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Summary 

Photosynthesis is the biological process, in which organisms utilize light energy in order to 

synthesize organic matter. In plants this process takes place in the chloroplast. Nuclear 

photosynthetic genes and nuclear genes involved in chloroplast gene expression are co-regulated at 

the transcriptional level. Therefore, the working hypothesis was put forth that the physiological 

function of genes with so-far unknown functions, which show a similar transcriptional regulation, 

resides in photosynthesis or chloroplast gene expression. To test this hypothesis, three co-regulated 

genes with so-far unknown physiological functions were analysed employing a reverse genetics 

strategy and biochemical analyses of the encoded proteins. Insertional mutants for the genes 

encoding the Putative Photosynthetic Protein 1 (PPP1), 4 (PPP4) and the Thylakoid Membrane 

Phosphoprotein of 14 kDa (TMP14) were characterised with respect to putative defects in the 

processes of photosynthesis or chloroplast gene expression. Both PPP4 and TMP14 belong to a 

novel, nucleus encoded und chloroplast targeted family of four membrane proteins in Arabidopsis. 

They functionally and physically interact in a previously unknown complex in the stromal lamellae 

of thylakoid membranes, which can be solubilised with the detergent digitonin. Several lines of 

biochemical evidence suggest that both proteins interact with other thylakoid proteins of unknown 

identity. Electron transport measurements of the single and the double mutants of PPP4 and TMP14 

support that this new complex is indeed involved in the regulation of photosynthesis, especially 

under low light conditions. The assumed function for the stromal localised PPP1 as an RNA 

binding protein involved in chloroplast gene expression was investigated by analyses of plastid 

gene expression in ppp1 mutant plants. Here, decreased levels of chloroplast proteins and changes 

in plastid translation rate could be demonstrated. This was accompanied by alterations in the 

photosynthetic electron transport. Additionally, it was shown that plants lacking PPP1 show 

delayed germination in response to the exogenous application of the phytohormone ABA, which 

indicates a function of this protein in the ABA signalling network. 
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Zusammenfassung 

Photosynthese beschreibt den biologischen Prozess der Umwandlung von Licht in chemische 

Energie, und deren Nutzung zur Synthese organischen Materials. Bei Pflanzen findet dieser Prozess 

im Chloroplasten statt. Nukleäre Gene, welche Komponenten der Photosynthese oder der 

plastidären Genexpression kodieren, werden auf transkriptioneller Ebene ko-reguliert. Daher 

wurden drei als unbekannt annotierte Gene mit ähnlicher transkriptioneller Regulation und ihre 

Genprodukte, „Putative Photosynthetic Protein“ 1 (PPP1) und 4 (PPP4) und „Thylakoidmembran 

Phosphoprotein 14 kDa“ (TMP14) auf eine mögliche Funktion in der Photosynthese und der 

plastidären Genexpression hin untersucht. Die Charakterisierung dieser putativen neuen 

Photosynthese-Komponenten erfolgte mittels reverser Genetik und biochemischer Analysen. PPP4 

und TMP14 gehören zu einer kernkodierten und chloroplastidär lokalisierten Familie von 

Membranproteinen mit vier Mitgliedern in Arabidopsis. Beide Proteine interagieren in einem 

bislang unbekannten Komplex in den stromalen Lamellen der Thylakoidmembran sowohl auf 

Proteinebene als auch funktionell. Mehrere unabhängige biochemische Untersuchungen 

implizieren, dass PPP4 und TMP14 mit weiteren Thylakoidproteinen bislang unbekannter Identität 

interagieren. Messungen des photosynthetischen Elektronentransports bei Einfach- und 

Doppelmutanten weisen vor allem unter niedrigen Lichtbedingungen auf eine Funktion dieses 

neuen Komplexes in der Photosynthese hin. Das dritte Protein PPP1 ist im Stroma lokalisiert und 

wurde mittels Analyse der plastidären Genexpression in der ppp1 Mutante auf eine putative 

Funktion in diesem Prozess hin untersucht. Dabei konnte gezeigt werden, dass die Mutanten 

verringerte Mengen an Chloroplasten-Proteinen und veränderte plastidäre Translationsraten 

aufweisen. Damit einhergehend weisen die ppp1 Mutanten Veränderungen im photosynthetischen 

Elektronenfluss auf. Zusätzlich konnte gezeigt werden, dass bei exogener Zugabe des 

Phytohormons ABA die ppp1 Mutanten verzögerte Keimung aufweisen, welches auf eine Funktion 

des Proteins in dem ABA Signal-Netzwerk hindeutet. 
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1 Introduction 

1.1 Photosynthesis 

During photosynthesis light energy is transformed into chemical energy in form of NADPH and 

ATP, which are then employed by the Calvin-Benson cycle to incorporate atmospheric carbon into 

the biosphere. The highly optimised light reaction of photosynthesis, as it has evolved in plants, 

takes place in the thylakoid membranes of the chloroplast. The concerted action of four large 

membrane complexes, the Photosystems I and II (PSI and PSII), the Cytochrome b6f complex (Cyt 

b6f) and an ATP-synthase to conduct the transformation of light into chemical energy has been 

studied thoroughly by spectroscopy, molecular genetics, biochemistry and structural analyses 

(reviewed by Jensen et al., 2007; Dekker and Boekema, 2005; Richter et al., 2005). Important for 

optimal photosynthetic activity are the spatial organisation of the photosynthetic apparatus and 

various regulatory processes fine-tuning and adjusting this process. 

1.1.1 Photosynthetic electron transport 

Electron flow from water to the final electron acceptor NADPH is referred to as linear electron 

transport. This process also leads to the phosphorylation of ADP to ATP via the generation of a 

proton gradient across the thylakoid membrane. The cyclic electron flow around PSI, which 

generates ATP without accumulation of the final electron acceptor NADPH can adjust the 

ATP:NADPH ratio according to the requirements of the Calvin-Benson cycle and other chloroplast 

localised physiological processes for. 

1.1.1.1 Linear electron transport 

The primary step in oxygenic photosynthesis consists of light driven charge separations, which are 

catalysed by two large transmembrane protein complexes, PSI and PSII. These two photosystems 

synergistically interact by a number of redox components including plastoquinone, the Cyt b6/f 

complex and plastocyanin. Thereby, light energy is converted into chemical energy in form of 

NADPH and ATP. Synthesis of the latter occurs by the ATP-synthase, which employs physical 

energy conserved by the transmembrane proton gradient, a product of light driven proton electron 

symport. Linear electron flow from PSII to PSI occurs according to the so-called Z-scheme, which 

refers to the midpoint redox potentials of the redox carriers within this electron transport chain 

(Figure 1.1). In detail, light-induced charge separations in PSII, which acts as a water-

plastoquinone oxidoreductase (Renger and Govindjee, 1985), cause the reduction of a stromal side 
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bound quinone acceptors (QA) via rapid oxido-reductions of a phaeophytin molecule. The resulting 

electron gaps in the reaction centre special pair chlorophylls lead to the oxidation of H2O molecules 

by the lumenal oxygen evolving complex producing molecular oxygen and protons as by-products 

(Cruz et al., 2005). Two electrons from the PSII acceptor QA and two stromal localised protons are 

then transferred to a free membrane soluble plastoquinone molecule (PQ) to form 

plastohydroquinol (PQH2). Electron flow from the PQH2 pool to PSI occurs via the Cyt b6f complex 

by reduction of the Rieske iron-sulphur protein of this complex and release of protons into the 

lumen (Joliot and Joliot, 1986). Optimisation of proton translocation occurs via the Cyt b6f localised 

Q-cycle, in which one electron from PQH2 is employed to again reduce a molecule of PQ on the 

stromal side of the Cyt b6f complex (Joliot and Joliot, 1994). The second electron is transported to 

the lumen-localised electron carrier plastocyanin, which then transfers the electrons to the stromal 

acceptor site of PSI. Here, light energy drives a further charge separation that leads to the reduction 

of ferredoxin and then, catalysed by the ferredoxin: NADPH oxidoreductase (FNR), of NADP+ to 

NADPH (Taiz and Zeiger, 1998).  

1.1.1.2 Cyclic electron transport around PSI 

In this pathway stromal electron acceptors from PSI are employed to reduce plastoquinone resulting 

in the generation of ΔpH without the accumulation of NADPH (dashed line, Figure 1.1; reviewed 

by Shikanai, 2007). There are two pathways carrying out this process: the antimycin A sensitive, 

which requires PGR5 and PGRL1 (Munekage et al., 2002; DalCorso et al., 2008) and the NADH 

dehydrogenase (NDH) complex dependent one. Cyclic electron flow (CEF) participates in 

regulatory processes of photosynthesis, which require additional acidification of the lumen or ATP 

by this pathway. The activation of the Calvin-Benson cycle enzymes by ATP after a dark period for 

example is accelerated by CEF (Joliot and Joliot, 2002). The extent of non-photochemical 

quenching (NPQ) of excess light energy also depends on additional acidification of the lumen by 

cyclic electron transport. Both processes, as measured by the NPQ capacity of the plant under the 

respective conditions, are impaired in the pgr5 and pgrl1 mutants (Munekage et al., 2002; Dal 

Corso et al., 2008). However, cyclic electron flow around PSI might not be restricted to carry out 

fine-tunning functions, because if plants lack both the PGR5/ PGRL1 and NDH dependent 

pathways, they are severely affected in growth and photosynthetic parameters in all conditions 

tested. This led to the assumption that CEF is mandatory for plant fitness (Munekage et al., 2004), 

probably because the ATP:NADPH ratio produced by linear electron flow does not meet the 

requirements for carbon fixation by the Benson-Calvin-cycle and other chloroplast localised 

physiological processes. The antimycin A sensitive CEF seems to carry out the majority of Fd-PQ 
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reduction, because mutants in this pathway contrary to those impaired in NDH activity, show 

significant changes in photosynthetic parameters (Munekage et al., 2002; DalCorso et al., 2008; 

Muraoka et al., 2006; Munshi et al., 2006; Kamruzzaman et al., 2005). However, the executing 

components of the antimycin A sensitive pathway are not completely deciphered, as the involved 

proteins lack binding domains for electron transferring co-factors (DalCorso et al., 2008).  

 
Fig. 1.1 Z-scheme of linear electron flow in oxygenic photosynthesis 
Redox carriers are placed at their midpoint redox potentials (at pH 7). The vertical arrows display the light induced 
decrease of redoxpotential of the reaction centre chlorophylls. Z, electron donor to P680; Ph a, pheophytin a, electron 
acceptor of P680; QA, plastoquinone tightly bound to PSII; QB, pool made up of PQ and PQH2; Ao, chlorophyll a, the primary 
electron acceptor of PSI; A1, phylloquinone; FX, FB and FA, iron sulphur clusters; Fd, soluble ferredoxin; NADP+, oxidised 
nicotinamide adenine dinucleotide phosphate. Dashed line incidates cyclic electron flow around PSI (CEF). 
 
Because both linear electron flow (LEF) and the CEF around PSI employ identical components 

except for PGR5 and PGRL1 (Munekage et al., 2002; DalCorso et al., 2008), the specific dissection 

of both pathways remains difficult to achieve (Breyton et al., 2006). Different models of the mode 

of action and regulation of CEF have been postulated, which are in part supported by experimental 

evidences (Okegawa et al., 2005; Joliot and Joliot, 2002; DalCorso et al., 2008). Highly 

controversial remains the question whether Fd directly reduces PQ or indirectly through reduction 

of component of the Cyt b6f complex. The FNR has been found associated with the Cyt b6f complex 

in flowering plants and is thought to reduce Fd in order to activate CEF via the Q-cycle of this 

complex (Zhang et al., 2001; Joliot and Joliot, 2002). However Okegawa and co-workers showed 

that an impaired Q-cycle does not interfere with PGR5 mediated CEF (2005). The latest results 
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stem from the identification of PGRL1 as a mandatory component of CEF, which interacts with 

PSI, Cyt b6f, FNR and Fd and is indispensable for the accumulation of PGR5 (DalCorso et al., 

2008).  

Whereas in the process of CEF around PSI, where electrons fed into the PQ pool are then employed 

for reduction of PSI, they can also be used to reduce oxygen in a process referred to as chloro-

respiration, which is postulated to occur especially at higher light intensities and to function as a 

safety valve to prevent over-reduction of the stroma (Rosso et al., 2006). 

1.1.1.3 Physical measurements of electron transport 

Chlorophyll a (Chl a) fluorescence is widely used as an indicator for light-driven electron transport. 

Because the oxidised state of the reaction centre of PSI (P700+) is much longer lived than that of 

PSII (P680+), with the oxidised states of the photosystems being quenchers of excitons, most 

measurable fluorescence is coming from the PSII associated Chl a molecules. The energy of the 

light induced excitation states of chlorophyll molecules can be transferred to three competing 

pathways, which are the photochemical charge separation, the release of heat and fluorescence. As 

such the efficiency of energy consumption by photochemistry and heat at a given state can be 

measured reciprocally by determining Chl a fluorescence (Clayton, 1980). Maximum fluorescence 

can be measured during a very strong light pulse that saturates reduction of PSII acceptors after 

dark adaption of the plant, as heat dissipation of energy is then negligible. Light induced changes in 

photochemistry and heat dissipation can then be estimated from measuring Chl a fluorescence 

during the application of further saturating light pulses to light adapted plants. To quantify this 

fluorescence, the Pulse Amplitude Modulation (PAM) fluorometer system has been designed 

(Schreiber et al., 1986). This instrument can additionally be used for recording P700 oxidation 

(Schreiber et al., 1988). Thereby, the activity of both photosystems as well as the 

reduction/oxidation state of inter-chain electron carriers and stromal acceptors can be estimated. 

1.1.2 Carbon fixation  

Carbon dioxide fixation occurs in the Calvin-Benson cycle, which consists of three stages, (i) the 

carboxylation of ribulose-1,5-bisphosphate, forming two molecules of 3-phosphoglycerate, (ii) their 

reduction to glyceraldehyde-3-phosphate, the carbohydrates forming module and (iii) the 

regeneration of ribulose-1,5-bisphosphate. In total, this reaction requires 2 NADPH and 3 ATP for 

the fixation of one carbon dioxide (Taiz and Zeiger, 1998). In C3 plants, the carboxylation step is 

catalysed by the enzyme ribulose biphosphate carboxlase/ oxygenase (Rubisco), which represents 

the most abundant enzyme on earth. The functional enzyme is composed of eight large subunits 
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encoded in the chloroplast genome and eight small subunits encoded by a small multigene (RBCS) 

family in the nucleus (Allahverdiyeva et al., 2005; Miziorko and Lorimer, 1983). Besides the 

carboxylation of ribulose 1,5-bisphosphate, it also catalyses the oxygenation, a competing process, 

which especially predominates at high temperatures or low carbon dioxide concentrations.  

1.1.3 The thylakoid membrane 

The thylakoid membrane is composed of a lipid bilayer, which embeds a high amount of proteins. 

Besides representing the location of photosynthetic electron transport reactions, it leads to the 

separation of the aqueous content of the chloroplast into the external stroma and the enclosed 

lumen, this partitioning being required for the generation of the transmembrane proton gradient. 

The thylakoid membranes themselves are structurally heterogeneous. They consist of two main 

domains: the grana, which are stacks of thylakoids, and the stroma lamellae connecting the grana 

stacks (Figure 1.2; reviewed by Dekker and Boekema, 2005). Protein composition and biochemical 

properties differ in the two domains (Albertsson, 1990). The grana are enriched in Photosystem II 

(PSII), whereby the stacking of the grana membranes mainly originates from van-der-Waals 

attractive forces between chlorophylls of the PSII light-harvesting complex (LHCII) and the cation-

mediated electric interaction of the proteins (Allen et al., 1988; Chow et al., 1981; Barber et al., 

1982). This tight packing of grana stacks leads to the exclusion of complexes with stromal side 

protrusions such as PSI and the ATPase, which are localised in the stromal lamellae (Figure 1.2). 

Whereas most experiments have located the Cyt b6f complex in both grana and stromal lamellae 

(Anderson 1982, Vallon et al., 1991), others have shown the existence of grana devoid of Cyt b6f 

(van Roon et al., 2000). It is disputed that under severe stacking conditions the Cyt b6f complex 

might be displaced to the margins of PSII-LHCII supercomplexes, due to steric hindrances of the 

protruding loop of the subunit IV (Dekker and Boekema, 2005). The spatial organisation of the 

different photosynthetic complexes ensures sequential action of the linear electron transport, as it 

prevents spill over of excitation energy from PSII to PSI (Trissl and Wilhelm, 1993) and it has been 

proposed that it physically separates the cyclic from the linear electron flow (Joliot et al., 2004). 

Moreover, the thylakoid membrane organization can also be rapidly and dynamically modified 

according to environmental cues, a process of which the major contributing effector is thought to be 

the phosphorylation of LHCII molecules (Pesaresi et al., 2002).  
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Fig 1.2 Compartmentalisation of the chloroplast and spatial arrangement of the thylakoid membrane 
The chloroplast consists of the aqueous stroma enclosed by two lipid bilayers, the outer and the inner envelope. 
Imbedded in the stroma is an interconnected membrane system, the thylakoid membrane, which encloses the lumen. 
The thylakoid membrane is structured into stromal lamellae connecting stacks of thylakoid membranes, the grana. The 
distribution of thylakoid protein complexes is highly organised. ATPase and PSI are localised in the stromal lamellae 
and regions exposed to the stroma. PSII is mainly localised in the stacked thylakoids (adapted from Allen and Forsberg, 
2001).  

1.1.3.1 The thylakoid polypeptide composition 

As the majority of processes performed by the thylakoid membrane relate to the harvesting and 

conversion of light energy, most components of the thylakoid proteome belong to one of the four 

large photosynthetic complexes or associate temporarily for regulatory purposes, as assembly or 

stability factors (reviewed by Nelson and Yocum, 2006). In flowering plants, the protein 

compositions of the four main photosynthetic complexes are principally understood. Crystallisation 

of the respective complexes and additional biochemical evidences lead to the allocation of 21 

different subunits to PSII (Barber, 2006; Shi and Schröder, 2004), eight to Cyt b6f (Stroebel et al., 

2003), 16 to PSI (Jensen et al., 2007) and nine to the ATPase (Seelert et al., 2000). The functional 

units for the complexes are dimers for PSII and Cyt b6f and monomers for PSI and ATPase, but also 

the presence of supercomplexes comprising more functional entities of one or of different kinds 

have been reported (Boekema and Dekker, 2005). Association of antenna complexes to the two 

photosystems is prerequisite for efficient harvesting of light energy. The PSII antenna consists of 

six different subunits. Three Lhcb proteins, Lhcb4 (CP29), Lhcb5 (CP26), and Lhcb6 (CP24), 

which form the minor antenna, are monomeric and directly associated with PSII. They act in the 

transfer of excitation energy from the major light harvesting complex of PSII (LHCII) to the PSII 

core (Yakushevska et al., 2001). The major light harvesting complex consists of three other Lhcb 

polypeptides, Lhcb1-3 and is in its functional state trimeric. The ratio of LHCII trimers to PSII 
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dimeric core complexes is about 8:1, but in Arabidopsis one PSII functional unit binds two to four 

trimers, which leaves the rest unbound or loosely bound (Kouril et al., 2005). PSI light harvesting is 

carried out by a complex consisting of the four polypeptides Lhca1-4, which is stably associated 

with PSI. All light harvesting polypeptides bind carotenoides and chlorophyll a and b as prosthetic 

groups. 

Both the nuclear and the plastid genome encode subunits of photosynthetic complexes, but all 

essential core subunits of PSII and PSI binding the cofactors necessary for electron transport are 

encoded by the plastome. Figure 1.3 depicts the location of the subunit encoding genes. Plastid 

encoded subunits are coloured in green and nucleus encoded ones in red.  

 

 
Figure 1.3 Schematic view of the thylakoid polypeptide composition in flowering plants 
PSII, photosystem II; Cyt b6/f, cytochrome b6/f; PSI, photosystem I; LHCI/ LHCII, light harvesting complex I/II, PC 
plastocyanin, FD, Ferredoxin, FNR, Ferredoxin NADP Reductase. Nuclear encoded subunits are depicted in red, 
plastome encoded subunits in green. Those subunits, of which knock-out mutants have been characterised are coloured 
in a darker shade (from Leister, 2003). 
 
However, knowledge about the thylakoid polypeptide composition remains incomplete. Therefore, 

the quest for novel photosynthetic proteins persists and extensive research is carried out in order to 

identify the function of previously undescribed subunits. In the past two years, knock-out mutants 

of the plastid-encoded low molecular weight subunits PetL,-N and G of the Cyt b6f complex, and, 

PsbM and -I of PSII have been characterised in tobacco (Schwenkert et al., 2007; Umate et al., 

2007; Schwenkert et al., 2006) and phenotypes of Arabidopsis mutants lacking the nuclear encoded 

PSII minor antenna Lhcb6 (Kovacs et al., 2006) and the small subunits PsbQ and –R (Yi et al., 

2006; Suorsa et al., 2006) have been published. Even previously unknown components of 

photosystems have been identified by proteomic approaches. The Thylakoid Membrane Phospho-

protein of 14 kDa (TMP14), has been designated a novel subunit of PSI (PsaP), on the basis that it 
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co-migrates with PSI in Blue native gels and because PSI accumulation is prerequisite for its 

stability. Additionally, it was demonstrated that PsaP abundance depends on the presence of the PSI 

subunits L, H and G (Khrouchtchova et al., 2005). Another approach to identify novel 

photosynthetic components is the characterisation of unknown proteins, of which the encoding 

genes are co-regulated on transcriptional level with nuclear photosynthetic genes. With this method 

PGRL1 has been identified, which represents an indispensable component of cyclic electron flow 

around PSI (Chapter 1.1.1.2; DalCorso et al., 2008). The basis to this approach will further be 

described in Chapter 1.2.1. 

1.1.4 Regulation of photosynthetic processes 

Photosynthesis is not a statical situation, as the adjustment of physiological processes to 

environmental conditions is crucial for survival and fitness of the plant, due to its sessile nature. 

Therefore modes of regulation of photosynthesis have evolved in plants in order to cope with 

environmental changes. Here those will be described, which adapt the plant to changing light 

conditions by either protecting them from an excess of highly energetic intermediates produced by 

the absorption of light energy, or by ensuring optimum photosynthetic performance in a variety of 

conditions. Regulatory processes as short term responses include the dissipation of excess light 

energy (qE; Holt et al., 2004) and the balancing of excitation energy between the two photosystems 

by the mechanism of state transitions (qT; Wollman, 2001; Allen and Forsberg, 2001). These two 

components and photoinhibition (qI) amount for the short-term response process of non-

photochemical quenching as measured by quenching of Chl a fluorescence. 

1.1.4.1 Energisation dependent non-photochemical quenching (qE) 

The majority of NPQ stems from the dissipation of excess light energy as heat by the rapidly 

inducible non-photochemical quenching (qE). Exciton pressure is thereby diverted from PSII 

protecting it from photoinactivation. This process is also known as feed-back de-excitation, because 

the thermal dissipation of energy is stimulated by the light driven proton translocation into the 

lumen (Szabo et al., 2005). The resulting low luminal pH has two roles in the induction of qE. One 

role is the activation of the violaxanthin de-epoxidase (VDE), the enzyme that catalyses the 

conversion of violaxanthin to antheraxanthin and zeaxanthin, the latter being the pigment required 

for qE realisation (Demmig-Adams and Adams 1993, Niyogi et al., 1999). The second role is the 

protonation of PSII proteins involved in this process (Ruban et al., 1992). In addition to de-

epoxidised xanthophylls and protonation of specific proteins, the Lhcb-related PsbS protein is 

required for qE (Niyogi et al., 2005). If light energy exceeds the capacity of qE, reactive oxygen 
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species originating from the un-funnelled transfer of light energy to oxygen, damage PSII proteins, 

thus leading to the inhibition of PSII activity, a process also referred to as photoinhibition 

(Nishiyama et al., 2006). 

1.1.4.2 State transitions 

To avoid a preferential excitation of one of the two photosystems, plants can adjust the size of their 

relative PSI and PSII antenna accordingly by state transitions. This regulatory mechanism occurs, 

because of the different light absorption properties of the PSI and PSII light harvesting systems. 

Whereas the PSI antenna preferentially absorbs light of 700 nm, the PSII antenna has an optimum at 

650 nm (Rochaix, 2007). The sensor for an imbalance in excitation energy between the two 

photosystems is the reduction state of the plastoquinone pool and the balance restoration is executed 

by a mobile pool of LHCII (Larsson et al., 1983; Kyle et al., 1984).  

