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Zusammenfassung

Edge localised modes (ELMs) sind magnetohydrodynamische (MHD) Instabilitäten, die am
Rand von magnetisch eingeschlossenen Fusionsplasmen auftreten, wenn diese sich in der so-
genannten high confinement mode (H-Mode) befinden. Sie führen zu periodischen Energie-
sowie Teilchenverlusten und begrenzen dadurch die Qualität des Einschlusses. Außerdem
verursachen sie eine erhebliche Wärmebelastung der Gefäßwände, die in größeren Maschi-
nen der nächsten Tokamak-Generation möglicherweise nicht mehr zu bewältigen sein wird.
Die genaue Natur dieser Instabilitäten ist jedoch noch unklar. Die gängigste Theorie, mit
der ELMs üblicherweise beschrieben werden, ist die sogenannte peeling-ballooning Theorie.
Diese postuliert, dass von kritischen Druckgradienten und Stromdichten getriebene Moden
für ELMs verantwortlich sind. In der vorliegenden Arbeit wird dieses Modell mit experi-
mentellen Daten, die am ASDEX Upgrade Tokamak gemessen wurden, getestet. Zum ersten
Mal wird eine breite Auswahl an ELM-Szenarien mit derselben Methodik hinsichtlich ihrer
Stabilität untersucht. Der Vergleich zwischen Theorie und Experiment wird in mehreren
aufeinander aufbauenden Schritten durchgeführt. Zunächst werden kinetische und magneti-
sche Messungen mit Hilfe des Grad-Shafranov Gleichungslösers CLISTE zu einem Plasma-
gleichgewicht kombiniert, das dann mittels des Computerprogrammes HELENA verfeinert
wird. Schließlich wird die Stabilität dieses Gleichgewichtes mit ILSA, einem linearen MHD
Stabilitätscode, berechnet.

Theoretisch sollte das peeling-ballooning Modell für alle Typ-I ELM-Szenarien gültig sein.
Daher wird in dieser Arbeit die Stabilität von einigen verschieden H-Moden, in denen Typ-I
ELMs vertreten sind, auf peeling-ballooning Moden untersucht. Manche dieser Szenarien
sind mit dem Modell konsistent, in anderen treten ELMs jedoch schon weit unter der idealen
MHD Grenze auf, oder diese Grenze kann weit überschritten werden. Kurz vor typischen
Typ-I ELMs liegt das Gleichgewicht meistens unter oder auf der Stabilitätsgrenze, wobei
eine erheblich Streuung zu beobachten ist. Zusätzlich wird eine H-mode, in die neben Deu-
terium auch Stickstoff eingeblasen wurde, untersucht. In dieser Entladung wird die Grenze
weit überschritten. In einer anderen Entladung liegen Druckgradient und Randstromdichte
auf der Stabilitätsgrenze, aber sinken wenn Mikrowellenheizung am Plasmarand angewandt
wird. Entgegen der Theorie steigt die ELM-Frequenz, obwohl sich das Gleichgewicht von der
Stabilitätsgrenze entfernt.

Andere Szenarien, in denen vermutet wird, dass ELMs nicht durch peeling-ballooning aus-
gelöst werden, werden auch untersucht. In Entladungen in denen Typ-II und Typ-III ELMs
auftreten, befinden sich Druckgradient und Randstromdichte weit unter der Grenze für
peeling-ballooning Stabilität. Dies deutet darauf hin, dass andere Mechanismen verhindern,
dass sich die kinetischen Profile weiter aufbauen. Das Verhalten der untersuchten Typ-III
ELMs ist konsistent mit der Hypothese, dass sie von resistiven Austauschinstabilitäten aus-
gelöst werden.

Die Möglichkeit, ELMs durch gefrorene Deuterium Pellets auszulösen, wird erforscht. In Ent-
ladungen, die durchgeführt wurden, als die Gefäßwände durch Kohlenstoffkacheln geschützt
wurden, war es möglich, zu jedem beliebigen Zeitpunkt in einer H-Mode ELMs durch Pellet-
injektion auszulösen. Seit wolframbeschichtete Kacheln verwendet werden, ist es jedoch nur
dann möglich ELMs auszulösen, wenn eine bestimmte Verzögerungszeit seit dem vorherge-
henden ELM verstrichen ist. Diese Verzögerung kann erheblich reduziert werden, indem
Stickstoff in das Gefäß eingeblasen wird. In H-Moden mit Wolfram als Material der ersten
Wand, mit oder ohne Stickstoffblasen, ist es möglich ELMs durch Pellets auszulösen, wenn
sich der Druckgradient und die Stromdichte am Plasmarand 20% unter der Schwelle für spon-
tane ELMs befinden. Da der ELM-induzierte Kollaps des Druckprofils am Plasmarand in der
Wolframmaschine und ohne Stickstoffblasen am stärksten ist und die Erholung des Profils



langsamer erfolgt, ist auch die Verzögerungszeit für das erfolgreiche Auslösen von ELMs durch
Pellets länger.
Aktuelle Vorhersagen der ITER Randgradienten werden auch unter Verwendung des peeling-
balloning Modells untersucht. Die Ergebnisse zeigen, dass die Vorhersagen sehr optimistisch
sind, aber dass das Plasma mit Temperaturen und Dichten, die 30% unter den Werten der
Vorhersagen liegen, stabil wäre.
Einige der Ergebnisse in dieser Arbeit stellen die Gültigkeit des peeling-balloning Modells
in Frage. In vielen der dargestellten Fälle treten ELMs deutlich unter dem Schwellwert
für peeling-ballooning Stabilität auf. In einem Fall wird dieser Wert wiederum erheblich
überschritten. Die vorgestellten Ergebnisse zeigen, dass das peeling-ballooning Modell nicht
ausreichend ist, um das Auftreten von ELM-Instabilitäten vollständig zu erklären. Vielmehr
ist ein weiterer, noch unbekannter Auslösemechanismus erforderlich.



Abstract

Edge localised modes (ELMs) are magnetohydrodynamic (MHD) instabilities that occur at
the edge of magnetically confined fusion plasmas. They periodically expel particles and energy
from the confined region. In addition to limiting the confinement, they cause high heat fluxes
to the walls of the tokamak which may not be manageable in larger, next-generation devices.
However, the exact nature of the instabilities that drive ELMs is still unknown. The most
commonly invoked theory to explain the occurrence of ELMs is the peeling-ballooning model
which posits a critical edge pressure gradient and current density. In this thesis, this model is
tested against experimental data gathered at the ASDEX Upgrade (AUG) tokamak. For the
first time, a broad selection of ELM scenarios is analysed with respect to ideal MHD stability
using the same methodology. The comparison of experiment and theory is performed using
a stability analysis chain, which consists of combining kinetic and magnetic measurements to
generate self-consistent plasma equilibria with the Grad-Shafranov solver CLISTE, refining
this equilibrium with the HELENA code, and, finally, determining its stability using ILSA,
a linear MHD stability code.
In theory the peeling ballooning model should apply to all type-I ELM scenarios. Therefore,
the stability of several different type-I ELMy H-mode plasmas is analysed with respect to
peeling ballooning modes. While some of them are consistent with the model, in others ELMs
occur well below or above the ideal MHD stability limit. The standard type-I ELMy H-mode
regime exhibits considerable variations with equilibria both well below and at the stability
limit depending on the discharge. In addition, a nitrogen-seeded case in which the edge
pressure gradient greatly exceeds the stability limit is identified. In another discharge, the
edge pressure gradient and current density, which are on the threshold for marginal stability,
relax when edge heating is applied. Contrary to the theory, as the equilibrium becomes more
stable against peeling-ballooning modes, the ELM frequency actually increases.
Other scenarios in which peeling-ballooning modes are not thought to be the ELM trigger are
also examined. In discharges featuring type-II and type-III ELMs the edge pressure gradient
and current density are well below the threshold for peeling-ballooning instabilities, consistent
with expectations. This indicates that other mechanisms must be present that prevent the
kinetic profiles from building up. The behaviour of the analysed type-III ELMs is consistent
with the hypothesis that they are driven by resistive interchange modes.
The feasibility of triggering ELMs via frozen deuterium pellets is also examined in detail. In
discharges performed when the walls of AUG were protected by carbon tiles, pellets triggered
ELMs whenever they were injected into an H-mode plasma. In the tungsten-walled AUG,
however, it is only possible to trigger ELMs after a specific lag time has elapsed since the
previous ELM. This lag time can be significantly reduced, though not eliminated, when
injecting nitrogen into the divertor. In the tungsten-walled AUG, with and without nitrogen,
it is possible to trigger ELMs via pellets when the pedestal pressure gradient and the edge
current density are 20% below the threshold for spontaneous ELMs. Since the ELM-induced
collapse of the plasma edge pressure profile is strongest in the unseeded tungsten machine
and the profile recovery is slower, the lag time for successful triggering is longer.
Recent extrapolations of the ITER pedestal are also tested using the peeling-ballooning
model. It is found that the predictions are very optimistic, but that stability could be
achieved with temperatures and densities which are 30% lower than in the extrapolations.
Some of the results presented in this thesis question the validity of the peeling-ballooning
theory. In many of the presented cases, ELMs occur well below the threshold for peeling-
ballooning stability and in one case well above. The presented results indicate that the
peeling-ballooning model is insufficient to fully explain the triggering of ELM instabilities.
Rather, another as yet unknown trigger mechanism is required.





CONTENTS

Contents

1 Introduction 1
1.1 High confinement mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Edge localised modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Scope of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theory and codes 9
2.1 Bootstrap current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Equilibrium, CLISTE and HELENA . . . . . . . . . . . . . . . . . . . 13
2.3 ILSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Stability chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Heating systems and diagnostics 19
3.1 Neutral beam injection . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Electron cyclotron resonance heating . . . . . . . . . . . . . . . . . . . 20
3.3 Magnetic measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Charge exchange recombination spectroscopy . . . . . . . . . . . . . . . 23
3.5 Electron cyclotron emission . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Thomson scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Lithium beam impact excitation spectroscopy . . . . . . . . . . . . . . 26
3.8 DCN interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 Integrated data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.10 Combining the diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Optimisation and limitations of the stability chain 31
4.1 Comparison between different codes . . . . . . . . . . . . . . . . . . . . 31
4.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Choice of Ψb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Effect of Ψb on the mode width . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Ion diamagnetic drift stabilisation . . . . . . . . . . . . . . . . . . . . . 41
4.6 Finite resistivity effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.7 Effects of a realistic density profile . . . . . . . . . . . . . . . . . . . . 43
4.8 Influence of measurement errors . . . . . . . . . . . . . . . . . . . . . . 44
4.9 Final parameters used in the stability calculations . . . . . . . . . . . . 46

5 Results 49
5.1 Type-I ELMs: peeling-ballooning stability in typical H-modes . . . . . 49
5.2 Type-III ELMs: small ELMs close to the L-H threshold . . . . . . . . . 56
5.3 Type-II ELMs: strongly fuelled discharges close to double null . . . . . 58
5.4 Type-I ELM mitigation at high densities . . . . . . . . . . . . . . . . . 61
5.5 N-seeded ELMs: ELM mitigation by nitrogen seeding . . . . . . . . . . 65
5.6 ELM triggering via frozen deuterium pellets . . . . . . . . . . . . . . . 70
5.7 Influence of edge ECRH heating on peeling-ballooning stability . . . . . 78
5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Implications for ITER 87

i



CONTENTS

7 Conclusions and outlook 93

Appendices 97

A Derivation of the MHD equations used in ILSA 97

B Solver 101

ii



1 Introduction

As a result of the rising energy demand and the growing desire to be independent
of fossil fuels, it is now more important than ever to explore new energy sources.
Nuclear fusion is a promising candidate to take over the base load of energy production
and significant progress has been made in the last decades on the path to a working
power plant prototype. Present day fusion research mainly looks into the hot fusion
of deuterium (D) and tritium (T) [1]. Of all considered reactions, D-T has the highest
cross section with a maximum at achievable collision energies. This fusion reaction
produces energy according to the equation

D + T −→ 4He + n + 17.59MeV, (1.1)

where the created helium nucleus carries 3.54MeV and the neutron 14.05MeV of the
kinetic energy. Reactor designs foresee that the fuel, which at fusion relevant tempera-
tures will take the form of a plasma, will burn in a sealed vacuum chamber. The walls,
being bombarded by the hot neutrons created in the fusion reaction, will have to be
actively cooled. The water or liquid metal that is used as coolant will then be used
to create electric power through the use of turbines as is done in conventional power
plants. The use of a liquid metal coolant containing lithium is promising because it
allows to breed the tritium required for the operation of the reactor [2]. Current design
concepts suggest that lithium could flow through a so-called breeding blanket, absorb
neutrons created in the D-T reaction and decay into tritium and Helium.
To maximise the fusion rate three main parameters have to be optimised. The first
one is the energy confinement time τE, which is defined as the total energy of the
plasma divided by the amount of power necessary to sustain it. The density n must
also be maximised, because the more particles that reside in a given volume, the
higher the chance that two will collide. The optimal value for the third parameter,
the temperature T , was determined via power balance calculations to be 150 million
degrees centigrade, or 13keV. Ideally, after this temperature is reached via auxiliary
heating methods it will be sustained by collisions between the hot alpha particles
created by fusion reactions and the thermal plasma particles. We call this situation
ignition.
In a fusion reactor, contact between the plasma and the reactor walls must be avoided
because at fusion relevant temperatures contact would damage the vacuum vessel and
immediately cool down the plasma, shutting down the self-sustained fusion reactions.
One of the most promising approaches to contain the plasma is magnetic confinement
fusion (MCF), which consists of trapping the charged plasma particles on magnetic
field lines. While they can travel freely along the field lines, their perpendicular ve-
locity is limited to a gyro-motion. Present day MCF research mainly explores toroidal
configurations because they avoid the end losses that occur in linear devices. However,
this configuration gives rise to other particle losses. The general effect of a force
on charged particles that gyrate around magnetic field lines can be derived from the
guiding centre ansatz [4]. A force perpendicular to the magnetic field will result in a
drift of the gyrating particles. This drift is perpendicular to both the force and the
magnetic field and is given by

vD =
F×B

qB2
. (1.2)

1
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Major radius R

Minor radius r

Figure 1.1: The E×B−drift results in radial losses [3]

Two drifts, which both point in the vertical direction, arise directly from the toroidal
magnetic configuration, the curvature drift and the ∇B drift. The first one is due to
the centrifugal force, since the hot particles can move freely on the magnetic field lines,
effectively following a circular trajectory. Acting radially outwards, this force causes an
upward drift of the ions and a downward drift of the electrons for the geometry shown
in figure 1.1 because of the charge dependence in equation 1.2. The second drift is due
to the inhomogeneous magnetic field. The magnetic field on the inside of the ring will
necessarily be stronger than on the outside, which is why the inboard side is also called
the high field side (HFS) and the outboard side the low field side (LFS). Since the
gyro-radius depends on the local magnetic field, the orbit of the charged particles in a
tokamak is not perfectly circular. This results in a drift in the same direction as the
curvature drift. The charge dependence of those two drifts leads to a charge separation
(see figure 1.1). The resulting electric field, pointing in the z-direction, creates an E×B
drift that causes the plasma to drift radially outwards so quickly that the discharge
can not be sustained for long. To prevent charge separation it is sufficient to add a
magnetic field in the poloidal direction, thereby twisting the magnetic field lines and
redistributing the particles evenly in the plasma.

In the tokamak concept, which has been studied since the 1950s, the poloidal field
is generated by driving a toroidal plasma current. This current is induced using a
transformer coil, a solenoid placed in the centre of the torus. The plasma itself, with a
low resistivity of around 10−9Ωm, acts as the secondary winding of a transformer. In
present-day devices, a loop voltage of around 1V is usually sufficient to drive a current
greater than 1MA. Like a transformer, a tokamak is inherently run in pulsed mode, but
new techniques are currently being developed to drive non-inductive current, thereby
increasing the discharge length. For example, current can be driven using microwaves
as will be described in section 3.2.

As can be seen in figure 1.2a, the twisted field lines in a tokamak plasma form closed
surfaces, called flux surfaces. The center of the innermost flux surface is called the
magnetic axis. After a certain number of toroidal and poloidal turns, depending on
the toroidal magnetic field and the current density profile, a twisted field line closes
onto itself. These surfaces are called rational flux surfaces. This is the case when the

2
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Figure 1.2: Simplified representation of a tokamak (left) [3], cross-section of the
ASDEX Upgrade tokamak (right) [IPP database]

so-called safety factor

q =
r

R

Bt

Bθ

(1.3)

is a rational number. R is the major radius (distance of the magnetic axis to the
central axis of the transformer coil, see figure 1.1), r is the minor radius (distance of
the considered point from the magnetic axis), Bt is the toroidal magnetic field and Bθ

is the poloidal magnetic field. Figure 1.2b shows the poloidal cross section of ASDEX
Upgrade (AUG) including a plasma. The innermost flux surface is not at the centre
of the plasma, but has a slight outward shift called the Shafranov shift. It is due to
the kinetic pressure of the plasma and the j×B force from the plasma current, which
also exists in a simple current loop [5]. These two forces, called hoop forces, move the
plasma radially outward. Applying a homogeneous magnetic field in the z-direction
using a pair of Helmholtz coils prevents this radial movement of the plasma (vertical
field coils in figure 1.2a).
An actual tokamak plasma like the one sketched in figure 1.2a would extend out to
the wall or other limiting components and is, therefore, called a limiter plasma. Such
limiter plasmas have the disadvantage that the bulk plasma is in constant contact with
the wall or limiter materials, thereby damaging the material structure and accumu-
lating the melted or sublimated materials in the main plasma. The higher the charge
Z of these impurities, the more they cool the plasma because of high bremsstrahlung
and, if the temperature is not high enough for them to be fully stripped of electrons,
line emission. If the plasma cools down too much it can lead to a current quench, dis-
rupting the discharge. While lower Z impurities don’t have such a great impact on the
plasma temperature, they are also unfavourable since they dilute the D-T fuel, thereby
decreasing the fusion reaction rate in a reactor. Uncontrolled impurity accumulation
must, therefore, be avoided at all cost. This is especially true for machines like AUG [6],

3
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the recently upgraded Joint European Torus [7] and ITER [8], which all have, or will
have in the case of ITER, a full metal wall containing the high Z element tungsten
(W). To control the impurity content in the bulk plasma, these three machines, as well
as most modern tokamaks, were designed using the divertor principle. Instead of the
main plasma being limited by the wall, an additional coil which is usually mounted
under the vessel carries a current parallel to the plasma current. The magnetic field
from this coil and the poloidal field from the plasma Bθ combine to zero at the so-called
X-point (see poloidal cross section of the plasma in figure 1.2b). The flux surface con-
taining the X-point is called the last closed flux surface (LCFS) or separatrix, because
it separates the closed flux surfaces inside from the open ones outside. Typically, AUG
plasma discharges are run in lower single null (LSN), which means that the X-point
is at the bottom. However, it is also possible to run discharges in double null (DN)
with the separatrix containing two X-points, one at the bottom and one at the top, or
in upper single null (USN). The field lines outside of the separatrix hit vessel compo-
nents before closing onto themselves, which means that the plasma is not contained, or
scraped off. This region is, therefore, called the scrape off layer (SOL). The open flux
surfaces in the divertor geometry result in the presence of two separatrix legs under
the X-point. Since the velocity of charged particles parallel to the field lines is much
higher than their radial velocity, most plasma losses crossing the separatrix into the
SOL travel toward the wall parallel to these legs. For this reason, so-called divertor
plates are mounted in the path of the separatrix legs (see figure 1.2b). These plates are
usually built from carbon or metals with a high melting point like tungsten, and can
be actively cooled. Since in a divertor tokamak the bulk plasma is not in contact with
vessel components, higher core plasma temperatures can be reached and the impurity
content can be kept low. However, all particle and non-radiative energy losses from the
plasma impact the divertor plates on a very small surface, which may cause significant
problems for future bigger machines like ITER due to high heat fluxes [9].

1.1 High confinement mode

While in a tokamak the individual ions and electrons are confined to magnetic field lines,
turbulence and collisions between particles cause radial transport, leading to particle
losses. Turbulent transport, which increases with temperature and density gradients,
imposes limits to these gradients. As a consequence, density and temperature profiles
are constrained by profile stiffness. A profile f(r) is stiff if

d

dr
ln (f(r)) = const. (1.4)

The low confinement mode (L-mode) was the first mode of operation run in a tokamak.
To illustrate the effect of profile stiffness, a typical L-mode pressure profile is shown in
green in figure 1.3.
However, a revolutionary discovery was made at the ASDEX tokamak in 1982 [10,11],
when a new operational regime was found that overcomes profile stiffness at the plasma
edge. This new regime is called high confinement regime, or H-mode. Figure 1.3
shows representative H- and L-mode pressure profiles, plotted against the minor radius
normalised to the separatrix location. While core gradients are still limited by profile
stiffness, in H-mode the edge profile is much steeper than in L-mode. Therefore, the
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Figure 1.3: Representative plasma pressure profiles during different modes of operation

whole profile sits on a so called pedestal, dramatically increasing the confined amount of
energy and particles. In most present day tokamaks, H-mode is achieved by increasing
the heating power of the plasma over a certain density-dependent threshold [12]. The
steeper edge gradient originates from an edge transport barrier (ETB), a region at the
edge of the confined plasma in which radial particle and heat transport is significantly
reduced. In general, turbulent convection cells limit the pressure gradient by increasing
the radial transport of plasma particles. These convection cells can be torn apart if the

#8595
∆ r

a b

Figure 1.4: Schematic representation for the reduction of turbulent convection cells
(a) and experimental evidence of reduced density fluctuations achieved in H-mode

operation on AUG (b) [3]. The dashed red line indicates the transition into H-mode.

E×B rotation velocity of the plasma is sheared. The remaining cells are much smaller,
as is shown schematically in figure 1.4a. It has been shown that the E × B rotation
velocity shear at the edge is higher in H-mode than in L-mode [13], supporting the idea
that this shear is responsible for the ETB and leads to an L-H transition. Experimental
evidence confirming the reduction of turbulence when the plasma reaches H-mode is
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presented in figure 1.4b. In this spectrogram, the level of density fluctuations measured
via Doppler reflectometry is shown. When the plasma reaches H-mode at t=1.705s the
turbulence level is drastically reduced.

1.2 Edge localised modes

The steep gradients associated with ETBs provide a source of free energy for mag-
netohydrodynamic (MHD) instabilities. Therefore, H-mode plasmas are usually ac-
companied by the appearance of so-called edge localised modes (ELMs) [14]. These
periodically occurring instabilities expel particles and energy from the plasma edge
into the SOL in short time intervals of around 1ms. While smaller ELMs only affect
the pedestal region, lowering the edge gradients and the height of the pedestal top, in
some cases the ELM-affected area can extend in to the mid-radius of the plasma. In
figure 1.5 ELMs are indicated by vertical dashed lines. Panel a shows the time traces
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Figure 1.5: Time traces of divertor shunt measurements (a), the edge line averaged
electron density (b), the edge electron temperature (c), the plasma stored energy (d)
and the position of the outer separatrix (e) in a typical AUG H-mode discharge.

from shunt measurements in the outer (black) and inner (red) divertor of AUG, which
are roughly proportional to the divertor temperature. After every ELM the divertor
temperature increases for a couple of milliseconds due to the hot plasma particles ar-
riving along the open field lines. The loss of these hot particles causes the edge density
(panel b) and temperature (panel c) to drop. A corresponding drop in the total energy
confined in the plasma can also be seen in panel d. ELMs also lead to a contraction of
the plasma volume, which means that the separatrix moves inwards at the outboard
side (panel e) and outwards at the inboard side (not shown) [15]. ELMs that occur
in a stable discharge with constant global plasma parameters are typically very repro-
ducible. Figure 1.6 shows how the maximal edge ne and Te gradients evolve over the
course of 105 type-I ELM cycles, which is the most common ELM type occurring in
AUG H-mode plasmas. The data are synchronised to the ELM onset. After the sudden
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Figure 1.6: Maximal electron temperature (a) and density (b) gradient over a full
ELM cycle and selected profiles (c-j) [16]

collapse of the gradients the recovery takes place over several distinct phases [17]. The
origin of the ELM losses becomes obvious when comparing panel c with d and e with
f in figure 1.6, which show the edge electron temperature and density profiles at two
different times in the ELM cycle. ρp is the normalised minor radius and is defined in
equation 3.5. Outside of a normalised radius of 0.9 the temperature profile collapses.
The density profiles pivots around the separatrix. Between 0.85 and 1.0 the density
decreases, while the SOL density increases.
ELMs can typically be categorised into three types [14]:

� Type-I ELMs are the biggest ELMs occurring in tokamaks. They are also the
most common ones since they occur in strongly heated H-mode discharges with
high confinement, and most experiments are run using scenarios of optimised
plasma performance. The induced losses are typically on the order of 5% to 10%
of the total plasma stored energy, but can also reach up to 40%. Type-I ELMs
can be identified by their frequency, which increases with higher heating power,
and by their size.

� Type-II ELMs occur at high densities in plasmas close to double null. Unlike
type-I ELMs, which appear as big distinct events in the divertor temperature,
edge temperature, and edge density signals, type-II ELMs cannot necessarily be
distinguished from one another. Rather, they appear as fluctuation-like events.
In addition, type-II ELMs are characterised by broad band magnetic fluctuations
between 30 and 50kHz [18, 19]. The per-ELM energy losses induced by type-II
ELMs are very small.

� Type-III ELMs occur just above the H-mode power threshold. Starting from
very small events with a frequency above 1kHz when the heating power is just
above the threshold, they gradually change into bigger, more easily distinguish-
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1 INTRODUCTION

able crashes whose frequency decreases as the heating power is ramped up. Even-
tually, if the power is increased sufficiently, the type-III ELMs give way to the
larger type-I ELMs. Type-III ELM losses typically lie under 2%.

ELMs do have beneficial effects, since they flush out impurities, cleansing the plasma,
but the released energy may still pose a danger to the machine. In current fusion
experiments the ELM induced heat loads on the divertor target plates are typically
under the material limits of the plasma facing components (PFC). Future fusion reac-
tors, however, will contain a much bigger plasma volume than present-day devices and
their ELM-induced peak heat fluxes are predicted to greatly exceed the tolerable limit
of 10MWm−2 [20].

