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Summary 

Signaling networks control and regulate outcomes in cells and organisms in both normal 

physiology and pathophysiological states. Signaling is traditionally represented and studied as a 

series of stepwise enzymatic events constituting a cascade. However, it is increasingly apparent 

that such representations limit understanding of signal transduction since these linear cascades 

function in an interconnected network that includes extensive cross talk among receptors and 

pathways. Mass spectrometry (MS)-based proteomics is a useful tool that allows a system-wide 

investigation of signaling events at the levels of post-translational modifications (PTMs), protein-

protein interactions and changes in protein expression on a large scale. This technology now 

allows accurate quantification of thousands of proteins and their modifications in response to any 

perturbation. 

This thesis work is dedicated to the optimization and employment of quantitative mass 

spectrometry to cellular signaling and an application to segregate two lymphoma subtypes at the 

levels of protein expression and phosphorylation, employing state of the art liquid 

chromatography (LC)-MS/MS technologies coupled with improved sample preparation techniques 

and data analysis algorithms. 

In the first project I investigated the feasibility of a new, high accuracy fragmentation method 

called higher energy collisional dissociation (HCD) for the analysis of phospho-peptides. Using this 

method we were able to measure the phospho-proteome of a single cell line in 24h of 

measurement time which was a great improvement to previous capabilities. This fragmentation 

method that was originally thought to be slower and less sensitive than the standard method of 

low resolution collision induced dissociation (CID) fragmentation. However, our work proves this 

not to be the case and we showed that HCD outperformed the existing low resolution strategy [1].   

In the second project I employed this HCD fragmentation technique on the LTQ-Orbitrap Velos for 

addressing the clinical question of segregating two subtypes of diffuse B-cell lymphoma (DLBCL). 

These subtypes are histologically indistinguishable but had been segregated on the basis of a gene 

expression signature. I employed the recently developed ‘super-SILAC’ approach with a ‘super-

SILAC mix’ of multiple labeled cell lines. This heavy reference mix was spiked into several cell lines 
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derived from the two DLBCL subtypes and analyzed LC-MS, resulting in successful segregation 

based on a distinct proteomic signature [2]. 

The third project deals with the in-depth analysis of the phospho-proteome of a human cancer 

cell line on a quadrupole-Orbitrap mass spectrometer using a label-free quantification approach. 

Our analysis uncovered about 50,000 distinct phosphorylated peptides in a single cell type across a 

number of cellular conditions allowing assessment of global properties of this large dataset. 

Strikingly, we found that at least three-quarters of the proteome can be phosphorylated which is 

much higher than current estimates. We also analyzed phosphotyrosine events using enrichment 

with anti-phospho-tyrosine antibodies to identify more than 1,500 site specific phosphorylation 

events. Unexpectedly tyrosine phosphorylated proteins were enriched among higher abundance 

proteins. The observed difference in phospho-protein abundance correlated with the substrate 

Km values of tyrosine kinases. For the first time we calculated site specific occupancies using label- 

free quantification and observed widespread full phosphorylation site occupancy during mitosis.  

In the final and main project, I applied proteomics and phospho-proteomics to the study of signal 

transduction in response to transforming growth factor-beta (TGF-β), a multifunctional cytokine. 

TGF-β signaling regulates many biological outcomes including cell growth, differentiation, 

morphogenesis, tissue homeostasis and regeneration. The cellular responses to this 

multifunctional ligand are diverse and can even be opposed to each other, depending on the cell 

type and the conditions. To shed light on the reasons for the different outcomes, we analyzed the 

early phospho-proteome and ensuing proteome alterations in response to TGF-β treatment in a 

keratinocyte cell line. The early SILAC based phospho-proteome analysis uncovered over 20,000 

phosphorylation events across five time points (0 to 20 min) of TGF-β treatment. Building on our 

recent advances in instrumentation, sample preparation, and data analysis algorithms we 

measured a deep TGF-β responsive proteome at six late time points (6h to 48h) with 

corresponding controls in only eight days of measurement time. Our label-free approach identified 

about 8,000 proteins and quantified more than 6,000 of them. This deep proteome covered well 

established pathways involved in TGF-β signaling, allowing global evaluation at the level of 

individual pathway members. Combining the TGF-β responsive proteome with an in-silico 

upstream regulator analysis, we correctly retrieved several known and predicted novel 
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transcription factors driving TGF-β induced cytostasis, de-differentiation and epithelial to 

mesenchymal transition (EMT). The combined analysis of transcription factor regulation with early 

phosphorylation changes and proteome changes enabled visualization of the intricate interplay of 

key transcription factors, kinases and various pathways driving cytostatis, EMT and other 

processes induced by TGF-β. 

In summary, my thesis developed a highly efficient phospho-proteomic workflow, which was 

applied to the measurement of a very deep phospho-proteome of a single cancer cell line allowing 

analysis of its global features. The main achievement was the first in-depth and combined study of 

the phospho-proteome and resulting proteome changes following a defined signaling event, in this 

case leading to a time-resolved view of TGF- β signaling events relevant in cancer. 



Abbreviations 
 

iv 
 

Abbreviations 

ABC  activated B-cell  

CDK  cyclin dependent kinase 

CID  collision induced dissociation 

Da  Dalton 

DC  direct current 

DHB  dihydroxy benzoic acid 

DLBCL  diffuse large B-cell lymphoma 

DTT  dithiothreitol 

ECM   extracellular matrix 

ELISA  enzyme linked immuno sorbent assay 

ETD  electron transfer dissociation 

EMT  epithelial to mesenchymal transition 

ESI  electrospray ionization 

FASP  filter aided sample preparation 

FT   Fourier transformation 

FT-ICR  Fourier transform ion cyclotron resonance 

FWHM  full width at half mass 

GCB  germinal B-cell like 

HCD  higher energy collisional dissociation 

HPLC  high performance liquid chromatography 

iBAQ   intensity based absolute quantification 

IT   ion trap  

JNK  c-Jun N-terminal kinase 

LFQ  label-free quantification 

LIT   linear ion trap  
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MALDI  matrix assisted laser desorption ionization 

MAPK  mitogen activated protein kinase 

MS  mass spectrometry 

MSA  multi stage activation 

m/z  mass/charge 

PK   protein kinases  

PP   protein phosphatases 

PPI  protein-protein interactions 

ppb  parts per billion 

ppm  parts per million 

PrEST  protein epitope sequence tag 

PTM    post-translational modification 

RF  radio frequency 

RTK   receptor tyrosine kinase 

SARA  SMAD anchor for receptor activation 

SDS  sodium dodecyl sulphate 

SH2  src Homology 2 

SILAC  stable isotope labeling of amino acids in cell culture 

SMAD  mothers against decapentaplegic homolog 

STK  serine threonine kinases 

TGF-β  transforming growth factor-beta 

TβR  transforming growth factor-beta receptor 

TFA  tri-fluoroacetic acid 

Ti02  titanium dioxide 

TGF-β  transforming growth factor-beta 

ToF  time of flight  

UHPLC  ultra high performance liquid chromatography 



 
 

vi 
 

Contents 

 

 

Summary……………………………………………………………………………………….……………………………….. i 

Abbreviations…………………………………………………………………………………………….…………………... iv 

1 Introduction………………………………………………………………………………………………………….... 01 

1.1 Basic principles of mass spectrometry (MS)-based proteomics…………………………….. 03 

1.1.1 Mass spectrometry: Instrumentation and workflow……………………………………………..04 

1.1.2 PTM analysis by MS………………………………………………………………………………………….….. 20  

1.1.3 Quantitative approaches in MS-based proteomics………………………………................. 24 

1.1.4 Computational analysis in MaxQuant ………………………………………………………………….. 28 

1.2  Clinical applications of MS-based proteomics………………………………………………………. 31 

1.3 Signal transduction in the eukaryotic cell……………………………………………………………… 33 

1.3.1 Phosphorylation as a PTM: The role of kinases and phosphatases……………………….. 34 

1.3.2 Phosphorylation and its relevance in cancer………………………………………………………... 35 

1.3.3 The role of mass spectrometry to study phosphorylation as a PTM…………………….. 36 

1.4 TGF-β signaling pathway………………………………………………………………………………………. 38 

  



 
 

vii 
 

2 Article 1: Feasibility of large-scale phospho-proteomics with higher energy collisional 

dissociation fragmentation………………………………………………………………………………………. 40 

 

3 Article 2: Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes 
 by their protein expression profiles …………………………………………………………………….... 50 

 

4 Article 3: A very deep and very high accuracy phospho-proteome reveals fundamental 

differences between tyrosine and serine/threonine phosphorylation events………….. 64 

5 Article 4: In-depth and time-resolved dissection of early phospho-proteome and ensuing 

proteome changes in response to TGF-β signaling …………………………………................... 95 

Conclusion and perspectives……….......…………………………………………………………………………... 137 

References............................................................................................................................ 139 

Acknowledgements…………………………………………………………………………………………………....... 147 

Resume………………………………………………………………………………............................................... 149



Introduction   

1 
 

1.    Introduction 

On completion of sequencing of the human genome in the first few years of this decade [3, 4], the 

development of many large scale technologies ensued. The traditional ‘one gene-one protein’ 

approach was replaced by new generation ‘omics’ techniques such as genomics, transcriptomics 

and proteomics which exploited availability of sequenced genomes. These novel technologies are 

still being improved and have led to a hand in hand development of computational platforms and 

strategies. Omics studies due to their inherent unbiased nature allow researchers to look at the 

working of the cellular machinery starting from an ‘unzoomed’ approach leading to identification 

of novel cellular molecules involved in any given process. The large scale hypothesis free nature 

has enabled the application of theses omics studies to better understand the complex biology of 

living systems. They have also been used in biomarker discovery, determination of patient 

response to drugs and to answer other clinical questions.  They are now increasingly being applied 

in combination for personal omics profiling as was recently successfully applied to a single 

individual leading to successful prediction of predisposition to diabetes [5].  

Genomics measures the genotype of an organism, the mRNA transcripts encoded by the active 

genes is measured by transcriptomics and proteomics measures the expressed proteins of a cell 

line, tissue, or organism at a given point in time. Genomics has helped researchers better 

understand genetic variations, varying genetic expressions, the roles of genes and their 

relationship with one another. The genome is mostly fixed for a given cell line while the 

transcriptome and proteome vary since it reflects the genes that are active at any given time and 

can be greatly affected by the environment making their measurements more challenging than 

the former. The proteome which is undoubtedly the most complex of the three reflects active 

gene action in the form of protein expression and transient activity based on post-translational 

modifications (PTMs). 
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Figure1: The mechanisms of proteome regulation.  

The human genome contains approximately 20,300 genes of which ~11,000 genes are predicted to 

be expressed in a given cell determining its phenotype. The proteome complexity is a result of 

many cellular mechanisms including protein regulation, including splicing variants, post-

translational modifications (PTMs), protein–protein interactions (PPIs) and subcellular localization. 

A second layer of complexity is added as a result of differential rewiring of protein networks due 

to different perturbations. This figure is taken from [6]. 
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Despite the similarities between transcriptomics and proteomics, the results are never 

overlapping and correlations between the two are in the range of 0.4 to 0.7 (Pearson’s correlation 

co-efficient) [7, 8]. This is because of  varying mRNA  stability, varying rates of mRNA transcription 

in comparison to protein translation, post-translational regulation, differing protein stabilities and 

protein degradation mechanisms [9] as visualized in Figure 1. In-depth measurements of 

proteomes became a reality on account of recent developments and advances in mass 

spectrometry (MS)[10] thus enabling the routine identification of thousands of proteins [11, 12]. 

Despite advances in proteomics technologies, in depth analysis of proteomes is time-consuming 

and laborious and has not yet reached the throughput of genomics and transcriptomics. 

Nevertheless, proteomics technology is very attractive and is the tool of choice since it provides 

readout of the functional molecules rather than genetic code or mRNA abundance. 

1.1 Basic principles of mass spectrometry-based proteomics 

Mass spectrometry (MS)-based proteomics is today an attractive technology for the study of 

abundance, modification state, localization and interaction of proteins in a systematic way [13, 

14]. In the last decade proteomics technologies have seen rapid advances in preparative 

techniques, MS-instrumentation and computational analysis, which have aided its increasing 

usage in all areas of basic and applied life sciences [10]. Proteomics provides a new tool that 

enables unbiased and global studies of cellular processes of interest with the possibility of 

measuring contextual relationships of proteins, such as their interactions, copy numbers, 

modifications and cellular localizations. This is highly desirable since researchers are realizing that 

protein function heavily relies on a complex, dynamic and cooperative network in contrast to the 

traditional molecule-centric, single directional pathway-based approach [15]. 

In its earlier years MS was predominantly employed by chemists for the study of small molecules.  

Sir Joseph Thomson, who was awarded the Nobel Prize in 1906 for his discovery of electrons, is 

considered the founder of the field of MS. This was then followed by research and developments 

in several areas of physics leading to the manufacture of many mass spectrometers including time 

of flight (ToF) and quadrupole mass analyzers, which allowed accurate determination of the 

mass/charge (m/z) of introduced molecules. Potential interest of biologists was limited by the fact 

that large molecules like proteins and peptides could not be vaporized and ionized, which are 
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necessary conditions for MS-analysis. This limitation was overcome by the invention of soft 

ionization methods, in particular electrospray ionization (ESI) and matrix assisted laser desorption 

ionization (MALDI) methods by John Fenn and his co-workers at Yale University  [16, 17] and 

Michael Karas and Franz Hillenkamp at Frankfurt University [18] (Figure 2). 

1.1.1 Instrumentation and workflow for shotgun proteomics 

A mass spectrometer basically consists of an ion source that introduces an analyte into the 

machine and also converts the analyte molecules into gas-phase ions, a mass analyzer that 

separates ions on the basis of their m/z ratios, and a detector that records the number of ions at 

each m/z value to generate a mass spectrum. 

A) Ionization methods 

One of the most important developments in instrumentation for biological mass spectrometry was 

the introduction of the gentle ionization methods MALDI and ESI that allowed for proteins and 

peptides to be analyzed by MS despite being polar, non-volatile and unstable.  

In the MALDI approach, peptides or proteins are mixed in an excess of organic matrix and co-

crystallized (Figure 2A).  Laser energy focused on the sample is absorbed by the matrix and 

transferred to the peptides/proteins, causing the analyte to vaporize and ionize as singly-charged 

species. Since singly-charged ions are not fragmented easily by the low energy collision induced 

dissociation (CID) process employed in many contemporary mass spectrometers, MALDI ion 

sources are typically combined with ToF analyzers. The measured peptide masses of a protein can 

then be compared to a database containing information about the calculated peptide masses for 

all proteins of species.  

In ESI, biomolecules in solution are electrosprayed at the end of a hypodermic needle into a strong 

electric field applied between the orifice and the entry point of the mass spectrometer (Figure 

2B). Ions accumulate at the liquid surface upon eluting from the capillary and the liquid forms a 

‘Taylor cone’. Charged micro droplets are generated from which the neutral solvent quickly 

evaporates while the charged ions in the droplet undergo dispersion by charge repulsion resulting 

in desolvated analyte ions, which enter the mass spectrometer. In contrast to MALDI, this 
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ionization technique typically produces ions in multiple charged states which makes their 

fragmentation more efficient. In addition, ESI is easily interfaced with liquid chromatography (LC) 

thereby allowing direct on-line separation and making it the method of choice for analyzing 

complex peptide mixtures. 

 

     

Figure 2: Soft ionization methods for biomolecules.  

A: Matrix associated laser desorption ionization (MALDI) where the analyte is co-crystallized with 

an organic matrix and ions are generated using a laser source. Modified from [19] B: Electrospray 

ionization (ESI) in which a biomolecule solution is sprayed as a fine mist from the tip of a needle. 

Image from [20] 

 

B) Mass analyzers 

Principles: 

Once inside the mass spectrometer the ionized peptides are channeled into the mass analyzer, the 

heart of the mass spectrometer. For their basic operation, classic mass analyzers use electric and 

magnetic fields to apply a force on charged ions. The relationship between the three factors can 

be summarized in the following equations: 
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Where F  is the force applied to the ion, m is the mass of the ion, a  is the acceleration, e  is the 

elemental charge, E  is the electric field and v * B  is the product of the ion velocity and the applied 

magnetic field. From these laws, it is apparent that the force causes an acceleration that depends 

on mass and that the applied force is dependent on the ionic charge. These two observations are 

the reason why mass analyzers separate molecule based on m/z ratios and not mass alone.  

Features of mass analyzers: 

For comprehensive proteome analysis, mass analyzers with the maximum possible resolution and 

mass accuracy, sensitivity and faster scan rates are highly desirable.  

Mass accuracy is the difference between the measured mass and its calculated value and is 

measured in part per million (ppm), or parts per billion (ppb) or in absolute units in Dalton (Da). 

High mass accuracy is strongly dependent on the resolution of the mass analyzer, i.e. its ability to 

separate adjacent peaks. The resolution is mass difference of the closest mass pairs that can still 

be distinguished, divided by their mass (Δm/m). A related and more practical definition describes 

resolution as the width of a peak at a certain height, usually the height at half maximum, divided 

by the m/z (Full Width at Half Maximum, FWHM). In proteomics resolution is important since 

peptides often co-elute from the chromatography columns that are usually coupled to MS and 

may not be distinguishable in case of poor resolution. Similarly, accurate determination of masses 

is key to identifying a given peptide of given mass from a database containing all theoretically 

possible peptides, which contain many peptides of very similar masses. It is also key to post-

translational modification (PTM) characterization.  

The sensitivity of the mass analyzer is its ability to detect low level signals, originating from few 

ions. It is a key parameter in protein analysis, since the amount of biological material is limited as a 

rule. Furthermore, sensitivity is a precondition to achieving high dynamic range of the analyzer. 

The dynamic range in proteomics (highest abundant components compared to lowest abundant 

components) is a key challenge because it can span more than 10 orders of magnitude [21]. Lastly, 

the scanning speed of the analyzer is especially important because most proteomic 

measurements involve peptide elution from a chromatographic column which is directly sprayed 

into the mass spectrometer requiring very fast scanning speeds. The scanning speeds of modern 
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mass spectrometers cycles can enable acquisition of one MS spectrum and 10 MS/MS spectra per 

second [22]. ToF instruments do not have a scanning speed per se because they acquire thousands 

of individual spectra per second.  

Types of mass analyzers: 

In the past century various types of analyzers were developed including ToF, quadrupole, three 

dimensional ion traps (3D IT) or linear ion traps (LIT), Fourier Transform Ion Cyclotron Resonance 

(FT-ICR) and the Orbitrap analyzer.  I will provide a short introduction to those analyzers that were 

used in this thesis.  

Linear ion trap (LIT) 

The LIT contains four orthogonally positioned conducting rods, each segmented into three 

sections (Figure 3A). The rods are paired, and a radio frequency (RF) voltage is applied to the rod 

pairs. To trap ions radially, two opposing rod pairs receive the same voltage, while voltages of the 

neighboring rods are opposite but of the same amplitude. This leads to a potential well in radial 

direction confining the trajectories of the ions. To trap ions axially, different direct current (DC) 

voltages are applied to the three sections to create an electric potential well in the center section. 

Both modes of trapping result in confining the trajectories of the ion to a fixed path or volume.  

The behavior of the ions and their movement is explained by the Mathieu equations: 

  
     

          
 

  
     

          
 

where m is the mass of a trapped ion, e is the ion charge, z is number of charges on the ion, V’ is 

the potential of the DC, U’ is the DC offset, Ω is the frequency of RF, x is the distance from the 

center of the trap to the X rods and y is the distance from the center of the trap to the Y rods. 

Thus, the stability of the ion motion in the trap depends on the Mathieu constants a and q, which 

are functions of the trap voltages, angular frequency (Ω), and particle m/z ratio. Plotting a against 

q, provides the stability diagram [23] of the quadrupole (Figure 3B); only ions at the intersecting 
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mass-scan line (a/q constant) will pass through the quad. This controls which ions will have a 

stable or unstable trajectory based on the specified RF and DC voltages, independent of the initial 

position of the ion and energy inside the device. If there is no DC offset, the equations can be 

simplified, because a has a value of 0, and leaves a one dimensional stability definition for ions 

which only depends on q. Ions are stable in an ion trap as long as their q value is below 0.908. The 

lowest mass-to-charge ratio that is stable in an ion trap is referred to as low mass cut-off and is a 

disadvantage of ITs and LITs, because it limits the lowest fragment mass that can be retained and 

therefore analyzed. 

ITs serve as excellent mass analyzers on account of their fast scan rates, high sensitivity, small size 

and relatively low cost but have limitations due to lower resolution (especially in comparison to 

FT-ICR), the low mass cut off feature and lower resolution.  

 

        

Figure 3: Linear ion trap mass analyzer. A: Schematic of the LIT. The center section has a slit that 

facilitates the axial ejection of ions. Figure is from [24] B:  Stability diagram for determination of 

m/z ratios that are stable.m1,m2 and m3 are increasing values of m/z and the triangular shape 

underneath each m/z is the stable region for the corresponding m/z value. At the scan line the 

trajectory is stable. Image from [25] 
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Orbitrap 

The Orbitrap is a recently developed mass analyzer that has revolutionized the field of proteomics. 

It owes it basic design to the Kingdon trap, invented in 1923 by K. H. Kingdon [26] which was then 

modified by Knight in 1981 [27]. Based on this, after many improvements and novel insights,  

Alexander Makarov in 2000 introduced this new type of mass analyzer [28]. The Orbitrap is a 

purely electrostatic analyzer, in which the frequency of orbiting ions is measured as an image 

current. The Orbitrap is constructed from an inner spindle-like central electrode, surrounded by an 

outer barrel-like split electrode (Figure 4) resulting in a non-uniform space between the two 

electrodes along the z-axis. The electric field is weakest in the middle where the space between 

the two electrodes is largest. For efficient ion injection, before entry into the Orbitrap, ions are 

accumulated and stored in a quadrupole device termed ‘C-trap’.  Once inside the Orbitrap, the 

moving ions are trapped in an electrostatic field and start to orbit around the central electrode.  