If the rate of charge separation is increased in PSII as compared to PSI, the plastoquinone reduction 

state increases. This leads to the occupancy of the QO site on the lumenal side of the Cyt b6f 

complex with plastohydroquinol, an event that activates the LHCII kinase (Zito et al., 1999). The 

kinase STN7 has been shown to be obligatory for the phosphorylation of LHCII (Bellafiore et al., 

2005; Bonardi et al., 2005). However, a direct interaction between STN7 and LHCII has not been 

demonstrated and therefore the presence of one or more further kinases downstream of STN7 

cannot be excluded. At higher light intensities, when LHCII is required at PSII for non-

photochemical quenching, the kinase is deactivated and the dephosporylated mobile LHCII pool re-

associates with PSII (Rintamäki et al., 2000). A persisting imbalance of excitation energy between 

the two photosystems can be counteracted by changes in plastid gene expression resulting in the 

alteration of the PSII/PSI ratio (Allen, 1995; Pfannschmidt et al., 2001). This long-term acclimation 

is impaired in stn7 mutants, indicating a function not only in the short term response of state 

transitions but also in the signalling process, which subsequently leads to the changes in PSI and 

PSII stoichiometry (Bonardi et al., 2005). 

1.2 Expression of photosynthetic genes  

Prerequisite for the acclimation of plants to long-term changes in growth conditions are adjustments 

in the amounts and stoichiometries of photosynthetic components. Respective regulatory 

mechanisms occur by changes in gene expression in both the chloroplast and the nucleus. During 

the co-evolution of chloroplasts and their host cells a co-ordination of gene expression had to be 

achieved in order to synchronise these adaptive changes, but also to accommodate the chloroplast in 

its functional state within the cell. This required the development of mutual communication 
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pathways resulting in the control of gene expression by mediated signals. Both, plastid and nuclear 

gene expressions respond to the redox state of the chloroplast as an intrinsic marker for 

photosynthetic performances. The pools of reduced plastoquinone, thioredoxin and glutathione, but 

also the levels of reactive oxygen species (Pfannschmidt et al., 2003) amount for redox state 

signals, which act within the chloroplast, but are also mediated to the nucleus. Additionally, 

tetrapyrrole derivates and organellar gene expression are implicated in the chloroplast to nucleus 

(retrograde) signalling pathways influencing the expression of nuclear organelle genes (reviewed by 

Pesaresi et al., 2007). Recent evidence indicates that the transcriptional repressor ABI4 (Abscisic 

Acid Insensitive 4) is involved in the nuclear execution of chloroplast deriving signals 

(Koussevitzky et al., 2007).  

1.2.1 Nuclear gene expression 

Most nuclear chloroplast genes are the final outcome of complex events, following the initial 

endosymbiosis of a cyanobacterial-like prokaryote by a eukaryotic cell and subsequent gene 

transfer to the host nucleus. Several thousands of genes of the endosymbiont were gradually 

relocated during this process (Timmis et al., 2004). Additionally, nuclear encoded proteins evolved 

with new, plant specific functions in the chloroplast. The control of photosynthetic gene expression 

results from the integration of light, developmental, plastidial, redox and carbohydrate signals 

(Terzaghi and Cashmore, 1995; Smeekens, 2000; Rolland et al., 2002; Pfannschmidt, 2003; Strand, 

2004). All of these signals affect nuclear gene expression in a highly organised regulatory pattern. 

This was demonstrated by analysing the expression of 3292 nuclear genes encoding chloroplast 

proteins under 101 different genetic or environmental conditions (Richly et al., 2003, Biehl et al., 

2005). Firstly, a “master switch” acting in a binary mode by either inducing or repressing sets of 

genes encoding chloroplast proteins was observed in more than half of the conditions tested. 

Secondly, a “mixed response”, with about the same amount of up- and down-regulated genes was 

induced by the other half of conditions. Mutants involved in retrograde signalling pathways acted in 

a binary mode, indicating a global effect on the expression of analysed genes (Richly et al., 2003; 

Biehl et al., 2005). Two of the 23 groups of co-regulated genes (regulons), containing mostly genes 

coding for proteins involved in photosynthesis or plastome gene expression, escaped these two 

responses (Biehl et al., 2005). The expressional control especially of these two subsets of 

chloroplast proteins indicates a co-ordination of the expression of plastome- and nucleus-encoded 

proteins involved in photosynthesis. Some genes of unknown function are also present in these two 

regulons, which suggests a putative photosynthetic function of the respective gene products. 
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1.2.1 Chloroplast gene expression 

As expected from the eubacterial origin of the chloroplast, the structure of its genes and the 

expressing apparatus principally resemble those of eubacteria. This includes the organisation of 

genes in operons, their polycistronic expression and posttranscriptional processing (reviewed by 

Lopez-Juez and Pyke, 2005). Contrary to bacteria, some chloroplast genes include introns and also 

editing of the encoded RNA takes place. Accordingly, both inherited and newly acquired 

characteristics of the chloroplast expressional apparatus require regulatory proteins. These proteins 

are encoded by the nucleus and thus enable nuclear regulation of chloroplast gene expression, 

which is primarily regulated at post-transcriptional level (Deng et al., 1989). However, transcription 

of chloroplast genes also involves nuclear encoded gene products. One RNA-polymerase is nuclear 

encoded (nuclear encoded RNA-polymerase; NEP) (Barkan and Goldschmidt-Clermont, 2000) and 

the other one (plastid encoded RNA-polymerase; PEP) requires assembly with nuclear encoded 

sigma factors to gain promoter specificity (reviewed by Kanamaru and Tanaka, 2004). 

Concomitantly, the chloroplast translational process requires nuclear factors as the chloroplast 

ribosome consists of subunits encoded by the chloroplast as well as by the nucleus (Yamaguchi et 

al., 2003). Another characteristic of the nuclear control of chloroplast gene expression is the 

evolution and divergence of the eukaryotic pentatricopeptide repeat (PPR) family of proteins. These 

are involved in multiple gene expressional processes of the chloroplast (Shikanai, 2006). The 

formation of 3’- stem loops is one characteristic of bacterial transcripts preserved in the chloroplast, 

where they are critical for stability by impeding degradation by exonucleases (Drager et al., 1996). 

Additionally, targeted cleavage of the stem loop is assumed to be a mechanism of regulating mRNA 

accumulation (Monde et al., 2000). One protein implicated in this mechanism is CSP41, which was 

first described as a component binding the 3’- stem loop of the petD transcript in spinach (Yang et 

al., 1995). It was shown that it acts as an endonuclease and specifically cleaves the 3’- stem loop 

common to chloroplast transcripts (Yang et al., 1997, Bollenbach and Stern, 2003). 

1.3 Abscisic acid (ABA) biosynthesis in plants 

The plant hormone ABA is synthesized in the cytosol from carotenoid precursors stemming from 

the chloroplast and is involved in many plant regulatory pathways, such as onset of seed dormancy 

and acquisition of desiccation tolerance in seeds as well as the response to drought and high salinity 

conditions in vegetative tissue (Seo and Koshiba, 2002). The biosynthesis of the C15 compound 

ABA occurs in multiple enzymatic steps from the C5 compound isopentenyl pyrophosphate via the 

C40 carotenoids zeaxanthin, antheraxanthin, violaxanthin (xanthophyll-cycle pigments) and 

neoxanthin (Figure 1.4; Seo and Koshiba, 2002). Some genes encoding photosynthetic components 
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respond to ABA (Seki et al., 2002) and it has been demonstrated that sugar and ABA 

responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4 

(Acevedo-Hernandez et al., 2005). Recently, this ABA induced repressor ABI4 has been implicated 

in the execution of chloroplast originating (retrograde) signals in the nucleus (Koussevitzky et al., 

2007). Additionally, it is known that manipulation of enzymes involved in carotenoid biosynthesis 

can influence ABA levels in the plant (Estevez et al., 2001, Frey et al., 1999, Lindgren et al., 2003). 

Several environmental stress conditions either modulate the activity of enzymes involved in the 

xanthophyll cycle (Golding and Johnson 2003) or increase the amount of these pigments in the 

chloroplast (Demmig-Adams and Adams, 1993). 

 
Fig 1.4 Biosynthetic pathway of ABA in the chloroplast and cytosol (Seo and Koshiba, 2002) 
(a) Pathway leading to the synthesis of ß-Carotene. (b) Xanthophyll-cycle pigments and neoxanthin, which are bound to 
the thylakoid light harvesting complexes. (c) Cytosolic pathways leading to the synthesis of ABA. Zeaxanthin 
epoxidase (ZEP), 1-deoxy-D-xylolose-5-phosphate synthetase (DXS), phytoene synthetase (PSY), phytoene desaturase 
(PDS) 9-cis-epoxycarotenoid dioxygenase (NCED), short-chain-dehydrogenase/ reductase (SDR), aldehyde oxidase 
(AO). Over-expression of the enzymes DXS, ZEP and PSY leads to higher endogenous ABA levels within the plant 
(Estevez et al., 2001; Frey et al., 1999; Lindgren et al., 2003). 

1.4 Aims of thesis 

The basic idea to this thesis relies on the hypothesis that unknown genes co-regulated tightly with 

genes encoding components involved in a specific physiological activity likely code for proteins, of 

which the function also resides in this process (guilt by association; Walker et al., 1999). Here, the 
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physiological process is photosynthesis (Biehl et al., 2005) and the identification of the function of 

three unknown proteins was approached in the scope of this thesis. The characterisation of the 

Putative Photosynthetic Proteins 1, 4 and 5 (PPP1, PPP4, PPP5) was approached by reverse 

genetics combined with physiological dissection of knock-out plants employing physical 

measurements of electron transport and biochemical analyses. The as unknown annotated protein 

PPP5 was shown to be phosphorylated and therefore was termed Thylakoid Membrane Phospho 

protein of 14 kDa (TMP14; Hansson and Vener, 2002). Subsequently, this protein will be referred 

to by this name. 
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2 Materials and Methods 

2.1 Materials 
2.1.1 Chemicals 
All chemicals were purchased from Sigma-Aldrich (Munich, Germany), Roth (Karlsruhe, 

Germany), Applichem (Darmstadt, Germany), Merck (Darmstadt, Germany), Serva (Heidelberg, 

Germany) and Biomol (Hamburg, Germany), except were stated otherwise. All chemicals were 

analytical grade.  

2.1.2 Antibiotics 
Antibiotics were provided by Duchefa (Haarlem, Netherlands) and by Sigma-Aldrich (Munich, 

Germany). 

2.1.3 Enzymes, kits and biochemical agents 
Enzymes used for cloning were obtained from New England Biolabs (Frankfurt, Germany), Roche 

(Penzberg, Germany) and Qiagen (Hildesheim, Germany). Those enzymes employed for the 

synthesis of cDNA were purchased from Invitrogen (Karlsruhe, Germany). For DNA purifications 

kits from Qiagen (Hildesheim, Germany) were used. Western-detection was carried out with the 

Enhanced Chemiluminescence kit (ECL; Pierce, Rockford, USA). Immunopure® Protein-A Agarose 

and BS3 were purchased from Pierce (Rockford, USA). 

2.1.4 Membranes 
Nitrocellulose membranes were acquired from Millipore (Eschborn, Germany) and positively 

charged Nylon membranes from Roche (Penzberg, Germany). 

2.1.5 Antibodies 
Peptide synthesis, generation of antibodies in rabbits and their monospecific purification was 

performed by Biogenes (Berlin, Germany). Commercially available primary antibodies against 

photosynthetic polypeptides were purchased from Agrisera (Vänas, Sweden). Tag antibodies were 

obtained from Sigma (c-myc, HA), Roche (c-myc) and Invitrogen (GFP), Actin antibodies from 

Dianova (Hamburg, Germany), Phospho-threonine antibodies from New England Biolabs 

(Frankfurt, Germany) and secondary antibodies from GE Healthcare and Sigma- Aldrich (both 

Munich, Germany). AtpD antibody was kindly provided by J. Meurer (Department of Botany, 

LMU, Munich), Rieske antibody by F. Ossenbühl (Department of Botany, LMU, Munich), 

antibodies against FNR, PsaD, PsaF by V. Scheller (Copenhagen, Denmark), TIC 110 by U. 

Vothknecht (Department of Botany, LMU, Munich), PsbS by K. Niyogi (Berkeley, USA). 
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2.2 Methods 

2.2.1 Plant lines and propagation  

Arabidopsis seeds were stratified for 2 days at 2-5°C in the dark to break dormancy and then sown 

out on plastic trays with soil. Plants were grown in a growth chamber illuminated with a 12h-light 

(20°C)/12h-dark (18°C) cycle with a PFD of 120 μmol photons m-2s-1 or under controlled 

greenhouse conditions (PDF 70-90 μmol photons m-2s-1, 16h light/ 8h dark cycles). Fertilisation 

with “Osmocote Plus” (Scotts Deutschland GMBH, Hildesheim, Germany) was performed 

according to manufacturer’s instructions. 

The insertion mutant lines carried either T-DNA insertions or Dissociation (Ds) element insertions 

and were identified by searching the insertion flanking database SIGNAL 

(http://signal.salk.edu/cgi-bin/tdna express). The ppp1-1 and the tmp14-like mutants derive from the 

SALK T-DNA collection (http://signal.salk.edu/; Alonso et al., 2003), the ppp1-2 mutant from the 

GABI-KAT collection (Li et al., 2003) and the ppp4–like  from the SAIL collection (Session et al., 

2002), with all four of them in the Columbia-0 (Col-0) background. The tmp14-2 mutant originates 

from the FLAG collection of T-DNA insertion lines in the Wassilevskija (WS) background 

(Samson et al., 2002). Dissociation (Ds) element insertions are the ppp4-1 mutant from IMA 

(Parinov et al., 1999), the ppp4-2 mutant from the Exotic collection (Exotic Handbook by J. Clarke 

2000), both in Landsberg erecta (Ler) background and tmp14-1 from the RIKEN collection in 

Noessen (No-0) background. 

2.2.2 Nucleic acid analyis 

2.2.2.1 DNA analysis 

Arabidopsis DNA was isolated by disruption of leaf material frozen in liquid nitrogen with metal 

beads and addition of isolation buffer (200 mM Tris/ HCl pH 7.5, 250 mM NaCl, 25 mM EDTA, 

0.5% SDS). DNA in the supernatant was precipitated by addition of 0.8 volumes of isopropanol and 

centrifugation at 16000g, RT for 20 min. The insertion flanking sites were identified by sequencing 

after PCR-amplifications using a combination of gene- and insertion-specific primers. T-DNA 

primers specific for ROK2 (SALK-collection) were LBa1 and RBb1; for Ac106 (GABI-KAT 

collection) LbGK1 and o2588; for CSA110 (SAIL-collection) LB1 and RB1, for GKB5 (FLAG-

collection) TAG5 and TAG3, for IMA-DS Ds3´-1 and Ds5´-1; for Exotic-DS Ds3´-1 and Ds5´-3 

and for the Koncz collection Fish1 (Table 2.1).  
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Oligonucleotides Sequence 5’-3’  

At1g09340-1176s AGAAGTTGAGCCCATACTAGA 

At1g09340-1851as CAGTCAGTGGGTCCC TATAA 

At1g09340-2281s TCGGTCACGTTAAGGTCAGT 

At1g09340-2779as TTACCTGATCACGGAAAGGG 

At3g63140--114s GCGACCGTTGGATGTTGTTA 

At3g63140-581as AAGCAGACCTAACAGTATCCA 

At4g01150--154s AACACCACTGAGTTGGATTTC 

At4g01150-410as GACGAGGTCTCTTCTGAAGAA 

At4g01150--25s AAGAAGAAGTTCTCGGCGTG 

At4g01150-916as CTCAGCCAATTCCTTTCTGC 

At2g46820--222s ACTCCAAGATCGTCTCTACG 

At2g46820-521as: GGGGTTCTGCTGGAATGATT 

At2g46820-950s TGGTTCACTTACAAGAACCTG 

At2g46820-1427as CATGCATGGTTAGCTTAGCTT 

At1g52220-20s CAACTTTGCCTTCGCCATTGT 

At1g52220-817as CTGGCCAAGTATATCCGCTA 

At4g38100-10s TGCACCAGGTCTACCACAAT 

At4g38100-530as TTGAGTTTCCTCATCTTCAGC 

Lba1 TGGTTCACGTAGTGGGCCATCG 

Rbb1 TCAGTGACAACGTCGAGCAC 

LbGK1 CCCATTTGGACGTGAATGTAGACAC 

o2588 CGCCAGGGTTTTCCCAGTCACGACG 

Lb1 CTATTGGTAATAGGACACTGG 

Rb1 GTTAAAACTGCCTGGCAC 

Ds3´-1 CGATTACCGTATTTATCCCGTTCG 

Ds5´-1 CCGTTTACCGTTTTGTATATCCCG 

Ds5´-3 CGGTCGGTACGGGATTTTCC 

Fish1 CTGGGAATGGCGAAATCAAGGCATC 

TAG5 CTACAAATTGCCTTTTCTTATCGAC 

TAG3 CTGATACCAGACGTTGCCCGCATAA 

Table 2.1 Oligonucleotides employed for identification of gene insertion lines 

 

Primers specific for confirmation of the knock-out allele ppp1-1 were At1g09340-1176s and 

At1g09340-1851as, for ppp1-2 At1g09340-2281s and At1g09340-2779as; for atcsp41 At3g63140-
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114s and At3g63140-581as, for ppp4-1 At4g01150--154s, and At4g01150-410as, for ppp4-2 

At4g01150--25s and At4g01150-916as, for tmp14-1 At2g46820--222s and At2g46820-521as, for 

tmp14-2 At2g46820-950s and At2g46820-1427as, for tmp14-like At1g52220-20s and At1g52220-

817as, for ppp4-like At4g38100-10s and At4g38100-530as (Table 2.1). 

2.2.2.2 RNA analysis 

For RNA analysis, total leaf RNA was extracted from fresh tissue using the TRIzol reagent 

(Invitrogen, Karlsruhe, Germany). Reverse transcriptase-mediated PCRs (RT-PCR) were carried 

out by synthesizing first-strand cDNA using the SuperScriptTM Reverse Transcriptase (Invitrogen, 

Karlsruhe, Germany) and dT oligomers, followed by PCR with specific primers for TMP14-like 

(upstream of insertion: 5’-CAACTTTGCCTTCGCCATTGT-3’, 5’-GCTGCTAGGGTTTCG 

AGTAA-3’; downstream of insertion: 5’-TGGGCATCATTGAATCTCATC-3’, 5’-CTGGC 

CAAGTATATCCGCTA-3’), PPP4-like (upstream of insertion: 5’-TGCACCAGGTCTACCA 

CAAT-3’, 5’-GCAACAACTACTCCATCACG-3’; downstream of insertion: 5’-CTCGAATAGTG 

AAGCTCCTC-3’, 5’-CACTCACTATCAGACCCAAG-3’), AtCSP41 (upstream of insertion: 5’-A 

TGGCGGCTTTATCATCCTC-3’, 5’-TTTCACCTCCGACCACATTG-3’) and ACTIN1 (5’-TGC 

GACAATGGAACTGGAATG-3’; 5’-GGATAGCATGTGGAAGTGCATACC-3’) as control. 

Northern analyses were performed under stringent conditions, according to Sambrook et al. (1989). 

Probes complementary to nuclear and chloroplast genes were used for the hybridizations. Table 2.2 

lists the genes analyzed and the primers used to amplify the probes. All the probes were cDNA 

fragments labeled with 32P. Signals were quantified by using a phosphoimager (Storm 860; 

Molecular Dynamics) and the program IMAGE QUANT for Macintosh (version 1.2; Molecular 

Dynamics). 

 

Genes Forward primer (5’-3’) Reverse primer (5’-3’) 

ACTIN1 TGCGACAATGGAACTGGAATG  GGATAGCATGTGGAAGTGCATACC

psbA TGCATCCGTTGATGAATGGC TCGGCCAAAATAACCGTGAG 

psaA GATTATTCGTTCGCCGGAAC TGGAGCTGCTTTGTGATAATG 

rbcL CGTTGGAGAGACCGTTTCTT CAAAGCCCAAAGTTGACTCC 
Table 2.2 Oligonucleotides employed for Northern probe generation 

2.2.2.3 Analysis of mRNAs associated with polysomes 

Polysomes were isolated as described by Barkan (1988). Leaf tissue (200 mg) was ground with 

mortar and pestle in liquid nitrogen. Subsequently, the microsomal membranes were solubilized 
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with 1% Triton X-100 and 0.5% sodium deoxycholate. The solubilized material was layered onto 

15 to 55% step sucrose gradients and centrifuged in a Beckman L7-55 ultracentrifuge (Kontron 

TST 60.4 rotor) at 45000 rpm for 65 min at 4 °C. The sucrose gradient was fractionated and the 

mRNA associated with polysomes was then extracted with phenol/chloroform/isoamyl alcohol 

(25:24:1) followed by precipitation at room temperature with 95% ethanol. All samples were then 

subjected to Northern analyses. 

2.2.2.4 Transcript end mapping of rbcL using circular RT-PCR 

Transcripts were ligated using T4 RNA ligase and cDNA synthesis of rbcL transcript ends was 

performed using primers 5’-CGATCAAGGCTGGTAAGC-3’ and 5’-TCACTACCTGGTGTT 

CTGC-3’ followed by nested PCR using primers 5’-CTTGCTTTAGTCTCTGTTTGTGGTG A-3’ 

and 5’-GACGTGATCTTGCAGTCGAG-3’. PCR products were separated by agarose gel, excised 

and sequenced (Perrin et al., 2004). This experiment was performed in collaboration with Agata 

Kazmierczak (Department of Botany, LMU, Munich). 

2.2.3 Transformation of Arabidopsis  

2.2.3.1. Bacterial strains  

The bacterial strains used were: E. coli DH5α (Bethesda Res. Lab., 1986) and Agrobacterium 

tumefaciens GV3101 (pMP90RK) (Koncz et al., 1990).  

2.2.3.2 Agrobacterium binary vectors 

For expression of C-terminal tagged PPP4 cDNAs in plants the vectors pPCV812ΔNotI-Pily 

(Hemagglutinin; HA) and pPCV812ΔNotI-Lola (c-myc) were used (kindly provided by C. Koncz, 

Max-Planck Institute for Plant Breeding Research, Germany). Both vectors derive from the same 

binary backbone vector (pPCV812), which carries a double 35S promoter upstream of the multiple 

cloning site and contains a ß-lactamase gene conferring resistance of bacteria to ampicillin/ 

carbenicillin and a hygromycin resistance gene for plant selection. The complete coding region of 

PPP4 (primers: PPP4:c-myc-s: CGTCCCGGGATGGCGATATCA; PPP4:c-myc-as: GCCAGA 

TCTTTCGCTTCCTGC) was ligated into both vectors using the BglII and SmaI restriction enzyme 

sites. For complementation of the ppp1-1 mutant, plants were transformed with AtCSP41b:CFP-

pBA002, which carries the complete PPP1 coding region upstream of a CFP encoding sequence 

(kindly provided by S. Hoth, University of Erlangen- Nürnberg; Raab et al., 2006). 
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2.2.3.3 Agrobacterium-mediated transformation of A. thaliana 

Arabidopsis mutant plants were transformed as reported (Clough and Bent, 1998). Budding plants 

were dipped for 15 s in an Agrobacterium suspension containing 2.5% sucrose and the surfactant 

Silwet L-77 (0.02%). After dipping, plants were covered with clear plastic for two days to sustain 

high humidity levels, which facilitates transformation. Subsequently the plants were transferred to 

the greenhouse and grown to full maturity until seeds could be harvested. 

2.2.4 Biochemical Analysis 

2.2.4.1 Antibody production 

Antibodies against epitopes of PPP1, PPP4 and TMP14 were produced in rabbits. Epitope 

synthesis, injection into rabbits, collection of serum and subsequent monospecific purification of 

IGs was carried out by Biogenes (Berlin, Germany). The epitopes ranging in size from 11 to 14 

amino acids were designed in such way that they were specific for the respective proteins (fasta 

search: www.arabidopsis.org/cgi-bin/fasta/nph-TAIRfasta.pl) and covered a hydrophile stretch of 

amino acids with high antigenicity. For analysis of hydrophility the hydrophobicity plot of Clone 

manager was employed. To evaluate antigenicity the JaMBW Chapter 3.1.7 plot was used 

(http://bioinformatics.org/JaMBW/3/1/7/). The amino acid sequences of the epitopes in one letter 

code were KILHLKGDRKDYDF for PPP1, VKTAQEAWEKVDDK for TMP14 and 

LITDLKEKWDG for PPP4. 

2.2.4.2 SDS-PAGE 

Identical amounts of proteins equivalent to 2- 5 μg of chlorophylls calculated as described in Porra 

et al. (2002) were solubilised in SDS loading buffer (50 mM Tris/ HCl pH 6.8, 4% w/v SDS, 12% 

v/v glycerol, 50 mM DTT, 0.01% bromophenol blue), loaded and separated by SDS-PAGE (10% - 

16% acrylamide) as described by Schägger and von Jagow (1987). After an overnight run at 30 mA 

per gel (150 mm x 180 mm x 15 mm separating gel; anode buffer: 0.2 M Tris/ HCl (pH 8.9), 

cathode buffer: 0.1 M Tris, 0.1 M Tricine, 0.1% SDS), Gels were either stained with silver or 

Coomassie Brilliant Blue to visualise proteins according to standard protocols or specific proteins 

were detected using the method of immunoblot analysis. 

2.2.4.3 Immunoblot analysis  

Proteins separated by native or SDS-PAGE were transferred to polyvinylidene difluoride (PVDF) 

membranes according to Towbin et al. (1979) by a semi-dry blotting system using a current 
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corresponding to 1 mA cm-2 in transfer buffer (96 mM glycine, 10 mM Tris, 10% (v/v) methanol). 

