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1. Introduction 

 

Pioneering technical developements like the supply of electrical energy and the use of black 

body radiators within incandescent lamps dramatically changed life in industrialized 

countries. The possibility of generating light from electrical energy is the basis for modern 

life, which is characterized by the isolation of the activity rhythm and daylight. However, the 

functional principle of incandescent lamps has not changed significantly during the last 

century. The major disadvantage of such lamps is their low power efficiency, which means 

that up to 95 % of the electrical energy is converted to heat (glowing tungsten wire).[1] 

Compact Fluorescent Lamps (CFLs) exhibit much higher power efficiency as their functional 

principle is completely different from that of incandescent lamps. Emitted ultraviolet (UV) 

light of an activator (typically Hg) is absorbed and re-emitted (converted to visible light) by 

solid-state materials (phosphors) at low process temperatures. The European Union (EU) has 

initiated regulatory steps on the successive ban of low efficient incandescent lamps and their 

replacement by CFLs.[2] This project requires strong efforts since already in 2006 

approximately 5.1 billion incandescent lamps existed in EU households. Based on the data for 

2006, referring to electric power consumption of all households in the EU, the replacement 

should result in saving of 39 billion kWh per year. Nevertheless, in 2011 still more than 200 

million incandescent lamps were sold in the EU.[3] This might be due to the fact that CFLs 

contain toxic Hg and people are skeptical to use them in their households. Also potential 

waste-disposal problems are frequently discussed. Phosphor-converted light-emitting diodes 

(pc-LEDs) are an alternative to CFLs for the replacement of incandescent lamps  

(see Figure 1).  

 

 
Figure 1. Incandescent lamp (a), Compact Fluorescent Lamp (CFL; b), and retrofit pc-LED bulb (c). In order to 
facilitate the exchange of incandescent lamps similar lamp holders (here E 27) are attached to the other devices. 
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These relatively new devices on the illumination market show immense economical and 

ecological potential and the growth of this industrial section in the last few years is very 

impressive. Based on a current McKinsey survey, the ratio of LEDs on the overall value of 

the lighting market will raise from 12 % in 2011 to over 60 % in the year 2020.[4] The LED 

lighting market volume is anticipated to be around 64 billion € in 2020, which corresponds to 

a growth of about 700 % compared to 2011. For the company Philips Lumileds for example, 

the LED-based sales volume increased in the first quarter of 2013 by 38 % compared to the 

whole year 2012. This growth is reflected in sales of around 2 billion € during this time 

period, showing the great economical potential of the LED market. Since LEDs exhibit 

identical or even higher power efficiencies compared to CFLs and do additionally not contain 

toxic Hg, they are attractive candidates for the replacement of incandescent lamps also from 

an ecological point of view. Due to the non-toxic components, the long-life character and 

energy-saving potential, LEDs already find high consumer acceptance.  

The discovery of efficient blue emitting GaN-LEDs by Nakamura [1,5] was the basis for  

pc-LEDs. The functional principle of pc-LEDs is similar to that of CFLs, meaning the 

conversion of high-energetic radiation (here: UV to blue light from a GaN semiconductor 

pump LED) to light within the visible spectrum (lower energy). White light is generated by 

additive color mixing on top of such devices. Commercially available LEDs often contain 

either one yellow emitter or a combination of green-yellow and orange-red emitters  

(see Figure 2) for the conversion. 

 

 
Figure 2. Schematic view on the functional principle of a 2pc-LED with green and red emitting phosphors on top 
of a GaN semiconductor pump LED, placed on metal substrate with electronic contacting.[6] 
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The light conversion is based on the excitation of incorporated rare-earth ions (activator ions, 

typically Eu2+, Eu3+, Ce3+, Tb3+, or Yb2+) in the solid-state material (host lattice). For e.g. 

Eu2+, an electronic excitation transfers an electron from a 4f level to a 5d level. When 

relaxation to the ground state takes place, a part of the absorbed energy is re-emitted as visible 

light. The emission is therefore related to a parity allowed 4f6(7F)5d1  4f7(8S7/2) transition. 

The relative position of the ground state and excited state potential mainly depends on the 

possibility for distortion of the excited activator ion in the crystal structure and on the 

coordination sphere of the activator ion itself.[7] The difference between excitation-band 

maximum and emission-band maximum is called Stokes shift. As it depends on the type of 

chemical bonding of the activator ion to the surrounding ligands (nephelauxetic effect), this 

effect is most pronounced in case of highly covalent bonding. The crystal field splitting of the 

5d levels as a consequence of the ligand-field strength is another impact on the relative 

energy-level positions (see Figure 3). Since the excitation of Eu2+ dramatically changes the 

electronic structure, a pronounced Stokes shift is observable. The probability density function 

exhibits maximum overlap to several energy levels, leading to a number of allowed 

transitions, i.e. a broad emission band. In contrast, a line emission for the parity forbidden f-f 

transition is observed for Eu3+ luminescence due to a shielding effect of noninvolved 5d 

levels. In this case, the electronic structure does not change significantly during the excitation 

process.  

 

 
Figure 3. Schematic diagram of excitation and emission process for Eu2+ regarding nephelauxetic effect in 
dependence of Eu2+-ligands in the crystal structure and splitting of 5d levels in dependence of ligand-field 
strength.[8]  
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In addition to the desired color emission, phosphors in long-life pc-LEDs additionally have to 

fulfill various specifications like broadband emission, thermal and chemical stability as well 

as high quantum efficiency (QE).[9,10] The latter value is often affected by thermal quenching 

because of strong electron-phonon coupling. This means that the absorption of a high 

energetic photon, followed by the electron excitation of an activator ion, does not result in the 

re-emission of a converted photon but just in the excitation of phonons (lattice vibrations). 

Such non-radiant transitions therefore decrease the conversion efficiency. Rigid host lattices 

often suppress this kind of quenching. (Oxo)nitridosilicates are promising host lattices for 

doping with rare-earth activator ions and the use in pc-LEDs, because they often comply with 

all requirements described. Their crystal structures are related to those of typical oxosilicates. 

The fundamental building units in these solids are tedrahedra on the atomic scale, where Si as 

central atom is coordinated by four O atoms. Liebau classified oxosilicates in dependence of 

the connectivity of these tetrahedra.[11] The degree of condensation (quantified by the atomic 

ratio Si : O) can in principle be derived from the materials’ stoichiometric formula (see 

Figure 4). The anion [SiO4]
4– represents discrete, i.e. non-condensed tetrahedra (e.g. in the 

orthosilicate Sr2SiO4). An increasing degree of condensation leads to the following anion 

formula units are [Si2O7]
6– (group-silicates), [SiO3]

2– (ring- or chain-silicates), and layered 

silicates showing anion formula of [Si2O5]
2–. 

 

 
Figure 4. Schematic view on silicate substructures in oxosilicates with corresponding formula units. 
 

If all tetrahedra are interconnected by common vertexes, a three-dimensional network is built 

up, e.g. in SiO2. Almost none of the natural silicates contain nitrogen. This is due to the fact 

that the Si-O bond is energetically favored compared to the analogous Si-N bond.[12] 

Additionally, the nitrogen molecule (N≡N) is more stable in comparison to the oxygen 
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molecule (O=O). Dissociation of N2 is therefore energetically unfavorable and the formation 

of nitridosilicates is hindered in the presence of oxygen. When silicates are synthesized under 

laboratory conditions in reductive atmosphere using N2 or forming gas at high temperatures, 

nitride containing compounds are accessible leading to the material class of 

(oxo)nitridosilicates.[10] The main difference between typical oxosilicates and 

(oxo)nitridosilicates is the connectivity of the tetrahedra. In oxosilicates, O atoms occupy 

vertex positions of the SiO4 tetrahedra which connect up to two tetrahedra. In contrast, N 

atoms typically bridge up to three tetrahedra meaning that many variations of silicate 

substructures are possible. In e.g. MYb[Si4N7] (M = Eu, Sr, Ba)[13-15] the N atoms bridge even 

four tetrahedra, which leads to star-shaped units (see Figure 5).  

 

 
Figure 5. Crystal structure of MYbSi4N7 (M = Eu Sr, Ba): a) viewed approximately along sheets of highly 
condensed dreier rings [100]; [SiN4] layers gray, metal ions large black and light gray spheres, nitrogen small 
black spheres, b) [N(SiN3)4] building block with N[4].[10,13-15] 
 

Related to the structural variety within the class of (oxo)nitridosilicates and the described 

relationships between the material properties on the crystal structure and the composition, the 

emission wavelength of Eu2+-doped (oxo)nitridosilicates is tunable over a wide range. High 

QEs can be achieved with these materials since electron-phonon coupling is suppressed in the 

case of a high degree of Si(O/N)4 tetrahedra condensation (rigid host lattice). The most 

prominent representative of a Eu2+-doped silicate host lattice, found in our research group, is 

Sr2Si5N8.
[16] This nitridosilicate is made up of a three-dimensional network structure and is 

already used in commercial pc-LED applications. Sr2Si5N8:Eu2+, as well as the isotypic 

Ba2Si5N8:Eu2+, exhibits intense luminescence in the orange to red region of the visible 

spectrum while excited by UV to blue light (see Figure 6).[17] The two crystallographic 
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independent Sr-sites are exclusively coordinated by N, while the coordination spheres can be 

described as pentagonal or hexagonal pyramids, respectively.  

 

 
Figure 6. LMU written on black paper using Sr2Si5N8:Eu2+ phosphor excited by UV to blue light.[8]  
 

In our group, the oxonitridosilicate SrSi2O2N2
[18-20] was discovered as a consequence of an 

oxygen contamination during the synthesis of Sr2Si5N8
[16]. Today, common synthesis 

strategies for SrSi2O2N2 of high purity are the carbonate and orthosilicate route.[21] In analogy 

to Sr2Si5N8, the Sr2+ atoms in SrSi2O2N2 can be substituted by Eu2+ due to comparable ionic 

radii.[22] Here Eu2+ is coordinated by O ions in a trigonal prismatic way. According to the less 

pronounced nephelauxetic effect (lower covalency of Eu-O bond compared to Eu-N), a blue 

shift of the emission is observed for SrSi2O2N2:Eu2+ in comparison to that of 

Sr2Si5N8:Eu2+.[23,24] SrSi2O2N2:Eu2+ is therefore a phosphor with intense luminescence in the 

yellow to green spectral region. The combination of Sr2Si5N8:Eu2+ and SrSi2O2N2:Eu2+ as 

phosphors in a highly efficient warm-white pc-LED has been suggested.[6] In addition to the 

pure Sr-compound, phases with composition Sr1-xBaxSi2O2N2 (0 ≤ x ≤ 1) are also very 

attractive candidates for host lattices (details on the crystal structures of Sr1-xBaxSi2O2N2 

phases can be found in section 2.1). Eu2+-doped samples show intense emission in the blue-

green to green-yellow spectral region.[25-31] Nevertheless, there are still some questions to 

explore concerning these phases, e.g. the determination of crystal structures, the phase pure 

synthesis in dependence of the synthesis route and the establishment of structure-property 

relations.  

In this thesis, the real structures and luminescence properties of the phases 

Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) are investigated in detail, clarifying the question if they 

qualify for the use as phosphors in commercial pc-LEDs. It is discussed in detail how the 

deviations from an ordered crystal structure affect the luminescence properties of these 
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outstanding materials. Besides answering these questions, other silicate-analogous 

luminescent compounds are discussed with respect to the crystal structure and luminescence 

properties. Such materials are also of high interest because they might increase the variety of 

available phosphor materials for industrial applications. The investigations in this thesis help 

to understand in detail the impact of e.g. atomic arrangement, crystal structure, structure 

defects, band gap, synthesis route and composition of the host lattice on materials properties. 

Additionally, these investigations on highly efficient phosphors impressively show that 

sometimes only the complementary use of X-ray diffraction, electron microscopy, and 

spectroscopic methods leads to reliable structure models. These are necessary since only a 

comprehensible understanding of structure-property relationships enables scientists to 

establish strategies for the systematic improvement of the material properties. 
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Abstract 

Due to their excellent luminescence properties in the blue-green to green-yellow spectral 

region, oxonitridosilicates Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) are promising conversion 

materials for application in phosphor-converted high-power LED devices. In order to 

understand the properties and thus to fully exploit the potential of these materials, detailed 

knowledge of corresponding (local) crystal structures is indispensable. Detailed insights into 

real structures have been achieved by combining X-ray diffraction and electron-microscopy 

methods. A major reason for the excellent luminescence properties of the phases 

Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) is the rigid silicate substructure built up of two-

dimensionally condensed SiON3 tetrahedra. The general topology of these layers is analogous 

for all members. However, there is no complete solid-solution series. Crystal-structure 

determination was frequently not straightforward because several real-structure effects had to 

be considered. The relative orientation of the silicate layers and the metal-atom layers inserted 

between them can differ without changing the chemical composition. As a consequence, 

polytypes are formed. The differentiation between such closely related structures was only 

possible by a thorough analysis of crystallographic data. The same applies for phases which 
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differ in their composition as all Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) phases are very similar. The 

literature on these compounds is critically discussed with respect to phase analysis and 

structure determination. Different synthesis routes are reviewed and the results of 

luminescence investigations are discussed in this contribution. Beyond thermal as well as 

chemical stability and high transparency, electron-phonon coupling is effectively suppressed 

in Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) phases. Therefore, primary UV to blue light (GaN based 

semiconductor LEDs) is efficiently converted into visible components of the spectrum. 

Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) phases are therefore promising oxonitridosilicate phosphors 

for application in LED industry.  

 

Keywords: Structure-Property Relationships, Solid-State Lighting, Oxonotridosilicates 

 

 

2.1.1 Introduction 

 

The limited amount of primary energy resources (fossil fuels) in times of dramatic increase of 

worldwide energy demand is one of the major challenges of our society. Besides 

improvement of existing alternative energy sources (solar power, wind, etc.) and the 

development of new technologies, it is important to use the available energy in the most 

efficient way possible. It is up to science to search for new methods and materials to achieve 

this goal. For example, huge amounts of electric energy can be saved by replacing highly 

inefficient incandescent lamps by phosphor-converted light-emitting diodes (pc-LEDs). 

Therefore, several governments have already taken measures to ban light bulbs.[1-6]  

There are various types of pc-LEDs which mainly differ in the number, arrangement and 

composition of luminescent solid-state materials (phosphors).[3,7-12] A number of phosphors 

emit light within the whole visible spectrum.[4,8-10,13-18] They are used in combination with a 

semiconductor pump LED. For these long-life light-conversion devices, phosphors have to 

fulfill various specifications like broadband emission, thermal and chemical stability, as well 

as high quantum efficiency (QE).[19,20] Alkaline earth (oxo)nitridosilicates are promising host 

lattices which often comply with all these requirements. These refractory materials have a 

high chemical stability, a large band gap and they show no absorption in the visible.[20] 

Because of their structural variety, the emission signal is tunable over a wide range. Pc-LEDs 

using silicate-based phosphor materials with QE close to 100 % are therefore the most 

efficient way to convert electric energy to visible light. For efficient conversion of primary 
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UV to blue light into the yellow-green region of the visible spectrum, MSi2O2N2:Eu2+ phases 

(M = Ca, Sr, Ba) are specifically well suited.[21-23]  

CaSi2O2N2 (space group P21 (no. 4), V = 1028.3 Å3), for instance, exhibits an uncommon 

stoichiometric formula with respect to the fact that it is a simple layered silicate. The atomic 

ratio Si : (O,N) = 1 : 2 is rather indicative for a 3D network structure of all-side vertex sharing 

Si(O,N)4 tetrahedra.24 However, the formula results because the N-atoms are bridging three 

SiO[1]N3
[3] tetrahedra and form dreier rings in the silicate layers which can be described in 

terms of condensed dreier single chains (see Figure 1).  

 

 
Figure 1. Crystal structure of CaSi2O2N2 viewed along [100] (a), [001] (b, alternating orientation of silicate 
layers along stacking direction), and [010] (c). Tetrahedra are drawn in gray, indicating O (small black spheres) 
and N (small white spheres) atoms, respectively. Ca-ions between the silicate layers are shown as large gray 
spheres. Dreier single chains within the silicate layers are indicated by a dashed black line (c). 
 

The structural motif of dreier rings within the silicate partial structure can be found in various 

(oxo)nitrido(alumo)silicate materials and might be one reason for their stability.[25-31] The 

presence of O in CaSi2O2N2 was confirmed by 29Si solid-state NMR, interpretation of metal-

ligand distances, electrostatic calculations and chemical analysis.[24,32-34] As their 

luminescence properties are more interesting than those of CaSi2O2N2:Eu2+ (emission 

wavelength (λem) = 560 nm, full width at half maximum (FWHM) ~100 nm),[21,22]  

Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) phases have been investigated in much more detail. In this 

contribution, a broad range of reports on Sr1-xBaxSi2O2N2:Eu2+ are critically discussed. The 

focus is on crystal structure, syntheses, and the influence of the substitution of Sr2+ by Ba2+ on 

the luminescence properties. We attempt to sort out imprecise assumptions present in 

literature referring to structure-property relations and summarize the state-of-the-art 

knowledge about Sr1-xBaxSi2O2N2:Eu2+ phosphors. 
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2.1.2 Crystal Structures of MSi2O2N2 (M = Sr, Ba) 

 

2.1.2.1 Crystal Structure of SrSi2O2N2 

 

2.1.2.1.1 History of the Structure Determination of SrSi2O2N2 

 

In 1994, Zhu et al. first reported a material with nominal composition SrSi2O2N2.
[35] Based on 

diffraction data they claimed a high-temperature (X2; V = 965.3 Å3) and a low-temperature 

modification (X1; V = 748.3 Å3), both exhibiting orthorhombic unit cells, yet with different 

metrics. In the context of the structure determination of CaSi2O2N2,
[24] SrSi2O2N2 was 

reported to exhibit layers that can be viewed as a cutout of the structure of the mineral sinoite 

(Si2N2O). Concluding from luminescence measurements on Eu2+-doped samples, the crystal 

structures of CaSi2O2N2 and SrSi2O2N2 were assumed to be closely related to each other. 

Apparently, Sr- as well as Ca-ions are predominantly coordinated by O-ions in the 

corresponding crystal structures causing an emission signal in the yellow-green spectral 

region. The potential application of SrSi2O2N2:Eu2+ as a green phosphor in an all-nitride pc-

LED also confirms earlier results.[36] However, the X-ray powder pattern was published later 

by Li et al.[22] Latter authors assume that SrSi2O2N2 is monoclinic and crystallizes in space 

group P21/m with V = 1234.67 Å3. The corresponding PXRD pattern was fitted using the Le 

Bail method without a structure model. Deviations from the nominal composition SrSi2O2N2 

have been postulated in this work (see also chapter 2.1.2.1.3). Finally, investigations on 

EuSi2O2N2 shed light on the structure of SrSi2O2N2. Because of the similar ionic radii of Eu2+ 

and Sr2+,[37] the crystal structures are expected to be isotypic or at least very closely related. 

The PXRD pattern of a new “europium-silicon-oxynitride” EuSi2O2N2 
[38] resembled the one 

of SrSi2O2N2 although different unit-cell metrics (V = 1756.56 Å3) were reported. 

Additionally, a different monoclinic space group (P21/a) was deduced from reflection 

conditions. Later, Stadler et al. presented a single-crystal structure determination of 

EuSi2O2N2 which was complemented by electron-microscopy methods.[39] The triclinic 

crystal structure (space group P1, V = 360.19 Å3) is similar to that of CaSi2O2N2, representing 

a layered material although the stoichiometric formula is more indicative for a 3D silicate 

network. The crystal structure was confirmed by Rietveld refinement and simulations of high-

resolution transmission electron-microscopy (HRTEM) images. The utilization of electron-

microscopy methods led to the characterization of various real-structure effects like twinning, 

anti-phase domain boundaries and presence of intergrown domains with different orientations. 
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The combination of X-ray diffraction and electron-microscopy methods finally showed that 

the crystal structure of SrSi2O2N2 (V = 358.72 Å3) is isotypic to that of EuSi2O2N2.
[40] The 

presence of various real-structure effects and their impact on diffraction patterns and HRTEM 

images is shown which also confirms the triclinic structure (space group P1). Later reports on 

a monoclinic crystal structure of SrSi2O2N2 claim space group P21/m;[41] however, lattice 

parameters are completely different from those reported earlier by Li et al.[22] In further 

investigations these results could not be confirmed. Yet, the latest investigation on the crystal 

structure of SrSi2O2N2 
[42] revealed a monoclinic modification of SrSi2O2N2 (space group P21; 

V = 725.3 Å3), significantly different from the triclinic one. The structure model was derived 

from single-crystal data and confirmed by Rietveld refinement and simulations of electron-

diffraction and HRTEM images. 

 

 

2.1.2.1.2 Description of the Crystal Structure of SrSi2O2N2 

 

As various sets of lattice parameters have been reported for SrSi2O2N2 (and EuSi2O2N2) as 

described in the previous section, it is obvious that determination of unit-cell metrics is not 

trivial. The structural parameters from EuSi2O2N2 single-crystal data, which have been 

confirmed by various methods,[39] describe a consistent and reliable structure model. 

Although noncentrosymmetric triclinic structures are rare, it is unambiguous that EuSi2O2N2 

crystallizes in space group P1 with a = 7.095(1), b = 7.246(1), c = 7.256(1) Å, α = 88.69(2), 

β = 84.77(2), γ = 75.84(2)°, V = 360.19(9) Å3. Based on this result, a comprehensive study 

showed that triclinic SrSi2O2N2 is isotypic to EuSi2O2N2 and exhibits very similar lattice 

parameters: a = 7.0802(2), b = 7.2306(2), c = 7.2554(2) Å, α = 88.767(3), β = 84.733(2), 

γ = 75.905(2)°, V = 358.73(2) Å3.[40] Both layered oxonitridosilicates are built up of 

alternating metal-ion and silicate layers stacked along [010]*. The structures exhibit various 

real-structure effects like twinning, stacking disorder or orientated intergrowth (see section 

2.1.2.1.4). The metal atoms are arranged in corrugated, pseudohexagonal sheets. The silicate 

layers consist of highly condensed SiO[1]N3
[3] tetrahedra forming zweier single chains – as 

opposed to dreier single chains in CaSi2O2N2 – as a consequence of their up-down sequence 

(see Figure 2).  
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Figure 2. Crystal structure of SrSi2O2N2 viewed along [101] (a, triclinic modification, uniform silicate layer 
orientation in consecutive layers); [101] (b, monoclinic modification, alternating orientation of consecutive 
silicate layers); [010] (c). Tetrahedra are drawn in gray, indicating O (small black spheres) and N (small white 
spheres) atoms, respectively. Sr-ions between the silicate layers are shown as large gray spheres. Zweier single 
chains within the silicate layers are indicated by a dashed black line (c). 
 

Oxygen and nitrogen have very similar X-ray atomic form factors. As a consequence, reliable 

differentiation between O and N is not trivial by structure determination on the basis of X-ray 

diffraction data. Accordingly, it has been accomplished by analyzing bond lengths, 

considering the position of luminescence emission, and following Pauling’s rules. Oxygen 

ions favor terminal positions instead of those bridging three neighboring Si atoms. Threefold 

bridging N[3]-atoms are the reason why compounds of stoichiometric formula MSi2O2N2 

(M = Ca, Sr, Eu, Ba) exhibit layered silicate substructures instead of a 3D network usually 

found for an atomic ratio Si : (O/N) = 1 : 2. Recently, a further monoclinic modification of 

SrSi2O2N2 (space group P21, see Figure 2) was published with lattice parameters of 

a = 7.1036(14), b = 14.078(3), c = 7.2833(15) Å, β = 95.23(3)°, and V = 725.3(3) Å3.[42] The 

corresponding unit cell is enlarged by a factor of approximately 2 along the stacking direction 

[010]* in comparison to the triclinic phase (see also section 2.1.2.4). 

 

 

2.1.2.1.3 Critical Discussion of the Literature on SrSi2O2N2 

 

The experimental positions of characteristic reflections in the PXRD pattern of the high-

temperature phase X2 of a sample SrO:Si2N2O, as reported by Zhu et al.[35] (X2; d200  = 7.04, 

d400 = 3.520, d022 = 2.826 Å), can be assigned to typical reflections of triclinic SrSi2O2N2 as 

reported by Oeckler et al.[40] (d010 = 7.02, d020 = 3.513, d-210 = 2.821, d220 = 2.820 Å). The 

unit-cell volume according to the orthorhombic indexing by Zhu et al. differs by a factor of 

2.7 from the value reported by Oeckler et al.[35,40] The monoclinic indexing of Li et al.[22] 

results in a huge amount of theoretical reflection positions. Most of them are not observed in 
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the experiment, while the presented PXRD pattern is analogous to the one shown by Oeckler 

et al.[40] Thus, the samples are comparable, but monoclinic indexing of PXRD pattern with 

large lattice parameters is not significant in this case. Variations of the chemical composition 

depending on the synthesis strategy have been assumed; distinguishing oxygen- (δ = 0) and 

nitrogen-rich (δ = 1) samples according to formula SrSi2O2-δN2+2/3δ.
[22] This was deduced from 

reflection intensities in the corresponding PXRD patterns. Yet, samples with different δ 

exhibit very similar PXRD patterns. The intensity differences are limited to just two 

reflections (d040 = 3.53 Å (25.35° 2θ) and d400 = 2.83 Å (31.69° 2θ)). However, the atom form 

factors of O and N are similar and contribute little to the scattered intensity, which is 

dominated by Si and Sr atoms. Furthermore, nitrogen-rich compounds SrSi2O2-δN2+2/3δ (e.g., 

with δ = 1) would contain fewer anions and therefore require deviations from the present 

silicate substructure.[39,40,42] In electroneutral SrSi2O2N2 (δ = 0) four anions per formula unit 

are required for the layered structure described above. Electroneutral nitrogen-rich 

SrSi2ON2+2/3 formally contains 11/3 anions per formula unit instead of 12/3 = 4. This means 

that in every third tetrahedron one corner would be absent which is inconsistent with the 

refined structure model.[39,40,42] The intensity variation observed in PXRD patterns is more 

likely to be due to preferred orientation of the crystallites (texture) as suggested by the indices 

of the respective reflections. They can be correlated to the stacking direction of metal-atom 

and silicate layers.[43] The PXRD pattern was claimed to be close to that of the X1-phase (low-

temperature phase); however, the positions of the strongest observed reflections resemble 

those of the X2-phase (high-temperature phase). Additionally, characteristic d020 = 7.08 Å is 

also similar to reported values, therefore all three authors (Zhu, Li and Oeckler) investigated 

the same phase.[22,35,40] An atomic ratio O : N > 1 in the silicate substructure as reported by 

Anoop et al.[44] would require cation vacancies, for which no experimental evidence was 

reported. In contrast to “nitrogen-rich samples” such compounds would contain more than 4 

anions per sum formula.  

In principle, similar assumptions have been made for EuSi2O2N2, whose PXRD pattern was 

also indexed with a large monoclinic unit cell.[38] Unit-cell volume is about 5 times that 

derived from single-crystal data.[39] In contrast to SrSi2O2N2 (P21/m)[22] the space group was 

determined to be P21/a; however, e.g., reflection 30-5 with I/I0 = 20 % should then be absent. 

In the PXRD pattern, preferred orientation can be observed unequivocally regarding relative 

intensity of the first reflection.[43] 
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2.1.2.1.4 Interpretation of Diffraction Patterns   

 

Structure investigations on Sr/EuSi2O2N2 need to consider a variety of effects. Reflections are 

not single indexed due to pronounced overlap problems as a consequence of triclinic unit-cell 

metrics. Therefore, the determination of lattice parameters from the strongest reflections in 

PXRD data is ambiguous. Techniques which take into account 3D reciprocal space, such as 

single-crystal X-ray diffraction or selected-area electron diffraction (SAED) are reliable in 

such cases. Yet, the analysis of such diffraction patterns is complicated by the fact that 

triclinic SrSi2O2N2 (also EuSi2O2N2) tends to form twin domains which involve overlapping 

reflections.[39,40] Due to the special values of lattice parameters, α* is close to 90° so that 

reflections with h = 2n overlap completely whereas reflections with h =2n + 1 show additional 

reflections from the other twin individual. If this is not recognized, a larger unit cell of higher 

symmetry is found. Additionally, diffuse streaks in rows where reflections of both twin 

individuals do not overlap are frequently observed indicating stacking disorder. Structure 

determination was therefore accomplished using crystals with large twin domains and thus 

negligible diffuse scattering. Twinning which corresponds to a 180° rotation around [010]* 

(twin law (-100, -½10, 00-1) was taken into account. The twinning is due to the higher 

symmetry of the metal-ion and silicate layers, respectively. Rotated metal-ion layers fit into 

silicate layers in the same way as the original ones. Diffuse scattering results from a large 

number of parallel twin and / or anti-phase boundaries which can be viewed as stacking faults. 

The average crystal structure of SrSi2O2N2 derived from Rietveld refinement exhibits 

disordered metal-atom positions while the alternative set of cation positions is occupied with 

a probability of 20 %.[40] This affects the diffracted intensities significantly so that phase 

analysis should involve the refinement of structure data. Preferred orientation can be 

recognized by comparing the relative intensities of 010, 020 and -210 / 220 (overlap) 

reflections and should be included in Rietveld refinements. The interpretation of SEAD 

patterns can be problematic if oriented intergrowth is present and, e.g., zone axis orientations 

[001] and [100] superimpose. Such intergrowth is possible due to a pseudotetragonal 

arrangement of O-ions in the silicate substructure so that metal ions fit onto silicate layers in 

different ways. If powder samples contain triclinic and monoclinic SrSi2O2N2 polytypes, 

some reflections in PXRD patterns (14.0, 17.8, 20.9, 22.7, and 29.4° 2θ, Cu-Kα1 radiation) can 

exclusively be assigned to monoclinic SrSi2O2N2.
[42] In single-crystal X-ray and SAED 

patterns, both polytypes can clearly be distinguished based on their translation periods along 
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the stacking direction [010]*. The platelet-shape morphology occasionally requires 

embedding the powder for TEM investigations in order to avoid preferred orientation. 

 

 

2.1.2.2 The Crystal Structure of BaSi2O2N2 

 

A closer look at BaSi2O2N2 is helpful to understand the structure of mixed Sr1-xBaxSi2O2N2 

(0 ≤ x ≤ 1) phases (see section 2.1.2.3). BaSi2O2N2 was first characterized by indexing a 

PXRD pattern using the strongest reflections.[22] A unit cell with monoclinic metrics 

(a = 14.070(4), b = 7.276(2), c = 13.181(3) Å, β = 107.74(6)°, V = 1285.23 Å3) was assumed. 

However, the crystal structure of BaSi2O2N2 as determined using X-ray diffraction and 

electron-microscopy methods combined with neutron powder diffraction [45] was described 

with an orthorhombic unit cell with a = 14.3902(3), b = 5.3433(1), c = 4.8325(1) Å, 

V = 371.58(1) Å3. The volume differs by a factor of about 3.5 from the one reported earlier. 

X-ray data yielded a structure model with disordered tetrahedra in the silicate layers (space 

group Cmcm). Two ordered models can be derived as maximum-degree-of-order polytypes in 

Pbcn and Cmc21, respectively. Neutron data indicate that the one in Pbcn is dominant; 

however, electron diffraction indicates stacking disorder. These results were also confirmed 

by theoretical investigations.[46] Some additional reflections in PXRD pattern of supposedly 

pure BaSi2O2N2, that are not expected assuming this structure,[47] could not be explained by 

an improved model. It would be interesting if, similarly to SrSi2O2N2, they originate from 

real-structure effects or have to be attributed to a possibly unknown impurity. Investigations 

on Eu-doped BaSi2O2N2 for sensor applications [48] concluded that a significant fraction of 

domains crystallize in space group Cmc21 which exhibits the polar axis required for 

mechanoluminescence. Surface and interface effects might also account for this effect. In 

analogy to SrSi2O2N2 and EuSi2O2N2, BaSi2O2N2 
[45] also represents a layered 

oxonitridosilicate with alternating metal-ion and silicate layers (see Figure 3). The metal-ion 

layers are planar in contrast to the corrugated ones in the Sr- and Eu-phases, which explains 

the higher symmetry of the Ba-phase. The silicate layers show the same tetrahedra topology 

to those found in SrSi2O2N2 and EuSi2O2N2. 
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2.1.2.3 Crystal Structures of Mixed Sr1-xBaxSi2O2N2 (0 ≤ x ≤ 1) Phases 

 

The structures of mixed Sr1-xBaxSi2O2N2 (0 ≤ x ≤ 1) phases are intriguing since no complete 

solid-solution series can be present due to the different structures of the “end members”. The 

structure determination needs to take into account real-structure effects mentioned above like 

twinning, intergrowth or stacking disorder which may result in diffuse scattering. Consistent 

with literature, domains with the structure of triclinic SrSi2O2N2 are present in 

Sr1-xBaxSi2O2N2 phases even for samples with high Ba2+-content.[21,23,44,49-51] Ba-containing 

solid-solutions are corroborated by reflections that are shifted to smaller angles when larger 

Ba2+ is integrated into the crystal structure.[37] For Sr0.5Ba0.5Si2O2N2 the largest relative 

increase of lattice parameters has been observed for b (~ [010]*),[43] i.e., along the stacking 

direction which is typical for layered structures. The interpretation of details in PXRD 

patterns becomes more complicated if Ba2+ is integrated into the structure. The probability of 

anti-phase boundaries increases from 20 % in SrSi2O2N2 to a value close to 50 % in 

Sr0.5Ba0.5Si2O2N2 which, of course, significantly affects diffraction patterns. The pseudo-B-

centered superposition structure means that reflections with h + l = 2n + 1 are weakened, 

depending on the degree of disorder which varies for different crystals in the powder sample. 

As a consequence of preferred orientation, the shifted reflections and the changed overlap of 

reflections due to the anisotropic behavior of lattice parameters upon Ba doping, PXRD 

patterns can look completely different for isotypic compounds. The increasing amount of 2D 

extended anti-phase boundaries does not only affect Bragg reflection intensities. The 

pronounced short-range order also leads to diffuse streaks interconnecting Bragg reflections 

in SAED patterns. In PXRD patterns, they appear as asymmetric maxima. Small twin 

domains (coherent interference of scattered waves) require a complex layer disorder model to 

adequately describe the stacking sequence statistics in powder samples. If the Ba content in 

Sr1-xBaxSi2O2N2 approaches x = 0.75, phase separation into Sr-rich and Ba-rich compounds is 

observed.[52] Due to the solid-solution series Sr1-xEuxSi2O2N2 (0 ≤ x ≤ 1), the maximum Ba 

content of 75 mol% must be related to the overall metal content in Eu-doped samples, not 

only to the Sr-content.50 Whereas Sr-rich compounds (Ba amount <75 mol%) crystallize in 

the triclinic SrSi2O2N2 structure type, the Ba-rich compound Sr0.25Ba0.75Si2O2N2 adopts a 

distorted variation of the BaSi2O2N2 structure type.[52] Such domains show orientated 

intergrowth, the directions [001] of the distorted BaSi2O2N2 structure type and [101] of the 

triclinic SrSi2O2N2 structure type coincide. The crystal structure of Sr0.25Ba0.75Si2O2N2 

combines the unit-cell metrics of the BaSi2O2N2 type with corrugated metal-ion layers, found 
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in the SrSi2O2N2 type. “Single” crystals show an intergrown domain structure. Distinguishing 

reflections that exhibit contributions from both crystal-structure types, the crystal structure of 

Sr0.25Ba0.75Si2O2N2 could be refined in the orthorhombic space group Pna21 with 

a = 5.470(2), b = 14.277(3), c = 4.791(1) Å, V = 374.2(2) Å3 with Sr/Ba sharing the metal-ion 

position. In contrast to Sr1-xBaxSi2O2N2 phases that exhibit the triclinic SrSi2O2N2 structure 

type, HRTEM images and simulations thereof indicate the presence of short-range cation 

ordering in Sr0.25Ba0.75Si2O2N2, implying symmetry reduction to P1. In contrast to these 

detailed investigations, Ba doping of monoclinic SrSi2O2N2 has not been reported so far. 

 

 

2.1.2.4 Similarities and Differences in Sr1-xBaxSi2O2N2 (0 ≤ x ≤ 1) Phases 

 

Based on the detailed knowledge of the crystal structures of Sr1-xBaxSi2O2N2 phases 

(0 ≤ x ≤ 1) the corresponding structures can be compared taking into account the increasing 

Ba2+-content (see Figure 3). 

The triclinic polymorph of SrSi2O2N2 exhibits disordered corrugated metal-ion layers between 

silicate layers with uniform orientation.[40] This is not the case for monoclinic SrSi2O2N2 

where consecutive silicate layers are rotated by 180° against each other.[42] This situation can 

be viewed as a “chemically twinned” form of triclinic SrSi2O2N2. Each other layer is rotated 

whereas twin boundaries in SrSi2O2N2 occur approximately every 100 nm. Nevertheless, 

metal-ion as well as silicate layers are similar in both modifications, the difference concerns 

their relative arrangement. The SrSi2O2N2 structure with corrugated metal-ion layers 

dominates up to a Ba-content of 50 % according to diffraction data; however, HRTEM in 

combination with TEM-EDX analysis revealed the presence of this structure type also for 

higher Ba-contents (< 75 mol%).[43,52] At 75 mol% Ba the distorted variant of the BaSi2O2N2 

structure type appears besides the triclinic SrSi2O2N2 structure type.[43] The average structure 

of Sr0.25Ba0.75Si2O2N2 with disordered metal ions exhibits orthorhombic lattice parameters 

similar to BaSi2O2N2. Sr0.25Ba0.75Si2O2N2 may therefore be regarded as a “transition state” 

between the SrSi2O2N2 and BaSi2O2N2 structure types as it combines corrugated metal-ion 

layers (like in the SrSi2O2N2 type) with unit-cell metrics of the BaSi2O2N2 type. 
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Figure 3. Crystal structures of: (a) triclinic SrSi2O2N2 (top: along [100], middle: along [101], bottom: along 
[101]); (b) monoclinic SrSi2O2N2 (top: along [100], middle: along [101], bottom: along [101]);  
(c) Sr0.25Ba0.75Si2O2N2 (top: along [110], middle: along [100], bottom: along [010]); (d) BaSi2O2N2 (space group 
Cmc21, top: along [011], middle: along [010], bottom: along [001]); (e) BaSi2O2N2 (space group Pbcn, top: 
along [011], middle: along [010], bottom: along [001]). Tetrahedra are drawn in light blue, O (small red 
spheres) and N (small blue spheres) atoms are indicated. Sr-ions between the silicate layers are shown as large 
orange spheres, Ba-ions as large green spheres. The orientation of silicate layers is shown using black arrows. 
The coordination polyhedra of metal ions are depicted in gray (below the structures). 
 

The degree of corrugation of the metal-ion layers decreases with increasing Ba2+-content until 

coplanar layers result for pure BaSi2O2N2.
[45] For the latter compound, two polytypes with 

either uniform or alternating silicate-layer orientations – similar to triclinic and monoclinic 

SrSi2O2N2, respectively – were assumed. Their presence is derived from a superposition 

structure with disordered silicate layers. According to neutron data, the alternating sequence 

predominates (see above). 
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Figure 4. Top view on metal-ion layers and lattice parameters of monoclinic SrSi2O2N2 (left, space group P21), 
Sr0.5Ba0.5Si2O2N2 (middle, triclinic SrSi2O2N2 structure type, space group P1), and BaSi2O2N2 (right, space group 
Pbcn). In two-colored sheets positions of the same color are occupied with 50 % probability each. 
 

Figure 4 shows the similarities between the Sr1-xBaxSi2O2N2 structure types with respect to 

the metal-ion layers. If sets of positions marked with different colors are occupied with almost 

50 % probability each, the unit-cell determination can be problematic. Otherwise, the 

situation corresponds to a structure with ordered cations and the determination of lattice 

parameters is unambiguous. Sequences and distances between the positions in average 

structures determined from X-ray data may, of course, not be present in reality.  

The distances between the metal ions remain nearly unchanged when Sr2+ is increasingly 

substituted by larger Ba2+. This is probably due to the rigidity of the silicate substructure 

which is the key for the excellent luminescence properties as described below. 

 

 

2.1.2.5 Guidelines for the Characterization of Oxonitridosilicates 

 

The numerous effects that occur in the crystal chemistry of oxonitridisilicates often require 

combined approaches for an unambiguous characterization. The appreciation of “correctness” 

of unit-cell metrics of Sr1-xBaxSi2O2N2 (0 ≤ x ≤ 1) phases, after indexing the strongest or 

otherwise selected reflections using a large unit cell with low symmetry, can be very 

misleading especially when Le Bail method is used. This is due to the fact, that no structure 

model is required in this case for the fitting of integral intensities in PXRD patterns. Deducing 

the product’s composition from the weighted starting materials, i.e., neglecting chemical 

analysis, is another source of misleading assumptions especially regarding materials 

properties (see also section synthesis and luminescence). For Sr1-xBaxSi2O2N2 (0 ≤ x ≤ 1) 

phases, more details have to be kept in mind. The corresponding metal-ion and silicate layers 
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exhibit a higher individual symmetry than the overall crystal structure. This leads to structures 

with pronounced pseudo-symmetry, which differ in their diffraction intensities (and properties 

as well). Figure 5 gives an overview of typical real-structure effects found for layered 

oxonitridosilicates Sr1-xBaxSi2O2N2 (0 ≤ x ≤ 1). Twinning leads to higher reflection density of 

some rows in diffraction patterns. Combined with stacking disorder such rows can show more 

or less pronounced diffuse scattering. Intergrowth is detectable in diffraction patterns as well 

as in HRTEM images. Domains of the same structure type with different orientations can be 

involved as well as domains of different composition and crystal structure. 

 

 
Figure 5. Typical real-structure effects for layered oxonitridosilicates (examples: twinning in SrSi2O2N2 (SAED, 
zone axis [101], upper left); disorder in SrSi2O2N2 (SAED, zone axis [101], upper right); intergrowth in 
Sr0.25Ba0.75Si2O2N2 (SAED, upper middle); oriented intergrowth of SrSi2O2N2 domains of zone axes [001] (1) 
and [100] (2); oriented intergrowth of domains in distorted BaSi2O2N2 structure type (zone axis [001], (a)) and 
domains in SrSi2O2N2 structure type (zone axis [101], (b)).   
 

The phase purity of Sr1-xBaxSi2O2N2 (0 ≤ x ≤ 1) samples as well as their composition were 

frequently discussed in literature based on visual comparison of PXRD patterns.[41,47,49,51,53-55] 

This is not very reliable when polymorphs may be present. In order to confirm a phase pure 

synthesis, HRTEM investigations on several crystallites are helpful because some domain 

structures show domain thicknesses of only a few unit cells. Thus, there are probably no 

phase-pure samples of Sr1-xBaxSi2O2N2 (0 ≤ x ≤ 1) in a strict sense as even “single crystals” 

usually contain several domains. However, even minor impurities, whether detectable in 

PXRD patterns or not, might have decisive influence on the performance of phosphor 

materials. Although, for instance, a structure model for SrSi2O2N2 is well established,[40] 

phase analysis was often done by visual comparison of PXRD patterns instead of Rietveld 

refinements. For Sr1-xBaxSi2O2N2 (0 ≤ x ≤ 1) phases, a verification of diffraction intensities 

using Rietveld method is more important than for most other phosphor materials. Variations 
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in the Bragg intensities compared to simulated PXRD patterns of published (average) crystal 

structures must be determined, since they indicate a deviation in the stacking sequence that 

might result in different luminescence properties.  

Concerning Sr1-xBaxSi2O2N2 (0 ≤ x ≤ 1) many authors were primarily interested in properties 

and applications, but not in the crystal structures. However, even small deviations from ideal 

crystal structure may have an impact on material properties. Therefore, it is important to 

analyze the crystal structure thoroughly in order to understand the luminescence properties. A 

combination of X-ray diffraction and electron-microscopy methods is effective in this case, as 

resulting domains extend on different length scales. For MSi2O2N2 (M = Sr, Ba) no significant 

deviation from the ideal composition [Si2O2N2]
2- of the anionic substructure has been proved, 

which would also seem unlikely (see above). Differences in diffraction patterns thus mean 

changes of the crystal structure or may be attributed to preferred orientation. As O and N 

cannot be differentiated by X-ray diffraction, other methods are required. The interpretation 

of bond lengths coupled with knowledge of similar crystal structures give hints for correct 

assignment of O and N. The position of the emission band in correlation to activator-ligand 

distances is also significant for O and N, respectively. An immense support for the “correct” 

assignment of O and N might provide neutron diffraction experiments. Nevertheless, this 

method is also not trivial and straightforward at all. Future investigations should optimally 

include chemical analysis of the products and at least Rietveld refinement in order to reveal 

unknown impurities in PXRD patterns. Such reflections should be assigned to impurity 

phases unless they can be explained by modified structure models of Sr1-xBaxSi2O2N2 

(0 ≤ x ≤ 1) phases. Samples showing unknown reflections in PXRD patterns should ideally 

not be used for investigations of structure-property relations as the observed properties might 

not correspond to the desired product (see section 4). 

 

 

2.1.3 Synthesis of Sr1-xBaxSi2O2N2:Eu2+ 

 

2.1.3.1 Overview 

 

Various strategies to synthesize MSi2O2N2 have been described. The standard procedure is the 

reaction of corresponding carbonates (SrCO3 / BaCO3) or (mixed) ortho-silicates  

(Sr2-xBaxSiO4) with SiO2 and Si3N4. Less usual methods are spray pyrolysis,[56] microwave 

syntheses,[57] precursor syntheses with silicon diimide [39] or syntheses within an arc.[51] All 
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methods require high temperatures at the end of the temperature program, e.g., 1300 – 

1700 °C for carbonate route and 1300 – 1500 °C for ortho-silicate route. This is a 

disadvantage for this kind of phosphor materials from an economical point of view. 

