Biogeographic and cytogenetic evolution of the
Alstroemeriaceae/Colchicaceae inferred from multi-locus
molecular phylogenies, fluorescent in situ hybridization
data, and probabilistic models of geographic and

chromosome number change

Juliana Chacon Pinilla

DISSERTATION
ZUR ERLANGUNG DES DOKTORGRADES
AND DER FAKULTAT FUR BIOLOGIE

DER LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN

MUNCHEN 2013



GUTACHTER

1. Gutachter: Prof. Dr. Susanne S. Renner

2. Gutachter: Prof. Dr. Guinther Heubl

Tag der Einreichung: 25. Juli 2013

Tag der miindlichen Priifung: 5. November 2013

il



A mis padres

iii



v



Preface

Statutory Declaration

Erklirung

Diese Dissertation wurde im Sinne von §12 der Promotionsordnung von Prof. Dr.
Susanne S. Renner betreut. Ich erkldre hiermit, dass die Dissertation nicht einer
anderen Priifungskommission vorgelegt worden ist und dass ich mich nicht

anderweitig einer Doktorpriifung ohne Erfolg unterzogen habe.

Eidesstattliche Erklidrung

Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir

selbststindig und ohne unerlaubte Hilfe angefertigt wurde.

Juliana Chacon Pinilla

Miinchen, 25. Juli 2013



Note

In this thesis, I present the results from my doctoral research, carried out in Munich
from September 2009 to July 2013 under the guidance of Prof. Dr. Susanne S.
Renner. My thesis resulted in five manuscripts, presented in Chapters 2 to 6, of which
two have been published (Chapters 2 and 5), two are in review (Chapters 3 and 4),
and one has been accepted pending minor revision (Chapter 6). I also gave the
presentations listed below. I generated all data and conducted all analyses myself,
except for the estimation of ancestral chromosome numbers in Colchicaceae (part of
Chapter 6), which was done with help of Dr. Natalie Cusimano, and the identification
of fossil leaves from New Zealand (Chapter 3), which was done in collaboration with
Dr. John G. Conran (The University of Adelaide, Australia), Dr. Dallas C. Mildenhall
(Institute of Geological and Nuclear Sciences, New Zealand), Dr. Jennifer M.
Bannister, and Dr. Daphne E. Lee (University of Otago, New Zealand). Writing and

discussion involved collaboration with Professor Susanne Renner.

List of publications
Peer-reviewed journal articles

CHACON, JULIANA, M. C. AssISs, A. W. MEEROW, AND S. S. RENNER. 2012. From
East Gondwana to Central America: Historical biogeography of the
Alstroemeriaceae. Journal of Biogeography 39: 1806—1818. (accepted April
13" 2012)

CHACON, JULIANA, A. SOUSA, C. M. BAEZA, AND S. S. RENNER. 2012. Ribosomal
DNA distribution and a genus-wide phylogeny reveal patterns of
chromosomal evolution in Alstroemeria (Alstroemeriaceae). American

Journal of Botany 99: 1501-1512. (accepted 6thAugust 2012)

CHACON, JULIANA, N. CUSIMANO, AND S. S. RENNER. 2013. The evolution of
Colchicaceae, with a focus on changes in chromosome numbers. Systematic

Botany. (accepted pending minor revision, 5th July 2013)

CHACON, JULIANA AND S. S. RENNER. 2013. Assessing model sensitivity in

Likelihood Analyses of Geographic Range Evolution (LAGRANGE): A study

Vi



using Colchicaceae and experimental data. Journal of Biogeography

(manuscript classified as requiring full revision, May 21st 2013).

CONRAN, J. G., J. M. BANNISTER, D. C. MILDENHALL, D. E. LEE, J. CHACON, AND S.
S. RENNER. Leaves and a flower with in situ pollen of Liliacidites contortus
Mildenh. sp. nov. from the Late Oligocene—Early Miocene of New Zealand.

American Journal of Botany (in review).

Posters

CHACON, J. AND S. S. RENNER. Molecular phylogenetics and biogeography of
Alstroemeriaceae, an important clade of the Austral floristic realm. VW Status
Symposium in Evolutionary Biology. Frauenchiemsee, Germany, May 9 — 12,

2010.

Oral presentations

CHACON, JULIANA. AND S. S. RENNER. When do models that account for changing
continental connectivities make a difference? An example from the
Colchicaceae. 66" International Conference of the International

Biogeography Society. Miami, Florida, USA, January 8—13, 2013.

CHACON, JULIANA. History of a pair of clades that parted ways in East Gondwana and
then followed non-overlapping trajectories: corms and fire-adaptations in
South Africa, the Mediterranean, and Australia vs. hummingbird pollination in
South America. EES"Y Conference 2012, Ludwig Maximilians University,
Munich, Germany, October 4-5, 2012.

CHACON, JULIANA. AND S. S. RENNER. Alstroemeriaceaeae, a plant family with an
Austral-Antarctic distribution that expanded into tropical latitudes — inferring
the when and how. 14" Nordic Meeting on Tropical Botany. Gothenburg,
Sweden, August 6-8, 2012.

CHACON, JULIANA, A. VINNERSTEN, AND S. S. RENNER. Nuclear and mitochondrial
data tell a new story about genus boundaries and biogeography of the
Colchicaceae. Southern African Society for Systematic Biology 10th Meeting,
SASSB X. Arniston. South Africa, July 16-20, 2012.

vii



CHACON, JULIANA, M. CAMARGO DE AsSIS, A. W. MEEROW, AND S. S. RENNER. New
insights into the biogeography of the Austral floristic realm from a complete
phylogeny for the Alstroemeriaceae. XVIII International Botanical Congress
IBC 2011. Melbourne, Australia, July 23 — 30 2011.

CHACON, JULIANA AND S. S. RENNER. Phylogeny and biogeography of the
Alstroemeriaceae, an important clade of the Austral floristic realm.

BioSystematics Berlin 201 1. Berlin, Germany, February 21 — 27, 2011.

Herbaria visited
. Miinchen (M), Germany, 2009-2012
. Universidad de los Andes (ANDES), Colombia, August 2010
. Universidad del Valle (CUVC), Colombia, August 2010
. Universidad de Antioquia (HUA), Colombia, August 2010
. Universidad Nacional Sede Medellin (MEDEL), Colombia, August 2010
. Jardin Botanico Joaquin Antonio Uribe (JAUM), Colombia, August 2010
. Herbario Nacional Colombiano (COL), Colombia, September 2010
. Berlin (B), Germany, February 2011
. Sydney (NSW), August 2011
. University of Cape Town (BOL), July 2012
. South African National Biodiversity Institute (NBG), July 2012

. University of Gothenburg (GB), August 2012

Field work

. Colombia, July 2008

. South Africa, July — August 2012

viii



Funding

Teaching/Research-Assistantship (October 2009 — January 2010) funded by
the DAAD-STIBET Betreuungsmafsnahmen fiir ausldindische Doktoranden

The three-years research period (2010 — 2012) was funded by the Deutsche
ForschungsGemeinschaft (DFG projects RE 603/10-1 and RE 603/10-2).
Travel to the conferences in Melbourne, Gothenburg, Arniston, Miami, and

field trips in Colombia and South Africa were also funded by the DFG

Travel to the conference in Berlin by the EES"™" Travel Grant

1X



Contents

Preface...... ..o s v
Statutory DEClaration..........cccuvieiiieiiieieiieeeiee ettt ste et e e s e e aee e beeenneees v
ETKIATUNG. ..ottt ens \
Eidesstattliche ErKIATUNg ..........cceeviiiiiiiieiiciecce e v

INOLE ettt ettt ettt e ettt e et e e st e e e ettt e e e ettt e e e s et e e e snteeeenan Vi

List Of PUDIICATIONS .....eeiieiiiiiiieiieiese e e vi

Oral PrESENTATIONS ....c.vvieieiieeiiieeieeeieeeeteeeteeesreeereesbeesseeesaseeeseeessseesnseeas vii
Herbaria VISIted........coveiuiiieiiiriieieeeeee et viii

FIEId WOTK ..ottt viii

FUNAING ..ottt sttt eaae e e es X
COMELINES ...ttt et be e s sane s X
SUIMIMATY ..c..eoiiiiteitee ettt ettt b e ettt et e bt e sbtesate et e esbe e bt esaeesaeesaneens 1
General INtroduction .............c..oooiiiiiiiiiiiii e 4
Historical biogeography of Alstroemeriaceae and Colchicaceae..........c.cccoeenene 5
Recent methodological progress in biogeography.........ccceevveevveerveneenieennenne 5
Neotropical biogeography .........ceccviieiiiiiriieecie ettt eseree e 9

The Alstroemeriaceae family...........cccceevvieriieiiienienieeieee e 10

The Austral floristic realm........ccccoeviiiiriiiiniiinceceee 11

The Colchicaceae family...........cocevirieriniiiinieieseeeeeee e 13

State of the art of Colchicaceae biogeography .........cccoeeeeveevvenivenieeniienenne 15
Chromosome VOIULION .......c..coeeiiriiriiriiiicicieetee e 16
Ribosomal DNA evolution in AIStroemeria .............cccccueeeeeveeeeceeeveeeneennnenne 16
Chromosome number evolution in Colchicaceae ........c..ccceeereevuineeicnnenne. 17

AT Of thiS STUAY ..veevvieiieiiecie et 19

Chapter 2: From East Gondwana to Central America: historical biogeography of the

ALSTTOCINEIIACEAC. ....cooiiiiiiiiiieeee ettt ettt e et e e e aaaasaaaaaaaes 21

Chapter 3: Leaf fossils of Luzuriaga and a monocot flower with in situ Liliacidites

contortus Mildenh. sp. nov. pollen from the Early Miocene...........cccccccvvveevvrenreennnenn. 51

AADSTIACT ettt e e e e e e e ee e e e e e e e e eeeeaeeeaaeaaaaaaaaaaaaaaaaans 52



Materials and methods..........ccooiiiiiiiiiiiniiie e 55
Fossil collection and preparation ..........c.cecceeeeeeereieeeieeenieeeirieeeeeesieeeneenns 55
Phylogenetic analysiS.........ccvevierierieriiieiieniesee et 56
Molecular clock analySes.........cccveeeuvieriieeiiiieiieciee e e 58

RESULILS ..ttt ettt ettt e e e ebeenseesaaeesaeenbeennean 58
Molecular dating .........cevverieriieiierieee e 61

SYSERIMALICS ..euvveeeetieesiie et et e e iee ettt e eteeetee e st eesstteesnseessseeesseessseeansseesnseesnsseesnnes 62

DISCUSSION ...ttt ettt sttt sttt sttt ettt e b aee 69
Historical biogeography and paleoecology.........ccccueevvieriieeiieeniiecciee e, 72

CONCIUSIONS ...ttt ettt ettt ettt e s e et e et e esbeesaaeesaeesaeenseenseenseesseesnseans 73

ACKNOWIEAZEMENLS ....ceeieiiieiieiiecieeieeee e 74

LIterature CILEA .....cocveeeiieeiie ettt et e e re e eerae e snreesneeas 74

Chapter 4: Assessing model sensitivity in Likelihood Analyses of Geographic

Range Evolution (LAGRANGE): A study using Colchicaceae and experimental data..83

ADSITACE ..ttt ettt ettt ettt 84
INrOAUCTION ... 85
Materials and methods. .........ccoviiiiiriiiiiie e 88
Taxon SAMPIING......cccciiiiriiiiiiieieeee ettt e e e e bee e taeessreeeeaee e 88
DNA extraction, amplification and sequUencing...........ccceceevvverveeererveenneenne. 89
Phylogenetic analyses and molecular clock dating............cccceevveeveieneennnnnne. 90

Ancestral areas inference for the empirical and an artificial data set, and

assessment Of MOdel fit.........oooviiiiiiiiiiiiie e 91
RESUILS ..o e 94
Molecular phylogeny and chronogram of Colchicaceae .............cccevennennee. 94
Results of the LAGRANGE €XPETIMENTS ........eeeevererereeeieeeireeereeereeenereeenneenns 97
DIASCUSSION ..eeiiiiiieeiie ettt ettt e et et e st e e teessta e e sbeessseeesseesnseeennseeennes 103
Effect of the components of the DEC model...........cccoceeiieiinniiniiini, 103
The biogeography of Colchicaceae based on the best-fit AAR model (MC2)
............................................................................................................................ 104
CONCIUSIONS ...ttt ettt sbe e 105
ACKNOWICAZEMENLS ......eviiiieiieiieciieceeee et ettt aaesane e 106
RETETEICES ....cnveiiieiecee ettt 106

X1



Supporting INFOrMAtION ........ccveeiieiieciierieeie et e e ereenaees 111

Chapter 5: Ribosomal DNA distribution and a genus-wide phylogeny reveal patterns

of chromosomal evolution in Alstroemeria (Alstroemeriaceae)...........cceecveeveeveennen. 131

Chapter 6: The evolution of Colchicaceae, with a focus on changes in chromosome

TIUINIDETS ..ottt ettt ettt sttt st et sb et sb e sae et e 153
ADSITACE .ttt bbbttt et 154
INrOAUCTION ..uiiiiiiiicc et 154
Materials and MethOdsS ..........cocveeiiiiieiiieieciecee e 158

Taxon sampling and phylogenetic analyses..........ccccceevveeveenienvenieeiienienns 158
Inference of chromosome number change............cccoecveeeiiencieicciiecee e, 159
RESUILS ..ttt 162
Molecular phylogeny of Colchicaceae............cceevveeeciveeniieeieeeieecree e, 162
Ancestral chromosome numbers in Colchicaceae ............ccceeveveerveeneennen. 162
Molecular phylogeny of Colchicum.............coccoevceeviivoencieiiesienieeieeiens 165
Reconstruction of ancestral chromosome numbers in Colchicum.............. 167
DISCUSSION ...ttt ettt ettt be st e b st sbe s 167
Chromosome number evolution in early-diverging Colchicaceae.............. 167
Chromosome number evolution in ColchiCum ............ccccueevevveencveeienannnns 170
AcCKkNOWIEdZEmMENLS.......ccciiiiiiieciiecie e 172
LAterature CIEEA .......coeeueriieieniieieste ettt 172
Supporting INfOrMAtION .......cevuiivieiiieiieieceee e 176

General DiSCUSSION............cooiiiiiiiiiiie et 199

Phylogenetics and evolution of Alstroemeriaceae and Colchicaceae ................ 199
Relationships in the order Liliales ..........cccoceiviiiiiniiiiiiniiiiiicniccicee 199
Biogeography of AlStroemeriaceac...........cocuevveevueenueereenieeniiesiesieeveeeens 199
Discovery of the first Alstroemeriaceae fossil..........cooovevvieriiiniiniieniiennenne 201

Biogeography of ColchiCaceae...........cccuvevuieviierieniieiieiiesie e 202
What can be learn from the LAGRANGE experiments?...........ccccceveevvennnenne 202
Biogeographic history of Colchicaceae ............coceveevievieiienienenieiencene 203

Chromosome evolution in Alstroemeriaceae and Colchicaceae...........c...cc.c...... 205
Distribution patterns of IDNA in AIStroemeria .............ccccceceevceenveneuennen. 205
Chromosome number evolution in the Colchicaceae .........c.ccccceevevueneenene 206

Xii



GeNEral COMCIUSIONS ........eeiiieeieeee et e e e e e e et eeeeeeeeeeeeeeaaas 210

ReferencCes...........ocooiiiiiiiiii e 212
APPEIAICES .......ooeniiiiiiieeiie ettt rte e te e st e et e s bt e e nteeenseeesaeennsaeesaeennreeennes 227
ACKNOowled@ements ...............coocoiiiiiiiiiiii e e e 230
Curriculum VIEAe ..........cooiiiiiiiiiiiii e 231

Xiii



Xiv



Summary

This dissertation addresses two issues of key importance in the evolution and
diversification of plants, namely geographic expansion and isolation, and
chromosomal change. To study these two topics, I focused on sister families in the
Liliales, the Alstroemeriaceae and the Colchicaceae. Specifically, I studied (i) the
biogeography of the Alstroemeriaceae using standard methods of historical
biogeography, (ii) the biogeography of the Colchicaceae exploring the sensitivity of
results to model assumptions, (iii) chromosome evolution in Alstroemeria
(Alstroemeriaceae) using fluorescent in situ hybridization (FISH), and (iv)
chromosome number evolution in the Colchicaceae using event-based maximum

likelihood models.

The first biogeographic chapter of my thesis focuses on the Alstroemeriaceae, a
family of c. 200 species in four genera: Alstroemeria and Bomarea, with c. 198
species restricted to the Neotropics, Drymophila, with two species native to Australia,
and Luzuriaga, with three species in Chile and one in New Zealand. It is one of 28
flowering plant families shared between South America, New Zealand, and Australia.
I investigated its biogeography by means of a molecular phylogeny (resulting from
3130 aligned nucleotides for 125 species, mostly newly sequenced), a Bayesian dating
analysis with fossil calibrations, and a parsimony-based ancestral area reconstruction
method. As a contribution to the larger question of the origin of the Neotropic biota, I
compared key biological traits and diversification times of the Austral-Antarctic
families that spread from Patagonia to the equator. The most recent common ancestor
of the Alstroemeriaceae-Colchicaceae apparently lived c. 93 million years ago (Ma)
in East Gondwana (Australia, Antarctica and India), which was connected to West
Gondwana (South America and Africa) via Antarctica. Alstroemeria and Bomarea
diversified in the Miocene (18—11 Ma) during the main uplift of the Andean
mountains. Only five of the 28 families, including the Alstroemeriaceae, expanded all
the way from Patagonia to Mexico and eastern Brazil. A main dispersal barrier
appears to have been the South American Arid Diagonal, an arid belt that crosses
South America’s Southern Cone from east to west. This zone originated as a result of
the Andean uplift c. 16 Ma. The single Luzuriaga species living in New Zealand

today apparently resulted from a recent (c. 7 Ma) long-distance dispersal event from



Chile, while a leaf of Luzuriaga (and an associated flower with in situ pollen) from
the Early Miocene (23 Ma) of New Zealand represents an extinct relative and
constitutes another proof of the biogeographic connections that existed between South
America and New Zealand during the Oligocene-Miocene. With colleagues from New

Zealand, I became a coauthor on the description of these fossils.

The second biogeographic chapter of this thesis focuses on the Colchicaceae, a
family of c. 270 species in 15 genera that occur on all continents except Central and
South America. For this analysis, I used a maximum likelihood-based approach of
ancestral range evolution implemented in the software LAGRANGE (Ree et al.,
Evolution, 59, 2299-2311, 2005). This parametric method can incorporate
information about past dispersal routes through user-defined a priori settings. To
explore the effects of such a priori settings I conducted experiments in LAGRANGE
using my Colchicaceae data matrices (6451 aligned nucleotides for up to 83 species,
mostly newly sequenced) and artificial data. I found that the use of unconstrained
adjacency matrices (which concern permitted/forbidden range connections) and a
balanced number of nodes per time slice (i.e., user-defined geologic periods in the
past) give the most trustworthy results. The best-fit model and a time-calibrated
phylogeny for the Colchicaceae showed that this family diversified in Australia about
75 Ma and then dispersed to southern Africa during the Paleocene—Eocene (c. 62 Ma).
The ancestor of the clade comprising the genera Uvularia and Disporum dispersed to
the Eurasian continent and from there to North America (28—16 Ma) via the Bering
land bridge. Two expansions out of South Africa occurred during the Miocene:
eastwards across the Indian Ocean to Australia (Wurmbea), and northwards to the
Mediterranean (Colchicum). The presence of underground storage stems or corms
probably was a key adaptation for surviving the fire regimes that characterize South

Africa and Australia since Miocene times.