Replica filters were incubated with antibodies specific for the proteins of interest. Signals were 

detected using the Enhanced Chemiluminescence Western Blotting Kit (Pierce, Rockford, USA).  

2.2.4.4 Total protein isolation 

Leaves were disrupted in the presence of liquid nitrogen and total proteins were isolated by adding 

extraction buffer (100 mM Tris/ HCl pH 8.0, 50 mM EDTA pH 8.0, 0.25 M NaCl, and 1 mM DTT, 

0.75% (w/v) SDS) and incubation at 68°C for 10 min. After centrifugation at 15000g for 10 min, 

the chlorophyll concentration of the supernatant was determined as described in Porra et al., (2002) 

and total protein according to 5 µg of chlorophyll were loaded onto an SDS gel. 

2.2.4.5 Isolation of intact chloroplasts 

Leaves of 4- to 5- week-old plants were homogenized in homogenization buffer (330 mM sorbitol, 

50 mM HEPES/ KOH pH 7.6, 20 mM EDTA) and the filtrate was collected after passing through 

two layers of Miracloth (Calbiochem through VWR International GmbH, Darmstadt, Germany). 

Chloroplasts were collected by centrifugation for 5 min at 2000g, 4°C. The pellet was carefully 

resuspended in the homogenization buffer. Chloroplasts were loaded on a two step Percoll gradient 

as described in Aronsson and Jarvis (2002). Intact chloroplasts at the interface between the two 

Percoll phases were broken by incubation for 30 min on ice in four volumes lysis buffer (20 mM 

HEPES/ KOH pH 7.5, 10 mM EDTA). To separate thylakoids and stroma phases, ruptured 

chloroplasts were centrifuged at 42000g, 30 min at 4°C. 

2.2.4.6 Fractionation of chloroplasts 

Intact chloroplasts were re-suspended in TE buffer (10 mM Tris/ HCl pH 8.0, 1 mM EDTA pH 8.0) 

at a chlorophyll concentration of 2 mg/ml chlorophyll and loaded onto a three step sucrose gradient 

consisting of, from the bottom to the top, 1.2 M, 1 M, and 0.46 M sucrose in TE. After 

centrifugation for 2 h at 30000g, 4°C, the upper phase containing the stroma, the two interphases 

containing inner and outer envelopes and the pellet consisting of thylakoids were collected, the 

three membrane fractions were washed with TE and proteins were separated by SDS-PAGE. 

2.2.4.7 Preparation of thylakoid membranes 

Leaves from 4-week-old plants were harvested in the middle of the light period and thylakoids were 

prepared as described by Bassi et al. (1985). In detail, leaf material was homogenized in ice-cold 

buffer containing 0.4 M sorbitol, 0.1 M Tricine/ KOH pH 7.8 and 1 mM PMSF, the resulting 

homogenate was filtered through nylon mesh and centrifuged at 4°C, 3000g for 10 min. 
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Subsequently, chloroplast were broken in 20 mM HEPES/ KOH pH 7.8, 10 mM EDTA pH 8.0 and 

thylakoids were collected by centrifugation at 12000g for 10 min and resuspended in a buffer 

containing 50% glycerol, 10 mM HEPES/ KOH pH 7.5, 1 mM EDTA pH 8.0).  

2.2.4.8 Fractionation of thylakoids  

Isolated chloroplasts were lysed in 25 mM HEPES/ KOH pH 7.5, 5 mM MgCl2 and thylakoids were 

fractionated into grana, intermediate membranes and stroma lamellae by digitonin treatment 

followed by differential centrifugation as modified from Ossenbuehl et al. (2002). In brief, 

thylakoid membranes were incubated with 0.2% digitonin in 15 mM Tricine/ KOH pH 7.9, 0.1 M 

sorbitol, 10 mM NaCl, 5 mM MgCl2, for 1 min at room temperature. The incubation was stopped 

by 10 fold dilution in the same buffer. The suspension was centrifuged four times at 4 °C. Each 

supernatant was used for the next centrifugation step. The relative acceleration rates were 1000g for 

10 min, 10000g for 30 min, 40000g for 60 min and 150000 g for 90 min. The different pellets grana 

thylakoids (10000g), intermediate membranes (40000g) and stroma thylakoids (150000g) according 

to 5 µg of chlorophyll were loaded onto an SDS gel.  

2.2.4.9 PSI isolation 

Thylakoids were prepared as described, then washed twice with 5 mM EDTA (pH 7.8) and diluted 

in the same solution to a chlorophyll concentration of 2 mg/ml. Solubilisation of membrane 

complexes was carried out by addition of 2% n-dodecyl-ß-D-maltoside (ß-DM) and incubation on 

ice for 10 min. Afterwards, centrifugation at 16000g for 5 min at 4°C was performed in order to 

remove un-solubilised membranes. The supernatant was loaded onto a sucrose gradient, originating 

from a freeze-thawing cycle of a 0.4 M sucrose, 20 mM Tricine/ KOH (pH 7.5) and 0.06% (w/v) ß-

DM containing solution, followed by centrifugation at 191000g for 21 h at 4°C. The PSI migrated 

as a distinct green band at the bottom of the centrifuge tube. The purity of the PSI isolation was 

analysed by separation of the proteins in a 16% to 23% acrylamide Tris-Glycine SDS-PAGE 

following standard protocols (Sambrook et al., 1989). 

2.2.4.10 Blue native and second dimension gels 

Leaves from 4- to 5-week-old plants were harvested and thylakoids were prepared as already 

described (Bassi et al., 1985). For the native PAGE analysis, protein amounts equivalent to 100 μg 

of chlorophyll were washed twice with 20 mM HEPES/ KOH pH 7.8, 10 mM EDTA pH 8.0, and 

subsequently solubilised in 750 mM ε-aminocaproic acid, 50 mM Bis-Tris/ HCl pH 7.0, 5 mM 

EDTA pH 7.0, 50 mM NaCl for 1 h with 2.8% (w/v) digitonin at 4°C on a wheel, or for 20 min 
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with 1.25% (w/v) n-dodecyl-ß-D-maltoside (ß-DM) on ice. Solubilised protein complexes were 

separated from unsolubilised by centrifugation for 1 h at 16000g, 4°C (digitonin) or for 20 min (ß-

DM). The supernatant was supplemented with 5% (w/v) Coomassie Brilliant Blue in 750 mM 

aminocaproic acid, and loaded onto polyacrylamides gel (4-12% acrylamide). One–dimensional 

BN-PAGE and 2D BN/SDS-PAGE were carried out as described by Schägger and von Jagow 

(1991)  

2.2.4.11 Bis (Sulfosuccinimidyl) suberate (BS3) crosslinking 

Isolated thylakoids were washed 5 times with 20 mM HEPES/ KOH pH 7.5 to remove the EDTA of 

the lysis buffer. Crosslinking was carried out with a thylakoid suspension containing 30 µg/ml 

chlorophyll by adding 400 µM BS3 and subsequent incubation for 1h on ice. The reaction was 

quenched by the addition of 150 mM Tris/ HCl pH 7.5. 

2.2.4.12 Co-Immunoprecipitation 

Isolated thylakoids were washed twice in 20 mM HEPES/ KOH pH 7.8, 10 mM EDTA pH 8.0 and 

then resuspended in Co-IP buffer (50 mM HEPES/ KOH pH 8.0, 330 mM sorbitol, 150 mM NaCl, 

0.5% (w/v) BSA, 1 mM PMSF) at a chlorophyll concentration of 1.5 mg/ml. ProteinA-agarose was 

washed five times in Co-IP buffer, specific antibodies (1/6 volume) were added and the binding 

reaction was carried out for 2 h on a wheel at 4°C. Afterwards, beads were washed five times in Co-

IP buffer to remove unbound antibodies. Meanwhile, solubilisation of thylakoid protein complexes 

was carried out by adding 2.5% digitonin to the thylakoid suspension and subsequent incubation for 

30 min on a wheel at 4°C. Solubilised complexes were separated from unsolubilised thylakoid 

membrane by centrifugation for 30 min at 16000g, 4°C. Solubilised thylakoid membranes were 

diluted 1:5 in Co-IP buffer and subsequently combined with the antibody binding agarose beads. 

The immune-reaction was carried out on a wheel over night at 4°C. Subsequently the beads were 

collected by centrifugation for 2 min at 3000g and washed six times with the Co-IP buffer 

containing 0.5% digitonin. Samples were kept on ice at all times. Proteins were eluted from the 

matrix by incubation with SDS loading dye buffer for 10 min at 60°C, beads were pelleted by 

centrifugation for 5 min at 3000g, RT. 

2.2.4.13 Salt treatment of thylakoid membranes 

According to Karnauchov et al. (1997) isolated thylakoids were resuspended in 50 mM HEPES/ 

KOH pH 7.5 at a chlorophyll concentration of 0.5 mg/ml. Salts were added to a final concentration 

of 2 M NaCl, 0.1 M Na2CO3, 2 M NaSCN and 0.1 M NaOH. Extraction was carried out for 30 min 
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on ice, soluble and membrane proteins were separated by centrifugation for 10 min at 10000g, 4°C 

and Western analysis was performed on both fractions using specific antibodies. 

2.2.4.14 Trypsin treatment of thylakoid membranes 

Thylakoid membranes were isolated as described omitting the addition of PMSF and then 

resuspended in 50 mM HEPES/ KOH pH 8, 300 mM sorbitol at a chlorophyll concentration of 1 

mg/ml. Trypsin was added to a concentration of 10 µg/ml. Samples were taken at 0, 10 and 20 min 

after the addition of trypsin, proteins were precipitated with 10 volumes of 100% acetone and 

resuspended in SDS loading dye containing 5 mM of the serine endopeptidase inhibitor PMSF. 

2.2.4.15 In vivo labelling with 35S-Methionine 

For the radioactive labelling of chloroplast proteins according to Pesaresi et al. (2001), leaves of 3-

week-old Arabidopsis WT and ppp1-1 plants grown in the greenhouse were vacuum-infiltrated in a 

syringe containing 1 mCi of 35S-L-methionine in 10 ml of 1 mM KH2PO4 
(pH 6.3), 0.1% Tween-20 

and illuminated with 50 µmol photons m-2s-1  for 1h. Afterwards, leaves were disrupted in the 

presence of 10 mM Tris/ HCl pH 6.8, 10 mM MgCl2 and 20 mM KCl and soluble protein was 

separated from membrane protein by centrifugation at 7500g, 4°C for 10 min. Both fractions were 

loaded onto an SDS-PAGE, which was subsequently dried and signals were quantified by using a 

phosphoimager (FLA 3000; FujiFilm Europe GMBH, Düsseldorf, Germany). 

2.2.5 Mass spectrometry 

Mass spectrometry analyses of protein samples were carried out in collaboration with B. Müller 

(Department of Botany, LMU, Munich). 

2.2.5.1 Tryptic in gel digestion of proteins 

The desired protein containing gel slice was excised and washed twice in ddH2O for 10 min. 

Digestion was then carried out with trypsin in a basic buffer (100 mM NH4HCO3). The peptides 

were eluted by shrinking the gel with one volume of CH3CN. After short centrifugation the peptide 

containing supernatant was supplemented with one quarter volume of H2CO2 to stop digestion. 

Peptides were dried and then resuspended in solvents used for analysis. 
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2.2.5.2 LC-ESI MS/MS 

A quarternary HPLC pump (Flux, Basel, Switzerland) including a CTC auto sampler was connected 

to a Thermo Fisher Scientific LTQ-Orbitrap mass spectrometer (linear quadruple ion trap coupled 

to a FT-analyzer) (Thermo Electron Corp., San Jose, CA). 

The LTQ-Orbitrap was operated via Instrument Method files of Xcalibur to acquire a full high 

resolution MS scan between 400 and 2000 m/z (resolution was set to 7500) followed by full 

MS/MS scans of the six most intensive ions from the preceding MS scan. The heated desolvation 

capillary was set to 200°C. The relative collision energy for collision induced dissociation was set 

to 35%, dynamic exclusion was enabled with a repeat count of two, a repeat duration of 0.5 min, 

and a three minutes exclusion duration window. Samples were loaded onto a 10 cm fused silica 

column. 

The fritless 100 μm capillary was packed in house with ProntoSIL C18 ace-EPS (ProntoSIL C18 

ace-EPS, Bischoff Analysentechnik und -geräte GmbH, Leonberg, Germany). The column flow rate 

was set to 0.15-0.25 μL / min and a spray voltage of 1.3 kV was used. The buffer solutions for 

chromatography were 5% ACN (acetonitrile); 0.1% formic acid, 80% ACN; 0.1% formic acid. 

After equilibration for 5 min with buffer A, a linear gradient was generated within 80 min. 

2.2.5.3 Protein identification 

The SEQUEST algorithm was used to interpret MS/MS spectra. Results were interpreted on the 

basis of a conservative criteria set, i.e. only results with dCn (delta normalized correlation) scores 

greater than 0.2 were accepted, all fragments had to be at least partially tryptic and the cross-

correlation scores (Xcorr) of single charged, double charged or triple charged ions had to be greater 

than 2, 2.8, or 3.5. Spectra were manually evaluated to match the following criteria: Distinct peaks 

with signals clearly above noise levels, differences of fragment ion masses in the mass range of 

amino acids, and fulfilment of consecutive b and y ion series. 

2.2.6 Pigment analysis 

Pigments were analyzed by reverse-phase HPLC as described previously by Färber et al. (1997). 

For pigment extraction, leaf discs were frozen in liquid nitrogen and disrupted with beads in 

microcentrifuge tubes in the presence of acetone. After a short centrifugation, pigment extracts were 

filtered through a 0.2 μm membrane filter and either used directly for HPLC analysis or stored for 

up to 2 days at -20°C (the pigment analysis was performed in collaboration with Peter Jahns, 

Düsseldorf, Germany).  
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2.2.7 Database analysis, Digital Northern, prediction of subcellular targeting and 

protein modelling 

For the analysis of gene models and their coverage by full-length mRNAs or ESTs, the NCBI 

(www.ncbi.nlm.nih.gov), MIPS (http://mips.gsf.de/proj/thal/db/index.html), and TAIR 

(www.arabidopsis.org) databases were used. To identify orthologues, the protein sequences were 

blasted against the non-redundant protein sequence (nr) database using NCBI blastp 

(www.ncbi.nlm.nih.gov/ blast/Blast.cgi). For the confirmation of Chlamydomonas reinhardtii and 

cyanobacterial homologues, the JGI Chlamy v2.0 Blast (http://genome.jgi-psf.org/cgi-bin) and the 

Cyanobase similarity search (http://bacteria.kazusa.or.jp /cyano/ cgi-bin) online programs were 

applied. 

Digital Northerns were performed by using the Genevestigator site (www.genevestigator.ethz.ch; 

Zimmermann et al., 2004). Sequence data were analysed with Clone Manager 5. Amino acid 

sequences were aligned using the CLUSTAL-W program (www.ebi.ac.uk/clustalw/; Chenna et al., 

2003) and alignments were shaded according to sequence similarity using the Boxshade server 3.21 

(www.ch.embnet.org/software/ BOX_form.html). Sequence identities and similarities were 

calculated using NCBI Blast 2 sequences (Tatusova and Madden, 1999) Chloroplast transit peptide 

predictions were done using the programs TargetP (version 1.1; http://www.cbs.dtu.dk/ 

services/TargetP/; Emanuelsson et al., 2000) and ChloroP (version 1.1; http://www.cbs.dtu.dk 

/services/ChloroP/; Emanuelsson et al., 1999). Protein molecular weights were calculated using 

Protparam (http://www.expasy.org/ tools/protparam.html) and transmembrane domains were 

predicted using the TMHMM Server v. 2.0 (www.cbs.dtu.dk/services/ TMHMM-2.0). Protein 

structures were calculated using the 3D-Jigsaw server (www.bmm.icnet.uk/~3djigsaw) and protein 

models were visualised by Swiss PDB Viewer (http://expasy.org/spdbv) 

2.2.8 Intracellular localization of dsRED fusions  

The red fluorescent protein from the reef coral Discosoma (dsRED) (Jach et al., 2001) was used as 

a reporter to determine the intracellular localization of TMP14-like and PPP4-like in transient gene 

expression assays. The coding regions of the analyzed genes were amplified using primers 5’- 

CGCCATGGCTTCAATTTCTGCA-3’ and 5’-CGCCATGGCCTGGCCAAGTATATCC-3’ for 

TMP14-like, 5’-CGCCATGGAGCTCTGCACCA-3’ and 5’-CGCCATGGCCTCACTATCAGAC 

CC-3’ for PPP4-like and cloned upstream of the dsRed sequence using the NcoI restriction enzyme 

site. Sterile cotyledons of 2 week-old plants (ecotype ColGl-1) were cut into small pieces and 

incubated for 16 h at 24°C in the dark in a protoplasting solution (10 mM MES, 20 mM CaCl2, 0.5 
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M mannitol pH 5.8, 0.1 g/ml macerozyme (Duchefa), 0.1 g/ml cellulase (Duchefa)) followed by the 

isolation of protoplasts as described in Dovzhenko et al. (2003). Plasmid DNA (40 µg) was 

introduced into protoplasts by PEG transfection as previously described (Koop et al., 1996). 

Microscopy analysis (with Fluorescence Axio Imager microscope in ApoTome mode (Zeiss)) was 

conducted after 16 h of incubation at 23°C in the dark. Fluorescence was excited with the X-Cite 

Series 120 fluorescence lamp (EXFO) and images were collected in the 565–620 nm (dsRED 

fluorescence) and 670–750 nm (chlorophyll autofluorescence) ranges. 

2.2.9 Germination assay 

Seeds from identically grown WT and mutant plants were surface sterilised with 7.5% (v/v) 

hypochloride and 0.5% (v/v) Triton-X and grown on MS plates containing 1% sucrose and various 

concentration of abscisic acid (ABA). Seeds were stratified for 4 days at 4°C, then plates were 

transferred to 16 h/ 8 h light dark cycle at 22°C and amount of germinated seedlings was monitored 

after 48, 60, 72 and 96 h after the shift. The germination assay was performed in collaboration with 

Sabine Raab (University of Erlangen, Germany). 

2.2.10 Determination of photosynthetic parameters using the PAM fluorometer 

2.2.10.1 Chlorophyll fluorescence measurements  

In vivo chlorophyll a fluorescence of single leaves was measured using either the Pulse Amplitude 

Modulation 101/103 (PAM 101/103) as already described in Varotto et al. (2000) or the Dual-

PAM-100 fluorometer (Walz, Effeltrich, Germany). Plants were dark adapted for 30 min and 

minimal fluorescence (F0) was measured. Then pulses (0.8 s) of white light (5000 μmol photons m-2 

s-1) were used to determine the maximum fluorescence (Fm) and the ratio (Fm - F0)/Fm = Fv/Fm 

(maximum quantum yield of PSII) was calculated. A 15 min illumination with actinic light of 

varying intensities was supplied to drive electron transport between PSII and PSI. Then firstly 

steady state fluorescence (Fs) and then by further saturation pulses (0.8 s, 5000 μmol photons m-2 s-

1) Fm’ were determined and the effective quantum yield of PSII (ΦII ) was calculated as (Fm’-Fs)/ 

Fm’  Additionally the photosynthetic parameters qP (photo-chemical quenching (Fm
’ – Fs)/(Fm

’ – 

F0)) and NPQ (non-photochemical quenching (Fm-Fm’)/Fm’) were determined.  

2.2.10.2 Measurements of the redox state of P700 

Redox changes in P700 were measured by monitoring the absorbance at 810 nm and 860 nm with a 

PAM 101/103 chlorophyll fluorometer (Walz) connected to a Dual Wavelength ED_P700DW 

emitter detector unit as described by Schreiber et al. 1988. Oxidised P700 level (ΔA) was recorded 
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in vivo during actinic light illumination at different light intensities (from 70 to 1200 µmol photons 

m-2s-1). The maximum level of oxidised P700 (ΔAmax) was determined with far red light (720 nm, 

50 µmol photons m-2s-1) illumination. The P700 oxidation state was then calculated as (ΔA/ΔAmax). 

2.2.10.3 Cyclic electron flow measurements 

Ferredoxin-dependent plastoquinone reduction was measured in ruptured chloroplasts diluted in 

lysis buffer (see Chapter 2.2.4.5) to 10 μg chlorophyll ml-1 and immediately used for the 

measurements of chlorophyll fluorescence with a PAM fluorometer 101/103 (Walz, Germany). The 

fluorescence increase after the addition of 5 μM spinach ferredoxin (Sigma) and 0.25 mM NADPH 

(Sigma) was recorded under measuring light corresponding to 1 μmol photons m-2s-1. 
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3 Results 

3.1 Characterisation of PPP4 and TMP14  
The presented work is based on a macroarray analysis, which was conducted in order to uncover the 

transcriptional regulation of nuclear genes encoding chloroplast proteins (Biehl et al., 2005). Here, 

the Arabidopsis thaliana (Arabidopsis) genes encoding the Putative Photosynthetic Protein 4 

(PPP4, At4g01150) and the Thylakoid Membrane Phosphoprotein of 14 kDa (TMP14, At2g46820; 

Hansson and Vener, 2003) were found to be co-regulated with groups enriched with photosynthetic 

genes and therefore were assumed to be involved in photosynthesis. TMP14 has been described as a 

novel subunit of PSI, probably interacting with the LHCII binding interface of this complex 

(Khrouchtchova et al., 2005). The proteins encoded by PPP4 and TMP14 show sequence 

similarities, also with two other Arabidopsis proteins and their functional interaction has been 

investigated in this work.  

3.1.1 Description of a novel protein family in photosynthetic organisms 

Expression analysis of PPP4 and TMP14 with Genevestigator (www.genevestigator. ethz.ch; 

Zimmermann et al., 2004) underlines their putative involvement in photosynthesis as both genes are 

preferentially expressed in green tissue and in response to light. PPP4 encodes a protein of 164 

amino acids, of which the N-terminal 62 amino acids are predicted by ChloroP to be a chloroplast 

targeting sequence (cTP). The resulting mature protein is calculated to have a molecular weight of 

11.4 kDa. TMP14 encodes a protein of 174 amino acids, of which the first 49 are predicted to be a 

cTP. The calculated molecular weight of TMP 14 is 13.9 kDa. Both proteins are predicted by the 

TMHMM server (www.cbs.dtu.dk/ services/TMHMM-2.0) and most other computer programs for 

prediction of protein secondary structure (www.expasy.org) to contain two transmembrane helices 

(TMHMM: PPP4: amino acids 91-113 and 123-142; TMP14: amino acids 103-125 and 130-52). 

Within these two transmembrane regions they exibit their highest sequence similaritiy (Figure 

3.1.1; 40% identity and 66% similarity of mature protein sequences, as calculated by NCBI Blast 2 

sequences).  

Further two proteins of Arabidopsis exhibit sequence similarities to PPP4 and TMP14. One of the 

two proteins shows a higher homology to TMP14 and is thus named TMP14-like (At1g52220; 50% 

identity, 70% similarity to TMP14, 36% identity, 61% similarity to PPP4; sequences without cTP). 

The other one shows higher homology to PPP4 and is thus named PPP4-like (At4g38100; 45% 

identity, 68% similarity to PPP4, 34% identity, 56% similarity to TMP14; sequences without cTP). 
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Both of these proteins are also predicted by the TMHMM server to contain two transmembrane 

helices each (TMP14-like: amino acids 85-107 and 112-134; PPP4-like: amino acids 118-140 and 

150-169). 

 
 

Fig 3.1.1 Sequence comparison of mature proteins of all four homologous Arabidopsis proteins 
Sequences of PPP4, TMP14, PPP4-like and TMP14-like without cTP were aligned using ClustalW (Thompson et al., 
1994) and Boxshade. Conserved amino acids are highlighted by black boxes, whereas grey ones indicate closely related 
amino acids.  
 
To investigate orthologous proteins of this protein family in other plant species, the mature PPP4 

amino acid sequence was blasted against the non-redundant protein sequence (nr) database of NCBI 

(Chapter 2.2.7). This showed that proteins of this novel Arabidopsis family are conserved in all 

photosynthetic organisms. The protein sequences of the resulting homologous proteins from grape-

wine (Vitis vinifera), populus (Populus trichocarpa), rice (Oryza sativa), the moos Physcomitrella 

patens, the alga Chlamydomonas reinhardtii and cyanobacteria (Nostoc sp. PCC 7120 and 

Synechocystis sp. PCC 6803) were aligned using ClustalW (default settings, gap extension: 1). An 

unrooted phylogram was built from the C-terminal 120 amino acids of each protein, which show 

highest similarity, in order to avoid unspecific comparison of amino acids. For this the programs 

Phylip version 3.67, Protmlk (default settings; http://evolution.genetics.washington. 

edu/phylip.html) and Phylodraw version 0.8 (http://pearl.cs. pusan.ac.kr/ phylodraw) were 

employed. As demonstrated in Figure 3.1.2 depicting the resulting phylogram, five major branches 

can be distinguished, with four of them containing one of the Arabidopsis homologous proteins: (i) 

PPP4 orthologues, (ii) PPP4-like orthologues, (iii) TMP14 orthologues, (iv) TMP14-like 

orthologues and (v) cyanobacterial proteins. This suggests that all four eukaryotic proteins are 

ancient and have evolved from one cyanobacterial ancestor. Some interesting aspects are put forth 

by this bioinformatical analysis. Firstly, the PPP4 clade contains the highest number of orthologues, 

with a lower level of divergence of the flowering plant proteins as compared to the other clades. 