Additionally, phase pure synthesis and upscaling to industrially relevant amounts is 

challenging.[17] For both standard reactions, nitrogen or forming gas is suitable as reaction 

gas. In addition also the use of various fluxes is described in literature.[50,58-62] 

 

2.1.3.2 The Carbonate Route 

 

At first glance, the direct reaction of MCO3 with Si3N4 to MSi2O2N2 requires stoichiometric 

amounts of SiO2 according to equation 1.  

 

2 MCO3 + SiO2 + Si3N4  2 MSi2O2N2 + 2 CO2     (Eq. 1) 

 

Nevertheless, the investigations of Zhu et al. already showed that X2-phase (except of 

remaining starting material) is only present in absence of SiO2.
[35] The formation of MSi2O2N2 

using SiO2-free synthesis was also observed and reported by Li et al.[22] and therefore 

transferred to later investigations. A possible equation for reaction of SrCO3 with Si3N4 is: 

 

3 SrCO3 + 2 Si3N4  3 SrSi2O2N2 + 3 CO + N2     (Eq. 2) 

 

“Unknown” reflections were observed in PXRD pattern for the synthesis route according to 

equation 1 in case of SrSi2O2N2.
[35,50,59] The firing temperatures are 200 - 300 °C lower than 

those for the carbonate route. The position of the strongest reflection of X1-phase or impurity 

phase, respectively, corresponds to that of M3Si6O9N4.
[63,64] The formation of this oxygen rich 

phase is also in agreement with the reported synthesis temperature of 1370 °C and with 

increased O-content compared to MSi2O2N2 (additional SiO2 related to equation 2).  

Since M2SiO4 often occurs as an impurity phase,[35] this might be an intermediate state on the 

way to MSi2O2N2. The following fictive reaction scheme is based on typical weighted 

samples (MCO3:Si3N4 ≈ 3:2, see equation 5) where MSi2O2N2 was obtained with high purity 

rate and precisely analyzed.[39,40,45]  
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7 SrCO3 + 7/6 Si3N4  7/2 Sr2SiO4 + 7 CO + 14/6 N2    (Eq. 3) 

7/2 Sr2SiO4 + 21/6 Si3N4  7 SrSi2O2N2      (Eq. 4) 

7 SrCO3 + 28/6 Si3N4  7 SrSi2O2N2 + 7 CO + 14/6 N2    (Eq. 5) 

 

 

2.1.3.3 The Orthosilicate Route 

 

The thesis that M2SiO4 might be an intermediate state towards MSi2O2N2 is supported by the 

fact that M2SiO4 is an excellent starting material for the synthesis of MSi2O2N2 phases. As 

mentioned above the ortho-silicate route is frequently used and leads to a higher purity of 

final products (equation 6). A variation of the synthesis conditions leads to the formation of 

polytypes; however, this is not investigated in detail in the literature. 

 

Sr2SiO4 + Si3N4  SrSi2O2N2       (Eq. 6) 

 

For this synthesis route impurities are observed if the O/N ratio is not strictly controlled. A 

deviation from the 1:1 ratio might occur for high Eu-doping levels using Eu2O3 as a starting 

material. The “substitution” of SrCO3 (SrO + CO2) by Eu2O3 for the synthesis of M2SiO4 

precursors does not result in a single-phase material because metal/oxygen ratio does not 

match. This may be the reason for samples that contain an O-rich phase corresponding to the 

M3Si6O9N4 structure type based on the interpretation of PXRD patterns shown.[59] This would 

be in good agreement to the measured O/N content which is inconsistent with the one 

expected for MSi2O2N2 composition. 

 

 

2.1.4 Luminescence Properties of Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) 

 

2.1.4.1 Structure-Property Relations 

 

The results of luminescence investigations of Eu-doped Sr1-xBaxSi2O2N2 phases in the 

literature are much more consistent than corresponding structure investigations. 

SrSi2O2N2:Eu2+ emits light within the green spectral region when excited by UV to blue light 

(see Figure 6).  
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Figure 6. Luminescence colors of Sr1-xBaxSi2O2N2:Eu2+ phases with increasing Ba2+-content x. 

 

The maximum wavelength of the emission peaks at ~ 537-540 nm for the triclinic 

modification of SrSi2O2N2:Eu2+,[11,36,41,44,55,65-70] at 532 nm for the corresponding monoclinic 

one,[42] and mixtures of both phases emit between these values.[60,71-75] For a doping level of 

2 mol% Eu2+, the quantum efficiency (QE) of the triclinic modification was reported to be 

approximately 90 %, even for temperatures around 200 °C.[21,36,66] Co-doping with various 

cations and/or a partial or complete substitution of the activator ion are common ways to tune 

the luminescence properties.[41,61,66,69-71,74,76-83] When the Ba-content is increased, the emission 

wavelength is continuously shifted to lower energies.[21,43,44,49-51,62] This behavior is observed 

for the mixed Sr1-xBaxSi2O2N2 phases as long as the SrSi2O2N2 structure type is built up.[43] In 

that case, the corresponding emission is shifted to the yellow-green spectral region (see Figure 

6). For a Ba-content of 75 mol% (related on overall metal content), a change of the crystal 

structure towards a distorted variant of the BaSi2O2N2 structure type is observed. This leads to 

a shift of the emission into the blue spectral region (λem = 472 nm, Figure 6).[52] The emission 

band exhibits a FWHM of only 37 nm which is the smallest value found for blue emitters of 

that material class. If the Ba-content is further increased, the emission color reaches the blue-

green spectral region which was reported for BaSi2O2N2:Eu2+ (λem ~ 500 nm; see 

Figue 6).[21,47,48,84-87]  

In addition, the FWHM of the emission band depends on the number of crystallographically 

independent metal-atom positions (i.e., positions occupied by Eu2+) for Sr1-xBaxSi2O2N2:Eu2+ 

phases. In the crystal structures of both, triclinic and monoclinic SrSi2O2N2,
[40,42] four 

different metal-atom sites are present and FWHM is about 70-80 nm.[21,22] For 

BaSi2O2N2:Eu2+ [45] one metal site is present and the FWHM is <40 nm.[21,22] Additionally, the 

Sr1-xBaxSi2O2N2:Eu2+ phases exhibit adequate stability in the case of thermal stress next to a 
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primary GaN-based pump LED chip (approximately 120-150 °C)[49]. For SrSi2O2N2:Eu2+, the 

emission intensity at 170-200 °C is at least 80 % of the intensity at room 

temperature.[21,44,47,49,50,54,58,61,65,66,75,82] This thermal behavior is comparable to that of 

industrially used nitride phosphor Sr2Si5N8:Eu2+ [36,88] and significantly improved compared to 

the frequently used phosphor YAG:Ce3+ [50,58]. Also BaSi2O2N2:Eu2+ exhibits over 80 % of 

the room temperature emission intensity at 150 °C.[89] Nevertheless, for mixed 

Sr1-xBaxSi2O2N2:Eu2+ phases some problems concerning the long-life stability were reported, 

meaning that there is still a demand for improvements.[10,49] Summarizing, the phases 

Sr1-xBaxSi2O2N2:Eu2+ are promising phosphor materials in the blue-green to green-yellow 

spectral region for commercial applications in pc-LEDs. Such devices might soon replace 

incandescent lamps, because they exhibit a more efficient conversion of electric energy to 

visible light. 

 

 

2.1.4.2 Critical Evaluation of the Literature 

 

Like phase analyses (see section 2.1.2.1.2), luminescence investigations also require 

thoroughness in order to ensure that measured properties really correspond to the desired 

product which was investigated. For instance, Gu et al.[86] found that BaSi2O2N2:Eu2+ formed 

from core-shell nanoparticles exhibits a shift of the emission wavelength to lower energies 

with increasing firing temperature under NH3-atmosphere. The emission wavelength (λem) can 

apparently be tuned in a range of 490 – 530 nm. Compared to the emission band for 

BaSi2O2N2:Eu2+ (FWHM ~40 nm), the samples with the highest λem exhibit approximately 

twice that FWHM and the shape of excitation band is completely different. The measured 

luminescence signals (excitation and emission) resemble those of Ba3Si6O12N2:Eu2+ [90-92] 

which can easily be obtained from BaSi2O2N2 at high temperature. As the PXRD patterns of 

the samples which show remarkably different luminescence properties [86] in comparison to 

BaSi2O2N2:Eu2+ are not shown, it remains an open question whether in fact another phase 

(namely Ba3Si6O12N2:Eu2+) was investigated. It seems unlikely that one can conclude that an 

increasing N-content in BaSi2O2N2:Eu2+ is the reason for the observed changes in emission 

signals.  

Zhang et al. describe luminescence properties of a compound BaSi2SN2.67:Eu2+, including a 

comparison with BaSi2O2N2:Eu2+.[93] BaSi2SN2.67 would be the first thionitridosilicates with 

Si(S,N)4 tetrahedra in the crystal structure. This material class would also be very interesting 
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with respect to phosphor materials for LED applications. Sulfide anions are softer than oxide 

anions, which increases the nephelauxetic effect. This might yield new phosphor materials 

which emit visible light in the orange-red spectral region by excitation with UV to blue light. 

However, the published data (symmetry, lattice parameters, PXRD pattern, excitation / 

emission spectrum) resemble those of Ba3Si6O12N2:Eu2+.[90-92] Although sulfur is present 

during the reaction, the sulfur content of the product was not confirmed by chemical analysis 

or by spectroscopy. Regarding lattice parameters and position of the emission band it seems 

unlikely that a significant amount of sulfur is present in the crystal structure.  

Apparently, phases belonging to the M3Si6O9N4 and M3Si6O12N2 structure type are often 

present if the parameters for the synthesis of MSi2O2N2 are not strictly controlled.[62] This is 

probably due to the similar atomic ratio M : Si of all these phases. The crystal structures are 

defect variants or otherwise similar to the one with the highest degree of condensation, i.e., 

MSi2O2N2. Figure 7 shows the change of the silicate partial structure with increasing  

O-content. 

 

 
Figure 7. Top view on silicate layers in the structures of MSi2O2N2 (a), M3Si6O9N4 (b), M3Si6O12N2 (c). 
Tetrahedra are drawn in gray with O (small black spheres) and N (small white spheres). 
 

Summarizing, reliable luminescence investigations require an overall, detailed analysis of the 

material which ideally should be single-phase. Synthesis methods may significantly affect the 

composition so that chemical analysis is mandatory if slight changes are to be correlated to 

changes of properties. 

 

 

2.1.5 Summary, Conclusion and Outlook 

 

Sr1-xBaxSi2O2N2:Eu2+ phases are very interesting materials, because of their intriguing 

applications in high-power LEDs due to their excellent luminescence properties. They are 
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also textbook examples for complicated crystallographic investigations from the point of view 

of fundamental science. Various real-structure effects render structure determination difficult 

and often have an almost unpredictable influence on diffraction patterns. This is especially 

true when pronounced short-range order leads to intense diffuse scattering. Even the 

determination of the unit-cell metrics can become ambiguous and almost impossible from 

PXRD data alone. The combination of X-ray diffraction and electron-microscopy methods 

turned out to be a suitable tool for a detailed determination of atomic arrangement in the 

corresponding crystal structures. Based on this knowledge, correlations between crystal 

structure and luminescence properties of corresponding Eu-doped samples can be formulated. 

Both triclinic and monoclinic modifications of SrSi2O2N2:Eu2+ exhibit extraordinary chemical 

and thermal stability, high quantum efficiency (> 90 %), and an emission wavelength close to 

530 nm (FWHM ~75 nm) which is the ideal value for green emitting light sources. The origin 

of these properties is the highly covalent, rigid layered silicate substructure consisting of 

condensed SiO[1]N[3]
3 tetrahedra. The alkaline-earth ions are coordinated by oxygen; however, 

the interatomic distances are longer than the sum of the ionic radii. Thus, for an incorporation 

of Eu2+ onto the cation positions, the lattice is pre-strained and weak electron-phonon 

coupling is present in the case of excited Eu2+. Although this is also true for BaSi2O2N2:Eu2+, 

the overall performance of this phosphor is inferior, compared to SrSi2O2N2:Eu2+, because of 

the color point in the blue-green spectral region and a lower quantum efficiency. Due to the 

highly symmetric coordination of Ba2+, the FWHM is only half of that in SrSi2O2N2:Eu2+. It is 

yet not possible to shift the emission wavelength of BaSi2O2N2:Eu2+ towards 530 nm by 

chemical substitution in order to obtain the “ideal green phosphor” for solid-state lighting. 

Table 1 summarizes available information regarding luminescence properties of 

Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) phases. 

 

Table 1. Luminescence data of MSi2O2N2:Eu2+ phases (M = Ca, Sr, Ba). 

Compound  
(2% Eu2+) 

λem (max) 
[nm] 

λexc 
[nm] 

FWHM
[nm] 

QE 
[%] 

x y Ref. 

CaSi2O2N2 560[a] 450[a],400[b] ~ 100 76[a] 0.419 0.556 21,22 
SrSi2O2N2  
(triclinic)  

537 – 
540[c] 

450[a],400[b] < 80 > 90 0.337 0.619 21,22,36,66

SrSi2O2N2  
(monoclinic) 

532 420 < 80 - 0.314 0.621 42 

Sr0.5Ba0.5Si2O2N2 ~ 560 450[d] ~90 > 90[a] 0.441 0.544 21,43,51 
Sr0.25Ba0.75Si2O2N2 472 400 ~37 - 0.140 0.163 52 
BaSi2O2N2 < 500[c] 450[a],440[b] ~35 71[a] 0.076 0.440 21,22  
[a] according to Bachmann et al.21; [b] according to Li et al.22; [c] see text; [d] according to Seibald et al.43 
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The crystal structures of SrSi2O2N2 and BaSi2O2N2 are closely related but differ concerning 

the arrangement of metal ions and in the relative orientation of consecutive silicate layers 

which mainly has an influence on the coordination sphere of the cations. In crystals of 

Sr1-xBaxSi2O2N2, disordered stacking sequences are sometimes formed owing to the 

intergrowth of domains, either with the same individual stacking sequence of metal-ion and 

silicate layers or with different ones. Such effects may be relevant for the analysis of 

structure-property relations. Caution is required to ensure that the measured luminescence 

properties characterize the investigated compound and are not affected by impurity phases. 

The discussion of properties of samples with unknown reflection in PXRD patterns can be 

misleading. Polytypes exhibit slightly different properties as shown, e.g., for SrSi2O2N2:Eu2+. 

Future projects might focus on controlling the properties by optimizing the synthesis 

conditions, i.e., the “tuning” of luminescence properties by controlling the stacking sequence, 

domain formation, polytype stabilization etc. This might lead to color points which are not 

accessible via cation substitution as the properties do not only depend on the composition.[94] 

After a decade of investigations on Sr1-xBaxSi2O2N2:Eu2+ phases by various scientists, there is 

still a demand for further work since not all questions concerning these highly interesting and 

outstanding materials have been answered yet (e.g., the change of the thermal behavior and 

the band gap in dependence of the Ba-content). Still, this class of materials represents 

intriguing oxonitridosilicate phosphors for LED applications. 
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Abstract 

SrSi2O2N2:Eu2+ is an outstanding yellow emitting phosphor material with practical relevance 

for application in high power phosphor-converted light-emitting diodes. The triclinic 

compound exhibits high thermal and chemical stability and quantum efficiency above 90 % 

and can be excited by GaN-based UV to blue LEDs efficiently. We have now discovered a 

hitherto unknown monoclinic polymorph of SrSi2O2N2, synthesized by solid-state reaction, 

which is characterized by an alternating stacking sequence of silicate layers made up of 

condensed SiON3 tetrahedra and metal-ion layers. As proven by single-crystal X-ray 

diffraction, the arrangement of the silicate layers is significantly different from the triclinic 

polymorph. The translation period along the stacking direction is doubled in the monoclinic 

modification (P21, Z = 8, a = 7.1036(14), b = 14.078(3), c = 7.2833(15) Å, β = 95.23(3)°, 

V = 725.3(3) Å3). TEM investigations in combination with HRTEM-image simulations 

confirm the structure model. The powder X-ray diffraction pattern shows that the volume 

fractions of the monoclinic and triclinic modifications are approximately equal in the 

corresponding powder sample. The emission wavelength of 532 nm (fwhm ~2600 cm-1) as 

determined by single-crystal luminescence measurements of the monoclinic phase exhibits a 

shift to smaller wavelengths by ~5 nm compared to the triclinic polymorph. Differences of the 

luminescence properties between the monoclinic and triclinic phase are interpreted with 

respect to the differing coordination of Eu2+ in both phases. The new monoclinic 
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SrSi2O2N2:Eu2+ polymorph is a very attractive phosphor material for enhancement of color 

rendition of white-light pc-LEDs. 

 

Keywords: Oxonitridosilicate, Structure Determination, TEM, Luminescence 

 

 

2.2.1 Introduction 

 

Phosphor-converted light-emitting diodes (pc-LEDs) are attractive candidates to replace 

incandescent light bulbs because of their much more efficient conversion of electric energy to 

visible light.[1-4] In order to improve the performance and energy-saving potential of pc-LEDs, 

there is a huge demand for novel efficient phosphors as well as for improvement of the 

properties of existing materials.[5,6] Various luminescent solid-state materials with emission 

from the blue to the red spectral region have been described.[2,6-14] Analysis of their properties 

in relation to composition and crystal structure of the host material has revealed general 

requirements for phosphors to be used for pc-LED applications.[12] The detailed knowledge of 

the crystal structure is a prerequisite as properties of such optical materials cannot be fully 

predicted from the material’s composition alone.[15]  

According to these specifications, the material class of (oxo)nitridosilicates is well suited for 

application as host lattices because high quantum efficiencies (> 90%) can be achieved, a 

small Stokes shift is possible due to the rigidity of silicate substructures and pronounced 

thermal and chemical stability is present.[16] SrSi2O2N2 is a host lattice showing excellent 

luminescence properties when doped with Eu2+. SrSi2O2N2:Eu2+ exhibits intense broad-band 

emission in the yellow-green spectral region due to the parity allowed 4f6(7F)5d1  4f7(8S7/2) 

transition when excited by UV to blue light.[4,10,17-35] The disordered crystal structure consists 

of alternating metal-ion and silicate layers. Both the idealized ordered structure as well as the 

average structure of the disordered variant are triclinic (a = 7.0802(2), b = 7.2306(2), 

c = 7.2554(2) Å, α = 88.767(3), β = 84.733(2), γ = 75.905(2)°, V = 358.73(2) Å3, space group 

P1). The metal-ion layers are strongly affected by disorder phenomena, i.e. polysynthetic 

twinning, antiphase boundaries, or oriented intergrowth. The silicate layers are built up of 

vertex-sharing SiO[1]N[3]
3 tetrahedra forming dreier rings perpendicular to [010]*.[36] The 

reflection positions in powder X-ray diffraction (PXRD) patterns, in principle, resemble those 

reported by Zhu (X2-phase)[37] and Hintzen[28] although these authors have proposed different 

metrics. However, some powder patterns of our samples and also those in the literature show 



2.2 New Polymorph of the Highly Efficient LED-Phosphor SrSi2O2N2:Eu2+ 
Polytypism of a Layered Oxonitridosilicate   

37

a number of reflections that are inconsistent with the triclinic structure model of SrSi2O2N2 

discussed in literature.[20,29,31,35,38-41] Surprisingly, samples with such ”impurity phases” 

exhibit excellent overall luminescence properties. Whenever peak emission wavelengths of 

SrSi2O2N2:Eu2+ powder samples are reported to be significantly smaller than 537 nm the 

corresponding PXRD patterns show unknown, additional reflections.[20,29,31,35,38,39] In this 

contribution, we clarify the nature of the additional phase that leads to these reflections and 

further investigate its impact on luminescence properties. 

 

 

2.2.2 Experimental Section 

 

2.2.2.1 Synthesis  

 

SrSi2O2N2:Eu2+ (2 mol% Eu) was prepared by heating a stoichiometric mixture of 

Sr2SiO4:Eu2+ and Si3N4 (UBE, > 98%) for 16 h to 1540 °C in forming gas atmosphere 

(N2:H2 = 95:5) according to eq. 1. The starting materials were placed on tungsten foil within a 

molybdenum crucible and heated to the final temperature with 300 °C/h (T < 1000 °C) and 

150 °C/h (T > 1000 °C), respectively.  

 

Sr2SiO4:Eu2+ + Si3N4                        2 SrSi2O2N2:Eu2+    (Eq. 1) 

 

2.2.2.2 X-ray Spectroscopy  

 

The chemical composition of several crystallites was analyzed by energy dispersive X-ray 

(EDX) spectroscopy using a JSM-6500F scanning electron microscope (SEM, Jeol) with a 

Si/Li EDX detector (Oxford Instruments, model 7418). The SEM was also used to collect 

images of particles to study their morphology. Further analyses were performed using the 

EDX system (TEM Tops 30, Edax) of the transmission electron microscope mentioned below.    

 

2.2.2.3 Powder X-ray Diffraction  

 

PXRD data were collected on a STOE STADI P diffractometer (Cu-K1 radiation, Ge(111) 

monochromator, position sensitive detector) in transmission geometry using a flat sample 
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holder with thin film of investigated powder material. Rietveld refinement was carried out 

using the TOPAS package.[42]    

 

2.2.2.4 Single-Crystal X-ray Diffraction  

 

Selected green luminescent single crystals of SrSi2O2N2:Eu2+ were mounted on glass fibers 

and checked for quality on a Buerger precession camera. Intensity data were collected on a 

Nonius Kappa-CCD diffractometer with graded multilayer X-ray optics (Mo-K radiation, 

λ = 0.71093 Å). The structure was solved by direct methods and refined by full-matrix least-

squares methods.[43] Further details of the crystal structure investigation may be obtained from 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax, 

(+49)7247-808-666; e-mail, crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de 

/request_for_deposited_data.html) on quoting the depository number CSD-425649.   

 

2.2.2.5 Transmission Electron Microscopy  

 

Selected area electron diffraction (SAED) patterns and high-resolution (HR) images were 

recorded on a Fei Titan 80-300 (acceleration voltage 300 kV) transmission electron 

microscope (TEM). Tilt series of diffraction patterns were obtained using a double-tilt sample 

holder with a maximum tilt angle of ±30°. For preliminary experiments, ground powder 

samples were dispersed in ethanol and drop cast on copper grids coated with a holey carbon 

film. Since such samples showed pronounced preferred orientation, the powder was mixed 

with a two-component glue, placed between silicon wafers and glass panels, and then fixed in 

brass tubes (inner diameter 2 mm). These were cut into slices perpendicular to the tube 

elongation (thickness approx. 200 μm) and polished to 80-90 µm using different SiC coated 

sand papers (grain size: 40–5 μm). Finally, the thickness in the middle of the disk was 

reduced to approximately 10 μm using a dimple grinder (type 650, Gatan) and diamond 

polishing paste (Electron Microscopy Science). Subsequently, a hole in the glue matrix was 

fabricated using a precision ion polishing system (type 691, Gatan). Crystallites at the 

perimeter of the hole (partially free of glue) were randomly oriented and suitable for TEM 

investigations. For simulations of SAED patterns and HRTEM images EMS program was 

used.[44] In order to ensure comparability to results from single-crystal and powder 

investigations, the same sample was used for TEM analysis.    
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2.2.2.6 Luminescence  

 

Luminescence investigations were done using a luminescence microscope consisting of a 

HORIBA Fluoromax4 spectrofluorimeter system attached to an Olympus BX51 microscope 

via fiber optical bundles. The samples were measured inside a glass capillary (outer diameter 

approx. 0.2 mm). The excitation wavelength was chosen to 420 nm with a spectral width of 

10 nm. The emission spectra were collected in the wavelength range between 450 nm and 

750 nm with 2 nm step size. This range was also used for color-point calculations.   

 

 

2.2.3 Results and Discussion 

 

2.2.3.1 Synthesis and chemical analysis  

 

In powder samples of SrSi2O2N2:Eu2+ (2 mol% Eu) prepared by the above-mentioned 

synthesis, which exhibit additional reflections in PXRD patterns (referring to triclinic 

structure model), two different types of particle morphology can be found in SEM images. 

Particles of type 1 (Figure 1, left) are built up of stacked platelet-like crystals. Due to the 

well-known real-structure effects,[36] such morphology seems to be reasonable for the triclinic 

SrSi2O2N2 structure type. Particles of type 2 (Figure 1, right) show crystals with 

approximately isometric polyhedral shape with diameters of > 10 μm as required for X-ray 

structure analysis, which is surprising for SrSi2O2N2. EDX yields an average composition (7 

measurements), normalized according to the overall metal content, of 

Sr0.98Eu0.02Si2.35(3)O2.6(2)N2.3(6) for crystals of type 2. This is in accordance with the nominal 

composition SrSi2O2N2 taking into account the typical uncertainty intervals (Sr/Si signal 

overlap).    

 

 
Figure 1. SEM images of two typical SrSi2O2N2:Eu2+ particles in the powder sample. Stacked platelet-like 
crystals (left) and polyhedral single crystals (right) can clearly be distinguished. 
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2.2.3.2 Single-Crystal Structure Analysis  

 

Diffraction data of a green luminescent polyhedral crystal (type 2) were collected and the 

corresponding crystal structure of monoclinic SrSi2O2N2:Eu2+ was refined in space group 

P21.
[43] The Eu2+ content (2 mol%) was neglected because of its insignificant contribution to 

the scattering density. A separate scale factor was used for the broadened reflections with 

h = 2n + 1, and inversion twinning was taken into account. Crystallographic data are 

summarized in Table 1. Similar to triclinic SrSi2O2N2, the crystal structure exhibits alternating 

metal-ion and silicate layers, the latter ones built up from highly condensed SiO[1]N[3]
3 

tetrahedra forming dreier rings.[36,45-48] In contrast to the triclinic structure, the tetrahedra 

orientation changes in consecutive silicate layer, which are rotated against each other by 180°, 

consistent with a 21 screw axis and the doubled translation period along the [010]* stacking 

direction compared to the triclinic structure (Figure 2).[36] The cations are coordinated in a 

trigonal prismatic way by O atoms, similar to the triclinic model.   

 

 
Figure 2. Crystal structures (metal atoms: gray spheres, unit-cells outlined) of (a) triclinic SrSi2O2N2 (projection 
along [101]) and (b) monoclinic SrSi2O2N2 (projection along [101]). The orientation of consecutive silicate 
layers (SiON3 tetrahedra: gray, oxygen: white spheres, nitrogen: black spheres) differs in both models.  
 

The 180° rotation of two consecutive silicate layers corresponds to the structure of twin 

boundaries as they are present in the real structure of Sr0.5Ba0.5Si2O2N2, which is isotypic to 

triclinic SrSi2O2N2.
[47] There, such twin boundaries occur approximately every 100 nm. 

Significantly smaller twin domains dramatically change the PXRD pattern as they involve a 

different average structure. Monoclinic SrSi2O2N2, however, can be regarded as a maximally 

twinned form of the triclinic modification with “domains” of just one layer thickness in an 

ordered stacking sequence. This yields higher symmetry and different unit-cell metrics.  
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Table 1. Crystallographic data for SrSi2O2N2. 

Crystal system monoclinic 
Space group P21 (no. 4) 
Lattice parameters [Å] a = 7.1036(14) 

b = 14.078(3) 
c = 7.2833(15) 
β = 95.23(3)° 

Cell volume [Å3] 725.3(3) 
Z 8 
Formula weight [g mol-1] 203.82 
ρcalcd [g cm-3] 3.733 
Absorption coefficient μ [mm-1] 15.358 
F(000) 768 
2θ range [°] 3.16 – 26.00 
Radiation λ [Å] 0.71073 (Mo-K) 
Reflections (total) 5572 
Independent reflections 1468 
Observed reflections 1145 
Goodness of fit 1.077 
R1 / wR2 (all reflections) 0.0850 / 0.1743 
R1 / wR2 (Fo

2 ≥ 2σ(Fo
2)) 0.0633 / 0.1573 

min / max residual electron density [eÅ-3] - 1.58 / 2.74 
 

 

2.2.3.3 Lattice Energy Calculations  

 

The consistency of the structure model is corroborated by lattice energy calculations 

(MAPLE, Madelung part of lattice energy).[49-52] The assignment of O and N atoms was done 

in analogy to other Sr1-xBaxSi2O2N2 phases with the same silicate layer topology.[36,45-48] This 

is confirmed by the calculated values listed in Table 2 which are close to typical partial 

MAPLE values.[16] The comparison between the calculated total MAPLE value and the sum 

of MAPLE values corresponding to the reference reaction equation, starting from the 

respective binaries, shows a difference of only 0.06 %. This is in good agreement to the value 

calculated for EuSi2O2N2 also based on single crystal data (Δ = 0.1 %).   

 

Table 2. Results of MAPLE Calculations (in kJ/mol) for Monoclinic SrSi2O2N2: Partial MAPLE Values, Total 
MAPLE Sum and Difference to Theoretical Total MAPLE Value Corresponding to a Reference Equationa  
Sr2+ Si4+ O[1]2- N[3]3- Total MAPLE Δ 
1929-2070 9373-9617 2227-2432 6093-6268 37923 0.06 % 
Total MAPLE (SrO + 0.5 SiO2 + 0.5 Si3N4): 37946 
aTypical MAPLE values (in kJ/mol): Sr2+: 1500-2100; Si4+: 9000-10200; O[1]2-: 2000-2800; N[3]3-: 5000-6200. 
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2.2.3.4 Rietveld Refinement  

 

In order to evaluate the proportion of monoclinic SrSi2O2N2 in the powder sample, a two-

phase Rietveld refinement using TOPAS[42] was done (Figure 3). Weighted distance restraints 

for Si-O/N tetrahedra in monoclinic SrSi2O2N2 were used to ensure comparability to other  

Sr1-xBaxSi2O2N2 phases with the same kind of silicate layers.[36,45-48] Thereby all atomic 

coordinates could be refined. The remaining misfit was significantly reduced after adding the 

triclinic structure of SrSi2O2N2 as a second phase. For the latter, only Sr and Si atom positions 

were refined.[36] Some 2θ regions were excluded because they are strongly affected by diffuse 

scattering as a consequence of real-structure effects in triclinic SrSi2O2N2
[47] (stacking 

disorder) which cannot be described by the Rietveld method. The degree of cation disorder, 

i.e. value of antiphase transitions in %, was refined to 40 % using split positions as described 

for the triclinic average structure.[36,47] As expected, both diffraction patterns are rather similar 

since basically only the N positions in every second silicate layer are different in the two 

structure models. Nevertheless, the patterns can clearly be distinguished by reflections at 14.0, 

17.8, 20.9, 22.7, and especially at 29.4° 2θ because there are no contributions from the 

triclinic structure (see Figure 3). The results confirm that the described stacking sequence in 

monoclinic SrSi2O2N2 is present in a significant portion of the powder particles. The amounts 

of both modifications are approximately equal, and no further unexplained reflections occur 

in PXRD pattern.   

 

 
Figure 3. Two-phase Rietveld fit (RP = 0.041, wRP = 0.055; 8367 data points) of the PXRD pattern of 
SrSi2O2N2:Eu2+ with measured histogram (black crosses), calculated pattern (gray solid line), difference curve 
(black solid line) and positions of reflections (bars): top monoclinic SrSi2O2N2 (48 %,  
ρcalcd [g cm-3] = 3.7083(5)), bottom triclinic SrSi2O2N2 (52 %, ρcalcd [g cm-3] = 3.7043(2)). The excluded regions 
(no difference curve) correspond to maxima due to diffuse scattering. Selected reflections exclusively belonging 
to monoclinic phase are marked by black arrows in enlarged pattern (upper right). 
 



2.2 New Polymorph of the Highly Efficient LED-Phosphor SrSi2O2N2:Eu2+ 
Polytypism of a Layered Oxonitridosilicate   

43

2.2.3.5 Transmission Electron Microscopy and Electron Diffraction  

 

In TEM samples prepared by dispersing powder on Cu grids with carbon film, all plate-like 

crystallites exhibited approximately the same orientation of the stacking direction, 

perpendicular to the grid, as it is typical for layered compounds. This, of course, impedes the 

determination of the stacking periodicities. Such texture effects are not significant if the 

powder is embedded in glue, where crystallites with a translation period of ~14 Å, typical for 

monoclinic SrSi2O2N2, could easily be found. TEM-EDX yielded an average formula of 

Sr0.98Eu0.02Si2.01(8)O2.3(5)N1.6(3) for the crystallites investigated. Traces of SrSiO3 were found, 

although the corresponding reflections cannot be observed in PXRD data. Various SAED 

patterns showing translation periods of 14 Å can be simulated based on the results from 

single-crystal analysis. Calculated tilt angles between different zone axes correspond to the 

expected ones (Figure 4).[44] Experimental SAEDs contain 0k0 reflections with k = 2n + 1 

(kinematically absent for 21 || [010]) because of dynamic effects.   

 

 
Figure 4. Experimental SAED patterns (top) of monoclinic SrSi2O2N2:Eu2+ with the corresponding zone axes 
and simulated ones (bottom, calculated from single-crystal data). Experimental tilt angles (black) between zone 
axes match calculated ones (gray). The [101] pattern was recorded using another crystallite due to the limited tilt 
range of the sample holder. 
 

Although the monoclinic model for SrSi2O2N2 is appropriate to simulate experimental SAED 

images, the local stacking sequence might differ since the beam diameter for SAED patterns 

(Ø = 100 nm) is significantly larger than the smallest area (10 unit cells ≈ 10 nm) that may be 

described by an ordered structure model. Figure 5 shows an HRTEM image of a crystallite 

fringe. As the Fourier transform (FT) of the marked area (diagonal 10 nm) corresponds to the 

SAED pattern, this area is representative for the whole area contributing to SAED patterns; no 

or few defects are expected.   
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Figure 5. (a) HRTEM image of monoclinic SrSi2O2N2:Eu2+ (zone axis [101]); approximately 10 unit cells 
(~10 nm) along stacking direction (white frame), the corresponding FT is shown (black frame); (b) experimental 
SAED pattern (beam diameter ~100 nm); (c) SAED pattern simulated using SrSi2O2N2 (monoclinic) single-
crystal data. 
 

HRTEM image simulations using the multislice method correlate the structure model to 

experimental images of a defocus series, passing the Scherzer defocus.[44] The defocus value 

in Figure 6a (zone axis [101]) is -52 nm, i.e. close to the Scherzer defocus so that contrasts 

can directly be correlated to atom positions.  

 

 
Figure 6. HRTEM (accelerating voltage = 300 kV) images of monoclinic SrSi2O2N2:Eu2+ crystallites of zone 
axis [101] (a-d) and [101] (e,f) with inserted image simulations (a: Δf = -52 nm; b: Δf = -72 nm; c: Δf = -92 nm; 
d: Δf = -112 nm; e: Δf = +19 nm; f: Δf = +40 nm; for all simulations: aperture diameter = 20 nm-1, cs = 1.2 mm, 
spread of focus = 2.14 nm, beam semi-convergence = 0.60 mrad, layer thickness approx. 4 nm). 
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The simulation fits all features of the experimental image quite well, which is also true for the 

other HRTEM simulations in Figure 6. In summary, the results of TEM investigations 

confirm the existence of the monoclinic stacking variant of SrSi2O2N2 derived from single-

crystal X-ray diffraction analysis. 

 

 

2.2.3.6 Luminescence  

 

The emission wavelength of green (presumably) triclinic SrSi2O2N2:Eu2+ (no additional 

reflections in PXRD pattern belonging to monoclinic modification) was reported in a range of 

~537-540 nm for doping with 2 mol% Eu,[4,17,21,24,27,53,54] which leads to high quantum 

efficiency (QE > 90%).24 Regarding the enhancement of color rendition of white-light  

pc-LEDs that make use of mixtures of green and red emitting phosphors, a shift of the peak 

emission wavelength towards shorter wavelengths (~ 530 nm) would be desirable.[14] The 

color point of “triclinic” SrSi2O2N2:Eu2+ can be changed by variation of the Eu-doping 

level[19,26,28-30,34] or substitution of Sr by Ca or Ba.[11,23,24,26,34,55-57] Nevertheless, all changes of 

the host-lattice composition shift the emission wavelength towards smaller energies. For  

Sr1-xBaxSi2O2N2:Eu2+ with x ≥ 0.75, a shift to higher energies can be achieved; however, its 

emission spectrum is located in the blue-green spectral region due to the different structure 

type.[28,46] The determination of luminescence properties of monoclinic SrSi2O2N2:Eu2+ 

cannot be done using powder samples because all obtained samples were inhomogeneous (see 

section: Rietveld refinement). In order to avoid averaging of emission signals of both 

modifications, the emission spectrum of the single crystal, which was already used for 

structure analysis, was measured (Figure 7).   

 

 
Figure 7. Emission spectrum of the SrSi2O2N2:Eu2+ (2 mol% Eu) single crystal (λexc = 420 nm, λem = 532 nm, 
fwhm ~2600 cm-1); CIE color coordinates: x = 0.314, y = 0.621. 
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The peak position was determined at λem = 532 nm by exciting with UV to blue radiation. 

This means that the emission wavelength of the single crystal of monoclinic SrSi2O2N2:Eu2+ 

is shifted at least 5 nm towards smaller wavelengths in comparison to powder material of 

SrSi2O2N2:Eu2+ which do not show additional reflections in PXRD pattern belonging to 

monoclinic modification. In order to prove whether this fact is intrinsic or caused by 

reabsorption of emitted high-energetic radiation in the powder sample (i.e. excitation of 

another Eu2+-ion by re-emitted photons due to overlap of absorption and emission band), 

various crystallites (independent of crystal symmetry) with anisotropic morphology were 

investigated. If the emission wavelength is affected by the length of the radiation pathway 

through a crystal (i.e. number of activator centers along the pathway, maximal for 

macroscopic powder sample) different values for λem are expected for varying orientations of 

crystallites. The more centers are involved, the more the macroscopically composed emission 

signal gets shifted to smaller energies. In the present case, λem was constant for various 

orientations of three investigated anisotropic crystallites with different sizes. Thus, the red-

shifted emission wavelength of SrSi2O2N2:Eu2+ powder samples (“triclinic” modification, i.e. 

no additional reflections in PXRD patterns belonging to monoclinic modification), compared 

to SrSi2O2N2:Eu2+ single crystal (monoclinic modification), is not caused by reabsorption 

effects. Therefore, the observed differences in measured λem-values for SrSi2O2N2:Eu2+ (single 

crystal, monoclinic) and SrSi2O2N2:Eu2+ (powder, no additional reflections in PXRD pattern 

belonging to monoclinic modification) are significant. In order to draft a possible reason for 

the shift on the basis of the crystal structures, we focus on lattice parameters of triclinic and 

monoclinic modification. In contrast to the triclinic phase, monoclinic SrSi2O2N2 has larger  

a and c lattice parameters which represent the periodicity of silicate layers because 

corresponding settings are equal for both crystal structures. As a direct consequence, 

interatomic distances increase which corresponds to less corrugated chains of condensed 

SiON3 tetrahedra. Furthermore, Sr-O distances are also increased which should lead to a 

decreased 5d-orbital splitting in case of substitution of Sr by an Eu activator ion and an 

increase of the energetic separation of the 4f75d0 and 4f65d1 states, equivalent to a blue-shifted 

maximum of the emission band for monoclinic SrSi2O2N2:Eu2+ compared to the triclinic 

modification. For both modifications, average activator-ligand distances are slightly longer 

than the sum of the ionic radii.[52] This hardly leads to lattice relaxation in the case of excited 

Eu2+. As a consequence, less electron-phonon coupling may result in reduced Stokes shift and 

narrower fwhm, which decreases thermal quenching of luminescence.[58] Luminescence 

properties of the above-mentioned SrSi2O2N2:Eu2+ powder (mixture of triclinic and 



2.2 New Polymorph of the Highly Efficient LED-Phosphor SrSi2O2N2:Eu2+ 
Polytypism of a Layered Oxonitridosilicate   

47

monoclinic phase) were also measured while reabsorption effects for the powder were 

minimized by extrapolating the emission properties of a dilution series (silicone suspensions) 

to zero phosphor concentration, in order to ensure comparability of single-crystal and powder 

data. An emission wavelength of λem = 535 nm was determined supporting the thesis that the 

emission band of the monoclinic modification is blue-shifted in comparison to samples 

without additional reflections in the PXRD pattern (537-540 nm).    

 

 

2.2.4 Conclusion 

 

A new monoclinic modification of SrSi2O2N2 has been characterized applying a combination 

of X-ray diffraction and electron-microscopy methods. For the first time, single-crystal data 

could be obtained for samples with this composition. The triclinic and monoclinic 

modifications are, in fact, polytypes. Phase formation might therefore be controlled by 

kinetics. Polytypism was occasionally discussed for layered MIISi2O2N2 (M = Ca, Sr, Ba) 

phases; now we have described two distinct maximum degree of order (MDO) polytypes. The 

emission wavelength of a single crystal of the Eu-doped monoclinic modification is shifted by 

~5 nm towards smaller wavelengths (λem = 532 nm) compared to that of triclinic 

SrSi2O2N2:Eu2+ (2 mol%) whose emission wavelength cannot be tuned to that value by host-

lattice modification because substitution of Sr by Ca as well as Ba always leads to red-shifted 

emission bands. The triclinic and monoclinic polytypes only differ by the orientation of 

consecutive symmetrically equivalent silicate layers. A dependence of luminescence 

properties on layer orientation in polytypes has not yet been discussed for phosphor materials 

in the literature. As the triclinic and monoclinic modifications are so closely related, it is not 

clear if phase pure samples of any SrSi2O2N2 modification can be prepared. The results from 

our contribution complement the understanding of structure-property relationships for 

frequently used phosphor material SrSi2O2N2:Eu2+. 
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Abstract 

Sr0.5Ba0.5Si2O2N2:Eu2+ is a promising new phosphor for white light phosphor converted (pc)-

LEDs. The material shows broad-band emission due to parity allowed 4f6(7F)5d  4f7(8S7/2) 

transition in the yellow spectral range (λem ≈ 560 nm) while excited with UV to blue radiation. 

The X-ray powder diffraction pattern shows noticeable intensity maxima indicative for 

diffuse scattering from planar defects and also “missing” reflections compared to 

SrSi2O2N2:Eu2+. Rietveld refinement reveals an average structure of Sr0.5Ba0.5Si2O2N2:Eu2+ 

which is isotypic to that of SrSi2O2N2:Eu2+, with the latter representing a twinned layered 

oxonitridosilicate with disordered metal atoms. The average structure of 

Sr0.5Ba0.5Si2O2N2:Eu2+ was refined in space group P1 (no. 1) resulting in lattice parameters 

a = 7.2059(2), b =7.3887(3), c = 7.3340(2) Å, α = 88.524(4), β = 84.454(3), γ = 75.980(4)° 

and V = 377.07(2) Å3. Based on the crystallographic results and considering lattice relaxation 

behavior as a consequence of lattice expansion, the observed unexpectedly large Stokes shift 

(as compared to SrSi2O2N2:Eu2+; 3573 vs. 3285 cm-1) can be explained using a least square fit 

of the emission spectra. With almost identical chromaticity coordinates with respect to the 

most frequently used commercial LED phosphor YAG:Ce3+ but significantly higher luminous 
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efficacy (LE = 495 lm/W), Sr0.5Ba0.5Si2O2N2:Eu2+ is a promising material for outdoor 

lighting, e.g. in cool-white pc-LEDs. To elucidate the real structure, powder XRD simulations 

have been recorded compiling a disorder model taking into account all permutations of metal 

ion sets and silicate layer orientations. Experimental diffraction data were well reproduced 

including the diffuse intensities observed in powder XRD and also in SAED patterns. These 

simulations show that crystallites of Sr0.5Ba0.5Si2O2N2:Eu2+ are built up of small anti-phase 

domains within larger twin domains.  