The first of the two cytological chapters of my thesis focuses on chromosome
evolution in Alstroemeria, based on a newly generated DNA phylogeny. Although all
Alstroemeria species counted so far have n = 8 chromosomes, even closely related
species can differ strikingly in their ribosomal DNA (rDNA). To study this aspect, I
mapped the 5S and 18-25S rDNA genes in Brazilian and Chilean alstroemerias by
FISH and analyzed the data in a phylogenetic context. The results imply a rapid

increase, decrease, or translocation of the ribosomal genes during the evolution of



Alstroemeria. The FISH experiments also revealed telomeric sequences located near
the centromeres of 4. cf. rupestris, indicating a possible Robertsonian fusion. This
finding suggests that the same mechanism could have occurred during the divergence
from the sister genus, Bomarea, which has a basic chromosome number n =9, instead

of 8 as in Alstroemeria.

My second chromosome study focuses on the Colchicaceae, which are
characterized by highly variable chromosome numbers and ploidy levels, especially in
the genus Colchicum. To understand how this diversity arose, my coauthors and I
used a maximum likelihood approach to infer ancestral chromosome numbers for
clades of interest and the possible events that may explain the observed chromosome
number in today’s species. We found that a main mechanism of chromosome number
evolution in most Colchicaceae clades has been the gain or loss of single
chromosomes (dysploidy or aneuploidy). An exception was Colchicum in which

polyploidization played a major role, presumably as a connection with hybridization.



General Introduction

A wide array of biotic and abiotic factors, interacting with each other over long
periods of time, have driven the evolution and diversification of plants in different
ecosystems. Over the past 20 years, the rise of molecular-clock dating, in combination
with increasingly complex statistical tools, has allowed assessing the plausibility of
some of these factors, such as continental drift, the onset of particular types of
climates, or the diversification of specialized groups of pollinators, by comparing the
temporal coincidence of events. Although temporal and geographical correlations
cannot establish causation, they can provide likely explanations that can be tested by
comparing multiple clades that experienced the same biotic or abiotic conditions. Like
all correlation studies, one will only find associations among factors included in the
analysis, and great care must therefore be taken not to overestimate the role of

particular factors.

Research focusing on molecular clocks and their application to a wide spectrum
of biological questions has nowhere had a greater impact than in historical
biogeography. This field has been revolutionized by the ability to infer dates of
lineage splits and to reconstruct ancestral areas of clades. There has been a tendency,
however, for studies to focus exclusively on continental movement, orogeny, origin of
land connections, and different climates as explanations for clade diversification.
Other explanatory factors have received little attention, probably because they are
more difficult to include in correlation studies than are abiotic factors. For plants, the
first of such intrinsic biotic factors coming to mind is chromosomal change, especially
polyploidy and other types of changes in the organization of an organism’s genome.
Such changes were the focus of research during the period of biosystematics (1920 to
c. 1960), but were neglected in diversification studies during the beginning of the 21st
century. They are currently experiencing a come-back (e.g., Adams et al., 2000;
Martinez et al., 2010; Lan and Albert, 2011; Catalan et al., 2012; Cusimano et al.,
2012; Weiss-Schneeweiss et al., 2012; Cristiano et al., 2013).

For my doctoral research I decided to bring together the study of historical
biogeography and chromosome evolution in a system involving two plant families,
using methods from cytogenetics, phylogenetics, molecular clock dating, ancestral

character reconstruction, and probabilistic models of chromosome change. My focus



is on the Alstroemeriaceae-Colchicaceae clade in the order Liliales of the monocots.
This clade of c. 470 species has an intriguing disjunct distribution (see Appendix 1),
with species diversity located either in the Neotropics (Alstroemericeae) or in Africa,
Australia, Eurasia, and North America (Colchicaceae). From an evolutionary
perspective, the clade is also interesting because of its karyotype characteristics, with
a highly dynamic ribosomal DNA in A/stroemeria (Alstroemeriaceae) and a great
diversity of chromosome numbers (ranging from 2n = 14 to 2n = 216) in the

Colchicaceae.

In the first part, I focus on the biogeography of the Alstroemeriaceae and the
Colchicaceae and use fossil-dated phylogenies (cross-validated by alternative
approaches) and ancestral area reconstruction methods to shed light on the species
diversification in disjunct geographic areas of the world. In the second part, I focus on
chromosome evolution in the two families and use FISH data to infer patterns of
chromosome restructuring in Alstroemeria and likelihood-based models to estimate

ancestral chromosome numbers and chromosome evolution in the Colchicaceae.

Historical biogeography of Alstroemeriaceae and Colchicaceae

Recent methodological progress in biogeography

Biogeography is the study of the distribution of organisms through space and time.
While this field of research goes back at least to the 1850s (Alfred Russel Wallace;
Moritz Wagner; Charles Darwin), it is only recently that methods have become
available that can fully exploit the information relevant to biogeographic history
contained in molecular trees. The “classic” quantitative methods, among them
Dispersal-Vicariance Analysis (DIVA; Ronquist, 1994, 1996, 1997), rely on
parsimony (which minimizes change regardless of the time between splits in the tree)
and are therefore unable to incorporate information about relative divergence times
contained in the branch lengths of molecular trees. There is also no straightforward
way to assess the uncertainty in the biogeographic inference that arises from poorly
supported phylogenetic relationships. Since 2005, several methods have been
proposed that take into account genetic branch lengths or that integrate over

topological uncertainty and branch length uncertainty (Ree et al., 2005; Nylander et



al., 2008; Ree and Smith, 2008; Lamm and Redelings, 2009; Ree and Sanmartin,
2009; Yu et al., 2010).

Parsimony-based dispersal-vicariance analyses using DIVA (Ronquist, 1994,
1996, 1997), S-DIVA (Yu et al., 2010) or Bayes-DIVA (Nylander et al., 2008; Buerki
et al., 2010) have the advantage that one does not need to specify model parameters or
prior probabilities as one does in Bayesian approaches. The method uses a “cost
matrix” that assigns costs of 1 for dispersal and extinction events and no costs for
vicariance and within area speciation events, thus favoring vicariance over dispersal
(Lamm and Redelings, 2009). DIVA requires a fully resolved topology, while S-
DIVA and Bayes-DIVA integrate over Markov chains of trees that differ in poorly
supported nodes. All three approaches have the disadvantage that they often lead to
unrealistically large ancestral ranges. This is because parsimony tends to
underestimate change along branches, which is equivalent to underestimating

dispersal and instead favoring widespread ancestors.

The relatively recent Dispersal-Extinction-Cladogenesis (DEC) approach
implemented in LAGRANGE, which stands for Likelihood Analysis of Geographic
Range Evolution (Ree et al., 2005; Ree and Smith, 2008), has the advantage that it
incorporates the information contained in branch lengths (the essence of all maximum
likelihood approaches). It has the disadvantage, however, that it not only requires a
fully bifurcated tree (as does DIVA) but moreover two user-defined matrices. One of
these matrices is the “adjacency matrix” (this is how this matrix is called in the online
LAGRANGE configurator), where the user defines the range constraints. The adjacency
matrix basically defines which area connections are allowed in the model, and it only
accepts “0” or “1” (similar to the cost matrix in DIVA). The other is the area-dispersal
matrix, where the user defines the values for the dispersal probabilities based on prior
notions of the likelihood of dispersal between geographic regions (range expansion)
or extinction (range contraction). This matrix accepts probabilities between 0 and 1,
and the user can built as many area-dispersal matrices for different periods of time
(“time slices”) as is deemed appropriate. The assignment of such probabilities thus
differs between studies. For example, the probability of dispersal between Australia
and South America during the Cretaceous (145—66 Ma), when these landmasses were
connected across Antarctica, was assigned P =1 in Buerki et al. (2011), P=10.5 in

Mao et al. (2012), and P =0.01 in Nauheimer et al. (2012). With a time-calibrated



tree (a so-called chronogram) and the two required matrices, LAGRANGE can estimate
dispersal and extinction rates and probabilities of range inheritance scenarios (Ree
and Smith, 2008). This means, however, that this method (DEC modelling) requires

many more ad hoc parameter values than does DIVA.

LAGRANGE also calculates the global likelihood of a biogeographic hypothesis
of range inheritance for a group of taxa given a set of parameter values (Ree et al.,
2005), and in principle these likelihoods can be compared when model parameters are
changed. A likelihood ratio test, however, cannot be used to compare the likelihood
scores between different DEC models because they are not nested (that is, they differ
in more than one parameter). Instead, the Akaike information criterion (AIC; Akaike,
1974) provides a way to compare non-nested models. One limitation of the DEC
approach — and parametric methods in general — is that the number of biogeographic
parameters to estimate from the data increases exponentially with the number of
areas, increasing computational time and decreasing the inferential power of the
model (Ree and Sanmartin, 2009). DEC also sometimes overestimates the frequency
of extinction events (i.e., ancestral ranges that are outside the extant species ranges),
owing to dispersal constraints enforced by the model, i.e., the transition probability

matrix (Buerki et al., 2010).

Some studies have compared results obtained with DIVA (and its statistical
derivatives S-DIVA or Bayes-DIVA) versus the DEC approach. One concerned the
genus Cyrtandra (Gesneriaceae), which is widespread on oceanic islands in the
Pacific (Clark et al., 2008). The only plausible explanation for the observed
disjunctions is over-water dispersal (which was indeed inferred), but the study
suffered from its sole calibration point being the age of an island. The second study to
compare results obtained with DIVA and DEC focused on the Simaroubaceae
(Clayton et al., 2009). In their DEC analysis, Clayton et al. used a single transition
model with four time slices (between 5 Ma to present, 30 Ma to 5 Ma, 45 Ma to 30
Ma and 70 Ma to 45 Ma) and probabilities between 0 and 1 depending on the
closeness of the areas. The authors used the same adjacency (cost) matrix in their
DIVA and DEC analyses. The comparison showed that the DEC analysis revealed
multiple ranges in younger clades, but was unable to infer events deeper in the
phylogeny. DIVA produced similar results when ancestral ranges were restricted to

two areas, but even then gave improbably large ancestral ranges at several nodes. A



comparison of Bayes-DIVA and DEC inferences in the Sapindaceae (Buerki et al.,
2010) showed that DEC gave reconstructions that were in better agreement with
palacogeographical evidence, but reconstructed ancestral ranges with high levels of
uncertainty, probably because of low inferential power when many area transitions
are being inferred from a phylogeny with too few nodes (Ree and Sanmartin, 2009).
Finally, a study of Alocasia (Araceae) that compared results from S-DIVA and DEC
found congruence except for contradictions in the deepest nodes, where S-DIVA
inferred combined (implausibly large) ancestral areas more often than did DEC, while

DEC inferred more dispersal events than did DIVA (Nauheimer et al., 2012).

As explained above, the DEC approach implemented in LAGRANGE requires two
user-defined matrices, the adjacency matrix and the area-dispersal matrix. Different
area-dispersal matrices can be assigned to different time slices of cladogenesis, as if
one were assigning a particular nucleotide substitution model to a period between x
and y million years, followed by a different model for the adjacent period of t and z
million years. Some studies have assessed model fit by comparing schemes with
many or few time slices and/or with different dispersal probabilities. Couvreur et al.
(2011) and Baker and Couvreur (2013) compared unconstrained models without time
slices to constrained models with 5 time slices. In both studies, the constrained
models had higher likelihoods. Mao et al. (2012) compared models with four to eight
time slices using dispersal probabilities between 0.1 to 1.0. They found that the eight-
time-slice model fit their data best as it had the best likelihood score calculated by
LAGRANGE. In a similarly-sized data set, Nauheimer et al. (2012) compared models
with three or four time slices, but found that the three-time-slice-model fit best. For a
study of the genus Psychotria in Hawaii, Ree and Smith (2008) varied the adjacency
matrix, and found that a constrained matrix fit the data better. All these studies show
the importance of evaluating the effects of the user-defined parameteres when
choosing a model to reconstruct the evolution of ancestral ranges in LAGRANGE.
Experiments would need to address the effects of changing the number of time slices
and thus the nodes falling within each slice. A critical evaluation of the pitfalls and
strengths of introducing time slices in DEC analysis will be useful for future studies,
since transition probability matrices can be (and have been) used across studies of
clades of similar ages and geographic distribution (for example, similar connectivity

matrices were used for the cosmopolitan families Sapindaceae and Araceae, which



began to diversify during the Early Cretaceous; Buerki et al., 2011, Nauheimer et al.,

2012).

Neotropical biogeography

Studies of the evolution of the Neotropical flora have increased dramatically over the
last ten years. This has resulted from a combination of factors, such as the availability
of cheaper DNA sequencing, the development of statistical tools and computer
platforms, and the rapid development of the relevant earth sciences geology,
climatology, and paleontology, which have provided essential data for reconstructing
past biological scenarios. As a result, the origins of biodiversity hotspots, such as the

Andean mountains in western South America, have become better understood.

The tremendous impact that especially the Andean uplift had in the
diversification of plants has been demonstrated in studies of legumes (Lupinus:
Hughes and Eastwood, 2006; Amicia, Coursetia, Cyathostegia, Mimosa, and
Possonia: Sérkinen et al., 2012), the coffee-family (Rubiaceae: Antonelli et al., 2009)
or the Espeletia complex (Asteraceae: Rauscher, 2002). All these genera underwent
rapid adaptive radiations in response to the new ecological niches created during the
Andean uplifting. Paramos offer an amazing example of such radiations. These
island-like habitats at high altitudes on the Andes (30004800 m) support one of the
richest tropical alpine floras in the world (>3,500 species; Luteyn, 1999), but evolved
only over the last 3—5 million years (My) of mountain building from both Northern
and Southern Hemisphere elements (Gregory-Wodzicki, 2000). Another island-like
biome that assembled during the Andean uplift is the seasonally dry tropical forest, a
biome restricted to the rain shadowed inter-Andean valleys and the Pacific coast in

South America (0-2500m), and which evolved over the past 15 My (Hartley, 2003).

Stable isotope data suggest that the uplift of the Andes occurred in pulses, the
most recent one currently dated to 10—6 Ma, and a previous one about 25 Ma
(Garzione et al., 2008; Capitanio et al., 2011). Paleoelevation reconstructions indicate
that the Altiplano area, which still lay at sea-level at the end of the Cretaceous (Coney
and Evenchick, 1994; Sempere et al., 1997), had reached only half of its current
elevation when the Late Miocene uplift phase set in (Gregory-Wodzicki, 2000;

Garzione et al., 2008). Atmospheric circulation models have recently corroborated the



effects of the Andean uplift on the South American climate (Insel et al., 2010). The
development of strong rain shadow effects on the western slopes of the Central Andes
in the Altiplano area and on the eastern slopes of the Patagonian Andes caused the
establishment of the South American Arid Diagonal (SAAD; Eriksen, 1983; Blisniuk
et al., 2005), a belt of dry ecosystems that reaches from the Peruvian and Atacama
Desert to the Patagonian steppes, crossing the Andes between 22° and 26°S
(Maldonado et al., 2005). In the southern part of the SAAD, the uplift of the
Patagonian Andes caused the development of the Monte desert and the Patagonian
steppes on the eastern side of the Andes from about 14-15 Ma onward (Blisniuk et
al., 2005). These new arid habitats, together with the newly created alpine
environments above the timberline in the Andes, provided a unique opportunity for

the evolution and diversification of arid-adapted lineages.

The Alstroemeriaceae family

The Andes between the tropics of Capricorn and Cancer are one of five important
biodiversity hotspots, with approximately 45,000 vascular plant species, half of which
are endemic (Myers et al., 2000). Among the angiosperm families with the highest
degree of endemism in the Andean region is the Alstroemeriaceae (Liliales), with c.
80% of its 204 species growing in Andean cloud forests, high-Andean grasslands
(paramo and puna) and inter-Andean dry valleys (Hofreiter, 2007). Most species
belong to the genus Bomarea (120 species) and are distributed from central Mexico to
Chile and Argentina, with one species in Brazil. The highest species diversity is found
in the northern Andes of Colombia and Ecuador, and in the Central Andes of Peru
(Hofreiter and Tillich, 2002; Harling and Neuendorf, 2003; Hofreiter and Rodriguez,
2006; Alzate et al., 2008). Bomareas are predominantly climbers with colorful
inflorescences that are hummingbird-pollinated. The second-largest genus is
Alstroemeria (c. 78 species), which occurs from southern Peru to Patagonia, and is
especially diverse in the seasonal Mediterranean steppes of Chile and Argentina
(Aagesen and Sanso, 2003), and in eastern Brazil (Assis, 2001). Alstroemerias are
erect herbs, which are either bee-pollinated (Chilean species) or humming-bird
pollinated (Brazilian species; Buzato et al., 2000 and Appendix 2). Apart from these
large Andean groups the two small genera, Luzuriaga and Drymophila, also belong in

the Alstroemeriaceae. Luzuriaga has an intriguing disjunct distribution, with three
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species in Chile and one in New Zealand (Arroyo and Leuenberger, 1988; Wardle et
al., 2001), and Drymophila has two species native to eastern Australia and Tasmania

(Conran and Clifford, 1998).

Previous molecular phylogenetic studies of the Alstroemeriaceae have been
focused either on Alstroemeria (Aagesen and Sanso, 2003) or on Bomarea (Alzate et
al., 2008), while large-scale studies of the Liliales (Chase et al., 1995; Rudall et al.,
2000; Vinnersten and Bremer, 2001; Fay et al., 2006; Petersen et al., 2012) have
included only one species of Luzuriaga and/or one of Drymophila. Therefore, neither
the mutual monophyly nor the relationships of the four genera were reliably known

when I started my doctoral research.

The Austral floristic realm

From a biogeographic perspective, Alstroemeriaceae belong to the Austral floristic
realm. This realm is comprised of 15 Southern Hemisphere families that are restricted
to South America and Australasia (Takhtajan, 1986; Moreira-Muiioz, 2007). While
the discovery of the floristic relationships between southernmost South America and
New Zealand goes back to Treviranus (1803), relatively few phylogenetic studies
have focused on this realm. Only six of the 15 families have been analyzed with
molecular clocks [e.g., Araucariaceae: Liu et al., 2009; Atherospermataceae: Renner
et al., 2000; Calceolariaceae: Nylinder et al., 2012; Cunoniaceae: Barnes et al., 2001;
Escalloniaceae (Escallonia): Zapata, 2013; Nothofagaceae: Knapp et al. 2005;
Proteaceae: Barker et al. 2007, Sauquet et al., 2009; Restionaceae: Linder et al., 2003;
not yet studied biogeographically: Asteliaceae, Berberidopsidaceae, Centrolepidaceae,

Corsiaceae, Donatiaceae, Griseliniaceae, and Stylidiaceae].

Some of the floristic relationships between South America, Australia, and New
Zealand are probably due to the break-up of East Gondwana (Antarctica,
Australia/New Zealand, Madagascar, and India). For a long period, the closest
connection between East Gondwana and West Gondwana was the southern tip of
South America, a region that therefore is of great biogeographic interest. Patagonia
and Antarctica were connected by land bridges during times of low sea level (Stevens,
1989; Reguero et al., 2002; Cione et al., 2007; Iglesias et al., 2011), and Antarctica

and Australia remained connected via the Tasman Rise until the Eocene-Oligocene
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boundary (37 Ma). Eocene paleo-temperatures at high southern latitudes, for example,
near Seymour Island, off the NE side of the Antarctic Peninsula, indicate a 10°C
cooling from the early Eocene climatic optimum (when mean temperatures were
about ~15 °C) through the end of the Eocene (minimum ~5°C; Ivany et al., 2008).
Much of this cooling took place between 52 and 41 Ma, with conditions continuing to
deteriorate more gradually thereafter. However, the Antarctic coastline and the
Transantarctic Mts. supported Nothofagus forests well into the mid-Miocene (15—13
Ma; Truswell, 1989). The gradual severance of land connections, combined with a
drastically changing climate, created the complex background against which the
evolution of the 15 seed plant families that define the Austral floristic realm needs to

be placed and interpreted.

