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GENERAL INTRODUCTION

THE STUDY GROUP — THE DINOPHYCEAE

The Dinophyceae (‘Dinoflagellata’ under the zoological code of nomenclature: ICZN)
are an ecologically important and evolutionarily fascinating group of protists. The majority of
Dinophyceae, comprising approximately 2000 described extant species, are free-living,
marine organisms, occuring from polar through temperate to tropical waters (Taylor et al.
2008; Gémez 2012). These unicellular algae are ancient organisms with fossil record dated
back into the Silurian, over 400 million years ago (Steidinger & Tangen 1996). In the second
half of the 18" century, the first extant dinophytes have been described (Moestrup &
Daugbjerg 2007). From the end of the 1950s onwards, the Dinophyceae increasingly

attracted the researchers’ interest

1000 ¢ (Figure 1), which emphasises the

800 ‘ ecological and economical importance
} of this group.

600 0‘ Together with the Apicomplexa

' and the Ciliata, the Dinophyceae

400 belong to the Alveolata, which are

200 characterised by specialised vesicles

located directly beneath the cell

0 surface and called alveoli (Cavalier-

SEE0RTSS0E ISOGEEIREGE S0 Smith 1993; Fast et al. 2002: Leander

& Keeling 2004). Morphological

apomorphies of the dinophytes are the

Figure 1: Number of publications per year (Web of
Knowledge data base search on “dinofl*” and “dinophy*”).
unique dinokaryon with permanently

condensed, liquid-crystalline chromosomes and the lack of typical eukaryotic histones or
nucleosomes (Spector 1984; Moreno Diaz de la Espina et al. 2005; Lin 2011). The
biflagellate cells possess a coiled transversal flagellum positioned in an encircling groove
coined “cingulum” (allowing locomotion) and a longitudinal flagellum (giving propulsive force)
(Taylor 1980; Hackett et al. 2004). The monophyly of the Dinophyceae is highly supported
based on several molecular loci (Maroteaux et al. 1985; Saldarriaga et al. 2003; Shalchian-
Tabrizi et al. 2006a; Zhang et al. 2007; Minge et al. 2009; Hoppenrath & Leander 2010).
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Figure 2: The Dinophyceae are highly diverse in morphology. This simplified phylogeny indicates the
classification based on the arrangement of thecal plates: dinophysioid, gonyaulacoid, gymnodinoid,
noctilucoid, peridinioid, prorocentroid, suessioid and is explained in detail in the text. Modified after
Taylor et al. 2008.

DINOPHYCEAE — MORPHOLOGICAL AND MOLECULAR CLASSIFICATION

Many species of the Dinophyceae develop two morphologically different stages during
their life history, namely motile (“vegetative”) cells and immotile coccoid cells (usually termed
as “cysts” Pfiester & Anderson 1987; Elbrachter et al. 2008). Motile cells (Figure 3) are
morphologically divided by the cingulum into epi- and hypotheca, occasionally exhibiting
apical or antapical protrusions such as horns. The cortex is composed of the surrounding cell
membrane with the amphiesmal vesicles (alveoli) beneath, which might contain cellulose
plates (thecate or armoured taxa, the vegetative cell is then termed “theca”). Species without

such thecal plates are termed naked, athecate or unarmoured. Some athecate species form
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a thin, continuous layer within the amphiesmal vesicles referred to as “pellicle”. The

arrangement, number and shape of the thecal plates in armoured taxa and the amphiesmal

vesicles in naked species provide important diagnostic characters for Dinophyceae taxonomy
and species determination (Taylor 1980; Dodge 1985; Fensome et al. 1993).

The Dinophyceae display a high morphological

apex diversity (Figure 2). Depending on the specific

arrangement of amphiesmal vesicles with or without

epitheca cellulose plates, seven groups are readily
distinguishable: dinophysioid, gonyaulacoid,
gymnodinoid, noctilucoid, peridinioid, prorocentroid and
cingulum ¢ suessioid (Fensome et al. 1993; Taylor 1987, et al.
2008). Taxa of the gymnodinoid type exhibit numerous,
randomly arranged amphiesmal vesicles and lacking or
hypotheca
exhibiting delicate or well developed cellulose plates.

Suessiales possess only delicate thecal plates,
antapex with

two antapical horns arranged in six to eleven latitudinal plate series. Taxa

of the peridinioid and gonyaulacoid tabulation type are

Figure 3: Schematic sketch of a theca. dominating the known extant dinophytes. The well

Modified after Fensome et al. 1993. developed thecal plates are arrayed in a varying but

consistent plate pattern, that is characteristic for species (groups) following the Kofoid
labelling system (Kofoid 1909). Members of the Dinophysiales exhibit a vertical suture, which
forms a bilateral theca, whereas the plates are arranged in four latitudinal series. The
aberrant thecas of prorocentroids are reduced to two large plates and the anterior insertion of
the flagella; however, cingulum and sulcus are absent. The Noctilucales are likewise unusual
in being pelliculate, achieving a large size and extraordinary shapes such as leaf, butterfly or
medusa.

Not all morphological circumscriptions show correspondence to molecular analyses.
The ambiguous basal lineages are the non-dinokaryotic, heterotrophic and parasitic groups
such as the Noctilucales, Oxyrrhinaceae, Perkinsea and Syndiniales (Taylor et al. 2008; Orr
et al. 2012). Within the “core” Dinophyceae, the Suessiales, Dinophysiales and
Gonyaulacales are each monophyletic based on morphological and molecular data
(Daugbjerg et al. 2000; Saldarriaga et al. 2004). The Peridiniales and Prorocentrales,
respectively, are monophyletic based on morphology; however, these taxa constitute
monophyletic groups only when concatenated sequences are applied (Zhang et al. 2007;
Tillmann et al. 2012). The athecate Gymnodiniales, though, are always paraphyletic
(Daugbjerg et al. 2000; Saldarriaga et al. 2004; Moestrup & Daugbjerg 2007; Zhang et al.
2007; Tillmann et al. 2012).
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The non-motile coccoid cells have diverse biological functions (Fensome et al. 1993).
Merely 13 to 16% of the extant Dinophyceae are known to form resistant resting stages
emerging from sexual fusion (Head 1996). The majority of fossil “cysts” investigated primarily
in micropalaeontology is assumed to consist of these dormancy stages (Dale 1983). Under
suboptimal conditions, a temporary cyst is formed apart from sexual reproduction. The third
form is a vegetative cyst, which is not a coccoid resting stage, but metabolically and
reproductively active. Rarely among dinophytes, digestion cysts are developed after the
organism has consumed food (Fensome et al. 1993). The morphology of coccoid stages is
highly diverse in few groups such as Scrippsiella Balech ex A.R.Loebl. sensu lato, however,
the morphological characteristics are not applicable at high taxonomic level within the

Dinophyceae.

Historically, two different taxonomical concepts for classification have been established
for the Dinophyceae: The “neontological” system based on thecate morphology of extant
Dinophyceae and the “paleontological” system using characters from “cyst” morphology. The
latter system was initially developed by palaeontologists to describe fossil species. Wall and
Dale (1968) successfully used cultivation experiments of Recent sediments and detected
cyst-theca-relationships as motile and immotile cells being part of a species’ life processes.
This pioneering work has been the initial starting point to investigate cyst-theca-relationships

in detail.

DINOPHYCEAE — NUTRITION AND LIFESTYLE

Nutrition modes and lifestyles are remarkably diverse within the Dinophyceae. Being
roughly half primary producers and half predators makes the dinophytes an important part of
the global ecosystem (Taylor et al. 2008; Gomez 2012). Beside autotrophic and
heterotrophic nutrition, mixotrophy is not specifically quantifiable, but widely distributed
(Stoecker 1999; Glasgow et al. 2001; Burkholder et al. 2008). Furthermore, about 7% of all
species are parasites, e.g., on fish (Glasgow et al. 2001; Levy et al. 2007), copepods
(Gomez et al. 2009; Skovgaard et al. 2012), ciliates (Coats et al. 2010) and other
Dinophyceae (Gunderson et al. 2002). The symbiotic lifestyle of mainly Symbiodinium
species Freud. is of primarily importance for the subsistence of many Cnidarian species such
as corals, gorgonians and jellyfish, but also of bivalve molluscs (McNally et al. 1994;
LaJeunesse 2001; Baker 2003; Davy et al. 2012). Other species are endosymbionts of
Foraminifera and Radiolaria (Gast & Caron 1996; Decelle et al. 2012).
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Approximately 100 dinophyte species are assumed to produce toxic secondary
metabolites (Orr et al. 2012). The impact of such algae on the marine environment becomes
particularly evident when they accumulate to mass occurrence (harmful algae bloom, HAB)
(Hallegraeff 1993, 2010; Anderson 2007). In the United States, the economical
consequences of HABs account for at least 82 million US$ loss per year (Hoagland &
Scatasta 2006). In 1989, a single blooming event of Gymnodinium spec. F.Stein has caused
40 million US$ loss for Chinese shrimp aquaculture (Wang & Li 1998). As a result of toxin
accumulation along the food chain, the top predators such as seabirds, marine mammals
and humans are highly affected by paralytic, diarrhetic, neurotoxic and azaspiracid shellfish
poisoning (PSP, DSP, NSP, AZP) as well as ciguatera fish poisoning (CFP). Azaspiracids
are the most recently detected group of dinophyte toxins, identified soon after the first
poisoning incident in the Netherlands in 1995 (Satake et al. 1998). Still, it took considerable
twelve years until the small dinophyte Azadinium spinosum Elbr. & Tillmann has been
identified as the source of the toxin (Tillmann et al. 2009). Subsequently, additional species
of Azadinium Elbr. & Tillmann have been described that produce further, but non-toxic
azaspirid derivates (Tillmann et al. 2010, 2011; Nézan et al. 2012).

IN FOCUS — THE THORACOSPHAERACEAE

Approximately 35 extant species of dinophytes have the ability to produce calcified
coccoid cells (Vink 2004; Zonneveld et al. 2005). The potential to form calcareous structures
is considered to be an apomorphic trait within the Dinophyceae, unifying and characterising
the Thoracosphaeraceae (Wall & Dale 1968; Janofske 1992; Kohring et al. 2005; Elbrachter
et al. 2008). Preliminary molecular analyses corroborate the monophyly of the group, if some
(presumably secondarily) non-calcareous relatives such as Cryptoperididiopsis Steid.,
Landsberg, P.L.Mason, Vogelbein, Tester & Litaker, Pentapharsodinium Indelicato &
A.R.Loebl. and Pfiesteria Steid. & J.M.Burkh. are included (D" Onofrio et al. 1999; Gottschling
et al. 2005a; Kremp et al. 2005; Gu et al. 2008). Despite these preliminary results, the
monophyly of the Thoracosphaeraceae and their delimitation still need to be tested rigorously

based on large molecular datasets.

The Thoracosphaeraceae segregate into three major lineages, namely the E/Pe-clade
(including Ensiculifera Balech, 1967 and Pentapharsodinium), the T/Pf-clade (including
calcareous Thoracosphaera Kamptner and non-calcareous Pfiesteria) and Scrippsiella sensu
lato, with the latter two clades closely related (Gottschling et al. 2005a). Furthermore,
Scrippsiella s.l. segregates into a number of lineages such as Pernambugia tuberosa

(Kamptner) Janofske & Karwath, the CAL-clade (including Calciodinellum operosum
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Deflandre, 1947), the LAC-clade (Scrippsiella lachrymosa J.A.Lewis), the PRE-clade
(Scrippsiella precaria Montresor & Zingone and relatives) and the Scrippsiella trochoidea
(F.Stein) Balech ex A.R.Loebl. species complex (STR-SC; Gottschling et al. 2005b). Three
major assemblages of the STR-SC can be identified based on molecular data, namely STR1,
STR2 and STR3.

Morphological characters are not sufficient to distinguish between different species of
the STR-SC, as many strains share the same thecal tabulation pattern and exhibit similar
spiny coccoid stages. Contrarily, the coccoid cells occasionally exhibit a high variability within
monoclonal strains (Montresor et al. 2003; Gottschling et al. 2005b; Gu et al. 2008).
Morphologically indistinguishable, but genetically heterogenic specimens are referred to as
“cryptic species”, whose recognition increased exponentially during the last 40 years
(Bickford et al. 2006). Besides Scrippsiella, other dinophytes such as Alexandrium Halim,
Dinophysis Ehrenb. and Symbiodinium likewise show cases of cryptic speciation (Genovesi
et al. 2011; Gomez et al. 2011; LaJeunesse et al. 2012). The existence of cryptic species
challenges the precise determination of species, as species are usually described based on
their morphology. Thus, a debate on the taxonomic identity of Scrippsiella trochoidea has
been raised (Montresor et al. 2003; Gottschling et al. 2005b; Gu et al. 2008).

Friedrich von Stein described S. trochoidea in 1883, illustrating the motile stage with
only three drawings. However, strains from the type locality Kiel Fjord (Baltic Sea) have
never been investigated in detail, and neither morphological nor molecular data from the
‘true’ S. trochoidea have been available so far. Since Greuter et al. (1994), the ICN provides
a tool to designate “...a specimen or illustration selected to serve as an interpretative type
when the holotype, lectotype, or previously designated neotype, or all original material
associated with a validly published name, is demonstrably ambiguous and cannot be
critically identified for purposes of the precise application of the name to a taxon” (Article 9.8
of the International Code of Nomenclature for algae, fungi and plants (Melbourne Code),
McNeill et al. 2012). After clarification of the taxonomic identity of S. trochoidea, a rough
estimation of the species number within the STR-SC based on molecular data will be

possible.

THORACOSPHAERACEAE — FOSSIL AND EXTANT DIVERSITY

The coccoid cells of the calcareous dinophytes have a high potential to fossilise
(Keupp 1981, 1987, 1991; Kohring 1993; Hildebrand-Habel & Streng 2003; Streng et al.
2004). Approximately 260 species are described from the fossil record (Fensome & Williams

2004; Streng et al. 2004). The altering abundance of morphologically rapidly evolving taxa
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make the calcareous dinophytes valuable proxies for paleo-oceanographic and paleo-
environmental reconstructions (Versteegh 1997; Keupp 2001; Hildebrand-Habel & Streng
2003; Meier et al. 2004; Masure & Vrielynck 2009). The first calcareous dinophytes have
been reported from the late Triassic (Janofske 1992), but the correct affiliation of such fossils
has been questioned (Elbrachter et al. 2008; Gottschling et al. 2008). The initial
diversification of extant Thoracosphaeraceae might has taken place during the late Jurassic,

which is in agreement with a more reliable fossil record since then (Gottschling et al. 2008).

The optical crystallography describes the orientation of the crystallographic c-axis of
calcite crystals constituting the shell of the coccoid cells and is considered a key character to
identify calcareous dinophytes at the subfamily level (Keupp 1981, 1991; Streng et al. 2004,
Elbrachter et al. 2008). Among extant species, three types are readily distinguished (Kohring
et al. 2005). Irregularly (“oblique”) arranged crystals are present in the E/Pe-calde, e.g. in
Calcicarpinum bivalvum. Regular crystals with a radial c-axis orientation can be observed in
Leonella Janofske & Karwath from the T/Pf-clade. Regularly crystals with tangential c-axis
orientation are predominant by far in extant species and are today found in Scrippsiella s.l.
as well as in Thoracosphaera from the T/Pf-clade. Nevertheless, the crystallography as a key
character remains questionable owing to the fact that the crystal orientation and the

taxonomic grouping of the subfamilies based on molecular data are not clearly correlated.

2 : : 3 : : 4 : : 5 .
Figure 4: Major types of archeopyle among extant Thoracosphaeraceae. Schematic overview, modified
with authors permission from Streng et al. 2004. 1: Apical view of the plate pattern. 2: Simple apical

archeopyle (E/Pe- & T/Pf-clade). 3: Mesoepicystal archeopyle (Scrippsiella s.l.). 4: Epitractal archeopyle
(Pernambugia). 5: Intercalary archeopyle (Calciperidinium asymmetricum).

Another important character trait of dinophytes is the morphology and composition of
the archeopyle, the thecate cell excystment aperture of the coccoid cell (Keupp & Versteegh
1989; Streng et al. 2004). Today, the simple, apical archeopyle type is known from the only
distantly related E/Pe- and T/Pf-clades, whereas an operculum corresponding to a single
apical plate equivalent is displaced (Figure 4.2). The more complex mesoepicystal and
epitractal archeopyles are composed of several epithecal plate equivalents and are
considered an apomorphy of extant Scrippsiella s.I. (Figure 4.3 and 4.4) (Streng et al. 2004;
Gottschling et al. 2005a). An intercalary archeopyle (Figure 4.5) has been described for the
fossil based taxon Calciperidinium asymmetricum G.Versteegh, which is also known from

Recent sediments.



16

As indicated above, two naming systems for both extant and fossil species have been
developed independently, applying characteristics of the two developmental stages, theca
and cyst, respectively. Furthermore, both the International Code of Zoological Nomenclature
(ICZN) and the International Code of Nomenclature (ICN) have been applied historically to
the Dinophyceae. Consequently, this has resulted in taxonomic conflicts. For example,
Calciodinellum operosum has been described paleontologically under the ICZN seeing the
fossil as a calcified theca (Deflandre 1947). Wall and Dale (1968) have revealed the cyst-
theca-relationship by the cultivation of coccoid cells from Recent sediments and corrected
Deflandres interpretations. Finally, D"Onofrio et al. (1999) conducted a molecular analysis
and placed C. operosum in the dinophyte tree. More fossil based taxa are known from late
Pleistocene as well as from Recent sediments and are colloquially termed “living fossils”.

A number of those living fossils have been brought into cultivation and have been
investigated in detail, including Calcicarpinum bivalvum G.Versteegh [= Pentapharsodinium
tyrrhenicum (Balech) Montresor, Zingione & D.Marino], Calcigonellum infula Deflandre, 1947,
Leonella granifera (Futterer) Janofske & Karwath and Pernambugia tuberosa. However,
other living fossils such as Calciperidinium asymmetricum, Caracomia arctica (Gilbert &
Clark) Streng, Hildebrand-Habel & H.Willems, Follisdinellum splendidum G.Versteegh,
Melodomuncula berlinensis G.Versteegh and Posoniella tricarinelloides (G.Versteegh)
Streng, Basanova, D.Rehakova & H.Willems have likewise been found in Recent sediments,
but have not been brought into cultivation so far. For a better understanding of the evolution,
taxonomy and phylogeny of the Thoracosphaeraceae, those species are of particular
importance. Laborious investigations are necessary to make strains available, including the
collection of field samples, the cultivation of preferably monoclonal strains and a thorough
molecular and morphological survey. At present, the knowledge on the diversity of extant

Thoracosphaeraceae is still scarce (Elbrachter et al. 2008).

MOLECULAR PHYLOGENY — CHALLENGE AND CHANCE

The phylogenetic relationships within the Dinophyceae are not sufficiently resolved at
present. More than three decades ago, the first rRNA sequence has been obtained from the
dinophyte Crypthecodinium cohnii (Seligo) Javorn. and the species has been set into a
phylogenetic framework (Hinnebusch et al. 1981). Since the early 1990ies, analytical
techniques and methods have improved constantly (Moestrup & Daugbjerg 2007).
Accordingly, a higher number of taxa, nuclear loci (e.g., rRNA, actin, a- and p-tubulin, hsp90)
and mitochondrial loci (e.g., cob, cox1) have been applied to investigate the phylogenetic
relationships within the Dinophyceae (Maroteaux et al. 1985; Cavalier-Smith 1993;
Daugbjerg et al. 2000; Saldarriaga et al. 2003; Shalchian-Tabrizi et al. 2006a; Zhang et al.
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2007; Minge et al. 2009; Hoppenrath & Leander 2010). However, single-locus approaches do
not uncover the evolutionary history reliably, and some trees provide contradictory results,
while basal nodes are hardly statistically supported (Moestrup & Daugbjerg 2007). The
difficulties result from manifold problems such as a limited taxon sample and limited
availability of molecular data (for less than 25% of the Dinophyceae sequences are available,
often merely a single locus). An additional challenge is the rather high evolutionary rate
heterogeneity (Saldarriaga et al. 2004; Hoppenrath & Leander 2010).

The use of chloroplast loci is less advantageous with respect to molecular phylogenies
of dinophytes at a high taxonomic level because of multiple endosymbiosis events (Morden &
Sherwood 2002; Shalchian-Tabrizi et al. 2006b; Keeling 2010) and horizontal gene transfer
(Morden & Sherwood 2002; Bhattacharya & Nosenko 2008; Minge et al. 2010). Without
doubt, particular groups within the dinophytes are analysable by the application of
homologous plastid genes (Yoon et al. 2005). As a result of ongoing gene transfer from the
endosymbiont to the hosts nucleus only few genes remain in the chloroplasts, whereat zero
to two protein coding genes are organised in minicircles (Bachvaroff et al. 2004; Howe et al.
2008; Barbrook et al. 2010). Together with the phylogenetic sister group Apicomplexa, the
Dinophyceae possess the smallest mitochondrial genome known, consisting of three protein-
coding genes (cytochrome b, cytochrome oxidase subunit | and Ill) and being organised and
expressed in an extraordinary way (Jackson et al. 2007; Nash et al. 2008; Waller & Jackson
2009). Even though the gene content is most reduced, the genes are duplicated, fragmented
and re-arranged. By extensive RNA editing and trans-splicing of at least cox3, functional
transcripts are generated (Jackson et al. 2007), rendering problematic to use for any
phylogenetic analysis.

The concatenation of different nuclear and mitochondrial loci and the inclusion of more
and more taxa have improved the results in phylogenetic analysis (hsp90, SSU, LSU,
Shalchian-Tabrizi et al. 2006a; SSU, cob, cox1, Zhang et al. 2007; hsp90, SSU, LSU,
Hoppenrath & Leander 2010; SSU, LSU, Tillmann et al. 2012; SSU, ITS, LSU, cob, cox1,
actin, p-tubulin, hsp90, Orr et al. 2012). Hence, the creation of large data sets is highly

desirable for a better understanding of the dinophycean phylogeny.

To identify morphologically relatively character poor unicellular organisms such as the
Dinophyceae, a reliable link between scientific name, protologue, and distribution is highly
desirable. Unquestionably, appropriate genetic loci are required for a molecular analysis of
phylogenetics and evolution. Due to the large economical and evolutionary importance of the
marine biota, plenty of effort has been given to the documentation of the marine biodiversity
in general (Beaugrand et al. 2010; Tittensor et al. 2010; Wiliams et al. 2010;

http://www.coml.org). The sheer mass of morphological diversity and life forms necessitates
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a quick and reliable way of identification. The ideal barcode marker is applicable to any taxon
and enables identification to species level (Stern et al. 2012). For Dinophyceae, the
mitochondrial cob and cox1 have been discussed as universal barcode markers (Lin et al.
2009; Stern et al. 2010). However, amplification efficiency and resolution at species level
have not been satisfactory. Additionally, the nuclear ITS region has been proposed as a
barcode marker (Gottschling et al. 2005b; Litaker et al. 2007; Genovesi et al. 2011; Stern et
al. 2012). Despite the good resolution of this marker to discriminate between species, the
presence of paralagous copies has to be considered with caution (Qui et al. 2011; Stern et
al. 2012). The secondary structures of helices | and Il of the internal transcribed spacer 1 are
suggested as a structural identification marker (Gottschling et al. 2005a).

To reveal the relationships within cryptic species, ribotyping may be an appropriate
approach. This fingerprint method uses sequence information encoded in the nuclear
ribosomal RNA operon to create a minimum-spanning tree allowing reticulations. A bifurcate
gene tree is not always sufficient to illustrate all the phylogenetic information present in a
molecular data set (Posada & Crandall 2001), since evidence for recombination and
homoplasy is forced into non-reticulated tree topologies. By allowing loops and the graphical
display of extinct or unsampled variants, networks can represent phylogenetic information

more extensively.



19

AIMS OF THE THESIS

Five internationally published paper and one submitted manuscript included in this

cumulative thesis (see publications & manuscripts, p. 6 and Appendix, p. 47) encompass

three overarching aspects: The knowledge of diversity of the Dinophyceae in general and the

Thoracosphaeraceae in particular is scarce at present; the taxonomy of important taxa needs

to be clarified and the deep nodes within the dinophyte molecular phylogeny are insufficiently

resolved. In particular, my specific objectives are:

1.

Inventory the diversity of the Thoracosphaeraceae collected from coastal waters:
Extensive fieldwork is mandatory to obtain material for detailed molecular and
morphological analysis. Coastal environments have been continuously undersampled
with respect to the diversity of the Thoracosphaeraceae, although access to such
localities is principally facile. The material obtained is used for investigations shedding
light on the evolution of the group. The focus of my thesis is the comprehensive
molecular investigation of cultivated strains in order to:

1.1. generally determine species (barcoding) and to place them in the dinophyte tree
(paper 1, 2, 3, 4, 5, 6);

1.2. particularly place fossil-based species in the dinophyte tree that have been brought
into cultivation (living fossils) (paper 2);

1.3. clarify the taxonomy of cryptic species (especially in the STR-SC), including the
designation of epitypes where necessary, and to estimate the minimal number of
morphologically indistinguishable species in particular clades (paper 4 and 5);

1.4. describe new species (paper 1 and 3).

Improvement of the resolutions of dinophyte molecular phylogenies by the

concatenation of ribosomal RNA sequences (own and those available in the NCBI

database) and other loci as well as by the application of optimisation techniques such as
the in silico exclusion of poorly arranged positions in an alignment. Emphasis is placed in
testing the monophyly of the Thoracosphaeraceae and the intra-familial delimitation

(paper 2 and 6).
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DISCUSSION

THE BASIS FOR BIOLOGICAL STUDIES — FIELDWORK

In recent years, the marine biodiversity has been studied extensively (Beaugrand et al.
2010; Tittensor et al. 2010; Williams et al. 2010; http://www.coml.org). Nonetheless, exact
data on species numbers and reliable classifications are still deficient for many taxa. This is
especially true for unicellular organisms such as the Thoracosphaeraceae. Currently
encountering 260 described fossil species and approximately 35 extant (morpho-)species
(Vink 2004; Zonneveld et al. 2005), the diversity of the extant Thoracosphaeraceae is not
sufficiently recorded at present because of several reasons (Elbrachter et al. 2008).
Frequently, samples have been taken in pelagic environments, while the species at coastal
sites have been relatively rarely investigated (Montresor et al. 1998; Godhe et al. 2001;
Gottschling & Kirsch 2009; paper 5). The compact cells of calcareous dinophytes
accumulate in great numbers in the sediments of shallow coastal waters (Kohring 1997;
Zonneveld et al. 1999) and are accessible without extensive logistics. With respect to
species composition, the Mediterranean Sea is rather well investigated, particularly off Italy
(Montresor et al. 1994, 1998; Meier et al. 2002; Meier & Willems 2003; Tommasa et al. 2004;
Penna et al. 2010), whereas the coastal waters of Greece have been largely disregarded.

During the course of my study, sediment samples from coastal waters have been taken
in the Eastern Mediterranean Sea at 64 localities (ltaly and Greece, including Crete, paper 5,
Figure 1). Eighteen distinct morphospecies of Thoracosphaeraceae have been identified
(paper 2 and 5), representing two thirds of the previously known diversity in the
Mediterranean Sea (Montresor et al. 1998; Meier et al. 2002; Gémez 2003; Satta et al.
2010). Furthermore, several fossil-based species (living fossils) have been reported from
Recent sediments of the Mediterranean Sea (listed in Elbrachter et al. 2008), including
Calciperidinium asymmetricum and Follisdinellum splendidum (paper 5, Figure 2b-c).
Following the pioneering work of Wall and Dale (1968) numerous strains of
Thoracosphaeraceae have been established, however, not all morphologically identified
species have been brought into cultivation yet. The species diversity of Thoracosphaeraceae
appears much higher in the Mediterranean in comparison to colder environments such as the
North Sea, where less than ten morphospecies occur (Persson et al. 2000; Godhe et al.
2001; Gottschling & Kirsch 2009). Concluding, ecologically differentiated regions discern in
species diversity, whereas the warmer Mediterranean Sea seems to provide biotic or abiotic

environmental factors, which may accelerate diversification.
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INCREASING KNOWLEDGE OF DIVERSITY — NEW SPECIES AND LIVING FOSSILS

In my thesis, | contributed to the description of new species. Based on molecular
sequence data using a multilocus alignment (paper 1, Figure 4) Scrippsiella bicarinata and
S. kirschiae from ltalian and Greek coastal waters are closely related and maximal supported
taxa. They are clearly assigned to Scrippsiella s.I., one of the three distinct clades of the
Thoracosphaeraceae (Montresor et al. 2003; Gottschling et al. 2005b; Gu et al. 2011; paper
2, Figure 4 and paper 6, Figure 2).

Morphologically, the presence of six cingular plates in Scrippsiella bicarinata and S.
kirschiae is indicative for their correct phylogenetic placement in Scrippsiella s.I. However,
particularly the morphology of the coccoid cells has discriminative potential among
calcareous dinophytes. Both of the new species are unique among Scrippsiella s.I. because
of the presence of two prominent ridges on the surface of the coccoid cells corresponding to
the cingular contour of the thecate cells (paper 1, Figure 1A-l and Figure 2D-F). From an
evolutionary perspective, S. bicarinata and S. kirschiae derive from species with spiny
coccoid stages present in S. frochoidea (paper 1, Figure 4). At a first glance, the
morphology of Scrippsiella bicarinata and S. kirschiae is similar to Bicarinellum Deflandre,
1949 known from the Mesozoic and Paleogene, but this taxon is considered to be extinct
since 50 Ma (Willems 1988). Bitorus tubiformis Keupp from the late Cretaceous resembles
likewise to S. kirschiae with respect to its coccoid cell morphology. However, both taxa have
never been reported from Recent sediments, and seeing their distinct morphology, it is
unlikely that Bicarinellum and Bitorus simply have been overlooked.

The morphology of the excystment aperture (i.e., the operculum) is of key importance
for classification of calcareous dinophytes (Keupp & Versteegh 1989; Streng et al. 2004) and
helps to distinguish fossils from the extant bicarinate species: All fossil bicarinate species
exhibit (as known so far) an apical archeopyle corresponding to a single thecal plate
equivalent (Introduction, Figure 4.2), while both new extant species have a combination
(mesoepicystal) operculum, an apomorphy of the extant Scrippsiella s.I. clade (Introduction,
Figure 4.3). In summary, the extant bicarinate taxa from the Mediterranean Sea cannot be
assigned to any fossil-based taxa, but they are well distinguishable morphologically and

molecularly as new species.

Unlike the previous example, coccoid cells displaying the morphology of Posoniella
tricarinelloides in fact have been reported from Recent sediments (Montresor et al. 1994;
Meier et al. 2009; Rubino et al. 2010) as well as from the fossil record of the late Pliocene
and Miocene (Versteegh 1993; Bison et al. 2007; Streng et al. 2009). In the course of my

study, it has been possible to cultivate living P. ftricarinelloides not only from the
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Mediterranean Sea, but also from the South China Sea (paper 2). The thecal morphology of
this species has been previously undescribed and unusually consists of a hemispherical
epitheca and a conical hyoptheca (paper 2, Figure 1F). However, the most striking
observation of the cultivated strains is the development of two distinct morphotypes of
coccoid cells, one type corresponding to the typical appearance of P. tricarinelloides (paper
2, Figure 3B-C) and another, smaller type with a thinner calcareous shell (paper 2, Figure
3F). This is the first record of a calcareous dinophyte species exhibiting more than one
coccoid cell morphology, which are further differentiated by optical crystallography. The first
type shows an irregular orientation of calcite crystals, known at present from members of the
E/Pe-clade such as Calcicarpinum bivalvum (Montresor et al. 1997). The ultrastructure of the
second type astonishingly reveals a regular arrangement of crystals with radial orientations
of the crystallographic c-axes, which is known today from the fossil taxon Caracomia Streng,
Hildebrand-Habel & Willems and the extant Leonella only (the latter belonging to the T/Pf-
clade). Both morphologies of coccoid cells exhibit an apical archeopyle corresponding to a
single thecal plate equivalent (paper 2, Figure 3C and 3F, and also see Introduction, Figure
4.2), today occurring in the only distantly related E/Pe- and T/Pf-clades of the
Thoracosphaeraceae (Streng et al. 2004). A reliable classification of P. tricarinelloides based
on morphology alone thus has not been possible.