1.3 Scope of this work

Since ELMs will pose a threat to the PFCs of future fusion devices, it is important to
find ways to mitigate or suppress them. However, we still don’t have a fundamental
understanding of what drives them. While several theories attempt to explain the oc-
currence of ELMs, the most prevalent one being the peeling-ballooning theory which
will be presented in chapter 2, they do not always succeed in describing the experi-
mental data. The aim of this thesis is to analyse the main ELM regimes accessible in
AUG. The experimental data will be compared to the theoretical peeling-ballooning
model in order to benchmark the theory. Several cases in which this widely accepted
model successfully predicts the occurrence of ELMs will be discussed. However, other
experimental conditions will also be presented in which the model fails, as the ELM
occurs far below or above the peeling-ballooning threshold for stability.
In addition to the peeling-ballooning theory, chapter 2 will introduce the concept of
a plasma equilibrium, present the stability code ILSA and describe the stability chain
used in this work. In chapter 3 the heating systems employed in the presented dis-
charges will be introduced, as well as the diagnostics used for the analysis. The numer-
ical limits of ILSA, a convergence study of different input parameters and the influence
of measurement errors on the final result of the code will be discussed in section 4.
The differences between typical type-I ELMs and other ELM regimes, as well as the
comparison of experimental data to the peeling-ballooning theory will be presented in
chapter 5. Important implications of these results for ITER will be discussed in chapter
6. Finally, chapter 7 will give a short summary of the results presented in this thesis.
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2 Theory and codes

The theoretical interpretation of ELMs has been the subject of intense research for
the last 30 years. The most widespread theoretical approach to explain the occurrence
of ELMs is the peeling-ballooning theory. It assumes a coupling between two type
of magnetohydrodynamic (MHD) instabilities, the pressure gradient driven ballooning
modes and the current driven peeling modes.

R

z

R

z

R

φ

φ

a b c

n=3

m=9

Figure 2.1: Schematic representation of an n=3, m=9 mode. The left figure is a
horizontal cut through the 3D plot in the middle, the right plot is the poloidal cross

section.

In general, modes in a tokamak can be described by their mode numbers n and m,
where n is the number of toroidal periods of the perturbation and m is the number
of poloidal periods. Figure 2.1 shows the deformation of the magnetic field caused
by an n=3, m=9 instability. The color coding in the 3D picture (b) denotes the
amplitude of the perturbation. The deformation shown in the toroidal cross-section
(a) is strongly exaggerated for clarity. The poloidal cross-section is shown in panel (c).
After 9 toroidal and 3 poloidal turns around the torus, the mode closes onto itself.
Since modes typically form standing waves along the field lines, causing specific modes
to be resonant on rational q surfaces according to m = nq, this mode is most likely to
be localised on the q=3 surface.
Ballooning modes are a specific form of pressure driven interchange instability. Inter-
change instabilities try to lower the energy of the system by interchanging two flux
tubes. If the magnetic field line curvature is concave toward the plasma (unfavourable
curvature), interchanging a longer flux tube with lower pressure from outside with a
shorter flux tube with higher pressure further inside can lower the potential energy.
While this is the case at the LFS, such an exchange at the HFS of the plasma where
the field line curvature is convex toward the plasma (favourable curvature) would lead
to a higher potential energy. In a tokamak, where the twisted field lines pass through
regions of favourable and unfavourable curvature, the average curvature is the deter-
mining factor. A sheared magnetic field can stabilise interchange instabilities because
it would require a minimum amount of field line bending when interchanging two flux
tubes. In a tokamak, this stabilisation is given by the Mercier criterion

−8
µ0p

′

B2
0

(1− q2) < r

(
q′

q

)2

(2.1)
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with the prime denoting the derivative to the minor radius r and B0 is the toroidal
magnetic field at the magnetic axis [21]. Since p′ is negative, in a tokamak interchange
instabilities are always stabilised if q is greater than 1. However, if the amplitude
of a perturbation varies along a field line and is stronger in regions of unfavourable
curvature, the argument of average curvature is no longer valid. The resulting insta-
bilities, so-called ballooning modes, can exist if the pressure gradient is too high for
the field line bending that accompanies the modes to be able to stabilise them. These
modes are localised on the low field side of a tokamak, typically have high toroidal and
poloidal mode numbers (n=20 and higher) and a small radial extent. Figure 2.2 shows

Figure 2.2: s-alpha diagram showing the stable (white) and unstable (dashed) region
for infinite-n ballooning modes [1]

the stable and unstable region for ballooning modes in s − α space, where α is the
normalised pressure gradient and s the magnetic shear. Like interchange instabilities,
ballooning modes are stabilised by magnetic shear. However, a second stability region
exists at very low shear and high pressure gradient in which increasing the shear would
destabilise the plasma (region (2) in figure 2.2). In this simple picture the second sta-
bility regime is not accessible because the unstable region extends to the origin of the
s−α space. However, a strong shaping of the plasma can alter the stability boundary
in such a way that the second region is accessible. In this case, a high localised current
density can lead to a flat local q-profile and stabilise the ballooning mode.
Peeling modes are another type of instabilities which, at low plasma pressure, are
driven by the toroidal current density and its radial gradient [1, 22]. Peeling modes
can be unstable if the resonant q surface (q=m/n) is located in the vacuum region
outside of but close to the LCFS and are stabilised if the resonance resides inside the
confined plasma. These modes have a broader radial extent and typically low n and
m mode numbers. It is believed that a coupling that takes place between the peeling
and the ballooning modes is responsible for the occurrence of ELMs. An overview of
this coupling with a focus on the role of the edge current density is given by Snyder et
al. [23].
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Figure 2.3: Schematic representation of an ELM-cycle in terms of normalised
pressure gradient and edge current density [24]

The main current that contributes to the destabilisation of the peeling modes, the
bootstrap current, is introduced in section 2.1. To understand the following description
it is important to know that this current is driven by the pressure gradient. Figure 2.3a
shows a schematic representation of the theory describing a type-I ELM cycle j − α
space, where j is the current density [24]. The red curve marks the peeling-ballooning
boundary. In the upper left region the unstable modes are primarily current-driven
(peeling) whereas in the lower right corner they are mainly pressure gradient driven
(ballooning). The model suggests that an ELM cycle consists of three phases:

1. The pressure gradient builds up until it reaches the ballooning limit, but the
current density has a certain resistive delay.

2. The bootstrap current builds up as well, until the joint peeling-ballooning limit
is reached.

3. The ELM crash occurs and both the pressure gradient and current density relax,
until the cycle starts again.

However, the delay in the recovery of the bootstrap current mainly depends on the
current diffusion time scale. It was shown both using a simple theoretical model [17]
and experimentally [25] that at AUG this only plays a minor role. The pressure gradient
and the edge current density recover nearly simultaneously.
After introducing the bootstrap current in section 2.1, section 2.2 discusses the concept
of plasma equilibria and presents the codes that were used in this work to generate
them. Computing such equilibria is necessary because the instabilities described in the
peeling-ballooning theory do not only depend on local parameters but also on global
profiles, and because modes that have their maximum amplitude at different radial
locations can still couple. The stability of a plasma against peeling-ballooning modes
can be calculated numerically by using codes like ILSA, which was the main tool used
in this work. The equations used in ILSA are described in section 2.3 and the solver
itself is presented in appendix B. Rather than just calculating the stability of the
generated equilibrium it is also interesting to find out where it lies with respect to the
peeling-ballooning boundary in j−α space. A description of how to create experimental
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diagrams analogous to the sketch shown in figure 2.3 and an overview on the stability
chain that was run to produce the results presented in this thesis are given in section
2.4.

2.1 Bootstrap current

All theories that attempt to explain ELMs describe them as a combination of pressure
gradient and current driven instabilities. In an H-mode plasma, a high edge pressure
gradient results from the ETB (see section 1.1). In turn, this gradient leads to a
high edge current density, the so-called bootstrap current, and together they drive the
peeling-ballooning modes.
The bootstrap current is due to magnetic mirror effects which occur as a result of
the conservation of both the kinetic energy E = mv2/2 and the magnetic moment
µ = mv2⊥/2B [1, 26], where m is the mass, v the total velocity and v⊥ the gyration
velocity of the charged particle. Particles with a high v⊥/v∥ ratio are reflected at the
HFS of the plasma when the magnetic field meets the condition

B = Bmin

[
1 +

(
v∥0
v⊥0

)2
]
, (2.2)

with v∥ being the velocity parallel to the magnetic field lines. The index 0 denotes the
velocities at the position of minimum magnetic field Bmin along the particle orbit.

Figure 2.4: Banana orbits (a) and parallel velocity distribution of charged particles in
a tokamak without (b) and with (c) collisions [26]

In a tokamak the magnetic field is roughly proportional to the inverse of the major
radius R and this condition is met for particles whose velocity distribution satisfies
(v∥0/v⊥0)

2 < 2r/(R0 − r). These particles are called trapped or banana particles
because they bounce back and forth on an orbit, the poloidal projection of which
resembles a banana as can be seen in figure 2.4a. In the presence of a density gradient,
more particles will orbit in one direction than in the other at any given point, leading to
a net current. The overpopulation of trapped particles with negative v∥ can be seen in
figure 2.4b. However, the resulting current only plays a minor role compared to the total
bootstrap current. Rather, the trapped particles give some of their parallel velocity to
passing ions and electrons via collisions, which leads to the velocity distribution shown
in figure 2.4c. The passing ions and electrons carry the bulk of the bootstrap current.
While in first order the bootstrap current is roughly proportional to the pressure gra-
dient, the more complete formula derived by Sauter et al. [27, 28] was used to predict
the ITER current density necessary for chapter 6.
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2.2 Equilibrium, CLISTE and HELENA

The general concept of a tokamak equilibrium is that a force balance is achieved such
that the topology of the nested flux surfaces does not change over time. Therefore,
no net force can act on the plasma, which means that the kinetic pressure must be
balanced by the magnetic force at all points following

j×B = ∇p, (2.3)

which implies j · ∇p = 0 and B · ∇p = 0. Therefore, the magnetic field lines and the
direction of current flow lie on surfaces of constant pressure. At each surface, Ψ is
defined as the magnetic flux inside this surface. Since Ψ is constant on a flux surface,
this also implies B · ∇Ψ = 0.
For a cylindrical coordinate system in which the z-axis corresponds to axis of symmetry
of the toroidal configuration, an equation can be derived that enables us to calculate
the field line topology of an axisymmetric plasma [1,21]. This equation, known as the
Grad-Shafranov equation, takes the form

R
∂

∂R

1

R

∂2Ψ

∂R
+
∂2Ψ

∂z2
= −µ0R

2p′ − µ2
0ff

′, (2.4)

where R and z are the coordinates in the cylindrical system, f = RBϕ/µ0 and the
prime denotes the derivative with respect to Ψ. The right hand side of the equation
contains the toroidal current density

jϕ = Rp′ +
µ0

R
ff ′. (2.5)

Two main types of solvers for the Grad-shafranov equation exist, predictive and inter-
pretative solvers. While predictive codes require the p′ and ff ′ profiles to be known,
interpretative solvers infer them from magnetic field measurements from coils mounted
in the vessel outside the plasma. In this work, both types of codes were used.
The interpretative equilibrium solver CLISTE [29, 30] is a further development of the
Garching equilibrium code written by K. Lackner [31]. It uses data from flux loops
and poloidal and radial magnetic field measurements at AUG (see also section 3.3)
to generate a basic magnetic equilibrium. While the total normalised pressure β and
current Ip are very accurate, the strong edge variation of the pressure gradient and
current density profile is only poorly reflected. Constraining the edge pressure profile
leads to a much higher accuracy in the final equilibrium. This can be seen in figure
2.5, in which the black profiles were obtained by constraining the edge pressure profile
in CLISTE and the red profiles by only using magnetic data. With kinetic constraints
the pressure profile (a) and its gradient (b) from the CLISTE equilibrium (solid black
line) match the experimental data very well (black crosses). When the pressure profile
is not constrained, however, the pressure profile is almost straight (red). Only a very
small peaking of the pressure gradient can be seen in the pedestal region. The local
toroidal edge current density at the LFS (c, solid lines) and the flux-surface-averaged
< j ·B > (c, dotted lines) are also much higher when the pressure profile is used as a
constraint to the equilibrium calculation. Without kinetic constraints the safety factor
q (d) and the magnetic shear increase monotonically toward the edge, while a region of
low shear exists between a normalised radius of 0.98 and 0.99 when the experimental
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Figure 2.5: Output profiles of CLISTE with (black) and without (red) kinetic
constraints, showing the pressure profile (a), its gradient (b), the edge current density

(c) and the safety factor (d)

pressure profile is included. The pressure gradient, the edge current density and the
magnetic shear, which are very important quantities in assessing the stability of the
plasma, are much more accurate when including the experimental pressure profile as a
constraint in CLISTE. In all equilibria presented in this work, the edge pressure profile
was, therefore, constrained by using the data from a combination of the diagnostics
presented in chapter 3.
In order to achieve the high degree of numerical accuracy required by stability codes, it
is necessary to re-calculate the equilibrium by using a predictive equilibrium solver. In
addition to the source profiles p′ and ff ′, the fixed boundary code HELENA [32] used
throughout this work requires the shape and location of the last closed flux surface.
Both HELENA and the stability code ILSA work in field aligned coordinates, which
implies that they cannot resolve the separatrix at which the safety factor q and the
magnetic shear reach infinity. Therefore, the equilibrium has to be cut off at a certain
radius which we call the cutoff parameter. The influence of this parameter on the final
stability of the plasma is discussed in sections 4.1 through 4.4. The high resolution
HELENA equilibrium serves as an input for the stability calculations to asses whether
a plasma is stable against peeling-ballooning modes.

2.3 ILSA

In general, two methods can be used to determine the stability of a system. The energy
principle method [33] is based on the change δW in potential energy of the considered
system when a small perturbation ξ is introduced. If a perturbation function ξ(r)
can be found such that δW becomes negative, the system is unstable. However, this
method only calculates whether the system is stable or not, whereas the normal mode
technique, which is used in the stability codes CASTOR and MISHKA, also gives a
linear growth rate. The normal mode technique solves linearised MHD equations for
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2.4 Stability chain

small perturbations. If a solution with a finite growth rate is found, the system is
considered to be unstable.
Appendix A describes the equations solved by the linear MHD codes CASTOR and
MISHKA-1 [34–36]. Starting from the general single-fluid MHD equations, one obtains
the following closed set of four equations, describing the nonlinear evolution of the
density ρ, the temperature T , the velocity v and the magnetic field B:

∂ρ

∂t
+∇(ρv) = 0, (2.6)

∂T

∂t
+ (v · ∇)T + (Γ− 1)T∇ · v = 0, (2.7)

ρ
∂v

∂t
+ ρ(v · ∇)v =

1

µ0

(∇×B)×B−∇p, (2.8)

∂B

∂t
= ∇×

(
v ×B− η

µ0

∇×B

)
. (2.9)

When setting the resistivity η to zero, these equations describe the ideal MHD model.
In ILSA, Γ can be freely chosen. For instance, Γ = 1 corresponds to an isothermic
process and Γ = Cp/CV to an adiabatic one, with Cp and CV the heat capacities
at constant pressure and volume, respectively. However, since incompressibility was
assumed in the stability calculations performed in this thesis, Γ was set to zero. After
linearising the problem one obtains four equations, A.24 through A.27, which are solved
by the CASTOR code. An extended version of the code also takes into account the
viscosity term Π [37].
A faster MHD code, MISHKA-1, uses a reduced set of equations [36]. It assumes an
equilibrium velocity v0 = 0 and takes into account only a pressure perturbation p1
instead of treating ρ1 and T1 separately. After the linearisation, one obtains equations
A.32 through A.34. These equations describe the general stability problem in terms
of the perturbed variables v1, p1 and the perturbed vector potential A1. Since in
MISHKA-1 the temperature and density perturbations are treated as one, the mass
continuity equation A.1 is not explicitly used.
The stability code ILSA [34] can solve the full set of linearised equations A.24-A.27, or
it can be run in MISHKA-1 mode (equations A.32-A.34). The solver itself is described
in Appendix B.
In this work, ILSA was run in MISHKA-1 mode using the ideal equations. Note that in
ideal MHD the eigenvalue λ is real, which means that the mode purely grows and does
not oscillate. However, the calculations are still performed using complex numbers and
the imaginary part of the result can serve as an indicator for the numerical accuracy
of the calculated growth rate γ, according to γ = Real(λ)± Im(λ).

2.4 Stability chain

The goal of this work is to compare the different ELM regimes accessible at AUG to
each other and to the widespread theoretical peeling-ballooning model. Data from the
magnetic and kinetic measurements described in chapter 3 are used to generate an
equilibrium with self-consistent pressure and current density profiles using CLISTE.
The resulting p′ and ff ′ profiles, as well as the calculated plasma boundary, are then
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2 THEORY AND CODES

used to generate a highly resolved equilibrium with HELENA. Before running the
actual stability code ILSA, the so-called j-alpha workflow is run. This subroutine of
HELENA allows us to systematically alter the current density and pressure profiles
independently before running HELENA again [38]. In this work, the pedestal pressure
width and the edge current density height were multiplied by different scaling factors.
Figure 2.6 shows how the pedestal pressure (a) and current density (b) are modified
using the j-alpha workflow. The profiles are plotted against Ψ, normalised to the
value at which the equilibrium was cut off. The scaling factor 1.00 corresponds to

0.80 0.85 0.90 0.95 1.00
0

5

10

15

P
re

ss
u

re
 [

k
P

a]

0.70
0.80
0.90
1.00
1.10
1.30
1.60

0.80 0.85 0.90 0.95 1.00
0.0

0.5

1.0

1.5

T
o

ro
id

al
 c

u
rr

en
t 

d
en

si
ty

 [
M

A
m

-2
]

1.50
1.40
1.30
1.20
1.10
1.00
0.90
0.80
0.70
0.60

Ψ
n

Ψ
n

AUG #23417

Pressure width

scaling factor

Current density height

scaling factor

a b AUG #23417

3 4 5 6 7
Normalised Pressure Gradient α

max
 

0.6

0.8

1.0

1.2

1.4

E
d

g
e 

C
u

rr
en

t 
 d

en
si

ty
 [

M
A

m
-2
]

      20

      20

      17

       7

       8

       7

      20

      20

      16

       7

       6

       4

      20

      19

      18

       7

       6

       5

      19

      18

      15

       7

       4

       5

      19

      17

       9

       8

       7

       7

       8

       5

       4

       5

       0

       0

       0

       4

       6

       7

       5

       6

       4

       5

       2

       2

       0

       2

       9

       4

       5

       6

       4

       5

0.04

0.05 0.06

c

      15

      12

      13

       9

      15

      14

      12

       9

      13

      13

       8

       8

      10

      12

       8

       8

Figure 2.6: Pressure (a) and current density (b) profiles scaled independently using
the j-alpha workflow, and corresponding stability diagram (c). The yellow star marks

the operational point, whereas the boxes are explained in the text.

the unaltered experimental equilibrium. This equilibrium is typically referred to as the
operational point. Since the pedestal pressure width is varied, a low scaling factor leads
to a high pressure gradient. The current density height is varied independently, and it
is increased by increasing the scaling factor. The core pressure and current density are
adjusted such that the total pressure β and current Ip stay the same as in the reference
equilibrium. After re-running HELENA using these profiles to obtain an equilibrium
for each, ILSA is run in MISHKA-1 mode independently for different toroidal mode
numbers to determine the stability of the generated equilibria. Thanks to the j-alpha
workflow it is possible to generate j − α diagrams like the one shown in figure 2.6c,
which is similar to the sketch shown in figure 2.3, but generated with real experimental
data. In this work, the normalisation for the pressure gradient was taken from Miller
et al. [24]:

α = −2V ′

4π2

√
V

2π2R0

µ0p
′, (2.10)

where the prime denotes the derivative to Ψ and V is the volume. The numbers in
figure 2.6c indicate the most unstable toroidal mode number at each grid point in
the j − α space. Every number corresponds to an equilibrium re-calculated using a
combination of one pressure and one current density profile from figure 2.6a and 2.6b,
respectively. The resulting grid allows us to scan the stability boundary, which is shown
as black lines. In the red region of the diagram the equilibria are unstable, in the blue
region they are stable. The green and orange regions in between are called marginally
unstable. The stability criterion is given in terms of the growth-rate γ normalised to
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2.4 Stability chain

the Alfven frequency νA. The critical value for stability chosen here is γ/νA = 0.06.
While this value is somewhat arbitrary, it accurately separates the region in which
ILSA finds clear unstable modes from the one where it does not find any instabilities
at all or only numerically unstable solutions. In the high current density and low α
region the mode numbers are small (current driven peeling-like instabilities), while in
the low current density and high α region high n numbers dominate (pressure driven
ballooning modes). Note that because j and α were not scanned down to zero, the
origin of the stability diagram is suppressed. Since Ip and β are kept constant when
running the j-alpha workflow, the pressure and density gradients further inside the
plasma would become very large when scanning the edge values down to zero and
internal modes would become unstable.
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Figure 2.7: Radial mode structure of the toroidal mode with highest growth rate of
three cases in figure 2.6c: the one marked by a green box (a, n=4), the operational
point indicated by the yellow star (b, n=12) and the one marked in purple (c, n=20)

The radial mode structures of the poloidal harmonics for the most unstable n of three
cases from figure 2.6c are shown in figure 2.7: an equilibrium in the peeling unstable
region (2.7a, green box in 2.6c), the operational point (2.7b, yellow star in 2.6c) and
a ballooning unstable equilibrium (2.7c, purple box in 2.6c). The color coding, which
indicates the poloidal mode number m, is not the same in the three plots because the
numbers are very different. While for current driven modes with low n values only a
few, but radially very extended, poloidal harmonics play a role, at high toroidal mode
numbers many narrow harmonics contribute.

When running ILSA, unstable equilibria converge within minutes or a few hours de-
pending on the radial grid resolution, the number of poloidal harmonics included in the
calculation, and how close the prescribed starting eigenvalue is to the actual result. A
stable equilibrium, however, will run until the number of allowed iterations is reached.
Running the whole grid at once would be very time consuming. To speed up the pro-
cess and avoid wasting computing resources, for every equilibrium the results from the
previously run toroidal mode numbers are extrapolated to compute the starting value
for the next run. Additionally, the calculations are started with the most unstable
equilibria (high α and high j) and the results from those equilibria are used as inputs
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2 THEORY AND CODES

for the surrounding grid points with slightly lower j and α. As soon as the boundary
is reached, the calculations are automatically stopped. In practice, this means that the
equilibria which, on the j−α grid, are surrounded by stable ones are not run in ILSA.
This enables the boundary to be scanned without wasting computing power and disk
space. While it seems from figure 2.6c that the gain resulting from this method is very
limited, it saved a considerable amount of time and resources when running some of
the diagrams shown in section 5 in which the stable region is much larger.
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3 Heating systems and diagnostics
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Figure 3.1: Toroidal (a) and poloidal (b) positions of heating systems and diagnostics
in the AUG vessel. The yellow arrows show the NBI paths and the ECRH mirrors are
shown in black. The path of the DCN lasers are shown in red and the TS lasers in

cyan. The lines of sight of the lithium beam (purple), the ECE diagnostic (green) and
the toroidal (red) and poloidal (blue) edge charge exchange diagnostic are also shown.

The yellow boxes represent the magnetic field measurement coils.

To attain fusion relevant temperatures auxiliary heating methods are needed in addition
to the Ohmic heating that is inherently present in tokamaks. In present day devices
such as AUG, these methods are used to not only heat the plasma, but also as tools
to alter it such that very specific physics questions can be addressed. Two different
AUG heating systems, neutral beam injection (NBI) and electron cyclotron resonance
heating (ECRH), were essential in designing the experiments used in this thesis. Figure
3.1a and b show the toroidal and poloidal positions of these heating systems. The path
of the NBI lines are shown in yellow and the mirrors of the ECRH system in black. The
operation of and physics principles behind these systems will be described in detail in
sections 3.1 and 3.2, respectively.
The goal of this thesis is to analyse the stability of the edge pedestal against pres-
sure and current driven instabilities. To achieve this, accurate magnetic equilibrium
reconstructions of the plasma, particularly at the edge, are crucial. The methodology
of reconstructing the equilibrium was presented in section 2.2. An equilibrium recon-
struction requires, at a minimum, magnetic measurements of the plasma. The yellow
boxes in figure 3.1b represent the Bθ coils, which are part of the magnetic measurement
suite and will be presented in section 3.3. In addition, there is a poloidally distributed
array of coils for flux difference measurements that is not shown in figure 3.1 in the
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3 HEATING SYSTEMS AND DIAGNOSTICS

interest of legibility. Together, these sets of coils provide the basis for the magnetic
equilibrium of AUG plasmas. However, the quality of an equilibrium construction can
be significantly improved if the pressure profile is additionally prescribed. This re-
quires high quality kinetic measurements, which at AUG are made via several different
diagnostics at different toroidal and poloidal locations as shown in figure 3.1. Detailed
information on all of the individual diagnostics is provided in sections 3.3 through 3.9.

3.1 Neutral beam injection

If highly energetic ions are present in the plasma, they collide with thermal particles
and thereby transfer some of their energy. In a future fusion reactor, the 3.5MeV helium
nuclei created in the fusion reaction will act as the main heating method. In present
day experimental reactors, which carry out experiments with hydrogen or deuterium
such as AUG, the same principle is applied using NBI. In AUG, a H+ or D+ ion beam
is first accelerated to 60-90keV and then passes through neutral hydrogen where the
fast beam ions capture electrons from the neutrals [39,40]. The neutralisation process
is necessary because a hydrogen or deuterium ion beam would be deflected by the
strong toroidal magnetic field of the tokamak and be unable to enter the plasma. As
the neutral beam passes through the plasma, more and more of the fast neutrals are
ionised by collisions with plasma particles and are trapped on magnetic field lines.
While gyrating around the field lines, they thermalise due to further collisions, thereby
heating the plasma. At relatively low beam energies like the ones at AUG, ion-ion
collisions dominate. At higher energies, as will be the case with the 1 MeV negative-
NBI in ITER and the 3.5 MeV alpha-particles from the fusion reaction, the collisions
will mainly heat the electrons [1].
Charge exchange processes can occur between the neutrals from the NBI and ions in the
plasma. How charge exchange processes with impurity ions can be used to determine
the ion temperature is described in section 3.4. Since the NBI produces fast ions in the
plasma, it is also used in the investigation of fast ion driven instabilities. These may
occur in future reactors because of the high concentration of fast helium ions created
during the fusion processes (see equation 1.1).
The eight neutral beams installed in AUG can produce 2.5MW of heating power each
in D operation. While six of them have a fixed geometry, two tangential beams can be
moved by ±0.5◦ to vary the main power deposition location between 0.4 and 0.6 of the
normalised radius [41]. NBI was used as the primary heating system in all discharges
analysed in this thesis.

3.2 Electron cyclotron resonance heating

The plasma can also be heated using electromagnetic waves [42]. Electrons gyrate
around the magnetic field lines with a cyclotron frequency of

ωc =
eB

me

(3.1)

where e is the elementary charge, B the magnetic field and m0 the electron rest mass.
A microwave with a frequency of ωc or one of its harmonics can transfer its energy to
the electron. At AUG the electrons are heated using the X2 wave, which means that
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3.2 Electron cyclotron resonance heating

the electric field of the wave is perpendicular to Bt and that the resonance occurs at
the second harmonic νmicrowave = 2 ∗ ωc/2π. Since AUG is typically operated with a
magnetic field of 2.5T at the plasma core, the ECRH system is designed for 140GHz
microwaves in order to achieve central heating. The microwaves are created in gyrotrons
and then led through hollow wave guides into the vacuum vessel. The system is designed
such that the incoming waves are reflected on rotatable mirrors before entering the
plasma. Since the mirrors can be rotated around two axes, both the toroidal and
poloidal deposition location of the heating power can be changed. The radial deposition
location can be changed by adjusting the toroidal magnetic field, thereby moving the
location of the resonance. This feature enabled the discharges presented in section 5.7
to be performed, in which the influence of edge heating on ELMs is investigated.

