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1 EINLEITUNG 

1.1 TOXIKOLOGISCHE ANALYTIK IM AKUTKRANKENHAUS 

Akute Intoxikationen bei Erwachsenen werden in Deutschland am häufigsten durch 

Alkohol und Medikamente (z.B. Hypnotika, Sedativa, Psychopharmaka, Analgetika), 

aber auch durch Drogen verursacht. Bei Kindern, insbesondere bei Kleinkindern, 

stehen dagegen akzidentelle Vergiftungen im Vordergrund. Neben der üblichen 

labormedizinischen Basisdiagnostik sollten in jedem Kliniklabor daher auch einfache 

Untersuchungen auf gängige Substanzen wie Drogen und Medikamente 

durchgeführt werden können [1 - 4]. Bei diesen einfachen Untersuchungen handelt 

es sich in erster Linie um Immunoassays, die nach dem Prinzip einer Antigen-

Antikörper-Reaktion funktionieren. Doch gerade in der Toxikologie sind die erlangten 

Aussagen oft nicht ausreichend: Zum einen können nur Substanzen nachgewiesen 

werden, für die entsprechende Kits kommerziell erhältlich sind. Ein Screening auf 

unbekannte Stoffe ist auf diesem Wege nicht möglich. Zum anderen weisen viele 

Substanzen eine geringe Molekülgröße auf. Je kleiner das zu bestimmende Molekül, 

desto unspezifischer werden die eingesetzten Antikörper, so dass es zu 

Kreuzreaktionen mit anderen in der zu untersuchenden Probe ebenfalls vorliegenden 

Substanzen kommt. Die Ergebnisse solcher Immunoassays sind daher in der 

toxikologischen Analytik nur als erster Hinweis zu bewerten. Um jedoch eine 

Intoxikation mit unbekannten Substanzen bzw. ein falsch positives Ergebnis der 

Immunoassays ausschließen zu können oder auch um das erhaltene Ergebnis zu 

bestätigen, sind spezifischere Methoden unabdingbar. 

Toxikologische Labore lassen sich in die Klassen A bis C einteilen [5]. Ein Basislabor 

der Klasse A führt hauptsächlich einfache Immunoassays durch. Ein regionales 

Schwerpunktlabor entspricht der Klasse B, dazu gehört z. B. das Department für 

Klinische Chemie der Städtischen Klinikum München GmbH. B-Labore bieten 

umfangreichere Untersuchungen an wie das Screening auf Fremdsubstanzen, die 

Bestätigung durch chromatographische Methoden und die Quantifizierung der 

meisten relevanten Substanzen. In hochspezialisierten Laboren (Klasse C), dazu 
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gehört z.B. der 'Berliner Betrieb für zentrale gesundheitliche Aufgaben' (BBGes), 

besteht die Möglichkeit, auf nahezu jede beliebige Substanz zu testen und diese 

gegebenenfalls zu quantifizieren [5]. In den Laborklassen B und C sollten die 

Untersuchungen zudem kurzfristig zu jeder Tageszeit möglich sein und die 

Ergebnisse innerhalb von drei Stunden vorliegen [5]. In vielen dieser Labore war bis 

2009 das REMEDI HS Drug Profiling System (DPS) (Bio-Rad, Hercules, CA, USA) 

eines der gebräuchlichsten Geräte für das Medikamentenscreening und das 

therapeutische Drug Monitoring. Dieses System kombiniert eine HPLC mit einem 

schnell-scannenden UV-Detektor; eine Säulenschaltung (Multicolumn) ermöglicht die 

online-Probenextraktion, Auftrennung und Identifizierung von basischen Substanzen 

und Metaboliten. Das REMEDI DPS konnte so weitgehend vollautomatisch ein 

breites Spektrum des Drug-Screenings für die klinische Toxikologie und das 

therapeutische Drug Monitoring übernehmen [6,7]. 

Die Ergebnisse der toxikologischen Analytik sind ein wesentlicher Baustein der 

Expositionsbewertung (Abb. 1-1), die die Basis für die spezifische Therapie-

entscheidung bei Vergiftungen ist [8,9]. Zur Beurteilung einer möglichen Exposition 

stehen in einem toxikologischen Labor verschiedene Möglichkeiten zur Verfügung: 

die systematische toxikologische Analyse (STA), die gezielte Suchanalytik auf 

angeforderte Substanzen sowie gegebenenfalls deren Quantifizierung 

(therapeutisches Drug Monitoring). 

 

Abbildung 1-1 Toxikologische Expositionsbewertung (nach Desel) [10] 
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1.1.1 SYSTEMATISCHE TOXIKOLOGISCHE ANALYSE (STA) 

Die `systematische toxikologische Analyse´ (STA) dient der Aufklärung akuter 

Vergiftungen ohne bekannte Ursache. In der Regel liegen keine Informationen über 

das Vorhandensein und die Art des Giftes vor. Die STA befasst sich deshalb mit dem 

Nachweis toxikologisch relevanter Substanzen mit möglichst wenigen 

Einschränkungen, andererseits aber auch mit der gezielten Suche nach speziellen 

Substanzen oder Substanzklassen [11]. 

Das Screening auf möglichst viele toxikologisch relevante Substanzen in 

biologischen Proben ist eine der größten Herausforderungen im klinischen Labor. 

Durch das Screening kann das Vorhandensein toxischer Verbindungen bestätigt oder 

ausgeschlossen werden [12]. Meist wird das toxikologische Screening bei Patienten 

mit akuter Intoxikation unbekannter Ursache angefordert. Das Spektrum 

toxikologisch relevanter Substanzen ist dann umfangreich. Hierzu zählen neben 

Medikamenten illegale Drogen, Pestizide, chemische Reagenzien und Alkaloide. Das 

Probenmaterial besteht zumeist aus Urin oder Blut (Plasma, Serum); auch wenn 

Blutproben die akuten Effekte durch die Noxe besser widerspiegeln wird für das 

umfassende Screening Urin bevorzugt, da dieser ein längeres Zeitfenster für den 

Nachweis bietet und die Konzentrationen sowohl der Substanzen als auch deren 

Metabolite höher als in Blutproben sind. 

Eine gute klinische Methode muss selektiv, genau, empfindlich und einfach in der 

Handhabung sein. Häufig werden als Erstes automatisierte Immunoassays 

eingesetzt, um rasch Hinweise auf Substanzgruppen wie z. B. Benzodiazepine, 

trizyclische Antidepressiva und Opiate zu erhalten. Im zweiten Schritt sollten die 

Ergebnisse der Immunoassays wegen der möglichen Kreuzreaktivität einiger 

Substanzen chromatographisch überprüft werden [13].  

Bei Intoxikationen mit Substanzen, für die keine automatisierten Immunoassays zur 

Verfügung stehen, können diese nur durch ein systematisches Screening mit Hilfe 

chromatographischer Methoden erfasst und identifiziert werden. Hierfür hat sich vor 

allem die Gaschromatographie-Massenspektrometrie (GC-MS) in den klinisch-

toxikologischen Routine-Laboratorien etabliert [14 - 19]. Dabei erfolgt die 

Identifizierung über den Vergleich mit kommerziell erhältlichen Datenbanken. GC-

MS-Datenbanken sind sehr umfangreich und werden von vielen Laboratorien 

genutzt, da sie geräteunabhängig sind. In den letzten Jahren ist neben der GC-MS 
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die Flüssigkeitschromatographie-Massenspektrometrie (LC-MS) immer mehr in den 

Vordergrund gerückt [9, 20 - 22]. Durch die LC-MS erhofft man sich, auch 

Substanzen, die von der GC-MS nicht erfasst werden können, nachweisen zu 

können. Allerdings sind LC-MS Datenbanken bisher meist hausinterne, selbsterstellte 

Bibliotheken, die gerätespezifisch sind [13, 23 – 25]. 

 

1.1.2 GEZIELTE SUCHANALYTIK ZUM NACHWEIS „NEUER“ DROGEN 

Substanzen wie z. B. neue Designerdrogen oder Metabolite, die noch nicht in 

GC-MS- oder LC-MS-Datenbanken erfasst sind, können nur durch eine gezielte 

Suchanalytik erfasst werden. Diese kann z. B. mittels Massenspektrometrie/Time-of-

Flight (MS/TOF) durchgeführt werden. Über die exakte Masse (Masse auf 4 

Kommastellen) wird dann die Summenformel der fraglichen Substanz generiert und 

diese mit relevanten Analyten im toxikologischen Labor verglichen, um so schließlich 

die Fremdsubstanz identifizieren zu können [26]. Eine Alternative zu dieser `gezielten 

Suchanalytik´ ist die magnetische Kernspinresonanzspektroskopie (NMR-Spektros-

kopie). Mit dieser Methodik kann durch die Untersuchung der elektronischen 

Umgebung der einzelnen Atome und der Wechselwirkung mit den Nachbaratomen 

die Struktur einer Substanz analysiert werden. Allerdings ist die Anschaffung eines 

NMR-Geräts sehr kostenintensiv und die Auswertung der Daten aufgrund der 

Komplexität nicht für die toxikologische Analytik in einem Krankenhause 

routinetauglich [27]. 

 

1.1.3 THERAPEUTISCHES DRUG MONITORING (TDM) 

Die Quantifizierung eines bestimmten Analyten ist im Rahmen des `Therapeutischen 

Drug Monitoring´ (TDM) im toxikologischen Labor bzw. für eine gezielte Arznei-

therapie unabdingbar. Hierfür wird die Konzentration des Medikaments im Blut des 

Patienten bestimmt und mit dem bekannten therapeutischen Bereich abgeglichen. 

Die gewünschte Wirkung kann so in möglichst kurzer Zeit erreicht und gleichzeitig 

unerwünschte toxische Effekte vermieden werden [28]. 

Ein typisches Anwendungsgebiet für das TDM ist die prophylaktische Therapie, bei 

der eine zu geringe Dosierung eines Medikaments zum erneuten Auftreten der 

Erkrankung führt wie z. B. bei Antiepileptika [29 - 32]. Außerdem wird das TDM bei 
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Medikamenten mit engem therapeutischen Bereich eingesetzt wie z. B. Zytostatika, 

bei denen eine große Gefahr durch Über- oder Unterdosierung besteht [33]. Weitere 

Beispiele für die Anwendung sind die Bestimmung von Coffein zur Behandlung der 

primären Apnoe bei Frühgeborenen [34 - 36] sowie von Lidocain und dessen aktiven 

Metaboliten bei chronischen Schmerzpatienten [37 - 41]. Auch Pregabalin, ein 

Medikament, das seit 2009 verstärkt in der Suchttherapie eingesetzt wird, wird mittels 

TDM bestimmt, um einen Missbrauch der Substanz auszuschließen [42 - 45]. 

Tabelle 1-1 zeigt die therapeutischen Bereiche einiger Substanzen, für die im 

Rahmen dieser Arbeit Quantifizierungsmethoden entwickelt wurden. Im Gegensatz 

zu Referenzwerten in der Labormedizin sind therapeutische Bereiche lediglich 

Richtwerte für eine optimale Therapie; Abweichungen können sich abhängig vom Ziel 

der Therapie (z. B. bei den Antiepileptika) und vor allem bei Kombinationstherapien 

ergeben. 

Substanz Plasma-/Serumkonzentration [mg/L] 

Lidocain 1 – 5 

Coffein 8 – 20 

10-OH-Carbazepin 11 – 24 

Lamotrigin 11 – 19 

Levetiracetam 10 – 37 

Gabapentin 5.9 – 21 

Pregabalin 0.5 – 16 

Tabelle 1-1 Therapeutischer Bereich (Plasma- bzw. Serumkonzentration) ausgewählter 

Substanzen [8, 46] 
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1.2 ANALYTISCHE VERFAHREN IN DER TOXIKOLOGIE 

1.2.1 CHROMATOGRAPHIE 

In der toxikologischen Analytik ist die Effizienz der verwendeten chromato-

graphischen Trennverfahren von großer Bedeutung. Dabei ist der Zeitbedarf einer 

Analyse von wesentlichem Interesse, vor allem für schnelle LC-MS-Analysen von 

Plasma- und Urinproben [47]. Kürzere Analysenzeiten ermöglichen die Erhöhung des 

Probendurchsatzes und dadurch auch eine Verringerung der Kosten. Dabei darf aber 

die Trennleistung und die Nachweisgrenze nicht beeinträchtigt werden. In vielen 

Fällen vereinfacht eine höhere chromatographische Trennleistung auch die 

Methodenentwicklung [48, 49]. Im Vergleich zur klassichen High-Performance-Liquid-

Chromatographie (HPLC) verwendet die Ultra-Performance-Liquid-Chromato-

graphieTM (UPLC) Hochdruckmodule und kürzere Säulen, die mit einer maximalen 

Partikelgröße von 1.8 µm statt der sonst üblichen 5 µm gepackt sind. Dadurch wird 

eine deutlich bessere Trennleistung erreicht [50, 51]. Die van-Deemter-Kurve, die 

den Zusammenhang zwischen Trennstufenhöhe und linearer 

Eluentenfließgeschwindigkeit beschreibt, zeigt, dass die beste Säulentrennung bei 

niedrigstmöglichem Druck am Minimum der Kurve erreicht wird (Abb. 1-2) [52, 53]. 

Durch die Reduzierung der Partikelgröße wird bei gleicher linearer Geschwindigkeit 

der Rückdruck umgekehrt proportional zum Quadrat der Teilchengröße erhöht. 

Insgesamt steigt der Druck bei optimaler Geschwindigkeit Δpopt umgekehrt 

proportional zur dritten Potenz des Teilchendurchmessers dp:  

           
Durch die Verwendung von kleineren Teilchendurchmessern kann die Flussrate der 

mobilen Phase erhöht und somit die Analysenzeit verringert werden. Gleichzeitig 

erhöht sich die Auflösung umgekehrt proportional zur Partikelgröße. Somit wird eine 

höhere Auflösung in kürzerer Zeit ermöglicht [54]. 
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Abbildung 1-2 van Deemter Kurven für verschiedene Partikelgrößen in der HPLC [55] 

Die gleichzeitige Reduzierung der Säulenlänge und der Partikelgröße lässt die 

maximale Säulentrennleistung konstant, führt aber zu einer Erhöhung der 

Analysengeschwindigkeit. Der ausschlaggebende Faktor für die Laufzeit ist somit der 

Druck. Bei der klassischen HPLC sind aufgrund der Beschaffenheit des 

Säulenmaterials und der Pumpen nur Drücke bis maximal 300 bar möglich. Durch die 

Entwicklung von UPLC-Systemen können nun auch Drücke bis 1000 bar verwendet 

werden [56]. 

Durch die Optimierung von Pumpe und Säule bei der UPLC wird somit eine höhere 

Analysengeschwindigkeit, Empfindlichkeit und Auflösung im Vergleich zur 

klassischen HPLC erzielt [49]. Dieser Vorteil wird vor allem im Bereich der 

Massenspektrometrie-Analytik genutzt, da hier coeluierende Substanzen oder 

verschiedene Matrices zu Ionensuppression führen können [56]. Dabei werden 

mehrere Analyten gleichzeitig in der Ionenquelle ionisiert, die Analyten konkurrieren 

also um die Ionisierungsenergie. Die Substanzen mit niedrigerem 

Ionisierungspotential werden bevorzugt ionisiert, während andere Analyten 

supprimiert werden [57, 58]. Zu hohe Analytkonzentrationen führen zu einer 

Abflachung der Kalibrierfunktion, da mit steigendem Analytgehalt nicht mehr 

ausreichend Moleküle ionisiert werden können. Durch die erhöhte 

chromatographische Trennleistung der UPLC können solche Effekte vermindert 

werden [59 – 62]. 
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1.2.2 MASSENSPEKTROMETRIE 

Neben der chromatographischen Trennung der Substanzen ist die Art der Detektion 

von großer Bedeutung. In der klinischen Analytik ist die Kopplung von 

Gaschromatographen mit Massenspektrometrie (GC-MS) seit langer Zeit der „Gold-

Standard“ für die Identifizierung toxikologisch relevanter Substanzen. Der 

Erfassungsbereich der GC-MS wird jedoch durch die Polarität und das 

Molekulargewicht der Substanzen begrenzt. Diese Limitierung kann durch die 

Kombination einer Flüssigkeitschromatographie mit MS (LC-MS) zum Teil umgangen 

werden (Abb. 1-3). 

 

Abbildung 1-3 Vergleich der Erfassungsbereiche von GC-MS und LC-ESI-MS [63] 

Neben den verschiedenen chromatographischen Trennverfahren, GC bzw. LC, 

werden Massenspektrometer mit unterschiedlichen Analysatoren eingesetzt. Im 

Massenanalysator werden die in der Ionenquelle erzeugten und beschleunigten 

Ionen getrennt und anschließend vom Detektor registriert. Die Trennung der Ionen 

beruht auf verschiedenen physikalischen Prinzipien: Ein Sektorfeld-Analysator lenkt 

die Ionenstrahlen in elektrischen oder magnetischen Feldern ab. Quadrupol-Geräte 

und Ionenfallen sind dagegen sogenannte Massenfilter, die nur Ionen bestimmter 

Masse durch elektrische Wechselfelder den Detektor erreichen lassen [64]. Time-of-

Flight-Massenspektrometer hingegen erfassen alle Ionen im Flugrohr und trennen sie 

aufgrund ihrer unterschiedlichen Flugzeit im feldfreien Raum auf [65]; dies ist in der 

klinischen Analytik vor allem bei der Identifizierung von unbekannten Substanzen wie 

z. B. neuen Designerdrogen interessant.  

Um verschiedene MS-Geräte vergleichen zu können, werden vor allem das 

Auflösungsvermögen und die Massengenauigkeit der Geräte herangezogen. Die 
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Auflösung eines MS beschreibt die Fähigkeit, zwischen Massen zu differenzieren 

[66]. Das Auflösungsvermögen R gibt das Verhältnis einer Masse M zum Massen-

unterschied ΔM der nächsten noch getrennt erscheinenden Masse an: 

 

Dabei wird ΔM am häufigsten bei 50 % Höhe (Full width at half maximum, FWHM) 

gemessen (s. Abb. 1-4).  

 

Abbildung 1-4 Verschiedene Definitionen der Auflösung in der MS [67] 

Die Massengenauigkeit gibt an, auf wie viele Kommastellen genau die Masse des 

Teilchens bestimmt werden kann. Mit Hilfe der sogenannten hochauflösenden (high 

resolution, HR) Massenspektrometer können Gemische von Ionen gleicher 

Nominalmasse aufgrund ihrer unterschiedlichen exakten Massen getrennt werden. 

Mit hochauflösender Massenspektrometrie können die Molekülmassen bis zu 

4 Stellen hinter dem Komma genau bestimmt und damit unterschieden werden [68].  

Jedes Massenspektrometer besteht aus 3 Einheiten: einer Ionenquelle, einem 

Massenanalysator und einem Detektor. Nachfolgend wird das in dieser Arbeit 

verwendete Massenspektrometer (LCT Premier XE, Waters) und seine Einheiten 

beschrieben. 

1.2.2.1 IONENQUELLE - ELEKTROSPRAY-IONISATION 

In der Massenspektrometrie werden nur geladene Moleküle erfasst. Hierfür müssen 

die Substanzen nach der zeitlichen Auftrennung durch die Chromatographie in einer 

Ionenquelle ionisiert werden. Neben dem Massenanalysator ist die Wahl der 

Ionenquelle für die Analytik der Substanzen von großer Bedeutung. Hierfür existieren 

verschiedene Ionisationstechniken. Die Signalintensität ist von der Analyt-

konzentration und dem Prozess des Flüssigkeitsverdampfens abhängig. Die 

Elektrospray-Ionisation (ESI) ist eine der am häufigsten dafür genutzten Techniken 
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(Abb. 1-5). ESI-Quellen ermöglichen die Ionisierung in der flüssigen Phase. Die 

chromatographisch aufgetrennten Analyten werden mit Hilfe von Inertgasen (meist 

Stickstoff) fein versprüht. Hierbei entstehen aus polaren, basischen und geladenen 

Analyten kleine geladene (positiv oder negativ) Tröpfchen. In einem Hochspannungs-

feld zerplatzen die kugelförmigen Lösungsmitteltropfen (`Coulomb-Explosion´), so 

dass nach Verdampfen und Absaugen des Lösungsmittels die geladenen Teilchen 

am Ende gasförmig in der Ionenquelle vorliegen [69 – 73]. Je nach angelegter 

Spannung im elektrischen Feld werden die Substanzen entweder protoniert (positive 

Ionisierung) oder deprotoniert (negative Ionisierung). Die meisten toxikologisch 

relevanten Substanzen lassen sich positiv ionisieren, einige Ausnahmen wie z. B. 

Ibuprofen dagegen nur im negativen Modus. 

ESI ist eine sogenannte „sanfte“ Ionisierungstechnik, so dass eine Fragmentierung 

der Analyten erst gezielt im Anschluss z. B. über eine `in-source collision 

dissociation´ (CID) erzielt werden kann. 

 

 

Abbildung 1-5 Theorie der Elektrospray-Ionisation [50] 

 

1.2.2.2 TIME-OF-FLIGHT-MASSENANALYSATOR 

Bei der Time-of-Flight-Massenspektrometrie werden alle Ionen im Flugrohr erfasst 

und aufgrund ihrer unterschiedlichen Massen durch ihre unterschiedliche Flugzeit im 

feldfreien Raum aufgetrennt [65]. Einen Überblick über den Aufbau eines TOF-

Massenanalysators zeigt Abbildung 1-6. Im Anschluss zur Ionenquelle werden die 

Substanzen mit Hilfe eines Linsensystems fokussiert und anschließend im Flugrohr 

im Hochvakuum aufgrund ihrer Flugzeit unterschieden (Abb. 1-6). Je höher die 

Masse ist, umso länger ist die Flugzeit für eine definierte Flugstrecke. Die Ionen 

werden aufgrund der Potentialdifferenz zwischen Ionenquelle und den 
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fokussierenden Linsen zum Flugrohr beschleunigt. Haben alle Ionen dieselbe 

kinetische Energie erreicht, werden sie durch ihre unterschiedliche Geschwindigkeit 

und aufgrund dessen durch ihre unterschiedlichen Massen voneinander 

unterschieden (Abb. 1-7). 

 

 

Abbildung 1-6 Aufbau eines MS/TOF-Analysators (LCT Premier XE, Waters) mit Ionenquelle, 

Linsensystem zur Ionenfokussierung und In-Source-Fragmentierung sowie dem Flugrohr [50] 

 

 

Abbildung 1-7 Time-of-Flight-Theorie, Auftrennung der Substanzen aufgrund ihrer 

unterschiedlichen Massen und damit unterschiedlichen Flugzeiten [50] 

 

Ein Ion der Masse m und der Ladung q = ze wird durch das Potential Vs beschleunigt 

und hat dann die kinetische Energie (Formel 1) 
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 =  

Die Geschwindigkeit der Ionen beträgt somit (Formel 2) 

 

Nach der initialen Beschleunigung fliegt das Ion im Flugrohr mit konstanter 

Geschwindigkeit zum Detektor. L ist die Distanz zum Detektor und t die Zeit, die 

benötigt wird, um die Flugstrecke zu bewältigen (Formel 3). 

 

Durch die Kombination der Formeln 2 und 3 ist zu erkennen, dass das Masse-

Ladungsverhältnis m/z durch die Messung der Flugzeit t bestimmt werden kann 

(Formel 4). 

 

Der TOF-Analysator besitzt aufgrund der Technik keine obere Grenze zur Erfassung 

der Molekülmassen.  

Mit einem TOF-System werden mehrere tausend Spektren pro Sekunde erzeugt. Die 

Anzahl der detektierten Ionen in jedem individuell aufgenommenen Spektrum ist 

allerdings noch nicht ausreichend, um eine hohe Massengenauigkeit zu erreichen. 

Deshalb besteht ein TOF-Spektrum aus der Addition von mehreren Einzelspektren 

[68].  

Um das Auflösungsvermögen eines TOF-Analysers zu erhöhen, können elektro-

statische Reflektoren, genannt Reflectrons, verwendet werden (Abb. 1-8). Hierbei 

gelangen die Ionen nicht direkt in den Detektor, sondern werden von einem 

elektrischen Potential, das höher ist als das Beschleunigungspotential der 

Ionenquelle reflektiert, bevor sie den Detektor erreichen. Dadurch wird die 

Flugstrecke der Ionen vergrößert. Gleichzeitig wird die Streuung der kinetischen 

Energie, die die Ionen bei Verlassen der Quelle besitzen, korrigiert: Ionen mit dem 

gleichen Masse/Ladungsverhältnis aber höherer Geschwindigkeit dringen tiefer in die 

Reflectrons ein und haben dadurch eine längere Flugstrecke als langsamere Ionen.  

Durch ein zweistufiges Reflektron wird das Massenspektrometer insgesamt 

kompakter, benötigt weniger Raum und durch die Verbesserung der Homogenität 

des elektrischen Feldes wird auch eine bessere Auflösung erreicht. Allerdings leidet 

die Empfindlichkeit im Vergleich zu einem einfachen Reflectron [50]. 
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Abbildung 1-8 Reflectron-Theorie [50] 

 

Das Auflösungsvermögen von High-end TOF Geräten beträgt zwischen 40000 und 

50000 (basierend auf der FWHM-Definition, s. Kapitel 1.2.2). Routinegeräte bieten 

eine Auflösung bis zu 20000 und eine Genauigkeit kleiner als 5 ppm [68]. So können 

mit Hilfe von High-end TOF Geräten Substanzen gleicher nomineller Masse 

unterschieden werden. So haben z. B. Methadon und Fluoxetin die nominelle Masse 

309 Dalton, Fluoxetin mit der Summenformel C17H18NOF3 und Methadon C21H27NO. 

Mit einer niedrig auflösenden Massenspektrometrie sind diese beiden Substanzen 

nicht voneinander zu unterscheiden. Die hochauflösende MS/TOF erlaubt es 

dagegen, zwischen den Massen 309.1340 (Fluoxetin) und 309.2093 (Methadon) zu 

diskriminieren [1].  

1.2.2.3 IN-SOURCE FRAGMENTIERUNG 

Bei der Collision-Induced Dissociation (CID) handelt es sich um eine sogenannte In-

Source-Fragmentierung. Hierbei werden Ionen durch ein elektrisches Potential auf 

eine hohe kinetische Energie beschleunigt, um dann mit neutralen Molekülen, meist 

Helium, Stickstoff oder Argon, zu kollidieren (Abb. 1-9). Dabei wird ein Teil der 

kinetischen Energie verwendet, um die Dissoziationsenergie zu überwinden und so 

die Moleküle in kleinere Fragmente aufzuspalten [74]. Durch diese Fragmentierung 

können Substanzen mit gleicher Molekülmasse (isobare Substanzen) aufgrund ihrer 

unterschiedlichen Struktur und somit über die entstehenden, spezifischen Fragmente 

unterschieden werden (Abb. 1-10). 



14 Einleitung 

 

 

Abbildung 1-9 In-Source Fragmentierung [50] 

 

Abbildung 1-10 Die unterschiedlichen Strukturen von Cocain (links) und Scopolamin (rechts) 

 

Das MS/TOF System Premier XE von Waters ist in der Lage, Spektren bei niedriger 

und hoher Kollisionsenergie simultan zu messen, so dass für jede monoisotopische 

Molekülmasse auch die spezifischen Fragmentinformationen vorliegen. Diese 

Informationen können anschließend für die eindeutige Identifizierung von Substanzen 

genutzt werden. 

 

1.2.2.4 DETEKTOR - MICRO-CHANNEL-PLATE 

Um die Substanzen schließlich zu detektieren, werden häufig Sekundärelektronen-

Vervielfacher (SEV) verwendet. Sie basieren darauf, dass aus einer Konversions-

dynode, die aus einem Halbleitermaterial besteht, durch den eintreffenden 

Ionenstrahl Elektronen freigesetzt werden. Diese Elektronen werden über ein 

elektrisches Feld zur nächsten Dynode hin beschleunigt, wo sie wiederum Elektronen 

freisetzen. Über 14 – 17 Stufen, an denen insgesamt 1 bis 3 kV anliegen, wird so 

eine Verstärkungskaskade ausgelöst (Faktor 106 – 108) (s. Abb. 1-11).  
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Abbildung 1-11 MCP Theorie des Elektronenvervielfachers [50] 

 

Anstelle von einzelnen Dynoden wird bei einem kontinuierlichen SEV ein 

Channeltron verwendet, das wie ein kleines gebogenes Hörnchen geformt ist. Eine 

`Microchannel Plate´ (MCP) besteht aus einem Bündel von Tausenden zusammen-

gesinterter Glaskapillaren mit entsprechender Beschichtung der Innenwände, das in 

dünne Scheiben geschnitten wurde. So wirkt jede der einzelnen Glaskapillaren wie 

ein Channeltron (s. Abb. 1-12). Die große Oberfläche erlaubt eine sehr empfindliche 

Detektion eintreffender Ionen über einen großen Raumwinkel. Aus diesem Grund 

wird diese Technik auch häufig bei der TOF-MS angewendet [67]. 

 

 

Abbildung 1-12 Aufbau einer `Microchannel Plate´ (MCP) [50] 



 

16 Aufgabenstellung 

 

2 AUFGABENSTELLUNG 

Die kontinuierliche Entwicklung neuer Medikamente und die Verwendung neuer 

Missbrauchssubstanzen machen es erforderlich, dass im Kliniklabor breit angelegte 

Screeningverfahren für die systematische toxikologische Analyse (STA) zur 

Verfügung stehen. Diese Techniken sollten es auch ermöglichen, Quantifizierungen 

für das therapeutische Drug Monitoring (TDM) einfach und schnell durchführen zu 

können. 

Ziel dieser Arbeit war es, den analytischen Nutzen eines UPLC-MS/TOF Systems für 

den Routinebetrieb im Krankenhauslabor zu überprüfen und Methoden sowohl für die 

STA als auch das TDM zu etablieren. Für die Identifizierung häufig verwendeter 

Medikamente und Drogen (STA) sollte eine LC-MS-Bibliothek aufgebaut werden, die 

auf der monoisotopischen exakten Masse der Substanz, der Retentionszeit und 

spezifischen Fragmentmassen basiert. Für Konformationsanalysen sollte auch eine 

Spektrenbibliothek angelegt werden, die für jede Substanz ein nichtfragmentiertes 

und ein fragmentiertes Spektrum enthält. Für das STA-Screening sollte zudem die 

Probenvorbereitung, insbesondere die Eignung einer automatisierten Festphasen-

extraktion (MEPS) getestet sowie die UPLC-Trennung und die MS-Detektion 

optimiert werden. Der Nutzen der Screening-Methode sollte letztendlich 

entsprechend den Richtlinien der Akkreditierung (DIN EN ISO 15189) [75] und der 

Bundesärztekammer (RILIBÄK) [76] anhand einer großen Zahl authentischer 

Urinproben evaluiert und mit einem konventionellen Screening mittels GC-MS 

verglichen werden. 

In einem weiteren Schritt sollte überprüft werden, ob das UPLC-MS/TOF System 

auch für den qualitativen Nachweis von Substanzen und Metaboliten verwendet 

werden kann, die noch nicht in den Screening-Datenbanken vorhanden sind. Da mit 

der TOF-Technologie alle Ionen aufgenommen und diese Rohdaten für jeden Lauf 

gespeichert werden, kann diese Technologie prinzipiell auch für den Nachweis 

solcher „neuer“ Substanzen verwendet werden. 
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Ein weiteres Ziel dieser Arbeit war es, Quantifizierungsmethoden für Substanzen, die 

im Rahmen des TDM seltener bestimmt werden bzw. für die bisher keine MS-

Methode existiert, zu entwickeln. Entsprechend den Vorgaben der Gesellschaft für 

Toxikologische und Forensische Chemie (GTFCh) [77] sollten die Methoden 

anschließend auf ihre Linearität, Selektivität, Genauigkeit, Präzision sowie Stabilität 

überprüft werden. 
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3 MATERIAL UND METHODEN 

3.1 MATERIAL 

3.1.1 GERÄTE UND SOFTWARE 

Chromatographie:  

 UPLC Acquity, Waters, Eschborn 

 UPLC-Säule Acquity Ultra Performance LC ® HSS T3 1.8 µm, 2.1 x100mm, 

Waters, Eschborn 

 REMEDI HS Drug Profiling System (DPS), Bio-Rad, Hercules, USA 

 

Massenspektrometrie: 

 LCT XE Premier, Waters, Eschborn 

 GC-MS G7131A, Agilent, Böblingen 

 

Laborgeräte: 

 MEPS-SPE, C8/SCX>Ionexchange-RP-Mixed-Mode, SGE Analytical Science 

Pty Ltd, Victoria, Australien 

 CTC CombiPAL System, Agilent, Böblingen 

 Analysenwaage Mettler AE 160/9, WTM, Kirchseeon 

 Zentrifuge Micro 200R, Hettich, Tuttlingen 

 Zentrifuge Universal 320R, Hettich, Tuttlingen 

 Rüttler MS3 Basic, IKA® Works, NC, USA 

 

Software:  

 Software MassLynx V4.1 SCN728, Waters 

 Software MassLynx V4.1 SCN803, Waters 

 MSD ChemStation D.03.00.611, Agilent 

 Software VALISTAT 2.0 

 B.E.N. Version 2.03 (zur statistischen Auswertung von Kalibrationsdaten nach 

DIN 32645) 
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3.1.2 CHEMIKALIEN 

 Methanol, LC-MS Chromasolv® ≥ 99.9 %, Sigma-Aldrich, Steinheim 

 Wasser, steril und endotoxinfrei, Fresenius Kabi, Bad Homburg 

 Ameisensäure, für Massenspektrometrie, ~ 98 %, Sigma-Aldrich, Steinheim 

 Ethylacetat, Optigrade® ≥ 99.5 %, Sigma-Aldrich, Steinheim 

 Acetonitril, Picograde® ≥ 99.5 %, LGC-Standards, Wesel 

 Ammoniak (wasserfrei), Sigma-Aldrich, Steinheim 

 N-Methyl-N-trimethylsilyltrifluoracetamid (MSTFA), Macherey-Nagel, Düren 

 ß-Glucuronidase Typ H-1, G 0751, Sigma-Aldrich, Steinheim 

 

3.1.3 LÖSUNGEN 

Referenzlösung Lock MassTM 

Eine Stammlösung von Leucin-Enkephalin (1 mg/ml in H2O) wurde angesetzt und 

portionsweise bis zu einem Jahr bei -20 °C gelagert. Für die Arbeitslösung 

(300 ng/ml) wurde die Stammlösung mit Acetonitril:Wasser (50:50, v/v, unter Zusatz 

von 0.05 % Ameisensäure) weiter verdünnt. 

 

UPLC Fließmittel A:  

990 ml H2O, 10 ml MeOH, 500 µl Ameisensäure 

 

UPLC Fließmittel B: 

1 l MeOH, 500 µl Ameisensäure 

  

Referenzsubstanzlösungen für die Spektrenbibliothek und `Targeted-Screening-

Datenbank´ 

Für die Datenbanken wurden Stammlösungen aller Substanzen in Methanol zu je 

1 mg/ml hergestellt und auf 1 µg/ml verdünnt. Jeweils 2 µl dieser Verdünnungen 

wurden an der UPLC-MS/TOF injiziert. 
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Drogen- und Medikamenten-freie Referenzmatrix 

Für die Entwicklung, Optimierung und Validierung der Methoden wurden Serum- und 

Urinproben von Freiwilligen aus dem Labor verwendet, die keinerlei Medikamente 

und Drogen eingenommen hatten. Auch auf den Konsum von Coffein wurde für 

mindestens 2 Wochen verzichtet, um Selektivitätsmessungen für die Quantifizie-

rungsmethoden durchführen zu können. 

