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Abstract

The auditory system uses interaural disparities to compute the location of sound

sources. In natural auditory environments, sounds are reflected from a multitude

of objects. The reflections can arrive at the listener’s ear multiple times and from

different angles in space. As a consequence these reflections cause binaural cues

that carry distracting directional information and pose a challenge to the accurate

localization of the primary sound source. The auditory system deals with this chal-

lenge by selectively suppressing the directional information of echoes, a process

known as the precedence effect. An initial step in the physiological implementation

of this process is thought to be mediated by the dorsal nucleus of the lateral lem-

niscus (DNLL). In response to a leading sound, the DNLL generates a GABAergic

persistent inhibition in its contralateral counterpart that lasts long enough to sup-

press responses to trailing sounds for tens of milliseconds. At the same time DNLL

neurons are able to respond very reliably and fast to binaural stimulation.

To get more insight into the biophysical specializations that enable the DNLL

neurons to fulfill their physiological task, we first studied the physiological devel-

opment of DNLL neurons. Building on the information of this first study, we in-

vestigated the cellular mechanisms that could underlie the generation of persistent

inhibition.

As neurons are tuned to their specific function in the mature circuit during postna-

tal development, we assessed the relevant physiological parameters of DNLL neu-

rons in acute brain slices of 9 - 26 day old Mongolian gerbils. The maturation of

intrinsic and synaptic properties lead to an improvement of fast and precise signal

integration in DNLL neurons. DNLL neurons turn into fast spiking neurons with

fast membrane time constants and brief action potentials. In accordance, synaptic

glutamatergic and GABAergic current kinetics accelerate with age. Together, these

changes reduce the latency and jitter of action potential responses to incoming sig-
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nals. Furthermore, although NMDA receptor mediated current is downregulated

and its kinetics accelerate with age, it still contributes to action potential generation

in mature animals. Taken together, DNLL neurons are developmentally tuned to

respond with temporally precise action potentials and high firing rates.

Importantly, this fast processing does not contradict the creation of persistent in-

hibition. Rather, the high firing rates that mature DNLL neurons can sustain form

the basis of a series of interacting cellular mechanisms that control the duration

of inhibition in the DNLL of mature Mongolian gerbils depending on presynap-

tic activity. Activity-dependent GABA spillover and asynchronous release translate

high presynaptic firing rates into a prolongation of GABAergic IPSCs. Passive in-

tegration of hyperpolarizing inhibition additionally prolongs IPSPs depending on

the conductance amplitude, due to the non-linear membrane relaxation between

GABA-reversal and resting potential. The resulting IPSP efficiently suppresses

action potential generation for a duration matching in vivo findings. Thus, these

cellular mechanisms work in synergy to achieve an activity-dependent control of

inhibition that gates information during the categorization of echoes.

Taken together, the cellular properties described here enable DNLL neurons to

take part in signal processing on very different time scales. On the one hand, they

are able to transmit information fast and reliably. On the other hand, they display a

slow filter property that adds context to the processing of binaural cues.
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1 Introduction

Our perception of the auditory environment is not an accurate representation of

the physical acoustic scene, but a processed and filtered interpretation. The audi-

tory system extracts the auditory information that is relevant to us and allows us

to orient in the auditory environment. At the same time, other distracting informa-

tion is suppressed. An example of this selective filtering of auditory information is

the suppression of directional information of reverberations during sound localiza-

tion (reviews e.g.: Blauert, 1997; Litovsky et al., 1999; Blauert and Braasch, 2005;

Litovsky and McAlpine, 2010). In a surrounding with sound reflecting objects, a

sound emitted from a single sound source arrives at our ears multiple times: First

through a direct path and then through longer reflected pathways . The binaural au-

ditory cues caused by the first wavefront carry the relevant information to localize

the sound source correctly. The reflections arrive with a delay and from differ-

ent angles in space compared to the direct sound, causing binaural cues that carry

distracting directional information. The initial sound localization structures in the

auditory brainstem compute the location of every incoming reflection. Only at a

later processing stage is the distracting information identified and tagged to enable

a facultative suppression (Pecka et al., 2007). How this context-dependent filtering

may be implemented on a cellular basis in Mongolian gerbils is the main focus of

this work. In the following, I will first briefly outline the initial stages of binaural

processing involved in sound localization and then describe the circuit thought to
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Introduction

underlie the identification of echoes in more detail.

