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1. Einleitung 
 

 Die Alzheimer Erkrankung 1.1.
 

Die Alzheimer Erkrankung ist die häufigste Form der Demenz und betrifft derzeit etwa 

24 Millionen Menschen weltweit. Mit zunehmendem Alter steigt das Risiko, an der 

Alzheimer Demenz zu erkranken. So sind etwa 1 % der zwischen 60 bis 64 Jährigen und 

24 % bis 33 % der über 85 Jährigen in der westlichen Welt von dieser Erkrankung 

betroffen (Ferri et al. 2005). 

Klinisch manifestiert sich die Erkrankung zunächst als Störung des 

Kurzzeitgedächtnisses sowie der zeitlichen und räumlichen Orientierung. Später kommt 

es zum Verlust des Langzeitgedächtnisses, der Urteilsfähigkeit, des logischen Denkens 

und des Sprachvermögens sowie zu Veränderungen der Persönlichkeit und schließlich 

zur Bettlägerigkeit und Inkontinenz der Patienten, welche im Durchschnitt neun Jahre 

nach Diagnosestellung versterben (Ferris und Kluger 1997, Geldmacher und Whitehouse 

1997, Bracco et al. 1998, Samuels und Davis 1998). Der Verlauf der Erkrankung als auch 

die Krankheitsdauer sind jedoch individuell verschieden (Reisberg et al. 1996). 

Die Erkrankung wurde 1907 erstmals von dem deutschen Psychiater und Neurologen 

Alois Alzheimer beschrieben. Ihm gelang es, bei seiner 51 jährigen Patientin Auguste D., 

post mortem typische morphologische Merkmale im Zentralen Nervensystem 

nachzuweisen (Alzheimer 1907). Der Nachweis dieser von Alzheimer beschriebenen 

extrazellulären Amyloidplaques und intrazellulären neurofibrillären Tangles post mortem 

dient nach wie vor als sicheres Kriterium für die endgültige Diagnosestellung (Terry 

2006). Die Amyloidablagerungen und neurofibrillären Tangles sind dabei vor allem im 

Hippocampus, der Amygdala, sowie in kortikalen und subkortikalen Regionen lokalisiert 

(Braak et al. 1996, Selkoe 2001). Besonderes Interesse gilt derzeit PET-CT 

Untersuchungen mit radioaktiven Tracern, welche spezifisch Amyloidplaques 

detektieren. Diese könnten in Zukunft eine frühere Diagnosestellung ermöglichen, noch 

bevor kognitive als auch nicht kognitive Symptome zu einer starken Beeinträchtigung des 

täglichen Lebens der Patienten führen (Rowe et al. 2008, Camus et al. 2012). 
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                 Abbildung modifiziert nach Selkoe, Neurology 6 (1991) 487-98 

 

Abb. 1: Plaques und Tangles. Silberimprägnation nach Bielchowsky eines Schnitts durch die Amygdala 

eines 69 jährigen Patienten nach sechsjähriger  progressiver AD. Darstellung eines Amyloidplaques (A) in 

der Mitte der Abbildung, der von dystrophen Neuriten (Δ) umgeben ist. Die neurofibrillären Tangles 

imponieren als intrazelluläre Aggregate, welche fast das gesamte Zytoplasma einiger Neuronen einnehmen. 

Aufgrund der Anfärbung der Tangles in der Silberimprägnation erscheinen die betroffenen Neurone 

schwarz gefärbt im Gegensatz zu benachbarten normalen Zellen (→). Der Balken rechts unten im Bild 

entspricht einer Größe von 50 µm.  

 

 

Meist tritt die Erkrankung sporadisch auf und nur 5 % bis 10 % der Fälle werden 

autosomal dominant als so genannte familiäre Form der Alzheimer Demenz (Familial 

Alzheimer´s Disease, FAD) vererbt (Selkoe 2001). Beide Formen unterscheiden sich 

hinsichtlich des Zeitpunkts des Auftretens der Krankheitssymptome, nicht jedoch 

bezüglich ihrer Histopathologie (Selkoe 2001). So manifestiert sich die sporadische Form 

erst nach dem 65. Lebensjahr, die familiäre Form dagegen bereits zwischen dem 40. und 

50. Lebensjahr oder sogar früher (Selkoe 1999, Selkoe 2001, Haass und Selkoe 2007). 

Die familiäre Form der Alzheimer Erkrankung wird bedingt durch Mutationen, welche 

drei verschiedene Gene betreffen können (Hardy 1997, Tilley et al. 1998). Diese 

beeinflussen die Aβ-Produktion und resultieren somit in einer gesteigerten Aβ-

Aggregation, was wiederum zur vorzeitigen Entstehung der Amyloid-Plaques führt 

(Haass und Steiner 2002). Hauptrisikofaktor der häufigeren sporadischen Variante ist das 

Alter. In einigen Fällen besteht jedoch auch ein genetischer Risikofaktor. Das Allel ε4 

(APOE4) des für das plasmatische Apolipoprotein E (apoE) kodierenden Gens APOE 

scheint einen für die sporadische AD prädisponierenden Faktor darzustellen. Denn zum 

einen besteht eine starke genetische Assoziation zwischen Allel ε4 und sporadischer AD, 

zum anderen weisen homozygote Träger des Allels ε4 eine vermehrte Aβ-Ablagerung in 

 
A 
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zerebralen und vaskulären Plaques auf (Corder et al. 1993, Saunders et al. 1993, 

Schmechel 1993).  

 Ätiologie und Histopathologie der Alzheimer Erkrankung 1.2.

 Tau-Hypothese 1.2.1.

Neurofibrilläre Bündel („Tangles“) sind neben den Amyloidplaques die 

histopathologischen Kennzeichen der Alzheimer Erkrankung (Alzheimer 1907). Sie 

entstehen intrazellulär durch die Aggregation von gepaarten helikalen Filamenten im 

somatodendritischen Kompartiment als auch in Axonen von Neuriten (Terry et al. 1964). 

Die Filamente bestehen vor allem aus hyperphosphorylierten Formen des mikrotubuli-

assoziierten Proteins Tau (Grundke-Iqbal et al. 1986, Goedert 1993). Dieses ist 

physiologischerweise für die Stabilisierung und Dynamik der axonalen Mikrotubuli 

verantwortlich (Friedhoff et al. 2000). Die Hyperphosphorylierung von Tau resultiert aus 

dem Ungleichgewicht verschiedener Phosphatasen und Kinasen (Mandelkow und 

Mandelkow 1998) und vermindert die Polymerisationsgeschwindigkeit der Mikrotubuli 

(Garver et al. 1996). Die Aggregation helikaler Filamente schädigt Axone und Dendriten, 

sodass dystrophe Neuriten entstehen (Crowther und Goedert 2000). Sterben diese 

Neuronen ab, werden die neurofibrillären Tangles aufgrund ihrer hohen Stabilität nicht 

abgebaut, sondern im ZNS abgelagert (Bondareff et al. 1994). 

Zwar korrelieren  Anzahl und Verteilung der Tangles mit der klinischen Symptomatik  

(Goedert 1993, Braak et al. 1997), doch sind sie im Gegensatz zu den senilen Plaques 

nicht spezifisch für die Alzheimer Demenz. Sie treten auch im Zusammenhang mit 

anderen neurodegenerativen Erkrankungen wie der Frontallappen-Demenz oder der 

subakuten sklerosierenden Panencephalitis auf (Wisniewski et al. 1979, Lee und 

Trojanowski 1999, Morris et al. 2001). Mutationen im Tau kodierenden Gen führen 

darüber hinaus zu parkinsonähnlichen Erkrankungen (Hutton et al. 1998). 

 Amyloid-Hypothese 1.2.2.

Amyloidplaques werden als extrazelluläre Ablagerungen hauptsächlich im 

Gehirnparenchym, jedoch in geringerem Maße auch in Wänden zerebraler Gefäße 

gefunden (Selkoe 1999). Hauptkomponente dieser Plaques ist das β-Amyloid (Aβ), 

welches 1984 erstmals aus zerebralen Gefäßablagerungen (Glenner und Wong 1984) und 

kurze Zeit später aus Amyloidplaques im ZNS isoliert werden konnte (Masters et al. 1985 

a).  
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Das Aβ-Peptid, welches aus dem β-Amyloid-Vorläufer-Protein (β-amyloid-precursor-

protein, βAPP) durch Proteolyse mittels verschiedener Proteasen entsteht, weist aufgrund 

deren Schnittstellenvariabilität eine N- und C-terminale Heterogenität auf, sodass 

unterschiedlich lange Aβ-Peptid-Formen existieren (Glenner und Wong 1984, Masters et 

al. 1985b, Wang et al. 1996, Steiner et al. 2008). Aβ42 scheint dabei die pathogene Aβ-

Spezies zu sein, obwohl sie nur etwa 10 % der insgesamt sezernierten Aβ-Peptide 

ausmacht (Vassar und Citron 2000). Im Gegensatz zu dem weniger amyloidogenen Aβ40 

besitzt Aβ42 zwei zusätzliche Aminosäuren, Isoleucin und Alanin, welche diesem stärkere 

hydrophobe Eigenschaften verleihen, aufgrund derer Aβ42 stärker aggregieren kann 

(Jarrett et al. 1993, Selkoe 1999).  

Im Besonderen verdeutlichen die für die FAD (Familiäre Alzheimer Demenz) 

verantwortlichen autosomal dominanten Mutationen der für βAPP oder PS-1 und PS-2 

(der katalytisch aktiven Komponenten der γ-Sekretase; Vgl. Kapitel 1.3.1.) kodierenden 

Gene die Schlüsselrolle von Aβ  bei der Pathogenese der AD. In 70 % bis 80 % der Fälle 

sind Mutationen von PSEN 1 auf Chromosom 14 (Sherrington et al. 1995), welches  für 

Presenilin1 (PS-1)  kodiert, ursächlich für die FAD, gefolgt von Mutationen des für 

Presenilin 2 (PS-2) kodierenden Gens PSEN2 auf Chromosom 1 (Rogaev et al. 1995, 

Levy-Lahad et al. 1995 a, Levy-Lahad et al. 1995 b). Mutationen des für βAPP 

kodierenden Gens auf Chromosom 21 sind dagegen nur in 2 % bis 3 % der Fälle Ursache 

der familiären Alzheimer Erkrankung (Goate et al. 1991). Sie sind innerhalb oder eng 

benachbart zur Aβ-Domäne im Bereich der Protease-Schnittstellen lokalisiert (Selkoe 

1996). Fast alle FAD assoziierten Mutationen erhöhen die spezifische Aβ42-Produktion. 

Aufgrund der starken Hydrophobizität von Aβ42 kommt es über eine gesteigerte Aβ-

Aggregation zur vorzeitigen Entstehung der Amyloid-Plaques (Selkoe 2001, Haass und 

Steiner 2002).  

Jedoch nicht nur Mutationen dieser drei Gene, sondern auch eine Veränderung der 

Gendosis des βAPP-Gens kann familiäre Formen der Alzheimer Demenz verursachen. So 

besitzen Down-Syndrom-Patienten mit ihrem zusätzlichen Chromosom 21 ein 

zusätzliches Allel für βAPP. Es wird angenommen, dass die bereits im mittleren 

Lebensalter bei diesen Patienten auftretende typische Alzheimerpathologie auf einem 

Dosiseffekt des βAPP-Gens beruht (Oyama et al. 1994, Tanzi 1996). Hiermit 

übereinstimmend konnte gezeigt werden, dass eine Duplikation des βAPP-Gen-Lokus zur 

Akkumulierung von Aβ führt, welche wiederum die Manifestation einer autosomal 
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dominanten Form der AD mit schwerer Amyloid-Angiopathie verursacht (Rovelet-

Lecrux et al. 2006).  

Beweisend für die Amyloid-Hypothese ist jedoch der Nachweis einer Mutation von 

βAPP, welche vor der Erkrankung an der Alzheimer-Demenz schützt (Jonsson et al. 

2012). Bei dieser Mutation ist Alanin durch Threonin an Position 673 von βAPP ersetzt 

(A673T). Sie ist benachbart zur BACE1-Schnittstelle von βAPP lokalisiert und reduziert 

in vitro das Shedding von βAPP durch BACE1 um 40 % im Vergleich zu Wildtyp-βAPP, 

sodass die Produktion der amyloidogenen Peptide Aβx-40 und Aβx-42 um bis zu 40 % 

reduziert wird. Diese Mutation wird bei älteren Menschen ohne AD signifikant häufiger 

nachgewiesen als bei AD-Patienten (Jonsson et al. 2012).  

Die sowohl für die sporadische als auch für die familiären Formen der AD typischen 

Plaques setzen sich zwar hauptsächlich aus dem amyloidogenen fibrillären Aβ42 und in 

geringerem Ausmaß aus Aβ40 zusammen, weisen aber als weitere Bestandteile zusätzlich 

noch andere Aβ-Formen, das Apolipoprotein E und J, α1-Antitrypsin sowie 

Proteoglykane auf (Dickson 1997, Selkoe 2001). Je nach Zusammensetzung der 

Amyloidplaques und ihrer lokalen zellulären Veränderungen, werden senile von diffusen 

Amyloidplaques unterschieden. Während senile Plaques (auch als neuritische Plaques 

bezeichnet) spezifisch für die Alzheimer Erkrankung sind, kommen diffuse Plaques auch 

bei nicht dementen alten Menschen vor  und scheinen die Vorstufe der senilen Plaques 

darzustellen (Selkoe 2001, Hardy und Selkoe 2002, Haass und Selkoe 2007). Senile 

Plaques besitzen den für die Amyloidplaques von Alzheimerpatienten typischen dichten 

Amyloid-Kern („amyloid-core“), welcher aus fibrillärem Aβ besteht und von 

degenerierten Axonen und Neuriten sowie von aktivierten Mikrogliazellen und 

Astrozyten umgeben ist  (Selkoe 1991, Pike et al. 1994, Braak et al. 1996). 

Wurde zunächst nur von den senilen Plaques eine beeinträchtigende Wirkung auf die 

Funktion der Synapsen angenommen (Selkoe 1991, Hardy 1992, Selkoe 1999), so konnte 

mittlerweile auch für die löslichen oligomeren Formen des Aβ42-Peptids nachgewiesen 

werden, dass diese neurotoxische Eigenschaften besitzen (Lambert et al. 1998, Hartley et 

al. 1999, Dahlgren et al. 2002, Walsh et al. 2002, Haass und Selkoe 2007). Bereits vor 

dem Verlust von Neuronen lösen sie eine Fehlfunktion der Synapsen aus, u.a. durch 

Inhibition der Induktion von LTP (long-term potentiation), d.h. der lang andauernden 

Verstärkung der synaptischen Übertragung, welche eine Form der synaptischen Plastizität 

darstellt (Mucke et al. 2000, Selkoe 2002, Walsh et al. 2002). Die synaptische 

Fehlfunktion scheint den frühen Gedächtnisstörungen zugrunde zu liegen (Selkoe 2002), 
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wobei der Verlust von Synapsen mit der Menge löslicher zerebraler Aβ-Peptide korreliert 

(Lue et al. 1999, Mucke et al. 2000). So korrelieren die kognitiven Defizite  besser mit 

der Menge an löslichem Aβ als mit der Plaqueanzahl (Naslund et al. 2000).  

Es wird angenommen, dass die Amyloidplaques nur Speicher für reaktive Aβ-Oligomere  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

       

            Schema modifiziert nach Haass & Selkoe, Nat.Rev.Mol.Cell.Biol.8 (2007) 101-112 

 

Abb. 2: Vereinfachte schematische Darstellung der Amyloid-Kaskade. Ein Ungleichgewicht zwischen 

Aβ42-Produktion und -Abbau mit konsekutiv erhöhten Aβ42-Leveln resultiert in einer verstärkten Aβ42-

Oligomerisierung. Dies verursacht zunächst leichte, dann schwere und dauerhafte Veränderungen der 

synaptischen Funktion und der Neurone. Gleichzeitig kommt es über die Bildung von diffusen 

Amyloidplaques zur Entstehung seniler Plaques, was eine lokale Entzündungsreaktion hervorruft. Die 

progressive neuronale Dysfunktion ist begleitet von oxidativem Stress und neuronaler Dyshomoeostase. 

Diese führen letztendlich zur Tangle-Bildung, welche die Progression der neuronalen Dysfunktion noch 

weiter unterstützt. Klinisches Korrelat ist eine progressive Demenz, welche mit ausgeprägten Aβ-Plaques 

und Tangles assoziiert ist. 

      Familiäre AD 
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darstellen (Kawasumi et al. 2002, Walsh et al. 2002, Haass und Selkoe 2007).  

Fibrilläres Aβ dagegen induziert eine Kaskade, welche in der Tangle-Bildung gipfelt 

(Busciglio et al. 1995, Gotz et al. 2001, Hardy und Selkoe 2002). Es ist ferner 

anzunehmen, dass die Amyloidablagerungen zeitlich vor der Tau-Pathologie auftreten 

und für die Tangle-Bildung mit verantwortlich sind (Oddo et al. 2003). Zudem weisen 

Studien von Patienten Tau-Mutations-bedingter Fronto-temporaler Demenz mit 

Parkinsonismus sowie Studien mit Tau-transgenen Mäusen darauf hin, dass die Tau-

Pathologie nicht für die Entstehung von Amyloid-Plaques ursächlich zu sein scheint 

(Hardy et al. 1998, Lewis et al. 2000). 

 β-Amyloid-Vorläufer-Protein (βAPP) 1.2.2.1.

βAPP ist ein Typ I Transmembranprotein, welches neben seiner Transmembrandomäne 

(TMD) eine große N-terminale Ektodomäne, die Aβ-Domäne, sowie eine kurze 

zytoplasmatische Domäne besitzt. N-terminal befindet sich das 17 AS lange Signalpeptid, 

welches für die Translokation ins Endoplasmatische Retikulum (ER) benötigt wird (Kang 

et al. 1987, Tanzi et al. 1987). Während des Transports vom Endoplasmatischen 

Retikulum (ER) durch das Trans-Golgi-Netzwerk (TGN) an die Zelloberfläche erfolgt 

dessen posttranslationale Maturierung durch N- und O-Glykosylierung, Sulfatierung und 

Phosphorylierung (Selkoe 2001, Thinakaran und Koo 2008). Nach  Erreichen der 

Zelloberfläche wird βAPP in Endosomen reinternalisiert. Von dort kann βAPP entweder 

zurück an die Zelloberfläche (Recycling Pathway) oder aber zur Degradierung in 

Lysosomen transportiert werden (Haass et al. 1992 a, Yamazaki et al. 1996). Sowohl 

während des Transports durch den sekretorischen Pathway als auch danach kann βAPP 

prozessiert werden, wobei lösliche Derivate ins Lumen freigesetzt werden (Selkoe 2001). 

Die Aβ-Generierung erfolgt dabei hauptsächlich in Endosomen nach Reinternalisierung 

von βAPP (Golde et al. 1992, Haass et al. 1992 a, Koo und Squazzo 1994, Yamazaki et 

al. 1996, Small und Gandy 2006). 

βAPP ist eng verwandt mit den zur APP-Familie gehörenden homologen Proteinen 

APLP-1 (amyloid precursor like protein-1) und APLP-2 (Wasco et al. 1992, Sprecher et 

al. 1993). Trotz des hohen Konservierungsgrades ihrer Gene, welcher auf eine nicht 

unwesentliche Funktion ihrer Genprodukte schließen lässt, ist die Funktion der APP-

Familie bisher nicht vollständig geklärt. Diskutiert werden eine Rolle von βAPP bei der 

Zelladhäsion und Migration sowie trophische Funktionen. So konnte in verschiedenen 

Studien gezeigt werden, dass βAPP das Auswachsen von Neuriten stimuliert und die 

Synaptogenese fördert (Thinakaran und Koo 2008). Intrazerebroventrikulär injiziertes 
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βAPP induzierte im Tiermodell nicht nur eine erhöhte Synapsendichte sondern 

verbesserte sogar die Gedächtnisleistung der behandelten Tiere (Roch et al. 1994, 

Meziane et al. 1998). 

Weiteren Aufschluss über die physiologischen Funktionen der APP-Familie erhoffte man 

mit „Knockout“-Studien zu erzielen. Während Verlust jeweils eines Gens (βAPP
-/-

; 

APLP-1
-/-

; APLP-2
-/-

) nur geringfügige Veränderungen des Phänotyps hervorrief (Zheng 

et al. 1995, Von Koch et al. 1997, Heber et al. 2000), verstarben „Doppel-Knockout“-

Mäuse bei denen sowohl beide βAPP- als auch beide APLP-2-Allele (βAPP
-/-

/APLP-2
-/-

) 

oder jeweils die beiden Allele von APLP-1 und APLP-2 (APLP-1
-/-

/APLP-2
-/-

) 

ausgeschaltet worden waren früh postnatal ohne dabei histopathologische Anomalitäten 

aufzuweisen. Die ebenfalls letalen „Triple-Knockout“-Mäuse zeigen dagegen eine 

gestörte Gehirnentwicklung. Sie offenbaren eine essentielle Rolle der APP-Gen-Familie 

in der Entwicklung des Nervensystems, beruhend auf ihrem Einfluss auf die Struktur und 

Funktion von Synapsen als auch auf die neuronale Migration (Herms et al. 2004). 

„Knock-in“ von APPs-α in die „Doppel-Knockout“-Mäuse βAPP
-/-

/APLP-2
-/-

 konnte die 

postnatale Letalität dieser Mäuse verhindern und  somit Aufschluß über synergistische 

Funktionen von βAPP und APLP-2 geben. Es konnte gezeigt werden, dass βAPP und 

APLP-2 eine besondere Bedeutung während der Synaptogenese, für die postnatale 

Reifung der neuromuskulären Synapse aber auch für den Erhalt der adulten 

neuromuskulären Synapse und für eine korrekte Neurotransmission an dieser zukommt 

(Weyer et al. 2011). Im Gegensatz zur letalen Kombination von βAPP
-/-

/APLP-2
-/- 

waren 

βAPP
-/-

/APLP-1
-/-

 Mäuse vital, was auf eine bedeutende physiologische Funktion von 

APLP-2 als auch auf eine Redundanz zwischen APLP-2 und den beiden anderen 

Mitgliedern der APP-Familie hinweist (Heber et al. 2000).  

 βAPP-Proteolyse  1.2.2.2.

Die proteolytische Prozessierung der Ektodomäne von βAPP (Shedding) erfolgt entweder 

durch die α-Sekretase (anti-amyloidogener Pathway) oder durch die β-Sekretase 

(amyloidogener Pathway) (Selkoe 2001). Sie resultiert in der Sekretion von löslichem 

βAPP (APPs-α und APPs-β). Beide Pathways spielen eine entscheidende Rolle für die 

Generierung des Aβ-Peptids (Selkoe und Schenk 2003, Haass 2004). 

Trotz der Diskussion ob α- und β-Sekretase in einigen Zelllinien nicht um das 

konstitutive Shedding von βAPP konkurrieren (Jorissen et al. 2010, Kuhn et al. 2010) 

wird im Allgemeinen eine Konkurrenz der beiden Sekretasen um das gemeinsame 

Substrat βAPP angenommen (Selkoe und Schenk 2003, Postina et al. 2004). So lässt sich 
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ein vermindertes Shedding von βAPP durch die β-Sekretase nachweisen, wenn die α-

Sekretase-Aktivität entweder durch Überexpression der α-Sekretase ADAM10 (Postina et 

al. 2004) oder nach pharmakologischer Aktivierung (Bandyopadhyay et al. 2007) 

(stimuliertes Shedding) über das konstitutive Level hinaus gesteigert ist. Umgekehrt ist 

eine vermindertes Shedding durch die α-Sekretase bei Überexpression der β-Sekretase 

BACE1 zu beobachten (Vassar et al. 1999, Kuhn et al. 2010). Für die Konkurrenz beider 

Sekretasen könnten Veränderungen in der zellulären Lokalisation des Sheddings von 

βAPP im Rahmen einer gesteigerten enzymatischen Aktivität verantwortlich sein 

(Lichtenthaler 2011). 

 

 

 
                 

 

           Abbildung modifiziert nach Haass & Steiner, Trends in Cell Biol 12 (2002) 556-562 

 
Abb. 3: Proteolytische Prozessierung von βAPP. Die Aβ-Domäne ist blau-orange markiert. Bei der 

Proteolyse durch die β- bzw. α-Sekretase werden die löslichen Formen APPs-β bzw. APPs-α sezerniert. Die 

dabei entstehenden 12 kDa („C99“/“C89“) bzw. 10 kDa („C83“) großen C-terminalen Fragmente 

verbleiben zunächst in der Membran. Die anschließende Prozessierung durch den γ-Sekretase-Komplex 

generiert Aβ bzw. P3 sowie jeweils ein ca. 7 kDa großes intrazelluläres Fragment (AICD). 

 

 

Die endoproteolytische Prozessierung von βAPP durch die β-Sekretase führt zur Bildung 

des Aβ-Peptids (amyloidogener Pathway). Der durch die β-Sekretase vermittelte Schnitt 

von βAPP, welcher meist an Asp-1 (β-site), seltener an Glu-11 (β´-site) der Ektodomäne 

erfolgt (Vassar et al. 1999), generiert neben dem löslichen APPs-β ein membranständiges 

C-terminales Fragment (CTFβ) mit einer Länge von 99 AS („C99“) bzw. 89 AS („C89“) 

(Vassar et al. 1999, Vassar und Citron 2000). CTFβ beinhaltet die vollständige Aβ-

Sequenz und ist damit der direkte Vorläufer für die Aβ-Synthese (Steiner und Haass 

2000).  

„α-stub“   „β-stub“  

- 
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Die weitere Proteolyse des CTFβ erfolgt durch den γ-Sekretase-Komplex innerhalb der 

Transmembrandomäne an der ε-Schnittstelle. Sie führt zur intrazellulären Freisetzung der 

zytoplasmatischen Domäne (APP-intracellular-domain, AICD), welcher eine Bedeutung 

in der nukleären Signaltransduktion beigemessen wird (Cao und Südhof 2001, Sastre et 

al. 2001, Weidemann et al. 2002). Daraufhin wird Aβ durch katalytische Prozessierung 

des verbliebenen membrangebundenen Fragments freigesetzt. Der Schnitt erfolgt dabei 

innerhalb der TMD am C-Terminus der Aβ-Domäne  jeweils etwa drei Aminosäuren 

nach dem ε-Schnitt via der ζ- zur γ-Schnittstelle. Es werden zwei unterschiedliche Aβ-

Peptid-Linien unterschieden. Zum einen die Aβ-Peptide Aβ49(ε), Aβ46(ζ), Aβ43(γ), 

Aβ40(γ) und Aβ37(γ), zum anderen die Aβ-Peptide Aβ48(ε), Aβ45(ζ), Aβ42(γ) und Aβ39(γ). 

Nur die Entstehung von Aβ38 kann  mit diesem Modell nicht erklärt werden (Steiner et al. 

2008). 

 

 
 
      Abbildung entnommen aus Steiner, JBC 238 (2008) 29627-31 

 
Abb. 4: Intramembranäre Prozessierung von βAPP durch den γ-Sekretase-Komplex. 

Darstellung der variablen γ-Sekretase-Schnittstellen innerhalb der TMD. Die Aβ-Domäne ist rot, die AICD 

grün dargestellt, die TMD ist vergrößert hervorgehoben. Die gestrichelten Pfeile geben die angenommene 

Schnittrichtung an. 

 

 

Die Hydrolyseprodukte des amyloidogenen Pathways entstehen nicht nur unter 

pathologischen, sondern auch unter physiologischen Bedingungen (Haass et al. 1992 a) 

und können im Liquor und Plasma von Alzheimer Patienten sowie von gesunden 

Probanden nachgewiesen werden (Seubert et al. 1992, Shoji et al. 1992). 

In Neuronen wird βAPP physiologischerweise hauptsächlich durch die α-Sekretase 

ADAM10 prozessiert (anti-amyloidogener Pathway) (Kuhn et al. 2010). Diese verhindert 

die Synthese des amyloidogenen Aβ durch einen Schnitt in der Mitte der Aβ-Domäne 

zwischen Aminosäure Lys
16

 und Leu
17 

(Esch et al. 1990, Sisodia 1992, Kuhn et al. 2010). 

Die α-Sekretase-Aktivität ist mit drei Mitgliedern der ADAM-Familie assoziiert 

(Buxbaum et al. 1998, Koike et al. 1999, Lammich et al. 1999), welche βAPP vor allem 



Einleitung 

 

15  

an der Zellmembran (Sisodia 1992, Haass et al. 1992 a) zum Teil jedoch bereits im 

sekretorischen Transportweg (De Strooper et al. 1993, Buxbaum et al. 1998, Lammich et 

al. 1999, Skovronsky et al. 2000) prozessieren und dabei das lösliche APPs-α generieren 

(Jorissen et al. 2010, Kuhn et al. 2010). Für APPs-α konnten neuroprotektive und 

Gedächtnis fördernde Eigenschaften nachgewiesen werden (Roch et al. 1994, Furukawa 

et al. 1996). Der verbleibende transmembranäre C-terminale Rest (CTFα, C83) wird 

analog dem CTFβ weiter durch den γ-Sekretase-Komplex prozessiert,  wobei das lösliche 

Peptid p3 (Haass et al. 1993) und die freigesetzte intrazelluläre Domäne (AICD) 

entstehen (Sastre et al. 2001, Weidemann et al. 2002). 

 γ-Sekretase-Aktivität 1.3.
Der γ-Sekretase-Komplex besitzt aufgrund seiner fehlenden Sequenzspezifität viele 

verschiedene Substrate, wobei es sich ausnahmslos um Typ I Transmembranproteine 

handelt. Neben βAPP prozessiert der γ-Sekretase-Komplex unter anderem APLP1 und -2, 

den Notch- und ErbB4-Rezeptor, die Notch-Liganden Delta und Jagged sowie N- und E-

Cadherin, Nectin1-α, CD44 und Typ III NRG1 (Bao et al. 2003, Haass 2004). Derzeit 

sind neben dem γ-Sekretase-Komplex die weiteren Aspartylproteasen Signal Peptid 

Peptidase und deren homologe Typ 4 Prepilin Peptidase aus der Familie der 

Signalpeptidasen (SPP), sowie die Metalloprotease-ähnliche S2P-Familie und 

Serinproteasen der Rhomboid-Familie bekannt (Haass und Steiner 2002). Im Gegensatz 

zu diesen benötigt die katalytische Einheit der γ-Sekretase einen hochmolekularen 

Komplex zur Entfaltung ihrer katalytischen Aktivität (De Strooper 2003). Dieser setzt 

sich aus den vier Komponenten Presenilin (PS-1 oder PS-2), Nicastrin (Nct), APH-1a mit 

seinen zwei Spleiß-Varianten APH-1aS und APH-1aL bzw. dem homologen APH-1b 

(anterior pharynx-defective-1) und PEN-2 (presenilin enhancer-2) zusammen (Yu et al. 

2000, Francis et al. 2002, Goutte et al. 2002, Lee et al. 2002, De Strooper 2003, Edbauer 

et al. 2003).  

Alle vier Untereinheiten sind essentiell und zugleich ausreichend für die γ-Sekretase-

Aktivität (Edbauer et al. 2003, Fraering et al. 2004). Im ER werden sie schrittweise zum 

hochmolekularen γ-Sekretase-Komplex, wahrscheinlich in einem Verhältnis 1:1:1:1, 

zusammengefügt (Kim et al. 2004, Capell et al. 2005, Sato et al. 2007). Nct und APH-1 

bilden dabei zunächst einen dimeren Komplex, welcher der Anlagerung und 

Stabilisierung des PS-Holoproteins dient (Takasugi et al. 2003, Shirotani et al. 2004). Als 

letzte Komponente lagert sich an den nun trimeren Komplex PEN-2 an, was zur 
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Konformationsänderung von Nct führt und die Endoproteolyse von PS induziert (Kim et 

al. 2003, Takasugi et al. 2003, Prokop et al. 2004, Kaether et al. 2006).  

 

 

 

 

Abbildung modifiziert nach Wolfe, S.W; Biochemistry 45 (2006) 7931-7939 

Abb. 5: Der γ-Sekretase-Komplex. Darstellung des γ-Sekretase-Komplexes mit den fünf Untereinheiten 

PS-1, PS-2, Nct, APH-1 und  PEN-2.  

 

 

Aufgrund der verschiedenen Isoformen von APH-1 und PS existieren  mindestens sechs 

unterschiedliche γ-Sekretasekomplexe, welche jeweils γ-Sekretase-Aktivität besitzen und 

Aβ42 produzieren können (Shirotani et al. 2007). Die γ-Sekretase-Aktivität ist vor allem 

an der Plasmamembran und in Endosomen lokalisiert (Chyung et al. 2005, Kaether et al. 

2006), wobei die γ-Sekretasekomplexe mit aktiver Konformation an der Plasmamembran 

nur  etwa 6 % bis 7 % aller γ-Sekretasekomplexe ausmachen (Dries und Yu 2008).  

 Presenilin 1.3.1.

Der erste Hinweis auf die für die γ-Sekretase-Aktivität verantwortlichen Proteine kam 

von genetischen Studien, welche die FAD mit Mutationen der für Presenilin-1 und -2 

(PS-1 und -2) kodierenden Gene auf Chromosom 1 und 14 assoziierten (Rogaev et al. 

1995, Sherrington et al. 1995, Levy-Lahad et al. 1995 a, Levy-Lahad et al. 1995 b). PS-1 

und PS-2 sind homologe, polytope Transmembranproteine (Levy-Lahad et al. 1995 b) 

mit je neun Transmembrandomänen (Laudon et al. 2005). Mit Hilfe von 

Mutationsanalysen konnte gezeigt werden, dass die Preseniline die katalytische Einheit 

des γ-Sekretase-Komplexes darstellen, wobei ihre zwei konservierten Aspartylreste in 

TMD 6 und in TMD 7 das aktive Zentrum des γ-Sekretase-Komplexes bilden (Wolfe et 

al. 1999). Die verminderte Aβ-Produktion infolge Deletion von PS-1 (De Strooper et al. 
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1998), sowie die vollständige Inhibition der Aβ-Synthese bei „Doppel-Knockout“ von 

PS-1 und -2 bestätigen die Annahme, dass PS-1 und PS-2 die katalytisch aktiven 

Untereinheiten des γ-Sekretase-Komplexes sind (Zhang et al. 2000).  

Interessanterweise besitzen Preseniline nicht das klassische D(T/S)G(T/S)-Motiv der 

Aspartylproteasen, sondern als neue Familie der Aspartylproteasen ein hoch 

konserviertes GxGD-Motiv, welches den Aspartylrest der TMD 7 enthält (Steiner et al. 

2000, Haass und Steiner 2002). Während der Maturierung des Sekretasekomplexes wird 

PS innerhalb des großen Loops zwischen TMD 6 und 7 endoproteolysiert. Hierbei 

entsteht das stabile PS-Heterodimer, bestehend aus einem N-terminalen (NTF) und einem 

C-terminalen (CTF) Fragment (Thinakaran et al. 1996, Capell et al. 1998). Die 

Endoproteolyse von PS erfolgt autokatalytisch und dient der Aktivierung des γ-Sekretase-

Komplexes. Die Autoproteolyse von PS erfolgt dabei in einer schrittweisen 

Endoproteolyse analog der Proteolyse anderer γ-Sekretase-Substrate wie z.B. von βAPP, 

vermutlich zunächst durch Schnitt an der ε-Schnittstelle, gefolgt durch  weitere Schnitte 

via der ζ- zur γ-Schnittstelle (Fukumori et al. 2010). 

 Nicastrin 1.3.2.

Nicastrin (Nct) ist ein Typ I Transmembranprotein mit einer großen extrazellulären N-

terminalen und einer kurzen intrazellulären C-terminalen Domäne (Yu et al. 2000). Es 

wird angenommen, dass Nct als Substratrezeptor des γ-Sekretasekomplexes dient, indem 

die luminale Domäne von Nct spezifisch an den N-terminalen Rest des Substrates bindet, 

dessen Ektodomäne zuvor proteolytisch entfernt wurde (Shah et al. 2005, Struhl und 

Adachi 2000). Dies verleiht dem γ-Sekretase-Komplex eine gewisse Substratspezifität 

trotz seiner fehlenden Sequenzspezifität. Die Annahme, dass Nct als Substrat-Rezeptor 

dient, welcher Substrate mit einer bestimmten Länge erkennt, wurde jedoch angezweifelt 

und bleibt somit kontrovers diskutiert  (Chávez-Gutiérrez et al. 2008). 

 Aph-1 1.3.3.

Aph-1  ist ein Protein mit  sieben Transmembrandomänen, welches das PS-Holoprotein  

im γ-Sekretasekomplex stabilisiert und als Gerüst für den Rest des Komplexes dient (Kim 

et al. 2003, Takasugi et al. 2003). Weitere Funktionen sind bisher nicht für Aph-1 

bekannt (Steiner et al. 2008). 

 PEN-2 1.3.4.

PEN-2 ist zwar die kleinste der γ-Sekretase-Untereinheiten, ist jedoch von essentieller 

Bedeutung für die Aktivierung des γ-Sekretase-Komplexes (Bammens et al. 2011).   
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PEN-2 besitzt zwei hydrophobe Transmembrandomänen, wobei eine dieser Domänen in 

unmittelbarer Nachbarschaft zum PS-CTF lokalisiert ist (Prokop et al. 2004, Bammens et 

al. 2011). Die Bindung von PEN-2 an PS des Aph-1/Nct/PS-Komplexes triggert die 

Endoproteolyse von PS (Takasugi et al. 2003, Prokop et al. 2004). PEN-2 spielt zudem 

eine entscheidende Rolle bei der Maturierung von Nct und PS, was wiederum essentiell 

für die Stabilisierung des γ-Sekretasekomplexes ist, welcher ansonsten rasch vom 

Proteasom degradiert wird (Prokop et al. 2004, Bammens et al. 2011).  

 γ-Sekretase-Inhibition- und Modulation als Therapieansatz 1.3.5.

Der weltweit größte Forschungsschwerpunkt liegt auf der Inhibition der γ-Sekretase-

abhängigen Aβ42-Produktion. Obwohl der γ-Sekretase-Komplex in vielerlei Hinsicht 

einen viel versprechenden Therapieangriffspunkt darstellt, ist die generelle Inhibition des 

γ-Sekretase-Komplexes mit schwerwiegenden Nebenwirkungen verbunden. Denn neben 

der βAPP-Prozessierung wird auch die Prozessierung der weiteren γ-Sekretase-Substrate, 

im Besonderen die von Notch, gehemmt. So führt die nicht-selektive γ-Sekretase-

Inhibition zu schweren Veränderungen des Gastrointestinal-Trakts und des 

lymphatischen Systems infolge gehemmter Notch-Signaltransduktion (Roberson und 

Mucke 2006, Barten und Albright 2008). 

Epidemiologische Studien  haben gezeigt, dass die Langzeiteinnahme von NSAIDs (Non 

steroidal anti inflammatory drugs) die Prävalenz der AD reduziert. NSAIDs wie 

Ibuprofen und Sulindac Sulfide modulieren möglicherweise über allosterische 

Bindungsstellen des γ-Sekretase-Komplexes die Aβ-Produktion. Hierbei wird die Aβ42-

Generation vermindert und gleichzeitig die Produktion des benignen Aβ38 erhöht. Dies 

erfolgt unabhängig von der Cyclooxygenaseaktivität und vor allem ohne den ε-Schnitt 

des γ-Sekretase-Komplexes innerhalb der TMD von Notch zu beeinflussen, sodass die 

Freisetzung der Notch-NICD nicht beeinträchtigt wird (Weggen et al. 2001). Einige PS-

Mutationen der FAD scheinen jedoch nicht auf diese γ-Sekretase-Modulatoren 

anzusprechen (Page et al. 2008). 

Substanzen, welche eine allosterische Modifikation der γ-Sekretase-Aktivität bewirken, 

stellen viel versprechende Therapieansätze dar, erfordern aber eine weitere intensive 

Erforschung.  
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 α-Sekretase-Aktivität 1.4.
Die α-Sekretase-Aktivität war die erste katalytische Aktivität, die im Rahmen der β-APP-

Prozessierung identifiziert wurde (Sisodia et al. 1990). Ihre Substratspezifität ist dabei 

unabhängig von einer bestimmten AS-Konsensussequenz. Vielmehr scheinen sekundäre 

strukturelle Merkmale wie die Distanz von 12 bis 13 AS von der Transmembrandomäne 

und eine α-helikale Konformation des Substrats im Bereich der Schnittstelle für dessen 

Prozessierung ausschlaggebend zu sein (Sisodia 1992, De Strooper et al. 1993). An der 

Zellmembran ist die α-Sekretase meist konstitutiv aktiv, ihre Aktivität kann jedoch auch 

zusätzlich reguliert werden, wobei Protein Kinase C (PKC), Mitogen-aktivierte 

Proteinkinase (MAPK) oder G-Protein gekoppelte Signalwege beschrieben werden 

(Fahrenholz und Postina 2006, Herrlich et al. 2008).  

Enzyme, welche die Eigenschaften der α-Sekretase aufweisen, gehören zur Familie der 

ADAMs (a disintegrin and metalloproteinase). Seit der Entdeckung des ersten Mitglieds 

dieser Proteasefamilie, dem heterodimeren aus Spermien stammenden Protein Fertilin, ist 

die ADAM-Familie auf 34 Mitglieder angewachsen (http://merops.sanger.ac.uk/33). 