 

Vergleichsproben 

Soweit für die Validierungen Reste von Patientenproben verwendet wurden, geschah 

dies ausschließlich mit anonymisierten Proben ohne Anforderung zusätzlichen 

Untersuchungsmaterials. Für die entsprechenden Untersuchungen lag jeweils ein 

nicht methodenbezogener Untersuchungsauftrag vor. 

 

3.1.4 VERBRAUCHSMATERIALEN 

  Eppendorf Cups 1.5 ml, Eppendorf, Hamburg 

  Spitzen für Varipipetten 10 µl, 100 µl, 1 ml, Eppendorf, Hamburg 

  TOXI∙TUBES® A, TOXI∙LAB® Varian, Lake Forest, U.S.A. 

  Einmalhandschuhe Peha-soft nitrile, Hartmann AG, Heidenheim 

  Vials, Flasche R11-1.5fl 1.5 ml 32X12mm farbl, Art.-Nr. 610002, 

Chromatographie Handel Müller, Fridolfing 

  Inlets für Vials, Limited Volume Inserts 0.3 ml; 6 x 30 mm, Chromsystems, 

München 
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3.1.5 REFERENZ-STANDARDS 

  Referenz-Standards (freundlicherweise von Prof. Dr. Pragst, Berlin, zur 

Verfügung gestellt) 

  Coffein, Referenz-Standard, Sigma-Aldrich, Steinheim 

  Lidocain, Referenz-Standard, Sigma-Aldrich, Steinheim 

  Procain, Referenz-Standard, Sigma-Aldrich, Steinheim 

  Antiepileptika-Standard, ClinCal Kalibrator Antiepileptika 2, Recipe, München 

  Antiepileptika-Kontrollen 1 und 2, ClinCheck Kontrollen Antiepileptika 2, 

Recipe, München 

  TOX.I.S.TM Testlösung (basische Drogen im Urin) für HPLC-DAD-Systeme, 

ClinTest®-Standard, Recipe, München 

 

 

3.2 METHODEN 

3.2.1 PROBENVORBEREITUNG 

3.2.1.1 PROBENVORBEREITUNG FÜR DAS TOXIKOLOGISCHE SCREENING 
 

Flüssigextraktion mit TOXI∙TUBES® A für UPLC-MS/TOF 

2 ml nativer Urin und 3 ml H2O wurden in ein TOXI∙TUBES® A gegeben, 10 s mit 

Hilfe eines Vortexers gemixt und 5 min bei 14000 x g zentrifugiert. Anschließend 

wurde die organische Phase abgenommen und mit Stickstoff abgedampft. Der 

Extrakt wurde in 100 µl MeOH aufgenommen und mit 200 µl H2O verdünnt. 3 µl der 

Lösung wurden an der UPLC-MS/TOF eingespritzt. 
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Festphasenextraktion für UPLC-MS/TOF 

Für die Extraktion wurde eine MEPS-SPE Säule verwendet. 300 µl Urin wurden mit 

600 µl 2 % Ameisensäure verdünnt. Die Säule wurde dreimal mit je 100 µl Methanol 

und danach dreimal mit je 100 µl 2 % Ameisensäure konditioniert. Anschließend 

wurde die verdünnte Probe auf die Säule gegeben. Die Säule wurde zweimal mit 

50 µl Ameisensäure (2 %) und anschließend zweimal mit 50 µl Methanol gespült. Die 

Probe wurde mit zweimal 50 µl Elutionslösung (2% Ameisensäure in MeOH), die 

jeden Tag frisch hergestellt wurde, eluiert. Davon wurden 3 µl an der UPLC-MS/TOF 

eingespritzt. 

 

Flüssigextraktion mit TOXI∙TUBES® A für GC-MS 

3 ml Urin wurden mit 300 µl ß-Glucuronidase versetzt und 30 min bei 56 °C inkubiert. 

Der hydrolisierte Urin wurde zusammen mit 2 ml nativen Urin in ein TOXI∙TUBES® A 

gegeben, 10 s mit Hilfe eines Vortexers gemixt und 5 min bei 14000 x g zentrifugiert. 

Anschließend wurde die organische Phase abgenommen und mit Stickstoff 

abgedampft. Der Extrakt wurde in 100 µl Ethylacetat aufgenommen. 50 µl des 

Extraktes wurden mit 20 µl MSTFA (1 g/ml) versetzt, 3 min im Ultraschallbad bei 

Raumtemperatur derivatisiert und anschließend mit dem restlichen Extrakt vermengt. 

10 µl wurden an der GC-MS eingespritzt. 

 
 

Flüssigextraktion mit TOXI∙TUBES® A für Checkmix für UPLC-MS/TOF 

500 µl TOX.I.S.TM Testlösung und 4.5 ml H2O wurden in ein TOXI∙TUBES® A 

gegeben, 10 s mit Hilfe eines Vortexers gemixt und 5 min bei 14000 x g zentrifugiert. 

Anschließend wurde die organische Phase abgenommen und mit Stickstoff 

abgedampft. Der Extrakt wurde in 100 µl MeOH aufgenommen und mit 200 µl H2O 

verdünnt. 3 µl der Lösung wurde an der UPLC-MS/TOF eingespritzt. 
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3.2.1.2 PROBENVORBEREITUNG FÜR DIE QUANTIFIZIERUNG VON COFFEIN, LIDOCAIN UND 

ANTIEPILEPTIKA 

100 µl Serum wurden mit 100 µl des internen Standards (Procain 1 µg/ml in MeOH) 

versetzt. Anschließend folgte eine Proteinfällung mit 200 µl Acetonitril. Nach dem 

Zentrifugieren (5 min; 9500 x g) wurden 200 µl des Überstandes mit 400 µl einer 

Mischung aus Methanol und Wasser (1:2; v:v) verdünnt. 2 µl der Lösung wurden an 

der UPLC-MS/TOF eingespritzt. 

3.2.1.3 PROBENVORBEREITUNG FÜR DEN NACHWEIS VON PREGABALIN 

Flüssig-Flüssig-Extraktion 

500 µl Serum bzw. 1 ml Urin wurden mit 1 ml Acetonitril und 1 ml Salzsäure 

(0.1 mol/l) versetzt und 20 s gemischt (Vortexmixer). Anschließend wurden 2 ml 

Ethylacetat zugegeben, 10 s mit Hilfe des Vortexmixers geschüttelt und 10 min bei 

14000 x g zentrifugiert. Die organische Phase wurde abgenommen und mit Stickstoff 

abgedampft. Der Extrakt wurde in 250 µl MeOH aufgenommen. 5 µl der Lösung 

wurden an der UPLC-MS/TOF eingespritzt. 

 

Festphasen-Extraktion mit MEPS 

Für die Identifizierung wurden 300 µl Urin bzw. 300 µl Serum mit 600 µl 

2 % Ameisensäure verdünnt und anschließend mit einer MEPS-SPE Säule 

extrahiert. Die Extraktion erfolgte wie für die Probenvorbereitung für das Screening 

mittels Festphasenextraktion für UPLC-MS/TOF beschrieben (siehe Kapitel 3.2.1.1). 

3 µl der Lösung wurden an der UPLC-MS/TOF eingespritzt. 
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3.2.2 GERÄTEAUFBAU 

In der vorliegenden Arbeit wurde eine UPLC gekoppelt mit einer ESI-MS-TOF 

(Waters) mit dem REMEDI HS System (Bio-Rad) und einer GC-MS (Agilent) 

verglichen. Eine UPLC-MS/TOF-Anlage wird bisher nicht in der klinischen 

Routineanalytik verwendet, diese Kombination einer UPLC mit einem MS/TOF-

Systems ist jedoch eine interessante Alternative zu den bisher eingesetzten Geräten. 

Zum einen ermöglicht die UPLC verglichen mit der klassischen HPLC kürzere 

Analysenzeiten, zum anderen müssen im Gegensatz zur GC-MS die Substanzen 

nicht derivatisiert werden. Das MS/TOF System nutzt zudem die exakte 

Molekülmasse der Substanzen für ihre Identifizierung. 

 

3.2.3 UPLC-PARAMETER 

Die allgemeinen Einstellungen für die UPLC sind in Tab. 3-1 dargestellt. Sie gelten 

sowohl für die Screening- als auch für die Quantifizierungsmethoden. 

Proben-Temperatur 10 °C 

Säulen-Temperatur 35 °C 

Flussrate 0.300 ml/min 

Tabelle 3-1 Allgemeine UPLC-Parameter 

Die verwendeten Gradientenkurven sind in Abb. 3-1 gezeigt. Die Linie 1 zeigt einen 

direkten Wechsel von Fließmittel A zu Fließmittel B. Bei Linie 6 hingegen steigt die 

Zusammensetzung linear über den angegebenen Zeitraum an. In den nachfolgend 

beschriebenen Methoden wurden die Gradienten 1 und 6 verwendet 

(siehe Tab. 3-2 bis 3-4). 
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Abbildung 3-1 Theoretische UPLC-Gradienten-Kurven, verwendet wurden die Kurven 1 und 6 

nach Waters [50] 

3.2.3.1 UPLC-PARAMETER FÜR DAS TOXIKOLOGISCHE SCREENING 

Für das Screening wurde das in Tab. 3-2 beschriebene Gradientenprogramm 

verwendet. Die Laufzeit beträgt 23 min. 

Zeit (min) Fließmittel A (%) Fließmittel B (%) Gradient 

Initial 90 10  

19.00 5 95 6 

20.50 0 100 6 

23.00 90 10 1 

Tabelle 3-2 Gradientenprogramm für die UPLC bei der Screening-Methode 

Die Anfangskonzentration beträgt 90 % des Fließmittels A und 10 % des Fließmittels 

B. Bis zum Zeitpunkt 19 min wird der Fließmittelanteil B linear auf 95 % erhöht. 

Anschließend wird die Säule 1.5 min lang mit 100 % Fließmittel B gespült. Im 

Anschluss werden die Anfangsverhältnisse wieder hergestellt. 
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Abbildung 3-2 Graphische Darstellung der verwendeten Fließmittelzusammensetzung über die 

Laufzeit der Chromatographie der Screening-Methode 

3.2.3.2 UPLC-PARAMETER FÜR DIE QUANTIFIZIERUNG 

Für die Quantifizierung von Lidocain, Coffein und der Antiepileptika 10-OH-

Carbazepin, Lamotrigin und Levetiracetam wurden die Fließmittelkonzentrationen wie 

in Tab. 3-3 beschrieben verändert. Die Laufzeit beträgt 7 min. 

Zeit (min) Fließmittel A (%) Fließmittel B (%) Gradient 

Initial 90 10  

5.00 20 80 6 

6.50 0 100 6 

7.00 90 10 1 

Tabelle 3-3 Gradientenprogramm für die UPLC bei den Quantifizierungs-Methoden 

Die Anfangskonzentration beträgt 90 % des Fließmittels A und 10 % des Fließmittels 

B. Bis zum Zeitpunkt 5 min wird der Fließmittelanteil B linear auf 80 % erhöht. 

Anschließend wird die Säule 1.50 min lang mit 100 % Fließmittel B gespült, im 

Anschluss werden die Anfangsverhältnisse wieder hergestellt. 
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3.2.3.3 UPLC-PARAMETER FÜR DEN NACHWEIS VON PREGABALIN 

Für das Screening zum Nachweis von Pregabalin wurde das in Tab. 3-4 

beschriebene Gradientenprogramm verwendet. Die Laufzeit beträgt 13 min. 

Zeit (min) Fließmittel A (%) Fließmittel B (%) Gradient 

Initial 90 10  

1.00 90 10 6 

12.00 5 95 6 

12.50 0 100 6 

13.00 90 10 1 

Tabelle 3-4 Gradientenprogramm für die Quantifizierung von Pregabalin 

Die Anfangskonzentration beträgt 90 % des Fließmittels A und 10 % des Fließmittels 

B. Bis zum Zeitpunkt 12 min wird der Fließmittelanteil B linear auf 95 % erhöht. 

Anschließend wird die Säule 0.50 min lang mit 100 % Fließmittel B gespült, im 

Anschluss werden die Anfangsverhältnisse wieder hergestellt. 

 

3.2.4 MS/TOF-PARAMETER 

Die Einstellungen für das Massenspektrometer MS/TOF sind in Tab. 3-5 dargestellt, 

sie gelten sowohl für die Screening- als auch die Quantifizierungs-Methoden. In allen 

Methoden wurde der W+ Modus verwendet, d. h. die Flugstrecke im Analysator 

entspricht einem W, sie wird durch drei Reflektoren verlängert. Dies führt zu einer 

höheren Auflösung des Gerätes im Vergleich zu einer nicht-reflektierten Flugstrecke. 
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Kapillarspannung 3000 V 

Sample Cone Spannung 30 V 

Ion Guide 1 5.0 V 

Flight Tube Spannung 7200 V 

MCP Spannung 2500 – 2800 V 

Desolvation Temperatur 350 °C 

Quellen Temperatur 120 °C 

Flight Tube Temperatur 30 °C 

Gas Fluss Cone 10 L/h 

Gas Fluss Desolvation 700 L/h 

Vacuum Pressure Backing < 2 mBar 

Vacuum Pressure Analyser < 6e-007 mBar 

Tabelle 3-5 Allgemeine Geräteparameter für das ESI/MS/TOF Massenspektrometer 

Als Referenzmassen wurden die Isotope von Leucin-Enkephalin 

[M+H]+ C12: 556.2771 (Attenuated Lock Mass) und [M+H]+ C13: 557.2802 

(Lock Mass) verwendet. 

 

3.2.4.1 MS/TOF-PARAMETER FÜR DAS TOXIKOLOGISCHE SCREENING 

Bei den Screeningmethoden im positiven Elektrospray-Ionisationsmodus (ESI +) 

wurden die Massen von 50 bis 1000 Da im W-Modus erfasst. Die Messdaten wurden 

über 20 min mit einer Scanzeit von 0.15 sec aufgenommen. Für die Funktion 1 (nicht-

fragmentiert) wurden die Einstellungen aus Tab. 3-5 übernommen, für Funktion 2 

(fragmentiertes Spektrum) wurden die Aperture 1 Spannung von 10 auf 50 V und die 

Cone Spannung von 30 auf 60 V erhöht. Für die Peakidentifizierung wurden die in 

Tab. 3-6 angegebenen Parameter verwendet. 
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Perform spectra deconvolution Yes 

Peak separation 0.050 Da 

Peak Width at 5 % Height 90.00 seconds 

Scans to combine either side of peak top 
scan 

1 (hierbei werden insgesamt 3 Spektren im 
Peak an der Spitze und in den Flanken 
aufgezeichnet) 

Treshold Absolut Area 100 

Smoothing Method Mean 

Accurate Mass Scoring – Number of Ions 10 

Tabelle 3-6 Allgemeine Parameter der MS/TOF für das toxikologische Screening 

Für die Auswertung der Daten wurde die Software ChromaLynx XS verwendet. Für 

das Screening mithilfe einer Spektrendatenbank wurden die Spektren der 

Patientenprobe mit den Spektren der Datenbank verglichen (siehe Tab. 3-7). Hierfür 

wurde die Funktion `Forward Basepeak Search´ verwendet, die die acht intensivsten 

Peaks der Spektren miteinander vergleicht. 

Spectra Match Factor (Forward Fit) 900 

Scanbreite 2 

Significant Ions 8 

Tabelle 3-7 Parameter, die beim Vergleich von Patientenprobenspektren mit der 

Spektrendatenbank mithilfe der Software ChromaLynx (Waters) verwendet wurden 

Für das `Targeted Screening´ wurden die Spektren der Patientenproben mit einer 

speziellen Datenbank (Targeted-Datenbank) verglichen. Diese enthält neben dem 

Substanznamen die Summenformel, aus der die exakte monoisotopische 

Molekülmasse abgeleitet werden kann, die Retentionszeit der chromatographischen 

Trennung mittels UPLC sowie die Masse eines ausgewählten spezifischen 

Fragments. Die maximale Abweichung der Retentionszeit für die nicht-fragmentierte 

Substanz (Target Retention Time Tolerance) wurde auf 0.3 min und für die 

fragmentierte Substanz (Fragment Retention Time Tolerance) auf 0.15 min 

festgelegt. Die maximale Massenabweichung für einen positiven Hit beträgt 10 mDa.  
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Bei einer Massenabweichung zwischen 10 und 20 mDa wurde die Identifizierung als 

nicht sicher eingestuft und die Substanz deshalb in der Auswertung mit einem 

Fragezeichen gekennzeichnet (siehe Tab. 3-8).  

Analysis Type Targeted – Fragment ion confirmation 

Target mass file Targeted_Screening.txt 

Target Retention Time Tolerance 0.300 min 

Fragment Retention Time Tolerance 0.150 min 

Absolute mass tolerance 0.020 Da 

Mass accuracy for positive ID 0.010 Da 

Tabelle 3-8 Parameter, die beim Vergleich der Patientenprobenspektren mit der Targeted-

Datenbank verwendet wurden 

 

3.2.4.2 MS/TOF-PARAMETER FÜR DIE GEZIELTE SUCHANALYTIK 

Für die gezielte Suchanalytik wurde zuerst das Chromatogramm mithilfe der exakten 

Masse der angefragten Substanz untersucht. Zeigte sich eindeutig für diese exakte 

Masse ein Peak im Chromatogramm, wurde das zugehörige fragmentierte 

Massenspektrum mit Hilfe der Software MassFragment (Waters) auf mögliche 

Fragmentmassen, die zu der angefragten Substanz passen, untersucht. Die 

notwendigen Strukturinformationen wurden der frei verfügbaren Datenbank 

„Chemspider“ [78] entnommen. 

 

3.2.4.3 MS/TOF-PARAMETER FÜR DIE QUANTIFIZIERUNG VON COFFEIN, LIDOCAIN UND 

VERSCHIEDENER ANTIEPILEPTIKA 

Für die Quantifizierung von Coffein, Lidocain und der Antiepileptika 10-OH-

Carbazepin, Lamotrigin und Levetiracetam wurden die Massen von 50 bis 1000 Da 

im ESI+ Modus aufgezeichnet. Die Messdaten wurden über 7 min mit einer Scanzeit 

von 0.2 sec aufgenommen. Für die Quantifizierung wurde ausschließlich die 

Intensität der nicht-fragmentierten Massen (Funktion 1 bei der MS/TOF) verwendet 

(sonstige Einstellungen siehe Tab. 3-5). 
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3.2.4.4 MS/TOF-PARAMETER FÜR DEN NACHWEIS VON PREGABALIN 

Bei der Identifizierung und Quantifizierung von Pregabalin wurden die Massen von 50 

bis 1000 Da im ESI+ Modus aufgenommen. Die Messzeit betrug 12 min mit einer 

Scanzeit von 0.15 sec. Für das Screening wurden die Funktionen 1 und 2 verwendet, 

wobei für Funktion 2 die Aperture-1-Spannung von 10 auf 50 V und die Cone-

Spannung von 30 auf 60 V erhöht wurde, um das spezifische Fragmentspektrum zu 

erhalten. 

 

3.2.5 VALIDIERUNG 

Die Methoden für die therapeutische Arzneimittelüberwachung an der UPLC-MS/TOF 

wurden entsprechend den Vorschriften und Richtlinien der Gesellschaft für 

Toxikologische und Forensische Chemie (GTFCh) validiert [77]. Dabei wurden die 

Kriterien Selektivität, Linearität, Genauigkeit, Präzision und Stabilität sowie die 

analytischen Grenzen bestimmt bzw. beurteilt. Die Messdaten wurden dazu mithilfe 

der Software Valistat 2.0 analysiert. 

 

3.2.5.1 SELEKTIVITÄT 

Die Selektivität einer Methode beschreibt, dass verschiedene nebeneinander zu 

bestimmende Analyte ohne gegenseitige Störungen oder Störungen durch andere 

endogene oder exogene Substanzen wie Metabolite, Verunreinigungen, 

Abbauprodukte oder die Matrix erfasst werden und somit eindeutig identifiziert 

werden.  

Zur Untersuchung der Selektivität wurden sechs verschiedene Leerproben ohne 

internen Standard (IS) (Blindprobe) sowie zwei verschiedene Nullproben (Leermatrix 

mit IS) analysiert. Signale mit einer Fläche kleiner als 15 counts wurden als 

Grundrauschen definiert, damit nicht als Peak identifiziert und nicht berücksichtigt. 
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3.2.5.2 LINEARITÄT 

Die Linearität beschreibt, dass das Ergebnis der Methode innerhalb eines gegebenen 

Bereichs direkt proportional zu der Konzentration (Menge) des Analyten in der Probe 

ist. Um die Linearität im Kalibrationsbereich zu analysieren wurden sechs von Null 

verschiedene Konzentrationen des Kalibrators durch Aufstocken einer Leermatrix 

hergestellt. Die niedrigste Konzentration ist dabei größer oder gleich der 

Bestimmungsgrenze. Für die Wiederholbedingungen wurden zu jeder Konzentration 

sechs Bestimmungen durchgeführt. Für die Auswertung wurde der Test nach Mandel 

(Signifikanz 99 %) verwendet. Dazu wurde eine lineare und eine quadratische 

Funktion an die Kalibrierdaten angepasst und für beide Varianten die Summe der 

Abweichungsquadrate berechnet. Anschließend wurde ein F-Test durchgeführt, 

indem die Differenz dieser Summen durch die Restvarianz aus der quadratischen 

Anpassung geteilt und der so erhaltene Wert mit dem Tabellenwert der F-Verteilung 

verglichen wurde. Ist der Wert kleiner als der Tabellenwert, so ist eine Linearität im 

gewählten Kalibrationsbereich anzunehmen [79]. 

Ausreißer wurden mittels des Grubbs-Test (Signifikanzniveau: 95 %) ermittelt und 

gegebenenfalls eliminiert. Entsprechend den Validierungsvorschriften der GTFCh für 

die Validierung von Analysenmethoden dürfen insgesamt nicht mehr als zwei 

Ausreißer und diese nicht bei der gleichen Konzentration auftreten [77]. 

 

Für jeden ausreißerverdächtigen Meßwert wurde die Prüfgröße G nach folgender 

Formel berechnet.                 : ausreißerverdächtiger Wert     : arithmetisches Mittel  

s : Standardabweichung  

 

Ist der Prüfwert G größer als die Vergleichsgröße VG, wurde dieser Punkt als 

Ausreißer betrachtet und nicht mehr in die weitere Auswertung einbezogen, blieb 

aber als eliminierter Wert sichtbar. Die Vergleichsgröße VG (gewähltes 

Signifikanzniveau, Umfang n der Stichprobe) wurde aus den Tabellen von Grubbs et 
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al. [80] entnommen. Der Cochran-Test prüft die Gleichheit mehrerer Varianzen: 

Geprüft wird die größte Varianz, ob sie signifikant größer ist als die anderen. Dabei 

werden die Stichprobenvarianzen berechnet und der größte Wert davon ermittelt. Der 

Prüfwert P ist die maximale Varianz im Quadrat (    ) geteilt durch die Summe aller 

Varianzen [80].                

 

3.2.5.3 GENAUIGKEIT 

Als Maß für die Genauigkeit wurde der Abstand des Mittelwertes einer ausreichend 

großen Anzahl von Messwerten zum Sollwert berechnet. Das Ausmaß wird 

gewöhnlich in Form eines systematischen Fehlers (Bias) ausgedrückt. Hierzu wurden 

homogene Pools von Qualitätskontrollproben (QC-Proben) bei verschiedenen 

Konzentrationen (niedrig, mittel und hoch relativ zum Kalibrationsbereich) durch 

Aufstockung von Leermatrixproben hergestellt. Die QC-Proben wurden zu je 150 µl 

aliquotiert und im Gefrierschrank (-20 ° C) gelagert. Jeweils 100 µl QC-Proben jeder 

Konzentration wurden an acht verschiedenen Tagen analysiert und miteinander 

verglichen. Der Bias gibt die Richtigkeit im unteren und hohen Messbereich sowie im 

Entscheidungsbereich an. Der Bias-Wert errechnet sich aus dem Mittelwert aller 

Bestimmungen und dem Sollwert bei jeder Konzentration nach der Formel 

%100[%]  
X

Bias  

X Mittelwert aller Bestimmungen 

µ Sollwert 

 

Bias-Werte innerhalb eines Intervalls von  15 % gelten als akzeptabel. 
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3.2.5.4 PRÄZISION 

Unter Präzision versteht man den Grad der Streuung der einzelnen Werte um den 

Mittelwert. Sie ist ein Maß für die zufällige Fehlerkomponente eines quantitativen 

Analysenverfahrens. Die Präzision wird gewöhnlich in Form der `Impräzision´ 

ausgedrückt und als Standardabweichung der Messergebnisse berechnet. Eine 

höhere Impräzision entspricht also einer höheren Standardabweichung.  

 

3.2.5.5 STABILITÄT 

Die Stabilität eines Analyten sollte vom Zeitpunkt der Probennahme bis zum 

Abschluss der Analyse gewährleistet sein. Deshalb wurde die Stabilität der 

aufgearbeiteten Proben sowie die Einfrier- und Auftaustabilität bestimmt. Um die 

Prozessstabilität der Proben nachzuweisen, wurden sechs Kontrollproben-Proben 

(QC) bei niedriger, mittlerer und hoher Konzentration relativ zum Kalibrationsbereich 

aufgearbeitet, gepoolt und die jeweilige Konzentration in sechs Aliquote zu je 150 µl 

aufgeteilt. Die Aliquote wurden in regelmäßigen Intervallen über einen Zeitraum, der 

der erwarteten Dauer einer regulären Analysenserie in der Routine entspricht, 

injiziert. Anschließend wurden die absoluten Peakflächen gegen die Zeitpunkte der 

Injektion aufgetragen und anschließend mittels linearer Regressionsanalyse 

ausgewertet. Eine signifikant negative Steigung der Regressionsgerade weist auf 

eine Instabilität der Analyten in den aufgearbeiteten Proben hin. Laut GTFCh-

Vorschriften dürfen die absoluten Peakflächen über den Testzeitraum maximal 15 % 

abnehmen.  

 

3.2.5.6 ANALYTISCHE GRENZEN 

Als Nachweisgrenze wurde die niedrigste Konzentration eines Analyten in der Probe 

definiert, die die Identifizierungskriterien erfüllt. Dafür wurden Proben mit fallender 

Analytkonzentration im Bereich der zu erwartenden Nachweisgrenze durch 

Aufstockung von Leermatrix hergestellt. Die Nachweisgrenze ist als die niedrigste 

Konzentration angegeben, für die noch ein eindeutiger Peak (Peakfläche über 

15 counts) identifiziert werden konnte [77]. 
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4 ERGEBNISSE 

4.1 KALIBRIERUNG UND NACHWEIS DER STABILITÄT VON UPLC 

UND MS/TOF 

Im Rahmen dieser Arbeit wurde überprüft, in wie weit ein UPLC-MS/TOF-System für 

die klinisch-toxikologische Routineanalytik geeignet ist. Dazu wurden zunächst die 

Chromatographie-Bedingungen für die UPLC optimiert und die maximale Massen-

ungenauigkeit des MS/TOF-Massenspektrometers bestimmt.  

Für die Gewährleistung der Massengenauigkeit der TOF wurde die Massenachse 

des Gerätes kalibiert. Hierfür wurden Substanzen ausgewählt, die reproduzierbare 

Massencluster bilden wie z. B. Natriumformiat. Eine solche Massenachsenkalibration 

für das MS/TOF-Gerät LCT Premier XE von Waters zeigt Abbildung 4-1.  

 

Abbildung 4-1 Kalibrierung eines MS/TOF Gerätes (LCT Premier XE, Waters) mit Natrium-

formiat 
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Kleinste Änderungen der Umgebungsbedingungen können zu einer Verschiebung 

dieser Massenachse und damit zu einem zunehmenden Massenfehler führen. Um 

dies zu vermeiden, wird parallel zur Probe eine Referenzsubstanz bekannter exakter 

Masse (z. B. Leucin-Enkephalin C28H37N5O7) analysiert und anhand dieser Messung 

die ursprüngliche Massenkalibrierung in einem geringen Rahmen angepasst bzw. 

nachgeführt. 

Um die Stabilität der Massengenauigkeit zu überprüfen wurde ein Urin mit 19 

verschiedenen toxikologisch relevanten Substanzen (Konzentration der Substanzen: 

jeweils 10 mg/l) über fünf Tage jeweils 3-mal über den Tag verteilt analysiert 

(Probenvolumen 3 µl). Für alle Substanzen wurde die maximale Massenabweichung 

errechnet (Abb. 4-2), sie betrug jeweils weniger als 10 mDa (Bereich 2 – 8 mDa). 

Außerdem wurden die maximalen Retentionszeitschwankungen der UPLC für die 

Substanzen ermittelt, die jeweils geringer als 0.3 min waren (Abb. 4-3). 

 

Abbildung 4-2 Maximale Massenabweichung bei der Bestimmung einer Testmischung 19 

toxikologisch relevanter Substanzen mittels UPLC-MS/TOF über 5 Tage (jeweils 3 Analysen pro 

Tag) 
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Abbildung 4-3 Maximale Retentionszeitabweichung bei der Bestimmung einer Testmischung 19 

toxikologisch relevanter Substanzen mittels UPLC-MS/TOF über 5 Tage (jeweils 3 Analysen pro 

Tag) 

 

4.2 QUALITATIVER NACHWEIS TOXIKOLOGISCH RELEVANTER 

SUBSTANZEN – SYSTEMATISCHE TOXIKOLOGISCHE ANALYSE 

(STA) 

4.2.1 AUFBAU EINER SPEKTREN-DATENBANK FÜR DIE UPLC-MS/TOF 

Für das klinisch-toxikologische Screening mit der UPLC-MS/TOF wurde eine 

Spektren-Datenbank relevanter Substanzen aufgebaut. In dieser Datenbank wurde 

die Retentionszeit der Substanzen in der UPLC, das gesamte Spektrum der 

Muttersubstanz und das gesamte Fragmentspektrum hinterlegt; im Gegensatz zu 

einer Quadrupol-MS, die nur bestimmte, vorher ausgewählte Massenübergänge 

misst, werden bei der verwendeten MS/TOF-Analytik alle 0.15 s jeweils zwei 

vollständige Massenspektren (nicht-fragmentiert und fragmentiert) aufgenommen und 

gespeichert. Zur Erstellung der Spektren-Datenbank wurde jede Substanz als Einzel-

standard untersucht und die Spektren für jeweils niedrige und hohe Kollisions-

energien aufgenommen.  
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Aufgrund der anfallenden großen Datenmengen, die durch die Größe der Datenfiles 

und der großen Anzahl der Substanzen bedingt ist, ergab sich rasch die 

Notwendigkeit, eine effektivere Auswertetechnik zu erarbeiten. Je größer die Zahl der 

in der Spektren-Datenbank aufgenommenen Substanzen, desto länger benötigt die 

MassLynx-Software ChromaLynx (Waters GmbH) für den Datenabgleich mit den 

Patientenproben. Bei 402 verschiedenen Substanzen, die im Rahmen der 

Dissertation in die Spektren-Datenbank aufgenommen wurden, erwies sich die 

Datenprozessierung als für den Routinebetrieb zu langsam. Aus diesem Grund 

wurde eine alternative Vorgehensweise für das toxikologische Screening entwickelt 

und validiert. 

 

4.2.2 ENTWICKLUNG EINER `TARGETED-DATENBANK´ FÜR DIE UPLC- 
MS/TOF 

Als Alternative zur Spektrendatenbank wurde eine neue Vorgehensweise entwickelt, 

die auf einer `Targeted-Datenbank´ basiert. Sie nutzt als Identifizierungsparameter 

die Retentionszeit an der UPLC und - anstatt des gesamten Spektrums - nur jeweils 

die exakte Masse des Molekülions und ein spezifisches Fragment nach insource-

Fragmentierung. Basierend auf diesen Parametern, die im Anhang 44 aufgeführt 

sind, wurde eine Vorabbewertung der Substanzvorschläge durch die `Targeted-

Datenbank´ optimiert (siehe Abb. 4-4). Als erstes Kriterium für die 

Substanzerkennung wird die Abweichung der Retentionszeit des aktuellen 

Probenlaufs zum Bibliothekseintrag ausgewertet. Ist die Abweichung größer als 0.3 

min wurde die Substanz als nicht gefunden bewertet und mit einem roten „X“ 

markiert. Bei einer geringeren Abweichung erscheint vor dem Substanznamen ein 

kleiner grüner Haken (Abb. 4-4). Als Zweites wird die Massenabweichung der 

Molekülmasse überprüft. Bei einer Massenabweichung von weniger als 10 mDa wird 

der Vorschlag mit einem zweiten (größeren) grünen Haken markiert. Ist die 

Abweichung hingegen größer als 20 mDa wird die Substanz wiederum mit einem 

roten „X“ markiert, bei einem Massenfehler zwischen 10 und 20 mDa wird ein gelbes 

Fragezeichen angezeigt. Wird zusätzlich zur richtigen Retentionszeit und exakten 

Molekülmasse eine in der `Targeted-Datenbank´ vorgegebene Fragmentmasse 
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gefunden, wird der Substanzvorschlag zusätzlich durch ein „e“ vor dem Namen 

markiert; dieses entspricht der höchsten Zuverlässigkeitsstufe für die 

Substanzidentifizierung anhand der `Targeted-Datenbank´. 

 

Abbildung 4-4 Darstellung der Substanzvorschläge der Targeted-Datenbank 

Für das `Targeted-Screening´ mit der UPLC-MS/TOF wurden die häufigsten und für 

Vergiftungen relevanten Analyte im Bereich der klinischen Toxikologie in die 

Bibliothek `Targeted-Library-2011´ aufgenommen, derzeit 609 Substanzen 

(Stand 31.03.2012, Anhang 44). Aus der Untersuchung der entsprechenden 

Reinsubstanzen wurden die exakte Molekülmasse, die Retentionszeit und eine 

charakteristische Fragmentmasse extrahiert und gespeichert. Um Retentions-

zeitschwankungen durch Säulenalterung oder fehlerhafte Massenabweichungen 

durch Verschmutzung der Ionenquelle zu erkennen, wurde eine kommerziell 

erhältliche Kontrollprobe (TOX.IS) bei den Untersuchungen täglich mitgeführt. Um die 

Identifizierungsqualität weiter zu erhöhen, wurden zusätzliche Fragmentmassen 

ausgewählt; die Software ist bisher jedoch nicht in der Lage, mehr als eine 

Fragmentmasse zu berücksichtigen. Deshalb wurden die zusätzlichen Massen zum 

jeweiligen Substanznamen ergänzt, so dass sie in der Substanzliste eines 

Probenscreenings erscheinen. So kann der Benutzer eigenständig und einfach die 

Spektren auf das Vorhandensein dieser Fragmentmassen untersuchen. Für jede 

Substanz wurde zusätzlich zur Summenformel die zugehörige Struktur aus der 

Datenbank „Chemspider“ [78] für die spezifische Fragmentanalyse gespeichert. 
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4.2.3 TOXIKOLOGISCHES SCREENING MIT DER `TARGETED DATENBANK´ 

BZW. DER SPEKTRENDATENBANK IM ROUTINEBETRIEB 

Um das toxikologische Screening mit Hilfe der `Targeted-Datenbank´ im Vergleich 

zum Screening mittels der Spektrendatenbank im Routinebetrieb eines Akut-

Krankenhauses zu validieren wurden von Juni bis September 2011 329 authentische 

Urinproben aus dem Krankenhaus untersucht. Alle Proben wurden mittels Flüssig-

Flüssig-Extraktion mit Toxi·Tubes® A (siehe Kapitel 3.2.1.1) aufgearbeitet und mit 

UPLC-MS/TOF (siehe Kapitel 3.2.3.1 und Kapitel 3.2.4.1) analysiert. Toxikologisch 

nicht relevante Substanzen wie Coffein, Theophyllin und Hydrocortison, die in der 

Datenbank hinterlegt sind, wurden bei der folgenden Auswertung nicht berücksichtigt.  