1.1 Sound localization

Sound is a pressure wave. When it hits the ear, it travels through the auditory canal

and causes vibrations of the tympanic membrane. The tympanic membrane trans-

mits its vibrations to the three inner ear ossicles which serve to conduct the signal

to evoke a travelling wave in the fluid filled cochlea. The sensory epithelium of the

cochlea is the Organ of Corti, located on the basilar membrane. The elasticity of the

basilar membrane decreases from basal to apical end and displays resonance to vi-

brations at different frequencies along this axis (von Békésy, 1970). Thus, sounds of

different frequencies cause vibrations at different positions along the cochlea. This

place code of frequency is called "tonotopy" and is preserved at many levels along

the auditory pathway. Inner hair cells in the Organ of Corti transform the mechani-

cal signal in the cochlea into an electrical signal. These highly specialized receptor

cells excite the ganglion neurons which form the auditory nerve that projects to the

cochlear nucleus (CN).

At the level of the auditory nerve, the incoming sound signal has been decom-

posed into different frequency channels. In these frequency channels intensity and

temporal information of the sound is encoded in the rate and timing of action po-

tentials (APs). For low frequencies, auditory nerve fibers carry specific timing in-

formation as they are able to phase lock their APs to a specific phase in a cycle of a

pure tone (Rose et al., 1967).

In contrast to other sensory systems such as the somatosensory or visual system,

information regarding the location of objects is not available at the level of the

sensory receptors. Instead, the auditory system uses spectral cues and interaural

disparities to compute the location of a sound source (Grothe et al., 2010).
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Sound localization

A CB

Figure 1.1: A Two birds singing. The small bird emits high frequency sounds. The big heavy bird
emits low frequency sounds. B When high frequency sounds hit the head of the listener, the sound
intensity is attenuated by the head. C For low frequencies, sounds are not attenuated, but timing
differences can be computed when the wavelength is longer than the head width. Modified from
Grothe et al. (2010); Porres (2012).

Spectral cues are used for localization in the vertical plane. Depending on the

elevation of a sound source, notches in the frequency spectrum which are largely

caused by the pinna lead to characteristic signals that code for elevation (Grothe et

al., 2010). Interaural disparities are used for sound localization in the horizon-

tal plane. Different neural mechanisms serve to localize high and low frequency

sounds. For high frequency sounds, sound intensity is attenuated by the head and

pinnae leading to differences in sound intensity level at the two ears (interaural

level differences, ILDs) which can be used to estimate the azimuthal sound location

(Figure 1.1).

Low frequency sounds are hardly attenuated by the head. In this case, microsec-

ond differences in the arrival time between both ears (interaural time differences,

ITDs) are used to determine sound location. This strategy can be used only for

frequencies for which the wavelength of the tone is longer than the head width.

Otherwise the computation of phase differences during ongoing tones becomes am-

biguous. The usage of these two strategies in different frequency regions is called

the duplex theory of sound localization (Rayleigh, 1907). Simplified, the structures

3



Introduction

in the auditory brainstem that compute ILDs and ITDs are the lateral and medial

superior olive (LSO and MSO).

1.1.1 Interaural level differences
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Figure 1.2: ILD processing in the LSO. A Circuit diagram with excitatory projections in red and
inhibitory projections in blue. CN cochlear nucleus, MSO medial superior olive, LSO lateral su-
perior olive, MNTB medial nucleus of the trapezoid body, LNTB lateral nucleus of the trapezoid
body. B Schematic response curve of a LSO neuron. Response rate is maximal for ILDs favouring
the ipsilateral ear and decreases for ILDs favouring the contralateral ear. C, D Representation of
azimuthal sound source location through the population codes of the LSOs in both hemispheres.
The population response of each LSO is maximal for sounds on the ipsilateral side. The population
responses of the two LSOs intersect at 0 ILD which corresponds to sound from the front. Modified
from Grothe et al. (2010); Porres (2012).