By injecting the microwaves tangentially into the plasma, it is also possible to drive a
current. This is called electron cyclotron current drive (ECCD). Let us consider a wave
whose k vector has a strong toroidal component in the positive direction. Due to the
Doppler shift the incident wave appears to have a slightly lower frequency for electrons
with a positive velocity component parallel to the magnetic field line v∥. Therefore,
these electrons can absorb its energy at a lower magnetic field. Since the microwaves
are injected from the LFS, they first interact with the electrons just described and
are damped before reaching the cold resonance layer, such that only electrons with a
positive parallel velocity are heated. Figures 3.2a and b show the effect of the ECRH
heating in velocity space. The half-circles mark regions with the same total kinetic
energy. The green boxes schematically show that the electrons with a specific parallel
velocity are heated to higher perpendicular velocity v⊥. This asymmetric heating does
not directly drive a current because the electrons do not gain any parallel velocity.
Rather, it creates a hole in the velocity distribution at a certain v⊥ and v∥, and an
over-population at the same v∥ but higher v⊥.

Figure 3.2: Velocity distribution of electrons heated via tangential ECRH waves [42]

The two competing current drive effects resulting from this asymmetry are illustrated
in figures 3.2c and d. The colors show the change of the electron distribution in
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3 HEATING SYSTEMS AND DIAGNOSTICS

velocity space, blue and green being a decrease and red and yellow an increase in
the distribution. Since the collision rate decreases with higher energy, particles with
lower energies reach an equilibrium more quickly. Therefore, the hole in the velocity
distribution created by the heated electrons fills up faster than the over-populated
region can de-populate. A higher net number of electrons remain at positive v∥. This
is known as the Fish-Boozer current drive and generates a negative current. The second
current drive mechanism, the Ohkawa current drive, originates from trapped particles
(see section 2.1). The electrons in the area above the two solid green lines in figures
3.2b and d are trapped due to their high v⊥/v∥ ratio. If through microwave heating the
passing electrons become trapped particles, as is shown in figure 3.2b and d, they will
bounce back and forth on banana orbits and, therefore, will not contribute to the total
current. Since the electron density distribution has a hole at low v⊥ and positive v∥ a
positive net current is driven. In addition, detrapping of the banana particles can occur
through collisions, such that the trapped electrons diffuse into the non-trapped region.
At positive parallel velocities, this effect is in equilibrium with the trapping process,
but in the negative v∥ region it leads to an additional positive contribution to the
current. Which one of the two mechanisms dominates partly depends on the fraction
of passing electrons that become trapped particles and, therefore, whether the resonant
magnetic field is located at the LFS or HFS. While performing the discharges presented
in section 3.2 an attempt was made to increase (decrease) the edge current density via
ECCD to destabilise (stabilise) peeling-ballooning modes and increase (decrease) the
ELM frequency. However, the driven currents were too low to have a visible effect on
ELMs. In this work, the ECRH power and current deposition profiles were calculated
using the beam tracing code TORBEAM [43].

a b

Figure 3.3: Metal sheet damaged by ECRH radiation (a) and visualisation of the
crossing point between non-absorbed ECRH waves and the PFCs (b)

While being a very versatile heating method, ECRH can also pose a potential danger
to the vessel components. If the waves are not fully absorbed they can reach the walls
of the vacuum vessel and damage the PFCs or even the vessel itself. The reflection
of the microwaves at a cutoff density due to density peaking, incorrect polarisation of
the waves and too low electron density can prevent part or all of the power from being
absorbed. Figure 3.3a shows a metal sheet that was melted due to incorrect ECRH
polarisation in one of the discharges performed in the framework of this thesis. To
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prevent serious damage to the vessel in the event of partial absorption, the results from
TORBEAM were combined with the 3D AUG visualisation tool AUGDDD [44] to make
sure that the waves would intersect the tungsten coated tiles, which are more robust
than the other components in the vessel. The AUGDDD screen shot in figure 3.3b
shows tiles of the inner divertor in AUG. The red arrow points toward the intersection
of the ECRH waves and the tiles as calculated by TORBEAM for one case of only
partially absorbed waves.

3.3 Magnetic measurements

In order to calculate a plasma equilibrium some knowledge of the magnetic field out-
side the plasma is necessary. The yellow boxes in figure 3.1b are poloidally distributed
probes, 38 measuring the poloidal magnetic field and 18 measuring the radial compo-
nent. In addition to those probes, AUG is equipped with 18 flux loops for magnetic
flux difference measurements at several poloidal locations. The time resolution of these
two diagnostics was recently upgraded from 1kHz to 10kHz. For many of the discharges
presented in this work only the low time resolution was available but this is sufficient
for the typical time scales considered here.
While the magnetic data is sufficient to produce a plasma equilibrium, knowledge of the
pressure profile will greatly improve its quality. Therefore, in all equilibria presented in
this work the edge pressure profile was constrained using data from experimental mea-
surements. The diagnostics used to obtain these data are introduced in the following
sections.

3.4 Charge exchange recombination spectroscopy

A tokamak plasma does not consist entirely of deuterium: the presence of impurity
ions is unavoidable. These impurities limit the performance by radiatively cooling the
plasma and via dilution of the D-T fuel necessary for the fusion reaction. However,
they can be useful for diagnosing the ion temperature. Since impurities often ionise
and recombine in the plasma, line radiation from neutral or partly ionised elements
can be measured. Ionised impurities present in the path of the NBI beam, typically
carbon, boron, nitrogen and helium, can gain an electron via charge exchange processes
with neutral deuterium from the beam. They still have the same energy and velocity
as the bulk of the same impurity species. Therefore, the impurity ion temperature can
be calculated from the Doppler broadening of the line radiation originating from those
impurities due to relaxation of the initially exited state. Since in AUG discharges the
ion temperature equilibration time is smaller than the transport time scale, one assumes
that the impurities have the same temperature as the main ions [45]. This has also been
confirmed by cross-checking the temperature of different ion species [46]. One major
benefit of these charge exchange recombination spectroscopy (CXRS) measurements is
that they yield localised information because the measured light originates from the
intersection of the line of sight with the neutral beam.
At the low field side of AUG, two edge CXRS systems are currently installed, the first
with toroidal and the second with poloidal lines of sight focused on one of the neutral
beams (see figure 3.1a). Those systems have a temporal resolution of up to 2.2ms.
They can resolve the AUG pedestal with a radial resolution of 1cm, which is limited by
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3 HEATING SYSTEMS AND DIAGNOSTICS

the channel spacing, and can be improved to 3mm when sweeping the plasma across the
lines of sight. Two core systems are also installed in AUG and are routinely evaluated
with a 10ms and 20ms time resolution, respectively, and a radial resolution of ±2.5cm.
In most newer discharges presented in this thesis Ti data from CXRS measurements
were used. However, at the time some of the older discharges were performed, the edge
CXRS systems were not yet installed. For these discharges the ion temperature was
assumed to be equal to the electron temperature.

3.5 Electron cyclotron emission

At AUG, one of the standard techniques to determine the electron temperature is by
measuring the electron cyclotron emission (ECE) using a heterodyne radiometer [47].
In a tokamak, the electrons gyrating around the field lines emit cyclotron radiation
at different harmonic frequencies ωce,n = n · eB

me
, where n is an integer denoting the

harmonic, e the elementary charge, B the local magnetic field strength and me the
electron mass. Since the magnetic field of a tokamak decreases toward the outboard
side, every frequency measured corresponds to a specific plasma radius. Microwave
radiation travelling through a region that also emits this specific frequency can be
absorbed. At a given magnetic field, the microwave spectrum is broadened by the
Doppler effect and the relativistic mass increase, which in turn deepens the resonant
region for a specific frequency. When the electron density is high enough and the
path in which the electron cyclotron radiation can be reabsorbed is long enough such
that the resulting radiation intensity corresponds to black body intensity, we call the
plasma optically thick. When this is the case, the intensity of the radiation, or radiation
temperature Trad, of a certain frequency corresponds to the electron temperature Te at
the location from which the radiation originates. The core of a fusion plasma is typically
optically thick, so the assumption Te = Trad holds. In the pedestal, however, the density
is often so low that the plasma is optically thin. The classical ECE evaluation method
in the pedestal consists of setting Te equal to Trad in the optically thick region and
extrapolating toward the SOL. However, when using a radiation transport model it is
possible to make better use of the radiation temperature. A newly developed method
called electron cyclotron forward modelling (ECFM) makes use of Bayesian probability
theory to determine the entire electron temperature profile [48]. The solid red line in
figure 3.4a shows an electron temperature profile generated using ECFM [48]. Since
the plasma is optically thick inside a normalised radius of 0.98, Te agrees very well
with the ECE radiation temperature shown in black. However, further outside the so-
called shine through phenomenon can be seen in the radiation temperature. Because
the plasma is optically thin at the edge, this enhanced radiation temperature does
not originate from the radiation at the cold resonance layer, but from further inside
the plasma. The red crosses in figure 3.4a show that ECFM models the radiation
temperature very well. It can be seen in figure 3.4b that the residuals all lie below one,
which indicates the high quality of the modelling. Since this yields much more detailed
pedestal data and gradients, which are especially important for stability calculations,
ECFM data was used in this work when it was available.
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Figure 3.4: Electron temperature profile calculated via ECFM (a) and the residuals
from the calculation (b) [48]. The normalised radius ρp is defined in equation 3.5

3.6 Thomson scattering

Like CXRS, the Thomson scattering (TS) diagnostic uses Doppler broadening to deter-
mine the electron temperature [49]. At AUG, the beams from ten pulsed neodymium-
doped yttrium aluminium garnet (Nd:YAG) infrared lasers are guided vertically through
the plasma. Part of the light is scattered by individual electrons, being Doppler shifted
twice, once during absorption and once during emission. The scattered photons are
collected in polychromators through lenses mounted with a vertical view on the laser
beam. The local plasma electron temperature along the laser beam can be determined
from the Doppler broadening of the collected light. Additionally, the electron density
can be calculated from the signal intensity.

The laser generators used in AUG have a pulse duration of 15ns, an energy of the
order of 1J per pulse and a repetition frequency of 20Hz. The edge system consists
of six beams passing through the vacuum vessel at a radius of 2.13m. The scattering
volumes have a height of 2.5cm each and the beam width is 1.5mm. The best radial
resolution is achieved at the z-position of the magnetic axis and roughly corresponds
to the beam width, since there the laser is tangential to the flux surfaces. At higher
and lower locations, the resolution can be as low as 1cm. In order to resolve the whole
pedestal, it is necessary to set the outer separatrix position to very high values on the
order of Raus = 2.16m. This is often problematic because of shaping constraints: in an
elongated plasma the separatrix will often be too close to the limiters which can cause
impurity accumulation and might eventually disrupt the plasma. Therefore, edge TS
data is not available in most AUG discharges but only in those specially designed for
edge measurements. In the dedicated experiments carried out for this work, radial
outward sweeps of the plasma were included to obtain good TS measurements of the
pedestal.
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3 HEATING SYSTEMS AND DIAGNOSTICS

3.7 Lithium beam impact excitation spectroscopy

Figure 3.5: Neutral Li-beam injector and LOS of the Li-beam diagnostic

One of the most accurate methods to measure the electron density in AUG utilises a
beam of neutral lithium atoms that are injected with an energy of 30-80keV [50, 51].
When the atoms collide with plasma electrons they can either jump to an excited state
and eventually emit line radiation or one of their valence electrons can be stripped
off. In the latter case, the resulting Li-ion is confined to a magnetic field line and
immediately leaves the volume of the beam. The system of coupled linear equations

dNi(z)

dz
=

9∑
j=1

[ne(z)aij (Te(z)) + bij]Nj(z) (3.2)

describes the number of beam Li-atoms Ni in the excited states i, where z denotes
the coordinate along the beam. For i ̸= j, the coefficients aij describe the excitation
and de-excitation processes into the state i due to collisions with ions and electrons.
The coefficients of the excitation, de-excitation and ionisation processes from i to any
other state are all combined in aii. bij denote the Einstein coefficients for spontaneous
emission. Equation 3.2 is solved for ne using Bayesian probability theory [52].
The beam and the two optical heads installed in AUG can be seen in figure 3.5, where
CXS and IXS denote the optical heads. The lines of sight only extend to Rmaj ≈ 2.05
(ca 5-10cm into the confined plasma, depending on the separatrix position) because at
this location the beam attenuation is already so strong that the signal cannot be distin-
guished from the background radiation. In a medium density discharge the calculated
ne profiles are trustworthy up to the pedestal top (ca 2cm into the main plasma). In
the core, the plasma density can be determined via laser interferometry.

3.8 DCN interferometer

The deuterium cyanide (DCN) laser interferometer measures the line integrated elec-
tron density [53]. For visible and infrared light (ω ≫ ωpe) the refraction index N of a
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plasma changes according to

N ≈ 1−
ω2
pe

2ω2
= 1− e2

2 ϵ0me ω2
· ne. (3.3)

In AUG, the beam of a DCN-laser is split into three beams. One is guided through
the plasma and thus phase-shifted according to

Φ ≈ e2

2c ϵ0me ω0

∫
L

ne dl. (3.4)

The second beam is frequency shifted by ∆ω using a frequency modulator and the last
one serves as a reference. Before the reference and the measurement beam enter the
detector, they are both superimposed with the frequency modulated one such that a
beat is measured. This method is used because a phase shift on the resulting 10-100kHz
signal can be measured relatively easily, whereas it is not possible to directly measure
a phase shift of the laser which has a frequency in the THz range.
At AUG, the DCN interferometer diagnostic is sampled at a frequency of 10kHz. In
order to obtain full electron density profiles the data from the five lines of sight in-
stalled in AUG must be deconvolved, but the strong gradient in the edge cannot be
resolved using this method. It is much more advantageous to combine it with Li-beam
measurements by using the forward model described in the next section.

3.9 Integrated data analysis

The data from several diagnostic methods can be combined using Bayesian probability
theory to form one joint profile [54]. For instance, by combining the data from the
DCN interferometer and the lithium beam, one obtains an electron density profile
which covers the whole plasma radius, and is very accurate in the pedestal region.
Bayesian probability theory allows the inclusion of so-called prior information and
weighting of the data from different diagnostics with the corresponding measurement
errors. The ECFM method mentioned in section 3.5 is implemented in the integrated
data analysis (IDA) framework. For IDA to produce optimal results the data from
different diagnostics, primarily ECE and lithium beam, have to be aligned. This is
possible using TS data since this diagnostic produces Te and ne profiles with the same
time- and area-base. Shifts can also be detected by monitoring the IDA residuals.

3.10 Combining the diagnostics

Most discharges presented in this work were heated using a combination of NBI and
ECRH. The versatility of the ECRH and ECCD deposition location was exploited in
the discharges presented in section 5.7. An overview of the species heated by NBI and
ECRH, as well as the quantities measures by the main diagnostics used in this work
is given in table 1, where vrot,impurities and cimpurities are the rotation velocity and the
concentration of the measured impurity species.
As can be seen in figure 3.1b, most diagnostics measure at different toroidal locations.
This is not problematic because, aside from slight deviations due to magnetic ripple
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3 HEATING SYSTEMS AND DIAGNOSTICS

Heating method Heated species
NBI Mainly ions (at AUG)
ECRH Only electrons

Diagnostic Measured quantity
CXRS Ti, vrot,impurities, cimpurities

ECE Trad (≈ Te)
TS Te and ne

Li-Beam ne (edge)
DCN ne (line integrated)

Table 1: Main heating methods and diagnostics used in this thesis

effects, all equilibrium quantities in a tokamak are toroidally axisymmetric. The dif-
ferent measurement locations in the vertical plane (figure 3.1b) are a more challenging
issue. However, a tokamak consists of nested flux surfaces and most equilibrium quan-
tities are constant on the closed flux surfaces inside of the separatrix. Therefore, it is
sensible to map the R and z location of the different measurements to a common area
base, which usually takes the form of a normalised plasma radius. When investigating
the edge of a tokamak, the normalisation is typically performed using the poloidal flux
according to

ρp =

√
Ψ(R, z)−Ψaxis

Ψseparatrix −Ψaxis

. (3.5)

Figure 3.6 shows the kinetic profiles of a typical AUG H-mode discharge. All data,
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Figure 3.6: Electron temperature (a), ion temperature (b) and electron density (c)
profiles measured using different diagnostics

except for the core ion temperature because of its high integration time, were ELM
synchronised. In this discharge, all of the data from 2.5s to 4.5s in the discharge that
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3.10 Combining the diagnostics

were collected between 3.5ms and 0.1ms before an ELM crash were overplotted. Fitting
such data is also called coherent ELM-averaging. Since the edge ion temperature is
very similar to the electron temperature, the assumption Ti = Te is acceptable in
this kind of discharge when no CXRS data is available. While the core temperatures
are very different this is not an issue for generating equilibria because only the edge
pressure is constrained, whereas the core pressure is allowed to vary. Note that in
figure 3.6c the interferometer data appears to have a strong deviation from the other
diagnostics because it is a line integrated measurement. The pink crosses show the
line-averaged density that should be measured by the different interferometer channels
given an electron density profile corresponding to the pink fit. The result agrees very
well with the DCN measurements. The Li-beam data (blue in figure 3.6c) has very
high uncertainties at the pedestal top because of the strong attenuation of the beam.
Therefore, the data collected in this region is typically omitted in the fits to the density
profiles.
In this work, the pressure profiles used to generate high resolution equilibria were cal-
culated using the Te, Ti and ne data from the diagnostics described in this chapter,
after mapping them to ρp and aligning them with the information given by the TS
system. The ion density was generated from the electron density by using the impurity
concentrations determined by the charge exchange diagnostic, or by using the effective
charge Zeff value calculated from bremsstrahlung measurements using Bayesian meth-
ods [55]. The resulting pressure profiles were combined with magnetic measurements
to calculate equilibria using CLISTE. The impact of measurement uncertainties on the
final stability calculations is presented in section 4.8
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4 Optimisation and limitations of the stability chain

To determine whether a plasma is stable against peeling-ballooning modes, a CLISTE
equilibrium is first generated using experimental data, after which this equilibrium
has to be re-run in HELENA to increase the resolution and generate a file in the
correct format for the stability codes. After running the j-alpha workflow to alter
the current density and pressure profiles independently the stability calculations are
performed using ILSA. In this chapter, the influence of different input parameters on
the results of the stability calculations will be discussed. First, different stability codes
will be compared to ensure consistency. The grid density and number of included
poloidal harmonics will be checked for convergence. One must differentiate between
three different radial grids:

� The internal HELENA grid, where every grid point acts as a node for the Hermite
polynomials used to generate the equilibrium.

� The HELENA mapping grid, to which the equilibrium quantities are mapped
after the equilibrium has been generated. This is the grid which is used in the
equilibrium file that will later be used as an input for the stability code.

� The internal grid of ILSA, CASTOR or MISHKA, on which the stability calcu-
lations are performed. The stability code maps the quantities contained in the
equilibrium file to this third grid before starting the calculations.

After discussing the so-called cutoff parameter Ψb, the effects of ion diamagnetic drift
stabilisation, finite resistivity and density profile shape will be discussed. Finally, the
influence of kinetic profile uncertainties will be assessed.

4.1 Comparison between different codes

The main stability code used in this work is ILSA, which is a revised version of the
CASTOR code [34,35]. It can either use the full set of equations A.24-A.27 or be run
in MISHKA-1 mode, using the reduced set of equations A.32-A.34. In this section,
the results from ILSA will be compared to the stand-alone versions of MISHKA-1 and
CASTOR.
The first comparison is performed using a synthetic, ballooning-unstable equilibrium
with a circular cross-section. The safety factor increases from 1.05 in the core to
1.95 at the edge of the plasma. Whereas it is possible to run ILSA and CASTOR
using the same radial grid, MISHKA-1 uses a different mesh accumulation algorithm.
To optimise the results, a similar edge grid point density was used in MISHKA-1.
This is crucial when comparing the codes at high toroidal mode numbers since their
eigenfunctions are very narrow and localised at the far edge. For a meaningful code
comparison one needs either a very high grid point density in this region in order to
resolve all the modes sufficiently well, or a comparable edge grid point density in all
codes. The former is not possible with the stand-alone version of MISHKA-1 since it
is limited to a total number of 201 grid points.
Figure 4.1a shows the growth rates of different toroidal modes calculated using CAS-
TOR, MISHKA-1 and ILSA, run in MISHKA-1 and CASTOR mode. The real part
of the eigenvalue calculated by the stability codes is the growth rate normalised to the
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Figure 4.1: Real (a) and imaginary (b) part of the eigenvalue calculated for a range of
toroidal mode numbers with different stability codes

Alfven frequency, which is generated using the core density. The right plot shows the
imaginary part of the eigenvalue. Since all codes were run in ideal mode, the imaginary
part should be zero. The deviation from zero can be regarded as an indicator of the
numerical accuracy of the solution. The results from CASTOR and those from ILSA
in CASTOR mode have much lower imaginary parts than those from the two other
codes. Nevertheless, the criterion that the imaginary part should be at least one to two
orders of magnitude lower than the real part is valid for all codes. This condition is
not necessarily met when using experimental equilibria, especially when they are only
marginally unstable. All codes produce the same results at low toroidal mode numbers,
whereas at higher mode numbers MISHKA-1 and CASTOR show differences. This is
to be expected as they are using a different set of equations. The results from ILSA
and from the stand-alone codes match very well when ILSA is run in the corresponding
mode. The numerical accuracy is also the same, as can be seen from the imaginary
part of the eigenvalue. Figure 4.2 shows the relative contributions of different poloidal
harmonics. The mode amplitude is plotted against the s-coordinate, which is the radial
coordinate used in the stability codes. It is defined as the square root of the poloidal
flux normalised to the value at which the equilibrium was cut off. The poloidal mode
structure is almost identical in all four codes. They all produce consistent results for
a simple synthetic equilibrium. However, it will be shown in the following that large
discrepancies arise when the edge q-profile is very steep, as is the case at the edge of
shaped equilibria used on AUG.

Both HELENA and ILSA use the straight field line coordinate system, in which the
variables depend on the safety factor q. Since q diverges toward infinity at the sep-
aratrix, these coordinates make it necessary to cut off a portion of the plasma at a
certain radius Ψb (defined in normalised poloidal flux). The closer to the separatrix
the equilibrium is cut off, the higher and steeper the edge safety factor profile is, which
has two major consequences:
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Figure 4.2: Normalised mode amplitude of different poloidal harmonics for n=1 (left)
and n=15 (right), calculated with different stability codes

� If the q-profile is too steep, the code runs into numerical errors. To exclude such
errors, a convergence study was performed and will be presented in section 4.2.

� Because of the higher safety factor, more resonant surfaces are present at the
edge of the plasma, which has a stabilising effect on the peeling mode.

Figure 4.3 shows the eigenvalue calculated with different stability codes for n=3 using
an equilibrium produced from AUG discharge 23223 just before an ELM crash. A scan
of the cutoff parameter Ψb was performed. MISHKA-1 (red) is only slightly affected
by the cutoff parameter, whereas the other codes show a strong dependence. In most
cases the imaginary part of the eigenvalue increases when the equilibrium is cut off
closer to the separatrix. The light green curve will be explained later in this section.
The poloidal mode structure calculated by ILSA in MISHKA-1 mode and MISHKA-1
standalone can be seen in figure 4.4. At Ψb = 0.990, the relative contributions of the
different harmonics are similar between the two codes, but at Ψb = 0.996 the differences
are much more pronounced. Changing the codes in such a way that one can import
the location of the radial nodes from ILSA into MISHKA-1 and vice-versa confirmed
that this is not an effect of the different mesh accumulation.
A scan was performed to explore under which circumstances these discrepancies arise.
Figure 4.5 is analogous to a j-α diagram, but shows the whole spectrum of the nor-
malised growth rate. The reference equilibrium (green box) is the same one used for
figure 4.3. The different line styles correspond to values of Ψb from 0.990 to 0.997 for
both MISHKA-1 (red) and ILSA in MISHKA-1 mode (black). The scale factors along
the axes represent the multiplication factors that were used to modify the edge current
density height and the pressure pedestal width.
In the region of low pressure gradient and high edge current density MISHKA-1 and
ILSA agree reasonably well. At higher pressure gradients, however, they start to diverge
and this trend becomes even stronger at low edge current density. It can also be seen
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Figure 4.3: Real (left) and imaginary (right) part of the eigenvalue n=3, calculated
with different stability codes at different cutoff parameters Ψb
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Figure 4.4: Normalised mode amplitude of different poloidal harmonics for n=3,
calculated with MISHKA-1 (red) and ILSA (black) for Ψb = 0.990 (left) and

Ψb = 0.996 (right)

that the cutoff parameter Ψb changes the spectrum calculated with MISHKA-1 only
slightly, whereas the dependence in ILSA is much stronger. For example, in the case
marked by an orange box ILSA finds that for Ψb = 0.993 the equilibrium is much more
stable than Ψb = 0.990, whereas the MISHKA-1 results are almost identical. Large
discrepancies in MISHKA-1 only occur at very low edge current density and high cutoff
parameter Ψb where ILSA does not find any unstable modes.
The discrepancies between MISHKA-1 results generated with different values of Ψb are
not due to MISHKA-1 but to the equilibrium file created by HELENA. After calculating
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Figure 4.5: Growth rate spectra of different toroidal modes calculated with ILSA
(black and grey) and MISHKA-1 (red) for different values of Ψb (increasing from

solid to dotted). The x-axis of the plots corresponds to the toroidal mode number and
ranges from n=1 to n=20. The y-axis is the normalised growth rate from γ = 0 to

γ = 0.2. The green box marks the unaltered experimental equilibrium while the orange
and blue boxes serve as indicators for equilibria that are described in the text.

the equilibrium using an internal grid, HELENA maps the different quantities to a new
grid, which also depends on the safety factor q. If q is too steep, the interpolation to
this HELENA mapping grid fails which results in overlapping flux surfaces (red arrow
in figure 4.6a). This interpolation problem can be fixed by increasing the HELENA
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Figure 4.6: Part of the HELENA mapping grid when using a low (a) and high (b)
radial grid resolution

mapping grid resolution (figure 4.6b), but when q is too steep increasing the number of
radial points even further does not help any more. The MISHKA-1 (ILSA in MISHKA-
1 mode) results from unconverged equilibria are plotted in dark red (grey) in figure 4.5
to show that one has to carefully check the HELENA results since in some cases the
stability codes still produce results that might, at a first look, appear reasonable. In
this comparison, the radial grid resolution was not increased because the standalone
version of MISHKA-1 does not allow large equilibrium files to be used as input. The
MISHKA-1 results reflect the known behaviour seen in previous works using other
stability codes, such as ELITE. Namely, the high pressure gradient region is highly
unstable, independent of the edge current density [56].
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Figure 4.7: Derivative of the safety factor q used in MISHKA-1 and ILSA

A comparison of the radial derivative of the q-profile calculated by the two stability
codes shows that the profiles used in ILSA and MISHKA-1 are very different at the
edge in the low edge current density cases, even though the input equilibrium was iden-
tical (see figure 4.7). The brown curve shows the result of a two-point differentiation
performed on the same q-profile after the HELENA result was re-mapped to a mesh
with a radial grid size of 2000 instead of 300 points. It can be seen that ILSA calcu-
lates more exact values of dq/ds than MISHKA-1. This discrepancy comes from the
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4.2 Convergence

mapping routines in the stability codes. Both codes interpolate the equilibrium profiles
from HELENA onto their internal grid using a cubic spline function, but with different
boundary conditions. For building the spline, MISHKA-1 uses the two-point derivative
at s = 0 and s = 1, whereas ILSA uses the not-a-knot spline method. In this method
the third derivative f ′′′ of the function f is matched, according to f ′′′(0) = f ′′′(1) and
f ′′′(N) = f ′′′(N − 1), where N is the index of the last grid point.

