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Summary 

Protein-protein interactions are directly or indirectly the basis of all biological processes. 

Due to their importance, many methods have been developed to detect them. Each 

method has advantages and disadvantages, and is suitable for different applications. Some 

methods test the protein in an artificial environment or require expensive equipments, 

high expertise and complicated experimental processes. Therefore, we developed a cell 

based protein interaction detection system – F3H assay, which can be widely used to 

study protein interactions in living cells. This F3H method takes the advantage of the GFP 

binding protein, a GFP recognizing single VHH domain antibody, to target GFP fusion 

protein to an artificial chromosomal locus. By analyzing the colocalization of the 

coexpressed RFP fusion proteins at the locus protein interactions could be identified.  

Due to their fundamental role in biological activities, protein-protein interactions are also 

important targets for drug design. Since the F3H assay could visualize protein interaction 

in living cells in real-time, I further developed the assay to monitor the disruption of 

protein interactions after interaction inhibitor treatment. Using the p53-Mdm2 interaction 

as a test system, I successfully observed disruption of the interaction between p53-Mdm2 

by several inhibitors, including both small molecular compounds and peptide inhibitors. 

To make this protein-protein interaction inhibitor study system more efficient, I expanded 

this assay to 96-well plates and established an automated analysis protocol, which allows 

screening for protein-protein inhibitors in a high throughput way. Our data demonstrated 

the versatility of the F3H method in protein interaction studies and its strong potential in 

protein inhibitor screening.  

I applied this F3H assay to study mammalian kinetochore assembly in vivo. The 

kinetochore is a multi-protein complex formed by different classes of proteins. The 

CCAN (constitutive centromere-associated network) proteins are important components 

of functional kinetochores. Using the F3H assay, I systematically studied the interactions 

among the CCAN members and found some new interactions which may contribute to the 

assembly of the CCAN. A group of the CENP-P/O/R/Q/U proteins took our special 

interest, and based on interaction data, we proposed a stepwise self-assembly model for 

the kinetochore assembly of the CENP- P/O/R/Q/U proteins in mammalian cells.  

Besides, the CENP-A incorporation mechanism was also studied in this work using our 

F3H assay. M18bp1 is one component of the Mis18 complex which is necessary for 

CENP-A incorporation after cell division. But how Mis18 complex is recruited to 

centromeres was unclear. I screened the interactions between M18bp1 and the CCAN 

proteins and found that CENP-C interacts with M18bp1. This interaction facilitates the 

recruitment of M18bp1 to centromere and is important for proper CENP-A incorporation. 

Furthermore, we studied the interactions between EB virus protein EBNA2 and its host 

cell protein huRNP K, revealing a role of hnRNP K in up-regulation of viral gene 

expression. In conclusion, the F3H assay is a powerful method to study protein 

interactions and also to screen protein interaction inhibitors. 
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1. Introduction 

 
1.1 Methods to study protein interactions  

Proteins are the main functional executor of biological activity, and they usually do not 

function alone. It is normal that proteins cooperate or form complexes with other 

proteins under certain temporal and spatial conditions to carry out their biological 

function. Some proteins require modification or conformational change to be activated. 

These modifications or changes may depend on their interaction with other proteins. 

Some proteins exert their biological function as part of big multi-protein complexes. To 

make things more complicated, one protein may participate in several different 

biological activities together with different interacting partners. Therefore, it is a 

fundamental and important question to identify the protein interaction partners to 

understand how a protein functions or how it participates in the protein complex. 

Different methods identifying protein-protein interactions are developed to address the 

question. 

1.1.1 Genetic assay - Y2H 

The most classical method is the Yeast two-Hybrid (Y2H) assay (Fields et al., 1989). This 

method is based on the fact that the binding and activating domain of some eukaryotic 

transcription factors are distinct modules, which means they can also be functional if  

the two domains are separated and indirectly connected by other proteins. 

In the Y2H assay, one protein of interest is fused to the DNA binding domain (DB) which 

can bind to the promoter sequence upstream of a reporter gene. And the other protein 

or a protein library is fused to the activating domain (AD). If the two proteins of interest 

interact, the DB and AD domain will be connected together by the protein pairs resulting 

in the expression of the reporter gene (Fig. 1B). This reporter gene expression could give 

the yeast cell a certain phenotype that can easily be detected. If the two proteins do not 

interact, there is no such phenotype due to lack of reporter gene expression (Fig. 1A). 

The reporter gene could be a gene important for cell survival on a selective medium (for 

example genes such as ADE2 or HIS3) (James et al., 1996, Ito et al., 2001) or a LacZ gene 

which can convert the X-gal in the medium into the blue insoluble pigment 5,5'-dibromo-

4,4'-dichloro-indigo so that it could be easily recognized. Similar to this method, many 

modified techniques such as One-hybrid or Three-hybrid were also developed to identify 

protein-protein interactions, protein-DNA interactions and also protein RNA interactions 

(Licitra et al, 1996, Bush et al, 1996, Bernstein et al, 2002).  

Y2H is a powerful method to test protein interaction or identify new protein interactors. 

It is a powerful tool in large scale interactor screening and in the establishment of 

protein interactomes. But Y2H also has some disadvantages. First, Y2H has high false 
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positive and false negative rate. Huang (Huang, et al. 2007) reported about 25% to 45% 

false positive rate and a false negative rate range from 75% to 90% for two hybrid assay 

data obtained in different organisms. Second, Y2H is based on a yeast expression system 

in which some mammalian proteins may not fold correctly or lack certain kinds of 

posttranslational modifications, which may be important for some interactions. Third, 

Y2H can only detect binary interactions, incapable of detecting proteins not present in 

the screening library or the host. 

 

 

Fig. 1 Schematic representation of the Y2H protein interaction assay. Two proteins of interest, X and Y are fused to a 

DNA binding domain (DB) and an activating domain (AD), respectively. (A) If X and Y do not interact, the AD domain 

fused to Y does not bind to the promoter of the reporter gene, so there is no expression of the reporter gene. (B) X 

and Y interact, the AD domain fused to Y is recruited to the promoter region of the reporter gene by the DB domain 

fused to protein X, thus resulting in the expression of the reporter gene product. By detection of the report gene 

product, the interaction between X and Y can be detected. 

1.1.2 Affinity purification based methods 

Affinity based methods include co-immunoprecipitation (co-IP) and pull-down assay. 

These methods are based on the specific affinity of an antibody or ligand protein to the 

protein of interest (called ‘bait’). Because of this specific affinity, the bait protein can be 

captured by the antibody or ligand immobilized either on beads or on a plate surface. 

Depending on the experimental conditions, interacting partners (called ‘prey’) also 

would be immobilized or co-purified from the mixture of proteins such as cell lysates. 

The co-purified proteins are then either detected by specific antibodies after gel 

electrophoresis or directly identified by an antibody microarray or mass spectrometry 

(MS) (see Fig. 2). 

Co-IP is a classical biochemical technique used for protein interaction identification. 

Using an immobilized antibody specific against the protein of interest, the interaction 

partners/protein complexes are co-precipitated with the protein of interest (Fig. 2A). 

While the other non-binding fractions are washed away, the co-purified proteins which 

could be interacting partners of the bait protein, have to be identified and tested by a 

second method. 

The Pull-down assay is quite similar to co-IP but uses affinity tags that could bind to the 

receptors immobilized on the solid support (Fig. 2B). For example, a protein fused to 

Glutathione-S-Transferase (GST) tag could bind to the GST substrate glutathione, and 

histidine-tagged bait proteins could be pulled out by metal affinity chromatography. The 

Pull-down assay does not require an antibody specific against the protein of interest, so 

the method is quite suitable when no specific antibodies are available. 
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Fig. 2 Principle of affinity based protein interaction identification. Protein of interest (bait) -specific antibody (A) or the 

receptor of the affinity tag (B) is immobilized on the support. Cell lysates are incubated with the immobilized antibody 

or receptor (Left). While the interaction partners (prey) would be captured together with the protein of interest by its 

antibody or the affinity tag, the non-binding components would be washed away by buffer with proper salt 

concentration (Middle). The co-purified proteins are further analyzed by western blotting or mass spectrometry to 

identify them (Right). 

Pull-down experiments are powerful both in known protein interaction characterization 

and identification of new protein interacting partners. This advantage makes it one of 

the most used methods in practice. Because of the high background often obtained with 

these methods, techniques such as tandem affinity purification (TAP) were developed 

(Puig et al., 2001). In TAP assays, a two-step purification is performed to reduce the 

unspecific bindings. The bait protein is fused with two tandem arranged tags, typically a 

calmodulin binding peptide (CBP) and one other affinity tag such as His-tag, separated by 

a tobacco etch virus protease (TEV protease) site which could be recognized and cut by 

TEV protease. Affinity purification is performed using the affinity to His-tag first. After 

the first round of purification, the purified products are digested by TEV protease to 

release the bait protein and its partners from the beads. The released protein complexes 

are further purified relying on the second tag, the CBP tag on the bait. CBP tagged bait 

and its partners bind to calmodulin-coated beads in the presence of calcium. After 

washing away the unspecific bindings, the proteins are eluted from beads by calcium 

chelation for further identification. By this two round purification process, the TAP 

method effectively reduces the unspecific bindings which bind to the purification beads 

or columns. 

All these affinity based methods rely on cell lysates, and due to the different conditions 

of protein expression level, dilution and washing they may give both false positive and 

false negative results. Strict controls and testing by a second method should always be 

performed to reduce false results. 

Due to the disadvantages of affinity based assays, methods independent of the antibody 

or ligand affinity were developed. 
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1.1.3 Molecule proximity based biophysical/biochemical assays 

As an alternative approach, methods based on the spatial adjacency of interacting 

proteins have been developed. These methods utilize the changing physical properties 

or biochemical reactions which could only occur between two molecules within close 

proximity to indicate protein interactions. These biophysical or biochemical changes 

result in quite different readouts, ranging from fluorescence detection to chemical cross-

linking. 

1.1.3.1 Bimolecular fluorescence complementation 

One commonly used method is the bimolecular fluorescence complementation (BiFC) 

assay (Ghosh et al., 2000). In the BiFC assay, a fluorescent protein (FP) is divided into two 

parts and fused to two proteins of interest. Each FP fragment does not emit any 

fluorescence, only if the two FP fragments are brought into close proximity and re-

assemble into one complete FP, the FP could be visualized, which in turn indicates that 

the two proteins interact with each other (Fig. 3). YFP (Hu et al., 2002), BFP, CFP (Hu et 

al., 2003), mRFP1 (Jach et al., 2006) and mCherry (Fan et al., 2008) have been 

successfully used for BiFC assay. 

 

Fig. 3 Schematic representation of BiFC assay. GFP is divided into two fragments and fused to two proteins of interest 

(X and Y). When expressed in cells, the two fragments of GFP are brought together by the interacting protein X and Y. 

These two fragments then assemble into one complete GFP, detectable by fluorescence microscopy. Besides GFP, 

several other fluorescent proteins are successfully used in BiFC assay. 

Alternatively, firefly luciferase (Paulmurugan et al., 2002, 2005) and Gaussia luciferase 

(Remy and Michnick, 2006) are also used in the bimolecular complementation assay 

instead of FPs to test protein interactions. BiFC assay can be used to study not only 

protein-protein interactions, but also in the field of cell metabolism or protein 

degradation. Proteins such as dihydrofolate reductase (Pelletier et al., 1998) and 

ubiquitin (Johnsson et al., 1994) have been used for complementation assay to study the 

corresponding biological pathways. 

While BiFC could visualize protein interaction in living cells, there are also some 

disadvantages which limit its application. First, fluorescent protein formation by the 

fragments is irreversible (Kerppola, 2006), which would trap the interacting proteins in 
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this complex, potentially disrupting the dynamical trafficking of the proteins. Second, the 

intrinsic ability of the two fragments to associate with each other and forming an entire 

fluorescent protein independent of the interaction between the proteins fused to them 

may give a certain amount of background signal or even give false positive results 

(Walter et al., 2004; Zamyatnin et al., 2006). Third, the time requirement for fluorophore 

maturation after reconstitution is relatively long (which normally is more than 1 h), 

limiting its temporal resolution (Robida et al., 2009) which is important in living cell 

imaging. At last, suitable fusion constructs have to be made and artificially expressed in 

cells. 

1.1.3.2 FRET and BRET 

Fluorescence resonance energy transfer or Föster resonance energy transfer (FRET) is 

the non-radiative energy transfer between two fluorophores when they are in close 

spatial distance, typically occurring in the 1 - 10 nm distance. 

FRET technology takes advantage of this effect and provides information about the 

proximity of two bio-molecules by detecting the fluorescence transfer between two 

fluorophores attached to test bio-molecules. To perform this assay, one protein is 

labeled with one fluorophore serving as a donor while the other protein is labeled with 

another fluorophore acting as an acceptor. The donor fluorophore is excited by an 

appropriate laser, and it transfers part of its energy to the acceptor fluorophore when 

the donor and acceptor are in close spatial distance and appropriate relative orientation. 

Thus the emission light of the acceptor could be detected without a direct excitation. As 

a requirement for FRET, the donor fluorophore must have a shorter excitation and 

emission wavelength than the acceptor, and there should be an overlap of 

emission/absorption spectra between the two fluorophores to allow the energy transfer 

(Fig. 4). 

 

 

Fig. 4 Principle of the FRET assay. The proteins of interest X and Y are fused to CFP and YFP respectively. The CFP fused 

to X is excited by its exciting laser, and the excited CFP transfers some of its energy to the acceptor YFP when X and Y 

are in close proximity. In this process, the emission of CFP would reduce while the YFP can emit fluorescence because 

of the energy transferred from CFP. Detection the CFP and YFP emission gives information about the proximity of X 

and Y. 
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Just like FRET, bioluminescence resonance energy transfer (BRET) (Xu et al., 1999) is also 

based on the phenomenon of Föster resonance energy transfer.  In difference with 

classical FRET, BRET uses luciferase to replace the donor fluorophore so that no 

excitation light is needed in this case. It solves problems such as cell photo response or 

photobleaching of the fluorophore. Additionally, for cells with high auto-fluorescence 

(due to high levels of NADH or flavins), BRET would also be a better choice than FRET. 

FRET is also developed to BiFC-FRET to detect the interaction between 3 proteins (Shyu 

et al., 2008), and FLIM-FRET (Shaner et al., 2004). BiFC-FRET combines BiFC and FRET, 

the FP Cerulean is split into two parts and fused to two proteins of interest; the third 

protein of interest is fused to Venus which serves as an acceptor. Only if the first two 

proteins interact, the Cerulean could be re-assembled, and serve as the FRET donor. 

When the third protein interacts with the other two proteins, a FRET could occur and be 

detected. FLIM-FRET detects the lifetime change of the donor fluorescent protein, rather 

than detecting the fluorescence intensity change in FRET. 

FRET and FRET based methods are very sensitive to changes in distance of the two 

proteins. Suitable fluorescent protein pair should be chosen and it requires special 

equipment to detect the signal such as in FLIM-FRET assay. Additionally, FRET works only 

when the fluorophores are in correct orientation, and it could also be sensitive to the pH 

of the environment. Controls should always be performed to exclude false results since 

FRET is affected by many factors. 

1.1.3.3 Proximity dependent biotinylation 

Proximity dependent biotinylation is a technology developed recently, and it utilizes the 

bacterial BirA protein (Bifunctional protein BirA) which is a biotin protein ligase to 

transfer biotin to proteins with a biotin accepter tag (BAT) or so called accepter peptide 

(AP) sequence. Protein of interest X is fused to the biotin ligase BirA, and the other 

protein partner Y is tagged with BAT substrate sequences. If X and Y interact, the BirA 

will catalyze the biotinylation of BAT tagged protein Y, and this biotinylated Y could be 

detected by fluorophore-coupled streptavidin staining (Fernández-Suárez et al., 2008) or 

pull-down followed by further analysis (Kulyyassov et al. 2011) (Fig. 5A). This method 

was also successfully used to visualize neurexin-neuroligin trans-interactions at synapses 

in cultured living neuronal cells (Thyagarajan and Ting, 2010).  

Roux and colleagues improved this method (Roux et al., 2012). They used a BirA mutant 

(BirA*) which has a promiscuous target range and can biotinylate proteins in a 

proximity-dependent way regardless of the BAT sequences. With this mutant protein, 

they could biotinylate endogenous protein interacting partners in mammalian cells, and 

subsequently identify these proteins by MS (Fig. 5B). 
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Fig. 5 Protein interaction dependent biotinylation. (A) Bacterial biotin protein ligase (BirA) is fused to protein X, and 

the protein Y is tagged with BirA substrate peptide BAT. If protein X and Y interact, the ligase would meet its substrate 

and add a biotin onto the BAT fused to protein Y. (B) a BirA mutant (BirA*) which has a less strict substrate recognition 

is fused to X so that the interacting partner of protein X (protein Y) could be directly biotinylated by this mutant. These 

biotinylated proteins are then further analyzed by methods such as pull-down assay and mass spectrometry analysis 

or streptavidin mediated fluorescence imaging. 

1.1.3.4 Proximity dependent fluorophore labeling 

Slavoff and colleagues (Slavoff et al., 2011) designed a method called Interaction-

Dependent PRobe Incorporation Mediated by Enzymes (ID-PRIME). This method is 

similar to the proximity dependent biotinylation, but instead of a biotin molecule, they 

transferred a fluorophore onto the target peptide to visualize protein interactions in vivo. 

They used an Escherichia coli LplA (lipoic acid ligase) mutant LplAW37V, which can 

covalently ligate a coumarin fluorophore onto its target peptide sequence LAP1. One 

protein A is fused to this ligase LplAW37V, while its potential interacting partner B is 

tagged with the LAP1 substrate peptide. When the two constructs are co-transfected 

into mammalian cells, only if the protein pair interacts, protein B would be labeled with 

coumarin and fluorescence could be detected as an indication of interaction. In the 

absence of interaction, this labeling reaction does not occur (Fig. 6). 

 

Fig. 6 Proximity dependent fluorophore labeling. Lipoic acid ligase (LplA
W37V

) is fused to protein A, and the protein B is 

tagged with a LAP1 peptide which is the substrate of the ligase. If protein A and B interact, the ligase is brought to its 

substrate and adds a coumarin onto the LAP1 fused protein B. This coumarin labeled protein B can be detected with 

fluorescence microscopy. (Figure modified from Slavoff et al., 2011) 



INTRODUCTION 

10 
 

1.1.3.5 Proximity dependent chemical cross-linking 

Chemical cross-linking is a technique with a long history in studying protein-protein 

interactions. In principle, it uses chemical regents to cross-link the interacting proteins, 

and then the cross-linked protein complexes are identified by methods such as Western 

blotting or MS. This method is not so efficient because it requires appropriate chemical 

regents to cross-link the different proteins. 

 

Fig. 7 Scheme of chemical cross-linking. Protein X and Y are both tagged with 12 amino acid peptide containing a 

tetracysteine motif. xCrAsH is added to cells, it reacts with the tetracysteine motif (shown as black lines) and cross-

links X and Y covalently. This covalent complex could be visualized and further analyzed by other techniques (Figure 

modified from Rutkowska et al., 2011).  

Rutkowska and colleagues improved this method to identify protein interaction by using 

a new peptide tag. They tagged both proteins of interest with a 12 amino acid peptide 

which contains a tetracysteine sequence motif. After expressing these two constructs in 

cells, they added a dimeric biarsenic derivative of carboxyfluorescein (xCrAsH) which can 

form a stable covalent complex with each tetracysteine motif in both proteins so that 

the two interaction proteins are cross-linked covalently by xCrAsH (Rutkowska et al., 

2011). Besides the analysis by pull-down and MS, the cross-linked complex could be 

visualized by fluorescence microscopy since xCrAsH is a fluorophore (Fig. 7). 

1.1.3.6 Proximity dependent DNA amplification 

All the proximity dependent methods introduced above are using ectopically expressed 

proteins to study protein interactions. In addition, methods to detect endogenous 

protein interactions in situ were developed. 

To visualize endogenous protein interactions in situ, Söderberg et al (Söderberg et al., 

2006) used oligonucleotides which were attached to antibodies against the two proteins 

of interest as proximity probes. When the two antibody-attached oligonucleotides are 

close enough, they can guide a linear connector oligonucleotides to form circular DNA 

strands which can serve as templates for subsequent localized rolling-circle amplification 

(RCA). A RCA reaction will produce a randomly coiled, single-stranded DNA composed of 

up to 1,000 copies of the circular DNA template. Then the products could be detected 

and visualized by fluorescence in situ hybridization (FISH). Using this method, they 

visualized endogenous protein interactions both in tissue sample and in cultured cells 

(see Fig. 8). 
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Fig. 8 Principle of proximity dependent DNA amplification. (A) Oligonucleotide probe attached antibodies against the 

two proteins bind to protein X and Y respectively. A circularizable linear connector oligonucleotide is added and it 

would form an open circular structure under the guide of the two antibody attached oligonucleotide probe. (B) The 

circularizable connector oligonucleotides are ligated to form a circular single DNA by enzymatic DNA ligation. (C) RCA 

(rolling-circle amplification) is performed using the formed DNA circle as template. (D) The amplified DNA products 

could be detected by Fluorescence in situ hybridization (FISH). (Based on Soederberg et al., 2006). 

1.1.4 Fluorescence based dynamic assays 

To detect protein interactions in a native environment and to get more quantitative 

information about protein dynamics in the cells, a series of fluorescence based live cell 

assays were developed. Fluorescence recovery after photobleaching (FRAP) and 

fluorescence cross-correlation spectroscopy (FCCS) are confocal microscope based 

methods that can measure the mobility properties of fluorescent molecules or 

fluorophore labeled molecules in living cell. Both methods measure the dynamics of 

fluorescent molecules, but they use different strategies. 

1.1.4.1 FRAP 

In the FRAP assay, the fluorescent protein tagged target protein is expressed, regions of 

interests (ROIs) in living cells are chosen and photobleached by intense laser pulses. The 

time-lapse fluorescence intensity recovery after photobleaching at the ROI is recorded 

and plotted as a recovery curve. Base on this recovery curve, a kinetic model could be 

simulated, and information such as dissociation rate, mean residence time, number of 
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mobility classes and each fraction size can be estimated (Schneider et al., 2013). The 

factors affecting the fluorophore dynamics can be assessed and used as an indication of 

protein interactions (Fig. 9). 

 

Fig. 9 Principle of FRAP assay. (A) Fluorescent protein fused protein is expressed in a cell. A ROI is chosen (white dash 

circle) and photobleached by intense laser irradiation. After photobleaching, the ROI area would recover its 

fluorescence due to the diffusion and exchange of fluorescent target protein. (B) This recovery process is recorded and 

plotted as a time-lapse recovery curve. Mathematical analysis can then give information about protein dynamics. 

Similar to FRAP, inverse FRAP (iFRAP) or Fluorescence Loss in Photobleaching (FLIP) can 

be performed, which detects the loss of fluorescence from the non-photobleached 

region rather than monitoring the fluorescence recovery of the photobleached region 

measured in normal FRAP. The iFRAP offers a way to monitor the protein moving out of 

a certain region, such as protein movement out from Golgi in different cell-cycle phases 

(Zaal et al., 1999). 

FRAP is a powerful tool to obtain quantitative information about protein diffusion rates 

and kinetics in living cell, offering deeper understanding of biological processes. But for 

protein interaction, it can only provide some indirect information. Based on a different 

principle another method, called fluorescence cross-correlation spectroscopy (FCCS), 

were developed. 

1.1.4.2 FCS/FCCS 

Fluorescence correlation spectroscopy (FCS) (Elson and Magde, 1974; Magde et al., 1974) 

is a way to analyze fluorescent molecule dynamics by measuring the fluctuation of the 

fluorescence in the certain focal volume illuminated by a laser beam. The fluctuations 

and relative mobility of one kind of fluorescent particles in the focal volume is analyzed. 

With a similar principle, fluorescence cross-correlation spectroscopy (FCCS) was 

invented (Schwille et al., 1997), which extends the application of the FCS technique to 

protein-protein interaction detection (Baudendistel et al., 2005). 

FCCS is a two-color FCS; it can measure two distinct fluorescent dye fluctuations in the 

same focal volume. The two proteins of interest are labeled with different fluorophores 

or fluorescent proteins, and fluorescence fluctuations in the focal volume resulting from 

protein movement are recorded. If the two proteins directly interact or they are in the 

same big protein complex, the fluorescence fluctuations of the two fluorophores are 

highly cross-correlated (Fig. 10, upper row). And non-interacting protein pair or proteins 
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not in the same complex do not result a highly cross-correlated fluorescence fluctuations 

between the two fluorophores (Fig. 10, lower row). Mathematical analysis of the 

fluctuations gives not only the cross-correlation function between the two fluorophores, 

but also information about concentration of the molecules and dissociation constants of 

their interaction. A highly positive cross-correlated fluctuation suggests that the two 

proteins have a similar moving pattern, indicating they may interact or are in the same 

complex. 

 

 

Fig. 10 FCCS analysis principle. Living cells are detected under a confocal microscope, and the focal volume is zoomed 

in and shown as gray ellipsoid. The movements of fluorophores (red and green spots) into and out of the focal volume 

are illustrated with arrows (left).  The time related fluorescence fluctuations caused by fluorophore movement are 

recorded in both channels (middle). Fluorescence fluctuations auto-correlation and cross-correlation functions of the 

two colors are simulated (right), a similar movement pattern between the two fluorophores indicates an interaction 

(upper plot curves). 

 

Recently, also inverse-FCS (iFCS) and inverse-FCCS (iFCCS) were developed (Wennmalm 

et al., 2009, 2010). In these assays, the biomolecule is not labeled, and the signal is 

detected from medium surrounding the analyzed molecule. The movements of 

biomolecules through the FCS-detection volume substitute a fraction of the surrounding 

medium, causing transient dropping of the detected signal. By analyzing this 

fluorescence fluctuation in the medium, one can get the information about the 

biomolecules (iFCS). If one molecule is labeled with a fluorophore, by analyzing the 

cross-correlation of the labeled small molecule and unlabeled particle, one can get 

binding information (iFCCS). 

Unlike the methods such as FRET, FCCS are not restricted by close spatial proximity of 

the fluorophore, so it could be used to study large protein complex. In addition to 

protein interactions, it also provides information about protein dynamics.  All the same, 

FCS/FCCS also has its limitations. It has an upper limit of the fluorescent particle 
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concentration, and it can not measure the immobile fraction which is possible in FRAP 

assays. 

Each method has its advantages and disadvantages, and is suitable for different 

applications (Table 1). 

 

Table 1 Comparison of protein-protein interaction study methods 

Method Advantages Disadvantages  
Y2H has simple experimental 

processes,  is suitable for large 
scale screening 

bait and prey lack PTMs; has high 
false result rate; can only detect 
binary protein pairs 

- 

IP/co-IP suitable for identification of 
endogenous multi-protein 
complexes. Combined with 
isotope labeling (SILAC), could be 
used for quantitative proteomics  

highly depends on antibody 
availability and specificity; results 
may be biased towards interaction 
affinity, prey abundance and kinetics 
of the interaction 

in vitro 

Pull-down using affinity tags, does not 
require specific antibodies 

usually has high background; 
overexpression of bait may give 
artificial results 

in vitro 

TAP two-step purification, enhanced 
purity of the preys 

overexpression of bait, may give 
artificial results 

in vitro 

Chemical 
cross-linking 

detects endogenous protein 
complexes, has the potential to 
analyze transient interactions 

highly depends on availability of 
suitable cross-linking regent 

in vivo or 
vitro 

BiFC visualizes interactions in living 
cells 

irreversible reassembly of  
complimentary parts, has a limited 
time resolution 

in vivo 

FRET visualizes interaction in real time artificial expression constructs are 
required. FRET is distance- and 
direction- sensitive, giving both false 
positive and false negative results 

in vivo 

FCCS provides more quantitative 
information, high sensitivity 

specialized equipment is required, 
results may be affected by 
fluorophore concentration and 
diffusion speed. 

in vivo or 
in vitro 

F2H visualizes protein interactions at 
near native condition in living cell 
in real time, simple in practice 

tests binary interaction only, artificial 
expression constructs needed. 

in vivo 

 

 

Methods in protein interaction studies are not limited to those summarized above. 

Some physical methods, such as NMR spectroscopy (reviewed by Takeuchi et al. 2006), 

isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR), are also 

used to detect protein-protein interactions in vitro. All these methods make it possible 

to investigate how proteins cooperate together and affect each other, giving us more 

insights into the respective biological processes. 
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1.2 The p53-Mdm2 interaction 

p53 is a transcription factor which plays multiple roles in biological processes. In 

particular, p53 is known as a tumor suppressor with growth suppressive and 

proapoptotic activity. p53 is mainly controlled by its interacting partner Mdm2 (murine 

double minute 2), which reduces the stability and activity of p53. Mdm2-p53 interaction 

inhibitor could release the p53 from the p53-Mdm2 complex thus increase the 

antitumor activity of p53. Because of the important role of this interaction in cell fate 

regulation, it is a very promising target for antitumor drug design. 

1.2.1 The cellular role of p53 

p53 was first identified as an oncoprotein, which accumulated in tumor cells (DeLeo et 

al., 1979; Dipplod et al., 1981), and it was also shown to interact with and to be 

regulated positively by SV40 large T antigen (Chang et al., 1979; Linzer and Levine., 1979).  

Because of these tumor related character, p53 gene was considered as an oncogene at 

that time. One decade later, it was shown that the previous identified p53 was a mutant 

of the wild-type p53 and that p53 is a tumor suppressor gene (Baker et al., 1989; Finlay 

et al., 1989). In addition, it was discovered that p53 is mutated in 50% of all human 

cancers, suggesting that it is the most important tumor suppressor (Hollstein et al., 1991; 

1996). Moreover, it was demonstrated that p53 plays critical roles in genome stability, 

DNA repair and cell apoptosis. 

p53 is composed of an N-terminal transactivation domain, a DNA binding domain and a 

C-terminal oligomerization domain (Fig. 11). In addition to these domains, p53 also 

contains several nuclear localization signal (NLS), nuclear export signal (NES) peptide 

sequences and a proline-rich domain (Fabbro and Henderson, 2003). The N-terminal 

transactivation domain of p53 contains two parts, the transactivation domain 1, which is 

aspartic and glutamic acid- rich, and the transactivation domain 2, which is proline-rich. 

These two transactivation domains interact with numerous proteins. Some of them are 

important regulators of p53, such as Mdm2; and the others, like TBP, TAFII31 and 

p300/CBP, are components of the transcriptional machinery, activating p53 target gene 

expression (reviewed by Scoumanne et al., 2005). It was proposed that AD1 mediates 

cell cycle arrest while AD2 regulates genes involved in apoptosis (Harms and Chen, 2006). 

The sequence-specific DNA-binding domain locates in the middle part of the whole 

protein, and it is important because more than 80% of all p53 mutations in human 

cancer cells are found in this particular functional domain (Olivier et al., 2002).  The DNA 

binding domain of p53 binds to specific DNA sequences in or nearby the promoter of its 

target genes (el-Deiry et al., 1992). It was shown that this domain was indispensible for 

p53’s proapoptotic activity (el-Deiry et al., 1992; Pietenpol et al., 1994). Mutants, which 

had no DNA binding activity, block the transactivation activity. The C-terminal part of 

p53 (aa293-393) can be further divided into a tetramerization domain (aa326 to aa353) 

and a regulatory domain (aa363-393). The tetramerization domain is responsible for the 
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tetramer formation of p53 via dimerizing two dimers formed by p53 monomers. This 

tetramerization is necessary for its activity. The regulatory domain contains many lysine 

and arginine residues, which can be post-translationally modified to regulate the 

function and stability of p53. 

As a transcription factor, p53 controls the expression of multiple downstream genes, 

many of which are involved in cell cycle control, apoptosis and cellular senescence. One 

of these genes is p21 (Dulic et al., 1994; el-Deiry et al., 1993). Under cellular stress, p53 

transactivates and up-regulates p21 expression. p21 itself can inhibit Cdk2 and Cdk4, 

resulting in cell growth arrest. Another gene called p53R2 was shown to be activated by 

p53 and to participate in DNA damage repair and cell cycle arrest in G2/M phase. p53 

also controls many genes involved in angiogenesis and DNA repair. 

 

 

Fig. 11 Schematic representation of human P53 and MDM2 protein structure. Domains of p53 and MDM2 are shown. 

P53 contains an N-terminal transactivation domain which can activate its target genes. The DNA binding domain 

locates in the middle of P53, adjacent to the proline-rich domain (PR), binds to specific DNA sequences. At the C-

terminal, the tetramerization domain is responsible for tetramer formation of P53, and the regulatory domain 

contains many lysine and arginine residues, which both are potential sites for posttranslational modifications. MDM2 

interacts with p53 via its p53-binding domain at the N-terminus. In the middle of Mdm2, there is an acidic domain and 

a zinc finger. The RING type E3 ligase domain is at the C-terminus. 

1.2.2 Mdm2 and its relationship with p53 

p53 can be modified and regulated by many proteins, the most famous one is Mdm2 

which controls the stability of p53 by ubiquitination. Mdm2 was first identified as an 

interaction partner of p53, which possessed a potential inhibitory effect on p53 

mediating gene transactivation (Momand et al., 1992; Oliner et al., 1993). Crystal 

structure of p53 and Mdm2 complex revealed that Mdm2 binds to the transactivation 

domain of p53, inhibiting the transactivation activity of p53 (Kussie et al., 1996). Later, it 

was reported that Mdm2 promotes the proteasomal degradation of p53 (Haupt et al., 

1997; Kubbuta et al., 1997). In vitro studies discovered that Mdm2 is an E3 ligase (Honda 

et al., 1997), which belongs to the family of RING type E3 ligase (Fang et al., 2000). The 

p53 binding domain is located at the N-terminus of Mdm2 and the RING finger domain is 

at the C-terminus (Fig. 11). These studies indicated that there are two different ways 

how Mdm2 inhibits p53: Firstly, Mdm2 inhibits p53-activity by direct binding and 

secondly by mediating p53-degradation. Inactive mutants of Mdm2 showed that the E3 
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ligase activity was sufficient for Mdm2 to inhibit p53 (Itahana et al., 2007; Clegg et al., 

2008). 

Interestingly, Mdm2 was also identified to be a direct transcriptional target of p53 

(Barak et al., 1993; Wu et al., 1993), which means p53 can up-regulate the expression 

level of Mdm2. Thus, p53 increases the expression of Mdm2, but in return, the up-

regulated Mdm2 promotes the degradation of p53 (Lahav et al., 2004). Therefore, p53 

and Mdm2 form a negative feedback loop (Fig. 12). Under normal condition, p53 is kept 

at a low level by this p53-Mdm2 feedback loop, whereas under stress conditions, the 

amount of p53 is rapidly up-regulated. 

Besides Mdm2, MdmX (also known as Mdm4) was identified as a regulator of p53 

(Shvarts et al., 1996). MdmX is a homolog of Mdm2. Like Mdm2, MdmX also binds to the 

N-terminal transactivation domain of p53 via its own N-terminal domain. In contrast to 

Mdm2, the C-terminal RING domain of MdmX lacks any E3 ligase activity (Parant et al., 

2001), but it can form a heterodimer with Mdm2 (Sharp et al., 1999; Tanimura et al., 

1999), and stimulates the activity of Mdm2 (Linares et al., 2003). MdmX is revealed to 

negatively regulate p53 activity by direct binding (Fig. 12). As a substrate of Mdm2, 

MdmX is negatively regulated by Mdm2 (Kawai et al., 2003). Knockout of either mdm2 

or mdmx results in early embryonic lethality and this lethality could be rescued by p53 

knockout, which suggested that both Mdm2 and MdmX are important negative 

regulators of p53. 

 

 

 

Fig. 12 Relationship of p53, Mdm2 and MdmX. Mdm2 and MdmX bind to the transactivation domain of p53, inhibiting 

its transcriptional activity. Moreover, Mdm2 promotes proteasomal degradation of p53 by ubiquitination. While 

Mdm2 inhibits the activity of p53, Mdm2, itself as a down-stream target gene of p53, is positively regulated by p53. 

Mdm2 also down-regulates MdmX via ubiquitination. Mdm2 and MdmX negatively control the p53 activity, and 

p53/Mdm2 form a negative feed-back loop. 
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1.2.3 Inhibitors of the p53-Mdm2 interaction 

Since p53 plays an important role in tumor suppression, it is an attractive target of anti-

tumor drug design. As the main negative regulator of p53, different methods to 

decrease the amount or activity of Mdm2 were used, such as the inhibition of Mdm2 

expression or its E3 ligase activity. And most importantly, inhibitors specifically 

abolishing the p53-Mdm2 interaction are the most promising target for cancer drug 

development. 

The first approach was the development of peptides which inhibit the p53-Mdm2 

interaction. The crystal structure of the p53-Mdm2 complex revealed a p53- binding 

pocket located at the N-terminus of Mdm2 (Kussie et al., 1996). By peptide mapping 

experiments, a 6-residue peptide region (TFSDLW) of p53 was sufficient to bind to this 

pocket on Mdm2. Using phage display peptide libraries, an 8-residue peptide (Ac-Phe19-

Met-Asp-Tyr-Trp-Glu-Gly-Leu26-NH2) was found to inhibit p53 binding to Mdm2 (IC50 is 9 

µM) (Böttger et al., 1996). In addition, this peptide sequence was further modified by 

introducing unnatural amino acids (Ac-Phe19-Met-Aib-Pmp-(6-Cl-Trp)-Glu-Ac3c-Leu26-

NH2)  to fold into a stable α-helical structure, resulting in better stability and higher 

affinity (IC50 is 5 nM) for competitively binding to Mdm2 (Garcia-Echeverria et al., 2000). 

The structure of this Mdm2-peptide complex revealed that the 6-chlorotryptophane (6-

Cl-Trp) and the phosphonomethyl phenylalanine (Pmp) enhanced the binding activity 

(Sakurai et al., 2006). 

Due to the fact that natural peptides are easily degraded in vivo, proteolysis-resistant D-

peptide inhibitor of the p53-Mdm2 interaction were developed. The peptides were 

synthesized using D-amino acids instead of the naturally occurring L-amino acids to 

reduce degradation. The peptides, DPMI-α (TNWYANLEKLLR), and DPMI-β 

(TAWYANFEKLLR) have an affinity of 219 nM and 35 nM to MDM2 respectively in SPR-

based competition assays (Liu et al., 2010a). Later a D-peptide inhibitor, DPMI-γ (DW 

WPLAFEALLR), was developed, with an affinity of 53 nM to Mdm2 (Liu et al., 2010b).  

Though inhibitory peptides can disrupt the p53-Mdm2 interaction, their application is 

limited due to low cellular permeability and the toxicity, arguing against a use as a drug. 

Therefore, instead of peptides, small compounds were developed as inhibitors of the 

p53-Mdm2 interaction. 

Some small compounds were identified that bind to Mdm2 with different affinities and 

block the p53-Mdm2 interaction. Until today, there are several classes of small 

compound inhibitors, including analogs of spiro-oxindole, benzodiazepine (Grasberger et 

al., 2005; Koblish et al., 2006), terphenyl (Yin et al., 2005; Chen et al., 2005), quilinol (Lu 

et al., 2006), chalone (Stoll et al., 2001) and sulfonamide (Galatin and Abraham, 2004) 

(reviewed by Wendt et al., 2012). 

The most famous Mdm2 inhibitor is nutlin-3, which was developed by Roche about ten 

years ago (Vassilev et al., 2004). They screened a compounds library for potential p53-

Mdm2 inhibitors, and got three nutlins. Nutlins are all cis-imidazoline analogs, and 
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nutlin-3 is the most active molecule of the three nutlins. It binds to the N-terminal part 

of Mdm2 with high affinity, blocking the p53-Mdm2 interaction (IC50 is 90 nM), which 

results in the accumulation and activation of p53. The downstream targets of p53 are 

activated which induces cell cycle arrest and apoptosis of the tumor cells. nutlin-3 has 

been used in preclinical cancer therapy. 

Furthermore, spiro-oxindole inhibitors such as Mi-63 (Ding et al., 2006) and Mi-219 

(Shangary et al., 2008) were developed. Both compounds are based on a spiro-oxindole 

structure and process a high affinity to MDM2 (Shangary et al., 2008). Mi-63 is a quite 

strong inhibitor of p53-Mdm2 interaction, but it has a poor pharmacokinetic (PK) profile 

and a modest oral bioavailability, which limits its prospects as a clinical drug. To 

overcome these problems, Mi-219 was further developed. While Mi-219 has an almost 

equal affinity as Mi-63 to Mdm2, it possesses a better oral bioavailability. It can activate 

wild-type p53 and induce tumor cell cycle arrest and apoptosis in cultured tumor cells 

(Shangary et al., 2008). 