The computation of ILDs in the LSO can be thought of as a subtraction mech-

anism (Moore and Caspary, 1983; Sanes, 1990; Grothe et al., 2010). Ipsilateral

sound intensity is represented in the excitatory input from the spherical bushy cells
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Sound localization

in the anterior ventral cochlear nucleus (AVCN)(Cant and Casseday, 1986). Con-

tralateral sound intensity is encoded in the inhibitory input from the medial nu-

cleus of the trapezoid body (MNTB)(Spangler et al., 1985; Sanes, 1990). The

glycinergic cells of the MNTB relay the information they receive from the glob-

ular bushy cells of the contralateral AVCN through the Calyx of Held. Strikingly,

the faithful transmission at this large synapse as well as the thicker axons compen-

sate for the longer distance and enable inhibition to play a role even at the onset

of a sound stimulus (Grothe et al., 2010). The integration of the two opposing in-

puts in the LSO leads to characteristic ILD functions (Figure 1.2). If the sound

on the ipsilateral side is louder, excitation in the LSO dominates and the neuron

responds with a high firing rate. If the sound intensity at the contralateral ear is

increased, stronger inhibition via the MNTB is recruited that finally suppresses fir-

ing in the LSO neuron (Boudreau and Tsuchitani, 1968). Thus, neurons in the

right LSO are primarily excited by sounds in the right hemifield while neurons in

the left LSO are excited by sounds in the left hemifield. If the population codes

of the two LSOs are considered together (Figure 1.2D), a two channel code that

unambiguously codes for horizontal location in space results (Park et al., 2004;

Grothe et al., 2010).

1.1.2 Interaural time differences

Equivalent to the coding of ILDs, a two channel code of ITDs is probably used in

mammals for sound localization at low frequencies (McAlpine et al., 2001; Brand et

al., 2002; Grothe, 2003; McAlpine and Grothe, 2003; Grothe et al., 2010; Lesica et

al., 2010). The original theoretical suggestion of the Jeffress model (Jeffress, 1948)

only seems to hold true for birds (Grothe et al., 2010; Lesica et al., 2010; Ashida

and Carr, 2011). In the Jeffress model, sound location is mapped at the single

neuron level. The creation of such a map requires coincidence detection of two
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Figure 1.3: ITD processing in the MSO. A Circuit diagram with excitatory projections in red and
inhibitory projections in blue. CN cochlear nucleus, MSO medial superior olive, LSO lateral su-
perior olive, MNTB medial nucleus of the trapezoid body, LNTB lateral nucleus of the trapezoid
body. B Schematic response curve of one MSO neuron. The peak of the response curve is shifted to
ITD values favouring the contralateral ear. The slope of the response function lies in the physiologi-
cally relevant range. C, D Representation of azimuthal sound source location through the population
codes of the MSOs in both hemispheres. The population responses of the two MSOs intersect at
0 ITD which corresponds to a sound directly from the front. Modified from Grothe et al. (2010);
Porres (2012).

excitatory inputs in neurons arranged systematically along a delay line axis. Along

this delay line axis, ITDs are compensated by different axonal conduction times of

the two inputs (Jeffress, 1948). If the two excitatory inputs arrive simultaneously,

the firing rate in the coincidence detectors becomes maximal (Grothe et al., 2010;

Ashida and Carr, 2011).

The situation is different in mammals. Although the MSO receives two excitatory

inputs and the temporal code is transformed into a rate code through a very precise
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A B C

Figure 1.4: Sound source representation in the superior olivary complex (SOC). A bird emits a
sound that hits the listener in a reverberant environment through A a direct path and B a reflected
pathway. C The SOC does not differentiate between direct and indirect sounds but responds to every
incoming sound wave. Thus, at this stage of binaural processing the bird call is represented as if
coming from multiple locations.

coincidence detection mechanism, the peaks of the rate response curves are shifted

outside of the range of naturally occurring ITDs (Figure 1.3). Thus, the maximal

firing rates in MSO neurons do not code for sound location (McAlpine et al., 2001;

Brand et al., 2002). The shift in the peak of the response curves is probably largely

caused by the inhibitory inputs from the MNTB and the lateral nucleus of the trape-

zoid body (LNTB) (Brand et al., 2002; Pecka et al., 2008 but see Roberts et al.,

2013; van der Heijden et al., 2013). This shift causes the steepest slope of the ITD

response function to fall within the physiologically relevant range (McAlpine et al.,

2001; Brand et al., 2002; Grothe et al., 2010). In this way, ITDs can be ideally

distinguished on the basis of the response rate. Analogous to the two channels cod-

ing for ILDs, the population tuning curves from both hemispheres are combined to

unambiguously code for a specific location in space (Figure 1.3).

