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When you have eliminated the impossible, what ever remains,
however improbable, must be the truth. — Sherlock Holmes
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Summary

The long-term success of an introduced population depends on the ecological conditions in
its new environment, but is also influenced by stochasticity. This is particularly clear in the
first stage of an invasion when the population is still small and either goes extinct quickly
or establishes a self-sustaining population. Once established, some populations grow and
spread spatially, with potential impacts on native communities and ecosystems. The role
of stochasticity during these later invasion stages remains unclear. Furthermore, little is
known about the population genetic and evolutionary consequences of stochastic invasion
trajectories. With this dissertation, I would like to contribute to a stochastic eco-genetic
theory of the entire invasion process—from the first introduction up to potential impacts.
The overarching questions in this dissertation are:

a) How does a population’s movement through the invasion process depend on ecologi-
cal factors influencing its average growth rate?

b) How does it depend on factors influencing the stochastic variability in the population
dynamics?

c) How much genetic diversity do introduced populations harbor on average upon reach-
ing a certain point in the invasion process?

d) To what extent can the population-genetic consequences of invasion trajectories feed
back onto the population dynamics?

Together with my advisors and coauthors, I have conducted four studies, each addressing
two or more of these questions for specific ecological scenarios. We employ several types of
stochastic models: Markov chains, Markov processes, their diffusion approximations, and
coalescent-like genealogy simulations.

In Chapter 1 (Wittmann et al., 2013a, appeared in Theoretical Population Biology), we
focus on a factor influencing the introduced population’s average growth rate: the inten-
sity of competition with an ecologically similar native species. Our results indicate that
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the expected time until the introduced species drives the native competitor to extinction is
smallest for intermediate competition intensity. This phenomenon results from the opposing
effects of competition intensity at different points of the invasion process: On the one hand,
intense competition renders the establishment of the introduced population more difficult;
on the other hand, it facilitates the later exclusion of the native species. In Chapter 1, we
also investigate to what extent the native species’ extinction is accelerated if a reduction in
population size entails a reduction in genetic diversity and thus a reduced ability to adapt
to a changing environment. We find this eco-genetic feedback to be particularly strong at
small competition intensities.

In Chapter 2 (Wittmann et al., 2013b, in press at Oikos), we compare introduction
regimes with the same average number of individuals introduced per time unit, but with
a different temporal distribution. Relative to regimes with many small introduction events,
regimes with few large introduction events generate more variability in population-size tra-
jectories. We show that this variability helps introduced populations to overcome difficult
stages in the invasion process (those with a negative average growth rate), but is disad-
vantageous during easy stages (those with a positive average growth rate). In the light of
our results, we can reinterpret three published data sets on invasion success under different
introduction regimes.

In Chapters 3 and 4 (Wittmann et al., 2013c,d), we examine levels of genetic diversity
in populations that have successfully overcome a strong demographic Allee effect. In this
ecological scenario, the average population growth rate is negative below a certain critical
population size and positive above, such that the first stage in the invasion process is difficult
and the second one easy. In Chapter 3, we assume Poisson-distributed offspring numbers.
We show that compared to successful populations without an Allee effect, successful Allee-
effect populations are expected to harbor either more or less genetic diversity, depending on
the magnitude of typical founder population sizes relative to the critical population size. Part
of the explanation is that, counter-intuitively, successful Allee-effect populations escape
particularly fast from the range of small population sizes where genetic drift is strongest.
In Chapter 3, we also identify conditions under which the critical population size can be
estimated from genetic data.

In Chapter 4, we consider a range of offspring-number models leading to either more or
less variability in population dynamics than the Poisson model. For a fixed founder popula-
tion size, we observe that the Allee effect has a negative influence on genetic diversity for
small amounts of variability, but a positive influence for large amounts of variability. We
show that the differences between our various offspring-number models are so substantial
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that they cannot be resolved by rescaling the parameters of the Poisson model.
Taken together, these results offer some general conclusions with respect to the four

main questions raised above.

a) How fast an introduced population completes the invasion process is mainly deter-
mined by the presence and severity of difficult stages. Therefore, an ecological change
promotes invasion success if it lessens such difficult stages.

b) From the perspective of the introduced population, variability is advantageous during
difficult but not during easy stages of the invasion process.

c) Because the strength of genetic drift depends on population size, a key to understand-
ing the population genetic consequences of invasion trajectories is to consider how
much time the population of interest spends in different population-size ranges.

d) Feedbacks between a reduction in population size and a loss of genetic diversity are
strongest in ecological scenarios where the population of interest spends considerable
time at small population sizes.

Some of the most striking results in this dissertation cannot be understood from a deter-
ministic point of view, but only when considering stochasticity. Thus, stochasticity does
not just add “noise” to some average outcome, but can qualitatively change the behavior of
biological systems.



10 SUMMARY



11

Zusammenfassung

Der langfristige Erfolg einer eingeführten Population hängt von den ökologischen Bedin-
gungen in ihrer neuen Umgebung ab, aber auch vom Zufall. Besonders offensichtlich ist
die wichtige Rolle des Zufalls für kleine Populationen im Anfangsstadium einer Inva-
sion. In diesem Stadium entscheidet sich, ob die eingeführte Population nach kurzer Zeit
ausstirbt oder sich dauerhaft etablieren kann. Manche etablierten Populationen wachsen
dann weiter und breiten sich räumlich aus, zum Teil mit schwerwiegenden Folgen für ein-
heimische Gemeinschaften und Ökosysteme. Bislang ist nicht klar, welche Rolle der Zufall
in diesen späteren Invasionsstadien spielt und welche populationsgenetischen und evolu-
tionären Auswirkungen vom Zufall geprägte Invasionsverläufe haben. Mit dieser Disserta-
tion möchte ich beitragen zu einer stochastischen öko-genetischen Theorie des gesamten
Invasionsprozesses – von der Einführung bis hin zu möglichen Auswirkungen. Meine über-
greifenden Fragen sind:

a) Welche Rolle für den Invasionsverlauf spielen ökologische Faktoren, die die durch-
schnittliche Wachstumsrate der eingeführten Population beeinflussen?

b) Und welche Rolle spielen Faktoren, die die stochastische Variabilität der Populations-
dynamik beeinflussen?

c) Wie viel genetische Diversität weisen eingeführte Populationen im Durchschnitt auf,
wenn sie einen bestimmten Punkt im Invasionsprozess erreichen?

d) Inwiefern können die populationsgenetischen Auswirkungen von Invasionsverläufen
wiederum die Populationsdynamik beeinflussen und so zu einer Rückkopplung führen?

Zusammen mit meinen Betreuern und Koautoren habe ich vier Studien durchgeführt, die
sich für bestimmte ökologische Szenarien jeweils mit mindestens zwei dieser Fragen be-
fassen. Dazu kommen im Verlauf der Dissertation verschiedene Typen von stochastischen
Modellen zum Einsatz: Markov-Ketten, Markov- und Diffusionsprozesse sowie Coalescent-
artige Genealogie-Simulationen.



12 ZUSAMMENFASSUNG

In Kapitel 1 (Wittmann et al., 2013a, erschienen in Theoretical Population Biology)
konzentrieren wir uns auf einen Faktor, der die durchschnittliche Wachstumsrate der Popu-
lation beeinflusst: die Stärke der Konkurrenz mit einer ökologisch ähnlichen einheimischen
Art. Unsere Ergebnisse deuten darauf hin, dass die erwartete Zeit bis zum Aussterben des
einheimischen Konkurrenten für mittlere Konkurrenzstärken am kleinsten ist. Das kön-
nen wir dadurch erklären, dass die Konkurrenzstärke gegensätzliche Auswirkungen in ver-
schiedenen Stadien des Invasionsprozesses hat: Einerseits erschwert eine hohe Konkurrenz-
stärke die Etablierung der eingeführten Art, andererseits führt eine hohe Konkurrenzstärke
aber auch dazu, dass die einheimische Art schnell verdrängt werden kann. Zusätzlich un-
tersuchen wir in Kapitel 1, wie stark eine öko-genetische Rückkopplung das Aussterben
der einheimischen Population beschleunigen würde. Dazu berücksichtigen wir, dass ein
Rückgang der einheimischen Populationsgröße zu einem Verlust an genetischer Diversität
führt, und das wiederum zu schlechterer Anpassung an veränderte Umweltbedingungen
und darum weiterem Schrumpfen der Population. Unsere Ergebnisse legen nahe, dass diese
öko-genetische Rückkopplung dann besonders stark ist, wenn die Konkurrenz zwischen
einheimischer und eingeführter Art eher schwach ist.

In Kapitel 2 (Wittmann et al., 2013b, im Druck bei Oikos) untersuchen wir für feste
durchschnittliche Einführungsraten (Individuen pro Zeiteinheit), welche Rolle die zeitliche
Verteilung der Individuen spielt. Besonders wichtig ist hierbei die Beziehung zwischen
zeitlicher Verteilung und der Variabilität in der Größenentwicklung der Population. Wir
zeigen, dass Fälle mit wenigen großen Einführungsereignissen zu mehr Variabilität führen
als Fälle mit vielen kleinen Einführungsereignissen. Diese Variabilität hilft den eingeführten
Populationen dabei, schwierige Stadien im Invasionsprozess (also solche mit einer nega-
tiven durchschnittlichen Wachstumsrate) zu bewältigen, ist aber anderseits in einfachen
Stadien mit positiver durchschnittlicher Wachstumsrate von Nachteil. Im Lichte unserer
Ergebnisse können wir aus der Literatur bekannte Daten zu Invasionsprozessen neu inter-
pretieren.

In den Kapiteln 3 und 4 (Wittmann et al., 2013c,d) untersuchen wir die genetische Di-
versität von Populationen, die einen starken demografischen Allee-Effekt erfolgreich über-
wunden haben. Laut Definition ist dabei die durchschnittliche Wachstumsrate bei Popula-
tionsgrößen unterhalb einer gewissen kritischen Größe negativ und in größeren Populatio-
nen positiv, so dass das erste Stadium des Invasionsprozesses schwierig ist und das zweite
einfach. In Kapitel 3 zeigen wir unter der Annahme Poisson-verteilter Nachkommenzahlen,
dass erfolgreiche Allee-Effekt-Populationen je nach Startgröße entweder eine höhere oder
eine niedrigere durchschnittliche genetische Diversität aufweisen als erfolgreiche Popu-
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lationen ohne Allee-Effekt. Das kommt zum Teil daher, dass erfolgreiche Allee-Effekt-
Populationen besonders schnell das schwierige erste Stadium des Invasionsprozesses ver-
lassen, wo genetische Drift am stärksten ist. Außerdem untersuchen wir in Kapitel 3, unter
welchen Bedingungen sich die kritische Populationsgröße aus genetischen Daten schätzen
lässt.

In Kapitel 4 betrachten wir eine Reihe von Modellen für die Anzahl an Nachkommen
von Individuen oder Paaren in der Population. Manche dieser Modelle führen zu mehr
stochastischer Variabilität in der Populationsdynamik, andere zu weniger Variabilität als
das in Kapitel 3 betrachtete Poisson-Modell. Für feste Startgröße beobachten wir, dass der
Allee-Effekt bei kleiner Variabilität einen negativen Einfluss auf die genetische Diversität
hat und bei großer Variabilität einen positiven Einfluss. Wir zeigen weiterhin, dass die Un-
terschiede zwischen unseren Nachkommenzahl-Modellen so substanziell sind, dass sie sich
nicht durch eine Umskalierung der Parameter des Poisson-Modells erklären lassen.

Zusammen genommen erlauben uns diese Ergebnisse einige allgemeine Schlussfol-
gerungen bezüglich der vier oben aufgeführten übergreifenden Fragen.

a) Wie schnell eine eingeführte Population den Invasionsprozess durchläuft, hängt haupt-
sächlich davon ab, ob es schwierige Stadien gibt, und wie schwierig diese sind. Des-
halb begünstigt eine ökologische Veränderung den Invasionserfolg dann, wenn sie
schwierige Stadien im Invasionsprozess mindert.

b) Aus der Perspektive der eingeführten Population ist Variabilität in schwierigen Sta-
dien des Invasionsprozesses von Vorteil, aber in einfachen Stadien von Nachteil.

c) Da die Stärke der genetischen Drift von der Populationsgröße abhängt, können wir
die populationsgenetischen Auswirkungen von Invasionsverläufen verstehen, indem
wir analysieren, wie viel Zeit die betrachtete Population in verschiedenen Popula-
tionsgrößenbereichen verbringt.

d) Rückkopplungen zwischen einem Rückgang der Populationsgröße und einem Verlust
genetischer Diversität sind am stärksten, wenn die Population viel Zeit im Bereich
kleiner Populationsgrößen verbringt.

Einige der wesentlichsten Ergebnisse dieser Dissertation können aus einer deterministischen
Perspektive nicht verstanden werden, sondern sind ein direktes Produkt von Stochastizi-
tät. Dies macht deutlich, dass Stochastizität nicht einfach einem gewissen Durchschnitts-
ergebnis etwas Rauschen hinzufügt, sondern das Verhalten biologischer Systeme qualitativ
verändern kann.
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General Introduction

Introduced populations and the invasion process

Imagine a few hundred individuals of a plankton species being transported to a distant port
in the ballast water of a cargo ship, or a few seeds of some plant species attached to the
hiking boots of a traveler going back to her home country, or any other group of individuals
of a certain species that is just being introduced, either accidentally or on purpose, to a lo-
cation where the species has been previously absent. Now imagine you could fast-forward
and see the same location 100 years later. What will have happened to the introduced po-
pulation? Will it be extinct now? Will it still be small, hardly noticeable, and without any
consequence for native communities? Or will it be a common, widespread species? Has
there been evolutionary change in the population? Will native communities and ecosystems
have changed as a result of its invasion?

These are some of the key questions of invasion biology, a branch of biology that is
concerned with the ecology—and sometimes evolution—of populations outside their native
range. To better understand the fate of introduced populations, invasion biologists have
developed a helpful abstraction: the invasion process (see Glossary). This concept stands
for the spectrum of possible states of an invasion, delimited on the one extreme by the point
where the focal species is absent and, on the other extreme, by the state in which the species
is large, widespread, and possibly has large impacts on native communities, ecosystems, or
even on human health and economy. Usually, invasion biologists think of this spectrum as
subdivided in some way. For example, Williamson & Fitter (1996) distinguish between four
stages: at any point in time an introduced population can be either imported, introduced,
established, or a pest species. Richardson et al. (2000), on the other hand, have focused on
the barriers that can prevent the transition of introduced populations through the process.
After their arrival, for example, populations first face the environmental barrier: abiotic
and biotic conditions that might be unsuitable and prevent the survival of the introduced
individuals. Later, they have to overcome a reproduction barrier and a dispersal barrier. A
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population’s position in the invasion process is then defined by how many barriers it has
passed already. Recently, Blackburn et al. (2011) have combined both perspectives, the one
centered on stages and the one centered on barriers, into a unified picture of the invasion
process.

Differentiating between several stages in the invasion process is helpful in several ways.
First, the stages in the invasion process can be used as a basis for terminology, for example
to agree on what it means for a species to be “naturalized” or “invasive” (Richardson et al.,
2000; Colautti & MacIsaac, 2004). Although this sounds trivial, there has been much debate
about such issues and many authors think that confusion about terminology is seriously im-
peding the progress of invasion biology as a scientific discipline (Davis & Thompson, 2000;
Richardson et al., 2000; Heger et al., 2013). Second, the influence of various biotic and abi-
otic factors seems to depend on the current position of the introduced population in the
invasion process. For example, migratory behavior in birds appears to be disadvantageous
at the establishment stage, but advantageous for later spread of the population (Kolar &
Lodge, 2001). Thus, lumping together these stages would yield ambiguous results: One
study might find a positive effect, a second study no effect, and yet another study a negative
effect of such a factor on invasion success. Furthermore, it does not seem to be the case that
those species that have a high likelihood of establishing or spreading at new locations are
also the ones that cause large impacts (Ricciardi & Cohen, 2007). Thus, depending on the
research question, we must carefully consider which stage of the invasion process needs to
be investigated. Finally, a subdivision of the invasion process can also guide the choice of
management actions (Lodge et al., 2006). For example, complete eradication may be fea-
sible only for populations in the early stages of the invasion process. If a population is in a
late stage of the invasion process, that is large and widely spread, it may be more reasonable
to just control and slow its spread.

Overview of this dissertation

The aim of my dissertation was to develop and analyze mathematical models that help us
to understand how ecological, evolutionary-genetic, and stochastic effects interact as the
introduced population moves through the invasion process. Together with my coauthors,
I have conducted four studies within this general context. They correspond to the four
chapters of this dissertation. The main factors and processes of interest in each chapter
are summarized in Fig. I.1. In Chapter 1 (Wittmann et al., 2013a), we investigate how the
intensity of competition with a native species influences the introduced population’s move-
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ment through the invasion process. We further quantify a feedback between the growth of
the introduced population and loss of genetic diversity in the native species. In Chapter 2
(Wittmann et al., 2013b), we study how the temporal distribution of introduced individ-
uals, one source of variability, affects invasion dynamics. We compare the results among
a variety of invasion processes, either with interspecific competition, as in Chapter 1, or
with a demographic Allee effect, i.e. an average per-capita growth rate that increases with
population size in small populations (Stephens et al., 1999). Chapter 3 (Wittmann et al.,
2013c) is concerned with the population genetic consequences of population-size trajecto-
ries under a strong demographic Allee effect, i.e. a demographic Allee effect in which the
average per-capita growth rate is negative for small population sizes (Taylor & Hastings,
2005). Chapter 4 (Wittmann et al., 2013d) builds on Chapter 3 and examines how the po-
pulation genetic consequences of the Allee effect are influenced by variation in offspring
number among individuals in the population. In the remainder of this General Introduction,
I will first outline our approach to quantifying the invasion process, specifically under inter-
specific competition or an Allee effect. I will then explain why we need stochastic models
to understand invasion dynamics and review current knowledge on how stochasticity in-
teracts with competition and an Allee effect. Finally, I will discuss population genetic and
evolutionary consequences of invasion trajectories.

Figure I.1: Overview of the various factors and processes that are investigated in the four
chapters of this dissertation.
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Quantifying the invasion process

In this dissertation, we focus on single, homogeneous introduced populations and use the
current population size to locate them in the invasion process. We will characterize the inva-
sion process by specifying the average per-capita growth rate of the introduced population
as a function of its current population size (Fig. I.2). For the understanding of many results
in this dissertation, it will be helpful to distinguish between “easy” and “difficult” stages in
the invasion process. An easy stage is characterized by a positive average per-capita growth
rate, whereas a difficult stage has a negative average per-capita growth rate, and thus can be
considered analogous to one of Richardson et al.’s (2000) barriers.

Of course, a one-dimensional characterization of the invasion process is a simplification.
Other quantities varying along with the size of the introduced population may also influence
invasion success, for example the population sizes of competitors, predators, and prey, or the
genetic structure of the introduced population. At various points in this dissertation, we will
explore ways to incorporate such an additional dimension into our models. In models with a
spatial component, one would also need to include a measure of range size to quantitatively
determine the introduced population’s invasion status. The various classification schemes
discussed above are often based on complex criteria, for example whether a population is
already self-sustained or not. However, it can be challenging to apply these criteria to the
data at hand. Since local abundance and range size information is more commonly available,
these measures have also been used elsewhere as a proxy for position in the invasion process
(see e.g. Murphy et al., 2006).

The magnitude of the average per-capita growth rate and its dependence on population
size is shaped by various factors: the number of individuals arriving per time unit (propagule
pressure, see Glossary), the abiotic conditions in the new environment, the life-history of the
introduced species itself, and interactions with resident species. In this dissertation, we will
focus on the role of interspecific competition and the Allee effect in shaping the invasion
process.

Interspecific competition can give rise to very different invasion processes depending
on the intensity of competition between introduced and resident species. If interspecific
competition is weaker than intraspecific competition, the rare species has an advantage. In
this case, the first stage of the invasion process is easy and the second stage is difficult (Fig.
I.2 A). By contrast, if interspecific competition is stronger than intraspecific competition,
the more common species has an advantage. Accordingly, the first stage in the invasion
process is difficult and the second stage is easy (Fig. I.2 B). Thus, an increase in the in-
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Figure I.2: Four example invasion processes. Arrows indicate the average movement of
populations through the invasion process: During easy stages, i.e. those with a positive av-
erage per-capita growth rate, arrows point to the right, indicating population growth. During
difficult stages, i.e. those with a negative average per-capita growth rate, populations tend
to decline and thus arrows point to the left. Solid dots indicate points that would be stable
equilibria in a deterministic system; open dots indicate unstable equilibria. The dashed gray
line corresponds to an average per-capita growth rate of zero.
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tensity of competition has opposing effects on the success of the introduced population at
different invasion stages: it impedes its establishment, but facilitates its growth once it is
very common and makes it more likely that the introduced species will become dominant
in the community and exclude the resident competitor. Given these opposing effects at dif-
ferent invasion stages, it is not surprising that the influence of interspecific competition on
invasion success has been rather controversial (Moulton & Pimm, 1983; Moulton, 1985;
Simberloff & Boecklen, 1991; Moulton, 1993; Duncan, 1997; Davis, 2003). One of the
main contributions of Chapter 1 (Wittmann et al., 2013a) is to clarify this double-edged
role of interspecific competition in the invasion process and to quantify the resulting overall
effect. Specifically, we investigate how competition intensity influences the expected time
until the introduced population reaches the end of the invasion process, which we define as
the point where it drives the resident species to extinction.

Figs. I.2 C and D display invasion processes generated by a demographic Allee effect,
a phenomenon featured in Chapters 2–4. If the per-capita growth rate is negative at small
population sizes, the Allee effect is called strong (Taylor & Hastings, 2005) and the first
stage of the invasion process is difficult (Fig. I.2 C). If, on the other hand, the average per-
capita growth rate is reduced but still positive at small population sizes, the Allee effect is
called weak (Taylor & Hastings, 2005) and the invasion process starts with an easy stage
(Fig. I.2 D).

A stochastic theory of the invasion process

So far, our perspective on the invasion process has been entirely deterministic. We have de-
scribed it in terms of average per-capita growth rates, and stable or unstable equilibria (Fig.
I.2). In this section, I will point out three ways in which stochasticity shapes the progress of
the introduced population, and thereby argue for a stochastic theory of the invasion process.

Why do we need a stochastic theory of the invasion process?

First and most obviously, introduced populations are almost always very small. In a popula-
tion that consists of few individuals, it can happen by chance that all individuals die before
leaving any offspring or that they produce offspring of only one sex. This type of stochas-
ticity is called demographic stochasticity and can cause the extinction of small populations
even in scenarios where a deterministic model would predict their growth (as for example
in Fig. I.2 A and D). Since the randomness at the level of individuals increasingly averages
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out as the population becomes larger, the importance of demographic stochasticity quickly
diminishes with increasing population size. Notably, the expected time until a population
goes extinct due to demographic stochasticity increases exponentially with population size
(Lande, 1993).

Second, in scenarios where the first stage of the invasion process is difficult (as for ex-
ample in Fig. I.2 B and C), deterministic models would always predict the extinction of
small introduced populations. Successful establishment under such scenarios is certainly
rather unlikely. Many species, however, are regularly transported around the world by hu-
mans, either intentionally as is the case for garden plants, pets, and game species, or unin-
tentionally in the case of many invertebrates that are traveling as stow-away in ballast water
or other means of cargo transport. If a given species arrives to a certain location not just
once, but again and again, even unlikely events can occur eventually. For example, the Eu-
ropean red deer Cervus elaphus needed at least 32 introduction attempts to New Zealand,
before it finally established and spread (Simberloff, 2009). Since a single successful po-
pulation among many failed ones can be responsible for large impacts, knowing that the
average introduced population will go extinct is not sufficient. We need stochastic models
to understand the factors that cause populations to deviate from this expectation and the
properties of such exceptional populations.

Third, stochasticity can still be important when a population leaves the range of small
population sizes (Black & McKane, 2012). For many introduced species, so-called lag times
have been observed: an introduced species proceeds to a certain stage in the invasion process
and then remains there for a long time (Kowarik, 1995; Crooks, 2005; Simberloff, 2009). A
plausible explanation for this phenomenon is that the population fluctuates for a long time
around a point that would be a locally stable equilibrium in a deterministic model (e.g. the
locally stable point indicated by a solid dot at intermediate population size in Fig. I.2 A) and
that eventually one of these fluctuations is large enough to let the population overcome the
subsequent difficult stage and continue its progress through the invasion process. Since a
deterministic model would predict that the introduced population remains at the stable point
forever, we need stochastic models to understand and quantify the movement of populations
through difficult stages in the invasion process.

Modeling stochasticity

To define a meaningful stochastic model, it is not sufficient to take a deterministic model
and add some “noise” to it; we have to be precise about the form of the variability that enters
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the model. Apart from demographic stochasticity, there are two other forms of stochasticity
that are important for introduced populations. Environmentally driven fluctuations in demo-
graphic parameters, such as birth rates or death rates, are called environmental stochasticity.
In contrast to demographic stochasticity, environmental stochasticity does not lose impor-
tance in large populations because all individuals in a population are jointly affected by the
environment. Another important source of stochasticity is the introduction process itself,
i.e. temporal fluctuations in the number of individuals introduced.

All models in this dissertation include demographic stochasticity. It arises directly from
the way we model birth and death events in the various projects. We additionally included
environmental stochasticity in the eco-genetic model in Chapter 1 (Wittmann et al., 2013a),
and in Appendix 4 of Chapter 2 (Wittmann et al., 2013b). In two cases, we focus in par-
ticular on how variability affects invasion success: In Chapter 2 (Wittmann et al., 2013b),
we consider variability deriving from the introduction process. We compare introduction
regimes with the same average number of individuals introduced per time unit, but with
a different temporal distribution. Introduction regimes with few large introduction events
(large propagule size, small propagule frequency, see Glossary) are associated with more
variability than regimes with many small introductions (small propagule size, large propag-
ule frequency). In Chapter 4 (Wittmann et al., 2013d), we investigate the role of offspring-
number variation, a component of demographic stochasticity.

There is a variety of modeling approaches in invasion biology (see Box 1 for an overview),
a small proportion of which include some form of stochasticity. Most stochastic models in
invasion biology are concerned with the establishment probability of introduced populations
under demographic and environmental stochasticity. Using branching processes, birth-death
processes, or diffusion processes (see Glossary for definitions), formulas for the probability
that an introduced population reaches a certain high population size before going extinct
have been derived (Richter-Dyn & Goel, 1972; Haccou & Iwasa, 1996; Haccou & Vatutin,
2003). In contrast to branching processes, birth-death processes and diffusion processes
can include different kinds of density dependence, although this usually makes it difficult
or even impossible to find analytical solutions for quantities of interest. With the help of
numerical methods, however, such models have already yielded important insights into the
role of stochasticity in scenarios with Allee effect or interspecific competition.
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Box 1: Mathematical models in invasion biology

From a methodological standpoint, models in invasion biology reflect the whole diversity of math-

ematical modeling approaches in ecology. They range from simple statistical models (e.g. Veltman

et al., 1996), over classical population models based on differential or difference equations (e.g.

Crawley, 1986), to detailed individual-based simulation models (e.g. Byers & Goldwasser, 2001;

Higgins et al., 2001). Models either focus on a single alien species (e.g. Drake & Lodge, 2006),

or take into account interactions with one or more resident species (Duncan & Forsyth, 2006), or

even the whole network of interactions in the community (e.g. Romanuk et al., 2009). Some models

have taken into account life history and stage structure in alien populations (e.g. Thomson, 2005;

Wittmann et al., 2011). In the main text, we will discuss stochastic models in more detail. Here, I

will just highlight two particularly popular modeling approaches in invasion biology:

Models for the spatial spread of invasions (see Hastings, 1996; Hastings et al., 2005, for

an overview) often take the form of partial differential equations that include a term for the local

population dynamics and a term for diffusive dispersal. Under quite general assumptions, such mod-

els give rise to a traveling wave of population expansion in which the population density profile at

the colonization edge stays constant in time and simply moves in space with a constant velocity.

The results of such models fit quite well to data on some real-world expansions, for example of the

muskrat (Skellam, 1951).

Ecological niche modeling = bioclimatic/ species distribution modeling (Peterson & Vieglais,

2001; Peterson, 2003; Jeschke & Strayer, 2008). The idea here is to use environmental information

(e.g. on temperature, rainfall etc.) and presence-absence data from the current geographical range

of a species to build a statistical model for its ecological niche, i.e. for the abiotic conditions under

which the species is able to persist. This statistical model can then be projected onto geographical ar-

eas where the species has not arrived yet to predict its potential future range (Peterson, 2003). Major

limitations of bioclimatic models are that they do not account for biotic interactions, or phenotypic

changes over the course of an invasion, and that the absence of the species from a location within its

current range is always ascribed to abiotic factors and not to a failure to disperse to the location or

chance extinction (Jeschke & Strayer, 2008).

Models in invasion serve a variety of purposes, for example

• risk assessment (e.g. Drake, 2004)

• predicting the future range of species (e.g. Peterson & Vieglais, 2001)

• predicting or understanding impact on particular native species (e.g. Byers & Goldwasser,

2001)

• evaluating management options (e.g. Shea & Possingham, 2000)

• improving our understanding of basic ecological and evolutionary processes
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Stochasticity and the Allee effect

Dennis (2002) incorporated a strong demographic Allee effect (see Fig. I.2 C) into stochas-
tic population models, in this case diffusion processes. He derived formulas (involving
integrals over shifted Gamma distributions) for the probability that a population reaches
some upper threshold size b before reaching some lower threshold size a. Plots of this first-
passage probability over a range of initial population sizes between a and b have an inflec-
tion point at the critical population size (Fig. I.3). For extremely low levels of stochasticity,
this function looks almost like the deterministic step function: populations below the crit-
ical population size decline and never reach b, whereas populations above the critical size
grow and reach b with probability 1. With increasing stochasticity, the curve becomes more
shallow: the first-passage probability for population sizes below the critical size increases
while the first-passage probability for population sizes above the critical size decreases.
Furthermore, in the case of continuous immigration, an increase in stochasticity has been
shown to decrease the expected time a small population needs to overcome the Allee effect
and reach some high population size (Potapov & Rajakaruna, 2013). In summary, variabil-
ity promotes the success of introduced populations below the critical population size, but
is detrimental for populations above the critical size because it increases the risk that these
populations will fall below the threshold and go extinct.

Freckleton et al. (2006) provide a case study for the interplay between the Allee effect
and stochasticity. On Indo-Pacific coral reefs, the invasive crown-of-thorns starfish Acan-

thaster planci exhibits a predator-induced Allee effect: In small populations, individual
starfish have a higher probability to be eaten by a predatory fish. In a stable, deterministic
system, this effect could prevent the invasion of the starfish. However, commercial fishing
leads to variability in the abundance of predatory fishes, i.e. environmental stochasticity. It
appears that a temporary reduction in predation pressure can allow crown-of-thorns starfish
populations to escape from the Allee effect.

Stochasticity and interspecific competition

While the importance of stochasticity in Allee-effect scenarios is broadly recognized, the
role of interspecific competition with resident species is more often considered from a de-
terministic perspective (e.g. Case, 1990, 1995; Miller et al., 2009; Wittmann et al., 2013e).
In one of the few studies incorporating stochasticity, Duncan & Forsyth (2006) simulated a
two-species birth-death process to compute the establishment probability of an introduced
species facing competition from a resident species. Their results can be interpreted as fol-
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Figure I.3: First-passage probabilities (probability to reach population size b before a) with
a strong demographic Allee effect and various amounts of stochasticity. The critical popu-
lation size is 20. Curves are based on equation (34) in Dennis (2002).

lows: in cases where interspecific competition is weaker than intraspecific competition (as
in Fig. I.2 A), the establishment probability of the introduced population is high and de-
pends relatively little on the initial population size of the competitor. On the other hand, if
interspecific competition is stronger than intraspecific competition (as in Fig. I.2 B), estab-
lishment probability strongly decreases with increasing initial population size of the com-
petitor. Consequently, if environmental stochasticity leads to a temporal reduction in the
competitor’s population size, demographic stochasticity or stochasticity in the introduction
process may allow the introduced population to establish.

This effect is illustrated by another of Freckleton et al.’s (2006) case studies: In Aus-
tralian pastures, the introduced grass Vulpia bromoides is strongly competing with a native
grass, Lolium rigidum. Fitting simple competition models to data from field experiments
revealed that interspecific competition is stronger than intraspecific competition in this sys-
tem, such that the coexistence of the two species is unstable (like in Fig. I.2 B). Thus, in
a deterministic world, Vulpia would not be able to invade pastures dominated by Lolium.
Every few years, however, severe droughts reduce the densities of all species in the system
to low levels. This form of environmental stochasticity appears to facilitate the invasion of
Vulpia because the introduced population more rapidly recovers after a drought than the
native population.

Both in the case of an Allee effect and in the case of competition, previous research
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has focused on the first stage of the invasion process. However, as I have argued above,
stochasticity can also be important at later stages of the invasion process. Currently, there
is no stochastic theory for a population’s journey through the entire invasion process. Fur-
thermore, there has been little research on the population genetic and evolutionary conse-
quences of invasion trajectories.

Invasion trajectories and their genetic consequences

The average population dynamics and the associated variability not only influence whether
and when a population reaches a certain point in the invasion process, but also the path it
takes to get there. These population-size trajectories tell us how much time the population
has spent at intermediate population sizes before first reaching a certain population size.
Such information plays a large role for levels of genetic diversity in introduced popula-
tions because the average proportion of genetic variation that is lost through genetic drift
per generation is inversely proportional to population size. Since it takes a long time until
heterozygosity is restored by new mutations, introduced populations carry the genetic traces
of their early history even after they have already reached high population sizes (Fauvergue
et al., 2012).

To understand patterns of neutral genetic variation and their dependence on demo-
graphic events like founding events, population growth or decline etc., population geneti-
cists often use coalescent theory (see Wakeley, 2009, for an introduction). The coalescent is
a continuous-time stochastic model for sample genealogies in large populations. The central
idea is to trace the sampled lineages backwards in time and to fuse (coalesce) two ancestral
lineages when their descendants have a common ancestor at that point in the past. Since
the rate at which two lineages coalesce is inversely proportional to population size, sample
genealogies from small populations tend to have shorter branches than those from large
populations, and thus in small populations there is a reduced opportunity for mutations to
generate variation that will be visible in the sample.

Coalescent theory is an elegant and powerful framework in population genetics, but
when it comes to patterns of genetic diversity in small introduced populations we have
to apply it with caution. For example, it is possible in small populations that three or more
lineages coalesce, or that multiple coalescent events occur in a single generation. Such mul-
tiple and simultaneous mergers become very improbable as the population sizes increases
and therefore do not occur in the standard coalescent. For this dissertation, however, I devel-
oped a simulation program that is specifically designed for the simulation of genealogies
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and genetic data in small introduced populations. I simulate the stochastic demography
forward in time, and then trace the sampled lineages backward in time generation by gener-
ation using a modified version of the coalescent that takes into account the particularities of
small populations. In Chapters 3 and 4 (Wittmann et al., 2013c,d), we use this simulation
program to study levels of genetic diversity in introduced populations that have successfully
overcome a strong demographic Allee effect.

The genetic consequences of population-size trajectories are of interest because 1) they
provide an opportunity for parameter inference and 2) they have implications for the evo-
lutionary potential of the introduced species and interacting native species, with possible
feedback on their population dynamics. We will explore these aspects in turn in the next
two sections.

Opportunities for parameter estimation from genetic data

If the movement of the introduced population through the invasion process leaves traces
in genetic data (e.g. in microsatellite, SNP, or DNA sequence data), it might be possible
to employ these patterns to infer parameters of the invasion process, such as growth rates
and founder population sizes. Since the inference of demographic parameters is of interest
not only in invasion biology, statistical population geneticists have developed a multitude
of methods to estimate such parameters from various types of genetic data. One important
class are full-data likelihood methods that employ Markov Chain Monte Carlo algorithms
to approximate the probability of obtaining the complete observed data set, given the pa-
rameters, i.e. the likelihood of the parameters (see Glossary). Prominent examples for this
approach are implemented in the programs GENETREE (see e.g. Griffiths & Tavaré, 1997),
IM (Hey & Nielsen, 2004), and LAMARC (Kuhner, 2006). Other methods reduce the com-
plexity of the data set by first condensing it to a set of summary statistics, for example
Tajima’s D (Tajima, 1989), indices for population differentiation such as FST (Wright,
1949) or Jost’s D (Jost, 2008), or the entries of the (joint) site frequency spectrum ((J)SFS)
of samples from one or two populations (see Glossary for definitions). The subsequent es-
timation procedure is then based for example on diffusion theory, as is the case in ∂a∂i
(Gutenkunst et al., 2009), or a composite-likelihood approach assuming that sites are effec-
tively independent of each other, as in Jaatha (Naduvilezhath et al., 2011; Mathew et al.,
2013a,b).