 

 

  Fig 4: The Orbitrap mass analyzer. 

  A cross section of the Orbitrap showing the movement of ions (red) around the central electrode.                

  Figure modified from [29]. 
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This electrostatic attraction (axial) towards the central electrode is compensated by centrifugal 

forces (radial) that arise from the initial tangential velocity of ions.  Since the motion along the axis 

of rotation is independent of rotational motion and depends only on the m/z, the ion image 

current in this direction is detected and employed for mass analysis. Fourier transform is 

employed to determine the oscillation frequencies for ions with different m/z’s very accurately. 

Such measurements achieve very high resolution rivaling that of FT-ICR instruments, and 

surpassing, by an order of magnitude [29], the resolution [30] presently obtainable with 

orthogonal ToF analyzers. 

 

C) Detectors 

The final element of the mass spectrometer is the detector, which records and amplifies the 

charge induced or the current produced from separated ions (by m/z) to generate the mass 

spectrum. Commonly used detectors include the electron multipliers that are effectively vacuum-

tubes that multiply incident ions by a process of secondary emission leading to an avalanche of 

ions from a single ion. Apart from electron multipliers, other detector types use image currents as 

described above. 

D) Fragmentation modes for data dependent acquisition 

Shotgun proteomics typically involves the acquisition of a survey scan, isolation and fragmentation 

of peptide ions followed by acquisition of fragment spectra. This process is repeated sequentially 

for the top N most intense peptides. The Orbitrap generation of machines provides several modes 

of fragmentation and the most appropriate is chosen depending on the sample analyzed and the 

capabilities of the machine. The most commonly used fragmentation methods are CID and HCD, 

but ETD is also employed for specialized applications. The fragments resulting from fragmentation 

are dependent on the sequence of the peptide backbone. Different types of ions are generated 

based on the chemical bond cleaved. The fragment ions are classified according to the Roepstorff-

Fohlmann-Biemann nomenclature[20]. The most common an informative are the b- and y-type 

ions, which result from cleavage of amide bonds with charge retention on the N- and C-terminus, 

respectively. Consecutive series of these ions spell out a partial or complete peptide sequence. 
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These ion types are typical in CID and HCD fragmentation. In contrast c- and z-type ions originate 

from cleavage of the N-Cα bonds and are characteristic of electron capture dissociation (ECD) or 

electron transfer dissociation (ETD). Since Article 1 of this thesis compares CID and HCD 

fragmentation, they will be explained in more detail in the following section. 

Collision Induced Dissociation (CID) versus Higher-energy Collisional Dissociation (HCD) 

In the hybrid mass spectrometers described in the chapter, CID experiments are performed in a 

LIT. In the first step, a precursor peptide ion selected for fragmentation is isolated, activated by an 

RF frequency, which accelerates it in the ion trap and leads to collisions of the peptide ions with 

the surrounding helium gas atoms and to fragmentation of the peptide backbone. Because the 

energy used for fragmentation is distributed in the peptide molecule, often only the weakest 

bonds are cleaved. The resulting fragments are not in resonance with the RF frequency and 

therefore do not fragment further. This is especially pronounced in the case of phosphorylated 

peptides which tend to show neutral losses and require additional strategies for comprehensive 

coverage of peptide fragments. Generally, in such ion trap based tandem MS experiments, the 

precursor masses are recorded in the Orbitrap at high resolution, the peptides are fragmented and 

the fragment masses are recorded in the low resolution ion trap. Such a strategy is therefore 

called a ‘high-low’ strategy [31]. Advantages of CID or other ion trap fragmentation methods 

include high sensitivity since ion traps need fewer charges to detect a signal, faster speed of 

acquisition enabling fragmentation of more precursors, and – in a hybrid instrument - parallel MS 

and MS/MS acquisition since the two events are recorded in different analyzers. Disadvantages of 

CID include the relatively low mass resolution of the ion trap. Furthermore, the low mass cut off of 

fragments inherent to the ion trap fragmentation process [24] results in non-detection of lower 

mass ions, which can particularly  hamper the detection  of peaks diagnostic in PTM analysis. 

However it is possible to acquire spectra in the Orbitrap analyzer of ions fragmented by CID in ion 

traps to overcome a few of these limitations. 

HCD which was first described in 2007, on a hybrid ion trap, Orbitrap instrument (LTQ-Orbitrap XL)  

[32]. It is a beam type CID method, which also generates b- and y-type fragment ions. Due to the 

fact that the fragment ions that initially are formed still collide with the gas in the collision 

chamber, HCD leads to efficient backbone cleavage, which resembles the classical triple 
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quadrupole fragmentation, and fewer exclusive neutral losses in the case of PTMs. In addition to 

the b- type and y- type ions HCD also generates a- type ions from further fragmentation [33]. 

Fragmentation is performed in a dedicated HCD cell and does not suffer from the 1 ⁄3 mass cut-

off, another reason that produces spectra containing more information than in CID. This is 

especially attractive for detection of diagnostic peaks specific for some PTMs, immonium ions for 

all peptides and reporter ions used for TMT/iTRAQ quantification which are all in the low mass 

region [1, 34, 35]. HCD is almost always performed with fragment read out in the Orbitrap 

analyzer and is therefore a ‘high-high’ strategy, because both precursor and fragment masses are 

acquired with high mass accuracy, leading to higher confidence in spectral matching. 

Disadvantages of HCD fragmentation are lower sensitivity, production of internal fragments that 

may make peptide matching complicated and most importantly, the consecutive acquisition of the 

MS and MS/MS spectra in the Orbitrap analyzer resulting in longer cycle times compared to ion 

trap CID. However, all these disadvantages have been greatly alleviated in the newest generation 

of instruments [22, 31]. 

 

E) The Orbitrap family of mass spectrometers 

All experiments performed in this thesis were analyzed using the Orbitrap family of mass 

spectrometers. The invention of the Orbitrap analyzer, led to the development of a number of 

different hybrid high mass accuracy spectrometers for shotgun proteomics. The mass 

spectrometers belonging to this family include the LTQ-Orbitrap, LTQ-Orbitrap Velos, Orbitrap 

Elite and Fusion. All of these are hybrid instruments that use the Orbitrap for high accuracy 

measurements and all of which have an additional mass analyzer. Furthermore they also feature 

different fragmentation capabilities. The Exactive and Q Exactive are bench top devices that have 

only the Orbitrap as mass analyzer or a combination of quadrupole and Orbitrap as mass 

analyzers, respectively. For this thesis specifically, the LTQ-Orbitrap, LTQ-Orbitrap Velos and Q 

Exactive were employed and are therefore described in more detail. 
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LTQ-Orbitrap 

The LTQ-Orbitrap was the first machine with the Orbitrap mass analyzer launched by Thermo 

Fischer Scientific (Figure 5A) [36]. This hybrid instrument uses an Orbitrap cell for measuring 

peptide masses at high resolution and a LIT for fragment spectrum analysis. For tandem mass 

spectrometry, it was equipped with CID the fragmentation mode. The LTQ-Orbitrap revolutionized 

proteomic analysis with researchers harnessing its ability to first analyze peptides eluting from the 

chromatography column with high resolution survey scans in the Orbitrap cell followed by 

sequential isolation and CID fragmentation of the top N most intense peptides in the LIT, which 

were mass measured in parallel in the LIT. One cycle, including an MS1 scan in the Orbitrap 

analyzer was typically configured to have a resolution of 60,000 and five fragmentation events, 

taking around 2.5 seconds. Measurements on a well calibrated machine accurately determine the 

peptide mass with an accuracy of few ppm at this high resolution. Mass accuracy was further 

boosted by the algorithms in MaxQuant and by injecting ambient molecules from laboratory air as 

internal recalibration standards [36].This instrument was then upgraded to Orbitrap XL, essentially 

an LTQ-Orbitrap equipped with a dedicated collision cell for HCD fragmentation or optional 

ETD/ECD fragmentation [32]. 

LTQ-Orbitrap Velos 

The LTQ-Orbitrap Velos is similar in construction to its predecessor the Orbitrap XL and was 

equipped with an Orbitrap cell, IT and an HCD cell (Figure 5B) [37]. There were several 

improvements however, that made it possible to perform HCD fragmentation in a high throughput 

fashion which was not possible before. Firstly the inlet was modified and equipped with an S lens 

allowing much better transmission of ions into the machine, thus increasing the sensitivity. The IT 

was replaced by a dual linear ion trap with the first part being operated at a higher pressure (6.7 x 

10-3 mBar) than the second part.  The higher pressure allows very efficient trapping, isolation and 

fragmentation of ions that are transferred into the second trap operated at lower pressure (5 x 10-

4 mBar). This improved scanning and in combination with improved electronics and multipliers 

allowed recording of mass spectra at higher speeds. 
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HCD fragmentation scans are acquired in the Orbitrap analyzer and due to image current 

detection require a larger number of ions than a LIT, which has ion multipliers as detectors. The 

improved design (S-lens and C-trap-HCD cell combination) and electronics, enabled the analysis of 

up to ten-fold more ions per unit time  into the HCD cell than before. This made HCD 

fragmentation (high-high strategy) routinely feasible and competitive with the already available 

CID mode ( high-low strategy). A part of this thesis (Article 1) deals with assessing the application 

of the HCD strategy for phospho-proteomics analysis [1]. 

Q Exactive 

The Q Exactive is a bench top instrument with an Orbitrap cell for high resolution analysis, which 

by design detects both precursor and fragment ions [22]. In contrast to its predecessor, the 

Exactive[38], it is equipped with an S-lens and a  quadrupole that enables isolation of selected ions 

on a faster time scale (Figure 5C). The Q Exactive has a shorter ion path and has improved 

electronics. This in conjunction with ability to fill in parallel during analysis and employment of the 

enhanced Fourier Transform (eFT) algorithm results in a factor two increase in resolution. These 

improvements make the Q Exactive a more sensitive and faster instrument than any of its 

predecessors. A part of this thesis is dedicated to the in depth analysis of the phospho-proteome 

in a single cell line employing this instrument (Article 3). For the first time this instrument allowed 

the measurement of unfractionated proteomes in single LC-MS runs enabling near comprehensive 

yeast proteome analysis in a few hours of measurement time [39]. Another part of this thesis 

describes the unprecedented coverage using unfractionated single measurements to study cellular 

proteome and phospho-proteome changes in response to treatment with a growth factor on a 

temporal scale (Article 4).  
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Figure 5: Schematic representation of the Orbitrap family of instruments.  

A: The LTQ-Orbitrap the first generation of the Orbitrap family of hybrid mass spectrometers equipped 

with an Orbitrap cell and a linear ion trap. (HCD cell of the Orbitrap XL is also depicted) B: The LTQ-Orbitrap 

Velos, with its improved ion source the S lens, dual ion trap and HCD capabilities.  C: The Q Exactive, a 

bench top mass spectrometer combining quadrupole and Orbitrap mass analyzers.  
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F) Workflow for shotgun proteomics 

Protein identification via MS is usually performed in the abovementioned bottom up manner, 

where the peptides resulting from enzymatic cleavage of the proteome area analyzed. A 

specialized form of proteomics omits the cleavage step and therefore analyzes intact proteins 

(‘top-down’ proteomics) [40-42].  

 

Figure 6: Two complementary modes of proteomics.  

A: The bottom up approach where proteins are digested into peptides and analyzed by MS and 

MS/MS. B: The top down approach where intact proteins are analyzed in the mass spectrometer, 

optimally with full-sequence coverage. This figure is modified from [43] 
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The peptide-based bottom-up shotgun proteomics involves in-gel or in-solution proteolytic 

digestion of proteins with a sequence-specific protease into peptides before MS analysis (Figure 

6A). This approach is well suited for protein identification, since it requires very little fragment 

information from a single or very few peptides  to identify the protein in a database [20]. With the 

tremendous developments in instrumentation and software in the past years, bottom-up 

proteomics will remain the workhorse for proteomic analysis. 

Top down proteomics (Figure 6B) measures intact proteins and in principle allows more 

comprehensive characterization of protein isoforms and post-translational modifications because 

any modification will shift the molecular weight of the protein [44, 45]. It preserves the labile 

structural characteristics which are lost in the bottom up mode [46]. In the form of native mass 

spectrometry, the top down approach can preserve non-covalent interactions with small 

molecules. This strategy has recently gained more prominence with its application to study protein 

complexes and their assembly [47-49]. This thesis exclusively uses bottom up proteomics for 

comprehensive proteome and phospho-proteome analysis and therefore those workflows and the 

data analysis strategies are discussed. 

Comprehensive proteome analysis has become a reality due to availability of the genome 

sequence, developments in instrumentation, efficient sample preparation and separation 

strategies and improvements in computational analysis. MS-based proteomics has been used to 

study a range of organisms from prokaryotes to Homo sapiens. The proteome of any organism can 

be easily studied if its genome has been sequenced, providing the possible protein sequences as a 

database. Nevertheless, proteomics can also be performed on organisms whose genome in not 

yet or only partially available since they can still be analyzed by MS and fragmentation spectra 

interpreted by de novo sequencing [50, 51]. This is very challenging yet becoming more realistic. 

A typical shotgun proteomics workflow begins with sample preparation and digestion of the 

material of which the proteome needs to be analyzed (Figure 7A).  Typically, cell lysis is the first 

step and it can be performed with gentle lysis buffers in cases where preserving complexes is 

important; or in presence of strong detergents like SDS which is used when all proteins, especially 

membrane proteins, need to be solubilized. The subsequent sample preparation is uses in-gel 

http://circgenetics.ahajournals.org/content/4/6/711.full#F1
http://circgenetics.ahajournals.org/content/4/6/711.full#F1
http://circgenetics.ahajournals.org/content/4/6/711.full#F1
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digestion where the proteins in the lysate are separated by SDS-PAGE based on their molecular 

weight, followed by cutting the gel small parts in which digestion can proceed [52], or alternatively 

by a ‘gel-free’ in solution digestion protocol. The method is chosen depending on the 

requirements of each experiment. Advantages of the gel-free method are high efficiency and 

simplicity. The traditional method of in-solution digestion cannot support SDS lysis and was 

therefore recently adapted and converted into a filter based digestion protocol, termed FASP [53]. 

In in-gel and in-solution methods, prior to digestion, the proteins are reduced using dithiothreitol 

(DTT) and alkylated using iodo-acetamide or chloro-acetamide.  

The most common enzyme used for digesting proteins is the protease trypsin, which is efficient 

and cleaves proteins at arginine and lysine residues [54]. The resulting tryptic peptides are 

efficiently analyzed by MS and MS/MS in the positive mode since they carry the basic amino acids, 

arginines and lysines, at the C- terminus. Although trypsin the most widely used, it is also possible 

to use other proteases like LysC, GluC and AspN either by themselves or in combination for 

increased sequence coverage [12, 55].  

The proteolytic peptides after digestion constitute an extremely complex mixture but can be 

analyzed in single measurements being separated on a reverse phase column and electrosprayed 

into the mass spectrometer. More often, they are subjected to fractionation, which is either 

performed before or after digestion. Methods of fractionation include size based SDS-PAGE [52, 

56] and size exclusion chromatography, charge based cationic and anionic exchange 

chromatography and lastly isoelectric focusing. In certain cases where an ultra-deep coverage is 

desired more than one fractionation technique is used [12]. Before being sprayed into the mass 

spectrometer the samples can be de-salted on C18 containing membranes to remove all salts and 

contaminants [57]. 

Fractionated or unfractionated, the peptide mixture is still very complex and therefore is further 

separated by LC (Figure 7B). This is usually performed on line to the mass spectrometer and 

employing a narrow fused silica column packed with C18 beads [58]. Peptides are eluted from the 

C18 material with an increasing percentage of organic solvent. Very complex mixtures greatly 

benefit    from   longer  columns  and smaller bead  sizes , which  provide  better  separation.  The  
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Figure 7: Workflow for shotgun proteomics. 

 A: Sample preparation Cells or tissues are lysed and proteins are digested to peptides with pre or 

post-fractionation to reduce sample complexity. B: LC-MS/MS The peptides are separated by 

reverse phase chromatography and sprayed into the mass spectrometer and subjected to tandem 

mass spectrometry. C: Spectral interpretation. Peptide mass information obtained from the 

survey scan and sequence information from the fragment scan are used to identify the peptide 

and subsequently the protein by matching with a database of proteins. Illustration taken from [59] 
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downside is increased back pressure which can partially be solved by a column oven to increase 

the working temperature and reducing the viscosity [60] or employing ultra-high pressure liquid 

chromatography (UHPLC) systems [39]. A recent development is the trend towards analyzing 

unfractionated samples as single runs employing the latest developments in reverse phase 

chromatography and the newest generation of mass spectrometers, which provide an appreciable 

proteome coverage in a short measurement time and with low sample consumption [39, 60].The 

mass spectrometers described are employed for tandem MS analysis, with an initial precursor or 

full scan (MS1) covering a wide m/z range. This is then followed by topN (ranging from 5 to 20) full 

scan dependent fragment scans (MS2), which are acquired from selected peptides that are 

isolated and fragmented (Figure 7B). A dynamic exclusion list ensures that each precursor is 

selected only once during typical peptide elution times. Different fragmentation modes, typically 

CID or HCD, are applied to generate rich peptide fragment patterns, from which the amino acid 

sequence can be inferred by matching to a reference sequence (Figure 7C). This is accomplished 

with the aid of strong statistics-based algorithms that scan protein sequence databases (e.g. the 

search engines Mascot [61] or Andromeda [62]). Identified peptides are assembled into protein 

groups (sets of sequences that cannot be further distinguished by with the available peptide 

information) with FDR controls to limit the number of false positives. 

Due to its largely unbiased nature, this data-dependent top N strategy is also called discovery 

proteomics. In contrast, it is also possible to employ hypothesis-driven, targeted approaches such 

as multi reaction monitoring (MRM) assays to detect and quantify proteins of prior interest [63]. 

This strategy can identify low abundant candidates in relatively short runs. Recently there have 

been efforts to combine the advantages of both approaches. 

1.1.2 PTM analysis using MS 

One of the challenges in the analysis of PTMs by mass spectrometry is their sub-stoichiometric 

abundances. Post-translationally modified peptides only constitute a minority of all peptides, and 

usually require enrichment for proteome-wide modification analysis prior to MS [64]. This is 

performed in several ways depending on the PTM under consideration. The most commonly used 

method employs antibody based immunoprecipitations (IPs)  as is the case for ubiquitylated 
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peptides using the di-gly antibody [65]. This strategy actually does not analyze the PTM per se, 

which is a small protein modifier, but the remnant after tryptic digestion, which is shared between 

ubiquitin, NEDD8, ISG15 and other ubiquitin like modifiers [66, 67]. A similar strategy is also 

employed for lysine acetylation [68], methylation[69] and phospho-tyrosine [70] modifications. 

However, not all modifications have a corresponding antibody that efficiently and selectively 

recognizes them and therefore they require other methods. The characterization of glycosylation 

involves enzymatic or chemical release of the attached glycans followed by the analysis of the 

peptide [71, 72], from which the glycan was removed. A similar strategy of cleaving off the 

modification and MS analysis of the peptide or the derivatized peptide (using reporter ions) is 

employed for a number of less studied modifications. In addition to sample preparation, PTM 

analysis is computationally challenging since it not only requires identification of the peptides 

carrying the PTM, but also pin-pointing the actual site of modification. This along with the 

quantification and estimation of the pool of a peptide with the given PTM in comparison to its 

unmodified counterpart increases the levels of challenges faced in PTM analysis.  

Phospho-proteomic analysis: 

MS for proteome wide PTM analysis was first applied to phosphorylated proteins and peptides 

[56, 73, 74]. Phosphorylated peptides are most commonly are enriched using IMAC immobilized 

metal affinity chromatography (IMAC) [75, 76], strong cation exchange (SCX) chromatography and 

titanium dioxide (TiO2) chromatography [43, 77, 78]. These approaches work more efficiently at 

the peptide level than the protein level. The TiO2 and IMAC affinity methods mainly result in the 

identification of serine and threonine phosphorylation. Therefore when a deep coverage of 

tyrosine phosphorylated peptides is necessary, antibody affinity pull-downs are preferred (Figure 

8). When peptides are first pre-fractionated with SCX or by the HILIC chromatography method and 

this is followed by a second round of enrichment with TiO2 or IMAC [73, 75] (Figure 8). 

The workflow used in the projects in this thesis employ Filter Aided Sample Preparation (FASP) 

based peptide digestion [53] to generate peptides, because experience in our laboratory has 

shown that this method is well suited to phospho-proteome analysis. Because of the low 

stoichiometry of phosphorylation, starting materials employed for phospho-proteome enrichment 

http://en.wikibooks.org/wiki/Proteomics/Protein_Separations_-_Chromatography/Immobilized_Metal_Ion_Affinity_Chromatography_(IMAC)
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are typically at least 2 to 6 mg, significantly higher than in proteome measurements. The tryptic 

peptides are then separated by SCX chromatography which also serves to enrich phospho-

peptides [79] (Figure 8). SCX is employed in phospho-peptide analysis because phosphorylation 

results in reduced positive charges on phosphorylated peptides and in SCX this feature can be 

used to separate them from unphosphorylated peptides. Multiply phosphorylated peptides bind 

to the SCX column with minimum affinity and therefore the flow-through is also used for 

enrichment [79].  Next, enrichment of phospho-peptides is done with TiO2 micro beads, achieving 

very high enrichment efficiency of greater than 90% [78]. To avoid interference from peptides with 

acidic amino acid residues (glutamic acid and aspartic acid) it is necessary to use competing agents 

to prevent their binding. Commonly used competing agents include 2,5-dihydroxy benzoic acid 

(DHB) [80] and 6% TFA [81] and these are routinely applied in large-scale phospho-proteomic 

analysis.  