It is clear, however, that long-distance dispersal also has played an important
role in shaping the Austral floristic realm. A recent meta-analysis reported 226
transoceanic dispersal events in vascular plant clades of the southern hemisphere,
including the Cape region (Crisp et al., 2009). Indeed, the resurrection of transoceanic
dispersal (Mufoz, et al., 2004; Renner, 2005; McGlone, 2005) as an explanation for
range disjunctions has become so pervasive that long-distance dispersal now seems a
more plausible a priori explanation for most disjunctions than continental drift
(Christenhusz and Chase, 2012). Nevertheless, there are angiosperm clades that
predate the break-up of East Gondwana, and such clades present intriguing puzzles
for historical biogeography, requiring careful testing of alternative explanations for

geographic range disjunctions.

The split between Alstroemerioideae (A/stroemeria and Bomarea) and
Luzuriagoideae (Luzuriaga and Drymophila), that is the crown group of
Alstroemeriaceae, has been dated to 79 Ma; that between Chilean Luzuriaga and
Australian/Tasmanian Drymophila to 56 Ma (Janssen and Bremer, 2004). Both ages
would be sufficiently old for overland dispersal between Australasia and South
America during the Upper Campanian to Late Palaeocene, when Antarctica carried
tropical vegetation (Axsmith et al., 1998; Poole and Gottwald, 2001) and was home to
huge dinosaurs (Agnolin et al., 2010). The above-cited age estimates are based on five
rbelL sequences of Alstroemeriaceae that were part of a large (800 sequence)
molecular dating effort for all monocots (Janssen and Bremer, 2004). Other molecular

clock studies of divergence times in monocots have included up to five rbcL
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sequences of Alstroemeriaceae (Alstroemeria + Luzuriaga: Bremer, 2000;
Alstroemeria, Bomarea, Leontochir, Drymophila, Luzuriaga: Janssen and Bremer,
2004; same data re-analyzed: Britton et al., 2007; Anderson and Janssen, 2009). They
all inferred ages similar to those quoted above (Alstroemeriaceae crown group: 79
Ma; Tasmanian Drymophila vs. Chilean Luzuriaga: 56 Ma). However, these ages
were obtained with just very few species (see above, section “The Alstroemeriaceae
family”), a single chloroplast marker (#bcL), or partially wrong topologies (for
example, in Bremer, 2000, and in Janssen and Bremer, 2004 Luzuriaga is sister to

Colchicum rather than to Alstroemeria).

The discovery of fossil leaves that ressemble living Luzuriaga in lake sediments
near Otago, New Zealand (J. Conran, personal communication, May 2010), will help
to elucidate the geographic disjunctions found in the Alstroemeriaceae as it would
constitute the first fossil record for the whole Alstroemeriaceae/Colchicaceae clade
(based on the Paleobiology Database, http://paleodb.org, accessed on 21 May, 2013
using the “taxonomic search form” option and the scientific names

“Alstroemeriaceae” and “Colchicaceae”).

The Colchicaceae family

After mentally leaving the tropical Andes and moving across the Atlantic Ocean to
southern Africa, we come to the Greater Cape Floristic Region (Born et al., 2007),
another of the world’s biodiversity hotspots (Myers et al., 2000). Climatically, it is
characterized by winter rainfall. It harbors two vegetation types, the fynbos and the
succulent Karoo, and is the home of many geophytes (plants with underground
storage organs), including the Colchicaceae. At least 80 of that family’s 270 species
are endemic to the Greater Cape Floristic Region (Nordenstam, 1998; del Hoyo et al.,
2009). Colchicaceae are seasonal plants with subterranean storage stems associated
with renewal buds (corms or rhizomes; Nordenstam, 1998). A synapomorphy of the
family is colchicine, a medicinal alkaloid traditionally used in the treatment of gout,
and also in cytogenetics due to its properties as a cell division inhibitor (Vinnersten

and Larsson, 2010).

The Colchicaceae are the sister family of the Alstroemeriaceae and have 16

genera (but see the next paragraph and the Discussion section about the
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circunscription of genera) distributed in Africa, Eurasia, Australia, and North America
(Nordenstam, 1998). The strictly African genera are Baeometra (1 species),
Camptorrhiza (2 species), Hexacyrtis (1 species), Ornithoglossum (8 species), and
Sandersonia (2 species); the strictly Australian genera are Burchardia (6 species),
Kuntheria (1 species), Schelhammera (2 species), and Tripladenia (1 species).
Disporum (20 species) is native to Asia. Uvularia (5 species) is restricted to North
America. Colchicum (c. 100 species) occurs in Eurasia from the Mediterranean to
western Asia. Four genera have disjunct geographic distributions: Iphigenia (12
species) occurs in Africa, India and Australasia, Gloriosa (10 species) in Africa,
India, and south-eastern Asia, Androcymbium (57 species) in extreme southern and
northern portions of Africa, and Wurmbea in Australia (c. 30 species) and South
Africa (20 species) (Vinnersten and Manning, 2007; del Hoyo and Pedrola-Monfort,
2008; Persson et al., 2011). The closest relatives of the Alstroemeriaceae-
Colchicaceae clade are the Petermannianceae (Fay et al., 2006; Petersen et al., 2012),
a monotypic family (the only species is Petermannia cirrosa) of rhizomatous woody

climbers restricted to temperate rainforests in east Australia (Conran and Clifford,

1998).

Previous molecular-phylogenetic work on the Colchicaceae relied on plastid
sequences and led to the recognition of six small tribes (Burchardieae, Uvularieae,
Tripladenieae, Iphigenieae, Anguillarieae, and Colchiceae) as well as re-
circumscription of the genera Wurmbea (including Onixotis and Neodregea),
Colchicum (including Androcymbium, Bulbocodium, and Merendera), and Gloriosa
(including Littonia) (Vinnersten and Reeves, 2003; Vinnersten and Manning, 2007).
A recent phylogenetic study that used chloroplast DNA sequence data recovered the
same tribal and generic re-circumscriptions but reverted to treating Onixotix and

Neodregea as separate genera instead of including them in Wurmbea (Nguyen et al.,

2013).

The taxonomic status of Androcymbium and Colchicum also is still
controversial. A redefinition of the genus Colchicum to include Androcymbium was
proposed by Manning et al. (2007) and was accepted by Persson (2007) and Nguyen
et al. (2013), while del Hoyo and Pedrola-Monfort (2008) preferred to treat
Androcymbium and Colchicum as separate genera. A recent phylogenetic analysis of

Colchicum by Persson et al. (2011), which included molecular, morphological, and
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cytogenetic data for 96 of the 100 species, only sampled three species of

Androcymbium and thus could not test the relationships between the two genera

properly.

State of the art of Colchicaceae biogeography

The intriguing distribution of the Colchicaceae, which are found on every continent
except Central and South America, and the absence of a fossil record leaves open the
question about where Alstromeriaceae and Colchicaceae diverged from each other: (i)
The split could have occurred in Australia (with subsequent spread of the ancestor of
Alstromeriaceae to South America); (ii) it could have occurred in Antarctica; or (iii) it
could have occurred in South America (with subsequent spread of the ancestor of

Colchicaceae to Australia and beyond).

By the Turonian (93.9-89.8 Ma), monocots were already relatively diverse as
evident from fossil flowers of Triuridaceae (Gandolfo et al., 1998, 2002) and much
older (112 Ma old) flowers with associated pollen of Araceae (Friis et al., 2004, 2006,
2011; reviewed in Doyle et al., 2008). A Cretaceous origin of the
Alstroemeriaceae/Colchicaceae split was earlier inferred based on an »bcL clock
(Vinnersten and Bremer, 2001). To understand the geographic unfolding of the
Colchicaceae/Alstroemeriaceae clade, the geologic context from the Turonian
onwards is required. After Pangea had broken into the two supercontinents Laurasia
(comprising North America, Europe and Asia) and Gondwana (South America,
Africa, India, Antarctica and Australia; Smith et al., 1994; Scotese, 2001), there was a
long period during which epicontinental seaways and intercontinental connections
divided it into Euramerica (Europe and eastern North America, linked across the
Atlantic) and Asiamerica (Asia and Western North America, linked via the Beringian
Land Bridge). With the closing of the Tethys Seaway at the Oligocene/Miocene
transition, Africa (part of West Gondwana) approached Europe at Gibraltar and Asia
at the Isthmus of Suez, allowing Gondwanan elements to come back in contact with
Laurasian ones and causing numerous faunal and floral exchanges among the regions.
These connections may have permitted the Colchicaceae to move northwards; this of

course needs testing.
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Long distance dispersal also is known to have played a role in shaping the
distribution of Colchicaceae. For example, the Colchicum-Androcymbium clade
diverged from is closest relatives in southwestern Africa (Caujapé-Castells et al.,
2001, 2002) around 13.4 + 1.5 million years ago, followed by dispersal west and
northward to several arid regions of Africa (del Hoyo et al., 2009). The geographic
distribution of Wurmbea on separate sides of the Indian Ocean could have resulted
from eastward trans-oceanic dispersal out-of-southern-Africa to the south-
easternmost regions of Australia, by means of the West Wind Drift (Bergh and
Linder, 2009). This Antarctic Circumpolar Current that flows from west to east
around Antarctica has facilitated the transport of benthic echinoderms between Africa
and Australia (Knox, 1980; Waters and Roy, 2004), but its role for the transport of
plant parts (floating debris, floating stems, perhaps with seeds or other propagules
attached) is poorly understood. Any scenario of ocean rafting also only becomes
plausible after the Eocene-Oligocene, once the West Wind Drift became established
(Stickley et al., 2004). Lastly, there is no evidence that Wurmbea seeds are tolerant to

marine salt-water.

Chromosome evolution

Understanding how species interact with each other and when and where the
diversification of clades has taken place, provides hints about the process of
speciation in plants. A more detailed view can only be achieved by looking at the
mechanisms responsible for the reproductive isolation of species. Although the role of
chromosomal rearrangements as mechanisms for plant speciation is still debated
(Faria and Navarro, 2010) studies of the distribution of ribosomal DNA genes and
changes in chromosome numbers have begun to shed light on the evolutionary

significance of chromosomal changes (Weiss-Schneeweiss and Schneeweiss, 2013).

Ribosomal DNA evolution in Alstroemeria

The chromosomes of Alstroemeria have fascinated cytologists for the past 120 years
due to their large size and ease of manipulation. The haploid chromosome number of
n = 8 was reported for the first time by Eduard Strasburger after studying the meiosis

of the pollen mother cells of Alstroemeria chilensis (Strasburger, 1882). The
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karyotype diversity of Alstroemeria is homogeneous, with species sharing the same
basic chromosome number (n = 8) and asymmetric karyotypes (i.e., prevalence of
telocentric and subtelocentric chromosomes; Stephens et al., 1993; Buitendijk and
Ramanna, 1996; Kamstra et al., 1997; Sanso and Hunziker, 1998; Sanso, 2002; Jara-
Seguel et al., 2004). However, much variation in the nuclear genome has been
revealed with cytogenetic techniques for estimating the DNA content, identifying C-
banding patterns (i.e., centromere- or heterochromatin-banding stain patterns), and

localizing ribosomal RNA-specific gene sequences on the chromosomes.

Fluorescent in situ Hybridization (FISH) of ribosomal genes (rDNA) has been
widely used to study the chromosomes of plants and animals. Variations in the
number and distribution of the rDNA sites have elucidated evolutionary relationships
among taxa and have yielded information on chromosome evolution and genome
organization (Shan et al., 2003; Heslop-Harrison and Schwarzacher, 2011). For
Alstroemeria, studies using FISH have revealed high levels of polymorphism in the
rDNA signals of homologous chromosomes (Kamstra et al., 1997; Baeza et al., 2007).
Interspecific variation in total chromosome length and C-banding patterns between
Chilean and Brazilian species of Alstroemeria has also been described (Buitendijk and

Ramanna, 1996; Kuipers et al., 2002).

These studies provide evidence that chromosome evolution in Alstroemeria has
been highly dynamic. The chromosome numbers of the remaining Alstroemeriaceae
genera are also known; Bomarea has n =9 chromosomes (Sanso and Hunziker, 1998;
Palma-Rojas, et al., 2007; Baeza et al., 2008), and Luzuriaga and Drymophila have n
=10 (Conran, 1987; Jara-Seguel et al., 2010). The elements to infer evolutionary
trends in Alstroemeria chromosome evolution are thus available, but prior to my work
the lack of a phylogeny including a representative number of Brazilian and Chilean
species, as well as species of the remaining Alstroemeriaceae genera had precluded

understanding the karyotype evolution in Alstroemeria.

Chromosome number evolution in Colchicaceae

As mentioned in the previous section, chromosome numbers in the Alstroemeriaceae
vary between 2n = 16 to 2n = 20. Such variation is small compared to that in the sister

family Colchicaceae, which has chromosome numbers between 2n = 14 (e.g.
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Uvularia grandiflora; Therman and Denniston, 1984) and 2n = 216 (e.g. Colchicum
corsicum; Persson, 2009). In particular, the cytogenetics of the genus Colchicum is
complex, with different species having variable chromosome numbers and ploidy
levels (from tetra- to 24-ploid; Persson et al., 2011). Nordenstam (1998) considered
that polyploidy in this genus might be related to the presence of colchicine, an
alkaloid known to affect chromosome separation after the anaphase of mitosis. This
effect of colchicine was discovered by B. Pernice in 1889, described more fully by
Eigsti et al. (1945), and revolutionized cytogenetics because it permitted experimental
generation of polyploidy. Generally, changes in chromosome number can been
attributed to doubling (polyploidy), chromosome fission (ascending dysploidy) or
chromosome fusion (descending dysploidy) (Schubert and Lysak, 2011). Ancient
whole-genome duplications have been documented for several monocot lineages
(Soltis et al., 2009). Polyploidy is though to promote the ecological diversification of
species because it facilitates the adaptation to new environments by generating novel
biochemical, physiological, and developmental changes not found in the progenitors
(Levin, 1983). For this reason, knowledge about the mechanisms of chromosome
number change will improve our understanding of species formation, especially if it is

time-explicit (as possible with molecular clock dating).

A new method for inferring ancestral chromosome numbers and possible
mechanisms of chromosome evolution (such as end-to-end fusion) has been proposed
by Mayrose et al. (2010). It is a probabilistic approach that tries to model
chromosome number change along the phylogeny, assuming that those changes are
gradual and proportional to time. Thus, a molecular phylogeny (and the associated
branch lengths) is needed as well as a list of the observed chromosome numbers in the
species included in the phylogeny. The method has been used to reconstruct the
ancestral chromosome numbers in the Araceae family, and revealed an ancestral
haploid number of x = 16, different from the previously inferred numbers x = 14 or x
=7 (Cusimano et al., 2011). The main mechanism of chromosome evolution in that
group appears to be chromosome fusion, rather than polyploidy (Cusimano et al.,

2011).
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Aim of this study

As explained in the preceding sections, the aim of my thesis was to increase the
knowledge about the evolution of the Alstroemeriaceae-Colchicaceae lily clade by
studying the molecular phylogenetics and biogeography of the two families at a
global scale, and by studying their chromosome evolution at more local scales,
namely within Alstroemeria and within Colchicaceae. The main questions I wanted to
answer were (i) by which routes and when did Alstroemeriaceae and Colchicaceae
expand geographically and diversify or suffer extinction, (ii) by which mechanisms
did the chromosomes of Alstroemeria evolve, and (iii) which types of events best
explain the changes in chromosome numbers in Colchicaceae (polyploidy,
chromosome fusion, or chromosome breaks) and when and where did these changes

ocCcCur.

To answer these questions I generated two molecular phylogenies including
DNA sequences from the three plant genomes (i.e., chloroplast, mitochondrial and
nuclear) for 125 of the 204 Alstroemeriaceae species and for 83 of the 270
Colchicaceae species. For both families, I applied molecular-clock dating with up to
four fossil calibrations from the ingroup and from outgroups. For the
Alstroemeriaceae, the ancestral areas were inferred using statistical parsimony in S-
DIVA (Chapter 2). Possible biogeographic scenarios and the influence of the new
Luzuriaga-like fossil on inferred divergence times were evaluated with a molecular
clock model using alternative calibration nodes (Chapter 3). Ancestral ranges for the
Colchicaceae were inferred using the likelihood DEC model in LAGRANGE. I also
carried out a sensitivity analysis by experimentally changing key parameters of my
DEC model for the Colchicaceae (Chapter 4). The chromosome evolution in
Alstroemeria was investigated by means of a molecular phylogeny that focused on
Brazilian and Chilean species for which karyological information and FISH data
where generated and then mapped (Chapter 5). Finally, I used my novel molecular
phylogeny for the Colchicaceae as well as a newly generated phylogeny of
Colchicum, which together with the chromosome numbers reported in the literature
were used to infer ancestral chromosome numbers and mechanisms of cytogenetic

evolution in this family (Chapter 6).
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Aim The Alstroemeriaceae is among 28 angiosperm families shared between
South America, New Zealand and/or Australia; here, we examine the

geological settings for its diversification in the Neotropics. We also compare
Alstroemeriaceae with the four other Southern Hemisphere families that
expanded from Patagonia to the equator, to infer what factors may have
permitted such expansions across biomes.

Location South America, Central America, Australia and New Zealand.

Methods Three chloroplast genes, one mitochondrial gene and one nuclear
DNA region were sequenced for 153 accessions representing 125 of the 200
species of Alstroemeriaceae from throughout the distribution range; 25 outgroup
taxa were included to securely infer evolutionary directions and be able to use
both ingroup and outgroup fossil constraints. A relaxed-clock model relied on up
to three fossil calibrations, and ancestral ranges were inferred using statistical
dispersal-vicariance analysis (S-DIVA). Southern Hemisphere disjunctions in the
flowering plants were reviewed for key biological traits, divergence times,
migration directions and habitats occupied.

Results The obtained chronogram and ancestral area reconstruction imply
that the most recent common ancestor of Colchicaceae and Alstroemeriaceae
lived in the Late Cretaceous in southern South America/Australasia, the

hy

ancestral region of Alstroemeriaceae may have been South America/Antarctica,
and a single New Zealand species is due to recent dispersal from South
America. Chilean Alstroemeria diversified with the uplift of the Patagonian
Andes c. 18 Ma, and a hummingbird-pollinated clade (Bomarea) reached the
northern Andes at 11-13 Ma. The South American Arid Diagonal (SAAD), a
belt of arid vegetation caused by the onset of the Andean rain shadow 14—
15 Ma, isolated a Brazilian clade of Alstroemeria from a basal Chilean/
Argentinean grade.