Moreover, the only alga homologue also clusters with PPP4. The moss Physcomitrella has one 
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PPP4 orthologue a well, but interestingly its proteome contains three different proteins most 

homologous to TMP14-like.  

For TMP14 a sequence alignment with orthologues has been published (Hansson and Vener, 2003) 

and the alignment of the PPP4 orthologues is depicted in Figure 3.1.3.  

 
 
Fig 3.1.2 Unrooted Phylogram of the PPP4/TMP14 family of proteins 

Protein sequences from Arabidopsis, grape-wine (Vitis vinifera), populus (Populus trichocarpa), rice (Oryza sativa), 
Physcomitrella patens, Chlamydomonas reinhardtii and cyanobacteria (Nostoc sp. PCC 7120 and Synechocystis sp. 
PCC 6803) were obtained from the non-redundant (nr) protein database of NCBI (www.ncbi.nlm.nih.gov) and aligned 
using ClustalW (default settings; gap extensions:1; Thompson et al., 1994). The unrooted Phylogram was built from the 
C-terminal 120 amino acids of each mature protein using the programs phylip version 3.67, Protmlk (default settings; 
http://evolution.genetics.washington.edu/phylip.html) and Phylodraw version 0.8 (http://pearl.cs. pusan.ac.kr/ 
phylodraw). 
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Fig 3.1.3 Sequence comparison of the mature PPP4 proteins in Arabidopsis, Oryza, Vitis, Populus, Physcomitrella 

and Chlamydomonas 
The mature amino acid sequence without cTP of the Arabidopsis thaliana PPP4 (At4g01150) was compared with 
related sequences from Oryza sativa (Os08g0430600, Os06g0264800), Vitis vinifera (IDs GI:147805130, 
GI:157349856), Populus trichocarpa (ID GI:118487811), Physcomitrella patens (ID GI:168048886) and 
Chlamydomonas reinhardtii (ID 1860020) using ClustalW (Thompson et al., 1994) and Boxshade. Black boxes indicate 
strictly conserved amino acids, and gray boxes closely related ones. Sequences were obtained from NCBI 
(www.ncbi.nlm.nih.gov and http://genome.jgi-psf.org/cgi-bin). 

3.1.2 Localisation of PPP4 and TMP14 in the thylakoid membrane 

Analysis of the Arabidopsis chloroplast proteome (Kleffmann et al., 2004), indicated that PPP4 and 

TMP14 are localised in the chloroplast and also the analyses of the thylakoid (Friso et al., 2004) 

and the envelope (Fröhlich et al., 2003) proteome found these proteins in the respective fractions. 

To verify the localisation within the chloroplast, Arabidopsis chloroplasts were isolated and then 

fractionated with a sucrose density gradient into thylakoids, stroma and two envelope containing 

fractions. Immuno-detection using specific antibodies against PPP4 and TMP14 (Chapter 2.2.4.1) 

demonstrated that both proteins are enriched in the thylakoid membrane (Figure 3.1.4A). A weak 

signal of the TMP14 antibody can be found in the envelope fractions, but the detected protein seems 

to have a slightly higher molecular weight, which indicates that the obtained signals is unspecific. 

To verify the transmembrane prediction of the TMHMM server, WT thylakoid membranes were 

treated with solutions of chaotropic salts and alkaline pH and the resulting fractions were assayed 

with Western analysis in order to obtain information about the stability of membrane protein 

interactions (Karnauchov et al., 1997). After treatment with NaCl and Na2CO3, which extract 

membrane associated proteins, as seen with the stromal exposed ß-subunit of the ATPase, both 

PPP4 and TMP14 can be found in the membrane fraction, which verifies the bioinformatically 

predicted transmembrane topology (Figure 3.1.4B). However, despite their similar protein 

sequence, anchorage in the membrane differs. Whereas only slight amounts of PPP4 are extracted 

by NaSCN and NaOH, most TMP14 protein can be found in the soluble fraction. The release of 
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TMP14 with NaOH (pH 13) indicates that the majority of interactions anchoring the protein are of 

electrostatic nature (Karnauchov et al., 1997) and thus executed by other proteins. That 

electrostatics might play an important role for TMP14 interaction with other proteins, is supported 

by the amino acid sequence of the N-terminal sequence of the mature TMP14 protein, which 

contains one third (19/57) charged amino acids (5 lysines, 3 arginines, 8 glutamic acids and 2 

aspartic acids). Whereas the very N-terminus contains 5 basic amino acids, the following stretch 

before the predicted transmembrane helices contains all 10 acidic amino acids. In the acidic amino 

acid stretch there are also 8 threonines, of which at least one is phosphorylated (T65, T66; Hansson 

and Vener, 2003), adding to the negativity of this stretch. The extraction of TMP14 by 2 M NaSCN, 

a salt which at this concentration destroys the integrity of the membrane, but not by 2 M NaCl 

suggests that extraction of the TMP14 protein by chaotropic salts, which disrupt hydrophobic 

interactions, can only take place under conditions in which the integrity of the thylakoids is 

destroyed.  

 
Fig 3.1.4 Localisation and topology of PPP4 and TMP14 

(A) Fractionation of chloroplasts. Chloroplasts were isolated via Percoll gradient and after lysis further fractionated on a 
sucrose gradient. Phases were collected and proteins of half of the two envelope fractions and 1/10th of the stroma were 
precipitated with TCA. Chloroplasts corresponding to 2.5 µg and thylakoids corresponding to 5 µg of chlorophyll and 
precipitated fractions were loaded onto SDS-PAGE, transferred to PDVF membrane and immunodetection was carried 
out using antibodies against fraction specific proteins, Lhcb3 (thylakoids), Tic 110 (envelope), RbcL (stroma) as well as 
PPP4 and TMP14. (B) Extraction of PPP4 and TMP14 by solutions of chaotropic salts or alkaline pH. Isolated 
Arabidopsis thylakoids were resuspended at 0.5 mg chlorophyll/ml in buffer (10 mM HEPES/ KOH, pH 7.5) containing 
either 2 M NaCl, 2 M NaSCN, 0.1 M Na2CO3, 0.1 M NaOH or no additive. After incubation for 30 min on ice, the 
assays were separated into membrane fractions (P) and supernatants (S), proteins were separated by SDS-PAGE and 
immuno-labelling was carried out with specific antibodies against AtpB as control for membrane associated proteins, 
Lhcb1 as control for membrane integral proteins, PPP4 and TMP14. 

3.1.3 Knock-out mutants of PPP4 and TMP14 

Gene structures of PPP4 and TMP14 are depicted in Figure 3.1.5A. The predicted intron-exon 

organizations were confirmed by RT-PCR for both genes and the sequences obtained were 
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compared with the coding sequences available on public websites (MIPS: 

http://mips.gsf.de/proj/plant/jsf/athal/searchjsp/index.jsp and TAIR: http://www.arabidopsis.org). 

For TMP14 only the coding sequence annotated as At2g46820.1 could be supported. Insertion lines 

for PPP4 and TMP14 were identified by searching T-DNA insertion flanking databases. The 

presence of the insertion and the exact insertion point were confirmed by PCR with gene and T-

DNA border specific primers and subsequent sequencing of the amplified product. For each, PPP4 

and TMP14 two independent knock-out alleles were obtained and analysed. Both ppp4 alleles are in 

the Landsberg erecta (Ler) ecotype, whereas tmp14-1 is an insertion in Noessen (No-0) and tmp14-

2 in Wassilewskija (WS) background. The lack of PPP4 and TMP14 proteins in the respective 

mutants was confirmed by Western analysis of total leaf protein extract using monospecific epitope 

antibodies (Figure 3.1.5B). However, no significant growth phenotype could be observed in the 

mutants neither under greenhouse nor under climate chamber conditions. 

A 
 

B 

 
Fig 3.1.5 Gene models, T-DNA insertions and their effects on gene product accumulation  

(A) Exons are depicted as open numbered boxes, introns as connecting black line. For each T-DNA mutant used in this 
study, the site and the orientation of the insertion is provided. Except for tmp14-2 all mutant alleles stem from the 
insertion of Dissociation (DS) transposable elements. Both ppp4 alleles are in the Landsberg erecta (Ler) background 
and were found in the IMA DS (ppp4-1; SGT_3_4785) and in the Exotic DS collection (ppp4-2; GT_5_18961). The 
tmp14-1 allele was discovered in the RIKEN DS collection and has Noessen (No-0) background (RATM15-2546-1_H) 
and tmp14-2 has originated from a T-DNA insertion of the pGKB5 T-DNA in the gene of the Wassilewskija (WS) 
ecotype (FLAG_218A11). (B) Western analysis was conducted on total leaf protein extract with PPP4, TMP14 specific 
antibodies and antibodies against Actin as loading control. 
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3.1.4 Localisation of PPP4 in BN-PAGE 

Mass spectrometry (MS) -analysis of barley chloroplast complexes solubilised with ß-

dodecylmaltoside (ß-DM) and separated by Blue Native PAGE (BN-PAGE; Schägger and von 

Jagow, 1991), demonstrated that the barley orthologue of PPP4 (also about 11 kDa) does not 

primarily migrate as a monomer. But as could be seen on the second dimension, where it was 

identified as a Coomassie stained spot, PPP4 migrates at a size slightly smaller than the LHCII 

monomers (about 60 kDa; Granvogl et al., 2006). That PPP4 can be visualised by Coomassie 

staining indicates a high abundance of the protein in the thylakoid membrane, because the majority 

of other proteins stainable with Coomassie are components of the highly abundant photosynthetic 

complexes (Granvogl et al., 2006).  

To study, if these results obtained in barley, hold true also for Arabidopsis PPP4, BN-PAGE was 

carried out with solubilised Arabidopsis thylakoids. To investigate, if the PPP4 complex displays 

detergent-specific extraction properties, solubilisation was carried out independently with two 

detergents: (i) ß-DM, which is routinely used for solubilising thylakoid complexes (Granvogl et al., 

2006) and (ii) digitonin, which had previously been shown to allow the solubilisation of a 

PSI:LHCII super-complex from the thylakoid membrane (Zhang and Scheller, 2004).  

 
3.1.6 PPP4 is involved in complexes in the thylakoid membrane 

(A) Left panel shows BN-PAGE with ß-DM (1.25 %) solubilised thylakoids from WT and ppp4 mutant plants and right 
panel depicts Western blot of the same gel, immuno-decorated with the specific antibody against PPP4. Arrows indicate 
the specific signal in the WT. (B) As in (A) except thylakoids were solubilised with 2.8% digitonin.  
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Complex separation by native first dimensions following solubilisation with ß-DM, demonstrated 

that also Arabidopsis PPP4 migrates just below the LHCII monomers, which runs at about 60 kDa 

(Granvogl et al., 2006). However, as can be seen in Figure 3.1.6B solubilisation with the detergent 

digitonin does result in the extraction of a larger PPP4-containing complex from the thylakoid 

membrane, as PPP4 co-migrates with two complexes on the BN-PAGE. The bigger of the two 

complexes migrates at a size between monomers and trimers (about 140 kDa) of LHCII, whereas 

the smaller one runs just below the LHCII monomers. In the subsequent steps of this thesis all 

solubilisation steps were performed by using digitonin in order to identify further components of 

the two PPP4-containing complexes.  

Consequently, analysis of the second, denaturing SDS-PAGE was carried out and it could be shown 

that unlike in barley, Arabidopsis thylakoids do not contain sufficient PPP4 to be stained with 

colloidal Coomassie, as no spot became visible at the expected size and location. However, by 

comparing the protein spot patterns of silver stained BN second dimensions from WT and ppp4 

thylakoid complexes (Figure 3.1.7) it becomes evident that the protein can be visualised by silver 

staining. The identity of the respective spot in the WT second dimension as PPP4 was verified by 

excision and subsequent MS-analysis of the trypsin digested protein. Moreover, MS analysis 

identified TMP14 as a protein of slightly larger size (Figure 3.1.7, black arrow) than PPP4 (red 

arrow) co-migrating with the larger PPP4 containing complex. The spot co-migrating with the 

smaller complex of PPP4 was identified as TMP14-like (green arrow). For each respective spot the 

identified peptides yielded 46% of sequence coverage for the mature PPP4, 40% for TMP14 and 

41% for TMP14-like (for fragmentation spectra of identified peptides see Chapter 6.1). Subsequent 

Western analyses of the WT second dimension with the available antibodies against PPP4 and 

TMP14 show that both can be found co-localised in four distinct positions. The two lower 

molecular weight complexes are according to the sizes of PPP4-containing complexes as also seen 

in the first dimension and contain the majority of both proteins. TMP14 is mostly co-localised with 

the higher molecular weight complex of the two. The two larger complexes, in which only small 

fractions of PPP4 and TMP14 co-migrate, are at the size of the Cyt b6f monomer and at a size 

slightly smaller than PSII dimers and PSI monomers. Analyses of second dimensions of solubilised 

thylakoids from mutant plants indicate that PPP4 forms a complex of smaller size, if TMP14 is 

absent, whereas TMP14 complex assembly is impaired in the absence of PPP4. However, some 

TMP14 still forms a complex, as detectable by MS analysis of the excised spot at the same position 

as in the WT. Altogether, it can be concluded from analysing thylakoid complexes of WT, ppp4 and 

tmp14 plants that absence of neither PPP4 nor TMP14 affects the abundances and structures of the 
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major photosynthetic thylakoid complexes (neither does the double mutant; data not shown). 

However, the existence of a novel complex probably containing both PPP4 and TMP14 could be 

demonstrated by solubilising thylakoid membranes with digitonin. 

 
Fig 3.1.7 PPP4 co-migrates with TMP14 and TMP14-like  

Two-dimensional separation of digitonin solubilised thylakoid protein complexes by BN/SDS-PAGE. After separation 
of the protein complexes of WT (A), ppp4 (B) and tmp14 (C) on a Blue-Native gel, the composition of their subunits 
was further analysed by subsequent denaturing Tris-Tricine SDS-PAGE. The gels were either stained with silver (A-C) 
or blotted onto PVDF membrane and immunodecorated with TMP14 and PPP4 specific antibodies (A). Silver-stained 
spots as indicated by arrows were excised and analysed by MS-analysis.  Red, black and green arrows indicate spots of 
which the highest abundant protein is PPP4, TMP14 and TMP14-like, respectively. (D) Peptides identified by MS in 
each respective spot are indicated in red. Identification of the macromolecular protein complexes of thylakoid 
membranes is given on the top of gel (A). 
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3.1.5 TMP14 protein levels are decreased in ppp4 mutants 

Because in the previous experiments immuno-detection of TMP14 in the ppp4 mutants (KO 

analysis and BN second dimension) indicated a severe reduction in protein amounts, quantification 

of relative TMP14 levels in total protein extract and in thylakoids was performed by Western 

analysis. Antibodies against Actin were used as loading controls for total protein extracts. The 

application of antibodies against Lhca3 to ensure equal loading of thylakoid proteins was employed, 

because this antibody was used by Khrouchtchova et al., 2005 in their work on TMP14 for the same 

purpose. As can be seen in Figure 3.1.8, TMP14 protein accumulates up to about 75% of WT in 

ppp4 total protein extract. However, the amount of TMP14 integrated in the thylakoid membrane is 

only about 50% in comparison to WT. This indicates that the reduction of TMP14 levels is probably 

due to stabilizing or integrating effects of PPP4 and does not result from changes in TMP14 

expression.  

 
Fig 3.1.8 TMP14 protein abundance in the thylakoid membrane depends on presence of PPP4 

Total protein extract (left panel) and thylakoid proteins (right panel) of Ler and ppp4 plants corresponding to 5 µg of 
chlorophyll and decreasing amounts as indicated in the legend were separated by SDS-PAGE and immuno-detection 
was carried out with specific antibodies against TMP14, PPP4 and Actin, Lhca3 as loading control. 

3.1.6 Investigating the interaction between PPP4 and TMP14 

To verify the interaction of PPP4 and TMP14 two independent approaches were taken. Firstly, 

crosslinking with Bis (Sulfosuccinimidyl) suberate (BS3), a membrane-impermeable crosslinking 

agent with an 11.4 Å spacer arm was carried out and secondly, Co-IP was performed with digitonin 

solubilised thylakoids. 

3.1.6.1 Epitope tagging of PPP4 

Tagged versions of the PPP4 protein were created because of two reasons. Firstly, tagged proteins 

are routinely used for immuno-precipitation experiments, because of the specificity of the 
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commercially available tag antibodies. Secondly, indications for multimerisation of PPP4 

necessitated the creation of a PPP4 of differing size. Therefore, the nucleotide sequences encoding 

the c-myc and the HA epitopes were fused to the 3’ of the PPP4 cDNA sequence. For this, full 

length PPP4 cDNA was inserted into the binary vectors pPCV812ΔNotI-Pily (HA) and 

pPCV812ΔNotI-Lola (c-myc; Chapter 2.2.3.2), which both contain a double 35S promoter upstream 

of the insertion region. Agrobacterium mediated transformation of ppp4-2 plants was carried out 

according to Chapter 2.2.3.3 and transformants were selected with hygromycin. Homozygous T3 

lines were analysed for expression of the transgene by Western analysis of total protein extract, 

using specific antibodies against Actin as loading control, PPP4, HA and c-myc (Figure 3.1.9). 

 
Fig 3.1.9 Transgenic plants expressing epitope tagged PPP4 

The PPP4 cDNA was inserted into the binary vectors pPCV812ΔNotI-Pily (Hemagglutinin; HA) and pPCV812ΔNotI-
Lola (c-myc) flanked by a 35S promoter at the 5’and the respective tag coding sequence at the 3’. (A) Four week old 
WT, ppp4-2 and ppp4-2 plants transformed with both constructs. (B) Transgene expression analysis was carried out on 
total protein extract. PPP4 is overexpressed in all four lines and tags are recognised by the respective antibodies as 
depicted on the right 
 
As can be observed in Figure 3.1.9B the tagged proteins are expressed at higher levels in the 

transgenic plants than the native PPP4 in WT. The resulting tagged PPP4 has an apparent molecular 

weight of about 16 kDa. Because detection with the HA antibody yields some slight unspecific 

bands upon long exposure, work was continued with the 35S::PPP4:c-myc lines # 6 and # 8. To 

obtain plants expressing both native and tagged protein the line #6 was crossed with the Ler WT. 

3.1.6.2 Crosslinking 

Crosslinking is a powerful tool to dissect protein interactions. If putative interaction partners are 

known, the existence of a complex comprising these components can easily be demonstrated by 

crosslinking of proteins in a mutant lacking a specific protein, followed by Western detection using 

antibodies against the expected interaction partner protein and vice versa. Depending on the 
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structure and sequence of the interacting proteins, different crosslinkers are required to detect the 

interaction by covalently linking the interaction partners. Here, Bis (Sulfosuccinimidyl) suberate 

(BS3), a membrane-impermeable, non-cleavable crosslinking agent with an 11.4 Å spacer arm and 

its cleavable analog 3,3´-Dithiobis[sulfosuccinimidylpropionate] (DTSSP), which has a 12 Å spacer 

arm, were successfully employed to yield immuno-detectable PPP4 crosslinking products. 

To investigate the existence of a complex containing TMP14 and PPP4, thylakoid membranes were 

crosslinked with BS3 according to the method described in Chapter 2.2.4.11. The Coomassie-

stained gel shows that protein content and patterns are equal between the different samples (Figure 

3.1.10A). Furthermore, it demonstrates that no unspecific crosslinking events have occurred as the 

protein patterns still resemble those of the untreated thylakoid proteome. In Western analyses the 

monomeric PPP4 can be detected in WT and tmp14 as a strong band of about 11 kDa, in accordance 

with its deduced molecular mass of 11.4 kDa. A further strong band is visible in both samples at 

about 23 kDa and two weaker bands at about 34 kDa and 45 kDa, the sizes indicating that these 

PPP4 containing bands might be originating from crosslinking of components of a PPP4 tetramer. 

Additionally, to these four crosslinking products, four more immuno-reactive bands are present in 

the WT but not in the tmp14 sample. The lack of these extra WT bands in tmp14 demonstrates that 

they stem from a PPP4 TMP14 interaction. Immunodecoration of the same membrane with TMP14 

antibodies shows that monomeric TMP14 can be detected in WT and ppp4 as a weak double band 

of the expected molecular weight of 14 kDa (Hansson and Vener, 2003). A further, strong band is 

visible in both samples at about 28 kDa, suggesting the detection of a crosslinked TMP14 dimer. 

According to the results obtained with the PPP4 antibody, the TMP14 antibody recognises 

additional bands in WT crosslinked thylakoids, which are absent in the ppp4 mutant sample. 

Merging the signals derived from immunodetection with the PPP4 and the TMP14 antibody, the 

bands missing in the mutants overlap in the WT, further indicating that they originate from a 

crosslinked interaction of both PPP4 and TMP14 (Figure 3.1.10A; right panel). That two immuno-

detectable bands appear in WT at about 25 kDa might result from a post-translational modification 

of one of the two interaction partners leading to a slight increase of the size of the crosslinked 

product. In the ppp4 sample two further clear bands are detected by the TMP14 antibody, one at 

about 40 kDa and one at about 45 kDa. Both of the two could be due to the detection of a TMP14 

trimer of a predicted 42 kDa, which might preferentially form in the absence of PPP4. The other of 

the two bands might originate from the interaction of TMP14 with a further unknown protein. As 

this band shows exclusively in the ppp4 mutant, the presence of the interaction might only occur in 

the absence of PPP4.  
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Fig 3.1.10 PPP4:TMP14 and PPP4:PPP4c-myc interactions can be crosslinked with BS3 

(A) Thylakoid proteins of WT, tmp14 and ppp4 mutant plants were crosslinked with BS3, separated by SDS PAGE, 
subsequently either stained with colloidal Coomassie or transferred to PVDF and then immuno-decorated using specific 
PPP4 and TMP 14 antibodies. The signals resulting from detection with the TMP14 and PPP4 antibodies were 
converted into coloured bands (PPP4: red; TMP14: blue) and merged using Adobe Photoshop. (B,C) Western analysis 
of thylakoid extract from WT, ppp4-2, 35S::PPP4:c-myc in ppp4-2 #6, #8, 35S::PPP4:c-myc#6 in Ler in order to 
quantify the relation of TMP14 and PPP4 levels (D) Thylakoid proteins from Ler and ppp4-2 plants expressing 
PPP4:c-myc from a 35S promoter, tmp14 and WT were crosslinked with BS3, separated by SDS-PAGE and immuno-
decorated with the TMP14 and PPP4 antibodies. Numbers on left of TMP14 and on right of PPP4 hybridised blots 
indicate nature of crosslinking products (1: TMP14; 2:PPP4; 3:PPP4:c-myc). 
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When comparing the strength of the monomeric signals with the strength of signals of crosslinked 

products, it becomes obvious that crosslinking of TMP14 has progressed further than that of PPP4. 

Firstly, this could be due to the differences in amino acid sequence between PPP4 and TMP14 and 

the chemical properties of the crosslinker, which reacts with two amino groups on both sides of a 

11.4 Å spacer, and covalently links them. TMP14 contains 12 and therefore five more basic amino 

acid residues than PPP4 in non-membrane spanning regions, which can be employed in the 

crosslinking reaction. Secondly, the higher rate of TMP14 crosslinking could be due to a better 

accessibility of the protein to the crosslinker. TMP14 might be part of the periphery of a bigger 

complex and thus be more exposed to the reactive agent.  

To verify the existence of PPP4 multimers, the crosslinking reaction was carried out with Ler and 

ppp4 plants expressing PPP4:c-myc (Figure 3.1.10D). Here, crosslinking of the overexpressed 

tagged PPP4 occurred at an increased rate as compared to the native PPP4. Accordingly, to allow 

visual separation of crosslinking products, incubation of thylakoids from PPP4:c-myc expressing 

plants with BS3 was reduced from 1 h to 30 min. Detection of PPP4 from PPP4:c-myc expressing 

Ler plants shows that besides the monomers of both PPP4 (Figure 3.1.10D: 2) and PPP4:c-myc (3) 

and the dimer of PPP4:cmyc (3:3) a specific crosslinking product is present at a size smaller than 

the PPP4:c-myc dimer. This probably presents a crosslinked PPP4, PPP4:c-myc interaction (3:2). 

The dimer of the untagged PPP4 cannot be detected here, probably because of the the lower rate of 

crosslinking reactions within the 30 min of incubation time. Crosslinked interactions between 

TMP14 and PPP4 are severely decreased in both PPP4:c-myc expressing backgrounds, as shown by 

immuno-decoration using the TMP14 antibody. 