Despite this host of available methods, it remains challenging to find one that suits the
needs of recently introduced populations. In a pessimistic perspectives article on the topic,
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Fitzpatrick et al. (2012) argue that the utility of genetic data for parameter inference in inva-
sion biology is limited by the short time scale on which the events of interest usually happen
and by the fact that introduced populations often violate assumptions of classical popula-
tion genetic analyses. It is true that especially the full-likelihood methods are restricted to
specific models, since the evaluation of the likelihood function is quite difficult in general.
For example, the model underlying LAMARC (Kuhner, 2006) assumes that the population
structure has been stable for a long time, an assumption that is certainly not fulfilled for
most introduced populations. Furthermore, most methods rely at their core on coalescent
simulations, which only provide an accurate approximation for sample genealogies if po-
pulations are reasonably large. As we have seen in the previous section, the genealogies of
small populations can exhibit features that are not observed in large populations.

One approach that is flexible enough to accommodate all particularities of small intro-
duced populations is Approximate Bayesian Computation (ABC), a method allowing for
the estimation of parameters from arbitrarily complex models, as long as they can be sim-
ulated in a reasonable amount of time (see Beaumont, 2010; Csilléry et al., 2010, for an
introduction). This method is based on a comparison of summary statistics between the
observed data set and a large number of simulated data sets whose parameter values have
been drawn from some prior distribution. In the simplest version of ABC, Pritchard et al.’s
(1999) rejection algorithm, simulation runs with summary statistics that are too far away
from the observed summary statistics are rejected. More specifically, if S∗1 , . . . , S

∗
n are the

observed summary statistics, a simulation run with summary statistics S1, . . . , Sn is ac-
cepted if |Si − S∗i |/S∗i < δ for all i in {1, . . . , n}, where δ > 0 is the rejection threshold.
The parameter combinations of the accepted simulation runs are then taken as an approxi-
mate sample from the posterior distribution.

In principle, ABC poses no restrictions on the type and number of summary statis-
tics, and thus it is even possible to combine genetic summary statistics with ecological
information such as measurements of population sizes. In practice, however, the curse of
dimensionality can strike: If δ is kept fixed, the proportion of simulations that fall within
the acceptance region decreases with an increasing number of summary statistics. Conse-
quently, the estimation of the posterior distribution is based on a smaller sample size and
therefore more variable. If, on the other hand, the proportion of simulations to be accepted
is kept fixed, the distance between the summary statistics of the accepted simulations and
those of the observed data set tends to increase with an increasing number of summary
statistics, leading to a bias in the estimation of the posterior distribution. One strategy to
overcoming this “bias-variance tradeoff” is to use local linear or nonlinear regression to re-
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duce the bias that results from accepting simulations whose summary statistics are at some
distance from the true ones (Beaumont et al., 2002; Blum & François, 2010). Another strat-
egy is to find or construct a limited number of summary statistics that contain the most
relevant information about the parameters of interest. Several statistical methods have been
devised for this purpose (Boulesteix & Strimmer, 2007; Joyce & Marjoram, 2008; Nunes &
Balding, 2010), but also biological insight can help to decide what aspects of the data will
be most useful.

In the case of historically introduced populations, we generally do not expect many
new mutations to have happened since the introduction event, except maybe for organisms
with very short generation times. Thus, we cannot rely on such new mutations for demo-
graphic inference in most introduced organisms. However, there is other important genetic
changes that do occur in small introduced populations: the genetic variation imported from
the source region is subjected to genetic drift. As discussed above, the strength of genetic
drift and hence how much of the variation is lost depends on the population-size trajectory.
Therefore, we might be able to infer at least the founder population size, i.e. the strength
of the bottleneck associated with the introduction event, and some measure of population
growth. That genetic data can contribute to the inference of founder population sizes, even
if ecological information is also available, has been demonstrated by Estoup et al. (2010).
Keeping in mind the limitations of population genetic inference in introduced populations,
we explore in Chapter 3 (Wittmann et al., 2013c) under what conditions we could employ
the population genetic patterns generated by a strong demographic Allee effect to infer the
critical population size. We base our estimation on the site-frequency spectrum of sam-
ples from the introduced population, use partial least squares (Mevik & Wehrens, 2007) to
reduce the number of summary statistics, and finally use ABC with linear regression ad-
justment (Beaumont et al., 2002) to approximate the posterior distribution of the critical
population size.

Evolutionary potential of introduced populations and eco-genetic feed-
backs

A second motivation for studying the population genetic consequences of invasion trajec-
tories is that levels of genetic diversity can influence the evolutionary potential of an intro-
duced population: its ability to adapt to the abiotic and biotic conditions in the new envi-
ronment and to persist in the face of environmental change. To demonstrate this connection
between population size and evolutionary potential, Frankham et al. (1999) subjected ex-
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perimental populations of Drosophila melanogaster first to a strong bottleneck and then
to increasing salt concentrations. All populations evolved an increased salt tolerance, but,
compared to populations that had not experienced a bottleneck, the bottlenecked popula-
tions went extinct at smaller salt concentrations.

Such direct evidence for a reduction in evolutionary potential after a reduction in po-
pulation size is rare, however, and conclusions are often based on levels of neutral genetic
diversity. A meta-analysis by Reed & Frankham (2001) has revealed that levels of genetic
diversity at neutral markers correlate only weakly with the amount of additive genetic vari-
ance in quantitative traits (see Glossary) which is the basis of most evolutionary adaptation.
This was also the case for allozyme heterozygosity (a measure of neutral genetic variation)
and genetic variation in bristle number (a quantitative trait) in experimentally bottlenecked
Drosophila melanogaster populations (Gilligan et al., 2005). Nevertheless, both measures
of diversity had a similar relationship with bottleneck size. Thus, the authors conclude that
uncertainty in the estimates of genetic variation is the most likely explanation for the weak-
ness of the correlation between them. In any case, we should be aware that levels of genetic
diversity at neutral markers are not a perfect indicator for evolutionary potential.

Another complication is that there can even be an increase in additive genetic variance
immediately after a bottleneck, as has been observed for example in experimentally bot-
tlenecked houseflies (Bryant et al., 1986). This observation can be explained either by a
conversion of epistatic genetic variance into additive genetic variance (Goodnight, 1988),
or by the presence of rare recessive alleles (Willis & Orr, 1993). These effects, however, are
expected to be short-lived (Frankham, 2005) and overall strong bottlenecks as they occur in
many species introductions should lead to a reduction in long-term evolutionary potential.

If a reduction in genetic diversity prevents a population from responding appropriately
to environmental change, its population size may further decline, leading to additional loss
of genetic diversity, and so forth until the population goes extinct. This mechanism—we
will call it an eco-genetic feedback—is an example for an extinction vortex (Gilpin & Soulé,
1986), a synergistic interaction between different processes that can drive small populations
to extinction: demographic and environmental stochasticity, the Allee effect, habitat frag-
mentation, loss of genetic variation, mutation accumulation, and inbreeding depression.
Extinction vortices may affect small introduced populations, but of course also interacting
resident populations, for example if an introduced population drives a resident competitor
or prey species to small population sizes. In Chapter 1 (Wittmann et al., 2013a), we quan-
tify such an eco-genetic feedback in the impacts of an introduced population on a resident
competitor in a variable environment.
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General aims of this dissertation

In summary, the general aim of this dissertation is to develop and analyze stochastic mod-
els to further our understanding of the ecology and population genetics of an introduced
population as it moves through the invasion process. More specifically, we investigate

a) the role of ecological factors that shape the average per-capita growth rate and its
dependence on population size,

b) the role of ecological factors that influence the variability in population-size trajecto-
ries,

c) how the movement through the invasion process shapes levels of genetic diversity
within the introduced population and possibly interacting resident populations, and

d) the eco-genetic feedbacks that may occur when the genetic consequences of population-
size trajectories in turn influence the population dynamics.

In the General Discussion, we will come back to these four questions to synthesize and
discuss the findings of the four chapters.
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Chapter 1

Ecological and genetic effects of
introduced species on their native
competitors

Meike J. Wittmann, Martin Hutzenthaler, Wilfried Gabriel, Dirk Metzler
Theoretical Population Biology (2013) 84, 25–35.
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a b s t r a c t

Species introductions to new habitats can cause a decline in the population size of competing native
species and consequently also in their genetic diversity. We are interested in why these adverse effects
are weak in some cases whereas in others the native species declines to the point of extinction. While the
introduction rate and the growth rate of the introduced species in the new environment clearly have a
positive relationshipwith invasion success and impact, the influence of competition is poorly understood.
Here, we investigate how the intensity of interspecific competition influences the persistence time of a
native species in the face of repeated and ongoing introductions of the nonnative species.We analyze two
stochastic models: a model for the population dynamics of both species and a model that additionally
includes the population genetics of the native species at a locus involved in its adaptation to a changing
environment. Counterintuitively, both models predict that the persistence time of the native species is
lowest for an intermediate intensity of competition. This phenomenon results from the opposing effects
of competition at different stages of the invasion process: With increasing competition intensity more
introduction events are needed until a new species can establish, but increasing competition also speeds
up the exclusion of the native species by an establishednonnative competitor. By comparing the ecological
and the eco-genetic model, we detect and quantify a synergistic feedback between ecological and genetic
effects.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

When a new species is introduced to a location where it
did not occur before, it begins to interact with the resident
species, for example as a predator, mutualist, or competitor. These
interactions are critical in determining the fate of the introduced
species and whether and how the community changes in response
to the introduction. In this study, we investigate the effects of
introduced species on the native species with which they are
competing for resources, such as food or territories. Often there
is considerable variation between geographical locations in the
impacts of an introduced species on a particular native competitor,
e.g. in container-dwelling mosquitoes in Florida (Juliano, 1998) or
for fish introductions to California (Herbold andMoyle, 1986). Thus
the question is: Why does the native species suffer from severe
impacts or even goes extinct in some places, but not in others?

While it is evident that the probability for an introduced species
to become a high-impact invader at a certain location increases
with introduction rate (also known as propagule pressure, one
of the most important factors in invasion biology, Duncan, 1997,

∗ Corresponding author.
E-mail address:wittmann@bio.lmu.de (M.J. Wittmann).

Drake et al., 2005, Lockwood et al., 2005) and with the species’
growth rate in the new environment (Rejmánek and Richardson,
1996; Wu et al., 2005), the role of competition has remained
controversial (Herbold and Moyle, 1986; Duncan, 1997; Davis,
2003). Some empirical studies suggest that differences in the
intensity of interspecific competition can explain differences in
impacts, e.g. in the competitive interaction between native bumble
bees and introduced honey bees in California, where the overlap
in the flowers visited by honey bees and bumble bees was used
as a proxy for the intensity of interspecific competition (Thomson,
2006). However, it has been difficult to disentangle the effect of
competition from that of other variables and no consensus has
emerged yet. Here we contribute a first theoretical building block
towards an understanding of how competition intensity influences
introduced species impacts.

Considerable impacts of an introduced species on a native
species or even extinction of the native species can only occur if the
introduced species completes twomajor stages of the invasionpro-
cess: The establishment stage startswith the introduction of one or
more founding individuals. This new population can then either go
extinct, in which case it has to await the next introduction event,
or increase in size until it is of the same order of magnitude as the
competing native population. From there, the introduced species
can proceed to a second stage in which it becomes dominant and

0040-5809/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.tpb.2012.11.003
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may eventually exclude the native species from the community.
Thus far, knowledge on the effect of competition is limited to sin-
gle stages of the invasion process.

At the establishment stage, the intensity of competition with
native species appears to have a negative effect on the success of
introduced species. With phylogenetic relatedness as a proxy for
the intensity of competition, this intuitive idea goes back toDarwin
(1859, Chapter 4). Darwin’s naturalization hypothesis, as it is
formulated nowadays, states that introduced species should be less
successful at locations where closely related species are already
present (Duncan and Williams, 2002). Surprisingly, the opposite
pattern is sometimes observed in historical data, for example for
plants introduced to Hawaii and New Zealand (Daehler, 2001;
Duncan andWilliams, 2002). A possible explanation is that closely
related species not only compete with each other but also share
characteristics that may confer a high intrinsic ability to survive
and grow at the new location (Duncan and Williams, 2002).

In the only experimental study on Darwin’s naturalization
hypothesis that we know of, however, the establishment success
of an invader in a microcosm bacterial community increased with
the average phylogenetic distance to the recipient community
(Jiang et al., 2010). In this case, it has also been confirmed that
more closely related species had a higher overlap in resource use
and were therefore competing more intensely. Additional support
for the negative effect of competition at the establishment stage
comes from historical bird introductions to Hawaii: Moulton and
Pimm (1983) and Moulton (1993) observed a negative correlation
between establishment success and the number of bird species
already present, an observation that fits well with the predictions
of a model for the assembly of a competitive Lotka–Volterra
community (Gamarra et al., 2005).

At the second stage of the invasion process, when the nonnative
species has already established, the impacts of the introduced
species on the native competitors seem to increasewith increasing
intensity of competition. For example, among pairs of congeneric
bird species introduced to Hawaii, pairs in which both species
persisted had a significantly higher relative difference in beak
length than pairs of species in which one or both species went
extinct (Moulton, 1985). Contrarily, Ricciardi and Atkinson (2004)
and Strauss et al. (2006b) found that species less related to the
native community had higher impacts. However, their measures
of impact summarized effects on various aspects of the native
community, not only those on competitors, such that their results
do not fully apply to our problem.

At this second stage, a number of evolutionary and genetic
effects can contribute to the impacts of the introduced species
on the native species. If the two species are closely related, there
is the potential for hybridization and introgression, which can
lead to new opportunities for evolution but also to extinction of
rare native populations (Rhymer and Simberloff, 1996). Introduced
and native competitors also impose new selection regimes on
each other which can lead to shifts in life histories and resource
use that reduce the intensity of competition and thus facilitate
coexistence (Crowder, 1984), or even a coevolutionary arms race in
the exploitation of a limiting resource (Leger and Espeland, 2010).
These evolutionary effects are strongly contingent on the species
involved.

There are also genetic effects, however, that are a direct
consequence of the reduction in native population size due to
competition and should therefore be present in most cases:
smaller populations are subject to inbreeding depression, they can
maintain a lower amount of genetic diversity, and accumulate
deleterious mutations more rapidly (Frankham, 1995; Lande,
1995; Frankham and Kingsolver, 2004). Additionally, fluctuations
in population size or habitat fragmentation can change the genetic
configuration of the native species. So far, there are only a few

empirical studies that examine such genetic effects of introduced
species (e.g. Krueger andMay, 1991; Kim et al., 2003). In this study,
we focus on the reduction in a native population’s genetic diversity
caused by a population decline after the invasion of a competitor. A
reduction in genetic diversity can lower the native species’ ability
to respond to changes in the environment (Strauss et al., 2006a)
and thus lead to a reduced growth rate (Lande and Shannon, 1996).
This, in turn, leads to a further decline in population size, thus
closing the feedback loop. Such a synergistic feedback between
ecological and genetic effects can accelerate population extinction
(Robert, 2011). We will call this the eco-genetic effect of the
introduced species and quantify how its strength depends on the
intensity of competition with the native species.

In summary, a high intensity of competition between intro-
duced and native species appears to have contrary effects at the
different stages of the invasion process: it makes establishment of
the introduced species more difficult but also increases the extinc-
tion risk imposed by an already established nonnative species on
the native species (see alsoMacDougall et al., 2009). This raises the
question: What is the overall effect of competition intensity inte-
grated across the entire invasion pathway? In this study, we con-
sider a scenario inwhich an unlimited series of introduction events
would sooner or later lead to the extinction of the native species.
Our goal is to quantify for how long the native species can per-
sist depending on the intensity of competitionwith the introduced
species.

Stochastic models based on birth, death, and migration events
at the individual level have increased our understanding of
a wide range of processes in community ecology (Black and
McKane, 2012), for example diversity patterns in dispersal-
limited communities (Alonso et al., 2006). Stochasticity in the
fates of individuals is particularly important for the dynamics of
small introduced populations. Thus we use a stochastic modeling
approach and compute the expectation and the variance of the
time to the extinction of the native species, its persistence time.
Very long persistence times in our model can be interpreted as
signs for indefinite coexistence, since in these cases we would
expect events like evolutionary divergence of niches to occur
before the extinction of the native species (see Strauss et al.,
2006a, and references therein).

We also study how the relationship between competition and
persistence time is modulated by the rate at which nonnative
individuals are introduced and the nonnative species’ intrinsic
ability to grow and reproduce in the new environment, i.e. we
address questions such as: Is the effect of competition different for
species that are introduced at a high vs. a low rate or does it depend
on whether the introduced species or the native species has a
higher fecundity. First, we consider these questions for a purely
ecological model, which can be analyzed using theory on birth
and death processes and a corresponding diffusion approximation.
Thenwe transform thismodel into an eco-geneticmodel by adding
a genetic dimension that allows us to quantify the feedback of
reduced genetic diversity and adaptability on extinction risk in a
variable environment and its dependence on competition strength.
Lastly, we address a question of interest for invasive species
management: How low does the introduction rate of a certain
species need to be such that thenative species is expected to persist
for a certain threshold time?

2. Modeling

2.1. The ecological model

We represent the population dynamics of the native and the
introduced species as a continuous-time stochastic model similar
to theMoranmodel in population genetics (Moran, 1958). Consider
a community consisting of a fixed number K of individuals, each
of which belongs either to the native or to the introduced species.
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The rate at which individuals die is proportional to the extent of
competition experienced from conspecifics and members of the
other species (as in Neuhauser and Pacala, 1999). The strength
of interspecific competition relative to intraspecific competition
is described by the non-negative competition coefficient α.
Small values of α represent weak interspecific competition and
high values intense interspecific competition. In principle, this
parameter can be estimated from data on the overlap in resource
use between the two species (May, 1975). The individual whose
offspring replaces the dead individual is selected by randomly
drawing one individual from the whole community, including
the individual that just died. In this draw, native individuals
have weight 1 and members of the introduced species weight
w. Thus w can be understood as the fecundity of the introduced
species relative to that of the native species in the sense that it
is proportional to the per capita number of offspring in a large
offspring pool from which the new individual is drawn.

Note that for the sake of simplicity we assume that the compe-
tition coefficient α is the same for both species. Thus we are using
this parameter to describe the symmetric component of the com-
petitive interaction. Nevertheless, an asymmetric situation can be
generated by setting the fecundity parameterw to a value different
from 1. For w > 1 the introduced species has a fecundity advan-
tage, for w < 1 a disadvantage. Initially, all K individuals belong
to the native species. From time 0 onwards, single individuals of a
nonnative species are introduced at rate γ (on average γ times per
time unit) and start competingwith the native species. To bring the
community back from K + 1 to K individuals after an introduction
event, one individual is drawn to die with weights proportional to
the competition experienced.

The population dynamics of the native species can be for-
mulated as a Markov process N = (N(t))t≥0 with state space
{0, 1, 2, . . . , K} which describes the number of native individu-
als currently in the community. Since in this model transitions are
only possible between neighboring states, it belongs to the class of
birth and death processes (Karlin and Taylor, 1975, pp. 131–150).
The rate λn at which the number of native individuals increases by
one is

λn =
c(K − n, n) · (K − n)

K  
rate at which

members of the introduced
species die

·
n

(K − n) · w + n  
probability that a
native individual

gives birth

(1)

for n ∈ {0, . . . , K − 1}, where c(x, y) = x + αy is the competition
experienced by an individual when the population size of the
species it belongs to is x and the size of the competing species
is y. The constant of proportionality for the death rate is chosen
to be 1/K , such that in the absence of the introduced species
native individuals die at rate 1. Then there are on average K death
events per time unit and one time unit can be considered as one
generation. For n ∈ {1, . . . , K}, the rateµn at which the number of
native individuals decreases by one if there are currently n native
individuals is

µn =
c(n, K − n) · n

K  
rate at which

native individuals die

·
(K − n) · w

(K − n) · w + n  
probability that an

introduced individual
gives birth

+ γ
introduction

rate

·
c(n, K − n + 1) · n

c(n, K − n + 1) · n + c(K − n + 1, n) · (K − n + 1)  
probability that a native

individual dies

. (2)

The assumption of a fixed community size is a good approxi-
mation for pairs of ecologically similar species for which interspe-
cific competition is as strong as intraspecific competition for the

resource which is limiting population size. This can happen, for ex-
ample, if there is a fixed number of territories or nesting places that
can be occupied by one individual from either species. The compe-
tition for other important resources can be less intense (α < 1)
or there can be interspecific interference (α > 1). The robustness
of our model results against violations of the constant community
size assumption is explored in the supplementary material.

In a community of finite size, coexistence of native and
introduced species is not possible in the long run. We assume that
our model encompasses the whole range of the native species,
such that a reintroduction of native individuals from outside
is not possible. The introduced species, in contrast, can fail to
establish and go extinct after an introduction event, but will then
be reintroduced at a later time. Therefore, the only absorbing state
of themodel is 0, the state at which the whole community consists
of introduced individuals and the native species is extinct. Note
that in the absence of immigration, the native species would be
able to persist for an infinite amount of time, since by assumption
the total number of individuals in the community is constant.

In the symmetric case (w = 1), the rare species has an ad-
vantage over the more common species for α < 1 because then
c(n, K − n) = n + α(K − n) < K − n + αn = c(K − n, n) if
n < K/2. This leads to fluctuations of the system around a point
(which we will call the coexistence point) in which each species
has population size K/2. For asymmetric competition (w ≠ 1),
whether coexistence is possible on an intermediate time scale, de-
pends on the values ofα andw. Also the position of the coexistence
point depends on these parameters.

Let Tn be the random time to extinction of the native species
in a realization of the process that starts with n native individuals.
Let τn and σ 2

n denote the expected value and the variance of Tn. We
will use the ecologicalmodel to compute the expected value τK and
the variance σ 2

K of the time to the extinction of the native species
when it is starting with population size K , i.e. in the state in which
the nonnative species is still absent.

2.2. The eco-genetic model

Now we extend the ecological model by including a genetic
component. To keep the model tractable, we chose the simplest
possible genetic scenario: We assume that each native individual
is haploid and possesses one bi-allelic locus which determines the
individual’s response to some environmental factor, for example
whether or not the individual is resistant to a certain parasite. At
any point in time, one of the two alleles is favored and its carriers
have fecundity 1, whereas other native individuals have fecundity
1 − s. Thus s is a measure for the strength of selection. With
probability u an offspringmutates to the respective other allele and
at rate ϵ the environment and with it the currently favored allele
changes.

We assume that before introductions start, the number of
native individuals that carry the favored allele has reached a
stationary distribution, i.e. it is in mutation–selection equilibrium
(see Appendix B for a derivation of this stationary distribution). To
be able to compare the results of the eco-genetic model to those of
the ecological model with the same introduced species fecundity
parameter w, we multiplied w in the eco-genetic model by the
average fecundity w∗ (see (B.3)) of native individuals under the
stationary distribution. Thus in both models,w can be interpreted
as the fecundity of the introduced species relative to the average
fecundity of native individuals.

This model can be represented as a Markov process, where the
state with n native individuals, m of which carry the currently
favored allele, is denoted by (n,m). From this state, we can
reach the states (n + 1,m), (n + 1,m + 1), (n,m + 1), (n,m −

1), (n − 1,m − 1), and (n − 1,m) through birth–death events,
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which possibly involve a mutation in the first four cases. The two
latter states can also be reached through introduction events. The
transition rates are defined analogously to those in the ecological
model, with the death rate proportional to the competition
experienced and the probability of giving birth proportional to
fecundity. The main difference to the ecological model is that now
the native population is divided into two allelic classes between
which individuals can switch by mutation.

As an example (see Appendix B for all other transition rates),
the transition rate from state (n,m) to state (n,m + 1) is

c(n, K − n) · (n − m)
K

·
m · (1 − u)+ (1 − s)(n − m) · u

m + (1 − s)(n − m)+ w∗ · w · (K − n)
. (3)

This is the rate atwhich one of the n−m native individuals carrying
the disfavored allele dies multiplied by the probability that it is
replaced by a native individual with the favored allele. This new
individual can either be the offspring of one of the m individuals
with a favored allele that did not mutate (probability 1 − u) or an
offspring of one of the n−m parents with the disfavored allele that
mutated (probability u). The transition from (n,m) to (n, n − m)
represents a change of the environment and happens at rate ϵ.

Our goal here is to compute the expected time to extinction
of the native species. Here we start in the state (K ,m∗), where
the introduced species is absent and m∗ is the average number of
native individuals that carry the favored allele under the stationary
distribution rounded to the next integer.

3. Results

3.1. Ecological effect

Measured from the start of introductions when the native
population has still size K , the persistence time of the native
species has expectation

τK = E[TK ] =

K
l=1

K
i=l

1
µi

i−1
j=l

λj

µj
(4)

and its variance is

σ 2
K = Var(TK ) =

K
l=1

K
i=l

ηi

i−1
j=l

λj

µj
, (5)

where

ηi =


1

µi(µi + λi)


1 + µiλi (τi+1 − τi−1)

2 if 1 ≤ i ≤ K − 1

1
µ2

K
if i = K .

(6)

The results (4) and (5) are derived by noticing that the time
to the extinction of the native species when starting in a state
n ∈ {1, . . . , K} has the same distribution (denoted d

=) as the sum
of two independent random variables:

Tn
d
= Sn + TN ′

d
= Sn +


Tn+1 with probability

λn

λn + µn

Tn−1 with probability
µn

λn + µn

(7)

for n ∈ {1, . . . , K − 1} and TK
d
= SK + TK−1. Here, Sn is a random

variable for the time until the native population size first changes
from state n to a new state N ′, which in our model is either n − 1
or n + 1. Sn is exponentially distributed with parameter λn + µn

for n ∈ {1, . . . , K − 1} and with parameter µK for n = K . Taking
the expectation on both sides in (7) and using T0 = 0we obtain the
following recursion for τn (see Karlin and Taylor, 1975, pp. 145–150
for similar problems and solutions):

τn =



0 if n = 0
1

λn + µn
+

λn

λn + µn
τn+1

+
µn

λn + µn
τn−1 if 1 ≤ n ≤ K − 1

1
µK

+ τK−1 if n = K ,

(8)

which can be solved for τK .
Using the law of total variance

Var(TN ′) = E

Var(TN ′ |N ′)


+ Var


E[TN ′ |N ′

]


= E[σ 2
N ′ ] + E[τ 2N ′ ] − E[τN ′ ]

2, (9)
we obtain a similar recursion for the variance
σ 2
n

=



0 if n = 0

1
(λn + µn)2

+
λn

λn + µn


σ 2
n+1 + τ 2n+1


+

µn

λn + µn


σ 2
n−1 + τ 2n−1


−


λn

λn + µn
τn+1 +

µn

λn + µn
τn−1

2

if 1 ≤ n ≤ K − 1

1
µ2

K
+ σ 2

K−1 if n = K ,

(10)

which can be solved analogously to (8) once the τn are known (see
Appendix C for details of these derivations).

The result given by (4) reveals that with increasing strength
of competition, the expected time to extinction τK decreases until
interspecific and intraspecific competition are of similar strength
(α ≈ 1) (Fig. 1(A)). Here, τK reaches a minimum. If the strength
of interspecific competition is further increased, τK grows again.
The minimizing competition coefficient is below one for low
introduction rates, and above one for large introduction rates
(Fig. 1(B)). For low introduction rates (γ < 1), theminimummoves
towards lower competition coefficients, i.e. weaker competition, if
fecundities are unequal, nomatter whether the introduced species
has a higher (w > 1) or a lower fecundity parameter (w < 1)
than the native species (Fig. 2(A)). As expected, τK decreases with
increasing introduction rate and increasing fecundity advantage of
the introduced species.

These patterns in τK are paralleled by a corresponding pattern
in the variance of the expected time to extinction σ 2

K . The variance
increases with increasing τK and thus also exhibits a minimum.
To compare the distribution of extinction times to an exponential
distribution where the expected value equals the standard
deviation, we computed the ratio between the standard deviation
and the expected value of the persistence time in our model. This
ratio is close to one for parameter combinations that lead to a high
persistence time andbelowone for parameter combinationswhere
the extinction of the native species is relatively fast (Fig. 3).

The numerical evaluation of (4) is practical only for small
community sizes. For moderate to large community sizes we
derived an approximation for the expected time to extinction that
is easier to compute and givesmore insight into the dependence of
persistence time on the parameters:

τK ≈ K ·

 1

0

1
(1 − ξ)γ

 1

ξ

(1 − η)γ−1

η

· eβ[ξ(1−ξ)−η(1−η)] · eδ(ξ−η)dηdξ, (11)
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A B

Fig. 1. The expected time to extinction τK for different values of the introduction rate γ as a function of the competition coefficient α. (B) magnifies the part of (A) around
α = 1. The minimum of each curve in B is indicated by a solid point (K = 100, w = 1).

A B

C

D

Fig. 2. The effect of changes in the introduced species fecundity parameterw on the expected time to the extinction of the native species and the position of the minimum
(A) and on the quasi-stationary distribution (d(1), . . . , d(K)) of the Markov process conditional on non-extinction of the native species (right column). The curves in the
right column correspond to the competition coefficients marked with the respective symbol in (A) (K = 100, γ = 0.1).

where β := (α−1) ·K is the rescaled advantage of being common
and δ := (w − 1) · K is the rescaled fecundity advantage of the
introduced species.

The result (11) is based on a diffusion approximation of the
birth and death process described by Eqs. (1) and (2). The process
is rescaled such that the native population size is expressed as a

fraction of the total community and time is sped up by a factor K :

XK = (XK (t))t≥0 =


N(K · t)

K


t≥0
. (12)

In the limit as K goes to infinity while β and δ are held constant,
XK converges in distribution to the diffusion process X with
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A B

Fig. 3. The ratio of the standard deviation and the expected value of the time to extinction for (A) different introduction rates withw = 1 and (B) for different values of the
introduced species fecundity with γ = 0.1 (K = 100).

infinitesimal generator (see Karlin and Taylor, 1981, p. 195, and the
supplementary material for a derivation):

Lf (x) :=
d
dt

E

f

X(t)

X(0) = x


t=0

= x(1 − x)
d2

dx2
f (x)+


−β (1 − 2x) (1 − x) x

− γ x − δx(1 − x)
 d
dx

f (x). (13)

The expected time to extinction of the native species when its
starting frequency is x is a solution g(x) of the differential equation
(Karlin and Taylor, 1981, p. 193)

Lg(x) = −1 (14)

with boundary conditions g(0) = 0 and | limx↗1 g ′(x)| < ∞,
where limx↗1 g ′(x) denotes the left-sided limit at 1 (see supple-
mentary material for details).

By numerically evaluating (11) in R (R Development Core Team,
2010) and using a golden section search algorithm (Heath, 2002)
we computed r(γ , δ), the value of β that minimizes the right hand
side of (11) for given values of γ and δ. After rescaling, we obtained
for the competition coefficient α̂ which minimizes the expected
time to the extinction of the native species.

α̂ = 1 +
r(γ , δ)

K
. (15)

With increasing introduction rate γ , r(γ , δ) increases (Fig. 4(A)),
becoming positive at γ = 1. The absolute value of r(γ , δ) increases
with the differences in fecundity between the species (Fig. 4(B)).

3.2. Eco-genetic effect

As in (8), we recursively computed τ(n,m), the expected time to
the extinction of the native specieswhen starting in state (n,m), by
decomposing it according to what happens at the first jump. Doing
this for all states gave rise to a system of (K+1)(K+2)

2 −1 linear equa-
tions, whichwe solved numerically in R for τ(K ,m∗), wherem∗ is the
average initial number of native individualswith the favored allele.

Although we adjusted the fecundity of the introduced species
to match the average fecundity of the native species, the expected
time to extinction of the native species is lower under the
eco-genetic model than under the ecological model described
in Section 2.1 (Fig. 5). Over wide regions in parameter space,
τ(K ,m∗) decreases with increasing selection strength s acting on the
native species (Fig. 5(A)) and increases with increasing mutation
probability u (Fig. 5(B)). Fig. 5(C) indicates that in the absence of

environmental change, the expected time to extinction is similar
to its counterpart in the ecological model. For a non-zero rate
of change, the expected time to extinction is reduced, with a
particularly strong reduction at small competition coefficients. In
all cases, the minimizing competition coefficient (indicated by
solid points in Fig. 5) is reduced if we take into account the eco-
genetic feedback.

3.3. Critical introduction rate

We set a threshold persistence time τcrit and determined the
critical introduction rate γcrit, such that τK > τcrit for all γ < γcrit,
using a bisection algorithm (Heath, 2002) for both the ecological
and the eco-genetic model. To be able to compare the two models,
we adjusted the fecundity parameter of the introduced species as
above to match the average fecundity of the native species under
mutation–selection equilibrium in a population of size K . As was
the casewith the expected time to extinction for fixed introduction
rate, the critical introduction rate also reaches a minimum at
an intermediate competition coefficient (Fig. 6). Not surprisingly,
the critical introduction rate decreases with increasing fecundity
advantage of the introduced species. Taking the eco-genetic effect
into account, the critical introduction rate is lower than under the
purely ecological model.

4. Simplifications and heuristics

To intuitively understand why competitors with intermediate
interaction coefficients lead to the lowest persistence time of
the native species, we simplify the state space to three possible
states (Fig. 7(A)): the introduced species is absent and the whole
community consists of the native species (N), both native and
introduced species coexist (N&I), or the native species is extinct
and the whole community consists of the introduced species (I). If
both species have the same fecundity (w = 1) and the introduction
rate is small, native and introduced species exclude each otherwith
approximately the same probability from the coexistence point
and the rate φ(α) at which this happens depends very little on γ .
Letψ(α, γ ) be the rate at which the nonnative species establishes.
Then, analogously to (8), we can formulate a recursion for the
expected time to extinction of the native species:

τN =
1

ψ(α, γ )
+ τN&I (16)

and

τN&I =
1

2φ(α)
+

1
2
τN . (17)
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A B

Fig. 4. The minimizing rescaled competition coefficient r(γ , δ) as a function of the introduction rate γ with fixed rescaled fecundity parameter δ (A) and as a function of δ
with fixed γ (B).

A B C

Fig. 5. The expected time to the extinction of the native species under the eco-genetic model as a function of the competition coefficient for different selection coefficients
(A), different mutation probabilities (B), and different rates of environmental change (C). The solid line corresponds to the expected time under the ecological model (Eq.
(4)). Minima are indicated by solid points (K = 100, γ = 0.1, w = 1).

As solution for the expected time to extinction of the native
species when there is currently no introduced individuals we
obtain

τN =
2

ψ(α, γ )
+

1
φ(α)

. (18)

This is essentially twice the sum of the expected sojourn times in
the states N and N&I . What are these times? In the full model,
1/ψ(α, γ ) approximately corresponds to the expected time for
the introduced species to reach population size K/2 starting from
size 0. We will refer to this time as the establishment time
of the introduced species. The term 1/(2φ(α)) is the expected
time for one of the two species to go extinct when they are
currently coexisting with population size K/2 each. We will call
this the exclusion time. Expressions for establishment time and
exclusion time as functions of the model transition rates (1) and
(2) were obtained by solving recursions similar to Eqs. (8) (see
supplementary material).

The expected establishment time is an increasing function of
the competition coefficient (dashed lines in Fig. 7(B) and (C)). The
weaker the competition, the higher the advantage of an initially
rare introduced population and the lower the expected time to
reach K/2. The exclusion time (dotted lines) on the other hand is
a decreasing function of the competition coefficient. The stronger
the competition, theweaker the force is that drives the systemback
to the coexistence point, and the shorter the time is to the exclusion
of one of the two species. Due to these two opposing effects the
total time (solid lines) to the extinction of the native species, twice
the sum of establishment time and exclusion time, can exhibit a
minimum.

Thehigher the introduction rate, the smaller the influence of the
competition coefficient is on establishment time, and the flatter

Fig. 6. The critical introduction rate (on a logarithmic scale) for different
fecundity parameters w under the ecological and eco-genetic model as a function
of the competition strength. In the eco-genetic case, w was multiplied by the
average fecundity of native individuals under mutation–selection balance (τcrit =

2000, ϵ = 0.05, s = 0.25, u = 0.01).

the curve of 1/(2φ(α))will be. This is the reason why the position
of the minimum is shifted to higher values of α as the introduction
rate γ increases (Fig. 7(C)). At γ = 1 the boundary where the
introduced species is absent becomes an entrance boundary for
the diffusion process; this means that the process can start at
this boundary but can never return to it (Karlin and Taylor,
1981, p. 235). Thus, for higher introduction rates, establishment is
no longer a limiting factor. To speed up the exclusion of the native
species, theminimizing competition coefficient is above one in this
region of parameter space.