In the case of P. ftricarinelloides, four loci have been applied to determine its
phylogenetic position within the calcareous dinophytes (paper 2, Figure 4). The
Thoracosphaeraceae segregate into the basal E/Pe-clade and the more derived Scrippsiella
s.l. and T/Pf-clade. All strains of P. tricarinelloides assemble distinctly and with maximal
support within the T/Pf-clade. This result is rather surprising as the phylogenetic position was
expected within the E/Pe-clade based on the irregular orientated calcite crystals detected in
fossil samples (Meier et al. 2009). However, the molecular data concur with the archeopyle
morphology as well as with the ultrastructure and crystallography of the second type of
coccoid cells. In conclusion, the cultivated strains from the Mediterranean Sea and the South
China Sea can be reliably determined as the fossil-based taxon P. tricarinelloides, the only

species described so far exhibiting two distinct morphotypes of coccoid cells.

Although not focus of my doctoral research, the increasing threat for marine organisms
as well as for human health deserves especial attention and necessitates basic research on
harmful algae (Hallegraeff 1993; Anderson et al. 2012) such as Alexandrium (Anderson et al.
2012), Azadinium (Tillmann et al. 2012; paper 3), Karenia G.Hansen & @.Moestrup (Brand et
al. 2012) or Pfiesteria (Burkholder et al. 2012). Azadinium comprises five species at present
(Tillmann et al. 2009, 2010, 2011; Nézan et al. 2012; paper 3), and together with
Amphidoma languida Tillmann, R.M.Salas, Elbr. it constitutes the highly supported
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Amphidomataceae in molecular trees (Tillmann et al. 2012). The new species A. polongum
from waters off the Shetland Islands is described with respect to both morphological and
molecular data and clusters within Azadinium based on a three loci phylogenetic analysis
(paper 3, Figure 10). Additionally, the genetic ITS distances of p=0.052 to 0.247 (paper 3,
table 1) support the species delimitations. An intergenomic distance up to 0.02 substitutions
per site argues for intraspecific variation, whereas distances exceeding 0.04 are indicative for
dinophyte species divergence (Litaker et al. 2007). Azadinium polongum is not confirmed to
be a toxic species. Only A. spinosum produces toxic derivates of azaspirid within the
Amphidomataceae. However, the assembly of azaspirids seems to be common within
Azadinium (Krock et al. 2012), and the presence of yet unknown toxic derivates cannot be
excluded and requires further research. The phylogenetic analysis of A. spinosum and its
non-toxic relatives as a case study might help to understand the evolutionary origination of

toxin production within the dinophytes in general.

CLARIFYING TAXONOMY — BARCODING AND CRYPTIC SPECIES

An appropriate way for an unambiguous identification of character-poor unicellular
organisms such as (calcareous) dinophytes is necessary. Moreover, a reliable and quick
designation of new samples is required. DNA barcoding has become a comparatively
reasonable and fast, but also vigorously discussed technique for species identification
(Herbert et al. 2003; Tautz et al. 2003; http://www.barcodinglife.com). Recently, the
diagnoses of new species (LaJeunesse et al. 2012) and studies on biodiversity
(Krishnamurthy & Francis 2012) have become additional applications of barcoding. However,
such an integrative genetics-based approach has to be considered with caution (DeSalle et
al. 2005; DeWalt 2011): Only the comparison of new sequences to an existing large
database assures accurate classifications and avoids misinterpretations such as the over- or
underestimation of species diversity. A proper barcoding locus and approach has been
debated for various groups of organisms (Mitchell 2008; Schoch et al. 2012; Hollingsworth
2011; Pawlowski et al. 2012). For Dinophyceae, mitochondrial loci have been proposed
previously (Lin et al. 2009; Stern et al. 2010), but the two main prerequisites of a suitable
marker, as being universally applicable on the one hand, and providing resolution to species
level on the other hand, have not been satisfactory (Stern et al. 2012). As for other
eukaryotic microorganisms such as fungi (Schoch et al. 2012), the ITS region has been
verified as a suitable dinophyte barcode marker (Gottschling et al. 2005b; Litaker et al. 2007;
Genovesi et al. 2011; Qui et al. 2011; Stern et al. 2012). Both above mentioned requirements

are provided; additionally, immense numbers of ITS sequences of dinophytes have been



25

accumulated in GenBank, tendering for taxonomic comparison. Consequently, the ITS region

served as the barcode marker during my study.

The taxonomy of species such as Scrippsiella trochoidea has been challenging through
the past decade. By virtue of molecular analysis, the existence of several subclades among
numerous morphologically similar S. trochoidea strains has been documented (D Onofrio et
al. 1999; Gottschling et al. 2005b; Gu et al. 2008; paper 5). Hence, the taxon S. trochoidea
appears not as a single species but rather constitutes a species complex (STR-SC)
consisting of genetically distinct, but morphologically indistinguishable cryptic species
(Montresor et al. 2003). Cryptic speciation has been also reported from other dinophytes
such as Alexandrium, Dinophysis and Symbiodinium (Genovesi et al. 2011; Gémez et al.
2011; LaJeunesse et al. 2012). For the Alexandrium tamarense (M.Lebour) Balech species-
complex five geographically distinct ribotypes have been detected (Scholin et al. 1994;
Genovesi et al. 2011). In contrary, the ribotypes of the three morphologically
indistinguishable subclades of the STR-SC co-occur worldwide (Gottschling et al. 2005b;
paper 5, Figure 3). The lack of any apparent distribution pattern excludes the biogeography
as a delimitating factor for the S. frochoidea-like species. In Symbiodinium LaJeunesse et al.
(2012) provided ecological and physiological discriminative criteria (e.g., host specificity and
temperature tolerances). Ecophysiological, morphological and genetic information are
prerequisite for a robust species description (Sites & Marshall 2004) and need to be worked
out rigorously for the members of STR-SC.

The existence of the distinct clades STR1, 2 and 3 within the STR-SC has brought up
the question on the taxonomic identity of the “true” S. trochoidea. The only available type
material of S. trochoidea consists of three rather simple sketches (Stein 1883; paper 4,
Figure 1 to 3), which do not allow an unambiguous identification. Thus, the detailed
examination of material from the type locality Kiel Fjord (Baltic Sea, Germany) is the most
sensible way of clarifying the taxonomic identity of S. frochoidea. During the course of my
study, several morphologically S. trochoidea-like strains originating from the type locality
have been cultivated by Monika Kirsch (Bremen, Germany). The strain GeoB*185 has been
chosen for epitypification due to deriving from a single cell and accordingly being
monoclonal. Moreover, the morphology of S. trochoidea from the type locality does not
oppose the protologue. Based on ITS sequence information GeoB*185 clusters within the

genetically distinct STR2 (paper 4, Figure 18).

After the taxonomic identity of S. frochoidea is clarified, it remains unclear whether the
STR2 clade and related groups are equivalent to a single or rather several species. Thus, a

rough species number for the STR-SC has to be estimated. Network analyses of ribotypes
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allow the illustration of reticulations and intermediate mutational steps for investigations on
population genetics and intraspecific variability (Posada & Crandall 2001). The occurrences
of cryptic species have been investigated by network analyses for fungi, animals and plants
(e.g., Baloch & Grube 2009; Daniels & Ruhberg 2010; Peng et al. 2010). Conducting ITS
ribotype analyses for the three distinct clades within the STR-SC and additionally for the LAC
and PRE clades (paper 5, Figure 3), a continuum of gradually varying ribotypes within the
clades is not perceived. On the contrary, classes of similarity are detected, which account for
reproductive isolation and therefore several distinct species (i.e., biological species) within
these clades. A minimal number of species is estimated referring to the STR3 clade, which
includes two morphologically and ecologically distinct morphospecies, namely S. trochoidea
and “Calciodinellum” levantinum S.Meier, Janofske & H.Willems (Meier & Willems 2003;
Gottschling et al. 2005b; Meier et al. 2007). Doubtlessly, these taxa are reproductively
isolated from another. Assuming that C. levantinum represents a single species with one
class of similar ribotypes (i.e., biological species), seven additional classes of similarities of
Scrippsiella-like species can be detected within the STR3 clade. The same approach
enables the assumption of four and two species in STR1 and STR2, respectively. For S.
lachrymosa, a minimal species number of four is evaluated. As these closely related species
occur sympatrically, another driving force than geographical isolation has to account for
species diversification among these cryptic species. Such criteria might be ecological or
physiological specifications, whereas the knowledge on S. trochoidea and S. trochoidea-like
species is still fragmentary. In conclusion, the six investigated morphospecies segregate into

the considerably high number of 21 species based on molecular data.

INCREASING DATA AVAILABILITY — IMPROVING APPROACHES FOR BETTER CONCLUSIONS

The Dinophyceae exhibit several problematic specifics molecular biologists are faced
with in phylogenetic reconstructions, resulting from, for example, various types of nutrition
and lifestyle. Because of being unicellular predators, parasites or symbionts, genomes of
both dinophytes and prey or host, respectively, have to be taken into consideration.
Furthermore, genetically extremely reduced organelles and multiple endosymbiosis events
complicate the phylogenetic analysis of dinophytes at a high taxonomic level. Moreover, the
reconstruction of the relationships within the Dinophyceae is a complex challenge for three
main reasons that are discussed below.

First, the taxon sample available at present is very limited (approximately a quarter of
all Dinophyceae at the generic level only have sequence depositions from at least one locus
in GenBank). Generally, an increased number of taxa included in alignments improve the

resolution of phylogenetic trees (Dunn et al. 2008; Heath et al. 2008; Sanderson 2008).
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Constant and reliable research on diversity and taxonomy combined with new molecular
techniques such as next generation sequencing will counteract unbalanced sequence data
availability.

Second, the application of a single genetic locus is not powerful enough to infer higher
taxonomic relationships of the Dinophyceae (Keeling et al. 2005; Gottschling et al. 2005b). A
gene tree based on merely one marker does not necessarily reflect the phylogeny of a taxon,
but also the single gene history. Critical comparison regarding the congruence of gene trees
resulting from various loci is prerequisite. Considering the demonstrated lateral gene transfer
within the dinophytes (Morden & Sherwood 2002; Bhattacharya & Nosenko 2008; Howe et
al. 2008; Minge et al. 2010), the combination of several loci has been shown to improve the
resolution of dinophycean phylogenetic trees (Saldarriaga et al. 2004; Zhang et al. 2007,
Hoppenrath & Leander 2010; Tillmann et al. 2012; paper 2 and 6). The impressive
application of eight different nuclear and mitochondrial loci has suggested a single origin of
thecate Dinophyceae diverging from an athecate ancestor (Orr et al. 2012). However, the
technical limitations of this study are evident: The two applicable loci of the three in total
available mitochondrial loci have been applied as well as the maximum of available nuclear
sequences, partly to a rather limited taxon sample. The lack of any chloroplast marker owed
to multiple endosymbiosis events within the Dinophyceae (Howe et al. 2008; Keeling 2010)
and hence their inappropriateness for broad phylogenetic analyses. In addition, for a small
number of dinophyte species the extensive editing of the mitochondrial messenger RNA is
known (Zhang et al. 2008; Waller & Jackson 2009). Consequently, mRNA sequence
information should be excluded from phylogenetic analyses, or only be used in comparison
with the corresponding genomic mitochondrial sequence information.

Third, the rate heterogeneity of different molecular loci and taxa causes branch length
variations. While ITS is known to evolve quickly resulting in highly divergent sequences over
a broad taxonomic range, the SSU provides lower resolution in dinophyte phylogenetic trees
(Taylor 2004). Considering the high morphological diversity together with the poor resolution
of the deep nodes within the Dinophyceae, a rapid radiation in younger geological time might
be inferred (Moestrup & Daugbjerg 2007; Hoppenrath & Leander 2010). An extreme case is
the shared ribotype of the morphologically and ecologically differentiated species S. hangoei
(J.Schiller) J.Larsen from brackish water environments and Peridinium aciculiferum
Lemmerm. with fresh water preferences (Gottschling et al. 2005a; Logares et al. 20073,
2007b) On the contrary, several taxa have extremely long branches, seemingly being
isolated for a long time or having extraordinary high substitution rates such as Amphidinium
Claperéde & J.Lachm., Bysmatrum M.A.Faust & Steid. (paper 6), Cochlodinium F.Schitt,
Coolia Meunier and Gambierdiscus Adachi & Fukuyo (paper 2, Figure S1). A further aspect

of presumably high mutational rates is the incidence of the above discussed cryptic species,
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whereat the molecular species diversification seems to be rather rapid (paper 5).
Concluding, the reconstruction of ancient relationships within the Dinophyceae has been and
remains challenging and demands the reflection on rate heterogeneity and data coverage.
Being aware of the above discussed problems, the concatenation of the rich pool of
rRNA sequences and the inclusion of as much taxa as possible has been shown to be
promising during the course of my study, to analyse the phylogenetic relationships within the
Dinophyceae and address specific taxonomic issues (paper 2 and 6). Both Maximum
Likelihood and Bayesian approaches were applied resulting in largely congruent tree
topologies. Neither the use of various automatic alignment programs, nor the exclusion of
poorly aligned positions improved the results significantly. Thus, topology and stability of
resulting trees rely on the amount of input data only (Saldarriaga et al. 2004; Tillmann et al.
2012; Orr et al. 2012; Gottschling & McLean 2013). The monophyly of the Dinophyceae is
highly supported (paper 6, Figure 2 and S1), as proven by other studies (e.g., Maroteaux et
al. 1985; Shalchian-Tabrizi et al. 2006a; Minge et al. 2009; Hoppenrath & Leander 2010)
although early studies had a poor resolution on account of limited taxon sample and low
amount of genetic data (see above). However, the phylogenetic relationships within the
Dinophyceae based on molecular data do not always agree with the morphological groups.
The Suessiales, the Gonyaulacales and the Dinophysiales each form monophyletic groups
based on both morphological and molecular data (Daugbjerg et al. 2000; Saldarriaga et al.
2004; Zhang et al. 2007; paper 2, Figure S1 and paper 6, Figure S1). Contrary, the
Peridiniales and the Prorocentrales have been problematic in being para- and polyphyletic
(Zhang et al. 2007; Kremp et al. 2005; paper 6, Figure 2), or, if monophyletic, only in
phylogenies using concatenated sequences (Zhang et al. 2007; Tillmann et al. 2012; paper
2, Figure S1). The monophyly of the Gymnodiniales has never been shown (Saldarriaga et
al. 2004; Kremp et al. 2005; paper 2, Figure S1 and paper 6, Figure S1). Hence,
morphological or ecophysiological characters have to be worked out to discriminate among

the paraphyletic Gymnodiniales.

Fensome et al. (1993) provide a comprehensive classification of both extant and fossil
Dinophyceae for the first time. Following Tangen et al. (1982), the Thoracosphaerales
comprising vegetative calcareous coccid stages, have been separated from the
Calciodinelloidae, having calcareous resting cells. Molecular studies have demonstrated the
close relationship of the Thoracosphaerales and the Calciodinelloidae. Including non-
calcareous taxa, the monophyly of the calcareous dinophytes has been shown (D Onofrio et
al. 1999; Kremp et al. 2005; Gottschling et al. 2005a). The ability to produce calcareous
structures has been considered to be a morphological apomorphy within the Dinophyceae
(Wall & Dale 1968; Janofske 1992; Kohring et al. 2005). Moreover, considering the vast
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diversity of more than 10.000 alveolate species (Fast et al. 2002), the calcareous structures
exhibited by the Thoracosphaerales and the Calciodinelloidae only, are most likely
homologous. However, these suggestions have never been tested rigorously (Elbrachter et
al. 2008) as either the molecular data sets (Gottschling et al. 2005b) or the taxon sample
have been limited (Tillmann et al. 2009; Zhang et al. 2007). During the course of my study,
the monophyly of the calcareous Dinophyceae (i.e., Thoracosphaeraceae) including some
non-calcareous taxa such as Pfiesteria piscicida Steid. & J.M.Burkh. and Ensiculifera aff.
loeblichii EI.R.Cox & H.J.Arn. is clearly demonstrated (paper 2, Figure 4 and paper 6,
Figure 2, Tillmann et al. 2012). Accordingly, the assumptions of Fensome et al. (1993) and
Tangen et al. (1982) to separate Thoracosphaerales and Calciodinelloidae can be clearly
rejected.

Although the Thoracosphaeraceae are monophyletic, the assumption of a single origin
of the ability to produce calcareous structures within the Dinophyceae is challenged again.
The molecular phylogenies of the Thoracosphaeraceae become astonishingly complex by
the recent affiliation of parasitic or endosymbiotic species such as Duboscquodinium collinii
Grassé, Tintinnophagus acutus Coats (Coats et al. 2010), Blastodinium contortum Chatton,
B. crassum Chatton (Skovgaard et al. 2012) and Zooxanthella nutricula K.Brandt
(Gottschling & McLean 2013) (paper 2, Figure 4). Opposed to several losses of the ability to
calcify, an independent repeated acquirement to produce calcareous structures within the
Thoracosphaeraceae has to be considered possible.

In conclusion, the applications of large rRNA data sets confirm the monophyly of both,
the Dinophyceae and the Thoracosphaeraceae. Moreover, despite the possibly paraphyletic
Gymnodiniales, the dinophytes diverge into each monophyletic Suessiales, Gonyaulacales,
Dinophysiales, Peridiniales and Prorocentrales. However, the requirement of further research
and the necessity to combine morphology and molecular methods for meaningful
interpretations regarding the evolution of the Dinophyceae in general and the

Thoracosphaeraceae in particular, is evident.
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LIST OF ABBREVIATIONS

AZP
CFP
cob
cox1
cox3
DSP
EMBO
HAB
hsp90
ICN
ICZN
ITS
JSPS
LSU
NCBI
NSP
PSP
s.l.
SSU

azaspiracid shellfish poisoning

ciguatera fish poisoning

cytochrome b

cytochrome oxidase subunit |

cytochrome oxidase subunit Il

diarrhetic shellfish poisoning

European Molecular Biology Organization

harmful algae bloom

heat shock protein 90

International Code of Nomenclature for algae, fungi and plants
International Code of Zoological Nomenclature

5.8S rRNA plus flanking internal transcribed spacers 1 and 2
Japanese Society for the Promotion of Science

28S rRNA, large subunit

National Center for Biotechnology Information

neurotoxic shellfish poisoning

paralytic shellfish poisoning

sensu lato

18S rRNA, small subunit
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The diversity of extant calcareous dinophytes
(Thoracosphaeraceae, Dinophyceae) is currently not
sufficiently recorded. The majority of their coccoid
stages are cryptotabulate or entirely atabulate,
whereas relatively few forms exhibit at least some
degree of tabulation more than the archeopyle.
A survey of coastal surface sediment samples from the
Mediterranean Sea resulted in the isolation and
cultivation of several strains of calcareous dinophytes
showing a prominent tabulation. We investigated the
morphologies of the thecate and the coccoid cells and
conducted phylogenetic analyses using Maximum
Likelihood and Bayesian approaches. The coccoid
cells showed a distinct reflection of the cingulum (and
were thus cingulotabulate), whereas thecal morphol-
ogy corresponded to the widely distributed and spe-
ciestich Scrippsiella. As inferred from molecular
sequence data (including 81 new GenBank entries),
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the strains belonged to the Scrippsiella sensu lato clade
of the Thoracosphaeraceae and represented two dis-
tinct species. Morphological details likewise indicated
two distinct species with previously unknown coccoid
cells that we describe here as new, namely S. bicarinata
spec. nov. and S. kirschiae spec. nov. Cingulotabulation
results from the fusion of processes representing the
pre- and postcingular plate series in S. bicarinata,
whereas the ridges represent sutures between the
cingulum and the pre- and postcingular series in
S. kirschiae, respectively. Bicarinate cingulotabulation
appears homoplasious among calcareous dinophytes,
which is further supported by a comparison to similar,
but only distantly related fossil forms.

Key index words: coccoid cell; cytochrome b;
distribution; molecular systematics; morphology;
phylogeny; ribosomal RNA; thecate cell

Knowledge about the diversity of extant dinophytes
producing calcified cells during their life history
(Thoracosphaeraceae, Dinophyceae) is limited at
present. More than 250 species of great morphological
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variety have been described based on fossil material
(Streng et al. 2004), vastly exceeding the diversity
known from the today recognized species in the glo-
bal oceans. Among myriad species of the Alveolata,
the potential to produce calcareous structures is
restricted to (i.e., has been considered apomorphic
for) the Thoracosphaeraceae, arguing for the mono-
phyly of this group (Wall and Dale 1968, Janofske
1992, Elbrachter et al. 2008). Molecular data, how-
ever, indicate that the Thoracosphaeraceae also
include (presumably secondarily) noncalcareous rela-
tives, such as species of Pentapharsodinium Indel. &
AR.Loebl. and Pfiesteria Steid. & J.M.Burkh. (D’Onofrio
etal. 1999, Gottschling et al. 2005a, 2012, Zhang
et al. 2007, Tillmann et al. in press) and even para-
sites, namely Duboscquodinium Grassé, 1952 and
Tintinnophagus Coats, 2010 (Coats et al. 2010). The
Thoracosphaeraceae may segregate into three lin-
eages, including the E/Pe-clade (i.e., Ensiculifera
Balech, 1967 and Pentapharsodinium; marine and pos-
sibly also fresh water environments), the T/Pf-clade
(including Thoracosphaera Kamptner and Pfiesteria;
marine, brackish and fresh water environments), and
Scrippsiella Balech ex A.R.Loebl. sensu lato (s.l.; pre-
dominantly marine and also brackish environments),
with the latter two clades showing a close relationship
(Gottschling et al. 2005a, 2012, Tillmann etal. in
press).

Life histories of calcareous dinophytes include (at
least) two principally different developmental stages,
namely a motile cell (usually thecate, with a distinct
tabulation pattern of cellulose plates) and an immo-
tile coccoid cell. The coccoid stage is frequently
referred to as ““cyst’” and may retain various degrees
of expressed tabulation (formerly described as
paratabulation), frequently restricted to the arche-
opyle. Key characters used to circumscribe calcare-
ous dinophyte species based on the motile cells are
number and shape of epi- and hypothecal, cingular,
and sulcal plates, whereas diagnostic characters of
the coccoid stages comprise the shape, tabulation
(if present), archeopyle/operculum morphology,
and ultrastructure of the calcareous shell (including
the optical crystallography; Elbrachter et al. 2008).
The thorough investigation of the link between the
two developmental stages goes back to the pioneer-
ing work of Wall and Dale (1966, 1968), who have
performed cultivation experiments with coccoid
cells collected from modern sediments. Later, a
series of studies have been published, clarifying the
cyst-theca-relationships of such fossil-based taxa as
Calcicarpinum bivalvum G.Versteegh (= *‘Pentapharso-
dinium’’ tyrrhenicum [Balech] Montresor, Zingone &
D.Marino: Montresor et al. 1993), Calciodinellum
operosum Deflandre, 1947 (Montresor et al. 1997),
and Pernambugia tuberosa (Kamptner) Janofske &
Karwath (Janofske & Karwath in Karwath 2000).

Attempts have been made to classify calcareous
dinophytes into various subgroups based on several
character traits. In the coccoid stage, the number of

shell layers as well as the ultrastructure of the con-
stituent calcitic crystals appear consistent within spe-
cies and informative for the inference of
phylogenetic relationships. It is, however, particu-
larly the orientation of the calcitic crystals forming
the shell with their crystallographic main axis
(c-axis), which has been considered important for
classification. Three types are readily distinguished,
namely ‘‘irregularly oblique”, ‘‘regularly radial’,
and ‘‘regularly tangential” (each in relation to the
cell surface: Keupp 1981, 1987, 1991, Kohring
1993a, Young et al. 1997, Meier et al. 2009). How-
ever, none of such types appears to be congruent to
monophyletic groups of molecular trees (Gottsch-
ling et al. 2005a, 2012), and their importance for
the classification of the entirety of the Thoraco-
sphaeraceae remains at least questionable.

During germination, the archeopyle of the coc-
coid cell is the aperture, from which a new thecate
cell emerges. This process takes place after removal
of the operculum comprising a variable number of
thecal apical plate equivalents (Evitt 1967). Arche-
opyle and operculum morphology has great impor-
tance to indicate relationships within calcareous
dinophytes (Keupp and Versteegh 1989, Streng
et al. 2004). The different types of archeopyles that
are currently distinguished (Streng et al. 2004) cor-
relate with molecular phylogenies of calcareous di-
nophytes (Gottschling et al. 2005a). A simple apical
archeopyle is considered the ancestral condition
and is today found in the two, only distantly related
clades E/Pe and T/Pf. The more complex (mesoepi-
cystal and epitractal) compound opercula include a
greater number of plate equivalents and are found
today in Scrippsiella s.1.

Only few calcareous dinophytes are entirely ata-
bulate, whereas, the majority of forms exhibits at
least some degree of tabulation in the coccoid stage
(for terminology, we refer to Sarjeant 1982, Streng
et al. 2009). Many forms belong to the cryptotabu-
late type (Streng et al. 2004), in which tabulation is
restricted to the archeopyle. Relatively few species
belong to the holotabulate type (e.g., Calciodinellum
operosum), the intratabulate type (e.g., Alasphaera
Keupp, Wallidinellum Keupp), and the cingulotabu-
late type. If the latter type is present, then the
cingulum is reflected either as one (monocarinate;
e.g., Carinasphaera Kohring, Carinellum Keupp) or
two ridges (bicarinate; e.g., some species of Bicarinel-
lum Deflandre, 1949, Bitorus Keupp). Two ridges are
frequently developed by the fusion of processes rep-
resenting pre- and postcingular plate equivalents,
respectively, and they are thus not cingulotabulate
in a strict sense. Occasionally, intermediates
between cingulotabulate and intratabulate forms are
found [e.g., in Bicarinellum jurassicum (Deflandre)
Keupp: Keupp 1984]. Species exhibiting coccoid
cells with tabulation are likely polyphyletic, and the
degree of tabulation may vary between individuals
of the same strain in cultivation (e.g., Calciodinellum
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Deflandre, 1947: Gottschling et al. 2005b). Tabula-
tion in the coccoid cells as character trait is, thus,
highly homoplasious and appears to be of limited
importance for the inference of phylogenetic rela-
tionships at high taxonomic level (i.e., rather at the
species level if at all).

In this study, we report on two novel species of
calcareous dinophytes that we have collected at vari-
ous sites in the Mediterranean Sea and that we have
brought into cultivation. Among extant species, they
are unique, exhibiting calcareous coccoid stages
with two distinct ridges reflecting the cingulum. We
herein provide morphological descriptions of both
stages, thecate and coccoid and investigate their
phylogenetic position using molecular data of three
loci (mitochondrially encoded cytochrome b: cob,
MT-CYB; nuclear Internal Transcribed Spacer: ITS
and large subunit of the ribosomal RNA: LSU). We
have compiled all protologues of those Thoracosph-
aeraceae showing the cingulo- or intratabulate type
of tabulation to delimitate the novel from the
known species reliably. Our aim is an improved
knowledge about extant (calcareous) dinophyte
diversity, with relevance also for the fossil species.

MATERIALS AND METHODS

Morphology. Nine strains of calcareous dinophytes (GeoB
408, GeoB 411, GeoB*414, GeoB 416, GeoB 432, GeoB 453,
GeoB 454, GeoB 456, and GeoB 458; see Table S2 in the
Supporting Information) were established by isolation of few
coccoid cells from sediment samples collected at the Italian
and Greek coast as previously described in detail (Soehner
etal. in rev.). Cultivation took place in a climate chamber
Percival I-36VL (CLF PlantClimatics; Emersacker, Germany) at
28°C, 80 pmol photons m™? - 57! and a 12:12 h light:dark
photoperiod using K-Medium without silicate (Keller et al.
1987) and 35 psu artificial seawater (hw marinemix profes-
sional: Wiegandt; Krefeld, Germany) at pH 8.2. The strains are
currently held in the culture collections at the Institute of
Historical Geology/Palaeontology (University of Bremen,
Germany) and the Institute of Systematic Botany and Mycology
(University of Munich) and are available upon request.

Cells were directly observed in an Olympus CKX41 inverted
microscope, equipped with the camera DX 20H-FW (Kappa
optronics; Gleichen, Germany) supplied with Calypso software.
For the identification of thecal plate patterns, cells were stained
with calcofluor white M2R (Sigma-Aldrich; Munich, Germany;
Fritz and Triemer 1985) and observed in a Leica fluorescence
microscope, equipped with the camera PS/DX40-285FW
(Kappa optronics). The Kofoidean system (Taylor 1980, Fen-
some et al. 1993) was used for the designation of the thecal
plate formula. The preparation of the type material followed
the protocol as described in Zinssmeister et al. (2011). Double-
staining was performed using astra blue (Fluka; Buchs,
Switzerland) and eosin (Merck; Darmstadt, Germany). Ethanol-
based Technovit 7100 (Heraeus; Wehrheim, Germany) was
used for embedding. The types are deposited at the Centre of
Excellence for Dinophyte Taxonomy (CEDiT; Wilhelmshaven,
Germany), copies are available in the herbaria of Berlin and
Munich.

For thin sections, cultivated coccoid cells were fixed with
2.5-3% glutaraldehyde (Plano; Wetzlar, Germany) in media,
desalinated in artificial seawater with reduced salinity and
dehydrated in a graded acetone p.a. (Roth; Karlsruhe,

Germany) series (30, 50, 70, 90, 100, 100, and 100%). The
samples were embedded in a synthetic resin (Spurr 1969) using
the Embedding Medi Kit (Science Services; Munich, Germany)
and following standard protocols (Meier et al. 2002). A 1:1
mixture of acetone and resin was used in a first embedding step
for better infiltration of the resin into the cells. After 1 h, the
mixture was replaced by pure Spurr’s resin and hardened at
70°C for 48 h. The Zeiss microtome, equipped with a steel
knife, was used to cut 3 pm ultra-thin sections that were
examined using the Axiophot light microscope (Zeiss; Oberko-
chen, Germany). The method for identifying the crystallo-
graphic orientation of the calcite crystals based on standard
methods (Bloss 1999) in thin sections was described in detail
previously (Janofske 1996, 2000, Montresor et al. 1997, Karwath
2000). Briefly, the orientation of the c-axis is perpendicular to
the cell surface, if the quadrants I and III of a conoscopic
image show yellow interference colors and quadrants II and IV
show blue interference colors. Conversely, the orientation of
the c-axis is tangential to the cell surface, if the quadrants II
and IV show yellow interference colors and quadrants I and III
show blue interference colors.

For scanning electron microscopy (SEM) preparation, coc-
coid cells were desalinated in bi-distillate water and air-dried on
a glass slide that was fixed on a SEM stub. Thecate cells were
fixed using 2.5-3% glutaraldehyde in media, and further steps
were performed following standard protocols as previously
described (Gottschling et al. 2012). Samples were sputter-
coated with platinum and documented using an electron
microscope LEO 438 VP (Zeiss). For each species, the number
of cells measured (thecate or calcareous coccoid cells) ranged
between 5 and 101. Lengths of thecate cells were measured
from the top of the apex to the antapex. Widths were measured
as the largest distance in transversal view (i.e., points between
the upper cingular plate boundaries of the pre-cingular plates).
Ridges and processes present in the coccoid cells were likewise
included.

Molecular analyses. Genomic DNA was extracted from fresh
material using the Nucleo Spin Plant II Kit (Machery-Nagel,
Diiren, Germany). Both ITSs including the 5.8S rRNA region,
the first two domains of the LSU and cob were amplified using
the primer listed in Table S1 (see Supporting Information)
following standard protocols (Gottschling and Plotner 2004,
Zhang et al. 2005). Forty-four dinophyte strains were investi-
gated (Table S2). The data matrix comprising a systematically
representative set of Scrippsiella s.l. was assembled from
sequences downloaded from GenBank. It included 81 new
ITS, LSU, and cob sequences from strains out of our own
culture collection (Table S2). The sequences were separately
aligned in three partitions using “MAFFT”’ v6.624b (Katoh
et al. 2005, Katoh and Toh 2008; freely available at http://
mafft.cbrc.jp/alignment/software/index.html) and were con-
catenated afterwards. The alignment is available via nexus file
upon request.

Phylogenetic analyses were carried out using Maximum-
Likelihood (ML) and Bayesian approaches, as described in
detail previously (Gottschling etal. 2012). The Bayesian
analysis was performed using ‘“‘MrBayes” v3.1.2 (Ronquist
and Huelsenbeck 2003; freely available at http://mrbayes.
sourceforge.net/download.php) under the GTR+I" substitu-
tion model and the random-addition-sequence method with 10
replicates. We ran two independent analyses of four chains
(one cold and three heated) with 20,000,000 cycles, sampled
every 1,000th cycle, with an appropriate burn-in (10%, after
checking convergence). For the ML calculation, ‘‘RaxML”
v7.2.6 (Stamatakis 2006; freely available at http://www.kramer.
in.tum.de/exelixis/software.html) was applied using the GTR +
CAT substitution model to search for the best-scoring ML
tree and a rapid bootstrap analysis of 1,000 non-parametric
replicates. Statistical support values (LBS: ML bootstrap
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support, BPP: Bayesian posterior probabilities) were drawn on
the resulting, best-scoring ML tree.