Main conclusions Only Alstroemeriaceae, Calceolariaceae, Cunoniaceae,

iogeograp

Escalloniaceae and Proteaceae have expanded and diversified from Patagonia

far into tropical latitudes. All migrated northwards along the Andes, but also
reached south-eastern Brazil, in most cases after the origin of the SAAD. Our
results from Alstroemeria now suggest that the SAAD may have been a major

) ’ ecological barrier in southern South America.
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INTRODUCTION

As a result of ancient overland connections and similar
ecological conditions, the floras of southern South America
and Australia/New Zealand share many genera and families
(Treviranus, 1803; Takhtajan, 1986; Wardle ef al., 2001;
Moreira-Munoz, 2007). Over the past few years, molecular
phylogenetic studies have begun to unravel the history of these
Austral-Antarctic connections, attributing some to Cretaceous
or Palaeogene trans-Antarctic ranges and others to long-distance
dispersal (e.g. Renner et al, 2000: Atherospermataceae;
Bradford & Barnes, 2001: Cunoniaceae; Knapp ef al., 2005:
Nothofagus; Chacon et al., 2006: Oreobolus; Barker et al., 2007:
Proteaceae; Cosacov ef al, 2009: Calceolariaceae). Trans-
Antarctic ranges were possible in the Late Cretaceous when the
southern tip of South America was connected to Antarctica
(Fig. 3 in Reguero et al., 2002; Fig. 1D in Iglesias et al., 2011),
and fossils demonstrate that some groups that had already gone
extinct in Southwest Gondwana continued to survive on
Antarctica well into the Eocene (Reguero et al., 2002). The
Southwest Gondwana floristic province (south of 30°S)
spanned two climatic belts, subtropical seasonal dry and warm
temperate, while Southeast Gondwana mostly had a warm
temperate climate (Iglesias et al., 2011).

Figure 1 Geographical distribution of
Alstroemeria (blue dots) and Bomarea (red
dots) and location of the South American
Arid Diagonal (SAAD). Different shading on
the map refers to annual mean precipitation
in millimetres (lower left inset) obtained
from WorldClim — Global Climate Data
(http://www.worldclim.org/). The SAAD
receives precipitation of < 300 mm year~
(light yellow zone). No species of
Alstroemeriaceae occur in the southern
SAAD.

1
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Today, 28 flowering plant families are shared between South
America, New Zealand and/or Australasia (Appendix S1 in
Moreira-Munoz, 2007; although the Proteaceae are included in
the main text of this paper, they were omitted from the Appendix
apparently by mistake). Most of them are restricted to cool
temperate climates and their ranges do not extend north to
equatorial latitudes. This is surprising because at least those that
date back to Cretaceous, Palaeocene or Eocene times must have
evolved under warm, tropical conditions and one might expect
such clades to have expanded their ranges further north. Among
the few families that did is the Alstroemeriaceae, on which this
study focuses. The Alstroemeriaceae comprises 200 species in
four genera — Bomarea, with 120 species in Central America and
northern-central South America; Alstroemeria, with 78 species in
southern South America and eastern Brazil; Luzuriaga, with
three species in Chile and one in New Zealand; and Drymophila,
with one species in Australia and one in Tasmania. The sister
clade of Alstroemeriaceae is the family Colchicaceae, which has
200 species on all continents except South America (and
Antarctica), and based on a Liliales-wide analysis, Vinnersten
& Bremer (2001) suggested that the Alstroemeriaceae might have
entered South America from the south. However, Vinnersten &
Bremer’s (2001) higher-level analysis included only four of the

family’s 200 species (one from each genus) and therefore could
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not test the monophyly of the genera, nor provide divergence
time estimates for clades. Other studies of Alstroemeriaceae also
sampled too few species to address questions about the timing of
trans-Antarctic connections or possible northward expansion
from high to low latitudes (Aagesen & Sanso, 2003; Alzate et al.,
2008).

Most species of Alstroemeriaceae occur at elevations of
2500-3800 m in the Andes, and it is clear that the family’s
diversification has been strongly influenced by the orogeny of
the Andean Cordillera (Hofreiter, 2007). The uplift of the
Central Andean Plateau occurred in pulses, the most recent of
which is currently dated to 6-10 million years ago (Ma)
(Garzione et al., 2008; Capitanio et al., 2011), while the
Patagonian Andes’ main uplift dates to 26-28 Ma (Blisniuk
et al., 2005). The rain shadow effects of the latter created the
South American Arid Diagonal (SAAD), a narrow area with
low precipitation (< 300 mm year™ ; the yellow area in Fig. 1)
that crosses South America from 2° S in the Gulf of Guayaquil
to 52° S bounding the Straits of Magellan (Eriksen, 1983;
Blisniuk et al, 2005). Along the western coast of South
America, the SAAD spans mainly desert (Moreira-Munoz,
2011), while towards the east, it spans the seasonally dry Chaco
forest and subtropical grasslands (Pennington et al., 2006;
Simon ef al., 2009; Werneck, 2011). Palynological evidence
dates this dry belt to < 16 Ma (Blisniuk et al, 2005).
The SAAD is likely to have influenced the geographical
expansion and diversification of Alstroemeriaceae, because of
its extremely different climate.

Here, we present a comprehensive fossil-calibrated molec-
ular phylogeny of the Alstroemeriaceae and use statistical
ancestral area reconstruction to test the hypothesis of
Vinnersten & Bremer (2001) that the family’s disjunct
distribution reflects the break-up of Eastern Gondwana. We
also infer the geotemporal patterns of expansion of the
Alstroemeriaceae from the southern cone of South America
to the equatorial tropics and eastern Brazil. Finally, we
compare the patterns and times of diversification, as well as
key biological traits, in Austral-Antarctic angiosperm clades
that expanded from Patagonia into equatorial habitats, and
test the idea that the SAAD may have presented an ecological
filter for northwards expansion or may have led to frag-
mented ranges in clades older than the ¢. 16 million year
(Myr) old SAAD.

MATERIALS AND METHODS

Taxon sampling

We sequenced 125 of the 200 species of Alstroemeriaceae,
focusing on geographical representativeness, and added 23
species of Colchicaceae plus two species of Campynemataceae
as outgroups (Vinnersten & Bremer, 2001). Our sample
comprises 63 species of Alstroemeria L. (out of c. 78 species),
56 species of Bomarea Mirb. (out of c. 120 species), both
species of Drymophila R. Br. (Drymophila cyanocarpa and
Drymophila moorei), and the four species of Luzuriaga Ruiz &
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Pav. (Luzuriaga marginata, Luzuriaga parviflora, Luzuriaga
polyphylla and Luzuriaga radicans). We also included the
monotypic segregate genera Leontochir R.A. Philippi (found to
be nested within Bomarea by Aagesen & Sanso, 2003) and
Taltalia Ehr. Bayer (found to be nested within Alstroemeria by
Sanso & Xifreda, 2001). For Alstroemeria, species concepts
followed Bayer (1987) for the Chilean species and Assis (2001)
for the Brazilian species. For Ecuadorian Bomarea, species
concepts followed Harling & Neuendorf (2003); for the
remaining Bomarea, we followed Hofreiter & Tillich (2002).
For 26 species, we included samples from separate locations to
test species monophyly. All sampled plant material, with its
geographical origin, herbarium voucher specimen, species
names and authors, and GenBank accession numbers, is listed
in Appendix S1 in Supporting Information.

DNA extraction, amplification and sequencing

Total DNA was extracted from c. 0.3 g of dried leaf tissue
using the Nucleospin Plant II kit (Macherey-Nagel, Diiren,
Germany). The resulting DNA was amplified with standard
methods. The chloroplast genes ndhF, matK and rbcL, the
mitochondrial matR, and the complete nuclear ribosomal
internal transcribed spacer (ITS) were amplified using stan-
dard primers. Sequencing relied on the BigDye Terminator
v.3.1 Cycle Sequencing Kit (Applied Biosystems, Inc., War-
rington, UK) and an ABI 3100 Avant capillary sequencer
(Applied Biosystems). The ITS region always yielded single
bands and unambiguous base calls, and we therefore refrained
from cloning. Sequence assembly of forward and reverse
strands was carried out with SEQUENCHER (Gene Codes, Ann
Arbor, MI, USA) and alignment with MacCrLaDE 4.8 (Madd-
ison & Maddison, 2002) or for ITS with marrT 5.64 (Katoh
et al., 2005) with manual adjustment. All sequences were
BLAST-searched in GenBank.

Phylogenetic analyses

Tree searches relied on maximum likelihood (ML) as imple-
mented in RAXML (Stamatakis, 2006) using the GTR+G
model. FiNDMopEL (available from  http://hcv.lanl.gov/
content/sequence/findmodel/findmodel.html), which imple-
ments Posada & Crandall’s (1998) MODELTEST, selected this
as the best fit for both organellar and nuclear sequences. These
data partitions were first analysed separately, and in the
absence of statistically supported topological conflict (defined
as > 80% bootstrap support) were combined. Statistical
support for nodes was assessed by 100 ML bootstrap replicates
under the same model. We also conducted a Bayesian analysis,
using MrBaYEs 3.2 (Ronquist et al., 2012) with two parallel
runs with one cold and four heated chains; the Markov chain
had a length of 2 million generations, sampled every 1000
generations. A plot of the generation number against the log-
probability of the data was generated in TRACER 1.5 (Rambaut
& Drummond, 2007), and the results indicated that
convergence was reached after 250,000 generations. The
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maximum  clade  credibility tree = was  calculated
using BayesTREEs 1.3 (available from http://www.evolution.

reading.ac.uk/BayesTrees.html).

Molecular clock analyses

Molecular clock analyses used either the plastid and mito-
chondrial genes or all three data partitions (plastid, mito-
chondrial and nuclear). The dating matrices included 77 of the
153 ingroup and 25 outgroups sequences to avoid zero-length
branches (resulting from multiple accessions of the same
species or very closely related species), because these are known
to cause problems for molecular clocks. The clock model was a
Bayesian relaxed clock implemented in BEAsT 1.6.1 (Drum-
mond et al., 2006; Drummond & Rambaut, 2007), using the
GTR+G substitution model, a Yule tree prior, and uncorre-
lated and lognormally distributed rate variation. Markov chain
Monte Carlo (MCMC) runs extended for 60 million genera-
tions (burn-in 10%), with parameters sampled every 1000 or
2000 generations.

We applied up to four calibration points (three from
fossils), each with a normal prior distribution and a 95%
confidence interval (CI) as indicated below.

1. The crown node of Smilax was set to 46 Ma (standard
deviation (SD) 4.5, CI 37.2-54.8 Ma), which represents a
conservative minimal age, given that Smilax-like fossils are
known from the Early/Lower Eocene (48.6-55.8 Ma; Edelman,
1975; Wilf, 2000) and the Middle Eocene (37.2-48.6 Ma;
MacGinitie, 1941; Wilde & Frankenhiuser, 1998).

2. The stem age of the monotypic family Rhipogonaceae was
set to 51 Ma (SD 1.5, CI 48.5-53.5 Ma) based on leaf
macrofossils of Rhipogonum from Tasmania dated to 51—
52 Ma (Conran et al., 2009a).

3. One run included a Luzuriaga—like fossil from the Foulden
Maar deposits near Middlemarch, New Zealand, dated to
23 Ma (J. Conran, School of Earth and Environmental
Sciences, University of Adelaide, pers. comm., 9 September

Table 1 Geographical areas used in the biogeographical analyses.

Biogeography of the Alstroemeriaceae

2011; also Conran et al., 2009b). The fossil has been assigned
to Luzuriaga through a parsimony ratchet analysis of 33
morphological characters relating to vegetative (stems, leaves,
stomata) and reproductive structures (inflorescences, flowers,
fruits, seeds) of eight Alstroemeriaceae species (one Alstroeme-
ria and one Bomarea species, the two Drymophila species, and
the four Luzuriaga species) (J. Conran, pers. comm., May
2010). This fossil was used to constrain the crown node of the
Drymophila/Luzuriaga clade to 23 Ma (SD 0.5, CI 22-24 Ma).

4. The root of the tree was constrained to 117 Ma (SD 0.5,
CI 116.2-117.8 Ma) based on Janssen & Bremer’s (2004)
estimate for the crown group of the Liliales, an order
represented here by exemplars of seven of the ten families
(Appendix S1). Absolute ages for geological periods are from
Walker & Geissman (2009), and inferred node ages were
checked against estimates from larger monocot data sets that
did not use exactly the same fossil constraints as those used
here (Janssen & Bremer, 2004).

Ancestral area reconstruction

Species occurrences were compiled from vouchers included in
this study (Appendix S1) plus herbarium specimens and the
literature (Bayer, 1987; Rodriguez & Marticorena, 1987;
Arroyo & Leuenberger, 1988; Conran & Clifford, 1998; Assis,
2001; Wardle et al., 2001; Hofreiter & Tillich, 2002; Harling &
Neuendorf, 2003; Hofreiter & Rodriguez, 2006; Hofreiter,
2007; Alzate et al., 2008). For ancestral area reconstruction,
we grouped species ranges into seven regions (listed in
Table 1), following Weigend (2002) for the subdivision of the
Andes into the northern, central and southern Andes. Note
that because the seven regions are based on the ranges of
modern species, Antarctica is not included, and so cannot be
inferred as an ancestral range (see Discussion). The analyses
relied on statistical dispersal-vicariance analysis (S-DIVA; Yu
et al., 2010) as implemented in rasp 2.0b (Yu et al., 2011).
This parsimony-based approach reconstructs ancestral areas

Area

code  Description Circumscription

Sierra Madre Oriental and Occidental in Mexico, mountain range from Guatemala to Panama
Cordilleras Occidental and Central in Colombia, Cordillera Oriental in Colombia and Venezuela, Nudo de los Pastos

between southern Colombia and northern Ecuador, where the three cordilleras join into one, Andean mountains in

Andean mountains extending south of the Amotape-Huancabamba deflection as far as central Bolivia, at 18° S,

including the Altiplano between the eastern and western cordilleras in southern Peru, Bolivia, and

Desert area that extends south of the Peru—Chile border to about 30° S, on the western side of the Andes
Andean mountains south of the Central Andes, from southern Bolivia as far as Patagonia in southern Chile and

Area between 0° S and 51° E and 32° S and 53° E in Brazil, including the limits with southern Paraguay and

A Central America
B Northern Andes
northern Peru including the Amotape-Huancabamba zone as far as c. 8.1° S
C Central Andes
northern Argentina/Chile
D Atacama Desert
E Southern Andes
Argentina
F Eastern Brazil
the eastern Uruguay
G Australasia South-eastern Australia and Tasmania, New Zealand
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based on a sample of trees (in our case, the last 5000 trees of a
BEAST run), thereby generating credibility support values for
alternative phylogenetic hypotheses. To explore the effects of
area constraints, we performed two S-DIVA runs, one that
allowed maximally two areas for a clade’s ancestral range and
a second that did not constrain the maximum number of
areas.

Comparison of ‘southern-immigrant’ Neotropical
families

The reviews of Wardle et al. (2001) and Moreira-Munoz
(2007) were used to identify angiosperm clades disjunctly
distributed between the Neotropics and Australia/New Zea-
land. For all clades that expanded throughout the South
American continent northwards to Central America and/or
eastern Brazil, we then compiled information on species
diversity, habitats, key biological traits, divergence times and
migration direction.

Luzuriagoideae clade

o

Luzuriaga

Luzuriaga parvifiora 1
Luzuriaga parviflora 2
Luzuriaga parvifiora3

Colchicaceae

emeria Meerow 2207
troemeria monticola
Alstroemeria c

Alstro
Als

RESULTS

Phylogenetics of the Alstroemeriaceae

The combined matrix of the organellar markers ndhF, rbcL,
matK and matR comprised 2399 aligned nucleotides, repre-
senting 153 ingroup and 25 outgroups accessions. The ITS
matrix had 731 aligned nucleotides and 85 accessions, of which
72 corresponded to ingroup accessions and 13 to outgroups.
Maximum likelihood trees obtained from the organellar and
the nuclear data showed no robustly supported incongruence,
and analysis of the combined data yielded higher bootstrap
values and better resolution at the internal nodes. The 26
species for which more than one individual was sampled were
all resolved as monophyletic (Fig. 2).

In the ML tree (Fig. 2), Alstroemerioideae (Alstroemeria
and Bomarea) are sister to Luzuriagoideae (Luzuriaga and
Drymophila) with high bootstrap support (99%). The
Brazilian species (42 of 44 species occurring in Brazil were

Alstroemerioideae clade
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Figure 2 Maximum likelihood phylogram for Alstroemeriaceae based on the combined analysis of plastid, mitochondrial and nuclear
sequences (3130 aligned nucleotides). The tree is rooted on the sister clade, Colchicaceae, plus two species of Campynemataceae. Bootstrap
support from 100 replicates is shown above branches. The maps show the geographical origin of sequenced plants. Images of typical flowers
clockwise from right: Bomarea multiflora (S. Madrinan), Alstroemeria exserens (E. Olate), Alstroemeria inodora (M. C. Assis), Luzuriaga

radicans (D. Alarcon) and Drymophila moorei (J. Bruhl).
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sampled) form a monophyletic group that arises from within
a Chilean/Argentinean species group (Fig. 2). The Central
American species are derived from Colombian Bomarea
(< 60%), and the family’s sole New Zealand species,
L. parviflora, is embedded among Chilean/Argentinean Luz-
uriaga species (100%, Fig. 2). The results of the Bayesian
analysis were congruent with the ML tree, with all early
divergences having a high posterior probability (PP > 0.9,
Appendix S2).

Divergence times and ancestral area reconstruction

Figure 3 shows a time tree for Alstroemeriaceae and related
Liliales obtained from the plastid and mitochondrial matrix,
and divergence times relevant to our questions are summa-
rized in Table 2. Appendix S3 shows the times obtained when
the nuclear ITS data were added. With ITS included, the
inferred divergence times were slightly older. The standard
deviations of the uncorrelated lognormal and the coefficient
of variation were 0.68 and 0.7 (for plastid plus mitochon-
drial) and 0.74 and 0.75 (for plastid and mitochondrial plus
nuclear ITS), implying no substantial rate heterogeneity
among lineages (Drummond & Rambaut, 2007). Effective
sample sizes (ESS) were checked in TRACER 1.4.1 (Rambaut &
Drummond, 2007) and were all well above 200. Divergence
times estimated with and without the Luzuriaga-like fossil as a
calibration point did not differ significantly (Table 2). Because
the nuclear matrix included non-randomly distributed missing
data, we focus on the chronogram obtained without the nuclear
data (Simmons, 2012).

The most recent common ancestor of Colchicaceae and
Alstroemeriaceae (node I in Fig. 3) is placed in the Cretaceous
in the southern Andes and Australasia (ancestral area EG) c. 93
(73.4-115.8) Ma. The ancestral region of Alstroemeriaceae
(node II) is inferred as the southern Andes (but see Discus-
sion), and the split between the Luzuriaga clade and the
Alstroemeria clade is dated to c. 57.5 (37.8-77.6) Ma. Extant
Alstroemerioideae (node IIT) began diversifying ¢. 29 (18.2—
42.6) Ma, i.e. before the main rise of the Andes, in the central
and southern Andes (ancestral area CE). The dry-adapted
Alstroemeria species of southern Chile (node V) began to
diversify c. 18.4 (11.2-26.8) Ma, and the Argentinean/Brazilian
clade (node VI) dates to 9.2 Ma. Bomarea (node VII) began
diversifying ¢. 14.3 (7.1-23.1) Ma, that is, before the major
uplift of the central Andes (ancestral area C), and reached the
northern Andes at ¢. 11-13 Ma (Fig. 3). It then spread north,
reaching Central America by the Late Pliocene.