In Figs. 2 and 4 we observed that in cases where the introduced
and the native species differ in fecundity, theminimizing competi-
tion coefficient differs more from one than in the symmetric case.
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A B C

Fig. 7. A simple version of themodelwith only three states (A) illustrates the antagonistic effects of competition strength on establishment time (dashed lines) and exclusion
time (dotted line) that lead to a minimum in the total time to native species extinction (solid line) which is at a smaller value of α in the case of a low introduction rate (B)
and at a higher value for a high introduction rate (C). (K = 100, w = 1.)

An intuitive explanation for this phenomenon is that in asymmet-
ric cases the dynamics are strongly shaped by the differences in
fecundity and large changes in the competition coefficient are re-
quired to affect these dynamics, whereas in the symmetric case
small changes in the competition coefficient can tip the balance.

To understand in which states the system spends most of its
time, it is useful to examine the quasi-stationary distribution of
theMarkov process, the limiting distribution of population sizes of
the native species given that it is not extinct yet. This is computed
by eliminating the first row and first column, which belong to
the absorbing state 0, from the rate matrix of the Markov process
(see (A.1) in Box I). The left eigenvector of the remaining matrix
associated with the eigenvalue with the largest real part is the
quasi-stationary distribution (Darroch and Seneta, 1967). In the
right column of Fig. 2 the quasi-stationary distribution is visualized
for different parameter combinations. For competition coefficients
on the right side of the minimum (indicated by squares), the
introduced species is absent or has a low population size most
of the time. For competition coefficients below the minimizing
competition coefficient (triangles), the time the system spends
around the coexistence point contributes most to the expected
time to the extinction of the native species.

In regions of the parameter space where the quasi-stationary
distribution is very stable, the ratio of the expected time to
extinction and its standard deviation is almost one, suggesting that
the time to extinction is approximately exponentially distributed.
Moving towards parameter combinations that lead to a fast
extinction of the native species, for example as the introduced
species’ fecundity is increasing (see Fig. 3(B)), the standard
deviation is decreasing relative to the expectation, suggesting that
the extinction of the native species becomes more deterministic.

The shift of the minimum in expected extinction time to
smaller values of the competition coefficient in the model with
genetic feedback can also be understood from the quasi-stationary
distributions in Fig. 2. If competition is weak, the native population
is most likely of intermediate size, and therefore a substantially
lower amount of genetic diversity can be maintained within
the population compared to a population that makes up the
whole community. For high competition coefficients, the native
population is most likely near its carrying capacity, if it is still
present, which we condition on, and has therefore almost its full
adaptability. Thus the additional extinction risk, or the reduction in
expected time to extinction, would be larger for small competition
coefficients than for large competition coefficients. This effect can
be seen in Fig. 5, as the curves for the eco-genetic model diverge
more from the curve belonging to the ecological model at lower
than they do at higher competition coefficients.

5. Discussion

Our theoretical results indicate that the introduction of
nonnative competitors raises the extinction risk of native species,
both directly and indirectly, via a reduction in genetic diversity.
The expected impact does not generally increase or decrease
with competition intensity as one might expect, but there is
an intermediate competition coefficient for which the expected
time to extinction of the native species is minimized. This is
the result of the opposing effects of competition strength on the
establishment step of the invasion process and on the impact
of an already established species. Introduced species that do not
compete intensively with species from their new range can readily
establish, but their ecological impacts are weak and it will take
a long time for them to drive one of the native competitors
to extinction. On the other hand, an introduced species that is
competing very intensely with one of the native species has high
potential ecological impacts once it has established. However, such
a species may need a lot of introduction attempts before it can
establish, because the native competitor can efficiently exclude it
from the community.

Based on our results we expect competitors with intermediate
interaction strength to also have the lowest critical introduction
rate. Thus if one would set a management target to preserve an
endangered native species for a certain time period, then the
greatest introduction prevention efforts would be necessary for
nonnative species that would have an intermediate intensity of
competition with the native species.

With the help of our eco-genetic model, we quantified the
feedback between ecological and genetic effects of the introduced
species on the native competitor. This feedback is synergistic in
the sense that ecological and genetic effects enhance each other: A
reduction in population size causes a reduction in genetic diversity
and this reduction in diversity can lead to further population
decline in a changing environment. We found that this eco-
genetic feedback is particularly strong for small intensities of
competition between the introduced and the native species. This
is because for high competition coefficients, the native species
spends most of the time until its extinction in states with a high
population size, whereas for intermediate and low competition
coefficients the native species spends most of the time coexisting
with the introduced species at an intermediate population size
with a corresponding reduction in genetic diversity. Because
the eco-genetic effect makes competitors with a relatively small
competition intensity more dangerous for the native species, the
minimizing competition coefficient is smaller compared to the
ecological model. Similarly, also the critical introduction rate
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is lower than in the purely ecological scenario. This highlights
the importance of including eco-genetic feedbacks into risk
assessment models. If we only bring the introduction rate down to
the level required under the ecological model and there is an eco-
genetic feedback, we will fail to keep the expected impacts below
the prescribed threshold.

Eco-genetic effects are also a possible explanation forwhy there
is relatively little evidence in the invasion biology literature for
native species extinction due directly to an introduced competitor
(Davis, 2003): Most endangered species are not threatened by a
single stressor, but by combinations of them, for example habitat
change and invasive species (Gurevitch and Padilla, 2004). The
introduction of a competitor canweaken a native species’ ability to
respond to other stressors. There may have been many extinction
events which were attributed to other factors and in which
a significant contribution from an introduced competitor went
unrecognized. Thus, when making predictions on native species
population dynamics it can be important to consider the possibly
synergistic interaction of species invasions with other drivers of
global change (Didham et al., 2007).

Previous theoretical studies on the impacts of introduced
species have built models designed to understand these impacts
in specific systems (Byers and Goldwasser, 2001; Thomson, 2005).
Here we contribute a building block towards the development of
a theory that predicts impact from parameters of the introduced
species, the native community and the introduction process. In this
first stage of theory development our focus has been on simple
models that are analytically tractable and give us insight into
general phenomena. Of course, these models could be extended
in many ways to incorporate more biological realism or to adjust
them to specific biological systems, e.g. by including age or stage
structure, which might in some cases influence the outcome of
invasion and extinction dynamics (see e.g. Lande and Orzack,
1988).

Our finding, however, that the native species’ persistence
time is minimized at intermediate intensities of competition,
is robust to a wide range of model modifications. To illustrate
this robustness, we examined a model in which the assumption
of a fixed community size was relaxed, a model in which
competition affects fecundity instead of viability, and amodel with
an alternative formulation of the transition rates similar to the one
used in neutral community theory (see e.g. Etienne and Alonso,
2007). All these models produced a minimum at intermediate
competition intensities (see supplementary material for details
of the analyses). Moreover, some of these modified models have
the same diffusion approximation as the original model and thus
behave very similarly, at least for large community sizes. Even a
model in which we allow an immigration of native individuals
from outside, exhibits a minimum in the expected time to the
first extinction of the native species. However, possible measures
of the long-term impact based on the stationary distribution of
this process, like the proportion of time during which the native
species is absent or the average native population size, have a
monotonic relationshipwith competition intensity. This highlights
that our results are most relevant for the short-term impacts of an
introduced species on its native competitors.

In this study, we provide a model for the expected effect
of an introduced species on one native competitor. Of course,
native communities may consist of multiple competitors, as well
as predators, mutualists, and parasites. To predict the impact
of an introduced species on a whole community, our model
could be combined with models for the other components of the
community and interactions between them. Such detailed models
have not been analyzed thus far. However, Fig. 2 in a study by Case
(1990) shows that the probability that an introduced species can
establish in a multi-species competitive community and replaces

at least one native species is maximized for intermediate mean
competition coefficients. Although Case (1990) does not address
this point, this is one hint that our finding that intermediate levels
of competition are most dangerous scales up to more complex
communities.

In our model, single individuals of the nonnative species
were introduced into the new habitat. What happens if multiple
nonnative individuals are released at once? Drake et al. (2005)
found that the product of introduction frequency and introduction
sizewas a good predictor for the persistence of introducedDaphnia
populations and that adding introduction frequency and size as
single factors did not lead to significant improvements. However,
if the nonnative population is subject to an Allee effect, i.e.
positive density-dependence of population growth at lowdensities
(Courchamp et al., 1999), the expected establishment success can
strongly differ between a scenario with frequent introductions
of one or a few individuals and one with rare introductions of
many individuals (Drury et al., 2007). Disentangling the effects
of propagule size and propagule frequency for such important
scenarios is a promising field of future research.
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Appendix A. Rate matrix of the ecological model

The rate matrix of the ecological model is shown in Box I where
the λi and µi are given by Eqs. (1) and (2).

Appendix B. Full specification of the eco-genetic model

Let (n,m) be the state with n native individuals, m of which
carry the currently favored allele. Then the transition rates for
1 ≤ n ≤ K and 0 ≤ m ≤ n are
(n,m)

→



(n + 1,m) :
c(K − n, n) · (K − n)

K
·
(1 − s)(n − m)(1 − u)+ mu

w̄n,m
for n < K

(n − 1,m) :
c(n, K − n) · (n − m)

K
·
w∗

· w · (K − n)
w̄n,m

+γ ·
c(n, K − n + 1) · (n − m)

c(n, K − n + 1) · n + c(K − n + 1, n) · (K − n + 1)
for n > m

(n,m + 1) :
c(n, K − n) · (n − m)

K
·
m · (1 − u)+ (1 − s)(n − m)u

w̄n,m
for n > m

(n,m − 1) :
c(n, K − n) · m

K
·
(1 − s)(n − m)(1 − u)+ mu

w̄n,m
form > 0

(n − 1,m − 1) :
c(n, K − n) · m

K
·
w∗

· w · (K − n)
w̄n,m

+ γ ·
c(n, K − n + 1) · m

c(n, K − n + 1) · n + c(K − n + 1, n) · (K − n + 1)
form > 0

(n + 1,m + 1) :
c(K − n, n) · (K − n)

K
·
m · (1 − u)+ (1 − s)(n − m)u

w̄n,m
for n < K

(n, n − m) : ϵ,

(B.1)
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Λ =



−λ0 λ0 0 0 · · · 0 0 0
µ1 − (λ1 + µ1) λ1 0 · · · 0 0 0
0 µ2 − (λ2 + µ2) λ2 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · µK−1 − (λK−1 + µK−1) λK−1
0 0 0 0 · · · 0 µK −µK

 , (A.1)

Box I.

where w̄n,m = m + (1 − s)(n − m)+ w∗
· w · (K − n) is the total

fecundity in the community. To obtain w∗, the average fecundity
of the native species under the eco-genetic model in the absence
of the introduced species (n = K ), we computed the stationary
distribution d = (d(0), . . . , d(K)) of the birth and death process
that describes the number of favored alleles in a native population
of size K and has transition rates

m →



m + 1 : (K − m) ·
m · (1 − u)+ (1 − s)(K − m)u

m + (1 − s)(K − m)
form < K

m − 1 : m ·
mu + (1 − s)(K − m)(1 − u)

m + (1 − s)(K − m)
form > 0

K − m : ϵ for 0 ≤ m ≤ K

(B.2)

and averaged

w∗
= 1 −

K
m=0

d(m)(K − m) · s

K
. (B.3)

Appendix C. Recursive solution for expectation and variance of
the time to extinction in the ecological model

The middle equation in the recursion (8) can be rewritten as

µn (τn − τn−1) = 1 + λn (τn+1 − τn) . (C.1)

Define zn := τn − τn−1, such that

zn =
λn

µn
zn+1 +

1
µn
. (C.2)

Solving this recursion for z with zK = τK − τK−1 =
1
µK

gives:

zm =

K
i=m

1
µi

i−1
j=m

λj

µj
and (C.3)

τm =

m
l=1

zl =

m
l=1

K
i=l

1
µi

i−1
j=l

λj

µj
. (C.4)

With m = K we obtain the expected persistence time (4).
Similarly, the middle equation in (10) can be written as

ξn = ηn +
λn

µn
ξn+1, (C.5)

where ξn = σ 2
n − σ 2

n−1 and ηn is given by (6). As above, we can
solve this recursion for ξ with ξK = ηK :

ξl =

K
i=l

ηi

i−1
j=l

λj

µj
(C.6)

and finally obtain (5) by summing

σ 2
K =

K
l=1

ξl. (C.7)

Appendix D. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.tpb.2012.11.003.
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Ecological and genetic effects of introduced species on their
native competitors

Supplementary material

Diffusion approximation to the ecological model

We are seeking an approximation of equation (4) for large community sizes K. The strategy
used here is to first rescale the Markov process defined by the transition rates (1) and (2) and
approximate it by a diffusion process. Then we compute the expected time to native extinction
in the diffusion process and finally prove that the exact recursive solution given by equation (4)
converges to the expected time under the diffusion process as K goes to infinity.

Convergence in distribution XK ⇒ X

Theorem 1. As the community size K goes to infinity, the rescaled Markov process

XK = (XK(t))t≥0 =

(
N(K · t)

K

)

t≥0

. (S.1)

with α = 1 + β
K

and w = 1 + δ
K
, where β and δ are constants, converges in distribution to a

diffusion process X with infinitesimal generator

Lf(x) =
1

2
b(x)

d2

dx2
f(x) + a(x)

d

dx
f(x) , (S.2)

where
a(x) = −β(1− 2x)(1− x)x− δx(1− x)− γx (S.3)

is the infinitesimal mean of the diffusion process and

b(x) = 2x(1− x) (S.4)

is the infinitesimal variance.

To prove the theorem we need a few lemmata.
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Lemma 2. For x ∈ {0, 1
K
, 2
K
, . . . , 1} the generator of the Markov process XK, defined as

LKf(x) :=
d

dt
E
[
f
(
XK (t)

)
|XK(0) = x

]∣∣
t=0

, (S.5)

where f is a bounded twice continuously differentiable function, converges to the generator of the
diffusion process given by equation (S.2):

lim
K→∞

max
x∈{ 0

K
, 1
K
,...,K

K
}
|LKf(x)− Lf(x)| = 0 . (S.6)

Proof.

LKf(x) =

[
f

(
x+

1

K

)
− f(x)

]
·K · λKx +

[
f

(
x− 1

K

)
− f(x)

]
·K · µKx (S.7)

=

[
f ′(x) +

1

2
f ′′(x) · 1

K
+O

(
1

K2

)]
· λKx +

[
−f ′(x) +

1

2
f ′′(x) · 1

K
+O

(
1

K2

)]
· µKx (S.8)

= f ′(x) · (λKx − µKx) +
1

2
f ′′(x) · λKx + µKx

K
+O

(
1

K2

)
· (λKx + µKx) . (S.9)

Substituting the scaled parameters into equations (1) and (2) and using oi(1) to denote terms
which fulfill lim

K→∞
oi(1) = 0 uniformly in x ∈ [0, 1], we obtain

λKx − µKx =K ·
(
1 + β

K
x
)
(1− x)x−

(
1 + β

K
(1− x)

)
x(1− x)

(
1 + δ

K

)

1 + δ
K
(1− x)

(S.10)

− γ ·
(
1 + β

K
(1− x)

)
x+ o1(1)

1 + 2x(1− x) β
K
+ o2(1)

=
−β(1− 2x)(1− x)x− δ(1− x)x+ o3(1)

1 + o4(1)
− γ · x+ o5(1)

1 + o6(1)
= O(1) , (S.11)

and

λKx + µKx = K · 2(1− x)x+ o7(1)

1 + o4(1)
+ γ · x+ o5(1)

1 + o6(1)
= O(K) . (S.12)

Thus

LKf(x) = x(1− x)
d2

dx2
f(x) +

(
− β(1− 2x)(1− x)x− γx− δx(1− x)

) d
dx
f(x) + o8(1) . (S.13)

All expressions are bounded uniformly in { 0
K
, 1
K
, . . . , K

K
} and the error in equation (S.6) thus

converges to zero uniformly in { 0
K
, 1
K
, . . . , K

K
} as K goes to infinity.

Lemma 3. The sequence of Markov processes (XK)K∈N is tight.

Proof. This is proven by using the compactness of the state space and the basic criterion for
tightness and the Aldous condition from p. 34-35 in Joffe and Metivier (1986).
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Lemma 4. The martingale problem for the generator L has at most one solution.

Proof. The problem can be written as a stochastic differential equation with infinitesimal parame-
ters extended beyond the interval [0, 1] with a(x) = a(0) and b(x) = b(0) for x < 0 and a(x) = a(1)
and b(x) = b(1) for x > 1 such that the process is now defined on R while leaving the behavior
inside the interval [0, 1] unchanged. Then we can apply the Yamada-Watanabe theorem (Theorem
26.10 in Klenke 2008) and conclude that the stochastic differential equation has a unique strong so-
lution. This implies uniqueness in law (Theorem 26.18 in Klenke 2008), which in turn is equivalent
to the statement that there exists at most one solution to the corresponding martingale problem
(Rogers and Williams, 2000, p. 159).

Proof of Theorem 1. The convergence in distribution follows from lemmata 2, 3, and 4 and Theo-
rem 4.8.10 in Ethier and Kurtz (2005).

Expected time to extinction under the diffusion process

Now we compute the expected time to the extinction of the native species under the diffusion
process. Define

σl(X) := inf{t ≥ 0 : X(t) ≤ l} (S.14)

and let Ex denote the expectation for a process starting in x.

Theorem 5.

Ex[σ0(X)] =

∫ x

0

eβξ(1−ξ)−γ ln(1−ξ)+δξ
∫ 1

ξ

e−βη(1−η)+γ ln(1−η)−δη

η(1− η)
dη dξ . (S.15)

for x ∈ [0, 1].

Proof. An important tool for the analysis of diffusion processes is the scale function S(x). The
scale function transforms the state space such that the diffusion process becomes a martingale.
Thus the scale function fulfills the differential equation LS(x) = 0 (Karlin and Taylor, 1981, p.
196). With s(x) := d

dx
S(x) the differential equation becomes

1

2
b(x)

d

dx
s(x) + a(x)s(x) = 0 . (S.16)

Consequently,

s(x) = e
∫ x
0 − 2a(y)

b(y)
dy = e

∫ x
0 −[−β(1−2y)− γ

1−y
−δ]dy = eβx(1−x)−γ ln(1−x)+δx , (S.17)

where the lower limit of the integral can be chosen arbitrarily and is here 0 for convenience (Karlin
and Taylor, 1981, p. 194). With this we can write the infinitesimal generator as (Karlin and Taylor,
1981, p. 195):

Lf(x) =
1

2
s(x)b(x)

d

dx

[
d
dx
f(x)

s(x)

]
. (S.18)

Let g(x) be the solution of the differential equation (Karlin and Taylor, 1981, p. 193)

Lg(x) = −1 (S.19)
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with boundary conditions g(0) = 0 and | lim
xր1

g′(x)| < ∞. Using the differential operator from

(S.18), equation (S.19) is equivalent to

g(x) =

∫ x

0

eβξ(1−ξ)−γ ln(1−ξ)+δξ
(
C1 −

∫ ξ

0.5

e−βη(1−η)+γ ln(1−η)−δη

η(1− η)
dη

)
dξ + C2 . (S.20)

The boundary conditions are fulfilled with C2 = 0 and

C1 =

∫ 1

0.5

e−βη(1−η)+γ ln(1−η)−δη

η(1− η)
dη . (S.21)

With this

g(x) =

∫ x

0

eβξ(1−ξ)−γ ln(1−ξ)+δξ
∫ 1

ξ

e−βη(1−η)+γ ln(1−η)−δη

η(1− η)
dη dξ . (S.22)

Since g(x) ≤ g(1) <∞ for all x ∈ [0, 1], g is a bounded, twice continuously differentiable function.
Then, since (X(t))t≥0 solves the martingale problem for the generator L

g(X(t))−
∫ t

0

Lg(X(s))ds = g(X(t)) + t (S.23)

with t ∈ [0,∞) is a martingale. Application of the optional stopping theorem (see Ethier and
Kurtz, 2005, p. 421, for a similar application) with τ > 0 gives

Ex [g (X(σ0(X) ∧ τ))] + Ex [σ0(X) ∧ τ ] = g(x) . (S.24)

Letting τ go to infinity, we obtain by the dominated and monotone convergence theorems

g(x) = Ex [σ0(X)] . (S.25)

Convergence of extinction times

Because the first time to reach the boundary 0 is not a continuous functional of the process, we
cannot conclude from the weak convergence of the rescaled birth and death process to the diffusion
process that also the expected time to extinction converges to that under the diffusion process.
Some more work is required to prove

Theorem 6.
lim
K→∞

E1[σ0(XK)] = E1[σ0(X)] . (S.26)

We start with proving the following lemmata:

Lemma 7. For all j ∈ {1, . . . , K − 1}

µj
λj

=
1 + β

K

(
1− j

K

)

1 + β
K

j
K

·
[
1 +

δ

K
+

γ

K − j
+O

(
1

K

)]
. (S.27)
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Proof. Substituting the scaled parameters given in theorem 1 into equations (1) and (2), we find
that

λj =

(
K + β

K
· j
)
· (K − j) · j

K ·
[
K + δ

K
· (K − j)

] (S.28)

and

µj =

[
K + β

K
· (K − j)

]
· j · (K − j)

(
1 + δ

K

)

K ·
[
K + δ

K
· (K − j)

] (S.29)

+ γ ·
[
K + 1 + β

K
· (K − j + 1)

]
· j[

K + 1 + β
K
· (K − j + 1)

]
· j +

[
K + 1 + β

K
· j
]
· (K − j + 1)

.

From equations S.28 and S.29 it follows that

µj
λj

=

[
1 + β

K

(
1− j

K

)] (
1 + δ

K

)

1 + β
K

j
K

+
γ

K − j

[
1 + 1

K
+ β

K

(
1− j

K
+ 1

K

)] [
1 + δ

K

(
1− j

K

)]
[(
1 + 1

K

)2
+ 2 β

K

(
1− j

K
+ 1

K

)
j
K

] (
1 + β

K
j
K

) (S.30)

=

[
1 + β

K

(
1− j

K

)] (
1 + δ

K

)

1 + β
K

j
K

+
γ

K − j

1 + β
K

(
1− j

K

)

1 + β
K

j
K

·
(
1 +O

(
1

K

))
. (S.31)

After factorization one obtains (S.27).

Lemma 8.
i−1∏

j=l

λj
µj

< e2|β|+|δ| ·
(
1− i

K

)γ
(
1− l

K

)γ · eO(1) < e2|β|+|δ| · eO(1) =: E (S.32)

for all l, i ∈ {1, . . . , K} with l ≤ i.

Proof. Using lemma 7 we can rewrite
i−1∏

j=l

λj
µj

as

exp

[
−

i−1∑

j=l

ln

(
1 + β

K

(
1− j

K

)

1 + β
K

j
K

·
[
1 +

δ

K
+

γ

K − j
+O

(
1

K

)])]
(S.33)

= exp

[
i−1∑

j=l

ln

(
1 +

β

K

j

K

)
− ln

(
1 +

β

K

(
1− j

K

))
− ln

(
1 +

δ

K
+

γ

K − j
+O

(
1

K

))

︸ ︷︷ ︸
F

]
.

(S.34)
Since ln(1 + x) = x+O(x2) for x close to zero and − ln(1 + x) ≤ −x+ x2 for all x ∈ (−0.5,∞)

F ≤
i−1∑

j=l

[
β

K

j

K
− β

K

(
1− j

K

)
− δ

K
− γ

K − j
+

1

(K − j)2
+O

(
1

K

)]
. (S.35)
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and
i−1∑

j=l

1

(K − j)2
<

∞∑

j=1

1

j2
=
π2

6
= O (1) . (S.36)

With this

F ≤
i−1∑

j=l

[
β

K

j

K
− β

K

(
1− j

K

)
− δ

K
− γ

K − j

]
+O (1) (S.37)

≤ 2|β|+ |δ| − γ ln

(
K − l

K − i

)
+O (1) (S.38)

and inequality (S.32) follows from this.

Lemma 9. There exists a function r(ψ) such that

lim
K→∞

Eψ[σ0(XK)] ≤ r(ψ) (S.39)

and
lim
ψ→0

r(ψ) = 0 . (S.40)

Proof.

Eψ[σ0(XK)] ≤
τ⌈Kψ⌉
K

=
1

K

⌈Kψ⌉∑

l=1

zl =
1

K

m∑

l=1

zl +
z⌈Kψ⌉
K

(S.41)

with m = ⌈Kψ⌉ − 1 and where ⌈x⌉ denotes the smallest integer larger than or equal to x. τi is
given by equation (C.4) and zi by equation (C.3). We first consider the first summand:

1

K

m∑

l=1

zl =
1

K

m∑

l=1

K∑

i=l

1

µi

i−1∏

j=l

λj
µj

=
1

K

K∑

i=1

1

µi

min(i,m)∑

l=1

i−1∏

j=l

λj
µj

(S.42)

=
1

K

(
m∑

i=1

1

µi

i∑

l=1

i−1∏

j=l

λj
µj

︸ ︷︷ ︸
A

+
K−m∑

i=m+1

1

µi

m∑

l=1

i−1∏

j=l

λj
µj

︸ ︷︷ ︸
B

+
K−1∑

i=K−m+1

1

µi

m∑

l=1

i−1∏

j=l

λj
µj

︸ ︷︷ ︸
C

+
1

µK

m∑

l=1

K−1∏

j=l

λj
µj

︸ ︷︷ ︸
D

)
. (S.43)

Note that

µi ≥ K · i
K

(
1− i

K

) [
1 + β

K

(
1− i

K

)] (
1 + δ

K

)

1 + δ
K

(
1− i

K

) ≥ K · i
K

(
1− i

K

) [1− |β|
K

] (
1− |δ|

K

)

1 + |δ|
K︸ ︷︷ ︸

=:H

. (S.44)

With this
A

K
≤ E

K
·
m∑

i=1

i

µi
≤ E

HK

m∑

i=1

1

1− i
K

≤ E

HK

m

1− m
K

≤ E

H

ψ

1− ψ
, (S.45)
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and

B

K
≤ m · E

HK

K−m∑

i=m+1

K

i(K − i)
≤ 2m · E

HK
·
K/2∑

i=m+1

K

i · K
2

=
4m · E
HK

ln

(
K

2m

)
≤ 4ψ · E

H
ln

(
1

2ψ

)
, (S.46)

and

C

K
≤ E

HK

K−1∑

i=K−m+1

1

i
(
1− i

K

)
m∑

l=1

(
1− i

K

)γ
(
1− l

K

)γ ≤ E ·m
HK · (K −m) ·

(
1− m

K

)γ
K−1∑

i=K−m+1

(
1− i

K

)γ−1

.

(S.47)
Let f(x) = (1− x)γ−1. Then f ′(x) = (1− γ)(1− x)γ−2. f ′(x) < 0 if γ > 1 and f ′(x) > 0 if γ < 1
for all x ∈ (0, 1). If f ′(x) > 0

K−1∑

i=K−m
f

(
i

K

)
(S.48)

is a lower sum of the integral

K ·
∫ 1

1−m
K

f(x)dx (S.49)

and if f ′(x) < 0
K∑

i=K−m+1

f

(
i

K

)
(S.50)

is a lower sum. Thus, in both cases

K−1∑

i=K−m+1

(
1− i

K

)γ−1

< K

∫ 1

1−m
K

(1− x)γ−1dx =
K

γ

(m
K

)γ
. (S.51)

Consequently
C

K
≤ E ·m
H · (K −m) ·

(
1− m

K

)γ
1

γ

(m
K

)γ
≤ E · (ψ)γ+1

H · γ · (1− ψ)γ+1 . (S.52)

Since

µK = γ ·
(
K + 1 + β

K

)
·K(

K + 1 + β
K

)
·K + (K + 1 + β)

>
γ

2
, (S.53)

D

K
≤ m · E
K · µK

≤ 2Eψ

γ
. (S.54)

Turning to the second summand in equation (S.41) and using equation (C.3)

z⌈Kψ⌉
K

=
K∑

i=⌈Kψ⌉

1

µi

i−1∏

j=⌈Kψ⌉

λj
µj

(S.55)

≤ E

H

K−1∑

i=⌈Kψ⌉

1

i · (K − i)
+

E

µK ·K ≤ E

H
· ln(K − ⌈Kψ⌉)

⌈Kψ⌉ +
2E

γ ·K −−−→
K→∞

0 . (S.56)
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In conclusion

lim
K→∞

Eψ[σ0(XK)] ≤
E

H

(
ψ

1− ψ
+ 4ψ ln

(
1

2ψ

)
+

ψγ+1

γ · (1− ψ)γ+1

)
+

2Eψ

γ
= r(ψ) . (S.57)

To see that lim
ψ→0

r(ψ) = 0 note that

lim
ψ→0

ψ · ln
(

1

2ψ

)
= lim

ψ→0

d
dψ

ln
(

1
2ψ

)

d
dψ

1
ψ

= lim
ψ→0

1
ψ

1
ψ2

= lim
ψ→0

ψ = 0 . (S.58)

Proof of Theorem 6.
lim
K→∞

|E1 [σ0(XK)]− E1 [σ0(X)]| (S.59)

= lim
K→∞

|E1 [σ0(XK)]− E1 [σl(XK)] + E1 [σl(XK)]− E1 [σl(X)] + E1 [σl(X)]− E1[ σ0(X) ]| (S.60)

≤ lim
K→∞

(
E1 [σ0(XK)]− E1 [σl(XK)]︸ ︷︷ ︸

=El[σ0(XK)]

+ |E1 [σl(XK)]− E1 [σl(X)]|+ |E1 [σl(X)]− E1 [σ0(X)]|
)

(S.61)
≤ r(l) + lim

K→∞
|E1[σl(XK)]− E1[σl(X)]|+ |E1[σl(X)]− E1[σ0(X)]| . (S.62)

provided that the limit in the second summand exists. Following Kurtz (1981) p. 13-14 we argue
that for a fixed path x, σl(x) is decreasing in l and can therefore be discontinuous at only a
countable number of values of l. Since the diffusion process is a rescaled Brownian motion, there
is no point in the interval (0,1) that is exceptional compared to the other points and the points
of discontinuity are placed according to some continuous probability distribution on the interval
(P (discontinuity at l) = 0 ∀l). For any discontinuity point thus the collection of paths for which
the discontinuity is placed exactly at l is a null set. Since the union of countably many null sets
is a null set itself, the probability that a random path has a discontinuity at l is zero. Therefore,
the weak convergence of XK to X implies the convergence of σl(XK) to σl(X) according to the
Continuous Mapping Theorem (Theorem 13.25 in Klenke 2008) such that the second limit exists
and is equal to 0. See Lemma 3.3 in Chigansky and Klebaner (2012) for a more rigorous proof
requiring a positive and increasing scale function S(x), which we can achieve by choosing

S(x) =

∫ x

0

e+βy(1−y)−γ ln(1−y)+δydy (S.63)

and a positive quadratic variation [X,X]t for t > 0.
After the middle summand vanished, we take the limit l → 0:

lim
K→∞

|E1 [σ0(XK)]− E1 [σ0(X)]| ≤ lim
l→0

r(l) + lim
l→0

|E1[σl(X)]− E1[σ0(X)]| = 0 + 0 = 0 . (S.64)

The first limit follows from Lemma 9, the second limit from the boundedness of expected times
under the diffusion process (Theorem 5) and the application of dominated convergence.

Consequently, the expected time to extinction under the diffusion process is a valid approxi-
mation for the expected time under the rescaled birth and death process. Figure S.1 visualizes the
quality of the approximation for different community sizes.
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Fig. S.1: The exact solution for the expected time to the extinction of the native species (4)
approaches the diffusion approximation (S.15) as the community size increases. (γ = 0.1).

Derivation of establishment time and exclusion time

The recursion for the expected time τ̂n to reach K/2 from a population size n above K/2 is:

τ̂n =





0 if n = K
2

1
λn+µn

+ λn
λn+µn

τ̂n+1 +
µn

λn+µn
τ̂n−1 if K

2
+ 1 ≤ n ≤ K − 1

1
µK

+ τ̂K−1 if n = K

. (S.65)

This can be solved in the same way as recursion (8). For the expected establishment time if the
native species starts from its carrying capacity, we obtain

τ̂K =
K∑

l=K/2+1

K∑

i=l

1

µi

i−1∏

j=l

λj
µj

. (S.66)

We compute the exclusion time τ̃K/2 (the time to reach either 0 or K from K/2) under the
assumption of symmetry and set γ = 0 in model equation 2. The appropriate recursion is:

τ̃n =





0 if n = 0

1
λn+µn

+ λn
λn+µn

τ̃n+1 +
µn

λn+µn
τ̃n−1 if 1 ≤ n ≤ K − 1

0 if n = K

. (S.67)
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Equations (C.1) and (C.2) remain valid but now we have z1 = τ̃1 − τ̃0 = τ̃1 and zK = τ̃K − τ̃K−1 =
−τ̃K−1, such that

zm = −τ̃K−1

K−1∏

j=m

λj
µj

+
K−1∑

i=m

1

µi

i−1∏

j=m

λj
µj

and (S.68)

τ̃1 = z1 = −τ̃K−1

K−1∏

j=1

λj
µj

+
K−1∑

i=1

1

µi

i−1∏

j=1

λj
µj

. (S.69)

Because of symmetry

τ̃1 = τ̃K−1 =

∑K−1
i=1

1
µi

∏i−1
j=1

λj
µj

1 +
∏K−1

j=1
λj
µj

=

∑K−1
i=1

1
µi

∏i−1
j=1

λj
µj

2
and (S.70)

τ̃K/2 =

K/2∑

l=1

K−1∑

i=l

1

µi

i−1∏

j=1

λj
µj

− 1

2

(
K−1∑

i=l

1

µi

i−1∏

j=1

λj
µj

)


K/2∑

l=1

K−1∏

j=l

λj
µj


 . (S.71)

Under the diffusion approximation, expressions for establishment time ĝ and exclusion time g̃
can be found by using appropriate boundary conditions in equation (S.20). For the establishment
time in the symmetric case, we need to use ĝ(1/2) = 0 and | lim

xր1
ĝ′(x)| <∞, such that

ĝ(1) =

∫ 1

0.5

1

(1− ξ)γ

∫ 1

ξ

(1− η)γ−1

η
· eβ[ξ(1−ξ)−η(1−η)]dη dξ . (S.72)

For the exclusion time, we need to use the boundary conditions g̃(1) = g̃(0) = 0 and we set γ = 0,
which leads to

g̃(0.5) =

∫ 1/2

0

e−βη(1−η)

η(1− η)

∫ η

0

eβξ(1−ξ)dξ dη . (S.73)

Robustness of results

In this study, we have shown that according to our model for the competitive dynamics of a native
and an introduced species, the expected time to the extinction of the native species is minimized
for intermediate intensities of interspecific competition. In this section we explore to what extent
this result is robust to model modifications.

The assumption of a fixed community size

In our original model, we assumed a fixed total community size. This assumption induces a strong
coupling between the population dynamics of the two species. Here we consider a model in which
the population dynamics are coupled only because individual death rates are proportional to the
competition experienced, which is a function of both population sizes. To describe the system,
we then need both the population size n1 of the native species and the population size n2 of the
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Fig. S.2: The expected time to the extinction of the native species τK in the model without a fixed
community size with transition rates given by (S.74). (K = 20, γ = 0.1, wi = 1)

introduced species. We thus define a Markov process with state space is {0, 1, 2, . . . }×{0, 1, 2, . . . }
and transition rates

(n1, n2) →





(n1 + 1, n2) : n1

(n1 − 1, n2) :
c(n1,n2)

K
· n1

(n1, n2 + 1) : win2 + γ

(n1, n2 − 1) : c(n2,n1)
K

· n2

. (S.74)

Note that in this model, there is no strict upper limit to the population sizes. However, when
the native species is alone its death rate exceeds its birth rate for population sizes larger than K
and similarly for the introduced species when its size is larger than wiK. When both species are
together, the total community size fluctuates around a value which, if α < 1, can exceed both of
these quantities and which increases with decreasing competition intensity. The behavior is thus
similar to the classical Lotka-Volterra competition model.

Using the same approach as for the eco-genetic model, we solved numerically for the expected
time to the extinction of the native species when its initial size is K while the introduced species is
initially absent. To obtain a finite transition matrix we needed to assume a maximum community
size. We chose 4 · max(Kwi, K) as excursions of the system to such a high community size are
unlikely. For all parameter combinations we examined, this approximation to the expected time to
extinction exhibits a minimum at intermediate competition intensities (see Fig. S.2 for an example).
Due to the two-dimensional state space, these computations are only possible for small K.