Diese sind Typ I Transmembranproteine, welche eine gemeinsame Multidomänenstruktur 

mit einer „Disintegrin- und Metalloproteaseaktivität“ besitzen (Black und White 1998, 

Schlöndorff und Blobel 1999). Ihre Ektodomäne besitzt N-terminal ein Signalpeptid und 

eine Prodomäne, gefolgt von der Metalloproteasedomäne, welche ein Zink-

Bindungsmotiv enthält. Daran schließen sich die Disintegrindomäne und eine 

cysteinreiche Domäne an, die gewöhnlich eine EGF-ähnliche Domäne enthält. Auf die 

Ektodomäne folgen die Transmembran- sowie die zytoplasmatische Domäne (Wolfsberg 

und White 1996, Seals und Courtneidge 2003). Die Prodomäne fungiert bei katalytisch 

aktiven ADAMs als Chaperone (Roghani et al. 1999, Schlöndorff und Blobel 1999, Seals 

und Courtneidge 2003). Nach korrekter Faltung der Protease inhibiert die Prodomäne die 

katalytische Aktivität, bis sie durch  Furin oder furinähnliche Proteasen im TGN entfernt 

wird (Roghani et al. 1999, Seals und Courtneidge 2003). Nur etwa die Hälfte aller 

bekannten ADAMs besitzen die konservierte katalytische Metzincin Konsensussequenz 

(HEXGHXXGXXHD) und sind damit katalytisch aktiv (Blobel 2005). Innerhalb der 

katalytischen Domäne befinden sich mehrere Loops, wobei jedoch neben ADAM10 nur 

für ADAM17 diese Loop-Struktur bekannt ist (Maskos et al. 1998). Die zytoplasmatische 

Domäne besitzt häufig Signalmotive wie Phosphorylierungsstellen oder prolinreiche 

Regionen und scheint für die Hochregulierung des Sheddings (proteolytische 

Prozessierung der Ektodomäne von Transmembranproteinen) verantwortlich zu sein 
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(Schlöndorff und Blobel 1999). Ferner kommt der zytoplasmatischen Domäne eine 

entscheidende Bedeutung bezüglich des intrazellulären Transports vom ER an die 

Plasmamembran zu (Marcello et al. 2010). 

ADAMs sind an Entwicklungsprozessen wie der Befruchtung, der Angiogenese, 

Kardiogenese, Neurogenese und der Entwicklung verschiedener epithelialer Gewebe 

beteiligt (Blobel 2005). Zudem spielen sie neben der Alzheimer Demenz eine Rolle in der 

Pathogenese einiger weiterer Erkrankungen, unter anderem bei der Rheumatoiden 

Arthritis, dem Morbus Crohn, der kardialen Hypertrophie und der Entstehung von 

Karzinomen (White 2003). Ihre Funktion entfalten sie einerseits via Signaltransduktion 

infolge Shedding von Transmembranproteinen wie Wachstumsfaktoren, Zytokinen und 

Rezeptoren (Schlöndorff und Blobel 1999, Seals und Courtneidge 2003, White 2003), 

wobei für diese Funktion die Metalloproteaseaktivität verantwortlich ist. Andererseits 

sind sie als Disintegrine für Zell-Zell-Adhäsion und Zell-Matrix-Interaktionen 

verantwortlich (Seals und Courtneidge 2003). 

 

ADAM10 (Kuzbanian) wurde 1989 erstmals aus Myelinscheiden von Rinderhirnen als 

myelindegradierendes Enzym isoliert (Chantry et al. 1989), bevor seine essentielle 

Beteiligung an der neuronalen Entwicklung, unter anderem infolge der Proteolyse der  

Notch-Rezeptoren, erkannt wurde (Rooke et al. 1996). Die von ADAM10 katalysierte 

Prozessierung der Notch-Ektodomäne stellt die Voraussetzung für den darauf folgenden 

intramembranären Schnitt durch die γ-Sekretase dar (Schroeter et al. 1998, Schlöndorff 

und Blobel 1999). ADAM10- defiziente Mäuse sterben an Tag 9.5 ihrer Embryogenese 

infolge von Entwicklungsstörungen des kardiovaskulären Systems. Sie weisen zudem 

Störungen ihrer Somiten und des ZNS auf (Hartmann et al. 2002). Die neuronalen 

Entwicklungsstörungen beruhen dabei auf  einer fehlenden lateralen Inhibition und einem 

gestörten axonalen Längenwachstum infolge eines mangelnden Shedding von Notch 

durch ADAM10 (Rooke et al. 1996, Pan und Rubin 1997, Hartmann et al. 2002). 

ADAM10 ist als Metalloprotease für das Shedding der membrangebundenen EGF-

Rezeptor-Liganden HB-EGF und Betacellulin verantwortlich, wobei die 

Signaltransduktion via EGF-Rezeptoren (epidermal growth factor receptors) eine 

wichtige Rolle in der Embryonalentwicklung, wie zum Beispiel in der Kardiogenese, als 

auch in der Pathogenese verschiedener Erkrankungen spielt (Sahin et al. 2004).  

Neben der Prozessierung von Notch und EGF-Rezeptor-Liganden ist ADAM10 die 

hauptverantwortliche Sekretase für die proteolytische Prozessierung von Cadherinen in 
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Fibroblasten und Neuronen. Das Cadherin-Shedding beeinflusst dabei Zell-Zell-

Interaktionen und induziert über eine β-Catenin-Transaktivierung Gene, welche eine 

wichtige Rolle in der Proliferation und dem Überleben von Zellen spielen (Maretzky et 

al. 2005, Reiss et al. 2005).  

Erst zehn Jahre nach Entdeckung von ADAM10 konnte die α-Sekretase-Aktivität dieser 

Sekretase nachgewiesen werden (Lammich et al. 1999). ADAM10 gilt als die 

hauptsächlich für die Aktivität der α-Sekretase in vitro als auch in vivo verantwortliche 

Protease (Lammich et al. 1999, Kuhn et al. 2010). Zwar weisen ADAM10-defiziente 

Mäuse weiterhin α-Sekretase-Aktivität auf, was für eine Kompensation des ADAM10-

Verlustes durch andere Sekretasen spricht (Hartmann et al. 2002), wobei für ADAM17 

(TACE) (Buxbaum et al. 1998) als auch für ADAM9 (Koike et al. 1999) Eigenschaften 

der α-Sekretase nachgewiesen wurden. Es konnte jedoch gezeigt werden, dass in 

Neuronen ADAM10 die einzige physiologisch relevante α-Sekretase ist, welche das 

konstitutive Shedding von βAPP katalysiert  (Jorissen et al. 2010, Kuhn et al. 2010). 

 Aktivierung der α-Sekretase als Therapieansatz 1.4.1.

Stimulierung oder Überexpression der α-Sekretase-Aktivität bedingen einen Shift der 

βAPP-Prozessierung in Richtung des anti-amyloidogenen Pathways und damit einer 

verminderten Aβ-Synthese. Überexpression der α-Sekretase ADAM10 reduziert im 

Tiermodell die Plaquebildung und verbessert kognitive Defizite, sodass die Aktivierung 

dieser α-Sekretase einen viel versprechenden Therapieansatz darstellt (Postina et al. 

2004). Eine solche Stimulierung kann über Protein-Kinase C (PKC)-Aktivatoren wie 

PMA (phorbol 12-myristate-13-acetate) erfolgen. Da Phorbolester jedoch eine Tumor 

fördernde Wirkung aufweisen, sind sie therapeutisch nicht geeignet. Bryostatin, ein neuer 

PKC-Aktivator, der in der Krebstherapie eingesetzt wird, wirkt nicht kanzerogen, 

vermindert die Mortalitätsrate und reduziert zerebrales Aβ40 und Aβ42 im Mausmodell 

(Etcheberrigaray et al. 2004). Auch die Stimulierung von G-Protein gekoppelten 

muskarinischen Acetylcholin-Rezeptoren stimuliert die α-Sekretase-Aktivität in vivo mit 

konsekutiver Reduktion von zerebralem sowie vaskulärem Aβ42 und resultiert in der 

Verminderung kognitiver Defizite in Tiermodellen (Fisher 2008). „Knockout“-Studien 

konnten bestätigen, dass der muskarinische Acetylcholin-Rezeptor M1 essentiell an der 

Stimulierung der α-Sekretase-Aktivität beteiligt ist (Davis et al. 2010). Ein weiterer 

Ansatz zur Aktivierung der ADAM10-Aktivität stellt die Reduktion von zellulärem 

Cholesterin dar. In vitro konnte eine Aktivierung der ADAM10-Aktivität nach Inhibition 

der Cholesterin-Synthese beobachtet werden (Kojro et al. 2010).  
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Die Stimulierung der α-Sekretase-Aktivität scheint jedoch nicht ganz unproblematisch zu 

sein, da Überexpression von ADAM10 nicht nur den anti-amyloidogenen Pathway 

stimuliert, sondern via gesteigertem Cadherin-Shedding die Zell-Migration fördert und in 

epithelialen Zellen über eine vermehrte Expression von β-Catenin gesteuerten Genen zu 

einer gesteigerten Zellproliferation führt (Maretzky et al. 2005). Somit könnte infolge 

einer Aktivierung von ADAM10 auch die Tumorzell-Migration und Proliferation 

gefördert werden. 

 β-Sekretase-Aktivität 1.5.
Die β-Sekretase-Aktivität wird in allen Zell- und Gewebetypen gefunden (Haass et al. 

1992 b). Ihre höchste Aktivität wird jedoch im peripheren und zentralen Nervensystem  

detektiert, vor allem in Neuronen der dorsalen Wurzelganglien, Motoneuronen, im 

Hippocampus, dem Kortex und im Cerebellum (Willem et al. 2009). Die β-Sekretase-

Aktivität erreicht dabei ihr Maximum in Endosomen bei einem pH-Optimum von 4,5 

(Koo und Squazzo 1994, Haass et al. 1995 a, Vassar et al. 1999). Interessanterweise 

prozessiert die β-Sekretase fast ausschließlich membrangebundene Substrate (Citron et al. 

1995). Das membrangebundene Substrat βAPP wird durch die β-Sekretase bevorzugt 

nach hydrophoben und vor sauren AS-Resten geschnitten (Citron et al. 1995, Turner et al. 

2001, Li und Südhof 2004, Stockley und O'Neill 2008).  

BACE1 (β-site-cleaving-enzyme 1), auch Memapsin-2 oder Asp-2 genannt, wurde 1999 

von Vassar und Kollegen als die βAPP prozessierende β-Sekretase identifiziert. Sie 

gehört zur Pepsinfamilie der Aspartylproteasen, stellt aber als Transmembranprotein eine 

eigene Untergruppe dieser Familie dar (Hussain et al. 1999, Sinha et al. 1999, Vassar et 

al. 1999, Yan et al. 1999, Lin et al. 2000). Eine weitere Sekretase, BACE2 (Asp1), 

welche eine sehr große Homologie zu BACE1 aufweist, konnte ebenfalls identifiziert 

werden (Farzan et al. 2000, Hussain et al. 2000, Bennett et al. 2000 a, Yan et al. 2001). 

BACE1 und BACE2 weisen zu 64 % dieselbe AS-Sequenz auf und besitzen jeweils zwei 

für Aspartylproteasen der Pepsinfamilie typische aktive Zentren mit den konservierten 

Motiven D(T/S)G(T/S) (Hussain et al. 1999, Bennett et al. 2000 b). Ferner besitzen 

BACE1 und BACE2 je sechs konservierte luminale Cystein-Reste, welche drei 

intramolekulare Disulfidbrücken ausbilden, sowie eine C-terminale 

Transmembrandomäne, N-Glykosylierungsstellen und weitere strukturelle 

Charakteristika der Aspartylproteasen (Vassar 2004). 
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 BACE1 1.5.1.

Die Aspartylprotease BACE1 wird hauptsächlich in Neuronen und kaum in Gliazellen 

exprimiert und ist intrazellulär vor allem im sekretorischen Pathway lokalisiert (Vassar et 

al. 1999). Der Hauptanteil der  β-Sekretase-Aktivität ist in Endosomen nachweisbar, was 

gut mit dem sauren pH-Optimum (ca. 4,5) von BACE1 korreliert (Koo und Squazzo 

1994, Haass et al. 1995 a, Vassar et al. 1999). Die Überexpression von BACE1 resultiert 

in einem vermehrten Shedding von βAPP, welches an der β-Sekretase-Schnittstelle an 

AS-Position Asp1 oder Glu11 erfolgt (Vassar et al. 1999). Anhand von BACE1-

„Knockout“-Mäusen konnte gezeigt werden, dass BACE1 die einzige Sekretase ist, 

welche für die neuronale β-Sekretase-Aktivität und damit für die Generation von Aβ 

verantwortlich ist (Cai et al. 2001, Luo et al. 2001, Dominguez et al. 2005). Zudem wird 

die β-Sekretase-Aktivität sowohl durch Antisense-Inhibition endogener BACE1-mRNA 

mit Antisense-Oligonukleotiden (Vassar et al. 1999, Yan et al. 1999) als auch durch 

Applikation von BACE1-siRNA (small interfering RNA) (Kao et al. 2004) gehemmt, 

was jeweils zur Reduktion der Aβ-Synthese in vitro führt. Reduktion der BACE1-

Aktivität mit Hilfe von gegen BACE1 gerichteter siRNAs reduziert nicht nur die Aβ-

Produktion sondern bewirkt sogar eine Verbesserung der Gedächtnisdefizite βAPP-

transgener Mäuse (Singer et al. 2005).  

BACE1 wird im ER als immatures Vorläuferprotein synthetisiert. Seine Maturierung 

beinhaltet die Ausbildung von Disulfidbrücken, N-Glykosylierung und die proteolytische 

Entfernung des Propeptids durch Furin oder furin-ähnliche Sekretasen (Capell et al. 2000, 

Haniu et al. 2000, Huse et al. 2000, Bennett et al. 2000 b, Creemers et al. 2001). 

Nach Erreichen der Plasmamembran wird matures BACE1 zusammen mit βAPP 

reinternalisiert und zirkuliert zwischen Plasmamembran, Endosomen und dem TGN 

(Huse et al. 2000, Walter et al. 2001). Der intrazelluläre Transport von BACE1 wird 

dabei durch dessen zytoplasmatische Domäne gesteuert (Huse et al. 2000). Diese besitzt 

C-terminal ein “Acid-cluster-dileucine“ (ACDL)-Motiv als eigenständiges 

endozytotisches Signal, welches den Transport von BACE1 in Endosomen steuert (Huse 

et al. 2000, He et al. 2005). Für das Recycling von BACE1 von frühen Endosomen via 

TGN zurück zur Zelloberfläche ist die Phosphorylierung eines Serinrestes innerhalb des 

ACDL-Motivs essentiell (Walter et al. 2001, He et al. 2005, Wahle et al. 2005), welche 

die Affinität von BACE1 zu GGA-Proteinen (γ-ear-containing ARF-binding proteins) im 

Golgi-Apparat um ein Vielfaches steigert (He et al. 2005, Wahle et al. 2005). Somit ist 
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die BACE1-Aktivität nicht nur vom Expressions-Level, sondern auch von der 

subzellulären Lokalisation von BACE1 abhängig. 

Matures BACE1 gelangt hauptsächlich an die apikale Zelloberfläche, wo jedoch nur 

relativ wenig βAPP nachweisbar ist. Das wenige nach basolateral gelangende BACE1 

konkurriert dort mit der sehr hohen α-Sekretase-Aktivität. Die γ-Sekretase-Aktivität ist 

sowohl apikal als auch basolateral gleichermaßen nachweisbar. Auf diese Weise wird die 

Aβ-Synthese durch die unterschiedliche Lokalisation von BACE1 und βAPP innerhalb 

polarisierter Zellen limitiert (Capell 2002).  

Die „schwedische“ Doppelmutation von βAPP K595N/M596L führt zu einer vermehrten 

Produktion und Sekretion von Aβ (Citron et al. 1992, Cai et al. 1993). Sie wurde erstmals 

in einer schwedischen Familie mit FAD nachgewiesen (Mullan et al. 1992). Sie erhöht 

die Affinität der β-Sekretase für ihr Substrat, sodass der β-Sekretase-Schnitt bereits im 

Golgi-Apparat erfolgen kann, wo dann α- und β-Sekretase gleichermaßen um βAPP 

konkurrieren (Haass et al. 1995 b). 

 Multifaktorielle Regulierung der BACE1-Expression 1.5.1.1.

BACE1 ist in Gehirnen von Patienten mit der sporadischen Form der AD hochreguliert 

(Holsinger et al. 2002, Yang et al. 2003). Für die Hochregulierung von BACE1 könnten 

Faktoren wie oxidativer Stress und freie Radikale im Rahmen des Alterungsprozesses  

verantwortlich sein (Haass 2004). Trotz der erhöhten β-Sekretase-Aktivität weisen die 

BACE1-mRNA-Level keinen Unterschied zu gesunden Kontrollen auf (Holsinger et al. 

2002), was auf eine posttranskriptionelle Regulation der BACE1-Level schließen lässt. 

Verschiedene Arbeitsgruppen konnten zeigen, dass die BACE1-5´untranslated Region 

(5´UTR) die BACE1-Translation kontrolliert (Rogers et al. 1999, Rogers et al. 2002, 

Lammich et al. 2004, Mihailovich et al. 2007). Es wird angenommen, dass durch 

vorgeschaltete konservierte AUG-Kodons (upstream AUGs, uAUGs) und die GC-reiche 

Region der 5´UTR die BACE1-Translation inhibiert wird (Lammich et al. 2004, 

Mihailovich et al. 2007). So wird bei Expression der 5´UTR eine Reduktion sowohl der 

BACE1-Protein-Level als auch der BACE1-Aktivität in vitro um bis zu 90 % im 

Vergleich zu Zellen, welche BACE1 ohne die 5´UTR exprimieren, beobachtet (Lammich 

et al. 2004). Auch die 3´UTR moduliert via Mikro-RNAs (miRNA) posttranskriptionell 

die Genexpression von BACE1. Reduzierte Mikro-RNA-Level, wie sie bei AD-Patienten 

beobachtet werden, resultieren in einer vermehrten Expression von BACE1 und folglich 

in einer gesteigerten Aβ-Generation (Hébert et al. 2008). 
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In geringerem Ausmaß wird die BACE1-Expression auf transkriptioneller Ebene 

reguliert. So enthält der BACE1-Promotor Bindungsstellen für Transkriptionsfaktoren 

zur Aktivierung der BACE1-Transkription (STAT1/3 und STAT6) (Sambamurti et al. 

2004, Wen et al. 2008). Über eine STAT1/3 regulierte BACE1-Promotor-Aktivität 

können die Aβ-Level verdoppelt werden, wenn p25 [der Aktivator der CDK5 (cyclin 

dependent kinase 5)] überexprimiert wird, da eine CDK5-Aktivierung die 

Hyperphosphorylierung von STAT1/3 induziert (Wen et al. 2008).  

 Substrate von BACE1 1.5.1.2.

Neben APP und APLPs werden der P-Selektin-Glykoprotein-Ligand-1 (PSGL-1) 

(Lichtenthaler et al. 2003), die Sialyl-Transferase ST6Gal I (Kitazume et al. 2005), β-

Untereinheiten spannungsabhängiger Natriumkanäle (Wong et al. 2005, Kim et al. 2007), 

sowie das Protein Neuregulin-1 Typ III (Typ III NRG1) (Willem et al. 2006, Fleck et al. 

2013) als Substrate der β-Sekretase beschrieben. Lichtenthaler et al. konnten erst kürzlich 

insgesamt 34, zumeist neue, neuronale BACE1-Substrate wie z.B. das Seizure Protein 6 

(SEZ6) und das homologe Seizure Protein 6-like Protein 1 (SEZ6L1) identifizieren. 

BACE1 ist somit eine der wichtigsten Proteasen des Nervensystems  (Kuhn et al. 2012). 

 β-Sekretase-Inhibition als Therapieansatz 1.5.2.

Die Inhibition von BACE1 galt lange als ideale Alternative zur Inhibition des γ-

Sekretase-Komplexes (Vassar 2001). Zum einen, da BACE1 im ZNS von AD-Patienten 

hochreguliert ist (Yang et al. 2003), zum anderen da BACE1 den limitierenden Faktor für 

die Aβ-Synthese darstellt (Citron 2004) und Deletion von BACE1 zur Reduktion des 

zerebralen Amyloids führt, die cholinerge Dysfunktion verbessert (Ohno et al. 2004) und 

dabei keinen veränderten Phänotyp hervorzurufen schien (Cai et al. 2001, Luo et al. 

2001). 

Die Inhibition der β-Sekretase gestaltet sich jedoch insofern problematisch, da die 

Synthese geeigneter Inhibitoren schwierig ist und die Liste physiologisch relevanter 

BACE1-Substrate wächst. Zudem werden entgegen vorheriger Erkenntnisse auffällige 

Phänotypen bei BACE1-/- Mäusen beobachtet. So weisen diese schizophrenie-ähnliche 

Symptome mit kognitiven Defiziten, Hyperaktivität und Ängstlichkeit auf. Ferner werden 

eine erhöhte Insulinsensitivität mit einem reduzierten Körpergewicht und eine erhöhte 

Mortalität beschrieben (Harrison et al. 2003 , Dominguez et al. 2005, Laird et al. 2005, 

Hu et al. 2006, Savonenko et al. 2008, Meakin et al. 2012). Obwohl bisher keine 

allgemeine Substraterkennungs-Sequenz von BACE1 identifiziert wurde, konnten 



Einleitung 

 

26  

peptidomimetische Inhibitoren hergestellt werden, welche gegen das aktive Zentrum der 

β-Sekretase gerichtet sind. Eine weitere Herausforderung stellt die zerebrale 

Verfügbarkeit eines solchen Inhibitors dar. Dieser muss die Blut-Hirn-Schranke 

überwinden können und ausreichend hohe zerebrale Konzentrationen erreichen.  

Ursache für die auffälligen Phänotypen der BACE1-/- Mäuse ist unter anderem eine 

abnormale NRG1/ErbB-Rezeptor-Signaltransduktion infolge gestörter proteolytischer 

Prozessierung von NRG1 (Hu et al. 2006, Willem et al. 2006, Hu et al. 2008, Savonenko 

et al. 2008). Der Signaltransduktionsweg von NRG1 via ErbB-Rezeptoren spielt eine 

entscheidende Rolle bei der Regulierung der Neurotransmission an GABAergen und 

glutamatergen Synapsen (Hahn et al. 2006, Li et al. 2007, Liu et al. 2007, Woo et al. 

2007). Sowohl das glutamaterge als auch das GABA-System sind an der Pathogenese der 

Schizophrenie beteiligt (Hahn et al. 2006, Woo et al. 2007). Da NRG1 zudem eines der 

Gene ist, welche mit einem erhöhten Risiko für Schizophrenie assoziiert sind (Stefansson 

et al. 2002) und sowohl NRG (+/-) als auch BACE1-/- Mäuse schizophrenie-ähnliche 

Eigenschaften aufweisen, lässt dies auf eine Beteiligung der BACE1 abhängigen 

NRG1/ErbB4-Signaltransduktion bei der Pathogenese der Schizophrenie schließen und 

verdeutlicht gleichzeitig wie heikel sich die vollständige Inhibition von BACE1 gestalten 

kann (Savonenko et al. 2008).  

 Neuregulin 1.6.
Für die klinische Anwendung oben genannter Therapieansätze ist die Kenntnis weiterer 

Substrate der für die AD-Pathogenese verantwortlichen Sekretasen erforderlich. Unter 

Kenntnis dieser Substrate und ihrer physiologischen Eigenschaften können potentielle 

schwerwiegende Nebenwirkungen, die in Folge von Inhibition bzw. Aktivierung ihrer 

Sekretasen resultieren, bereits im Vorfeld erkannt und die Therapieansätze 

dementsprechend modifiziert werden. Für die Prozessierung von Neuregulin (NRG) 

scheint nicht nur eine dieser Sekretasen, sondern sowohl die α-, als auch die β-Sekretase 

und der γ-Sekretasekomplex verantwortlich zu sein.  

Neureguline stellen eine Familie strukturell verwandter Wachstumsfaktoren dar, deren 

Mitglieder durch vier verschiedene Gene kodiert werden (NRG1 - 4) (Holmes et al. 1992, 

Wen et al. 1992, Falls et al. 1993, Marchionni et al. 1993, Carraway et al. 1997, Zhang et 

al. 1997). Während über die Funktionen von NRG2 - 4 nur wenig bekannt ist, hat NRG1 

eine besondere Bedeutung für die Entwicklung des zentralen und peripheren 

Nervensystems sowie für die Kardiogenese. NRG1 weist zudem eine Assoziation mit 

einigen Erkrankungen auf, im Besonderen der Schizophrenie und dem Mammakarzinom 
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(Yuste et al. 2005, Mei und Xiong 2008). Die biologischen Effekte der NRGs werden 

über Rezeptor-Tyrosin-Kinasen der ErbB-Rezeptor-Familie vermittelt. Da die meisten 

NRGs jedoch als membrangebundene Vorläuferproteine (Pro-NRG) synthetisiert werden, 

erfordert die Freisetzung ihrer funktionell aktiven Domäne ihre proteolytische 

Prozessierung (Burgess et al. 1995, Loeb und Fischbach 1995, Montero et al. 2000, Wang 

et al. 2001, Falls 2003 a, Falls 2003 b, Willem et al. 2006, Mei und Xiong 2008). 

NRG1 und NRG2 sind eng miteinander verwandte Proteine, wohingegen NRG3 und 

NRG4 nur geringe Homologie zu NRG1 aufweisen (Buonanno und Fischbach 2001). Nur 

für NRG1 und NRG2 sind verschiedene Isoformen bekannt (Garratt et al. 2000). Infolge 

unterschiedlicher Promotoren und alternativen Spleißens der mRNA existieren für NRG1 

sechs verschiedene Typen und über 31 Isoformen mit gewebespezifischer Expression 

(Falls 2003 b, Steinthorsdottir et al. 2004, Mei und Xiong 2008). Ihrer unabhängigen 

Entdeckung durch verschiedene Arbeitsgruppen in den 90er Jahren verdanken sie die 

Vielfalt ihrer Namen wie ARIA (Acetylcholine receptor inducing activity) (Falls et al. 

1993), GGF (glial growth factor) (Goodearl et al. 1993, Marchionni et al. 1993) oder 

Heregulin (Holmes et al. 1992), NDF (neu differentiation factor) (Peles et al. 1992, Wen 

et al. 1992) und SMDF (sensory and motor neuron derived factor) (Ho et al. 1995). 

 Funktionen von Neuregulin 1.6.1.

Zum Verständnis der Funktionen von Neuregulin haben vor allem Deletionsstudien 

beigetragen mit gezielten Mutationen des NRG1-Gens. Sie weisen auf essentielle 

Funktionen von NRG1 während der embryonalen Entwicklung hin. So sterben Typ I 

NRG1-„Knockout“-Mäuse an Tag 10.5 ihrer Embryogenese aufgrund einer gestörten 

ventrikulären Trabekelbildung und einer mangelnden Kardiomyozytendifferenzierung. 

Zudem ist die Bildung ihrer kranialen Ganglien und des sympathischen Nervensystems 

gestört (Meyer und Birchmeier 1995, Kramer et al. 1996, Erickson et al. 1997, Meyer et 

al. 1997, Britsch et al. 1998, Liu et al. 1998). Typ I NRG1 reguliert ferner die Expression 

der GABA-Rezeptoren im ZNS und ist für die Induktion der Acetylcholin-Rezeptoren an 

neuromuskulären Synapsen verantwortlich (Falls et al. 1993, Fischbach und Rosen 1997, 

Rieff et al. 1999). 

Typ III NRG1 kommt eine große Bedeutung bei der Myelinisierung des peripheren 

Nervensystems (PNS) zu. So ist das Shedding von Typ III NRG1 essentiell für die 

Entwicklung von Schwannzellen und ist zudem verantwortlich für die Dicke der 

Myelinscheide peripherer Nerven (Garratt et al. 2000, Michailov et al. 2004, Taveggia et 

al. 2005, Willem et al. 2006, Brinkmann et al. 2008).  
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 Ausgewählte Funktionen von NRG1 1.6.1.1.

Organ Funktion Effekt Referenzen 

ZNS & PNS 

Neuronale Migration 

Migration von: 
zerebralen kortikalen Neuronen,  
sympathischen Neuronen,  
Kleinhirn-Körnerzellen, 
GABA-ergen Interneuronen 

 
a) 
 
 

Neuronales Überleben 
Überleben von sensorischen und motorischen 
Neuronen während der Synaptogenese 

b) 

Myelinisierung 

Überleben und Differenzierung von 
Neuralleistenzellen zu Gliazellen 

Proliferation, Differenzierung und Überleben von 
Schwannzellen 

Regulierung der Myelinisierung des PNS     

 
 
c) 
 
 

in vitro: Differenzierung, Proliferierung, Überleben 
von Oligodendrozyten und Myelinisierung durch 
Oligodendrozyten 

in vivo: Myelinisierung des ZNS durch 
Oligodendrozyten kontrovers diskutiert  

 
 
d) 

synaptische Plastizität 

ZNS: 
Verhindert Induktion und Expression von LTP an 
CA1-Synapsen im Hippocampus 

Regulation von Neurotransmitter-Rezeptoren (NMDA, 
GABA, neuronale nikotinerge Acetylcholin-
Rezeptoren)  

Stimulierung der GABA-Freisetzung   

Stabilisierung von AMPA-Rezeptoren 

 
 
 
e) 

Neuromuskuläre Synapse: 
Induktion der Acetylcholin- Rezeptor-Synthese 
(ARIA) 

Synapsenbildung und -erhaltung  

f) 

Herz 

Kardiogenese 
Entwicklung von ventrikulären Trabekeln, des AV-
Septums und der Herzklappen sowie des Erregungs-
Leitungssystems 

g) 

Funktion beim adulten  
Herzen 

Wachstum, Reparatur und Fortbestehen von adulten 
Kardiomyozyten 

h) 

Mamma Reifung Reguliert die epitheliale Proliferation und 
lobuloalveoläre Entwicklung während 
Schwangerschaft und Laktation 

i) 

Lunge Genese Entwicklung des Pulmonalepithels k) 

a) (Anton et al. 1997, Rio et al. 1997, Britsch et al. 1998, Flames et al. 2004) 
b) (Wolpowitz et al. 2000) 

c) (Shah et al. 1994, Trachtenberg und Thompson 1996, Meyer et al. 1997, Jessen und Mirsky 1998, Garratt et al. 
2000, Wolpowitz et al. 2000, Michailov et al. 2004, Jessen und Mirsky 2005, Hu et al. 2006, Willem et al. 2006)   
d) (Canoll et al. 1996, Fernandez et al. 2000, Calaora et al. 2001, Park et al. 2001, Hu et al. 2006, Brinkmann et al. 
2008, Taveggia et al. 2008) e)(Ozaki et al. 1997, Yang et al. 1998, Rieff et al. 1999, Huang et al. 2000, Liu et al. 2001, Kwon et al. 2005, Chang 
und Fischbach 2006, Li et al. 2007, Woo et al. 2007, Hancock et al. 2008, Pitcher et al. 2008)  

f) (Falls et al. 1993, Fischbach und Rosen 1997, Wolpowitz et al. 2000, Falls 2003 b) 
g) (Meyer und Birchmeier 1995, Kramer et al. 1996, Erickson et al. 1997, Rentschler et al. 2002) 

h) (Zhao et al. 1998) 
i) (Li et al. 2002) 

k) (Patel et al. 2000) 
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 Struktur und Nomenklatur der NRG1-Isoformen 1.6.2.

Die meisten der NRG1-Isoformen sind membrangebundene Wachstumsfaktoren, die aus 

einer variablen N-terminalen Sequenz, der EGF-ähnlichen Domäne, einer konservierten 

Transmembrandomäne und einer C-terminalen zytoplasmatischen Domäne bestehen. 

Basierend auf der Struktur ihrer N-terminalen Sequenz können die NRG1-Isoformen in 

die Typen I - VI eingeteilt werden.  

 

 

 

 

Abbildung modifiziert nach Mei und Xiong  Nat. Rev. Neuroscience 9 (2008) 437-52 

 

Abb. 6: NRG1-Isoformen. A) Darstellung der Exons von Typ I - VI NRG1. Diese kodieren für die 

spezifische N-terminale Sequenz von Typ I - VI NRG1, die Ig-ähnliche Domäne, die „spacer“-Region (sp), 

die EGF-ähnliche Domäne, die juxtamembranäre Region („Stalk“), die Transmembrandomäne (TMc), 

sowie für die zytoplasmatische Domäne. B) Darstellung der Exons und deren Kombinationsmöglichkeiten 

durch Alternatives Spleißen. Die NRG1-Isoformen unterscheiden sich aufgrund Transkription 

unterschiedlicher Promotoren des NRG1-Gens sowie aufgrund Alternativen Spleißens. Die NRG1-Typen I 

-VI unterscheiden sich in der Struktur ihrer N-terminalen Sequenz, welche bei Typ III NRG1 zudem eine 

cysteinreiche Domäne (CRD) enthält. Typ I, II, IV und V NRG1 besitzen zwischen der N-terminalen 

Sequenz und der EGF-ähnlichen Domäne eine Ig-ähnliche Domäne und können zudem die darauf folgende 

„spacer“-Region besitzen. Die N-terminale Sequenz von Typ III und VI NRG1 ist dagegen direkt mit der 

EGF-ähnlichen Domäne verbunden. Alle biologisch aktiven NRGs besitzen eine EGF-ähnliche Domäne (α 

oder β), an welche sich die heterogene juxtamembranäre Region („Linker“ oder „Stalk“-Region) 

anschließt. Bei dieser werden die Sequenzen 1, 3 und 4 unterschieden. Fehlt diese Sequenz (Isoform 2), so 

schließt die EGF-ähnliche Domäne direkt an die Transmembrandomäne (TMc oder TMD) an. Die TMD ist 

bei allen NRG1-Isoformen konserviert. Bei der variablen zytoplasmatischen Domäne werden drei 

unterschiedlich lange Typen (a, b, c) unterschieden, wobei „a“ für die längste, „b“ für die mittlere und „c“ 

für die kürzeste zytoplasmatische Domäne stehen. Die häufigste im ZNS exprimierte Isoform besitzt eine 

β-EGF-ähnliche Domäne und eine zytoplasmatische Domäne vom Typ „a“.  
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Als besonderes Charakteristikum besitzt die N-terminale Sequenz von Typ III NRG1 eine 

cysteinreiche Domäne (CRD), welche aufgrund ihrer hydrophoben Sequenzen vermutlich 

als zweite TMD dient. Die EGF-ähnliche Domäne von Typ III NRG1 ist innerhalb des 

extrazellulären Loops zwischen den beiden TMD lokalisiert (Vgl. Abb. 11). Die NRG1-

Typen I, II, IV und V besitzen im Anschluß an ihre N-terminale Sequenz eine 

Immunglobulin (Ig)-ähnliche Domäne, sowie eine juxtamembranäre Region mit O-

Glykosylierungen. Dagegen ist die N-terminale Sequenz von Typ III und Typ VI NRG1 

direkt mit der EGF-ähnlichen Domäne verbunden (Wen et al. 1994, Falls 2003 a, Falls 

2003 b, Mei und Xiong 2008).  

Die EGF-ähnliche Domäne ist alleine ausreichend für die Aktivierung der ErbB-

Rezeptoren (Yarden und Sliwkowski 2001) und weist sechs hoch konservierte 

Cysteinreste auf, welche drei Disulfidbrücken ausbilden (Massagué 1990). Aufgrund von 

Unterschieden  zwischen ihrem fünften und sechsten Cysteinrest  existieren eine α- und 

β-EGF-Isoform (Holmes et al. 1992). Zwischen dem sechsten Cysteinrest der EGF-

ähnlichen Domäne und der TMD befindet sich die juxtamembranäre Region („Linker“ 

oder „Stalk“), welche aufgrund der Insertion einer von drei verschiedenen Sequenzen 

(Isoform 1, 3, 4) ebenfalls variieren kann. Bei der Isoform 2 fehlt eine solche Sequenz, 

sodass hier die EGF-ähnliche Domäne direkt an die TMD anschließt. Für α-NRG1 

existieren nur die Isoformen 1 oder 2, für β-NRG1 dagegen alle vier Isoformen (NRG1-

β1-β4). NRG1-β3 endet kurz nach der EGF-ähnlichen Domäne, sodass diese Form als 

einzige keine TMD besitzt und als lösliches Pro-Protein generiert wird (Holmes et al. 

1992, Wen et al. 1994, Burgess et al. 1995, Falls 2003 b). Auf die hochkonservierte TMD 

folgt die zytoplasmatische Domäne, welche sich hinsichtlich ihrer Länge unterscheidet 

und die Typen a, b und c bildet, wobei „a“ für die längste, „b“ für die mittlere und „c“ für 

die kürzeste zytoplasmatische Domäne stehen (Wen et al. 1994, Burgess et al. 1995, Falls 

2003 b).  

 Typ I NRG1-β-Isoformen in der vorliegenden Arbeit 1.7.
Die Analyse der proteolytischen Prozessierung von Typ I NRG1 konzentriert sich in 

dieser Arbeit auf die am stärksten neuronal exprimierten Typ I NRG1-Isoformen. Diese 

besitzen eine β-EGF-ähnliche Domäne und eine zytoplasmatische Domäne vom Typ „a“ 

(Wang et al. 2001, Falls 2003 b). Typ I NRG1-β1 ist dabei die Isoform mit der höchsten 

neuronalen Expression (Wen et al. 1994, Wang et al. 2001, Falls 2003 b). Die Typ I 

NRG1-Isoformen β1, -β2 und -β4 werden als Typ I Transmembranproteine synthetisiert 

und unterscheiden sich lediglich in der Sequenz ihrer juxtamembranären Region (Abb. 7; 
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Vgl. 1.6.2.). In der vorliegenden Arbeit wurden ausschließlich Typ I NRG1-β-Isoformen 

mit einer zytoplasmatischen Domäne vom Typ „a“ verwendet. 

 

 

Abb. 7: Schematische Darstellung der in dieser Arbeit verwendeten Typ I NRG1-β-Isoformen.  

Verwendet wurden Typ I NRG1-Isoformen (Ratte) mit einer β-EGF-ähnlichen Domäne und einer 

zytoplasmatischen Domäne vom Typ „a“. Typ I NRG1-β1, Typ I NRG1-β2 und Typ I NRG1-β4 werden 

als Typ I Transmembranproteine synthetisiert. Sie unterscheiden sich in der Sequenz ihrer 

juxtamembranären Region („Linker“). Die juxtamembranäre Region ist in der Schemazeichnung blau 

umrahmt.  

Darunter dargestellt sind die verschiedenen Sequenzen der β-EGF-ähnlichen Domäne. Die jeweilige 

juxtamembranäre Region ist  unterstrichen. Die spezifische Sequenz der β1-Isoform ist analog der 

Schemazeichnung rosa und die der β4-Isoform grün hervorgehoben. Die β2-Isoform besitzt keine 

spezifische  β2-Insertion. 

 

 Regulierte intramembranäre Proteolyse von Typ I NRG1 1.8.
Die EGF-ähnliche Domäne ist die biologisch aktive Domäne aller NRG1-Moleküle und 

alleine ausreichend für die Aktivierung der ErbB-Rezeptoren (Vgl. 1.9.). Die 

Signaltransduktion von Typ I NRG1 erfolgt dabei parakrin (Falls 2003 a) (Vgl. 1.9.2.4). 

Um eine parakrine Signaltransduktion zu ermöglichen, ist die Freisetzung der biologisch 

aktiven Domäne notwendig. Dies erfolgt durch proteolytische Prozessierung innerhalb 

der juxtamembranären Region mit konsekutiver Freisetzung der nun löslichen 

Ektodomäne (Shedding) (Burgess et al. 1995, Loeb und Fischbach 1995, Montero et al. 

2000, Wang et al. 2001, Falls 2003 a, Falls 2003 b, Mei und Xiong 2008). 

SHLVKCAEKETFCVNGGECFMVKDLSNPSRYLCKCPNEFTGDRCQNYVMASFYKHLGIEFMEAEELYQKR-------------------------------------    
SHLVKCAEKETFCVNGGECFMVKDLSNPSRYLCKCPNEFTGDRCQNYVMASFYKAEELYQKR----------------------------------------------------    
SHLVKCAEKETFCVNGGECFMVKDLSNPSRYLCKCPNEFTGDRCQNYVMASFYMTSRRKRQETEKPLERKLDHSLVKESKAEELYQKR 
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Abb. 8: Regulierte intramembranäre Proteolyse von Typ I NRG1-β. Die Prozessierung des maturierten 

Typ I NRG1-β (110 kDa) innerhalb der juxtamembranären Region (Shedding) generiert ein lösliches 

Fragment (NTF) mit einem Molekulargewicht von 45 kDa, sowie ein membrangebundenes 

zytoplasmatisches Fragment (CTF) mit einem Molekulargewicht von 65 kDa. Die weitere Prozessierung 

des NTF zwischen EGF-ähnlicher Domäne und Ig-ähnlicher Domäne führt zur Freisetzung der biologisch 

aktiven EGF-ähnlichen Domäne. Die Freisetzung der ICD (intrazelluläre Domäne) erfolgt durch Schnitt 

innerhalb der Transmembrandomäne des zytoplasmatischen Fragments.  

 

Die proteolytische Prozessierung von NRG1 erfolgt analog der Prozessierung von βAPP 

(Abb. 3; Vgl. 1.2.2.2.) zunächst innerhalb der juxtamembranären Region (Abb. 8). Die 

Schnittprodukte des maturierten Typ I NRG1-β mit einem Molekulargewicht von 110 

kDa sind dabei das membrangebundene zytoplasmatische Fragment (C-terminales 

Fragment, CTF) mit einem Molekulargewicht von 65 kDa und das lösliche N-terminale 

Fragment (NTF) mit einem Molekulargewicht von 45 kDa, welches die β-EGF-ähnliche 

Domäne enthält (Abb. 8, Abb. 13, Abb. 17) (Loeb et al. 1998, Wang et al. 2001, Falls 

2003 b). Ein weiterer Prozessierungsschritt mit Schnitt N-terminal der EGF-ähnlichen 

Domäne würde zur Freisetzung der EGF-ähnlichen Domäne (7 kDa) führen. Ein solcher 
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Schnitt wurde bisher erst durch eine Arbeitsgruppe beschrieben (Loeb und Fischbach 

1995). 

Im Anschluss an das Shedding erfolgt in Analogie zur βAPP-Proteolyse (Vgl. 1.2.2.2.) 

die weitere Prozessierung des membranständigen NRG1-CTF innerhalb von dessen 

Transmembrandomäne durch den γ-Sekretase-Komplex mit konsekutiver Freisetzug der 

intrazellulären Domäne (NRG1-ICD) ins Zytosol. Die NRG1-ICD gelangt daraufhin in 

den Nukleus, wo diese vermutlich als Transkriptionsfaktor wirkt (Bao et al. 2003) (Vgl. 

1.9.2.3.). 

 NRG/ErbB-Rezeptor-Signaltransduktion 1.9.

 ErbB-Rezeptoren 1.9.1.

