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1. Einleitung

1.1 Grundzige des Immunsystems

1.1.1 Das Immunsystem

Das Immunsystem ist das Schutzsystem hoherer Lebewesen, welches sicherstellt,
dass Pathogene, wie zum Beispiel Mikroben, aber auch fehlgeleitete, kdrpereigene
Zellen erkannt und attackiert werden. Um dieser Aufgabe gerecht zu werden, besteht
das Immunsystem aus einem hochkomplexen Netzwerk verschiedener Erkennungs-
und Abwehrsysteme, welches sowohl zellulare wie auch nicht-zellulare Anteile vereint,
schnell reagieren sowie langfristig Immunitat sichern kann. Grundsatzlich ist es
mdglich, ein angeborenes von einem erworbenen, auch adaptiv genannten,
Immunsystem zu unterscheiden. Zytokine werden von beiden Systemen als
Botenstoffe genutzt. Sie lassen sich also weder dem einen noch dem anderen System

exklusiv zuordnen.

1.1.1.1 Das angeborene Immunsystem

Das angeborene Immunsystem ist der evolutionar altere Teil des Immunsystems und
bildet die erste, in der Regel schnelle Abwehr. Hierzu werden sowohl die natlrlichen
Barrieren des Korpers wie auch bestimmte Zelltypen des Immunsystems gezahlt.
Besonders zu erwahnen sind die antigenprasentierenden Zellen (APC) Monozyten/
Makrophagen sowie dendritische Zellen (DC), die nebst eigener Effektorfunktion vor
allem Pathogenfragmente aufnehmen und den Zellen des adaptiven Immunsystems
prasentieren und somit die entscheidende Verbindung beider Systeme darstellen. Eine
Schlisselrolle nehmen die DC ein, da sie befahigt sind, exogene Antigene nach
zellularer Aufnahme zu prozessieren und auf major histocompatibility complex | (MHC-
) zu prasentieren, was der Aktivierung von CD8" T-Zellen dient. Natirliche Killerzellen
(NK-Zellen) wiederum vermoégen infizierte, entartete und mittels Antikérper markierte

Zellen zu erkennen und zu attackieren.

Eine besondere, heterogene Zellpopulation myeloiden Ursprungs des angeborenen
Immunsystems, insbesondere bei Individuen mit Tumoren, sind die myeloid derived
suppressor cells (MDSC), die verschiedene immunsuppressive Effekte, insbesondere

in unmittelbarer Tumorumgebung, vermitteln (Dumitru et al. 2012).



1.1.1.2 Das adaptive Immunsystem

Die adaptive Immunantwort, die langsamer, aber nachhaltiger reagiert, basiert auf den
Zellpopulationen der B- und T-Zellen. B-Zellen vermdgen, auf einen entsprechenden
Reiz hin, Immunglobuline zu produzieren und sich im Rahmen einer akuten

Immunreaktion zu Plasma- und langfristig zu Gedachtniszellen zu entwickeln.

T-Lymphozyten bestehen aus mehreren Subpopulationen. CD4" T-Helferzellen werden
durch APC via major histocompatibility complex Il (MHC-I1) Kontakt aktiviert und tragen
zur Koordinierung der Immunantwort bei. Sie kénnen in Th1 sowie Th2 CD4" Zellen
unterschieden werden. Im Falle einer Th1 Antwort liegt der Schwerpunkt auf einer
zellularen, CD8" T-Lymphozyten (siehe unten) sowie Makrophagen aktivierenden
zytotoxischen Immunantwort inklusive Bildung opsonierender IgG Antikérper. Eine Th2
Antwort hingegen férdert die humorale Immunitat (hauptsachlich Bildung von IgM, IgA,
IgE). Malgeblich fur eine Entwicklung in die eine oder andere Richtung ist die
Zusammensetzung der zum Zeitpunkt der Aktivierung der CD4" T-Zelle im Milieu

vorhandenen Zytokine.

Eine weitere Differenzierung von CD4" T-Zellen sind so genannte Th3-Zellen, die im
Bereich der oralen Toleranz eine entscheidende Rolle spielen. Th17-Zellen wiederum
regen im Rahmen von Entzindungen lokal epitheliale und stromale Zellen zur
Produktion von Chemokinen an, was wiederum neutrophile Granulozyten anlockt.
CD4'CD25'FoxP3" Zellen werden als regulatorische T-Zellen beizeichnet (Treg) und
modulieren die Immunreaktion, indem sie T-Zellaktivitat direkt und auch indirekt durch
Inhibierung von DC unterdriicken und somit UberschieRende Immunprozesse sowie
Autoimmunitat verhindern. Sie inhibieren jedoch auch Effektor T-Zell Aktivitdt gegen
Tumorantigene, wandern ins Tumorstroma ein und sind somit prominent an
tumorinduzierter Immunsuppression beteiligt (Bluestone 2005, Betts 2006, Colombo
2007). Dies erklart wahrscheinlich, dass eine hohe Dichte an Treg im Tumorstroma mit
einer schlechten Prognose korreliert (Curiel et al. 2004, Hiraoka et al. 2006, Fu et al.
2007).

Letztlich existiert die Gruppe der CD8" zytotoxischen T-(Killer) Zellen (CTL), welche
ebenfalls durch APC aktiviert werden. In diesem Fall geschieht dies jedoch durch
Prasentation von Pathogenfragmenten via MHC-I. Den CTL wird somit erméglicht,
Zellen, welche spezifische Peptide Uber MHC-I Molekile auf ihrer Oberflache

prasentieren, zu erkennen und zu attackieren. Tumor-infiltrierende CTL konnten bei



verschiedenen Tumorentitaten als positiver prognostischer Faktor identifiziert werden
(Fukunaga et al. 2004).

1.1.1 Erkennung von Gefahrensignalen

Das Immunsystem vermag ,Fremd” von ,Selbst* zu unterscheiden und entsprechend
darauf zu reagieren (Chaplin et al. 2010). Wie bereits 2002 von Matzinger postuliert,
existieren jedoch zusatzlich allgemeine Gefahrensignale, sowohl exo- wie endogenen
Ursprungs, die durch eukaryote Zellen erkannt werden und auf die der Organismus mit
einer entsprechenden Immunantwort reagieren kann. Diese invarianten Strukturen
werden unterschieden in pathogen-associated molecular patterns (PAMP),
microorganism-associated molecular patterns (MAMP) und danger-associated
molecular patterns (DAMP). Detektiert werden sie von unterschiedlichen PRR. Hierzu
gehoéren unter anderem die membranstandigen Lektinrezeptoren (Banchereau et al.
2000), Scavengerrezeptoren (Peiser 2002), Toll-like Rezeptoren (TLR) (Takeda et al.
2005), sowie die zyotosolischen Helikasen retinoic acid-inducible gene | (RIG-I)
(Yonoyama et al. 2005, Kato et al. 2005), melanoma differentiation gene 5 (MDA-5)
(Kang et al. 2002) sowie laboratory of genetics and physiology 2 (LGP-2) (RothenfulRer
et al. 2005). Im Hinblick auf das Spektrum der hier vorgelegten Arbeiten wird sich im

Folgenden auf die detailliere Vorstellung der TLR sowie von RIG-I beschrankt.

1.1.1.1 Toll-like Rezeptoren (TLR)

Erstmals 1985 durch Anderson et al. identifiziert kann man bei Sdugetieren mittlerweile
zwischen dreizehn verschiedenen TLR differenzieren. Diejenigen, deren Funktion
bekannt ist, sind entweder auf der Zelloberflache (TLR1, 2, 4, 5, 6) oder in
endosomalen Membranen (TLR3, 7, 8, 9), hauptsachlich von Immunzellen, lokalisiert
(Akira et al. 2006, Medzhitov 2007, Beutler et al. 2009). Wahrend die erstgenannten
molekulare Muster erkennen, die Uberwiegend in Bakterien zu finden sind, erkennen
die letztgenannten, ihrer Lokalisation entsprechend, in das Zellinnere eingedrungene
Virusgenommuster im Rahmen von viralen Infektionen. Im Detail werden
Doppelstrang-RNA von TLR3, Einzelstrang-RNA von TLR7, Guanin-reiche
Oligonukleotide von TLR8 und Cytosin-Phosphat-Guanin-Oligodesoxynukleotide (CpG-
ODN) von TLR9 erkannt (Krieg 2002, Barton et al. 2002, Beutler et al. 2004, Kanzler et
al. 2007). Nach Aktivierung kommt es einerseits zur Aktivierung von mitogen-activated
protein kinases (MAP-Kinasen), andererseits zur Translokation von interferon
regulatory factor-3 und -7 (IRF-3 und -7) und nuclear factor kB (NF-kB) in den Nukleus
durch Assoziation von myeloid differentiation primary response gene 88 (MyD88) mit
IL-1 receptor-associated kinase (IRAK). Eine Ausnahme bildet die Aktivierung von

TLR3, bei der es zur Bindung an TIR-domain-containing adapter-inducing interferon-f3



(TRIF) kommt. Das Ergebnis ist eine (verstarkte) Sekretion von proinflammatorischen

Zytokinen sowie Typ 1 Interferonen (siehe auch Abbildung 1).
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Abbildung 1: TLR Signalwege. Abbildung nach Adams, 2009

Die Rolle von TLR in der Karzinogenese ist erst unvollstandig verstanden. Neuere
Arbeiten postulieren eine férdernde Rolle von TLR7 am Beispiel des
Pankreaskarzinoms (Ochi et al. 2012). Andererseits belegeteine Vielzahl von Arbeiten,
dass TLR Liganden, als Therapeutika eingesetzt, effektive antitumorale Effekte
vermitteln. Der TLR7/8 Agonist Imiquimod wird vor allem bei dermatologischen
Malignomen klinisch eingesetzt. Bacillus Calmette-Guerin (aktiviert TLR2/4) ist eine
Standardbehandlung bei Blasenkarzinomen. Weitere TLR aktivierende Wirkstoffe
befinden sich in klinischer Erprobung (Adams 2009, Galluzzi et al. 2012).

1.1.2.2 RIG-I like Helikasen (RIG-I)
Die RIG-I ahnlichen Helikasen/ATPasen RIG-I, MDA-5 sowie LPG-2 finden sich im

Zytosol von Immun-, aber auch den meisten Nicht-Immunzellen. Sie gehéren zu den
superfamily-2 (SF2) Helikasen und teilen sich sieben konservierte Motive, welche die
Nukleinsaure- und ATP-Bindung vermitteln (Gorbalenya et al. 1988, Hopfner et al.
2007). Wahrend MDA-5 Doppelstrang-RNA detektiert und artifiziell durch synthetische
polyinosinic:polycytidylic acid (poly[l:C]) aktiviert werden kann (Kang et al. 2002, Gitlin
et al. 2006, Kato et al. 2006), erkennt RIG-I hautsachlich eine Triphosphatgruppe, die
typischerweise von viralen Polymerasen im Zytosol der Zelle im Rahmen von

Replikationsablaufen am 5'-Ende von Doppelstrang-RNA Molekilen generiert wird



(Kato et al. 2005, Hornung et al. 2006, Saito et al. 2008). Zuséatzlich bedarf es eines
kurzen basenpaarigen Abschnitts der RNA, welcher bei Einzelstrang-RNA durch eine
loop-Struktur ermdglicht wird (Schmidt et al. 2009). Erwahnenswert ist, dass die
Triphosphatgruppe am 5'-Ende eines RNA-Strangs auch regelmaRig physiologisch im
Nukleus von Zellen generiert wird, jedoch aufgrund von SpleiRungsvorgangen, 5'-
capping und weiteren Modifikationen normalerweise nicht in direkten Kontakt mit RIG-I
im Zytosol kommt (Pichlmair et al. 2006, Yoneyama et al. 2009). 5'-Triphosphat RNA
kann mittels in-vitro-Transkription synthetisch hergestellt und mittels Transfektion in die
Zielzellen eingeschleust werden, wodurch sich neue Therapieoptionen ergeben (Kato
et al. 2005, Hornung et al. 2006). Die Rolle von LGP-2 ist bisher nicht vollstandig
verstanden, es wird jedoch eine eher regulatorische Funktion angenommen
(RothenfulRer et al. 2005, Pippig et al. 2009).

1.2.2.3 Die RIG-I Signalkaskade mit Typ 1 Interferon Aktivierung

Nach Erkennung der Triphosphatgruppe initiiert RIG-I mit Hilfe des Adapterproteins
interferon promoter stimulator 1 (IPS-1) (auch als CARDIF, MAVS oder VISA bekannt)
eine Signalkaskade, welche durch IRF-3, IRF-7 sowie NF-kB reguliert wird (Kawai et
al. 2005, Meylan et al. 2005, Xu et al. 2005, Sun et al. 2006). Diese Signalkaskade
fuhrt schlieBlich, ahnlich der TLR Signalkaskade, durch Wanderung von
phosphorylierten IRF-3 und IRF-7 Homo- sowie Heterodimeren in den Nukleus, zur
Transkriptionsaktivierung von Typ 1  Interferonen  (IFN-a, IFN-B) und
proinflammatorischen Zytokinen (Kato et al. 2006, Hornung et al. 2006).
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Abbildung 2: RIG-I Signalweg nach ppp-RNA Stimulation. Abbildung nach Yoneyama, 2007



Typ 1 Interferone sind Zytokine, die vor allem von Leukozyten, Monozyten und
Fibroblasten produziert werden, jedoch in geringerem Malfle auch von anderen
Zellpopulationen, inklusive Tumorzellen, gebildet werden kénnen. Sie greifen direkt in
die intrazelluldre Virusreplikation ein und unterbinden diese, hauptsachlich vermittelt
Uber den Januskinasen-signal transducer and activator of transcription (JAK-STAT)
Signalweg (Platanias 2005). Nach Bindung an Interferon-Rezeptoren auf den
Ursprungszellen sowie umgebenden Zellen werden, vermittelt Uber den erwahnten
JAK-STAT Signalweg, MHC-I Molekile verstarkt auf der Zelloberflache exprimiert, um
Attacken durch zytotoxische CD8" T-Zellen zu erleichtern. Aktivierte T-Zellen werden
am Leben gehalten. DC, Makrophagen und NK-Zellen werden aktiviert, sofern sie nicht
bereits selbst virusinfiziert sind und somit bereits autokrin aktiviert wurden. B-Zellen
werden zur Bildung von Antikdrpern animiert. Des Weiteren werden verschiedene IFN-
abhangige Botenstoffe der angeborenen Immunitat, wie das Chemokin CXCL10, das
Interleukin 2 (IL-2) oder der tumor necrosis factor alpha (TNFa), hochreguliert. Im
Zusammenspiel mit p53 kommt es zu Apoptose der infizierten Zelle (Takaoka et al.
2003, Dunn et al. 2005, Platanias et al. 2005, Pestka 2007, Fensterl et al. 2009).

Zusatzlich kommt es nach Aktivierung der RIG-I-like Helikasen Interferon-unabhangig
zu Apoptose auf dem intrinsischen beziehungsweise mitochondrialen Pfad durch
Aktivierung der BH3-only Proteine Puma, Noxa und in geringerem Mal3e Bim und Bik
(Besch et al. 2009). Interessanterweise scheinen maligne Zellen fir diesen
Apoptosemechanismus besonders anfallig zu sein. Der Grund hierfir liegt
wahrscheinlich im Schutz nicht-maligner Zellen durch BCL-xI, das in Tumorzellen im
Rahmen der so genannten synthetic lethality und oncogene addiction nicht vorhanden
beziehungsweise nicht funktionstlichtig zu sein scheint, da durch Genalterationen im
Prozess der Karzinogenese eine erhohte Vulnerabilitdt entstehen kann (Hartwell et al.
1997, Evan 2006).

1.2 Tumorimmuntherapie

1.2.1 Allgemeiner Status Quo

In den vergangenen Jahren ist eine Vielzahl an Ansatzen verfolgt worden, um, jenseits
von Chirurgie, Strahlen- und Chemotherapie, auch die Immunantwort des Organismus
fur die Tumortherapie zu nutzen. Mittlerweile hat sich die Immuntherapie als viertes
Standbein der Onkologie etabliert. Das therapeutische Spektrum erstreckt sich vom
Einsatz onkolytischer Viren, Aktivierung von PRR oder der adoptiven T-Zell Therapie

Uber den Einsatz extrakorporaler DC-Aktivierung bis hin zur groRen Gruppe



immunmodulierender Antikérper, um nur einige der Strategien zu benennen (Krieg
2007, 2008, Vollmer et al. 2009, Bauer et al. 2011, Wu et al. 2012). Ein zentrales
Problem der Immuntherapie besteht darin, dass viele Malignome immunsuppressive
Eigenschaften aufweisen, was die Effektivitdt der genannten Strategien limitiert
(Armstrong et al. 2001, Franks et al. 2012, Hong et al. 2012). Gerade das
Pankreaskarzinom wartet mit einer Vielzahl immunsuppressiver Eigenschaften auf, die

eine Barriere fir eine effektive Immuntherapie darstellen.

1.2.2 Immuntherapie des Pankreaskarzinoms

In den letzten Jahren wurden auch in der Behandlung des Pankreaskarzinoms eine
grolle Bandbreite therapeutischer Ansatze inklusive Vakzinen, monoklonalen
Antikérpern sowie T-Zell und DC Therapien mit unterschiedlichem jedoch grundsatzlich
nicht durchschlagendem Erfolg untersucht (Bauer et al. 2011, Dodson et al. 2011,
Michl et al. 2013). Aktuell werden mehrere experimentell vielversprechende
Immuntherapeutika klinisch evaluiert. Hierzu gehéren die cytotoxic T-lymphocyte-
associated antigen 4 (CTLA-4) Antikorper Ipilimumab und Tremelimumab, welche die
Herunterregulation aktivierter T-Zellen verhindern kénnen, das Fusionsprotein L19-1L2,
welches durch Bindung an die tumorspezifische extradomain B (ED-B) extrem hohe IL-
2 Spiegel lokal im Tumorgewebe induziert, wie auch ein CD40 Agonist, der die T-Zell
Aktivierung sowie die Aktivierung myeloider Zellen im Tumorstroma unterstutzt
(Wagner et al. 2008, Hodi et al. 2010, Beatty et al. 2011). Bisher konnte jedoch kein

immunologischer Ansatz als Standardtherapie etabliert werden.