In addition to these two families of Mdm2 inhibitors, the other small molecule 

compounds have different characteristics and abilities to block p53-Mdm2 interaction 

either in vitro or in vivo. Until today, all the developed compounds are still at the pre-

clinical stage. To make better anti-cancer drugs, new compounds with higher affinities 

and better pharmacological properties need to be developed. 
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1.3 Centromere characterization 

During cell division, the genome has to be precisely duplicated and equally distributed to 

daughter cells.  The mammalian cell division cycle is divided into interphase and mitosis. 

The interphase is characterized by cell growth and DNA replication, preparing the cell for 

subsequent cell division. After the DNA replication checkpoint passage, cells enter into 

mitosis. During mitosis, replicated chromosomes, the so-called sister chromatids, have 

to be segregated to the two daughter cells evenly to maintain genetic stability after cell 

division. The proper chromosome segregation is ensured by a specialized chromosome 

structure, the centromere, which holds the sister chromatids together and later acts as 

an assembly site for kinetochore formation during mitosis. The kinetochore is a multi-

protein complex attached to the centromere, which connects the chromosomes with 

microtubules of the mitotic spindle, and thus plays a key role in accurate chromosome 

segregation. 

Although centromeres exist in a broad range of eukaryotes from yeast to human, they 

are quite different in size and structure in these organisms. Additionally, in comparison 

to non-centromeric chromatin on the genome, the DNA and histones at centromeres are 

unique, characterized by specific DNA repeat elements and epigenetic modifications. 

1.3.1 Centromeric DNA 

The DNA sequence that typically forms a centromere was first identified on chromosome 

III in the budding yeast Saccharomyces cerevisiae as a region required for normal 

centromere function (Clarke and Carbon, 1980). The centromere found in budding yeast, 

the so-called point centromere as it is quite small in size, harbors only one centromeric 

histone and the underlying DNA sequence is specific and conserved for budding yeast. It 

consists of the centromere DNA element I, II and III (CDE I, CDE II and CDE III) (Clarke and 

Carbon, 1980; Fitzgerald-Hayes et al., 1982; Hieter et al., 1985) (Fig. 13). These three 

DNA elements form a ~125 bp region on the chromosome and are sufficient for mitotic 

stability since this DNA sequences could enable a plasmid to function as a chromosome 

both mitotically and meiotically when it was artificially introduced into the plasmid. A 

single point mutation (cytosine (C) to thymidine (T)) in the conserved region of CDE III 

caused centromere function deficiency and is lethal to yeast cells (McGrew et al., 1986). 

Reconstruction of electronic micrographs (Winey et al., 1995) and other methods 

(Henikoff and Henikoff, 2012) showed that only one microtubule attaches to this point 

centromere site. 

In comparison to the centromere of budding yeast, the centromere of fission yeast 

Schizosaccharomyces pombe consists of a longer centromeric DNA, ranging from 30 to 

100 kb. It has a central region, cnt, flanked by inverted DNA repeat sequences at both 

left and right side (imrL and imrR) (Chikashige et al., 1989; Hahnenberger et al., 1989; 

Murakami et al., 1991). Repetitive outer repeats (otr) localize at both sides of the central 

region formed by cnt and imr (Clarke and Baum 1990; Hahnenberger et al., 1991; Kuhn 
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et al., 1991; Polizzi and Clarke 1991) (Fig. 13). In contrast to the point centromere of 

budding yeast, the centromere of fission yeast is called a regional centromere, which has 

a relatively big size and multiple microtubule attachment sites. Most importantly, the 

regional centromere has no specific conserved DNA sequence to determine centromere 

localization. 

Regional centromeres can also be found in mammalian cells. The human centromere is 

quite large; it contains 171-bp tandem repeats, the so-called α-satellite DNA which are 

up to 5 Mb long. α-satellite DNA contains a 17-bp sequence element called CENP-B box, 

which is recognized by centromeric protein B (Earnshaw and Rothfield, 1985; Valdivia 

and Brinkley, 1985). Interestingly, the α-satellite and the CENP-B protein are both not 

necessary to form a functional centromere. Similar to the human centromere, the 

mouse centromere consists of a 120-bp tandem repeat, the minor satellite DNA (Wong 

and Rattner, 1988). A comparison of yeast and human centromere is shown in figure 13. 

 

 

Fig. 13 Centromere features in different species. While budding yeast has a point centromere with a single CENP-A 

nucleosome, fission yeast and human have regional centromeres with larger size. Mammalian centromeres also 

contain certain histone variants and histone modification marks. (Based on Verdaasdonk and Bloom, 2011). 

 

1.3.2 Specific histones at centromeres 

The centromere structure and size vary between different eukaryotic species. However, 

all functional centromeres contain a centromere-specific histone H3 variant, CENP-A. 

CENP-A was first identified parallel with two other centromere proteins, CENP-B and 

CENP-C (Earnshaw and Rothfield, 1985). It was co-purified with core histones and also 
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with nucleosome particles, suggesting being a histone variant, which substitutes 

canonical histones at centromeres (Palmer et al., 1987). Protein and DNA sequence 

analyses demonstrated high sequence similarities between CENP-A and histone H3 

(Palmer et al., 1991; Sullivan et al., 1994). Furthermore, it was shown that the C-

terminus of CENP-A is homologous to H3, and that this C-terminal part is responsible for 

its tetramer formation with histone H4 (Sullivan et al., 1994; Shelby et al., 1997; Black et 

al., 2004). The C-terminal CENP-A centromere-targeting domain (CATD) is required for 

CENP-A centromere targeting and function (Black et al., 2004; Black et al., 2007; Guse et 

al., 2011). 

The CENP-A nucleosome is also unique. In budding yeast, the centromeric DNA 

sequences are quite short, with only about 125 base-pair length. This short centromeric 

DNA together with histones forms one centromeric nucleosome which contains CENP-A 

(also called Cse4). This single CENP-A containing nucleosome is responsible for the 

kinetochore formation and microtubule binding (Furuyama and Biggins, 2007; 

Krassovsky et al., 2011). The composition of this CENP-A containing nucleosome is 

similar to the canonical nucleosome, except for the substitution of the canonical histone 

H3 with CENP-A (Westmann et al., 2003). In addition, recent publications demonstrated 

that H2A/H2B dimers at the centromere in yeast are substituted by the non-histone 

protein Scm3 (Camahort et al., 2007; Mizuguchi et al., 2007; Stoler et al., 2007). Scm3 

dimerizes and binds to the CENP-A-H4 tetramer, forming a hexamer (Mizuguchi et al., 

2007). Scm3 replaces the function of H2A/H2B at centomere, and it also is important for 

CENP-A incorporation and cell cycle progression (Camahort et al., 2007; Stoler et al., 

2007). 

The differences between the CENP-A nucleosome and the canonical H3 nucleosome 

were studied. In vitro studies of the human CENP-A nucleosome showed that it is not as 

stable as the canonical H3 nucleosome (Conde e Silva et al., 2007), which may facilitate 

the removal of mis-incorporated CENP-A from the non-centromeric chromatin. But there 

were also opposite opinions, the crystal structure of the human CENP-A nucleosome 

showed that the CENP-A nucleosome has two extra amino acid residues in the loop 1 

region, which may stabilize the CENP-A nucleosome (Tachiwana et al., 2011). 

Although there are lots of studies about the CENP-A nucleosome, the structure of CENP-

A nucleosome is still unclear. Till now, two different structures of CENP-A nucleosome in 

mammalian cell have been published. The first structure shows that it contains an 

octameric histone core consisting of two histone tetramers (H2A, H2B, H4 and CENP-A), 

wrapped by DNA in a left-handed orientation (Tachiwana et al., 2011). The second 

structure shows that it contains only one heterotypic tetramer composed by each of the 

histone, and the DNA is wrapped around in a right-handed way. The CENP-A nucleosome 

is shown more condensed than canonical nucleosomes, and the DNA at the entry/exit 

sites is less constrained (Panchenko et al., 2011). This different observation on the 
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structures of CENP-A nucleosomes is controversial, suggesting a dynamical structure of 

CENP-A nucleosome and some complexity of CENP-A nucleosome organization. 

1.3.3 Epigenetic features of the centromere 

1.3.3.1 DNA methylation at the centromere 

DNA methylation is an epigenetic repressive mark, which plays important roles in 

processes like gene silencing and is essential for chromatin structure and genome 

stability (Lorincz et al., 2004; Thomson et al., 2010; Rizwana and Hahn, 1999).  

Methylation of centromeric DNA was observed in plant (Luo and Preuss, 2003), but 

hypomethylation of DNA at active centromeres were shown in Arabidopsis and maize 

(Zhang et al., 2008; Koo et al., 2011), with yet unknown function. 

The functional role of centromeric DNA methylation is still unclear. However, it was 

shown that the centromere mitotic recombination in murine cells was regulated by the 

epigenetic state of the centromeric heterochromatin, especially by DNA methylation 

(Jaco et al., 2008). The importance of proper regulation is demonstrated in a human 

genetic disease called Immunodeficiency, Centromeric region instability, Facial 

anomalies (ICF) syndrome. This disease is characterized by genome instability caused by 

DNMT3b gene deficiency (Xu et al., 1999; Hansen et al., 1999). DNMT3b is one of the 

two active de novo methyltransferases. In ICF patient cells, the DNA methylation of 

satellite 2 DNA on chromosome 1 and on chromosome 16, satellite 3 DNA on 

chromosome 9, are lost due to DNMT3b deficiency (Jeanpierre et al., 1993; Tuck-Muller 

et al., 2000). These unmethylated satellites lead to de-condensation of the centromere 

regions resulting in instability of the genome. CENP-C was found to interact with and to 

recruit Dnmt3b to centromere regions to methylate centromeric DNA (Gopalakrishnan 

et al., 2009). 

1.3.3.2 Histone variants and modifications at the centromere 

In addition to DNA methylation, histone modifications are important epigenetic 

modifications in eukaryotes. Histone tails can be targeted by several post-translational 

modifications such as methylation, acetylation, phosphorylation and ubiquitination at 

specific amino acid residues such as lysine, arginine and serine (Kuo et al., 1996; 

Grunstein, 1997; Mahadevan et al., 1991; reviewed by Suganuma and Workman, 2011). 

These histone modification marks can be recognized by specific ‘reader’ proteins to keep 

the chromatin in a condensed or open state. Until now, the only known post-

translational modification of CENP-A is the phosphorylation of serine 7 catalyzed by 

Aurora A and B (Zeitlin et al., 2001; Kunitoku et al., 2003). This modification occurs at 

prophase and is required for proper localization of Aurora B at the inner kinetochore in 

prometaphase, and loss of this modification led to defects of kinetochore attachment to 

microtubules (Zeitlin et al., 2001; Kunitoku et al., 2003; Slattery et al., 2008). 



INTRODUCTION 

24 
 

In mammals, blocks of CENP-A nucleosomes and H3 nucleosomes are arranged in an 

alternating pattern at the centromeric region. The centromeric H3 nucleosome is also 

characterized by special histone modifications. H3 threonine 3 phosphorylation (H3T3ph) 

at the centromere catalyzed by Haspin was shown to be necessary for the accumulation 

of the Aurora B containing chromosomal passenger complex (CPC) (Wang et al., 2010). 

In addition, H2A serine 121 phosphorylation (H2AS121ph) catalyzed by Bub1 together 

with the H3T3ph modification target CPC to the kinetochore (Yamagishi et al., 2010). In 

contrast to pericentric heterochromatin, featuring high levels of histone H3 lysine 9 tri-

methylation (H3K9me3), centromeric chromatin lacks this modification, but contains di-

methylation of H3 at lysine 4 (H3K4me2) and di-methylation of H3 at lysine 36 

(H3K36me2), which both are usually associated with open chromatin (Sullivian et al., 

2004; Bergmann et al., 2011).  

Another H2A histone variant, H2A.Z is reported to exist in the centromeric nucleosome 

(Greaves et al., 2007). H2A.Z-containing nucleosomes harbor an acidic region, which is 

important for interacting with non-histone proteins and can be recognized by chromatin 

remodelers (Suto et al., 2000). Since H2A.Z also serves as a boundary between 

heterochromatin and euchromatin to prevent heterochromatin spreading, H2A.Z was 

proposed to contribute to the higher order organization of centromeric chromatin (Park 

et al., 2004; Greaves et al., 2007).  

As discussed above, the centromeric chromatin is characterized by these special histone 

modifications and histone variants, in difference from both typical heterochromatin and 

euchromatin. These unique modifications may differentiate centromeric chromatin from 

the pericentric heterochromatin to facilitate the integration of CENP-A. This idea is 

supported by some quite recent studies. Bergmann et al found that artificial over-

acetylation at centromeric H3K9 resulted in an over-expression of the centromeric 

transcripts, and blocked the incorporation of CENP-A (Bergmann et al., 2012). Another 

study found that histone acetylation and methylation positively and negatively control 

the CENP-A incorporation at ectopic chromatin site respectively, and the balance 

between the acetylation and methylation of H3K9 at centromeric chromatin is important 

for the proper CENP-A deposition (Ohzeki et al., 2012). In addition, it was shown that in 

budding yeast, the arginine 37 of CENP-A can be methylated. This methylation regulates 

kinetochore integrity and chromosome segregation (Samel et al., 2012). All these studies 

suggest that the epigenetic state of centromeric chromatin contributes to the proper 

function of centromeres. 

1.3.4 CENP-A deposition at centromeres 

CENP-A specifically localizes at the active centromere and is the main determinant of 

centromere localization. For its important role in centromere maintenance, CENP-A 

must be incorporated into centromeric chromatin after DNA replication to keep its 
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abundance at centromeres. So how newly synthesized CENP-A incorporates into 

centromeric DNA is a vital question to understand centromere maintenance. 

1.3.4.1 Timing of CENP-A incorporation 

The first question about CENP-A incorporation is when it does happen during the cell 

cycle. To maintain the genetic stability, CENP-A must be incorporated into newly 

synthesized centromeric DNA after DNA replication. In budding yeast, newly synthesized 

CENP-A incorporates into the chromatin during S phase, while DNA is replicated 

(Pearson et al., 2004). In contrast, in fission yeast, the incorporation occurs during S 

phase at which time the CENP-A expression level is at its peak, and further incorporates 

during the G2 phase of the cell cycle (Dunleavy et al., 2007; Takayama et al., 2008). In 

human cells, CENP-A incorporation is uncoupled from DNA replication since the CENP-A 

expression level is quite low at this time, and the expression level increases and peaks in 

G2 phase (Shelby et al., 2000).  However, new CENP-A incorporation happens during 

telophase and G1 phase rather than in G2 phase (Hemmerich et al., 2008; Jansen et al., 

2007). So the time point of CENP-A incorporation varies in different species. Interestingly, 

in human cells, the incorporation of CENP-A is gapped by mitosis, indicating that the 

level of CENP-A nucleosomes in mitosis is not at its peak, the function of this gap has to 

be further studied. 

1.3.4.2 The role of histone chaperons in CENP-A incorporation 

It is known that the other two H3 variants, H3.1 and H3.3, are deposited by the histone 

chaperones, CAF1 (chromatin assembly factor 1) and HIRA (HIR histone cell cycle 

regulation defective homolog A) respectively. These two chaperones may also play a role 

in CENP-A deposition in yeast but not in human (Walfridsson et al., 2005; Foltz et al., 

2006; Dunleavy et al., 2009; Foltz et al., 2009). Affinity purifications followed by mass 

spectrometry experiments identified the Holliday junction recognition protein (HJURP) 

as an interaction partner of soluble CENP-A (Dunleavy et al., 2009; Foltz et al., 2009). 

HJURP localizes at the centromere in G1 phase during CENP-A loading, suggesting a role 

in the CENP-A deposition. Additionally, knockdown of HJURP using siRNA led to a 

reduced protein level of CENP-A at the centromere (Foltz et al., 2009). A later study 

showed that HJURP directly interacts with the CATD domain of CENP-A via its N-terminal 

TLTY box (Shuaib et al., 2010). Additionally, Xiao et al found that HJURP efficiently 

promotes in vitro reconstitution of CENP-A nucleosomes (Xiao et al., 2011).These studies 

identified HJURP as the chaperone of CENP-A and showed that it plays an important role 

in CENP-A deposition. 

1.3.4.3 Three-step model for CENP-A chromatin establishment 

CENP-A incorporation is divided into several steps including priming, uploading and 

maintenance. During the priming step, CENP-A is licensed to incorporate into 

centromeric nucleosomes. The uploading step occurs at early G1 phase, when newly 
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synthesized CENP-A is further incorporated into centromeric chromatin mediated by 

HJURP. Chromatin remodelers such as FACT (P140/P80) are also involved in this process 

(Foltz et al., 2006; Izuta et al., 2006, Perpelescu et al., 2009). After CENP-A is deposited 

into chromatin, CENP-A nucleosomes are stabilized and retained only at centromeres, 

avoiding loss or overspreading by the maintenance factors. ATP-dependent nucleosome 

remodeling, the spacing factor complex (RSF) and MgcRacGAP were shown to 

participate in the maintenance step (Perpelescu et al., 2009; Lagana et al., 2010). 

The most important protein complex during the priming step is the Mis18 complex. The 

Mis18 complex is composed of Mis18α, Mis18β and M18bp1 (mammalian homolog of C. 

elegance KNL2). This complex is shown to localize at the kinetochore in telophase and 

G1 phase, and knock down of the complex abolishes the recruitment of newly 

synthesized CENP-A to the centromere. However, no direct protein interaction between 

CENP-A and the Mis18 complex was detected so far (Carroll et al., 2009). Although the 

Mis18 complex is suggested to be involved in the histone acetylation regulation, the 

mechanism how the complex mediates CENP-A priming is still not clear. 
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1.4 The kinetochore structure and CCAN (Constant Centromere 

Associated Network) 

1.4.1 The kinetochore structure 

The kinetochore is a multi-protein complex, which assembles at centromeres in mitosis. 

It connects the chromosome and the mitotic spindle to ensure accurate chromosome 

segregation. In vertebrates, only one functional kinetochore on each single chromosome 

is found in normal condition. Abnormal kinetochore assembly (e.g. on non-centromeric 

or di-centromeric chromosomes) results in genome instability, leading to cell death or 

cancer formation. So it is quite important to elucidate the kinetochore structure and also 

the mechanism of kinetochore assembly. The regulation of the kinetochore formation is 

essential to maintain genomic stability of the cells. 

Early studies by electron microscopy showed that the kinetochore has a three-layer 

structure, with an electron-dense inner plate and an outer plate separated by an 

electron-light layer. Based on these electron microscopy studies, a model of kinetochore 

is shown in Fig. 14. 

In the last two decades many proteins forming this three-layer structure were identified 

using different biochemical approaches. CENP-A, CENP-B and CENP-C were first 

characterized using sera from autoimmune disease CREST patient in 1980s (Earnshaw 

and Rothfield, 1985). Next, CENP-H and CENP-I were found to be localized at the 

centromere constitutively in all cell cycle phases (Sugata et al., 1999; Nishihashi et al., 

2002). Later, using pull-down assay, the interphase centromere (ICEN) complex, which 

contains about 40 proteins, was identified to associate with CENP-A nucleosomes in 

HeLa cells (Obuse et al., 2004). In 2006, more proteins which associate with centromere 

were identified by three independent research groups in human and chicken cells, and 

these proteins were named from CENP-K to CENP-U (Foltz et al., 2006; Izuta et al., 2006; 

Okada et al., 2006). Two years later, CENP-W (Hori et al., 2008b) and CENP-X were 

characterized as interaction partner of CENP-T and CENP-S, respectively (Amano et al., 

2009). 

These proteomics studies identified many new proteins locating at the kinetochore, 

some of which are not centromere proteins, such as SMARC5 (components of chromatin 

remodeling complex), BMI1 (member of polycomb complex), DDB1 and Cul4A (E3-liagse 

complex member) (Obuse et al., 2004). These non-centromeric proteins are present at 

the centromere only for a short time during the cell cycle. 

Among all the proteins associating with the centromere, some ‘core’ proteins localize at 

the centromere during the whole cell cycle and were identified by different groups using 

different methods. This group of proteins together was termed constitutive centromere 

associated network, CCAN (Cheeseman and Desai, 2008; Hori et al., 2008a, b). Another 

group of proteins, composed of KNL1, Mis12 complex, Ndc80 complex, were termed 
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KMN network, which connects the CCAN with the mitotic spindle (Cheeseman et al., 

2006) (Fig 14). 

 

 

Fig. 14 Model of the kinetochore structure. Upper model shows the tri-layer structure of the kinetochore based on EM studies. The 

kinetochore connects the chromosome (blue) with microtubules (dark green). The inner kinetochore is composed of CCAN proteins, 

including five groups of CENPs. The outer kinetochore includes three groups of proteins, the so-called KMN network. (Modified from 

Perpelescu and Fukugawa, 2011). 

1.4.2 Constant centromere associated network 

Besides CENP-A, 15 other CENPs were identified as CCAN components. Until today, little 

is known about the function and organization of these CCANs. Based on differences 

identified by biochemical and genetic analyses, these proteins are divided into several 

subgroups. 

1.4.2.1 CENP-A/B/C 

CENP-A, B, C were identified using chromatin IP (ChIP), and they were proposed to form 

a pre-kinetochore in human cells (Ando et al., 2002). CENP-B contains a domain which is 

similar to the transposase of pogo transposable element.  As a transposon-derived 

protein, the function of CENP-B in kinetochore formation is not clear. Human CENP-B 

binds to α-satellite DNA which contains a 17 bp CENP-B box sequences. However, cenp-b 
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knockout mice are viable and do not show mitotic or meiotic defects or any other severe 

phenotype (Hudson et al, 1998; Perez-Castro et al., 1998; Fowler et al., 2000). In yeast, 

there are three homologs of the cenp-b gene, which are involved in promoting 

retrotransposon DNA replication (Zaratiegui et al., 2011) and in the regulation of DNA 

recombination (Matsuda et al., 2011). 

CENP-C shows DNA binding activity and it binds to centromeric chromatin. It co-

immunoprecipitates with histone H3 nucleosomes but does not directly bind to CENP-A 

containing nucleosomes (Ando et al., 2002; Hori et al., 2008a). The α-satellite transcript 

may also play a role in CENP-C kinetochore binding (Chan et al., 2012).  Its N terminal 

part is shown to be important for targeting proteins such as CENP-K, CENP-E, Mad2 and 

Mis12 complex (Kwon et al., 2007; Liu et al., 2006; Milks et al., 2009). And its C-terminus 

contains a motif responsible for its dimerization. Being considered as the platform of 

kinetochore assembly, CENP-C interacts with Nnf1 and Nsl1. These two proteins are 

components of Mis12 complex which is a part of the outer kinetochore. Besides Mis12 

complex components, CENP-C also forms a complex with kinetochore protein KNL-1 and 

Ndc80 (Screpanti et al., 2011; Przewloka et al., 2011). Inhibition of its function results in 

defects in centromere and kinetochore assembly (Saitoh et al., 1992; Brown et al., 1993; 

Tomkiel et al., 1994; Fukagawa and Brow, 1997; Fukagawa et al., 1999; Kown et al., 

2007). 

1.4.2.2 CENP-H/I/K 

CENP-H was identified as centromeric protein because it colocalizes with CENP-B and 

CENP-C throughout the cell cycle (Sugata et al., 1999; 2000). CENP-H is required for 

kinetochore localization of most CCAN proteins but not for CENP-A (Fukugawa et al., 

2001; Okada et al., 2006; Kwon et al., 2007). Moreover, its centromeric localization 

depends on CENP-A, CENP-I, CENP-K, CENP-M, CENP-N and CENP-T (Okada et al., 2006; 

Cheeseman et al., 2008; Foltz et al., 2006; Hori et al., 2008b). 

CENP-I is a binding partner of CENP-H, and its conditional loss-of-function mutant results 

in prolonged prometaphase and misregulated cytokinesis in chicken DT-40 cells 

(Nishihashi et al., 2002). Additionally, CENP-I is required for the recruitment of CENP-F, 

Mad1 and Mad2 to the kinetochore, and its depletion lead to cell cycle arrest in G2 

phase in HeLa cells (Liu et al., 2003). CENP-I and CENP-H are important for CENP-A 

deposition at centromere since CENP-A deposition is reduced in CENP-H, -I or -K 

deficient cells   (Okada et al., 2006). CENP-K is required for CENP-Q, CENP-H and KNL-1 

kinetochore localization, and also acts together with KNL-1 to recruit Ndc80 to the 

kinetochore (Cheeseman et al., 2008). 

1.4.2.3 CENP-L/M/N 

CENP-L/M/N was co-purified with CENP-H/I/K, and their kinetochore localization is inter- 
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dependent. In addition, the knockdown of any of these three proteins results in strong 

mitotic defects (Okada et al., 2006). 

siRNA- mediated knockdown of CENP-L induced monopolar spindles in mitotic cells 

(McClelland et al., 2007). CENP-L interacts with CENP-N in vitro (Caroll et al., 2009), but 

its function has to be studied further. 

CENP-M was first identified as ICEN39 (Foltz et al., 2006), and also was identified as a 

NAC (CENP-A nucleosome associated complex) protein (Izuta et al., 2006). CENP-M is 

required for the localization of several CENPs at the kinetochore, including CENP-H class 

and CENP-O class proteins. Knockout of CENP-M lead to mitotic error and aneuploidy 

(Foltz et al., 2006; Izuta et al., 2006; Okada et al., 2006). In vitro experiments showed 

that CENP-N interacts directly with CENP-A nucleosome via its N-terminal part, while the 

C-terminus is responsible for its interaction with other CENPs such as CENP-H, CENP-K 

and CENP-L (Carroll et al., 2009). 

1.4.2.4 CENP-O/P/Q/U/R 

CENP-O class proteins form a complex and knockouts of this class of genes are viable but 

are characterized by slow proliferation and mitotic defects. The kinetochore localization 

of CENP-O, -P, -Q, -U is interdependent, but CENP-R is not required for the centromeric 

localization of the other members. And when expressed in E. coli, the CENP-O class 

proteins were purified as a complex, suggesting CENP-O, -P, -Q, and -U form a tight 

complex (Hori et al., 2008b).  

CENP-U is the most studied protein in this group. CENP-U knockout cells are viable, but it 

is required for spindle function (Foltz et al., 2006; Hori et al., 2008b). It was shown that 

CENP-U is a microtubule binding protein and plays an important role in kinetochore-

microtubule attachment (Hua et al., 2011).  

1.4.2.5 CENP-S/X/T/W 

CENP-T and CENP-W interact with each other to form a tight complex. In parallel with 

CENP-C group proteins, the localization of CENP-T/W group proteins at the kinetochore 

is independent of other CENP group proteins.  CENP-T has a C-terminal histone fold 

domain (HFD), which was suggested to have DNA binding activity (Hori et al., 2008; 

Suzuki et al., 2011). CENP-W is a small protein with only 88 amino acids residues folding 

into a HFD structure. CENP-T interacts with CENP-W via its HFD domain. The long N-

terminal tail of CENP-T binds to the outer kinetochore component Ndc80 and induces 

kinetochore- like structures (Gascoigne et al., 2011), suggesting a model that the C-

terminus of CENP-T together with CENP-W forms a complex which could bind DNA. The 

N-terminus of CENP-T binds to outer kinetochore Ndc80 connecting the centromeric 

chromatin and outer kinetochore. CENP-T/W proteins are further proposed to have a 

role in kinetochore determination (Prendergast et al., 2011). 
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CENP-W was also reported to be an RNA-associated nuclear matrix protein, which 

interacts with and stabilize B23 (Chun et al., 2011). CENP-S was identified as interaction 

partner of CENP-M and CENP-U (Foltz et al., 2006). CENP-X was identified by CENP-S 

pull-down followed by mass spectrometric analysis (Amano et al., 2009). Both CENP-S 

and CENP-X deficient cells are viable, but show defects in mitotic progression. CENP-S 

and CENP-X are necessary targeting proteins such as KNL1 and Ndc80 to the outer 

kinetochore. Interestingly, like CENP-T and CENP-W, CENP-S and CENP-X also have 

potential histone-fold domains. And there is evidence that CENP-S interacts with CENP-T 

(Amano et al., 2009), indicating a connection between the two groups of proteins. 
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1.5 Aims of this work 

Protein-protein interactions are important targets for drug design. A variety of methods 

for protein-protein interaction inhibitor screening were developed. But these methods 

all have their own limits such as incapability to assess the membrane permeability of the 

drugs or low sensitivity. To establish a new in vivo drug screening method, I aimed to 

develop the F3H assay into a protein-protein inhibitor screening assay, which could 

visualize the release of interacting proteins from the interaction complex, giving a 

reliable assessment of the inhibitory effect of the drug in living cells. To improve the 

efficiency of this assay, I also aimed to develop this assay into a 96-well format (Chapter 

2.1), hoping to develop a new way for protein-protein interaction inhibitor screening. 

During the last two decades, good progress has been made towards a better 

understanding of the kinetochore structure and the mechanism of centromere 

maintenance. Although many proteins involved in kinetochore assembly were identified, 

how these proteins cooperate and assemble into kinetochores remains elusive. 

Therefore, in this thesis, I aimed to elucidate the assembly of CCAN proteins into the 

kinetochore and the potential role of CCAN proteins in CENP-A incorporation by using 

our F3H Assay, this new in vivo protein interaction study method. 

First, I aimed to elucidate how M18bp1 is recruited to the centromere. As a member of 

the Mis18 complex, M18bp1 is a key protein involving in control of CENP-A 

incorporation. Although it is revealed that the centromeric localization of M18bp1 

occurs just before CENP-A incorporation, nothing is known about how it is recruited to 

the centromere. To elucidate the potential role of CCAN proteins in the centromeric 

recruitment of M18bp1, I planned to immobilize M18bp1 at an artificial chromosomal 

focus, to screen the potential interacting centromere proteins by F3H assay. siRNA-

mediating knock-down experiments could be performed to further reveal the roles of 

the interaction in CENP-A incorporation (Chapter 2.2). 

CCANs are a serial of proteins that form the inner kinetochore. Although these CCANs 

are divided into different groups according to their similarities and dependencies in 

kinetochore assembly, it is largely unknown how these CCAN proteins assemble into the 

kinetochore. I aimed to systematically study the interactions between the 16 CCAN 

proteins (unpublished data) to reveal the organization of CCAN in the kinetochore. I 

specially focused on one sub-group of the CCAN, CENP-P/O/R/Q/U. The existing model 

suggested that the CENP-P/O/R/Q/U group proteins pre-assemble into one unit, and 

then this pre-assembled sub-complex is packaged into the kinetochore as a whole unit. I 

aimed to test this hypothesis by analyzing the interactions of the five members in this 

sub-group with the F3H assay (Chapter 2.3). 

Moreover, since the F3H assay is a versatile tool to study protein interactions in vivo, I 

also tried to apply this technology to study the interactions between human proteins 

and virus proteins, to better understand the function of huRNP K in EBV infection 

(Chapter 2.4).   
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2. Results  

 

 

 

 

 

 

 

 

 

 

 

 
2.1 Visualization and Targeted Disruption of Protein 

Interactions in Living Cells  
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G
reat effort has been invested in the development of
methods to identify protein interactions and screen for
drugs that target specific protein–protein interactions.

Although several useful in vitro methods have been developed,
most of these assays disregard the innate complexity of living
cells. In a live cell, protein–protein interactions are subjected to
many influences such as subcellular localization, competitive
interaction with other cellular factors and post-translational
modifications. Drugs are usually screened in vitro in a very
controlled and artificial environment. However, to work in vivo,
the drugs must cross the cell plasma membrane and then reach
their target protein in the respective subcellular compartments.
Furthermore, the drug should also have enough specificity to
compete and interact exclusively with its target minimizing its
potential interaction with thousands of other intracellular
compounds.

The most used method to study protein–protein interactions in
cells is the yeast two-hybrid system (Y2H) (ref. 1). This method
has a clear advantage over classical in vitro biochemical approaches
such as co-(immuno)precipitation and co-purification analyses, as
it embodies an in vivo technique using the yeast host cell as a live
test tube. The Y2H is based on the activation of the expression of a
downstream reporter gene mediated by the binding between two
proteins of interest. Ultimately, this gene expression drives a
change in yeast cell’s phenotype that can be indirectly linked back
to the interaction between the proteins under study. This method
has been widely used because of its high-throughput screening
capability and powerful ability to identify unknown protein-
binding partners. A natural obstacle is that the two-hybrid system
makes use of the yeast Sacharomyces cerevisiae as a host and uses a
specific reporter gene. This imposes limitations upon interactions
specific to mammalian pathways that do not occur in yeast and/or
do not take place in the (yeast) cell nucleus. Furthermore, it relies
on activation of gene expression and, as a consequence, cannot be
used with proteins that are self-activating by themselves. Several
fluorescent techniques such as FRET/FLIM have been developed
during the last years as alternatives to study protein–protein
interactions2,3. These methods require specialized equipment,
special fluorophore combinations, specific acquisition software
tools and/or complex post acquisition data analysis.

Here we propose a simple and general method that can be
applied and adapted to study protein interactions in any species,
cell type and intracellular compartment. A major advantage is
that this technology does not depend on the activation of any
specific reporter gene and the interaction between proteins can be
studied in real time at any location within a live cell. This strategy
is based on a high-affinity anti-GFP nanobody. This anti-GFP
nanobody was screened and optimized to reach an affinity to GFP
in the subnanoMolar range4. The basic rationale of the method is
shown in Fig. 1a. A protein with high affinity to GFP (GFP-
binding nanobody), which we call GFP binder protein (GBP), is
covalently linked to a protein that accumulates at a specific
location within the cell. We call these fusions between GBP and a
localization protein (LP) GBP–LP. In this way, a GFP-labelled
protein is artificially recruited to a specific location. Using a
different fluorescent label for the second protein of interest then
allows easy detection and measurement of the interaction
between the two proteins (hence fluorescence three-hybrid
assay—F3H). A convenient aspect of this method is that, after
the GBP–LP plasmid is constructed, the same intracellular
location determined by the LP can be used to study the
interaction between any numbers of proteins where one of them
is labelled with GFP.

To establish and validate the basis of this strategy, we focused
on the binding and disruption of p53 and HDM2 (human double
minute 2) as this is one of the most important protein
interactions in cancer research. The tumour suppressor p53, also
named the ‘guardian of the genome’, is the main mediator of
apoptosis, cell cycle arrest and senescence in response to a broad
range of DNA damages and other cellular stresses (Fig. 1b).
Depending on the stress signal, p53 gets modified and activated
by upstream mediators that lead p53 to activate diverse genes and
response pathways. The induction of high levels of p53 prevents
inappropriate propagation of mutant cells. The intracellular p53
level is the single most important determinant of its function and
HDM2 is the principal cellular antagonist of p53, blocking its
tumour suppressor function by binding to its transcription
activation domain. The two proteins bind to each other as part of
a negative autoregulatory loop aimed to keep low p53 levels in the
absence of stress. HDM2 blocks p53 by binding to its
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Figure 1 | Strategy for visualizing protein interactions in living cells and outline of a fundamental biological application. (a) Schematic representation

of the fluorescence three-hybrid (F3H) to study protein–protein interactions. A GFP binder protein (GBP) is attached to a protein (LP) that accumulates

at a well-defined location within the cell. This complex recruits to that particular location GFP-tagged proteins (GFP-P1). If the protein P1 interacts

with a second protein P2, labelled with a different fluorescent marker, the interaction can be immediately visualized using fluorescent microscopy.

(b) Schematic representation of the interaction between p53 and HDM2/X and its central role in cellular regulation and genome preservation.
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transcription domain and reduces its levels acting as an E3
ubiquitin ligase polyubiquitinating p53 and targeting it for
degradation5,6. In all cancers, the functions of p53 are limited
allowing these cells to evade apoptosis and cell growth arrest7.
About half of all cancers retain wild-type fully functional p53
(ref. 8) and in these the normal regulation of p53 is in many cases
disrupted through direct overexpression of HDM29. Over-
expression of HDM2 provides a growth advantage to cells,
promotes tumorigenesis and correlates with very poor response to
cancer therapy and consequently bad prognosis9–12. Simultaneous
mutation of p53 and amplification of HDM2 does not generally
occur within the same tumour, suggesting that HDM2
amplification is an effective way to block p53 function9,13,14.

We present a simple visualization method for immediate
recognition of protein–protein interactions, which represents a
first step in capturing the kinetics of protein–protein interaction
and for high-throughput methods. These types of studies are
central to expand our mechanistic understanding of drug
function in vivo.

Results
Visualizing and quantifying interactions in live cells. The F3H
assay offers the opportunity to determine whether the proteins
are interacting from a single-fluorescence snapshot as shown in
Fig. 2. To visualize the interaction between p53 and HDM2, we
coupled the GBP to the Lac repressor (LacI). In cell lines where an
array composed of Lac operator DNA sequence repeats has been
stably integrated in the genome, such as in baby hamster kidney
(BHK) cells15, the GBP–LacI binds to the Lac operator array
(LacO). This recruits GFP-labelled proteins to the LacO region
within the nucleus. If a second protein labelled with a different
fluorescent molecule interacts with the GFP-labelled protein, then
it will also display an accumulation at the LacO region. As shown
in Fig. 2 without tethering to a particular location the difference
in correlation between images (a) and (b) is very weak and the
interaction or lack thereof would be difficult to score. Using the
GBP–LacI sharply enhances the correlation contrast between
interacting and non-interacting proteins. This can be used to
determine in single snapshots the interaction between proteins of
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Figure 2 | Targeted recruitment of GFP-tagged proteins allows visualization and quantification of protein–protein interactions in live cells.

Re-localization of GFP-tagged proteins (tethered; immobilized; recruited) to the Lac operator using the GBP–LacI. Confocal microscopy images of non-

interacting GFP and mCherry are shown and interacting GFP–p53 (pNeG-p53(NTD)) and mCh–HDM2 (pCAG-Ch-HDM2(NTD)) proteins in live

cells co-transfected with and without the GBP–LacI. In the first row, a schematic representation of the transfected constructs and the respective protein

distribution is shown, in the second row, a confocal image of the GFP-tagged protein, in the third row, an image of the mCherry-tagged protein, in the

fourth row, the overlay of the two previous channels and in the last row, the derivative of the Pearson’s correlation coefficient between the GFP image

and the mCherry image along the dotted line drawn in the confocal images. In columns (a–d) representative images of cells transiently transfected

with the constructs indicated in the respective schemes above are shown. Scale bar, 5 mm.
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interest. This fast and efficient visualization strategy allows fol-
lowing in real time the dynamics of intracellular processes and
the effects of inhibitors.

Inhibition kinetics of p53–HDM2 binding induced by Nutlin
3. The realization that HDM2 is the master regulator of p53 has
triggered the idea of developing an inhibitor for this interaction.
From a broader perspective, this is one of the first examples in
which it has been clearly shown that protein–protein interactions
can be efficiently disrupted by small molecule inhibitors. It was
long believed that protein–protein interactions could not be
effectively inhibited with small molecules because of the large and
poor definition of protein interfaces16. This view has recently
changed and targeting the interaction between HDM2 and p53
using small molecular compounds in tumour cells has become a
primary therapeutic strategy. Consequently, a large number of
small chemical compounds are currently being screened and
engineered. Among them, the Nutlins17 are the most studied. The
Nutlins are the first examples of potent and specific inhibitors of
the HDM2–p53 interaction and one of them, Nutlin 3, has been
extensively evaluated for its therapeutic potential and mechanism
of action in human cancer.

A key advantage of the method proposed here is that it allows
in live cells an immediate determination of the interaction
between any pair of proteins in which one of them is labelled with
GFP. This means that with a single-fluorescence snapshot at a
given time point it makes it possible to determine the interaction
relative to a previous time point. This allows resolving fast
kinetics in live cells such as the inhibition of these interactions
after treatment with a given drug.