3.1.6.3 Co-immunoprecipitation (Co-IP) 

To identify interaction partners of membrane proteins by co-immunoprecipitation (Co-IP) it is 

prerequisite to solubilise the membranes in such a way that the protein complexes stay intact. 

Because treatment with digitonin resulted in the detection of two complexes containing PPP4 and 

TMP14 in BN-gels (Figure 3.1.7), solubilisation was carried out with this detergent in order to 

verify the interaction of both proteins and to identify further interactors. As a preliminary 

experiment, Co-IP was carried out with the specific antibodies against PPP4 and TMP14 according 

to the method described in Chapter 2.2.4.12. However, only the TMP14 antibody was successfully 

employed for precipitation of the respective protein. Therefore, co-immunoprecipitation was 

performed with thylakoids of WT and tmp14 mutant plants with this antibody in order to 

investigate, if also PPP4 can be precipitated and to ensure that precipitation of PPP4 depends on the 

presence of TMP14 and not on an unspecific interaction of the TMP14 antibody with the similar 
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PPP4 protein. Although Western analyses of tmp14 total protein extracts (3.1.1.3 and 3.1.1.5) had 

not indicated any cross reactions of the specific antibodies, the absence of a cross reaction of the 

TMP14 antibody with the native PPP4 protein had to be established. According to Figure 3.1.11A 

immunodecoration with the TMP14 antibody yields a signal in the WT input and Co-IP lane, 

demonstrating that the TMP14 antibody was successfully employed for precipitation of the native 

protein. Indeed, using the PPP4 antibody a signal is visible in the all lanes except for the tmp14 Co-

IP lane, demonstrating that precipitation of PPP4 with the TMP14 antibody occurs only in the 

presence of TMP14. A control immuno-decoration with the PSI-F antibody results solely in 

detectable signals in the input and not in the Co-IP lanes, showing that the detection of PPP4 in the 

WT immunoprecipitate is not due to contamination with other thylakoid proteins. 

To identify interaction partners besides PPP4, the co-immunoprecipitate was analysed by MS. As 

MS analysis is very sensitive and thus prone to measure the slightest contaminations, the precipitate 

from tmp14 thylakoids was used as a negative control. Additionally, the co-immunoprecipitate of 

TMP14 from the ppp4 thylakoids was analysed, because additional TMP14 crosslinking signals had 

appeared in this mutant, which were not present in the WT (Figure 3.1.10A). However, MS analysis 

only detected TMP14 in this precipitate, which might be due to the disbandment of the interaction 

of TMP14 with the unknown protein by the solubilisation with digitonin. As expected from Western 

analysis the WT sample contained TMP14 and the co-precipitated PPP4. 

In order to test if also the reciprocal precipitation of TMP14 with PPP4 is possible, thylakoid 

membranes of WT, Ler and ppp4 expressing PPP4:c-myc were isolated and Co-IP was performed 

with either antibodies against TMP14 or c-myc (Figure 3.1.11B). Using the TMP14 antibody both 

PPP4 forms can be co-precipitated, however with a bias to the native protein, when both forms are 

present. This underlines the results obtained from crosslinking of thylakoid proteins in the PPP4:c-

myc overexpressing backgrounds, where interaction of TMP14 with PPP4 seemed to be suppressed 

(Figure 31.1.10D). With the c-myc antibody the native PPP4 can be precipitated in the presence of 

PPP4:c-myc. However, precipitation of detectable amounts of TMP14 with the c-myc antibody was 

not possible. This could be due to a displacement of the interacting TMP14 protein by this antibody. 
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Fig 3.1.11 PPP4 co-precipitates with TMP14 and PPP4:c-myc 

(A) Thylakoid membranes from WT (No-0) and tmp14 mutants at a concentration of 1.5 mg chlorophyll ml-1 were 
incubated with 1/6th volume of specific antibodies against TMP14 for 2h at 4°C and then treated with 2.5% digitonin for 
1h at 4°C. Solubilised complexes were precipitated with ProteinA-Agarose by o/n end over end mixing at 4°C and 
following centrifugation. The pellet was washed five times and bound proteins were eluted by adding boiling SDS-
PAGE loading dye. Thylakoid membrane (T) and immunoprecipitated (P) proteins were separated by SDS-PAGE, 
transferred to PDVF membrane and immuno-decorated with specific antibodies against TMP14, PPP4 and PSI-F. (B) 
Co-IP was carried out with thylakoid proteins from WT, Ler and ppp4-2 plants expressing PPP4:c-myc as described in 
(A) with antibodies against TMP14 and c-myc.  

3.1.7 TMP14 and PPP4 are not stably associated with any of the main photosynthetic 

complexes 

In earlier work, TMP14 was reported to be a novel subunit of PSI based on the results that it co-

migrated solely with PSI in both BN gels and sucrose gradient fractionations (Khrouchtchova et al., 

2005). It was therefore named PSI-P. This work also showed that TMP14/ PSI-P protein was absent 

in plants lacking the L and G subunits of PSI and that its levels were increased in a psao RNAi line. 

Because the results from BN gels, crosslinking and Co-IP experiments demonstrate that TMP14 is 

forming a complex with PPP4 and is not associated with any of the four major thylakoid complexes, 

two further experiments from the work of Khrouchtchova et al. were repeated to confirm that 

TMP14 is not associated with PSI and to investigate, if its levels as stated in the previous work 

depend on the presence of L and O subunits of PSI. Therefore, PSI was isolated by sucrose gradient 
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fractionation and Western analysis was carried out with antibodies against TMP14, PPP4 and PsaF. 

Figure 3.1.12A demonstrates that TMP14 and PPP4 can be detected in the thylakoids, but not in the 

PSI isolation, thereby confirming the results gained from BN gel analysis in this thesis (Chapter 

3.1.4). For the second experiment, thylakoid proteins were isolated from psal (SALK_000637), 

psao (SALK_021621), tmp14, ppp4 mutant plants and the corresponding WT ecotypes, separated 

by SDS-PAGE and Western analysis was carried out with specific antibodies against TMP14, 

PPP4, PsaL and PsaO (Figure 3.1.12B). Lhca3 hybridisation was used as loading control as in 

Khrouchtchova et al. (2005). However, contrary to their results, TMP14 levels are neither changed 

in the psal nor the psao, but are altered in the ppp4 mutant background. 
 

  
Fig 3.1.12 TMP14 and PPP4 are not constitutive components of one of the thylakoid photosynthesis complexes 
 
(A) PSI was isolated from WT thylakoids via sucrose gradient centrifugation. Thylakoid and PSI proteins according to 
5 µg of chlorophyll were separated by SDS-PAGE and Western analysis was carried out using specific antibodies 
against PsaF, TMP14 and PPP4. (B) Thylakoid proteins according to 5 µg of chlorophyll of the three ecotypes Col-0, 
Ler, No-0 and the four mutant lines psal, psao, ppp4 and tmp14 were separated by SDS-PAGE and Western analysis 
was performed with antibodies depicted on the right. (C) Immuno-detection of TMP14 and PPP4 in Col-0, Ler, hcf136, 
petC, psad1/d2, atpd, ppp4 and tmp14. The applied antibodies are depicted on the right. Total protein extract 
corresponding to 40 µg of protein was loaded each. 
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Additionally, it was tested, wether PPP4 and TMP14 belong to one of the other three main 

photosynthetic complexes. Therefore, total protein extracts were isolated from the PSII deficient 

hcf136 mutant (Plücken et al., 2002), the Cyt b6f deficient petc mutant (Maiwald et al., 2003), the 

PSI deficient psad1 psad2 double mutant (Ihnatowicz et al., 2003) and the ATP-synthase deficient 

atpd mutant (Maiwald et al., 2003), all four grown heterotrophically on sucrose containing medium. 

Additionally, total protein was extracted from tmp14, ppp4 and the two ecotypes Col-0 and Ler, 

which are the respective ecotypic backgrounds of hcf136, psad1 psad2, atpd and petc, ppp4. These 

plants were grown under the same conditions as the complex knock-out mutants.  

If TMP14 and PPP4 were constitutively associated with one of the complexes, their lack would 

cause a destabilisation of these proteins, then leading to a severe decrease in TMP14 and PPP4 

protein levels. However, Western analysis with the respective antibodies reveals that PPP4 is only 

slightly reduced in the mutants lacking PSII, the Cyt b6f complex and PSI and that the apparent 

reduction can be due to less protein loaded, as also the Actin control gives a slightly weaker signal 

(Figure 3.1.12C). TMP14 levels show also a decrease in the same three mutant backgrounds, but 

more significantly than PPP4, which could indicate a differential regulation of both proteins 

3.1.8 Photosynthetic parameter of WT, ppp4, tmp14, ppp4 tmp14 and PPP4:c-myc 
overexpressors 

Both mutant alleles ppp4-1 and ppp4-2 exhibit a decrease in the effective quantum yield of PSII 

(ΦII, (Fm’-F0)/Fm’) and an increase in PQ pool reduction as indicated by the parameter 1-qP (1-

[(Fm’-Fs)/(Fm’-F0)]) (Table 3.1.1A). The measurement was carried out with the PAM 101/103 

chlorophyll fluorometer and plants were illuminated with 80 µmol photons m-2 s-1 for 15 min before 

determining photosynthetic parameters by giving an 800 ms saturating light pulse of 4000 µmol 

photons m-2s-1. Under these conditions the tmp14 mutant showed no differences in parameters 

compared to WT. 

To investigate the effect of the tmp14 mutant background on photosynthetic parameters in the ppp4 

mutant and additionally to test complementation of the PPP4:c-myc construct, Chl a measurements 

and determination of P700 oxidation rate were carried out with tmp14-1, ppp4-1, a cross of both 

lines and the PPP4:c-myc overexpressing plants using the Dual-PAM-100 fluorometer. To exclude 

the influence of ecotypical differences in photosynthetic parameters between Ler (background of 

ppp4-1) and No-0 (background of tmp14-1) on the results obtained with the double mutant, WT 

plants of both genetic backgrounds and two double mutants as well as one WT segregating from 

one heterozygous double mutant were measured. Ecotypical differences between Ler and No-0 

have already been described for the phytochrome-mediated response (Magliano et al., 2005). 



 
3. Results 

 
 

  
46

However, all three WT showed identical values and no differences were detected between the two 

double mutants. Therefore, ecotypical differences between Ler and No-0 regarding the 

photosynthetic parameters as measured in this thesis, could be excluded. Photosynthetic parameters 

were determined after light adaption of the plants to two different actinic light intensities. To 

investigate photosynthetic activity of mutants and overexpressors under low light, plants were 

illuminated with actinic light of 77 µmol photons m-2 s-1 (Table 3.1.1B) before determining Chl a 

fluorescence and P700 absorption parameters. For high light 1052 µmol photons m-2 s-1 was applied 

(Table 3.1.1C). In order to determine Chl a fluorescence parameters, plant were light adapted for 

15 min. P700 oxidation rate was measured after 5 min of light adaption.  

The results indicate that changes in photosynthetic parameters of ppp4 are exacerbated in the ppp4 

tmp14 double mutant. In detail, after low actinic light illumination the values for 1-qP and 

ΔA/ΔAmax are slightly increased whereas NPQ ((Fm-Fm’)/Fm’) andΦII are slightly decreased in both 

ppp4 and the double mutant. In comparison to WT parameters measured in the tmp14 mutant show 

the same trend as for ppp4 and the double mutant, but for this mutant values are not significantly 

changed. When illuminated with high actinic light, only the ΔA/ΔAmax parameter remains 

significantly changed in ppp4 and the double mutant as compared to the WT, but contrary to the 

increase observed in low light this parameter is decreased. Also the NPQ appears to be lower, but 

differences from WT are not significant. The 35S::PPP4:c-myc complements all significant 

changes, but values remain below WT at lower actinic light intensities for ΦII and 1-qP. That values 

are different from WT in these plants might be due to two possibilities. (i) The higher abundance of 

PPP4 in the 35S::PPP4:c-myc lines could have a direct effect on photosynthetic parameters. (ii) 

The tagged protein is not fully functional, because of differing properties caused by the tag. That 

PPP4:c-myc at least shows a different binding affinity to TMP14 in comparison tothe native PPP4 

has been shown by crosslinking and Co-IP. 

To exclude that differences in pigment levels are responsible for the NPQ phenotype of ppp4 plants, 

a quantitative analysis of leaf pigments was conducted, but only slight, significant increases could 

be observed in violaxanthin (WT: 33 ± 2 µmol per mmol chl; ppp4: 36 ± 1), lutein (WT: 123 ± 2;  

ppp4: 131 ± 2) and ß-carotene levels (WT: 79 ± 1; ppp4: 84 ± 3). The lumenal localised 

violaxanthin de-epoxidase is activated by low pH (Hager, 1969) and therefore the increase in 

violaxanthin suggests that the decrease in NPQ might be due to a defect in lumen acidification. 
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Table 3.1.1 Photosynthetic parameters of tmp14, ppp4, ppp4 tmp14 and 35S::PPP4:c-myc plants 
(A) Chl a fluorescence parameters of Ler, ppp4-1 and ppp4-2 as determined by measurement with the PAM 101/103 
chlorophyll fluorometer after 15 min of 80 µmol photons m-2 s-1 actinic light. (B) Chl a fluorescence and P700 
absorption parameters of WT, tmp14-1, ppp4-1, ppp4 tmp14 plants and in two lines overexpressing PPP4:c-myc as 
measured with Dual-PAM 100 after 5 min (P700) or 15 min (Chl a) of 77 µmol photons m-2 s-1 actinic light (settings: 
actinic light, 5; measuring light, 5; saturation pulse: 5) (C) Chl a fluorescence and P700 absorption parameters in WT, 
tmp14-1, ppp4-1, ppp4 tmp14 plants and in two lines overexpressing PPP4:c-myc as measured with Dual-PAM 100 
after 5/ 15 min of 1052 µmol photons m-2 s-1 actinic light (settings: actinic light, 17; measuring light, 5). Values are 
means (± SD) of 15 independent measurements for WT (Ler: 5, No-0: 5,Ler x No-0: 5), 10 for ppp4 tmp14 and 5 for 
the other genotypes.  
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A decrease in the ΔA/ΔAmax and NPQ parameters are indicative for a defect in cyclic electron flow 

(CEF; Munekage et al.; 2002, DalCorso et al., 2008) and as at least ΔA/ΔAmax is significantly 

reduced in ppp4 and the double mutant, two assays were performed in order to elucidate a function 

of PPP4 and TMP14 in the cyclic electron transport. Firstly, an intact leaf assay for determining 

CEF was carried out by measuring the transient increase in NPQ after onset of low light. This 

measurement relates to the hypothesis that NPQ induction during the activation period of 

photosynthesis is caused by the transient acidification of the thylakoid lumen when CEF activity is 

higher than the activity of the ATP-synthase (DalCorso et al., 2008). Secondly, to assess electron 

transfer from ferredoxin (Fd) to PQ during CEF around PSI, Fd-dependent reduction of PQ was 

monitored in situ as an increase in chlorophyll fluorescence under low measuring light. In WT, the 

addition of NADPH and Fd to ruptured chloroplasts induces a marked and rapid increase in 

chlorophyll fluorescence (Munekage et al., 2002; DalCorso et al., 2008). In this in situ assay 

NADPH is thought to transfer electrons to Fd via the reverse reaction of the Fd:NADPH 

oxidoreductase (FNR). In the intact leaf assay however, ecotypic differences could be observed, as 

No-0 has significantly lower transient NPQ than Ler. Therefore, a phenotype of the double mutant 

could at least partly be due to the genetic ecotypic background. As the ppp4 mutant alone already 

shows a phenotype in the described changes of photosynthetic parameters, the transient increase in 

NPQ was measured with ppp4-2 and Ler. When grown in the climate chamber at a 12h/12h light 

dark cycle, ppp4 plants only show a slight decrease in NPQ in the steady state phase (Figure 

3.1.13A). However, if measurements are performed with plants grown in continuous light, the 

transient increase in NPQ is significantly lower in ppp4 as compared to WT (Figure 3.1.13B). This 

could indicate that acclimation of the plant to continuous light includes PPP4-dependent non-

photochemical quenching. 

In the in situ assay, all three WTs (Ler, No-0, Ler x No-0) show the same extent and kinetics of the 

increase in chlorophyll fluorescence. Therefore, only one WT curve is depicted in Figure 3.1.13C. 

The kinetic of the chlorophyll fluorescence increase is slower in ppp4 tmp14 double mutant, yet no 

significant changes in the final level of chlorophyll fluorescence can be detected. However, Chl a 

fluorescence already increases in response to the addition of NADPH.  
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Fig 3.1.13 Cyclic electron flow measurements 

(A+B) Time courses of induction and relaxation of NPQ monitored during dark-to-light (80 µmol photons m-2 s-1, white 
bar) transition of Ler (filled circles) and ppp4-2 (open squares) grown in a 12 h/12 h dark light cycle (A) or in 
continuous light (B). The 3 min light period (white bar) was followed by a 2 min dark period (black bar). Values are 
means (± SD) of five independent measuremts each per time point (C) Quantification of CEF in situ. Increases in 
chlorophyll fluorescence were measured in ruptured chloroplasts under low measuring light (1 µmol photons m-2 s-1), 
after the addition of NADPH and Fd. At this light intensity, the fluorescence level should predominately reflect the 
reduction of plastoquinone by cyclic electron transport from ferredoxin, not by PSII photochemistry (Munekage et al., 
2002). 

3.1.9 Topology of PPP4 and TMP14 

As mentioned afore, TMP14 was first described, because of its posttranslational modification by 

phosphorylation of the N-terminus (Hansson and Vener, 2003), which was found by trypsin 

digestion of all stromal side exposed proteins and subsequent enrichment of phosphopeptides. 

Because TMP14 has two predicted transmembrane domains, this indicates that both termini are 

stromal exposed. To determine PPP4 and to verify TMP14 topology, thylakoids were subjected to 

mild digestion with trypsin for 10 min with the aim to solely target tryptic sites on the stromal side 

of the thylakoid membrane. Both proteins contain multiple trypsin cleavage sites in their N-

terminus, which also bears the sequence of the epitopes, against which specific antibodies were 

made. Therefore, stromal side treatment with trypsin of a topology in which the N- and C-termini of 
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the proteins were exposed to the stromal side (topology 1, Figure 3.1.14B), would result in 

destruction of the epitopes and absence of detectability. Because PPP4 has one tryptic site in the 

transmembane regions connecting loop, treatment with trypsin on a stromal exposed loop topology 

(topology 2) would result in detectable product of 5 kDa for PPP4 with the specific antibody. The 

tryptic digest was additionally performed with thylakoids of tmp14 and ppp4 mutants in order to 

evaluate if the absence of one interaction partner would change accessibility of the other to the 

protease, and with PPP4:c-myc expressing plants as a confirmation for PPP4 topology. Because the 

TMP14 antibody reacts unspecifically with chlorophyll on the PVDF membrane, thylakoid proteins 

were precipitated with acetone after the trypsin treatment to avoid this unspecific interaction during 

Western detection. The reaction of the antibody with the low molecular chlorophyll could interfere 

with the detection of smaller TMP14 degradation products. As an indication that tryptic proteolysis 

took place only at the stromal side of the membrane and no unspecific cleavage of lumenal proteins 

occurred, Western analysis of the treated thylakoid extracts was performed with an antibody against 

the lumenal protein PsbO, a component of the PSII oxygen evolving complex (Figure 3.1.14A). 

This shows that after 10 min of digestion PsbO remains intact. Hybridisation with an antibody 

against the stromal side localised AtpB confirms activity of trypsin. Western detection with the 

specific antibodies against TMP14 and PPP4 clearly indicates that both proteins are protected from 

trypsin treatment, because their amount does not decrease, but even seems to increase after the 

protease treatment. This result could be due to a negative effect of associated proteins on the 

accessibility of PPP4 and TMP14 to the detergent SDS in the loading buffer after acetone 

precipitation. If the associated proteins, which together with PPP4 and TMP14 precipitate in 

acetone as a partly insoluble fraction, are partially removed by proteolytic cleavage before the 

precipitation, higher amounts of PPP4 and TMP14 would be soluble. A 10 min trypsin treatment of 

TMP14 results in a detectable fragment of smaller size, which indicates that the TMP14 N-terminus 

with its 8 tryptic sites is heavily protected and cleavage might have occurred at an arginine residue 

two amino acids upstream of the predicted transmembrane domain or at the only lumenal exposed 

tryptic site. Digested PPP4 exhibits one degradation product after 10 min of slightly smaller size. 

Therefore topology 1 with stromal localised N- and C-terminus appears likely. Verification of this 

result arises from PPP4:c-myc digestion. The amount of detectable c-myc is decreasing and an 

increasing amount of normal sized PPP4 indicates that the c-myc tag is cleaved off. 
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Fig 3.1.14 Determination of PPP4 topology by stromal side tryptic digest of thylakoid proteins 

(A) Thylakoids were isolated from WT, 35S::PPP4:c-myc, ppp4 and tmp14 and incubated with 10 µg/ml trypsin. 
Samples were taken at 0, 10 and 20 min after the addition of trypsin and proteins were separated by SDS-PAGE. 
Immuno-detection was carried out with specific antibodies against AtpB, as a control for trypsin activity, PsbO as a 
control for absence of trypsin in the lumen, TMP14, PPP4 and c-myc. Asterisks indicate degradation products. (B) 
Schematic drawings of probable topologies. Scissors indicate possible luminal accessible tryptic sites. Red boxes 
indicate location of epitopes used for antibody production. Dashed green line stands for c-myc tag fused to PPP4. For 
PPP4 topology 1 could be supported. 
 

Additionally, lack of PPP4 does not result in enhanced degradation of TMP14 or vice versa. Both 

proteins even seem to be more protected in the absence of the interaction partner, as no degradation 

product can be detected in the respective other mutant. Interestingly, the increase by trypsin 

treatment of Western detectable TMP14 is even higher in the ppp4 mutant background as compared 

to WT, indicating that more TMP14 precipitates in SDS-loading dye in the absence of PPP4, 
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speculatively because of an increased association with other hydrophobic proteins. Two results 

obtained by this experiment suggest that TMP14 and PPP4 are associated with other proteins in the 

thylakoid membrane: (i) hardly any digestion of PPP4 and TMP14 takes place despite the high 

number of tryptic sites in the experimentally shown stromal localised N- and C- termini (TMP14: 8 

N-terminal, 3 C-terminal; PPP4: 3 N-terminal, 3 C-terminal). (ii) PPP4 and TMP14 from untreated 

thylakoids seem to only be partly solubilised in Laemmli buffer, whereas solubilisation is markedly 

increased if samples are treated with trypsin.  

3.1.10 Analysis of thylakoid protein composition 

The analysis of thylakoid proteome 

composition of WT, ppp4, tmp14 and 

ppp4 tmp14 does not show any highly 

significant differences between WT 

and mutants as can be seen in Figure 

3.1.15A. However, PGR5 content is 

lower in the No-0 background, which 

could account for the differences 

observed in the transient increase in 

NPQ after light onset between the 

different ecotypes, as described in 

Chapter 3.1.8. Additionally, a slight 

increase in PGRL1 levels can be 

observed in all mutant backgrounds, 

especially in the double mutants. To 

investigate, whether PPP4 and TMP14 

protein levels are altered in the 

pgrl1ab mutant, chloroplast proteins 

were isolated from WT and pgrl1ab 

double mutants. Immunodetection with 

specific antibodies against PPP4 and 

TMP14 showed no differences in 

protein levels as compared to WT, 

which can be seen in Figure 3.1.15B.  

  
Fig 3.1.15 Thylakoid proteome analysis  

(A) Thylakoid protein composition in Ler, No-0, Ler x No-0, 
ppp4-1, tmp14-1 and two independent homozygous ppp4 tmp14 
lines. Thylakoids were extracted and protein according to 5 µg of 
chlorophyll was separated by SDS-PAGE. Replicate filters were 
hybridised with specific antibodies as depicted on the right. (B) 
Chloroplasts were isolated from WT and pgrl1ab mutant plants 
and proteins according to 5 µg of Chl were separated by SDS-
PAGE and replicate filters were hybridised with PPP4 and 
TMP14. 
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3.1.11 Location of thylakoid proteins in WT and ppp4 tmp14 

To identify the specific localisation of PPP4 and TMP14 within the thylakoid membrane and to 

investigate, if a lack of PPP4 and TMP14 causes changes in the spatial arrangement of thylakoid 

complexes, thylakoids of WT and the ppp4 tmp14 double mutant were fractionated into grana, 

intermediate membranes and stromal lamellae by a short treatment with the detergent digitonin and 

subsequent differential centrifugation (Chapter 2.2.4.8). The rational of this experiment is that the 

low concentration of digitonin and the short solubilisation time, followed by dilution, leads to the 

detachment of vesicles from exposed regions of thylakoid membranes. With differential 

centrifugation different sized vesicles can be precipitated. The 10000g (10K) fraction mainly 

consists of the granal thylakoids, the 40000g (40K) of intermediate/ margin regions and the 

150000g (150K) of stromal lamellae. In this work, additionally the proteins from the supernatant 

after centrifugation at 150000g for 90 min were isolated by acetone precipitation, to see if PPP4 and 

TMP14 were present. The membrane proteins contained within in this fraction are due to a 

preferential extraction by digitonin. The Coomassie stained gel and the Western results in Figure 

3.1.16 demonstrate that the analysed subunits of photosynthetic complexes are primarily found 

according to their known localisation in both WT and ppp4 tmp14. As such no significant 

difference in the spatial organisation can be assigned. However, the chlorophyll a/b ratio, which 

was measured from all precipitated fractions in three independent fractionation experiments, 

appears to be significantly lower in the stromal fraction of the ppp4 tmp14 mutant, indicating that 

more PSII antenna is present. This is underlined by the coomassie staining of the gel, which 

demonstrates a higher amount of LHCII in the stromal lamellae fraction of the ppp4 tmp14 mutant.  