1.3 Das Pankreaskarzinom

1.3.1 Epidemiologie, Diagnhose und Therapie

Das Pankreaskarzinom ist die vierthaufigste Todesursache durch Krebserkrankungen
weltweit, obwohl die Inzidenz nur bei etwa 15 pro 100.000 Einwohnern und damit
verhaltnismaRig niedrig liegt. Die zusammengefasste Fuinf-Jahres-Uberlebensrate liegt
bei unter funf Prozent. Eine Heilung ist nur durch eine, in durchschnittlich weniger als
15 Prozent der Falle gelingende, chirurgische RO-Resektion mdglich. Einzig bei
Diagnose im UICC Stadium I-1l (lokal begrenzt, keine Metastasen) erscheint die Funf-
Jahre-Uberlebensrate mit 40 Prozent vielversprechender. Eine friihzeitige Diagnose ist
jedoch nur selten moglich, da die Erkrankung oft lange asymptomatisch bleibt (Jemal
et al. 2008). Der chemotherapeutische Goldstandard in der palliativen Situation, bei der
eine Operation nicht mehr mdglich beziehungsweise sinnvoll ist, sowie adjuvant nach

erfolgreicher RO-Resektion, ist das Zytostatikum Gemcitabin. Das Pankreaskarzinom



ist jedoch weitgehend chemo- und strahlentherapieresistent, so dass grofe Fortschritte
bezlglich der Heilungsraten bisher kaum erzielt werden konnten (Burris et al. 1997,
Vulfovich et al. 2008). Die Polychemotherapie nach dem FOLFIRINOX-Schema hat
sich beim metastasierten Pankreaskarzinom als effektiver erwiesen, kann jedoch
aufgrund seiner hohen Toxizitdt nur bei Patienten in sehr gutem Allgemeinzustand

eingesetzt werden (Conroy et al. 2011).

1.3.2 Atiologie, Pathologie und Pathogenese

Es sind eine Reihe von Risikofaktoren inklusive Zigarettenrauchen, Alkoholkonsum,
Adipositas, chronischer Pankreatitis sowie zystischer Pankreasneoplasien beschrieben
worden. Darlber hinaus bestehen mehrere Tumordispositionssyndrome mit
unterschiedlichem Erkrankungsrisiko, wie das Peutz-Jeghers-Syndrom (STK11 Gen),
die hereditare Pankreatitis (PRSS1 Gen) und das familidre Pankreaskarzinom (Gen

unbekannt), um die drei wichtigsten zu nennen.

Unterschieden wird zwischen dem weitaus haufigeren duktalen (circa 90 Prozent) und
dem azinaren Karzinom (circa 10 Prozent). Lokalisiert sind beide Typen in circa 70

Prozent im Bereich des Pankreaskopfes.

Ausgangspunkt der Tumorprogression ist in 85 bis 95 Prozent der Falle eine Mutation
des Onkogens Kras. In 60 bis 80 Prozent der Falle kann weiterhin eine Genmutation
der Tumorsuppressoren p15 und/ oder p16 sowie in je etwa 50 Prozent der Falle eine
Mutation in den Tumorsuppressorgenen von p53 und DPC4/ Smad4 detektiert werden
(Wong 2009). Die Mutation des p53 Gens bedeutet, dass Apoptose Uber den
extrinsischen Pfad nur noch eingeschrankt mdglich ist, da hierbei p53 als wichtiger
Induktor wirkt (Igney et al. 2002, Haupt et al. 2003). Zusatzlich findet sich in vielen
Pankreaskarzinomen eine Mutation des transforming growth factor-beta Rezeptors
(TGF-BR) mit nachfolgend gestdrter Signalkaskade (Massagué et al. 2008). Neuere
Erkenntnisse sprechen auch chronischen Entziindungsvorgangen, die zur Entstehung
von Tumorstroma beitragen, einen zentralen Anteil an der Kanzerogenese zu (Ochi et
al. 2012).

1.3.3 Die Aggressivitat und Letalitdt des Pankreaskarzinoms

Neben der meist spaten Diagnosestellung in entsprechend fortgeschrittenem
Erkrankungsstadium wurden zwei weitere Hauptgrinde bisher als Erklarung der hohen
Letalitat des Pankreaskarzinoms beschrieben: die desmoplastische Reaktion sowie die

geringe Immunogenitat mit ausgepragter tumorinduzierter Immunsuppression.



1.3.3.1 Desmoplastische Reaktion

Im Laufe seines Wachstums schafft sich das Pankreaskarzinom eine
bindegewebsreiche, privilegierte Wachstumsumgebung. Im Gegensatz zu anderen
Tumorentitaten, die oft als geballter Karzinomzellhaufen mit intensiver
Gefalversorgung imponieren, zeigt sich das Pankreaskarzinom als derbe, schlecht
vaskularisierte Masse. Dies fuhrt unter anderem dazu, dass der Abstand zwischen
Blutgefal® und Karzinomzelle zu grof} fir eine effektive Chemotherapie ist und auch
Zellen des Immunsystems schlechter das Tumorgewebe infiltrieren kénnen (Wong et
al. 2009, Olive et al. 2009, Neesse et al. 2011, Michl et al. 2013).

1.3.3.2Immunmodulation und tumorinduzierte Immunsuppression

Pankreaskarzinomzellen verfligen Uber eine nur schwach immunogene Zelloberflache
mit sehr geringer MHC-| Expression (Costello et al. 1999). Es fehlen Adh&sions- und
ko-stimulatorische Molekile, was die Anheftung und Aktivierung von Immunzellen
erschwert (Rabinovich et al. 2007). Gerade im Gegensatz zu virusinduzierten Tumoren
fehlen Interferone als immunaktivierende Signale. Somit besteht flir das Immunsystem
mdglicherweise kaum eine Chance, langerfristig eine Eliminations- oder zumindest
eine Equilibriumsphase im Sinne des Immuniberwachungsmodells aufrechtzuerhalten
(Dunn et al. 2002). Entscheidend ist aullerdem eine tumorinduzierte
Immunsuppression durch verschiedene Mediatoren beziehungsweise die Blockade
solcher (Rayman et al. 2000, von Bernstorff et al. 2002, Rabinovich et al. 2007). Es
kommt zu einer Rekrutierung von Treg in das Tumorstroma und zu T-Zell Anergie
(Sakaguchi 2008, Liyanage et al. 2002, Fukunaga et al. 2004, Thomas et al. 2005,
Massagué et al. 2008). Eine zentrale Rolle in all diesen immunsuppressiven
Vorgangen spielt das Zytokin transforming growth factor-beta (TGF-B), welches im

Tumorgewebe Uberexprimiert wird.

1.4 Transforming growth factor-beta (TGF-$3)

TGF-B mit seinen Unterklassen TGF-B4, TGF-B, und TGF-f; ist ein Zytokin, dass 1983
erstmals aus Kulturiiberstanden von Tumorzellen isoliert wurde (Assoion et al. 1983,
Frolik et al. 1983, Roberts et al. 1983). Es bindet an Serin-Threonin Kinasen und
beeinflusst die Transkription unterschiedlichster Gene (Massagué et al. 1996). Unter
physiologischen Bedingungen sichert TGF-B die Gewebshomdostase durch Kontrolle
der Zellproliferation und des Zelliberlebens, der Zelldifferenzierung sowie der
Zelladhasion. TGF-B  wird allgemein als potentester, natlrlich auftretender
Unterdricker von Immunfunktion angesehen, unverzichtbar zur Vermeidung von

Autoimmunitat (Pennison et al. 2007). TGF-B knockout Mause haben sich als nicht
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dauerhaft lebensfahig gezeigt (Tang et al. 1998). Beispielsweise wird orale Toleranz
durch TGF-f induzierten Antikérperswitch zu IgA sowie Th3-Zell Aktivierung ermoglicht
(Gilbert et al. 2011). T-Zellen, die im Falle von entziindlichen Darmerkrankungen fur
die UberschieBende Immunreaktion verantwortlich sind, verfligen Uber pathologisch
hochreguliertes SMAD7, was eine reduzierte Reaktion auf TGF-B vermittelte,
inhibitorische Signale bewirkt (Becker et al. 2006). Bei Malignom-induzierter
Hypersekretion oder TGF-B Rezeptormutation mit Fehlregulation der anhangigen
Signalkaskade kommt es jedoch zu einer das Tumorwachstum férdernden, massiven

Immunsuppression (Biswas et al. 2004, ljichi et al. 2006).

Hohe Spiegel von TGF- im Blut von Pankreaskarzinompatienten korrelieren mit einer
schlechten Prognose (Friess et al. 1993). TGF-B wird eine entscheidende pro-
metastatische Rolle zugesprochen (Bhowmick et al. 2004, Pollard et al. 2004, Kallari et
al. 2006). Die Prasenz von TGF-f an der invasiv wachsenden Seite eines Tumors wird
mit Tumorprogression und Metastasierung assoziiert (Dalal et al. 1993, Padua et al.
2009). Es induziert eine epithelial-to-mesenchymal transition (EMT) der Karzinomzellen
und erhdht dadurch deren Motilitat und damit den Grad der Invasivitat der Tumorzellen
(Ellenrieder et al. 2001, Bhowmick et al. 2001, 2004, Drabsch et al. 2012). Die
Angiogenese wird zudem gefdérdert (Roberts et al. 1983). TGF-B ist beteiligt an der
Induktion, der Rekrutierung und Expansion von MDSC (Li et al. 2012). Daruber hinaus
wirkt es auch direkt inhibierend auf Makrophagen, B-Zellen und CTL, reduziert deren
Teilungsrate sowie ihre Fahigkeit, fremde Zellen zu erkennen und zu attackieren. Im
Detail blockiert es die Bildung und Sekretion von Perforin, Granzym, Fas-Ligand sowie
Interferon-y (IFN-y), was eine weitestgehende CD8" T-Zell Anergie zur Folge hat
(Fukunaga et al. 2004, Thomas et al. 2005, Massagué et al. 2008). TGF- verschiebt
die Immunantwort des Organismus im Gesamten von einer Th1 dominanten,
zytotoxischen zu einer Th2 fokussierten Immunantwort, beziehungsweise induziert
auch direkt die Bildung regulatorischer T-Zellen (Chen et al. 2003, Moutsopoulos et al.
2008). Aus den genannten Grinden kann TGF-B als ein zentrales Molekll der

tumorinduzierten Immunsuppression bezeichnet werden.

1.4.1 TGF-B als therapeutische Zielstruktur fiir die Tumorimmuntherapie

Aufgrund der beschriebenen Eigenschaften erscheint TGF-f als sinnvolles Ziel einer
Therapie des Pankreaskarzinoms, die auf die Brechung tumorinduzierter
Immunsuppression fokussiert ist. Einige Anti-TGF-B Molekile waren in praklinischen
Studien bereits effektiv und ein Teil von ihnen wird aktuell in klinischen Studien bei

Patienten mit Melanomen, Glioblastomen, kolorektalen Karzinomen, Nieren-, Brust-
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und auch Pankreaskarzinomen untersucht (Schlingensiepen et al. 2006, Gaspar et al.
2007, Schlingensiepen et al. 2009, Takaku et al. 2010, Drabsch et al. 2012). Hierbei
werden unterschiedliche Strategien verfolgt, wobei meist versucht wird, TGF-3 und
seine Wirkung so hoch wie mdglich im Signalweg zu neutralisieren. Dies kann
entweder durch die Inhibition oder Sequestrierung der TGF-f3 Protein Liganden, des
Proteins selbst oder durch die Blockade der TGF-B Rezeptoren erfolgen. Hierflr
werden small molecules, antisense Oligonukleotide, small hairpin RNA oder auch
neutralisierende Antikorper verwendet. Teilweise wurden diese Strategien bereits in
Kombination mit konventionellen Therapien (Chemotherapie, Radiotherapie) oder
Immuntherapien wie dem adoptiven T-Zell Transfer untersucht. Trotz einigem
therapeutischen Erfolg bleiben Zweifel beziglich der systemischen Nebenwirkungen
mit der Gefahr von de novo Tumoren oder Autoimmunprozessen aufgrund der
vielschichtigen Eigenschaften von TGF-$ (Drabsch et al. 2012).

1.5 Zusammenfassung/ Summary

1.5.1 Zusammenfassung der vorgelegten Publikationen

In den letzten Jahrzehnten konnten grolRe Erfolge in der Tumortherapie gefeiert
werden, auch und besonders auf dem Feld der Tumorimmuntherapie. Bei einigen
Tumorerkrankungen, allen voran beim Pankreaskarzinom, blieben die therapeutischen
Fortschritte jedoch dirftig. Als ein zentraler Grund hierfir wird die tumorinduzierte
Immunsuppression angesehen. Daher bedarf es kontinuierlicher Anstrengung, die
Mechanismen dieser Immunsuppression weiter zu verstehen und aus den
gewonnenen Erkenntnissen Therapieansatze zu entwickeln, die letztlich auch Einzug

in den klinischen Alltag halten kénnen.

1.5.1.1Anz et al. Int J Cancer 2011.

CD103 is a hallmark of tumor-infiltrating regulatory T-cells.

Der erste Teil der Arbeit behandelt die Rolle der CD103" (auch bekannt als aER7)
Subpopulation regulatorischer T-Zellen (Treg). Treg spielen eine entscheidende Rolle
im Rahmen tumorinduzierter Immunsuppression. Die gegen Treg bereits verwendeten,
beziehungsweise theoretisch denkbaren Therapieoptionen, haben den Nachteil, dass
es sich entweder um schlecht erreichbare, intrazelluldre Zielstrukturen handelt
(FoxP3), die Effektivitdt mit steigender Tumorlast massiv abnimmt (CD25) oder das
Ziel zu unspezifisch ist und es somit zu autoimmunen Nebenwirkungen kommt
(CTLA4) (Onizuka et al. 1999, Kapadia et al. 2005, Colombo et al. 2007).
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Initial konnten wir die gesteigerte immunsuppressive Potenz CD103" im Vergleich mit
CD103" regulatorischen T-Zellen bestatigen. Es gelang durch Analysen in vier
verschiedenen murinen Tumormodellen (EL4 Lymphom, CT26 Kolonkarzinom, B16
Melanom, Panc02 Pankreaskarzinom) zu zeigen, dass die Population CD103" Treg
spezifisch fur tumorinfiltrierende Treg ist, jedoch CD103 nicht fir die Retention dieser
im Tumorstroma verantwortlich zeichnet. Unsere Ergebnisse lassen weiterhin darauf
schlieRen, dass intratumorales TGF-B entscheidend an der Induktion der CD103"
Subpopulation beteiligt ist, da unter anderem im murinen, orthotopen Panc02
Pankreaskarzinommodell nach systemischer Therapie mit einer siRNA gegen TGF-3
die Zahl CD103" Treg signifikant reduziert werden konnte. Zusammenfassend l&sst
sich sagen, dass CD103 eine potentielle Zielstruktur flr die Therapie tumorinduzierter

Immunsuppression darstellt.

1.5.1.2Jacobs et al. Int J Cancer 2011.

An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated

by regulatory T-cells in an orthotopic model of pancreatic carcinoma.

Im 2zweiten Teil der Arbeit haben wir in einem murinen, orthotopen
Pankreaskarzinommodell eine Vakzinierungsstrategie gegen Tumorantigene mittels
immunstimulatorischer Komplexe (ISCOM) untersucht. ISCOM-Vakzine bestehen aus
Proteinantigenen, die mit kafigartigen Nanostrukturen, die aus Saponin,
Phospholipiden und Cholesterin aufgebaut sind, komplexiert werden. ISCOM-Vakzine
induzieren eine allgemeine Immunstimulation sowie B- und T-Zell-vermittelte
Immunantworten gegen multiple MHC-II und MHC-I Epitope der entsprechenden
Proteinantigene.  Malgeblich ist eine Aktivierung von DC, die zur
Antigenkreuzprasentation und nachfolgender T-Zell Aktivierung befahigt werden (Davis
et al. 2004, Schnurr et al. 2005, Drane et al. 2007, Schnurr et al. 2009, Duewell et al.
2011).

Fir diese Versuche verwendeten wir eine OVA/ISCOM-Vakzine und generierten
Panc02 Tumorzellen, die Ovalbumin (OVA) als experimentelles Tumorantigen
exprimieren (PancOVA). Der Impfstoff wurde alleine sowie in Kombination mit dem
TLR9 Agonisten CpG-ODN 1826 subkutan injiziert. Zudem wurde eine Kombination
der Vakzine mit einem gegen das Oberflachenmolekil CD25 gerichteten Antikdrper

evaluiert, welcher zu einer Depletion von Treg flhrt.

Die prophylaktische Gabe der OVA/ISCOM Vakzine flihrte zu einem vollstandigen
Tumorschutz durch die hocheffektive Induktion OVA-spezifischer CTL. Bei bereits
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etablierten Tumoren (therapeutische Vakzinierung) jedoch war die alleinige Gabe der
OVA/ISCOM Vakzine nicht ausreichend effektiv. Dies war unter anderem auf eine
tumorvermittelte Induktion von Treg zurtckzufuhren. Entsprechend verbesserte die
Gabe des CD25 Antikérpers das Therapieergebnis signifikant. Die Kombination der
Vakzine mit dem TLR9 Agonisten CpG ODN 1826 flhrte zu einer Th1-dominanten
Immunantwort mit Aktivierung von Immunzellen des angeborenen sowie des adaptiven
Immunsystems. Daraus resultierte eine massive Expansion von Antigen-spezifischen
CD8" CTL. Therapeutisch konnte eine signifikante Lebensverlangerung inklusive
kompletter Tumorregressionen im orthotopen Tumormodell festgestellt werden.
Interessanterweise waren alle der Uberlebenden Tiere vor einer re-challenge mit
PancOVA Tumoren und einige sogar mit Wildtyp Panc02 Tumoren (ohne OVA
Expression) geschitzt. Dieses Ergebnis lieR darauf schlieBen, dass es durch die
Immuntherapie zu einem T-Zell Gedachtnis mit epitope spreading gekommen war.
Durch den Nachweis p15E-spezifischer CTL im Blut der Langzeitiberlebenden (es
handelt sich bei p15E um ein spezifisches Tumorantigen von Panc02 Zellen) konnte
diese Hypothese bestatigt werden. Die Ergebnisse zeigen eine effiziente Methode,
tumorinduzierte Immunsuppression durch geeignete immuntherapeutische Strategien
zu Uberwinden. Das Konzept der Tumorvakzine mit unterschiedlichen Tumorantigenen
wird in der Therapie des Pankreaskarzinoms alleine in den USA aktuell in Gber zehn
klinischen Studien untersucht (http://www.cancer.gov/clinicaltrials/search/
results?protocolsearchid=11444759, 28.02.2013). Die Verwendung von ISCOM-
Vakzinen zusammen mit TLR Liganden kdnnte hier in Zukunft einen entscheidenden

Vorteil bringen.

1.5.1.3 Ellermeier et al. Cancer Res 2013.

Therapeutic efficacy of bifunctional siRNA combining TGF-B; silencing with RIG-I

activation in pancreatic cancer.

Der Hauptteil meiner Arbeit befasst sich mit der Therapie des Pankreaskarzinoms
mittels einer bi-funktionalen, RIG-I aktivierenden siRNA gegen TGF-B. TGF-p ist einer
der zentralen Treiber Pankreaskarzinom-induzierter Immunsuppression. RIG-I ist eine
zytosolische Helikase, die virusassoziierte 5'-Triphosphat-RNA erkennt und nach
Aktivierung zu einer anti-viralen Typ 1 IFN Antwort fihrt sowie Apoptose induziert. Die
Kombination aus RNA-Interferenz und RIG-I-Aktivierung konnte durch eine
Triphosphatmodifikation am 5'-Ende der TGF-B-spezifischen siRNA (ppp-TGF-B)
mittels in-vitro-Transkription eines entsprechenden DNA-Templates erreicht werden.