Formulation of transition rates as in neutral community theory

Our model has some parallels to neutral community theory and related non-neutral models. How-
ever, most of these models have a different way of incorporating immigration. If a vacancy in the
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Fig. S.3: The expected time to the extinction of the native species τK in a model with transition
rates analogous to those in neutral community theory (see equations S.75 and S.76). (K = 100,
w = 1.)

local community is created, with probability 1−m it is filled by the offspring of an individual that
is already in the community and with probability m by a migrant from the metacommunity (see
e.g. Etienne and Alonso, 2007). In our case, immigrations from the metacommunity correspond
to introduction events. In analogy to the transition rates in neutral community theory, we can
reformulate our transition rates (1) and (2) as:

λn =
c(K − n, n) · (K − n)

K︸ ︷︷ ︸
rate at which

members of the introduced
species die

· (1−m) · n

(K − n) · w + n︸ ︷︷ ︸
probability that a
native individual

gives birth

(S.75)

and

µn =
c(n,K − n) · n

K︸ ︷︷ ︸
rate at which

native individuals die

·
[
(1−m) · (K − n) · w

(K − n) · w + n︸ ︷︷ ︸
probability that an

introduced individual
already in the community

gives birth

+ m︸︷︷︸
probability that the
spot is colonized by a

new introduced individual

]
. (S.76)

We explored a range of parameter combinations and found that the expected time to the extinction
of the native species under this model (Fig. S.3) behaves very similarly to that under the original
model (compare Fig. 1). The minimum is preserved.

Moreover, if we assume the parameter scaling γ = m/K, then the Markov process converges
to the diffusion process specified by the infinitesimal generator in (13). To see this note that for
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x ∈ [0, 1]

λKx − µKx =K ·
(
1− γ

K

)
·
(
1 + β

K
x
)
(1− x)x−

(
1 + β

K
(1− x)

)
x(1− x)

(
1 + δ

K

)

1 + δ
K
(1− x)

(S.77)

− γ

K
·K
(
1 +

β

K
(1− x)

)
x

=
−β(1− 2x)(1− x)x− δ(1− x)x+ o3(1)

1 + o4(1)
· (1 + o5(1))− γ · x+ o6(1) , (S.78)

and

λKx + µKx = K · 2(1− x)x+ o7(1)

1 + o4(1)
· (1 + o5(1)) + γ · x+ o6(1) (S.79)

similarly to (S.11) and (S.12). Thus the convergence of generators (S.6) holds. The preconditions
for the proofs of lemmata 3 and 4 are not affected by the modification of transition rates and thus
by Theorem 1 the Markov process with transition rates (S.75) and (S.76) converges in distribution
to the same diffusion process as the original Markov process.

Competition affecting fecundity instead of mortality

An alternative formulation of the transition rates (1) and (2) in which competition affects the rate
at which individuals give birth rather than the death rate, is:

λn =

(
2− c(n,K − n)

K

)
· n

︸ ︷︷ ︸
rate at which

native individuals
give birth

· K − n

K︸ ︷︷ ︸
probability that an

introduced individual dies

(S.80)

and

µn = wi ·
(
2− c(K − n, n)

K

)
· (K − n)

︸ ︷︷ ︸
rate at which

introduced individuals
give birth

· n

K︸︷︷︸
probability that a

native individual dies

+ γ · n

K + 1︸ ︷︷ ︸
probability that the
introduced individual
replaces a native one

. (S.81)

The phenomenon that the expected time to native extinction is minimal at intermediate compe-
tition intensities is apparently not affected by this change in model formulation (Fig. S.4). Again,
evaluating λKx − µKx and λKx + µKx reveals that this Markov process converges to the same
diffusion process as the original Markov process.
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Fig. S.4: The expected time to the extinction of the native species τK in a model in which compe-
tition influences the birth rate rather than the death rate as specified by (S.80) and (S.81). (K =
100, w = 1.)

Immigration of native individuals

To allow for an immigration of native individuals at rate γ′, we modify (1) by adding an immigration
term analogous to the introduction term in (2):

λn =
c(K − n, n) · (K − n)

K︸ ︷︷ ︸
rate at which

members of the introduced
species die

· n

(K − n) · w + n︸ ︷︷ ︸
probability that a
native individual

gives birth

+ γ′︸︷︷︸
immigration

rate

· c(K − n, n+ 1) · (K − n)

c(n+ 1, K − n) · (n+ 1) + c(K − n, n+ 1) · (K − n)︸ ︷︷ ︸
probability that an introduced

individual dies

. (S.82)

With this modification of transition rates, the state in which the native species is absent is no
longer an absorbing state of the Markov process. Result (4) now gives us the expected time until
the first extinction of the native species for realizations starting with K individuals of the native
species. Evaluating the expected time to the first extinction for a range of parameter combinations
suggests that this quantity is higher than the expected time to extinction in the original model,
but still exhibits a minimum at intermediate competition coefficients (Fig. S.5).

One might also be interested in long-term measures of impact based on the stationary distri-
bution of the Markov process, for example the proportion of time during which the native species
is absent or the average population size of the native species. Unlike the expected time to the first
extinction, these quantities exhibit monotonic relationships with competition intensity (Fig. S.6).
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Fig. S.5: The expected time to the first extinction τK of the native species if we allow for the
immigration of native individuals at rate γ′ = 0.5 as specified in (S.82). (K = 100, w = 1.)
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Abstract

Propagule pressure quantifies the inflow of individuals to a location and appears to be a key
driver of invasion success. It is often defined as the average number of individuals intro-
duced per time unit, or equivalently as the product of the average number of individuals
introduced per introduction event (propagule size) and the frequency of introduction events
(propagule frequency). Here we study how the influence of propagule size, frequency, and
their product depends on the underlying ecological conditions. While previous studies have
focused on introductions under environmental heterogeneity or a strong Allee effect, we ex-
amine a range of ecological scenarios that differ in the type of density dependence and in the
sign of per-capita growth rate. Our results indicate that the relative influence of propagule
size and frequency depends mainly on the sign of per-capita growth rate. Given a certain
average number of individuals introduced per time unit, a high propagule frequency ac-
celerates invasions under ecological scenarios with positive average per-capita growth rate
throughout the invasion process (“easy” scenarios). If per-capita growth rate is negative
throughout the invasion process (“difficult” scenarios) or if there is both an easy and a dif-
ficult stage (“mixed scenarios”), a high propagule size leads to a faster invasion than a high
propagule frequency. To explain this finding, we argue that for a fixed value of the product
of propagule size and frequency, an increase in propagule size leads to an increase in de-
mographic variance, which promotes invasion success in difficult and mixed but not in easy
scenarios. However, we also show that in many of these cases, the product of propagule
size and frequency still correlates more strongly with invasion success than either of the
single components. Finally, we illustrate our approach with empirical examples from the
literature.

Keywords: alien species, Allee effect, competition, exotic species, invasive species, Markov
process, non-native species, propagule pressure, stochasticity
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Introduction

Propagule pressure and its components

There are few generalities in invasion biology. Hardly any ecological factor is consistently
associated with invasion success of alien species over a wide range of taxonomic groups and
studies. A notable exception thus declared “the new frontier in invasion ecology” (Richard-
son, 2004; Richardson & Pyšek, 2008) is propagule pressure, a concept used to quantify the
inflow of individuals of a species into a new habitat. Propagule pressure can be defined as
a composite measure with two components: propagule size, which is the average number
of individuals introduced in a single introduction event, and propagule frequency, the av-
erage number of introduction events per time unit (see Lockwood et al., 2005; Simberloff,
2009). In cases with a finite number of introduction events over a defined time period,
many authors use the total number of introduction events—propagule number—instead of
propagule frequency. To avoid confusion and because propagule number and frequency are
proportional to each other, we use the term propagule frequency throughout the text.

The two-component definition of propagule pressure captures some aspects of the tem-
poral distribution of introduced individuals. However, such detail is not always available in
empirical data (see e.g. Cassey et al., 2004). Furthermore, for many applications a single
number is desired as measure for propagule pressure. Thus, it is common to define propag-
ule pressure as the average number of individuals introduced per time unit. This measure
corresponds to the product of propagule size and propagule frequency and will serve as a
basis of comparison throughout this study.

Both propagule size and frequency as well as their product have been shown to pos-
itively correlate with invasion success (see e.g. Beirne, 1975; Veltman et al., 1996; Dun-
can, 1997; Grevstad, 1999a; Forsyth & Duncan, 2001; Colautti, 2005; Simberloff, 2009).
Less clear is the relative importance of the different components of propagule pressure
for invasion success. Such an understanding is required, for example, for the design of re-
lease strategies in biological control (see e.g. Grevstad, 1999b; Shea & Possingham, 2000;
Mailleret & Grognard, 2009), to identify the best proxies for propagule pressure in the con-
text of risk analysis (e.g. by comparing different properties of pathways and vectors for the
introduction of alien species; Hulme et al. 2008), or to assess the reliability of inferences
from data sets that contain only a single component of propagule pressure.

In this study, we focus on accidental introductions that occur repeatedly, at random
time points, and independently of the incipient population dynamics. We analyze how the
role of propagule size and frequency depends on the underlying ecological scenario, as
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characterized by the average growth rate of the alien population and its dependence on local
population size, and in some cases also on time and spatial location. Specifically, our two
main questions are: First, given a certain average number of individuals introduced per time
unit, under what ecological scenarios does the alien species reach a given target population
size faster with frequent but small introduction events, and under what scenarios is the target
reached faster with fewer but large introduction events? To address this question, we fix the
product of propagule size and frequency and vary propagule size and thus also propagule
frequency. If there are strong differences in invasion success among introduction regimes
with the same value of the product, then it may not be reasonable to quantify propagule
pressure as the product of propagule size and frequency. Thus, our second question is:
Under what ecological conditions do either propagule size or frequency correlate more
strongly with invasion success than the product of the two?

Role of propagule size and frequency under different ecological conditions

Thus far, answers to these questions are limited to few specific ecological scenarios. A spa-
tially or temporally varying environment is the best-understood example for an ecological
scenario where propagule frequency should have a larger effect. Here, invasion success is
expected to be highest when the introduced individuals are spread out as much as possi-
ble across space and time because such a strategy maximizes the probability that at least
some of the introduced individuals encounter favorable conditions (Haccou & Iwasa, 1996;
Haccou & Vatutin, 2003; Schreiber & Lloyd-Smith, 2009; Grevstad, 1999b). All of these
studies assume that offspring production is density-independent.

The standard example for an ecological scenario in which propagule size plays the prime
role is that of a strong demographic Allee effect. In populations that suffer from this effect,
per-capita growth rate increases from negative values at small population sizes, becomes
positive at some critical population size, and further increases with population size until
competition becomes important (Taylor & Hastings, 2005). Populations with an initial size
below the critical size have a high extinction probability. Therefore, it is apparent that in the
case of a single introduction event, establishment probability increases with propagule size
(see e.g. Dennis, 2002; Drake & Lodge, 2006).

Several studies have extended this result to the case of multiple introduction events sub-
ject to a constraint on the total number of individuals introduced. Grevstad (1999b) and Shea
& Possingham (2000) investigated optimal release strategies for biological control organ-
isms and found that for severe Allee effects a strategy with few large releases was preferred
over a strategy with many small releases. Both studies assumed that each introduction event
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occurs at a different location such that individuals arriving in different introduction events
cannot interact to jointly overcome the Allee effect. If one allows for such interactions, as
did Drury et al. (2007) and Mailleret & Lemesle (2009), then a high propagule size can
facilitate establishment, even if single releases are not large enough to overcome the critical
population size. This appears to result from the fact that larger groups of individuals do not
decline as fast as small groups, and because a random accumulation of many introduced
individuals is more likely if propagule size is large.

There may also be ecological scenarios where the temporal distribution of introduced
individuals plays a minor role. Grevstad (1999b) suggested this to be the case if there is
only demographic stochasticity, but no environmental stochasticity or density dependence.
In a laboratory introduction experiment with Daphnia, the product of propagule size and
frequency explained most of the variation in two of the three measures of invasion success
considered (Drake et al., 2005, see also the section Empirical examples below). It is not
clear, however, which properties of the experimental conditions led to this result.

In summary, previous theoretical studies on the components of propagule pressure either
assumed that there is no density dependence, i.e. per-capita demographic rates do not de-
pend on population density, or that there is a strong demographic Allee effect. It is currently
not known in general how properties of an ecological scenario such as the type of density
dependence and the sign of per-capita growth rate determine the role of propagule size and
frequency. For example, it is unclear whether the important role of propagule size under a
strong Allee effect carries over to the case of a weak Allee effect, where per-capita growth
rate is also positively density-dependent but is positive at all population sizes (Taylor &
Hastings, 2005).

Approach and hypotheses

In this study, we therefore consider a range of ecological scenarios that differ in the type of
density dependence (positive, negative, neutral) and in the sign of per-capita growth rate.
If a scenario has a positive average per-capita growth rate at all population sizes below the
target population size we call it an “easy” scenario. On the other hand, “difficult” scenarios
are characterized by a negative average per-capita growth rate at all sizes below the target
size. We also consider mixed scenarios where per-capita growth rate changes sign at an in-
termediate population size. In these cases, we say that the invasion process has a “difficult”
and an “easy” stage.

To generate the ecological scenarios, we used two stochastic models: a single-population
model and a competition model. Our models incorporate several sources of stochasticity.



69

Apart from the randomness associated with the introduction process, we assumed random
timing of birth and death events to include demographic stochasticity, an important factor
in the establishment of small alien populations (Fauvergue et al., 2012). Since the effect of
environmental heterogeneity on the relative importance of propagule size and frequency has
already been well studied (see above), we decided to focus on introductions into constant
environments in the main text. In Appendix 2.4, however, we explored how the results of
our single-population model change in a varying environment.

We hypothesize that the effect of the temporal distribution of introduced individuals
will be determined mostly by whether the underlying ecological scenario is easy or diffi-
cult. While under easy scenarios the population grows on average, under a difficult scenario
population growth requires unusual events such as an extraordinarily large number of in-
dividuals being introduced during a short time interval. A measure for how frequent such
unusual events are is the variance of the number of individuals introduced over some time
interval, a quantity that may differ between introduction regimes with the same average
number of individuals introduced per time unit. The larger propagule frequency is, the more
introduction events happen on average, leading to a faster averaging-out of the number of
individuals introduced. Consequently, given a fixed value of the product of propagule size
and frequency, the associated variance increases with propagule size.

In Appendix 2.1, we provide a formal mathematical explanation for these arguments.
We can intuitively understand them by drawing parallels with sports and games where an
inferior team can only hope to win through chance events. Such a team should strive to
increase the variance of the outcome, for example by playing a risky strategy. In a tourna-
ment, an inferior team should favor a mode with few matches (e.g. a knockout tournament
system) to take advantage of rare bad days of superior teams. On the other hand, a superior
team should favor a mode with many matches (e.g. an all-play-all tournament) to play out
its advantage until the end of the competition.

Going back to alien species, we thus hypothesize that after controlling for the product
of propagule size and frequency, a high propagule size (and thus low propagule frequency,
hence similar to a tournament with few games for an inferior sports team) is advantageous
under difficult ecological scenarios. Under easy scenarios, on the other hand, a high propag-
ule frequency might be advantageous since a low demographic variance reduces the risk of
sporadic phases of population decline (similar to a superior sports team preferring an all-
play-all tournament; see also Drake et al., 2005). After showing how our framework of easy
and difficult scenarios helps to classify the results under our various model scenarios, we
consider three empirical data sets from the literature to illustrate how it may be applied to
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real-world introductions.

Modeling approach and ecological scenarios

Our models have two components: one for the introduction process and one for the local
population dynamics of the alien species. While the introduction process is modeled in
the same way for all ecological scenarios, the scenarios differ in their population dynamic
component. We modeled both components as continuous-time processes, i.e. by specifying
the rates at which different kinds of events happen (introduction events, birth events, death
events). We also assumed that all demographic processes only depend on the current state
of the population or community and not on its history, such that our overall model formally
is a continuous-time Markov process.

The introduction process is characterized by the propagule size s and the propagule
frequency f , i.e. introduction events with s individuals each happen at rate f . We assumed
that introduction events happen sufficiently close to each other in space such that individuals
remaining from earlier introduction events have the opportunity to interact with individuals
introduced at later times.

As case examples in the main text of this study, we examine seven ecological scenarios
with different population dynamics (see Fig. 2.1 for an overview of our ecological scenar-
ios). We consider scenarios in which per-capita growth rate increases (scenarios A, B, and
C), stays constant (scenario E), or decreases (scenario G) with increasing population size.
In scenarios D and F, the type of density dependence changes with increasing population
size.

The seven scenarios also vary in the sign of per-capita growth rate and thus occupy
different positions on the spectrum between difficult and easy scenarios. In scenario A,
per-capita growth rate is negative at all population sizes below the target size, so this is a
difficult scenario. Analogously, scenarios C, E, and G are easy; and scenarios B, D, and F
are mixed scenarios. Scenarios with negative per-capita growth rate and neutral or negative
density dependence are biologically not very meaningful; thus we do not consider them
here.

To fully specify a stochastic population model, average-per capita growth rates need to
be combined with information on the distribution of outcomes. These distributions depend
on the underlying biological mechanisms and for each of the scenarios in Fig. 2.1 several
such mechanistic underpinnings would be possible. Here, we generated the scenarios using
either a single-population model or a two-species competition model. In the following, we
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Figure 2.1: Overview of the ecological scenarios considered in this study. Ecological sce-
narios are characterized by how per-capita growth rate (solid black lines) depends on po-
pulation size. They differ in the type of density dependence and in the sign of per-capita
growth rate. Difficult ecological scenarios (A) have a negative per-capita growth rate; easy
scenarios (C, E, G) have a positive per-capita growth rate; and mixed scenarios (B, D, F)
have positive and negative per-capita growth rates, depending on population size. Grey lines
serve as reference, indicating zero per-capita growth rate, and dotted vertical lines indicate
the target population size. If a scenario contains points that would be stable or unstable
equilibria in a deterministic system, we indicate them by solid or open circles, respectively.
Arrows show the expected direction of population-size change in the different population-
size ranges. Please note that the scaling of the y-axis differs among scenarios. Information
on the underlying models and parameter values can be found in Table 2.1. The animal
symbols refer to the suggested position of our empirical examples (parasitoid wasps, dung
beetles, Daphnia; see section Empirical examples below) on the spectrum between difficult
and easy ecological scenarios.
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explain the key assumptions of these models and how we used them to create our ecological
scenarios of interest. Detailed information on both models including all parameters and
formulas for the transition rates are presented in Appendix 2.2. Table 2.1 summarizes the
parameter values used to generate scenarios A-G.

Scenarios B, C, and E stem from a single-population model that focuses on the dy-
namics of the alien population while it is very small compared to its carrying capacity. In
scenario B, the alien population experiences a strong demographic Allee effect, which may
for example be caused by mate-finding problems in small populations. There is a threshold
population size below which the population tends to decline and above which average per-
capita growth rate is positive. Scenario C represents a weak Allee effect in which per-capita
growth rate is reduced at small population sizes, but not negative. In scenario E, there is no
Allee effect; the population grows exponentially.

To generate scenarios A, D, F, and G, we used a two-species competition model: the
alien species is introduced into a habitat that is already occupied by an ecologically similar
resident competitor. A version of this model in which only single individuals are introduced
is described and analyzed in Wittmann et al. (2013a). Depending on the value of the com-
petition coefficient, either the rare species or the more common species has an advantage,
i.e. a positive per-capita growth rate.

In scenarios F and G, we have a rare-species advantage. This may occur if there is only
partial overlap in the resources used by the two species, such that individuals belonging
to the rare species enjoy an abundance of the food items that cannot be used by the other
species. In these scenarios, a small alien population has a positive per-capita growth rate
that declines with increasing population size as resources become limiting. Scenarios F and
G only differ in their target population size. In scenario G, we are interested in the expected
time until the alien population reaches half the community size, whereas in Scenario F we
computed the expected time until the alien species takes over the whole community and
drives the resident competitor to extinction. In scenario F, the community is expected to
fluctuate for a long time around a point where both species coexist at intermediate popula-
tion size.

In scenarios A and D, which again differ only in their target population size, the more
common species has an advantage. This may occur if there is intraspecific cooperation, if
each species modifies the habitat in a way that is detrimental to the other species, or if the
two species compete for two resources and each species consumes more of the resource that
is most limiting for the other species. A common-species advantage can also result from in-
terspecific interference or aggression, because as long as the population is small, most of
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the encounters of alien individuals are with members of the other species. As the popu-
lation increases in size and that of the competitor decreases, the number of such harmful
encounters decreases and per-capita growth rate becomes positive.

Analysis

To compare introduction regimes with different values of propagule size and frequency, we
calculate the respective expected times until the alien species first reaches the target popula-
tion size R, given that it is initially absent. Due to stochasticity in the model and the infinite
sequence of introduction events, the alien species always reaches its target eventually.

Computing the expected time to reach the target

To compute the expected time until the alien species reaches the target population sizeR, we
employed first-step analysis, a standard technique for the analysis of Markov processes (see
e.g. Karlin & Taylor, 1975). This technique allowed us to compute our quantity of interest,
the expected time to reach the target population size, without having to run simulations.
The key idea is that we can write the expected time E[Ti] when starting at some initial
population size i as

E[Ti] = E[τi] + E[Ti′ ] , (2.1)

where E[τi] is the expected time until the population size first changes from i to some
other size i′, and E[Ti′ ] is the remaining time. Due to the Markov property—the popula-
tion dynamics in our model only depend on the current state of the population, not on its
history—the remaining time is just the expected time to reach the target population size if
we would restart the process with initial population size i′. As detailed in Appendix 2.2,
taking into account all possible next states i′ and writing down such an equation for all pos-
sible initial states i, leads to a system of linear equations with the expected times belonging
to the different initial population sizes as unknowns. We used R (version 2.14.1, R Devel-
opment Core Team, 2011) to numerically solve this system given the parameter settings of
interest.
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Comparison of expected times

For each of our ecological scenarios, we compared the expected times to reach the target
population size among introduction regimes in two different ways. To address our first
research question, we fixed the product of propagule size and frequency, i.e. the average
number of individuals introduced per time unit, to some value Π. We then computed the
expected times for all propagule sizes 1, 2, . . . , 20 and corresponding propagule frequencies
Π,Π/2, . . . ,Π/20.

To answer our second question and find the single measure of propagule pressure that
correlates most with invasion success, we calculated the expected time to reach the tar-
get population size on a grid of combinations of propagule size and frequency. We then
computed Spearman’s rank correlation coefficient between the expected times and each of
propagule size, frequency, or their product. Since the expected time to reach the target po-
pulation size decreases with propagule pressure, the observed correlation coefficients are
between 0 and −1, where −1 corresponds to the strongest possible correlation.

Results

The results on the seven ecological scenarios that we selected as case examples are compiled
in Fig. 2.2. Overall, the expected time to reach the target population size differed strongly
between scenarios (see Table 2.2). To facilitate a comparison of results between scenarios,
we thus divided all expected times for a particular scenario by the respective expected time
belonging to a propagule size of 1.

Whether the expected time to reach the target size increased or decreased when we
increased propagule size while keeping the product constant depended mostly on the sign
of per-capita growth rate rather than on the type of density dependence. All easy scenarios
exhibited an increase in expected times with increasing propagule size, independently of
the type of density dependence (positive in scenario C, neutral in scenario E, and negative
in scenario G). The opposite effect, a decrease in expected time with increasing propagule
size, can be observed in the difficult scenario A. In the mixed scenarios B, D, and F, the
effect of the difficult phase dominated. In Appendix 2.3, we examine in detail how the
role of propagule size and frequency changes as we continuously vary the parameters of the
single-population and the competition model, thereby generating a continuum of ecological
scenarios. In accordance with the results on our example scenarios, the relative effect of
propagule size and frequency changed at parameter values at the boundary between easy
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Figure 2.2: Expected times to reaching the target population size for different values of
propagule size and frequency with a fixed value of their product (s · f = 2.4). All ex-
pected times are given relative to the corresponding expected time for a propagule size
of 1 (see Table 2.2). Please note that the scaling of the y-axis differs among scenarios.
ρsize, ρfrequency, and ρproduct represent the rank correlation coefficients between the expected
times and the respective measure of propagule pressure across parameter combinations
(s, f) ∈ {1, . . . , 10}× {0.005, 0.010, . . . , 0.095, 0.1}. The measure with the strongest rank
correlation coefficient is highlighted. For an explanation of the ecological scenarios A-G
please refer to Fig. 2.1 and the section Modeling approach and ecological scenarios.
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and difficult scenarios (Figs. 2.4 and 2.6).
The rank correlation coefficients displayed in Fig. 2.2 (ρsize, ρfrequency, and ρproduct) in-

dicate that in five of our seven ecological scenarios the product of propagule size and
frequency correlated more strongly with the expected times than either propagule size or
frequency alone. In one case, the strong Allee-effect scenario B, propagule size was the
strongest correlator and in another case, the exponential-growth scenario E, propagule fre-
quency was the strongest correlator. In Appendix 2.3, we outline in detail how the rank
correlation coefficients depend on parameters of each of the two models. These results con-
firm that although the product of propagule size and frequency is the strongest correlator
across wide regions of parameter space, there are also regions where the expected time to
reach the target state correlates more strongly with either propagule size or frequency alone,
for example cases with very strong Allee effects or cases where per-capita growth rate takes
large positive values (Figs. 2.5 and 2.9). When comparing just the correlation coefficients
of propagule size and frequency, we observe that in difficult or mixed scenarios, with the
exception of scenario F, propagule size was a stronger correlator than propagule frequency.
Under easy scenarios, on the other hand, propagule frequency was a stronger correlator.
Again, the detailed results in Figs. 2.5 and 2.9 confirm this conclusion.

Empirical examples

To illustrate how our results might be applied in practice, we now consider three empirical
examples from the literature, two historical data sets and one experimental study. These data
sets contain information on propagule size, propagule frequency, and a measure of invasion
success such that we can attempt to place them into our framework of ecological scenar-
ios in Fig. 2.1 by examining the relative effect of the components of propagule pressure.
Since our results suggest that the response of an ecological scenario to different introduc-
tion regimes depends mostly on whether the scenario is easy or difficult, and much less on
the type of density dependence, we only attempt to place our examples along the per-capita
growth rate axis. Please note, however, that this analysis is not a formal validation of our
modeling results, since there is no independent information on the kind of ecological sce-
nario into which these examples fall, although one type of scenario usually appears more
plausible than the other.
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Experimental Daphnia introductions

Our first example is an introduction experiment performed in the laboratory by Drake et al.

(2005). Implementing 16 different combinations of propagule size and propagule frequency,
some of which had the same value for the product of the two components, Drake et al.

(2005) introduced the crustacean Daphnia magna into experimental microcosms. Their ex-
perimental approach is very similar to the assumptions in our modeling framework, with
two exceptions: First, the introduction events in their experiment happen at regular inter-
vals and not at random time points. The second difference is that once a population went
extinct in their experiment, no more individuals were introduced, whereas we assume that
introduction events happen independently of the population dynamics.

Their response variables were population growth, population persistence, and time to
extinction, and for each of them they performed model selection using multiple linear re-
gression, logistic regression, and Cox proportional hazards regression (Cox & Oakes, 1984),
respectively. The product of propagule size and frequency had a significant positive effect
on all three measures for invasion success. For population growth, they additionally de-
tected a significant positive effect of propagule frequency. In all other cases, neither propag-
ule size nor frequency significantly contributed to explaining the variation in experimental
outcomes. These results address our first research question.

To also obtain an answer to our second question, we computed Spearman’s rank corre-
lation coefficients between the different measures of propagule pressure and average popu-
lation size at the end of the experiment (data provided on J.M. Drake’s laboratory website).
The final population size had the strongest correlation to the product of propagule size and
frequency (0.86), a slightly weaker correlation to propagule frequency (0.81), and a much
weaker correlation to propagule size (0.40). These findings are in line with what would be
expected in an easy scenario (see Fig. 2.2, placement in Fig. 2.1), which is not surprising,
since the individuals were introduced into a suitable medium under constant conditions.
This is also consistent with the observation that the introduced populations persisted until
the end of the experiment in 89 % of the experimental units.

Parasitoids released for biological control

The second example is taken from Hopper & Roush (1993) who studied a historical data set
on the establishment success of three taxonomic groups of parasitoids (chalcidoids, ichneu-
monoids, and tachinids) introduced as biological control agents against Lepidoptera. For
each of the three groups, Hopper & Roush (1993) fit binomial generalized linear models
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with number of individuals collected (a proxy for genetic diversity), total number released
(analogous to the product of size and frequency), mean number released at each site in
each year (propagule size), and number of releases (proportional to propagule frequency)
as predictors. To select the most important predictors, they performed stepwise model se-
lection using a likelihood ratio testing approach. For two of the groups (ichneumonoids and
tachinids), propagule size was the only predictor included into the model, for one group the
total number released (chalcidoids). Thus, at least for the former two groups, these para-
sitoid introductions apparently fall into our difficult or mixed scenario class (see Fig. 2.1).
The average establishment probabilities in these two groups were 25 % and 36 %, whereas
chalcidoids had an average establishment probability of 45 %. Hopper & Roush (1993)
discussed a mate finding Allee effect as a possible explanation for the important role of
propagule size, but our results indicate that other ecological scenarios may also lead to a
large effect of propagule size.

The Australian dung beetle project

Our last example is a historical data set on the Australian dung beetle project (Tyndale-
Biscoe, 1996). Between 1968 and 1984, 1.73 million beetles belonging to 43 species were
introduced to decompose the large quantities of dung produced by alien cattle (Edwards,
2007). This data set is particularly suitable for our study, as many species were introduced
to different places with different combinations of propagule size and propagule number.
Despite the overall high numbers of individuals introduced in this project, there is variation
in propagule pressure among species that has been suggested as an explanation for the
differential establishment success (Edwards, 2007).

We extracted data on the original dung beetle releases in Australia (not on the later re-
distributions) from Tyndale-Biscoe (1996). We considered introduction events within the
same town as belonging to one location. For each species and each location, we scored
propagule size and propagule frequency. We computed propagule frequency as the number
of distinct introduction events in the data set divided by the duration of the whole project,
i.e. 16 years. To compute propagule size, we ignored the introduction events for which the
number of individuals introduced was unknown and averaged over all other introduction
events. The data set by Tyndale-Biscoe (1996) also contains information on whether indi-
viduals of the alien species were found at the release site in a later year. If individuals were
later encountered at at least one release site within a location, we scored the establishment
at that location as successful. For our analysis, we selected the seven species for which we
had more than 20 locations with information on propagule size, frequency, and success.
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Averaged across these seven species and across locations, the mean propagule frequency
was 0.14 and the mean propagule size 663 (see Table 2.3 for more detailed information).
Successful establishment occurred on average at 49 % of locations.

For each of the seven species, we used R (R Development Core Team, 2011) to fit
five candidate binomial generalized linear models (GLMs) for establishment success: three
models with only a single predictor (propagule size, frequency, or their product) and two
models that included the product and either propagule size or frequency. Using Akaike’s
information criterion (AIC), we selected one model for each species (see Appendix 2.5
for details on the statistical analyses). For five species, the selected model contained only
the product, and for one species only propagule frequency. For one species, Euoniticel-

lus africanus, the selected model contained the product and propagule size as predictors.
However, the coefficient of propagule size was negative and the difference in AIC values
to the model with only frequency was not significant (simulation-based p-value: 0.14, see
Appendix 2.5 for details). These results imply that also in this case a high propagule fre-
quency was beneficial for establishment success. Thus, at least for the latter two species,
the results indicate an easy ecological scenario (Fig. 2.1). This finding is in accordance with
our expectations, as the dung beetles were released with the intention to establish them, and
thus the responsible agency tried to optimize the conditions encountered by the released
individuals (Edwards, 2007).

Discussion

Effect of propagule size and frequency in difficult and easy scenarios

As hypothesized, given a certain average number of individuals introduced per time unit, the
relationship between the temporal distribution of introduced individuals and invasion suc-
cess depends mainly on whether the alien population has a negative or a positive per-capita
growth rate in its new environment. Under difficult ecological scenarios, i.e. those with a
negative average population growth rate, the population grows faster if propagule size is
high, that is if introduced individuals are clustered in time. On the other hand, for easy eco-
logical scenarios, i.e. those with a positive average growth rate, a high propagule frequency
leads to a faster population growth. Less relevant than the sign of per-capita growth rate was
the type of density dependence. Interestingly, the effects of propagule size and frequency
under a weak Allee-effect (scenario C) were very different from those under a strong Allee
effect (scenario B) and more similar to those in scenarios E (exponential growth) and even
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G (negative frequency dependence). Since introduction regimes with few large introduction
events are associated with more variability than those with many small introduction events,
our results are consistent with those of Rajakaruna et al. (2013) who found that stochas-
ticity in immigration rate increases establishment probability in unfavorable habitats but is
disadvantageous in favorable habitats.

Although the expected times to reach the target population size differ substantially be-
tween introduction regimes with the same value of the product of propagule size and fre-
quency, our results on the rank correlations indicate that in many cases these differences are
slight enough for the product to remain a better single predictor of invasion success than
either propagule size or frequency. This does not imply, however, that the product is the
optimal single-number measure for propagule pressure. It is conceivable that a product in
which size and frequency have different exponents depending on their relative effect would
perform even better.

Furthermore, the results for scenarios B and E in in Fig. 2.2 and those in Appendix 2.3
indicate that there are ecological scenarios in which either propagule size or frequency is
the strongest correlator of invasion success. For parameter combinations with a strongly
positive per-capita growth rate under which the target state is reached very rapidly, propag-
ule frequency appears to be the strongest correlator (see scenario E and Figs. 2.5 and 2.9).
Propagule size, on the other hand, can be the strongest correlator under very strong Allee
effects (see scenario B and Fig. 2.5) and possibly other very difficult scenarios.

Relative strength of effects and invasion processes with both difficult and easy stages

Our results indicate that in ecological scenarios where per-capita growth rate is positive in
one population-size range and negative in another, the target state is reached faster for larger
and thus less frequent introduction events, as is the case in difficult scenarios. Hence in such
mixed scenarios, the difficult phase seems to dominate. This may simply result from the fact
that the difficult phase is usually much longer such that reducing it by a certain proportion
has a larger effect on the overall time than the same proportional reduction of the easy phase
would have.

Furthermore, the model developed in Appendix 2.1 suggests that the positive effect of
a high propagule size under a difficult ecological scenario may be more substantial than
the positive effect of a high propagule size under an easy scenario. We could attribute the
latter phenomenon to two kinds of edge effects: Introduction events with a high propagule
frequency lead to a faster invasion because (1) the waiting time until the first introduction
event is shorter, and (2) when the population size is already very close to the target, the
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waiting time to the next introduction event that will bring the population to the target is
shorter. We acknowledge that these effects might be specific to the way we measure inva-
sion success, i.e. as expected time to reach a target population size in the case of a sequence
of introduction events. In any case, these effects are probably weak except for very small
propagule frequencies (see Fig. 2.8). Thus, as long as there is one stage of the invasion pro-
cess in which the per-capita population growth rate is negative, we would expect this stage
to determine the influence of propagule size and frequency. The results for the extension
of the single-population model with environmental fluctuations (see Appendix 2.4) suggest
that the important role of propagule size under difficult scenarios also dominates the ten-
dency of propagule frequency to have a larger effect in varying environments, at least for
the parameter combinations we examined.

Ecological relevance of difficult vs. easy scenarios

Since in absolute terms invasions are less likely or proceed more slowly under difficult sce-
narios than under easy scenarios, one could argue that the relative effect of the components
of propagule pressure under difficult ecological scenarios lacks relevance. In our opinion,
however, the results on difficult scenarios are at least as relevant for invasion biology, be-
cause they are concerned with the cases for which propagule pressure matters most. From
a management perspective, it is very hard to prevent population growth of an alien species
under an easy scenario. Propagule pressure would have to be reduced to zero, since few in-
dividuals would be sufficient to trigger population growth. In difficult scenarios, in contrast,
it is feasible to prevent or delay population growth by a reduction of propagule pressure or
a change in the temporal distribution of introduced individuals.

Stochastic vs. deterministic models

While deterministic and stochastic models would yield similar results for easy scenarios,
their predictions may be quite different for difficult scenarios. Under a strong Allee effect,
for example, a single introduction below the critical population size would inevitably go
extinct in standard deterministic models, whereas it has a small probability of succeeding
under stochastic models (Dennis, 2002). In the case of multiple introductions, the deter-
ministic modeling results by Mailleret & Lemesle (2009) imply that a population below
the Allee threshold can only grow if propagule pressure is high enough to compensate the
population decline. In stochastic models, on the other hand, a random accumulation of intro-
duction events can lead to a phase of population growth even if average propagule pressure
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is low. Unlike deterministic models, stochastic models thus predict that difficult phases in
the invasion process can be overcome, although this may take a long time. This prediction
of stochastic models may account for some of the commonly observed time lags in which
an alien population stays at a relatively low population size for a long time until it suddenly
grows and proceeds to further invasion stages (Crooks, 2005). In our opinion, stochastic
models are therefore a key tool for understanding how alien species proceed from one stage
to the next in the invasion process.