Comprehensive analysis of phospho-peptides also requires minor adjustments to the mass 

spectrometric methods. When phospho-peptides are fragmented by CID in the ion trap this often 

results in a single neutral loss of the phosphate group, due to its  labile bond [82]. As a result, the 

fragmentation spectra of phospho-peptides can be dominated by a peak of 98 Da or 80 Da lower 

mass than the precursor (loss of H3PO4 and HPO3, respectively). This decreases the level of 

backbone fragmentation observed thus hindering identification of the peptide sequence [82]. The 

neutral loss is highest for serine phosphorylated peptides, followed by threonine and very rare for 

tyrosine phosphorylated peptides [83]. In ion traps this problem can in part be alleviated by Multi 

stage activation (MSA), which has now become a routine method [73, 84]. In MSA a precursor ion 

selected after the first MS analysis is activated at its m/z, followed by an additional activation at 

the anticipated m/z of the neutral loss of the phosphate group, while all the other fragments are 

still trapped.  A second limitation of using CID-based ion trap fragmentation is the one-third rule, 

which in the case of phospho-tyrosine (pY) containing peptides results in the loss of the diagnostic 

phospho-immonium ion [34]. These limitations can be overcome by employing HCD fragmentation 

for large-scale phospho-proteomics, a strategy which also gains from the high mass accuracy at 

precursor and fragment levels. Article 1 describes the demonstration of feasibility of HCD based 

fragmentation for large scale phospho-proteomics on the LTQ-Orbitrap Velos. Such HCD 
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fragmentation based phospho-proteomic analysis is now routine on both the LTQ-Orbitrap Velos 

and Q Exactive platforms, identifying tens of thousands of sites. Article 2 is demonstrates 

identification of the largest phospho-proteome of a cell line reported so far and in this project 

global analysis of phospho-peptides was performed on a Q Exactive instrument.    

 

 

 
Figure 8: Phospho-proteomic workflow.  

Protein lysate is digested by trypsin, and phospho-peptides are enriched by SCX and 

TiO2 chromatography or by IP and measured by LC-MS.  Image from [79].   
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1.1.3 Quantification approaches in MS-based proteomics 

MS-based proteomics has matured into a technology to identify many proteins in complex 

mixtures in a relatively short time frame. However, identification of proteins is not sufficient. 

Estimation of the amounts of proteins or measuring changes in protein expression and PTM levels 

is also necessary.  MS is not quantitative by nature due to differing behaviour of peptides during 

ionization, which means that concentrations of peptides cannot be determined directly from the 

signal intensities detected by MS. This necessitated the development of strategies to obtain 

quantification information for comparing of protein abundance between samples (relative 

quantification) or determination of concentration or of copy numbers (absolute quantification). 

Quantification of both types can be performed in two modes: label-based methods and label-free 

methods (Figure 9).  

 

Label-based quantification: 

Label-based approaches use isotopic labels to generate a mass difference to differentiate between 

proteins from the samples to be compared. The largest advantage of this methodology is that it 

allows multiplexing or measurement of differently labeled samples together to determine their 

respective amounts. Such isotopic labels can be introduced at different stages during the 

experiment and then combined. However, the earlier the samples are combined the better the 

quantification accuracy due to decreased variability from sample preparation and MS analysis 

[85].  

Metabolic labeling employs non-radioactive isotopes and is exemplified by SILAC (stable isotope 

labeling with amino acids in cell culture) [86]. This is achieved by replacing essential amino acids in 

the growth medium with their heavier counterparts (Figure 10). The most commonly used stable 

isotope containing amino acids for differentially labeling cells are arginine and lysine. When 

combined with trypsin digestion (cleavage C-terminal to Arg and Lys), these labels ensure labeling 

of every peptide, except the C-terminal peptide of the protein (Figure 9).  During MS analysis, two 

isotope clusters can be observed for every peptide, forming a SILAC pair whose intensities can be 

directly compared to estimate differences in peptide intensities and thus relative protein levels. 

Up to three biological samples with three different SILAC labels are commonly measured in a 
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single MS experiment, although multiplexing with many SILAC labels has recently been reported 

[87]. SILAC requires growing cells in media containing only these stable isotopes labeled amino 

acids and is sometimes not feasible when working with cells sensitive to small changes to culture 

media or those that cannot be cultured (e.g. primary cells). The limitation with respect to primary 

cells in mice has been solved with the introduction of the SILAC mouse [88] that is generated by 

feeding the animals with a heavy lysine diet. Today the concept has been applied to other model 

organisms, including bacteria [89], yeast [75] nematodes [90] and flies[91].  

 

 

 

 

Figure 9: Labeling strategies and their impact on quantitative accuracy. 

 A schematic depiction of label-based and label-free workflows. Labeled samples represented by 

colored boxes are distinguished in the mass spectrometer while samples without a label (empty 

boxes) are not. Figure modified from [85]. 
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Figure 10: SILAC based relative quantification.  

Cell populations are differentially labeled, mixed and analyzed together by MS-based proteomics 

to obtain SILAC peptide pairs, whose intensities are directly compared to assess differential 

protein expression between the two populations. Image modified from [92]. 

 

The limitation of SILAC to cells that can be cultured was further overcome by the development of 

the ‘super-SILAC’ method [93], in which several SILAC labeled cell lines are pooled and are spiked 

into any unlabeled sample including those in clinical studies. Article 2 in this thesis used the super-

SILAC approach to segregate patients with two different types of lymphoma.  SILAC is evolving 

with newer modes being developed; for example pulsed-SILAC [94] is applied to study protein 

turnover. 

Chemical labeling is not as accurate as metabolic labeling, since the labels are introduced further 

downstream, either before or after digestion (Figure 9). Isotope-coded affinity tag (ICAT) [95] is an 

example of the former, where cysteine residues are covalently modified with a biotinylated label 

and affinity purified [109]. Dimethyl labeling [96] which involves derivatization of amino groups 

with light or heavy versions of formaldehyde has also been successfully employed. Other chemical 

labels include ‘isobaric tags for relative and absolute quantification’ (iTRAQ) [97] and the ‘tandem 

mass tag’ (TMT) [98]. These methods use differing low mass reporter ion masses generated by 

fragmentation for quantification and allow multiplexing up to ten samples. They pose challenges 
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for quantification due to unavoidable side chain reactions and co-fragmentation of co-eluting 

peptides. 

The labeling strategies described so far are applicable to relative quantification. Some of them 

can additionally be applied for absolute quantification as is the case with ‘absolute SILAC’ [99] 

where SILAC-labeled recombinant proteins are used as internal standards and are mixed into 

lysates in exactly determined amounts. The Protein Epitope Signature Tags (PrEST) method [100], 

similarly employs accurate amounts of heavy PrESTs to measure the copy number per cell. 

Another method of labeling for absolute quantification is AQUA (Accurate QUAntification) [101] 

which employs labeled synthetic peptides (Figure 9). AQUA has been the most widely applied 

labeling strategy for absolute quantification but is not feasible when applied to many peptides and 

conditions due to increased costs. Furthermore, it does not account for variation in digestion 

efficiency and loss of AQUA peptides during storage. 

 

Label-free quantification: 

The methods for absolute quantification outlined above can be very accurate, but are limited in 

their throughput since they require a spike-in of every protein that needs quantification.  Label-

free quantitation for comparison of relative amounts between cell types or for estimation of 

absolute numbers is very attractive, since it is simple and applicable to any samples. It also has the 

added bonus of being economical and readily usable for clinical samples. However, since it is 

compares separate measurements it is less accurate than label-based quantification and may 

therefore require more replicates and more MS measurement time. 

Using computational analysis, it is possible to indirectly infer protein amounts from MS peptide 

intensities.  For instance the number of peptides identifying a protein, normalized for protein 

length, is related to the protein amount. The exponentially modified protein abundance index 

(emPAI) [102], does this using the following formula: 

              

where PAI or protein abundance index is the ratio of the number of observed peptides divided by 

the number of observable peptides per protein. emPAI is directly proportional to the absolute 

protein amount and has been applied in many MS studies for a rough estimation of protein 

abundance. 
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A more recent method called ‘intensity-based absolute quantification’ (iBAQ) [103] calculates a 

ratio of the sum of intensities of all identified peptides of a protein and the number of 

theoretically observable peptides and log transforms this value. To calibrate this quantification, a 

non-labeled standard of accurately quantified proteins is spiked into the sample before sample 

preparation.  

Label-free approaches have recently been applied to relative quantification with increasing  

success [104]. Differentially treated unlabeled samples are prepared and measured separately. 

The higher variability arising due to separate processing can be minimized and by measuring 

samples consecutively and with more replicates [105]. In addition the sophisticated intensity-

based label-free quantification (LFQ) provided in the MaxQuant software platform normalizes 

intensities, aligns runs and computes label-free intensity at the protein level. This method was 

employed in articles 3 and 4 of this thesis [19]. 

 

1.1.4 Computational analysis in MaxQuant 

In the bottom up proteomics strategy, precursor and fragment spectra and their intensities are 

employed for identification and quantification of peptides and proteins. This requires elaborate 

computational workflows that efficiently perform this process, relying on information which is 

either known or predicted from DNA sequencing data of the organism analyzed [25]. One such 

algorithm was developed in our laboratory and is called MaxQuant [106]. It reconstructs MS peaks 

as three dimensional (time, m/z and abundance) objects and specifically takes advantage of high 

resolution MS.  It determines peptide masses to ppm levels with linear and non-linear mass 

recalibration and integration of multiple mass measurements over a liquid chromatographic peak, 

thus decreasing false positive identifications [107]. Most importantly, it introduced the concept of 

individualized mass accuracy depending on the signal and mass measurement statistics of each 

peptide.  

In MaxQuant, the measured masses from both MS and MS/MS scans are converted to peak lists 

and submitted to the database search engine Andromeda [62] to perform matching.  Andromeda 

extracts the most intense N ion peaks per 100 Da in fragment spectra and matches the peak list 

with theoretical spectra and its precursor mass and in addition calculates chances of the matches 
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arising by chance. This procedure is repeated for each peptide from the protein sequence 

database and results in a probability score indicative of the extent the match arising by chance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: The MaxQuant algorithm.  

A: The measured masses from both precursor and fragment scans are matched to in silico 

database of entries by the search engine Andromeda to identify peptides. Quantification is 

performed using label-based (SILAC in this figure) or label-free methods to report protein 

expression changes. B: The data acquired is subjects to many steps of analysis in the MaxQuant 

environment to obtain protein identification and quantification, which is then analyzed in Perseus. 

Figure adapted from [106] 
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Due to non-ideal and random matching between theoretical and experimental spectra, database 

searching programs inevitably produce both correct and incorrect identifications. Therefore 

afterwards, a score cutoff is applied in MaxQuant to guarantee sufficient evidence for the 

assignment of peptide sequences using a target decoy strategy [108] with a database containing 

both the regular and the reversed protein sequences of the organism analyzed. By assuming that 

incorrect identification of peptides are equally likely in the target and decoy database, it is 

possible to obtain an estimate of the number of false positives by doubling the number of hits 

found in the decoy portion of the database, which are incorrect identifications by definition. In the 

second step, the list of identified peptides is filtered according to user-specified criteria and the 

False Discovery Rate (FDR) is estimated from the number of decoy hits. The same basic principle is 

applied during the reassembly step from identified peptide sequences back to proteins. The 

software has additional features that make it an ideal solution for the quantitative analysis of a 

large number of raw data, such as methods for computing statistics at peptide and protein levels 

and statistically robust methods for quantifying proteins. 

MaxQuant is also particularly suited to the identification and quantitation of PTMs. To identify 

these during MS/MS database searches, specific mass shifts are consecutively considered on the 

residues, on which the modification of interest may be localized. MaxQuant in addition to FDR 

thresholding, uses a special score cutoff (calibrated based on a synthetic phospho-peptide library 

[109]) and probability based scoring method to identify phospho-peptides and to pinpoint the site 

of modification with high confidence [73].  A part of this thesis deals with application of 

computational approaches to label-free phospho-proteomics (Article 3). 

Once identifications and quantifications of peptides and proteins have been performed, the 

resulting datasets can be subjected to computational analysis. Specialized software environments, 

such as the Perseus framework, which is part of the MaxQuant environment, offer a range of 

algorithms to perform this task and thus extract informative results. 
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1.2 Clinical applications of MS-based Proteomics 

MS-based proteomics has revolutionized cell biology and signal transduction research. However, 

one of the ultimate goals of proteomics is the application of the technology to a clinical setting. 

The protein technologies currently employed in the clinic are limited to monitoring a few proteins 

in plasma, serum or urine in low throughput assays or targeted ones such as ELISA. The proteins 

measured in these assays make up a miniscule percentage of proteins that could be studied [110, 

111]. Proteomics is increasing being applied to discovery of biomarkers of which a few have been 

validated to some extent (Table 1). There are very few studies that have gone further to assess 

clinical utility and implications for clinical practice especially cost-effectiveness in the clinic [112].  

 

Table 1: PubMed items for concepts in different stages of the roadmap among items that are 

retrieved by “Proteomic*” (n=31 686 as of August 25, 2010) taken from [112] 

Analytical tools Mass spectrometry 14,097 

 
Electrophoresis 10,125 

Clinically oriented Clinical 3,815 
Discovery Discovery 2,791 

 
Biomarker 4,684 

 
Biomarker discovery 1,224 

 
Potential biomarker 1,758 

Validation Validation 1,525 

 
Independent validation 148 

 
External validation 22 

Clinical application Clinical practice 246 

 
Clinical utility 171 

 
Clinical outcomes 169 

 
Cost-effectiveness 41 

 
Commercialization 4 

 
Reclassification 2 

Post-clinical application appraisal Audit 4 

 

MS-based proteomics, with its ability to measure and quantify thousands of proteins in a few 

hours, holds great promise to identify and monitor new biomarkers in body fluids, cells and 

tissues. This could be used in diagnosis at a very early stage of disease or for stratification of 

patients for specific treatment [113, 114]. The prospect of quantitative analysis of thousands of 
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proteins simultaneously and the inherent sensitivity of mass spectrometry holds great promise for 

application in clinical diagnosis [115]. 

One of the most attractive and probably closest applications of MS-based proteomics is in patient 

classification in cancer[116]. Transcript-based profiling technology has been applied to segregation 

of cancer subtypes based on their gene expression signatures [117, 118]. Interpretation of such 

gene based signatures with respect to the biology of the disease is challenging especially because 

they do not provide information on the extent to which changes on the transcript level are 

transferred to the next level of the gene expression program, i.e., proteins. It also ignores the 

effects of post-translational modifications. Because of the ability of quantitative proteomics to 

study expression both at the level of proteins and PTMs, it can be employed to not only segregate 

patients based on their protein profiles but also to determine the activity of signaling pathways 

directly. This may help in estimating the risk of progressing to other stages of cancer, especially 

metastasis.  

 Article 2 in this thesis employs the super-SILAC approach to show that proteomic methods can 

accurately segregate two diffuse large B-cell lymphoma (DLBCL) subtypes; germinal-center B-cell-

like (GCB) and the activated B-cell subgroup (ABC) the latter of which has a signature characteristic 

of tumor cells activated via their B-cell receptor. 
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1.2 Signal transduction in the eukaryotic cell 

The function and working of eukaryotic cells is controlled by a variety of elaborate and intertwined 

mechanisms. These mechanisms may have an effect intracellularly or in the extracellular 

environment.  Intracellular mechanisms that ensure precise activity of cell components are 

governed mainly by processes that control protein expression at several different stages. They 

comprise regulation at levels of transcription of genes and translation of mRNA into proteins. An 

additional layer of complexity in the regulation circuitry is mediated by several PTMs. These 

control mechanisms work in tandem to allow fine-tuning of regulatory networks.  

In addition, cells cannot exist by themselves, especially in the context of multicellular organisms. 

Cell to cell communication can be mediated by several types of signaling molecules that can act 

locally (exocrine or paracrine signaling), in neighboring cells or are transported to tissues in 

another part of the organism (endocrine signaling). The released signaling molecule or ligand can 

elicit a response in only those cells that have the corresponding receptor. Signaling molecules can 

be chemicals, peptides, soluble proteins and proteins bound on cell surfaces or the extracellular 

matrix (ECM). These signaling molecules can either diffuse through the cell membrane and bind 

intracellular receptors or bind to cell surface receptors. The binding of the ligand to its receptor 

induces a conformational change and activates or inhibits the proteins in the cytoplasm thus 

converting the extracellular signal into a cascaded cellular response, a process that is termed 

signal transduction. Signaling events also involve intricate networks, which encompass feedback 

loops, crosstalk with signals that regulate and can be regulated by other cellular regulatory 

mechanisms, such as transcriptional networks. These intricate networks are responsible for key 

processes such as growth, development, differentiation, apoptosis and repair while deregulated 

signal transduction is a well-established cause of diseases such as cancer, diabetes, obesity, heart 

failure etc. Consequently, studying the nature and mechanisms of signaling events is a large and 

crucial part of biological and medical research. 

Although the nature of signals and their processing can be very diverse, they share general 

characteristics. Signals need to be specific to lead to a prompt cellular response and quenched 

once the required response has been elicited. Signaling cascades are therefore usually controlled 
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by highly dynamic post-translational modifications (PTMs) that are kinetically fast and mostly 

reversible. PTM of a protein is accomplished by modification of a chemical group (e.g.: 

phosphorylation, acetylation) or the addition of another protein (e.g.: ubiquitylation, sumoylation) 

on one or more amino acids. An intricate interplay of these modifications regulates signaling 

processes by altering basic protein properties such as structure, stability, localization, activity and 

interaction with other proteins. 

 

1.3.1 Phosphorylation as a PTM: The role of kinases and phosphatases 

Phosphorylation was the first identified and extensively studied reversible PTM and is a fast and 

transient mode of regulation of protein function [119]. The opposing mediators of 

phosphorylation are protein  kinases (PK) which catalyze the addition of the phosphorylation 

moiety and protein phosphatases (PP) which catalyze the removal of the phosphate group  [120].  

The human genome encodes 518 PKs [121] and approximately 150 PPs [122, 123], which together 

make up about 3.5% of the proteome. Interestingly, despite generally being low-level, regulatory 

proteins, many kinases are nevertheless in the top 25% of the proteome by expression value [12]. 

 

In eukaryotes phosphorylation predominantly occurs on side chains of serine (Ser/S), threonine 

(Thr/T) and tyrosine (Tyr/Y) residues, and very rarely on histidine (His/H), arginine (Arg/R) or lysine 

(Lys/K) side-chains [124]. Accordingly, in humans, of the 513 PKs, 90 are Tyr kinases while the 

remaining two thirds are serine threonine kinases (STKs) [121]. A given STK may simultaneously or 

sequentially phosphorylate multiple Ser and Thr residues of a target. Similarly, several Tyr may be 

phosphorylated by a Tyr kinase, as is the case, for instance, on the activation loop of the insulin 

receptor [125]. In addition, a given protein can be modified by more than one type of PTM 

allowing for crosstalk with other signals [126]. The phosphorylation mediated ubiquitylation in 

many Skp, Cullin, F-box containing complex (SCF) E3 ligase substrates is an example of this. 

Approximately one of every three proteins has been estimated to be phosphorylated at some 

point in its life cycle [127]. It has recently been shown that many substrate proteins of cyclin 

dependent kinases (CDKs) are completely phosphorylated at particular stages of the cell cycle 

[128]. Researchers attribute this high stoichiometry of phosphorylation on these proteins as a 

means to ensure effective inactivation of an entire substrate population. Most other proteins 
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show low phosphorylation stoichiometries, which is thought to be sufficient for ensuring sufficient 

activity. Phosphorylation on Tyr residues is the most common mode of activation of 

transmembrane receptors that control cellular proliferation and differentiation as exemplified by 

receptor tyrosine kinases (RTKs) [129]. Phosphorylation of the Tyr residue in these RTKs induces a 

conformational change on the receptor ‘turning on’ enzymatic activity. The structural changes 

associated with the addition of the phosphate also generate docking sites for non-covalent 

interaction with other proteins via specific protein domains (such as the SH2 domain and the PTB 

domain that recognize phosphorylated Tyr) on interacting proteins [130, 131]. In comparison to 

Tyr, phosphorylation on Ser and Thr residues is ubiquitous. Pathways predominantly regulated by 

STK phosphorylation include cell-cycle progression [132] and the DNA damage response.  

 

1.3.2 Phosphorylation and its relevance in cancer 

Signaling networks are predominantly controlled by PTMs on member proteins to transduce 

signals in a precise and orderly sequence to amplify signals from the extracellular environment. 

Deregulation of these phosphorylation-driven processes by activating or inactivating mutations 

causes many pathological disorders including endocrine disorders, immunodeficiencies, 

cardiovascular diseases and especially cancer. More than 400 kinases are implicated in disease of 

which at least 180 have roles in cancer[133]. One such example is the Philadelphia chromosome 

[134], which generates the breakpoint cluster region (BCR)-Abelson (ABL) fusion protein common 

in many leukemias. This results in an active BCR-ABL tyrosine kinase [135] that drives proliferation 

and inhibits apoptosis of the mutated white blood cells. The mutation results in constitutively 

phosphorylated ABL kinase, which i targeted by a tyrosine kinase inhibitor Imatinib [136]. Imatinib 

became the first kinase inhibitor to be approved as a drug and heralded a new era of targeting 

kinases with small molecules to combat diseases. To date there are 18 kinase-targeting 

therapeutics, including targeting receptor kinases with antibodies, that have been approved for 

use by the FDA and several hundred are estimated to be in development and in clinical trials [137-

139].  