 

Keywords: Oxonitridosilicate; Diffuse Scattering; Structure Elucidation; Luminescence 

 

 

2.3.1 Introduction 

 

Various promising luminescent materials for application in phosphor converted light emitting 

diodes ((pc)-LEDs) have been reported during the last few years.[1,2] Most notably, Eu2+-

doped (oxo)nitridosilicates show remarkable materials properties, e.g. high thermal and 

chemical stability, large band gaps as well as high quantum (QE) and luminous efficiency 

(LE) for parity allowed 4f6(7F)5d  4f7(8S7/2) transition.[3-8] Important examples for these 

materials are e.g. the MIISi2O2N2:Eu2+ phases (with MII = Ca, Sr, Ba). However, synthesis of 

phase pure samples of theses compounds remained problematic and detailed crystal structure 

determination proved to be challenging. Important parameters like Stokes shift, luminous 

efficacy or stability against degradation can be varied either by substitution or by changing 

the dopant concentration and/or the dopant itself or by optimizing the synthesis  

conditions.[9-21] For SrSi2O2N2:Eu2+, remarkable values of QE = 0.95 and LE = 537 lm/W, 

both measured at room temperature, have been reported.[22] Although a number of LED 

phosphors have been thoroughly studied by X-ray methods and the luminescence properties 

have been analyzed in detail, only a few more general structure-property relations have been 

yet established.[23] An accurate quantitative prediction of the luminescence properties based 

solely on crystal structures is not possible as yet. This might be due to the fact that average 

crystal structures do not always appropriately describe the local atomic arrangement of the 

activator ion in a phosphor material. To consider stacking disorder, intergrowth phenomena, 

vacancy ordering and related effects, a real-structure description is desirable which should be 

representative for the entire sample. The quantitative evaluation of experimental powder  

X-ray diffraction (PXRD) patterns in combination with other crystallographic methods like 
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transmission electron microscopy (TEM) promises to be an appropriate experimental 

approach. Although less pronounced than in single-crystal diffraction patterns, powder 

patterns are inherently containing information concerning real-structure effects. The latter 

ones may be visible as increased background intensity and/or as broadened reflections 

corresponding to diffuse scattering. A number of real-structure effects on different length 

scales have been reported for (oxo)nitridosilicate based LED phosphors.[10,11,24] Solely if the 

real structures can be elucidated, the effect of short-range ordering on the performance of 

LED phosphors may be properly understood and controlled. The triclinic compound 

EuSi2O2N2
[25] is a layered oxonitridosilicate that exhibits characteristic twinning by reticular 

pseudomerohedry which is due to the fact that silicate layers rotated by 180° can coordinate 

the cations that are located between consecutive layers in almost the same fashion as non-

rotated silicate layers because of the pseudo-symmetry of the Si/O partial structure. The 

highly condensed silicate layers are built up of vertex-sharing SiON3 tetrahedra of Q3-type 

(superscript number specifies connectedness: number of directly connected polyhedra) in 

which O atoms are terminally bound and each N atom bridges three Si atoms, respectively. If 

the twin domains are larger than the X-ray’s length of coherence, the twinning does not affect 

X-ray powder diffraction patterns significantly. However, if the size of ordered domains is 

smaller, intensities in PXRD patterns may be affected and single-crystal like twin refinements 

on data from twinned crystals become impossible.  

Based on these results, the structure of the isotypic compound SrSi2O2N2 was investigated.[10] 

Upon doping with Eu2+, this compound shows efficient green to yellow luminescence 

(λem ≈ 540 nm) when excited by blue radiation (λexc ≈ 450 nm) rendering this material a 

possible phosphor for pc-LEDs.[12,13,15,22] In the Rietveld refinement, a reasonable fit could 

only be obtained assuming two sets of four metal atom positions each in the unit cell which 

constitute two alternatives of the cation distribution in different domains. The resulting 

average crystal structure is illustrated in Figure 1 (illustrating the structure of 

Sr0.5Ba0.5Si2O2N2:Eu2+ as well). 
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Figure 1. Side view (approximately along [100]) on the average structure of (a) SrSi2O2N2 and (b) 
Sr0.5Ba0.5Si2O2N2 (2 mol% Eu doped; SiON3 polyhedra gray; O atoms: small white spheres; N atoms: small 
black spheres) with alternative sets of cation positions (set A white spheres; set B gray spheres). The unit cell is 
indicated by black solid lines. 
 

Selected area electron diffraction (SAED) patterns of this material exhibit frequently diffuse 

streaks interconnecting the Bragg reflections. The presence of small domains consequently 

yielded a disordered average structure with significant intensity changes in PXRD patterns as 

compared to the fully ordered structural model. The fact that no crystals with sufficient size 

for single-crystal diffraction could be synthesized is probably due to such disorder 

phenomena. Because disorder occurs along the stacking direction this is disadvantageous for 

the growth of single crystals along this direction resulting in a plate-like morphology.  

In this contribution, investigations on the real structure of Sr0.5Ba0.5Si2O2N2:Eu2+ based on 

powder pattern simulations are described. With respect to high impact on the development of 

novel LED-phosphors, Eu2+-doped Sr1-xBaxSi2O2N2 phases have already been investigated in 

the past.[12,15,20] However, only preliminary results have been published leaving a number of 

important questions unanswered (e.g. comprehensive phase analysis, structural description, 

chemical analysis, phase purity, influence of unknown impurities). Reported luminescence 

investigations are inconsistent but, nevertheless, revealed an unexpected red shift for 

increasing Ba2+ content in all cases. The impact of Ba substitution in SrSi2O2N2 on the crystal 

structure and the thus provoked lattice deformation due to incorporation of larger Ba2+ ions 

are ambiguous and were therefore not correlated with the luminescence properties so far. In 

the PXRD pattern of Sr0.5Ba0.5Si2O2N2:Eu2+, there are both asymmetric broadened maxima as 

well as sharp Bragg reflections and apparently, both of them belong to one and the same 

phase. Additionally, reflections are missing compared to the powder pattern of SrSi2O2N2. In 

this contribution, we present a thorough structural characterization including one-dimensional 
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stacking disorder using the Hendricks & Teller algorithm [26] and detailed luminescence 

investigations of Eu2+-doped Sr1-xBaxSi2O2N2 phases in respect to structure-property relations. 

 

 

2.3.2 Experimental Section 

 

2.3.2.1 Synthesis 

 

Sr0.5Ba0.5Si2O2N2:Eu2+ (2 mole% Eu) was prepared by heating a stoichiometric mixture of 

(Sr1-xBax)2SiO4:Eu2+ (x = 0.5) and α-Si3N4 (UBE, >95 %) for 5 h to 1375 °C in a stream of 

forming gas (N2:H2 = 95:5; equation 1). The product was ground and reheated to 1450 °C for 

5 h under forming gas. The sample was then washed with diluted HCl and water to remove 

remaining oxosilicate byproducts. 

 

(Sr1-xBax)2SiO4:Eu2+ + α-Si3N4                                          2 (Sr1-xBax)Si2O2N2:Eu2+          (Eq.1) 

 

2.3.2.2 Powder X-ray Diffraction  

 

Powder diffraction data were collected on a STOE STADI P diffractometer (Cu-Kα1 radiation, 

Ge(111) monochromator, position sensitive detector) in transmission geometry. Simulations 

of Bragg data were performed using the WinXPOW program package.[27] Rietveld refinement 

was carried out using the TOPAS package.[28] Powder patterns and SAED diagrams of 

disordered polytypes including diffuse scattering were calculated using DIFFaX.[29,30] 

 

2.3.2.3 Electron Microscopy  

 

The chemical composition of several crystallites was analyzed by energy dispersive X-ray 

spectroscopy (EDX) using a JSM-6500F scanning electron microscope (Joel) with a Si/Li 

EDX detector (Oxford Instruments, model 7418). The composition of the starting material 

(Sr1-xBax)2SiO4:Eu2+ was verified by EDX analysis specifying the value x = 0.50(2). For the 

product (Sr1-xBax)Si2O2N2:Eu2+, the value of x was analyzed to be 0.53(2). Accordingly, the 

overall value of x = 0.5 (within experimental standard deviation) is corroborated by EDX 

measurements. Electron diffraction patterns (SAD, selected area diffraction) and high-

 1450 °C 
forming gas (95/5) 
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resolution images were recorded on transmission electron microscopes (Philips CM30/ST, 

300 kV or Fei Titan 80-300, 300 kV respectively).  

 

 

2.3.3 Results and Discussion 

 

2.3.3.1 Average Structure 

 

The average structure of SrSi2O2N2 was described as a layered silicate structure with triclinic 

metrics and lattice parameters a = 7.0802(2), b = 7.2306(2), c = 7.2554(2) Å, α = 88.767(3),  

β = 84.733(2), γ = 75.905(2) ° and V = 358.73(2) Å3.[10] Calculated powder patterns based on 

the ordered structure of EuSi2O2N2
[25] showed a significant misfit of some reflections 

compared to the experimental ones. Introducing an alternative set B of metal atom positions, 

occupied with a probability of 20 %, significantly improved the fit. Structures with 

exclusively set A or set B, respectively, are congruent due to additional translational 

symmetry of the silicate layer. Increasing the occupation of the alternative sets of positions up 

to 50 % each causes a continuous decrease of some intensities in calculated powder patterns 

(see Figure 2).  

 

 
Figure 2. Simulated powder XRD patterns for the average structure of SrSi2O2N2 with increasing occupation of 
set B positions (0, 10, 20, 30, 40, 50 %). The intensity weakening is indicated for three reflections (which would 
be extinct in case of B-centering). 
 

This corresponds to a real structure with rather small domains, i.e. a high concentration of 

domain boundaries between undisturbed areas. If the occupancy of set A equals that of set B, 
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the disordered structure can be described by a subcell with triclinic metrics (a = 4.8306(1),  

b = 5.2962(1), c = 7.2306(2) Å, α = 100.225(2), β = 99.341(2), γ = 91.406(1) °). However, for 

the sake of easier comparison with isotypic SrSi2O2N2 the cell is better described in a non-

standard setting with the original lattice parameters, but with additional B-centering. In 

refinements using space group P1, this would mean that atoms placed on x, y, z are doubled 

by equivalent ones with x + 0.5, y, z + 0.5. The powder sample contains crystallites with 

different degree of disorder as observed in electron diffraction patterns (see below), many of 

them exhibiting reflections not consistent with extinction rules for B-centring. However, 

although not extinct, reflections with h + l = 2n + 1 are predominantly affected by the 

intensity weakening described above. Therefore, the B-centering was not taken into account in 

the refinement of the structure of Sr0.5Ba0.5Si2O2N2:Eu2+.  

For Rietveld refinement (see Figure 3) of the average structure of Sr0.5Ba0.5Si2O2N2:Eu2+, the 

structure parameters of SrSi2O2N2 were used as a starting model.  

 

 
Figure 3. Rietveld fit of the powder diffraction pattern of Sr0.5Ba0.5Si2O2N2 (2 mol% Eu doped) with measured 
histogram (black), calculated pattern (gray solid line), difference curve and positions of reflections (bars; top: 
Sr0.5Ba0.5Si2O2N2, bottom α-Si3N4 (2.84 wt%)). The excluded regions correspond to maxima due to diffuse 
scattering. 
 

On both sets A and B, the molar ratio Sr/Ba was not refined, however, the positional 

parameters and occupancy factors for each set were refined. The occupancy of set A and B, 

respectively, was refined to a ratio 0.48(2)/0.52(2) indicating approximately equal occupation 

of both sets of cation positions A and B within accuracy of the method. This can also be 

deduced by comparing the experimental pattern with Figure 2. The small amount of Eu2+ was 

not taken into account because of the insignificant scattering intensity. As a consequence of 

the limited information present in the powder pattern of such a triclinic compound, bond-

lengths restraints combined with a penalty weighting were applied for the interatomic 
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distances within the silicate layer. The target values for bond lengths (Si/N)-(O/N) were set to 

those refined from single-crystal data of EuSi2O2N2.
[25] Overall isotropic displacement 

parameters were refined for both metal atoms and light atoms (Si/O/N), respectively. 

Reflections that apparently do not result from Bragg scattering were excluded during 

refinement, they are discussed below. Taking into account the non-luminescent impurity 

phase α-Si3N4, this model explains the observed Bragg intensities quite well. Although the 

morphology of the crystallites is anisotropic, taking into account preferred orientation did not 

yield any improvement and was neglected in the final refinement. Due to larger size of Ba2+, 

the cell parameters increase compared to SrSi2O2N2, leading to a unit cell with a = 7.2059(2), 

b = 7.3887(3), c = 7.3340(2) Å, α = 88.525(4), β = 84.454(3), γ = 75.979(4) ° and  

V = 377.07(2) Å3. The largest relative increase can be observed for b which approximately 

corresponds to the stacking direction of the layered structure (layers  [010]*). The change of 

lattice parameters leads to a non-standard setting of the triclinic unit cell which was not 

changed in order to emphasize the analogies with the isotypic compounds EuSi2O2N2 and 

SrSi2O2N2. Crystal data and details concerning the Rietveld refinement are summarized in 

Table 1. Further details of the crystal structure investigation may be obtained from 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: 

(+49)7247-808-666; e-mail, crysdata@fiz-karlsruhe.de, http://www.fiz-

karlsruhe.de/request_for_deposited_data.html) on quoting the depository number CSD-

422238 (Sr0.5Ba0.5Si2O2N2). 

 

Table 1. Crystal data and Rietveld structure refinement of Sr0.5Ba0.5Si2O2N2:Eu2+ (the presence of Eu was 
neglected because of insignificant scattering intensity). 

Crystal system Triclinic 
Space group P1 (no.1) 
Lattice parameters a = 7.2059(2) Å, b = 7.3887(3) Å, 
 c = 7.3340(2) Å, α = 88.526(4)°, 
 β = 84.454(3)°, γ = 75.980(4)° 
Cell volume 377.07(2) Å3 
Z 4 
Formula weight 228.66 g mol-1 
Total number of reflections 1130  
Refined parameters/restraints 158/80 
Diffractometer STOE STADI P  
Radiation Cu-Kα1 (λ = 1.54056 Å) 
Increment 0.01° 
2θ range 10° - 120° 
Excluded regions 5 (ΣΔ2θ = 10.45°) 
Data points 9931 
Background function Shifted Chebyshev (42 parameters) 
R values RP = 0.0241, wRP = 0.0316, R(F2) = 0.0651 
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Samples with composition Sr1-xBaxSi2O2N2:Eu2+ (0.45 ≤ x ≤ 0.55), but synthesized at a much 

higher temperature of 1650 °C (compared to 1450 °C in this study), have been reported to 

show yellow luminescence upon excitation with UV to blue radiation in a patent 

application.[31] The powder XRD pattern depicted there cannot be explained assuming single-

phase material. The main phase corresponds to the BaSi6N8O type of structure[32] which is not 

consistent with the metrics given for a hypothetic new phase in the MSi2O2N2 (M = Ba,Sr) 

system. As BaSi6N8O:Eu2+ shows a blue to cyan emission, the observed yellow luminescence 

(a few nm red-shifted compared to SrSi2O2N2:Eu2+, see section Luminescence) probably 

originates from (Sr,Ba)Si2O2N2:Eu2+, which apparently was an impurity phase there. 

Identification of more than one phase is not easy because obviously the PXRD pattern is 

strongly affected by texture effects. This can be inferred from the increased relative intensity 

of the 010 reflection corresponding to platelet crystallites extended in the (010) plane that are 

preferentially oriented perpendicular to the diffraction vector. 

 

 

2.3.3.2 Lattice Energy Calculations 

 

Based on the refined structure parameters, lattice energy calculations (MAPLE, Madelung 

part of lattice energy) were performed.[33-36] Because oxygen and nitrogen positions cannot be 

distinguished by X-ray diffraction, O and N were assigned in analogy to isotypic EuSi2O2N2 

for which single-crystal data have been reported.[25] Accordingly, oxygen atoms are bound 

terminally (O[1]) and all nitrogen atoms are of N[3]-type. Only one set of metal atom positions 

was taken into account. All relevant values are listed in Table 2 and are very close to typical 

ranges of partial MAPLE values.  

 

Table 2. Results of MAPLE calculations (in kJ/mol) for Sr0.5Ba0.5Si2O2N2 and increment calculations: partial 
MAPLE values, total MAPLE sum and difference to theoretical total MAPLE value. 
(Sr/Ba)2+ Si4+ O[1]2- N[3]3- Total MAPLE Δ 
1838-2045 9023-9581 1945-2565 5907-6430 37713 0.30% 
Total MAPLE (0.5 SrO + 0.5 BaO + 0.5 SiO2 + 0.5 Si3N4): 37828 
Typical MAPLE values (in kJ/mol): Ba2+: 1500-2000; Sr2+: 1500-2100; Si4+: 9000-10200; O[1]2-: 2000-2800; 
N[3]3-: 5000-6200.[8] 
 

Small differences might be a result of less precise light atom position refinement based on 

powder diffraction data. A comparison between the calculated total MAPLE value and a 

theoretical reference reaction equation starting from the respective binaries show a small 

difference of 0.30%. 
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2.3.3.3 Luminescence 

 

This study complements preliminary investigations of the substitutional series 

Sr1-xBaxSi2O2N2:Eu2+.[12,15,20] Due to the improved synthesis, a phosphor material containing 

only one luminescent phase was obtained. For the first time a complex two phase Rietveld 

refinement for such a sample was done considering all atoms in the unit cell. Unlike prior 

investigations, such samples, fully characterised by electron- and X-ray methods, with no 

unknown impurities yield more significant, i.e. intrinsic values because of unaffected, sharp 

emission spectra. The discrepancy regarding emission band positions and shape, related to the 

given compositions in Sr1-xBaxSi2O2N2:Eu2+ phases in the literature, could therefore be 

ascribed to insufficient phase analysis. Prediction of crystal structure or phase purity only by 

comparing PXRD data (highly affected by texture effects and/or diffuse scattering e.g. 

background) without any refinement and/or chemical analysis is deficient in such a case. 

Although the crystal structures are highly disordered, these phases are highly relevant for  

pc-LED applications. The present luminescence study on Sr0.5Ba0.5Si2O2N2:Eu2+ provides a 

convincing explanation for unexpected red-shifted luminescence based on refined structural 

data.  

Substitution of Sr2+ by Ba2+ in SrSi2O2N2:Eu2+ leads to a continuous red shift of the emission 

band while the edge position of the lowest lying absorption band is similar for both 

compositions (see Figure 4).  

 

 
Figure 4. Absorption (dashed) and emission spectra (λexc = 450 nm) of powder samples of 
(Ba0.5Sr0.5)0.98Si2O2N2:Eu0.02 (black curves) and Sr0.98Si2O2N2:Eu0.02 (gray curves). 
 

The larger Ba2+ ions cause a lattice expansion which usually involves increased Eu-(O/N) 

bond lengths. Because the structure type remains unchanged, the change in covalent activator-
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ligand interaction (nephelauxetic effect) should be small and lowering of the Eu2+ 5d-orbital 

splitting is expected to lead to blue-shifted absorption and emission bands. However, as for 

the case of CaSi2O2N2:Eu2+ [9,22] nearly no absorption band shift is observed but a red shift 

and broadening of the emission band is detected caused by a larger Stokes shift of the yellow 

emitting (Ba0.5Sr0.5)0.98Si2O2N2:Eu0.02. The emission band width (full width at half maximum, 

FWHM) increases from ~ 2450 cm-1 to ~ 2744 cm-1 for Sr0.98Si2O2N2:Eu0.02 and 

(Ba0.5Sr0.5)0.98Si2O2N2:Eu0.02, respectively.  

In order to gain more insight into the differing spectroscopic properties of the isotypic phases 

Sr0.98Si2O2N2:Eu0.02 and (Ba0.5Sr0.5)0.98Si2O2N2:Eu0.02, a least squares fit of the respective 

emission bands to calculated optical transition probabilities has been carried out assuming a 

configuration coordinate model with identical curvature of ground and excited state parabola 

for T = 298 K.[37,38] Because of the very similar coordination spheres of the various cation 

lattice sites that can be substituted by Eu2+, a fit procedure for single-site optical transitions is 

considered as being appropriate to study the optical transition properties of the layered SiON 

phases. Figure 5 shows the fitted emission spectra for Sr0.98Si2O2N2:Eu0.02 and 

(Ba0.5Sr0.5)0.98Si2O2N2:Eu0.02 and the derived configurational diagram with the zero phonon 

emission transitions indicated as arrows.  

 

 
Figure 5. Emission spectra for 450 nm excitation (lines) and fitted optical transition probabilities (points) for 
Sr0.98Si2O2N2:Eu0.02 (black curve) and (Ba0.5Sr0.5)0.98Si2O2N2:Eu0.02 (gray curve; left side) and the derived 
configurational coordinate diagram for Eu2+ in the respective host lattices (identical color codes; right side). 
Huang-Rhys coupling parameters S of 3.7 and 4.8 and phonon frequencies ħ of 535 and 528 cm-1 have been 
obtained for Sr0.98Si2O2N2:Eu0.02 and (Ba0.5Sr0.5)0.98Si2O2N2:Eu0.02, respectively. 
 

The fit results indicate that the zero phonon energies are comparable on a wavelength scale 

for both compositions with values of 494 nm and 501 nm for Sr0.98Si2O2N2:Eu0.02 and 

(Ba0.5Sr0.5)0.98Si2O2N2:Eu0.02, respectively, and correlate with the very similar low energy 

absorption band edges for both compounds (see Figure 4). 
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A stronger electron-phonon coupling for Ba0.5Sr0.5Si2O2N2:Eu2+ as indicated by the fit results 

should in principle be related to similar structural differences as discussed for CaSi2O2N2:Eu2+ 

vs. SrSi2O2N2:Eu2+.[22] The relative size of the substitutional lattice site has a large impact on 

the magnitude of lattice relaxation of the local surroundings of Eu2+ in its excited 4f65d state. 

A larger site for Eu2+ frequently leads to a more restricted relaxation and has been explained 

based on a configurational coordinate diagram for Eu2+ in which r < 0.[39,40]  

According to the Rietveld refinement, the coordination spheres of all metal atoms in 

Ba0.5Sr0.5Si2O2N2:Eu2+ are comparable to the corresponding ones in SrSi2O2N2:Eu2+. As a 

consequence of expanding lattice parameters, the silicate layer is stretched and becomes less 

corrugated. The terminal oxygen atoms (O[1]) approach each other, simultaneously generating 

a more symmetric trigonal prismatic coordination around each metal site. A possible 

explanation for this aberrant behavior in Sr1-xBaxSi2O2N2:Eu2+ may be established by 

regarding average metal oxygen bond lengths in comparison with ionic-radii sum,[36] because 

the sixfold coordination of metal atoms by terminal oxygen atoms might be the predominant 

factor that determines the spectral position of absorption and emission bands of Eu2+ located 

at the respective sites. For SrSi2O2N2:Eu2+, the average metal-oxygen bond length is 2.62 Å 

whereas the ionic radii sum for sixfold coordinated Sr2+ and fourfold coordinated O2- is only 

2.56 Å. This means that the O2- ions do not approach the centers of the polyhedra as close as 

possible, resulting in non maximal shortened Eu-O bond length. In the mixed compound 

Sr0.5Ba0.5Si2O2N2:Eu2+ the average metal-oxygen bond length was determined to 2.68 Å. 

Calculations for ionic-radii sum for sixfold coordinated Sr2+ and equally frequent Ba2+, 

respectively, and again fourfold coordinated O2- ions leads to 2.65 Å which resembles the 

value given by Rietveld refinement. As a consequence Sr-O as well as Ba-O bond length are 

close to the respective ionic radii sum (Sr-O: 2.56 Å; Ba-O: 2.73 Å) which finally means that 

in this case Sr-O distances are obviously shorter than in SrSi2O2N2:Eu2+ in spite of unit cell 

enlargement. Furthermore, if Eu2+ ions prefer occupation of Sr sites in Sr0.5Ba0.5Si2O2N2:Eu2+, 

a stronger structural relaxation can be expected compared to SrSi2O2N2:Eu2+ which should 

lead to a larger Stokes shift and a broadened emission band. These results support the 

assumption that a local lattice deformation as a consequence of Ba2+ integration might be 

responsible for shorter interatomic distances within neighboring coordination polyhedra 

containing smaller Eu2+ in its excited state.[12] Therefore, the unexpected emission shift to 

longer wavelength can be explained by a less restricted local lattice relaxation at the Eu2+ sites 

resulting in a larger Stokes shift compared to SrSi2O2N2:Eu2+ in accordance with the fitting 

results presented above (3573 vs. 3285 cm-1).  
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The chromaticity coordinates of Sr0.5Ba0.5Si2O2N2:Eu2+ (yellow emission; CIE x,y = 0.441, 

0.544) makes it a very attractive candidate material for white phosphor converted LEDs.  

 

 
Figure 6. CIE 1931 chromaticity diagram showing the color coordinates of Sr0.5Ba0.5Si2O2N2:Eu2+ (black circle) 
and Y3Al5O12:Ce3+ (gray diamond) that are close together and are positioned in the yellow spectral range. 
Combination with a 450 nm emitting InGaN LED yields white phosphor converted LEDs with the respective 
load lines (dashed lines) crossing the black body curve at correlated color temperatures of ~ 5500 K (cool white). 
 

Figure 6 shows a comparison of the color coordinates and resulting white points in a pc-LED 

with data for Y3Al5O12:Ce3+ (YAG), the most widely used commercial phosphor for highly 

efficient cool white pc-LEDs. Because the emission of Sr0.5Ba0.5Si2O2N2:Eu2+ is narrower 

than the Ce3+ emission of YAG, pc-LEDs with a higher luminous efficacy can be fabricated 

(LE of Sr0.5Ba0.5Si2O2N2:Eu2+ (Y3Al5O12:Ce3+) = 495 (441) lm/Wopt). Such LED lamps may 

find application e.g. for outdoor lighting. 

 

 

2.3.3.4 Simulation of the Diffuse Scattering 

 

The average structure of Sr0.5Ba0.5Si2O2N2:Eu2+ comprises disordered metal atom positions. 

Although it yields a convincing fit of the observed intensities, the model offers no information 

about the real structure. However, the asymmetric intensity maxima excluded during 

refinement result from real-structure effects. The profile of these broadened maxima is typical 

for diffuse scattering from planar defects. For layered structures, the presence of planar 

defects is due to the fact that perfect two-dimensional periodicity can be combined with 

different kinds of polytypic modifications with identical layer distances and almost the same 

lattice energy.[41] 
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For the simulation of diffuse intensities, the triclinic unit cell was transformed into a setting 

with monoclinic metrics using the matrix (1 0 0, -0.24817 1 -0.00238, 0 0 1), thus the new 

basis vector b’ is perpendicular to the layers. The vectors a and c which are parallel to the 

silicate layers were kept unchanged. The absolute value of b’ corresponds to the y-component 

of the original b axis. The unit cell volume is thus fixed to the refined value. In order to 

describe the real structure, all permutations of the metal atom sets A and B (equals shifted A) 

combined with silicate layers, both “normal” and rotated by 180° around [010]* (due to 

twinning by a twofold axis), were taken into account. Additionally, two different stacking 

vectors 0.24817 1 0.00238 or -0.24817 1 -0.00238 were employed, they correspond to 

twinning by a mirror operation. This leads to a complex model with 23 = 8 different 

possibilities combining layers to a real structure (see Table 3).  

 

Table 3. Characteristics of all (23 = 8) possible layer transitions which have been taken into account: shift, 
rotation and reflection (+ = yes; - = no). 
Stacking 
mode 

shifted metal 
position, i.e. anti-
phase boundary 

180 °rotation 
(around [010]*) 

Stacking along               
-0.24817 1 -0.00238, 
i.e. mirror operation 

Probability in 
final model 
(in %) 

1 - - - 50.45 
2 + - - 31.00 
3 - - + 8.00 
4 + - + 10.00 
5 + + - 0.08 
6 - + - 0.03 
7 + + + 0.12 
8 - + + 0.32 
    Σ 100 
 

With related stacking probabilities between defined layers (metal atoms combined with 

silicate layers) a 3D-structure can be built up. To optimize the fit of experimental data, 

transition probabilities (sum: 100 %) between the different types of layers were varied 

arbitrarily, taking care not to change Bragg intensities of the average structure. Instrumental 

broadening was taken into account by a pseudo-Voigt function (u = 0.15; v = -0.02;  

w = 0.015; σ = 0.4) to offer a reasonable fit at all diffraction angles. Whenever a rotated 

silicate layer follows a non-rotated one, a twin-like boundary is created. If rotated layers are 

stacked along the ideal stacking vector (see stacking mode 5 and 6 in Table 3) an alternative 

structure is built up based on pseudosymmetry. In order to simulate SAED patterns, layers 

corresponding to rotational twinning (in a narrower sense; see stacking mode 7 and 8 in 

Table 3) are important although they are not essential for powder XRD simulations as it 

turned out that their frequency is low and thus the intensities from rotation-twin domains 
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superimpose incoherently. Non-rotated layers, stacked along -0.24817 1 -0.00238, describe 

mirror twinning (see stacking mode 3 and 4 in Table 3). Taking into account typical rotation-

twin domain sizes of about 100 nm as reported for SrSi2O2N2, the stacking probabilities were 

chosen in such a way (0.44 %) that rotation-twin boundaries occur roughly every hundred nm. 

Rotational twinning in the real structure is illustrated in Figure 7 (see stacking mode 8 in 

Table 3): A silicate layer with metal atoms of set A (black unit cell) is followed by an 

identical one (stacking vector of the idealized structure), both being part of a domain which is 

followed by another two (darker shading, with corresponding metal atoms gray), generated 

from the first layers by 180° rotation around [010]* (indicated by a gray unit cell). The unit-

cell orientation is changed because of the triclinic metrics. At the twin boundary a rotated 

silicate layer follows a non-rotated one. Both cation sets of the average structure are shown at 

the rotation-twin boundary, but in the real structure only one set is present. Both atom sets 

yield identical models for the described boundary. 

 

 
Figure 7. Side view (along [001]) on a sequence of silicate layers with corresponding metal atoms (light gray and 
gray spheres for set A and B, respectively); bottom: two silicate layers with set A metal atom positions (black 
unit cell edges); top: layers rotated by 180° around [010]* (unit cell edges gray, metal atoms gray); due to the 
pseudo-symmetry of the O atom positions (see Figure. 8), rotated and non-rotated layers can coordinate both 
cation sets in a similar way, which corresponds to the local structure of a twin boundary. Overlap of both 
orientations (average structure) leads to the superposition of the two sets of metal atom positions. 
 

Within such twin domains, most layers correspond to the ideal stacking sequence, (50.45 %; 

see Table 3) while other layers contain the alternative metal atom set without a change of the 
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stacking vector (31.00 %; see Table 3). In both cases, the unit-cell orientation and also the 

silicate layer sequence remain unchanged, but metal atoms are either placed on “ideal” 

positions (set A, as in EuSi2O2N2) or, less likely, placed on alternative positions (set B). This 

means that small anti-phase domains (translation vector approx. 0.5 0 0.5, see Figure 8) of 

few nm of size are built up.  

 

 
Figure 8. Top view (along [010]*) on a silicate layer of Sr0.5Ba0.5Si2O2N2 (doped with 2 mol% Eu; SiON3 
polyhedra, gray; O atoms small white spheres; N atoms small black spheres) with corresponding Sr/Ba atoms 
(set A white spheres; set B gray spheres). The two sets of metal atom positions are shown in the upper left and 
lower right parts, respectively, overlapping in the central part of the figure. The silicate layer is built up of 
condensed zweier single chains (one of them is highlighted by darker tetrahedra) with “zig-zag” conformation 
(indicated by solid black arrows). Anti-phase boundaries are formed by displacing one set of metal atoms by one 
translation period of the single chains, corresponding to a shift from set A to set B, or vice versa (dashed arrows), 
this shift maps the silicate layer onto itself (translational symmetry of the silicate substructure). 
 

Apparently, the mixed occupation of the cation position also leads to a higher degree of 

stacking disorder. The displacement equals one translation period of the condensed single 

chains building up the silicate layer. In Figure 8 this is shown by mapping set A metal 

positions onto set B when moving the structure by one translation period of the silicate layer. 

The intensity weakening of reflections in Figure 2 corresponds to approaching the B-centered 

structure that results in case of equal probabilities for both atom sets. 

As a consequence, anti-phase boundaries seem to be energetically more favorable than twin 

boundaries. With this complex model, mainly containing small anti-phase domains within 

larger twin domains, the PXRD pattern could be reproduced very well (see Figure 9).  
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Figure 9. Experimental powder pattern of a sample of Sr0.5Ba0.5Si2O2N2:Eu2+ (top, manual background 
correction) and a simulation based on the final real-structure model (bottom). Reflections of the impurity phase 
α-Si3N4 are labeled by asterisks. 
 

In general, both anti-phase boundaries as well as twin boundaries lead to diffuse intensities 

and Bragg intensity weakening. However, both possibilities can be clearly distinguished. As 

the silicate layers have no rotational symmetry along [010]*, rotation twinning leads to a 

change of the average structure in the case of small twin domains and thus to a significant 

change of Bragg intensities. Since powder methods, in general, average over the whole 

sample whereas X-ray methods average only over coherently scattering volumes, the 

averaging present in the structure model is slightly biased as not all crystallites exhibit the 

same diffraction patterns as shown by SAED (see below). However, the convincing fit of the 

experimental data indicates that the majority of the crystallites are very similar and they are 

well described by the model discussed above. 

 

 

2.3.3.5 SAED Simulations 

 

Concluding from the average structure, Sr0.5Ba0.5Si2O2N2:Eu2+ is a highly disordered layered 

oxonitridosilicate. The simulation of diffuse scattering in the powder pattern using a disorder 

model supports this thesis. Another approach is HRTEM (Figure 10).  
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Figure 10: HRTEM image (Fei Titan 80-300) of a Sr0.5Ba0.5Si2O2N2:Eu2+ crystallite showing one-dimensional 
disorder. In the FT (inset), there are diffuse streaks perpendicular to the layer plane that either interconnect 
Bragg reflections or appear in between rows of Bragg reflections. 
 

The Fourier transformation (FT) of a high-resolution micrograph of a crystallite of 

Sr0.5Ba0.5Si2O2N2:Eu2+ shows sharp Bragg reflections interconnected by diffuse streaks and 

additional strong diffuse streaks in between as a consequence of many domain boundaries per 

area. To demonstrate the performance of the disorder model described above and also to 

illustrate the impact of domain size variation on diffraction patterns, SAED patterns were 

simulated, in dependence on the model compiled for Sr0.5Ba0.5Si2O2N2:Eu2+, and compared to 

experimental ones of SrSi2O2N2 (varying degree of disorder, Figure 11). In contrast to 

Sr0.5Ba0.5Si2O2N2:Eu2+, the domain sizes in the pure Sr compound vary more significantly. It 

also contains larger domains, however, all diffraction patterns can be simulated with the same 

disorder model assuming slightly different transition probabilities for the stacking 

possibilities.  

For crystallites of SrSi2O2N2 the occurrence and intensity distribution of diffuse streaks varies 

due to varying domain sizes. To simulate such effects in SrSi2O2N2, the stacking probabilities 

in a stacking model were slightly changed towards more extreme values. Both rotation-twin 

(stacking mode 7 and 8; see Table 3) as well as anti-phase domain sizes (stacking mode 2; see 

Table 3) were varied in order to simulate more or less diffuse intensities while the other 

transition probabilities were kept on fixed values. In Figure 11, simulated SAED patterns with 

different stacking probabilities are compared to experimental ones (hkh layer, i.e. zone axis 

[101]). Corresponding to the chosen values, the appearance of doubled number of reflections 
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(due to twinning) in every second row and/or intense diffuse streaks connecting the Bragg 

reflections, respectively, can be observed as a consequence of varying domain sizes.  

 

 
Figure 11. Comparison of electron diffraction patterns of SrSi2O2N2 (left: a, c, e (experimental, CM30/ST); right: 
b, d, f (simulations)). Top: calculation with the same stacking sequence used for PXRD simulation (weak 
parasitic reflections); middle: smaller sizes for anti-phase and rotation-twin domains (see text); bottom: larger 
sizes for anti-phase and rotation-twin domains (see text). 
 

For SAED simulation (b) the values reported in section “Simulation of the diffuse scattering” 

were chosen. As a consequence, sharp Bragg reflections are interconnected by diffuse streaks 

primarily for rows with h = 2n + 1. For the SAED simulation (d) both rotation-twin and anti-

phase domain sizes were reduced. Rotation-twin boundaries are now calculated with 10 % 

probability (domains size about 10 nm) and the occupation probabilities for set A and B 

positions equals each other (average domain size about few nm). Diffuse streaks are more 

clearly visible while doubled reflections due to twinning are about to disappear. SAED 

simulation (f) is contrary because domain sizes are enlarged. In detail rotation-twin 

boundaries occur with overall 0.1 % probability leading to domains with ≈ 1 μm of size. Anti-
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phase boundaries were also reduced meaning that layers with metal atoms on alternative 

positions are positioned on each other with a probability of only 24 %. Diffuse streaks are 

therefore rather weak. The observed diffraction pattern resembles that of the ideal structure 

(EuSi2O2N2) with large twin domains. 

 

 

2.3.4 Conclusion 

 

A promising way of a systematic optimization of luminescent materials with defined 

properties is based on the detailed knowledge of the atomic structure and its influence on the 

luminescence parameters. Understanding and analyzing effects like stacking disorder in 

layered materials is therefore of great interest. To characterize samples with respect to such 

effects, the simulation of diffuse scattering in powder XRD patterns is a promising way 

because the degree of disorder in selected crystals may differ strongly. Thus, “best” crystals 

used for structural studies might not be representative for macroscopic samples. 

Although average structure models for disordered systems do not contain information about 

the local structure, they are necessary to show e.g. isotypism to other structures. Furthermore, 

the uncommon red-shifted luminescence of Sr0.5Ba0.5Si2O2N2:Eu2+, compared to 

SrSi2O2N2:Eu2+, could be explained on the basis of the average structure model. The shift to 

longer wavelength can be explained by a less restricted local lattice relaxation at the Eu2+ sites 

because of shorter Eu-O bond length compared to SrSi2O2N2:Eu2+. The present luminescence 

investigation and also the reported structural data are significantly more reliable than prior 

results because of fully characterised samples. As shown by Rietveld refinement, the average 

structure of Sr0.5Ba0.5Si2O2N2:Eu2+ is isotypic to that of SrSi2O2N2, however, the real 

structures of the compounds differ significantly. Simulations of the powder pattern of 

Sr0.5Ba0.5Si2O2N2:Eu2+ prove a disorder model with many anti-phase and few twin boundaries, 

however more twin boundaries are present than reported for SrSi2O2N2. Because of the 

pseudo-symmetry of both the metal atom layers as well as the silicate layers, the presence of 

anti-phase domains does not change the metal coordination significantly. Moreover, disorder 

might influence luminescence properties noticeable, although in the present case this was not 

observed because of the pronounced pseudosymmetry. Not much is known about such effects. 

The results derived by detailed fitting of XRD patterns in this work encourage comparable 

investigations for other layered luminescence materials.  
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Abstract  

Due to parity allowed 4f6(7F)5d1 → 4f7(8S7/2) transition, powders of the nominal composition 

Sr0.25Ba0.75Si2O2N2:Eu2+ (2 mol % Eu2+) show surprising intense blue emission 

(λem = 472 nm) when excited by UV to blue radiation. Similarly to other phases in the system 

Sr1-xBaxSi2O2N2:Eu2+, the described compound is a promising phosphor material for pc-LED 

applications as well. The FWHM of the emission band is 37 nm, representing the smallest 

value found for blue emitting (oxo)nitridosilicates so far. A combination of electron and  

X-ray diffraction methods was used to determine the crystal structure of 

Sr0.25Ba0.75Si2O2N2:Eu2+. HRTEM images reveal the intergrowth of nanodomains with 

SrSi2O2N2 and BaSi2O2N2-type structures, which leads to pronounced diffuse scattering. 

Taking into account the intergrowth, the structure of the BaSi2O2N2-type domains was refined 

on single-crystal diffraction data. In contrast to coplanar metal atom layers which are located 

between layers of condensed SiON3-tetrahedra in pure BaSi2O2N2, in Sr0.25Ba0.75Si2O2N2:Eu2+ 

corrugated metal atom layers occur. HRTEM image simulations indicate cation ordering in 

the final structure model, which, in combination with the corrugated metal atom layers, 

explains the unexpected and excellent luminescence properties. 

 

Keywords: Crystal-Structure Determination, Luminescence, Electron Diffraction, HRTEM, 

Oxonitridosilicate 
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2.4.1 Introduction 

 

In times of economic crises, shortage of resources and increased sensibility of people to their 

environment, there is a huge demand for new materials or improved applications to enhance 

energy and cost efficiency together with environmental compatibility. One possible strategy is 

the replacement of conventional incandescent bulbs and fluorescent lamps by phosphor 

converted (pc)-LED applications that leads to energy saving and positive environment 

effects.[1-5] White light can be generated by pc-LEDs employing the combination of a blue 

pump LED with yellow-green and orange-red solid-state luminescent materials (phosphors) 

for light conversion. Therefore, the interest and research on host lattices for rare earth 

activators rapidly increased during the last few years. Beside oxidic garnet phosphors 

especially (oxo)nitrido(alumo)silicates are being investigated in this respect.[1-7] Their crystal 

structures show higher variability compared to pure oxosilicates, because N atoms can bridge 

up to four tetrahedra leading to a higher degree of condensation.[7] As a consequence, 

emission variable within the entire visible optical spectrum can be achieved with these 

materials. The oxonitridosilicate phases Sr1-xBaxSi2O2N2 (examples of so called 1-2-2-2 

phases) are promising host lattices since excellent luminescence properties in the yellow-

green spectral region are observed upon doping with Eu2+ ions.[8-17] For instance, 

SrSi2O2N2:Eu2+ can be used in white high power pc-LED applications achieving a high 

luminous efficiency, excellent color quality and high color stability.[18] The corresponding 

crystal structures exhibit various real-structure effects on different length scales, e.g. 

intergrowth, microtwinning and stacking disorder.[8,15,19] Single crystals for structure 

elucidation could only be obtained for EuSi2O2N2 (isotypic to SrSi2O2N2).
[20] As a 

consequence, routine strategies for structure determination could not be used for the related Sr 

and Ba compounds as well as the respective mixed phases.[8,15,19] The compounds  

Sr1-xBaxSi2O2N2:Eu2+ exhibit outstanding luminescence properties. They show an unexpected 

red-shifted luminescence for increasing Ba2+ content.[10,11] Usually, substitution of Sr2+ by 

larger Ba2+ ions causes a shift to shorter emission wavelengths due to lower Eu2+ 5d-orbital 

splitting when Eu2+ randomly occupies the metal positions. Rietveld refinement on powder  

X-ray diffraction (PXRD) data in combination with transmission electron microscopy (TEM) 

showed that Sr0.5Ba0.5Si2O2N2:Eu2+ is highly disordered and multiply twinned.[15] Its crystal 

structure is very similar to that of SrSi2O2N2:Eu2+, which exhibits a lower degree of disorder. 

Substitution of Sr2+ by Ba2+ leads to a deformation of the layered crystal structure. The Sr-O 

distances in the pure Sr phase are larger than the sum of the ionic radii, however, Ba 
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integration leads to shorter Sr-O distances in the mixed phase compared to non-substituted 

SrSi2O2N2:Eu2+. The dopant Eu2+ preferably occupies these Sr positions, resulting in more 

pronounced structural relaxation and a larger Stokes shift.[15] Preferred occupation of Sr sites, 

i.e. sites with shorter metal-ligand distances, by Eu2+ was also reported for  

Ba3-xSrxSi6O12N2:Eu2+ where the unexpected small FWHM of the emission band was 

explained by a favored occupation of one of the two independent alkaline earth sites.[21] The 

detailed knowledge of the crystal structure thus allows to explain the luminescence properties, 

which appear surprising at first glance. Apparently, the impact of cation substitution on the 

deformation of the crystal structure is difficult to predict, so that the luminescence properties 

may be unexpected. This is most pronounced for systems which do not form solid solutions 

with a broad compositional range (e.g. SrSi2O2N2 and BaSi2O2N2). As shown for 

Sr0.5Ba0.5Si2O2N2:Eu2+, PXRD patterns of very similar structures may look significantly 

different; both additional and “missing” intensities do result from real structure effects. The 

coherent interference of scattered waves can change the pattern dramatically if nanodomains 

are present.[15] Therefore, nanotwinning may affect the intensities in powder diffraction 

patterns whereas “classical” twinning (domain sizes larger than the X-ray’s length of 

coherence) has no influence. Here, we present the structure of  

Sr1-xBaxSi2O2N2:Eu2+ (x = 0.75) which was elucidated by combining X-ray and electron 

diffraction and high-resolution TEM (HRTEM). The material exhibits complex real structure 

effects as well as excellent luminescence properties. 

 

 

2.4.2 Results and Discussion 

 

2.4.2.1 Synthesis and Chemical Analysis 

 

Two different approaches for sample synthesis have been applied: (1) Powder samples of  

Sr1-xBaxSi2O2N2:Eu2+ (x = 0.75) suitable for TEM investigations were prepared by heating a 

stoichiometric mixture (1:3; ball milled) of (Sr0.25Ba0.75)2SiO4:Eu2+ and Si powder (Cerac, 

99.999%) at maximum temperatures of 1400 °C in a stream of forming gas (N2:H2 = 95:5) 

using a molybdenum crucible. 

(2) Samples with crystals suitable for single-crystal analysis were obtained by heating a 

stoichiometric mixture of (Sr0.25Ba0.75)2SiO4:Eu2+ and α-Si3N4 (UBE, >95 %) at maximum 
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temperatures of 1400 °C using a tungsten crucible positioned in a radio-frequency (RF) 

furnace [22] with stationary forming gas (N2:H2 = 95:5) atmosphere (equation 1). 

 

(Sr1-xBax)2SiO4:Eu2+ + Si3N4                  2 (Sr1-xBax)Si2O2N2:Eu2+   (Eq. 1) 

 

EDX analysis of the Sr1-xBaxSi2O2N2:Eu2+ powder, obtained in a forming gas stream, yielded 

x = 0.74(1) (average of seven measurements of crystallites with typical platelet morphology) 

as expected. For single crystals (RF furnace synthesis), x was determined to be 0.75(1) as an 

average of five measurements. From TEM-EDX, x = 0.73(2) was obtained as an average of 

eight measurements on crystallites with typical morphology. Accordingly, the value of 

x = 0.75 (within experimental standard deviation 2 - 4 at. %) is confirmed by EDX 

measurements so that results from electron and X-ray diffraction data are comparable. A 

minor impurity phase with BaSi6N8O structure type[23] was detected, which is typical for 

thermal decomposition of 1-2-2-2 phases.[15]  

 

 

2.4.2.2 Electron Microscopy 

 

In samples prepared by dispersing powder on Cu grids with carbon film, all crystallites with 

the expected composition exhibited approximately the same orientation due to the platelet 

particle morphology typical for layered compounds. This impedes the determination of lattice 

parameters. Although in general tilting the sample changes the diffraction pattern 

significantly, in this case tilting (overall up to 48 °) did not result in a variation of the zone 

axis visible in selected area electron diffraction (SAED) patterns. However, the intensity of 

the “reflections” varies (Figure 1). 