RESULTS

Morphology. We herein describe two new dino-
phyte species and currently assign them to Scrippsiella
(Thoracosphaeraceae, Peridiniales):

1 Scrippsiella  bicarinata Zinssmeister, S.Soehner,
S.Meier & Gottschling, spec. nov. Type: Mediterra-
nean Sea, off Italy. Lazio, Latina, Formia, 41°15'N,
13°36’E, 17 Apr 2009 [extant]: M. Gottschling, S. Soeh-
ner & C. Zinssmeister ITAOO044 [ GeoB 416] (holotype:
CEDiT-2011H18; isotypes: B-40 0040762, M-0178306).
Figures 1A-I, 3A.

Latin description: Cellulae oviformae epithecam
conicam et hypothecam rotundam habent, 17 usque
ad 35 um longae, 13 wusque ad 31 pum latae.
Cingulum medium excavatum in media cellula est.
Cellulae primam tabulam apicalem angustam
habent. Tabularum formula haec: Po, x, 4’, 8a, 77,
6c, bs, 5”7, 2””. Rotundae cellulae coccoidae, quae
corpus rubrum continent, bicarinatae sunt propte-
rea quod tabulae procingulares et tabulae postcin-
gulares tubercula formant. Diametrus est 27 usque
ad 37 pm. Paries calcaratus compositus est ex una
lamina cum crystallis, quarum axes crystallarum sunt
ad perpendiculum. Paries calcaratus intriseus obtec-
tus est strato, quod ex matzeria organica constat.
Operculum compositum est ex tabula apicalibus et
intercalaribus.

Etymology: The epithet refers to the development
of two distinct ridges in the coccoid cells that result
from the fusion of pre- and postcingular plate equiv-
alents, respectively.

Distribution: S. bicarinata was found in the Medi-
terranean Sea at coastal sites of Italy and Greece
(strains GeoB 411, GeoB*414, GeoB 416, GeoB 453,
GeoB 454, GeoB 456, and GeoB 458; see Table S2
for details).

Motile thecate cells (Fig. IA-D) were predomi-
nant in strain GeoB 416, whereas coccoid cells
developed after a few weeks and increased slowly in
number. The thecate cells were photosynthetically
active, variously golden-brown in color and differed
greatly in size, ranging from 17 to 35 um in length
(median: 21 pm, SD: 5 pm, » = 101) and from 13 to
31 pm in width (median: 19 pym, SD: 4 pm,
n=101). The surface was smooth and exhibited
some irregularly distributed trichocyst pores. The
shape of the thecate cells was spherical through
ovoid, with a rounded through conical apex, and
consistently showed the plate formula Po, x, 4, 3a,
7", 6¢, bs, 5, 2””. The outlines of the plates were
variable, and in some cells additional plates could
be observed (Fig. 1D). The 1’ plate was hexagonal
and strongly widening in apical direction, whereas
the shape was narrow near cingulum and sulcus
(Fig. 1, A and D). The excavate cingulum was
located in the equatorial plane, took 15-20% of the

cell height and was 1-1.5 pm deep. Two flagella
originated from the sulcal region (Fig. 1C), which
was composed of five plates.

Coccoid cells (Fig. 1E-I) showed a red accumula-
tion body, were spherical and ranged from 27 to
37 um in length (median: 33 pm, SD: 4 um, n = 7)
and from 27 to 33 pm in width (median: 32 pm,
SD: 2 pm, n = 8). Below the single calcareous layer,
an inner organic membrane was present (Fig. 1I).
The shell exhibited irregularly thickened processes
that corresponded to seven pre- and five postcin-
gular as well as two antapical plate equivalents
(Fig. 1IE-H). In some cells, the processes were
weakly developed, or pre- and postcingular plate
equivalents were more or less fused to two distinct
ridges (Fig. 1H). Moreover, one through three api-
cal processes at the top of the operculum were
present and did not correspond to plate equiva-
lents. The orientation of the crystals and their crys-
tallographic main axis (c-axis) was ‘‘regularly
tangential”’ (Fig. 3A). The operculum was mesoepi-
cystal compound and consisted of the fused
apical plate 2'—4" and intercalary plate equivalents
(Fig. 1E-F).

2 Scrippsiella  kirschiae Zinssmeister, S.Soehner,
S.Meier & Gottschling, spec. nov. Type: Mediterra-
nean Sea, off Italy. Campania, Salerno, Salerno,
40°40'N, 14°46’E, 17 Apr 2009 [extant]: M. Gottsch-
ling, S. Soehner & C. Zinssmeister ITAO0040 [GeoB
408] (holotype: CEDiT-2011H19; isotypes: B- 40
0040763, M-0178307). Figures 2A-F, 3B-D.

Latin description: Cellulae epithecam conicam et
hypothecam rotundam habent, 23 usque ad 40 pm
longae, 17 usque ad 37 pm latae. Cingulum medium
excavatum in media cellula est. Cellulae primam
tabulam apicalem angustam habent. Tabularum for-
mula haec: Po, x, 4/, 3a, 77, 6¢c, bs, 5", 2”””. Rotun-
dae cellulae coccoidae, quae corpus rubrum
continent, bicarinatae sunt imaginem cinguli expri-
mentes. Cellulae 28 usque ad 40 um longae, 26
usque ad 35 pm latae sunt. Paries calcaratus com-
positus est ex una lamina cum crystallis, quarum
axes crystallarum sunt ad perpendiculum. Paries
calcaratus intrinsecus obtectus est strato, quod ex
materia organica constat. Operculum compositum
est ex tabulis apicalibus et intercalaribus.

Etymology: The species is named in honor of
Monika Kirsch, who curates Germany’s largest cal-
careous dinophyte collection at the University of
Bremen for many years and who has brought
numerous calcareous dinophytes into cultivation,
including this one.

Distribution: Scrippsiella kirschiae was found in the
Mediterranean Sea at coastal sites of Italy and
Greece (strains GeoB 408, GeoB 432; see Table S2
for details) and may also be present in Japanese
water (pers. comm. K. Matsuoka, Nagasaki).

Motile thecate cells of the strain GeoB 408
(Fig. 2A-C) were photosynthetically active and
variously golden-brown in color. They showed at



BICARINATE SCRIPPSIELLA SPECIES 1111

FiG. 1. Serippsiella bicarinata spec. nov. showing an intratabulate tabulation in the coccoid stage as reflection of pre- and postcingular
plates (SEM images; A—G: strain GeoB 416, H-I: strain GeoB 411). A, ventro-lateral view of the thecate cell, with epitheca, cingulum, and
hypotheca. B, dorsal view of thecate cell, with epitheca, cingulum, and hypotheca. C, ventral detail of thecate cell with the sulcal region
exhibiting five plates. D, apical view of the epitheca, with an additional plate between 1" and 1”. E, empty coccoid cell with mesoepicystal
compound operculum; note the tabulation reflected as processes corresponding to seven pre- and five postcingular plate equivalents.
F, apical view of empty coccoid cell with mesoepicystal archeopyle and tabulation of seven precingular plate equivalents. G, antapical view
of coccoid cell with intratabulate tabulation of five postcingular and two antapical plate equivalents. H, antapical view of coccoid cell with
intratabulate tabulation comprising two antapical plate equivalents and pre- and postcingular plate equivalents (the latter fused to two dis-
tinct ridges). I, shell ultrastructure of the coccoid cell, with a single calcareous layer and an inner organic membrane. Abbreviations: ap,
additional plate; m, inner organic membrane; n’, apical plates; n”’, precingular plates; n’”’, postcingular plates; na, anterior intercalary
plates; nC, cingular plates; Po, apical pore plate; Sa, anterior sulcal plate; Sd, right sulcal plate; Sm, median sulcal plate; Sp, posterior
sulcal plate; Ss, left sulcal plate.
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FiG. 2. Scrippsiella kirschiae spec. nov. showing a cingulotabulate tabulation in the coccoid stage (SEM images; strain GeoB 408). A, ven-
tral view of thecate cell, with epitheca, cingulum, and hypotheca. B, latero-apical view of thecate cell. C, ventral detail of thecate cell with
the sulcal region exhibiting five plates; note the decomposition of plate 1” into two pieces. D, dorsal view of coccoid cell. E, ventro-lateral
view of coccoid cell, with cingulotabulate tabulation reflecting cingular and sulcar sutures as well as the mesoepicystal compound opercu-
lum. F, shell ultrastructure of the coccoid cell, with a single calcareous layer and an inner organic membrane. Abbreviations: ap, addi-
tional plate; m, inner organic membrane; n’, apical plates; n”’, precingular plates; n’”’, postcingular plates; nC, cingular plates; s1’,
satellite plate of 1’; Sa, apical sulcal plate; Sd, right sulcal plate; Sm, median sulcal plate; Sp, posterior sulcal plate; Ss, left sulcal plate.

FiG. 3. Cells in polarized and fluorescent light microscopy exhibiting more traits. A-B, optical crystallography of the two new species
showing the ‘‘regularly tangential’’ ultrastructure type (light microscopy with employed gypsum plate under polarized light, 400X magnifi-
cation). A, Scrippsiella bicarinata. B, Scrippsiella kirschiae. C-D, ventral thecate cells of Scrippsiella kirschiae (fluorescent light microscopy with
calcofluor white). C, indication of 1" and additional plate close to 1”. D, indication of single 1” plate.
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least two distinct size classes, with most of the cells
ranging from 23 to 32 um in length (median:
28 um, SD: 3 pm, n =19) and from 17 to 25 pm in
width (median: 22 pm, SD: 3 pm, n =19), and the
larger cells ranging from 30 to 40 um in length
(median: 36, SD: 3, n =15) and 29 to 37 um in width
(median: 31, SD: 3, n =5). The surface was smooth
and exhibited some irregularly distributed trichocyst
pores. The shape of the thecate cells was spherical
through ovoid, with a rounded through conical
apex, and consistently showed the plate formula Po,
x, 4, 3a, 77, 6¢, bs, 5", 2””. The 1’ plate was
narrowly parallel-sided and rarely widened toward
the apex (Fig. 2A). In approximately half of all the-
cate cells examined, the apical plate 1" was divided
into two pieces (Figs 2C, 3C), and additional precin-
gular plates were observed on the dorsal side in few
cases. The excavate cingulum was located in the
equatorial plane, took 12-15% of the cell length
and was 1-1.5 um deep. Two flagella originated
from the sulcal region (Fig. 2C), which was
composed of five plates.

The majority of cells in strain GeoB 408 were coc-
coid (Fig. 2D-F) and were developed very quickly
after establishing a new subculture from solitary the-
cate cells. They showed a red accumulation body
and were ovoid, ranging from 28 to 40 pm in length
(median: 34 pm, SD: 5 pm, n = 6) and from 26 to
35 pm in width (median: 33 pm, SD: 3 pm, n = 6).
Below the single calcareous layer, an inner organic
membrane was present (Fig. 2F). The epitract was
conical and the hypotract rounded, whereas the
equatorial region showed a distinct, bicarinate
reflection of the cingulum. The imprint of the cin-
gulum was broad, exceeding to one-fourth of the
cell length. All ridges observed reflected the sutures
between epitheca/cingulum and cingulum/hypot-
heca, respectively, and any fusion of pre- or postcin-
gular plate equivalents was not observed. The ridges
were occasionally interrupted at the ventral side and
the imprint of the sulcus, whose outline then was
also reflected by a ridge (Fig. 2E). The calcareous
crystals were massive and predominantly rhombohe-
dral (Fig. 2D). The orientation of the crystals and
their crystallographic main axis (c-axis) was ‘‘regu-
larly tangential” (Fig. 3B). The operculum was mes-
oepicystal compound and consisted of the fused
apical plate 2'-4" and intercalary plate equivalents
(Fig. 2E).

Phylogenetic analysis. The alignment consisting of
three different molecular loci covered 2,572 bp in
total length, whereas 830 positions were parsimony
informative (32.3%, 18.9 per terminal taxon). The
ITS region comprised 743 bp and 428 informative
sites (57.7%, 9.7 per terminal taxon), the first two
domains of the LSU exhibited 785 bp and 251
informative positions (32%; 5.7 per terminal taxon),
and the alignment of cob sequences were 1,044 bp
long, with 151 informative positions (14.5%; 3.4 per
terminal taxon). Separate analyses of the three

partitions did not render conflicting and highly sup-
ported tree topologies, indicating that concatenated
analyses were not perturbed by divergent locus
evolution.

Figure 4 shows the bestscoring ML tree
(-In = 21,101.519651) with Scrippsiella s.l. retrieved
as monophyletic (100LBS, 1.00BPP). Scrippsiella s.l.
segregated into a number of lineages, including Per-
nambugia tuberosa, S. lachrymosa Lewis, Calciodinellum,
and its relatives (i.e., the CAL clade: 65LBS,
1.00BPP), S. precaria Montresor & Zingone and its
relatives (i.e., the PRE clade: 100LBS, 1.00BPP), as
well as the Scrippsiella trochoidea (F.Stein) A.R.Loebl.
species complex (STR-SC; 50LBS). Major clades of
the STR-SC were STR1 (100LBS, 1.00BPP), STR2
(100LBS, 1.00BPP), and STR3 (100LBS, 1.00BPP).
The two new species Scrippsiella bicarinata and S. kir-
schiae sampled with multiple strains were each
monophyletic (and maximally supported). Together
(albeit with low statistical support), they were closely
related to the STR3 clade (59LBS) and constituted
a monophyletic group (100LBS, 1.00BPP) also
including the STR2 clade.

DISCUSSION

The diversity of extant Thoracosphaeraceae is
known to a limited extent only. A series of taxa
firstly discovered in the fossil record has been later
shown to have stratigraphic occurrences into the
late Pleistocene, or are today even known from
recent sediments (Wall and Dale 1968, Versteegh
1993, Montresor et al. 1994). Many of such “‘living
fossils’” (Wall and Dale 1966), however, have not
been established in culture so far for contemporary
morphological and molecular investigations. Despite
numerous studies that investigated the diversity of
calcareous dinophytes in the Mediterranean Sea
(Montresor et al. 1994, 1998, Meier et al. 2003),
only one of the species described here as new has
been probably illustrated in Satta et al. (2010: plL
2 h), but the authors do not provide a scientific
name. The discovery of two new species in one of
the beststudied regions in the world underlines that
a hidden diversity of still unknown calcareous dino-
phytes exists.

General morphologies of the motile cells and the-
cal plate patterns of the new species described here
do not differ from other species that have been
described under Scrippsiella s.l. They can be distin-
guished from other peridinoid dinophytes (such as
Pentapharsodinium,  Peridinium Ehrenb.,  Protoperi-
dinium Bergh, and others) based on the presence of
six cingular plates, thus showing two cingular
sutures in mid-dorsal view of the motile cells (Fine
and Loeblich 1976, Dale 1977, 1978). The globose
shapes of the thecate cells in the new species rather
correspond to those of, for example, Calciodinellum
operosum and Scrippsiella rotunda Lewis than to the
more conical epitheca of Scrippsiella trochoidea (Lewis
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I1G. 4. Serippsiella bicarinata and Scrippsiella kirschiae as distinct species within the Scrippsiella trochoidea species complex. Maximum like-
lihood (ML) tree (-In = 21,101.519651) of 44 dinophyte strains as inferred from a MAFFT generated nucleotide alignment, comprising the
complete ITS region, the LSU domains 1 + 2 and cob (in total 830 parsimony-informative positions). Major clades are indicated, and new
species are highlighted in bold. Branch lengths are drawn on scale, with the scale bar indicating the number of substitutions per site. Num-
bers on branches are statistical support values (above: Bayesian posterior probabilities, values under .90 are not shown; below: ML bootstrap
support values, values under 50 are not shown) and maximal support values are indicated by asterisks. The tree is rooted with seven members
of the T/Pf-clade (Thoracosphaeraceae) as well as six dinophyte species belonging to the Gymnodiniales, Peridiniales, and Prorocentrales.
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IG. 5. The two new species do not fit in the circumscription of any known calcareous dinophyte. A, coccoid cell of Carinellum parasole
Keupp (Lutetian, from Deflandre’s original material) as example of a monocarinate form. B-C, Bicarinellum castaninum Deflandre, 1949
(Lutetian, from Deflandre’s original material), with a single microgranular calcareous layer and additional coarser crystals inducing the
tabulation (presumably corresponding to a second vestigial layer). B, Coccoid cell. C, Detail of the shell ultrastructure. D. Alasphaera tuber-
culata (Pflaumann & Krasheninnikov) Keupp (Hauterivium) as example with intratabulate tabulation. E. Bitorus turbiformis Keupp (Berri-
asian/Valanginian boundary interval) as bicarinate example with 3A archeopyle. F. Shell ultrastructure of Bicarinellum jurassicum
(Deflandre) Keupp (Oxfordian, from Deflandre’s original material) showing two distinct calcareous layers.

1991, Montresor etal. 1997, Zinssmeister et al.
2011). Intraspecific variability and occasional devia-
tions from the regular plate formula has been previ-
ously shown for some Scrippsiella strains in
cultivation (D’Onofrio et al. 1999, Gottschling et al.
2005b).

It is particularly the morphology of the coccoid
stages that exhibits diagnostic characters for species
delimitation within calcareous dinophytes. At a first
glance, both the two new species are similar to
those of Bicarinellum from the Mesozoic and Paleo-
gene. In its current circumscription, Bicarinellum is
considered extinct since 50 Ma (Willems 1988), and
not only the gap in the fossil record intercedes for
the distinctiveness of the new species from any
known member of the Thoracosphaeraceae. The
two new species belong to the relatively few calcareous

dinophytes that exhibit more than the archeopyle as
tabulation in their coccoid cells. They can be easily
delimited from more or less holotabulate forms
such as Calciodinellum operosum (Keupp 1984, Mont-
resor et al. 1997) because of the absence of a com-
plete tabulation pattern.

If ridges, reflecting the cingulum only, represent
the tabulation (the ‘‘cingulotabulate’” state in a
broad sense: Sarjeant 1982), then their number is
consistently either one or two within a particular
species. As both new species always exhibit two
ridges, the distinctiveness to tricarinate (i.e., species
of Posoniella Streng, Banasova, Rehakova & H.Willems,
in which the equatorial ridge represents the cingu-
lum: Streng etal. 2009) and such monocarinate
forms as Calcipterellum Keupp (Keupp 1984), Cari-
nasphaera (Kohring 1993b), Carinellum (Keupp 1981,
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1984, Fig. bA), and Dimorphosphaera Keupp (Keupp
1979) is, therefore, likewise evident. The only extant
cingulotabulate species described so far is Pirumella
irregularis (Akselman & Keupp) G.L.Williams, Lentin
& Fensome (=Scrippsiella  patagonica Akselman &
Keupp: Akselman and Keupp 1990). Later light
microscopic re-investigations, however, have shown
that coccoid cells are probably not calcareous (high
optical refraction of the cells indicates starch rather
than calcium carbonate; unpublished data). More-
over, some protologue figures of the supposed coc-
coid cells show flagella that are never present in
immotile stages. Pirumella irregularis thus may repre-
sent thecate cells of weak preparation, and the
species is therefore not further considered for
diagnostic purposes here.

Species with two cingular ridges have so far been
described in Bicarinellum (Fig. 5B-C, F) and Bitorus
(Fig. 5BE), and the two ridges are considered to
originate from the fusion of the corresponding pre-
and postcingular plate equivalents (Keupp 1984,
Willems 1988, Kienel 1994, Hildebrand-Habel and
Willems 1999). They are, therefore, not cingulotabu-
late in a strict sense (Sarjeant 1982), and some
degree of transition to an intratabulate type (as
present in, e.g., Alasphaera: Keupp 1981, Fig. 5D)
has occasionally been reported (in, e.g., Bicarinellum
Jurassicum: Keupp 1984). In the new species S. bicari-
nata, such transitions are clearly in the range of an
intraspecific variability (even within a single culti-
vated strain), and this observation might also be
applicable for fossil species. Both new species, how-
ever, can be further delimitated from all other
bicarinate and/or intratabulate calcareous dino-
phytes based on additional character traits (as far as
such traits are preserved in the fossils).

Operculum  morphology appears consistent
within species (Keupp and Versteegh 1989, Streng
et al. 2004), and the bicarinate and/or intratabulate
species described so far have apical archeopyles,
corresponding either to a single plate equivalent
(in species of Alasphaera: Fig. 5D and Bicarinellum)
or to three articulating plate equivalents of the api-
cal series (in species of Bitorus; Keupp 1992, Streng
et al. 2004). To the contrary, both the new species
have mesoepicystal combination opercula. This type
is today found in species of Calciodinellum and Scrip-
psiella (Montresor et al. 1997, Streng et al. 2004,
Zinssmeister et al. 2011), which in turn do not
include bicarinate coccoid stages as known so far.

The ultrastructure of the shell has importance for
species delimitation and phylogenetic reconstruc-
tions (Keupp 1981, Kohring et al. 2005, Meier et al.
2009). Forms with two calcareous layers (Fig. 5F)
predominate in the Mesozoic, whereas single-layered
species (Fig. 5C) are most frequent since the Paleo-
gene. In such terms, the new species fit well in this
evolutionary scenario. Moreover, the bicarinate
and/or intratabulate species described so far either
show irregularly  (Alasphaera, Bicarinellum)  or

regularly arranged crystals (Bitorus) constituting the
calcareous shells, whereas optical crystallography has
not been worked out for those species yet. Bitorus
may exhibit the “regularly radial” type, which
would be distinct from both new species. They are,
thus, the only bicarinate representatives of the Tho-
racosphaeraceae known so far evidentially with the
“regularly tangential” type, as it is today found in
such taxa as Calciodinellum and Scrippsiella (Montres-
or etal. 1997, Janofske 2000, Hildebrand-Habel
2002). The systematic investigation particularly of
more fossil species from, for example, Bicarinellum
and Bitorus would allow for a better conclusion
about the diagnostic relevance of this character trait
(Meier et al. 2009).

Stratigraphic occurrences may also be indicative
for species delimitation. In the fossil record, species
of Bicarinellum and Bitorus (furthest resembling the
two new species morphologically) are firstly abun-
dant in the Upper Jurassic and Lower Cretaceous
(e.g., Bicarinellum jurassicum, Bitorus turbiformis).
However, Scrippsiella s.l., including the two new spe-
cies, has come into existence in the Late Cretaceous
as inferred from a dating study (Gottschling et al.
2008). There is, moreover, a gap in the fossil record
of more than 40 Ma (Willems 1988) to bicarinate
species known since the Paleogene (e.g., Bicarinellum
castaninum, Bitorus bulbjergensis Kienel). It is, there-
fore, highly unlikely that Scrippsiella bicarinata and
S. kirschiae are associated with the Mesozoic bicari-
nate forms. The youngest bicarinate fossils date
back to the Priabonian (Hildebrand-Habel and Wil-
lems 1999), still leaving a record gap of approxi-
mately 35Ma to the extant species described here as
new. It is again unlikely that S. bicarinata and S. kir-
schiae, or putative relatives, have been overlooked in
the numerous taxonomic studies about Neogene
calcareous dinophytes and that they are direct
descendents of known and already described fossil
forms.

Today, phylogenetic relationships and systematic
positions can be inferred from the comparison of
molecular sequence data. The evolution of the
Dinophyceae is generally difficult to reconstruct,
and analyses of multi-loci alignments have been pro-
posed to improve phylogenetic trees (Zhang et al.
2007, Hoppenrath and Leander 2010, Gottschling
et al. 2012, Tillmann et al. in press). The existence
of the Scrippsiella s.l. clade, however, has been
repeatedly shown in molecular phylogenies (Mon-
tresor et al. 2003, Gottschling et al. 2005b, Gu et al.
2011), and our three loci-approach for phylogenetic
inference provides slightly improved supports for a
number of nodes. The monophyly of Scrippsiella s.l.
correlates with the presence of a mesoepicystal com-
pound archeopyle that is thus considered the most
striking morphological apomorphy of the clade
(Streng et al. 2004, Gottschling et al. 2008). This
character trait is also present in S. bicarinata and
S. kirschiae, accounting for their correct systematic
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position within Scrippsiella s.l. Both the new species
appear closely related as inferred from molecular
data and are nested within the core clade of STR-SC
including STR2 and STR3. From an evolutionary
perspective, the bicarinate species of Scrippsiella s.l.
may thus derive from such forms with spiny coccoid
cells as Scrippsiella trochoidea (Zinssmeister et al.
2011).

In conclusion, S. bicarinata and S. kirschiae are dis-
tinct from all known members of the Thoraco-
sphaeraceae as inferred from morphological, molec-
ular, and stratigraphical data. The two new species
are, moreover, distinct also from each other. Scrip-
psiella bicarinata is the only species with the combi-
nation of the characters (i) tabulation in the
coccoid cells with fusion of pre- and postcingular
plate equivalents, (ii) mesoepicystal combination
archeopyle, and (iii) single calcareous layer consti-
tuting the coccoid shell. Scrippsiella kirschiae is the
only species with the combination of the characters
(i) cingulotabulation in the coccoid cells, (ii) meso-
epicystal combination archeopyle, and (iii) single
calcareous layer constituting the coccoid shell.
Homoplasy of character traits appears as major issue
in calcareous dinophytes, and complex studies are
necessary for reliable conclusions. Discovering the
morphological and molecular diversity of the Tho-
racosphaeraceae, and inferring their evolutionary
history, thus remain a tantalizing field in contemporary

phycology.
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Abstract

The Thoracosphaeraceae are dinophytes that produce calcareous shells during their life
history, whose optical crystallography has been the basis for the division into subfamilies. To
investigate the validity of the classification mainly applied by paleontologists, living material
of phylogenetical key species is necessary albeit frequently difficult to access for
contemporary morphological and molecular analyses. We isolated and established five living
strains of the rare and fossil-based species tPosoniella tricarinelloides from different
sediment samples collected in the South China Sea, Yellow Sea and in the Mediterranean Sea
(west coast off Italy). Here we provide detailed descriptions of its morphology and conducted
phylogenetic analyses based on hundreds of accessions and thousands of informative sites
implemented in concatenate sequences of the ribosomal RNA region. Within the
monophyletic Peridiniales, P. tricarinelloides was reliably nested in the Thoracosphaeraceae
and exhibited two distinct morphological types of coccoid cells. The two morphs of coccoid
cells would have been assigned to different taxa at the subfamily level if found separately in
fossil samples. Our results thus challenge previous classification concepts within the
dinophytes and underline the importance of comparative morphological and molecular studies

to better understand the complex biology of unicellular organisms such as P. tricarinelloides.

Keywords: calcareous dinoflagellates, cyst, distribution, molecular systematics, theca,

ultrastructure.
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Introduction

The unicellular dinophytes have great ecological importance and are one of the major groups
of the phytoplankton occurring worldwide in nearly all marine and freshwater habitats
(Fensome et al. 1993; Steidinger and Tangen 1996). They exhibit many types of life styles
and nutrition modes and encounter 2,000 extant and 2,500 fossil-based species (Taylor et al.
2008). Molecular phylogenies of dinophytes are still not satisfying because of various
problems including the limited taxon sample (less than a quarter of dinophytes at the generic
level are currently known with respect to genetic sequence data), insufficient genetic data
(abundant single locus analyses), simple phylogenetic methodology (such as parsimony and
neighbor-joining) and strong rate heterogeneity. Concatenation of molecular sequences
(particularly those of the intensely-studied rRNA region comprising the small subunit: SSU,
the 5.8S rRNA including the internal transcribed spacers: ITSs and the large subunit: LSU),
results in improved phylogenetic trees (Gottschling et al. 2012; Gottschling and McLean in
press; Hoppenrath and Leander 2010; Orr et al. 2012; Tillmann et al. 2012; Zhang et al. 2007)
that may serve as a taxonomic backdrop for the precise systematic placement of particular
dinophytes. Some of the morphologically well recognizable groups, including the Suessiales,
Dinophysiales and Gonyaulacales, have been long-standing and are monophyletic based on
molecular data (Daugbjerg et al. 2000; Saldarriaga et al. 2004). Such groups as the
Peridiniales and Prorocentrales are more problematic: They are morphologically well
circumscribed, but are —if at all- monophyletic in concatenated sequence analyses only

(Tillmann et al. 2012; Zhang et al. 2007).

The availability of dinophytes for contemporary investigations on morphology, molecular
phylogenetics, and life history is limited because of the necessity to cultivate strains for
corresponding studies. This is also true for the Thoracosphaeraceae (Peridiniales), which are

dinophytes that produce calcareous shells during their life history. They have a high potential
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to fossilize in marine sediments and are therefore abundant in the fossil record, playing an
important role for paleo-environmental reconstructions (Hildebrand-Habel and Streng 2003;
Meier et al. 2004; Richter et al. 2007; Versteegh 1997; Masure and Vrielynck 2009;
Zonneveld et al. 2005). A number of fossil-based Thoracosphaeraceae have stratigraphic
occurrences into the late Pleistocene or are even known from Recent sediments (Elbrachter et
al. 2008; Montresor et al. 1994, 1998; Versteegh 1993), but few of them have been brought
into cultivation so far. Such extant, but taxonomically fossil-based taxa include currently
such unavailable though phylogenetically striking species as fCaracomia arctica
(M.W.Gilbert & D.L.Clark) Streng, Hildebrand-Habel & H.Willems, fMelodomuncula
berlinensis G.Versteegh and fPosoniella tricarinelloides (G.Versteegh) Streng, Banasova,

D.Rehdkova & H.Willems.

Most calcareous dinophytes develop two different stages during their life history, namely a
motile thecate cell and a non-motile calcareous coccoid cell (usually described as ‘cyst’:
Elbrachter et al. 2008; Pfiester and Anderson 1987; von Stosch 1973). Coccoid cells are
considered the diploid life history stage for the majority of calcareous dinophytes [e.g.,
Calciodinellum levantinum (Kamptner) Janofske & Karwath: Meier et al. 2007], while thecate
cells are presumably haploid and frequently reproduce vegetatively (Chambouvet et al. 2011;
D’Onofrio et al. 1999; Montresor et al. 1998). Thecate cells exhibit a more or less taxon
specific pattern of cellulose plates (that are designated based on the Kofoid system: Taylor
1980) and have therefore great systematic importance for dinophytes (Fensome et al. 1993).
The thecate tabulation can be imprinted also in the coccoid stage in form of distinct ridges or

sutures.

The potential to produce calcareous structures is restricted to (i.e., has been considered
apomorphic for) the Thoracosphaeraceae ( Elbriachter et al. 2008; Janofske 1992; Wall and

Dale 1968b). In molecular trees, the Thoracosphaeraceae are monophyletic (including also
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secondarily non-calcareous taxa) and segregate into three lineages (Gottschling et al. 2005a,
2012), namely the E/Pe-clade (including Ensiculifera Balech and Pentapharsodinium Indel. &
A.R.Loebl.), the T/Pf-clade (including Thoracopsphaera Kamptner and Pfiesteria Steid. &
J.M.Burkh.) and Scrippsiella Balech ex A.R.Loebl. sensu lato (s..). The morphological
circumscription of calcareous dinophytes is based on size and shape of the coccoid cell
(including —if present— tabulations and spines), archeopyle morphology and shell
ultrastructure. For classification, the orientation of the crystallographic c-axis of the calcitic
crystals constituting the shell has been considered to be of key importance (Elbrachter et al.
2008; Janofske 1996; Keupp 1991; Kohring et al. 2005; Meier et al. 2009; Streng et al. 2004).
Three different types of shell ultrastructure are readily distinguished (and assigned to
corresponding subfamilies), namely a type with irregularly arranged (‘oblique’) crystals (e.g.,
tCalcicarpinum tetramurum Kienel: Hildebrand-Habel 2002), a regular type with radial c-
axis orientations (e.g., TCaracomia stella Streng, Hildebrand-Habel & H.Willems: Streng et
al. 2002) and a regular type with tangential c-axis orientations (e.g., species of

tCalciodinellum Defandre and Scrippsiella: Janofske 1996, 2000; Zinssmeister et al. 2012).