Eine auf ahnliche Weise generierte ppp-siRNA gegen Bcl-2, mit dem Ziel
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Apoptoseinduktion zu verstarken, hatte sich in einer Arbeit von Poeck et al. (2008)

prinzipiell als erfolgreich in einem murinen Melanommodell erwiesen.

Wir konnten zeigen, dass humane Pankreaskarzinomzellen funktionelles RIG-I
exprimieren und somit fir eine ppp-RNA-Therapie in Frage kommen. Die von uns
entwickelte ppp-TGF-B fuhrte sowohl in murinen als auch in humanen Tumorzellen zu
einer signifikanten Genexpressionshemmung von TGF-B, zur Produktion pro-
inflammatorischer Zytokine und Chemokine (IFN-B, CXCL10) sowie zu Apoptose in
vitro. Die Bifunktionalitdt konnte auch in vivo bestatigt werden. In einem murinen,
orthopen Pankreaskarzinommodell kam es nach intravenéser Gabe von ppp-TGF-8 zur
Reduktion der TGF-B-Spiegel im Serum und Tumorgewebe, zu systemischer
Immunaktivierung (pro-inflammatorische Zytokine, Immunzellaktivierung) sowie
verstarkter Einwanderung von CD8" T-Zellen in das Tumorgewebe. Ferner zeigte sich
eine Caspase-9-vermittelte Apoptose von Tumorzellen. Durchflusszytometrische
Analysen der Immunzellinfiltrate im Tumor und lymphatischen Organen zeigten eine
Aktivierung von CD8" T-Zellen sowie eine Reduktion von MDSC, die zudem einen
Phanotyp verminderter Suppressivitat aufwiesen. Hinweise auf Organschaden oder
durch die Therapie induzierte Autoimmunprozesse fanden sich nicht.
Uberlebensversuche zeigten einen signifikanten Therapieerfolg der mit ppp-TGF-B
behandelten Versuchstiere, wobei es in 33% der Falle zu einer kompletten Remission
kam, wie Autopsien der Uberlebenden Tiere nach 100 Tagen ergaben. Versuche mit
Immunzell-depletierenden Antikérpern konnten belegen, dass der Therapieerfolg auf
der Aktivierung tumorreaktiver CD8" T-Zellen beruhte, wahrend NK-Zellen entbehrlich
waren. Zusammenfassend konnten wir zeigen, dass der Einsatz einer bi-funktional
wirksamen, immunstimulatorischen siRNA gegen TGF-B ein innovatives, sicheres und

vielversprechendes Therapiekonzept darstellt.

1.5.2 Summary of the presented publications

Over the course of the past decades major progress has been made regarding
malignoma therapies and outcomes. Tumor immunotherapy has been established as
the fourth pillar of tumor therapy. Nevertheless, patients with certain malignancies such
as pancreatic carcinoma have hardly been able to benefit from new therapeutic
regimens. Tumor-mediated immunosuppression is seen as a major reason for this lack
of treatment efficacy. Therefore continuous effort is needed to shed more light on the
mechanisms of tumor-mediated immunosuppression and to develop promising

therapeutic strategies which are suited to eventually enter clinical application.



15

1.5.2.1Anz et al. Int J Cancer 2011.

CD103 is a hallmark of tumor-infiltrating regulatory T-cells.

The first part of my thesis deals with the role of the CD103" (cluster of differentiation
103, also known as aER7) subpopulation of regulatory T-cells (Treg). Treg play a
crucial role in tumor-mediated immunosuppression. Anti-Treg agents already in use or
theoretically plausible exhibit major drawbacks. The target structures are either hardly
accessible due to intracellular localization (FoxP3), therapeutic efficacy plummets while
tumor load increases (CD25) or major side effects of autoimmunity occur due to
unspecificity (CTLA4) (Onizuka et al. 1999, Kapadia et al. 2005, Colombo et al. 2007).

First, we were able to confirm the increased immunosuppressive function of CD103" as
compared to CD103" Treg. By analyzing four different murine tumor models (EL4
lymphoma, CT26 colon carcinoma, B16 melanoma and Panc02 pancreatic carcinoma)
we were able to show that CD103" is upregulated in tumor infiltrating Treg. Treg
retention in the tumor stroma however was not mediated by CD103. Our results further
indicated that TGF-B is the key player in the process of induction of the CD103"
subpopulation since TGF-B knockdown via RNA interference in a model of murine
orthotopic pancreatic carcinoma led to significantly reduced numbers of CD103" Treg
in the tumor tissue. In conclusion we can state that CD103 and its regulation by TGF-3

are potential therapeutic targets to break tumor-mediated immunosuppression.

1.5.3.2Jacobs et al. Int J Cancer 2011.

An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated

by regulatory T-cells in an orthotopic model of pancreatic carcinoma.

In the second part of my thesis we used an ovalbumine (OVA)-expressing model of
murine, orthotopic Panc02 pancreatic carcinoma to test the therapeutic efficacy of an
ISCOMATRIX (IMX)-based vaccine containing the model antigen OVA (OVA/IMX). IMX
consists of cholesterol, saponin and phoshpolipids and forms particles of approximately
40 nm in diameter. IMX-based vaccines, which contain the adjuvant plus a protein
antigen, have been demonstrated to efficiently induce both humoral and adaptive
immune responses to vaccine antigen. IMX has been shown to activate DC in vivo and
to facilitate antigen cross-presentation by DC (Davis et al. 2004, Schnurr et al. 2005,
Drane et al. 2007, Schnurr et al. 2009, Duewell et al. 2011). To counteract
immunosuppressive mechanisms derived from the tumor we evaluated the IMX-based
vaccine alone, in combination with a TLR9 agonist (CpG-ODN 1826) or with a
depleting antibody against CD25.
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Prophylactic vaccination with OVA/IMX led to effective tumor protection via induction of
antigen-specific CTL. In a therapeutic setting, when tumors were already established,
OVA/IMX did not prove sufficiently effective, partly due to tumor-mediated induction of
Treg. The addition of an anti-CD25 antibody significantly improved therapy outcomes.
The combination of the vaccine with the TLR9 agonist led to a Th1-dominant immune
response along with the activation of the adaptive immune system, especially CD8" T
cells. Significantly prolonged survival rates including several long-term survivors could
be achieved in the orthotopic PancOVA model of murine pancreatic cancer. Strikingly,
those long-term survivors all rejected PancOVA tumors and partially rejected Panc02
wildtype cancer cells lacking OVA-expression in re-challenge experiments. We
assumed this to be due to T-cell memory induction and epitope spreading. Our
hypothesis was supported by isolating p15E-specific CTL in the blood of long-term
survivors (the p15E epitope is derived from a tumor antigen expressed by Panc02
pancreatic cancer cells). The results show a potent strategy to break tumor-induced
immunosuppression. In the USA alone, there are currently more than ten clinical trials
ongoing, testing vaccination strategies for the treatment of pancreatic carcinoma
(http://www.cancer.gov/clinicaltrials/search/results?protocolsearchid=11444759,

February 28, 2013). The use of IMX vaccines in combination with TLR ligands or other
immune modifiers could potentially create a significant treatment advantage in the

future.

1.5.3.3Ellermeier et al. Cancer Res 2013.

Therapeutic efficacy of bifunctional siRNA combining TGF-B; silencing with RIG-I

activation in pancreatic cancer.

The main part of my work focused on the development of a bi-functional, RIG-I
activating siRNA targeting TGF-B for immunotherapy of pancreatic carcinoma. TGF-f3
is a key promoter of cancer-induced immunosuppression, which is highly
overexpressed by pancreatic cancer cells. RIG-| is a cytosolic helicase which detects
virus-associated 5’triphosphate-RNA (ppp-RNA) and leads to an anti-viral type 1 IFN
response as well as IFN- and p53-independent apoptosis. The combination of RNA
interference with RIG-I activation in one RNA molecule was reached via 5’-triphosphate
modification of a TGF-B-specific siRNA by in vitro transcription of a corresponding
DNA-template (ppp-TGF-B). A related ppp-modified siRNA targeting the anti-apoptotic
molecule Bcl-2, which was designed to enhance apoptosis induction in tumor cells, has
demonstrated efficacy in a proof-of-principle study in a mouse model of malignant

melanoma (Poeck et al. 2008).
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We were able to show that human pancreatic cancer cells express functional RIG-I and
hence are susceptible to ppp-RNA therapy. Bifunctional ppp-TGF- led to significant
TGF-B knockdown, production of pro-inflammatory cytokines and apoptosis in murine
as well as human pancreatic cancer cells in vitro. Following intravenous ppp-TGF-8
treatment in an orthotopic model of murine Panc02 pancreatic carcinoma, TGF-3
suppression systemically as well as in the tumor tissue was achieved. Furthermore,
treatment led to systemic immune activation (production of pro-inflammatory cytokines,
activation of immune cells), increased migration of CD8" T-cells to the tumor tissue and
caspase 9-mediated tumor cell apoptosis. MDSC in tumor-bearing mice were reduced
in number and showed a less suppressive phenotype. Treatment-related toxicity or
autoimmunity was not detected. Survival experiments showed a significant benefit with
complete tumor remission in 33% of all ppp-TGF-B treated animals. Therapeutic
efficacy was significantly better for the bi-functional siRNA molecule as compared to
RNA molecules mediating either RIG-I activation or TGF-B gene silencing alone.
Therapeutic efficacy strongly relied on CD8" T-cells, whereas NK cells appeared to be
dispensable, as evidenced with immune cell depleting antibodies. In conclusion we
were able to show that RIG-I is a promising target in pancreatic cancer and that bi-
functional immunostimulatory ppp-siRNA targeting TGF-B is an innovative, safe and

promising therapeutic concept.
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Regulatory T cells (Treg) mediate tolerance towards self-antigens by suppression of innate and adaptive immunity. In cancer
patients, tumor-infiltrating FoxP3+ Treg suppress local anti-tumor immune responses and are often associated with poor
prognosis. Markers that are selectively expressed on tumor-infiltrating Treg may serve as targets for immunotherapy of
cancer. Here we show that CD103, an integrin mediating lymphocyte retention in epithelial tissues, is expressed at high
levels on tumor-infiltrating FoxP3+ Treg in several types of murine cancer. In the CT26 model of colon cancer up to 90% of
the intratumoral FoxP3+ cells expressed CD103 compared to less than 20% in lymphoid organs. CD103+ Treg suppressed T
effector cell activation more strongly than CD103"*® Treg. Expression of CD103 on Treg closely correlated with intratumoral
levels of transforming growth factor p (TGF-B) and could be induced in a TGF-B-dependent manner by tumor cell lines. In vivo,
gene silencing of TGF-p reduced the frequency of CD103+ Treg, demonstrating that CD103 expression on tumor-infiltrating
Treg is driven by intratumoral TGF-B. Functional blockade of CD103 using a monoclonal antibody did however not reduce the
number of intratumoral Treg, indicating that CD103 is not involved in homing or retention of FoxP3+ cells in the tumor tissue.
In conclusion, expression of CD103 is a hallmark of Treg that infiltrate TGF-B-secreting tumors. CD103 thus represents an
interesting target for selective depletion of tumor-infiltrating Treg, a strategy that may help to improve anti-cancer therapy.

Regulatory T cells (Treg) are crucial in the prevention of
autoimmunity by inhibiting effector T cell responses against
self-antigens." Treg however also inhibit immune responses
against malignant tumors and thus facilitate cancer develop-
ment.” Indeed, a prominent role of Treg in tumor-associated
immunosuppression has been confirmed by several recent
studies. During tumor progression Treg accumulate in the
blood and lymphoid organs of the tumor-bearing host and in
several types of cancer Treg abundantly infiltrate the tumor
tissue itself.> Inhibition of anti-cancer immunity is mediated
predominantly by tumor-infiltrating Treg that suppress effec-
tor T cell responses locally at the tumor site.* The number of
tumor-infiltrating FoxP3+ Treg is associated with poor prog-
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nosis and has been identified as a significant predictor of
patient death in several types of human cancer.””’

Given the detrimental role of Treg in tumor progression,
efforts were made to identify target molecules to selectively
deplete these cells. The transcription factor FoxP3, the most
distinctive marker characterized so far for Treg in both
humans and mice, is not accessible to depleting antibodies
due to its intracellular expression.” Natural thymus-derived
Treg constitutively express the interleukin-2 receptor o-chain
(CD25) and treatment of mice with monoclonal antibodies
against CD25 leads to a temporary reduction of
CD4+FoxP3+ cells.® This enhances anti-tumor immunity
and can lead to T cell dependent rejection of pre-existing
tumors.” However, with tumor progression the efficacy of
anti-CD25 treatment is gradually reduced, a fact that may
result from simultaneous depletion of activated CD25-
expressing effector T cells.'"” Another antibody-mediated
strategy to inhibit Treg function is the activation or blockade
of target molecules on these cells without depletion. Activa-
tion of the glucocorticoid-induced tumor-necrosis factor re-
ceptor related protein (GITR) by an agonistic antibody inhib-
its Treg function and shows in vivo anti-tumor activity.'"'?
A Dblocking antibody to the cytotoxic T-lymphocyte-associ-
ated antigen 4 (CTLA4) expressed by both regulatory and
effector T cells inhibits Treg-induced suppression and is cur-
rently evaluated in clinical trials.>> Anti-CTLA4 treatment
however affects the entire pool of Treg and an important
limitation of this approach is the development of systemic
autoimmunity."* A marker predominantly expressed by
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tumor-infiltrating Treg would represent a more selective tar-
get to enhance anti-cancer immunity.

The plasma membrane-associated molecule CD103, also
called ogf3;, belongs to the family of integrins and is poorly
expressed by immune cells in the spleen or the peripheral
lymph nodes.'> CD103 can be detected mainly on T cell pop-
ulations within the mucosal epithelium of the gut and on in-
testinal lamina propria leukocytes.'® It is thought that CD103
contributes to the retention of lymphocytes in epithelial tis-
sues through interaction with its receptor E-cadherin
expressed by epithelial cells.'” Mice deficient for CD103 have
slightly reduced numbers of intestinal intraepithelial lympho-
cytes, but apart from that are healthy, indicating that CD103
is probably dispensable.'® Among Treg in lymphoid tissues, a
subset of about 20% expresses CD103 and these cells display
an effector memory phenotype with low expression levels of
CD45RB and high levels of CD44." Some reports further
indicate that CD103+ Treg more strongly inhibit CD4 T cell
proliferation than conventional Treg.'>** Thus, CD103 is a
surface-expressed molecule that marks both intestinal lym-
phocytes and a particularly suppressive subtype of Treg.

In this study, we analyzed tumor-infiltrating Treg for
expression of CD103 in four different murine models of can-
cer. In all tumor models, we found that the majority of intra-
tumoral Treg express CD103 with up to 90% of FoxP3+
Treg staining positive for CD103. High proportions of
CD103+ cells were further specific for tumor-infiltrating
Treg. CD103 expression on Treg correlated with TGF-3
secretion of tumor cells and could be down-regulated by
RNAi-mediated gene silencing of TGF-B. Therapeutic target-
ing of CD103 may represent a promising approach to
enhance anti-cancer immunity.

Material and Methods

Mice and cell lines

Female BALB/c and C57BL/6 mice were purchased from Har-
lan-Winkelmann (Borchen, Germany). Mice were 5 to 10
weeks of age at the onset of experiments. Animal studies were
approved by the local regulatory agency (Regierung von Ober-
bayern, Munich, Germany). The murine cell lines Colon-26
(CT26; Cell Lines Service, Heidelberg, Germany), B16 mela-
noma F1 (LGC Promochem, Teddington, UK), EL-4 lym-
phoma (Institute of Immunology, University of Munich) and
Panc02 (kindly provided by Prof. C. Bruns, Department of Sur-
gery, University of Munich) were maintained in DMEM me-
dium supplemented with 10% FCS, 1% r-glutamine, 1 U/ml
penicillin and 0.1 mg/ml streptomycin (all PAA Laboratories,
Coelbe, Germany). For tumor induction 0.25 x 10° (CT26), 1
x 10° (B16 and Panc02), or 5 x 10° (EL4) tumor cells were
injected subcutaneously into the flank. The tumor-draining
lymph nodes were identified by connecting vessels, the proxim-
ity to the tumor and the larger size compared to non-draining
lymph nodes. Tumor size was expressed as the product of the
perpendicular diameters of individual tumors (mm?). Tumor
growth was calculated as final tumor size divided by the num-

CD103 for selective depletion of Treg

ber of days since injection (mm?/d) to normalize data from in-
dependent experiments.

Immunohistology

Tumor tissues were frozen in liquid nitrogen and 5 um cryo-
sections from the center of the tumors were prepared. The
following primary antibodies were used: anti-mouse CD103
(Biolegend, San Diego, CA), anti-mouse FoxP3 (Ebioscience,
San Diego, CA) and anti-mouse E-Cadherin (Cell Signaling
Technology, Beverly, MA). Cy5 F(ab)2 goat anti-Armenian
hamster IgG, biotin F(ab)2 donkey anti-rat IgG, biotin IgG
donkey anti-rabbit IgG and rhodamin red X streptavidin
were used as detection reagents. Nucleic counterstaining was
performed using DAPI (Sigma Aldrich, Steinheim, Germany).
Counting was performed blinded by two independent investi-
gators. Images were obtained by fluorescence microscopy
(Axiovert 2000 Carl Zeiss, Jena, Germany; 40-fold magnifica-
tion) using Carl Zeiss Axiovision software and processed
with Adobe Photoshop for adjustment of contrast and size.

Flow cytometry

For flow cytometry analysis single cell suspensions of spleen,
lymph nodes or Peyer’s patches were prepared. Bone marrow
cells were harvested from murine femur and tibia and eryth-
rocytes were lysed with ammonium chloride buffer (BD Bio-
sciences). To isolate lymphocytes from tumor, lung, liver or
heart, the tissues were mechanically disrupted, incubated with
1 mg/ml collagenase and 0.05 mg/ml DNAse (both Sigma
Aldrich) and subsequently passed through a cell strainer. Sin-
gle cell suspensions were resuspended in 44% Percoll (Bio-
chrome, Berlin, Germany) and layered over 67% Percoll prior
to centrifugation at 800 g for 30 min. Lymphocytes from the
interphase were stained for flow cytometry. The following
antibodies were used: Pacific Blue or PerCP anti-mouse CD3,
PE anti-mouse B220, PE-Cy7 or PerCP anti-mouse CD4,
APC-Cy7 anti-mouse CD8 (all Biolegend), FITC anti-mouse
CD103 (BD Biosciences, Heidelberg, Germany) and Pacific
Blue or APC anti-mouse FoxP3 (Ebioscience). Intracellular
detection of FoxP3 was performed using premixed regulatory
T cell staining reagents (Ebioscience). Events were measured
on a FACS Calibur or FACS Canto II flow cytometer (BD
Biosciences) and analyzed with FlowJo software (TreeStar,
Ashland, OR).