Taken together, the exquisitely precise temporal information that is conveyed by

the inputs to the MSO neurons is converted into a rate code by the very precise

integration of MSO neurons.

The computation of ITDs and ILDs requires numerous cellular specializations

from the receptor cells to the first stages of binaural convergence in the MSO and
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LSO. These specializations enable signal processing on very fast time scales. How-

ever, this considerable speed makes it difficult for these nuclei to process signal

variations on slower time scales (Figure 1.4). To achieve a meaningful percept of

auditory space the information present at the superior olivary complex (SOC ) has

to be further processed and filtered in a context-dependent manner.

1.1.3 The precedence effect

Fluctuations of binaural cues on fast time scales can carry misleading information,

caused by reflections or interference of multiple sound sources (Meffin and Grothe,

2009). Thus, additional processing of information on a slower time scale is nec-

essary to enable a meaningful interpretation of the auditory environment. In a real

acoustic environment, sounds are reflected from a multitude of reflecting surfaces

such as walls or trees. The reflections are attenuated yet spectrally similar copies

of the original sound and can arrive at the listener’s ear multiple times and from

different angles in space (Litovsky et al., 1999).

Psychophysically and physiologically, the processing of reflections is mostly

studied with a very simplified two tone paradigm. A leading sound representing

the primary sound source and a lagging sound representing a single reflection are

presented at variable time delays (reviewed in Blauert, 1997; Litovsky et al., 1999).

Depending on the delay, the perception of the two sounds changes. At very short

delays (<1ms) a summation of the two sound locations occurs, an effect known as

summing localization. For longer delays the leading sound dominates the percep-

tion of sound location, while the lagging sound is perceived as a reverberation but

is not localized. This phase is called localization dominance and lasts until the echo

threshold is reached. When the echo threshold is crossed for even longer delays,

two separate sound sources are perceived and localized. The time to echo threshold

varies from 5 to tens of milliseconds depending on the stimulus and experimental
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conditions (Litovsky et al., 1999). This sequence of behavioral effects is summa-

rized as the precedence effect (Wallach et al., 1949; Blauert, 1997; Litovsky et al.,

1999). Apart from mammals (for Mongolian gerbils: Wolf et al., 2010), prece-

dence has been described in birds, insects and amphibians (Spitzer et al., 2003;

Lee et al., 2009; Marshall and Gerhardt, 2010). This widespread occurrence shows

the general importance of the precedence effect in auditory perception. In mam-

mals, putative physiological correlates of precedence have been described at var-

ious levels of the auditory system, from the auditory nerve to the auditory cortex

(Litovsky et al., 1999; Litovsky and McAlpine, 2010). The most common described

neuronal correlate is a suppression of the neural response to a sound by a preceding

tone. The duration of suppression increases gradually along the auditory pathway

(Litovsky et al., 1999). The first stage in the binaural pathway, in which a sub-

stantial suppression of a neural response to a lagging sound appears, is the dorsal

nucleus of the lateral lemniscus (DNLL). Importantly, the information from the lag-

ging sound is not lost during this suppression, but instead the sound is identified as

an echo (Pecka et al., 2007). This identification leads to a facultative suppression

of the directional information of the echo. Under some behavioral conditions, how-

ever, the directional information can be retrieved and echo suppression breaks down

(Clifton, 1987). How this echo identification process is thought to be implemented

on a neuronal level will be described in the following after a brief introduction to

the neural circuitry and processing of the DNLL (section 1.1.4.1).

1.1.4 Processing of binaural cues in the DNLL

The rate coded information from the initial sound localization stages in the SOC is

transmitted to the DNLL via direct excitatory synapses. The DNLL receives exci-

tation from the contralateral LSO and ipsilateral MSO (Glendenning et al., 1981;

Shneiderman et al., 1988; Siveke et al., 2006; Kelly et al., 2009). The LSO also
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provides glycinergic inhibition to the ipsilateral DNLL (Glendenning et al., 1981;

Glendenning et al., 1992; Oliver, 2000). In addition, the DNLL receives excitatory

inputs from the contralateral CN (Kelly et al., 2009).