Linking motile and coccoid stages of the same species goes back to the pioneering work of
Wall and Dale (1966, 1968a), who have performed the first cultivation experiments with
calcareous dinophytes from environmental sediment samples. Since then, a small number of
fossil-based taxa has been maintained in cultivation, including fCalcicarpinum bivalvum
G.Versteegh [=Pentapharsodinium tyrrhenicum (Balech) Montresor, Zingone & D.Marino:
Montresor et al. 1993], fCalciodinellum operosum Deflandre (Montresor et al. 1997),
tCalcigonellum infula Deflandre (D’Onofrio et al. 1999), tLeonella granifera (Fiitterer)
Janofske & Karwath and {Pernambugia tuberosa (Kamptner) Janofske & Karwath (Janofske
& Karwath in Karwath 2000). Coastal habitats are rather rarely investigated with respect to

the presence of calcareous dinophytes (Soehner et al. 2012), and more fossil-based calcareous
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dinophytes are to be expected specifically in such environments (Elbrachter et al. 2008;

Montresor et al. 1998; Zinssmeister et al. 2012).

Geologically, TP. tricarinelloides is known from the Miocene and late Pliocene of Cyprus and
the Vienna Basin (Bison et al. 2007; Streng et al. 2009; Versteegh 1993). The species is also
reported from Recent sediments of the West Atlantic (Wall and Dale 1968a), the
Mediterranean Sea (Meier et al. 2009; Montresor et al. 1994, 1998; Rubino et al. 2010) and
the (deep) South China Sea (Gu et al. 2011). {Posoniella Streng, Banasova, Rehakova &
H.Willems is assigned to the forms with an irregular orientation of the shell-forming crystals
in the paleontological classification of calcareous dinophytes (Meier et al. 2009; Versteegh
1993), whose extant members are imperfectly known at present. Germination experiments of
TPosoniella have not been successful until now, and we here firstly report from five strains
identified as tP. tricarinelloides and isolated from different sediment samples collected in the
South China Sea, the Yellow Sea and the Mediterranean Sea. We provide descriptions of the
motile and coccoid cells using light and scanning electron microscopy (SEM) and use

concatenated ribosomal RNA sequences to clarify the phylogenetic position of this species.
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Results

Morphology

Five different strains of {P. tricarinelloides each comprising thecate cells as well as coccoid
cells of two distinct types were established, namely GeoB 410 and GeoB 413 from the coast
off Formia, Tyrrhenian Sea (41°15'18.90"N, 13°36'29.30"E; April 2009), GeoB 429 from the
coast off Gallipoli, Ionian Sea (40°3'25.62"N, 17°58'57.42"E; April 2009), PTFCO1 from the
South China Sea off Fangchenggang (21°29'58.38"N, 108°13'52.02"E; May 2011) and
PTLYO1 from the Yellow Sea off Lianyungang (34°48'45.77"N, 119°31'37.64"E; May 2011).
Mediterranean strains are currently held in the culture collections at the Institute of Historical
Geology / Palaecontology (University of Bremen, Germany) and the Institute of Systematic
Botany and Mycology (University of Munich, Germany), while Chinese strains are
maintained at the Third Institute of Oceanography, State Oceanic Administration (Xiamen,

China), and are available upon request.

Material of strain PTLYOI from China was representative for the other strains established,
and corresponding material was investigated in detail. Thecate cells of TP. tricarinelloides
(Figs 1A-F,J, 2) divided vegetatively, and the process lasted approximately 12 min. They
were 20.0-25.5 um long (mean=21.80 £+ 1.52 um, n=50) and 15.5-20.5 pum wide
(mean=18.26 + 1.43 pm, n=50), with a median length:width ratio of approximately 1.2. Cells
were compressed slightly in dorso-ventral view. The epitheca was hemispherical, and the
hypotheca was conical. The Kofoidean plate formula was Po, X, 4/, 1a, 7", 6C, 58S, 5", 2"".
In light microscopy (Fig. 1A), chloroplasts were visible in the periphery of the cell, with
several stalked pyrenoids. The nucleus was elongated and located in the central part of the

cell.
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The apical pore complex (Po) consisted of a round apical pore plate and a long canal plate (X)
(Fig. 1B). The pore plate was raised to form an apical horn in some cells. The first apical
plate (1") was one-third in wide compared to its length and slightly asymmetrical (Figs 1J,
2A). The equatorially located cingulum was deep and wide and displaced approximately half
of the cingulum width. The cingulum was composed of six plates of unequal size. The first
one is rather narrow and was a transitional plate (1C) (Figs 1C,J, 2C). The second, third and
sixth cingular plates were similar in size and narrower than the other two cingular plates (Figs

ID,F, 2B).

A single intercalary plate was present on the dorsal part of the epitheca. It was pentagonal
and narrow (Figs 1D, 2A-B), but occasionally rectangular in shape (Fig. 1F). The intercalary
plate was usually located between the plates 3' and 4' (in 16 out of 20 cells investigated; Figs
IF, 2A), but occasionally observed between the plates 2' and 3' (in 4 out of 20 cells). The
sulcus consisted of an anterior sulcal plate (Sa), a median sulcal plate (Sm), a right sulcal
plate (Sd), a left sulcal plate (Ss) and a posterior sulcal plate (Sp) (Fig. 1C). The plate Sp did
not contact the cingulum directly. The two antapical plates were pentagonal and were of

equal size (Figs 1E, 2D).

Two distinct types of coccoid cells (Figs 1G-H,K-L, 3) were observed in the strains of GeoB
410, GeoB 413, GeoB 429 and PTLYOl (Fig. 1H). To exclude the possibility of
contaminations, 60 coccoid cells of GeoB 429 with the distinct morphology consistent with
the type of tP. tricarinelloides were isolated and subsequently cultivated separately. Twenty-
four of those isolated cells germinated and produced initially only thecate cells. After three
weeks through three months, the monoclonal strains started to develop the two distinct types

again.

Morphologically, the first type was represented by cells dark-brown in light microscopy (Fig.

1G) and with a Posoniella-like morphology (Fig. 3B—E). The cells were 19.5-50.1 um long
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(median: 39.9 £ 4.6 um, n=43) and 33.6-52.3 um wide (median: 44.0um + 4.7 um, n=78) and
showed a red accumulation body. Two transversal ridges of variable thickness were present
on the anterior part of the cell (Fig. 3B—C), whereas other sutural ridges on the hypocyst
delimited two antapical paraplates and the parasulcal area (Fig. 3D). A small, apical
archeopyle was present (Fig. 3C). The calcareous shell consisted of needle like crystals that
showed an ‘oblique’ arrangement of the shell forming crystals (Figs 1K, 3E). The innermost
crystals were oriented regularly (Fig. 3E), with a tangential orientation of the crystallographic
c-axes of the crystals (Fig. 1K). The second type of coccoid cells (Figs 1H, 3F) showed a red
accumulation body and was about the same size as the first type. The cells were spherical and
lighter in light microscopy than the first type. Cells had an outer diameter of 27.6-39.3 um
(median: 34.1 £ 2.5um, n=99). The surface was smooth without any ornamentation such as
ridges or sutures, and a small, apical archeopyle was likewise present (Fig. 3F). The crystals
forming the shell were regularly arranged. However, the optical crystallography was different
from the Posoniella-like cells and exhibited a radial orientation of the crystallites under

polarized light (Fig. 1L).

Molecular phylogenetics

The Dinophyceae alignment was 5,499 bp long and comprised 3,089 parsimony informative
sites (56%, 9.56 per terminal taxon). Tree topologies were largely similar, independently
whether the Bayesian or the ML algorithm was applied. Many nodes showed high if not
maximal statistical support values. Figure S1 shows the best-scoring ML tree (—In=
15,5585.26), with the Dinophyceae retrieved as monophyletic (100LBS: ML bootstrap
support, 1.00BPP: Bayesian posterior probabilities). They segregate in a number of more or
less established taxonomic units such as the Dinophysiales (100LBS, .97BPP), Gonyaulacales

(59LBS), Prorocentrales and Suessiales (99LBS, .97BPP; the “Gymnodiniales” were not
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monophyletic). The Peridiniales were likewise retrieved as monophyletic group (although

with low support values) and were the taxonomic focus of the second analysis.

The SSU+HITS+LSU alignment focusing on the Peridiniales was 4,568 bp long and comprised
1,381 parsimony informative sites (30%, 18.41 per terminal taxon). Tree topologies were
largely congruent, independently whether the Bayesian or the ML algorithm was applied.
Many nodes showed high if not maximal statistical support values. Figure 4 shows the best-
scoring Bayesian tree, in which the Peridiniales were monophyletic (100LBS, 1.00BPP) and
segregated into a number of lineages such as Heterocapsa s.l. (100LBS, 1.00BPP),
Peridiniopsis s.l. (99LBS, 1.00BPP) and Peridinium s.str. (100LBS, 1.00BPP). The
Thoracosphaeraceae were likewise monophyletic (although with low statistical support) and
consisted of the clades E/Pe, T/Pf (96LBS, 1.00BPP) and Scrippsiella s.l. (89LBS, .96BPP),
whereas the latter two clades showed a close relationship (100LBS, 1.00BPP). The different
strains of fPosoniella established from Mediterranean and Chinese localities were almost
identical in their rRNA sequences. As inferred from the phylogenetic analyses, tPosoniella
doubtlessly belonged to the T/Pf-clade comprising calcareous (Leonella, Thoracosphaera)
and non-calcareous taxa (e.g., Cryptoperidiniopsis, Luciella, Pfiesteria) as well, whereas the

latter group was monophyletic (96LBS, 1.00BPP).
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Discussion

Molecular phylogenetics have been challenging for dinophytes because of multiple reasons
such as a limited available taxon sample, lateral gene transfers and divergent substitution rates
(Hackett et al. 2004; Morden and Sherwood 2002; Shalchian-Tabrizi et al. 2006; Tillmann et
al. 2012; Waller et al. 2006). In the past few years, several promising approaches have been
applied in order to improve the dinophyte molecular tree, with a focus on the concatenation of
molecular sequence data (Hoppenrath and Leander 2010; Orr et al. 2012). Molecular
phylogenetic trees should be interpreted with caution, however, when mitochondrial loci
(because of extensive mRNA editing: Waller and Jackson 2009; Zhang et al. 2008) and
chloroplast loci (because of multiple endosymbiosis events: Howe et al. 2008; Shalchian-

Tabrizi et al. 2006; Takishita et al. 2004; Yoon et al. 2005) are investigated.

Here, we follow the strategy to exploit concatenate sequences from the rich pool of rRNA loci
(Gottschling and McLean in press; Saldarriaga et al. 2004; Tillmann et al. 2012). In the
attachment, we provide the most comprehensive dinophyte molecular tree available at present
in terms of both the taxon sample (more than 300 accessions) and the amount of genetic data
(more than 3,000 informative alignment positions). The resulting trees are remarkably stable
and plausible from a morphological perspective and show once more the monophyly of such
systematic units as the Dinophysiales, the Gonyaulacales and the Suessiales. Given that taxon
sampling has repeatedly been shown to have importance for the improved resolution of
phylogenetic trees (Dunn et al. 2008; Gottschling et al. 2012; Heath et al. 2008; Sanderson
2008), the investigation of all strains, from which SSU and LSU sequences have been
generated, might have had the greatest impact on the identification even of the Peridiniales
and the Prorocentrales as monophyletic groups. This might be helpful as systematic backdrop

for future phylogenetic analyses.
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Our molecular trees reliably indicate the phylogenetic placement of {Posoniella within the
T/Pf-clade of the Thoracosphaeraceae. Based on its distinct morphology this result comes as
a great surprise, as TPosoniella has been considered a member of the forms with irregularly
arranged and aggregated crystals constituting the shell of the coccoid cell (Meier et al. 2009;
Versteegh 1993) such as fC. bivalvum of the E/Pe-clade. However, fPosoniella is
spectacular not only because it is the sole representative of calcareous dinophytes known at
present with two distinct morphs of coccoid cells, but also because the two morphs of coccoid
cells would have been assigned to different taxa at the subfamily level if found separately in
fossil samples. Another member of the Thoracosphaeraceae with two distinct types of
coccoid cells is “Scrippsiella” hangoei, which belongs to the T/Pf-clade as well. However,
the types in S. hangoei do not differ in their morphology, but in their ploidy level (Kremp and
Parrow 20006), a trait that would be tempting to investigate also for tPosoniella. Anyhow, it
remains to be determined, if other members of the calcareous dinophytes exhibit similar
differentiated cells like P. tricarinelloides and which precise functions those cells have in the

algal life history.

Our findings more than challenge the (paleontological) classification concept of Keupp
(1991) and subsequent authors (Janofske 1996; Hildebrand-Habel and Streng 2003; Kohring
et al. 2005), who have put much attention to the crystallographic c-axis orientation of the
calcitic crystals constituting the shell. Another striking result of our study is that the other
type of coccoid cells present in fPosoniella shows the radial orientation of c-axes under
polarized light. This character state of {Posoniella is shared with tLeonella (Janofske and
Karwath in Karwath 2000), again a member of the T/Pf-clade. Optical crystallography
therefore appears to remain an important character trait to circumscribe species (groups), but

not on high taxonomic level (of subfamilies). The E/Pe-clade (irregular type) and Scrippsiella
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s.l. (regular type with tangential orientation) are consistent in this respect, while the T/Pf-

clade is heterogeneous and comprise all three types that are currently distinguished.

Archeopyle and operculum morphology has great importance to indicate relationships within
calcareous dinophytes (Keupp and Versteegh 1989; Streng et al. 2004). The different types of
archeopyles that are currently distinguished (Streng et al. 2004) correlate with molecular
phylogenies of calcareous dinophytes (Gottschling et al. 2005a, 2012), as it is also indicated
by this study. A simple apical operculum, corresponding to the 3’ plate equivalent, is
considered the ancestral condition and is today found in the two, only distantly related clades
EPe and T/Pf. The more complex (mesoepicystal and epitractal) compound opercula include
a greater number of plate equivalents and are considered the derived character state found
today in Scrippsiella s.I. Both types of coccoid cells exhibit a simple apical archeopyle in

tPosoniella, which is in agreement with its systematic placement within the T/Pf-clade.

The thecal tabulation patterns of TP. tricarinelloides deserves also discussion. In all three
clades of the Thoracosphaeraceae, members with three intercalary plates are found (Gu et al.
2008; Hansen and Flaim 2007; Indelicato and Loeblich III 1986; Larsen et al. 1995;
Montresor et al. 1993), although the shape and configuration of the 2a plate might show some
variation ( Attaran-Fariman and Bolch 2007; Gottschling et al. 2005b; Montresor and Zingone
1988). Three intercalary plates must be therefore considered the ancestral condition with the
Thoracosphaeraceae, and species (groups) with reduced numbers such as Luciella P.L.Mason,
Jeong, Litaker, Reece & Steid. (with two) and tPosoniella (with only one) occur exclusively
in the T/Pf-clade (Calado et al. 2009; Jeong et al. 2005). Moreover, seven precingular and six
cingular plates are found in {P. tricarinelloides, respectively. Both character states may
represent the ancestral condition within the Thoracosphaeraceae, as they are found in
Scrippsiella s.1. and also some (basal) members of the T/Pf-clade such as fLeonella (Janofske

and Karwath in Karwath 2000) and “Peridinium” aciculiferum (Logares et al. 2007). To the
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contrary, the number of both precingular and cingular plates is reduced particularly in
Pfiesteria and related taxa (Litaker et al. 2005; Mason et al. 2007), but this evolution within
the T/Pf-clade has taken place after the divergence from TPosoniella showing the ancestral

conditions.

In conclusion, fPosoniella is the first calcareous dinophyte known at present exhibiting two
distinct types of coccoid cells. Moreover, it is one of the now three known extant members of
the Thoracosphaeraceae with the radial orientation of crystallographic c-axes in the shell
forming crystals (the other two are fLeonella and tCaracomia). Our findings underline the
complex biology of fPosoniella that is better to understand in the mutual comparison to
molecular phylogenies based on both a large taxon sample and extensive sequence data. The
biodiversity assessment is not completed at present and is particularly challenging for the
work on unicellular organisms. Exploiting the rich pool of available rRNA sequences in
order to improve molecular phylogenetic trees is not only promising for the dinophytes alone,

but may have also importance for other protist lineages.
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Material and Methods

Cultivation

Sediment and plankton samples were collected as described in detail previously (Soehner et
al. 2012) in the Mediterranean Sea off Italy as well as in the Yellow Sea and the South China
Sea off China. Each environmental sample was washed through stainless steel sieves (net
size 100pum, 75 um and 20 pm: Zefa; Munich, Germany) with 35 psu artificial seawater (hw
marinemix professional: Wiegandt; Krefeld, Germany) at pH 8.0-8.2. Coccoid cells were
isolated and initially cultivated together for each locality in 6-well micro plates (Zefa) by
using K-Medium without silicate (Keller et al. 1987) in 35 psu artificial seawater at pH 8.0—
8.2. Afterwards, monoclonal strains were established based on coccoid and thecate cells to
exclude contaminations. The cultivation took place in a climate chamber Percival 1-36VL
(CLF PlantClimatics; Emersacker, Germany) at 23°C, 80 umol photons m™? s and a 12:12 h

light:dark photoperiod as described previously (Zinssmeister et al. 2011).

Morphology

Cells of all types were observed in a CKX41 inverse microscope (Olympus; Hamburg,
Germany). The thecal plate pattern was determined by examining cells stained with
calcofluor white M2R (Sigma-Aldrich; Munich, Germany), following the method of Fritz and
Triemer (1985) and using an Axio Imager microscope (Zeiss; Gottingen, Germany) equipped
with both differential interference illumination and epifluorescence. Light micrographs were
obtained using an Axiocam HRc digital camera (Zeiss). The Kofoidean system (Fensome et

al. 1993; Taylor 1980) was used for the designation of the thecal plate formula.

For thin sections, the samples were embedded in a synthetic resin (Spurr 1969) using the
Embedding Medi Kit (Science Services; Munich, Germany) and following standard protocols.

A 1:1 mixture of acetone and resin was used in a first embedding step for better infiltration of
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the resin into the coccoid cells. After 1 h, the mixture was replaced by pure Spurr’s resin and
hardened for 48 h at 70°C. A Reichert-Jung 2055 Autocut microtome (Leica; Nussloch,
Germany) was used to cut 3 pum ultra-thin sections. The method for identifying the
crystallographic orientation of the calcite crystals based on standard methods (Bloss 1999) in
thin sections was described in detail by Janofske (1996, 2000) and Montresor et al. (1997).
The orientation of the c-axis was perpendicular to the cell surface, if the quadrants I and III of
a conoscopic image showed yellow interference colors and quadrants II and IV showed blue
interference colors (‘radial’ type). Conversely, the orientation of the c-axis would be
tangential to the cell surface, if the quadrants II and IV showed yellow interference colors and

quadrants I and III showed blue interference colors.

For SEM, cells were collected and processed based on standard protocols that were described
in detail previously (Gottschling et al. 2012). Thecate cells were briefly dehydrated in graded
acetone p.a. (Roth) series and critical point dried (K850 Critical Point Dryer,
Quorum/Emitech; West Sussex, UK). Coccoid cells were demineralized in bi-distillate water
and air-dried at a glass slide fixed on SEM stubs. Samples were sputter-coated with platinum

and were documented using a LEO 1530 Gemini SEM (Zeiss/LEO; Oberkochen, Germany).

Molecular sequence analyses

Single thecate cells of {P. tricarinelloides (Chinese strains) were isolated and washed three
times with sterilized bi-distillate water and were transferred into a 200 ul PCR tube. The cells
were lysed by treatment in liquid nitrogen for 20 min and brought to room temperature for
another 20 min. Alternatively, genomic DNA was extracted from fresh material using the
Nucleo Spin Plant II Kit (Machery-Nagel, Diiren, Germany). Complete SSU, both ITSs
(including the 5.8S rRNA region), the first two domains of the LSU, and cytochrome b (cob)

were amplified by PCR using the primer listed in Table S1 (see supplementary material)
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following standard protocols (Gottschling and Plotner 2004; Gu et al. 2011; Zhang,
Bhattacharya, Lin 2005). PCR products were sequenced directly in both directions using the
ABI Big-Dye dye-terminator technique (Applied Biosystems, Foster City, CA, USA),

according to the manufacturers’ recommendations.

We compiled all sequences available (own data and downloads from GenBank) from the
Dinophyceae that comprised the SSU and the first two domains of the LSU. Where available,
we appended longer LSU sequences of particular dinophyte strains in this data matrix. In
total, 319 accessions (plus 4 outgroup representatives from the Apicomplexa) were
investigated by sequence comparison (supplementary material Tab. S2). In an additional
approach, we investigated all sequences available from the Peridiniales that comprised the
SSU, the ITSs and the first two domains of the LSU and appended cob sequences where
available. The sequences were separately aligned by using ‘MAFFT’ v6.624b (Katoh et al.
2005; freely available at http://align.bmr.kyushuu.ac.jp/mafft/software/) and were

concatenated afterwards. All data matrices are available via *.nex file by MG upon request.

Phylogenetic analyses were carried out by using Maximum-Likelihood (ML) and Bayesian
approaches, as described in detail by Gottschling et al. (2012). We used the resources of the
SGI system (Zuse Institute Berlin, ZIB) being one half of the North German High
Performance Computer (HLRN). The Bayesian analysis was performed by using ‘MrBayes’
v3.1.2 (Ronquist and Huelsenbeck 2003; freely available at
http://mrbayes.csit.fsu.edu/download.php) under the GTR+I" substitution model and the
random-addition-sequence method with 10 replicates. We ran two independent analyses of
four chains (one cold and three heated) with 20,000,000 cycles, sampled every 1,000th cycle,
with an appropriate burn-in (10%) as inferred from the evaluation of the trace files using
Tracer v1.5 (http://tree.bio.ed.ac.uk/software/tracer/). For the ML calculation, the MPI

version of ‘RAXxML’ v7.04  (Stamatakis  2006;  freely  available  at
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http://www.kramer.in.tum.de/exelixis/software.html) was applied by wusing the GTR+I"
substitution model. To determine best fitted ML tree, we executed 10-tree searches from
distinct random stepwise addition sequence Maximum Parsimony starting trees and
performed 1,000 non-parametric bootstrap replicates. Statistical support values (LBS: ML
bootstrap support, BPP: Bayesian posterior probabilities) were drawn on the resulting, best-

scoring trees.
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Figure Legends

Figure 1: Thecate cells of {Posoniella tricarinelloides and two distinct types of coccoid
cells. A—F,J: thecate cells; A: light microscopy showing chloroplast, nucleus and pyrenoid;
B: apical view; C: sulcal view; D-E: calcofluor white staining in light microscopy; F: dorsal
view; J: ventral-lateral view; G—H,K-L: coccoid cells; G: light microscopy of Posoniella-
like morphology; H: light microscopy of additional type; K-L: thin sections under polarized
light; K: Posoniella-like coccoid cell showing the oblique type of crystal orientation; L:
radial type (A,D-E,G—H,KL: light microscopy; B—C,F,J: SEM images; A—C,E-G.,J: strain
PTLYO01; D: strain GeoB 413; H strain GeoB 429; K-L: strain GeoB 410; scale bars: A,D-L:
10 um, B-C: 5 um; figure abbreviations: ci, cingulum; cp, chloroplast; et, epitheca; ht,

hypotheca; nu, nucleus; py, pyrenoid).

Figure 2: Thecal plate pattern of {Posoniella tricarinelloides. A: apical view; B: dorsal
view; C: ventral view; D: antapical view (plate labeling based on the Kofoidean system

(Taylor 1980) (Fensome et al. 1993).

Figure 3: fPosoniella tricarinelloides with two distinct types of coccoid cells. A:
overview showing the two types of coccoid cells together; B: apical view of closed cell with
Posoniella-like morphology; C: apical view of germinated Posoniella-like cell with small
archeopyle; D: antapical view of cell with Posoniella-like morphology; E: cross section of
Posoniella-like cell showing the ultrastructure of the shell; F: apical view of germinated cell
representing the second type with small archeopyle (SEM images; strain GeoB 413; scale

bars: 10 um; figure abbreviations: ap, archeopyle; op, operculum).

Figure 4: tPosoniella as member of a clade including Pfiesteria and Thoracosphaera.

Bayesian tree of 67 members of the Peridiniales as inferred from a MAFFT generated rRNA
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nucleotide alignment spanning the complete SSU, ITS and LSU domains 1 through 2 (1,381
parsimony-informative positions). Major clades are indicated, and branch lengths are drawn
to scale, with the scale bar indicating the number of nucleotide substitutions per site.
Numbers on branches are statistical support values for the clusters to the right of them (above:
Bayesian posterior probabilities, values under .90 are not shown; below: ML bootstrap
support values, values under 50 are not shown), and asterisks indicate maximal support

values. The tree is rooted with eight sequences of the Amphidomataceae.
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Waking the dead: Morphological and molecular characterisation
of the ‘living fossil’ Posoniella tricarinelloides (G.Versteegh)
Streng, Banasova, Rehakova & H.Willems (Thoracosphaeraceae,

Dinophyceae)

Haifeng Gu, Monika Kirsch, Carmen Zinssmeister, Sylvia Soehner, K. J. Sebastian Meier,

Tingting Liu, Marc Gottschling

SUPPLEMENTARY MATERIAL
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Figure Legend

Figure S1: Congruence between a molecular phylogeny and morphologically
established dinophyte groups. Maximum Likelihood tree of 319 members of the
Dinophyta as inferred from a MAFFT generated rRNA nucleotide alignment spanning SSU
and LSU (3,089 parsimony-informative positions). Major clades are indicated, and branch
lengths are drawn to scale, with the scale bar indicating the number of nucleotide substitutions
per site. Numbers on branches are statistical support values for the clusters to the right of
them (above: ML bootstrap support values, values under 50 are not shown; below: Bayesian
posterior probabilities, values under .90 are not shown), and asterisks indicate maximal

support values. The tree is rooted with four sequences of the Apicomplexa.
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Azadinium is a dinophycean genus capable of producing azaspiracids (AZAs), a recently discovered group
of lipophilic phycotoxins causing human intoxication via mussel consumption. Although initially
described from the North Sea, the genus currently consisting of four described species is probably
distributed worldwide. Here we report on Azadinium from the Shetland Islands, which are located in the
northernmost part of the North Sea and are largely influenced by the Atlantic Ocean. Two strains of
Azadinium were isolated from a single water sample. One strain was identified as Azadinium spinosum
based on morphology and sequence data and had an AZA cell quota of about 20 fg per cell, similar to all
other described strains of the species. The toxin profile consisted of AZA-1 and AZA-2 in a 2.3:1 ratio and
a yet undescribed AZA of 715 Da. The other strain represents a new species and is here described as
Azadinium polongum sp. nov. Like A. spinosum, but different to Azadinium obesum and Azadinium poporum,
A. polongum has an antapical spine. A. polongum differs from A. spinosum by an elongated shape of the
pore plate (Po), and X-plate, the location of the ventral pore, and the absence of a distinct pyrenoid with
starch sheath. Molecular analysis based on SSU, LSU, and ITS sequencing supported separation of
A. polongum at the species level. Detailed LC-MS analysis showed that A. polongum does not produce any

Keywords:
Azadinium
Azaspiracids
New species
Shetland Islands

known AZAs in measureable amounts.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Public health impairment through consumption of contami-
nated shellfish is a major problem caused by harmful algal blooms.
Among the known responsible compounds, azaspiracids (AZAs)
are the most recently discovered group of lipophilic polyether
toxins of microalgal origin. After a first poisoning incident in
the Netherlands in 1995, azaspiracid toxins were isolated and
chemically characterized from Irish shellfish (Satake et al., 1998;
Ofuji et al., 1999). Since then, AZA contamination of mussels has
been a recurrent and serious problem in Ireland (Salas et al., 2011).
In addition, toxins have been observed in samples from Europe,
Morocco, Chile, and Japan (Brana Magdalena et al., 2003; Taleb
et al,, 2006; Amazil et al., 2008; Ueoka et al., 2009; Alvarez et al.,
2010; Furey et al., 2010). Although chemistry and toxicity of AZA
were intensively studied (Twiner et al., 2008), it took 12 years to
discover a planktonic source of the toxin, a small dinophyte (Krock
et al., 2009) identified as Azadinium spinosum Elbrdchter et
Tillmann (Tillmann et al., 2009).

* Corresponding author. Tel.: +49 471 4831 1470; fax: +49 471 4831 1425.
E-mail address: urban.tillmann@awi.de (U. Tillmann).

1568-9883/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.hal.2012.10.001

The toxigenic type of this newly erected genus, A. spinosum, was
initially isolated off the Scottish east coast, but was subsequently
observed and isolated from Denmark (Tillmann et al., 2011) and
Irish coastal waters (Salas et al., 2011). The description of A.
spinosum was soon followed by both the discovery of new species
and the new records of Azadinium in natural samples from various
areas. First, Azadinium obesum Tillmann et Elbrachter was isolated
and described from the same water sample as A. spinosum off
Scotland (Tillmann et al., 2010), indicating co-occurrence with the
type. Likewise, Azadinium poporum Tillmann et Elbrdchter, the
third species, was isolated from the same sample as an Danish
A. spinosum isolate (Tillmann et al., 2011). Next, Amphidoma
caudata Halldal, a species described with the same basic plate
pattern as Azadinium (Dodge and Saunders, 1985), was revised
both by morphological and molecular data and transferred to the
genus as Azadinium caudatum (Haldahl) Nézan et Chomérat (Nézan
et al., 2012), with two distinct varieties, var. caudatum and var.
margalefii. Surprisingly, however, even “true” Amphidoma species
and Azadinium turned out to be closely related, despite marked
differences in epithecal plate pattern. This was recently shown by
morphology and molecular phylogeny for the new species
Amphidoma languida Tillmann, Salas et Elbrdchter (Tillmann
et al,, 2012), which was isolated together with an Irish A. spinosum
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isolate (Salas et al., 2011) and is very similar in general size and
shape to species of Azadinium. Both genera Azadinium and
Amphidoma are now integrated in the family Amphidomataceae
Sournia (Tillmann et al., 2012).

The three available strains of A. spinosum consistently produce
AZA with a reported toxin profile consisting of AZA-1 and AZA-2,
indicating that the production and profile of known AZAs is a stable
characteristic of the species. Other species of Azadinium have
initially been reported as non-toxigenic in terms of known AZAs.
However, AZA production within Amphidomataceae probably is
much more complex and diverse, as recent evidence indicates the
presence of new AZAs with a modified substitution pattern in A.
poporum and A. languida (Krock et al., 2012), but toxicity of these
compounds still needs to tested.

Although mainly recorded from the North Sea and adjacent
areas, species of Azadinium probably have a much wider
distribution. Recently, a strain assigned to the genus Azadinium
was isolated from coastal waters of Korea (Potvin et al., 2012),
which is the first published report of Azadinium from the Pacific
Ocean. In terms of morphology, the strain designated as A. cf.
poporum by Potvin et al. (2012) is almost identical to the
European A. poporum, but differs significantly in terms of
sequence data. Recent reports of Azadinium from field samples
include blooms in Argentina (Akselman and Negri, 2012), a
record from Mexico (Hernandez-Becerril et al., 2010) and an
entry in the check list of Black Sea phytoplankton (http://
phyto.bss.ibss.org.ua/wiki/Azadinium_spinosum). In addition to
these coastal records, specimens of Azadinium were detected in
samples collected from the open Indian Ocean (Carbonell-
Moore, pers. commun.). These records, taken together with the
widespread records of AZA toxins, indicate a global distribution
of Azadinium in general and of the toxigenic A. spinosum in
particular. Here we report Azadinium from the Shetland Island,
expanding the known distribution of the genus to the
northernmost part of the North Sea, an area heavily influenced
by the Atlantic Ocean. Two cultures were established, one
representing the toxin-producing type, A. spinosum, and the
other representing a new species, A. polongum sp. nov.

2. Material and methods
2.1. Isolation and culture

Two isolates of Azadinium, designated as isolate SHETF6 and
SHETB2, were established from a water sample collected adjacent
to the Shetland Islands (60°12.73’N and 0°59.90'W) during a cruise
aboard the research vessel “Heincke” in May 2011. A 1-L Niskin
bottle sample (10 m depth) was pre-screened (20 um Nitex
gauze), gently concentrated by gravity filtration using a 3-pm
polycarbonate filter, and examined using an inverted microscope
(Axiovert 200M, Zeiss, Germany). Cells of Azadinium were rare in
the sample and were visually pre-identified at high magnification
(640x) based on general cell size and shape. Pre-identified cells
were isolated by micro-capillary into wells of 96-well plates filled
with 0.2 mL filtered seawater. By this transfer technique, the
inclusion of non-target cells is unavoidable. Therefore, each
primary well of isolation was subsequently partitioned in 10-pL
quantities distributed into 20 new wells pre-filled with 0.2 mL
filtered seawater. Plates were incubated at 15 °C under a photon
flux density of ca. 50 umolm2s~! on a 16:8h light:dark
photocycle in a controlled environment growth chamber. From
these preparations, clonal cultures were established by isolation of
single cells by micro-capillary. Established cultures were routinely
held at 10 °C and 15 °C (SHETB2) or at 15 °C and 20 °C (SHETF6).