FACS sorting and proliferation assays

Untouched CD4+ T cells were sorted from single cell sus-
pensions of lymph nodes by magnetic cell sorting (Miltenyi
Biotec, Bergisch Gladbach, Germany). Cells were stained with
labeled antibodies against CD103 (Fitc, BD Biosciences), CD4
(PerCP) and CD25 (APC, both from Biolegend). CD4+
CD25+ CDI103+, CD4+CD25+CD103"® and CD4+
CD25"™% cells were obtained by FACS sorting using a FACS
Aria cell sorter (BD Biosciences) with a purity of more than
99%. Treg subsets (3 X 10* cells) and T effector cells (7.5 x
10* cells) were cultured in triplicate with anti-CD3-CD28
beads (Invitrogen, Carlsbad, CA) at a bead-to-cell ratio of 1:5
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for 72 hr and in the presence of BrdU (Roche Diagnostics,
Mannheim, Germany). To detect proliferation of T effector
cells, co-cultures were then stained with Pacific Blue-labeled
FoxP3 antibody, fixed with 1% PFA in PBS, incubated with
DNAse I (0.05 mg/ml in PBS; Sigma-Aldrich, Steinheim,
Germany) and further stained with anti-BrdU-FITC antibody
(Invitrogen). T effector cell proliferation and activation was
determined by BrdU and CD69 expression of CD4+FoxP3"®
cells. IL-2 levels in the co-culture were measured by ELISA
(BD Biosciences).

TGF-f in vitro assays

To assess CD103 induction on Treg, 1.2 x 10> splenocytes
were cultured in triplicate with supernatants of CT26 or EL-4
tumor cells in the presence of anti-CD3-CD28 coated
microbeads (Invitrogen, bead to cell ratio 1:10). Recombinant
TGF-B1 or anti-TGF-B1 antibody (both R&D Systems, Min-
neapolis, MN) were added in a concentration of 5 ng/ml and
12.5 pg/ml, respectively. Cells were cultured for three days
before analysis by flow cytometry.

TGF-f ELISA of supernatants and tissue lysates

To measure TGF-f secretion by different tumor cell lines, 5
x 10° tumor cells were plated in 3 ml of medium, cultured
for two days and supernatants were analyzed by ELISA
(R&D Systems). For analysis of tissues, tumor or lymph node
homogenates were resuspended in lysis buffer (BioRad
Laboratories, Hercules, CA) and centrifuged. Total protein
concentration was measured by Bradford assay (BioRad Lab-
oratories). All samples were diluted to equal protein concen-
trations and TGF-P1 levels were measured by ELISA. The
final cytokine concentration was calculated as ng cytokine/g
protein in the respective lysate.

TGF-p gene silencing and in vivo CD103 blocking

For in vivo gene silencing of TGF-B, siRNAs were designed
according to published guidelines.*’ 3'-Overhangs were car-
ried out as two deoxythymidine residues (dTdT). RNAs were
all from Eurofins MWG Operon (Penzberg, Germany).
Sequences were: Control RNA: 5-GAUGAACUUCAGGGU
CAGCG-3" (sense), 5'-CGCUGACCCUGAAGUUCAUC-3'
(antisense); TGF-B1 siRNA: 5-GAACUCUACCAGAAAU
AUAUU-3' (sense), 5-AAUAUAUUUCUGGUAGAGUUC-
3’ (antisense). Nonsilencing siRNA (control RNA) was
designed to contain random sequences that do not match
within the murine or human genome. For in vivo delivery 50
ng of siRNA was complexed with in Vivo JetPEI reagent
(Peglab, Erlangen, Germany) according to the manufacturer’s
instructions and injected into the tail vein. For in vivo block-
ing of CD103, 150 pg of rat IgG2ak anti-mouse CD103 anti-
body (clone M290, Bioxcell, West Lebanon, NH) was injected
intraperitoneally.
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Statistics

All data are presented as mean +/— SEM and were analyzed
as appropriate by unpaired Student’s t-test or by ANOVA
test using the Student Newman Keuls test. Statistical analysis
was performed using SPSS software.

Results

A high proportion of tumor-infiltrating FoxP3+ regulatory

T cells expresses CD103

To investigate CD103 expression levels on tumor-infiltrating
Treg, subcutaneously induced murine CT26 colon and B16
melanoma tumors were examined by immunofluorescence
staining. Tissue sections were double-stained with antibodies
directed against FoxP3 and CDI103 and the proportion of
CD103+ Treg was evaluated by counting non-overlapping
visual fields from tumors of eleven different mice (Fig. la).
Strikingly, in CT26 tumors more than 90% of the tumor-
infiltrating FoxP3+ cells expressed the integrin CD103 (Fig.
1b). In contrast, in the spleen only 20% of FoxP3+ cells were
positive for CD103, consistent with previous reports.”> In
subcutaneous B16 melanoma tumors, more than 50% of
intratumoral Treg expressed CD103 (Fig. 1b). We further
used flow cytometry to analyze CD103 levels on tumor-infil-
trating FoxP3+ cells and could confirm the high proportion
of CD103+ Treg in both CT26 and B16 tumors (Fig. 1c).
Analysis of an additional tumor model, the subcutaneous EL-
4 lymphoma, revealed a lower percentage of CD103+ cells
within tumor-infiltrating Treg (31%) compared to the CT26
and B16 tumors. In all analyzed models, however, CD103
expression of intratumoral Treg was significantly higher com-
pared to FoxP3+ cells in the spleen of the same mice (Fig.
Ic). Further, expression levels of CD103 by tumor-infiltrating
Treg clearly correlated with tumor growth (Fig. 1d). To con-
firm previous reports indicating that CD103+ cells represent
a particularly suppressive subset of Treg'®*® we isolated
CD103+ and CDI103"® Treg from CT26 tumor-bearing
mice. Indeed, CD103+ Treg more strongly suppressed prolif-
eration, activation and IL-2 release of T effector cells (Fig.
le). In conclusion, tumor-infiltrating Treg are characterized
by high expression levels of CD103, a marker predicting
potent suppressive function of these cells.

High expression of CD103 is specific for tumor-infiltrating
regulatory T cells

To assess whether the high proportions of CD103+ cells are
specific for tumor-infiltrating Treg, we determined the per-
centage of CD103+ cells within FoxP3+ cells derived from
different organs of tumor-bearing mice. In the peripheral
lymph nodes, numbers of CD103+ cells among Treg were
generally low with a proportion of less than 25% (Fig. 2a).
Interestingly, in CT26 tumor-bearing mice a significantly
higher number of CD103-expressing Treg was detected in the
tumor-draining lymph nodes. To assess CD103 expression in
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among CD4-++FoxP3+ cells for all mice is shown. (d) Tumor growth of CT26 tumors in mm?/day from three independent experiments was
correlated to CD103 expression of CD4+FoxP3+ tumor-infiltrating cells according to Pearson’s test. (¢) CD4+CD25+CD103+ and
CD4-+CD25+CD103"8 Treg as well as CD4+CD25"8 T effector cells were isolated by FACS sorting from the tumor-draining lymph nodes of
CT26 tumor-bearing mice. T effector cells were co-cultured with either Treg subset in the presence of anti-CD3-CD28 antibody. Proliferation
and activation of T effector cells was measured by incorporation of BrdU, expression of CD69 and secretion of IL-2 using flow cytometry or
ELISA. Error bars indicate SEM. P values for (b and c) were calculated relative to the proportion of CD103+ cells in the spleen and for (e)
relative to suppression by CD103"°® Treg (*p < 0.05; ***p < 0.001). [Color figure can be viewed in the online issue, which is available at
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other compartments, we isolated lymphocytes from lung,
heart, liver, Peyer’s patches, and bone marrow and deter-
mined CD103 expression by Treg. In all organs analyzed, the
proportion of CD103+ cells among Treg was comparable to
those in the peripheral lymph nodes (Fig. 2b). To further
determine the proportion of CD103+ cells among other lym-
phocyte subsets, we analyzed B220+4, CD4-+FoxP3"%, and
CD8+ cells. Expression of CD103 was observed only on a
small proportion of all lymphocyte subtypes, both in the
spleen and the tumor tissue (Fig. 2¢). Thus, high numbers of
CD103+ cells are specific for tumor-infiltrating Treg.

Expression of CD103 in tumor-infiltrating regulatory T cells
is driven by intratumoral transforming growth factor p

We next examined the mechanism responsible for enhanced
CD103 expression on tumor-infiltrating Treg. In gut-associ-
ated lymphoid tissue, CD103 expression by lymphocytes is
known to be induced by transforming growth factor B (TGF-
B)'® and thus, we hypothesized that cancer-associated TGF-f
may give rise to high CDI103 levels on tumor-infiltrating
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Treg. As significant differences were seen in the proportion
of CD103+ cells among Treg within different tumor models
(Fig. 1¢), we quantified tumor-associated TGF-f levels to es-
tablish a possible relation. Cell culture supernatants as well as
tissue lysates of CT26, B16, and EL-4 tumors were analyzed
by ELISA. Whereas high and intermediate levels of TGF-f
were detected in the supernatants of CT26 and B16 cells,
respectively, EL-4 tumor cells did not produce this growth
factor (Fig. 3a). In vivo, a similar pattern of TGE-f levels was
observed, with the lowest levels of this cytokine in EL-4
tumors (Fig. 3b). Both in vitro and in vivo levels of TGF-3
correlated with CD103 expression by tumor-infiltrating Treg,
with high levels of both parameters in CT26 and B16 tumors.
As CD103+ Treg were more frequent in tumor-draining
than in contralateral lymph nodes we also compared TGF-f3
levels in these organs. Indeed, in the tumor-draining lymph
nodes we detected significantly higher amounts of TGF-f
than in non-draining lymph nodes in all but one mouse, thus
confirming the positive correlation with CD103 expression
(Fig. 3¢).
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To investigate whether tumor-associated TGF-f triggers
CD103expression by Treg, we cultured splenocytes in
supernatants from CT26 tumor cells and quantified the
proportion of CD103+ cells within CD4+FoxP3+ Treg.
Indeed, CT26 supernatants induced CD103 expression by
Treg and blocking of TGF-B efficiently prevented CD103
induction (Fig. 4a). In contrast to CT26, supernatants of
TGF-B-negative EL-4 tumor cells did not induce CD103 on
Treg. A clear up-regulation of CD103 on Treg was however
observed upon addition of recombinant TGF-B to EL-4
supernatants (Fig. 4b) or by recombinant TGF-B alone (not
shown). These data demonstrate that CD103 expression on
Treg is directly triggered by tumor cell-derived TGEF-.
Interestingly, this effect was specific for FoxP3+ Treg, as
no induction of CD103 was seen on CD4+FoxP3"%¢ or
CD8+ T cells (Fig. 4c). The role of TGF-f in CD103
induction on Treg was further assessed in vivo by siRNA-
mediated knock-down. Treatment of tumor-bearing mice
with a TGF-B siRNA significantly reduced intratumoral lev-
els of TGF-B, as determined by ELISA of tissue lysates
(Fig. 4d). We then analyzed CD103 expression by tumor-
infiltrating FoxP3+ cells using immunohistology. In mice
treated with a control RNA nearly 50% of intratumoral
Treg expressed CD103. Strikingly, a significant decrease of
CD103 expression by Treg was observed upon treatment
with the TGF-B-specific siRNA (Figs. 4e and 4f). In conclu-
sion, expression of CD103 by tumor-associated Treg is
driven by TGEF-.

CD103 is not required for the retention of regulatory

T cells in the tumor

CD103 is an integrin that mediates retention of lymphocytes
in epithelial tissues."” To assess whether expression of CD103
is necessary for the homing and retention of Treg in malig-
nant tumors, we treated tumor-bearing mice with a blocking
antibody against CD103. The monoclonal rat anti-mouse
CD103 antibody (clone M290) binds to the og-subunit and
blocks the interaction of CD103 with its receptor E-cadherin,
but does not deplete CD103+ cells.”*** Treatment with anti-
CD103 antibody was started one week after tumor induction
and infiltration by FoxP3+ cells was evaluated 10 days later.
We observed no differences in the number of tumor-infiltrat-
ing FoxP3+ cells between untreated and anti-CD103 treated
mice (Fig. 5a). Efficient delivery of the antibody was con-
firmed by showing in vivo binding of M290 to CD103; this
was demonstrated by staining frozen tumor sections of
treated mice with a fluorescence-labeled anti-rat antibody
(Fig. 5b). Anti-CD103 treatment further did not alter Treg or
CD8 T cell numbers in the tumor-draining lymph nodes
(Figs. 5¢ and 5d) or the spleen (data not shown) and had no
impact on tumor growth (Fig. 5¢). In addition, we found that
the only known receptor for CD103, E-cadherin, is not
expressed within CT26 tumors (Fig. 5f). Thus, although the
majority of FoxP3+ cells expresses CD103, this integrin
appears not to be required for the retention of Treg in the
tumor tissue. Therapeutic targeting of CD103+ cells will
therefore require the use of an antibody with depleting rather

Int. ). Cancer: 129, 2417-2426 (2011) © 2011 UICC



Anz etal.

Q

501 b50'

[ ] Untreated

Bcrs
40+ [l CT26 + anti TGF-p

IS
=2

30+

w
o
1

20+

N
o
L

10+

% CD103+ cells within FoxP3+
o

% CD103+ cells within FoxP3+

CD4+FoxP3+

Q

e
Control RNA  TGF-B siRNA

-
o
o
o

500

TGF-B in tumor lysate
(ng/g protein)

0
Control TGF-B
siRNA siRNA

[] Untreated

BEL4
B EL-4 + rec. TGF-

CD4+FoxP3+

2423

[y}

i [ ] Untreated

W CcT26

I

*

% CD103+ cells within T cell subsets

il

Teff CD8+

60 SR

n
o
[ ]

% CD103+ cells
)
(=]
@

within FoxP3+ Treg
°

Control TGF-B
siRNA siRNA

Figure 4. Expression of CD103 on tumor-infiltrating Treg is mediated by TGF-B. (a—c) Freshly isolated splenocytes (1.2 x 10°) were
stimulated with anti-CD3-CD28 coated microbeads and cultured with supernatants of CT26 or EL-4 tumor cells in the presence of either

TGF-B blocking antibody or recombinant TGF-B. CD103 expression on CD4-+FoxP3+, CD4+FoxP3neg (Teff) and CD8+ T cells was determined
by flow cytometry after three days. (d—f) Subcutaneous Panc02 tumors of C57BL/6 mice were treated with a siRNA (50 pg i.v.) directed
against TGF-B1 (n = 4) or with an irrelevant control RNA (n = 3) 10 days after induction. siRNA treatment was repeated after 36 hr and 12
hr later tumors were removed for analysis by ELISA and immunohistology. TGF-B levels were determined by ELISA in tissue lysates of RNA-
treated tumors (d). Tumor sections were double-stained for CD103 (green) and FoxP3 (red) and two representative images are shown for
both control RNA and TGF-B siRNA-treated mice (e). The proportion of CD103+ cells within FoxP3+ cells was determined in both groups by
counting non-overlapping visual fields. Each data point represents the mean proportion of CD103+ cells within FoxP3+ Treg in the tumor
of one mouse and bars indicate the mean of one treatment group (f). Error bars indicate SEM. p values were calculated relative to control

RNA-treated mice (*p < 0.05). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

than blocking function. The development of such an antibody
could be a promising approach for cancer immunotherapy.

Discussion

Treg inhibit immune responses against malignant tumors
and represent an important obstacle for cancer immunother-
apy.” In particular, Treg infiltrating the tumor tissue itself in-
hibit anti-cancer immunity and correlate with poor prognosis
in many types of human cancer.*>** A comprehensive
knowledge of the phenotype of tumor-infiltrating Treg is cru-
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cial to understand their mode of action and to develop thera-
peutic strategies that target these cells. In this study, we dem-
onstrate that the majority of tumor-infiltrating Treg expresses
CD103, a cell surface protein of the integrin family. In CT26
tumors more than 90% of Treg expressed CD103 and a high
proportion of CD103+ cells within intratumoral FoxP3+
Treg was observed in three other models of murine cancer.
In contrast, analysis of CD103 expression by Treg in a broad
panel of peripheral organs including the spleen, lymph nodes,
lung, liver, heart, bone marrow, and Peyer’s patches revealed
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only low expression levels with about 20% CD103+ cells
among FoxP3+4 Treg. Thus, in cancer-bearing hosts high
expression of CD103 is a unique property of tumor-infiltrat-
ing Treg. Previous work has shown that positivity for CD103
defines a subset of Treg with specific migratory and anti-
inflammatory properties: CD103+ Treg express a set of che-
mokine receptors similar to activated T cells and thus prefer-
entially home to sites of inflammation.* The specific pattern
of chemokine receptor expression could thus explain the

accumulation of these cells in malignant tumors. An impor-
tant property of CD103+ Treg is their highly suppressive
function: CD25+CD103+ Treg inhibit effector T cell prolif-
eration more potently than CD25+CD103"% cells'*** and
tumor-derived CD103+ Treg suppress CD8 T cell responses
more strongly than CD103"® Treg’® The prevalence of
CD103+ Treg that we observed in several types of tumors
may therefore enhance immunosuppression. We conclude

that CDI103 represents an interesting molecule to
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therapeutically target a tumor-resident and highly immuno-
suppressive Treg subset.

Due to the central role of Treg in tumor-associated immu-
nosuppression, targeting these cells by specific antibodies is a
promising approach. Depleting antibodies against CD25 have
been extensively tested and show some efficacy in mice, but
lack significant benefits in patients so far.”” A blocking
antibody against CTLA-4, a receptor expressed by T cells,
synergistically enhances anti-tumor immunity by inhibiting
Treg-induced suppression and promoting T effector cell acti-
vation®; this treatment can however lead to systemic autoim-
munity as CTLA-4 is ubiquitously expressed.'* For CD103,
we have shown predominant expression by Treg in the tu-
mor tissue and to some extent in the tumor-draining lymph
node. Thus, targeting this molecule could eliminate Treg at
the sites where they most potently suppress tumor-specific
immunity. Unfortunately, a depleting antibody against
CD103 has so far not been developed. In mice, only antibod-
ies of the rat IgG2b and to some extent of the IgGl isotype
bear the potential to induce antibody-mediated cytotoxicity
leading to depletion of target cells.”>*® In this study we used
the monoclonal rat IgG2ax antibody M290, which blocks the
interaction of CD103 with its receptor E-cadherin.*»** As
expected, M290 treatment did not deplete CD103+ cells.
However, we speculated that anti-CD103 treatment could
reduce Treg numbers via interfering with the retention of
Treg within the tumor. The principal function of CD103 is
to mediate adhesion of cells in epithelial tissues'” and for
Treg, it has been shown that CD103 is essential for the reten-
tion in inflamed skin during infection with the parasite
Leishmania major.’’ As Treg numbers were not altered by
anti-CD103 treatment, our data show that CD103 is not

2425

involved in the retention of Treg within malignant tumors.
This is further supported by the lack of E-cadherin expres-
sion in the tumor tissue, the so far only identified ligand for
CD103. Thus, blocking CD103 is not sufficient to suppress
tumor infiltration by Treg, but generation of depleting anti-
bodies will be an interesting approach for immunotherapy of
cancer.