 

 
Figure 1. SAED patterns of a tilt series (along y; overall 48° tilt angle; x and y are absolute tilt angles of the 
TEM sample holder). Exemplary “reflections” with changing intensities are marked by white circles. 
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This effect can be explained by assuming continuous diffuse streaks interconnecting the 

Bragg positions along the viewing direction. The maximum of the measured (real) lattice 

spacing during the tilt is d = 5.46 and 4.80 Å, respectively, which is close to d values 

determined by single-crystal analysis (next section) and include an angle of 90.5°, 

corresponding to the unit mesh dimension within the silicate layer (Figure 2). 

 

 
Figure 2. ”Pseudo” lattice spacing (a, b) and corresponding angle (c) of Sr0.25Ba0.75Si2O2N2:Eu2+ dependent on tilt 
angle of TEM sample holder (axes of coordinate systems). Due to platelet morphology of crystallites, the tilt 
angles of the sample holder are approx. 0° in both directions for the maximal d values. Typical SAED pattern (d) 
close to 0 ° tilt angle of sample holder. 
 

To diminish texture effects (to accomplish more statistical distribution of particles) and 

directly observe diffuse streaks, powder samples, embedded in two-component glue, were 

used. Intense diffuse streaks interconnecting Bragg reflections were observed. The lattice 

spacing along the streaks correspond to the unit cell dimension of BaSi2O2N2. 
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Figure 3. Typical HRTEM image of Sr0.25Ba0.75Si2O2N2:Eu2+ with layered domain structure. 

 

In HRTEM images, a domain structure can be observed (Figure 3). The metrics of the crystal 

structure of both domain types were determined using SAED patterns (Figure 4). A subset of 

the reflections can be described by the metrics of the BaSi2O2N2 type. The elongated maxima 

between these Bragg reflections cannot be indexed by this lattice; they require a second 

lattice, resembling that of SrSi2O2N2. Results of TEM-EDX analyses corroborate the presence 

of domains with higher Sr content which can be expected to exhibit the SrSi2O2N2 structure 

type. This variation of the Sr distribution cannot be detected in SEM-EDX measurements 

because the domain sizes are much smaller than the area investigated. Both lattices share one 

direction: d010 of the BaSi2O2N2 type (14.00 Å; 14.28 Å from single-crystal data; black unit 

cell) is twice d010 of the Sr0.5Ba0.5Si2O2N2 type (7.00 Å; 7.17 Å from PXRD,[15] white unit 

cell). Both lattice vectors are parallel and correspond to the stacking direction of silicate 

layers. The second smallest spacing of each lattice corresponds to d100 of BaSi2O2N2 type 

(5.53 Å; 5.47 Å from single-crystal analysis,) and d101 of Sr0.5Ba0.5Si2O2N2 type (5.34 Å; 

5.29 Å from PXRD,[15] respectively. The corresponding angles (BaSi2O2N2 type: 90°; single 

crystal orthorhombic; Sr0.5Ba0.5Si2O2N2 type: 75°; 76° from PXRD)[15] also match well. The 

deviations between lattice parameters from electron and X-ray diffraction data are consistent 

within experimental errors of both methods. 
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Figure 4. SAED pattern representing a superposition (middle) of the [001] zone axis of the BaSi2O2N2 type 
(black, top) and the [101] zone axis of the SrSi2O2N2 type (white, bottom). For both, d values and corresponding 
angles are shown. In every third vertical row, some Bragg reflections of both compounds overlap completely. 
Diffuse streaks interconnect the reflections. 
 

Some reflections of SrSi2O2N2 and BaSi2O2N2 lattice types overlap completely and therefore 

the intensity of affected sharp Bragg reflections (in every third row) is the sum of two 

contributions and thus contains information from both systems. Therefore, diffraction patterns 

do not show orthorhombic Laue symmetry (see BaSi2O2N2 
[8] structure type). The SrSi2O2N2 

structure type [19] is triclinic (space group P1) and the superposition with any other pattern 

yields overall triclinic Laue symmetry. 

 

 

2.4.2.3 Single-Crystal Structure Analysis 

 

As shown in Figure 3, Sr0.25Ba0.75Si2O2N2:Eu2+ exhibits a domain structure with 2D extended 

domains, which are only a few nanometers thick. Single crystals show pronounced diffuse 

scattering in reciprocal lattice sections. Because the domains are very thin, the scattered 

waves superimpose coherently which means that overlapping intensities contain information 

on both domain types (see Figure 4). These overlapping reflections were discarded for the 

refinement of the structure of the blue emitting material (based on BaSi2O2N2 lattice 

parameters). The relative orientation of both domain types does not change, so “single 

crystal” methods can be used for such crystals when reflections with contributions from 

different domain types are neglected. The scheme in Figure 5, which was derived from 
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different reciprocal lattice sections, shows that all rows along [010] with exclusively sharp 

reflections (see Figure 4) are involved. This corresponds to 1/3 of all reflections. 

 

 
Figure 5. Schematic view of the overlap of the reciprocal lattice of BaSi2O2N2 with that of the SrSi2O2N2 
structure type. As derived from reciprocal lattice sections, rows along [010] of the BaSi2O2N2 type show either 
exclusively sharp reflections or elongated, diffuse intensities. Referring to Figure 4, rows with only sharp 
reflections overlap for both lattice types (white spheres) while the others exclusively belong to the BaSi2O2N2 
lattice type (gray spheres). As the resolution of the reciprocal lattice sections available was limited, some rows 
(black-gray spheres, black-white spheres) were extrapolated. 
 

The crystal structure of Sr0.25Ba0.75Si2O2N2:Eu2+ was refined in space group Pna21 (no. 33) 

with a = 5.470(2), b = 14.277(3), c = 4.791(1) Å and V = 374.2(2) Å3 (see Figure 7). 

Refinement converged finally to R1 = 0.0924. Comparable refinements in Pnma show 

disordered silicate layers as described for BaSi2O2N2 
[8] but with significantly higher  

R-values. The absence of disorder in the crystal structure is corroborated by the Fourier 

transforms of individual domains in HRTEM images, which exhibit no diffuse intensities. In 

the refined structure model, the silicate layers are built up of vertex sharing SiON3-tetrahedra 

and shifted against each other along the stacking direction [010]. The metal atom layers in 

between them are corrugated instead of being coplanar as in BaSi2O2N2.
[8] As the Bragg 

reflections used for the structure refinement are located on diffuse streaks, their absolute 

intensities are biased. Mixed occupation of the metal atom position was set to an atomic ratio 

Sr:Ba = 1:3 as suggested by the EDX analysis. The doping with 2 mol% Eu was neglected 

during refinement. Distance restraints for the SiON3-tetrahedra were implemented in order to 

ensure their comparability to the values in SrSi2O2N2 and BaSi2O2N2. The similarity of 

tetrahedra topology within the silicate layers is the reason for the intergrowth of 

Sr0.25Ba0.75Si2O2N2 domains in zone axis orientation [001] with SrSi2O2N2 structure type 

domains in [101] respectively, as determined from superimposed diffraction patterns like the 
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one in Figure 4. Related anionic substructures can for example also be observed in 

(Sr0.94Eu0.06)(Al0.3Si0.7)4(N0.8O0.2)6, an alumosilicate with stacking faults.[24] 

 

 

2.4.2.4 Cation Ordering as Derived from HRTEM 

 

HRTEM image simulations[25] were compared to experimental images (Figure 6). They show 

that a structure model with one mixed occupied metal atom position (Pna21) does not well 

describe all significant features of the HRTEM images (Figure 6b). 

 

 
Figure 6. HRTEM images of Sr0.25Ba0.75Si2O2N2:Eu2+ with: black arrows indicating horizontal contrasts mainly 
affected by metal atom layers (a), simulation for the refined structure in space group Pna21 (b, defocus value  
-81 nm), simulation for structure in space group P1 (c, cation ordering, defocus value -81 nm) and simulation for 
structure in P1 (d, cation ordering, defocus value -119 nm). For all simulations the following values were used: 
accelerating voltage = 300 kV, aperture diameter = 20 nm-1, cs = 1.2 mm, spread of focus = 2.14 nm, beam semi-
convergence = 0.60 mrad, layer thickness approx. 4 nm (8 unit cells in corresponding viewing direction). 
 
Horizontal rows with bright white contrasts (indicated by black arrows, Figure 6a) are 

strongly affected by the metal atom positions so that the periodic varying contrast in every 

second of these rows indicates deviations from space group Pna21 as it is not consistent with 

mirror planes and mixed occupation of a single metal atom position. A convincing fit was 

obtained employing space group P1 and full occupation of one of the four resulting metal 

atom positions with Sr, which is consistent with the chemical composition Sr:Ba = 1:3 
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(Figure 6c, 6d). Additionally, the position of the metal atoms was slightly shifted, because of 

different ionic radii and consequently different coordination spheres of Sr and Ba (compare 

trigonal prismatic in SrSi2O2N2 vs. cuboid in BaSi2O2N2). This means that rows exclusively 

occupied by Ba atoms are less corrugated than rows containing alternating Ba and Sr atoms 

and Ba-Sr bond lengths are shorter than the Ba-Ba bond lengths (Figure 7). The relaxation of 

surrounding light atoms was neglected because it affects only slightly the simulated images. 

Simulated images for two defocus values reproduce the main features (Figure 6c, 6d) quite 

well. 

 

 
Figure 7. Projections of the crystal structures of BaSi2O2N2 (left),[8] Sr0.25Ba0.75Si2O2N2 (“average” structure from 
single-crystal data, middle) and Sr0.25Ba0.75Si2O2N2 (local cation ordering according to TEM, right) perpendicular 
to stacking direction. Silicate layers of condensed SiON3-tetrahedra are illustrated gray, Ba atoms black, Sr/Ba 
mixed occupied positions dark gray and Sr atoms light gray. 
 

The consistency of the structure model is corroborated by lattice energy calculations 

(MAPLE, Madelung part of lattice energy).[26-29] The assignment of O and N atoms was done 

in analogy to other Sr1-xBaxSi2O2N2 phases with the same silicate layer topology.[8,15,19] The 

calculated values listed in Table 1 are close to typical partial MAPLE values.[7] The total 

MAPLE values calculated for the refined structure and the structure model containing ordered 

cations are compared to that of a theoretical reference reaction equation starting from the 
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respective binary compounds. The deviation is almost half the value for the structure model 

with cation ordering compared to the structure model refined on X-ray data. 

 

Table 1. Results of MAPLE calculations (in kJ/mol) for Sr0.25Ba0.75Si2O2N2 and increment calculations: partial 
MAPLE values, total MAPLE sum and difference to theoretical total MAPLE value.[a]  
 Sr2+ Ba2+ Si4+ O[1]2- N[3]3- Total MAPLE Δ 
Pna21 1896 (mixed) 9408-9566 2219-2276 6174-6206 37745 0.064 %
P1 1916 1871-1900 9249-9755 2144-2386 6051-6331 37755 0.037 %
Total MAPLE (0.25 SrO + 0.75 BaO + 0.5 SiO2 + 0.5 Si3N4): 37769 
[a] Typical MAPLE values (in kJ/mol): Ba2+: 1500-2000; Sr2+: 1500-2100; Si4+: 9000-10200; O[1]2-: 2000-2800; 
N[3]3-: 5000-6200.[7]… 
 

 

2.4.2.5 Luminescence 

 

Eu2+-doped samples of Sr0.25Ba0.75Si2O2N2 show unexpected intense narrow band blue 

emission when excited with UV to blue radiation as a consequence of the parity allowed 

4f6(7F)5d1  4f7(8S7/2) transition. 

 

 

Figure 8 Left: emission spectrum of Sr0.25Ba0.75Si2O2N2:Eu2+ (2 mol %) powder sample (exc = 400 nm, 
λem = 472 nm, FWHM = 37 nm). Right: Least-square refinement of measured emission spectrum (black solid 
line) with three individual curves (1: λem = 469 nm, FWHM = 36 nm, line: dashed; 2: λem = 498 nm, 
FWHM = 35 nm, line: dashed and dotted; 3: λem = 555 nm, FWHM = 90 nm, line: dashed). 
 

As shown for the SrSi2O2N2 structure type, the substitution of Sr by Ba leads to an 

unexpected increase of the Stokes shift (i.e. a shift of emission wavelength from green to 

yellow spectral region), e.g. for Sr0.5Ba0.5Si2O2N2:Eu2+.[15] Sr0.25Ba0.75Si2O2N2:Eu2+ is 

supposed to show an even larger Stokes shift,[10,11] which, at first glance, seems obvious 

because of the increasing amount of Ba. For this composition, however, the structure changes 

towards the BaSi2O2N2 structure type as mentioned above. In relation to BaSi2O2N2:Eu2+, a 

larger Stokes shift is expected for Sr0.25Ba0.75Si2O2N2:Eu2+ due to more pronounced local 
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structure relaxation of Eu2+ sites in the excited state in case of increasing Sr content. 

However, a comparable Stokes shift is observed, leading to an overall emission wavelength of 

472 nm and a shifted lowest lying absorption band towards higher energies for this material. 

The explanation for this behavior is based on structure deformation. In the crystal structure of 

Sr0.25Ba0.75Si2O2N2 there are corrugated metal atom layers while they are coplanar in 

BaSi2O2N2. Additionally, the silicate layers are slightly shifted against each other 

perpendicular to stacking direction. As a consequence, there are longer Eu-O (also Eu-N) 

distances than in BaSi2O2N2:Eu2+ because of distorted cuboid metal atom coordination. The 

overall Eu2+ coordination explains the shift of absorption and emission bands towards higher 

energies. The similarity of the ionic radii results obviously in a preferred occupation of Eu2+ 

on the single Sr2+ site, causing the narrow band width of only 37 nm. This is the smallest 

value found so far for blue emitters of this material class. A second emission band can be 

assigned to the yellow conversion of primary radiation by domains with SrSi2O2N2:Eu2+ 

structure type with its typical broad band emission (see Figure 8). To improve the refinement 

of measured values, a sharp profile according to Eu2+ emission in BaSi2O2N2 host lattice was 

included (see Figure 8). BaSi6N8O:Eu2+ is not present in this case, because there is no 

quantitative excitation at 400 nm.[30] 

 

 

2.4.3 Conclusion 

 

Within the series of Sr1-xBaxSi2O2N2:Eu2+ phosphor materials, Sr0.25Ba0.75Si2O2N2:Eu2+ is a 

remarkable example that complex analytic methods are required to determine the crystal 

structure when dealing with real structure effects. Only detailed knowledge of atomic 

arrangement qualifies to describe reliable structure-property relations. Integration of Ba2+ in 

Sr1-xBaxSi2O2N2 leads to an intergrowth of domains of the SrSi2O2N2 and BaSi2O2N2 structure 

type, respectively, for x = 0.75, as there is no solid solution series. Fourier transforms of 

individual domains in HRTEM images do not show diffuse streaks. Therefore, the diffuse 

scattering in electron diffraction patterns presumably results from this intergrowth. Based on 

HRTEM image simulations, there is only one crystallographic site exclusively occupied by 

Sr2+ ions in the final structure model of Sr0.25Ba0.75Si2O2N2:Eu2+. According to very similar 

ionic radii, also preferred single-site occupation for the Eu2+ ions can be expected. In 

accordance with the results observed for SrSi6N8:Eu2+ [31] and BaSi2O2N2:Eu2+, occupation of 

only one site with Eu2+ is obviously a main reason for a very sharp emission band in phosphor 
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materials. Sr0.25Ba0.75Si2O2N2:Eu2+ exhibits the smallest value for FWHM (37 nm) known so 

far for blue emitters of this material class. The narrow band emission in the blue spectral 

region qualifies this material for applications in pc-LEDs, e.g. white LEDs with high color 

rendering index, blue LEDs (UV irradiation) or blue pump-LEDs closing the cyan spectral 

gap. Layered Sr1-xBaxSi2O2N2:Eu2+ phases are good examples how conformation and 

arrangement of metal atoms and the Si-O/N partial structure affect luminescence properties. 

 

 

2.4.4 Experimental Section 

 

2.4.4.1 Synthesis and Chemical Analysis 

 

Powder samples of Sr1-xBaxSi2O2N2:Eu2+ (x = 0.75) suitable for TEM investigations were 

prepared by heating a stoichiometric mixture (1:3; ball milled) of (Sr0.25Ba0.75)2SiO4:Eu2+ and 

Si powder (Cerac, 99.999%) for 5 h to 1350 °C in a stream of forming gas (N2:H2 = 95:5) 

using a molybdenum crucible. The product was ground (ball milled using agate balls in 

cyclohexane) and reheated to 1400 °C for another 5 h under forming gas and ground again. 

The final product was washed with diluted HCl and ethanol to remove remaining oxosilicate 

byproducts. Samples with crystals suitable for single-crystal analysis were obtained by 

heating a stoichiometric mixture of (Sr0.25Ba0.75)2SiO4:Eu2+ and α-Si3N4 (UBE, >95 %) using 

a tungsten crucible positioned in a radio-frequency (RF) furnace [22] with stationary forming 

gas (N2:H2 = 95:5) atmosphere. The temperature was increased to 1350 °C (22 °C/ min) and 

held for 3 h. After heating to 1400 °C (10 °C/ min) and keeping this temperature for 3 h, the 

temperature was reduced to 650 °C (1.1 °C/ min). The starting material 

(Sr0.25Ba0.75)2SiO4:Eu2+ was synthesized by heating a mixture (ball milled) of SrCO3 (Solvay, 

SL300), BaCO3 (Solvay, L500), SiO2 (Evonik, Aerosil OX 50) and Eu2O3 (Rhodia, 99,99 %, 

dopant, 2 mol %) for 2 h in a stream of forming gas (N2:H2 = 95:5). The chemical 

composition of the crystalline product was analyzed by energy dispersive X-ray spectroscopy 

(EDX) using a JSM-6500F scanning electron microscope (SEM, Joel) with a Si/Li EDX 

detector (model 7418, Oxford Instruments).  
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2.4.4.2 Single-Crystal X-ray Diffraction 

 

Blue luminescent crystals obtained by RF furnace synthesis were mounted on glass fibers and 

checked for quality on a Buerger precession camera. Intensity data were collected on a Nonius 

Kappa-CCD diffractometer with graded multilayer X-ray optics (λ = 0.71093 Å). The 

structure was solved by direct methods [32] and refined by full-matrix least-squares method 

using anisotropic displacement parameters for the metal atoms.[33] Due to intergrowth with 

SrSi2O2N2 intensity data were corrected (section single-crystal structure analysis).[34] 

 

2.4.4.3 Transmission Electron Microscopy 

 

For preliminary experiments, ground powder samples were dispersed in ethanol in order to 

deposit them on copper grids coated with a holey carbon film. Since such samples showed 

preferred orientation, the powder was mixed with two-component glue, placed between 

silicon wafers and glass panels, and then fixed in brass tubes (inner diameter 2 mm). These 

were cut into slices perpendicular to the tube elongation (thickness approx. 200 μm) and 

polished to 80-90 µm using different SiC coated sand papers (grain size: 40 – 5 μm). Finally, 

the thickness in the middle of the disk was reduced to approx. 20 μm using a dimple grinder 

(type 650, Gatan) and diamond grind (Electron Microscopy Science). Subsequently, a hole 

within the glue matrix samples was fabricated using an argon ion precision ion polishing 

system (type 691, Gatan). Crystallites near the hole, which are partially free of glue, are 

suitable for TEM investigations. SAED patterns and/or high-resolution images were recorded 

on transmission electron microscopes Jeol JEM-2011 (200 kV) and Fei Titan 80-300 

(300 kV), respectively. The latter one was equipped with an EDX system (TEM Tops 30, 

Edax). Tilt series of diffraction patterns were obtained using a double tilt sample holder with 

maximum tilt angle of ±30°. 
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Abstract 

The efficient green phosphor Ba3Si6O12N2:Eu2+ and its solid-solution series Ba3-xSrxSi6O12N2 

(with x~0.4 and 1) were synthesized in a radio-frequency furnace under nitrogen atmosphere 

at temperatures up to 1425 °C. The crystal structure (Ba3Si6O12N2, space group P3 (no. 147), 

a = 7.5218(1) Å, c =  6.4684(1) Å, wR2 = 0.048, Z=1) has been solved and refined on the 

basis of both single-crystal and powder X-ray diffraction data. Ba3Si6O12N2:Eu2+ is a layer-

like oxonitridosilicate and consists of vertex-sharing SiO3N-tetrahedra forming 6er- and 4er-

rings as fundamental building units (FBU). The nitrogen atoms are connected to three silicon 

atoms (N[3]), while the oxygen atoms are either terminally bound (O[1]) or bridge two silicon 

atoms (O[2]) (numbers in superscripted square brackets after atoms indicate the coordination 

number of the atom in question). Two crystallographically independent Ba2+-sites are situated 

between the silicate layers. Luminescence investigations have shown that Ba3Si6O12N2:Eu2+ 

exhibits excellent luminescence properties (emission maximum at ≈527 nm, FWHM of 

≈65 nm, low thermal quenching) which provides potential for industrial application in 

phosphor-converted light-emitting diodes (pc-LEDs). In-situ high-pressure and high-

temperature investigations with synchrotron X-ray diffraction indicate decomposition of 
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Ba3Si6O12N2 under these conditions. The band gap of Ba3Si6O12N2:Eu2+ was measured to be 

7.05 ± 0.25 eV by means of X-ray emission spectroscopy (XES) and X-ray absorption near 

edge spectroscopy (XANES). This agrees well with calculated band gap of 6.93 eV using the 

mBJ-GGA potential. Bonding to the Ba atoms is highly ionic with only the 4p3/2 orbitals 

participating in covalent bonds. The valence band consists primarily of N and O p states and 

the conduction band contains primarily Ba d and f states with a small contribution from the N 

and O p states. 

 

Keywords: Density-Functional Calculations, High-pressure chemistry, Luminescence, 

Oxonitridosilicates, X-Ray Absorption Spectroscopy 

 

 

2.5.1 Introduction 

 

Nitrido- and oxonitridosilicates as well as binary silicon nitride (e.g. Si3N4,
[1-3] SiAlONs,[4] 

Sr2Si5N8:Eu2+,[5-7] Eu2Si5N8
[8,9]) are known to exhibit interesting physical [10,11] and 

luminescence properties.[12-16] During the last ten years, Eu2+-doped nitrido- and 

oxonitridosilicates emerged as promising materials applicable for phosphor-converted light-

emitting diodes (pc-LEDs) owing to their high chemical and physical stability, their 

extraordinary quantum efficiency of the luminescence process (up to ≈95%), and their very 

low thermal quenching. Namely M2Si5N8:Eu2+ [6,7,12,17-19] and MSi2O2N2:Eu2+ (M=alkaline 

earth metal)[20-24] are excellent examples for highly effective red-orange (2-5-8) and yellow-

green (1-2-2-2) phosphors, respectively.[25] Thereby, the first warm white all-nitride pc-LED 

has been realized, exhibiting unprecedented color quality and stability with temperature and 

drive.[12] Another important red phosphor is the nitridoaluminosilicate CaAlSiN3:Eu2+[26,27] 

and its derivatives. As the quest for higher energy efficiency represents one of the most 

fundamental and exigent challenges to be solved by modern science and technology, it 

becomes apparent that the search for novel and ecologically acceptable energy sources is 

indispensable. Addressing this challenge, LEDs become more and more important due to their 

ongoing improved efficiency, their remarkable durability as well as their environmentally 

friendly production process and waste disposal. Nowadays AlGaInP-based LEDs are 

accessible emitting in the red to yellow range of the spectrum. It was not before the 

pioneering work of Nakamura in the 1990s that the technological access to efficient blue 

LEDs was provided.[28,29] Further band-gap engineering has made AlGaInN-based LEDs 
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accessible emitting in the UV to green range of the spectrum. The concept of down 

conversion of blue light from InGaN LEDs by suitable color converters (i.e., phosphors) is 

appropriate for efficient lighting[30] and provides monochrome light of high color purity, 

especially in the wavelength range in which direct emitting LEDs are relatively inefficient 

(”yellow gap“). The spectral position of the emission of these down-conversion phosphors 

doped with rare-earth ions (e.g. Ce3+ or Eu2+) depends very much on the ligand field of the 

rare-earth ions in the host lattice, with stronger covalent interactions driving the emission into 

the red region of the spectrum (nephelauxetic effect). 

The new green-emitting phosphor Ba3Si6O12N2:Eu2+ has been discovered recently,[31,32] and its 

luminescence properties emerged to be promising[31,32] due to a small Stokes shift and a 

narrow emission band. However, no detailed crystallographic description based on single-

crystal structure determination has been reported for Ba3Si6O12N2:Eu2+ nor for the related 

solid solutions with Sr as yet. 

As phosphor materials may show phase transitions at elevated temperatures and/or pressures, 

in-situ investigations of these solids can decisively contribute to a better understanding and 

optimization of their manufacturing process. In addition, from a more fundamental point of 

view, new modifications with different luminescence properties (e.g., due to higher symmetry 

or a lower number of cation sites) may be revealed by applying non-ambient reaction 

conditions. These aspects are addressed in this work by a systematic investigation of the high-

pressure and high-temperature behavior of Ba3Si6O12N2:Eu2+.  

Furthermore, important material properties (e.g., conductivity, optical absorption, chemical 

bonding, energy gap) are determined by the electronic structure. For example, the band gap of 

efficient phosphors must be large enough to avoid the lowest Eu d states being too close to the 

conduction band, which can result in thermal ionization of the photoexcited 5d-electron of 

Eu2+. Therefore, the local partial density of states (LPDOS) of Ba3Si6O12N2:Eu2+ has been 

probed by soft X-ray spectroscopy (SXS) utilizing synchrotron radiation, namely by X-ray 

absorption near edge spectroscopy (XANES) and X-ray emission spectroscopy (XES), and is 

compared to our theoretical calculations within the density functional theory (DFT) 

framework. 
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2.5.2 Results and Discussion 

 

2.5.2.1 Synthesis 

 

Two different methods for sample synthesis have been applied:  

 

1) Mixtures of MCO3 (M=Ba,Sr), SiO2 and an excess of α-Si3N4 were heated in a radio-

frequency (RF) furnace [33] at maximum temperatures of 1425 °C under nitrogen atmosphere 

according to the reaction below (equation 1).  

 

3(Ba,Sr)CO3 + 4.5SiO2 + 1.5Si3N4                  (Ba,Sr)3Si6O12N2:Eu2+ + 3CO2 + Si3N4   (Eq. 1) 

 

During synthesis EuF3 was used as a dopant. The reaction product was inhomogeneous, but 

contained single-crystals of (Ba,Sr)3Si6O12N2:Eu2+, suitable for X-ray structure analysis.  

2) A more homogeneous bulk product of highly crystalline material (in this case without 

europium) was obtained from BaSi2O2N2 
[23] (synthesis with small impurities of different Ba 

oxosilicates and α-Si3N4 according to reference [23]) by high-pressure/high-temperature 

(HP/HT) synthesis employing the multianvil press technique[34-36] at a pressure of 14 GPa and 

1200 °C according to the reaction below (equation 2).  

 

BaSi2O2N2:Eu2+ + 2BaO + 4SiO2 + α-Si3N4                     Ba3Si6O12N2:Eu2+ + α-Si3N4  (Eq. 2) 

 

The atomic ratio M:Si:O:N = 3:6:12:2 of Ba3Si6O12N2 was confirmed by EDX measurements 

(see Experimental Section). However, samples obtained by high-pressure synthesis did not 

contain single-crystals suitable for X-ray diffraction analysis. 

 

 

2.5.2.2 Structure Determination 

 

The crystal structure of Ba3Si6O12N2:Eu2+ and its solid-solution series Ba3-xSrxSi6O12N2 (with 

x≈0.4 and 1) was solved by direct methods[37] and refined[38] in space group P3 (no. 147) by 

using anisotropic displacement parameters for all atoms. The atomic parameters for Ba and Sr 

occupying the same site in the solid solution were constrained to be equal. However, the site 

1425 °C, N2 

      EuF3 
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occupancies were refined and the presence of Eu2+ in the structure (2 mol%) was neglected in 

these refinements. The details of the single-crystal structure refinement are listed in Table 1.  

 

Table 1. Crystallographic data for Ba3Si6O12N2, Ba2.56Sr0.44Si6O12N2 and Ba2SrSi6O12N2.
[a] 

Formula Ba3Si6O12N2 Ba2.56Sr0.44Si6O12N2  Ba2SrSi6O12N2 
Mr [gmol-1] 800.58 778.70 750.86 
Crystal system trigonal trigonal trigonal 
Space group P3 (no. 147) P3 (no. 147) P3 (no. 147) 
a [Å] 7.5218(1) 7.4830(6)  7.4624(2) 
c [Å] 6.4684(1) 6.4513(5) 6.4234(2) 
V [Å3] 316.935(8) 312.84(4)  309.78(9) 
Z 1 1 1 
ρcalcd [gcm-3] 4.195 4.133 4.025 
μ [mm-1] 9.857 10.474 11.230 
F(000) 362 355 344 
Crystal size [mm3] 0.07 x 0.05 x 0.03 0.01 x 0.01 x 0.02 0.04 x 0.04 x 0.02 
T [K] 293(2) 293(2) 293(2) 
2θ range [°] 6.28 – 60.78 6.28 – 54.80 6.30 – 67.52 
Total reflns 3294 1423 4591 
Independent reflns 625 479 838 
Observed reflns 482 338 757 
Parameters 36 38 38 
GOF 0.921 0.919 1.072 
R-values [I > 2σ(I)] R1 = 0.0256  

wR2 = 0.0479 
R1 = 0.0389  
wR2 = 0.0609 

R1 = 0.0165  
wR2 = 0.0327 

R-values (all data) R1 = 0.0406  
wR2 = 0.0506 

R1 = 0.0764  
wR2 = 0.0718 

R1 = 0.0210  
wR2 = 0.0340 

max. / min. residual  
electron density [e Å-3] 

1.660 / -1.146 1.422 / -1.138 0.678 / -0.558 

[a] Lattice parameters for Ba3Si6O12N2 were taken from the Rietveld refinement based on powder diffraction 
data. The refined compositions for the solid-solution series are: Ba2.56(2)Sr0.44(2)Si6O12N2 and 
Ba2.01(2)Sr0.99(2)Si6O12N2. 
 

Occupied Wyckoff sites and refined atomic coordinates from the single-crystal diffraction 

data are shown in the Supporting Information (Table S1). The interatomic distances and 

angles are within the typical range, selected data are given in Table 2. 

 

 

 

 

 

 

 



2.5 Material Properties and Structural Characterization of M3Si6O12N2:Eu2+ (M=Ba, Sr) 
A Comprehensive Study on a Promising Green Phosphor for pc-LEDs  

95

Table 2. Selected bond lengths [in Å] and angles [in °] of Ba3Si6O12N2, Ba2.56Sr0.44Si6O12N2 and Ba2SrSi6O12N2 

derived from single-crystal data (standard deviations in parentheses). 

 Ba3Si6O12N2 Ba2.56Sr0.44Si6O12N2 Ba2SrSi6O12N2 
Ba1-O2 (6x) 2.744(3) 2.687(5) 2.660(2) 
Ba2-O2 (3x) 2.819(3) 2.815(5) 2.819(2) 
Ba2-O2 (3x) 2.902(3) 2.902(6) 2.884(2) 
Ba2-N1 (2x) 2.997(6) / 3.471(6) 3.02(2) / 3.44 (2) 3.017(3) / 3.407(3) 
Si1-O2 (1x) 1.587(3) 1.582(6) 1.586(2) 
Si1-O1 (2x) 1.649(3) / 1.650(4) 1.635(5) / 1.651(6) 1.644(2) / 1.647(2) 
Si1-N1 (1x) 1.735(2) 1.737(3) 1.7311(6) 
   
O2-O1-O1 134.6(5) 133.9(3) 133.2(8) 
O2-N1-O2 86.3(4) 87.0(2) 87.7(5) 
O1-N1-O1 160.1(5) 158.8(2) 158.0(5) 
 

The refined crystal structure of Ba3Si6O12N2 solved by single-crystal diffraction was 

confirmed by X-ray powder diffraction on a sample obtained from HP/HT synthesis. 

Crystallographic data and details of the Rietveld refinement[39] are listed in Table 3 and in the 

Experimental section.  

 

Table 3. Crystallographic data of Ba3Si6O12N2 derived from Rietveld refinement. 

Formula Ba3Si6O12N2 
Mr [gmol-1] 780.54 
Crystal system trigonal  
Space group P3 (no.147) 
a [Å] 7.5218(1) 
c [Å] 6.4684(1) 
V Å3 316.935(8)  
Z 1 
T [K] 293 
Data range , step width 5°  2θ  60°, 0.01° 
Background treatment 18 fixed background points 
Profile function pseudo-Voigt (no. 7)  
RBragg 1.56 
GoF 1.6 
Reduced 2 2.66 

 

The observed and calculated X-ray powder diffraction patterns as well as their difference 

curve after Rietveld refinement are shown in Figure 1. 
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Figure 1. Observed (circles) and calculated (line) X-ray powder diffraction pattern together with their difference 
curve after Rietveld refinement (λ = 0.709026 Å). The upper row of reflection marks corresponds to Ba3Si6O12N2 
and the lower one to β-Si3N4 (25% w/w). 
 

 

2.5.2.3 Structure Description 

 

A detailed insight into the crystal structure of Ba3Si6O12N2 is required to understand its 

luminescent properties. Here a comprehensive crystallographic structure description is 

presented, which is based on the structure refinements described above. The structural 

parameters given by Mikami et al. are basically correct.[31,32] 

The structure of Ba3Si6O12N2 consists of layers of vertex-sharing SiO3N tetrahedra of Q3-type, 

building 6er- and 4er-rings as fundamental building units (FBU),[40] which leads to a degree 

of condensation of κ = n(Si) : n(O,N) = 0.43 for the [Si6O12N2]
6- substructure.  

According to Pauling`s rule[41] and {uB,3,1∞2}[(Si6
[4]O6

[1]O6
[2]N4/2

[3])6-][42,43] the O atoms 

bridge two Si-atoms (O[2]) or are terminally bound (O[1]), respectively, whereas the N atoms 

connect three silicon tetrahedral centers (N[3]; see Figure 2; numbers in superscripted square 

brackets beside atoms indicate the coordination number of the atom in question).  

 

 
Figure 2. Comparison of Ba3Si6O12N2 and β-Si3N4: Ba3Si6O12N2 view along [001] (left), view along [010] 
(middle), and β-Si3N4 for comparison (right, view along [010]), removing every second Si-atom layer (black) 
and substituting the emerging terminal N-atoms by O-atoms results in layers, topologically similar to those in 
Ba3Si6O12N2 (Si atoms white, N black, Ba1 light gray, Ba2 dark gray and O gray). 
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According to lattice energy calculations (Madelung part of lattice energy, MAPLE)[44-46] there 

is a clear assignment of N/O.[32,41] As expected the MAPLE of Ba3Si6O12N2 is almost identical 

with the sum of the respective MAPLE values of the constituting binary components BaO, 

SiO2 and α-Si3N4 (see Table 4).  

 

Table 4. Madelung part of lattice energy (MAPLE) values for Ba3Si6O12N2 (values given in kJ mol-1).[a] 

 Ba3Si6O12N2 BaO SiO2 α-Si3N4   
MAPLE 105684.75 3527.40 15347.60 53017.53   
atom[a] Ba12+ Ba22+ Si4+ (O1[2])2- (O2[1])2- (N[3])3- 
MAPLE 1916.15 1890.63 9254.26 2987.00 2303.67 6358.86 
       
total MAPLE (Ba3Si6O12N2) exptl. 105684.75
total MAPLE (3x BaO + 4.5x SiO2 + 0.5x α-Si3N4) 106155.17 
difference Δ / % 0.44 
[a] Typical partial MAPLE values [kJ mol-1]: Ba2+:1500-2000, Sr2+:1500-2000, Si4+:9000-10200, (O[2])2-:2400-
2900, (O[1])2-:2050-2800, N[3]3-:5200-6300.[72] 
 

The two crystallographically independent Ba2+ ions occupy the Wyckoff sites 1a and 2d. 

They are situated between the silicate layers and are six- or sevenfold coordinated by (O,N) 

atoms, respectively (see Figure 3).  

 

 
Figure 3. Coordination polyhedra and the corresponding angles of the two different Ba sites in Ba3Si6O12N2 (N 
atoms black, Ba1 light gray, Ba2 dark gray and O gray). 
 

The crystal structure of Ba3Si6O12N2, which is isotypic with recently discovered 

Sr3P6O6N8,
[47] can be derived from the structure of β-Si3N4.

[48] The isosteric Si6N14 layers in β-

Si3N4 are linked in the third dimension through SiN4 tetrahedra. A formal derivation of the 

structure of Ba3Si6O12N2/Sr3P6O6N8 from β-Si3N4 can be achieved by a separation of the 

Si6N14 layers in β-Si3N4 and intercalating Ba2+ ions (see Figure 2). Similar layered 
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arrangements of Si/O/N-tetrahedra with different degrees of condensation can be found in 

other Ba oxonitridosilicates as well, namely Ba3Si6O9N4
[49] and BaSi2O2N2.

[23] 

While in BaSi2O2N2 only 3er-rings can be found, Ba3Si6O9N4
[49] exhibits a structure related to 

Ba3Si6O12N2, which however contains different 6er-rings and additional 3er-rings.[50] 

The bond lengths Si-O/N in Ba3Si6O12N2 are in the typical range with 1.59 - 1.73 Å 

(Ba3Si6O9N4: Si-O/N = 1.60 - 1.75 Å,[49] BaSi2O2N2: Si-O/N = 1.66 - 1.73 Å).[23] The 

distances Si-O[1] and Si-O[2] range between 1.59 Å for O[1] and 1.61 - 1.71 Å for O[2] and are 

therefore comparable with related Ba oxonitridosilicates (e.g. Ba3Si6O9N4: Si-O[1]: 1.60 Å,  

Si-O[2]: 1.65 Å,[49] BaSi2O2N2: Si-O[1]: 1.66 Å).[23] Within the tetrahedra, the Si-N[3] distance 

is, as expected, the longest one with 1.73 Å (Ba3Si6O9N4:
 Si-N[3] = 1.73 - 1.75 Å,[49] 

BaSi2O2N2: Si-N[3] 1.72 - 1.73 Å).[23] The (O,N)-Si-(O,N) angles range from 103 - 116° and 

correspond well with other Ba oxonitridosilicates (Ba3Si6O9N4: 103 - 114°,[49] BaSi2O2N2: 

99 - 118°).[23] Compared to other Ba oxonitridosilicates the Si-N[3]-Si angle in Ba3Si6O12N2 

(118°) is in the same range as in Ba3Si6O9N4 (118 - 120°)[49] and BaSi2O2N2 (116 - 121°).[23] 

Cation coordination polyhedra in Ba3Si6O9N4 and Ba3Si6O12N2 are very similar as well.  

In Ba3Si6O12N2 the oxygen atoms in the coordination sphere of Ba1 form a trigonal antiprism, 

which can be described as well as a distorted octahedron with six equal distances (Ba1[6]-O = 

2.74 Å), but some angles (see Figure 3) deviating from 90° (Ba3Si6O9N4: Ba1[6]-O = 2.69 -

2.82Å).[49] The coordination polyhedron around Ba2 can be described for Ba3Si6O12N2 as well 

as for Ba3Si6O9N4 as a capped distorted octahedron (Ba3Si6O12N2: Ba2[7]-O/N = 2.82 - 3.00 Å, 

Ba3Si6O9N4: Ba2[7]-O/N = 2.70 - 3.16 Å).[49] 

In contrast to Ba3Si6O9N4, Ba3Si6O12N2 features excellent luminescence properties.  

Mikami [32] has suggested that this may be due to the longer Ba-N distances and a lower 

energy host absorption band of Ba3Si6O9N4 in comparison to Ba3Si6O12N2. 

 

 

2.5.2.4 Solid-Solution Series of Ba3-xSrxSi6O12N2:Eu2+ 

 

The influence of the Ba2+ substitution by Sr2+ in the solid-solution series  

Ba3-xSrxSi6O12N2:Eu2+ (with x≈0.4 and 1) has been studied. In Ba3-xSrxSi6O12N2:Eu2+ a 

substitution of Ba2+ by smaller Sr2+ mainly affects the Ba1 site (see Figure 3) which might be 

due to the smaller coordination number of this site. The substitution of Ba2+ by Sr2+ 

significantly influences the bond length Ba1/Sr1-O2, which decreases with increasing amount 

of Sr2+ (Ba3Si6O12N2: 2.74 Å, (Ba2Sr)Si6O12N2: 2.66 Å) as the silicate layers approach along 
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[001] upon substitution. Thereby, the curvature of the corrugated layers increases as well, 

especially around the Ba1/Sr1-sites. Table 2 shows the interatomic distances of selected 

atoms for Ba3Si6O12N2, Ba2.56Sr0.44Si6O12N2 and Ba2SrSi6O12N2, respectively. 

 

 

2.5.2.5 High-Pressure and High-Temperature Behavior 

 

In-situ high-pressure and high-temperature studies of luminescent materials were shown to be 

useful in optimizing the manufacturing process of several (oxo-)nitridosilicate phosphors. 

Therefore, ex-situ and in-situ investigations of Ba3Si6O12N2 have been performed from 0.15 to 

18 GPa and temperatures ranging from 100 to 1500 °C in order to evaluate the stability. This 

should be representative for the Ba/Sr solid-solution series as well. Ex-situ investigations at 

ambient conditions on HP/HT treated samples in the range from 9 to 18 GPa and at 

temperatures from 800 to 1200 °C using a Walker-type multianvil press were carried out. 

Formation of small amounts of β-Si3N4 besides Ba3Si6O12N2 indicate that Ba3Si6O12N2 might 

not be stable above 14 GPa. In-situ high-pressure X-ray diffraction investigations at the 

synchrotron (MAX80, Beamline F2.1 Desy/Hasylab Hamburg) confirmed the instability of 

Ba3Si6O12N2 and elucidated the underlying mechanism. Above 0.15 GPa decomposition into 

the related Ba oxonitridosilicate BaSi4O6N2
[51] was identified already at room temperature. 

This suggests that the formation of at least one amorphous phase is likely, since no other 

crystalline phase could be observed, particularly no Si3N4. The quantity of crystalline 

BaSi4O6N2 increased in comparison to the remaining Ba3Si6O12N2 as the pressure was 

increased. At 9 GPa the sample showed distinct signs of amorphization, which are reversible 

after pressure release. Again at ambient pressure the powder pattern indicates mainly 

Ba3Si6O12N2, however slight traces of BaSi4O6N2 still could be detected. Therefore, the 

pressure-induced transformation from Ba3Si6O12N2 into BaSi4O6N2 is mostly reversible. The 

same transformation is also observed at elevated temperatures (≈0.15 GPa) and the relative 

amount of BaSi4O6N2 increases from 100 to 1500 °C successively. Furthermore, above 

1200 °C two other decomposition products emerge: BaSi2O2N2
[23] and β-Si3N4.

[48]  

The temperature- and pressure-induced transformations of Ba3Si6O12N2, as observed under in-

situ conditions, mainly agree with the final products detected ex-situ after HP/HT treatment. 

The formation of β-Si3N4 results from excursion to high temperatures above about 1200 °C 

(or at high pressures already at lower temperatures), either as a result of the instability of 
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Ba3Si6O12N2 or from crystallization of initially amorphous and therefore in XRD not 

detectable Si3N4. 

 

 

2.5.2.6 Luminescence 

 

Samples of Ba3Si6O12N2 were doped with 2 mol% Eu2+ in order to study photoluminescence. 

Ba3Si6O12N2:Eu2+ exhibits an intense green body color due to 4f7(8S7/2)  4f65d absorption of 

Eu2+ in the blue to green spectral range. Under near-UV to blue light irradiation a saturated 

green emission band with a peak wavelength of ≈527 nm is observed (full width at half 

maximum (FWHM) ≈65 nm). The broad excitation band enables efficient excitation at 

wavelengths below 450 nm. 

The excitation (PLE) and emission (PE) spectra of several samples of Ba3-xSrxSi6O12N2:Eu2+ 

are shown in Figure 4 and Figure 5.  

 

 
Figure 4. Excitation (gray), reflectance (light gray) and emission (black) spectra of Ba3Si6O12N2:Eu2+ (2 mol% 
Eu2+). 
 

For x = 0 the broad emission band almost matches the spectrum of Eu2+ activated 

BaSrSiO4:Eu2+ phosphors[52] and resembles typical Eu2+ spectra observed for other 

oxonitridosilicate compounds (e.g., MSi2O2N2:Eu2+).[53] For 11 % Sr the emission spectrum 

nearly coincides with that of SrSi2O2N2:Eu2+. The spectral half-width of 2310 cm-1 (0 % Sr) 

lies between the values observed for BaSi2O2N2:Eu2+ (1340 cm-1) and SrSi2O2N2:Eu2+ 

(2423 cm-1).[53] The former exhibits an exceptionally small FWHM value that corresponds to 

direct emitting cyan-green LEDs and can be attributed to the presence of only one very 

symmetrical crystallographic M2+ site as well as a small Stokes shift.  
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Ba3Si6O12N2:Eu2+ has a Stokes shift of ≈2600 cm-1 which is higher than the values for 

BaSi2O2N2:Eu2+ (1030 cm-1), but significantly lower than the Stokes shift of SrSi2O2N2:Eu2+ 

(4740 cm-1).[53] Partial substitution of Ba by Sr causes a noticeable red-shift and broadening of 

the emission band (see Table 5).  