As a final test, dq/ds from ILSA was exported and directly read into MISHKA-1
before performing the stability calculations. The result is shown as the light green
curve in figure 4.3. When using these more correct values, the MISHKA-1 and ILSA
(MISHKA-1) results match extremely well, with discrepancies below 1%. This suggests
that the stabilising effect that emerges at low edge current densities and when cutting
the equilibrium off further outside is real, and the reason that it is not seen in the
MISHKA-1 results is because the code produces incorrect values of dq/ds when the
edge q profile is very steep. This result is to be expected because a strong magnetic
shear has stabilising effect on ballooning modes (see chapter 2).

4.2 Convergence

Since an accurate q-profile is crucial, convergence was tested by scanning several grid
sizes in HELENA. The standard internal HELENA grid used in this work had 300
radial nodes with a higher accumulation at the edge and 257 poloidal nodes. Even in
equilibria with the steepest q, increasing the internal HELENA grid density had no
effect on the ILSA results. The HELENA mapping grid, however, plays an important
role. Figure 4.8 shows the growth rate calculated with ILSA in MISHKA-1 mode
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at s=0.999:   

       dN/ds =

Figure 4.8: Growth rate at different HELENA mapping grid point densities for the
reference case (a) and an altered equilibrium (b)

for values of the cutoff parameter Ψb between 0.990 and 0.996. The different colors
correspond to different HELENA mapping grids. The values given in the legend are
the grid point densities of the mapped equilibrium at the very edge of the plasma. In
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4 OPTIMISATION AND LIMITATIONS OF THE STABILITY CHAIN

the left plot, the growth rate of n = 3 was calculated for the reference equilibrium
(green box in figure 4.5). The right plot was calculated at n = 15 using an equilibrium
with a q-profile which, when using Ψb = 0.996, is close to the limit of the capabilities of
HELENA (blue box in figure 4.5). These toroidal mode number were used because they
roughly have the highest growth rate. The red curves in figure 4.8 correspond to the
grid density which was used in figure 4.5, since the stand-alone version of MISHKA-1
does not allow inputs with a larger grid. It can be seen in the steeper q-profile case
(right) that this grid density is not sufficiently high to produce accurate results. At
Ψb = 0.996 the HELENA mapping problem described earlier occurs up to dN/ds = 692
in the reference case and up to dN/ds = 2309 in the altered case. The setting used
for the rest of this work is the one shown in blue, in which an edge dN/ds of 2309
was obtained using a total number of 1000 radial grid points. This setting is a good
compromise between accuracy, since it is converged at Ψb = 0.994 for the very steep
case, and acceptable file size of 500MB per equilibrium (which corresponds to roughly
60GB per j − α diagram, without counting the data produced by ILSA).
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Figure 4.9: Growth-rate with different numbers of poloidal harmonics for the reference
case (a) and an altered equilibrium (b)

A second convergence test was performed in order to assess how many poloidal har-
monics are necessary. The same two cases were used as in figure 4.8, also with n=3
for the reference and n=15 for the case altered in j and α. The edge grid density of
the mapped equilibrium was dN/ds = 2309. Figure 4.9a shows that for n=3 in the
shallow q case 30 poloidal harmonics are sufficient for convergence. For n=15 and a
steep q profile, however, full convergence is only reached when between 120 and 140
harmonics are used. Convergence was also tested with respect to the ILSA grid, and
300 radial nodes with a high edge grid accumulation of dN/ds ≈ 20000 which was used
throughout this work was found to be sufficient in all cases.
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4.3 Choice of Ψb

4.3 Choice of Ψb

Once most code parameters were optimised, the task of finding a sensible value for the
cutoff parameter Ψb remained. It has been shown that the presence of a separatrix has
a stabilising effect on peeling modes and that the equilibrium becomes more unstable
when more flux is cut off [57], so the choice of Ψb will have an impact on the final
result.
In linear ideal MHD, a mode and its growth rate can be visualised as the displacement
of a magnetic field line at a certain rate. Since such a change in the magnetic field will
induce a current, one sensible cutoff criterion can be calculated using the resistive skin
depth

δ =

√
2

µ0σω
, (4.1)

where σ is the conductivity in the plasma layer we cut off. Above the critical frequency
ω, a perturbation does not diffuse through the layer δ [1]. If Ψb is chosen such that the
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Figure 4.10: Growth rate of n=15 (black) and critical frequency (blue) at different Ψb.
The dashed lines show half of the diamagnetic drift frequency for different n’s.

plasma layer being cut off is so small that ω = 2/µ0σδ
2 is higher than the growth rate

of the mode, the current induced by the mode would diffuse faster into the vacuum
region than the mode can grow. Since ideal MHD does not allow current diffusion,
cutting off this layer is justified. A comparison of ω and the growth rate at different
Ψb for the n = 15 case (figure 4.9b, grey, 200 poloidal harmonics) is shown in figure
4.10. Here, Ψb is scanned up to 0.999 and the growth rates are plotted in SI units. The
blue curve shows the critical frequency ω, if the resistive skin depth is set to the cut
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4 OPTIMISATION AND LIMITATIONS OF THE STABILITY CHAIN

off layer and σ is the Spitzer conductivity at the cutoff location, calculated from the
experimental temperature profile. Ideal MHD is only valid if the plasma is cut of at
Ψb = 0.996 or further inside. Additionally, the sudden drop in the growth rate between
Ψb = 0.996 and Ψb = 0.999 suggests that HELENA or ILSA encounters numerical
problems in this region. This was confirmed after analysing the HELENA equilibrium
in more detail. As already mentioned earlier in this chapter, the interpolation to the
mapping grid is problematic at steep q and results in overlapping flux surfaces (figure
4.6a). These numerical errors that occur at Ψb ≥ 0.998 are inherent to such steep q-
profiles and could not be avoided by changing parameters in the code or by increasing
the grid resolution. The cutoff criterion calculated using the resistive skin depth is at
the limit of the capabilities of the stability chain. In cases with lower edge current
density HELENA already runs into problems at Ψb = 0.996. Therefore, most stability
diagrams shown in this work were all generated twice, using Ψb = 0.990 and Ψb = 0.994
to show possible differences.

4.4 Effect of Ψb on the mode width
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Figure 4.11: Normalised amplitude of different poloidal harmonics for n=15 at
Ψb = 0.990 (top) and Ψb = 0.996 (bottom) plotted versus the internal ILSA coordinate

s (a) and the major radius (b). The red dashed vertical line in (b) represents the
position of the separatrix.

The impact of Ψb on the mode width will now be assessed. It was postulated that the
radial extent of the mode calculated using linear MHD, could be correlated with the
ELM affected area [58]. If the cutoff parameter Ψb were to impact the extent of the
mode, this would be problematic for the verification of this hypothesis. Figure 4.11
shows the radial structure of the different poloidal harmonics for n=15 for two different
choices of Ψb. The sign of the amplitude is irrelevant, the colors represent the number
of the harmonic. When they are plotted against the internal ILSA coordinate s (left),
the locations of the different harmonics appear shifted depending on Ψb. This is to
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4.5 Ion diamagnetic drift stabilisation

be expected since their resonances are at different locations due to the relative shift
of the q-profile. However, when plotted in real space the locations of the harmonics
are similar and the total extent of the mode into the plasma is the same. For a better
comparison of the harmonics m = 71 is shown in black and m = 80 in purple. While
it has not yet been verified whether the extent of the mode envelope into the plasma
does hold information about the ELM affected area, it is not affected by the choice of
Ψb.

4.5 Ion diamagnetic drift stabilisation

At high mode numbers the wavelengths of peeling-ballooning modes become compa-
rable to the ion gyro-radius. At these high mode numbers an approach using kinetic
theory is more sensible than MHD. It was shown that the ion diamagnetic drift sta-
bilises the ballooning mode [59,60]. This is due to the magnetic field being frozen into
the electron fluid while the mass density of the plasma is determined by the ions. This
means that the density perturbation ρ1 in equations A.24 and A.26 moves in the ion
diamagnetic drift direction while the magnetic field perturbation B1 in equations A.26
and A.27 moves in the electron diamagnetic drift direction. If the diamagnetic drift
velocity, normalised to the size of the mode, is high compared to the growth rate of the
mode, the mode is torn apart. The diamagnetic drift frequency ω∗ can be written as

ω∗pi =
n

eini

dpi
dΨ

, (4.2)

where n is the toroidal mode number [61]. Hastie et al. extended the stabilisation
model, which initially assumed a constant ω∗pi, to a radius dependent model because
the ion diamagnetic drift frequency varies strongly in the pedestal region [61]. In their
example, the stabilising effect of a radially varying ω∗pi(x) was roughly 50% lower than
for a constant value calculated from the maximal edge pressure gradient. Since 50% is
small compared to the differences that will now be discussed, the present work sticks
to the commonly used criterion that a growth rate lower than ω∗pi/2 is considered
stable. The horizontal dashed lines in figure 4.10 indicate this stability criterion for
n = 1, 2 and 3. Since ω∗pi is directly proportional to the toroidal mode number and
the equilibrium used for figure 4.10 lies in the high pressure gradient part of the j-
alpha diagram, the growth rate of n = 15 is almost one order of magnitude lower than
ω∗pi/2. Because of this linear n and α dependence, normalising to the diamagnetic drift
frequency changes the shape of the j − α diagram significantly. Figure 4.12 shows the
same stability diagram twice, with the stability criterion being γ/νA = 0.06 (left), and
2γ/ω∗pi = 1 (right). While in the former case the most unstable mode numbers around
the experimental equilibrium are between 7 and 14, diamagnetic drift stabilization
suggests that much lower mode numbers between 1 and 4 dominate. It appears that
the diamagnetic drift would completely stabilise the plasma at only a slightly lower
edge current density, even if the pressure gradient was much higher. This effect comes
from the strong stabilisation of higher mode numbers, and because the mode spectrum
strongly shifts toward higher toroidal mode numbers. In this region, low mode numbers
(n’s around 1 to 4) have a zero (or close to zero) growth rate. However, this is just
a rough estimation of the stabilising effect of the diamagnetic drift and analysing this
further would require using a two-fluid model. In this work, γ/νA contours are shown
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Figure 4.12: Stability diagram of discharge 23417, showing νA (left) and ω∗pi/2 (right)
contours

in the stability diagrams, with the caveat that FLR effects have a stabilising effect on
high-n modes.

4.6 Finite resistivity effects
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Figure 4.13: Left: Growth rate of n=5 for different resistivity values. Right:
normalised mode amplitude for η = 10−10Ωm

While in this work the stability codes were run in the ideal-MHD mode, a comparison
with results from calculations including a finite resistivity was made. The steeper ∇p
case from discharge 23223 used earlier (blue box in figure 4.5) was run using ILSA in
resistive CASTOR mode. Figure 4.13 shows the growth rate for different values of the
resistivity η. The actual resistivity of the plasma in the pedestal region lies between
10−8 and 10−7Ωm, which is two orders of magnitude higher than the values shown in
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4.7 Effects of a realistic density profile

figure 4.13. While it appears that the growth rate of the modes increases when moving
toward a higher resistivity, it can be seen in the right plot that the radial mode structure
shows a strong oscillatory behaviour at the edge, indicating numerical problems. Under
η = 10−10Ωm the resistivity is so low that the contribution from the resistive terms in
ILSA is negligible. Starting at η = 10−9Ωm the resistivity starts playing a role, but
ILSA cannot resolve the strong oscillations at the rational flux surfaces that occur in
resistive MHD. Because of the difficulties the stability code appears to have with a
finite resistivity, the remaining calculations presented in this work were all performed
using ideal MHD.

4.7 Effects of a realistic density profile
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Figure 4.14: a and b: Density profiles used. c: normalised growth rate for n=5, 10
and 15. d: radial mode structure of n=10 for a realistic (positive values) and constant

(negative values) density profile.

In general, the equilibrium density is assumed to be constant when performing stability
calculations, even though a density term appears in equations A.24, A.26 and A.32.
Most codes allow for a radius dependent density, but this feature is seldom used. In the
pedestal region, where the density varies by one order of magnitude within 2cm, the
inertia of the plasma changes quite significantly, which might affect the contribution
of the different poloidal harmonics, thereby changing the eigenvalue. To assess the in-
fluence of the profile shape, a realistic density profile was included in the calculations,
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4 OPTIMISATION AND LIMITATIONS OF THE STABILITY CHAIN

and then gradually changed to a constant profile. To obtain comparable results, the
profile was normalised such that the density was the same at s = 0.99, which is approx-
imately the position of steepest pressure gradient. Additionally, the density was set to
the same value at the plasma centre, such that all cases are normalised to the same
value. The profiles used can be seen in figure 4.14a and with a focus on the edge region
in 4.14b. It can be seen in figure 4.14c that the growth rate changes slightly between
the different density profiles. At a constant density, the growth rate is slightly higher
than when using a realistic profile, but a scan has shown that this depends on the exact
location at which all cases were set to have the same edge density. The radial mode
structure for n = 10 is plotted in figure 4.14d. The poloidal harmonics normalised to
positive values correspond to a realistic density profile (black curve in figure 4.14 a
and b), while the ones normalised to negative values correspond to a constant density
(pale blue curve in figure 4.14 a and b). It is clear that the inertia has an effect on the
relative mode amplitude. In the realistic case, the contribution from inside (outside)
of s = 0.99 is lower (higher) than in the case with constant density. This agrees with
the higher density and, therefore, inertia inside of s = 0.99. While including a realistic
density profile does have an effect on the relative contribution of the different poloidal
harmonics, the impact on the growth rate is small. Since the main interest is to see if
and at which toroidal mode number the plasma is unstable a constant density profile
was used in the rest of this work. This choice was also motivated by a significant in-
crease of the imaginary part of the eigenvalue with steeper density profiles, indicating
poorer numerical accuracy.

4.8 Influence of measurement errors

The two main systematic uncertainties in the experimental measurements are the ion
temperature, which is not available for older discharges and, therefore, assumed to
be equal to Te, and the electron temperature gradient, because of the ECE shine
through [48]. The effect of a systematic error in the Te gradient on the stability was
assessed for discharge #23417 for which ECFM results were available (see section
3.5). The ELMs in this discharge occur at two distinct frequencies, with some ELMs
occurring directly after the pedestal gradient recovery around 9-10ms after the previous
crash, and others after a several millisecond long phase of almost constant pressure
gradient. This behaviour has already been described for a similar discharge [17].

The four stability diagrams in figure 4.15 represent the equilibria 3ms before the ELM
crash in discharge #23417 for the fast (pedestal still recovering, top) and slow (fully
recovered pedestal, bottom) ELM cycles, using the classical IDA analysis (left) and
ECFM (right). They were all generated using Ψb = 0.990. In the slow ELM cycles
the classical IDA profiles lead to a pressure gradient and edge current density that are
20% lower than the stability boundary, whereas when using the ECFM method the
operational point is in the marginally unstable region. Note that since the assumption
Ti = Te was used, and recent highly resolved edge CXRS measurements suggest that
∇Ti is slightly lower than ∇Te, the correct operational point might be just outside of
the unstable region [62]. In the equilibrium 3ms before a fast ELM crash, the opera-
tional point is not quite on the stability boundary, which is to be expected since the
profiles have not yet fully recovered. In this case, the difference between the equilibrium
obtained using ECFM and the one generated with classical IDA is also very large. Nev-
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4.8 Influence of measurement errors
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Figure 4.15: Te profiles (left) and stability diagrams (right) of AUG #23417

ertheless, the position of the stability boundary itself barely changes between the four
cases. This suggests that the stability calculations are rather robust against errors in
the kinetic data used for computing the input equilibrium. However, accurate current
density and kinetic profiles are needed for identifying the exact position of the opera-
tional point, which determines whether the plasma is unstable or not. When available,
Thomson scattering data was used to complement the ECE or ECFM temperature in
this work.
A second potential systematic error is the location of the steep gradient region in re-
lation to the equilibrium separatix. In order to assess this, the kinetic profiles were
shifted by ±5mm before the CLISTE equilibrium was generated. The resulting per-
turbed equilibria were then analysed with ILSA.
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Figure 4.16: Toroidal mode spectra for three different shifts between kinetic and
magnetic data

A very strong effect of this shift on the toroidal mode spectrum can be seen in figure
4.16. An outward shift of the pressure profile leads to higher growth rates, while an
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4 OPTIMISATION AND LIMITATIONS OF THE STABILITY CHAIN

inward shift appears to be stabilising. Figure 4.17 shows the pressure gradient (a),
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Figure 4.17: Pressure gradient (a), current density (b) and q-profile (c) calculated
using different shifts of the pressure profile

the current density (b) and the q-profile (c) of the reference equilibria calculated using
the three shifts. The pressure and current density profiles from the equilibrium with
the negative shift (black) are lower and broader than in the correct equilibrium (red),
which results in the lower growth rates seen in figure 4.16. The broader current density
peak explains the lower mode numbers. It is clear that the shift used in the blue case
(+5mm) is wrong because the edge current density is very low. Nevertheless, this
example shows that a high pressure gradient at the separatrix strongly destabilises the
high-n ballooning modes. In this case, even the high shear (see blue q-profile in figure
4.17c) is not sufficient to stabilise them.
In this work, great care has to be taken when aligning the kinetic data to minimise
systematic errors in the stability calculations. The correct profile location can be
detected via carefully monitoring the residuals from CLISTE [25].

4.9 Final parameters used in the stability calculations

� A HELENA equilibrium mapped to a radial mesh with dN/ds > 2300 at the
edge.

� An ILSA grid with a total of 300 radial nodes and with an edge grid accumulation
of dN/ds ≈ 20000.

� A total number of poloidal harmonics between 30 and 180 depending on the
toroidal mode number n (to save computing power and memory).

� Most j − α diagrams were run with two values of the cutoff parameter Ψb, 0.990
and 0.994, to observe possible differences.

� ILSA was run in ideal mode using the MISHKA-1 equations.

� A constant density profile was assumed.

� The kinetic profiles were aligned such that the residuals from CLISTE are min-
imised.

� When CXRS data was available, Ti profiles were used rather than setting Ti = Te.
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4.9 Final parameters used in the stability calculations

� To determine Te either the ECFM method was used, or the ECE radiation tem-
perature was combined with Thomson scattering data.
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5 Results

In the previous chapters the peeling-ballooning theory and the methodology used to
compare it to experimental data were introduced. The stability chain presented in
section 2.4 will now be applied to several different types of ELMs. While many publi-
cations already exist on the peeling-ballooning stability of type-I ELMs [23,63–68], two
type-I cases will still be presented in section 5.1 to build a basis for comparing further
scenarios. Type-III ELMs, smaller events which arise just above the L-H power thresh-
old, will be explored in section 5.2. Type-II ELMs and a type-II like ELM-free H-mode
regime emerging at high densities will be discussed in sections 5.3 and 5.4. Two sce-
narios designed to mitigate the power flux to the walls of future fusion devices, namely
nitrogen seeding in the divertor and ELM-triggering via pellets will be discussed in
sections 5.5 and 5.6. It was found at the TCV tokamak that heating the plasma edge
with ECRH can also increase the ELM frequency and decrease the per-ELM losses.
Such discharges were repeated at AUG and are presented in section 5.7.

5.1 Type-I ELMs: peeling-ballooning stability in typical H-
modes

As already mentioned in section 1.2, type-I ELMs are the most commonly occurring
ELM type. They occur in strongly heated H-mode scenarios with high confinement.
Time traces taken from a typical type-I ELMy H-mode discharge are shown in figure 5.1.
To ease the comparison between the different ELM regimes these same time traces will
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Figure 5.1: Type-I ELMs: time traces of the divertor current from shunt
measurements (black), the power to the outer divertor (red), the total amount of

energy confined in the plasma (green), the line integrated edge electron density (blue)
and the radiation temperature just inside the pedestal top (red)

be presented for all discharges discussed in this chapter. The black curve shows shunt
measurements in the divertor. The signal is named Ipolsola because it corresponds to
the poloidal SOL current measurement in the outer (außen) divertor. This signal is
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5 RESULTS

roughly proportional to the temperature in the outer divertor and is, therefore, a very
good indicator of hot particles arriving along the open field lines. At AUG, this signal
is typically used to determine the onset of an ELM. The power reaching the outer
divertor plates measured with infrared cameras is shown in the second frame. The
total kinetic energy confined in the plasma, Wmhd, is shown in green. The data from
the outermost channel of the DCN interferometer can be seen in blue. The electron
density is integrated along the line of sight and, therefore, given in m−2. The radiation
temperature in the last frame is taken from an ECE channel at the pedestal top where
the assumption Te = Trad is typically valid.
The discharge 23417 shown in figure 5.1 was run with a 1MA plasma current and -2.5T
toroidal magnetic field, which are the typical values used in H-mode experiments at
AUG. It was fuelled with deuterium gas at a rate of 3.8 ·1021s−1 and heated with 5MW
NBI and 1.3MW ECRH power. While most ELMs had a frequency on the order of
80Hz, some occurred after an inter-ELM time of only 7-8ms. The ELMs induced 6MW
power loads on the outer divertor and the average amount of energy lost per ELM
was 10% of the total WMHD. The pedestal top temperature typically dropped by 10%
during each ELM, while the drop in edge density was slightly lower.
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Figure 5.2: Pre type-I ELM profiles of the electron and ion temperature (a), the
electron density (b) the total pressure (c), its gradient (d), the toroidal current density

at the LFS (e) and the q-profile (f)

The black curves in figure 5.2 show the pedestal profiles of the electron temperature, the
electron density, the total pressure and its gradient, the current density and the safety
factor q from the same discharge. The red curves are from a different discharge which
will be discussed later in this section. Since discharge 23417 was carried out before the
edge CXRS system was installed, the assumption Ti = Te was made. The Te and ne

curves are averaged over many ELMs from data taken in 1ms time intervals directly
before the ELM crashes. The crosses in panels c and d are the total pressure and
its gradient. They are calculated from the temperature and electron density profiles.
The ion density was calculated from ne assuming a radially constant Zeff value of
1.6. The solid lines are the CLISTE fits to the experimental data. In all equilibria
presented in this section the pressure profile in CLISTE was only constrained with
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5.1 Type-I ELMs: peeling-ballooning stability in typical H-modes

kinetic data between the pedestal top and the separatrix. Further inside, it was more
loosely parametrised to account for the fast ion pressure. The total WMHD, which
can be calculated very accurately from magnetic measurements alone, then acted as
a constraint on the magnitude of the core pressure profile. The edge current density
shown in panel e is the local toroidal current density at the low field side of the plasma,
while the q-profile in panel f is flux surface averaged.

2 3 4 5 6 7

Normalised Pressure Gradient α
max

0.6

0.7

0.8

0.9

1.0

1.1

1.2

<
j to

r>
 [

M
A

m
-2

]

23417, pre- type I ELM

0.04

0.05

0.06

      17

      15

      12

      13

       9

       7

      20

      20

      16

      15

      14

      12

       9

       7

      20

      19

      18

      13

      13

       8

       8

       7

      19

      18

      15

      10

      12

       8

       8

       7

      19

      17

       9

       8

       7

       7

       8

       5

       0

       1

       1

       4

       6

       7

       5

       6

       2

       1

       1

       4

       6

       7

       5

       6

       2

       1

       1

       2

       9

       4

       5

       6

       2

       1

       1

       2

       1

       1

       3

       6

Figure 5.3: Stability diagram of type-I ELMy discharge 23417

The stability diagram in figure 5.3 shows the result from the stability chain presented
in section 2.4 using the profile in figure 5.2. Stability is shown as a function of two
destabilising quantities, the pressure gradient and the current density. αmax is the
maximum edge pressure gradient normalised according to equation 2.10. The maximal
toroidal edge current density is flux-surface averaged and also serves as a proxy for
the magnetic shear. The positions of the numbers mark the grid points of the j − α
grid while the numbers themselves correspond to the dominant toroidal mode. The
diagram is typical for type-I ELMs. In the high j, low α region the most unstable modes
are low n peeling modes while the low current, high α region is dominated by high n
ballooning modes. The mode numbers were only scanned up to n = 20 but the toroidal
mode number spectra calculated for this region are almost flat which indicates that the
dominant mode number is only slightly larger than 20. The operational point, indicated
by a yellow star, lies in a region of intermediate n. It is rather far inside the unstable
region, while according to peeling-ballooning theory the ELM crash should already have
occurred when the operational point reaches the marginally unstable region. However,
the calculations do not take into account the stabilising effects of diamagnetic drifts
and sheared rotation. Additionally, the assumption Ti = Te might not be valid as the
ion temperature pedestal is typically slightly wider than the electron temperature [15],
and the stability diagram was only generated using a low cutoff parameter Ψb = 0.990.
When using Ψb = 0.994 and an experimental Ti profile, the stability boundary would
move slightly into the red region of the plot, while the operational point would move
toward the boundary.
As the diagnostics available at AUG have greatly improved since the discharge was
performed, it was repeated in order to analyse the ELM cycle in greater detail. Edge
Ti profiles are now available and the time resolution of the magnetic measurements
has increased. However, the hardware from the ECE diagnostic is older which leads
to more scattered Trad data. The time traces from the repeat of discharge 23417 can
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Figure 5.4: Type-I ELMs: time traces of the divertor current from shunt
measurements (black), the power to the outer divertor (red), the total amount of

energy confined in the plasma (green), the line integrated edge electron density (blue)
and the radiation temperature at the pedestal top (red)

be seen in figure 5.4. While the ELM-induced divertor power loads and the amount
of confined energy were comparable to the reference, the ELM frequency was clamped
between 30 and 40 Hz with only a very few outliers. The energy and density losses
were much higher than in the reference, as was the density itself. The temperature at
the pedestal top was lower than in the reference.

The pre-ELM profiles are shown in red in figure 5.2 to compare them to the reference
discharge. While the pedestal top electron temperature is similar, the pedestal itself
is slightly wider. However, the uncertainties at the pedestal top are relatively large in
this discharge and the electron temperature in this region is strongly influenced by the
constraints imposed by the modified tanh fit that was used. The Ti pedestal is lower
and wider than Te and the electron density is 15% higher than in the reference. The
resulting total pressure gradient and edge current density are 35% lower, leading to a
less pronounced low shear region and a higher edge q than in the reference. Rather than
only calculating the peeling-ballooning stability of the pre-ELM case, the evolution
of the operational point with respect to the stability boundary will be assessed by
analysing different time points in the ELM cycle.