Empirical data sets

Of the three empirical examples considered in this study, two—the experimental Daphnia

introductions by Drake et al. (2005) and at least some of the dung beetles introduced to
Australia—appear to represent easy ecological scenarios while the introductions of ichneu-
monoid and tachinid parasitoids discussed by Hopper & Roush (1993) seem to come from a
difficult scenario. Although we do not have independent measurements of per-capita growth
rates, these results are consistent with what we know about the underlying ecological condi-
tions and also agree with the relative average success probabilities: The parasitoids had the
lowest average success probability, the dung beetles were intermediate, and the Daphnia

introductions had the highest success probability.
When drawing conclusions from historical data sets such as those from Hopper & Roush

(1993) or Tyndale-Biscoe (1996), some caution is warranted. One problem is that a seem-
ingly causal effect of a predictor variable (e.g. propagule size or frequency) on invasion
success may be due to a correlation with an actual causal variable that is not included in
the analysis. This might happen, for example, if more releases are made at sites where the
alien species encounters good conditions. Furthermore, whether or not a predictor is chosen
by some model selection procedure can also depend on the magnitude of variation in the
predictors themselves, which can vary considerably in historical data (see e.g. Table 2.3).
Thus the component of propagule pressure that explains most variation as part of a statisti-
cal model may not always be the component with the strongest effect on invasion success
in general.

These limitations of inference from historical data demonstrate that experimental stud-
ies are important to improve our understanding of how the temporal distribution of intro-
duced individuals affects invasion success. Apart from the experimental Daphnia introduc-
tions by Drake et al. (2005), we know of only one other such study: Hedge et al. (2012)
performed colonization experiments with larvae of the pacific oyster Crassostrea gigas and
found higher population growth with frequent small introduction events compared to fewer
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large introduction events, a phenomenon that they attributed to reduced intraspecific com-
petition or increased facilitation if individuals arrive at different time points.

Outlook

Future extensions of our modeling approach might take into account aspects of propagule
pressure beyond propagule size and frequency. While we assumed that introduction events
took place at well-defined independent locations within which all individuals had the ability
to interact, for some species it might be more reasonable to explicitly model the spatial
configuration of the habitat in the introduced range and the spatial distribution of introduced
individuals (see Drury et al., 2007, for an example of such models).

Another simplifying assumption we made is that successive introduction events all have
the same propagule size. As, for example, in the dung beetle example, propagule size var-
ied considerable between introduction events within the same location (see Table 2.3), it
would be interesting to model how variation in propagule size among introduction events
affects invasion success. We would expect that this additional variation would contribute to
accelerating invasions under difficult ecological scenarios. In some cases (see e.g. Gamfeldt
et al., 2005; Burgess & Marshall, 2011; Hufbauer et al., 2013), it might not even be suffi-
cient to consider the quantity of introduced individuals, but one might also need to include
aspects of quality such as the genetic composition of propagules, their body condition, or
life-history stage.
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Appendix 2.1 Formal development of hypotheses

To formalize the hypotheses developed in the main text, let us consider the following
stochastic process: Some entity, e.g. a population or a vehicle, starts at position 0 and, at rate
f , makes jumps of magnitude s. Between jumps, the entity moves with constant velocity v,
but only at positions greater than 0 (see Fig. 2.3 for example trajectories). In analogy to our
overall research question, we ask: Is the expected time until the entity reaches some target
position R shorter with many small jumps or with fewer large jumps?

To address this question, let Nt be a random variable for the number of jumps during
some time interval of length t. Then Nt is Poisson distributed with parameter f · t. Further,
let Xt = s ·Nt be the displacement of the entity due to these jumps. Then

E[Xt] = E[s ·Nt] = s · E[Nt] = s · f · t . (2.2)

Thus, the average velocity with which the entity moves is v̄ = s · f + v, and so it depends
only on the product of s and f .

If the average velocity is positive, i.e. in easy scenarios, the expected time to reach the
target state R should be approximately R/v̄. The observed advantage of a high propagule
frequency or jump rate f in easy scenarios can be explained by two kinds of edge effects
(Fig. 2.3 a). The first edge effect results from the fact that movement only starts after the
first jump out of position 0. Thus the higher the jump rate is, the earlier the system starts
to move deterministically towards its target. To understand the second edge effect, compare
the scenario where jumps of magnitude 2s occur at rate f/2 to the scenario with magnitude
s and rate f . Assume that the system is already within distance s of the target state. Then the
expected time until the target is reached is 2/f in the former scenario, and only 1/f in the
latter scenario with the higher jump rate. In the former scenario, the system overshoots the
target, an effort that can be considered wasted if only the time to reach the target state is of
interest. While the first edge effect is particularly strong if the jump rate is small compared
to the velocity v, the second becomes important if the distance between start and target
position is small.

In contrast, in difficult scenarios with a negative average velocity, our entity of interest
would never reach the target state under a deterministic model. In our stochastic model,
however, the target state will eventually be reached when the displacement during some
time interval t is considerably larger than expected due to a chance accumulation of jumps
(Fig. 2.3 b). A measure of how frequent such unusual events are is the variance of the
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displacement

Var(Xt) = Var(s ·Nt) = s2 ·Var(Nt) = s2 · f · t . (2.3)

Thus for a fixed value of the product s · f , the variance increases with the magnitude of
jumps s and thus the expected time to reach the target state decreases. The more negative
the average growth rate is, the stronger is this effect (see Fig. 2.4).

(a) (b)

Figure 2.3: Example trajectories illustrating the heuristic arguments for (a) “easy” ecolog-
ical scenarios and (b) “difficult” ecological scenarios. The gray lines correspond to intro-
duction regimes with low propagule frequency and high propagule size whereas the black
lines represent scenarios with high propagule frequency and low propagule size.

Appendix 2.2 Details on the Markov processes and their
analysis

Single-population model

Each state of this Markov process is characterized by the current population size of the alien
species i ∈ {0, 1, 2, . . . }. From state i, the system jumps to other states j ∈ {0, 1, 2, . . . } at
rates

λ̄i,j =





b(i) for j = i+ 1

d(i) for j = i− 1

0 otherwise

, (2.4)



86 CHAPTER 2. DECOMPOSING PROPAGULE PRESSURE

where b(i) and d(i) are the rates at which birth and death events, respectively, occur in the
population. Transitions due to introduction events happen at rate

λ̂i,j =




f for j = i+ s

0 otherwise
. (2.5)

We assumed a constant per capita death rate of 1, such that d(i) = i. The birth rate
at population size i is βq · i2 + βl · i, where βq ≥ 0 and βl ≥ 0 quantify the birth rates
due to processes that, respectively, do or do not require interactions such as cooperation
or mate finding for reproduction. With different choices of the two parameters, this model
produces a range of different scenarios. Scenarios B, C, and E in Fig. 2.1 are three such
examples (See Table 2.1 for the corresponding parameter values). For βq > 0, the birth
rate is positively density-dependent. If, at the same time, βl + βq < 1, the birth rate is
smaller than the death rate at small population sizes. Hence, the population experiences
a strong demographic Allee effect with critical population size (1 − βl)/βq. Below this
critical size, the population tends to decline and for small propagule sizes we thus obtain
an ecological scenario with a difficult initial stage (Scenario B in Fig. 2.1). If, on the other
hand, βq > 0 and also βl+βq > 1, the population is expected to grow even at small sizes but
its per capita growth rate increases with population size. This so-called weak Allee effect
is an easy scenario (scenario C in Fig. 2.1). If βq = 0 and βl > 1, the population grows
exponentially (scenario E in Fig. 2.1).

Competition model

This model is a modified version of the competition model in Wittmann et al. (2013a) and
also has parallels to the model by Duncan & Forsyth (2006). The competition model is char-
acterized by the fixed total community size K, the fecundity of the alien species relative to
the native species w, and by the competition coefficient α, which specifies the strength of
interspecific competition relative to intraspecific competition. Thus, the competition expe-
rienced by an individual whose own species has size x is c(x, y) = x + α · y if the other
species has population size y. We assume that the rate at which individuals die is propor-
tional to the competition they experience. A dead individual is immediately replaced by an
individual drawn at random from a large offspring pool to which individuals contribute in
proportion to their fecundity.

For consistency with Wittmann et al. (2013a), here the state n of the Markov process
represents the current number of native individuals in the population, thus n ∈ {0, 1, . . . , K}.
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The transition rates due to birth and death events are then:

λ̄n,n+1 =
c(K − n, n) · (K − n)

K︸ ︷︷ ︸
rate at which

members of the alien
species die

· n

(K − n) · w + n︸ ︷︷ ︸
probability that a
native individual

gives birth

for n < K (2.6)

and

λ̄n,n−1 =
c(n,K − n) · n

K︸ ︷︷ ︸
rate at which

native individuals die

· (K − n) · w
(K − n) · w + n︸ ︷︷ ︸

probability that an
alien individual

gives birth

for n > 0 (2.7)

and λ̄n,m = 0 for m /∈ {n− 1, n+ 1}.
The introduction process here is the same as in the single-population scenario. However,

after each introduction event, the number of individuals in the community is truncated to
K by randomly removing s individuals in proportion to the competition they experience.
Thus, transitions due to introduction events happen at rates

λ̂n,n−k = f ·H[k, n,K−n+s, s, c(n,K−n+s), c(K−n+s, n)] for n−k ∈ {0, 1, . . . , K},
(2.8)

whereH[k, n,K−n+s, s, c(n,K−n+s), c(K−n+s, n)] is the probability mass function
of Wallenius’ noncentral hypergeometric distribution (Fog, 2008), i.e. the probability that
in a community with n native and K − n + s alien individuals, k native individuals are
selected to be killed when drawing s individuals without replacement, and where native
individuals have weight c(n,K − n+ s) and alien individuals weight c(K − n+ s, n). We
computed H using the package BiasedUrn (Fog, 2011) in R (R Development Core Team,
2011).

We used the competition model to create scenarios A, D, F, and G in Fig. 2.1. The
underlying parameter values can be found in Table 2.1.
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Table 2.1: Models and parameter values underlying the ecological scenarios considered in
the main text (see Fig. 2.1)

Scenarios generated by the single-population model
Scenario density-independent

birth rate βl
density-dependent
birth rate βq

target popu-
lation size R

B 0 0.05 50
C 1.05 0.004 50
E 2 0 50

Scenarios generated by the competition model
Scenario competition

coefficient α
alien fecundity w carrying capacity K target popu-

lation size R
A 1.2 1 100 50
D 1.2 1 100 100
F 0.68 1 100 100
G 0.68 1 100 50

Analysis

For each model, the total transition rate from state i to state j, λi,j , is the sum of the transi-
tion rate due to introduction events and the transition rate due to other events:

λi,j = λ̂i,j + λ̄i,j for i 6= j . (2.9)

λi is the total rate at which the Markov process leaves state i. These transition rates can be
organized into a rate matrix Λ whose diagonal entries are given by λi,i = −λi.

When computing the expected time to reach the target population size R, only transi-
tions from states with alien population sizes smaller than the target population size are rele-
vant. We denote this set of states J . For the competition scenario, J = {K−R+1, . . . , K}
and for the single-population scenario J = {0, 1, . . . , R − 1}. Now, consider a realization
of the Markov process that starts in a state i ∈ J . Then the time Ti to reach state R can
be decomposed into the time until the Markov process first leaves state i and the remaining
time. Taking expectations and using the Markov property, we obtain:

E[Ti] =
1

λi
+
∑

j∈J,j 6=i

λi,j
λi
· E[Tj]. (2.10)

Note that we do not need to include summands for states outside J , because once the process
leaves J it has reached the target and the remaining time is 0.

The system of linear equations that consists of one such equation for each i ∈ J was



APPENDIX 2.2 DETAILS ON THE MARKOV PROCESSES AND THEIR ANALYSIS 89

solved numerically in R (R Development Core Team, 2011) for Ti0 , the expected time be-
longing to the initial state i0 (i0 = 0 in the single-population scenario and i0 = K in
the competition scenario). This corresponds to solving the matrix equation Λ̃ E[T ] = −1,
where Λ̃ is the matrix obtained by removing from Λ all rows and columns belonging to the
states that are not in J . E[T ] is a column vector of expected times and 1 is a column vector
with a 1 in each element. The expected times to reach the target state for the seven scenarios
considered in the main text and for a propagule size of 1 are shown in Table 2.2.

Table 2.2: Expected times to reach the target population size for a propagule size of 1. The
relative expected times in Fig. 2.2 refer to these values.

scenario expected time
A 72.0
B 586.2
C 11.0
D 118.4
E 3.5
F 11254.6
G 13.0

Relative difference in expected time to reach the target

In the following sections, we explore the continuous dependence of the results on the pa-
rameters of our two models. To be able to visualize the results, we summarized the relative
effect of propagule size and frequency within one quantity. To this end, we first computed
the expected time of interest E[T ] with propagule size s and propagule frequency f , and
then computed the corresponding expectation E[T ∗] with propagule size s+ 1 and propag-
ule frequency f · s/(s+ 1). We then defined the sensitivity to this perturbation, our desired
single quantity, as

∆ :=
E[T ∗]− E[T ]

E[T ]
, (2.11)

i.e. as the relative difference between the two expected times.
Under the hypothesis that only the product of propagule size and propagule frequency

matters, we would expect ∆ = 0. Negative values of ∆ represent cases where the introduc-
tion regime with the larger propagule size led to a faster invasion, whereas for positive ∆

invasion was faster for the scenario with the higher propagule frequency. In the remainder
of the text, we will abbreviate these two outcomes by saying that propagule size or propag-
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Figure 2.4: The sensitivity score ∆ (see equation 2.11) as a function of the intensity of the
Allee effect (1/βq) in the single-population model with a strong (βl = 0, black lines) or
a weak Allee effect (βl = 1.1, gray lines) and propagule frequencies f of 0.1 and 0.01.
Note that with increasing values of 1/βq, the weak Allee-effect scenario approaches the
exponential growth scenario. R = 50, s = 3.

ule frequency have a larger effect, respectively. In addition to providing relative differences
in expected times, we also show the rank correlation coefficients as a function of the model
parameters.

Appendix 2.3 Results in dependence on model parameters

Single-population model

In the single-population model, the sensitivity score ∆ (see equation 2.11) decreases with
decreasing density-dependent birth rate βq, or increasing 1/βq (Fig. 2.4). In other words,
the more interactions between individuals are required to produce an offspring in a density-
dependent manner, the larger is the effect of propagule size. Under a weak Allee effect,
however, propagule frequency remained the component with the larger effect for all values
of βq. If the Allee effect is strong, on the other hand, propagule size has a larger effect than
propagule frequency for all but the smallest critical population sizes (small values of 1/βq).
The latter cases actually represent easy ecological scenarios because the propagule size is
larger than the critical population size. For easy scenarios, propagule frequency had a larger
effect when it was small, whereas for difficult scenarios, a decrease in propagule frequency
increased the effect of propagule size even more.
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Figure 2.5: Rank correlation of the expected time to reach the target state and the three
measures of propagule pressure as a function of the intensity of the Allee effect (1/βq) in
the single-population model. The strong Allee effect in (a) is produced by setting βl = 0,
whereas in (b) βl = 1.1. The gray arrows indicate the points where a different measure of
propagule pressure becomes the strongest correlator. The analysis is based on the introduc-
tion regime (s, f) ∈ {1, . . . , 10}×{0.005, 0.010, . . . , 0.095, 0.1}. Note that with increasing
values of 1/βq, the weak Allee-effect scenario approaches the exponential growth scenario.
R = 50.

With increasing intensity of the Allee effect (increasing 1/βq) the expected time to reach
the target population size became more strongly correlated to propagule size, while the cor-
relation to propagule frequency became weaker (Fig. 2.5). Interestingly, for the parameter
combination in Fig. 2.5 a, which represents a strong Allee effect, each of the three mea-
sures of propagule pressure had the strongest correlation with expected time in some range
of 1/βq: propagule frequency for very small values, i.e. small critical population sizes, the
product for intermediate values, and propagule size for very high values, i.e. large criti-
cal population sizes. In the weak Allee effect scenario of Fig. 2.5 b, the measure with the
strongest correlation to the expected times changed from propagule frequency to the prod-
uct with increasing 1/βq, but over the parameter range we examined, propagule size always
exhibited the weakest correlation.



92 CHAPTER 2. DECOMPOSING PROPAGULE PRESSURE

0.4 0.6 0.8 1.0 1.2 1.4

(a)

α

 

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
extinction
establishment

∆

0.8 0.9 1.0 1.1 1.2

(b)

w
 

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
extinction
establishment

propagule
 frequency
 has larger

 effect

propagule
 size has

 larger effect

∆

Figure 2.6: The sensitivity score ∆ (see equation 2.11) of establishment time (R = 50)
and native species extinction time (R = 100) in the competition model (a) for different
competition coefficients α and (b) for different alien species fecundities w. K = 100, f =
0.8, s = 3. In a) w = 1; in b) α = 1.

Competition model

In the competition model, the sensitivity of expected times to perturbations in propagule
size and frequency depends on the competition coefficient α and the alien species fecundity
w (Fig. 2.6). In a symmetric competition situation (w = 1) with an advantage for the rare
species (α < 1), a high propagule frequency is more relevant for fast establishment, whereas
a high propagule size helps the alien species to rapidly exclude the native species from the
community. When the more common species has an advantage (α > 1), propagule size has
a larger effect for both establishment and exclusion of the native species. If α = 1 and the
alien species has a lower fecundity than the native species (w < 1), propagule size has a
larger effect on both times of interest, whereas propagule frequency has a larger effect if
the alien species has an advantage over the native species (w > 1). Other combinations of
α and w are explored in Figs. 2.7 and 2.8.

According to the competition model, with the parameter combination examined in Fig.
2.9, the product always had the strongest correlation to the expected time to the extinc-
tion of the native species, whereas for the establishment time of the alien species, propag-
ule frequency correlated more strongly for small competition coefficients. In general, the
correlation coefficients for establishment time and extinction time behaved similarly for
competition coefficients α > 1, but diverged for α < 1.
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Figure 2.7: The sensitivity score ∆ (see equation 2.11) of establishment time (R = 50)
and native species extinction time (R = 100) in the competition model (a) for different
competition coefficients α with w = 0.9 (solid lines) and w = 1.1 (dashed lines) and (b) for
different alien species fecundities w with α = 0.8 (solid lines) and α = 1.1 (dashed lines).
K = 100, f = 0.8, s = 3.
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Figure 2.8: The sensitivity score ∆ (see equation 2.11) of establishment time (R = 50)
and native species extinction time (R = 100) in the competition model (a) for different
competition coefficients α and (b) for different alien species fecundities w. The propagule
frequency f = 0.1 is smaller than in Fig. 2.6. This leads to larger absolute values of ∆ in
the positive half-plane. K = 100, s = 3. In a) w = 1; in b) α = 1.
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Figure 2.9: Rank correlation of the expected time to reach the target state (R = 50
for establishment and R = 100 for native species extinction) and the three measures
of propagule pressure in the competition model for different competition coefficients α.
The gray arrows indicate the points where a different measure of propagule pressure be-
comes the strongest correlator. The analysis is based on the introduction regimes (s, f) ∈
{1, . . . , 10} × {0.005, 0.010, . . . , 0.095, 0.1}. K = 100, w = 1.

Appendix 2.4 Results for the single-population model with
environmental change

Here we consider an extension of the single-population model in which there are two possi-
ble environmental states, 0 and 1, transitions between which happen at rate ε. The per capita
birth rates in environment 0 are βl,0 = βl · φ and βq,0 = βq · φ. βl,1 = βl/φ and βq,1 = βq/φ

are the corresponding rates in environment 1. Thus βl and βq are now the geometric av-
erages of the birth rate parameters and φ ≥ 1 quantifies the magnitude of environmental
change. With φ = 1, the environment is constant and we get back to the original model. To
summarize, in environment j and with a current population size of i, birth events happen at
rate

b(i) = βl,j · i+ βq,j · i2 . (2.12)

To characterize the current state of the process, we now need two numbers: the po-
pulation size i and the environmental state j. However, we can transform the model into
a one-dimensional Markov process with the help of a one-to-one map between the two-
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dimensional states and the natural numbers {1, . . . , 2R}. After transformation, we can ap-
ply the same methods for its analysis as for the other models (described in Appendix 2.2).
The results, corresponding to Figs. 2.4 and 2.5, are shown in Figs. 2.10 and 2.11. An in-
crease in the magnitude of environmental change increases the sensitivity of expected times
to propagule frequency. However, at least for the parameter combinations we considered,
this effect is not strong enough to compensate the larger effect of propagule size under the
difficult scenario of a strong Allee effect.
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Figure 2.10: The sensitivity score ∆ (see equation 2.11) as a function of the intensity of the
Allee effect (1/βq) in the single-population model with a strong (βl = 0, black lines) or a
weak Allee effect (βl = 1.1, gray lines) and different magnitudes of environmental change
φ. R = 50, s = 3, f = 0.01, ε = 0.1, initial environment: 0.
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Figure 2.11: Rank correlation of the expected time to reach the target state and the three
measures of propagule pressure as a function of the intensity of the Allee effect (1/βq) in the
single-population model with environmental change. The strong Allee effect in (a) is pro-
duced by setting βl = 0, whereas in (b) βl = 1.1. The gray arrows indicate the points where
a different measure of propagule pressure becomes the strongest correlator. The analysis is
based on the introduction regimes (s, f) ∈ {1, . . . , 10} × {0.005, 0.010, . . . , 0.095, 0.1}.
R = 50, φ = 1.5, ε = 0.1, initial environment: 0.

Appendix 2.5 Statistical models for the Australian dung
beetle project

Here we provide details on the statistical analysis of the dung beetle data set from Tyndale-
Biscoe (1996). Descriptive statistics for the seven species that we selected for our analysis
are shown in Table 2.3. For each of the seven species, we fit logit-link binomial generalized
linear models using the function glm (family “binomial”) in R (R Development Core Team,
2011). The models were of the form

log

(
pi

1− pi

)
= cintercept + csize · si + cfrequency · fi + cproduct · si · fi, (2.13)

where pi is the success probability at location i, and si and fi are the corresponding values
for propagule size and propagule frequency. cintercept, csize, cfrequency, and cproduct are the
model coefficients. In each of the five candidate models, we set some of these coefficients to
zero while estimating the others. As criterion for model selection, we used AIC (Burnham
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& Anderson, 2002), i.e.−2 · log-likelihood+2 ·(number of parameters), as implemented in
the R function AIC (see Table 2.4). The model coefficients for the selected model are given
in Table 2.5.

Note that whenever a one-factor model is chosen according to AIC, as was the case
for all but one species, a likelihood-ratio test comparing it to a model with an additional
parameter would never reject the simpler model on a 5 % level. The converse does not
necessarily hold, but in the case of Euoniticellus africanus, a likelihood ratio test comparing
the model with product and size to the model including only the product would reject the
latter (p = 3.6 · 10−5).

In the case of Euoniticellus africanus, we also tested whether the model including the
product and propagule size as predictors fits significantly better than the model with only
propagule frequency. Since the two models are not nested, we could not use a likelihood-
ratio test. To evaluate the significance of the observed difference in AIC values between
the two models, we therefore ran simulations in R (R Development Core Team, 2011).
The model assumed under the null hypothesis was the propagule-frequency model as fit
to the observed data for Euoniticellus africanus (cintercept = −7.9, cfrequency = 74.4,
csize = cproduct = 0). Using this model and the same values for propagule size and fre-
quency as in the observed data set, we generated 10,000 invasion success data sets. For
each of them, we fit the two competing models and recorded their AIC values. In 14 % of
the simulations, the model with the product and propagule size as predictors had an AIC
advantage at least as large as the observed advantage. Thus, we conclude that this AIC dif-
ference is not significant on a 5 % level and we cannot reject the hypothesis that propagule
frequency is the only influencing factor (p-value 0.14).
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Table 2.3: Descriptive statistics on the biological control introductions of seven species
of dung beetles (data from Tyndale-Biscoe, 1996). f , s, and f · s give the average across
locations of propagule frequency, propagule size, and their product, respectively. sd(f),
sd(s), and sd(f · s) are the corresponding standard deviations. sd(s) is the average across
locations of the estimated standard deviation of release sizes within one location.

Species f sd(f) s sd(s) f · s sd(f · s) sd(s)

Onthophagus gazella 0.201 0.207 841.9 729.3 217.09 420.53 792.3
Onitis alexis 0.109 0.103 415.8 176.9 44.01 41.99 108.58
Onthophagus binodis 0.078 0.041 824.9 675.9 65.38 68.22 537.32
Euoniticellus intermedius 0.231 0.204 629.5 644.5 129.75 117.04 18.99
Onthophagus taurus 0.111 0.067 896.7 445 96.55 61.1 285.34
Euoniticellus africanus 0.088 0.057 512.7 308.4 44.5 38.37 11.79
Hister nomas 0.165 0.165 516.2 184.2 88.66 111.93 194.13

Table 2.4: AIC values for the different candidate binomial GLMs for the success of seven
species of dung beetles. AIC values of the respective selected models are printed in bold
face.

Species product frequency size product +
frequency

product +
size

Onthophagus gazella 78.10 88.38 119.49 80.04 79.50
Onitis alexis 78.19 82.51 94.82 80.10 80.17
Onthophagus binodis 89.70 89.29 89.87 89.77 91.27
Euoniticellus intermedius 59.38 61.03 75.98 60.33 61.18
Onthophagus taurus 51.97 52.11 52.07 53.75 53.97
Euoniticellus africanus 31.59 17.56 41.56 19.07 16.52
Hister nomas 25.45 26.85 35.97 26.91 27.35
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Table 2.5: Coefficients of the selected binomial GLM (see equation 2.13) for the success
of seven species of dung beetles. Missing entries indicate that the corresponding predictor
was not part of the selected model.

Species cintercept cfrequency csize cproduct

Onthophagus gazella -2.65 0.047
Onitis alexis -2.08 0.058
Onthophagus binodis -1.65 19.6
Euoniticellus intermedius -0.96 0.022
Onthophagus taurus -0.66 0.002
Euoniticellus africanus -3.83 -0.013 0.219
Hister nomas -2.84 0.048
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Abstract

A phenomenon that strongly influences the demography of small introduced populations
and thereby potentially their genetic diversity is the Allee effect, a reduction in population
growth rates at small population sizes. We take a stochastic modelling approach to inves-
tigate levels of genetic diversity in populations that successfully overcame a strong demo-
graphic Allee effect, a scenario in which populations smaller than a certain critical size are
expected to decline. Our results indicate that compared to successful populations without
Allee effect, successful Allee-effect populations tend to 1) derive from larger founder po-
pulation sizes and thus have a higher initial amount of genetic variation, 2) spend fewer
generations at small population sizes where genetic drift is particularly strong, and 3) spend
more time around the critical population size and thus experience more drift there. Alto-
gether, the Allee effect can either increase or decrease genetic diversity, depending on the
average founder population size. In the case of multiple introduction events, there is an ad-
ditional increase in diversity because Allee-effect populations tend to derive from a larger
number of introduction events than other populations. Finally, we show that given genetic
data from sufficiently many populations, we can statistically infer the critical population
size.

Keywords: critical population size, founder effect, genetic variation, invasive species, stochas-
tic modelling
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Introduction

The amount of genetic diversity in a recently established population is strongly shaped by
its early history: While the founder population size determines the amount of genetic varia-
tion imported from the source population, the population sizes in the following generations
influence how much of this variation is maintained and how much is lost through genetic
drift. A phenomenon that strongly affects this early history is the demographic Allee effect,
a reduction in per-capita growth rate in small populations (Stephens et al., 1999; Fauvergue
et al., 2012). Allee effects have been detected in species from many different taxonomic
groups (Kramer et al., 2009). Apart from cooperation between individuals, the study sub-
ject of the effect’s eponym (Allee, 1931), they can result from a variety of other mechanisms
such as difficulties to find mating partners, increased predation pressure in small popula-
tions, or biased dispersal towards large populations (Kramer et al., 2009). In this study,
we focus on the so-called strong demographic Allee effect, in which the average per-capita
growth rate is negative for populations smaller than a certain critical population size (Taylor
& Hastings, 2005).

A population whose founder size is below this threshold has a high probability of going
extinct. With more and more transport of goods around the world, however, many species
are introduced to a location not just once, but again and again at different time points.
Eventually, a random excess in the number of birth events may cause one of these small
introduced populations to grow exceptionally fast, surpass the critical population size, and
then grow further to reach high population sizes. Whereas most failed introductions pass
unnoticed, the rare successful populations can be detected and sampled and may have sub-
stantial impact on native communities and ecosystems.

Our main question in this study is how expected levels of genetic diversity differ be-
tween successful populations that either did or did not have to overcome an Allee effect.
Answering this question would help us to understand the ecology and evolution of intro-
duced and invasive populations in several ways. On the one hand, the amount of genetic
variation is an indicator for how well an introduced population can adapt to the environmen-
tal conditions encountered at the new location. Therefore, the Allee effect—if it influences
genetic diversity—could shape the long-term success and impact even of those populations
that are successful in overcoming it. On the other hand, genetic patterns created by the
Allee effect could help to complete a task that is very challenging when only ecological
data are available (Courchamp et al., 2008; Kramer et al., 2009): detecting Allee effects in
field populations or even estimating the critical population size. Information on the criti-
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cal population size would be very valuable in practice, for example to identify maximum
release rates for species whose establishment is to be prevented, or minimum release rates
for those whose establishment is desired, for example in biological control or for species
reintroductions (Deredec & Courchamp, 2007). Furthermore, an important task in statis-
tical population genetics is to reconstruct the demographic history of a population and to
infer parameters such as founder population sizes, times since the split of two populations,
or migration rates. Should the Allee effect have long-lasting effects on patterns of genetic
diversity in established populations, it would have to be taken into account in such analyses.

To our knowledge, there have not been any empirical studies on the population genetic
consequences of the Allee effect and the few theory-based results are pointing into dif-
ferent directions. There are arguments suggesting that a strong Allee effect may lead to
an increase in genetic diversity, and others that suggest a decrease. An increase in genetic
diversity due to the Allee effect is predicted for populations that expand their range in a
continuous habitat (Hallatschek & Nelson, 2008; Roques et al., 2012). In the absence of an
Allee effect, mostly alleles in individuals at the colonisation front are propagated. Under
an Allee effect, the growth rate of individuals at the low-density front is reduced and more
individuals from the bulk of the population get a chance to contribute their alleles to the ex-
panding population. This leads to higher levels of local genetic diversity and weaker spatial
genetic structure. A similar effect has been discussed in the spatially discrete case: Kramer
& Sarnelle (2008) argued that without Allee effect even the smallest founder populations
would be able to grow, leading to populations with very little genetic diversity. The Allee
effect, they conclude, sets a lower limit to feasible founder population sizes and thus does
not allow for extreme bottlenecks.

The Allee effect not only influences whether a population will reach high population
sizes, but also how fast this happens. So far, the genetic consequences of this change in po-
pulation dynamics have not been explored theoretically. However, it is often stated that the
Allee effect can lead to time lags in population growth (Drake & Lodge, 2006; Simberloff,
2009; McCormick et al., 2010), i.e. initial population growth rates that are small compared
to growth rates attained later (Crooks, 2005). Such time lags follow almost directly from
the definition of the Allee effect and would imply an increased opportunity for genetic drift
and thus a reduction in genetic diversity. However, it is not clear whether time lags are still
present if we consider the subset of populations that is successful in overcoming the Allee
effect.

In this study, we propose and analyse stochastic models to elucidate and disentangle the
various ways in which the Allee effect shapes expected levels of neutral genetic diversity.
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Furthermore, we investigate under what conditions genetic diversity would overall be lower
or higher compared to populations without Allee effect. First, we compare successful po-
pulations with and without Allee effect with respect to two aspects of their demography:
the distribution of their founder population sizes, i.e. the distribution of founder population
sizes conditioned on success, and the subsequent population dynamics, also conditioned on
success and meant to include both deterministic and stochastic aspects. In a second step, we
will then consider what proportion of neutral genetic variation from the source population
is maintained under such a demography. Focusing throughout on introductions to discrete
locations rather than spread in a spatially continuous habitat, we first consider the case of a
single founding event, and then the case of multiple introductions at different time points.
Finally, we explore whether the genetic consequences of the Allee effect could be employed
to estimate the critical population size from genetic data.

Model

In our scenario of interest, a small founder population of size N0 (drawn from a Poisson
distribution) is transferred from a large source population of constant size k0 to a previously
uninhabited location. Assuming non-overlapping generations and starting with the founder
population at t = 0, the population size in generation t+1 is Poisson-distributed with mean

E[Nt+1] = Nt · λ(Nt) = Nt · exp

{
r ·
(

1− Nt

k1

)
·
(

1− a

Nt

)}
, (3.1)

where k1 is the carrying capacity of the new location, r is a growth rate parameter, and a
is the critical population size. Unless otherwise noted, we use the parameter values k0 =

10, 000 and k1 = 1000. To model Allee-effect populations, we set a = 50, otherwise a = 0.
Under this model, the average per-capita number of surviving offspring per individual λ(Nt)

is smaller than one for population sizes below the critical population size a and above the
carrying capacity k1 and greater than one between critical population size and carrying
capacity (figure 3.1). With a = 0, this model is a stochastic version of the Ricker model
(see e.g. de Vries et al., 2006). Its deterministic counterpart can exhibit stable oscillations or
chaotic behaviour for large values of r, but here we will only consider values of r between
0 and 2, where k1 is a locally stable fixed point (de Vries et al., 2006, p. 29).

We follow the population-size trajectory until the population either goes extinct (un-
successful population) or reaches target population size z = 100 (successful population).
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Figure 3.1: The expected number of surviving offspring per individual (λ(n), see equation
(3.1)) as a function of the current population size n without Allee effect (no AE, grey line)
or with an Allee effect (AE, black line) of critical size a = 50 (indicated by dotted vertical
line). k1 = 1000, r = 0.1.

When a successful population reaches size z, we sample ns individuals from the popula-
tion and trace their ancestry backwards in time. This allows us to quantify the proportion
of genetic variation from the source population that is maintained in the newly founded
population. Since the impact of the Allee effect as well as the strength of genetic drift and
random population-size fluctuations decline with increasing population size, the particular
choice of z and k1 should have little influence on the results as long as they are sufficiently
large.

The assumption that each population goes back to a single founding event and then ei-
ther goes extinct or reaches the target population size z is justified as long as introduction
events are rare. Then the fate of a population introduced in one event is usually decided be-
fore the respective next event. However, many species are introduced to the same location
very frequently (Simberloff, 2009). Therefore, we also consider a scenario with multiple in-
troduction events: In each generation, an introduction event occurs with probability pintro,
each time involving nintro individuals. We considered a population successful and sampled
it if it had a population size of at least z after the first 200 generations. We fixed the number
of generations rather than sampling the population upon reaching z as before, because this
would introduce a bias: Populations that would take longer to reach z would be likely to re-
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ceive more introduction events and thus have higher levels of diversity. With a fixed number
of 200 generations and our default choice of migration probability pintro = 0.05, all popu-
lations receive on average ten introduction events. All other parameters were unchanged
compared to the case with just one founding event.

Methods

We formulated our demographic model as a Markov chain with transition probabilities

Pij = Pr(Nt+1 = j|Nt = i) =
e−λ(i)·i · (λ(i) · i)j

j!
, (3.2)

where λ(i) is given by equation (3.1). We used first-step analysis and Bayes’ formula to
compute 1) the probability of a population being successful, i.e. reaching some target size
z before going extinct, 2) the conditioned distribution of founder population sizes, i.e. the
distribution of founder population sizes among successful populations, and 3) the transi-
tion probability matrix Pc of the Markov chain conditioned on reaching z before 0. The
conditioned Markov chain serves two purposes. First, we can use it to directly simulate tra-
jectories of successful populations, which is more efficient than simulating from the original
Markov chain and then discarding unsuccessful runs. Second, we can use Pc to compute
the expected number of generations that successful populations with or without Allee effect
spend at each of the population sizes from 1 to z − 1 before reaching z, and the expected
number of offspring per individual in successful populations with and without Allee effect.
Thereby we characterised the population dynamics of successful populations with and with-
out Allee effect. These computations are described in detail in Appendix 3.1. In the case of
multiple introduction events, we simulated from the original Markov chain and discarded
unsuccessful runs.