As CD103 does not mediate retention of Treg in the tu-
mor tissue, another mechanism must be responsible for the
accumulation of intratumoral FoxP3+ cells expressing this
integrin. Our data suggest that intratumoral TGF-p promotes
the expression of CD103 on tumor-infiltrating Treg. We
found that high levels of CD103 were expressed predomi-
nantly in those types of tumors with strong TGF-f secretion.
In addition, in vivo gene silencing of TGF-B reduced the
number of intratumoral CD103+ Treg. Our hypothesis is
supported by previous reports showing that TGF-B is a
potent inducer of CD103 in vitro.”>** Further, in vivo TGF-
B mediates expression of CD103 by intraepithelial and lam-
ina propria-associated lymphocytes'® and induces the genera-
tion of CD103-expressing FoxP3+ Treg from naive T cells.”*
The high number of tumor-infiltrating CD103+ Treg could
thus result from the conversion of previously nonregulatory
T cells. In conclusion, CD103 represents a good marker to
selectively target Treg in TGF-B-secreting tumors and the
development of novel depleting antibodies against CD103
may be a promising approach to improve anti-cancer
therapy.
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Vaccines based on immune stimulatory complexes (ISCOM) induce T-cell responses against tumor antigen (Ag). However,
immune responses are impaired in pancreatic cancer patients. We investigated the efficacy of an ISCOM vaccine in a murine
pancreatic carcinoma model. Panc02 cells expressing OVA as a model Ag were induced subcutaneously or orthotopically in the
pancreas of C57BL/6 mice. Treatment consisted of an OVA containing ISCOM vaccine, either used alone or in combination with
the TLR9 agonist CpG. The ISCOM vaccine effectively induced Ag-specific CTL capable of killing tumor cells. However, in mice
with established tumors CTL induction by the vaccine was inefficient and did not affect tumor growth. Lack of efficacy correlated
with increased numbers of Treg. Depletion of Treg with anti-CD25 mAb restored CTL induction and prolonged survival. Adding
low-dose CpG to the ISCOM vaccine reduced Treg numbers, enhanced CTL responses and induced regression of pancreatic
tumors in a CD8" T cell-dependent manner. Mice cured from the primary tumor mounted a memory T-cell response against wild-
type Panc02 tumors, indicative of epitope spreading. Combining ISCOM vaccines with TLR agonists is a promising strategy for
breaking tumor immune evasion and deserves further evaluation for the treatment of pancreatic carcinoma.
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Pancreatic cancer is one of the most fatal malignancies in the
Western world. It is the fourth leading cause of cancer death
in the United States.' The 5-year survival rate is less than 5%
with a median overall survival time of 3-6 months. Despite
advancements made over the past two decades in elucidating
molecular pathways involved in pancreatic carcinogenesis
and in the field of targeted therapy, the clinical outcome has
not yet significantly improved. At the time of diagnosis the
majority of patients present with locally advanced, unresect-
able tumors or metastatic disease. Even in the small number
of patients who undergo surgery in a curative intention most
patients succumb to recurrent and metastatic disease. There-
fore, new treatments are urgently needed.

Immunotherapy may offer a new treatment option. Pan-
creatic carcinoma cells can be recognized by T cells, which
are found in the blood of pancreatic carcinoma patients.” Tu-
mor infiltration with T cells represents a positive prognostic
factor.” However, pancreatic carcinomas promote systemic
and locally active immunosuppressive mechanisms.* These
include inhibition of T-cell activation, secretion of immuno-
suppressive cytokines, defects in Ag presentation and recruit-
ment of regulatory T cells (Treg), a subgroup of CD4" T
cells with suppressor function.”® In patients with pancreatic
carcinoma, increased numbers of Treg are found in the
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peripheral blood and within the tumor.” It has been shown
that increased Treg prevalence is a negative prognostic factor
in various malignancies, including pancreatic adenocarci-
noma.®'® Therefore, breaking tumor-induced immunosup-
pression is a major challenge for immunotherapy.

Tumor vaccines aim at inducing CTL capable of recognizing
and killing tumors. A prerequisite is crosspresentation of tu-
mor Ag on MHC class I by DC. We previously reported that
human DC pulsed with tumor cell lysate or apoptotic tumor
cells induce CTL responses against pancreatic cancer cells
in vitro.''* In another study, we demonstrated that a DC vac-
cine combined with gemcitabine-based chemotherapy can
achieve prolonged survival in an orthotopic model of pancre-
atic carcinoma."” Other groups have shown that intratumoral
immunization with DC pulsed with tumor RNA or alpha-gal-
actosylceramide can induce antitumor immunity in murine
models of pancreatic cancer."*'” However, the production of
DC vaccines is a time consuming and expensive process. A
promising strategy is targeting vaccines to DC in vivo. The de-
velopment of cell-free vaccines will make vaccines accessible to
a larger number of patients and facilitate their evaluation in
clinical trials. ISCOM vaccines combine an efficient Ag delivery
system with the immune-stimulatory activity of saponin and
have been shown to target DC in vivo and to promote humoral
and cellular immune responses.'® Ag can either be formulated
into an ISCOM vaccine during formation or coadministered
with ISCOMATRIX adjuvant, which is essentially the same
structure but without the incorporated Ag (reviewed in Ref.
16). ISCOM vaccines induce efficient crosspresentation of tu-
mor Ag by DC via facilitated Ag translocation into the cyto-
sol.'”'® A tumor vaccine using the ISCOMATRIX adjuvant has
been evaluated in a placebo-controlled clinical trial in patients
with resected NY-ESO-1 expressing tumors, displaying an
excellent safety profile and broad cellular immune responses.'”
However, in another trial the same ISCOMATRIX vaccine
failed to induce T-cell responses in patients with advanced
tumors, indicative of tumor-induced immune suppression.>’

In this study, we investigated the efficacy of an ISCOM-
based tumor vaccine in an orthotopic model of pancreatic car-
cinoma. Pancreatic tumors induced a potent Ag-specific
immunosuppression rendering the vaccine ineffective. Deple-
tion of Treg or combining the vaccine with low-dose CpG was
capable of breaking immunosuppression and induced effective
CTL-mediated tumor cell killing leading to prolonged survival
of animals with established pancreatic cancers.

Material and Methods

Cell culture media and reagents

Cells were cultured in RPMI 1640 medium supplemented
with 10% heat-inactivated FCS (Gibco BRL, Paisley, GB), 1%
L-glutamine, 100 U/l penicillin, and 0.1 mg/ml streptomycin
(all PAA, Linz, Austria). The OVA/ISCOM vaccine was gen-
erated by associating palmitified OVA (Sigma, A7461) into
an ISCOM by formulation with ISCOPREP saponin, phos-
pholipids and cholesterol, as previously described.'® CpG oli-

ISCOM vaccine with TLR9 agonist

gonucleotide 1826 was purchased from Coley Pharmaceuti-
cals. The H2-Kb restricted peptides OVA ;57 564 (SIINFEKL),
TRP2,g; 155 (VYDFFVWL) and p15Egos g1 (KSPWFTTL)
were purchased from Jerini Peptide Technologies (Berlin,
Germany). CFSE was obtained from Invitrogen, CA.

Mice and immunizations

Six- to 12-week-old female C57BL/6 mice were obtained from
Harlan-Winkelmann (Borchen, Germany). OT-1 mice were
provided by Prof. Brocker (Department of Immunology, Uni-
versity of Munich). Animal experiments were approved by the
local regulatory agencies. Mice were injected s.c. into the lower
hind leg with the OVA/ISCOM vaccine in 20 pl of PBS (con-
taining 0.3 ug OVA and 5 pg ISCOPREP saponin) at weekly
intervals. Six micrograms of CpG were added if indicated.
CD8"' T cells or NK cells were depleted via i.p. injection of
500 pg of anti-CD8 mAB (clone YTS 169, BioXCell, West Leb-
anon) or 200 pg of anti-NK1.1 mAb (clone PK-136, BioXCell).
Treg were depleted via i.p. injection of 250 pg of anti-CD25
mAD (clone PC61 BioXCell) 1 day prior to vaccination. Deple-
tion efficacy was controlled by four-color FACS analysis.

Tumor induction

The Panc02 cell line (C57BL/6) is derived from a methylcho-
lanthrene-induced pancreatic adenocarcinoma. Panc02 cells
were transfected with the OVA plasmid (pAC-Neo-OVA,
kindly provided by Prof. T. Brocker). The PancOVA cell line
was maintained with 0.5 mg/ml G418. We experimentally
induced pancreatic carcinomas by injection of 0.5 x 10° tu-
mor cells s.c. into the flank. For the orthotopic model, the
spleen was surgically mobilized and 2 x 10°> PancOVA cells
were injected into the pancreas. Therapeutic vaccination
started between days 10-14, when tumors had formed palpa-
ble nodules of 5-10 mm* Tumor size was measured three
times weekly and determined by the product of perpendicular
diameters. Mice were euthanized when the tumor size
exceeded 200 mm? or with the appearance of distress.

LN preparation and cytokine measurement

Vaccine draining LN were removed and processed to single
cell suspensions by passing through a 70-pm cell strainer.
Cells were counted and processed for phenotypic and func-
tional analysis. For cytokine measurements, freshly isolated
LN were shock frozen in liquid nitrogen, processed using a
mortar and transferred into 30 pl of lysis buffer (BioRad,
Germany). Samples were vortexed for 30 sec and centrifuged
(15 min, 12,000g, 4°C). The cell pellet was discarded and the
supernatant served for cytokine analysis. All samples were
standardized using Bradford method. Murine ELISA kits for
IL-12p70 and IFN-y (OptEIA) were from BD Biosciences
(San Diego, CA). Cytokine measurement and analysis of acti-
vation marker expression of lymph node leukocyte popula-
tions were done by processing vaccine site draining lymph
nodes into single cell suspensions. For intracellular detection
of IL-12 in DC, cells were surface stained for CD8a and
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CDllIg, fixed and permeabilized using a cytofix/cytoperm kit
(BD Biosciences), stained for IL-12p40/70 and analyzed by
FACS. Measurement of TGF-f serum levels was done with
ELISA (eBiosciences, Frankfurt, Germany) according to the
manufacturer’s instruction. Serum was incubated with 1 N
hydrochloric acid for 10 min, neutralized with 1 N sodium
hydroxide and immediately used for analysis.

Monoclonal antibodies and FACS

CD3e-APC (clone 145-2C11), CD4-PE (clone GK1.5), CD8a-
PerCP (clone 53-6.7), CD11c-APC or CD11c-PE (clone HL3),
CD19-PE (clone 1D3), CD86-FITC (clone GL1), NK1.1-PerCP
(clone PK 136) and IL-12p40/70-APC (clone C15.6) were all
from BD Biosciences; CD69-FITC (clone H1.2F3), from Caltag
Laboratories, Carlsbad, CA. Treg cells were stained with the
Mouse Regulatory Staining kit from eBiosciences (CD4-FITC,
Foxp3-APC, CD25-PE). Samples were acquired on a FACSCa-
libur (Becton Dickinson). Data were analyzed using Flow]Jo
software (version 7.2.1, Tree Star, OR).

Intracellular IFN-y staining of Ag-specific T cells and

MHC class | pentamer staining

For intracellular IFN-y staining, peripheral blood was incubated
with red blood cell lysis buffer (BD Pharm Lyse, BD) for 3 min.
Lymphocytes were then stimulated with relevant peptides
(1 pg/ml) for 1 hr at 37°C before 1 pg/ml Brefeldin A (Sigma-
Aldrich) was added. After 3 hr, cells were surface stained for
CD8, then fixed and permeabilized using a cytofix/cytoperm kit
(BD Biosciences) and incubated with mAb against IFN-y-FITC
(clone XMG1.2, Caltag Laboratories). Pentamer staining was per-
formed with H-2Kb OVA,s;_554 R-PE pentamers (Prolmmune,
Oxford, UK) according to the manufacturer’s instructions.

In vivo T-cell proliferation and cytotoxicity assay

Splenocytes from OT-1 mice were suspended at 5 x 10
cells/ml in PBS with 0.1% BSA containing 10 pM CFSE for
10 min at 37°C. A total of 2 x 10° CFSE-labeled OT-1 cells
in 200 pl PBS were injected i.v. in tumor-bearing mice vacci-
nated once with OVA/ISCOM vaccine on the same day. Af-
ter 60 hr, blood was collected and OT-1 T-cell proliferation
was analyzed by FACS. For assessing CTL-mediated cytotox-
icity splenocytes were labeled with 1 or 10 uM CFSE and
pulsed with either OVA,s; 564 peptide (1 pg/ml) or not. A
total of 10° labeled cells of each population were mixed and
injected iv. into vaccinated or nonvaccinated mice. Blood
was collected 16 hr later and analyzed by FACS. The propor-
tion of target to control population was determined and per-
centage of killing was calculated as described."?

Immunohistology

Cryostat sections of tumors were air-dried and fixed in ice-
cold acetone for 10 min. For analysis of tumor-infiltrating
CD8" T cells sections were incubated with rat anti-mouse
CD8 (BD Pharmingen) at a dilution of 1:50, followed by bio-
tin-SP-conjugated donkey anti-rat IgG and Cy'™2-conjugated
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streptavidin  (Jackson ImmunoResearch Europe), both at
1:500. For detection of Treg sections were incubated with rat
anti-mouse Foxp3 (eBioscience) and Syrian hamster anti-
mouse CD3 (BD Pharmingen) at 1:50, followed by Cy™™3-
conjugated goat anti-Syrian hamster IgG (H+L) at 1:400 to-
gether with biotin-SP-conjugated donkey anti-rat IgG at 1:500
followed by Cy'™2-conjugated streptavidin at 1:500 (all from
Jackson ImmunoResearch Europe). Slides were covered with
Vectashield mounting medium containing DAPI (Vector Lab-
oratories, Burlingame, CA). Histological images were obtained
using a Carl Zeiss Axiophot microscope equipped with a digi-
tal camera system (DMC 2 digital camera, Polaroid).

Statistics

We determined the statistical significance of differences by
the two-tailed Student’s t-test. For the analysis of tumor
growth, we used the nonparametric Mann-Whitney U test to
compare the mean values between two groups. Kaplan-Meier
survival curves were analyzed using the Cox proportional
hazards model. We performed statistical analysis with SPSS
software. p values < 0.05 were considered significant.

Results

ISCOM vaccine fails to control growth of established
pancreatic carcinoma due to tumor-induced
immunosuppression via regulatory T cells

Mice were vaccinated on day 0 and boosted at day 7 with an
ISCOM vaccine containing 0.3 pg of OVA protein. Seven
days later mice were challenged s.c. with PancOVA tumor
cells. All vaccinated animals were protected from tumor
growth, whereas all control animals developed large tumors
requiring euthanasia (tumor size > 200 mm®) within 40 days
(Fig. 1a). To assess the efficacy of the vaccine in a therapeutic
setting, vaccination was initiated on day 10, when tumors
had already formed palpable nodules. In this setting, vaccina-
tion influenced neither tumor growth nor survival (Fig. 1b).

We hypothesized that the discrepancy of clinical efficacy
between prophylactic and therapeutic vaccination was due to
tumor-induced immunosuppression. To assess whether
tumors induce vaccination failure, we measured the fre-
quency of Ag-specific CTL in the blood of tumor-bearing
versus control mice after two vaccinations with OVA/ISCOM.
Vaccination induced a high frequency of OVA-specific CTL
in animals without tumors as well as with wild-type Panc02
tumors, as assessed by MHC class I pentamer staining and
intracellular IFN-y staining (ICS). In contrast, animals with
PancOVA tumors had a significantly reduced OVA-specific
CTL frequency (1.4% vs. 6.2% of CD8" T cells by ICS for
IFN-y, p < 0.01) (Fig. 1c). Thus, the tumor suppressed CTL
induction in an Ag-specific manner.

It has been shown that tumors may impair the function
of DC, which are key regulators of T-cell responses.” To test
this hypothesis in our model we adoptively transferred CFSE-
labeled CD8™ T cells from TCR transgenic OT-1 mice, which
recognize a H2-Kb restricted OVA epitope. Mice were then
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Figure 1. Therapeutic vaccination with an ISCOM vaccine is ineffective

in pancreatic carcinoma. (a) Mice were injected twice with PBS or OVA/

ISCOM at a weekly interval and challenged s.c. with OVA-expressing Panc02 (PancOVA) cells. (b) Mice with palpable PancOVA tumors were
injected twice with OVA/ISCOM or PBS. Tumor growth (left graphs) and survival (right graphs) were monitored. Data of (a) and (b) are shown

as mean tumor sizes with SEM and corresponding survival rates of six

to eight mice per group from two independent experiments. (c) Mice

with or without Panc02 or PancOVA tumors were treated with the OVA/ISCOM vaccine. Number of OVA-specific CTL in blood was determined

7 days after the second vaccination by ex vivo peptide stimulation and

intracellular cytokine staining for IFN-y of CD8™ T cells or MHC class |

pentamer staining. (d) Mice with or without tumors were vaccinated and CFSE-labeled OT-1 T cells were adoptively transferred via the tail vein.
T-cell proliferation was determined by FACS analysis after 60 hr. (e) Mice with or without Panc02 or PancOVA tumors were vaccinated and
CFSE-labeled, peptide-pulsed target cells were adoptively transferred. Target cell killing was determined by FACS analysis after 18 hr. Data in
(c—e) are shown as mean with SEM of four to six mice per group. Representative data from three independent experiments are shown.

vaccinated and proliferation of CFSE-labeled CD8" T cells
was assessed in peripheral blood. PancOVA tumors had no
impact on OT-1 T-cell proliferation, indicating that CD8" T-
cell stimulation by DC was unimpaired (Fig. 1d). To test kill-
ing function of CTL in tumor-bearing animals, we transferred
CFSE-labeled peptide-pulsed target cells into vaccinated mice
and assessed cytotoxicity in vivo. Target cell killing was
reduced in mice with PancOVA tumors as compared to ani-
mals without tumors, correlating with reduced CTL frequen-
cies in peripheral blood. In contrast, killing was not signifi-
cantly different in mice with wild-type tumors (Fig. le).
TGF-B is a potent negative regulator of T-cell function
and serum levels are increased in patients with pancreatic

cancer.”*" Similarly, we found a significant increase of TGE-
B serum levels in mice with pancreatic tumors (79 vs. 1515
pg/ml, p < 0.01) (Fig. 2a). Moreover, consistent with clinical
observations,” we found an increased number of Treg in
blood, lymph nodes and spleens, increasing from 12.5% in
healthy to 18.6% of CD4" T cells (p < 0.05) in spleens of tu-
mor-bearing mice on day 21 after tumor establishment (Fig.
2b). Particularly dense infiltrates of Treg were found in the
tumors comprising 40% of total CD4" T cells (Fig. 2b and
Supporting Information Fig. 1A). As Ag-specific suppression
of T cells is a key feature of Treg,”* we speculated that Treg
play a central role in the immunosuppressive milieu created by
pancreatic cancer. To assess the influence of Treg on the
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Figure 2. Pancreatic carcinoma mediates potent immunosuppression via regulatory T cells. (a) Serum TGF-B level of mice with or without
PancOVA tumors was measured by ELISA. (b) Percentage of CD25" Foxp3™ cells of CD4™ T cells in blood, lymph nodes, spleen and tumors
in control mice and mice with PancOVA tumors was analyzed by FACS. (c) Percentage of Treg cells in peripheral blood without and 6 days

after i.p. injection of anti-CD25 mAb. (d) Mice with or without PancOVA tumors were vaccinated twice in weekly intervals and frequency of

OVA-specific CTL was determined 7 days after second immunization by intracellular cytokine staining for IFN-y. Where indicated mice were
treated with anti-CD25 mAb or control mAb. (e) Influence of anti-CD25 mAb treatment on survival of mice with PancOVA tumors. Data are
shown as mean with SEM of 5 (a—c) or 8 (d, e) mice per group. (d, e) Pooled data from two independent experiments.

vaccination failure in tumor-bearing animals we treated mice
with anti-CD25 mAb one day prior to vaccination, which
resulted in a long-lasting depletion of CD4" CD25" Foxp3™
Treg (Fig. 2c). Treg depletion restored CTL induction in mice
with PancOVA tumors to levels seen in tumor-free animals
and prolonged survival of vaccinated animals (Figs. 2d and
2e).