In line with its inputs, the DNLL contains neurons that are sensitive to both ILDs

and ITDs (Aitkin et al., 1970; Brugge et al., 1970; Li and Kelly, 1992; Kelly et

al., 1998; Seidl and Grothe, 2005) and is primarily excited by sounds from the

contralateral side (Glendenning et al., 1992; Markovitz and Pollak, 1993; Oliver,

2000; Siveke et al., 2006). Interestingly, the representation of ITDs is enhanced

in the DNLL compared to the MSO (Kuwada et al., 2006; Pecka et al., 2010). For

neurons with low preferred frequencies this effect is achieved by a reduction in inter-

trial response variability (Pecka et al., 2010). For neurons with higher preferred

frequencies the representation is enhanced through an increase in dynamic range.

The increased dynamic range is achieved by keeping the peak response rates in the

DNLL as high as in the SOC, but reducing the trough rates of the response curve

(Pecka et al., 2010). Generally, DNLL neurons can respond with high sustained

rates to binaural stimulation (Markovitz and Pollak, 1994; Seidl and Grothe, 2005;

Siveke et al., 2006; Pecka et al., 2010). Only a minority of cells respond exclusively

at the sound onset (Siveke et al., 2006).

The DNLL itself is a mainly GABAergic nucleus (Saint Marie et al., 1989) that

sends strong projections via the commissure of Probst to the contralateral DNLL

and to both ipsi- and contralateral inferior colliculi (IC)(Adams and Mugnaini,

1984; Chen et al., 1999; Kelly et al., 2009). The inhibitory commissural projections

seem to target mainly the soma of DNLL neurons (Iwahori, 1986; Oliver and Shnei-

derman, 1989), that seem to constitute a heterogeneous population of cells ranging

from bipolar to multipolar morphology (Kane and Barone, 1980; Bajo et al., 1993;

Wu and Kelly, 1995b; Campos et al., 2001). It is this commissural connection, that

reciprocally inhibits the two DNLLs, that is key to the filtering of the directional
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information of lagging sounds.

1.1.4.1 Persistent inhibition

B

C

D

A

Figure 1.5: Persistent inhibition in the DNLL. A Sound arrives at the right ear through the direct
pathway B The right LSO and/or left MSO are activated and excite the left DNLL. The DNLL itself
inhibits neurons in both ICs and the right DNLL. C When the reflected sound arrives at the left ear,
D the other LSO/MSO pair becomes active but fails to excite the DNLL as the inhibition by the first
soundwave still persists. Modified from (Pecka et al., 2007; Porres, 2012).

In addition to the properties that the DNLL inherits from the SOC, it adds a differ-

ent computational quality to binaural processing by introducing a context-dependent

filter property that is necessary to identify distracting localization cues. The DNLL

generates a GABAA receptor mediated persistent inhibition (PI, Figure 1.5) long

enough to inhibit responses to lagging sounds for tens of milliseconds in the con-

tralateral DNLL even after cessation of presynaptic activity (Yang and Pollak, 1994;

Burger and Pollak, 2001; Pecka et al., 2007). The duration of the PI has been pro-
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posed to match the echo threshold during behavioral performance (Pecka et al.,

2007).

Three different cellular mechanisms could potentially underlie the PI (see also

Porres et al., 2011; Porres, 2012):

First, persistent activity in the presynaptic inhibitory neuron could continuously

supply inhibitory input. This hypothesis is supported from data in rats (Wu and

Kelly, 1995b; Kelly and Kidd, 2000). However, no prolonged spiking has been

found in gerbils (Siveke et al., 2006; Pecka et al., 2007).

Second, single trailing spikes from many presynaptic neurons could arrive with

some temporal jitter and thereby suppress activity over an extended period. This

possibility, however, would also require delayed presynaptic activity to some extent.

In addition, the jittered arrival of inhibitory input seems too unreliable a mechanism

to produce PI repeatedly and reliaby on a single trial level.

Third, the properties of the GABAA receptor mediated inhibition or the integra-

tion properties of DNLL neurons could be such that APs are suppressed for a long

time after the last presynaptic AP. The basis of this last hypothesis can be ide-

ally studied in in vitro slice preparations. Previously, the slow IPSC kinetics in

juvenile gerbils in vitro have been proposed to underlie the PI (Pecka et al., 2007;

Saunier-Rebori, 2008). Yet, whether this holds true for GABAergic kinetics in adult

animals is not known and constituted the motivation for the first, developmental

study of this thesis (section 2).