Similar to the BCR-ABL tyrosine kinase, several diseases are a result of mutations in particular 

protein kinases and phosphatases and are therefore considered druggable targets.   In addition, 

other proteins and PTMs are also gaining prominence.  
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Figure 12: Drugs and their targeted kinases.  

(a) Kinases currently targeted in clinical trials. (b) Kinases for which inhibitors have been claimed 

as patent literature. Number of patents per target is reflected by the radius of the dot used. This 

figure is taken from Fedorov et al [140]. 

 

 

1.3.3 The role of mass spectrometry to study phosphorylation 

Traditionally, signaling processes are studied as individual discrete pathways that amplify a signal 

via modification of key sites on member proteins. However, as our understanding of signal 

transduction increases it become clear that our current picture of signaling as a directional 

cascade is overly simplistic. Researchers have realized that signaling constitutes a complex, 

dynamic and cooperative network [141][15]. The complexity of post-translational modifications of 

signaling networks and their downstream effects therefore requires that new technologies and 

tools be developed to handle such multifaceted data. Since addition of phospho moieties in these 

complex networks is a principal mode of regulation, the phosphorylation sites should be identified 
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and quantified in an unbiased and global manner. In the past decade, quantitative mass 

spectrometry (MS) has proven itself as an ideal platform for such studies, due to its inherent 

properties of being precise yet generic. MS-based mapping and quantification of PTMs has 

therefore revolutionized signaling research and has become the method of choice in large scale 

phosphorylation studies as well as studies of other PTMs. Phospho-proteomics has been employed 

to study a variety of systems and perturbations including epidermal growth factor (EGF) signaling, 

cell cycle, kinase profiling of drugs, immune system response, amongst many others [73, 128, 142, 

143].  MS will also remain the key technology in the future as there are only a limited number of 

phospho-related reagents and tools available.  The most comprehensive phosphorylation 

databases such as PhosphoSitePlus [144], PhosphoELM [145] and Phosida [146] altogether 

comprise more than a 150,000 phosphorylation sites and for some of these sites their regulation 

in response to perturbations, almost all of which have been identified from MS-based studies. 

  

http://www.phosphosite.org/
http://phospho.elm.eu.org/
http://www.phosida.com/
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1.3 The TGF-β signaling pathway 

Transforming growth factor beta (TGF-β) signaling drives several key cellular processes like 

proliferation, differentiation, migration and apoptosis and is also implicated in diseases like cancer 

and auto-immune disorders [147, 148]. Signal transduction begins with TGF-β1 binding to its 

transmembrane receptor TβR-I or ALK5, which then dimerizes with TβR-II on the cell membrane. 

Upon dimerization, TGFβR-I is phosphorylated in the juxtamembrane region, which then 

transduces the signal into the cell via binding and phosphorylation of Smad2/3 assisted by SARA 

[149]. The activated Smad dimerizes with a regulatory Smad (Co-Smad) [150], which then shuttles 

to the nucleus, binds to target genes such as ID1 and SKI to induce or repress their transcription 

[151]. Transcriptional activation generally requires co-operating DNA binding factors like activating 

protein (AP)-1 and activating transcription factor (ATF)-2 as well as co-repressors such as TG-

interacting factor (TGIF), Ski and SnoN . In recent years there has been an increasing interest in 

TGFβR-induced non-SMAD signaling, which is typically mediated by p38, Jun N-terminal kinases 

(JNKs) and the extracellular signal regulated (ERK) mitogen activated kinases (MAPKs) [152, 153]. 

The cellular responses to this multifunctional ligand are diverse and can even be opposed to each 

other, depending on the cell type and the conditions [154]. For example, TGF-β can promote cell 

growth but also have anti-proliferative effects, and it can contribute to maintain stem cell 

pluripotency but also to differentiation. Further, TGF-β suppresses pre-malignant cells by 

inhibiting cell proliferation, but it does not do so in metastatic ones, which nevertheless remain 

responsive to TGF-β induced migration and invasion [155, 156]. A key mode of action of TGF-β in 

cancer progression is the induction of epithelial to mesenchymal transition (EMT), a process 

wherein epithelial cells acquire mesenchymal characteristics [157]. EMT is an indispensable 

process in normal tissue development and organogenesis, as well in tissue remodeling and wound 

healing. However, inappropriate reactivation of EMT crucially contributes to the development of a 

variety of human pathologies, particularly those associated with tissue fibrosis and cancer cell 

invasion and metastasis, for instance in breast cancer [158, 159]. 
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Figure 13: The scheme of TGF-β signal transduction. 

Signal transduction begins when TGF-β binds to the receptor leading to dimerization and 

phosphorylation of the receptor. The activated receptor allows the binding of a regulatory 

SMAD(R-SMAD) which is phosphorylated and binds to SMAD4. The SMAD complex translocates 

into the nucleus, binds to target genes and turns on gene transcription. Alternatively 

phosphorylation of the receptor also activates non-SMAD signaling pathways including RAS-RAF, 

JNK, P38, PI3K signaling pathways are also triggered. The depiction is taken from [160]. 
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2.  Feasibility of large-scale phospho-proteomics with higher energy 

collisional dissociation fragmentation (Article 1). 

 

Phosphorylation is one of the key PTMs on proteins and is a prime effector of  cell signaling. 

Among a wide range of analytical approaches, the combination of high resolution MS scans in 

an Orbitrap analyzer, fragmentation by collision induced dissociation (CID) and acquisition of 

fragment scans with low resolution in a linear ion trap has proven to be particularly successful. 

Measurement of fragment scans in the linear ion trap is attractive because of its high 

sensitivity, fast scan speeds and parallel operation with the Orbitrap or FT instrument.  

However, when analyzing phospho-peptides, CID in the ion trap results in significant neutral 

loss for phospho-serine (pS) and phospho-threonine (pT) containing peptides, and needs 

multiple activation steps to efficiently fragment them. Furthermore, due to the “one-third rule 

cutoff”, informative low molecular weight reporter ions often cannot be measured, as is the 

case for the phospho-tyrosine (pY) immonium-ion. 

As described in more detail in the introduction, Higher energy collisional dissociation (HCD) is 

an alternative beam type fragmentation technique that can be used on the LTQ-Orbitrap. In 

HCD, peptide ions are fragmented in a collision cell at the far side of the C-trap and analyzed at 

high resolution and mass accuracy in the Orbitrap mass analyzer. This strategy not only 

overcomes the problem of the low mass cutoff of ion trap fragmentation but also results in high 

accuracy of both precursor and fragments masses. 

Here I investigated the feasibility of routine large-scale phospho-proteomics by HCD 

fragmentation on the LTQ-Orbitrap Velos.  We analyzed key parameters such as sensitivity and 

fill times, cycle times for MS/MS experiments, identification success rates, and depth of 

phospho-proteome coverage which, unexpectedly, in comparison with a high−low strategy, 

showed similar or superior performance. As a result of this project, HCD is routinely employed 

to analyze phospho-peptides. 

This article was published in the year 2010 in the Journal of Proteome Research [1]. 
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3.  Super-SILAC allows classification of diffuse large B-cell lymphoma 

subtypes by their protein expression profiles (Article 2). 

Correct classification of cancer patients into subtypes is a prerequisite for acute diagnosis and 

effective treatment and currently relies mainly on histological assessment. Transcript-based 

profiling technologies have enabled the segregation of subtypes based on their gene expression 

signatures. However, their usage in the clinic is limited so far because such signatures do not 

provide information if or to what extent the detected transcript is translated into proteins, and 

it ignores the effects of post-translational modifications. An in-depth, high accuracy 

quantitative proteomics approach capable of revealing common and distinct functional features 

between tumor entities would provide valuable insights into cancer subtypes of potential 

clinical relevance. 

We chose two known subtypes of diffuse large B-cell lymphoma (DLBCL) to evaluate if 

proteomic methods can accurately subtype cancer subtypes. While the germinal-center B-cell-

like (GCB) subgroup is similar to normal germinal center B-cells, the activated B-cell subgroup 

(ABC) harbors characteristics of tumor cells activated via their B-cell receptor and are 

histologically indistinguishable.  

Using a mix of multiple SILAC-labeled cell lines, a technique termed “super-SILAC”, we 

quantitatively analyzed cell lines derived from both subtypes and determined a proteomic 

signature. This set of proteins partially overlapped with a gene expression signature obtained 

previously from the same system. However, it  also revealed a new set of proteins that could 

explain functional differences between the two subtypes that  may be clinically useful in 

diagnosis and chemotherapeutic development. Our results show that high resolution shotgun 

proteomics combined with super-SILAC-based quantification is a promising new technology for 

tumor characterization and classification. 

This article was published in the journal Molecular and Cellular proteomics in 2012 [2].  
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4.  A very deep and high-accuracy phosphoproteome reveals 

fundamental differences between tyrosine and serine/threonine 

phosphorylation events (Article 3). 

Protein phosphorylation, the most extensively studied PTM, is often utilized by signaling 

systems for transient alteration of protein function ranging from regulation of enzyme activity, 

protein interactions and protein conformations to targeted destruction of proteins. Despite 

being one of the most studied PTMs, the total number of the phosphorylation events that can 

occur in a cell and their location in protein sequences is not known in its entirety.  

Using high resolution mass spectrometry and very high statistical stringency we mapped more 

than 50,000 distinct phosphorylated peptides in a single cell type across a number of cellular 

conditions allowing us to analyze global properties of this very large dataset. By combining 

protein abundance measurements with phosphorylation changes across mitosis and epidermal 

growth factor (EGF) stimulation, we determined for the first time the occupancy of thousands 

of phosphorylation sites using label-free quantification. 

In contrast to common estimates, we found that at least three-fourths of the proteome can be 

phosphorylated. Our analysis revealed that phosphorylation events on tyrosine tend to be 

present on more abundant proteins in comparison to serine and threonine sites. The observed 

difference in phospho-protein abundance correlated with the substrate Km values of tyrosine 

kinases.  

This manuscript is in preparation for submission.
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A very deep and high-accuracy phosphoproteome reveals 

fundamental differences between tyrosine and serine/threonine 

phosphorylation events  

Kirti Sharma, Rochelle C.J D’Souza, Stefka Tyanova, Jacek R. Wiśniewski, Juergen Cox and 
Matthias Mann 
Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry Am 
Klopferspitz 18, D-82152 Martinsried, Germany 
 
Summary 
 
Despite being one of the most studied post translational modifications, the total number and 

site-specific localizations of phosphorylation events that occur in a cell are not known. Using 

high resolution mass spectrometry and high statistical stringency we mapped more than 

50,000 distinct phosphorylated peptides in a single cell type across a number of cellular 

conditions. Strikingly and in contrast to commonly cited estimates, we find that least three-

quarters of cellular proteins can be phosphorylated. As depth of coverage increased, 

phospho-tyrosine becomes proportionately less of the total phosphoproteome, whereas the 

increase in ser/thr sites only appeared to saturate for technical reasons. Inhibition of tyrosine 

phosphatases in vivo resulted in deep coverage of phosphotyrosine sites and unexpectedly 

these phosphorylation events were enriched on higher abundance proteins. We find that the 

observed difference in phospho-proteins abundance correlates with the substrate Km values 

of tyrosine kinases. Additionally, we demine phosphorylation site specific occupancies from 

label free quantification data. Our findings demonstrate that phosphotyrosine is a separate 

functional regulatory post-translational modification of eukaryotic proteomes. 
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Introduction  

Different components of signaling pathways act in concert as ‘writers’, ‘readers’ and ‘erasers’ of 

post translational modifications (PTMs) for transmitting cellular regulatory information (Hunter, 

2009). The first essential step in understanding the complex molecular circuitry behind cellular 

signal transmission is to find practicable methods for measuring the extent and nature of the 

PTMs that occur in a cell. For this purpose, modern quantitative mass spectrometry (MS) has 

proven to be an ideal platform because it is a highly precise yet generic method for the 

identification and quantification of proteins and their modifications in an unbiased and global 

manner (Choudhary and Mann, 2010). Protein phosphorylation, one of the most extensively 

studied PTM, is often utilized by signaling systems for transient alteration of protein function 

ranging from regulation of enzyme activity, protein interactions and protein conformations to 

targeted destruction of proteins. It occurs primarily on serine, threonine, and tyrosine residues 

which represent approximately 17% of the total amino acid content in an average protein 

(Echols et al., 2002). Based on this fact it has been calculated that in an average eukaryotic cell, 

there exist nearly 700,000 different potential phosphorylation sites (Ubersax and Ferrell, 2007). 

Recent MS based studies have reported the identification of tens of thousands of 

phosphorylation sites in tissues and cultured cells (Humphrey et al., 2013; Lundby et al., 2012; 

Zhou et al., 2013). The increasing number of the identified phosphosites and sheer number of 

potential ones across the proteome raises fundamental question about the scale of the 

phosphoproteome and the biological relevance of measured phosphorylation events.  

 

The vast majority of cellular protein phosphorylation events reported in MS based studies 

occurs on serine and threonine residues while phosphotyrosines generally account for <1% of 

these events. Many years ago the S/T/Y phosphorylation ratios had already been estimated 

as90:10:0.05 (Hunter and Sefton, 1980). Despite the relatively large number of tyrosine kinases 

there are several reasons for proportionately fewer tyrosine phosphorylation events (Hunter, 

2009). Firstly, most tyrosine kinases are only activated in specific circumstances and otherwise 

remain stringently negatively regulated. Secondly, unless protected by binding to SH2/PTP 

domains (Sadowski et al., 1986), phosphotyrosine residues  have a very short half-life owing to 



Results 
 

67 
 

high activity of phosphotyrosine phosphatases (PTPs). Finally, unlike phospho-serine/threonine, 

phospho-tyrosine rarely plays a structural role in proteins, and is primarily regulatory. 

Phosphotyrosine based signaling pathways seem to be a comparatively recent molecular 

innovation system in the evolutionary history of living organisms and appear to be a hallmark of 

more complex organisms (Lim and Pawson, 2010). With increasing organismal complexity, the 

number of protein tyrosine kinases increases. Furthermore, species that have more tyrosine 

kinases have proportionally less tyrosines encoded in their genome (Tan et al., 2009). This may 

reduce the amount of possible nonfunctional or deleterious phospho-tyrosine events and 

therefore reduces noise and enhances regulation in phospho-tyrosine-dependent signaling 

systems. However, no specific observation about tyrosine phosphorylation at the proteome 

level has been made.  

Here, we present an analysis of the nature of the phosphoproteome to great depth by 

combining protein abundance measurements with phosphorylation changes across mitosis and 

epidermal growth factor (EGF) stimulation. We employed a highly stringent approach towards 

phosphopeptide identification and phosphosite localization. For the first time, we use a label 

free approach to quantify the modified peptides and determine their fractional occupancy. Our 

parallel and in-depth investigation of proteome and phosphoproteome resolved to serine, 

threonine and tyrosine residues revealed many interesting aspects of protein phosphorylation 

as a cellular control process and its potential crosstalk with other modifications. Our findings 

suggest that phosphotyrosine is a separate functional regulatory post-translational modification 

of eukaryotic proteomes. While our data appear to represent close to complete coverage of 

tyrosine phosphorylation, the serine/threonine phosphoproteome is accompanied by a large 

number of variable ‘background events’ and is probably far from completeness even though we 

do cover a core serine/threonine phosphoproteome.  

Results 

Protein and phosphopeptide identification from a cancer cell line 

While the proteome of model organisms has been identified and quantified essentially to 

completion (Beck et al., 2011; de Godoy et al., 2008; Nagaraj et al., 2011), the total number of 
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the phosphorylation events that occur in these organisms is not yet known. To survey 

proteome and phosphoproteome at maximum possible depth, HeLa S3 cells were left either 

untreated, mitotically arrested, pervanadate treated or stimulated with EGF for five or fifteen 

minutes (Fig1A). A double thymidine block in combination with nocodazole arrest was used to 

obtain a mitotic phase population and synchronization of HeLa cells was confirmed by 

fluorescence-activated cell sorting (FACS) analysis (Fig1A, left panel). Epidermal growth factor 

stimulation of cells was confirmed by increased phosphorylation of the activation loop Thr/Tyr 

residues of MAPK1 and MAPK3. For robust statistics, we analyzed biological quadruplicates for 

each cellular condition and six replicates for control cells (untreated and asynchronous). For 

each replicate analysis, HeLa cell lysates were digested in solution with trypsin using the filter-

aided sample preparation method with endoproteinase Lys-C and trypsin (Wisniewski et al., 

2009b) (Fig. 1B). For global phosphoproteome analysis, resulting peptides were subjected to 

SCX based fractionation and phosphopeptide enrichment by titanium dioxide beads (Macek et 

al., 2009; Zhou et al., 2011). To obtain a deep coverage of tyrosine phosphorylation, we 

performed immuno-affinity enrichment of tyrosine phosphorylated peptides from HeLa 

phosphopeptides (Kettenbach and Gerber, 2011) obtained from cells in which tyrosine 

hyperphosphorylation was induced by inhibition of phosphatases by pervanadate. In addition, 

tyrosine phosphorylated peptides were also enriched from untreated, mitotic and EGF 

stimulated cells where early EGF signaling (5 min) is known to be dominated by Tyr 

phosphorylation events (Fig1A, right panel). For quantitative analysis of the corresponding 

proteomes, 25 µg of peptides were fractionated by pipette tip-based strong anion exchange 

chromatography into six fractions (Wisniewski et al., 2009a).  

Subsequently, all peptide and phosphopeptide mixtures were resolved by nanoLC (Fig1C) and 

measured on a quadrupole-Orbitrap mass spectrometer (Q Exactive) (Michalski et al., 2011), 

where both MS and MS/MS spectra were recorded in the Orbitrap analyzer with high-

resolution using the HCD technology (Nagaraj et al., 2010). This resulted in parts-per-million–

range mass accuracy for both precursor peptides (Fig1C, right panel) and their fragments, which 

aided unambiguous identification of peptides and sites. The total data set over proteome and 

phosphoproteome replicates comprises 273 LC-MS/MS experiments with 4h or 2h gradients 
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with a total measuring time of about 40 days during which about 20 million MS/MS scans were 

acquired. The observed average absolute mass deviation for the corresponding precursor ions 

was 500 ppb.  

A stringent data analysis pipeline for phosphoproteomics 

In Figure 2 we provide an overview of the computational workflow that is utilized in MaxQuant 

for the identification and positioning of amino acid modifications. Here we apply this analysis 

pipeline phosphorylation but it is in principle applicable to all posttranslational modifications 

and modifications introduced during sample preparation. 

Prior to the peptide identification, MS/MS spectra are processed in order to improve the quality 

of the search engine results.  First, isotope patterns are detected in the MS/MS spectra as in the 

conventional MaxQuant spectral processing pipeline. Fragment peaks that are assigned to 

isotope patterns are collapsed to the monoisotopic peak. Furthermore, multiply charged 

isotope patterns are transformed to charge state one. Fragment peaks that are not assembled 

into isotope patterns are left unchanged. If multiple peaks fall into a mass tolerance window of 

20 ppm they are combined into a single peak with the summed intensity and the intensity 

weighted average mass. Precursor masses and charge states are calculated according to the 

standard MaxQuant workflow. In particular m/z and retention time dependent mass calibration 

is performed on the precursor masses with the help of a ‘first search’ approach using the 

Andromeda peptide search engine, which is part of MaxQuant.  

To identify modified peptides we perform an Andromeda search with individualized mass 

tolerances for the precursor ions. The best-scoring peptide-spectrum match (PSM) is retained 

for every spectrum. These are further filtered for an Andromeda score of 40 and an Andromeda 

delta score of 17. The delta score measures the difference between the best spectrum match 

and the next best match with a different amino acid sequence. 

Posterior error probability (PEP) is used to rank best PSMs and control the false discovery rate 

on PSM level. The PEP is calculated based on a peptide level target-decoy strategy, where the 

decoy part is generated according to the newly developed ‘reward’ strategy. Reward stands for 
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a combination of reverse and forward. One half of the peptide is reversed with respect to the 

original peptide while the other half is retained. The amino acids which cause the cleavage – in 

this case lysine and arginine – remain in place. This mixed forward-reverse strategy makes sure 

that the decoy peptides, while being false positives, have at the same time partial matches to 

homologous sequences in the forward proteome. The PEP is adjusted in peptide classes with 

specific combinations of number of modifications per peptide, number of missed cleavages and 

charge. A distribution of search engine scores of identified phosphopeptides with a minimum 

score cutoff of 40 is shown in Figure S1. A typical spectrum and its annotation for a low scoring 

phosphopeptide just above the filtering threshold shows that there are sufficient peaks to 

support phosphopeptide identification even in such a case. Using a recently developed “Expert 

system” for computer assisted annotation of MS/MS spectra based on literature derived rules 

we further increased confidence in the identification of phosphopeptides as it allows 

annotation of previously unannotated peaks (Neuhauser et al., 2012). . The expert system 

based additional peak annotation becomes particularly beneficial with high mass-accuracy 

spectra acquired in modern MS instrumentation, as a very high percentage of fragment ions 

can now be accounted for. 

For the localization of the modification site we iteratively explore all possible distributions of 

the modifications on the peptide onto the amino acids capable of carrying this modification- 

here serine, threonine and tyrosine. For each such positioning an Andromeda score is 

calculated and exponentiated to obtain a probability. The localization score for a site is then 

defined as the normalized sum of the probabilities for the cases where the site is carrying a 

modification as shown in Figure 2C. 

