-one mapping from outcomes to punishment vectors A Bp , p . As a result, we can refer to 

outcomes by their associated punishment vectors. Consider the following matching procedure: 

To a given 0A B A, p  where 0 1 7B Ap , ,...,  denotes the punishment of B implied 

by 0A ,Aˆ , the procedure assigns 0B B Ap ,  where 0B ,Bˆ . As a result, the 

matching is such that A  and B  are mirror images in punishment space, which implies that 
A B

A Bnl nl  and A B
B Anl nl . Notice that the outcome implemented by the 

punishment vector 0 0,  appears on both sides of the inequality and hence cancels out. We can 

therefore limit attention to outcome pairs for which 0B A A Bp p . 
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By Assumptions 2 and 3, 

 
A BPr Pr  

 
A A j B B j
i j i jj A,B j A,B

exp v exp r nl ,nl exp v exp r nl ,nl . 

 

Since A  and B  are mirror images, they yield the same material payoff to recipient i (namely, 

zero). Taking logarithms, the above inequality simplifies to 

 
A A A B B A B B

A B A Br nl ,nl r nl ,nl r nl ,nl r nl ,nl  

 
B A A A A B B B

A A B Br nl ,nl r nl ,nl r nl ,nl r nl ,nl . 

 

By Assumption 3, the net loss of each player tracks the punishments points he or she receives. 

We therefore have B A A B
A B A Bnl nl nl nl  since 0A B B Ap p  while 

0A A B Bp p . From this together with A Bnl nl  and our assumptions on r, it follows 

that the left-hand side is larger than the right-hand side. 

Consider next 1x . We have 

 

1 1A BPr p Pr p  

 

0 1 0 1A ,A A ,A B ,B B ,B
A A B B

ˆ ˆ ˆ ˆPr Pr Pr Pr . 

 

Notice that some outcomes appear on both sides of the inequality and hence cancel out. In 

punishment terms, these are 0 0, , 11, , 0 1,  and 1 0, . For the remaining outcomes, let the 

matching procedure for a given 0A ,Aˆ  or 1A' ,Aˆ  be the same as above. For every A  and 

matched 0B ,Bˆ , A BPr Pr  has already been established. For every A'  and matched 
1B' ,Bˆ , A' B'Pr Pr  because B' A' A' B'

A B A Bnl nl nl nl  owing to the 

fact that 1A B' B A'p p  while 1A A' B B'p p  and A Bnl nl . 

The proof for all higher punishment levels, where an increasing number of outcomes cancel 

out, is analogous.  



CHAPTER 2: THE POWER OF DELEGATION 

67 

 

The following lemma characterises punishment probabilities across situations. It focuses on the 

case A A'nl nl  and B B'nl nl . An analogous result holds for A A'nl nl  and B B'nl nl . 

 

LEMMA A2 Consider any pair of punishment situations after the unfair outcome has been 

chosen. Let Anl , Bnl , A'nl  and B'nl  be the net losses that recipients derive from A and B in the 

first and second situation, respectively, with A A'nl nl  and B B'nl nl . Moreover, let Pr p  

and Pr p  denote the probabilities with which recipients choose the punishment level 

0 1 7Ap p , ,...,  in the first and second situation, respectively. The following relationship 

holds for any 0 1 6x , ,...,  and 1y x : 

 

Pr y Pr y Pr x Pr x . 

 

PROOF Let pˆ  be the set of outcomes consistent with recipients imposing Ap p  punishment 

points on A. We have 

 
y x

y x

Pr PrPr y Pr x
Pr y Pr x Pr Pr

 

 

y x y xPr Pr Pr Pr . 

 

We can establish the above inequality by showing 

 
Pr Pr

Pr Pr Pr Pr
Pr Pr

 

 

for every yˆ  and xˆ . By our assumption on preferences, 

 j
i jj A,B

j
i jj A,B

exp v exp r nl ,nlPr
Pr exp v exp r nl ,nl

 

 

and 

 
j

i jj A,B

j
i jj A,B

exp v exp r nl ,nlPr
Pr exp v exp r nl ,nl

. 
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Insertion and logarithmation yields 

 
A' A' A A

A A A Ar nl ,nl r nl ,nl r nl ,nl r nl ,nl  

 
B B B' B'

B B B Br nl ,nl r nl ,nl r nl ,nl r nl ,nl . 

 

Since B B'nl nl , the right-hand side equals zero, while the left-hand side is positive because of 

A Anl nl , A' Anl nl  and our assumptions on r . The inequality A Anl nl  

follows from Assumption 3, which ensures that assigning y  punishment points to A imposes a 

higher net loss than assigning 1x y  points regardless of how much B is punished.  

 

PROOF OF PROPOSITION 1 

 

Consider first the situation where A has delegated and B has chosen the unfair outcome. 

According to the beliefs measured by BF, B chooses the unfair outcome with a probability of 

0.34. Delegation thus implements the expected outcome 

 

0 34 9 0 66 5 0 34 9 0 66 5 0 34 1 0 66 5 0 34 1 0 66 5 6 36 6 36 3 64 3 64. . , . . , . . , . . . , . , . , . , 

 

the alternatives being 9 9 1 1, , ,  and 5 5 5 5, , , . Relative to 9 9 1 1, , , , recipients derive a material 

gain from delegation of 3 64 1 2 64. .  and no fairness gain. Relative to 5 5 5 5, , , , they derive a 

material loss of 5 3 64 1 36. .  and a fairness loss of 5 3 64 2 72 2 1 36 1 36. . . .  yielding 

an overall loss of 1 36 1. . As a result, 1 36 1 2 64A'nl . . . 

Player B choosing the unfair outcome after delegation implements 9 9 1 1, , , , the sole 

alternative being 5 5 5 5, , , . Recipients derive no gain from this. Their material loss is 5 1 4  

and their fairness loss is 5 1 4 2 4 4  yielding an overall loss of 4 1 . Since 

there is no gain, we also have 4 1B'nl . We have B' A'nl nl  because  by 

Assumption 3. Lemma A1 then implies that B’s punishment dominates that of A. 

Consider next the situation where A chooses the unfair outcome directly. This implements 

9 9 1 1, , ,  where 5 5 5 5, , ,  and 6 36 6 36 3 64 3 64. , . , . , .  would have been available. As a result, 

recipients derive no gain from 9 9 1 1, , , . Their loss consists of their maximal loss with respect 
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to the alternatives. Both their material and fairness loss are larger relative to 5 5 5 5, , , . Their 

material loss is 5 1 4  and their fairness loss is 5 1 4 2 4 4 . As a result, their overall 

and net loss equals 4 1A Bnl nl . As for B, his strategy remains unobserved if A 

chooses the unfair outcome. Using the beliefs about B measured by BF, recipients derive an 

expected net loss of 0 34 4 1 0 66 4 1 36 1 2 64B A'nl . . . . nl  

where 4 1  and  are their net losses from B choosing the unfair and fair outcome. 

We have A Bnl nl  because . By Lemma A1, A’s punishment therefore dominates B’s. 

Finally, I show that A BPr p x Pr p x  for every 0,1,...,7x  where APr p x  

and BPr p x  are the probabilities of recipients assigning x  punishment points to A and B in 

the first and second situation, respectively. For B APr p x Pr' p x , the argument is 

analogous. Let x , jˆ  be the set of outcomes consistent with assigning x  punishment points to 

j A,B . For every x , we have 

 

A x ,A B x ,B
A B A B

ˆ ˆPr p x Pr p x Pr Pr . 

 

Notice that there is an equal number of terms on each side owing to the symmetry of 

punishment options. I establish the equality by a matching of left-hand side terms to right-hand 

side terms showing the equality for each pair. The matching procedure is the same as in the 

proof of Lemma A1. To a given A B Ax, p , the procedure assigns B B Ap ,x , 

expressing outcomes as punishment vectors. 

Clearly, A B
A Bnl nl  as well as A B

B Anl nl . For every matched pair, we have 

 
A BPr Pr  

 
A A j j

ˆi j i jj A,B j A,B
exp v r nl ,nl exp v r nl ,nl  

 
B B j' j'

ˆi j i jj A,B j A,B
exp v r nl ,nl exp v r nl ,nl . 

 

The equality of the numerators follows from A B
A Bnl nl  and A B

B Anl nl  

together with A B'nl nl  and B A'nl nl  and the fact that the material payoff to the recipient i  is 

the same from the two outcomes given the matching procedure. The equality of the 



CHAPTER 2: THE POWER OF DELEGATION 

70 

 

denominators follows from applying our matching procedure to all outcomes in ˆ . To a given 
A Bp , p , we assign B Ap , p . Proceeding thus, we can establish the 

equality of the denominators by establishing the equality of each matched pair, which follows 

from A Bnl nl  and B Anl nl  together with A B'nl nl  and B A'nl nl  and the 

fact that the material payoff to the recipient is the same from the matched outcomes.  

 

PROOF OF PROPOSITION 2 

 

We have 0B Bnl nl  because B is passive. Moreover, Anl 1 6 1.  because 

delegation entails 0 4 9 0 6 5 0 4 9 0 6 5 0 4 1 0 6 5 0 4 1 0 6 5. . , . . , . . , . . 6 6 6 6 3 4 3 4. , . , . , . , 

the alternatives being 9 9 1 1, , ,  and 5 5 5 5, , , . Recipients derive no loss from 6 6 6 6 3 4 3 4. , . , . , .  

relative to 9 9 1 1, , , . Relative to 5 5 5 5, , , , their material loss is 5 3 4 1 6. . , while their 

fairness loss is 5 3 4 3 2 2 1 6 1 6. . . .  implying an overall loss of 1 6 1. . 

Recipients derive no gain from 6 6 6 6 3 4 3 4. , . , . , .  relative to 5 5 5 5, , , . Relative to 9 9 1 1, , , , 

their gain is limited to their material gain of 3 4 1.  because 9 9 1 1, , ,  is never fairer. 

Secondly, Anl 4 1  follows from the fact that A choosing the unfair outcome 

implements 9 9 1 1, , , . Recipients derive no gain from this. Their loss consists of their maximal 

loss with respect to the two alternatives, namely, A choosing the fair outcome and delegation. 

Both their material and fairness loss are larger relative to A choosing the fair outcome. Their 

material loss is 5 1 4 , whereas their fairness loss is 5 1 8 2 4 4 . Their overall and 

net loss thus equals 4 1 . 

We have 0A Bnl nl  and A Anl nl  because . We have 0A Bnl nl  because of the 

additional assumptions on  and . To see this, note that 1 6 1. 0  is 

equivalent to 1 1 5 1. , which can only be satisfied by 0  if 1 1 5. . By 

Lemma A1, A’s punishment dominates that of B in both situations. Moreover, Lemma A2 

implies that A’s punishment in the first situation dominates her punishment in the second.  

 

PROOF OF PROPOSITION 3 

 

The results for D&P have been shown in the proof of Proposition 1. We have 0Bnl  because 

B is passive in NoD&P. Moreover, Anl 4 1  follows from the fact that A only has 
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the choice between the unfair and fair outcome. Recipients derive no gain from the unfair 

outcome relative to the fair one, while their loss is 4 1 . 

We have B Bnl nl  because 1 36 2 64 1 36 1 36. . . . , which can only be satisfied 

by 0  if 1 36 2 64. . . By Lemma A2, B’s punishment in the first situation dominates his 

punishment in the second situation.  

 

PROOF OF PROPOSITION 4 

 

The results for D&P have been established in the proof of Proposition 1. In Asymmetric, given 

the beliefs measured by BF, delegation implements 

 

0 39 9 0 61 5 0 39 9 0 61 5 0 39 1 0 61 5 0 39 1 0 61 5 6 56 6 56 3 44 3 44. . , . . , . . , . . . , . , . , . , 

 

the sole alternative being 5 5 5 5, , , . Consequently, recipients derive a material loss of 

5 3 44 1 56. .  from delegation. To this, a fairness loss of 5 3 44 3 12 2. .  must be added 

yielding an overall and net loss of 1 56 1Anl . . B choosing the unfair outcome after 

delegation implements 9 9 1 1, , , , the sole alternative being 5 5 5 5, , , . Recipients thus derive a 

loss of 4 1B Bnl nl . We have A Anl nl  because . By Lemma A2, A’s 

punishment in the second situation dominates her punishment in the first.  
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3 BELIEF CHOICE UNDER PRIOR REGRET 
 

 

 

3.1 Introduction 
 

A fundamental issue in economics is how people incorporate new information about the 

uncertain world around them into their decision making. The standard assumption in this regard 

is that people are Bayesians, who hold a prior belief about the world and use Bayes’ Rule to 

update it in response to new information. Yet, this mechanical model of belief revision has been 

increasingly called into question. On the one hand, updating mechanics that differ from Bayes’ 

Rule have been proposed (see, e.g., Rabin and Schrag, 1999). Another idea that has found its 

way into the economics literature is the possibility that beliefs are actually objects of choice for 

decision makers (see, e.g., Brunnermeier and Parker, 2005). The thought is that in the face of 

new information beliefs are selected according to certain well-defined criteria before playing 

their usual role of decision weights in action choice. 

This chapter follows the second approach by proposing a model of belief choice under prior 

regret. Contrary to existing models, the choice procedure is entirely instrumental meaning that 

the value of a given belief depends entirely on the action(s) that the belief implements. The 

instrumental value of beliefs has two components: Objective performance and regret avoidance. 

Objective performance refers to the expected utility of the implemented action(s) given the 

correct Bayesian posterior containing the new information. The issue of regret avoidance is 

more subtle: New information prompts one to abandon one’s prior belief. Yet, giving up one’s 

prior is not a good idea in all states of the world. To see this, suppose there is a unique action 

implemented by the prior. Clearly, for each alternative action, there exists at least one state 

where this reference action performs better. Otherwise, the reference action would be 

dominated and hence not rationalised by the prior in the first place. As a result, whenever new 

information invites one to adjust one’s belief and this new belief implements a different action 

than the prior, one faces the dilemma of there being at least one state where holding on to one’s 

prior would have been preferable. In such states, there is scope for (ex post) regret from having 

abandoned one’s prior. Our model builds on the idea that the avoidance of such regret is a 
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second goal in belief choice next to objective performance, with the ultimately chosen belief 

representing the best compromise between objective performance and regret avoidance. 

To illustrate our approach in more detail, consider the well-known “Monty Hall problem” 

(Friedman, 1998; Palacios-Huerta, 2003): A decision maker D participating in a game show has 

a choice of opening one of three doors behind one of which there is a prize. After D has made a 

preliminary choice, the show master, who knows the location of the prize, opens one of the 

remaining doors. In doing so, he avoids the door concealing the prize. After this, D is given the 

opportunity either to stick to her preliminary choice or switch to the door that the show master 

did not open. As is well known, switching is best for D because the show master’s avoidance of 

the door with the prize turns his choice of which door to open into an informative signal about 

the prize’s location. Conditional on this signal, it is more likely that the prize is behind the door 

that the show master did not open than behind D’s preliminarily chosen door. Yet, subjects in 

experiments show a strong propensity to stick to their original choice even after familiarising 

themselves with the task and receiving ample feedback for learning the rational decision 

(Friedman, 1998). 

In terms of our model, we can explain this propensity by the trade off between objective 

performance and regret avoidance outlined above. From the viewpoint of objective 

performance, those beliefs about the prize’s location are best that cause D to switch doors since 

switching yields the highest expected utility given the Bayesian posterior. While one of these 

beliefs is the Bayesian posterior itself, other beliefs are also optimal owing to the coarseness of 

the action space. Regret avoidance points into a different direction: The reference action for D’s 

regret is given by her preliminary choice of door.1 As a result, all beliefs causing D to switch 

doors entail a loss in the state of the world where the prize is behind the preliminarily chosen 

door. This is because upholding her preliminary choice is a best response in this state and 

switching is not. In contrast, all beliefs maintaining D’s preliminary choice cause no such 

feeling of regret and are thus superior from the point of view of regret avoidance. All in all, if D 

pays sufficient heed to her expected regret from switching, where the expectation is calculated 

                                                      

1 We assume that D strictly prefers her preliminary choice of door under her prior. Similar results obtain 
if D is indifferent between the three doors given her prior, but the argument is more involved. 
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using again the correct Bayesian posterior, all beliefs causing her to stick to her preliminary 

choice are optimal despite their lower objective performance.2 

The example sheds light on the role of the Bayesian posterior in our model. While we call 

into question the mechanical updating of beliefs posited by Bayes’ rule, we maintain that the 

Bayesian posterior, i.e., the objectively correct probability given the new information, is an 

important attractor in the belief choice procedure by providing the weight put onto the different 

states of Nature. More specifically, both the expected utility and expected regret associated with 

any given belief are calculated using the Bayesian posterior. Thus, our model could be 

interpreted as saying that people know the correct probabilities given some new piece of 

information, but only have the additional goal of regret avoidance in choosing their new belief. 