The evolution of the kinetic profiles during type-I ELM cycles in AUG was analysed
in great detail in reference [17]. It was found that the recovery after the crash can be
divided into several distinct phases. Directly after the crash the electron temperature
and density profiles stay relaxed for roughly 1.5 ms. Strong oscillations picked up by
magnetic diagnostics indicate that there is still MHD activity in this phase. The Te
profile then briefly starts to recover but this recovery halts after 1ms, at which point
the density recovers. After roughly 2.5ms, when the density profile has reached its
pre-ELM shape, the second Te recovery phase sets in. Finally, the ne and Te gradients
and, therefore, ∇pe either stay clamped at their maximal values before the next ELM
crash occurs, or the instability arises immediately. The same behaviour was observed
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Figure 5.5: Recovery of the electron temperature gradient (top) and temperature
profiles corresponding to the different phases (bottom) [62]

in the reference discharge 23417 just discussed. The evolution of the edge electron
and ion temperature profiles of the newer discharge 27963 throughout the ELM cycle
is shown in figure 5.5 [62]. The large top frame shows the recovery of the maximal
edge Te gradient and the subsequent plots the temperature profiles during the phases
marked by the colored bars. The black Te profiles were calculated using ECFM and
the red curve is a fit to the Ti data shown in blue. Note that the pedestal top electron
temperature shown here is lower than in figure 5.2 because there TS data was included
in the modified tanh fit in figure 5.2 and because the fit function assumes symmetry
between the pedestal top and bottom. Additionally, only one ECE channel is available
in the region slightly inside the pedestal top, and it is lower than one would assume from
the shape of the remaining channels (see kink in the ECFM Te profiles between ρp=0.92
and 0.96 in figure 5.5). It is not clear whether this is due to a wrong calibration of the
ECE channel or an instability localised in this region prevents the electron temperature
from recovering. While in this discharge the phases in the recovery of the gradient are
not as clear as described in reference [17], they can still be distinguished. Phase (ii) in
figure 5.2 corresponds to the collapsed phase after the crash. Phase (iii) is the phase
in which the Te profile recovery briefly halts. It is followed by the final ∇Te recovery
phase, which lasts from the end of the blue region to the end of the purple region.
Finally, the electron temperature gradient stays clamped to its maximum, while the
pedestal width continues to increase. The question arises why the temperature and
density profiles can reach their final gradient long before the next ELM crash occurs.
To explore this, selected data from the equilibrium evolution presented in reference [62]
were chosen for a stability analysis, namely the equilibria corresponding to phases (i),
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(iii) (iv) and (v) in figure 5.5.
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Figure 5.6: Stability diagrams at different times in the type-I ELM cycle of discharge
27963

The stability diagrams corresponding to these phases are shown in figure 5.6. While the
diagrams were calculated using Ψb = 0.990 the dashed black curve in the last diagram
represents the stability boundary (red to orange region) calculated using Ψb = 0.994.
Regardless of which boundary is used, the occurrence of the ELM crash can not be
explained from peeling-ballooning theory. Figure 5.5a shows the diagram corresponding
to the beginning of the temperature recovery. It is far inside the stable region, as one
would expect from a post-ELM equilibrium. Toward the end of the recovery phase of
∇Te, marked by (iv) in figure 5.5, the edge current has almost reached its pre-ELM
value while α is still 20% lower than just before the ELM. Diagram c corresponds
to the beginning of the phase with clamped ∇Te and d to the pre-ELM equilibrium.
While the location of the operational point is similar, the stability boundary moves
inside the formerly stable region. This is due to the pedestal broadening at constant
pressure gradient. However, just before the ELM the equilibrium is still clearly stable
and according to peeling-ballooning theory an increase of almost 50% is necessary in
the edge pressure gradient and current density to render it unstable. This is well above
the experimental errors.
The operational points of phases (i), (iii), (iv), (v) and (vi), as well as their respective
stability boundaries are overplotted in figure 5.7 using the color coding from figure 5.5.
Aside from not reaching the stability boundary toward the end, the plasma evolution
during the ELM cycle behaves as one would expect. At the beginning of the recovery
(phase iii, blue), the pressure gradient and edge current density are still very low,
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Figure 5.7: Evolution of the operational point during a type-I ELM cycle of discharge
27963 in j − α space

before they start to move in the direction of the high j and high α region of the
peeling-ballooning stability boundary. Toward the end of the recovery phase (purple)
the stability boundary is close to the pre-ELM boundary because the pedestal is still
relatively wide. In phase v (cyan equilibrium), the boundary is at much higher values of
the pressure gradient because of the narrower pedestal at the beginning of the saturated
gradient phase. It appears that the current density and the pressure gradient are
slightly higher than in the pre-ELM cases, but it can be seen in the work published by
M. Dunne (figure 5.7 in reference [15]) that this is within the experimental uncertainties.
Note the pre-ELM case (green) and the equilibrium toward the end of the ELM cycle
(yellow) are very close. However, the boundary still moves toward the operational
point since the pedestal width continues to increase. This is consistent with former
investigations of the evolution of the electron pressure profile, which found that the
pedestal top continues to increase toward the end of the ELM cycle while its gradient
stays clamped to a maximum value [17]. This is also consistent with the assumptions of
the EPED model [69], which hypothesises that the pedestal gradient is first limited by
a transport instability while the pedestal height and width continue to evolve, leading
to an unstable peeling-ballooning mode.

A gyrokinetic analysis of the same equilibria as the ones presented here was performed
with the GENE code [70] and preliminary results indicate that kinetic ballooning modes
may be near marginal stability in the saturated gradient phases [71]. While the results
presented here do not support the triggering of the ELM by an ideal peeling-ballooning
mode, the stability boundary is still expected to evolve between the pre-ELM time
point and the ELM crash as the pedestal width continues to increase. This evolution
could not be analysed because of the high integration time of the CXRS diagnostic.
Assuming a linear evolution of the boundary in time and a constant inter-ELM time
of 30ms, we can extrapolate the pre-ELM boundary from the cyan boundary in figure
5.7 (16ms before the ELMs), the yellow (12ms before the ELM) and the purple one
(2-3ms before the ELM). The result (black dotted line) is still far away from the green
operational point, which is not expected to change. The pressure gradient of the pre-
ELM equilibrium in discharge 27963 is 30% lower than the stability boundary. In this
discharge, type-I ELMs can, therefore, not be explained by ideal MHD stability.
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5.2 Type-III ELMs: small ELMs close to the L-H threshold

Type-III ELMs, which occur just above the L-H threshold, are smaller than type-I
ELMs and can be identified by their frequency which increases with heating power.
Type-III ELMs could be relevant for the initial operational phase of ITER. Distinct
type-III ELMs are rare at AUG: most discharges only feature type-I events or small
filament-like structures which can not clearly be identified as ELMs. However, they
do appear in H-mode plasmas close to the H-mode density limit [72]. Discharge 27138
featured large ELMs causing more than 10% WMHD losses each, which gradually dis-
appeared to give way for type-III ELMs as the density increased.
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Figure 5.8: Type-III ELMs: time traces of the divertor current from shunt
measurements (black), the power to the outer divertor (red), the total amount of

energy confined in the plasma (green), the line integrated edge electron density (blue)
and the radiation temperature just inside the pedestal top (red)

Figure 5.8 shows time traces of discharge 27138 after the transition to type-III ELMs.
It was run at 800KA with a magnetic field of -2.5T, 7.5MW of NBI heating and no
ECRH. The amount of fuelling, 6·1021s−1, was relatively high because the discharge was
used to explore the density limit of H-mode operation. The type-III ELM frequency
lay between 100Hz and 400Hz. The divertor shunt measurements and the divertor
power load time traces show that compared to the inter-ELM signal, type-III ELMs
are much smaller than type-I ELMs (figs. 5.1 and 5.4). While type-I ELM losses are
generally around 10%, figure 5.8 indicates energy losses below 2% and a drop of the
edge density between 2% and 3%. The ECE time trace, which represents the radiation
temperature slightly inside the pedestal top at ρp = 0.93, shows a drop by roughly
100eV after each ELM. Half of the temperature loss is recovered within 0.3ms after the
crash. Note that this could also be an artifact due to a fast ELM-induced contraction
of the plasma which might re-expand very quickly. Since the ECE diagnostic measures
at a fixed radial position, the ELM-induces contraction of the plasma causes a given
edge ECE channel to measure the lower temperatures at larger values of ρp. When
the plasma re-expands, the channel returns to its initial radial position relative to the
separatrix, such that an apparent increase in temperature is observed. However, the
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time resolution of the standard plasma equilibrium is not high enough to resolve such
fast movements.
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Figure 5.9: Pre type-III ELM profiles of the electron and ion temperature (a), the
electron density (b) the total pressure (c), its gradient (d), the toroidal current density

at the LFS (e) and the q-profile (f)

The blue curves in figure 5.9 show that the kinetic pedestal profiles prior to type-III
ELMs are much shallower and wider than in the type-I ELMy H-mode cases presented
earlier (cf. figure 5.2). While it is not sensible to compare the absolute pressure gradient
to the type-I ELMy-H-modes discussed in the previous section because they were run
at 1MA plasma current, a type-I-ELMy H-mode run at 800kA is presented in section
5.7. Discharge 29294 (black curves in figure 5.9) has a slightly lower pressure gradient
and a much narrower pedestal, even though it was only heated with 2.5MW NBI and
2.3MW ECRH. The wide pressure gradient profile of the type-III ELMy H-mode 27138
drives a broad local edge toroidal current density slightly above 1MAm−2. Because of
the wide edge current, the region of low shear around ρp = 0.98 is also very broad. If
the plasma is in the second stability region, this low shear region will have a stabilising
effect on the ballooning modes. In the type-I pre-ELM case the toroidal edge current
density is slightly higher, but its flux-surface average slightly lower (see figure 5.10).
The j − α diagrams in figure 5.10 shows that in type-III ELMy H-mode the plasma
is stable against peeling-ballooning modes (left), while the type-I case is very close
to the stability boundary. The diagrams were generated using Ψp = 0.994, and the
boundaries for Ψb = 0.990 are indicated by the dotted black curves. The operational
points are at similar locations, but the stability boundary of the type-I case is at lower
j and α values. Both a 50% higher edge current density and pressure gradient are
necessary to drive the plasma unstable. This is not surprising because unlike in the
model for type-I ELMs, finite resistivity is believed to play a non negligible role in the
trigger mechanism of type-III ELMs [73]. However, the resistivity mainly depends on
the temperature, which is very similar in the two cases. The boundary in the type-I
case is probably lower because of a slightly lower triangularity than in the type-III case
and because the current density is more localised at the plasma edge.
In the type-I ELMy phase of discharge 27138 the pedestal pressure gradient decreases
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Figure 5.10: Stability diagram of the plasma before a type-III ELM

as the density increases because of a lower temperature. This stabilises the type-I
ELMs, but it was shown for the similar discharge 28726 that the radial electric field
well at the edge weakens with increasing density [74]. Type-III ELMs are thought
to be driven by resistive interchange instabilities which are stabilised by shear in the
radial electric field [73]. As this shear decreases with the depth of the Er well when
the density increases, type-III ELMs appear.

5.3 Type-II ELMs: strongly fuelled discharges close to double
null

Type-II ELMs are small fluctuation like events which do not induce large crashes in
the kinetic profiles like type-I ELMs. Rather, the losses are most likely caused by
frequent small filaments detaching from the plasma. In AUG, type-II ELMs occur in
high triangularity discharges close to DN and with a high density. The triangularity
depends on the radial positions of the upper and lower X-points compared to the
position of the geometric axis of the plasma, the geometric axis being equidistant from
the outer and inner separatrices at the horizontal midplane. Unlike the magnetic axis, it
is independent of the Shafranov shift. The higher the triangularity, the more D-shaped
the plasma.

The type-II ELMy discharge analysed in this section was run with a plasma current
of 800kA at -2.5T, 5MW NBI heating and 0.75MW ECRH. The fuelling was 9.3 ·
1021s−1 because a high gas fuelling rate is necessary to prevent impurity accumulation
in discharges with high triangularity. Figure 5.11 shows the poloidal topology of the
presented discharge. In the first phase (black), the triangularity was already high,
but the upper separatrix was still far from the second X-point. This phase was still
dominated by type-I ELMs with a frequency of 40-80Hz. However, when the upper
separatrix was gradually moved toward the second X-point, the regime changed to a
type-II ELMy H-mode (red).

Characteristic time traces from the two phases are shown in figure 5.12. While in the
type-I phase the ELM-induced heat loads reach up to 7MW in the outer divertor, in
the type-II phase they fluctuate around 1-3MW, similar to the inter-ELM phase in the
type-I ELMy H-mode. During type-II ELMs the signal from the shunt measurements in
the divertor (top panel) shows much more activity than during the inter-ELM phases.
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Figure 5.11: Shape of the equilibrium during the type-I ELMy phase (black) and the
type-II phase (red) in discharge 25740

The type-I ELMs induce energy losses of 10%-20% and the drop in edge density is in
the same range. In the second phase the confined energy is higher, which is mainly
due to the higher density despite the slightly lower temperature. The type-II ELMs,
which have a frequency between 200Hz and 1kHz, induce energy losses up to 3% and
density fluctuations in the range of 1.5%. While the type-I ELMs are characterised by
large drops in the pedestal top temperature of more than 50%, the type-II ELMs cause
strong temperature fluctuations of around 50eV. These fluctuation occur over a broad
band of frequencies between 20 and 65kHz just inside the pedestal top [18, 19]. They
can also be observed in the signals from magnetic pickup coils. While it is possible
to correlate some of the larger events in the divertor with drops in Trad and ne, most
of the fluctuations seem uncorrelated. This suggests that type-II ELM losses are very
localised in poloidal and toroidal angle and the heat and particles travel on a toroidally
localised bundle of open field lines to the divertor. Therefore, they reach the divertor
plates at a specific toroidal location that depends on the pitch angle of the field lines
and where they were released from the confined plasma, rather than being a global
phenomenon like type-I ELMs. Such localised losses would explain why the events
observed by the ECE diagnostic cannot necessarily be seen in the time traces from the
divertor diagnostics shown in figure 5.12 as both sets of measurements correspond to
distinct toroidal locations.

Figure 5.13 shows the pre-ELM kinetic profiles in the type-I phase (black) and the
averaged profiles in the type-II phase (red). Before type-I ELMs the pedestal top
temperatures of the ions and electrons are similar. The ion temperature is less affected
by the change to type-II ELMs than the electron temperature, which drops by 20%.
While the pedestal top and core density increase in the second phase, the pedestal itself
widens only slightly. The lower temperature and wider pedestal cause the pedestal top
pressure and the pressure gradient to drop when the type-I ELMs disappear. In turn,
this drives a lower but broader edge current density. Therefore, the q-profile has higher
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Figure 5.12: Type-I (left) and type-II (right) ELMs: time traces of the divertor
current from shunt measurements (black), the power to the outer divertor (red), the

total amount of energy confined in the plasma (green), the line integrated edge
electron density (blue) and the radiation temperature at the pedestal top (red)

values at the plasma edge during type-II ELMs and the region of low shear is not as
pronounced.

The stability diagrams for both phases, calculated with Ψb = 0.994, can be seen in figure
5.14. The type-I pre-ELM equilibrium is 10% under the stability boundary in current
and pressure gradient, which is within the uncertainties of the measurements. To
generate the equilibria used here, the ECFM was ELM-averaged to a single profile. If,
however, one would fit Te with the commonly used modified tanh function, the pressure
gradient would be 10% steeper and the equilibrium would be marginally unstable. The
type-II equilibrium, however, is far from the unstable region of the diagram. Both
the pressure gradient and the edge current density must increase by roughly 60%
to reach the stability boundary, which is well above the experimental uncertainties.
Note that the stability boundary in the right figure is at higher values of α than in
the left one. This is because higher pressure gradients become more stable as the
triangularity is increased and the equilibrium gets closer to DN, which is consistent
with JET results [67, 75]. Unlike at JET, the low current region also becomes more
stable. Previous results suggest that the radial mode structure of type-II ELMs is
narrower than that of type-I ELMs, which may indicate that the extent of the peeling-
ballooning mode is linked to the ELM affected area [76]. As the type-II equilibrium is so
far in the stable region and ILSA does not find any unstable modes, such a comparison
is not possible. However, comparing the radial mode structure of the dominant toroidal
mode at α = 6 and < jtor >= 0.8MAm−2 in the two diagrams showed that the mode
width does not decrease in the type-II case (see figure 5.15, the colors change toward
red with increasing m).

The stability analysis of type-II ELMs indicates that these instabilities have a too low
pressure gradient and edge current density to be driven by peeling-ballooning modes.
Previous results that indicate that the radial extent of the mode driving type-II ELMs
is smaller than in type-I ELMs could not be confirmed. However, in the framework
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Figure 5.14: Stability diagram of the plasma before type-I ELMs in the reference
phase of discharge 25740 (left) and during the type-II phase

of the EPED model, an interruption of the pedestal width evolution could cause a
small ELM event [77]. Microtearing modes that are present slightly inside the pedestal
top region and cause the broad band fluctuations in Te could prevent the pedestal top
electron temperature from reaching the same values as in the type-I phase [78]. This
would explain why the plasma pressure does not reach the peeling-ballooning boundary
and the type-I ELMs disappear. However, this explanation is highly speculative.

5.4 Type-I ELM mitigation at high densities

When increasing the fuelling in type-I ELMy H-mode discharges, type-I ELMs disap-
pear and smaller, type-II like events start to appear. As this regime is more easily
accessible at low plasma current, the 600kA, 2.2T discharge 28017 is presented. It
was heated with 5MW NBI and 0.6MW central ECRH, and fuelled at 2.8 · 1021s−1.
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and < jtor >= 0.8MAm−2 from the two diagrams shown in figure 5.14

The type-I ELM frequency was very scattered between 20Hz and 60Hz and dropped
to only sporadically occurring ELMs with increasing density. Above a certain edge
density, type-I ELMs stopped occurring altogether. It was planned that the edge of
the discharge presented in this section would be heated with ECRH, but due to an
incorrect polarisation setting the majority of the microwaves was not absorbed. To
ensure that the disappearance of the ELMs is not correlated with the small amount of
edge-deposited ECRH or the glowing PFCs resulting from the incorrect polarisation,
the discharge is compared to a similar one without edge ECRH heating. Figure 5.16

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time (s)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

[1
0

1
9
 m

-2
]

 
 

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time (s)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

[1
0

1
9
 m

-2
]

 
 

AUG #28048AUG #28017

Core line integrated n
e

Edge line integrated n
e

Core line integrated n
e

Edge line integrated n
e

a b

Figure 5.16: Line integrated core (blue) and edge (black) electron density in two
discharges. The red crosses mark the change into ELM-free H-mode

shows the core and edge line-integrated core densities of the two similar discharges.
The red crosses mark the time and density at which the last type-I ELM appears. The
density threshold for reaching the ELM-free H-mode is the same in both discharges,
but it is not clear whether this is a core or an edge effect. However, since the second
discharge did not have any ECRH power deposited at the edge of the plasma or on the
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PFCs, ECRH cannot be responsible for the suppression of the ELMs in the reference.

    

Ipolsola

AUG #28017, type I ELMs AUG #28017, ELM-free phase

     

 

 

 

    

0

5

[M
W

]

Inner P
div

     

 

 

    

260

280

[k
J] W

mhd

     

 

 

    

3.0

3.5

[1
0

1
9
 m

-2
]

Line integrated n
e

     

 

 

2.72 2.74 2.76 2.78
time [s]

300
400
500

[e
V

] T
rad

3.42 3.44 3.46 3.48 3.50
time [s]

 
 
 

0

10

[k
A

]  

Figure 5.17: Type-I ELMy (left) and ELM-free H-mode (right): time traces of the
divertor current from shunt measurements (black), the power to the inner divertor
(red), the total amount of energy confined in the plasma (green), the line integrated
edge electron density (blue) and the radiation temperature just inside the pedestal top

(red)

Figure 5.17 shows the time traces of the type-I (left) and ELM-free phase (right) of
discharge 28017. In the left panel, the magnitude of the divertor current is a factor
of two lower than for typical type-I ELMs, while the WMHD drops are of the order of
7%, slightly lower than the typical 10% drop. In addition to the ELMs themselves,
strong inter-ELM fluctuations can be observed in the divertor shunt measurements.
As the density increases, the fluctuations become the dominant energy loss mechanism
and the type-I ELMs disappear. Directly after the transition to the ELM-free H-
mode the stored energy exceeds the pre-ELM level in the type-I ELMy phase. The
confinement soon starts to degrade after the time window shown in figure 5.17, while
the density stays high. Although the time traces from the ELM-free phase in figure 5.17
are reminiscent of the type-II ELMs presented in the last section, a Fourier analysis
of the pickup coil signals showed that they do not feature the 20-65kHz broad band
fluctuations which are characteristic of type-II ELMs.
The kinetic profiles, shown in figure 5.18, change only a little when the ELM-free phase
sets in. The electron density and total pressure pedestal top values are slightly higher,
but this has little effect on the pressure gradient because the pedestal width slightly
increases. The edge current density, however, is 10% lower in the ELM-free phase.
Both the pre-ELM equilibrium and the ELM-free case are in the stable region for
peeling-ballooning modes (figure 5.19). While the pre-type-I ELM case is slightly closer
to the unstable region and the boundary itself slightly moves, these trends are within
the uncertainties of the experimental measurements. Note, however, that the dominant
toroidal mode numbers at the stability boundary are relatively small compared to the
high triangularity type-I and type-II ELMy plasmas discussed in section 5.3, indicating
that in discharge 28017 a different kind of instability dominates, which has a peeling
like behaviour. Such a current driven instability can be expected from the high relative
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Figure 5.19: Stability diagrams of the plasma before a type-I ELM (left) and in the
ELM-free phase (right) of discharge 28017

current density in this discharge. With a maximum of 0.9 to 1MAm−2 it is only slightly
lower than in some of the 1MA discharges discussed earlier, while the total plasma
current is only 600kA. The small events arising with the suppression of the type-I
ELMs at high densities could be more closely related to the type-III ELMs discussed
in section 5.2 which also have small dominant mode numbers.

Figure 5.20 shows the radial mode structure of the dominant toroidal mode number of
the pre-ELM equilibrium and the ELM-free phase. The modes shown here correspond
to the equilibria with 10% increased current density and pressure gradient. The broad
harmonics confirm the peeling-like behaviour of the instability. However, the modes
extend far into the plasma, which contradicts a possible correlation between the width
of the linear MHD mode and the ELM size.

Resistive effects could also be important with the dominant current driven modes.
This would also account for the small size of the ELM crash, where the resistivity
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Figure 5.20: Radial mode structure of the dominant toroidal mode number of the
type-I pre-ELM equilibrium and the ELM-free phase. In both cases the modes shown
here correspond to the equilibria with 10% increased current density and pressure

gradient.

dampens significant changes in the current density. The small fluctuations would then
correspond to a �soft� peeling limit, analogous to the soft ballooning limit described
for type-II ELMs by Saarelma et al. [75]. A resistive MHD analysis and non-linear
simulations are required to further analyse this hypothesis.

5.5 N-seeded ELMs: ELM mitigation by nitrogen seeding

As already mentioned, ELM-induced heat loads might exceed the heat flux limits of
the PFCs of future larger fusion devices. To mitigate the power loads both from the
ELMs and in the inter-ELM periods new scenarios have been developed in which low-Z
impurities are seeded in the divertor, in addition to the normal D fuelling. The power
radiated by these impurities is much higher than that radiated by deuterium, cooling
the divertor efficiently. The hot particles leaving the confined plasma and arriving
in the divertor along the open field lines are cooled down before reaching the plates,
causing a lower heat flux than they otherwise would. It was found that seeding nitrogen
is ideal for this purpose [79]. As a beneficial side-effect, nitrogen seeding in the divertor
also increases the stored energy in the plasma in a full metal tokamak. In a machine
with carbon walls, however, no improvement was observed [80, 81]. It appears that
nitrogen seeding recovers the confinement degradation that occurred when changing
from carbon PFCs to a full metal wall. Since introducing a low-Z impurity into the
plasma edge dilutes the deuterium ions, and thus leads to a lower ion density, the
ion temperature can increase while the total pedestal pressure stays constant. If one
assumes stiff core Ti profiles, this effect can propagate to the plasma centre, leading
to a higher stored energy content. However, the confinement improvement observed
when seeding nitrogen is too strong to be caused by this effect alone and no conclusive
explanation has yet been found [82]. In addition to the confinement increase, it was
found that the presence of nitrogen mitigates the ELMs and, in some cases, increases
the ELM frequency.
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Figure 5.21: Pick up coil signal and divertor current during non-seeded ELMS (a and
b) and N-seeded ELMs (c and d), as well as the evolution of the ne profile in the two

phases (e) [83]

In the full-W AUG, the actual crash of typical type-I ELMs has been hypothesised to
consist of two phases, which can be seen in the time traces in figure 5.21a and b [83].
These frames show the signal from a magnetic pickup coil and the divertor current.
In the first phase, which lasts roughly 0.5ms, the pedestal top pressure is eroded but
the steep gradient region remains unaffected (phase 1a). For better visualisation, this
erosion is sketched for the electron density in panel e. In the second phase, which is
typically 1ms long but can also last up to 5ms, the pressure gradient drops and more
energy is lost (phase 1b). In nitrogen-seeded discharges, however, the second phase
does not occur (see panels c and d). The recovery from the ELM begins directly after
the pedestal top is eroded. While this could be the reason for the smaller ELM size and
higher frequency, it does not explain the higher pre-ELM energy stored in the plasma.

During the 2013 experimental campaign of AUG, a reproducible discharge was per-
formed in which nitrogen seeding lead to a dramatic increase in stored energy of 40%.
This 1MA, -2.5T discharge was strongly heated using 10MW NBI, 1.5MW ECRH and
1.8MW ion cyclotron heating, which is radio-frequency heating affecting both the ions
and the electrons. The discharge was also very strongly fuelled at 23 · 1021s−1 deu-
terium and an additional 22 · 1021s−1 nitrogen seeding in the second phase. Note that
the fuelling rate is expressed in electrons per second. While when fuelling hydrogen
or deuterium this also corresponds to the neutral fuelling rate, when injecting impu-
rities the rate has to be divided by the charge number of the impurity species. The
ELM frequency, between 120 and 150Hz in the reference phase, dropped slightly when
seeding was applied, in contrast to typical observations [83]. Figure 5.22 shows the
evolution of the plasma over several ELM cycles in the reference phase (left) and with
nitrogen seeding (right). The ELMs, which are much smaller in the seeded phase, do
not cause any power loads to the inner divertor, which is fully radiatively cooled. The
per-ELM energy loss is slightly lower and 40% of this energy is recovered within 0.5ms
after the end of the crash. Note that the y-axis of the WMHD signal is different for
the non-seeded and seeded phases because of the dramatic increase of the confined
energy. However, the scale was kept the same to enable a better comparison of the
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Figure 5.22: Type-I ELMs without (left) and with (right) N-seeding: time traces of the
divertor current from shunt measurements (black), the power to the inner divertor
(red), the total amount of energy confined in the plasma (green), the line integrated
edge electron density (blue) and the radiation temperature around ρp = 0.9 (red).