Der Nachweis aller Substanzen, die durch die `Targeted-Datenbank´ als in der Probe 

enthalten gekennzeichnet wurden (Doppelhaken mit dazugehörigem Fragmention), 

wurde anschließend anhand der Spektren-Datenbank überprüft. Die 

Spektrendatenbank enthält jeweils das gesamte Spektrum der Muttersubstanz und 

ein zugehöriges vollständiges Fragmentspektrum. Zeigte der Vergleich des 

fragmentierten Substanzspektrums der Probe das gleiche Fragmentmuster wie die 

Datenbank der jeweiligen Reinsubstanzen, wurde die Identifizierung der `Targeted-

Datenbank´ als richtig-positiv gewertet. Als falsch-positiv wurden Ergebnisse der 

`Targeted-Datenbank´ gewertet, bei denen zwar Retentionszeit, Masse der 

Muttersubstanz und Fragmentmasse zwischen Probe und Datenbankeintrag 

übereinstimmen, aber der direkte Vergleich des Fragmentmusters der 

Spektrendatenbank deutliche Abweichungen und damit Hinweise auf andere 

Substanzen ergaben. 86.5 % der Ergebnisse des `Targeted Screenings´ wurden 

nach Überprüfung mit der Spektrenbibliothek als richtig-positiv gewertet, als falsch-

positiv 13.5 % der Identifizierungen (Tab. 4-1). Die Ergebnisse beider 

Nachweisverfahren für die einzelnen Substanzen sind im Anhang 1 aufgeführt. 
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Mittels  

`Targeted Datenbank´ 

 nachgewiesene  

Substanzen 

Übereinstimmung mit  

Spektren-Datenbank 

Abweichung von  

Spektren-Datenbank 

1044 881 163 

100 % 86.5 % 13.5 % 

Tabelle 4-1 Vergleich der Ergebnisse des `Targeted Screenings´ mit der Spektren-Datenbank 

Die abweichenden Ergebnisse zwischen `Targeted-´ und Spektren-Datenbank 

kommen hauptsächlich durch hohe Konzentrationen einzelner Substanzen in den 

Proben zustande. Es zeigte sich, dass bei falsch-positiven Identifizierungen meistens 

die Massenabweichung größer als 10 mDa war; ein hinsichtlich der exakten Masse 

ähnliches Molekül mit einer Retentionszeit innerhalb der vorgegeben Abweichungs-

toleranz wird ebenfalls als positiv angezeigt. War in einer Patientenprobe z. B. sehr 

viel EDDP vorhanden, wurde in 79 % der Fälle zusätzlich Doxepin als (falsch-)positiv 

angezeigt (Abb. 4-5). So zeigt z. B. das `Targeted-Screening´ der Probe Di5-110719 

Doxepin und EDDP als mögliche Substanzen an (Abb. 4-5). Der Vergleich des 

Spektrums mit dem Spektren-Datenbankeintrag von Doxepin (Abb. 4-6) zeigt jedoch, 

dass mehrere Fragmentmassen mit zum Teil hoher Intensität (235, 220, 207 usw.) im 

Spektrum der Probe (Abb. 4-5) nicht vorhanden sind. Somit kann Doxepin in dieser 

Probe weitgehend ausgeschlossen werden. Durch den Abgleich der 

Substanzvorschläge aus der `Targeted-Datenbank´ mit den vollständigen 

Fragmentspektren der Reinsubstanzen in der Spektrenbibliothek können die 

Screening-Ergebnisse somit einfach bestätigt werden. 
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Abbildung 4-5 Beispiel eines falsch-positiven Screening-Ergebnisses (Patient Di5-110719) 

mittels UPLC-MS/TOF Waters Premier XE 

 

Abbildung 4-6 Spektrumansicht des extrahierten Massenspektrums der Patientenprobe 

(Patient Di5-110719) für die Substanzvorschläge Doxepin und EDDP 
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Abbildung 4-7 In der Spektrendatenbank hinterlegtes Spektrum von Doxepin 

 

4.2.4 TOXIKOLOGISCHES SCREENING MITTELS UPLC-MS/TOF IM 

VERGLEICH ZUR REFERENZMETHODE GC-MS 

Im klinischen Labor ist die GC-MS der Goldstandard für das toxikologische 

Screening. Um die Routinetauglichkeit des Screenings mittels UPLC-MS/TOF zu 

überprüfen, wurden die 329 authentische Patientenproben, die mittels UPLC- 

MS/TOF untersucht wurden, ebenfalls für die GC-MS (siehe Kapitel 3.2.1.1) 

aufgearbeitet und ausgewertet (siehe Kapitel 3.2.4.1). Die Substanzvorschläge für 

die GC-MS-Analyse wurden mittels der kommerziell erhältlichen „Pfleger-Maurer-

Weber“ [81] Bibliothek ermittelt. Die Ergebnisse des `Targeted-Screenings´ der 

UPLC-MS/TOF wurden nach Validierung mit der Spektren-Datenbank mit den 

Ergebnissen des GC-MS-Screenings verglichen (Tab. 4-2 und Anhang 2). 57.4 % der 

Substanzen konnten sowohl mittels UPLC-MS/TOF- als auch mittels GC-MS-

Verfahrens eindeutig identifiziert werden. Zu den Substanzen, die nicht mittels 

MS/TOF identifiziert wurden, gehören vor allem Substanzen der Benzodiazepin-

Gruppe. Als falsch-negativ wurde Oxazepam in 80 % und Temazepam in 74 % der 

Fälle nachgewiesen. Die Substanzen waren in den Patientenproben meist sehr hoch 

konzentriert, so dass es zu einer Ionensuppression kam und damit die 

Massengenauigkeit nicht mehr gegeben war. Durch nachträgliche Verdünnung der 

Extrakte und erneute Analyse mittels an der UPLC-MS/TOF konnten diese 

Substanzen meist ohne Probleme nachgewiesen werden. 20.5 % der Substanzen 
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konnten mittels GC-MS-Verfahrens nicht nachgewiesen wurden, da sie aufgrund 

ihrer Polarität und/oder ihrer thermischen Labilität nur durch die Methode der 

MS/TOF identifiziert werden. Patienten, die weder mittels GC-MS noch mit der 

MS/TOF ein Ergebnis zeigten, wurden als Patienten ohne Befund gewertet. 

 

Substanzen UPLC-MS/TOF positiv UPLC-MS/TOF negativ 

GC-MS positiv 778  

(57.4 %) 

300  

(22.1 %) 

GC-MS negativ 278  

(20.5 %) 

Patienten  

ohne Befund 

Tabelle 4-2 Vergleich Ergebnisse `Targeted-Screening´ UPLC-MS/TOF mit GC-MS 

 

4.2.5 TEILNAHME AN RINGVERSUCHEN 

Seit 2011 wurden mit dem UPLC-MS/TOF-System 7 Ringversuchsproben der 

GTFCh und DGKL (RfB) untersucht [82]. Dabei konnten 47 von 56 Substanzen 

nachgewiesen werden (Tab. 4-3). Der fehlende Nachweis von 9 von 56 Substanzen 

ist methodisch bzw. experimentell bedingt. THC, Phenobarbital, Zolpidem und 

Pregabalin können aufgrund der basischen Flüssig-Flüssig-Extraktion mit Toxi·Tube® 

A nicht mittels UPLC-MS/TOF nachgewiesen werden, hier müsste die 

Probenvorbereitung geändert werden. Pregabalin kann nur mit einer Festphasen-

Extraktion in der Probe nachgewiesen werden, diese Methode war zum Zeitpunkt der 

Ringversuchsprobe QSA 3/11 A jedoch noch nicht im Labor etabliert. Ibuprofen kann 

in der UPLC-MS/TOF nur im negativen Ionisationsmodus identifiziert werden, der 

zum Zeitpunkt der Messungen durch technische Probleme nur eingeschränkt 

auswertbar war. Fluvoxamin und Sertalin waren zum Zeitpunkt der Ringversuche 

UF 3/11 A und STA B noch nicht in der Datenbank der UPLC-MS/TOF enthalten. 
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Ringversuch QSA 3/11 UF 3/11 DS 4/11 STA 

Substanz A B A A B A B 

Amitriptylin      + + 

Benzoylecognin   + + +   

Bromazepam      +  

Buprenorphin    +    

Clozapin       + 

Cocain     +   

Codein     + + + 

Coffein       + 

Diazepam +     + + 

Diphenhydramin      +  

EDDP + + + + +  + 

Fluvoxamin   -     

Ibuprofen -       

Lamotrigin      + + 

Methadon + +   +   

Methylphenidat   +     

Metoprolol      +  

Mirtazapin      +  

Morphin    +    

Nordazepam + + +     

Tabelle 4-3 Ergebnisse der Analyse der Ringversuchsproben mit UPLC-MS/TOF. 

Nachgewiesene Substanzen sind mit „ + “ gekennzeichnet, nicht gefundene Substanzen mit „ - 
“ 
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Ringversuch QSA 3/11 UF 3/11 DS 4/11 STA 

Substanz A B A A B A B 

Nortilidin       + 

Nortriptylin   + +    

Opipramol     +   

Oxazepam  +      

Nordazepam + + +     

Pentobarbital    +    

Phenobarbital    -    

Pregabalin -       

Sertralin      -  

Temazepam + +      

THC-Metabolit   - - -   

Thiopental    +    

Zolpidem    -    

Fortsetzung Tabelle 4-3 Ergebnisse der Analyse der Ringversuchsproben mit UPLC-MS/TOF. 

Nachgewiesene Substanzen sind mit „ + “ gekennzeichnet, nicht gefundene Substanzen mit     
„ - “ 

 

4.2.6 GEZIELTE SUCHANALYTIK ZUM NACHWEIS `NEUER´ DROGEN  

Für den Nachweis von Substanzen, die noch nicht in den Datenbanken erfasst sind, 

wird eine `gezielte Suchanalytik´ verwendet. Da für jede Probe mit der UPLC-

MS/TOF über die gesamte chromatographische Laufzeit vollständige Spektren 

(`full scan´) aufgenommen werden, können Substanzen auch nach der Messung der 

Probe mit Hilfe ihrer exakten Molekülmasse identifiziert werden. Exemplarisch 

wurden fünf authentische Proben von Patienten mit dem Verdacht auf den Konsum 

von „Badesalz“ mit der UPLC-MS/TOF untersucht. Häufiger Bestandteil von 

„Badesalzen“ sind Mephedron (4-Methylmethcathinon), MDPV 

(Methylendioxypyrovaleron), Methcathinon (2-Methylamino-1-phenylpropanon), 
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Phenethylamin, Benzylpiperazin, Methylon (3,4-Methylendioxy-N-methylcathinon), 

Butylon (N-Methylbenzodioxolyol-proylamin) und Flephedron (4-Fluormethcathinon) 

[83]. Tabelle 4-4 fasst die Ergebnisse der untersuchten Patientenproben zusammen.  

 

Substanz 
Summenformel 

Exakte Masse 
Patient 1 
(25.07.11) 

Patient 2 
(02.11.11) 

Patient 3 
(16.11.11) 

Patient 4 
(18.11.11) 

Patient 5 
(28.12.11) 

Mephedron 
C11H15NO 

177.1232 Da 
  +   

MDPV 
C16H21NO3 

275.1521 Da 
+ +  + + 

Methcathinon 
C10H13NO 

163.0997 Da 
 +    

Phenethylamin 
C8H11N 

118.0657 Da 
     

Benzylpiperazin 
C11H16N2 

176.1313 Da 
     

Methylon 
C11H13NO3 

207.0895 Da 
 +   + 

Butylon 
C12H15NO3 

221.1052 Da 
     

Flephedron 
C10H12FNO 

181.0903 Da 
     

Tabelle 4-4 Übersicht der identifizierten "Badesalz-Substanzen" mit Summenformel und nicht-

protonierter, exakter Molekülmasse 
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Abb. 4-8 und 4-9 zeigen die Chromatogramme mit den Massenspektren einer 

Patientenprobe (Patient 5). In den Chromatogrammen dieses Patienten fanden sich 

eindeutige Peaks für die Massenspuren von Methylon (3,4-Methylendioxy-N-

methylcathinon) und MDPV (Methylendioxypyrovaleron). Butylon zeigt bei einer 

Retentionszeit von 8.30 min ebenfalls einen Peak; allerdings beträgt die Massen-

abweichung zwischen der im Chromatogram gemessenen Masse von 222.0746 Da 

und der exakten Masse von Butylon (222.1130 Da) 38 mDa. Da diese 

Massenabweichungen größer als 20 mDa ist wurde die Substanz als negativ 

gewertet. Die Substanzpeaks, die auf Methylon und MDPV in der Probe hinweisen, 

wurden mit Hilfe der im Methodenteil 3.2.3.2 beschriebener Vorgehensweise weiter 

untersucht. Dazu wurden die Fragmentspektren der Peaks mithilfe der Sofware 

MassFragment (Waters) auf mögliche Fragmentmassen von Methylon und MDPV 

analysiert. Abbildung 4-10 zeigt das Fragmentspektrum der Probe für die 

Molekülmasse 208.0974 Da und Abbildung 4-11 die Molekülstruktur und mögliche 

Fragmentierung von Methylon, aus der sich ein potentielles Fragment von Methylon 

mit der Masse 160.0762 Da ergibt. Eine Substanz dieser Masse wurde auch in der 

Patientenprobe mit einer Abweichung von 4.6 mDa als größtes Fragment (Abb. 4-9) 

nachgewiesen. Damit ist die Identifizierung von Methylon in der Probe auch ohne 

Verfügbarkeit einer Standardsubstanz mit hoher Zuverlässigkeit möglich. 
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Abbildung 4-8 Chromatogramme der extrahierten Massenspektren für die exakten 

Massen von "Badesalzen" Teil 1 (Patient 5) 
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Abbildung 4-9 Chromatogramme der extrahierten Massenspektren für die exakten Massen von 
"Badesalzen" Teil 2 (Patient 5) 
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Abbildung 4-10 Fragmentspektrum der Patientenprobe, die möglicherweise Methylon enthält 

(Patient 5) 

 

Abbildung 4-11 Methylon-Fragment mit der Masse 160.0762 Da 

Die gleiche Vorgehensweise wurde auch für den Nachweis der Substanz MDPV 

verwendet. Abbildung 4-12 zeigt das Fragmentspektrum der Patientenprobe für die 

Massenspur 276.1613 Da und Abbildung 4-12 die Massen von zwei möglichen 

MDPV-Fragmenten. Die Massen 205.0899 Da und 126.1306 Da wurden auch im 

Patientenspektrum mit einer Massenabweichung von je 3.4 mDa und 2.3 mDa 

identifiziert. Basierend auf dem Nachweis der Muttersubstanz und zweier 

spezifischer Fragmente kann MDPV mit hoher Sicherheit in den Proben 

nachgewiesen werden. 
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Abbildung 4-12 Fragmentspektrum der Patientenprobe mit Verdacht auf MDPV-Einnahme 

(Patient 5) 

 
Abbildung 4-13 Strukturen und exakte Molekülmassen von zwei potentiellen MDPV-Fragmenten 
 

4.2.7 VERGLEICH DER PROBENVORBEREITUNG MITTELS FLÜSSIG-FLÜSSIG- 

UND FESTPHASEN-EXTRAKTION 

Für den Vergleich der Flüssig-Flüssig-Extraktion (LLE) mit der Festphasen-Extraktion 

(MEPS) wurden 30 authentische Urinproben nach beiden Verfahren aufgearbeitet 

und anschließend gemessen (siehe Kapitel 3.2.1.1). Insgesamt konnten in den 

Proben 111 (LLE) bzw. 105 (MEPS) toxikologisch relevante Substanzen nach-

gewiesen werden. Tabelle 4-5 zeigt eine Aufstellung aller gefundenen Substanzen in 

Abhängigkeit von der vorangegangenen Probenaufarbeitung. Eine deutliche 

Diskrepanz zeigte sich bei einzelnen Substanzen, so konnte z.B. EDDP, ein 

Methadonmetabolit, bei den mit MEPS aufgearbeiteten Proben in nur 6 von 12 Fällen 

nachgewiesen werden. Auch für den sicheren Nachweis von Substanzen, die in nur 

geringen Konzentrationen in den Proben enthalten sind, stellte sich die MEPS als 

problematisch heraus. Für die Extraktion einzelner Substanzklassen, wie z. B. 
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Benzodiazepine mit ihren Vertretern Oxazepam und Tetrazepam, schien die MEPS 

hingegen deutlich besser geeignet. 

 

Substanz: 
LLE  

MS-TOF 
SPE (MEPS) 

MS-TOF Substanz: 

LLE 
MS-
TOF 

SPE 
(MEPS) MS-

TOF 

7-Aminodesmethyl-
flunitrazepam 1  -    

7-Aminoflunitrazepam 2 2 Lorazepam 2 1 

Amitriptylin 2 3 MAM 3 4 

Amitriptylinoxid 2 3 Methadon 12 14 

Benzoylecgonin  - 2 Methorphan 1  - 

Bisoprolol 1 1 Midazolam 1  - 

Bromazepam 2 2 Mirtazapin  - 1 

Carbamazepin 1 1 Morphin 15 13 

Carbamazepinoxid 1 1 Naloxon 1  - 

Codein 8 9 Nordazepam 6 4 

Diazepam 4 1 Nortriptylin 2 2 

Dihydrocodein 1 1 Noscapin 6 5 

Doxepin 1  - Opipramol 1 1 

EDDP 12 6 Oxazepam 5 8 

Fentanyl 2 2 Paracetamol 5 6 

Flunarizin 1 1 Promethazin 1 1 

Flunitrazepam 1  - Protriptylin 3 2 

Fluoxetin 1 1 Temazepam 2 5 

Heroin 1 2 Summe: 111 105 

Lidocain 1  - Prozent %: 100 94.59 

Tabelle 4-5 Vergleich der Ergebnisse der Probenvorbereitung mittels Flüssig-Flüssig-

Extraktion (LLE) und automatisierter Festphasenextraktion (MEPS) für die 

UPLC-MS/TOF-Analytik 
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4.3 QUANTITATIVER NACHWEIS TOXIKOLOGISCH RELEVANTER 

SUBSTANZEN  - THERAPEUTISCHES DRUG MONITORING 

(TDM) 

Für die Quantifizierung von sechs klinisch relevanten Substanzen wurden Methoden 

entwickelt und entsprechend den Richtlinien der GTFCh validiert. Aufgrund der guten 

chromatographischen Trennnung der Substanzen mittels UPLC und der Verwendung 

der exakten monoisotopischen Molekülmassen durch die MS/TOF-Technik konnte 

die Analysenzeit deutlich verkürzt und trotzdem eine eindeutige Peakidentifizierung 

gewährleistet werden. Ausgehend von der Screening-Methode (siehe Kapitel 3.2.3.1) 

wurde dazu die chromatographische Laufzeit für die Quantifizierungsmethoden von 

20 auf 7 min verkürzt. Diese verkürzte Methode wurde zunächst durch den Vergleich 

der Analysen einer Kontrollprobe (TOX.I.S.) überprüft. Dazu wurden jeweils 3 µl der 

Kontrollprobe an der UPLC-MS/TOF eingespritzt und die Auftrennung bei einer 

UPLC-Laufzeit von 7 min und 20 min verglichen (Abb. 4-14). Die Peaks liegen bei 

einer Laufzeit von 7 min zwar näher zusammen, sind aber weiterhin eindeutig 

voneinander abgetrennt und identifizierbar. Letztendlich zeigen die Validierungsdaten 

für die Quantifizierung von Coffein, Lidocain und der Antiepileptika 10-OH-

Carbazepin, Lamotrigin, Gabapentin und Levetiracetam die ausreichende Selektivität 

der UPLC-MS/TOF-Analytik (siehe nachfolgendes Kapitel 4.3.1). Das Vorgehen bei 

der Validierung und die Ergebnisse werden im Folgenden im Detail anhand von 

Coffein beschrieben. Die detaillierten Messdaten der Validierungen von Lidocain und 

den Antiepileptika 10-OH-Carbazepin, Lamotrigin, Levetiracetam und Gabapentin 

sind im Anhang 3 bis 42 aufgeführt. Bei allen Methoden wurden jeweils die 

Selektivität, Linearität, Genauigkeit, Präzision und Richtigkeit sowie die analytischen 

Grenzen bestimmt. 
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Abbildung 4-14 Vergleich der Peaktrennung anhand einer Kontrollprobe (TOX.I.S., Recipe) mit 

einer chromatographischen Laufzeit von 7 min bzw. 20 min. Oben: 7 min. Laufzeit; unten 

20 min. Laufzeit. 

 

4.3.1 SELEKTIVITÄT 

Die Selektivität der Methode zur Quantifizierung von Coffein wurde anhand von 

sechs verschiedenen Leerseren und zwei Nullproben überprüft. In keinem der 

Leerseren zeigten sich bei der Retentionszeit (RT) von Coffein ein Peak (Tab 4-6), 

sondern es ist jeweils nur unspezifischer Background zu sehen (Abb. 4-15). Um 

falsch-positive Peaks auszuschließen wurde für die Peakerkennung einschließlich 

eines Sicherheitsaufschlags eine minimale Peakfläche von mindestens 15 counts 

festgelegt. In den Leerproben war wie erwartet weder der Analyt Coffein noch der 

interne Standard (IS) nachweisbar. In den Nullproben (Läufe 7 und 8) fand sich der 

IS als ein eindeutiger Peak mit ausreichend großer Fläche (Abb. 4-16). Somit konnte 

gezeigt werden, dass Matrixeffekte nicht zu einem falsch-positiven Nachweis von 

Coffein oder dem IS führen. Die Selektivitätsmessungen für den Nachweis von 

Lidocain und den Antiepileptika 10-OH-Carbazepin, Lamotrigin, Levetiracetam und 

Gabapentin zeigten ebenfalls keine falsch-positiven Ergebnisse. 

7 min Laufzeit 

20 min Laufzeit 
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Lauf Name RT [min] 
Fläche 
Coffein 

Fläche 
IS 

1 Leerserum 10 3.58 0.216 0 

2 Leerserum 12 3.62 1.288 0 

3 Leerserum 17 3.59 0.166 0 

4 Leerserum 11 3.59 2.02 0 

5 Leerserum 1 3.59 1.613 0 

6 Leerserum 2 3.59 0.591 0 

7 Nullprobe LS 10 3.64 0.969 411 898 

8 Nullprobe LS 2 3.59 0.46 426 055 

Tabelle 4-6 Selektivitätsmessungen für den Nachweis von Coffein im Serum 

 

 

Abbildung 4-15 Analyse eines Coffein-Leerserums. Das obere Chromatogramm zeigt die 

extrahierte Massenspur von Coffein, das untere die des internen Standards (IS). Es sind keine 

Interferenzen bei den Retentionszeiten von Coffein bzw. IS zu sehen. 
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Abbildung 4-16 Analyse einer Coffein-Nullprobe. Das obere Chromatogramm zeigt die 

extrahierte Massenspur von Coffein, das untere die des internen Standards (IS), der als 

eindeutiger Peak zu erkennen ist. 

 

4.3.2 LINEARITÄT 

Um die Linearität der Methoden zu überprüfen, wurden an acht aufeinanderfolgenden 

Tagen jeweils sechsfach Bestimmungen von sechs Kalibratoren durchgeführt, die 

den für die Substanz relevanten Serum-Konzentrationsbereich abdecken. Tabelle 4-7 

zeigt exemplarisch die detaillierten Ergebnisse der Bestimmung von Coffein eines 

Tages, Abbildung 4-17 fasst dann die Ergebnisse von acht Tagen zusammen. 
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 Konzentration 

 

 

Messung 

1  
[mg/l] 

2.5 
[mg/l] 

7.5 
[mg/l] 

12.5 
[mg/l] 

15 
[mg/l] 

25 
[mg/l] 

30 
[mg/l] 

1 0.997 2.453 7.505 12.318 14.881 25.112 29.269 

2 1.000 2.519 7.418 12.340 15.416 23.576 31.290 

3 0.977 2.460 7.466 12.678 15.375 24.430 29.949 

4 0.953 2.471 7.420 12.704 15.669 23.432 31.211 

5 1.030 2.566 7.602 12.491 14.991 24.273 30.116 

6 0.998 2.542 7.701 12.754 15.046 24.571 31.030 

Mittelwert 0.993 2.502 7.519 12.548 15.23 24.232 30.478 

SD 0.0257 0.04714 0.11227 0.19135 0.30368 0.63254 0.82145 

Varianz 0.00066 0.00222 0.01260 0.03662 0.09222 0.40011 0.67478 

VK (%) 2.588 1.884 1.493 1.525 1.994 2.610 2.695 

Tabelle 4-7 Überprüfung der Linearität der Bestimmung von Coffein. Ergebnisse der an einem 

Tag durchgeführten Analysen.  

 

 

Abbildung 4-17 Überprüfung der Linearität der Bestimmung von Coffein. Die Abbildung zeigt 

die an acht konsekutiven Arbeitstagen (25.10. – 04.11.2011) erstellten Kalibriergeraden. 
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Die Messungen von Lidocain und der Antiepileptika 10-OH-Carbazepin, Lamotrigin, 

Levetiracetam und Gabapentin erfolgten analog. Die an acht konsekutiven 

Arbeitstagen ermittelten Kalibrationsgeraden sind in den Abbildungen 4-18 und 4-19 

gezeigt, die Einzelwerte sind im Anhang 3 bis 7 aufgeführt. 

 

Abbildung 4-18 Überprüfung der Linearität der Bestimmung von Lidocain. Die Abbildung zeigt 

die an acht konsekutiven Arbeitstagen (08.03. – 17.03.2010) erstellten Kalibriergeraden. 

 

Abbildung 4-19 Überprüfung der Linearität der Bestimmung von 10-OH-Carbazepin, Lamotrigin, 

Levetiracetam und Gabapentin. Die Abbildung zeigt die an acht konsekutiven Arbeitstagen 

(28.02. – 07.03.2011) erstellten Kalibriergeraden.  
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Die anschließend mit den Daten durchgeführten Grubbs- und Mandel-F-Tests 

zeigten keine Ausreißer bei der Linearitätsmessung von Coffein (Tab 4-8, 4-9). 

Lidocain wurde im Kalibrationsbereich zwischen 0.25 bis 10 mg/l ebenfalls dem 

Grubbs-Test unterzogen und zeigte auch keine Ausreißer und der Mandel-F-Test 

zeigte die Homogenität der einzelnen Konzentrationswerte (Anhang 3). Der Grubbs-

Test zeigte ebenfalls bei keinem der Antiepileptika Ausreißer. Auch der Mandel-F-

Test zeigte wiederum die Homogenität im Kalibrationsbereich (Anhang 4 - 7). Somit 

konnte die Linearität im Kalibrationsbereich für alle Analyten nachgewiesen werden. 

Auch der Cochran-Test (Signifikanz 95%) auf Varianzhomogenität wurde für alle 

Analyten erfüllt (Tab. 4-9). 

Konz. 1 mg/l 2.5 mg/l 7.5 mg/l 12.5 mg/l 15 mg/l 25 mg/l 30 mg/l 

Extremwert 0.953 2.566 7.701 12.318 15.669 25.112 29.269 

Prüfwert 1.53 1.36 1.62 1.20 1.45 1.39 1.47 

Ausreißer? nein nein nein nein nein nein nein 

Tabelle 4-8 Grubbs-Test für die Linearitätsmessung von Coffein 

 

 Coffein Lidocain 10-OH-
Carbazepin 

Lamotrigin Levetiracetam Gabapentin 

Prüfwert -3.9900 -2.9900 -3.990 -3.990 -3.990 -3.990 

Tabellenwert 21.19 34.11 21.19 21.19 21.19 21.19 

Homogen? ja Ja ja ja ja ja 

Tabelle 4-9 Mandel-F-Test auf Linearität (Signifikanz 99 %) für die Bestimmung von Coffein und 

Lidocain 

 

 Coffein Lidocain 10-OH-
Carbazepin 

Lamotrigin Levetiracetam Gabapentin 

Prüfwert 0.373663 0.006966 0.242378 0.110808 0.275592 0.005783 

Tabellenwert 0.41840 0.44470 0.41840 0.41840 0.41840 0.41840 

Homogen? ja ja ja ja Ja ja 

Tabelle 4-10 Cochran-Test auf Varianzhomogenität (Signifikanz 95 %) 
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4.3.3 GENAUIGKEIT 

Um die Genauigkeit der Analysenverfahren zu überprüfen, wurden jeweils 

Kontrollproben im unteren, mittleren und hohen Messbereich über acht Tage 

gemessen und anschließend die Präzision der Bestimmungen errechnet. Die 

Präzision (Variationskoeffizient VK%) der Coffein-Bestimmung betrug im unteren 

Messbereich (Kontrollprobe niedrig) 3.18 %, im Entscheidungsbereich (Kontrollprobe 

mittel) 2.86 % und im hohen Messbereich (Kontrollprobe hoch) 3.06 % (Abb. 4-20, 

Anhang 8 - 10). Die Richtigkeit wurde als Abweichung vom Zielwert (Bias in Prozent) 

ausgedrückt; für den unteren Messbereich betrug der Bias -1.41 %, für den 

Entscheidungsbereich 1.02 % und für den hohen Messbereich 1.17 %. Entsprechend 

den Validierungsvorschriften der GTFCh, die Bias-Werte kleiner als ± 15 % fordern, 

ist damit die Richtigkeit der Coffein-Bestimmung gezeigt. 

 

Abbildung 4-20 Wiederholungsmessungen von Coffein-Kontrollproben über acht Tage. Es sind 

die Mittelwerte und der jeweilige 95 % Konfidenzbereich angegeben 

Die Genauigkeit der Bestimmung von Lidocain und der Antiepileptika 10-OH-

Carbazepin, Lamotrigin, Levetiracetam und Gabapentin wurde analog untersucht. 

Die Messwerte der Kontrollproben für Lidocain ergaben jeweils eine Präzision 

zwischen 1.6 und 2.7 % und einen Bias von maximal 1.6 % (Tab. 4-11, Abb. 4-21, 

Anhang 11 - 13). Die Messwerte der Kontrollproben für die Antiepileptika 10-OH-

Carbazepin, Lamotrigin, Levetiracetam und Gabapentin ergaben jeweils 

Präzessionen zwischen 4.0 und 10.7 % und einem Bias von maximal 12.9 % (Tab. 4-

12). Da sich die Bias-Werte für diese vier Antiepileptika alle im Akzeptansintervall 
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von 15 % befinden, konnte die Richtigkeit somit gezeigt werden (Abb. 4-22, 

Anhang 14 - 21). 

 

Unterer  

Messbereich 

(Kontrollprobe    
0.5 mg/l) 

Entscheidungs- 

bereich  

(Kontrollprobe         
2.5 mg/l) 

Hoher 

 Messbereich 

(Kontrollprobe       
5 mg/l) 

Präzision 1.90 % 2.69 % 1.59 % 

Bias 0.75 % 1.60 % 0.40 % 

Tabelle 4-11 Bestimmung von Präzision und Bias der Lidocain-Methode über acht Tage 

 

Abbildung 4-21 Wiederholungsmessungen von Lidocain-Kontrollproben über acht Tage. Es 

sind die Mittelwerte und der jeweilige 95 % Konfidenzbereich angegeben 

 

Präzision 10-OH-
Carbazepin Lamotrigin Levetiracetam Gabapentin 

Unterer Messbereich 6.96 % 6.52 % 10.72 % 8.90 % 

Hoher Messbereich 4.36 % 4.0 % 8.34 % 5.95 % 

Bias      

Unterer Messbereich 2.38 % 2.95 % 12.87 % 7.74 % 

Hoher Messbereich 9.76 % 7.82 % 5.00 % 8.68 % 

Tabelle 4-12 Bestimmung von Präzision und Bias der Antiepilepika-Methoden über acht Tage 
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Abbildung 4-22 Wiederholungsmessungen von Antiepileptika-Kontrollproben (10-OH-

Carbazepin, Lamotrigin, Levetiracetam und Gabapentin) über acht Tage. Es sind die Mittelwerte 

und der jeweilige 95 % Konfidenzbereich angegeben 

 

4.3.4 STABILITÄT 

Um die Prozessstabilität zu prüfen, wurden Kontrollproben über die durchschnittliche 

Zeit einer Probenserie (rund 300 min) mehrfach wiederholt untersucht und die 

Abweichungen vom initial gemessenen Wert (hier als absolute Peakfläche 

angegeben) berechnet. Eine negative Steigung zeigt die Abnahme der Peakflächen 

über die Zeit, dies bedeutet eine fehlende Stabilität der Analyten über einen normal 

zu erwartenden Injektionszeitraum. Die absoluten Peakflächen der Kontrollproben 

von Coffein zeigten keine signifikante Abnahme über den Zeitraum (Tab. 4-13, 

Abb. 4-22). Allerdings war für jede Konzentration eine positive Steigung der 

Regressionsgeraden zu sehen (Abb. 4-22, Anhang 22 - 24). Dies weist auf eine Auf-

konzentrierung des Analyten hin, die durch die mehrfache Injektion aus einem 
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Probenvial zu erklären ist. Da die Abweichung weniger als 10 % des Ausgangswerts 

ist, ist die Prozessstabilität formell gewährleistet. 

 

Zeitpunkt der 
Injektion 15 min 63 min 126 min 189 min 252 min 315 min 

Konzentration 

5 mg/l 
      

Peakfläche absolut 259.48 272.74 272.31 274.63 275.59 280.36 

Peakfläche % 100.00 105.11 104.95 105.84 106.21 108.05 

Konzentration  

10 mg/l 
      

Peakfläche absolut 535.19 537.95 544.49 543.88 542.14 543.13 

Peakfläche % 100.00 100.52 101.74 101.62 101.30 101.48 

Konzentration  

20 mg/l 
      

Peakfläche absolut 1014.42 1037.21 1033.49 1034.14 1059.74 1068.80 

Peakfläche % 100.00 102.25 101.88 101.94 104.47 105.36 

Tabelle 4-13 Absolute Peakflächen von Coffein über den Zeitraum einer Analysenserie von 

315 min 

 

Abbildung 4-23 Nachweis der Prozessstabilität der Bestimmung von Coffein durch lineare 

Regressionsanalysen 
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Lidocain und die Antiepileptika zeigten ebenfalls keine signifikante Abnahme der 

Peakflächen (Abb. 4-23, Abb. 4-24, Anhang 25 - 26). Die Kontrollproben für Lidocain 

und die Antiepileptika 10-OH-Carbazepin, Lamotrigin, Levetiracetam und Gabapentin 

zeigten alle positive Steigungen der linearen Regressionsgeraden mit weniger als 

10 % Zunahme (Anhang 27 - 37). Somit ist die Prozessstabilität der Analyten jeweils 

gewährleistet. 

 

Abbildung 4-24 Nachweis der Prozessstabilität der Bestimmung von Lidocain durch lineare 

Regressionsanalysen 

 

 

Abbildung 4-25 Nachweis der Prozessstabilität der Bestimmung der Antiepileptika durch 

lineare Regressionsanalyse 
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4.3.5 ANALYTISCHE GRENZEN 

Die Nachweisgrenze ist als die niedrigste Konzentration eines Analyten in der Probe 

definiert, die die Identifizierungskriterien erfüllt. Zur Bestimmung wurden Proben mit 

fallender Analytkonzentration im Bereich der zu erwartenden Nachweisgrenze durch 

Aufstockung einer Leermatrix hergestellt [47]. Da ein Peak mit symmetrischer 

Peakform erst bei Peakflächen über 15 counts zu erkennen und eindeutig vom 

Grundrauschen abzugrenzen ist, wurde die Nachweisgrenze gleich der 

Bestimmungsgrenze gesetzt. Die Nachweisgrenze für Coffein liegt bei rund 0.1 mg/l 

(siehe Tab. 4-14); bei dieser Konzentration ist ein Peak mit einer Fläche von rund 

19 counts nachweisbar, der deutlich über dem Grundrauschen liegt. 