Cultures for toxin analysis were grown in plastic culture flasks
at 10 °C (A. polongum) or 20 °C (A. spinosum) under a photon flux

density of 25 pmol m—2 s~! on a 16:8 h light:dark photocycle. For
A. spinosum SHETF6, 200 mL of a dense culture (68,000 cell mL™,
cell concentration determined by counting >800 cells under an
optical microscope) were harvested in 4x 50 mL Falcon tubes by
centrifugation (Eppendorf 5810R, Hamburg, Germany) at 3220 x g
for 10 min. For A. polongum SHETB2, cultures were grown in
parallel in 270-mL culture flasks to a mean cell density of
2700 cells mL~!, with 500 mL then harvested by centrifugation of
10 x 50 mL. All cell pellets from one strain were combined in an
Eppendorf microtube and again centrifuged (Eppendorf 5415,
16,000 x g, 5 min). The final pellet of A. spinosum and A. polongum
were each subsequently suspended in 500 wL methanol and
transferred into a FastPrep tube containing 0.9 g of lysing matrix D
(Thermo Savant, Illkirch, France). Sample were homogenized by
reciprocal shaking at maximum speed (6.5ms~') for 45s in a
Bio101 FastPrep instrument (Thermo Savant, Illkirch, France) and
then centrifuged (Eppendorf 5415 R, Hamburg, Germany) at
16,100 x g at 4°C for 15 min. Each supernatant (400 L) was
transferred to a 0.45-pm pore-size spin-filter (Millipore Ultrafree,
Eschborn, Germany) and centrifuged for 30 s at 800 x g, with the
resulting filtrate transferred into an LC autosampler vial for
LC-MS/MS analysis.

2.2. Light microscopy (LM)

Observation of living cells was carried out with a stereomicro-
scope (Olympus SZH-ILLD) and with an inverted microscope
(Axiovert 200M, Zeiss, Germany) equipped with epifluorescence
and differential interference contrast optics. Light microscopic
examination of the thecal plate tabulation was performed on
formalin-fixed cells (1% final concentration) stained with calco-
fluor white (Fritz and Triemer, 1985). The shape and location of the
nucleus was determined after staining of formalin-fixed cells for
10 min with 4’-6-diamidino-2-phenylindole (DAPI, 0.1 g mL™!
final concentration). Photographs were taken with a digital camera
(Axiocam MRc5, Zeiss, Germany) connected to the inverted
microscope.

Cell length and width were measured at 1000x microscopic
magnification using Zeiss Axiovision software (Zeiss, Germany)
and freshly fixed cells (formalin final concentration 1%) of a culture
growing at 10 °C.

2.3. Scanning electron microscopy (SEM)

For SEM examination of thecal plates, cells from growing
cultures were fixed, prepared, and collected on 3-pwm polycar-
bonate filters (Millipore) as described by Tillmann et al. (2010),
with the following modification: after the 60% ethanol treatment,
cells were fixed in a 60:40 mixture of deionized water and
seawater containing 2% formalin for 3 h at 4 °C before dehydra-
tion. Filters were mounted on stubs, sputter-coated (Emscope
SC500, Ashford, UK) with gold-palladium and viewed under a
scanning electron microscope (FEI Quanta FEG 200, Eindhoven,
Netherlands). Some SEM micrographs were presented on a black
background using Adobe Photoshop 6.0 (Adobe Systems, San Jose,
CA, USA).

2.4. Morphometric measurements

SEM photographs were used to measure pore plate dimensions
of A. polongum and A. spinosum strains SHETF6, UTHE2, and 3D9,
the latter two being archived SEM pictures. The software package
Statistica (StatSoft) was used to compare pore-plate measure-
ments (Student’s t-test) for A. polongum with pooled measure-
ments for the three A. spinosum strains and to plot values including
95% confidence ellipses.
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2.5. Chemical analysis for azaspiracids

For both new isolates, an intensive analysis for the presence of
AZAs was conducted. Samples were analyzed by liquid chroma-
tography coupled to tandem mass spectrometry (LC-MS/MS)
according to the methods described in detail by Tillmann et al.
(2009). Selected reaction monitoring (SRM) experiments were
carried out in positive ion mode by selecting the following
transitions (precursor ion > fragment ion): (1) AZA-1 and AZA-6:
m/z 842 > 824 collision energy (CE): 40 V and m/z 842 > 672 CE:
70V; (2) AZA-2: m/z 856 > 838 CE: 40V and m/z 856 > 672
CE: 70 V; (3)AZA-3: m[z 828 > 810 CE: 40 Vand m/z 828 > 658 CE:
70V; (4) AZA-4 and AZA-5: m|z 844 > 826 CE: 40 V (5) AZA-7, AZA-
8, AZA-9 and AZA-10: m/z 858 > 840 CE: 40V, and 6) AZA-11 and
AZA-12: m[z 872 > 854 CE: 40V. The following additional mass
transitions were used for new AZAs: m/z 816 > 798, 830 > 812,
846 > 828, 868 > 806, 870 > 852 CE: 40V and m/z 816 > 348,
830 > 348, 846 > 348, 858 > 348, 868 > 362 CE: 70 V.

2.5.1. Precursor ion experiments

Precursors of the fragments m/z 348 and m/z 362 were scanned
in the positive ion mode from m/z 400 to 950 under the following
conditions: curtain gas: 10 psi; CAD: medium; ion spray voltage:
5500 V; temperature: ambient; nebulizer gas: 10 psi; auxiliary
gas: off, interface heater: on; declustering potential: 100 V;
entrance potential: 10 V; collision energy: 70 V; exit potential: 12 V.

2.6. Molecular phylogenetic analysis

The molecular analysis was conducted by the cooperation of
laboratories at the LMU Munich, Germany and the IFREMER
Concarneau, France. Fresh material of the strains SHETB2 and
SHETF6 was sent to both of the laboratories.

In Munich, genomic DNA was extracted using the Nucleo Spin
Plant II Kit (Macherey-Nagel, Diiren, Germany) according to
manufactures instructions. The complete 18S rDNA, the first two
domains of the 28S rDNA (D1/D2 region) and the internal
transcribed spacer (ITS), including the 5.8S rDNA were amplified
using the primers listed in Table S1 (provided as Supplementary
Material) and sequenced following standard protocols (Gottschling
et al, 2012).

In Concarneau, two optional methods were used to obtain
genomic DNA: DNA extraction from an exponentially growing
culture of Azadinium isolate prior to DNA amplification or direct
PCR amplification from 1 to 4 cells isolated from Lugol-fixed
cultures. For the first approach, cells from approximately 20 mL of
isolate SHETB2 were harvested by centrifugation (4000 rpm,
20 min). The genomic DNA was extracted using the CTAB
(N-cetyl-N,N,N-trimethylammoniumbromide) method (Doyle
and Doyle, 1987). For the second approach, cells of isolates
SHETB2 or SHETF6 were respectively deposited on a glass slide,
using a micropipette under the Olympus IMT2 inverted light
microscope. Subsequently, the cells were placed in a drop of a
sodium thiosulfate solution to decrease the inhibiting effect of the
fixative on the PCR (Auinger et al., 2008), rinsed twice in double
distilled water (ddH,O) before transfer to a 0.2-mL PCR tube
containing 3 wL of ddH,0 and stored at —20 °C until the direct PCR.
Afterward, the 18S rDNA, 28S rDNA (D1/D2 region), and the
internal transcribed spacer (ITS) including the 5.8S rDNA and COI
were amplified using the primers listed in Nézan et al. (2012).
Genomic DNA was amplified in 25-pL PCR reaction containing
either 1 L of extracted DNA or isolated cells, 6.5 L of ultrapure
water, 2.5 pL of each primer (10 wM), and 12.5 pL of PCR Master
Mix 1x (Promega, Madison, WI, USA) which includes the Taq
polymerase, dNTPs, MgCl,, and reaction buffers. The PCRs were
performed in a Mastercycler Personal (Eppendorf, Hamburg,

Germany) as follows: one initial denaturation step at 94 °C for
2 min, followed by 45 cycles each consisting of 94 °C for 30 s, 52 °C
for 1 min, and 72 °C for 4 min, and a final elongation at 72 °C for
5 min. The PCR products were visualized, purified and sequenced
following standard protocols (Nézan et al., 2012).

A dataset was compiled of all available Amphidomataceae
sequences and a systematically representative set of dinophytes
downloaded from GenBank (Table S2, provided as Supplementary
Material). To avoid the effect of “long branch attractions,” only taxa
of similar branch length were chosen as outgroups. “MAFFT”
v6.624b (Katoh and Toh, 2008; freely available at http://
mafft.cbrc.jp/alignment/software/index.html) was used to align
the sequences automatically. The alignment is available via nexus
file upon request. Phylogenetic analyses were carried out using
Maximum-Likelihood (ML) and Bayesian approaches, as described
in detail previously (Gottschling et al., 2012). The Bayesian analysis
was performed using “MrBayes” v3.1.2 (Ronquist and Huelsen-
beck, 2003; freely available at http://mrbayes.sourceforge.net/
download.php) under the GTR+C substitution model and the
random-addition-sequence method with 10 replicates. We ran two
independent analyses of four chains (one cold and three heated)
with 20,000,000 cycles, sampled every 1000th cycle, with an
appropriate burn-in (10%, after checking convergence). For the ML
calculation, “RaxML” v7.2.6 (Stamatakis, 2006; freely available at
http://www.kramer.in.tum.de/exelixis/software.html) was ap-
plied using the GTR+CAT substitution model to search for the
best-scoring ML tree and a rapid bootstrap analysis of 500 non-
parametric replicates. Statistical support values (LBS: ML bootstrap
support, BPP: Bayesian posterior probabilities) were drawn on the
resulting, best-scoring ML tree. The calculation of the pairwise
genetic distance p was conducted using Mega version 5.0 (Tamura
et al, 2011).

3. Results

Specimens of Azadinium were observed in concentrated whole
water samples at four out of six stations along the west coast of the
Shetlands and from one of these stations, two clonal cultures could
be established. Cells of both cultures showed rather slow
swimming speed interrupted by sudden jumps in various
directions, behavioral traits previously described for members of
the genus (Tillmann et al., 2009). From the onset, however, the two
isolates displayed marked physiological differences, indicating
that they might represent different species: Strain SHETF6
exhibited rapid growth at 15 °C and reached high cell densities
at stationary phase (about 100,000 cells mL~'), whereas strain
SHETB2 grew much more slowly, reaching maximal cell densities
of <3000 cells mL~". The cultures seem to have different temper-
ature requirements, with cell densities of SHETB2, but not SHETF6,
rapidly declining when cultures were grown at 20 °C. In addition,
cysts were regularly observed in cultures of SHETB2, but not
SHETF6.

Morphological attributes of strain SHETF6 supported identifi-
cation of this isolate as Azadinium spinosum (Fig. 1). Concordant
with previous descriptions of the species, the cells are slender and
elongated (Fig. 1B), with LM revealing an antapical spine and one
conspicuous pyrenoid located in the epicone (Fig. 1A). Plate
pattern, plate size and arrangement (Fig. 1D and E), as well as
presence and location of the ventral pore (Fig. 1C) are in total
agreement with previous description of the type material for A.
spinosum (Tillmann et al., 2009). Toxin analysis and rDNA sequence
also reinforced identification of strain SHETF6 as A. spinosum
(see below).

Examination of cell morphology and rDNA sequence (see
below) supported placement of isolate SHETB2 in the genus
Azadinium, as a new species.
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Fig. 1. Azadinium spinosum SHETF6, LM (A) and SEM (B-E). (A) Formalin fixed cell showing the antapical spine and one large pyrenoid (arrow). (B and C) Whole cell ventral
view, with plate labels. (D) Plate pattern apical view and (E) plate pattern in antapical view. Scale bars =2 pm.

3.1. Azadinium polongum sp. nov. Tillmann

3.1.1. Diagnosis

Differs from Azadinium spinosum in the elongated shape of the
pore plate Po and the X-plate, the smaller size of Plate 2a, the
location of the ventral pore and the absence of a distinct pyrenoid
with starch sheath. Distinguished from both A. obesum and A.
poporum by the presence of an antapical spine. The Kofoidian plate
tabulation is: Po, cp, X, 4/, 3a, 6”, 6C, 5?S, 6", 2""". Cell length
10-17 pwm, cell width 7-14 pm (Figs. 2-7).

Holotype: A SEM-stub (strain SHETB2, Stub designation
CEDiT2012H20), and a formalin fixed sample (strain SHETB2,
designation CEDiT2012121) have been deposited at the Sencken-
berg Research Institute and Natural History Museum, Center of
Excellence for Dinophyte Taxonomy, Germany. Fig. 4 has been
chosen to represent the type in accordance to fulfil article 39.1 of
the International Code of Botanical Nomenclature (ICBN).

Type locality: 60°12.73’N, 0°59.90'W, Shetland Islands

Habitat: marine plankton

Etymology: the epithet is inspired by the conspicuously
elongated shape of the pore plate (‘Po’ =designation for pore
plate; longus (Latin) = long). The epithet is indeclinable.

3.1.2. Cell morphology

Cells of A. polongum are ovoid and, if at all, only slightly dorso-
ventrally compressed. The episome ends with a conspicuous apical
pore complex (APC) and is slightly larger than the hyposome
(Fig. 2). The cingulum is deep and wide. Cells are generally small
but quite variable in size, ranging from 10.1 to 17.4 wm in length
and 7.4 to 13.6 pum in width (median length: 13.0 wm, median
width 9.7 wm, n = 107), with a median length/width ratio of 1.3.
The large nucleus is spherical to slightly elongated and is located in
the central part of the cell (Fig. 2E). The presumably single
chloroplast is parietally arranged, lobed, and extends into the
epi- and hyposome (Fig. 2). Light-microscopy did not indicate
the presence of pyrenoid(s) with starch sheath. However, cells
may have a number of large starch grains as indicated by positive
Lugol staining (Fig. 2D).
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Fig. 2. Azadinium polongum, LM. (A) Live cell. (B and C) Formalin fixed cell in two focal planes showing the apical pore complex (arrow in B) and the antapical spine (arrow in C).
(D) Lugol-fixed cell with large grains of stained material. (E) Formalin fixed cell stained with DAPI as viewed using UV excitation showing the round central nucleus. Scale
bars =2 pm.

Fig. 3. Azadinium polongum. SEM micrographs of thecae of different cells. (A and B) Ventral view. (C) Dorsal view. (D) Left-lateral view. Scale bars =2 pm.
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Fig. 4. Azadinium polongum. Diagrammatic illustration of thecal plates. (A) Ventral view. (B) Dorsal view. (C) Apical view. (D) Antapical view. Abbreviations: Sa, Sd, Sm, Sp, Ss:
sulcal plates as detailed in Fig. 6. Arrowheads in C and D indicate plate overlap pattern.

Cells of A. polongum possess delicate thecal plates, which can be
readily seen in the light microscope (Fig. 2) and stained with
calcofluor white (not shown). However, the plate pattern was most
easily resolved by SEM (Figs. 3, 5-7). Generally, the surface of the
plates is smooth but a few pores of different sizes are irregularly
scattered over the plates. The basic thecal plate arrangement is: Po,
cp, X, 4, 33, 67, 6C, 57?S, 6, 2""”, as drawn in Fig. 4.

The apical series is composed of four plates (Fig. 5). Plate 1/
has an ortho pattern, but slightly asymmetric, with the suture
joining Plate 6” being shorter than that joining Plate 1” (Fig. 5C).
In its anterior part, Plate 1’ is progressively narrowed, ending in a
slender tip abutting the pore plate. A ventral pore located at the
border of Plate 1’ and 1” is present at the lower third level of the
epitheca (Figs. 5C and 7G and H). This pore has a distinct outer
rim that measure 0.35 £+ 0.02 pm and 0.21 £ 0.01 pm (n = 10) for
outer and inner diameter, respectively. Comparing the lateral apical
Plates 2’ and 4/, the left Plate 4’ is slightly larger. Both plates clearly
invade the ventral area, with their tapering posterior ends pointing
toward the sulcus. Dorsal apical Plate 3’ is 6-sided, small, and
elongated posteriorly, ending in a narrow tip that abuts the small
intercalary Plate 2a. Three intercalary plates are arranged more or
less symmetrically on the dorsal side of the epitheca. The
intercalary plates are very different in size, with the four-sided
Plate 2a being distinctively smaller than the two other intercalary
plates (Fig. 5A, B and D).

Within the series of six precingular plates, Plate 6” is the
smallest. Plate 1” is in contact with an intercalary plate (1a) and
thus contacts four epithecal plates, whereas Plate 6” is narrower
and only contacts three epithecal plates (Fig. 5).

The hypotheca consists of six postcingular and two antapical
plates (Fig. 6A and B). The ventrally located Plates 1" and 6" are

the smallest and the four-sided Plate 5" is the widest in the
postcingular series. Plate 3’ is in contact with both antapical
plates (Fig. 6A and B). The two antapical plates are of markedly
different size, with the smaller Plate 1" slightly displaced to the
left. The larger antapical Plate 2" is bearing a small antapical spine
that is usually accompanied by a small cluster of pores (Fig. 7F).
The position of the spine is slightly variable, ranging from an axial
position (e.g. Fig. 6C) to being slightly shifted to cells right side (e.g.
Fig. 3A). Occasionally, the spine arise from a small bump (Fig. 7F).

The cingulum is wide (e.g. 2.6-2.9 pm; Figs. 3A and B and 6C),
descending, and displaced by about half of its width. Narrow
cingular lists are present. The cingulum is composed of six
comparably sized plates, but plate C6 is more slender than the
others (Fig. 6C and D). Furthermore, plate C6 is asymmetric in
shape, with a conspicuous S-shaped extension partly covering the
sulcal area and the flagellar pore region (Figs. 3A and B and 6C).
The deeply concave sulcus (Fig. 6C and D) consists of a large
anterior sulcal plate (Sa) that partly invades the epitheca, and a
large posterior sulcal plate (Sp) that extends two-thirds of the way
from the cingulum to the antapex. A left sulcal plate, Ss, is located
anterior to Sp and abuts Plates 1"/, C1, Sa, Sd, Sm, Sp and C6. The
right sulcal plate Sd abuts sulcal plates Ss and Sm, as well as
cingular plate C6. The median sulcal plate Sm contacts sulcal
plates Sa, Ss and Sd (Fig. 6C and D). As in other species of
Azadinium, these plates have an apparently complicated three-
dimensional morphology, with large flanges invading into the
hypotheca (see Fig. 6D).

The apical pore complex (Fig. 7A-E) is distinctly elongated, with
the apical pore being round or slightly ellipsoid (Fig. 7A and B) and
shielded by a cover plate. The pore is located in the dorsal part of an
elongated pore plate, the latter having a roundish dorsal part that is
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Fig. 5. Azadinium polongum. SEM micrographs of different cells. (A and B) Apical view showing the whole series of epithecal plates. (C and D) Epitheca in ventral (C) and dorsal

(D) view. Scale bars =2 pm.

considerable prolonged ventrally. A conspicuous rim borders the
dorsal and lateral margins of the pore plate adjacent to apical
Plates 2/, 3/, 4’, but it is lacking ventrally where the pore plate abuts
the first apical plate and the X-plate. When viewed from inside the
cell, the X-plate is obviously slender and elongated (Fig. 7C-E). The
X-plate has a mean length of 0.75 um (0.65-0.83, n=7) and
penetrates most of the elongated part of the pore plate. Ventrally,
the X-plate abuts but does not invade the first apical plate.
Occasionally, the X-plate appears to be slightly displaced into the
pore plate, but is still connected to the 1’ plate by a narrow slit
(Fig. 7B and D). The X-plate has a very characteristic three-
dimensional structure, with finger-like protrusions contacting the
cover plate (Fig. 7A and B).

Growth bands are visible as faint striated rows (Fig. 5A) present
at overlapping plate margins. The plate overlap pattern was
elucidated mainly from internal thecal views (see Fig. S1, provided
as Supplementary Material and Fig. 7E) and is schematized in
Fig. 4C and D.

A number of deviations from the typical plate pattern shown in
Fig. 4 were observed. Although not explicitly quantified, these
variations primarily consist of extra sutures between the epithecal
plates, either of the precingular or apicals Plate 2’ or 4’. In addition,
cells lacking the intercalary Plate 2a or with two small intercalary
plates have been recorded (Fig. S2, provided as Supplementary
Material).

Round cysts-like cells ranging in size from about 10 to 16 pm in
diameter were regularly observed in cultures of A. polongum
(Fig. 8). While cyst formation was not followed closely, the cells
depicted in Fig. 8A-C appear to represent early cysts stages.

These “early cysts,” as observed in LM, are completely round,
golden-brown in color and densely filled with large droplets,
presumably representing reserve material. Epifluorescence
microscopy indicates the presence of an intact chloroplast at this
stage of cyst development (Fig. 8C). The majority of cysts, however,
are almost colorless with pale white inclusions in LM; however,
fluorescence microscopy revealed different stages of pigment
reduction (Fig. 8D and E). The outer cyst layer appears thick and
smooth in LM, although very fine radiating fibers seem to be
present (Fig. 8F). In SEM, cysts are sometimes partly covered by
thecal plates (Fig. 8G) or are covered by a dense fibrous mesh of
filaments (Fig. 8H and I).

3.1.3. Morphometric analysis

The pore plates of A. polongum (strain SHETB2) and A. spinosum
(strains 3D9, UTHE2 and SHETF6) showed no significant difference
in width (largest left-to-right distance for the dorsal part of the Po)
(Fig. 9A), ranging from 1 to 1.5 wm in both species. However, the
length of the pore plate of A. polongum (2.1 +0.2, mean =+ STD,
n = 65) was significantly different from that of A. spinosum (1.5 + 0.1,
mean + STD, n=57) (t-test, p < 0.001). A scatter plot of pore plate
length vs. length-width ratio (Fig. 9B) clearly separates the data
points on both axes thereby underlining the difference in plate
morphometry between the two species.

3.1.4. Toxin analysis

Using the selected reaction monitoring mode (SRM), A.
spinosum SHETF6 exhibited a toxin profile of known AZAs
consisting of AZA-1, and AZA-2, identical to previously isolated
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Fig. 6. Azadinium polongum. SEM micrographs of different cells. (A and B) Antapical view of hypothecal plates. (C) Ventral view of cingulum and hypotheca. (D) Apical view of
the hypotheca showing the series of cingular plates with an internal view of the sulcal plates (Sa: anterior sulcal plate; Sp: posterior sulcal plate; Ss: left sulcal plate; Sm:

median sulcal plate; Sd: right sulcal plate). Scale bars = 2 pm.

strains of the species. Combined cell quotas of AZA-1 and -2 from
two different cultures of strain SHETF6 ranged from 19 to 22 fg per
cell, with an AZA1/AZA2 ratio ranging from 1.9 to 2.8. The presence
of other AZAs of known molecular mass can be excluded with a
detection limit of 1.1 pg on column, corresponding to per cell
detection limit of 0.008 fg. Using SRM, none of previously
described AZAs were found in A. polongum at a detection limit
of 1.1 pg on column (due to lower sample biomass corresponding
to a per cell detection limit of 0.08 fg).

In addition, precursor ion experiments for detecting putative
precursor masses of the characteristic CID-fragments m/z 348 and
m/z 362 of AZAs revealed A. spinosum SHETF6 to have a previously
undescribed AZA of the m/z 362 fragment type with a molecular
mass of 715 Da. Peak area of this AZA accounted for 30% of the
AZA-1 peak, indicating that this compound was a quantitatively
important component of the A. spinosum total AZA profile.
Precursor ion scans did not give any further signals for either
SHETB2 (A. polongum) or SHETF6 (A. spinosum), indicating that
neither strain produced other unknown AZA variants in larger
amounts. However, the precursor ion mode is approximately a
hundred times less sensitive than the SRM mode and strictly
speaking does not allow for exact quantitative measurement.
Considering a conservatively determined ‘“detection limit” of

0.2 ng on column, this represents a cellular detection limit of
unknown AZA variants of 1fgcell™! (A. spinosum SHETF6) or
10 fg cell~! (A. polongum SHET B2).

3.1.5. Sequence data and phylogeny

The total length of the rDNA alignment for 33 taxa in total,
including 15 ingroup and 18 outgroup taxa having comparable
branch length, was 3351 bases long with 907 sites being
parsimony informative (pi; 27%, 27.5 per terminal taxon). The
SSU covered 1822 bases with 145 pi sites (8%), the ITS region 718
bases with 435 pi sites (61%) and the first two domains of the LSU
covers 811 bases with 327 pi sites (40%). COI sequences showed
zero to one nucleotide difference between different Azadinium
species (data not shown). Tree topologies inferred from Bayesian
and ML approaches were largely congruent. The best scoring ML
tree is shown in Fig. 10. Many nodes had high or maximum
support. Established taxonomic units such as Thoracosphaeraceae
(95LBS, 0.83BPP), Gymnodinales 1 (100LBS, 1.00BPP), Gymnodi-
nales 2 (96LBS, 1.00BPP) and Prorocentrales (100LBS, 1.00BPP)
were formed. The Amphidomataceae were monophyletic (99LBS,
1.00BPP), with Amphidoma being most basal and Azadinium
monophyletic with maximum support (100LBS, 1.00BPP). Within
Azadinium, five species (A. polongum sp. nov. being one of them)
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Fig. 7. Azadinium polongum. SEM micrographs of different cells. (A-D) Details of the apical pore complex (APC). (A and B) APC in apical view. (C and D) APC viewed from inside
the cell. Note that the X-plate in B and D is slightly displaced into the pore plate but still is connected to the 1’ plate by a narrow slit. (E) Internal view of APC and apical plates.
Note that Plate 3’ is overlapped by the adjacent apical Plates 2’ and 4’ (arrows). (F) Detailed view of an antapical spine with a cluster of pores emerging from a small bump.
(G and H) Detailed external (G) and internal (H) view of the ventral pore located between Plates 1’ and 1. Po = pore plate; cp = cover plate; x = X-plate; vp = ventral pore. Scale

bars =0.5 wm.

were clearly separated and distinguishable. The results of the
genetic distance analysis among Amphidomatacea are given in
Table 1. The variation of the ITS region covering ITS1, 5.8S rRNA and
ITS2 between Azadinium species, varieties, or different strains (in
the case of A. poporum from Europe and A. cf. poporum from Korea)
varied between 0.023 and 0.247. Other available strains of the
same species, which are not listed in Table 1, exhibited the same
genetic distances as the listed strain.

4. Discussion

The occurrence of Azadinium along the Scottish coast (North
Sea) (Tillmann et al.,, 2009, 2010) and the Irish Atlantic coast
(Salas et al., 2011), as well as a report of AZA in mussels from
the north coast of Norway (Torgersen et al., 2008), suggest a

distribution of the genus into more northern North Sea/Atlantic
waters, an hypothesis confirmed by the present record from the
Shetland Islands.

The Shetland Islands form the border between North Sea and
Atlantic Ocean (International-Hydrographic-Organisation, 1953)
with eastern Shetland Islands located in the North Sea and western
Islands belonging to the Atlantic Ocean. According to that
definition, the locality of our Azadinium record is situated in the
North Sea. However, this area is heavily influenced by the East
Shetland Atlantic Inflow, with Atlantic water therefore found on
both sides of the Shetlands (Maravelias and Reid, 1997). Thus,
occurrence of Azadinium in the North Atlantic is quite likely. During
our cruise we failed to detect Azadinium and azaspiracids at a few
stations adjacent to the more northerly located Faroe Islands
(unpublished), but that negative observation may have been due to
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Fig. 8. Azadinium polongum. LM (A-F) and SEM (G-1I) of cysts. (A-C) Presumably young cyst in brightfield (A) and in two different focal planes under blue-light-excitation
(B and C) showing chlorophyll fluorescence. (D and E) Group of cysts in brightfield (D) and blue-light excitation (E). (G) Cyst with remains of the thecal plates attached.

(H and I) Cysts covered by a dense mesh of fibrous material. Scale bars =2 pm.

extremely low algal densities probably caused by high abundances
of copepods.

Surface water temperature around the Shetlands is quite stable
annually, rarely exceeding 12 °C during summer (Becker and Pauly,
1996). During our cruise, sea surface temperature was around
10 °C. Although not studied in detail, lab cultures of A. spinosum
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Fig. 9. Scatter plots of morphometric parameters of APC for A. polongum (red
squares) and A. spinosum (blue circles). (A) Width versus length of the pore plate
(Po). (B) Ratio of width/length versus length of the pore plate (Po). Circles represent
95% confidence ellipses. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

seemed to grow over a broad range of temperatures, however, best
growth occurred at higher temperature (20 °C). In contrast, A.
polongum grew well at 10°C, but died rapidly at higher
temperatures, indicating that this species is more stringently
adapted and thus more restricted to lower temperatures.

We observed specimens of Azadinium spp. at four out of six
stations along the west coast of the Shetlands, but their
abundances were generally very low. As indicated by qualitative
inspection of net tows and whole water samples, the plankton
was generally characterized as an early post-spring bloom
community, with high abundance of copepods, diatoms present
in varying numbers, and occurrence of different dinophytes (e.g.
Prorocentrum minimum (Pavillard) Schiller, various species of
Protoperidinium). In agreement with the A. spinosum record
from the Shetlands, AZA-1 was detected at two of the Shetland
west coast stations (including the station, where strain SHETF6
was isolated), however, only in low amounts ranging up to
0.02 ng L~! (unpublished).

One of our two Azadinium isolates, strain SHETB2, was
identified as a new species. While the characteristic swimming
pattern of SHETB2 strongly indicates its affiliation with Azadinium,
it is the genus characteristic Kofoidian thecal plate tabulation (Po,
cp, X, 4/, 3a, 6”7, 6C, 57S, 6", 2"""") that places this new taxon in the
dinophyte genus Azadinium (Tillmann et al., 2009). Furthermore,
discrimination of this taxon at the species level is justified by a
number of distinctive morphological features. The most obvious is
the shape of the pore plate that allows a clear separation of A.
polongum (elongated pore plate) from other Azadinium species
(round to ellipsoid pore plate, see Fig. 11). The difference in shape
of the X-plate (elongated in A. polongum; round to ellipsoidal in
other Azadinium species) might be related to the elongated shape
of the pore plate of A. polongum. The X-plate also shows differences
in arrangement across species. It invades the first apical plate in
A. spinosum, A. obesum and A. poporum, but abuts the first apical
plate in A. polongum and A. caudatum (Nézan et al., 2012). The
shape and size of the dorsal intercalary Plate 2a was variable in our
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culture material of A. polongum (see Fig. S2, provided as
Supplementary Material). Nevertheless, in its normal condition,
Plate 2a of A. polongum is distinctly smaller than that of other small
Azadinium species and is anteriorly linked to the elongated
antapical portion of Plate 3’. These characteristic features are
not found in A. spinosum, A. obesum and A. poporum (Tillmann et al.,
2009, 2010, 2011) and more closely resemble the configuration of
A. caudatum (Nézan et al., 2012).