Die Signaltransduktion aller Mitglieder der NRG-Familie erfolgt über die ErbB-

Rezeptoren. Vier Mitglieder gehören zur dieser Familie der Rezeptor-Tyrosin-Kinasen: 

der EGF-Rezeptor (ErbB1, HER1), ErbB2 (HER2/neu), ErbB3 (HER3) und ErbB4 

(HER4) (Schlessinger 2002). Der ErbB2-Rezeptor besitzt keinen Liganden, hat jedoch 

eine aktive Tyrosin-Kinase, im Gegensatz zu ErbB3. ErbB3 bindet zwar NRG, weist aber 

keine Tyrosin-Kinase-Aktivität auf, sodass die Ausbildung von Heterodimeren mit den 

anderen ErbB-Rezeptoren für ihre Aktivität erforderlich ist. ErbB2 potenziert als 

Korezeptor die Signale der Dimerisierungspartner (Burden und Yarden 1997, Olayioye et 

al. 2000, Mei und Xiong 2008). 

NRG1 und NRG2 sind Liganden der ErbB3- und ErbB4-Rezeptoren, wobei NRG1 

hauptsächlich an ErbB4 bindet, der als einziger Rezeptor physiologischerweise 

Homodimere bilden kann. NRG3 und NRG4 stimulieren nur den ErbB4-Rezeptor und 

nicht ErbB3  (Carraway et al. 1997, Zhang et al. 1997, Harari et al. 1999, Hobbs et al. 

2002). ErbB1 ist zwar ein Rezeptor vieler Wachstumsfaktoren, jedoch nicht für NRG, 

kann aber als Dimerisierungspartner im NRG-ErbB-Signaltransduktionsweg dienen (Mei 

und Xiong 2008). 

 Signaltransduktion 1.9.2.

 Klassischer vorwärtsgerichteter Pathway 1.9.2.1.

Die Bindung von NRG1 an die extrazelluläre Domäne der monomerischen Rezeptor- 

Tyrosin-Kinasen ErbB3 oder ErbB4 induziert deren Dimerisierung zu Homo-oder 

Heterodimeren. Die Dimerisierung wiederum aktiviert die Autophosphorylierung von 

Tyrosinresten ihrer zytoplasmatischen Domäne, wobei die phosphorylierten Reste als 

Bindungsstelle von Signalmolekülen dienen. Die auf diese Weise aktivierten 



Einleitung 

 

34  

intrazellulären Signalkaskaden gipfeln via Aktivierung von transkriptionellen 

Programmen in den zellulären Antworten wie Proliferation, Differenzierung, Migration, 

Adhäsion oder Apoptose-Inhibition (Burden und Yarden 1997, Olayioye et al. 2000, 

Yarden und Sliwkowski 2001, Schlessinger 2002, Falls 2003 a, Mei und Xiong 2008). 

 

Abb. 9: Klassischer vorwärtsgerichteter Pathway. ErbB-Rezeptoren sind Typ I Transmembranproteine 

mit einer extrazellulären Domäne, einer TMD, einer kurzen intrazellulären juxtamembranären Region, 

einer intrazellulären Tyrosin-Kinase-Domäne (violett dargestellt) sowie einer kurzen zytoplasmatischen 

Domäne. Bindung von NRG1-EGF resultiert in der Dimerisierung  von ErbB-Rezeptoren zu Homo- bzw. 

Heterodimeren. (A) ErbB2 & ErbB3-Monomere. ErbB2 stellt keinen Rezeptor für NRG1-EGF dar, 

besitzt aber eine aktive Tyrosin-Kinase-Domäne. ErbB3 bindet NRG1-EGF, besitzt aber eine 

beeinträchtigte Tyrosin-Kinase-Domäne. Somit müssen beide Heterodimere ausbilden, um ihre Aktivität 

entfalten zu können. (B) Dimerisierung & Autophosphorylierung. Dimerisierung  der ErbB-Rezeptoren 

resultiert in der Phosphorylierung C-terminaler Tyrosinreste durch die Tyrosin-Kinase. (C) Aktivierung 

von Translation und Transkription. Die phosphorylierten Tyrosinreste dienen als Bindungsstellen für die 

Adaptorproteine Grb2 und Shc, welche den Ras-MEK-ERK-Pathway aktivieren, sowie für die PI3K-

Untereinheit p85, welche den PI3K-Pathway aktiviert. Letztendlich resultieren diese Pathways in der 

Aktivierung von Transkription und Translation. 

 

 Nicht-klassischer vorwärtsgerichteter Pathway 1.9.2.2.

Kontrovers wird die Signaltransduktion infolge proteolytischer Prozessierung des ErbB4-

Rezeptors nach Ligandenbindung diskutiert. Während Mei et al. annehmen, dass die dem 

TACE-Schnitt nachfolgende Prozessierung durch die γ-Sekretase der Generierung der 

ErbB4-ICD als Transkriptionsfaktor in der NRG-bindenden Zelle dient, sehen Longart et 
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al. im Shedding durch TACE lediglich eine Regulierung der ErbB4-Expression auf der 

Zelloberfläche (Longart et al. 2007, Mei und Xiong 2008). 

 

Abb. 10: Nicht klassischer vorwärtsgerichteter Pathway. Nach Bindung von NRG1 an den ErbB4-

Rezeptor erfolgt das Shedding des Rezeptors durch TACE (A). Die dem TACE-Schnitt nachfolgende 

intramembranäre Proteolyse des C-terminalen Fragments durch den γ-Sekretase-Komplex (B) generiert die 

ErbB4-ICD, welche als Transkriptionsfaktor in der NRG1 bindenden Zelle dient (C). 

 

 Retrograder und bidirektionaler Pathway 1.9.2.3.

NRG1 scheint nicht nur die Funktion eines Liganden sondern auch die eines Rezeptors 

auszuüben und über diesen retrograden Signalweg sowohl die Genexpression im 

präsynaptischen Neuron als auch via Aktivierung intrazellulärer Signalkaskaden u.a. den 

Einbau präsynaptischer nikotinerger Acetylcholin-Rezeptoren (nAchR) zu kontrollieren. 

Der NRG1-ErbB-Komplex überträgt somit sowohl vorwärts als auch retrograd Signale, 

sodass NRGs Moleküle mit bidirektionaler Signaltransduktion sind (Bao et al. 2003, 

Hancock et al. 2008). Die retrograde Signaltransduktion erfolgt dabei auf zwei 

unterschiedlichen Wegen. Zum einen führt die proteolytische Prozessierung von Typ III 

NRG1 durch den γ-Sekretase-Komplex zur Freisetzung der intrazellulären Domäne 

(ICD) mit konsekutiver Translokation der ICD in den Nukleus, wo diese vermutlich als 

Transkriptionsfaktor wirkt (Bao et al. 2003). Zum anderen kann ErbB4 bzw. die lösliche 
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Ektodomäne von ErbB4 als Ligand von Typ III NRG1 bzw. Typ I NRG1 dienen, wobei 

diese Interaktion zur Aktivierung intrazellulärer Signalkaskaden der NRG1 

exprimierenden Zelle führt (Mei und Xiong 2008). 

 

 

Abb. 11: Retrograde Signaltransduktion. (A) Die Interaktion des ErbB2/ErbB4-Rezeptor-Dimers mit 

Typ III NRG1 resultiert in der Freisetzung der Typ III NRG1-ICD mit konsekutiver Translokation in den 

Nukleus, wo diese als Transkriptionsfaktor dient. (B) ErbB4 dient als Ligand von NRG1, in der 

vorliegenden Abbildung von Typ I NRG1, mit konsekutiver Aktivierung von intrazelullären 

Signalkaskaden der NRG1 exprimierenden Zelle. 
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 Parakrine und juxtakrine Signaltransduktion 1.9.2.4.

Die NRG1-Isoformen unterscheiden sich in ihren Signaltransduktionseigenschaften. 

Einige scheinen dabei eher an der parakrinen, andere an der juxtakrinen 

Signalübertragung beteiligt zu sein. Typ I NRG1 und wahrscheinlich auch Typ II NRG1 

übertragen ihre Signale parakrin, indem ihre biologisch aktive Domäne durch 

proteolytische Prozessierung ihrer Ektodomäne (Shedding) freigesetzt wird, um an die 

ErbB-Rezeptoren der Zielzelle binden zu können (Burgess et al. 1995, Loeb und 

Fischbach 1995, Montero et al. 2000, Wang et al. 2001, Falls 2003 a, Falls 2003 b, Mei 

und Xiong 2008). 

Typ III NRG1 werden sowohl juxtakrine als auch parakrine 

Signaltransduktionseigenschaften zugeschrieben (Wang et al. 2001, Leimeroth et al. 

2002, Falls 2003 a, Liu et al. 2007, Fleck et al. 2013). Die proteolytische Aktivierung von 

Typ III NRG1 durch Schnitt innerhalb der juxtamembranären Region generiert ein 

membrangebundenes Fragment, welches die EGF-ähnliche Domäne enthält. Es wird 

angenommen, dass prozessiertes membrangebundenes Typ III NRG1 juxtakrin die ErbB-

Rezeptoren auf benachbarten Zellen aktiviert (Falls 2003 a, Willem et al. 2009). Aktuell 

konnte gezeigt werden, dass durch einen zweiten Schnitt die EGF-ähnliche Domäne 

freigesetzt wird und dass diese via parakriner Signaltransduktion ErbB3-Rezeptoren 

aktiviert (Fleck et al. 2013). 

 

 

 

Abb. 12: Parakrine und juxtaktakrine Signaltransduktion. (A) Rezeptor-Liganden-Paar. (B) Parakrine 

Signaltransduktion. Nach proteolytischer Freisetzung eines membrangebundenen Liganden bindet dieser an 

einen Rezeptor der Zielzelle. (C) Juxtakrine Signaltransduktion. Membrangebundener Ligand bindet einen 

Rezeptor der Zielzelle. 
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  Zielsetzung 1.10.
Vielversprechende Therapieansätze für die Alzheimer Erkrankung stammen unter 

anderem aus der Molekularen Medizin. Sie basieren hauptsächlich auf der Amyloid-

Hypothese und beinhalten die Inhibition der β- und γ-Sekretase-Aktivität  sowie die 

Aktivierung der α-Sekretase ADAM10. Die Inhibition des γ-Sekretase-Komplexes 

erweist sich jedoch als problematisch, da neben der βAPP-Prozessierung auch die 

Prozessierung der weiteren γ-Sekretase-Substrate beeinflusst wird. Lange Zeit galt die 

Inhibition der β-Sekretase BACE1 als optimale Alternative. Doch auch für BACE1 

wächst die Liste physiologisch relevanter Substrate und es konnte inzwischen gezeigt 

werden, dass BACE1-„Knockout“-Mäuse einen veränderten Phänotyp aufweisen. 

Nach dem bisherigen Stand der Erkenntnis ist die Stimulierung der α-Sekretase-Aktivität 

ein viel versprechender Therapieansatz, da diese in einer verminderten Aβ-Synthese 

resultiert und Überexpression der α-Sekretase ADAM10 im Tiermodell sogar kognitive 

Defizite verbessert. Es ist jedoch zu bedenken, dass aufgrund der Bedeutung von 

ADAM10 in der Prozessierung membrangebundener Wachstumsfaktoren die Tumorzell-

Migration und Proliferation gefördert werden könnte. Für die Einschätzung und 

Minimierung von Nebenwirkungsprofilen im Rahmen oben genannter Therapieansätze ist 

die Kenntnis weiterer Substrate dieser Sekretasen essentiell. Ein solches Substrat scheint 

Neuregulin (NRG), ein Mitglied der EGF-Familie von Wachstumsfaktoren, zu sein. 

Sowohl für BACE1 als auch für den γ-Sekretase-Komplex konnte gezeigt werden, dass 

diese Typ III NRG1 prozessieren. Neben Typ III NRG1 existiert jedoch noch eine 

Vielzahl weiterer NRG1-Typen, unter anderem das ebenfalls vor allem neuronal 

exprimierte Typ I NRG1-β. Für dieses konnte bereits die Prozessierung durch mindestens 

eine α-Sekretase nachgewiesen werden. Es stellt sich daher die Frage, ob BACE1 und der 

γ-Sekretase-Komplex sowie weitere α-Sekretasen, wie zum Beispiel ADAM10, Typ I 

NRG1-β prozessieren.  

Ziel meiner Arbeit war es daher erstens, zu klären, ob der γ-Sekretase-Komplex die 

intramembranäre Proteolyse von Typ I NRG1-β katalysiert. 

Zweitens sollte diese Arbeit untersuchen, ob BACE1 für das Shedding von Typ I NRG1-

β verantwortlich ist. Mein besonderes Interesse galt dabei der Charakterisierung der 

BACE1-Schnittstelle innerhalb der juxtamembranären Region von Typ I NRG1-β1. 

Drittens sollte diese Arbeit analysieren, ob ADAM10 das Shedding von Typ I NRG1-β 

katalysiert. 
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2. Material und Methoden 

 Geräte und Verbrauchsmaterialien  2.1.

 

 Allgemein  2.1.1.

Material Hersteller          

Analysenwaage (Analytical + 200 g - 0,0001 g)  Ohaus                               

Autoklav (Tuttnauer 3850 EL)  Systec 

Einwegauslaufpipette (25 ml, 10 ml, 5 ml)  Sarstedt   

Feinwaage (Standard 2000 g - 0,01 g)  Ohaus  

Fotometer (Smart SpecTM3000) Bio Rad 

Fotoverarbeitungsprogramm (Photoshop 5.5)  Universal Imag. Corp. Adobe 

-20 °C-Gefrierschrank AEG 

-80 °C-Gefrierschrank  Heraeus 

Heizblöcke  Stuart Scientific, NeoLab  

Kolbenhubpipetten (1 ml, 200 μl, 20 μl, 2 μl)  Gilson  

Kühlschrank (Santo)  AEG  

Kühlzentrifuge (Biofuge fresco)  Heraeus  

Magnetrührer (IKAMAG RCT basic)  IKA Labortechnik  

Mikrowelle  Bosch  

pH-Elektrode  Schott  

pH-Meter (Inolab pH Level 1)  WTW  

Pipettenspitzen (1 ml, 200 μl, 20 μl, 2 μl)  Sarstedt  

Pipettierhilfe (Accu-Jet)  Brand 

Scanner Snap Scan 1236 Agfa 

Schüttler KM2  Edmund Buhler   

Thermomixer  Eppendorf  

Tischzentrifuge Heraeus  

Vortex VF2  IKA-Labortechnik  

Mikroskop Axioskop 2 plus  Zeiss 

Wärmeschrank 37 °C (Function line)  Heraeus  

Wasseraufbereitungsanlage  Millipore  

Wasserbad  GFL  

Zentrifuge Avanti J-20 XP  Beckmann  
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 Molekularbiologische Methoden  2.1.2.

Material  Hersteller  

Drucker Geldokumentationsanlage  Mitsubishi  

Gel-Elektrophoresekammern  Peqlab  

Kamera (CCD Video Camera Module)  MS Laborgeräte  

PCR-Maschine (PTC-200)  MJ Research  

Spannungsquelle  Bio-Rad 

UV-Schirm  Intas  

 Zellkultur  2.1.3.

Material Hersteller  

Deckgläschen Marienfeld    

Einfrierboxen  Sarstedt 

Einfriergefäße (Qualifreeze) Qualilab  

Einwegpipetten, steril (2 ml, 5 ml, 10 ml, 25 ml)  Sarstedt  

Einweg-PP-Röhrchen, steril (15 ml, 50 ml)  Sarstedt  

Mikroskop (Wiloverts 10 x 4/10/20)  Hund  

N2-Tank (Chronos)  Messer Griesheim  

Poly-L-Lysin-beschichtete Zellkulturgefäße  

(24-well)  BD Biosciences  

Sterilwerkbank (Hera Safe HS12) Heraeus Instruments  

Zählkammer (Neubauer)  Optik Labor  

Zellkulturschalen (6 cm, 10 cm, 24-well, 12-well, 6-well)  Nunc  

Zell-Inkubator (Hera Cell) Heraeus, Kendro  

Zentrifuge Megafuge 1.0  Heraeus, Kendro 

 Proteinbiochemische Methoden  2.1.4.

Material  Hersteller  

Einwegküvetten (10 x 11 x  45 mm) Sarstedt 

Filmentwicklungsgerät (Curix 60)  Agfa  

Fluorchem 8900 Biozym  Alfa InnoTech 

Fotometer (Smart SpecTM 3000) Bio-Rad 

Gel-Elektrophoresekammern  Bio-Rad  

Gel Transfer Filterpapier  Schleicher & Schuell  

Messplatten Standard MA2400 (96 well) Meso Scale Discovery (MSD) 

PVDF Membran (Immobilon-P)  Millipore  

Röntgenfilme (SuperRX)  Fujifilm   
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Spannungsquelle (Powerpac 300) Bio-Rad 

Streptavidin beschichtet Mess Scale Discovery (MSD) 

Transferkammer (Mini-Trans-Blot-Kammer) Bio-Rad   

Ultrazentrifuge OptimaTM (TLA-55-Rotor) Beckmann 

Wasserbad mit Schüttelvorrichtung (1083)  GFL  

 Fluoreszenzmikroskopie 2.1.5.

Objektträger Super Frost plus Thermo 

Deckplättchen Marienfeld    

 Massenspektrometrie 2.1.6.

Massenspektrometer Voyager  Destr 4700   Applied Biosystems 

 

 

 Enzyme, Versuchssysteme (Kits), Chemikalien  2.2.

 Molekularbiologische Methoden  2.2.1.

Material  Hersteller  

Agarose NA  Amersham Biosciences  

dNTP (10 mM)  Roche  

Ethidiumbromid (50.000 x) Sigma 

NucleoSpin Extract Kit  Macherey-Nagel 

NucleoSpin Plasmid Kit  Macherey-Nagel  

QIAfilter Plasmid Maxi Kit Qiagen 

1 kb-DNA-Marker  Gibco Invitrogen Corporation  

Pwo-Polymerase (1 U/μl)  Peqlab  

10 x Pwo Polymerase Reaktionspuffer  Peqlab  

Restriktionsenzyme  MBI Fermentas / New 

England Biolabs  

SAP (1 U/μl; Shrimp Alkalische Phosphatase) Roche  

T4 DNA-Ligase (5 U/μl)  Fermentas  

T4 DNA-Ligase-Puffer  Fermentas  
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 Zellkultur  2.2.2.

Material  Hersteller  

Ampicillin  Roth  

DMEM  Invitrogen  

Dimethylsulfoxid (DMSO)  Roth  

Fetales Kälberserum (FCS)  Gibco  

G418 (Geneticin) Invitrogen  

Lipofectamine 2000  Invitrogen  

Hygromycin  Invitrogen  

Penicillin/Streptomycin (Penstrep) Gibco  

Poly-L-Lysin  Sigma   

Trypsin-EDTA (0,05 %)  Gibco  

Zeocin  Invitrogen  

 Proteinbiochemische Methoden  2.2.3.

Material  Hersteller  

Acrylamid-Bis-Lösung (Tris-Glycine-Gele)  

(37,5:1 / 40 % (w/v))  Serva  

Ammonium-Persulfat (APS)  Roche  

Anti-HA-Agarose (0,5 mg/ml) Invitrogen 

APS (Ammonium Persulfat) 10 %  Sigma 

BCA-Assay Kit Uptima, Interchim  

Bovines Serumalbumin (BSA)  Uptima, Interchim  

Brij 35 10 % Pierce 

Bromphenolblau Sigma 

ECL Western Blotting Detection Reagents  Amersham Biosciences  

Glycerol 40 % Roth 

Glycin Roth 

I-Block Tropix 

Lubrol 10 % Pierce 

β-Mercaptoethanol  Roth 

NP-40  Sigma  

Protease-Inhibitor-Mix (PI-Mix)  Sigma  

Protein-Molekulargewichtsstandard Marker (See Blue Plus 2)  Invitrogen  

SDS („sodium-dodecyl-sulfate”; Natrium-Dodecyl-Sulfat)  Calbiochem  

TEMED (N,N,N',N'-Tetramethylethylendiamin)  Merck  
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Tris  Biomol  

Triton X-100  Merck  

Tween-20  Merck  

 Fluoreszenzmikroskopie 2.2.4.

BSA   Sigma 

DABCO  Sigma 

Imersionsöl N518   Zeiss 

Moviol   Hoechst 

NGS (normal goat serum; Ziegenserum) Sigma  

Paraformaldehyd   J.T. Baker 

Saccharose  Merck    

 

 Puffer, Medien und Lösungen 2.3.
Alle Lösungen wurden mit voll entsalztem H2O angesetzt, das mit einer Milli-Q Anlage 

zur bidest. Qualität aufgereinigt wurde und einen elektrischen Widerstand >18.2 MΩ/cm 

bei 25 °C hat. Bei Prozentangaben handelt es sich um Volumenprozent, soweit keine 

anderen Angaben gemacht wurden.  

 

Tabelle 1: Übersicht über die verwendeten Puffer, Medien und Lösungen sowie 

deren Zusammensetzung  
  

Puffer  Zusammensetzung  

BACE1-NT-Puffer 50 mM NaAcetat; pH 4,4 

Blockierlösung für Immunfluoreszenz 

 

10 % NGS (normal goat serum; Ziegen-

serum) 

PBST-Puffer 

Calcium-Chlorid-Puffer 50 mM CaCl2, 10 mM Tris; pH 8,0; in dH2O 

Citrat- Puffer 15 mM Citrat;  pH 6,4 

Citrat-EDTA-Puffer 

 
15 mM Citrat;  pH 6,4  

1 mM EDTA 

I-Block (Blockierlösung für Western-Blot)  1 g I-Block 

0,1 % Tween-20  

1 %  PBS-Puffer 

dH2O 

DNA-Ladepuffer  (4 x) 30 % Glycerin  

10 mM EDTA  

0,05 % Orange G  

ECL-Blockierpuffer  PBS  

0,5 % BSA  

0,05 % Tween-20  
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Elektrophorese-Puffer (SDS-PAGE)  25 mM Tris  

0,2 M Glycin  

0,1 % SDS 

Fixierlösung 

 

 4 % Paraformaldehyd 

 4 % Saccharose  

 PBS-Puffer 

Grundmedium (Optimem; F10-Medium)  DMEM (Dulbecco´s modified Eagle´s 

Medium mit High Glucose (PAA) und L-

Glutamin)  

10 % fetales Kälberserum (FCS, PAA)  

1 % PEN/Strep (Penicillin/Streptomycin 

5000 U/ml/5 mg/ml) 

Hitzeinaktiviertes Grundmedium (F10 HI-

Medium) 

Grundmedium, 1 Stunde bei 60 °C inkubiert, 

um darin enthaltene Phosphatasen zu 

inaktivieren. 

Lämmli-Puffer (4 x SDS-Probenpuffer) 0,25 M Tris; pH 6,8 

8 % SDS 

40 % Glycerol  

10 % β-Mercaptoethanol  

0,01 % Bromphenolblau 

LB-Ampicillin-Medium  

(Low Salt Luria-Bertani Medium) 

 

  

1 % Trypton  

0,5 % Hefeextrakt  

0,5 % NaCl; pH 7,0  

(autoklaviert)  

100 µg/ml; Ampicillin 

(Selektionsantibiotikum) 

Moviol-Lösung 15 % Moviol  

50 mg/ml DABCO in dH2O 

Natrium-Acetat-Puffer  50 mM Natrium-Acetat; pH 4,5 

Optimem-Medium Siehe Grundmedium 

PBS (steril) 140 mM NaCl  

10 mM Na2HPO4 

1,75 mM KH2PO4; pH 7,4  

(autoklaviert)  

PBST  PBS  

0,05 % Tween-20  

Primärantikörper  Antikörper in entsprechender Konzentration 

(Vgl. 2.4., Tabelle 2) 

0,25 % (w/v) BSA  

0,05 % (w/v) Natriumazid  

in PBST  

Poly-L-Lysin-Lösung  100 μg/ml Poly-L-Lysin in sterilem PBS-

Puffer 

RF1 100 mM KCl 

50 mM MnCl2-4H2O 

30 mM Kaliumacetat 

10 mM CaCl2-2 H2O 

15 % Glycerin 

pH 5,8 (Essigsäure) 
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RF2 10 mM MOPS; pH 6,8 

10 mM KCl 

75 mM CaCl2-2 H2O 

15 % Glycerin 

pH 6,8 (NaOH) 

RIPA-Lyse-Puffer 
 

 

20 mM Tris; pH 7,4 

150 mM NaCl,  

1 % NP40 

0,05 % Triton X-100  

0,5 % Na-Desoxycholat 

0,5 M EDTA 

Sammelgel-Puffer (4 x „Upper Tris“) 0,5 M Tris-HCl;  pH 6,8  

0,4 % (w/v) SDS  

SEAP-Puffer  0,1 M Glycin  

1 mM MgCl2 

1 mM ZnCl2 

pH 10,4 (mit NaOH eingestellt)  

Selektionsmedium Grundmedium 

Selektionsantibiotika  

 Geneticin (G418): 200 µg/ml 

 Zeocin: 200 µg/ml 

 Hygromycin: 150 µg/ml 

STET-Puffer 

 

1 M Tris; pH 7,0 

1 M NaCl  

0,5 M EDTA 

10 % SDS 

1 % Triton X-100 

STEN-Puffer  0,05 M Tris-HCl; pH 7,6  

0,15 M NaCl  

2 mM EDTA  

0,2 % NP-40 

STEN-NaCl-Puffer 0,05 M Tris-HCl; pH 7,6  

0,15 M NaCl  

2 mM EDTA  

0,2 % NP-40 

175 mM NaCl  

STEN-SDS  STEN-Puffer mit 0,1 % SDS 

TAE-Puffer  0,04 M Tris-Acetat 

1 mM EDTA 

TB-Puffer  10 mM HEPES  

15 mM CaCl2 

250 mM KCl  

55 mM MnCl2 

pH 6,7 (mit KOH eingestellt)  

steril filtriert 

TBST-Puffer 0,3 M NaCl 

10 mM Tris-HCl; pH 7,6 

0,3 % Triton X-100 

Tris-Glycin-Puffer (Transferpuffer)  25 mM Tris  

0,2 M Glycin  
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Tris-Glycin-SDS-Puffer 25 mM Tris 

0,2 M Glycin 

0,1 % SDS 

Trenngel-Puffer (4 x „Lower Tris“) 1,5 M Tris-HCl; pH 6,8 

0,4 % SDS 

 

 Antikörper 2.4.
 

Tabelle 2: Übersicht über die in Western-Blot-Analysen und Immunfluoreszenz-

Analysen verwendeten Primärantikörper  

 

 
1 
Immunchemischer Nachweis in Immunpräzipitationen 

2
Immunchemischer Nachweis von Proteinen in Western-Blot-Analysen 

3
Immunzytologischer Nachweis von Proteinen in der Immunfluoreszenz 

 4
3F10 ist gegen das HA-Peptid mit der Sequenz YPYDVDYA des Hämagglutinin-Proteins des humanen  

Influenza-Virus gerichtet. Da dieser Ak bereits HRP-gekoppelt ist, wird kein Sekundärantikörper benötigt 

 

 

 

 

 

 

 

 

 

Antikörper Epitop Verdünnung Wirtsspezies Quelle Applikation 

Anti-HA-

Agarose 

HA-tag  

1:100 

 

Ziege, 

polyklonal, 

konjugiert an 

Agarose 

Invitrogen IP
1
 

β-Aktin β-Aktin 1:1000 Maus,  

monoklonal 

 

 Sigma WB
2
 

6687 β-APP-C-

Terminus 

(AS 676-695) 

1:1000 Kaninchen, 

polyklonal 

 

 C. Haass WB
2
 

1736 βAPP695 

(AS 595-611) 

1:600 Kaninchen D.J.Selkoe 

(Haass 

1992b) 

WB
2
 

Sc-348 NRG1a-CT-

Terminus 

(AS 

NQDPIAV) 

 

1:500 
3
 in IF 

Kaninchen Santa 

Cruz 

WB
2 

IF
3
 

7520 BACE1-C-

Terminus 

(AS 482-501) 

1:1000 Kaninchen A. Capell WB
2
 

3F10 (HRP-

gekoppelt 

HA-Peptid 
4 

1:1000 
2 

 

Ratte, 

monoklonal 

Roche WB
2 

 

3F10 HA-Peptid 
4
 1:500 

3
  Ratte, 

monoklonal 

Roche IF
3
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 Tabelle 3 : Übersicht über die verwendeten Sekundärantikörper 

 

HRP: Meerrettich-Peroxidase 
1
Immunchemischer Nachweis von Proteinen in Western-Blot-Analysen 

2 
Immunzytologischer Nachweis von Proteinen in der Immunfluoreszenz 

 

 Chemische Substanzen 2.5.
 

Tabelle 4: Übersicht über die verwendeten chemischen Substanzen 

Dargestellt sind die verwendeten Inhibitoren und Aktivatoren mit Name, 

Wirkmechanismus, Lösungsmittel und ihrer  Bezugsquelle. 

 

Name Wirkmechanismus Lösungsmittel Bezugsquelle 

β-Sekretase-

Inhibitor IV (C3) 

β-Sekretase-Inhibition (Stachel et al. 

2004). 

DMSO Calbiochem 

TAPI-1 Inhibition von ADAM17 sowie von 

Matrix-Metallo-Proteasen (MMP). 

Inhibition des Sheddings von βAPP 

und CADM1 durch ADAM10 (Slack 

et al. 2001, Kuhn et al. 2010, Nagara 

et al. 2012). 

DMSO Peptides International  

GW280264X (GW) 

 

Inhibition von ADAM10 und 

ADAM17 mit gleicher Potenz:  

 Inhibition des stimulierten 

Sheddings (via PMA) durch 

ADAM17. 

 Inhibition des konstitutiven 

Sheddings durch ADAM10 

(Hundhausen et al. 2003, Ludwig et 

al. 2005). 

DMSO Glaxo-SmithKline 

GI254023X (GI) Inhibition des konstitutiven Sheddings 

durch  ADAM10  

(Hundhausen et al. 2003, Ludwig et 

al. 2005). 

DMSO Glaxo-SmithKline 

DAPT γ-Sekretase-Inhibitor  

(N-[N-(3,5-Difluorophenacetyl)-L-

Alanyl]-S-Phenylglycine t-ButylEster) 

 

DMSO Calbiochen 

Antikörper Epitop  Verdünnung Wirtsspezies Quelle Applikation 

Anti-Kaninchen-

HRP 

Kaninchen 

IgG 

1:10.000 Ziege 

 

 Promega WB
1 

Anti-Maus-HRP Maus IgG 1:10.000 Ziege  

 

 Promega WB
1 

Anti-Ziege-HRP Ziege IgG 1:10.000 Ziege  

 

 Promega WB
1 

Alexa Fluor 488 

 

Ratte IgG 1:250 Ziege Molecular 

Probes 

IF
2 

Alexa Fluor 555 

 

Kaninchen 

IgG 

1:250 Ziege Molecular 

Probes 

IF
2 
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Phorbol 12-

Myristate-13-

Acetate (PMA) 

α-Sekretase-Aktivator via PKC-

Induktion (Burgess et al. 1995, Loeb 

et al. 1998, Montero et al. 2000). 

DMSO Calbiochem 

 

 

Tabelle 5: Übersicht über die mittlere inhibitorische Konzentration (IC50)  der in 

dieser Arbeit verwendeten Inhibitoren  

 

Inhibitor ADAM10 ADAM17 BACE1 

β-Sekretase-Inhibitor IV (C3)              ⁄             ⁄ 15 nM # 

TAPI-1
 

*(1)  1,2 µM *(2)             ⁄ 

GW280264X (GW)  11,5 nM bzw. 12 nM **
(1) 

1,0 µM bzw. 0,9 µM **
(2) 

8,0 nM **
(1) 

1,0 µM **
(2) 

            ⁄ 

            

GI254023X (GI)  5,3 nM **
(1) 

1,0 µM bzw. 1,5 µM **
(2)

 

541,0 nM **
(1) 

>30 µM **
(2) 

            ⁄ 

 
# 

IC50 für das Shedding von artifiziellem APP im nicht zellbasierten Assay; Angabe in nM (Stachel et al. 

2004). 

*
(1)

 TAPI-1 inhibiert die konstitutive Freisetzung von APPs-α sowie das Shedding von CADM1 in HEK 

293-Zellen (Lammich et al. 1999, Kuhn et al. 2010, Nagara et al. 2012). Die für das konstitutive Shedding 

von βAPP  verantwortliche α-Sekretase in HEK 293-Zellen ist ADAM10 (Lammich et al. 1999, Kuhn et al. 

2010). ADAM10 ist auch die für das Shedding von CADM1 hauptverantwortliche Sekretase (Nagara et al. 

2012). 

*(2)  
IC50 für das konstitutive Shedding von βAPP bei ADAM17-Überexpression in HEK 293-Zellen; 

Angabe in µM (Slack et al. 2001).  

**
(1)

 IC50  für das Shedding synthetischer Peptide in nicht zellbasierten Assays; Angabe in nM (Hundhausen 

et al. 2003, Ludwig et al. 2005). 

**
(2)

 IC50  für das Shedding des Membranproteins CX3CL1 in COS-7-Zellen; Angabe in µM (Hundhausen 

et al. 2003, Ludwig et al. 2005). 
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 Vektoren und Oligonukleotide 2.6.
 

Tabelle 6: Übersicht über die verwendeten Vektoren 

 

Bezeichnung Bezugsquelle 

pcDNA 3.1. Zeo (+) Invitrogen 

pSec Tag A Zeo (+) Invitrogen 

APtag-5 C. Blobel 

 

 

 

Tabelle 7: Übersicht über die für diese Arbeit generierten und verwendeten 

Oligonukleotide 

 

Konstrukt Oligonukleotide  Template/ 

pcDNA 

HA-Typ I 

NRG1-β1 
PCR 1 

Ansatz 1:  
vw: I HA NRG BamHI.F 

5`AGGATCCATACCCATACGATGTTCCAGATTACGCTGCCGAGGGCGACCCG 

AGCCAGCACTGC-3` 

 

rw: I NRGβ1.R 

5`-TAAATTCAATCCCAAGATGCTTGTAGAAGCTGGCCAT-3` 

 

Ansatz 2:  
vw: I NRGβ1.F 
5`-TTGGGATTGAATTTATGGAGGCGGAGGAGCTGTACC -3` 

rw: NRG1 mH XhoI.R 

5`- AACTCGACTACAGCAATAGGGTCTTGGTTAGC-3` 

 

PCR 2 
vw: I HA NRG BamHI.F 

rw: NRG1 mH XhoI.R 

 

pcDNA 

3.1 

I NRG 
 

 

 

 

 

 

 

 

 

 

 

Produkte 

aus PCR 1 

HA-Typ I 

NRG1-β2 
PCR 1 

Ansatz 1:  
vw: I HA NRG BamHI.F 

 

rw: I NRGβ2.R 

5`-CGCCTTGTAGAAGCTGGCCATTACGTAGTTTTGG-3` 

 

Ansatz 2:  
vw: I NRGβ2.F 
5`-TAATGGCCAGCTTCTACAAGGCGGAGGAGCTGTA-3` 

rw: NRG1 mH XhoI.R 

 

PCR 2 
vw: I HA NRG BamHI.F 

rw: NRG1 mH XhoI.R 

 

 

pcDNA 3.1 

I NRG 

 

 

 

 

 

 

 

 

 

 

Produkte 

aus PCR 1 
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HA-Typ I 

NRG1-β4 
PCR 1 

Ansatz 1:  
vw: I HA NRG BamHI.F 

 

rw: I NRGβ4.R 

5`- GGCTTCTCTGTTTCTTGCCTTTTCCTCCTAGAAGTCAT-3` 

 

Ansatz 2:  
vw: I NRGβ4.F 
5`-GAGGAAAAGGCAAGAAACAGAGAAGCCTCTAGAAA -3` 

rw: NRG1 mH XhoI.R 

 

PCR 2 
vw: I HA NRG BamHI.F 

rw: NRG1 mH XhoI.R 

 

pcDNA 3.1 

I NRG 

 

 

 

 

 

 

 

 

 

 

Produkte 

aus PCR 1 

Typ I NRG1-β1-

SEAP 
PCR 1 

Ansatz 1:  
vw: AP I NRG XhoI.F 
5`-ACTCGAGTCAACATCCACGACTGGGACCAGCCATCTC-3` 

rw: I NRGβ1.R 
5`-TAAATTCAATCCCAAGATGCTTGTAGAAGCTGGCCAT-3` 

 
Ansatz 2:  
vw: I NRGβ1.F 
5`-TTGGGATTGAATTTATGGAGGCGGAGGAGCTGTACC -3` 

rw: AP I NRG Nhe I.R 

5`-AGCTAGCACAGCAATAGGGTCTTGGTTAGC-3` 

 

PCR 2 
vw: AP I NRG Xho.F 

rw: AP I NRG Nhe I.R 

 

pcDNA 3.1 

I NRG 

 

 

 

 

 

 

 

 

 

 

 

 

Produkte 

aus PCR 1 

Typ I NRG1-β2-

SEAP 
PCR 1 

Ansatz 1:  
vw: AP I NRG XhoI.F 

rw: I NRGβ2.R 

5`-CGCCTTGTAGAAGCTGGCCATTACGTAGTTTTGG-3` 

 
Ansatz 2:  
vw: I NRGβ2.F 
5`-TAATGGCCAGCTTCTACAAGGCGGAGGAGCTGTA-3` 

rw: AP I NRG Nhe I R 

  

PCR 2 
vw: AP I NRG Xho.F 

rw: AP I NRG Nhe I.R 

 

pcDNA 3.1 

I NRG 

 

 

 

 

 

 

 

 

 

 

Produkte 

aus PCR 1 

Typ I NRG1-β4-

SEAP 
PCR 1 

Ansatz 1:  
vw: AP I NRG XhoI.F 

rw: I NRGβ4.R 

5`- GGCTTCTCTGTTTCTTGCCTTTTCCTCCTAGAAGTCAT-3` 

 

 

pcDNA 3.1 

I NRG 
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Ansatz 2:  
vw: I NRGβ4.F 
5`-GAGGAAAAGGCAAGAAACAGAGAAGCCTCTAGAAA -3` 

rw: AP I NRG Nhe I.R 

  

PCR 2 
vw: AP I NRG Xho.F 

rw: AP I NRG Nhe I R 

 

 

 

 

 

 

 

 

Produkte 

aus PCR 1 

Typ I NRG1-β1-

AA-SEAP 
PCR 1 

Ansatz 1:  
vw: AP I NRG XhoI.F 

rw: I NRG-β1 AA.R 

5`- TTCCTCCGCTTTCATAGCTGCAATCCCAAGATGCTT -3` 

 
Ansatz 2:  
vw: I NRG β1 AA.F 
5`- AAGCATCTTGGGATTGCAGCTATGAAAGCGGAGGAA -3` 

rw: AP I NRG Nhe I.R 

  

PCR 2 
vw: AP I NRG Xho.F 

rw: AP I NRG Nhe I.R 

 

pcDNA 3.1 

I NRG 

 

 

 

 

 

 

 

 

 

 

 

Produkte 

aus PCR 1 

Typ I NRG1-

β1-Δ7-SEAP 

PCR 1 

Ansatz 1:  
vw: AP I NRG XhoI.F 

rw: I NRG β1 Δ7.R 

5`-TGTCAGCACCCTCTTCTGGTAGAGAATCCCAAGATGCTTGTAGAA-3` 

 
Ansatz 2:  
vw: I NRGβ1Δ7.F 
5`-TTCTACAAGCATCTTGGGATTCTCTACCAGAAGAGGGTGCTGACA-3` 

rw: AP I NRG Nhe I.R 

  

PCR 2 
vw: AP I NRG Xho.F 

rw: AP I NRG Nhe I.R 

 

pcDNA 3.1 

I NRG 

 

 

 

 

 

 

 

 

 

 

 

Produkte 

aus PCR 1 

 

vw: Vorwärtsprimer; rw: Rückwärtsprimer 
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Tabelle 8: Übersicht über die generierten und verwendeten cDNA-Konstrukte 

 

Bezeichung Vektor Klonierenzyme 

HA-Typ I NRG1-β1 pSec Tag A Zeo (+) BamH1; Xho1 

HA-Typ I NRG1-β2 pSec Tag A Zeo (+) BamH1; Xho1 

HA-Typ I NRG1-β2 pSec Tag A Zeo (+) BamH1; Xho1 

Typ I NRG1-β1-SEAP APtag-5 Xho1; Nhe1 (DNA-

Konstrukt), Xba1 (Vektor) 

(„sticky ends“ von Nhe1 

und Xba1) 

Typ I NRG1-β2-SEAP APtag-5 Xho1; Nhe1/Xba1 

Typ I NRG1-β4-SEAP APtag-5 Xho1; Nhe1/Xba1 

Typ I NRG1-β1-AA-SEAP APtag-5 Xho1; Nhe1/Xba1 

Typ I NRG1-β1-Δ7-SEAP APtag-5 Xho1; Nhe1/Xba1 

 
 

 Methoden 2.7.

 Molekularbiologische Methoden 2.7.1.

 Polymerase-Ketten-Reaktion („polymerase chain reaction“, PCR) 2.7.1.1.

Für die Amplifikation der oben genannten Konstrukte wurden zwei PCR-Schritte 

benötigt. Als Matrize für die verschiedenen Neuregulin-Konstrukte diente pcDNA 

3.1 I NRG1-β4 (freundlicher Weise von A. Garratt zur Verfügung gestellt).  

Folgende PCR-Reaktionsansätze wurden hergestellt: 

 

1. PCR-Reaktion: 

3 µl der pcDNA 3.1 I NRG1-β4 (11 ng/µl) 

1 µl des entsprechenden vorwärts Oligonukleotids (vw) 

1 µl des entsprechenden rückwärts Oligonukleotids (rw) 

1 µl dNTP-Mix (10 mM) 

2 µl Pwo DNA-Polymerase (1U/µl) 

10 µl Pwo-Reaktionspuffer 10 x  

82 µl dH20 

Gesamtvolumen: 100 µl  

 

Die in der 1. PCR-Reaktion generierten DNA-Fragmente dienten als Templates für die 

2. PCR-Reaktion. In dieser wurde das gewünschte DNA-Konstrukt für die spätere 

Insertion in den Transfektionsvektor generiert. 
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2. PCR-Reaktion: 

10 µl DNA-Template 1 

10 µl DNA-Template 2 

  1 µl des entsprechenden vorwärts Oligonukleotids (vw) 

  1 µl des entsprechenden rückwärts Oligonukleotids (rw) 

  1 µl dNTP-Mix (10 mM) 

  2 µl Pwo DNA-Polymerase (1U/µl) 

10 µl Pwo-Reaktionspuffer 10 x  

65 µl dH20 

Gesamtvolumen: 100 µl  

 

Die Reaktionsansätze wurden gemischt und die Amplifikation mit folgendem PCR-

Programm durchgeführt: 

 

Schritt 1: 95 °C 5 min 

Schritt 2: 95 °C 1 min 

Schritt 3: 50 °C 1 min 

Schritt 4: 72 °C 1,5 min 

Schritt 5: 72 °C 10 min 

Schritt 6: Kühlung bei 4 °C 

 

 Reinigung und Analyse von DNA 2.7.2.