Given a successful population size trajectory N0, N1, . . . , NTz , we then simulated the
genealogies of a sample of ns = 10 individuals genotyped at both copies of nl = 10 freely
recombining loci. We constructed the genealogies by tracing the sampled lineages back
to their their most recent common ancestor (see Appendix 3.2 for details). These simula-
tions are based on the assumption that each individual in the offspring generation is formed
by drawing two parents independently and with replacement from the parent population.
Equivalently, we could assume that each individual is the mother of a Poisson-distributed
number of offspring with mean λ(Nt) and that the father of each offspring individual is
drawn independently and with replacement from the population. Our algorithm for the sim-
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ulation of genealogies is a discrete-time version of the ancestral recombination graph (see
e.g. Griffiths, 1991; Griffiths & Marjoram, 1997; Wakeley, 2009, Chapter 7) with a few
modifications to better represent the genetics of very small populations. For each simulation
run, we stored the average pairwise coalescence time G2 between sampled chromosomes.
To compute the expected proportion of variation from the source population that is main-
tained in the newly founded population, we divided G2 by 2k0, the expected coalescence
time for two lineages sampled from the source population.

We implemented all simulations in C++ (Stoustrup, 1997), compiled using the g++
compiler (gcc.gnu.org, 2012, version 4.7.2), and relied on the boost library (version 1.49)
for random number generation (boost.org, 2013). We used R (R Development Core Team,
2011, version 2.14.1) for all other numerical computations and for data analysis.

Results

(a) Shift towards larger founder sizes

To compare the demography of successful populations with and without Allee effect, we
first examine the distribution of their founder population sizes. These success-conditioned
distributions (see Appendix 3.1 for how to compute them) differ from the original distri-
bution because the success probability is higher for some founder population sizes than
for others. Without Allee effect, small populations can still go extinct by chance, but this
quickly becomes very unlikely as the founder population size increases (see Dennis, 2002,
and figure 3.7). Thus, there is a shift towards larger founder population sizes in the con-
ditioned distribution, but this shift is only noticeable for very small average founder sizes
(figure 3.2a). With Allee effect, the success probability is overall lower, even above the crit-
ical population size, and has a sigmoid shape with a sharp increase around the critical size
(see Dennis, 2002, and figure 3.7). Consequently, the conditioned distribution of founder
population sizes is more strongly shifted to larger population sizes than without Allee effect
(figure 3.2). This shift is particularly strong if the mean of the original distribution is small
compared to the critical population size (figure 3.2a). As the mean founder size approaches
the critical population size and a larger proportion of populations is successful (see figure
3.7), the shift becomes smaller (figure 3.2b,c).
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Figure 3.2: Success-conditioned distributions of founder population sizes with Allee effect
(AE, solid black lines) and without (no AE, solid grey lines). The original distribution
(dashed) is Poisson with mean 5 (a), 20 (b), or 40 (c) and is almost indistinguishable from
the the conditioned distribution without Allee effect in B and C. The dotted vertical line
indicates the critical size for Allee-effect populations. Note the differences in the scale of
the y-axes. r = 0.1.

(b) Dynamics of successful populations

Upon reaching the target population size z, a successful Allee-effect population has on
average spent fewer generations at small population sizes than a successful population that
did not have to overcome an Allee effect (figure 3.3), particularly if the founder population
size is small compared to the critical population size (figure 3.3a,b). Thus, although the
average Allee-effect population declines at small population sizes (see figure 3.1), those
populations that successfully overcome the critical population size must have grown very
fast in this population-size range. Allee-effect populations, however, spend more time at
larger population sizes than populations without Allee effect (figure 3.3). Note that the
small peak figure 3.3a and the kink in figure 3.3b are due to the fact that the population
necessarily spends some time around its founder population size.

(c) Population genetic consequences

We have now seen two ways in which the Allee effect modifies the demography of success-
ful populations: it shifts the distribution of founder population sizes and it affects the time
they spend in different population-size ranges. In this section, we examine the separate and
combined effect of these two features on levels of genetic diversity. Our quantity of interest
is the expected proportion of genetic variation from the source population that is maintained
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Figure 3.3: The expected number of generations that successful populations spend at each of
the population sizes from 0 to z−1 before reaching population size z (here 100). The initial
population sizes are 5 in (a), 20 in (b), and 40 in (c). The grey lines represent population
dynamics conditioned on success in the absence of an Allee effect (no AE) whereas the
black lines represent the conditioned population dynamics with Allee effect (AE) and a
critical population size of 50 (indicated by dotted vertical line). Note the differences in the
scale of the y-axes. r = 0.1.

by the newly founded population when it reaches size z. For different values of the growth
rate parameter r, we compare four sets of successful populations (figure 3.4) representing
all possible combinations of a founder-size distribution with or without Allee effect (solid
and dashed lines in figure 3.4, corresponding to black and grey lines in figure 3.2, respec-
tively) and subsequent population dynamics with or without Allee effect (black and grey
lines in figure 3.4, corresponding to black and grey lines in figure 3.3, respectively).

There are three comparisons to be made in each subplot of figure 3.4. We first focus on
figure 3.4b where the growth rate parameter r is the same as in figures 3.1–3.3. We first com-
pare populations with the same dynamics but different distributions of founder population
sizes (dashed vs. solid grey lines and dashed vs. solid black lines) and observe that those
whose founder population size was drawn from the Allee-effect distribution maintained
more genetic variation. This increase was strong for small mean founder population sizes
and became weaker with increasing mean founder population size, in accordance with the
lessening shift in the conditioned distribution of founder population sizes (see figure 3.2).
Second, among populations that share the founder-size distribution but differ in their popu-
lation dynamics (black dashed vs. grey dashed lines and black solid vs. grey solid lines),
those with Allee-effect dynamics maintained more diversity at small founder population
sizes, but less diversity for large founder population sizes.

Finally, the biologically meaningful comparison is between successful populations with
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Figure 3.4: Average proportion of genetic variation from the source population that is main-
tained by an introduced population upon reaching size z. The subplots differ in the value
of the growth rate parameter r. The values on the x-axes correspond to the mean of the
original founder-size distribution. In each subplot, the four displayed scenarios differ in
the underlying demography and represent all possible combinations of success-conditioned
founder-size distributions either with Allee effect (solid lines) or without (dashed lines) and
success-conditioned population dynamics either with Allee effect (black lines) or without
(grey lines). Thick lines correspond to the biologically meaningful scenarios with Allee ef-
fect (AE, AE) and without (no AE, no AE), whereas thin lines represent combinations that
have no direct biological interpretation but help us to decompose the genetic consequences
of the Allee effect (no AE, AE and AE, no AE). The letters a, b, and c in subplot (b) refer
to the subplots in figures 3.2 and 3.3, where we examined for r = 0.1 and the respective
(mean) founder population sizes how the Allee effect influences the conditioned distribu-
tion of founder population sizes and the conditioned population dynamics. The critical size
for Allee-effect populations (a = 50) is indicated by a dotted vertical line. Each point repre-
sents the average over 20,000 successful populations. Across all points in the plots, standard
errors were between 0.0009 and 0.0020, and standard deviations between 0.141 and 0.274.
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an Allee effect in both aspects of their demography (black solid lines) and successful po-
pulations without any Allee effect (grey dashed lines). This comparison reveals the strong
and population-size dependent genetic consequences of the Allee effect: For small mean
population sizes, successful populations with Allee effect in figure 3.4b maintained up to
3.8 times more genetic variation than populations without Allee effect. For mean population
sizes close to the critical population size, on the other hand, Allee-populations maintained
up to 6.6 % less genetic variation. Figures 3.4a and c show the corresponding results for
a smaller and a larger growth rate parameter, respectively. For the smaller growth rate pa-
rameter, the Allee effect has a positive effect on genetic diversity over a wider range of
mean founder population sizes (figure 3.4a), whereas for a higher growth rate parameter the
Allee effect starts to have a negative effect already at relatively small mean founder popula-
tion sizes (figure 3.4c). The results in figure 3.4 are based on average pairwise coalescence
times, a measure related to the average number of pairwise differences in a sample. Results
based on the average total length of genealogies were qualitatively similar (see Appendix
3.3).

(d) Multiple introductions

Populations with Allee effect maintained a larger proportion of genetic variation than did
populations without Allee effect if the number of individuals introduced per event was
smaller than the critical population size (figure 3.5a). In this parameter range, successful
populations with Allee effect had received more introduction events than successful po-
pulations without Allee effect (figure 3.5b). Since in the case of multiple migrations the
population can go temporarily extinct, not all introduction events necessarily contribute to
the genetic diversity in the sample. However, for small founder population sizes, lineages
sampled from an Allee-effect population also had a smaller probability to trace back to the
same introduction event than lineages sampled from a population without Allee effect (fig-
ure 3.5c). If a single introduction event was sufficient to overcome the critical population
size, there was no noticeable difference between populations with and without Allee effect,
neither in the amount of genetic variation maintained nor in the number of introduction
events they received.

(e) Estimating the critical population size from genetic data

The results in the last sections have shown that the Allee effect can have substantial impact
on the expected amount of genetic variation in a recently founded population. However, due
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Figure 3.5: Genetic consequences of the Allee effect in the case of multiple introduction
events. (a) Proportion of variation maintained by populations with Allee effect (AE) and
without (no AE). Standard deviations were between 0.155 and 0.160 and standard errors
between 0.0010 and 0.0012. (b) Average number of introduction events that happened in
successful simulation runs. (c) Probability that two lineages in the sample trace back to the
same introduction event. Allee-effect populations had a critical population size of 50, as
indicated by a dotted vertical line. The migration probability per generation was 0.05. Each
point represents the average over 20,000 successful populations. r = 0.1.

to stochasticity in the population dynamics and genetics, the associated standard deviations
are so large that there always is considerable overlap between the underlying distributions
with and without Allee effect. Using Approximate Bayesian Computation (ABC), a flexible
statistical framework for simulation-based parameter estimation (Beaumont, 2010; Csilléry
et al., 2010, see Appendix 3.4 for the detailed methodology), we explored under what con-
ditions it would be feasible to infer the critical population size from genetic data. We found
that it is indeed possible to obtain reasonably accurate estimates of the critical popula-
tion size, but only if we have information from sufficiently many independent replicates
of the process, for example genetic data from several populations that have independently
colonised a number of ecologically similar locations (figures 3.6 and 3.12).

Discussion

Our results indicate that the Allee effect strongly influences the expected amount of genetic
diversity in a population that recently established from a small founder population size. In
the case of a single introduction event, we can attribute this influence to the joint action of
three mechanisms: 1) Compared to other successfully established populations, those that
have overcome an Allee effect tend to derive from larger founder populations and hence
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Figure 3.6: Estimated vs. true values of the critical population size for either 10 or 200
independent locations. On the diagonal grey line, the estimated critical population size is
equal to the true one. The value in the upper left corner of each plot is the root mean squared
error (RMSE) across the 1000 data sets.

start on average with more genetic diversity. 2) To successfully overcome the critical po-
pulation size, small Allee-effect populations must grow very fast initially. Therefore, they
spend fewer generations in the range of population sizes where genetic drift is strongest,
which leads to an increase in genetic diversity relative to populations without Allee effect.
3) Successful Allee-effect populations experience a time lag in population growth around
and above the critical population size, leading to increased opportunity for genetic drift and
thus a negative effect on genetic diversity. The first and—to some extent—the third mecha-
nism have been suggested before (see Kramer & Sarnelle, 2008; McCormick et al., 2010).
In this study, we have clarified the role of the third mechanism and first described the second
mechanism in the context of the Allee effect.

Taken together, the second and third mechanism suggest a peculiar relationship between
the original population growth rate and the growth rate among successful populations: Suc-
cessful populations that are originally expected to decline rapidly (Allee effect-populations
substantially below the critical size) grow the fastest, followed by those populations that are
expected to increase moderately (populations without Allee effect). The slowest-growing
populations are those that are expected to weakly increase or decrease (Allee-effect popu-
lations around the critical size). In summary, the per-capita population growth rate condi-
tioned on success (see figure 3.8) seems to depend more on the absolute value of the original
growth rate, (E[Nt+1]/Nt) − 1, than on its sign, a phenomenon that is also present in sim-
pler models (see Appendix 3.6 for an example from diffusion theory). Thus, if we wish to
predict the population genetic consequences of the Allee effect, it is not sufficient to know
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the critical population size, but it may be even more important to determine the absolute
value of the average-per capita growth rate at small population sizes.

As the mean founder population size increases, the two mechanisms leading to an in-
crease in diversity (1 and 2) become weaker, whereas the mechanism leading to a decrease
in diversity (3) becomes stronger. Therefore, the Allee effect appears to have a positive
influence on levels of genetic diversity if typical founder population sizes are small, but a
negative effect for large mean founder population sizes. The mean founder population size
at which the direction of the effect changes depends on the magnitude of the growth rate
parameter r. In the case of multiple introduction events, successful populations that have
overcome an Allee effect tend to go back to more introduction events than do successful
populations without Allee effect, a fourth mechanism that may tip the balance of the ge-
netic consequences of the Allee effect into the positive direction. Exceptionally high levels
of genetic diversity caused by Allee effects may contribute to explaining why established
alien or invasive populations often harbour a large amount of genetic diversity relative to
their source populations (Roman & Darling, 2007) although they supposedly established
from small numbers.

As we have seen, the genetic consequences of the Allee effect can be used to estimate
the critical population size from genetic data. We conducted our analysis with SNP data in
mind, but with different choices of summary statistics other types of genetic data could also
be accommodated. To achieve reasonable accuracy, however, we would need independent
data from many different locations. Since we found magnitude and direction of the Allee
effect’s influence to be very context-dependent, it would also be important to know the
other demographic parameters fairly well in order to be able to infer the critical population
size from genetic data. It could also be worthwhile to perform a joint analysis combining
genetic data with relevant ecological information, e.g. on propagule pressure and establish-
ment success (Leung et al., 2004). As demonstrated by previous studies that addressed other
questions in invasion biology with a combination of genetic and ecological data (e.g. Es-
toup et al., 2010), Approximate Bayesian Computation (ABC) provides a flexible statistical
framework for such a task.

Even if it is difficult to detect an Allee effect in genetic data from a single population,
neglecting its presence might affect the inference of other demographic parameters such as
founder population size, growth rate, and time since the founding event. We explored this
possibility in Appendix 3.5, but found no consistent differences in the quality of parameter
estimation between populations with and without Allee effect. In both cases, the quality
of the inference was rather poor, indicating that the stochastic dynamics in the true model
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posed a greater challenge to parameter inference than did the Allee effect itself.
Stochastic population models such as the one in this study are not only characterised

by their average behaviour, but also by the stochastic variability among outcomes. This
seems to be particularly important for the genetic consequences of the Allee effect because
of several reasons. First, the successful establishment of populations whose size is initially
below the critical population size would not be possible in a deterministic model; it requires
at least some variability. Second, the extent to which the population dynamics conditioned
on success can deviate from the original population dynamics should also depend on the
amount of variability. Third, even for a given demographic history, the amount of genetic
drift depends on one source of variability, namely that in offspring number among indi-
viduals. In this study, we have worked with the standard assumption of Poisson-distributed
offspring numbers. However, there is evidence that many natural populations do not con-
form to this assumption (Kendall & Wittmann, 2010). Especially in small populations with
Allee effect, we would expect more variation in offspring number because many individuals
do not encounter a mating partner (Kramer et al., 2009), whereas those that do can exploit
abundant resources and produce a large number of offspring. In a second paper (Wittmann
et al., 2013d, Chapter 4), we therefore investigate how the genetic consequences of the
Allee effect depend on the distribution of the number of offspring produced by individuals
or families. Since the magnitude of the growth rate parameter r affects the relative strength
of deterministic and stochastic forces, our results in Chapter 4 (Wittmann et al., 2013d) will
shed additional light on the role of r for the genetic consequences of the Allee effect.
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Appendix 3.1 The conditioned Markov chain and its prop-
erties

This section explains how to obtain the transition probability matrix of the Markov chain
conditioned on the event that the population reaches size z before going extinct (reach-
ing size 0), i.e. conditioned on the event Tz < T0. We also explain how to derive further
properties of the conditioned Markov chain. We first restrict our Markov chain to the states
0, 1, . . . , z − 1, z, where 0 and z are absorbing states and 1, . . . , z − 1 are transient, that
is the Markov chain will leave them at some time. We can write the transition probability
matrix of the original Markov chain as

P =

(
Q R

0 I

)
, (3.3)

where Q is a (z − 1)× (z − 1) matrix representing the transitions between transient states,
R is a (z − 1) × 2 matrix with the transition probabilities from the transient states to the
absorbing states z (first column) and 0 (second column), 0 is a 2× (z−1) matrix filled with
zeros, and I is an identity matrix (in this case 2× 2).

Following Pinsky & Karlin (2010), we then computed the fundamental matrix W =

(I − Q)−1. Wij gives the expected number of generations a population starting at size
i spends at size j before reaching one of the absorbing states. This matrix operation is
based on first-step analysis, i.e. on a decomposition of expected quantities according to
what happens in the first step (see Pinsky & Karlin, 2010, Section 3.4 for details).

The probabilities of absorption in either of the two absorbing states can then be com-
puted as U = WR. The first column of U contains the success probabilities Pr(Tz <
T0|N0 = i) shown in figure 3.7. For a given original distribution of founder population
sizes (given by the probabilities Pr(N0 = n) for different founder population sizes n), we
used the success probabilities together with Bayes’ formula to compute the distribution of
founder population sizes among successful populations:

Pr(N0 = n|Tz < T0) =
Pr(N0 = n) · Pr(Tz < T0|N0 = n)∑∞
i=1 Pr(N0 = i) · Pr(Tz < T0|N0 = i)

. (3.4)

The resulting distributions are shown in figure 3.2.
Using the success probabilities and Bayes’ formula, we then computed the transition
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Figure 3.7: Success probabilities Pr(T100 < T0) without Allee effect (no AE, grey line) or
with an Allee effect (AE, black line) and critical size a = 50 (indicated by dotted vertical
line). k1 = 1000, r = 0.1.

probabilities of the Markov chain conditioned on Tz < T0:

Qc
ij = Pr(Nt+1 = j|Nt = i, Tz < T0) =

Qij · Pr(Tz < T0|N0 = j)

Pr(Tz < T0|N0 = i)
. (3.5)

As z is the only absorbing state of this new Markov chain, the full transition probability
matrix is

Pc =

(
Qc Rc

0 1

)
, (3.6)

where Rc contains the transition probabilities from the transient states to z. These proba-
bilities are chosen such that each row sums to 1. In this case, 0 stands for a 1 × (z − 1)

vector filled with zeros. We used this transition probability matrix to simulate the population
dynamics conditioned on success.

To further study the conditioned Markov chain, we computed its fundamental matrix
Wc = (I − Qc)−1. W c

ij gives the number of generations a population starting at size i
spends at size j before reaching z, conditioned on reaching z before going extinct. These
are the values shown in figure 3.3. Note that in these plots we did not include the first
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Figure 3.8: The expected number of surviving offspring per individual in successful popu-
lations (see equation (3.7)) as a function of the current population size without (no AE, grey
line) or with an Allee effect (AE, black line) and critical size a = 50 (indicated by dotted
vertical line). k1 = 1000, r = 0.1.

generation, which the population necessarily spends at its founder size.
We also computed the expected number of surviving offspring per individual at popula-

tion size i under the conditioned population dynamics (figure 3.8):

1

i

z∑

j=1

j · P c
ij. (3.7)

This is an approximation because our Markov chain is restricted to population sizes up to
z whereas actual populations would be able to grow beyond z. However, in the range of
population sizes that is most relevant for our study, i.e. at small and intermediate population
sizes, equation (3.7) should give an accurate approximation of the expected number of
surviving offspring per individual.
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Appendix 3.2 Details on the simulation of genealogies

The genealogies are constructed by tracing the ancestry of the sampled genetic material
backwards in time. One special feature of our algorithm is the possibility of multiple and
simultaneous mergers. This means that in one generation several coalescent events can hap-
pen and each of them can possibly involve more than two lineages. Such events are very
rare in large populations as assumed by standard coalescent models but they can be quite
frequent in small populations as we are considering here. Another special feature is that
the genealogical process takes into account explicitly that individuals are diploid and bi-
parental and thus avoids logical inconsistencies that may occur when independently simu-
lating the genealogies at different loci (Wakeley et al., 2012). However, this realism comes
at a computational cost and in cases where we are only interested in average levels of ge-
netic diversity, i.e. for the analysis underlying figures 3.4, 3.5, and 3.10 we resorted to
independently simulating the genealogies at the different loci.

The current state of the ancestry is defined by a set of lineage packages for each popu-
lation (source population and newly founded population). Such a lineage package contains
all the genetic material that is travelling within the same individual at that time point. It has
two sets of slots, one set for each genome copy. Each set has a slot for each locus. If the
genetic material at a certain locus and genome copy is ancestral to the sample, the slot is
occupied by a node, otherwise it is empty.

The ancestral history starts with 2·ns lineage packages in the newly founded population.
Initially all slots in the lineage packages are occupied by nodes. From there, the ancestry is
modelled backwards in time until at each locus there is just one node left. Given the state of
the ancestry in generation t, the state in generation t− 1 is generated as follows: Backward
in time, each generation starts with a migration phase (figure 3.9). All lineage packages that
are currently in the newly founded population choose uniformly without replacement one
of the Yt migrants from the source population, or one of the Nt − Yt residents. Note that in
our simulations with a single founding event, Y0 = N0 and Yt = 0 for all t > 0, whereas
in the case of multiple introductions, Yt can be positive also at t > 0. According to their
choice in this step, lineage packages either remain in the newly founded population or are
transferred to the source population.

Then each lineage package splits into two because the two genome copies (sets of slots)
each derive from a possibly different parent (see figure 3.9). Lineage packages that do not
contain ancestral material are discarded immediately. For each of the remaining lineage
packages, recombination is implemented by independently constructing a stochastic map
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R : {1, . . . , nl} → {0, 1} such that

R(1) =





0 with probability 1
2

1 with probability 1
2

(3.8)

and then

R(n+ 1) =




R(n) with probability 1− ρn
1−R(n) with probability ρn

(3.9)

is drawn recursively for n ∈ {1, . . . , nl − 1}. The recombination probability ρn between
loci n and n + 1 was 0.5 for all analyses in this study. A node at locus l in the new lineage
package is placed into the first genome copy if R(l) = 0 and into the second genome copy
if R(l) = 1.

After each lineage package underwent splitting and recombination, all resulting lin-
eage packages uniformly pick one of the Nt−1 or k0 individuals as ancestor, depending on
whether they are in the newly founded or in the source population, this time with replace-
ment (see figure 3.9). Lineage packages that chose the same ancestor are merged. If there
is more than one node at the same genome copy and slot, a coalescent event takes place.

Because genetic drift is strong in small populations, many pairs of lineages will already
encounter their common ancestor within the newly founded population. The lineages that
did not coalesce until time 0 must all be in the source population which is assumed to be of
constant size k0 at all times. To efficiently simulate the genealogical process of the remain-
ing lineages, we follow one of two procedures: As long as there is still lineage packages
that carry more than one node or if the number of pairs of remaining lineages is larger
than k0/10, we continue as before, going backwards generation-by-generation. Each lin-
eage package can split due to recombination and merge with others that choose the same
ancestor. However, as the source population is large it would take a long time until all lin-
eages find their most recent common ancestor (MRCA) and in most generations nothing
would happen. Furthermore, nodes within the same lineage package typically become sep-
arated by recombination relatively fast. Thus whenever there is no lineage package with
more than one node, we switch to a second and more efficient simulation mode: If ntotal is
the number of lineage packages, we draw the number of generations T until the next merger
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source

Figure 3.9: Illustration of the backward-in-time simulation of genealogies.
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of two lineage packages from a geometric distribution with success probability

pmerge =

(
ntotal

2

)

k0
(3.10)

and update the current time to t − T . Then one of the
(
ntotal

2

)
pairs of lineage packages is

picked at random and the lineage packages are merged. If the two lineage packages have
their node at the same slot, a coalescent event happens and we continue in the efficient
simulation mode. If the nodes are at different slots we again have a lineage package with
more than one node and we switch back to the more accurate simulation mode. Note that
the last recombination event in the accurate simulation mode ensures that each node has
a 50 % chance to be in the first or second genome copy. This leads to a 50 % chance of
coalescence if two lineage packages with a node at the same locus merge. Thus, there is no
need to implement recombination in the efficient simulation mode. This efficient simulation
mode excludes multiple and simultaneous mergers, events that should be very rare for a
reasonably large source population size k0.

We switch between the two simulation modes until eventually there is only one node left
at each locus, the MRCA of all sampled genetic material at the respective locus. Throughout
the simulation, we store all information needed to provide the topology and branch lengths
(in number of generations) for the genealogies at each locus.

Appendix 3.3 Results based on total length of the genea-
logy

In the main text, we use average pairwise coalescence times to assess genetic diversity.
Here we show the corresponding results for the average total length of the genealogyGtotal,
a measure related to the number of segregating sites or the number of alleles in a sample.
To measure the proportion of variation maintained, we divided Gtotal by 4k0 ·

∑2ns−1
i=1

1
i
, the

expected total length of the sample genealogy if all lineages would have been sampled in
the source population (Wakeley, 2009, p. 76). The results (figure 3.10) were qualitatively
similar to the results based on average pairwise coalescence times (see figure 3.4), except
that the proportion of variation maintained more slowly approached one with increasing
founder population size.
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Figure 3.10: Average proportion of genetic variation maintained (based on the average total
length of sample genealogies) as a function of the mean of the original (unconditioned)
founder population size distribution. The four scenarios differ in the underlying demogra-
phy and represent all possible combinations of success-conditioned founder-size distribu-
tions either with Allee effect (solid lines) or without (dashed lines) and success-conditioned
population dynamics either with Allee effect (black lines) or without (grey lines). Thick
lines correspond to the biologically meaningful scenarios with Allee effect (AE, AE) and
without (no AE, no AE), whereas thin lines represent combinations that have no direct bio-
logical interpretation but help us to decompose the genetic consequences of the Allee effect
(no AE, AE and AE, no AE). The letters a, b, and c in subplot (b) refer to the subplots in
figures 3.2 and 3.3, where we examined for the respective (mean) founder population sizes
how the Allee effect influences the conditioned distribution of founder population sizes and
the conditioned population dynamics. The critical size for Allee-effect populations (a = 50)
is indicated by a dotted vertical line. Each point represents the average over 20,000 success-
ful populations. Across all points, standard errors were between 0.0007 and 0.0016, and the
corresponding standard deviations between 0.103 and 0.221.

Appendix 3.4 Methodology for estimating the critical po-
pulation size

We generated 1000 pseudo-observed data sets and 100,000 simulated data sets, each with
independent introductions to 200 locations. The critical population sizes were drawn from a
uniform distribution on [0,100]. We fixed the other parameters of the population dynamics
(k0 = 10, 000, k1 = 1000, r = 0.1) and assumed them to be known with certainty. We
further assumed that the original distribution of founder population sizes was Poisson with
mean 20, and sampled the founder population sizes independently for each location from
the conditioned distribution of founder population sizes for the respective critical population
size. Given the selected founder population size, we simulated the population dynamics at
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each location from the conditioned Markov chain until the population reached size 200, i.e.
twice the largest possible critical population size.

At this point, we sampled nl = 10 individuals at both genome copies, resulting in a
sample of 20 chromosomes from a given location. We generated genealogies for 10 freely
recombining loci. To obtain a more differentiated picture of patterns of genetic variation
and capture as much information as possible, we did not use the average pairwise coales-
cence times or total lengths of the genealogy as before. Instead, for i ∈ 1, 2, . . . , 19 we
took the combined length of all branches Bi that have i descendants in the sample. Using
these branch lengths and assuming that the number of mutations on a branch of length b is
Poisson-distributed with parameter µ · b, we estimated the mean and variance across loci of
the entries of the site-frequency spectrum (SFS) ξi, i.e. the number of mutations that appear
in i chromosomes in the sample, as

Ê[ξi] = µ · B̄i (3.11)

and, using the law of total variance,

V̂ar[ξi] = Ê [Var[ξi|Bi]] + V̂ar [E[ξi|Bi]] = µ · B̄i + µ2 · s2(Bi), (3.12)

where the B̄i are the average branch lengths across the nl loci and the s2(Bi) are the corre-
sponding empirical variances. We assumed µ = 0.001. Note that we do not take into account
variability introduced by the mutation process because we assume that we have enough loci
to estimate the means and variances of the SFS entries with reasonable accuracy.

We further summarised the data for each SFS entry i ∈ 1, 2, . . . , 19 by computing
the averages and empirical standard deviations of the quantities in eqs. (3.11) and (3.12)
across locations. To investigate how the quality of the estimation depends on the number
of independent locations available, we took into account either only 10, 25, 50, 100, or all
200 of them to compute these statistics. Using the pls script from abctoolbox (Wegmann
et al., 2010) and the pls package in R (Mevik & Wehrens, 2007), we then conducted partial
least squares regression on the first 10,000 simulated data sets to condense the information
contained in the 76 summary statistics to a smaller number of components. To decide on
the number of components, we examined plots of the root mean squared error of prediction
(RMSEP) as a function of the number of components (figure 3.11). For none of the different
numbers of locations did the RMSEP change substantially beyond 20 components. Thus,
we decided to include 20 components as summary statistics for ABC.

We used these 20 PLS components as summary statistics for parameter estimation with



APPENDIX 3.4 ABC METHODOLOGY 127

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of components

R
M

S
E

P

# locations

10
25

50
100
200

Figure 3.11: Root mean squared error of prediction (RMSEP) as a function of the number of
PLS components for various numbers of locations. In no case did the RMSEP substantially
change beyond 20 components. Thus, we decided to include 20 components as summary
statistics for ABC.

the R package abc (Csilléry et al., 2012). We chose a tolerance of 1 % and used the option
“loclinear” implementing the local linear regression method Beaumont et al. (2002). To
avoid estimated parameter values that fall outside the prior, we estimated ln(a/(100 − a))

and then back-transformed the estimated values. For each pseudo-observed data set, we thus
used the 100,000 simulated data sets to approximate the posterior distribution of the critical
population size given a uniform prior on [0,100]. For each data set, we stored the mean
of the posterior, which we take as our point estimator, and the 50 % and 95 % credibility
intervals. We observed that the quality of parameter inference improved with an increasing
number of locations (figures 3.6 and 3.12). An examination of the percentage of pseudo-
observed data sets for which the true parameter value falls into the respective 50 % or 95 %
credibility interval suggests that ABC approximates Bayesian inference reasonably well in
this case (figure 3.13).
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Figure 3.13: Percentage of true parameter values that fall within the 50% and 95% credi-
bility interval, an indicator for how well Approximate Bayesian Computation approximates
Bayesian inference. The grey lines are at 50% and 95%.
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Appendix 3.5 Consequences of a neglected Allee effect

Using the ABC framework again, we explored the consequences of neglecting the Allee
effect when estimating other demographic parameters: the founder population size N0, the
growth parameter r, and the number of generations since the founding event. We generated
2000 pseudo-observed data sets from our stochastic model, 1000 without Allee effect and
1000 with an Allee effect and a critical population size of 50. As the basis for estimation
in ABC, we used 100,000 data sets that were simulated from a model without Allee effect.
To also explore the consequences of neglecting stochasticity, we considered two versions
of the model without Allee effect: our stochastic model with a = 0 and a modified version
where we removed as much stochasticity as possible. That is, the population size in the next
generation was not drawn from a Poisson distribution, but was set to E[Nt+1] if this value
was an integer. Otherwise, we randomly set Nt+1 to the next smallest or next largest integer
with the respective probabilities chosen such that equation (3.1) was fulfilled.

The priors for the demographic parameters of interest were as follows:

ln(N0) ∼ unif([ln(5), ln(80)]), (3.13)

r ∼ unif([0.01, 0.1]) (3.14)

and

ng ∼ unif({20, . . . , 500}), (3.15)

where unif stands for the uniform distribution. The other parameters were fixed: k0 =

10, 000, k1 = 1000, µ = 0.001, ns = 10. For each data set, we retried simulating with
the same parameter combination until we obtained a successful population with Nng ≥ ns.
We generated 100 independent genealogies for samples of size ns taken at time ng and
computed means and variances of the entries of the site-frequency spectrum as described in
Appendix 3.4. Using partial least squares regression on the first 10,000 simulated data sets,
we reduced this information to 20 components that served as summary statistics for ABC.
As above, we used the R package abc (Csilléry et al., 2012) with a tolerance of 1 % and the
option “loclinear’.

In figure 3.14, we compare the quality of parameter estimation across the four possible
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Figure 3.14: Mean squared error (MSE)± its standard error, relative to the squared range of
the prior for different demographic parameters in an Approximate Bayesian Computation
analysis that neglects the Allee effect.

combinations of whether or not the true model includes an Allee effect and whether the
model used for estimation was stochastic or deterministic. The differences in quality be-
tween the four combinations were not consistent across estimated parameters. Overall, the
quality of the estimation was poor, with root mean squared errors of up to half the range of
the corresponding prior. Note that these problems cannot only result from model misspec-
ification since the case where the correct model was used (solid light grey bars in figure
3.14) also produced large errors. Thus, it appears that the amount of stochasticity in the
model is so large as to prevent accurate parameter inference based on genetic data from a
single population.
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Appendix 3.6 A conditioned diffusion process

Our results in the main text indicate that the growth rate under the conditioned population
dynamics depends mostly on the absolute value and not so much on the sign of the growth
rate under the unconditioned population dynamics. For mathematically interested readers,
we now explore a simple model where this fact can be proven easily. We consider a diffu-
sion process on the interval [0, 1] with constant infinitesimal mean µ(x) = µ and constant
infinitesimal variance σ2(x) = σ2. We will show that the associated diffusion process con-
ditioned on hitting 1 before 0 is independent of the sign of µ and that its infinitesimal mean
increases with |µ|.

Our task is to compute the infinitesimal mean and variance of the conditioned diffusion
process. Following the formulas on p. 263 in Karlin & Taylor (1981), the infinitesimal mean
of the conditioned diffusion process is

µ∗(x) = µ(x) +
s(x)

S(x)
· σ2(x), (3.16)

where S(x) is the scale function and s(x) is its derivative. Using the definitions of these
functions (e.g. Karlin & Taylor, 1981, p. 262) and plugging in the parameters of our diffu-
sion, we obtain

s(x) = exp

(
−
∫ x

0

2µ(η)

σ2(η)
dη

)
= exp

(
−2µx

σ2

)
(3.17)

and

S(x) =

∫ x

0

s(η)dη =
σ2

2µ
·
[
1− exp

(
−2µx

σ2

)]
. (3.18)

Substituting eqs. (3.17) and (3.18) into equation (3.16), we obtain

µ∗(x) = µ · exp(2µx/σ2) + 1

exp(2µx/σ2)− 1
=: f(µ), (3.19)

a function that is symmetric about 0, i.e. f(−µ) = f(µ), and increases with the absolute
value of µ (figure 3.15). The variance σ2∗(x) equals the original variance σ2(x).
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Figure 3.15: The infinitesimal mean of the conditioned diffusion process at 0.5 (solid line),
i.e. in the middle of the interval, as a function of the infinitesimal mean of the original
process. On the dashed line, the infinitesimal means of original and conditioned process
would be equal.
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Abstract

A strong demographic Allee effect in which the expected population growth rate is nega-
tive below a certain critical population size can cause high extinction probabilities in small
introduced populations. However, many species are repeatedly introduced to the same loca-
tion and eventually one population may overcome the Allee effect by chance. With the help
of stochastic models, we investigate how much genetic diversity such successful popula-
tions harbour on average and how this depends on offspring-number variation, an important
source of stochastic variability in population size. We find that with increasing variability,
the Allee effect increasingly promotes genetic diversity in successful populations. Success-
ful Allee-effect populations with highly variable population dynamics escape rapidly from
the region of small population sizes and do not linger around the critical population size.
Therefore, they are exposed to relatively little genetic drift. We show that here—unlike
in classical population genetics models—the role of offspring-number variation cannot be
accounted for by an effective-population-size correction. Thus, our results highlight the im-
portance of detailed biological knowledge, in this case on the probability distribution of
family sizes, when predicting the evolutionary potential of newly founded populations or
when using genetic data to reconstruct their demographic history.

Keywords: critical population size, family size, founder effect, genetic variation, invasive
species, stochastic modelling
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Introduction

The demographic Allee effect, a reduction in per-capita population growth rate at small
population sizes (Stephens et al., 1999), is of key importance for the fate of both endan-
gered and newly introduced populations, and has inspired an immense amount of empirical
and theoretical research in ecology (Courchamp et al., 2008). By shaping the population
dynamics of small populations, the Allee effect should also strongly influence the strength
of genetic drift they are exposed to and hence their levels of genetic diversity and evolu-
tionary potential. In contrast to the well-established ecological research on the Allee effect,
however, research on its population genetic and evolutionary consequences is only just be-
ginning (Kramer & Sarnelle, 2008; Hallatschek & Nelson, 2008; Roques et al., 2012). In
this study, we focus on the case where the average population growth rate is negative below
a certain critical population size. This phenomenon is called a strong demographic Allee
effect (Taylor & Hastings, 2005). Our goal is to quantify levels of genetic diversity in intro-
duced populations that have successfully overcome such a strong demographic Allee effect.
Of course, the population genetic consequences of the Allee effect could depend on a vari-
ety of factors, some of which we investigated in Chapter 3 (Wittmann et al., 2013c). Here
we focus on the role of variation in the number of offspring produced by individuals or pairs
in the population.