To test this approach, we measured in live cells the disruption
kinetics of the p53 and HDM2 interaction upon treatment with
Nutlin 3 (Fig. 3, Supplementary Fig. S1). BHK cells (containing a
stably integrated LacO DNA array) were transiently transfected
with constructs coding for GBP–LacI, GFP–p53 and mCh–
HDM2. GFP–p53 gets bound to the LacO array by its interaction
with GBP–LacI. Before the treatment with Nutlin 3, HDM2
labelled with mCherry is also recruited to the LacO by its
interaction with p53. No unspecific binding of p53, HDM2, GFP
or mCherry to the LacO was detected (Supplementary Fig. S2).
Figure 3a shows a cartoon representation of the interactions and
signals before and after the treatment with Nutlin 3. Figure 3b
shows the fluorescent images of the cells for each protein at
different concentrations of Nutlin 3 and different time points. In
Fig. 3c, the intensity ratio of mCh–HDM2 at the LacO after the
treatment with Nutlin 3 is plotted relative to its intensity before
the drug treatment. We observed that the time scale of the
disruption is within seconds after treatment with Nutlin 3. This
disruption can be partial at concentrations below 10mM and is
almost complete at 10mM. As mentioned previously, it was
already surprising a few years ago that small molecules can disrupt
the binding of proteins. We can now in addition directly measure
the fast disruption kinetics of these interactions in live mammalian
cells. Furthermore, with this assay we obtained accurate and
reproducible results over a broad range of expression ratios as
shown in the automated analysis in Supplementary Fig. S3.

High-throughput analysis of interaction disruption by drugs. A
clear visualization technology for these interactions can be used to
develop efficient methods for high-throughput screening.
Therefore, in Supplementary Fig. S4 we outline this idea com-
paring Nutlin 3 with other well-studied chemical compounds. In
particular, we compared the effect of three drugs, RITA, Nutlin 3
and Mi 63. Using Nutlin 3 as reference and DMSO as a control,
we observed that Mi 63 displays a stronger inhibition than Nutlin
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Figure 3 | Visualization of targeted disruption of protein interactions in

live cells. BHK cells containing a stably integrated LacO array were

transiently transfected with pNeG-p53(NTD), pCAG-Ch-HDM2(NTD) and

GBP–LacI. In (a) is shown a schematic representation of the re-localization

of the GFP–p53 to the LacO array, its interaction with mCh–HDM2 and the

disruption of this interaction mediated by Nutlin 3. (b) Live cell confocal

microscopy images showing the disruption kinetics of the interaction

between HDM2 and p53 mediated by Nutlin 3 at 0 (DMSO, control), 2, 5

and 10 mM. (c) Time lapse quantification of the relative binding of p53 to

HDM2. Higher concentrations of Nutlin 3 resulted in faster disruption

of the interaction between the proteins. In Supplementary Fig. S1 are shown

the kinetic traces, the mean and the s.e. of the interaction disruption

mediated by Nutlin 3 at 5 mM obtained from five repetitions showing the

reproducibility of the individual traces. Scale bar, 5 mm.
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3, while RITA does not disrupt the p53–HDM2 interaction. It has
been shown that RITA has antitumor effects and it was originally
proposed that it does so by disrupting the p53–HDM2 (ref. 18).
In vitro NMR studies19 have contested this suggesting that RITA
does not disrupt p53–HDM2 interaction. Our results, now in live
mammalian cells, agree and extend the in vitro NMR analysis.

Design of a cell-permeable peptide inhibitor. Several very
strong peptide inhibitors have been reported20 besides small
chemical compounds like the Nutlins. Some of these peptides
have been optimized to display a double high affinity not only for
HDM2 but also for HDMX20. Using phage display peptide
libraries a potent dual peptide inhibitor for HDM2 and HDMX,
here named N8A, has been reported21 (Fig. 4a). In vitro, this
peptide has several fold higher binding affinity for HDM2 than
the corresponding p53-binding region21.

Small chemical compounds such as the Nutlins do not show
inhibition of the p53–HDMX interaction22. Therefore, these
peptides offer a clear advantage. However, they lack cell
permeability, which is essential for targeting these intracellular
proteins in vivo. To solve this issue, as shown schematically in
Fig. 4b, we coupled this peptide inhibitor to cell-penetrating
peptides (CPPs)23–27. CPPs are short basic peptides, B10 amino
acids, capable of crossing the cell plasma membrane transporting
other covalently attached molecules such as peptides avoiding
endosomal trapping and degradation26. Using CPPs to deliver
these small inhibitors has the potential disadvantage that the CPP
itself can interfere with the binding of the inhibitor to the target.
To overcome this potential issue, as shown in Fig. 4c, we coupled
the peptide inhibitor to the CPP, in this case the TAT peptide,
using a disulphide bridge so that once in the cytosol, the
disulphide bridge is reduced and the inhibitor peptide is released
becoming free to target HDM2.

Visualization at different subcellular locations. An important
aspect of the F3H strategy is that it can be used with any cell type.
In Fig. 5a and Supplementary Movie 1 we made use of the re-
localization of GFP-tagged proteins to the LacO DNA array, for
which it is required to have first the DNA array permanently
incorporated into the cell’s genome. However, with the F3H we
can now use other existing structures within the cells. In the next
step, we expanded the system to any mouse cell taking advantage
of the naturally occurring major satellite DNA repeats rich in
methylated cytosines at pericentric regions of each and every
mouse chromosome. To this purpose, we made use of a fusion of
the GBP with the methyl cytosine-binding domain (MBD) of
MeCP2, which is known to accumulate at these chromosomal
domains, also called chromocenters in interphase cells28,29. The
outcome is shown in Fig. 5b where both p53 and HDM2 initially
could be seen colocalizing at chromocenters and upon peptide
addition total disruption of the interaction can be scored by the
re-localization of the p53 away from these structures. To make
the system extendable to any cell containing lamina, and not only
any mouse cells, we fused the GBP to lamin B1. In this way, we
could target the GFP-fusion protein to the nuclear periphery,
using, for example, human HeLa cells and assay for the release of
the interacting protein from the lamina. The outcome in human
cells is shown in Fig. 5c and upon disruption by the addition of
the peptide, the red-labelled p53 protein is seen only in the
nucleoplasm displaced from the nuclear periphery. In
Supplementary Fig. S5 is shown the automated detection and
analysis of protein–protein interactions at the nuclear lamina
using a high-throughput wide-field microscopy system. Finally, to
test whether the assay would work also in the cytosol we fused the
GBP to centrin and, hence targeted the GFP-fusion to the

centrioles. As shown in Fig. 5d, the colocalization and, upon
peptide addition, disruption of the p53 and HDM2 interaction
could also be easily measured in the cytosol. In Supplementary
Fig. S6 is shown the automated detection and analysis of protein–
protein interactions at the centrioles using a high-throughput
system. Thus, our approach is totally flexible and is applicable to
various subcellular compartments, cell types and species.

Discussion
In summary, the cell-based method presented here can be used to
study protein–protein interactions and their inhibition in vivo in
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any cell type. In particular, it provides real-time kinetics of these
interactions in live cells and can be applied to characterize and/or
screen for specific inhibitors. We applied and validated the F3H
approach by visualizing the binding and targeted disruption of
p53 and HDM2 in real time in live cells using different drugs
including Nutlin 3 and a novel cell-permeable and in vivo
cleavable peptide inhibitor.

Methods
Peptide synthesis and analyses. The individual peptides were synthesized by
BIOSYNTAN GmbH using simultaneous peptide synthesis on the following
instruments: SYRO, MultiSynTec GmbH, Germany, using the Fmoc/But strategy
developed Sheppard. Couplings were performed using 3–6 equiv Fmoc-amino
acid/HOBt/TBTU and 6–12 equiv N-methylmorpholine in the following resin:
Tentagel HL RAM resin; RAPP Polymere GmbH, Tuebingen, Germany, loading
0.36 mmol g� 1 resin. The peptide fragment RRRQRRKRGC was synthesized with
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dipyridyl-disulphide during the deprotection reaction. The unsymmetrical dimer-
ization between the TAT peptide fragment RRRQRRKRGC and the N8A peptide
CGTSFAEYWALLSP-amide (Supplementary Fig. S7) was performed in solution
(pH 6.0). The protecting groups used are: Cys(Trt), Arg(Pbf), Ser(But), Thr(But),
Tyr(But), Asp(OBut), Glu(OBut), Asn(Trt), Gln(Trt), Lys(Boc), His(Trt) and
Trp(Boc). Peptides were deprotected and cleaved from the resin by trifluoroacetic
acid (TFA)/water (95:2.5) 2 h, room temperature; adding 3% triisopropylsilane30.

For preparative HPLC, the HPLC instrument Shimadzu LC-8A with UV–vis
detector SPD-6A was used with an Ultrasep ES (RP-18), 10 mm, (250� 20 mm)
column. Solvent was as described below with a corresponding gradient in 30 min.
Flow: 15.0 ml min� 1. Detection: 220 nm.

For analytical HPLC, the HPLC Shimadzu LC-9A with photodiode array
detector SPD-M6A was used with an Ultrasep ES (RP-18), 7 mm, (250� 3.0 mm)
column. Solvent A¼ 0.05% TFA in water; solvent B¼ 0.05% TFA in 80% ACN/
water. Flow: 0.6 ml min� 1. Linear gradient: 2.5% B per min. Detection: 220 nm
(Supplementary Fig. S8).

Peptides were further analysed by MALDI-TOF using a MALDI2 DE
instrument, Shimadzu, Japan, in linear mode. Calculated molecular weight as
average mass: 3,040.6; molecular weight detected: 3,041.4 (Supplementary Fig. S9).

Plasmids. The mammalian expression constructs coding for HDM2 and p53
deletions as well as p53 full-length protein fused with eGFP or mCherry are
schematically shown in Supplementary Fig. S10 together with the GFP binder
nanobody31,32 (GBP)-localization constructs used to recruit the GFP-tagged
proteins to different regions within the cell.

The DNA sequence coding for the N-terminal domain of p53 (aa 1–81) and
HDM2 (aa 1–128) were amplified from human cDNA by PCR using fusion high-
fidelity DNA Polymerase (New England BioLabs) and cloned in frame into NLS-
eGFP, or eGFP, or mCherry plasmids with AsiSI and NotI restriction
endonucleases (New England BioLabs). The human full-length p53 fused to GFP
was obtained from Addgene (catalogue no. 12091)33.

pGBP-LacI was constructed by deleting the mRFP-coding sequence from
pGFPbinderImR plasmid using BamHI and BsrGI restriction endonucleases34.
GBP-LaminB1 was described previously31.

To construct the pMBD-GBP plasmid, pEGFP-C2 vector (CLONTECH
Laboratories, Inc.) was digested by NheI and HindIII (New England BioLabs), and
the MBD domain of rat MeCP2 and GBP were both ligated into the backbone.
pGBP-Centrin was constructed by replacing the LacI of pGBP-LacI with the
Centrin2 ORF using BamHI and HindIII restriction endonucleases (New England
BioLabs).

Cell culture and transfection. The following cell lines were used in this study:
BHK cells containing multiple lac operator15 repeats, C2C12 mouse myoblast
cells35, U2OS human osteosarcoma cells36, HeLa human cervical carcinoma cells37.
All cell lines where grown in a humidified atmosphere at 37 �C and 5% CO2, in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 1 mM
gentamycin and 10% (BHK, U2OS and HeLa) or 20% (C2C12) fetal calf serum.

All cell lines were transiently transfected using PEI (poly-ethyleneimine;
1 mg ml� 1 in ddH2O, neutralized with HCl). For the transfection, 200 ml DMEM
serum-free with 12ml of PEI was vortexed for 2 min and added to 200 ml serum-free
DMEM with 4 mg DNA. After incubating the DNA-PEI mixture for 15 min at room
temperature, the solution was added to the cells drop wise and incubated overnight
at 37 �C and 5% CO2.

Drug treatment. Nutlin 3 (Sigma) was dissolved in DMSO as a 10 mM stock
solution. Mi 63 and RITA were a kind gift from Dr. Holak (MPI Biochemistry,
Martinsried, Germany).

For high-throughput assays BHK cells plated onto 96-well plates (Greiner Bio-
One) were triple-transfected with the plasmids indicated in the corresponding
figures. Sixteen hours later, the medium was changed to phenol red free medium

supplemented with the Nutlin 3 or the other compounds at various concentrations
for 30 min, then fixed with 3.7% formaldehyde and DNA counterstained with
DAPI. For each concentration, triplicate wells were treated.

For live cell microscopy cells were plated on poly-L-Lysine coated eight-well
m-Slide (ibidi GmbH) and transfected as described. Cells were imaged live on a
spinning disk confocal system before and immediately after addition of Nutlin 3 or
peptide inhibitors.

High-throughput microscopy and image analysis. After cell fixation, images
were acquired automatically with an Operetta high-content imaging system at the
wide-field mode using a � 40 air objective (PerkinElmer). DAPI, eGFP and Cherry
fluorescent fusion proteins were excited and the emissions were recorded using
standard filter sets. Exposure time was controlled to avoid saturated pixels, typically
from 50–200 ms, 30 different fields were imaged in each well. The imaging time can
be calculated as 150 ms per channel � 3 channels � 30 fields per well � 96
wells¼ 1,296 s¼ 21.6 min, adding to this the time for objective movement, refo-
cusing, filter swapping, the total time for 96-well plate takes about 90 min. The
images were then analysed with the Harmony analysis software (PerkinElmer) with
a flow diagram shown in Supplementary Fig. S11. Briefly, the images were first
segmented by intensity and area size according to the DAPI fluorescence using the
top-hat method to define the cell nucleus area (cells, blue in Supplementary
Fig. S11), and nucleus masks were produced and recorded. Then the LacO foci were
recognized by intensity in the eGFP channel within the nucleus areas, which were
defined in the former step, and cells with one LacO spot were kept for subsequent
analysis (cells with spot, green in Supplementary Fig. S11). The cell with one green
spot in the nucleus and a red signal was considered as triple-transfected cell with a
spot (brown in Supplementary Fig. S11). In these cells, the mean intensities of
mCherry channel at the LacO were recorded according to LacO foci masks gotten
from the GFP channel, and the ratio of mCherry mean intensity at the LacO spot
(spotmCherry) to the mean intensity of whole nucleus (nucleusmCherry) were calcu-
lated, and then used to subgroup the cells into ‘interacting cells’ (yellow in
Supplementary Fig. S11) or ‘non-interacting cells’. The percentages of ‘interacting
cells’ in each well were plotted and used as an indication of the drug inhibitory
effect. Depending on the application, it might be helpful to also consider the
relative enrichment of mCherry fusion proteins at the LacO.

Live cell confocal microscopy and image analysis. Transfected cells plated on
m-Slide 8-well were selected and imaged in peptide inhibitor-free medium.
Immediately after addition of the peptide inhibitor at 8 mM final concentration, 3D
stacks were acquired at 1 min time intervals for up to 1 h. Time lapse imaging was
carried out on a UltraVIEW VoX spinning disc confocal system (PerkinElmer, UK)
in a closed live cell microscopy chamber (ACU control, Olympus, Japan) heated to
37 �C, with 5% CO2 and 60% air humidity, mounted on a Nikon Ti microscope
(Nikon, Japan). Image acquisition was performed using a � 60/1.45 NA Plana-
pochromat oil immersion objective lens. Images were obtained with a cooled 14-bit
EMCCD camera (C9100-50, CamLink). To visualize the GFP signal, a 488 nm
excitation laser and a 521-nm emission filter were used, the mCherry protein was
excited using a 561-nm laser and the emission was filtered through a 587 nm filter.

For the analysis of correlation between fluorescent signals in Fig. 2, the
derivative of the Pearson’s coefficient along the plotted line was computed. This
shows the change in correlation along the selected line.

The intensity plot in Supplementary Movie 1 was computed by extracting first
the LacI spot, at each z-stack confocal plane, by computing the mean GFP intensity
over the nucleus and extracting the pixels with intensity values 1.5 times higher
than the mean. We visually verified that these criteria were correctly extracting only
the LacI spot. After extracting the LacI spot for each confocal plane of the z-stack,
this was used as a mask to extract the pixels corresponding the LacI spot in the
mCherry channel. The GFP and mCherry signals at the LacI spot were normalized
by dividing the intensity in each pixel by the average intensity of each signal in the
nucleus. The plot shows the result after the integration of these normalized signals
at the LacI spot before and after adding the peptide inhibitor. To perform this

Figure 5 | A rationally designed in vivo cleavable cell-permeable peptide that inhibits and disrupts the binding between p53 and HDM2. The peptide

was tested in several mammalian cell lines (a–d). Starting from hamster cell lines containing stably integrated Lac operator (LacO) DNA arrays, the system

is expanded onto application on any mouse cell exploiting the natural occurrence of large regions around centromeres naturally containing arrays of major

satellite DNA sequences rich in methylated cytosines and, hence, accumulating methyl cytosine-binding domain (MBD) proteins. On a next step, the

system is expanded to any cell containing a nuclear lamina composed of lamin intermediate filament proteins. Finally, the system is transferred to the

cytosol making use of targeting it to the centriole via the centrin protein. In the first column, a cartoon representation of the protein interactions and

inhibition at each recruitment site within the cell is shown. In the second column, a confocal image of a representative live cell of the GFP channel is shown

followed by the mCherry channel in the third column, a transmission light image in the fourth column and in the last column the overlay of all the channels.

In each row are shown the images before and after adding the N8A peptide to a final concentration of 8mM. An amplified image of the recruitment site is

shown below each microscopic image. (a) Recruitment of GFP-HDM2 to the LacO array in hamster BHK cells. Cells transiently transfected with pNeG-

HDM2(NTD), pCAG-Ch-p53(NTD) and GBP–LacI. (b) Recruitment of GFP-HDM2 to major satellite pericentric repeats rich in MBD proteins in mouse

C2C12 cells. Cells transiently transfected with pNeG-HDM2(NTD), pCAG-Ch-p53(NTD) and GBP-MBD (c) Recruitment of GFP-HDM2 to the nuclear

lamina in human HeLa cells. Cells transiently transfected with pNeG-HDM2(NTD), pCAG-Ch-p53(NTD) and GBP-Lamin B1. (d) Recruitment of p53-GFP to

the centriole in HeLa cells. Cells transiently transfected with p53-GFP, pCAG-Ch-HDM2(NTD) and GBP-Centrin2. Scale bar, 5mm.
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analysis, we wrote a program that performed automatically this analysis at each
time point, and produced as an output the plot and the movie.
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Supplementary Figures 

 

 

 

Supplementary Figure S1. Inhibition kinetics of p53/HDM2 binding induced by Nutlin 3 on 

live cells. Reproducibility of the p53/HDM2 binding disruption kinetics induced by Nutlin 3 

measured using the F3H binding assay at the LacO array. BHK cells containing a stably 

integrated LacO array were transiently transfected with pNeG-p53(NTD),  pCAG-mCh-

HDM2(NTD) and GBP–LacI. In (a) is shown the mean and standard error of the time lapse 

quantification of the relative binding of HDM2 to p53 after drug treatment. The assay was 

performed in quintuplicates. In (b) are shown the individual time lapse traces of each single 

experiment of the five repeats.  
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Supplementary Figure S2. Full length p53, HDM2, GFP and mCherry proteins do not show 

unspecific binding to the LacO array. Images of live BHK cells co-transfected with full-length 

p53-GFP, full-length Ch-HDM2 and GBP-LacI are shown (the first row). Ch-HDM2 

colocalized with p53-GFP at the LacO spot (filled arrowhead). After treatment with 10 μM 

Nutlin 3, the Ch-HDM2 was released from the LacO spot (open arrowhead). GFP control 

and control without GBP-LacI were performed to exclude unspecific binding. Scale bar, 5 

μm. 
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Supplementary Figure S3. Automated wide field image detection and analysis of protein-

protein interactions at the LacO array can be made over a wide range of protein expression 

levels. Shown are BHK cells co-expressing GBP-LacI, GFP-p53 (pNeG-p53 (NTD), upper 

panel, a, b) and mCh-HDM2 (pCAG-mCh-HDM2 (NTD), lower panel, a, b). Low and high 

contrast images (left and middle, respectively) are presented to highlight heterogeneous 

protein levels. On the right is shown the automated intensity threshold segmentation of 

nucleus and LacO spot regions. Green (a) and red (b) nucleus borders indicate classification 

as interaction-positive and interaction-negative cells, respectively. Mean fluorescence 

intensities of nucleus (1) and spot (2) regions (16 bit grayscale) are indicated. Scale bar, 10 

µm. 
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Supplementary Figure S4. Comparative analysis of drug efficacy on disrupting protein 

interactions. High throughput screening. (a) Cells were seeded onto a 96-well plate and 

treated with Nutlin 3, Mi-63 and RITA at the concentrations indicated. Cells were fixed and 

images acquired automatically using a Perkin Elmer Operetta imaging platform. The 

intensity ratio of mCh/GFP at the LacO spot in each cell was measured. (b) mCh/GFP 

intensity ratio of p53 and HDM2 at the LacO spot when treated with different concentrations 

of DMSO (control), RITA, Mi-63 and Nutlin 3. Mi-63 has a stronger inhibiting effect than 

Nutlin 3, while RITA does not hinder the interaction between p53 and HDM2. Technical 

triplicates were performed, and the normalized mean percentage with standard error of the 

mean are shown. The total number of positively triple transfected cells analyzed per data 

point was 1,200. The present test required 37,200 positively triple transfected cells obtained 

out of a total of 316,000 imaged cells. 
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Supplementary Figure S5. Automated wide field image acquisition and analysis of protein-

protein interactions at the nuclear lamina using the GBP-LaminB1.  Images were acquired 

using the confocal mode of an automated Perkin Elmer Operetta imaging platform. The 

assay was performed in HeLa cells using an NLS-free version of GFP-p53 (pCAG-eGFP-

p53) and mCh-HDM2 (pCAG-mCh-HDM2). (a) The proteins display a diffuse distribution 

throughout the cells upon co-expression (upper panel). Triple-transfection with GBP-

LaminB1 causes GFP-p53 recruitment at the nuclear lamina and co-recruitment of mCh-

HDM2 (middle panel). Nutlin3 treatment causes diffuse redistribution of mCh-HDM2 (lower 

panel). For quantitative analysis, a laminar ROI (red or green) and a cytoplasmic ROI (white) 

were automatically segmented (right side). Scale bars, 10 µm. (b) Box plot representations 

of eGFP (top) and mCherry (bottom) intensity ratios between the lamina and the cytoplasm 

ROIs in absence and presence of GBP-LaminB1 and in absence and presence of Nutlin3. 

Medians are shown as solid black lines and the top and bottom box ends represent upper 

and lower quartiles, respectively. Whiskers represent the minimal and maximal data points 

within the 1.5x interquartile range. Data sets were tested for significance with an unpaired t-

test (p<0.001). The number of cells analyzed is indicated above the boxplot diagram. 
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Supplementary Figure S6. Automated wide field image detection and analysis of protein-

protein interactions at the centriole (cytoplasm) using the GBP-Centrin2 construct.  (a) HeLa 

cells co-expressing GBP-Centrin2 and eGFP at different expression levels allowing 

automated intensity threshold segmentation of centriolar eGFP localization in the cytoplasm. 

Images were acquired using an automated Perkin Elmer Operetta imaging platform. Scale 

bar, 10 µm. (b, c) Quantitative, automated image analysis. Green segmentation masks 

indicate classification of centriole-positive cells, red indicates classification of centriole-

negative cells. Scale bar, 50 µm. The error bars represent the standard deviation from 

technical triplicates. The shown data are a representative depiction from three independent 

transfection experiments. (d) Centriolar recruitment of eGFP-p53 (pCAG-eGFP-p53) and 

mCh-HDM2 (pCAG-mCh-HDM2) and intensity threshold based spot segmentation in both 

the eGFP and mCherry channel. Scale bar, 10 µm. 
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Supplementary Figure S7. Sequence and stretched structure of the TAT peptide coupled 

by a disulfide bridge to the N8A peptide inhibitor. 

  



Supplementary Information     Herce et al.  

 

 
 

8 

 

 

 

 

 

 

 

 

Supplementary Figure S8. Analytical HPLC chromatogram of the N8A peptide coupled 

through a disulfide bridge to the TAT peptide. 
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Supplementary Figure S9. Mass spectrum of the N8A peptide coupled through a disulfide 

bridge to the TAT peptide.  
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Supplementary Figure S10. Summary of chimeric fusion proteins. Schematic 

representation of the human HDM2, human p53 and llama derived GFP Binder Protein 

(GBP) together with the corresponding chimeric fusion protein constructs. 
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Supplementary Figure S11. Analysis flow diagram and cell populations of the high 

throughput assay using the GBP-LacI system. On the left, flow diagram of the high 

throughput analysis protocol. Cells are heuristically analyzed and divided into different 

groups. Cells in all the groups are evaluated, and the information, such as numbers and 

fluorescence intensities are measured. On the right, classification and number of cells in 

each group analyzed in one well. In this well, 30 fields were imaged and analyzed. From 

these 30 images, a total of 2,499 cells are recognized, about 33% (835 cells) of which are 

with one GFP-p53 spot in the nucleus. In the cells with a GFP-p53 spot, approximate 67% 

(562 cells) express mCh-HDM2. In these 562 cells, 389 about 70% are automatically 

recognized as interacting cells. In this context it should be mentioned that the prior 

establishment of stable cell lines changes these statistics as practically all cells become 

informative. 
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CENP-C facilitates the recruitment of M18BP1
to centromeric chromatin
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Christian Hoischen,4 Stephan Diekmann,4 Heinrich Leonhardt1,3 and Gunnar Schotta1,2,*

1Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPSM); Munich, Germany; 2Adolf-Butenandt-Institute; Munich, Germany;
3Department of Biology II; Ludwig Maximilians University; Munich, Germany; 4Leibniz Institute for Age Research; Fritz Lipmann Institute; Jena, Germany

†These authors contributed equally to this paper.

Centromeres are important structural constituents of chromosomes that ensure proper chromosome segregation during
mitosis by providing defined sites for kinetochore attachment. In higher eukaryotes, centromeres have no specific DNA
sequence and thus, they are rather determined through epigenetic mechanisms. A fundamental process in centromere
establishment is the incorporation of the histone variant CENP-A into centromeric chromatin, which provides a binding
platform for the other centromeric proteins. The Mis18 complex, and, in particular, its member M18BP1 was shown to be
essential for both incorporation and maintenance of CENP-A.

Here we show that M18BP1 displays a cell cycle-regulated association with centromeric chromatin in mouse
embryonic stem cells. M18BP1 is highly enriched at centromeric regions from late anaphase through to G1 phase. An
interaction screen against 16 core centromeric proteins revealed a novel interaction of M18BP1 with CENP-C. We mapped
the interaction domain in M18BP1 to a central region containing a conserved SANT domain and in CENP-C to the
C-terminus. Knock-down of CENP-C leads to reduced M18BP1 association and lower CENP-A levels at centromeres,
suggesting that CENP-C works as an important factor for centromeric M18BP1 recruitment and thus for maintaining
centromeric CENP-A.

Introduction

Centromeres are sites for kinetochore attachment during mitosis. In
order to prevent chromosome segregation defects, cells have to
ensure that each chromosome has one functional centromere.
Centromeres have no fixed DNA sequence that can be recognized
by specific binding proteins, therefore it is assumed that epigenetic
mechanisms ensure maintenance of the centromeric structure. The
histone H3 variant CENP-A is a central component of centromeric
chromatin. CENP-A aids in recruiting numerous proteins that
build the constitutive centromere-associated network (CCAN),1-3

an essential step in establishing a proper kinetochore structure.4

Two proteins directly bind CENP-A and have the potential to
bridge centromeric chromatin with kinetochore components. The
first protein, CENP-C, recognizes the C-terminal region of CENP-
A through an internal region.5 The C-terminus of CENP-C
mediates its dimerization,6,7 the extreme N-terminus interacts with
the Mis12 complex, which, in turn, bridges to outer kinetochore
components.8 The second protein directly recognizing CENP-A is
CENP-N,9 which also interacts with other centromeric compo-
nents. Notably, disruption of either CENP-C or CENP-N leads to
reduced levels of CENP-A at centromeres, suggesting that both
proteins have additional functions in establishment or maintenance
of centromere identity.5,9

The incorporation of CENP-A into the centromere is a strictly
cell cycle-regulated process. During replication of centromeres,
CENP-A is equally distributed onto the daughter strands, diluting
the amount per centromere to 50%. To preserve centromere
function, CENP-A needs to be subsequently replenished.
Expression levels of CENP-A peak in G2 phase, though
incorporation into the centromere only occurs in late mitosis
and early G1 phase.10-13 The histone chaperone that mediates
incorporation of CENP-A is the Holliday junction-recognizing
protein (HJURP).14,15 HJURP can incorporate CENP-A only in
domains that show a signature of actively transcribed chromatin.16

Therefore, centromeric chromatin needs to be prepared (licensed),
by currently unknown mechanisms. Mis18a, Mis18β and
M18BP1 which form the Mis18 complex in humans have been
suggested to play an important role in this licensing mech-
anism.17-19 Disruption of Mis18 complex components leads to
failure in CENP-A incorporation,17,19 which could be explained
by lack of HJURP recruitment to centromeres.20,21 Neither of the
Mis18 complex proteins directly interact with CENP-A,9

therefore, an important question within the understanding of
CENP-A establishment is how this complex is specifically targeted
to centromeric chromatin.

Here we show that M18BP1 is a cell cycle-regulated component
of centromeric chromatin. By screening 16 CCAN proteins we
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identify CENP-C as a novel interaction partner of M18BP1. We
mapped the interaction domain to a central region of M18BP1
encompassing the conserved SANT domain. CENP-C facilitates
the recruitment of M18BP1 to centromeric chromatin during
specific stages of the cell cycle, as RNAi depletion of CENP-C leads
to reduced levels of centromeric M18BP1. In summary, our work
identifies CENP-C as an important centromere component that
recruits M18BP1 to centromeric chromatin.

Results

M18BP1 is a centromere-associated protein in mouse ES (mES)
cells. In HeLa cells, prominent centromeric association of Mis 18
complex members was observed from late mitosis (ana/telophase)
until the end of G1 phase.17 In order to determine the localization
of M18BP1 in mouse cells we generated M18BP1 knock-in mES
cells (K1B2) by introducing an EGFP tag into the endogenous
M18BP1 locus (Fig. S1A). The K1B2 cells express M18BP1 at
near endogenous levels (Fig. S1B), suggesting that the transcriptional

regulation of M18BP1 is not impaired by the alterations to this
locus. We determined the localization of M18BP1-EGFP in these
cells by comparing the EGFP signal with CENP-A staining to ask
whether M18BP1 localizes to the centromeres. Three classes of
staining patterns could be observed (Fig. 1A): (1) diffuse nuclear;
(2) weak centromeric; and (3) strong centromeric foci. We then
asked which cell cycle stage would correspond to the strong
centromeric association of M18BP1. K1B2 cells show the typical
cell cycle profile of mES cells, that is, the majority of cells are in S
phase with an additional high percentage of cells in G2/M phase. In
contrast to other frequently analyzed cell types, such as HeLa cells
and mouse fibroblasts, the population of G1 cells is comparably low
in mES cells. We visualized the different cell cycle stages in K1B2
cells using specific markers. First we expressed RFP-tagged PCNA
in K1B2 cells, which is an indicator of different S phase stages.22

All K1B2 cells which showed defined PCNA dots, indicative of
ongoing replication showed weak or diffuse M18BP1-EGFP signals
(Fig. 1B). A significant number of cells outside S phase showed
comparatively stronger signals, suggesting that centromeric

Figure 1. M18BP1 associates with centromeres in a cell-cycle dependent manner. (A) Localization of endogenously tagged M18BP1-EGFP in the K1B2
mES cell line. K1B2 cells were stained for CENP-A and confocal stacks were recorded. Maximum intensity projections are shown. M18BP1-EGFP showed
different patterns: strong enrichment at centromeres (s), weak enrichment (w), no enrichment/diffuse nuclear (d). Scale bars are 20 mm. (B) M18BP1
distribution during S phase. K1B2 cells were transfected with a RFP-PCNA expression construct to detect cells in different S phase stages. M18BP1-EGFP
showed intermediate to low centromeric enrichment throughout S phase. Cells which are not in S phase fall into two different staining patterns: M18BP1
is highly enriched at centromeres (presumably G1) and cells with low/no centromeric M18BP1 signals (presumably G2). (C) M18BP1 distribution in G2/M
phase. K1B2 cells were stained with H3S10P antibodies to visualize different stages of G2 and M phase. Starting from early G2 phase (weak H3S10P
signal) to M phase (strong H3S10P signal) M18BP1 appeared to be largely absent from centromeres. (D) M18BP1 localization in different mitotic stages.
In metaphase cells, M18BP1 is absent from centromeres, however, starting from late anaphase, M18BP1 showed strong signals at centromeric regions.
Scale bars in (B–D) are 5 mm.
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M18BP1 association is low throughout S phase (Fig. 1B) and is
only enriched in G1 or G2/M phase. We therefore tested whether
M18BP1 begins to be enriched after S phase, in G2/M. In order to
visualize G2/M cells, we performed immunofluorescence staining
for H3S10 phosphorylation.23 All K1B2 cells that were positive for
H3S10P showed only weak centromeric M18BP1 signals
(Fig. 1C, early G2), leading to the conclusion that the highly
enrichedM18BP1 signals appear in G1 phase cells. Interestingly, in
G2 phase cells, M18BP1 does not seem to associate with all
centromeres as we detect numerous CENP-A spots without
M18BP1 enrichment (Fig. S2). Late G2 and prometaphase cells
did not show significant centromeric signals for M18BP1 (Fig. 1C,
late G2/M). Finally, we tested at which step after mitosis M18BP1
starts being localized to centromeric regions by examining distinct
mitotic stages in K1B2 cells. Notably, we find that metaphase cells
still display very low M18BP1 signals, though as soon as cells enter
anaphase/telophase, M18BP1 is highly enriched at centromeres
(Fig. 1D). In those cells centromeric CENP-A signals are still
relatively low as deposition of new CENP-A only occurs at later
stages in the cell cycle.12 In summary, our localization analysis
demonstrates that in mES cells, M18BP1 is not constitutively
enriched at centromeric chromatin but rather associates with
centromeres from anaphase continuing to G1 phase. This is the
time when CENP-A incorporation takes place.

Centromere interaction screen for M18BP1. M18BP1 is
known to be important for preparing centromeric chromatin for
CENP-A incorporation. However, still very little is known about
how M18BP1 actually recognizes centromeric chromatin. We

pursued the idea that M18BP1 might be recruited through
interaction with components of the CCAN network. To test this
hypothesis we performed an F3H interaction screen of M18BP1
with proteins of the CCAN network. The F3H interaction assay
utilizes a BHK cell line with a lac operator repeat array stably
integrated into its genome (Fig. 2A). This cell line was transfected
with an expression vector encoding the lac repressor (lacI) which
directly binds to the lac operator sequence fused with a GFP
binding protein (GBP). These cells further expressed the EGFP
tagged bait protein (M18BP1-EGFP) and individual RFP/
mCherry tagged prey proteins (CCAN proteins). M18BP1-
EGFP is bound by the lacI-GBP fusion protein at the lac operator
arrays and can be detected at the well-discernible nuclear lacO
focus. Prey protein interaction with M18BP1 is identified by
localization to this nuclear focus (Fig. 2A). The red/green signal
intensity ratio provides a measure for the strength of the tested
interaction.

We tested M18BP1 for interaction with 16 proteins of the
CCAN network using the F3H assay. In agreement with previous
analyses we did not detect a direct interaction with CENP-A
(Fig. 2B). Interestingly, we found a strong interaction with
another protein of the inner centromere, CENP-C. None of the
other CCAN proteins that we tested showed significant
interaction with M18BP1 (Fig. 2C).

M18BP1 harbors two evolutionarily conserved domains, the
SANT domain in the C-terminal part of the protein and the
SANTA domain which is toward the N-terminus. To test which
region of M18BP1 participates in the interaction with CENP-C

Figure 2. F3H interaction screen for M18BP1 interaction partners. (A) Scheme depicting the F3H screening strategy. Cells containing a lac operator array
were transfected with plasmids expressing a lac repressor-GBP fusion protein, M18BP1-EGFP and mCherry/RFP-CCAN proteins. The lac repressor binds to
the lac operator array and through the GBP recruits M18BP1-EGFP. CCAN proteins interacting with M18BP1 are consequently enriched at the lac operator
array. (B) Representative examples for M18BP1 interacting (CENP-C) and non-interacting (CENP-A and CENP-W) proteins are shown. Scale bar is 5mm.
(C) Summary of interaction tests between M18BP1 and CCAN proteins. Interactions were tested with the F3H assay using M18BP1-EGFP and 16 RFP or
mCherry fusions with CCAN proteins. From all 16 tested CCAN proteins, only CENP-C showed a clear interaction with M18BP1.
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we tested a panel of M18BP1 truncated proteins (Fig. 3A). The
N-terminus of M18BP1 (M1, aa1–440) showed no interaction
with CENP-C, but the C-terminus (M2, aa441–998) clearly
interacted (Fig. 3B). The central region (M3, aa325–800) and a
truncated protein lacking the SANTA domain (M4, aa441–800)
displayed clear interactions with CENP-C. In order to then test
whether the SANT domain is sufficient for the CENP-C
interaction, we assessed a truncated protein harboring only the
SANT domain (M5, aa735–800). This failed to interact with
CENP-C, suggesting that additional parts of M18BP1 participate
in this interaction. We scrutinized these observations by
quantifying the interactions in several hundred cells per construct
through measurement of the ratio between red and green intensity
values at the M18BP1-EGFP foci. Although, by confocal imaging
we can detect red/green colocalization of M18BP1-M4 and
CENP-C in 73% of the cells (Fig. 3B), the average red/green
signal ratio is relatively low (Fig. 3C). This, however, can be
explained by relatively low expression levels of RFP-CENP-C in
the combination with M18BP1-M4. In summary, our F3H data
show that CENP-C interacts with a central region of M18BP1
comprising the SANT domain.

M18BP1 directly interacts with CENP-C. We then aimed
to further define the M18BP1-CENP-C interaction. First, we
wanted to analyze whether M18BP1 co-localizes with CENP-C.
To do this, we transfected K1B2 cells with a plasmid expressing
RFP-tagged CENP-C and performed confocal imaging. We
found many cells showing a clear overlap between M18BP1-
EGFP and RFP-CENP-C signals. However, there was also a large
percentage of cells with prominent CENP-C signals, with no
M18BP1 co-localization (Fig. 4A). These data suggest that the
interaction between these two proteins is highly regulated in vivo.

In order to test whether CENP-C and M18BP1 can interact
in vivo, we performed co-immunoprecipitation experiments. We
transfected HEK293 cells with expression plasmids for CENP-C-
EGFP and myc-M18BP1, prepared nuclear extract and purified
CENP-C-EGFP using GFP trap affinity beads. In the bound
material we could clearly detect co-purification of the EGFP-
tagged CENP-C and the myc-tagged M18BP1 (Fig. 4B). We
then wanted to further map the interaction domains between
M18BP1 and CENP-C using in vitro binding assays. CENP-C
has several conserved domains which have already been implicated
in different biochemical interactions and in vivo functions, such as

Figure 3. Mapping of the M18BP1-CENP-C interaction domains by F3H. (A) Scheme of M18BP1 truncations used in the interaction tests.
(B) Representative F3H images of the negative control (GFP only) and EGFP tagged M18BP1 truncations tested with RFP-CENP-C. Overlap of red and
green signals at the nuclear lacO focus indicates interaction. (C) Quantification of the F3H M18BP1-CENP-C interaction data. Intensities of red and green
signals at the nuclear lacO focus were measured in several hundred cells each. The ratio between red and green signals was determined to measure the
strength of the tested interactions.
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connection to the outer kinetochore proteins, CENP-A binding
and CENP-C dimerization (Fig. 4C, schematic). We generated in
vitro translated proteins of three CENP-C truncations and tested
their interaction with recombinant GST tagged M18BP1
truncations (M1-M5). In these assays we could only detect
significant interaction of M18BP1 with CENP-C #3, containing
the CENP-C motif and the cupin domain (Fig. 4C). These data
provide an extension of the F3H analysis; confirming that the
large central region of M18BP1 is required for CENP-C binding.