Site occupancies are calculated based on similar principles as were previously applied to SILAC 

cell cycle data (Olsen et al., 2010), but without SILAC ratios. The advantage of label-free 

quantification with multiple conditions is that for the occupancy calculation in one sample one 

can select a reference sample that is most suitable for the calculations involved in the formula 

(‘Proportion’ in Figure 2D). Problematic reference samples are those with equal or very similar 

expression compared to the sample of interest. These lead to near ‘0/0’-cancellations in the 
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formula which would result in large statistical errors. In the case of label free quantification 

over many samples, instead, the reference sample can be chosen such as to bring the formula 

as far away as possible from this singularity. We define an occupancy error estimate based on 

error propagation, which can be used to filter out occupancies for which the value is expected 

to be unreliable due to closeness to the singularity.    

Coverage of Proteome and Phosphoproteome in HeLa cells 

Following analysis with the MaxQuant software environment (Cox and Mann, 2008), 43% of the 

acquired MS/MS scans were unambiguously identified. This led to 145,340 identified non-

redundant peptide sequences and 10,826 proteins (or protein groups) at a protein false 

discovery rate of less than 1%. Applying the Andromeda score and delta score filters for 

modified peptides as described above, we identified more than 50,000 unique 

phosphopeptides corresponding to more than 40,000 phosphorylation events from 8,014 

proteins that could be localized with high confidence to single amino acid sequence locations 

(Fig. 3A, left panel). This number constitutes a lower limit on the size of a human cancer cell line 

phosphoproteome. Based on the observed evidence of phosphorylation on these proteins, we 

show that in contrast to commonly cited estimates (Hunter, 2007), at least three-quarters of 

the proteome can be phosphorylated. Our very deep phosphoproteome dataset measured in 

conjunction with proteome abundance is a valuable resource for further system level analysis 

of phosphorylation events. In addition, it also serves as a catalogue for regulatory protein 

expression and phosphorylation events associated with mitotic and growth factor signaling. 

Tables with all identified proteins, phosphopeptides and phosphosites are provided in 

Supplementary Data available online (table S1-S3). In addition, all the identified phospho-sites, 

phospho-peptides and phospho-proteins are easily accessible through the MaxQB database 

(Schaab et al., 2012). When comparing site specific phosphorylation events in different 

replicate analyses, we found that more than 22,000 phosphosites of the 40,000 sites (55%) 

were identified in all the biological conditions (termed ‘core phosphoproteome’) and 20% were 

found exclusively in the mitotic stage (Fig. 3A, right panel). Given the array of regulatory events 

that control this stage of cell cycle the preponderance of sites in this stage is not surprising.  
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Our dataset contained about 50% of phosphosites usually followed by antibodies in cellular 

signaling research based on the PhosphositePlus database and antibodies available from Cell 

Signaling Technology (CST) (Fig. 3B, left panel). Since protein phosphorylation is tightly 

regulated, a fifty percent coverage of functional phosphosites across only three biological states 

and in a single cell line implies that our analysis reached considerable depth. Further, we found 

the sites usually followed by antibodies present to be enriched on more abundant proteins with 

median intensity about half an order of magnitude higher than those of all identified sites (Fig. 

3B, middle panel). Next, we represented the coverage of these 261 functional phosphosites 

ranked by their abundance as a function of phosphopeptide signal intensity. While they span 

the entire dynamic range, 90% of the functional phosphopeptides are present within four 

orders of magnitude. This suggests that the dynamic range achieved in our phosphoproteome is 

in principle sufficient to sample most of the cellular phosphoproteome. 

 

Label-free quantification of proteome and phosphoproteome changes during growth factor 

and mitotic signaling 

Our dataset contains accurate quantification information of many of the key phosphosites that 

are known to be activated by epidermal growth factor (EGF) treatment. For instance the 

activating phosphorylations on tyrosine 1197 and tyrosine 1172 on epidermal growth factor 

receptor (EGFR) that are upstream to activation of RAS/RAF/MAPK signaling show the correct 

profile (Fig. 4A, upper panels and table S3) as the phosphorylation of these sites significantly 

increased in cells treated with either EGF or pervanadate. Similarly, we observed inhibiting 

phosphorylation on threonine14/tyrosine15 on cyclin dependent kinase 1/2/3 and activating 

phosphorylation of polo like kinase-1 (PLK1) only in the mitotic samples (Fig. 4A, upper panels). 

To extract phosphosites significantly regulated upon either EGF treatment or mitotic arrest, we 

subjected the normalized dataset to a stringent multiple-sample ANOVA test using a 

permutation based FDR of 0.01. This allowed the identification of regulated phosphorylation 

sites (table S3), which we then clustered based on their profiles (Fig. 4A, Heatmap). We 

obtained cluster specific footprints of kinase activation using a Fisher exact test for kinase-
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substrate motifs. CDK1, proline directed substrates and polo box domain containing motifs 

showed the strongest enrichments in the regulated dataset that was specifically up-regulated in 

the mitotic arrest group in comparison to the total quantified dataset (Fig. 4B). Analysis of GO 

annotation terms and KEGG pathways revealed strong and highly significant enrichment of 

categories that are characteristic of mitosis - regulation of exit from mitosis, septin ring 

assembly and kinetochore organization (Fig. 4A, table S3). 

To functionally understand the differences in protein expression levels between two 

phosphoproteomes, one can divide a histogram of quantitative expression changes into 

quantiles. Each quantile can then be tested separately for enrichment of every annotation term 

(such as KEGG pathways and GO biological processes) to find whether the corresponding 

expression values have a preference to be systematically larger or smaller than the global 

distribution of the values for all proteins (Pan et al., 2009). Here we used a generalized version 

of the above quantile analysis, termed 1D enrichment analysis (Cox and Mann, 2012). Although 

similar to the quantile-based enrichment calculations, the 1D annotation enrichment employed 

here to analyze the functional differences between mitotically arrested and asynchronous cell 

population has the advantage that it is not necessary to define an arbitrary positioning of 

quantiles or regulation cutoffs beforehand. Instead, the distribution of values is scanned for 

interesting sub-categories in an unbiased way. For those categories that are significant, a 

position score (termed ‘s’; a number between -1 and 1) is calculated indicating where the 

center of the distribution of values for the protein category is located relative to the overall 

distribution of values. A value near 1 indicates that the protein category is strongly 

concentrated at the high end of the ratio distribution while a value near -1 means that the 

values are all at the low end of the distribution. This analysis revealed a significant enrichment 

of terms such as cell cycle phase, cell cycle process G2 phase/ mitotic cell cycle and 

establishment of chromosome localization with a positive score indicating increased 

phosphorylation on member phosphoproteins (Fig 4A, lower panel, inset). 
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Phosphosite occupancy across biological conditions 

Large-scale phosphoproteomics has successfully been used for the relative quantitation of 

phosphorylation sites between different cellular states. As described above, our measurements 

of the phosphorylated peptide, its unmodified counterpart, and the corresponding total protein 

abundance enabled the determination of absolute stoichiometry of phosphosites. This enabled 

determination of site occupancies for 8,264 phosphorylation sites with high confidence, where 

calculated fractional occupancy is represented on a scale of 0 to 1 (table S4). In accordance with 

SILAC cell cycle data (Olsen et al., 2010), we determined a high fractional occupancy for sites in 

mitosis (Fig. 4B, upper panel). For half of these serine/threonine sites we determined a 

fractional occupancy of 75% or higher. In contrast, most EGF treated and control phosphosites 

show less than 25% fractional occupancy (Fig. 4B, upper panel, Fig. S2). We reasoned that the 

high occupancy sites observed during mitosis should make them detectable even without any 

phospho-enrichment. This was indeed the case, as we identified more than 2,000 phosphosites 

in the total proteome measurements of mitotic cells in contrast to tens of low occupancy 

phosphosites identified in EGF stimulated proteome measurements.  

The in-depth coverage of phosphotyrosines in our dataset enabled for the first time site 

stoichiometry estimations for tyrosine specific phosphorylation events on a large scale. We 

reliably estimated occupancies for 260 tyrosine specific phosphorylation events for at least one 

cellular condition (Fig. 4B, lower panel). Distribution of occupancies for phospho-Tyr sites 

across different conditions revealed that most mitotic and control phosphosites have less than 

10% fractional occupancy while half of those from EGF treated samples show fractional 

occupancy of 50% or higher. For pervanadate treated cells, we determined that three quarters 

of tyrosine phosphorylation events have a fractional occupancy greater than 50%. In general, 

site occupancies correlated with the cellular signaling state. Based on the distribution of 

occupancies, we conclude that in untreated cells, phosphorylation tends occur with low 

fractional occupancy and that tyrosine phosphorylation is maintained at especially low 

stoichiometric levels in the absence of specific signaling events. 
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Global properties of protein phosphorylation 

Not only the identity but also the relative abundance is an important property of the measured 

phosphopeptides. The identified phosphopeptides span six orders of magnitude in their MS 

signals (Fig. 5A, left panel) revealing the sensitivity with which MS based proteomics can now 

capture these modified peptides.  The ranked distribution of all individual phosphopeptides 

revealed that 70% of the quantified phosphopeptides are contained within only one order of 

magnitude above or below the median phosphopeptide abundance. We plotted the cumulative 

contribution of phosphopeptides to determine a total phosphopeptide signal (Fig. 5A, right 

panel). The 232 most abundant phosphopeptides comprised 25% while the most abundant 

3,715 phosphopeptides constituted 75% of the cumulative phosphopeptide signal. These 

numbers represent the amount of ATP transferred as phosphate moieties onto proteins in the 

form of Ser, Thr and Tyr modifications and they may be useful for performing system level 

analysis of proteins, their phosphorylation and the cellular ATP pool. 

We first analyzed the distribution of the number of phosphorylation events on each protein and 

found that about 15% of proteins were phosphorylated on just one residue, while the 

remaining 85% are phosphorylated at multiple sites (Fig. 5B, left panel). Remarkably, half of the 

phosphorylated proteins had six or more detected phosphorylation sites. The observed multiple 

phosphorylation events on so many proteins may either be functional and reflect cross talk 

downstream of multiple signaling pathways or may also reflect background phosphorylation 

due to low level kinase activity. Our large-scale proteomic analyses encompassing close to 

11,000 proteins enabled the estimation of the abundance of individual proteins in cells. A 

parallel measurement of phosphoproteome and proteome for each biological condition 

allowed us to investigate if there is a correlation between a protein’s abundance and its 

propensity to be phosphorylated. When, we analyzed the number of phosphorylated residues 

identified on a protein as a function of its abundance (Fig 5B, right panel), we observed that 

there is a tendency for a greater number of identified phosphosites with increasing protein 

abundance. The observed correlation is low, but highly statistical significant (p < 1e-13).  
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A majority of the more than 40,000 instances of phosphorylation were on serine (81.7%) and 

threonine (14.8 %) residues as opposed to tyrosine residues (0.4%) (Fig. 5C, left panel), and 

these proportions are close to classical radioisotope based estimates of this distribution 

(Hunter and Sefton, 1980). Based on comparison of this distribution to our previous 

phosphoproteome investigations, we conclude that analyzing phosphoproteome in greater 

depth results in more identified Ser and Thr phosphorylation events, but proportionally fewer 

phosphotyrosine sites. To ensure maximal representation of Tyr phosphorylation events in our 

comparative analysis, apart from the three cellular states (EGF stimulation, mitosis and 

untreated control cells) we immuno-enriched tyrosine phosphorylated peptides from 

pervanadate treated cells. Inhibition of tyrosine phosphatases by pervanadate treatment 

resulted not only in an increase in the number of identified phosphotyrosine residues but also 

increased their overall abundance by an order of magnitude (Fig. 5C, middle panel). We 

identified about 2,000 tyrosine phosphorylated peptides on 1,300 phosphoproteins. The 

distribution of phosphorylation events across S, T and Y changed as we covered ten-fold more 

phosphotyrosines. A residue resolved comparison of our dataset with PhosphositePlus 

database (Hornbeck et al., 2012) revealed that while 60% of the identified Ser and Thr 

phosphorylation events were novel, only18% were novel for tyrosine residues (Fig. 5C, right 

panel). Therefore, we conclude that as depth of coverage increases, detectable tyrosine sites 

are covered relatively rapidly, whereas the increase in serine/threonine sites only appeared to 

saturate for technical reasons.   

Tyrosine versus serine/threonine phosphorylation 

To further investigate residue specific features of protein phosphorylation, we compared the 

abundance distribution of the entire proteome with those of proteins that were found to be 

phosphorylated on serine/threonine and tyrosine residues, respectively (Fig. 6A). This analysis 

revealed that proteins carrying phosphotyrosines were significantly more abundant than other 

proteins (p<1e-16). However, proteins with phosphorylated threonine or serine residues were 

similar in abundance to the total proteins. We therefore asked whether the observed 

difference as shown in Fig. 6A is just a reflection of the absence of lower abundant tyrosine 
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phosphorylated peptides in the proteome dataset. However, the new and higher intensity 

phosphotyrosine peptides identified after in vivo inhibition of tyrosine phosphatase (Fig 5C) 

were also found on more abundant proteins. The abundance of phosphopeptides is determined 

not only by the abundance of protein but also by the stoichiometry of site phosphorylation. If 

our data was technically biased in detecting only highly abundant phosphopeptides, we would 

identify tyrosine phosphopeptides with high fractional occupancies. However, we did not find 

evidence for such a bias. In fact, the occupancy of tyrosine specific phosphosites was rather 

determined by the signaling state of the cell. We observed low site occupancy for 

phosphotyrosine sites in control and mitotic conditions, and when we activated RTK signaling or 

treated the cells with tyrosine phosphatase inhibitor, higher occupancy sites were clearly 

evident (Fig 6A, S2). These observations further support our finding that tyrosine 

phosphorylation on average occurs on more abundant proteins compared to serine/threonine 

protein phosphorylation. To investigate this further, we analyzed the data by kinase motifs.  

Based on sequence motifs, again the abundance of Tyr kinase substrates are more abundant 

than those of serine/threonine kinases (Fig. 6B). A possible explanation for this very clear 

observation could be the difference in the substrate Km values, an important factor defining 

activity of a kinase. To ensure efficient phosphorylation, substrates of a kinase should be 

present at concentrations above Km. The abundance of the phospho-Tyr and phospho-

serine/threonine proteins correlates well with the relatively high Km values of the tyrosine 

kinases compared to those for serine/threonine kinases (Fig 6B, Table 1). Tyr kinases have high 

Km values for their substrates than serine/threonine kinases and therefore their substrates 

should be present in higher amounts for efficient phosphorylation. In fact, difference in median 

site occupancy for Tyr and serine/threonine phosphorylation events in untreated cells can also 

be explained by differences in Km values for serine/threonine and tyrosine kinase (Fig. S2). 

Next we tested our dataset for evidence of cross-talk between phosphorylated residues and 

lysine modifications. We overlaid our sites with those on acetylation, ubiquitination and 

sumoylation obtained from the PhosphoSitePlus resource (see Materials and Methods). We 

tested if a preference existed for phosphorylated residues and modified lysine residues to lie 

within close sequential proximity. The fractions of modified to non-modified lysine residues at 
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even amino acid intervals at different distances from a phosphorylation-site were computed 

and compared to randomized sets. The distribution of modified lysine residues over the protein 

sequence differs strongly from random (Fig. 6C). For all three phospho-acceptor residues the 

measured data (solid lines) lies above the randomized data (dashed lines), suggesting a 

tendency of modified lysine residues to occur with higher preference in the surroundings of 

phosphorylated residues. Furthermore, the fraction of modified to non-modified lysine residues 

increased as the distance to the phosphorylation site decreased. For all phospho-acceptor 

residues the highest proportion of modified lysine residues was found within five amino acids 

distance from the phosphorylation site, regardless if N- or C-terminus direction was considered. 

The strongest effect was observed for phospho-tyrosine residues, where the fold difference 

between the measured and the randomized data was 1.70, whereas this difference for 

phospho-serines was 1.27 and for phospho-threonines 1.26. 

Discussion 

Here, we present an analysis of the nature of the phosphoproteome at the level of more than 

50,000 distinct phosphopeptides and about 11,000 proteins within a single cell type. We 

demonstrate that at least three-fourths of the proteome (8,014 out of 10,826 proteins) can be 

phosphorylated. By combining protein abundance measurements with phosphorylation 

changes across mitosis and epidermal growth factor (EGF) stimulation, we determined the 

occupancy of thousands of phosphorylation sites using a label free quantification approach. As 

depth of coverage increased, phospho-tyrosine became proportionately less of the total, 

whereas the increase in serine/threonine sites only appeared to saturate for technical reasons. 

Based on the occupancies distribution, we conclude that in unstimulated cells, serine/threonine 

phosphorylation occurs with low fractional occupancy while tyrosine phosphorylation is 

maintained at even lower levels. Our data clearly demonstrate that phospho-tyrosine has 

different properties from phospho- serine/threonine on multiple levels. Despite the large 

number of tyrosine kinases in the genome, phosphotyrosines account for <1% of total 

phosphorylation events. This and many other lines of evidences suggest that specificity in 

tyrosine phosphorylation is strictly maintained in cellular systems (Hunter, 2009). To meet this 
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specificity, the three part tyrosine signaling system (kinase, PTP and phospho-tyrosine binding 

proteins) is kept under strict biochemical controls. These are thought to be designed over 

evolution where erasers came into existence before the writers of this modification (Lim and 

Pawson, 2010). The observed low fractional occupancy of phosphotyrosine sites in 

unstimulated cells indeed correlate with cellular control mechanisms determining specificity of 

these events in response to specific signals.  

Interestingly, we found that proteins phosphorylated on tyrosine residues are on average more 

abundant than the bulk of proteins and the observed difference in phosphoproteins abundance 

correlates with the substrate Km values of tyrosine kinases. Km differences have important 

consequences in the cell, where the protein kinases are exposed to varying substrate 

concentrations. We speculate that high abundance of substrate proteins coupled with low 

efficiency of tyrosine kinases buffer against harmful effects of the occasional stray 

phosphorylation of functionally important sites. Further, in contrast to serine/threonine 

kinases, because of their high Km values for general substrates the tyrosine kinases might not 

be significantly inhibited by competition from general substrates allowing them efficiently 

phosphorylate a subset of low Km substrates. Consequently, the low activity of tyrosine kinases 

towards general targets, combined with high abundance of their specific targets, helps to 

explain the specificity in the tyrosine based signaling events. In fact, a recent study revealed 

that an ensemble of fine-tuned weak interactions control cellular decisions as exemplified by 

cell fate control by RTKs (Findlay et al., 2013). The tailored protein abundances of tyrosine 

kinase substrates add yet another layer of complexity that adds specificity to the signaling 

systems. Further, we also found that the tyrosine phosphorylated residues are preferred 

hotspots for PTM crosstalk at least with modified lysines.  

In summary, our data revealed that while we are close to complete coverage of tyrosine 

phosphorylation, serine/threonine based phosphoproteome is accompanied by a large number 

of variable ‘background events’ and is probably far from completeness. Our findings highlight 

the nature of phosphotyrosine as a separate functional regulatory post-translational 

modification of eukaryotic proteomes. 
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Experimental Procedures 

Cell culture and treatment  

HeLa S3 cells (ATCC)) were cultured in roller bottles in RPMI 1640 (Gibco) supplemented with 

10% fetal bovine serum (Invitrogen) and 1% penicillin/streptomycin (Invitrogen). For the mitotic 

experiment, cells were synchronized in G1-S overnight with a thymidine block at a 

concentration of 4 mM (Sigma). Cells were then released from thymidine and subsequently 

arrested overnight with nocodazole, after the 7.5-hour release from thymidine and lysed. 

Western blotting and FACS analyses were performed to monitor the efficiency of the cell cycle 

arrest (Fig. 1A). For EGF treatment cells were suspended in 1x PBS and treated with EGF for 5 

and 15 min. For pervanadate treatment HeLa cells were pre-incubated with 1xPBS for 30 min, 

and treated with pervanadate for 20 min. A 4x concentrated SDS lysis buffer (final 

concentration 4% SDS 100 mM DTT in 100 mM tris-HCl pH 7.5) was added to the EGF and 

pervanadate samples.  

Total proteome and phosphoproteome sample preparation and MS analyses 

The lysate was processed by the FASP method (Wisniewski et al., 2009b). Briefly, the lysate was 

sonicated, heated and lysate was loaded onto 15 ml Amicon filter units (10 kDa MWCO) 

(Millipore). Proteins were alkylated and equilibrated in 20 mM ammonium bicarbonate and 

digested with trypsin (Promega) in a protein to enzyme ratio of 100:1 at 37 oC overnight.  For 

proteome analysis 30 µg of the peptides were separated on a tip based SAX column as 

described (Wisniewski et al., 2009a). For phosphopeptide enrichment the peptides obtained 

from FASP were fractionated by strong cation exchange (SCX) chromatography (Macek et al., 

2009) and subjected to phosphopeptide enrichment using TiO2 beads as described (Zhou et al., 

2011). The phospho-peptides were then eluted under basic conditions using 25% ammonium 

hydroxide and ACN. Finally, the eluted phospho-peptides were loaded on C18 StageTips 

(Rappsilber et al., 2003). For phosphotyrosine enrichment the digested peptides were first 

subject to TiO2 enrichment and then subjected to immunoprecipitation with Y99 anti-tyrosine 

antibody as described (Kettenbach and Gerber, 2011) and then desalted (Fig. 1). 
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Reverse phase chromatography and mass spectrometry 

Peptides were separated in a 50 cm column packed in-house with 1.8 µm C18 beads (Reprosil-

AQ Pur, Dr. Maisch) on a Proxeon Ultra EASY-nLC system using a binary gradient provided by 

buffer A (0.5 % formic acid) and buffer B (0.5% formic acid and 80% ACN) for 265 min for 

proteome measurements and 120 min or 245 min for phosphopeptide measurements. The LC 

system was directly coupled on-line with a Q Exactive instrument (Thermo Fisher Scientific) via 

a nano-electrospray source. The mass spectrometer was programmed to acquire in a data 

dependent mode using a fixed ion injection time strategy (Kelstrup et al., 2012). Full scans were 

acquired in the Orbitrap mass analyzer with resolution 70,000 at 200m/z.  For the full scans, 

3E6 ions were accumulated within a maximum injection time of 20 ms and detected in the 

Orbitrap analyzer. The ten most intense ions with charge states ≥ 2 were sequentially isolated 

to a target value of 1e6 with a maximum injection time of 60 ms or 80 ms and fragmented by 

HCD in the collision cell (normalized collision energy of 25%) and detected in the Orbitrap 

analyzer at 17,500 resolution (Fig. 1). 