There are several reasons why we hypothesise offspring-number variation to play an
important role in shaping the population genetic consequences of the Allee effect. First,
variation in individual offspring number can contribute to variability in the population dy-
namics and this variability influences whether and how introduced populations can over-
come the Allee effect. In a deterministic model without any variation, for instance, popu-
lations smaller than the critical size would always go extinct. With an increasing amount
of stochastic variability, it becomes increasingly likely that a population below the critical
population size establishes (Dennis, 2002). Depending on the amount of variability, this
may happen either quickly as a result of a single large fluctuation or step-by-step through
many generations of small deviations from the average population dynamics. Of course, the
resulting population-size trajectories will differ in the associated strength of genetic drift.
Apart from this indirect influence on genetic diversity, offspring-number variation also di-
rectly influences the strength of genetic drift for any given population-size trajectory. In
offspring-number distributions with large variance, genetic drift tends to be strong because
the individuals in the offspring generation are distributed rather unequally among the in-
dividuals in the parent generation. In distributions with small variance, on the other hand,
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genetic drift is weaker.
In Wittmann et al. (2013c), we have studied several aspects of the population genetic

consequences of the Allee effect for Poisson-distributed offspring numbers, a standard as-
sumption in population genetics. However, deviations from the Poisson distribution have
been detected in the distributions of lifetime reproductive success in many natural popu-
lations. Distributions can be skewed and multimodal (Kendall & Wittmann, 2010) and,
unlike in the Poisson distribution, the variance in the number of surviving offspring is of-
ten considerable larger than the mean, as has been shown for example for tigers (Smith &
McDougal, 1991), cheetahs (Kelly et al., 1998), and steelhead trout (Araki et al., 2007).
Several sources contribute to this variance, for example variation in environmental condi-
tions, sexual selection, and predation. For several bird species, there is evidence that pairs
individually optimise their clutch size given their own body condition and the quality of
their territories (Högstedt, 1980; Davies et al., 2012). Variation in offspring number may
also depend on population size or density and thus interact with an Allee effect in complex
ways. A mate finding Allee effect, for example, is expected to lead to a large variance in
reproductive success among individuals (Kramer et al., 2009) because many individuals do
not find a mating partner and thus do not reproduce at all, whereas those that do find a part-
ner can take advantage of abundant resources and produce a large number of offspring. In
this study, we therefore investigate how the genetic consequences of the Allee effect depend
on offspring-number variation. With the help of stochastic simulation models, we generate
population-size trajectories and genealogies for populations with and without Allee effect
and with various offspring-number distributions, both models with a smaller and models
with a larger variance than the Poisson model.

Although probably only few natural populations conform to standard population genetic
assumptions such as that of a constant population size and a Poisson-distributed number of
offspring per individual, many populations still behave as an idealised population with re-
spect to patterns of genetic variation (Charlesworth, 2009). The size of this corresponding
idealised population is called the effective population size and is often much smaller (but
can, at least in theory, also be larger) than the size of the original population, depending
on parameters such as the distribution of offspring number, sex ratio, and population struc-
ture. Because of this robustness and the tractability of the standard population genetics
models, it is common to work with these models and effective population sizes, instead of
using census population sizes in conjunction with more complex and realistic models. For
example, when studying the demographic history of a population, one might estimate the
effective current population size, the effective founder population size etc. If one is inter-
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ested in census population size, one can then use the biological knowledge to come up with
a conversion factor between the two population sizes. Therefore, if we find differences in
the genetic consequences of the Allee effect between different family size distributions but
it is possible to resolve these differences by rescaling population size or other parameters,
those differences might not matter much in practice. If, on the other hand, such a simple
scaling relationship does not exist, the observed phenomena would be more substantial and
important in practice. We therefore investigate how closely we can approximate the results
under the various offspring-number models by rescaled Poisson models.

Methods

(a) Scenario and average population dynamics

In our scenario of interest,N0 individuals from a large source population of constant size k0
migrate or are transported to a new location. The average population dynamics of the newly
founded population are described by a modified version of the Ricker model (see e.g. Kot,
2001) with growth parameter r, carrying capacity k1, and critical population size a. Given
the population size at time t, Nt, the expected population size in generation t+ 1 is

E[Nt+1|Nt] = Nt · exp

{
r ·
(

1− Nt

k1

)
·
(

1− a

Nt

)}
. (4.1)

Thus, below the critical population size and above the carrying capacity, individuals pro-
duce on average less than one offspring, whereas at intermediate population sizes individ-
uals produce on average more than one offspring and the population is expected to grow
(figure 4.1). We compared populations with critical population size a = aAE > 0 to those
without Allee effect, i.e. with critical size a = 0. In all our analyses, the growth parameter r
takes values between 0 and 2, that is in the range where the carrying capacity k1 is a locally
stable fixed point of the deterministic Ricker model and there are no stable oscillations or
chaos (de Vries et al., 2006, p. 29).

(b) Offspring-number models

Our goal was to construct a set of offspring-number models that all lead to the same ex-
pected population size in the next generation (equation (4.1)) but which represent a range
of values for the variability in population dynamics and the strength of genetic drift c (ta-
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Figure 4.1: The expected number of surviving offspring per individual (see equation (4.1))
as a function of the current population size without Allee effect (no AE, grey line) or with
an Allee effect (AE, black line) and critical size a = 50 (indicated by a dotted vertical line).
k1 = 1000, r = 0.1.

ble 4.1). All our models have in common that individuals are diploid and biparental, and,
for simplicity, hermaphroditic. The models differ in how pairs are formed, in whether in-
dividuals can participate in multiple pairs, in whether or not selfing is possible, and in the
distribution of the number of offspring produced by a pair.

Poisson model This is the model underlying the results in Wittmann et al. (2013c) and
we use it here as a basis of comparison. Given a current population size Nt,

Nt+1 ∼ Poisson (E[Nt+1|Nt]) , (4.2)

Table 4.1: Properties of the offspring-number models considered in this study. The values
for c, the relative strength of genetic drift in equilibrium, are derived in Appendix 4.1.

model Var[Nt+1|Nt] relative strength of genetic drift c

binomial E[Nt+1|Nt] ·
(

1− E[Nt+1|Nt]
4·bNt/2c

)
3
4

Poisson E[Nt+1|Nt] 1
Poisson-Poisson 3 · E[Nt+1|Nt] 2
Poisson-geometric 5 · E[Nt+1|Nt] 3
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such that Var[Nt+1|Nt] = E[Nt+1|Nt].

Poisson-Poisson model Under this model, first a Poisson-distributed number of pairs

Pt+1 ∼ Poisson
(

1

2
· E[Nt+1|Nt]

)
(4.3)

are formed by drawing two individuals independently, uniformly, and with replacement
from the members of the parent generation. That is, individuals can participate in multi-
ple pairs and selfing is possible. Each pair then produces a Poisson-distributed number of
offspring with mean 2. The offspring numbers of the Pt+1 pairs are stored in the vector of
family sizes Ft+1 = (f1, f2, . . . , fPt+1). This vector is required to simulate the genealogies
backward in time, unlike in the Poisson model where we only needed to store the total
population size in each generation.

To compute the variance of Nt+1 given Nt, we used the formula for the variance of
the sum of a random number of independent and identically distributed random variables
(Karlin & Taylor, 1975, p. 13)

Var[Nt+1|Nt] = E[X]2 ·Var[Pt+1|Nt] + E[Pt+1|Nt] ·Var[X], (4.4)

where E[X] and Var[X] are mean and variance of the number of offspring produced by
a single pair. The resulting variance (see table 4.1) is larger than that under the Poisson
model.

Poisson-geometric model This model is identical to the Poisson-Poisson model except
that the number of offspring of a given pair is geometrically distributed with mean 2, rather
than Poisson-distributed. Using equation (4.4) again, we obtain an even larger variance than
under the Poisson-Poisson model (table 4.1).

Binomial model Here, individuals can participate in only one pair and selfing is not pos-
sible. First, the individuals from the parent generation t form as many pairs as possible,
i.e. Pt+1 = bNt/2c. Then, each pair produces a binomially distributed number of offspring
with parameters n = 4 and p = E[Nt+1|Nt]

4·Pt+1
, such that the population size in the offspring

generation

Nt+1 ∼ Binom
(
n = 4 · Pt+1, p =

E[Nt+1|Nt]

4 · Pt+1

)
. (4.5)
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The reason for our choice of n was that it leads to a variance np(1− p) that is smaller than
the variance under the Poisson model (see table 4.1). As was the case for the previous two
models, also here we needed to store the vector of family sizes to be able to simulate the
genealogies backward in time.

(c) Demographic simulations

As we are only interested in populations that successfully overcome demographic stochas-
ticity and the Allee effect, we discarded simulation runs in which the new population went
extinct before reaching a certain target population size z. Here, we used z = 2 · aAE , i.e.
twice the critical population size in populations with Allee effect. We generated 20,000
successful populations with and without Allee effect for each offspring-number model and
for a range of founder population sizes between 0 and z. The population-size trajectories
N0, N1, . . . , NTz , where NTz is the first population size larger or equal to z, and the family-
size vectors were stored for the subsequent backward-in-time simulation of genealogies.
We also used the population-size trajectories to compute the average number of generations
that the 20,000 replicate populations spent at each population size before reaching z. The
complete simulation algorithm was implemented in C++ (Stoustrup, 1997), compiled using
the g++ compiler (gcc.gnu.org, 2012), and uses the boost random number library (boost.org,
2013). We used R (R Development Core Team, 2011) for the analysis of simulation results.

(d) Simulation of genealogies

From each successful model population, we simulated ten independent single-locus ge-
nealogies, each for ten individuals sampled at both genome copies at the time when the
population first reaches z. To construct the genealogies, we trace the ancestral lineages of
the sampled individuals backward in time to their most recent common ancestor. For the
Poisson model, we applied the simulation strategy of Wittmann et al. (2013c): Given the
population-size trajectoryN0, N1, . . . , NTz we let all lineages at time t+1 draw an ancestor
independently, with replacement, and uniformly over all Nt individuals in the parent gen-
eration. For the other offspring-number models considered in this study, we use a modified
simulation algorithm (see Appendix 4.1 for details) that takes into account the family-size
information stored during the demographic simulation stage. Both simulation algorithms
account for the possibility of multiple and simultaneous mergers of lineages and other par-
ticularities of genealogies in small populations. All lineages that have not coalesced by
generation 0 are transferred to the source population. As in Wittmann et al. (2013c), we
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simulated this part of the ancestral history by switching between two simulation modes: an
exact and a more efficient approximative simulation mode (see Appendix 4.1). At the end
of each simulation run, we stored the average time to the most recent common ancestor G2

for pairs of gene copies in the sample.
To visualise our results and compare them among the offspring-number models, we di-

vided G2 by the average time to the most recent common ancestor for two lineages sampled
from the source deme (2k0/c). The quotientG2/(2k0/c) can be interpreted as the proportion
of genetic diversity that the newly founded population has maintained relative to the source
population. We also computed the per-cent change in expected diversity in populations with
Allee effect (AE) compared to those without:

(
G2 with AE

G2 without AE
− 1

)
· 100. (4.6)

(e) Effective-size rescaled Poisson model

Given a population size n in an offspring-number model with relative strength of genetic
drift c (see table 4.1), we define the corresponding effective population size as ne(n) = n/c.
In this way, a population of size n in the target offspring-number model experiences the
same strength of genetic drift as a Poisson population of size ne. To approximate the vari-
ous offspring-number models by a rescaled Poisson model, we thus set the population size
parameters of the Poisson model (a, k0, k1, z, and N0) to the effective sizes corresponding
to the parameters in the target model. For example, to obtain a Poisson model that corre-
sponds to the Poisson-geometric model we divided all population size parameters by 3. In
cases where the effective founder population size ne(N0) was not an integer, we used the
next-larger integer in a proportion q = ne(N0) − bne(N0)c of simulations and the next-
smaller integer in in the remainder of simulations. For the target population size, we used
the smallest integer larger or equal to the rescaled value. All other parameters were as in
the original simulations.

Results

The main results on the population dynamics and genetic diversity of populations with
and without Allee effect are compiled in figure 4.2. The upper two rows show the popu-
lation genetic consequences of the Allee effect for different founder population sizes, the
lower row the average number of generations that successful populations spend in different
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population-size ranges. Each column stands for one offspring-number model. Variation in
offspring number and variability in the population dynamics increases from left to right.
A first thing to note in figure 4.2 is that with increasing offspring-number variation the
amount of genetic variation maintained in newly founded populations decreases, both for
populations with and without Allee effect (solid black and grey lines in figure 4.2a–d). In
populations without Allee effect, however, the decrease is stronger. As a result, the magni-
tude and direction of the Allee effect’s influence on genetic diversity changes as variation
in offspring number increases. For the binomial model, the model with the smallest vari-
ability in population dynamics and genetics, the Allee effect has a negative influence on
the amount of diversity maintained for all founder population sizes we considered (figure
4.2a,e). For the model with the next-larger variation, the Poisson model, the Allee effect in-
creases genetic diversity for small founder population sizes but decreases genetic diversity
for large founder population sizes (figure 4.2b,f). These results on the Poisson model are
consistent with those in Wittmann et al. (2013c). As variability further increases, the range
of founder population sizes where the Allee effect has a positive effect increases (figure
4.2c,g). For the model with the largest offspring-number variation, the Poisson-geometric
model, the Allee effect has a positive effect for all founder population sizes (figure 4.2d,h).
In summary, the larger is the offspring-number variation, the more beneficial is the Allee
effect’s influence on genetic diversity.

The differences between offspring-number models in the population genetic conse-
quences of the Allee effect (represented by the solid lines in figure 4.2a–h) result from two
ways in which offspring-number variation influences genetic diversity: directly by influenc-
ing the strength of genetic drift for any given population-size trajectory, and indirectly by
influencing the population dynamics of successful populations and thereby also the strength
of genetic drift they experience. To disentangle the contribution of these two mechanisms,
we first examine the direct genetic effect of offspring-number variation that results from
its influence on the strength of genetic drift. For this, we generated a modified version for
each of the binomial, Poisson-Poisson, or Poisson-geometric model (dashed lines in figure
4.2). We first simulated the population dynamics forward in time from the original model.
Backwards in time, however, we ignored this family-size information and let lineages draw
their ancestors independently, uniformly, and with replacement from the parent generation
as in the Poisson model. In the case of the binomial model, where the modified model has
stronger genetic drift than the original model, both populations with and without Allee ef-
fect maintain on average less genetic variation in the modified than in the original model
(figure 4.2a). The Allee effect leads to a stronger reduction in genetic diversity in the mod-
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Figure 4.2: Consequences of the Allee effect for the population genetics and dynamics of
successful populations under the binomial (1st column; a,e,i), Poisson (2nd column; b,f,j),
Poisson-Poisson (3rd column; c,g,k) and Poisson-geometric model (4th column; d,h,l). Up-
per row: proportion of genetic variation maintained with Allee effect (AE, black lines) or
without (no AE, grey lines). Middle row: per-cent change in genetic diversity in Allee-effect
populations compared to those without Allee effect (see equation (4.6)). Dashed lines in the
upper two rows represent populations whose size trajectories were simulated from the re-
spective offspring-number model, but where the genealogies were simulated assuming the
Poisson model. Dotted lines show the results for the respective effective-size rescaled Pois-
son model. Lower row: average number of generations spent by successful populations at
each of the population sizes from 1 to z − 1 before reaching population size z, either with
Allee effect (black lines) or without (grey lines). The founder population size for the plots
in the lower row was 15. Note that in the case of the rescaled Poisson model, the values on
the x-axis correspond to the founder population sizes before rescaling. Dotted vertical lines
indicate the critical size of Allee-effect populations in the original model. Every point in
(a–l) represents the average over 20,000 simulations. For the proportion of variation main-
tained, the maximum standard error of the mean was 0.0019. Parameters in the original
model: k1 = 1000, k0 = 10, 000, z = 100, r = 0.1.
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ified model than in the original model (figure 4.2e). The opposite pattern holds for the
Poisson-Poisson and Poisson-geometric model where the modified model has weaker ge-
netic drift than the original model. Populations in the modified model versions maintain a
larger proportion of genetic variation (figure 4.2c,d), and the relative positive influence of
the Allee effect is weaker (figure 4.2g,h).

Next, we consider the population dynamics of successful populations with and without
Allee effect under the different offspring-number models. For this, we plotted the average
number of generations that successful populations starting at population size 15 spend at
each population size between 1 and z − 1 before reaching the target state z (lower row
in figure 4.2). As variability increases (going from left to right) both kinds of successful
populations spend fewer generations in total, i.e. reach the target population size faster, but
again populations with and without Allee effect respond differently to increasing variabil-
ity. If we first focus on the offspring-number models with intermediate variation (figure
4.2j,k) we observe that successful Allee-effect populations spend less time at small popula-
tion sizes but more time at large population sizes than successful populations without Allee
effect. This indicates that successful Allee-effect populations experience a speed-up in po-
pulation growth at small sizes but are then slowed down at larger population sizes. If we
now compare the results for the various offspring-number models, we observe that with in-
creasing variability the speed-up effect becomes stronger and takes place over a larger range
of population sizes, whereas the slow-down effect becomes weaker and finally disappears.

When rescaling the population-size parameters in the Poisson model to match one of the
other offspring-number models, the resulting Poisson model behaves more similarly to the
approximated model than does the original Poisson model, but the fit is not perfect (dotted
lines in the upper two rows in figure 4.2). In general, the model versions without Allee
effect are better approximated by the rescaled Poisson models than the model versions with
Allee effect. Although the proportion of variation maintained in the rescaled model is close
in magnitude to the one in the target model, the rescaled model often differ in its predictions
as to the genetic consequences of the Allee effect. Rescaled Poisson models always predict
the Allee effect to have a positive effect for small founder population sizes and a negative
effect for larger founder population sizes, although for the binomial and Poisson-geometric
model the effect is always negative or positive, respectively (figure 4.2e,h).
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Figure 4.3: Overview over the various mechanisms by which the Allee effect influences the
amount of genetic variation in successful introduced populations. Arrows represent posi-
tive effects while lines with bars represent inhibitory effects. Variation in offspring number
enhances the speed-up of population growth caused by the Allee effect, but prevents the
Allee-effect from causing a strong slow-down in population growth above the critical size.
Variation in offspring number also magnifies the genetic consequences of both a speed-up
and a slow-down in population growth.

Discussion

Our results indicate that offspring-number variation plays a key role for the genetic con-
sequences of the Allee effect. We can understand a large part of the differences between
offspring-number models if we consider how many generations successful populations
spend in different population-size regions before reaching the target population size. In
Wittmann et al. (2013c), we found that with Poisson-distributed offspring numbers suc-
cessful Allee-effect populations spend less time at small population sizes than populations
without Allee effect. Apparently, small Allee-effect populations can only avoid extinction
by growing very quickly (speed-up in figure 4.3). We also found, however, that Allee effect-
populations spend on average more time at large population sizes than populations without
Allee effect (slow-down in figure 4.3). Consequently, under the Poisson model the Allee
effect had either a positive or a negative effect on levels of genetic diversity depending on
the founder population size.
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An increase in offspring-number variation leads to more variable population dynamics,
which on the one hand lets successful populations escape even faster from the range of
small population sizes than under the Poisson model. On the other hand, a large variation
also prevents successful Allee-effect populations from spending much time near or above
the critical population size because those that do still have a high risk of going extinct even
at such high population sizes. Therefore, an increase in variability reinforces the speed-up
effect but mitigates the slow-down effect and thus increases the range of founder population
sizes for which the genetic consequences of the Allee effect are positive (see figure 4.2,4.3).
In that sense, variation in family sizes plays a similar role as variation in founder population
size and in the number of introduction events (see figure 4.3), two factors that were exam-
ined in Wittmann et al. (2013c) and, in the case of founder population size, also by Kramer
& Sarnelle (2008). Variation in these aspects also leads to a positive influence of the Allee
effect on diversity because by conditioning on success we let the Allee effect select the out-
liers of the respective distributions, and it is those outliers (particularly large founder sizes,
exceptionally many introduction events) that lead to a large amount of genetic diversity.

Apart from its indirect but strong influence via the population dynamics, variation in off-
spring number also has a direct influence on genetic diversity by determining the strength
of drift for a given population-size trajectory. Our comparisons between models with the
same population dynamics but a different strength of drift suggest that an increase in the
strength of genetic drift amplifies the per-cent change in diversity of Allee-effect popula-
tions compared to populations without Allee effect. We suggest this is the case because the
stronger genetic drift is, the more genetic variation is lost or gained if it takes one genera-
tion more or less to reach the target population size. Thus, by reinforcing both the positive
effect of a speed-up on genetic variation and the negative effect of a slow-down (figure 4.3),
an increase in variation increases the magnitude of the net influence of the Allee effect on
genetic variation.

We have now established that for a given set of parameter values, the population genetic
consequences of the Allee effect differ strongly between offspring-number models. Never-
theless, we would still be able to use the Poisson model for all practical purposes if for any
given set of parameters in one of the other offspring models we could find a set of effective
parameters in the Poisson model that would yield similar results. The most obvious way
to do this is to replace the population size parameters in the Poisson model by the corre-
sponding effective population sizes, i.e. the population sizes in the Poisson model at which
genetic drift is as strong as it is in the target model at the original population size parameter.
However, our results (see figure 4.2) indicate that the effective-size rescaled Poisson mod-
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els cannot fully reproduce the results of the various offspring-number models. In particular,
the population dynamics of successful populations remain qualitatively different from those
under the target model.

Apart from the population-size parameters, the Poisson model has an additional param-
eter that we could adjust, the growth parameter r. In Wittmann et al. (2013c), we considered
different values of r in the Poisson model. Small values of r led to qualitatively similar re-
sults as we have seen here in models with a larger offspring-number variation and larger
values of r. The reason appears to be that the population dynamics of successful popula-
tions depend not so much on the absolute magnitude of the average population growth rate
(the deterministic forces) or of the associated variation (the stochastic forces), but on the
relative magnitude of deterministic and stochastic forces. Indeed, a theorem from stochastic
differential equations states that if we multiply the infinitesimal mean and the infinitesimal
variance of a process by the same constant ρ, we get a process that behaves the same, but
is sped up by a factor ρ (Durrett, 1996, Theorem 6.1 on p. 207). Intuitively, we can make
a model more deterministic either by increasing the growth parameter or by decreasing the
variance. This suggests that we can qualitatively match the population dynamics of any
given offspring-number model if we choose r appropriately. Furthermore, we can match
the strength of genetic drift if we rescale the population-size parameters appropriately.
One could therefore suppose that by adjusting both the population-size parameters and
the growth parameter in the Poisson model, we might be able to match both the population
dynamic and the genetic aspects of the other offspring-number models. In Appendix 4.2,
however, we show that this can only be possible if the equilibrium strength of genetic drift
c equals Var(Nt+1|Nt)/E(Nt+1|Nt). This is not the case for the offspring-number models
we examine in this study (see table 4.1), neither with nor without Allee effect. However,
our results suggest that the Allee effect enhances the mismatch between the effective-size
rescaled Poisson models and their target models.

Overall, our results suggest that if we study populations that had been small initially
but successfully overcame an Allee effect, microscopic properties such as the variation in
offspring number can play a large role, although they may not influence the average uncon-
ditional population dynamics. Thus the common practice of first building a deterministic
model and then adding some noise to make it stochastic may not produce meaningful re-
sults. As emphasised by Black & McKane (2012), stochastic population dynamic models
should be constructed in a bottom-up way starting with modelling the relevant processes at
the individual level and then deriving the resulting population dynamics in a second step.
This means, we have to gather detailed biological knowledge about a species of interest be-
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fore being able to predict the population genetic consequences of the Allee effect or other
phenomena involving the stochastic dynamics of small populations. In this study, we have
combined offspring-number models with a separate phenomenological model for the Allee
effect. This helped us to compare the population-genetic consequences of the Allee effect
among the different offspring-number model. A next step to make our model more mech-
anistic could be to let both the Allee effect and offspring-number variation emerge from a
detailed mechanistic model for individual reproductive success.

In this study and in Wittmann et al. (2013c), we have focused on how the Allee effect
impacts levels of neutral genetic diversity. Additional complications will arise if we take
into account aspects of genetic variation that are required for the adaptation of an introduced
population to its new environment. This need for adaptation can give rise to an Allee effect
in itself because larger founding populations will have a larger probability to harbour the
alleles that are advantageous in the new environment. We are currently investigating how
this genetic Allee effect interacts with mate-finding or other ecological Allee effects and
with the phenomena discussed in this paper.
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Appendix 4.1 Details of the genealogy simulation

To simulate a genealogy, we start with the ns = 10 individuals sampled at generation Tz
and then trace their ancestry backward in time generation by generation until we arrive at
the most recent common ancestor of all the genetic material in the sample. At time t+1, for
example, we may have na individuals that carry genetic material ancestral to the sample. To
trace the ancestry back to generation t, we make use of the family-size vector Ft+1 stored
during the forward-in-time simulation stage. We first assign each of the na individuals to a
family by letting them successively pick one of the families in proportion to their sizes, i.e.
the entries fi of the family-size vector. After a family has been picked, the corresponding
entry in the family-size vector is reduced by 1 to avoid that the same individual is picked
twice.

After all na individuals have been assigned, all families that have been chosen at least
once draw parents in generation t. Here, the models differ. In the Poisson-Poisson and
Poisson-geometric model, each family picks two parents independently, with replacement,
and uniformly over all individuals in the parent generation. That is, parents can be picked
by several families, and they can even be picked twice by the same family, corresponding to
selfing. In the binomial model, on the other hand, parents are chosen without replacement.
Each parent can only be picked by one family and selfing is not possible. From there on,
everything works as described in Wittmann et al. (2013c): The two genome copies of each
ancestral individual split and each of the two parents (or possibly the same individual in the
case of selfing) receives one genome copy. A coalescent event happens if the same genome
copy in a parent receives genetic material from several children.

At time 0, i.e. at the time of the introduction, all remaining ancestors are transferred
(backwards in time) to the source population, which is of large but finite size k0 at all times.
We assume that the mechanism of pair formation and the distribution of the number of off-
spring per pair are the same in the source population and in the newly founded population.
Therefore, we still need to take into account family-size information to simulate the genea-
logy backward in time. Since we did not generate the required family-size vectors during the
forward-in-time simulation stage, we now simulate them ad-hoc at every backward-in-time
step. We do this by sampling from the distribution of family sizes (Poisson or geometric
with mean 2, or binomial with n = 4, p = 1/2) until we get a total number of k0 individuals
(truncating the last family if required). Apart from this modification, the simulation algo-
rithm is identical to the one used in the first stage of the simulation. When the simulation
arrives at a point where all na ancestors carry ancestral material at only one genome copy, it
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usually takes a long time until lineages are again combined into the same individual. Under
these circumstances, we therefore use a more efficient approximative simulation mode: We
draw the number of generations until two ancestors are merged into the same individual
from a geometric distribution with parameter

pmerge = c ·
(
na

2

)

k0
, (4.7)

where c is the strength of genetic drift compared to that under the Poisson model (see table
4.1). Whenever such an event happens, two randomly chosen ancestors are merged. Here
we need to distinguish between two possible outcomes, both of of which occur with proba-
bility 1/2. In the first case, there is a coalescent event and we now have na − 1 ancestors,
each still with ancestral material at only one genome copy. We therefore continue in the
efficient simulation model. In the second case, there is no coalescent event and the result-
ing individual has ancestral material at both genome copies. Therefore, we switch back the
other exact simulation mode. In this way, we switch back and forth between the two simu-
lation modes until the most recent common ancestor of all the sampled genetic material has
been found. For each simulation run, we store the average pairwise time to the most recent
common ancestor of pairs of gene copies in the sample.

We will now take a closer look at the genealogical implications of the different offspring
number models. Thereby, we will derive the values for the relative strength of genetic drift
c given in table 4.1 and justify the approximation in (4.7). Equation (4.7) is valid as long as
we can neglect events in which at least three ancestors are merged into the same individual
in a single generation (multiple mergers) and events in which several pairs of ancestors are
merged in a single generation (simultaneous mergers). In the following, we will show that
we can indeed neglect such events for large source population sizes k0 because the per-
generation probability of multiple and simultaneous mergers is O(1/k20) whereas single
mergers occur with probability O(1/k0). Here f(k0) = O(g(k0)) means that there exist
positive constants M and k∗ such that

|f(k0)| ≤M · |g(k0)| (4.8)

for all k0 > k∗ (Knuth, 1997, p. 107). In other words, as k0 goes to infinity, an expression
O(1/kn0 ) goes to zero at least as fast as 1/kn0 .

To derive the probabilities of multiple and simultaneous mergers, we first introduce
some notation. Let P be a random variable representing the number of pairs with at least one
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offspring individual, andOl the number of offspring of the lth of them, with l ∈ {1, . . . , P}.
Because we assume a fixed size k0 of the source population and because we truncate the
last family if necessary to achieve this (see above), the Ol are not exactly independent and
identically distributed. However, in all cases we are considering, k0 is very large relative
to typical offspring numbers Ol. To facilitate our argument, we therefore approximate the
Ol by independent and identically distributed Yl with l ∈ {1, . . . , P} taking values in N.
Further, let Zl be the number of lineages in the next generation tracing back to family l.

In the following computations, we will need the fact that the first three moments of the
Yl (E[Yl], E[Y 2

l ], and E[Y 3
l ]) are finite. These are the moments of the number of offspring

per pair, conditioned on the fact that there is at least one offspring. Let X denote a random
variable with the original distribution of the number of offspring per pair, i.e. the one al-
lowing also for families of size 0. Then the moments of the Yl can be computed from the
moments of X with the help of Bayes’ formula:

E[Y m
l ] =

∞∑

k=1

km · Pr(X = k|X ≥ 1) =
∞∑

k=1

km · Pr(X ≥ 1|X = k) · Pr(X = k)

Pr(X ≥ 1)

=
∞∑

k=1

km · Pr(X = k)

1− Pr(X = 0)
=

E[Xm]

1− Pr(X = 0)
. (4.9)

These computations lead to finite constants for the first three moments of the Yl in the
binomial, Poisson-Poisson, and Poisson-geometric model.

Since we switch to the accurate simulation mode whenever two lineages are combined
into the same individual, we can assume here that the lineages at time t+ 1 are in different
individuals. Thus, the number of lineages is equal to the number of ancestors na and is
at most twice the sample size (in our case at most 20), but usually much lower since many
coalescent events already happen in the newly founded population. Of course, each ancestor
has two parents, but since ancestors here carry genetic material ancestral to the sample only
at one genome copy, only one of their two parents is also an ancestor and the other one can
be neglected.

A multiple merger can occur in three, not necessarily mutually exclusive, ways (figure
4.4a–c). First we will consider the case where there is at least one family that at least three
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lineages trace back to (figure 4.4a). The probability of such an event is

Pr (max(Zl) ≥ 3) ≤ E

[
Pr

(
P⋃

l=1

(Zl ≥ 3)

∣∣∣∣P
)]

≤ E

[
P∑

l=1

Pr(Zl ≥ 3)

]

≤ E[P ] · Pr(Z1 ≥ 3)

≤ k0 · Pr(Z1 ≥ 3) (4.10)

≤ k0 ·
(
na
3

)
·
( ∞∑

i=1

Pr(Y1 = i) · Y1
k0
· Y1 − 1

k0 − 1
· Y1 − 2

k0 − 2

)

≤ k0 ·
(
na
3

)
· E [Y 3

1 ]

k30
= O

(
1

k20

)
.

Here, we used the fact that P ≤ k0, which is true because we take P to be the number of
families with at least one member. Note that when lineages trace back to the same family,
they still need to draw the same parent individual in order to be merged. For the three
lineages here, this probability is 1/4 if the family did not arise from selfing, and 1 if it
did. For simplicity, we take 1 as an upper bound for this probability here and for similar
probabilities in the following inequalities.

Under the binomial model, the above case is the only way in which multiple mergers
can occur. Under the Poisson-Poisson and Poisson-geometric model, however, parent in-
dividuals can participate in several pairs and therefore potentially contribute to more than
one family. Therefore, we additionally have to take into account the possibility that lineages
trace back to different families but then choose the same parent individual (figure 4.4b,c).
One possibility (figure 4.4b) is that there is exactly one family that at least two lineages
trace back to (event E1), that two lineages in this family draw the same parent individual
(event E2), and that there is at least one lineage outside the family that draws the same
parent (event E3). Using an argument analogous to that in (4.10), we obtain

Pr(E1) ≤ Pr (max(Zl) ≥ 2) ≤
(
na
2

)
· E[Y 2

1 ]

k0
. (4.11)

Furthermore, Pr(E2) ≤ 1 and

Pr(E3) ≤ (na − 2) · 1

k0
≤ na ·

1

k0
. (4.12)
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Figure 4.4: Illustration of the various ways in which multiple and simultaneous mergers
can arise. Here, the case of the Poisson-Poisson or Poisson-geometric model is depicted,
where selfing is possible and individuals in the parent generation can contribute to multiple
families.
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Here we use the fact that families choose their parents independently and uniformly over
all k0 individuals in the parent generation, such that lineages in different families have a
probability of 1/k0 of drawing the same parent. Combining the last three inequalities, we
can conclude

Pr(E1 ∩ E2 ∩ E3) ≤
(
na
2

)
· E[Y 2

1 ]

k20
· na = O

(
1

k20

)
. (4.13)

Finally, the probability that lineages from at least three different families choose the same
parent (figure 4.4c) is bounded by

(
na
3

)
1

k20
= O

(
1

k20

)
. (4.14)

For a simultaneous merger to occur, there must be at least two mergers of at least two
lineages each. This can happen in three (not necessarily mutually exclusive) ways (figure
4.4d-f). To compute bounds for the corresponding probabilities, we again take 1 as an upper
bound for all probabilities that lineages in the same family choose the same parent. First,
a simultaneous merger can occur if there are at least two families, each with at least two
lineages tracing back to them (event M1, figure 4.4d). This occurs with probability

Pr(M1) ≤ E
[
Pr
(
∃ l,m ∈ {1, . . . , P} s.t. Zl ≥ 2 and Zm ≥ 2

∣∣P
) ]

≤ E

[ ∑

l,m≤P, l 6=m
Pr(Zl ≥ 2, Zm ≥ 2)

]

≤ E

[(
P

2

)]
· Pr(Z1 ≥ 2, Z2 ≥ 2) (4.15)

≤
(
k0
2

)( ∞∑

i=1

∞∑

j=1

Pr(Y1 = i) · Pr(Y2 = j) ·
(
na
2

)2

· Y1
k0
· Y1 − 1

k0 − 1
· Y2
k0 − 2

· Y2 − 1

k0 − 3

)

≤ 1

2
·
(
na
2

)2

· E[Y 2
1 ] · E[Y 2

2 ]

(k0 − 2)(k0 − 3)
= O

(
1

k20

)
.

Second, there can be a simultaneous merger if there is one family with at least two lin-
eages tracing back to it and two lineages that merge separately without being in the family
(event M2, figure 4.4e). Using the bound for the probability of exactly one merger of two
individuals from (4.11), we obtain

Pr(M2) ≤ Pr(E1) ·
(
na
2

)
1

k0
≤
(
na
2

)2

· E [Y 2
1 ]

k20
= O

(
1

k20

)
. (4.16)
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Finally, we can have two pairs of lineages both merging without being in the same family
(event M3, figure 4.4f). This occurs with probability

Pr(M3) ≤
(
na
2

)2
1

k20
= O

(
1

k20

)
. (4.17)

The different possibilities for multiple and simultaneous mergers are not mutually ex-
clusive (for example there could be one triple merger and two double mergers), but since
all of them have probability O (1/k20), the probability of their union is also O (1/k20). With
these results, we can write

Pr(1 merger) =

(
na
2

)
Pr(A) +O

(
1

k20

)
, (4.18)

where A denotes the event that a specific pair of lineages merges into the same individual
in the previous generation.