CENP-C is required for the recruitment of M18BP1 to
centromeres. Our data show that M18BP1 interacts with CENP-
C in vitro and in vivo. CENP-C itself binds to centromeres
through direct interaction with CENP-A. We therefore hypothe-
sized that CENP-C facilitates the recruitment of M18BP1 to
centromeric chromatin. In order to test this hypothesis we
performed CENP-C knock-down experiments in K1B2 cells in
which we could easily assess the localization of endogenously

expressed M18BP1-EGFP. We prepared pLKO-based lentiviral
vectors with three independent shRNA oligos against CENP-C
and one control oligo containing an unrelated sequence (Table S1).
CENP-C knock-down cells were analyzed by qPCR five days post
infection to determine the knock-down efficiency of the individual
oligos. Importantly, all three knock-down oligos resulted in
effective downregulation of CENP-C mRNA (Fig. 5A) and protein
(Fig. S3), with shCENP-C #3 showing the strongest knock-down.
Crucially, the expression level of M18BP1 was unchanged. CENP-
C knock-down did not lead to significant changes in the cell cycle
profile of K1B2 cells, however, we did notice an increase in the
number of cells with sub-G1 DNA content (Fig. S4) as well as
reduced cell numbers at day five after knock-down (Fig. S5),
indicating elevated cell death upon CENP-C knock-down.

To test whether CENP-C affects the localization of M18BP1 we
investigatedM18BP1-EGFP and CENP-A patterns in the CENP-C
knock-down cells. In control knock-down cells, M18BP1-EGFP

Figure 4. M18BP1 and CENP-C interact in vitro. (A) Co-localization of RFP-CENP-C and M18BP1-EGFP. K1B2 cells were transfected with a RFP-CENP-C
expression construct. Maximum intensity projections of two representative staining patterns are shown. Scale bar is 5mm. (B) Co-immunoprecipitation of
CENP-C and M18BP1. HEK293FT cells were transfected with expression plasmids for EGFP-CENP-C and myc-M18BP1. Nuclear extracts from these cells
were incubated with agarose beads (control) and GFP-Trap affinity beads to enrich for EGFP-CENP-C and interacting bound proteins. Protein gel blot
analysis shows the nuclear extract (Inp), proteins bound to agarose beads (mock) and proteins that were enriched with GFP-Trap agarose beads (IP). An
empty lane is indicated by “-”. EGFP-CENP-C and myc-M18BP1 were detected using antibodies against GFP and myc, respectively. (C) Interaction tests
between M18BP1 and CENP-C truncations. The scheme shows the domain structure of mouse CENP-C and the truncation constructs that were used in
this assay. Recombinant GST-tagged M18BP1 truncations (M1-M5) were incubated with in vitro translated myc-CENP-C truncation proteins and bound to
GST beads. The bound CENP-C protein truncations were detected using myc antibody. Only the C-terminal CENP-C fragment showed clear interaction
with M18BP1. The M18BP1 fragments M1-M5 are depicted in Figure 3A.
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shows the typical distribution of different centromere enrichment
levels: strong, weak and diffuse nuclear (Fig. 5B, arrows). We
observed that the number of cells with centromeric association of
M18BP1 was reduced in all three knock-down cell lines (Fig. 5B).
In order to quantify this phenotype we determined the distribution
of M18BP1 staining patterns in control and CENP-C knock-down
cells. Importantly, in all knock-down cell lines the percentage of
cells with “weak” M18BP1-EGFP enrichment at centromeres was
reduced, whereas M18BP1-EGFP “diffuse” cells were increased
(Fig. 5C). In knock-down shCENP-C #3 we even detected reduced
numbers of M18BP1 ‘strong’ cells, suggesting that more efficient
CENP-C knock-down more severely impairs centromeric M18BP1
recruitment. We then asked whether the reduced centromeric
M18BP1 recruitment corresponds to specific cell cycle stages by
co-staining of control and CENP-C knock-down cells with specific
cell cycle markers (Fig. S6). In shControl cells we could reproduce
the results of our initial cell cycle analysis in K1B2 cells: G1 cells
showed strong centromeric signals, G2 cells showed weak signals.
Importantly, upon CENP-C knock-down we detected G1 and G2

phase cells which had clearly lost centromeric M18BP1 (Fig. S6),

indicating that the role of CENP-C in ensuring centromeric
M18BP1 localization is not restricted to a particular cell cycle stage.

M18BP1 was proposed to ‘prime’ centromeres for deposition of
CENP-A.17,19 In order to investigate whether reduced centromeric
M18BP1 recruitment would also lead to less efficient CENP-A
incorporation, we divided CENP-A staining patterns into low,
medium and high and determined the percentage of cells showing
these patterns in control and CENP-C knock-down cells. In
particular knock-down shCENP-C #3 which had the strongest
effect on centromeric M18BP1 recruitment lead to significantly
reduced CENP-A levels (Fig. 5C).

In summary our data demonstrate that the interaction between
CENP-C and M18BP1 is an important recruitment mechanism
for M18BP1 to centromeric chromatin, which appears necessary
for the correct deposition of CENP-A.

Discussion

The deposition of CENP-A into centromeric chromatin is
essential to ensure proper segregation of chromosomes. The

Figure 5. CENP-C knock-down leads to impaired centromeric recruitment of M18BP1. (A) RT-qPCR for CENP-C and M18BP1 five days after knock-down.
Expression levels in the control knock-down cell line (shControl) and the three CENP-C knock-down cell lines (shCENP-C #1-#3) were normalized to the
geometric mean of GAPDH and Actin. (B) Representative maximum intensity projections of confocal stacks of control and CENP-C knock-down cells that
were stained for CENP-A. Arrows point to example cells for the three classes of M18BP1 signals: strong (s), weak (w) and no enrichment/diffuse nuclear
(d). Scale bars are 10mm. (C) Quantification of the M18BP1 signals in control vs. CENP-C knock-down cell lines. M18BP1 and CENP-A staining patterns
were classified in several hundred cells. The bar graph depicts the percentages of each class.
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Mis18 complex member M18BP1 was shown as an essential
factor to prepare centromeric chromatin for CENP-A deposition
and to ensure its maintenance.17,19,24 Our data constitute the first
analysis of endogenously expressed M18BP1 in mES cells. We
report that M18BP1 associates with centromeric chromatin
during distinct cell cycle stages. M18BP1 shows highest
abundance at centromeres from anaphase through to late G1

phase. These data are in agreement with observations in human
cells, where M18BP1 also associates with centromeres starting
from late telophase through to G1 phase17 and suggest that
M18BP1-mediated processes might be evolutionarily conserved in
higher mammals.

We have furthered the understanding of how M18BP1 is
recruited to centromeres through identification of a novel
interaction between the C-terminus of CENP-C with a central
region in M18BP1, which contains a SANT domain. The SANT
domain is highly conserved and found in many chromatin-
associated proteins, but very little is known about its potential
functions. It has been implicated in the mediation of protein-
protein interactions and binding to histone modifications.25 We
do not detect a direct interaction between the isolated M18BP1
SANT domain and CENP-C, however, it is possible that this
domain is only functional in a larger protein context. More
detailed experiments are necessary to further understand the
functional roles of this domain in M18BP1. Our interaction data
are consistent with a very recent study which appeared during the
preparation of this manuscript.26 Moree et al. found that X. laevis
xM18BP1 isoforms interact with xCENP-C, and they could also
show that human M18BP1 interacts with human CENP-C. In
their study the interaction domain with xM18BP1 was mapped to
the C-terminus of xCENP-C containing the CENP-C motif and
the cupin domain. Mouse CENP-C (906aa) is much smaller than
xCENP-C (1400aa), however, the major domains, such as
CENP-A binding domain, CENP-C motif and cupin domain
are conserved. We could show that in the mouse the interaction
with M18BP1 is also mediated through a C-terminal fragment of
CENP-C containing the CENP-C motif and the cupin domain,
and thus the M18BP1 interaction site in CENP-C seems to be
evolutionarily conserved.

Our data moreover demonstrate an important function for
CENP-C in mediating the centromeric recruitment of M18BP1.
When CENP-C protein levels are reduced to around 40–50%
(shCENP-C #1 and #2) we found reduced numbers of “weak”
centromeric M18BP1 cells. The numbers of “strong” centromeric
M18BP1 cells, a staining pattern which we found characteristic
for G1 phase cells, seemed to be unaltered. More severely reduced
CENP-C levels (shCENP-C #3) resulted in lower numbers of
cells with “weak” and “strong” centromeric M18BP1. Our cell
cycle marker analysis revealed that the role of CENP-C in
mediating centromeric M18BP1 recruitment is not restricted to
selective cell cycle stages. However, we cannot exclude the
possibility that CENP-C has additional functions that indirectly
regulate the centromeric association of M18BP1 during distinct
cell cycle phases. In this context it is interesting to note that
when we transiently express CENP-C in K1B2 cells, we find a
high percentage of cells in which CENP-C is abundantly

associated with centromeres, but M18BP1 does not co-localize.
It is therefore plausible to assume that further regulatory
mechanisms exist, e.g., post-translational modifications, which
influence the in vivo interaction between these two proteins. Both
M18BP1 and CENP-C can be phosphorylated and sumoylated
at multiple sites.27-30 It will be challenging to understand how
these modifications are regulated and how they influence inter-
actions between the different centromeric proteins in a cell cycle-
dependent manner.

The centromeric recruitment of M18BP1 appears important
for correct deposition of CENP-A. In particular strong depletion
of CENP-C with knock-down oligo shCENP-C #3 leads to
reduced levels of centromeric CENP-A. These data are consistent
with Moree et al., which demonstrate in the Xenopus system that
upon xCENP-C depletion, centromeric deposition of new
CENP-A is impaired.26 The failure to correctly establish CENP-
A might be due to loss of centromeric M18BP1 at critical cell
cycle stages. In human cells, CENP-A deposition is mediated by
HJURP during G1 phase. Loss of M18BP1 leads to reduced
HJURP association with centromeres and consequently to
reduced deposition of newly synthesized CENP-A.14,15 In our
mES cell system strong CENP-C knock-down results in cells
which lose M18BP1 during G1 phase when CENP-A deposition
normally occurs. We therefore postulate that those cells will also
have problems in correctly establishing centromeric CENP-A
patterns. We do not detect a large number of cells which have lost
CENP-A upon CENP-C knock-down. We think that this could
be explained by the high cell lethality of the CENP-C knock-
down. Therefore, at the current stage of analysis, we cannot
distinguish whether critically low CENP-A levels would induce
apoptosis in ES cells, or whether CENP-C has additional
functions that could be critical for survival of ES cells. Also, the
functions of M18BP1 need to be investigated in more detail to
understand how the centromeric recruitment of this molecule
drives the subsequent deposition of CENP-A during G1 phase
and whether M18BP1 features additional roles during other cell
cycle stages when its centromeric recruitment is much lower but
still detectable.

Materials and Methods

M18BP1 knock-in cell line. The M18BP1-EGFP targeting
constructs were obtained using the recombineering cloning
technique described previously.31 To generate retrieval and
mini-targeting vectors, PCR fragments were amplified from the
BAC clone RP23–396P24 (Children's Hospital Oakland
Research Institute). For the retrieval plasmid, PCR fragments
were cloned into the pL253 plasmid using NotI, HindIII and
SpeI. A genomic region of 7 kb, spanning the last exons of
M18BP1, was retrieved from the BAC clone using recombineer-
ing in EL350 bacteria. The mini-targeting plasmid was
constructed by generating PCR fragments flanking the M18BP1
stop codon. These PCR fragments were cloned together with the
floxed Neomycin selection cassette from pL452 (EcoRI-BamHI
fragment) into pBluescript IISK+ using NotI, EcoRI, BamHI and
SalI. In a subsequent cloning step, the EGFP tag was inserted with
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EcoRI. For the final targeting vector, the 7 kb region was mini-
targeted by recombineering with the NotI-SalI fragment contain-
ing the EGFP and floxed Neomycin selection cassette from the
mini-targeting plasmid.

To generate M18BP1 knock-in cells, the NotI-linearized
targeting vector was electroporated into feeder-independent wild
type mES cells. Cells were selected in 180 mg/ml G418 (PAA) and
2 mM Ganciclovir (Invivogen). Single colonies were picked and
screened by nested PCR to obtain the final mES cell clone
(K1B2). Primers used for cloning and PCR screening are listed in
Table S1.

Cell culture and transfections. BHK cells containing a lac
operator repeat array32 were cultured in DMEMmedium with 10%
FCS and seeded on coverslips in 6-well plates for microscopy. After
attachment cells were co-transfected with expression vectors for the
indicated fluorescent fusion proteins and a LacI-GBP fusion33,34

using polyethylenimine (Sigma). After about 16 h cells were fixed
with 3.7% formaldehyde in PBS for 10 min, washed with PBST
(PBS with 0.02% Tween), stained with DAPI and mounted in
Vectashield medium (Vector Laboratories).

Mouse ES cells were cultivated on gelatinized plates in High
Glucose DMEM with L-Glutamine and sodium pyruvate,
complemented with 15% FCS, β-mercaptoethanol, non essential
amino acids (PAA), penicillin/streptomycin (PAA) and LIF in a
37°C incubator at 5% CO2. For transfection with Lipofectamine
2000 (Invitrogen), mES cells were seeded on matrigel (BD
Biosciences) coated coverslips.

HEK 293FT cells (Invitrogen) were cultivated on gelatinizes
plates in High Glucose DMEM with L-Glutamine and sodium
pyruvate (PAA) complemented with 10% FCS, β-mercaptoeth-
anol, non essential amino acids (PAA) and penicillin/streptomycin
(PAA) in a 37°C incubator at 5% CO2. The cells were transiently
transfected one day after seeding using standard calcium
phosphate transfection.

Microscopy. F3H samples were analyzed with a confocal
fluorescence microscope (TCS SP5, Leica) equipped with a 63 � /
1.4 numerical aperture Plan-Apochromat oil immersion objective
as described.34 DAPI, EGFP and mCherry/RFP were excited by
405 nm diode laser, 488 nm argon laser and 561 nm diode-
pumped solid-state laser, respectively. Images were recorded with
a frame size of 512 � 512 pixels.

K1B2 cells were imaged using a Leica TCS SP5 confocal laser
scanning microscope with a HCX PL APO CS 63x/1.3 NA
glycerol immersion objective. Sequential excitation at 405 nm,
488 nm, 543 nm and 633 nm was provided by diode, argon and
helium-neon gas lasers, respectively. Emission detection ranges of
the photomultipliers were adjusted to avoid crosstalk between the
channels. Maximum intensity projections of the confocal sections
were generated using ImageJ software.

Intensity ratio measurement. Images were acquired with an IN
Cell Analyzer 2000 (GE Healthcare) using a 40 � air objective
and analyzed with the IN Cell Analyzer 1000 Workstation 3.7
(GE Healthcare). Green and red fluorescence intensities at the lac
spots were quantified. After background subtraction, intensity
ratios of red (prey) to green (bait) were calculated and plotted
using Excel software (Microsoft).

Lentiviral knockdown and infection of K1B2 cells. Lentiviral
shRNA sequences (Table S2) were selected from the TRC
library35 or designed using the TRC shRNA designer (http://
www.broadinstitute.org/rnai/public/).

For lentiviral knock-downs one non-targeting shRNA and
three shRNAs targeting mouse CENP-C mRNA (NCBI RefSeq
NM_007683.3) were cloned into the lentiviral knock-down
vector pLKOmod136 with MluI/XmaI.

For restricting lentiviral transduction to mouse cells, we
replaced the commonly used VSVg protein during viral packaging
with the ecotropic envelope protein of Moloney Murine
Leukemia Virus. The new packaging vector pLP-ecoenv was
generated by removing the VSVg sequence of pLP-VSVg
(Invitrogen) by EcoRI digest, followed by T4 polymerase filling
of the remaining vector and ligation of a EcoRI/NotI cut and T4
polymerase filled PCR product of the M-MLV ecotropic envelope
sequence

(Primers: eco env fw 5'-CGAATTCGCCGCCACCATGG
CGCGTTCAACGCTCTCAAAA-3'; eco env rw 5'-TACGC
GGCCGCTATGGCTCGTACTCTAT-3').

Lentiviral production was performed by seeding 4 million
HEK293FT cells (Invitrogen) one day before transfection in
gelatinized 10 cm dishes. On the following day, cells were
transiently cotransfected with 8 mg psPAX2, 8 mg pLP-ecoenv and
8 mg of the respective pLKOmod1 vector using standard calcium
phosphate transfection. Conditioned medium containing recom-
binant lentiviruses was harvested 48 h post transfection, aliquoted,
snap frozen and stored at -80°C until further use.

K1B2 cells were transduced by seeding 3 � 106 cells onto
gelatinized 15 cm dishes containing mES cell medium supple-
mented with 4 mg/ml Polybrene (Sigma) and up to 20%
conditioned virus medium. After 24 h the medium was replaced.
48 h post transduction, cells with stable integration of the
pLKOmod1 vector were selected in mES cell medium containing
1.4–2 mg/ml puromycin (PAA) and then maintained in this
selection medium until analysis.

Knock-down efficiency was determined at day five post
infection by qRT-PCR and protein gel blotting. The following
antibodies were used: CENP-C (Abcam ab50974), Suv4–20h2
(Hahn et al., in preparation).

RT-qPCR for monitoring M18BP1 and CENP-C expression
levels. RNA of control and CENP-C knock-down cells was
harvested at day 5 after transduction using RNeasy (Qiagen). 1.25
mg RNA was used for cDNA synthesis using Superscript III Kit
(Invitrogen) and random hexameric primers (NEB). QPCR reactions
were performed in technical triplicates using a Roche Light Cycler
480 with FAST SYBR1 Master Mix (Applied Biosystems), and
gene-specific primers (Table S3). Ct-values were normalized to the
geometric mean of Actin and GAPDH for each individual cDNA
and fold changes where calculated by the 2-DDCt-method.37

Immunofluorescence. Immunofluorescence analyses were per-
formed as described38 using the following antibodies: CENP-A
(C51A7, Cell Signaling Technology), H3S10P (06–570, Upstate)
and Alexa 647 (A31573, Molecular Probes).

Plasmids. Encoding sequences of CENPs were amplified by
PCR (Expand high fidelityPLUS PCR System, Roche, Penzberg,
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Germany). As forward primers we used 5'-GGGGACAAGT-
TTGTACAAAAAAGCAGGCTTCGAAAACCTGATTTTCAG-
GGCGCCACC-3'as flanking regions followed by 20–26 bases of
coding regions starting with 5-ATGG-3'and as reverse primers we
used 5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3'as
flanking regions followed by 20–26 bases of coding sequences
without stop codon. CENP encoding PCR fragments were
transferred into vector pDONR221 by BP recombination reaction
(Invitrogen, Carlsbad, CA, USA). After verification by DNA
sequencing (MWG Biotech, Ebersberg, München, Germany),
genes were transferred by LR recombination reactions to various
modified pEGFP-C and pmCh-C (BD Biosciences, Clontech, Palo
Alto, CA, USA) based destination vectors. The resulting expression
vectors encode CENPs fused to the C-termini of EGFP and
mCherry with SGTSLYKKAGFENLYFQGAT as linker sequence
and TQLSCTKW added to the C-terminal ends of the FP-CENPs
fusions. Complete sequences are provided upon request. Correct full
length expression of fusion constructs was confirmed by protein gel
blots.

Full-length open reading frames of mouse M18BP1, the
M18BP1 truncations and the mouse CENP-C truncations were
PCR amplified from mouse cDNA derived from mES cells and
cloned into the pDONR/Zeo GATEWAY entry vector
(Invitrogen) using Gateway BP Clonase II enzyme mix
(Invitrogen). PCR primers are listed in Table S4. Entry clones
were recombined into target vectors pEGFP-N1-GW,
pCMVmyc-GW and pGEX6P1-GW39 using LR Clonase II
enzyme mix (Invitrogen).

In vitro binding assays. Recombinant M18BP1 protein
truncations (C1 aa1–440, C2 aa441–998, C3 aa325–800, C4
aa441–800, C5 aa735–800) were expressed as GST tagged
versions in E. coli and purified on Glutathione-S-Sepharose (GE
Healthcare). In vitro translation of CENP-C protein truncations
(aa1–367, aa368–656, aa657–906) was performed using TnT1

Quick Coupled Transcription/Translation System (Promega).
10ml of the in vitro translated myc-tagged CENP-C and 5mg
M18BP1 GST-fusion protein coupled to Glutathione-S-
Sepharose were incubated in IP buffer (50 mM Tris pH7.5,
150 mM NaCl, 1 mM EDTA, 0.1% NP40, 20% glycerol and
proteinase inhibitor cocktail (Roche)) overnight at 4°C on a
rotating wheel. The beads were washed four times with IP buffer
containing 1 M NaCl and resuspended in 50 ml SDS loading

buffer (Roth). Bound proteins were separated on SDS poly-
acrylamidgels and detected by immunoblotting using a-myc
antibody (9E10).

Co-immunoprecipitation in HEK293FT cells. HEK293FT
cells (Invitrogen) were co-transfected with plasmids expressing
EGFP-CENP-C and myc-M18BP1. Isolated nuclei were resus-
pended in high salt IP buffer (50 mM Tris pH 7.5, 500 mM
NaCl, 1 mM EDTA, 0.1% NP40, 20% glycerol) with 4 strokes
through a 19.5G syringe needle. After incubation on ice for
30 min the solution was sonicated 3x10” at an amplitude of
30 in a Branson sonifier. The nuclear extract was diluted to a
final concentration of 150 mM NaCl with no salt IP buffer
and precipitates were removed by centrifugation. The extract
was incubated overnight at 4°C on a rotating wheel with GFP-
Trap beads (ChromoTek) and agarose beads. The beads were
washed five times with IP buffer containing 300 mM NaCl and
afterwards resuspended in SDS loading buffer (Roth). Proteins
were separated on SDS-polyacrylamidgels and analyzed by
protein gel blotting using a-myc (9E10) and a-GFP (Roche
# 11814460001) antibodies.
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Supplementary Figure S1. Generation of M18BP1-EGFP knock-in cells. 

(A) Targeting strategy for the M18BP1-EGFP knock-in allele. Part of the M18BP1 locus containing the 

last exons (11-14) is depicted in the scheme. The last exon contains the regular STOP codon (red line), 

followed by the 3’ UTR. The targeting construct comprises the region shown by the thick black line. 

The knock-in allele contains the EGFP tag just before the regular STOP codon, followed by the loxP 

flanked Neomycin selection cassette. (B) RT-qPCR quantification of M18BP1 expression levels in the 

parental wild type mES cell line and the K1B2 cell line which carries the M18BP1-EGFP knock-in 

allele. Average expression levels from triplicate experiments, normalized to Actin and GAPDH are 

shown. 
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Supplementary Figure S2. Centromeric localization of M18BP1. 

Localization of endogenously tagged M18BP1-EGFP in the K1B2 mES cell line. K1B2 cells were 

stained for CENP-A and confocal stacks were recorded. Maximum intensity projections of individual 

cells representing the different M18BP1 staining patterns: strong enrichment at centromeres (s), weak 

enrichment (w), no enrichment/diffuse nuclear (d) are shown. 
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Supplementary Figure S3. CENP-C protein levels in control vs. CENP-C knock-down cells. 

Five days after infection with the lentiviral knock-down vectors, control and CENP-C knock-down 

cells were harvested and nuclear extracts from these cells were probed for CENP-C, and Suv4-20h2 

which served as loading control, by western blotting. Compared to shControl cells, all three knock-

down oligos lead to reduced CENP-C protein levels, with shCENP-C #3 showing the strongest effect. 
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Supplementary Figure S4. Cell cycle profiles of K1B2 and CENP-C knock-down cells. 

Five days after infection with the lentiviral knock-down vectors, control and CENP-C knock-down 

cells were harvested, fixed and stained for DNA content with propidium iodide (PI). FACS analysis 

revealed a normal cell cycle profile, however, the CENP-C knock-down cells tend to show higher 

levels of sub-G1 cells, indicative of cell death. This effect is most apparent with knock-down shCENP-

C #3, which shows the strongest reduction of CENP-C mRNA levels. 
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Supplementary Figure S5. Relative cell numbers of shControl and shCENP-C knock-down 

populations. 

Five days after infection with the lentiviral knock-down vectors, control and CENP-C knock-down 

cells were harvested and counted. The cell number of the control population was set to 100%. The bar 

graph shows relative cell numbers for the individual shCENP-C knock-down populations. 

 

!"

#!"

$!"

%!"

&!"

'!!"

()*+,-.+/ ()*0,1*23' ()*0,1*23# ()*0,1*234

!"#$ %"&'()*"+&,-&.(+%/%/'0&1"##.& &
2&3$4.&$ "+&5+$'.3(1 ,'&,-&6"'76&

5$+0" '0&.8!9:.&



7 
 

 
Supplementary Figure S6. Cell cycle analysis in CENP-C knock-down cells. 

(A) Five days after infection with the lentiviral knock-down vectors, control and CENP-C knock-down 

cells were stained with H3S10P antibodies to detect cells in G2 phase. Maximum intensity projections 

of representative examples for G2 phase cells are shown. Control cells display a ‘weak’ centromeric 

staining pattern, in the CENP-C knock-down sample we observe cells which have lost the centromeric 

M18BP1 signals. (B) Four days after infection with the lentiviral knock-down vectors, control and 

CENP-C knock-down cells were transfected with PCNA-RFP expression plasmids. G1 cells which are 

characterized by small nuclei and diffuse PCNA signals were examined for M18BP1-EGFP 

localization. Control cells show ‘strong’ centromeric M18BP1-EGFP signals. In the CENP-C knock-

down population we can detect G1 phase cells which have lost or strongly reduced centromeric 

enrichment of M18BP1. 
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Supplementary Table 1. Primers used for cloning the M18BP1-EGFP targeting construct.  
 

primer orientation primer sequence 5'-3' 
cloning 
fragment 
AB f ATAGCGGCCGCCTAACTCAAATGCAAAACC 
cloning 
fragment 
AB r CGCAAGCTTTGATTAATAGTTTTTCACTAT 
cloning 
fragment 
YZ f TCCAAGCTTCCATGACTTGCTCACCTTG 
cloning 
fragment 
YZ r TGCACTAGTTATGAAAGAACTCTCATAATG 
cloning 
fragment 
CD f ATAGCGGCCGCTCTCCACCACCAACACGGA 
cloning 
fragment 
CD r TCGGAATTCGTCAGAATTGGAAAAGTAAT 
cloning 
fragment 
EF f CGAGGATCCTGATAGACGACTTGCAGGAAT 
cloning 
fragment 
EF r TCTGTCGACAGTCCACAATCTTAACTCTG 
nested 
PCR 
outer f ACCGCTTCCTCGTGCTTTAC 
nested 
PCR 
outer r AAAGCCAAGCTCACTGTTTC 
nested 
PCR 
inner f GATTGGGAAGACAATAGCAGGCATG 
nested 
PCR 
inner r GCGCAAGTAAATCATCAAAAGGCTG 
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Supplementary Table 2. ShRNA oligonucleotide sequences. 
 
name species direction sequence – in 5’ to 3’ direction (targeted sequence 

in bold)  
TRC code targeted 

mRNA 
fw CGCGTCCGGCAACAAGATGAAGAGCACCAACTCGAGT

TGGTGCTCTTCATCTTGTTGTTTTTGGAAA 
non 
targeting 
shRNA 

none 

rw CCGGTTTCCAAAAACAACAAGATGAAGAGCACCAACT
CGAGTTGGTGCTCTTCATCTTGTTGCCGGA 

SHC202V none 

fw CGCGTCCGGGCATGTTGGCCAAGATATATTCTCGAGA
ATATATCTTGGCCAACATGCTTTTTGGAAA 

shCENP-C1 
#1 

Mm 

rw CCGGTTTCCAAAAAGCATGTTGGCCAAGATATATTCTC
GAGAATATATCTTGGCCAACATGCCCGGA 

from TRC 
designer 

NM_0076
83.3 

fw CGCGTCCGGGTTCGTCGATCTAATAGAATACTCGAGTA
TTCTATTAGATCGACGAACTTTTTGGAAA 

shCENP-C 
#2 

Mm 

rw CCGGTTTCCAAAAAGTTCGTCGATCTAATAGAATACTC
GAGTATTCTATTAGATCGACGAACCCGGA 

from TRC 
designer 

NM_0076
83.3 

fw CGCGTCCGGGACATCACCGAATGTTCATTTCTCGAGAA
ATGAACATTCGGTGATGTCTTTTTGGAAA 

shCENP-C 
#3 

Mm 

rw CCGGTTTCCAAAAAGACATCACCGAATGTTCATTTCTC
GAGAAATGAACATTCGGTGATGTCCCGGA 

from TRC 
designer 

NM_0076
83.3 
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Supplementary Table 3. Primers used for quantitative PCR.  
 
gene mRNA direction sequence in 5’ to 3’ direction 

fw aagccgacccatctcaatag CENP-C 
 

NM_007683.3 
rw taagatccatggggacaagc 
fw ggtcatcactattggcaacg beta Actin NM_007393.3 
rw tccatacccaagaaggaagg 
fw ctccaaaaggccagcatcacg M18BP1 NM_172578.2 
rw ttgccggaggtaggctgttcc 
fw tcaagaaggtggtgaagcag GAPDH NM_008084.2 
rw gttgaagtcgcaggagacaa 
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Supplementary Table 4. Primers used for cloning of M18BP1 and CENP-C truncation 

constructs. 

 
gene mRNA direction sequence in 5’ to 3’ direction 

fw ggggacaagtttgtacaaaaaagcaggcttaactatgattgtaacacctttga M18BP1 NM_172578.2 
rw ggggaccactttgtacaagaaagctgggtcgtcagaattggaaaagtaa 
fw ggggacaagtttgtacaaaaaagcaggcttaactatgattgtaacacctttga M18BP1 

(aa1-
440) 

NM_172578.2 
rw ggggaccactttgtacaagaaagctgggtctcttgctgtttcctgtctg 

fw ggggacaagtttgtacaaaaaagcaggcttaactatgcaggaaacagcaagag M18BP1 
(aa441-
998) 

NM_172578.2 
rw ggggaccactttgtacaagaaagctgggtcgtcagaattggaaaagtaa 

fw ggggacaagtttgtacaaaaaagcaggcttaactatgactgttgtaaaagaag M18BP1 
(aa325-
800) 

NM_172578.2 
rw ggggaccactttgtacaagaaagctgggtcatgttttcgggatccttgg 

fw ggggacaagtttgtacaaaaaagcaggcttaactatgcaggaaacagcaagag M18BP1 
(aa441-
800) 

NM_172578.2 
rw ggggaccactttgtacaagaaagctgggtcatgttttcgggatccttgg 

fw ggggacaagtttgtacaaaaaagcaggcttaactatggaccatctacctggtt M18BP1 
(aa735-
800) 

NM_172578.2 
rw ggggaccactttgtacaagaaagctgggtcatgttttcgggatccttgg 

fw ggggacaagtttgtacaaaaaagcaggcttaactatggcctcgttccatctggatc CENP-C 
(aa1-
367) 

NM_007683.3 
rw ggggaccactttgtacaagaaagctgggtctttattttcaggagatcgacaa 

fw ggggacaagtttgtacaaaaaagcaggcttaactatgcaatctgagactgccaaaac CENP-C 
(aa368-
656) 

NM_007683.3 
rw ggggaccactttgtacaagaaagctgggtcttcataattcttgaacctggaag 

fw ggggacaagtttgtacaaaaaagcaggcttaactatgccagggagcagtaattctg CENP-C  
(aa657-
906) 

NM_007683.3 
rw ggggaccactttgtacaagaaagctgggtccctttttatttgagtaaaaagaag 
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Abstract

Kinetochores are multi-protein megadalton assemblies that are required for attachment of microtubules to centromeres
and, in turn, the segregation of chromosomes in mitosis. Kinetochore assembly is a cell cycle regulated multi-step process.
The initial step occurs during interphase and involves loading of the 15-subunit constitutive centromere associated complex
(CCAN), which contains a 5-subunit (CENP-P/O/R/Q/U) sub-complex. Here we show using a fluorescent three-hybrid (F3H)
assay and fluorescence resonance energy transfer (FRET) in living mammalian cells that CENP-P/O/R/Q/U subunits exist in a
tightly packed arrangement that involves multifold protein-protein interactions. This sub-complex is, however, not pre-
assembled in the cytoplasm, but rather assembled on kinetochores through the step-wise recruitment of CENP-O/P
heterodimers and the CENP-P, -O, -R, -Q and -U single protein units. SNAP-tag experiments and immuno-staining indicate
that these loading events occur during S-phase in a manner similar to the nucleosome binding components of the CCAN,
CENP-T/W/N. Furthermore, CENP-P/O/R/Q/U binding to the CCAN is largely mediated through interactions with the CENP-N
binding protein CENP-L as well as CENP-K. Once assembled, CENP-P/O/R/Q/U exchanges slowly with the free nucleoplasmic
pool indicating a low off-rate for individual CENP-P/O/R/Q/U subunits. Surprisingly, we then find that during late S-phase,
following the kinetochore-binding step, both CENP-Q and -U but not -R undergo oligomerization. We propose that CENP-P/
O/R/Q/U self-assembles on kinetochores with varying stoichiometry and undergoes a pre-mitotic maturation step that could
be important for kinetochores switching into the correct conformation necessary for microtubule-attachment.
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funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: diekmann@fli-leibniz.de

. These authors contributed equally to this work.

¤a Current address: Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
¤b Current address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
¤c Current address: HKI, Jena, Germany

Introduction

During mitosis, accurate chromosome segregation is essential

for the correct transmission of the genetic material to the daughter

cells. A multi-protein complex, the kinetochore, assembles at the

centromere of each chromatid in order to mediate this function.

Kinetochores contain an inner core that is present throughout the

cell cycle [1,2], and a set of outer kinetochore proteins that stably

associate with the inner core during mitosis [3,4]. The kinetochore

is built from two major conserved protein networks, (1) the CCAN

(constituitive centromere associated network) complex [5–13]

which is associated to centromeric nucleosomes [5,14–16] that

consist of repetitive a-satellite DNA containing the histone H3

variant CENP-A [17,18], and (2) the KMN network [7,19–27]

which directly connects the kinetochore to microtubules [3,28,29].

Functionally, the CCAN is required for the efficient recruitment of

CENP-A into centromeric nucleosomes at the end of mitosis

[6,14,30,31] and the maintenance of centromeric chromatin, but

is also involved in chromosome alignment, kinetochore fiber

stability and bipolar spindle assembly [1,2,5,6,8,32–34]. The

CCAN was suggested to establish, in interphase, an inner

kinetochore structure which functions as an assembly platform

for KMN network proteins in mitosis, and only the KMN proteins

then connect the inner kinetochore to microtubules [3]. However,

ectopical CENP-T and -C alone are able to establish a functional

outer kinetochore [16,35] indicating that instead of being only a

structural platform, the CCAN seems to be a regulator of the

mitotic kinetochore-microtubule attachment [36].

The CCAN proteins CENP-U, -O, -P, -Q, and -R were

identified as a CCAN subclass (named CENP-O class proteins)
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[3,5,6,10,37]. CENP-PORQU proteins are non-essential showing,

when depleted, common mitotic defects and slower proliferation

rates [6,10,33,38]. Kinetochore localization of CENP-PORQU is

interdependent [5,10,36]. In chicken DT40 cells, and when these

genes are expressed in E. coli, CENP-O, -P, -U and -Q form a

stable complex to which CENP-R can associate [10]. These data

describe the CENP-PORQU complex as a stable unit which might

function as a structural element in the CCAN. However, CENP-

PORQU proteins have different protein specific functions: CENP-

U [39] as well as CENP-Q [36] are able to bind to microtubules,

only depletion of CENP-O seems to destabilise microtubule

bundles at kinetochores influencing bipolar spindle assembly

[34,39], and CENP-U interacts with Hec1, an interaction

negatively regulated by Aurora-B kinase [39]. In the complex,

CENP-P is closely associated with CENP-O, and CENP-U binds

to CENP-Q [10,40–42]. In order to resolve these different views,

we analysed protein binding, complex architecture and dynamics

of the human kinetochore CENP-PORQU sub-complex by

various in vivo techniques.

Materials and Methods

Plasmids
Plasmids pIC133, pIC190, pIC141, pIC140, and pIC235

encoding LAP-CENP-K, -Q, -P, -O, respectively -R fusion

proteins were a kind gift of Dan Foltz and Iain Cheeseman. The

full length cDNA clone of CENP-L, IRAUp969 EO882D, was

from RZPD, Berlin, Germany). They were used for amplification

of full length CENP-K, -L, -Q, -P, -O, and -R by PCR (Expand

high fidelityPLUS PCR System, Roche, Penzberg, Germany)

applying forward primer 59-GGGGACAAGTTTGTACAAAAA-

AGCAGGCTTCGAAAACCTGTATTTTCAGGGCGCCACCA-

TGGGCATGAATCAGGAGGATTTAGATCC -39 and reverse

primer 59- GGGGACCACTTTGTACAAGAAAGCTGGGTC-

TGATGGAAAGCTTCTAATCTTATT -39 for CENP-K, for-

ward primer 59- GGGGACAAGTTTGTACAAAAAAGCAGG-

CTTCGAAAACCTGTATTTTCAGGGCGCCACCATGGATT-

CTTACAGTGCACCAG -39 and reverse primer 59- GGGGAC-

CACTTTGTACAAGAAAGCTGGGTCTCAATTTGAAAAAT-

TGCCAGTTCTG for CENP-L, forward primer 59- GGGGA-

CAAGTTTGTACAAAAAAGCAGGCTTCGAAAACCTGTAT-

TTTCAGGGCGCCACCATGGGCATGTCTGGTAAAGCAAA-

TGCTTC -39 and reverse primer 59- GGGGACCACTTTGTA-

CAAGAAAGCTGGGTAGATGCATCCAGTTTCTTATAGG

-39 for CENP-Q, forward primer 59- GGGGACAAGTTTGTA-

CAAAAAAGCAGGCTTCGAAAACCTGTATTTTCAGGGC-

GCCACCATGGACGCAGAGCTGGCAGA -39 and reverse

primer 59- GGGGACCACTTTGTACAAGAAAGCTGGGTG-

TTGTTCTCCTCTGCACAAAGC -39 for CENP-P, forward

primer 59- GGGGACAAGTTTGTACAAAAAAGCAGGCTT-

CGAAAACCTGTATTTTCAGGGCGCCACCATGGAGCAG-

GCGAACCCTTT -39 and reverse primer 59- GGGGACCAC-

TTTGTACAAGAAAGCTGGGTGGAGACCAGACTCATAT-

CCAAC -39 for CENP-O, and forward primer 59- GGGGAC-

AAGTTTGTACAAAAAAGCAGGCTTCGAAAACCTGTATT-

TTCAGGGCGCCACCATGGGCATGCCTGTTAAAAGATCA-

CTGAA -39 and reverse primer 5- GGGGACCACTTTGTA-

CAAGAAAGCTGGGTGTTTAAAATGGCTTTAAGGAATT-

CA -39 for CENP-R. The CENP-Q, -P, -O, and -R harbouring

linear PCR fragments were transferred into vector pDONR221 by

BP recombination reaction (Invitrogen, Carlsbad, CA, USA). After

verification by sequencing (MWG Biotech, Ebersberg, Munich,

Germany), the genes were cloned by LR recombination reactions

into various modified pFP-C and pFP-N (BD Biosciences, Clontech,

Palo Alto, CA, USA) based Destination vectors. As the result we

obtained expression vectors carrying the genes coding for CENP-Q,

-P, -O, and -R fused to the C-termini as well as to the N-termini of

EGFP and mCherry. In the constructed fluorescent proteins (FP)-

CENP-Q, -P, -O, and -R, the amino acid (aa) linker between the

fused proteins is SGTSLYKKAGFENLYFQGAT. Due to the

cloning protocol, the aa sequence TQLSCTKW is added to the C-

terminal ends of FP-CENP-Q, -P, -O, and -R. In the constructs

where CENP-Q, -P, -O, and -R are fused to the N-termini of EGFP

respectively mCherry, the (aa) linker is TQLSCTKWLDPPVAT.

The cloning of CENP-U and -C [43] and CENP-N [44] have been

described previously. Vector pIRES2 used for the simultaneous

expression of EGFP and mRFP, was a friendly gift of J. Langowski

(Heidelberg). For expression of a mRFP-EGFP fusion protein, we

digested vector pmRFP-C1 with SnaBI and XmaI and ligated the

resulting 1012 bps DNA fragment containing mRFP into a 7106 bp

DNA obtained from a SnabI-XmaI digest of vector pH-G-C. In the

resulting Gateway expression vector pH-mR-G-C, the amino acid

linker between mRFP and EGFP is SGLRSRAQASNSAVDG-

TAGPVAT. Full length protein expression of the fusion constructs

was confirmed by Western Blots.