The Luzuriagoideae clade (node IV) is estimated to be c. 22
(19-24) Ma in the run in which the Luzuriaga-like Miocene
fossil from New Zealand is included as a constraint (see
Materials and Methods); without this fossil, the same clade
dates to c¢. 35.9 (19.5-55.5) Ma (column A in Table 2). The
single extant New Zealand species of Luzuriaga (L. parviflora)
is inferred to be c. 2.9 (0.4-6.1) Ma (Fig. 3) and the split
between the Australian and Tasmanian species of Drymophila
c. 4 (0.7-8.6) Ma.
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The results of the two S-DIVA runs with different
constraints on the maximal permitted number of ancestral
areas are shown in Table 2. With the number of ancestral areas
unconstrained, all nodes near the root had multi-region
ancestral area reconstructions, which is biologically implausi-
ble and an artefact, probably because S-DIVA disregards
branch-length information, causing it to underestimate trait
changes along long branches, such as those leading to the root.

Comparison of ‘southern-immigrant’ plant families
in the Neotropics

Only five Austral-Antarctic angiosperm families have
expanded all the way from Patagonia to Central America or
the tropics of north-eastern Brazil. These are the Alstroemer-
iaceae, Calceolariaceae, Cunoniaceae, Escalloniaceae and Pro-
teaceae, with a total of 670 species (Table 3). Except for
Cunoniaceae and Proteaceae, these families are more species-
rich in the Neotropics than in Australia or New Zealand. Except
for Calceolariaceae and Cunoniaceae, their geographical ranges
show clear disjunctions between south-western South America
and eastern Brazil, and all five families have species adapted to
mountain habitats along the entire Andes. There are no other
obvious similarities in pollination or dispersal biology. Escal-
loniaceae diversified in the Late Cretaceous (c. 72 Ma), Prote-
aceae in the Middle Eocene (c. 45 Ma), Cunoniaceae in the
Early Oligocene (33.9-28.4 Ma), and Calceolariaceae during the
Middle Miocene (c. 15 Ma; references in Table 3).

DISCUSSION

Biogeographical history of the Alstroemeriaceae

Of the 28 flowering plant families shared between New Zealand
or Australia and South America (Moreira-Mufoz, 2007), most
are strictly confined to the cool/temperate zone and never
reached the humid tropics. Only five managed to expand from
Patagonia north into equatorial latitudes, one of which is the
Alstroemeriaceae. Our molecular clock-dated biogeographical
analysis supports Vinnersten & Bremer’s (2001) hypothesis
that the Alstroemeriaceae/Colchicaceae lineage dates back to
the Late Cretaceous, a time when Australia, Antarctica and
South America were still connected or very close (Reguero
et al., 2002; Iglesias et al., 2011). The split between the
Australasian/Chilean Drymophila/Luzuriaga clade and the
South American Alstroemeria/Bomarea clade occurred about
57.5 (37.8-77.6) Ma (Fig. 3), close to the Palacocene—Eocene
Thermal Maximum at 55 Ma (Zachos et al., 2001; Hinojosa &
Villagran, 2005; Iglesias et al., 2011). Subtropical climates at
that time extended as far as latitude 30° S, with moisture
brought in by the tropical easterlies during the summer and
the polar westerlies during the winter (Iglesias et al., 2011).
This climate regime, which has no modern analogue, could
only exist as long as the Andean Cordillera was too low to
cause a strong rain shadow (Hinojosa & Villagran, 2005). It is
plausible that Alstroemeriaceae evolved under this climate
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Figure 3 Chronogram for Alstroemeriaceae obtained under a Bayesian relaxed clock model applied to 77 accessions and 2399 aligned
nucleotides of chloroplast DNA and mitochondrial DNA sequences. Bars at nodes with > 95% posterior probability indicate the 95%
confidence intervals on the estimated times. Numbers above branches are node ages (Ma) and the stars are calibration nodes. Roman
numerals correspond to the node numbers in Table 2. The Brazilian clade is shown in light blue. Pie charts at internal nodes represent the
probabilities for each alternative ancestral area derived by using statistical dispersal-vicariance analysis (S-DIVA) on 5000 Bayesian trees.
Black pies denote nodes with a posterior probability of > 0.8 according to the values shown in Table 2. The geographical areas used in the S-
DIVA analyses are shown in the inset.
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Table 2 Age estimates and ancestral area reconstructions for the main nodes of Alstroemeriaceae.

Node age [95% HPD]

Node age [95% HPD]

Ancestral area (PP) Ancestral area (PP)

Node
number  Description A B C D
I Stem Alstroemeriaceae 96.5 [76.8-116.7] 93.4 [73.4-115.8] EG (1.00) ABCDEFG (0.6), ABCEFG (0.4)
11 Crown Alstroemeriaceae 64.2 [42.5-86.8] 57.5 [37.8-77.6] E (1.00) ABCDEFG (0.3), ABCDEF (0.3)
ABCEF (0.2), ABCEFG (0.2)
111 Crown Alstroemerioideae  31.9 [18.5-47.8] 29.0 [18.2-42.6] CE (0.99), BE (0.01) ABCDEF (0.5), ABCEF (0.5)
v Crown Luzuriagoideae 35.9 [19.5-55.5] n.a. EG (1.00) EG (0.6), G (0.4)
\% Crown Alstroemeria 19.7 [11.3-29.5] 18.4 [11.2-26.8] E (0.88), DE (0.12) E (1.0)
VI Stem Brazilian 9.7* 9.2% EF (1.00) EF (1.0)
Alstroemeria
VII Crown Bomarea 15.4 [7.3-25.3] 14.3 [7.1-23.1] C (0.93), DE (0.05), ABCF (0.4), ABCDF (0.2),
BC (0.02) ABCEF (0.2), ABCDEF (0.2)
VIII Crown Drymophila 4.9 [0.6-11.4] 4.0 [0.7-8.6] G (1.00) G (1.0)
IX Crown Luzuriaga 12.4 [4.8-21.4] 9.5 [4.8-14.7] E (1.00) E (0.6), EG (0.4)

Column headings: A, age estimates (Ma) with outgroup calibrations only; B, age estimates (Ma) with an additional ingroup calibration from a

Luzuriaga-like fossil; C, inferred ancestral area with maximum number of areas constrained to two; D, inferred ancestral areas with no constraint on

the maximum number of areas. Letter codes for columns C and D follow Table 1.

n.a., not applicable; HPD, highest posterior density interval for the divergence time estimate; PP, posterior probability.

*The confidence interval for this date is below the 95% HPD.

regime. We were unable, however, to reliably infer their area of
origin because our seven coded geographical regions are those
of extant species. Without fossils from Antarctica, we know of
no approach that would permit inference of an Antarctic
ancestral area for the family, even though it is possible (even
likely given the range of their sister clade) that Alstroemeri-
aceae originated in Antarctica instead of South America
(southern Andes) as inferred here.

The stem group age of the Brazilian Alstroemeria clade
(c. 9.2 Ma, Fig. 3) falls towards the end of a phase of global
cooling (Zachos et al., 2001; 10-14 Ma) and pre-dates the
expansion of C, grasslands in north-western Argentina (Blis-
niuk et al., 2005; 7-8 Ma). The only dated clade with a similar
geographical range in Brazil, Laeliinae orchids, radiated 11—
14 Ma (Antonelli et al., 2010), about the same time as the
Patagonian/Brazilian Alstroemeria (Alstroemeria aurea, Als-
troemeria patagonica  and  Alstroemeria pseudospathulata;
Fig. 3; ¢. 13.5 Ma). The arid conditions (i.e. the SAAD) that
arose ¢. 16 Ma appear to have had a strong influence on the
distribution of Alstroemeria. The gap in the distribution of
Alstroemeria evident in southern South America (light yellow
area in Fig. 1) is probably a consequence of the establishment
of the arid belt. Based on species ranges and fieldwork, the
Alstroemeriaceae specialist A. Hofreiter has hypothesized the
importance of the SAAD as an ecological barrier for Alstro-
emeriaceae (Hofreiter, 2007).

The inferred diversification of the Andean Bomarea clade at
c. 143 Ma closely matches the Miocene radiation of the
hummingbirds, ¢ 17 Ma (Bleiweiss, 1998). Judging from
flower colour, nectar supply, diurnal anthesis, size and
orientation, most Bomarea species are pollinated by hum-
mingbirds, and this is supported by field observations (Hof-
reiter & Rodriguez, 2006). Hummingbirds are reliable

Journal of Biogeography 39, 1806-1818
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pollinators at high elevations in the Andes, which may have
played a role in the successful spread and diversification of
Bomarea. Colombia, Ecuador and Peru each have some 30-35
species of Bomarea. The Amotape-Huancabamba zone at
¢. 5° S, which is a zone of phytogeographical transition at the
border between Ecuador and Peru, is especially rich in endemic
species, probably because of its heterogeneity in orographic,
microclimatic, geological and edaphic conditions (Weigend,
2002; Richter et al., 2009). Of the four Central American
endemic species of Bomarea (Hofreiter, 2007), only two are
sampled here, which prevents us from inferring when and how
often Bomarea reached Central America.

The New Zealand leaf fossil resembling Luzuriaga (see
Materials and Methods) implies that Luzuriagoideae existed in
New Zealand around 23 Ma. Like so many other New Zealand
clades (Pole, 1994; Landis et al., 2008; Jordan et al., 2010) they
then went extinct, perhaps during times of submergence, only to
reach New Zealand again by long-distance dispersal from
southern Chile (Fig. 3). This would be analogous to the New
Zealand Richeeae (Ericaceae), which date to < 7 Ma, yet have
New Zealand fossils that are 20-25 Myr old (Jordan et al., 2010).

Characteristics of ‘southern immigrant’ Neotropical
plant clades that diversified into equatorial latitudes

Only five angiosperm families shared between South America,
New Zealand and/or Australia have expanded and diversified
far into tropical latitudes. These are the Alstroemeriaceae,
Calceolariaceae, Cunoniaceae, Escalloniaceae and Proteaceae
(Table 3). Together, they comprise 670 species or < 1% of
Neotropical plant diversity (assuming a total of 90,000 seed
plant species for the Neotropics; Gentry, 1982), and they thus
form only a small floristic component compared with northern
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c. 45.8 Ma; estimated

crown ages of clades
Am.): c. 61.2 Ma; Node

(Australia & Islands — S.
B (Australia — Australia
Am.): c. 45.1 Ma'”

Embothrium (Australia
and Tasmania — S. Am.):
disjunctions: Node A
and Tasmania and S.

Age of Neotropical clade,
with transoceanic

Calibration stem node

entry

Fruit type and seed

Follicles with winged
seeds or one-seeded
indehiscent fruits;
anemochory,
hydrochory,
zoochory (fruit bats
and rodents)

dispersal

Pollinators

Very few studies on
pollination in the
Neotropics

Perennial shrubs and
trees

Habit

Mostly in mountain
forests and S Andean
alpine habitats

Habitat

Ecuador, and Peru, SE
Brazil and Guyana

region in Colombia,
highlands. A

secondary centre of
temperate S. Am.

Centres of diversity in
diversity in

the Neotropics
C. Am., Andean

Species in the
Neotropics/Australia,
New Zealand

85/1095
"This study, 2Assis (2001), *Aizen (2001), *Buzato et al. (2000), *Hofreiter (2007), *Hofreiter & Rodriguez (2006), 7R0driguez & Marticorena (1987), ®Smith-Ramirez et al. (2005), >Armesto & Rozzi (1989), '°Cosacov

et al. (2009), ''Renner & Schaefer (2010), *Bradford et al. (2004), "*Barnes ef al. (2001), *Stevens (2001 onwards), "*Bell et al. (2010, Appendix S24 therein), %prance et al. (2007), Barker et al. (2007).

C, central; N, north; S, south; SE, south-east; S. Am., South America; C. Am., Central America.

Table 3 Continued

Family
Proteaceae'®
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plant immigrants into South America. Comparison of the five
families reveals few similarities (Table 3): four entered South
America well before the uplift of the Patagonian Andes (26—
28 Ma); Alstroemeriaceae c. 29 Ma, Escalloniaceae c. 72 Ma,
Cunoniaceae 28.4-33.9 Ma and Proteaceae c. 45 Ma (refer-
ences in Table 3). Only Calceolariaceae (c. 260 species in South
America) appear to be younger than the Patagonian Andes, yet
managed to expand their range from the southern tip of South
America to Mexico (Cosacov et al., 2009). All five lineages
migrated northwards, mainly along the Andean chain, and all
also adapted to subtropical climates in south-eastern Brazil
(Table 3). A fuller understanding of the role of the c. 16-Myr-
old SAAD (our Fig. 1) as an ecological barrier to northwards
expansion, however, will require densely sampled and dated
species-level analyses and geographical mapping of many more
species ranges.
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SUPPORTING INFORMATION

From east Gondwana to Central America: historical biogeography of the

Alstroemeriaceae

Juliana Chacéon, Marta Camargo de Assis, Alan W. Meerow and Susanne S. Renner

Journal of Biogeography

Appendix S2 Bayesian tree of the Alstroemeriaceae based on the combined analysis of
plastid, mitochondrial and nuclear sequences (3130 aligned nucleotides). The tree is
rooted on the sister clade, Colchicaceae, plus two species of Campynemataceae. Posterior

probability values are shown above branches.
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Chapter 3

LEAF FOSSILS OF LUZURIAGA AND A MONOCOT FLOWER WITH IN SITU
LILIACIDITES CONTORTUS MILDENH. SP. NOV. POLLEN FROM THE EARLY

MIOCENE

JOHN G. CONRAN, JENNIFER M. BANNISTER, DALLAS C. MILDENHALL, DAPHNE E. LEE,

JULIANA CHACON, AND SUSANNE S. RENNER

American Journal of Botany (in review).
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Abstract

Premise of the study: The Foulden Maar lake sediments in Otago, South Island, New
Zealand, date to the earliest Miocene and provide an important picture of the diversity
of the Australasian biota, paleoecology and climate at a time when New Zealand had
a smaller land area than today. The diverse rainforest contains many taxa now
restricted to Australia, New Caledonia, or South America. The presence of Luzuriaga-
like fossils in these deposits is important for understanding Alstroemeriaceae
evolution and the biogeography of genera shared between New Zealand and South

America.

Methods: Leaves and a flower with in situ pollen that resemble extant Luzuriaga are
described and placed phylogenetically. Geographic range information and a molecular
clock model for the Alstroemeriaceae were used to investigate possible biogeographic

scenarios and the influence of the new fossil on inferred divergence times.

Key results: Luzuriaga peterbannisteri Conran, Bannister, Mildenh., & D.E.Lee sp.
nov. represents the first macrofossil record for Alstroemeriaceae. An associated
Luzuriaga-like flower with in situ fossil pollen of Liliacidites contortus Mildenh. sp.
nov. is also described. The biogeographic analysis suggests that there have been
several dispersal events across the Southern Ocean for the genus, with the fossil

representing a now-extinct ancestral New Zealand lineage.

Conclusions: Luzuriaga was present in early Miocene New Zealand, indicating a
long paleogeographic history for the genus, and L. peterbannisteri strengthens
biogeographic connections between South America and Australasia during the Oligo-

Miocene.

Keywords: Alstroemeriaceae; biogeography; earliest Miocene; fossil plants; Liliales;

monocot; pollen

Introduction

The monocot family Alstroemeriaceae contains four genera and ~200 species
(Angiosperm Phylogeny Group, 2009; Chacoén et al., 2012). The family is probably
best known for the horticulturally important Alstroemeria L. (Peruvian Lily), with 78

species, several of them used in the cut-flower trade. Together with Bomarea Mirb.
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(120 species), these two genera comprise the subfamily Alstroemerioideae, which has
a wide distribution in South and Central America (Fig. 1). The second subfamily of
Alstroemeriaceae is the Luzuriagoideae, consisting of Luzuriaga Ruiz & Pav. with
three species in Chile and one in New Zealand, and Drymophila R.Br. with one
species in Australia and one in Tasmania. The fossil record of the family consists of
reports of Luzuriaga pollen from the Quaternary of New Zealand (Wardle et al.,
2001) and Chile (Ashworth et al., 1991) and a contested association of the auriculate
pollen morphotype Auriculiidites reticulatus Elsik with some species of Bomarea (see

Macphail and Partridge, 2012 and references therein).

Alstroemerioideae
(Alstroemeria
Bomarea)

Drymophila

Luzuriaga

Luzuﬁagoidea-e/

Figure 1. Distribution of extant Alstroemeriaceae and the location of the fossil ().

Research on macrofossils in New Zealand, mostly leaves with well-preserved
distinctive and diagnostic cuticles from Lagerstdtten deposits and lignites of Late
Oligocene and Early Miocene age from Otago and Southland, suggest that many New
Zealand plants have been present on the island for at least 25—23 million years and
possibly longer (e.g. Lee et al., 2001; 2007b; 2012). For example, there are
macrofossils and/or pollen records for nearly all the extant New Zealand conifer
genera (Jordan et al., 2011). Forest trees with macrofossil records include species of
Cunoniaceae, Elaeocarpaceae, Atherospermataceae, Monimiaceae, Myrsinaceae,

Lauraceae and Onagraceae, and when combined with pollen records from the same
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sites, this list increases. Deep fossil records are now available for a considerable
number of modern New Zealand forest families, including Chloranthaceae,
Strasburgeriaceae, Myrtaceae, Proteaceae and others (see Pole, 2008; Lee et al., 2012,
and references therein). Similarly, some extant New Zealand monocots now have
fossil records extending back to the Late Oligocene—Early Miocene, if not earlier,
including Arecaceae (Ballance et al., 1981; Pole, 1993b; Hartwich et al., 2010),
Asparagaceae: Cordyline Comm. ex R.Br. (unpubl. data), Asteliaceac (Maciunas et
al., 2011), Orchidaceae (Conran et al., 2009a), Ripogonaceae (Pole, 1993a),
Typhaceae (Pole, 2007), and Xanthorrhoeaceae: Dianella Lam. ex Juss. or Phormium

J.R.Forst. & G.Forst. (Maciunas et al., 2009; Ferguson et al., 2010).

One of the richest Miocene fossil sites is Foulden Maar in Otago, South Island,
which to date has yielded a wide range of leaf, flower and fruit taxa (Bannister et al.,
2005; Lee et al., 2012). Most of the plant macrofossils are isolated, more-or-less
complete, compressed mummified leaves of which about 45% are from the family
Lauraceae, including common species with affinities to Crypfocarya R.Br.,
Beilschmiedia Nees, and Litsea Lam. (Bannister et al., 2012). The remainder
represent a diverse range of families, including Araliaceae, Cunoniaceae,
Elaeocarpaceae, Euphorbiaceae, Menispermaceae, Myrsinaceae, Myrtaceae,
Proteaceae, and Sterculiaceae (Lee et al., 2012). The site has also yielded over 130
insect fossils (Kaulfuss et al., 2010; 2011), with many leaves showing evidence of
insect damage by chewing or leaf mining and some bearing in situ scale insects
(Harris et al., 2007). Several leaf taxa with prominent domatia, indicating possible
associations with beneficial leaf mites, have been described, as well as some plants

with conspicuous extra-floral nectaries (Lee et al., 2010).

Although monocot leaf fossils are rare globally, the Foulden site has yielded
several types of monocot leaves, including Astelia Banks & Sol. ex R.Br., Cordyline,
two orchids, Ripogonum J.R.Forst & G.Forst., and Typha L. (Conran et al., 2009c,
2011). Cuticular analysis showed that the fossil Astelia is related to 4. alpina R.Br.
and A. linearis Hook.f., but differs from these modern species (Maciunas et al., 2011)
for at least 10 features of cuticular morphology. The orchid leaves from Foulden are
the oldest unequivocal vegetative orchid fossils (Conran et al., 2009a) and represent
two epiphytic genera within subfamily Epidendroideae, Dendrobium Sw. and Earina

Lindl. Preliminary investigations of Luzuriaga-like leaves discovered at the site from
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20052012 suggested that they represent a new species, and here we describe and
phylogenetically place these leaves, as well as a Luzuriaga-like monocot flower with

in situ pollen found at the same site.