While this literal reading is possible, we tend to view the model as an “as if” representation of 

belief formation.3 An advantage of letting the Bayesian posterior enter the target function in the 

way just described is that the model nests Bayesian decision making as a special case. As we 

show below, the behaviour of a decision maker with no sensitivity to regret is indistinguishable 

from that of a Bayesian.4 

The example also raises the question why it is belief choice that we model rather than action 

choice because the same explanation for people’s reluctance to switch doors could be generated 

by a model of action choice where preferences incorporate regret relative to one’s previous 

action, but belief formation is entirely Bayesian. While the action choice model yields the same 

prediction about behaviour as our model in a one-period set-up, predictions may differ in a 

dynamic framework.5 More importantly, we are interested in explaining how and when beliefs 

                                                      

2 Again, these beliefs include her prior, but are not restricted to the latter because of the coarseness of the 
action space. 

3 Also, our model is in no way committed to having the Bayesian posterior as an attractor next to regret. 
Other specifications are conceivable (e.g. allowing for updating errors as in Rabin and Schrag, 1999). 

4 The example also lends additional plausibility to our reference point. The preliminary choice of door 
induced by the prior is a salient reference action, which translates into a clear feeling of regret from 
abandoning it in the state where maintaining it would have been preferable. 

5 In a two-period framework, if the decision maker exhibits “strong regret” (see Section 3.2.4) under the 
belief choice model, she is committed to replicating her first-period belief and hence action in the second 
period. Under the action choice model, assuming that the first-period action is the reference point for the 
second period, there are levels of regret satisfying strong regret such that D is not committed to choosing 
her first period action again in the second period. This follows from different links between periods: 
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deviate from the Bayesian benchmark, for which the action choice model is not suited. Also, the 

action choice model faces the conceptual problem that it may lead to choices that are first-order 

stochastically dominated given the decision maker’s belief. The belief choice model avoids this 

problem because the predicted action is always optimal given the chosen belief. 

We use our model of belief choice under prior regret to address several anomalies pertaining 

to information processing behaviour that have been documented by the experimental literature. 

One such anomaly is overconfidence, which we define as holding an inflated belief relative to 

the belief held by a standard Bayesian agent. Likewise, underconfidence consists of maintaining 

a depressed belief relative to the Bayesian benchmark. In a dynamic framework, we show that 

our model can generate both over- and underconfidence and characterise the conditions under 

which each should be expected to occur. 

We also investigate conservative and asymmetric information processing. Conservative 

information processing means that belief revision after good or bad news goes into the same 

direction as Bayesian updating, but less so. Asymmetry broadly means that good news carries 

more weight than bad news. More specifically, it holds if a decision maker who is confident in 

some bad state of the world revises his belief more in response to news indicating some 

alternative good state than does a decision maker who is equally confident in the good state in 

response to news (of the same precision) indicating the bad state. Such behaviour is inconsistent 

with Bayesian updating, which implies the same absolute belief change in each case. Möbius et 

al (2012) provide evidence for conservative and asymmetric information processing in an 

experiment where subjects receive signals about their intelligence. In our model, the range of 

priors where the decision maker sticks to her prior in response to bad news (causing her to 

revise her belief less than a Bayesian) exceeds the same range for good news. 

Another application of our model is a preference for consistency. By this, we mean a 

tendency to replicate one’s previous action choice regardless of any new information one has 

received in the meantime (Falk and Zimmermann, 2011). As we show below, if people’s regret 

relative to their prior is strong enough, they have an incentive to repeat the action rationalised 

by their prior across time without paying heed to new information that has become available. 

                                                                                                                                                            

Under belief choice, the first-period belief provides the reference point, but also the prior on which 
Bayesian updating takes place in the second period. Under action choice, the first-period action choice 
provides the reference point, but updating is not affected by it. 
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Starting with Akerlof and Dickens (1982), a few papers build on the idea that beliefs are objects 

of choice (rather than being formed in the mechanical fashion envisaged by Bayes’ Rule). The 

target function for belief choice takes different forms: Brunnermeier and Parker (2005) take it to 

include “anticipatory utility”, which is defined as the expected utility of the action(s) 

implemented by each belief calculated using the belief itself. This favours beliefs about which 

the decision maker can feel good ex ante. We discuss anticipatory utility in more detail below. 

Yariv (2005) defines a property of beliefs called “directional confidence”. In her model, the 

decision maker values increasing her level of confidence in the state of the world she regards as 

most likely. Both models have a tendency to create extreme beliefs (or beliefs that are severely 

tilted towards one state), which is at odds with the evidence that belief revision is conservative 

in the sense of going in the direction of Bayesian updating, but less so. Also, beliefs enter the 

target function directly in these models. In contrast, our model of belief choice is the first where 

the choice procedure is fully instrumental in that beliefs enter the target function for belief 

selection only via the action(s) that they implement. We take this to be a parsimonious 

specification where departures from the standard approach have been minimised. 

A second strand of literature does not view beliefs as objects of choice, but develops 

alternative belief mechanics intended to replace Bayes’ Rule. Rabin and Schrag (1999) propose 

a model of “confirmatory bias” where Bayes’ Rule is applied successfully with a probability of 

less than one in cases where one’s signal and prior point into different directions. While 

confirmatory bias can explain conservative information processing, it faces difficulties in 

accounting for asymmetry. We return to this issue below. In the model of Epstein et al (2010), 

the decision maker processes new information in such a way that her adopted belief is a 

weighted average of the Bayesian posterior and her prior. Our model can be viewed as 

providing a micro-foundation for the decision maker placing positive weight on her prior. In 

general, however, the foundational idea of our model is that information processing cannot be 

dissociated from the decision problem in which the information is (likely to be) employed. This 

differentiates our approach from mechanical, “context-free” models of belief revision.6 

                                                      

6 In a similar vein, the literature on “base rate neglect” (Kahnemann and Tversky, 1973) finds that people 
sometimes miscalculate conditional probabilities by equating the probability of an event conditional on a 
signal with the probability of the signal conditional on the event (see the evidence in Dohmen et al, 2009). 
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Thirdly, several papers do not assume that beliefs are chosen, but examine the idea that beliefs 

(formed according to Bayes’ Rule) enter the utility function for action choice directly. For 

example, Köszegi (2006) studies “ego utility”, where one’s belief about one’s ability or health is 

a direct carrier of utility. The model of “psychological expected utility” introduced by Caplin 

and Leahy (2001) lends itself to a similar interpretation (see Köszegi, 2003, and Barigozzi and 

Levaggi, 2010, for applications). These models have been used to study anomalous attitudes to 

information, in particular, conditions under which less accurate information is preferred.7 Yet, 

since these models assume standard belief formation, they cannot account for the evidence on 

non-standard beliefs reported, e.g., in Möbius et al (2012). Also, their range of application tends 

to be limited to decision problems involving one’s ego. In contrast, our model can be applied to 

situations where people’s ego is manifestly not at stake, e.g., if they must guess some abstract 

state of Nature like in the Monty Hall problem.8 

Finally, building on the idea of regret relative to one’s prior, our model situates itself within 

the large literature on reference-dependent choice.9 Several formalisations of reference-

dependence exist. One example is the classic literature on regret, where the reference point is 

not a fixed action, but rather actions not taken by the decision maker (Loomes and Sugden, 

1982; Bell, 1982). Our model uses a fixed reference point not previously considered in the 

literature, namely, the action(s) induced by one’s prior. We view the prior as a natural and 

salient reference point for belief choice because the prior can be thought of as the status quo to 

which individuals have developed some kind of attachment. The importance of the status quo is 

already recognised in Bell (1982): “The level of regret felt may sometimes be related to the 

original status quo no matter what the outcome of foregone alternatives.” (p. 980)10 
                                                      

7 Another model that has been applied to such contexts is Köszegi and Rabin (2009). In their model, 
utility depends on changes in (rational) beliefs rather than beliefs themselves because belief changes 
inform about present and future consumption changes. 

8 A critique of the explanatory power of belief-dependent utility models can be found in Eliaz and 
Spiegler (2006). 

9 All existing models of reference-dependence cover action choice. In contrast, for a given belief, action 
choice in our model is reference-independent. It is only belief choice that is reference-dependent. 

10 The status quo interpretation of our reference point is also related to the literature on loss aversion 
(Kahneman and Tversky, 1979) and status quo bias (Samuelson and Zeckhauser, 1988). In the second 
case, the reference point is the status quo consumption from which one dislikes moving away because the 
induced consumption losses loom larger than same-sized consumption gains. 
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The remainder of this chapter is structured as follows: The next section develops the model and 

discusses some of its general properties. We explore the limiting cases of no regret, “strong 

regret” and certainty in one state of the world. We then study two applications pertaining to 

information processing behaviour. The final section concludes. All proofs are in Appendix A. 

Appendix B contains an experimental procedure for eliciting an individual’s regret parameter. 

 
 
3.2 The Model 
 

3.2.1 Setup 
 

The set of periods is given by 1T ,...,  where 1 . In each period t T , the decision-

maker (D) first receives an informative signal ts  from some finite space S  that is identical 

across periods. The signal allows D to make inferences about the prevailing state of Nature 

x X . The space X  is finite. After receiving her period signal, D must take an action ta A . 

Like S , the space A  is finite and the same in all periods.11 In general, the utility action a A  

generates in a period if the state of Nature is x X  is given by u x,a .12 Yet, instead of 

choosing directly from A , we model D as choosing in each period from the set of possible 

beliefs about the state of Nature. These beliefs are collected in Q . The belief that D chooses in 

a period then determines her action in that period. 

We make a few basic assumptions, whose motivation is technical: Firstly, the set Q  of 

admissible beliefs about the state of Nature only contains probability distributions with full 

support on X . Secondly, signals are not fully revealing, i.e., we have 0 1tPr s x ,  for every 

x X , t T  and ts S . These two assumptions imply that also all updated beliefs have full 

support on X. This is important below. Secondly, conditional on x X , signals are identically 

and independently distributed across periods Finally, there is scope for regret: There exist at 
                                                                                                                                                            

 

11 This assumption holds true in the applications considered below, but could easily be relaxed. 

12 Hence, there are no “spillovers” between periods at the level of actions in the sense that the 
consequences of future action choices do not depend on what is chosen today. Such a model is studied by 
Eyster (2002). Yet, as discussed below, there are spillovers at the level of beliefs. 



CHAPTER 3: BELIEF CHOICE UNDER PRIOR REGRET 

79 

 

least one belief q Q  and signal s S  such that we do not have *A q *A q q ,s  where 
*A q  are the optimal actions given q Q , i.e., *

a A x
A q arg max q x u x,a , and 

q q ,s  is the Bayesian posterior, i.e., the probability distribution on X  implied by Bayes’ Rule 

as applied to q  and s . Intuitively, scope for regret means that there is at least one prior belief 

and signal such that there is some tension at the level of implemented actions between adopting 

the Bayesian posterior and sticking to one’s prior. Imposing scope for regret thus only rules out 

uninteresting cases where the trade-off we aim to capture in this model is absent. 

 

3.2.2 Belief Choice Problem 
 

Consider now any period t T  and suppose that D holds the prior belief 1tq Q  and has 

received the signal ts S . If t , the target function for D’s belief choice tq Q  is 

 

1 1 1t t t t t t t t t t t tV q q ,s P q q ,s F q q ,s . 

 

Its two parts express the present as well as future payoff associated with tq . The influence of tq  

on the future derives from tq  serving as D’s prior in the next period 1t , where it influences 

her choice of 1tq  by providing the reference action for her regret in that period.13 Through the 

same channel, 1tq  influences D’s belief choice in period 2t . As a result, tq  indirectly 

influences the belief choice in 2t  via its influence on period 1t  and so on for all subsequent 

periods. In contrast, if t , there is no future that can be influenced by tq . In this case, the 

target function reduces to t tV P . 

As mentioned above, the present and future payoff of tq  has two components: On the one 

hand, objective performance, which refers to the expected utility of tq  given the correct 

Bayesian posterior. On the other hand, regret avoidance, which refers to the extent to which tq  

minimises D’s expected regret relative to her prior. 

The first term of the target function formalises this idea for the current period t . It is given by 

 

1 1 1t t t t t t t t tx
P q q ,s q x q ,s U x,q r U x,q U x,q  
                                                      

13 Thus, D is sophisticated in the sense that she realises that adopting some belief today will lead her to 
grow used to this belief, which entails regret when she abandons this belief tomorrow. 
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where 1t tq x q ,s  is the probability assigned to state x by the Bayesian posterior, i.e., the 

probability of x according to Bayes’ rule given the prior 1tq  and signal ts . Moreover, tU x,q  

is the utility generated by tq  in the state of the world x . As a result, the first part of tP , namely, 

1t t tx
q x q ,s U x,q , represents the expected utility of tq  under the Bayesian posterior and 

therefore the objective performance of tq  in period t . 

At the same time, tU x,q  remains to be defined. The idea here is that D’s choice of belief 

tq  in period t  pins down her action choice in that period, the link between the two being 

provided by standard expected utility maximisation, i.e., by the maximisation of 

tx
q x u x,a  with respect to a A .14 Assuming that D randomises uniformly among her 

preferred actions, tU x,q  assigns to tq  the implied level of (expected) utility in x . Formally, 

letting *
tA q a A tx

arg max q x u x,a  denote the set of D’s preferred actions given tq , 

the probability that D chooses a  if she adopts tq  is 

 
1 if 

0 otherwise

* *
t t

t

A q a A q
a,q  

 

Thus, ta,q  assigns a probability of 1 0*
tA q  if a  is a maximiser of D’s expected utility 

under tq  and zero probability otherwise. This allows us to define the utility generated by tq  in 

x  as t ta
U x,q u x,a a,q . 

Since D trades off objective performance against regret avoidance, the second part of tP  

expresses the expected regret associated with tq  where the reference point is provided by D’s 

prior 1tq . The regret function r  is defined as 

 
if 0

0 otherwise
y y

r y  

 

where y  is the relevant utility difference in state x  and the parameter  satisfies .15 

Hence, D experiences regret from tq  in a given state x  if and only if tU x,q  falls short of 

                                                      

14 Of course, other models than expected utility maximisation could be used at this point. 

15 For simplicity, we do not allow for any feelings of rejoice that D might experience. Including rejoice 
would not alter the conclusions from our model (as long as regret looms larger than rejoice). In the 
literature on loss aversion, several papers ignore gains focusing on losses only (see, e.g., Herweg and 
Mierendorff, 2013, and Herweg and Schmidt, 2013). 
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1tU x,q , which is the utility generated in x  by her prior 1tq . The expected regret associated 

with tq  is calculated using again the Bayesian posterior. Clearly, setting 1t tq q  yields zero 

expected regret in period t , while other beliefs may give rise to positive regret. 

The future payoff function tF  repeats the same exercise for all future periods. Similar to 

before, D trades off two goals, namely, maximising expected utility given future posteriors 

(objective performance) versus minimising expected regret relative to future priors (regret 

avoidance). Formally, the future for D consists of the different future signal realisations. The set 

zH  collects the future signal histories from period 1t  till period 1z t ,..., . The future 

payoff of tq  is then given by 

 

1t t t tF q q ,s  

 

1 11 z z
z t t t t z t z t z t zz t ,..., h H x

Pr h q ,s q x q ,s ,h U x,q ,h r U x,q ,h U x,q ,h h . 