Live cell FRET measurements
FRET was measured by applying the acceptor photo-bleaching

method using the FRET pair EGFP-mCherry. Co-transfected

HEp-2 cells grown on coverslips were analyzed using a confocal

laser scanning microscope (LSM 510 Meta) and a C-Apochromat

636/1.2NA oil immersion objective (Carl Zeiss, Jena, Germany).

EGFP fluorescence was excited with the Argon 488 nm laser line

and analyzed using the Meta detector (ChS1+ChS2: 505–

550 nm). mCherry fluorescence was excited with the 561 nm

laser line (DPSS 561-10) and detected in one of the confocal

channels using a 575–615 nm band-pass filter. To minimize cross

talk between the channels, each image was collected separately in

the multi-track-mode, i.e. both fluorophores were exited and

recorded specifically and separately. Cells moderately expressing

both fusion proteins with comparable expression levels were

selected for analysis. Acceptor photo-bleaching was achieved by

scanning a region of interest (ROI) including up to five

centromeres of a nucleus 50 times (scans at 1.6 msec pixel time)

using the 561 nm laser line at 100% intensity. Bleaching times per

pixel were identical for each experiment, however, total bleaching

times varied depending on the size of the bleached ROIs. 4 donor

and acceptor fluorescence images were taken before and up to 4

images after the acceptor photo-bleaching procedure to assess

changes in donor and acceptor fluorescence. To minimize the

effect of photo-bleaching of the donor during the imaging process,

the image acquisition was performed at low laser intensities. To

compare the time course of different experiments, donor intensities

in the ROI were averaged and normalized to the intensity

measured at the first time point after photo-bleaching, and

acceptor intensities in the ROI were averaged and normalized to

the mean intensity measured at time points 2–4 before photo-

bleaching. The FRET efficiency was calculated by comparing the

fluorescence intensity (IDA) before bleaching (in presence of the

acceptor) with the intensity (ID) measured after bleaching (in the

absence of the acceptor) according to E = 12IDA/ID. The FRET

efficiencies of numerous bleached and unbleached locations were

compared by a paired t-test (a= 0.05). The difference between the

means is a measure for the FRET-value, which was interpreted to

have occurred when the paired t-test revealed a statistically

significant difference between the two input groups with a p-value

below 0.001. A p-value .0.001 was interpreted as an indication

for insignificant FRET.

CENP-PORQU
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In two cases, the acceptor-bleaching FRET data were

confirmed by additional fluorescence lifetime FLIM experiments.

In FLIM experiments, the donor fluorescence lifetime was

determined by time-correlated single photon counting (TCSPC)

in living human HEp-2 cells. For donor fluorescence excitation, a

pulsed picosecond diode laser (LDH Series, PicoQuant, Berlin,

Germany) with a frequency of 20 MHz along with a dedicated

driver (PDL Series, PicoQuant) was used. Via a fiber coupling

unit, the excitation light was guided into a confocal laser scanning

microscope (LSM 510 Meta). Laser power was adjusted to give

average photon counting rates of 104–105 photons/sec (0.0001–

0.001 photon counts per excitation event) or less to avoid pulse

pile-up. Images of 2566256 pixels were acquired with a 636 C-

Apochromat water immersion objective (NA 1.20, Carl Zeiss).

Photons emitted by the sample were collected by the water

immersion objective and detected by a single photon avalanche

diode (PDM series, PicoQuant). The data were acquired by the

PicoHarp 300 TCSPC module (PicoQuant) working in the TTTR

mode (time-tagged time-resolved). To calculate the fluorescence

lifetime, the SymPhoTime software package (v4.7, PicoQuant) was

used. Selected areas of the images corresponding to single

centromeres (resulting in the fluorescence lifetime histograms) or

the sum of all centromeric regions were fitted by maximum

likelihood estimation (MLE). Depending on the quality of a fit

indicated by the value of x2, a mono- or bi-exponential fitting

model including background was applied. A model was rejected

when x2 exceeded a value of 1.5. In this way, the presence of

scattered light in few measurements could be identified and

separated. However, due to low photon numbers and too close

time constants, the simultaneous presence of two different donor

fluorescence lifetimes for complexes with donor-only and donor

plus acceptor in one centromere could not be separated by a bi-

exponential fit. A donor fluorescence lifetime obtained from a

centromere in a cell co-expressing donor and acceptor molecules

was considered to be significantly different from the control

measurement, when the lifetime differed from the mean of the

control values by .3 standard deviations. The FRET efficiency

was calculated by comparing the donor fluorescence lifetime (tDA)

in the presence of the acceptor with the respective fluorescence

lifetimes (tD) of control measurements obtained in absence of an

acceptor following E = 12tDA/tD.

F3H
BHK cells containing a lac operator repeat array [45] were

cultured in DMEM medium with 10% FCS and seeded on

coverslips in 6-well plates for microscopy. After attachment, cells

were co-transfected with expression vectors for the indicated

fluorescent fusion proteins and a LacI-GBP fusion [46,47] using

polyethylenimine (Sigma, St. Louis, USA). After about 16 hrs cells

were fixed with 3.7% formaldehyde in PBS for 10 minutes,

washed with PBST (PBS with 0.02% Tween), stained with DAPI

and mounted in Vectashield medium (Vector Laboratories,

Servison, Switzerland).

Samples were analyzed with a confocal fluorescence microscope

(TCS SP5, Leica, Wetzlar, Germany) equipped with a 636/1.4

numerical aperture Plan-Apochromat oil immersion objective as

described [47]. DAPI, EGFP and mCherry were excited by

405 nm diode laser, 488 nm argon laser and 561 nm diode-

pumped solid-state laser, respectively. Images were recorded with

a frame size of 5126512 pixels.

Cell culture, transfection and Western Blots
HeLa, HEp-2 and U2OS cells (ATCC, Manassas, USA) were

cultured and Western blots were carried out as described [44,48].

In order to determine cell cycle dependent CENP-O/Q/P levels,

HEp-2 or HeLa cells were synchronised by double-thymidine

block. Aliquots of equal cell numbers were taken after 2, 4, 6, 8

and 10 hrs after release and lysed. In the Western blot, CENP-O

[33], CENP-P [36] and CENP-Q (Rockland, Gilbertsville, USA)

are identified by specific primary antibodies which are then

detected by fluorescently labelled secondary antibody (Molecular

Probes, Eugene, USA). CENP-O/P/Q amounts are quantified by

the ODYSSEY Infrared Imaging System (LiCor, Lincoln, USA)

following the protocol of the manufacturer.

Fluorescence Cross-Correlation Spectroscopy (FCCS)
FCCS analyses [49,50] were performed at 37uC on an LSM

710 Confocor3 microscope (Carl Zeiss, Jena, Germany) using a C-

Apochromat infinity-corrected 406/1.2 NA water objective.

U2OS cells were double transfected with vectors for the

simultaneous expression of EGFP and mCherry fusion proteins

and analysed. On cells expressing both fusion proteins at relatively

low and comparable levels, we selected spots for the FCCS

measurements in areas of the nucleoplasm which were free of

kinetochores. For illumination of the EGFP-fusion proteins, we

used the 488 nm laser line of a 25 mW Argon/2-laser (Carl Zeiss)

and for simultaneous illumination of the mCherry fusion proteins

a DPSS 561-10-laser (Carl Zeiss), both at moderate intensities

between 0.2 and 0.5%. The detection pinhole was set to a

relatively small diameter of 40 mm (corresponding to about 0.8

airy units). After passing a dichroic beam splitter for APDs

(avalange photodiode detector; NTF 565), the emission of

mCherry was recorded in channel 1 through a BP-IR 615–

680 nm bandpath filter by an APD (Carl Zeiss), whereas the

emission of EGFP was simultaneously recorded in channel 2

through a BP-IR 505–540 nm bandpath filter by a second APD.

Before each measurement, we analysed possible crosstalk between

the channels and used only cells without or with very little

crosstalk. In addition, measurements with autocorrelation values

below 1.06 for both, the mRFP channel as well as the EGFP

channel, were not further analysed. For the measurements, 10610

time series of 10 sec each were simultaneously recorded for

mCherry and for EGFP. After averaging, the data were

superimposed for fitting with the Fit-3Dfree-1C-1Tnw model of

the ZEN-software (Carl Zeiss), a diffusion model in three

dimensions with triplet function. Applying this procedure, we

obtained autocorrelations of channels 1 and 2 as well as the cross-

correlation of channels 1 versus channel 2. Before starting a set of

experiments, the pinhole was adjusted. As negative control, U2OS

cells were transfected with vector pIRES2, separately expressing

EGFP and mRFP as single molecules with fluorescence intensities

comparable to those in the FCCS analysis with CENP fusion

proteins. As a positive control, U2OS cells were transfected with

pH-mR-G-C expressing a mRFP-EGFP fusion protein, again with

fluorescence intensities comparable to those in the FCCS analysis

with CENP fusion proteins.

Cellular imaging
In vivo and in situ cellular imaging including immuno-fluores-

cence, SNAP-tag analysis, FRAP, RICS and cell cycle sychronisa-

tion were conducted as described in Orthaus et al. [48,51],

Hellwig et al. [43,44] and McClelland et al [8]. For immuno-

flourescence, primary antibodies were used at 1:250 (PCNA),

1:300 (anti-CENP-Q), 1:250 (CREST) with DAPI at 1:2000.

CENP-PORQU
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Results

CENP-O class proteins form a tightly packed complex
In chicken DT40 cells, the CENP-O class proteins form a tight

kinetochore sub-complex [10]. Here we analysed the CENP-O

class protein packaging at kinetochores in living human cells by

measuring which proteins are in close proximity. We tagged all

five CENP-O class proteins with fluorescent proteins, either EGFP

or mCherry, at either termini, and confirmed by live cell imaging

in human U2OS cells that all tagged CENP-O class proteins

localise to kinetochores during interphase and mitosis, consistent

with published results [5,6,10,33,36,39]. This kinetochore local-

isation was independent of which terminus of the CENP proteins

was tagged.

Then, by FRET we measured the proximity between chromo-

phores tagged to CENP-O class proteins. FRET between the

donor fluorophore (here: EGFP) and the acceptor fluorophore

(here: mCherry) can only generate a positive result when the

distance between donor and acceptor is less than ,10 nm. When

FRET occurs, both the intensity and lifetime of the donor

fluorescence decrease while the intensity of the acceptor emission

increases. We measured the FRET donor fluorescence intensity

with or without photo-inactivation of the acceptor (acceptor-

photo-bleaching FRET, AB-FRET) and, in order to confirm our

AB-FRET results, in two cases also the donor fluorescence lifetime

(FLIM). In AB-FRET, the acceptor chromophore is destroyed by

photo-bleaching, thereby preventing FRET from the donor to the

acceptor. Thus, when the donor is in close proximity to the

acceptor (sufficient for FRET, ,10 nm), photo-bleaching of the

acceptor results in an observable increase in donor fluorescence. In

our experiments, two separate kinetochore locations were identi-

fied in each image (marked ‘‘1’’ and ‘‘2’’; Fig. 1A and 1D). In spot

‘‘2’’ the acceptor (CENP-R-mCherry (Fig. 1A), CENP-P-mCherry

(Fig. 1D)) was photo-bleached, while spot ‘‘1’’ was not photo-

bleached, serving as an internal control for any non-FRET effects.

During bleaching of the acceptor (CENP-R-mCherry) in spot 2,

the donor (EGFP-CENP-U) fluorescence intensity significantly

increased indicating that FRET occurred between EGFP-CENP-

U and CENP-R-mCherry (Fig. 1B). Careful quantification

indicated that such FRET transfer occurred in 60% of the cases,

yielding a FRET efficiency EFRET between 6 and 18% (40

bleached spots in 18 cells, black bars in Fig. 1C). The unbleached

control spots show a narrow fluorescence variation Evar around

zero (39 bleached spots in 18 cells, grey bars in Fig. 1C). The

EFRET distribution is significantly different from the Evar control

distribution (p,0.001). Such experiments demonstrated that the

majority of pairs gave a positive FRET signal suggesting that the

CENP-PORQU subunits are closely associated (see Table 1).

Importantly, a number of pairs did not show FRET: We detected

no FRET between EGFP-CENP-Q/CENP-P-mCherry (Fig. 1D–

F). Here, after acceptor-bleaching, the donor fluorescence did not

increase (Fig. 1E) and the distribution of the EFRET values (black

bars, Fig. 1F) superimposes with the distribution of the Evar control

values (grey bars). Furthermore, we did not observe FRET

between EGFP-CENP-P/CENP-O-mCherry and between EGFP-

CENP-U/CENP-O-mCherry (see Table 1). For CENP-Q-EGFP

and mCherry-CENP-P and for CENP-P-EGFP and mCherry-

CENP-O, we confirmed these results by measuring FRET at

kinetochores in the lifetime domain (FLIM) by time-correlated

single photon counting (TCSPC) using the same fluorescent

protein FRET pair EGFP-mCherry. This approach is less error

prone compared to acceptor-bleaching FRET in the intensity

domain, however, it is considerably more elaborate and time-

consuming. We determined the CENP-Q-EGFP donor lifetime in

the absence of an acceptor as t= 2.4560.10 nsec. When the

acceptor is close, the donor life time decreases due to energy

transfer to the acceptor: for CENP-Q-EGFP/mCherry-CENP-P

we measured t= 2.0860.04 nsec and for CENP-P-EGFP/

mCherry-CENP-O we measured t= 2.1660.05 nsec. The FLIM

results (marked by ‘‘F’’ in Table 1) indicate the proximity between

CENP-Q and -P as well as between CENP-P and -O and confirm

our acceptor-bleaching FRET data. We conclude that in human

cells at kinetochores, CENP-O class proteins are in close proximity

to one another. In earlier studies we had detected FRET between

the CENP-U N-terminal region and the N-termini of CENP-B

and CENP-I, but not to the N-termini of CENP-A and CENP-C

[43].

If the orientation of the fluorophore dipole moment of the

acceptor relative to that of the donor were known, or at least one

of them would rotate freely faster than nanoseconds, a more

detailed distance between donor and acceptor could be deduced

from the measured EFRET values. In our live cell experiments

however, this information is not available to us. We therefore do

not deduce defined distance values but interpret the appearance of

FRET as an indication that donor and acceptor chromophores are

close to one another within 10 nm. Our FRET data depend on

which protein terminus is tagged: if the two protein termini are

clearly separated in space, a fluorophore fused to one terminus

might show FRET to another protein while the fluorophore fused

to the other terminus might not. In a number of cases, we could

not detect FRET between two fusion proteins. Measuring no

FRET signal might either be due to donor and acceptor

fluorophores being distal (.10 nm) or, alternatively, that donor

and acceptor dipole moments are oriented relative to one another

in an unfavorable way so that FRET cannot occur although donor

and acceptor are close. Therefore, observing no FRET signal

cannot be used for structural information.

PORQU undergoes a post-loading oligomerisation step
Recombinant CENP-Q that is expressed and purified form E.

coli lysates, exists as a soluble homo-octameric complex [36]. We

therefore asked if CENP-Q oligomerises at kinetochores in living

human cells. Indeed, we observed FRET at kinetochores between

the N-termini of CENP-Q and between its C-termini in interphase

cells, suggesting that CENP-Q oligomerises when kinetochore-

bound. In order to find out when in the cell cycle CENP-Q

oligomerizes, we carried out cell cycle dependent FRET

measurements between C- and N-termini of CENP-Q (see

Table 1, Fig. 2). U2OS cells were synchronised by double

thymidine block and released into S-phase. Subsequent cell cycle

phases were identified by CENP-F and PCNA staining. We found

no FRET in G1, early and mid S-phase, however, we detected a

significant FRET signal in late S-phase for both, the CENP-Q N-

and C-termini, and in G2 for the CENP-Q N-termini (Fig. 2).

Consistent with this, quantitative immuno-flourescence demon-

strates that CENP-Q protein levels increase at kinetochores during

S-phase and become maximal in late S-phase (see below). We also

detected a FRET proximity between two CENP-U N-termini at

kinetochores in late but not in early or middle S-phase (data not

shown).

PORQU proteins show multiple pair-wise interactions
Then we asked which of the CENP-O class proteins is able to

interact with other protein members of this class. In the

mammalian three-hybrid (F3H) assay applied here [46,47], EGFP

tagged CENP-O class proteins (bait) were recruited to the lac

operator repeat array by the GFP-binding protein fused to the Lac

repressor (GBP-LacI) forming a green spot in the nucleus (Fig. 3).

CENP-PORQU
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Co-expressed mCherry-tagged CENP-O class proteins (prey) may

either interact with the EGFP-tagged protein at the lac operator

array (visible as red spot and yellow in the overlay) or may not

interact resulting in a disperse distribution. For each mCherry

fusion, EGFP was used to control for unspecific interactions. In the

upper two rows of Fig. 3A, the clear interaction between EGFP-

CENP-O and mCherry-CENP-P as well as EGFP-CENP-P and

mCherry-CENP-O are shown. The lower two rows show the

corresponding results for CENP-O and CENP-Q. While EGFP-

CENP-Q did not interact with and recruit mCherry-CENP-O to

the lac spot, we found a very weak interaction in the reverse

combination. Such differences for reverse combinations might be

explained by sterical hindrance at the interaction site due to the

attachment to GBP-LacI for one but not the other tagged terminal

region. All results of this F3H interaction assay are listed in

Table 2. The results of this CENP-O class protein interaction

analysis indicate strong interactions between particular members

of this class (Fig. 3B). CENP-O, -P and -Q each are able to

strongly recruit and thus specifically bind two, while CENP-U and

-R are able to recruit three of the remaining four proteins. In

addition, CENP-U and CENP-R are able to bind to themselves.

We detected homo-interaction of CENP-R also by a Yeast-two-

Hybrid (Y2H) assay. CENP-U binding to itself is supported by our

FRET data indicating close proximity between CENP-U N-

termini in late S-phase (see above). Our data that CENP-P is

closely associated with CENP-O, and CENP-U with CENP-Q,

agree well with published results [10,41,42]; here we detected an

additional weaker interaction between CENP-Q and CENP-R.

However, none of the CENP-O class proteins is able to recruit all

four other proteins of this class which would be expected when the

Figure 1. Acceptor-bleaching FRET of the protein pairs EGFP-CENP-U/CENP-R-mCherry (FRET signal) and EGFP-CENP-Q/CENP-P-
mCherry (no FRET signal). Typical HEp-2 cell nuclei are displayed in (A) and (D) showing centromere location of all four CEN proteins. Two of these
locations, spot 1 and spot 2 in each of the two graphs, were selected for fluorescence intensity analysis before and after acceptor bleaching (see
enlargements below). Spot 1 served as control and showed no detectable intensity change. At spot 2, the acceptor fluorophore mCherry was
bleached (compare pre-bleach and post-bleach in (A) and (D)). In (B) and (E), the time course of the fluorescence intensity of the donor and the
acceptor of both FRET pairs are shown. The acceptor intensities in the ROI (‘‘region of interest’’; open squares) were averaged and normalized to the
mean intensity measured at the three time points before bleaching. The donor intensities in the ROI were averaged and normalized to the intensity
measured at the time point after bleaching. Bleaching of the acceptor resulted in a fluorescence intensity increase of the donor (black dots) for EGFP-
CENP-U (B) indicating the presence of FRET (see arrow), but no fluorescence intensity increase for EGFP-CENP-Q (E) indicating the absence of FRET. (C)
and (F): Donor fluorescence intensity variation observed during acceptor bleaching normalized to the intensity measured at the first time point after
bleaching. Control: spot 1 (acceptor not bleached) yielding Evar (grey bars), FRET measurement: spot 2 (acceptor bleached) yielding EFRET (black bars).
For protein pairs indicated, number of observed single cases (grouped into Evar or EFRET value ranges of 4%) displayed versus values of Evar or EFRET. (C)
EGFP-CENP-U (donor) and CENP-R-mCherry (acceptor): distribution of EFRET (40 bleached kinetochores) is clearly distinct from the distribution of Evar

(39 non-bleached kinetochores) indicating FRET. (F): EGFP-CENP-Q (donor) and CENP-P-mCherry (acceptor): distribution of EFRET (52 bleached
kinetochores) superimposes the distribution of Evar (51 non-bleached kinetochores) indicating no FRET.
doi:10.1371/journal.pone.0044717.g001

Table 1. FRET interactions between CENP-O class proteins.

EGFP fusion mCherry fusion p FRET

EGFP-CENP-P mCherry-CENP-O ,0.001 ++

EGFP-CENP-P CENP-O-mCherry 0.093 2

CENP-P-EGFP mCherry-CENP-O ,0.001 ++F

CENP-P-EGFP CENP-O-mCherry ,0.001 ++

EGFP-CENP-Q mCherry-CENP-O ,0.001 ++

EGFP-CENP-Q CENP-O-mCherry ,0.001 ++

EGFP-CENP-Q mCherry-CENP-P ,0.001 ++

EGFP-CENP-Q CENP-P-mCherry 0.724 2

EGFP-CENP-Q mCherry-CENP-Q ,0.001 ++

CENP-Q-EGFP CENP-Q-mCherry ,0.001 ++

CENP-Q-EGFP mCherry-CENP-P ,0.001 ++F

EGFP-CENP-U mCherry-CENP-O ,0.001 ++

EGFP-CENP-U CENP-O-mCherry 0.655 2

EGFP-CENP-U mCherry-CENP-P 0.003 +

EGFP-CENP-U CENP-P-mCherry ,0.001 ++

EGFP-CENP-U mCherry-CENP-Q ,0.001 ++

EGFP-CENP-U mCherry-CENP-R ,0.001 ++

EGFP-CENP-U CENP-R-mCherry ,0.001 ++

CENP-U-EGFP mCherry-CENP-P ,0.001 ++

EGFP-CENP-B CENP-Q-mCherry ,0.001 ++

EGFP-CENP-O mCherry-CENP-K ,0.001 ++

CENP-O-EGFP mCherry-CENP-K 0.004 +

EGFP-CENP-R mCherry-CENP-K ,0.001 ++

CENP-R-EGFP mCherry-CENP-K ,0.001 ++

EGFP-CENP-U mCherry-CENP-K ,0.001 ++

CENP-U-EGFP mCherry-CENP-K 0.167 2

EGFP-CENP-U mCherry-CENP-U ,0.001 ++

CENP-N-EGFP mCherry-CENP-K ,0.001 ++

The FRET pair EGFP-mCherry is used. ‘‘F’’ indicates that for these fusions FRET
was detected also by FLIM. ++: strong FRET, +: weak FRET, 2: no FRET.
doi:10.1371/journal.pone.0044717.t001

Figure 2. Cell cycle-dependent FRET between CENP-Q C- (grey
bars) and N-termini (white bars). In late S-phase and G2, significant
FRET is observed (p,0.001). In G1, early and mid S-phase, no FRET is
observed (p.0.005).
doi:10.1371/journal.pone.0044717.g002
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complex pre-forms in the nucleoplasm. Furthermore, ectopic

recruitment to the lac operator repeat array obviously is not strong

enough to enable indirect binding: e.g. CENP-L recruits CENP-R,

and CENP-R recruits CENP-Q, but CENP-L is not able to attrack

CENP-Q to this site. Thus, this F3H assay is, to a large extent,

specific for direct interactions.

CENP-PORQU subcomplex contacts other CCAN proteins
Kinetochore localization is determined by CENP-A which is

recognized by CENP-N and CENP-C [14–16]. CENP-L binds to

the C-terminal region of CENP-N in vitro [14] and CENP-K

kinetochore localisation depends on the presence of CENP-N and

-C [5,8,14,52]. We therefore asked, if these kinetochore proteins,

being directly or closely linked to CENP-A, are able to recruit

single CENP-PORQU proteins or the whole complex to an

ectopic chromatin site in human cell nuclei in vivo. We studied the

interaction of CENP-C, -L, -K and -N with CENP-PORQU

proteins by F3H; the results are listed in Table 2 and displayed in

Fig. 3B. CENP-N shows binding to CENP-R and some weak

binding to CENP-U, however, only for mCherry-tagged CENP-N

(prey) while EGFP-tagged CENP-N (bait) does not show any

interaction with CENP-PORQU proteins. CENP-L shows strong

binding to CENP-R and moderate binding to CENP-U (strong in

one, weak in the other version; see Table 2) and very weak binding

to CENP-C (only in one orientation). Furthermore, RFP-tagged

CENP-L also shows weak interactions with CENP-Q and CENP-

K. Next to CENP-L, also CENP-K shows strong interactions with

CENP-PORQU proteins: CENP-K strongly interacts with CENP-

O and -U, moderately with CENP-R (strong in one, weak in the

other version; see Table 2), and in one version weakly with CENP-

Q. CENP-K also weakly binds to itself. By Y2H we detected an

interaction between CENP-K and CENP-O, consistent with

results of McClelland et al. [8], and an interaction between

CENP-K and CENP-H, supporting data of Qui et al. [53],

however no interaction had been detected by Y2H between

CENP-O and either CENP-H or CENP-N [8]. We thus conclude

that to some extend CENP-N, but more efficiently CENP-L and

even more so CENP-K mainly recruit CENP-O, -U and -R to

kinetochores but much less so CENP-Q, and not CENP-P. This

finding agrees with results of Okada et al. [6] who observed in

human and DT40 cells that the localization of CENP-O, -P, -Q

and -H was disrupted in CENP-K and CENP-L depleted cells.

Our results extend their observations by identifying the pairwise

interactions responsible for the observed data: Potentially CENP-P

and CENP-Q are disrupted from CENP-K and -L depleted cells

due to being members of the CENP-PORQU complex and not

due to specific protein-protein interactions. Similarly, the depen-

dence of CENP-U kinetochore localization on the presence of

CENP-H and -I [38] might be explained by CENP-H and -I being

required for CENP-K binding which then recruits the CENP-

PORQU complex. F3H yields more direct data on protein-protein

interactions than depletion experiments which by their very nature

also influence the presence of proteins down-stream of the

depleted protein.

We observed no recruitment to the ectopic chromatin site of any

CENP-PORQU protein by CENP-C. Furthermore, CENP-L and

-N do not recruit all five CENP-PORQU proteins, again

indicating that the CENP-PORQU complex does not pre-form

in the nucleoplasm.

We confirmed these F3H results by FRET studies. We

measured the close neighbourhood of CENP-K to several

CENP-PORQU proteins and to CENP-N, and found proximities

between the N-terminus of CENP-K with both termini of CENP-

R, the N-termini of CENP-O and -U and to the C-terminus of

CENP-N (see Table 1). These results place CENP-K inbetween

CENP-N and the CENP-PORQU proteins.

PORQU does not preassemble in the cytoplasm
In order to analyse CENP-PORQU complex pre-assembly, in

interphase we measured the mobility of the five CENP-O class

proteins in the nucleoplasm of human U2OS cells by Raster

Image Correlation Spectroscopy (RICS) [54] and found fast

mobility between 4.7 and 5.9 (615%) mm2/sec. The proteins are

thus more mobile than other inner kinetochore proteins [44,55].

The experimental variation of the measured mobilities, however,

does not allow for a conclusion on multimerisation. We therefore

performed Fluorescence Cross-Correlation Spectrometry (FCCS)

studies to determine if CENP-O class proteins form hetero-dimers

in the nucleoplasm. In double-transfected U2OS cells we analysed

various protein pairs: EGFP-CENP-O/mCherry-CENP-P, EGFP-

CENP-P/mCherry-CENP-Q, EGFP-CENP-R/mCherry-CENP-

Q, EGFP-CENP-Q/mCherry-CENP-Q, CENP-O-EGFP/

mCherry-CENP-Q, EGFP-CENP-U/mCherry-CENP-Q, EGFP-

CENP-R/mCherry-CENP-R, EGFP-CENP-R/CENP-R-

mCherry, CENP-U-EGFP/CENP-U-mCherry, CENP-U-

EGFP/mCherry-CENP-U and EGFP-CENP-U/mCherry-

CENP-O. For these protein pairs we found unequivocal cross-

correlation only between CENP-O and CENP-P. From 12 cells,

all 12 showed cross-correlation indicating that CENP-O and

CENP-P move together, i.e. they are part of one and the same

complex in the nucleoplasm outside kinetochores. The cross-

correlation analysis (Fig. 4A) resulted in a correlation of 1.020

(Fig. 4A, insert b) indicating that 29% of the molecules are co-

migrating in the nucleoplasm. As negative control, U2OS cells

were analysed separately expressing EGFP and mRFP as single

molecules. The cross-correlation curve (Fig. 4B) resulted in a value

of 1.001 (Fig. 4B, insert b) indicating the absence of any

complexation between EGFP and mRFP. As a positive control,

U2OS cells were transfected with pH-mR-G-C expressing a

mRFP-EGFP fusion protein. Cross-correlating the two channels

against each other, we obtained a value of 1.029 indicating that

about 50% of the molecules are detected as a complex (Fig. 4C).

We obtained similar cross-correlation values for the fusion EGFP-

mCherry, in agreement with results of Kohl et al. [56]. For such

fusion proteins, 100% cross correlation should be observed. The

lower value of 50% could be explained by a much slower

maturation and lower stability of mRFP compared to EGFP:

EGFP molecules bound to an immature mRFP are interpreted by

FCCS as free molecules. Thus, cross-correlation values seem to

underestimate the percentage of co-migrating molecules. Conse-

quently, hetero-dimerisation of EGFP-CENP-O and mCherry-

CENP-P probably is higher than the calculated 20–30%, we

estimate 40–60%.

In 2 out of 12 analyzed cells, a weak cross-correlation (,10%)

was observed for CENP-Q and CENP-R indicating that in a few

cases CENP-Q and CENP-R co-migrate in the nucleoplasm

outside kinetochores. The other analyzed protein pairs showed no

cross-correlation demonstrating that the CENP-PORQU complex

does not pre-form in the nucleoplasm outside kinetochores.

CENP-R and CENP-U are able to bind to themselves at an

ectopic chromatin site (see above). However, by FCCS we did not

detect any cross correlation, clearly indicating that these proteins

do not stably aggregate in the nucleoplasm. Recombinant CENP-

Q can oligomerise to octamers [36] and, when kinetochore-bound,

oligomerises in late S-phase, as detected by FRET (see above). In

the nucleoplasm, however, CENP-Q does not form di- or

multimers, as shown here by FCCS. This FCCS result is

confirmed by the absence of a FRET signal between two tagged

CENP-PORQU
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Figure 3. Centromere protein interactions analyzed by F3H assay. (A) EGFP tagged centromere proteins (bait, green) were recruited to the
lac operator repeat array by the GFP-binding protein fused to the Lac repressor (LacI-GBP). Co-expressed mCherry tagged centromere proteins (prey,
red) may either interact with the GFP-tagged protein (yellow in the overlay) or may not interact resulting in a disperse distribution. Upper two rows:
interaction between EGFP-CENP-O and mCherry-CENP-P, EGFP-CENP-P and mCherry-CENP-O. Lower two rows: EGFP-CENP-Q did not interact with
and recruit mCherry-CENP-O to the lac spot, but shows a weak interaction in the reverse combination. For all results see Table 1. Bar: 5 mm. (B): Strong
F3H interactions are displayed (++: thick lines, +: thin lines). Black bars: interactions between CENP-PORQU proteins, red arrows: recruitment of CENP-
PORQU proteins by CENP-K, -L, and -N. CENP-C is not able to recruit any of the CENP-PORQU proteins (data see Table 2).
doi:10.1371/journal.pone.0044717.g003
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CENP-Q in the nucleoplasm outside kinetochores (data not

shown).

These data show that, with the two exceptions CENP-O/-P and

CENP-Q/-R, the pairwise CENP-O class protein interactions

detected by F3H do not result in a homo- or hetero-dimerisation

of these proteins stable enough for FCCS detection. Since these

proteins do not pre-aggregate, they must enter the nucleoplasm as

single proteins. CENP-O, -P, -Q and -R are small enough

(molecular weights ,34 kDa) for not needing a nuclear localisa-

tion domain (NLS) for entering the nucleus. Only CENP-U is

larger (47.5 kDa) and indeed contains two NLS [57,58].

PORQU loads onto kinetochores in S-phase and form a
stable subcomplex

We next asked when during the cell cycle the CENP-PORQU

complex assembles. By applying SNAP-tag technology, we

determined at which cell cycle phase CENP-O is loaded to the

kinetochore. The SNAP protein tag can catalyze the formation of

a covalent bond to a benzyl-guanine moiety coupled to different

fluorescent or non-fluorescent membrane-permeable reagents

[59]. This tag allows pulse-chase experiments at a single protein

level. Consistent with previous data [60], we detected TMR-star

fluorescence on SNAP-CENP-A only in G1 cells, confirming that

CENP-A is specifically loaded in G1, while we observed a time

window of mid G1 to G2 for CENP-N binding and loading to

kinetochores [44]. Here we transfected a SNAP-CENP-O

construct. After double-thymidine and aphidicolin block release

and applying the same protocol, we found SNAP-CENP-O

present at kinetochores of G2 cells (Fig. 5A), indicating that

CENP-O is loaded onto kinetochores in or before G2. To extend

our temporal analysis to further phases of the cell cycle, we

repeated these experiments in U2OS cells since these cells have a

longer cell cycle: 12 hrs after release and following the same

experimental procedure, U2OS cells can be analysed in late-S-

phase. Here, TMR-star fluorescence for SNAP-CENP-O was

already detected in late S-phase as judged by PCNA-GFP

fluorescence (Fig. 5B). Thus, CENP-O assembles at kinetochores

already in late S-phase or earlier. Finally, to measure the earliest

time point at which CENP-O can assemble into kinetochores,

SNAP-CENP-O transfected HeLa cells were arrested in mitosis

for 12 hrs by a nocodazole block and quenched with BTP for

30 min. 4 hrs after quenching, the cells were released from

nocodazole arrest. Further 5 hrs later, SNAP-tagged CENP-O was

fluorescently labelled with TMR-star for 30 min and fixed for

examination. No TMR-star fluorescence was detected indicating

that SNAP-CENP-O is not loaded in G1 (Fig. 5C). Overall these

experiments suggest a time window of S-phase to G2 for CENP-O

loading to kinetochores. Also for CENP-T and -W [61], CENP-N

[44] and CENP-U [62] loading to kinetochores in S-phase was

observed.

Our recent work showed that CENP-T and -W [61] as well as

CENP-N [44] are loaded to human kinetochores by slow loading

dynamics, mainly during the second half of S-phase. This is in

contrast to CENP-A which is loaded at the end of mitosis and G1

[55,60]. We speculated that the CENP-O class proteins might also

be loaded slowly, mainly in S-phase. We thus studied the dynamic

binding of these EGFP-tagged CENPs by Fluorescence Recovery

After Photobleaching (FRAP) in living human U2OS cells. For

none of the five CENP-O class proteins, at any cell cycle phase, we

could detect fluorescence recovery within 150 sec after bleaching,

indicating rather stable kinetochore binding of all five proteins,

consistent with observations of Minoshima et al. [38] for CENP-U.

We then studied fluorescence recovery of these five proteins during

the cell cycle in a longer time frame, now over 4 hours. Different

cell cycle phases were identified by staining with CENP-F and by

co-expressing mRFP-PCNA for identifying S-phase and its sub-

phases [63,64], as recently described [44,55,65]. In G1, all five

CENP-O class proteins show complete recovery; four proteins

have an exchange rate (t1/2) of about one hour while only CENP-

R exchanges slower with t1/2 = 2 hrs. In S-phase and G2, CENP-

O, -P and -Q show partial recovery values of 40 to 80% with a

slower exchange rate compared to G1 of about 2 hrs (see Table 3

and Fig. 6; in same cases for CENP-O and -P, the recovery only

allows to estimate the final recovery level (values in brackets)).

These recovery amplitudes are in the same range of values as for

those of CENP-T and -W (7068%) [61] and CENP-N (4566%,

see Table 3) [44]. The slow recovery times during the second half

of S-phase coincide with the slow recovery times of CENP-T and -

W (t1/2 = 70610 min) [61], but are slower than the exchange of

CENP-N (t1/2 = 3867 min) [44]. In G2, CENP-P and -Q seem to

show slightly faster recovery times compared to S-phase. The

FRAP dynamics of CENP-U and -R are distinct from that of

CENP-O, -Q and -P. CENP-U shows 100% recovery throughout

the cell cycle with the exception of late S-phase when most of

CENP-U (7162%) is immobile (the remaining 29% of CENP-U

exchange with t1/2 = 5068 min). Our FRET data indicate that

CENP-U di- or multimerises in late S-phase. This CENP-U self-

Table 2. F3H analysis of CENP-O class protein interactions.

mCherry\EGFP CENP-O CENP-P CENP-Q CENP-R CENP-U CENP-K CENP-L CENP-N CENP-C

CENP-O 2 ++ 2 ++ 2 + 2 2 2

CENP-P + 2 +2 +2 + 2 2 2 2

CENP-Q +2 2 2 + + 2 2 2 2

CENP-R ++ +2 + ++ ++ +2 ++ 2 2

CENP-U 2 + ++ ++ ++ ++ +2 2 2

CENP-K ++ 2 +2 + ++ +2 2 2 2

CENP-L 2 2 +2 + + +2 2 2 +2

CENP-N 2 2 2 + +2 2 2 2 2

CENP-C 2 2 2 2 2 2 2 2 2

GFP-tagged CENP-O class proteins, CENP-K, -L, -N and -C (rows) were bound to ectopic chromosomes sites. When RFP-tagged CENP-O class proteins, CENP-K, -L, -N and -
C (lines) were recruited to these proteins, this was visible by a yellow dot. Signal intensity at the nuclear spot was used an indicator for interaction strength. ++, +: strong
interaction; +2: weak interaction; 2: no interaction.
doi:10.1371/journal.pone.0044717.t002
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assembly could reduce CENP-U exchange at the kinetochore in

late S-phase, explaining the high immobile fraction detected by

FRAP. This CENP-U/-U interaction seems not be mediated by

Plk1 since Plk1 binding to kinetochores occurs during late G2 [41].

Our data indicate that CENP-Q and CENP-U form di- or

oligomers after kinetochore binding before the onset of mitosis,

potentially denoting a conformational change.

Different from the behaviour of the other four proteins, for all

cell cycle phases CENP-R shows recovery values of 100% with

slow loading times of 2 to 3 hrs (Table 3). Thus, CENP-R recovery

is considerably slower than that of the other four CENP-O class

proteins. The observed distinct dynamical behaviour of the

CENP-O class proteins indicates that the complex does not bind

to the kinetochore as a pre-formed complex in the nucleoplasm

and that these proteins retain distinct dynamic behaviour also

when bound to the kinetochore.