Note that the plotted WMHD range is different in the left and right plots.

losses. While the drops in temperature are comparable in both phases, the particle
losses are much lower when nitrogen is seeded. The improved confinement appears to
originate mainly from an increase in temperature.
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Figure 5.23: Pre-type-I ELM profiles without (black) and with (blue) N-seeding of the
electron and ion temperature (a), the electron density (b) the total pressure (c), its

gradient (d), the toroidal current density at the LFS (e) and the q-profile (f)

This can also be seen in the temperature profiles shown in figure 5.23. Compared to the
reference phase (black), both the ion and electron temperatures strongly increase in the
seeded phase (blue). It appears that the Te pedestal broadens with similar gradient,
while the Ti gradient increases. However, the ion temperature is only poorly diagnosed
in the reference phase because the CXRS systems were set to measure nitrogen. This
is sensible for the seeded phase in which the intensity of the nitrogen signal is very
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high, but not in the reference phase. When this experiment is repeated in the future
it should be performed in two separate discharges, such that the CXRS systems can
measure boron in the reference discharge. While the edge density gradient is similar
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Figure 5.24: Stability diagrams of two pre-ELM plasmas without (left), and with
(right) N-seeding. In the top ones the growth rate is normalised to νA, in the bottom

ones to ω∗,pi/2

in both phases, the difference in the pedestal top density lies within the uncertainty
of the DCN and TS measurements, which disagree in the first phase. According to
the data from the DCN interferometer, the edge density should be similar in both
phases. Because of the inaccuracies in Ti and ne, the pedestal pressure in the reference
phase might be higher than the one shown in figure 5.23. Even accounting for these
uncertainties, the pressure profile in the presence of nitrogen is much steeper with
comparable width. The almost 100% increase in pressure gradient leads to a 30%
increase in edge current density at the outboard side of the plasma. In addition to the
local toroidal current density at the LFS, figure 5.23 shows the parallel current density
averaged over each flux surface (dashed lines). Interestingly, < j ·B > is the same in
both phases. This means that the peeling drive relative to the ballooning drive will be
lower since the pressure gradient strongly increases.. It was recently shown that when
seeding nitrogen the flux surface-averaged edge current density can even drop despite
an increasing pressure gradient [15]. This was found to be consistent with neoclassical
calculations of the bootstrap current. The local current density on the outboard side
is higher because it includes the Pfirsch-Schlüter currents, which increase with the
pressure gradient but average to zero on a flux surface.
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It can be seen in the top panels in figure 5.24, which were generated using Ψb = 0.994,
that both the unseeded (left) and the N-seeded (right) pre-ELM equilibria are unstable.
The unseeded reference case is close to the stability boundary and, since it was not very
well diagnosed, its uncertainties are relatively high. The quality of the Ti and ne profiles
collected in the N-seeded plasma, however, is very good. Only the Te gradient might
be slightly too steep, since a very steep function was fit to the relatively scattered
data. However, this is not sufficient to explain why the operational point is so far
in the unstable region. The dominant toroidal mode numbers are very high, which
means that the stabilising effect from the diamagnetic drift will be stronger than in
the discharges presented earlier. The bottom panels show the same diagrams with the
growth rate normalised to the ion diamagnetic drift frequency divided by two, where a
mid-pedestal density of 4 · 1019m−3 was used in the normalisation. Since high toroidal
mode numbers are strongly stabilised, relatively low mode numbers become dominant,
n=8 in the reference and n=4 in the seeded case. With this normalisation the unseeded
plasma is now marginally stable, while the seeded case is still 10% in the seeded region.
The radial mode structure of the n=19 mode, which is dominant when using the νA
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Figure 5.25: Radial mode structure of the dominant toroidal modes in figure 5.24

normalisation, is shown in the left frame of figure 5.25. The structure is similar in both
phases, with the radial extent in the seeded phase being slightly larger. In the right
frame the modes which are dominant when the diamagnetic drift stabilisation is taken
into account are compared. The mode extends further inside in the seeded phase, as
was the case without ω∗,pi stabilisation. This confirms that the reduced ELM size is
not due to a narrower instability and indicates that there are two distinct phases to
the ELM crash. The first, then, would be linked to linear stability, while the second
is likely a nonlinear process. Due to this nonlinearity, the second phase cannot be
investigated using a linear MHD code like ILSA.

To summarise, when seeding nitrogen into the divertor of a full metal machine re-
producible improvement in confinement and a smaller ELM size are observed. The
pressure gradient and local toroidal current density at the LFS of the plasma strongly
increase while < j · B > stays constant or even drops. The resulting equilibrium is
highly unstable against the same peeling-ballooning modes that are dominant in the
unseeded reference H-mode plasma while the mode structure from the linear calcula-
tions and the ELM phenomenology of the first phase in the crash are identical. This
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suggests that a stabilising mechanism must exist that is not included in ideal MHD.
Since the dominant mode numbers are very high, the diamagnetic drift stabilisation
is very strong. When taking it into account both the unseeded and seeded cases are
within 10% of the stability boundary. The first phase of the ELM crash is most likely
linked to linear peeling-ballooning stability, but the second phase, which is suppressed
when seeding nitrogen, is a nonlinear phenomenon and cannot be described using linear
codes.

5.6 ELM triggering via frozen deuterium pellets

At AUG, cubic frozen deuterium pellet with a side length of 1.5-2.0mm can be injected
into the plasma with velocities up to 1km/s by using a centrifuge. In future large fusion
reactors these pellets will constitute the main source of particle fuelling. Type-I ELMs
are typically triggered as a side effect of injecting pellets into an H-mode plasma [84].
If the pellet repetition frequency is high enough, it is even possible to artificially set
the ELM frequency. Recent experiments at DIII-D achieved an increase of the natural
ELM frequency by a factor of 12 [85]. Since a higher ELM frequency at constant input
power reduces the energy losses per ELM, and thus leads to a lower peak power flux to
the divertor, ELM pacing has long been considered to be a possible solution to the too
high ELM-induced heat fluxes that threaten to melt the plasma facing components of
future devices like ITER.

       

0.0

0.5

1.0

[a
.u

.]

AUG #19829, C-AUG

       

0

2

[M
W

]

Outer P
div

       

520
540
560

[k
J] W

mhd

       

5.4
5.6
5.8

[1
0

1
9
 m

-2
]

Line integrated n
e

1.76 1.78 1.80 1.82 1.84 1.86 1.88
time [s]

300
400
500

[e
V

] T
rad

PelletDivertor D-α

Figure 5.26: Pellet triggered ELMs in C-AUG: time traces of the divertor D-alpha
radiation (black), the pellet monitor (green), the power to the outer divertor (red), the

total amount of energy confined in the plasma (green), the line integrated edge
electron density (blue) and the radiation temperature just inside the pedestal top (red)

Figure 5.26 shows the time traces for discharge 19829. In addition to the same signals
as shown in the previous sections, a monitor signal that indicates the arrival of pellets
in the plasma is plotted in green. Since the divertor currents were not available at
the time of the discharge, the D-α radiation is shown instead. During the plotted time
interval, four spontaneous and two triggered ELMs occur. The pellet monitor shows the
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5.6 ELM triggering via frozen deuterium pellets

two fragments of a broken pellet arriving into the plasma within 1.5ms of each other,
where the first fragment arrives 4.3ms after the previous spontaneous ELM. Since both
pellet fragments trigger an ELM, it appears that with a fast enough pellet launcher
ELM-pacing would be possible at frequencies of around 500Hz. Both triggered ELMs
cause a lower power load to the divertor than the spontaneous ELMs, which is crucial
for ELM mitigation via pellets. However, the discharge shown in figure 5.26 was carried
out when some of the plasma facing components of AUG were still made of non-coated
graphite. It was recently shown at JET [86] and later confirmed at AUG [87] that ELM
triggering is much more difficult in a full metal machine. It appears that in a metal
device ELM triggering via pellets is only possible after a specific lag time.

-

-

0.02

0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2 4 6 8 10 12 14

Spontaneous

Triggered

Time since previous ELM (ms)

 ∆W MHD /W0 

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25

Spontaneous

Triggered

Pacing (70 Hz)

Time since previous ELM (ms)

 ∆W MHD /W0 

0

 ∆W MHD /W0 

0 10 20 30

0.02

0.04

0.06

0.08

0.1 Spontaneous

unresolved "double-ELMs" 

Time since previous ELM (ms)

Triggered

a b c

ELM triggering in C-AUG ELM triggering in W-AUG with N-seedingELM triggering in W-AUG

Figure 5.27: ELM energy losses in spontaneous and pellet-triggered ELMs in the C
AUG (a), with full tungsten walls (b) and in N-seeded discharges (c) [87]

Figure 5.27 shows the relative WMHD losses of spontaneous (blue) and pellet-triggered
ELMs (red) in AUG discharges run in the carbon AUG (a), the full tungsten machine
without (b) and with (c) N-seeding [87]. The green triangles in (b) are triggered ELMs
from an ELM-pacing experiment at 70Hz. In carbon, energy losses induced by triggered
ELMs are lower than the losses from spontaneous ones. ELMs can already be triggered
immediately after a previous crash; no lag time is observed. However, the natural ELM
frequency is very scattered and a spontaneous ELM can already occur 2-4ms after the
previous event (panel a). The spontaneous ELMs occurring in discharges run with
a full tungsten wall which are shown in panel b have a minimum inter-ELM time of
12ms. However, only a subset of the ELMs occurring in the analysed discharges are
plotted, and in some cases a few events already occur after 8ms. Successful ELM-
triggering is only possible 8-10ms after the previous event, as can be seen from the zero
WMHD losses before 10ms in panel b. However, when nitrogen is introduced into the
full tungsten machine, successful triggering can already be achieved after 2ms (panel
c). Unlike in the carbon machine, this is possible despite a minimal inter-ELM time of
spontaneous ELMs of 8ms. The possibility of faster triggering could be connected to
the lack of the second phase in the ELM crash with N-seeding and the faster recovery
of the pedestal discussed in section 5.5 [83]. If the pedestal top is eroded but the steep
gradient region is only slightly affected, a sudden local density increase induced by the
pellet might cause the plasma to become unstable against peeling-ballooning modes.
In this section one discharge of each of the three scenarios introduced in figure 5.27 will
be analysed. In the C-AUG and nitrogen seeded cases two equilibria will be presented,
one taken just before a spontaneous ELM and one taken in the recovery phase when
ELMs can already be triggered. In the tungsten case, three equilibria will be discussed,
one taken just before a crash and two from the recovery phase, just before and after
the triggering limit.
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Figure 5.28: Pellet triggered ELMs in W-AUG: time traces of the divertor current
from shunt measurements (black), the power to the inner divertor (red), the total
amount of energy confined in the plasma (green), the line integrated edge electron
density (blue) and the radiation temperature just inside the pedestal top (red)

The W-AUG discharge without N-seeding was run at 1MA, 2.5T and heated using
5MW NBI and no ECRH heating. The gas fuelling level was set to 6.7 · 1021s−1 and
the resulting frequency of spontaneous ELMs was scattered between 30 and 130Hz.
Figure 5.28 shows three typical responses of the plasma following a pellet. The left
panel shows a pellet triggering an ELM shortly after the previous event. The inter-ELM
time, 7ms, corresponds to the inter-ELM time of the spontaneous ELMs occurring with
the highest frequency in this discharge, 140Hz. In the second panel a typical triggered
ELM occurring 20ms after the previous one can be seen. This time corresponds to the
lower range of the natural ELM frequency. The last panel shows the arrival of a pellet
5ms after the previous crash which does not trigger an ELM. It does, however, seem to
trigger small filaments than can be seen in the divertor shunt measurement and power
signals. In general, the ELMs triggered in this discharge are not smaller and do not
induce a lower heat flux in the divertor than spontaneous ones. At the arrival of each
pellet the density first strongly increases, as expected from a deuterium pellet whose
primary function is to fuel the plasma. After successful ELM triggering, it drops from
this high density to the value prior to a spontaneous ELM, rather than dropping to the
typical post-ELM value. The latter is only reached after the next spontaneous event.
When triggering is not successful, the density remains high until the next ELM occurs.
The sharp drop in the radiation temperature after each pellet is an artifact from the
ECE measurements because the microwaves can not pass through the layer of high
density plasma caused by the pellet.

The edge temperature profiles in this discharge were not very well diagnosed. The
ECE data from the channels in the steep gradient region are very scattered and no
radial sweep of the plasma was performed to gather TS data and improve the quality
of edge Ti measurements. However, it is still the best diagnosed discharge of this type
and for technical reasons it was not possible to repeat it with a stronger focus on
edge diagnostics. The temperature profiles presented in figure 5.29 are, therefore, only

72



5.6 ELM triggering via frozen deuterium pellets

-1.5ms

+5.5ms

+8.5ms

AUG #29178

     
0.0

0.2

0.4

0.6

0.8
[k

e
V

]

T
e

T
i

0.85 0.90 0.95 1.00
ρ

p

0

2

4

6

[1
0

1
9

 m
-3

]

n
e

     
0
2

4

6

8

10

12

14

[k
P

a
]

Exp. p

CLISTE !t

0.85 0.90 0.95 1.00
ρ

p

0
100

200

300

400

500

600

[k
P

a
 m

-1
]

Exp. dp/dr

CLISTE !t

     
0.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

[M
A

 m
-2

]

j
φ

0.85 0.90 0.95 1.00
ρ

p

0
1

2

3

4

5

6 q

a

f

e

d

c

b

Figure 5.29: Profiles at different time points in the ELM cycle in W-AUG of the
electron and ion temperature (a), the electron density (b) the total pressure (c), its

gradient (d), the toroidal current density at the LFS (e) and the q-profile (f)

preliminary until the experiments can be repeated in the next experimental campaign of
AUG. Three time slices are presented in this analysis. The first one is taken just before
the ELM crash (black). For the second one (blue), the data from 4ms to 7ms after the
ELM crash was fitted using coherent ELM-averaging. Such a large interval had to be
chosen to achieve a minimum data quality and because the edge Ti measurements are
integrated over 2.2ms. These profiles correspond to a plasma in which ELM triggering
via pellets is not yet possible. The last set of profiles shown in figure 5.29 (red) was
taken between 7ms and 10ms after the ELM crash when triggering is possible. While
all red profiles almost reach the high pre-ELM values of the black profiles, 5.5 ms after
the ELM the pedestal is still very shallow. The pressure gradient is at less than 50% of
its maximum value and the edge current density is also very low. Therefore, it is not
surprising that it is only possible to trigger ELMs in the later time interval. While it
would be interesting to correlate the profile evolution with the possibility of successful
ELM triggering, the quality of the data is not good enough to perform a detailed ELM
cycle analysis like the one presented in reference [17].
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Figure 5.30: Stability diagrams of a W-AUG plasma before a spontaneous type-I ELM
(left), 5.5ms after the ELM crash (middle) and 8.5ms after the ELM crash (right)

However, a preliminary stability analysis could be performed at the three time points in
the ELM cycle and is shown in figure 5.30 (Ψb = 0.994). It reflects what was expected
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from the profiles in figure 5.29: the pre-ELM time point is on the stability boundary,
while the two other equilibria are stable. However, the equilibrium from 7-10ms in
the recovery phase only lies 20% below the stability boundary. Since an ELM can
be triggered, it appears that a pellet provides a high enough local density increase
to obtain the pressure gradient necessary to reach the stability boundary. Between
4ms and 7ms after the ELM crash, however, a pressure gradient increase of more than
100% and, more importantly, a large current density increase are necessary to reach
the boundary. It is unlikely that an incoming pellet can have such a dramatic impact
on the pressure gradient that the edge current density instantaneously increases by
40%. Therefore, it is not possible to trigger an ELM in this phase.
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Figure 5.31: Pellet triggered ELMs in W-AUG with N-seeding: time traces of the
divertor current from shunt measurements (black), the power to the inner divertor
(red), the total amount of energy confined in the plasma (green), the line integrated
edge electron density (blue) and the radiation temperature around ρp = 0.9 (red)

When seeding nitrogen in the divertor the lag time necessary for successful ELM trig-
gering decreases significantly. The nitrogen-seeded discharge chosen for performing a
stability analysis was run at 1MA, -2.6T and heated with 10MW NBI, 1.5MW ECRH
and 1.5MW ion cyclotron heating. The fuelling rate was 9.3 · 1021s−1 deuterium with
9.9 ·1021s−1 nitrogen seeded in the divertor. As mentioned before, the nitrogen fuelling
rate has to be divided by seven to obtain the fuelling rate of the neutrals, because
the measurements are always expressed in electrons per second. The resulting ELMs
occurred with a frequency of 80 to 130Hz. Three pellets, all triggering an ELM can be
seen in figure 5.31. The first and third pellets both trigger an ELM very shortly after
the onset of the previous spontaneous one, 2.3ms and 2.5ms respectively. In the first
panel, a further spontaneous ELM occurs shortly after the triggered one, which might
be due to the surplus of particles caused by the pellet. While in this discharge the
ELM frequency does not typically exceed 130Hz, a few sporadic spontaneous ELMs do
occur only 2ms after the previous one. This does not happen only after the density
was increased by a pellet as is the case in the left panel of figure 5.31. As expected,
ELM-triggering is also possible later in the ELM cycle (middle panel). The ELMs trig-
gered shortly after the previous event induce a lower power load to the divertor than
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5.6 ELM triggering via frozen deuterium pellets

spontaneous ones. While this is also reflected in the energy losses, it is difficult to state
this for the temperature since there is a gap in the ECE channels between ρp = 0.9 and
the centre of the pedestal, and because the plotted ECE channel at ρp = 0.9 is in high
density cut-off after a pellet is injected. While the density increases after each pellet
as in the unseeded case, it needs more time to revert to its original level. This is due
to the lower ELM-induced particle losses when nitrogen is seeded (cf. section 5.5).
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Figure 5.32: Profiles at different time points in the ELM cycle in W-AUG with
N-seeding of the electron and ion temperature (a), the electron density (b) the total
pressure (c), its gradient (d), the toroidal current density at the LFS (e) and the

q-profile (f)

The black profiles shown in figure 5.32 were generated from data taken just before an
ELM, while the red ones were ELM-averaged between 2ms and 4.5ms after an ELM
crash, when ELM-triggering is already possible. The kink at the Te pedestal top is due
to the gap in the ECE channels already mentioned. Because of this gap, the CLISTE
equilibrium was generated using a low pedestal top pressure constraint. The general
behaviour of the profiles reflect what was observed in the unseeded reference case. The
profiles at 3ms after the previous event, when ELM-triggering is possible, are almost
fully recovered. The pressure gradient and edge current density only lie 10% below the
pre-ELM values. As in the unseeded case, this is also consistent with an arriving pellet
triggering an ELM.
However, stability calculations indicate that both equilibria should be stable. The
diagrams in figure 5.33 were generated using Ψb = 0.994, the dotted black lines using
Ψb = 0.990. Peeling-ballooning theory does not describe the ELMs occurring in this
discharge since the equilibrium prior to spontaneous events would need a 15% higher
edge current density and pressure gradient to be marginally unstable. The post-ELM
case lies 20% under the threshold. However, one has to keep in mind that because
of the missing ECE channels at the pedestal top, the real experimental temperature
and, therefore, pressure profile, might be steeper or wider. This possibility is likely
since the Te and Ti gradients in figure 5.32 are similar despite the typical observation
that the Te pedestal is usually narrower and steeper than Ti [15]. Whether the actual
pre-ELM equilibrium is 25% steeper and lies on the calculated stability boundary or
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Figure 5.33: Stability diagrams of a N-seeded plasma before a spontaneous type-I ELM
(left) and 3ms after the ELM crash (right)

a different stability limit exists close to the measured pre-ELM value of ∇p, a similar
pressure gradient increase as after 8.5ms in the unseeded case (roughly 15%) would be
sufficient to trigger an ELM 3ms in the recovery phase of the N-seeded discharge. Such
an increase could arise from the strong local density increase caused by an arriving
pellet.
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To present ELM-triggering in the uncoated carbon device, a different discharge was
chosen than the one that was shown in figure 5.26 because it was better diagnosed. It
had a plasma current of 1MA, -2.6T, 5MW NBI, 1.3MW ion cyclotron heating and no
ECRH. It was fuelled at only 0.3 ·1021s−1 and had an ELM frequency between 45-55Hz,
with only very few ELMs slightly exceeding 60Hz. Unlike the nitrogen-seeded discharge
in tungsten, no sporadic spontaneous ELMs occurred immediately after a previous
event. It can be seen in figure 5.34a and b that ELM-triggering was already successful
1.6ms after the previous ELM crash, much quicker than the fastest occurring natural
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5.6 ELM triggering via frozen deuterium pellets

ELM. However, the power loads induced by triggered ELMs were not necessarily smaller
than in the case of spontaneous ones (first panel). When analysing additional pellet-
induced ELMs no clear indication of lower energy losses can be observed either. After
an ELM is triggered the density reverts to the same level as before the arrival of the
pellet: if the density is still low from the previous ELM, after a short increase it will
return to this level. However, if the density has recovered since the previous event, the
triggered ELM has little effect on it (right panel). In some cases, the density after the
triggered ELM is even higher than before (not shown). This behaviour is consistent
with the W-AUG and N-seeded cases shown earlier. The temperature, however, drops
independent of the elapsed time. Here, the drops in the Trad time trace are real as the
ECE diagnostic was not affected by high density cut off after the pellet injection.
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Figure 5.35: Profiles at different time points in the ELM cycle in C-AUG of the
electron and ion temperature (a), the electron density (b) the total pressure (c), its

gradient (d), the toroidal current density at the LFS (e) and the q-profile (f)

The corresponding kinetic profiles are presented in figure 5.35. Again, the black profiles
were taken prior to an ELM and the red ones were ELM-synchronised between 1.5 and
3ms after the crash. Since the edge CXRS system was not yet installed when the
PFCs were still partly made of uncoated graphite, the assumption Ti = Te was made.
While the ELM-induced drops in the temperature are much lower than in the W-coated
reference case, the pedestal density 2ms after a spontaneous ELM crash is still much
lower than the pre-ELM value. The pressure profile is not yet recovered and the local
edge current density still needs to increase by roughly 25% before it reaches its pre-ELM
value. However, as it can be seen from the position of the operational point in figure
5.36, the flux-surface averaged toroidal current density is similar just before and 2ms
after the ELM crash. A closer inspection of the experimental inputs to the equilibrium
reconstruction and re-running CLISTE using different parameters did not change this
trend in the flux surface averaged current density, which could be due to a change in
the Zeff profile after the ELM. However, in discharges in which < jtor > drops after
the ELM crash such an ELM-induced change in Zeff should also occur. The stability
calculations shown in figure 5.36 were run with ψb = 0.994, while the black curve is
the boundary at Ψp=0.990. The pre-ELM equilibrium is 10% in the unstable region,
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Figure 5.36: Stability diagrams of a plasma in C-AUG before a spontaneous type-I
ELM (left) and 2ms after the ELM crash (right)

but it should be kept in mind that the assumption Ti = Te was made, implying that
the actual pressure gradient might be slightly lower. Additionally, the toroidal mode
numbers are quite high, which means that the diamagnetic drift stabilisation effect will
be relatively strong. The post-ELM equilibrium is in the stable region, but very close
to the stability boundary. A small increase of the pressure gradient or the edge current
density would be sufficient to destabilise it.

To conclude, ELM triggering via pellets is possible directly after the previous ELM
in a carbon machine, while it is only successful after a certain lag time in full metal
machines. However, this lag time can be shortened by seeding nitrogen in the divertor.
The results presented in this section indicate that ELM triggering is only possible if
the plasma is close to the stability boundary or at least to the pre-ELM values of the
equilibrium, if the latter is not unstable. A pressure gradient of roughly 20% under the
pre-ELM value is sufficient for successful ELM triggering, but the exact value remains
to be determined. This is consistent with results from DIII-D, where the pressure gra-
dient drops by 20% during the ELM crash, at which point ELM triggering is already
successful [85]. Therefore, the recovery phase after the ELM is the decisive factor in
determining whether triggering is possible or not. The smaller ELM crash and the
faster recovery of the pressure profile when seeding nitrogen explains the shorter lag
time. While it would be interesting to perform a detailed analysis of the ELM cycle to
determine the exact shape of the critical kinetic profiles necessary for ELM triggering,
the data quality of the analysed discharges is not sufficient. However, further exper-
iments aiming for a comparison of the threshold for ELM triggering in unseeded and
N-seeded discharges in W-AUG will be performed in the next experimental campaign.
While it is not possible to repeat discharges in C-AUG, it may be possible to simulate
carbon walls by seeding methane.

5.7 Influence of edge ECRH heating on peeling-ballooning
stability

Experiments carried out at AUG showed that it is possible to pace ELMs by applying
modulated ECRH power to the plasma edge [88]. However, this was only possible if
the modulation frequency was close to the natural ELM frequency. More recently, it
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was found at the TCV tokamak that depositing continuous wave (CW) ECRH power
at the edge of a plasma can increase the natural ELM frequency, while lowering the
expelled per-ELM energy [89]. ELM pacing using modulated ECRH power was also
achieved. The interpretation of these results is based on a 0D power integrator model in
which, after an ELM crash, the pedestal energy accumulates depending on the amount
of ECRH power and heating location, and an ELM is triggered when a certain energy
threshold is reached. However, a detailed analysis of the evolution of kinetic profiles
was not possible due to technical limitations of the experimental setup.

In the framework of this thesis a scenario was designed for AUG discharges in which the
deposition location of ECRH heating was gradually shifted from the core to the edge
to reproduce the experiments carried out at TCV. Several similar discharges were per-
formed to achieve this. First, test discharges were carried out with modulated ECRH
power to verify the ECRH power deposition location as predicted by TORBEAM. The
response of the ECE channels at the corresponding radius confirmed the predicted
deposition location within a few cm.

All discharges were carried out at 800kA, -2.5T, 2.5MW NBI and a fuelling level of
4.5 · 1021s−1. In the reference discharge with 2.37MW central ECRH heating the ELM
frequency lay between 40 and 80Hz, but a few sporadic ELMs occurred already 6-
8ms after the previous event. Figure 5.37 shows that the discharge behaves like a
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Figure 5.37: Type-I ELMs with central ECRH: time traces of the divertor current
from shunt measurements (black), the power to the inner divertor (red), the total
amount of energy confined in the plasma (green), the line integrated edge electron

density (blue) and the radiation temperature in the pedestal (red)

typical type-I ELMy H-mode in AUG. The ELMs themselves have the typical length
of ELMs occurring in the full metal AUG, which indicates the presence of the two
phases discussed in section 5.5 [83]. The ELM-induced energy losses are approximately
10%, while the drop in edge density and in pedestal top temperature are higher.

After gathering the reference data, a final discharge was performed in which the ECRH
power was gradually shifted toward the edge. However, a minimum amount of central
ECRH heating was used at all times to prevent impurity accumulation. Figure 5.38
shows the 2-D ECRH power deposition location (top) in the reference discharge and
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Figure 5.38: Poloidal cross section of AUG showing the path and deposition location
of the ECRH beams (top) and deposited power density (bottom) in the four considered

phases

the three phases of the edge heated one, as well as the deposited power density as
a function of the normalised radius (bottom). Note that while it appears that edge
heating deposits less power, this is because the power density per unit volume is plotted
and the plasma volume per flux surface is much larger at the edge. In the last phase
of the discharge, 1.6MW of power was deposited around ρp = 0.90.