 

Table 5. Peak emission wavelength and spectral half-width of Ba3-xSrxSi6O12N2, depending on the partial 
substitution of Ba by Sr. (Eu2+ content 2%) 
 

Sr concentration [%] max [nm] FWHM [cm-1]

0 523 2310 
11 532 2360 
34 549 2510 

 

As expected, the unit cell contracts with increasing amounts of Sr2+ (see crystallographic data, 

Table 1). Typically, such a unit-cell contraction involves decreasing interatomic distances 

between Eu2+ and its ligands and thus results in a larger crystal field strength at the activator 

site, leading to a red-shift of the emission band.  

 

 
Figure 5. Excitation (PLE) and emission (PE) spectra of Ba3-xSrxSi6O12N2:Eu2+ (several samples) with varying Sr 
contents. Excitation and emission spectra with 0 % Sr are depicted in black, with 11 % Sr in light gray, with 
34 % Sr in dark gray. 
 

Another factor that may affect the spectral shift and half-width is the presence of two different 

crystallographic sites, Ba1 and Ba2, which exhibit slightly different coordination (see Figure 

3) and interatomic distances (see Table 2). 

Due to their smaller but very similar ionic radii, Sr2+ as well as Eu2+ (compared to Ba2+) 

should both preferentially occupy the distorted octahedral Ba1-site. Unless more than 1/3 of 

Ba is substituted by Sr and Eu, Eu2+ can always compete with the larger Ba2+ for the smaller 

Ba1-site. The spectral shift in the Ba/Sr-mixed compound is mainly caused by a unit-cell 
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contraction. The increase in spectral width at higher Sr concentration can be attributed to an 

increasing Stokes shift. However, Mikami et al. suggested emission from Eu2+ primarily 

occupying the Ba2 site.[32] 

 

 

2.5.2.7 Band Structure and Density of States 

 

The band structure calculations (Figure 6) indicate that the material has an indirect band gap 

of 4.80 eV (using GGA), which is in good agreement with the previously reported value of 

4.63 eV[32] using GGA.  

 

 
Figure 6. The total density of states (right, measured in states/eV-unit cell) and the band structure (left) of 
Ba3Si6O12N2:Eu2+ show the calculated direct (5.08 eV) and indirect (4.80 eV, A-Γ) band gap values. The density 
of states (DOS) is broadened by a Gaussian function with a FWHM of 0.1 eV to aid in visual analysis. 
 

The band gap calculated using a modified Becke-Johnson potential with GGA (mBJ-GGA)[54] 

is 6.93 eV and accounts for the typical underestimation of the band gap. The modified 

potential is a semi-local exchange potential that allows for the correct calculation of the band 

gap in insulators and semiconductors. This potential is ab initio and requires no further input 

during the calculation. The total density of states (DOS) and partial DOS is derived from 

integrating momentum space and is shown for all atomic sites in Figure 6 and 7, respectively.  
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Figure 7. The Density of States (DOS) is split into atomic site and electron symmetry contributions. The panels 
are labelled according to their Wyckoff site, furthermore the O6g#1 site refers to the site that forms bridging bonds 
to silicon. The s states are displayed black (solid), p states gray (solid), d states black (dotted) and f states gray 
(dotted). The DOS were broadened with a constant Gaussian of 0.1 eV FWHM and displayed in energy scale 
such that 0 eV corresponds to top of the valence band (i.e., the filled states). The large intensity peaks have been 
scaled; the Ba1a 5s states (reduced by 80%), 5p1/2 states (reduced by 80%), 4f states (reduced by 80%), and the 
Ba2d 5s states (reduced by 85%), 5p1/2 states (reduced by 88%), 4f states (reduced by 80%). 
 

The DOS shows that Ba3Si6O12N2 exhibits a mixture of ionic bonding and weak covalent 

contributions. The Ba 5s electrons are highly localized and exhibit orbital-like behavior with 

no bonding. There is no indication of any Ba 6s states, thus the respective electrons of Ba are 

fully transferred to the N and O anion sites. The Ba 5p states are split by total angular 

momentum; the j=1/2 are highly localized and non-bonding, while the j=3/2 participate 

largely in the valence band (VB) covalent bonds with a small degree of participation in the 

conduction band (CB). The Ba 4f states play a key role in the formation of the CB, exhibiting 

a large peak (localized concentration of states) buried 5 eV into the CB. The CB states that are 

situated below 10 eV are primarily unfilled Ba 5d states. The Si s,p,d states show a large 

degree of hybridization with the O and N sites in conjunction with a large amount of charge 

transfer to the anion sites. The N and O sites suggest weak covalent bonds to the Si atoms; the 

N2d and O6g#2 2s states are highly localized with little or no bonding, but the N and O p states 

have a large degree of hybridization. The O6g#1 2s states, however, show an affinity to form 

covalent bonds with Si, extending further to the O6g#1 2p band as well. The N and O 2p states 

make of the majority of the VB with modest contribution to the CB. 
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2.5.2.8 Band-Gap Determination Using Soft X-ray Spectra 

 

The participation of the N and O p states in both the VB and CB makes studying the K-edge 

spectra of these elements an excellent probe for the electronic structure properties in general 

and the band gap in particular. We will first focus on the oxygen spectra. 

Figure 8 shows the O K-edge soft X-ray spectroscopy measurements; this includes the O Kα 

X-ray emission spectra (XES) and O 1s X-ray absorption near edge spectra (XANES). There 

are three distinct features labelled d-g (see Figure 8) in the Ba3Si6O12N2:Eu2+ O 1s XANES 

spectrum.  

 

 
Figure 8. Non-resonant O Kα XES and O 1s XANES (left), and resonant O Kα XES (right) of A) measured 
Ba3Si6O12N2:Eu2+, B) total calculated Ba3Si6O12N2:Eu2+, C) measured SiO2 , D) calculated O6g#1 site, and E) 
calculated O6g#2 site are shown. The main features in the O Kα XES and O 1s XANES spectra for 
Ba3Si6O12N2:Eu2+ are marked a-g. The right panel shows the resonant excitation energy of O Kα XES with the 
excitation energy indicated above each spectrum. The dashed lines indicate the contribution from SiO2. The 
effect of the core hole is demonstrated with the simulated XANES spectra without the inclusion of the core hole, 
this is displayed as the dashed line plot in the left panel. The second derivatives of the experimental spectra are 
displayed in the lower left panel. The valence band (Ev) and conduction band (Ec) edges are indicated on the 
scatter line (the resonant XES spectra with the excitation energy indicated above, u = O6g#2:Ev), the solid black 
line (the experimental Ba3Si6O12N2:Eu2+ spectra, v = O6g#1:Ev, w = O6g#1:Ec, x = O6g#1:Ec) and the gray line plots 
(the experiment SiO2 spectra, y=SiO2:Ev, z = SiO2:Ec). 
 

The calculated O 1s XANES spectrum reproduces all the marked features and the general 

shape of the experimental spectrum very well. The true XANES spectrum consists of a 

summation of two spectra from the two non-equivalent O sites. These O 1s binding energies 

differ by 1.92 eV, owing to the different local symmetry (bridging bonds and tetrahedral 

bonds), which was determined with density functional theory (DFT) calculations. However, 

the energy separation seen in the measured XANES spectra is 1.76 eV, owing to the effect of 
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an O 1s core hole. There is a small disagreement between the calculated and measured 

spectrum, mainly feature f (see Figure 8) is more intense in the measured spectrum than in the 

calculated spectrum. The added intensity is due to a third contributing spectrum, which is 

most likely from SiO2 contamination. One of the starting materials for synthesis of 

Ba3Si6O12N2:Eu2+ is α-Si3N4, and there are significant amounts left after synthesis. Also, this 

material forms a surface SiO2 layer under atmosphere readily, which will provide a spectral 

contribution to the O 1s XANES spectrum. This contamination and the two non-equivalent O 

sites were explored further with resonant XES. In the O Kα XES spectrum of 

Ba3Si6O12N2:Eu2+ three spectral features can be found. Feature c (see Figure 8) is very subtle 

and is a high-energy shoulder that has been increased in intensity due to SiO2 contamination. 

The low energy peak a (see Figure 8) not seen in the simulated spectrum is also due to SiO2. 

The two non-equivalent O sites are shifted by the difference in the 1s binding energy 

mentioned above (and not corrected for core hole effect since it is not present in the XES final 

state). In these spectra the excitation energy is tuned to resonant features of the XANES 

spectra. This allows the excitation of specific atomic sites within the lattice. Feature a in the O 

Kα resonant XES increases in intensity with excitation energies of 555.1 to 541.7 eV. The 

541.7 eV excitation corresponds to the maximum absorption cross section in SiO2, which is 

why the SiO2 feature is the most intense. Feature c (see Figure 8) also increases in intensity, 

which is due to SiO2 and confirms that SiO2 is present on the surface. Tuning the excitation to 

even lower energy reduces the contributions of these peaks.  

At an excitation energy of 535.5 eV, the emission spectrum changes drastically showing no 

signs of the O6g#1 site or the features of the SiO2 contamination. The emission stems now 

purely from the O6g#2 p states and matches the calculated spectrum perfectly. 

The lower energy resonant XES spectra are the same except that there are contributions from 

the other O atoms in the material; these are more apparent since the absorption cross sections 

of all the O atom sites are very low. These results suggest that the calculated spectrum for 

XES and XANES are correct if we properly consider the SiO2 contamination.  

The use of XES and XANES spectra to determine the top of the valence and bottom of the 

conduction band is not trivial due to the inherent experimental broadening mechanisms, 

difficulties in energy calibration and the effect of the core hole on the absorption spectra. The 

energy positions of the conduction and valence band edges are determined by taking the 

second derivative of the experimental spectra (see Figure 8) and the first peak (above the level 

of noise) in the second derivative is used as the edge location.[55] The comparison of the SiO2 

second derivative to the non-resonant Ba3Si6O12N2: Eu2+ shows that the SiO2 valence band 
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edge is located somewhere between the two edges of the oxygen non-equivalent sites. The 

conduction band edge of SiO2 is much higher in energy than Ba3Si6O12N2:Eu2+ (this is due to 

the very large band gap) and should present no problem for determining the bottom of the 

conduction band of Ba3Si6O12N2:Eu2+ with O 1s XANES. The top of the valence band, 

however, can be more accurately determined by using resonant XES. Since the valence band 

edge of the O6g#1 site is very close to SiO2, we determined the edge of the O6g#2 site. The O 

Kα XES spectrum with excitation energy of 535.5 eV is used to determine the O6g#2 site 

valence band edge; this was shown earlier to resemble the calculated spectrum best for that 

site. The edge locations of the O6g#1 are determined from the site splitting that is calculated, 

which makes the band gaps identical. The determined band gap for this site is 7.10  0.20 eV 

and the corresponding VB and CB edge values are listed in Table 6. The details of the band-

gap determination are further discussed in the experimental section. 

 

Table 6. Band-gap determination using data from XES and XANES spectra in conjunction with DFT results. The 
sites are labelled according to their Wyckoff sites. The measured valence band and conduction edge locations are 
presented. The core hole effect has been rounded to the nearest 0.05 eV, and the final value of the band gap is 
average of the two independent determined values of the O K-edge and N K-edge. The measured band gap is 
compared to the values using GGA-PBE and mBJ-GGA. 
 N2d O6g#1 O6g#2 
Valence band edge [eV] 394.75 ± 0.15  528.85 ± 0.15  526.95 ± 0.15  
Conduction band edge [eV] 401.20 ± 0.15  535.10 ± 0.15 533.35 ± 0.15 
Core hole shift [eV] 0.25 0.45  0.30  
Site band gap [eV] 7.00 ± 0.20 7.10 ± 0.20 7.10 ± 0.20 
    
Average measured band gap [eV] 7.05 ± 0.25 
Calculated band gap (GGA-PBE) [eV] 4.80 
Calculated band gap (mBJ-GGA) [eV] 6.93 
 

We now turn to the discussion of the nitrogen spectra. The N 1s XANES spectrum of 

Ba3Si6O12N2:Eu2+ exhibits three features k-m (see Figure 9) which are reproduced well in the 

calculated Ba3Si6O12N2: Eu2+ N 1s XANES spectrum.  
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Figure 9. Non-resonant N Kα XES and N 1s XANES (left), and resonant N Kα XES (right) of A) measured 
Ba3Si6O12N2:Eu2+, B) total calculated Ba3Si6O12N2:Eu2+, and C) measured α-Si3N4 are shown. The main features 
in the N Kα XES and N 1s XANES spectra for Ba3Si6O12N2:Eu2+ are denoted h-m. The panel on the right hand 
side shows the resonant N Kα XES with the excitation energy indicated above each spectrum. The dashed lines 
indicate the peaks that result from the remaining α-Si3N4. The effect of the core hole is demonstrated with the 
simulated XANES spectra without the inclusion of the core hole, this is displayed as the dashed line plot. The 
second derivatives of the experimental spectra are displayed in the lower left panel. The valence band (Ev) and 
conduction band (Ec) edges are indicated on the scatter line (the resonant XES spectra with the excitation energy 
indicated above, u = N2d:Ev), the solid black line (the experimental Ba3Si6O12N2:Eu2+ spectra, v = N2d:Ec) and the 
gray line plots (the experiment α-Si3N4 spectra, w = Si3N4:Ev, x = Si3N4:Ec). 
 

The position of feature l is slightly distorted, because of the presence of α -Si3N4 (as discussed 

previously). The addition of this spectrum increases the spacing between the features k and l 

in the experiment with comparison to the calculated N 1s XANES spectrum. Feature m 

remains relatively unchanged because the α-Si3N4 N 1s XANES spectrum is very smooth in 

this region. The effect of this impurity is readily seen in the N Kα XES spectra. The non-

resonant N Kα XES spectrum displays the features h-j, which are reproduced in the calculated 

spectrum as well (see Figure 9) There remains still moderate agreement between features i 

and j in experiment, however feature h (Figure 9) is overestimated in the calculated spectrum. 

This can be explained with the consideration of α-Si3N4 contribution to the measured 

spectrum. Feature h is present in the calculated spectrum and appears not to be present in the 

measured spectrum. However, this feature is present and has been removed due to the 

summation of Ba3Si6O12N2:Eu2+ and β-Si3N4. Furthermore, it is enhanced with selective 

excitation as seen in the resonant XES spectra. Many of the resonant N Kα XES spectra look 

very similar except for the two excited at 404.4 and 407.3 eV. In these spectra features h and i 

are enhanced and provide better agreement with the calculated spectrum. These spectra are 

the result of exciting on the two resonant features k and l in the N 1s XANES spectrum, 
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which are attributed to Ba3Si6O12N2:Eu2+. This shows that the calculated spectrum is a very 

reasonable representation of the material with the consideration of α-Si3N4 that is present in 

the sample. The band gap has also been determined using the N sites. The DOS results show 

that 1) both the N and O electron states contribute to the band gap and 2) that the band gaps 

determined from the N and O site should be identical. The same method used for the oxygen 

sites and explained above is applied to the nitrogen sites; resonant XES again is used to 

preferentially excite the nitrogen atoms that are part of the Ba3Si6O12N2:Eu2+ matrix. The 

second derivative of α-Si3N4 has a valence band edge that is higher in energy than 

Ba3Si6O12N2:Eu2+ and the conduction band edge is higher in energy as well. The band gaps of 

these materials are predicted to be very similar [32,56] and the offset in the spectra is due to the 

differences in the nitrogen-bonding environment (the N 1s binding energy is slightly 

different). The α-Si3N4 contribution to the N Kα XES spectrum is removed as much as 

possible through resonant XES to obtain the best determination of the N valence band edge.  

The excitation energy of 407.3 eV of the resonant XES spectrum is used to determine the 

valence band edge. The band gap obtained is identical to the one obtained for the O K-edge 

7.00  0.2 eV and the corresponding VB and CB edge values are summarized in Table 6. To 

summarize, the band gap obtained from both oxygen and nitrogen sites is 7.05 ± 0.25 eV. 

These agree with each other within the experimental precision (± 0.25 eV), and are 

determined from the experimental spectra with a small correction derived in our calculations 

to account for the presence of the core hole and non-equivalent sites. 

 

 

2.5.3 Conclusion 

 

The high color purity, the small thermal quenching[57] at elevated temperatures, and the 

intense green color with a broadband emission spectrum peaking at ≈527 nm and a FWHM of 

≈65 nm renders Ba3Si6O12N2:Eu2+ a promising phosphor for pc-LED based general 

illumination and display applications.[12,31,32,52,58,59] 

Especially important for the luminescence properties is the band gap being large enough to 

avoid the lowest Eu d states being too close to the conduction band and the thermal ionization 

of the photoexcited 5d electrons of Eu2+.[32] In the case of Ba3Si6O9N4:Eu2+ this effect 

becomes very apparent; the narrower band gap and a smaller crystal field splitting provide 

quite different optical properties compared to Ba3Si6O12N2:Eu2+. Although the crystal 
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structure and chemical formula of Ba3Si6O9N4
[49] appear rather similar to the one of 

Ba3Si6O12N2, its luminescence properties render it inapplicable for use in pc-LEDs. 

Structural studies at high-pressure and high-temperature reveal a decomposition of 

Ba3Si6O12N2, mainly into BaSi4O6N2, and can explain the sintering behavior of this material. 

The band gap is an important parameter for the luminescent properties. Synchrotron-based 

soft X-ray emission and absorption spectra were measured and are compared to the respective 

density functional theory calculations. The calculated band gap from these calculations is 

4.80 eV (indirect) using GGA-PBE; however, this method strongly underestimates the band 

gap. The XES and XANES spectra were calculated and show excellent agreement with the 

experimental ones when the presence of the core hole is taken into account. The calculations 

were also used to discuss and determine energy shifts due to the presence of the core hole and 

site splitting in the two non-equivalent oxygen sites. These considerations allow a reliable 

experimental determination of the band gap of Ba3Si6O12N2:Eu2+, which is found to be 7.05 ± 

0.25 eV for both the N and O K-edge measurements. This value agrees with the calculated 

band gap of 6.93 eV (mBJ-GGA) within experimental error. Furthermore, the valence band is 

shown to be primarily made up of N and O p states and the conduction band of primarily Ba d 

and f states, with a small contribution from the N and O p states. The bonding of the Ba atoms 

is highly ionic with only the 4p3/2 participating in covalent bonds, which makes this material 

ideal for cation substitution. 

As a consequence of this, our future research will focus on in-situ investigations of material 

properties to intentionally access new compounds with respect to the specific requirements for 

efficient phosphors. 
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2.5.4 Experimental Section 

 

2.5.4.1 High-Pressure Synthesis of Ba3Si6O12N2 and Ex-Situ High-Pressure Investigations 

 

The high-pressure synthesis of Ba3Si6O12N2 was carried out using the multianvil  

technique [34-36] with a hydraulic press (Voggenreiter, Mainleus). Cr2O3-doped MgO-

octahedra (Ceramic Substrates & Components, Isle of Wight) with an edge length of 10 mm 

were used. Eight truncated tungsten carbide cubes separated by pyrophyllite gaskets served as 

anvils for the compression of the octahedra. The truncation edge length was 5 mm. Powder of 

ambient-pressure BaSi2O2N2
[23] was loaded into a cylindrical capsule of hexagonal boron 

nitride (Henze, Kempten) with a capacity of 4 mm3 and sealed with a BN cap. The capsule 

was centered within two nested graphite tubes, which acted as an electrical resistance furnace. 

The remaining volume at both ends of the sample capsule was filled out with two cylindrical 

pieces of magnesium oxide. The arrangement was placed into a zirconia tube and then 

transferred into a pierced MgO octahedron. Two plates of molybdenum provided electrical 

contact for the graphite tubes. The assembly was compressed up to 14 GPa at room 

temperature within 2.5 h and then heated up to 1000 °C within 12 min. Under these 

conditions, the sample was held for 12 minutes and cooled down to 600 °C within 30 minutes. 

The sample was then quenched to room temperature, followed by decompression over 9.6 h. 

By this procedure about 5 mg of Ba3Si6O12N2 were obtained as a dark gray substance. The 

temperature was calculated from the electrical power applied to the furnace which was 

determined on the basis of calibration curves from measurements with W97Re3W75Re25 

thermocouples, as described in ref.[60] Ex-situ high-pressure measurements were performed at 

9, 12, 14, 16 and 18 GPa, respectively. 

 

2.5.4.2 Single-Crystal Synthesis 

 

To synthesize single crystals of Ba3Si6O12N2, BaCO3 (0.49 mmol, powder, Alfa Aesar, 98 %), 

SiO2 (0.75 mmol, Aerosil® A380 nano-powder, Degussa, ≥ 99.8 %), crystalline α-Si3N4 

(0.25 mmol, excess, powder, UBE Industries, 98 %) and EuF3 (0.01 mmol, powder, Aldrich 
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Chemical, 99.99 %) were mixed together, ground in an agate mortar, and placed into a 

tungsten crucible inside a glovebox under Ar atmosphere (Unilab, Fa. Braun, Garching, 

O2 < 1 ppm, H2O < 1 ppm). The crucible was then heated inductively in the water cooled 

quartz reactor of a radio-frequency furnace (typ TIG 10/100, frequency: 100 kHz, max. 

electrical output: 10 kV, Huettinger, Freiburg) under N2 atmosphere (purified by passing 

columns of silica gel (Merck), KOH (Merck, ≥85 %), molecular sieve (Merck, 4 Å) and P4O10 

(Roth, Granulopent®) to 1150 °C with a rate of about 23 °C min-1. The temperature was then 

increased to 1350 °C during 9 h, kept at this temperature for 1 h, and was then again increased 

to 1400 °C over a period of 20 h. After another temperature enhancement to 1425 °C over a 

period of 1 h, the sample was cooled down to 650 °C with a rate of about 0.33 °C min-1 to 

offer best conditions for good crystallinity. Ba3Si6O12N2 showing green luminescence when 

excited with UV-light was obtained in the shape of a hard and flat ingot coated with a 

transparent Matrix of glassy like α-Si3N4 which has to be removed to achieve single crystals. 

To get samples of the solid-solution series SrCO3 (powder, Alfa Aeser, 98 %) was used 

beside the other reactants.  

 

2.5.4.3 Single-Crystal X-ray Diffraction 

 

Mechanically isolated green luminescent (Ba3Si6O12N2:Eu2+) and yellow greenish 

((Ba,Sr)3Si6O12N2:Eu2+) single crystals obtained by RF-furnace synthesis were mounted on 

glass fibres and checked for quality by Laue photographs on a Buerger precession camera. 

Intensity data were collected on a STOE IPDS-I diffractometer with imaging plate detector 

and graphite monochromator (Ba3Si6O12N2) or on a Nonius Kappa-CCD diffractometer with 

graded multilayer X-ray optics (Ba2.56Sr0.44Si6O12N2 and Ba2SrSi6O12N2), both using MoKα 

radiation (λ = 0.71093 Å). Semiempirical absorption corrections based on equivalent 

reflections were applied[61] before the structures were solved by direct methods in space group 

P3 (no. 147).[37] Full-matrix least-squares refinements of models developed from the initial 

solutions were executed with SHELXL[38] with anisotropic displacement parameters for all 

atoms. Further details of the crystal structure investigations may be obtained from 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax, 

(+49)7247-808-666; e-mail, crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de 

/request_for_deposited_data.html) on quoting the depository numbers CSD-421322 

(Ba3Si6O12N2), CSD-421323 (Ba2SrSi6O12N2), and CSD-421324 (Ba2.56Sr0.44Si6O12N2). 
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2.5.4.4. Powder X-ray Diffraction 

 

X-ray diffraction experiments on powder samples of Ba3Si6O12N2 were performed on a STOE 

STADI P powder diffractometer in Debye-Scherrer geometry with Ge(111)-monochromatized 

MoKα1 radiation (λ = 0.70926 Å). The sample was enclosed in a glass capillary with 0.1 mm 

diameter. A Rietveld refinement was carried out using the program package Fullprof.[39] 

Estimated standard deviations were calculated in agreement with reference [62]. The atomic 

parameters agreed with the single crystal data within the standard deviations (2σ). β-Si3N4
[48] 

was included as a second phase (24.5 % w/w) (see Figure 1).  

 

2.5.4.5 In-Situ High-Pressure and High-Temperature Measurements 

 

In-situ high-pressure measurements were performed with the multianvil high-pressure 

apparatus MAX80 (NRD Tsukuba, Japan), which is located at the Hamburger 

Synchrotronstrahlungslabor (HASYLAB, Beamline F.2.1) for in-situ high-pressure and high-

temperature X-ray diffraction investigations. Energy-dispersive diffraction patterns were 

recorded by using white X-rays from the storage ring DORIS III. The pressure was measured 

by using the high-pressure equation of state for admixed NaCl by Decker.[63] The beamline 

was equipped with a Ge solid-state detector, situated at the press frame and tracking the 

adjustment of the whole apparatus in relation to the X-ray beam. 

The multianvil apparatus was equipped with six tungsten carbide anvils that were driven by a 

2.500 N uniaxial hydraulic ram. The top and bottom anvil are driven directly, the lateral 

anvils by two load frames and four reaction bolsters. The maximum pressure for the 8 mm 

cube set-up is approximately 9 GPa with temperatures up to 1600 °C, which were produced 

by an internal graphite heater. The high-pressure cell consists of a cube made of boron epoxy 

resin and the gaskets between the anvils are formed from the boron epoxy cube’s material 

during the runs. The high-pressure cell is filled with the ground sample, the graphite heater, 

the pressure standard (NaCl) and the thermocouple, which is insulated by boron nitride. The 

sample was surrounded by rings made from pyrophyllite for electrical insulation and as a 

quasi-hydrostatic pressure transmitting medium. Copper rings contacted the heater at the top 

and bottom anvils. 
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2.5.4.6 Luminescence 

 

Photoluminescence measurements were carried out with a spectrofluorimeter, equipped with a 

150 W Xe lamp, two 500 mm Czerny-Turner-monochromators, 1800 1 mm lattices and 

250/500 nm lamps, providing a spectral range from 230-820 nm. 

 

2.5.4.7 EDX Measurements 

 

The carbon coated sample was examined with a scanning electron microscope (SEM) JSM-

6500F (Joel, Japan, maximum acceleration voltage 30 kV). Qualitative and semi-quantitative 

elemental analyses were carried out using an energy dispersive spectrometer (Model 7418, 

Oxford Instruments, United Kingdom).  

 

2.5.4.8 Soft X-ray Spectroscopy 

 

The XANES measurements were performed at the SGM[64] beamline of the Canadian Light 

Source, Saskatoon, Saskatchewan, Canada. The XANES measurements were taken in total 

fluorescence yield mode with an experimental resolving power E/E of approximately 5000. 

The XES measurements were performed with the soft X-ray fluorescence spectrometer at 

Beamline 8.0.1[65] of the Advanced Light Source, Berkeley, California (USA). The resolving 

power in the emission experiments was approximately 700. All measurements were taken 

with the sample orientated 30° from normal with respect to the incoming beam. A powder 

sample was pressed into freshly scraped indium foil in order to minimize background 

contributions from oxygen during the measurements. The measured spectra were calibrated 

with reference spectra from well-characterized samples. The N K-edge spectra were 

calibrated using hexagonal BN, using the peaks near the band gap with assigned values 

392.6 eV for XES and 394.4 eV for XANES, respectively. The O K-edge spectra were 

calibrated with BGO (Bi4Ge3O12) with peak values near to the band gap assigned as 526.4 eV 

and 532.7 eV for XES and XANES spectra, respectively. The ab initio density functional 

theory (DFT) calculations employed the commercially available WIEN2k DFT software.[66] 

This code uses Kohn-Sham methodology with spherical wave functions to model core 

orbitals, linearized augmented plane waves (LAPW), semi-core, and valence states.[67,68] The 

exchange interactions used were the generalized gradient approximation (GGA) of Perdew-

Burke-Ernzerhof[69] and the modified Becke-Johnson potential within GGA (mBJ-GGa).[54] 
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We note that this approximation is known to strongly underestimate the band gap, but can 

provide good agreement with the shape of the valence and conduction bands and therefore the 

measured soft X-ray spectra. The proper simulation of the XES and XANES measurements 

requires that one considers the final state of the system during the measurement. The final 

state of the XES measurement can be approximated as the ground state of the system; all of 

the core electrons are present. The simulation of this measurement requires no modification of 

the system. The final state after a XANES measurement included a missing core electron. The 

effects from this core hole were modelled in the current work by including a single core hole 

inside of a supercell. This supercell was a larger cell made by replicating the unit cell along its 

common axes approximating the core hole density that is seen in experimental measurements.  

The only input to the calculation was the crystal structure as determined by X-ray diffraction. 

The ground-state calculations were carried out on the unit cell with a 1000 k-point mesh. The 

sphere sizes used to define the core electrons were 2.400, 1.800, 1.4810, and 1.1590 Bohr for 

Ba, Si, N, and O, respectively, and the energy cut off was set to -6.0 Ryd. The size of the 

supercell used was 2 x 1 x 1 of the unit cell (46 atoms) with a 100 k-point mesh. Normally a 

larger supercell would be used, but due the large interstitial space between the Ba cations and 

the N or O anions extensive memory resources ( 6 GB memory per k-point) was required for 

the plane wave expansion, and so the size of the supercell had to be limited in order to 

achieve convergence in a reasonable time frame without limiting the plane wave basis size.  

The simulated spectra were broadened to facilitate comparison with the experiments. A 

combination of Lorentzian and Gaussian functions was used to emulate the core-hole lifetime 

broadening [70] (E = 0.10 eV for oxygen and E = 0.09 eV for nitrogen), final state lifetime 

broadening [71] (this is variable broadening and scales with the energy squared from the central 

point being the conduction band edge) with a scaling factor of 0.30 for N and 0.20 for O, 

instrumental broadening with a scaling factor of 0.30 for N and 0.20 for O, and instrumental 

broadening (this is resolution of the beamline and spectrometer) with a FWHM of 0.40 eV at 

400 eV and 0.40 eV and 520 eV for the spectrometer, respectively, and 0.80 eV at 400 eV and 

0.80 eV at 520 eV for the monochromator, respectively.  

The band-gap determination used a combination of experimentally measured and calculated 

results. There were three key considerations in this study used when determining the band 

gap. 1) The VB and CB edge locations were determined by using the second derivative, 

which has been previously successful.[55] 2) The site splitting, which occurs because of non-

equivalent core electron binding energy in non-equivalent sites was determined from DFT 

results. 3) The XANES measurements were strongly affected by the core hole present in the 
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final state; again DFT calculations provide an estimate in the shift of the CB that is caused by 

the core hole. These three effects were added numerically to the initially determined band gap 

and provide a reliable estimate of the actual band gap. 
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3. Luminescent Gallium Compounds 

 

3.1 Preface 

 

Based on naturally occurring oxosilicates, Si4+ can fomally be substituted by Al3+ leading to 

various kinds of oxoalumosilicate minerals. Charge balance is usually achived by insertion of 

alkali-metal ions in the crystal structure. Both, Si4+ and Al3+, prefer a tetrahedral coordination 

by the anions. Special synthesis strategies in the laboratory allow the formation of nitrido-

alumosilicates (e.g. Ba2AlSi5N9, SrAlSi4N7)
[1,2] or nitridoaluminates (e.g. Ca[LiAlN2]).

[3] To 

balance the higher negative charge from substitution of O2- by N3-, alkaline-earth ions (M2+) 

are inserted into the crystal structure. In the case of Ba2AlSi5N9 and SrAlSi4N7, an intense 

emission in the orange to red spectral region is observed when doped with small amounts of 

Eu2+ and excited by UV to blue light.[1,2] This is due to the decreasing difference in 

electronegativity of Eu2+ and the ligands (N instead of O) which equals an increasing 

nephelauxetic effect. As there is a demand for highly efficient red emitters usable for pc-LED 

applications, it is desirable to shift the emission signal into the red spectral region. In order to 

retain the stability of the host lattice (which is a result of the high degree of tetrahedra 

condensation) it might be favorable to substitute the Si / Al atoms within the tetrahedra by 

larger cations like Ga3+. As a consequence of longer distances within the tetrahedra, the Eu-

ligand distances might contract which means a red-shift of the emission signal. This 

theoretical consideration was confirmed by Hintze et al. in 2012.[4] The synthesized 

compound Ba3Ga3N5:Eu2+ is the first example for a luminescent nitridogallate and its 

emission maximum is situated in the red spectral region (λem = 638 nm, FWHM = 85 nm). In 

the following chapter a new luminescent Ga-N compound is characterized in detail regarding 

its crystal structure and band gap. Additionally, it is discussed whether this phase represents a 

nitridogallate in a classical sense or not.  
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Abstract 

The double nitride Mg3GaN3 and binary nitride Mg3N2 were synthesized from the elements 

by reaction with NaN3 in a sodium flux. Reactions were carried out at 760 °C in welded shut 

tantalum ampules. Mg3GaN3 was obtained as single crystals (space group R3m (no. 166), 

a = 3.3939(5) and c = 25.854(5) Å, Z = 3, R1 = 0.0252 wR2 = 0.0616 for 10 refined 

parameters, 264 diffraction data). This double nitride consists of an uncharged 

three-dimensional network of MgN4 and mixed (Mg/Ga)N4 tetrahedra, which share common 

corners and edges. First-principles density functional theory (DFT) calculations predict 

Mg3GaN3 to have a direct band gap of 3.0 eV, a value supported by soft X-ray spectroscopy 

measurements at the N K-edge. Eu2+-doped samples show yellow luminescence when 

irradiated with UV to blue light (λmax. = 578 nm, full width at half maximum 

(fwhm) = 132 nm). Eu2+-doped samples of Mg3N2 also show luminescence at room 

temperature when excited with ultraviolet (UV) to blue light. The maximum intensity of the 

emission band is found at 589 nm (fwhm = 145 nm). 

 

Keywords: Gallium Nitride, Double Nitride, Luminescence, Band Gap, Europium 
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3.2.1 Introduction 

 

Gallium nitride has found broad application in high-performance light-emitting diodes 

(LEDs),because of its properties as a direct, wide band gap semiconductor.[1-5] Recently, 

crystal growth and doping of GaN have been studied thoroughly.[6-10] In contrast, 

investigations of the deriving ternary and higher nitridogallates or gallium nitrides have been 

scarcely pursued so far. Mg was found to be suited for p-doping in GaN or AlGaN thus 

increasing hole concentration.[11-13] Mostly, GaN:Mg has been synthesized by MOCVD with 

bis(cyclopentadienyl) magnesium (Cp2Mg) as the magnesium source.[14-16] The influence of 

such doping on the GaN lattice and its physical properties have been investigated in  

detail.[17-20] So-called “heavily doped GaN:Mg” was obtained when the magnesium 

concentration was ~1020 cm-3 and resulting photoluminescence bands at 2.8 eV (443 nm) and 

3.2 eV (388 nm) were observed.[19,21-23] 

Binary magnesium nitride (Mg3N2) has been known for some time, but has been much less in 

the focus of applications than GaN.[24,25] Nevertheless, in the past few years, some interest in 

Mg3N2 has arisen. Its structure in the antibixbyite type was further investigated,[26,27] and a 

green photoluminescence was reported in the literature.[28]  

During the past decade, ternary and multinary alkaline-earth nitrides emerged as important 

host lattices for doping with Eu2+, exhibiting parity-allowed 4f6(7F)5d1  4f7(8S7/2) transitions 

resulting in intense broad-band emission. This is due to the fact that these levels lie within the 

band gap as shown by Dorenbos,[29,30] for the important phosphor material M2Si5N8:Eu2+.[31] 

In order to estimate the performance of a luminescent material in phosphor-converted light-

emitting diodes (pc-LEDs) at higher temperatures, band-gap investigations are of special 

interest. These results allow assessment of the thermal quenching behavior. 

Some of the aforementioned nitrides were identified as highly efficient optical luminescence 

materials and, therefore, are promising candidates for photon conversion.[32] In this respect, 

(oxo-)nitridosilicates, nitridoalumosilicates, and (oxo-)nitridoalumosilicates have been 

intensively investigated.[33-39] Recent research has also focused on nitridogallates as host 

lattices for Eu2+ doping.[40] The aforementioned materials are made up of tetrahedra-based 

anionic substructures, wherein tetrahedra can be connected via common corners or edges, 

building either isolated polyhedra or one-dimensional (1D), two-dimensional (2D), or three-

dimensional (3D) structures.[39,41,42] Some of these materials are suitable as host lattices for 

Eu2+, with their emission depending on the coordination of Eu2+ by the surrounding anions. 
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Basically, Eu2+ can either substitute other electropositive ions (typically alkaline-earth ions) 

when the ionic radii are appropriate, or it can occupy interstitial sites.  

In this contribution, we report on the investigation of Eu2+-doped Mg3N2 as well as the double 

nitride Mg3GaN3:Eu2+, with respect to their synthesis, structure elucidation and luminescence. 

These nitrides represent interesting new host lattices for Eu2+ doping. Furthermore, we 

explore the electronic partial density of states (pDOS) of the latter and quantify its band gap 

through calculation and experiment. 

 

 

3.2.2 Experimental Section 

 

Synthesis of Mg3GaN3 was carried out in welded shut tantalum ampules (30 mm length, 

10 mm diameter, 0.5 mm wall thickness). All manipulations were done under argon 

atmosphere in a glovebox (Unilab, MBraun, Garching; O2 < 1 ppm, H2O < 1 ppm). Single 

crystals were obtained from reaction of 0.38 mmol NaN3 (25.0 mg, Acros, 99%), 0.59 mmol 

Mg (14.3 mg, Alfa Aesar, 99.9%) and 0.58 mmol Ga (40.4 mg, AluSuisse, 99.999%) in 

2.19 mmol sodium flux (50.4 mg, Sigma-Aldrich, 99.95%). For doping, 2 mol% of EuF3 was 

added. Ca was introduced into the metallic melt with the initial goal of finding new 

compounds in the system Ca-Ga-Mg-N. However, in these experiments, calcium has not been 

incorporated into the final products but did appear to improve crystallinity. Reactions without 

additional Ca have been unsuccessful so far.  

Synthesis of doped Mg3N2 was performed analogously in tantalum ampules sealed under 

inert-gas conditions in argon atmosphere. Single crystals were obtained from reaction of 

0.30 mmol NaN3 (20.2 mg, Acros, 99%), 0.47 mmol Mg (11.4 mg, Alfa Aesar, 99.9%) and 

0.5 x 10-3 mmol EuF3 (1.2 mg, Sigma-Aldrich, 99.99%) as dopant in 2.12 mmol sodium flux 

(48.7 mg, Sigma-Aldrich, 99.95%). According to energy-dispersive X-ray spectroscopy 

(EDX) measurements, the addition of strontium and germanium metal was found to improve 

crystallinity but these atoms were not incorporated into the crystalline product.  

Welded shut tantalum ampules were placed into quartz tubings under vacuum to prevent 

oxidation of the ampules. The respective reaction mixtures were then heated in a tube furnace 

at a rate of 0.83 °C/min to 760 °C, maintained at that temperature for 48 h, and then cooled to 

200 °C at a rate of 0.06 °C/min. Subsequently, the furnace was turned off and the tantalum 

ampules were opened in a glovebox. The sodium flux was removed from the reaction 

products by sublimation at 320 °C under vacuum for 10 h. 
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Scanning electron microscopy (SEM) was performed on a JEOL Model JSM 6500 F 

microscope equipped with a field-emission gun at an acceleration voltage of 30 kV. 

Synthesized samples were prepared on adhesive conductive carbon pads and coated with a 

similarly conductive carbon film. Chemical compositions were confirmed by EDX spectra 

(using an Oxford Instruments detector), and each spectrum was recorded on an area limited to 

one crystal face to avoid influence of possible contaminating phases and to verify that 

additional calcium or strontium and germanium were not incorporated into the crystalline 

products.  

For X-ray diffraction (XRD) and luminescence investigations, single crystals of each 

compound were sealed in glass capillaries under inert conditions. 

Single-crystal XRD data of Mg3GaN3 were collected on a Nonius Kappa-CCD diffractometer 

with graded multilayer X-ray optics and monochromated Mo-Kα radiation (λ = 0.71073 Å). 

X-ray diffraction data of Mg3N2 single crystals were collected on a STOE IPDS I 

diffractometer using monochromated Mo-Kα radiation (λ = 0.71073 Å). Applied absorption 

corrections were done using WinGX and X-RED.[43,44] The structures were solved by direct 

methods implemented in SHELXS-97.[45,46] Refinement of crystal structures was carried out 

with anisotropic displacement parameters for all atoms by full-matrix least-squares 

calculation on F2 in SHELXL-97.[46,47] [Further details of the structure investigations are 

available from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein Leopoldshafen, 

Germany (fax: +49-7247-808-666; email: crysdata@fiz.karlsruhe.de) on quoting the 

depository numbers CSD-425108 (Mg3GaN3) and CSD-425109 (Mg3N2), respectively.] 

N K-edge soft X-ray emission spectroscopy and absorption spectroscopy (XES and XAS, 

respectively) measurements of Mg3GaN3 were performed at the XES endstation of the 

resonant elastic and inelastic X-ray scattering beamline of the Canadian Light Source located 

on the University of Saskatchewan campus. The monochromator’s resolving power (E/∆E) 

was ~1  104, and it was calibrated such that the lowest energy peak in the h-BN absorption 

spectrum appeared at 402.1 eV in the bulk-sensitive total fluorescence yield (TFY) mode. All 

reported Mg3GaN3 absorption measurements were also performed in TFY mode to mitigate 

the possibility of surface contamination effects. The emission spectrometer, currently 

undergoing commission, has a theoretical resolving power of 2  103 at the N K-edge. It uses 

diffraction gratings in a Rowland circle geometry as dispersive elements, and is fitted with a 

microchannel plate detector. XES measurements were calibrated relative to the 

monochromator using a series of elastic peak measurements. The double nitride sample 
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consisted of an agglomeration of single crystals, stored under an argon atmosphere prior to 

being mounted on carbon tape. The exposure to ambient conditions was <10 min. 

Density functional theory (DFT) calculations of the electronic structure of Mg3GaN3 were 

performed with the WIEN2k software package,[48] using the Perdew-Burke-Ernzerhoff 

generalized gradient approximation (PBE-GGA).[49] The theoretical band gap was calculated 

with the modified Becke-Johnson (mBJ) exchange-correlation functional,[50] which has been 

shown to improve calculated band-gap values for most semiconductors.[51] Calculations were 

performed on a (5  7  12) k-point mesh with a plane-wave cutoff of -8.0 Ryd.  

Luminescence investigations were performed on single crystals placed in glass capillaries 

(diameter 0.2 mm, Hilgenberg) at room temperature. The capillaries were aligned with a Leitz 

Epiverts microscope. A Jobin Yvon Traix190 monochromator with 365 nm wavelength was 

used as excitation source, while a CCD camera (LaVision Dyna Vision) was used to detect 

the luminescence through a 500 µm slit. 

 

 

3.2.3 Results and Discussion 

 

The ternary nitride Mg3GaN3 was obtained as a colorless to light yellow powder with light 

yellow crystals having the appearance of hexagonal plates. EDX analyses have confirmed the 

sum formula. The crystals were not sensitive to moisture and air, even contact with ethanol or 

acetone had no influence on the compound.  

The existence of a ternary nitride with stoichiometric formula Mg3GaN3 was claimed earlier 

by Verdier et al., obtained as a green powder from the reaction of GaN and Mg3N2 at 

930 °C.[52] The authors reported nonindexed powder data and postulated an atomic ratio 

Mg:Ga:N of 3:1:3 but no structural details have been published so far. Here, we were able to 

obtain this compound as colorless single crystals and to elucidate the crystal structure. 

Calculated reflection positions and intensities from single-crystal data show accordance to 

data reported by Verdier et al.[52]  

The product of the second reaction route described in the Experimental Section was obtained 

as a heterogeneous mixture of metallic powder, orange crystals, and colorless cube-shaped 

crystals. EDX analysis showed the presence of only magnesium and nitrogen in the cube-

shaped crystals, while the orange crystals were found to be Sr(Mg3Ge)N4.
[53]  
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3.2.3.1 Crystal-Structure Description 

 

The crystal structure of Mg3GaN3:Eu2+ was solved using single-crystal X-ray diffraction data. 

The Eu2+ content was neglected because of its insignificant contribution to the scattering 

density. Initially, the solution was carried out in space group R3m (no. 160). After 

examination with PLATON[54,55] further refinement was performed in space group R3m 

(no. 166) with a = 3.3939(5) and c = 25.854(5) Å. Crystallographic data for Mg3GaN3 are 

summarized in Table 1.  

 

Table 1. Crystallographic Data for Mg3GaN3. 
 Mg3GaN3 
Formula mass (g·mol-1) 184.68 
Temperature/K 293(2) 
Crystal system trigonal 
Space group R3m (no. 166) 
Lattice parameters/Å a = 3.3939(5) 

c = 25.854(5) 
V/Å3 257.91(7) 
Formula units/cell 3 
Crystal size/mm3 0.05 · 0.04 · 0.02 
Abs. coefficient μ/mm-1 8.321 
F (000) 264 
Diffractometer  Nonius Kappa-CCD 
Radiation,  
graphite-monochromator

Mo-Kα (λ = 0.71073 Å) 

θ range/° 4.73 - 27.48 
Measured reflections 275 
Independent reflections 102 
Observed reflections 100 
Refined parameters 10 
GOF 1.067 
R indices (Fo

2 ≥ 2σ(Fo
2)) R1 = 0.0252; wR2 = 0.0616 

R indices (all data) R1 = 0.0255; wR2 = 0.0617 
 

The atomic coordinates and displacement parameters are listed in Table 2 and 3, while 

selected bond lengths and angles are shown in Table 4.  