 Agarosegelelektrophorese 2.7.2.1.

Zur elektrophoretischen Auftrennung suprahelikaler DNA-Plasmide und DNA-

Fragmente wurden 1 % Agarosegele verwendet. Die Agarose wurde zunächst durch 

Erwärmung in der Mikrowelle in TAE-Puffer gelöst. Die Agarosegellösung wurde in die 

Gelkammer gegossen und mit 1 µl Ethidiumbromid (10 mg/ml in dH2O) versetzt. 

Anschließend wurde der Probentaschenkamm zum Laden der DNA eingesetzt. Als 

Molekulargewichtsmarker diente die 1 kb „DNA ladder“ von Gibco. Die Gel-

Elektrophorese wurde bei 120 V mit TAE-Puffer in Agarosegelkammern durchgeführt. 

 Isolierung und Aufreinigung von DNA-Fragmenten aus Agarosegelen 2.7.2.2.

Unter UV-Licht wurden die gewünschten DNA-Banden detektiert und mit einem Skalpell 

aus dem Agarosegel geschnitten. Die Aufreinigung der DNA-Fragmente erfolgte unter 

Verwendung des Nucleo Spin Extract Kits entsprechend den Angaben des Herstellers.  

 

 

 

 

25 Zyklen 
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 Enzymatische Modifikation von DNA 2.7.3.

 Herstellung kompetenter E.coli-Bakterien  2.7.3.1.

 

E.coli-Stamm: DH5α 
 

5 ml LB-Medium wurden mit einer E.coli DH5α-Kolonie angeimpft und über Nacht bei 

37 °C im Schüttelinkubator (200 upm) inkubiert. Die E.coli-Übernachtkultur wurde im 

Verhältnis 1:200 in 200 ml LB-Medium bis zu einer OD550 von 0,5 inkubiert, dann auf 

vier 50 ml Falkon-Gefäße aufgeteilt und für 10 Minuten auf Eis inkubiert. Es folgte eine 

Zentrifugation für 15 Minuten (Megafuge 1,0 R; 1.500 x g, 4 °C). Nach Dekantieren des 

Überstandes wurde das Bakteriensediment in 30 ml RF1 (gekühlt) gelöst (10 s, Vortex) 

und dann erneut 15 Minuten zentrifugiert (Megafuge 1,0 R; 1.500 x g, 4 °C). Der 

Überstand wurde verworfen, das Pellet in 6 ml RF2 (gekühlt) gelöst (10 s, Vortex) und 

die Bakteriensuspension in 200 μl Aliquots bei -60 °C überführt. Die Bakterienaliquots 

wurden umgehend in flüssigem Stickstoff eingefroren, bis zur Verwendung bei -80 °C 

gelagert oder direkt für die Transformation verwendet. 

 Spaltung von DNA mit Restriktionsendonukleasen (Restriktionsverdau) 2.7.3.2.

Für den Verdau von Vektoren wurden 3 μg Vektor (Plasmid-DNA) mit je 1 μl der 

entsprechenden Restriktionsendonukleasen (10 U) und 4 μl 10 x Reaktionspuffer in 

einem Gesamtvolumen von 40 µl über Nacht bei 37 °C inkubiert.  

Für den Verdau von cDNA-Fragmenten wurden je 80 µl des PCR-Produkts, 10 μl vom 

Hersteller empfohlener 10 x Reaktionspuffer und je 2,5 μl Restriktionsendonuklease in 

einem Gesamtvolumen von 100 µl (mit dH2O auf 100 µl aufgefüllt) verwendet und über 

Nacht bei 37 °C inkubiert. Die Analyse und Aufreinigung der DNA-Fragmente erfolgte 

mittels Agarose-Gelelektrophorese  (Vgl. 2.7.2.1.) und anschließender Isolierung der DNA 

aus dem Gel (Vgl. 2.7.2.2.). 

 Dephosphorylierung von DNA 2.7.3.3.

Um vor einer Ligation eine intramolekulare Selbstligation der linearisierten Plasmide zu 

verhindern, wurden die 5´-Phosphatgruppen mit einer Shrimp Alkalischen Phosphatase 

(SAP; Roche) entfernt. Hierzu wurden 40 μl der linearisierten Plasmid-DNA mit 

1 μl SAP und 6 μl Reaktionspuffer (dem beim Verdau verwendeten Puffer entsprechend) 

mit dH2O auf ein Gesamtvolumen von 100 µl versetzt und für 30 Minuten bei 37 °C 

inkubiert. Danach wurden die Proben in der Agarosegelelektrophorese aufgetrennt (Vgl. 

2.7.2.1.), isoliert und aufgereinigt (Vgl. 2.7.2.2.). 
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 Ligation von DNA 2.7.3.4.

Die Insertion des DNA-Fragments, welches zuvor mit den entsprechenden 

Restriktionsenzymen verdaut worden war (Vgl. 2.7.3.2.), erfolgte mit Hilfe der DNA-

Ligase des Bakteriophagen T4 (T4 Ligase) in das zuvor linearisierte und 

dephosphorylisierte Plasmid (Vgl. 2.7.3.3). 2 µl Plasmidvektor, 8 µl DNA-Fragment 

(Insert), 2 µl 10 x Ligationspuffer und 1 µl T4-DNA-Ligase wurden in einem 

Endvolumen von 20 µl für 30 Minuten bei Raumtemperatur (RT) inkubiert. 10 µl des 

Ligationsansatzes wurden zur Transformation in kompetente E.coli DH5α-Bakterien 

verwendet (Vgl. 2.7.3.5.). 

 Transformation von DNA-Konstrukten in kompetente E.coli-Bakterien 2.7.3.5.

Für die Transformation der hergestellten DNA-Konstrukte in kompetente E.coli-Bakterien 

wurden 10 μl Ligationsansatz mit 100 μl der zuvor auf Eis aufgetauten Bakteriensuspension 

gemischt und für 30 Minuten auf Eis inkubiert. Um die Aufnahme der DNA in die Bakterien 

zu ermöglichen erfolgte ein Hitzeschock durch Inkubation der Ansätze für 90 Sekunden bei 

42 °C. Anschließend wurden die Ansätze für 2 Minuten auf Eis abgekühlt, 800 µl LB-

Medium zugesetzt und für 30 Minuten bei 37 °C inkubiert. Nach Zentrifugation 

(1 min/2500 upm, RT) wurde der Überstand verworfen. Die Bakterienpellets wurden in 

100 μl LB-Medium resuspendiert und auf zuvor bei 37 °C vorgewärmte LB-Ampicillin-

Platten ausplattiert. Die über Nacht bei 37 °C auf der Platte gewachsenen Einzelkolonien 

wurden zum Animpfen von Übernachtkulturen für die Plasmidpräparation nach der Mini-

Präp-Methode bzw. der Maxi-Präp-Methode  (Vgl. 2.7.3.6. und 2.7.3.7.) verwendet. 

 Präparation von Plasmidvektoren im kleinen Maßstab (Mini-Präp) 2.7.3.6.

Mit einer Pipettenspitze wurden die Klone von der mit transformierten E.coli DH5α 

beimpften LB-Ampicillin-Agar-Platte aufgenommen und in je ein autoklaviertes 

Reaktionsgefäß (15 ml) mit 3 ml LB-Medium gegeben. Nach Inkubation bei 37 °C über 

Nacht auf einem Schüttler (200 upm) wurde der Reaktionsansatz in 1,5 ml Aliquots 

überführt, zentrifugiert (1200 upm; 4 °C) und der Überstand vorsichtig abgesaugt. Die 

DNA-Eluierung erfolgte unter Verwendung des NucleoSpin Plasmid Kits von Machery-

Nagel. Hierbei wurde das Pellet in 150 µl P1-Puffer gelöst (10 s, Vortex), dann 150 µl 

P2-Puffer hinzugeben und der Ansatz vorsichtig gemischt. Durch Zugabe des P3-Puffers 

(3 s, Vortex) wurden die Proteine ausgefällt, welche in der anschließenden Zentrifugation 

(1 min, 1200 upm, 4 °C) sedimentiert wurden. Der die DNA enthaltende Überstand 

wurde in 1 ml 100 %-iges Ethanol überführt. Es folgte ein weiterer Zentrifugationsschritt 

(1 min, 1200 upm, 4 °C), der Überstand wurde abgegossen und das  Pellet in 500 µl 
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70 %-igem Ethanol gewaschen. Der Ethanolüberstand wurde vorsichtig abpipettiert und 

das Pellet 10 Minuten bei Raumtemperatur getrocknet. Es erfolgte die Resuspension des 

getrockneten DNA-Pellets  in 80 µl dH2O. 

 Präparation von Plasmidvektoren im großen Maßstab (Maxi-Präp) 2.7.3.7.

Von der Mini-Präp-Kultur, die ein positives Ergebnis im Mini-Präp erbracht hatte, 

wurden für den Maxi-Präp Übernachtkulturen in einem autoklavierten Erlenmeyerkolben 

angeimpft. Der Reaktionsansatz mit je 100 ml LB-Medium wurde bei 37 °C im Schüttler 

über Nacht inkubiert und dann in zwei 50 ml Reaktionsgefäße überführt. Nach 

Zentrifugation (15 min, 4500 upm, 4 °C) wurde der Überstand verworfen. Zur Eluierung 

der DNA aus dem Sediment wurde das QIAfilter Plasmid Maxi Kit von Qiagen 

entsprechend den Angaben des Herstellers verwendet. Das auf diese Weise erhaltene 

DNA-Pellet wurde getrocknet und anschließend in 200 µl dH2O resuspendiert. Die 

Konzentration der eluierten DNA wurde photometrisch bei einer Wellenlänge von 

260 nm (OD260) gemessen. 

 Sequenzierung der DNA-Konstrukte 2.7.3.8.

Die Sequenzierung der DNA-Konstrukte wurde von der Firma GATC Biotech AG mit 

Sitz in Konstanz durchgeführt. 

 Zellkultur 2.7.4.

 Verwendete Zelllinien 2.7.4.1.

In der vorliegenden Arbeit wurden verschiedene HEK 293-Zelllinien und ferner SH-

SY5Y-Zellen verwendet. HEK 293-Zellen dienten bereits in vorangegangenen Arbeiten 

als geeignetes Zellmodell für die Analyse des Sheddings von NRG1 (Montero et al. 2000, 

Willem et al. 2006), sowie für die Charaktersierung von BACE1, der α-Sekretase 

ADAM10 und des γ-Sekretase-Komplexes (Citron et al. 1992, Shoji et al. 1992, Haass et 

al. 1992 b, Seubert et al. 1993, Vassar et al. 1999). Die in dieser Arbeit verwendeten 

HEK 293-Zellen sind humane embryonale Nierenzellen (human embryonic kidney cells), 

die als stabil exprimierende Zellen hergestellt wurden. Sie exprimieren stabil humanes 

βAPP695. HEK 293-BACE1-Zellen exprimieren zudem stabil die β-Sekretase BACE1 

(HEK 293-B1-Zellen). HEK 293-Zellen mit stabiler Expression der α-Sekretase 

ADAM10 werden in der vorliegenden Arbeit als HEK 293-AD10-Zellen bezeichnet. 

HEK 293 swe-NRG-Zellen exprimieren humanes βAPP695, welches die „schwedische“ 

Doppel-Mutation K595N/M596L an der BACE1-Schnittstelle von βAPP aufweist (Citron 

et al. 1992, Vassar et al. 1999). Ferner exprimieren sie stabil Typ I NRG1-β4.  
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SH-SY5Y-Zellen stammen von humanen Neuroblastomzellen ab (Biedler et al. 1978). 

Sie wurden bereits für die Analyse des Sheddings von βAPP durch BACE1 und durch 

ADAM10 (Kuhn et al. 2010) sowie in dieser Arbeit erstmals für die Analyse des 

Sheddings von Typ NRG1-β verwendet.  

 

Tabelle 9: Verwendete Zelllinien und ihre Antibiotikaresistenzen 
Aufgeführt sind alle im Rahmen dieser Arbeit verwendeten, genetisch veränderten 

Zelllinien. Angegeben sind der Name der jeweiligen Ursprungszelllinie, alle exogen 

exprimierten Proteine und die entsprechenden Resistenzen zur Selektion der 

Einzelzellklone. 

 

 Medien und Lösungen 2.7.4.2.

Dem Medium der HEK 293-Zellen wurde zur Aufrechterhaltung der βAPP-Expression 

Geneticin zugefügt. Dem Medium der HEK 293-B1-Zellen wurde zudem zur 

Aufrechterhaltung der BACE1-Expression Zeocin, dem Medium der HEK 293-AD10-

Zellen zur Aufrechterhaltung ihrer ADAM10-Expression Hygromycin und dem Medium 

der HEK 293 swe-NRG-Zellen zur Aufrechrechterhaltung der NRG-Expression Zeocin 

supplementiert. 

 Zellkultivierung 2.7.4.3.

Die verwendeten Zelllinien wurden in einem Inkubator bei 37 °C und 5 % CO2 kultiviert. 

Zur Kultivierung wurden 10 cm Zellkulturschalen mit je 10 ml der oben genannten 

Kulturmedien verwendet. Wachstum und Konfluenz der Zellen wurden 

lichtmikroskopisch kontrolliert. Alle folgenden Arbeitsschritte erfolgten unter sterilen 

Bedingungen an einer Sterilwerkbank. 

Bei Erreichen einer Konfluenz von 70 % bis 80 % wurde das Kulturmedium abgesaugt 

und die Zellen mit 5 ml sterilem PBS-Puffer gewaschen. Zur Ablösung der an den 

Name  Mutterzelllinie Exogen 

exprimierte 

Proteine 

Resistenz 

HEK 293 HEK 293 βAPP695wt G418 

HEK 293 B1 HEK 293 βAPP695wt 

BACE1 

G418 

Zeocin 

HEK 293 AD10 HEK 293 βAPP695wt 

ADAM10 

G418 

Hygromycin 

HEK 293 swe- 

NRG 

HEK 293 βAPP695swe 

Typ I NRG1-β4 

G418 

Zeocin 

SH-SY5Y SH-SY5Y 

(humane 

Neuroblastomzelllinie) 

 

keine 

 

Keine Resistenz 
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Zellkulturschalen adhärenten Zellen erfolgte die Zugabe von je 1 ml Trypsin-EDTA. 

Nach 5 Minuten wurde die Trypsinierung durch Zugabe von 1 ml Kulturmedium 

geblockt, die Zellen mit einer sterilen 2 ml Pipette trituiert und in ein 15 ml Einweg-PP-

Röhrchen gegeben. Nach Zentrifugation (1000 x g, 5 min, RT, Megafuge) wurde das 

Zellpellet in 1 ml Kulturmedium resuspendiert und die Zellen auf die Zellkulturschalen 

mit je 10 ml Kulturmedium gegeben. Dabei wurde durch leichtes Schwenken der Schalen 

auf eine gleichmäßige Verteilung der Zellen in der Schale geachtet. 

 

Zum Auslegen von Zellen für Versuchsreihen wurden die Zellen wie oben beschrieben 

von der Zellkulturschale abgelöst. Mit Hilfe einer Neubauer-Zählkammer wurden die 

Zellen ausgezählt, dann auf die gewünschte Zelldichte verdünnt, auf die jeweiligen 

Zellkulturschalen verteilt und dann bis zu Versuchsbeginn bei 37 °C und 5 % CO2 

inkubiert. 

 

Zum Anlegen einer Dauerkultur (Kryokonservierung) wurden die Zellen wie oben 

beschrieben gewaschen, trypsiniert und zentrifugiert. Nach Zentrifugation wurde der 

Überstand verworfen, das Zellpellet in 1 ml Einfriermedium resuspendiert und auf drei 

Einfriergefäße verteilt. Diese wurden mit Hilfe von Einfrierboxen bei -80 °C langsam 

herunter gekühlt. Die Zellen wurden entweder bis zur weiteren Verwendung bei -80 °C 

oder langfristig in flüssigem Stickstoff gelagert. 

 

Zur weiteren Verarbeitung der Zellen in Zelllysaten oder Membranpräparationen wurden 

Zellpellets hergestellt. Alle Arbeitsschritte erfolgten auf Eis. Nach Absaugen des 

Kulturmediums wurden die Zellen mit 5 ml kaltem (4 °C) PBS-Puffer gewaschen. Der 

PBS-Puffer wurde abgesaugt und durch 1 ml kalten (4 °C) PBS-Puffer ersetzt. Mit einem 

Spatel löste man die Zellen von der Zellkulturschale ab. Die so gewonnen Zellen wurden 

in einer Tischzentrifuge (1000 x g, 5 Minuten, 4 °C) pelletiert. Der Überstand wurde 

verworfen und die Zellpellets entweder sofort weiter verarbeitet oder bei -80 °C gelagert. 

 Beschichtung von Kulturschalen und Deckgläschen mit Poly-L-Lysin 2.7.4.4.

Um eine bessere Haftung der Zellen auf den für Immunfluoreszenzanalysen benötigten 

runden Deckgläschen (Durchmesser 1cm) zu erlangen, erfolgte die Beschichtung der 

Deckgläschen mit Poly-L-Lysin. Hierzu wurden 6 cm Zellkulturschalen mit sterilisierten 

Deckgläschen nicht überlappend ausgelegt, vollständig mit 5 ml Poly-L-Lysin bedeckt 

und 1 Stunde bei Raumtemperatur in der Sterilbank inkubiert. Nach Absaugen der Poly-
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L-Lysin-Lösung wurden die Schalen zweimal mit je 5 ml sterilem dH2O gewaschen und 

anschließend getrocknet. Sie standen nun zum Auslegen der Zellen bereit. 

 Transiente Transfektion mit rekombinanter DNA 2.7.4.5.

Für 24-well Platten (Poly-L-Lysin beschichtet) wurden die zur Transfektion vorgesehen 

Zellen in einer Dichte von 2 x 10
5
 Zellen/well in 1 ml Kulturmedium ausgelegt. Am 

folgenden Tag erfolgte die Transfektion mit 0,5 µg rekombinanter DNA/well, 1,0 µl 

Lipofectamine2000/well und 0,5 ml Optimem-Medium/well. Hierzu wurde zunächst  

Optimem-Medium mit dem Transfektionsreagenz Lipofectamine2000 versetzt und 5 

Minuten bei Raumtemperatur inkubiert. In einem weiteren sterilen Reaktionsgefäß wurde 

Optimem-Medium mit der gewünschten rekombinanten DNA versetzt. Beide Ansätze 

wurden gemischt und 15 Minuten bei Raumtemperatur inkubiert. Nach Absaugen des 

Zellkulturmediums wurde der Transfektionsansatz mit der oben beschrieben 

Konzentration auf die Zellen geträufelt und für 24 h bei 37 °C und 5 % CO2 inkubiert. 

Die Transfektion in 10 cm bzw. 6 cm Kulturschalen erfolgte bei einer Konfluenz von 

ca. 70 %. Der Transfektionsansatz pro 10 cm Schale bzw. pro drei 6 cm Schalen  enthielt 

1 ml Optimem-Medium, 10 µl Lipofectamine2000 und 5 µg rekombinante DNA. Der 

Transfektionsansatz wurde wie oben beschrieben angesetzt. Nach Absaugen des 

Kulturmediums wurde dieser mit der genannten Konzentration auf die Zellen geträufelt 

und diese für 24 h bei 37 °C und 5 % CO2 inkubiert. 

 Fluoreszenzmikroskopie 2.7.5.

 

Herstellung eines Fluoreszenzpräparates 

Einen Tag nach Transfektion wurden die auf Poly-L-Lysin beschichteten Deckgläschen 

kultivierten Zellen einmal mit PBS-Puffer gewaschen und dann für 10 Minuten mit 

Fixierlösung bei Raumtemperatur inkubiert. Die Zellen wurden anschließend zweimal 

mit  PBS-Puffer gewaschen. 

Der Nachweis intrazellulärer Proteine erforderte die Permeabilisierung der Zellen. Hierzu 

wurden die Zellen 10 Minuten mit Triton-Lösung bei Raumtemperatur inkubiert. Danach 

wurden sie zweimal mit PBS-Puffer gewaschen. Für die Absättigung unspezifischer 

Proteinbindungen erfolgte anschließend sowohl für die zur Oberflächenfärbung 

bestimmten, unbehandelten Zellen als auch für die permeabilisierten Zellen eine 

einstündige Inkubation mit Blockierlösung. Monoklonale Primärantikörper wurden in 

einer 1:500 Verdünnung für 1 Stunde bei Raumtemperatur mit den Zellen inkubiert. 

Anschließend wurden die Zellen dreimal mit PBST-Puffer gewaschen und dann 1 Stunde 



Material und Methoden 

 

60  

bei Raumtemperatur mit dem entsprechenden Sekundärantikörper in einer Verdünnung 

von 1:500 inkubiert. Die Zellen wurden erneut dreimal mit PBST-Puffer, dann einmal mit 

PBS-Puffer gewaschen und die Deckgläschen zur Entfernung eventueller Salzkrusten 

einmal kurz in dH2O eingetaucht. Die Deckgläschen wurden mit je 1 Tropfen Moviol-

Lösung auf einem Objektträger fixiert. Nach dem Aushärten konnten die so erhaltenen 

Präparate unter Verwendung von Imersionsöl im Fluoreszenzmikroskop analysiert 

werden. 

 Proteinbiochemische Methoden 2.7.6.

 Membranpräparation 2.7.6.1.

Für Membranpräparationen wurden die in Kapitel 2.7.4.3. beschriebenen PBS-Zellpellets 

verwendet. Während der gesamten Durchführung der folgenden Arbeitsschritte wurden 

die Proben auf Eis gelagert, sofern nicht anders angegeben. Die PBS-Zellpellets wurden 

jeweils in 1 ml mit PI-Mix (1:500) versetzten hypotonen Citrat-EDTA-Puffer 

resuspendiert (10 s, Vortex) und anschließend auf Eis für 5 Minuten inkubiert. Zur 

Rupturierung der Zellmembranen erfolgte die Schockgefrierung der Proben für 2 

Minuten in flüssigem Stickstoff. Nach langsamem Auftauen der Proben bei 37 °C wurden 

diesen jeweils 100 μl Brij 35 10 % und 100 μl Lubrol 10 % zugefügt, um die Aggregation 

der Proteine zu verhindern. Die Proben wurden vorsichtig gemischt und dann 

zentrifugiert (7000 x g, 10 min, 4 °C). Je 950 μl des sog. „post-nuklearen“ Überstandes, 

welcher Membranen sowie das Zytosol enthält, wurden vorsichtig abpipettiert und 

jeweils in ein mit 140 μl Glycerol 40 % befülltes 1,5 ml Ultrazentrifugenreaktionsgefäß 

transferiert und vorsichtig gemischt. In dem folgenden Zentrifugationsschritt (55.000 

upm, 60 min, 4 °C) wurde die Gesamtmembranfraktion pelletiert. Der Überstand wurde 

verworfen und die Pellets jeweils in 190 μl Citrat-EDTA-Puffer resuspendiert. Die 

anschließende Zugabe von je 5 μl Triton X-100 20 % diente der Extraktion der Proteine 

aus den Membranen. Nach 10 minütiger Inkubation wurden die Proben erneut 

zentrifugiert (55.000 upm, 30 min, 4 °C). Die Triton unlöslichen Proteine und 

Membranreste befanden sich nun im Pellet. Der Überstand mit den aus den Membranen 

gelösten Proteinen wurde vorsichtig mit einer Pipette abgenommen und in ein neues 

Reaktionsgefäß überführt. 
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 Herstellung von Zelllysaten 2.7.6.2.

 

RIPA-Lysat 

PBS-Zellpellets (Vgl. 2.7.4.3.) wurden zunächst in 1 ml eiskaltem RIPA-Lyse-Puffer, 

welcher zuvor mit PI-Mix versetzt worden war, resuspendiert und dann für 60 Minuten 

auf Eis im Schüttelinkubator (200 upm; 4 °C) inkubiert. Anschließend wurde das 

Zelllysat zentrifugiert (13.000 upm, 5 min, 4 °C). Der Überstand mit den darin gelösten 

Proteinen wurde vorsichtig abgenommen, in ein neues Reaktionsgefäß pipettiert und die 

Gesamtproteinkonzentration der Proben mittels BCA-Assays (Vgl. 2.7.6.3.) bestimmt. 

Die Zelllysate wurden dann unmittelbar mittels SDS-Page und Western-Blot (Vgl. 

2.7.6.6.) analysiert oder bei -80 °C gelagert. 

 

STET-Lysat 

PBS-Zellpellets (Vgl. 2.7.4.3.) wurden zunächst in 1 ml eiskaltem STET-Puffer, welcher 

zuvor mit PI-Mix versetzt worden war, resuspendiert und dann für 60 Minuten auf Eis im 

Schüttelinkubator (200 upm; 4°C) inkubiert. Anschließend wurde das Zelllysat 

zentrifugiert (13.000 upm, 5 min, 4°C). Der Überstand mit den darin gelösten Proteinen 

wurde vorsichtig abgenommen, in ein neues Reaktionsgefäß pipettiert und die 

Gesamtproteinkonzentration der Proben mittels BCA-Assays (Vgl. 2.7.6.3.) bestimmt. 

Die Zelllysate wurden dann unmittelbar mittels SDS-Page und Western-Blot (Vgl. 

2.7.6.6.) analysiert oder bei -80°C gelagert. 

 Bestimmung der Gesamtproteinkonzentration (BCA-Assay) 2.7.6.3.

Für die Bestimmung der Proteinkonzentrationen von Zelllysaten  wurden je 10 µl der zu 

messenden Probe mit je 1 ml BCA-Lösung (Reagenz A und B in 1:50 Verdünnung des 

Bicinchoninic Acid Assays, BCA) versetzt, gemischt und je 200 µl hiervon in ein well 

einer 96-well-Platte pipettiert und dann 30 Minuten bei 37 °C inkubiert. Als 

Kalibrierstandard wurde parallel hierzu eine Verdünnungsreihe einer BSA-Standard-

Lösung (2 mg/ml Bovine Serum Albumin) mit jeweils bekannten Konzentrationen 

angesetzt und ebenfalls mit je 1 ml der BCA-Lösung versetzt.  Hiervon wurden dann 

jeweils 200 µl in ein well einer 96-well-Platte pipettiert und anschließend  30 Minuten 

bei 37 °C im Wärmeschrank inkubiert. Die Extinktion der Proben und Kalibrierstandards 

wurde bei Raumtemperatur und einer Wellenlänge von 562 nm photometrisch gemessen. 

Die Proteinkonzentrationen der Proben wurden anhand der linearen Standardkurve 

berechnet. 
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 Immunpräzipitation von Proteinen 2.7.6.4.

Zum Nachweis der löslichen HA-INRG1-β-Ektodomäne wurden Immunpräzipitationen 

aus konditioniertem Medium durchgeführt. Hierzu wurde je 1 ml konditioniertes Medium 

von konfluenten 10 cm Schalen mit je 15 µl Anti-HA-Agarose (jeweils in 200 µl PBS-

Puffer suspendiert) versetzt und über Nacht bei 4 °C auf einem Schüttler (200 upm) 

inkubiert. Anschließend wurden die Immunpräzipitate durch Zentrifugation (6000 upm, 5 

min, 4 °C) pelletiert und diese mit je 1 ml STEN-NaCl-Puffer gewaschen. Nach erneuter 

Zentrifugation (6000 upm, 5 min, 4 °C) wurden die Pellets erneut mit je 1 ml STEN-

NaCl-Puffer gewaschen. Im Anschluß an den  letzten Waschschritt mit je 1 ml STEN-

Puffer wurden die Pellets mit je 15 µl 4 x Lämmli-Puffer versetzt und 10 Minuten bei 

100 °C inkubiert. Durch die Zentrifugation (13.000 upm, 1 min, RT) sedimentierte die 

immobile Phase. Der Überstand mit den nun darin gelösten und denaturierten Proteinen 

wurde mittels SDS-Page aufgetrennt und im Western-Blot (Vgl. 2.7.6.6.) analysiert. 

 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE) 2.7.6.5.

 

Tabelle 10: Zusammensetzung der verwendeten SDS-Polyacrylamid-Gele 

 8 % Trenngel 10 % Trenngel Sammelgel 

dH2O 8,8 ml 8 ml 6,5 ml 

Acrylamid 40 % 3,2 ml 4 ml 1 ml 

4x Lower Tris 4 ml 4 ml  

4x Upper Tris   2,5 ml 

TEMED 30 μl 30 µl 30 μl 

APS 10 % 30 μl 30 µl 30 μl 

 

Die Auftrennung von Proteinen erfolgte unter denaturierenden Bedingungen in einem 

diskontinuierlichen Gelsystem. Hierzu wurden SDS-Polyacrylamid-Gele mit je 10 

Probetaschen und einer Dicke von 0,75 mm oder Gele mit 15 Probetaschen und einer 

Dicke von 1,5 mm verwendet.  

Die Trennfähigkeit der Gele ist abhängig vom Anteil des Polyacrylamids. Je höher der 

Polyacrylamid-Anteil ist, desto besser ist die Auftrennung kleiner Proteine. 8 %-Gele 

wurden zur Proteinauftrennung von Zelllysaten und Membranpräparationen verwendet, 

10 %-Gele dienten der Proteinauftrennung von Immunpräzipitationen aus 

Zellkulturüberständen. 

Nach Entfernung von Rückständen von den Glasplatten mittels Seifenlösung und Ethanol 

wurden die Glasplatten in die Gießkammern eingesetzt und das Trenngel bis zu einer 

Höhe von 2 cm unterhalb des oberen Randes gegossen und dann mit Isopropanol 

überschichtet. Nach Polymerisierung des Trenngels wurde das Isopropanol abgegossen 
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und dessen Rückstände entfernt. Anschließend wurde das Sammelgel auf das 

ausgehärtete Trenngel gegossen und der entsprechende Probentaschenkamm eingesetzt. 

Nach der vollständigen Polymerisation des Sammelgels wurde der Probentaschenkamm 

vorsichtig entfernt und das Gel in die mit dem Elektrophoresepuffer (Tris-Glycin-SDS-

Puffer) gefüllte Trennkammer eingesetzt. Die Geltaschen wurden dann mehrmals mit 

dem Elektrophoresepuffer gespült. Das Gel stand nun zur Ladung von Proben bereit. 

Hierzu wurden 25 µg Protein bzw. bei Immunpräzipitationen der komplette Überstand 

nach Sedimentation der immobilen Phase mit SDS-Probenpuffer (4 x Lämmli-Puffer bei 

Zelllysaten und Membranpräparationen; 2 x Lämmli-Puffer bei Immunpräzipitationen; 

jeweils Mercaptoethanol zugefügt) versetzt und 10 Minuten bei 95 °C erhitzt. Durch 

Zentrifugation wurden nicht gelöste Bestandteile sedimentiert. Der Überstand wurde in 

die Probetaschen geladen. Als Molekulargewichtsstandard diente der Marker See blue 

von Invitrogen. 

Anode und Kathode wurden mit der Spannungsquelle verbunden. Die Elektrophorese 

erfolgte zunächst bei 70 V und dann ab Eintritt der Proteine in das Trenngel bei 120 V. 

 Western-Blot-Analyse 2.7.6.6.

Nach Auftrennung der Proteine in der SDS-PAGE erfolgte der Transfer der Proteine auf 

eine PVDF-Transfermembran, welche zuvor für 10 Minuten mit Isopropanol benetzt und 

anschließend 30 Minuten in dH2O gewaschen worden war.  

 

Transferaufbau: 

 Anodenplatte 

 Poröser Schwamm in Tris-Glycin-Puffer äquilibriert 

 Zwei Lagen Geltransferfilterpapier in Tris-Glycin-Puffer äquilibriert 

 PVDF-Transfermembran  

 SDS-Polyacrylamid-Gel  

 Zwei Lagen Geltransferfilterpapier in Tris-Glycin-Puffer äquilibriert 

 Poröser Schwamm in Tris-Glycin-Puffer äquilibriert 

 Kathodenplatte 

 

Der Protein-Transfer erfolgte in einer Mini-Trans-Blot-Kammer, welche mit Tris-Glycin-

Puffer als Transferpuffer aufgefüllt war, bei 400 mA für 1 Stunde. Um unspezifische 

Proteinbindungsstellen nach erfolgtem Transfer abzusättigen, wurde die PVDF-

Transfermembran anschließend über Nacht in I-Block inkubiert (200 upm, 4 °C). Darauf 



Material und Methoden 

 

64  

erfolgte die Inkubation mit dem Primärantikörper (Vgl. Tabelle 2) für 1 Stunde bei 

Raumtemperatur (RT) auf einem Schüttler (200 upm). Nach 5 Waschschritten à 10 

Minuten mit TBST-Puffer (200 upm, RT) wurde die PVDF-Membran mit dem 

Sekundärantikörper für 1 Stunde bei Raumtemperatur inkubiert und anschließend erneut 

für 50 Minuten mit TBST-Puffer (200 upm, RT) gewaschen. Danach wurden die 

Membranen mit je 5 ml ECL-Lösung (2,5 ml ECL-1, 2,5 ml ECL-2) für 1 Minute bei 

Raumtemperatur inkubiert und die Chemilumineszenz-Signale mit Fuji-Röntgen-Filmen 

detektiert. Diese wurden im Filmentwicklungsgerät nach Angaben des Herstellers 

entwickelt. Die entwickelten Filme wurden mit dem Scanner gescannt und mit einem 

Fotoverarbeitungsprogramm der entsprechende Ausschnitt zurechtgeschnitten. 

 SEAP-Enzym-Assay (Bestimmung der Alkaline-Phosphatase-Aktivität) 2.7.6.7.

Für den SEAP-Enzym-Assay wurden die Zellen wie oben beschrieben in 24-well Platten 

ausgelegt und transfiziert (Vgl. 2.7.4.3. und 2.7.4.5.). Etwa 10 bis 12 Stunden nach 

Transfektion wurde das Transfektionsmedium abgesaugt und die Zellen mit den 

gewünschten Inhibitoren (Vgl. Tabelle 4) über Nacht bei 37 °C und 5 % CO2 inkubiert. 

Jeweils 80 µl Zellkulturüberstand wurden auf vier wells einer 96-well Platte pipettiert 

und pro well mit 200 µl Reaktionslösung versetzt. Die Platte wurde 30 Minuten bei 37 °C 

inkubiert und die Absorption bei einer Wellenlänge von 405 nm gemessen. Als Referenz 

wurde Hitze-inaktiviertes Medium von unbehandelten Zellen verwendet. Die Absorption 

stellt ein Maß für die Menge des umgesetzten Substrats dar.  

 Massenspektrometrische Analyse  2.7.7.

Zur Identifizierung der Schnittstelle von Typ I NRG1-β durch die β-Sekretase BACE1 

wurde von Peptide Speciality Laboratories GmbH ein Peptid mit der AS-Sequenz der 

juxtamembranären Region von Typ I NRG1-β1 generiert. 10 µg Peptid wurden mit 1 µg 

BACE1-NT (Westmeyer et al. 2004) zu einem Endvolumen von 100 µl mit Na-Acetat-

Puffer gemischt und bei Raumtemperatur über Nacht inkubiert. Ein weiterer 

Reaktionsansatz mit 10 µg Peptid, 1 µg BACE1-NT und 1 µM Inhibitor C3 wurde auf 

ein Endvolumen von 100 µl mit Citrat-Puffer gemischt und bei Raumtemperatur über 

Nacht inkubiert. 

Die Proben wurden freundlicherweise durch Herrn Tilman Schlunk vom Zentrallabor für 

Proteinanalytik der LMU in einem MALDI-TOF (matrix-assisted laser 

desorption/ionization time of flight) Massenspektrometer analysiert.  
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 Statistische Analyse 2.7.8.

Da sich die absoluten Werte der AP-Aktivität in den verschiedenen Versuchen eines 

Versuchsaufbaus im SEAP-Enzym-Assay unterschieden, wurden die absoluten Werte der 

AP-Aktivität jeweils ins Verhältnis zur Kontrolle gesetzt. Dadurch entstanden relative 

Werte der AP-Aktivität, die mit der auf "1" genormten Kontrolle verglichen 

wurden. Relative Werte kleiner eins deuten auf eine verminderte AP-Aktivität 

hin, relative Werte größer eins auf eine erhöhte Aktivität. Die Mittelwerte der relativen 

AP-Aktivität, deren 95 %-Konfidenzintervalle, sowie die P-Werte für die 

Gruppenvergleiche wurden mit Hilfe eines log-linearen Regressionsmodells ermittelt. 

Die statistische Auswertung einschließlich der Erstellung entsprechender Graphiken 

erfolgte im Statistikprogramm R. P-Werte < 0,05 wurden als statistisch signifikant 

bewertet (*P < 0,05, **P < 0,01, ***P < 0,001). 
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3. Ergebnisse 
Diese Arbeit beschäftigt sich mit der proteolytischen Prozessierung von Typ I NRG1-β 

durch die für die Pathophysiologie der Alzheimer Demenz hauptverantwortlichen 

Sekretasen.  

 Intramembranäre Proteolyse von Typ I NRG1 durch den  3.1.

γ-Sekretase-Komplex 
Um zu verifizieren, dass der γ-Sekretase-Komplex die proteolytische Prozessierung  von 

Typ I NRG1 innerhalb der Transmembrandomäne katalysiert, wurde die Prozessierung 

von Typ I NRG1-β4 mit und ohne Inhibition der γ-Sekretase-Aktivität in dieser Arbeit 

untersucht. Hierfür wurden HEK 293 swe-Zellen mit stabiler Typ I NRG1-β4-Expression 

mit dem γ-Sekretase-Inhibitor N-[N-(3,5-Difluorophenacetyl)-L-Alanyl]-S-Phenylglycine 

t-Butyl-Ester (DAPT; 2 µM) über Nacht inkubiert. Zur Anreicherung von 

membrangebundenem Protein aus diesen Zellen erfolgte die Herstellung von 

Membranpräparationen. Die Detektion von membrangebundenem Typ I NRG1-β4 aus 

Membranpräparationen erfolgte in Western-Blot-Analysen mit dem gegen den C-

Terminus von NRG1 gerichteten Antikörper Sc-348. Als Kontrolle diente βAPPswe, 

welches mit dem Antikörper 6687 in Western-Blot-Analysen nachgewiesen wurde. Bei 

Inhibition der γ-Sekretase-Aktivität zeigt sich eine Akkumulation des zytoplasmatischen 

Fragments von Typ I NRG1-β4. Analog zu Neuregulin lässt sich eine Akkumulation der 

membrangebundenen βAPP-Prozessierungsprodukte C99 und C83 bei Inhibition der γ-

Sekretase-Aktivität beobachten (Abb. 13). Die vorliegenden Resultate zeigen, dass die 

Proteolyse innerhalb der Transmembrandomäne durch Inhibition der γ-Sekretase-

Aktivität gehemmt wird. Dies bestätigt, dass der γ-Sekretase-Komplex für die Proteolyse 

innerhalb der Transmembrandomäne von Typ I NRG1-β verantwortlich ist. 
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Abb. 13: Intramembranäre Proteolyse von Typ I NRG1-β durch den γ-Sekretase-Komplex. 
HEK 293 swe-NRG-Zellen mit stabiler Typ I NRG1-β4-Expression wurden mit dem γ-Sekretase 

spezifischen Inhibitor DAPT (2 µM) über Nacht inkubiert.  

(A) Detektion von Typ I NRG1-β4 in Western-Blot-Analysen von Membranpräparationen mit dem Ak Sc-

348. Die Pfeile kennzeichnen die Banden für maturiertes und  nicht maturiertes Typ I NRG1-β4 sowie für 

membrangebundenes Typ I NRG1-β4-CTF. (B&C) Die Detektion von βAPP und dessen 

Prozessierungsprodukten C99 und C83 mit dem Ak 6687 in Western-Blot-Analysen von 

Membranpräparationen erfolgte als Kontrolle für die inhibitorische Wirkung von DAPT. Die Pfeile 

kennzeichnen die Banden sowohl für maturiertes und nicht maturiertes βAPP (B) als auch für C99 und C83 

(C).  

 

 Typ I NRG1-β-Konstrukte in der vorliegenden Arbeit 3.2.
Nachdem in dieser Arbeit bestätigt werden konnte, dass der γ-Sekretase-Komplex die 

proteolytische Prozessierung von Typ I NRG1-β innerhalb der Transmembrandomäne 

katalysiert, stellt sich die Frage nach den für das Shedding von Typ I NRG1-β 

verantwortlichen Sekretasen. Dessen Analyse erfordert die Detektion sowohl des 

ungeschnittenen Proteins als auch den Nachweis der Prozessierungsprodukte, d.h. des 

löslichen N-terminalen Fragments (NTF) sowie des membrangebundenen C-terminalen 

Fragments (CTF).  In der vorliegenden Arbeit dienten Immunfluoreszenz-Analysen sowie 

Western-Blot-Analysen von Zelllysaten der Detektion von membrangebundenem Typ I 

NRG1-β. Western-Blot-Analysen von Immunpräzipitationen sowie Enzym-Assay-

Analysen ermöglichten hingegen den Nachweis sezernierter Prozessierungsprodukte im 

Zellkulturüberstand. Um eine spezifische Ektodomänen-Detektion in Immunoassays zu 

ermöglichen, wurden für die verschiedenen Typ I NRG1-β-Isoformen cDNA-Konstrukte 

generiert, welche mit einem für das Hämagglutinin-Peptid (HA-Peptid) kodierenden Tag 

(HA-Tag) an ihrem N-Terminus konjugiert sind. Mit Hilfe eines spezifisch gegen das 

HA-Peptid gerichteten Antikörpers konnte somit die Ektodomäne spezifisch 

nachgewiesen werden. Die Verwendung eines solchen Tags erlaubt in Immunoassays den 

Rückschluss von Signalintensitäten auf die relative Menge an geschnittenem Typ I 

DAPT 
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NRG1-β. Sowohl in der vorliegenden Arbeit als auch in anderen Studien konnte gezeigt 

werden, dass sich die Prozessierung von Typ I NRG1 durch Konjugation an HA-Tags 

nicht von der Prozessierung nativer Typ I NRG1-Proteine unterscheidet (Wang et al. 