 
Standard 

Konzentration 
[mg/l] 

Absolute 
Peakfläche 

1 0.05 6.723 

2 0.05 8.981 

3 0.1 18.499 

4 0.1 19.836 

5 0.5 45.522 

6 0.5 48.016 

7 1 99.202 

8 1 101.666 

Tabelle 4-14 Kalibriergerade für die Ermittlung der Nachweisgrenze von Coffein 

Die Nachweisgrenze von Lidocain liegt ebenfalls bei 0.1 mg/l (s. Anhang 38), die der 

meisten Antiepileptika liegt in einem ähnlichen Bereich (10-OH-Carbazepin 0.16 mg/l, 

Lamotrigin 0.12 mg/l, Gabapentin 0.18 mg/l). Die Nachweisgrenze von Levetiracetam 

liegt mit 2.05 mg/l deutlich höher (s. Anhang 39 - 42); Levetiracetam ist eine deutlich 

polarere Substanz als die anderen Antiepileptika, um eine niedrigere 

Nachweisgrenze zu erzielten, müsste die Probenvorbereitung statt einer einfachen 

Proteinpräzipitation eine Aufkonzentrierung der Substanz beinhalten. Für das TDM 
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ist die Nachweisgrenze ausreichend, da sie unter 25 % der durchschnittlichen 

Serumkonzentration (10 - 37 mg/l) liegt [8, 47]. 

4.3.6 VERGLEICHSMESSUNGEN 

Um die Richtigkeit einer Methode zu überprüfen und systematische Fehler 

auszuschließen müssen Vergleichsmessungen durchgeführt werden. Für Coffein war 

dies im Rahmen dieser Arbeit leider nicht möglich, da diese Substanz nur bei 

Frühgeborenen angefordert wurde und die Probenmenge insgesamt zu gering war, 

um weitere Messungen durchzuführen.  

Für Vergleichsmessungen bei der Lidocain-Bestimmung wurden 22 authentische 

Patientenproben (Serum) jeweils parallel für die UPLC-MS/TOF und das Remedi HS 

System aufgearbeitet. Die so gemessenen Konzentrationen wurden mit Hilfe der 

Passing-Bablock Regressionsanalyse miteinander verglichen (Abb. 4-26) [84]. Die 

gestrichelten Linien geben den Toleranzbereich von 95 % an (Abb. 4-26). Alle 

gemessenen Werte von Lidocain befanden sich innerhalb dieses Toleranzbereiches. 

 
Abbildung 4-26 Methodenvergleich von UPLC-MS/TOF und Remedi HS zur Quantifizierung von 

Lidocain. Für den Vergleich wurden 22 Patientenproben mit beiden Methoden analysiert und 

die Messwerte mittels Passing-Bablock-Regressionsanalyse verglichen 

Die Vergleichsbestimmungen für die Antiepileptika 10-OH-Carbazepin, Lamotrigin 

und Levetiracetam wurden durch ein externes Labor (Berliner Betrieb für zentrale 
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gesundheitliche Aufgaben) mit authentischen Serumproben durchgeführt (Abb. 4-27). 

Alle gemessenen Werte befanden sich jeweils innerhalb des Toleranzbereiches. Für 

Gabapentin konnten keine Vergleichsmessungen durchgeführt werden, da 2010 und 

2011 in der Städtischen Klinikum München GmbH keine Anforderungen für diese 

Substanz vorlagen. 

 

Abbildung 4-27 Methodenvergleich zum Nachweis von A: 10-OH-Carbazepin (n=13), B: 

Lamotrigin (n=7) und C: Levetiracetam (n=8) mittels UPLC-MS/TOF und externer Messung 

(akkreditiertes Labor). Es ist jeweils die Passing-Bablock Regressionsanalyse dargestellt. 
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4.4 NACHWEIS UND QUANTIFIZIERUNG VON PREGABALIN 

Pregabalin wird bei neuropathischen Schmerzen und generalisierten Angstzuständen 

verschrieben sowie in der Suchttherapie eingesetzt. Seit einiger Zeit steht die 

Substanz jedoch auch selbst im Verdacht, Abhängigkeiten hervorzurufen. Deshalb ist 

eine Quantifizierung im Rahmen des TDM wichtig geworden. Die Quantifizierung von 

Pregabalin konnte im Rahmen der Arbeit noch nicht vollständig validiert werden; 

bisher wurde lediglich geprüft, ob diese Substanz mittels UPLC-MS/TOF im klinisch 

relevanten Konzentrationsbereich messbar ist. Dazu wurden insbesondere 

verschiedene Probenvorbereitungsmethoden (siehe Kapitel 3.2.1.3) verglichen und 

die analytischen Grenzen sowie die Linearität der Methode geprüft.  

Die Nachweisgrenze (NWG) für die Identifizierung von Pregabalin in Serum- und 

Urinproben wurden mithilfe einer absteigenden Kalibriergeraden ermittelt. Erst bei 

Peakflächen über 15 counts ist ein Peak mit symmetrischer Peakform zu erkennen 

und eine eindeutige Abgrenzung zum Grundrauschen möglich (siehe auch 

Kapitel 4.3.1). Für die Flüssig-Flüssigextraktion (LLE) zeigten sich schon bei 0.01 

mg/l Pregabalin Signale, allerdings war die Flächengröße für eine eindeutige 

Identifizierung zu klein, auch bei der Konzentration 0.025 mg/l schwankten die 

gefundenen Flächen noch zu stark, so dass eine eindeutige Identifizierung erst bei 

0.05 mg/l Pregabalin im Serum gegeben war. Die 

Nachweisgrenze/Bestimmungsgrenze beträgt sowohl mit der Flüssig-Flüssig-

Extraktion als auch mit der automatisierten Festphasen-Extraktion (MEPS) 0.05 mg/l 

(Tab. 4-15).  

Da die Probenaufarbeitung mittels automatisierter Festphasen-Extraktion (MEPS) 

einfach, schnell und im Vergleich zur aufwendigeren Flüssig-Flüssig-Extraktion die 

gleiche Nachweisgrenze ergibt, wurde die Linearität mit dieser Methode untersucht. 

Dazu wurde Pregabalin im Bereich zwischen 0.05 mg/l und 10 mg/l mit einer 6fachen 

Bestimmung je Konzentrationsstufe gemessen (Abb. 4-28, Anhang 43). Der 

anschließend durchgeführte Grubbs-Test zeigt keine Ausreißer bei der 

Linearitätsmessung (Tab 4-16). Der Mandel-F-Test zeigte die Homogenität der 

einzelnen Konzentrationen und der Cochran-Test (Signifikanz 95%) auf 

Varianzhomogenität wurde für Pregabalin erfüllt (Tab. 4-17). Somit konnte die 

Linearität im Kalibrationsbereich für Pregabalin nachgewiesen werden. 
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Std. Conc 

[mg/l] 

LLE Serum 

Peakfläche [counts] 

MEPS Serum 

Peakfläche [counts] 

MEPS Urin 

Peakfläche [counts] 

0.010 6.085 - - 

0.010 4.405 - - 

0.025 15.390 - - 

0.025 11.391 - - 

0.050 21.273 16.441 15.291 

0.050 21.830 15.737 15.963 

0.100 63.575 41.832 49.221 

0.100 61.237 37.172 43.105 

Tabelle 4-15 Kalibriergeraden zur Bestimmung der Nachweisgrenze (NWG) von Pregabalin mit 

Flüssig-Flüssigextraktion (LLE) und automatisierter Festphasen-Extraktion (MEPS) 

 

 
Abbildung 4-28 Überprüfung der Linearität von Pregabalin (N=6) im Serum (MEPS-

Aufarbeitung) mit 95% Konfidenzbereich (gestrichelte Linie) 
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Konz. 0.05 
mg/l 

0.1 
mg/l 

0.5   
mg/l 

1.0   
mg/l 

2.5     
mg/l 

5.0   
mg/l 

10   
mg/l 

Extremwert 0.035 0.094 0.58 1.049 2.617 4.977 10.066 

Prüfwert 1.65 1.25 1.27 1.26 1.44 1.26 1.43 

Ausreißer? nein nein nein nein nein nein nein 

Tabelle 4-16 Grubbs-Test für die Linearitätsmessung von Pregabalin  

 

 Mandel-
F-Test 

Cochran-
Test 

Prüfwert -3.9900 0.038141 

Tabellenwert 21.19 0.4184 

Homogen? ja ja 

Tabelle 4-17 Mandel-F-Test auf Linearität (Signifikanz 99 %) und Cochran-Test auf 

Varianzhomogenität (Signifikanz 95 %) für die Bestimmung von Pregabalin im Serum 
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5 DISKUSSION 

5.1 QUALITATIVER NACHWEIS TOXIKOLOGISCH RELEVANTER 

SUBSTANZEN - SYSTEMATISCHE TOXIKOLOGISCHE ANALYSE 

(STA) 

Der besondere Vorteil der hochauflösenden Time-of-Flight Massenspektrometrie 

(TOF/MS) für die systematische toxikologische Analyse (STA) liegt in der 

Möglichkeit, die Summenformel einer unbekannten Substanz aus der akkuraten 

Ionenmasse und dem Isotopenmuster zu ermitteln [11]. Um die Verbindung 

allerdings eindeutig identifizieren zu können, muss die Anzahl der möglichen Isomere 

nach Kriterien der toxikologischen Relevanz einschränkt werden. Hierfür wurden zwei 

verschiedene Datenbanken, eine Spektrendatenbank sowie eine `Targeted 

Datenbank´, erstellt und jeweils geeignete Auswahlkriterien für die Identifizierung von 

Substanzen festgelegt.  

 

5.1.1 AUBFBAU EINER SPEKTRENDATENBANK FÜR DIE UPLC-MS/TOF 

Die Spektrendatenbank enthält pro Substanz jeweils 2 Einträge, das unfragmentierte 

Referenzspektrum sowie das Fragmentspektrum. Für die Substanzidentifzierung in 

einer Patientenprobe gibt es zwei verschiedene Möglichkeiten, die Spektren der 

Datenbank mit den Spektren des Patientenlaufes abzugleichen. Eine Möglichkeit ist 

die `umgekehrte Suche´ (reversed search). Hierbei müssen für eine positive 

Substanzidentifizierung alle Peaks im Referenzspektrum auch im Spektrum der 

Probe gefunden werden. Mit Hilfe dieser Strategie können Substanzen trotz 

zusätzlicher Peaks, die von weiteren Substanzen oder Matrixeffekten stammen 

effektiv identifiziert werden. Allerdings ist die `umgekehrte Suche´ nur für kleinere 

Datenbanken mit wenigen Einträgen (bis etwa 400 Substanzen) nutzbar, da sie sehr 

rechenintensiv ist [85 – 87]. 

Da die im Rahmen dieser Arbeit aufgebaute Datenbank über 400 Einträge zu 

Medikamentenwirkstoffen, illegalen Drogen, Designerdrogen und weiteren toxikolo- 
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gisch relevanten Substanzen enthält, wurde für den Abgleich von Patientenspektren 

mit der Datenbank die sogenannte `forward basepeak search´ genutzt. Bei dieser 

Methode werden die Peaks der Patientenprobe mit der Datenbank verglichen; eine 

Identifizierung erfolgt, wenn möglichst viele Peaks übereinstimmen, ein Prozentsatz 

gibt an, wie gut die Übereinstimmung der Spektren ist. Aufgrund des großen 

Informationsgehaltes eines TOF-Datenfiles berücksichtigt diese Methode nur die 

Peaks mit relativ großer Intensität (Basismassenpeaks). Schon Lee et al. und 

Polettini et al. [75, 88] zeigten, dass sich diese Strategie vor allem für größere 

Datenbanken empfiehlt.  

Die Verwendung einer Spektrendatenbank zur Identifizierung der in der 

Patientenprobe enthaltenen Substanzen hat jedoch Nachteile, die im Wesentlichen 

durch die Software bedingt sind. So ist die Software beim verwendeten 

Analysengerät auf nominellen Massen aufgebaut; die Fähigkeit der MS/TOF, exakte 

Massen zu detektieren, wird nicht genutzt. Außerdem ist die Neuaufnahme von 

Spektren in die Datenbank umständlich und zeitintensiv, da für jede Substanz zwei 

Einträge hinterlegt werden müssen, das Spektrum des Mutterions und das 

entsprechende Spektrum nach Fragmentierung. Ein weiterer Nachteil ergibt sich 

durch die sehr lange dauernde Datenprozessierung pro Patientenprobe. Je mehr 

Substanzen in der Spektrendatenbank enthalten sind, umso länger dauert die 

Prozessierung. Bei aktuell über 400 Reinsubstanzen und somit 800 Einzelspektren 

kann die Auswertung einer einzelnen Patientenprobe bis zu 40 min dauern. Da die 

ständige Erweiterung der Datenbank und Erfassung neuer Substanzen eine wichtige 

Aufgabe der toxikolog-ischen Analytik darstellt, ist diese Methode für das Screening 

von Patientenproben im Krankenhauslabor insgesamt zu zeitaufwendig. Deshalb 

wurde als Suchstrategie auf ein `Targeted Screening´ mit der UPLC-MS/TOF 

zurückgegriffen (s. u.). Die so gewonnenen Ergebnisse wurden dann mit den Daten 

der selbst erstellten Spektrenbibliothek sowie den Ergebnissen einer parallel 

durchgeführten GC-MS Analytik verglichen. 

 

5.1.2 ENTWICKLUNG EINER `TARGETED DATENBANK´ FÜR DIE UPLC-
MS/TOF 

Erstmals entwickelten Gergov et al. 2001 eine Strategie, um die MS/TOF Technik für 

ein `Targeted Screening´ zu nutzen [89]. Für die Identifizierung von Drogen und 
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Medikamenten im Urin verwendete er die exakte Molekülmasse und, falls 

Reinsubstanz zur Verfügung stand, die zugehörige Retentionszeit. Dieser Ansatz 

wurde stetig weiterentwickelt. Pelander et al. [86] berücksichtigten zusätzlich zur 

exakten Masse und der Retentionszeit auch das Isotopenmuster der Substanzen. 

Dadurch konnte er bei einer durch die Molekülmasse resultierenden Summenformel 

zusätzlich zwischen strukturell verschiedenen, theoretisch denkbaren Substanzen 

(Isomeren) differenzieren und somit falsch-positive Ergebnisse minimieren. Allerdings 

ist dieses Verfahren immer noch nicht eindeutig. Es wurde deshalb hauptsächlich bei 

Fragestellungen angewendet, bei denen als Ergebnis nur definitive Substanzen in 

Betracht kamen. Typische Beispiele hierfür sind die Haaranalytik und die Doping-

analyse, bei denen nur auf eine sehr beschränkte Anzahl möglicher Analyte 

untersucht wird [90]. 

Bei der im Rahmen dieser Arbeit entwickelten Methode wurde für die Substanz-

identifizierung die exakte Masse, die Retentionszeit und das Isotopenmuster sowie 

zusätzlich ein Fragmentspektrum (CID-Spektrum) genutzt (s. Anhang 44). Durch die 

Hinzunahme von spezifischen Fragmentmassen konnten Rückschlüsse auf die 

Struktur der nachgewiesenen Substanzen getroffen werden, so dass sicherer 

zwischen Strukturalternativen für die gefundene Substanz unterschieden werden 

konnte. Im Gegensatz zu einem Vorgehen, das eine Spektrendatenbank zum 

Vergleich mit den gesamten Spektren von Muttersubstanz und Fragmenten nutzt, 

war die Datenprozessierung beim `Targeted-Screening´ deutlich schneller, pro 

Patienten-probe werden unabhängig von der Zahl der Einträge in der Datenbank nur 

maximal 5 min benötigte.  

Die Ergebnisse dieses `Targeted-Screening´ mit der UPLC-MS/TOF zeigten über 

86 % Übereinstimmung zu der parallel durchgeführten Auswertung mit der 

Spektrendatenbank. Es kam jedoch immer wieder vor, dass einzelne Substanzen 

sehr hoch konzentriert in den Patientenproben vorlagen. Dadurch kam es zu 

Ionensuppression und Detektorüberladung, was zu Massenungenauigkeiten bei der 

Detektion führen kann und damit ggf. zu falsch-negativen oder falsch-positiven 

Ergebnissen im `Targeted-Screening´. Vorab weniger Probenmaterial einzusetzen 

erschien jedoch nicht generell ratsam, da dann niedrig konzentrierte Substanzen 

nicht erfasst wurden. Für den Nachweis von Substanzen in überladenen Peaks sollte 

die Probe deshalb verdünnt und erneut gemessen werden. Bei einer 
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Detektorüberladung kann zusätzlich der Massenfehler so groß werden, dass 

Moleküle mit deutlich abweichender Masse, aber einer Retentionszeit innerhalb des 

gewählten Fensters als positiv angezeigt werden, da ihre scheinbare Masse durch 

den Massenfehler in den Toleranzbereich der Detektion rutscht. Ein erster Hinweis 

auf eine solche Überladung ist die Peakform mit Abflachung im Maximum oder ggf. 

Ausbildung eines Doppelpeaks. Glücklicherweise greift das `Targeted-Screening´ in 

solchen Fällen sehr häufig auf zwei oder mehr Substanzen gleichzeitig zurück; dies 

ist dann in den extrahierten Spektren erkennbar, da auch dort mehrere mögliche 

Substanzen angezeigt werden.  

Eine Übereinstimmung von 86 %, d. h. 13.5 % falsch-positive Ergebnisse sind für die 

klinische Toxikologie jedoch nicht akzeptabel. Um diesen Anteil weiter zu reduzieren 

erscheint es nötig, dass das Datenbankprogramm auf mehrere Fragmentmassen, die 

zu einem Mutterion gehören, zugreifen kann. Da dies im Rahmen dieser Arbeit 

softwaremäßig nicht realisierbar war, wurden hilfsweise weitere spezifische exakte 

Fragmentmassen gestaffelt nach ihrer Intensität als Klartext hinterlegt. Die Software 

des `Targeted-Screenings´ kann zwar auf diese zusätzlichen Angaben nicht 

zugreifen, aber deren Anzeige erleichtert die manuelle Auswertung und die 

Eliminierung falsch-positiver Ergebnisse deutlich. Darüber hinaus kann bei der 

Auswertung beurteilt werden, ob alle spezifischen Fragmentmassen im richtigen 

Verhältnis ihrer Intensität vorhanden sind. Mit Hilfe einer überarbeiteten Software, die 

eine Verknüpfung zwischen den Ergebnissen des `Targeted-Screenings´ und der 

Spektrendatenbank zulassen würde, könnte die Anzahl falsch-positiver Ergebnisse 

sicher noch weiter reduziert werden. Die Datenprozessierung wäre nicht 

aufwändiger, da nur positive Ergebnisse des `Targeted-Screenings´ mit der 

Spektrendatenbank abgeglichen werden müssten. Eine solche Verknüpfung der 

beiden Datenbanken war seitens des Geräteherstellers trotz mehrfacher Diskussion 

jedoch leider nicht möglich.  

Eine weitere Verbesserung der `Targeted-Datenbank´ wäre die Möglichkeit, die 

identifizierten Substanzen nicht nur alphabetisch nach Namen, sondern auch nach 

der Retentionszeit auflisten zu können. Dies hätte den Vorteil, dass mehrfache 

Substanzidentifizierungen pro Peak einfacher und schneller zu erkennen wären, so 

dass Fehlzuordnungen vermieden werden könnten.  



76 Diskussion 

 

5.1.3 TOXIKOLOGISCHES SCREENING MITTELS UPLC-MS/TOF IM 

VERGLEICH ZUR REFERENZMETHODE GC-MS 

Um den analytischen Nutzen der UPLC-MS/TOF-Technik für die STA zu überprüfen, 

wurden die Ergebnisse mit denen der routinemäßig eingesetzten GC-MS-Methode 

verglichen. Für die UPLC-MS/TOF wurden CID-Spektren neben der Retentionszeit 

und der exakten Molekülmasse als weiteres Identifzierungskriterium genutzt. 

Kaufmann et al. zeigte, dass das Monitoring von klassenspezifischen In-Source-CID-

Fragmentmassen auch den Nachweis von Analyten in einem ungerichteten 

Screening ermöglicht [20]. Im Vergleich zur LC-MS/MS, die spezifische 

Fragmentionen eines isolierten Mutterions erzeugen [91 – 97], hat die UPLC-

MS/TOF-Technik jedoch den Nachteil, dass durch die `In-Source-Fragmentierung´ 

alle vorhandenen Ionen, die gleichzeitig aus der UPLC in die Ionenquelle gelangen, 

fragmentiert werden, so dass in der Regel Mischspektren erhalten werden. Nur wenn 

der zu identifizierende Analyt die Hauptkomponente im Peak ist, kann mit einem 

eindeutigen Ergebnis gerechnet werden. Dieses Problem erklärt, warum die UPLC-

MS/TOF für das `Targeted Screening´ nicht die erwarteten Vorteile gegenüber dem 

herkömmlichen Screening mithilfe der GC-MS-Analytik zeigte. Dazu kommt, dass die 

vorhandene GC-MS-Analytik bereits über Jahre z. B. durch Optimierung der 

Extraktion und Derivatisierung (TMS-Derivate) weiterentwickelt worden ist. Kürzlich 

publizierte Studien unter Verwendung der wesentlich komplexeren und 

aufwändigeren MS/Q-TOF Technik zeigen jedoch, dass ein Screening für die 

systematische toxikologische Analyse durchaus möglich ist [98]. Der Einsatz von 

Hybrid-Quadrupol-Flugzeitmassenspektrometern (LC-MS-QTOF) hat den Vorteil, 

dass im Gegensatz zur In-Source-Fragmentierung die CID-Spektren nicht durch 

Matrix und koeluierende Substanzen gestört sind [96]. Weitere Ansätze liegen in der 

Nutzung spezieller Software für die Vorhersage einer Fragmentierung, um zwischen 

Strukturisomeren einer Datenbank unter Verwendung von LC-MS-QTOF zu 

differenzieren [97]. Broecker et al. entwickelte für die LC-MS-QTOF einen 

datenabhängigen Akquisitionsmodus (Auto-MS/MS-Modus). Dieser Modus 

kombiniert den Vorteil einer TOF-MS Messung für eine umfassende Datenerfassung 

und die Messung akkurater CID-Spektren aller wesentlichen Komponenten der Probe 

durch Isolierung des entsprechenden Vorläuferions durch den Quadrupol (MS-

QTOF) [98].  
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Die eigenen Daten zeigen trotz der Nachteile gegenüber der Verwendung einer 

LC-MS-QTOF, dass die UPLC-MS/TOF das etablierte GC-MS-Screening in 

Sonderfällen ergänzen kann, was insbesondere bei der gezielten Suchanalytik der 

Fall ist. 

 

5.1.4 GEZIELTE SUCHANLYTIK ZUM NACHWEIS `NEUER´ DROGEN 

Die `gezielte Suchanalytik´ oder das `non-targeted Screening´ auf bestimmte 

Substanzen wird verwendet, wenn sich toxikologische Fragestellungen ergeben, bei 

denen eine Substanz nachzuweisen ist, für die bis dahin keine etablierte Methode 

und keine Reinsubstanz vorhanden ist. Der Begriff `non-targeted´ Suchanalytik sollte 

streng genommen nur für folgende Vorgehensweise verwendet werden: Im 

Chromatogramm (total ion chromatogram) werden alle vorhandenen Peaks oberhalb 

eines Schwellenwertes isoliert, die exakte Molekülmasse extrahiert und daraus die 

Summenformel abgeleitet. Die so erhaltenen Ergebnisse erlauben in den meisten 

Fällen noch keine Substanzidentifizierung, da Strukturanaloga nicht unterscheidbar 

sind. In der Literatur wird der Begriff `non-targeted´ Analytik allerdings auch für die 

anschließende Verwendung von Datenbanken als Basis für die Substanz-

identifizierung ausgedehnt. Dies ist insofern verwirrend, da hierbei prinzipiell eine 

Einschränkung der möglichen Ergebnisse durch die Anzahl der Datenbankeinträge 

gegeben ist. In dieser Arbeit wird der Begriff `non-targeted Screening´ deshalb nur für 

die gezielte Suchanalytik auf bestimmte, in der Probe möglicherweise vorhandene 

Substanzen verwendet. Basis des verwendeten Verfahrens ist die monoisotopische 

exakte Molekülmasse, die durch die Interpretation des Isotopenmusters und 

bestimmter theoretischer Fragmentmassen ergänzt wird.  

Die besondere Stärke der UPLC-MS/TOF Analytik beruht darauf, dass alle 

vorhandenen Ionen im Flugrohr registriert und die Rohdaten gespeichert werden und 

so für spätere Auswertungen verfügbar bleiben. Toennes et al. [99] zeigte schon 

2010 die Vorteile der TOF-Analytik, indem er die Bestimmung der exakten 

Molekülmasse nutzte, um in forensischen Proben bei Verdacht auf Substanzen, für 

die keine etablierte Methode und u. U. auch keine Vergleichssubstanz verfügbar war, 

eine hinweisende Untersuchung durchzuführen. So kann das Chromatogramm einer 

zurückliegenden Analyse mit Hilfe der bekannten exakten Molekülmasse auch 
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retrospektiv extrahiert werden. Bei der hier durchgeführten gezielten Suchanalytik 

wurde ebenfalls mithilfe der bekannten exakten monoisotopischen Molekülmasse auf 

einzelne Substanzen im ersten Schritt untersucht. War dabei ein eindeutiger 

Massenpeak zu erkennen, konnte dies als erster Hinweis auf diese Substanz 

gewertet werden. Um den Verdacht bestätigen zu können, muss die Molekülstruktur 

bekannt sein; die Software „Chemspider“ umfasst die Strukturformeln sehr vieler 

Medikamente, Drogen und deren Metaboliten [78]. Aus der Molekülstruktur können 

theoretische Fragmente abgeleitet werden, die mit den Massen im Fragment-

spektrum abgeglichen werden. Da dieses Vorgehen nicht auf einer bestehenden 

Spektrenbibliothek basiert, können z. B. auch Designerdrogen nachgewiesen 

werden, die aus immer wieder neuen, strukturell veränderten Psychostimulanzien 

bestehen. Dieses Vorgehen ist bisher in der Literatur kaum beschrieben, erhöht 

allerdings die analytische Sicherheit erheblich. Im Rahmen dieser Arbeit wurden 

mittels UPLC-MS/TOF in 5 verschiedenen Patientenproben sogenannte „Badesalze“ 

nachgewiesen. Bei diesen Substanzen handelt es sich hauptsächlich um 

Cathinonderivate wie z. B. MDPV. Zum Zeitpunkt der Analyse standen die 

Reinsubstanzen noch nicht zur Verfügung, so dass ein Nachweis mittels GC-MS-

Screening nicht möglich war. 

 

5.1.5 BEDEUTUNG DER UPLC-MS/TOF FÜR DIE SYSTEMATISCHE 

TOXIKOLOGISCHE ANALYTIK (STA) 

In der systematischen toxikologischen Analyse (STA) eingesetzte Nachweis-

methoden müssen die Identifizierung möglichst vieler relevanter Medikamente, Gifte 

und ihrer Metaboliten gewährleisten. Durch die Kombination der hohen Selektivität 

der Massenspektrometrie und der Möglichkeit, mittels einfacher und schneller 

Probenvorbereitung hydrophile, thermolabile und nicht-flüchtige Substanzen zu 

analysieren, hat die LC-MS immer mehr Bedeutung in der STA erlangt. Durch die 

Verwendung einer UPLC konnten die Analysenzeiten im Vergleich zu normalen 

HPLC verkürzt werden. Der Einsatz der hochauflösenden Massenpektrometrie, 

welche die Time-of-Flight-Technologie (TOF) nutzt, ermöglicht jetzt die Messung 

exakter monoisotopischer Massen. Zusätzlich werden alle erzeugten Ionen, die im 

Flugrohr registriert werden gespeichert, so dass auch eine nachträgliche Analyse von 

Substanzen, die noch nicht einer Datenbank enthalten sind, möglich ist.  



Diskussion 79 

 

Die Erwartungen für die systematische toxikologische Analyse wurden allerdings von 

der UPLC-MS/TOF nicht ganz erfüllt. Substanzen, die aufgrund ihrer Polarität, 

Thermolabilität und Flüchtigkeit nicht mittels Gaschromatographie-

Massenspektrometrie gemessen werden können, werden auch mit diesem System 

nicht vollständig erfasst. Weitere Probleme bereiten ko-eluierende Substanzen, die 

zu Mischspektren führen. Im Einzelfall können sowohl Analyte mit geringer Intensität 

als auch zu hoch konzentriert vorliegende Analyte aufgrund der resultierenden 

Massenungenauigkeiten nicht erfasst werden. Diese Probleme könnten teilweise 

durch Softwareverbesserungen, insbesondere die Verknüpfung verschiedener 

Datenbanken, kompensiert werden.  

Alternative Systeme nutzen die Technik der Tandem-MS, um eindeutigere Spektren, 

also eine sicherere Zuordnung von Mutterion und Fragmentionen, zu erhalten. Dazu 

zählen LC-MS/MS [100 – 103], LC-MS-QTrap [104, 105] und aktuell auch LC-MS-

QTOF [98]. Vor allem die LC-MS-QTOF hat in den letzten Jahren immer größere 

Bedeutung im Bereich der klinischen und forensischen Toxikologie erlangt [91, 98]. 

Ein großes Problem dieser Techniken ist jedoch, dass Referenzbibliotheken speziell 

für das jeweilige Instrument erstellt werden müssen und nicht universell genutzt 

werden können [91]. Müller et al. entwickelten schon 2005 ein Screening-Verfahren 

für 301 Substanzen mit einem LC-MS-QTrap-System [104]. Dresen et al. 

entwickelten ebenfalls für das QTrap eine Library mit 700 Substanzen [105]. Diese 

Bibliotheken sind jedoch nur bedingt auf Systeme anderer Hersteller oder andere 

Gerätetypen übertragbar. Um eine möglichst universelle Datenbank zu entwickeln, 

haben Hopley et al. erstmals die toxikologischen Screeningergebnisse von elf 

verschiedenen Massenspektrometern verglichen; allerdings wurde nur eine geringe 

Zahl von Substanzen (n = 48) analysiert [106]. Eine der ersten kommerziell 

erhältlichen, universell einsetzbaren Datenbanken wurde von Broecker et al. für die 

LC-MS-QTOF entwickelt. Durch einen neuartigen „Daten-dependend-Acquisition“-

Modus werden neben einem akkuraten Full-Scan-MS-Spektrum auch akkurate 

Full-Scan-CID-Spektren aufgenommen, um die Substanz anhand der „Broeker, Herre 

& Pragst Personal Compound Database and Library“ zu identifizieren [107]. Mit 

dieser Methodik werden, wie bei der UPLC-MS/TOF in dieser Arbeit, alle ionisierten 

Substanzen in der Probe ohne vorherige Beschränkung erfasst, können aber mit 

Hilfe der Datenbank eindeutiger identifiziert werden. Im Moment ist die LC-MS-QTOF 
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das aktuellste und hochwertigste massenspektrometrische Verfahren, das für die 

systematische toxikologische Analyse auf dem Markt ist. 

Im Bereich der gezielten Suchanalytik liefert die UPLC-MS/TOF sehr gute 

Ergebnisse. Mit der gezielten Suchanalytik können auch Metaboliten nachgewiesen 

werden, die bisher nur in der Literatur beschrieben wurden [108] und für die keine 

Referenzsubstanzen erhältlich sind. Dies gilt ebenfalls für Hormone, 

veterinärmedizinisch eingesetzte Wirkstoffe oder neue Designerdrogen [86, 109, 

110]. Mithilfe der Muttersubstanz können aufgrund der bekannten bzw. 

wahrscheinlichsten Metabolisierungsreaktionen der Phase I wie Hydroxylierungen, N-

Demethylierungen, Oxidationen usw. Vorhersagen für die Existenz bestimmter 

Metaboliten getroffen werden [111]. Anhand der Summenformel dieser Metabolite 

kann die Probe auf entsprechende extrahierte Massen untersucht werden und ihr 

Vorliegen bestätigt bzw. ausgeschlossen werden. 

 

5.2 VERGLEICH DER PROBENAUFARBEITUNG MITTELS FLÜSSIG-
FLÜSSIG- UND FESTPHASEN-EXTRAKTION 

In der toxikologischen Analytik ist die Probenvorbereitung weiterhin der aufwändigste 

Arbeitsschritt. Durch eine Automatisierung könnten der Zeitaufwand, die Menge des 

Probenmaterials und ggf. die Kosten reduziert sowie die Extraktion hinsichtlich der 

Reproduzierbarkeit verbessert werden [112 – 117]. Seit 2011 steht eine 

automatisierte Festphasen-Extraktion (MEPS) im Department für Klinische Chemie 

des Städtischen Klinikums München GmbH zur Verfügung. Diese MEPS bietet 

gegenüber der bisher angewandten Flüssig-Flüssig-Extraktion (LLE) den Vorteil, 

dass durch die Automatisierung die Fehlerquellen minimiert werden und der 

personelle sowie zeitliche Aufwand deutlich reduziert ist. Für den Vergleich beider 

Extraktionsmethoden wurden 30 Proben sowohl mittels MEPS und LLE aufgearbeitet 

und anschließend mittels UPLC-MS/TOF analysiert. Die Screeningergebnisse 

zeigten eine sehr gute Übereinstimmung von 95%. Eine MEPS-SPE Säule kann für 

bis zu 100 Proben verwendet werden, diese Probenaufarbeitung ist damit deutlich 

kostengünstiger als der Einsatz eines ToxiTubes pro Patientenprobe für die LLE. Der 

Zeitaufwand pro Probe ist zwar mit je 20 min ähnlich, doch verringert sich der 

Personalaufwand durch die Automatisierung deutlich. Das verringerte 

Probenvolumen mit MEPS könnte  
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insbesondere für das toxikologische Screening bei Proben von Säuglingen und 

Kleinkindern von besonderem Interesse sein. Der Vergleich von MEPS und LLE zeigt 

deutliche Vorteile der MEPS; bevor dieses Verfahren jedoch in der klinischen Routine 

eingesetzt werden kann, muss noch eine wesentlich größere Anzahl authentischer 

Proben untersucht werden. 

 

5.3 QUANTITATIVER NACHWEIS TOXIKOLOGISCH RELEVANTER 

SUBSTANZEN – THERAPEUTISCHES DRUG MONITORING 

(TDM) 

5.3.1 QUANTIFIZIERUNG VON COFFEIN, LIDOCAIN UND VON ANTIEPILEPTIKA 

Bei vielen LC-MS-Verfahren, vor allem der LC-MS/MS, ist eine einfache Protein-

präzipitation ausreichend und die am häufigsten verwendete Probenvorbereitung 

[123 – 125]. Da beim UPLC-MS/TOF-Verfahren die vorgeschaltete hochauflösende 

UPLC besonders reine Peaks liefert, wurde diese Art der Probenvorbereitung auch 

im Rahmen dieser Arbeit bevorzugt. Insbesondere für die neu entwickelten 

Quantifizierungsmethoden im Serum hat sich dieses Verfahren im Rahmen der 

Validierung (Nachweisgrenzen, Präzision, Linearität, s. u.) bewährt. 