 

Like before, 1t t zq x q ,s ,h  is the posterior probability assigned to state x , which now also 

conditions on the signals contained in the history z zh H . Secondly, t zU x,q ,h  is the utility 

generated by tq  in x  after zh , whereas t zU x,q ,h h  is the same utility after zh h , which is 

the history immediately preceding zh . Formally, the family of functions h  assign to a given zh  

the history yielded by eliminating the most distant signal in zh . For example, if 1 2z t th s ,s , 

we have 1z th h s . A special case arises if 1z t . We then have zh h  for all 

z zh H  where  is the empty history. Comparing t zU x,q ,h  to t zU x,q ,h h  establishes 

D’s regret in x  after zh  via the regret function. D’s regret is positive if and only if ignoring the 

last signal in zh  would have yielded her higher expected utility than acting upon it. 

Similar to before, we define tU x,q ,h ta
u x,a a,q ,h  where ta,q ,h  expresses 

the probability of choosing a  triggered by tq  after the history 
1t zz t ,...,

h H H . As 

already mentioned, the influence of tq  on D’s action choice after zh h  derives from tq  

serving as D’s prior in period 1t , where it pins down her belief choice given the signal 1ts  

contained in zh . The belief chosen by D in this situation then supplies the prior for her belief 

choice in 2t  given the signal 2ts  again taken from zh , which pins down her belief choice 

after 1ts  and 2ts  and so on for all remaining signals in zh . Through this mechanism, tq  ends 

up pinning down D’s belief after zh , which determines her action choice. 
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In this context, a subtle issue arises: Suppose that for a given prior 1zq  and signal zs , D finds 

several beliefs optimal. How does she (predict she will) choose among them? At this stage, we 

do not specify how D chooses among her optimal beliefs *
1,z z zQ q s , but simply assume that 

she follows some rule 1,z z zf q s  for selecting among them. Below, when studying 

applications, we put more structure on 1,z z zf q s . 

We can now give a formal definition of ta,q ,h . If h , we have t ta,q ,h a,q . 

This scenario only arises when considering period 1t , where we have h . Letting 

t ta,q , a,q  simply means that the reference point for D’s regret in 1t  is the action 

choice distribution implied by her current belief tq . In contrast, if we have 1z t zh h s ,...,s  

for some 1z t ,..., , the definition of ta,q ,h  is recursive. Let 

 

1 1 2 1 1 1 1 1
*

t t z t t z t t t t t t ta,q ,s ,...,s w a,q ,s ,...,s : q Q q ,s f q ,s  

 

where 
11 1 1 1 1t

*
t t t q Q t t t tQ q ,s arg max V q q ,s  are D’s preferred beliefs in period 1t  given 

tq  and the signal 1ts  from zh . As a result, 1 2 1 1 1
*

t t z t t t ta,q ,s ,...,s : q Q q ,s  contains the 

different probabilities of choosing a  after zh  consistent with D choosing an optimal belief in 

1t  given tq . Furthermore, w  is a function that yields the weighted average of these 

probabilities given the rule 1 1t t tf q ,s  for choosing among the optimal beliefs in 1 1
*
t t tQ q ,s . 

The definition is recursive because it builds on 1 2t t za,q ,s ,...,s . We close it by defining 

 

1 1 1
*

z z z z z z z z z za,q ,s w a,q : q Q q ,s f q ,s . 

 

One then obtains 2 1 1 1 1 2 1 1 2 1
*

z z z z z z z z z z z za,q ,s ,s w a,q ,s : q Q q ,s f q ,s  etc.  

In practice, whenever the period under consideration is not the final period, i.e., if z , one 

must first go back to the final period  for establishing the target functions for earlier periods 

(backward induction). 

 

3.2.3 No Regret 
 

In this and the next two sub-sections, we discuss some general properties of our model. The first 

“polar” scenario that we consider is the case of “no regret”, i.e., of . We have 
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PROPOSITION 1 Suppose that the decision maker has no regret, i.e., . In every period 

t T  and for every signal ts S  and prior 1tq Q , it is optimal for the decision maker to 

choose the Bayesian posterior, i.e., 1 1
*

t t t t tq q ,s Q q ,s . Moreover, all other optimal beliefs 

must mimic 1t tq q ,s  in the sense that 1
*

t t t tq Q q ,s  if and only if 1
* *

t t tA q A q q ,s  

and 10 *
t z t t za A : a,q ,h A q q ,s ,h  for all 1z t ,...,  and z zh H . 

 

Proposition 1 confirms a desirable feature of our model. Intuitively, if D is not moved by regret, 

the behaviour induced by her belief choices should come as close as possible to the behaviour of 

a standard Bayesian agent who forms his belief according to Bayes’ rule and chooses his actions 

so as to maximise his expected utility. Proposition 1 makes clear that this is the case: In any 

period t  after any signal ts  and for any prior 1tq , the Bayesian posterior 1t tq q ,s  is an 

optimal belief for D if . Moreover, any other optimal belief must mimic the Bayesian 

posterior in the sense that it triggers the same action choices (or a subset thereof) both in the 

current period and after all future signal histories. 

The proof of Proposition 1 uses backward induction (see Appendix A). Consider therefore the 

final period. Clearly, adopting 1q q ,s  is optimal there because it leads D to choose one of 

the actions in 1
*A q q ,s , which are nothing but the maximisers of 1U a q ,s , i.e., D’s 

expected utility under the Bayesian posterior. Consequently, for other beliefs to be optimal, they 

must imitate the posterior by inducing D to choose only actions in 1
*A q q ,s . As a result, 

for any given 1q  and s , D implements only maximisers of 1U a q ,s  regardless of which 

optimal belief she adopts. 

Consider next period 1 . For the same reason as before, the Bayesian posterior 2 1q q ,s  

maximises D’s payoff in 1 , whereas her expected future payoff is given by 

 

2 1 2 1s S a
Pr s q ,s a,q ,s U a q ,s ,s . 

 

As just observed, D implements only maximisers of 1U a q ,s  after every 1q  and s . Thus, 

adopting 1 2 1q q q ,s  leads D to implement only maximisers of 2 1U a q q ,s ,s , 

which equals 2 1U a q ,s ,s  because 2 1q q q ,s ,s 2 1q q ,s ,s  by Bayes’ Rule. 

This establishes that 2 1q q ,s  also maximises D’s future payoff and is hence optimal. Other 
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optimal beliefs must imitate the posterior by implementing only actions in 2 1
*A q q ,s  and 

2 1
*A q q ,s ,s  for every s S . The argument for all 1t  is analogous. 

 

3.2.4 Strong Regret 
 

The other polar scenario is what we refer to as “strong regret”. 

 

DEFINITION 1 The decision maker exhibits strong regret in period t T  if and only if for 

every ts S  and 1tq Q  we have 1
*

t t t tq Q q ,s  if and only if 1
* *

t tA q A q . If she 

exhibits strong regret in every period t T , she has overall strong regret. 

 

Strong regret mandates that after every signal D finds exactly those beliefs optimal that are 

action-equivalent to her prior no matter what the latter may be. We have 

 

PROPOSITION 2 For every period t T , there is a threshold level of regret 0t  such that 

the decision maker exhibits strong regret in t  for all t . Moreover, for all t , we have 

t 1 t . 

 

Thus, in any given period, a sufficiently large  fulfils the strong regret requirement for that 

period. Moreover, the threshold t  for any period t  is proportional to the last-period 

threshold , where the strong regret requirement is most easily fulfilled. In the second to 

last period, we have 1 2  meaning the threshold doubles compared to the last 

period, while it trebles in the third to last period and so on for all earlier periods. Consequently, 

the requirements on  are highest for overall strong regret. 

For an intuition, focus first on the case t . As Lemma A1 in the Appendix makes clear, all 

beliefs q  that satisfy 1
* *A q A q  entail regret in at least one state of the world. Hence, 

for a high enough , all beliefs satisfying 1
* *A q A q  are sub-optimal because regret 

avoidance becomes D’s dominant concern. Consider next period  and suppose that  is 

high enough for strong regret to hold in period . Accordingly, D anticipates that she will 

choose any q  again in  irrespective of s  thereby avoiding any regret in .16 Since it will be 
                                                      

16 Or, more precisely, she anticipates that she will adopt some action-equivalent belief to q . 
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chosen again, the absolute expected utility of a given 1q  equals 2 1 12
x
q x q ,s U x,q . 

This means that every belief is now assigned twice as high absolute expected utility as in the 

case t . As a result, for a given prior to perform better than those beliefs that yield D higher 

absolute expected utility,  must rise twice as high. Since this holds for every prior and signal, 

we have 1 2 . An analogous argument applies to earlier periods. For example, 

2 3  and in general 1t t . 

Proposition 2 has the following 

 

COROLLARY 1 Suppose that strong regret holds in period t T . For every prior 1tq Q , the 

decision maker chooses an action from 1
*

tA q  in t  and all future periods 1z t ,...,  

irrespective of the signals that she receives. 

 

The corollary follows from the relationship 1t t , which implies that the 

threshold for strong regret falls monotonically in the number of remaining periods and is hence 

highest in period t , second highest in 1t  etc. Thus, if strong regret holds in t , it holds in all 

future periods leading D to choose an action-equivalent belief to 1tq  from t  onward. 

As a result, strong regret provides a potential explanation for preferences for consistency 

(Falk and Zimmermann, 2011). More specifically, if 1
*

tA q  is singleton and strong regret 

holds in period t , D chooses the same action from t  onward. Thus, our model identifies a new 

reason why people want to stick to previous behaviour in spite of receiving new information. 

This explanation is complementary to the explanations discussed in the literature like the desire 

to signal ability through consistent behaviour (see Falk and Zimmermann, 2011). 

Proposition 2 assumes D to be perfectly forward-looking in the sense that she takes into 

account the impact of her current belief choice on all future periods. Yet, the logic that 

underpins it could also be applied to a slightly different analysis, namely, if D’s level of 

foresight varies.17 For example, if D is myopic meaning that she treats her decision problem in 

every period as a one-period problem, it is easiest for her to achieve strong regret in every 

period because the threshold for her regret is always as small as possible, namely, . An 

implication of this is that a preference for consistency, i.e., uniform behaviour across time, is 
                                                      

17 We leave a formalisation of this for future work. We address benefits from myopia under regret in the 
following section. 
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most easily achieved under myopia and in general more easily with less foresight because it 

becomes easier to follow the lead of one’s prior in any given period. 

 

3.2.5 Certainty 

 

While the bulk of this chapter restricts attention to beliefs with full support on the state space X  

and signals that are not fully revealing, we make an exception in this sub-section in order to 

explore a limiting case.18 More specifically, we address what happens if D is certain of one 

particular state under the Bayesian posterior e.g. because of a fully revealing signal. We have 

 

PROPOSITION 3 Suppose that in some period t T  the Bayesian posterior for some prior 

1tq Q  and signal ts S  puts all probability mass on one state, i.e., there is a state x X  such 

that 1 1t tq x q ,s . In this case, the Bayesian posterior is optimal irrespective of the decision 

maker’s regret, i.e., we have 1 1
*

t t t t tq q ,s Q q ,s  for all 0 . 

 

Proposition 3 makes clear that D’s prior being an attractor for her belief choice hinges on 

there being some lingering doubt about the state of the world. It is not a goal in itself for D to 

match her belief to her prior. Rather, she aims to avoid expected regret from giving up the latter. 

This goal is traded off against her second goal, namely, to achieve maximal expected utility 

under the Bayesian posterior. Yet, if she is certain of a particular state x  under the posterior, the 

conflict between the two goals disappears. By maximising utility in x , D both eliminates any 

regret she may have relative to her prior and maximises expected utility given the posterior. One 

way for D to do this is to adopt the posterior itself because this causes her to choose a 

maximiser of 1 u x ,a .19 In terms of the Monty Hall problem discussed in the Introduction, if 

the show master accidentally opens the door concealing the price, it is optimal for D to “believe 

her eyes” and assign probability one to the prize being where she perceives it to be. 

                                                      

18 As stated above, the motivation for these assumptions is technical. Even maintaining them, we can 
approximate beliefs without full support and fully revealing signals arbitrarily closely. 

19 Of course, other beliefs are also optimal as long as they induce the same action(s) as the posterior. 
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The same logic applies if there are future periods: By choosing the Bayesian posterior (which 

puts all probability mass on x ) as her current belief, D ensures that her future decision making 

reflects her being certain of x  under today’s posterior. This is because her current belief serves 

as the next period’s prior. By Bayes’ Rule, if the prior puts all probability mass on x , so does 

the posterior, which then provides the right incentives for D’s future belief choices. 

 
 
3.3 Applications 
 

We now study applications of the model introduced in the preceding section. To keep the 

analysis tractable, we rely throughout on 

 

ASSUMPTION 1 The state space is 0 1X ,  and the action space 0 1A ,  with 

1 1 1u x ,a , 1 0u x ,a , 0 0u x ,a  and 0 1 0u x ,a  where 

0  and 0 . The signal space is 0 1S , . Signals are informative and symmetric 

meaning that 0 0Pr s x 1 1Pr s x  with 0 5 1. , . 

 

We call 1x  the good state and 0x  the bad state. The state corresponds to some feature of 

either the external world or D’s own personality. In the second case, where D’s “ego” is at 

stake, think of the state as something like D’s ability, intelligence or health. Since the state 

space is binary, we can express beliefs as 1q x q  and 0 1q x q , the set of possible 

beliefs being 0 1Q , . As for the available actions, we refer to 1a  as the bet on the good 

state and to 0a  as the bet on the bad state. In each state, the bet matching the state is 

preferred since 1  and 0 . Moreover, a bet that matches the state is at least as good in the 

good state as in the bad state (since 1 ), while a bet that does not match the state is at least as 

bad in the bad state as in the good state (since 0 ).20 In the limiting case  and 1, 

payoffs are symmetrical, which means that D aims to “coordinate” with Nature without 

favouring one state over the other. Below, a key role is played by the belief q Q  for which the 

expected utility of betting on the good state equals that of betting on the bad state, i.e., the 
                                                      

20 These utility differences can be driven by differences in underlying material consequences and/or state-
dependent evaluation of the latter. Specific interpretations are given below. 
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threshold belief that makes D indifferent between the two actions in A . This belief is given by 

1 . In what follows, we denote it by Aq . Given Assumption 1, we have 0 1Aq . 

Several interpretations of our framework are possible. For example, 1x  could be good 

weather and 0x  bad weather. In this case, the bet on the good state consists of D taking 

actions appropriate for good weather (“taking no umbrella”), while the bet on the bad state 

amounts to preparing for bad weather (“taking an umbrella”). If the weather is good, it is better 

to take no umbrella (1 ), while the converse holds if the weather is bad ( 0 ). Also, no 

umbrella in good weather is at least as good as an umbrella in bad weather (1 ), while no 

umbrella in bad weather is at least as bad as an umbrella in good weather ( 0 ). 

Secondly, 1x  could be high and 0x  low ability with the bet on the good state 

representing a human capital investment at some monetary cost (like obtaining a university 

degree) and the bet on the bad state corresponding to no investment.21 Investing is normalised to 

yield a utility of one in the good state (where D is able and the investment hence worthwhile) 

and of zero in the bad state (where D is unable). The alternative of not investing and therefore 

not incurring its monetary cost yields  in the good state and  in the bad state. D prefers to 

invest if she is able (1 ) and not to invest if she is unable ( 0 ). Also, going beyond 

Assumption 1,  seems probable in this context because D is likely to rank not investing 

and being able at least as high as not investing and being unable. 

Finally, the state of the world could be D’s attractiveness to another agent E, which is high in 

the good and low in the bad state. The bet on the good state now consists of D approaching E, 

while the bet on the bad state corresponds to D abstaining from making advances to E. A 

conquest (D has approached E and her attractiveness is high) yields a utility of one, while 

rejection (D has approached E, but her attractiveness is low) generates zero utility. The 

alternative of not approaching E yields 1  in the good and 0  in the bad state. Given that 

D’s ego is at stake,  again seems plausible. In the following sub-section, we study the 

processing of “ego-sensitive” information pertaining to such things as attractiveness, ability or 

intelligence in more detail. 