2001) (Abb. 13 & 17). Entscheidend ist auch die Tatsache, dass die Proteinfaltung sowie 

die biologische Aktivität von HA-Typ I NRG1-Konstrukten nicht beeinträchtigt werden 

(Montero et al. 2000). Die gewählte Position des HA-Tags am N-Terminus von Typ I 

NRG1-β entspricht derjenigen, die schon in vorherigen Studien anderer Arbeitsgruppen 

zur Untersuchung des Sheddings von Typ I NRG-β verwendet wurde  (Shirakabe et al. 

2001, Yokozeki et al. 2007). 

Für die spezifische Ektodomänen-Detektion in Enzym-Assay-Analysen wurden cDNA-

Konstrukte generiert, welche für Typ I NRG1-β-Isoformen mit einer Alkaline 

Phosphatase (AP)-Sequenz an ihrem N-Terminus kodieren (Abb. 14 C). Die Verwendung 

einer für Alkaline Phosphatase kodierenden Sequenz erlaubt in SEAP-Enzym-Assays 

(secreted alkaline phosphatase-Enzym-Assays) den Rückschluss von Signalintensitäten 

auf die relative Menge an löslichem Typ I NRG1-β und damit auf das Ausmaß des 

Sheddings (Burgess et al. 1995, Loeb und Fischbach 1995, Montero et al. 2000, Wang et 

al. 2001, Falls 2003 a, Falls 2003 b, Willem et al. 2006, Mei und Xiong 2008). Als 

Matrize für diese cDNA-Konstrukte diente der, freundlicher Weise von C. Blobel zur 

Verfügung gestellte, Vektor APtag-5. In diesen ist die Sequenz der juxtamembranären 

Region, die TMD, sowie Anteile des zytoplasmatischen Fragments von Typ I NRG1-β2 

kloniert (Nukleotide 977-2374, GenBank accession number NM_013957), wobei ein 

Protein generiert wird, an dessen N-Terminus die AP konjugiert ist (Zhou et al. 2004). 

Die Lokalisation der AP direkt N-terminal der EGF-ähnlichen Domäne entspricht der 

Lokalisation in voraus gegangenen Arbeiten mit EGF-Rezeptorliganden (Sahin et al. 

2004, Zhou et al. 2004, Horiuchi et al. 2005). Sowohl für das Shedding der EGF-

Rezeptorliganden TGF-α, Epiregulin, HB-EGF als auch für Typ I NRG1-β scheint die 

Fusion mit AP proximal der EGF-ähnlichen Domäne das Shedding nicht zu beeinflussen 

(Sahin et al. 2004, Zhou et al. 2004, Horiuchi et al. 2005). Die Verwendung von AP-Tags 

ist somit eine geeignete Methode, um das Shedding dieser Substrate zu analysieren. 
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Abb. 14: Schematische Darstellung der in dieser Arbeit verwendeten rekombinanten Typ I NRG1-β- 

Konstrukte. Die Typ I NRG1-Exons und ihre korrespondierenden Protein-Sequenzen sind 

verschiedenfarbig dargestellt und entsprechend ihrer jeweiligen Domänen beschriftet (Falls 2003 b). Die 

Sequenzen aller hier verwendeten Typ I NRG1-Isoformen entsprechen den Sequenzen der Typ I NRG1-

Isoformen bei der Ratte. (A) Ungeschnittenes Typ I NRG1-β4, welches als Matrize zur Klonierung der 

unter (B) dargestellten Konstrukte diente. (B) HA-Typ I NRG1-β-Konstrukte. Das HA-Epitop (rote Box) 

und das Signalpeptid (SP, grüne Box) am N-Terminus ihrer Ektodomäne sind gekennzeichnet. Dargestellt 

sind die hier verwendeten Isoformen Typ I NRG1-β1,- β2 und -β4. (C) Typ I NRG1-β-SEAP-Konstrukte 

für SEAP-Enzym-Assay-Analysen. Die für Alkaline Phosphatase (AP) kodierende Sequenz unmittelbar N-

terminal der β-EGF-ähnlichen Domäne ist gekennzeichnet (rosa Box). Dargestellt ist das Konstrukt Typ I 

NRG1-β2-SEAP, welches als Matrize für die anderen Konstrukte diente: Typ I NRG1-β1-SEAP, Typ I 

NRG1-β4-SEAP, Typ I NRG1-β1AA-SEAP (Austausch der AS Glu-PheAla-Ala (AA) im Bereich der 

juxtamembranären Region) und Typ I NRG1-β1Δ7-SEAP (Deletion von 7 AS in der juxtamembranären 

Region). 

 

 
Abb. 15: Schematische Darstellung der in dieser Arbeit verwendeten Typ I HA-NRG1-β1- 

Mutationskonstrukte. Die juxtamembranäre Region ist in der Schemazeichnung blau umrahmt. Darunter 

dargestellt sind die verschiedenen AS-Sequenzen der juxtamembranären Region und der β-EGF-ähnlichen 

Region von Typ I NRG1-β1 sowie von den Mutationskonstrukten Typ I NRG1-β1AA und Typ I NRG1-

β1Δ7. Diese entsprechen der rot umrahmten Region der Schemazeichnung. Die jeweilige juxtamembranäre 

Region ist unterstrichen. Die spezifische Sequenz der β1-Isoform ist analog der Schemazeichnung rosa und 

die Mutationen violett hervorgehoben. 
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 Shedding von Typ I NRG1-β durch BACE1 3.3.
Im Rahmen der Erforschung von Therapieoptionen der  Alzheimer Demenz spielt die 

Inhibition der β-Sekretase BACE1 zunehmend eine Rolle. Hierbei ist jedoch die 

Beeinflussung der biologischen Funktionen der BACE1-Substrate zu berücksichtigen. Zu 

Beginn dieser Arbeit gab es bereits Hinweise darauf, dass Typ III NRG1-β1 als BACE1-

Substrat eine entscheidende Rolle in der Entwicklung des Nervensystems spielt (Willem 

et al. 2006). Da neben Typ III NRG1 auch Typ I NRG1 stark neuronal exprimiert wird 

(Wang et al. 2001, Falls 2003 b), hatte die vorliegende Arbeit zum Ziel, die Beteiligung 

von BACE1 am  Shedding von Typ I NRG1 zu untersuchen. Die vorliegende Arbeit 

konzentriert sich dabei auf das Shedding der hauptsächlich neuronal exprimierten 

Isoformen β1, β2 und β4 von Typ I NRG1-β (Wen et al. 1994, Oberto et al. 2001, Wang 

et al. 2001, Falls 2003 b). 

 Immunoassay-Analyse des Sheddings von Typ I NRG1-β durch 3.3.1.

BACE1 

Typ I NRG1-β wird als maturiertes Pro-Protein unter anderem an der Zellmembran 

exprimiert und prozessiert (Burgess et al. 1995, Loeb et al. 1998, Wang et al. 2001). 

Durch Vergleich der Oberflächenexpression von transfizierten Typ I NRG1-β-

Konstrukten in Zelllinien mit und ohne stabiler BACE1-Überexpression sollte in 

Immunfluoreszenzanalysen das Shedding von Typ I NRG1-β durch BACE1 

nachgewiesen werden. Hierzu wurden HEK 293-Zellen (Kontrollzelllinie) und HEK 293-

Zellen mit stabiler BACE1-Überexpression (HEK 293-B1-Zellen) transient mit dem 

rekombinanten Konstrukt HA-Typ I NRG1-β4 transfiziert. Der Nachweis von 

maturiertem HA-Typ I NRG1-β4 erfolgte in der Oberflächenfärbung durch Detektion von 

dessen Ektodomäne (HA-Epitop) (Abb. 16 A). In der Oberflächenfärbung wird bei 

Überexpression von BACE1 (293 B1) eine deutlich reduzierte Oberflächenexpression 

von maturiertem Typ I NRG1-β4 im Vergleich zur Kontrollzelllinie beobachtet 

(Abb. 16 A). Diese Beobachtung lässt darauf schließen, dass Typ I NRG1-β4 durch 

BACE1 prozessiert wird. 

Um jedoch eine unterschiedliche Transfektionsrate von HEK 293-Zellen im Vergleich zu 

HEK 293-B1-Zellen als Ursache der reduzierten Oberflächenexpression auszuschließen, 

wurden im selben Experiment Färbungen von permeabilisierten Zellen durchgeführt 

(Abb. 16 B). In permeabilisierten Zellen kann im Gegensatz zur Oberflächenfärbung 

nicht nur ungeschnittenes sondern auch bereits prozessiertes membrangebundenes Protein 

detektiert werden. Der Nachweis von membrangebundenem Neuregulin erfolgte in der 
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Färbung permeabilisierter Zellen durch Detektion des NRG1-CT. Hier konnte gezeigt 

werden, dass sich die Expression von HA-Typ I NRG1-β4 (NRG1-CT) in HEK 293-B1-

Zellen nicht von der Expression in der Kontrollzelllinie unterscheidet. Entsprechend den 

Ergebnissen aus der Oberflächenfärbung wird auch in permeabilisierten Zellen bei 

Überexpression von BACE1 (293 B1) ein deutlich reduzierter Nachweis von maturiertem 

Typ I NRG1-β4 (HA-Epitop) im Vergleich zur Kontrollzelllinie beobachtet (Abb. 16 B). 

Es ist somit anzunehmen, dass die Detektionsunterschiede bezüglich maturiertem Typ I 

NRG1-β4 in HEK 293-Zellen mit und ohne BACE1-Überexpression auf der Freisetzung 

der NRG1-Ektodomäne infolge Shedding durch BACE1 beruhen. 

Zusammengefasst konnte in den Immunfluoreszenzanalysen gezeigt werden, dass 

BACE1 das Shedding von Typ I NRG1-β4 katalysiert. 

 

Abb. 16: Prozessierung von Typ I NRG1-β4 durch BACE1 in der Immunfluoreszenz. 
(A) Oberflächenfärbung. HEK 293-Zellen (293) und HEK 293-Zellen mit stabiler BACE1-Überexpression 

(293 B1) wurden transient mit dem cDNA-Konstrukt HA-Typ I NRG1-β4 transfiziert und die NRG1-

Ektodomäne durch Detektion des HA-Epitops nachgewiesen. (B) Färbung permeabilisierter Zellen. HEK 

293-Zellen und HEK 293-B1-Zellen wurden transient mit dem cDNA-Konstrukt HA-Typ I NRG1-β4 

transfiziert. Der simultane Nachweis von Ektodomäne (HA-Epitop) und C-Terminus (CT) erfolgte mit 

unterschiedlich fluoreszierenden Sekundär-Antikörpern.  

 

 

Zur weiteren Analyse des Sheddings von Typ I NRG1-β durch BACE1 wurden in der 

vorliegenden Arbeit Western-Blot-Analysen aus Zelllysaten und Zellkulturüberständen 

von Zellen mit und ohne BACE1-Überexpression sowie nach Inhibition der BACE1-

Aktivität durchgeführt. Die Analyse des Sheddings konzentriert sich hierbei auf die am 

stärksten neuronal exprimierten Typ I NRG1-β-Isoformen Typ I NRG1-β1, -β2 und -β4 

(Wang et al. 2001, Falls 2003 b). Zu diesem Zweck wurden HEK 293-Zellen mit und 

ohne stabiler BACE1-Überexpression nach transienter Transfektion mit den cDNA-
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Konstrukten HA-Typ I NRG1-β1, -β2 und -β4 mit dem BACE1 spezifischen Inhibitor C3 

(2 µM) über Nacht inkubiert. Anschließend wurden die Prozessierungsprodukte der 

jeweiligen Typ I NRG1-β-Isoformen analysiert. Der Nachweis von membrangebundenem 

Typ I NRG1-β erfolgte durch Detektion des C-Terminus in Western-Blot-Analysen von 

Zelllysaten. Sezerniertes Typ I NRG1-β wurde durch Detektion des HA-Epitops in 

Western-Blot-Analysen von Immunpräzipitationen aus den korrespondierenden 

Zellkulturüberständen nachgewiesen (Abb. 17). 

In HEK 293-Zellen mit endogener BACE1-Expression ist für das Shedding der in dieser 

Arbeit verwendeten Typ I NRG1-β-Isoformen kein signifikanter Unterschied zwischen 

Inhibition der BACE1-Aktivität (C3) und unbehandelter Kontrolle zu beobachten (Abb. 

17 A & B). Dagegen zeigt sich in Zelllysaten von BACE1 überexprimierenden HEK 293-

Zellen bei Inhibition der BACE1-Aktivität eine Akkumulation der maturierten Typ I 

NRG1-Isoformen β1 und β4, sowie eine entsprechende Reduktion des prozessierten 

membrangebundenen CTF (Abb. 17 C). In Übereinstimmung hierzu findet sich im 

entsprechenden Zellkulturüberstand eine deutliche Reduktion der jeweils 

korrespondierenden Ektodomäne im Vergleich zur unbehandelten Kontrolle (Abb. 17 D).  

Im Gegensatz zu den Isoformen β1 und β4 resultiert die Inhibition der BACE1-Aktivität 

in BACE1 überexprimierenden HEK 293-Zellen nicht in einer vermehrten Akkumulation 

der maturierten Typ I NRG1-Isoform β2 (Abb. 17 C). Im Vergleich zu den Typ I NRG1-

Isoformen β1 und β4 ist jedoch insgesamt eine stärkere Akkumulation von maturiertem 

Typ I NRG1-β2 sowohl bei Inhibition als auch ohne Inhibition der BACE1-Aktivität in 

Zelllysaten von HEK 293-Zellen als auch von HEK 293-B1-Zellen nachzuweisen 

(Abb. 17 A & C). In Übereinstimmung mit der Akkumulation der maturierten β2-Isoform 

im Zelllysat findet sich im entsprechenden konditionierten Medium eine deutlich 

reduzierte Signalintensität der β2-Ektodomäne verglichen mit den Signalintensitäten der 

Typ I  NRG1-Isoformen β1 und β4 (Abb. 17 B & D). Erstaunlicherweise zeigt sich nach 

Inhibition der BACE1-Aktivität in HEK 293-B1-Zellen eine reduzierte Signalintensität 

der β2-Ektodomäne im Vergleich zur unbehandelten Kontrolle (Abb. 17 D). 

Die vorliegenden Ergebnisse deuten darauf hin, dass zumindest bei BACE1-

Überexpression in HEK 293-Zellen die Isoformen Typ I NRG1-β1 und -β4 BACE1-

Substrate darstellen, wohingegen Typ I NRG1-β2 nicht oder nur wenig durch BACE1 

prozessiert wird. 
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Abb. 17: Prozessierung von Typ I NRG1-β1, Typ I NRG1-β2 und Typ I NRG1-β4 durch BACE1 in 

HEK 293-Zellen (A, B) und HEK 293-B1-Zellen (C, D). HEK 293-Zellen sowie HEK 293-B1-Zellen 

wurden transient mit den cDNA-Konstrukten HA-Typ I NRG1-β1, HA-Typ I NRG1-β2 und HA-Typ I 

NRG1-β4 transfiziert und mit dem BACE1 spezifischen Inhibitor C3 (2 µM) über Nacht inkubiert. In 

Western-Blot-Analysen von STET-Lysaten wurde maturiertes Typ I NRG1-β durch Nachweis des C-

Terminus detektiert (Ak Sc-348). Als Ladekontrolle diente der gleichmäßige Nachweis von β-Aktin. Die 

Pfeile kennzeichnen maturiertes und nicht maturiertes Typ I NRG1-β sowie membrangebundenes Typ I 

NRG1-β-CTF. In Western-Blot-Analysen von Immunpräzipitationen (IP) aus den entsprechenden 

Zellkulturüberständen wurde die lösliche Ektodomäne von Typ I NRG1-β durch Nachweis des HA-Epitops 

detektiert. (A) Lysate von HEK 293-Zellen. (B) IP aus Zellkulturüberständen von HEK 293-Zellen mit 

Nachweis der löslichen Ektodomäne. (C) Lysate von HEK 293-B1-Zellen. (D) IP aus 

Zellkulturüberständen von HEK 293-B1-Zellen mit Nachweis der löslichen Ektodomäne.  

 

 SEAP-Enzym-Assay-Analyse des Sheddings von Typ I NRG1-β 3.3.2.

Zur besseren Quantifizierung der im Zellkulturüberstand nachweisbaren Typ I NRG1-β-

Ektodomäne wurden SEAP-Enzym-Assay-Analysen durchgeführt. Die Zellkultur-

überstände für den SEAP-Enzym-Assay stammten von HEK 293-Zellen, welche zuvor 
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mit den für diesen Enzym-Assay generierten cDNA-Konstrukten (Abb. 14) transfiziert 

wurden. Da die Alkaline Phosphatase (AP) in den genannten Konstrukten N-terminal der 

β-EGF-ähnlichen Domäne und damit auch N-terminal der vermuteten Schnittstelle 

lokalisiert ist, setzt die Prozessierung der Ektodomäne die EGF-ähnliche Domäne 

zusammen mit der AP in den Zellkulturüberstand frei. Somit entspricht die im 

Zellkulturüberstand gemessene AP-Aktivität der relativen Menge an sezerniertem Typ I 

NRG1-β-SEAP. Sie ist folglich ein indirektes Maß für das Shedding von Typ I NRG1-β-

SEAP bzw. der enzymatischen Aktivität der für das Shedding verantwortlichen 

Sekretase. 

Durch Vergleich der Signalintensitäten im Zellkulturüberstand von Zellen mit bzw. ohne 

BACE1-Überexpression sowie nach Inhibition der BACE1-Aktivität sollte das Shedding 

der verschiedenen Typ I NRG1-β-Isoformen durch BACE1 bestätigt werden. Zu diesem 

Zweck wurden HEK 293-Zellen mit und ohne BACE1-Überexpression sowie SH-SY5Y- 

Zellen transient mit den cDNA-Konstrukten Typ I NRG1-β1-SEAP, Typ I NRG1-β2-

SEAP und Typ I NRG1-β4-SEAP transfiziert und teilweise anschließend mit dem 

BACE1 spezifischen Inhibitor C3 (2 µM) über Nacht inkubiert.  

In HEK 293-Zellen mit endogener BACE1-Expression ist für das Shedding der in dieser 

Arbeit verwendeten Typ I NRG1-β-Isoformen kein signifikanter Unterschied zwischen 

Inhibition der BACE1-Aktivität (C3; 2 µM) und unbehandelter Kontrolle zu beobachten 

(Typ I NRG1-β1 p=0,49; n=6; Typ I NRG1-β2 p=0,22; n=6; Typ I NRG1-β4 p=0,95; 

n=6; Abb. 18).  

Verglichen mit der Kontrollzelllinie ist in BACE1 überexprimierenden HEK 293-Zellen 

ein 2,5-facher signifikanter Anstieg des Sheddings von Typ I NRG1-β1 festzustellen 

(p<0,001; n=6; Abb. 18). Nach Inhibition der BACE1-Aktivität (C3; 2 µM) in derselben 

Zelllinie zeigt sich eine signifikante Reduktion des Sheddings um ca. 70 % im Vergleich 

zur unbehandelten Kontrolle (p<0,001; n=6; Abb. 18) und erstaunlicherweise eine 

signifikante Reduktion des Sheddings um ca. 35 % im Vergleich zur Kontrollzelllinie 

(p<0,001; n=6; Abb. 18). In SH-SY5Y-Zellen kann das Shedding nach Inhibition der 

endogenen BACE1-Aktivität (C3; 2 µM) signifikant um ca. 30 % im Vergleich zur 

unbehandelten Kontrolle reduziert werden (p<0,001; n=3; Abb. 19). Diese Ergebnisse 

zeigen, dass Typ I NRG1-β1 durch BACE1 prozessiert wird, sowohl bei BACE1-

Überexpression in HEK 293-Zellen als auch unter endogenen Bedingungen in SH-SY5Y-

Zellen.  
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Abb. 18: SEAP-Enzym-Assay-Analyse des Sheddings von Typ I NRG1-β in HEK 293- und HEK 293-

B1-Zellen. Dargestellt ist die Alkaline Phosphatase (AP)-Aktivität im Zellkulturüberstand der transient mit 

den cDNA-Konstrukten Typ I NRG1-β1-SEAP (rosa), Typ I NRG1-β2-SEAP (blau) und Typ I NRG1-β4-

SEAP (grün) transfizierten HEK 293- und HEK 293-B1-Zellen. Schraffierte Balken repräsentieren die 

relative Menge an löslichem Typ I NRG1-β-SEAP im Zellkulturüberstand von HEK 293-B1-Zellen. Nicht 

schraffierte Balken repräsentieren das Shedding von Typ I NRG1-β-SEAP in HEK 293-Zellen 

(Kontrollzelllinie). Inhibitorbehandlung mit C3 (2 µM) ist durch die jeweils dunklere Farbtönung 

gekennzeichnet. Die jeweiligen im Zellkulturmedium der unbehandelten Kontrollzelllinie gemessenen 

Werte für die AP-Aktivität wurden gleich „1“ und die übrigen Messwerte hierzu jeweils ins Verhältnis 

gesetzt. Dargestellt sind die Mittelwerte und die entsprechenden 95 %-Konfidenzintervalle aus sechs 

unabhängigen Experimenten (*P < 0,05, **P < 0,01, ***P < 0,001).  
 

 

Für Typ I NRG1-β4 ist in BACE1 überexprimierenden HEK 293-Zellen ein signifikanter 

Anstieg des Sheddings um das 1,5-fache im Vergleich zur Kontrollzelllinie zu 

beobachten (p<0,001; n=6; Abb. 18). Nach Inhibition der BACE1-Aktivität (C3; 2 µM) 

in derselben Zelllinie wird das Shedding der β4-Isoform signifikant um ca. 50 % im 

Vergleich zur unbehandelten Kontrolle (p<0,001; n=6; Abb. 18) und erstaunlicherweise 

signifikant um ca. 30 % im Vergleich zur Kontrollzelllinie (p<0,01; n=6; Abb. 18) 

reduziert. In SH-SY5Y-Zellen lässt sich kein signifikanter Unterschied für das Shedding 

der β4-Isoform nach BACE1-Inhibition verglichen mit der unbehandelten Kontrolle 

nachweisen (p=0,87; n=3; Abb. 19). Diese Ergebnisse zeigen, dass Typ I NRG1-β4 zwar 

nicht bei endogener BACE1-Expression in den hier verwendeten Zelllinien, jedoch bei 

Überexpression von BACE1 in HEK 293-Zellen ein Substrat für diese Sekretase darstellt. 

Bezüglich der Typ I NRG1-β2-Isoform wird bei BACE1-Überexpression in HEK 293- 

Zellen eine signifikante Reduktion des Sheddings um ca. 30 % im Vergleich zur 

Kontrollzelllinie beobachtet (p<0,001; n=6; Abb. 18), sowie nach Inhibition der BACE1-
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Aktivität erstaunlicherweise eine weitere signifikante Abnahme des Sheddings um ca. 

40 % im Vergleich zur unbehandelten Kontrolle (p<0,001; n=6; Abb. 18). 

In SH-SY5Y-Zellen lässt sich kein signifikanter Unterschied für das Shedding der β2-

Isoform nach BACE1-Inhibition verglichen mit der unbehandelten Kontrolle nachweisen 

(p=0,73; n=3; Abb. 19). Die vorliegenden Ergebnisse deuten darauf hin, dass BACE1 in 

HEK 293-Zellen und SH-SY5Y-Zellen nicht oder zumindest nur in sehr geringem 

Ausmaß für das Shedding von Typ I NRG1-β2 verantwortlich ist.  

 

  
 
Abb. 19: SEAP-Enzym-Assay-Analyse des Sheddings von Typ I NRG1-β in SH-SY5Y-Zellen. 

Dargestellt ist die Alkaline Phosphatase (AP)-Aktivität im Zellkulturüberstand von transient mit den 

cDNA-Konstrukten Typ I NRG1-β1-SEAP (rosa), Typ I NRG1-β2-SEAP (blau) und Typ I NRG1-β4-

SEAP (grün)  transfizierter SH-SY5Y-Zellen. Inhibitorbehandlung mit C3 (2 µM) ist durch die jeweils 

dunklere Farbtönung gekennzeichnet. Die jeweiligen im Zellkulturmedium der unbehandelten 

Kontrollzellen gemessenen Werte für die AP-Aktivität wurden gleich „1“ und die übrigen Messwerte 

hierzu jeweils ins Verhältnis gesetzt. Dargestellt sind die Mittelwerte und die entsprechenden 95 %-

Konfidenzintervalle aus drei unabhängigen Experimenten  (*P < 0,05, **P < 0,01, ***P < 0,001). 

 

 

Die vorliegenden Resultate zeigen, dass das Shedding von Typ I NRG1-β1 und Typ I 

NRG1-β4 durch BACE1 katalysiert wird. Typ I NRG1-β1 stellt dabei sowohl bei 

BACE1-Überexpression in HEK 293-Zellen als auch bei endogener BACE1-Expression 

in SH-SY5Y-Zellen ein Substrat für BACE1 dar, wohingegen Typ I NRG1-β4 nur bei 

BACE1-Überexpression in  HEK 293-Zellen durch BACE1 prozessiert wird.  

Für Typ I NRG1-β2 konnte in beiden Zelllinien kein Shedding durch BACE1 

nachgewiesen werden. 

 

 



Ergebnisse 

 

78  

 Bestimmung der BACE1-Schnittstelle von Typ I NRG1-β1  3.3.3.

 Bestimmung der BACE1-Schnittstelle von Typ I NRG1-β1 in der MALDI-3.3.3.1.

TOF-MS-Analyse 

Nachdem gezeigt werden konnte, dass BACE1 bevorzugt das Shedding der Typ I NRG1-

β1-Isoform katalysiert, wurde im Folgenden die Schnittstelle für BACE1 innerhalb der 

juxtamembranären Region dieser Isoform in der MALDI-TOF-MS-Analyse 

charakterisiert (Abb. 20). Hierfür wurde ein Peptid generiert, dessen AS-Sequenz der 

juxtamembranären Region von Typ I NRG1-β1 entspricht. Die infolge in vitro-Verdau 

produzierten Schnittprodukte dieses Peptids wurden in der MALDI-TOF-MS-Analyse 

untersucht, wobei der Peptid-Verdau durch BACE1 zwei Schnittprodukte mit einem 

Molekulargewicht von 1538 bzw. 1947 Dalton generierte (Abb. 20 B). In 

Kontrollanalysen mit dem BACE1 spezifischen Inhibitor C3 konnten diese 

Schnittprodukte in der MALDI-TOF-MS-Analyse nicht nachgewiesen werden, sondern 

lediglich das unprozessierte Peptid (Abb. 20 C). Die Inhibitor-Kontrolle bestätigt die 

Annahme, dass die Generierung der beiden Schnittprodukte infolge BACE1-

Enzymverdau erfolgte und zeigt, dass diese Reaktion spezifisch ist.  

Die Summe beider Schnittprodukte entspricht in etwa dem Molekulargewicht des 

unverdauten Peptids mit 3469 Dalton (Abb. 20 A). Aus den Massenwerten der zwei 

Schnittprodukte konnte unter Kenntnis der Peptidsequenz auf die exakte Schnittstelle 

innerhalb dieses Peptids und damit innerhalb der juxtamembranären Region von Typ I 

NRG1-β1 geschlossen werden. Die BACE1-Schnittstelle entspricht dabei einem Schnitt 

zwischen Aminosäure-Position Glu
236

-Phe
237 

und Met
238

-Glu
239

 von humanem Typ I 

NRG1-β1.  
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Abb. 20: Bestimmung der BACE1-Schnittstelle von Typ I NRG1-β1 in der MALDI-TOF-MS-

Analyse. Die Skalierung gibt die relative Intensität der Peaks an. Die für die Peaks gemessenen 

Massenwerte sind jeweils angegeben. (A) Abgebildet ist das Massenspektrum eines Peptids, dessen AS-

Sequenz der juxtamembranären Region von Typ I NRG1-β1 entspricht. Das Molekulargewicht des Peptids 

ist angegeben. (B) Abgebildet sind die Massenspektren der Peptidschnittprodukte nach BACE1-Enzym-

Verdau sowie unprozessiertes Peptid. Das Molekulargewicht des Peptids sowie das Molekulargewicht von 

dessen Schnittprodukten ist angegeben. (C) Abgebildet sind die Massenspektren des unprozessierten 

Peptids und des Inhibitors nach Inhibition der BACE1-Aktivität. Es werden keine Schnittprodukte 
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 SEAP-Enzym-Assay-Analyse des Sheddings von Typ I NRG1-β-3.3.3.2.

Schnittstellen-Mutanten 

In der MALDI-TOF-MS-Analyse konnte, wie oben gezeigt, die BACE1-Schnittstelle 

innerhalb der Typ I NRG1-β1-Ektodomäne ermittelt werden. Um die Sequenzspezifität 

von BACE1 für die ermittelte Schnittstellen-Sequenz zu untersuchen und die Existenz 

weiterer BACE1-Schnittstellen innerhalb der juxtamembranären Region von Typ I 

NRG1-β1 auszuschließen, wurden Mutationen im Bereich der in dieser Arbeit 

charakterisierten Schnittstelle eingeführt. Durch den Austausch von zwei AS (Glu-Phe  

Ala-Ala) bzw. durch Deletion von sieben AS im Bereich der BACE1-Schnittstelle wäre 

im Falle einer Schnittstellen-Sequenzspezifität für BACE1 bzw. bei Existenz von nur 

einer einzigen BACE1-Schnittstelle kein weiteres Shedding von Typ I NRG1-β1 zu 

erwarten.  

Die Prozessierung der Typ I NRG1-β1-SEAP-Mutationsderivate durch BACE1 wurde im 

Folgenden in SEAP-Enzym-Assays von Zellkulturüberständen analysiert. Die 

Zellkulturüberstände stammten dabei von SH-SY5Y-Zellen, sowie von HEK 293-Zellen 

und HEK 293-B1-Zellen mit und ohne Inhibition der BACE1-Aktivität. Die Zellen 

wurden hierfür transient mit den cDNA-Konstrukten Typ I NRG1-β1-SEAP, Typ I 

NRG1-β1AA-SEAP und Typ I NRG1-β1Δ7-SEAP (Abb. 14 & 15) transfiziert und 

anschließend teilweise mit dem BACE1 spezifischen Inhibitor C3 (2 µM) über Nacht 

inkubiert. Die jeweiligen Zellkulturüberstände standen nun für die Analyse im SEAP-

Enzym-Assay zur Verfügung (Abb. 21).  

Im Gegensatz zur β1-Isoform zeigt die Inhibition der endogenen BACE1-Aktivität in SH-

SY5Y-Zellen keinen signifikanten Effekt auf das Shedding der AS-Austauschmutante 

Typ I NRG1-β1AA-SEAP im Vergleich zur unbehandelten Kontrolle (p=0,52; n=3; Abb. 

21). Auch für die Δ7-Deletionsmutante lässt sich nach Inhibition der endogenen BACE1-

Aktivität kein signifikanter Effekt auf das Shedding nachweisen (p=0,062; n=3; Abb. 21). 

Bei Überexpression von BACE1 in HEK 293-Zellen wird im Vergleich zur 

Kontrollzelllinie kein signifikanter Effekt auf das Shedding der AS-Austauschmutante 

(p=0,29; n=3; Abb. 22) im Gegensatz zu Typ I NRG1-β1 beobachtet. Nach Inhibition der 

BACE-Aktivität (C3; 2 µM) in BACE1 überexprimierenden HEK 293-Zellen lässt sich 

das Shedding der AS-Austauschmutante jedoch erstaunlicherweise um ca. 75 % im 

Vergleich zur unbehandelten Kontrolle reduzieren (p<0,001; n=3; Abb. 22).  

Zusammengefasst hat die Inhibition der endogenen BACE1-Aktivität in SH-SY5Y-

Zellen keinen signifikanten Effekt auf das Shedding der Typ I NRG1-β1-Mutanten AA 

und Δ7 im Gegensatz zur β1-Isoform. Ferner resultiert die Überexpression von BACE1 
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in HEK 293-Zellen in keinem vermehrten Shedding der Typ I NRG1-β1-AS-

Austauschmutante AA im Gegensatz zur β1-Isoform. Diese Ergebnisse deuten darauf hin, 

dass infolge Mutation der in der MALDI-TOF-MS-Analyse ermittelten BACE1-

Schnittstelle, sowohl durch AS-Austausch von Glu-Phe (EF) nach Ala-Ala (AA) als auch 

durch Deletion von sieben AS (Δ7), das Shedding  von Typ I NRG1-β1 durch BACE1 

verhindert wird. Somit ist anzunehmen, dass BACE1 eine Sequenzspezifität für die in 

dieser Arbeit ermittelte Schnittstelle innerhalb der juxtamembranären Region besitzt und 

dass keine weiteren Schnittstellen für BACE1 innerhalb der juxtamembranären Region 

existieren.  

 
Abb. 21: SEAP-Enzym-Assay-Analyse des Sheddings  der SEAP-Typ I NRG1-β1-Mutanten  in SH-

SY5Y-Zellen. Dargestellt ist die Alkaline Phosphatase (AP)-Aktivität im Zellkulturüberstand von transient 

mit den cDNA-Konstrukten Typ I NRG1-β1-SEAP (rosa), Typ I NRG1-β1AA-SEAP (violett) und Typ I 

NRG1-β1Δ7-SEAP (lila) transfizierten SH-SY5Y-Zellen. Inhibitorbehandlung mit C3 (2 µM) ist durch die 

jeweils dunklere Farbtönung gekennzeichnet. Die jeweiligen im Zellkulturmedium der unbehandelten 

Kontrollzellen gemessenen Werte für die AP-Aktivität wurden gleich „1“ und die übrigen Messwerte 

hierzu jeweils ins Verhältnis gesetzt. Dargestellt sind die Mittelwerte und die entsprechenden 95 %-

Konfidenzintervalle aus drei unabhängigen Experimenten. (*P < 0,05, **P < 0,01, ***P < 0,001). 
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Abb. 22: SEAP-Enzym-Assay-Analyse des Sheddings  der SEAP-Typ I NRG1-β1-Mutante β1-AA  in 

in HEK 293- und HEK 293-B1-Zellen. Dargestellt ist die Alkaline Phosphatase (AP)-Aktivität im 

Zellkulturüberstand von transient mit den cDNA-Konstrukten Typ I NRG1-β1-SEAP (rosa) und Typ I 

NRG1-β1AA-SEAP (violett) transfizierten HEK 293- und HEK 293-B1-Zellen. Schraffierte Balken 

repräsentieren die relative Menge an löslichem Typ I NRG1-β-SEAP im Zellkulturüberstand von HEK 

293-B1-Zellen. Nicht schraffierte Balken repräsentieren das Shedding von Typ I NRG1-β-SEAP in HEK 

293-Zellen (Kontrollzelllinie). Inhibitorbehandlung mit C3 (2 µM) ist durch die jeweils dunklere 

Farbtönung gekennzeichnet. Die jeweiligen im Zellkulturmedium der unbehandelten Kontrollzelllinie 

gemessenen Werte für die AP-Aktivität wurden gleich „1“ und die übrigen Messwerte hierzu jeweils ins 

Verhältnis gesetzt. Dargestellt sind die Mittelwerte und die entsprechenden 95 %-Konfidenzintervalle aus 

drei unabhängigen Experimenten (*P < 0,05, **P < 0,01, ***P < 0,001). 

 

 Shedding von Typ I NRG1-β durch ADAMs 3.4.
Da Typ I NRG1 ein Substrat von mindestens einer Disintegrin- und Metalloprotease ist 

(Montero et al. 2000, Shirakabe et al. 2001, Horiuchi et al. 2005),  stellt sich die Frage, 

ob noch weitere Mitglieder der ADAM-Familie dessen Shedding katalysieren. Ziel dieser 

Arbeit war es daher unter anderem, das Shedding durch ADAMs und im Besonderen 

durch ADAM10, zu analysieren. 

 Stimuliertes Shedding von Typ I NRG1-β  3.4.1.

Zunächst sollte nachgewiesen werden, dass durch Induktion der α-Sekretase-Aktivität das 

Shedding von Typ I NRG1-β gesteigert werden kann (stimuliertes Shedding). 

Stimulierung der α-Sekretase-Aktivität mit phorbol-12-myristate-13-acetate (PMA, 

1 µM; 30 min.) (Burgess et al. 1995) in Typ I NRG1-β4 exprimierenden HEK 293 swe-

NRG-Zellen führt zu einer deutlichen Reduktion der Menge an maturiertem Neuregulin, 

während die Menge des korrespondierenden CTF zunimmt (Abb. 23). Als Kontrolle 

diente der Nachweis von βAPPswe und dessen Schnittprodukten. Die Menge an 

maturiertem βAPPswe ist nach Induktion der α-Sekretase-Aktivität reduziert, während 
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die Menge an löslichem endogenen APPs-α 770/751 sowie APPs-α swe im Vergleich zur 

unbehandelten Kontrolle erhöht ist.  

Diese Beobachtungen zeigen, dass sich das  Shedding von Typ I NRG1-β4 durch 

Aktivierung der α-Sekretase-Aktivität induzieren lässt. 

 

 

Abb. 23: PMA induziertes Shedding von Typ I NRG1-β4 und βAPPswe (stimuliertes Shedding). 

(A) Western-Blot-Analyse aus RIPA-Lysaten von HEK 293 swe-NRG-Zellen mit und ohne stabiler 

Expression von Typ I NRG1-β4. Induktion der α-Sekretase-Aktivität erfolgte durch Inkubation mit PMA 

(1 µM) über Nacht. Membrangebundenes Typ I NRG1-β4 wurde mit dem Ak Sc-348 detektiert. 

(B&C) Als Kontrolle diente der Nachweis von βAPPswe und dessen Schnittprodukten. 

Membrangebundenes βAPPswe wurde in Western-Blot-Analysen mit dem Antikörper 6687 (B), lösliches 

APPs-α und endogenes APPs-α 770/751 mit dem Antikörper 1736 (C) detektiert.   

 

 Shedding von Typ I NRG1-β durch ADAM10  3.4.2.

Das durch α-Sekretasen katalysierte Shedding von Typ I NRG1-β wurde in dieser Arbeit 

in SEAP-Enzym-Assay-Analysen näher untersucht. Ziel war es, herauszufinden, ob 

ADAM10 das Shedding von Typ I NRG1-β katalysiert. Zu diesem Zweck wurden 

zunächst Inhibitoranalysen mit spezifischen Metalloprotease-Inhibitoren durchgeführt. 

Hierfür wurden HEK 293-Zellen mit dem cDNA-Konstrukt Typ I NRG1-β1-SEAP (Abb. 

14 & 15) transient transfiziert. Anschließend wurden die Zellen entweder mit dem 

BACE1-Inhibitor C3 (10 µM) (Stachel et al. 2004) oder mit den ADAM- und Matrix-

Metallo-Protease-Inhibitoren TAPI-1 (25 µM; tumor necrosis factor-α protease inhibitor) 

(Slack et al. 2001), GW (5 µM; hydroxamate based inhibitor GW280264X) bzw. GI 

(5 µM; hydroxamate based inhibitor GI254023X ) (Hundhausen et al. 2003, Ludwig et al. 

2005) über Nacht inkubiert. TAPI-1 ist ein Inhibitor für Matrix-Metalloproteasen (MMP) 

und im Besonderen ein Inhibitor für ADAM17 (Slack et al. 2001). Ferner wird für TAPI-
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1 eine inhibitorische Wirkung auf die konstitutive Freisetzung von APPs-α in HEK 293-

Zellen durch ADAM10 beschrieben (Kuhn et al. 2010). TAPI-1 inhibiert zudem das 

Shedding des Transmembranproteins CADM1, wobei gezeigt werden konnte, dass 

ADAM10 die für das Shedding von CADM1 verantwortliche Sekretase ist (Nagara et al. 

2012). Somit ist anzunehmen, dass TAPI-1 das ADAM10 abhängige Shedding von 

CADM1 inhibiert. Der Inhibitor GW inhibiert gleichermaßen ADAM10 und ADAM17 

(Ludwig et al. 2005). GI ist ein Inhibitor für ADAM10 als auch für ADAM17, inhibiert 

jedoch ADAM10 mit einer 100-fach höheren Potenz als ADAM17 (Hundhausen et al. 

2003, Ludwig et al. 2005). Zur Vermeidung von Fehlern, die aus zu niedrigen bzw. zu 

hohen und damit toxischen Inhibitor-Konzentrationen resultieren, wurden in dieser Arbeit 

Inhibitorkonzentrationen verwendet, die bereits von anderen Arbeitsgruppen in HEK-

Zellen erprobt wurden (Slack et al. 2001, Hundhausen et al. 2003, Ludwig et al. 2005, 

Willem et al. 2006, Kuhn et al. 2010, Luo et al. 2011). In Kenntnis dieser Erfahrungen 

wurde in der vorliegenden Arbeit auf einen Toxizitäts-Assay verzichtet. Aufgrund 

begrenzter Verfügbarkeit der Inhibitoren GI und GW wurde die in Abb. 24 dargestellte 

SEAP-Enzym-Assay-Analyse nur für die Isoform Typ I NRG1-β1 durchgeführt. Alle 

folgenden Analysen bezüglich des Sheddings der Typ I NRG1-β-Isoformen durch 

ADAMs erfolgten dagegen nur mit TAPI-1. 