Die UPLC-MS/TOF-Technik bestimmt die exakten Molekülmassen von Substanzen 

auf bis zu vier Kommastellen genau. Dies ermöglicht eine hohe Selektivität der 

Methoden. Andere endogene oder exogene Substanzen, die ebenfalls in der 

Patientenprobe enthalten sein können und gegebenenfalls mit dem Zielanalyten ko-

eluieren, beeinflussen die Detektion zumindest theoretisch nicht. Dies konnte bei der 

Bestimmung von Coffein, Lidocain und der Antiepileptika 10-OH-Carbazepin, 

Lamotrigin, Levetiracetam und Gabapentin bestätigt werden. Die Bestimmung der 

Linearität erfolgte mittels des Mandel-F-Tests und des Grubbs-Tests auf Ausreißer. 

Die Ergebnisse zeigen, dass der Nachweis von Coffein, Lidocain und der  

Antiepileptika 10-OH-Carbazepin, Lamotrigin, Levetiracetam und Gabapentin 

innerhalb des therapeutischen Bereiches mittels UPLC-ESI/MS/TOF direkt 

proportional zu der Konzentration der Analyten in der Probe ist. Ausreißer traten bei 

keiner der Bestimmungen auf, somit wurde die Linearität der Methoden bewiesen. 

Durch die Verwendung von Kontrollproben konnte der systematische Fehler (Bias)  
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der Methoden und somit die Genauigkeit bestimmt werden. Der Bias der Coffein- und 

Lidocainbestimmungen lag mit durchschnittlich 2 % sehr niedrig. Die Bias der 

Antiepileptika lagen ebenfalls im zulässigen Akzeptanzintervall von ± 15 % gemäß 

der Richlinien der GTFCh [77]. Die Stabilität der Substanzen in aufgearbeiteten 

Proben (Prozessstabilität) wurde einschließlich längerer Probenserien mit Hilfe der 

linearen Regression ausgewertet. Keine der Methoden zeigte eine negative Steigung 

der Regressionsgeraden oder eine Abnahme der absoluten Peakflächen, was auf 

eine Instabilität deuten würde. Die Prozessstabilität war somit formell gegeben.  

Die Nachweisgrenzen der Analyten lagen alle mindestens 25 % unterhalb des 

jeweiligen therapeutischen Bereiches. Durch die Proteinpräzipitation werden die 

Analyten in den Proben verdünnt; die angegebene Nachweisgrenze der Substanzen 

ist somit nicht die niedrigste Konzentration, die mittels der UPLC-MS/TOF gemessen 

werden könnte. Mittels einer anderen Probenvorbereitung, die eine 

Aufkonzentrierung der Substanzen beinhaltet (z. B. Extraktion) wären deutlich 

niedrigere Nachweisgrenzen möglich. Die ermittelten Nachweisgrenzen waren für die 

Aufgabenstellung jedoch ausreichend, so dass darauf verzichtet wurde, niedrigere 

analytische Grenzen durch eine Anpassung der Probenvorbereitung zu erzielen. 

 

5.3.2 NACHWEIS UND QUANTIFIZIERUNG VON PREGABALIN 

Pregabalin wird zur Behandlung neuropathischer Schmerzen eingesetzt, findet aber 

auch im Drogenentzug zur Linderung von Entzugserscheinungen nach 

Benzodiazepin-Missbrauch Verwendung [119 – 122]. Seit 2 Jahren steht die 

Substanz jedoch im Verdacht, selbst potentielle Abhängigkeiten hervorzurufen [122 - 

124]. Der qualitative Nachweis von Pregabalin im Urin hat z. B. Bedeutung, wenn 

Patienten in der Drogenentzugsbehandlung angeben, diese Substanz schon länger 

einzunehmen und den dringenden Wunsch haben, weiterhin mit dieser u. a. recht 

teuren Substanz weiter versorgt zu werden. Mit dem herkömmlichen 

Routinescreening mittels GC-MS als auch mittels UPLC-MS/TOF konnte Pregabalin 

bisher nicht erfasst werden. Daher wurden im Rahmen dieser Arbeit speziellere 

Extraktionsmethoden getestet. Nach einer Flüssig-Flüssig-Extraktion (LLE) konnte 

die Substanz in Urin zwar nachgewiesen werden, jedoch erwies sich diese Methode 

als sehr zeit- und arbeitsintensiv. Die automatisierte Festphasenextraktion mit MEPS 
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benötigt im Vergleich zur GC-MS-Analytik weniger Probenmaterial (nur 300 µl anstatt 

1 ml Urin) und ist bei vergleichbarer Sensitivität schneller und einfacher als die LLE.  

Für die ersten Quantifizierungsversuche im Serum wurde Gabapentin als interner 

Standard verwendet. In Zukunft soll hierfür jedoch 13C-markiertes Pregabalin zur 

Verfügung stehen, um mögliche Interferenzen zu vermeiden, falls z. B. Gabapentin 

auch in der Patientenprobe vorliegen sollte.  

 

5.3.3 BEDEUTUNG DER UPLC-MS/TOF FÜR DAS THERAPEUTISCHE DRUG 

MONTITORING (TDM) 

Steigende Kosten sind zu einem zentralen Problem nicht nur in unserem 

Gesundheitssystem geworden. Bei der Einführung neuer Technologien und 

Verfahren in der Medizin ist es daher erforderlich, die effektiven Kosten neuer und 

alter Techniken im Verhältnis zu ihrem Nutzen abzuwägen. Gleichzeitig muss bei der 

Arzneimittel-therapie alles unternommen werden, um unter Einbeziehung aller 

technischen Möglichkeiten maximale Effektivität bei möglichst geringen Kosten zu 

erreichen. Dies gilt insbesondere für das Therapeutische Drug Monitoring im 

Grenzgebiet zwischen Technologie und Arzneimitteltherapie [125]. Neue Verfahren 

wie die LC-MS/MS werden für Dopinganalysen in Haaren [126] und den 

Drogennachweis in „oral fluid“ [127] verwendet oder für die Quantifizierung von 

Sedativa, Analgetika, Nicotin und Metaboliten bei Neugeborenen und Kindern 

eingesetzt, wo nur geringe Proben-volumina zur Verfügung stehen [128 – 131]. Für 

manche Substanzen sind dagegen klinische Verfahren wie die single-stage MS 

insbesondere für die Quantifizierung besser geeignet, z. B. bei der Analyse von 

Carnitinen und Acylcarnitinen können mit der HPLC-MS im Vergleich zur LC-MS/MS 

deutlich bessere Ergebnisse und niedrigere Nachweisgrenzen erzielt werden. Auch 

Isomere von Acylcarnitinen können nur mit der HPLC-MS voneinander unterschieden 

werden [132].  

Bis 2009 war das Remedi HS System [7, 133] eine adäquate und häufig verwendete 

Methode, um viele Arzneistoffe relativ einfach und effizient nachzuweisen und 

zumindest semiquantitativ zu bestimmen. Seitdem dieses System nicht mehr 

unterstützt wird, wird nach Alternativen gesucht, die gleichzeitig eine 

Weiterentwicklung und eine größere Variabilität der zu untersuchenden Substanzen 



84 Diskussion 

 

bieten. Initial wurden HPLC-DAD-Systeme favorisiert [134 – 136], jedoch bietet die 

LC-MS deutlich mehr Vorteile. Mittels UPLC-MS/TOF können neue 

Quantifizierungsmethoden einfach und schnell etabliert werden. Die Kopplung der 

MS/TOF mit einer UPLC ermöglicht zudem kurze Analysenzeiten von maximal 10 

min. Ein quantitatives Ergebnis kann somit nach Eingang der Probe innerhalb von 

kürzester Zeit vorliegen. Außerdem können mithilfe der UPLC- MS/TOF einfach und 

schnell neue In-House-Methoden entwickelt werden, um auf neue Anforderungen im 

TDM, wie z. B. für Pregabalin zu reagieren. Dies zeigt, dass die UPLC-MS/TOF 

Technik neben dem toxikologischen Screening auch für Quantifizierungen verwendet 

werden kann.  
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6 ZUSAMMENFASSUNG 

Das Gebiet der Arzneimitteltherapie ist geprägt durch seine stetige Weiter-

entwicklung. Für die Überwachung des Arzneimittelspiegels (therapeutisches Drug 

Monitoring) sowie den Nachweis der missbräuchlichen Anwendung psychoaktiver 

Substanzen ist es deshalb erforderlich, neue Therapeutika rasch nachweisen zu 

können. Auch auf dem Gebiet der reinen Missbrauchssubstanzen kommt es seit 

einigen Jahren zu einem immer rascheren Wechsel der verfügbaren Substanzen. Die 

Herausforderung für Kliniklabore besteht somit darin, ein immer breiter werdendes 

Spektrum an Substanzen möglichst schnell nachweisen zu können, um eine optimale 

Patientenversorgung zu gewährleisten. Bis vor wenigen Jahren lag dabei der Fokus 

auf der Gaschromatographie-Massenspektrometrie (GC-MS). Dieses Verfahren wird 

jedoch zunehmend von der Flüssigkeitschromatographie-Massenspektrometrie 

(LC-MS) abgelöst. Unter den verschiedenen MS-Analysatoren, die mit der LC 

gekoppelt werden können, bietet der Time-of-flight-Analysator (TOF) den Vorteil, die 

exakte monoisotopische Molekülmasse aller erzeugten Ionen zu bestimmen, was die 

Identifizierung auch unbekannter Substanzen ermöglicht. Die zusätzliche 

Weiterentwicklung der Chromatographie von der High-Performance-Liquid-

Chromatographie (HPLC) hin zur Ultra-Performance-Liquid-ChromatographieTM 

(UPLC) ermöglicht durch eine höhere Effizienz der Trennung kürzere 

Analysenzeiten. Somit vereint die Kombination der UPLC mit der MS/TOF 

wesentliche Vorteile für die klinische Analytik. 

Ziel dieser Arbeit war es, den analytischen Nutzen eines UPLC-MS/TOF Systems im 

Krankenhauslabor für den qualitativen Nachweis toxikologisch relevanter Substanzen 

(`systematische toxikologische Analytik`, STA) und den quantitativen Nachweis von 

Pharmaka (`Therapeutisches Drug Monitoring´, TDM) zu etablieren. Für beide 

Anwendungsgebiete wurde in einem ersten Schritt die MS-Detektion optimiert, um 

die Robustheit und Empfindlichkeit des Systems zu gewährleisten. Für die MS-

Detektion wurden die Massenspektren der Mutterionen und durch eine gezielte In-

Source-Fragmentierung das dazugehörige Fragmentspektrum erzeugt. In einem 
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zweiten Schritt wurden die Probenvorbereitung und die chromatographische 

Trennung entsprechend den Fragestellungen angepasst. 

Für den qualitativen Substanznachweis im Rahmen der STA wurde mittels UPLC-

MS/TOF eine Spektrendatenbank toxikologisch relevanter Reinsubstanzen erstellt, 

die das jeweilige Spektrum des Mutterions sowie das gesamte zugehörige 

Fragmentspektrum enthält. Mit steigender Anzahl von Substanzen, die im Rahmen 

der Arbeit hinterlegt wurden (insg. n = 609), stieg der Datenumfang jedoch soweit, 

dass die verfügbare Rechenleistung für eine rasche Auswertung im Routinebetrieb 

nicht mehr ausreichend war. Deshalb wurde zusätzlich eine weitere Datenbank 

(`Targeted Datenbank´) etabliert, die nur ausgewählte Parameter der 

Spektrendatenbank wie den Substanznamen, die Retentionszeit, die Masse des 

Mutterions und eines spezifischen Fragments beinhaltet. Um die Praktikabilität dieser 

`Targeted Datenbank´ in der Routine zu ermitteln wurden 330 authentische 

Urinproben untersucht. Die Richtigkeit der erhaltenen Ergebnisse wurde zunächst 

durch den Vergleich mit den Einträgen, die in der Spektrendatenbank hinterlegt sind, 

überprüft; die Ergebnisse zeigten 86.5 % Übereinstimmung nach Auswertung mit 

beiden Datenbanken. Falsch-positive Ergebnisse der `Targeted Datenbank´ waren 

hauptsächlich durch zu hohe Konzentrationen einzelner Substanzen in der Probe 

bedingt. Der anschließende Vergleich der richtig-positiven Ergebnisse der UPLC-

MS/TOF mit den Ergebnissen des Standard-GC-MS-Verfahrens zeigt insgesamt eine 

Übereinstimmung von 60%, wobei durch das UPLC-MS/TOF System jedoch auch 

Substanzen nachgewiesen werden konnten, die mittels GC-MS nicht erfasst werden. 

Die UPLC-MS/TOF Screening-Methode wurde abschließend nach den Vorschriften 

und Richtlinien der Bundesärztekammer (RILIBÄK) überprüft. Seit 2011 werden 

durch die Teilnahme an externen Ringversuchen die Anforderungen an 

labormedizinische Untersuchungen mittels der UPLC-MS/TOF erfüllt.  

Um die Eignung einer automatisierten Probenvorbereitung für das Screening mittels 

UPLC-MS/TOF zu erproben, wurden 30 Proben sowohl mit der bisher für das 

Screening etablierten Flüssig-Flüssig-Extraktion (LLE) als auch mit einer 

automatisierten Festphasen-Extraktion (MEPS) aufgearbeitet und analysiert. Die 

Screening-ergebnisse zeigten eine sehr gute Übereinstimmung von 95%, eine 

Automatisierung der Probenvorbereitung erscheint somit möglich. Die Vorteile liegen 
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vor allem in einer Reduzierung der Fehler, einer Verkürzung der Analysenzeiten und 

somit insgesamt in einer Senkung der Kosten. Ob der Einsatz von MEPS alle 

erwarteten Vorteile erfüllen wird, muss jedoch erst noch durch Versuche mit einer 

größeren Anzahl authentischer Proben gezeigt werden. 

Um die Verwendung der UPLC-MS/TOF im Rahmen des TDM zu überprüfen, 

wurden exemplarisch Methoden für die Quantifizierung von Coffein bei 

Neugeborenen, Lidocain bei chronischen Schmerzpatienten sowie für die 

Antiepileptika 10-OH-Carbazepin, Lamotrigin, Levetiracetam und Gabapentin 

entwickelt. Als Proben-vorbereitung erwies sich eine einfache Proteinpräzipitation als 

ausreichend. Die erstellten Analysenmethoden wurden nach den Richtlinien der 

GTFCh bezüglich Linearität, Genauigkeit und Stabilität validiert und somit die 

Eignung für die klinische Diagnostik nachgewiesen. Als weitere Substanz wurde 

Pregabalin für das TDM mittels UPLC-MS/TOF aufgenommen. Diese Substanz, die 

auch im Drogenentzug verwendet wird, steht seit 2 Jahren selbst im Verdacht 

Abhängigkeiten hervorzu-rufen. Für den Nachweis klinisch relevanter 

Konzentrationen in Urin und Serum wurden verschiedene Extraktionsmethoden 

getestet. Eine einfache Proteinpräzipitation erwies sich für diese Substanz als nicht 

ausreichend, eine Flüssig-Flüssig-Extraktion (LLE) als zu zeit- und arbeitsintensiv. 

Mittels automatisierter Festphasenextraktion (MEPS) konnte Pregabalin hingegen in 

geringer Probenmenge schnell und einfach nachgewiesen werden. 

Insgesamt zeigen diese Ergebnisse, dass das verwendete UPLC-MS/TOF-System 

für die gezielte Suchanalytik im Rahmen der systematischen toxikologischen Analyse 

(STA) sowie für die Quantifizierung im therapeutischen Drug Monitoring (TDM) 

geeignet ist. Um für die STA das etablierte GC-MS Screening Verfahren durch das 

UPLC-MS/TOF Screening Verfahren ersetzen zu können, müssten jedoch Software-

Verbesserungen wie z. B. die Verknüpfung der `Targeted Datenbank´ mit der 

Spektrendatenbank ermöglicht werden. Hinweise auf die missbräuchlichen 

Verwendung von neuen, noch unbekannten Substanzen wie z. B. Designerdrogen 

lassen sich hingegen mittels UPLC-MS/TOF System einfach und schnell erlangen. 

Für das TDM kann das System für eine schnelle und einfache Etablierung von 

Quantifizierungsmethoden genutzt werden, da in den meisten Fällen eine einfache 

Proteinpräzipitation für die Probenvorbereitung als ausreichend erwiesen hat. 



 

88 Literaturverzeichnis 

 

7 LITERATURVERZEICHNIS 

[1] Henschel B., Entwicklung und Prüfung eines LC-ESI/MS/TOF-Verfahrens für die toxikologische 
Analytik im Akutkrankenhaus, Deutsche Vereinte Gesellschaft für Klinische Chemie und 
Laboratoriumsmedizin e. V., DGKL Mitteilungen, 2011 
[2] Wu AH., McKay C., Broussard LA., Hoffmann RS., Kwong TC., Meyer TP., National academy of 
clinical biochemistry laboratory medicine practice guidelines: Recommendations for the use of 
laboratory test to support poisoned patients who present to the emergency department, Clin Chem 
49 (2003) 357-379 
[3] Hepler BR., Sutheimer CA., Sunshine I., The role of the toxicology laboratory in emergency 
medicine, Clin Toxicol 19 (1982) 353-365 
[4] Hepler BR., Sutheimer CA., Sunshine I., Role of the toxicology laboratory in suspected 
ingestions, Pediatr Clin North Am 33 (1986) 245-260 
[5] Gibitz HJ., Schütz H., Einfache toxikologische Laboratoriumsuntersuchungen bei akuten 
Vergiftungen, DFG Mitteilung XXIII der Senatskommission für Klinisch-toxikologische Analytik, 
VCH Verlagsgesellschaft mbH, Weinheim, 1995 
[6] Ohtsuji, Use of REMEDI HS in emergency toxicology for a rapid estimate of drug concentrations 
in urine, serum, and gastric samples, J Forensic Sci 41 (1996) 881-886 
[7] Pragst F., Herzler M., Erxleben T., Systematic toxicological analysis by high-performance liquid 
chromatography with diode array detection (HPLC-DAD), Clin Chem Lab Med 42 (2004) 1325-
1340 
[8] Külpmann WR., Clinical Toxicological Analysis, WILEY-VCH Verlag, Weinheim,2009 
[9] Marquet P., Is LC-MS suitable for a comprehensive screening of drugs and poisons in clinical 
toxicology?, Therapeutic Drug Monitoring 24 (2002) 125-133 
[10] Hofmann W, Hoffmann G, Aufenanger J, Klinikhandbuch Labordiagnostische Pfade, De 
Gruyter Verlag, 2012 

[11] Broecker S., Aufbau und Anwendung einer Methode zur Identifizierung und Quantifizierung 
von Giften und deren Metaboliten in Blut und Haaren in der Systematischen Toxikologischen 
Analyse mittels Flüssigchromatographie-Quadrupol-Flugzeitmassenspektrometrie-Kopplung (LC-
QTOF-MS), Dissertation 2012 Humboldt-Universität zu Berlin 

[12] Kraemer T., Paul LD., Bioanalytical procedures for determination of drugs of abuse in blood, 
Anal Bioanal Chem, 388 (2007) 1415-1435 
[13] Viette V., Fathi M., Rudaz S., Hochstrasser D., Veuthey JL., Current role of liquid 
chromatography coupled to mass spectrometry in clinical toxicology screening methods; Clin Chem 
Lab Med 49 (2011) 1091-1103 
[14] Maurer HH., Systematic toxicological analysis procedures for acidic drugs and/or metabolites 
relevant to clinical and forensic toxicology and/or doping control, J Chromatogr B, Biomed Sci Appl 
733 (1999) 3-25 
[15] Maurer HH., Screening procedures for simultaneous detection of several drug classes used for 
high throughput toxicological analysis and doping control, Com Chem High Throughput Screen 3 
(2000) 467-480 
[16] Hallbach J., A fast and sensitive method for GC-MS screening in acute poisoning, Clin Tox 41 
(2003) 558 
[17] Maurer HH., Hyphenated mass spectrometric techniques – indispensable tools in clinical and 
forensic toxicology and in doping control, Mass Spectrum 41 (2006) 1399-1413 
[18] Valli A., Polettini A., Papa P., Montagna M., Comprehensive drug screening by integrated use 
of gas chromatography/mass spectrometry and Remedi HS, Ther Drug Monit 23 (2001) 287-294 



 

Literaturverzeichnis 89 

 

[19] Hallbach J., Guder WG., Fast diagnosis of acute intoxications by a combined laboratory 
strategy of HPLC and GC-MS after ultrasonic derivatisation, The Alps-Adria Congress, Regensburg 
108 (2002) 
[20] Kaufmann A., Butcher P., Maden K., Widmer M., Ultra-performance liquid chromatography 
coupled to time of flight mass spectrometry (UPLC-TOF): a novel tool for multiresidue screening of 
veterinary drugs in urine, Anal Chim Acta, 586 (2007) 13-21 
[21] Marquet P., Progress of LC-MS in clinical and forensic toxicology, Ther Drug Monit 24 (2002) 
255-276 
[22] Gallardo E., Queiroz JA., The role of alternative specimens in toxicological analysis, Biomed 
Chromatogr 22 (2008) 795-821 
[23] Lips A., Lameijer W., Fokkens R., Nibbering N., Methodology for the development of a drug 
library based upon collision-induced fragmentation for the identification of toxicologically relevant 
drugs in plasma samples, J Chromatogr B, 759 (2001) 191-207 
[24] Weinmann W., Wiedemann A., Eppinger B., Renz M., Screening for Drugs in Serum by 
Electrospray Ionization/Collision-Induced Dissociation and Library Searching, Am Soc Mass 
Spectrom 10 (1999) 1028-1037 
[25] Vernisse N., Marquet P., Duchoslav E., Dupuy JL., Lachâtre G., A general unknown screening 
procedure for drugs and toxic compounds in serum using liquid chromatography-electrospray-
single quadrupole mass spectrometry, Journal of Analytical Toxicology 27 (2003) 7-14 
[26] Hayashida M., Takino M., Terada M., Kurisaki E., Kudo K., Ohno Y., Time-of-flight mass 
spectrometry (TOF-MS) exact mass database for benzodiazepine screening, Legal Medicine 11 
(2009) 423-425 
[27] www.chemgapedia.de/nmr-spektroskopie 
[28] Hallbach J., Klinische Chemie und Hämatologie, Thieme Verlag (2011) S. 513, 567 
[29] Maurer HH., Kratzsch C., Weber A., Peters F., Kraemer T., Validated assay for quantification 
of oxcarbazepine and ist active dihydro metabolite 10-hydroxycarbazepine in plasma by 
atmospheric pressure chemical ionization liquid chromatography/mass spectrometry, J Mass 
Spectrom 37 (2002) 687-692 
[30] Beck O., Öhman I., Nordgren H., Determination of Lamotrigine and its Metabolites in Human 
Plasma by Liquid Chromatography-Mass Spectrometry, Therapeutic Drug Monitoring 5 (2006) 603-
607 
[31] Striano S., Striano P., Capone D., Pisani F., Limited place for plasma monitoring of new 
antiepileptic drugs in clinical practice, Med Sci Monit, 14 (2008) RA173-178 
[32] Juenke J., Brown P., Johnson-Davis K., McMillin G., Simultaneous Quantification of 
Levetiracetam and Gabapentin in Plasma by Ultra-Pressure Liquid Chromatography Coupled with 
Tandem Mass Spectrometry Detection, Therapeutic Drug Monitoring, 2 (2011) 209-213 
[33] Rentsch K., Schwendener R., Schott., Hänseler E., Sensitivie high-performance liquid 
chromatographic method for the determination of N4-hexadecyl- and N4-octadecyl-1-ß-D-
arabinofuranosylcytosine in plasma and erythrocytes, J Chromatogr B, 673 (1995) 259-266 
[34] Comer AM., Perry CM., Figgitt DP., Caffeine citrate: a review of is use in apnoea of 
prematurity, Peadiatr Drug, 3 (2001) 61-79 
[35] D´Urzo AD., Jhirad R., Jenne H., Avendano MA., Rubenstein I., D´Costa M., Goldstein RS., 
Effect of caffeine on ventilator responses to hypercapnia, hypoxia, and exercise in humans, J Appl 
Physiol, 68 (1990) 322 - 328 
[36] Aranda JV., Gorman W., Bergsteinsson H., Gunn T., Efficacy of caffeine in treatment of apnea 
in the low-birth-weight infant, Journal of Pediatrics, 3 (1977) 467-472 
[37] Tremont-Lukats IW., Hutson PR., Backonja MM., A randomized, double-masked, placebo-
controlled pilot trial of extended IV lidocaiene infusion for relief of ongoing neuropathic pain, Clin J 
Pain, 22 (2006) 266-271 
[38] Petersen P., Kastrup J., Zeeberg I., Boysen G., Chronic pain treatment with intravenous 
lidocaine, Neurol Res, 8 (1986) 189-190 



 

90 Literaturverzeichnis 

 

[39] Chen Y., Potter JM., Ravenscroft PJ., High-performance liquid chromatographic method for the 
simultaneous determination of monoethylglycinexylidide and lignocaine, J Chromatogr, 574 (1992) 
361-364 
[40] Kushida K., Oka K., Suganuma T., Ishizaki T., Simultaneous determination of lidocaine and its 
principal metabolites by liquid chromatography on silica gel, with aqueous eluent, Clin Chem 30 
(1984) 637-640 
[41] Barat S., Kardos S., Abdel-Rahman M., Development and validation of a high-performance 
liquid chromatography method for the determination of cocaine, its metabolites and lidocaine, J 
Appl Toxicol, 16 (1996) 215-219 
[42] Grosshans M., Mutschler J., Hermann D. et al. Pregabalin abuse, dependence, and 
withdrawal: a case report; American Journal of Psychiatry 167 (2010) 869 
[43] Schwan S., Sundstrom A., Stjernberg E. et al., A signal for an abuse liability for pregablin 
results from the Swedish sponaneous adverse drug reaction reporting system, European Journal of 
Clinical Pharmacology 66 (2010) 947-953 
[44] Biermann T., Bleich S., Kornhuber J., Hillemacher T., Pregabalin in benzodiazepine 
withdrawal, Pharmacopsych 40 (2007) 291-292 
[45] Dahl S., Olsen K., Strand D., Determination of gamma-hydroxybutyrate (GHB), beta-
hydroybutyrate (BHB), pregabalin, 1,4-butane-diol (1,4BD) and gamma-butyrolactone (GBL) in 
whole blood and urine samples by UPLC-MSMS, J Chromatogr B, 885-886 (2012) 37-42 
[46] Medizinisches Versorgungszentrum Dortmund, 
http://www.labmed.de/de/untersuchungsprogramm_print.php?abteilung=43&kapitel=3000 
[47] Tiller PR., Romanyshyn LA., Neue U., Fast LC/MS in the analysis of small molecules, 
Analytical and Bioanalytical Chemistry 377 (2003), 788-802 
[48] Neue U., Grumbach ES., Kele M., Mazzeo JR., D. Sievers, UPLC: Ultra-Performance-Liquid-
Chromatography, HPLC richtig optimiert, S. Kromidas (Ed.), Wiley-VCH, Weinheim, 2011 
[49] Maurer HH., Posititon of chromatographic techniques in screening for detection of drugs or 
poisons in clinical and forensic toxicology and /or doping control, ClinChemLabMed 42 (2004) 
1310-1324 
[50] WATERS GmbH, LCT-P XE_RevC Training (715001022), 2009 
[51] Wood M., Laloup M., Samyn N., Ramirez-Fernandez M., Bruijn E., Maes R., Boeck G., Recent 
applications of liquid chromatography-mass spectrometry in forensic science, J of Chromatography 
A, 1130 (2006) 3-15 
[52] Martin M., Eon C., Guichon G., Study of the pertineny of pressure in liquid chromatography, 1. 
Theroretical analysis, Journal of Chromatogr. 99 (1974) 357-376 
[53] van Deemter JJ., Zuiderweg FJ., Klinkenberg A., Longitudinal diffusion and resistance to mass 
transfer as causes of non ideality in chromatography, Chem.Eng.Sci 5 (1956) 271-289 
[54] Neue U, Alden BA., Iraneta PC., Méndez A., Grumbach ES., Tran K., Diehl D., HPLC Columns 
for Pharmaceutical Analysis in: Handbook of HPLC in Pharmaceutical Analysis, M. Dong, S. Ahuja 
(Eds.), Elsevier, Amsterdam, 2005 
[55] http://www.axel-semrau.de/Chromatographie+Massenspektrometrie.html 
[56] Matuszewski M.K., Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical 
Methods Based on HPLC-MS/MS, Anal. Chem. 75 (2003),3019-3030 
[57] Cech NB., Enke CG., Effect of affinity for droplet surfaces on the fraction of analyte molecules 
charged during electrospray droplet fission, Anal Chem., 73 (2001) 4632-4639 
[58] Enke CG., A predictive model for matrix and analyte effects in electrospray ionization of single-
charged ionic analytes, Anal Chem 69 (1997) 4885-4893 
[59] Y.-F. Cheng, Z. Lu, U. D. Neue, Ultra-Fast LC and LC/MS/MS Analysis, Rapid Commun. Mass 
Spectrom. 15 (2001) 141-151 
[60] Liang H., Foltz R., Meng M., Bennett P., Ionization enhancement in atmospheric pressure 
chemical ionization and suppression in electrospray ionization between target drugs and stable-
iostope-labeled internal standards in quantitative liquid chromatography/tandem mass 
spectrometry, Rapid Comm Mass Spectrom 17 (2003) 2815-2821 



 

Literaturverzeichnis 91 

 

[61] Remane D., Wissenbach D., Meyer M., Maurer H., Systematic investigation of ion suppression 
and enhancement effects of fourteen stable-isotope-labeled internal standards by their native 
analogues using atmospheric-pressure chemical ionization and electrospray ionization and the 
relevance for multi-analyte liquid chromatographic/mass spectrometric procedures, Rapid Comm 
Mass Spectrom 24 (2010) 859-867 
[62] Remane D., Meyer M., Wissenbach D., Maurer H., Ion suppression and enhancement effects 
of co-eluting analytes in multi-analyte approaches: systematic investigation using ultra-high-
performance liquid chromatography/mass spectrometry with atmospheric-pressure chemical 
ionization or electrospray ionization, Rapid Comm Mass Spectrom 24 (2010) 3103-3108 
[63] Seiwert B., Leeuwen S., Hayen H., Vogel M., Karst U., HIGHCHEM – hautnah – Aktuelles aus 
der Analytischen Chemie; „Flüssigchromatographie und Massenspektrometrie für die Analytik 
unpolarer Verbindungen“; Universität Twente, Abteilung Analytische Chemie und MESA+, Institut 
für Nanotechnologie, Niederlande, Juni2005 
[64] Chernushevich I., Loboda A., Thomson B., An introduction to quadrupole-time-of-fligth mass 
spectrometry, Journal of Mass Spectrometry 36 (2001) 849-865 
[65] FIZ Chemie Berlin, Fachinformationszentrum Chemie GmbH, ChemgaPedia, Lerneinheit 
Massenspektrometrie, www.chemistry.de 
[66] Hesse M, Meier H, Zeeh B; Spektroskopische Methoden in der organischen Chemie; 6. 
Auflage, Thieme Verlag Stuttgart, S. 303, 2002 
[67] Gross J.H., Skript Massenspektrometrie zum Kurs Spektroskopische Methoden in der 
Anorganischen und Organischen Chemie, 4. Auflage,MS-Abt. im OCI, INF 270, Uni Heidelberg; 
1999, http://rzuser.uni-heidelberg.de/~b15/ms-ocidh.html 
[68] Jiwan JL., Wallemacq P., Hérent MF., HPLC-high resolution mass spectrometry in clinical 
laboratory, Clin Biochem. 44 (2011)136-147 
[69] LCI Lebensmittelchemisches Institut des Bundesverbandes der Deutschen Süßwarenindustrie 
e.V., Ionisierungstechniken in der Massenspektrometrie – von der ESI bis zur APPI, 2002, 
http://www.lci-koeln.de/deutsch/veroeffentlichungen/lci-focus/ionisierungstechniken-in-der-
massenspektrometrie-von-der-esi-bis-zur-appi 
[70] Kebarle P., A brief overview of the present status of the mechanisms involved in elcetrospray 
mass spectrometry, J Mass Spectrom 35 (2000) 804-817 
[71] Ahmad MH., Cech NB., Jackson GS., Enke CG., Importance of gas-phase proton affinities in 
determining the electrospray ionization response for analytes and solvents, J Mass Spectrom 35 
(2000) 784-789 
[72] Gaskell S., Electrospray: Principles and Practice, J Mass Spectrom 32 (1997) 677-688 
[73] Kebarle P., Verkerk U., Electrospray: from ions in solution to ions in the gas phase, what we 
know now, Mass Spectrom Review 28 (2009) 898-917 
[74] University of Bristol, School of Chemistry, Mass Spectrometry Resource, CID, 
www.chm.bris.ac.uk/ms/theory/cid-fragmentation.html 
[75] Deutsches Akkreditierungssystem Prüfwesen GmbH, DIN EN ISO 15189, DAkkS-BA_CH-ML-
15189/Rev.0.9, 2011, Berlin 
[76] Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer 
Untersuchungen RiliBÄK, http://www.udh-bundesverband.de/content/e361/e1628/RILI-
BAEK_ger.pdf 
[77] Peters F., Paul L., Anhang B zur Richtlinie der GTFCh zur Qualitätssicherung bei forensisch-
toxikologischen Untersuchungen, Anforderungen an die Validierung von Analysenmethoden, 
Gesellschaft für forensische und toxikologische Chemie, Arbeitskreis Qualitätssicherung, 2009 
[78] Chemspider, The free chemical database, www.chemspider.com 
[79] Neitzel V, Lineare Kalibrationsfunktionen, CLB Chemie in Labor und Biothechnik, 53. 
Jahrgang, Heft 1/2002 
[80] Grubbs F E, Procedures for Detecting Outlying Observations in Samples, Technometrics. 11, 
Nr. 1, 1. Januar 1969, S. 1–21 

http://rzuser.uni-heidelberg.de/~b15/ms-ocidh.html
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jiwan%20JL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wallemacq%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22H%C3%A9rent%20MF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=hplc%2C%20jiwan%202011
http://www.lci-koeln.de/deutsch/veroeffentlichungen/lci-focus/ionisierungstechniken-in-der-massenspektrometrie-von-der-esi-bis-zur-appi
http://www.lci-koeln.de/deutsch/veroeffentlichungen/lci-focus/ionisierungstechniken-in-der-massenspektrometrie-von-der-esi-bis-zur-appi
http://www.chm.bris.ac.uk/ms/theory/cid-fragmentation.html
http://www.udh-bundesverband.de/content/e361/e1628/RILI-BAEK_ger.pdf
http://www.udh-bundesverband.de/content/e361/e1628/RILI-BAEK_ger.pdf
http://www.chemspider.com/


 

92 Literaturverzeichnis 

 