Data processing and analysis 

Raw mass spectrometric data was analyzed in the MaxQuant environment (Cox and Mann, 

2008), versions 1.3.10.15, and employed Andromeda for database search (Cox et al., 2011). The 

MS/MS spectra were matched against the human International Protein Index sequence 

database (IPI version 3.37). The MS/MS spectra were matched against the human International 

Protein Index sequence database (IPI version 3.37). Enzyme specificity was set to trypsin, 

allowing for cleavage N-terminal to proline and between aspartic acid and proline. The search 

included cysteine carbamidomethylation as a fixed modification and N-acetylation of protein, 

oxidation of methionine and/or phosphorylation of serine, threonine tyrosine residue (STY) as 

variable modifications. For phosphopeptide identification, an Andromeda minimum score and 

minimum delta score threshold of 40 and 17 were used, respectively (Fig. 2). Up to two missed 

cleavages were allowed for protease digestion and peptide had to be fully tryptic.  The ‘identify’ 

module in MaxQuant was used to filter identifications at 1% FDR at the peptide and protein 

level.  
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Downstream bioinformatics analyses  

Bioinformatic analysis was performed in the Perseus software environment, which is part of 

MaxQuant. Hierarchical clustering of proteins or phosphosites was performed on logarithmized 

intensities or ratios for the data that was quantified in at least 50% of the time points studied. 

For multiple sample t-tests analysis (ANOVA), replicates were grouped and the statistical test 

was performed with a permutation-based FDR cutoff of 0.01. 

Categorical annotation was supplied in the form of GO biological process, molecular function, 

and cellular component, KEGG pathways for pathway annotation and human protein reference 

database (HPRD) for kinase substrate motifs. Enrichment for these categories was evaluated by 

Fisher exact test to obtain a p-value. The annotation matrix algorithm was used to compute the 

difference of any significant protein annotation term from the overall intensity distribution as 

described (Cox and Mann, 2012). The specific test we used is a two-dimensional version of the 

nonparametric Mann-Whitney test. Multiple hypothesis testing was controlled by using a 

Benjamini-Hochberg FDR threshold of 0.05. 

Determination of cross talk: Ubiquitination, acetylation and sumoylation data sets were 

obtained from the public repository PhosphoSitePlus (Hornbeck et al., 2012). The modified 

lysine residues were mapped to the phosphorylation data set. The fraction of modified to non-

modified lysine residues at the flanking regions of each phospho-site was computed. Flanking 

regions of different lengths (from 5 to 40 amino acids in steps of 5) and directions (C-terminus 

and N-terminus) were analyzed. Next, the positions of the modified lysine residues were 

randomized over all lysine residues in the corresponding proteins and the resulting fractions of 

modified to non-modified lysines were computed. The randomization was repeated 1,000 

times, creating a background distribution of random distances. The measured and randomized 

fractions were plotted for each phospho- serine, - threonine and tyrosine residue. 

Immuno-blotting and fluorescence activated cell sorting 

EGF treated lysates prepared for mass spectrometry were blotted with anti-phospho ERK1/2 

(Cell signaling technology) and equal loading was controlled with anti-tubulin (Cell signaling 
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technology). Mitotic arrest assay was by fluorescence activated cell sorting (FACS). To detect a 

nocodazole arrest, HeLa cells were labeled with 20 μM bromodeoxyuridine (BrdU; Roche) for 2 

h, harvested, and fixed in 70% ethanol. After RNAse A treatment (50 μg/mL for 30min) and DNA 

denaturation (5 M HCl/0.5% Triton X-100 for 20 min), cells were stained with anti-BrdU-FITC 

(Boehringer Mannheim) and propidium iodide (Sigma-Aldrich). The cells were analyzed for FITC 

(BrdU incorporation) and propidium iodide (total DNA content) fluorescence by a BD LSR II flow 

cytometer (BD Biosciences). 
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Figure 1: Workflow for large-scale phosphoproteome. A. Cell stimulation. HeLa S3 cells were synchronized to arrest with nocodazole, and released from arrest for 

7.5h when they were in mitosis. Mitosis was monitored by FACS analysis. Two other sets of HeLa S3 cells were treated with EGF for 5 and 15 min. A separate 

population of cells was treated with sodium pervanadate for inhibition of tyrosine phosphatases. EGF induced ERK1/2 activation was monitored by immuno-

blotting. B. Sample preparation. Cell lysates from the above treatments were lysed in SDS buffer and digested by FASP method. For proteome measurements 

peptides were separated into 6 fractions on tip based strong anion exchange (SAX) discs. For total phosphoproteome analysis, phosphopeptides were enriched by 

strong cation exchange (SCX chromatography) and TiO2 microbeads. Phosphotyrosine peptides were immuno-precipitated with anti-phospho-tyrosine antibodies 

from phosphopeptides. C. LC-MS All fractions were separated on a reverse-phase column and electrosprayed into a Q Exactive mass spectrometer which was 

operated in a data dependent mode. High resolution measurements in the Orbitrap analyzer resulted in the acquisition of high accuracy spectra with average 

absolute mass deviation of 500 ppb for precursor ions. 
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Figure 2: Computational pipeline for high stringency identification and quantification of phosphopeptides in MaxQuant. A. Data acquisition. High quality 

fragment spectra were acquired by LC-MS/MS. B. Phosphopeptide identification. Spectra were converted to peak lists that were matched by the Andromeda 

search engine to obtain identification scores. Only those identified with an Andromeda score >40 and a delta score of >17 were retained. Posterior error probability 

(PEP) was calculated based on the ‘reward’ strategy to control the false discovery rate. C. Phosphosite localization. Localization of the modification site was 

assigned by looping through possible combinations for the phosphorylation on individual amino acid residues on the peptide for which the Andromeda score is 

calculated and exponentiated to obtain the localization probability. D. Phosphosite occupancy. The proportion of phosphorylated peptides was calculated based on 

the ratios of modified peptide, unmodified ratio and corresponding protein ratios.  
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Figure 3: Overview of the identified phosphoproteome. A. Coverage. The large scale MS-based analysis resulted in the identification of 10,826 proteins of which 

>8,000 were phosphorylated. A total of about 52,000 phosphopeptides were identified of which >40,000 were localized to specific S/T/Y residues (left panel). Venn 

diagram of site specific phosphorylation events across the conditions studied. B. Sites with antibodies. Venn diagram of functional sites followed by antibodies from 

the CST database which were identified in our dataset (Left panel). Distribution of phosphopeptide intensities of all sites identified in comparison to those with 

antibodies (Middle panel). Coverage of intensity ranked phosphosites (followed by antibodies) plotted as a function of their abundance. 
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Figure 4: A. Label-free quantification of regulated phosphopeptides. Label-free quantification of individual replicates (mean ±SD of replicates) for the conditions 

studied is shown for Y1197 and Y1172 on EGFR, Y15/Y16 on CDK1/2/3 and T210 on PLK1 (upper panel). Heatmap of phosphosites regulated across different 

conditions (color scale from green to red indicating decreased and increased phosphorylation) with kinase motifs and categories enriched (lower panel). Inset in 

lower panel shows 1-D annotation analysis of annotation terms of proteins significantly up-regulated during mitosis. The data points corresponding to annotation 

terms whose members are regulated with a very high significance are labeled (p < 1e−20). B. Label-free occupancies. Histogram of phosphosite occupancies for 

control, EGF treated and mitotic samples (upper panel). Distribution of phosphotyrosine occupancies across the conditions measured (lower panel).  

downregulated                                   upregulated 
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Figure 5: Specific properties of the phosphoproteome. A. Dynamic range of the phosphoproteome. Histogram of phosphopeptide intensities showing median 

intensity on which ranked phosphopeptide abundances from decreasing to increasing abundance are overlaid (Left panel). Cumulative phosphopeptide abundance 

from the highest to the lowest abundance with pie chart separating the abundances into four intensity quantiles (Right panel). B. Overview of phosphorylation sites 

per protein. Distribution of phosphoproteins based on number of phosphorylation sites per protein (Left panel) and density scatter plot of protein abundance 

versus number of sites per protein. The color code indicates the percentage of points that are included in a region of a specific color (Right panel). C. Phosphosite 

distribution across S/T/Y residues. Distribution of the S/T/Y phosphorylation events by global phosphoproteomics and tyrosine IP (Left panel). Box plots of 

phosphotyrosine peptide intensities from global (TiO2-based), phosphotyrosine immunoprecipitation (IP) and IP+ pervanadate treated samples (Middle panel). 

Distribution of the known and novel phospho-tyrosine/pS/pT sites after matching with PhosphositePlus database (Right panel). 
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Figure 6: Comparison of phosphorylation on S/T versus Y residues. A. Density distribution of intensities of all proteins identified (black) compared to proteins with 

serine/threonine phosphorylation (green) and tyrosine phosphorylation (blue). B. Violin plot distributions of protein intensities of substrates phosphorylated by 

indicated kinases. Tyrosine kinases substrates are depicted in blue while those for S/T kinases in red. C. Distribution of modified lysine residues over the protein 

sequence compared to random occurrences (dashed lines) plotted separately for S, T and Y. 
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Fig S1: Distribution of Andromeda scores of identified phosphopeptides. Additional peak annotation by ‘expert system’ for phosphopeptides over increasing 

Andromeda scores. 
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Fig S2: Box-plots of occupancies for phosphoserine/threonine versus phosphotyrosine across different biological conditions. 
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5.  In-depth and time-resolved dissection of early phospho-proteome 

and ensuing proteome changes in response to TGF-β (Article 4). 

 

Transforming growth factor beta (TGF-β) is a multifunctional cytokine that controls cell growth 

and differentiation and promotes cell invasion through the induction of epithelial to 

mesenchymal transition (EMT) in both normal physiology and development as well as in 

pathology, such as cancer. The effects TGF-β exerts on its target cells are dictated by the 

cellular context and these effects can even be opposed to each other. Despite the fact that TGF-

β mediated signal transduction has been very extensively studied since the 1980s, the 

mechanisms and mediators that bring about its diverse downstream effects have not been 

characterized at a systems level. 

I therefore chose to investigate early signaling by phospho-proteomics and combine this with 

proteome changes at a much longer time scale employing advances in MS instrumentation and 

data analysis platforms. I obtained an unprecedented in depth of dynamic changes in protein 

and phospho-protein expression induced by TGF-β.  

My results not only confirm known critical pathways of TGF-β induced cytostatic response, ECM 

remodeling and epithelial dedifferentiation but greatly extend them and also uncovered 

involvement of novel effector pathways for TGF-β. An in-depth combined analysis of 

transcription factor regulation with early phosphorylation changes and ensuing proteome 

regulation driving processes induced by TGF-β enabled, for the first time, the visualization of 

the intricate interplay and network of the various pathways that mediate these biological 

responses. Intriguingly the analysis also revealed that the mediators of the contextual 

differences in TGF-β signaling on cell growth are acting on a temporal scale where early events 

constitute a mixed signal that is tailored into a pro or anti-proliferative response at later time 

points. 

This article has been submitted to Science Signaling in October 2013.
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Abstract 

Transforming growth factor beta (TGF-β) is a multifunctional cytokine that controls cell 

growth and differentiation and promotes cell invasion through the induction of epithelial to 

mesenchymal transition (EMT) in both normal physiology and development as well as in 

pathology, such as cancer. Here, we report a time-resolved proteome and early 

phosphoproteome upon TGF-β stimulation in unprecedented depth. Known critical pathways 

of TGF-β induced cytostatic response, ECM remodeling and epithelial dedifferentiation are 

confirmed and greatly extended, and there is evidence for the involvement of multiple novel 

effector pathways for TGF-β such as vesicular trafficking. We observe rapid 

phosphoproteomic kinetics in response to TGF-β demonstrating a key role of non-SMAD 

signaling pathways. Combined analysis at the levels of signaling pathway, transcription 

factors and the proteome changes provides novel regulators and a detailed molecular picture 

of mechanisms of TGF-β action.  Early TGF-β signaling appears to be a mixture of pro and anti-

proliferative signals, with cellular context determining the final outcome.  



Results 
 

98 
 

Introduction 

Transforming growth factor-β (TGF-β) is a cytokine that belongs to a large family of 33 

mammalian members, which includes TGF-βs, bone morphogenetic proteins (BMPs), activins, 

inhibins and nodals. TGF-β signaling regulates various biological outcomes including cell growth, 

differentiation, morphogenesis, tissue homeostasis and regeneration. This family of proteins is 

increasingly implicated in diseases such as cancer and auto-immune disorders (1-3). The cellular 

responses to this multifunctional ligand are diverse and can even be opposed to each other, 

depending on the cell type and the conditions. For example, TGF-β can promote cell growth but 

also have anti-proliferative effects, and it can contribute to maintain stem cell pluripotency but 

also to differentiation (4). Further, TGF-β suppresses pre-malignant cells by inhibiting cell 

proliferation, it does not do so in metastatic ones, which nevertheless remain responsive to 

TGF-β induced migration and invasion (5, 6). A key mode of action of TGF-β in cancer 

progression is the induction of epithelial to mesenchymal transition (EMT), a process wherein 

epithelial cells acquire mesenchymal characteristics (7, 8). This is evidenced by loss of epithelial 

markers such as E-cadherin from the plasma membrane and induction of EMT related proteins 

including plasminogen activator inhibitor (PAI)-1, fibronectin (FN1) and α-smooth muscle actin 

(9-11). EMT is an indispensable process in normal tissue development and organogenesis, as 

well in tissue remodeling and wound healing. However, inappropriate reactivation of EMT 

crucially contributes to the development of a variety of human pathologies, particularly those 

associated with tissue fibrosis and cancer cell invasion and metastasis, for instance in breast 

cancer (12, 13).  

TGF-β  initiates signal transduction by binding to its transmembrane type II receptor (TβR-II), 

which then recruits and phosphorylates type I receptor (TβR-I) in the juxtamembrane region 

(2). The activated TβR-I transduces the signal into the cell via binding and carboxy-terminal 

phosphorylation of SMAD2/3 assisted by an adaptor protein termed SMAD anchor for receptor 

activation (SARA) (14). The heteromeric complex formed by activated SMAD2/3 and the 

regulatory SMAD (Co-SMAD4) and the resulting complex is shuttled to the nucleus, where it 

binds to target genes (15, 16). Transcriptional activation generally requires co-operating DNA 
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binding factors like activating protein (AP)-1 and activating transcription factor (ATF)-2 (17) as 

well as co-repressors such as TG-interacting factor (TGIF), Ski and SnoN (18, 19). Well 

established targets genes of the SMAD complex include cyclin-dependent kinase inhibitor 1A 

(p21CIP1) and cyclin-dependent kinase 4 inhibitor B (p15/ INK4B) (mediating cell cycle 

arrest)(20, 21) and fibronectin (FN1) and PAI-1 (conferring extracellular matrix (ECM) 

remodeling) (23). In recent years there has been an increasing interest in TGFβR-induced non-

SMAD signaling, which is typically mediated by p38, Jun N-terminal kinases (JNKs) and the 

extracellular signal regulated (ERK) mitogen activated kinases (MAPKs) (24-26).  

Despite the fact that TGF-β mediated signal transduction has been very extensively studied 

since the 1980s, the mechanisms and mediators that bring about its diverse downstream 

effects have not been characterized at a systems level. Mass spectrometry (MS)-based 

proteomics is an attractive technology in signal transduction research due to its unbiased 

nature (27) and has already been successfully applied to study many pathways (28, 29). 

Advances in MS instrumentation and data analysis platforms enable routine identification of 

close to complete proteomes in several organisms ranging from bacteria to vertebrates (30-32). 

Importantly, deep proteome coverage can now be attained in single liquid chromatography 

(LC)-MS runs (33), which enables sophisticated experimental designs, such as time courses, to 

be performed.  

There have been a few attempts to study TGF-β induced EMT by proteomics in the recent years. 

However, they reported only a few hundred identified and many fewer regulated proteins since 

they either employed 2D  gel electrophoresis (34, 35), which tends to be biased towards 

abundant proteins, or otherwise did not yet use the high resolution MS-based technologies 

available today (36, 37). To obtain a global view of the TGF-β pathway, we employ high 

resolution MS-based proteomics for an in-depth temporal investigation of proteome at 

extended time scales up to 48h in a human keratinocyte (HaCaT) cell line after treatment with 

TGF-β. To capture the preceding, upstream phosphoproteome changes following receptor 

kinase activation, these were studied at early time points up to 20 min.. Our deep proteome 

covers the critical pathways involved in TGF-β signaling, allowing global evaluation at the level 
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of individual pathway members. Based on the TGF-β responsive proteome we correctly retrieve 

several known transcription factors driving the EMT process and also predict several novel 

ones. The early TGF-β induced phosphoproteome includes known and novel substrates 

identifying multiple kinases involved in this process. The combined analysis of transcription 

factor regulation with early phosphorylation changes and ensuing proteome regulation enables 

visualization of the intricate interplay of key transcription factors, kinases and various pathways 

driving cytostatis, EMT and other processes induced by TGF-β. 

Results 

Proteomic analysis of TGF-β induced EMT on a temporal scale 

When stimulated with TGF-β, several epithelial cell lines, including the human keratinocyte 

derived HaCaT cells, are growth inhibited and undergo an EMT-like switch (38). We 

characterized effects of TGF-β treatment in HaCaT cells and observed arrest at the G1 cell cycle 

phase, loss of E-cadherin from the plasma membrane, replacement of cortical actin filaments 

by actin stress fibers in response to TGF-β at 40h of treatment (Fig. 1A). To analyze proteomic 

changes in HaCaT cells we stimulated them with TGF-β1 for 0h, 6h, 12h, 24h, 36h and 48h. To 

account for autocrine secretion of TGF-β and other growth factors, which has been shown to be 

proportional to cell density (39, 40), we used corresponding untreated controls for normalizing 

the proteome at each time point after TGF-β treatment. We performed quadruplicate single-

run analysis of the time points for robust statistics, leading to a total of 48 proteome 

measurements. This took at total of eight days of LC-MS measurement time on a quadrupole-

Orbitrap mass spectrometer with high sequencing speed and resolution (41) (Materials and 

Methods). Where possible, the identity of peptides present but not sequenced in a given run 

was obtained by transferring identifications across liquid chromatography (LC)-MS runs. This is 

a feature in the MaxQuant software used to analyze all data (42, 43) that was also used to 

improve overall depth of coverage from a fifth replicate per time point in which peptides were 

fractionated into three strong cation exchange (SCX) fractions (Fig. 1B).  

Joint analysis of all raw data resulted in the identification of about 7,500 proteins at a false 

discovery rate (FDR) of 1%. The label-label free algorithm in MaxQuant (44) enabled robust 
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quantification of 6,113 protein groups (table S1). This is by far the most comprehensive 

coverage of proteome wide expression changes in response to TGF-β treatment. Fig. 1C 

illustrates the extraction of peptide signals using the example of the changing intensity of a 

fibronectin (FN1) peptide over the time-course. Identification and quantitation of identified 

proteins spans seven orders of magnitude in the MS-signals, demonstrating the power and 

sensitivity of our proteomics workflow.  The biological quadruplicate measurements showed 

excellent quantitative reproducibility with a Pearson’s correlation coefficient of at least 0.96 

(Fig. S1). The correlation of TGF-β treated samples to the untreated control - while remaining 

high overall - gradually diminished over the time course, indicating a systematic and 

reproducible proteome change during ligand induced growth arrest and epithelial 

dedifferentiation. 

Extraction of regulated proteins and bioinformatic analysis 

The major cellular effects exerted by TGF-β in HaCaT cells are a potent cell cycle arrest, ECM 

remodeling and an EMT like switch. We observed significant regulation of well-established 

proteins (table S2) including up-regulation of p21CIP1 and p15/ INK4B involved in cell cycle 

arrest (21); up-regulation of FN1, transgelin (TAGLN), transglutaminase2 (TGM2) and PAI-1 

involved in ECM remodeling (45, 46); and up-regulation of smooth muscle actin and integrins 

involved in EMT (47). Among the top five most proteins regulated in magnitude FN1 had the 

largest increase of around 25 fold (Fig 2A). FN1 production and deposition into the ECM is a 

hallmark of TGF-β induced EMT (23, 48). In contrast, Antigen KI-67, a prototypic cell cycle 

related nuclear protein commonly employed as a marker for proliferating cells especially 

cancerous cells (43), was the most down-regulated in magnitude with a 16-fold decrease (Fig. 