Abb. 24: SEAP-Enzym-Assay-Analyse des Sheddings von Typ I NRG1-β1 in HEK 293-Zellen durch 

ADAMs und BACE1. Dargestellt ist die Alkaline Phosphatase (AP)-Aktivität im Zellkulturüberstand von 

transient mit dem cDNA-Konstrukt Typ I NRG1-β1-SEAP transfizierter HEK 293-Zellen nach Inkubation 

mit dem BACE1 spezifischen Inhibitor C3 (10 µM; grüner Balken), sowie den ADAM-Inhibitoren GI (5 

µM; gelber Balken) bzw. TAPI-1 (50 µM; orangener Balken) und GW (5 µM; roter Balken). Die Balken 

repräsentieren die relative Menge an löslichem Typ I NRG1-β1-SEAP im Zellkulturüberstand. Die im 

Zellkulturmedium der unbehandelten Kontrollzellen gemessenen Werte für die AP-Aktivität wurden gleich 

„1“ und die übrigen Messwerte hierzu jeweils ins Verhältnis gesetzt. Dargestellt sind die Mittelwerte und 

die entsprechenden 95 %-Konfidenzintervalle aus drei unabhängigen Experimenten (*P < 0,05, **P < 0,01, 

***P < 0,001). 
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Inhibition der BACE1-Aktivität mit dem Inhibitor C3 (10µM) führt zu einer signifikanten 

Reduktion des Sheddings der β1-Isoform um ca. 34 % im Vergleich zur unbehandelten 

Kontrolle (p<0,001; n=3; Abb. 24). Im Vergleich zu den hier verwendeten ADAM-

Inhibitoren lässt sich das Shedding von Typ I NRG1-β1 durch den BACE1-Inhibitor C3 

zwar signifikant, jedoch in deutlich geringerem Ausmaß reduzieren. Dies könnte darauf 

hinweisen, dass in HEK 293-Zellen, welche eine niedrige endogene BACE1-Expression 

aufweisen (Luo et al. 2011), das Shedding von Typ I NRG1-β1 überwiegend durch 

ADAMs und in geringerem Maße durch BACE1 katalysiert wird. In Übereinstimmung 

hiermit steht auch, dass bei Verwendung einer geringeren Konzentration des BACE-

Inhibitors C3 (2µM) kein Effekt auf das Shedding von Typ I NRG1-β1 in HEK 293 

Zellen beobachtet wird  (Abb. 17 & 18). 

Durch Inhibitorbehandlung mit GI und TAPI-1 zeigt sich eine signifikante Reduktion des  

Sheddings von Typ I NRG1-β1 jeweils um ca. 63 % (GI: p<0,001; n=3; TAPI-1: 

p<0,001; n=3; Abb. 24), bei Verwendung des Inhibitors GW sogar eine signifikante 

Reduktion des Sheddings um ca. 72 % (p<0,001; n=3; Abb. 24) im Vergleich zur 

unbehandelten Kontrolle. Da die ADAM10 spezifischen Inhibitoren GI und GW das 

Shedding von Typ I NRG1-β1 reduzieren, ist anzunehmen, dass ADAM10 das Shedding 

dieser Isoform katalysiert.  TAPI-1 und GI inhibieren das Shedding von Typ I NRG1-β1 

im selben Ausmaß (Abb. 24). Somit kann angenommen werden, dass bei den in dieser 

Arbeit verwendeten Inhibitorkonzentrationen TAPI-1 ebenfalls das ADAM10 

katalysierte Shedding der β1-Isoform inhibiert. 

Um die Annahme zu bestätigen, dass ADAM10 das Shedding der β1-Isoform katalysiert, 

wurde das Shedding dieser Isoform in Überexpressionsmodellen untersucht. Ergänzend 

hierzu wurde die Bedeutung von ADAM10 für die Proteolyse der Typ I NRG1-β-

Isoformen β2 und β4 ebenfalls mit Hilfe von Überexpressionsmodellen analysiert. 

Hierfür wurden HEK 293-Zellen mit und ohne ADAM10-Überexpression (freundlicher 

Weise von Dr. Anja Capell zur Verfügung gestellt) mit den für den SEAP-Enzym-Assay 

generierten cDNA-Konstrukten transient transfiziert (Abb. 14 & 15) und anschließend 

mit TAPI-1 (25 µM) über Nacht inkubiert.  

Vergleicht man im SEAP-Enzym-Assay die Signalintensitäten zwischen HEK 293-Zellen 

mit und ohne ADAM10-Überexpression (Abb. 25), so zeigt sich eine signifikante 

Zunahme des Sheddings der β1-Isoform bei ADAM10-Überexpression um das 1,2-fache 

(p<0,001; n=3; Abb. 25). Inhibitorbehandlung mit TAPI-1 resultiert sowohl in HEK 293-

Zellen mit ADAM10-Überexpression (p<0,001; n=3; Abb.25) als auch ohne ADAM10-
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Überexpression (p<0,001; n=3; Abb. 25) in einer signifikanten Reduktion des Sheddings 

von Typ I NRG1-β1 um jeweils ca. 30 % im Vergleich zur unbehandelten Kontrolle. 

Diese Beobachtungen bestätigen, dass Typ I NRG1-β1 ein Substrat von ADAM10 

darstellt.  

Im Gegensatz zu Typ I NRG1-β1 lässt sich für die β2-Isoform kein signifikanter Effekt 

auf das Shedding infolge Überexpression von ADAM10 nachweisen (p=0,59, n=3; Abb. 

25). Inhibitorbehandlung mit TAPI-1 resultiert jedoch in HEK 293-Zellen mit ADAM10-

Überexpression in einer signifikanten Reduktion des Sheddings um ca. 60 % (p<0,001; 

n=3; Abb. 25) und in HEK 293-Zellen ohne ADAM10-Überexpression (p<0,001; n=3; 

Abb. 25) in einer signifikanten Reduktion des Sheddings von Typ I NRG1-β2 um ca. 

50 % im Vergleich zur unbehandelten Kontrolle. Auch in SH-SY5Y-Zellen, welche 

analog der HEK 293-Zellen mit den für den SEAP-Enzym-Assay generierten cDNA-

Konstrukten transient transfiziert (Abb. 14 & 15) und anschließend mit TAPI-1 (25 µM) 

über Nacht inkubiert wurden, lässt sich das Shedding der β2-Isoform signifikant um ca. 

55 % im Vergleich zur unbehandelten Kontrolle reduzieren (p<0,001; n=3; Abb. 26). Die 

vorliegenden Ergebnisse zeigen, dass Typ I NRG1-β2 von Sekretasen prozessiert wird, 

welche durch TAPI-1 inhibiert werden. Sie ermöglichen jedoch keine Aussage dazu, um 

welche spezifische Sekretase es sich handelt. Da kein signifikanter Effekt infolge 

ADAM10-Überexpression auf das Shedding der β2-Isoform beobachtet wird, ist jedoch 

anzunehmen, dass ADAM10 keine oder nur eine geringe Bedeutung für das Shedding 

von Typ I NRG1-β2 zukommt. 

Für Typ I NRG1-β4 kann weder ein signifikanter Effekt auf das Shedding infolge 

Überexpression von ADAM10 in HEK 293-Zellen (p=0,31; n=3; Abb. 25), noch infolge 

Inhibitorbehandlung mit TAPI-1 in HEK 293-Zellen  (p= 0,095; n=3; Abb. 25) bzw. in 

SH-SY5Y-Zellen (p=0,92; n=3; Abb. 26) beobachtet werden. In diesem Enzym-Assay 

lässt sich somit keine Bedeutung von ADAM10 oder ADAM17 für das Shedding der β4-

Isoform nachweisen.  

 



Ergebnisse 

 

87  

 
Abb. 25: SEAP-Enzym-Assay-Analyse des Sheddings von Typ I NRG1-β bei ADAM10- 

Überexpression. Dargestellt ist die Alkaline Phosphatase (AP)-Aktivität im Zellkulturüberstand von 

transient mit den cDNA-Konstrukten Typ I NRG1-β1-SEAP (rosa), Typ I NRG1-β2-SEAP (blau) und Typ 

I NRG1-β4-SEAP (grün) transfizierter HEK 293-Zellen bzw. HEK 293-AD10-Zellen. Schraffierte Balken 

repräsentieren die relative Menge an löslichem Typ I NRG1-β-SEAP im Zellkulturüberstand von HEK 

293-AD10-Zellen, nicht schraffierte Balken repräsentieren das Shedding von Typ I NRG1-β-SEAP in HEK 

293-Zellen (Kontrollzelllinie). Inhibitorbehandlung mit TAPI-1 (25 µM) ist durch die jeweils dunklere 

Farbtönung gekennzeichnet. Die im Zellkulturmedium der unbehandelten Kontrollzellen gemessenen 

Werte für die AP-Aktivität wurden gleich „1“ und die übrigen Messwerte hierzu jeweils ins Verhältnis 

gesetzt. Dargestellt sind die Mittelwerte und die entsprechenden 95 %-Konfidenzintervalle aus drei 

unabhängigen Experimenten (*P < 0,05, **P < 0,01, ***P < 0,001). 

 

 
 

Abb. 26: SEAP-Enzym-Assay-Analyse des Sheddings  von Typ I NRG1-β in SH-SY5Y-Zellen durch 

ADAMs. Dargestellt ist die Alkaline Phosphatase (AP)-Aktivität im Zellkulturüberstand von transient mit 

den cDNA-Konstrukten Typ I NRG1-β1-SEAP (rosa), Typ I NRG1-β2-SEAP (blau) und Typ I NRG1-β4-

SEAP (grün) transfizierter SH-SY5Y-Zellen. Inhibitorbehandlung mit TAPI-1 (25 µM) ist durch die 

jeweils dunklere Farbtönung gekennzeichnet. Die jeweils hellere Farbtönung repräsentiert das Shedding 

von I NRG1-β-SEAP in unbehandelten SH-SY5Y-Zellen (Kontrolle). Die im Zellkulturmedium der 

unbehandelten Kontrollzellen gemessenen Werte für die AP-Aktivität wurden gleich „1“ und die übrigen 

Messwerte hierzu jeweils ins Verhältnis gesetzt. Dargestellt sind die Mittelwerte und die entsprechenden 

95 %-Konfidenzintervalle aus drei unabhängigen Experimenten (*P < 0,05, **P < 0,01, ***P < 0,001). 
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Zusammengefasst stellt Typ I NRG1-β1 ein Substrat für die α-Sekretase ADAM10 in 

HEK 293-Zellen und SH-SY5Y-Zellen dar. Denn sowohl die Überexpression von 

ADAM10, als auch die Behandlung mit ADAM10 spezifischen Inhibitoren zeigen einen 

signifikanten Effekt auf das Shedding dieser Isoform. Für die β2-Isoform wird zwar eine 

signifikante Reduktion des Sheddings infolge Inhibitorbehandlung mit TAPI-1 in HEK 

293-Zellen und SH-SY5Y-Zellen, jedoch kein signifikanter Effekt infolge ADAM10-

Überexpression beobachtet. Somit ist anzunehmen, dass Typ I NRG1-β2 nicht oder nur 

in geringem Ausmaß durch ADAM10, sondern durch andere TAPI-1 sensitive ADAMs 

oder MMPs prozessiert wird. Typ I NRG1-β4 stellt kein Substrat für ADAM10 dar. Denn 

sowohl Überexpression von ADAM10 als auch die Behandlung mit TAPI-1 zeigen 

keinen signifikanten Effekt auf das Shedding dieser Isoform.  

 Kompensation des BACE1-abhängigen Sheddings von Typ I 3.4.3.

NRG1-β1 durch ADAMs  

In der vorliegenden Arbeit konnte gezeigt werden, dass sowohl BACE1 als auch 

ADAM10 das Shedding von Typ I NRG1-β1 in HEK 293-Zellen und SH-SY5Y-Zellen 

katalysieren. Für BACE1 konnte dabei die spezifische Schnittstelle von Typ I NRG1-β1 

identifiziert werden.  

In SH-SY5Y-Zellen, welche transient mit den für den SEAP-Enzym-Assay generierten 

cDNA-Konstrukten (Abb. 14 & 15) transfiziert und über Nacht mit TAPI-1 (25 µM) 

inkubiert wurden, wird das Shedding der Typ I NRG1-β1-Deletionsmutante (Δ7) 

signifikant stärker im Vergleich zu Typ I NRG1-β1 inhibiert (p<0,001; n=3; Abb. 27). Es 

ist somit anzunehmen, dass die Deletionsmutante (Δ7) im Vergleich zur β1-Isoform das 

bevorzugte Substrat für ADAMs darstellt. Vermutlich wird das BACE1-abhängige 

Shedding, welches infolge Deletion der BACE1-Schnittstelle (Δ7) vermindert ist, durch 

ADAMs kompensiert und kann folglich stärker durch TAPI-1 inhibiert werden. Da das 

Shedding der Deletionsmutante (Δ7) im Vergleich zur Typ I NRG1-β1-AS-

Austauschmutante (AA) signifikant stärker durch TAPI-1 inhibiert wird (p<0,01; n=3; 

Abb. 27), kann angenommen werden, dass die Deletionsmutante (Δ7) im Vergleich zur 

AS-Austauschmutante (AA) das bevorzugte Substrat für ADAMs darstellt. Eine 

mögliche Erklärung hierfür ist, dass infolge Deletion von sieben Aminosäuren im Bereich 

der BACE1-Schnittstelle (Δ7) das Shedding durch BACE1 stärker als durch AS-

Austausch (AA) blockiert wird und somit das Shedding der Deletionsmutante vermutlich 

stärker als das Shedding der AS-Austauschmutante durch ADAMs kompensiert werden 

kann. 
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 Die Länge der juxtamembranären Region beeinflusst das 3.4.4.

Shedding von Typ I NRG1-β durch ADAMs 

Vergleicht man die Typ I NRG1-β-Isoformen bzw. -Schnittstellen-Mutanten bezüglich 

ihres Sheddings durch ADAMs, so fällt auf, dass die Länge der juxtamembranären 

Region einen entscheidenden Einfluss auf das Shedding der jeweiligen Isoform bzw. Typ 

I NRG1-β1-Mutante hat. Je kürzer die juxtamembranäre Region der jeweiligen Typ I 

NRG1-β-Isoform bzw. der β1-Schnittstellen-Mutante ist, desto stärker wird das Shedding 

durch TAPI-1 in SH-SY5Y-Zellen inhibiert (Abb. 27). Dies lässt die Schlussfolgerung 

zu, dass Typ I NRG1-β-Isoformen mit einer kürzeren juxtamembranären Region, wie es 

für Typ I NRG1-β2 und die Typ I NRG1-β1-Deletetions-Mutante (Δ7) der Fall ist, 

bevorzugte ADAM-Substrate darstellen im Vergleich zu solchen mit einer längeren 

juxtamembranären Region. 

 

 

 

Abb. 27: Die Länge der juxtamembranären Region ist ausschlaggebend für das Shedding von Typ I 

NRG1-β durch ADAMs. In Analogie zu der in Abb. 26 dargestellten SEAP-Enzym-Assay-Analyse wurde 

neben dem Shedding von Typ I NRG1-β4-SEAP (grün), Typ I NRG1-β1-SEAP (rosa) und Typ I NRG1-

β2-SEAP (blau)  zudem das Shedding der Typ I NRG1-β1-Mutanten Typ I NRG1-β1AA-SEAP (violett) 

und Typ I NRG1-β1Δ7-SEAP (lila) durch ADAMs in SH-SY5Y-Zellen analysiert. Inhibitorbehandlung mit 

TAPI-1 ist durch die jeweils dunklere Farbtönung gekennzeichnet. Die im Zellkulturmedium der 

unbehandelten Kontrollzellen gemessenen Werte für die AP-Aktivität wurden gleich „1“ und die übrigen 

Messwerte hierzu jeweils ins Verhältnis gesetzt. Dargestellt sind die Mittelwerte und die entsprechenden 

95 %-Konfidenzintervalle aus drei unabhängigen Experimenten (*P < 0,05, **P < 0,01, ***P < 0,001). 
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4. Diskussion 
Die Alzheimer Erkrankung ist die häufigste Form der Demenz. Sie manifestiert sich 

klinisch zunächst als Störung des Gedächtnisses und des Sprachvermögens. Später führt 

sie zu Veränderungen der Persönlichkeit und letztendlich zur Bettlägerigkeit und zum 

Tod des Patienten. Die ausgeprägte Hirnatrophie, welche diesem Krankheitsbild 

zugrunde liegt, resultiert aus einer progredienten neuronalen Degeneration. Für diese 

wird vor allem eine gesteigerte Sezernierung des β-Amyloid-Peptids (Aβ) verantwortlich 

gemacht, welches aus der Prozessierung des β-Amyloid-Vorläufer-Proteins (βAPP) 

entsteht. Für die Prozessierung von βAPP sind die Sekretasen  ADAM10 (α-Sekretase), 

BACE1 (β-Sekretase) und der γ-Sekretase-Komplex verantwortlich. Vielversprechende 

Therapieansätze stellen daher spezifische Inhibitoren für BACE1 und den γ-Sekretase-

Komplex, sowie Aktivatoren für ADAM10 dar. Um gezielt solche spezifischen 

Inhibitoren bzw. Aktivatoren entwickeln zu können, ist es notwendig, die Eigenschaften 

und weiteren Substrate dieser Sekretasen zu kennen. Neuregulin (NRG), ein Mitglied der 

EGF-Familie von Wachstumsfaktoren, scheint sowohl für α-Sekretasen, für die β-

Sekretase BACE1 als auch für den γ-Sekretase-Komplex ein Substrat darzustellen. Dabei 

dient die proteolytische Freisetzung der Ektodomäne (Shedding) von Neuregulin der 

parakrinen Signaltransduktion.  

In der vorliegenden Arbeit konnte gezeigt werden, dass BACE1 das Shedding von Typ I 

NRG1-β1 und Typ I NRG1-β4 katalysiert, wogegen Typ I NRG1-β2 nicht oder nur in 

sehr geringem Ausmaß durch BACE1 prozessiert wird. Für Typ I NRG1-β1 konnte die 

exakte Schnittstelle von BACE1 innerhalb der juxtamembranären Region zwischen 

Aminosäure-Position Glu
236

-Phe
237 

und Met
238

-Glu
239

 (EF-ME) von humanem Typ I 

NRG1-β1 charakterisiert werden.  

Für die α-Sekretase ADAM10 wurde gezeigt, dass diese das Shedding von Typ I NRG1-

β1 katalysiert. Typ I NRG1-β2 wird jedoch nicht oder nur in geringem Ausmaß durch 

ADAM10 prozessiert. Das Shedding der β2-Isoform erfolgt durch TAPI-1 sensible 

Sekretasen, wobei die vorliegenden Ergebnisse keine Aussage dazu ermöglichen, um 

welche spezifische Sekretase es sich handelt. Dagegen konnte für Typ I NRG1-β4 gezeigt 

werden, dass diese Isoform weder durch ADAM10 noch durch ADAM17 prozessiert 

wird. Ferner konnte in der vorliegenden Arbeit gezeigt werden, dass Typ I NRG1-β ein 

Substrat für den γ-Sekretase-Komplex darstellt. Nach erfolgtem Shedding von Typ I 

NRG1-β katalysiert die γ-Sekretase dessen intramembranäre Proteolyse durch einen 

Schnitt innerhalb der Transmembrandomäne.  
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Abb. 28: Schematische Darstellung der Ergebnisse der vorliegenden Arbeit. Dargestellt ist die 

intramembranäre Proteolyse der verschiedenen Typ I NRG1-Isoformen β1, β2 und β4. Die Prozessierung 

des maturierten Typ I NRG1-β (110 kDa) innerhalb der juxtamembranären Region (Shedding) generiert ein 

lösliches Fragment (NTF) mit einem Molekulargewicht von 45 kDa, sowie ein membrangebundenes 

zytoplasmatisches Fragment (CTF) mit einem Molekulargewicht von 65 kDa. 

Die juxtamembranäre Region von Typ I NRG1-β1 ist in der Schemazeichnung blau umrahmt. Ihre 

spezifische Sequenz ist hervorgehoben und ebenfalls blau umrahmt. Das Shedding von Typ I NRG1-β1 

wird sowohl durch BACE1 als auch durch ADAM10 katalysiert. Die Schnittstellensequenz von BACE1 

innerhalb der juxtamembranären Region ist rot hervorgehoben und durch einen Pfeil markiert.  

Typ I NRG1-β2 wird durch ADAMs prozessiert, wobei jedoch die vorliegenden Ergebnisse keine Aussage 

dazu ermöglichen, welche die verantwortliche α-Sekretase ist.  

Typ I NRG1-β4 wird durch BACE1, jedoch nicht durch die α-Sekretasen ADAM10 und ADAM17, 

prozessiert.  

Die Freisetzung der intrazellulären Domäne (ICD) aller drei Typ I NRG1-β-Isoformen erfolgt via Schnitt 

innerhalb der Transmembrandomäne des zytoplasmatischen Fragments (CTF) durch den γ-Sekretase-

Komplex. 

 

 Regulierte intramembranäre Proteolyse von Typ I    4.1.

NRG1-β 

 Shedding von Typ I NRG1-β 4.1.1.

In Western-Blot-Analysen wurden die verschiedenen Schnittprodukte von Typ I NRG1-β 

sowie nicht prozessiertes Neuregulin nachgewiesen. Das in dieser Arbeit beschriebene 

Molekulargewicht der verschiedenen membrangebundenen Fragmente sowie von 

ungeschnittenem Typ I NRG1-β (Abb. 13 & 17) stimmt mit den Ergebnissen vorheriger 

Studien überein (Burgess et al. 1995, Montero et al. 2000, Wang et al. 2001). 
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Entsprechend den Ergebnissen anderer Arbeitsgruppen werden für ungeschnittenes 

Neuregulin zwei Proteine mit unterschiedlichem Molekulargewicht detektiert, wobei 

maturiertes Protein im Vergleich zu nicht maturiertem Typ I NRG1-β ein größeres 

Molekulargewicht aufweist (Burgess et al. 1995, Montero et al. 2000, Wang et al. 2001). 

Dieser Unterschied von ca. 10 kDa wird durch Glykosylierungen im Bereich der 

Ektodomäne hervorgerufen (Burgess et al. 1995, Lu et al. 1995). Die lösliche 

Ektodomäne (N-terminal fragment; NTF) von Typ I NRG1-β wurde aus 

Zellkulturüberständen in Western-Blot-Analysen mit einem Molekulargewicht von 

45 kDa und 50 kDa detektiert. Andere Arbeitsgruppen beschreiben jedoch ein 

Molekulargewicht von 40 kDa bzw. 45 kDa (Wen et al. 1994, Loeb und Fischbach 1995, 

Lu et al. 1995, Wang et al. 2001). Der Größenunterschied von 5 kDa lässt sich durch die 

Konjugation des 5 kDa großen HA-Tags an den N-Teminus des NTF in dieser Arbeit 

erklären. 

Anstelle einer einzelnen Bande für die lösliche Ektodomäne wurden in dieser Arbeit stets 

zwei Banden mit einem Molekulargewicht von  45 kDa und 50 kDa detektiert (Abb. 17). 

Die Detektion von jeweils zwei Banden sowie deren Größenunterschied von 5 kDa 

könnten dadurch bedingt sein, dass neben maturiertem auch nicht maturiertes Neuregulin 

prozessiert wird. Mit Hilfe von „pulse/chase“-Experimenten könnte in folgenden 

Arbeiten untersucht werden, ob und in welchem Ausmaß die unterschiedlich N-

glykosylierten Formen von Typ I NRG1-β während ihrer Maturierung prozessiert 

werden. 

 Intramembranäre Proteolyse von Typ I NRG1-β durch den γ-4.1.2.

Sekretase-Komplex 

In dieser Arbeit konnte durch Inhibition des γ-Sekretase-Komplexes die proteolytische 

Prozessierung innerhalb der Transmembrandomäne von Typ I NRG1-β4 gehemmt 

werden (Abb. 13). Somit ist anzunehmen, dass der γ-Sekretase-Komplex die 

verantwortliche Protease für die proteolytische Prozessierung innerhalb der 

Transmembrandomäne von Typ I NRG1-β4 darstellt. Diese Ergebnisse stehen in 

Übereinstimmung mit der für Typ III NRG1 (Bao et al. 2003), als auch für andere 

Transmembranproteine beschriebenen proteolytischen Prozessierung durch  den γ-

Sekretase-Komplex (Haass und Steiner 2002, Steiner et al. 2008, Struhl und Adachi 

2000).  

Da sich die Typ I NRG1-β-Isoformen lediglich im Bereich der juxtamembranären Region 

unterscheiden, kann angenommen werden, dass sich die proteolytische Prozessierung der 
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weiteren Typ I NRG1-β-Isoformen durch den γ-Sekretase-Komplex nicht von der 

proteolytischen Prozessierung der β4-Isoform unterscheidet. 

 Shedding von Typ I NRG1-β durch BACE1 4.2.

 Typ I NRG1-β1 und -β4 sind Substrate von BACE1 4.2.1.

In dieser Arbeit konnte zunächst in Immunfluoreszenzanalysen gezeigt werden, dass 

BACE1 das Shedding von Typ I NRG1-β4 katalysiert. Dies konnte in Western-Blot-

Analysen und SEAP-Enzym-Assay-Analysen bestätigt werden. Sowohl in Western-Blot-

Analysen als auch im SEAP-Enzym-Assay konnte gezeigt werden, dass BACE1 neben 

Typ I NRG1-β4 das Shedding der β1-Isoform katalysiert. Typ I NRG1-β1 stellt dabei das 

bevorzugte Substrat für BACE1 dar. Im Gegensatz zu den beiden erstgenannten 

Isoformen wird Typ I NRG1-β2 nicht oder nur wenig durch BACE1 prozessiert (Abb. 17, 

Abb. 18, Abb. 19). 

Es wäre zu erwarten gewesen, dass die Inhibition der BACE1-Aktivität in HEK 293-B1-

Zellen das Shedding von Typ I NRG1-β1 und -β4 im SEAP-Enzym-Assay nicht über das 

Ausmaß des Sheddings der unbehandelten Kontollzelllinie hinaus reduzieren würde. 

Erstaunlicherweise resultiert die Inhibition der BACE1-Aktivität in HEK 293-B1-Zellen 

jedoch in einer Reduktion des Sheddings um 35 % bzw. 30 % im Vergleich zur 

unbehandelten Kontrollzelllinie (Abb. 18), wofür es keine plausible Erklärung gibt. 

Neben Inhibitoranalysen sind daher in weiterführenden Arbeiten BACE1-„Knockout“-

Studien in vitro als auch in vivo erforderlich, um die Bedeutung von BACE1 am 

Shedding von Typ I NRG1-β1 und -β4 zu klären. 

Erstaunlicherweise resultiert Überexpression von BACE1 in einer leichten Reduktion des 

Sheddings der β2-Isoform im SEAP-Enzym-Assay. Nach Inhibition der BACE1-

Aktivität wird deren Shedding sogar noch weiter reduziert (Abb. 18). Da auch in den 

Western-Blot-Analysen eine Abnahme des Sheddings von Typ I NRG1-β2 nach BACE1-

Inhibition in HEK 293-B1-Zellen beobachtet wird (Abb. 17), kann angenommen werden, 

dass dieser Effekt nicht spezifisch für den SEAP-Enzym-Assay ist. Eine mögliche 

Erklärung wäre, dass Typ I NRG1-β2 nicht durch BACE1, sondern durch andere 

Sekretasen prozessiert wird, wobei Überexpression von BACE1 das Shedding durch 

diese Sekretasen beeinträchtigen könnte. Mit dieser Vermutung nicht vereinbar ist jedoch 

die Tatsache, dass bei Inhibition der BACE1-Aktivität das Shedding noch weiter 

reduziert wird. Letztendlich gibt es keine ausreichende Erklärung für die bei BACE1-

Überexpression beobachteten Effekte auf das Shedding der β2-Isoform. Um die 
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Bedeutung von BACE1 am Shedding der β2-Isoform zu klären, sind in weiterführenden 

Arbeiten BACE1-„Knockout“-Studien in vitro als auch in vivo erforderlich. 

Unter endogenen Bedingungen unterscheidet sich das durch BACE1 katalysierte 

Shedding von Typ I NRG1-β1 in HEK 293-Zellen und SH-SY5Y-Zellen. So wird das 

Shedding von Typ I NRG1-β1 in SH-SY5Y-Zellen im Vergleich zu HEK 293-Zellen 

bereits bei einer geringeren BACE1-Inhibitorkonzentration (2 µM; Abb. 18 & 19) 

inhibiert. In HEK 293-Zellen, welche eine niedrige endogene BACE1-Expression 

aufweisen (Westmeyer et al. 2004), zeigt erst eine höhere Inhibitorkonzentration des 

BACE1-Inhibitors C3 (10 µM; Abb. 24) Effekte auf das Shedding von Typ I NRG1-β1 

(Luo et al. 2011). Während eine niedrigere Inhibitor-Konzentration (2 µM; Abb. 18) bei 

endogener BACE1-Aktivität keinen Effekt erzielt (Willem et al. 2006), zeigt dieselbe 

Konzentration jedoch bei Überexpression von BACE1 (Abb. 18) einen inhibitorischen 

Effekt auf das Shedding von Typ I NRG1-β1 (Willem et al. 2006). Da erst 

Überexpression von BACE1 bzw. eine hohe Inhibitorkonzentration einen Effekt auf das 

Shedding von Typ I NRG1-β1 in HEK 293-Zellen aufweisen, ist anzunehmen, dass diese 

Isoform zwar ein Substrat von BACE1 darstellt, in HEK 293-Zellen aufgrund der 

niedrigen endogenen BACE1-Aktivität aber hauptsächlich durch andere Proteasen 

prozessiert wird.  

Im Gegensatz zu Typ I NRG1-β1 kann für die β4-Isoform das Shedding durch BACE1 

weder in HEK 293-Zellen noch in SH-SY5Y-Zellen bei endogener BACE1-Aktivität 

nachgewiesen werden (Abb. 18 & 19). Da erst Überexpression von BACE1 einen Effekt 

auf das Shedding von Typ I NRG1-β4 aufweist (Abb. 18), ist anzunehmen, dass diese 

Isoform zwar ein Substrat von BACE1 darstellt, in HEK 293-Zellen aufgrund der 

niedrigen endogenen BACE1-Aktivität aber hauptsächlich durch andere Proteasen 

prozessiert wird. Auch in SH-SY5Y-Zellen lässt sich kein Effekt auf das Shedding dieser 

Isoform durch BACE1 nachweisen, sodass anzunehmen ist, dass nicht BACE1, sondern 

andere Sekretasen für das Shedding von Typ I NRG1-β4 in dieser Zelllinie 

verantwortlich sind.  

Für βAPP wurde bereits gezeigt, dass Überexpression von BACE1 in einem 

verminderten Shedding durch α-Sekretasen resultiert, vermutlich aufgrund einer 

Verschiebung des Sheddings durch BACE1 in frühere Kompartimente des sekretorischen 

Pathways. So erfolgt das Shedding durch BACE1 wahrscheinlich noch bevor βAPP als 

Substrat für α-Sekretasen zur Verfügung steht (Haass et al. 1995 b, Willem et al. 2004). 

Ebenso könnte bei einer erhöhten BACE1-Aktivität während der Entwicklung (Willem et 
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al. 2006) bzw. bei einer Überexpression von BACE1 in vitro das Shedding von Typ I 

NRG1-β in früheren Kompartimenten des sekretorischen Pathways stattfinden. Das 

Shedding durch BACE1 könnte somit erfolgen noch bevor Typ I NRG1-β als Substrat für 

andere Sekretasen zur Verfügung steht. Dies würde erklären, weshalb erst bei 

Überexpression von BACE1 in HEK 293-Zellen ein Effekt auf das Shedding von Typ I 

NRG1-β1 und -β4 zu beobachten ist (Vgl. Abb. 17 & 18).  

 BACE1-Schnittstelle  4.2.2.

Für Typ I NRG1-β1 konnte in der MALDI-TOF-MS-Analyse die BACE1-Schnittstelle 

innerhalb der juxtamembranären Region zwischen Aminosäure-Position Glu
236

-Phe
237 

und Met
238

-Glu
239

 (EF-ME) von humanem Typ I NRG1-β1 charakterisiert werden. Diese 

Schnittstelle wurde später durch eine andere Arbeitsgruppe bestätigt (Hu et al. 2008). 

Auch für Typ III NRG1 konnte dieselbe BACE1-Schnittstelle erst kürzlich innerhalb der 

juxtamembranären Region identifiziert werden (Fleck et al. 2013). Mit Hilfe von 

Mutationen durch AS-Austausch (Glu-Phe Ala-Ala) bzw. Deletion von sieben AS (Δ7) 

konnte gezeigt werden, dass BACE1 eine Sequenzspezifität für diese Schnittstelle 

aufweist und dass keine weiteren variablen Schnittstellen in diesem Bereich für BACE1 

existieren (Abb. 21 & 22). Die vorliegenden Ergebnisse lassen zudem annehmen, dass 

die Deletionsmutation (Δ7) das Shedding durch BACE1 besser blockiert als die Mutation 

durch AS-Austausch (AA) (Abb. 27; Vgl. Kapitel 3.4.3.).  

Es wäre zu erwarten gewesen, dass die Inhibition der BACE1-Aktivität in HEK 293-B1-

Zellen das Shedding der AS-Austausch-Mutante (AA) im SEAP-Enzym-Assay nicht über 

das Ausmaß des Sheddings der unbehandelten Kontollzelllinie hinaus reduzieren bzw. 

keinen Effekt auf das Shedding zeigen würde. Die Inhibition der BACE1-Aktivität in 

HEK 293-B1-Zellen resultiert jedoch erstaunlicherweise in einer Reduktion des 

Sheddings um ca. 75 % im Vergleich zur unbehandelten Kontrollzelllinie (Abb. 22), 

wofür es keine plausible Erklärung gibt.  

Die NRG1-β1-Schnittstelle wird zwar in vielen Vertebraten exprimiert und ist somit hoch 

konserviert, stellt aber keine optimale Schnittstelle für BACE1 dar (Hu et al. 2008). Auch 

βAPP und APLP werden wenig effizient durch BACE1 geschnitten (Li und Südhof 

2004). Dagegen scheint die „schwedische“ Doppelmutation (KM/NL) von βAPP eine 

optimale Schnittstelle für BACE1 darzustellen, denn sie erhöht die proteolytische 

Aktivität der β-Sekretase, wobei die Aβ-Produktion um das 10-fache von βAPP 

gesteigert wird (Citron et al. 1992, Cai et al. 1993). 
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Die Schnittstelle von NRG1-β1 unterscheidet sich von der βAPP-Schnittstelle für 

BACE1 als auch von den Schnittstellen aller weiteren bisher bekannten BACE1-

Substrate. Eine Konsensussequenz für alle bisher bekannten BACE1-Substrate scheint 

nicht zu existieren (Abb. 29). Ihnen ist jedoch gemeinsam, dass sie bevorzugt nach sauren 

sowie nach hydrophoben AS-Resten, v.a. nach Leucin oder Phenylalanin, durch BACE1 

geschnitten werden (Citron et al. 1995, Grüninger-Leitch et al. 2002, Stockley und 

O'Neill 2008, Fleck et al. 2013). Dies stimmt mit den Ergebnissen der vorliegenden 

Arbeit überein, da hier ebenfalls gezeigt werden konnte, dass der BACE1-Schnitt von 

Typ I NRG1-β1 nach sauren (Glutamat) und hydrophoben (Phenylalanin) AS-Resten 

erfolgt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Abbildung entnommen aus Stockley & O´Neill, Cell Mol. Life Sci. 65 (2008) 3265-3289 

 

Abb. 29: BACE1-Substrate und ihre Schnittstellen. Dargestellt sind die AS-Sequenzen von der N-

terminalen Position P5 bis zur C-terminalen Position P´5 der bisher bekannten BACE1-Schnittstellen. 

 

 Shedding von Typ I NRG1-β durch ADAMs 4.3.

 Stimuliertes Shedding  4.3.1.

Das Shedding von NRG1 sowie anderer Transmembranproteine erfolgt entweder als 

konstitutives Shedding oder aber wird über second messenger Pathways wie der 

Proteinkinase C (PKC) reguliert. Die PKC wiederum kann durch Phorbolester wie 

phorbol-12-myristate-13-acetate (PMA) induziert werden. In dieser Arbeit konnte gezeigt 
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werden, dass die Freisetzung der Ektodomäne von Typ I NRG1-β4 durch die Zugabe von 

PMA gesteigert wird. Diese Beobachtung entspricht den Ergebnissen anderer 

Arbeitsgruppen, welche für die Typ I NRG1-β-Isoformen β1, -β2 und -β4 ein durch 

Behandlung mit PMA gesteigertes Shedding beschreiben (Burgess et al. 1995, Loeb et al. 

1998, Han und Fischbach 1999, Montero et al. 2000, Shirakabe et al. 2001, Wang et al. 

2001, Horiuchi et al. 2005).  

 Shedding durch ADAM10 4.3.2.

Protein Kinase C regulierte und PMA stimulierbare Sekretasen sind unter anderem die α-

Sekretasen ADAM10 und ADAM17 (Lammich et al. 1999, Horiuchi et al. 2005). Um die 

Bedeutung der für die Alzheimer-Pathologie relevanten α-Sekretase ADAM10 bezüglich 

des Sheddings der verschiedenen Typ I NRG1-β-Isoformen zu untersuchen, wurden in 

dieser Arbeit Inhibitoranalysen mit spezifischen Metalloprotease-Inhibitoren und 

ADAM10-Überexpressionsstudien durchgeführt.  

Im SEAP-Enzym-Assay konnte gezeigt werden, dass ADAM10 das Shedding der am 

stärksten neuronal exprimierten Isoform Typ I NRG1-β1 in HEK 293-Zellen und SH-

SY5Y-Zellen katalysiert (Abb. 25 & 26). Da der ADAM- und MMP-Inhibitor TAPI-1 

(50 µM) das Shedding von Typ I NRG1-β1 im selben Ausmaß wie der ADAM10-

spezifische Inhibitor GI (5 µM) hemmt (Abb. 24), kann angenommen werden, dass 

TAPI-1 in der hier verwendeten Inhibitorkonzentration ebenfalls das Shedding durch 

ADAM10 inhibiert. Es ist jedoch zu bedenken, dass TAPI-1 neben ADAM10 v.a. auch 

ADAM17 sowie andere MMPs inhibiert.  

Im SEAP-Enzym-Assay lassen sich unterschiedlich ausgeprägte inhibitorische Effekte 

durch TAPI-1 auf das Shedding von Typ I NRG1-β1 beobachten. Dies ist mit der 

Verwendung unterschiedlicher TAPI-1-Konzentrationen in den verschiedenen SEAP-

Enzym-Assays zu erklären. So wird das Shedding der β1-Isoform bei einer TAPI-1 

Konzentration von 50 µM in HEK 293-Zellen um ca. 50 % reduziert (Abb. 24), dagegen 

bei einer Konzentration von 25 µM nur um ca. 30 % im Vergleich zur unbehandelten 

Kontrolle (Abb. 25). 

Entsprechend den Ergebnissen der vorliegenden Arbeit konnten Luo et al. zeigen, dass 

ADAM10 das Shedding von Typ I NRG1-β1 in vitro katalysiert (Luo et al. 2011). Dieses 

Ergebnis steht jedoch im Widerspruch zu den Daten von Horiuchi et al., welche zeigen, 

dass ADAM10 nicht für das Shedding von Typ I NRG1-β1 verantwortlich ist. Dagegen 

beschreiben diese ADAM17 als die für das Shedding der β1-Isoform 

hauptverantwortliche Sekretase (Horiuchi et al. 2005). Denkbar ist, dass diese 
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Unterschiede auf der Verwendung unterschiedlicher Zelllinien und Versuchsmethoden 

beruhen. So resultieren die Ergebnisse von Luo et al. aus spezifischem „Knockdown“ von 

ADAM17 und ADAM10 in HEK 293-Zellen. Die Ergebnisse von Horiuchi et al. 

resultieren dagegen aus Studien mit „Knockout“ von ADAM17 in E2-Zellen    

(ADAM17-/-Fibroblasten) mit Kompensation des ADAM17-„Knockout“ durch 

Überexpression von ADAM10. Da in HEK 293-Zellen ein Effekt auf das Shedding von 

Typ I NRG1-β1 sowohl durch ADAM10-Überexpressions- und Inhibitoranalysen in der 

vorliegenden Arbeit als auch durch „Knockdown“ von ADAM10 (Luo et al. 2011) 

nachgewiesen werden konnte, ist anzunehmen, dass zumindest in dieser Zelllinie das 

Shedding der β1-Isoform durch ADAM10 katalysiert wird.  

Allerdings könnte neben ADAM10 auch ADAM17 das Shedding von Typ I NRG1-β1 

katalysieren. Da TAPI-1 v.a. als ein ADAM17-Inhibitor beschrieben wird (Slack et al. 

2001), könnte der inhibitorische Effekt von TAPI-1 auf das Shedding der β1-Isoform 

(Abb. 25 & 26) auch infolge Inhibition der ADAM17-Aktivität resultieren. Luo et al. 

beschreiben zwar ADAM10 als die hauptverantwortliche Sekretase für das Shedding der 

β1-Isoform, weisen aber auch einen geringen Effekt durch ADAM17 auf das Shedding 

dieser Isoform in HEK 293-Zellen nach (Luo et al. 2011). Da zudem Horiuchi et al. 

ADAM17 als die für das Shedding der β1-Isoform hauptverantwortliche Sekretase in E2-

Zellen beschreiben, ist davon auszugehen, dass neben ADAM10 auch ADAM17 eine 

Bedeutung für das Shedding von Typ I NRG1-β1 zukommt. Um die physiologische 

Bedeutung von ADAM10 und ADAM17 bezüglich des Sheddings von Typ I NRG1-β1 

zu klären, sind in weiterführenden Arbeiten ADAM10- und ADAM17-„Knockout“-

Studien in vivo erforderlich. 

Das Shedding von Typ I NRG1-β2 wird ebenfalls durch ADAMs katalysiert. Dies konnte 

in der vorliegenden Arbeit in Inhibitoranalysen mit TAPI-1 gezeigt werden. TAPI-1 

inhibiert jedoch neben der Aktivität von ADAM10 und ADAM17 auch die weiterer 

ADAMs und MMPs, sodass anhand der vorliegenden Ergebnisse nicht geklärt werden 

kann, welche Sekretase/n hauptverantwortlich für das Shedding von Typ I NRG1-β2 

ist/sind. Da kein signifikanter Effekt infolge ADAM10-Überexpression auf das Shedding 

der β2-Isoform beobachtet wird, ist allerdings anzunehmen, dass ADAM10 keine oder 

nur eine geringe Bedeutung für das Shedding von Typ I NRG1-β2 zukommt. Dies steht 

in Übereinstimmung mit den Ergebnissen von Freese et al., welche zeigen, dass 

spezifischer „Knockdown“ von ADAM10 mittels siRNA keinen Effekt auf das Shedding 

der NRG1-β2-Isoform hat und diese Isoform folglich kein Substrat für ADAM10 darstellt 
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(Freese et al. 2009). ADAM17 wird dagegen von Horiuchi et al. als die sowohl für das 

konstitutive als auch für das via PMA induzierte Shedding von Typ I NRG1-β2 

hauptverantwortliche Sekretase beschrieben (Horiuchi et al. 2005). Es ist somit 

anzunehmen, dass ADAM17 das Shedding von Typ I NRG1-β2 katalysiert. 