The ventral pore, which is a characteristic feature of all
Azadinium species, is more posteriorly positioned in A. polongum

than in other species, being located in the lower third epitheca
between Plate 1’ and 1”. Moreover, for A. polongum, the ventral
pore is clearly located on the suture and is embedded in a cavity of
Plate 1’ (see Fig. 7G and H) whereas for A. spinosum it is located
within the 1’ plate and is connected to the suture of 1’ and 1” by a
narrow slit (Tillmann et al., 2009). Generally, the location of the
ventral pore seems to be variable in Azadinium species, either on
the left margin of Plate 1’ (A. spinosum, A. obesum) or on the left side
of the Po (A. poporum) (Tillmann et al., 2009, 2010, 2011). In A.
caudatum var. margalefii, this pore is located on the right margin of
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Table 1
Estimated genetic distances (P-values) between species of Amphidomataceae, based on combined ITS region sequences.
Species Strain no. A. polongum A. obesum A. spinosum A. poporum A. cf. A. caudatum A. caudatum A. languida
poporum var. margalefii var. caudatum
Azadinium polongum SHETB2
Azadinium obesum 2E10 0.180
Azadinium spinosum SHETF6 0.187 0.075
Azadinium poporum UTHC5 0.184 0.052 0.101
Azadinium cf. poporum HI2011 0.185 0.057 0.105 0.023
Azadinium caudatum IFR1140 0.243 0.172 0.201 0.189 0.189
var. margalefii
Azadinium caudatum IFR10-330 0.247 0.180 0.201 0.191 0.193 0.025
var. caudatum
Amphidoma languida SM1 0.323 0.321 0.321 0.315 0.315 0.323 0.325

the Po whereas for the second variety, A. caudatum var. caudatum, a
similar pore is situated near the posterior right margin of Plate 1/
(Nézan et al., 2012). In the closely related Amphidoma species,
Kofoid and Michener (1911) reported this pore on right edge of 1/
(A. elongata Kofoid et Sweezy) or at the midventral posterior tip of
1’ (A. laticincta Kofoid et Sweezy) while in A. languida, it is located
on the anterior right margin of 1’ (Tillmann et al., 2012). Very
rarely, the position of the ventral pore has been observed to vary
even within a culture. In one specimen of A. languida, the ventral
pore was located in the right side of the pore plate (Tillmann et al.,
2012), as in A. caudatum var. margalefii, and, in one specimen of
A. poporum isolated from Korea, it was located on the left side of
Plate 1’ (Potvin et al., 2012). As the function (if any) of these pores is
completely unknown, we cannot speculate on the potential
consequences of the apparent variability in pore location among
the Amphidomataceae.

The potential affinity of a few other described Dinophycean
species (Gonyaulax parva Ramsjfell, G. gracilis Schiller) to Azadinium
has been discussed before (Tillmann et al., 2011). G. parva clearly
differs from A. polongum by the intercalary plates having the same
size. The taxonomy of G. gracilis and specimens depicted under this
name (see Tillmann et al., 2011) generally needs careful revision.
At least one specimen depicted as G. gracilis by Bérard-Therriault
et al. (1999) probably is a species of Azadinium. It has an antapical
spine but other details are not visible, and we thus cannot exclude
the possibility of that specimen being A. polongum.

In terms of plate overlap pattern, the new species A. polongum
exactly resembles the type A. spinosum as described by Tillmann
and Elbrachter (2010). Peculiarities in plate overlap of A. spinosum,
including 3’ overlapped by the adjacent apical Plates 2’ and 4’
(see Fig. 7E), Plate 2a overlapped by all adjacent plates, and Sa
overlapping plate C6, are also present in A. polongum (see Fig. S1,

provided as Supplementary Material), thus indicating a conserva-
tive plate overlap pattern for the genus. However, A. caudatum has
been found to exhibit a slightly different overlap pattern of the
ventral apical plates in that Plate 1’ overlaps the adjacent apical
Plates 2’ and 4’ (Nézan et al., 2012).

Differences in morphology between SHETB2 and SHETF6 are
additionally reflected by differences in the biology/autecology of
both isolates. The different growth behavior in terms of tempera-
ture requirement has been addressed above. Strikingly, final cell
yield of A. spinosum SHETF6 was much higher compared to A.
polongum indicating different nutrient or carbon requirements
and/or pH tolerance (Hansen et al., 2007). Moreover, A. polongum
produced cysts in culture, a feature not yet observed for other
Azadinium species. However, successful isolation of A. poporum by
incubating sediment samples (Potvin et al., 2012) make the
presence of cysts quite likely for A. poporum. We currently know
little about the nature of A. polongum cysts. SEM failed to detect any
external cyst structures like paratabulation and/or archeopyle, and
hatching was not observed. The reduced chlorophyll fluorescence
of cysts (Fig. 8D and E) and their long persistence in an apparently
unaltered state indicate that A. polongum cysts might allow long-
term survival (hypnocysts), rather than serving as temporary cysts.
If true, these hypnocysts might be part of the vegetative cycle
(as has been observed Scripsiella hangoei (J. Schiller) ]J. Larsen, see
Kremp and Parrow, 2006), or part of a sexual life cycle. Clearly,
more data and observations are needed to clarify the whole life
cycle of Azadinium.

Separate dinophyte lineages and different sites of rDNA have
contrasting evolutionary rates (Hoppenrath and Leander, 2010).
To avoid the disadvantages of single site phylogenies and to
balance different rates of evolution, we combined slow sites like
the SSU with quickly evolving sites like the ITSs. Various ratios of

Fig. 11. Azadinium spp. SEM micrographs of the apical pore complex APC. (A) A. spinosum, (B) A. obesum, (C) A. poporum, (D) A. polongum. Scale bars = 0.5 pm.
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parsimony information for the regions have been demonstrated
before (Gottschling et al., 2012) and were confirmed here.
With 61% of the positions as parsimony informative, the ITS
region holds the main portion of phylogenetic information. With
only 8%, the SSU seems to be much less informative. Neverthe-
less, for higher taxonomic analysis and the inclusion of many
taxa, such slowly evolving sites are valuable to stabilize the
analysis and to support the resolution of the basal nodes. In our
analysis, the basal nodes and phylogenetic relationships were not
resolved with high support; however, well established taxo-
nomic units such as the Thoracosphaeraceae (95LBS, 0.83BPP),
the Gymnodinales 1 (100LBS, 1.00BPP), the Gymnodinales 2
(96LBS, 1.00BPP), and the Prorocentrales (100LBS, 1.00BPP) were
distinguished.

Together with A. languida the monophyletic and maximum
supported Azadinium (100LBS, 1.00BPP) forms the highly sup-
ported Amphidomataceae (99LBS, 1.00BPP) (Tillmann et al., 2012).
In total, five species are now clearly distinguishable within
Azadinium (Tillmann et al., 2009, 2010, 2011; Nézan et al,,
2012), and the relatively high genetic distances of the ITS region
(Table 1) support the species delimitations (Litaker et al., 2007).
The genetic distance of the new species Azadinium polongum
(SHETB2) to the other small Azadinium species (A. spinosum, A.
obesum, A. poporum, p = 0.180-0.187) is distinctly larger than the
distance among these other small species (p=0.052-0.105).
SHETF6 could be added as a new strain of A. spinosum clustering
to the other A. spinosum not only by morphology and toxins, but
also by molecular evidence.

Toxin analysis of both Shetland-strains for known AZAs verified
AZA-1 and -2 production solely for A. spinosum at a cell quota
comparable to other isolates (Tillmann et al., 2009, 2011; Salas
et al., 2011; Jauffrais et al., 2012), indicating the toxin content and
profile as a stable characteristic in this species. In addition to AZA-1
and -2, a yet undescribed AZA of the m/z 362-fragment type with a
molecular mass of 715 Da is here reported for A. spinosum for the
first time. This compound also has been found in significant
amounts in all other A. spinosum strains, and a manuscript
including NMR structural elucidation is in preparation (Kilcoyne
et al.,, manuscript in preparation). Production of AZAs within the
genus was initially known only for A. spinosum, but is apparently
more common within the Amphidomataceae. A. languida and
A. poporum are now known to produce a new type of azaspiracid
characterized by a modified fragment of m/z 348 compared to the
fragment of m/z 362 characteristic for the previously known AZAs
(Krock et al., 2012). We tested both Shetland-strains for the
presence of known AZAs of both fragment types and detected only
AZA-1 and-2 in A. spinosum. Although, we cannot exclude the
presence of other yet unknown AZAs (in addition to the new
715 Da AZA), as the precursor ion scan method is much less
sensitive than the single reaction mode (limit of detection of our
measurement estimated ca. 1 and 10 fg per cell for SHETF6 and
SHETB2, respectively). Patently, more analyses using larger culture
volumes are needed. Nevertheless, A. polongum clearly is not
toxigenic for known AZAs and thus represents another case of
coexisting toxigenic and non-toxigenic species of Azadinium, as
previously described for A. obesum (Tillmann et al., 2010).

Considering the short interval since the first identification of
Azadinium, the diversity of the genus has increased rapidly, with
five species now described and additional new species expected.
The presence of an antapical spine in small Azadinium species
was hitherto restricted to A. spinosum. With A. polongum also
exhibiting an antapical spine, the identification of the toxigenic
species A. spinosum only by light microscopy is unfortunately no
longer convenient. A. caudatum also has a spine, however of
distinctly different size and shape. Fortunately, a molecular
approach that can be routinely applied to a larger number of field

samples has been developed to identify A. spinosum and related
taxa (Tobe et al., in press). This approach may thus be used to
unambiguously confirm microscopic species assignments, like the
assured presence of A. spinosum in the Black Sea (http://
phyto.bss.ibss.org.ua/wiki/Azadinium_spinosum) and the pres-
ence of A. cf. spinosum in Argentinean coastal waters (Akselman
and Negri, 2012).
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The species concept is challenged for the unicellular dinophytes, exhibiting both high intraspecific variability (in terms of
morphology) and cryptic speciation (as inferred from molecular data). As one of the most abundant species assigned to
calcareous dinophytes (Thoracosphaeraceae, Dinophyceae), Scrippsiella trochoidea is cosmopolitan in distribution, but its
taxonomic identity is presently unclear. We collected, isolated and cultivated Scrippsiella trochoidea (strain GeoB*185)
from the type locality in the Kiel Fjord (Baltic Sea, Germany). We barcoded the species of the Thoracosphaeraceae based
on ITS sequences (including 22 new sequences) and investigated the morphology of strain GeoB*185 by using light,
fluorescence and electron microscopy. Numerous distinct lineages that had previously been determined as Scrippsiella
trochoidea constituted a species complex rather than a single species. This species complex subsequently comprised three
primary clades, for which the strain GeoB*185 was assigned to one of them. We designate an epitype for Scrippsiella
trochoidea, which has been prepared from the culture collected in the Kiel Fjord. The unambiguous links between a
scientific species name, its protologue, genetic characterization and spatial distribution bear particular importance for
character-poor, unicellular organisms such as the dinophytes.

Key words: calcareous dinoflagellates, coccoid stage, cryptic speciation, distribution, epitypification, morphology,
Peridiniales, phylogeny, thecate cell

Introduction A.R.Loebl. (Thoracosphaeraceae, Dinophyceae) has been
subjected to many biological, palaco-climatological, and
palaeo-environmental studies. This species belongs to the
phototrophic dinophytes, which produce calcareous coc-
coid stages during life history (D’Onoftio et al., 1999;
Gottschling et al., 2005b; McQuoid, 2005; Wang et al.,
2007). It belongs to Scrippsiella Balech ex A.R.Loebl.,
which comprises approximately 20 extant species that are
abundant in marine waters of all climatic zones, polar as
well as tropical habitat realms (Zonneveld et al., 1999;
Vink, 2004). Scrippsiella can be distinguished from other
peridinoid dinophytes (such as Pentapharsodinium Indel.
& A.R.Loebl., Peridinium Ehrenb., Protoperidinium Bergh
and others) based on the presence of six cingular plates,
thus showing two cingular sutures in mid-dorsal view of

Correspondence to: Marc Gottschling. E-mail: gottschling@ the motile cells (Fine & Loeblich III., 1976; Dale, 1977,
biologie.uni-muenchen.de 1978).

The unambiguity of scientific names is the necessary pre-
requisite for proper identification of species. A clearly
defined designation is, furthermore, paramount in com-
paring their distribution patterns across geographic re-
gions and generally for the reproducibility of scientific
results. This is all the more the case as we are experi-
encing an exponential increase of our knowledge about
species diversity. The links associated with a species
name, its protologue, genetic characterization, and spa-
tial distribution bear particular significance for character-
poor, unicellular organisms such as the dinophytes. As a
widely distributed species, Scrippsiella trochoidea (F.Stein)
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As in many other dinophytes, the life history of Scripp-
siella includes (at least) two different stages, namely a
motile vegetative cell (‘thecate cell”) and a non-motile coc-
coid stage (usually coined ‘cyst’). Subsequently, two par-
allel and originally independent taxonomic systems have
been developed for dinophytes: a ‘neontological’ system
mainly based on the morphology of the thecate cell and
a ‘palaeontological’ (para-)system based on characters of
the coccoid stage. Particular focus emphasizing a single
biological system of dinophytes (Fensome et al., 1993;
Elbrichter et al., 2008) has enabled much progress in clari-
fying cyst-theca relationships amidst the various species of
Scrippsiella within the past two decades. They are mor-
phologically diverse with respect to the coccoid stages,
while the tabulation pattern of the motile stage is rather
homogeneous (Lewis, 1991; D’Onofrio et al., 1999; Meier
et al., 2002; Gottschling et al., 2005b; Gu et al., 2008). The
coccoid stages of S. trochoidea are characteristic because
of the ovoid shape with the numerous triangular spines (in
the centres of irregular base plates), which comprise the
cell surface (Janofske, 2000), and have been separately de-
scribed as Rhabdothorax Kamptner ex Gaarder & Heimdal
(following the micropalaecontological taxonomic system).
It has been found that the coccoid stages of S. trochoidea
are abundant in coastal marine habitats and may function

as short mandatory dormancy stages (Binder & Anderson,
1987; Montresor et al., 1998).

Seen as such, the presence of clear taxonomical infor-
mation about Scrippsiella trochoidea is important for a
wide array of researchers. The basionym, Glenodinium tro-
choideum F.Stein, 1883 provides the oldest epithet for cur-
rent species assigned to Scrippsiella. The name is based on a
dinophyte collected at the Kiel Fjord in Northern Germany
(Baltic Sea) at an unknown date between 1879 and 1883. If
any original material was preserved, it has not been located
in the course of this study. Moreover, plate III 27-29 in
von Stein (1883) illustrating three motile stages (Figs 1-3)
is thus the type of G. trochoideum. Later, Lemmermann
(19104, 19100) also reported S. trochoidea from the Kiel
Fjord, but later records of this species in the Baltic Sea are
rare (Nehring, 1994, 1997; Hallfors, 2004).

Taxonomic ambiguity within the name S. frochoidea has
arisen by sequence comparison of the Internal Transcribed
Spacer (ITS) and other genetic loci. Molecular data indicate
a large genetic heterogeneity of ribotypes among numer-
ous different species, which all demonstrate morphology
of the vegetative stage consistent with the protologue of
S. trochoidea sharing the same tabulation pattern (‘cryptic
species’: Montresor ef al., 2003a; Gottschling et al., 2005b;
Gu et al., 2008). Within the Scrippsiella trochoidea species

Figs 1-3. Type of Scrippsiella trochoidea (= Glenodinium trochoideum), reproduction of plate IIT1 27-29 (von Stein, 1883). Abbreviations
(as noted in von Stein, 1883): a, ‘eyespot’ (i.e. red accumulation body); ¢, contractile vessel (i.e. exterior sulcal region with the flagellar
pores); n, nucleus; o, ‘mouth’ (i.e. interior sulcal region with the flagellar pores).
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complex (STR-SC), three major clades have been phylo-
genetically identified, each of which includes strains from
global localities in temperate seas. However, strains from
specimens collected from the type locality of S. trochoidea
have not been included in the phylogenetic analyses, leaving
the taxonomic and genetic circumscription of this species
unclear.

In this study, we clarify the taxonomic identity of Glen-
odinium trochoideum, the basionym of Scrippsiella tro-
choidea. We have collected phytoplankton net samples at
the type locality in the Baltic Sea and have established the
strain GeoB*185, which exhibits a morphology consistent
with the protologue of G. trochoideum. We also provide a
molecular phylogeny of Scrippsiella species. This includes
an ITS sequence of the new strain, from which we have pre-
pared the epitype now deposited at the Centre of Excellence
for Dinophyte Taxonomy (CEDiT; Wilhelmshaven, Ger-
many). We thus aim to contribute to the disentanglement of
the complex taxonomy afflicting (calcareous) dinophytes,
while emphasizing a fundamental prerequisite for all fur-
ther investigation and application regarding such unicellular
algae.

Materials and methods
Morphology

The monoclonal strain GeoB*185 was established by iso-
lation of a single thecate cell from a phytoplankton sam-
ple collected in the Kiel Fjord (Baltic Sea, Germany; GPS
coordinates: 54°26.33'N, 10°12.70'E) during a cruise of
the research ship Alkor in April 2000. Available upon re-
quest, the strain is currently held in the culture collections at
the Institute of Historical Geology/Palaeontology (Univer-
sity of Bremen, Germany) and the Institute of Systematic
Botany and Mycology (University of Munich). The strain
GeoB*185 was cultivated in a climate chamber Percival I-
36VL (CLF PlantClimatics; Emersacker, Germany) at 18
°C, 80 umol photons m~2 s~ ! and a 12:12 h light:dark pho-
toperiod by using K-Medium without silicate (Keller et al.,
1987) and 35 psu artificial seawater (hw marinemix pro-
fessional: Wiegandt; Krefeld, Germany) at pH 8.0-8.2. For
germination experiments, single coccoid stages were iso-
lated from the stem culture and were transferred to a new
cultivation plate under the standard conditions described
above. Incidentally, sub-cultures were grown under slightly
differing conditions with respect to salinity (35 psu and
higher) and temperature (up to 23 °C) to explore possible
variations in morphology. Herein, strain GeoB*185 suf-
fered contamination via a chrysophycean-like flagellate (as
inferred from sequence comparison, as can be seen below).

For the preparation of the epitype, cells of strain
GeoB*185 were centrifuged at a maximum speed of 200 g
for 1 h. Spare water was removed, and 120 ul 3%

glutaraldehyde (Plano; Wetzler, Germany) in 35 psu artifi-
cial seawater were added to the 30 ul remnant with a dis-
tinct pellet. Double-staining was performed by using 0.5%
(water-based) astra blue in 2% tartaric acid (Fluka; Buchs,
Switzerland followed by two cleaning steps in 120 pl 30
psu artificial seawater for 15 min and in 15 psu artifi-
cial seawater for 15 min) and 0.1% (ethanol-based) eosin
(Merck; Darmstadt, Germany) during a graded ethanol
(Roth; Karlsruhe, Germany) series. Ethanol-based Tech-
novit 7100 (Heraeus; Wehrheim, Germany) was used for
embedding, following the manufacturer’s instructions. For
the final preparation, 40 1 aliquots of the Technovit mixture
including the embedded samples were transferred to four
glass slides. The epitype is deposited at the Centre of Excel-
lence for Dinophyte Taxonomy (CEDiT; Wilhelmshaven,
Germany). Copies are held in the herbaria of Berlin, Bre-
men and Munich.

The techniques of light (LM) and scanning electron mi-
croscopy (SEM) followed standard protocols (Janofske,
2000) and were basically the same as described in
Gottschling ef al. (in press). Briefly, SEM samples were
either air-dried or dehydrated in a graded acetone series
and critical-point-dried, followed by sputter coating with
platinum. The thecal plate pattern was obtained by examin-
ing the culture stained with calcofluor white M2R (Sigma-
Aldrich, Munich, Germany) in epifluorescence microscopy
(Fritz & Triemer, 1985). The Kofoidean system (Taylor,
1980; Fensome et al., 1993) was used to designate the
plate formula. Measurements were obtained for 6-20 th-
ecate cells and calcareous coccoid stages (see below).

Molecular analyses

Genomic DNA was extracted from fresh material
by using the Nucleo Spin Plant II Kit (Machery-
Nagel, Diiren, Germany). Both ITSs including the 5.8S
rRNA region were amplified by using the primer pair
ITS1 5-GGTGAACCTGAGGAAGGAT-3' and ITS4 5'-
TCCTCCGCTTATTGATATGC-3' following standard pro-
tocols (Gottschling & Plotner, 2004). If gel electrophoresis
yielded more than a single band, they were excised, purified
and sequenced separately.

Ninety-three sequences of dinophytes were investigated
(Table 1), while the taxon sample comprised the currently
known diversity of Scrippsiella ribotypes found in different
regions of the global oceans. The data matrix was assem-
bled from previously published sequences (D’Onofrio et al.,
1999; Montresor et al., 2003b; Gottschling et al., 2005a,
2005b; Attaran-Fariman & Bolch, 2007; Gu et al., 2008)
and included 22 new additional sequences from strains out
of our own culture collection (see Table 1 for details). The
sequences were aligned by using ‘MAFFT’ v6.624b (Ka-
toh et al., 2005; Katoh & Toh, 2008; freely available at
http://align.bmr.kyushuu.ac.jp/maftt/software/). The align-
ment is available via nexus file upon request.
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Phylogenetic analyses were carried out by using
Maximum-Likelihood (ML) and Bayesian approaches, as
described in detail by Gottschling ef al. (in press). Calcula-
tions were carried out by using the resources of the Leibniz
Rechenzentrum (LRZ, Munich; linux cluster HLRB-II) and
of the SGI system (Zuse Institute Berlin, ZIB) being one
half of the North German High Performance Computer
(HLRN). The Bayesian analysis was performed by using
‘MrBayes’ v3.1.2 (Ronquist & Huelsenbeck, 2003; freely
available at http://mrbayes.csit.fsu.edu/download.php) un-
der the GTR+I substitution model and the random-
addition-sequence method with 10 replicates. We ran
two independent analyses of four chains (one cold
and three heated) with 20,000,000 cycles, sampled ev-
ery 1000th cycle, with an appropriate burn-in (10%,
after checking convergence). For the ML -calculation,

‘RAXML v7.2.6 (Stamatakis, 2006; freely available
at http://wwwkramer.in.tum.de/exelixis/software.html) was
applied by using the GTR+CAT substitution model to
search for the best-scoring ML tree and a rapid bootstrap
analysis of 1000 non-parametric replicates. Statistical sup-
port values (LBS: ML bootstrap support, BPP: Bayesian
posterior probabilities) were drawn on the resulting, best-
scoring ML tree.

Results

Strain GeoB*185 includes two principal stages: the pho-
totropic motile cells, covered by a theca constituted by
cellulosic plates (Figs 4-8, 11-14), and non-motile coc-
coid cells (Figs 9-10, 15-17). The phototrophic cells
are golden-brown and exhibit a conical epitheca, with an

10 pm

Figs 4-10. Life history stages of Scrippsiella trochoidea, strain GeoB*185 (light microscopy, all in the same scale). 4, thecate cell, small
morphotype; 5, thecate cell, medium-sized morphotype; 6, dividing thecate cell (the new thecate cell originates at the right side of the
cingulum; 7, thecate cell, large morphotype (‘planozygote’); 8, encysting stage of a large morphotype; 9, coccoid stage, apically with
thecal remnant; 10, empty coccoid stage, with mesoepicystal combination archaeopyle.
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Figs 11-17. Life history stages of Scrippsiella trochoidea, strain GeoB*185 (scanning electron microscopy, with the exception of 14
all in the same scale). 11, medium-sized thecate cell, dorso-apical view; 12, medium-sized thecate cell, lateral view; 13, small thecate
cell, ventral view; 14, small thecate cell, sulcal region with the origins of the flagella indicated by arrows; 15, coccoid stage, with spines
flattened at the tips (cultivated at 18 °C and 35 psu salinity); 16, coccoid stage, with thinner and irregular spines (cultivated at 18 °C and
35 psu salinity); 17, coccoid stage, with thick and short spines (cultivated at 23 °C and 35 psu salinity); thecal plates are indicated where
appropriate. Abbreviations: APo, apical pore plate; n’, apical plate; n”, precingular plate; n”’, postcingular plate, n””, antapical plate; na,
anterior intercalary plate; nC, cingular plate; Sa, apical sulcal plate; Sd, right sulcal plate; Sm, median sulcal plate; Sp, posterior sulcal

plate; Ss, left sulcal plate.

acuminate apex, and a hemispheric hypotheca. The cingu-
lar girdle is wide and deeply excavate. The cell surface is
smooth and does not show any ornamentation. Small circu-
lar openings of trichocysts are rare and — if present — either
irregularly arranged on the thecal plates or sometimes lin-
early arranged near the cingular plates.

Thecate cells of GeoB*185 show morphotypes of three
distinct size classes, ranging from 19—42 pum in length
(small cells: 19-21 pum, medium-sized cells: 25-32 pm,
large cells: 3642 um) and 15-37 um in width (small cells:
15-17 pum, medium-sized cells: 2024 um, large cells:
25-37 pm). The medium-sized cells (Figs 5-6, 11-12)
represent the predominant morphotype and frequently re-
produce themselves vegetatively. At the end of the division
process, the daughter cell is still attached with the apex

at the cingulum of the mother cell (Fig. 6). The smaller
morphotype (Figs 4, 13) swims faster than all other cells,
frequently near the medium surface. The third morphotype
(Figs 7-8) is as large as the coccoid stage (see below). The
apex is less acuminate and somewhat rounded. With in-
creasing size, the cell becomes more spherical in shape and
darker in colour, develops a red accumulation body, and
slows down when swimming.

The thecal plate formula is APo, x, 4, 3a, 77, 6¢, 5s, 5",
2" and is consistent among all morphotypes. Two flagella
originate from the sulcal region (Fig. 14), which is com-
posed of five plates, with slightly varying arrangements
among individuals. The Sd plate largely covers the smaller
plates Sa, Ss and Sm. The transverse flagellum originates
on the right-hand side between the plates Sa and Ss that are
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both in contact with plate 1C. Frequently, the Sa plate has
a small elongation towards the ventral axis, accompanying
the apical part of the Sd plate. The longitudinal flagellum
originates at the junction between the plates Sd, Sm and
Ss and is functionally constrained by the groove of the Sp
plate.

The large morphotype (Figs 7-8) as well as encystment
has mostly been observed during night time and in the
early morning (i.e. in the dark, before the light of the cli-
mate chamber turns on). Before encystment, the large the-
cate morphotype sinks down to the substrate or the bottom
of the culture plate and, after completing its transforma-
tion into a coccoid stage, always adheres to it by an un-
known mechanism (Figs 9-10, 9—10, 15-17). The coccoid
stage of GeoB*185 is generally developed within the theca
(Fig. 9) and frequently shows remnants of the shed epi-
or hypotheca. At an early coccoid stage, it is hyaline and
changes to a brownish colour after approximately 20 min.
The coccoid cells are spherical to mostly ovoid, 37-46 um
in length and 29-38 pm in width.

The wall of the coccoid stage consists of an inner organic
and an outer calcareous layer with numerous spines, each of
which possesses an irregularly undulating base at maturity.
In immature coccoid stages, the bases of the spines are
initially not interlocked. The spines are triradiate in cross-
section, and the tips are pointed, blunt or cleft (varying
among individuals). Shape, width and length of the spines
vary depending on experimental conditions (Figs 15-17):
The spines are thicker at higher salinity (35 psu and higher)
and temperature (23 °C). The simple operculum consists of
the articulating thecal plate equivalents 1’ through 4’ and
la through 3a (Fig. 10), and the coccoid stage thus had
a mesoepicystal combination archaeopyle. Under standard
culture conditions, excystment and production of a new
generation of thecate cells takes place after days or several
months. The direct observation of a medium-sized thecate
cell emerging form on coccoid stage has been possible only
once.

The alignment is 636 bp long and comprised 313 par-
simony informative sites (49%, 3.4 per terminal taxon).
Figure 18 shows the best-scoring ML tree (—In = 8041.97),
with Scrippsiella sensu lato (s.l.) — including coccoid stage-
based taxa such as Calcigonellum Deflandre, 1949, Cal-
ciodinellum Deflandre, 1947, and Pernambugia Janofske &
Karwath as well as the parasitic Duboscquodinium Grassé,
1952 — retrieved as monophyletic (93LBS, 1.00BPP).
Scrippsiella s.l. segregates into eight major lineages,
namely Pernambugia tuberosa Janofske & Karwath, Cal-
ciodinellum and its relatives (i.e. the CAL clade: 67LBS,
.99BPP), S. lachrymosa Lewis (i.e. the LAC clade: 100LBS,
1.00BPP), and S. precaria Montresor & Zingone and its
relatives (i.e. the PRE clade: 100LBS, 1.00BPP) as well
as four lineages that can be subsumed under the STR-SC.
The internal phylogeny of the STR-SC is only partly re-
solved and supported by high statistical values. However,

three major assemblages can be identified, namely STR1
(95LBS, 1.00BPP), STR2 (98LBS, 1.00BPP) and STR3
(72LBS, .96BPP). The STR2 clade includes one of the
two sequences obtained from GeoB*185 collected at the
type locality of S. trochoidea in the Kiel Fjord (the other,
i.e. contamination, sequence shows great similarity to a
chrysophycean-like flagellate as inferred from a NCBI Blast
Search: EF577176). Taxa exhibiting spiny coccoid stages
are found in the PRE clade as well as in the STR-SC.

Discussion

The taxonomy of S. trochoidea is challenging (Elbrachter
et al., 2008) in five main respects: (1) the type mate-
rial of S. trochoidea consists of a single illustration (von
Stein, 1883); (2) S. trochoidea is not a single species, but
rather a species complex (D’Onofrio e al., 1999; Montresor
et al., 2003b; Gottschling et al., 20050); (3) the species are
genetically distinct, but are indistinguishable in gross mor-
phology (‘cryptic species’ with the same tabulation patterns
and similar spiny coccoid stages: Montresor et al., 20035;
Gottschling et al., 2005b); (4) strains of the same ribo-
type show in turn a remarkable morphological variability
in detail (D’Onoftrio et al., 1999; Gottschling ef al., 2005b);
and (5) strains of the same ribotype are widely distributed
(Gottschling et al., 2005b; Gu et al., 2008). For all these rea-
sons, it is paramount to clarify the taxonomic identity of S.
trochoidea. To collect living material from the type locality
appears the most sensible approach for an adequate, state
of the art morphological and molecular re-investigation.

To the best of our knowledge, a single scrippsielloid
species predominates in the Kiel Fjord. Its occurrence has
been continuously documented over the past century (von
Stein, 1883; Lemmermann, 1910a, 19105; Wasmund et al.,
2008). Scrippsiella lachrymosa has also been reported spo-
radically from this locality (Nehring, 1994, 1997), but this
species can be easily distinguished from the S. trochoidea-
like species based on the size of the thecate cell as well as
from the morphology of the coccoid stage (Lewis, 1991).
Morphologically, cells of strain GeoB*185 are consistent
with the protologue of G. trochoideum including the illus-
tration, although the original interpretations of von Stein
(1883) must be seen in a historical context: The ‘eye spot’
is the red accumulation body, the transversal flagellum has
been described as the ‘ciliate girdle’ of the cingulum, and
the ‘mouth’ rather represents the sulcal region with the
flagellar pores.

Morphotype variability found within GeoB*185 com-
prising thecate cells of distinct sizes have already been re-
ported for (cultivated) S. trochoidea-like species (Lemmer-
mann, 1910a; Braarud, 1958; Fine & Loeblich III., 1974,
1976). At present, it is, however, still not certain which are
the morphotypes involved in conjugation, karyogamy and
meiosis. Since the predominant (smaller) thecate cells of
pelagic ‘Calciodinellum’ levantinum S.Meier, Janofske &
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H.Willems are haploid (Meier et al., 2007), it appears plau-
sible that the predominant (medium-sized) thecate cells are
haploid in S. trochoidea as well. These medium-sized cells
are usually considered to fuse, originating planozygotes
with two longitudinal flagella (Gao et al., 1989a, 19895b;
Gu et al., 2008). The coccoid stages, to which the planozy-
gotes develop, would subsequently be diploid (shown for
‘C.” levantinum: Meier et al., 2007). The function of the
small, fast-swimming thecate stages of S. trochoidea re-
mains to be established. Ploidy levels of dinophyte cells
are still largely unknown, and their determination will be a
major task for future research by using, for example, flu-
orescence in situ hybridization and probes of single-copy
genes.

Our molecular phylogeny including 22 new sequences
confirms evidence of the existence of cryptic species, an
aspect addressed previously by various authors (D’Onofrio
et al., 1999; Montresor et al., 2003a; Gottschling et al.,
2005b; Gu et al., 2008). The strain GeoB*185, from which
cells have been prepared for epitypification, has been col-
lected in the Kiel Fjord, and its ITS sequence clusters within
the STR2 clade. As inferred from sequence comparison,
this clade comprises strains, which have been sampled at
various localities in the Baltic Sea, Mediterranean Sea, east-
ern South Atlantic as well as the eastern South and west-
ern North Pacific. Therefore, the strains grouped in this
clade seem to have a broad distribution pattern (Gottschling
et al., 2005b).

It presently remains unclear, whether the STR2 clade
includes one, few or several species of Scrippsiella. The
region downstream of helix II found in the secondary struc-
ture model of the ITS1 (Gottschling & Plotner, 2004) is
very divergent in its primary nucleotide sequence among
species. However, it might be intraspecifically invariant
(Gottschling & Kirsch, 2009), comprising classes of se-
quence motifs that do not show intermediates between
lineages (as has been demonstrated for members of the
STR2 clade: unpublished data). This region has the poten-
tial to serve as a species-specific DNA barcode for dino-
phytes (Litaker et al., 2007) and thus might help to deter-
mine cryptic species as proposed previously (Gottschling
et al., 2005b; Gottschling & Kirsch, 2009). However,
breeding experiments by using monoclonal cultures are
also necessary to verify the status of isolated reproductive
units.