Similarly to most Ga-N compounds, the structure of Mg3GaN3 is composed of metal centered 

nitrogen tetrahedra (Figure 1). Two metal sites are present in the crystal structure, whereby 

one site is occupied by an even number of Mg and Ga atoms, while the other is occupied 

solely by Mg. The Mg-N and (Mg/Ga)-N distances vary in the range of 1.9815(6)-

2.1915(8) Å and, thus, are representative for typical Ga-N or Mg-N distances.[40,53,56] The 
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observed bond lengths agree well with the expected sum of the ionic radii, even for the mixed 

occupied site.[57-59] 

 

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (x 104 pm2) of Mg3GaN3.
[a] 

site Wyckoff
Position 

x y z Ueq 

Mg1/Ga1 6c 0 0 0.12999(3) 0.0124(4) 
Mg2 6c 0 0 0.29538(7) 0.0092(4) 
N1 6c 0 0 0.21474(13) 0.0105(9) 
N2 3a 0 0 0 0.0090(11) 

[a] Estimated standard deviation (esd) values are shown in parantheses. 
 

Table 3. Anisotropic displacement parameters (in 104 pm2) for Mg3GaN3.
[a] 

 

atom U11 U22 U33 U23 U13 U12 

Mg1/Ga1 0.0081(4) U11 0.0210(6) 0 0 0.00406(19) 
Mg2 0.0080(5) U11 0.0116(8) 0 0 0.0040(3) 

[a] Estimated standard deviation (esd) values are shown in parantheses. 
 

The tetrahedra are connected to each other by common corners and edges, building a 3D 

network. Both tetrahedra MgN4 and (Mg/Ga)N4 are connected via edges to themselves and 

via corners to the other kind. Thereby, sheets of MgN4 and (Mg/Ga)N4 tetrahedra are built 

which are linked to each other via vertices and stacked along [001] (see Figure 1). In their 

second coordination sphere, each metal atom is coordinated by 12 other metal atoms. The 

mixed (Mg/Ga) site is surrounded by a cuboctahedron, while the pure Mg site is coordinated 

with an anticuboctahedron.  

 

 
Figure 1. Crystal structure of Mg3GaN3. Unit cell shown in solid black lines. Sheets of (Mg/Ga)N4 units (light 
blue) and MgN4 tetrahedra (dark blue) are linked via corners to each other and via edges within the sheets. 
 

Nitridogallates that contain magnesium are barely known thus far. The only examples 

appearing in the literature are Ca2Ga3MgN5 and Sr(Mg2Ga2)N4.
[42,53] For both compounds, 

mixed occupation Mg/Ga on the tetrahedral sites has been reported. These tetrahedra exhibit 

both corner and edge sharing, forming a network that represents the anionic substructure 

charge balanced by Ca2+ or Sr2+, respectively. 
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Table 4. Selected bond lengths in Mg3GaN3.
[a] 

 

(Mg1/Ga1)-N1 3x 1.9815(6) Å
(Mg1/Ga1)-N2  2.191(4) Å 
Mg2-N1 3x 2.1915(8) Å
Mg2-N2  2.085(4) Å 

[a] Estimated standard deviation (esd) values are shown in parantheses. 
 

Contrary to this, in the crystal structure of Mg3GaN3 there are no further metal sites beside the 

ones in the uncharged tetrahedron network. Therefore, the atomic ratio (Mg/Ga) : N, 

representing the degree of condensation (κ) is 4:3, which is much higher than the κ value of 

any other known nitridogallate. According to Liebau,[60] Mg3GaN3 can be interpreted as a 

double nitride of Mg and Ga, rather than a magnesium nitridogallate, as previously 

assumed.[52] 

 

Table 5. MAPLE values[a] for Mg3GaN3 and Mg3N2 and respective deviation Δ from theoretical values of the 
constituting nitrides. 

Mg3GaN3 MAPLE values
[kJ mol-1] 

Mg3N2 MAPLE values
[kJ mol-1] 

Mg 2206 – 2417   
Mg / Ga 3402 – 3588 Mg 2251 
N 45289 - 5276 N 4757 – 4764 
Mg3GaN3 26395 Mg3N2 16285 
Mg3N2 + GaN  Mg3GaN3 26773[b] 3MgSiN2 – Si3N4  Mg3N2 16265 [c] 
Δ 1.41% Δ 0.11% 
[a] Typical partial MAPLE values [kJ/mol]: Ga3+, 4500 - 6000; Mg2+, 2100 - 2400; N3-, 3000 – 6000.[34,64-66] [b] 
Mg3N2 data taken from ref 27; GaN data taken from ref 61. [c] MgSiN2 data taken from ref 62; Si3N4 data taken 
from ref 63. 
 

An alternate structural description of Mg3GaN3 can be afforded on the basis of anion-centered 

polyhedra. There are two distinct nitrogen sites (see Figure 2). N1 is surrounded by six Mg 

atoms in edge-sharing MgN4-units in a slightly distorted octahedron, while N2 is coordinated 

by five metal atoms in a trigonal bipyramidal configuration, belonging to one MgN4 

tetraherdon and four (Mg/Ga)N4 tetrahedra. 

 

 
Figure 2. Coordination of N sites in Mg3GaN3. 
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These structural details can be compared to the respective binary nitrides Mg3N2 and GaN. In 

Mg3N2, there are also two N sites,[27] both of which are 6-fold coordinated, with one of them 

showing the same hexagonal arrangement of six MgN4 tetrahedra as N1 in Mg3GaN3. In GaN, 

regardless of whether hexagonal or cubic modification[61,67] is realized, nitrogen is 

coordinated by four GaN4 units in a tetrahedral arrangement. This arrangement is comparable 

to the surroundings of N2 in Mg3GaN3, where the 5-fold coordination of the N atom can also 

be seen as a tetrahedral arrangement of three (Mg/Ga)N4 and one MgN4 unit with a further 

(Mg/Ga)N4 tetrahedron. The anion-centered polyhedra illustrate the structural relation to the 

binary nitrides and support the double nitride character of Mg3GaN3. Sr3GaN3 is also known 

to exist, and its structure has been described in the literature. Unlike Mg3GaN3, the strontium 

compound is composed of Sr2+ and isolated trigonal planar [GaN3]
6- ions.[68] In contrast, 

Mg3BN3 must be classified as a nitridoborate nitride containing even linear [BN2]
3- ions and 

isolated N3- ions besides Mg2+.[69] The Mg/Ga/N system has been thoroughly studied in the 

literature.[11-20] However, only the quaternary Mg-containing nitridogallates Ca2Ga3MgN5 and 

Sr(Mg2Ga2)N4 have been described; no other ternary Mg-Ga-N compounds have been 

observed at this point.[42,53] 

There are several other double nitrides (e.g., Li7PN4) composed of edge-sharing LiN4 and PN4 

tetrahedra[70] or phenakite-type BeP2N4 containing an uncharged three-dimensional network 

of all corner-sharing BeN4 and PN4 tetrahedra.[71]  

Concerning the degree of condensation (κ), the double nitride Mg3GaN3 (κ = 4:3) is 

intermediate between that of the binary nitrides Mg3N2 (κ = 3:2) and that of GaN (κ = 1:1).  

The crystal structure of Mg3N2 was re-refined on the basis of single-crystal XRD data. The 

solution and refinement was performed in cubic space group Ia3 (no. 206) with 

a = 9.955(2) Å. The refined crystal structure parameters are slightly different from the 

single-crystal data previously published;[27] however, they agree well with literature values 

from powder X-ray investigations on Mg3N2.
[24-26,72] The results of the crystal-structure 

refinement are listed in the Supporting Information. Mg3N2 crystallizes in the antibixbyite 

type and is constituted of edge-sharing MgN4 tetrahedra.[27] To further confirm the refined 

crystal structures of Mg3GaN3 and Mg3N2, Madelung part of lattice energy (MAPLE) 

calculations were performed on both compounds. The electrostatic consistency was proven by 

comparison of the MAPLE sum with the sum of constituting nitrides. Moreover, MAPLE 

values for each atom were compared with known MAPLE values from reference data 

previously reported.[34] The results of MAPLE investigations are listed in Table 5. 
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3.2.3.2 DFT Calculations and Soft X-ray Spectroscopy of Mg3GaN3 

 

Given a well-defined, periodic crystal structure, DFT calculations can be used to predict the 

electronic properties of a material, to explore the chemical bonding that occurs and further 

refine its structural parameters. In order to perform DFT calculations on Mg3GaN3 (Figure 1), 

the mixed occupancy on the metal sites must be divided evenly into pure Mg and Ga sites 

with periodic ordering. Since the unit cell in Figure 1 contains six inequivalent mixed sites, a 

simple way to achieve this would be to assign 3 of them as Ga atoms and 3 as Mg atoms. 

There are 10 unique unit cells that can be created in this manner, all of which predict 

Mg3GaN3 to be either a metal or a narrow band gap (<0.2 eV) semiconductor when their 

electronic structure is calculated. Given the colorless nature of the double nitride crystals, 

such structures can be safely ruled out. 

In a 2×2×1 supercell, all of the aforementioned inequivalent sites are quadrupled, generating 

six different sets of four equivalent crystal positions. The total energy of the unit cell is found 

to decrease when each set of equivalent sites is half-filled with Mg and half-filled with Ga, 

and the total energy decreases further if each Ga site is only coordinated with one more Ga 

atom in the second coordination sphere, as shown in Figure 3. 

 

 
Figure 3. A VESTA[73] visualization of the energetically favored crystal structure of Mg3GaN3 with optimal 
Mg/Ga ordering and crystal symmetry. 
 

Furthermore, when the electronic structure of this particular configuration is calculated, a 

band gap compatible with colorless Mg3GaN3 crystals is predicted. If this structure is relaxed 

to minimize internal atomic forces and pressure on the unit cell, the resulting optimized 

atomic coordinates and lattice constants agree with results of the single-crystal XRD 

experiment. The calculated band gap is not significantly affected by relaxing the crystal 

structure. 

The calculated DOS is shown in the bottom frame of Figure 4. Typically, calculations using 

the PBE-GGA exchange-correlation functional are found to underestimate the band gap, 
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while mBJ calculations provide more appropriate band-gap estimates but have been observed 

to horizontally contract the surrounding states.[74] For Mg3GaN3, PBE-GGA calculations 

returned a band gap of 1.7 eV, while mBJ calculations predicted a more reasonable value of 

3.0 eV. To compensate for the shortcomings of both techniques, Figure 4 uses the PBE-GGA 

calculated DOS but with the conduction states shifted up 1.3 eV to reflect the mBJ band gap. 

 

 
Figure 4. Calculated density of states (DOS) of Mg3GaN3 (bottom panel). The total DOS for all atoms is shown 
in dark gray, N p states are light gray, and total Ga and Mg states are blue and red, respectively. Measured and 
calculated soft X-ray emission (XES) and absorption spectra (XAS, top panel). Measurements are shown in 
black, ground state (GS) calculations are red, and the core-hole (CH) absorption spectrum is shown in blue. 
Dashed lines represent the band-gap edges. 
 

A band of Ga 3d states can be found from -15 to -11 eV, relative to the Fermi energy, in 

which a narrow peak of states at -13.3 eV, composed primarily of Ga 3d character is 

surrounded by hybridized Ga 3d and N 2s states. The 6.5 eV wide valence band, terminating 

at the Fermi energy, is dominated by N 2p character and contains very little charge associated 

with Mg or Ga. This suggests that bonding is fairly ionic, with N atoms peeling away some 

valence electrons from the metal sites. In fact, each Ga site only contributes 0.3 e of charge to 

the DOS in the valence band, essentially giving them a 3d10 valency. This could explain the 

energetic preference for the Mg/Ga ordering in Figure 4. Any other stoichiometric 

configuration would include more than one Ga-Ga coordination in the second coordination 

sphere, which would increase the total energy of the cell through d10-d10 filled-shell Pauli 

repulsion.  
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The conduction band contains relatively few states from 3 eV to 5 eV. N s and p character 

dominate the conduction band from 5 eV to 15 eV, at which point the N p states begin to 

recede and N s and Mg states become more prominent.  

Examining the ground-state band structure (Figure 5), the weak low-energy conduction states 

are observed to be the result of a single high-curvature band at the conduction-band 

minimum. This calculation also reveals that the band gap of Mg3GaN3 is direct across the -

point. 

 

 
Figure 5. Calculated ground-state band structure of Mg3GaN3.The blue band is responsible for the weak states 
near the conduction-band minimum. The chosen k-point path is standard for monoclinic unit cells. 
 

XES and XAS offer an indirect probe of the local partial DOS in the valence and conduction 

bands, respectively. At the N K-edge, these techniques are predominantly sensitive to N p 

states. The measured N-Kα emission and N 1s absorption spectra are shown in the top frame 

of Figure 4 in black.  

Significant CH lifetime broadening effects prevent any fine details of the emission spectrum 

from being resolved. There is a single peak at 392 eV (relative to the N 1s core level) with a 

broad low-energy shoulder. The measured XAS has a 3 eV wide onset, followed by four 

resolvable features, including an N2 gas absorption spectrum superimposed on the Mg3GaN3 

spectrum between 400.5 eV and 402 eV. This gas likely originates from within the material, 

liberated by irradiation before becoming trapped in the pockets between agglomerated 

crystals.[75] Successive XAS scans show an increase in N2 gas buildup, but no other spectral 

changes due to radiation damage are observed.  
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The WIEN2k utility XSPEC, which uses the formalism described in ref 76, is used to estimate 

ground-state N-Kα emission spectra from the occupied DOS and absorption spectra from the 

unoccupied DOS. These calculated spectra are shown in the top frame of Figure 4 in red. The 

calculated XES spectrum agrees well with the measured emission profile, in terms of valence 

bandwidth and overall shape. All three of the Mg3GaN3 absorption features observed in the 

XAS measurement are re-created in the calculated absorption spectrum at approximately the 

same energy, as well as a fourth feature that may have been obscured by the N2 gas signal in 

the measured XAS. There is a slight disagreement in the relative peak heights between the 

measurement and calculation, which is likely the result of the N 1s core hole introduced in the 

course of an XAS measurement. Indeed, in calculations with a core hole present, the relative 

amplitudes of lower energy features are increased (see blue line in the top panel of Figure 4). 

However, such calculations almost invariably overestimate the density of CHs and their 

effects on the electronic structure, placing too much emphasis on the low-energy states and 

shifting the entire conduction band down in energy. It would be possible to decrease the CH 

density by further expanding the supercell or introducing fractional core holes, but such 

calculations are computationally expensive, and the observed CH effect is too small to make 

this approach worthwhile. 

In the region of the valence-band maximum and conduction-band minimum, the measured 

and calculated spectra are in very good agreement, suggesting experimental confirmation of 

the predicted 3.0 eV band gap. Furthermore, the excellent overall agreement between the 

experimental and theoretical soft X-ray spectra lead us to conclude that the structure shown in 

Figure 3 is the correct choice for Mg3GaN3. 

 

 

3.2.3.3 Luminescence Investigations 

 

Luminescence investigations were performed on Eu2+-doped single crystals of both 

compounds. When irradiated with ultraviolet (UV) to blue light, crystals of Mg3GaN3:Eu2+ 

show yellowish luminescence at room temperature. The excitation at 365 nm yields an 

emission band peaking at 578 nm with a lumen equivalent of 132 lm/W and CIE color 

coordinates of x = 0.491 and y = 0.498. The full width at half maximum (fwhm) was 

measured to be 4052 cm-1 (132 nm). The emission spectrum (Figure 6) shows a tailing on the 

right and a second-order excitation peak that occurs due to instrumental reasons. Eu2+-doped 

samples of Mg3N2 were equally investigated under room temperature. An emission band with 
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a maximum intensity at 589 nm was observed when Mg3N2:Eu2+ is excited at 365 nm (see 

Figure 6). Mg3N2:Eu2+ shows a fwhm of 4056 cm-1 (147 nm) with a lumen equivalent of 

317 lm/W and CIE color coordinates x = 0.509 and y = 0.480. An uncommon green 

luminescence of nondoped Mg3N2 powders has been reported in literature.[28] 

In both compounds, it is important to determine where the Eu2+ activator ions are located 

within the crystal structure. In most nitride host lattices, Eu2+ is supposed to occupy an 

alkaline-earth site (e.g., Ba3Ga3N5:Eu2+ and Sr2Si5N8:Eu2+).[34,40] The ionic radii of 6-fold 

coordinated alkaline-earth ions Ba2+ (1.35 Å), Sr2+ (1.18 Å) and Ca2+ (1.00 Å) fit that of 6-

fold surrounded Eu2+ (1.17 Å) although Ba2+ is slightly larger and Ca2+ is smaller.[58] 

Nevertheless, the change of lattice structure caused by this mismatch is often helpful for 

luminescence, because of influence on bond lengths and the resulting change in energy-level 

positions. Presumably, the 4-fold coordinated Mg2+ site in Mg3GaN3 with an ionic radius of 

0.57 Å is much too small to be occupied by Eu2+. The mixed occupancy on the metal site can 

also be ruled out, because it is even smaller than a pure Mg2+ site. This leads to the 

assumption that Eu2+ is incorporated on interstitial sites of the crystal structure. In the network 

of Mg3GaN3, two types of octahedral voids are present (see Figure 7a and 7b). The polyhedra 

around these voids are linked to themselves through edges and to each other via faces. Both 

octahedra offer a possible position for Eu2+. Thereby, the positions displayed in yellow color 

in Figure 7 are suitable for Eu2+, and the observed distances to N atoms of 2.320-2.489 Å are 

in good agreement with typical distances for Eu-N found in the literature.[77,78]  

Mg3N2 crystallizes in an antibixbyite type of structure. In this crystal structure, there are also 

two different octahedral voids; however, these are edge-sharing in all three spatial directions. 

Eu2+ atoms have been introduced onto these sites in order to verify the occurring Eu-N 

distances (see Figure 7c and 7d), which range from 2.489 to 2.525 Å. The highest remaining 

electron density during structure refinement of Mg3N2:Eu2+ lies on a special site (8a) and is 

therefore exactly in the center of one of these octahedral voids (see Figure 7d). This could be 

another hint for Eu2+ being located on this site. Due to the low doping level (2 mol% Eu), no 

refinement of the occupancy of Eu on this position has been possible.  

To reassess if the observed luminescence of Mg3GaN3:Eu2+ and Mg3N2:Eu2+ could be traced 

to these voids, known compounds with similar Eu-N distances and coordination numbers 

have been compared. One example is Li2CaSiN4, where a 6-fold coordinated Ca site was 

reported with Ca-N distances ranging from 2.489-2.586 Å.[79] In the doped compound 

Li2CaSiN4:Eu2+, it is assumed that Eu2+ occupies a Ca2+ site. The observed luminescence 

shows an emission-band maximum at 583-585 nm.[80] In Eu2+-doped Li-α-SiAlON, the 
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activator Eu2+ is supposed to occupy the Li+ site.[81] There, the coordination number is seven 

and distances to N/O range from 2.052 to 2.767 Å. The reported luminescence varies between 

563 and 586 nm, depending on composition and Eu2+ concentration. This is in good 

agreement with the luminescence data of Mg3GaN3:Eu2+ and Mg3N2:Eu2+, so we can assume 

that Eu2+ occupies an interstitial position in these two nitride networks. To understand the 

origin and the quality of luminescence properties, detailed knowledge of the local 

environment of the activator ion is necessary. Recent investigations focused on determination 

of Eu contribution in the M sites in M2Si5N8 (where M = Ca, Sr, Ba). With a high 

concentration of Eu2+, a reliable distribution and a preferred site can be determined based on 

structural refinement methods and composition investigations.[82] These investigations give an 

indication of the average Eu2+ contribution, statistically distributed over the entire crystal, but 

no information of the local structure of the activator can be achieved. Another recent approach 

to detect interstitial dopants and elucidate local surrounding of the dopant involved scanning 

transmission electron microscopy (STEM) investigations on β-SiAlON. There, a single 

dopant ion was detected in the atomic channel of the crystal structure.[83] This method seems 

quite promising when the layer thickness is suitable for such measurements and the crystal 

structure reveals appropriate requirements. Nevertheless, it is still difficult to determine the 

real location and the amount of activator ions in such host lattices. 

 

 
Figure 6. Emission spectra of Mg3GaN3:Eu2+ (left) and Mg3N2:Eu2+ (right). 
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 Figure 7. Octahedral voids in the crystal structures of Mg3GaN3 (panels a and b) and Mg3N2 (panels c and d). 
The yellow spheres are possible Eu-atom positions, and the resulting distances to coordinating N are given in Å. 
 

 

3.2.3.4 Conclusion 

 

In this study we present a structural description of Mg3GaN3 based on single-crystal X-ray 

diffraction (XRD) data, which shows a 3D uncharged network of corner- and edge-sharing 

MgN4 and mixed (Mg/Ga)N4 tetrahedra. Since all metal atoms are part of the tetrahedral 

network, Mg3GaN3 can be classified as a double nitride, in contrast to known nitridogallates, 

which exhibit an anionic tetrahedra substructure with electropositive counterions such as Sr2+ 

or Ba2+. To our knowledge, the compound Mg3GaN3 represents the first known 

stoichiometrically defined ternary compound in the system Mg/Ga/N. It is found to be a 

semiconductor with a direct band gap of 3.0 eV across the -point. Density functional theory 

(DFT) calculations suggest a periodic ordering on the metal sites, and the measured soft X-ray 

spectra confirm these calculations. The band gap of Mg3GaN3 (3.0 eV) ranges between that of 

Mg3N2 (2.8 eV)[84] and GaN (3.02–3.20 eV),[85] which further emphasizes the double nitride 

character of Mg3GaN3. Upon doping with Eu2+, the double nitride shows broad-band emission 

due to 4f6(7F)5d1  4f7(8S7/2) transitions with maximum intensity at 578 nm after excitation at 

365 nm. Because of the structural characteristics of Mg3GaN3:Eu2+, it is assumed that 

activator ions are localized in interstitial octahedral voids of the crystal structure.  

A similar luminescent binary nitride, Mg3N2:Eu2+, is also investigated. Structural details are 

known from the literature and presumably Eu2+ also occupies interstitial sites. After excitation 

with ultraviolet (UV) to blue light, this compound shows luminescence with an emission-band 

maximum at 589 nm with a full width at half maximum (fwhm) of 4056 cm-1 (147 nm).  

Both presented nitrides are new host lattices for Eu2+ doping and show interesting 

luminescence properties. The results of this study illustrate the potential of nitrides as host 

lattices for Eu2+ doping once again. It is remarkable that the double nitride Mg3GaN3 is the 

first representative showing luminescence, to the best of our knowledge. Further optimization 
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of synthesis and the optical properties of these materials must be achieved for them to have 

possible applications as phosphor materials. 
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Abstract 

Dinitrogen (N2) ligation is a common and well-characterized structural motif in bioinorganic 

synthesis. In solid-state chemistry, on the other hand, homonuclear dinitrogen entities as 

structural building units proved existence only very recently. High-pressure/high-temperature 

(HP/HT) syntheses have afforded a number of binary diazenides and pernitrides with [N2]
2– 

and [N2]
4– ions, respectively. Here, we report on the HP/HT synthesis of the first ternary 

diazenide. Li2Ca3[N2]3 (space group Pmma, no. 51, a = 4.7747(1), b = 13.9792(4), 

c = 8.0718(4) Å, Z = 4, wRp = 0.08109) was synthesized by controlled thermal decomposition 

of a stoichiometric mixture of lithium azide and calcium azide in a multianvil device under a 

pressure of 9 GPa and 1023 K. Powder X-ray diffraction analysis reveals strongly elongated 

N–N bond lengths of dNN=1.34(2)–1.35(3) Å exceeding those of previously known, binary 

diazenides. In fact, the refined N–N distances in Li2Ca3[N2]3 would rather suggest the 

presence of [N2]
3·– radical ions. Also, characteristic features of the N–N stretching vibration 

occur at lower wavenumbers (1260–1020 cm–1) than in the binary phases, and these 

assignments are supported by first-principles phonon calculations. Ultimately, the true 

character of the N2 entity in Li2Ca3[N2]3 is probed by a variety of complementary techniques, 
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including electron diffraction, electron spin resonance spectroscopy (ESR), magnetic and 

electric conductivity measurements, as well as density-functional theory calculations (DFT). 

Unequivocally, the title compound is shown to be metallic containing diazenide [N2]
2– units 

according to the formula (Li+)2(Ca2+)3([N2]
2–)3·(e

–)2. 

 

Keywords: Diazenide, Solid-State Chemistry, Density-Functional Theory (DFT), High-

Pressure/High-Temperature, Lithium 

 

 

4.1.1 Introduction 

 

Among the most important processes in modern chemistry is the conversion of dinitrogen 

molecules (N2) into environmentally sustainable intermediates or products. This process is 

referred to as “nitrogen fixation”. In industry, this process is named after its inventors Fritz 

Haber and Carl Bosch, the Haber–Bosch cycle,[1] which offers rapid access to synthetic 

fertilizers and has become essential for the nutrition of a large amount of the world 

population. In nature, this enormously expensive and complex industrial process is replaced 

by the enzyme nitrogenase, whose crystal structure has been determined only recently.[2] 

Nitrogenases can cleave the N≡N triple bond already at ambient conditions and transform it 

into ammonia, which however consumes huge amounts of energy (adenosine triphosphate, 

ATP).[3,4] Nitrogenase fixes atmospheric dinitrogen through an inimitable class of various 

metal clusters.[2,5–9] However, despite detailed knowledge of these structural motifs, a basic 

mechanism for the biological process still lacks evidence. Hence, the activation and 

conversion of free N2 to ammonia including the characterization of a diversity of 

intermediates with bound dinitrogen is one of the major challenges in bioinorganic and 

organo-metallic chemistry, to finally unravel nature’s mystery.[10] 

Synthetic nitrogen fixation focuses on the binding, activation and reduction of N2 on mono-, 

di- and polynuclear transition metal centers coordinated by capacious steric ligands. Mono- 

and dinuclear transition metal complexes have long been known to activate dinitrogen in 

various ways: they enable protonation, reduction, functionalization and even N–N bond 

cleavage steps. Besides a handful of examples of transition metal complexes with trapped and 

activated N2, up to date only two distinct classes of molybdenum- or tungsten-based model 

systems have emerged, involving a full set of well-defined intermediates, such as diazenido, 
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hydrazido, nitrido, imido, amido or amine intermediates, on the way from N2 to NH3. These 

systems form the basis of the Chatt and the Schrock cycles.[11,12]  

However, true mimicry of the multielectron reduction process still proves difficult because 

both cycles explain the sequence of reactions involved in biological dinitrogen reduction, on 

the one hand, but only a low yield catalytic reaction is observed in one of those systems, on 

the other hand.[11–23] The monometallic model systems of Chatt and Schrock cycles bind N2 in 

an end-on manner and therefore lead to only weakly or moderately activated N2-

intermediates, which might be the crucial factor for the absence of a catalytic reaction. The 

binding of N2 in side-on manner is usually accessed by homonuclear bimetallic complexes. 

Common oxidation states for side-on bound N2 when acting as a ligand are 0, –II or –IV 

representing nonactivated dinitrogen(0), diazenido [N2]
2–, or hydrazido [N2]

4– intermediates. 

This is not surprising as the dinitrogen ligand is reduced in multiples of two electrons, 

because each of the two metal atoms contributes either zero, one or two electrons to nitrogen 

reduction. Odd-electron nitrogen oxidation states, instead, propose radical character and one-

electron reduction mechanisms, but have not been observed in Chatt or Schrock cycles so far. 

However, this potential intermediacy of [N2]
·– or [N2]

3·– radical ions in metal complexes 

proved existence only very recently in dinuclear nickel, iron and lanthanide complexes, 

respectively.[10,24–33] Thereby, [N2]
·– were found to exhibit N–N bond lengths of about 1.13–

1.18 Å and N–N stretching frequencies of 1740–1950 cm-1,[10,24-26,32,33] whereas the dNN in 

[N2]
3·– ions was found to be at 1.39–1.41 Å with shifted N–N stretching energies of below 

1000cm-1.[27-33] To gain final evidence for the presence of such radical anions [N2]
·– or [N2]

3·–, 

electron spin resonance spectroscopy (ESR) revealed clearly visible signals in accordance 

with simulated spectra indicative of unpaired electrons and supporting the radical formulation 

of dinitrogen ligation.[24,27,28] Gauging “weakly” to “highly” activated systems is possible at 

the hand of N–N bond lengths and corresponding N–N stretching frequencies in spectroscopic 

studies of bound dinitrogen molecules or ions. For such purpose, reliable crystallographic and 

spectroscopic data for protonated reference compounds, such as diazene HN=NH and 

hydrazine N2H4, are required to facilitate the classification of even- and odd-electron 

nitrogen-oxidation states. Surprisingly, given the importance of homonuclear dinitrogen 

anions in biological and organo-metallic chemistry, it was not before 2001 that such ions have 

been observed in solid-state chemistry for the first time.[34–39] Pioneering works by Kniep et 

al. introduced the hitherto unknown compounds Sr4N3 (≡ Sr8N4[N2]·2e–), SrN (≡ Sr8N4[N2]2), 

SrN2 and BaN2, which are the first so-called diazenides with ionic [N2]
2– units. The latter 

show characteristic N–N bond lengths (1.22 Å) and stretching frequencies (1307 cm–1 in SrN2 
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and 1380 cm–1 in SrN), which may be compared to protonated diazene N2H2 (1.21–1.25 Å, 

1400–1700 cm–1).[34–45] Only five years later, high-pressure/high-temperature (HP/HT) 

experiments revealed the existence of nobel metal compounds with MN2 stoichiometry (M = 

Os, Ir, Pd and Pt) exhibiting ultrahigh hardness with bulk moduli of about 250–350 GPa.[46–53] 

Theoretical investigations finally concluded the presence of tetravalent metals and [N2]
4– 

anions, with N–N bond lengths (about 1.40 Å) and stretching frequencies (700–1000 cm–1) 

similar to those of hydrazine N2H4 (dNN = 1.47 Å, NN < 1000 cm–1).[46-57] The latter anions are 

isoelectronic with peroxides [O2]
2–, and so they were dubbed “pernitrides”. In 2012, we were 

able to extend the compositional range of binary diazenides by subjecting ionic azides to 

HP/HT conditions in a multianvil device.[58,59] We succeeded in synthesizing SrN2 and BaN2, 

as well as the unprecedented (but theoretically predicted) CaN2 and also Li2N2, the latter one 

representing the first alkali diazenide.[58–61] Crystallographic, spectroscopic, and theoretical 

investigations confirmed the presence of [N2]
2– anions in these crystal structures.[58,59] Only 

very recently, LaN2 (≡ La3+[N2]
2-·e–) proved existence in shockwave experiments in accord 

with theoretical predictions.[54,62] Again, crystallographic studies showed the presence of 

diazenide anions with slightly elongated N–N bonds (1.30–1.32 Å), possibly due to the 

metallic character of the crystalline host. In summary, the recent success in identifying 

diazenides and pernitrides in solid-state chemistry has fuelled various theoretical and 

synthetic efforts to predict and characterize further compounds containing dinitrogen anions. 

However, despite the as-mentioned examples, no further representatives of diazenides, 

pernitrides, or even intermediate dinitrogen ions are known to date in ionic solids. 

In this contribution, we present the successful synthesis and structural elucidation of 

Li2Ca3[N2]3, the first ternary compound with dinitrogen anions. Detailed crystallographic, 

spectroscopic, and theoretical studies at the respective state-of-the-art support the presence of 

solely [N2]
2– anions in the crystal structure. As we demonstrate, the title compound may be 

seen as the first ternary sub-diazenide with (Li+)2(Ca2+)3([N2]
2-)3·(e

-)2 formulation. 

 

 

4.1.2 Experimental Section 

 

4.1.2.1 Synthesis of Li2Ca3[N2]3 

 

Li2Ca3[N2]3 was prepared under HP/HT conditions in a modified Walker-type module in 

combination with a 1000 t press (Voggenreiter, Mainleus, Germany). As pressure medium, 
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Cr2O3 doped (5%) MgO-octahedra (Ceramic Substrates & Components, Isle of Wight, UK) 

with edge lengths of 18 mm (18/11 assembly) were employed. Eight tungsten carbide cubes 

(Hawedia, Marklkofen, Germany) with truncation edge lenghts of 11 mm compressed the 

octahedron.  

Li2Ca3[N2]3 can be synthesized from two different stoichiometric mixtures of lithium and 

calcium azides according to equations 1 and 2. For a detailed description of the synthesis of 

both azides, see Supporting Information. 

 

2 LiN3(s) + 3 Ca(N3)2(s)         Li2Ca3[N2]3(s) + 9 N2(g)    (Eq. 1) 

 

2 Limetal(s) + 3 Ca(N3)2(s)         Li2Ca3[N2]3(s) + 6 N2(g)    (Eq. 2) 

 

The corresponding mixtures were carefully ground, filled into a cylindrical boron nitride 

crucible (Henze BNP GmbH, Kempten, Germany) and sealed with a fitting boron nitride 

plate. Details of the setup are described in the literature.[63–67] The assembly was compressed 

up to 9 GPa at room temperature within 213 min, then heated up to 1023 K in 10 min, kept at 

this temperature for 20 min, and cooled down to room temperature in 10 min again. 

Subsequently, the pressure was released over a period of 620 min. The recovered  

MgO-octahedron was broken apart in a glovebox (Unilab, MBraun, Garching; O2 < 1 ppm, 

H2O < 1 ppm), and the sample was carefully isolated from the surrounding boron nitride 

crucible. Besides a golden metallic powder of the title compound (see Figure S1 in the 

Supporting Information), which is very sensitive to moisture, small amounts of a red, but yet 

not identified side-phase were obtained. 

 

4.1.2.2 Powder X-ray Diffraction (PXRD) 

 

For powder X-ray diffraction experiments, ground Li2Ca3[N2]3 was loaded into tube 

capillaries (Hilgenberg, Malsfeld, Germany) with diameters of 0.2–0.3 mm in a glovebox. 

Data were recorded with a STOE Stadi P powder diffractometer (STOE, Darmstadt, 

Germany) in Debye–Scherrer geometry using Ge(111) monochromated Cu and Mo Kα1-

radiation (1.54056 and 0.7093 Å) with a step size of 0.01°. Data acquisition was done using 

the STOE software (WinXPOW). The indexing, integration and extraction of the intensities as 

well as the structure solution and Rietveld refinement were performed with the TOPAS 

package (see Figure 1).[68] 
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Figure 1. Observed (blue) and calculated (red) powder diffraction pattern (Cu Kα1 radiation, 1.54056 Å) and 
difference profile (gray) of the Rietveld refinement of Li2Ca3[N2]3. Peak positions are marked by vertical blue 
lines (bottom). 
 

The reflection profiles were determined using the fundamental parameter approach[69] by 

convolution of appropriate source emission profiles with axial instrument contributions and 

crystalline microstructure effects. Preferred orientation of the crystallites was described with a 

spherical harmonic of fourth order. A search for potential higher symmetry obtained after 

structure solutions and Rietveld refinements was carried out using the program PLATON.[70] 

The relevant crystallographic data for the title compound as well as further details of the data 

collection are summarized in Tables 1 and S1 in the Supporting Information. Further 

information of the crystal structure may be obtained from the Fachinformationszentrum 

Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (49) 7247-808-666; e-mail: 

crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-426449.  

High-temperature in situ X-ray powder diffraction data were collected with a STOE Stadi P 

powder diffractometer (Mo Kα1-radiation (0.7093 Å)) equipped with a computer-controlled 

STOE resistance graphite furnace. Enclosed in a silica glass capillary under argon, the 

samples were heated from room temperature to 700 K at a rate of 5 K/min in steps of 25 K 

(see Figure S2 in the Supporting Information). At each heating step (after holding the 

temperature for 1 min), a diffraction pattern was recorded with an IP-PSD in the range of 

2° ≤ 2θ ≤ 80°. At about 610 K, the sample decomposed spontaneously. 

Low-temperature in situ X-ray powder diffraction data were collected in intervals of 5 K 

using a Huber G670 Guinier imaging plate diffractometer (Co Kα1 radiation (1.7890 Å)) 

equipped with a closed cycle He-cryostat. The samples were cooled down from room 

temperature to 10 K in 5 K/min. At each cooling step (after holding the temperature for 
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1 minute), a diffraction pattern was recorded in the range of 10° ≤ 2θ ≤ 80°. No phase 

transition was observed. 

 

Table 1. Refined atomic coordinates and isotropic displacement factors of Li2Ca3[N2]3.
[a] 

atom (Wyckoff) x y z Uiso (0.01 Å2)[b] 
Li1 (4g) 0 0.346(2) 0 0.033(9) 
Li2 (4h) 0 0.847(3) ½ 0.02(1) 
Ca1 (2e) ¼ 0 0.697(1) 0.039(3) 
Ca2 (2f) ¼ ½ 0.195(2) 0.042(4) 
Ca3 (4k) ¼ 0.1446(5) 0.164(1) 0.055(3) 
Ca4 (4k) ¼ 0.6435(5) 0.651(1) 0.057(3) 
N1 (4k) ¼ 0.177(1) 0.7043(9) 0.027(6) 
N2 (4k) ¼ 0.6656(8) 0.2002(9) 0.048(9) 
N3 (4k) ¼ 0.048(2) 0.410(4) 0.06(1) 
N4 (4k) ¼ 0.548(1) 0.91(3) 0.027(7) 
N5 (4k) ¼ 0.2860(8) 0.343(2) 0.026(5) 
N6 (4k) ¼ 0.803(1) 0.867(1) 0.04(1) 

[a] Space group Pmma (no. 51), a = 4.7747(1), b = 13.9792(4), c = 8.0718(4) Å, Z = 4; [b] Uiso = Beq/(8π2). 

 

4.1.2.3 Transmission Electron Microscopy (TEM) 

 

All manipulations for the preparation and transfer of the sample were carried out under argon 

atmosphere. Data were recorded with a Philips CM30/ST (LaB6 cathode) at 300 kV. Selected 

area electron diffraction (SAED) as well as precession electron diffraction patterns (PED) 

were collected with a GATAN slow-scan CCD camera. Simulations of diffraction patterns 

were calculated with the EMS program package.[71] Elemental analysis by EDX was 

performed with a Si/Li detector (Thermo Fischer, NSS). Tilt series of diffraction patterns 

were obtained using a double tilt sample holder with maximum tilt angle of ± 25°. 

 

4.1.2.4 Computational Details 

 

Periodic density-functional theory (DFT) computations in the generalized gradient 

approximation of Perdew, Burke, and Ernzerhof (PBE)[72] were done using the projector 

augmented-wave (PAW)[73] method as implemented in the Vienna ab initio Simulation 

Package (VASP).[74] The cutoff energy for the plane-wave expansion was set to 500 eV, and 

the Brillouin zone was sampled on a dense Monkhorst–Pack mesh of reciprocal-space 

points.[75] Electronic wave functions (crystal structures) were optimized until the energy 

difference between two iterative steps fell below 10–8 eV/cell (10–6 eV/cell), respectively. 



4.1 High-Pressure Synthesis and Characterization of Li2Ca3[N2]3 
   An Uncommon Metallic Diazenide with [N2]

2– Ions 
150

Chemical-bonding analyses were performed by computing the crystal orbital Hamilton 

population (COHP),[76] which allows to identify bonding and antibonding contributions to the 

electronic band structure by weighting the off-site projected DOS with the corresponding 

Hamiltonian matrix elements (hence, negative COHP values denote stabilizing interactions). 

These computations were done for the previously optimized structures using the TB-LMTO-

ASA program,[77] version 4.7, as in our previous studies of diazenides.[54,58–60] In this case, the 

local von Barth–Hedin exchange–correlation functional[78] had to be employed to ensure 

convergence. 

Vibrational properties such as phonon densities of states were calculated by the ab initio 

force-constant method[79] as implemented in the FROPHO code[80] based on forces obtained 

from VASP. 

 

4.1.2.5 Electron Spin Resonance Spectroscopy (ESR) 

 

ESR measurements were carried out on powdered samples covering a temperature range of 

10–525 K. For that, the sample was filled into a quartz Mark tube capillary (diameter: 

0.3 mm) and sealed under inert conditions. Low-temperature (ambient temperature to 10 K) 

continuous-wave (CW) ESR measurements at X-band frequencies were performed on three 

spectrometers: (a) on a Bruker Elexsys 500 CW ESR spectrometer equipped with a Bruker 

ER 4122 SHQ resonator with or without an Oxford Helium flow cryostat, (b) on a Bruker 

Elexsys 580 X-band CW/pulse ESR spectrometer equipped with a Bruker dielectric ENDOR 

resonator and an Oxford Helium flow cryostat, and (c) on a Magnetech MS 400 miniscope 

spectrometer equipped with a nitrogen flow cryostat. High-temperature (ambient temperature 

to 525 K) measurements were carried out on spectrometer (a). All measurements were 

properly calibrated and referenced to standards as detailed in the Supporting Information. 

 

4.1.2.6 Fourier Transform Infrared Spectroscopy (FTIR) 

 

Fourier transform infrared spectroscopy measurements were carried out on a Bruker FTIR-

IS66V-S spectrometer. Spectra of the samples were recorded at ambient conditions between 

400 and 4000 cm–1 after the samples were diluted in dried KBr pellets under inert conditions. 
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4.1.2.7 Magnetic and Electric Conductivity Measurements 

 

The magnetic measurements were performed on a Quantum Design MPMS XL5 SQUID 

magnetometer. Electric resistivity and conductivity were determined from a cold pressed (10 

kN) pellet of nonsintered Li2Ca3[N2]3 (diameter: 4.0 mm, thickness: 1.28 mm) using the four-

probe method. For the measurement, three batches of previously synthesized Li2Ca3[N2]3 had 

to be combined due to the small sample amount obtained upon one HP/HT experiment. In 

addition, each product of synthesis was analyzed separately by means of powder X-ray 

diffraction to rely on a successful synthesis. The pellet was contacted with four equidistant 

probes using silver conducting paint. As the compound is very sensitive to moisture, all 

preparations had to be done in a glove box. A current of 5.0 mA was applied and the potential 

difference was measured as a function of temperature (3.5–300 K) yielding the resistivity. No 

superconductivity was observed. 

 

 

4.1.3 Results and Discussion 

 

4.1.3.1 Unit-Cell Metrics 

 

The unit-cell metrics was analyzed on the basis of powder X-ray diffraction (PXRD) and 

transmission electron microscopy (TEM) data. The indexing of PXRD patterns suggested a 

unit cell with hexagonal metrics (a = 8.06, c = 4.76 Å). From systematic absences, as well as 

from the integration and extraction of the intensities, a first structural model in space group 

P63/mcm (no. 193) was derived (see Figures S4–S6 in the Supporting Information). However, 

SAEDs with the hexagonal [001]hex zone axis of all investigated crystallites significantly 

differed from simulated ones (see Figure 2). Hereby, the experimental diffraction patterns of 

[001]hex zone axes contain additional reflections that suggest a doubling of the unit cell axes a 

and b. Though simulated diffraction patterns of [001]hex zone axes of an isomorphic subgroup 

with a’ = 2a and b’ = 2b (P63/mcm, no. 193) would result in the experimentally observed 

diffraction profile, the simple doubling of the lattice parameters does not fit other zone axes 

due to a simulated, doubled spot density that is absent in the experimental diffraction patterns. 

Therefore, a simple doubling of the lattice parameters does not suffice to reconcile 

experimental and simulated diffraction patterns. 
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Figure 2. Experimental (a) and simulated (b, hexagonal model with a = 8.06, c = 4.76 Å) SAED pattern of 
[001]hex zone axis of hexagonal “LiCaN2”. In the experimental SAED pattern, between each indexed spot, there 
are further residual spots (red arrows). According to the simulated SAED pattern, these additional reflections 
suggest a doubling of the unit cell according to a’ = 2a and b’ = 2b. 
 

As it was not possible to describe all diffraction patterns with the obtained hexagonal model, 

reduction of symmetry was done referring to group–subgroup relations. A first 

translationsgleich reduction in symmetry of index 3 (structure model in hexagonal space 

group P63/mcm, no. 193) results in the orthorhombic space group Cmcm (no. 63) with 

a = 13.96, b = 8.06 and c = 4.76 Å. The C-centering, however, still results in an extinction of 

reflections with h + k = 2n + 1, and hence the simulated diffraction pattern of the [001] zone 

axis in Cmcm is similar to the one of the hexagonal model. Thus, the C-centering has to be 

omitted and the symmetry further reduced in a second step. This klassengleich symmetry 

reduction of index 2 into space group Pmma (no. 51) finally results in an adequate model. The 

simulated diffraction pattern of the resulting [100]orth zone axis (former [001] zone axes in 

P63/mcm and Cmcm) matches the experimental reflection profile for the latter model by 

additional stepwise tilting by 120° around the origin of [100]orth zone axes quite well (see 

Figure 3) and indicates a [100]orth (=[001]hex) stacked 3-fold twin.  

The latter, orthorhombic unit-cell metrics is supported by comparison of experimental SAED 

patterns to simulated ones; zone axes and lattice parameters have been obtained by 

transformations of the former hexagonal model (see the Supporting Information).  