Pr(A) = Pr(same family) · Pr(A|same family)

+
(

1− Pr(same family)
)
· Pr(A|different families) (4.19)

For the binomial model,

Pr(A|same family) =
1

2
(4.20)

and

Pr(A|different families) = 0. (4.21)

For the other models,

Pr(A|same family) =

(
1− 1

k0

)
· 1

2
+

1

k0
· 1 =

1

2
+

1

2k0
, (4.22)

thereby accounting for the possibility of selfing, and

Pr(A|different families) =
1

k0
. (4.23)
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For all models, we have

Pr(same family) =
E[S]

k0
=

E[X∗]− 1

k0
, (4.24)

where E[S] is the expected number of siblings of a sampled individual and E[X∗] is the
size-biased expectation of the number of offspring per family. Using equation 4 in Arratia
& Goldstein (2010), we obtain

E[X∗] =
Var[X]

E[X]
+ E[X], (4.25)

which is 2.5 for the binomial model, 3 for the Poisson-Poisson model, and 5 for the Poisson-
geometric model.

Substituting (4.20), (4.21), and (4.24) into (4.19) and then into (4.18), we obtain for the
binomial model:

Pr(1 merger) =

(
na
2

)
· E[X∗]− 1

2k0
+O

(
1

k20

)
. (4.26)

Analogously, substituting (4.22), (4.23), and (4.24) into (4.19) and then into (4.18), we
obtain for the other models:

Pr(1 merger) =

(
na
2

)
·
[

E[X∗]− 1

k0
·
(

1

2
+

1

2k0

)
+

(
1− E[X∗]− 1

k0

)
· 1

k0

]
+O

(
1

k20

)

=

(
na
2

)
·
[

E[X∗]− 1

2k0
+

1

k0

]
+O

(
1

k20

)
. (4.27)

For the approximation in (4.7), we neglect terms of order 1/k20 and thus the relative strength
of genetic drift in (4.7) is given by

c =
E[X∗]− 1

2
+





0 for the binomial model

1 otherwise
. (4.28)

Evaluating this expression for the various models yields the values in table 4.1.
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Appendix 4.2 Rescaling the Poisson model

In this section, we argue that in general it is not possible to rescale the Poisson model
such that it gives reasonable approximations to one of the other offspring-number models
with respect to both population dynamics and genetics, even if we both linearly rescale the
population-size parameters and change the growth parameter. Given an offspring-number
model M with critical population size a, carrying capacity k1, target population size z,
founder population size N0, growth parameter r, ν = Var[Nt+1|Nt]/E(Nt+1|Nt), and rel-
ative strength of genetic drift c, we will attempt to determine scaling parameters s and ρ
such that a Poisson model M ′ with parameters a′ = s ·a, k′1 = s ·k1, z′ = s · z,N ′0 = s ·N0,
and r′ = ρ · r approximates the original model.

In our argument, we will be guided by the following theorem on a time change in diffu-
sion processes (Durrett, 1996, Theorem 6.1 on p. 207): If we speed up a diffusion process by
a factor ρ, we obtain the same process as when we multiply both its infinitesimal mean and
its infinitesimal variance by a factor ρ. In this study, we do not consider diffusion processes,
but processes in discrete time and with a discrete state space. Furthermore, we cannot ma-
nipulate mean and variance independently. Therefore, the theorem cannot hold exactly for
the models in this study. Nevertheless, it yields good approximations to the population dy-
namics under the the binomial, Poisson-Poisson, and Poisson-geometric model (figure 4.5).
Specifically, a Poisson model M ′ with r′ = ρ · r runs ρ times as fast but otherwise exhibits
approximately the same population dynamics as a model M ′′ with growth parameter r and
ν = Var[Nt+1|Nt]/E(Nt+1|Nt) = 1/ρ, given that all other parameters are the same, i.e.
a′′ = a′, k′′1 = k′1, z

′′ = z′ and N ′′0 = N ′0. However, due to the difference in time scale, the
genetic drift experienced by populations under the two models may be very different.

To determine whether the offspring-number model M can be approximated by a Pois-
son model M ′, we will check whether it is possible to simultaneously fulfil two conditions,
one on the population dynamics and one on the genetic aspect of the models. These two
conditions are not sufficient to ensure that the models behave the same in every respect,
but they appear necessary. If we can show that it is not possible to fulfil them simultane-
ously, not even in the unconditioned model, then the population dynamics and/or genetics
of successful populations should be different under the two models.

First, we will specify a condition required to match the population dynamics. Since the
success or failure of a population and other qualitative features of the population dynamics
do not depend on the time scaling and since it is easier to compare models with the same
growth parameter, we will use the model M ′′ instead of model M ′ here. To match the
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Figure 4.5: Comparison of Poisson models with growth parameter r′ = 0.1 · ρ to other
offspring-number models, the binomial model (a), the Poisson-Poisson model (b), and the
Poisson-geometric model (c), all with growth parameter r′′ = 0.1. Each subplot shows the
average number of generations that successful populations with Allee effect (AE) or without
(no AE) under the various models spend at different population sizes from 1 to z−1 before
reaching the target population size z. In each case, we set ρ = 1/ν (see table 4.1, and using
ν ≈ 1/2 for the binomial model) and divided the times spent at the different population
sizes under the respective other offspring model by ρ to account for the change in time
scale. The dotted vertical line indicates the critical size a of Allee-effect populations, here
a = 50. k1 = 1000, z = 100.

relative strength of stochastic vs. deterministic forces in the population dynamics, we will
require that the standard deviation of the population size in the next generation relative
to the corresponding expected value is equal in both models for corresponding population
sizes n′′ = s · n:

√
Var[N ′′t+1|N ′′t = n′′]

E[N ′′t+1|N ′′t = n′′]
=

√
Var[Nt+1|Nt = n]

E[Nt+1|Nt = n]
. (4.29)

Given the properties of the model M ′′ and M stated above, this is equivalent to

√
1
ρ
· E[N ′′t+1|N ′′t = n′′]

E[N ′′t+1|N ′′t = n′′]
=

√
ν · E[Nt+1|Nt = n]

E[Nt+1|Nt = n]
. (4.30)

⇔ 1√
ρ · E[N ′′t+1|N ′′t = n′′]

=

√
ν√

E[Nt+1|Nt = n]
. (4.31)
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⇔ 1√
ρ · n′′ · φ

(
n′′
k′′1

) =

√
ν√

n · φ
(
n
k1

) , (4.32)

where

φ(x) = e
r·(1−x)·

(
1− a

k1·x

)
= e

r·(1−x)·
(
1− a′′

k′′1 ·x

)

(4.33)

is the expected per-capita number of surviving offspring in a population whose current size
is a fraction x of the carrying capacity (see equation (4.1)). Since n′′/k′′1 = n/k1, (4.32)
reduces to

1

ν
=
ρ · n′′
n

= ρ · s. (4.34)

This is our first condition.
Second, both models should have the same strength of genetic drift at corresponding

population sizes n and n′. Specifically, we require that the heterozygosity maintained over
a corresponding time span is equal in both models:

(
1− 1

n′

)1/ρ

=
(

1− c

n

)
, (4.35)

which corresponds approximately to the condition

1

ρ · n′ =
c

n
(4.36)

as long as n and n′ are not too small. Here, we need the exponent 1/ρ because—as we have
seen above and in figure 4.5—multiplying the growth parameter by a factor ρ effectively
speeds up the process by the same factor such that there is less time for genetic drift to act.
Using n′ = s · n, (4.36) simplifies to

1

c
= ρ · s. (4.37)

This is our second condition.
Combining (4.34) and (4.37) shows that the two conditions can only be fulfilled simul-

taneously if ν = c, which is not the case for the offspring-number models we consider in
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this study (see table 4.1). The mismatch between ν and c in our models is related to the way
in which the diploid individuals form pairs to sexually reproduce. In a haploid and asexual
model, in which individuals independently produce identically distributed numbers of off-
spring, Var[Nt+1|Nt] = Nt ·Var[X] and E[Nt+1|Nt] = Nt · E[X], where X is a random
variable representing the number of offspring produced by a single individual. In analogy
to (4.28), we can then quantify the strength of genetic drift as

c = E[X∗]−1 =
Var[X]

E[X]
+E[X]−1 =

Var[Nt+1|Nt]

E[Nt+1|Nt]
+E[X]−1 = ν+E[X]−1. (4.38)

This shows that in equilibrium, i.e. for E[X] = 1, there would be no mismatch between
c and ν in such a haploid model. In other situations, however, especially if we condition
on the success of a small Allee-effect population, there could still be a mismatch. Further-
more, as discussed above, conditions (4.34) and (4.37) may not be sufficient to ensure that
two processes behave similarly. Especially if we condition on an unlikely event, the higher
moments characterising the tail of the offspring-number distribution may be important and
they are not necessarily matched even if mean and variance are. We therefore suggest that
the strong differences among offspring-number distributions in the genetic consequences
of the Allee effect can only in special cases be resolved by rescaling the parameters of the
Poisson model.
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General Discussion

In this section, we will revisit the main findings from Chapters 1 to 4 in the light of the four
overarching questions outlined in the General Introduction: a) How do factors that influ-
ence the average per-capita growth rate influence the population’s movement through the
invasion process? b) What is the role of variability in population-size trajectories? c) What
are the consequences for patterns of genetic diversity, and d) to what extent do they lead
to eco-genetic feedbacks? In this synthesis, the concept of easy and difficult stages in the
invasion process (see Introduction and Glossary) will play an important role. Furthermore,
I will discuss the merits of stochastic models in invasion biology, and close by pointing out
major challenges for future research.

Role of factors influencing the average per-capita growth
rate

As we have seen in the General Introduction, many abiotic and biotic factors can potentially
influence the average per-capita growth rate and thereby shape the invasion process. The
focus in this dissertation has been on two factors: interspecific competition with a resident
species (Wittmann et al., 2013a,b, Chapters 1 and 2) and the strong demographic Allee
effect (Wittmann et al., 2013b,c,d, Chapters 2–4, see Glossary). Several further factors are
briefly considered, for example the introduced species’ fecundity and its introduction rate
(see Chapter 1). From an ecological perspective at least, these two factors as well as the
demographic Allee effect play an unambiguous role in the invasion process. An increase in
fecundity or introduction rate increases the average per-capita growth rate throughout the
invasion process and thus accelerates the population’s progress. By contrast, a demographic
Allee effect reduces the average per-capita growth rate, especially at small population sizes,
and thus leads to an overall more difficult invasion process.

The role of competition intensity is more complex. In Chapter 1, we have observed that
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the expected time until the introduced population reaches the end of the invasion process
(the point at which the native species goes extinct) is minimized at an intermediate com-
petition intensity (see Fig. 1 in Chapter 1). This finding may be astonishing at first, but
begins to become clear if we recall that competition intensity has opposing effects at dif-
ferent stages in the invasion process (see General Introduction). Increasing the intensity of
competition with the native species renders the first stage more difficult, but simplifies the
second stage. In other words, for weak interspecific competition (weaker than the minimiz-
ing competition intensity, see Fig. I.2 A) the introduced population can establish readily, but
then coexistence is relatively stable and it takes a long time to exclude the native species.
For competition intensities above the minimizing value, on the other hand (see Fig. I.2
B), the introduced population has difficulty establishing in the first place; it may go extinct
again and again, before it finally overcomes the unstable point halfway through the invasion
process and then quickly excludes the native species from the system.

The competition coefficient (our measure for competition intensity, see Glossary) that
minimizes the expected persistence time of the native species is close to one, i.e. the point
where interspecific competition and intraspecific competition are equally strong. This result
gives insight into the relative importance of easy and difficult stages in the invasion process.
For essentially all values of the competition coefficient, the invasion process contains both
an easy and a difficult stage. Just at a competition coefficient of 1.0, the average per-capita
growth rate (not accounting for introductions) is zero at all points and thus there are neither
easy nor difficult stages. This path of least resistance appears to be close to optimal from the
perspective of the introduced population, suggesting that the detrimental effect of difficult
stages overwhelms any positive effect that the presence of an easy stage may have.

Based on this reasoning, we might expect the minimizing competition coefficient to be
exactly 1.0. This is not the case, however. Chapter 1 revealed that the minimizing competi-
tion coefficient is slightly below 1.0 for small introduction rates and slightly above 1.0 for
large introduction rates. To understand this phenomenon, let us take the perspective of an
introduced population and imagine that we strive to rapidly complete the invasion process.
Before we can even start, we have to wait on average 1/(introduction rate) time units for the
first individual(s) to arrive. If this small population goes extinct by chance, which can be
quite likely, we have to wait for another introduction event. In a scenario with a small intro-
duction rate and hence long average waiting times, such an extinction would substantially
delay our progress. Starting from the invasion process at competition coefficient 1.0, we can
reduce the probability of losing precious colonizing individuals to extinction by making the
first stage in the invasion process slightly easy. Of course, we will then need slightly more
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time at a later stage to complete the invasion process. This trade-off causes the minimizing
competition coefficient to be below 1.0 for small introduction rates. If introduction events
are very common, on the other hand, intermittent extinctions do not cause large delays,
and introduction events even make the first stage of the process slightly easy in themselves.
Hence, the minimizing competition coefficient is slightly larger than 1.0 to also facilitate
the second stage of the invasion process. It is revealing that the minimizing competition co-
efficient crosses 1.0 at the same introduction rate at which the extinction of the introduced
population in the approximating diffusion process becomes an entrance boundary. That is,
for higher introduction rates, the process can start at the point where the introduced popu-
lation is absent, but can never get back there. Thus, delays due to temporary extinctions
appear to be negligible in this parameter region.

Two general conclusions emerge from these results. First, due to the dominating influ-
ence of difficult stages in the invasion process, understanding what factors make introduced
species grow particularly fast may be less important than understanding what determines
the presence and magnitude of barriers. To better understand difficult phases, we should em-
brace the challenging task of gathering information on invasion failures (see also Zenni &
Nuñez, 2013). The second conclusion is that we should not neglect the introduction regime
itself as a shaping force of the invasion process.

Role of factors influencing variability

Although stochasticity plays a role in all parts of this dissertation, two projects have fo-
cused in particular on how different levels of variability influence invasion success: We have
considered variability stemming from the temporal distribution of introduced individuals
(“introduction stochasticity”) in Chapter 2 (Wittmann et al., 2013b), and offspring-number
variation in Chapter 4 (Wittmann et al., 2013d). In both cases, variability strongly and qual-
itatively changes the way introduced populations move through the invasion process. As
we have already pointed out in the General Introduction, a certain amount of variability is
absolutely required for a population to overcome difficult stages, whereas the movement
through easy stages can also be understood in a deterministic framework. The results in
Chapters 2 and 4 provide further evidence for fundamental differences in the role of vari-
ability between difficult and easy stages. In Chapter 2, we have compared introduction
regimes with the same average number of individuals introduced per time unit, but with a
different temporal distribution. We found that in completely easy invasion processes, the
invasion proceeded faster with a small propagule size and a large propagule frequency,
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i.e. many small introductions leading to an even temporal distribution and small variabil-
ity. In difficult invasion processes, by contrast, introduction regimes with a large propagule
size and therefore small propagule frequency (uneven temporal distribution, high variabil-
ity) led to a faster invasion. Similarly in Chapter 4, Allee-effect populations with a large
offspring-number variation overcame the difficult stage below the critical population size
more rapidly than populations with little offspring-number variation. In summary, variabil-
ity is detrimental to invasion success in easy stages, but advantageous in difficult stages.
Mixed invasion processes with both a difficult and an easy stage behaved essentially like
difficult processes; also here variability was advantageous. This finding is in line with our
previous observation on the dominating role of difficult stages in the invasion process.

To further quantify the effect of variability, let us consider a diffusion process with
infinitesimal mean r ·x, representing density-independent population growth or decline, and
infinitesimal variance α · x, representing demographic stochasticity. The population size x
tends to increase if r > 0 (easy invasion process) and tends to decline if r < 0 (difficult
invasion process). Using standard techniques from the theory of stochastic processes (see
e.g. Karlin & Taylor, 1981, Ch. 15), Dennis (2002) derived first-passage probabilities for
this diffusion process. Using his results, we can write the probability that a population with
initial size N0 reaches size z before going extinct as

Pr(Tz < T0|N0 = n) =
1− exp

(
−2 · r

σ2 · n
)

1− exp
(
−2 · r

σ2 · z
) . (D.1)

The plots of equation D.1 confirm the opposing effects of increasing variance in difficult
vs. easy scenarios (Fig. D.1). Furthermore, the success probability evidently depends only
on the ratio r/σ2. This result suggests that it is the relative strength of deterministic and
stochastic forces that determines the progress of the introduced population through the in-
vasion process. This is quite intuitive: To overcome large barriers in the invasion process,
i.e. stages with a strongly negative average per-capita growth rate, large deviations from the
average population dynamics are required, whereas small barriers may be overcome already
by small deviations.

In Chapter 2 (Wittmann et al., 2013b), we identified several published data sets on inten-
tional or experimental introductions that include information on invasion success as well as
on propagule size and propagule frequency. Using generalized linear models for invasion
success as a function of propagule size and propagule frequency (and thus indirectly on
variability), as well as their product (the average inflow of individuals), we classified the
underlying scenarios as difficult or easy. Although strong independent evidence was not
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Figure D.1: Success probability (Pr(Tz < T0), here z = 100) in a diffusion model for
density-independent population growth or decline and demographic stochasticity. A) The
success probability depends just on the relative magnitude of deterministic and stochastic
forces (r/σ2). For r/σ2 = 0, the deterministic forces vanish and the success probability is
N0/z (indicated by gray lines). B) Under a difficult scenario, here with r = −0.001, the
success probability increases with increasing variance, i.e. increasing σ2. C) The opposite
is true under an easy scenario, here with r = 0.001.

available, these classifications made sense in the light of the species’ biology and the aver-
age invasion success. Asexually reproducing water fleas (Daphnia magna) experimentally
introduced into containers with suitable medium (data from Drake et al., 2005) fell into
the easy scenario class. They also had a very high establishment probability. The same was
true for six among seven considered dung beetle species introduced to Australia (data from
Tyndale-Biscoe, 1996). These species were introduced in very high numbers to patches with
abundant resources. On the other hand, biocontrol introductions of parasitoid insects (data
from Hopper & Roush, 1993) were classified as difficult based on the role of propagule size
and frequency. This classification was consistent with lower overall success probabilities
and the potential for a mate finding Allee effect (Hopper & Roush, 1993).

Of course, the temporal distribution of introduced individuals and offspring-number
variation are only two among many possible sources of variability. More generally, Sæther
et al. (2004, 2005) suggest that the amount of variability in bird population dynamics de-
pends on the position of the species’ life history in the “slow-fast continuum”. Species with
a “fast” life history, i.e. those with short generation time, fast maturation, and large clutch
sizes are predicted to have a higher demographic variance than “slow” species with long
generation time, high age at maturity, and small clutch sizes.

Although we observed many parallels in how various sources of variability influence
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invasion success, in general it can be relevant which mechanism is causing variability. En-
vironmental stochasticity, for instance, differs from demographic stochasticity and intro-
duction stochasticity in that its importance does not cease with increasing population size.
For example, a sudden episode of favorable climate can cause all individuals in a popu-
lation to produce an exceptionally high number of offspring in a given year, leading to a
sudden population-size boom. Due to its importance in large populations, environmental
stochasticity might be particularly important for the completion of difficult stages later in
the invasion process (as for example the second stage in Fig. I.2 A).

As in many other fields of science, research in invasion biology is often focused on
determining averages, for example the average number of individuals arriving at a certain
location per time unit (propagule pressure) or the average fecundity of individuals in a po-
pulation. Such measurements are certainly important (as we have seen in the first section of
this General Discussion). However, populations with the same average behavior may dif-
fer widely in their propensity to produce the extreme events required to overcome difficult
stages in the invasion process. This finding suggests that we should devote more attention
to quantifying variability when trying to predict or understand invasion success in the field.

Genetic consequences

The fact that introduced populations lose genetic variation through drift in every genera-
tion, and that this loss is more severe in small than in large populations links the population
dynamics and the population genetics of an introduced species. To understand the popula-
tion genetic consequences of invasion trajectories, we therefore have to consider how much
time the population of interest spends in different population-size ranges. In Chapters 3
and 4 (Wittmann et al., 2013c,d), we have done this for populations with and without a
strong demographic Allee effect and with various amounts of offspring-number variation.
We focused on single introduction events, and since it is not meaningful to assess genetic
diversity in extinct populations, we sampled only those populations that reached a certain
high target population z before going extinct (successful populations). Our quantity of inter-
est was the proportion of genetic variation from the source population that was maintained
by successful populations upon reaching size z.

Since a demographic Allee effect by definition implies a reduction in average per-capita
growth rate, we might expect that Allee-effect populations upon reaching size z have spent
more time at small population sizes, experienced more genetic drift, and thus maintained
less genetic variation than populations without Allee effect. This is indeed what we ob-
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served, but only for the offspring-number model with the least variation. For offspring-
number models with intermediate variation, this slow-down was still present at popula-
tion sizes around and above the critical population size. But counterintuitively, successful
Allee-effect populations spent on average less, not more time at very small population sizes
compared to populations without Allee effect. Because of this speed-up at small population
sizes and the slow-down at large population sizes, successful Allee-effect populations main-
tained on average more genetic diversity if the founder population size was small compared
to the critical population size, but less genetic diversity if the founder population size was
similar to or larger than the critical population size. For the offspring-number models with
the most variation, the speed-up effect dominated: Allee-effect populations grew faster than
populations without Allee effect at all population sizes, and thus maintained on average
more genetic diversity across the range of possible founder population size. In other words,
with increasing offspring-number variation, the trajectories of successful Allee-effect po-
pulations strayed further and further from the average population dynamics. Interestingly,
the role of offspring-number variation was much more substantial in our models than it is in
standard population genetic models. We could show in Chapter 4 (Wittmann et al., 2013d)
that, unlike in these standard models, it is not possible to resolve the differences between our
various offspring-number models by simply rescaling the parameters of a baseline model.

In Chapter 3 (Wittmann et al., 2013c), we conducted a simulation study to explore the
opportunities for parameter estimation resulting from the population genetic consequences
of the Allee effect. Specifically, we have attempted to estimate the critical population size
from pseudo-observed genetic data. We found that it is indeed possible to estimate the criti-
cal population size, but only if genetic data from sufficiently many independent populations
are available. Given the large role of stochasticity in small introduced populations, it is not
surprising that independent replicates are required to determine the parameters of the inva-
sion process. In our simulation study, we assumed all other model parameters to be known.
This is of course rather unrealistic. Since the population genetic consequences of the Allee
effect appear very context-dependent—the magnitude and even the direction of the effect
depends on offspring-number variation—we have to caution that estimating the critical po-
pulation size from genetic data is only possible if detailed knowledge about the species’
biology is available.
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Eco-genetic feedbacks

Also to understand the eco-genetic feedback in the impact of an introduced species on a na-
tive competitor (Chapter 1, Wittmann et al., 2013a), it has been helpful to first consider the
population-size regions in which the species of interest—in this case the native species—
spends most of its time. We found that for small competition coefficients, the coexistence
of native and introduced species is relatively stable such that both populations remain at
intermediate size for a long time. For large competition coefficients, where the more com-
mon species has an advantage, on the other hand, the native species spends most of the
time before its extinction at high population sizes, essentially making up the entire commu-
nity. Thus, we expect a stronger reduction in genetic diversity and evolutionary potential
at small rather than large competition coefficients. This is indeed what we observed. The
eco-genetic feedback, i.e. the reduction in persistence time in the eco-genetic compared to
the ecological model, was strongest at small competition coefficients. This led to a shift of
the minimizing competition coefficient towards smaller values.

Eco-genetic feedbacks are expected also for Allee-effect populations: a small population
that declines due to the Allee effect can experience a loss of genetic diversity, reducing
its evolutionary potential and thus leading to further population decline. Another way to
see this extinction vortex is as the interaction of two Allee effects, an ecological Allee
effect (e.g. due to mate limitation) and a genetic Allee effect. The latter can be defined as
a genetically-mediated reduction in fitness at small population sizes (Berec et al., 2007). A
special example for a genetic Allee effect is that with increasing founder population size
it becomes more probable that some of the founding individuals carry alleles that will be
advantageous in the new environment. In her Bachelor thesis, Hanna Stuis (Stuis, 2013) has
begun to quantify the interactions between such a genetic Allee effect and a mate finding
Allee effect—a project that we will continue to pursue.

Merits of stochastic models

In my opinion, one of the main merits of stochastic modeling in invasion biology is to let
us constructively address questions that we would have to give up on otherwise. In fact,
many authors have a very pessimistic view on the predictability of invasions. They stress
the idiosyncrasy or context-dependency of invasions, meaning that every invasion is dif-
ferent and influenced by a large number of unpredictable historical events. For example, it
seems that several species of woody plants that had been cultivated in Berlin and Branden-
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burg for decades or even centuries could only spread outside cultivation after World War II
bombs had opened up suitable sites in urban environments (Kowarik, 1995). This is a rather
extreme example of a historical event; in other cases invasions may be facilitated or stopped
by events that are difficult to predict but may still occur on a regular basis. My point here
is that simply stating that invasions are context-dependent is not very productive. Since it
is not feasible to delve into all the details of the processes involved—from the biochemical
reactions inside introduced individuals to societal and economic developments—research
usually stops at this point.

With the help of stochastic models, however, we can do better. Even if we never reach
the “Holy Grail of invasion biology” (Enserink, 1999), i.e. reliable prediction of a specific
population’s fate, we may get valuable insights into the statistical properties of the invasion
process. Ideally, stochastic models can allow us to estimate the probability that a population
will successfully establish or the expected time until it reaches a certain point in the inva-
sion process. Like other types of mathematical models, stochastic models range from very
simple, but analytically tractable models to complex models incorporating extensive bio-
logical detail for a particular species of interest. The models in this dissertation tend to the
former side of this spectrum. In each case, we included one or two key factors influencing
the average per-capita growth rate and one or two important sources of variability. Thereby
we gained novel insights into the factors that shape invasion success, impacts on resident
species, as well as evolutionary and genetic aspects of biological invasions. Some of the
most interesting mechanisms we discovered would not even be possible in a deterministic
world but depend on stochasticity in a fundamental way.

Outlook

Based on the insights that have emerged from this dissertation, I see three important chal-
lenges for future theoretical work in invasion biology.

Large deviations

As I have argued in different parts of this dissertation, invasion biology is a field where it is
crucial to understand and quantify unlikely events, namely the rare events in which a very
small population grows against all expectations, and overcomes various barriers to form a
large and wide-spread population, with potential impacts on native ecosystems. We need to
understand better how frequent such deviations from the average population dynamics are
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and which ecological and evolutionary factors affect them. It is not sufficient to know the
mean and the variance of outcomes, but we need to characterize the tail of the underlying
distribution, the extreme events. One mathematical approach that promises such insights is
the theory of large deviations (see e.g. den Hollander, 2008).

Genealogies under stochastic demography

An analytical approach to the ecology of rare events would be even more useful if at the
same time it could also provide insights into the population genetics and evolution of the
population. One step in this direction would be to derive the stochastic process conditioned
on invasion success. Such a conditioned process represents a concrete mathematical struc-
ture that we can analyze and simulate from. In Chapter 3, this technique revealed how much
time successful populations spend on average in various population-size regions. From this,
we can qualitatively understand how much genetic drift such populations experience. To ac-
tually characterize the genealogies of such populations, we first simulated a population-size
trajectory forward in time from the conditioned stochastic process. For each trajectory, we
then simulated sample genealogies backward in time. Compared to simulating from the
original process and discarding unsuccessful runs, or even worse jointly simulating the po-
pulation dynamics and the whole genetically structure of the population forward in time,
our “forward-backward” approach is an advance, especially in terms of computational effi-
ciency. However, it still does not allow us to take advantage of many of the elegant features
of coalescent theory. For example, it appears impossible to derive a formula for the ex-
pected time to the most recent common ancestor of two sampled lineages. To solve this
problem, we need a joint model for demography and genealogies of successful populations.
Branching processes are a promising candidate since they essentially include all the ge-
nealogical information from the population. If we had a way to analyze sample genealogies
in stochastically varying populations, this would of course not only be of interest for study-
ing the genetics of introduced populations, but could be used to elucidate the footprints of
various ecological processes and interactions.

Eco-evolutionary dynamics

The eco-genetic feedbacks described in the General Introduction and investigated in Chap-
ter 1 can be seen as an example for eco-evolutionary dynamics. This term refers to situ-
ations in which evolutionary processes are fast enough to influence population dynamics,
which in turn influence selection pressures and thus feed back on evolutionary processes.
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Interestingly, some of the clearest examples for rapid evolution involve introduced species,
possibly because introduced species are often exposed to strong directional selection in their
new environment (Thompson, 1998). For instance, populations of Drosophila subobscura

introduced to the Americas in the late 1970s have since then evolved latitudinal clines in
wing size similar to those observed in the Old World (Huey et al., 2005). Such evolution-
ary change in a focal population can have ecological consequences at different levels of
biological organization: it can influence the population’s own demography, the population
dynamics of interacting species, or even affect ecosystem processes (Pelletier et al., 2009).

Despite the importance of eco-evolutionary dynamics in biological invasions, tractable
models are lacking. At first sight, the task of building an eco-evolutionary model—either
stochastic or deterministic—does not appear to be too difficult. Classical models in ecology
keep track of the size of a population while similar models in population genetics represent
the number of copies of an allele of interest. Although analytical formulas are available
only in special cases, we can always numerically compute quantities such as first-passage
probabilities or expected times. Thus, one might suppose that combining an ecological with
a population genetic model will be similarly straightforward. Indeed, it is often easy to write
down formulas for the transition rates (as we have done for the eco-genetic model in Chap-
ter 1). However, the fact that such models necessarily have at least two dimensions, one for
the population dynamics and at least one for the genetic configuration of the population,
makes it challenging to work with them. Even numerical solutions may be unfeasible due
to the enormous size of the state space. In the simple two-alleles model in Chapter 1, for
example, a community size of K resulted in a number of possible states of the eco-genetic
model that is of the order of K2 , and thus a transition rate matrix whose number of en-
tries is of the order of K4. There is an urgent need for more tractable models that include
both an ecological and a genetic/evolutionary dimension. The theory of multi-dimensional
diffusions (see e.g. Durrett, 2008, Ch. 8) might be one promising direction to explore.
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Conclusions

Using a stochastic modeling approach, we have explored in this dissertation how various
ecological factors influence the invasion success of introduced populations, their genetic di-
versity, and their impacts on interacting native species. Some of the factors we considered,
for example competition and the Allee effect, act by shaping the introduced population’s
average growth rate. Others, for example offspring-number variation and the temporal dis-
tribution of introduced individuals, determine the variability of population-size trajectories.
Overall, we can conclude that the expected time until an invasion process is completed de-
pends mainly on the presence and severity of difficult stages, i.e. stages with a negative
average growth rate. If there are difficult stages, it matters little whether or not there are
also easy stages with a positive average growth rate and how fast the population grows in
these stages. Thus, difficult stages tend to dominate the features of the invasion process. A
second important conclusion is that the relative magnitude of deterministic and stochastic
forces has reverse effects in easy vs. difficult stages of the invasion process. During easy
stages, the population progresses faster if deterministic forces are strong relative to stochas-
ticity. During difficult stages, however, a large amount of stochasticity relative to determin-
istic forces promotes invasion success. The relative strength of deterministic and stochastic
forces also influences how, i.e. on which population-size trajectories, the population moves
through difficult and easy stages, provided that it does. The population-size trajectory, in
turn, determines how much time the population spends in various population-size ranges
and thereby the strength of genetic drift it is exposed to. In several chapters of this disserta-
tion, we have seen that this causal chain can lead to—sometimes counterintuitive—results
for genetic variation and evolutionary potential of the introduced population as well as its
native competitor. In summary, stochasticity does not just lead to fluctuations around some
mean outcome, but can fundamentally affect even the qualitative behavior of a biological
system. As illustrated by the above suggestions for future research, the theory of stochastic
processes has many aspects that remain to be discovered for invasion biology. For these
future endeavors, the scientific community needs curious and fearless ecologists and math-
ematicians, or—even better—collaborations between the two.
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Glossary of important concepts with
references to key publications

additive genetic variance the part of genetic variance in quantitative traits that natural se-
lection can act on

Approximate Bayesian Computation (ABC) simulation-based method for parameter in-
ference, approximates the posterior distribution of parameters of interest through a
comparison of simulated and observed summary statistics (see Beaumont, 2010; Csil-
léry et al., 2010)

biological control attempt to reduce the population size of an undesired species, e.g. an
invasive species or an agricultural pest, by the introduction of natural enemies (see
e.g. Fauvergue et al., 2012)

birth-death process a Markov process in which transitions are only possible between
neighboring states, e.g. population dynamics with one birth or one death event at
a time (see Karlin & Taylor, 1975, p. 131-150)

bottleneck loss of genetic diversity due to a sudden reduction in population size (Nei et al.,
1975)

branching process Markov model for density-independent population dynamics; in each
generation every all individuals independently produce an identically distributed num-
ber of offspring (see Karlin & Taylor, 1975, Ch. 8)

critical population size parameter of models with strong demographic Allee effect; the
average per-capita growth rate is negative below the critical population size and pos-
itive above
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coalescent theory modeling framework in population genetics: the genealogy of a sample
from the population is constructed by following the ancestral lineages backwards in
time (Wakeley, 2009)

competition coefficient strength of interspecific competition relative to intraspecific com-
petition

demographic Allee effect positive relationship between population size and average per-
capita growth rate at small population sizes (Stephens et al., 1999)

demographic stochasticity fluctuations in population size due to randomness in the num-
ber of birth and death events and in sex ratio (Simberloff, 2009)

density dependence phenomenon that the average per-capita growth rate changes with po-
pulation density (or size)

difficult stage stage in the invasion process in which average per-capita growth rate is neg-
ative (Chapter 2 of this dissertation)

diffusion process Markov model in continuous time whose trajectories are almost always
continuous (Karlin & Taylor, 1981)

easy stage stage in the invasion process in which average per-capita growth rate is positive
(Chapter 2 of this dissertation)

eco-evolutionary dynamics ecological and evolutionary processes happening on the same
time scale and mutually influencing each other, thus leading to a closed feedback loop
(see e.g. Post & Palkovacs, 2009)

eco-genetic feedback consequences of changes in population size for patterns of genetic
diversity and the resulting feedback on population dynamics, for example through a
change in evolutionary potential (Chapter 1 of this dissertation)

effective population size the size of an idealized population (usually a Wright-Fisher po-
pulation) experiencing the same strength of genetic drift and sharing other properties
of genetic samples with the population of interest (Charlesworth, 2009)

environmental stochasticity fluctuations in demographic parameters such as birth and
death rate due to changes in the environment (Engen et al., 1998)
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extinction vortex synergistic feedback between different processes that can lead to a re-
duction in population size; can speed up extinctions (Gilpin & Soulé, 1986)

invasion process series of stages and transitions describing the progress from the arrival
of an introduced population to potentially becoming a large wide-spread population
(Blackburn et al., 2011)

invasion success used here as a general term for success at any stage in the invasion process

invasive species controversial concept that can stand either for introduced species in gen-
eral, or only for those that are abundant and widespread, or only for those that have
negative impacts; I therefore avoid it in this dissertation

joint site frequency spectrum (JSFS) generalization of the site frequency spectrum to a
situation where n1 lineages are sampled from one population and n2 lineages from
a second population: array containing the numbers of derived mutations that appear
i times in population 1 and j times in population 2 for i ∈ {1, . . . , n1} and j ∈
{1, . . . , n2} (Tellier et al., 2011)

lag time a time period during which an introduced population grows more slowly than it
does later (Crooks, 2005)

likelihood mathematical function describing how the probability of observed data depends
on model parameters

Markov model stochastic model whose behavior at any point in time only depends on the
current state of the system and not on its history

Markov process stochastic process in continuous time, usually with a discrete state space,
characterized by the rates at which different types of events occur, e.g. birth and death
events (see Karlin & Taylor, 1975, Ch. 4)

per-capita growth rate per-individual rate of population growth; in the case of non-overlapping
generations it can be approximated as (Nt+1/Nt)−1, where Nt is the population size
in generation t

propagule frequency the frequency at which introduction events happen, i.e. the average
number of introduction events per time unit
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propagule pressure quantifies the inflow of individuals of an introduced species to a cer-
tain location; often defined as a measure with two components: propagule size and
propagule frequency (Lockwood et al., 2005)

propagule size the (average) number of individuals per introduction event (Lockwood
et al., 2005)

site frequency spectrum vector with the numbers of derived mutations that appear 1, . . . , n

times in a sample of size n (Wakeley, 2009, p. 102-106)

strong demographic Allee effect a demographic Allee effect in which the average per-
capita growth rate is negative at small population sizes (Taylor & Hastings, 2005)

weak demographic Allee effect a demographic Allee effect in which the average per-capita
growth rate is reduced but still positive at small population sizes (Taylor & Hastings,
2005)
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