 

 
                                                      

21 This interpretation is inspired by the model studied in Möbius et al (2012), which represents a special 
case of Assumption 1. 
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3.3.1 Conservative and Asymmetric Information Processing 
 

We now use our model to analyse the processing of ego-sensitive information. We aim to 

account for two co-existing phenomena: Firstly, conservatism, which means that individuals’ 

belief revision in response to a good or bad (for their ego) signal has the same sign as under 

Bayesian updating, but is less pronounced. Secondly, asymmetry, which means that individuals 

with a given level of confidence in a good (for their ego) state react less, i.e., more 

conservatively, to a signal indicating an alternative bad state than individuals who are equally 

confident in the bad state react to a signal of the same precision indicating the good state. 

Asymmetry is at odds with Bayesian updating, which implies the same absolute belief change in 

the two cases. Clean experimental evidence for both phenomena is provided in the study of 

Möbius et al (2012), where subjects must process signals about their intelligence. 

As no additional insight is generated by allowing for multiple periods, we restrict the analysis 

to a single period, i.e., . We use the modelling framework laid down in Assumption 1. For 

present purposes, we characterise the belief that D adopts from her optimal beliefs 1 0 1
*Q q ,s . 

Having such a point prediction facilitates our subsequent analysis.22 

 

ASSUMPTION 2 The decision maker’s adopted belief 1 0 1 1 0 1
*q̂ q ,s Q q ,s  satisfies 1q̂ q  if 

1
*q Q . If 1

*q Q  and 0 1
*q Q , we have 1 0q̂ q . 

 

The assumption asserts that D uses a lexicographic tie-breaking rule for selecting among her 

optimal beliefs: If the Bayesian posterior is optimal, she adopts it. If the posterior is not optimal, 

but the prior is, the latter is adopted. The case where neither posterior nor prior is optimal does 

not arise below and need hence not be specified. 

We first analyse the “good news scenario” where D has received the signal 1 1s . Let 0q  be 

the prior probability assigned to the good state and define 

 

0 1 1 1 1 1T Aq min ,q  

 
                                                      

22 The alternative approaches to belief choice discussed below also yield point predictions. Having a point 
prediction ourselves facilitates comparisons. 
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as D’s threshold prior for 1 1s . It is also useful to define 0 1 1 1Bq , 

which is the prior at which a Bayesian agent is indifferent between betting on the good and bad 

state. The belief choice of D is characterised in 

 

LEMMA 1 Suppose that  and 1 1s . If 0 0
Tq q , the decision maker prefers beliefs making 

her bet on the bad state, i.e., *
1 0, AQ q . If 0 0

Tq q , she prefers beliefs making her bet on the 

good state, i.e., *
1 ,1AQ q . Her adopted belief satisfies 1 0q̂ q  if 0 0 0

B Tq q q  and 1q̂ q  if 

0 0
Bq q  or 0 0

Tq q . 

 

Thus, D adopts the Bayesian posterior except for priors between 0
Bq  and 0

Tq , where she adopts 

her prior.23 As a result, our model can account for conservatism because average belief revision 

across priors is positive, but smaller than what is implied by Bayesian updating. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The intuition for Lemma 1 is the following: Recall that 1Aq  is the probability 

assigned to the good state such that the expected utility of betting on the good state equals that 

of betting on the bad state. Hence, as long as 0
Aq q , D’s prior suggests the bet on the bad 

                                                      

23 Notice that we ignore the case 0 0
Tq q . This is to avoid tedious case distinctions that add nothing to our 

analysis. 

FIGURE 3.1: Optimal beliefs (grey areas) and adopted beliefs (blue dotted line) after 1 1s  and 1 0s  as 

a function of the prior 0q  given , 4 ,  and 2.4  
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state. Notice also that 0
B Aq q . As a result, if 0 0

Bq q , a Bayesian finds it optimal to bet on the 

bad state, which is also what D’s prior points to. Clearly, D prefers betting on the bad state in 

this case. Since the beliefs inducing this bet include both her prior and the Bayesian posterior, 

Assumption 2 implies that D adopts the posterior. In contrast, if 0 0
B Aq q q , a Bayesian 

prefers the bet on the good state, while D’s prior continues to suggest the bet on the bad state. 

For these priors, we have the trade-off between objective performance and regret avoidance that 

is at the heart of our model. The priors 0 0 0
B Tq q q , where 0

T Aq q  depending on , are the 

priors where regret avoidance dominates causing D to prefer the bet on the bad state.24 Since the 

beliefs inducing this bet include her prior, but no longer the posterior, she adopts the prior. 

Finally, if 0 0
Tq q , the force of regret has become too weak or is entirely absent (if 0

Aq q ). 

Accordingly, D finds the bet on the good state optimal, which leads her to adopt the posterior. 

The left panel of Figure 3.1 illustrates Lemma 1 for a particular set of parameter values. The 

optimal belief sets for the different priors 0q  are given by the grey areas, while D’s adopted 

belief is designated by the blue dotted line. The red curve represents the Bayesian posterior 

given 1 1s  as a function of 0q . The black horizontal and vertical lines are each drawn at Aq . 

As a result, 0
Bq  is pinned down by the point of intersection between the Bayesian posterior and 

the horizontal line, while 0
Tq  is the prior where optimal beliefs change. 

To address the issue of asymmetric information processing, we now compare the situation 

just studied to the mirror image situation where D has received the bad news 1 0s . In a first 

step, define 

 

0 1 1 1T ' Aq max ,q . 

 

as the threshold prior for 1 0s . Moreover, define 0 1 1B'q  with 0
B'q  

being the prior at which a Bayesian agent is indifferent between betting on the good and bad 

state after 1 0s . We have 

 

LEMMA 2 Suppose that  and 1 0s . If 0 0
T 'q q , the decision maker prefers beliefs 

making her bet on the bad state, i.e., *
1 0, AQ q . If 0 0

T 'q q , she prefers beliefs making her bet 
                                                      

24 If  is large enough that 0
T Aq q , D prefers the bet on the bad state for all 0

Aq q , i.e., for all priors 
suggesting this bet (“strong regret”). 
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on the good state, i.e., *
1 ,1AQ q . Her adopted belief satisfies 1 0q̂ q  if 0 0 0

T ' B'q q q  and 

1q̂ q  if 0 0
T 'q q  or 0 0

B'q q . 

 

Similar to before, D adopts the Bayesian posterior except if 0 0 0
T ' B'q q q . In this case, she 

adopts the prior. We again have conservatism because average belief revision is negative, but 

less pronounced than under Bayesian updating. The intuition for Lemma 2 is analogous to that 

for Lemma 1: For priors between 0
T 'q  and 0

B'q , a Bayesian prefers to bet on the bad state, while 

the prior suggests the bet on the good state since 0
T ' Aq q . Because of her sensitivity to regret, 

D prefers to bet on the good state leading her to adopt the prior. The right panel in Figure 3.1 

illustrates. The point 0
B'q  is defined by the intersection between the Bayesian posterior (the red 

curve) and the horizontal line at Aq , while 0
T 'q  is where optimal beliefs change. 

We now turn to asymmetry. As mentioned above, Möbius et al (2012) report that 

experimental subjects with a prior 0q  who receive the signal 1 1s  revise their belief 

significantly more in absolute terms than subjects with the inverse prior 01 q  who receive 

1 0s . Under Bayesian updating, the absolute belief changes should be the same owing to the 

symmetry of priors and signals. Letting 0 0
T Bq q  and 0 0

B' T '' q q , we can account for such 

asymmetry in belief revision if and only if ' . To see this, note there are two cases under 

our model where symmetry is not violated: If 0q  satisfies 0 0 0
B Tq q q  and 0 0 01T ' B'q q q , 

symmetry is maintained because D adopts her prior both after good news given 0q  and after bad 

news given the counterfactual prior 01 q , which means that she does not revise her belief in 

either case. Similarly, if 0q  fulfils neither 0 0 0
B Tq q q  nor 0 0 01T ' B'q q q , symmetry is 

preserved because the Bayesian posterior is adopted either way. It is only in the remaining two 

cases that symmetry is violated: If we have 0 0 0
B Tq q q , but not 0 0 01T ' B'q q q , D maintains 

0q  in response to good news, but adopts the Bayesian posterior in response to bad news 

assuming that 01 q  is her prior. Likewise, if we do not have 0 0 0
B Tq q q , but 

0 0 01T ' B'q q q , D adopts the posterior in response to good news, but maintains her prior in 

response to bad news. If 0 0
B' T '' q q 0 0

T Bq q , the second type of symmetry violation, 

which is the empirically observed type, occurs more often, i.e., for more priors. 

And indeed, we have 

 

PROPOSITION 4 For all , the two ranges where the decision maker adopts her prior 
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satisfy  if and only if 1  and  if and only if 1 . We have 

0  if 0 1  and 0  if 1 . 

 

Thus, our model can shed light on the findings of Möbius et al (2012) if we impose 1  

over and above Assumption 1, which is equivalent to 0.5Aq . The intuition is the following: 

For D to strongly restrict her belief revision in response to bad news, which means that she 

wants to bet on the good state after bad news much longer than a Bayesian, but only mildly in 

response to good news, which means that she wants to bet on the bad state after good news not 

much longer than a Bayesian, betting on the good state must be relatively attractive. The 

parameter restriction takes care of this. Also, the proposition shows that the discrepancy 

between the “bad news range” '  and the “good news range”  and hence the problem of 

asymmetry increases in regret up to 1 , where both ranges have attained their 

maximal width.25 

We conclude this sub-section by addressing how existing models of belief formation analyse 

conservative and asymmetric information processing. We find that these alternative approaches 

face some difficulties in accounting for the evidence considered above. 

Rabin and Schrag (1999) propose a model of confirmatory bias, which has the following 

implications: If the bad state is more likely under the prior ( 0 0.5q ), but the signal points to 

the good state ( 1 1s ), there is a probability 0  with which D erroneously perceives the 

signal as confirming her prior, i.e., as 1 0s , and likewise for the scenario where 0 0.5q  and 

1 0s . If prior and signal point into the same direction, no misperception of the signal occurs. 

Given her perceived signal, D then updates her belief according to Bayes’ Rule. The model can 

explain conservatism because there are values of  such that average belief revision goes into 

the same direction as under Bayesian updating, but less so. However, it has a hard time 

accounting for asymmetry because the prior ranges affected by confirmatory bias in the good 

and bad news scenario are symmetric ( 0 0.5q  and 0 0.5q ). 

Brunnermeier and Parker (2005) propose a model of belief choice where objective 

performance is traded off against anticipatory utility (rather than regret avoidance). In our 

single-period framework, they effectively posit two sub-periods: In the first sub-period, D 

                                                      

25 Indeed, if 1 , strong regret holds for our one-period problem (see Section 3.2.4). 
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receives her signal and chooses her belief. In the second sub-period, the chosen belief 

implements an action and utility is realised. When choosing her belief, D pursues two 

objectives: On the one hand, objective performance, i.e., the expected utility of the implemented 

action(s), which is calculated using the correct Bayesian posterior. On the other hand, D wants 

to feel good about her belief choice ex ante. This second objective is captured by the expected 

utility of the implemented action(s) given the belief itself. As we show in Appendix C, 

anticipatory utility can in principle account for (something reminiscent of) asymmetric 

information processing. However, it fails to capture conservatism: If , the model predicts 

extreme beliefs ( 1 0q  or 1 1q ) because D’s anticipatory utility is maximised by assigning 

maximal probability to whichever state she is betting on. If , which is, as argued above, 

more plausible in the context of processing ego-sensitive information, D’s belief revision 

exhibits a strong bias towards the good state. As we show in Appendix C, D never chooses a 

belief below her posterior in this case. This is incompatible with conservatism in the good news 

scenario and largely so in the bad news scenario, where D stays between her prior and posterior 

for only a small fraction of her prior range.26 

 

 

3.3.2 Belief Dynamics 
 

We next study how D’s beliefs evolve over time in a two-period framework, i.e., assuming 

2 .27 The goal is to reach a better understanding of the mechanics of our model and identify 

interesting inter-temporal effects. We remain in the framework of Assumption 1. Continuing to 

interpret 1x  as the good state, we characterise D’s optimal beliefs across time as over- or 

underconfident by saying that D is overconfident (underconfident) in a given situation if her 

optimal beliefs about the likelihood of the good state exceed (fall short of) the Bayesian 

posterior associated with the situation. This idea is formalised in 

 

                                                      

26 The model offers somewhat more flexibility in the knife edge case  because every belief 
implementing the bet on the bad state, i.e., every belief between 0 and Aq , is then equally good, while 

1 1q  is still best among the beliefs implementing the bet on the good state. 

27 The same qualitative insights hold for three periods. For tractability, we restrict the analysis to . 
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DEFINITION 2 Given the signal history 1 ts ,...,s  and the decision maker’s initial prior 0q , the 

decision maker is overconfident after 1 ts ,...,s  if and only if 0 1
*
t tinf Q q ,s ,...,s 0 1 tq q ,s ,...,s  

where 0 1
*
t tQ q ,s ,...,s  is defined recursively as 

1 1 0 1 1
1*

t t t

*
t t tq Q q ,s ,...,s

Q q ,s  and underconfident 

after 1 ts ,...,s  if and only if 0 1 0 1
*
t t tsupQ q ,s ,...,s q q ,s ,...,s . 

 

The set 0 1
*
t tQ q ,s ,...,s  contains the beliefs that D finds optimal after 1 ts ,...,s  given that her 

initial prior is 0q . If all beliefs in it exceed the belief of a Bayesian who has started out with the 

same prior and faces the same signal history, D is overconfident. Likewise, if all optimal beliefs 

are below the Bayesian posterior, D is underconfident.28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For an illustration, consider Figure 3.2, which shows how over- and underconfidence play out 

in the one-period setting studied in the previous sub-section. Optimal beliefs are again 

represented by the grey areas. The left panel contains the situation after 1 1s . In this case, there 

is only underconfidence, the beliefs in question being highlighted violet. The intuition is that 

                                                      

28 This notion is also drawn on in Möbius et al (2012). It differs from the conventional definition 
according to which we have e.g. overconfidence in a population if more than half the population believes 
to perform above average in terms of some desirable characteristic. Benoît and Dubra (2011) argue that 
this state of affairs can be consistent with Bayesian updating. 

FIGURE 3.2: Optimal beliefs after 1 1s  and 1 0s  as a function of the prior 0q  given 1 , , 

4 ,  and 2.4 . Underconfident beliefs are highlighted violet, overconfident ones green. 
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D’s reference point, i.e., her information before receiving 1 1s , is relatively pessimistic about 

the good state. As a result, D’s optimal beliefs are partly depressed relative to the Bayesian 

benchmark. The right panel shows what happens after 1 0s . Here, the inverse result of partial 

overconfidence obtains, the corresponding beliefs being shaded green. The priors associated 

with overconfidence after 1 0s  correspond to the “bad news range” from above, while the 

priors associated with underconfidence after 1 1s  coincide with the “good news range”. 

Furthermore, both over- and underconfidence are “action-relevant”: In each case, the optimal 

beliefs are on one side of the horizontal line drawn at Aq  and the Bayesian posterior on the 

other. As a result, Aq  being the belief for which D is indifferent between the two actions, the 

optimal beliefs implement a different action than the posterior. Finally, the interval of priors 

entailing overconfidence after 1 0s  is wider than the interval entailing underconfidence after 

1 1s  for the reasons of payoff asymmetry discussed above. In this sense, overconfidence is 

more prevalent whenever . 

We now turn to the two-period case, which consists of a two-fold repetition of the decision 

problem from Assumption 1. For the sake of simplicity, we restrict attention to beliefs 

implementing pure strategies. This means that D’s choice set in every period is limited to the 

set of admissible beliefs implementing one action or one action plan with certainty. In the 

second period, the admissible beliefs comprise all 2q Q  for which *
2A q  is singleton. This 

holds for all beliefs except 2
Aq q . In the first period, there are two requirements: Firstly, 

*
1A q  must be singleton. Secondly, letting *

2 1 2,Q q s  be the set of optimal admissible beliefs 

in the second period given 1q  and 2s , we must have * *
2 2A q A q  for all *

2 2 2 1 2, ,q q Q q s  

and 2s S , i.e., for each signal all optimal beliefs given 1q  must implement a common action. 