The plasma can have different responses to edge ECRH heating. In a test discharge
performed several weeks before the actual experiment presented here, edge ECRH in-
creased the ELM frequency as observed at TCV. However, in the subsequent discharges
analysed the ELM frequency, formerly between 40 and 80Hz, did not simply increase.
Rather, the few sporadic ELMs already occurring after 6-8ms after the previous crash
already present in the reference discharge grow in number to form a second ELM fre-
quency band between 100 and 130Hz (see figure 5.39). As the ECRH heating was
shifted toward the edge, this second band became more populated.

Figure 5.40 illustrates this trend. While the ELM frequency is still low when mid-radius
heating is applied (left), it increases when the power from one gyrotron is shifted to
the edge. However, one ELM seems to be ’missing’, which results in the two frequency
bands already mentioned. In the last frame, which shows a time interval in which
1.6MW of ECRH heating was deposited around ρp = 0.9, only ELMs from the high
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Figure 5.40: Type-I ELMs at different ECRH deposition locations: time traces of the
divertor current from shunt measurements (black), the power to the inner divertor
(red), the total amount of energy confined in the plasma (green), the line integrated

edge electron density (blue) and the radiation temperature in the pedestal (red)

frequency band can be seen. While these short intervals were specifically chosen to
illustrate the two frequency bands, both bands are still partly populated in the mid-
radius and in the edge heating cases. However, the trend toward increasing population
of the higher band with edge deposition is very clear (see figure 5.39). The ELMs
from the upper frequency band typically induce less power loads to the divertor and
cause lower energy losses, while the particle losses are comparable. The crash of the
pedestal temperature is considerably lower. The WMHD signals in figures 5.37 and
5.40 show that the stored energy significantly decreases as heating is shifted toward
the edge. This is mainly due to the core density becoming peaked in the presence of
central ECRH and then flattening when part of the power is removed [90]. This effect
also propagates to the edge (see edge density traces in figures 5.37 and 5.40).

The kinetic profiles corresponding to three phases with different ECRH power deposi-
tion locations are shown in figure 5.41. The phase with mid-radius heating at ρp = 0.4
and 0.6 was omitted for legibility, but its profiles are very similar to the core-heated
case (black). The Ti profiles from discharge 29295 are only shown up to ρp = 0.94
because the data from the core CXRS system was not available at the time of the
analysis. However, since the pressure profiles were only constrained in CLISTE up to

81



5 RESULTS

     

0.0

0.2

0.4

0.6

0.8

[k
e

V
]

T
e

T
i

0.80 0.85 0.90 0.95 1.00
ρ

p

0
1

2

3

4

5

6
7

[1
0

1
9

 m
-3

]

n
e

    

0
2

4

6

8

10

12

[k
P

a
]

CLISTE !t

0.80 0.85 0.90 0.95 1.00
ρ

p

0

100

200

300

400

500

[k
P

a
 m

-1
]

Exp. dp/dr

CLISTE !t

     

0.0
0.2

0.4

0.6

0.8

1.0

1.2
1.4

[M
A

 m
-2

]

j
φ

0.80 0.85 0.90 0.95 1.00
ρ

p

0
1

2

3

4

5

6
7

q

AUG #29294 AUG #29295AUG #29295

Exp. p

Core ECRH

Mid-radius + edge ECRH

Edge ECRH

a

f

e

d

c

b

Figure 5.41: Pre-ELM profiles at different ECRH deposition locations of the electron
and ion temperature (a), the electron density (b) the total pressure (c), its gradient

(d), the toroidal current density at the LFS (e) and the q-profile (f)

the pedestal top, this is not cause for concern. The pedestal top values of all kinetic
profiles, Te, Ti and ne, drop when shifting the ECRH deposition location to the edge.
While the pressure gradient reaches 430kPa m−1 in the core heated phase, it drops by
30% when moving the power deposition. The edge current density peak shows the same
trend. With edge ECRH heating ELMs are triggered faster than with core heating,
even though the pressure gradient and current density are significantly lower.

The stability diagrams shown in figure 5.42 were generated using the profiles in figure
5.41 and with Ψb = 0.994 (again, the dotted black lines represent the border between
the unstable and marginally stable region for Ψb = 0.990). As observed in the profiles
in figure 5.41, the operational point moves toward lower pressure gradient and current
density values as the heating power is shifted toward the edge. The stability boundary,
however, does not move. While with core heating only the operational point is close to
the marginally unstable region, the edge heated cases are stable. The decrease of the
pressure gradient and the increasing population of the higher ELM frequency band with
edge ECRH cannot be explained by ideal MHD. However, the ECRH power deposited
inside the pedestal top could drive turbulent instabilities that prevent the temperature
and density from fully recovering.

Since the loss in WMHD is mainly due to lower density peaking because of the loss
of core-deposited ECRH power a similar experiment was performed in which the core
ECRH power was kept constant but edge ECRH was added later in the discharge.
The ELM frequency increased from 25Hz-90Hz initially to 70Hz-200Hz in the phase
with additional edge ECRH. The WMHD dropped by 5% and the line integrated core
density by 2% in the second phase, while no change in the ELM losses or the edge
density was observed. While the Te pedestal top value slightly increased with edge
heating, Ti decreased by 10%. This also supports the hypothesis that ECRH might
drive turbulent transport at the pedestal top and indicates that it mainly affects the
ions. No stability analysis could yet be performed for this discharge.

As described in section 3.2, it is possible to drive a current with ECCD using the mi-
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Figure 5.42: Stability diagrams of pre-ELM equilibria at different ECRH deposition
locations

crowave heating system. This feature was used in the design of experiments aimed at
driving an additional current at the edge of the plasma at the same location as the
bootstrap current, thereby influencing the pedestal stability. This would have been
the first direct experimental evidence for the role of the edge current density in the
ELM crash. However, since the efficiency of ECCD current drive strongly depends on
the local electron temperature, it is very difficult to increase the edge current density
enough to make a significant difference. Furthermore, achieving the correct localisa-
tion is challenging. The ECRH deposition location, current drive efficiency, and the
corresponding ECRH mirror angles were calculated using TORBEAM. When the an-
gles are set such that the main deposition is near the bootstrap maximum around
ρp = 0.98, the absorption of the wave strongly decreases and reflections occur because
the incident wave is almost tangential to the steep density pedestal. It is not safe to
perform experiments at such angles, since the reflections of microwave radiation could
damage the machine. Figure 3.3 shows a metal plate melted due to ECRH radiation.
Though this was caused by an incorrect polarisation of the wave, reflections would
have similar consequences and could also damage diagnostics. Additionally, during an
ELM crash, the outer separatrix jumps about 1cm inwards while the X-point moves
upwards. Therefore, a safety margin must be included when calculating the ECRH
mirror angles, such that the wave does not miss the plasma and directly hit vessel
components during an ELM. ECRH deposition is possible and allowed in AUG up to a
maximum radius of ρp = 0.90. Two discharges were carried out with opposite toroidal
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angles of the ECRH beam to drive current in the co- and the counter directions. The
power deposition was kept the same in order to disentangle heating from current drive
effects. No change in the ELM frequency was observed between the two discharges.
However, the ELM frequency was very scattered between 70 and 200Hz. As such, a
small change would not be visible. The power and current deposition profiles can be
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Figure 5.43: Pre-ELM profiles with co- (blue) and counter- (red) edge ECCD of the
deposited power (a) and deposited current density (b), the electron and ion

temperature (c), the electron density (d) the total pressure (e), its gradient (f), the
toroidal current density at the LFS (g) and the q-profile (h)

seen in figure 5.43. Because of the low temperature at the plasma edge, TORBEAM
calculations indicate that a total current of only 3.3kA was driven around ρp = 0.9.
All profiles, including the edge current density are the same within the measurement
errors and the CLISTE confidence bands. Therefore, no stability analysis is shown.
In summary, not all results from the TCV experiments could be reproduced. The ELM
frequency did not increase linearly with the amount of edge heating power deposited
at the edge. Rather, a second, higher ELM frequency band became more populated.
However, the trend toward lower ELM energy losses with increasing ELM frequency
was observed, but the total WMHD decreased. From the point of view of peeling-
ballooning theory, there is no reason why edge ECRH heating should lead to an earlier
ELM crash. As the ECRH power deposition is shifted outwards, the operational point
moves deeper into the stable region of the j − α diagram while the stability boundary
stays the same. Edge ECRH seems to drive turbulence that mainly affects the ions
and limits the pedestal pressure. The attempt to directly test the peeling-ballooning
theory by increasing the edge current density via ECCD was not successful because
of the low current drive efficiency in the relatively cold plasma edge, the difficulties in
depositing the current in the same region as the bootstrap current, and the extreme
scatter in the ELM frequency when applying ECRH to the plasma edge.

5.8 Discussion

In this chapter, several different types of ELMs were analysed and used to test the
widely accepted peeling-ballooning model. One type-I ELM case was presented that
agrees very well with the theory since the operational point was on the stability bound-
ary, but in a second analysed type-I ELMy H-mode, the occurrence of ELMs is incon-
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5.8 Discussion

sistent with this theory. Around the middle of the ELM cycle, the maximum edge
current density and pressure gradient stop increasing, but the pedestal still widens,
which, at the same pressure gradient, increases the pressure at the pedestal top. This
pedestal broadening destabilises the plasma and the stability boundary moves toward
the operational point. This is also consistent with the general picture described by the
peeling-ballooning model [69]. However, at the onset of the ELM crash the pressure
gradient is still roughly 30% under the stability boundary. In this discharge type-I
ELMs cannot be explained by the peeling-ballooning theory.

Type-III ELMs are believed to be driven by resistive interchange instabilities and, if
so, cannot be described using ideal MHD [73]. The results presented in section 5.2 are
consistent with this hypothesis, as the pre-type-III equilibrium discussed is very stable.
The phenomenology of the type-III ELMs analysed also agrees with such an explana-
tion. They appear as the density increases and it was shown that a higher density
leads to a lower shear in the edge radial electric field [74]. Within the picture, in the
type-I ELMy phase this shear is still high enough to stabilise the resistive interchange
instabilities, but under a certain threshold the stabilising effect becomes insufficient
and type-III ELMs occur at pedestal values which are under the type-I threshold.

The type-II ELM equilibrium presented in section 5.3 is much more stable than the
type-I reference case, which is within 10% of the stability boundary. This is partly
due to the lower pressure gradient and edge current density in the type-II phase, and
partly to the stability boundary moving toward higher α values as a consequence of the
stronger shaping and closeness to DN configuration. One can speculate that microtear-
ing modes that are present slightly inside the pedestal top region cause the broad band
fluctuations observed in Te and prevent the pedestal top electron temperature from
reaching the same values as in the type-I phase, thereby suppressing the type-I ELM
crash.

It was observed that type-I ELMs disappear when increasing the density of the plasma
above a certain threshold. Type-II like fluctuations occur in the ELM-suppressed phase,
which could constitute the dominant transport mechanism in the pedestal. However,
the equilibrium in this phase is closer to type-III than to type-II ELMs, as the domi-
nant mode numbers are rather low and the edge current fraction to the total current
is relatively high. The radial extent of the most unstable peeling-ballooning mode is
similar in the ELM-suppressed phase and in the type-I ELMy reference. This contra-
dicts a possible correlation between the width of the linear MHD mode and the ELM
size.

It is possible to improve the confinement of an H-mode plasma by seeding nitrogen into
the divertor. A discharge in which a dramatic confinement improvement of 40% was
achieved was discussed in section 5.5. The ELMs in nitrogen-seeded discharges differ
from non-seeded ELMs in that they do not feature the two phases that are typical for
type-I ELMs occurring in a full metal machine. The N-ELM crash is very similar to
the first phase of a non-seeded ELM [83]. The radial extent of the dominant modes
is the same in the seeded and non-seeded phases, consistent with this result. As the
ELM itself is a nonlinear phenomenon, the second phase of non-seeded ELMs cannot
be described using linear MHD, so the lower ELM losses cannot be explained with the
codes used in this thesis. Typically, < j · B > is lower in nitrogen seeded discharges
despite the higher pressure gradient [15]. However, in the discharge discussed in section
5.5 the much steeper pressure gradient that accompanies the improved confinement in
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the seeded phase drives a similar < j · B > and a slightly higher < jtor > than in
the non-seeded reference phase. Because of the higher pressure gradient and current
density values, the plasma becomes much more unstable against peeling-ballooning
modes. Even though the diamagnetic drift stabilises the highest mode numbers, n=3-
8 are still unstable when including this stabilising effect. While this is the only case
presented in this section in which the equilibrium is well above the stability threshold for
peeling-ballooning modes, it does question the general validity of the peeling-ballooning
model. In the framework of ideal MHD, an ELM should be triggered before the pedestal
pressure gradient and current density can reach such high values.
The ability to trigger ELMs using frozen deuterium pellets differs between N-seeded
and non-seeded discharges in a full metal machine [86]. The lag time which must
elapse after an ELM crash to achieve successful triggering is much lower when seeding
nitrogen. In a carbon machine, it is possible to trigger an ELM immediately after the
previous one. Different time points of an ELM cycle in each of these three scenar-
ios were analysed in section 5.6. While the N-seeded pre-ELM equilibrium is stable
against peeling-ballooning modes, the non-seeded one and the one from C-AUG are
(marginally) unstable. However, in all three cases a pressure gradient 20% below the
pre-ELM gradient is sufficient for a pellet to trigger an ELM. When the edge pressure
gradient is only at half the value of the pre-ELM gradient, however, ELM-triggering
is not successful. Therefore, the amplitude of the ELM crash and the recovery phase
of the pedestal profiles are the decisive factors in determining whether triggering is
possible or not. As those two factors are different in C-AUG ELMs, W-AUG ELMs
and N-seeded ELMs, the lag time necessary before triggering differs depending on the
scenario. While it would be interesting to analyse the recovery of the kinetic profiles in
more detail to determine the exact triggering threshold, the quality of the data was not
sufficient in the discharges presented in this thesis. However, it is planned to repeat
these discharges in the next experimental campaign of AUG with a stronger focus on
edge diagnostics.
ELMs can also be influenced by depositing localised ECRH power at the plasma edge.
It was shown at TCV that the ELM frequency increases and the per-ELM losses de-
crease when shifting the power deposition to the edge [89]. In the experiments discussed
in section 5.7, however, a different behaviour was observed. Rather than the ELM fre-
quency increasing, a second, higher frequency band formed and became more populated
as more power was moved to the edge. A peeling-ballooning analysis of the profiles
showed that the core-heated reference equilibrium is close to the stability boundary,
while the operational point moves deeper into the stable region when shifting the power
to the edge. This is mainly due to a relaxation of the kinetic profiles while the sta-
bility boundary stays the same. One can speculate that ECRH drives turbulence at
the deposition location, thereby enhancing transport and limiting the pedestal top and
gradients, thereby preventing the plasma from reaching the peeling-ballooning stability
limit. Since the relaxation of the gradients does not suppress the ELMs but, on the
contrary, increases their frequency, this is another indication that peeling-ballooning
theory is missing a key ingredient to explain the ELM trigger.
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6 Implications for ITER

The next big step in tokamak research is the commissioning of ITER. With a plasma
volume of 840m3, a toroidal magnetic field of 5.3T and a 15MA plasma current, it is
expected to produce 500MW of fusion power in D-T operation, 10 times more power
than is needed from auxiliary heating systems to sustain the plasma [8]. Recent ex-
trapolations applying a linear regression on the performance parameters of present-day
mid-sized and large devices provide predictions for the ITER pedestal [83]. The analy-
sis presents predictions for the temperature pedestal height and width and the density
pedestal width. Since no scaling for the density pedestal height is available, it was
assumed to be 7 · 1019m−3, as it was in previous predictions of the ITER pedestal [91].
In this section these extrapolations are used to calculate the neoclassical current den-
sity profile from the formula derived by Sauter et al. [27, 28] in order to generate
self-consistent equilibria. A peeling-ballooning analysis is then presented.
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Figure 6.1: Pre type-I ELM profiles of the electron and ion temperature (a), the
electron density (b) the total pressure (c), its gradient (d), the flux surface averaged

j ·B (e) and the q-profile (f) of an AUG discharge.

The validity of the bootstrap current formula from Sauter et al. was confirmed for
the edge of AUG discharges [25]. Figure 6.1 shows the profiles of the first discharge
discussed in section 5.1. However, instead of the local current density at the LFS,
< j · B > is shown in panel e, which can be compared with the result from the
bootstrap current calculations more easily because it does not contain the Pfirsch-
Schlüter current contribution. The result from the neoclassical calculation (red curve)
matches the CLISTE result extremely well at the position of the maximal edge current
density.
According to the scaling from Schneider et al. [83], at 74MW of total heating power
the ITER pedestal top electron temperature could reach 4.7keV, the electron pressure
roughly 50kPa and the ion pressure 73kPa or 25 kPa, depending on whether the DIII-
D data is included or not. The analysis presented in the following uses the predicted
pedestal top electron temperature of 4.7keV. Given the large uncertainties in the ion
pressure prediction, the ion temperature is assumed to be equal to Te. The pedestal
top electron density is set to 7 · 1019m−3 and Zeff to 1.2 with boron as the main
impurity species. In the prediction the temperature pedestal width varies between
0.03 and 0.043, depending on which scaling is used, while the density pedestal width
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is between 0.012 and 0.014 Ψn [83]. Instead of only using these values, a large range
of temperature and density pedestal widths was scanned independently in the present
analysis. However, the pedestal top values were kept constant in all cases. Realistic
synthetic profiles were modelled after the shape of experimental AUG profiles and are
shown in figure 6.2. While in the left frames the data is plotted over the whole radius,
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Figure 6.2: Synthetic ITER electron density (top) and temperature (bottom) profiles.
The magnified pedestal is shown it the middle frames for clarity. The ITER boundary

is shown in panel (e).

the pedestal is magnified in the middle ones to point out the different widths. An
almost flat core electron density profile and a slightly peaked temperature profile were
chosen, as is the case in typical AUG discharges. Both the temperature and electron
density widths were scanned from 0.008 to 0.17 in terms of Ψn. Self-consistent equilibria
were generated using a combination of the temperature and density profiles shown in
figure 6.2 to build a 2D ∆T − ∆n grid for the stability calculations. Nine selected
input profiles used in HELENA can be seen in figure 6.3. The blue curves are pressure
input profiles for HELENA, calculated from all possible combinations of the three
temperature and the three density profiles shown in red in figure 6.2. The resulting
flux-surface-averaged neoclassical current density, a combination of the bootstrap and
the Ohmic current, can be seen in black. In each case the Ohmic current density was
scaled by changing the loop voltage in order to match the total of 15MA plasma current
foreseen in ITER. Since both the density and the temperature gradients drive a part
of the bootstrap current, the current density can exhibit a double peak when the T
and n pedestal widths are too different (see figure 6.3f). To smooth out the profiles,
two Gaussian curves were fitted to the bootstrap current profile, one to the left and
one to the right side of the maximum, before adding the result to the Ohmic current
density. Finally, a soft smoothing filter was applied. The resulting current density
profiles that were used as an input to HELENA are shown in red. The equilibria were
then generated using the realistic ITER plasma boundary in figure 6.2e.

Figure 6.4a shows the stability diagrams generated from the self-consistent equilibria.
Instead of α and < jtor >, the T and ne pedestal widths are used as the x and y axis,
respectively. Note that the axes are logarithmic. The operational point predicted by
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Figure 6.3: Selected ITER pressure and current density profiles consistent with the red
profiles in figure 6.2

Schneider et al., represented by a star, is far in the unstable region. The minimum value
of ∆Tped that is still stable is 0.07 in terms of Ψn, given ∆nped = 0.012. In this region
of the diagram the stability of the plasma is almost independent of the density pedestal
width. It is only at much higher values of ∆nped that the broadening of the density
pedestal starts to become stabilising. With ∆Tped = 0.04, ∆nped must be 0.1 for the
equilibrium to be marginally stable. Figure 6.4b shows the same stability diagram in
j−α space. Since self-consistent bootstrap current density and kinetic pressure profiles
were used, and the bootstrap current is roughly proportional to α, only the diagonal
is shown. The grid points in some regions are very dense because the same values for
j and α can be achieved with different combinations of the temperature and density
profiles. The y axis corresponds to the maximum current density outside of Ψn=0.8.
In the cases with very low bootstrap contribution like the one shown in figure 6.3g this
corresponds to the Ohmic current at Ψn=0.8, which explains why so many points are
at < jtor >= 0.6MAm−2. The pressure gradient of the predicted ITER pedestal is far
above the stability threshold. The channel that leads to the stable island at α = 5 and
< jtor >= 1.2MAm−2 corresponds to the stable region at very high ∆nped in figure
6.4a. Such a wide density pedestal is thought to be unlikely because in present-day
devices, the density pedestal is narrower than the temperature pedestal [83].

One of the main results of the scaling presented in reference [83] is the different width
of the ITER ne and Te pedestal. Therefore, the stability calculations were repeated
using the predicted ITER pedestal widths of 0.04 (T ) and 0.012 (ne) in terms of Ψn

but varying the pedestal top value. The corresponding edge electron density and
temperature profiles can be seen in figures 6.5a and b. The electron density pedestal
top was scanned from 2.6 · 1019m−3 to 14.6 · 1019m−3, the temperature from 1keV to
7keV. Panels c through k show the edge current density profiles (black) calculated
from the red T and ne profiles and the fits that were used as inputs to HELENA (red),
as well as the pressure profiles (blue). The edge bootstrap contribution to the total
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Figure 6.4: Stability diagram of the ITER width scan as a function of Tped and nped

(left), and as a function of < jtor > and α
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Figure 6.5: ITER height scan

current ranges from 1% (panel g) to 25% (panel e).

The axes on the stability diagram shown in figure 6.6a are the pedestal top temperature
and electron density. The ITER prediction from Schneider et al., represented by the
yellow star, is in the unstable region. The stability analysis suggests that the ITER
prediction is too optimistic. If the hypothesis of fixed pedestal density and temperature
widths of 0.04 and 0.012 is true for ITER and if peeling-ballooning modes limit the
pedestal, the pedestal top density will only reach 4 · 1019m−3 at Tped = 4.7. At lower
pedestal temperatures the density could be higher. However, the assumption Ti =
Te was made and the edge Ti gradient is typically lower than ∇Te. In AUG, using
experimental Ti profiles instead of assuming it equal to the electron temperature can
lower the pressure gradient up to 20%. Figure 6.6b shows the stability of the ITER
height scan as a function of α and < jtor >. The pressure gradient of the predicted
ITER pedestal is almost a factor of two above the stability threshold. This means that
a broader ion temperature profile that leads to a 20% lower pressure gradient is not
sufficient to stabilise the plasma.

The total pedestal top pressure resulting from nped = 7 · 1019m−3 and Tped = 4.7keV is
90kPa. The pressure pedestal width, ∆p = 0.04 is set by the temperature profile. The
marginally stable grid point at 4keV and 4.6 · 1019m−3 in figure 6.6 has a pedestal top
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Figure 6.6: Stability diagram of the ITER height scan as a function of ∆Tped and nped

(left), and as a function of < jtor > and α

pressure of 60kPa, while the one at 3keV and a density of 6.6 · 1019m−3 has 66kePa.
Both values are lower than the one predicted by Snyder et al., pped = 92kPa, with the
same pressure pedestal width of 0.04 in terms of Ψn [69]. However, they agree with the
most pessimistic pedestal top pressure of 66kPa extrapolated from present-day devices,
which was obtained when including data from DIII-D in the regression [83]. Since the
triangularity of the plasma has a stabilising effect on peeling-ballooning modes, a higher
pedestal top pressure might be achieved via stronger shaping of the plasma boundary.
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7 Conclusions and outlook

In this thesis, different types of ELMy H-modes were analysed, compared to each other
and used to test the peeling-ballooning model: the most commonly invoked theory to
explain the occurrence of ELMs. The stability chain, a sequence of four steps, was used
to determine whether the experimental plasmas were stable against peeling-ballooning
modes, or if specific unstable ideal modes could be found. First, the data acquired
during plasma discharges from temperature, density and magnetic diagnostics were
combined to generate self-consistent equilibria using CLISTE. These equilibria were
then refined with HELENA to achieve a higher degree of numerical accuracy. The
third step was to create a j−α grid by independently varying the edge current density
height and the pressure pedestal width by using the j-alpha workflow. Finally, the
ILSA code was run to determine the stability of the plasma, the dominant toroidal
mode number and the position of the stability boundary in j − α space.

The limits of the stability chain were explored and inconsistencies between ILSA and
the standalone version of MISHKA-1, which arise when the q-profile is very steep,
were found. These inconsistencies are caused by the different interpolation methods
used in MISHKA-1 and ILSA and they have a non-negligible influence on the results
of the stability boundary in the low current density region of the j − α diagrams.
The influence of Ψb, the cutoff parameter which determines at which flux surface the
equilibrium is cut off such that it is possible to describe it in field-aligned coordinates,
was explored. As cutting off further outside has a stabilising effect and no satisfac-
tory reason was found to favour one value of Ψb over another, many of the stability
diagrams presented in this thesis were generated twice, using Ψb = 0.990 and 0.994.
The difference in the calculated stability boundaries typically lay on the order of 10%,
which is within the measurement errors of the pressure gradient. Furthermore, it was
found that systematic measurement errors have only a small influence on the location
of the stability boundary. However, such errors have to be kept as low as possible since
they will distort the position of the operational point with respect to the boundary.
It was also shown that the correct alignment between the magnetic and kinetic mea-
surements is crucial because a shift strongly influences the growth rate spectra of the
peeling-ballooning modes.

In the main part of this thesis, the peeling-ballooning model was applied to different
types of ELMy H-mode plasmas. Discharges in which ideal MHD should be valid,
namely type-I ELMy H-modes, were compared to discharges featuring ELM-types that
are believed to be stable against peeling-ballooning modes, type-II and type-III ELMs,
as well as an ELM-suppressed regime at high densities. Furthermore, other type-I
ELMy scenarios, including discharges with nitrogen seeding, pellet ELM triggering
and with ECRH heating at the plasma edge were tested against peeling-ballooning
theory.

The results from the type-II and type-III ELMy H-modes were partly in agreement with
previous findings. Both of them were stable against peeling-ballooning modes, which
is expected as they are believed to be driven by other instabilities. The appearance of
type-III ELMs at high densities is consistent with the hypothesis that they are driven
by resistive interchange modes which are stabilised by a strong shear in the radial
electric field, and this shear decreases with increasing density. The type-II H-mode
was very stable against peeling-ballooning instabilities, because the stability boundary
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moved to a region of higher pressure gradient and the experimental pedestal pressure
gradient relaxed compared to the type-I reference phase. It appears that a different
transport mechanism than a peeling-ballooning mode limits the pedestal top pressure
such that the threshold for type-I ELMs cannot be reached. This is consistent with
the broad-band fluctuations that are observed in the electron temperature inside the
pedestal top, which indicates turbulence in this region.