Cell-cycle dependent protein abundance
The CCAN protein CENP-N shows varying abundance in the

cell with a maximal protein level at kinetochores in late S-phase

[8,44]. Furthermore, the presence of CENP-U at HeLa kineto-

chores increases during late G1 and early S-phase, remains high

through late S and G2 and decreases strongly during M-phase

[40]. For human CENP-O, a decrease in kinetochore presence

down to about 60% from interphase to mitosis was detected by

immuno-fluorescence [33]. Here we extended these CENP-O data

and measured the cell cycle dependent amount of CENP-O

relative to tubulin in HEp-2 cells by Western blot 2, 4, 6 (S-phase),

8 (G2), and 10 hours (M-phase) after release from a double

thymidine block (Fig. 7A). The cellular amount of CENP-O

remains rather stable from G1/S over the entire S-phase, is

reduced already in G2 and reduces further in M-phase, consistent

with findings of McAinsh et al. [33]. A corresponding Western blot

Figure 4. FCCS measurements displaying G versus lag time.
Red: mCherry (A, B) or mRFP (C), green: EGFP, black: auto-correlation.
Count rates are displayed over 10 sec (inserts a1) indicating the

absence of photobleaching, and 1 sec (inserts a2) indicating the
absence of larger protein aggregates. The cross-correlation analyses are
amplified in inserts b. (A) EGFP-CENP-O and mCherry-CENP-P indicate
complex formation in the nucleoplasm (amplitude of cross-correlation/
amplitude of mCherry signal: 29%). The amplitude of the cross-
correlation curve A(CC), relative to the diffusion-related amplitude of
one of the autocorrelation curves A(AC) of EGFP or mCherry, is a
measure of binding or dynamic colocalization [49,50]. According to this
ratio of amplitudes A(CC)/A(AC), up to 20–30% of nucleoplasmic CENP-
O and -P are hetero-dimers. Count rates were recorded simultaneously
for both fluorophores. The count rate detected in a 10 sec measure-
ment (insert a1) demonstrates the absence of photobleaching, while
the count rate in a 1 sec resolution time scale (insert a2) indicates the
absence of larger protein aggregates. The autocorrelations yielded
1.069 and 1.073 for EGFP-CENP-O and mCherry-CENP-P, respectively.
The cross-correlation analysis (with a magnified scale of G(t); insert b)
resulted in a correlation of 1.02 indicating that 29% of the molecules are
co-migrating in the nucleoplasm. (B) EGFP and mCherry expressed as
single non-fused proteins (negative control) do not show any cross-
correlation (A(CC)/A(EGFP) = 0%). The count rates (inserts a1 and a2)
indicate the absence of photobleaching and larger proteins. The
autocorrelations yielded 1.316 and 1.116 for EGFP and mRFP,
respectively. The cross-correlation curve (with a magnified scale of
G(t), insert b) resulted in a value of 1.001 indicating the absence of any
complexation between EGFP and mRFP. (C) mRFP-EGFP fusion protein
(positive control) shows cross-correlation (A(CC)/A(mRFP) = 49%). The
count rates indicate that photobleaching and the presence of larger
protein aggregates can be excluded (inserts a1, a2) and that the
autocorrelations of EGFP (1.06) and mRFP (1.09) were comparable to
the values obtained for EGFP-CENP-O and mCherry-CENP-P. Cross-
correlating the two channels against each other, we obtained a value of
1.029 indicating that about 50% of the molecules are detected as a
complex (with a magnified scale of G(t) in insert b).
doi:10.1371/journal.pone.0044717.g004
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analysis was conducted for CENP-P and CENP-Q: The level of

CENP-P decreases from late S-phase through G2 to M-phase

(Fig. 7B, D), whereas CENP-Q displayed stable protein levels from

G1/S into mitosis (Fig. 7C, D). In contrast to the constant level of

CENP-Q levels in the cell, immune-fluorescence detected an

increase of the amounts of CENP-Q at kinetochores during S-

phase, reaching a maximum in late S-phase and strongly

decreasing in G2 (Fig. 7E, F).

Discussion

The centromeric histone H3 variant CENP-A is the central

marker of centromere location and inherits this location to

daughter cells [55]. The kinetochore recognizes this epigenetic

mark, in part, through the CCAN network of proteins. The

CENP-N subunit directly binds the CENP-A CATD region of the

CENP-A containing nucleosome while the CENP-C subunit binds

the C-terminal tail of CENP-A [14–16]. In addition to these

CENP-A binding mechanisms, CENP-T/W/S/X form a unique

centromeric chromatin structure next to histone H3 containing

nucleosomes that supercoils DNA [9,12,61]. If we are to fully

understand the pathways and mechanisms that allow a mature

kinetochore to assemble, it will be crucial to define how these

chromatin-interacting complexes recruit the other 11 CCAN

subunits. Of these subunits the CENP-PORQU were reported to

form a stable complex when being expressed in E. coli [10],

whereas the CENP-H, -I, -K, -L and -M (CENP-H class) are not

known to associate into any stable sub-complexes [8]. Dependency

experiments show that CENP-PORQU requires the CENP-H

class for kinetochore binding but not vice versa [5,6,8,14,52]. The

Figure 5. CENP-O loading to kinetochores measured by the SNAP-tag technology. (A) Top: schematic representation of the performed
experiment. Below: representative images of cells showing TMR-star fluorescence for SNAP-CENP-O in G2, M-phase and the following G1. Cell cycle
phases G2 (CENP-F staining of the whole nucleus) and mitosis (specific kinetochore binding of CENP-F) are clearly identified. (B) The same experiment
as in (A) was performed with U2OS cells stably expressing PCNA-GFP. SNAP-CENP-O fluorescence appears at kinetochores in late S-phase as judged
from cellular PCNA distributions. (C) Top: schematic representation of the performed experiment. Below: representative images of cells expressing
SNAP-CENP-O showing no fluorescence at kinetochores during G1. CENP-O is thus loaded to kinetochores in S-phase.
doi:10.1371/journal.pone.0044717.g005
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working model thus involves the stepwise recruitment of CENP-

N/CENP-TWSX&CENP-HIKLM&CENP-PORQU [2]. In

line with this, CENP-L can bind directly to CENP-N in vitro

[14] and may be involved in stabilising CENP-N binding to the

CENP-A nucleosome [44]. We now show by F3H that CENP-N,

CENP-K and CENP-L are all, to some extent, capable of

recruiting CENP-O, -U and -R to an ectopic chromosomal site,

whereas CENP-C is not directly involved in CENP-PORQU

binding. The next step will be to identify the physical interactions

that mediate this assembly reaction.

The CENP-PORQU proteins assemble at kinetochores during

S-phase. For example, newly synthesized CENP-O is incorporated

in S-phase and remains at the kinetochore during mitosis

(although levels decrease, consistent with previous findings [33])

into the following G1 where they can exchange slowly and to near

completion (however, without exchange with newly synthesized

CENP-O). During the cell cycle, the CENP-PORQU proteins

show different protein abundance in the cell: while CENP-Q

protein levels do not change from G1/S to M-phase, the levels of

CENP-O and -P decrease, CENP-P levels already during S-phase

but those of CENP-O only after S-phase. The protein amount at

kinetochores is maximal in late S-phase for CENP-Q, as shown

here, and at late S-phase and G2 for CENP-U [40]. This variance

of protein abundance in the cell and at kinetochores supports our

conclusion that the CENP-PORQU complex assembles from

proteins with individual behavior, and might indicate a varying

stoichiometry of the CENP-PORQU proteins in the complex.

The reported stable interaction of CENP-PORQU in E. coil

lysates [10] suggests that these proteins may form a pre-assembled

complex in the nucleoplasm before loading onto kinetochores in S-

phase. We show here, however, by FCCS that the CENP-

PORQU subunits do not exist as a single preformed complex prior

to kinetochore-binding. Instead, in the nucleoplasm, we can only

detect a CENP-O/P (to an amount of about 50%), and, to a very

minor extent, a CENP-Q/R heterodimer. However, by F3H we

could show that each CENP-PORQU subunit can recruit two or

three other proteins of this group to an ectopic chromosomal site.

This confirms that these proteins specifically interact with each

other in mammalian cells. One caveat of this experiment is that

CCAN proteins might be specifically modified at centromere

locations. These centromere specific modifications would be

absent at the ectopic chromosomal site, potentially influencing

protein interactions. Since pair-wise binding is weak in most cases,

the strong kinetochore binding of the CENP-PORQU subunits

(identified by slow FRAP recovery times) supports multi-fold

CENP-PORQU interactions at the kinetochore. No single subunit

of CENP-PORQU can recruit all other subunits, further

supporting our finding that the complex does not pre-form in

the nucleoplasm. Our FRAP experiments, consistent with previous

studies [38], show that the cell cycle dependent turnover of CENP-

P/O/Q is similar but distinct from the behavior of CENP-U and

CENP-R. This indicates that the CENP-PORQU sub-complex

does not behave as a single unit but instead is an ensemble of

autonomously behaving proteins.

Our FRET measurements show that the CENP-PORQU

proteins, once bound and incorporated into the inner kinetochore

structure, are positioned in close proximity to one another.

Previously, we reported that the amino-terminus of CENP-U was

in close proximity to the amino-terminus of CENP-B and CENP-I,

but not to the amino-terminus of CENP-A and CENP-C [43].

This indicates that, to some extent, CENP-PORQU is imbedded

within the CCAN complex. Moreover, not all FRET connectiv-

ities should be thought of as occurring necessarily within a single

CCAN inner kinetochore complex (intra-CCAN FRET). It is

possible that some observed FRET proximities may reflect protein

neighborhoods between two different adjacent CCAN complexes

(inter-CCAN FRET). Such inter-CCAN interactions are likely,

given super-resolution experiments that support models in which

kinetochores are formed from multiple adjacent microtubule

Figure 6. Fluorescence recovery after photobleaching of EGFP-
CENP-P in mid S-phase. Normalised mean fluorescence values of 55
kinetochores taken in time steps of 30 min over 4 hours. Recovery
levels off, indicative of an about 40% immobile fraction.
doi:10.1371/journal.pone.0044717.g006

Table 3. Long term FRAP results for the CENP-PORQU proteins.

Cell cycle CENP-O CENP-P CENP-Q CENP-U CENP-R

rec/% t1/2/min rec/% t1/2/min rec/% t1/2/min rec/% t1/2/min rec/% t1/2/min

G1 100 71615 100 77615 90610 57610 100 72615 100 125615

early S (45) - (70) - 5966 118615 100 163640 100 147620

mid S (40) - 6266 8165 6566 125630 100 93615 100 160615

late S 75615 131630 49610 103610 7568 136615 2962 5068 100 180620

G2 (80) - 5668 7865 6466 90614 100 7668 100 137620

rec: fluorescence recovery relative to the initial fluorescence value before bleaching, t1/2: time for half height recovery (in min). Recovery values in brackets: estimated
recovery value; for these data, a t1/2 value could not be determined.
doi:10.1371/journal.pone.0044717.t003
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binding sites [66–68]. We expect that three-dimensional inner

kinetochore model building will allow us to evaluate and explore

these ideas.

The multifold interactions of the CENP-PORQU proteins

result in stable binding of these proteins to kinetochores,

suggesting a self-assembly mechanism [69]. In this regard,

CENP-U and CENP-R are able to homo-dimerise at an ectopic

chromosomal site (see Table 2), although we could not detect

homo-dimerisation from our FCCS measurements. Nevertheless,

upon kinetochore binding and before mitosis, these proteins are

proximal to themselves, as detected by FRET between CENP-U/-

U. Human CENP-Q, when expressed in E. coli, oligomerises into

octameric complexes [36]. In late S-phase, after kinetochore

binding and before mitosis, we detected FRET between the

CENP-Q carboxy- as well as amino-terminal regions, indicating

homo-di- or oligomerisation. We could not detect such homo-

dimerisation at an ectopic chromosomal site, and found by FCCS

that CENP-Q migrates as a monomer in the nucleoplasm,

showing that the oligomerization event occurs at kinetochores.

This self-association of CENP-U and -Q might hint towards the

presence of more than one of these proteins (CENP-U, -Q) in one

CCAN complex, indicating a varying stoichiometry in the

complex. Alternatively, these proteins might make inter-CCAN

interactions with themselves. Such an interaction between

different CCAN complexes might induce or stabilize centromere

specific chromatin structures and/or microtubule binding sites

Figure 7. Levels of CENP-O/P/Q total protein during the cell cycle. (A) Quantitative immunoblot of CENP-O relative to a-Tubulin. Protein
amounts are measured at G1/S (0 h), 2, 4, 6, 8 and 10 hrs after release from the double thymidine block in synchronised human HEp-2 cells. CENP-F
and PCNA staining identify the time points 2, 4, and 6 hrs as S-phase, time point 8 hrs as G2 and 10 hrs as M-phase. The cellular amount of CENP-O
reduces in G2 and further in M-phase. (B, C) Quantitative immuno-blots of CENP-P and CENP-Q protein levels relative to a-Tubulin at 0 (G1/S), 2 (early
S), 4 (middle S), 6 (late S-phase), 8 (G2) hrs after release from double thymidine block in synchronized HeLa cells. Cycle stages were attributed from
FACs analysis, PCNA staining and phase contrast microscopy (data not shown). (D) Representative immunoblots showing CENP-P, CENP-Q, Cyclin-B1
and a-Tubulin at the 0 (G1/S), 2 (early S), 4 (middle S) hrs time points and cells arrested in mitosis with nocodazole (16 hrs). (E) Quantitative four-
colour immuno-flourence using anti-CENP-Q (red), CREST (green), DAPI (blue) and anti-PCNA (far red) antibodies in the same cells used in panel B.
Pixel intensities of CENP-Q (signal – background) at kinetochores (n = 50 from 5 cells) are shown for each time point after release from double
thymidine block (E) and representative images (F). CENP-Q loads onto kinetochores during S-phase reaching maximal binding in late S-phase (6 h).
Scale bar = 5 mm.
doi:10.1371/journal.pone.0044717.g007
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[70]. The latter hypothesis is attractive given that both CENP-Q

and CENP-U bind directly to microtubules in vitro [36,39]. We

speculate that this self-association of CENP-Q and -U after

kinetochore binding is a pre-mitotic maturation process that might

switch kinetochores into the correct conformation for microtubule

attachment.

Acknowledgments
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Abstract

The Epstein-Barr Virus (EBV) -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes,
interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG) repeat
element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively).
EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN) and via the ADMA-RG-repeat to
the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2) Type 1). The hypothesis of this work was that the
methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures.
With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have
the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3
(SmD3) which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we
precipitated the heterogeneous ribonucleoprotein K (hnRNP K). Specific binding of the ADMA- antibody to hnRNP K was
demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form
a complex in EBV- infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent
membrane protein 2A (LMP2A) expression by an unknown mechanism as we did not detect a direct association of hnRNP K
with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics
the surface structure of cellular proteins to interfere with or co-opt their functional properties.
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Introduction

The Epstein-Barr virus (EBV) is associated with various human

malignancies [1] and growth-transforms primary human B-

lymphocytes which are the in vitro correlate of EBV-associated

post-transplant lymphoproliferative disease (PTLD) (for review, see

[2]). In EBV-transformed lymphocytes, 11 so-called latent genes

are expressed. Of these, only the nuclear antigens EBNA1, -2, -3a,

-3c and the latent membrane protein LMP1 are necessary for

transformation (reviewed in [3]).

EBNA2 is a multifunctional transcriptional activator that does

not bind directly to DNA but is tethered to promoter elements by

interacting with DNA-bound transcription factors. For example, it

associates through a Trp-Trp-Pro (‘‘WWP325’’) motif at position

323–325 (see Figure 1) with the DNA-bound repressor RBPjk

[4,5,6]. EBNA2 is the viral functional homologue to the cellular

transmembrane receptor Notch which also activates gene expres-

sion via RBPjk (reviewed in [7]). Binding of EBNA2 or Notch

converts the repressor RBPjk to the transcriptionally active form.

Figure 1 shows a schematic representation of EBNA2. A virus

encoding an EBNA2 protein with a mutation in the WWP-motif is

unable to immortalise B-lymphocytes and does not activate the

viral oncogene LMP1 [8]. In addition to RBPjk, EBNA2 binds to

a variety of basal transcription factors [2] and forms complexes

with proteins involved in RNA metabolism like the DEAD-box

protein DDX20 (DP103/Gemin3) [9] or the survival of motor

neurons (SMN) protein [10,11]. The binding of EBNA2 to

a variety of other host proteins is reflected by its presence in high

molecular weight complexes of different composition [12,13,14].

Adjacent to the WWP-motif, EBNA2 contains an Arginine-
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Glycine (RG-) repeat element at aa 339–354 with methylated

arginine residues [10,15]. The deletion of the RG-repeat results in

a five-fold higher ability of EBNA2 to stimulate LMP1 expression,

but a recombinant virus featuring this deletion in EBNA2 has

a reduced transforming activity and needs an extended time span

to induce outgrowth of transformed cell clones [16]. The EBNA2A

protein from type A isolates was originally shown to confer a higher

transforming capacity than EBNA2B derived from type B isolates

of EBV [17]. Recently, it was demonstrated that the RG- repeat,

among other C-terminal sequences, is important to confer the

higher transforming activity of EBNA2A vs. EBNA2B [18].

Methylation is a post-translational modification that affects

protein-protein interactions [19]. Methylation at arginine residues

[20] may lead to three known forms in higher eukaryotes: v-NG

MonoMethyl-arginine (MMA), v-NG,NG-Asymmetric DiMethyl-

arginine (ADMA) and v -NG,N’G-Symmetric DiMethyl-arginine

(SDMA). The methylation is carried out by two types of Protein-

Arginine-Methyl-Transferases (PRMTs): Type I enzymes

(PRMT1, 2, 3, 4, 6 and -8) catalyse the formation of ADMA

whereas type II enzymes (PRMT5, -7 and -9) account for the

formation of SDMA ([21,22,23].

hnRNP K was originally detected as a polycytidylic acid binding

protein purified from heterogeneous nuclear ribonucleoprotein

particles [24]. Later on, it was found that hnRNP K is involved in

various cellular processes such as chromatin reorganisation,

mRNA translation, transcriptional regulation, splicing, RNA

shuttling and cell survival (for review, see [25,26]). Recently, it

was proposed that hnRNP K activates the VEGF-A promoter by

binding to unwound superhelical single stranded C-rich sequences

upstream of the transcription start site and to support association

of transcription initiation factors [27]. hnRNP K is composed of

modular regions that confer binding both to RNA or DNA as well

as protein-protein interaction domains [28]. It binds to tyrosine

kinases like c- Src and Lck as well as transcription factors such as

C/EBP. The interaction with c-Src and its activation by hnRNP K

is modulated by asymmetric dimethylation of five arginine residues

catalysed by PRMT1 [29]. Reduced PRMT1 expression in

induced erythroid maturation of human K562 cells leads to

a decreased methylation of newly synthesised hnRNP K. This

correlates with hnRNP K tyrosine phosphorylation and activation

of the human reticulocyte 15-lipoxygenase (r15-LOX) mRNA

translation, which is inhibited by hnRNP K in early erythroid

maturation [30,31].

We have previously developed monoclonal antibodies against

the methylated RG-repeat of EBNA2 and found that it contains

either SDMA or ADMA residues but does not exist in non-

methylated (NMA) form [15]. SDMA-modified EBNA2 (SDMA-

EBNA) forms a complex with the SMN protein [10], while

ADMA-modified EBNA2 (ADMA-EBNA2) preferentially binds to

the NP9 protein encoded by the human endogenous retrovirus

HERV-K (HML-2) Type 1 [32]. It is known that SMN binds only

to SDMA-modified proteins [33;34], for example to the SDMA-

modified SmD3 protein which in turn is part of the SMN complex

[35]. We therefore reasoned that the methylated surface of

EBNA2 at the RG-repeat resembles cellular proteins engaging in

similar interactions and that the antibodies should recognize these

conserved epitopes. These cellular proteins in turn should be able

to interact with proteins bound to EBNA2. Here we show that the

immunoprecipitation of cellular proteins using the SDMA-specific

antibodies indeed yields SmD3. Likewise, the ADMA-antibodies

precipitated, among other proteins, hnRNP K. Further analysis

demonstrated that EBNA2 does not only share a conserved surface

epitope with hnRNP K but that it also forms a complex with

hnRNP K. Most importantly, hnRNP K, when co-expressed with

EBNA2, strongly increases the ability of EBNA2 to activate the

viral LMP2A promoter.

Results

Monoclonal Antibodies Against SDMA- and ADMA-
EBNA2 Precipitate Cellular Proteins with Methylated
Arginine Residues

We employed previously developed monoclonal antibodies

directed against ADMA- or SDMA-modified EBNA2 [15] for

the precipitation of cellular and/or viral proteins from EBV-

infected cells. The precipitated proteins were analysed by mass

spectrometry as previously described [36] and are listed in

Table 1. Also indicated in Table 1 is the methylation status

where known. Among the proteins precipitated by the SDMA-

antibody, we identified SmD3 known to be a core component

of spliceosomal U snRNPs and a major component of the SMN

complex (see, for instance, [37,38]). SmD3 was precipitated

both from EBV-infected and non-infected cells as SmD3 has an

RG-containing repeat structure comparable to that of EBNA2

which attaches to the SMN protein [35]. The SMN protein was

not found, presumably because the binding to the SDMA-

modified protein(s) precluded the reaction with the SDMA-

Figure 1. Schematic representation of the Epstein-Barr virus nuclear antigen 2 (EBNA2). EBNA2 of the standard B95.8 strain (accession
number: AJ507799) of EBV consists of 487 amino acids (aa) present in an A-type virus. The N-terminal dimerization domain (‘‘Dim’’) is located next to
a poly-Proline stretch (‘‘Pro’’). The variable region (‘‘variable’’) differs between the A-type viruses and B-type viruses. B-type viruses have a reduced in
vitro transformation potential. The binding site for RBPjk (‘‘WWP’’) is located around a Trp-Trp-Pro motif at aa 323–325. The adjacent Arginine-Glycine
repeat (‘‘RG’’) between aa 339–354 confers binding to the survival of motor neurons (SMN) protein and represents the second nuclear localization
signal (‘‘NLS’’) in addition to the canonical NLS found at the extreme C-terminus between aa 468–487. The C-terminal acidic transactivation domain
(‘‘TAD’’) between aa 424–468 interacts with various basal transcription factors.
doi:10.1371/journal.pone.0042106.g001

hnRNP-K Binds and Co-Activates EBNA2
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Figure 2. SmD3 is precipitated by the SDMA- EBNA2 specific antibody. (A) Monoclonal antibodies (mAbs) directed against the SDMA- and
ADMA- containing Arginine-Glycine (RG)-repeat of EBNA2 were tested by precipitation using extracts of HEK 293-T cells expressing EBNA2-wt and
HA- SmD3. For each antibody, an appropriate isotype control was tested in parallel to exclude unspecific binding to the protein G Sepharose used for
precipitation. Precipitated HA- SmD3 protein was visualised using the HA -specific mAb 3F10. The position of HA- SmD3 is indicated by an arrow. (B)
Immunoprecipitation of EBNA2 from transiently transfected cells. HEK 293-T cells expressing EBNA2-wt and HA- SmD3 were precipitated with
monoclonal antibodies directed against the SDMA- and ADMA- containing Arginine-Glycine (RG)-repeat of EBNA2 using appropriate isotype control
antibodies. Precipitated EBNA2 protein was visualised using the EBNA2 mAb R3. The position of EBNA2 is indicated by an arrow.
doi:10.1371/journal.pone.0042106.g002

Table 1. Proteins precipitated by the EBNA2- SDMA antibody.

Protein Size Accession number Methylationstatus

Pre-mRNA processing splicing factor 8 ,200 kDa Q6P2Q9 unknown

U5 small nuclear ribonucleoprotein 200 kDa
helicase

,200 kDa O75643 unknown

Gem-associated protein 5 (gemin 5) ,150 kDa Q8TEQ6 unknown

U1 snRNP 70 K ,55 kDa P08621 sDMA

SmD3 ,14 kDa P62318 sDMA

Proteins precipitated by the EBNA2- ADMA antibody

Protein Size Accession number Methylationstatus

ATP dependent RNA helicase ,140 kDa Q08211 aDMA

Caprin-1 ,80 kDa Q14444 unknown

Ras-GTPase-activating protein (SH3-domain-
binding protein variant)

,55 kDa Q53HH4 unknown

hnRNP K ,55 kDa Q5T6W5 aDMA

doi:10.1371/journal.pone.0042106.t001
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specific antibody. To confirm this result, we generated an

expression vector for HA-tagged SmD3. In cell extract contain-

ing HA-SmD3, we could precipitate SmD3 with the SDMA-

but not the ADMA-specific antibody or the EBNA2- specific R3

antibody. The staining of the precipitated SmD3 with the HA-

specific antibody is shown in Figure 2A. In the control

experiment depicted in Figure 2B, EBNA2 was precipitated

with both methylation-specific antibodies and R3 but not with

the isotype control antibodies. Note that due to the use of rat

and mouse monoclonal antibodies, not all the heavy chains

(‘‘IgG-H’’) were stained by the secondary antibodies; however,

the light chains (‘‘IgG-L’’) were clearly present. These data show

that the antibodies specific for the methylated surface of EBNA2

react with epitopes on cellular proteins that interact with the

same interaction partners, in this case the SMN protein. We

were mainly interested in the analysis of proteins identified with

the ADMA-specific antibody because our previous analysis had

shown that ADMA-EBNA2 is predominantly present at

EBNA2-regulated viral promoters [15]. The proteins reactive

with the SDMA-antibody were thus not pursued further.

EBNA2 Forms a Complex with hnRNP K in EBV-infected
Cells

We used the ADMA-specific monoclonal antibodies for the

precipitation of methylated proteins from non-infected BL41 and

EBV-infected EBNA2-containing Raji Burkitt’s lymphoma cells.

Among the proteins identified by the mass spectrometric analysis,

we found hnRNP K in both EBNA2-positive and EBNA2-

negative cell extracts. To confirm this result, we first subjected

extract of non-infected BL41 cells to precipitation using the

EBNA2-specific monoclonal antibody R3 which binds at the C-

terminus outside of the methylation region [39], the SDMA- and

ADMA-antibodies and the hnRNP K specific monoclonal

antibody D6. As can be seen in Figure 3A, only the ADMA- or

the hnRNP K-specific antibody D6, but not the SDMA-specific

antibody precipitated hnRNP K. As expected, R3 did not yield

a signal, and the absence of EBNA2 in the BL41 extract was

confirmed by western blot (data not shown).

We decided to confirm the reactivity of the ADMA-antibody

using hnRNP K synthesised and asymmetrically dimethylated in

E. coli by coexpressed PRMT1. Soluble E. coli extract containing

ADMA- methylated hnRNP K was subjected to immunoprecip-

itation with either an hnRNP K-specific monoclonal antibody, the

ADMA-specific antibody or the previously described monoclonal

antibody against the non-methylated RG-repeat of EBNA2

(NMA) [15]. As shown in Figure 3B, the hnRNP K-specific as

well as the ADMA-specific antibody clearly precipitated hnRNP K

from the E. coli extract confirming the reactivity of the ADMA-

specific antibody with hnRNP K in the absence of other

eukaryotic proteins. Furthermore, we excluded binding to

Figure 3. hnRNP K is precipitated by the ADMA- specific antibody. (A) Immunoprecipitation of hnRNP K from BL- 41 cells. EBV negative BL-
41 cells were precipitated with monoclonal antibodies directed against the SDMA- and ADMA- containing Arginine-Glycine (RG)-repeat of EBNA2 and
an hnRNP K specific antibody using appropriate isotype control antibodies. The EBNA2 specific mAb R3 served as a negative control. The position of
hnRNP K is indicated by an arrow. (B) ADMA- modified hnRNP K is precipitated by the ADMA- specific antibody. Soluble extract containing ADMA-
hnRNP K methylated in E. coli with the type I methyltransferase PRMT1 was subjected to immunoprecipitation using either a hnRNP K- specific mAb,
the ADMA- specific mAb and the NMA- specific mAb. Precipitated hnRNP K was visualised using the hnRNP K mAb.
doi:10.1371/journal.pone.0042106.g003
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PRMT1 which is complexed to hnRNP K [29,40] (data not

shown). We also observed binding of a small fraction of hnRNP K

by the NMA-antibody. Our previous experiments had shown that

this antibody only reacted with (non-methylated) EBNA2 when

the EBV-infected cell was treated with the methylation inhibitor

Adox [15]. The binding of this antibody to hnRNP K again

indicated that non-methylated hnRNP K apparently has a surface

at its methylation site similar to the one of EBNA2.

We next subjected Raji cells to precipitation either with the

ADMA-, SDMA- or the methylation-independent EBNA2-specific

monoclonal antibody R3, and the hnRNP K specific monoclonal

antibody D6. As can be seen in Figure 4A, upper panel, the

methylation-specific antibodies and R3 precipitated EBNA2, while

the control antibody did not. When the same extracts were probed

with the hnRNP K specific antibody D6, hnRNP K was found co-

precipitated by R3, the SDMA- and ADMA as well as the hnRNP

K antibody (Figure 4A, lower panel). Conversely, the hnRNP K-

specific antibody D6 co-precipitated EBNA2. The fact that R3

and also the SDMA-antibody precipitated hnRNP K from the

EBNA2-containing extract indicated that both proteins are in

a complex with each other, because only EBNA2 but not hnRNP

K contains SDMA residues [29].

The EBNA2-hnRNP K-interaction is Dependent of
Methylation of hnRNP K

To further investigate if the binding of the two proteins is

dependent of the methylation status of hnRNP K, we carried out

co- immunoprecipitations from 293T cells either transfected with

wild-type GFP- hnRNP K and EBNA2 or the methylation

deficient mutant GFP- hnRNP K 5RG and EBNA2. As can be

seen in Figure 4B, the binding of EBNA2 to hnRNP K is

unaffected by the GFP- tag of hnRNP K and EBNA2 is co-

precipitated by the hnRNP K specific antibody and vice versa.

These findings confirm the results from EBV positive Raji cells

(Figure 4A). In contrast, the methylation deficient 5RG mutant of

hnRNP K is unable to bind to EBNA2 whereas the binding of

EBNA2 to endogenous hnRNP K is unaffected. Furthermore the

ADMA- specific antibody is not able to precipitate GFP - hnRNP

K 5RG, which further highlights its specificity (Figure 4C).

To corroborate the above results, GST-pull-down assays were

carried out. For this purpose, we generated a GST-EBNA2 fusion

protein containing aa 300–400 of EBNA2 including the methyl-

ation site at 339–354. This fusion protein was then treated either

with E. coli-expressed His- tagged PRMT1 to generate ADMA-

EBNA2 or Baculovirus expressed PRMT5/WD45 to generate

SDMA-EBNA2. The reaction products were then precipitated

with the antibodies to see whether the correct products were

formed as the SDMA-specific antibody does not react in a western

blot [15]. Treatment with PRMT1 yielded a GST-EBNA2 fusion

protein that reacted with the NMA and the ADMA but not the

SDMA antibody as shown in Figure S2. The detection of E.coli-

expressed PRMT1 with the novel PRMT1-specific antibody 7D2

(see Materials and Methods) is shown in Figure S1. This antibody

was raised against a peptide encompassing amino acids 250–264 of

the human PRMT1 which are divergent from all other known

PRMTs. The clone 7D2 (Rat IgG2a) reacted only with a single

band in a western blot using DG75 cell extract and migrated to the

same position as E.coli-expressed PRMT1 (Figure S1). Methyla-

tion with the PRMT5/WD45 complex expressed in Baculovirus-

infected cells, however, yielded a protein that reacted with the

three antibodies indicating that the PRMT5 preparation con-

tained a contamination with a type I PRMT that catalysed the

generation of ADMA residues. The precipitation from the

untreated extract yielded, in addition to a strong band of non-

methylated fusion protein, a faint band reactive with ADMA

antibody (Figure S2). We then employed the bacterial fusion

proteins for a pull-down of hnRNP K protein from extract of non-

infected DG75 lymphoma cells. The extract from these cells was

treated with AdOx after lysis to prevent additional and unspecific

methylation of the GST-fusion proteins. As shown in Figure 5A,

we observed binding of hnRNP K to non-methylated as well as

methylated GST-EBNA2 fusion protein. In the control experi-

ment using GST-protein alone, no binding was observed. The

observation that non-methylated EBNA2 also binds hnRNP K

indicated that residues adjacent to the RG-repeat of EBNA2 might

also be involved in binding to hnRNP K. As outlined above, the

SDMA-specific antibody co-precipitated hnRNP K from EBNA2-

containing cell extract but not from non-infected cells showing that

hnRNP K interacted both with SDMA- and ADMA-EBNA2 in

vivo. The same results (Figure 5B) were obtained with a GST-

EBNA2 (aa 300–400) mutant lacking the RG repeat (DRG). This

indicated also that residues adjacent to the RG-repeat are also

involved in the interaction with hnRNP K.

To further characterise the binding of EBNA2 to hnRNP K,

a GST- tagged EBNA2 fragment containing the C-terminal amino

acids 400–487 were created. As can be seen in Figure 5C, the

fragment containing the aa 400–487 is not able to bind hnRNP K

in contrast to the EBNA2 fragment consisting of aa 300–400

encompassing the RG-repeat. These results suggest that hnRNP K

interacts with EBNA2 via its amino acids 300–400 regardless of

the presence of the methylated RG- repeat. A similar observation

was previously made for the interaction of the SMN protein with

the SDMA-modified RG-repeat of EBNA2, where the main but

not exclusive binding region for SMN on EBNA2 was located at

and around the RG-repeat [10]. In contrast, the methylation of

hnRNP K appears to be necessary for binding to EBNA2 (see also

below).

EBNA2 and hnRNP K Co-localise
ToshowthatEBNA2also formsacomplexwithhnRNPKinintact

cells, we carried out a co-localisation study using confocal laser

scanning microscopy as described previously [32]. For this purpose,

EGFP-EBNA2 [32] was expressed in HeLa cells. hnRNP K was

visualised using the D6 antibody and secondary Alexa 647 -labelled

goat anti-mouse IgG. Co-localisation of EBNA2 with hnRNP K was

observed in 35.7% of the cells that expressed both proteins (a

representative image is shown in Figure 6). hnRNP K and EBNA2

showed clear co- localisation at numerous spots along the inner

Figure 4. EBNA2 is co-precipitated with wild- type hnRNP K but not with the methylation deficient hnRNP K 5RG mutant. (A) Co-
immunoprecipitation of EBNA2 and hnRNP K from EBV positive Raji cells. Raji cells expressing EBNA2 were precipitated with monoclonal antibodies
directed against the SDMA- and ADMA- containing Arginine-Glycine (RG)-repeat of EBNA2, an EBNA2 specific mAB (R3) and an hnRNP K specific mAB
(D6). The positions of EBNA2 and hnRNP K are indicated by arrows. (B) Co-immunoprecipitation of EBNA2 and GFP - hnRNP K from transfected 293T
cells. The cells were precipitated with monoclonal antibodies directed against the SDMA- and ADMA- containing Arginine-Glycine (RG)-repeat of
EBNA2, an EBNA2 specific mAB (R3) and an hnRNP K specific mAB (D6). The positions of EBNA2 and hnRNP K are indicated by arrows. (C) No co-
immunoprecipitation of EBNA2 and GFP - hnRNP K 5RG is observed from transfected 293T cells. The cells were precipitated with monoclonal
antibodies directed against the SDMA- and ADMA- containing Arginine-Glycine (RG)-repeat of EBNA2, an EBNA2 specific mAB (R3) and an hnRNP K
specific mAB (D6). The positions of EBNA2 and hnRNP K are indicated by arrows.
doi:10.1371/journal.pone.0042106.g004
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Figure 5. hnRNP K binds to the amino acids 300 – 400 of EBNA2 regardless of the methylation or presence of the RG- repeat. (A) In
vitro methylated (SDMA and ADMA) and unmethylated (NMA) GST- EBNA2 fusion protein containing amino acids 300–400 of EBNA2 and GST alone
were coupled to glutathione sepharose and were incubated with DG75 cell extract treated with methylation inhibitor AdOX. Precipitated hnRNP K
was visualised using the hnRNP K mAb D-6. (B) GST- EBNA2DRG fusion protein containing amino acids 300–400 without the RG- Repeat of EBNA2 and
GST alone were coupled to glutathione sepharose and were incubated with DG75 cell extract. Precipitated hnRNP K was visualised using the hnRNP K
mAb D-6. (C) GST- EBNA2 aa400–487 fusion protein containing amino acids 400- 487 of EBNA2, GST- EBNA2 aa300–400 and GST alone were coupled
to glutathione sepharose and were incubated with DG75 cell extract. Precipitated hnRNP K was visualised using the hnRNP K mAb D-6.
doi:10.1371/journal.pone.0042106.g005
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Figure 6. hnRNP K and EBNA2 co-localize in transiently transfected cells. (A) HeLa cells transfected with EGFP- EBNA2 were analysed by
confocal laser scanning microscopy. Endogenous hnRNP K was detected using the monoclonal D-6 antibody and an Alexa 647 coupled anti mouse
antibody. The signals for hnRNP K (red) or EBNA2 (green) are shown. The merged signals show co-localisation of hnRNP K and EBNA2, resulting in
a yellow color. Also shown is the DAPI staining of DNA. The fluorescence profiles of hnRNP K and EBNA2 (B) at a co-localisation hotspot (indicated by
the line, left picture - lower lane) were analysed with the Leica MMAF software. The signals for hnRNP K and EBNA2 show the same progression of
intensity at the inner nuclear membrane.
doi:10.1371/journal.pone.0042106.g006
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nuclear membrane. A representative image of the distribution of

fluorescence intensity across a line through the nucleus (‘‘linescan’’) is

pictured in Figure 6B. The linescan shows that the intensities for the

EBNA2 and hnRNP K signals overlap and further supports the

notion that the two proteins interact.

The same results were obtained for endogenous proteins using the

293 EBVcell line. Theendogenous (i.e. non-transfected) EBNA2 was

visualised by the EBNA2- specific R3 antibody and goat- anti- rat

TRITC -labelled antibody. hnRNP K was visualised using the D6

antibody and secondary Alexa 647 -labelled goat anti-mouse IgG. A

representative cell is pictured in Figure 7A, a linescan showing the

same intensity in fluorescence is shown in Figure 7B. These results, in

conjunction with the GST-pull-down study and the co-immunopre-

cipitation experiments (see above), strongly suggest that ADMA- and

SDMA-modified EBNA2 and ADMA-methylated hnRNP K form

(a) functional unit(s) in EBV-infected cells.

hnRNP K Interacts with EBNA2 in vivo in a Subset of Cells
To further investigate this interaction we used a cell based protein

interaction assay. We immunocaptured the GFP-EBNA2 fusion

protein (bait) with the GBP- lacI at the chromosomal lacO array, that

becomesvisibleasdistinctnuclear spot (Figure8A). Inaboutone third

of all transfected cells we observed a clear co-localisation of the CFP-

hnRNP K fusion protein (prey) at the lacO spot which is indicative of

Figure 7. hnRNP K and EBNA2 co-localize in EBV positive cells. (A) 293-EBV cells were analysed by confocal laser scanning microscopy.
Endogenous hnRNP K was detected using the monoclonal D-6 antibody and an Alexa 647 coupled anti mouse antibody. Endogenous EBNA2
expressed from the viral episome was detected using the monoclonal R3 antibody and an TRITC coupled anti rat antibody. The signals for hnRNP K
(red) or EBNA2 (green) are shown. The merged signals show co-localisation of hnRNP K and EBNA2, resulting in a yellow color. Also shown is the DAPI
staining of DNA. The fluorescence profiles of hnRNP K and EBNA2 (B) at a co-localization hotspot (indicated by the line, left picture - lower lane) were
analysed with the Leica MMAF software. The signals for hnRNP K and EBNA2 show the same progression of intensity at the inner nuclear membrane.
doi:10.1371/journal.pone.0042106.g007

Figure 8. hnRNP K interacts with EBNA2 in a cell based interaction system. Cells containing a lac operator (lacO) array inserted in the
genome were transfected with expression vectors for a lac repressor fused with a GFP binding protein (GBP) and the indicated fluorescent fusion
proteins as indicated. For comparison and orientation the nucleus was stained with PI or DAPI. The GFP fusion proteins are captured at the lac
operator array by the LacI-GBP and the co-localization of cyan or red fusion proteins visualized. Clear and weak interactions at lacO array spots are
marked with filled and open arrow tips, respectively. The displayed cells represent the different patterns observed in several independent
experiments. GFP expression vectors were used as negative control. Scale bar is 5 mm.
doi:10.1371/journal.pone.0042106.g008
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a direct or indirect protein interaction. Another third showed a weak

interaction and the remaining cells did not show any clearly

detectable interaction and were indistinguishable from GFP control

cells. We also performed the reciprocal experiments by switching

fluorescent proteins and immobilizing GFP-hnRNP K at the lacO

array spot (Figure 8B). In this combination we also observed co-

localisation of the DsRed-EBNA2 at the lacO spot although with

generally weaker signals. These cell based interaction assay results

provide further evidence for an interaction of hnRNP K with EBNA2

in vivo. The displayed cells give a representative overview of the

observed variability and indicate that this interaction does not occur

in all cells or at least not to an equal extent. These results suggest that

the hnRNP K interaction with EBNA2 is not constitutive but likely

subjected to some additional regulation.

hnRNP K Enhances EBNA2-mediated Activation of the
Viral LMP2A Promoter

hnRNP K has repeatedly been shown to directly activate

[41,42,43,44] or inactivate [45,46] transcription. To test whether

the interaction of EBNA2 and hnRNP K changed the transactivation

of a viral promoter by EBNA2, we co-expressed EBNA2-wt, hnRNP

K-wt, the methylation-deficient mutants EBNA2-DRG [16] and

hnRNP K-5RG [31] in all possible combinations together with

a luciferase reporter driven by the promoter of the viral LMP2A [32].