Dagegen konnte in der vorliegenden Arbeit gezeigt werden, dass das konstitutive 

Shedding der β4-Isoform nicht durch die α-Sekretasen ADAM10 oder ADAM17 

katalysiert wird (Abb. 25 & 26). Es konnte jedoch nachgewiesen werden, dass ADAMs 

für das stimulierte Shedding dieser Isoform verantwortlich sind (Abb. 23). Für die β4-

Isoform wurde bisher nur das stimulierte und nicht das konstitutive Shedding durch α-

Sekretasen untersucht, wobei das stimulierte Shedding nur durch α-Sekretasen im 

Allgemeinen und nicht im Hinblick auf eine spezifische α-Sekretase analysiert wurde 

(Burgess et al. 1995, Montero et al. 2000).  

Um die physiologische Bedeutung von ADAM10 und ADAM17 bezüglich des 

Sheddings von Typ I NRG1-β2 und -β4 zu klären, sind in weiterführenden Arbeiten 

ADAM10- und ADAM17-„Knockout“-Studien in vivo erforderlich. 

 ADAM-Schnittstelle von Typ I NRG1-β  4.3.3.

Die Schnittstellensequenz von Neuregulin für ADAMs wird sehr kontrovers diskutiert. 

So gehen Lu et al. von einer fehlenden Sequenzspezifität aus, in der Annahme, dass für 

alle NRG-Isoformen die Schnittstelle in der juxtamembranären Region 5-8 AS C-

terminal des letzten Disulfid-Loops der EGF-ähnlichen Domäne lokalisiert ist (Lu et al. 

1995). Auch Han und Fischbach gehen von einer fehlenden Sequenzspezifität aus und 

postulieren einen sog. „modified ruler mechanism“. Dieser besagt, dass Neuregulin in 

einem bestimmten Abstand von einer AS-Sequenz mit sekundärer Faltblattstruktur, die 

proximal der TMD lokalisiert ist, geschnitten wird. Sie gehen davon aus, dass der Schnitt 

in einem Abstand von ca. 3-4 AS von der EGF-ähnlichen Domäne erfolgt, zusätzlich aber 

eine bestimmte Länge der juxtamembranären Region benötigt. Die minimale Länge einer 

solchen AS-Sequenz scheint für Typ I NRG1-β1a (pro-ARIA) 11 AS zu betragen (Han 

und Fischbach 1999).  

Andere Arbeitsgruppen beschreiben dagegen spezifische Schnittstellen für α-Sekretasen 

innerhalb der juxtamembranären Region (Holmes et al. 1992, Falls et al. 1993, Wen et al. 

1994) und zeigen für ADAM10 und ADAM17 eine Selektivität für spezifische AS in 

unmittelbarer Nachbarschaft zur Schnittstelle (Caescu et al. 2009, Luo et al. 2011, Fleck 

et al. 2013). Die Ergebnisse von Caescu et al. weisen eine Selektivität von ADAM17 für 

aliphatische hydrophobe AS-Reste an P1´, insbesondere von Valin, sowie von Prolin an 
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P3 bzw. an P5 nach (Caescu et al. 2009). Aktuelle Erkenntnisse zeigen eine Selektivität 

von ADAM17 für Alanin und in geringerem Ausmaß für Phenylalanin an P1, sowie für 

Serin an P1´ (Fleck et al. 2013). Die Selektivität von ADAM17 an P1´ ist ein 

entscheidendes Merkmal, welches die Substratspezifität von ADAM17 im Vergleich zu 

ADAM10 und anderen MMPs beeinflussen könnte. ADAM10 bevorzugt an P1´ Leucin 

sowie aromatische AS (Caescu et al. 2009), wie es für die ADAM10-Schnittstelle SF-YK 

innerhalb der juxtamembranären Region von Typ I NRG1-β1 und Typ III NRG1-β1 

gezeigt werden konnte (Luo et al. 2011, Fleck et al. 2013). Neben der β1-Isoform besitzt 

auch Typ I NRG1-β2 die AS-Sequenz SF-YK innerhalb der juxtamembranären Region. 

Da die β2-Isoform zwar dieselbe Schnittstellensequenz besitzt wie die β1-Isoform, jedoch 

vermutlich kein Substrat für ADAM10 darstellt (Freese et al. 2009) (Vgl. 4.3.2.), müssen 

zusätzliche Faktoren neben einer spezifischen Schnittstellensequenz ausschlaggebend für 

das Shedding von Neuregulin sein. Ein solcher Faktor könnte z.B. die Länge der 

juxtamembranären Region sein. So konnte in dieser Arbeit in SEAP-Enzym-Assay-

Analysen gezeigt werden, dass u.a. die Länge der juxtamembranären Region einen 

entscheidenden Einfluss auf das Shedding der verschiedenen Typ I NRG1-β-Isoformen 

durch ADAMs hat. Je kürzer die juxtamembranäre Region ist, desto stärker kann das 

Shedding durch TAPI-1 inhibiert werden und desto abhängiger ist somit das Shedding 

der jeweiligen Typ I NRG1-β-Isoform von ADAM10 und/oder ADAM17 (Abb. 27). 

Andere Arbeitsgruppen gehen ebenfalls davon aus, dass die Länge der juxtamembranären 

Region eine entscheidende Bedeutung für das Shedding von Neuregulin hat (Han und 

Fischbach 1999, Montero et al. 2000). Ferner wird das Shedding der ADAM17-Substrate 

HB-EGF und TGF-α durch die Kombination aus Länge der juxtamembranären Region 

und AS-Sequenz bestimmt (Hinkle et al. 2004). 

Die Ergebnisse oben genannter Arbeitsgruppen sowie der vorliegenden Arbeit lassen 

vermuten, dass die jeweilige Schnittstelle sowohl für ADAM10 als auch für ADAM17 

durch das Zusammenspiel der beiden Faktoren AS-Sequenz und Länge der 

juxtamembranären Region bestimmt wird. 

Neben der kontrovers diskutierten Sequenzspezifität sind für die Substraterkennung von 

ADAM10 und ADAM17 vermutlich weitere Faktoren ausschlaggebend. So könnten 

Strukturmerkmale außerhalb der katalytischen Domäne die Interaktion von Protease und 

ihrem Substrat beeinflussen. Dies konnte bereits für ADAM10 gezeigt werden, deren 

nicht katalytische Domäne entscheidend für die Bindung von Ephrin ist (Janes et al. 

2005).  
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Ferner werden spezifische Stimuli beschrieben, welche entscheidend dafür sind, ob ein 

Substrat durch ADAM10 oder durch ADAM17 prozessiert wird. So induziert die 

Behandlung von Zellen mit PMA das Shedding von Transmembranproteinen 

hauptsächlich infolge Aktivierung von ADAM17. Bei zellulärem Calcium-Ionen-

Einstrom wird dagegen das Shedding dieser Proteine durch ADAM10 gefördert 

(Horiuchi et al. 2007, Le Gall et al. 2009).  

 

ADAM10 und BACE1 schneiden Neuregulin an benachbarten Schnittstellen und ihre 

Schnittprodukte aktivieren dieselben Signalkaskaden. Allerdings kommt ihnen eine 

unterschiedliche Bedeutung bezüglich der Myelinisierung des PNS zu. Denn im 

Gegensatz zu BACE1 kann für ADAM10 in vitro als auch in vivo kein Effekt auf die 

Myelinisierung des PNS gezeigt werden (Freese et al. 2009, Luo et al. 2011).  

Es wurde bisher angenommen, dass sich auch ADAM17 und BACE1 in ihrer Bedeutung 

bezüglich der Myelinisierung des PNS unterscheiden. Während BACE1 infolge Shedding 

von Typ III NRG1 die Myelinisierung des PNS induziert (Willem et al. 2006), wird die 

Bedeutung von ADAM17 bezüglich der Myelinisierung kontrovers diskutiert. Während 

La Marca et al. eine Hypomyelinisierung in vitro als auch in vivo infolge Shedding von 

Typ III NRG1 durch ADAM17 nachweisen (La Marca et al. 2011), zeigen die aktuellen 

Ergebnisse von Fleck et al., dass sowohl BACE1 als auch ADAM17 die Myelinisierung 

des PNS in vivo induzieren (Fleck et al. 2013). 

Typ I NRG1-β1 wird zwar ebenfalls durch ADAM17 geschnitten (Horiuchi et al. 2005, 

La Marca et al. 2011), doch konnte gezeigt werden, dass diese Isoform nicht für die 

Myelinisierung des PNS verantwortlich ist (Michailov et al. 2004, Taveggia et al. 2005, 

La Marca et al. 2011). 
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5. Zusammenfassung und Ausblick 
In der vorliegenden Arbeit konnte zunächst gezeigt werden, dass Typ I NRG1-β ein 

Substrat für den γ-Sekretase-Komplex darstellt. Nach erfolgtem Shedding von Typ I 

NRG1-β katalysiert die γ-Sekretase dessen intramembranäre Proteolyse durch einen 

Schnitt innerhalb der Transmembrandomäne.  

Mit Hilfe von Inhibitoranalysen und Überexpressionsmodellen konnte in vitro gezeigt 

werden, dass die β-Sekretase BACE1 das Shedding unterschiedlicher Isoformen von Typ 

I NRG1-β katalysiert. BACE1 bevorzugt dabei das Shedding der Isoform Typ I NRG1-

β1, gefolgt von Typ I NRG1-β4. Dagegen wird Typ I NRG1-β2 nicht oder nur in sehr 

geringem Ausmaß durch BACE1 prozessiert.  

Da Typ I NRG1-β1 die Isoform mit der höchsten neuronalen Expression ist und zudem in 

der vorliegenden Arbeit gezeigt werden konnte, dass Typ I NRG1-β1 im Vergleich zu 

den anderen Isoformen das bevorzugte Substrat für BACE1 darstellt, wurde in dieser 

Arbeit die BACE1-Schnittstelle für diese Isoform analysiert. Mit Hilfe 

massenspektrometrischer Analysen konnte die exakte Schnittstelle von BACE1 innerhalb 

der juxtamembranären Region zwischen Aminosäure-Position Glu
236

-Phe
237 

und Met
238

-

Glu
239

 (EF-ME) von humanem Typ I NRG1-β1 charakterisiert werden. Durch Einführen 

von Mutationen im Bereich dieser Schnittstelle wurde die Spezifität der 

Schnittstellensequenz verifiziert und die Existenz weiterer Schnittstellen für BACE1  

 

 

 

 

Abb. 30: Schematische Darstellung der Schnittelle von ADAM10 und BACE1 in Typ I NRG1-β1. 

Die juxtamembranäre Region ist in der Schemazeichnung blau umrahmt. Darunter dargestellt ist die AS-

Sequenz der juxtamembranären Region mit der β-EGF-ähnlichen Domäne von Typ I NRG1-β1, welche der 

in der Schemazeichnung rot umrahmten Region entspricht. Die  juxtamembranäre Region ist  unterstrichen. 

Die Sequenz der β-EGF-ähnlichen Domäne ist analog der Schemazeichnung blau und die spezifische 

Sequenz der β1-Isoform rosa hervorgehoben. Die Pfeile markieren die jeweilige Schnittstelle von 

ADAM10 und BACE1. 
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ausgeschlossen. Dabei blockiert die Deletion von sieben Aminosäuren (Δ7) im Bereich 

der BACE1-Schnittstelle das Shedding durch BACE1 deutlich besser als durch 

Austausch von zwei Aminosäuren (AA). 

Für die α-Sekretase ADAM10 wurde in dieser Arbeit anhand von 

Überexpressionsmodellen und ADAM10-Inhibitoranalysen in vitro gezeigt, dass diese 

das Shedding von Typ I NRG1-β1 katalysiert. Typ I NRG1-β2 wird dagegen nicht oder 

nur in geringem Ausmaß durch ADAM10 prozessiert. Das Shedding der β2-Isoform 

erfolgt durch TAPI-1 sensible Sekretasen, wobei die vorliegenden Ergebnisse keine 

Aussage dazu ermöglichen, um welche spezifische Sekretase es sich handelt. Für Typ I 

NRG1-β4 konnte in Inhibitoranalysen und ADAM10-Überexpressionsstudien gezeigt 

werden, dass das konstitutive Sheding dieser Isoform weder durch ADAM10 noch durch 

ADAM17 katalysiert wird.  

Für α-Sekretasen wird kontrovers eine fehlende Schnittstellen-Sequenzspezifität 

diskutiert. In dieser Arbeit konnte gezeigt werden, dass die Länge der juxtamembranären 

Region von Typ I NRG1-β einen entscheidenden Einfluss auf das Shedding durch α-

Sekretasen hat. Dabei stellen die Isoformen mit einer kürzeren juxtamembranären Region 

das bevorzugte Substrat für α-Sekretasen dar.  

 

Tabelle 11: Überblick über die Ergebnisse der vorliegenden Arbeit sowie der in der 

Literatur beschriebenen Ergebnisse bezüglich des Sheddings von Typ I NRG1-β 

durch BACE1, ADAM10 und ADAM17.  

Rotes Pluszeichen kennzeichnet das Shedding durch die jeweilige Sekretase. 
 

Substrat BACE1 ADAM10 ADAM17 

Typ I NRG1-β1 
 

+ 

 

+ 
(1*) 

 

+ 

 

+ 
(1**) 

/ - 
(1***)

 

  

(#)
 

 

+ 
(1**)

/ + 
(1***)

  

Typ I NRG1-β2 
 

- 

  

- /
 (#)

 

 

- 
(2*)

 

 
 

(#)
 

 

+ 
(1***)

 

Typ I NRG1-β4 
 

+ 

 

- 

 

- 

 

 
 (#) 

Shedding ist
 
TAPI-1 sensibel.

  

(1*) 
(Willem et al. 2006, Hu et al. 2008, Luo et al. 2011).

   

(1**)
 (Luo et al. 2011).

   

(1***) 
(Horiuchi et al. 2005).

  

(2*)
 (Freese et al. 2009). 
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Als weiterführende Arbeit der vorliegenden Dissertation wurde die proteolytische 

Prozessierung von Typ III NRG1 durch die Sekretasen ADAM10, ADAM17 und BACE1 

analysiert (Fleck et al. 2013). Es konnte gezeigt werden, dass Typ III NRG1 nicht nur C-

terminal, sondern auch N-terminal der EGF-ähnlichen Domäne geschnitten wird. Dies 

ermöglicht die Freisetzung der biologisch aktiven EGF-ähnlichen Domäne, welche durch 

parakrine Signaltransduktion in vitro ErbB3-Rezeptoren aktiviert, sowie in vivo die 

Myelinisierung des PNS stimuliert. Die proteolytische Prozessierung N-terminal der 

EGF-ähnlichen Domäne wird durch ADAM17 und BACE1 katalysiert. Für den Schnitt 

C-terminal der EGF-ähnlichen Domäne sind sowohl ADAM10 und ADAM17 als auch 

BACE1 verantwortlich. Die C-terminal der EGF-ähnlichen Domäne lokalisierte BACE1-

Schnittstelle von Typ III NRG1 entspricht dabei der BACE1-Schnittstelle von Typ I 

NRG1-β1, welche in der hier vorliegenden Dissertationsarbeit identifiziert wurde.  

In künftigen Arbeiten könnten Mutationsanalysen die Schnittstellensequenzen der 

verschiedenen Typ I NRG1-β-Isoformen für ADAM10 und ADAM17 bzw. die 

Schnittstellensequenz der β4-Isoform für BACE1 identifizieren. Zum besseren 

Verständnis der pathophysiologischen und physiologischen Bedeutung von BACE1  

sowie der α-Sekretasen ADAM10 und ADAM17 für das Shedding der verschiedenen 

Typ I NRG1-β-Isoformen könnten in weiterführenden Arbeiten „Knockout“-Studien in 

neuronalen Zellmodellen als auch in vivo beitragen.  
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6. Abkürzungsverzeichnis 

 
Abb.   Abbildung 

ACDL  Acid cluster-dileucine Motiv 

AD   Alzheimer-Demenz-Erkrankung 

ADAM   A disintegrin and metalloproteinase 

AICD   APP intracellular domain 

AMPA  α-amino-3-hydroxyl-5-methyl-4-isoxazole-   

  propionate acid 

AP  Alkalische Phospahatase 

APLP  Amyloid precurser like protein 

ApoE   Apolipoprotein E  

ARIA  Acetylcholin inducing acitivity  

AS   Aminosäure 

Aβ   Amyloid-β-Peptid 

βAPP  β-amyloid precursor protein 

BACE   β-site APP cleaving enzyme 

BSA   Bovines Serum Albumin 

Cdk5   Cyclin-dependent kinase 5 

CTF   C-terminales Fragment 

CRD  Cystein rich domain 

dH2O   destilliertes Wasser 

DMEM   Dulbeco´s Modified Eagle Medium 

DNA      Desoxyribonucleic acid 

ECL      Enhanced chemiluminescence 

EGF     Epidermal growth factor 

EDTA      Ethylendiamintetraacetat 

ER     Endoplasmatisches Retikulum 

FAD      Familial Alzheimer´s disease 

FKS      Fetales Kälberserum 

g      Gramm 

GABA     Gamma aminobutyric acid 

GGA     γ-ear-containing ARF-binding protein 

GGF     Glial growth factor 
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G418      Geneticin 418 

GSK3      Glykogen Synthase Kinase 3 

HA     Hämagglutinin 

HER     Heregulin 

HEK      Human embryonic kidney 293 

HRP      Horseradish peroxidase 

ICD     Intracellular domain 

Ig     Immunglobulin 

IgG      Immunglobulin G 

kb      Kilobase 

kDa      Kilodalton 

LTP     Long-term potentiation 

M      Molar 

mg      Milligramm 

min      Minute 

ml      Milliliter 

µl     Mikroliter 

mM      Millimolar 

µM     Mikromolar 

mRNA     messenger ribonucleic acid 

miRNA    Mikro RNA 

Nct      Nicastrin 

NDF     Neu differentiation factor 

NICD     Notch intracellular domain 

nM      Nanomolar 

NMDA    N-methyl-D-aspartate 

NRG      Neuregulin 

NSAID    Non steroidal anti inflammatory drugs 

NTF      N-terminales Fragment 

PAGE      Polyacrylamid Gelelektrophorese 

PEN      Penicillin 

PEN-2     Presenilin enhancer-2 

PI      Protease Inhibitor 

PKC     Protein Kinase C 
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PMA     Phorbol-12-myristate-13-acetate 

PNS      Peripheres Nervensystem 

PS      Presenilin 

RIP     Regulierte intramembranäre Proteolyse 

RNA     Ribonucleic acid 

RT     Raumtemperatur 

rw     rückwärts 

SDS      Sodiumdodecylsulfate 

siRNA     Small interfering RNA 

SH-SY5Y    Humane Neuroblastomzelllinie 

SMDF     Sensory and motor neuron derived factor 

Strep      Streptomycin 

Swe      Schweden-Mutation von βAPP (KM/NL; 670/671) 

TACE     Tumor necrosis factor-alpha converting enzyme 

TGN     Trans-Golgi-Netzwerk 

TMD      Transmembrandomäne 

upm      Umdrehungen pro Minute 

UTR      Untranslated region 

vw     vorwärts 

wt      Wildtyp 

x g x      Erdbeschleunigung, g=9,81 m/s2 

ZNS     Zentrales Nervensystem 
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7. Einbuchstabencode für Aminosäuren 

 
A  Alanin 

C  Cystein 

D  Aspartat 

E  Glutamat 

F  Phenylalanin 

G  Glycin 

H  Histidin 

I  Isoleucin 

K  Lysin 

L  Leucin 

M  Methionin 

N  Asparagin 

P  Prolin 

Q  Glutamin 

R  Arginin 

S  Serin 

T  Threonin 

V  Valin 

W  Tryptophan 

Y  Tyrosin 
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Dual Cleavage of Neuregulin 1 Type III by BACE1 and
ADAM17 Liberates Its EGF-Like Domain and Allows
Paracrine Signaling

Daniel Fleck,1 Frauke van Bebber,2 Alessio Colombo,2,5 Chiara Galante,1 Benjamin M. Schwenk,2 Linnea Rabe,1

Heike Hampel,1 Bozidar Novak,1 Elisabeth Kremmer,3 Sabina Tahirovic,2 Dieter Edbauer,1,2,4 Stefan F. Lichtenthaler,2,4,5

Bettina Schmid,2,4 Michael Willem,1 and Christian Haass1,2,4

1Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, 80336 Munich, 2German Center for Neurodegenerative Diseases (DZNE), 80336
Munich, Germany, 3Institute of Molecular Immunology, Helmholtz Center Munich, 81377 Munich, Germany, 4Munich Cluster for Systems Neurology
(SyNergy), 80336 Munich, Germany, and 5Neuroproteomics, Technical University of Munich, 81377 Munich, Germany

Proteolytic shedding of cell surface proteins generates paracrine signals involved in numerous signaling pathways. Neuregulin 1 (NRG1)
type III is involved in myelination of the peripheral nervous system, for which it requires proteolytic activation by proteases of the ADAM
family and BACE1. These proteases are major therapeutic targets for the prevention of Alzheimer’s disease because they are also involved
in the proteolytic generation of the neurotoxic amyloid �-peptide. Identification and functional investigation of their physiological
substrates is therefore of greatest importance in preventing unwanted side effects. Here we investigated proteolytic processing of NRG1
type III and demonstrate that the ectodomain can be cleaved by three different sheddases, namely ADAM10, ADAM17, and BACE1.
Surprisingly, we not only found cleavage by ADAM10, ADAM17, and BACE1 C-terminal to the epidermal growth factor (EGF)-like
domain, which is believed to play a pivotal role in signaling, but also additional cleavage sites for ADAM17 and BACE1 N-terminal to that
domain. Proteolytic processing at N- and C-terminal sites of the EGF-like domain results in the secretion of this domain from NRG1 type
III. The soluble EGF-like domain is functionally active and stimulates ErbB3 signaling in tissue culture assays. Moreover, the soluble
EGF-like domain is capable of rescuing hypomyelination in a zebrafish mutant lacking BACE1. Our data suggest that NRG1 type III-
dependent myelination is not only controlled by membrane-retained NRG1 type III, but also in a paracrine manner via proteolytic
liberation of the EGF-like domain.

Introduction
Protease signaling is an important cellular mechanism in health
and disease, and sheddases often liberate membrane-bound sub-
strates for paracrine signaling (Turk et al., 2012). Sheddases are
also involved in the generation of the Alzheimer’s disease-
associated amyloid �-peptide from the amyloid precursor pro-

tein (APP) (Lichtenthaler et al., 2011). Production of amyloid
�-peptide is initiated by the �-site APP-cleaving enzyme (BACE1
or �-secretase) (Haass, 2004), which is therefore a promising
drug target for the treatment of Alzheimer’s disease (De Strooper
et al., 2010). Physiologically, BACE1 is required to process Neu-
regulin 1 (NRG1) type III, a key regulator of myelination in the
peripheral nervous system (PNS; Hu et al., 2006; Willem et al.,
2006; Birchmeier and Nave, 2008; Brinkmann et al., 2008).
Therefore, understanding the precise function of BACE1 in
NRG1 type III processing and signaling is crucial to avoid side
effects upon therapeutic inhibition of BACE1. NRG1 is predom-
inantly expressed in neurons and multiple variants are generated
by alternative splicing. All NRG1 isoforms contain an epidermal
growth factor (EGF)-like domain, which binds and activates
ErbB receptor tyrosine kinases (Falls, 2003; Mei and Xiong,
2008). Although most isoforms are single transmembrane do-
main (TMD) proteins, NRG1 type III contains two TMDs and
forms a hairpin-like protein with the EGF-like domain in its ex-
tracellular loop (Fig. 1A; Wang et al., 2001).

NRG1 type III is essential for Schwann cell development in
both mouse and zebrafish and determines myelin sheath thick-
ness (Wolpowitz et al., 2000; Michailov et al., 2004; Taveggia et
al., 2005; Monk and Talbot, 2009; Perlin et al., 2011). BACE1
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and Axel Imhof (Center for Protein Analysis, Ludwig-Maximilians-University, Munich) for support with the MS
analysis.

The authors declare no competing financial interests.
Correspondence should be addressed to either Christian Haass or Michael Willem, Adolf-Butenandt-Institute,

Biochemistry, Ludwig-Maximilians-University, Schillerstrasse 44, 80336 Munich, Germany, E-mail:
christian.haass@dzne.lmu.de or michael.willem@med.uni-muenchen.de.

DOI:10.1523/JNEUROSCI.3372-12.2013
Copyright © 2013 the authors 0270-6474/13/337856-14$15.00/0

7856 • The Journal of Neuroscience, May 1, 2013 • 33(18):7856 –7869



knock-out mice exhibit severe hypomyelination and accumula-
tion of uncleaved NRG1 type III, demonstrating that NRG1 type
III is a natural BACE1 substrate (Hu et al., 2006; Willem et al.,
2006). NRG1-mediated signaling requires proteolytic processing
and shedding in the stalk (juxtamembrane) region of NRG1 type
I, and NRG1 type II releases the ectodomain as a paracrine signal.
Conversely, shedding of NRG1 type III generates a membrane-
tethered N-terminal fragment (NTF), which presents the EGF-
like domain as juxtacrine signal (Falls, 2003). Because BACE1
knock-out mice still show some degree of myelination, other
proteases may compensate for the loss of BACE1 (Velanac et al.,
2012). Indeed, members of the ADAM (a disintegrin and metal-
loproteinase) family also cleave NRG1 (Montero et al., 2000;
Shirakabe et al., 2001; Horiuchi et al., 2005; La Marca et al., 2011;
Luo et al., 2011), and the NRG1 type III NTF generated by
ADAM10 activates ErbB receptors similar to the BACE1-
processed fragment (Luo et al., 2011).

Based on the finding that recombinant soluble NRG1 type III
NTFs are sufficient for signaling in vitro (Syed et al., 2010), we
searched for a proteolytic pathway that would physiologically
liberate a signaling-competent EGF-like domain from NRG1
type III. We found that the EGF-like domain of NRG1 type III is
liberated by a dual BACE1 or ADAM17 cleavage. Moreover, the
soluble EGF-like (sEGF) domain not only stimulates ErbB3 re-

ceptor phosphorylation, but also rescues hypomyelination in a
bace1 mutant zebrafish.

Materials and Methods
cDNA constructs, primers, and lentivirus production. NRG1 type III �1a
(GenBank: AF194438.1) cDNA was cloned into the pcDNA4-myc-HisA
vector (Invitrogen) using EcoRI and XhoI restriction sites. For the con-
struct V5-IIINRG1, a V5-tag (GKPIPNPLLGLDST) was inserted directly
after M1 by fusion PCR. The V5-IIINRG1-HA construct was generated
by introduction of an HA-tag (YPYDVPDYA) between V281 and M282.
For the truncated construct NRG1�NT, the respective NRG1 type III
sequence was subcloned into the pSecTag2A (Invitrogen) vector that
features an N-terminal secretion signal. A suboptimal Furin cleavage site
(RAVRSL) after the secretion signal sequence was optimized (RARRSV)
by QuikChange mutagenesis (Stratagene) and a Flag-tag (DYKDDDDK)
was inserted N-terminal of I236. The constructs �- and �-sEGF were
generated by subcloning the respective sequences from V5-IIINRG1-HA
into the modified pSecTag2A vector using the SfiI and XhoI restriction
sites. BACE1 and ADAM10 expression constructs have been described
previously (Capell et al., 2000; Wild-Bode et al., 2006). The construct
expressing ADAM17 was kindly provided by Dr. R.A. Black at Amgen
and has been described previously (Black et al., 1997). For expression in
primary neurons, V5-IIINRG1-HA was cloned into a lentiviral expres-
sion vector AD149FhSynW2 under control of the human synapsin pro-
moter using the NheI and EcoRI restriction sites. Lentiviral particles were
produced in HEK293FT cells as described previously (Orozco et al.,

Figure 1. BACE1, ADAM10, and ADAM17 cleave in the stalk region of NRG1 type III. A, Schematic representation of NRG1�NT. NRG1�NT comprises the EGF-like domain and the C terminus but
lacks the N terminus of NRG1 type III. A Flag-tag was inserted immediately N-terminal of the EGF-like domain to facilitate immunoprecipitation for MS analysis. Shedding of NRG1�NT by BACE1,
ADAM10, or ADAM17 releases an sEGF domain that was detected directly in the supernatant using an EGF antibody. NRG1�NT was detected in the cell lysate with a C-terminal antibody. CRD
indicates cysteine-rich domain. B, BACE1 is shedding NRG1 type III in the stalk region. HEK293 cells transfected with NRG1�NT were treated with the specific BACE1 inhibitor IV (10 �M) or
cotransfected with BACE1. Note that, due to its rapid turnover, the CTF generated by shedding can only be detected upon �-secretase inhibition (data not shown). Expression of transfected and
endogenous BACE1 was confirmed in cell lysates and isolated membranes (bottom). mat indicates mature; im, immature. Bar graph: Quantification of experiments (mean � SD; *p � 0.05, **p �
0.01, ***p � 0.001, two-tailed unpaired Student’s t test, inhibitor: n � 5, overexpression: n � 6). C, D, ADAM10 and ADAM17 contribute to the shedding of NRG1 type III in the stalk region. C, Cells
expressing NRG1�NT were treated with the broad-spectrum ADAM inhibitor GM6001 (GM, 25 �M). Coinhibition of ADAMs and BACE1 was achieved by combined treatment with GM and inhibitor
IV (25 and 10 �M, respectively). D, Coexpression of NRG1�NT with ADAM10 (A10) or ADAM17 (A17). Bar graphs in C, D: Quantification of experiments (mean � SD; *p � 0.05, **p � 0.01, ***p �
0.001, two-tailed unpaired Student’s t test, in C, n � 5; in D, n � 6).
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2012). Briefly, HEK293FT cells were cotransfected with the lentiviral
expression construct psPAX2 and pVSVg for 24 h. After another 24 h,
supernatant was collected and virus particles were concentrated by ultra-
centrifugation and resuspended in neurobasal medium. The sequences
of all constructs were verified by sequencing. Construct and oligonucle-
otide sequences are available upon request.

Stable cell lines, transfection, and inhibitor treatment. HEK293T cells
(Invitrogen) and MCF-7 cells (Karey and Sirbasku, 1988) were cultured
in DMEM with Glutamax (Invitrogen) supplemented with 10% fetal calf
serum (Invitrogen). CHO ldlD cells deficient in O-linked glycosylation
were a kind gift from Monty Krieger and have been described previously
(Kingsley et al., 1986). CHO wild-type (wt) and ldlD cells were cultured
in DMEM with 10% fetal calf serum and nonessential amino acids.
Transfections were performed using Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s instructions. The following inhibitors
were dissolved in DMSO and used at the indicated final concentrations
for 12–24 h: BACE1 inhibitor IV (5 or 10 �M; Calbiochem); GM6001, a
broad-spectrum inhibitor of matrix metalloproteinases and ADAMs (25
�M; Enzo Life Sciences), the ADAM10-specific inhibitor GI254023X (5
�M; a kind gift from Dr. Schmidt, Technical University of Darmstadt,
described previously by Ludwig et al., 2005), and the ADAM17-specific
inhibitor GL 506 –3 (5 �M; a kind gift from Galderma). O-linked glyco-
sylation was blocked with benzyl-2-acetamido-2-deoxy-�-D-galacto-
pyranoside (4 mM; Merck).

Primary neuronal culture, transduction, and inhibitor treatment. Hip-
pocampal neurons were prepared from embryonic day 18 Sprague-
Dawley rat embryos as described previously (Orozco et al., 2012) and
cultured in neurobasal medium (Invitrogen) supplemented with 2% B27
(Invitrogen), Pen/Strep, and 2 mM L-glutamine. After 4 d in vitro, cells
were incubated with lentiviral particles for 8 h, and after 2 d, transduction
inhibitor treatment was performed for 16 h. Supernatants and cells were
collected and analyzed by immunoblotting.

Primary Schwann cell culture. Primary rat Schwann cells were prepared
as described previously (Einheber et al., 1997) and proliferation was
induced using high-glucose DMEM with Glutamax (Invitrogen), 10%
FBS, 2 mM L-glutamine (Invitrogen), 2 �M forskolin (Sigma-Aldrich),
and 10 �g/ml pituitary extract (Sigma-Aldrich). One day before the ex-
periment, cells were washed twice with HBSS (Invitrogen) and prolifer-
ation was stopped by maintaining the cells in DMEM with Glutamax,
10% FBS, and 2 mM L-glutamine.

Antibodies. The following monoclonal neoepitope-specific antibodies
were generated by immunization with the respective peptides: 4F10: rat,
SFYKHLGIEF; 10E8: mouse, MEAEELYQKR; 7E6: mouse, QTAP-
KLSTS. Hybridoma supernatants were used 1:40 for immunoblotting.
The following antibodies were used for immunoblotting: antibody to
NRG1 C terminus (pRb, 1:10000, SC348; Santa Cruz Biotechnology), to
NRG1 EGF-like domain (HRG� pRb, 1:2000, Ab-2; Thermo Scientific ),
to �-actin (1:5000; Sigma-Aldrich), to BACE1 (pRb, 1:1000, AB5940;
Millipore), to ADAM17/TACE (pRb, 1:1000, ab39162; Abcam), to
ADAM10 (pRb, 1:5000, 422751; Calbiochem), to Calnexin (pRb,
1:10000; Stressgen), to V5-tag (1:5000; Invitrogen), to HA-tag (HRP-
conjugated mRat, 1:2000, 3F10; Roche), to ErbB3 (pRb, 1:1000, sc-285,
C-17; Santa Cruz Biotechnology), to p-ErbB3 (pRb, 1:1000, sc-135654,
Tyr1328; Santa Cruz Biotechnology), to AKT (mRb, 1:4000, C67E7; Cell
Signaling Technology), and to p-AKT (mRb, 1:3000, D9E XP Ser473; Cell
Signaling Technology). Secondary antibodies were HRP-conjugated
anti-mouse and anti-rabbit IgG (pGoat, 1:10000; Promega) or anti-rat
IgG (pGoat, 1:4000, sc-2006; Santa Cruz Biotechnology).

Sample preparation and immunoblotting. Medium was conditioned
overnight, immediately cooled upon collection, and supplemented with
protease inhibitor mixture (Sigma-Aldrich). Cell debris was removed by
centrifugation (5 min, 5500 � g, 4°C) and the supernatant was subjected
directly to standard SDS-PAGE. For total cell lysates, cells were washed
with ice-cold PBS, scraped off, and pelleted by centrifugation (5 min,
1000 � g, 4°C). Cells were lysed in lysis buffer (20 mM citrate, pH 6.4, 1
mM EDTA, 1% Triton X-100) freshly supplemented with protease inhib-
itor mixture for 30 min on ice. After clarification (15 min, 10000 � g,
4°C), protein concentration was determined with the BCA protein assay
(Pierce) and equal amounts of protein were subjected to SDS-PAGE.

Proteins were transferred onto PVDF (Immobilon-P; Millipore) or ni-
trocellulose (Protran; Whatman) membranes and the indicated antibod-
ies were used for immunodetection. Bound antibodies were detected
with HRP-conjugated secondary antibodies using the chemilumines-
cence detection reagents ECL and ECL Plus (GE Healthcare). For quan-
tification, images were acquired with a Luminescent Image Analyzer
LAS-4000 (Fujifilm) and analyzed with the Multi Gauge V3.0 software.

siRNA-mediated knock-down and membrane preparation. For RNA in-
terference, cells were plated in polylysine-coated dishes and reverse
transfected with siGENOME pool targeting ADAM10 (10 nM; Thermo
Scientific), ON-TARGETplus SMARTpool targeting ADAM17 (15 nM;
Dharmacon) or respective controls using Lipofectamine 2000 (Invitro-
gen). Fresh medium was added 24 h after transfection and (if applicable)
substrate cDNA was transfected 48 h after initial transfection. Medium
was conditioned starting 68 h after siRNA transfection and cells were
harvested 12–24 h later. For detection of endogenous BACE1, ADAM10
and ADAM17 cell membranes were prepared as described previously
(Sastre et al., 2001).

MS analysis after immunoprecipitation. Conditioned medium was pre-
pared as described above and incubated with anti-Flag M2 or anti-HA
(Sigma-Aldrich) agarose beads overnight (rotation, 4°C). Beads where
washed three times with IP/MS buffer (0.1% N-octylglucoside, 10 mM

Tris-HCl, pH 8.0, 5 mM EDTA, 140 mM NaCl) and two times with water.
Immunoprecipitated proteins were eluted with trifluoroacetic acid/ace-
tonitrile/water (0.3%/40%) saturated with �-cyano-4-hydroxycinnamic
acid and matrix-assisted laser desorption/ionization–time of flight
(MALDI-TOF) analysis was performed as described previously (Okochi
et al., 2002) using Voyager DE STR (Applied Biosystems). Molecular
masses were calibrated using the Sequazyme Peptide Mass Standards Kit
(Applied Biosystems).

Preparation of sEGF domains and phosphorylation assays. sEGF do-
mains were expressed in CHO wt and CHO ldlD cells and supernatants
were conditioned for 24 h. After quantification of their initial abundance
by Western blotting, medium from control cells was used to adjust the
concentrations of the EGF-like domains in the supernatants by dilution.
Equal concentrations were controlled by Western blotting again (and
further adjustment was done if necessary) and the adjusted supernatants
were used for phosphorylation assays. The assay was performed as fol-
lows: subconfluent MCF-7 or purified primary Schwann cells were incu-
bated with conditioned media containing equal amounts of EGF-like
domains for 30 min. Medium from cells expressing an empty vector was
used as negative control and incubation with 0.5 nM recombinant NRG1
EGF-like domain (NRG1-�1, 396-HB/CF; R&D Systems) served as a
positive control. Cells were then washed with ice-cold PBS and lysates
were prepared as described above using a modified RIPA buffer supple-
mented with phosphatase inhibitor mixture (PhosSTOP; Roche). Even-
tually, the phosphoprotein/total protein readout of the assay was
normalized to the Western blot intensities of the EGF-like domains in the
media used for stimulation.

Zebrafish maintenance and transgenic lines used. All zebrafish embryos
were raised at 28°C in E3 media (5 mM NaCl, 0.17 mM KCl, 0.33 mM

CaCl2, 0.33 mM MgSO4) and were staged as described previously
(Kimmel et al., 1995). To suppress the growth of mold, methylene blue
(10 �5%) was added to E3 media. Animals of either sex were used for this
study. All experiments were performed in accordance with animal pro-
tection standards of the Ludwig-Maximilians University Munich and
have been approved by the government of Upper Bavaria (Regierung von
Oberbayern, München, Germany). In addition to the AB wt strain, a
transgenic zebrafish line, Tg(claudin k:GFP) in which the claudin k pro-
moter drives expression of a membrane-bound GFP (Münzel et al.,
2012), was also used. This transgenic line is hereafter referred to as clau-
din k:GFP. Furthermore, a newly generated bace1 mutant (van Bebber et
al., 2013) was crossed to claudin k:GFP, and bace1 homozygous mutants
carrying the claudin k:GFP were used to analyze the activity of NRG1 type
III-derived �-sEGF in vivo.

mRNA injections and image acquisition. �-sEGF mRNA was synthe-
sized in vitro using the mMessage mMACHINE kit (Ambion) according
to standard protocols. �-sEGF mRNA was injected at a concentration of
425 ng/�l in fertilized eggs at the one-cell stage. Zebrafish larvae were
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Figure 2. Identification of shedding sites of BACE1, ADAM10, and ADAM17 in the stalk region of NRG1 type III. A, BACE1 cleaves NRG1 type III after F293. Supernatants of Figure 1B were
immunoprecipitated with Flag-agarose beads and precipitated sEGF peptides were analyzed by MALDI-TOF MS. The peptide corresponding to a cleavage after F293 is generated by BACE1 (red
arrow). Note that with overexpression of BACE1, the other peaks are below detection limit. B, C, ADAM10 and ADAM17 shed NRG1 type III after A283, F285, and Y286. Cells expressing NRG1�NT were
either treated with indicated inhibitors (GM6001, 25 �M; GI254023X and GL506 –3, 5 �M) or cotransfected with indicated proteases and supernatants were analyzed as in A. ADAM-specific peaks
were compared with the peak caused by BACE1 in each spectrum. Broad-spectrum ADAM inhibition (GM6001) reduced cleavage at all ADAM cleavage sites. Inhibition and overexpression of ADAM10
revealed its main cleavage sites to be after Y286 and F285 (light blue and blue arrows, respectively). Conversely, ADAM17 cleaved NRG1�NT mainly after A283 (Figure legend continues.)
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anesthetized with tricaine (0.016% w/v) at 3 d postfertilization (dpf) and
oriented in 3% methylcellulose on coverslips. Fluorescence of claudin
k:GFP was imaged with an LSM510 META inverted confocal microscope
(Zeiss). Pictures were assembled in Photoshop 8.0 (Adobe Systems).
Brightness and contrast were adjusted with ImageJ.

Results
Juxtamembrane cleavage of NRG1 type III by ADAM10,
ADAM17, and BACE1
To investigate NRG1 type III processing in living cells, we gener-
ated a truncated Flag-tagged NRG1 type III construct comprising
the C-terminal region, the transmembrane domain, the jux-
tamembrane region, and the EGF-like domain (NRG1�NT; Fig.
1A). Expression of the truncated protein not only facilitates the
analysis of proteolytic processing within living cells, but also al-
lows the determination of potential cleavage sites by MS. We
coexpressed three different sheddases suggested to be involved in
NRG1 type III processing, BACE1, ADAM10, and ADAM17
(Montero et al., 2000; Hu et al., 2006; Willem et al., 2006; La
Marca et al., 2011; Luo et al., 2011), or repressed their endoge-
nous activities with inhibitors. Inhibition of endogenous BACE1
(by the BACE1 inhibitor IV) resulted in reduced liberation of the
EGF-like domain into the supernatant (Fig. 1B). Conversely, ec-
topic BACE1 expression strongly enhanced shedding reflected by
significantly increased amounts of the sEGF domain in the super-
natant and reduced substrate levels in the cell lysate (Fig. 1B). Due
to its rapid turnover by the �-secretase (Bao et al., 2003, 2004),
the C-terminal fragment (CTF) resulting from shedding could
only be detected upon �-secretase inhibition (data not shown).