ISCOM vaccine combined with the TLR9 ligand CpG leads

to a Th1 type immune response and activation of

innate and adaptive immune cells in vaccine site

draining lymph nodes

TLR agonists are potent inducers of immune activation and
hold promise for tumor immunotherapy. The TLR9 agonist
CpG is currently being evaluated in clinical trials, either
alone or in combination with cytotoxic anticancer agents or
tumor vaccines.”> To characterize the effects of an ISCOM
vaccine combined with CpG on the quality of the immune
response, we isolated vaccine site draining lymph nodes for
cytokine measurement (after 6 hr) and analysis of leukocyte

Int. ). Cancer: 128, 897-907 (2011) © 2010 UICC

populations (after 24 hr). The combined vaccine induced a
potent Thl-polarized cytokine profile, characterized by high
levels of IFN-y and IL-12p70 (Fig. 3a). Intracellular cytokine
staining of lymph node leukocyte populations showed IL-
12p40/70 production by CD11c¢"CD8" DC (Fig. 3b). No sig-
nificant increase of IL-12 production above background level
was observed in CD11¢T"CD8" DC (data not shown). FACS
analysis revealed activation of B cells, CD4" and CD8" T
cells, NK cells, NKT cells and CD8a"™ DC in the combined
treatment group (Fig. 3c). Of note, in contrast to high-dose
CpG no significant change of activation marker expression
was found in nondraining (collateral) lymph nodes or spleen
(data not shown).

ISCOM vaccine combined with a TLR9 ligand leads to
superior CTL priming and breaks tumor-induced
immunosuppression

Next, we assessed how addition of CpG to the ISCOM vac-
cine influences CTL priming. A low-dose CpG regimen of
6 png per mouse was chosen based on dose-response
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Figure 3. ISCOM vaccine combined with CpG leads to a Th1l type immune response and activation of innate and adaptive immune effector
cells in vaccine site draining lymph nodes. (a) Mice with PancOVA tumors were vaccinated as indicated and the cytokine profile in the
vaccine site draining lymph node lysate was analyzed after 6 hr by ELISA. (b) Intracellular cytokine staining for IL-12p40/70 of
CD11¢"CD8" DC in vaccine site draining lymph nodes after 24 hr. (c) Activation marker expression of lymph node resident leukocyte
populations such as CD19" B cells, CD3"CD4* or CD37CD8™ T cells, NK1.1* NK cells, NK1.1*CD3™ NKT cells and CD11c¢*CD8" DC. Data
are mean with SEM of pooled lymph nodes of three mice per group. Data represent one experiment repeated twice.

experiments performed with tumor-free mice (data not
shown). Combination with CpG significantly enhanced the
frequency of OVA-specific CTL in vaccinated mice without
tumors (8.5% without CpG vs. 25.4% with CpG, p < 0.01)
(Fig. 4a). As shown before, CTL priming was significantly
reduced in PancOVA-bearing animals (no tumor 8.5%, Pan-
cOVA 1.4%, p < 0.01). Interestingly, addition of CpG to the
vaccine completely overturned tumor-induced immune sup-
pression resulting in similar OVA-specific CTL frequencies as
those observed in tumor-free animals (no tumor 25.4%, Pan-
cOVA 26.3%, p = 0.89) (Fig. 4a). Moreover, tumors of mice
vaccinated with either the vaccine alone or combined with
CpG showed an increase of total tumor infiltrating CD8" T
cells (Fig. 4b and Supporting Information Fig. 1B). In addi-
tion, numbers of Treg in peripheral blood and infiltrating the

tumor in the combined vaccine group were significantly
reduced (Figs. 4c and 4d).

ISCOM vaccine combined with CpG leads to tumor
regression and long-term survival of mice with pancreatic
carcinoma in a CD8* T cell-dependent manner

To assess whether the combined vaccine can induce signifi-
cant antitumor immunity, mice with palpable PancOVA
tumors were injected with PBS, OVA/ISCOM, CpG or a
combination of both. Neither CpG nor the vaccine alone
influenced tumor growth or survival. In contrast, even large
pancreatic tumors regressed in the combined vaccine group.
Two of 10 mice showed delayed tumor growth and seven
completely rejected their tumors and remained tumor-free
for up to 100 days (Figs. 5a and 5b, left graph). To assess

Int. J. Cancer: 128, 897-907 (2011) © 2010 UICC
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Figure 4. ISCOM vaccine combined with CpG leads to superior CTL
induction, enhanced tumors infiltration with CTL and reduced
numbers of regulatory T cells. (@) Mice with and without PancOVA
tumors were vaccinated as indicated. Seven days after the second
vaccination, frequency of OVA-specific, CD8IFN-y* CTL in blood
were analyzed. (b) Numbers of CD8™ T cells within PancOVA
tumors were analyzed by immunohistochemistry. (¢, d) Numbers of
CD25" Foxp3™ cells of CD4™ T cells in peripheral blood and within
tumor stroma of vaccinated mice with PancOVA tumors. Data are
shown as mean with SEM of four to six mice per group. One
representative experiment of two is shown.

whether the combined vaccine is still effective in more
advanced tumors, we treated mice around day 14 after tumor
induction when tumors had an average size of 16 mm’
(range: 9-24 mm?). Tumors increased in size during the first
week of treatment but started to regress a few days after the
second vaccination. The combined vaccine induced complete
tumor rejection in five of nine mice (max. tumor size 48
mm?), demonstrating vaccine efficacy despite large tumor
burden (Fig. 5¢). As the biology of subcutaneous tumors may
differ from orthotopic tumors, we next assessed this vaccina-
tion strategy in mice with surgically implanted pancreatic
tumors. Vaccination was initiated 10 days after tumor im-
plantation. All mice treated with PBS, OVA/ISCOM or CpG
alone died of pancreatic tumors around day 40, whereas 80%
of mice in the combined vaccine group survived an observa-
tion period of 100 days without evidence of tumor (Fig. 5b,
right graph).

As TLR9 agonists induce both CTL and NK cell activa-
tion, we investigated which T-cell population is required for
effective tumor killing. Prior to vaccination, we depleted
CD8" T cells or NK cells by ip. injection of mAb against
CD8 or NKI1.1, respectively. Mice treated with PBS or vaccine
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alone developed large pancreatic tumors, whereas all mice
treated with the ISCOM vaccine combined with CpG rejected
their tumors. Depletion of NK cells had no effect on tumor
growth or survival. In contrast, depletion of CD8" T cells in
the combined treatment group not only prevented vaccine-
induced tumor regression, but even accelerated tumor pro-
gression, indicating a role of CD8" T cells in tumor control
(Fig. 5d).

Long-term T-cell memory induction in mice with tumor
regression and evidence of epitope spreading

Mice in the combined treatment group that had rejected
tumors and remained tumor free for 100 days were assessed
for T-cell memory induction by simultaneous re-challenge
with PancOVA tumors on the left flank and wild-type
Panc02 tumors on the right flank. As compared to age-
matched control mice, all long-term survivors rejected
PancOVA tumors, indicative of an efficient memory T-cell
response (Fig. 6a, upper graph). Interestingly, 4 of 10 long-
time survivors also rejected wild-type Panc02 tumors and 2
showed delayed tumor growth, indicative of vaccine Ag-unre-
lated antitumor immunity in 60% of mice (Fig. 6a, lower
graph). A likely explanation for this observation is that killing
of PancOVA tumors by vaccine-specific T cells triggered
crosspriming of CTL recognizing other tumor-associated Ag,
a phenomenon termed epitope spreading. To confirm this
hypothesis, we analyzed the CTL response against p15E, a tu-
mor-associated Ag derived from the MuLV env-protein
expressed by Panc02 cells but not in healthy tissue. No p15E-
specific CTL were detected in mice without tumor or in
unvaccinated mice that were challenged with PancOVA
tumors. In contrast, in long-term survivors we could detect
p15E-specific CTL at a frequency of 1.0% in peripheral blood
(Fig. 6b). This finding and the presence of OVA-specific CTL
more than 3 months after vaccination underscore both T-cell
memory induction and epitope spreading in animals of the
combined treatment group.

Discussion

To develop effective tumor vaccines, it will be critical to iden-
tify strategies to break immunosuppressive mechanisms. To
characterize the impact of pancreatic tumors on vaccine-
induced CTL responses we used the aggressively growing
Panc02 model. Orthotopic tumors were induced to imitate
the clinical situation. We found several immunosuppressive
phenomena, such as high serum levels of TGF-p, increased
systemic numbers of Treg and dense Treg infiltrates in
tumors. Our model thus reflects key immune phenomena
found in human pancreatic cancer making it a valuable tool
for preclinical research.”?!

Vaccination with an ISCOM vaccine protected all mice
from subsequent tumor challenge. This finding is in line with
other reports demonstrating efficiency of ISCOM vaccines in
prophylactic tumor models.** In contrast, vaccination of mice
with established tumors was ineffective, indicative of tumor-
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Figure 5. The combined vaccine leads to regression of subcutaneous and orthotopic pancreatic carcinoma and long-term survival mediated
by CD8™" T cells. (a) Mice with palpable PancOVA tumors were vaccinated twice as indicated at weekly intervals and tumor growth was
monitored. (b) Survival rates in different treatment groups are depicted for subcutaneous and orthotopic tumors. Data sets of (a) and (b)
represent 7—10 mice per group from two independent experiments. (¢) Mice with advanced PancOVA tumors (tumor size: 9-24 mm?) were
vaccinated twice with OVA/ISCOM + CpG. Treatment was started around day 14 after tumor induction. Data represent nine mice from two
independent experiments. (d) Mice with PancOVA tumors were vaccinated twice as indicated. CD8" T cells or NK cells were depleted by i.p.
injection of CD8 or NK1.1 mAb prior to vaccination, as indicated. Data are shown as mean tumor size with SEM (left) and survival rates

(right) of five mice per group.

induced immunosuppression. This was reflected by the find-
ing that CTL induction in vaccinated mice with tumors was
severely impaired. Our observation correlates well with two
clinical studies in which an ISCOMATRIX vaccine was given
to patients with either resected'® or advanced malignant mel-
anoma.”® Broad-based T-cell responses were induced in
patients with no measurable tumor burden in the first trial,

but no T cells were induced in patients with advanced
tumors in the second trial.

Regulation of T cells can occur at several levels: defective
stimulation by DC, loss of T-effector cell function or inhibi-
tion by Treg (reviewed in Ref. °). In this study we did not
find impaired CTL proliferation of transferred OT-I T cells
in vaccinated tumor-bearing mice, arguing against defective

Int. J. Cancer: 128, 897-907 (2011) © 2010 UICC



Jacobs etal.

a ¢ Naive
200
160

| Survivors

—_
[
o

PancOVA

Tumor size (mmz}
B @
(=] (=]

(6/6)

o

0 20 40 60 80 100

200
“E 160
E
@ 120
N | Panc02
w
5 801
=
2 40
(410)

o

0 20 40 60 80 100
Days after tumor induction

905

b

< 4 v O TRP2

= —— B P15E

g 3 M SIINFEKL

[

+>_ 2

z

w

) 1

fa]

o 0 —_— e .
Naive Survivors Naive

Tumor challenge No Tumor
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Data show individual tumor sizes of 6-10 mice per group. (b) Seven days after tumor re-induction, the frequency of Ag-specific, CD8"IFN-
¥ CTL was analyzed by ex vivo stimulation of blood leukocytes with H-2K® restricted peptides from TRP2 (melanocyte differentiation Ag,
unrelated), p15E (tumor-associated Ag, Panc02 and PancOVA) and OVA (SIINFEKL, PancOVA). Data are shown as mean with SEM of 6-10

(@) or 5 (b) mice per group from two experiments.

Ag presentation by DC. Furthermore, killing function of pep-
tide-loaded target cells by CTL in peripheral blood was pre-
served, indicating that CTL were functional despite the
tumor. High levels of TGF-B, a cytokine mediating the
conversion from naive CD4" T cells to Treg,*® and increased
systemic numbers of Treg point towards a critical role of this
T-cell subset in immunosuppression by pancreatic carcinoma.
In particular, the dense infiltrates of tumors with Treg maybe
directly responsible for suppression of effector T cells upon
arrival at the tumor site. A recent study showed that inhibi-
tion of CCR5-dependent homing of Treg to pancreatic cancer
can modestly inhibit tumor growth, even in the absence of
vaccination.”® In our study, depletion of Treg with anti-CD25
mAb prior to vaccination restored CTL induction in mice
with tumors and resulted in prolonged survival. Thus, Treg
appear to play a critical role in immunosuppression induced
by pancreatic tumors.

However, CD25 is not a specific Treg marker and other
strategies to break Treg-mediated immunosuppression, such
as DC activation via MyD88 signaling by TLR agonists,
appear promising.”’ Several TLR agonists are under clinical
investigation as vaccine adjuvants. Of these, TLRY ligands are
being evaluated in clinical phase IT and III trials.>® Hence, we
combined the ISCOM vaccine with low-dose CpG and found
a significant enhancement of CTL induction. This low-dose
CpG regimen induced a potent Thl-type response with high

Int. J. Cancer: 128, 897-907 (2011) © 2010 UICC

levels of IL-12p70 and IFN-v, as well as activation of innate
and adaptive effector cells in vaccine site-draining LN. No
systemic side effects such as splenomegaly and lymphoid fol-
licle destruction were observed, which is associated with
high-dose CpG application.”® Importantly, combining the
ISCOM vaccine with CpG was capable of breaking tumor-
induced immune suppression leading to (i) efficient CTL
induction despite tumor burden, (ii) recruitment of CTL to
the tumor site, (iii) reduction of Treg in blood and tumors,
(iv) efficient tumor cell killing mediated by CTL and (v)
induction of T-cell memory.

Interestingly, the OVA/ISCOM vaccine alone was suffi-
cient to induce an increase of CD8" T cells and a decrease of
Treg in tumors. However, tumor growth was not affected
without the addition of CpG to the vaccine, indicating that
recruitment of T cells to the tumor site was not sufficient to
break tumor-mediated immune suppression. A possible
explanation for recruitment of CD8" T cells and a decrease
of Treg at the tumor site is the immunostimulatory effect of
ISCOMATRIX adjuvant. As shown in Figure 3, the ISCOM
vaccine induced immune activation, as assessed by CD69 up-
regulation on B cells, T cells and NK cells in draining LN.
Furthermore, the vaccine induced high levels of IL-1B and
IL-6 (data not shown). However, an additional stimulus, such
as the TLRY ligand CpG, was required for providing OVA-
specific (and potentially other tumor Ag-specific) CTL with
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tumor cell killing function. As a point of critique it can be
argued that TLRY ligands, which are highly active in mice,
could be less active in humans due to differences in TLR9
expression in human and mouse DC populations.23 In
ongoing studies, we investigate combinations of ISCOM vac-
cines with ligands of other TLR (i.e., TLR3, TLR4 and TLR7)
finding enhanced CTL responses and antitumor efficacy (data
not shown). Thus, TLR signaling seems to be a general
mechanism for breaking tumor immunosuppression.””

A key element of adaptive immunity is the induction of
memory, allowing the immune system to quickly and effi-
ciently respond to subsequent Ag challenge. Mice that had
rejected tumors in the combined treatment group were pro-
tected from subsequent tumor challenge, indicative of effec-
tive memory induction. Furthermore, 60% of mice developed
an immune response against the wild-type tumor. This led us
to hypothesize that successful therapy may induce activation
of tumor-reactive CTL specific for vaccine-unrelated tumor
Ag, e.g., via crosspresentation of tumor Ag by DC in tumor-
draining lymph nodes.”” Indeed, in mice that had rejected

ISCOM vaccine with TLR9 agonist

the tumor we detected a high frequency of CTL against
pI5E, an Ag expressed by wild-type Panc02 cells."’> Thus,
ISCOM vaccines are capable of inducing epitope spreading,
thereby diversifying antitumor CTL responses.

To our best knowledge, this is the first report of successful
tumor vaccination leading to tumor eradication in the aggres-
sive orthotopic Panc02 carcinoma model. Tumor vaccines
may offer new treatment options for patients with pancreatic
carcinoma and deserve further investigation. In this regard,
survivin, a tumor Ag expressed by 90% of human pancreatic

30,31

cancers, is in preclinical evaluation in our laboratory as a

recombinant, full length survivin protein ISCOM vaccine.
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Abstract

Deregulated TGF-B signaling in pancreatic cancer promotes tumor growth, invasion, metastasis, and a potent
immunosuppressive network. A strategy for disrupting this tumor-promoting pathway is silencing TGF-3 by
siRNA. By introducing a triphosphate group at the 5" end of siRNA (ppp-siRNA), gene silencing can be combined
with immune activation via the cytosolic helicase retinoic acid-inducible gene I (RIG-I), a ubiquitously expressed
receptor recognizing viral RNA. We validated RIG-I as a therapeutic target by showing that activation of RIG-I in
pancreatic carcinoma cells induced IRF-3 phosphorylation, production of type I IFN, the chemokine CXCL10, as
well as caspase-9-mediated tumor cell apoptosis. Next, we generated a bifunctional ppp-siRNA that combines
RIG-1 activation with gene silencing of TGF-, (ppp-TGF-P) and studied its therapeutic efficacy in the orthotopic
Panc02 mouse model of pancreatic cancer. Intravenous injection of ppp-TGF-} reduced systemic and tumor-
associated TGF-f3 levels. In addition, it induced high levels of type I IFN and CXCL10 in serum and tumor tissue,
systemic immune cell activation, and profound tumor cell apoptosis in vivo. Treatment of mice with established
tumors with ppp-TGF-f significantly prolonged survival as compared with ppp-RNA or TGF-3 siRNA alone.
Furthermore, we observed the recruitment of activated CD8" T cells to the tumor and a reduced frequency
of CD11b" Gr-1* myeloid cells. Therapeutic efficacy was dependent on CD8" T cells, whereas natural killer
cells were dispensable. In conclusion, combing TGF-f3 gene silencing with RIG-I signaling confers potent
antitumor efficacy against pancreatic cancer by breaking tumor-induced CD8" T cell suppression. Cancer Res;

73(6); 1709-20. ©2013 AACR.