As shown in Figure 9A, EBNA2-wt activated the promoter by about

500-fold (p = 0.0000000016), while the activation by EBNA2-DRG

was lower but still highly significant (p = 0.000009975). hnRNP K-wt

or the 5RG-mutant alone exerted a small but significant activation on

the promoter construct (p = 0.000173and p = 0.00529, respectively),

while co-expression of hnRNP K-wt enhanced the EBNA2-wt-

mediated activation by up to three-fold (p = 0.001675). The hnRNP

K- 5RG mutant co-activated EBNA2-wt to a smaller degree than

hnRNP K-wt (p = 0.00833). The activity of EBNA2-DRG was only

slightly increased by hnRNP K- wt (p = 0.00261), and no co-

activation was observed for the combination of both mutants

(p = 0.875). We determined the relative levels of EBNA2 in the

presence or absence of hnRNP K expression. The co-expression of

hnRNP K did not change the EBNA2 level excluding a trivial

explanation for the observed effect (Figure S3). This result and the

results from interaction analysis using the hnRNP K-5RG mutant

(Figure 4C) strongly support the notion that the interaction between

EBNA2 andhnRNP Kis mainly (but not exclusively)mediated by the

methylation of the two proteins. The expression levels of transfected

EBNA2-wt, EBNA2-DRG, hnRNP K-wt and hnRNP K-5RG are

shown in Figure S4. We used the co-expression of SmD3 which was

precipitated by the SDMA antibody (Table 1) as an additional

negative control. SmD3 which does not bind to EBNA2 was not able

to co-activate EBNA2 in this assay as shown in Figure 9B.

hnRNP K is not Present in EBNA2-DNA Binding
Complexes

To see whether hnRNP K is present in EBNA2-DNA

complexes, we carried out a gel-shift experiment employing cell

extract from EBV/EBNA2-positive Raji cells. As indicated in

Figure 10, we added either HA- hnRNP K or HA- RBPjk to the

Raji cell extract. EBNA2 binds DNA via the repressor RBPjk [47],

and this interaction can be inhibited by the antibody 6C8 directed

against the WWP-repeat of EBNA2 [48] that is used for its

interaction with RBPjk (reviewed in [49]). We have previously

shown that the ADMA-form of EBNA2 is preferentially present at

EBNA2-regulated promoters [15]. We thus tested whether the

hnRNP K- antibody D6 which co-precipitates EBNA2 (see

Figure 4A) would induce a super- shift as observed for the

EBNA2-specific antibody R3 with a DNA-fragment derived from

the viral LMP2A promoter. To exclude a possible unsuitability of

the D6 antibody for EMSA we also tested the HA antibody in the

samples which included HA- tagged hnRNP K or RBPjk, the

latter serving as internal positive control. As shown in Figure 10,

the EBNA2/ RBPjk -containing complex designated ‘‘IV’’ was

super-shifted by R3, while the antibody D6 against hnRNP K and

the HA- antibody did not. In contrast, the HA- antibody was able

to bind to and super-shift the HA- RBPjk bound to DNA

(‘‘Supershift*’’). As internal control we used the antibody 6C8

which interferes in the EBNA2- RBPjk interaction [48]. As can be

seen, this antibody diminished the signal from complex IV. The

absence of hnRNP K in the EBNA2/DNA-complex indicates that

the observed co-activation by hnRNP K is not mediated by direct

promoter binding of hnRNP K. The interaction of the two sub-

forms of EBNA2 (SDMA and ADMA) which differ in their

presence in EBNA2- DNA-binding complexes [15] to hnRNP K

hints at the possibility that EBNA2 and hnRNP K co-operate in

other activities, for instance in post-transcriptional processing of

mRNA. The latter possibility will have to be addressed in

a different set of experiments beyond the scope of this

communication.

Discussion

The hypothesis underlying our analysis was that EBNA2, as

demonstrated for its interaction with RBPjk via its ‘‘WWP’’-motif,

uses the methylated RG-repeat to attach to cellular factors to use

or interfere with their functions. For instance, EBNA2 binds with

its SDMA- modified RG- repeat to the SMN protein and with the

ADMA-modified RG-repeat to the HERV-K (HML-2) NP9

protein [10,32]. We therefore employed recently developed

monoclonal antibodies against the SDMA and ADMA-repeat of

EBNA2 for the identification of cellular proteins with a similar

surface structure. Of the proteins precipitated by the SDMA-

EBNA2-specific antibodies, we notably detected SmD3 known to

be SDMA-modified by PRMT5 [33,34] and PRMT7 [50]. The

precipitation of SmD3 strengthened our hypothesis that the

antibody recognised not only the methylated arginine residues of

EBNA2 but also the tertiary structure of the RG-motif. The RG-

motif confers binding of both the SDMA-SmD3 and the SDMA-

EBNA2 to SMN [10,35]. Importantly, the ADMA-EBNA2-

antibody, in contrast to the SDMA-antibody, did not bind

SmD3 as it does not contain ADMA residues [51]. Because

SmD3 is a common component of spliceosomal U snRNP it was

not surprising that the SDMA-specific antibody also precipitated

components of the spliceosome, namely the U1 snRNP-specific

70K protein as well as the U5 snRNP component PRPF8 [52].

Since it was likely that these proteins co-precipitated with SmD3

Figure 9. hnRNP K but not SmD3 enhances the EBNA2-mediated promoter activation at the viral LMP2a promoter. (A) A LMP2a
promoter luciferase construct was co- transfected into DG75 cells with EBNA2, EBNA2-DRG, hnRNP K, and hnRNP K-5RG expression constructs in the
indicated combinations. The luciferase value (RLU) obtained with empty pSG5 and the reporter construct was set to 100%. The graph represents the
values obtained from 5 independent experiments carried out in duplicate. (B) A LMP2a promoter luciferase construct was co- transfected into DG75
cells with EBNA2 and SmD3 expression constructs in the indicated combinations. The luciferase value (RLU) obtained with empty pSG5 and the
reporter construct was set to 100%. The graph represents the values obtained from 4 independent experiments carried out in duplicate.
doi:10.1371/journal.pone.0042106.g009
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due to being part of the same RNP complexes we did not pursue

the SDMA-precipitated proteins further.

Of the proteins identified by the ADMA-specific antibodies,

nothing is known about the Ras-GTPase-activating protein SH3-

domain-binding protein variant (gi: 62896771) identified in our

study. Its splice variant, G3BP1, was shown to be associated with

SMN and with Caprin-1 which was formerly known as GPI-

anchored membrane protein 1 or cell cycle associated protein

Figure 10. hnRNP K is not present in EBNA2-containing DNA complexes. EBNA2-containing Raji cell extract was incubated with in vitro
translated hnRNP K and RBP- Jk and antibodies as indicated above and then assayed in a gel shift assay. R3 recognizes EBNA2 regardless of its
methylation status and induces a ‘‘super- shift’’ indicated by the upper arrow, the mAb 6C8 directed against the ‘‘WWP’’-repeat of EBNA2 destroys the
EBNA2/RBPjk-complex IV. Control antibodies corresponded to the respective IgG-subtype of each antibody. To efficiently separate the high
molecular weight complexes, the electrophoresis was carried out for an extended time. Therefore, uncomplexed 32P-labelled probe ran out of the gel.
The position of the RBPjk-containing complexes I-IV as described in the text are indicated; the arrow (‘‘Supershift’’) points at the EBNA2-containing
complex IV that is supershifted by R3 but not by the hnRNP K specific D6 antibody or the HA- specific antibody. The arrow (‘‘Supershift *’’) indicates
the RBP- Jk containing complex which is supershifted by the HA- specific antibody and served as an internal control.
doi:10.1371/journal.pone.0042106.g010
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[53,54]. Caprin-1 was also detected in our analysis. The role of

Caprin-1 and the G3BP1 variant in EBV transcription or

replication is unknown, however, a role of Caprin-1 in Vaccinia

virus replication was previously demonstrated [55]. The G3BP1

variant contains several RGG and RG motifs at its C-terminus

and might thus also be arginine-methylated. The ATP-dependent

RNA helicase A (DHX9) contains ADMA and its arginine

methylation is a prerequisite for nuclear localisation [56]. Like

hnRNP K, DHX9 was previously found to be associated with the

EBV-encoded nuclear antigen 5 (EBNA5 or EBNA-LP) [57]. As

EBNA2 binds to the RNA helicase DDX20 (DP103/Gemin3) [9],

it is possible that DHX9 and EBNA2 also form a complex. This is

presently being investigated.

hnRNP K is highly conserved in eukaryotic cells and plays a role

in various cellular processes like chromatin remodelling, tran-

scriptional regulation, splicing, translation or signal transduction

(see, for example, [30,44,58,59,60,61]). hnRNP K interacts

directly or indirectly with a large number of cellular proteins

[62], most notably with proteins involved in RNA metabolism.

Because hnRNP K also plays a role in transcriptional activation

and since the ADMA-form of EBNA2 is predominantly bound to

EBNA2-responsive promoters [15], we decided to analyse the

precipitation of hnRNP K by the ADMA-specific antibody in

greater detail. As a precedent, the cross-reactivity between an

epitope on hnRNP K and the PTB-associated splicing factor was

demonstrated recently [63]. Through the use of bacterial

expressed hnRNP K, which contained exclusively ADMA-

methylated arginine residues we could clearly show that the

ADMA-specific antibody binds to methylated hnRNP K. In-

terestingly, an antibody directed against non-methylated EBNA2

also detected hnRNP K indicating that both proteins share

a common surface structure that is most likely used for the

interaction with cellular partner proteins. Most importantly,

hnRNP K and EBNA2 bind to each other, presumably via the

methylated regions as protein arginine methylation is used either

for protein-RNA or protein-protein interactions [21]. However,

the GST-pull-down analysis showed that the non-methylated

EBNA2 and the DRG mutant also bind to hnRNP K indicating

that the region surrounding the RG-repeat is also involved in

binding. This is in line with the previously described association of

EBNA2 with SMN, where the binding to SMN is mainly but not

exclusively mediated via the RG-repeat of EBNA2 [10]. In the

living cell, the EBNA2-hnRNP K-interaction might be regulated

via methylation or another secondary modification, as we observed

an interaction in the lacO-based assay system only in about 60%

of the cells that expressed the GFP-labelled proteins (Figure 6).

While EBNA2 does not exist in non-methylated form [15], it is

possible that newly synthesized hnRNP K might undergo cell cycle

–dependent differences in methylation. The functional significance

of the EBNA2-hnRNP K-interaction was emphasised by the

observation that hnRNP K enhanced the EBNA2-mediated

activation of the viral LMP2A promoter by more than 3-fold.

Interestingly, the activation of the viral C promoter by the hnRNP

protein AUF1 was described by Ling and co-workers; however,

the interaction domains between EBNA2 and AUF1 were not

mapped [64].

A previous report showed that hnRNP K is present in

transcriptionally active sites in EBV-transformed cells and that

hnRNP K was highly enriched at loci with high EBV viral RNA

content [65]. This is reflected by the fact that hnRNP K strongly

co-activated EBNA2. The observation that the splicing machinery

was distributed randomly vis-à-vis the viral DNA but was enriched

at the transcript site [65] indicated that there is a recruitment of

splicing factors to nascent viral transcripts. The role of EBNA2 in

this process remains unclear. However, we assume that the

interaction between EBNA2 and hnRNP K indicates a co-

operation during transcription and that the binding of EBNA2 to

proteins of the splicing machinery reflects the close link between

transcription and splicing [66,67]. However, the lack of hnRNP K

at EBNA2- containing DNA complexes indicates that the

enhancement of LMP2A expression might take place at a post-

transcriptional level. Further studies will be needed to address the

question whether the binding of EBNA2 influences other activities

of hnRNP K, i.e. the known interaction with c- Src or its activity in

mRNA translation, i.e. the c-myc gene, which is a target for both

hnRNP K and EBNA2 [43,68,69,70].

Materials and Methods

Cell Lines and Tissue Culture
HEK 293-T, 293-EBV and HeLa cells were cultured in DMEM

medium (GIBCO), supplemented with 10% FCS and antibiotics,

non-adherent cell lines were grown in RPMI 1640 medium

(GIBCO), supplemented with 10% FCS, Na-Pyruvate and

antibiotics. The EBV-infected cell lines Raji and 293-EBV, the

EBV- negative cell lines DG75 [71] and BL- 41 as well as 293-T

and HeLa cells were previously described [32,72].

Transfection/Electroporation/Luciferase Assay
For transient expression of the various proteins, 56106 293-T

cells were transfected with 8 mg/10 cm dish of the expression

vectors and combinations thereof using NanofectinH (PAA, Cölbe,

Germany). Western blotting by the ECLH-method (GE Health-

care, Munich, Germany) was carried out as described. Electro-

poration and luciferase analysis was carried out as described [32].

DG75 cells were electroporated using a Bio-Rad Gene Pulser at

250 V and 950 mF. Briefly, 107 cells were washed once and

resuspended in 0.25 ml of ice-cold RPMI 1640 without supple-

ments and placed on ice. Then, 4 mg of reporter plasmid, 10 mg of

each respective effector plasmid, and 2 mg of peGFP-C1

(Clontech, Palo Alto, CA, USA) were added. Parental pSG5

vector (Agilent Technologies, Waldbronn, Germany) was used to

adjust DNA amounts. After electroporation, cells were kept on ice

for 10 min, suspended in 10 ml of RPMI with 20% fetal calf

serum, and grown for 48 h. To determine the transfection

efficiency, 100 ml of the cells were fixed and analysed in a Becton

Dickinson FACScan analyser for eGFP-positive cells, gated on the

living population. The remainder of cells were washed in PBS and

lysed in 100 ml 16 CCLR-buffer (Promega, Mannheim, Ger-

many). The luciferase activity of the supernatants was determined

in a Lumat LB9501 (Berthold, Bad Wildbad, Germany) by using

the Promega luciferase assay systemH (Promega) as recommended

by the manufacturer.

Plasmids
To express quantitatively asymmetrically methylated hnRNP K in

E. coli the plasmid pET28-PRMT1, a kind gift of X. Cheng, Emory

University, Atlanta, GA, [73] was completed with a second Shine-

Dalgarno- and PRMT1 coding sequence (PCR primers 59

AAACTCGA GAACTTTAAGAAGGAGATATACCATG 39; 59

TTTCTCGAGTTCAGCGCATCCGGTA GTCGG 39) inserted

into Xho I and a Shine-Dalgarno- (His6)-hnRNP K sequence [74]

(PCR primers 59 TTTGTCGACAAC TTTAAGAAGGAGATA-

TACCATG 39; 59 TTTGTCGACCCGGATCATCAGTGGTG

39) in the Sal I site. peGFP- EBNA2 was described previously [11].

pSG5 –HA - hnRNP K and pSG5- HA- hnRNP K 5RG were

constructedusingthepeGFP-hnRNPKandpeGFP-hnRNPK5RG

plasmids [29]. dsRed- EBNA2 was constructed using the peGFP-
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EBNA2 plasmid [11] and the dsRed Monomer C1 vector (Clontech).

peCFP- hnRNP K was constructed using the peGFP- hnRNP K

plasmid [29] and the peCFP- C1 vector (Clontech). GST- EBNA2

fragment fusion proteins were constructed using the pGEX- 4T1

Vector (Amersham). The complete coding sequence of PRMT1 was

amplified by PCR from a HeLa-cDNA library with primers

59PRMT1-TACAGGATCCATGGAGGTGTCCTG

TGGCCAGGCG G-39 and 39PRMT1 59-GACGGGATCC-

GAATTCAGCGCATCCGGTAGTCGGTGGAGCAG -39 and

cloned into the BamHI-digested eukaryotic expression vectors pSG5

or the BamHI-digested pGEX-4T1 vector for expression of a GST-

PRMT1 fusion protein in E.coli.

Preparation of Native Whole Cell Extract
Raji or DG75 cells were lysed for 30 min on ice in PBS

supplemented with 0.5% IGEPAL (Sigma) and 0.15 M NaCl and

protease inhibitors (Complete miniH, Roche). The lysate was

centrifuged at 15,0006g for 15 min, and the supernatant was used

for further analysis.

Antibodies
The rat mAb 8C3 (IgG2b) reacts with NMA-EBNA2, the

mouse mAb 13B10 (IgG2c) recognises SDMA-EBNA2, the mouse

mAb 6F12 (IgG2b) binds to ADMA-EBNA2 [15], and the rat

mAb R3 (IgG2a) binds to a C-terminal epitope outside the

methylation region of EBNA2 [39]. Monoclonal anti-hnRNP K

antibody (D-6) was from Santa Cruz (Heidelberg, Germany), goat-

anti- mouse Alexa 647 was from Life Technologies (Invitrogen,

Darmstadt, Germany), peroxidase-coupled anti-rat or anti-rabbit

IgG were from Sigma (Munich, Germany). The monoclonal

antibody 3F10 (Roche, Penzberg, Germany) binds to the HA-tag.

For production of anti-PRMT1 monoclonal antibodies, a peptide

encompassing amino acids G250MRPNAKNNRDL264 of human

PRMT1 coupled to BSA was used to immunize Lou/C rats

according to a standard protocol [75]. A clone designated 7D2

(Rat IgG2a) that reacted with GST-PRMT1 but not an irrelevant

GST-fusion protein in a western blot was stably subcloned and

used for further analysis. The reactivity of this antibody with E.coli-

expressed non-fused PRMT1 and GST-PRMT1 as well as

endogenous cellular PRMT1 from the human cell line DG75

[71] is shown in Figure S2.

Confocal Immunofluorescence Microscopy
HeLa cells were seeded on microscopy cover slips. Cells were

transfected with a plasmid encoding EGFP-EBNA2 [32] and

endogenous hnRNP K was visualized with the D6 antibody and

secondary Alexa 647-labeled goat anti-mouse IgG2a (Invitrogen,

Molecular Probes). Nuclei were stained with DAPI. Slides were

mounted using Vectashield (Vector Laboratories). Fluorescence

images (Figure 6) were captured with a laser scanning microscope,

Leica TCS SP2 (Leica Microsystems, Heidelberg, Germany)

equipped with an HCX PL APO 6361.40 NA oil immersion

objective lens using scan settings of pinhole 1.0 Airy units,

5126512 pixel image format, four frame averages, and a TD488/

543/633 dichromatic beam splitter. Fluorescence spill-over was

excluded by using sequential image recording and tightly

controlled excitation power and detection channel settings

(EGFP-EBNA2 excitation: 44% of 488-nm laser; Alexa 647

excitation: 81% of 633-nm laser, DAPI excitation: 49% of 405-nm

laser). The co-localisation of endogenous (i.e. non-transfected)

EBNA2 and hnRNP K was carried out in 293-EBV cells [76].

EBNA2 expressed from the viral episome was detected using the

monoclonal R3 antibody and a TRITC-coupled anti-rat antibody.

Endogenous hnRNP K was visualized with the D6 antibody and

secondary Alexa 647-labeled goat anti-mouse IgG2a. Secondary

antibodies were highly cross-adsorbed and showed not cross-

recognition. Images were captured using the TCS SP5 II/AOBS

Leica confocal system (Figure 7). Fluorescence images were

acquired in a sequential scan mode with HyD detectors with

tightly controlled laser powers and acquisition windows to prevent

spill-over (scan 1:4% 405-nm with 3% 561-nm; scan 2:6% 488-nm

with 16% 633-nm). All images were recorded as stacked series of

confocal single z-planes (step size: 488 nm using magnification

with 46 frame average of 6306with zoom factor of at least 2.5.

Editing of contrast and brightness was applied to the whole image

using Leica LAS AF software. For EBNA2-hnRNP K co-

localisation, 56 double-positive cells expressing both fusion

proteins were evaluated. Co-localisation was analysed using the

Leica Lite software profile tool. Co-localisation hotspots were

defined as regions with coinciding high fluorescence intensity of

hnRNP K and EBNA2 in the same optical z-plane. The

percentage of cells showing co-localisation was calculated among

the cells expressing both proteins. Additional de-convolution was

performed using the Autoquant plug-in of the Leica MMAF

Software (Leica Microsystems, Heidelberg, Germany).

Cell Based Protein Interaction Assay
Fluorescent two-hybrid assays [77] were performed with a few

modifications to visualize and test protein interactions. BHK cells

containing a lac operator repeat array inserted in the genome [78]

were seeded on coverslips and cultured in DMEM medium with

10% FCS. After attachment cells were co-transfected with

expression vectors for the indicated fluorescent fusion proteins

and a GBP- LacI fusion [79] using polyethylenimine (Sigma). After

about 16 h cells were fixed with 3.7% formaldehyde in PBS for

10 min, washed with PBST (PBS with 0.02% Tween), stained with

DAPI or PI and mounted in Vectashield medium (Vector

Laboratories) (Figure 8). For PI staining RNA was eliminated by

RNase treatment after fixation.

Immunoprecipitation
The rat monoclonal antibody (mAb) R3 (rat IgG2a) recognises

a C-terminal epitope of EBNA2 while the clone 6C8 (rat IgG2a)

binds to the Trp-Trp-Pro motif of EBNA2 and interferes with

binding to RBPjk [48]. For immunoprecipitation appropriate

mouse or rat IgG isotype controls were used. For precipitation,

400 ml of mAb supernatant were coupled to 100 ml of settled

protein-G-sepharose (PGS, GE Healthcare, München, Germany)

for 1 h at 4uC under agitation, sedimented at 5.000 rpm and

washed once with 1 ml of lysis buffer 1. For precipitation

experiments either 400 mg protein of native whole cell extract or

100 mg protein of native nuclear extract was added and incubated

for 2 h at 4uC under agitation, washed three times with lysis buffer

2 (PBS with 0.5% IGEPAL and 0.5 M NaCl) and once with lysis

buffer 1. The pellet was resuspended in 26SDS sample-buffer and

incubated for 10 min at RT or heated at 98uC.

Co-immunoprecipitation Analysis
Raji cells were lysed for 30 min on ice in PBS supplemented

with 0.5% IGEPAL (Sigma) and 0.15 M NaCl containing protease

inhibitors (Complete miniH, Roche, Penzberg, Germany). After

incubation, the solution was sonicated with a 10 s pulse and

centrifuged at 13.0006g for 15 min, and the supernatant was used

for further incubation with antibody immobilised on 30 ml of

settled protein G SepharoseH (GE Healthcare). The cells were

washed twice with ice-cold PBS and lysed for 30 min on ice in

buffer 1 (PBS supplemented with 0.5% IGEPAL (Sigma) and

0.15 M NaCl) containing protease inhibitors (Complete miniH,
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Roche). After incubation, the solution was sonicated with a 10 s

pulse, centrifuged at 13,0006g and 4uC and incubated for 4 h at

4uC with antibody immobilised on 30 ml of settled protein G

sepharose (GE Healthcare). The beads were collected and washed

repeatedly with lysis buffer. The immune complexes were

dissolved in SDS-gel buffer and separated in 10% polyacrylamide

gel electrophoresis and transferred to a nitrocellulose membrane.

The antibody R3 binds to the C-terminus of EBNA2. The

antibodies 6F12 and 13B10 which recognise the asymmetrically

and symmetrically di-methylated arginine-Glycine repeat of

EBNA2, respectively, and the GST-specific monoclonal antibody

6G9 have been described recently. hnRNP K was detected using

monoclonal antibody D6 (sc-13133, Santa Cruz, Heidelberg,

Germany).

In vitro Methylation Assays
Competent E. coli BL21- bacteria were transformed with

appropriate expression vectors, protein expression was induced

with IPTG and soluble extracts were purified with NAPTM25

columns (GE Healthcare, Freiburg, Germany) as described

previously [32]. In vitro methylation assays were carried out using

20 ml of His-PRMT1 extract or 5 ml of PRMT5/WD45 extract,

20 ml of GST- EBNA2 (aa300-400) fusion protein extract and 5 ml

of 0.5 M SAM. The mixture was incubated for 1 h at 37uC.

GST- pull- down assays: For GST- EBNA2 and GST competent

E. coli BL21- bacteria were transformed and protein expression

was induced with IPTG as described previously [32]. The GST

fusion proteins were adsorbed to glutathione-Sepharose beads (GE

Healthcare, Freiburg, Germany) for 2 h at 4uC with rotation, and

subsequently washed twice with lysis buffer containing 0.15 M

NaCl. For binding of cellular proteins to the GST fusion proteins,

typically 500 ml of AdOX- treated native whole cell extract (see

above) was added to the mixture and incubated for 2 h at 4uC
with rotation and subsequently washed 5 times with lysis buffer

containing 0.5 M NaCl. The beads were suspended in SDS-gel

electrophoresis buffer, boiled and separated by 10% SDS-PAGE.

GST-EBNA2 and GST were detected in western-blotting using

6G9 antibody. hnRNP K was detected using the D-6 monoclonal

antibody (Santa Cruz , D-6, sc-28380).

Electrophoretic Mobility Shift Assay (EMSA)
Nuclear cell extracts were prepared essentially as described [80].

Shortly, approx. 108 cells were collected for 5 minutes at

1200 rpm and 4uC and washed twice with cold PBS. The pellet

was resuspended in a 4-fold volume of buffer A (10 mM HEPES

pH 7.9, 10 mM KCl, 1.5 mM MgCl2) [80] and kept on ice for at

least 20 minutes. Cells were broken up by several strokes in

a dounce homogenizer until the lysate contained about 50% intact

nuclei by staining with Trypan blue. The lysate was centrifuged for

15 seconds at 14.000 rpm and 4uC and washed once with a 2-fold

volume of buffer A. The resulting nuclear pellet was resuspended

a 1-fold volume of buffer B (20 mM HEPES pH 7.9, 420 mM

NaCl, 1.5 mM MgCl2, 2 mM EDTA pH 8.5) and kept on ice for

30 minutes. The lysate was centrifuged for 20 minutes at

15.000 rpm and 4uC and the supernatant was used for further

experiments or stored at –80uC. Electrophoretic mobility shift

assays were carried out exactly as described [4,81]. The probe

used for EMSA is derived from the viral LMP2a promoter and

contains two RBPjk–binding sites. For supershift experiments, we

employed the EBNA2-specific rat monoclonal antibody R3 [39] or

an appropriate isotype (rat IgG2a) control. The monoclonal

antibody 6C8 binds to the Trp-Trp-Pro (‘‘WWP’’) motif of

EBNA2 interferes with binding to RBKJk and destroys the

EBNA2-containing DNA-RBPjk-EBNA2-complex [48]. In vitro

transcription-translation of HA-tagged hnRNP K and HA-tagged

RBPjk using vector AJ247 [82] was performed using the TNTH
Coupled Reticulocyte Lysate System (Promega, Mannheim,

Germany) as described [10,15] following the instruction of the

manufacturer. Typically, 50 ml of the transcription-translation mix

were programmed with 1 mg of vector DNA using T7 RNA

polymerase.

Supporting Information

Figure S1 Expression control of His- PRMT1 and
characterization of the PRMT1 specific rat monoclonal
antibody 7D2. E.Coli extract containing His- tagged PRMT1,

E.Coli extract containing GST- tagged PRMT1 and DG75 whole

cell extract was analysed by western blotting.

(TIF)

Figure S2 In vitro methylation of GST-EBNA2-300-400.
The E.coli-expressed unmethylated GST-EBNA2-300-400 fusion

protein was subjected to in vitro methylation by PRMT5/WD45

purified from a baculovirus expression system or PRMT1

expressed in E.coli. The methylated fusion proteins as well as an

unmethylated control were immunoprecipitated with the EBNA2-

methylation specific antibodies (NMA, SDMA and ADMA) and

the appropriate isotype controls. Precipitated GST-EBNA2-300-

400 fusion protein was detected in a western blot using the GST-

specific 6G9 monoclonal antibody.

(TIF)

Figure S3 EBNA2 expression is not affected by hnRNP
K. DG75 cells were transfected with pSG5 – EBNA2 and pSG5-

HA- hnRNP K and the cell extract was analysed by western

blotting. EBNA2 was visualized using the R3 antibody, hnRNP K

was visualized with the D6 antibody.

(TIF)

Figure S4 Expression control of the plasmids used in
luciferase activity assays. DG75 cells were transfected with

pSG5 – EBNA2, pSG5 – EBNA2DRG, pSG5-HA- hnRNP K and

pSG5-HA- hnRNP K 5RG and the cell extract was analysed by

western blotting. EBNA2 was visualized using the R3 antibody,

HA- hnRNP K and HA- hnRNP K 5RG was visualized with the

HA antibody.

(TIF)
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Figure S1. Expression control of His- PRMT1 and characterization of the PRMT1 specific rat 

monoclonal antibody 7D2. E.Coli extract containing His- tagged PRMT1, E.Coli extract containing 

GST- tagged PRMT1 and DG75 whole cell extract was analyzed by western blotting. 

 

 

 

Figure S2. In vitro methylation of GST-EBNA2-300-400. The E.coli-expressed unmethylated GST-

EBNA2-300-400 fusion protein was subjected to in vitro methylation by PRMT5/WD45 purified 

from a baculovirus expression system or PRMT1 expressed in E.coli. The methylated fusion 

proteins as well as an unmethylated control were immunoprecipitated with the EBNA2- 

methylation specific antibodies (NMA, SDMA and ADMA) and the appropriate isotype controls. 

Precipitated GST-EBNA2-300-400 fusion protein was detected in a western blot using the GST-

specific 6G9 monoclonal antibody. 
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Figure S3. EBNA2 expression is not affected by hnRNP K. DG75 cells were transfected with pSG5 

– EBNA2 and pSG5-HA- hnRNP K and the cell extract was analysed by western blotting. EBNA2 

was visualized using the R3 antibody, hnRNP K was visualized with the D6 antibody. 

 

 

 

Figure S4. Expression control of the plasmids used in luciferase activity assays. DG75 cells were 

transfected with pSG5 – EBNA2, pSG5 – EBNA2ΔRG, pSG5-HA- hnRNP K and pSG5-HA- hnRNP K 

5RG and the cell extract was analyzed by western blotting. EBNA2 was visualized using the R3 

antibody, HA- hnRNP K and HA- hnRNP K 5RG was visualized with the HA 
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3. Discussion 

 
3.1 F3H – a versatile tool for protein manipulation and interaction 

studies 

3.1.1 F3H as a method to study protein-protein interactions 

In the last decade, a variety of methods to study protein-protein interactions have been 

developed. These methods are based on different principles and all of them have their 

own advantages and disadvantages. As a fluorescence-based method to study protein 

interaction, the F3H- approach utilizes a specific GFP- binding protein to recruit GFP-

tagged proteins and their RFP-tagged interaction partners to an artificial chromatin locus 

in vivo. The F3H-method combines fluorescence technology and eukaryotic expression 

systems to identify protein-protein interactions in a fast and simple way. 

The F3H- approach is very similar to our fluorescence two-hybrid (F2H) method 

(Zolghadr et al., 2008). In both methods, a genetically modified cell line, in which 

multiple repeats of the bacterial lac operator (lacO) DNA sequence were inserted into 

the genome, is used. The Lac repressor specifically binds to this lac operator sequence, 

so it could be used to trace the chromatin locus on the genome. Initially, this artificial 

chromosomal locus was used to study chromatin organization, such as chromatin 

dynamics and condensation (Robinett et al., 1996), and was also used to visualize gene 

expression activity (Tsukamoto et al., 2000). And recently, the formation of ectopic 

kinetochores was studied using the lacO/repressor system (Gascoigne et al., 2011; 

Barnhart et al., 2011). Besides all these applications, our group established a method 

based on the lacO/repressor system to visualize protein-protein interactions in vivo 

(Zolghadr et al., 2008). We generated two constructs: a triple fusion of RFP-LacI-bait, and 

a GFP-tagged prey protein. The bait is localized to the lacO spot and visualized by the 

fused RFP. The GFP-prey protein is recruited and colocalized with the bait at the lacO 

spot, and the interaction is visualized by the fluorescent proteins. In this system, the two 

fluorescent constructs are co-expressed, so we called it F2H. The development of a GFP 

binding protein (GBP) (Rothbauer et al., 2008) gave us the possibility to bypass the need 

for special RFP-LacI-bait triple fusion constructs. We used a GBP-lacI fusion to recruit the 

GFP-bait to the lacO spot instead of the FP-lacI-bait triple fusion used in F2H. In the later 

system, three components are recruited to the lacO spot to give an indication of the 

protein interaction, so the system is called F3H. With this F3H system, any kind of GFP 

and RFP fused proteins could be used to detect their interactions. The independency of a 

special construct which is necessary in F2H gives this method much more flexibility and 

can thus be used more widely.  

As a new method to studying protein interaction, the F3H assay has several 

distinguishing features. F3H assay is used in a mammalian cell system to test protein-

protein interaction in vivo, so the natural structure and post-translational modifications 
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of the bait and prey proteins are kept, which makes this method especially suitable for 

testing of interactions between proteins  from higher eukaryotic organism.  Also, using 

fluorescence as a detection signal, this method directly visualizes two interacting 

proteins, intuitively giving information on PPI. In addition, the F3H assay could reveal 

quantitative binding affinity between two interacting proteins by means of measuring 

the signal ratio of the prey to the bait protein at lacO spot according to their fluorescent 

signal. Thus, the F3H method enables not only a qualitative analysis of specific 

interactions but also provides semi-quantitative affinity data for the interacting proteins.  

In comparison to conventional protein-protein interaction assays, the F3H assay has 

several advantages. This method is simpler and easier in comparison with other 

biochemical methods like Co-IP or cross-linking technology, saving both time and efforts. 

The enrichment of the GFP-tagged bait proteins at the lacO array enhances the signal-to-

noise ratio; by changing the number of lacO repeats on the chromosomal foci, the signal 

intensity could be controlled to achieve a better signal-to-noise ratio, which could 

increase detecting sensitivity. Also, conventional co-localization assays study PPI by 

analyzing the localization co-efficiency of two proteins in the cell, this could give both 

false positive (such as co-localization not resulted from interaction) and false negative 

results (such as in the presence of interaction competitor proteins or unbalanced 

expression level). In the F3H assay, proteins of interesting are recruited to an artificial 

locus in the nucleus, this to some extent excludes co-localizations which do not result 

from direct or indirect interactions between the two proteins, thus providing more 

convincing results. In contrast to previous data (Frieman et al., 2007), we found that 

although the severe acute respiratory syndrome coronavirus (SARS-CoV) protein ORF6 

co-localized with the human KPNA2 protein at the nuclear envelop, these two proteins 

did not interact (unpublished data). 

Moreover, F3H directly visualizes protein-protein interactions in living cell in real-time; 

this feature gives it the unique ability to trace dynamic changes between the interacting 

partners, providing the possibility to identify cell cycle- or differentiation-dependent 

protein-protein interactions. This makes it especially suitable for studying interactions 

that regulate or are regulated by cell cycle or differentiation processes. In chapter 2.2, 

we found Mis18bp1 localized at centromere in a cell-cycle dependent way. CENP-C 

interacts with and facilitates the targeting of M18bp1 to the centromere. Since CENP-C 

constantly localizes at centromeres, our data suggest that the interaction between these 

two proteins may occur in a cell cycle-dependent way. Further studies using the F3H 

assay should be performed to analyze this interaction in different cell-cycle phases, to 

clarify the possible role of M18bp1 modification on the regulation of its interaction with 

CENP-C. 

Similar to almost all other methods which study protein-protein interactions, the F3H 

assay can result in false positive or false negative results due to unspecific binding or 

fluorescence cross-talk. On the one hand, some prey proteins themselves bind to the 

chromosomal loci because of their intrinsic properties, such as the heterochromatin 
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protein HP1α, which specifically binds to the H3K9me3 which exists at the lacO 

chromatin. In this case, it is difficult to differentiate whether the binding of the prey to 

lacO focus is a result of an interaction with the bait or mediated by the H3K9me3 

binding property of HP1α. This kind of proteins should not be used as preys but as baits 

by means of changing the fluorescence protein tag or use different anchor point. One 

the other hand, although there is little overlap between GFP and RFP emission light, 

occasional cross-talk between the two fluorescence proteins may still occur depending 

on the filters used. Experimental conditions should be optimized to eliminate bleed-

through. In practice, we often exchange the bait/prey combinations and always check 

for possible bleed-through between GFP and RFP constructs by expressing only one of 

them to rule out these possible artifacts. 

As mentioned above, GFP fusion proteins can be targeted to the lacO loci using the GBP-

LacI fusion protein. The fusion protein which is recruited to the lacO spot may change 

the structure or characteristics of the lacO chromatin. For example, Dnmt1, which is the 

maintenance DNA methyltransferase in mammalian cells, can change the methylation 

states of the lac operator DNA sequences. In case of a histone acetyltransferase (HAT) 

anchored to the lacO spot, the acetylation of the histones would increase, and can lead 

to more open chromatin at the lacO chromatin. These properties create a new 

possibility to exploit the F3H assay. For example, by analyzing the altered lacO chromatin 

characteristics such as the chromatin accessibility or specific DNA/histone modifications, 

one could gain insight on the biological functions of the lacO targeted proteins, 

especially for epigenetic key factors that regulate the chromatin structure, such as 

chromatin remodelers or DNA/ histone modifiers. Additionally, these anchored proteins 

can recruit their interaction partners, leading to different biological consequences. For 

example, using a similar method, anchoring of HJURP (Barnhart et al., 2011) and CENP-

C/CENP-T (Gascoigne et al., 2011) to lacO foci lead to ectopic neo-centromere formation 

and ectopic kinetochore assembly respectively. 

To study protein interactions in a wider range and different cellular context, we 

developed several variants of the F3H assay. We utilize proteins of different cellular 

structures as anchors for the F3H assay.  

Firstly, we fused the GBP to the methy-CG binding domain (MBD) of MeCP2. This MBD 

domain preferentially binds to methylated CpG sites on the genome. Using the MBD-

GBP fusion construct, one can artificially target proteins of interest to constitutive 

heterochromatin to study protein interaction. Alternatively one can investigate the 

function of these proteins on heterochromatin regulation by measuring the change after 

their targeting as mentioned above.  

In another approach, we fused the GBP with Lamin B1 to target the bait to the nuclear 

envelope. The GBP-LaminB1 can recruit the GFP-bait fusion and its interaction partners 

to the nuclear membrane, leading to co-localization of the two tagged fluorescent 

proteins at the nuclear envelope. By anchoring the proteins to the nuclear membrane, 

we successfully avoided the false positive resulting from prey proteins binding to 
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heterochromatin. Moreover, when using the nuclear envelope as a targeting platform, it 

does not need any specific genomic modification (as the insertion of lacO arrays) of the 

cell line, and can be performed in nearly all kinds of cell lines, making the F3H assay even 

more flexible and broadly applicable.  

In comparison with lacO mediated F3H, this nuclear envelop recruiting system has a 

modest signal-to-noise ratio because of the wide distribution of the bait and prey over 

the whole nuclear envelope. Thus a higher bait/prey expression level might be required 

to get a better signal-to-noise ratio. Another disadvantage is that the GBP-lamin fusion 

proteins would interfere with endogenous lamin protein, leading to an abnormal nuclear 

envelope structure when the GBP-lamin expression level is extremely high, which may 

lead to negative selection and cell death in long term culturing. 

In the assay mentioned above, either at a chromosomal site (lacO/repressor) or at the 

nuclear membrane (lamin), the interactions of the bait and prey proteins are detected in 

the nucleus. However, under native biological conditions, many interactions occur in the 

cytoplasm. In our previous study, we showed that, although the detection of the 

protein-protein interaction took place in the nucleus, the F2H assay can also detect 

interaction natively occurring in the cytoplasm. Even interactions of mitochondrial 

proteins were successfully detected with the F2H assay in the nucleus (Zolghadr et al., 

2008).  

In the lacO- or Lamin-mediated F3H assay, proteins interact at the lacO focus or nuclear 

membrane, which means the bait and prey protein must translocate into the nucleus 

after translation. Proteins smaller than about 40 kD can pass through the nuclear pore 

by free diffusion, but proteins with a larger size could only be translocated into the 

nucleus by active transport. The protein active import depends on transferring proteins 

called importins, which strongly bind to proteins containing a nuclear localization signal 

(NLS) peptide. To improve the nuclear translocation efficiency of the GFP-baits fusion, 

we inserted the NLS of the SV40 large T antigen (Kalderon et al., 1984) at the N-terminus 

of GFP. With this NLS, the nuclear localization of some GFP-bait fusion proteins could 

effectively be increased and thus a better detection signal be obtained. 

Although with the added NLS sequences, concentrations of some large proteins in the 

nucleus may be still low due to their low transport efficiency or the presence of a 

nuclear export sequence (NES) in the protein, which would direct the export of the 

protein from the nucleus into the cytoplasm. In any case, for detecting interactions of 

cytoplasmic proteins, it seems reasonable to use an anchor site in the cytoplasm rather 

than in the nucleus. So we further developed cytoplasmic anchor sites to improve the 

F3H assay.  