The clarification of the systematic position of the origi-
nal material of S. trochoidea has taxonomic consequences.
Irrespective of whether the STR2 clade represents one or
more species, its distinctiveness from dinophytes of the
clades STR1 and STR3 that are morphologically similar
to S. trochoidea is evident. Several species have been syn-
onymized with, or considered closely related to, S. fro-
choidea in the past. Collecting material from the type lo-
cality of the various basionyms — Peridinium ovaliforme
Kisselev (Barents Sea), Rhabdosphaera erinaceus Kampt-

ner (Adriatic Sea), Scrippsiella faeroensis (Paulsen) Balech
& L.O.Soares (North Atlantic off Faroe Islands), S. regalis
(Gaarder) Janofske (Sargasso Sea), and last but not least S.
sweeneyae Balech ex A.R.Loebl., the type of Scrippsiella
(East Pacific off California) — and providing a morphologi-
cal and molecular characterization might be a good starting
point to check the relevance of these species names. Since
the vast majority of the ‘cryptic species’, is not yet properly
described; it remains a major task to work out the morpho-
logically diagnostic and the ecological differences between
them.

Taxonomic conclusions

Scrippsiella trochoidea (F.Stein) A.R.Loebl., Journal of
Protozoology 23: 25 (1976), basionym: Glenodinium tro-
choideum F.Stein, Der Organismus der Arthrodelen Flag-
ellaten nach eigenen Forschungen in systematischer Rei-
henfolge bearbeitet 2: pl. 111 27-29 (1883). = Peridinium
trochoideum (F.Stein) Lemmerm., Archiv fiir Hydrobiologie
und Planktonkunde 5: 336-338, figs 33-36 (1910).—Type:
Baltic Sea, off Federal Republic of Germany. Schleswig-
Holstein, Kiel Fjord, s.d. [extant]: S.EN.R. von Stein s.n.
[holotype: Der Organismus der Arthrodelen Flagellaten
nach eigenen Forschungen in systematischer Reihenfolge
bearbeitet 2 (1883): pl. III 27-29!]; Baltic Sea, off Fed-
eral Republic of Germany. Schleswig-Holstein, Kiel Fjord,
Apr 2000 [extant]: K.J.S. Meier s.n. [GeoB*185] (epitype,
designated here: CEDiT-2011E13!, copies: B-400040745!
BREM! M-156524!).
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Abstract The diversity of extant calcareous dinophytes
(Thoracosphaeraceae, Dinophyceae) is not fully recorded
at present. The establishment of algal strains collected at
multiple localities is necessary for a rigorous study of taxo-
nomy, morphology and evolution in these unicellular orga-
nisms. We collected sediment and water tow samples from
more than 60 localities in coastal areas of the eastern
Mediterranean Sea and documented 15 morphospecies of
calcareous dinophytes. Internal transcribed spacer (ITS)
barcoding identified numerous species of the Scrippsiella
trochoidea species complex that were genetically distinct,
but indistinguishable in gross morphology (i.e. with the
same tabulation patterns of the motile theca and similar
spiny coccoid stages). We assessed a possible minimal num-
ber of cryptic species using ITS ribotype networks that
indicated the existence of at least 21 species within the
Scrippsiella trochoidea species complex. Species diversity
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of calcareous dinophytes appears higher in the Mediterranean
Sea than in other parts of the world’s oceans such as the North
Sea. Our data underline the importance of field work to record
the diversity of calcareous dinophytes and other unicellular
life forms.
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Introduction

Dinophytes are distributed in marine and freshwater environ-
ments worldwide from arctic regions through tropical seas and
constitute a considerable fraction of the plankton. Being primary
producers as well as predators make the dinophytes an impor-
tant component of the global aquatic ecosystem with an impact
on carbon fixation. Together with the Ciliata and Apicomplexa
(= Sporozoa), the Dinophyceae belong to the Alveolata and are
a well-supported monophyletic group based on both molecular
data and many apomorphies. Morphologically, the dinophytes
exhibit unique traits, such as the coiled transverse flagellum,
associated with a transverse groove termed the ‘cingulum’
(Taylor 1980; Fensome et al. 1999; Rizzo 2003; Leander and
Keeling 2004; Harper et al. 2005). The Thoracosphaeraceae
(Peridiniales) include all dinophytes that produce calcareous
coccoid stages during their life history [important represen-
tative taxa are Pentapharsodinium Indel. & A.R.Loebl.,
Scrippsiella Balech ex A.R.Loebl and Thoracosphaera
Kamptner] as well as some (presumably secondary) non-
calcareous relatives such as Ensiculifera Balech, 1967 and
Pfiesteria Steid. & J.M.Burkh. (Elbrachter et al. 2008).
Approximately 35 extant species of calcareous dinophytes
have been described currently based on morphology
(Zonneveld et al. 2005), plus about 260 fossil species
(Fensome and Williams 2004; Streng et al. 2004).
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The Thoracosphaeraceae are considered a monophyletic
group based on both morphological and molecular data
(Wall and Dale 1968; Janofske 1992; Gottschling et al.
2005a, 2012). They segregate into three lineages, namely
the E/Pe-clade (Ensiculifera/Pentapharsodinium-clade: ma-
rine environments), the T/Pf-clade (Thoracosphaera/
Pfiesteria-clade: marine, brackish and fresh water environ-
ments), and Scrippsiella s.l. (marine and brackish environ-
ments), whereas the latter two clades show a close
relationship. Scrippsiella s.l. segregates, in turn, into a num-
ber of lineages, basically corresponding to established tax-
onomic units (Gottschling et al. 2005b), and include
Pernambugia tuberosa Janofske & Karwath (Karwath
2000), the CAL clade [with Claciodinellum operosum
Deflandre, 1947 (Deflandre 1947)], the LAC clade [with
Scrippsiella lachrymosa Lewis (Lewis 1991)], and the PRE
clade [with S. precaria Montresor & Zingone (Montresor
and Zingone 1988)] as well as the S. trochoidea (F.Stein)
A.R.Loebl. [Loeblich 1976, basionym: Glenodinium tro-
choideum F.Stein (Stein 1883)] species complex (STR-SC;
Montresor et al. 2003; Gottschling et al. 2005b; Gu et al.
2008; Zinssmeister et al. 2011). Phylogeny of the STR-SC is
only partly resolved, but three major assemblages are cur-
rently identified, namely STR1, STR2 and STR3 (i.e. S.
trochoidea cluster 1 through 3). STR3 includes the
“Calciodinellum” levantinum S.Meier, Janofske &
H.Willems (Meier et al. 2002) species group that is not
closely related to the type species of Calciodinellum, C.
operosum.

For manifold reasons, any species concept is challenged for
the unicellular and character-poor dinophytes in general and the
Thoracsophaeraceae in particular (Gottschling et al. 2005b;
Elbréchter et al. 2008). The life history of Thoracosphaeraceae
usually includes at least two different stages, namely the motile
theca and an immotile coccoid stage (described frequently as
‘cyst’). In dinophytes in general, and in calcareous dinophytes
in particular, the morphology of the coccoid stages is diverse,
while the thecate tabulation pattern of cellulose plates is rather
homogeneous (D’Onofrio et al. 1999; Meier et al. 2002;
Gottschling et al. 2005b; Gu et al. 2008). However, many
ecological and checklist studies consider the morphology of
the theca only, although a reliable species determination is not
possible using this approach. The identification of species (fos-
sil and extant) based on morphometrics is thus problematic as
coccoid stages can show high intraspecific variability. For ex-
ample, it has been shown that a single strain of S. trochoidea
reveals morphological differences of coccoid cells under differ-
ent cultivation conditions (Zinssmeister et al. 2011). Moreover,
molecular sequence data have shown the existence of a large
genetic heterogeneity of ribotypes among numerous different
strains with the same gross morphology (‘cryptic species’,
found primarily in the STR-SC: Montresor et al. 2003;
Gottschling et al. 2005b; Gu et al. 2008).

@ Springer

Ribotyping is a fingerprint method analogous to pheno-
typing, genotyping or haplotyping. It uses DNA encoding
ribosomal RNA from organisms or cells to define a specific
sequence. A bifurcate gene tree is not always sufficient to
illustrate all the phylogenetic information present in a mo-
lecular data set (Posada and Crandall 2001), since evidence
for recombination and homoplasy is forced into non-
reticulating tree topologies. Haplo- or ribotype networks
consider such information by allowing loops and including
missing intermediate mutational steps in the graphical illu-
stration. The analysis of networks has been applied success-
fully to the investigation of intraspecific variability and
population genetics. Cryptic species and speciation proces-
ses in plants and animals can also be inferred from network
analyses of mitochondrial (Daniels and Ruhberg 2010),
chloroplast (Lo et al. 2010), and nuclear (Peng et al. 2010)
sequence data. The ribosomal internal transcribed spacer
(ITS) region has been proposed to serve as a species-
specific DNA barcode for dinophytes (Litaker et al. 2007,
Genovesi et al. 2011; Stern et al. 2012) and thus might help
to identify cryptic species as proposed previously
(Gottschling et al. 2005b; Gottschling and Kirsch 2009).
However, it is unclear at present whether a specific ribotype
corresponds to several species, is unique to a single species
or is a polymorphism within a species. If ITS ribotypes
belong to a single reproductive unit (i.e. biological species),
then a continuum between such ribotypes in terms of simi-
larity is to be expected because of intraspecific variability.
This hypothesis would be rejected by distinct classes of
similarity or groups of ribotypes within a network.

With respect to taxonomy and evolution, the investigation
of unicellular algae such as the dinophytes is laborious. It
includes the collection of the organisms in the field and the
establishment of (preferably monoclonal) strains that are held
in culture collections (and which should be at other resear-
chers disposal). Moreover, the investigated material must be
preserved in form of isolates in a DNA bank as well as
microscopic slides, since cultivation is frequently not possible
over long periods of time. A considerable number of species
assigned to the Thoracosphaeraceae are based on fossil types
and have further been found in recent sediments (summarised
in Elbrdchter et al. 2008). From some of them [such as C.
operosum and Calcicarpinum bivalvum G.Versteegh
(Versteegh 1993) = “Pentapharsodinium” tyrrhenicum
(Balech) Montresor, Zingione & D.Marino (Montresor et al.
1993)] strains could be established, and they have been inve-
stigated morphologically and / or molecularly (Montresor et
al. 1993, 1997; D’Onofrio et al. 1999). However, many such
‘living fossils’ have not been brought into culture yet, despite
their importance for understanding the evolution of the entire
group (Elbréchter et al. 2008).

In this study, we summarise our extensive field trips to
the eastern Mediterranean Sea (Italy, Greece and Crete),
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following the pioneering work of Wall and Dale (1966,
1968) and Montresor et al. (1994). We provide species
records assigned to the Thoracosphaeraceae based on mor-
phology and — where possible — ITS barcoding of estab-
lished strains for the more than 60 localities. We compare
our results with those from a pilot field trip to Scandinavia
(Gottschling and Kirsch 2009) to explore whether species
diversity differs between ecologically distinct areas. Using
ribotype networks, we quantify species number, which may
have importance especially for the STR-SC containing
many cryptic species (Montresor et al. 2003; Gottschling
et al. 2005b; Gu et al. 2008).

Materials and methods

We collected sediment and water tow samples at 22 locali-
ties in Italy (April 2009), 31 localities in Greece (March
2010) and 11 localities on Crete (May 2010; Table S1 in the
electronic supplementary material). Vertical water tow sam-
ples from the ground to the water surface were taken with a
plankton net (mesh size 20 um). In order to collect many
samples in a short period of time, we used a self-
manufactured, rocket-like bore probe (described in detail
in Gottschling and Kirsch 2009).

With respect to the establishment of cultures from the
samples, we focussed on species that could be assigned to
the Thoracosphaeraceae. The grain size fraction of 20 pum —
75 um of the sediment samples was supplied with K-
Medium without silicate (Keller et al. 1987) and 35%o
artificial seawater (HW Marinemix Professional:
Wiegandt; Krefeld, Germany) at pH 8.0 — 8.2. Six-well
microplates (Zefa, Munich, Germany) were stored in a cli-
mate chamber Percival I-36 VL (CLF PlantClimatics;
Emersacker, Germany) at 18 °C, 80 pmol photons m™>s™
and a 12:12 h light:dark photoperiod. Coccoid stages as well
as motile thecas (generated from the sediment samples as
well as from the water tow samples) were isolated and were
grown under the conditions specified above. The established
strains are currently held in the culture collections at the
Institute of Historical Geology / Palaecontology (University
of Bremen, Germany) and at the Institute of Systematic
Botany and Mycology (University of Munich), and are
available upon request.

The techniques of light (LM) and scanning electron mi-
croscopy (SEM) were used to identify the strains taxono-
mically. We followed standard protocols (Janofske 2000)
that were basically the same as described in Gottschling et
al. (2012). Briefly, SEM samples were either air-dried or
dehydrated in a graded acetone series and critical point
dried, followed by sputter-coating with platinum. The
Kofoidean system (Taylor 1980; Fensome et al. 1993) was
used for thecate plate designation.

Genomic DNA was extracted from fresh material using
the Nucleo Spin Plant II Kit (Macherey-Nagel, Diiren,
Germany). Both ITS regions including the 5.8S rRNA were
amplified using the primer pair ITS1 5'-GGTGAA
CCTGAGGAAGGAT-3" (Gottschling et al. 2005a) and
ITS4 5'-TCCTCCGCTTATTGATATGC-3" (White et al.
1990) and were sequenced directly following standard pro-
tocols. The obtained sequences of cultivated and morpho-
logically determined strains were compared to available
NCBI GenBank entries using Blast search (http://blast.nc-
bi.nlm.nih.gov/Blast.cgi). For ribotype network analyses,
TCS v12.2.0 (Clement et al. 2000) was used following the
developers’ instructions to assess a possible minimal num-
ber of calcareous dinophyte species in specific clades (i.e.
STR1, STR2, STR3 and others). TCS is a software program
(Clement et al. 2000) to estimate gene genealogies including
multifurcations and/or reticulations (i.e. networks). Indels
were AC-coded.

Results

Within 15 sampling days total, we collected sediment and
water tow samples densely at 64 localities in Italy, Greece
and Crete (Fig. 1; only the samples of Italy have been
investigated exhaustively in terms of morphology and
sequencing so far). In total, 63 strains of dinophytes
were established from the collected material, 54 of
which were identified morphologically as belonging to
17 distinct morphospecies of the Thoracosphaeraceae
(Table S1, Fig. 2). Thirty-five strains were sequenced
and the morphological identifications were confirmed
as Calcicarpinum bivalvum [= “Pentapharsodinium”
tyrrhenicum (Balech) Montresor, Zingone & D.Marino],
Calcigonellum infula Deflandre, 1949 (Deflandre 1949),
Calciodinellum operosum, Scrippsiella bicarinata
Zinssmeister, S.Soehner, S.Meier & Gottschling
(Zinssmeister et al. in press), S. kirschiae Zinssmeister,
S.Soehner, S.Meier & Gottschling (Zinssmeister et al. in
press), S. lachrymosa Lewis, S. precaria Montresor &
Zingone, S. ramonii Montresor (Montresor 1995), S.
rotunda Lewis (Lewis 1991) and S. trochoidea, respec-
tively (Table S1). This diversity in the samples included
also empty coccoid stages of Follisdinellum G.Versteegh
(Versteegh 1993) and Calciperidinium G.Versteegh
(Versteegh 1993), but it has not yet been possible to
establish strains from them.

Forty new sequences from the Mediterranean Sea and
other oceans were submitted to the NCBI database: JQ422480-
JQ422519 (Table S2).

Figure 3 shows the molecular sequence variation within
four major clades of Scrippsiella illustrated as TCS ribotype
networks. For the PRE clade, three morphospecies were
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Fig. 1 Samples collected at 64 localities pictured on an outline map of Italy and Greece

included, and a single ribotype was identified for S. ramonii,
with three sequences all derived from Italian strains. For S.
precaria, two different ribotypes from Italy, Greece and
Australia were identified. The samples from Italy and
Greece shared the same ribotype, whereas the Australian
ribotype was different in 13 sites of the sequence. Six
different ribotypes from Iran and China were present among
eight sequences of S. irregularis Attaran-Fariman & Bolch
(Attaran-Fariman and Bolch 2007). There were a total of 63
and 76 mutational steps between the three species, respec-
tively. Thirteen strains of the morphospecies S. lachrymosa
(LAC clade) from China, Canada, Norway, Portugal,
Scotland, Greece and Germany were included, whereas a
total of 47 mutational steps were found between the six
distinct ribotypes. Three of the six ribotypes were found in
samples from Norwegian coastal waters, and two different
ribotypes in samples from the Shetland Islands, Scotland.
From the recent Mediterranean samples, eight different
ribotypes were assigned to the STR-SC. All available
sequences clustering within the three distinct clades of the
STR-SC (i.e. STR1, STR2 and STR3) were included in the
analysis and the clades were each analysed separately. In the
STR1 clade, four groups of nine different ribotypes in total
were identified (seven newly sequenced strains from Italy
and Greece were included in the analysis). In the STR2
clade (including the true S. trochoidea), five different ribo-
types with a total of 14 mutational steps were found.

@ Springer

Sequences of “C.” levantinum and related taxa belonging
to the STR3 clade comprised 22 different ribotypes from
strains sampled worldwide. Six of these ribotypes were
assigned to “Calciodinellum”, 12 mutational steps apart
from S. trochoidea-like sequences. The remaining 18 ribo-
types, with up to 51 mutational steps in between, showed the
morphology of S. trochoidea, which was divisible into
roughly seven ribotype groups.

Discussion

In recent years, much effort has been devoted to the documen-
tation of marine biodiversity (Beaugrand et al. 2010; Tittensor
et al. 2010; Williams et al. 2010; http://www.coml.org); how-
ever, exact species numbers and correct scientific names are
still needed for many marine organisms. This is particularly true
for such unicellular life forms as the (calcareous) dinophytes,
which have importance for the reconstruction of ancient circu-
lation and productivity of the world’s oceans and thus provide
basic data for the impact of the global climate change as paleo-
environmental tools (Zonneveld et al. 1999; Esper et al. 2004;
Meier et al. 2004; Vink 2004). Extant calcareous dinophytes
have been collected frequently in pelagic environments during
field trips using scientific research vessels, and relatively few
studies have examined samples from coastal waters (Montresor
et al. 1998; Godhe et al. 2001; Gottschling and Kirsch 2009).
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Fig. 2 a-1. Morphological
diversity of calcareous
dinophytes as found in the
Mediterranean Sea, strain
number is given, if no strain
number is available the
provenance is given (scanning
electron microscopy of coocoid
stage a-g, j and theca h, i and k,
I; all at the same scale) a
Scrippsiella trifida (GeoB 433);
b Calciperidinium
asymmetricum (Gallipoli,
Italy); ¢ Follisdinellum spec.
(Salerno, Italy); d—f coccoid
stages, morphotypes of
Scrippsiella trochoidea (GeoB
283, GeoB*185, GeoM 5137);
g Calcicarpinum bivalvum
(Salerno, Italy); h small theca of
Calcicarpinum bivalvum (GeoB
230); i small theca of
Scrippsiella trifida (GeoB 401);
j Calciodinellum spec.
(Salerno, Italy); k small theca of
Scrippsiella trochoidea (GeoB
376); 1 mid-sized theca of
Scrippsiella trochoidea
(GeoB*185)

The sediment-collecting tool described in Gottschling
and Kirsch (2009) has enabled us to collect many samples
within a short period of time. When compared to other
oceans, the Mediterranean Sea is rather well sampled and
investigated in terms of biodiversity assessment. The Gulf
of Naples has been a primary research area for calcareous
dinophytes, whereas other parts of the Mediterranean Sea,
such as Greek coastal sites, have scarcely been sampled so
far. We have identified morphologically 17 species of the

Thoracosphaeraceae (Table S1), representing about two-
thirds of the species known from the Mediterranean Sea,
where approximately 27 morphospecies are distinguished
currently (Montresor et al. 1998; Meier et al. 2002; Gémez
2003; Satta et al. 2010; Zinssmeister et al. 2011).
Nevertheless, species diversity in the Mediterranean Sea
appears much higher in comparison to other marine environ-
ments such as the North Sea, from which fewer than ten
morphospecies of calcareous dinophytes have been

@ Springer
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3 42 D4 Scotland 18 GeoB*362 North Sea
42 E5 Scotland GeoB 311 Sweden
4 1025-01 Portugal GeoB 283 Norway
GeoB 285 Norway 19 GeoB 430 Gallipoli, Italy
SoP Germany 20 GeoB 457 Kalamata, Greece
GeoB 465 Platamonas, Greece 21 SZN 91 Neapel, Italy
42 G12 Scotland 1008B Florida, USA
5 GeoB 451Kyllini, Greece 1008C Florida, USA
6 GeoB*253 Norway 22 SZN 64, Neapel, Italy

Fig. 3 Molecular diversity of ITS ribotypes within different clades of the GenBank accession numbers of used sequence data are listed in Table
Thoracosphaeracea (created with TCS). Number of similar ribotypes S1. LAC Clade including Scrippsiella lachrymosa, PRE clade includung
indicated by circle size, presumable cryptic species indicated by dashed S. precaria, S. ramonii and S. irregularis, STR1, STR2 and STR3 are
grey line, newly added sequences from the Mediterranean Sea indicated major assemblages of the S. trochoidea species complex

in bold. The different morphospecies are colour-coded (see legend).
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documented so far (Persson et al. 2000; Godhe et al. 2001;
Gottschling and Kirsch 2009). The species found in the sam-
ples from Italy, Greece and Crete comprise not only frequently
encountered members of the Thoracopshaeraceae (including S.
trochoidea), but also a number of taxa such as Calciperidinium
and Follisdinellum that are known primarily from the fossil
record, and which have been documented from recent sedi-
ments only rarely (Montresor et al. 1998; Tommasa et al. 2004).
Unfortunately, it was not possible to establish strains until now,
and it remains to be determined whether sampling at alternative
dates during the course of a year could solve this problem.

Our ribotype networks show clearly distinct classes of
sequence similarity within the clades PRE, LAC, STRI,
STR2, and STR3. This supports the assumption that such
clades represent more than a single reproductive unit (i.e.
biological species). The STR3 clade in particular might have
relavence to assess the minimal absolute number of species,
since it includes morphologically and ecologically distinct
forms (Meier and Willems 2003; Gottschling et al. 2005b;
Meier et al. 2007): Scrippsiella trochoidea is characterised
by benthic coccoid cells developing numerous spines, while
“C.” levantinum is a pelagic species with smooth coccoid
stages; both are doubtlessly isolated from another reproduc-
tively. Under the assumption that “C.” levantinum repre-
sents a single species, seven additional, molecularly
distinct groups of ribotypes (all of which corresponding
morphologically to S. trochoidea-like species) can be esti-
mated for the STR3 clade. The same approach leads to the
differentiation of four species in the STR1 clade, two spe-
cies in the STR2 clade (including the true S. frochoidea:
Zinssmeister et al. 2011), and four S. lachrymosa-like spe-
cies as minimal numbers. In total, the six morphospecies
included in the four TCS network analyses might segregate
into the considerably high number of 21 species circum-
scribed molecularly, but crossing experiments using mono-
clonal strains are needed to verify the status of isolated
reproductive units.

Especially in unicellular organisms such as (calcareous)
dinophytes, species determination based on morphology is
highly time- and cost-consuming and frequently subject to
error. Moreover, morphologically plasticity (Zinssmeister et
al. 2011) and cryptic species (Montresor et al. 2003;
Gottschling and Kirsch 2009; Gottschling et al. 2005b)
necessitate rapid and accurate tools for the reliable identifi-
cation of species.

DNA barcoding (Hebert et al. 2003; Tautz et al. 2003;
http://www.barcodinglife.com) has become a comparatively
reasonable and fast methodology for determination of spe-
cies, including animals (Hebert et al. 2003, 2004; Ward et al.
2005), plants (Kress et al. 2005; CBOL Plant Working
Group 2009) and fungi (Feau et al. 2009). For dinophytes,
the mitochondrial genes cytochrome b oxidase and cyto-
chrome oxidase I have been proposed as general barcoding

markers (Lin et al. 2009; Stern et al. 2010). However,
resolution down to species level has not been satisfactory.
Such loci might instead be useful for taxonomically broad
investigations. As in fungi (Horton and Bruns 2001) the
nuclear ITS has been recommended repeatly as an appropri-
ate barcoding region for dinophytes at the species level
(Gottschling et al. 2005b; Litaker et al. 2007; Gottschling
and Kirsch 2009; Genovesi et al. 2011; Stern et al. 2012).
Moreover, enormous numbers of ITS sequences have been
accumulated in GenBank over the last decade, tendering for
taxonomic comparison.

Our own sequencing cfforts, with emphasis on the
Thoracosphaeraceae, have confirmed that the ribosomal
ITS region is suitable as a species-specific DNA barcode
(Table S1). We have identified ten described morphospe-
cies and one variety of calcareous dinophytes by se-
quence comparison. However, sequence data are
available only for 13 of the Thoracosphearaceae species
present in the Mediterranean Sea (D’Onofrio et al. 1999;
Montresor et al. 2003; Gottschling et al. 2005a; Penna et
al. 2010; Zinssmeister et al. 2011), and the completion of
our studies has importance also for future taxonomic
work. For example, S. precaria has been described from
the Gulf of Naples (Montresor and Zingone 1988), but
sequences of this species from the Mediterranean Sea
have been not published so far. The establishment of a
new strain collected close to the type locality and its
subsequent molecular characterisation as presented here
might contribute to disentangle the complex alpha-
taxonomy of calcareous dinophytes. Moreover, two new
Scrippsiella species have been described morphologically
and included in a molecular phylogeny (Zinssmeister
et al. in press).

In conclusion, there is no unambiguous criterion for
species delimitation in unicellular organisms such as the
dinophytes. Determination has been particularly chal-
lenging in calcareous dinophytes, since species such as
S. trochoidea show enormous genetic variation and dis-
tinct groupings, but are indistinguishable in gross mor-
phology (‘cryptic species’: Montresor et al. 2003;
Gottschling et al. 2005b; Gottschling and Kirsch
2009). Occasionally, closely related species occur at
the same locality, as has been shown previously also
for different strains assigned to the calcareous morpho-
species S. lachrymosa (Gottschling and Kirsch 2009),
but also for other dinophytes such as Alexandrium tam-
arense (Lilly et al. 2007; Genovesi et al. 2011). If
closely related species really occur sympatrically, then
a driving force other than spatial isolation must be
ascertained for speciation in calcareous dinophytes.
More research is necessary to fully understand the di-
versification of calcareous dinophytes and the mecha-
nisms causing it.
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The phylogenetic relationships of the Dinophyceae (Alveolata) are not sufficiently resolved at present.
The Thoracosphaeraceae (Peridiniales) are the only group of the Alveolata that include members with
calcareous coccoid stages; this trait is considered apomorphic. Although the coccoid stage appar-
ently is not calcareous, Bysmatrum has been assigned to the Thoracosphaeraceae based on thecal
morphology. We tested the monophyly of the Thoracosphaeraceae using large sets of ribosomal RNA
sequence data of the Alveolata including the Dinophyceae. Phylogenetic analyses were performed
using Maximum Likelihood and Bayesian approaches. The Thoracosphaeraceae were monophyletic,
but included also a number of non-calcareous dinophytes (such as Pentapharsodinium and Pfieste-
ria) and even parasites (such as Duboscquodinium and Tintinnophagus). Bysmatrum had an isolated
and uncertain phylogenetic position outside the Thoracosphaeraceae. The phylogenetic relationships
among calcareous dinophytes appear complex, and the assumption of the single origin of the poten-
tial to produce calcareous structures is challenged. The application of concatenated ribosomal RNA
sequence data may prove promising for phylogenetic reconstructions of the Dinophyceae in future.
© 2011 Elsevier GmbH. All rights reserved.
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Introduction

Genes and spacers of the ribosomal RNA (rRNA)
operon are among the most widely used genetic
loci to reconstruct the entire Tree of Life as well as
phylogenies of many particular organismal groups.
Among unicellular eukaryotic life forms, molecu-
lar phylogenies using different rRNA sequences
are particularly numerous among the alveolates,
including the Dinophyceae (Daugbjerg et al. 2000;
Gottschling et al. 2005a; John et al. 2003; Kremp
et al. 2005; Saldarriaga et al. 2004), with more than
2,000 extant species described. Being as well pri-
mary producers and predators in marine and fresh
water environments makes the Dinophyceae with
their impact on carbon fixation an important part of
the global aquatic ecosystem.

Dinophyceae exhibit many types of life style
and nutrition, beside the phototroph and mixotroph
forms. Some species are endosymbionts of marine
animals and protozoa and contribute to the for-
mation of coral reefs, while approximately 10%
of the known species are parasitic. Together with
the Ciliata and Apicomplexa (= Sporozoa), the
Dinophyceae belong to the Alveolata and are a
well-supported monophyletic group based on both
molecular data and many apomorphies. Compared
to all other eukaryotes, the genome of the Dino-
phyceae is highly unusual with respect to structure
and regulation (reviewed by Moreno Diaz de la
Espina et al. 2005). The nucleus contains chromo-
somes that are permanently condensed throughout
the cell cycle except during DNA replication (Dodge
1966), displaying a liquid crystalline state (Rill et al.
1989). Morphologically, the Dinophyceae exhibit
unique traits such as the coiled transverse flagel-
lum associated with a transverse groove termed the
‘cingulum’ (Fensome et al. 1999; Harper et al. 2005;
Leander and Keeling 2004; Rizzo 2003; Taylor
1980).

Using molecular data, the phylogeny of the
Dinophyceae is difficult to reconstruct because of
multiple endosymbiosis events, lateral gene trans-
fers, and divergent substitution rates (Bhattacharya
and Nosenko 2008; Howe et al. 2008; Minge et al.
2010; Moore et al. 2008; Morden and Sherwood
2002; Saldarriaga et al. 2004; Shalchian-Tabrizi
et al. 2006; Yoon et al. 2005). A considerable
fraction of published Dinophyceae molecular
phylogenies relies exclusively on sequences of
the small subunit rRNA (SSU; app. 1,800bp
in length), although the power of this locus for
evolutionary reconstructions is limited (Taylor
2004). Phylogenetic trees as inferred from nuclear
ribosomal sequences show polytomies in many

crucial nodes, and the application of additional
genetic markers is therefore highly recommended.
Multi-gene approaches (Hoppenrath and Leander
2010; Yoon et al. 2005; Zhang et al. 2007, 2008),
comprising sequences not only from the nucleus
but also from mitochondria and chloroplasts,
provide somewhat better resolution, and this is
promising for future studies of phylogeny.

The branch lengths in the phylogenetic trees
of the Dinophyceae are highly unbalanced. Many
sequences of groups such as the Peridiniales ren-
derrather short branches, while some Dinophyceae
including Nocticula and Oxyrrhis have very long
branches and an unresolved phylogenetic position.
Moreover, only few groups such as the Gonyaula-
cales, Suessiales, and Dinophysiales constitute
monophyletic groups in molecular trees, while
other traditional taxonomic units including the Peri-
diniales and Gymnodiniales appear highly para-
and polyphyletic (Kremp et al. 2005; Saldarriaga
et al. 2004; Zhang et al. 2007). The Thoracosphae-
raceae (Peridiniales) include all Dinophyceae that
produce calcareous coccoid stages during their
development (important taxa are Calcicarpinum,
Scrippsiella, and Thoracosphaera) as well as
some (presumably secondarily) non-calcareous
relatives such as Pentapharsodinium and Pfies-
teria (Elbrachter et al. 2008). The monophyly of
the Thoracosphaeraceae has not been shown
in all previous phylogenetic studies, but this
might be primarily because of the generally poor
resolution of molecular trees in the Dinophyceae.
They appear, however, to constitute a natural group
in some studies, despite either limited molecular
data (only sequences of the Internal Transcribed
Spacer, ITS: Gottschling et al. 2005a) and/or a lim-
ited taxon sample (Tillmann et al. 2009; Zhang
et al. 2007). The hypothesis that the Thora-
cosphaeraceae are monophyletic remains thus to
be rigorously tested.