Another regime in which type-I ELMs are suppressed was analysed. This suppression
occurs above a certain density threshold. While the plasma edge was dominated by
type-II like fluctuations, the equilibrium was closer to the stability boundary than
is observed in type-II ELMy plasmas and the fraction of edge current to the total
plasma current was higher. The toroidal mode numbers of the dominant instabilities
calculated from the peeling-ballooning model were relatively low and the radial extent
of the poloidal harmonics was similar to the type-I reference case. This contradicts
a correlation between the ELM size and the mode extent. However, given the low
temperature pedestal, Resistive effects could also be important with the dominant
current driven modes. This would also account for the small size of the ELM crash,
where the resistivity dampens significant changes in the current density. The small
fluctuations would then correspond to a �soft� peeling limit, analogous to the soft
ballooning limit described for type-II ELMs by Saarelma et al. [75]. A resistive MHD
analysis and non-linear simulations are required to further analyse this hypothesis.

Several type-I ELMy H-modes, operational regimes in which ELMs are believed to
be driven by peeling-ballooning modes, were also analysed. Two similar discharges,
which were carried out several years apart, were compared to each other and to the
model. While the pre-ELM equilibrium of the reference discharge was unstable, con-
sistent with ideal MHD theory, the operational point of the repeated experiment was
deep in the stable region. 15-20ms before the ELM crash, the pedestal gradients had
already reached their final value, but the pedestal top continued to increase slowly
because of the increasing pedestal width. As expected from the peeling-ballooning and
the EPED models [69], the stability boundary moved toward lower pressure gradients
as the pedestal expanded at constant gradient. However, the pre-ELM equilibrium
was still 30% under the stability threshold. Reaching this threshold is also a necessary
(and sufficient) condition for the occurrence of an ELM within the EPED model. While
this result alone might not be sufficient to question the applicability of the peeling-
ballooning theory, two additional pieces of evidence were presented in this thesis: an
edge-heated H-mode in which the ELM frequency increased as the edge pedestal gra-
dients decreased and a N-seeded case in which a pedestal exists which is deep inside
the unstable region of the j − α diagram.

A type-I ELMy H-mode with central ECRH and NBI heating was discussed, that was,
within error bars, on the stability boundary for peeling-ballooning modes. When the
ECRH power was moved toward the edge of the plasma, the Te, Ti and ne pedestals
relaxed, possibly due to turbulence caused by the ECRH power deposited near the
pedestal top. As a consequence, the pressure gradient and the edge current density
also decreased while the stability boundary stayed at the same location. One might
expect that an operational point more than 30% below the stability boundary would
cause a transition to an ELM-suppressed regime. However, the opposite was the case:
a second, higher band of the ELM frequency formed and became more populated as
the ECRH power deposition location was shifted to the plasma edge.
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A third case was presented which could also not be explained by the peeling-ballooning
model. When seeding nitrogen into the divertor during a type-I ELMy H-mode dis-
charge, the confined energy increased by 40%. This increase was mainly due to a
steepening of the pedestal gradients and an increase of the pedestal top temperature
and density. The pre-ELM equilibrium in the unseeded phase was close to the stability
boundary, slightly in the unstable region. When introducing nitrogen into the divertor,
the plasma became highly peeling-ballooning unstable because the pressure gradient
increased while the stability boundary remained unchanged. Including the stabilising
effect of the diamagnetic drift stabilised the modes with high n numbers, but the lower
n=3-8 modes remained highly unstable. This indicates that ideal peeling-ballooning
theory was not the driving mechanism for the ELMs occurring in either of the two
phases, or that an additional stabilising effect exists, which was much stronger in the
N-seeded phase and shifted the stability boundary to higher values of j and α.

Another question that was addressed in this thesis is the feasibility of triggering ELMs
via frozen deuterium pellets. In discharges performed when the walls of AUG were still
made from carbon, pellets would trigger an ELM whenever they were injected into an
H-mode plasma. Since the walls were coated with tungsten it is only possible to trigger
them after a specific lag time has elapsed since the previous ELM. This lag time can
be significantly reduced when injecting nitrogen into the divertor. This is due to two
connected factors: the lower ELM losses, and the faster recovery from the ELM crash.
The ELM-induced collapse of the pedestal in C-AUG discharges was so low that the
perturbation or the density increase created by a pellet was sufficient to trigger an
ELM. In the W-AUG and the N-seeded discharges analysed in this work the pedestal
pressure profile just after the triggering limit was also close to the pre-ELM pedestal,
and the lag time for successful triggering was close to the minimum inter-ELM time
of spontaneous ELMs. As spontaneous ELMs can occur after such an interval, this
suggests that it is the perturbation created by the pellet that is responsible for ELM
triggering, rather than a local density increase that drives the pressure gradient above
the stability boundary. While it is unclear if peeling-ballooning modes are the driving
mechanism in the occurrence of type-I ELMs, the results presented here show that
it is possible to trigger them via pellets when the pedestal pressure gradient and the
edge current density are 20% below the typical threshold for spontaneous ELMs in
the corresponding scenario. It is important to understand the nonlinear evolution of
ELMs because the ELM losses and the recovery phase after the ELM determine the
maximum frequency with which they can be triggered via pellets. The exact triggering
threshold could not be determined due to the insufficient quality of the experimental
data. However, it is planned to repeat the discharges in the next experimental campaign
of AUG with a stronger focus on edge diagnostics.

In some of the discharges discussed in this thesis the peeling-ballooning model is con-
sistent with the experimental results, while in others it fails to explain the occurrence
of ELMs. A possible explanation of this could be a hypothesis discussed by Wilson et
al., which was dubbed �Circumstantial evidence� [58]. The authors propose that the
peeling-ballooning mode could exist, but cannot grow because of the sheared flow in
the plasma edge. In this case, the mode would limit the pedestal but not result in an
ELM crash. The ELM itself would then be triggered by a non-MHD event. This would
be consistent both with the AUG ELMs that occur when the equilibrium is well below
the peeling-ballooning stability boundary and those that exist on or near it. However,
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this hypothesis is highly speculative and no alternative is proposed to an ideal MHD
mode as the trigger mechanism.
Recent extrapolations of the ITER pedestal were tested against the peeling-ballooning
model [83]. The extrapolations attempt to predict the Te and ne pedestal width, as
well as the Te value at the pedestal top. The pedestal top electron density is assumed
to be 7 ·1019m−3. In this thesis, two scans were performed on the basis of these extrap-
olations. In the first one, the ne and Te pedestal widths were scanned independently
assuming a pedestal top temperature of 4.7keV and density of 7·1019m−3. In the second
one, the predicted pedestal widths were used and the pedestal top values were scanned.
For each combination of temperature and density profiles the bootstrap current was
calculated and a self-consistent equilibrium was generated. A stability analysis was
then performed using ILSA. It was found that if the peeling-ballooning stability repre-
sents an upper limit then the predicted values are very optimistic. To obtain a pedestal
top temperature of 4.7keV at a density of 7 · 1019m−3, the density pedestal must be
almost ten times wider than predicted. This is thought to be unlikely since in present-
day devices the density pedestal is narrower than the temperature pedestal. Another
possibility is a 75% wider temperature pedestal than predicted. A stable plasma at the
predicted pedestal width can be achieved if the pedestal top temperature is only 3keV
or both ne and Te have pedestal top values which are 30% lower than in the prediction.
These cases would lead to a total pedestal top pressure of 60-66kPa, which is consistent
with the worst case scenario presented in the extrapolations, but it is 30% lower than
the results presented by Snyder et al. [69]. The effects of plasma shaping remain to be
tested with this model.
Some of the results presented in this thesis question the validity of the peeling-ballooning
theory. In many of the presented cases, ELMs occurred well below the threshold for
peeling-ballooning theory and in one case well above. In general, ideal MHD should
be more applicable to hotter plasmas, because the resistivity decreases. However, the
hottest plasma, the high power nitrogen seeded case, was well above the threshold
for ideal peeling-ballooning stability. While the number of discharges presented in
this thesis is hardly sufficient for a definitive assertion, the results indicate that the
peeling-ballooning model is insufficient to fully explain the triggering of ELM instabil-
ities. Rather, another as yet unknown trigger mechanism is required.
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Appendices

A Derivation of the MHD equations used in ILSA

In this appendix the derivation of the equations solved by the linear MHD codes CAS-
TOR and MISHKA-1 is presented. It is mainly based on the ILSA manual written by
E. Strumberger et al. [34], the description of the CASTOR code [35] and the description
of MISHKA-1 [36]. The approximations used in the following are:

� A small perturbation

� A single-fluid plasma, which implies:

– A net charge density of zero

– A small displacement current compared to the conduction current

� Isotropic plasma pressure

� Scalar electric resistivity

Such a plasma can be described with the mass continuity equation

dρ

dt
+ ρ∇ · v = 0, (A.1)

the momentum equation

ρ
∂v

∂t
+ ρ(v · ∇)v = j×B−∇p, (A.2)

the equation of state

d

dt
(pρ−Γ) = 0, (A.3)

and Ohm’s law

E+ v ×B = ηj, (A.4)

where ρ is the mass density, v the fluid velocity, p the scalar pressure, j the current
density, E the electric field, B the magnetic field, η the scalar resistivity and Γ the
polytrope index. The derivative d/dt can be expressed as

d

dt
=

∂

∂t
+ v · ∇. (A.5)

In addition to these, the Maxwell equations are necessary to build a set of self-consistent
equations describing a resistive MHD plasma. We ignore the displacement current
ϵ0∂E/∂t, since the temporal variations are relatively slow, and we assume a zero charge
density ρq. Therefore, the Maxwell equations simplify to Gauss’ law

∇ · E = 0 (because ρq = 0), (A.6)
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Gauss’s law for magnetism

∇ ·B = 0, (A.7)

Faraday’s law

∂B

∂t
= −∇× E, (A.8)

and Ampère’s law

µ0j = ∇×B (because displacement current ϵ0
∂E

∂t
is negligible), (A.9)

where µ0 is the vacuum permeability.
Equation A.3, written as

−Γpρ−Γ−1 dρ

dt
+ ρ−Γ dp

dt
= 0, (A.10)

can be combined with equation A.1 to form

Γpρ−1 ρ∇ · v +
dp

dt
= 0. (A.11)

When applying the Lagrangian derivative (equation A.5), one obtains

∂p

∂t
+ (v · ∇)p+ Γp∇ · v = 0. (A.12)

If we assume that the plasma behaves like an ideal gas, according to p = ρkT/m,
where m is the particle mass, k the Boltzmann constant and T the plasma temperature,
equation A.12 transforms to

T
∂ρ

∂t
+ ρ

∂T

∂t
+ T (v · ∇)ρ+ ρ(v · ∇)T + ΓρT ∇ · v = 0 (A.13)

and since ∂ρ/∂t = −ρ∇ · v − (v · ∇)ρ (eq. A.1 & A.5), it can be simplified to

∂T

∂t
+ (v · ∇)T + (Γ− 1)T ∇ · v = 0. (A.14)

We, therefore, obtain the following closed set of four equations, describing the nonlinear
evolution of ρ, T , v and B:

∂ρ

∂t
+∇(ρv) = 0 (eq. A.1 & A.5), (A.15)

∂T

∂t
+ (v · ∇)T + (Γ− 1)T∇ · v = 0 (eq. A.14), (A.16)

ρ
∂v

∂t
+ ρ(v · ∇)v =

1

µ0

(∇×B)×B−∇p (eq. A.2 & A.9), (A.17)
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∂B

∂t
= ∇×

(
v ×B− η

µ0

∇×B

)
(eq. A.8 with E

from eq. A.4 and j from eq. A.9). (A.18)

The nonlinear description of the plasma by equations A.15 through A.18 can be lin-
earised by expanding around an equilibrium state. Using this expansion, a quantity
C(x, t) can be written as

C(x, t) = C0(x) +Re
{
eλtC1(x)

}
(A.19)

where the subscript 0 denotes the equilibrium quantity and 1 the first order perturba-
tion. When introducing this approach to equation A.15, one obtains

∂

∂t
ρ0 +

∂

∂t
(eλtρ1) +∇

(
(ρ0 + eλtρ1)(v0 + eλtv1)

)
= 0

λeλtρ1 +∇(ρ0v0) + eλt∇(ρ0v1) + eλt∇(ρ1v0) +�������
e2λt∇(ρ1v1) = 0.

∂ρ0/∂t is zero and the crossed out term is very small since it contains the product of
two perturbed quantities. In this section terms marked in blue only contain equilibrium
quantities and are zero since the initial equations from which they are derived also have
to be valid for the equilibrium state. The equation simplifies to

λρ1 = −ρ0∇ · v1 − v1 · ∇ρ0 − ρ1∇ · v0 − v0 · ∇ρ1. (A.20)

The same ansatz on equation A.16 yields

∂

∂t
(��T0+e

λtT1)+
[
(v0 + eλtv1) · ∇

]
(T0+e

λtT1)+(Γ−1)(T0+e
λtT1)∇·(v0+e

λtv1) = 0,

λeλtT1 + v0 · ∇T0 + eλtv0 · ∇T1 + eλtv1 · ∇T0 +�������
e2λtv1 · ∇T1+

(Γ− 1)
[
T0∇ · v0 + eλtT0∇ · v1 + eλtT1∇ · v0 +�������

e2λtT1∇ · v1

]
= 0,

λT1 = −v0 · ∇T1 − (Γ− 1)T1∇ · v0 − v1 · ∇T0 − (Γ− 1)T0∇ · v1. (A.21)

Equation A.17 simplifies to

(ρ0 + eλtρ1)
∂

∂t
(��v0 + eλtv1) + (ρ0 + eλtρ1)

[
(v0 + eλtv1) · ∇

]
(v0 + eλtv1) =

1

µ0

[
∇× (B0 + eλtB1)

]
× (B0 + eλtB1)−

k

m
∇(ρ0T0 + eλtρ1T0 + eλtρ0Tt)

λρ0e
λtv1 + ρ0(v0 · ∇)v0 + eλtρ1(v0 · ∇)v0 + eλtρ0(v1 · ∇)v0 + eλtρ0(v0 · ∇)v1 =

1

µ0

(∇×B0)×B0+e
λt 1

µ0

(∇×B0)×B1+e
λt 1

µ0

(∇×B1)×B0−
k

m

[
∇ρ0T0 − eλt∇(ρ1T0 + ρ0T1)

]
.
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In the second step, the second order terms have already been removed. After removing
the (blue) equilibrium terms, which zero out according to equation A.17, the equation
becomes

λρ0v1 = −ρ1(v0 · ∇)v0 − ρ0 [(v1 · ∇)v0 + (v0 · ∇)v1] +

1

µ0

[(∇×B0)×B1 + (∇×B1)×B0] +∇(ρ1T0 + ρ0T1). (A.22)

The last one, equation A.18 becomes

∂

∂t
(B0 + eλtB1) = ∇×

(
(v0 + eλtv1)× (B0 + eλtB1)−

η

µ0

∇× (B0 + eλtB1)

)

λB1 = ∇×
(
v0 ×B1 + v1 ×B0 +������

eλtv1 ×B1 −
η

µ0

.∇×B1

)
Using the vector identity ∇× (A×B) = A(∇ ·B)−B(∇ ·A)+ (B · ∇)A− (A · ∇)B,
and because ∇ ·B1 = 0 (equation A.7) we get

λB1 = −(v0 ·∇)B1−B1(∇·v0)+(B1 ·∇)v0+∇×
(
v1 ×B0 −

η

µ0

.∇×B1

)
(A.23)

The set of four equations solved by the CASTOR code are, therefore,

λρ1 = −ρ0∇ · v1 − v1 · ∇ρ0 − ρ1∇ · v0 − v0 · ∇ρ1, (A.24)

λT1 = −v0 · ∇T1 − (Γ− 1)T1∇ · v0 − v1 · ∇T0 − (Γ− 1)T0∇ · v1, (A.25)

λρ0v1 = −ρ1(v0 · ∇)v0 − ρ0 [(v1 · ∇)v0 + (v0 · ∇)v1]−∇(ρ0T1 + ρ1T0)+

1

µ0

[(∇×B0)×B1 + (∇×B1)×B0] , (A.26)

and

λB1 = −(v0 ·∇)B1−B1(∇·v0)+(B1 ·∇)v0+∇×
(
v1 ×B0 −

η

µ0

.∇×B1

)
. (A.27)

While CASTOR solves equations A.24-A.27, MISHKA-1 uses a reduced set of equa-
tions [36]. It assumes an equilibrium velocity v0 = 0 and takes into account only a
pressure perturbation p1 instead of treating ρ1 and T1 separately. After the linearisa-
tion, equation A.12 becomes

∂

∂t
(��p0 + eλtp1) + ((��v0 + eλtv1) · ∇)(p0 + eλtp1) + Γ(p0 + eλtp1)∇ · (��v0 + eλtv1) = 0,

λp1 = −(v1 · ∇)p0 − Γp0(∇ · v1). (A.28)

Equation A.17 linearises to

λeλtρ0v1 +(((((((((
e2λtρ0(v1 · ∇)v1 =

1

µ0

(∇×B0)×B0 + eλt
1

µ0

(∇×B0)×B1

+ eλt
1

µ0

(∇× B1) ×B0 −∇(p0 + eλtp1) (A.29)
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λρ0v1 =
1

µ0

(∇×B0)×B1 +
1

µ0

(∇×B1)×B0 −∇p1. (A.30)

Finally, with zero equilibrium velocity, equation A.27 can be simplified to

λB1 = ∇×
(
v1 ×B0 −

η

µ0

.∇×B1

)
. (A.31)

Expressing the perturbed magnetic field as a function of the perturbed vector potential
B1 = ∇×A1 yields the following set of equations:

λρ0v1 =
1

µ0

(∇×B0)× (∇×A1)−
B0

µ0

× (∇×∇×A1)−∇p1, (A.32)

λp1 = −(v1 · ∇)p0 − Γp0(∇ · v1), (A.33)

λA1 = v1 ×B0 −
η

µ0

∇×∇×A1. (A.34)

The equations A.32-A.34 describe the general stability problem solved by MISHKA-1
in terms of the variables A1, v1 and p1.

B Solver

To solve the linearised equations A.24-A.27 or A.32-A.34, they are converted to a large
non-hermitian eigenvalue problem

λSw = Rw, (B.1)

where the perturbed quantities are expressed by the vector wT = (ρ1,v1, T1,A1), or
wT = (p1,v1,A1) in MISHKA-1 mode. The matrix S only contains diagonal elements
and the matrix R contains the differential operators and equilibrium quantities from
equations A.24-A.27 or A.32-A.34. The components ofw are expanded in Fourier series
in toroidal and poloidal angle, and described by finite quadratic and cubic Hermitian
elements in the radial direction. The trial functions then have the form

wk(s, θ, φ) =
∑
m,j,p

αk,p
m,jh

j
p,ke

imθeinφ, (B.2)

where s, θ and φ are the radial, poloidal and toroidal coordinates. The indices k, m,
j and p label the variables, the poloidal Fourier harmonics, the radial nodes and the
interpolating functions, respectively. The explicit form of the Hermite polynomials hjp,k
can be found in appendix A of the ILSA manual [34]. To solve the eigenvalue problem
the Galerkin method is applied [92], in which the weighting function that is multiplied
to the equation is the same as the trial function:

λ

∫ ∫ ∫
(hjp,ke

−imθe−inφ
∑

p̄,m̄,k̄,j̄

∑
l

eilθ(
√
gSk,k̄)lα

k̄,p̄
m̄,j̄
hj̄
p̄,k̄
eim̄θein̄φ)dsdθdφ

=

∫ ∫ ∫
(hjp,ke

−imθe−inφ
∑

p̄,m̄,k̄,j̄

∑
l

eilθ(
√
gRk,k̄)lα

k̄,p̄
m̄,̄j
hj̄
p̄,k̄
eim̄θein̄φ)dsdθdφ (B.3)
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B SOLVER

After integrating over the poloidal and toroidal angles, the whole problem can be
written as

λBx = Ax, (B.4)

where x = αk̄,p̄
m̄,̄j

denotes the vector of the expansion coefficients. The explicit form

of the matrices A and B can be found elsewhere [34, 35]. The eigenvalue equation is
solved by ILSA using the inverse vector iteration method.
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[39] A Stäbler, J-H Feist, E Speth, JL Dunne, S Goetz, B Heinemann, A Krauss, R-C
Kunze, H Lohnert, J Sielanko, W Szyszko, O Vollmer, and KWittenbecher. Design
of the neutral beam injection system for ASDEX Upgrade. In Fusion Technology
1988, pages 620 – 624. Elsevier, Oxford, 1989.

[40] B Streibl, PT Lang, F Leuterer, JM Noterdaeme, and A Stäbler. Chapter 2:
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[41] A Stäbler, J Hobirk, F Leuterer, F Meo, and JM Noterdaeme. Chapter 13: Current
drive in ASDEX Upgrade. Fusion Science and Technology, 44(3):730–742, 2003.

[42] R Prater. Heating and current drive by electron cyclotron waves. Physics of
Plasmas, 11(5):2349, 2004.

[43] E Poli, AG Peeters, and GV Pereverzev. TORBEAM, a beam tracing code for
electron-cyclotron waves in tokamak plasmas. Computer Physics Communications,
136(1–2):90 – 104, 2001.

[44] T. Lunt, J.C. Fuchs, K. Mank, Y. Feng, F. Brochard, A. Herrmann, V. Rohde, and
N. Endstrasser. A new 3D viewer as an interface between the ASDEX Upgrade
CAD models and data from plasma modelling and experiment. Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 623(2):812 – 814, 2010. 1st International
Conference on Frontiers in Diagnostics Technologies.

[45] E Viezzer, T Pütterich, GD Conway, R Dux, T Happel, JC Fuchs, RMMcDermott,
F Ryter, B Sieglin, W Suttrop, M Willensdorfer, E Wolfrum, and the ASDEX
Upgrade Team. High-accuracy characterization of the edge radial electric field at
ASDEX Upgrade. Nuclear Fusion, 53(5):053005, 2013.

[46] R McDermott. Private communication.

[47] HJ Hartfuss, T Geist, and M Hirsch. Heterodyne methods in millimetre wave
plasma diagnostics with applications to ECE, interferometry and reflectometry.
Plasma Physics and Controlled Fusion, 39(11):1693, 1997.

[48] SK Rathgeber, L Barrera, T Eich, R Fischer, B Nold, W Suttrop, MWillensdorfer,
E Wolfrum, and the ASDEX Upgrade Team. Estimation of edge electron temper-
ature profiles via forward modelling of the electron cyclotron radiation transport
at ASDEX Upgrade. Plasma Physics and Controlled Fusion, 55(2):025004, 2013.

[49] H Murmann. The thomson scattering systems of the ASDEX Upgrade tokamak.
Review of Scientific Instruments, 63(10):4941–4943, 1992.

[50] J Schweinzer. Reconstruction of plasma edge density profiles from LiI(2s-2p) emis-
sion profiles. Plasma Physics and Controlled Fusion, 34(7):1173–1183, 1992.

106



REFERENCES

[51] M Willensdorfer, E Wolfrum, R Fischer, J Schweinzer, M Sertoli, B Sieglin,
G Veres, F Aumayr, and the ASDEX Upgrade Team. Improved chopping of a
lithium beam for plasma edge diagnostic at ASDEX Upgrade. Review of Scien-
tific Instruments, 83(2):023501, 2012.

[52] R Fischer. Probabilistic lithium beam data analysis. Plasma Physics and Con-
trolled Fusion, 50(8):085009, 2008.

[53] C Demichlis. Equipe TFR - tokamak plasma diagnostics. Nuclear Fusion,
18(5):647–731, 1978.

[54] R Fischer, CJ Fuchs, B Kurzan, and W Suttrop. Integrated data analysis of profile
diagnostics at ASDEX Upgrade. Fusion Science and Technology, 58(2):675–684,
2010.

[55] SK Rathgeber, R Fischer, S Fietz, J Hobirk, A Kallenbach, H Meister, T Pütterich,
F Ryter, G Tardini, and E Wolfrum. Estimation of profiles of the effective ion
charge at ASDEX Upgrade with Integrated Data Analysis. Plasma Physics and
Controlled Fusion, 52(9):095008, 2010.

[56] PB Snyder, RJ Groebner, AW Leonard, TH Osborne, and HR Wilson. Devel-
opment and validation of a predictive model for the pedestal height. Physics of
Plasmas, 16(5):056118, 2009.

[57] GTA Huysmans. External kink (peeling) modes in X-point geometry. Plasma
Physics and Controlled Fusion, 47(12):2107–2121, 2005.

[58] HR Wilson, SC Cowley, A Kirk, and PB Snyder. Magneto-hydrodynamic stability
of the H-mode transport barrier as a model for edge localized modes: an overview.
Plasma Physics and Controlled Fusion, 48(5A):A71–A84, 2006.

[59] WM Tang, RL Dewar, and J Manickam. Influence of diamagnetic drifts on critical
beta in tokamaks. Nuclear Fusion, 22(8):1079–1081, 1982.

[60] WA Cooper and KT Tsang. Diamagnetic drift stabilization of ballooning modes
in tokamak geometry. Nuclear Fusion, 21(11):1477–1479, 1981.

[61] RJ Hastie, PJ Catto, and JJ Ramos. Effect of strong radial variation of the
ion diamagnetic frequency on internal ballooning modes. Physics of Plasmas,
7(11):4561–4566, 2000.

[62] M Dunne. Sensitivity of plasma edge equilibrium reconstruction to experimental
uncertainties at ASDEX Upgrade. To be submitted, 2013.

[63] S Saarelma. ELM phenomenon as an interaction between bootstrap–current driven
peeling modes and pressure-driven ballooning modes. Plasma Physics and Con-
trolled Fusion, 42(5A):A139, 2000.

[64] S Saarelma, V Parail, Y Andrew, E De La Luna, A Kallenbach, M Kempenaars,
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Q. Yu, I. Zammuto, D. Zasche, T. Zehetbauer, Y. Zhang, M. Zilker, and H. Zohm.
Overview of ASDEX Upgrade results. Nuclear Fusion, 51(9):094012, 2011.

109



REFERENCES

[83] P Schneider. Characterization and scaling of the tokamak edge transport barrier.
PhD thesis, Universität München, 2012.

[84] P.T. Lang, G.D. Conway, T. Eich, L. Fattorini, O. Gruber, S. Günter, L.D. Horton,
S. Kalvin, A. Kallenbach, M. Kaufmann, G. Kocsis, A. Lorenz, M.E. Manso,
M. Maraschek, V. Mertens, J. Neuhauser, I. Nunes, W. Schneider, W. Suttrop,
H. Urano, and the ASDEX Upgrade Team. ELM pace making and mitigation by
pellet injection in ASDEX Upgrade. Nuclear Fusion, 44(5):665, 2004.

[85] L.R. Baylor, N. Commaux, T.C. Jernigan, N.H. Brooks, S.K. Combs, T.E. Evans,
M.E. Fenstermacher, R.C. Isler, C.J. Lasnier, S.J. Meitner, R.A. Moyer, T.H.
Osborne, P.B. Parks, P.B. Snyder, E.J. Strait, E.A. Unterberg, and A. Loarte.
Reduction of edge–localized mode intensity using high–repetition–rate pellet in-
jection in tokamak H–mode plasmas. Phys. Rev. Lett., 110:245001, 2013.
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CXRS Charge Exchange Recombination Spectroscopy
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