Western analysis of the different thylakoid fractions with the specific antibodies against PPP4 and 

TMP14 demonstrate a localisation of both proteins in the stroma lamella regions of the thylakoid 

membrane, whereby the exclusion of TMP14 from the other regions is more evident than for PPP4. 

The supernatant, which contains lumenal, contaminating stromal and solubilised membrane proteins 

as well as thylakoid membrane threads, also includes a substantial amount of PPP4 and TMP14 as 

can be seen in the Coomassie stained gel, which shows two bands of the size of PPP4 and TMP14 

in the WT, which are lacking in the double mutant (Figure 3.1.16, asterisks). Interestingly, two 

further proteins can be identified by immunodetection to be present in the supernatant, the 

ferredoxin:NADPH oxidoreductase (FNR) and PGRL1, a protein involved in the cyclic electron 

flow around PSI (Dal Corso et al., 2008), which functions in the PGR5 dependent pathway. 
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Coomassie stained bands from the supernatant were analysed by MS and the identity of the putative 

PPP4 and TMP14 bands was verified. Additionally, the Coomassie stained protein bands running 

just above the 34 kDa marker band, contained both forms of FNR, the thylakoid associated 

(At5g66190) and the soluble protein (At1g20020) as well as PGRL1. Results obtained from 

analysing the supernatant indicate that the complex of PPP4 and TMP14 is easily extracted by 

digitonin. This could be due to a localisation in exposed regions with high lipid to protein ratio. 

Moreover, also PGRL1 and thylakoid associated FNR are located in thylakoid regions with such 

properties.  

 

 

 

Fig 3.1.16 

Fractionation of thylakoids  

 Thylakoids were extracted 
from WT and ppp4 tmp14 
double mutants and treated 
with 0.1 % digitonin for 1 
min, followed by dilution in 
10 volumes and differential 
centrifugation at 10000g 
(10K; grana), 40000g (40K; 
intermediate membranes) and 
150000g (150K; stroma 
lamellae). Soluble protein 
was precipitated with 5 
volumes of 100% acetone. 
Proteins according to 5 µg of 
chlorophyll from untreated 
thylakoids (T), grana (10 K), 
intermediate membranes (40 
K), stroma lamellae (150 K) 
and precipitated supernatant 
protein originating from 40 
µg of treated thylakoids (sn) 
were separated by SDS-
PAGE and replicate filter 
were hybridised with specific 
antibodies as depicted on the 
right. Numbers underneath 
state Chl a/b ratio of fractions 
of three independent 
experiments. 
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3.1.12 Investigating phosphorylation of thylakoid proteins in WT and ppp4 tmp14 

Because TMP14 has previously been described as a phospho-protein phosphorylated at a threonine 

residue (Hansson and Vener, 2003) and detection with a phospho-threonine antibody has been 

published (Khrouchtchova et al., 2005), WT 

and ppp4 tmp14 thylakoids were isolated from 

dark (D), low light (LL) and far-red (FR) 

adapted plants in the presence of the 

phosphatase inhibitor NaF to investigate 

phosphorylation. Western analysis was 

performed with phospho-threonine antibodies 

(Figure 3.1.17), but no immuno-detectable 

band of the size of TMP14 could be identified 

that was present in WT, but absent in the 

double mutant. However, the specificity of 

phospho-threonine antibodies highly varies 

between commercially available batches. 

Instead of detecting phosphorylated TMP14, 

this experiment led to the identification of a 

slightly higher phosphorylation state of LHCII 

and the PSII components CP43, D1 and D2. 

This is in line with the slightly higher 

reduction rate of the plastoquinone pool in the 

ppp4 tmp14 double mutant, as determined by 

the PAM fluorometer (Chapter 3.1.8), because 

thylakoid kinase activity is known to be 

induced by reduction of the plastoquinone 

pool (Ihnatowicz et al., 2008).  

3.1.13 Characterisation of PPP4-like and TMP14-like 

Both TMP14-like and PPP4-like are predicted by ChloroP to have an N-terminal chloroplast transit 

peptide, which contains for TMP14-like i 55 amino acids and for PPP4-like is 51 amino acids. Both 

proteins have been identified in the chloroplast by shot-gun proteomics (Kleffman et al., 2004) and 

the presence of TMP14-like in the thylakoid membrane was shown by Friso et al., 2004 by the 

Fig 3.1.17 Phosphorylation pattern in WT and ppp4 

tmp14  

Thylakoids were isolated from WT and tmp14 ppp4 
plants adapted to dark (D), low light (LL) and far-red 
light (FR) in the presence of 10 mM NaF. Proteins were 
separated by SDS-PAGE and either stained with 
Coomassie or transferred to PVDF membrane followed 
by hybridisation with phospho-threonine antibodies from 
Cell Signaling (New England Biolabs; Frankfurt, 
Germany). 
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same method. Localisation of both proteins in the chloroplast was verified with transient expression 

of a C-terminal RFP fusion in Arabidopsis protoplasts (Figure 3.1.18A). Here, the auto-

fluorescence of the chlorophyll (Auto) and the RFP-fluorescence of the fusion proteins overlap as 

can be seen in the merged pictures. Expression analysis using Genevestigator shows that the gene 

encoding TMP14-like has a similar expression pattern as PPP4 and TMP14 and also two other 

genes encoding photosynthetic proteins PetC and Lhca1 (Figure 3.1.18B). It is also highest 

expressed in green tissue, whereas PPP4-like expression peaks in seeds and in root tips. The 

calculated molecular weight of the mature protein is 11 kDa for TMP14-like and 15.7 kDa for 

PPP4-like. 

 
Fig 3.1.18 Gene expression and gene product localisation of TMP14-like and PPP4-like 
(A) Arabidopsis protoplasts were transiently transfected by polyethylene glycol-mediated DNA uptake with the fusion 
constructs of the full coding sequence with dsRED and analyzed by using fluorescence microscopy. In the upper panels, 
the Differential Interference Contrast (DIC) view of the protoplasts is displayed. The second and third from the top 
show auto-fluorescence of the chlorophyll and RFP fluorescence, respectively and the lower panel shows a merged 
image of the latter. Scale bar, 20 μm. Organ and growth stage specific gene expression of PPP4, TMP14, TMP14-like 
and PPP4-like was analysed with Genevestigator. PetC encoding the Rieske subunit of Cyt b6f and Lhca1 were used as 
control for photosynthetic gene expression. All gene-level profiles were normalized for colouring in such way that for 
each gene the highest signal intensity obtains value 100% (black) and absence of signal obtains value 0 % (white).  
 

The gene structures of PPP4-like and TMP14-like are depicted in Figure 3.1.19A and identification 

of intron-exon structure was performed as described in Chapter 3.1.3 for PPP4 and TMP14 

insertion lines. One T-DNA insertion line each for TMP14-like and PPP4-like could be identified 

by screening T-DNA insertion flanking databases. The presence of the insertion and the exact 

insertion point were confirmed by PCR with gene and T-DNA border specific primers and 
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subsequent sequencing of the amplified product. The absence of transcript was verified by RT-PCR 

using primer combinations up- and downstream of the insertions (Figure 3.1.19B). Furthermore, 

photosynthetic parameters were determined in tmp14-like and ppp4-like, but no significant 

difference to WT could be detected (data not shown). Because the TMP14-like protein migrates 

with the smaller PPP4 containing complex as shown by MS analysis of second dimension silver 

stained protein spots (Figure 3.1.7), crosslinking with BS3 was carried out with thylakoids from 

WT, tmp14, tmp14-like and ppp4-like plants (Figure 3.1.19C), but changes in PPP4 crosslinking 

products are only visible in the tmp14, but not in the other two mutant backgrounds. 

 

  

Fig 3.1.19 T-DNA insertion lines of TMP14-

like, PPP4-like/ Pattern of PPP4 in crosslinked 

thylakoids of these mutants 

(A) Exons are depicted as open numbered boxes, 
introns as connecting black line. For each T-DNA 
mutant used in this study, the site and the 
orientation of the insertion is provided. In tmp14-
like the concerned gene is disrupted by insertion 
of the ROK2 T-DNA. This line was identified in 
the SALK T-DNA collection as SALK_052057. 
The ppp4-like mutant carries an insertion of the 
pCSA110 T-DNA and was identified in the 
Syngenta SAIL-collection as SAIL_1240_C05. 
The T-DNA insertions are not drawn to scale. (B) 
RT-PCR analysis was performed on the 
transcripts of both WT and mutant plants with 
gene specific primers upstream (1) and 
downstream (2) of the insertion and ACTIN1 
primers as positive control. (C) Thylakoid 
proteins from WT, tmp14, tmp14-like and ppp4-
like were isolated and crosslinked with BS3, 
separated by SDS-PAGE and immunodetection 
was carried out with the PPP4 antibody. 
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3.2 Characterisation of PPP1 

The Arabidopsis protein Putative Photosynthetic Protein 1 (PPP1) is homologous to AtCSP41, of 

which the spinach orthologue was described to be a member of the complex that binds the 3’ stem 

loop of the petD transcript and cleaves specifically within this structure (Yang et al., 1996; Yang 

and Stern, 1997; Bollenbach and Stern, 2003). Orthologues of both PPP1 and CSP41 were co-

purified with the plastid encoded RNA-polymerase (PEP) in Sinapis alba (Pfannschmidt et al., 

2000) and the plastid 70S ribosome in Chlamydomonas reinhardtii (Yamaguchi et al., 2003). 

Additionally, in Arabidopsis both proteins have been found co-migrating with the ribosomal 50S 

proteins L31 and L5 in native gels (Peltier et al., 2006). Taken together, these results strongly 

suggest a putative function of PPP1 in plastid gene expression.  

3.2.1 Gene expression, protein structure and localisation 

It was shown that the expression of PPP1 (At1g09340), but not of the homologous AtCSP41 

(At3g63140) is co-regulated with those of nuclear photosynthetic genes (supplementary data, Biehl 

et al., 2005). However, the Digital Northern analysis employing Genevestigator states that the 

expression of both genes is highest in green tissue (https://www.genevestigator.ethz.ch). PPP1 and 

AtCSP41 derive from a common ancestor of cyanobacterial origin and the encoded proteins have 

diverged to such extent that in Arabidopsis the homology of PPP1 to AtCSP41 is relatively 

moderate (35% identity and 53% similarity; Yamaguchi et al., 2003). The three dimensional protein 

structures of PPP1 and AtCSP41 can be modelled, as the proteins belong to the short chain 

dehydrogenase/ reductase family of archaea, eubacteria, and eukarya (Baker et al., 1998), for which 

the three dimensional structures of several members are known. Proteins of this family employ 

NAD(P)(H) as cofactors for their enzymatic activity and thus a binding domain can be defined 

(Jörnvall et al., 1995; Figure 3.2.1). Prediction of the three-dimensional structures using the 3D-

jigsaw server, which builds thee-dimensional protein models based on homologues of known 

structure (http://www.bmm.icnet.uk/~3djigsaw) and subsequent visualisation by Swiss PDB Viewer 

(http://expasy.org/spdbv/) demonstrates that the structural scaffold is highly similar (Figure 

3.2.1.A). However, PPP1 carries two extensive stretches lacking secondary structure, which are not 

present in AtCSP41. The first one is located downstream of the N-terminal nucleotide binding 

domain (blue) and the second one at the C-terminus preceding two α- helices. The predicted 

molecular weight of the mature PPP1 protein is 37 kDa and of AtCSP41 36 kDa (ProtParam, 

www.expasy.org).  
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Fig 3.2.1 Predicted three dimensional structure of mature PPP1 and AtCSP41 

(A) Atom coordinates of PPP1 and AtCSP41 without cTP were predicted by the 3D-JIGSAW (version 2.0, 
www.bmm.icnet.uk/servers/3djigsaw) server, which builds three dimensional structures based on homologous proteins 
of known structure. The three dimensional protein models were visualised using Deepview Swiss-Pdb Viewer 
(http://expasy.org/spdbv). The N-terminus of the protein is depicted in purple, the C-terminusin green. The putative 
NAD(P) binding domain (NBD) is shown in light blue. (B) Alignment of PPP1, AtCSP41 protein sequences without 
cTP and sequence of the homologous Synechocystis sp. PCC 6803 protein slr1540 (http://bacteria.kazusa.or.jp/cyano/) 
using Clustal W (Thompson et al., 1994) and Boxshade. Conserved amino acids are highlighted by black boxes, 
whereas grey ones indicate closely related amino acids. 
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PPP1 and CSP41 have both been experimentally localised in the chloroplast by proteomic studies 

(Kleffmann et al., 2004). Stable expression of a PPP1:CFP fusion in Arabidopsis confirmed the 

chloroplast localisation and additionally demonstrated a localisation of PPP1 in the stromules, 

which are stroma filled tubules extending from and occasionally connecting plastids (Raab et al., 

2006). Fractionation of Arabidopsis chloroplasts and followed by immuno-detection of PPP1, RbcL 

and Lhcb3 as stromal and thylakoid control respectively, shows that PPP1 is indeed localised in the 

stroma and does not associate with the thylakoid membrane (Figure 3.2.2). 

 

 

 

 

 

 

3.2.2 Phenotypical analysis of knock-out mutants of PPP1 and CSP41 

Two mutant alleles were identified for PPP1 by screening the T-DNA Express database. The 

ppp1-1 mutant line has already been described previously (Hassidim et al., 2007), showing that 

transcript is present upstream of the insertion, but not downstream. It was also demonstrated that 

transcript levels of the truncated transcript were higher. Analysis of transcript levels upstream of the 

insertion site yielded the same result, when repeated within the scope of this thesis (data not 

shown). However, the lack of PPP1 protein in both ppp1-1 and ppp1-2 was proven by using a 

specific PPP1 antibody against a peptide sequence of the N-terminus downstream of the predicted 

nucleotide binding domain (Chapter 2.2.4.1; Figure 3.2.3B). For AtCSP41 no publicly available 

mutant allele exists. Thus, the Csaba Koncz (MPIZ Cologne) library of genomic DNA from 

insertion mutants was screened with gene specific and T-DNA specific primers (Rios et al., 2002). 

The line 61.888 was identified to contain an insertion in the second exon of AtCSP41. In this line 

the T-DNA has inserted as a tandem with the left borders facing the genomic flanking regions on 

both sides. The absence of AtCSP41 transcript was verified by RT-PCR using primers upstream of 

the insertion site (Figure 3.2.3C).As can be seen in Figure 3.2.3D both mutant alleles for PPP1 

display a reduction in leave size and show pale-green pigmentation, when grown in the greenhouse 

with long-day illumination (16h light, 8h dark). When grown in the climate chamber with a 12h 

light 12h dark regime (Figure 3.2.3E), the mutants are only slightly smaller and have WT 

pigmentation. The growth and appearance of atcsp41 is WT-like under all conditions tested, 

whereas a ppp1 atcsp41 double mutant displays the ppp1 mutant phenotype (Figure 5.2.3D). 

Fig 3.2.2 PPP1 is a stromal protein 

Arabidopsis chloroplasts were isolated, followed by 
separation of stromal contents from thylakoid membranes. 
Chloroplast and thylakoid proteins corresponding to 5 µg 
of Chlorophyll and stromal proteins deriving from lysed 
chloroplast corresponding to 15 µg of chlorophyll were 
loaded. Immuno-detection was carried out using the PPP1 
antibody (Chapter 2.2.4.1), RbcL and Lhcb3 antibodies. 
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Fig 3.2.3 Location of insertion in the mutant alleles and mutant phenotype 

(A) The translated exons are shown as white numbered boxes and the introns as black lines. Both, orientation and site of 
insertions are depicted. All three mutant alleles originate from T-DNA insertions: ppp1-1 from the SALK T-DNA 
collection as SALK_021748, ppp1-2 from the GABI-KAT collection as GABI_452H11 and the atcsp41 allele from 
screening the T-DNA collection of C Koncz (Max-Planck-Institute for Plant Breeding Research, Cologne, Germany) as 
61.888. (B) Protein analysis of PPP1 in WT and both mutant alleles. Total leaf protein was extracted and 40 µg of 
protein each lane was loaded on an SDS-gel. The filter was immuno-decorated with a PPP1 specific antibody (Chapter 
2.2.4.1) and an antibody against Actin as loading control. (C) Expression analysis of AtCSP41 in WT and mutant. RT-
PCR analysis was performed on the transcripts of both WT and mutant plants with gene specific primers upstream of 
the insertion and actin primers as positive control. (D) Growth of WT, ppp1-1, ppp1-2, atcsp41 and ppp1 atcsp41 plants 
in the greenhouse (16 h/ 8 h light dark cycle of natural sun-light supplemented with HQI light; Osram). (E) Growth of 
WT, ppp1-1 and ppp1-2 in the climate chamber (12 h/ 12h light dark cycle of 120 µmol photons m-2s-1). 
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3.2.3 Leaf pigments and photosynthetic parameters  

Because leaf pigmentation was altered in the ppp1 mutants when grown in the greenhouse, a 

quantitative analysis of leaf pigments of these plants and WT was carried out by HPLC (Chapter 

2.2.6). In the greenhousegrown plants the chlorophyll a/b ratio remains unchanged in the mutant, 

but total chlorophyll content is slightly decreased as compared to WT (Table 3.2.1). The major 

difference of the ppp1 mutant lies in an increased level of the xanthophyll-cycle pigments 

Violaxanthin, Antheraxanthin and Zeaxanthin (VAZ), which indicates that mutant chloroplasts 

suffer enhanced photo-oxidative stress (Demmig-Adams and Adams, 1992).  

 
Table 3.2.1 Pigment analysis of ppp1-1 and ppp1-2 grown at 100 µmol photons m-2s-1 

Leaf pigments analysis was performed with WT and the two mutant alleles grown under low-light conditions (LL) in 
the greenhouse. Pigment content was determined by HPLC of five plants for each genotype. The carotenoid content is 
given in mmol per mol Chl (a + b), and the Chl content is expressed as nmol Chl (a + b) per g fresh weight. Mean 
values ± SD are shown. Nx, neoxanthin; VAZ, xanthophyll cycle pigments (violaxanthin + antheraxanthin + 
zeaxanthin); β-Car, β-carotene. 
 
To investigate, if a more pronounced phenotype can be obtained by elevated stress conditions, WT, 

ppp1-1, atcsp41 and the respective double mutant plants were grown for four weeks under higher 

light intensities (400 µmol photons m-2 s-1) and pigment analysis was carried out. Only ppp1 and 

ppp1 atcsp41 plants show differences to WT (Table 3.2.2). As expected, plants lacking PPP1 

exhibit even more enhanced VAZ pigment levels when grown at higher light intensities. 

Additionally, the decrease in the levels of chlorophylls per fresh weight is more evident, but also a 

decrease in the Chl a/b ratio can be observed. This is indicative for an increase either in the PSII/ 

PSI, or in the antenna/ reaction centre ratio. The decrease in ß-carotene levels in the mutant 

supports an increase in the PSII/PSI ratio, because 22 molecules of this pigment are associated with 

PSI, while PSII only binds seven (Nelson and Yocum, 2006). The atcsp41 mutant shows WT 

pigment levels, whereas the double mutant behaves exactly like the ppp1 mutant.  
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Table 3.2.2 Pigment analysis of ppp1-1, atcsp41 and ppp1 atcsp41 grown at 400 µmol photons m-2s-1 

Leaf pigments analysis was performed with WT, ppp1-1, atcsp41 and the ppp1 atcsp41 double mutant grown under 
higher light conditions (HL) of 400 µmol photons m-2s-1 in the climate chamber. Pigment content was determined by 
HPLC of five plants for each genotype. The carotenoid content is given in mmol per mol Chl (a + b), and the Chl 
content is expressed as nmol Chl (a + b) per g fresh weight. Mean values ± SD are shown. Nx, neoxanthin; VAZ, 
xanthophyll cycle pigments (violaxanthin + antheraxanthin + zeaxanthin); β-Car, β-carotene. 
 
To analyse if ppp1, atcsp41 and the respective double mutant display a change in their capability of 

photosynthetic electron transport, Chl a fluorescence and P700 absorption were measured 

employing the PAM fluorometer. The maximum (Fv/Fm) and the effective quantum yields (ΦII) of 

greenhouse grown WT, ppp1, atcsp41 and the double mutant were determined and ppp1 and the 

double mutant exhibit a slight decrease in both parameters as compared to WT (Table 3.2.3).  

 
Table 3.2.3 Chlorophyll a fluorescence measurements of WT, ppp1-1, atcsp41 and ppp1 atcsp14 plants  

The photosynthetic parameters Fv/Fm and ΦII were determined from 4 week old plants grown in the greenhouse at 100 
µmol photons m-2s-1. Actinic light was 80 µmol photons m-2s-1. The values represent the average of 10 independent 
measurements each. 
 
For a detailed analysis of ppp1 photosynthetic performance, the light dependance of photosynthetic 

parameters was determined with plants grown in the greenhouse in a 16h/ 8h light/ dark cycle as 

well as with plants grown in the climate chamber in a 12h/ 12h light/ dark cycle (Figure 3.2.4, 

3.2.5). The ppp1 mutants from both growth conditions show a decrease in the Electron Transport 

Rate (ETR), an increase in NPQ and in the P700 oxidation rate. However, the decrease in ETR is 

more prominent in ppp1 mutants grown in the greenhouse, whereas the capacity of NPQ is even 

higher in plants grown in the climate chamber. Only ppp1 mutants grown in the climate chamber 

show a WT like Fv/Fm-value, indicating normal PSII abundance and activity. 
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Altogether, ppp1 plants grown in the climate chamber (Figure 3.2.4.B/D; Figure 3.2.5.B/D) show a 

phenotype indicative for a constraint in carbon fixation at higher actinic light intensities (Golding 

and Johnson, 2003). In detail, if carbon fixation is limited, PSI acceptors are over-reduced and 

alternative pathways such as cyclic electron flow around PSI (Shikanai, 2006) or the water-water 

cycle (Rizhsky et al., 2003) are favoured. These alternative pathways reduce plastoquinone, leading 

to an enhanced acidification of the lumen, which is exacerbated by the reduction in ATP net 

consumption through carbon fixation. Besides causing an increase in non-photochemical 

quenching, the low lumenal pH is thought to lead to an increase in P700 oxidation and a decrease in 

ETR by slowing down the electron proton symport of the plastoquinone pool. 

 
Fig 3.2.4 Chlorophyll a fluorescence measurements 

WT (filled circles) and ppp1 (white squares) plants grown in the greenhouse (A, C) or in the climate chamber (B, D) 
were analysed with the PAM-fluorometer. In (A) and (B) the Electron Transport Rate (ETR) and in (C) and (D) the 
non-photochemical quenching of PSII were determined by measuring Chl a fluorescence. Leaves were illuminated for 
15 Min with actinic light of different light intensities, steady state fluorescence was determined as Fs and a saturating 
light pulse of 800 ms and 5000 µmol photons m-2s-1 was given yielding Fm. ETR was calculated as PAR x ΦII x 0.5 x 
0.84, ΦII as (Fm-Fs)/Fm and NPQ as (Fm-Fm’)/Fm’.  
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Fig 3.2.5 P700 oxidation rate and transient NPQ measurements 

(A+B) The P700 oxidation rate was determined of WT (filled circles) and ppp1 (white squares) plants grown in the 
greenhouse (A) or in the climate chamber (B). Absorbance changes at 830 nm were recorded, while illuminating the 
leaves for 5 min with actinic light of different light intensities giving ΔA and far-red light to yield ΔAmax. P700 
oxidation ratio was calculated as ΔA/ ΔAmax. Each value represents the average of 5 independent measurements (± SD). 
(C+D) Time courses of induction and relaxation of NPQ monitored during dark-to-light (80 µmol photons m-2 s-1, white 
bar) transition of WT and ppp1 plants grown in the greenhouse. NPQ was calculated as (Fm-Fm’)/Fm’ (C) or the climate 
chamber (D). The 3 min light period (white bar) was followed by a 2 min dark period (black bar). Note that NPQ 
induction during the activation period of photosynthesis is thought to be caused by the transient acidification of the 
thylakoid lumen when CEF activity is higher than the activity of the ATP synthase. 