In addition, the theoretical positions of reflections of the as-obtained model are consistent 

with the experimentally observed positions in the corresponding PXRD patterns, resulting in 

Pawley-fitted parameters of a = 4.7747(1), b = 13.9792(4) and c = 8.0718(4) Å in space group 

Pmma (no. 51). Note that as-investigated hexagonal and orthorhombic models mentioned in 

this section exhibit stoichiometric compositions of “LiCaN2” diverging from elemental 

analysis suggesting lithium-deficiency (see the following sections). 
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Figure 3. (a) Simulated SAED pattern of 3-fold twin by rotation in orthorhombic space group Pmma (no. 51) 
obtained after stepwise tilting the simulated [100]orth pattern by 120° around the origin. (b) Experimental SAED 
pattern of former hexagonal [001]hex zone axis matching the diffraction profile of the 3-fold twin. 
 

 

4.1.3.2 Theoretical Considerations of the Hexagonal Model 

 

The complex nature of the problem at hand called for a complementary quantum-theoretical 

analysis in search of the structure, and the first computations were performed for the initially 

assigned, hexagonal model with “LiCaN2” composition (P63/mcm, see Supporting 

Information Figure S4). Surprisingly, at first sight, this structure showed pronounced 

instability during relaxation: the Hellmann–Feynman forces computed at temperature zero 

were enough to totally destroy the Li–Ca coordination environment. Moreover, phonon 

computations characterize this structure as dynamically unstable, proven by the presence of 

several imaginary eigenmodes (see Figure 4a). To improve this structural model, we applied a 

multistep procedure that has been described in more detail recently.[81] First, we applied 

eigenvectors of the imaginary modes at the Γ point followed by structural optimization, for 

which the E(V) plot is shown in Figure 4b. This process, labeled (1) in Figure 4b for two 

distinct eigenmodes, leads to the new E(V) curves shown in green and light blue, respectively. 

This structural change is accompanied by an energy gain of over 30 kJ/mol, quite 

impressively. For both of these structures, subsequent energy–volume scans were performed 

(labeled (2)). Upon compressing the simulated cells, both still showed an inherent instability 

upon decreasing the unit-cell volume below ~28 cm3 mol-1 (green dots) or ~25 cm3 mol-1, 

respectively. The most favorable structure, finally, was obtained upon relaxation (labeled (3); 

dark blue line in Figure 4b) and led to an energy gain of ~55 kJ/mol as compared to the initial 

P63/mcm guess. 
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Figure 4. (a) Phonon band structure computed for the hexagonal P63/mcm model exhibiting “LiCaN2” 
stoichiometry. Several imaginary eigenvalues (highlighted in red), seemingly extending throughout the entire 
Brillouin zone, are visible. (b) Energy–volume plots for the different structural models of “LiCaN2”, with arrows 
describing how one is obtained from the other. Lines connecting data points are only guides to the eye. See text 
for discussion. 
 

The new theoretical structure with “LiCaN2” composition was found in space group Pmma 

(no. 51). It must be noted, however, that the resulting space group equals that of the TEM 

model (see previous section) only by coincidence, and the reason is as follows. Despite the 

large energetic stabilization of ~55 kJ mol–1 gained during the optimization procedure that 

started from the initial model (P63/mcm, Figure 4b), a simulated diffraction pattern for the 

optimized “LiCaN2” model could not be reconciled with the experimental diffractogram. In 

particular, the computational result so far did not correspond to the revised unit-cell metrics 

but to those of the initial model, which had been falsified in the sequel. Consequently, what 

was initially believed to be the “correct” answer from theory (Figure 4b, dark blue curve) had 

to be discarded in the light of experiment. 

On the other hand, the revised structural model derived from TEM (sketched in Figure 5, top), 

again proved unstable during quantum-chemical relaxation. This led to conclude that the 

results of the elemental analysis (see the Supporting Information) had to be recalled as the 

compound obtained from HP/HT experiments might differ in stoichiometry compared to the 

originally proposed sum formula of LiCaN2. 

 

 

4.1.3.3 Improving the Structural Model 

 

The elemental analysis, albeit with some uncertainty, suggested a Li deficiency with a atomic 

ratio Li:Ca ≈ 0.8:1 in the title compound, whereas a Ca:N ratio of ~1:2 had been observed. 

Also, the exclusively Ca-coordinated Li positions in the Pmma structure model (2a and 2d) 
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were the ones that experienced the most pronounced structural change/instability in the 

theoretical computations. Hence, it became obvious that the structural model with Li:Ca = 1 

did not suffice because it did not lead to an agreement of experiment and theory.  

Indeed, upon removing the Li atoms in question, the stoichiometric composition was changed 

to Li2Ca3[N2]3, and we again carried out structural optimizations (see Tables S3 and S4 in the 

Supporting Information), starting from the TEM-based experimental, orthorhombic “LiCaN2” 

model in space group Pmma (see Figure 5) but with Li deficiency at 2a and 2d sites. 

 

 
Figure 5. Schematic drawing of the route from the initial experimental, orthorhombic “LiCaN2” model to the 
final, Li-deficient model with Li2Ca3[N2]3 stoichiometry, both of which exhibit space group Pmma (no. 51). Cell 
sizes are not to scale; Li yellow, Ca orange, N blue.  
 

In the absence of external pressure, the structure seemed to be unstable again as indicated by 

the presence of imaginary phonon modes (albeit less strongly pronounced than in the 

P63/mcm model characterized in Figure 4a). Nonetheless, by decreasing the simulation cell 

volume, the proposed structure could be stabilized. The imaginary modes disappeared entirely 

once the simulated pressure increased to ~13 GPa and above (see Figure 6), which is close to 

synthesis conditions (9 GPa).  
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Figure 6. Computed phonon DOS for the final structural model with Li2Ca3[N2]3 stoichiometry without external 
pressure (a) and at a simulated pressure of approximately 13 GPa (b). In the upper panel, a small number of 
imaginary eigenmodes are visible as indicated by a red arrow. In the lower panel, these imaginary modes have 
disappeared, and the structural model proves dynamically stable. 
 

The imaginary eigenmodes at zero pressure might propose further instability of the crystal 

structure at ambient conditions; however, a collapse of the crystal structure at these conditions 

seems to be kinetically hindered as Li2Ca3[N2]3 could be analyzed experimentally even after 

releasing high pressure. 

Note that the spot density in simulated diffraction patterns of Li2Ca3[N2]3 (data not shown) is 

equal to orthorhombic “LiCaN2” in space group Pmma (no. 51, TEM-based model). 

It is only the intensity of the spots that slightly varies due to the lithium depletion of Wyckoff 

positions 2a and 2d in “LiCaN2” resulting in the composition Li2Ca3[N2]3. Thus, the 

simulated diffraction patterns are also in good agreement with the final crystal structure. 

 

 

4.1.3.4 Description of the Crystal Structure 

 

Li2Ca3[N2]3 shows a close structural relationship to hexagonal Mn5Si3-type structures 

(P63/mcm, no. 193), better known as Nowotny phases.[82–84] 

Li2Ca3[N2]3 contains four pairs of crystallographically independent nitrogen dumbbells 

exhibiting N–N bond lengths of dNN = 1.337(17)–1.353(32) Å (see Figure 7 and Table 2). 

These N–N distances are intermediate to those in experimentally reported diazenides MN2 

(M = Ca, Sr, Ba), Li2N2 and LaN2 having distances of about 1.20–1.32 Å,[58,59,62] and to 

pernitride [N2]
4– ions with N–N bond lengths of about 1.40 Å.[46–54] For Li2Ca3[N2]3, this 

suggests a [N2]
3·– formulation which would correspond to a radical character of the dinitrogen 

anion. In more detail, as-obtained N–N distances are in good agreement with corresponding 
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characteristics of [N2]
3·– ligation observed in already mentioned bimetallic lanthanide 

complexes (dNN = 1.39–1.41 Å).[10,27–31] However, recent theoretical calculations considering 

hypothetical TiN2 also support diazenide [N2]
2– units with N–N bond lengths up to even 

1.46 Å.[85] 

 

 
Figure 7. Unit cell of Li2Ca3[N2]3 viewed along [100] as resulting from the final refinement. Polyhedra around Li 
atoms are marked in yellow; Li yellow, Ca orange, N blue. Dashed lines in the right figure represent Ca–Ca 
distances in the center of the unit cell with dCa1–Ca1 = 5.45(1), dCa2–Ca2 = 5.47(2), dCa3–Ca3 = 5. 39(1), and  
dCa4–Ca4 = 5.267(9) Å, respectively. For further information see Table S6 in the Supporting Information. 
 

To elucidate the electronic character of the dinitrogen anion, we targeted chemical bonding 

analysis by means of the crystal orbital Hamiltonian population (COHP) method, as done 

previously for different diazenide/pernitride compounds.[54,58–60] Figure 8 shows the well-

known electronic „fingerprint” of the dinitrogen entity in the region close to the Fermi level 

εF.[54] 

 

 
Figure 8. Left and middle: COHP analysis for the 4 [N2] entities in Li2Ca3[N2]3 depicted in different arbitrarily 
chosen colors, computed under pressure of 16 GPa (left) and for the fully relaxed structure at zero pressure 
(middle), respectively. For the definition of π* filling, see text. Right: Same but for the [O2] entity in potassium 
hyperoxide KO2. 
 

In agreement with Scheme 1, a set of π bonding and π* antibonding bands may be discerned. 

The four dinitrogen dumbbells, despite overall similarities, have a unique bonding fingerprint 
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each (shown in different colors), which is in accord with the experimental observation of 

several N–N stretching modes in the vibrational spectrum. 

 

 
Scheme 1. Schematic molecular-orbital diagrams (not drawn to scale) for the species discussed. Electrons in 
excess of the neutral diatomic ground state are indicated in color. 
 

For a more quantitative analysis, we calculate the “filling” of the π* orbitals as reflected in the 

integrated COHPs. (We are aware of difficulties in integrating over an unoccupied area of the 

band structure; relative comparison is however well permitted). We derive the filling as 

 

 

 

where ε– denotes a suitably chosen lower energy limit (in Figure 8, 4 eV below the Fermi 

level) and ε+ is the upper one (2 eV above εF). The resulting values of the π* filling up to the 

Fermi level are given in Table 2. Note that these values have also been averaged over the four 

bonds present in equal amounts. 

For comparison, an O–O COHP curve has been computed for potassium hyperoxide as a 

well-characterized representative compound with an anion isoelectronic to [N2]
3·–.[86] Thereby, 

the calculated filling is 73%, well matching the ideally expected percentage of 75% according 

to Scheme 1. The individual and averaged electronic character of the four N2 entities in 

Li2Ca3[N2]3 are listed in Table 2. Accordingly, with an averaged π* filling of 57% at zero 

pressure (53% at 16 GPa) resembling an expected value of 50% for diazenides, the N2 units in 

Li2Ca3[N2]3 clearly exhibit different electronic behavior compared to hypothetical [N2]
3·– 

radical anions.  

Taking these theoretical considerations into account, Li2Ca3[N2]3 is conjectured to consist of 

diazenide [N2]
2– ions rather than [N2]

3·– radical anions. This assignment is probed by 

experiment in the next sections. 
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Table 2. Experimental and computationally optimized N–N bond lengths (in amgstroms) of nitrogen dumbbells 
in Li2Ca3[N2]3, together with π* orbital fillings (see text). 

Nx–Ny
[a] 1–6 2–5 3–3 4–4 average 

exp. 1.342(14) 1.337(17) 1.353(32) 1.348(26)  
calcd. at 0 GPa 1.308 1.308 1.313 1.313  
π* filling 55% 59% 59% 56% 57% 
calcd. at 16 GPa 1.293 1.293 1.291 1.289  
π* filling 55% 51% 59% 46% 53% 

[a] The pairing of six crystallographically independent nitrogen sites (all Wyckoff site 4k), thereby referring to 
Table 1, results in four crystallographically independent N2 entities. 
 

The presence of only diazenide ions in Li2Ca3[N2]3 and the reasonable requirement of singly 

(doubly) positively charged Li (Ca) ions, respectively, results in a more precise formulation as 

in (Li+)2(Ca2+)3([N2]
2–)3·(e

–)2, an anion-deficient or vice versa electron-rich structure. As 

prominent representatives of such compounds, suboxides or subnitrides come to mind.[87–97] 

Interestingly, each nitrogen atom of the diazenide entities is octahedrally coordinated by four 

calcium and two lithium cations. Both octahedra share one common face, which is similar to 

the Rb9O2-type cluster observed in the rubidium suboxides Rb9O2 and Rb6O (see  

Figure 9).[87–90] 

 

 
Figure 9. Coordination sphere of diazenide ions in Li2Ca3[N2]3 (a). Thereby each nitrogen atom is octahedrally 
coordinated by Li+ and Ca2+. The resulting octahedra share a common face, representing the basic motif of anion 
coordination in rubidium suboxides Rb9O2 and Rb6O (b); Li yellow, Rb violet, Ca orange, N blue, O red. 
 

These compounds represent oxygen-deficient (or, again, electron-rich) structures. Formally, 

Rb9O2 and Rb6O can also be written as (Rb+)9(O
2–)2·(e

–)5 or (Rb+)6(O
2–)·(e–)4, respectively. As 

the [N2]
2– coordination spheres resemble those of the oxygen ions in suboxides and due to 

potential formulation of Li2Ca3[N2]3 as (Li+)2(Ca2+)3([N2]
2–)3·(e

–)2, the title compound might 

also constitute the first representative of hitherto unknown ternary subdiazenides. However, 

as compared to the Rb9O2 structure (see Figure 9b), with isolated Rb9O2 units in the rubidium-

based lattice, the resulting structural motifs of N2-coordination in Li2Ca3[N2]3 are exclusively 

interconnected again by sharing octahedral faces (see Supporting Information Figure S8). 

The two independent lithium sites are coordinated by six [N2]
2– ions in an end-on manner, 

building up a strand of face-sharing octahedra (see Figures 7 and S9 in the Supporting 
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Information). These strands are interconnected to other 2
∞[Li(N2)6/2]-strands via diazenide 

units. The refined Li–Li distances (see Table S5 in the Supporting Information) match with 

reported ones.[59,98–103] Additionally, we compared the obtained Li–N distances with the sum 

of the ionic radii. Preliminary investigations already resulted in an average radius of one 

nitrogen atom in a diazenide ion to be 1.27 Å.[60] According to Shannon,[104] the ionic radius 

of 6-fold coordinated Li+ is 0.76 Å. On the basis of this empirical values, the refined Li–N 

distances correspond well with the sum of the ionic radii. 

Like hexagonal Mn5Si3, Li2Ca3[N2]3 contains structural voids, which due to the orthorhombic 

metric are located at (0,0,0) and (0,½,½). Many A5B3-type compounds were observed to 

incorporate nonmetal atoms like B, C, N, O or even metals into these cavities to result in 

A5B3Z-type compounds.[82] However, a clear tendency for occupying the voids is very hard to 

predict. Moreover, nonstoichiometric intercalation of Z elements into the cavities is supposed 

to stabilize A5B3-type structures.[82] In Li2Ca3[N2]3, the average void diameter is found to be 

3.15 Å (see Supporting Information Table S6), which is within the range of those in the 

aforementioned A5B3 compounds and thus formally enables incorporation of further elements 

into these voids. However, elemental analysis (see the Supporting Information) resulted in no 

significant stoichiometric atom content other than Li, Ca, and N. In addition, due to 

electrostatic reasons, the incorporation of cations/metals is supposed to be rather energetically 

unstable as shown by theoretical consideration finally resulting in Li2Ca3[N2]3 after removing 

Li atoms of Wyckoff positions 2a and 2d. 

 

 

4.1.3.5 Infrared Spectroscopy 

 

In bioinorganic chemistry, the valency of dinitrogen anions is routinely assigned according to 

the N–N bond lengths and their corresponding N–N stretching vibrations upon infrared or 

Raman spectroscopy. Recently, it has been shown experimentally that the infrared spectra of 

the diazenides MN2 (M=Ca, Sr, Ba), as well as of Li2N2, exhibit clear features in the range of 

1380–1330 cm–1, which had been assigned to the N–N stretching vibration of the diazenide 

units.[58,59] Pernitride units as observed in noble metal MNMN2 compounds (MNM = Os, Ir, Pd, 

and Pt) also exhibit distinct features around 800 cm–1, attributed to the stretching of [N2]
4– 

units.[46–54] In addition, radical dinitrogen ions [N2]
3·– have recently been observed, and they 

show characteristic N–N vibrations at wavenumbers shortly below 1000 cm–1.[27–31] 
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For Li2Ca3[N2]3, infrared spectroscopy revealed significant features at 1260, 1100, 1020 and 

802 cm–1 besides overtones at about 3000 cm–1 (see Figure 10). The nitrogen dumbbells in 

Li2Ca3[N2]3 exhibit bond lengths of dNN = 1.34(2)–1.35(3) Å, which are intermediate to 

previous reports for [N2]
2– and [N2]

3·– ions. In accord with this observation, the wavenumbers 

of the observed features in the infrared spectrum of Li2Ca3[N2]3 are also intermediate to those 

of the latter two anions. Thus, the theoretical COHP analysis of the N–N bonding in the title 

compound (suggesting diazenide [N2]
2– ions, rather than radicals) despite elongated N–N 

bond lengths is in good agreement with the vibrational measurements. 

 

 
Figure 10. FTIR spectra of Li2Ca3[N2]3 (black) and after exposure to moisture for 5 minutes (red). The 
absorption features at about 2250 cm–1 are artifacts of the spectrometer. 
 

Seeking again a corroboration of experimental findings, we also performed pressure-

dependent phonon calculations to assign the vibrational modes from first principles, and also 

to look at the high-pressure trend in vibrational properties that is much more difficult to 

determine experimentally. 

For the fully optimized (pressure-free) structural model, as well as with simulated pressures of 

a few GPa applied, the phonon calculations give imaginary vibrational modes (see Figure 11), 

which indicates dynamical instability already seen in Figure 6a (red arrow). With increasing 

(simulated) pressure, the imaginary modes disappear, which points toward the structure being 

stable under pressure. As can further be seen in Figure 11, the theoretical phonon DOS shows 

a broad signal in the range from 1100 to 1300 cm-1 without external pressure applied, which is 

shifted to higher wavenumbers with increasing pressure due to shorter atomic distances. This 

part of the spectrum is related to the N–N stretching vibrations of the diazenide ions, and the 

signals are broadened because of their interaction. The experimentally obtained features at 

1260, 1100, and 1020 cm–1 can be confirmed by the theoretical calculations, albeit caution 
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must be taken because not all lattice modes are infrared active, and hence the IR spectrum and 

the computed PDOS may not be compared with each other without care.  

 

 
Figure 11. Excerpts from phonon densities of states computed at different simulated pressures, evolving from 
pressure-free structures (top) to 16 GPa. Note the absence of dynamic instabilities (that would be indicated by 
complex-valued vibrational modes), which sets in at increased pressure (arrows). 
 

As our calculations reveal, the feature at 800 cm–1 cannot be assigned to the N–N stretching 

vibrations of one of the diazenide units. However, the product of the high-pressure synthesis 

is always affected with an unknown impurity (see the Experimental Section), which might 

constitute an oxo- or nitridoborate originating from the BN crucible used. Such compounds 

exhibit distinct features at wavenumbers < 1000 cm–1 assigned to lattice vibrations of the oxo- 

or nitridoborate units,[105–109] and thus might account for the unexplained signal in the IR 

spectrum of the title compound. A more detailed assignment of observed features in the 

experimental and theoretical vibrational spectrum to N–N bond lengths can be found in the 

Supporting Information. 
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4.1.3.6 Electron Spin Resonance (ESR) Spectroscopy 

 

To settle the character of the nitrogen dumbbells experimentally, we next employed electron 

spin resonance spectroscopy, which is routinely used for the detection and further analysis of 

unpaired electrons. As the [N2]
2– ion is isosteric to molecular oxygen O2, it should exhibit 

paramagnetic behavior (see Scheme 1). However, despite the paramagnetic character, the 

detection of an ESR-signal for molecular oxygen is hindered due to the enormous zero field 

splitting of the triplet state, which in general leads to a broadening and therefore makes 

detection of an ESR signal impossible. On the contrary, [N2]
3·– radical anions are shown to 

give a very sharp signal as they are isosteric to hyperoxides [O2]
·– (see Scheme 1).[27,28] 

Indeed, ESR measurements of alkali and alkaline-earth hyperoxides resulted in distinct 

signals at a g-factor ranging from 2.001 to 2.004, close to the g-factor of free electrons 

(2.0023).[110,111] 

Figure 12a displays the ESR spectrum of Li2Ca3[N2]3, whereas in Figure 12b that of BaN2 is 

depicted, the latter serving as diazenide reference. The spectrum of Li2Ca3[N2]3 contains a 

narrow-line and a broad-line signal at gnarrow = 2.0052(1) and gbroad = 2.0052(10), which 

would, in principle, be consistent with the presence of free electrons and support a potential 

[N2]
3·– formulation. However, the ESR spectrum of BaN2 also consists of a signal at about the  

g-factor of free electrons contradicting the unambiguous correlation of the signals in the 

spectrum of Li2Ca3[N2]3 to [N2]
3·– radical anions. 

Additionally, we analyzed the spin concentration of the obtained signals in Li2Ca3[N2]3 and 

BaN2 and referenced them to common ESR standards. For BaN2, the obtained spin 

concentration of 16.6 mM is far below the expected value of 60.8 M for the biradical [N2]
2–. 

These data are in good agreement with as-mentioned difficulties in signal detection due to 

triplet state splitting of paramagnetic diazenide ions. Thus, the visible signal of the HP/HT 

product is attributed either to impurities in the mmol range or surface defects in BaN2 

evolving unpaired electrons, which then can be detected.  

The ratio of double integrals of the broad-line signal of Li2Ca3[N2]3 to the one of the utilized 

one-electron references is 1:373, suggesting an effective spin concentration in Li2Ca3[N2]3 of 

373(60) mM. The spin concentration of the narrow-line signal is only in the 10–3 mM range. 

In any case, a rough estimate indicates that the number of spins is too low for a compound 

with all or at least one nitrogen dumbbell in a [N2]
3·– radical anion state. Therefore, even 

considering a 20% uncertainty in determining spin concentration, the observed concentration 

is much too low for assigning an electronic structure with [N2]
3·– radical anions. Again, the 



4.1 High-Pressure Synthesis and Characterization of Li2Ca3[N2]3 
   An Uncommon Metallic Diazenide with [N2]

2– Ions 
164

presence of the signals is presumably due to surface defects or impurities in the sample. 

Taking all these facts into account, Li2Ca3[N2]3 rather consists of [N2]
2– ions than [N2]

3·– 

radical anions, which is in sound agreement with electronic-structure theory (see Figure 8). 

 

 
Figure 12. (a) Detail ESR spectrum at ambient temperature after background correction (black). In addition to 
the narrow-line signal shown here in detail, an overview spectrum (see Supporting Information Figure S3) 
reveals the presence of a broad-line signal. The g values for the narrow-line and the broad-line signal are 
2.0052(1) and 2.0052(10), respectively. The dotted line only serves as guide to the eyes for the zero crossing of 
the spectrum. (b) ESR spectrum of BaN2 after background correction recorded at ambient temperature. 
 

 

4.1.3.7 Magnetic and Electric Conductivity Measurements 

 

Magnetic measurements are supposed to ultimately end speculations on the potential presence 

of [N2]
3·– radical anions in Li2Ca3[N2]3. If Li2Ca3[N2]3 contained [N2]

3·– radical anions, 

magnetic characteristics like antiferro- or ferromagnetism would be expected as observed for 

the isosteric hyperoxides.[112] However, susceptibility measurements of Li2Ca3[N2]3 at 1 and 

0.01 T show nearly temperature-independent (Pauli-paramagnetic) behavior down to low 

temperatures (see Figure 13a). To rely on this observation especially in the low-temperature 

region where the susceptibility slightly increases again (see Figure 13a), we also plotted the 

product of ΧmolT versus T (see Figure S11 in the Supporting Information), which resulted in a 
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continuous increase of ΧmolT with increasing temperature indicative for true temperature-

independent behavior of the susceptibility. This observation is in good agreement with 

previous magnetic measurements of again BaN2 revealing that the dominant magnetic 

behavior in BaN2 is also Pauli-paramagnetism.[39]  

As shown in Figure 13b, the resistivity of Li2Ca3[N2]3 decreases with decreasing temperature, 

as is typical for metals. The resistivity at ambient temperature is found to be 7.23·10–6 Ω m, 

which is in the range of good metallic conduction and qualitatively in accord with electronic-

structure computations that predict a finite density of electronic states at the Fermi level (see 

Figure 8). Again, as-obtained results are in very good agreement with the presence of solely 

[N2]
2– ions in Li2Ca3[N2]3. 

 

 
Figure 13. Course of the molar susceptibility of Li2Ca3[N2]3 with temperature (a) at an applied external field of 1 
and 0.01 T (insert); specific resistance with temperature upon cooling (b). Error bars are not shown. The lines 
only serve as guide to the eyes. 
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4.1.4 Conclusion 

 

We were able to synthesize the first ternary compound with homonuclear dinitrogen entities 

by thermal decomposition of stoichiometric mixtures of ionic lithium and calcium azides 

under HP/HT conditions. In contrast to binary diazenides such as Li2N2, MN2 (M = Ca, Sr and 

Ba), and LaN2, the ternary title compound Li2Ca3[N2]3 exhibits pronounced elongation of the 

N–N bond lengths, which would intuitively contradict the presence of [N2]
2– ions. In fact, 

these N–N distances would be better described by [N2]
3·– units, as has been previously 

observed in metal-organic reference compounds.  

Much to the contrary, the true character of the N2 entity was finally elucidated by 

complementary use of various analytical methods. Experimental and theoretical studies 

excluded the presence of [N2]
3·– radical anions, but instead supported the presence of only 

[N2]
2– ions in the crystal structure. Therefore, the ionic formulation of Li2Ca3[N2]3 is better 

described as (Li+)2(Ca2+)3([N2]
2–)3·(e

–)2.  

Interestingly, Li2Ca3[N2]3 exhibits distinct structural motifs with regard to anion coordination 

that have been observed in Rb9O2- and Rb6O-type suboxides, which represent anion-deficient 

(or, depending on perspective, electron-rich) structures. Within this context, the title 

compound might also be interpreted as the first representative of “sub-diazenides”. 

Finally, as compared to the classification of valencies in bound N2 entities observed in 

bioinorganic or metal-organic chemistry, their adequate description in solid-state chemistry is 

hindered due to, for example, potential metallicity in such compounds. However, by the use 

of a variety of complementary methods as presented, the identification of the true oxidation 

state in [N2]
x–anions remains possible. 
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5. Conclusion and Outlook 

 

Phases with composition Sr1-xBaxSi2O2N2:Eu2+ show a tendency to form polytypic 

modifications, but the presence of various real-structure effects does not affect the 

luminescence properties in a negative way.[1-3] At first glance, this is an uncommon behavior 

since significant deviations from an ordered crystal structure, accompanied by local changes 

of activator-atom surrounding, are supposed to affect the FWHM value due to an increase of 

inhomogeneous line broadening. For Sr1-xBaxSi2O2N2:Eu2+ this is not the case, because the 

stacking faults present have no impact on the Eu2+ coordination sphere.[3] As a consequence, 

both modifications of SrSi2O2N2:Eu2+ with different stacking sequences exhibit excellent 

luminescence properties.[1,4] Till now, SrSi2O2N2:Eu2+ (QE > 90 %) based LEDs are the most 

efficient green pc-LEDs (LE = 537 lm/W; ηL = 166 lm/W).[5]  

Even an intergrowth structure, as present in Sr0.25Ba0.75Si2O2N2:Eu2+, does not necessarily 

result in a disadvantage.[2] On the contrary, this compound exhibits the smallest FWHM value 

(37nm) ever observed for a blue emitting Eu2+-doped nitride material. For improving the 

luminescence properties of these materials, further strategies might be the selective control of 

above mentioned real-structure effects during synthesis, optimization of the temperature 

program due to economical reasons and to change particle morphology from platelets to more 

sphere-like crystallites. The latter one would lead to a higher efficiency and a closer packing 

in ceramics. A desired phase within this material class would exhibit an emission wavelength 

of about 530 nm[6] (comparable to that of SrSi2O2N2:Eu2+)[1,4,7] and a FWHM of about 40 nm 

(comparable to that of BaSi2O2N2:Eu2+)[4,7]. Such a phase was not yet accessible in high-

temperature high-pressure experiments, transforming the crystal structure of SrSi2O2N2
[1,8] 

into that of BaSi2O2N2
[9] by increasing the coordination number according to the “pressure-

coordination rule”.[10] Additionally, unknown Sr1-xBaxSi2O2N2:Eu2+ modifications might 

exhibit improved luminescent properties.  

Similar investigations are also promising for compounds in the system Sr1-xCaxSi2O2N2:Eu2+. 

Here, comparable to SrSi2O2N2 and BaSi2O2N2,
[1,8,9] the pure phases SrSi2O2N2

[1,8] and 

CaSi2O2N2
[11] are not isotypic which means that no solid-solution series is present. Therefore, 

surprising luminescence properties of mixed phases might result. However, regarding the 

different topologies of tetrahedra frameworks in the silicate layers in both phases, less 

pronounced real-structure effects are expected compared to Sr1-xBaxSi2O2N2:Eu2+ phases, 

where the silicate layers are identical in the pure phases.[1,8,9]  
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In general, it is still important to search for new phosphors which emit in the green-yellow 

spectral region, since only a few existing materials are industrially usable for high-power pc-

LED applications. Because of the maximum eye sensitivity in this color region, even small 

changes in the emission behavior of the new compounds might affect e.g. the color rendition 

in a positive way. Eu2+-doped oxonitridosilicates are currently the most promising material 

class, regarding the requirements such new phosphors have to fulfill. Due to a high degree of 

tetrahedra condensation, the silicate substructures are very rigid in these materials. This 

remarkable stability is the basis for high quantum-efficiency values because lattice vibrations 

are effectively suppressed. The relative position of 4f and 5d energy levels of Eu2+ and the 

nephelauxetic effect of the ligands O and N lead to the desired emission in the green-yellow 

spectral region. New compounds may also be synthesized by non-standard synthesis 

strategies, in order to avoid the formation of thermodynamically controlled products which is 

often the case for high-temperature solid-state reactions. One example might be the synthesis 

under ammonothermal conditions. For example, the red phosphor “SrAlSiN3:Eu2+” is 

accessible using this route.[12] Even though this phosphor can also be synthesized by a 

common solid-state reaction, Watanabe showed that in principle luminescent nitride 

compounds can be obtained under ammonothermal conditions. Additionally, also lower 

temperatures are necessary (773 K) compared to the solid-state reaction (> 2000 K). This 

concept should be transferable also to other / new nitride phosphors.  

For the replacement of incandescent lamps and CFLs by warm-white pc-LEDs, efficient red 

phosphors are needed in addition to the intense green emitters. Nitrido(alumo)silicates like 

Ca1-xSrxAlSiN3:Eu2+ [13] or Sr2Si5N8:Eu2+ [14] exhibit emission in the red spectral region due to 

nephelauxetic effect of N, coordinating the activator ion Eu2+. In order to extend the search 

for red phosphors to other material classes and retain positive aspects of Eu2+-doped 

nitridosilicates like high QE value and thermal stability at the same time, nitride compounds 

with silicate-analogous structures are of great interest. The material class of nitridoaluminates 

and nitridogallates are promising in this respect, because only a few compounds have been 

investigated in detail so far and almost nothing is known about their luminescence properties. 

The main focus is on “narrow-red” phosphors, meaning the minimization of the FWHM 

value. Thus, a more accurate adjustment of the color temperature becomes possible and the 

color rendition for a corresponding white pc-LED is improved. Red phosphors, with 

absorption maximum within the UV to blue spectral range, intrinsically exhibit a large 

FWHM, since a large Stokes shift, i.e. a strong deformation of the activator surrounding after 

excitation, favors various f-d transitions for relaxation. As there is an industrial demand for 
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narrow red phosphors, it is expected that, similar to green phosphors, suitable host lattices 

will be found and optimized rapidly. A promising strategy is once again to focus on 

compounds where the activator is coordinated in a highly symmetric way. This reduces 

inhomogeneous line broadening to a minimum.  

 

Synthesis and exploration of new synthesis routes, material characterization by several 

analytical methods and evaluation of application possibilities of phosphors will remain a 

domain of the fundamental research at universities in cooperation with companies in the 

future. As shown in the past and emphasized in this thesis, a profound comprehension of 

structure-property relations is the basis for the improvement of phosphor materials until they 

may reach their marketability. A knowledge transfer between the different phosphor systems 

(silicates, gallates etc.), i.e. the development of “materials-design concepts”, represents the 

most challenging part to scientists. At the same time it is the fundamental driving force in the 

field of phosphor-material research. 
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6. Summary 

 

1. Highly Efficient pc-LED Phosphors Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) - Crystal 
Structures and Luminescence Properties Revisited 
 

All known Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) phases represent layered oxonitridosilicates with 

alternately stacked metal-ion and silicate layers. The corresponding structures are compared 

to each other, elaborating similarities and differences, mainly focusing on the relative 

orientation of consecutive silicate layers. The impact of various real-structure effects on 

diffraction patterns is shown and guidelines are worked out to avoid misinterpretation. As the 

homogeneity of such samples is strongly related to 

the synthesis route, a possible reaction mechanism is 

postulated and possible impurity phases are 

discussed. Eu-doped Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) 

samples shown intense luminescence from the blue to 

the yellow spectral region in dependence of the 

composition.  

 

2. New Polymorph of the Highly Efficient LED-Phosphor SrSi2O2N2:Eu2+ - Polytypism 
of a Layered Oxonitridosilicate 
 

The monoclinic polymorph of SrSi2O2N2 was synthesized by a solid-state reaction (P21, 

a = 7.1036(14), b = 14.078(3), c = 7.2833(15) Å, β = 95.23(3)°, V = 725.3(3) Å3). The crystal 

structure is characterized by an alternating stacking sequence of silicate layers and metal-ion 

layers. The translation period along the stacking direction is doubled compared to the triclinic 

polymorph. The structure model was confirmed by TEM 

investigations in combination with HRTEM-image 

simulations. Single-crystal luminescence measurements 

yielded an emission wavelength of 532 nm 

(FWHM ~2600 cm-1) which is equal to a shift to smaller 

wavelengths by ~5 nm compared to the triclinic 

polymorph. The monoclinic SrSi2O2N2:Eu2+ polymorph 

is a very attractive phosphor material for enhancement 

of color rendition of white-light pc-LEDs. 
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3. Real Structure and Diffuse Scattering of Sr0.5Ba0.5Si2O2N2:Eu2+ - A Highly Efficient 
Yellow Phosphor for pc-LEDs 
 

Sr0.5Ba0.5Si2O2N2:Eu2+ shows intense emission in the yellow spectral range (λem ≈ 560 nm). 

Rietveld refinement reveals the average structure of Sr0.5Ba0.5Si2O2N2:Eu2+ (P1, 

a = 7.2059(2), b = 7.3887(3), c = 7.3340(2) Å, α = 88.524(4), β = 84.454(3), γ = 75.980(4)°, 

V = 377.07(2) Å3) which is isotypic to that of triclinic SrSi2O2N2:Eu2+. The PXRD pattern 

shows pronounced broad intensity maxima indicative for diffuse scattering from planar 

defects. In order to elucidate the real structure, PXRD simulations have been calculated based 

on a disorder model, taking into account all 

possible metal-atom positions and silicate layer 

orientations. These simulations show that 

crystallites of Sr0.5Ba0.5Si2O2N2:Eu2+ are built up 

from small anti-phase domains within larger twin 

domains. Chromaticity coordinates are almost 

identical to the most frequently used commercial 

LED phosphor YAG:Ce3+ but a significantly 

higher luminous efficacy (LE = 495 lm/W) is measured. Therefore, LEDs with this material 

qualify for applications in e.g. outdoor lighting. 

 

4. Unexpected Luminescence Properties of Sr0.25Ba0.75Si2O2N2:Eu2+ - A Narrow Blue 
Emitting Oxonitridosilicate with Cation Ordering 
 

The crystal structure of Sr0.25Ba0.75Si2O2N2:Eu2+ was determined using electron and X-ray 

diffraction methods (Pna21, a = 5.470(2), b = 14.277(3), c = 4.791(1) Å and V = 374.2(2) Å3). 

In crystallites suitable for TEM investigations, intergrowth of nanodomains is present, which 

leads to pronounced diffuse scattering. Corrugated 

metal-atom layers are present in the structure while 

lattice parameters are similar to those of the BaSi2O2N2-

type. HRTEM image simulations indicate cation 

ordering, which, in combination with the corrugated 

metal atom layers, explains the unexpected excellent 

luminescence properties. Sr0.25Ba0.75Si2O2N2:Eu2+ shows 

intense blue emission (λem = 472 nm) and the FWHM of 

the emission band (37 nm) corresponds to the smallest value observed for Eu2+-doped blue 

emitting (oxo)nitridosilicates so far. 



6. Summary   179

5. Material Properties and Structural Characterization of M3Si6O12N2:Eu2+ (M=Ba, Sr) - 
A Comprehensive Study on a Promising Green Phosphor for pc-LEDs 
 

The crystal structure of efficient green phosphor Ba3-xSrxSi6O12N2 (0 ≤ x ≤ 1) was refined on 

the basis of single-crystal and powder X-ray diffraction data (Ba3Si6O12N2, P3, 

a = 7.5218(1) Å, c =  6.4684(1) Å, V = 316.94(1)Å3). The layered oxonitridosilicate consists 

of vertex-sharing SiO3N-tetrahedra forming 6er- 

and 4er-rings as fundamental building units. High-

quality single crystals were the basis for the 

detailed analysis of structure-property 

relationships for the mixed phases. The 

availability of reliable crystallographic data was 

the basis for further theoretical investigations. The 

band gap was measured to be 7.05 ± 0.25 eV and therefore agrees well with calculated value 

of 6.93 eV. Ba3Si6O12N2:Eu2+ exhibits excellent luminescence properties (λ ≈ 527 nm, 

FWHM ≈ 65 nm), which provides potential for application in pc-LEDs. For an increasing Sr-

ratio a shift of the emission wavelength to lower energies is observed. 

 

6. Magnesium Double Nitride Mg3GaN3 as New Host Lattice for Eu2+-Doping - 
Synthesis, Structural Studies, Luminescence and Band-Gap Determination 
 

The double nitride Mg3GaN3 and binary nitride Mg3N2 were synthesized from the elements at 

760 °C in welded shut Ta-ampules. Mg3GaN3 (R3m, a = 3.3939(5), c = 25.854(5) Å, 

V = 257.91(7) Å3) consists of an electroneutral three-dimensional network of MgN4- and 

mixed (Mg/Ga)N4-tetrahedra which share common corners and edges. The determination of a 

structure model for Mg3GaN3 was the basis for first-principles DFT calculations. The most 

challenging part was the precise characterization of the electron density on the mixed 

occupied metal site. For Mg3GaN3 a direct band 

gap of 3.0 eV was calculated and confirmed by 

soft X-ray spectroscopy measurements. As 

expected, the band gap is between the values 

for GaN and Mg3N2. Mg3GaN3:Eu2+ exhibits 

yellow luminescence (λmax. = 578 nm, FWHM = 132 nm), while Mg3N2:Eu2+ also shows 

luminescence (λmax. = 589 nm, FWHM = 145 nm) at room temperature.  
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7. High-Pressure Synthesis and Characterization of Li2Ca3[N2]3 - An Uncommon 
Metallic Diazenide with [N2]

2– Ions 
 

Li2Ca3(N2)3 (Pmma, a = 4.7747(1), b = 13.9792(4), c = 8.0718(4) Å, V = 538.77(3)Å3) is the 

first representative of a ternary diazenide. The compound was synthesized by controlled 

thermal decomposition of lithium- and calcium azide mixtures in a multi-anvil press (9 GPa, 

1023 K). Due to pseudo-hexagonal metrics, PXRD investigations initially led to incorrect 

structure models. Especially, SAED simulations significantly differed from experimental 

ones. Detailed crystallographic analysis, i.e. the stepwise reduction to orthorhombic symmetry 

(requires threefold twinning), was the basis for a reliable structure model and finally made 

quantum-theoretical investigations possible. PXRD analysis in correct space group results in 

N–N bonds of 1.34(2)-1.35(3) Å exceeding the 

values of known binary diazenides. Moreover, 

refined N–N distances rather match reported 

values for [N2]
3- radical anions. The true character 

of the [N2]-entity was finally settled by a variety of 

complementary analyses including electron-

diffraction methods, electron spin resonance spectroscopy (ESR), magnetic and conductivity 

measurements as well as density-functional theory. Li2Ca3[N2]3 contains solely diazenide 

[N2]
2- units and is therefore better described as (Li+)2(Ca2+)3([N2]

2-)3·(e
-)2. 
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7. Appendix 

 

7.1 Supporting information for chapter 2.5 

 

Cordula Braun, Markus Seibald, Saskia L. Börger, Oliver Oeckler, Teak D. Boyko, Alexander 

Moewes, Gerhard Miehe, Andreas Tücks, and Wolfgang Schnick, Chem. Eur. J. 2010, 16, 

9646-9657. 

 

Table S1. Occupied Wyckoff sites, refined atomic coordinates and anisotropic displacement parameters Ueq and 
Uiso (in Å2) of Ba3Si6O12N2, Ba2.56Sr0.44Si6O12N2 and Ba2SrSi6O12N2 (standard deviation in parentheses). 

Compound Atom Wyck. x y z s.o.f. Ueq in Å
Ba3Si6O12N2 Ba1/Sr1 1a 0 0 0 1/0 0.0119(2) 

 Ba2/Sr2 2d 1/3 2/3 0.10335(7) 1/0 0.0116(2) 
 Si1 6g 0.40651(17) 0.23528(18) 0.38956(17) 1 0.0077(2) 
 O1 6g 0.6978(5) 0.0158(4) 0.5907(5) 1 0.0097(6) 
 O2 6g 0.6399(5) 0.7006(5) 0.8289(5) 1 0.0108(6) 
 N1 2d 1/3 2/3 0.5667(9) 1 0.010(2) 

Ba2.56Sr0.44Si6O12N2 Ba1/Sr1 1a 0 0 0 0.673(4)/0.327(4) 0.0183(6) 
 Ba2/Sr2 2d 1/3 2/3 0.10448(13) 0.942(8)/0.058(8) 0.0177(3) 
 Si1 6g 0.4043(4) 0.2334(3) 0.3866(3) 1 0.0132(8) 
 O1 6g 0.6982(8) 0.0165(7) 0.5898(8) 1 0.015(2) 
 O2 6g 0.6451(7) 0.7061(8) 0.8322(8) 1 0.018(2) 
 N1 2d 1/3 2/3 0.5719(16) 1 0.014(3) 

Ba2SrSi6O12N2 Ba1/Sr1 1a 0 0 0 0.360(6)/0.640(6) 0.0106(2) 
 Ba2/Sr2 2d 1/3 2/3 0.10524(3) 0.825(7)/0.175(7) 0.01095(6) 
 Si1 6g 0.40420(7) 0.23335(7) 0.38535(7) 1 0.0069(2) 
 O1 6g 0.6978(2) 0.01838(19) 0.5906(2) 1 0.0100(3) 
 O2 6g 0.6482(2) 0.7066(2) 0.8340(2) 1 0.0126(3) 
 N1 2d 1/3 2/3 0.5749(4) 1 0.0091(5) 

 

Compound Atom U11 U22 U33 U12 U13 = U23 
Ba3Si6O12N2 Ba1/Sr1 0.0093(2) 0.0093(2) 0.0171(3) 0.00466(10) 0 

 Ba2/Sr2 0.01170(17) 0.01170(17) 0.0113(2) 0.00585(8) 0 
 Si1 0.0064(5) 0.0066(5) 0.0106(5) 0.0036(4) 0 
 O1 0.0081(14) 0.0066(14) 0.0131(15) 0.0027(12) 0 
 O2 0.0086(14) 0.0111(15) 0.0126(14) 0.0048(12) 0 
 N1 0.0086(17) 0.0086(17) 0.012(3) 0.0043(9) 0 

Ba2.56Sr0.44Si6O12N2 Ba1/Sr1 0.0149(7) 0.0149(7) 0.0251(9) 0.0075(3) 0 
 Ba2/Sr2 0.0174(4) 0.0174(4) 0.0184(5) 0.0087(2) 0 
 Si1 0.0104(13) 0.0111(13) 0.0178(13) 0.0051(10) 0 
 O1 0.015(3) 0.014(3) 0.019(3) 0.010(3) 0 
 O2 0.013(3) 0.024(3) 0.019(3) 0.012(3 0 
 N1 0.013(4) 0.013(4) 0.016(6) 0.007(2) 0 

Ba2SrSi6O12N2 Ba1/Sr1 0.00883(12) 0.00883(12) 0.01427(18) 0.00442(6) 0 
 Ba2/Sr2 0.01196(7) 0.01196(7) 0.00893(10) 0.00598(4) 0 
 Si1 0.0062(2) 0.0066(2) 0.0083(2) 0.00335(17) 0 
 O1 0.0110(6) 0.0064(5) 0.0106(6) 0.0030(4) 0 
 O2 0.0155(6) 0.0143(6) 0.0099(6) 0.0089(5) 0 
 N1 0.0059(6) 0.0059(6) 0.0154(12) 0.0030(3) 0 
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7.2 Supporting information for chapter 3.2 

 

Frauke Hintze, Neil W. Johnson, Markus Seibald, David Muir, Alexander Moewes, and 

Wolfgang Schnick, Chem. Mater. 2013, 25, 4044-4052. 