This rules out 1
Aq q  and up to two more first-period beliefs (see the proof of Proposition 5). 

Definition 2 (over- or underconfidence) continues to apply once it is taken for granted that sets 

of optimal beliefs refer to sets of optimal admissible beliefs. 

Letting m 2 3 4 21 2 12 4 1 2 1  and 2 1s , 

we distinguish four scenarios for the regret parameter: 

 

DEFINITION 3 The decision maker displays mild regret if 0 m , intermediate regret if 
m s , strong regret in the last period if 2s s  and overall strong regret if 2 s . 
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For an interpretation, consider mild regret first. Since we have s  in this case, where s  is 

the strong regret threshold for the second period (see Section 3.2.4), D does not want to follow 

her second-period prior 1q  irrespective of 2s . Four different pure strategies are therefore 

implementable: If 1
Aq q , we have 1 0a  and 2 0a  after 2 0s  since there is no tension 

between 2s  and 1q  in this case. After 2 1s , 2 0a  is implemented for low and 2 1a  for high 

1
Aq q . Intuitively, since D does not always want to follow 1q , she prefers 2 1a  for 

sufficiently high 1
Aq q . Likewise, if 1

Aq q , we have 1 1a  and 2 1a  after 2 1s . After 

2 0s , 2 1a  is implemented for high and 2 0a  for low 1
Aq q . 

Consider next intermediate and strong regret. As long as s , the same four pure strategies 

as under mild regret are implementable. What changes is that D no longer finds all of them 

optimal given some 0q  and 1s . For example, given 1 1s , no 0q  exists such that D wants to 

implement 1 1a  in the first period, but 2 0a  after 2 0s . Rather, if she prefers 1 1a , she 

prefers 2 1a  after both second-period signals because 2 0a  would lead to regret in the 

second period, which she wants to avoid if m . In contrast, if s , fewer pure strategies 

can be implemented because D wants to follow 1q  in the second period irrespective of 2s . If 

1
Aq q , 2 0a  is implemented after both signals, while 2 1a  is implemented if 1

Aq q .29 

Finally, if 2 s , strong regret holds in the first period and hence overall meaning that D 

follows 0q  when choosing 1q . 

Now, let 1 1 1 2 1 2 1 2 1 21, 0, 1, 1 , 1, 0 , 0, 1 , 0, 0H s s s s s s s s s s  be the 

set of non-empty signal histories in our two-period decision problem. We have 

 

PROPOSITION 5 Suppose that  and 0 2 s . For every signal history h H , if the 

last signal in h  points to the good (bad) state, there exists a non-empty interval of priors 0Q h  

( 0Q h ) for which the decision maker is underconfident (overconfident), while there are no 

priors for which she is overconfident (underconfident). Any over- or underconfidence is action-

relevant meaning that the following holds for every h H : If the prior 0q  satisfies 0 0q Q h  

or 0 0q Q h , * *
0 , tA q q h A q  for every tq *

0 ,tQ q h . 

 

                                                      

29 As mentioned, we exclude 1
Aq q  for entailing randomisation in the first (and possibly second) period. 
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COROLLARY 2 There is path dependence in belief choice meaning that *
2 0 1 2, ,Q q s s s s  

*
2 0 1 2, ,Q q s s s s  for some 0q Q  and ,s s S  where s s . 

 

Action relevance puts additional structure on over- or underconfidence. Over- or 

underconfidence only says that the set of optimal beliefs *
0 ,tQ q h  does not contain the 

Bayesian posterior 0 ,q q h . Action relevance goes further by requiring that all optimal beliefs 

implement different actions than the posterior. The proposition makes clear that our model only 

generates this type of over- or underconfidence. The intuition is that the only reason D has for 

departing from the Bayesian posterior is to follow the lead of her prior in those cases where 

there is tension between the prior and the posterior at the level of implemented actions. 

Furthermore, the proposition asserts that there is exactly one instance of over- or 

underconfidence after each signal history. If the last signal has been good (bad), some priors 

entail underconfidence (overconfidence) and none overconfidence (underconfidence). Thus, the 

basic pattern from the one-period problem is preserved: If the last signal has been good (bad), 

D’s reference point is relatively pessimistic (optimistic), which causes her beliefs to be partly 

depressed (inflated) relative to the Bayesian benchmark. The proposition is limited to 2 s  

because some instances of over- or underconfidence disappear for higher levels of regret. We 

return to this issue below. 

The corollary, which spells out an important difference between our model and Bayesian 

updating, follows from considering the histories 1 21, 0s s  and 1 20, 1s s . By 

Proposition 5, we have overconfidence after the first and underconfidence after the second 

history because of the different last signals. This together with the fact that the Bayesian 

posterior is the same in the two situations implies that optimal beliefs differ for some priors. 

Three issues in connection with Proposition 5 merit further attention. Firstly, it is surprising 

that there is only one instance of over- or underconfidence in the first period because D’s belief 

choice in this period is affected not only by current, but also by future (i.e., second-period) 

regret, which does not however lead to any additional over- or underconfidence in the first 

period. Secondly, we address how increasing  influences the range of priors affected by over- 

or underconfidence after a given signal history. Intuitively, one would expect these ranges to 

grow in . Yet, there are exceptions to this rule, which we point out below. Finally, we briefly 

discuss potential welfare benefits of choosing myopically under regret. 
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In what follows, we draw heavily on the pure strategies implemented by D’s first-period belief, 

which we label as follows: Consider mild regret. As mentioned before, four pure strategies are 

implementable in this case: If 1
Aq q , we have 1 0a  and 2 0a  after 2 0s . After 2 1s , we 

have 2 0a  for low and 2 1a  for high 1
Aq q . We refer to these belief intervals and strategies 

as I  and II , respectively. If 1
Aq q , we have 1 1a  and 2 1a  after 2 1s . After 2 0s , we 

have 2 0a  for low and 2 1a  for high 1
Aq q , to which we refer as III  and IV .30 

 

The Impact of Regret on the First Period 

 

To tackle the first issue, namely, why there is only one instance of over- or underconfidence in 

the first period, it is useful to focus on the case of mild regret and 1 1s . The intuition for 

higher levels of regret and/or 1 0s  is analogous. The top left panel of Figure 3.3 illustrates D’s 

belief choice after 1 1s  as a function of 0q . For her lowest priors, D prefers I . As her prior 

increases, she eventually prefers II . With 0q  rising further, her preference switches to III . For 

her highest priors, she prefers IV . Consistent with Proposition 5, we have a single instance of 

underconfidence (shaded violet), which arises from D preferring II  longer, i.e., for higher 

priors, than warranted by Bayesian updating. The mechanics of this should be familiar by now: 

II  and III  only differ in the action implemented in the first period with II  entailing 1 0a  

and III  entailing 1 1a . As 0q  rises, the Bayesian posterior given 1 1s  (the red curve) 

eventually crosses the horizontal line at Aq . It is from this point onward that a Bayesian prefers 

1 1a . However, as long as 0
Aq q , which is given by the vertical line, the prior suggests 

1 0a . Being sensitive to regret, D follows her prior for some time by preferring II  when the 

posterior already suggests III . 

Similar distortions from regret arise elsewhere, but do not lead to additional over- or 

underconfidence in the first period. Consider D’s choice of I  versus II  at her lowest priors. 

The prior at which she is indifferent between I  and II  is larger than the prior at which a 

Bayesian agent is. To see this, notice that I  and II  only differ in what they entail after 

1 21, 1s s  with I  implementing 2 0a  and II  implementing 2 1a . The Bayesian 

posterior for this signal history is given by the red curve in the middle left panel of Figure 3.3. 

                                                      

30 The proof of Proposition 5 formally defines the four intervals. 
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Clearly, the prior at which this curve crosses the horizontal line is smaller than the prior at 

which D is indifferent between I  and II . The reason is D’s regret in the second period: Both I  

and II  implement 1 0a , which is therefore the unique reference action for the second period. 

Since I  implements 2 0a , D prefers it at priors where a Bayesian already prefers II . Yet, D 

preferring I  longer than a Bayesian does not imply additional underconfidence in the first 

period because I  is implementable by beliefs 1q  that are higher than the highest Bayesian 

posterior after 1 1s  such that 2 0a  is preferred after 1 21, 1s s . The reason is again D’s 

regret in the second period, which gives her additional “slack” in implementing I . These two 

effects, namely, D preferring I  at higher priors than a Bayesian and D being able to implement 

I  through higher beliefs, exactly offset each other, so that D’s optimal first-period beliefs are 

not affected by underconfidence in this region of the prior space. The same kind of “cancelling” 

obtains for D’s choice between III  and IV .31 The lesson is that future sensations of regret 

determine present belief choices, but do not give rise to over- or underconfidence in the present 

(while they do lead to over- or underconfidence in the future, as is apparent from Figure 3.3). 

 

The Impact of Increasing Regret 

 

Secondly, we address the impact of increasing regret on over- or underconfidence. Intuitively, 

one would expect the affected prior ranges to increase in  since over- and underconfidence are 

engendered by (sensitivity to) regret and should therefore become more acute as the latter 

grows. Yet, there are exceptions to this, as we now show. Again, we consider histories 

beginning with 1 1s . For brevity, we focus on the exceptions, which occur after 1 21, 0s s  

and 1 1s . The message is that the comparative statics of over- or underconfidence can be 

surprising once beliefs are chosen dynamically under regret. All formal details are in the proof 

of Proposition 5. Figures 3.3-3.5 illustrate. 

                                                      

31 There is no overconfidence in the first period although a Bayesian prefers IV  to III  if his prior 
exceeds Aq , while D prefers it sooner because her reference action is 1 1a  and IV  conforms to it. 
However, IV  is also implementable by beliefs that are below the lowest posterior after 1 1s  such that 

2 1a  is preferred after 1 21, 0s s . These two effects cancel each other. 
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FIGURE 3.3: Optimal beliefs under mild regret given , 4 ,  and 0.6  after the 

different possible signal histories. Histories beginning with 1 1s  are shown on the left-hand side and 

histories beginning with 1 0s  on the right-hand side. 
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Consider first D’s overconfidence after 1 21, 0s s , where there is an unexpected reversal in 

the marginal impact of regret. To see this, let ~
0
x yq  denote the prior at which D is indifferent 

between the belief intervals x  and y x  with , , , ,x y I II III IV . If regret is mild, the lower 

bound of 0 1 21, 0Q s s  is ~
0
III IVq , which falls in  amounting to increasing overconfidence. 

If m s , III  is no longer optimal, so that the lower bound becomes ~
0
II IVq , which instead 

rises in .32 The intuition for this reversal is the following: III  and IV  only differ after 

1 21, 0s s  with III  implementing 2 0a  and IV  implementing 2 1a . Both implement 

1 1a , which acts as the reference action for the second period. Thus, the higher , the earlier 

IV  is preferred. In contrast, the choice between II  and IV  is not influenced by second-period 

regret because II  implements 1 0a . Now, the higher , the longer II  is preferred for 

conforming to D’s first-period prior 0
Aq q . This explains the differential impact of  in the 

two cases. If s , the lower bound is ~
0
I IVq , which again increases in  to such an extent that 

D’s overconfidence after 1 21, 0s s  has vanished once 2 s , which is also the reason 

why Proposition 5 requires 2 s . The intuition for the disappearance of overconfidence after 

1 21, 0s s  is that there is no fundamental tension in this case between objective 

performance and the avoidance of prior regret since the two signals cancel each other. Thus, the 

Bayesian wants to follow his original prior 0q  after this history, which is also what D aims for 

(given overall strong regret). 

Secondly, after 1 1s , there is an unexpected drop in underconfidence as regret becomes 

strong. If m s , the upper bound of 0 1 1Q s  is ~
0
II IVq , while it is ~

0
I IVq  if s  because 

only I  and IV  remain implementable. We have ~ ~
0 0
I IV II IVq q  if s , which implies a 

discrete drop in underconfidence (compare Figures 3.4 and 3.5). The intuition is the following: 

The attraction of II  is that it allows D to follow her prior 0
Aq q  in the first period, while 

implementing 2 1a  after 1 21, 1s s , i.e., after two signals in favour of the good state, 

which represents an attractive mix between objective performance and regret avoidance. If 

regret is strong, I  remains the only alternative to IV , which is less attractive in this regard 

because it commits D to 0a  after all histories. As a result, D prefers IV  around the prior 

where she is indifferent between II  and IV .33 
                                                      

32 The upper bound of 0 1 21, 0Q s s  is fixed. It is given by Aq . 

33 The marginal impact of regret is as expected because ~
0
II IVq  and ~

0
I IVq  increase in . Also, no drop or 

jump occurs as regret becomes intermediate. 
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 FIGURE 3.4: Optimal beliefs under intermediate regret given , 4 ,  and 2.4  

after the different possible signal histories. Histories beginning with 1 1s  are shown on the left-hand 

side and histories beginning with 1 0s  on the right-hand side. 
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FIGURE 3.5: Optimal beliefs under strong regret in the last period given , 4 ,  and 

3.2  after the different possible signal histories. Histories beginning with 1 1s  are shown on the left-

hand side and histories beginning with 1 0s  on the right-hand side. 
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The Benefits of Myopia under Regret 

 

Finally, we address potential benefits of myopia under regret. As we now show, choosing 

beliefs myopically may improve welfare. This result is surprising because myopia is generally 

deemed to be welfare-reducing. However, in the present context, it may serve to mitigate the 

detrimental impact of regret. We say that D is myopic if she maximises 1,t t t tP q q s  for every 

t T  and forward-looking if she maximises 1 1, ,t t t t t t t tP q q s F q q s  for all t  and 

1,t t t tP q q s  if t , as was assumed throughout (see Section 3.2.2). Moreover, we assume 

that D’s welfare coincides with the preferences of a Bayesian agent with the same utility 

function as in Assumption 1. This is the only welfare standard worthy of further investigation. If 

welfare instead included regret, it is immediate that D cannot do worse being forward-looking. 

In identifying the benefits of myopia under regret, which exist if 0 s , we make life 

harder for myopia by assuming that D chooses every optimal belief with positive probability. 

This makes the drawback of myopia, namely, the lack of allowance for what current beliefs 

trigger in the future, particularly acute. 

 

PROPOSITION 6 Suppose that . If 0 s , there exist priors 0q Q  and signals 1s S  

such that the decision maker’s welfare is higher if she is myopic than if she is forward-looking 

even if she adopts all optimal beliefs with positive probability. If 0 , the decision maker’s 

welfare is at least as high if she is forward-looking as if she is myopic for all 0q Q  and 1s S . 

The same holds if s  for all 0
Aq q . 

 

An intuition for Proposition 6 can be obtained by letting 0 s  and considering D’s first-

period choice given 1 1s  between the belief intervals I  and II . As noted above, there are 

priors where a forward-looking D chooses I , but a Bayesian with the same prior prefers II . 

Suppose that D has such a prior. Since her welfare coincides with the Bayesian’s preferences, 

D’s welfare would rise if she increased the probability of choosing II  at the expense of I . 

Being myopic achieves just that. To see this, consider the left panel of Figure 3.2, which can be 

interpreted as D’s belief choice in the first period if she is myopic because she then treats her 

two-period problem as a one-period one. Clearly, at the low priors under consideration, a 
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myopic D prefers the beliefs in 0, Aq , which include I  and II .34 Since we assume every 

optimal belief is adopted with positive probability, it follows that being myopic lets D choose 

both I  and II  with positive probability, which increases her welfare relative to being forward-

looking. At a more abstract level, this is an example of one bias (regret) being mitigated by a 

second (myopia). Adding a bias to an existing one can therefore be welfare-enhancing.35 

In contrast, under no regret, D’s preferences if she is forward-looking coincide with those of a 

Bayesian agent. Clearly, being myopic cannot do better in this case. As for the remaining levels 

of , consider first regret that is strong in the last period, but not overall. In this case, D 

replicates 1q  in the second period, which implies that two pure strategies remain implementable, 

namely, I  and VI . If D is myopic, she treats her problem in the first period as a one-period 

problem. As a result, she follows 0
Aq q , which causes her to implement I  for all 0

Aq q . In 

contrast, given 1 1s , a forward-looking D chooses VI  for some 0
Aq q , which is also what a 

Bayesian prefers. As a result, D is better off being forward-looking for these priors, while there 

is no difference otherwise. There is also no welfare difference if regret is strong overall because 

D follows 0
Aq q  in this case no matter if she is myopic or forward-looking.36 

 

Further Issues and Summary 

 

One might also wonder what happens to over- or underconfidence as signals in support of a 

given state accumulate. Consider, for instance, overconfidence after 1 20, 0s s , which is 

illustrated for the case of mild regret in the middle right panel of Figure 3.3. Visibly, this 

overconfidence affects a smaller range of priors than D’s overconfidence after 1 0s , as is 

apparent from the top right panel in Figure 3.3. From this, one could conclude that the problem 

of overconfidence (and underconfidence) diminishes in the number of signals in favour of a 

given state. However, this relationship is inverted for high levels of regret (see Figure 3.5). 