Centrosomes locate in the cytoplasm and serve as microtubule organizing center 

(MTOC), which is important for cell-cycle progression in most cells (vertebrate muscle 

cells and mature oocytes lack centrosomes). In mammalian somatic cells, the 

centrosome is composed of two centrioles plus the pericentriolar material (PCM) around 

the two centrioles. Each of the two centrioles is based on 9 triplet microtubules which 
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arrange in a wheel-like pattern and form a cylindrical structure. The two centrioles are 

orthogonally arranged and surrounded by the PCM. Centrin, which is essential for 

centriole formation, localizes in the lumen of the centriole and also in the PCM (Fig. 15). 

Since centrin localizes at the centriole, we also tried to use centrin as a cytoplasmic 

anchor site for the F3H assay by fusing GBP to centrin. Using this GBP-centrin fusion, the 

bait and prey proteins were successfully recruited to the centrosomal site, 

demonstrating that this cytoplasmic anchor point can be used for protein-protein 

interaction assays. For example, the interaction between p53 and HDM2 was detected in 

this system (Chapter 2.1).  

Although centrin-mediated F3H can detect protein interactions in the cytoplasm, in 

practice, we found that this centrosomal anchor system has some disadvantages for PPI 

assay. On the one hand, the size of the centrosome is quite small, resulting in a weak 

bait and prey signal in comparison with the conventional F3H assay, limiting its detecting 

sensitivity. On the other hand, centrin localizes not only at the centrosome but also in 

the cytoplasm, which increases the background noise. And also, owing to the small size 

of centriole lumen, larger bait and prey proteins cannot enter the lumen thus could not 

be effectively targeted to centrosome. Due to these reasons, this centrosomal anchored 

F3H assay is suitable for strong cytoplasmic interactions between small proteins but less 

suited for other cases. 

 

Fig. 15 The localization of centrin at the centrosome. Two orthogonally arranged centrioles are connected by the so-

called pericentric material (PCM, shown as yellow dashed circle). The centriole is composed of 9 triplet microtubules 

arranged wheel-like, forming a cylindrical structure. Centrin (shown green) locates in the inner space of the centriole 

formed by the triplet microtubules. Besides the centrosome-bound centrin, there is also free centrin distributed in the 

PCM and the cytoplasm. 
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Because of the limitations of centrin-mediated F3H, we also tried to develop a second 

anchor sites in the cell cytoplasm. Microtubules are part of the cell skeleton, forming a 

fiber-like structure in the cytoplasm and can be easily detected by staining. We fused the 

GBP with tubulin α to recruit the bait protein onto microtubules, expecting a fiber-like 

localization of GFP in the cytoplasm. However, we did not see a nice fiber-like 

localization of the GFP signal but an equal distribution of the GFP signal in the cytoplasm. 

This may be because the GBP in the GBP-tubulin fusion blocks the tubulin heterodimer 

formation, so the GBP-tubulin fusions can not incorporate into the microtubules, leading 

to an equal distributed GFP signal in the cytoplasm. To pursue this, a GBP-tubulin fusion 

protein that does not interfere with oligomerization, e.g. by using a flexible linker 

peptide or a C-terminal fusion, should be constructed and tested. 

As another component of the cell skeleton, actin filament is necessary for cell survival 

since it is involved in many basic biological processes, such as cell mechanical support, 

cell movements and material transport. Actin filaments form unique cellular structures 

and could easily be detected in the cytoplasm, so it could be an ideal cytoplasmic protein 

anchoring site for the F3H assay.  

A GBP-β-actin construct was made to target GFP-bait proteins onto the actin filaments in 

the cytosol. When co-transfected with GFP-p53 (NLS free) and mCh-HDM2 into HeLa 

cells, mCh-HDM2 and GFP-p53 nicely colocalized at actin filaments in the cytoplasm, 

giving a convincing result of interaction between p53 and HDM2 (unpublished data). Of 

course, additional cytoplasmic protein interactions should be tested in the future to 

assess the applicability of this actin-mediated F3H assay. 

In summary, we developed a variety of anchor sites both in nucleus and cytoplasm in 

mammalian cells for the F3H assay. Using these different sites as protein anchor points, 

protein interactions occurring either in the nucleus or in the cytoplasm can be studied 

easily and reliably (Fig. 16). 
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Fig. 16 Overview of F3H assays using different anchor points. In the nucleus, artificial chromosomal lacO sites and 

constitutive heterochromatin binding sites are used, in combination with GBP-lacI and GBP-MBD, respectively. In 

addition, GBP-lamin is used to target interaction partners to the nuclear envelope. In the cytoplasm, centrin and 

tubulin can be used to target proteins to the centrosome and cytoskeleton. 

3.1.2 Application of the F3H assay for high-throughput screens 

To expand the F3H assay to a high-throughput assay, I established a protocol for F3H 

assay in 96-well plate. Cells are seeded in a 96-well plate, transfected, fixed and stained. 

To efficiently acquiring images and evaluate the data, an Operetta imaging platform is 

used, which is an automatic multi-channel fluorescence microscope. With this imaging 

system, signals for nucleus, bait and prey (DAPI, GFP and RFP) are acquired and stored as 

images. These images are then further automatically analyzed with a multiple step 

protocol I developed with the InCell Analyzer image analysis software (Fig. 17). 
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Fig. 17 Schematic representation of the F3H assay in 96-well plates. Cells are seeded, transfected, fixed and stained in 

a 96-well plate. Images of the DAPI, GFP and RFP channels were acquired with an InCell Analyzer. The data are then 

further analyzed by a project-specific software package to obtain information about the ratio of cells showing 

interaction and relative affinities of the interacting proteins. 

To analyze the F3H images automatically, I developed an image analysis protocol. Firstly, 

images from DAPI channel were segmented depending on the size and intensities of 

signal to distinguish between the nuclear region and the background. Cells in apoptosis 

or mitosis can be filtered out by specific characteristics such as too high intensities, too 

small sizes or not enough roundness of the object area in comparison to normal cells. 

After this segmentation step, nuclear masks were generated, which contained the areas 

of every single nucleus. Secondly, we defined the GFP signal resulted from the lacO-

anchored bait proteins. Within the nuclear mask regions, the GFP signal area having a 

higher intensity than the average whole nuclear GFP signal was selected, and was 

considered to be a region of lacO-anchored baits if the area had a suitable size as the 

known lacO spot. By adjusting the segmentation sensitivity, which is the intensity 

difference threshold to differentiate the object from the whole nucleus background, one 
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can distinguish most of the spot regions. For the next step of analysis, we proceeded 

with cells with one or two spots, which is the possible number of lacO spots per single 

cell, to exclude the GFP-bait negative cells without spots and cells with more than two 

spots derived from other nuclear structures. Finally, we measured the signal intensities 

of GFP and RFP in the nuclear and the spot area to calculate the intensity ratio at the 

lacO spot of RFP-prey and GFP-bait (Fig. 18). 

        

 

Fig. 18 High-throughput data analysis. (A) Workflow of data analysis and the decision-tree to subgroup the cells. Firstly, 

nuclear regions were identified using the intensities of the DAPI signal. Next, the lacO spot regions were segmented by 

the intensities of the GFP channel. The cells were divided into two groups depending on the number of recognized 

lacO spots. Cells with one spot are further analyzed by measuring the RFP intensity. Cells without detectable RFP 

signal are put into the ‘No Red group’. Cells with RFP signal are grouped into ‘non-interaction’ (NI) group and 

‘interaction’ (I) according to the RFP/GFP intensity ratio at the spot. (B) Image representing the automated image 

analysis. The nuclei were identified as indicated in blue lines. Red or green lines represent the cell area as an 

expansion of the nuclei. The lacO spots are shown in pink dashed lines. Cells without lacO spot are grouped into the 

‘No Spot’ (NS) group. Cells with one spot are divided into ‘Interaction’ (I) or ‘No Interaction’ (NI) group, depending on 

their lacO/nucleus intensity ratio. Arrow heads point to the identified spots. 
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3.1.3 Developing a method for protein interaction inhibitor studies 

The feature of the F3H assay to identify protein-protein interactions in living cell enables 

a broad variety of applications. One of the most innovative usages is to visualize protein 

interaction dynamics after inhibitor treatment, which makes this assay suitable for high-

throughput compound testing in living cells.  

The interaction between p53 and Mdm2 is of therapeutic interest because of its role in 

tumorigenesis. The specific inhibition of the interaction between p53 and Mdm2 is the 

most promising strategy to activate the p53-mediated apoptosis pathway in tumor cells. 

So far, several chemical compounds and peptide inhibitors were developed.  

We used the F3H assay to visualize the interaction between GFP-p53 and RFP-hdm2 in 

living cells and to test different inhibitors such as nutlin-3 and Mi-63, which are known to 

inhibit this interaction (Vassilev et al., 2004; Canner et al., 2009). Consistent with 

previous studies, we could observe the inhibitory effects of these compounds with the 

F3H assay, demonstrating that this assay can be used to study PPI inhibitors. Although 

several other biochemical or biophysical methods for protein interaction inhibitor study 

- such as ELISA, fluorescent polarization (FP) and NMR - were developed (Graham et al., 

2007; Choi et al., 2012; Shimaoka, 2012), the F3H assay has its unique advantages. First, 

the effect of the inhibitor (either compound or peptide) could be directly visualized in 

real time, thus giving an intuitive and direct output of the drug effect. Second, unlike in 

vitro assays such as NMR, the F3H assay studies the effect of inhibitors in living cells, 

thus the assay are performed under in vivo condition and provides information on cell 

permeability or cellular uptake and bio-availability. Third, the F3H assay is practically 

simple and does not need special equipment or complicate experimental procedure, 

which saves both labor and cost in large-scale screening.  

In chapter 2.1 we monitored the dynamics of the p53/HDM2 interaction after inhibitor 

treatment using a spinning disc microscope. Interestingly, we found that after the drug 

(nutlin-3) being added into the cell, it only takes less than 3 minutes to completely show 

its effect. This means the diffusion of nutlin-3 into cells is quite fast, and the cellular 

membrane penetration of nutlin-3 is really effective. Besides the data shown in chapter 

2.1, we also tested another compound, which showed an inhibitory effect in NMR study, 

but did not show any disruptive effect in our in vivo assay (unpublished data). The 

different inhibitory effects of these two compounds in this cell based assay may be due 

to low cell permeability of the drug. With the F3H assay, I also tested several peptide 

inhibitors which worked well in NMR, but none of these peptides can disrupt p53/HDM2 

in F3H assay due to their bad permeability. These data showed the cellular uptake is one 

of the most important key factors for the drug to function. On the one hand, our method 

could directly identify the compounds with good cell permeability. On the other hand, 

this F3H assay could also miss those inhibitors which are not naturally permeable but 

can be made well permeable by further chemical modifications.  
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Even at low inhibitory nutlin-3 concentration, we could detect potential disruption of the 

p53/HDM2 interaction, indicating the high sensitivity of the F3H assay (Chapter 2.1 

supplementary figure S4). At a concentration of 0.5 μM, we could already see the effect 

of nutlin-3, and the half disruption concentration is between 1 μM and 2 μM, which are 

quite similar with other cell-based methods (Dudgeon et al., 2010; Li et al., 2011). Since 

there were no available data on nutlin-3 affinity to HDM2 in cells, our data for the first 

time give the information about nutlin-3 affinity in living cells. This affinity is 

approximately the same (Pazgier et al., 2009; Lawrence et al., 2009; 2011; Mochizuki et 

al., 2012) or slightly lower (Vassilev et al., 2004) than in vitro. This also showed that 

nutlin-3 is really efficient to penetrate into the cell. 

In our studies in chapter 2.1, we studied the fast kinetics of the drug effect. Since the 

assay is based on living cell, this method can analyze drug characteristics that can not be 

assessed with traditional biochemical methods. Firstly, drug metabolism could be 

studied over a long time. After drug treatment, due to cellular drug metabolism and an 

effective drop of inhibitor concentration, the disrupted interaction protein pairs could 

re-interact so the drug pharmacokinetics (PK) profile could also be studied. Secondly, 

toxicity of the drug could also be assessed in our cell based studies. After drug treatment, 

the percentage surviving cells can be analyzed, which could be an indication of drug 

toxicity, or the effect of drug on cell cycle progression could be analyzed (Easwaran et al., 

2005). Thirdly, drugs which may be functional only after being modified in cells could 

also be studied with this assay. This is very important to screen PPI inhibitor de novo, 

since some drugs work in such a way.  

As a PPI and PPI inhibitor study method, it is necessary to perform the assay in a high 

through-put way for large scale PPI inhibitor analysis. We established the inhibitor assay 

in 96-well plates, tested with several inhibitors at different concentrations. With this 

medium through-put assay, we successfully observed the inhibitory effect of the drugs 

at different concentration and got inhibitory curves of different drugs. Consistent with 

previous studies (Canner et al., 2009), we found that both Mi-63 and nutlin-3 inhibit the 

interaction between p53 and HDM2 in living cells, and the inhibition effect of Mi-63 is 

about 10-times stronger than nutlin-3 at the same concentration. We could not observe 

any effect of another compound, RITA, which supports a previous study that showed 

RITA did not block the interaction between p53 and HDM2 in vitro by NMR (Krajewski et 

al., 2005). The next step would be try to establish a high throughput assay (e.g. 384-well 

plate assay) and use it to screen a compound library at large scale to identify new p53-

HDM2 inhibitors, and also to expand this assay to other PPI inhibitor screening. 

Peptide inhibitors were also tested in our study. In comparison with compound 

inhibitors which typically have a molecular weight around several hundred Dalton, 

peptides have much larger size and can not pass through cell membranes by free 

diffusion. To resolve this permeability problem, peptides could be either delivered by 

other vehicles such as liposome (Liu et al., 2010) or cell penetrating peptides (Schwarze 

et al., 1999; Derossi et al., 1994). In our study, we used the TAT cell-penetrating peptide 



DISCUSSION 

132 
 

(derived from HIV Tat protein) to mediate cellular uptake of the inhibitory peptide. Since 

the TAT peptide has a similar size as the functional peptide, it may interfere and reduce 

the inhibitory efficiency of the functional peptide after entering into the cytoplasm. 

Therefore, we coupled the functional peptide D8A with cell-penetrating peptide TAT via 

a disulfide bond. Once the D8A peptide is transferred into cytosol together with TAT, the 

disulfide bridge will be cleaved releasing the D8A peptide from the TAT peptide. This 

eliminates the interference of the TAT peptide with D8A function. After cleavage, the 

peptide inhibitor is free to diffuse into the nucleus and the cytosol to bind to HDM2, 

while the TAT peptide would locate to the nucleolus (Lättig-Tünnemann et al., 2011). By 

this strategy, we can deliver the peptide inhibitors with a high efficiency and without 

reduce its inhibitory effects. Further studies on the stability and PK profile of the peptide 

should be performed in the future. 

3.1.4 Application of the GFP binding protein and nanobodies 

By fusing the GFP binding protein to other proteins, we could target GFP fusion proteins 

to specific sites in living cells to study protein interactions. Another possible application 

is to use the GFP binding protein to study protein functions as we discussed in chapter 

3.1.1, for example, targeting of Tet (Ten-eleven translocation) proteins to the lacO 

heterochromatin site could study its DNA hydroxylation activity by monitoring the 5-

hmC change at the lacO locus (unpublished data). Besides all these application 

mentioned above, GBP could be used to target and manipulate GFP fusion proteins in 

special biological pathways.  

Caussinus et al developed a method to degrade proteins in living cell using a GFP 

antibody fragment. They first generated a sqh gene knockout fly and rescued the fly with 

sqh-gfp fusion. Then the researchers used the anti-GFP VHH domain to substitute the 

substrate-recognition domain of the F-box protein, which is an adaptor protein 

mediating the proteasomal degradation of its substrate proteins. This F-Box-GBP protein 

binds to SQH-GFP fusion proteins in vivo, and targets it onto E3 ligase. The SQH-GFP 

fusion proteins are thus poly-ubiquitinated by the E3 ligase and degraded by ubiquitin-

mediated proteasomal degradation. Using the GFP binding protein, they successfully 

generated the loss-of-function phenotypes of SQH in drosophila embryo (Caussinus et al., 

2012). In their study, they targeted GFP fusion protein into ubiquitin mediated protein 

degradation pathways in vivo using a transgene fly. The targeting process is indirect and 

quite complicate. To make it simpler and without traditional genetic modification, we 

are trying to directly target endogenous cellular protein for destruction using 

nanobodies in living cell. And also we are trying to target and manipulate endogenous 

proteins in different pathways such as signal transduction pathways, cellular apoptotic 

pathways in living cells This could be a powerful and simple method to manipulate and 

study the function of proteins in vivo. 
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3.2 Cell cycle coupled control of CENP-A incorporation  

During S phase, nucleosomes have to be destabilized to release free DNA prior to DNA 

replication. After replication, DNA together with histones re-organize into nucleosomes 

and form chromatin. After this process, not only the genetical information, but also the 

epigenetical information, such as DNA methylation, histone modifications and also 

histone variants in the nucleosomes, have to replicated and stably transmitted to 

daughter cells. CENP-A, a histone H3 variant, specifically incorporates into centromeric 

chromatin and is the essential factor of centromere formation in metazoans. It was 

shown that the genetic ablation of CENP-A lead to severe defects in genome stability. 

How the CENP-A level is maintained at centromeres to keep the stability of the 

centromere after cell division is a basic question and it is also the key to understand the 

mechanism how the centromeres are determined in higher eukaryotes. 

3.2.1 Recruitment of Mis18bp1 to the centromere 

To understand the mechanism how CENP-A is maintained during cell-cycle, It is crucial to 

identify at which stage of the cell cycle, the newly synthesized CENP-A incorporates into 

the centromere. The synthesis of CENP-A protein peaks in S phase, but its incorporation 

is uncoupled with its synthesis (Shelby et al., 2000; Jansen et al., 2007). In contrast to the 

replication-coupled assembly of canonical histones during S phase, the incorporation of 

newly synthesized CENP-A occurs from late telophase to the G1 phase of the cell cycle in 

human cells (Jansen et al., 2007). This time period of CENP-A incorporation is surprising. 

On the one hand, CENP-A is most abundant in S phase.  On the other hand, in S phase 

after DNA replication the nucleosome is reassembled and most histone variants are 

incorporate into chromatin at this time. There is evidence that after DNA replication in S 

phase, H3.3 first incorporated into the histone gaps resulted from replication, and then 

H3.3 was  substituted by CENP-A in the next G1 phase (Dunleavy et al., 2011) . This 

incorporation pattern reflects the special character and function of CENP-A nucleosome. 

As one of the key factors required for CENP-A deposition, M18bp1 localizes to the 

centromere in a cell cycle-dependent way. To study the role of mouse M18bp1 in CENP-

A deposition, the localization of M18bp1 during the cell cycle in mouse cells were 

analyzed. A GFP knock-in mouse embryonic stem (mES) cell line was generated to 

observe the localization of endogenous M18bp1. It was shown that M18bp1 associates 

with centromeric chromatin from anaphase to G1 phase in mES (Chapter 2.2). These 

data are consistent with a previous study which showed that human M18BP1 associates 

at centromeres from late telophase to G1 phase (Fujita et al., 2007). The similar 

centromere localization of M18bp1 in mouse and human cells suggests that the role of 

M18bp1 in CENP-A loading is conserved in mammals.  

Since the time window of M18bp1 at centromere is clear, we asked the question what is 

the role of CCAN proteins in M18bp1 mediated CENP-A incorporation. Using our F3H 

method, we screened the interactions between CCAN members and M18bp1 to identify 
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CENPs that play a role in M18bp1 recruitment. We found CENP-C was the only CCAN 

member which interacts with and recruits M18bp1 to centromeres. CENP-C is believed 

to be a platform for the assembly of the kinetochore (Przewloka et al., 2011). It 

recognizes the CENP-A nucleosome and connects the centromeric chromatin with the 

outer kinetochore by interacting with the Mis12 complex (Carroll et al., 2010; Screpanti 

et al., 2011). Our findings revealed a new function of CENP-C in CENP-A deposition, i.e. 

facilitating M18bp1 recruitment to the centromere. 

To further test the role of CENP-C in M18bp1 mediated CENP-A incorporation, siRNA-

mediated knock-down experiments of CENP-C were performed and showed that the 

localization of M18bp1 and CENP-A at centromeres was reduced. These results are 

consistent with a similar study, which showed that CENP-C interacts with M18bp1 in 

human and Xenopus cells, and that the depletion of CENP-C results in disruption of 

CENP-A incorporation in G1 phase (Moree et al., 2011). The level of M18bp1 at 

centromeres decreased but not totally disappeared when CENP-C was knocked-down in 

our experiments (Chapter 2.2). This could either result from the remaining CENP-C, 

which could still recruit M18bp1 to centromeres or from CENP-C being partially 

responsible for the M18bp1 centromeric localization, possibly pointing to alternative 

mechanisms for the centromeric recruitment of M18bp1.  

3.2.2 Mis18 complex regulates the epigenetic state of centromeric chromatin 

M18bp1 together with Mis18α and Mis18β forms the so-called Mis18 complex. This 

complex was shown to be essential for incorporation of newly synthesized CENP-A into 

the centromere. Interestingly, none of these three proteins shows a direct interaction 

with Cenp-A (Fujita et al, 2007). Also, the centromeric localization of this complex occurs 

from anaphase to mid G1, just prior to CENP-A incorporation. These data suggest that 

the complex is involved indirectly in CENP-A assembly. In the current model of CENP-A 

assembly, the role of Mis18 complex is believed to be a license factor to regulate the 

start of CENP-A incorporation.  

Fujita et al found that Trichostatin A (TSA), which is a histone deacetylase inhibitor, 

could suppress the phenotype which resulted from Mis18 complex defects (Fujita et al, 

2007). This suggests that the Mis18 complex regulates chromatin modifications such as 

acetylation. Recently Kim et al did not find a rescue effect of TSA in cells with Mis18α 

defect, but they found that the Mis18 complex modulates DNA methylation and histone 

modifications at centromeric chromatin (Kim et al., 2012). These results support the idea 

that the Mis18 complex regulates CENP-A loading by changing the epigenetic state of 

the centromeric chromatin.  

The epigenetic state of centromeric chromatin is not fully understood yet. Centromeric 

chromatin was considered as heterochromatin in early studies. But later studies correct 

this idea. It was reported that centrochromatin H3 was marked by transcriptional active 

markers such as mono-and di-methylation of H3K4 and di-and trimethylation of H3K36 

(Sullivan and Karpen, 2004; Gopalakrishnan et al., 2009; Bergmann et al., 2011, 2012). 
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Some centromeric transcripts were also found in a variety of species (Chen et al., 2008; 

Ferri et al., 2009, Pezer and Ugarkovic, 2008, Chan et al., 2012). These data showed that 

centrochromatin contains both euchromatin and heterochromatin. A recent study 

showed a role of H3K9 acetylation/methylation balance in the incorporation of CENP-A 

(Ohzeki et al., 2012). They found that the de novo formation of ectopic centromere can 

be facilitated by histone acetyltransferases (HATs) and be blocked by histone H3K9 

methyltransferase Suv39h1, and that M18bp1 is not required for HATs induced de novo 

assembly of ectopic centromere, suggesting that it works in the early step of the CENP-A 

incorporation.  

Altogether, these data suggest that the Mis18 complex indeed is an epigenetic regulator 

recruiting HATs to increase the acetylation level at centromeric chromatin to facilitate 

the assembly of nucleosomes and thus regulates the incorporation of CENP-A. 

3.2.3 Cell cycle-dependent regulation of the Mis18 complex and CENP-A 

incorporation 

As discussed above, CENP-A expression and assembly occurs independently in a short 

time window during the cell cycle. When CENP-A was constitutively expressed, the 

assembly still only happened in G1 phase (Jansen et al., 2007). This suggests that the 

incorporation of CENP-A is cell cycle-dependent controlled by a mechanism independent 

of the CENP-A expression.  

While CENP-C is a CCAN member which localizes at the centromeres during the whole 

cell cycle, our study showed that its interacting partner M18bp1 is present at 

centromeres only from anaphase to G1 phase. This indicates that the interaction 

between CENP-C and M18bp1 is cell cycle-dependent. As shown in chapter 2.2, we 

found that in the GFP knock-in K1B2 mES cells, some cells with high CENP-C localization 

but without M18bp1 enrichment at centromeres were observed. This observation also 

supports the idea that M18bp1/CENP-C interaction is cell cycle-dependent. However, a 

cell cycle-dependent interaction between these two proteins was not observed in the 

F3H assay, this could be due to the over-expression of CENP-C and M18bp1, so that the 

regulatory machinery may not be able to control the interaction correctly.  

So it is really interesting to understand the regulation mechanism behind this cell cycle-

dependent interaction. Silva et al found that the Cdk1 (cyclin-dependent kinase 1) and 

Cdk2 control CENP-A assembly during the cell cycle (Silva et al., 2012).  

Cdk1 and Cdk2 are mainly active during S, G2 and the M phase of the cell cycle. Cdk1 and 

Cdk2 associate with cyclin B and cyclin A, respectively, and regulate CENP-A 

incorporation by phosphorylating M18bp1. In S, G2 and M phase, M18bp1 is 

phosphorylated which prevents its binding to centromeres in HeLa cells, and in the other 

cell cycle phases (later telophase and G1) unphosphorylated M18bp1 localizes and plays 

its role at the centromere (Silva et al., 2012). These data are consistent with our 

observation (Chapter 2.2 Fig. 1). However, it remains elusive whether this 

phosphorylation mediates the inhibition of the interaction between CENP-C and 
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M18bp1 and whether this phosphorylation of M18bp1 regulates its centromeric 

localization. Our current data show that the middle part of M18bp1 (from aa 441 to aa 

800), which contains the SANT domain, is responsible for its interaction with CENP-C. 

Future studies with the possible phosphorylation site mutants are necessary to test 

whether the phosphorylation of this SANT domain is the regulatory mechanism of the 

cell cycle-dependent interaction between CENP-C and M18bp1. 

In summary, our data are consistent with and contribute to a model for the regulation of 

Mis18 complex in CENP-A incorporation (Silva et al., 2012). From anaphase to G1 phase, 

the Mis18 complex localizes at the centromere by interacting with CENP-C which stays at 

centromeric chromatin during all cell cycle phases. The Mis18 complex then recruits 

HATs, which acetylate histones in the centromeric chromatin. The acetylated 

centromeric chromatin then is opened by chromatin remodelers to assemble newly 

synthesized CENP-A into centromeric chromatin by its chaperon HJURP. During S, G2 and 

M phase, HJURP, M18bp1 and other related proteins are phosphorylated, and the 

phosphorylation of M18bp1 prevents its centromeric localization. Cdk1 and Cdk2 

phosphorylate a variety of proteins S, G2 and M phase of the cell cycle, thus inhibit 

CENP-A incorporation (Fig. 19). 

 

Fig. 19 Model of CENP-A incorporation control during the cell cycle. From anaphase to G1 phase, the Mis18 complex is 

recruited by CENP-C to the centromere and recruits HATs to acetylate the histones at the centromere. The acetylated 

nucleosomes lead to more open chromatin to allow the CENP-A incorporation mediated by its chaperon HJURP. 

During the S, G2 and M phase, both HJURP and Mis18bp1 are phosphorylated by Cdk1 and Cdk2. These 

phosphorylated proteins can not bind to centromeric chromatin, and the incorporation of CENP-A is inhibited in these 

cell cycle phases. (Figure modified from Valenta et al., 2012) 
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Although this model could give an overview of the CENP-A incorporation regulation in 

different cell cycles, there are still some open questions. How does the Mis18 complex 

regulate the epigenetic states of centromeric chromatin? What is the difference 

between CENP-A chromatin and canonical H3 chromatin? And also why is the CENP-A 

incorporation not associated with DNA replication? Further studies are necessary to 

answer these questions and complete the model in more details. 
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3.3 Assembly of CENP-O class protein 

3.3.1 Dependency of CCAN protein assembly 

The kinetochore is composed of multiple proteins. Of these multiple proteins, the CCAN 

members localize at centromeres during the whole cell cycle, and the other proteins 

only localize to centromeres in mitosis when forming the entire functional kinetochore. 

The CCAN proteins coordinate and form the core of the kinetochore, bridging the gap 

between outer kinetochore (KMN) and the centromeric chromatin. However, how these 

CCAN proteins are organized is still not clear. 

Among these 16 CCAN proteins, CENP-A is a histone H3 variant which forms centromeric 

nucleosomes. Centromeric chromatin, including CENP-A nucleosomes and its adjacent 

H3 nucleosomes, must be recognized by other members of the CCANs so that the CCAN 

could assemble at the chromatin site. CENP-C and CENP-N are important proteins to 

connect CCANs with centromeric chromatin, since they were shown to bind to CENP-A 

nucleosome (Carroll et al., 2009, 2010; Guse et al., 2011). And also, recent studies 

showed that the CENP-T/W/S/X together form a special centromeric chromatin to 

supercoil the DNA at centromeres. These data show that CENP-A and CENP- T/W/S/X act 

at the most basic level of forming centromeric chromatin. It is essential to investigate 

how the other CCAN members recognize the basic level structure and gradually 

assemble to a kinetochore.  

CCAN proteins are grouped into different classes depending on their assembly similarity. 

The CENP-P/O/R/Q/U was reported to form a complex when expressed in E. coli, and the 

phenotypes are similar when each of the members is knocked-out in chicken DT40 cell 

(Hori et al., 2008). Knock-out of single member of CENP-P/O/R/Q/U family proteins did 

not show mitotic defects (Hori et al., 2008). The centromeric localization of CENP-

P/O/R/Q/U depends on the CENP-H class proteins. However, the CENP-P/O/R/Q/U group 

of proteins does not affect the localization of CENP-H class proteins (Hori et al., 2008). 

According to previous studies, the CENP-P/O/R/Q/U is at the last step of the CCAN 

complex stepwise assembly in the current model (Takeuchi and Fukagawa, 2012). In 

chapter 2.3, we found that CENP-N, -H and -L can recruit three CENP-P/O/R/Q/U 

members - CENP-O, -U and –R. But another centromeric protein, CENP-C, which is a 

platform of kinetochore assembly, is not responsible for recruiting of CENP-P/O/R/Q/U 

proteins to the kinetochore. Our data are consistent with the previous model and 

clarified the CENP-P/O/R/Q/U recruiting mechanism. 

3.3.2 The CENP-P/O/R/Q/U is not a pre-assembled complex  

Studies in E.coli suggested that CENP-P/O/R/Q/U form a pre-assembled stable sub-

complex and then the sub-complex is assembled as a whole unit into the kinetochore 

(Hori et al., 2008). To understand whether this is true in mammalian cells, interactions 

between the members of this class were tested. We observed interactions between 

most members of the CENP-P/O/R/Q/U by F3H in vivo, and found that most members of 
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this group can recruit some of the others but not all members to the ectopic lacO 

chromosomal site. However, the FCCS data showed that only part of the free CENP-O/P 

and a little CENP-Q/R in the nucleus can form heterodimers before their assembly into 

the kinetochore (Chapter 2.3 Figure 4A). 

While the F3H data showed that most members of the CENP-P/O/R/Q/U family can 

recruit some of the other members, the FCCS data suggest that the suspected pre-

assembled complex does not exist. One possible explanation for these data is that the 

assembly of these CENPs to kinetochores needs certain post-translational modifications 

on the CENPs. Once the protein is marked with this modification, it will be assembled 

with the other members onto the kinetochore. These modified and assembled CENPs 

could be detected as the interactions at the ectopic chromosomal site in F3H assay. At 

the same time, the free nucleoplasmic CENP-P/O/R/Q/U class proteins which lack this 

modification could not assemble onto the kinetochore and do not show a dimerization 

in FCCS assay.  A recent study supports this hypothesis. It was shown that localization of 

the CENP-U/Q complex at kinetochores was controlled by Plk1 (polo-like kinase 1)-

mediated phosphorylation (Kang et al., 2011). Indeed, the fact that none of the five 

members of this group can recruit all the other members in the F3H assay also suggests 

the pre-assembled complex does not exist in cells.  

Furthermore, in chapter 2.3 Table 3 the FRAP data of the CENP- P/O/R/Q/U members 

showed that CENP-P, -O and -R had a similar turnover pattern at centromeres during the 

cell cycle, but CENP-U and CENP-R showed a different behavior as CENP- P/O/R.  

Altogether, our data indicate that the CENP-P/O/R/Q/U family proteins are not pre-

assembled as a sub-complex before their kinetochore assembly, and the CENP-

P/O/R/Q/U proteins do not always act as one single unit but as a cluster of individual 

proteins with their own features. 

3.3.3 Self-assembly of the CENP-P/O/R/Q/U at kinetochores 

In chapter 2.3, we observed multiple interactions between the CENP-P/O/R/Q/U 

members. While the pre-assembly model for the CENP-P/O/R/Q/U sub-complex is 

excluded, the interactions between the CENP-P/O/R/Q/U members are likely to 

contribute to their assembly into a stable CENP-P/O/R/Q/U sub-complex at kinetochore. 

Consistent with a previous study (Hemmerich et al., 2011), our data support a stepwise 

assembly model, of which the CENP-O/P heterodimer and the CENP-P, -O, -R, -Q and -U 

single unit are recruited and assembled into the kinetochore depending on their 

interactions.  

Among these five members, the F3H assay shows CENP-U and CENP-R form a 

homodimer. The FRET data also showed that CENP-U and CENP-U molecules are close to 

each other at kinetochores, but FCCS showed the free CENP-U in the nucleoplasm is not 

dimerized. These data suggest that, the free nucleoplasmic CENP-U exists as monomer, 

and when it is recruited to the kinetochore, it dimerizes and this dimerization 

contributes to the assembly of CENP-U. Likewise, CENP-Q is shown oligomerizing into 
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octamers when expressed in E.coli (Amaro et al., 2010). The FRET assay also detected 

the close proximity between the CENP-Q molecules in late S phase, when a fully 

functional kinetochore is formed. However, both FCCS and F3H did not show this homo-

dimerization/-oligomerization. These data suggest that this dimerization or 

oligomerization only occurs when CENP-U and CENP-Q is assembled at kinetochores and 

may contribute to the assembly of CENP-U and -Q.  

This dimerization of CENP-U and CENP-Q indicates that there is more than one copy of 

these two proteins in one CCAN complex if the dimerization happens in one CCAN 

(intraCCAN); if the dimerization happens between two CCANs, this would indicate that 

this dimerization of proteins connects the adjacent CCANs and increases the stability of 

kinetochores structure. Since CENP-Q and CENP-U are involved in microtubule 

attachment, this intra/inter CCAN dimerization offers more anchor points for the 

microtubules and contributes to spindle formation (Amaro et al., 2010; Hua et al., 2011). 

The FRET data showed that the members of CENP-P/O/R/Q/U are close to each other 

when they are assembled at the kinetochore. CENP-U is shown close to CENP-B and 

CENP-I but not close to the CENPs which directly bind centromeric chromatin such as 

CENP-A or CENP-C in the kinetochore (Hellwig et al., 2009). However, the details of how 

CENP-P/O/R/Q/U are organized within the CCAN complex and how two adjacent CCAN 

complexes are connected to each other is still largely unknown. To clarify these 

questions, systematic studies of the interactions between all the CCAN members have to 

be performed. We already investigated the interactions between the CCAN members by 

F3H assay, but further studies are necessary to understand the structure and the 

assembly mechanism of the CCAN complex.  
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4.2 Abbreviations 

aa: amino acids 

AD: activiting domain 

ADE2: gene encoding phosphoribosylamino-imidazole-carboxylase 

AP: accepter peptide 

ATP: Adenosine-5'-triphosphate 

BAT: biotin acceptor tag  

BFP: blue fluorescent protein 

BiFC: bimolecular fluorescence complementation 

BirA: biotin ligase 

bp: base pair(s) 

BRET: bioluminescence resonance energy transfer 

C: cytosine 

CAF1: chromatin assembly factor 1 

CATD: CENP-A centromere-targeting domain 

CBP: calmodulin binding peptide 

CCAN: constitutive centromere-associated network 

CDE: centromere DNA element  

cdk: cyclin dependent kinase 

CENP: centromere protein 

CFP: cyan fluorescent protein 

ChIP: chromatin IP 

cnt: central core sequence 

co-IP: co-immunoprecipitation 

CPC: chromosomal passenger complex  
CREST: calcinosis, Raynaud phenomenon, esophageal dysmotility, sclerodactyly, and 
telangiectasia syndrome 

DB: DNA binding domain 

DNA:  deoxyribonucleic acid 

Dnmt: DNA methyltransferase 

EBV: Epstein-Barr virus 

eGFP: enhanced GFP 

Em: emission light 

Ex: excitation light 

F2H: fluorescent two-hybrid 

F3H: fluorescent three-hybrid 

FACT: facilitates chromatin transcription 

FCCS: fluorescence cross-correlation spectroscopy 

FCS: fluorescence correlation spectroscopy 

FISH: fluorescence in situ hybridization 

FLIM: fluorescence-lifetime imaging microscopy 

FLIP: fluorescence loss in photobleaching  

FP: fluorescent protein or fluorescence polarization 

FRAP: fluorescence recovery after photobleaching  
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FRET: Förster resonance energy transfer or fluorescence resonance energy transfer 

GBP: GFP binding protein 

GFP: green fluorescent protein 

GST: Glutathione-S-transferase 

HAT: Histone acetylase 

HDAC: Histone deacetylase 

Hdm2: human homolog of mouse mdm2 gene 

HFD: histone fold domain 

HIRA: HIR histone cell cycle regulation defective homolog A 

HIS3: yeast gene encoding Imidazoleglycerol-phosphate dehydratase 

HJURP: Holliday junction recognition protein  

IC50: half maximal inhibitory concentration 

ICEN: interphase centromere complex 

ICF: Immunodeficiency, Centromeric region instability, Facial anomalies syndrome 

ID-PRIME: Interaction-Dependent PRobe Incorporation Mediated by Enzymes 

iFCCS: inverse FCCS 

iFCS: inverse FCS 

iFRAP: inverse FRAP  

imrL: inverted repeats left 

imrR: inverted repeats right 

IP: immunoprecipitation 

ITC: isothermal titration calorimetry 

KMN: KNL1, Mis12 complex, Ndc80 complex network 

KNL2: knockout null 2, C. elegence homolog of m18bp1 

LPNA2: karyopherin alpha 2 

lacI: lac repressor 

lacO: lactose operator 

LacZ: bacterial enzyme β-galactosidase 

LAP1: LplA acceptor peptide 

LplA: lipoic acid ligase A 

M18bp1: mis18 binding protein 1 

mdm2: murine double minute 2 

me: methylation 

mES: mouse embryonic stem cell 

Mi: MDM2 inhibitor 

mRFP: monomeric red fluorescent protein 

MS: mass spectrometry  

MTOC: microtubule-organizing center 

NAC: CENP-A nucleosome associated 

NADH:Nicotinamid-Adenin-Dinucleotid-Hydrogen 

NES: nuclear export signals  

NLS: nuclear localization signal  

NMR: nuclear magnetic resonance 

otr: outer repeats 

ph: phosphorylation 
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PMI: peptide MDM2 inhibitor 

PK: pharmacokinetics 

PR: pro rich domain of p53 

PTM: post-translational modification 

RacGAP1: Rac GTPase-activating protein 1 

RCA: rolling-circle amplification 

RFP: red fluorescent protein 

RING: really interesting new gene 

RNA: Ribonucleic acid 

ROI: regions of interest 

RSF: remodeling and spacing factor  
SANT: A domain first found and named from the SWI-SNF and ADA complexes, the  
transcriptional co-repressor N-CoR and TFIIIB 

S: Serine amino acid 

SILAC:  stable isotope labeling with amino acids in cell culture 

siRNA: small interfering RNA 

SPR: surface plasmon resonance  

T: thymidine or threonine amino acid 

TAP: tandem affinity purification  

Tet:ten-eleven translocation protein 

TEV protease: tobacco etch virus protease  

TSA: Trichostatin A 

xCrAsH: 5(6)-Carboxy-FlAsH 

X-gal:  5-bromo-4-chloro-indolyl-β-D-galactopyranoside 

Y2H: yeast two-hybrid 

YFP: yellow fluorescent protein 
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