Introduction

Pancreatic cancer is the fourth leading cause of cancer-
related death and is characterized by early metastasis and
resistance to chemotherapy and irradiation. The identification
of deregulated molecular pathways in pancreatic cancer and
the development of novel targeted therapies had so far little
impact on clinical outcome (1). Prognosis of patients with
pancreatic cancer has remained extremely poor with a 5-year
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survival rate of less than 5%. A key event in tumor progression
of pancreatic cancer is deregulation of TGF-B signaling (2).
Under normal conditions, TGF-3 maintains tissue homeostasis
by controlling cellular proliferation, differentiation, survival,
and cell adhesion. Deregulated TGF-f signaling allows tumors
to usurp homeostatic effects for promoting tumor growth,
invasion, metastasis, and tumor angiogenesis (2). Moreover,
TGF-P has immunosuppressive effects such as inhibition of
cytotoxic T cells and natural killer (NK) cells, induction of
FoxP3* regulatory T cells, and shifting antigen-presenting cell
function toward tolerance (3, 4). Both tumor cells and immune
cells, such as regulatory T cells and myeloid-derived suppres-
sor cells (MDSC), contribute to enhanced TGF-f3 production in
patients with cancer. Elevated TGF-B levels in serum and
tumors correlate with poor prognosis in patients with tumor
(5, 6). Thus, TGF-B has generated interest as a target for novel
anticancer agents. Anti-TGF-f3 compounds have shown effi-
cacy in preclinical studies, and some of these have moved into
clinical investigation for melanoma, brain tumors, colorectal,
renal, and pancreatic cancer (7-11).

Tumor infiltration with T cells represents a positive prog-
nostic factor for pancreatic carcinoma, indicating that immune
surveillance may occur despite locally active immunosuppres-
sive mechanisms (12). However, tumor-infiltrating T cells fre-
quently lack effector function due to the hostile tumor micro-
environment, which is enriched with immunosuppressive
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factors. Identifying targets and compounds for immune acti-
vation is thus of utmost importance for effective immunother-
apy. In this respect, in addition to TGF-f} inhibition, activation
of innate immune effector mechanisms via pattern recognition
receptors is a promising strategy for breaking tumor-mediated
immunosuppression (13).

Eukaryotic cells have evolved pattern recognition receptors
for the detection of viral nucleic acids to trigger appropriate
antiviral immune responses. Four members of the toll-like
receptor (TLR) family (TLR3, 7, 8, and 9) are located in the
endosomal membrane predominantly in immune cells, where-
as the retinoic acid-inducible gene I (RIG-I)-like helicases RIG-I
and melanoma differentiation-associated gene-5 (MDA-5) are
located in the cytosol of immune and nonimmune cells. Recent
work suggests that RIG-I may represent a novel target for
cancer immunotherapy (14, 15). RIG-I is a cytosolic sensor of
viral RNA detecting a triphosphate group at the 5' end gen-
erated by viral RNA polymerases (16, 17). Upon activation, RIG-
Iinitiates a signaling cascade mediated by IRF-3, IRF-7, and NF-
kB, leading to an antiviral response program characterized by
the production of type I IFN (IFN-o and IFN-B) and other
innate immune response genes, such as the chemokine
CXCL10 (18). Moreover, RIG-I signaling induces apoptosis in
susceptible cells. In vitro transcribed 5'-triphosphate RNA
(ppp-RNA) can be applied as RIG-I ligand to trigger proapop-
totic signaling via the intrinsic mitochondrial pathway (14, 15).
Of note, RIG-I-mediated apoptosis occurs predominantly in
tumor cells, as nonmalignant cells are protected from proa-
poptotic signaling via Bcl-xg, (14).

The novel ppp-siRNA strategy offers the advantage of com-
bining RIG-I-mediated immune activation with RNAi-medi-
ated gene silencing within a single molecule. In the study by
Poeck and colleagues, a bifunctional ppp-siRNA silencing the
antiapoptotic molecule Bcl-2 resulted in efficient tumor cell
apoptosis in melanoma (15). To date, little is known about RIG-
I expression in other cancer types. We hypothesized that dual
targeting of immunosuppression via RIG-1 activation and TGF-
B silencing promotes efficacy against pancreatic cancer. We
studied RIG-I expression and signaling in human pancreatic
carcinoma cell lines. In addition, the therapeutic efficacy of
a bifunctional ppp-siRNA combining ppp-RNA-mediated
RIG-I signaling with siRNA-mediated TGF-f silencing was
assessed in the aggressive Panc02 mouse model of pancreatic
carcinoma.

Materials and Methods

Cell lines and cytokine stimulation

The Panc02 cell line was established from a tumor that was
induced by 3-methylcholanthren in the pancreas of C57BL/6
mice and was a kind gift of Prof. Christiane Bruns (Chirurgische
Klinik, LMU Munich, Bavaria, Germany; ref. 19). The human
pancreatic adenocarcinoma cell lines PANC-1, MIAPaCa-2,
and BxPC-3 cell lines were obtained from American Type
Culture Collection (ATCC) and were used within 6 months
after resuscitation (ATCC). PaTu8988t cell line was obtained
from the German Collection of Cell Lines (DSMZ). IMIM-PC1
was kindly provided by Prof. Patrick Michl (Department of
Gastroenterology and Endocrinology, University of Marburg,

Marburg, Germany; ref. 20). Cancer cell lines were cultured
in Dulbecco's Modified Eagle's Medium supplemented with
10% fetal calf serum (Gibco BRL), 2 mmol/L r-glutamine,
100 U/L penicillin, and 0.1 mg/mL streptomycin (PAA). Each
cell line was routinely tested for mycoplasma contamination
by MycoAlert Mycoplasma Detection Kit (LONZA). IFN-o
was used at concentrations of 1,000 IU/mL for murine and
100 IU/mL for human cell lines (Miltenyi).

siRNAs and transfection

siRNAs against TGF—BI, RIG-I, Puma, and Noxa were
designed according to published guidelines and were pur-
chased from Eurofins MWG Operon (21). The matching 5'-
triphosphate-modified siRNA was transcribed using the cor-
relating DNA template that contained the T7 RNA polymerase
promoter sequence. In vitro transcription of ppp-RNA was
done using the MEGAshortscript T7 Kit (Ambion) according
to the manufacturer’s protocol (14, 15). All sequences can be
found in Supplementary Table S1. Tumor cells were trans-
fected with siRNA in OptiMEM (Gibco, BRL) using Lipofecta-
mine 2000 (Invitrogen). For in vivo administration, 50 pg of
RNA was complexed with in vivo-JetPEI (Peglab) at an N/P
ratio of 6 in 5% glucose solution for tail vein injection.

Mice, tumor engraftment, and therapy

Six-week-old female C57BL/6 mice were obtained from
Harlan-Winkelmann, Trif '~ and TIir7"'~ mice in a F6
C57BL/6 background originated from S. Akira (Department
of Host Defense, Osaka University, Japan) and B. Beutler
(Center for the Genetics of Host Defense, University of Texas
Southwestern Medical Center, Dallas, TX; refs. 22, 23). Experi-
ments were carried out according to ethical guidelines
approved by the local government. Orthotopic tumors were
induced by surgical implantation of 2 x 10° Panc02 cells into
the pancreas as described (24). Therapy started on day 10,
when sacrificed control mice showed visible tumor nodules
(5-8 mm diameter), and was administered twice weekly over
3 weeks. Serum was obtained 6 hours after the first RNA
injection for cytokine analysis, and 48 hours after second
and fifth injections for TGF-B measurement. Survival of
mice was monitored daily. Distressed mice were sacrificed.
Where indicated, CD8™ T cells or NK cells were depleted one
day before RNA treatment with 500 pg of anti-CD8 mono-
clonal antibody (mAb; clone YTS 169.4) or anti-NK1.1 mAb
(clone PK136; BioXCell). Depletion efficacy was assessed
by fluorescence-activated cell sorting (FACS) analysis of
peripheral blood and was more than 98% after 24 hours.

Protein preparation and Western blot analysis

Tumor tissue was snap frozen in liquid nitrogen and homog-
enized using mortar and pestle under constant liquid nitrogen
cooling. Cells were lysed (Bio-Plex Cell Lysis Kit, Bio-Rad) and
protein concentrations of supernatants were analyzed by
Bradford assay (Bio-Rad) and adjusted for whole protein
concentration. For Western blotting, cells were lysed in
Laemmli buffer and boiled for 10 minutes. Cell lysates were
separated using a 10% SDS-PAGE. RIG-I was detected with
anti-RIG-I mAb (clone ALME-1, ENZO Life Sciences GmbH)
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followed by horseradish peroxidase-coupled secondary anti-
body (Santa Cruz Biotechnology). Anti-pIRF-3 mAb was from
New England BioLabs. Blots were visualized using enhanced
chemiluminescence substrate (GE Healthcare).

ELISA

Cytokine levels in supernatants, serum, or tumor lysates
were quantified by ELISA for IFN-o and IFN-f (PBL Interferon
Source), CXCL10 (R&D Systems), TGF-B (eBiosciences), and
TNF-o (BD Biosciences).

Flow cytometry

Lymphocyte activation in spleens was assessed 12 hours
after in vivo administration of RNA. Spleens were removed
and processed into a single cell suspension for staining. Fol-
lowing antibodies were used: anti-CD3¢ (clone 145-2C11),
anti-CD4 (clone RM4-5), anti-CD8o. (clone 53-6.7), anti-CD19
(clone 1D3), anti-NK1.1 (clone NKR-P1B, NKR-P1C, all BD
Biosciences), and anti-CD69 (clone H1.2F3, Caltag Laborato-
ries). MDSCs were analyzed with: anti-CD11b (clone M1/70),
anti-Gr-1 (clone RB6-8C5), anti-Ly6G (clone 1A8), anti-Ly6C
(clone AI-21), anti-CD1lc (clone HL3), anti-CD80 (clone
16-10A1), and anti-Sca-1 (clone D7). For the characterization
of MDSC subpopulations, Gr-17CD11b™ cells were further
subdivided by differential expression of the Ly6G. Briefly,
G1‘—l+CDllb+Ly—6Ghi cells were defined as polymorphonu-
clear (PMN)-MDSCs, whereas Gr-1"CD11b"Ly-6G'/™ cells
were classified as the monocytic MDSCs. For MHC-I staining,
anti-human HLA-A, B, or C (clone G46-2.6) or anti-mouse
H-2D" (clone KH95, both BD Biosciences) was used. Samples
were acquired on a FACSCanto II (BD) and data analyzed
using FlowJo software (Version 8.5.3, Tree Star Inc.).

Detection of apoptosis

Apoptosis was determined using Annexin V-APC (Invitro-
gen) and propidium iodide staining by flow cytometry. Acti-
vation of caspase-9 in tumor cells was analyzed by flow
cytometry using the caspase-9 and caspase-3/7 FLICA Kits
(Immunochemistry, Biomol). Caspase-9 Western blot analysis
was done using mouse anti-caspase-9 mAb detecting both the
proform and active form (New England Biolabs GmbH). Acti-
vated caspase-9 in tumor lysates was quantified by colorimet-
ric analysis using the Caspase-9 Activity Detection Kit
(Abcam). TUNEL staining was conducted using the In Situ
Cell Death Detection Kit (Roche) and mounted with Vecta-
shield w/DAPI (Vector Laboratories) for nuclei visualization.
Stained tissues were visualized by confocal fluorescence
microscopy (Leica TCS SP5).

Quantitative real-time PCR

Total mRNA was isolated using the RNeasy Kit (Qiagen).
c¢DNA was transcribed using Protoscript First Strand DNA
Synthesis Kit (New England BioLabs). Quantitative real-time
PCR (qRT-PCR) was conducted using the LC 480 Probes
Master Kit and Light Cycler 480 instrument (Roche Diag-
nostics). Primers were designed with the Universal Probes
library (Roche). The copy numbers of each sample were
correlated to hypoxanthine phosphoribosyltransferase.

Histology

Hematoxylin and eosin (H&E) staining was conducted
according to common protocols. For immunohistology, par-
affin-embedded specimens were cut at 3 um. After deparaffi-
nization and rehydration, heat pretreatment was done with
ProTaqgs V Antigen Enhancer (Quartett, Inmunodiagnostika &
Biotechnologie GmbH). The staining was conducted using
mouse anti-RIG-I mAb (Enzo Life Sciences AG). Detection was
accomplished by Real Detection System APAAP (Dako) and
counter stained with haematoxylin Gill's Formula (Vector
Laboratories). Lymphocyte infiltrates in Panc02 tumors were
analyzed with mAb anti-CD3 (clone 17A2) and anti-CD8 (clone
53-6.7, all BD Pharmingen). Images were obtained by fluores-
cence microscopy (Axiovert 2000, Carl Zeiss) and processed
with Adobe Photoshop CS4 for adjustment of contrast and size.

Statistical analysis

Data present mean + SD (in vitro data) or SEM (in vivo data).
Significant differences were analyzed using 2-tailed Student ¢
test. Multiple comparisons were analyzed by one-way ANOVA
including Bonferroni correction. Survival curves were analyzed
with Mantel-Cox test. Statistical analysis was conducted using
GraphPad Prism software (version 5.0a); P values < 0.05 were
considered significant.

Results

Pancreatic carcinoma cells express functional RIG-I

RIG-I expression was studied in human PanIN lesions,
primary pancreatic adenocarcinomas, and metastases by
immunohistochemistry. We found strong cytosolic staining
for RIG-I in premalignant lesions and in tumor cells in 10 of 10
specimens (Supplementary Fig. S1). We also assessed RIG-I
expression by qRT-PCR and Western blot analysis in various
human pancreatic cancer cell lines, including PANC-1,
PaTu8988t, MIAPaCa-2, IMIM-PC-1, and BxPC-3 that were
cultured in the absence or presence of IFN-o. All human
pancreatic cancer cell lines tested expressed basal levels of
RIG-I protein that were upregulated upon IFN-ot treatment
(Fig. 1A). We next assessed RIG-I signaling in pancreatic cancer
cells in response to treatment with the RIG-I ligand ppp-RNA.
We observed phosphorylation of the nuclear transcription
factor IRF-3 in all cell lines (Fig. 1B). Furthermore, RIG-I
stimulation induced the secretion of CXCL10 (IP-10) and
IFN-B (Fig. 1C and D). The cell line MIAPaCa-2 lacked IFN-
production due to a deletion of the IFN-f gene (25) but showed
IRF-3 phosphorylation and secreted CXCLI10, indicative of
intact RIG-I signaling. In addition, FACS analysis revealed
upregulation of MHC-I surface expression in all cell lines (Fig.
1E). To confirm that these effects were mediated by RIG-1, we
silenced RIG-I in PANC-1 cells with siRNA before ppp-RNA
stimulation. Phosphorylation of IRF-3, CXCL10 secretion, and
MHC-I expression were significantly reduced in RIG-I-silenced
cells (Fig. 1F and G). Together, these data show that human
pancreatic cancer cells express functional RIG-I and validate
RIG-I as a potential therapeutic target.

We next investigated RIG-I expression in the murine pan-
creatic carcinoma cell line Panc02, which forms highly aggres-
sive tumors in C57BL/6 mice. RIG-I expression was low in
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Figure 1. Human pancreatic cancer cells express functional RIG-I. A, different human pancreatic cancer cell lines were cultured in the absence or presence of
100 IU/mL IFN-o or 1 ug/mL ppp-RNA for 12 hours. Expression of RIG-I protein was determined by Western blot analysis. B, tumor cells were stimulated
with ppp-RNA (1 ng/mL) for 2 hours and phosphorylated IRF-3 (pIRF-3) was assessed by Western blot analysis. C-E, pancreatic cancer cells were
treated with 1 ug/mL OH-RNA or ppp-RNA for 24 hours. Release of CXCL10 (C) and IFN-f (D) was measured by ELISA. E, MHC-I surface expression was
measured by flow cytometry. MHC-I expression levels are shown as fold increase compared with cells treated with control OH-RNA. F, PANC-1 cells
were incubated with irrelevant (Ctrl.) or RIG-I-specific siRNA for 24 hours and subsequently stimulated with OH-RNA or ppp-RNA (1 ug/mL) for 2 hours. pIRF-3
was assessed by Western blot analysis. Efficiency of RIG-I silencing was assessed by Western blot analysis. G, PANC-1 cells were incubated with irrelevant
(Ctr.) or RIG-I-specific siRNA for 24 hours and subsequently stimulated with 1 pg/mL OH-RNA or ppp-RNA. CXCL10 levels and MHC-I expression were
analyzed after an additional 24 hours. Mean + SD from triplicates of 1 of 3 and representative images of 3 independent experiments are shown. *, P < 0.05.
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Panc02 cells under basal conditions but strongly upregulated intrinsic apoptosis pathway, we observed activation of cas-
upon IFN-o treatment (Fig. 2A). As observed with human cell pase-9 and caspases 3/7 (Fig. 3C and D). Moreover, ppp-RNA
lines, treatment with ppp-RNA resulted in the phosphorylation induced upregulation of Puma and Noxa in pancreatic cancer
of IRF-3 as well as secretion of CXCL10 and IFN-B and cells (Fig. 3E). Interestingly, siRNA-mediated silencing of Puma
upregulation of MHC-I expression (Fig. 2B and C). Again, significantly inhibited apoptosis induction. Together, these
RIG-I silencing confirmed the critical role of RIG-I signaling results show that pancreatic cancer cells are sensitive to
for these effects (Fig. 2D). Thus, the Panc02 model enabled us to proapoptotic RIG-I signaling and confirm a role of proapop-
study the therapeutic potential of ppp-RNAs in vivo in immu- totic BH3-only proteins in RIG-I-induced apoptosis.