3.2.4 Analysis of the abundance of photosynthetic proteins 

Abundances of chloroplast proteins were investigated by Western analysis of total protein extract of 

WT and ppp1-1 mutant plants grown in the greenhouse or the climate chamber using antibodies 

against one subunit of each multi-protein complex. Protein levels were normalised with Actin 

(Figure 3.2.6). The Western analysis demonstrates that in mutant plants grown in the greenhouse 

levels of most examined proteins are decreased to 50% of WT. Exceptions are the nucleus encoded 

Lhcb1 protein of the light harvesting complex of PSII (LHCII), which shows slightly increased 

levels and the large subunit of the Ribulose-biphosphate carboxylase/ oxygenase (Rubisco, RbcL), 

of which levels are ~ 35% of WT. The chloroplast protein levels of the ppp1 plants grown in the 
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climate chamber equals WT, except for a decrease in the large and the small subunit of Rubisco 

(80% of WT).  

Additionally, thylakoid complexes of WT and ppp1-1 mutant plants grown in the greenhouse were 

analysed by Blue native (BN)-PAGE (Figure 3.2.6C). Here, protein samples according to same 

amounts of chlorophyll were loaded. In the ppp1-1 mutant inter-complex stoichiometry remains 

largely unchanged, except for an increase in free LHCII monomers and a decrease in PSII 

supercomplexes. 

 

 

Fig 3.2.6 Chloroplast protein 

composition 

Levels of thylakoid membrane 
polypeptides in mutant and WT 
plants. 40 μg of total protein of 
ppp1-1 plants and 40 μg and 
decreasing amounts of WT plants 
grown in the climate chamber (A) or 
in the greenhouse (B) were 
separated by SDS-PAGE and 
subsequently transferred to PVDF 
membranes. Replicate filters were 
immunolabelled with antibodies. 
Three independent experiments 
were performed, and representative 
results are shown. (C) Thylakoids 
from WT and ppp1-1 plants grown 
in the greenhouse were solubilised 
with 1.25 % ß-DM and separated by 
Blue native (BN)-PAGE. Identity of 
complexes is depicted on the right. 



 
3. Results 

 
 

  
67

3.2.5 Chloroplast expression analysis 

To investigate if the decrease in protein levels from plants grown in the greenhouse was due to 

changes in transcript levels, total leaf RNA was analysed by Northern hybridisation with probes 

specific for petD, psaB, psbA and ACTIN1 as loading control (Chapter 2.2.2.2; Figure 3.2.7B). 

Whereas psaA transcript is increased more than two fold in the ppp1-1 mutant, rbcL is slightly 

decreased and psbA transcripts show WT levels. These results are supported by an expression 

analysis of all chloroplast genes by qRT-PCR (supplementary data, Chapter 6.2), which shows a 

significant up-regulation of psaA in ppp1-1 and no significant changes for rbcL and psbA.  

Additionally, the chloroplast and cytoplasmatic translational rates were examined by a 35S 

methionine in vivo translation assay (Chapter 2.2.4.15; Figure 3.2.7A). The results of this 

experiment show that radioactive labelling of both subunits of the Rubisco, RbcL and RbcS is 

decreased in the ppp1-1 mutant background. That disruption of expression of one of the Rubisco 

subunits effects expression of the other has been repetitively observed and therefore the co-

regulation of Rubisco subunit expression is in accordance with previous publications (Schmidt and 

Mishkind, 1983; Rodermel et al., 1996; Pesaresi et al., 2001). A further difference can be observed 

in the translation of the D1 protein of PSII (PSII-D1), which seem to be increased marginally.  

To investigate if the changes seen in the in vivo translation assay can be correlated with an 

alteration of the polysome association of rbcL and psbA transcript, polysome formation on both 

transcripts was assessed by sucrose density-gradient fractionation. Transcripts associated with 

polysomes have higher sedimentation rates than those associated with singular ribosomes or 

ribosome free mRNA. The proportion of transcripts, which are polysome-associated compared to 

unassociated allows to estimate the efficiency of translation initiation and elongation (Barkan, 

1993). Significant differences can neither be detected in the association of rbcL transcript, nor of 

psaA and psbA (Figure 3.2.7C). Altogether, these results indicate that in the ppp1-1 mutant 

background less RbcL protein is stably expressed. However, defects leading to this phenotype are 

neither related to differential transcription, because transcript levels remain relatively unchanged, 

nor to defects in the translational apparatus, because initiation, elongation and termination of 

translation seem to be functional in ppp1. 
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Fig 3.2.7 Effect of the ppp1 mutation on chloroplast gene expression 

(A) In vivo translation assay. 35S Methionine was applied to leaves of WT and ppp1 plants grown in the greenhouse (16 
h/8 h light / dark cycles) for 1h, illuminated with 50 µmol photons m-2s-1. Soluble and membrane proteins were isolated 
from WT and mutant leaves, separated by SDS-PAGE and analysed by fluorography. The most intensely labelled band 
corresponds to the large subunit of Rubisco. (B) Northern analysis of plastid transcripts. Total leaf RNA (20 µg) of WT 
and ppp1 mutant plants were hybridised with gene specific probes against ACTIN1 as loading control, psbA, rbcL and 
psaA. (C) Association of chloroplast mRNA with polysomes. Total extracts from 4-week-old WT and ppp1 mutant 
plants were fractionated on sucrose gradients. Eleven fractions of equal volume were collected from the top to the 
bottom of the sucrose gradients. An equal proportion of the RNA purified from each fraction was analysed by gel-blot 
hybridisation. The membrane was stained with methylene-blue as loading control and transcripts of psbA, rbcL and 
psaA were detected with gene-specific probes.  

3.2.6 Analysis of transcript processing 

CSP41 was reported to be involved in cleavage of the 3’ stem loop of chloroplast transcripts 

(Bollenbach et al., 2003). Because similarities in primary amino acid sequence, as well as in the 

predicted three dimensional structures of CSP41 and PPP1, are present, it was investigated, whether 

the phenotype of the decrease in RbcL protein abundance could be correlated with a defect in rbcL 

transcript processing in the ppp1 mutant. Additionally, because all results indicating a 3’ stem-loop 



 
3. Results 

 
 

  
69

endonuclease activity of CSP41 stem from in vitro experiments, 5’ and 3’ transcript end mapping 

from atcsp41 and the ppp1 atcsp41 double mutant transcripts was carried out. This experiment was 

performed together with Agata Kazmierczak employing the method of circular RT-PCR. This 

involves the ligation the 3’ and 5’ ends of the same transcript, followed by RT-PCR and further 

amplification. Agarose gel separation of the PCR-product shows that in WT and ppp1 one band 

predominates, whereas in atcsp41 and the ppp1 atcsp41 double mutant two major bands can be 

amplified (Figure 3.2.8). A PCR product of smaller size can also be detected in the ppp1 mutant, 

but amounts are low. 

  
Fig 3.2.8 Transcript end mapping of rbcL 

Transcript end mapping. (A) Products of mRNA ligation followed by RT-PCR and specific amplification of rbcL 
transcript ends. (B) Depicted is the structure of the rbcL 3’ stem loop. Numbers indicate cleavage sites. (C) Schematic 
drawing of the rbcL transcripts. Numbers on top of transcript indicate processing sites in all genotypes, numbers below 
transcript indicate processing sites only in ppp1-1, atcsp41 and the ppp1 atcsp41 double mutant. 
 

Sequencing of the PCR products led to the identification of the higher molecular band in all four 

genotypes as rbcL transcript starting at bases -70 to -64 upstream and terminating at bases 1527 to 

1531 downstream of the start-codon, which is also downstream of the 3’ stem loop. The smaller 
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PCR products probably stem from degradation products, because they either start at base 1, the 

start-codon or terminate at base 1440, the stop-codon, with at least the respective 5’ end found in 

the mutants impeding with binding of the ribosome and thus translation. These results suggest that 

transcript degradation is enhanced in all mutant backgrounds.  

3.2.7 Effect of the absence of photosynthetic complexes on PPP1 abundance 

The effect of the absence of each of the four photosynthetic complexes on PPP1 and RbcL protein 

levels was examined. PPP1 and RbcL abundance is greatly reduced in PSII, Cyt b6f and PSI knock-

outs (Figure 3.2.9; for further information see Chapter 3.1.7). Whereas RbcL levels are also slightly 

reduced in the atpd mutants, PPP1 protein accumulates to levels even higher than in WT. Besides 

increased degradation of the RbcL protein because of oxidative stress, the highly reduced amounts 

of PPP1 might represent one of the mechanisms leading to the down-regulation of RbcL protein. 

However, other mechanisms in the regulation of RbcL abundance must exist to explain its altered 

levels for instance in plants lacking the ATP-synthase complex. One of these mechanisms is the 

autoregulation of Rubisco large-subunit translation according to its assembly state, which has 

recently been described for tobacco (Wostrikoff and Stern, 2007) and Chlamydomonas chloroplasts, 

where this process is known to be modulated by oxidative stress (Irihimovitch et al., 2000; Cohen et 

al., 2005) 

  

3.2.8 A PPP1:CFP fusion complements the ppp1 mutant phenotype 

To investigate the putative RNA-binding function of PPP1, RNA Co-Immunoprecipitation Chips 

(RIP-Chip) analysis has been initiated (Schmitz-Linneweber et al., 2005). In this method, immuno-

precipitated RNA and supernatant RNA are coupled to two different fluorescent dyes and are then 

hybridised to an oligonucleotide Chip with probes covering all plastid transcripts. However, the 

peptide antibody against PPP1 did not recognise the protein in its native state and thus was not 

suitable for co-immunoprecipitation. An alternative for RIP-Chip analysis were plants expressing 

the PPP1:CFP fusion under the control of a 35S promoter (Raab et al., 2006). To confirm complete 

functionality of this fusion protein, ppp1-1 mutant plants were transformed with the construct to test 

Fig 3.2.9 The abundance of PPP1 and RbcL in the 

absence of photosynthetic complexes 

Immunodetection of PPP1 and RbcL in Col-0, Ler, 
hcf136, petC, psad1/d2, atpd. The applied antibodies 
are depicted on the right. Total protein extract 
corresponding to 40 µg of protein was loaded each. 
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for complementation. Homozygous T3 were grown in the greenhouse to investigate the 

complementation of the growth phenotype by the introduced fusion protein. In 80% of analysed 

lines the growth phenotype was reverted (two lines shown: Figure 3.2.10A). Total protein was 

extracted from complemented mutant plants and it was shown by hybridisation with PPP1 and CFP 

(Invitrogen) specific antibodies that they contained the bigger 64 kDa fusion protein (PPP1: 37 kDa, 

CFP: 27 kDa), but not the native PPP1 protein (Figure 3.2.10B). Both antibodies yielded a further 

signal at approximately 70 kDa, which probably represents the immature form of the PPP1:CFP 

fusion protein before import into the chloroplast. Additionally, the Coomassie staining demonstrates 

that RbcL protein levels are WT-like in the CFP:PPP1 overexpressors, further verifying the 

complete physiological functionality of the fusion protein. 

 
Fig 3.2.10 Transgenic plants expressing CFP tagged PPP1 in a ppp1-1 mutant background 

(A) Four week old WT, ppp1-1 and ppp1-1 plants grown in the greenhouse (16 h light/ 8 h dark cycles) transformed 
with the PPP1:CFP construct. (B) Transgene expression analysis was carried out on total protein extract. PPP1:CFP is 
over-expressed in the two lines and CFP is recognised by the specific antibody against CFP and PPP1. The growth 
phenotype and the reduction in RbcL protein levels are complemented in both lines. 

3.2.9 Germination assay 

The expression rates of some photosynthetic genes are regulated by the phytohormone abscisic acid 

(ABA) (Seki et al., 2002). Also the transcription of PPP1 responds negatively to ABA (Hoth et al., 

2002). Because PPP1 is a putative RNA-binding protein, it was assumed that it might carry out 

regulatory functions in the chloroplast in response to this phytohormone (Raab et al., 2006). As 

ABA levels within the plant directly correlate with the degree of seed germination, an assay was 

performed to elucidate a possible function of PPP1 in the complex ABA signalling network. The 
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germination was carried out with both ppp1 mutant alleles. Homozygous mutants and WT plants 

were identified as progeny from one heterozygous plant and the germination assay was performed 

on their progeny, which had been harvested simultaneously in order to avoid genetic and 

environmental background specific differences in germination rates. This experiment was carried 

out in collaboration with S. Raab (University of Nürnberg-Erlangen, Germany). Both alleles show a 

significant reduction in germination rate in comparison to WT, when exogenous ABA is applied 

(Figure 3.2.11). For ppp1-1, a concentration of 1µM ABA yielded the highest difference in 

germination rate, whereas for ppp1-2 0.5 µM was sufficient to inhibit germination. 

 
Fig 3.2.11 The ppp1 mutants display a delayed germination rates in response to ABA 

Seed dormancy of wild-type, ppp1-1 (B) and ppp1-2 (A) seeds. In both independent experiments freshly harvested 
Seeds were plated on ABA-containing medium (A: 0.5 µM ABA; B: 1µM ABA) and maintained at 22°C. The degree 
of germination of WT (closed circles) and ppp1 (open squares) seeds was monitored after 2, 2.5, 3 and 5 days.



 
4 Discussion 

 
 

  
73

4 Discussion 

4.1 PPP4/TMP14 

4.1.1 Novel family of chloroplast localised proteins 

Within this thesis a novel protein family consisting of four Arabidopsis proteins with unknown 

functions has been characterised. All four members have sequence similarities, especially in the two 

predicted transmembrane helices. The location of these four proteins in the chloroplast as suggested 

before by proteomic analyses (Kleffmann et al., 2004), was verified by transient expression of RFP-

fusions in Arabidopsis protoplasts for TMP14-like and PPP4-like, by MS analysis of thylakoid 

proteins from BN second dimensions for PPP4, TMP14 and TMP14-like and by Western analysis 

for PPP4 and TMP14. The latter demonstrated that both PPP4 and TMP14 are primarily localised in 

the stroma lamellae. Here, PPP4 and TMP14 interact as shown by crosslinking and Co-IP, in a 

previously un-described complex.  

4.1.2 A novel thylakoid complex predominantly localised in the stromal lamellae  

This work demonstrates the existence of a novel thylakoid complex, which as minimal constituents 

contains PPP4 and TMP14. Each of both proteins seems to be able to form homomeric complexes 

in the absence of the other interaction partner as shown by BN page analysis and crosslinking for 

both and for PPP4 additionally by Co-IP. Whereas PPP4 accumulates to the same levels in tmp14 as 

in WT, TMP14 levels are decreased in the ppp4 background. Photosynthetic measurements 

demonstrated that this novel complex is indeed involved in photosynthesis, as parameters are 

changed in ppp4 and ppp4 tmp14 mutants. Differences to WT present in the ppp4 single mutants are 

exacerbated in the double mutant background. Considering the lack of phenotype in the tmp14 

mutant, where PPP4 protein accumulates to WT levels, it can be concluded that presence of PPP4 is 

sufficient to carry out the physiological function. Conversely, in ppp4 mutants an effect on 

photosynthetic parameters is evident, indicating that TMP14 can only partly carry out the function 

of PPP4, which could be due to its reduced amounts present in the thylakoid membrane. In the 

double mutant, where both proteins are absent, the phenotype is enhanced, which supports the idea 

that TMP14 can to some extent carry out the physiological function of PPP4. As such, it can be 

speculated that heteromeric and homomeric complexes of both proteins at least partially act 

redundant and that the physiological function carried out by PPP4 and TMP14 requires a certain 

amount of complexes, which are not present in the ppp4 mutant. However, despite the evidence for 

these complexes, it remains unclear, if complex formation is necessary for the proteins’ functions. 
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As will be described in the following section, some other properties of both proteins do differ and 

therefore it appears likely that both proteins carry out further protein specific functions.  

Both crosslinking experiments and protease protection assays indicate that TMP14 interacts with 

other proteins especially in the absence of PPP4. Electrostatic interactions with additional proteins 

seem to be important for the anchorage of TMP14 in the thylakoid membrane. In the case of PPP4 

only the protease protection assay is indicative for the existence of associated proteins. The MS 

analysis of the co-immunoprecipitate derived from digitonin-solubilised thylakoids did not identify 

any other interaction partners of this complex. Therefore, it can be assumed that digitonin destroys 

the association of other proteins. Accordingly, the complex containing PPP4 and TMP14, migrating 

at the size of the Cyt b6f monomer in BN gels most probably also represents a multimeric form of 

both components. The lack of co-migration of PPP4 and TMP14 with the Cyt b6f dimer represents 

one further indication against the interaction of PPP4 and TMP14 with this essential photosynthetic 

complex. Moreover, it was shown, that presence of the Cyt b6f complex is not mandatory for 

accumulation of PPP4 and TMP14, because both proteins can be found in plants lacking this 

complex. Concomitantly, in mutants devoid of the other major thylakoid complexes, PSII, PSI and 

ATP-synthase, PPP4 and TMP14 protein levels are relatively stable. Therefore it can be concluded 

that the complex comprising PPP4 and TMP14 is not stably associated with any of the four major 

thylakoid complexes. Interestingly, TMP14 accumulates to lower levels than PPP4 in theplants 

lacking one of the respective complexes (exception is atpd, where both proteins are present at WT 

levels), suggesting that differential regulatory mechanisms are involved. 

The obtained data allow speculation about the functional composition of the heteromeric complex. 

Because no further components of this complex could be precipitated by Co-IP, it can be assumed 

that the heteromeric complex solubilised with digitonin solely consists of PPP4 and TMP14 

subunits. If one now postulates that complex formation is indispensable for the function of PPP4 

and TMP14 and as a consequence according to the photosynthetic parameters measured in the 

mutants that homomeric and heteromeric complexes act redundant, it can be estimated that all three 

complexes capable of performing the so-far unknown photosynthetic activity should contain the 

same amount of subunits. To speculate about a putative size and composition of the heteromere 

complex containing PPP4 and TMP14 the following experimental result have to be taken into 

consideration: (i) the molecular size of the complex solubilised with digitonin, (ii) the ratio of PPP4 

and TMP14 in this complex and (iii) the crosslinking pattern observed in the respective other 

mutants to estimate number of subunits composing the functional complex.  
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The digitonin solubilised, heteromeric complex has a slightly higher molecular weight than the 

LHCII monomer, which runs at about 60 kDa (Granvogl et al., 2006) and contains as visualised by 

silver staining of the second dimension slightly more TMP14 than PPP4 (reaction was quenched 

before saturation of signal strength). In crosslinked thylakoids of ppp4 mutant plants, the TMP14 

pattern can be interpreted as the result of five proteins interacting, whereas for PPP4 the biggest 

crosslinking product seems to represent a tetramer. However, TMP14 crosslinking is always further 

progressed and therefore it cannot be excluded that amounts of crosslinked PPP4 pentamers 

deriving from the applied experimental conditions, are below the detection level. Conclusively, the 

heteromeric complex is bigger than 60 kDa, the highest molecular crosslinking product seems to be 

a pentamer and it contains more TMP14 than PPP4. Therefore, the existence of a heteromeric 

complex consisting of three TMP14 and two PPP4, with a molecular weigh of 65 kDa appears 

possible. Further experiments need to be conducted to clarify the composition of this new complex 

4.1.3 Phenotype of ppp4 and ppp4 tmp14 mutants in relation to specific processes of 

photosynthesis 

Measurements of photosynthetic parameters employing the PAM fluorometer showed a slight, but 

significant phenotype in the ppp4 mutant, which was exacerbated in the ppp4 tmp14 double mutant. 

Parameters changed in these mutants are a decrease in NPQ under both light and high light, an 

increase in 1-qP under low light and an increase in ΔA/ ΔAmax in low and a decrease in high light. 

The WT-like Fv/Fm indicates that PSII abundance and function is unchanged in these mutant plants. 

Additionally, the lower NPQ excludes that PPP4 and TMP14 are components of carbon fixation, 

because an impairement in this process should cause higher NPQ (Johnson and Golding, 2003). 

However, defects in the linear electron flow, in regulatory processes of photosynthesis or in the 

cyclic electron flow around PSI could at least partially account for the changes in photosynthetic 

parameters observed in the ppp4 and ppp4 tmp14 mutants. To investigate the physiological function 

of both proteins, the photosynthetic phenotypes of ppp4 and ppp4 tmp14 will be compared with 

phenotypes of mutants impaired in the respective processes of photosynthesis. Then further results 

obtained in this work will be put into context in the attempt to survey possible functions of PPP4 

and TMP14 in this process.  

4.1.3.1 Linear electron flow 

The increase of 1-qP, ΔA/ΔAmax and the decrease of NPQ in ppp4 and ppp4 tmp14 plants under low 

light illumination could point to a defect in linear electron flow downstream of PSII. Firstly, 

because of the co-migration of PPP4 and TMP14 with the Cyt b6f complex, a possible involvement 
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at the level of Cyt b6f will be discussed. Concurrently, similar changes in photosynthetic parameters 

as stated above are present in the partially Cyt b6f defective mutants petL and pgr1, when measured 

with low actinic light. However, PAM measurements of these mutants at higher light intensities 

result in increasing differences of NPQ in comparison to WT, whereas the ppp4 and the ppp4 tmp14 

double mutations lead only to a marginal reduction in NPQ and the ΔA/ΔAmax value, of which the 

latter is even slightly increased in petL and pgr1 under high light. Furthermore, these partially Cyt 

b6f defective mutants do not exhibit the changes in the kinetics of in situ cyclic electron flow (CEF) 

measurement, which occur in the ppp4 tmp14 mutant (Schwenkert et al., 2007; Munekage et al., 

2001; Okegawa et al., 2005). Therefore, a defect in the linear electron transport chain at the Cyt b6f 

complex appears unlikely.  

Mutants with impairments in PSI function, such as psad1 (Ihnatowicz et al., 2004), psae1 

(Ihnatowicz et al., 2007) and psag (Zygadlo et al., 2005) show a marked increase in 1-qP, because 

electron flow is partially blocked at PSI. They also show deficiencies in PSI function, a feature that 

can not be found in ppp4 and ppp4 tmp14 mutant plants. Further evidence against a role of PPP4 

and TMP14 in PSI stems from the biochemical analyses, which exclude an interaction of PPP4 and 

TMP14 with this thylakoid complex. 

4.1.3.2 Regulatory processes in photosynthesis 

Conversely, regulatory processes of photosynthesis might be affected in the ppp4, ppp4 tmp14 

mutants. Under low light state transition balances the excitation energy between the two 

photosystems by the formation of a PSI-LHCII complex (for a review, see Allen and Forsberg 2001). 

Plants lacking the kinase STN7 cannot perform this process (Bellafiore et al., 2005; Bonardi et al., 

2005). Therefore, they show an increased 1-qP and a slightly decreased NPQ, when measured under 

low light illumination. However, the ΔA/ΔAmax value remains unchanged in stn7 plants (E. Aseeva, 

Botany, LMU, Munich; pers. com.), whereas in the ppp4 and ppp4 tmp14 mutants the P700 

oxidation rate is higher than in WT. This, together with the increased phosphorylation rate of LHCII 

and the decreased Chl a/b ratio in the stromal lamellae fraction of the ppp4 tmp14 double mutant, 

suggests that the mutant plants show increased LHCII phosphorylation and that the changes in 1-qP 

and NPQ cannot be due to a defect in this process.  

One further regulatory mechanism is the conversion of excess light energy into heat (qE), involving 

the PSII protein PsbS, low lumenal pH and xanthopyll cycle pigments (Li et al., 2000; Li et al., 

2004). Defects in qE only slightly affect photosynthetic parameters when measured with low actinic 

light, as can be seen in the psbs mutant, which is impaired in qE. Here, the photosynthetic 

parameters NPQ and 1-qP also resemble those of ppp4 and the ppp4 tmp14 double mutant (Li et al., 
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2002). However, as the NPQ value measured with high actinic light consists substantially of qE, 

psbs mutants display a largely decreased NPQ under these conditions. The ΔA/ΔAmax value of psbs 

mutants has not been published. However, another mutant defective in qE (que1), of which the 

specific location of the mutation has not been mapped yet, shows an increase in the ΔA/ΔAmax 

value, when measured with low light and a slight decrease when measured with high light (Kalituho 

et al., 2006). Conclusively, photosynthetic parameters of mutants with defects in qE resemble those 

of ppp4 and ppp4 tmp14 mutants, except for their immense decrease in NPQ under high light. 

Further experimental evidence against a direct involvement of PPP4 and TMP14 in the process of 

qE is the the predominant localisation of both proteins in the stromal lamellae, whereas qE is 

executed by LHCII (Ruban et al., 2007), of which the majority is localised in the thylakoid grana. 

Additionally, neither levels nor thylakoid localisation of the PsbS protein is altered in the ppp4 

tmp14 mutants. That ppp4 is not defective in the xanthophyll cyle can be concluded from the only 

slight increase in violaxanthin pigments as compared to WT, which rather supports that the decrease 

in NPQ might be due to lower acidification of the lumen (Hieber et al., 2000). As such it can be 

excluded that the phenotype of mutants lacking PPP4 and TMP14 is due to a defect in the execution 

of the qE process, which therefore indicates a defect in modulating the ΔpH across the thylakoid 

membrane. Two mechanisms are thought to be part of this modulation (Kramer et al., 2004): (i) The 

cyclic electron flow around PSI, which will be further discussed in the next chapter and (ii) changes 

in conductivity of the ATP-synthase to protons. The latter mechanism is not likely to be affected in 

the ppp4 and ppp4 tmp14 mutant backgrounds, because only some of their photosynthetic 

parameters could be explained by changes in the ATP-synthase conductivity. In detail, the 

measured differences at low light could be due to a higher conductivity of the ATP-synthase, 

resulting in decreased low lumenal pH, but the high light mutant parameter ΔA/ΔAmax cannot be 

explained by this. Additionally, little is known about the mechanism of changes in ATP-synthase 

conductivity (Kanazawa and Kramer, 2002; Takizawa et al., 2008) and the presented work does not 

support an interaction of PPP4 and TMP14 with the ATP-synthase, which would be expected, if 

proteins had influence on its conductivity.  