Currently comprising five species, Bysmatrum
has been previously assigned to the Thora-
cosphaeraceae based on thecal morphology. The
name has been introduced for benthic scrippsiel-
loid algae (Faust and Steidinger 1998), since most
of the motile stages of Scrippsiella share planktonic
life forms. Moreover, both taxa differ in their mor-
phologies: In Bysmatrum, plate 3’ separates the
intercalary plates 2a and 3a and has a variously ver-
miculate to reticulate theca (Faust and Steidinger
1998; Murray et al. 2006; Ten-Hage et al. 2001).
In contrast, plates 2a and 3a do always contact
in Scrippsiella, and the theca is smooth without
any ornamental structures (D’Onofrio et al. 1999;
Gottschling et al. 2005b; Montresor et al. 2003).
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Figure 1. Bysmatrum had a peridinean tabulation pattern. Scanning electron microscope (SEM; Fig. 1A-C)
and light microscope images (Fig. 1D) of Bysmatrum. A: Ventral view of epitheca, cingulum, and parts of
hypotheca and sulcal region. B: Dorsal view of the thecate cell, the intercalary plates 2a and 3a were separated
by plates 3’ and 4”. C: Detail of the sulcal region with 4 sulcal plates and well developed lists (Sdl and Ssl) at the
plates Sd and 1”’. D: Non-calcified coccoid stage (without scale bar, image taken at x400). Abbreviations: nC,
cingular plates; fp, flagellar pore (anterior or posterior flagellar pore); n’, apical plates; n”, precingular plates;
n”, postcingular plates; n”, antapical plates; na, anterior intercalary plates; P,, apical pore plate; Sa, apical
sulcal plate; Sd, right sulcal plate; Sdl, right sulcal list at plate Sd; Sp, posterior sulcal plate; Ss, left sulcal plate;
Ssil, left sulcal list at plate 1”; x, channel plate.
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In this study, we test the hypothesis whether
the Thoracosphaeraceae are monophyletic and
intend to determine the phylogenetic position of
Bysmatrum subsalsum, the type of Bysmatrum. To
address both reliably, large molecular data sets are
necessary, and we use sequences comprising the
complete SSU, the 5.8S rRNA (including the ITSs),
and partial sequences of the large rRNA subunit
(LSU). We therefore investigate the largest taxon
sample possible at present, including —to the best of
our knowledge-— all available Alveolata sequences
spanning this genetic region. We thus also aim at a
better internal resolution of Dinophyceae molecular
trees as a backbone for future phylogenetic studies.

Results

Morphology

Bysmatrum subsalsum exhibited photosynthetic,
armored, pentagonal through round thecate cells,
21-45pm long and 23-47 um wide (Fig. 1A-B).
The colour was golden-brown, and red-orange
accumulation bodies were present in larger thecate
cells. The epitheca had a hemispherical shape,
and the hypotheca was round through pentago-
nal, showing an emargination of the sulcus together
with the antapical plates. The cingulum was wide
and deep. The plate ornamentation was generally
reticulate, the plates Sd and 1"’ were reticulate and
striate, and the cingulum was transversely striate.
Thecal plate morphology of B. subsalsum
(Fig. 1A—C) corresponded to the typical peridinean
pattern, consisting of 7 precingular plates, 4 sulcal
plates, 5 postcingular plates, and 2 antapical plates
(specific Kofoid formula: Py, ACP, X, 4, 3a, 7", 6c¢,
4s,5”,2"). All major plates had more or less the
same size, and the anterior intercalary plates 2a
and 3a were separated from each other by the api-
cal plates 3’ and 4”. The shape of plate 1a was
pentagonal, of plate 2a hexagonal, and of plate
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3a pentagonal. The apical plate 1’ was asymmetric
and pentagonal. It connected the canal plate X and
the anterior sulcal plate (Sa). Plate 1’ was displaced
to the right side between the apex and the sulcus
and did not contact both in a direct line. The api-
cal closing plate was located within the pore plate
and delineated the plasma from the surrounding
medium. There were four emarginated sulcal plates
(Fig. 1C). The right sulcal plate (Sd) had an exten-
sive list and almost covered the flagellar pore. Plate
1" also showed a list antapically.

The coccoid stage of B. subsalsum (Fig. 1D)
was not calcified, and cells were spherical through
ovoid, 41-51 um in diamater. The colour was
golden-brown, and a red-orange accumulation
body was present.

Molecular Phylogenies

Tree topologies derived from the Alveolata align-
ments (Figs S1-S2, S4 in the Supplementary Mate-
rial) were largely congruent, independently whether
the Bayesian or the ML algorithm was applied.
Many nodes showed high if not maximal statisti-
cal support values (LBS: ML support values; BPP:
Bayesian posterior probabilities). Using the Ciliata
as monophyletic outgroup, members of the Api-
complexa were paraphyletic, consisting of three
lineages (Fig. S1 in the Supplementary Material):
Cryptosporidium (100LBS, 1.00BPP), Perkinsus
including an unspecified marine alveolate (99LBS,
1.00BPP), and a third large and diverse main clade
(1.00BPP). Cryptosporidium was the sister group
of all other Apicomplexa+Dinophyceae (although
support below 50LBS and .90BPP, respectively) as
well as Perkinsus of the Dinophyceae (100 LBS,
1.00BPP). The Dinophyceae were monophyletic
(100LBS, 1.00BPP) and segregated in a number
of lineages. One of these lineages were the Tho-
racosphaeraceae (including the important species
of Calcicarpinum, Scrippsiella, Thoracosphaera,
and Pfiesteria; 90LBS, .99BPP). Bysmatrum had a

Figure 2. The Thoracosphaeraceae were monophyletic and included both calcareous and non-calcareous
forms. Maximum likelihood (ML) tree (—In = 87,808) of 113 members of the Dinophyceae (including five
new sequences of the Thoracosphaeraceae plus Bysmatrum) as inferred from a MUSCLE generated rRNA
nucleotide alignment spanning the complete SSU, ITS region, and LSU domains 1 through 2 (2,286 parsimony-
informative positions). Major clades are indicated; members of the Thoracophaeraceae with known calcareous
coccoid stages are highlighted by bold branches. Branch lengths are drawn to scale, with the scale bar indicat-
ing the number of nt substitutions per site. Numbers on branches are statistical support values to clusters on the
right of them (above: ML bootstrap support values, values under 50 are not shown; below: Bayesian posterior
probabilities, values under .90 are not shown); maximal support values are indicated by asterisks. The tree is
rooted with five sequences of the Apicomplexa. Abbreviations: API1, API3: different clades of Apicomplexa;
DIN: Dinophysiales; GON: Gonyaulacales; GYM1, GYM2: different clades of Gymnodiniales; PRO1, PRO2:
different clades of Prorocentrales; SUE: Suessiales; THO: Thoracosphaeraceae.
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phylogenetic position outside the Thoracosphaer-
aceae and exhibited a close relationship on a long
branch to the Gonyaulacales (.98BPP).

Tree topologies derived from the Dinophyceae
alignment (Fig. 2 and Figs S3, S5-S6 in the Sup-
plementary Material) were also largely congruent,
independently whether the Bayesian or the ML
algorithm was applied. Many nodes exhibited
high support values, but the phylogenetic back-
bone and the basal nodes were only weakly
resolved. The Dinophyceae were monophyletic
(Fig. 2; 100LBS, 1.00BPP), and the Dinophysiales
(100LBS, 1.00BPP) and Gonyaulacales (100LBS,
1.00BPP) corresponded to established systematic
units among their major lineages. Several other
clades and lineages of the Gymnodiniales and
Prorocentrales, however, did not constitute mono-
phyletic groups. The Peridiniales were likewise
not monophyletic, and the monophyly of the
Thoracophaeraceae (69LBS) was not as clearly
supported as inferred from the Alveolata alignment.
Internally, the Thoracosphaeraceae segregated
into three lineages, namely the E/Pe-clade (marine
and possibly also freshwater environments), the
T/Pf-clade (71LBS, .99BPP; marine, brackish,
and fresh water environments), and Scrippsiella
s.l. (50LBS; marine environments), whereas the
latter two clades showed a close relationship
(97LBS, 1.00BPP). Bysmatrum did not nest with
the Thoracosphaeraceae, and its closest relative
could not be determined reliably.

Species with calcareous coccoid stages known
did not constitute a monophyletic group and were
scattered throughout the three clades of the
Thoracosphaeraceae. In the E/Pe-clade, calcare-
ous Calcicarpinum bivalvum and non-calcareous
Pentapharsodinium aff. trachodium were closely
related (99LB, 1.00BPP) and constituted the sister
group of non-calcareous species assigned to Peri-
diniopsis. Non-calcareous and parasitic Dubosc-
quodinium was nested within calcareous Scripp-
siella, and together (100LBS, 1.00BPP) they con-
stituted the sister group of non-calcareous and par-
asitic Tintinnophagus. Finally, the non-calcareous
pfiesterians (i.e., Cryptoperidiniopsis, Luciella,
Pfiesteria, and “Stoeckeria”) plus “Peridinium’ aci-
culifera and “Scrippsiella’ hangoei constituted the
sister group (88LBS, 1.00BPP) of calcareous Tho-
racosphaera in the T/Pf-clade (71LBS, .99BPP).

Discussion

Despite the extensive comparison of rRNA
sequences, the phylogenetic relationships of the

Dinophyceae are not sufficiently resolved at
present. Several strategies have been pursued to
overcome this problem. The consideration of addi-
tional loci such as nuclear and mitochondrial coding
genes in concatenated phylogenetic analyses
has improved the resolution of molecular trees in
the Dinophyceae (Hoppenrath and Leander 2010;
Zhang et al. 2007, 2008), but the taxon sampling
as well as the amount of genetic information is
currently still limited. Moreover, chloroplast genes
have been sequenced to infer the phylogenetic rela-
tionships, with unsatisfying results mainly caused
by multiple endosymbiosis events in the Dino-
phyceae (Bhattacharya and Nosenko 2008; Howe
et al. 2008; Minge et al. 2010). Another strategy
to improve molecular trees is the compilation of
the comprehensive rRNA sequence data presently
available. A number of particular strains have been
independently sequenced for the SSU, the ITS
region, and / or the LSU, but they have not been
brought together in a concatenated alignment yet.
In this study, we have compiled all rRNA sequences
of the Alveolata that span the entire SSU, the ITS
region, and the first three domains of the LSU to
explore the utility of this commonly used marker in
phylogenetic studies. We thus present data matri-
ces with more informative sites than any previous
phylogenetic analysis of the Dinophyceae.

To test the monophyly of the Thoracosphaer-
aceae based on large molecular data sets has
been one major goal of this study, and our
results confirm and improve previous trees of
calcareous dinophytes with smaller amounts of
sequence data (Gottschling et al. 2005a) and /
or a limited taxon sample (Tillmann et al. 2009;
Zhang et al. 2007). The assumption that the
Thoracosphaerales (i.e., Thoracosphaera) and the
Calciodinelloideae (i.e., Scrippsiella and relatives)
have to be assigned to different taxonomic units
(Fensome et al. 1993; Tangen et al. 1982), implying
that they are not closely related, is clearly rejected
by the data presented here. The monophyly of the
Thoracosphaeraceae remains, however, somewhat
ambiguous, since the support is only moder-
ate as inferred from the alignment comprising
more diverse but shorter rRNA sequences. This
is particularly because of the weak association
of the E/Pe-clade (with calcareous Calcicarpinum
bivalvum) to the other calcareous dinophytes.
Species currently assigned to Peridiniopsis might
also belong to this clade as it has been assumed
previously based on morphology, but the extant
diversity of the E/Pe-clade is otherwise highly frag-
mentarily investigated at present (Elbrachter et
al. 2008). It remains to be determined whether



an improved taxon sampling and future molecular
studies will better enlighten the precise relation-
ships of and within the E/Pe-clade. The vast
majority of the Thoracosphaeraceae (i.e., Scripp-
siella s.I. and the T/Pf-clade), however, clearly
constitute a monophyletic group. The acceptance
of the Pfiesteriaceae as a distinct systematic unit
(Steidinger et al. 1996) would, anyhow, leave
the remainders of the Thoracosphaeraceae para-
phyletic.

Within the impressive diversity of the Alveolata,
the potential to produce calcareous structures
is restricted to (i.e., has been considered apo-
morphic for) the Thoracosphaeraceae, arguing
for the monophyly of this group (Janofske 1992;
Kohring et al. 2005; Wall and Dale 1968). Previous
molecular studies have revealed, however, that
a number of species with no calcareous coccoid
stages known (i.e., primarily Pfiesteria and its
relatives) are nested within the Thoracosphaer-
aceae (Gottschling et al. 2005a; Kremp et al.
2005; Tillmann et al. 2009; Zhang et al. 2007).
From an evolutionary perspective, the close
relationships between scrippsielloid algae and the
parasites Duboscquodinium and Tintinnophagus
(Coats et al. 2010) are now particularly surprising.
The assumption that the potential to produce
calcareous structures has arisen only once in the
Dinophyceae is therefore challenged by the phy-
logenetic results presented here as well as by the
recent observation of different calcification modes
during encystment of such algae (Meier et al. 2007).
It is also possible, however, that the relationships
within the Thoracosphaeraceae appear still com-
plex because of our limited knowledge about the
diversity of developmental stages among (calca-
reous) dinophytes. More research is necessary to
validate, for example, that a parasitic life style is
integral part of the development of (calcareous)
Calcicarpinum bivalvum (= “Pentapharsodinium”
tyrrhenicum: Smith et al. 2007).

Another goal of our study has been the deter-
mination of the systematic position of Bysmatrum.
The thecal plate arrangements of the strain under
investigation is consistent with previous descrip-
tions (Faust and Steidinger 1998; Murray et al.
2006; Steidinger and Balech 1977) and correspond
to the typical peridinean pattern (Fensome et al.
1993; Taylor 1980). As inferred from the molecular
trees, Bysmatrum does most probably not belong
to the Thoracosphaeraceae as previously assumed
(Steidinger and Balech 1977), but must be con-
sidered an unusual member of the Dinophyceae
of uncertain systematic placement at present, pre-
sumably close to the Gonyaulacales. Our results
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support the assumption that the peridinean plate
pattern is widespread and present in different lin-
eages of the Dinophyceae (Taylor 2004). Therefore,
it cannot be considered an apomorphic trait of the
Peridiniales that seem to be a paraphyletic group,
from which other lineages of the Dinophyceae have
been probably derived.

The monophyly of some established systematic
units such as the Dinophysiales and the Gonyaula-
cales are clearly supported by the molecular data
presented here. The repeatedly shown molecu-
lar polyphyly of the Prorocentrales in rRNA trees
(Grzebyk et al. 1998; Hoppenrath and Leander
2008), however, remains a mystery, since the group
is clearly monophyletic based on morphological
apomorphic traits such as a cluster of very small
platelets around two pores and the lack of a gir-
dle and sulcus. A multi-gene approach as well as
a cox1 phylogeny render the Prorocentrales mono-
phyletic (Murray et al. 2009; Zhang et al. 2007), and
the polyphyly of the Prorocentrales in rRNA trees
has been explained by intrinsic inadequacies of the
molecules used to resolve the phylogeny (Taylor
2004). In our molecular tree of the Alveolata, two
unequal copies of rRNA genes, present on differ-
ent chromosomes of Plasmodium vivax of the same
individuals, illustrate this problem. Intragenomic
polymorphisms of ribosomal genes have been
identified in various eukaryotic lineages (Griffiths-
Jones 2007; Le Blancq et al. 1997; Simon and Weif3
2008; Thornhill et al. 2007; Torres-Machorro et al.
2010), with putatively fatal implications for recon-
structions of phylogenetic relationships. Thus, the
consideration of non-orthologous sequences might
explain the molecular polyphyly of the Prorocen-
trales, and it remains an open question, how many
rBNA sequences are additionally affected in the
Dinophyceae.

In conclusion, the application of long rRNA
sequences helps to test hypotheses on rela-
tionships in the Dinophyceae more rigorously.
Bysmatrum clearly belongs to the Dinophyceae
(although the precise systematic placement cannot
be determined at present), and the Thora-
cosphaeraceae including both calcareous and
non-calcareous forms most probably constitute
a monophyletic group. From a morphological
perspective, putatively close relatives of the Thora-
cosphaeraceae such as some freshwater species
of Peridinium (but not the type species P cinc-
tum: Calado et al. 2009; Gottschling et al. 2005a;
Logares et al. 2007) and the heterotrophic Pro-
toperidinium (Elbrachter et al. 2008) should be
included in future molecular studies using long
rBNA sequences. The phylogenetic trees provided
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in this study may prove helpful to revise the sys-
tematics of the Dinophyceae in general and of the
Peridiniales in particular. Sequences from genes
and spacers of the rRNA operon are available from
less than 25% of the currently described taxa of
the Dinophyceae at the generic level, and more
research is necessary to improve the knowledge
about their systematics and phylogenetic relation-
ships.

Methods

Light and electron microscopy: Bysmatrum subsalsum was
collected in Greece (Supplementary Material Table S1) and is
currently cultivated at the universities of Thessaloniki (Depart-
ment of Botany, School of Biology), Bremen (Historical Geology
and Paleontology department), and Munich (Systematic Botany
and Mycology department of the LMU). It grows in sterile fil-
trated K-Medium, specifically in 35%. artificial seawater (hw
marinemix professional, Wiegandt, Krefeld, Germany) without
silicate (Keller et al. 1987) at pH 8.0-8.2, and is stored in a Per-
cival I-36VL climate chamber (CLF PlantClimatics, Emersacker,
Germany) at 23°C, 80 umol photons m? s, and 12:12-h
light:dark photoperiod. Cells were observed in a CKX41 inverse
microscope (Olympus, Hamburg, Germany).

For scanning electron microscope (SEM) studies, cells were
fixed with 2,5% glutaraldehyde (Plano, Wetzler, Germany) in
0.2 M cacodylate buffer (Roth, Karlsruhe, Germany), with 0.4 M
NaCl (Roth), pH 8.0 for 1 h, transferred in a Swinnex filter holder
(Schubert & Weiss Omnilab, Miinchen, Germany) equipped
with a polycarbonate membrane with 5 um pores. Liquids were
changed with a plastic syringe connected to the filter holder.
The cells were washed in 75mM cacodylate buffer (Roth),
2mM MgCl, (Roth), 0.4 M NaCl (Roth), pH 8.0 and distillated
water, dehydrated in a graded acetone p.a. series (Roth), and
critical point dried. The filters were placed on SEM stubs,
and samples were sputter-coated with platinum and docu-
mented with a LEO 438 VP SEM. The Kofoid system (Fensome
et al. 1993; Taylor 1980) was used for thecal plate designa-
tion.

Molecular work and phylogenetic analyses: Sequences
of those Alveolata that comprised the SSU, 5.8S rRNA (includ-
ing the ITSs), and the first three domains of the LSU were
downloaded from GenBank. Fresh material (clonal cultures,
mostly cultivated at the University of Bremen, Germany) was
used for sequencing of five species of the Thoracosphaeraceae
plus Bysmatrum. To exclude the possibility of contaminations,
DNA isolation and sequencing were independently performed
in the labs of MG, UJ, JP, and MS, following standard protocols
that are described in detail in Gottschling and Plétner (2004).
The specific primers for amplification used in this study are
listed in Table S2. In total, 160 terminal taxa were investigated
in this study (Table S1).

The consideration particularly of the highly divergent ITS
sequences over a broad taxonomic range such as the dino-
phytes should be treated with caution, and we explored the
possible negative effects for our phylogenetic reconstructions
by RY-coding, excluding phylogenetically ambiguous positions,
using different alignment programs, and applying an infinite mix-
ture model to the data (see the Supplementary Materials for
details). For the main part of our study, sequences of two differ-
ent taxon samples were aligned using ‘MUSCLE’ v3.6 (Edgar

2004; http://www.drive5.com/MUSCLE/downloads.htm), with
the default settings: The first taxon sample included all
sequences of the Alveolata available comprising the complete
SSU, the complete ITS region (including the 5.8S rRNA), and
the first three domains of the LSU; the other data matrix used
shorter LSU sequences in order to include a broader taxon sam-
ple of the Dinophyceae. The alignments were partitioned into
three parts (for details see Tables S3-S4 in the Supplemen-
tary Material, and all final data matrices are available under
doi:10.5061/dryad.d1vg6é or from MG upon request).

Phylogenetic analyses were run using distinct models /
data partitions, with individual per partition branch length
optimisation. Calculations were carried out by using the
resources of the Leibniz Rechenzentrum (LRZ, Munich;
linux cluster HLRB-Il) and of the SGI system (Zuse Insti-
tute Berlin, ZIB) being one half of the North German High
Performance Computer (HLRN). Maximum Likelihood-based
analyses were conducted using the PTHREADS version
of ‘RAXML VII (Stamatakis 2006; Stamatakis et al. 2008;
http://www.phylo.org/portal/Home.do) and applying the GTR
substitution matrix. To determine best fitted ML-trees, we
executed 10-tree searches from distinct random stepwise addi-
tion sequence Maximum Parsimony starting trees and 10,000
non-parametric bootstrap replicates. Bayesian analyses were
performed with ‘MrBayes’ v3.1.2 (Huelsenbeck and Ronquist
2001; http://www.mrbayes.csit.fsu.edu/) under the GTR+TI" sub-
stitution model using the random-addition-sequence method
with 10 replicates. We ran two independent analyses of
four chains (one cold and three heated) with 20,000,000
cycles, sampled every 1,000th cycle, with an appropriate burn-
in (10%) as inferred from the evaluation of the trace files
using Tracer v1.5 (http://tree.bio.ed.ac.uk/software/tracer/). The
statistical support values were drawn on the best scoring
ML-trees.
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EXTENDED MATERIALS AND METHODS

The data matrices could not be processed manually because of high sequence variation
(particularly of the ITS regions), and we examined the effects of different alignment programs
on the phylogenetic reconstructions. Sequences of the two different taxon samples
(Alveolata, Dinophyceae) were aligned using ‘MAFFT’ v6.523 (Katoh et al. 2005;
http://align.bmr.kyushu-u.ac.jp/MAFFT/software/), =~ ‘MUSCLE’ v3.6 (Edgar 2004;
http://www.drive5.com/MUSCLE/downloads.htm), and ‘PRANK’ v100311 (Loytynoja and
Goldman 2008; http://www.ebi.ac.uk/goldman-srv/PRANK/src/PRANKY/), each with the
default settings. Moreover, MAFFT provides an additional alignment approach that considers
the secondary structure of the rRNA molecules, and we computed a fourth alignment using
the ‘QINSI’ option. For all resulting alignments, jModelTest (Posada 2008;
http://darwin.uvigo.es/software/jmodeltest.html) was applied (excluding the option for
‘proportion of invariable sites’ to avoid over-parametrisation), and the AIC criterion was used
to determine the best-fitting model (that was consistently the GTR+I" as also implemented in

RAXML, our preference software program for phylogenetic analyses).

We estimated whether a compositional bias was present in our data sets using the chi-square
test implemented in PAUP* v4.0b10 (Swofford 2002). Since sequence homogeneity was
rejected for both taxon samples (p < 0.05), we transferred the alignments to RY-coded data
matrices (Phillips & Penny 2003). Subsequently, only transversions were considered in those
phylogenetic analyses, and potential GC-biases were removed, decreasing the potential for
systematic error. Reducing the level of heterogeneity was also done by removal of a fraction
of fast evolving characters using the software program ‘Gblocks’ v0.91b (Castresana 2002;
http://molevol.cmima.csic.es/castresana/Gblocks.html).  Different block parameter settings
were applied: All gap positions were excluded if no gaps were allowed and if at least half of
the sequences had gaps, respectively. The minimum length of the nucleotide blocks after gap

exclusion was set to five and ten, respectively. Otherwise, the default settings were used.

As described in the main text of the study, all phylogenetic analyses were performed using
‘RAXML’ VII (Stamatakis 2006; Stamatakis et al. 2008;
http://www.phylo.org/portal/Home.do) and ‘MrBayes’ v3.1.2 (Huelsenbeck and Ronquist
2001; http://www.mrbayes.csit.fsu.edu/) as standard software programs. To explore more
complex models than GTR+I", we applied PhyloBayes (Lartillot et al. 2009) using the ‘qgqmm’
option (i.e., without partition of the data). We run four independent chains of 2,500 cycles,
compared the chains, checked for convergence, and used an appropriate burn-in (20%). All
final data matrices and trees are available under doi:10.5061/dryad.d1vg6 or from MG upon

request.
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EXTENDED RESULTS AND DISCUSSION
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Figure S1: Bysmatrum showed a distant relationship to the otherwise monophyletic
Thoracosphaeraceae in the Alveolata data set. Maximum likelihood (ML) tree (—In = 93,419)
of 88 members of the Alveolata (including five new sequences of the Thoracosphaeraceae plus
Bysmatrum) as inferred from a MUSCLE generated rRNA nucleotide alignment spanning the
complete SSU, ITS region, and LSU domains 1 through 3 (3,238 parsimony-informative
positions). Clades with relevance for this study are indicated, and members of the
Thoracosphaeraceae with known calcareous coccoid stages are highlighted by bold branches.
Branch lengths are drawn to scale, with the scale bar indicating the number of nt substitutions per
site. Numbers on branches are statistical support values to clusters on the right of them (above:
ML bootstrap support values, values under 50 are not shown; below: Bayesian posterior
probabilities, values under .90 are not shown), and maximal support values are indicated by
asterisks. The tree is rooted with the members of the Ciliata. Abbreviations: API1, API2, API3:
different clades of Apicomplexa; CIL: Ciliata; DIN: Dinophyceae.
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The trees derived from RY-coded sequences (Figs. S2-S3 as examples from the MUSCLE
alignment) were largely congruent to those obtained in the analyses using sequences with four
character states (Figs 1 in the main text, S1). The decrease of bootstrap support values for the
monophyly of the Thoracosphaeraceae, and the slightly differing internal topologies, can be
explained by a reduction of informative sites in the data sets (3,238—2,604 in the Alveolata
alignment and 2,286—1,825 in the Dinophyceae alignment, both constructed by MUSCLE).
Likewise, the systematic position of Bysmatrum remained basically unresolved as in the trees
inferred from sequences with four character states. Thus, RY-coding of the rRNA sequences
under investigation here does not lead to conflicting tree topologies, and the impact of

sequence heterogeneity can be considered rather minor for the phylogenetic reconstructions.

The different alignment approaches yielded data matrices of greatly different lengths (Tab.
S3). Particularly, the PRANK alignments were more than twice as long as those generated by
MAFFT or MUSCLE. Moreover, different performances of PRANK rendered alignments of
different lengths (i.e., the results were not reproducible), but this was not observed for
MAFFT or MUSCLE. The amount of constant or uninformative positions, however, was
more or less proportional to the lengths of the alignments, leaving a comparable total number
of informative sites under the different approaches. All programs identified the principle
organization of the rRNA operon, consisting of SSU, ITS1, 5.8S rRNA, ITS2, and LSU. The
number of informative sites per terminal taxon was largely similar for the different partitions
of the Alveolata alignments, with the SSU exhibiting the fewest (ranging from 9.58 through
10.05) and the ITSs and the LSU the most informative sites (ranging from 9.32 through 15.20
and 12.24 through 13.83, respectively). In the Dinophyceae alignments, such numbers were
likewise similar, with the ITS region exhibiting the largest amounts of informative sites per

terminal taxon (ranging from 6.90 through 10.06).
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Figure S2: RY-coding did not affect tree topology with respect to the Thoracospaheraceae
derived from the Alveolata data set. RAXML tree (—In = 41,952) of 88 members of the
Alveolata (including five new sequences of the Thoracosphaeraceae plus Bysmatrum) as inferred
from a MUSCLE generated and RY-coded rRNA nucleotide alignment spanning the complete
SSU, ITS region, and LSU domains 1 through 3 (2,604 parsimony-informative positions). Branch
lengths are drawn to scale, with the scale bar indicating the number of nt substitutions per site.
Numbers on branches are statistical support values to clusters on the right of them (values under
50 are not shown), and maximal support values are indicated by asterisks. Note that the
Thoracosphaeraceae were monophyletic (although with lower support as in Fig. 2 in the main text:
90LBS—56LBS), and the systematic position of Bysmatrum remained unresolved (here: close to
Cochlodinium). Note, furthermore, that Cryptosporidium is closely related to the apicomplexan

main clade, which is more plausible than the topology shown in Figure S1.
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Figure S3: RY-coding did not affect tree topology with respect to the Thoracospaheraceae
derived from the Dinophyceae data set. RAXML tree (—In = 37,827) of 113 members of the
Dinophyceae (including five new sequences of the Thoracosphaeraceae plus Bysmatrum) as
inferred from a MUSCLE generated and RY-coded rRNA nucleotide alignment spanning the
complete SSU, ITS region, and LSU domains 1 through 2 (1,825 parsimony-informative
positions). Branch lengths are drawn to scale, with the scale bar indicating the number of nt
substitutions per site. Numbers on branches are statistical support values to clusters on the right of
them (values under 50 are not shown), and maximal support values are indicated by asterisks.
Note that the Thoracosphaeraceae were monophyletic (although with lower support as in Fig. 2 in
the main text: 69LBS—<50LBS), and the systematic position of Bysmatrum remained unresolved
(here: close to Cochlodinium). The close relationship, however, of Scrippsiella s.l. with the T/Pf-

clade was retrieved moderately supported (73LBS), as in Figure 2 in the main text.
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Tree topologies derived from the Alveolata and the Dinophyceae data matrices were largely
similar, independently of the alignment approach used and whether the Bayesian or the ML
algorithm was applied. The Thoracosphaeraceae (as retrieved in Figs 1 in the main text and
S1) were monophyletic in the majority of the analyses, partly with high bootstrap support. If
the Thoracosphaeraceae were not monophyletic (as inferred from, e.g., the MAFFT Alveolata
and PRANK Dinophyceae alignments), they were collapsed and did not show highly
supported alternative relationships as shown in Figures 1 in the main text and S1 (as examples
derived from the MUSCLE alignments). Missing retrieval of the Thoracosphaeraceae always
referred to the E/Pe-clade with calcareous Calcicarpinum bivalvum, while the close
relationship between Scrippsiella s.l. and the T/Pf-clade was supported in all analyses
(LBS<90, BPP<.95), independently of the alignment approach used and whether the Bayesian
or the ML algorithm was applied.

Applying the software program Gblocks to the data matrices (to reduce the number of
phylogenetically ambiguous alignment positions) did not lead to either better resolved trees in
general or to better supported nodes in particular. In the contrary, Bayesian posterior
probabilities as well as ML bootstrap support were frequently reduced in comparison to trees
using the complete rRNA sequences (compare Figs S4-S5 to Figs 1 in the main text and S1).
The decrease in support values can be explained by the decrease of informative sites in the
alignments (Tab. S4), indicating that the phylogenetic information implemented in rRNA
sequences is far from being saturated. The Thoracosphaeraceae (as retrieved in Figs 1 in the
main text and S1), however, were monophyletic in the majority of the analyses, partly with
high bootstrap support. If the Thoracosphaeraceae were not monophyletic (as inferred from,
e.g., the MAFFT alignments), they were collapsed and did not show highly supported
alternative relationships as shown in Figures S4-S5 (as examples derived from the MAFFT-
QINSI alignments). Missing retrieval of the Thoracosphaeraceae always referred to the E/Pe-
clade with calcareous Calcicarpinum bivalvum, while the close relationship between
Scrippsiella s.l. and the T/Pf-clade was supported in all analyses (LBS<90, BPP<.95),
independently of the alignment approach used and whether the Bayesian or the ML algorithm
was applied.
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Figure S4: Neither an alternative alignment approach nor Gblocks processing did affect tree
topology with respect to the Thoracospaheraceae derived from the Alveolata data set.
RAXML tree (-In = 59,499) of 88 members of the Alveolata (including five new sequences of the
Thoracosphaeraceae plus Bysmatrum) as inferred from a MAFFT-QINSI generated and Gblocks
processed rRNA nucleotide alignment spanning the complete SSU, ITS region, and LSU domains
1 through 3 (2,101 parsimony-informative positions; see Tab. S4 for details). Branch lengths are
drawn to scale, with the scale bar indicating the number of nt substitutions per site. Numbers on
branches are statistical support values to clusters on the right of them (values under 50 are not
shown), and maximal support values are indicated by asterisks. Note that the Thoracosphaeraceae
were monophyletic (88LBS), and the systematic position of Bysmatrum remained unresolved

(here: close to the Gonyaulacales), as it is also shown in Figure S1.
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Figure S5: Gblocks processing decreased the resolution of the trees derived from the
Dinophyceae data set. RAXML tree (-In = 61,095) of 113 members of the Dinophyceae
(including five new sequences of the Thoracosphaeraceae plus Bysmatrum) as i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>