Materials and methods
Fossil collection and preparation

The specimens were collected from a finely varved, leaf-bearing diatomite in a small
mining pit on Foulden Hills Station, near Middlemarch, Otago, registered as
[43/18503 in the New Zealand Fossil Record File administered by the Geological
Society of New Zealand. The NZ Map Grid reference is NZMS 260 143/929166
(45.5271°8S, 170.2218°E). The site is described in detail in Bannister et al. (2005), Lee
et al. (2007a), and Lindqvist and Lee (2009).

The fossil locality is in the upper part of the Foulden Hills Diatomite (Pole,
1993c, 1996), which was formed in a maar lake that resulted from a short-lived
explosive volcanic vent during an early phase of Dunedin Volcanic Group volcanism
(Coombs et al., 1986). Based on a palynoflora from the same locality, Couper (in
Coombs et al., 1960) suggested a Taranaki Series (Late Miocene) to Waitotaran
(Pliocene) age. More recent work on palynofloras of Oligocene and Miocene strata
from Otago and Southland (Pocknall and Mildenhall, 1984; Mildenhall and Pocknall,
1989) indicates an Early Miocene age (Spinitricolpites latispinosus Zone). This is
consistent with a latest Oligocene to Early Miocene date of 23 + 0.2 million years ago
(Ma) radiometric age from the associated volcanics (Lindqvist and Lee, 2009;
Kaulfuss et al., 2011), corresponding to the Waitakian Stage in New Zealand (Cooper,
2004).

The fossils were preserved as mummified compressions on light-colored
bedding planes dominated by diatom frustules and the leaves and flowers were
prepared following the methods outlined in Bannister et al. (2012). In addition, a few
in situ pollen grains from the perianth parts were removed using a very fine
paintbrush, cleared for a short period in 10% KOH, rinsed in water and mounted in
glycerin jelly on a slide for light microscopy and photography. Comparative reference
specimens for pollen grains of a range of species from all extant Alstroemeriaceae

genera were also prepared.
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A palynological preparation was made at GNS Science, Lower Hutt, from a
small piece of the diatomite slab on which the flower is preserved. Standard
processing techniques were used for the processing of pollen slides (e.g. Moore et al.,
1991). Treatment comprised hydrofluoric acid digestion, followed by nitric acid
oxidation to remove amorphous organic matter, then sieving to retain the 10-260 pm
palynomorph fraction. The organic residue consisted of abundant, well-preserved to
semi-degraded plant cuticle, felted amorphous organic matter, and well-preserved

pollen and spores.

Fossil pollen grains from the perianth and matching grains from the diatomite
were compared to the database of fossil pollen grains from New Zealand (Raine et al.,
2011). The coordinates of the type specimens were taken from a Zeiss Axioplan 2
imaging photomicroscope at GNS Science, Lower Hutt, New Zealand. The slides,
prefixed by the letter L, are housed in the palynological type collection of GNS

Science.

Phylogenetic analysis

To place the fossil phylogenetically, morphological and anatomical characters were
used to construct a data matrix for the six extant Luzuriagoideae species (Table 1),
based on examination of preserved collections housed at Adelaide University (ADU),
Otago Regional Herbarium (OTA), and live specimens in cultivation in Adelaide and
the Dunedin Botanic Gardens. Missing data were coded as ‘?’. Data were also coded
for Alstroemeria and Bomarea (Alstroemerioideae), the sister clade to Luzuriagoideae
(Chacon et al., 2012). Information on character states was also obtained from Conover
(1983, 1991), Conran (1985, 1987, 1989), Arroyo and Leuenberger (1988), Rodriguez
and Marticorena (1988), Bayer (1998b), Conran and Clifford (1998) and Hofreiter
and Lyshede (2006) and Hofreiter (2007).

These data were analysed using the parsimony ratchet option (10,000 replicates;
random addition; mult*TBR; hold 20 trees; sample 6 characters; all character non-
additive) in ASADO version 1.89 (Nixon, 2004). The analyses were run with extant
taxa and with the fossil included or excluded, and the robustness of the trees was
assessed using both bootstrapping (10,000 reps; 33% resampling) and Bremer decay
analysis (20 steps limit) with TNT 1.1 (Goloboff et al., 2008), following Jordan and
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Hill (1999) and Conran et al. (2009b). Character state mapping was performed in
ASADO using the ACCTRAN option.

Table 1. Morphological and anatomical matrix used for phylogenetic placement of the fossil.
Characters and character states: 1. Stem growth: O=indeterminate, 1=determinate, 2=annual
herbaceous scape; 2. Stems branching: O=absent, 1=present; 3. Leaf margin: 0=smooth,
I=serrulate; 4. Vein order no.: 0=>4, 1=4, 2=3, 3=2; 5. Primary vein number: 0=3, 1=5,
2=>5; 6. Exmedial vein convergence: O=apical, 1=proximal; 7. Acropetal weakening:
O=slight, 1=pronounced, 2=very pronounced; 8. Highest vein orientation: O=parallel,
I=transverse, 2=random; 9. Free vein ends: O=absent, 1=present, 2=rare; 10. Abaxial
periclinal surface: 0=smooth, 1=granulate; 11. Adaxial papillae: O=absent, 1=bands,
2=uniform; 12. Adaxial sinuosity: O=straight/curved, 1=weak (ht/w <0.5), 2=strong (ht/w
>0.5); 13. Abaxial sinuosity: O=straight/curved, 1=weak, 2=strong; 14. Stomata sunken:
O=absent, 1=present; 15. Stomatal papillae: O=absent, 1=present; 16. Stomatal contact cells:
O0=anomocytic, 1=paracytic, 2=tetracytic, 3=hexacytic; 17. Adaxial vein cells:
O=undifferentiated, 1=differentiated; 18. Adaxial vein wall sinuosity: O=strong, 1=weak,
2=straight/curved; 19. Abaxial vein wall sinuosity: O=strong, 1=weak, 2=straight/curved; 20.
Inflorescence branched: O=present, 1=absent; 21. Flowers per inflorescence: 0=many,
I=solitary; 22. Floral bracts: O=solitary, |=multiple; 23. Tepal marcesence: 0=absent,
1=present; 24. Tepals clawed: O=absent, 1=present; 25. Tepal color: O=whitish to pale pink,
I=strongly coloured; 26. Tepals spotted: O=absent, 1=present; 27. Pollen wall: O=thick,
1=thin; 28. Pollen exine: O=coarsely reticulate/foveolate, 1=finely granulate; 29. Ovary
position: O=superior, 1=inferior; 30. Style: O=long, 1=short, 2=sessile; 31. Stigma: O=capitate,
1=sessile, 2=trifid; 32. Placentation: O=axile, 1=parietal; 33. Fruit dehiscence: 0=absent,
I=present; 34. Seed color: 0=brown, 1=pale yellow; 35. Seed surface: 0=smooth,
I=tuberculate. Polymorphies are indicated as: *=0,1; $=1,2.

Taxon 1 5 1 1 2
S | - 0
Alstroemeria 20 *0 201 1000220021220
Bomarea 2+ 02011 000S% 20021220
Luzuriaga parviflora Il o0 301 0021 1001131221
Luzuriaga marginata lIo1 2110101 0001121221
Luzuriaga polyphyila Ir1 0221 010020001212 21
Luzuriaga radicans Ir1T 11210101 1001121221
TLuzuriaga peterbannisteri 7 7 0 3 2 1 00 0 1T 0O 0O 0 1 1 2 0 2 2 7
Drymophila cyanocarpa 10101 1 1 10022000000
Drymophila moorei oo 101 1 1 100220000001
2 2 3 3
1 5 0 5
Alstroemeria ooo0o1 11111021101
Bomarea 000 1111021 *01
Luzuriaga parviflora 111 0O00DO0CDODI1O0O0O0T1O0
Luzuriaga marginata I 1 1 000ODO0O0T1TO0O0O0OT1OD0
Luzuriaga polyphyiia I 1 10000001 O0O0DO0T1O0
Luzuriaga radicans I 110000001 010
TLuzuriaga peterbannisteri 7 7 1 0 72 7 0 0 0 2 7 7 7 7 7
Drymophila cyanocarpa I1T 0000000120010
Drymophila moorei I 1T 00000001 20010
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Molecular clock analyses

Molecular clock analyses were performed on a reduced DNA sequence matrix of
Chacén et al. (2012), which included two species of Alstroemeria (A. aurea and A.
pelegrina), two of Bomarea (B. ovata and B. salsilla), all four Luzuriaga species, the
two Drymophila species, and five outgroups, and a combined alignment of 2368
nucleotides from chloroplast, mitochondrial and nuclear DNA. A Bayesian relaxed
clock model was run in BEAST v. 1.7.4 (Drummond et al., 2006; Drummond and
Rambaut, 2007), with the GTR + G substitution model, a Yule tree prior, and
uncorrelated and lognormally distributed rate variation. Markov chains were 10
million generations long, using a burnin of 10%, with parameters sampled every 1000
generations. Effective sample sizes (ESS) were checked in Tracer v.1.5 (Rambaut and

Drummond, 2007) and were all above 200.

The calibration points used were as follows: The root of the phylogeny was set
to 117 Ma (Standard Deviation [SD] 0.5, Confidence Interval [CI] 116.2—117.8 Ma)
based on Janssen and Bremer’s (2004) estimate for the crown group of the Liliales.
The crown node of Smilax L. was always set to 46 Ma (CI 37.2-54.8 Ma), which
represents a conservative minimal age, given that Smilax-like fossils are known from
the Early/Lower Eocene (48.6—55.8 Ma; Edelman, 1975; Wilf, 2000) and the Middle
Eocene (37.2-48.6 Ma; MacGinitie, 1941; Wilde and Frankenh&user, 1998). In one
run, Luzuriaga peterbannisteri (described in the present study) was placed at the
crown node of the genus Luzuriaga. In another, it was placed at the crown node of the
L. parviflora + L. marginata clade. In both runs, its age was set to 22.94 + 1.95 Ma,

with a gamma prior distribution (shape 2.0, scale 3.5, and offset=36.3 Ma).

Results

A data matrix with the morphological characters listed in Table 1, but not including
the fossil, yielded two equally-parsimonious trees of length 46 steps, Consistency
Index (CI) 89, Retention Index (RI) 91 (Fig. 2A), differing only in the species
relationships within the terminal clade consisting of L. marginata Benth. & Hook.f.,
L. parviflora Kunth and L. radicans Ruiz & Pav. There was strong bootstrap and
Bremer support for the Alstroemerioideae and Luzuriagoideae clades, and the

majority of the character states along each branch were unique synapomorphies.
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Luzuriaga has eight such synapomorphies, including the presence of adaxial papillae
(11/1,2) in most species and lack of strongly sinuous anticlinal cell walls (12/0) in all
of them, sinuosity being apparently plesiomorphic in the family. There was weak
support for the position of L. polyphylla J.F Macbr. as sister to the remainder of the
extant Luzuriaga species, from which its leaves differ in lacking the finely granulate

abaxial periclinal walls (10/1) and sunken stomata (14/1) of the crown lineage.

Incorporation of the fossil into the same data matrix resulted in a single most-
parsimonious tree of length 47, CI 87, RI 89 (Fig. 2B). This topology was the same as
one of the two extant-only trees, but with the fossil placed as sister in a crown lineage
with the extant New Zealand species L. parviflora. The position of L. polyphylla in
the genus received slightly stronger bootstrap and Bremer support, and there was also
weak support for the L. parviflora + fossil clade. These last two were also linked by
the shared possession of only two vein orders (4/3) and parallel orientation of the
highest vein order (8/0). The fossil differs from L. parviflora in at least five
characteristics, notably the lack of undifferentiated cells over the veins (17/0), while
L. parviflora has only 3 main veins (5/0), the vein ends rarely being free (9/2),
stomatal papillae occurring in bands (11/1), and there being six stomatal contact cells
(16/3).

Because the molecular analyses of Chacon et al. (2012) showed a different
internal topology for the living species of Luzuriaga, we mapped the morphological
characters (Table 1) onto the molecular tree, with the fossil placed as sister to the rest
of Luzuriaga (Fig. 2C), and we also performed an analysis in which the molecular
tree was constrained to match the morphological tree. Trait optimization in the latter
run was significantly worse than in the most parsimonious morphological tree (length
51, CI 80, RI 82). The fossil was differentiated by the homoplasious configuration of
its two vein orders (4/3) without transverse or random orientation of the highest order
(8/0), whereas extant Luzuriaga species all have papillate stomatal bands (11/1) and
differentiated epidermal cells over the veins (17/1).

Given these results, we here describe the fossil as a new species of the genus
Luzuriaga. An associated flower is also described, but as it was not attached to the
leaves it is not included explicitly as part of the definition of the taxon. Similarly, in

situ pollen from the flower is placed into the form genus Liliacidites Couper and is
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also described as a new species, as it differs from the other morphotaxa in that genus

in several features.

1 MBI B/NRT Alstroemenia

®

- B O 0 2 e RSB | Bomarea

Luzurraga parvifiora

Luzuriaga marginata

t MEND

)
7

ARV NB

Luzunaga radicans

Luzunaga parvifiora
Luzuriaga marginata
Luzuriaga polyphyila

Luzunaga radicans

Figure 2. Phylogenetic analysis of extant Alstroemeriaceae taxa in relation to the fossil. 4, B,
Two equally most-parsimonious trees (length 46 steps, ci 89, ri 91) derived from the data in
Table 1 with character states mapped using ACCTRAN. C, Character evolution inferred from
placement of the fossil as proximal to Luzuriaga in a molecular tree derived from the study of
Chacén et al. (2012). Numbers in boxes at the nodes are Bremer decay (upper) and bootstrap
support values (BS values only for C); filled circles are unique synapomorphies, open circles

represent homoplasious character states.
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Molecular dating

Figure 3 shows the two dated trees (chronograms) obtained with the Luzuriaga-like

fossil placed either at the crown node of Luzuriaga (Fig. 3A) or at the crown node of

the L. marginata + L. parviflora clade (Fig. 3B). In the first case, the standard

deviations of the uncorrelated lognormal and the coefficient of variation were 0.64

and 0.62, and in the second case 0.93 and 0.87, implying a slightly higher rate

heterogeneity among lineages when the fossil is placed at the crown node of L.

marginata + L. parviflora clade. Divergence times estimated with two different

placements of the Luzuriaga-like fossil did not differ significantly (Figs. 3A, B). They

were also congruent with the dates reported in Chacon et al. (2012), which included a

more comprehensive sampling of Alstroemeriaceae and a placement of the

Luzuriaga-like fossil at the stem node of the Luzuriaga clade (Fig. 3 in Chacén et al.,

2012).
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(Figure 3. Continued) Chronograms of Alstroemeriaceae obtained under relaxed clocks with
two different placements of the Luzuriaga-like fossil (gray arrow), either at the crown node of
Luzuriaga (A) or at the crown node of the L. marginata + L. parviflora clade (B). Bars at

nodes indicate the 95% confidence intervals on the estimated times.

Systematics
Order—TLiliales Perleb, 1826

Family—Alstroemeriaceae Dumort., 1829 nom. coms. (incl. Luzuriagaceae Lotsy,

1911)

Subfamily—Luzuriagoideae Engl. in Engl. & Prantl, 1887
Tribe—Luzuriageae Benth. et Hook.f., 1883
Genus—Luzuriaga Ruiz et Pav., 1802
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Species—Luzuriaga peterbannisteri Conran, Bannister, Mildenh., et D.E.Lee, sp. nov.

Diagnosis—Leaves ovate, apex bluntly acute, base with a short, conspicuously
resupinate petiole. Vein orders two, cross veins absent. Abaxial (upper) epidermal
cells anticlinally straight to curved and periclinally finely granulate. Adaxial (lower)
surface with slightly sunken stomata spread across the leaf and with no obvious

differentiated epidermal cells over the veins.

Etymology—The specific epithet honors Peter Bannister (1939-2008), former

Professor of Botany at the University of Otago and collector of the type specimen.
Holotype—FH 437 (OU32666)

Paratypes—FH 187 (OU32416), FH 409 (OU32638), FH739 (OU33216), FH 720
(OU33128).

Type locality—Foulden Maar, Otago, South Island, New Zealand.
Stratigraphic position—Foulden Hill Diatomite.
Age—Latest Oligocene to earliest Miocene (23+0.2 Ma)

Description—Leaves at least 18-36 x 10—12 mm (mean £ SD =27+ 13.2x 14.3 £
8.6), broadly lanceolate to ovate, resupinate, apex acute to obtuse, base more or less
rounded (Fig. 4A, B, E-I); margin minutely serrulate (Figs 4D, 5A); petiole 2-3 mm
long, folded (Fig. 4A, E, G); primary venation parallelodromous, lateral primary veins
in 3—4 pairs, basal; midrib weakly defined, ~0.25 mm wide at mid-leaf, straight;
laterals converging apically, slightly weakening towards the apex, curved; secondaries
parallel to the laterals, converging apically; higher vein orders, areoles and cross veins
absent (Fig. 4B, C, F). Abaxial (upper) epidermal cells rounded to rectangular, 43—70
x 30-53 um (56.0 + 9.1 x 40.5 £ 8.1), thick-walled, randomly oriented, end walls
square to oblique, anticlinal walls straight to rounded, periclinal walls finely
granulate, cells over veins not differentiated (Fig. 5B, C); adaxial (lower) epidermal
cells rounded to slightly rectangular, 28-53 x 20-38 um (40.0 £ 7.4 x 31.3 £5.4),
thick-walled, randomly oriented, end walls square to oblique, anticlinal walls straight
to rounded, periclinal walls finely granulate, cells over veins not differentiated (Fig.
5D, E); stomata 48—55 x 38-50 pm (51.0 £ 2.1 x 45.8 + 3.9), mostly tetracytic,
sometimes with five contact cells (Fig. SE), contact cells similar to epidermal cells,

33-50 x 15-35 um (42.0 = 5.1 x 26.3 = 7.3), guard cells 33-38 x 1015 um (34.5 +
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2.0 x 11.8 = 1.7), slightly sunken and partially covered by contact cell flanges (Fig.
5D, E), stomatal density 148259 mm”™ (200.0 = 39.8).
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Figure 4. Luzuriaga peterbannisteri leaves A, Holotype (OU32666) incomplete leaf. B,
Holotype after removal from matrix with some venation exposed (apparent cross veins are an
artefact from an air bubble on the specimen). C, Detail of venation on holotype. D, Paratype
(OU33216). E, Paratype (OU32416). F, Paratype (OU32416) after removal from matrix.
counterpart. G, Paratype (OU32638). H, Paratype (OU32638A) counterpart. /, Paratype
(OU33128). Arrows indicate resupinate leaf bases. Scales equal 5 mm in 4, B, D—/, 1 mm in
C.
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Figure 5. Comparison of Luzuriaga peterbannisteri leaf margin and cuticular features (A-E)
with extant L. parviflora (Mark, s.n., OTA019011) cuticles (F-H). A, Leaf margin showing
minute toothing (OU32638). B, Abaxial (upper) cuticle (OU32666). C, Abaxial cuticle detail
(0U32638). D, Adaxial (lower) cuticle showing stomata with 4-5 subsidiary cells
(OU32416). E, Adaxial stomatal detail showing slightly sunken stomata with flanged
subsidiary cells (OU32416). F, Luzuriaga parviflora abaxial (upper) surface showing
differentiated vein cells. G, Same showing adaxial (lower) surface with differentiated vein
cells and stomata in inter-vein areas. H, Same with details of stomata with 6 subsidiary cells
and sunken stomata with flanged subsidiary cells. Scales equal 100 um in A, B, G, 200 pm in
F, and 50 pm in C-E, H.
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Parataxon 1—
Specimen examined—FH 695 (OU33103)

Description—Flower 14 mm long, apparently hypogynous; pedicel at least 3.1 x 1.7
mm, tapering apically and articulating along its length (Fig. 6A). Perianth
actinomorphic, apparently 6-merous, tepals ovate-lanceolate, 5.5-6.7 x 2.9-3.5 mm,
glabrous, margins entire, slightly rounded basally, apex acute to shortly sub-
acuminate; tepals apparently not disarticulating separately at abscission. Anthers and

ovary not visible.