 

Table S1. Crystallographic Data for Mg3N2. 
 Mg3N2 
Formula mass/g·mol-1 100.95 
Temperature/K 293(2) 
Crystal system cubic 
Space group Ia3 (no. 206) 
Lattice parameter/Å a = 9.9550(11) 
V/Å3 986.56(19) 
Formula units/cell 16 
Crystal size/mm3 0.1 · 0.1 · 0.1 
Abs. coefficient μ/mm-1 0.866 
F (000) 800 
Diffractometer Stoe IPDS I 
Radiation,  
graphite-monochromator 

Mo-Kα (λ = 0.71073 Å) 

θ range/° 4.09-29.98 
Measured reflections 4724 
Independent reflections 243 
Observed reflections 205 
Refined parameters 18 
GOF 1.075 
R indices (Fo

2 ≥ 2σ(Fo
2)) R1 = 0.0394, wR2 = 0.0966 

R indices (all data) R1 = 0.0476, R2 = 0.1012 
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7.3 Supporting information for chapter 4.1 

 

Sebastian B. Schneider, Markus Seibald, Volker L. Deringer, Ralf P. Stoffel, Gina M. 

Friederichs, Henryk Laqua, Viola Duppel, Gunnar Jeschke, Richard Dronskowski, and 

Wolfgang Schnick, J. Am. Chem. Soc. 2013, 135, 16668-16679. 

 

Synthesis of Azides 

 

Lithium azide was obtained by precipitation from its aqueous solution (Sigma-Aldrich, 20 

wt% solution in water) by evaporation in vacuum. The product was dried over P4O10 using a 

vacuum desiccator (24 h). An aqueous solution of calcium azide was obtained from the 

reaction of Ca(OH)2 with excess of NH4N3 (1:4) according to the procedure reported in 

literature.[1] First Ca(OH)2 (1.5 g, 20.1 mmol, Sigma-Aldrich, 99.995%) is dissolved in 200 

ml of water. Then an excess of NH4N3 (4.8 g, 80.5 mmol) is added generating aqueous 

Ca(N3)2, NH3 and H2O. Ammonia is boiled off and calcium azide is precipitated by 

evaporating the water. The obtained calcium azide is dried over CaCl2 (Sigma-Aldrich, 

99.99%) using a vacuum desiccator (24 h). NH4N3 was obtained by the metathesis reaction of 

NH4NO3 (3.99 g, 50 mmol, Sigma-Aldrich,99.0%) and NaN3 (3.25 g, 50 mmol, Acros 

Organics, Geel, Belgium, 99%) in a silica tube at elevated temperatures. By heating from 

room temperature to 200 °C within 0.5 h, annealing for 12 h and cooling down again to room 

temperature within 6 h,[2] NH4N3 was precipitated at the cold end of the silica tube separated 

from NaNO3, which crystallized at the hot end during the reaction. 

Each azide was analyzed by means of powder X-ray diffractometry (PXRD) and Fourier 

transform infrared spectroscopy (FTIR). 

 

 

Appearance of Li2Ca3[N2]3 powder after HP/HT experiment 

 

 
Figure S1. a) Li2Ca3[N2]3 (golden powder) surrounded by the white boron nitride h-BN crucible after HP/HT 
experiment; b) isolated and ground Li2Ca3[N2]3. 
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Information about the data collection and selected crystallographic details of the 

Rietveld refinement of Li2Ca3[N2]3 

 

Table S1. Information about the data collection and selected crystallographic details of the Rietveld refinement 
of Li2Ca3[N2]3. 

Formula Li2Ca3[N2]3 

 

Synthesis Conditions 9 GPa @ 1023 K 

fw /gmol-1 218.16 

space group Pmma (no. 51) 

cell parameters / Å a = 4.7747(1) 

b = 13.9792(4) 

c = 8.0718(4)  

V /Å3 538.77(3) 

Z /cell 4 

ρcalc /gcm-3 2.6894(1) 

μcalc /mm-1 26.08(1) 

 

Data Collection  

type of diffractometer STOE Stadi P 

geometry Debye-Scherrer 

radiation, monochromator Cu-Kα1 (λ = 1.54056 Å), 

Ge(111) 

T /K 298(2) 

detector linear PSD (∆2θ = 5°) 

2θ range /° 5–100  

number of observed 

reflections 

345 

 

Structure Analysis and 

Refinement 

 

method of refinement fundamental parameter 

approach[3] 

program package TOPAS Academic[4] 

atomic parameters 32 

background function  

/parameters 

shifted Chebyshev /16 

R indices GoF(χ2) = 1.644 

Rp = 0.06168 

wRp = 0.08109 
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Temperature-dependent in situ X-Ray diffraction from 298 to 700K 

 

Figure S2 shows the high-temperature in situ X-ray diffraction patterns of Li2Ca3[N2]3 from 

room temperature to 700 K. At about 610 K Li2Ca3[N2]3 decomposes spontaneously. Thus no 

further reflections are obtained. 

 

 
Figure S2. High-temperature in situ X-ray diffraction patterns of Li2Ca3[N2]3 (Mo-Kα1-radiation (0.7093 Å)). 
 

 

Electron Spin Resonance Spectroscopy 

 

A) Further experimental details 

Detail spectra of the narrow-line signal in the low- and high-temperature region were 

measured on spectrometer (a) at 26 dB microwave attenuation (0.5 mW microwave power) 

with a modulation amplitude of 0.1 mT peak-to-peak, a time constant of 20.48 ms, and a 

conversion time of 81.92 ms as well as at 20 dB microwave attenuation (2 mW microwave 

power) with a modulation amplitude of 0.5 mT peak-to-peak, a time constant of 10.24 ms, 

and a conversion time of 40.96 ms, respectively. The background corrected spectrum was 

obtained by subtracting the spectrum of the Ar filled capillary (50 scans) from the spectrum of 

the sample (50 scans) and the subtracting a third-order polynomial background fitted to the 

first and last 20% of the spectrum (sweep width 25 mT, centered at g = 2.0023). The latter 

background subtraction removes the contribution of the broad-line signal in the measured 

range. Overview spectra in the low-temperature region of both the broad-line and narrow-line 

signal were measured at all spectrometers, covering a temperature range between ambient 

temperature and 10 K in intervals of 20 K. A microwave attenuation of 14 dB (8 mW 
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microwave power) was found not to lead to signal saturation of either the broad-line or 

narrow-line signal. Typically 5 scans were measured with a time constant of 10.24 ms and a 

conversion time of 40.84 ms in a range between 5 and 605 mT, except for spectrometer (c) 

where a range between 50 and 450 mT and digital smoothing with time constant of 50 ms 

were used. Overview spectra in the high-temperature region of both the broad-line and 

narrow-line signal were measured on spectrometer (a) at a microwave attenuation of 14 dB (8 

mW microwave power). Depending on signal intensity, either 10 or 40 scans were measured 

with a time constant of 10.24 ms and a conversion time of 40.84 ms in a range between 4 and 

604 mT. Spectra were recorded at 300, 400, 500 and 525 K. 

Mn2+ centers in magnesium oxide (Aldrich) were used as an intensity reference and TEMPOL 

(4-Hydroxy-2,2,6,6,-tetramethylpiperidin-1-oxyl, Fluka) in deionized water or CuSO4·5H2O 

(Aldrich) were used as a concentration standard. Solid 2,2-Diphenyl-1-picrylhydrazyl (DPPH, 

Alexis Biochemicals) radical was used as standard (g = 2.0037). A quartz Mark tube capillary 

filled with argon was used as a background standard. Both the sample and background 

capillaries were placed in 1.5 mm Suprasil tubes (Wilmad), which were in turn placed in 3 

mm fused quartz tubes. Spectra measured over the whole range from 4 to 605 mT were 

analyzed by double integration of the broad line. The very small contribution of the double 

integral of the narrow line does not exceed other measurement and analysis errors and was 

neglected. Spectra measured on spectrometer (c) were analyzed by fitting a Voigt derivative 

line shape and a linear background contribution to the broad line, using home-written Matlab 

software. Temperature dependence of the sensitivity of spectrometer (a) was calibrated by 

measurements on the Mn:MgO sample. For analysis of the reference spectra, a Voigt 

derivative line with fixed Gaussian character of –0.3 and variable amplitude, width, and offset 

was fitted to the high-field line of the Mn2+ sextet, using Bruker Xepr software. The negative 

Gaussian character may be unphysical, but provided better fits than a purely Lorentzian line. 

Integral intensity of the absorption spectrum up to a constant factor was computed as the 

product of amplitude and square width of the derivative absorption signal. Spectra of the 

concentration standard Tempol and CuSO4·5H2O were analyzed by double integration with 

Xepr. 
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B) Temperature-dependence of ESR signals from 10 to 525 K 

The ESR spectra of Li2Ca3[N2]3 consist of a broad-line component that corresponds to the 

overwhelming fraction of the observed paramagnetic species and a narrow-line component 

that corresponds to traces of paramagnetic species of the order of magnitude as it is also found 

in BaN2.  

At all temperatures the spectrum of the sample consists of an asymmetric, structured, narrow 

line with a width of approximately 4.3 mT and of a nearly symmetric, unstructured, broad line 

with a width of approximately 80 mT. The two lines have comparable amplitude in the usual 

absorption derivative representation of CW ESR spectra at all temperatures (see Figure S3), 

which means that the ratio of the numbers of spins contribution to the broad and narrow line, 

respectively, is about 350:1. The g-value at the zero crossing of the narrow-line spectrum is 

2.0052  0.0001 (see Figure 12 in publication); this corresponds to the maximum of the 

absorption spectrum. The broad line has a similar g-value however, because of the width and 

of uncertainties of background correction the uncertainty of this g-value is ten times larger. At 

low temperatures the shape of the broad line changes. At first sight this change is a line 

narrowing, however, broad wings of the line do persist down to a temperature of 10 K. At g ~ 

4.3 we observe a background signal (data not shown) that could be traced back to the 1.5 mm 

Suprasil tube. Therefore, spectra are displayed and analyzed only at fields above 160 mT. 

Summarizing, the narrow-line component irreversibly changes line width and line shape 

during a temperature cycle between 300 and 525 K. The broad-line component narrows on 

decreasing temperature from 300 to 10 K and it broadens on increasing temperature from 300 

to 525 K. Throughout the temperature range between 10 and 525 K intensity of the ESR-

signals in Li2Ca3[N2]3 corresponds to only a minor fraction of the N2 species.  

 

 
Figure S3. Overview ESR spectra of Li2Ca3[N2]3 at different temperatures after background correction. 
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Unit-Cell Metrics 

 
Figure S4. Indexing resulted in a unit cell with hexagonal metrics and a = 8.0707(7) and c = 4.7630(7) Å. The 
as-depicted structural model was obtained upon structure solution and Rietveld refinement of the PXRD data. 
“LiCaN2” crystallizes in P63/mcm (no. 193) with a = 8.0726(2) and c = 4.7755(1) Å. The crystallographic data 
for corresponding atoms are: Li1 at 2b, Li2 at 4d, Ca1 at 6g with x = 0.7040(1), and N1 at 12j with x = 0.3503(5) 
and y = 0.4474(5). 
 

 
Figure S5. Experimental (black) and simulated (white) SAED patterns of various zone axes for hexagonal 
“LiCaN2

”. 
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Figure S6. Experimental (black) and simulated (white) SAED patterns of the corresponding zone axes of 
hexagonal “LiCaN2

”. Experimental tilt angles (blue) between zone axes match calculated ones (red).  
 

 

Transformation of Lattice Parameters 

 

Transformation of the lattice parameters of the hexagonal starting model (a = 8.06 and c = 

4.76 Å) into the orthorhombic C-centered unit cell are deduced according to the 

transformation  

 

   (1) 

 

with  . The final orthorhombic P-centered lattice parameters (a = 4.76, b = 13.96 

and c = 8.06 Å) are obtained by the further transformation according to 

 

  (2) 
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Transformation of Zone Axes 

 

The corresponding zone axes of the obtained C-centered intermediate as well as of the final P-

centered orthorhombic threefold twin are deduced referring to the International Tables for 

Crystallography: Volume A. According to the transformation 

 

   (3) 

 

with , the zone axes of the C-centered orthorhombic model are 

obtained. A second transformation referring to 

 

  (4) 

 

finally results in the zone axes for the model in space group Pmma (no. 51). In Table S2 

corresponding related zone axes are listed. 

 

Table S2. Relation between transformed hexagonal, orthorhombic C-centered and P-centered zone axes. 
Hexagonal zone axes 
(P63/mcm, no. 193) 

C-centered orthorhombic 
zone axes (Cmcm, no. 63) 

P-centered orthorhombic 
zone axes (Pmma, no. 51) 

[100] [100] [010] 
[010] [-120] [0-12] 
[001] [001] [100] 
[210] [120] [012] 
[111] [011] [101] 
 

To confirm the orthorhombic unit-cell metrics in space group Pmma (no. 51), diffraction 

patterns of the former hexagonal model are transformed first into orthorhombic C-centered 

(Cmcm) and then into P-centered (Pmma) nomination. As-obtained simulated patterns are 

finally compared to experimental diffraction patterns of the corresponding zone axes and are 

still in good agreement with each other (see Figure S7) supporting the symmetry reduction to 

an orthorhombic threefold twin. 
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Figure S7. Experimental (black) and simulated (white) SAED patterns of various zone axes for orthorhombic 
“LiCaN2

”in space group Pmma (no. 51). 
 

 

Elemental Analysis  

 

Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of only calcium and 

nitrogen/oxygen as lithium can not be detected. Oxygen is supposed to originate from 

hydrolysis of Li2Ca3[N2]3 due to the transfer of the sample holder into the microscope. EDX 

spectra were obtained with a SM-6500F scanning electron microscope (JEOL, Germany). A 

quantitative analysis of lithium, calcium, nitrogen and oxygen under inert conditions by the 

Mikroanalytisches Labor Pascher (Remagen, Germany) resulted in Li 7.0, Ca 49.4, N 35.9 

and O 3.2 mass-%. EDX measurements of non-hydrolyzed crystallites could be obtained via 

transmission electron microscopy. Hereby, an averaged ratio of Ca:N of about 1:1.8 besides 

only traces of oxygen was obtained (measured atomic-%: Ca 32.8, N 64.1 and O 3.0; 

expected ideal atomic% without lithium: Ca 33.33, N 66.67 and O 0.0). TEM-EDX 

measurements are in good agreement with obtained results of quantitative analysis, the latter 
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one resulting an Li:Ca:N ration of about 0.8:1:2.1 if the presence of oxygen is excluded. Note 

that if the mass percentages of the individual atoms Li, Ca, N and O are added, 100% are not 

reached. This is due to the fact that only the corresponding elements have been investigated. 

However, other heavier elements are not present as TEM-EDX does only result in Ca, N and 

only traces of O. Therefore, within the fact that the HP/HT product is always affected by an 

unknown (red) side phase and due to the fact the experiments are done in boron nitride 

crucibles, the residual mass is supposed to be constituted of e.g. boron originating form oxo- 

or nitridoborate formation (see FTIR section). 

The presence of hydrogen was excluded by 1H solid-state magic-angle spinning nuclear 

magnetic resonance spectroscopy (MAS-NMR) as no distinct signal was obtained upon 

measurements (data not shown).  

Concluding, the initial hexagonal and/or orthorhombic models of “LiCaN2” concnerning the 

Li:Ca ratio as elemental analysis has proven that the true crystal structure has to be a lithium 

deficient one. 
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Improving the Structural Model 

 

Table S3. Atomic coordinates for Li2Ca3[N2]3 for the fully relaxed structural model (at zero external pressure), 
obtained from density-functional theory as described in the Article. Computed cell parameters: a = 4.9269 Å;  
b = 14.3732 Å; c = 7.9656 Å. 
atom (Wyckoff)[a] atom[b] transformation of coordinates x y z 
Li1 (4g) Li41 ½,y,0 ½ 0.351 0 
 Li42 ½,y,0 ½ 0.649 0 
 Li43 0,y,0 0 0.351 0 
 Li44 0,y,0 0 0.649 0 
Li2 (4h) Li37 ½,y, ½ ½ 0.851 ½ 
 Li38 0,y, ½ 0 0.851 ½ 
 Li39 ½,y, ½ ½ 0.149 ½ 
 Li40 0,y, ½ 0 0.149 ½ 
Ca1 (2e) Ca28 ¼,0,z ¼ 0 0.6927 
 Ca33 ¾,0,z ¾ 0 0.3073 
Ca2 (2f) Ca27 ¾,½,z ¾ ½ 0.8074 
 Ca34 ¼,½,z ¼ ½ 0.1926 
Ca3 (4k) Ca25 ¾,y,z ¾ 0.1653 0.8455 
 Ca26 ¾,y,z ¾ 0.8347 0.8455 
 Ca35 ¼,y,z ¼ 0.8347 0.1545 
 Ca36 ¼,y,z ¼ 0.1653 0.1545 
Ca4 (4k) Ca29 ¼,y,z ¼ 0.3347 0.6546 
 Ca30 ¼,y,z ¼ 0.6653 0.6546 
 Ca31 ¾,y,z ¾ 0.6653 0.3454 
 Ca32 ¾,y,z ¾ 0.3347 0.3454 
N1 (4k) N7 ¼,y,z ¼ 0.1702 0.6984 
 N8 ¼,y,z ¼ 0.8298 0.6984 
 N17 ¾,y,z ¾ 0.8298 0.3016 
 N18 ¾,y,z ¾ 0.1702 0.3016 
N2 (4k) N5 ¾,y,z ¾ 0.3298 0.8016 
 N6 ¾,y,z ¾ 0.6702 0.8016 
 N19 ¼,y,z ¼ 0.3298 0.1984 
 N20 ¼,y,z ¼ 0.6702 0.1984 
N3 (4k) N11 ¾,y,z ¾ 0.9543 0.612 
 N12 ¾,y,z ¾ 0.0457 0.612 
 N13 ¼,y,z ¼ 0.0457 0.388 
 N14 ¼,y,z ¼ 0.9543 0.388 
N4 (4k) N1 ¼,y,z ¼ 0.4543 0.89 
 N2 ¼,y,z ¼ 0.5457 0.89 
 N23 ¾,y,z ¾ 0.5457 0.11 
 N24 ¾,y,z ¾ 0.4543 0.11 
N5 (4k) N9 ¾,y,z ¾ 0.3201 0.638 
 N10 ¾,y,z ¾ 0.6799 0.638 
 N15 ¼,y,z ¼ 0.6799 0.362 
 N16 ¼,y,z ¼ 0.3201 0.362 
N6 (4k) N3 ¼,y,z ¼ 0.8202 0.8616 
 N4 ¼,y,z ¼ 0.1798 0.8616 
 N21 ¾,y,z ¾ 0.1798 0.1384 
 N22 ¾,y,z ¾ 0.8202 0.1384 
[a] Related to the refined model in Pmma (no. 51) according to Table 1. [b] New atomic site labels as obtained 
from program output in P1 (no. 1). 
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Table S4. Atomic coordinates for Li2Ca3[N2]3 calculated at a simulated pressure of approx. 9 GPa. Computed 
cell parameters: a = 4.6177 Å; b = 13.6960 Å; c = 7.8911 Å. 
atom (Wyckoff)[a] atom[b] transformation of coordinates x y z 
Li1 (4g) Li41 ½,y,0 ½ 0.333 0 
 Li42 ½,y,0 ½ 0.667 0 
 Li43 0,y,0 0 0.333 0 
 Li44 0,y,0 0 0.667 0 
Li2 (4h) Li37 ½,y, ½ ½ 0.833 ½ 
 Li38 0,y, ½ 0 0.833 ½ 
 Li39 ½,y, ½ ½ 0.167 ½ 
 Li40 0,y, ½ 0 0.167 ½ 
Ca1 (2e) Ca28 ¼,0,z ¼ 0 0.6888 
 Ca33 ¾,0,z ¾ 0 0.3112 
Ca2 (2f) Ca27 ¾,½,z ¾ ½ 0.8124 
 Ca34 ¼,½,z ¼ ½ 0.1876 
Ca3 (4k) Ca25 ¾,y,z ¾ 0.1569 0.8440 
 Ca26 ¾,y,z ¾ 0.8431 0.8440 
 Ca35 ¼,y,z ¼ 0.8431 0.1560 
 Ca36 ¼,y,z ¼ 0.1569 0.1560 
Ca4 (4k) Ca29 ¼,y,z ¼ 0.3441 0.6568 
 Ca30 ¼,y,z ¼ 0.6559 0.6568 
 Ca31 ¾,y,z ¾ 0.6559 0.3432 
 Ca32 ¾,y,z ¾ 0.3441 0.3432 
N1 (4k) N7 ¼,y,z ¼ 0.1752 0.7246 
 N8 ¼,y,z ¼ 0.8248 0.7246 
 N17 ¾,y,z ¾ 0.8248 0.2754 
 N18 ¾,y,z ¾ 0.1752 0.2754 
N2 (4k) N5 ¾,y,z ¾ 0.3262 0.7711 
 N6 ¾,y,z ¾ 0.6738 0.7711 
 N19 ¼,y,z ¼ 0.3262 0.2289 
 N20 ¼,y,z ¼ 0.6738 0.2289 
N3 (4k) N11 ¾,y,z ¾ 0.9527 0.606 
 N12 ¾,y,z ¾ 0.0473 0.606 
 N13 ¼,y,z ¼ 0.0473 0.394 
 N14 ¼,y,z ¼ 0.9527 0.394 
N4 (4k) N1 ¼,y,z ¼ 0.4525 0.89 
 N2 ¼,y,z ¼ 0.5475 0.89 
 N23 ¾,y,z ¾ 0.5475 0.11 
 N24 ¾,y,z ¾ 0.4525 0.11 
N5 (4k) N9 ¾,y,z ¾ 0.2800 0.627 
 N10 ¾,y,z ¾ 0.7200 0.627 
 N15 ¼,y,z ¼ 0.7200 0.373 
 N16 ¼,y,z ¼ 0.2800 0.373 
N6 (4k) N3 ¼,y,z ¼ 0.7830 0.8725 
 N4 ¼,y,z ¼ 0.2170 0.8725 
 N21 ¾,y,z ¾ 0.2170 0.1275 
 N22 ¾,y,z ¾ 0.7830 0.1275 

[a] Related to the refined model in Pmma (no. 51) according to Table 1. [b] New atomic site labels as obtained 
from calculation in P1 (no. 1). 
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Description of the Crystal Structure  

 
Figure S8. Coordination of the [N2]

2– ions in Li2Ca3[N2]3 (Pmma, no. 51); Li yellow, Ca orange, N blue. Each 
crystallographically independent nitrogen site is coordinated by two Li and four Ca atoms.  
 

 
Figure S9. Coordination of the two independent lithium sites in Li2Ca3[N2]3 (Pmma, no. 51); Li yellow, Ca 
orange, N blue. The refined Li–Li distances match with reported values in literature. 
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Table S5. Refined interatomic distances in Li2Ca3[N2]3 (Pmma, no. 51). 
atom pair distance / Å atom pair distance / Å 

Li1–Li1 2.387(1) Ca1–Ca3 3.324(7) 

Li2–Li2 2.387(1) Ca1–Ca1 3.97(1) 

Li1–N2 2.063(9) Ca1–Ca3 4.28(1) 

Li1–N4 2.015(6) Ca1–Ca3 4.75(1) 

Li1–N6 2.03(9) Ca1–Ca1 4.7747(1) 

Li2–N3 2.63(3) Ca1–Ca4 4.997(7) 

Li2–N1 2.0226(3) Ca1–Ca1 5.45(1) 

Li2–N5 2.063(9) Ca2–Ca4 3.356(7) 

Ca1–Li2 2.92(3) Ca2–Ca2 3.95(2) 

Ca1–Li2 4.46(2) Ca2–Ca4 4.19(1) 

Ca1–Li1 5.55(2) Ca2–Ca2 4.7747(1) 

Ca2–Li1 2.9(2) Ca2–Ca4 4.83(2) 

Ca2–Li1 4.46(1) Ca2–Ca3 4.974(7) 

Ca2–Li2 5.57(4) Ca2–Ca2 5.47(2) 

Ca3–Li2 2.964(9) Ca3–Ca1 3.324(7) 

Ca3–Li1 3.33(2) Ca3–Ca3 3.57(1) 

Ca3–Li2 4.493(6) Ca3–Ca3 4.04(1) 

Ca3–Li1 4.74(2) Ca3–Ca4 4.086(9) 

Ca3–Li2 5.11(3) Ca3–Ca1 4.28(1) 

Ca3–Li2 5.494(9) Ca3–Ca1 4.75(1) 

Ca4–Li1 3.063(9) Ca3–Ca3 4.7747(1) 

Ca4–Li2 3.32(4) Ca3–Ca4 4.92(1) 

Ca4–Li1 4.559(6) Ca3–Ca2 4.974(7) 

Ca4–Li2 4.73(3) Ca3–Ca4 5.09(1) 

Ca4–Li1 5.16(2) Ca3–Ca3 5.39(1) 

Ca4–Li1 5.391(9) Ca3–Ca3 5.92(1) 

Ca1–N3 2.409(3) Ca4–Ca2 3.356(8) 

Ca1–N1 2.47(2) Ca4–Ca4 3.412(9) 

Ca1–N3 2.63(1) Ca4–Ca4 4.01(1) 

Ca2–N2 2.31(1) Ca4–Ca3 4.086(9) 

Ca2–N4 2.4(2) Ca4–Ca2 4.19(1) 

Ca2–N4 2.62(8) Ca4–Ca4 4.7747(1) 

Ca3–N3 2.34(3) Ca4–Ca2 4.83(2) 

Ca3–N5 2.45(1) Ca4–Ca3 4.92(1) 

Ca3–N6 2.511(6) Ca4–Ca1 4.997(7) 

Ca3–N6 2.51(1) Ca4–Ca3 5.09(1) 

Ca3–N1 2.65(6) Ca4–Ca4 5.267(9) 

Ca3–N2 2.67(1)   

Ca4–N4 2.5(2)   

Ca4–N1 2.55(2)   

Ca4–N5 2.583(5)   

Ca4–N5 2.67(2)   
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Due to the voids in the crystal structure of Li2Ca3[N2]3, the calcium ions are not reliably 

coordinated if the Ca–X (X = Li, N) distance is set to a minimum of 2.9 Å (see Figure S9). 

Hereby, each Ca2+ is coordinated by three side-on bound and two axial [N2]
2– ions in an end-

on manner, which results in a coordination number of 8. The as-obtained Ca–N distances are 

also compared to the sum of their ionic radii. Eight-fold coordinated Ca2+ exhibits an 

averaged radius of 1.12 Å.5 Thus again the Ca–N distances correspond well with their ionic 

sum. Increasing the coordination sphere to a maximum of about 3.8 Å, then each calcium ion 

is coordinated by 4 diazenide [N2]
2– units in side-on mode and four additional lithium atoms, 

resulting in a coordination number of 14. 

 

 
Figure S10. Coordination of the calcium sites in Li2Ca3[N2]3; Li yellow, Ca orange, N blue. The search for 
coordination polyhedra up to maximum Ca–X distance (X = Li, N) of 2.9 Å results in solely anion-coordinated 
calcium ions. Thereby, the calcium ions are coordinated by three [N2]

2– in side-on manner and two axial end-on 
coordinated nitrogen dumb-bells. If the Ca–X distance is further increased, the coordination of the calcium ions 
changes significantly. Up to a maximum Ca–X distance of 3.8 Å each calcium ion is coordinated by four 
diazenide units in side-on mode and four additional lithium atoms, resulting in an coordination number of 14 (or 
5(x2) + 4). 
 

 

Calculation of Averaged Void-Diameter 

 

To obtain the final void-diameter, the radius of Ca2+
CN=8 (1.12 Å)[5] has to be subtracted twice 

from the averaged distance of adverse located Ca2+ ions (5.385Å) resulting in 3.15 Å in 

diameter for the actual size of the cavities. 
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Table S6. Refined distances in Ca–Ca pairs in Li2Ca3[N2]3 necessary to calculate the averaged Ca–Ca distance. 

atom pair distance / Å 

2xCa1–Ca1 5.45(1) 

1xCa2–Ca2 5.47(2) 

4xCa3–Ca3 5.39(1) 

2xCa4–Ca4 5.267(9) 

averaged value = 5.385 Å 

 

 

Fourier Transform Infrared Spectroscopy 

 

To relate the observed features to the corresponding nitrogen dumb-bells, the Wyckoff sites of 

each nitrogen atom as well as their pairing in combination with the N–N bond lengths have to 

be taken into account. Each nitrogen atom in Li2Ca3[N2]3 occupies the same site at 4k (see 

Table 1), but due to the pairing of nitrogen atoms the occurrence of corresponding nitrogen 

dumb-bells differs (see Table 2 and Figure 7). Hereby, the pairs of N1–N6 and N2–N5 appear 

twice often than N3–N3 and N4–N4, implying an idealized intensity ratio of observed features 

of 2:2:1:1, respectively. As already mentioned, the feature at 800 cm–1 is not attributed to the 

N–N stretching vibrations of the diazenide ions. The remaining three visible features in the 

low-energy region show slight differences in intensity, which might be related to the 

frequency of occurring N–N-pairs in Li2Ca3[N2]3. The two more intense features at 1260 and 

1100 cm–1 indicate shorter N–N bond lengths, which is in good agreement with the 

crystallographic data, as the two more frequent N1–N6- and N2–N5-pairs exhibit the shortest 

bond lengths (see Table 2). The less intense feature at 1020 cm–1 is therefore attributed to one 

of the longer and less frequent N–N-pairs. The missing feature for the fourth N–N stretching 

vibration might be covered by the broad appearance of the two-peak feature of 1100 and 1020 

cm–1, especially if compared to the very sharp signal at 1260 cm–1. 

 

 

Magnetic and Electric Conductivity Measurements 

 

As the molar susceptibility slightly increases at decreasing temperatures starting at about 

50 K, we plotted the product ΧmolT versus T. Hereby, truly temperature-independent behavior 

is observed if the corresponding run of the curve linearly decreases with decreasing 
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temperature (see Figure S11). To check the presence of ferromagnetic impurities, we also 

plotted the field-dependence of μ/μB at different temperatures (see Figure S12). As no 

hysteresis is observed, no ferromagnetic impurities have been present during measurement. 

 

 
Figure S11. Temperature-dependence of the product ΧmolT. ΧmolT increases linearly indicative for temperature-
independent, metallic behavior. Blue: susceptibility measured at 0.01 T; black at 1T. 
 

 
Figure S12. Field-dependence of μ/μB. As no hysteresis is observed, no ferromagnetic impurities are present in 
the sample chamber. Blue: magnetization measured at 1.8 K; red at 300 K. 
 

 



  7. Appendix 200

References 

 

[1] H. D. Fair, R. F. Walker, Energetic Materials Vol. 1: Physics and Chemistry of the  

Inorganic Azides; Plenum Press: New York, 1977. 

[2] W. J. Frierson, Inorg. Synth. 1946, 8, 136. 

[3] J. Bergmann, R. Kleeberg, A. Haase, B. Breidenstein, Mater. Sci. Forum 2000, 303,  

 347. 

[4] A. A. Coelho, TOPAS-Academic, Version 4.1; Coelho Software: Brisbane, 2007. 

[5] R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751. 

 

 

 

 

 

 

 

 

 



8. Publications   201

8. Publications 

 

All results compiled in this thesis were published in scientific journals according to the 

below-mentioned list. Publications and patents which are not included in this work, as well as 

talks and poster presentations at scientific conferences, are summarized separately. 

 

A Published as part of this thesis: 

 

1. High-Pressure Synthesis and Characterization of Li2Ca3[N2]3 - An Uncommon 

Metallic Diazenide with [N2]
2– Ions 

Sebastian B. Schneider, Markus Seibald, Volker L. Deringer, Ralf P. Stoffel, Gina M. 

Friederichs, Henryk Laqua, Viola Duppel, Gunnar Jeschke, Richard Dronskowski, and 

Wolfgang Schnick 

J. Am. Chem. Soc. 2013, 135, 16668-16679. 

 

For this publication, SAED patterns of Li2Ca3[N2]3 were analyzed by Markus Seibald. 

This includes the identification of a threefold twin by rotation instead of hexagonal 

metrics, simulation of SAED patterns and identification of zone axes for the final 

structure model in space group Pmma. Markus Seibald also revised the manuscript. 

Writing the manuscript main part, synthesis of the sample, literature screening, PXRD 

investigations, analysis of IR data, unit-cell and atom-coordinates transformation due 

to symmetry reduction, image editing, and interpretation of magnetic- and 

conductivity measurements was done by Sebastian B. Schneider. TEM investigation 

and parts of the data analysis was carried out by Viola Duppel. Gina M. Friederichs 

measured magnetic- and conductivity data. ESR investigations and data analyses were 

accomplished by Henryk Laqua and Gunnar Jeschke. All theoretical investigations, 

including the creation of Figures, were done by the group of Richard Dronskowski 

(Ralf P. Stoffel, Volker L. Deringer).  

 

2. Highly Efficient pc-LED Phosphors Sr1-xBaxSi2O2N2:Eu2+ (0 ≤ x ≤ 1) - Crystal  

 Structures and Luminescence Properties Revisited 

 Markus Seibald, Tobias Rosenthal, Oliver Oeckler, and Wolfgang Schnick 

 Crit. Rev. Solid State Mater. Sci. 2014, (accepted). 
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For this review article, writing the manuscript main part, literature screening and 

image editing was done by Markus Seibald. Tobias Rosenthal and Oliver Oeckler 

revised the manuscript and added text parts and images, especially in reference to 

TEM investigations. Figure 6 results from an idea of Markus Seibald and Philipp Pust 

while the photograph was done by Philipp Pust and editing by Markus Seibald. TOC 

of the manuscript was a collaboration of Markus Seibald, Tobias Rosenthal and 

Oliver Oeckler. 

 

3. Magnesium Double Nitride Mg3GaN3 as New Host Lattice for Eu2+-Doping - 

Synthesis, Structural Studies, Luminescence and Band-Gap Determination 

 Frauke Hintze, Neil W. Johnson, Markus Seibald, David Muir, Alexander Moewes,  

and Wolfgang Schnick 

 Chem. Mater. 2013, 25, 4044-4052. 

 

In this contribution, the crystal structure of Mg3GaN3 was determined by Markus 

Seibald and Frauke Hintze. Writing the manuscript main part, synthesis of the 

samples, literature screening, MAPLE calculations, and localization of vacancies for 

Eu2+ in the crystal structure were also done by Frauke Hintze. Synchrotron 

experiments and analysis of these data were done by Neil W. Johnson and David Muir 

in the group of Alexander Moewes. Detlef Wiechert and Peter J. Schmidt investigated 

the luminescence properties in the LDC Aachen. 

 

4. A New Polymorph of the Highly Efficient LED-Phosphor SrSi2O2N2:Eu2+ - 

Polytypism of a Layered Oxonitridosilicate 

 Markus Seibald, Tobias Rosenthal, Oliver Oeckler, Christian Maak, Andreas Tücks,  

Peter J. Schmidt, Detlef Wiechert, and Wolfgang Schnick 

 Chem. Mater. 2013, 25, 1852-1857.  

 

For this publication, writing the manuscript main part, literature screening, SEM 

analysis, Rietveld refinement, single-crystal structure elucidation, sample preparation 

for TEM with assistance of Tobias Rosenthal and Christian Maak, SAED analysis and 

simulation, HRTEM image simulation, interpretation of luminescence measurements, 

and image editing was done by Markus Seibald. TEM investigations themselves were 

performed by Tobias Rosenthal, who assisted with their interpretation and also 
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revised the manuscript. Oliver Oeckler improved the single-crystal structure 

refinement and contributed to data analysis and discussion. The SrSi2O2N2:Eu2+ 

sample was synthesized by Andreas Tücks. Luminescence investigations were done in 

the LDC Aachen by Andreas Tücks, Peter J. Schmid and Detlef Wiechert. 

 

5. Unexpected Luminescence Properties of Sr0.25Ba0.75Si2O2N2:Eu2+ - A Narrow Blue  

Emitting Oxonitridosilicate with Cation Ordering 

 Markus Seibald, Tobias Rosenthal, Oliver Oeckler, Felix Fahrnbauer, Andreas Tücks,  

Peter J. Schmidt, and Wolfgang Schnick 

Chem. Eur. J. 2012, 18, 13446-13452. 

 

For this article, writing the manuscript main part, literature screening, SEM analysis, 

single-crystal structure determination, analysis of reciprocal lattice sections, 

interpretation of luminescence measurements, and image editing was done by Markus 

Seibald. TEM investigations were performed by Tobias Rosenthal, who also 

contributed to the manuscript text. In a close collaboration, Markus Seibald, Felix 

Fahrnbauer, and Tobias Rosenthal analyzed and interpreted SAED patterns and 

HRTEM images. They improved HRTEM image simulations for Titan 80-300 TEM 

with field-emission gun installed at the LMU. With the help of Oliver Oeckler results 

from HRTEM simulations were transferred to the single-crystal structure elucidation. 

Luminescence investigations were done in the LDC Aachen by Andreas Tücks and 

Peter J. Schmidt. 

 

6. Real Structure and Diffuse Scattering of Sr0.5Ba0.5Si2O2N2:Eu2+ - A Highly  

Efficient Yellow Phosphor for pc-LEDs 

Markus Seibald, Oliver Oeckler, Vinicius R. Celinski, Peter J. Schmidt, Andreas  

Tücks, and Wolfgang Schnick 

Solid State Sci. 2011, 13, 1769-1778. 

 

For this publication, writing the manuscript main part, SEM analysis, Rietveld 

refinement, SAED analysis and simulation, simulation of diffuse scattering in PXRD 

pattern / SAED images, and image editing was done by Markus Seibald. TEM 

investigations were performed by Markus Döblinger. Oliver Oeckler improved the 

Rietveld refinement and contributed to the disorder model and revised the manuscript. 



  8. Publications 204

The sample was synthesized by Andreas Tücks. Luminescence investigations and 

interpretation of measured values were done in the LDC Aachen by Andreas Tücks 

and Peter J. Schmidt. 

 

7. Material Properties and Structural Characterization of M3Si6O12N2:Eu2+  

(M = Ba, Sr) - A Comprehensive Study on a Promising Green Phosphor for  

pc-LEDs 

Cordula Braun, Markus Seibald, Saskia L. Börger, Oliver Oeckler, Teak D. Boyko, 

Alexander Moewes, Gerhard Miehe, Andreas Tücks, and Wolfgang Schnick 

Chem. Eur. J. 2010, 16, 9646-9657. 

 

For this contribution, writing the manuscript parts (also compilation of the tables) 

concerning single-crystal structure determination for the solid-solution series, 

synthesis of all single crystals including structure refinement, MAPLE calculations, 

and the correlation of the emission-band shift to changes in the crystal structure was 

done by Markus Seibald. Oliver Oeckler discussed the results with the other authors 

and revised the manuscript. Synchrotron experiments and analysis of these data were 

done by Teak D. Boyko and Alexander Moewes. Andreas Tücks investigated the 

luminescence properties in the LDC Aachen. 
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B Other publications: 

 

1. Aperiodic CrSc Multilayer Mirrors for Attosecond Water Window Pulses 

Alexander Guggenmos, Roman Rauhut, Michael Hofstetter, Samira Hertrich, Bert 

Nickel, Jürgen Schmidt, Eric M. Gullikson, Markus Seibald, Wolfgang Schnick, and 

Ulf Kleineberg 

 Opt. Express 2013, 21, 21728-21740. 

 

2. Asymmetric Fluorodinitromethyl Derivatives of 2,2,2-trinitroethyl N-(2,2,2-

trinitroethyl)carbamate 

Thomas M. Klapötke, Burkhard Krumm, Richard Moll, Sebastian F. Rest, Wolfgang 

Schnick, and Markus Seibald 

J. Fluor. Chem. 2013, 156, 253-261. 

 

3. Ambiguities in the Structure Determination of Antimony Tellurides Arising from 

Almost Homometric Structure Models and Stacking Disorder  

Matthias N. Schneider, Markus Seibald, Patrick Lagally, and Oliver Oeckler 

 J. Appl. Crystallogr. 2010, 43, 1012-1020. 

 

4. A New Series of Long-Range Ordered Metastable Phases in the System M-Sb-Te  

(M = Ge, Ag)  

Matthias N. Schneider, Markus Seibald, and Oliver Oeckler 

Dalton Trans. 2009, 11, 2004-2011. 

 

5. Salts and Ionic Liquids of Resonance Stabilized Amides  

Harald Brand, Joern Martens, Peter Mayer, Axel Schulz, Markus Seibald, and Thomas 

Soller 

 Chem. Asian J. 2009, 4, 1588-1603. 
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C Patents 

 

 Mn-Activated Hexafluorosilicates for LED Applications 

Volker Weiler, Peter J. Schmidt, Wolfgang Schnick, Markus A. Seibald 

PCT Int. Appl. 2013, WO 2013088313, A1, 26pp, Koninklijke Philips Electronics NV,  

Philips Intellectual Property & Standards GmbH,Germany 

 

D Conference contributions: 

 

1. Weißblaue GeSCHICHTEN – Erleuchtung aus Bayern (talk) 

 Markus Seibald, Tobias Rosenthal, Oliver Oeckler, Wolfgang Schnick  

 Hemdsärmelkolloquium, Freiburg, 7.-9. März 2013. 

 

2. Unerwartete Lumineszenz-Eigenschaften von Sr1–xBaxSi2O2N2:Eu2+ (poster) 

 Markus Seibald, Tobias Rosenthal, Oliver Oeckler, Wolfgang Schnick 

16. Vortragstagung der Fachgruppe Festkörperchemie und Materialforschung der 

Gesellschaft Deutscher Chemiker, Darmstadt, 17.-19. September 2012. 

 

3. Broadband multilayer mirror and diffractive optics for attosecond pulse shaping 

in the 280-500 eV photon energy range (poster) 

Alexander Guggenmos, Michael Hofstetter, Roman Rauhut, Christian Späth, S. 

Hertrich, Bert Nickel, S. Yang, Eric M. Gullikson, Jürgen Schmidt, Markus Seibald, 

Wolfgang Schnick, Ferenc Krausz, Ulf Kleineberg 

XVIIIth International Conference on Ultrafast Phenomena, Lausanne, 8.-13. Juli 2012. 

 

4. Strukturaufklärung an lumineszierendem Sr1-xBaxSi2O2N2:Eu2+ durch 

Kombination von TEM- und Röntgen- Methoden (talk) 

 Tobias Rosenthal, Markus Seibald, Oliver Oeckler 

Festkörperchemie-Seminar, Hirschegg, 7.-10. Juni 2012. 

 

5. Synthesis and Analysis – Strategies for New Phosphor Materials (poster) 

Frauke Hintze, Markus Seibald, Philipp Pust, Sebastian Schmiechen, Wolfgang 

Schnick 

 Phosphor Global Summit, Scottsdale (AZ), 20.-22. März 2012. 
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6. Nitride Phosphor Materials – Research, Application and Pertinence (poster) 

Sebastian Schmiechen, Frauke Hintze, Markus Seibald, Philipp Pust, Wolfgang 

Schnick 

 Phosphor Global Summit, Scottsdale (AZ), 20.-22. März 2012. 

 

7. Real structure of Sr1-xBaxSi2O2N2:Eu2+ (0.5<x<0.8) phosphors by TEM and XRD 

(poster) 

 Oliver Oeckler, Tobias Rosenthal, Markus Seibald, Wolfgang Schnick 

22nd Congress and General Assembly of the International Union of Crystallography, 

Madrid (Spain), 22.-30. August 2011. 

 

8. Diffuse Streuung und Domänenstruktur von Sr0.47Ba0.53Si2O2N2 (poster) 

Markus Seibald, Oliver Oeckler, Wolfgang Schnick 

15. Vortragstagung der Fachgruppe Festkörperchemie und Materialforschung der 

Gesellschaft Deutscher Chemiker, Berlin, 20.-22. September 2010. 

 

9. Real-structure effects of luminescent layered oxonitridosilicates (talk) 

Oliver Oeckler, Markus Seibald, Juliane A. Kechele, Florian Stadler, Tobias 

Rosenthal, Hans Koss, Wolfgang Schnick 

26th European Crystallographic Meeting, Darmstadt, 29. August-2. September 2010. 

 

10. Geordnete Unordnung in SiONen (talk) 

 Markus Seibald, Oliver Oeckler, Vinicius R. Celinski, Wolfgang Schnick 

 Festkörperchemie-Seminar Hirschegg, Hirschegg, 3.-6. Juni 2010. 

 

11. Metastabile Überstrukturphasen im System Ge-Sb-Te (poster) 

Matthias N. Schneider, Markus Seibald, Oliver Oeckler   

14. Vortragstagung der Wöhler-Vereinigung, Garching, 8.-10 Oktober 2008. 
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E CSD numbers 

 

Crystallographic data (cif file) of investigated compounds can be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax, 

(+49)7247-808-666; e-mail, crysdata@fiz-karlsruhe.de) by quoting the corresponding 

depository number. 

 

Ba3Si6O12N2 CSD-421322 

Ba2.56Sr0.44Si6O12N2 CSD-421324 

Ba2SrSi6O12N2 CSD-421323 

SrSi2O2N2 CSD-425649 

Sr0.5Ba0.5Si2O2N2 CSD-422238 

Sr0.25Ba0.75Si2O2N2 CSD-424289 

Mg3GaN3 CSD-425108 

Li2Ca3[N2]3 CSD-426449 

 

 