[81] Pfleger K., Maurer H. H., Weber A., Mass spectral and GC data of drugs, poisons, pesticides, 
pollutants and their metabolites I / II / III, XVIII, Wiley-VCH, Weinheim 2011 
[82] Refereninstitut für Bioanalytik – Ringversuche – Referenzlaboratorien, www.dgkl-rfb.de 
[83] Kyle PB., Iverson RB., Gajagowni RG,. Spencer L., Illicit bath salts: not for bathing; J Miss 
State Med Assoc. 2011 Dec; 52 (12): 357-7 
[84] Passing H, Bablok W, A new biometrical procedure for testing the equality of measurements 
form two different analytical methods, Application of linear regression procedures for method 
comparison studies in clinical chemistry, Part 1, J Clin Chem Clin Biochem 21 (1983) 709-720 
[85] Öjanpera S., Pelander A., Laks S., Rasanen I., Vuori E., Witt M., Application of accurate mass 
measurement to urine drug screening, J Anal Toxicol, 29 (2005) 34-40 
[86] Pelander A., Ojanpera I., Laks S., Rasanen I., Vuori E., Toxicological screening with formula-
based metabolite identification by liquid chromatography/time-of-flight mass spectrometry, Anal 
Chem, 75 (2003) 5710-5718 
[87] Kaufmann A., Butcher P., Maden K., Widmer M., Ultra-performance liquid chromatography 
coupled to time of flight mass spectrometry (UPLC-TOF): a novel tool for multiresidue screening of 
veterinary drugs in urine, Anal Chim Acta, 586 (2007) 13-21 
[88] Polettini A, Gottardo R, Pascali J, Tagliaro F, Implementation and performance evaluation of a 
database of chemical formulas for the screening of pharmaco/toxicologically relevant compounds in 
biological samples using electrospray ionization-time-of-flight mass spectrometry, Anal. Chem 80 
(2008) 3050-3057 
[89] Gergov M., Boucher B., Öjanpera I., Vuori E., Toxicological screening of urine for drugs by 
liquid chromatography/time-of-flight mass spectrometry with automated targeted library search 
based on elemental formulas, Rapid Commun Mass Spektrom, 15 (2001) 521-526 
[90] Kolmonen M., Leinonen A., Pelander A., Ojanpera I., A general screening method for doping 
agents in human urine by solid phase extraction and liquid chromatography/time-of-flight mass 
spectrometry, Anal Chim Acta, 585 (2007) 94-102 
[91] Peters FT., Recent advances of liquid chromatography-(tandem) mass spectrometry in clinical 
and forensic toxicology, Clinical Biochemistry 44 (2011) 54-65 
[92] Bristow T., Webb K., Lubben A., Halket J., Reproducible product-ion tandem mass spectra on 
various liuid chromatography/mass spectrometry instruments for the development of spectal 
libraries, Rapid Commun. Mass Spectrom. 18 (2004) 1447-1454 
[93] Liotta E., Gottardo R., Bertaso A., Polettini A., Screening for pharmaco-toxicologically relevant 
compounds in biosamples using high-resolution mass spectrometry: a `metabolomic´ approach to 
the discrimination between isomers, J Mass Spectrom 45 (2010) 261-271 
[94] Maurer HH., Multi-analyte procedures for screening and quantification of drugs in blood, 
plasma, or serum by liquid chromatography-single stage or tandem mass spectrometry (LC-MS or 
LC-MS/MS) relevant to clinical and forensic toxicology, Clinical Biochemistry 38 (2005) 310-318 
[95] Diaz R., Ibanez M., Sancho JV., Hernandez F., Building an empirical mass spectra library for 
screening of organic pollutants by ultra-high-pressure liuid chromatography/hybrid quadrupole time-
of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 25 (2011) 355-369 
[96] Pavlic M., Libiseller K., Oberacher H., Combined use of ESI-QqTOF-MS and ESI-QqTOF-
MS/MS with mass-spectral library search for qualitative analysis of drugs, Anal Bioanal Chem, 386 
(2006) 69-82 
[97] Tyrkko E., Pelander A., Ojanpera I., Differentation of structural isomers in a target drug 
database by LC/Q-TOFMS using fragmentation prediction, Drug Test Anal, 2 (2010) 259-270 
[98] Broecker S, Pragst F, Bakdash A, Herre S, Tsokos M, Combined use of liuid chromatography-
hybrid quadrupol time-of-flight mass spectrometry (LC-QTOF-MS) and high performance liquid 
chromatography with photodiode array detector (HPLC-DAD) in systematic toxicological analysis, 
Forensic Science International 212 (2011) 215-226 
[99] Toennes SW, Wagner MG, Kauert GF, Application of LC-TOF MS to analysis of hemoglobin 
acetaldehyde adducts in alcohol detoxification patients, Anal Bioanal Chem, 398 (2010): 769-777 

http://www.dgkl-rfb.de/


 

Literaturverzeichnis 93 

 

[100] Andersson M., Gustavsson E., Stephanson N., Beck O., Direct injection LC-MS/MS method 
for identification and quantification of amphetamine, methamphetamine, 3,4-
methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine in urin drug testing, J 
Chromatogr B Analyt Technol Biomed Life Sci 861 (2008) 22-28 
[101] Fritsch D., Blum K., Nonnemacher S., Haggerty BJ., Sullivan MP., Cone EJ., Identification 
and quantification of amphetamines, cocain, opiates, and phencyclidine in oral fluid by liquid 
chromatography-tandem mass spectrometry, J Anal Toxicol 33 (2009) 569-577 
[102] Avery MJ., Fouda, Development of a high-performance liquid chromatographic-atmospheric 
pressure chemical ionization-tandem mass spectrometric assay for ß-tigogenin cellobioside in 
human serum, J Chromatogr B 689 (1997) 365-370 
[103] Decaestecker T., Casteele S., Wallemacq P., Peteghem C., Defore D., van Bocxlaer J., 
Information-dependent acquisition-mediated LC-MS/MS screening procedure with semiquantitative 
potential, Anal Chem 76 (2004) 6365-6373 
[104] Mueller CA., Weinmann W., Desen S., Schreiber A., Gergov M., Development of a multi-
target screening analysis for 301 drugs using a qtrap liquid chromatography/tandem mass 
spectrometry system and automated library searching, Rapid CommunMass Spectrom 19 (2005) 
1332-1338 
[105] Dresen S., Ferreiros N., Gnann H., Zimmermann R., Weinmann W., Detection and 
identifcation of 700 drugs by multi-target screening with a 3200 Q-Trap LC-MS/MS system and 
library searching, Anal Bioanal Chem 396 (2010) 2425-2434 
[106] Hopley C, Bristow T, Lubben A, Simpson A, Bull E, Klagkou K, Herniman J, Langley J, 
Towards a universal product ion mass spectral library – reproducibility of product ion spectra 
across eleven different mass spectrometers, Rapid Commun. Mass Spectrom. 22 (2008) 1779-
1786 
[107] Broecker S., Herre S., Wüst B., Zweigenbaum J., Pragst F., Development and practical 
application of a library of CID accurate mass spectra of more than 2500 toxic compounds for 
systematic toxicological analysis by LC-QTOF-MS with data-dependent acquisition, Anal Bioanal 
Chem 400 (2011) 101-117 
[108] Paglia G., Hrafnsdottir S., Magnusdottir M., Fleming R., Thorlacius S., Palsson B., Thiele I., 
Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid 
chromatography quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS), Anal Bioanal 
Chem 402 (2012) 1183-1198 
[109] Nielen MWF., van Engelen MC., Zuiderent R., Ramaker R., Screening and confirmation 
criteria for hormone residue analysis using liquid chromatography accurate mass time-of-flight, 
Fourier transform ion cyclotron resonance and orbitrap mass spectrometry techniques, Anal Chim 
Acta 586 (2007) 122-129 
[110] Jankovics P., Váradi A., Tölgyesi L., Lohner S., Németh-Palotás J., Köszegi-Szalai H., 
Identification and characterization of the new designer drug 4´-methylethcathionone (4-MEC) and 
elaboration of a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening 
method for seven different methcathinone analogs, Forensic Science International 210 (2011) 213-
220 
[111] Lüllmann H., Mohr K., Hein L., Pharmakologie und Toxikologie, Thieme Verlag KC, Stuttgart, 
(2006) 30-32 
[112] Rossi D., Integrating automation and LC/MS for drug discovery bioanalysis, J of Automated 
Methods&Management in Chemistry 24 (2002) 1-7 
[113] Musteata M., Musteata F., Analytical methods used in conjuction with solid-phase 
microextraction: a review of recent bioanalytical applications, Bioanalysis 1 (2009) 1081-1102 
[114] Said R., Pohanka A., Andersson M., Beck O., Mohamed AR., Determination of remifentanil in 
human plasma by liquid chromatography-tandem mass spectrometry utilizing micro extraction in 
packed syringe (MEPS) as sample preparation, J Chromatogr B 879 (2011) 815-818 
[115] Wyne P., With HJ., Gooley A., The determination of urinary metabolites of dextromethorphan 
by MEPSTM-ESI-LCMS, http://www.sge.com/root/pdfs_local/posters/tp-0195-m.pdf 

http://www.sge.com/root/pdfs_local/posters/tp-0195-m


 

94 Literaturverzeichnis 

 

[116] Wyne P., Feo D., Dawes P., GC-MS in forensic drug analysis: application to opium 
contaminated animal feeds, http://www.sge.com/root/pdfs_local/posters/tp-0142-c.pdf, (2007) 
[117] Dawes P., Hibberl R., With HJ., Gooley A, The extraction of saliva for the analysis of basic 
drugs residues using MEPSTM-GC/MS, http://www.sge.com/root/pdfs_local/posters/tp-0204-h.pdf 
[118] Musshoff F, Junker H, Lachenmeier D, Kroener L, Madea B, Fully automated determination 
of amphetamines and synthetic designer drugs in hair samples using headspace solid-phase 
microextraction and gas chromatography-mass spectrometry, Journal of Chromatographic Science, 
40 (2002) 359-364 
[119] Marks D., Patkar A., Masand P., Pae C-U., Does Pregabalin have neuropsychotropic 
effects?: a short perspective, Pyschiatry Invest, 6 (2009) 55-58 
[120] Rubio G., Bobes J., Cervera G., Terán A., Pérez M., López-Gómez V., Rejas J., Effects of 
pregabalin on subjective sleep disturbance symptoms during withdrawal from long-term 
benzodiazepine use, Eur Addict Res, 17 (2011) 262-270 
[121] Berry D, Millington C, Analysis of Pregabalin at Therapeutic Concentrations in Human 
Plasma/Sermu by Reversed-Phase HPLC, Therapeutic Drug Monitoring, 27 (2005) 451-456 
[122] Filipetto F., Zipp C., Coren J., Potential for pregabalin abuse or diversion after past drug-
seeking behavior, JAOA 110 (2010) 605-607 
[123] Grosshans M., Mutschler J., Hermann D., Klein O., Dressing H., Kiefer F., Mann K., 
Pregabalin abuse, dependence, and withdrawal: a case report, Am J Psychiatry 167 (2010) 869 
[124] Schwan S., Sundström A., Stjernberg E., Hallberg E., Hallber P., A signal for an abuse 
liability for pregabalin-results from the Swedish spontaneous adverse drug reaction reporting 
system, Eur J Clin Pharmacol. 66 (2010) 947-53 
[125] Vogel H., Entwicklung von GC-MS Bestimmungsmethoden für das Therapeutische Drug 
Monitoring von Antiepileptika, Sedativa, Tranquilizern und Antidepressiva, Dissertation, 1998 
[126] Bucelli F., Fratini A., Bavazzona P., Comodo N., Quantification of drugs of abuse and some 
stimulants in hair samples by liquid chromatography-electrospray ionization ion trap mass 
spectrometry, J Chromatogr B Analyt Technol Biomed Life Sci 877 (2009) 3931-3936 
[127] Simones SS., Ajenjo AC., Franco JM., Vieira DN., Dias MJ., Liquid chromatography/tandem 
mass spectromtetry for the qualitative and quantitative analysis of illicit durgs and medicines in 
preserved oral fluid, Rapid Commun Mass Spectrom 23 (2009) 1451-1460 
[128] Ahsman MJ., van der Nagel BC., Mathot RA., Quantification of midazolam, morphine and 
metabolites in plasma using 96-well solid-phase extraction and ultra-performance liquid 
chromatography-tandem mass spectrometry, Biomed Chromatogr 24 (2010) 969-976 
[129] Gray TR., Shakleya DM., Huestis MA., A liquid chromatography tandem mass spectrometry 
method for the simultaneous quantification of 20 drugs of abuse and metabolites in human 
meconium, Anal Bioanal Chem 393 (2009) 1977-1990 
[130] Shakleya DM., Huestis MA., Simultaneous quantification of nicotine, opioids, cocaine, and 
metabolites in human fetal postomortem brain by liquid chromatography tandem mass 
spectrometry, Anal Bioanal Chem 393 (2009) 1957-1965 
[131] Saint-Marcoux F., Sauvage FL., Marquet P., Current role of LC-MS in therapeutic drug 
monitoring, Anal Bioanal Chem 388 (2007) 1327-1349 
[132] Minkler P., Stoll M., Ingalls S., Yang S., Kerner J., Hoppel., Quantification of carnitine and 
acylcarnitines in biological matrices by HPLC electrospray ionization-mass spectrometry, Clin 
Chem 54 (2008) 1451-1462 
[133] Schönberg L., Grobosch T., Lampe D., Kloft C., New screening method for basic compounds 
in urine by on-line extraction-high-performance liquid chromatography with photodiode-array 
detection, J Chromatogr A 1134 (2006) 177-185 
[134] Lambert W., van Bocxlaer J., Leenheer A., Potential of high-performance liquid 
chromatography with photodiode array detection in forensic toxicology, J Chromatogr B 689 (1997) 
45-53 

http://www.sge.com/root/pdfs_local/posters/tp-0142-c.pdf
http://www.sge.com/root/pdfs_local/posters/tp-0204-h.pdf


 

Literaturverzeichnis 95 

 

[135] Herzler M., Herre S., Pragst F., Selectivity of substance identification by HPLC-DAD in 
toxicological analysis using a UV spectra library of 2682 compounds, J Anal Toxicol 27 (2003) 233-
242 
[136] Schönberg L., Grobosch T., Lampe D., Kloft C., Toxikological screening in urine: comparison 
of two automated HPLC Screening systems, Toxicological Identification System (TOX.I.S) versus 
REMEDITM-HS, J Anal Toxicol 31 (2007) 321-327 
 

 

 



96 Anhang 

 

8 ANHANG 

Anhang 1 Ergebnisse des toxikologischen Screenings mittels ´Targeted Datenbank´ und der 
Spektrendatenbank der UPLC-MS/TOF 

MS-TOF – 
targeted-Screening 

richtig-
positiv 

falsch-
positiv 

MS-TOF – 
targeted-
Screening 

richtig-
positiv 

falsch-
positiv 

7-Aminodesmethyl-
flunitrazepam - 1 Fluoxetin 1 3 

7-Aminoflunitrazepam 3 2 Heroin 4 - 

Alloxydim - 1 Hydrocodon 7 - 

Amezinium 1 - Hydromorphon 2 - 

Amitriptylin 6 4 Ibuprofen 50 - 

Amitriptylinoxid 16 - Ketamin 2 - 

Amphetamin 1 - Lamotrigin 2 - 

Anastrazol - 1 Lidocain 1 - 

Atropin 1 - Lorazepam 2 - 

Azithromycin 1 - MAM 15 - 

Benzoylecgonin 2 - MDMA 1 - 

Bisoprolol 1 - Mepivacain 2 - 

Buprenorphin 3 - Methadon 233 - 

Butamirat - 1 Methylphenidat 5 - 

Butinolin - 18 Metoclopramid 17 - 

Cafaminol - 1 Metoprolol 1 - 

Cafedrin 2 - Midazolam 2 - 

Carazolol - 1 Mirtazapin 14 - 

Carbamazepin-epoxid 24 - Morphin 31 - 

Carbamazepin 26 - Nordazepam 64 1 

Chinidin 1 - Nortriptylin 12 2 

Cinchocain 1 - Noscapin 21 - 

Cinchonidin 7 2 Olanzapin 9 - 

Citalopram 22 3 Opipramol 2 - 

Clarithromycin 1 - Oxazepam 28 1 

Clindamycin 2 - Paracetamol 11 - 

Clomethiazol 1 - Phenprocoumen 2 - 

Clonidin 1 - Promethiazin 1 - 

Cocain 3 - Propanolol 6 1 
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Fortsetzung Anhang 1 Ergebnisse des toxikologischen Screenings mittels ´Targeted 
Datenbank´ und der Spektrendatenbank der UPLC-MS/TOF 

MS-TOF - 
targeted-
Screening 

richtig-
positiv 

falsch-
positiv 

MS-TOF - 
targeted-
Screening 

richtig-
positiv 

falsch-
positiv 

Codein 24 - Quetiapin 1 - 

Cyclicin 1 - Temazepam 12 1 

Desipramin - 1 Tetracain 1 2 

Dextromethorphan 4 - Thiopental 2 - 

Diazepam 39 4 Tiapride 4 - 

Dibenzepin 4 5 Tramadol 8 2 

Diphenhydramin 1 1 
Tramadol-
desmethyl 

4 - 

Doxepin 23 85 Trimipramin - 1 

Doxepin-desmethyl 23 14 Summe: 1044 163 

EDDP 217 5 Prozent %: 86.5 13.5 

 
Anhang 2 Vergleich des Nachweises verschiedener Substanzen mittels UPLC-MS/TOF und 
GC-MS bzw. beider Methoden 

Substanz 
MS-TOF/ 
GC-MS 

nur 
MS/TOF 

nur GC-MS 

7-Aminodesmethyl-
flunitrazepam 

- 1 - 

7-Aminoflunitrazepam - 3 - 

Amezinium - 1 - 

Amitriptylin 2 5 1 

Amitriptylinoxid 9 7 - 

Amphetamin 1 - - 

Atropin 1 - - 

Azithromycin - 1 - 

Benzoylecgonin 1 1 - 

Bisoprolol 1 - - 

Buprenorphin 2 1 3 

Cafedrin 1 1 - 

Carbamazepinepoxid 14 10 2 

Carbamazepin 16 10 - 

Chinidin - 1 - 

Cinchocain - 1 - 

Cinchonidin - 8 - 

Citalopram 22 - - 

Clarithromycin - 1 - 



98 Anhang 

 

Fortsetzung Anhang 2 Vergleich des Nachweises verschiedener Substanzen mittels 
UPLC-MS/TOF und GC-MS bzw. beider Methoden 

Substanz MS-TOF/GC 
nur 

MS-TOF 
nur GC-MS 

Clindamycin - 2 - 

Clomethiazol - 1 3 

Clonidin 1 - - 

Cocain 1 2 - 

Codein 21 3 3 

Cyclicin 1 - - 

Dextromethorphan. - 4 - 

Diazepam 3 36 - 

Dibenzepin 1 3 - 

Diphenhydramin 1 - 3 

Doxepin 14 9 - 

Doxepin-desmethyl 11 13 - 

Doxylamin - 1 - 

EDDP 196 20 7 

Fentanyl 1 2 5 

Fluoxetin - 1 - 

Heroin - 4 - 

Hydrocodon - 7 - 

Hydromorphon - 1 - 

Ibuprofen 51 1 67 

Ketamin 2 - - 

Lamotrigin 2 - - 

Lidocain 1 1 - 

Lorazepam 2 - 3 

MAM 13 2 1 

MDMA 1 - - 

Mepivacain 1 1 - 

Methadon 216 17 5 

Methylphenidat 5 - - 

Metoclopramid 9 8 - 

Metoprolol 1 - - 

Midazolam 2 - - 

Mirtazapin 14 - 1 

Morphin 30 1 14 

Nordazepam 26 38 17 

Nortriptylin 2 11 - 
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Fortsetzung Anhang 2 Vergleich des Nachweises verschiedener Substanzen mittels 
UPLC-MS/TOF und GC-MS bzw. beider Methoden 

Substanz 
MS-TOF/ 
GC-MS 

nur 
MS-TOF 

nur GC-MS 

Noscapin 14 8 - 

Olanzapin - 9 - 

Opipramol 2 - - 

Oxazepam 26 - 105 

Paracetamol 13 - 20 

Pentobarbital - 1 - 

Phenprocoumen - 2 - 

Promethazin 1 - - 

Propanolol - 6 - 

Quetiapin 1 - - 

Temazepam 14 - 40 

Tetracain - 1 - 

Tetrazepam - 1 - 

Thiopental - 2 - 

Tiapride 1 3 - 

Tramadol 7 1 - 

Tramadol-desmethyl - 3 - 

Summe: 778 278 300 

Prozent: 57.4 20.5 22.1 

 
Anhang 3 Nachweis der Linearität der Quantifizierung von Lidocain im Kalibrationsbereich 
0.25 - 10 mg/l einschließlich Ausreißer-Test nach Grubbs 

Messung 0.25 mg/L 0.75 mg/L 1 mg/L 2 mg/L 7.5 mg/L 10 mg/L 

1 0.464 0.975 1.227 2.17 6.552 8.534 

2 0.459 0.963 1.245 2.181 6.41 8.574 

3 0.463 0.963 1.25 2.13 6.501 8.491 

4 0.457 0.98 1.238 2.192 6.499 8.561 

5 0.455 0.959 1.255 2.06 6.562 8.655 

6 0.452 0.974 1.257 2.124 6.569 8.344 

Mittelwert 0.458 0.969 1.245 2.143 6.516 8.527 

SD 0.00463 0.00841 0.01133 0.04898 0.05995 0.10448 

Varianz 0.00002 0.00007 0.00013 0.0024 0.00359 0.01092 

VK % 1.011 0.868 0.91 2.286 0.92 1.225 

Extremwert 0.452 0.98 1.227 2.06 6.41 8.344 

Prüfwert 1.37 1.31 1.62 1.69 1.76 1.75 

Ausreisser? nein nein nein nein nein nein 
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Anhang 4 Nachweis der Linearität der Quantifizierung von 10-OH-Carbazepin im 
Kalibrationsbereich von 3.28 – 32.8 mg/l einschließlich Ausreißer-Test nach Grubbs  

Messung 3.28 mg/l 4.1 mg/l 5.47 mg/l 8.2 mg/l 16.4 mg/l 24.6 mg/l 32.8 mg/l 

1 3.109 4.112 5.476 9.036 16.959 24.842 32.094 

2 3.3048 3.773 5.747 9.301 16.456 24.541 32.305 

3 2.923 3.753 5.777 9.378 16.842 24.356 33.263 

4 3.109 3.971 5.462 9.015 17.178 23.158 31.804 

5 2.951 3.797 5.609 9.279 16.977 25.093 33.124 

6 2.833 3.995 5.513 9.185 16.872 23.955 32.157 

Mittelwert 2.996 3.9 5.597 9.199 16.881 24.324 32.458 

SD 0.112 0.147 0.138 0.148 0.239 0.693 0.594 

Varianz 0.012 0.021 0.019 0.022 0.057 0.481 0.353 

VK % 3.738 3.769 2.466 1.609 1.416 2.849 1.83 

Extremwert 2.833 4.112 5.777 9.015 16.456 23.158 33.263 

Prüfwert 1.46 1.45 1.3 1.24 1.78 1.68 1.35 

Ausreisser? nein nein nein nein nein nein nein 

 
Anhang 5 Nachweis der Linearität der Quantifizierung von Lamotrigin im Kalibrationsbereich 
von 2.35 – 23.5 mg/l einschließlich Ausreißer-Test nach Grubbs  

Messung 2.35 mg/l 2.94 mg/l 3.92 mg/l 5.88 mg/l 
11.75 
mg/l 

17.63 
mg/l 

23.5 mg/l 

1 2.274 2.966 3.913 6.291 11.544 16.901 24.23 

2 2.278 2.819 4.008 6.487 11.333 16.985 24.094 

3 2.325 2.82 3.976 6.312 12.159 17.066 23.92 

4 2.34 2.953 4.047 6.41 11.995 17.635 24.129 

5 2.293 2.849 4.047 6.293 12.17 16.535 24.029 

6 2.326 2.916 4.034 6.397 11.602 16.325 24.52 

Mittelwert 2.306 2.887 4.004 6.365 11.801 16.907 24.154 

SD 0.028 0.066 0.052 0.079 0.354 0.456 0.208 

Varianz 0.001 0.004 0.003 0.006 0.125 0.208 0.043 

VK % 1.214 2.286 1.299 1.241 3 2.697 0.861 

Extremwert 2.34 2.966 3.913 6.487 11.333 17.635 24.52 

Prüfwert 1.22 1.19 1.74 1.54 1.32 1.6 1.77 

Ausreisser? nein nein nein nein nein nein nein 
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Anhang 6 Nachweis der Linearität der Quantifizierung von Levetiracetam im 
Kalibrationsbereich von 4.1 – 41 mg/l einschließlich Ausreißer-Test nach Grubbs  

Messung 4.1 mg/l 5.13 mg/l 6.83 mg/l 
10.25 
mg/l 

20.5 mg/l 
30.75 
mg/l 

41 mg/l 

1 3.367 4.792 7.281 10.661 21.275 30.682 42.196 

2 4.127 4.826 7.657 10.225 20.961 30.287 41.758 

3 3.929 4.989 7.631 10.092 20.765 31.02 42.077 

4 3.711 5 7.369 9.707 21.445 29.443 41.026 

5 3.546 5.093 7.269 10.475 21.615 31.422 40.703 

6 3.246 5.196 7.587 10.177 21.139 29.709 41.066 

Mittelwert 3.654 4.983 7.466 10.223 21.2 30.427 41.471 

SD 0.336 0.154 0.179 0.329 0.312 0.763 0.621 

Varianz 0.113 0.024 0.032 0.108 0.098 0.582 0.385 

VK % 9.195 3.091 2.398 3.218 1.472 2.508 1.497 

Extremwert 4.127 5.196 7.269 9.707 20.765 31.422 40.703 

Prüfwert 1.41 1.38 1.1 1.57 1.39 1.3 1.24 

Ausreisser? nein nein nein nein nein nein nein 

 
Anhang 7 Nachweis der Linearität der Quantifizierung von Gabapentin im Kalibrationsbereich 
von 0.92 – 9.23 mg/l einschließlich Ausreißer-Test nach Grubbs 

Messung 0.92 mg/l 1.15 mg/l 1.54 mg/l 2.31 mg/l 4.62 mg/l 6.92 mg/l 9.23 mg/l 

1 0.898 1.158 1.563 2.421 4.742 6.646 9.389 

2 0.882 1.134 1.599 2.399 4.566 6.68 9.385 

3 0.879 1.128 1.476 2.482 4.493 6.802 9.311 

4 0.885 1.134 1.577 2.454 4.69 6.908 9.274 

5 0.924 1.157 1.571 2.442 4.604 6.678 9.33 

6 0.908 1.146 1.524 2.451 4.691 6.68 9.36 

Mittelwert 0.896 1.143 1.552 2.442 4.631 6.732 9.342 

SD 0.018 0.013 0.044 0.029 0.093 0.102 0.045 

Varianz 0 0 0.002 0.001 0.009 0.1 0.002 

VK % 2.009 1.137 2.835 1.188 2.008 1.515 0.482 

Extremwert 0.924 1.158 1.476 2.399 4.493 6.908 9.274 

Prüfwert 1.6 1.19 1.7 1.48 1.48 1.73 1.5 

Ausreisser? nein nein nein nein nein nein nein 
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Anhang 8 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 5 mg/l Coffein 

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 4.640 4.804 5.073 4.965 4.999 4.991 5.039 5.040 

2 4.460 4.806 5.057 4.985 4.991 4.960 4.971 5.039 

3 4.510 4.767 4.806 4.967 4.997 4.963 5.037 4.987 

4 4.460 4.927 4.958 4.961 5.023 4.994 5.090 5.028 

5 4.880 4.908 4.958 4.994 4.985 4.983 4.984 5.012 

6 4.560 5.037 4.991 4.995 5.000 5.007 5.001 5.040 

Mittelwert 4.580 4.870 4.970 4.980 5.000 4.980 5.020 5.020 

BIAS % -8.340 -2.503 -0.523 -0.443 -0.017 -0.340 0.407 0.487 

SD 0.162 0.101 0.096 0.015 0.013 0.018 0.044 0.021 

VK % 3.534 2.082 1.922 0.308 0.259 0.369 0.873 0.424 

 
Anhang 9 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 10 mg/l Coffein  

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 10.420 10.656 9.859 9.526 10.070 9.971 9.998 9.900 

2 10.140 10.705 10.277 9.578 10.035 10.025 10.054 10.069 

3 10.400 10.635 9.999 9.870 10.049 9.993 10.025 9.911 

4 10.340 10.524 9.870 9.999 10.015 10.007 9.994 10.208 

5 10.550 10.684 10.096 9.493 10.019 10.009 10.035 10.105 

6 9.910 10.795 9.982 9.926 10.039 10.057 9.948 10.101 

Mittelwert 10.290 10.670 10.010 9.730 10.040 10.010 10.010 10.050 

BIAS % 2.938 6.665 0.138 -2.680 0.378 0.103 0.090 0.490 

SD 0.231 0.089 0.156 0.224 0.020 0.029 0.037 0.121 

VK % 2.247 0.835 1.559 2.303 0.201 0.291 0.374 1.200 

 
Anhang 10 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 20 mg/l Coffein 

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 20.46 22.023 19.484 19.51 19.962 19.935 20.025 19.959 

2 20.21 21.017 19.601 20.511 20.02 20.008 20.008 20.014 

3 20.16 22.024 19.846 20.766 19.98 19.855 20.055 19.929 

4 20.07 21.531 20.475 20.616 19.933 20.059 20.002 20.037 

5 19.68 21.857 19.461 20.71 19.995 19.993 20.018 19.888 

6 19.37 20.935 20.251 20.93 19.991 20.035 20.065 19.997 

Mittelwert 19.991 21.564 19.853 20.507 19.98 19.981 20.029 19.971 

BIAS % -0.043 7.823 -0.735 2.536 -0.099 -0.096 0.144 -0.147 

SD 0.395 0.491 0.424 0.509 0.03 0.075 0.026 0.056 

VK % 1.978 2.276 2.135 2.48 0.15 0.373 0.128 0.28 
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Anhang 11 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 0.5 mg/l Lidocain 

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 0.51 0.511 0.499 0.497 0.499 0.497 0.5 0.514 

2 0.499 0.521 0.496 0.501 0.497 0.499 0.496 0.519 

3 0.517 0.516 0.5 0.504 0.502 0.494 0.498 0.535 

4 0.503 0.502 0.5 0.496 0.496 0.495 0.5 0.51 

5 0.507 0.519 0.503 0.496 0.499 0.497 0.496 0.505 

6 0.498 0.531 0.497 0.498 0.498 0.5 0.498 0.515 

Mittelwert 0.51 0.52 0.5 0.5 0.5 0.5 0.5 0.52 

BIAS % 1.133 3.333 -0.167 -0.267 -0.3 -0.6 -0.4 3.267 

SD 0.007 0.01 0.002 0.003 0.002 0.002 0.002 0.01 

VK % 1.424 1.891 0.497 0.643 0.416 0.459 0.359 1.996 

 
Anhang 12 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 2.5 mg/l Lidocain  

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 2.661 2.554 2.572 2.511 2.499 2.503 2.518 2.504 

2 2.675 2.515 2.492 2.515 2.481 2.488 2.502 2.623 

3 2.636 2.498 2.508 2.482 2.481 2.521 2.518 2.53 

4 2.769 2.541 2.492 2.488 2.492 2.521 2.514 2.538 

5 2.633 2.522 2.527 2.51 2.527 2.519 2.522 2.622 

6 2.769 2.549 2.561 2.492 2.477 2.494 2.502 2.553 

Mittelwert 2.691 2.53 2.525 2.5 2.493 2.508 2.513 2.562 

BIAS % 7.62 1.193 1.013 -0.013 -0.287 0.307 0.507 2.467 

SD 0.063 0.022 0.035 0.014 0.019 0.015 0.009 0.05 

VK % 2.334 0.861 1.369 0.559 0.748 0.586 0.344 1.941 

 
Anhang 13 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 5 mg/l Lidocain  

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 4.791 4.971 4.936 4.97 5.028 4.989 4.991 5.109 

2 5.217 4.969 5.078 4.987 5.005 5.023 5.019 5.307 

3 5.019 5.05 5.102 4.993 5.015 5 4.986 5.171 

4 4.902 5.062 5.091 5.009 5.037 5.003 5.006 5.096 

5 4.959 5.013 4.968 4.966 4.99 5.015 4.988 4.983 

6 5.132 5.006 4.94 4.976 5.01 5.022 5.013 5.05 

Mittelwert 5.003 5.012 5.019 4.984 5.014 5.009 5.001 5.119 

BIAS % 0.067 0.237 0.383 -0.33 0.283 0.173 0.01 2.387 

SD 0.155 0.039 0.079 0.016 0.017 0.014 0.014 0.111 

VK % 3.093 0.773 1.576 0.323 0.334 0.27 0.281 2.174 
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Anhang 14 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 4.73 mg/l 10-OH-
Carbazepin  

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 4.39 4.847 4.170 4.673 5.421 4.805 4.359 4.453 

2 4.53 4.901 4.368 5.231 5.511 5.024 4.804 4.599 

3 4.75 4.972 4.778 5.298 5.049 4.453 4.857 4.732 

4 4.83 4.659 4.356 5.161 5.266 4.659 4.799 4.932 

5 4.70 4.984 4.282 5.223 5.477 4.585 5.009 4.750 

6 4.79 5.004 4.785 5.127 5.668 4.954 4.606 4.879 

Mittelwert 4.66 4.89 4.46 5.12 5.40 4.75 4.74 4.72 

BIAS % -1.402 3.478 -5.782 8.221 14.137 0.352 0.190 -0.123 

SD 0.171 0.129 0.261 0.226 0.215 0.221 0.227 0.177 

VK % 3.668 2.644 5.866 4.422 3.987 4.648 4.782 3.752 

 
Anhang 15 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 23.7 mg/l 10-OH-
Carbazepin  

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 24.40 27.572 27.517 26.102 25.719 23.745 26.436 25.704 

2 24.58 26.872 27.491 26.725 26.852 23.508 26.361 26.445 

3 24.49 26.994 26.271 26.705 25.984 25.105 24.833 25.606 

4 24.65 27.981 27.062 25.013 26.539 24.245 26.263 24.789 

5 25.28 27.018 27.791 26.557 25.886 25.319 26.443 25.840 

6 24.41 28.007 27.488 26.443 26.207 25.050 26.559 25.812 

Mittelwert 24.635 27.407 27.27 26.258 26.198 24.495 26.149 25.699 

BIAS % 3.947 15.643 15.063 10.791 10.539 3.356 10.334 8.436 

SD 0.332 0.515 0.542 0.651 0.428 0.769 0.652 0.534 

VK % 1.347 1.878 1.988 2.477 1.634 3.140 2.494 2.077 

 
Anhang 16 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 2.87 mg/l Lamotrigin  

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 24.40 27.572 27.517 26.102 25.719 23.745 26.436 25.704 

2 24.58 26.872 27.491 26.725 26.852 23.508 26.361 26.445 

3 24.49 26.994 26.271 26.705 25.984 25.105 24.833 25.606 

4 24.65 27.981 27.062 25.013 26.539 24.245 26.263 24.789 

5 25.28 27.018 27.791 26.557 25.886 25.319 26.443 25.840 

6 24.41 28.007 27.488 26.443 26.207 25.050 26.559 25.812 

Mittelwert 24.635 27.407 27.27 26.258 26.198 24.495 26.149 25.699 

BIAS % 3.947 15.643 15.063 10.791 10.539 3.356 10.334 8.436 

SD 0.332 0.515 0.542 0.651 0.428 0.769 0.652 0.534 

VK % 1.347 1.878 1.988 2.477 1.634 3.140 2.494 2.077 
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Anhang 17 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 14.2 mg/l Lamotrigin 

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 14.94 15.370 15.772 15.758 15.294 14.057 15.912 14.490 