Pollen morphospecies

Anteturma—Pollenites, R.Potonié, 1931

Turma—Monosulcates, Burger, 1994

Genus—Liliacidites Couper, 1953

Type species—Liliacidites kaitangataensis Couper, 1953
Morphospecies—Liliacidites contortus Mildenh. et Bannister sp. nov. (Fig. 6B—F)

Diagnosis—Pollen sub-circular to elongate-spheroidal, large; areolate to finely but
irregularly reticulate; exine thin, grains misshapen, split and contorted as a result of

splaying out of the thin exines; sulcus appears to be elongate and rounded at ends.

Holotype hic designatus—Slide 1.24916, coordinates 1085/178 (N-S followed by E-
W), England Finder Reading G46/3.

Paratypes—Slide 1.24916/1, coordinates 1012/194, England Finder Reading F38/2. A

clump of about 8 specimens is present.

Etymology—The specific epithet refers to the contorted nature of all the pollen grains
found caused by their thin exines which made accurate description of the species

difficult.

Type locality—Foulden Maar, Otago, South Island, New Zealand.
Stratigraphic position—Foulden Hill Diatomite.

Age—Latest Oligocene to earliest Miocene (23+0.2 Ma)

Description—Pollen monads sub-circular to elongate-spheroidal, always misshapen,

anisopolar, bilaterally symmetrical; monosulcate, sulcus contorted, split in all
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specimens seen, probably elongate, rounded at ends, covering at least 2/3 of the distal
pole, margins apparently regular in outline, but appears irregular in the holotype;
exine thin, structure uncertain, ~1-1.5 pm, very thin endexine, thicker ectexine,
tectate, tectum uneven, columellate, simplibaculate, columellae visible in optical
section, areolate to finely reticulate, luminae 1 um wide or less, muri displaying heads
of baculae giving a “beaded” appearance, ~1 um wide or less, reticulum evenly
dispersed across distal and proximal surfaces; size 30—44 pm (10 specimens, longest

axis measured only).

Comparisons—When compared with the pollen of other Alstroemeriaceae, the grains
found on the tepals of the fossil flower (Fig. 6B—F) are a close match to Luzuriaga
(Fig. 6G) and to a lesser degree Drymophila (Fig. 6H), both genera possessing ovoid
to slightly plano-convex grains with a weakly developed sulcus, thin exine and finely
granulate sexine. In contrast, material from five A/lstroemeria and seven Bomarea
species examined at GNS, as well as those described by Erdtman (1952), Schulze
(1978), Bayer (1998a; 1998b), and Sarwar et al.(2010), showed that
Alstroemerioideae pollen was clearly distinct from Luzuriagoideae. All examined
taxa of the former possess ovate to slightly reniform, plano-convex grains with thick-
walled exines, a prominent sulcus, and a striate or sub-orbiculoidate, coarse and
variably reticulate sexine (Fig. 61, J). The fossil pollen type, combined with the
morphology of the flower on which it was found supports further the identification of
the fossil as Luzuriaga. No other fossil liliaceous pollen type is close to the
morphology expressed by L. contortus.

In contrast, the palynomorphs Liliacidites aviemorensis Mclntyre, L. bainii
Stover in Stover & Partridge, L. intermedius Couper, L. kaitangataensis Couper, L.
lanceolatus Stover in Partridge & Stover and L. variegatus Couper are all robust,
elliptical in shape, reticulate with larger luminae, and have thicker, clearly layered
exines. Liliacidites perforatus Pocknall is perforate. The sulcus in these taxa also does
not appear to be circular or occupy most of the distal pole, as is apparent with modern
New Zealand Luzuriaga (Cranwell, 1952; Moar, 1993; Moar et al., 2011); however,
the holotype of L. contortus does appear to have a rounded sulcus with irregular

(disrupted) margins.
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Figure 6. Comparison of Parataxon 1 (OU3103) flower and associated in situ pollen of
Liliacidites contortus (GNS L24916) with extant Alstroemeriaceae pollen grains. 4,
Parataxon 1 flower (partially fragmented) showing pedicellate abscission and lanceolate
tepals. (B—D) L. contortus. B, Cluster of grains on surface of cleared tepal. C—E, Holotype
pollen grain in different planes showing contorted shape and finely reticulate surface and thin
exine. F, Luzuriaga parviflora pollen (Mark, s.n., OTA019011). G, Drymophila moorei
Baker pollen (Conran 1042, ADU). H, Alstroemeria stenopetala Seub. (Vindob s.n., MSB).
H, Bomarea peruviana Hofreiter (Weigend et al. 2000/682, MSB). Scales equal 2 mm in 4,
and 20 um in B—/.
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Discussion

Leaves—The resupinate leaves relate the fossil to Alstroemeriaceae (Fig. 7B, E, F,
H), for which this is a defining feature (Bayer, 1998b; Conran and Clifford, 1998).
Although resupination also occurs in other monocots such as Geitonoplesium A.Cunn.
ex R.Br. (Xanthorrhoeaceae: Hemerocalliodeae; Clifford et al., 1998), some grasses ,
and occasionally Allium ursinum L., as well as the eudicot Stylidium pilosum Labill.
(Stylidiaceae) (Goebel, 1920; Troll, 1937-1943; Hill, 1939), the gross morphology,

venation and cuticular features of the fossils rule these out as possible relatives.

Within Alstroemeriaceae, Alstroemerioideae have spirally-arranged leaves (Fig.
7H), whereas Luzuriagioideae have two-ranked leaves (Fig. 7A, D, E). The more or
less isodiametric adaxial (lower surface) epidermal cells with straight to rounded
walls place the fossil with extant Luzuriaga species and this is further supported by
the slightly sunken stomata (Fig. 5G, H). The absence of cross veins and few vein
orders further makes L. peterbannisteri resemble a large-leaved version of L.
parviflora (Fig. 7B), to which it is sister in the phylogenetic analysis (Fig. 2B).
However, the fossil differs from all extant Luzuriaga species, as they possess
differentiated cells over the veins on both surfaces (Fig. 5G, H) and have more or less
elongated abaxial (upper surface) epidermal cells (Fig. 5G). These characteristics in
combination strongly support the placement of the fossil into the extant genus

Luzuriaga, but as a new, extinct species.

Flower—Despite the relatively poor state of preservation of the flower, one of
the features that separates Luzuriaga from the remainder of Alstroemeriaceae is the
possession of hypogynous flowers with articulated pedicels (Fig. 7D) and ovate-
lanceolate tepals (Fig. 7C). This means that unfertilized flowers fall as a single unit at
senescence (Fig. 7A), rather than each tepal abscising separately, as in the other
genera. Alstroemerioideae also have epigynous or perigynous flowers and the tepals
are usually spathulate and clawed (Fig. 7H-I) (Hoftreiter and Rodriguez, 2006),
whereas the tepals of Drymophila are generally linear-lanceolate (Fig. 7G) (Clifford
and Conran, 1987). Compared to Alstroemeria, the outer tepals of Bomarea are firmer
in texture than the inner ones (Hofreiter and Tillich, 2002; our Fig. 71). As with the
leaf characteristics, this set of features supports a placement of the fossil close to, or

in Luzuriaga; however, as the flower was not associated directly with the leaves of L.
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peterbannisteri, it is treated here as associated material, rather than included as part of

the type description.

Figure 7. Comparative extant examples to show habit and morphology of the genera of
Alstroemeriaceae. 4, Luzuriaga parviflora in fruit, growing as an epiphyte at Ship Creek near
Haast, Westland, New Zealand. B, L. parviflora (Mark, s.n., OTA019011) showing resupinate
leaf base (arrow) and few vein orders with largely parallel venation. C, L. parviflora close up
of flower showing slightly oblanceolate tepals (Ship Creek). D, L. radicans in fruit with long,

articulated pedicels (arrows) growing as an epiphyte near Valdivia, Chile. (Continued)
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(Figure 7. Continued) E, Drymophila moorei growing as a rhizomatous rainforest floor
shrublet at Springbrook, southeastern Queensland, Australia. F, D. moorei leaves showing
resupinate base (arrow) and parallelodromous venation with prominent cross veins (Conran
1042, ADU). G, D. moorei close up of axillary flower showing narrow petal that fall
individually at senescence, New England National Park, NSW. H, Bomarea multiflora Mirb.
annual, climbing, herbaceous stems with resupinate leaves and terminal, branched, cymose
inflorescences (Dunedin Botanic Gardens, New Zealand). I, B. multiflora close up of
epigynous flower with spathulate tepals that fall individually (Dunedin Botanic Gardens, New
Zealand). Scales 4, 5 cm, (B—G, I) 5 mm, H, 2 cm. Photographs J.G. Conran (4-F, H, I), J.

Bruhl (G), used with permission.

Pollen—When compared with the pollen of other Alstroemeriaceae, the grains
found on the tepals of the fossil flower (Fig. 6B-D) are a close match to Luzuriaga
(Fig. 6E) and to a lesser degree Drymophila (Fig. 6F); both genera possessing ovoid
to slightly plano-convex grains with a weakly developed sulcus, thin exine and finely
granulate sexine. In contrast, material from five Alstroemeria and seven Bomarea
species examined at GNS, as well as those described by Erdtman (1952), Schulze
(1978) and Bayer (1998a; 1998b), showed that Alstroemerioideae pollen was very
distinct from Luzuriagoideae. All examined taxa of the former possess ovate to
slightly reniform, plano-convex grains with a thick-walled exine, prominent sulcus,
and a striate or sub-orbiculoidate, coarse and variably reticulate sexine (Fig. 6G, H).
Schulze (1978) and Sanso and Xifreda (2001) also noted that the pollen of
Alstroemeria is striato-reticulate (Fig. 6G), whereas that of Bomarea is foveolate-
reticulate (Fig. 6H). These characteristics, combined with the morphology of the
flower on which the pollen was found further support the identification of the fossil as

Luzuriaga, or at least a member of Luzuriagoideae.

The holotype was selected from dispersed pollen; pollen from the fossil flower
of Luzuriaga were morphologically identical but none were suitable as a holotype.
Many specimens were examined, and 10 were measured to get an idea of the size
range; the contortion of the other specimens was too great to estimate original size,
and measurements of equatorial v. polar diameters were not possible. The size range
estimates also fall within the range of modern New Zealand Luzuriaga pollen of ~32

pm (Moar, 1993; Moar et al., 2011).
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The very thin exine, relatively large size and compression of the pollen grains
make preservation of pollen of this type a rare event. The few dispersed pollen grains
found in the Foulden Maar is testament to the comparatively quiet nature of the
depositional environment. Even so, all pollen grains are split and broken to varying
degrees, including those from the flower itself, and it would be easy to miss the pollen
type in any pollen analysis. Quaternary fossil Luzuriaga pollen comparable to modern
taxa has been reported from New Zealand (Wardle et al., 2001) and Chile (Ashworth
etal., 1991).

Macphail and Partridge (2012) recently reported Alstroemeriaceae-like pollen
refered to Auriculiidites sp. cf. A. reticulatus Elsik (1964) from the Eocene of
Tasmania. Auriculiidites Elsik is a Late Cretaceous—Paleocene pollen morphogenus
thought by Elsik and Thanikaimoni (1970) to resemble the auriculate pollen of
Bomarea subgen. Bomarea sect. Pardinae M.Neuendorf (1977), in particular, the
pollen of B. lyncina Herb., a synonym of B. pardina (Hofreiter and Rodriguez, 2006).
This affinity was challenged by Muller (1981), who noted that the pollen grains differ
in size, exine thickness and reticulum type, as well as in the absence of a distinct
subdivision between tectum, columellae and nexine seen in the living species.
Although noting this problem, Macphail and Partridge (2012) nevertheless regarded
the current tropical distribution of living Bomarea (120 species, most of them in Peru)
as supporting evidence for early Eocene warming at high palaeolatitudes in the
Southern Hemisphere. However, even if Auriculiidites does represent an ancient

Alstroemeriaceae-like plant, it is clearly distant from Liliacidites contortus.

Historical biogeography and paleoecology

A biogeography study of the Alstroemeriaceae that included the leaf fossil described
here as one calibration point dated the split between the Luzuriagoideae and the
Alstroemerioideae to 57.5 (37.8-77.6) Ma, and the Alstroemeria and Bomarea split to
29 (18.2-42.6) Ma (Chacon et al., 2012). The dates obtained with the alternative
placements of the fossil in the present study are congruent and are in agreement with
the hypothesis that the fossil represents an extinct lineage of Luzuriaga that inhabited
New Zealand ca. 23 million years ago. Given that the sister genus Drymophila is

confined to Australia, it is possible that Luzuriaga may have evolved initially in New
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Zealand and spread to South America (potentially via Antarctica) before becoming
extinct in New Zealand, with a subsequent more recent reintroduction by long

distance dispersal.

Luzuriaga in Chile generally behaves as an epiphyte (Fig. 7D) growing on
moss-covered tree trunks in wet forests (Hofreiter, 2007) and in New Zealand, the
modern L. parviflora is either an epiphyte (Fig, 7A; Hofstede et al., 2001), forest floor
herb in deep litter, or a plant of swamp edges and moss beds (Robertson et al., 1990).
The presence of relatively abundant leaves at Foulden Maar (compared to other fossil
taxa) suggests that the plants were growing close to the lake edge, possibly in lake-
margin moss beds (J. Conran, unpubl. obs. of extant Luzuriaga at Lake Wilkie,
Southland, New Zealand). In contrast, Drymophila is always a forest floor herb in
damp to seasonally dry, cool to warm-temperate forests, where it displays strongly

seasonal growth phases (Conran, 1988b).

The South American Alstromerioideae often have showy flowers pollinated by
hummingbirds (Fig. 7H, I; Hofreiter and Rodriguez, 2006; Chacon et al., 2012), while
Luzuriagoideae have smaller flowers often adapted to bees (Newstrom and Robertson,
2005), paticularly in species with apically porate anthers that can be exploited only by
buzz-pollinating female bees (Buchmann, 1983). In southeastern Queensland,
Drymophila moorei Baker was found to be visited by 20 insect species from 10
families (Conran, 1988a), although the main pollinators for that species appear to be
syrphid flies (Baccha Fabricius, 1775 sp. and Betasyrphus serarius Wiedemann,
1830) and halictid bees (Lasioglossum Curtis, 1833 subgen. Chilalictus Michener,
1965).

Conclusions

Based on both the fossil record and molecular phylogenetic data, Luzuriaga was
present in early Miocene New Zealand, indicating a long paleogeographic history for
the genus. The new leaf fossil L. peterbannisteri strengthens biogeographic
connections between South America and Australasia during the Oligo-Miocene,
suggesting a possible New Zealand origin with disperal to and then back from South

America after local extinction in New Zealand.
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Abstract

Aim: Likelihood analyses of ancestral ranges require a parameterized model that
consists of a time-calibrated phylogeny, an “adjacency matrix” of allowed or
forbidden area connections, and an “area dispersal” matrix with probabilities for
discrete periods of time. The approach is implemented in the software LAGRANGE
(Ree et al., Evolution, 59, 2299-2311, 2005). Because it can incorporate information
about past continental positions, the approach has been used in historical
biogeographic studies of relatively old clades. Surprisingly, how the number of nodes
relative to areas and time periods, and the interactions among input matrices affect
parameter estimates have never been evaluated. Here we use the lily family

Colchicaceae and artificial data to study the inferential power of Lagrange models.
Location: Africa, Australia, Eurasia, North America, and South America.

Methods: Using eight plastid, mitochondrial, and nuclear DNA regions from 83 of
the c. 270 species of Colchicaceae (representing all genera and the entire geographic
range) plus 5 outgroups we obtained a well-resolved phylogeny dated with a
molecular clock, and assigned the tips to 6 geographic distributions. We then carried
out 22 LAGRANGE runs in which we modified the adjacency and dispersal matrices,
the latter with 0, 2, or 4 time periods and 1, 3, or 5 dispersal probabilities. For a
second data set, more “area switches” were introduced by reassigning tip

distributions. Models were compared based on global log-likelihoods.

Results: The adjacency matrix and the number of nodes in a particular time slice
determined model fit. For the Colchicaceae, a model with an unconstrained adjacency
matrix and 2 time periods had the highest likelihood, with dispersal probability
categories having a minor effect. Colchicaceae likely originated in Cretaceous East
Gondwana, initially diversified in Australia (c. 75 Ma), reached southern Africa
during the Palacocene-Eocene, and from there extended their range to Southeast Asia

(probably through Arabia) and then North America (through Beringia).

Main conclusions: At least in small data sets, the inferential power of LAGRANGE
models should always be tested with sensitivity analyses, as carried out here;
unconstrained adjacency matrices and high node to area and time period ratios will

enhance power.
Keywords: Likelihood models in AAR, chronogram, adjacency matrix, area-dispersal
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matrix, model over-parameterization, palacogeography.

Introduction

The rise of molecular clock dating as a tool in historical biogeographic analysis has
been accompanied by the development of new methods of ancestral area
reconstruction (AAR). The most sophisticated of these methods, Likelihood Analysis
of Geographic Range Evolution (LAGRANGE; Ree et al., 2005; Ree and Smith, 2008)
is model-based and has been the method of choice for deep-time biogeographic
studies because it allows the incorporation of palaecogeographic data. This is achieved
through the combination of four model components: (i) a fully resolved chronogram,
(i1) a species distribution matrix, (iii) an adjacency matrix specifying allowed and
forbidden ranges, and (iv) an area-dispersal matrix specifying dispersal probabilities.
The chronogram provides the time-calibrated nodes and branches for which the
probability of ancestor-descendant change is calculated; the discrete states of interest
are the range subdivision-inheritance scenarios at the nodes rather than the ranges
itself (Ree and Sanmartin, 2009). The likelihood function then integrates over the
conditional likelihoods of all ancestral states at every internal node weighted by their

prior probability (Ree and Smith, 2008).

As regards the species distribution matrix, users will define areas appropriate for
their clade and research question, with the limitation that the number of biogeographic
parameters to estimate from the data increases exponentially with the number of
areas, decreasing the inferential power of the model (Ree and Sanmartin, 2009).
Studies have used three to 15 geographic areas (see Nauheimer et al., 2012: Table 1),
seeking a balance between the dispersion of tips across areas (hence the potential
inferred “switches” at nodes deep in the tree) and the risk of having many singletons
(areas occupied by a single tip taxon). The user-defined adjacency matrix is a
presence-absence matrix that defines which ranges are allowed in the model (for
example, the combined continent Laurasia but not a combined Asia and Australia); it
is equivalent to the cost matrix used in DIVA analyses (Ronquist, 1997). In the area-
dispersal matrix, the user specifies values (such as 1, 0.5, 0.01, or 0) for dispersal
probabilities between areas based on prior notions about range expansion. An absence

of expansion could be just that or could be due to extinction; both are captured by
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extremely low dispersal probability values. The dispersal probability matrix is used in
the analysis to obtain area-specific scaling factors for the average rate of dispersal.
The user can build as many dispersal matrices for different periods of time (“time

slices™) as deemed appropriate.