                                                      

34 Strictly speaking, the myopic D does not prefer 0, Aq , but the union of the intervals I  and II  
because the point between them is not an admissible first-period belief. 

35 O’Donoghue and Rabin (2001) and Herweg and Müller (2011) show in the context of hyperbolic 
discounting that self-control problems may be mitigated by naiveté. 

36 Since we rule out beliefs implementing mixed strategies, we abstract for simplicity from the prior 

0
Aq q  suggesting randomisation in the first period. 
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More formally, let h 0 0sup infQ h Q h  denote the width of the prior range 0Q h  

entailing overconfidence after a given h H  and define h  analogously. Moreover, restrict 

attention to . In this case, one can show that 

 

1 1 20 0, 0s s s  and 1 1 11 1, 1s s s  

 

for all 0 m . However, the inverse result obtains if s . Intuitively, under strong 

regret, D is committed to replicating her first-period belief choice in the second period. 

Maintaining one’s previous belief after an additional signal in favour of a given state aggravates 

one’s over- or underconfidence.37 

We conclude this sub-section by some remarks on the relative frequency of over- and 

underconfidence. Similar to the one-period case studied before, there is a sense in which there is 

more over- than underconfidence once we are willing to assume . More precisely, 

 can be shown to be equivalent to 

 

1 10 1s s  and to 1 2 1 20, 0 1, 1s s s s  

 

for all . To the extent that the likelihood of observing over- or underconfidence is 

monotonic in the width of the affected prior ranges, this fact makes overconfidence more likely. 

However, what works in the opposite direction is that  is also equivalent to 

 

1 2 1 20, 1 1, 0s s s s  

 

for all  such that these ranges are positive. While the last pair of histories can be thought 

of as only half as likely as 1 0s  and 1 1s , the “surplus” from above working in favour of 

overconfidence cannot be shown always to dominate this “deficit”. Simulations suggest, 

however, that 1 10 1s s 1 2 1 20.5 0, 1 0.5 1, 0 0s s s s  is only 

violated for extreme parameter values that are unlikely to arise in practical applications. 

                                                      

37 If m s , there is a m  below (above) which the same occurs as for mild (strong) regret. 
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All in all, this sub-section has supplied an extensive characterisation of dynamic belief choice 

under regret in a two-period framework and generated novel, testable predictions: Over- and 

underconfidence exhibit a clear inter-temporal pattern by always depending on the last signal 

only. Moreover, over- or underconfidence is always action-relevant, which is a novel concept 

not previously considered in this context. The comparative statics of over- and underconfidence 

are largely intuitive, but exhibit some interesting deviations from what one would expect. 

 

 

3.4 Conclusion 
 

This chapter presents a model of instrumental belief choice under regret. Its core idea is that 

people attach value to maintaining their prior in the face of new information because they 

anticipate the regret that they will feel from giving up their prior if holding on to their prior 

turns out to be ex post optimal. Without the influence of such regret because of either 

insensitivity or certainty, our model reduces to the standard approach: Actions generated 

through belief choices are then identical to those of a standard Bayesian decision maker. 

Under regret, we identify conditions under which people exhibit a preference for consistency 

meaning that their behaviour across time becomes completely unresponsive to the arrival of new 

information. We also explain why beliefs are updated conservatively and asymmetrically, for 

which clean empirical support exists. Finally, we study over- and underconfidence identifying 

conditions under which the two can be expected to materialise. We also introduce a new 

distinction between action-relevant and action-irrelevant over- and underconfidence and shed 

light on when belief formation exhibits path dependence meaning that the order of arrival of a 

given number of signals matters to adopted beliefs. 

At a more abstract level, the foundational idea of this chapter is that the processing of new 

information is intrinsically context-dependent. It depends on the specific decision problem in 

which new information is (likely to be) exploited. This basic tenet of our model has rich 

empirical implications, which we aim to explore in future work. 
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3.5 Appendix A: Proofs 
 

PROOF OF PROPOSITION 1 

 

Consider first the case t  and suppose that D holds the prior 1q Q  and has received the signal 

s S . Since , the target function can be expressed as 

 

1 1a x a
V a,q q x q ,s u x,a a,q U a q ,s . 

 

It is immediate that 1 1
*q q ,s Q q ,s  because choosing q 1q q ,s  leads D to randomise 

on the actions in 1 1
*

a AA q q ,s arg max U a q ,s . Since 1q q ,s  maximises V  by 

implementing randomisation on 1
*A q q ,s , any 1q q q ,s  satisfies 1

*q Q q ,s  if and 

only if *A q 1
*A q q ,s , i.e., if it implements randomisation on a subset of 1

*A q q ,s . 

Hence, for every 1q Q  and s S , D implements only actions in 1
*A q q ,s  with positive 

probability regardless of which belief from 1
*Q q ,s  she adopts. 

Consider next the case 1t  for a given prior 2q Q  and signal 1s S . The target function is 

 

1 1 2 1a
V a,q U a q ,s 2 1 2 1s S a

Pr s q ,s a,q ,s U a q ,s ,s  

 

where a,q ,s  is the probability of choosing action a A  induced by q  after s S . Clearly, 

for analogous reasons to above, setting 1q 2 1q q ,s  maximises the first term of 1V . As for the 

second term, recall that given any 1q  and s  D implements only actions with positive probability that 

are in 1
*A q q ,s . Hence, by choosing 1q 2 1q q ,s , D implements after every s S  only 

actions in 2 1
*A q q q ,s ,s . By Bayes’ Rule, we have 2 1q q q ,s ,s 2 1q q ,s ,s . 

Moreover, 2 1
*A q q ,s ,s 2 1a Aarg max U a q ,s ,s . Consequently, 1q 2 1q q ,s  

maximises the second term and we have 2 1 1 2 1
*

tq q ,s Q q ,s  for every 2q Q  and 1s S . 

Moreover, for any 1 2 1q q q ,s , we have 1 1 2 1
*

tq Q q ,s  if and only if, firstly, 

1
*A q 2 1

*A q q ,s  and, secondly, the function a,q ,s  only assigns positive probability 

to actions in 2 1
*A q q ,s ,s , i.e., 1 0a A : a,q ,s 2

*A q q ,s ,s  for every 

s S . The need to mimic the posterior for every s S  follows from every s S  arising with 
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positive probability. Thus, given any 2q Q , D implements after every 1s S  only actions in 

2 1
*A q q ,s  and after every 1s S  and s S  only actions in 2 1

*A q q ,s ,s . 

In period 2 , D’s target function for a given 3q Q  and 2s S  is 

 

2 2 3 2a
V a,q U a q ,s

1
1 3 2 2 1 3 2 1s S a

Pr s q ,s a,q ,s U a q ,s ,s  

 

1
1 3 2 2 1 3 2 1s ,s S S a

Pr s ,s q ,s a,q ,s ,s U a q ,s ,s ,s . 

 

Clearly, 3 2q q ,s  is a maximiser of the first two terms. As for the third term, recall that for every 

2q , 1s  and s  D only implements actions in 2 1
*A q q ,s ,s . If 2 3 2q q q ,s , D therefore 

only implements actions in 3 2 1 3 2 1
* *A q q q ,s ,s ,s A q q ,s ,s ,s . Thus, 

2 3 2q q q ,s  maximises the third term implying 3 2 2 3 2
*

tq q ,s Q q ,s . For any 

2 3 2q q q ,s , we have 2 2 3 2
*

tq Q q ,s  if and only if three conditions are met: Firstly, 

2
*A q 3 2

*A q q ,s . Secondly, 2 1 0a A : a,q ,s 3 2 1
*A q q ,s ,s  for every 

1s S  and finally 2 1 0a A : a,q ,s ,s 3 2 1
*A q q ,s ,s ,s  for every 1s S  and 

s S . The need to mimic the posterior after every signal history arises from every history having 

positive probability. 

The argument for all periods 2t  is analogous.  

 

LEMMA A1 In any period t, for any belief tq Q  that satisfies 1
* *

t tA q A q , there always exists 

a state of the world x X  in which D regrets abandoning 1tq , i.e., for which we have 

t ta
U x,q u x,a a,q 1 1t ta

U x,q u x,a a,q . 

 

PROOF Suppose that there is a belief tq Q  with 1
* *

t tA q A q  which for every state x X  

satisfies 1t ta a
u x,a a,q u x,a a,q , which means that uniform randomisation on the 

actions in *
tA q  yields the same or higher expected utility in every state than uniform randomisation 

on the actions in 1
*

tA q . This implies that under any belief q Q  the average expected utility of the 

actions in *
tA q  is at least as high as the average expected utility of the actions in 1

*
tA q .  

Suppose first that *
tA q  is not a subset of 1

*
tA q  and consider the belief 1tq . As just noted, the 

average expected utility of the actions in *
tA q  under 1tq  is at least as high as the average expected 

utility of the actions in 1
*

tA q . By definition, the actions in 1
*

tA q  all yield the same expected 
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utility under 1tq , which represents the maximal level of expected utility attainable under 1tq . Since 
*

tA q  is not a subset of 1
*

tA q , there is at least one action in *
tA q  yielding less than maximal 

expected utility under 1tq . For the actions in *
tA q  to yield the same or higher average utility than 

the actions in 1
*

tA q , this would have to be compensated by another action in *
tA q  yielding more 

than the maximally attainable expected utility, a contradiction. 

If *
tA q  is a subset of 1

*
tA q  and 1t ta a

u x,a a,q u x,a a,q  for at least one 

x X , this implies that the average expected utility under 1tq  of the actions in *
tA q  exceeds the 

average expected utility of the actions in 1
*

tA q . Since the actions in 1
*

tA q  attain the same, 

maximal expected utility under 1tq  and *
tA q  is a subset of 1

*
tA q , this is a contradiction. 

If *
tA q  is a subset of 1

*
tA q  and 1t ta a

u x,a a,q u x,a a,q  for all x X , the 

expected utility under tq  of the actions in *
tA q , which represents the maximal level of expected 

utility attainable under tq , equals the average expected utility of the actions in 1
*

tA q . This can only 

be the case if either all actions that are in 1
*

tA q , but not in *
tA q , attain the same expected utility 

under tq  as the actions in *
tA q , a contradiction, or if at least one action that is in 1

*
tA q , but not 

in *
tA q , reaches a higher than maximal expected utility under tq , which is also a contradiction.  

 

PROOF OF PROPOSITION 2 

 

Consider the case t , where the target function reduces to 

 

1 1 1x
V q q ,s q x q ,s U x,q r U x,q U x,q . 

 

Lemma A1 makes clear that any belief q Q  that satisfies 1
* *A q A q  entails regret in at least 

one state of the world. The probability put onto this state by the Bayesian posterior 1q q ,s  is 

guaranteed to be positive owing to our assumptions on priors (which have full support on X ) and 

signals (which are not fully revealing). 

By the scope for regret assumption, at least one belief q Q  exists such that 1
* *A q A q , 

namely, the Bayesian posterior, which satisfies 1 1
* *A q q ,s A q  and 1

*A q  

1
*A q q ,s  for some 1q Q  and s S . Fix such a 1q Q  and s S . Clearly, 1q q ,s  is a 

maximiser of the absolute part 1x
q x q ,s U x,q , which 1q  fails to maximise because it does 

not induce randomisation on a subset of 1
*A q q ,s . As a result, for 1q  or any other q  such that 
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1
* *A q A q  to perform better in terms of V  than 1q q ,s ,  must rise sufficiently above 

zero that avoiding the expected regret 1 1 0
x
q x q ,s r U x,q U x,q  inevitably associated 

with 1q q ,s  becomes D’s dominant concern. The same holds for any other q  with 

1
* *A q A q  that performs better in the absolute part than 1q . 

Let 1t q ,s  denote the threshold level of regret such that for a given 1q Q  and s S  we 

have 1
*q Q q ,s  if and only if 1

* *A q A q  for all 1t q ,s . This yields the 

threshold level 0t  as 1q Q,s S tt max q ,s . 

Consider next 1t  and suppose that t . Since  is such that strong regret holds for 

t , D anticipates that she will follow the lead of q  in the subsequent period irrespective of s  

thereby avoiding any regret. The target function for her belief choice is therefore 

 

1 1 2 1 2 1 1 1 2x
V q q ,s q x q ,s U x,q r U x,q U x,q  

 

2 1 2 1 1s S x
Pr s q ,s q x q ,s ,s U x,q . 

 

This simplifies to 

 

1 1 2 1 2 1 1 1 22
x

V q q ,s q x q ,s U x,q r U x,q U x,q . 

 

Since the absolute part is now 2 1 12
x
q x q ,s U x,q  and hence twice as large, we have 

 

2 1 1 2 12t tq ,s q q ,s s  

 

for any given q Q  and s S  where analogously to before 2 1t q ,s  is defined such that 

for all 2 1t q ,s  we have 1 1 2 1
*q Q q ,s  if and only if 1 2

* *A q A q . Defining 

1t
2 1 2 1q Q,s S tmax q ,s , it follows that 1 2 0t t . This also 

implies that our initial supposition t  is valid. 

The argument for any 2  is analogous. As a result, we have 2 3t t  and in 

general 1t t t .  
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PROOF OF PROPOSITION 3 

 

Consider first the case t . The target function for q  is 

 

11
a a a

V u x ,a a,q r u x ,a a,q u x ,a a,q . 

 

It is immediate that 1 1
*q q ,s Q q ,s  because setting q 1q q ,s  leads D to randomise on 

the actions in 1 1*
a AA q q ,s arg max u x ,a  and r  is non-decreasing. Since 1q q ,s  

maximises V  by only putting positive probability on actions maximising u x ,a , any 1q q q ,s  

satisfies 1
*q Q q ,s  if and only if *A q 1

*A q q ,s , i.e., if it entails randomisation on a 

subset of the actions maximising u x ,a . As a result, for any 1q Q  and s S  such that 

1 1q x q ,s , D chooses only actions with positive probability that are in 1
*A q q ,s . 

Consider next the case 1t  where 2 1q x q ,s . The target function is 

 

1 1 1 21
a a a

V u x ,a a,q r u x ,a a,q u x ,a a,q  

 

2 1 1 1 11
s S a a a

Pr s q ,s u x ,a a,q ,s r u x ,a a,q ,s u x ,a a,q  

 

where a,q ,s  is the probability of choosing action a A  entailed by q  after s S . For 

analogous reasons to above, setting 1q 2 1q q ,s  maximises the first term of 1V . As for the 

second term, recall from the preceding paragraph that for any 1q Q  and s S  such that 1q q ,s  

puts all probability mass on x , D only chooses actions in 1
*A q q ,s with positive probability. 

Consider 2 1q q q ,s . Since 2 1q q ,s  puts all probability mass on x , Bayes’ Rule implies 

that 2 1 2 1q q q ,s ,s q q ,s ,s  puts all probability mass on x  for every s S . As a result, 

by setting 1 2 1q q q ,s , D puts positive probability after every s S  only on actions in 

2 1 2 1 1* *
a AA q q q ,s ,s A q q ,s ,s arg max u x ,a . This also implies that D does not 

feel regret after any s S . Consequently, 1q 2 1q q ,s  maximises the second term of 1V . We 

therefore have 2 1 1 2 1
*

tq q ,s Q q ,s  for every 2q Q  and 1s S . 