2 14.83 15.804 16.076 15.723 15.204 14.534 16.526 14.538 

3 14.53 15.391 16.281 15.221 15.441 15.357 15.660 14.249 

4 14.75 15.393 16.245 15.474 15.411 14.753 15.387 14.419 

5 14.77 15.631 16.162 15.284 15.432 14.922 15.717 14.434 

6 14.90 15.707 16.442 15.458 15.260 15.207 16.239 14.524 

Mittelwert 14.786 15.549 16.163 15.486 15.340 14.805 15.907 14.442 

BIAS % 4.126 9.502 13.824 9.059 8.031 4.261 12.020 1.707 

SD 0.144 0.189 0.228 0.220 0.101 0.472 0.415 0.106 

VK % 0.972 1.214 1.408 1.421 0.657 3.191 2.609 0.733 

 
Anhang 18 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 9.73 mg/l Levetiracetam  

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 10.94 10.754 11.060 9.836 13.474 11.412 10.288 9.885 

2 10.86 11.532 10.833 11.173 12.504 12.148 9.783 10.403 

3 11.18 11.307 11.402 11.270 13.545 8.403 10.278 9.851 

4 11.11 11.490 11.413 10.276 13.548 10.366 10.241 9.838 

5 10.36 11.454 11.424 10.152 13.138 12.190 10.221 10.532 

6 10.95 11.866 9.611 10.958 13.286 8.434 9.774 10.417 

Mittelwert 10.90 11.40 10.96 10.61 13.25 10.49 10.10 10.15 

BIAS % 12.013 17.169 12.612 9.053 36.168 7.833 3.777 4.361 

SD 0.289 0.366 0.702 0.599 0.399 1.737 0.248 0.328 

VK % 2.656 3.215 6.404 5.645 3.012 16.556 2.459 3.231 

 
Anhang 19 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 23.2 mg/l Levetiracetam  

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 22.00 23.981 23.539 23.667 27.869 21.990 26.509 24.148 

2 22.07 23.997 24.556 23.144 28.051 24.661 25.078 23.590 

3 22.26 24.543 22.206 23.029 28.500 26.981 25.866 23.400 

4 22.48 24.681 23.226 21.333 27.410 26.004 25.312 23.535 

5 22.13 24.633 23.575 24.583 28.552 24.553 25.272 23.720 

6 22.16 24.425 23.198 25.228 29.155 20.110 25.633 22.705 

Mittelwert 22.185 24.377 23.383 23.4997 23.256 24.050 25.612 23.516 

BIAS % -4.376 5.072 0.790 1.281 1.794 3.663 10.395 1.364 

SD 0.169 0.313 0.759 1.359 0.610 2.561 0.522 0.473 

VK % 0.760 1.283 3.246 5.783 2.160 10.650 2.037 2.011 
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Anhang 20 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 1.04 mg/l Gabapentin  

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 1.11 1.107 1.024 1.104 1.211 1.091 1.111 1.100 

2 1.08 1.188 0.987 1.228 1.191 0.964 1.115 1.112 

3 1.13 1.120 0.965 1.159 1.222 1.042 1.134 0.995 

4 1.09 1.099 0.966 1.178 1.238 1.073 1.136 1.084 

5 1.08 1.141 1.013 1.134 1.222 1.560 1.138 1.137 

6 1.01 1.166 1.008 1.263 1.109 1.234 1.106 1.103 

Mittelwert 1.084 1.137 0.994 1.178 1.199 1.161 1.123 1.089 

BIAS % 4.231 9.311 -4.439 13.237 15.272 11.603 8.013 4.663 

SD 0.040 0.035 0.025 0.059 0.047 0.215 0.014 0.049 

VK % 3.702 3.070 2.518 5.023 3.892 18.484 1.266 4.502 

 
Anhang 21 Bestimmung der Genauigkeit über 8 Tage: Kontrollprobe 9.73 mg/l Gabapentin  

Messung Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 

1 7.07 7.373 7.887 6.935 6.849 7.389 6.674 6.617 

2 7.19 7.581 7.868 7.040 7.127 7.150 6.814 6.452 

3 7.22 7.504 7.678 6.730 7.036 7.085 6.770 6.515 

4 7.09 7.326 7.918 6.521 7.086 7.001 6.171 6.528 

5 7.28 7.441 7.867 6.756 7.238 7.282 6.877 6.656 

6 7.18 7.540 7.771 6.965 7.233 7.195 6.677 6.495 

Mittelwert 7.171 7.461 7.832 6.825 7.095 7.184 6.755 6.544 

BIAS % 9.809 14.255 19.931 4.510 8.650 10.010 3.443 0.212 

SD 0.080 0.099 0.090 0.192 0.145 0.139 0.254 0.077 

VK % 1.121 1.325 1.147 2.812 2.039 1.931 3.811 1.180 

 
Anhang 22 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von Coffein 
(QC 5 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

15 259,475 264,8446 225 3892,125 28,8326 67327,28 21025 170,1242 1891,259 
63 272,744 267,3848 3969 17182,87 28,72086 74389,29 9409 0,051001 -21,9058 
126 272,314 270,7188 15876 34311,56 2,544511 74154,91 1156 0,041684 6,941667 
189 274,626 274,0529 35721 51904,31 0,328467 75419,44 841 4,442961 61,12717 
252 275,588 277,3869 63504 69448,18 3,236086 75948,75 8464 9,423877 282,4247 
315 280,362 280,7209 99225 88314,03 0,128841 78602,85 24025 61,52572 1215,794 

Zeit 
(min) 

Peakfläche 
absolut 

y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

15 259,475 18,1942 225 3892,125 58216,43 67327,28 21025 170,1242 1891,259 
63 272,744 76,41563 3969 17182,87 38544,83 74389,29 9409 0,051001 -21,9058 
126 272,314 152,8313 15876 34311,56 14276,12 74154,91 1156 0,041684 6,941667 
189 274,626 229,2469 35721 51904,31 2059,263 75419,44 841 4,442961 61,12717 
252 275,588 305,6625 63504 69448,18 904,4775 75948,75 8464 9,423877 282,4247 
315 280,362 382,0782 99225 88314,03 10346,18 78602,85 24025 61,52572 1215,794 
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Anhang 23 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von Coffein 
(QC 10 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

15 535,186 537,6945 225 8027,79 6,29255 286424,1 21025 35,32717 861,8317 
63 537,954 538,8317 3969 33891,1 0,770279 289394,5 9409 10,08486 308,0397 
126 544,489 540,3242 15876 68605,61 17,34574 296468,3 1156 11,28512 -114,217 
189 543,881 541,8167 35721 102793,5 4,261331 295806,5 841 7,569835 79,78867 
252 542,142 543,3092 63504 136619,8 1,362411 293917,9 8464 1,024819 93,13467 
315 543,126 544,8017 99225 171084,7 2,808125 294985,9 24025 3,985347 309,4317 

Zeit 
(min) 

Peakfläche 
absolut 

y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

15 535,186 35,76486 225 8027,79 249421,5 286424,1 21025 35,32717 861,8317 
63 537,954 150,2124 3969 33891,1 150343,5 289394,5 9409 10,08486 308,0397 
126 544,489 300,4248 15876 68605,61 59567,32 296468,3 1156 11,28512 -114,217 
189 543,881 450,6372 35721 102793,5 8694,398 295806,5 841 7,569835 79,78867 
252 542,142 600,8497 63504 136619,8 3446,589 293917,9 8464 1,024819 93,13467 
315 543,126 751,0621 99225 171084,7 43237,41 294985,9 24025 3,985347 309,4317 
 
Anhang 24 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von Coffein 
(QC 20 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

15 1014,421 1018,27 225 15216,32 14,81519 1029050 21025 722,4627 3897,407 
63 1037,211 1025,894 3969 65344,29 128,0825 1075807 9409 16,7172 396,6007 
126 1033,488 1035,9 15876 130219,5 5,815905 1068097 1156 61,02214 265,5967 
189 1034,139 1045,906 35721 195452,3 138,4526 1069443 841 51,27515 -207,659 
252 1059,739 1055,912 63504 267054,2 14,64929 1123047 8464 340,009 1696,419 
315 1068,8 1065,918 99225 336672 8,308621 1142333 24025 756,2683 4262,552 

Zeit 
(min) 

Peakfläche 
absolut 

y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

15 1014,421 69,3272 225 15216,32 893202,3 1029050 21025 722,4627 3897,407 
63 1037,211 291,1742 3969 65344,29 556570,9 1075807 9409 16,7172 396,6007 
126 1033,488 582,3484 15876 130219,5 203526,9 1068097 1156 61,02214 265,5967 
189 1034,139 873,5227 35721 195452,3 25797,6 1069443 841 51,27515 -207,659 
252 1059,739 1164,697 63504 267054,2 11016,16 1123047 8464 340,009 1696,419 
315 1068,8 1455,871 99225 336672 149824,1 1142333 24025 756,2683 4262,552 
 
Anhang 25 Nachweis der Prozessstabilität über die absoluten Peakflächenverhältnisse bei der 
Bestimmung von Lidocain  
Zeitpunkt der Injektion 28 min 70 min 112 min 154 min 196 min 238 min 

Konzentration 0.5 mg/l             

Peakfläche 421,08 429,96 435,76 425,33 434,20 434,20 

Peakfläche % 100,00 102,11 103,49 101,01 103,12 103,12 

Konzentration 2.5 mg/l             

Peakfläche 1604,47 1695,77 1731,01 1736,16 1706,42 1757,38 

Peakfläche % 100,00 105,69 107,89 108,21 106,35 109,53 

Konzentration 5 mg/l             

Peakfläche 3168,78 3338,66 3338,33 3433,53 3307,86 3368,24 

Peakfläche % 100,00 105,36 105,35 108,35 104,39 106,29 
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Anhang 26 Nachweis der Prozessstabilität über die absoluten Peakflächenverhältnisse bei der 
Bestimmung von 10-OH-Carbazepin, Lamotrigin, Levetiracetam und Gabapentin  
10-OH-Carbazepin       

Zeitpunkt der Injektion 19 min 63 min 126 min 189 min 252 min 315 min 
Konzentration  
4,69 mg/l             

Peakfläche absolut 385,675 425,119 434,661 485,347 496,612 427,962 

Peakfläche % 100,00 110,23 112,70 125,84 128,76 110,96 
Konzentration  
23,7 mg/l             

Peakfläche absolut 1793,996 1807,875 1815,708 1879,569 1901,966 1930,567 

Peakfläche % 100,00 100,77 101,21 104,77 106,02 107,61 

Lamotrigin       

Zeitpunkt der Injektion 19 min 63 min 126 min 189 min 252 min 315 min 
Konzentration  
2,87 mg/l             

Peakfläche absolut 505,323 511,307 519,999 517,755 541,359 577,293 

Peakfläche % 100,00 101,18 102,90 102,46 107,13 114,24 
Konzentration  
14,2 mg/l             

Peakfläche absolut 2318,077 2587,594 2689,591 2623,774 2617,285 2689,591 

Peakfläche % 100,00 111,63 116,03 113,19 112,91 116,03 

Levetiracetam       

Zeitpunkt der Injektion 19 min 63 min 126 min 189 min 252 min 315 min 
Konzentration  
9,73 mg/l             

Peakfläche absolut 23,578 23,677 24,457 25,925 26,872 27,553 

Peakfläche % 100,00 100,42 103,73 109,95 113,97 116,86 
Konzentration  
23,2 mg/l             

Peakfläche absolut 46,08 51,291 50,568 53,454 53,67 54,449 

Peakfläche % 100,00 111,31 109,74 116,00 116,47 118,16 

Gabapentin       

Zeitpunkt der Injektion 19 min 63 min 126 min 189 min 252 min 315 min 
Konzentration 
1,04 mg/l             

Peakfläche absolut 133,001 140,767 150,459 169,64 166,673 173,259 

Peakfläche % 100,00 105,84 113,13 127,55 125,32 130,27 
Konzentration  
6,53 mg/l             

Peakfläche absolut 703,21 724,823 726,501 735,489 744,916 748,872 

Peakfläche % 100,00 103,07 103,31 104,59 105,93 106,49 
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Anhang 27 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von Lidocain 
(QC 0.5 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

28 421,075 425,2348 784 11790,1 17,30402 177304,2 11025 81,1831 946,0675 
70 429,957 427,175 4900 30096,99 7,739789 184863 3969 0,016427 8,0745 
112 435,756 429,1151 12544 48804,67 44,10162 189883,3 441 32,15835 -119,087 
154 425,327 431,0552 23716 65500,36 32,81271 180903,1 441 22,64015 -99,9215 
196 434,2 432,9954 38416 85103,2 1,451107 188529,6 3969 16,93185 259,2345 
238 434,196 434,9355 56644 103338,6 0,546895 188526,2 11025 16,89895 431,6375 

Zeit 
(min) 

Peakfläche 
absolut 

y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

28 421,075 70,43408 784 11790,1 122949,1 177304,2 11025 81,1831 946,0675 
70 429,957 176,0852 4900 30096,99 64450,89 184863 3969 0,016427 8,0745 
112 435,756 281,7363 12544 48804,67 23722,06 189883,3 441 32,15835 -119,087 
154 425,327 387,3875 23716 65500,36 1439,409 180903,1 441 22,64015 -99,9215 
196 434,2 493,0386 38416 85103,2 3461,979 188529,6 3969 16,93185 259,2345 
238 434,196 598,6897 56644 103338,6 27058,18 188526,2 11025 16,89895 431,6375 
 
Anhang 28 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von Lidocain 
(QC 2.5 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

28 1604,467 1647,938 784 44925,08 1889,686 2574314 11025 10146,97 10576,88 
70 1695,766 1670,842 4900 118703,6 621,1968 2875622 3969 88,98463 594,2895 
112 1731,005 1693,747 12544 193872,6 1388,171 2996378 441 665,941 -541,923 
154 1736,16 1716,651 23716 267368,6 380,5818 3014252 441 958,5732 650,1775 
196 1706,422 1739,556 38416 334458,7 1097,872 2911876 3969 1,495321 77,0385 
238 1757,375 1762,461 56644 418255,3 25,86546 3088367 11025 2722,318 5478,463 

Zeit 
(min) 

Peakfläche 
absolut 

y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

28 1604,467 281,5418 784 44925,08 1750131 2574314 11025 10146,97 10576,88 
70 1695,766 703,8544 4900 118703,6 983888,6 2875622 3969 88,98463 594,2895 
112 1731,005 1126,167 12544 193872,6 365828,9 2996378 441 665,941 -541,923 
154 1736,16 1548,48 23716 267368,6 35223,89 3014252 441 958,5732 650,1775 
196 1706,422 1970,792 38416 334458,7 69891,69 2911876 3969 1,495321 77,0385 
238 1757,375 2393,105 56644 418255,3 404152,6 3088367 11025 2722,318 5478,463 
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Anhang 29 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von Lidocain 
(QC 5 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

28 3168,784 3254,466 784 88725,95 7341,356 10041192 11025 24685,59 16497,23 
70 3338,656 3283,04 4900 233705,9 3093,181 11146624 3969 162,7028 -803,596 
112 3338,332 3311,614 12544 373893,2 713,876 11144461 441 154,5422 -261,061 
154 3433,531 3340,187 23716 528763,8 8713,017 11789135 441 11584,32 2260,24 
196 3307,862 3368,761 38416 648341 3708,733 10941951 3969 325,3875 -1136,43 
238 3368,238 3397,335 56644 801640,6 846,652 11345027 11025 1792,464 4445,437 

Zeit 
(min) 

Peakfläche 
absolut 

y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

28 3168,784 546,7138 784 88725,95 6875252 10041192 11025 24685,59 16497,23 
70 3338,656 1366,784 4900 233705,9 3888278 11146624 3969 162,7028 -803,596 
112 3338,332 2186,855 12544 373893,2 1325899 11144461 441 154,5422 -261,061 
154 3433,531 3006,926 23716 528763,8 181992,1 11789135 441 11584,32 2260,24 
196 3307,862 3826,996 38416 648341 269500,4 10941951 3969 325,3875 -1136,43 
238 3368,238 4647,067 56644 801640,6 1635404 11345027 11025 1792,464 4445,437 
 
Anhang 30 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von 
10-OH-Carbazepin (QC 4.67 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 385.675 411.6139 361 7327.825 672.8275 148745.2 20069.44 3236.207 8059.086 
63 425.119 421.2262 3969 26782.5 15.15362 180726.2 9538.778 304.2815 1703.665 
126 434.661 434.9893 15876 54767.29 0.107798 188930.2 1201.778 62.43634 273.9244 
189 485.347 448.7524 35721 91730.58 1339.164 235561.7 802.7778 1830.499 1212.223 
252 496.612 462.5155 63504 125146.2 1162.571 246623.5 8341.778 2921.33 4936.506 
315 427.962 476.2786 99225 134808 2334.494 183151.5 23818.78 213.1795 -2253.37 
Zeit 

(min) 
Peakfläche 

absolut 
y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 385.675 38.28245 361 7327.825 120681.6 148745.2 20069.44 3236.207 8059.086 
63 425.119 126.9365 3969 26782.5 88912.79 180726.2 9538.778 304.2815 1703.665 
126 434.661 253.8731 15876 54767.29 32684.28 188930.2 1201.778 62.43634 273.9244 
189 485.347 380.8096 35721 91730.58 10928.07 235561.7 802.7778 1830.499 1212.223 
252 496.612 507.7461 63504 125146.2 123.9687 246623.5 8341.778 2921.33 4936.506 
315 427.962 634.6827 99225 134808 42733.43 183151.5 23818.78 213.1795 -2253.37 
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Anhang 31 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von 
10-OH-Carbazepin (QC 23.2 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 1793.996 1785.516 361 34085.92 71.902 3218422 20069.44 3715.004 8634.701 
63 1807.875 1807.081 3969 113896.1 0.630847 3268412 9538.778 2215.757 4597.349 
126 1815.708 1837.957 15876 228779.2 495.01 3296796 1201.778 1539.686 1360.28 
189 1879.569 1868.833 35721 355238.5 115.2638 3532780 802.7778 606.2511 697.6281 
252 1901.966 1899.709 63504 479295.4 5.094136 3617475 8341.778 2210.802 4294.417 
315 1930.567 1930.585 99225 608128.6 0.000326 3727089 23818.78 5718.41 11670.71 

Zeit 
(min) 

Peakfläche 
absolut 

y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 1793.996 158.0979 361 34085.92 2676163 3218422 20069.44 3715.004 8634.701 
63 1807.875 524.2193 3969 113896.1 1647772 3268412 9538.778 2215.757 4597.349 
126 1815.708 1048.439 15876 228779.2 588702.2 3296796 1201.778 1539.686 1360.28 
189 1879.569 1572.658 35721 355238.5 94194.37 3532780 802.7778 606.2511 697.6281 
252 1901.966 2096.877 63504 479295.4 37990.42 3617475 8341.778 2210.802 4294.417 
315 1930.567 2621.097 99225 608128.6 476831.2 3727089 23818.78 5718.41 11670.71 

 

Anhang 32 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von Lamotrigin 
(QC 2.87 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 505.323 498.5 361 9601.137 46.5532 255351.3 20069.44 553.0179 3331.481 
63 511.307 507.923 3969 32212.34 11.45114 261434.8 9538.778 307.3827 1712.325 
126 519.999 521.4151 15876 65519.87 2.005403 270399 1201.778 78.15149 306.4649 
189 517.755 534.9072 35721 97855.7 294.1979 268070.2 802.7778 122.8624 -314.056 
252 541.359 548.3993 63504 136422.5 49.56545 293069.6 8341.778 156.7421 1143.463 
315 577.293 561.8913 99225 181847.3 237.2108 333267.2 23818.78 2347.758 7478.016 

Zeit 
(min) 

Peakfläche 
absolut 

y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 505.323 45.48568 361 9601.137 211450.4 255351.3 20069.44 553.0179 3331.481 
63 511.307 150.8209 3969 32212.34 129950.2 261434.8 9538.778 307.3827 1712.325 
126 519.999 301.6419 15876 65519.87 47679.83 270399 1201.778 78.15149 306.4649 
189 517.755 452.4628 35721 97855.7 4263.066 268070.2 802.7778 122.8624 -314.056 
252 541.359 603.2838 63504 136422.5 3834.679 293069.6 8341.778 156.7421 1143.463 
315 577.293 754.1047 99225 181847.3 31262.39 333267.2 23818.78 2347.758 7478.016 
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Anhang 33 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von Lamotrigin 
(QC 14.2 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 2318.077 2467.42 361 44043.46 22303.4 5373481 20069.44 72670.68 38189.79 
63 2587.594 2504.763 3969 163018.4 6861.006 6695643 9538.778 0.003364 5.664667 
126 2689.591 2558.231 15876 338888.5 17255.56 7233900 1201.778 10391.56 -3533.89 
189 2623.774 2611.698 35721 495893.3 145.8213 6884190 802.7778 1304.799 1023.457 
252 2617.285 2665.166 63504 659555.8 2292.602 6850181 8341.778 878.1147 2706.481 
315 2689.591 2718.634 99225 847221.2 843.4896 7233900 23818.78 10391.56 15732.59 

Zeit 
(min) 

Peakfläche 
absolut 

y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 2318.077 221.4611 361 44043.46 4395798 5373481 20069.44 72670.68 38189.79 
63 2587.594 734.3183 3969 163018.4 3434631 6695643 9538.778 0.003364 5.664667 
126 2689.591 1468.637 15876 338888.5 1490730 7233900 1201.778 10391.56 -3533.89 
189 2623.774 2202.955 35721 495893.3 177088.7 6884190 802.7778 1304.799 1023.457 
252 2617.285 2937.273 63504 659555.8 102392.4 6850181 8341.778 878.1147 2706.481 
315 2689.591 3671.591 99225 847221.2 964324.8 7233900 23818.78 10391.56 15732.59 

 

Anhang 34 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von Levetiracetam 
(QC 9.73 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 23.578 23.25402 361 447.982 0.104962 555.9221 20069.44 3.117579 250.1361 
63 23.677 23.90304 3969 1491.651 0.051095 560.6003 9538.778 2.777778 162.7778 
126 24.457 24.83232 15876 3081.582 0.140864 598.1448 1201.778 0.786178 30.73778 
189 25.925 25.7616 35721 4899.825 0.026701 672.1056 802.7778 0.337948 16.47111 
252 26.872 26.69087 63504 6771.744 0.032807 722.1044 8341.778 2.335803 139.5878 
315 27.553 27.62015 99225 8679.195 0.004509 759.1678 23818.78 4.881154 340.9738 
Zeit 

(min) 
Peakfläche 

absolut 
y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 23.578 2.204685 361 447.982 456.8186 555.9221 20069.44 3.117579 250.1361 
63 23.677 7.310271 3969 1491.651 267.8698 560.6003 9538.778 2.777778 162.7778 
126 24.457 14.62054 15876 3081.582 96.75589 598.1448 1201.778 0.786178 30.73778 
189 25.925 21.93081 35721 4899.825 15.95352 672.1056 802.7778 0.337948 16.47111 
252 26.872 29.24109 63504 6771.744 5.612564 722.1044 8341.778 2.335803 139.5878 
315 27.553 36.55136 99225 8679.195 80.97042 759.1678 23818.78 4.881154 340.9738 

 



Anhang 113 

 

Anhang 35 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von Levetiracetam 
(QC 23.2 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 46.08 48.18826 361 875.52 4.444778 2123.366 20069.44 30.3087 779.9222 
63 51.291 49.24335 3969 3231.333 4.192855 2630.767 9538.778 0.086632 28.74656 
126 50.568 50.75405 15876 6371.568 0.034615 2557.123 1201.778 1.034967 35.26756 
189 53.454 52.26475 35721 10102.81 1.414322 2857.33 802.7778 3.491915 52.94556 
252 53.67 53.77544 63504 13524.84 0.011118 2880.469 8341.778 4.345835 190.3996 
315 54.449 55.28614 99225 17151.44 0.700804 2964.694 23818.78 8.200587 441.9592 
Zeit 

(min) 
Peakfläche 

absolut 
y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 46.08 4.453994 361 875.52 1732.724 2123.366 20069.44 30.3087 779.9222 
63 51.291 14.76851 3969 3231.333 1333.893 2630.767 9538.778 0.086632 28.74656 
126 50.568 29.53701 15876 6371.568 442.3024 2557.123 1201.778 1.034967 35.26756 
189 53.454 44.30552 35721 10102.81 83.69468 2857.33 802.7778 3.491915 52.94556 
252 53.67 59.07403 63504 13524.84 29.20351 2880.469 8341.778 4.345835 190.3996 
315 54.449 73.84253 99225 17151.44 376.1092 2964.694 23818.78 8.200587 441.9592 

 

Anhang 36 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von Gabapentin 
(QC 1.04 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 133.001 135.7228 361 2527.019 7.40822 17689.27 20069.44 512.215 3206.224 
63 140.767 141.9067 3969 8868.321 1.298982 19815.35 9538.778 221.0029 1451.929 
126 150.459 150.761 15876 18957.83 0.091194 22637.91 1201.778 26.772 179.3711 
189 169.64 159.6152 35721 32061.96 100.4958 28777.73 802.7778 196.1914 396.8603 
252 166.673 168.4695 63504 42001.6 3.227392 27779.89 8341.778 121.8779 1008.305 
315 173.259 177.3237 99225 54576.59 16.52219 30018.68 23818.78 310.67 2720.254 
Zeit 

(min) 
Peakfläche 

absolut 
y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 133.001 13.81564 361 2527.019 14205.15 17689.27 20069.44 512.215 3206.224 
63 140.767 45.80976 3969 8868.321 9016.877 19815.35 9538.778 221.0029 1451.929 
126 150.459 91.61952 15876 18957.83 3462.084 22637.91 1201.778 26.772 179.3711 
189 169.64 137.4293 35721 32061.96 1037.531 28777.73 802.7778 196.1914 396.8603 
252 166.673 183.239 63504 42001.6 274.4337 27779.89 8341.778 121.8779 1008.305 
315 173.259 229.0488 99225 54576.59 3112.502 30018.68 23818.78 310.67 2720.254 
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Anhang 37 Lineare Regressionsanalyse zum Nachweis der Prozessstabilität von Gabapentin 
(QC 6.53 mg/l) 

Zeit 
(min) 

Peakfläche 
absolut 

y*=a+bx x² x·y Δy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 703.21 710.9699 361 13360.99 60.21645 494504.3 20069.44 752.1398 3885.232 
63 724.823 717.0777 3969 45663.85 59.98939 525368.4 9538.778 33.78128 567.6549 
126 726.501 725.823 15876 91539.13 0.459729 527803.7 1201.778 17.09133 143.3178 
189 735.489 734.5682 35721 139007.4 0.847845 540944.1 802.7778 23.5597 137.5253 
252 744.916 743.3135 63504 187718.8 2.568125 554899.8 8341.778 203.9422 1304.316 
315 748.872 752.0587 99225 235894.7 10.15513 560809.3 23818.78 332.5821 2814.551 
Zeit 

(min) 
Peakfläche 

absolut 
y*=cx x² x·y Dy² y² (x-X)2 (y-Y)2 (x-X)(y-Y) 

19 703.21 61.97183 361 13360.99 411186.4 494504.3 20069.44 752.1398 3885.232 
63 724.823 205.4856 3969 45663.85 269711.4 525368.4 9538.778 33.78128 567.6549 
126 726.501 410.9711 15876 91539.13 99559.12 527803.7 1201.778 17.09133 143.3178 
189 735.489 616.4567 35721 139007.4 14168.7 540944.1 802.7778 23.5597 137.5253 
252 744.916 821.9422 63504 187718.8 5933.036 554899.8 8341.778 203.9422 1304.316 
315 748.872 1027.428 99225 235894.7 77593.31 560809.3 23818.78 332.5821 2814.551 

 

Anhang 38 Kalibriergerade für die Bestimmung der Nachweisgrenze von Lidocain 

 
Standard Konzentration 

[mg/l] 
Absolute 

Peakfläche 
1 0.05 13.241 
2 0.05 12.741 
3 0.1 19.565 
4 0.1 20.821 
5 0.5 80.826 
6 0.5 81.432 
7 1 145.768 
8 1 146.843 

 

Anhang 39 Kalibriergerade für die Bestimmung der Nachweisgrenze von 10-OH-Carbazepin 

 
Standard 

Konzentration [mg/l] 
Absolute 

Peakfläche 
1 0.033 8.456 
2 0.033 8.160 
3 0.066 11.057 
4 0.066 12.008 
5 0.164 19.624 
6 0.164 19.602 
7 0.328 21.428 
8 0.328 22.994 
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Anhang 40 Kalibriergerade für die Bestimmung der Nachweisgrenze von Lamotrigin 
 Standard 

Konzentration [mg/l] 
Absolute 

Peakfläche 
1 0.024 2.628 
2 0.024 2.483 
3 0.047 5.771 
4 0.047 5.807 
5 0.118 17.933 
6 0.118 18.391 
7 0.235 23.825 
8 0.235 23.621 

 

Anhang 41 Kalibriergerade für die Bestimmung der Nachweisgrenze von Levetiracetam 
 Standard 

Konzentration [mg/l] 
Absolute 

Peakfläche 
1 0.205 2.550 
2 0.205 2.812 
3 0.410 3.370 
4 0.410 3.001 
5 0.820 8.578 
6 0.820 8.449 
7 2.050 24.941 
8 2.050 20.721 

 

Anhang 42 Kalibriergerade für die Bestimmung der Nachweisgrenze von Gabapentin 
 Standard 

Konzentration [mg/l] 
Absolute 

Peakfläche 
1 0.046 6.872 
2 0.046 7.101 
3 0.092 9.493 
4 0.092 8.876 
5 0.184 23.818 
6 0.184 24.201 
7 0.460 57.850 
8 0.460 57.833 

 

Anhang 43 Nachweis der Linearität der Quantifizierung von Pregabalin im Serum 

Messung 0.05 mg/l 0.1 mg/l 0.5 mg/l 1 mg/l 2.5 mg/l 5 mg/l 10 mg/l 

1 0.035 0.087 0.58 1.089 2.8 4.888 9.818 

2 0.037 0.094 0.584 1.109 2.727 4.887 9.744 

3 0.039 0.09 0.592 1.049 2.651 4.896 10.066 

4 0.039 0.093 0.593 1.113 2.774 4.965 9.508 

5 0.038 0.087 0.583 1.05 2.779 4.977 9.894 

6 0.037 0.091 0.594 1.107 2.617 4.942 9.544 

Mittelwert 0.0375 0.0903 0.5877 1.0862 2.7247 4.9258 9.7623 

SD 0.0015 0.0029 0.0060 0.0296 0.0750 0.0406 0.2123 

Varianz 0.0000 0.0000 0.0000 0.0009 0.0056 0.0017 0.0451 

VK % 4.0533 3.2546 1.0244 2.7224 2.7508 0.8242 2.1746 
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Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die Angaben für die 
spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

2-Amino-5-chlorbenzophenon C13H10ClNO 15,47   

2-Amino-5-Chlorpyridin C5H5N2Cl 2,53   

4-Aminobenzoic acid C7H7O2N 3,79   

4-Aminosalicylohydrazid C7H9N3O2 2,14 f:110.0606 

4-Fluormethcathinon C10H12FNO 4,38 f:148.0533 

5-Bromsalicylisopropylamid C10H12O2NBr 13,95   

5-Carboxybupranol C14H20O4NCl 8,83 f:131.0946 

7-amino desmethylflunitrazepam,121.0850 C15H12ON3F 5,01 f:226.0781 

7-Amino-Flunitrazepam,227.1040 C16H14ON3F 8,04 f:227.0985 

8-Hydroxychinolin C9H7NO 2,47   

3.4-MDA,135.0446 C10H13NO2 5,07 f:163.0759 

3.4-MDE (3,4-Methylendioxy-N-
ethylamphetamin),163.0759 

C12H17NO2 5,58 f:135.0446 

3.4-MDMA,163.0446 C11H15NO2 5,13 f:135.0446 

Abacavir C14H18ON6 5,85 f:191.1045 

Acarbose C25H43NO18 0,94 f:304.1396 

Acebutolol C18H28N2O4 7,35 f:319.2022 

Aceclidin C9H15NO2 2,33   

Aceprometazine,282.0953 C19H22N2OS 11,00 f:240.0483 

Acetiamin C16H22N4O4S 5,63   

Acetopromazine C19H22ON2S 11,35   

Acetylmethionin C7H13O3NS 4,33   

Acetylsulfametoxypyridazin C13H14N4O4S 8,37   

Acipimox C6H6N2O3 2,20 f:110.0468 

Aclarubicin C42H53NO15 14,57 f:570.2339 

Acetylmethionin C7H13O3NS 4,33   

Acetylsulfametoxypyridazin C13H14N4O4S 8,37   

Acipimox C6H6N2O3 2,20 f:110.0468 

Aclarubicin C42H53NO15 14,57 f:570.2339 

Aconitine C34H47O11N 11,25   

Actinoquinol C11H11NO4S 3,37 f:226.0174 

Acyclovir C8H11N5O3 2,51 f:152.0586 

Adeptolon C17H22N3Br 15,90   

Adrenalon C9H11O3N 1,83 f:164.0712 

Aesculin C15H16O9 5,00 f:179.0344 



Anhang 117 

 

Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Ajmaline C20H26N2O2 7,72 f:309.1967 

Alachlor,162.1283 C14H20NO2Cl 15,74 f:238.0999 

Alfaxalone C21H32O3 15,72 f:279.2324 

Alfuzosin C19H27N5O4 8,69 f:156.1025 

Alimemazine  C18H22N2S 11,65 f:212.0534 

Alizapride,124.1126 C16H21N5O2 4,90 f:176.0460 

Alloxydim C17H25NO5 16,18 f:206.1181 

Allylestrenol - NEG C21H32O 19,08   

Almitrine C26H29N7F2 16,21 f:276.1937 

Aloin,257.0814 C21H22O9 11,66 f:239.0708 

Alprazolam C17H13N4Cl 13,07 f:282.0741 

Alprenolol C15H23NO2 9,97 f:232.1701 

Alverine C20H27N 11,46 f:164.1439 

Alypin C16H26O2N2 8,17 f:112.1126 

Amantadin C10H17N 6,50 f:135.1174 

Ambazon C8H11N7S 4,74 f:221.0609 

Ambroxol C13H18ON2Br2 8,67 f:261.8867 

Ambucetamide C17H28N2O2 8,59   

Amcinonide,465.2231 C28H35O7F 16,81 f:339.1579 

Ametryne C9H17N5S 12,19 f:186.0813 

Amezinium C11H12N3O 5,49 f:186.0667 

Amfepramon C13H19NO 5,14 f:100.1126 

Amidithion C7H16NO4PS2 9,37 f:170.9703 

Amidosulfuron,154.0617 C9H15N5O7S2 12,38 f:182.0566 

Amiloride  C6H8N7OCl 4,44 f:161.0230 

Aminocarb C11H16N2O2 3,47 f:152.1075 

Aminoglutethimid,188.1075 C13H16O2N2 5,13 f:203.0821 

Aminophenazone C13H17N3O 4,19 f:117.0578 

Amiphenazol C9H9N3S 4,15 f:116.0500 

Amisulpride C17H27N3O4S 5,42 f:242.0487 

Amitriptyline C20H23N 11,99 f:205.1017 

Amitriptylinoxide C20H23NO 12,41 f:233.1330 

Amitrole C2H4N4 0,85   

Amlodipin C20H25N2O5Cl 12,27 f:377.1268 

Ammoidin C12H8O4 11,21 f:202.0266 

Amorolfine,130.1232 C21H35NO 13,80 f:161.1330 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Amoxapin C17H16N3OCl 11,28 f:271.0638 