2A). This corroborates TGF-β as one of the most effective suppressors of epithelial cell 

proliferation (49). The other most up-regulated proteins included TAGLN and TGM2 whereas 

kinesin family member 4A (KIF4A), anillin (ANLN) and minichromosome maintenance complex 

component 6 (MCM6) were among the most down-regulated proteins, most of these providing 

further positive controls for our dataset (50). However even amongst the most regulated 

proteins, there were novel proteins such as proline rich protein 9 (PRR-9), which have never 
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been never been implicated in TGF-β biology. Our dataset captured regulation of various 

categories of proteins. For example, integrin β6 (ITGβ6) is a plasma membrane protein which 

significantly increased throughout the time-course (Fig. 2B, right panel). It is a critical activator 

of latent TGF-β and its induction may serve as a positive feed forward loop (51). Similarly, we 

quantified the levels of a low abundant kinase, cyclin dependent kinase 1 (CDK1). Its expression 

was constant until 12h after stimulation, after which it gradually decreased to about a tenth of 

its value (Fig. 2B, left panel). Regulation of CDKs is an important mechanism of the anti-

proliferative effects of TGF-β (52). 

The temporal profile of all TGF-β responsive proteins reveals that substantial proteome-wide 

changes occur earliest at 24h of treatment (Fig. 2C). Most proteins showed gradual regulation 

over the time points, with up-regulation typically induced earlier than down-regulation. A total 

of 2,079 proteins showed reproducible and significant differences in expression in at least one 

of the six time points after TGF-β treatment (ANOVA, FDR <0.05) (table S2).  

To obtain a global view of biological processes and pathways involved in the TGF-β induced 

responses including cell cycle arrest, ECM remodeling and EMT, we first clustered these 

significantly regulated proteins based on their temporal profiles. The two resulting clusters 

corresponded to up- and down-regulation, respectively (Fig. 2C). Cluster one was most enriched 

for the gene ontology (GO)(53) and KEGG (54) terms ECM, focal adhesion, actin cytoskeletal 

rearrangement and other processes that are essential for the transition of immotile, polarized 

epithelial cells into motile mesenchymal cells (Fig. 2C). Interestingly we also observed a strong 

enrichment for annotation terms related to the regulation of vesicle-mediated transport 

including protein glycosylation, COPI vesicle, functions that are not generally associated with 

TGF-β action. Cluster two was significantly enriched for categories involved in cell cycle, DNA 

replication, RNA processing, spliceosome and chromatin modification some of which are 

beginning to be implicated in TGF-β signaling (55, 56) (Fig. 2C, table  S6). 

In an orthogonal approach we assessed the enrichment of biological pathways in a time-point 

specific manner instead of across the time-profile. We used a recently developed algorithm that 

relates proteome expression levels to any protein annotation categories (57). For those 
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categories that are statistically significant, we calculate a position score (termed ‘s’; a number 

between -1 and 1), specifying where the mean of the distribution of expression values for the 

protein category is located relative to the overall distribution of expression values. A position 

score near 1 indicates that the protein category is strongly concentrated at the high end of the 

expression value distribution (‘up-regulation’ of the category) while a score near -1 means that 

the expression values are all at the low end of the distribution (down-regulation). We used this 

algorithm to create an annotation matrix of biological pathways (based on the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database (54)) corresponding to the six time 

points. The z-scored matrix was then analyzed by hierarchical clustering (Fig. 2D). About 50 

KEGG pathways were significantly enriched in at least one time point. The quantitative profiles 

of specific proteins belonging to these pathways are listed in table S3. Down-regulated 

categories included cell cycle, DNA replication and repair, RNA polymerase and ribosome 

biogenesis. In general, both GO and KEGG analyses yielded very similar regulated functional 

protein categories. However, time-point based enrichment of KEGG terms facilitated higher-

resolution analysis of regulated pathways. For instance, in addition to vesicle mediated traffic, 

exocytosis, Soluble NSF Attachment Protein (SNARE) interactions in vesicular transport and 

phagosome were clearly apparent. Furthermore, sphingolipid metabolism and mammalian 

target of rapamycin (mTOR) pathway were specifically enriched in the distributions of later 

time-points. These later time points also showed up-regulation for various pathways such as 

focal adhesion, ECM-receptor interaction and regulation of actin cytoskeleton, which are in 

agreement with the established effects of TGF-β on the ECM remodeling during EMT (Fig. 2D). 

In contrast, the changes in DNA repair pathway and RNA processing observed in both analyses 

as well as vesicle mediated transport are unexpected categories.  

Independent validation of regulated candidate proteins 

We chose several proteins for independent assessment by immuno-blotting or quantitative 

real-time PCR (qRT-PCR), based on extent of regulation, availability of other tools for analysis 

and possible connections to TGF-β signaling: adhesion molecule with Ig-like domain 2 

(AMIGO2), inositol polyphosphate-4-phosphatase type II (INPP4b), programmed cell death 



Results 
 

104 
 

protein 4 (PDCD4), serine protease 23  (PRSS23), transmembrane protein 2 (TMEM2), cyclin 

dependent kinase 17 (CDK17) and OCIA domain containing protein 2 (OCIAD2). For all of these 

candidate proteins, we confirmed their TGF-β dependent up-regulation by immuno-blotting 

and/or qRT-PCR, demonstrating the power of quantitative proteomics to identify new pathway 

players in an unbiased manner (Fig. 3A).  

Further validation was performed by qRT-PCR for PRSS23 which was found to be induced over 

the examined time course (Fig. 3B, table S2). We knocked down PRSS23 using three different 

shRNA constructs and confirmed its down-regulation of mRNA expression by qRT-PCR (Fig. 3B). 

We tested the effect of PRSS23 depletion on TGF-β induced PAI-1 expression, an inhibitor of 

urokinase-type plasminogen activator (uPA) that mediates extracellular matrix proteolysis. 

While we observed that knockdown had no effect on SMAD2 phosphorylation, a strong 

reduction of PAI-1 mRNA and protein expression was found after 6h and 24h of treatment with 

TGF-β (Fig. 3C). Thus, PRSS23 could be a mediator of TGF-β induced ECM remodeling. In fact, a 

recent study on endothelial to mesenchymal transition also showed that PRSS23 is essential for 

this process and its knockdown had no effect on the phosphorylation of SMAD2 but affected 

SNAIL transcription downstream to SMAD activation by TGF-β (58).  

Analysis of upstream transcription regulators induced by TGF-β treatment 

As a final outcome of TGFbeta signaling is transcriptional regulation, we sought to analyse 

transcriptional regulators that potentially account for our observed proteome changes. To 

identify transcriptional regulators that are either activated or inhibited in response to TGF-β 

treatment and act upstream of the observed proteome wide changes, we analyzed the 

regulated proteins by the upstream regulator analysis module in Ingenuity Pathway Analysis 

(IPA, Materials and Methods). This resulted in 253 upstream regulators with significant p-

values, which included 50 transcription factors and numerous kinases, miRNAs and translational 

regulators and growth factors such as TGF-β itself (table S4).  At each of the time points, we 

ordered the regulated transcription factors by the strongest regulation (IPA activation score). 

We clustered the 40 highest scoring transcription factors to identify temporally regulated 

factors (table S4, Fig. 4A). This analysis validated our approach by correctly predicting key direct 
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and indirect transcriptional regulators of TGF-β signaling, including SMAD2, SMAD3, SNAIL2, 

SMAD7 and MYC (17), solely from our measured proteomic expression profiles of their target 

genes (Fig. 4B). Several of these canonical TGF-β signaling mediators had a constant activation 

profile (SMAD2/3/4 and SNAIL2), whereas the activity of other activated regulators appeared to 

be delayed in comparison (Fig. 4A). Our analysis also supports the involvement of several 

transcription factors, some of which have previously been implicated in TGF-β signaling, 

including p53 and SMARCA4 (59, 60), while others are not usually or weakly represented as key 

components of canonical TGF-β induced signaling such as Vitamin D receptor (VDR), TATA box 

binding protein (TBP)-associated factor 4 (TAF4), SAM pointed domain containing ETS 

transcription factor (SPDEF), CUT-like homeobox 1 (CUX1), T-box 2 (TBX2), specificity protein 1 

(SP1) (61-65). Finally, the analysis revealed novel transcriptional regulators including 

myotrophin (MTPN) and huntingtin (HTT), whose roles in the context of TGF-β signaling have 

not been explored.  

Phospho-proteomic analysis of early signaling events  

Immediate events following TGF-β binding to its receptor are mediated by protein 

phosphorylation. To study phosphorylation changes and their kinetics at very early stages, we 

analyzed the phosphoproteome within 20 min of TGF-β stimulus, in contrast to the proteome 

changes, which were measured from 6h onwards. At such early time points expression level 

changes will be minimal and observed quantitative changes in phosphopeptides can be 

attributed to changes at the modification site level. To this end we employed a ‘double triple’ 

SILAC approach (stable isotopes labeling by amino acids in cell culture (66)). In one experiment 

the 0 time point control was encoded as the ‘light’ SILAC state, the 5 min as the ‘medium’ 

encoded time point and the 15 min as the ‘heavy’ encoded time point. In the other experiment, 

we compared 0 min (light), 10 min (medium) and 20 min (heavy).  Combining the two 

experiments using the common time point then generated a full time course profile (Fig. 1B). 

The entire experiment was done in biological triplicates with a SILAC label swap in the third 

replicate. We employed phospho-peptide enrichment using titanium dioxide microbeads 

followed by reverse phase chromatography and tandem MS using a quadrupole Orbitrap 
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instrument (Materials and Methods). The acquired data from the resulting total of 60 fractions 

were analyzed in the MaxQuant environment with a FDR of 1% at the peptide and protein 

levels (28). We identified 22,388 different phosphopeptides from 5,345 proteins. A total of 

18,841 phosphorylation events could be localized with high confidence to single amino acid 

sequence locations (class I sites, average localization probability 0.99, table S5). A majority of 

16,416 sites were on serine residues (87.2%) while 2,342 were on threonine (12.4 %) and 82 on 

tyrosine (0.4%). In contrast the previous studies assessing TGF-β response reported 

identification of 140 (67) and 111 phospho-peptides (68), respectively. To assess the coverage 

of the measured phosphoproteome, we mapped our sites onto those reported in the 

comprehensive PhosphositePlus database (69). We were able to match about 12,000 class I 

sites to existing entries, indicating that we identified approximately 5,000 novel sites.  

Of all phosphorylation sites identified, 14,010 were quantified with at least six measurements in 

response to TGF-β treatment and these were used for all further analyses (table S5). We 

identified phosphorylation of activating residues on the carboxy terminus of SMAD2 (Ser 467 

and S467) and SMAD3 (Ser 423 and S425), direct substrates of the receptor (table S5). The 

dataset contains many other key phosphosites that are known to be activated by TGF-β 

treatment, including inhibitory phosphorylation on tyrosine 15 on CDK1/2/3, activating 

phosphorylation events on TGF-β activating kinase 1  (TAK1), p21 protein (Cdc42/Rac)-activated 

kinase 1 (PAK1) (Fig. 5A), eukaryotic translation initiation factor 4E binding protein 

(EIF4EBP1)(Fig. 5A), as well as phosphorylation of key residues of mTOR pathway members (67, 

70, 71). To extract phosphosites significantly regulated upon TGF-β treatment, we subjected the 

normalized dataset to a stringent multiple sample ANOVA test using a permutation based FDR 

of 0.01. This allowed the identification of 2,892 regulated phosphorylation sites (table S5) which 

also contained 371 transcription regulators. A Fisher exact test identified kinase substrate 

motifs that were enriched in the regulated dataset in comparison to the total quantified dataset 

to obtain cluster specific footprints of kinase activation in response to TGF-β. ERK1/2, CDKs, 

AKT, ataxia-telangiectasia mutated (ATM) and glycogen synthase kinase 3 (GSK3) substrate 

motifs had the strongest enrichments (Fig. 5B, p < 10-10). Analysis of GO annotation terms and 

KEGG pathways revealed enrichments of the categories cell cycle, regulation of actin 
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cytoskeleton, spliceosome, DNA replication, mTOR signaling pathway, adherens/tight junction 

and focal adhesion, which are mediated by TGF-β (Fig. 5B, table S6). Interestingly, additional 

categories not generally associated with early TGF-β signaling, but similar to those identified in 

our expression proteomics experiments, included DNA mismatch repair and endocytosis. 

The regulated dataset was clustered in an unsupervised fashion, which identified three major 

clusters with distinct time course profiles (Fig. 5C). Cluster 1, which consists of phosphosites 

that peak at earlier time points, was composed of 538 phosphosites.  This cluster was enriched 

for casein kinase II substrate motifs and β-adrenergic receptor kinase motif, suggesting that 

TGF-β signaling also triggers early up-regulation of this type of phosphorylation. Cluster 3, 

which had an opposing time profile (increased phosphorylation at 15 and 20 min time points) 

had 1,386 phosphosites and was enriched for proline directed phosphorylation events (Fig. 5C). 

Such motifs are specific to MAPKs and CDKs and are otherwise disfavored by the vast majority 

of Ser/Thr kinases and phosphatases (72). The enriched MAPK motif is in accordance with the 

known activation of this signaling module by TGF-β through a non-SMAD route (25). The latter 

is indicative of active signaling by CDKs (fig. S2) that control cell cycle progression. Cluster 2 

consisted of 782 phosphosites, which showed an interesting cycling behavior over the time 

course and was enriched for polo-like kinase 1 (PLK1) polo box domain (PBD) domain binding 

and GSK3 substrate motifs. While the role of phosphatidylinositide 3 kinase (PI3K)/AKT/GSK3 in 

response to TGF-β stimulation has been well documented (26), enrichment of PBD domain 

binding indicates CDK1 priming phosphorylation of PLK1 substrates. 

Pathway specific view of TGF-β signaling in cell cycle 

We next focused on the cell cycle pathway because one of the major cellular effects of TGF-β in 

normal cells is growth arrest in G1 and was strongly enriched in all our analysis (73). Despite the 

low abundance of many of its members we obtained excellent pathway coverage of the cell 

cycle pathway as mapped in KEGG, with 83 of 98 members identified (Fig 6). Interestingly, this 

key pathway was one of the most regulated ones, with 48 out of the 83 proteins identified by 

MS significantly regulated at the phosphoproteome (24 proteins) or proteome levels (31 

proteins) or both (7 proteins). The early phosphorylation events (within the first 20 minutes) 
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tended to occur on cyclins and their downstream effectors, whereas proteome changes 

(measured from 6 to 48h) tended to take place at all the levels of the pathway. Our data thus 

highlight the usefulness of measuring both the proteome and phosphoproteome to measure 

the impact of signaling on downstream pathways. A number of proteins driving the cell cycle 

were down-regulated in their abundance after 24h by TGF-β treatment, eventually leading to 

cell cycle arrest (Fig. 6). In contrast, temporal profiles corresponding to early TGF-β signaling 

showed mixed profiles of phosphosites on individual proteins (or protein groups) at key 

residues. These were inhibitory phosphorylation Tyr 15 on CDK1/2/3 and Ser 64 on S-phase 

kinase-associated protein 2 (SKP2), which exhibited increasing phosphorylation over time, while 

activating phosphorylations on Ser 1068 and Ser 1112 on p130/RBL2 which were decreased. 

While some phosphorylation events are indicative of proliferative signaling (such as RB1 

phosphorylation), others indicated inhibition of this process (inhibitory phosphorylation on 

CDK1/2/3, activation of SMADs). Checkpoint activation is not normally associated with TGF-β 

signaling but was clearly evident by two-fold decrease of phosphorylation S120 on checkpoint 

kinase 2 (CHK2).  

Mechanistic network of the regulated proteome and phosphoproteome 

Analyzing all pathways, instead of only the cell cycle, also showed enrichment of similar 

categories in the phosphoproteome and proteome, including cell cycle, focal adhesion, 

regulation of actin cytoskeleton and DNA repair pathways (table S6). To investigate these in 

greater depths we employed BioCarta (http://www.biocarta.com/), which offers detailed 

signaling pathway information. We observed strong enrichments of specific pathways like 

vitamin D3 receptor signaling, ATM signaling pathway, chromatin remodeling, cell cycle, RHO 

cell motility signaling pathway and mechanism of gene regulation by peroxisome proliferator-

activated receptors α (PPAR α). Our data set provides extensive quantitative details for each 

individual pathway player (table S6).  

TGF-β mediated signal transduction is usually envisioned as a linear process driven by canonical 

SMAD signaling. However, there is increasing interest in non-SMAD pathways and 

accompanying cross-talk to other signaling pathways. Therefore, for a systems perspective, we 

http://www.biocarta.com/
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sought to extract a functional signaling network driving TGF-β mediated EMT and cell cycle 

arrest by combining our data with literature knowledge on protein-protein interactions and 

kinase-substrate relations. We constructed a graph using (a) the top 100 most significantly 

regulated proteins from the proteome analysis, (b) the 271 phosphoproteins containing 

significantly regulated phosphosites including 40 regulatory phosphosites usually followed by 

antibodies in small-scale studies and (c) the direct transcriptional mediators of TGF-β induced 

response (SMAD2, SMAD3, SMAD7 and SNAIL2), which were also identified in our analysis of 

upstream regulators. This list of TGF-β responsive proteins and phosphoproteins was mapped 

onto high confidence protein-protein interactions in STRING (74). Remarkably, this analysis 

identified a well-connected core network of 150 proteins. This network was rendered in 

Cytoscape (75) with additional mapping of kinase substrate relationships as annotated in 

PhosphoSitePlus (69) and is illustrated in Fig. 7. It turned out to be enriched for proteins 

associated with focal adhesion (29 members; p < 3e-12) and cell cycle (18 members; p < 1e-9). 

Hubs within the network comprised mTOR signaling pathway members, small GTP-binding 

proteins, nucleoporins, MCM complex, ECM/adhesion components and proteins regulating the 

actin cytoskeleton. The temporal data and cellular location annotations of the network clearly 

confirmed that TGF-β leads to temporal accumulation of specific ECM components, an essential 

process for cell migration during EMT. Multiple regulated phosphorylation events on the 

plasma membrane indicated potential crosstalk between different receptors including integrins 

and tight junction proteins. Proteins associated with plasma membrane also include proteins 

that concentrate in areas of cell-cell and cell-matrix contacts  as well as scaffolding proteins 

such as TLN1, BCAR1, NF2 and SPTBN1 linking plasma membrane to actin cytoskeleton, focal 

adhesions and eventually cell migration. Additionally, the depicted protein tyrosine kinases 

(including tyrosine protein kinase SRC and epidermal growth factor receptor (EGFR)) contribute 

to non-canonical TGF-β signaling in mesenchymal or dedifferentiated epithelial cells (48). 

The network is clearly centered on key transcription factors and kinases. In fact, we identified 

several transcription factors with regulated phosphorylation events after TGF-β treatment 

including SMADs and SMARCA4, mediator complex subunit 1 (MED1), catenin β1 (CTNNB1), 

RB1 and p53 (marked by asterisks in Fig. 4). The major TGF-β responsive kinases present in the 
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network were CDK1/2, SRC, protein kinase Cδ (PRKCD), PAK1, PAK2, Rho-associated, coiled-coil 

containing protein kinase 2 (ROCK2) and mitogen-activated protein kinase kinase kinase kinase 

4 (MAP4K4). These proteins are central to the network, connecting phosphorylation signaling to 

proteomic changes associated with the TGF-β induced cellular response. 

Overall, our proteomics-derived signaling network covering TGF-β regulated proteins, early 

phosphorylation events, upstream kinases and signaling output mediating transcription factors 

highlights the multi-functionality of this cytokine (Fig. 7). It supports the notion that its 

biological output is a result of extensive crosstalk with other signaling pathways such as EGFR 

and integrins, as well as direct signaling through both canonical SMAD and non-SMAD pathways 

(26). Such a global view also sheds light on individual mechanisms of signaling. For example, 

TGF-β activation of AKT is reflected in inhibitory phosphorylation of GSK3a (Ser21), activating 

AKT1S1 phosphorylation and downstream mTOR pathway members.  GSK3a phosphorylates β-

catenin, decreasing its stability. Our analysis revealed increased phosphorylation of β-catenin, 

not on the site downstream to GSK3 but rather on the site phosphorylated by PAK1, a kinase 

that was also activated in response to TGF-β. Phosphorylation of this PAK1 site is known to 

increase β-catenin stability resulting in accumulation of this key transcription regulator (76). 

Opposite regulation of upstream kinases acting on both these sites provides an explanation for 

up-regulation of β-catenin our proteomic data. This observation illustrates that while a network 

view shows multiple pathways activated by TGF-β, a site resolved view allows visualization of 

how these pathways cross talk.   

Discussion 

Utilizing state of the art technology, the near complete yeast proteome and a very large 

percentage of the mammalian proteome can now be captured in a short time in ‘single-run’ 

analysis. The attraction of this approach, especially when combined with label-free 

quantification, is that it avoids any upfront protein or peptide fractionation and provides a 

convenient systems-wide view of the proteome (77). Here we employed this strategy to study 

TGF-β signaling induced proteome changes across six different time points and corresponding 

controls in quadruplicates in just eight days of measurement time. In comparison, a classical 
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fractionation based approach would have taken almost two months of measuring time. 

Additionally, we analyzed early time-resolved phosphorylation based signaling events that had 

never been studied at this scale. Our dataset contains many protein and phosphorylation 

changes that have already been described in TGF-β signaling in the HaCaT cell system, such as 

those associated with robust cell cycle inhibition, extracellular matrix formation and EMT. We 

also uncovered many novel regulated protein and phosphorylation changes that should 

represent a valuable resource for the TGF-β community. We validated several of these novel 

TGF-β induced proteins and identified PRSS23 as a regulator of ECM remodeling (Fig. 3).  

To our knowledge this is the first study to obtain a deep time resolved molecular snapshot of 

both early and late events involved in the cellular signaling response to a ligand. Widespread 

phosphorylation changes preceded massive proteomic changes, encompassing a third of the 

quantified proteome. Upstream transcription regulator analysis and network analysis 

integrated these two systems level data sets and pointed to several phosphorylated 

transcription factors or cofactors as candidate regulators of TGF-β -induced gene expression 

(Fig. 5,7). The core SMAD and MYC transcription factors were regulated throughout the entire 

time course and our analysis provided downstream targets of these regulators (Fig. 5, table S4). 