The components described above imply that LAGRANGE requires many more ad
hoc parameter values than other biogeographic methods. Studies using the program
have differed considerably both in model details and in the reporting of model
parameterization (Nauheimer et al. 2012: Table 1 provides an overview). For
example, different studies have left adjacency matrices unconstrained (Carlson et al.,
2012) or constrained (Clayton et al., 2009), but without testing how this interacted
with probability matrices or how a different treatment would have impacted model
likelihood. The probability of dispersal between Australia and South America during
the Cretaceous (145-66 Ma) has been assigned P = 1 (Buerki et al., 2011: Time slices
before 60 and before 80 Ma), P = 0.5 (Mao et al., 2012: Time slice between 105-70
Ma), or P =0.01 (Nauheimer et al., 2012: Time slices between 150-90 Ma and 90-30
Ma). The number of probability categories has ranged from five (Mao et al., 2012; P
=0.1, 0.25, 0.5, 0.75, and 1) to three (Buerki et al., 2011; P=0.01, 0.5, and 1).

We know of five studies that have used model comparisons to assess model fit
to particular data sets. Couvreur et al. (2011) and Baker and Couvreur (2013)
compared unconstrained models with zero-time slices to constrained models with 5
time slices. In both studies, the constrained models had higher likelihoods. Mao et al.
(2012) compared models with four, five, six, seven, or eight time slices. The
migration probabilities ranged from 0.1 for well-separated areas to 1.0 for contiguous
landmasses. They found that the eight-time-slice model fit their data best (judged by
this model having the best likelihood score as calculated by LAGRANGE). In a
similarly-sized data set, Nauheimer et al. (2012) compared models with three or four
time slices, but found that the three-time-slice-model fit best. None of these studies
varied their adjacency matrices. For a study of the genus Psychotria in Hawaii, Ree
and Smith (2008) varied the adjacency matrix, and found that a constrained matrix fit

the data better (as assessed by the two log-likelihood difference).

Especially in small data sets, i.e., those with few nodes relative to the number of
areas and time slices, models may easily become overparameterized, and a study of

the inferential power of likelihood models for ancestral area reconstruction seemed
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overdue. We decided to investigate the interactions among the input matrices, number
of time slices, dispersal probability categories, and node/area/time slice ratio in an
empirical data set and an artificial one. The lily family Colchicaceae constitutes a
suitable group for this purpose due to its intriguing geographic distribution and
moderate size and age. This family of 270 species in 16 genera is distributed in
Africa, Eurasia, Australia, and North America, while being notably absent in Central
and South America (Fig. 1; see Nordenstam, 1998). Strictly African genera are
Baeometra (1 species), Camptorrhiza (2 species), Hexacyrtis (1 species),
Ornithoglossum (8 species), and Sandersonia (2 species); strictly Australian genera
are Burchardia (6 species), Kuntheria (1 species), Schelhammera (2 species), and
Tripladenia (1 species). In Eurasia, Colchicum (ca. 100 species) occurs from the
Mediterranean to western Asia, and Disporum (20 species) is native to Asia. Uvularia
(5 species) is restricted to North America. Four genera have disjunct geographic
distributions: Iphigenia (12 species) occurs in Africa, India and Australasia, Gloriosa
(10 species) in Africa, India, and Southeastern Asia, Androcymbium (57 species) in
extreme southern and northern portions of Africa and the Mediterranean, and
Wurmbea in Australia (ca. 30 species) and South Africa (20 species) (Vinnersten and
Manning, 2007; del Hoyo and Pedrola-Monfort, 2008; Persson et al., 2011). The sister
family of the Colchicaceae are the Alstroemeriaceae, a family of c. 200 species, all in
the Neotropics (Fig. 1) except for three in Australia and New Zealand (Chacoén et al.,
2012).

' M Alstroemeriaceae
I Colchicaceae
B Alstroemeriaceae & Colchicaceae =

L o =
C e -

Figure 1. Geographic distribution of the Colchicaceae and their sister family,

Alstroemeriaceae.
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Previous molecular-phylogenetic work on the Colchicaceae led to the
recognition of six small tribes (Burchardieae, Uvularieae, Tripladenieae, Iphigenieae,
Anguillarieae, and Colchiceae) as well as the re-circumscription of the genera
Wurmbea (including Onixotis and Neodregea), Colchicum (including Androcymbium,
Bulbocodium, and Merendera), and Gloriosa (including Littonia) (Vinnersten and
Reeves, 2003; Vinnersten and Manning, 2007). The taxonomic status of
Androcymbium and Colchicum has remained controversial. A redefinition of the
genus Colchicum to include Androcymbium was proposed by Manning et al. (2007)
and Persson (2007), while del Hoyo and Pedrola-Monfort (2008) preferred to treat
Androcymbium and Colchicum as separate genera. A phylogenetic analysis of
Colchicum, including 96 of its 100 species, included only three species of

Androcymbium (Persson et al., 2011), thus could not test mutual monophyly.

The approach taken in this study is to conduct experiments in LAGRANGE with
different adjacency matrices, area-dispersal matrices, dispersal probabilities, and time
slices using a time-calibrated phylogeny for the Colchicaceae and for a fictitious clade
with tips recoded to increase area dispersion across taxa, potentially resulting in more
“area switches” at deeper nodes. A critical evaluation of the pitfalls and strengths of
maximum likelihood-based ancestral area reconstruction, especially of the use of time
slices with different dispersal probability matrices, can be useful for future studies,
since matrices can be (and have been) used across studies of clades of similar ages
and geographic distribution (for example, similar connectivity matrices were used for
various Pinaceae, Sapindaceae, and Araceae; Moore and Donoghue, 2007: Fig. 7;
Havill et al., 2008; Buerki et al., 2011, Nauheimer et al., 2012; Lockwood et al., in

review).

Materials and methods

Taxon sampling

We obtained DNA sequences from 83 of the c. 270 species of Colchicaceae
representing all 16 genera and the geographic range of the family, and added five
outgroup species from the Alstroemeriaceae and the Petermanniaceae, the latter a

monotypic family (Petermannia cirrosa) of rhizomatous woody climbers restricted to
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temperate rainforests in east Australia (Conran and Clifford, 1998; Chacon et al.,
2012). Our sampling included 19 of the c. 57 species of Androcymbium Willd., the
only species of Baeometra Salisb. ex Endl. (B. uniflora (Jacq.) G. J. Lewis), three of
the six species of Burchardia R. Br., one of the two species of Camptorrhiza Hutch.,
17 of the c. 100 species of Colchicum L., five of the 20 species of Disporum Salisb.
ex G. Don., three of the 10 species of Gloriosa L., the only species of Hexacyrtis
Dinter (H. dickiana Dinter), four of the 12 species of Iphigenia Kunth, the only
species of Kuntheria Conran & Clifford (K. pedunculata (F. Muell.) Conran &
Clifford), six of the eight species of Ornithoglossum Salisb., the only species of
Sandersonia Hook (S. aurantiaca Hook.), one of the two species of Schelhammera R.
Br., the only species of Tripladenia D. Don (T. cunninghamii D. Don), three of the
five species of Uvularia L., and 16 of the c. 50 species of Wurmbea Thunb. All
sampled material with species names and authors, geographic origin, herbarium
voucher specimen, and GenBank accession numbers is listed in Appendix S1 in

Supporting Information.

DNA extraction, amplification and sequencing

Total DNA was extracted from 20 mg of dried leaf tissue using the Nucleospin Plant
IT kit (Macherey-Nagel, Diiren, Germany). The concentration and purity of the
resulting DNA was measured in a Nanodrop 2000 UV-Vis Spectrophotometer
(Thermo Fisher Scientific Inc., Wilmington, USA). The chloroplast genes ndhF,
matK, rbcL, the mitochondrial marfR, and the complete nuclear ribosomal internal
transcribed spacer (ITS) were amplified using standard methods and universal
primers. Additional sequences from the chloroplast regions atpB-rbcL, rpsi6, and
trnL-F were obtained from GenBank. The amplified DNA was sequenced using
BigDye Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems, Inc.,
Warrington, UK) and an ABI 3100 Avant capillary sequencer (Applied Biosystems).
Sequences were assembled in SEQUENCHER (Gene Codes, Ann Arbor, MI, USA) and
aligned in MAFFT 5.64 (Katoh et al., 2005) with manual adjustment in MACCLADE 4.8
(Maddison and Maddison, 2002). All sequences were BLAST-searched in GenBank
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Phylogenetic analyses and molecular clock dating

The combined plastid, mitochondrial and nuclear data set comprised 93 taxa (84
ingroup accessions) and 6451 aligned nucleotide regions. A phylogeny from this data
set was obtained using Maximum Likelihood (ML) in the software programs RAXML
v. 7.0.4 (Stamatakis, 2006) and RAXMLGUI 1.0 (Silvestro and Michalak, 2011) under
the GTR + G substitution model. FINDMODEL (http://hcv.lanl.gov/content/sequence
/findmodel/findmodel.html), which implements Posada and Crandall’s (1998)
ModelTest, selected this as the best fit for both the organellar and nuclear data based

on the Akaike information criterion. Statistical support for nodes was assessed by 100

ML bootstrap replicates under the same model.

Molecular clock analyses were conducted in BEAST v1.7.4 (Drummond et al.,
2006; Drummond and Rambaut, 2007), using the same matrix, except that Wurmbea
glassii and Disporum chinense were excluded because some of their sequences were
incomplete. We used a Bayesian relaxed clock under the GTR + G substitution model
and a Yule Process tree prior. The length of the Markov Chain Monte Carlo (MCMC)
was set to 90 million generations with parameters sampled every 1000 generations
and a burnin of 10%. Following Chacén et al. (2012) we applied four calibration
points, three of them from fossils. The root of the phylogeny was set to 117 million
years ago (Ma) with a normal prior distribution and 95% confidence interval (SD 0.5,
CI 116.2-117.8 Ma) based on Janssen and Bremer’s (2004) estimate for the crown
group of the Liliales. A gamma prior distribution was used for the three fossil
calibrations as follows: The crown node of Smilax was set to 41 Ma (shape 2.0, scale
3.5, and offset 36.3 Ma), which represents a conservative minimal age, given that
Smilax-like fossils are known from the Early/Lower Eocene (48.6-55.8 Ma; Edelman,
1975; Wilf, 2000) and the Middle Eocene (37.2-48.6 Ma; MacGinitie, 1941; Wilde
and Frankenhauser, 1998). The stem age of the monotypic family Ripogonaceae was
set to 51 Ma (shape 2.0, scale 0.6, and offset 50.0) based on leaf macrofossils of
Ripogonum from Tasmania dated to 51-52 Ma (Conran et al., 2009). The stem node
of the Luzuriaga clade in the Alstroemeriaceae was set to 22 Ma (shape 2.0, scale 0.3,
and offset 21.4 Ma), based on the age of a Luzuriaga-like fossil from the Foulden
Maar deposits near Otago, New Zealand, dated to c. 23 Ma (J. G. Conran , J. M.
Bannister, D. C. Mildenhall, D. E. Lee, J. Chacon, and S. S. Renner, manuscript).

Absolute ages for geological periods are from Walker and Geissman (2009), and
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estimated node ages were checked against estimates from larger monocot data sets
that did not use exactly the same fossil constraints as those used here (Janssen and

Bremer, 2004).

Ancestral areas inference for the empirical and an artificial data set, and

assessment of model fit

Geographic areas were delimited based on the geographic ranges of the sequenced
species of Colchicaceae, Alstroemeriaceae, and Petermaniaceae, with the information
coming from herbarium vouchers and taxonomic revisions. The six areas were: A,
south to middle Africa; B, Mediterranean region in Europe, northern Africa and
Arabian Peninsula; C, Australia and New Zealand; D, Asia and Southeast Asia; E,

North America; F, South and Central America.

To study the effect of the different LAGRANGE model components, we designed
experiments that modified the adjacency matrix, the number of time slices, and the
dispersal probabilities in a hierarchically structured manner, resulting in a total of 22
experiments (11 for the Colchicaceae data set and 11 for the artificial data set). A
graphical overview of the experiments is shown in Fig. 2 and their settings and

rationale are described below.

For the artificial chronogram, tip nodes were recoded such that both old and
young nodes in the tree would be affected: Seven Australian species (Wurmbea
australis, W. biglandulosa, W. centralis, W. dioica, W. murchisoniana, W. pygmaea,
and W. saccata) were coded as North American and three Australian species
(Schelhammera undulata, Kuntheria pedunculata, and Tripladenia cunninghamii) as

African.

For the Colchicaceae experiments, we used either an unconstrained adjacency
matrix in which all range connections were permitted (“1” in all fields of the matrix)
or a constrained matrix in which areas connected at least once over the last 120
million years received a value of “1”, others a “0.” This is based on the assumption
that Colchicaceae have a low ability to disperse over non-adjacent areas because their
fruits are dry capsules that release the seeds through loculicidal or septicidal
dehiscence, with no obvious adaptations to wind dispersal or zoochory (Nordenstam,

1998). For that reason the following ranges were forbidden: Africa-Australia (AC),
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Africa-Asia (AD), Europe-Australia (BC), Europe-South America (BF), Australia-
North America (CE), Asia-South America (DF). Because Colchicaceae species have
relatively narrow ranges (at a continental scale), we limited the maximum number of

ancestral areas at nodes to two.

Adjacency matrix Area-dispersal matrix Experiments
No. time slices No. categories Colchicaceae Artificial
of dispersal data set data set

probabilities

% 1 MCo MAO
Unconstrained

 —
AlB|c|D|E|F
Al1laf1]1]1]1 3 Mc1 MA1
sl [ [ [ L 3 /
5 111]1]1 =
T~ s mMC2 MA2
D 11]1
E 11 3 Mc3 MA3
F 1 /
4
\ 5 MC4 )
/. 3 MC5 MAS5
e 0 \
onstrained
5 MC6 MAG
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B 1]0]1]1]o0 . 2 /
C 1]1]o]1 "
D 111]0 \ 5 Mcs8 MAS
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0 time slices: 0—120 Ma
2 time slices: 0—-10/10-120 Ma

4 time slices: 0-30 / 30-60 / 60-80 / 80-120 Ma

1 category of dispersal probability: P= 1.0
3 categories of dispersal probabilities: P=0.01, P=0.5, P=1.0
5 categories of dispersal probabilities: P=0.1, P=0.25, P=0.5, P=0.75, P=1.0

Figure 2. Flow diagram depicting the 22 experiments conducted in LAGRANGE for the

empirical data (Colchicaceae; models MCO to MC10) and the artificial data (MAO to MA10).

For each adjacency matrix, we then defined three area-dispersal matrices with 0,

2, or 4 time slices. The 0-time-slice scheme comprises the entire time between 120

92



Ma and the present, with all 83 nodes of the Colchicaceae included (Appendix S2).
The 2-time-slice scheme was designed such that similar numbers of nodes were
included per time slice. Thus, the time slice between 0—10 Ma contained 39 nodes,
and the time slice between 10—-120 Ma contained 44 nodes. The 4-time-slice scheme
was designed to reflect major palacogeographic changes during the history of
Colchicaceae, which led to a highly unbalanced number of nodes included per slices;
0-30 Ma (collision of the Australian Plate with Eurasia; Antarctic Circumpolar
Current established) with 70 nodes, 30-60 Ma with 8 nodes (Drake Passage opens
between the Antarctic Peninsula and southern South America; Tethys Sea closes;
North Atlantic Land Bridge still available: Tiffney and Manchester, 2001), 60—-80 Ma
(East Gondwana and West Gondwana still linked across the Antarctic Peninsula) with

3 nodes, and 80—120 Ma (break up of West Gondwana) with 2 nodes.

For each adjacency and area-dispersal matrix combination, we used different
numbers of dispersal probability categories, one with only P = 1.0, one with P = 0.01,
0.5, and 1.0, and one with P = 0.1, 0.25, 0.5, 0.75, and 1.0. A low value was given for
not connected or not neighboring areas, a medium value for partly connected areas,
and a high value for connected or neighboring areas. For the 4-time-slice matrices and
three categories of probabilities, we employed the probability values of Buerki et al.
(2011), while for the five categories of dispersal probabilities we followed Mao et al.
(2012). For the 2-time-slice matrices, we averaged the probability values of the oldest
and youngest bins from these two studies. For 0-time-slice matrices, we used the
corresponding adjacency matrices and replaced the zeros either with P = 0.01 (for the
three categories of dispersal probabilities) or with P = 0.1 (for the five categories of
dispersal probabilities). The main objective of this strategy was to be able to compare
the results (at least somewhat). All area-dispersal matrices used are shown in

Appendix S3.

To compare models, we used their global likelihood scores as given by

LAGRANGE.
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Results

Molecular phylogeny and chronogram of Colchicaceae

The ML analysis resulted in a robust phylogeny with most clades having >80%
bootstrap support (Fig. 3). The dated phylogeny obtained from essentially the same
data is shown in Fig. 4, and the mean ages for the 31 nodes of particular interest [i.e.,
the root, the stem and crown groups of genera with more than one species, two nodes
within Androcymbium (which together with Colchicum forms the largest clade), and
four nodes within Wurmbea, which has c. 30 species in Africa and 20 in Australia]
with 95% confidence intervals estimated from a sample of 70,000 trees from the
stationary zone of the Bayesian MCMC are shown in Table 1. The most recent
common ancestor of the Colchicaceae started diversifying c. 75 (61.9-90.2) Ma (Fig.
4). The Colchicaceae then split in two clades, a North American-Asian clade formed
by Uvularia and Disporum, which diversified c. 28.3 (14.2-44) Ma, and a clade
formed by the remaining species, whose most recent common ancestor diversified c.
54.2 (43.1-66.9) Ma. The main divergences in the Colchicaceae go back to the
Eocene (at c. 45.8 Ma) with most of the splits occurring within the last 24 Ma (Table

1.
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(Figure 4. Continued) Chronogram for the Colchicaceae inferred from the same data as used
in Fig. 3, with 95% confidence intervals for node ages (grey bars) and results of the ancestral
area analyses performed in LAGRANGE (coloured squares). Node numbers at branches are the
same as in Fig. 3. The ancestral areas obtained with the best-fit model (MC2) are shown in
the squares below each node, with square size proportional to the probability of the
reconstruction (see Table 1 and scale at the bottom of the figure). Alternative ancestral areas
obtained with other models (see Table 3) are shown inside the ovals. The black circles refer to

the calibration nodes (Materials and Methods).

Results of the LAGRANGE experiments

The ancestral ranges and probabilities inferred in the 22 LAGRANGE experiments are
shown in Appendix S4 and the global likelihood scores (-InL) in Table 2. A
significant difference in likelihood scores was observed between the first five
experiments (MCO to MC4 for the Colchicaceae and MAO to MAS for the artificial
data set) and the remaining experiments (MCS5 to MC10 for the Colchicaceae and
MAS to MA10 for the artificial data set), which had lower likelihoods. Experiments
MCO to MC4 (and MAO to MA4) used an unconstrained adjacency matrix, while
experiments MC5 to MC10 (and MAS to MA10) used a constrained adjacency matrix
(see Fig. 2 for details of each model). This inferior fit of the latter models can also be
seen in Fig. 5. The best likelihood score for the Colchicaceae data set was the MC2
model (-InL = 107.6, Table 2), which used an unconstrained adjacency matrix, 2 time
slices, and 5 categories of dispersal probabilities (Fig. 2). The ancestral areas inferred

under the best-fit model are shown in the Table 1 and the Fig. 4.

The best-fit model for the artificial data set again was one of the models that
used an unconstrained adjacency matrix, namely model MA2, which is equivalent t