Amphetamin C9H13N 4,79 f:119.0861 

Amphotericin B C47H73NO17 15,78 f:419.2434 

Amprenavir C25H35O6N3S 13,06 f:245.1639 

Amrinone C10H9N3O 2,16   

Amsacrine C21H19N3O3S 9,40 f:315.1372 

Amylocain C14H21NO2 8,49 f:114.1283 

Anastrazol;266.1531;226.1344;225.1392 C17H19N5 10,61 f:267.1735 

Anetholtrithion C10H8OS3 15,68   

Anilofos,170.9703 C13H19NO3PS2Cl 16,41 f:198.9652 

Antazoline,174.1031 C17H19N3 9,62 f:196.1126 

Antu C11H10N2S 8,94 f:127.0548 

Apomorphine C17H17NO2 5,82 f:237.0916 

Apovincamine C21H24N2O2 10,12 f:308.1525 

Apraclonidin C9H10N4Cl2 3,22 f:209.0594 

Aprinidin,114.1283 C22H30N2 11,77 f:222.1283 

Aripiprazol C23H27N3O2Cl2 11,83 f:285.0925 

Articaine C13H20N2O3S 6,82   

Astemizole,325.1828 C28H31N4OF 8,85 f:218.1545 

Asulam C8H10N2O4S 4,18 f:156.0119 

Atenolol C14H22O3N2 3,55 f:190.0868 

Atorvastatin C33H35N2O5F 15,61 f:466.2030 

Atraton C9H17N5O 9,41 f:170.1042 

Atrazindesethyl C6H10N5Cl 8,71 f:146.0233 

Atrazine C8H14N5Cl 12,80   

Atropin;260.1651;142.1232 C17H23NO3 5,91 f:124.1126 

Azaperone C19H22N3OF 6,94 f:165.0716 

Azapropazone C16H20N4O2 10,90 f:189.1140 

Azatadine C20H22N2 6,71 f:260.1439 

Azelastine C22H24N3OCl 11,56 f:112.1126 

Azintamid,186.9733 C10H14N3OSCl 10,18 f:158.9784 

Aziprotryne C7H11N7S 14,78 f:156.0344 

Azithromycin,416.3012 C38H72N2O12 8,87 f:158.1181 

Azoluron C12H14N4O 10,37 f:138.0667 

Azopropazon C16H20N4O2 10,54   

Bacampicillin,186.0589,202.0980 C21H27O7N3S 11,39 f:276.0906 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Baclofen  C10H12NO2Cl 5,22 f:154.0424 

Bambuterol C18H29O5N3 8,56 f:312.1559 

Bamethan,192.1388 C12H19NO2 4,27 f:136.0762 

Bamifylline,368.2073 C20H27N5O3 7,58 f:297.1393 

Bamipin C19H24N2 11,10 f:210.1283 

Barverin,174.1283 C29H43O3N5 8,26 f:112.1126 

BDB C11H15NO2 6,35 f:135.0446 

Befunolol C16H21NO4 7,46 f:177.0552 

Benactyzin C20H25NO3 9,26   

Benazepril,190.0868 C24H28O5N2 12,30 f:351.1709 

Bencyclan C19H31ON 13,19 f:104.1075 

Bendamustine C16H21N3O2Cl2 9,48 f:322.1322 

Bendroflumethiazid C15H14N3O4S2F3 11,07 f:270.9785 

Benerazid C10H15N3O5 0,92   

Benfluorex C19H20NO2F3 11,87 f:230.1157 

Benfotiamin C19H23N4O6PS 7,04 f:220.0783 

Benorylate BP C17H15O5N 12,25 f:121.0290 

Benoxacor C11H11NO2Cl2 13,78 f:149.0841 

Benoxaprofen C16H12NO3Cl 16,76 f:256.0529 

Benoxaprofen C16H12NO3Cl 16,76 f:256.0529 

Benperidol  C22H24N3O2F 9,25 f:165.0716 

Benproperine.183.0810 C21H27NO 12,35 f:126.1283 

Bensultap.150.0411 C17H21NO4S4 12,84 f:290.0343 

Bentazon C10H12N2O3S 12,61   

Bentiramid C23H20N2O5 11,91 f:240.1025 

Bezafibrat.276.0791 C19H20O4NCl 14,56 f:138.9951 

Benzarone.121.0290 C17H14O3 15,81 f:173.0603 

Benzatropine,140.1075 C21H25NO 11,73 f:167.0861 

Benzobarbital C19H16O4N2 19,43   

Benzocain C9H11NO2 9,70 f:120.0449 

Benzoctamin C18H19N 9,93 f:191.0861 

Benzoximate C18H18O5NCl 16,85 f:242.0584 

Benzoylecgonin,105.0340,272.1287 C16H19NO4 6,83 f:168.1025 

Benzquinamid C22H32N2O5 6,90 f:272.1287 

Benzydamine C19H23N3O 11,11 f:265.1341 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Benzylhydrochlorothiazide,252.9508 C14H14N3O4S2Cl 10,09 f:370.9927 

Benzylnicotinate C13H11O2N 13,37 f:170.0970 

Berberine C20H18NO4 9,18 f:322.1079 

Betahistine C8H12N2 0,93   

Betamethason-17-valerat C27H37O6F 16,31   

Betamethasone-17,21-dipropiona C28H37O7F 17,03   

Betanidin C10H15N3 4,97   

Betaxolol,116.1075 C18H29NO3 10,12 f:266.1756 

Betazole C5H9N3 0,95   

Bevonium C22H28O3N 8,99 f:144.1388 

Bicyclophenamin C20H27NO2 12,14 f:171.1174 

Bifonazole C22H18N2 12,93 f:243.1174 

Bioallethrin C19H26O3 18,18 f:135.0810 

Biperiden C21H29NO 11,32   

Bisacodyl  C22H19NO4 13,00 f:226.0888 

Bisbentiamin,235.1017,124.0875 C38H42O6N8S2 10,57 f:357.1385 

Bisoprolol,222.1494 C18H31NO4 9,22 f:116.1075 

Boldine C19H21NO4 5,92 f:297.1127 

Bornaprin,257.1542 C21H31O2N 12,53 f:114.1283 

Brimonidine C11H10N5Br 3,24   

Brinzolamid C12H21O5N3S3 5,66 f:282.9881 

Bromazepam C14H10N3OBr 11,37 f:261.0027 

Bromazine C17H20ONBr 11,95 f:244.9966 

Bromhexin,261.8867 C14H20N2Br2 11,26 f:114.1283 

Bromocriptin C32H40N5O5Br 12,56 f:346.0555 

Bromopride C14H22N3O2Br 6,63 f:227.9604 

Bromopyramin C16H20N3Br 10,62 f:168.9653 

Bromperidol C21H23NO2Br 10,92   

Brompheniramin,245.9918 C16H19N2Br 9,31 f:274.0231 

Brucine C23H26N2O4 6,18 f:367.1658 

Buclosamid C11H14NO2Cl 15,57 f:154.9900 

Budesonid,323.1647 C25H34O6 15,69 f:227.1480 

Budipin C21H27N 10,34 f:160.1126 

Bufexamac C12H17NO3 12,27 f:107.0497 

Buflomedil,195.0657 C17H25NO4 7,09 f:237.1127 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Bufotenine C12H16ON2 2,82 f:160.0762 

Bumetanid,242.0817 C17H20O5N2S 13,76 f:284.1287 

Bunazosin C19H27O3N5 8,69 f:304.1773 

Bunitrolol,120.0449 C14H20O2N2 7,00 f:164.0712 

Buphenine C19H25NO2 9,00 f:150.0898 

Bupirimate, 208.14503 C13H24O3N4S 14,97 f:166.0980 

Bupivacaine C18H28N2O 9,19 f:140.1426 

Bupranolol,216.0791 C14H22NO2Cl 10,47 f:155.0274 

Buprenorphine C29H41NO4 10,76   

Buprofezin,106.0657 C16H23ON3S 17,78 f:208.0545 

Buspirone C21H31N5O2 8,82 f:222.1481 

Butaclamol C25H31ON 12,11 f:344.2378 

Butalamine C18H28N4O 11,00 f:188.0780 

Butamirat C18H29NO3 10,38 f:191.1069 

Butanilicaine  C13H19N2OCl 7,79   

Butaperazine C24H31ON3S 14,03 f:141.1392 

Butetamat,119.0861 C16H25NO2 9,48 f:191.1072 

Butinolin C20H21ON 9,84 f:205.1017 

Butizid C11H16N3O4S2Cl 10,12 f:337.0084 

Butoxycain,177.0916 C17H27O3N 11,42 f:221.1170 

Butoxycarboxim C7H14N2O4S 4,65   

Buturon C12H13ON2Cl 13,13 f:128.0267 

Butylbiguanid C6H15N5 2,60   

Cabral,103.0548 C13H14N2O 5,14 f:119.0609 

Cafaminol- C11H17N5O3 8,04 f:222.0991 

Cafedrin C18H23O3N5 7,24 f:207.0882 

Camylofin C19H32O2N2 11,88 f:100.1126 

Candesartan,207.0770 C24H20O3N6 13,73 f:267.1134 

Cannabidiol C21H30O2 18,22 f:259.1698 

Capecitabin,174.0315 C15H22O6N3F 12,06 f:244.1097 

Captodiam C21H29NS2 14,74   

Captopril C9H15NO3S 7,52 f:116.0712 

Carazolol,116.1075 C18H22O2N2 8,47 f:184.0762 

Carbamazepine C15H12N2O 12,06 f:194.0970 

Carbamazepinepoxid C15H12N2O2 10,01 f:210.0919 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Carbaryl C12H11NO2 11,74 f:145.0694 

Carbendazim C9H9N3O2 5,29 f:132.0562 

Carbinoxamin C16H19ON2Cl 8,80 f:202.0424 

Carbocromen C20H27O5N 8,83 f:289.1076 

Carbromid C6H12NOBr 10,33   

Carbuterol C13H21O3N3 3,20 f:177.0664 

Carteolol C16H24O3N2 5,53 f:164.0712 

Carvedilol,184.0762 C24H26O4N2 10,91 f:224.1287 

Cathin C9H13NO 3,77   

Cefetamet C14H15O5N5S2 6,41 f:227.0127 

Cefotaxim C16H17N5O7S2 6,50 f:324.0589 

Celiprolol,277.1552 C20H33N3O4 8,41 f:307.2465 

Cephalexin C16H17N3O4S 6,18 f:158.0272 

Cephradin C16H19N3O4S 6,87 f:158.0276 

Cerivastatin C26H34O5NF 16,75 f:356.2026 

Chelidonin C20H19NO5 8,01 f:295.0970 

Chinin C20H24N2O2 7,04   

Chinidin C20H24N2O2 6,44 f:160.0762 

Chinophen C16H11O2N 12,52   

Chlorbenzoxamin,233.1654 C27H31N2OCl 14,43 f:201.0476 

Chlorcyclizin C18H21N2Cl 11,99 f:201.0471 

Chlordiazepoxide C16H14N3OCl 10,04   

Chlordimeform C10H13N2Cl 5,75 f:152.0267 

Chlorhexidin,170.0485,336.1703 C22H30N10Cl2 10,34 f:153.0220 

Chlormezanon C11H12NO3SCl 9,57   

Chlormidazol C15H13N2Cl 9,95 f:125.0158 

Chlorochin (Chloroquin),179.0376 C18H26N3Cl 4,61 f:247.1002 

Chloropyramine,125.0158 C16H20N3Cl 10,18 f:245.0846 

Chlorphenamin,202.0404 C16H19N2Cl 8,80 f:230.0737 

Chlorphencyclan C18H28ONCl 13,08 f:193.0784 

Chlorphenethazin C16H17N2ClS 12,10 f:232.0008 

Chlorphenoxamin C18H22ONCl 12,33   

Chlorphentermin C10H14NCl 8,30 f:125.0158 

Chlorpromazin C17H19N2ClS 12,77 f:246.0165 

Chlorprothixen C18H18NClS 12,91 f:245.0192 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Chlorquinaldol C10H7ONCl2 16,47 f:193.0294 

Chlortoluron C10H13ON2Cl 12,50   

Ciclacillin C15H23O4N3S 9,51 f:160.0432 

Cicletanin C14H12O2NCl 9,26 f:232.0529 

Cimetidine,95.0609 C10H16N6S 3,68 f:159.0704 

Cinchocain,172.0399 C20H29O2N3 12,18 f:271.1447 

Cinchonidin C19H22ON2 6,15 f:277.1705 

Cinchonin C19H22ON2 5,74   

Cinnarizin C26H28N2 13,38 f:167.0861 

Cisapride,234.1294 C23H29O4N3ClF 10,54 f:184.0165 

Citalopram,109.0454 C20H21ON2F 9,92 f:238.0668 

Citalopram C20H21N2OF 9,98 f:238.0668 

Clarithromycin,158.1181 C38H69O13N 13,40 f:590.3904 

Clemastin C21H26ONCl 13,36 f:215.0628 

Clemizol C19H20N3Cl 11,12 f:255.0689 

Clenbuterol C12H18ON2Cl2 6,89 f:167.0372 

Clibucain C15H20ON2Cl2 9,07 f:112.1134 

Clidinium C22H26O3N 8,94 f:142.1232 

Climbazol C15H17O2N2Cl 12,24 f:128.0029 

Clindamycin C18H33O5N2ClS 10,20 f:126.1283 

Clobazam C16H13N2O2Cl 12,69 f:259.0592 

Clofazimin C27H22N4Cl2 14,90 f:431.0830 

Clofenciclan C18H28NOCl 13,04 f:151.0315 

Clofenetamin C20H26ONCl 12,81 f:215.0628 

Clofexamid,118.1232 C14H21O2N2Cl 7,69 f:193.0784 

Clofibrate C12H15O3Cl 16,35   

Clomethiazol,112.0221 C6H8NSCl 9,73 f:126.0377 

Clomipramine C19H23N2Cl 12,94 f:242.0706 

Clonazepam,270.0560 C15H10N3O3Cl 12,16 f:303.0536 

Clonidin C9H9N3Cl2 4,45 f:194.0485 

Clopamid C14H20N3O3SCl 9,71 f:217.9679 

Clopenthixol C22H25N2OSCl 13,74 f:273.0505 

Clopidogrel C16H16O2NClS 15,63 f:185.0369 

Clorexolon C14H17O3N2ClS 11,69 f:247.9944 

Clotiapin C18H18N3ClS 12,05 f:287.0410 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Clotiazepam C16H15N2OSCl 14,69 f:275.0410 

Clozapine  C18H19N4Cl 9,84 f:270.0798 

Clozapin-N-Oxid C18H19N4OCl 10,67 f:244.0642 

Cocaine,243.1259 C17H21NO4 7,15 f:182.1181 

Codeine C18H21NO3 3,97 f:241.0865 

Coffein C8H10O2N4 6,18 f:138.0667 

Cotinin C10H12N2O 2,26   

Crimidin C7H10N3Cl 8,22 f:136.0875 

Crotamiton C13H17NO 14,21 f:106.0657 

Cyamemazine C19H21N3S 11,38 f:237.0486 

Cyanazin C9H13N6Cl 10,65 f:214.0859 

Cyclizin C18H22N2 10,38 f:167.0861 

Cyclobenzaprin,205.1017 C20H21N 11,64 f:231.1174 

Cyclodrin,236.1651 C19H29O3N 9,73 f:163.1651 

Cyclopentolat C17H25O3N 9,15 f:157.1017 

Cycluron C11H22ON2 13,26   

Cyproheptadin,245.1330 C21H21N 11,72 f:191.0861 

Cyromazin C6H10N6 2,48   

Cytarabin C9H13N3O5 1,83 f:112.0511 

Cytidin C9H13O5N3 0,96 f:112.0511 

Dacarbazine C6H10N6O 3,00   

Daphnetin C9H6O4 6,75 f:133.0290 

Dapiprazole C19H27N5 6,68 f:189.1392 

Daunorubicin C27H29NO10 13,11 f:363.0869 

Deferoxamine,319.23453 C25H48N6O8 6,99 f:443.2506 

Demelverin C17H21N 9,29 f:105.0704 

Demeton-O-methyl C6H15O3S2P 0,94   

Denaverine,239.1072 C24H33NO3 15,16 f:282.1494 

Deptropine C23H27NO 12,73   

Desipramin C18H22N2 11,85 f:208.1126 

Dexamethasone trimethylacetate C27H37O6F 17,24   

Dexfenfluramine C12H16NF3 8,75 f:159.0422 

Dexketoprofen,105.0340 Dexketoprofen 13,74 f:209.0966 

Dexpanthenol  C9H19NO4 3,91 f:188.1287 

Dextromethorphan,213.1279 C18H25NO 9,94 f:215.1436 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Dextromoramid C25H32O2N2 11,68 f:306.1858 

Dextropropoxyphen C22H29O2N 11,58 f:266.1909 

Diaveridin  C13H16N4O2 5,03 f:245.1039 

Diazepam,228.0656 C16H13N2OCl 14,30 f:257.0846 

Dibenzepin C18H21ON3 8,59 f:251.1184 

Dicyclanil C8H10N6 3,48 f:151.0732 

Dicycloverine,165.1643 C19H35NO2 13,85 f:237.1855 

Dienogest  C20H25NO2 12,80 f:161.0966 

Diethazin,100.1126,226.0690 C18H22N2S 11,50 f:198.0377 

Difenidol,207.1174 C21H27NO 10,06 f:292.2065 

Difenoxuron C16H18N2O3 13,19 f:214.0868 

Difenzoquate C17H17N2 8,25   

Dihexyverine,155.1072 C20H35NO2 14,00 f:165.1643 

Dihydrocodeine C18H23NO3 3,93   

Dihydroergocristine C35H41N5O5 11,57 f:270.1606 

Dihydroergotamin C33H37O5N5 10,73 f:270.1606 

Dihyprylon C9H15O2N 6,67   

Diisopromine,167.0861 C21H29N 11,27 f:254.1909 

Dilazep  C31H44N2O10 9,82 f:310.1654 

Diltiazem,370.1113 C22H26O4N2S 11,01 f:178.0327 

Dimefuron C15H19N4O3Cl 13,82   

Dimetacrine C20H26N2 12,56   

Dimetamphetamine C11H17N 4,90 f:132.0813 

Dimethachlor C13H18NO2Cl 13,54 f:148.1126 

Dimethametryn C11H21N5S 14,81 f:186.0813 

Dimethirimol C11H19N3O 8,31 f:152.0824 

Dimetinden,222.1283 C20H24N2 7,85 f:248.1439 

Dimetotiazine C19H25N3O2S2 10,79 f:305.0418 

Dimetridazole  C5H7N3O2 3,92   

Diniconazole C15H17N3OCl2 17,00 f:239.0394 

Dioxopromethazin C17H20O2N2S 7,60 f:272.0745 

Dipevefrin x HCl C19H29NO5 12,34   

Diphenhydramin C17H21NO 9,99 f:167.0861 

Diphenoxylate C30H32N2O2 13,06 f:379.2174 

Diphenylpyraline,116.1075 C19H23NO 10,81 f:167.0861 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Dipivefrin C19H29O5N 12,36 f:250.1443 

Diponiumbromid C20H38NO2Br 13,07   

Diprafenone,282.1494 C23H31NO3 12,57 f:300.1600 

Dipropetryn,172.0657,186.0813 C11H21N5S 14,78 f:214.1126 

Diprophylline C10H14N4O4 5,13 f:181.0726 

Dipyridamol  C24H40N8O4 11,82   

Disopyramide,196.1126 C21H29N3O 7,27 f:239.1184 

Dixyrazine,187.1447 C24H33N3O2S 12,74 f:229.1916 

Dodin C15H33N3O2 17,01   

Domperidone C22H24N5O2Cl 9,26 f:175.0871 

Donepezil C24H29NO3 9,67 f:288.1600 

Dosulepin C19H21NS 11,14 f:223.0581 

Doxapram C24H30N2O2 8,14 f:292.1701 

Doxazosin C23H25O5N5 11,27 f:344.1723 

Doxepin C19H21ON 10,32 f:235.1123 

Doxepine-desmethyl C18H19NO 10,30 f:235.1123 

Doxylamin C17H22N2O 5,77 f:182.0970 

Doxorubicin C27H29NO11 11,73 f:397.0923 

Drofenin,173.1330 C20H31NO2 13,08 f:245.1542 

Droperidol C22H22N3O2F 9,28 f:165.0716 

Dropropizin C13H20N2O2 3,88 f:120.0813 

Dubutamin C18H23O3N 5,90   

Dyclonin  C18H27NO2 11,09 f:98.0970 

EDDP,201.1517 C20H23N 10,09 f:249.1517 

Eldoral "Heyden",195.1134 C11H17O3N3 5,40 f:154.1232 

Embutramide C17H27NO3 14,07 f:191.1436 

Enalapril C20H28O5N2 10,39 f:234.1494 

Enoximone C12H12N2O2S 10,22   

Ephedrin C10H15ON 4,05 f:132.0813 

Epinephrine C9H13O3N 0,92 f:166.0868 

Ergometrine C19H23N3O2 5,05 f:223.1235 

Ergotamine C33H35N5O5 10,68 f:223.1235 

Erythromycin,558.3642 C37H67O13N 12,09 f:576.3748 

Esmolol C16H25NO4 7,84 f:193.0865 

Etafedrine C12H19NO 4,58   
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Etafenone  C21H27NO2 11,00 f:100.1126 

Etamivan C12H17NO3 9,54 f:151.0395 

Ethacridine C15H15ON3 9,98 f:226.0980 

Ethambutol C10H24N2O2 0,79 f:116.1075 

Ethenzamide C9H11NO2 8,95   

Ethidimuron C7H12N4O3S2 7,28 f:114.0126 

Ethirimol,165.1028 C11H19N3O 8,28 f:182.1293 

Ethoprophos C8H19O2PS2 15,43   

Ethopropazine C19H24N2S 11,66 f:114.1283 

Ethylmorphine C19H23NO3 5,17 f:257.1178 

Etodroxizine,217.1552 C23H31N2O3Cl 12,07 f:201.0471 

Etozolin C13H20N2O3S 13,77   

Etryptamine C12H16N2 7,27 f:130.0657 

Famotidine C8H15O2N7S3 3,36 f:189.0269 

Famprofazone C24H31ON3 13,64 f:162.1283 

Felbamat C11H14N2O4 7,66   

Fenamiphos C13H22O3NSP 15,91 f:217.0088 

Fenbutrazate,191.1072 C23H29O3N 13,07 f:204.1388 

Fencamfamin C15H21N 9,02 f:171.1174 

Fencarbamide C19H24ON2S 10,47 f:196.0762 

Fendiline,105.0704 C23H25N 12,50 f:212.1439 

Fenfluramin C12H16NF3 8,54 f:159.0422 

Fenoterol C17H21O4N 4,33 f:135.0810 

Phenoxazoline C13H18ON2 8,86 f:177.1028 

Fenpipramide C21H26ON2 8,10   

Fenpropidin;189.1609;161.1330 C19H31N 12,29 f:147.1174 

Fenproporex C12H16N2 4,63 f:132.0813 

Fentanyl C22H28N2O 9,49 f:189.1392 

Fexofenadine C32H39O4N 11,75   

Flamprop-isopropyl C19H19O3NClF 16,33   

Flamprop-methyl C17H15O3NClF 14,83   

Flecainid C17H20N2O3F6 9,93 f:301.0299 

Fleroxacin C17H18O3N3F3 5,46 f:326.1480 

Fluanisone C21H25O2N2F 9,82   

Fludrocortisone C21H29O5F 11,93   
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Flumazenil,258.0679 C15H14O3N3F 10,17 f:276.0784 

Flumetasone C22H28O5F2 12,78   

Flunarizine C26H26N2F2 13,43 f:203.0672 

Flunisolide C24H31O6F 13,87 f:225.1291 

Flunitrazepam C16H12N3O3F 12,21 f:268.1012 

Flunitrazepam-desmethyl C15H10N3O3F 11,32 f:258.0679 

Fluocinolone acetonide C24H30O6F2 13,58 f:357.1502 

Fluorescin  C20H12O5 12,15   

Fluorouracil C4H3O2N2F 1,17   

Fluoxetine C17H18ONF3 12,28 f:163.0997 

Fluoxymesterone C20H29O3F 14,15 f:299.2011 

Flupentixol C23H25ON2F3S 13,96 f:305.0612 

Fluphenazin C22H26ON3F3S 13,73   

Flupirtine,109.0454 C15H17O2N4F 8,82 f:197.1039 

Flurazepam; 289.0544 C21H23N3OClF 9,73 f:315.0700 

Fluridone C19H14F3NO 13,76 f:310.1043 

Fluspirilene C29H31ON3F2 13,01 f:371.1935 

Flutriafol C16H13N3OF2 12,56   

Fluvoxamin C15H21N2O3F3 12,08   

Fomocain C20H25O2N 10,58 f:218.1545 

Formoterol,121.0653, 327.1709,179.0821 C19H24N2O4 6,56 f:149.0966 

Fuberidazole C11H8ON2 6,43   

Furaltadone C13H16O6N4 3,36 f:100.0762 

Furathiocarb C18H26N2O5S 17,88   

Gabapentin C9H17NO2 4,61   

Galantamine,231.1021 C17H21NO3 3,11 f:213.0916 

Gallopamil,165.0916 C28H40N2O5 11,04 f:333.2178 

Gepefrine C9H13NO 3,22   

Glafenin C19H17N2O4Cl 7,97 f:283.0638 

Gliclazide C15H21N3O3S 13,56 f:153.1028 

Granisetron C18H24N4O 7,53 f:138.1283 

Guanethidine C10H22N4 0,92   

Guanfacine C9H9N3OCl2 7,49   

Guanoxan C10H13N3O2 5,69 f:149.0603 

Halcinonide  C24H32O5ClF 16,21   

Haloperidol,123.0246 C21H23NO2ClF 10,04 f:165.0716 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Heptenophos C9H12O4PCl 13,08   

Heroin,310.1443 C21H23NO5 7,12 f:328.1549 

Hesperidin C28H34O15 9,33   

Hexazinone C12H20N4O2 11,06 f:171.0882 

Hexobarbital C12H16N2O3 11,51   

Hexobendine C30H44N2O10 10,62 f:311.1607 

Histamine C5H9N3 0,64   

Histapyrrodine C19H24N2 10,71 f:210.1283 

Homatropin C16H21NO3 4,31 f:124.1126 

Hordenine C10H15NO 2,31 f:121.0653 

Hydralazin C8H8N4 2,62   

Hydrocodon C18H21O3N 4,36 f:241.0865 

Hydrocortisone C21H30O5 12,53 f:241.1440 

Hydrocortisone acetate C23H32O6 13,72   

Hydromorphon C17H19O3N 2,21 f:227.0708 

Hydroxyzine C21H27N2O2Cl 11,78 f:201.0471 

Hymecromone  C10H8O3 8,98   

Hyoscyamine C17H23NO3 5,79   

Ibuprofen (negativ) C13H18O2 16,18   

Imipramin,236.1420,194.0908 C19H24N2 11,46 f:208.1126 

Ketamin,220.0893,152.0267 C13H16ONCl 6,48 f:166.0424 

Ketazolam C20H17N2O3Cl 14,55   

Ketoconazole C26H28N4O4Cl2 12,28   

Lamotrigine C9H7N5Cl2 7,48 f:229.0048 

Levomepromazin,100.1126 C19H24ON2S 12,01 f:242.0640 

Levorphanol C17H23NO 4,93   

Lidocain C14H22ON2 5,76   

Lofepramine,196.0529 C26H27N2OCl 14,48 f:224.0842 

Loperamid C29H33N2O2Cl 12,83 f:266.1545 

Loprazolam C23H21O3N6Cl 9,87   

Lorazepam, 303.0092, 229.0533 C15H10N2O2Cl2 12,87 f:265.0299 

Lyserg acid C16H16O2N2 4,93   

Mafenide  C7H10N2O2S 9,93   

MAM-Heroin metabolite,268.1338 C19H21NO4 4,83 f:211.0759 

Maprotilin C20H23N 11,70   

MBDB C12H17O2N 6,26 f:135.0446 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

MDPV,205.0865 C16H21NO3 7,78 f:149.0239 

MDPV (Pat),261.1729 C16H21NO3 4,07 f:205.0865 

Medazepam C16H15N2Cl 10,03   

Mefenorex C12H18NCl 7,68   

Mefexamide C15H24N2O3 5,73 f:137.0603 

Mepacrine C23H30N3OCl 1,73   

Mephedron C11H15NO 5,41 f:144.0813 

Mephentermine C11H17N 5,89 f:133.1017 

Mepindolol,160.0762 C15H22N2O2 5,91 f:148.0762 

Mepivacaine  C15H22N2O 6,24 f:150.0919 

Mescalin C11H17O3N 4,82   

Metaclazepam C18H18ON2ClBr 12,29 f:361.0107 

Metamfepramon,105.0340 C11H15ON 4,19 f:133.0653 

Metamizol C13H17N3O4S 4,82   

Metformin C4H11N5 0,89   

Methadone C21H27NO 11,89 f:265.1592 

Methamidophos C2H8NO2PS 2,60 f:223.1123 

Methamphetamin C10H15N 4,82 f:91.0548 

Methaqualon C16H14N2O 4,89   

Methylergometrin C20H25O2N3 5,82 f:223.1235 

Methylphenidat C14H19O2N 7,37 f:174.1283 

Metoclopramid, 184.0165 C14H22ClN3O2 6,21 f:227.0587 

Metoprolol,133.0653 C15H25NO3 7,14 f:165.0916 

Mianserin C18H20N2 10,04 f:208.1126 

Miconazol C18H14ON2Cl4 15,01   

Midazolam,290.1094 C18H13N3ClF 9,99 f:244.0329 

Midazolam,10-OH C18H13N3ClFO 10,55   

Mirtazapin, 195.0922, 235.1235 C17H19N3 7,08 f:209.1079 

Mitomycine C15H18N4O5 3,95   

Morphine,268.1338 C17H19NO3 1,61 f:229.0865 

N,N-Diethyl-m-toluamid C12H17ON 13,02 f:119.0497 

N,N-Diethyltryptamine C14H20N2 5,92   

N-Acetyl-L-Cystein C5H9NO3S 1,94   

Nadolol C17H27NO4 5,95 f:236.1287 

Naftifine C21H21N 11,55 f:141.0704 

Naloxone C19H21O4N 3,78 f:310.1443 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Naltrexone C20H23NO4 4,34   

N-Ethylnordazepam C17H15N2OCl 12,25   

Nicotin C10H14N2 1,07   

Nifedipin C17H18N2O6 12,95   

Nitrazepam C15H11O3N3 11,70   

Nitrendipin C18H20N2O6 14,91 f:329.1137 

Nitrofen C12H7NO3Cl2 11,71   

Nordiazepam,140.0267 C15H11N2OCl 13,78 f:243.0689 

Norfloxacin C16H18N3O3F 6,04   

Nortilidin C16H21O2N 7,85 f:155.0861 

Nortriptylin C19H21N 12,09 f:233.1330 

Noscapin C22H23NO7 8,36 f:220.0974 

Noxiptilin C19H22ON2 11,23 f:206.0970 

Nystatin C47H75NO17 14,61 f:727.4057 

Ofloxazin C18H20O4N3F 5,79   

Olanzapin,213.0486 C17H20N4S 4,57 f:256.0908 

Omeprazol C17H11N3O3Cl 10,52   

Opipramol,234.1283 C23H29ON3 11,10 f:171.1497 

Oxazepam,269.0482 C15H11N2O2Cl 12,97 f:231.0689 

Oxazolam C18H17N2O2Cl 11,06   

Oxybutynin C22H31NO3 12,29 f:124.1126 

Oxycodon,242.1181 C18H21O4N 4,35 f:256.13338 

Paracetamol C8H9NO2 3,93 f:110.0606 

Paroxetin C19H20NO3F 11,36 f:192.1189 

Pemolin C9H8O2N2 5,77   

Pentachlorphenol C6HOCl5 11,65   

Pentamidine C19H24N4O2 5,47   

Pentazocin C19H27ON 8,68   

Perazin,113.1079 C20H25N3S 11,87 f:141.1392 

Petoxiphilin C13H18O3N4 8,59   

Phenacetin C10H13O2N 9,35 f:110.0606 

Phendimetrazin C12H17ON 4,63 f:146.0970 

Pheniramin,168.0813 C16H20N2 5,88 f:196.1126 

Phenmedipham C16H16N2O4 4,90   

Phenprocoumen C18H16O3 15,25 f:203.0708 

Phentermine C10H15N 6,02 f:133.1017 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Phenylbutazon C19H20O2N2 15,28 f:211.0871 

Phosalone C12H15NO4PS2Cl 6,03   

Pindolol,116.1075 C14H20O2N2 4,99 f:146.0606 

Pipamperon C21H30N3O2F 6,18 f:209.1528 

Pipradrol C18H21ON 8,84 f:172.1126 

Pirazetam C6H10O2N2 1,36   

Pirenzepin,113.1079 C19H21O2N5 5,80 f:252.0773 

Piroxicam C15H13N3O4S 12,21 f:121.0402 

Practolol,122.0606 C14H22N2O3 4,02 f:152.0712 

Prilocain,177.1028 C13H20ON2 6,26 f:162.0919 

Primidon C12H14N2O2 7,97 f:117.0704 

Procain,120.0449 C13H20N2O2 3,63 f:164.0712 

Procarbazin C12H19N3O 4,26 f:191.1184 

Prolintan C15H23N 8,30 f:126.1283 

Promethazin,240.0847 C17H20N2S 11,09 f:198.0377 

Propanolol,183.0810,116.1075 C16H21NO2 9,74 f:157.0653 

Propoxyphen C22H29O2N 11,65   

Propranolol,116.1075 C16H21O2N 9,62 f:157.0653 

Prothipendyl,213.0486 C16H19N3S 10,57 f:241.0799 

Protriptylin, 205.1017, 233.1330, (218.1096 Radikal) C19H21N 11,83 f:191.0861 

Psilocin C12H16N2O 3,07   

Pyrantel C11H14N2S 5,20   

Pyritinol C16H20N2O4S2 8,77   

Quetiapine C21H25N3O2S 10,26 f:253.0799 

Ranitidine,130.0617 C13H22N4O3S 3,60 f:176.0494 

Reserpin C33H40O9N2 12,24 f:397.2127 

Risperidon C23H27O2N4F 8,73 f:191.1184 

Scopolamin C17H21NO4 4,52 f:138.0919 

Selegilin C13H17N 5,84 f:132.0813 

Sildenafil C22H30o4N6S 11,10   

Sotalol C12H20N2O3S 2,58   

Sufentanyl C22H30O2N2S 10,81   

Sulpiride C15H23N3O4S 3,38 f:112.1126 

Temazepam,228.0580 C16H13ClN2O2 13,53 f:255.0689 

Tetracain C15H24N2O2 9,65 f:176.1075 

Tetrazepam, 253.1341, 232.0893 C16H17ON2Cl 14,70 f:253.1341 
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Fortsetzung Anhang 44 Einträge in der UPLC-MS-TOF ´Targeted Screening Datenbank´, die 
Angaben für die spezifischen Fragmentmassen sind soweit vorhanden eingetragen 

Substanz Summenformel RT Fragment 1 

Thebain C19H21O3N 6,67   

Theophyllin C7H8O2N4 5,07 f:124.0564 

Thiopental - NEG C11H18N2O2S 13,26   

Tiapride,213.0222 C15H24N2O4S 4,02 f:256.0644 

Tilidin C17H23O2N 7,76 f:155.0861 

Tramadol C16H25NO2 7,07 f:246.1858 

Tramadol-O-demethyl (PAT) C15H23O2N 5,72 f:236.1651 

Trazodon C19H22N5OCl 8,51   

Trimethoprim C14H18O3N4 5,33 f:261.0988 

Trimipramin C20H26N2 12,07 f:208.1126 

Tripelenamine,119.0609 C16H21N3 7,83 f:211.1235 

Urapidil C20H29N5O3 6,72   

Venlafaxin C17H27O2N 9,23 f:260.2014 
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