We detected additional transcriptional regulators, which may act independently or in 

conjunction with the SMAD complex to achieve high affinity and selectivity for specific subsets 

of target genes. One such candidate is the vitamin D3 receptor (VDR), a ligand-dependent 

transcription factor that is activated upon binding to vitamin D or analogs. VDR was a significant 

hit in our upstream regulator analysis and “control of gene expression by vitamin D receptor” 

was the most enriched category in our pathway analysis (Fig 4A, table S6). VDR has recently 

been implicated in the regulation of keratinocyte proliferation(78) and differentiation as well as 

EMT (79) and in a negative feedback loop in global regulation of SMAD signaling (65). 

Myotrophin (MTPN) is another interesting regulator that we found to be activated via the 

above analysis and to be induced by TGF-β (Fig. 4A, B). Its role in classical TGF-β signaling 

remains unexplored but its overexpression has been reported to lead to increased TGF-β and 

FN1 expression in cardiac hypertrophy (80). Thus MTPN and TGF-β could be part of a positive 

feedback loop.  
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Epithelial cells respond to TGF-β by cell cycle inhibition while gaining a motile phenotype 

through EMT. These well-described signaling outputs were prominent in our GO enrichment 

and KEGG pathway analyses (Fig. 2C,D), which showed strong up-regulation of focal adhesion, 

cytoskeleton and ECM proteins, and down-regulation of proteins that drive the cell cycle. Our 

measurements provide a temporal view of these processes, indicating major adjustments of 

biological pathways after about 24h stimulation. Analyses of this time-resolved proteomic data 

allowed us to identify new TGF-β regulated pathways, which are likely to contribute to the 

induced biological processes.  

One such pathway is vesicular transport, with endocytosis, SNARE interactions, and lysosomes 

significantly enriched (Fig 2C, table S6). The prominent upregulation of endocytic pathways 

could represent feed-forward and negative regulatory loops that are activated upon TGF-β 

signaling to modulate signaling capacity. For example, internalization of activated TGF-β 

receptor complexes via the caveolin route leads to receptor degradation, and terminates 

signaling (81). The up-regulation of vesicle mediated transport pathways along TGF-β induced 

EMT could also suggest its role in this process. During EMT, tight junction proteins are 

internalized via clathrin mediated endocytosis, which together with recycling of focal adhesion 

components such as integrins is necessary for migration (82, 83). Finally, along with the 

induction of extracellular matrix components such as fibronectin, collagens and laminins, the 

observed TGF-β mediated induction of secretory pathway can be explained by the increased 

demand for secretion of these ECM components.  

Investigation of cell cycle pathway members revealed that long term proteome changes are 

clearly tailored to mediate cell cycle arrest. Early phosphorylation based signaling indicates 

increased phosphorylation of SMAD transcription factors, direct TGF-β substrates known to 

induce transcription of the CDK inhibitors p21CIP1 and p15/INK4B (20, 84), as also evidenced in 

our data. Likewise in accordance with earlier reports (67, 85), we observed induced inhibitory 

tyrosine phosphorylation of CDK1/2/3 as an early inactivating signaling response much before a 

decrease in protein level (Fig 6). However, many other phosphorylation events suggest CDK 

activation. For example, we observed an activating phosphorylation (Ser375) of upstream 
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phosphatase, CDC25B, which in turn activates CDK1 (86) and downstream phosphorylation of 

classical CDK substrates including SKP2, DNA Ligase 1 (LIG1), high mobility group protein 

HMGA1, Nuclear Casein Kinase And Cyclin-Dependent Kinase Substrate (NUCKS) and 

Retinoblastoma 1 (RB1) (Fig. 6,7, S2) (87). This was also recapitulated in our kinase motif 

analysis, which shows enrichment of CDK substrates among sites peaking at 15 to 20min after 

TGF-β addition (Fig. 5, Cluster 3).  

Direct phosphorylation of RB1 by CDK1/2 inactivates this otherwise tumor-suppressive protein. 

During cell cycle arrest TGF-β inhibits CDK1/2 and thereby preventing this inactivation  (88). 

However, in some cell types where TGF-β has growth stimulatory effects, it activates CDK1/2 

leading to increased RB1 phosphorylation (89). At the early time points studied in our 

phosphoproteomics experiment, we observed up-regulation of phosphorylation of this protein 

at multiple sites in response to TGF-β stimulation (Fig 5, 7). At these time points, TGF-β may 

exert both stimulatory and inhibitory effects on the cell cycle, whereas at later time points the 

inhibitory signals predominate, leading to the very prominent cell cycle inhibition visible in the 

proteomic data. 

Supporting this hypothesis, our data on inactivating hyperphosphorylation site of EIF4EBP1, a 

translation-inhibitory protein, at early time-points is suggestive of proliferation, because it frees 

eIF4E and consequently stimulates protein synthesis leading to cell growth and proliferation 

(90, 91) (Fig. 7). At later time points, induction of EIF4EBP1has an established role in mediating 

the antiproliferative effects of TGF-β (92). The non-canonical TGF-β induced signaling pathways 

(mainly the PI3K/AKT/mTOR cascade) that control EIF4EBP1phosphorylation are likely 

responsible for this early mTOR pathway regulation. (25). A similar early mitogenic cross talk 

and/or activation of CDKs can explain regulation of RB1 and multiple other CDK substrates. 

Later signaling events accompanied by protein level adjustments then override the proliferative 

signaling leading to cell cycle arrest. In this regard it is pertinent that imbalances in the 

activation status of canonical and noncanonical TGF-β signaling systems may underlie the pro-

tumorigenic effects of TGF-β (4). 
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In conclusion, this study provides a new, global perspective on TGF-β signaling. To elucidate 

how TGF-β signal travels from the membrane as phosphorylation events to the transcription 

regulators in nucleus, we weaved together phosphoproteome and ensuing proteome events. 

We identified several TFs acting at the intersection of TGF-β induced early phosphorylation 

events and transcription activation of proteins involved in ECM remodeling and epithelial 

dedifferentiation. Finally, our analysis suggests that the mediators of such contextual effects on 

cell growth are encoded on a temporal scale where early events constitute a mixed signal that 

is tailored into a pro or anti-proliferative response at later time points. In this way, it sheds new 

light on the well-known propensity of TGF-β responses to be dictated by cellular context.  

Materials and Methods 

Cell culture and TGF-β treatment 

HaCaT cells were pre-incubated with DMEM containing 2% serum for 12h and treated with 5 

ng/mL TGF-β1 (Peprotech) for 0, 6, 12, 24, 36 and 48h (Fig. 1B). Untreated controls were also 

collected at all time points. For phosphoproteomics studies we employed a double triple SILAC 

based approach as described earlier (28). SILAC encoded HaCaT cells were incubated in serum 

free medium for 6h and treated with TGF-β1 for 0, 5 and 15 min (Fig. 1B). A second, identically 

labeled set of cells was treated for 0, 10 and 20 min.  

 Total proteome and phosphoproteome sample preparation and MS analyses 

Cells were lysed in buffer containing 6 M guanidium chloride, CAA, TCEP and 100 mM Tris-HCl 

pH 8.5 (93). The lysate was sonicated, incubated for 5 min at 95°C , quantified and processed by 

in-solution digestion. Briefly, 20 µg of cell lysate was digested overnight at 37°C in buffer 

containing 10% ACN, 25 mM Tris-HCl pH 8.5, 0.03 µg trypsin (Promega). For phosphoproteome 

analysis, samples were prepared as described earlier (94). Briefly, cells were lysed in buffer 

containing SDS based buffer, sonicated and centrifuged for 15 min at 14,000 rpm.  Cell lysates 

from light, medium and heavy conditions were mixed in a 1:1:1 ratio and a total of 10 mg 

sample was digested according to the FASP method (95). The resulting peptides were 

fractionated by strong cation exchange (SCX) chromatography and subjected to 

phosphopeptide enrichment using TiO2 beads (28, 96).  The peptides or phosphopeptides were 
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desalted on StageTips (97) and separated on a reverse phase column (packed in-house with 1.8-

µm C18- Reprosil-AQ Pur reversed-phase beads) over 270 minutes (single-run proteome 

analysis) or 120 to 240 mins (fractionated phosphoproteome).  The peptides eluting at the tip 

were electrosprayed and analyzed by tandem mass spectrometry on a Q Exactive (41) using 

HCD based fragmentation, which was set to alternate between a full scan followed by up to 5 or 

10 fragmentation scans.   

Data processing and analysis 

Raw mass spectrometric data was analyzed in the MaxQuant environment (42), versions 

1.3.10.15 and 1.3.10.18, and employing Andromeda for database search (98). The MS/MS 

spectra were matched against the human International Protein Index sequence database (IPI 

version 3.37). Enzyme specificity was set to trypsin, allowing for cleavage N-terminal to proline 

and between aspartic acid and proline. The search included cysteine carbamidomethylation as a 

fixed modification and N-acetylation of protein, oxidation of methionine and/or 

phosphorylation of serine, threonine tyrosine residue (STY) as variable modifications. For 

phosphopeptide identification, an Andromeda minimum score and minimum delta score 

threshold of 40 and 17 was used, respectively. Up to two missed cleavages were allowed for 

protease digestion and peptide had to be fully tryptic.  The ‘identify’ module in MaxQuant was 

used to filter identifications at 1% FDR at the peptide and protein level. The mass spectrometry 

proteomics data are deposited at the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the 

dataset identifier PXD000496 (for reviewing process the data is accessible with the username: 

review12691 and password: xsRpTFzK).  

Downstream bioinformatics analyses  

Bioinformatic analysis was performed in the Perseus software environment, which is part of 

MaxQuant. Hierarchical clustering of proteins or phosphosites was performed on logarithmized 

intensities or ratios for the data that was quantified in at least 50% of the time points studied. 

For multiple sample t-tests analysis (ANOVA), replicates were grouped and the statistical test 

was performed with a permutation-based FDR cutoff of 0.01 and 0.05 for the proteome and 

http://proteomecentral.proteomexchange.org/
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phosphoproteome, respectively. The phosphoproteome dataset was normalized by z-scoring 

the log2 ratios across SILAC experiments. 

Categorical annotation was supplied in the form of GO biological process, molecular function, 

and cellular component, KEGG pathways for pathway annotation and human protein reference 

database (HPRD) for kinase substrate motifs. Enrichment for these categories was evaluated by 

Fisher exact test to obtain a p-value or EASE score p-values (99). The annotation matrix 

algorithm was used to compute the difference of any significant protein annotation term from 

the overall intensity distribution as described (43, 57). The specific test we used is a two-

dimensional version of the nonparametric Mann-Whitney test. Multiple hypothesis testing was 

controlled by using a Benjamini-Hochberg FDR threshold of 0.05. Fisher exact test for motif 

enrichment was performed with a FDR value of 0.02. 

 

Upstream regulator analysis: This analysis was performed in IPA 

(http://www.ingenuity.com/products/ipa). Upstream regulator analysis employed previous 

knowledge of expected effects of transcriptional regulators (TRs) and their target genes as 

stored in the Ingenuity® Knowledge Base. Two statistical measures, standard in IPA, were used 

to detect potential TRs: an overlap p-value and an activation Z-score. First, the analysis 

examined how many known targets of each TR were present in our data set, resulting in an 

estimation of an overlap p-value. Second, the known effect (activation or suppression) of a TR 

on each target gene was compared with observed changes in gene expression. Based on 

concordance between them, an activation Z-score was assigned, showing whether a potential 

TR was in ‘activated’ (Z-score > 2) or ‘inhibited’ (Z-score < −2).  

 

Immuno-blotting and quantitative real-time (qRT)-PCR: TGF-β dependent induction of novel 

proteins identified by proteomics was validated by immuno-blotting of lysates prepared for 

mass spectrometry with anti-INPP4b (Cell signaling technology), anti-PDCD4 (Cell signaling 

technology), anti-AMIGO2 (R&D systems), anti-CDK17 (Prestige antibodies), anti-TMEM2 

(Abcam), and anti-OCIAD2 (Sigma Aldrich). Equal loading was controlled with anti-β-Actin (Cell 

signaling technology).  

http://www.ingenuity.com/products/ipa
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shRNA experiments: For knockdown experiments, lentiviral shRNA constructs targeting PRSS23, 

and the non-targeting control shRNA were obtained from Sigma-Aldrich (MISSION® shRNA; 

shPRSS23#1 TRCN0000047039, shPRSS23#2 TRCN0000047040, shPRSS23#3 TRCN0000047042), 

and produced as described (100). Cells were infected for 12 h with lentiviral supernatants in the 

presence of 5 ng/mL polybrene (Sigma-Aldrich). After selection with 1 μg/mL puromycin 

(Sigma-Aldrich) for 48 h, the cells were pre-incubated overnight in DMEM containing 5 % FBS, 

and treated with 5 ng/mL TGF-β (generously provided by Kenneth K. Iwata, OSI 

pharmaceuticals, New York, USA) for the hours indicated in Figure 3. To determine PRSS23 

knockdown efficacy by qRT-PCR, total RNA was isolated by NucleoSpin® RNA II kit (Macherey-

Nagel), reverse-transcribed by RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific), 

and analyzed using primers Fw 5’-GAGCCGAAGCCAAATTAGAA-3’ and Rv 5’-

AGGATGTAGATGCCCACCTG-3’. Expression was normalized to the expression of β-Actin (Fw 5’-

AATGTCGCGGAGGACTTTGATTGC-3’, Rv 5’-AGGATGGCAAGGGACTTCCTGTAA-3’). The effect of 

PRSS23 knockdown on PAI-1 expression was determined by qRT-PCR (Fw 5’-

CACAAATCAGACGGCAGCACT-3’, Rv 5’-CATCGGGCGTGGTGAACTC-3’) and immuno- blotting 

(anti-PAI-1, BD Biosciences), and on SMAD2 phosphorylation (101) by immuno-blotting. Equal 

loading was controlled with anti-β-Actin (Sigma-Aldrich).  

Confocal microscopy: E-Cadherin and F-actin were visualized as described (100). 

Growth arrest assay by fluorescence activated cell sorting (FACS): To detect TGF-β induced cell 

cycle arrest, HaCaT cells were pre-treated with DMEM containing 5% FBS for 16 h and 

stimulated with or without 5 ng/mL TGF-β3 (OSI pharmaceuticals, New York, USA) for 40 h. 

Cells were labeled with 20 μM bromodeoxyuridine (BrdU; Roche) for 2 h, harvested, and fixed 

in 70% ethanol. After RNAse A treatment (50 μg/mL for for 30min) and DNA denaturation (5 M 

HCl/0.5% Triton X-100 for 20 min), cells were stained with anti-BrdU-FITC (Boehringer 

Mannheim) and propidium iodide (Sigma-Aldrich). The cells were analyzed for FITC (BrdU 

incorporation) and propidium iodide (total DNA content) fluorescence by a BD LSR II flow 

cytometer (BD Biosciences). 
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Fig.1: Quantitative proteome and phosphoproteome analysis of TGF-β signaling. (A) HaCaT cells showing induction of G1-cell cycle arrest, loss of E-cadherin and 

formation of stress fibers upon TGF-β treatment for 40h. (B) For proteome analysis, HaCaT cells are treated with TGF-β for six different time points, processed by in-

solution digestion and analyzed either as single-runs or as three SCX fractions. For phosphoproteome analysis, SILAC labeled HaCaT cells are treated with TGF-β 

using a double-triple SILAC approach with untreated control as common reference point. Equal amount of cell lysates are pooled, digested by the FASP method and 

phosphopeptides are enriched using SCX chromatography and TiO2 beads. Both peptides and phosphopeptides are analyzed by LC-MS/MS and raw data is 

processed in MaxQuant. (B) Identification and quantification of a fibronectin (FN1) peptide: Multiple isotope clusters eluting over time in an LC-MS run with that of 

FN1 peptide marked (left upper panel) and MS/MS spectrum of the identified peptide (upper right panel). Intensity coded 2D peak of this peptide across different 

time points of TGF-β treatment in the mass-retention time plane (middle panel) and MS signal intensity corresponding to 3D peak maxima used for quantification 

(lower panel). 
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Fig. 2: The TGF-β responsive proteome. (A) Quantitative profiles (mean ±SEM of quadruplicates) of the top five most up-regulated and down-regulated proteins. (B) 

Quantification of individual replicates is shown as points with mean ±SEM for the known TGF-β targets CDK1 and integrin β6. (C) Heatmap of the significantly 

regulated proteins by unsupervised hierarchical clustering and enriched annotation categories. (D) Annotation matrix of KEGG pathways enriched at different time 

points shown as a heatmap after clustering. 
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Fig. 3: Independent assessment of novel proteins induced by TGF-β. (A) Immunoblot  analysis of INPP4b, PDCD4, AMIGO2, CDK17, TMEM2, OCIAD2 and β-actin after 

TGF-β treatment. (B) qRT-PCR based transcript level analysis of PRSS3 induction by TGF-β at the indicated time points and its knockdown using 3 different shRNAs 

(sh#1, sh#2 and sh#3).  The columns and error bars represent mean ±SD of triplicates. (C) Effect of PRSS23 knockdown on PAI-1 expression and SMAD2 

phosphorylation. 
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Fig. 4: Upstream transcription regulator analysis of the TGF-β-regulated proteome (A) A heatmap of transcription factors predicted to be activated (blue) or 

inhibited (green) by the TGF-β treatment in at least one of the 5 time points. Transcription factors with regulated phosphosites are marked with asterisk.  (B) 

Expression profiles for target proteins of a few transcription factors (marked with boxes in A) used to calculate the activation score. 
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Fig. 5: The TGF-β responsive phosphoproteome (A) Quantification of individual replicates is shown for Tyr15 on CDK1/2/3, Thr70 on EIF4EBP1 and Ser141 on PAK2 

after TGF-β treatment. (B) Protein kinase substrate motifs and KEGG pathways found to be enriched in the regulated dataset with corresponding p-values and 

enrichment factors (color-coded by values). (C) Hierarchical clustering of regulated phosphorylation sites in three distinct clusters marked as clusters 1, 2 and 3 and 

kinase substrate motifs enriched in individual clusters with their p-values (motifs generated using iomics.ugent.be/icelogoserver/main.html). 
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Fig. 6: Coverage of the cell cycle pathway in our proteomic and phosphoproteomic analysis in a KEGG based schematic. Temporal profiles of proteins (top) and 

phosphosites (bottom) are depicted as color coded bars divided into time points (color-code for protein regulation is from red to blue and for individual sites from 

orange to white; see bar). Proteins identified but not significantly regulated are colored grey and any protein not identified by MS is white. 
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Fig. 7: Spatio-temporal view of TGF-β induced cellular effects depicted as a high confidence protein-protein interaction network, whose members are significantly 

regulated at expression and/or phosphorylation levels. Protein kinase-substrate relationships are shown by brown arrows and regulated protein expression and/or 

their early phosphorylation are depicted by keys explained in the legend to Fig. 6. Transcription factors are shown with blue margins and kinases with red.  
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Fig. S1: A color-coded Pearson correlation matrix for protein quantification across biological quadruplicates measured for six different time points after TGF-β 

treatment. 
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Fig. S2: Interaction map (generated using STRING) showing high confidence interaction of CDK1/2 with various substrates that were regulated at CDK1 specific 

phosphorylation sites at early time points of TGF-β treatment.  
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Conclusions and perspectives 

Work in this thesis, developed the analysis of large scale phospho-proteomics by HCD 

fragmentation. With this technology in hand, we investigated a human cancer cell line, acquiring 

the largest phospho-proteome to date. I then applied our technology in combination with a 

sophisticated experimental design to analyze the early phosphoproteome and downstream 

protein changes to uncover a network driving downstream signal response to TGF-β.  This was 

made possible due to advancement in technology, sample preparation and data analysis 

algorithms leading to near complete coverage of the proteome in a few hours of measurement 

time. Very soon, it will also be possible to obtain a deep coverage of PTMs in similar single runs. 

This would be a very desirable next goal for the PTM field. Such rapid analysis of elaborate time 

courses can further enable detailed study of spatio-temporal signaling responses to intra and 

extracellular cues. With such rapid measurements, analysis of many samples in a short span of 

time is becoming a reality thus narrowing the gap of throughput between proteomics and 

genomics technologies. 

Another major goal in the future will be to move from the exhaustive list of quantified 

phosphorylation sites to characterizing biologically relevant phosphorylation events.  

In combination, bioinformatics and computational biology when applied to integrate several layers 

of omics technologies can very well provide useful information on kinase-regulated 

phosphorylation events, crosstalk between pathways and the spatiotemporal regulation of PTMs 

to sketch the complex circuitry of signaling at a systems level.   

The recent advance in MS throughput also opens up possibilities to apply MS-based proteomics to 

the clinic. Any clinical study typically involves measurement of a few hundred samples in a given 

patient cohort to account for clinical heterogeneity. This possibility is even more realistic after the 

introduction of bench top mass spectrometers, such as the Q Exactive, which have already helped 

to spread proteomics to many laboratories. Recent reports demonstrate that the proteome and its 

PTMs are intact in frozen samples and FFPE samples, opening up for investigation of large cohorts. 

  

The field of MS-based proteomics still faces challenges especially at the level of data acquisition 

and analysis. The developments detailed in this thesis have addressed a number of these 
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challenges already. Improvements in the instrumental capabilities including in sensitivity, 

sequencing speed, and cost effectiveness combined with further development in analysis tools 

and data modeling will very soon enable this technology to become even more powerful and to be 

truly on par with genomics technologies. 
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