4.1.3.3 Cyclic electron flow around PSI (CEF) 

Cyclic electron flow around PSI (CEF) is a mechanism that can modulate acidification of the lumen 

(Munekage et al., 2002). The pgrl1ab mutant is impaired in the antimycin A sensitive cyclic 

electron flow or the switch between LEF and this pathway (DalCorso et al., 2008). When 

photosynthetic parameters are measured with low actinic light, these mutants display a reduction in 

NPQ and an increase in 1-qP in about as much as the ppp4 tmp14 double mutant (G. DalCorso, 
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Department of Botany, LMU, Munich; pers. com). This phenotype can be explained considering 

that with impairments in cyclic electron flow, fewer protons are translocated into the lumen, this 

leading to a decrease in heat dissipation of light energy, which is proportional to the acidification of 

the lumen. The NPQ is therefore lower. If light energy conversion into heat is reduced, more of this 

energy will be used for charge separation at PSII leading to a higher reduction of the plastoquinone 

pool by PSII (higher 1-qP). However, the ΔA/ΔAmax ratio is also increased in ppp4 and ppp4 tmp14 

plants, a phenotype not observed in the pgrl1ab mutant. Yet, this phenotype in the ppp4 and ppp4 

tmp14 plants can be explained by the higher reduction of the plastoquinone pool under low light 

growth conditions, which leads to an increased amount of phosphorylated LHCII at PSI, possibly 

resulting in higher oxidation rates of P700 due to an increase in antenna size. That pgrl1ab does not 

show this phenotype might be due to a direct function in PSI, with which the PGRL1 protein has 

been shown to be associated (DalCorso et al., 2008). 

Differences between the phenotypes of ppp4 and ppp4 tmp14 compared to pgrl1ab become evident, 

when photosynthetic parameters obtained from high light illumination are compared. Here the 

ΔA/ΔAmax value approaches zero and NPQ is reduced to half of WT in the pgrl1ab mutant. In ppp4 

and ppp4 tmp14 NPQ is only slightly reduced and ΔA/ΔAmax is significantly lower, but still about 

80% of WT. Mutants of ppp4 and ppp4 tmp14 lack the strong NPQ phenotype indicating that 

proton translocation by CEF is only marginally impaired. But together with the decrease in P700 

oxidation rate, it can be proposed that CEF indeed is slightly affected and therefore leads to the 

over-reduction of the stroma and consequently to an indirect decrease of the ΔA/ΔAmax value by 

charge recombination (DalCorso et al., 2008; Endo et al., 2005, Munekage et al., 2002).  

Besides the antimycin A-sensitive CEF pathway there is also the NdH dependent CEF pathway 

(Munekage et al., 2004), which is thought to be minor in comparison to the antimycin A-sensitive 

CEF. Mutants in this pathway do not exhibit the changes in the photosynthetic parameters as 

measured in this thesis for ppp4 and ppp4 tmp14 mutant plants (Muraoka et al., 2006; Munshi et 

al., 2006; Kamruzzaman et al., 2005), however it cannot be excluded that growth conditions of 

reported mutants differed. Electrons from the PQ pool can also be transferred to oxygen, a process 

referred to as chloro-respiration (Cournac et al., 2000). It has been proposed that plants lacking the 

capability to reduce oxygen should have a higher 1-qP and a lower ΔA/ΔAmax value. This process is 

thought to be of special importance under high light (Rosso et al., 2006) and therefore no changes 

in photosynthetic parameters would be expected under low light. As ppp4 and ppp4 tmp14 mutant 

plants exhibit changes especially under low light, an involvement of PPP4 and TMP14 in this 

process appears unlikely. 
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4.1.3.3.1 In-depth analysis of CEF in ppp4 and ppp4 tmp14 mutants 

From this comparison of photosynthetic phenotypes observed in the ppp4 mutant and in the ppp4 

tmp14 double mutant with those of plants lacking or being impaired in physiological processes of 

photosynthesis, it can be concluded that PPP4 and TMP14 are not essential constituents of one of 

these processes. However, PPP4 and TMP14 might be involved in their regulation or partially in 

their functionality. The preceding discussion of possible pathways involving PPP4 and TMP14 

suggests that they function in the modulation of the pH gradient and thereby in qE.  

Accordingly, the most likely candidate for a process that involves the PPP4 TMP14 complex is the 

cyclic electron flow around PSI, as the Chl a fluorescence and P700 absorption phenotypes of ppp4 

and ppp4 tmp14 can be explained by a mostly low light and not high light dependent impairment in 

CEF downstream of PSI. To further investigate the hypothesis of an involvement of PPP4 and 

TMP14 in CEF, attention has to be paid to the phenotypes in CEF observed with either the ppp4 

mutant in the in vivo measurement or the ppp4 tmp14 double mutants in the in situ measurement.  

The in vivo experiment was performed by measuring the transient increase of NPQ after light onset. 

This measurement relates to the hypothesis that NPQ induction during the activation period of 

photosynthesis is caused by the transient acidification of the thylakoid lumen when CEF activity is 

higher than the activity of the ATP-synthase (DalCorso et al., 2008). In this experiment the ppp4 

mutants behave like WT and only in the steady state show a slight reduction in NPQ. However, 

when plants are grown in continuous light, they exhibit a significant decrease in the transient NPQ. 

Accordingly, it can be concluded that normally PPP4 is not involved in the enhanced CEF during 

light onset, but that the process of acclimation of the plant to continuous light involves PPP4-

regulated transient NPQ. 

In the in situ measurements the ppp4 tmp14 double mutants display an increase in Chl a 

fluorescence already after addition of NADPH, indicating that more Fd is stably bound to thylakoid 

complexes, as has been shown for psad1 and psae1. These mutants exhibit increased cyclic electron 

flow (DalCorso et al., 2008). A further phenotype that psad1, psae1 and ppp4 tmp14 have in 

common is the increased abundance of the PGRL1 protein in the thylakoid membrane. This 

suggests that when PPP4 and TMP14 are missing, the plant senses a disturbtion and accordingly 

increases PGRL1 protein levels and the amount of thylakoid membrane bound Fd. But contrary to 

psad1 and psae1, the ppp4 tmp14 mutant plants do not exhibit enhanced cyclic electron flow in the 

in situ measurement, as fluorescence reaches WT steady state levels. This demonstrates that an 

increase of cyclic electron flow as measured in the psae or psad mutants does not occur in this 

double mutant, despite the increase in PGRL1 levels and membrane bound Fd, which is thought to 
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cause enhanced CEF (DalCorso et al., 2008). A further phenotype of ppp4 tmp14 mutants in the in 

situ experiment, are the decreased kinetics of the increase in Chl a fluorescence following the 

addition of Fd. This indicates changes in the electron transport from NADPH via Fd to 

plastoquinone in the double mutant. One possible explanation is the impairment in FNR function. 

However, levels and localisation of this protein are not changed in the ppp4 tmp14 double mutants. 

The second possible explanation is a decreased capability of the proteins involved in PQ reduction 

to carry out this process in the ppp4 tmp14 double mutant, which would implicate a direct function 

of PPP4 and TMP14 in CEF. 

A further indication for a possible functional interaction of PPP4 and TMP14 with components of 

cyclic electron flow, is the susceptibility of PPP4 and TMP14 to extraction by digitonin, which was 

also shown for PGRL1 and thylakoid associated FNR, but not for other thylakoid proteins. From 

this experimental result a localisation of all four proteins in the same region of stromal thylakoid 

membranes can be hypothesised. To investigate if PPP4 and TMP4 transiently interact with these 

essential components of CEF, split-ubiquitin analysis in yeast will be carried out in future 

experiments. 

4.1.3.3.2 Speculation about an involvement of PPP4 and TMP14 in CEF processes 

If one assumes that PPP4 and TMP14 carry out a function in CEF, the lack of which is especially 

measurable in low light, one firstly has to speculate about low light CEF, the occurrence of which is 

disputed (Laisk et al., 2005). However, the hypothesis has been put forth that, as has been shown in 

Chlamydomonas (Finazzi and Forti, 2004), association of LHCII with PSI (in state 2), which occurs 

in vascular plants in PSII favouring low light, might result in an increase in CEF. One indication for 

this hypothesis is the co-ordinated upregulation of both state 2 transition and CEF in the psad1 

mutant (Pesaresi et al., 2002; DalCorso et al., 2008). If indeed state 2 transition results in increased 

cyclic electron flow in plants, there should be substantial amounts of CEF under PSII favouring low 

light. That low light CEF plays a physiological role, is supported by the visible phenotypes of 

pgrl1ab and pgr5 plants grown at such light intensities (Munekage et al., 2002, DalCorso et al., 

2008). A lack of antimycin A-sensitive CEF should account for the changes of photosynthetic 

parameters in the pgrl1ab mutant, when measured with low light. As ppp4 and ppp4 tmp14 exhibit 

similar changes and as also parameters measured at high light have the same trend as in pgrl1ab, 

there is the possibility that the complex comprised of PPP4 and TMP14 might have a function in the 

same process. The nature of the changes in photosynthetic parameters in ppp4 and ppp4 tmp14 as 

compared to WT and pgrl1ab suggests that the physiological function of PPP4 and TMP14 occurs 

throughout light conditions and is not enhanced by environmental stimuli, which increase CEF, 
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such as high light. Concomitantly, CEF at transition of dark to light is not influenced by a lack of 

PPP4. Therefore, if PPP4 and TMP14 are involved in antimycin A-sensitive CEF, the co-existence 

of an additional process, which is upregulated in response to high light or dark to light transition, 

represents a crucial requirement.  

But, if one now postulates an involvement of PPP4 and TMP14 in CEF, what could be the functions 

of PPP4 and TMP14 in this process? There are two possibilities. Firstly, both proteins might be 

components of the postulated enzyme Fd-PQ oxidoreductase (FQR). Secondly, they might regulate 

CEF. Some results obtained in this thesis support a structural function. Firstly, PPP4 and TMP14 

form a heteromeric complex comprised of several subunits, which cannot be found stably 

associated with any other complex and thus seems to represent a structural entity. Secondly, this 

complex is highly abundant in the thylakoid membrane, as shown by silver-staining of BN second 

dimensions.  

4.1.4 Conclusions 

Many questions about the function of this novel complex remain open. Prerequisite for further 

speculations are an in-depth analysis of other interaction partners, of which the presence but not the 

identity has been shown by several biochemical approaches. Furthermore, application of inhibitors 

of CEF should be able to strengthen or weaken the involvement of PPP4 and TMP14 in this 

pathway. Antimycin A is known to impair the pathway also involving PGR5 (Munekage et al., 

2002, Munekage et al., 2004). Additionally, the possibility has to be taken into account that the 

other two members of this novel protein family PPP4-like and TMP14-like carry out the same 

function. Single mutants of ppp4-like and tmp14-like do not exhibit changes in photosynthetic 

parameters. Therefore, the analysis of further double, triple and ultimately the quadruple mutant 

should yield additional information about the function of the complex. Furthermore, the silencing of 

the gene encoding the only member of this novel protein family in the single cell alga 

Chlamydomonas reinhardtii, in which CEF is a crucial mechanism under oxygen depleted 

conditions (Finazzi and Forti, 2004) might clarify if this protein is essential for optimal 

photosynthesis and CEF. 
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4.2 The putative RNA-binding protein PPP1 

4.2.1 Physiological role: Chloroplast gene expression 

The nuclear co-regulation of genes encoding photosynthetic proteins and those encoding the 

chloroplast expressional apparatus (Biehl et al., 2005) led to the postulation of a mechanism co-

ordinating the expression of plastome and nuclear encoded components of the photosynthetic 

machinery (Leister, 2005). Because of the stromal localisation of PPP1 and its published co-

localisation with components of the plastid expressional apparatus (Yamaguchi et al., 2003; 

Pfannschmidt et al., 2001: Peltier et al., 2006), a function in the expression of chloroplast genes 

appears likely. Furthermore, as PPP1 expression is co-regulated with photosynthetic genes, the 

encoded protein might represent one of the components executing nuclear control on the expression 

of chloroplast photosynthetic genes in order to achieve co-ordination of plastome and nuclear 

encoded protein levels in the chloroplast. This work was performed with the aim to elucidate the 

effect of PPP1 on chloroplast gene expression and grasp its mode of function.  

Under optimum growth conditions as prevailing in the climate chamber, ppp1 plant appearance 

resembles WT, except for a slight retardation in growth. However, regarding photosynthetic 

parameters recorded by illumination with higher actinic light intensities, ppp1 plants show a clear 

phenotype. They exhibit increased non-photochemical quenching, a higher P700 oxidation state and 

a decrease in the electron transport rate, all three combined being indicative for a defect in carbon 

fixation (Golding and Johnson, 2003; Golding et al., 2004). In line with the results obtained by 

PAM measurement, the analysis of the chloroplast proteome shows that protein levels of both 

subunit of the carbon fixing enzyme Rubisco, RbcL and RbcS are slightly reduced, whereas the 

levels of components of the electron transport chain remain unchanged. Therefore, it can be 

assumed that in climate chamber conditions, lack of PPP1 solely causes a reduction in Rubisco 

levels. Because of its plastid stromal localisation and its predicted function in gene expression, a 

role of PPP1 in rbcL expression can be assumed. However, two results obtained from the 

chloroplast proteome analysis of ppp1 plants grown in the greenhouse suggests that PPP1 might 

influence levels of more chloroplast proteins: (i) although light intensity in average is about the 

same as in the climate chamber, levels of Rubisco are half in comparison to plants grown in the 

climate chamber, indicating that downregulation of Rubisco levels might be partially of secondary 

nature; (ii) no increase can be observed in the PSII/PSI ratio of plants grown in the greenhouse, as 

would be expected from a limitation in terminal electron acceptors of PSI (Allahverdiyeva et al., 

2005). The unchanged PSII/PSI ratio in ppp1 plants grown in the greenhouse is caused by an equal 
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downregulation of both complexes to 50% of WT. If the reduction of rbcL expression was the 

primary effect in the ppp1 plants, their phenotype should be comparable to the tobacco rbcS 

antisense lines published by Jiang and Rodermel (1995), which contain about 30-40% of Rubisco. 

Here, Cyt f levels are slightly reduced and LHCII levels are slightly increased, these results being in 

line with the ppp1 phenotype. However, the Chl a/b ratio is decreased, a change in line with an 

enhanced PSII/PSI ratio as expected from Allahverdiyeva et al. (2005), which cannot be observed 

in ppp1 plants grown in the greenhouse. Yet, comparing these two results, one has to consider that 

plant-specific differences might exist. The question if PPP1 could be involved more globally in 

regulating the abundance of chloroplast proteins and thereby execute a general nuclear control can 

easily be speculated on, when the extensive demand for the expression of the high abundant protein, 

Rubisco is considered. Results obtained in this thesis by radioactive labelling of chloroplast 

proteins, shows that after one hour RbcL represents the most labelled protein, followed by LHCII 

and PSII-D1 (Chapter 3.2.5). Therefore, it can be postulated that in optimal environmental 

conditions as present in the climate chamber, a normal expressional set without PPP1 is sufficient 

for the expression of all plastid genes except for rbcL, because of its high demand. Sub-optimal 

conditions in the more variable light and temperature regimes of the greenhouse should result in 

increased oxidative stress for chloroplast proteins, and therefore probably require an enhanced 

expression of photosynthetic proteins encoded in the nucleus, as well as in the chloroplast. 

Assuming that PPP1 is a crucial component of regulating chloroplast gene expression, the higher 

demand of protein turn-over would be impaired in plants lacking this protein and thus lead to a 

decrease in functional complexes. However, for the preceding speculations, we have to exclude a 

regulation of the psbA expression by PPP1, because the turn-over of the encoded protein PSII-D1 is 

higher than of any other thylakoid peptides (Matteo et al., 1981) and therefore would be a second 

component highly influenced by sub-optimal expressional activity in the chloroplast. The 

experimental results show that translation of PSII-D1 is even slightly increased in the ppp1 mutant. 

Therefore, psbA expression cannot be controlled by PPP1.  

Despite all collected experimental evidences, the mode of action of the control of gene expression 

by PPP1 remains elusive. Indications that PPP1 acts post-transcriptionally, derive from chloroplast 

transcriptome (supplementary data) and gel blot analyses, which demonstrate that rbcL transcript 

levels are not significantly changed in the mutant, although a decrease in RbcL protein levels can be 

observed by Western analysis. The in vivo translation-assay shows that translation of rbcL is 

lowered, but polysome assembly of the transcript is unchanged in the mutant, indicating that neither 

initiation of translation, elongation nor termination are significantly affected (Barkan, 1993). These 
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results suggest that PPP1 might be involved in posttranslational processes such as stabilising and 

folding of the nascent polypeptide chain. However, PPP1 was shown to bind petD mRNA in vitro 

by Raab et al., which together with the co-migration with the ribosomal subunits (Peltier et al., 

2006) suggests regulation at an earlier step of gene expression. To further dissect the function of 

PPP1, interactions with either mRNAs or other proteins need to be experimentally tested. RNA 

immuno-precipitation Chips (RIP-Chips) are carried out in co-operation with Christian Schmitz-

Linneweber (Berlin). Preliminary results indicate that PPP1 binds the majority of chloroplast 

mRNAs, which further supports firstly a more global function of PPP1 in chloroplast gene 

expression and secondly regulation of chloroplast gene expression by PPP1 at transcript level.  

4.2.2 The homologue AtCSP41 

Because of protein sequence homologies, similarities in the three dimensional structures and 

reported co-localisations with the 70S ribosome or some of its components (Yamaguchi et al., 

2003; Peltier et al., 2006), it was of interest to investigate, if PPP1 and AtCSP41 have redundant 

functions. The phenotypic analyses of the respective knock-out mutants show that AtCSP41 does 

not seem to carry out the same physiological function as PPP1, because the atcsp41 ppp1 double 

mutant lacks a synthetic phenotype. However, if PPP1 and AtCSP41 interact in vivo, AtCSP41 

stability could be dependent on the presence of PPP1 and therefore the ppp1 mutant could already 

resemble the double mutant, lacking both PPP1 and AtCSP41 protein. Therefore it cannot be 

excluded that PPP1 and AtCSP41 carry out the same enzymatic activity. Since it has been reported 

that CSP41 (Yang and Stern, 1997, Bollenbach et al., 2003) is involved in 3’ stem-loop processing, 

transcript end mapping was performed in ppp1, atcsp41 and ppp1 atcsp41 double mutant 

background on rbcL, psbA and petD (data of latter two not shown). This analysis demonstrated 

differences in transcript ends in all three mutant backgrounds with bias to shorter mRNAs as 

compared to WT, but never in the 3’ stem loop of these transcripts. However, cleavage of the stem 

loop is thought to result in degradation of the transcript (Rott et al., 1998) and therefore these ends 

should be short-lived. These results do not exclude that PPP1 and AtCSP41 are involved in 

transcript processing, but they rather indicate that PPP1 and AtCSP41 impede degradation.  

4.2.3 Involvement of PPP1 in ABA signalling 

Because it was reported that the expression of PPP1 is highly downregulated by ABA (Hoth et al., 

2002), it was investigated, if a lack of PPP1 causes a differential response of the plant to this 

phytohormone. Raab et al. (2006) speculated that the signal of the phytohormone ABA might be 

transferred into the chloroplast via RNA binding proteins to change gene expression. If PPP1 
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enhances chloroplast gene expression, downregulation of its expression by ABA in the nucleus 

should result in downregulation of its function in chloroplast gene expression. Because lack of 

PPP1 seems to primarily target rbcL expression, a decrease in Rubisco would be expected. This is 

in line with the negative regulation of a minimal light-responsive unit found in several RBCS 

promoters by ABA (Acevedo-Hernandez et al., 2005), posing the prospect that ABA downregulates 

carbon-fixation by repressing expression of Rubisco. However, a recent publication indicates that at 

least in tobacco, lower amounts of RbcS in the chloroplast lead to an auto-downregulation of rbcL 

expression by unassembled RbcL protein (Wostrikoff and Stern, 2007), making PPP1 dispensable 

for a coordination of the expression of both Rubisco subunits.  

The germination assays carried out with WT and both ppp1 mutant alleles allowed the 

investigation, if lack of PPP1 changes germination behaviour. This experiment was solely carried 

out with plants grown in the climate chamber, where the ppp1 mutant shows a reduction in Rubisco 

levels. Interestingly, the mutant seeds showed an enhanced sensitivity in their germination rate to 

ABA, indicating higher endogenous levels of this phytohormone or perturbations in ABA 

signalling. To answer the question of how a lack of PPP1 can influence ABA signalling, the 

biosynthesis pathway of ABA has to be taken into consideration. ABA originates from the same 

biosynthetic pathway as the carotenoids, the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, 

of which the last enzymatic steps occur in the cytosol (Nambara and Marion-Poll, 2005). Direct 

plastidic precursors of ABA are the Xanthophyll-cycle pigments (violaxanthin, antheroxanthin and 

zeaxanthin) and neoxanthin (Schwartz et al., 2003). Overexpression of the zeaxanthin epoxidase 

(ZEP) causes an enhanced accumulation of ABA in seeds (Lindgren et al., 2003). Therefore, it can 

be concluded that modulation of the VAZ-pool can influence ABA levels. One phenotype of ppp1 

plants grown in the climate chamber is the capacity for enhanced non-photochemical quenching, as 

demonstrated by analysing the transient increase in NPQ. For non-photochemical quenching, 

violaxanthin needs to be converted into zeaxanthin, which occurs by activation of the violaxanthin 

de-epoxidase (VDE) by low lumenal pH (Niyogi et al., 1998; Bugos and Yamamoto, 1996). In line 

with the phenotype of the ZEP-overexpressing plants, the increased enzymatic reversion of 

zeaxanthin by ZEP after the NPQ-spike could be a signal activating ABA-biosynthesis at least in 

the differentiated chloroplasts of green seeds. Because the ppp1 mutant grown in the climate 

chamber mimics a limitation in carbon fixation- which in nature occurs under environmental 

conditions of low CO2, as caused by drought (Golding and Johnson, 2003)- the increase in ABA 

levels might have physiological relevance. As amounts of ABA in the seed directly correlate with 

the dormancy length (Karssen et al., 1983), an increase in ABA levels as response to limitations in 
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carbon fixation would postpone germination, which might be advantageous for the survival of the 

plant. To allow further characterisation of the influence of VAZ pool modulations on ABA 

production, additional mutants with changes in NPQ and VAZ pigments will be analysed regarding 

ABA dependent germination behaviour. Additionally, to dissect ABA biosynthesis in response to 

modulation of its plastidic carotenoid precursors, ppp1 has been crossed into an ABA luciferase 

reporter line (Christmann et al., 2005). This will facilitate to analyse if modulation of the VAZ pool 

results in differential production of ABA and when, if this mechanism is restricted to seeds or can 

be observed also in leaves. 
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6 Supplementary Data 

6.1 Mass spectrometry fragmentation spectra 

6.1.1 PPP4 

 
Fig 6.1.1 Fragmentation spectrum of the identified tryptic peptide ASSEETSSID of PPP4 

 
Fig 6.1.2 Fragmentation spectrum of the identified tryptic peptide KELAEDIESLK of PPP4 
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Fig 6.1.3 Fragmentation spectrum of the identified tryptic peptide ELAEDIESLK of PPP4 
 

 
Fig 6.1.4 Fragmentation spectrum of the identified tryptic peptideVMELVGLGYTGWFVYR of PPP4 
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6.1.2 TMP14 

 
Fig 6.1.5 Fragmentation spectrum of the identified tryptic peptide ATTEVGEAPATTTEAETTELPEIVK of 

TMP14 
 

 
Fig 6.1.6 Fragmentation spectrum of the identified tryptic peptideAGVVALWGSAGMISAIDR of TMP14 
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6.1.3 TMP14-like 

 
Fig 6.1.7 Fragmentation spectrum of the identified tryptic peptide YLLFKPDR of TMP14-like 
 

 
Fig 6.1.9 Fragmentation spectrum of the identified tryptic peptide KSVADILGQ of TMP14-like 
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6.2 Plastome expression analysis of ppp1 mutants 

 
 

Fig 6.2.1 Plastome expression 

analysis by qRT-PCR 

Carried out by Andreol Falcon De 
Longvialle (ARC Centre of 
Excellence, Perth, Australia) with 
RNA from ppp1-1 and Col-0 plants 
grown in the greenhouse using gene 
specific primers. Two independent 
experiments were performedt and 
are plotted. For each experiment 
three repetitions were made and 
error bars represent standard 
deviation. 
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