The argument for all periods 1t  is analogous to the proof of Proposition 1.  
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PROOF OF LEMMA 1 

 

Consider the case 0 0
Tq q . We first characterise D’s preferred beliefs. We have 0

Aq q  since 0
T Aq q . 

Thus, the bet on the bad state is D’s reference action. For brevity, let  be the probability of betting 

on the good state. Given 1 1s , D’s problem is to maximise 

 

1 0 01 1 1 1 1V q q . 

 

Since 1 0 00 1 1 1 1 1 TdV d q q , we have 1 0dV d  for all 

0 0
Tq q . Consequently, D prefers implementing the bet on the bad state, i.e., 1 0* AQ ,q . As for 

adopted beliefs, we have 0 Aq q  if 0 0
Bq q . This implies 1q̂ q  by Assumption 2. In contrast, if 

0 0 0
B Tq q q , we have q Aq . By Assumption 2, we now have 1 0q̂ q  since the posterior is no longer 

part of D’s preferred beliefs. 

If 0 0
Tq q , two cases must be distinguished: Firstly, suppose 0

T Aq q . We thus have 0
Aq q  and 

 

1 0 01 1 1 1 1 1V̂ q q   

 

is appropriate. We have 1 00 1 1 1 1 AˆdV d q q . As a result, D 

prefers implementing the bet on the good state, i.e., 1 1* AQ q , . 

Secondly, suppose that we have 0
T Aq q  implying 0 1 1 1 1 1Tq . 

In the case where 0 0
T Aq q q , 1V  is the appropriate target function. We have 1 1* AQ q ,  because 

1 0dV d  0 01 1 1 1 1 Tq q . If 0
Aq q , 1̂V  is the appropriate 

target function, and 1 1* AQ q ,  follows from our previous discussion. Finally, if 0
Aq q , we have 

 

1 0 01 1 0 5 1 1 1 1V q . q  if 0 5.  

 

and 

 

1 0 01 1 1 1 1 0 5V q q .  if 0 5.  
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with 1V  being continuous in . In the first case, 1 0dV d  follows from our discussion of 1̂V . In the 

second case, 1 0dV d  follows from our discussion of 1V . We thus always have 1 1* AQ q ,  if 

0 0
Tq q . Since 1Aq q  holds for these priors, we have 1q̂ q  by Assumption 2.  

 

PROOF OF LEMMA 2 

 

Consider first 0 0
T 'q q . Since 0

T ' Aq q , betting on the good state is D’s reference action. Taking as 

given 1 0s  and letting  denote the probability of the bet on the good state, D maximises 

 

1 0 01 1 1 1 1 1V q q . 

 

We have 1 0 00 1 1 1 T 'dV d q q . As a result, D prefers implementing 

the bet on the good state, i.e., 1 1* AQ q , . Since Aq q  if 0 0 0
T ' B'q q q  and 1Aq q  if 0 0

B'q q , 

we have 1 0q̂ q  in the former case and 1q̂ q  in the latter. 

Consider next the case 0 0
T 'q q . Suppose first that 0

T ' Aq q . In this case, betting on the bad state is 

D’s reference action, which means she maximises 

 

1 0 01 1 1 1 1V̂ q q . 

 

We have 1 00 1 1 1 1 AˆdV d q q . Thus, D prefers the bet on the 

bad state, i.e., 1 0* AQ ,q . 

Suppose next that 0
T ' Aq q  implying 0

T 'q 1 1 1 . In this case, if 

0 0
A Tq q q , 1V  is the appropriate target function, and we have 1 0dV d  because this is equivalent 

to 0 01 1 1 Tq q . Secondly, if 0
Aq q , 1̂V  is appropriate and 1 0ˆdV d  

follows from our discussion above. Finally, consider the case 0
Aq q . We have 

 

1 0 01 1 1 0 5 1 1 1V q . q  if 0 5.  

 

and 

 

1 0 01 1 1 1 1 0 5V q q .  if 0 5.  
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with 1V  being continuous in . In the first case, 1 0dV d  follows from our discussion of 1V . In the 

second case, 1 0dV d  follows from our discussion of 1̂V . As a result, we always have 1 0* AQ ,q  

if 0 0
T 'q q . Since 0 Aq q  in this case, 1q̂ q  holds by Assumption 2.  

 

PROOF OF PROPOSITION 4 

 

Notice first that 0 0
T T ' Aq q q  if 2 1 1 . As a result, any further increases of  do not 

affect the width of the prior ranges. Consequently, 0  if 1 . If 

0 1 , we have 

 
1 1 1

1 1 1 1 1
 

 

and 

 

1 1 1 1 1
, 

 

which satisfy 0 . 

Comparing  and , it is also sufficient to limit attention to 0 1 . We have 

 

 

 
1 1 1

1 1 1 1 1 1 1 1 1 1
 

 
1 1

1 1 1 1 1 1
 

 
1 1

1 1 1 1 1
 

 

1 1 1 1 1 1  

 

     1 1 1 1 1 0  
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22 21 2 1 1 2 0 . 

 

We have 21 1 2 0  because it is equivalent to 22 1 11 . 

Moreover, 2 21 2 0 1 and 2 21 2 0 1.  

 

PROOF OF PROPOSITION 5 

 

Consider mild regret first ( 0 m ). We characterise D’s choice set in the first period using 

backward induction. Consider therefore the second period. If 2 1s , the second-period prior where D 

is indifferent between implementing 2 0a  and 2 1a  is 

 

1 1 1 1 1 1Tq  

 

which satisfies 10 T Aq q  given that 0 m . The point of indifference after 2 0s  is 

 

1 1 1 1T 'q  

 

which satisfies 1 1A T 'q q . As a result, the set of beliefs implementing pure strategies can be 

partitioned as follows 

 

, , ,I II III IV  

 

where 10, TI q , 1 ,T AII q q , '
1,A TIII q q  and '

1 ,1TIV q . We abstract from 1 1
Tq q , 1

Aq q  

and 1 1
Tq q , which implement mixed strategies and were ruled out above. 

Consider now D’s first-period problem given 0q  and 1 1s . The case 1 0s  is analogous and 

therefore omitted. Supposing 0
Aq q , the expected payoff of the pure strategies can be expressed as 

 
22

0 0 0 0 0 01 1 1 1 1 1V I q q q q q q  
22

0 0 0 0 0 01 1 1 1 1 1V II q q q q q q  
2

0 0 0 0 01 1 1 1V III q q q q q  
2

0 0 0 01 1 1V IV q q q q . 
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Equating these expressions yields the various points of indifference. In particular, 

 
2

~
0 221
I IIq  

 
~

0 1 1 1
II IIIq  

 
~

0 1 1
III IVq . 

 

We have ~ ~ ~
0 0 0
I II II III III IVq q q  unless m , in which case ~ ~ ~

0 0 0
I II II III III IVq q q . Additionally, we 

have ~ ~ ~
0 0 0
I II I III II IIIq q q , ~ ~ ~

0 0 0
I II I IV III IVq q q  and ~ ~ ~

0 0 0
II III II IV III IVq q q  unless m , in which 

case ~ ~ ~
0 0 0
II III II IV III IVq q q . Consequently, D prefers I  if ~

0 0
I IIq q , II  if ~ ~

0 0 0
I II II IIIq q q , III  if 

~ ~
0 0 0
II III III IVq q q  (unless m ) and IV  if ~

0 0
III IVq q . Also, since ~

0
III IV Aq q , our initial 

supposition 0
Aq q  is valid. 

We now characterise the prior ranges 0 1 1Q s , 0 1 21, 1Q s s  and 0 1 21, 0Q s s  and show 

that these are the only instances of over- or underconfidence, which is moreover action-relevant. 

Consider 1 1s  first and define 

 
~

0 1 01 1 , II IIIQ s q . 

 

Since we have ~
0 1I IIq , D uniquely prefers 1 ,T AII q q  for all 

0 0 1 1q Q s , while the Bayesian posterior given 1 1s  satisfies Aq q  for these priors because it 

equals Aq  if 0 1q  and increases in 0q . As a result, D exhibits action-

relevant underconfidence for all 0 0 1 1q Q s . There is neither over- nor underconfidence 

elsewhere. D prefers 10, TI q  if ~
0 0

I IIq q  and both 10, TI q  and 1 ,T AI q q  if ~
0 0

I IIq q . Since 

1
Tq q  if ~

0 0
I IIq q , D is not over- or underconfident for these priors as well as for 

~
0 0
I IIq q 1 . Further, D prefers '

1,A TIII q q  if ~ ~
0 0 0
II III III IVq q q , 

both '
1,A TIII q q  and '

1 ,1TIV q  if ~
0 0

III IVq q  and '
1 ,1TIV q  if ~

0 0
III IVq q . Since Aq q  if 

~
0 0

II IIIq q  and '
0
Tq q  if ~

0 0
III IVq q , there is again no over- or underconfidence. 

 

Consider next 1 21, 1s s  and define 
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2 22 ~
0 1 2 01, 1 1 , I IIQ s s q . 

 

Suppose that 0 0 1 21, 1q Q s s . Since ~
0 0

I IIq q , D uniquely prefers beliefs after 1 21, 1s s  

that implement 2 0a , which are collected in 0, Aq . The lower bound of 0 1 21, 1Q s s  is the 

prior at which the Bayesian posterior given 1 21, 1s s  satisfies Aq q . Thus, D is underconfident 

for all priors in 0 1 21, 1Q s s  and neither over- nor underconfident elsewhere because she prefers 

,1Aq  if ~
0 0

I IIq q  and 0, Aq  if 2 22
0 1q . 

Finally, consider 1 21, 0s s  and define 

 
~

0 1 2 01, 0 ,III IV AQ s s q q . 

 

Suppose that 0 0 1 21, 0q Q s s . Since ~
0 0

III IVq q , D uniquely prefers beliefs after 1 21, 0s s  

that implement 2 1a , which are collected in ,1Aq . The Bayesian posterior given 1 21, 0s s  

satisfies 0q q , which implies that it attains Aq  at the upper bound of 0 1 21, 0Q s s . 

Consequently, D is overconfident for all priors in 0 1 21, 0Q s s  and neither over- nor 

underconfident otherwise because she prefers 0, Aq  if ~
0 0

III IVq q  and ,1Aq  if 0
Aq q . 

We next address the case m s . We now have ~ ~
0 0
II III III IVq q , which implies that no prior 

exists where D finds III  optimal. D’s choice between II  and IV  is governed by 

 
~

0

1 1
1 2 1 1

II IV Aq q . 

 

D prefers I  if ~
0 0

I IIq q , II  if ~ ~
0 0 0
I II II IVq q q  and IV  if ~

0 0
II IVq q . Accordingly, we can now 

define 

 
~

0 1 01 1 , II IVQ s q . 

 

The Bayesian posterior given 1 1s  satisfies '
1
Tq q  at ~

0
II IVq . This together with our previous 

discussion implies that there are no priors outside 0 1 1Q s  exhibiting over- or underconfidence. 

Regarding the second period, things are unchanged for 1 21, 1s s . As for 1 21, 0s s , define 
~

0 1 2 01, 0 ,II IV AQ s s q q , 
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Our conclusions remain the same as before because II  and III  both implement 2 0a  after 

1 21, 0s s . As a result, D prefers 0, Aq  if ~
0 0

II IVq q  and uniquely ,1Aq  otherwise. 

Finally, consider the case 2s s . If 1
Aq q , D prefers to implement 2 0a  regardless of 2s . 

Likewise, she prefers 2 1a  if 1
Aq q , while 1

Aq q  is abstracted from because it implements a 

mixed strategy. As a result, two pure strategies remain implementable, namely, I  and IV . 

Regarding over- and underconfidence, define 

 
~

0 1 01 1 , I IVQ s q  

 

where 

 
~

0

1 2
1 2 1 2

I IV Aq q . 

 

If ~
0 0

I IVq q , D prefers I , which translates into her uniquely preferring 0, Aq  in the first period. If 
~

0 0
I IVq q , D prefers ,1Aq . The posterior q  attains Aq  at 0 1q . 

Thus, 0 1 1Q s  is the only instance of over- or underconfidence. As for the second-period, defining 

 
2 22 ~

0 1 2 01, 1 1 , I IVQ s s q  

 

and 

 
~

0 1 2 01, 0 ,I IV AQ s s q q  

 

yields the same kind of conclusion for 1 21, 1s s  and 1 21, 0s s  since the corresponding q  

attains Aq  at 2 22
0 1q  and 0

Aq q , respectively.  

 

For the sake of completeness, we give the over- and underconfidence ranges for the signal histories 

beginning with 1 0s , which were omitted from the proof of Proposition 5. If 0 m , we have 

 
1~ , 0

1 00 , 1 1II III ss q  
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1
2~ , 0 2 2

1 2 00, 0 , 1 1III IV ss s q  

 
1~ , 0

1 2 00, 1 , I II sAs s q q  

 

where 1~ , 0
0 1
I II sq , 1~ , 0

0

1
1 1 1 1

II III sq  and 

 
1

2
~ , 0

0 2 21 1 1
III IV sq . 

 

Secondly, if m s , we have 

 
1~ , 0

1 00 , 1 1I III ss q  

 
1

2~ , 0 2 2
1 2 00, 0 , 1 1III IV ss s q  

 
1~ , 0

1 2 00, 1 , I III sAs s q q  

 

Where 1~ , 0
0

2
1 1 1 2

I III sq . 

 

Finally, if s , we have 

 
1~ , 0

1 00 , 1 1I IV ss q  

 
1

2~ , 0 2 2
1 2 00, 0 , 1 1I IV ss s q  

 
1~ , 0

1 2 00, 1 , I IV sAs s q q  

 

where 1~ , 0
0

2
1 1 2 2

I IV sq . 
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PROOF OF PROPOSITION 6 

 

Throughout, we consider the case 1 1s . The argument for 1 0s  is analogous. Suppose that 

0 s . We now construct an example where D attains higher welfare being myopic. Let 

0q 2 22 ~
01 , I IIq . A Bayesian agent prefers II  in this case, while a 

forward-looking D prefers I  where the belief intervals implementing these strategies satisfy 

10, TI q  and 1 ,T AII q q  (see the proof of Proposition 5). Suppose now that D chooses her belief 

myopically in the first period. D in this case prefers beliefs implementing 1 0a , which are given by 

10, Tq  and 1 ,T Aq q , for all 

 

0q 0
Tq 1 1 1 1 1 . 

 

Since ~
0
I IIq 0

Tq , D thus prefers 10, TI q  and 1 ,T AII q q . As D puts positive probability on all 

preferred beliefs, she implements both I  and II  with positive probability. A Bayesian, who prefers 

II  to I , prefers any mixture of II  and I  to implementing I  for sure. As a result, D’s welfare is 

higher if she is myopic. 

Consider now the case . D’s points of indifference if she is forward-looking are given by 
2 2~ 2

0 1I IIq , ~
0 1II IIIq  and ~

0
III IV Aq q , 

which coincide with those of a Bayesian and satisfy ~ ~
0 0
I II II III Aq q q . In contrast, if D is myopic, she 

prefers I  and II  if ~
0 0

II IIIq q , while she prefers III  and IV  if ~
0 0

II IIIq q  and is indifferent if 
~

0 0
II IIIq q . As a result, D cannot do better being myopic regardless of how she chooses among 

optimal beliefs. 

Next, let 2s s . In this case, two pure strategies remain implementable, namely, I  and IV , 

via 1 0, Aq q  and 1 ,1Aq q . If forward-looking, D is indifferent between I  and IV  at 
~

0 1 2 1 2 1 2I IV Aq q . In contrast, a Bayesian is indifferent 

between I  and IV  if ~
0 01 1 1 I IVq q . If D is myopic, she treats her first-

period problem as a single- or last-period one. As a result, she prefers 0, Aq  if 0
Aq q  and ,1Aq  if 

0
Aq q . For all ~

0 0
I IVq q , D prefers 0, Aq  under both myopia and regret, which implies the same 

welfare. If ~
0 0

I IVq q , D is indifferent between 0, Aq  and ,1Aq  if forward-looking and prefers 

0, Aq  if myopic. Since a Bayesian prefers IV , forward-lookingness performs not worse. If 
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~
0 0
I IV Aq q q , forward-lookingness performs better because it entails IV  for sure, while myopia 

entails I . Finally, if 0
Aq q , IV  is chosen either way. 