We then investigated whether both ADAM10 and ADAM17
were also able to cleave NRG1�NT. The broad-spectrum ADAM
inhibitor GM6001 significantly reduced the amount of sEGF de-
tected in the supernatant. Combined inhibition of BACE1 and
ADAMs by treatment with both inhibitor IV and GM6001 almost
completely abolished endogenous shedding activity, as reflected
by strongly reduced amounts of sEGF in the supernatant and the
accumulation of NRG1�NT substrate within the cell lysate (Fig.
1C). Consistent with these findings, ectopic expression of either
ADAM10 or ADAM17 resulted in enhanced shedding of
NRG1�NT and subsequent sEGF accumulation in the condi-
tioned media (Fig. 1D). These results suggest that BACE1,
ADAM10, and ADAM17 are able to cleave NRG1 type III be-
tween the extracellular EGF-like domain and the C-terminal
transmembrane domain.

Identification of BACE1, ADAM10, and ADAM17 cleavage
sites within the juxtamembrane region of NRG1 type III
To map the cleavage sites of the respective proteases, we immu-
noprecipitated the sEGF domain from the supernatants of
NRG1�NT-expressing HEK293 cells using antibodies to the Flag
epitope (Fig. 1A). Isolated peptides were analyzed using MALDI-
TOF MS. Mass spectra derived from the supernatant of control
cells revealed four prominent peptide species corresponding to
cleavages after A283, F285, Y286, and F293 (Fig. 2A,G). To iden-
tify the specific cleavage sites of the three sheddases shown to be
involved in processing of NRG1�NT, we inhibited their endog-
enous activities with selective inhibitors or enhanced their cleav-
age by overexpression of the corresponding protease. This
revealed that the peptide peak at 7846.8 kDa corresponding to a
cleavage site after F293 was strongly reduced upon inhibition of
endogenous BACE1 (Fig. 2A). Conversely, production of the
same peptide was greatly enhanced to the expense of all other
cleavage products upon BACE1 overexpression (Fig. 2A), indi-
cating competing shedding activities.

Similarly, we analyzed the secreted EGF-like domains upon
overexpression or inhibition of ADAM proteases. Inhibition of
ADAMs with the broad-spectrum ADAM inhibitor GM6001 de-
creased the abundance of the three peptides A283, F285, and
Y286 compared with the peptide generated by BACE1, suggest-
ing that these peptides are indeed generated by protease activities
associated with members of the ADAM family (Fig. 2B,F).
To identify the cleavage sites of ADAM10 and ADAM17, we
used inhibitors that preferentially inhibit either ADAM10
(GI254023X) or ADAM17 (GL506 –3). Inhibition of ADAM10
reduced the intensity of peaks corresponding to cleavages after
F285 and Y286 but increased cleavage after A283. Conversely,
blocking ADAM17 resulted in reduced cleavage after A283 (and,
to a minor extent, after F285), whereas cleavage after Y286 re-
mained unaffected (Fig. 2B,F). Consistent with these findings,
overexpression of either protease caused increased cleavage after
the sites affected by their respective inhibitors (Fig. 2C,F). There-
fore, ADAM10 expression leads to enhanced cleavage after resi-
dues F285 and Y286, whereas expression of ADAM17 increases
cleavage after residues A283 and F285 (Fig. 2C).

To verify these cleavage sites under endogenous conditions,
we knocked down ADAM10 and ADAM17 in HEK293 cells ex-
pressing NRG1�NT. The siRNA pools efficiently reduced the
protein levels of ADAM10 and ADAM17 (Fig. 2D). As before,
sEGF peptides were isolated from the conditioned medium and
analyzed by MALDI-TOF MS (Fig. 2E). Knock-down of
ADAM10 dramatically reduced cleavage after Y286 and F285,
whereas cleavage after A283 was unaffected. Conversely, reduc-
tion of ADAM17 strongly impaired cleavage after A283 and re-
duced cleavage after F285 to some extent, whereas cleavage after
Y286 was not affected (Fig. 2E,F). These findings suggest that
BACE1 specifically cleaves NRG1 type III after F293, whereas
ADAM17 cleaves after A283 and, to some extent, also after F285.
ADAM10 processes NRG1 type III after Y286, but also shares the
minor cleavage site after F285 with ADAM 17 (Fig. 2H).

Processing of NRG1 type III liberates the EGF-like domain
Shedding is thought to activate NRG1 type III by generating a
membrane-tethered NTF comprising the EGF-like domain
(Falls, 2003; Fig. 3A). However, we hypothesized that the result-
ing NTF may even be further processed by sheddases to liberate
an sEGF domain (Fig. 3A). To examine this possibility, we ex-
pressed full-length NRG1 type III with an N-terminal V5-tag
(V5-IIINRG1) in HEK293 cells and coexpressed BACE1,

4

(Figure legend continued.) (purple arrows). D, E, Knock-down of ADAM10 and ADAM17 con-
firms shedding sites. Cells expressing NRG1�NT were transfected with siRNA (10 nM) against
ADAM10 (siA10) or ADAM17 (siA17) and a nontargeting siRNA as a control (siCtrl). D, Western
blot analysis of membrane preparations confirmed efficient downregulation of both the imma-
ture (im) and mature (mat) form of ADAM10 and ADAM17. E, sEGF peptides were isolated from
the supernatant and analyzed as in B. F, Summary of MS data for ADAM10 and ADAM17 cleav-
age after A283, F285, and Y286. Peak intensities (areas) of ADAM-specific peaks were normal-
ized to the signal generated by BACE1 in each spectrum (mean � SD; n � 3). The normalized
peak intensities then were compared with the respective controls. Changes of cleavage (fold)
under different conditions (inhibition, overexpression, and knock-down of ADAM10 and
ADAM17) are summarized as follows: increased: �1.6� (1, big arrows), mildly increased:
1.5–1.2� (1, small arrows) unchanged: 1.1– 0.9� (3), mildly decreased: 0.8 – 0.5� (2,
small arrows), or decreased: �0.4� (2, big arrows). G, List of peptides identified by MS.
Peptide sequences with corresponding protease(s) are given and observed (Obs.) peptide
masses are compared with calculated (Calc.) masses. Italic letters indicate Flag-tag; [M�H] �,
a singly charged peptide. H, Graphic representation of shedding sites in the stalk region of NRG1
type III. Cleavage sites of BACE1, ADAM10, and ADAM17 are shown and preferred cleavage
positions of ADAM10 and ADAM17 are indicated by longer arrows, respectively.
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Figure 3. BACE1 and ADAM17 liberate an sEGF domain from NRG1 type III. A, Model depicting NRG1 type III processing and EGF liberation. Shedding of the V5-tagged NRG1 type III (V5-IIINRG1)
in the C-terminal stalk region generates an NTF and CTF. Further cleavage of the NTF by ADAM17 and BACE1 liberates the EGF-like domain into the lumen (�- and �-sEGF). Glycosylation N-terminal
of the EGF-like domain is indicated. B, Processing of NRG1 type III generates both a membrane-tethered and an sEGF domain. V5-IIINRG1 was coexpressed with BACE1 (B1), ADAM17 (A17), and
ADAM10 (A10), and membrane-tethered fragments were detected in the cell lysate by Western blotting. Due to the different shedding sites in the stalk region of NRG1 type III, the CTFs generated
by BACE1 and ADAMs differ in size (�-CTF and �-CTF, respectively). The observed NTFs contained the EGF-like domain, as confirmed by reprobing of the membrane with (Figure legend continues.)

Fleck et al. • Proteolytic Processing of Neuregulin 1 Type III by BACE1 and ADAM17 J. Neurosci., May 1, 2013 • 33(18):7856 –7869 • 7861



ADAM10, or ADAM17 (Fig. 3B). Expression of either protease
was controlled as before (Fig. 1) and comparable amounts were
observed (data not shown). Full-length V5-IIINRG1 was de-
tected as multiple bands, suggesting intensive posttranslational
modification such as glycosylation (Fig. 3B). Decreased full-
length protein was present in the lysate upon coexpression of
either protease. This was most apparent when BACE1 was over-
expressed (Fig. 3B). The CTF generated upon BACE1 overexpres-
sion (�-CTF) migrated slightly faster than the CTFs generated by
either ADAM (�-CTF; Fig. 3B). This is consistent with the
BACE1 cleavage site being closer to the transmembrane domain
than the cleavage sites identified for ADAM10 and ADAM17 (Fig.
2H). We also analyzed the cell lysate for the NTF generated upon
shedding of NRG1 type III. Detection with an antibody against
the N-terminal V5-tag and reprobing with an anti-EGF antibody
confirmed that the observed NTF still contained the EGF-like
domain (Fig. 3B, dashed box).

Enhanced proteolytic cleavage of the full-length V5-IIINRG1
should lead to the accumulation of the NTF as cleavage product.
However, we did not detect higher amounts of NTF in cells co-
expressing one of the three sheddases, but rather observed
reduced NTF levels especially upon BACE1 or ADAM17 coex-
pression (Fig. 3B). Because this may be indicative of further NTF
processing by these proteases, we analyzed the supernatants for
soluble peptides liberated from the membrane-bound NTF. Both
BACE1 and ADAM17 were found to liberate sEGF domains of
different sizes (�-sEGF and �-sEGF) into the medium (Fig. 3B).
Moreover, processing of V5-IIINRG1 by endogenous proteases
also resulted in the secretion of a �-sEGF, albeit to a much smaller
extent (Fig. 3B, long exposure). �-sEGF, but not �-sEGF, mi-
grated as a double band, suggesting posttranslational modifica-
tions (Fig. 3B). A serine/threonine-rich stretch, which may be a
site for O-linked glycosylation, is located close to the N terminus
of the EGF-like domain (Fig. 3A). We treated cells expressing
V5-IIINRG1 and BACE1 with benzyl-2-acetamido-2-deoxy-�-
D-galactopyranoside, a specific blocker of O-linked glycosylation.
Western blot analysis of supernatants using an antibody against
the EGF-like domain revealed that inhibition of O-glycosylation
abolished formation of the higher-molecular-weight band and
caused �-sEGF to appear as a single peptide (Fig. 3C). This dem-

onstrates that, in contrast to �-sEGF, �-sEGF is subject to
O-linked glycosylation.

A second BACE1 and ADAM17 cleavage N-terminal of the
EGF-like domain
The results described above suggest that the EGF-like domain is
released by cleavages that occur both N-terminal and C-terminal
of the EGF-like domain. To identify the putative cleavage site(s),
we used a combined immunoprecipitation/MALDI-TOF MS
approach. An HA-tag was inserted immediately after the EGF-
like domain to enable immunoprecipitation. This construct
(V5-IIINRG1-HA; Fig. 3D) was transiently expressed in
HEK293 cells with and without BACE1, ADAM10, or ADAM17.
Western blot analysis of lysates and supernatants confirmed the
generation of membrane-tethered and soluble fragments from
this construct in a similar fashion to the untagged construct (data
not shown). MS analysis of peptides secreted from cells express-
ing V5-IIINRG1-HA yielded one major peak at 8558.9 kDa (Fig.
3D). This corresponds to a peptide (�-sEGF68) having Q218 as an
N-terminal residue and F285 as a C-terminal residue (Fig. 3E).
Although the C terminus is the result of endogenous ADAM-
mediated shedding in the stalk region after F285 (Fig. 2H), the N
terminus results from a novel cleavage after L217, 16 residues
N-terminal of the EGF-like domain. Inhibition of endogenous
BACE1 activity with the specific inhibitor IV abolished genera-
tion of the peptide, suggesting BACE1-mediated processing after
L217 (Fig. 3D, inset). Strikingly, this novel cleavage site
(ETNL�QTAP) resembles that of the Swedish mutation of APP
(EVNL�DAEF), which strongly increases BACE1-mediated pro-
cessing (Citron et al., 1992, 1995; Cai et al., 1993). Consistent
with this, coexpression of BACE1 strongly enhanced cleavage at
this novel site and, in agreement with the shedding data shown
above (Fig. 2H), produced a slightly larger peptide (�-sEGF76)
ending with the BACE1 shedding site F293 at its C terminus (Fig.
3D,E).

Expression of ADAM17 liberated a shorter sEGF from V5-
IIINRG1-HA beginning with L235 and ending after either A283
or F285, respectively (�-sEGF49 and 51; Fig. 3D,E). This is con-
sistent with the data obtained for ADAM17-mediated processing
of NRG1-�NT (Fig. 2H). The newly identified ADAM17 cleav-
age site after H234 is located immediately N-terminal of the EGF-
like domain and is therefore responsible for the observed size
difference of �-sEGF and �-sEGF (Fig. 3F). Cleavage at this site
excludes the serine/threonine-rich stretch from �-sEGF and ex-
plains why, in contrast to �-sEGF, �-sEGF is not subject to
O-linked glycosylation (Fig. 3B,C,F). These findings demon-
strate that BACE1 and ADAM17, but not ADAM10, are capable
of liberating the EGF-like domain from NRG1 type III by dual
cleavage (Fig. 3A).

Membrane-bound and soluble fragments of NRG1 type III are
detected by neo-epitope-specific antibodies to BACE1
cleavage sites
To further validate and facilitate detection of NRG1 type III
fragments, we generated neo-epitope-specific antibodies
against the above identified cleavage sites. Monoclonal anti-
bodies 10E8 and 4F10 were raised against the neo-epitopes
generated by BACE1-mediated shedding in the stalk region
(epitopes M294EAEELYQKR and SFYKHLGIEF293, respec-
tively). An additional antibody was raised against the novel
BACE1 cleavage site N-terminal of the EGF-like domain
(7E6, epitope Q218TAPKLSTS; Fig. 4A). We then investigated
whether these antibodies are suitable as sensitive tools for the

4

(Figure legend continued.) an EGF antibody (dashed box). Analysis of the supernatants re-
vealed that BACE1 and ADAM17 liberate sEGF domains of different sizes (�-sEGF and �-sEGF,
respectively). The diamonds denote posttranslational modification. C, The �-sEGF is subject to
O-linked glycosylation. Cells expressing V5-IIINRG1 and BACE1 were treated or not with a
blocker of O-glycosylation (benzyl-2-acetamido-2-deoxy-�-D-galactopyranoside, BG, 4 mM).
Soluble �-sEGF was detected with an antibody against the EGF-like domain. The diamond
denotes O-linked glycosylation. D, Cleavage of NRG1 type III NTF before Q218 by BACE1 and
before L235 by ADAM17 liberates the EGF-like domain. For immunoprecipitation, an HA-tag
was inserted immediately after the EGF-like domain into the construct shown in A. To deter-
mine the exact cleavage sites, fragments were isolated from supernatants by IP with HA agarose
and analyzed by MALDI-TOF MS. BACE1 liberated a fragment comprising residues Q218-F293,
whereas ADAM17 generated smaller fragments containing residues L235-F285 and L235-A283.
Processing by endogenous proteases or by coexpressed ADAM10 caused low level secretion of a
fragment with a BACE1-cleaved N terminus and an ADAM-cleaved C terminus (Q218-F285).
Inhibition of BACE1 (BACE1 inhibitor IV, 10 �M) abolished secretion of the EGF-like domain
completely (inset in second panel). E, List of peptides identified by MS. Peptide sequences
(without residues of the EGF-like domain) and corresponding proteases are listed. Observed
masses (Obs.) are compared with calculated (Calc.) masses. Peptide numbers indicate number
of residues comprised by each peptide (excluding the HA-tag). [M�H] � indicates singly
charged peptide; [M�2H] 2�, a doubly charged peptide; italic letters, HA-tag. F, Graphic rep-
resentation of BACE1 and ADAM17 cleavage sites N-terminal of the EGF-like domain. Cleavage
sites and the serine/threonine-rich region where O-linked glycosylation occurs are indicated.
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detection of the different processing products generated by
BACE1, ADAM10, and ADAM17.

In cell lysates of HEK293 cells coexpressing NRG1 type III and
either protease, antibody 4F10 selectively detected NTFs gener-
ated by BACE1- but not ADAM-mediated shedding (Fig. 4B).
Upon coexpression of BACE1, the 7E6 antibody detected the CTF
(comprising the EGF-like domain) resulting from BACE1 cleav-
age after L216 (Fig. 4B). This indicates that, upon elevated BACE1
expression, cleavage may first occur N-terminal of the EGF-like
domain. Antibody 10E8 confirmed the generation of the �-CTF
upon shedding of NRG1 type III by BACE1, but not by ADAMs
(Fig. 4B). Being specific for the BACE1-generated neo-epitopes,
the antibodies did not recognize the full-length NRG1 type III.

Western blot analysis of supernatants
with antibodies 7E6 and 4F10 (specific to
the BACE1 cleaved N and C terminus of the
EGF-like domain, respectively) revealed ro-
bust amounts of soluble �-sEGF76 upon ex-
pression of BACE1 (Fig. 4C, lanes 4 and 5).
As determined by MS (Fig. 3D, E), endoge-
nous protease activity in HEK293 cells
generates �-sEGF68 through ADAM10-
mediated(C-terminal) sheddingandBACE1-
mediated (N-terminal) cleavage. Consistent
with this, we detected low amounts of
�-sEGF68 with the 7E6 antibody (Fig. 4C,
lanes 2 and 3, arrow), whereas the 4F10 an-
tibody did not recognize this fragment due
to the absence of a BACE1-generated
C-terminal epitope. Accordingly, enhanced
shedding by ectopic expression of ADAM10
further increased the amounts of �-sEGF68

in the supernatant (Fig. 4C, compare lanes 8
and 9 with lanes 2 and 3). ADAM17-
mediated cleavage N- and C-terminal of the
EGF-like domain releases �-sEGF49 (Fig.
3D,E), which does not contain the epitopes
recognized by 7E6 or 4F10 (Fig. 4A).
Consistent with that, overexpression of
ADAM17 prevented endogenous forma-
tion of �-sEGF68, and no 7E6 signal is ob-
served in lanes 6 and 7 in Figure 4C.
Therefore, the neo-epitope-specific anti-
bodies are sensitive and selective tools for
the investigation of NRG1 type III process-
ing, and their specific immunoreactivity
with defined processing products confirms
the cleavage sites described above.

Dual cleavage of NRG1 type III in
primary neurons releases the EGF-
like domain
The neo-epitope-specific antibodies char-
acterized in Figure 4 were used to investi-
gate proteolytic processing of NRG1 type
III in primary hippocampal neurons. To
allow detection of NRG1 proteolytic frag-
ments in neurons, we expressed V5-
IIINRG1-HA using lentiviral transduction
and studied its processing by endogenous
secretases (Fig. 5). As revealed by Western
blot analysis of lysates, shedding of V5-

IIINRG1-HA in neurons generated a CTF and an NTF containing
the EGF-like domain (Fig. 5A). Inhibition of BACE1 activity (by the
BACE inhibitor IV) decreased the overall turnover of the full-length
protein, as shown by the accumulation of the full-length precursor
and decreased generation of the CTF. This was amplified by con-
comitant inhibition of ADAM proteases (by IV � GM6001), sup-
porting the idea that BACE1 and ADMAs can compete for shedding
in the stalk region of NRG1 type III under physiological conditions.
CTFs and NTFs resulting from BACE1 shedding only were specifi-
cally detected with antibodies 10E8 and 4F10 and their generation
was completely abolished upon inhibition of BACE1. Using anti-
body 7E6 for immunodetection, we did not observe a CTF contain-
ing the EGF-like domain (CTF�EGF; Fig. 4B) that would be
generated by a single BACE1 cleavage of NRG1 type III after L216

Figure 4. Monoclonal antibodies generated against BACE1 cleavage sites in NRG1 type III detect membrane-bound and soluble
fragments. A, Scheme summarizing identified cleavage sites in NRG1 type III. Cleavage sites of respective proteases are marked by
arrows and �-sEGF and �-sEGF and �-CTF and �-CTF are indicated. Epitopes of the generated antibodies and the site of glyco-
sylation are shown. B, Membrane-tethered NRG1 type III fragments are recognized by antibodies raised against BACE1 cleavage
sites. Total lysates of cells expressing untagged NRG1 type III and BACE1 (B1), ADAM17 (A17), or ADAM10 (A10) were analyzed by
Western blotting. BACE1-cleaved fragments were detected with the indicated antibodies. C, Antibodies 7E6 and 4F10 recognize
�-sEGF. Media from B were analyzed by Western blot. The N terminus of �-sEGF was detected using 7E6 and the C terminus was
detected with 4F10. Note that in the case of endogenous processing or ADAM10 overexpression, the �-sEGF is liberated by
N-terminal BACE1 cleavage (7E6 signal in lanes 2 and 3 and lanes 8 and 9, indicated by an arrow) but not C-terminal BACE1
shedding (no 4F10 signal in lanes 2 and 3 and lanes 8 and 9). Overexpression of ADAM17 prevents formation of �-sEGF (no signals
for either antibody in lanes 6 and 7). Diamonds indicate glycosylation. Asterisks indicate unspecific background bands that are also
present in the untransfected control (lane 1).
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(data not shown). This is consistent with the concept that, physio-
logically, the EGF-like domain of NRG1 type III is tethered to the
membrane via its NTF (Taveggia et al., 2005). As observed in non-
neuronal cells (Fig. 3), additional N-terminal cleavages release the
EGF-like domain into the supernatant (�-sEGF and �-sEGF, re-
spectively; Fig. 5A). Blocking BACE1 activity selectively prevented
generation of the slightly larger �-sEGF, whereas the shorter �-sEGF
was abolished upon ADAM inhibition. Reprobing of the membrane

with the 7E6 antibody (Fig. 5A) revealed that the �-sEGF contains a
BACE1-generated N terminus. We then performed immunopre-
cipitations from supernatants of neurons expressing V5-
IIINRG1-HA using the neo-epitope-specific antibodies 7E6 and
4F10 (Fig. 5B). With both antibodies, the slightly larger �-sEGF, but
not the smaller �-sEGF (lower band in upper panel of Fig. 5B), was
detected, further confirming the identified BACE1 cleavage sites.

These findings demonstrate that processing of NRG1 type III
by endogenous BACE1 and ADAM proteases in primary neurons
results in the release of the EGF-like domain as �-sEGF and
�-sEGF.

�-sEGF and �-sEGF activate ErbB3 receptors in a
paracrine fashion
Myelination in the PNS is proposed to be regulated through the
juxtacrine activation of ErbB receptors on Schwann cells by the
NRG1 type III NTF-tethered EGF-like domain on axonal mem-
branes (Wang et al., 2001; Birchmeier and Nave, 2008). In par-
ticular, stimulation of ErbB3 receptor phosphorylation and
subsequent activation of the downstream PI3 kinase signaling
pathway has been shown to promote PNS myelination (Newbern
and Birchmeier, 2010). Because we were able to show that the
EGF-like domain of NRG1 type III is liberated by BACE1 and
ADAM17, we also investigated whether these small, sEGF do-
mains were functional and if they could signal through ErbB3
receptors in a paracrine fashion. We expressed �-sEGF and
�-sEGF in CHO wt cells and collected conditioned media (Fig.
6A). MCF-7 cells that express the ErbB3 receptor and are known
to allow monitoring of NRG1 signaling via ErbB3 (Luo et al.,
2011) were then incubated with the conditioned media contain-
ing equal concentrations of �-sEGF or �-sEGF or with superna-
tants from cells transfected with an empty vector. The ability of
the sEGF domains to activate ErbB3 receptors and initiate PI3
kinase downstream signaling was monitored via phosphoryla-
tion of ErbB3 and AKT. Stimulation with 0.5 nM recombinant
NRG1 EGF-like domain served as a positive control. Western
blot analysis of total and phosphorylated levels of ErbB3 and
AKT confirmed robust activation of both receptor and down-
stream signaling pathway upon stimulation with �-sEGF and
�-sEGF (Fig. 6B, left). No significant differences between
�-sEGF and �-sEGF in ErbB3 and AKT activation were ob-
served (Fig. 6C).

In contrast to the smaller �-sEGF, �-sEGF contains a serine/
threonine-rich sequence that can be O-glycosylated (Fig. 3C). To
determine whether this difference in glycosylation affects activa-
tion of ErbB3 and AKT signaling we expressed �-sEGF and
�-sEGF in CHO ldlD cells (Kingsley et al., 1986), which are defi-
cient in O-linked glycosylation (Fig. 6A). Treatment of MCF-7
cells with conditioned media containing �-sEGF or nonglycosy-
lated �-sEGF again stimulated activation of ErbB3 and AKT sig-
naling in a very similar way (Fig. 6B, right; C). This suggests that
O-linked glycosylation does not significantly alter the ability of
�-sEGF to activate and signal through ErbB3 receptors.

Schwann cells are the recipient cells of NRG1 type III-mediated
signaling during PNS myelination. Therefore, we repeated the ex-
periments described above and incubated purified rat primary
Schwann cells with �-sEGF and �-sEGF. Western blot analysis of
phosphorylated ErbB3 and AKT levels in these cells confirmed our
previous results. No difference in the activation of ErbB3 and AKT
was observed upon stimulation with either �-sEGF or glycosylated
or nonglycosylated �-sEGF (Fig. 6D).

These findings are in conflict with a recent study claiming an
inhibitory effect of ADAM17-processed NRG1 type III on PNS

Figure 5. Cleavage of NRG1 type III in primary neurons releases the EGF-like domain. A,
Processing of NRG1 type III in primary neurons generates both a membrane-tethered and an
sEGF domain. V5-IIINRG1-HA was expressed in primary hippocampal neurons and cells were
treated with indicated inhibitors (BACE1 inhibitor IV, 5 �M; ADAM inhibitor GM6001, 25 �M) for
16 h. Cells were lysed, conditioned supernatants were immunoprecipitated with HA-agarose
beads, and protein levels were determined by immunoblotting with indicated antibodies.
�-CTFs and NTFs generated by BACE1 cleavage were specifically detected by antibodies 10E8
and 4F10, respectively. Additional cleavages N-terminal of the EGF-like domain by BACE1 and
ADAMs liberated �-sEGF and �-sEGF into the supernatant, respectively. B, BACE1 cleavage N-
and C-terminal of the EGF-like domain liberates �-sEGF from neurons. Supernatants from
neurons as described in A were immunoprecipitated with antibodies against the HA-tag or
previously identified BACE1 cleavage sites (7E6 and 4F10). Purified peptides were detected
using an �-EGF antibody.
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myelination (La Marca et al., 2011). In this study, a slightly dif-
ferent ADAM17 cleavage site (G290) was identified. Moreover,
although a recombinant NRG1 EGF-like domain cleaved by
BACE1 induced AKT signaling in Schwann cells, an ADAM17-
cleaved fragment failed to do so. We therefore investigated
whether the different cleavage sites found for ADAM17 (G290
and A283) may explain the discrepancy in signaling of ADAM17-
and BACE1-generated sEGF. We constructed sEGF domains that
only differ in their very C-terminal residues. �-sEGF-F was de-
signed to end with F293, simulating BACE1 processing, whereas
�-sEGF-G terminates at G290, mimicking the ADAM17 cleavage
site proposed by La Marca et al. (2011). Conditioned media con-
taining similar amounts of the peptides (Fig. 7A) were then used
to stimulate MCF-7 (Fig. 7B,C) and rat primary Schwann cells
(Fig. 7D) as before. No difference in ErbB3 activation or induc-
tion of downstream AKT signaling in these cells was observed
upon stimulation with �-sEGF-F or �-sEGF-G.

These findings demonstrate that sEGF domains generated
from NRG1 type III by BACE1 and ADAM17 are biologically
active and signal through ErbB3 receptors on Schwann cells in a
paracrine manner.

�-sEGF promotes PNS myelination in vivo
We also investigated whether the sEGF domain possesses signal-
ing activity in vivo. We expressed the BACE1-derived �-sEGF in
homozygous mutant bace1 (bace1� / �) zebrafish (van Bebber et

al., 2013) and investigated whether the �-sEGF could compen-
sate for the lack of BACE1-mediated NRG1 type III processing.
To visualize myelination in vivo, we generated bace1� / � mutants
expressing GFP under the control of the claudin k promoter,
which labels Schwann cells and oligodendrocytes (Fig. 8A,B;
Münzel et al., 2012). Phenotypically, bace1 homozygous ze-
brafish mutants become distinguishable from their wt siblings at
3 dpf due to severely reduced Schwann cell myelination (Fig.
8A,B). Myelination of lateral line axons by Schwann cells in the
PNS is severely impaired, whereas myelination of Mauthner ax-
ons by oligodendrocytes in the CNS is unaffected (Fig. 8A,B).
The observed selective hypomyelination in the PNS of bace1� / �

zebrafish is consistent with the reduced myelination of BACE1
knock-out mice (Willem et al., 2006). To determine whether
paracrine signaling could stimulate myelination, bace1� / � ze-
brafish carrying the claudin k:GFP transgene were injected with
�-sEGF mRNA and analyzed at 3 dpf for rescued myelination. In
24 of 63 bace1� / � zebrafish, hypomyelination in the PNS was
partially rescued upon expression of �-sEGF (Fig. 8B,C).

Finally, we used our zebrafish model to further test in vivo
whether the C terminus of the EGF-like domain generated by
ADAM17 cleavage abolishes its signaling capacity, as observed by
La Marca et al. (2011). We injected mRNA encoding a NRG1 type
III EGF-like domain terminating at either G290 (�-sEGF-G; La
Marca et al., 2011) or A283 (�-sEGF-A; this study) into bace1� / �

zebrafish. Both mRNAs partially rescued the PNS hypomyelina-

Figure 6. sEGF domains activate ErbB3 receptors on MCF-7 and Schwann cells and initiate AKT downstream signaling. A, Preparation of a-sEGF and glycosylated and nonglycosylated �-sEGF
using CHO cells. �-sEGF and �-sEGF constructs were expressed in wt and O-glycosylation deficient (ldlD) CHO cells. Conditioned supernatants were analyzed by Western blotting and the
concentrations of �-sEGF and �-sEGF were adjusted by dilution with medium from control cells. O-linked glycosylation causes �-sEGF to migrate as an additional and diffuse band of higher
molecular weight, which is abolished in CHO ldlD cells. B–D, �-sEGF and �-sEGF activate ErbB3 receptors and AKT signaling in MCF-7 and primary Schwann cells independently of glycosylation.
MCF-7 cells (B) and primary Schwann cells (D) were incubated with supernatants from A or from cells expressing an empty vector as a control. A recombinant NRG1 EGF-like domain (0.5 nM) was used
as a positive control. After cell lysis, the levels of (phosphorylated) ErbB3 and AKT were determined by Western blotting. Quantification of phosphorylated protein/total protein ratio of experiments
with MCF-7 cells is shown in C (mean � SD; n.s., not significant, *p � 0.05, **p � 0.01, ***p � 0.001, two-tailed unpaired Student’s t test, n � 3).
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Figure 7. �-sEGF generated by BACE1- or ADAM17-mediated shedding similarly activates
ErbB3 receptors and AKT downstream signaling A, �-sEGF-F and �-sEGF-G mimic shedding of
NRG1 type III by BACE1 and ADAM17. The constructs �-sEGF-F and �-sEGF-G have identical N
termini but comprise C termini generated by either BACE1- or ADAM17-mediated shedding:
F293, BACE1 shedding; G290, ADAM17 shedding (see Results for details). Conditioned superna-
tant was collected from CHO wt cells and analyzed by Western blot. B–D, �-sEGF-F and
�-sEGF-G activate ErbB3 receptors and AKT signaling in MCF-7 and primary Schwann cells.
MCF-7 cells (B) and primary Schwann cells (D) were incubated with supernatants from A or from

4

cells expressing an empty vector as a control. Recombinant NRG1 EGF-like domain (0.5 nM) was
used as a positive control. Cells were lysed and levels of (phosphorylated) ErbB3 and AKT were
determined by Western blotting. Quantification of phosphorylated protein/total protein ratio of
experiments with MCF-7 cells is shown in C (mean� SD; n.s., not significant, *p �0.05, **p �
0.01, ***p � 0.001, two-tailed unpaired Student’s t test, n � 3).

Figure 8. The soluble NRG1 type III EGF-like domain liberated by BACE1 promotes PNS my-
elination in vivo. A, The transgenic claudin k:GFP line allows visualization of myelin sheaths in
zebrafish larvae. Schematic view of claudin k:GFP labeled myelin around Mauthner axons (CNS,
dotted arrows) and lateral line axons (PNS, arrows) at 3 dpf (dorsal view). B, The sEGF domain
rescues PNS myelination defect in bace1 � / � zebrafish carrying the claudin k:GFP transgene.
Dorsal views of wt, uninjected bace1 mutants (bace1 � / �) and bace1 mutants injected with
�-sEGF mRNA (bace1 � / �, �-sEGF). Middle: In bace1 � / � mutants myelination of the Mau-
thner axons (dotted arrows) is not affected, whereas myelination of the lateral line axons is
severely reduced to absent (arrows in other panels). Bottom: Upon injection of �-sEGF mRNA,
bace1 � / � mutants display a partial rescue of hypomyelination in the PNS. Scale bar, 100 �m.
C, sEGF domains generated by ADAM17-mediated shedding of NRG1 type III also promote PNS
myelination. In addition to �-sEGF (B), �-sEGF constructs with C termini mimicking ADAM17
mediated shedding (�-sEGF-G290 and �-sEGF-A283; see Results for details) were injected into
bace1 � / � mutant zebrafish. Regardless of their very C-terminal residues, all constructs par-
tially rescued the hypomyelination phenotype.
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tion, similar to the rescue observed with �-sEGF (Fig. 8C).
Although it is not possible to compare quantitatively the extent of
the rescue effects, the results nevertheless provide strong evidence
that the ADAM17-cleaved C terminus of the EGF-like domain
does not abolish its signaling ability, as was claimed previously
(La Marca et al., 2011).

In conclusion, our findings demonstrate that the sEGF do-
main of NRG1 type III liberated by N-terminal BACE1 cleavage
promotes PNS myelination in vivo.

Discussion
Release of growth factors by proteolytic processing has emerged
as an important regulator of many signaling pathways. For exam-
ple, shedding particularly regulates signaling of ErbB receptor
ligands (Sanderson et al., 2006). Sheddases either generate
signaling-competent, membrane-retained proteins or release
ectodomains that subsequently signal in a paracrine manner. At
the same time, ectodomain shortening also triggers intramem-
brane cleavage of the remaining membrane fragments by
intramembrane-cleaving proteases, releasing the substrate’s in-
tracellular domains into the cytosol, which may then act as tran-
scription factors (Blobel et al., 2009; Lal and Caplan, 2011).

NRG1 type III is subject to such processing, which is also
called regulated intramembrane proteolysis (Brown et al., 2000).
Shedding in its stalk region activates NRG1 type III by generating
a membrane-anchored NTF that presents the EGF-like domain
to the luminal space and signals to ErbB receptors in a juxtacrine/
contact-dependent manner (Falls, 2003; Taveggia et al., 2005). In
addition, the resulting NRG1 CTF is cleaved by the �-secretase
and regulates transcription in neurons (Bao et al., 2003, 2004;
Chen et al., 2010). Analysis of knock-out mouse models estab-
lished BACE1 and ADAM17 as important NRG1 type III
sheddases that control myelination in the PNS. Although
BACE1-mediated shedding of NRG1 type III promotes myelina-
tion (Hu et al., 2006; Willem et al., 2006), shedding by ADAM17
was shown to inhibit this process (La Marca et al., 2011). This
differential regulation was suggested to be due to small differ-
ences in the C termini of the NRG1 type III NTFs generated after
shedding by BACE1 or ADAM17 (La Marca et al., 2011).

Despite the proposed importance, most NRG1 type III cleav-
age sites have only been investigated in vitro using short recom-
binant peptides in cleavage assays. Moreover, although the CTF
resulting from shedding is eventually turned over by the
�-secretase, little is known about further processing of the corre-
sponding NTF. It has been suggested that cleavage close to its
N-terminal cysteine-rich TMD could release a large, soluble frag-
ment containing the EGF-like domain (Wang et al., 2001). How-
ever, it remained unclear which proteases could mediate such a
second cleavage event and whether the resulting soluble protein
would possess signaling activity. We have now analyzed proteo-
lytic processing of NRG1 type III in living cells to investigate
whether, indeed, an sEGF domain was generated. To confirm the
biological activity of such an sEGF domain, we generated a ze-
brafish mutant that lacks BACE1 and allows in vivo rescuing
assays.

We first investigated the cleavages occurring between the
EGF-like domain and the C-terminal TMD. Consistent with
Montero et al. (2000), who suggested that the region from me-
thionine 282 to tyrosine 286 may be a site of ADAM-mediated
cleavage, we now assigned the ADAM17 cleavage to alanine 283
and, to a minor extent, to phenylalanine 285. Cleavage between
alanine 283 and serine 284 fits well with the substrate preference
of ADAM 17, which is known to favor alanine residues at the P1

position and to cleave several substrates with serine at P1	
(Caescu et al., 2009). For BACE1 and ADAM10, we report cleav-
age sites after phenylalanine 293 and phenylalanine 285, respec-
tively, thereby confirming previous data from assays with
recombinant proteins (Hu et al., 2008, Luo et al., 2011). In the
case of ADAM10, we also observed cleavage after tyrosine 286,
which has not been reported previously. These findings demon-
strate homogenous shedding of NRG1 type III by BACE1 10
residues N-terminal of the TMD and heterogeneous shedding by
ADAM10 and ADAM17 at close but distinct sites 7–10 residues
N-terminal of the BACE1 cleavage site. We note that the shedding
sites reported here for ADAM10 (Y286) and ADAM17 (A283 and
F285) differ from the sites reported by others (La Marca et al.,
2011; Luo et al., 2011). For ADAM10, the difference is marginal
and may be due to the different experimental setups, namely in
vitro digest of recombinant peptides (Luo et al., 2011) and cellular
expression system (this study). For ADAM17, it is currently un-
clear why Luo et al. (2011) and we could not observe cleavage
after G290 as reported by La Marca et al. (2011). However, the
fact that the cleavage site motifs of ADAM10 and ADAM17 are
fairly similar to each other and that both enzymes can cleave
peptides in vitro at the same peptide bonds (Caescu et al., 2009)
support our finding of close cleavage sites for these proteases
within the stalk region of NRG1 type III.

BACE1- and ADAM-mediated shedding of NRG1 type III was
also detected under endogenous protease levels in primary neu-
rons. Although we cannot compare the contribution of individ-
ual proteases quantitatively, we observed additive effects of
BACE1 and ADAM inhibitors, supporting the idea that these
enzymes compete for shedding in the stalk region of NRG1 type
III in neurons.

In addition to the shedding events taking place C-terminal of
the EGF-like domain, we observed proteolytic processing at
novel sites located N-terminal of the EGF-like domain, which
indicated that the EGF-like domain may be secreted. We ob-
served liberation of the EGF-like domain from NRG1 type III by
additional N-terminal cleavages in HEK cells and primary neu-
rons generating �-sEGF and �-sEGF. Using MS and site-specific
antibodies, we were able to demonstrate that BACE1 is responsi-
ble for the N-terminal cleavage generating �-sEGF in both cell
types. Interestingly, the novel BACE1 cleavage site resembles the
BACE1 cleavage site in APP with the Swedish mutation. This
mutation dramatically increases the affinity of BACE1 to its sub-
strate (Citron et al., 1992, 1995), strongly indicating that this site
may be used efficiently in vivo. In addition to BACE1, ADAM17
(but not ADAM10) was also found to cleave at another novel site
close to the N terminus of the EGF-like domain, thereby gener-
ating �-sEGF. The detection of a similar fragment in the super-
natant of primary neurons expressing NRG1 type III suggests that
�-sEGF is generated by ADAM17-mediated cleavage in these
cells as well. However, due to the lack of antibodies against the
novel ADAM17 cleavage site, we currently cannot exclude an
additional contribution of other ADAMs.

Both �-sEGF and �-sEGF are functionally active and in-
duce ErbB3 receptor phosphorylation and AKT downstream
signaling in MCF-7 and Schwann cells. Moreover, we demon-
strated the in vivo signaling potential of �-sEGF as an instruc-
tive factor in the process of peripheral myelination, because
�-sEGF was able to rescue the peripheral hypomyelination in
a bace1 mutant zebrafish.

Our data are in agreement with a recent study reporting para-
crine stimulation of Schwann cells and myelination by recombi-
nant NRG1 type III (Syed et al., 2010). However, whereas this
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study used a mixture of recombinant peptides comprising the
entire NRG1 type III N terminus, we now provide evidence for
the generation of signaling-competent, soluble NRG1 type III
fragments by BACE1- and ADAM17-mediated proteolysis. Un-
fortunately, it is not possible to generate an N-terminally un-
cleavable NRG1 type III NTF, so we cannot investigate whether
NRG1 type III signaling in the context of myelination occurs
exclusively via the sEGF domain. However, our results, together
with the data of others (Syed et al., 2010), suggest that this novel
paracrine signaling pathway may at least partially contribute to
NRG1 type III signaling.

We observed a similar activation of ErbB3 and AKT in
Schwann cells after stimulation with ADAM17-generated
�-sEGF (C terminus A283) and BACE1 generated �-sEGF (C
terminus F293). In contrast, others did not detect such activation
upon stimulation with an EGF-like domain cleaved by ADAM17
(C terminus G290, La Marca et al., 2011). Because this was attrib-
uted to the very C-terminal residues of the EGF-like domain, we
sought to reconcile these controversial findings by investigating
the impact of these residues on ErbB activation. However, we
could not detect any difference regarding ErbB signaling between
sEGF domains terminating at the identified BACE1 (F293) or the
ADAM17 cleavage sites (A283 and G290). Likewise, neither C
termini attributed to ADAM17 cleavage prevented rescue of the
hypomyelination phenotype in a bace1� / � zebrafish model.
Moreover, in support of our findings, another study recently
found no difference in ErbB activation by the membrane-
anchored EGF-like domain after BACE1 (C terminus F293) or
ADAM10 (C terminus F285, which excludes G290) processing
(Luo et al., 2011). We currently have no definite explanation for
the observed discrepancies; however, in vitro digests with recom-
binant peptides and enzymes imply the risk of additional cleav-
ages that would not occur in a cellular environment. Such an
additional cleavage within the EGF-like domain might abolish its
signaling capacity and could partially account for the observed
differences.

In summary, we have shown here that cleavage of NRG1 type
III by BACE1 and ADAM17 at as-yet-unknown sites releases the
EGF-like domain from its membrane anchor and allows for para-
crine signaling of NRG1 type III via ErbB receptors. The proteases
involved in NRG1 type III processing are major drug targets in
the prevention or therapy of Alzheimer’s disease and cancer
(Duffy et al., 2011; Vassar and Kandalepas, 2011). The fact that
these proteases have multiple—and until now unappreciated—
roles in NRG1 signaling calls for caution when manipulating
their activities in the course of therapy.
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