nocompetent mice.
Bifunctional ppp-TGF-p combines TGF-} gene silencing

RIG-I signaling induces apoptosis in pancreatic with RIG-I activation in vitro
carcinoma cells To assess whether RIG-I activation and RNAi-mediated
In previous studies, RIG-I signaling was shown to induce silencing of TGF- can be combined in a single molecule, we
apoptosis in melanoma cells via the intrinsic, caspase-9— designed a siRNA-targeting TGF-B; and the corresponding
dependent pathway involving upregulation of the proapoptotic ppp-siRNA by in vitro transcription using a DNA template of
BH3-only proteins Noxa and Puma (14, 15). We next assessed the same sequence containing the T7 RNA polymerase pro-
whether this proapoptotic pathway is also active in pancreatic moter sequence (16). Unmodified siRNA carrying a free 5'-OH
cancer cells. Treatment with ppp-RNA strongly induced apo- group (OH-TGF-B) and ppp-modified siRNA (ppp-TGF-B)
ptosis in both human and murine pancreatic carcinoma cells reduced TGF-f to a similar extent in Panc02 cells on mRNA
as determined by PARP cleavage (data not shown) and Annexin and protein levels (Fig. 4A). Thus, silencing activity was not
V binding, which was strongly reduced in RIG-I-silenced impeded by the ppp modification. Moreover, ppp-TGF-$
tumor cells (Fig. 3A and B). In line with activation of the induced upregulation of CXCL10, IFN-B, and MHC-I as well
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Figure 2. Murine Panc02 pancreatic carcinoma cells express functional RIG-I. A, Panc02 cells were cultured in the absence or presence of 1,000 IU/mL
IFN-o for 12 hours. Expression of RIG-I was determined by gRT-PCR and Western blot analysis. B, phosphorylation of IRF-3 was assessed by
Western blot analysis after treatment with OH-RNA or ppp-RNA (1 ug/mL) for 2 hours. C, Panc02 cells were stimulated with 1 ug/mL OH-RNA,
ppp-RNA, or left untreated for 24 hours. CXCL10 and IFN-B secretion were analyzed by ELISA. MHC-I surface expression was measured by flow
cytometry and was expressed as fold increase compared with untreated cells. D, Panc02 cells were incubated with irrelevant (Ctrl.) or RIG-I-specific
siRNA for 24 hours and subsequently stimulated with OH-RNA or ppp-RNA. CXCL10 levels in supernatants were measured by ELISA and MHC-|
expression by flow cytometry. Mean + SD from triplicates of 1 of 3 independent experiments. *, P < 0.05.
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Figure 3. ppp-RNA induces apoptosis in murine and human pancreatic cancer cells. A, different human pancreatic cancer cell lines were treated with OH-RNA
or ppp-RNA (2 ug/mL each) for 48 hours. Induction of apoptosis was measured via Annexin V/propidium iodide staining by flow cytometry. B, PANC-1 and
Panc02 cells were incubated with irrelevant (Ctrl.) or RIG-I-specific siRNA for 24 hours and subsequently stimulated with OH-RNA or ppp-RNA. After
additional 48 hours, apoptosis was studied by flow cytometry. C, PANC-1 and Panc02 cells were treated with Lipofectamine, OH-RNAs, or ppp-RNAs for

48 hours as indicated and activation of caspase-3/7 and caspase-9 was measured by flow cytometry using corresponding FLICA kits. D, activation of
caspase-9 in PANC-1 and Panc02 cells was assessed by Western blot analysis. E, expression levels of Puma and Noxa in Panc02 cells in response to
ppp-RNA was assessed by qRT-PCR. Effect of Puma or Noxa silencing on apoptosis induction by ppp-RNA is shown. Representative data of 3
independent experiments are shown. Bars represent mean + SD from triplicates. *, P < 0.05.

as apoptosis of Panc02 cells to a similar extent as control
ppp-RNA (Fig. 4B-D). Of note, silencing of TGF-f with
OH-TGF-B by itself had no influence on the viability of Panc02
cells. Similar results were obtained with a ppp-siRNA-target-

ing TGF-B in human PANC-1 cells (Supplementary Fig. S2).
Thus, ppp-TGF-B effectively combines RNAi-mediated TGF-f3
silencing with ppp-RNA-mediated RIG-I activation in pancre-
atic cancer cells.
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Figure 4. Bifunctional ppp-siRNA directed against TGF-B1 combines gene
silencing with RIG-I signaling. Panc02 cells were incubated with different
RNAs (0.5 ng/mL) with or without silencing activity against TGF-f for 24
hours or left untreated. A, TGF-$ levels were analyzed by gRT-PCR and
ELISA. B, CXCL10 was measured in supernatants by ELISA and IFN-3
expression by qRT-PCR. MHC-| expression (C) and viability (D) were
assessed by flow cytometry. Mean + SD from triplicates of 1 of 3
independent experiments. *, P < 0.05.

Treatment of tumor-bearing mice with ppp-TGF-3 leads
to immune activation and TGF-§} silencing in vivo

Next, we examined the immunostimulatory activity of ppp-
TGF-B in the Panc02 pancreatic cancer model. Ten days after
orthotopic tumor induction, mice were treated intravenously
with RNAs, and cytokine production was measured in serum.
Injection of ppp-RNA and ppp-TGF-f induced high serum
levels of CXCL10, IFN-co., and moderate levels of TNF-o. (Fig.
5A). In addition, we observed a potent systemic immune
activation as evidenced by a strong upregulation of CD69
expression on B cells, CD4™, and CD8™ T cells, as well as NK
and natural killer T cells (NKT; NK1.1*/CD3") (Fig. 5B). Of

note, intermediate levels of immune activation were also
observed for siRNA against TGF-B. However, these were
strongly reduced in TLR7 '~ mice, indicative of a previously
described off-target effect of unmodified siRNA (Supplemen-
tary Fig. S3; 26, 27). In contrast, immune activation in response
to ppp-TGF-P treatment was not affected in mice lacking either
TLR7 or TRIF (TLR3 signaling).

A hallmark of pancreatic cancer is the expansion of MDSCs
that effectively suppresses CD8" T cell responses (28-30).
Both, TGF-f blockade and type I IFN have been reported to
reduce the suppressive function of MDSC (31, 32). We therefore
investigated the effect of ppp-TGF-B treatment on MDSC in
spleens of mice with Panc02 tumors. Strikingly, we observed a
reduction in CD11b" Gr-1" MDSC numbers by 50%. This
reduction was due to increased apoptosis of MDSC, as shown
by enhanced caspase-9 activation (Fig. 5C). A similar trend was
observed for OH-TGF-B, but lacked significance. Furthermore,
ppp-TGF-B induced a shift from Ly6G™ PMN-MDSC to Ly6C™*
monocytic MDSC and upregulation of CD11c, CD80, and Sca-1
expression (Supplementary Fig. S4). Similar phenotypic
changes of MDSC have been found in tumor-bearing mice
treated with a TLR9 ligand or recombinant IFN-0. and were
associated with a reduced suppressive function (32).

High serum levels of TGF-B correlate with poor prognosis
and resistance to therapy in patients with pancreatic cancer
(33). We previously reported elevated TGF-B serum levels in
mice with Panc02 tumors (34). To document the influence of
Panc02 tumors on TGF-f serum levels, we analyzed serum
samples on days 0, 14, and 25 after tumor induction. TGF -B
serum levels were increased in tumor-bearing animals and
correlated with tumor burden (Fig. 5D). In vivo administration
of both, OH-TGF- or ppp-TGF-B, significantly reduced serum
TGF-P levels in mice with early- and late-stage pancreatic
tumors (Fig. 5E). Together, these results confirm the in vivo
activity of ppp-TGF-B in regards to systemic TGF-f silencing
and RIG-I activation in mice with orthotopic pancreatic
cancer.

Systemic treatment of mice with ppp-TGF-f3 induces a
Tyl cytokine profile, CD8" T cell activation, and
apoptosis in tumor tissue

Next, we addressed the question whether systemic treat-
ment with ppp-TGF-B results in TGF-B silencing and RIG-I
activation in pancreatic tumor tissue in vivo. Mice with ortho-
topic Panc02 tumors were treated with RNAs on days 12 and 14
after tumor induction, and tumors were removed 12 hours
later for ex vivo analysis. Both, OH-TGF-B and ppp-TGF-B
significantly reduced TGF-§ on mRNA and protein levels (Fig.
6A). Moreover, bifunctional ppp-TGF-f induced upregulation
of CXCL10 and IFN-B expression in tumor tissue (Fig. 6B). To
further characterize the cytokine milieu in tumors, we mea-
sured levels of interleukin (IL)-4, IL-5, and IFN-y expression by
gRT-PCR. Interestingly, OH-TGF-f and ppp-TGF-f significant-
ly reduced the levels of IL-4 and IL-5. In addition, ppp-TGF-3
enhanced IFN-y expression, indicative of a shift from a T
helper T2 toward a Tyl immunoresponse (Fig. 6C). No differ-
ence in FoxP3 expression, a marker expressed by regulatory
T cells, was observed between treatment groups (Fig. 6C).
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H&E and terminal deoxynucleotidyl transferase-mediated
dUTP nick end labeling (TUNEL) staining of tumor sections
revealed profound tumor cell apoptosis in mice treated with
ppp-TGF-B (Fig. 7A and B), which correlated with increased
caspase-9 activity in tumor lysates (Fig. 7C). Inmunohistology
and FACS analysis revealed increased numbers of tumor-
infiltrating CD8" T cells and upregulation of the activation

marker CD69 (Fig. 7D). Together, these data show potent
antitumor activity of ppp-TGF-f treatment in vivo.

Therapy with ppp-TGF-f3 controls pancreatic tumor
growth in a CD8™ T cell-dependent manner

Finally, we assessed the in vivo efficacy of ppp-TGF-§
treatment in regards to survival in mice with orthotopic
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Figure 6. Treatment with ppp-TGF-B induces TGF-B silencing, type | IFN induction, and a Ty1 cytokine profile in tumor tissue. Mice with Panc02 tumors
were treated twice with 50 ug RNA as indicated. A, expression levels of TGF-3 in tumor tissue were assessed by qRT-PCR and ELISA. B and C,
expression levels of CXCL10, IFN-B, IL-4, IL-5, IFN-y, and FoxP3 in tumor tissue were measured by qRT-PCR. Data represent mean + SEM of pooled data from

5 mice/group. *, P < 0.05.

Panc02 tumors. We treated mice with RNAs twice weekly for
3 weeks, starting on day 10 after tumor induction. All mice
without treatment or treated with nonsilencing OH-RNA
had to be sacrificed because of progressive tumor growth
within 40 days after tumor induction (median survival 31
and 29 days, respectively). Treatment with OH-TGF-§ or
ppp-RNA without silencing activity significantly prolonged
survival (median survival 43 and 39 days, respectively). Most
efficient tumor control was achieved by bifunctional
ppp-TGF-B with a median survival time of 49 days (OH-RNA
vs. ppp-TGF-B < 0.0001; OH-TGF-B vs. ppp-TGF-B < 0.05)).
Complete tumor regressions, confirmed at autopsy on
day 100 after tumor induction, were 0%, 6%, and 33% for
OH-RNA, ppp-RNA, OH-TGF-f, and ppp-TGF-B, respectively
(Fig. 7E).

Increased infiltrations of tumors with activated CD8" T
cells led us to hypothesize that long-term tumor regression
induced by ppp-TGF- treatment may reflect the induction
of an adaptive immunoresponse against Panc02 tumor cells.
We therefore analyzed the role of CD8" T cells as well as NK
cells in the treatment response by injecting either o-CD8 or
0-NK1.1 depleting mAb before RNA therapy. Depletion of
CD8" T cells substantially reduced the therapeutic efficacy

of ppp-TGF-P, whereas depletion of NK cells had no major
effect on tumor control in this model (Fig. 7F). Thus, CD8" T
cells seem to be the main effector cells for ppp-TGF-
B-induced tumor control.

We next evaluated toxicity of RNA treatment by moni-
toring blood cell counts, creatinine, urea, lactate dehydro-
genase, and alanine aminotransferase serum levels. We
observed a transient leukopenia in mice treated with either
OH-TGF-B or ppp-TGF-B, which was completely reversible
within 48 hours. No obvious signs of therapy-associated
distress or organ toxicity were detected by serum chemistry
or histopathology (Supplementary Fig. S5 anddata not
shown).

Discussion

Sequence-specific degradation of viral RNA by RNAi and
innate antiviral responses upon detection of viral nucleic acids
by pattern recognition receptors, such as RIG-I, are 2 major
antiviral defense mechanisms preceding the development of
an adaptive immunoresponse. The requirements for the elim-
ination of virus-infected cells and tumor cells share many
features. Here, we use both antiviral principles for the therapy
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Figure 7. Treatment with ppp-TGF-B induces tumor cell apoptosis in vivo and prolongs survival of mice with Panc02 tumors in a CD8" T cell-dependent
manner. A-C, mice with Panc02 tumors were treated with 50 g of the indicated RNA on days 12 and 14 after tumor induction. Tumors were removed on day 15
for ex vivo analysis using H&E staining (A) and TUNEL staining (B) for detecting apoptotic tumor cells (green) in cryosections of tumor tissue. Nuclei were stained
with 4’, 6-diamidino-2-phenylindole (DAPI; blue). Representative pictures of 5 tumors per group. C, caspase-9 activity in tumor tissue was assessed by
colorimetric analysis. D, number and CD69 expression of tumor-infiltrating CD8" T cells as assessed by histology and flow cytometry, respectively. Data
represent mean + SEM from 5 mice. *, P < 0.05. E, survival of mice with orthotopic Panc02 tumors treated with RNA twice weekly for 3 weeks was monitored.
Treatment started on day 10 after tumor induction. Experiments were terminated after 100 days (all surviving mice were tumor-free). Pooled data with
statistical analysis from 4 independent experiments with 9 to 20 mice per group are depicted. F, survival of mice with orthotopic Panc02 tumors treated with RNA
in the absence or presence of depleting mAb against CD8 or NK1.1 was monitored. Data from 5 mice per group with statistical analysis are depicted.
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of pancreatic cancer. We show that functional RIG-I is
expressed in human pancreatic cancer cells. Furthermore, a
designed RNA molecule to conduct both RIG-I activation and
silencing of the immunosuppressive cytokine TGF-f3 induced
tumor regression in a CD8" T cell-dependent manner in an
aggressive mouse model of pancreatic cancer. In this respect,
RNA molecules that contained either the RIG-I ligand motif
or the silencing capability alone were less effective supporting
the concept that bifunctional siRNA is superior for effective
tumor therapy.

A major hurdle in cancer immunotherapy is the profound-
immunosuppression, both systemically and locally within
the tumor microenvironment. RIG-I signaling leads to type I
IEN responses with IFN-dependent gene products triggering
innate and adaptive immunoresponses (18). These effects
include systemic activation of NK cells and T cells, as well as
activation of dendritic cells, which are critical for the induc-
tion and regulation of adaptive immunoresponses and play a
key role in cancer immune surveillance (35). It is important
to note that upon RIG-I activation, type I IFN not only
derives from immune cells but also from tumor tissue, as
shown for human and murine pancreatic cancer cells in our
work. Secretion of CXCL10 can attract lymphocytes to tumor
tissue, and locally produced IFN-B can activate Tyl
responses and tumor-infiltrating CTL thus enhancing their
killing function. In this respect, upregulation of MHC-I
expression by the tumor cells upon RIG-I activation may
promote CTL-mediated tumor recognition and killing. In
fact, we observed that treatment with ppp-TGF-f3 resulted in
a Tyl cytokine profile in tumor tissue and a more vigorous
tumor infiltration with activated CD8" T cells. In addition,
we found that tumor regression in response to ppp-TGF-3
treatment was mediated by CD8" T cells. This leads to the
question of how ppp-TGF-B restored CD8" T cell responses
in tumors.

Soluble factors, such as TGF-B (5, 6), and immune cell
populations, such as MDSCs and regulatory T cells, have
been shown to play immunosuppressive roles in pancreatic
cancer (30, 36). In our study, treatment with ppp-TGF-$3
effectively reduced TGF-f levels in both serum and tumors.
The frequency of regulatory T cells was not influenced,
however, we have previously reported that TGF-f silencing
results in a marked downregulation of CD103 expression on
regulatory T cells (37). As CD103 identifies a particularly
suppressive subtype of regulatory T cells, treatment with
ppp-TGF-B may counteract regulatory T cell-mediated CTL
suppression. In addition, we observed that ppp-TGF- sig-
nificantly reduced the numbers of CD11b* Gr-17 MDSCs.
Because MDSCs are frequently found in pancreatic cancer
tissue and potently suppress CD8" T cells, this finding is
particularly interesting (36). Moreover, MDSC underwent
phenotypic changes, such as upregulation of CD11c, CD8O0,
and Sca-1 expression. Interestingly, similar changes in MDSC
have been reported in tumor-bearing mice treated with
recombinant IFN-o. and were found to correlate with a
reduced T cell-suppressive function (32). Thus, TGF-j3
silencing and type I IFN induction induced by ppp-TGF-3
seem to have additive effects on breaking the immunosup-

pressive milieu created by pancreatic cancer cells and are
capable of tipping the balance toward effective antitumor
CTL responses.

A central aspect of ppp-RNA treatment is the induction of
tumor cell apoptosis. Pancreatic cancer cells frequently
acquire loss-of-function mutations of the gatekeeper protein
p53, which reduces their sensitivity toward proapoptotic
signals (38). An elegant strategy to circumvent this limita-
tion is the exploitation of p53-independent apoptosis induc-
tion. We found that pancreatic carcinoma cell lines, includ-
ing those with p53 mutations (PANC-1, BxPC-3, and MIA-
PaCa-2), were sensitive to ppp-RNA-mediated apoptosis. In
line with findings in melanoma (14), we found that ppp-RNA
triggers apoptosis via the mitochondrial pathway in pan-
creatic cancer cells involving upregulation of the BH3-only
proteins Noxa and Puma with subsequent caspase-9 acti-
vation. Moreover, systemic treatment with ppp-TGF-$
induced profound tumor cell apoptosis in vivo, whereas
normal pancreas (as well as other organs, such as liver,
kidney, and lung) showed no signs of histopathology. These
findings confirm previous reports that tumor cells are highly
susceptible to ppp-RNA-induced apoptosis (14). The predi-
lection for tumor cells as compared with healthy tissue is
critical for avoiding toxicity and provides a therapeutic
window for ppp-RNA treatment.

In conclusion, we identified RIG-I as a novel target for
immunotherapy of pancreatic cancer. Combining RIG-I
activation with TGF-B silencing via bifunctional ppp-siRNA
breaks tumor-mediated immunosuppressive mechanisms
and confers potent antitumor efficacy. Whether this strat-
egy can be further improved, for example, by combination
with cytotoxic agents or immunization, is the focus of
ongoing studies. Further improvement can be expected by
designing new delivery systems for selective tumor target-
ing and by assessment in genetically engineered mouse
models of pancreatic cancer, which allow studying effects
on the tumor stromal compartment and metastatic spread-
ing (39, 40).
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