If 2 s , a forward-looking D chooses 0, Aq  for all 0
Aq q  and ,1Aq  for all 0

Aq q  and thus 

the same beliefs as under myopia. As a result, there is no difference between being myopic and 

forward-looking. 

 
 
3.6 Appendix B: Eliciting Individual Regret Sensitivities 

 

In this appendix, we show how to elicit an individual’s regret parameter using an experimental choice 

task. Consider the following elicitation procedure for : A subject D is endowed with a prior 0q  on 

some state space 0 1X ,  where 0 1 0 5q Pr x .  and chooses once from the action set 

0 1A , . Ultimately, D receives 1 money unit if her action choice coincides with the state, i.e., if 

0x  and 0a  or 1x  and 1a , and no money otherwise. Since the state does not engage D’s ego, 

we plausibly have 1 1u x ,a 0 0 1u x ,a  as well as 1 0u x ,a 0 1 0u x ,a . 

This together with 0 0 5q .  implies that 0a  is D’s reference action. 

Using the strategy method, D is asked to make a contingent action choice before receiving a 

symmetric signal 0 1s ,  on the state. Importantly, her choice not only conditions on the signal, but 

also on the signal precision, which is not revealed to D ex ante. More specifically, D is asked to 

indicate the signal precision making her indifferent between the two actions after observing 1s . 

Letting 0 5 1. ,  be the stated precision, D is paid according to the following rule: Given that 1s  

has materialised, action 1 (action 0) is implemented if and only if  ( ), i.e., if the actual 

signal precision exceeds (falls short of) the stated threshold, while the two actions are implemented 

with equal probability if . 

To see why  pins down D’s regret parameter , express D’s target function directly in terms of 

the probability of choosing action 1 denoted by . For a given , D’s problem is to maximise 

 
00

0 0 0 0

1 1
1 1

1 1 1 1
qqV

q q q q
 

 

where 0 0 01 1q q q  is the Bayesian posterior probability assigned to 1x  given 1s . 

Notice that D only feels regret in state 0 because 0 0 5q .  implies that 0a  is her reference action. 
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We have the following indifference condition: 

 

0 00 1 1 1 0dV d q q . 

 

Solving for  yields the precision making D indifferent as 0 01 1 1 1q q . 

 

PROPOSITION B1 In the elicitation procedure, it is a weakly dominant strategy for D to tell the truth, 

i.e., to choose 0 01 1 1 1q q . 

 

PROOF Consider any lying strategy . If the actual signal precision  satisfies , 

 performs as well as the truth-telling strategy  because both strategies implement 

action 1. If ,  again performs as well as  because D is now indifferent between the two 

actions and  implements action 1, while  yields each action with equal probability. In contrast, if 

,  performs better than : The former implements action 0, which is preferred by D 

since , while the latter implements either action 1 or both actions with equal probability. 

Finally, if , both strategies again perform the same because both lead to action 0. All in all, any 

strategy  is therefore weakly dominated by . An analogous argument can be 

constructed for all strategies . Again, these are weakly dominated by . As a result, 

it is weakly dominant for D to choose .  

 
 
3.7 Appendix C: Anticipatory Utility and Asymmetry 
 
 
In this section, we derive the predictions of Brunnermeier and Parker’s (2005) model of “optimal 

expectations” about asymmetric information processing. The target function for belief selection in our 

one-period setting is given by 

 

1 1 0 1 0 1 1 1 1, , , ,
x x

V q q s q x q s U x q q x U x q . 

 

Allow beliefs without full support and consider the case . Letting 0 11 ,q x q s q , we have 
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1 1V q q      if 1 1Aq q   

 

1 1 11 1V q q q q    if 1
Aq q  

 

assuming for analytical convenience that D chooses 1 0a  if 1
Aq q . Clearly, within these two 

intervals, the extreme values 1 1q  and 1 0q  are optimal, respectively. Inserting them, we have 

 

1 1 1 1Aq q q q q . 

 

Thus, as soon as 1 , D prefers 1 1q  before the posterior q  attains Aq . The intuition is that by 

believing in the good state she realises an anticipatory utility of 1, while believing in the bad state only 

yields her 1 . Thus, D prefers 1 1q  implementing 1 1a  at priors where the objective 

performance of 1 1a  falls short of that of 1 0a . 

If 1 1 0.5Aq , the model implies an asymmetry in information processing. To see 

this, suppose first that 1 1 0.5Aq . In this case, D chooses 1 0q  after 1 1s  if 

0 1 0.5q  and 1 1q  if 0 1q , while she chooses 1 1q  after 1 0s  if 0 0.5q , which 

amounts to symmetry. This changes if 1 1 0.5Aq : After 1 1s , D now prefers 

1 1q  if 0 1q x  for some 0x . After 1 0s , she prefers 1 1q  if 0q y  for some 0y . 

Thus, if 0 1 ,1q x y , D chooses 1 1q  both after 1 1s  and after 1 0s  given the 

counterfactual prior 01 q . This can be interpreted as the good signal carrying more weight. 

Consider next the case . Within the two belief intervals, 1 1q  and 1
Aq q  are now optimal, 

respectively. Intuitively, since , D wants to assign maximal probability to the good state (subject 

to implementing a given action) in order to flatter her ego. Inserting these values, we have 

 
21 1 1 1A Aq q q q q q . 

 

Now, the model generates an asymmetry in information processing that is more extreme than in the 

previous case. In fact, chosen beliefs always exceed the Bayesian posterior because D prefers 1
Aq q  

if 21 1A Aq q q  and 1 1q  if 21 1Aq q . Belief revision is 

therefore tilted towards the good state. 



BIBLIOGRAPHY 

126 

 

BIBLIOGRAPHY 
 

Akerlof, George A. and William T. Dickens (1982). “The economic consequences of cognitive 

dissonance”. The American Economic Review, 72(3), 307-319. 

 

Battigalli, Pierpaolo and Martin Dufwenberg (2007). “Guilt in Games”. The American 

Economic Review (P&P), 97(2), 170-176. 

 

Battigalli, Pierpaolo and Martin Dufwenberg (2009). “Dynamic psychological games”. Journal 

of Economic Theory, 144(1), 1-35. 

 

Barigozzi, Francesca and Rosella Levaggi (2010). “Emotional decision-makers and anomalous 

attitudes towards information”. Journal of Risk and Uncertainty, 40(3), 255-280. 

 

Bartling, Björn and Urs Fischbacher (2011). “Shifting the Blame. On Delegation and 

Responsibility”. Review of Economic Studies, 79(1), 67-87. 

 

Bell, David E. (1982). “Regret in decision making under uncertainty”. Operations Research, 

30(5), 961-981. 

 

Benoît, Jean Pierre and Juan Dubra (2011). “Apparent overconfidence”. Econometrica, 79(5), 

1591-1625. 

 

Brandts, Jordi and Carles Solá (2001). “Reference Points and Negative Reciprocity in Simple 

Sequential Games”. Games and Economic Behavior, 36(2), 138-157. 

 

Brunnermeier, Markus K. and Jonathan A. Parker (2005). “Optimal Expectations”. The 

American Economic Review, 95(4), 1092-1118. 

 

Caplin, Andrew and John Leahy (2001). “Psychological expected utility theory and anticipatory 

feelings”. The Quarterly Journal of Economics, 116(1), 55-79. 



BIBLIOGRAPHY 

127 

 

Charness, Gary and Matthew Rabin (2002). “Understanding Social Preferences With Simple 

Tests”. The Quarterly Journal of Economics, 117(3), 817-869. 

 

Coffman, Lucas C. (2011). “Intermediation Reduces Punishment (and Reward)”. American 

Economic Journal. Microeconomics, 3(4), 77-106. 

 

Cox, James C. (2004). “How to identify trust and reciprocity”. Games and Economic Behavior, 

46(2), 260-281. 

 

Cox, James C., Daniel Friedman and Vjollca Sadiraj (2008). “Revealed Altruism”. 

Econometrica, 76(1), 31-69. 

 

Cox, James C., Maroš Servátka and Radovan Vadovi  (2010). “Saliency of outside options in 

the lost wallet game”. Experimental Economics, 13(1), 66-74. 

 

Dhaene, Geert and Jan Bouckaert (2010). “Sequential reciprocity in two-player, two-stage 

games. An experimental analysis”. Games and Economic Behavior, 70(2), 289-303. 

 

Dohmen, Thomas, Armin Falk, David Huffman, Felix Marklein and Uwe Sunde (2009). "The 

non-use of Bayes rule: representative evidence on bounded rationality", Working Paper 

RM09038. 

 

Dufwenberg, Martin and Uri Gneezy (2000). “Measuring beliefs in an experimental lost wallet 

game”. Games and Economic Behavior, 30(2), 163-182. 

 

Dufwenberg, Martin and Georg Kirchsteiger (2004). “A theory of sequential reciprocity”. 

Games and Economic Behavior, 47(2), 268-298. 

 

Eliaz, Kfir and Ran Spiegler (2006). “Can anticipatory feelings explain anomalous choices of 

information sources?”. Games and Economic Behavior, 56(1), 87-104. 

 



BIBLIOGRAPHY 

128 

 

Epstein, Larry G., Jawwad Noor and Alvaro Sandroni (2010). “Non-bayesian learning”. The BE 

Journal of Theoretical Economics, 10(1). 

 

Eyster, Erik (2002). “Rationalizing the past: A taste for consistency”. Working Paper Nuffield 

College Oxford. 

 

Falk, Armin, Ernst Fehr and Urs Fischbacher (2003). “On the nature of fair behavior”. 

Economic Inquiry, 41(1), 20-26. 

 

Falk, Armin and Urs Fischbacher (2006). “A theory of reciprocity”. Games and Economic 

Behavior, 54(2), 293-315. 

 

Falk, Armin and Michael Kosfeld (2006). “The hidden costs of control”. The American 

Economic Review, 96(5), 1611-1630. 

 

Falk, Armin and Florian Zimmermann (2011). “Preferences for consistency”. IZA Working 

Paper No.5840. 

 

Fehr, Ernst and Klaus M. Schmidt (1999). “A theory of fairness, competition, and cooperation”. 

The Quarterly Journal of Economics, 114(3), 817-868. 

 

Fehr, Ernst and Klaus M. Schmidt (2006). “The economics of fairness, reciprocity and altruism 

– experimental evidence and new theories”. Handbook on the Economics of Giving, Reciprocity 

and Altruism, 1, 615-691. 

 

Fershtman, Chaim and Uri Gneezy (2001). “Strategic delegation. An experiment”. RAND 

Journal of Economics, 32(2), 352-368. 

 

Friedman, Daniel (1998). “Monty Hall's Three Doors: Construction and Deconstruction of a 

Choice Anomaly.” The American Economic Review, 88(4), 933-946. 

 



BIBLIOGRAPHY 

129 

 

Gächter, Simon and Ernst Fehr (2000). “Cooperation and punishment in public goods 

experiments”. The American Economic Review, 90(4), 980-994. 

 

Geanakoplos, John, David Pearce and Ennio Stacchetti (1989). “Psychological games and 

sequential rationality”. Games and Economic Behavior, 1(1), 60-79. 

 

Goeree, Jacob K., Charles A. Holt and Thomas R. Palfrey (2008). “Quantal response 

equilibria”. In Steven N. Durlauf and Lawrence E. Blume ed.s., The New Palgrave Dictionary 

of Economics (Second Edition), Palgrave Macmillan. 

 

Hamman, John R., George Loewenstein and Roberto A. Weber (2010). “Self-interest through 

delegation. An additional rationale for the principal-agent relationship”. The American 

Economic Review, 100(4), 1826-1846. 

 

Herweg, Fabian and Konrad Mierendorff (2013). “Uncertain Demand, Consumer Loss 

Aversion, and Flat-Rate Tariffs”. Journal of the European Economic Association, 11, 399–432. 

 

Herweg, Fabian and Daniel Müller (2011). “Performance of Procrastinators: On the Value of 

Deadlines”. Theory and Decision, 70(3), 329-366. 

 

Herweg, Fabian and Klaus M. Schmidt (2013). “A Theory of Ex-Post Inefficient 

Renegotiation”. SFB TR/15 Discussion Paper 390. 

 

Kahneman, Daniel and Amos Tversky (1973). “On the psychology of prediction”. 

Psychological Review, 80(4), 237-251. 

 

Kahneman, Daniel and Amos Tversky (1979). “Prospect theory. An analysis of decision under 

risk”. Econometrica, 47(2), 263-291. 

 

K szegi, Botond (2003). "Health anxiety and patient behavior". Journal of Health Economics, 

22(6), 1073-1084. 



BIBLIOGRAPHY 

130 

 

Köszegi, Botond (2006). “Ego utility, overconfidence, and task choice”. Journal of the 

European Economic Association, 4(4), 673-707. 

 

Köszegi, Botond and Matthew Rabin (2006). “A model of reference-dependent preferences”. 

The Quarterly Journal of Economics, 121(4), 1133-1165. 

 

Köszegi, Botond and Matthew Rabin (2009). “Reference-Dependent Consumption Plans”. The 

American Economic Review, 99(3), 909-36. 

 

Loomes, Graham and Robert Sugden (1982). “Regret theory: An alternative theory of rational 

choice under uncertainty”. The Economic Journal, 92(368), 805-824. 

 

Mas-Colell, Andreu, Michael D. Whinston and Jerry R. Green (1995). Microeconomic Theory. 

New York: Oxford University Press. 

 

McFadden, Daniel (1974). “Conditional logit analysis of qualitative choice behavior”. In P. 

Zarembka ed., Frontiers in Econometrics, Academic Press, New York, 105-142. 

 

McCabe, Kevin A., Mary L. Rigdon and Vernon L. Smith (2003). “Positive reciprocity and 

intentions in trust games”. Journal of Economic Behavior & Organization, 52(2), 267-275. 

 

McKelvey, Richard D. and Thomas R. Palfrey (1995). “Quantal response equilibria for normal 

form games”. Games and Economic Behavior, 10(1), 6-38. 

 

McKelvey, Richard D. and Thomas R. Palfrey (1996). “A Statistical Theory of Equilibrium in 

Games”. Japanese Economic Review, 47(2), 186-209. 

 

Möbius, Markus M., Muriel Niederle, Paul Niehaus and Tanya S. Rosenblat (2012). “Managing 

Self-Confidence: Theory and Experimental Evidence”. Working Paper Stanford University. 

 

 



BIBLIOGRAPHY 

131 

 

O'Donoghue, Ted and Matthew Rabin (2001). “Choice and procrastination”. The Quarterly 

Journal of Economics, 116(1), 121-160. 

 

Palacios-Huerta, Ignacio (2003). “Learning to open Monty Hall's doors”. Experimental 

Economics, 6(3), 235-251. 

 

Rabin, Matthew (1993). “Incorporating fairness into game theory and economics”. The 

American Economic Review, 83(5), 1281-1302. 

 

Rabin, Matthew and Joel L. Schrag (1999). “First impressions matter: A model of confirmatory 

bias”. The Quarterly Journal of Economics, 114(1), 37-82. 

 

Rabin, Matthew (2002). “A perspective on psychology and economics”. European Economic 

Review, 46(4), 657-685. 

 

Servátka, Maroš and Radovan Vadovic (2009). “Unequal Outside Options in the Lost Wallet 

Game”. University of Canterbury Working Paper. 

 

Samuelson, William and Richard Zeckhauser (1988). “Status quo bias in decision making”. 

Journal of Risk and Uncertainty, 1, 7-59. 

 

Shalev, Jonathan (2000). “Loss aversion equilibrium”. International Journal of Game Theory, 

29(2), 269-287. 

 

Von Siemens, Ferdinand (2011). “Intention-Based Reciprocity and the Hidden Costs of 

Control”. Tinbergen Institute Discussion Paper. 

 

Yariv, Leeat (2005). “I’ll See It When I Believe It - A Simple Model of Cognitive Consistency”. 

Working Paper Caltech. 