1.1.5 Persistent inhibition alters processing in the inferior

colliculus

The PI in the DNLL has immediate consequences on signal processing in IC. Dur-

ing the PI, a population of neurons in the IC is relieved from inhibition by the DNLL

and responds to lagging sounds from directions to which they were previously unre-
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sponsive (Burger and Pollak, 2001; Pecka et al., 2007). There are different possible

interpretations of this additional activity in the IC. The disinhibition could corrupt

the population code in the IC and thus lead to an ambiguous representation of sound

source location for lagging sounds (Burger and Pollak, 2001). In this scenario, the

PI would lead to a loss of directional information. Yet, as localization information

can be retrieved under some behavioral conditions (Clifton, 1987), the additional

activity in the IC could also be used as a tag that identifies the sound as an echo for

a later facultative suppression of echoes in higher centers (Pecka et al., 2007).

1.2 Motivation

Taken together, the DNLL is an important source of inhibition in the auditory brain-

stem. The reciprocal connection between the two DNLLs constitutes an ideal cir-

cuit motif for the flexible categorization of sounds during echo suppression (Mysore

and Knudsen, 2012). To gain more insight into the biophysical specializations that

enable DNLL neurons to fulfill their physiological task, we first studied the physio-

logical development of DNLL neurons (section 2). Building on the information of

this first study, we investigated the cellular mechanisms that could underlie the gen-

eration of PI (section 3). As both studies are presented in the form of a manuscript,

each of them already contains a specific introduction. Thus, the following para-

graphs will rather provide a more general view on the topics of developmental re-

finement and the role of inhibition in neuronal circuits.

1.3 Developmental refinement of neuronal circuits

In the first study, we describe the postnatal development of the intrinsic membrane

properties of DNLL neurons and the maturation of the main synaptic inputs to the
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DNLL.

During postnatal development neurons are tuned towards their specific function

in the mature circuit. This tuning involves morphological and electrophysiological

changes at the cellular and synaptic level. Plasticity on the level of synapses often

entails pruning and reorganization of synapses. Prominent examples of these plastic

changes are found in the sound localization circuits of the SOC. In the LSO, elimi-

nation of glycinergic synapses from the MNTB sharpens the tonotopic distribution

of MNTB-LSO connections after hearing onset (Kim and Kandler, 2003). In the

MSO, a relocation of inputs takes place at a single cell level. Normal early acoustic

experience causes a relocation of glycinergic synapses to the soma from a previ-

ously homogenous distribution along the whole cell surface (Kapfer et al., 2002;

Werthat et al., 2008). The concentration of inhibitory synapses at the soma poten-

tially reduces temporal filtering along the dendrites and enhances the temporal ac-

curacy of inhibitory inputs, an important feature for coincidence detection. Rearing

gerbils in omnidirectional noise inhibits the proper pruning of the synapses (Kapfer

et al., 2002; Werthat et al., 2008) and disrupts the normal development of ITD tun-

ing curves (Seidl and Grothe, 2005). Together with the pruning of synapses, the

dendritic tree of neurons is refined (Rietzel and Friauf, 1998; Rautenberg et al.,

2009).

In addition to these coarse changes in synaptic location, the fine structure of

synapse morphology can be altered (Ford et al., 2009) to allow faster clearance

of transmitter from the synaptic cleft (Cathala et al., 2005). This fast clearance

can lead to a faster decay of synaptic currents, which is a common effect observed

during maturation. Besides structural changes, the acceleration in synaptic kinetics

can also be caused by changes in receptor subunit composition (e.g. for NMDA:

Cathala et al., 2000; Lopez de Armentia and Sah, 2003, AMPA: Joshi et al., 2004,

GABA: Peden et al., 2008, Glycine: Singer et al., 1998). Often observed is a down-
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Developmental refinement of neuronal circuits

regulation of NMDA receptors which, in some circuits, might only be important for

the plastic changes during development, but which are not useful when fast signals

are processed (Futai et al., 2001; Franks and Isaacson, 2005). In the MNTB, NMDA

receptor mediated current accelerates but is maintained during development (Stein-

ert et al., 2010). However, the contribution of the NMDA component to electrical

signaling seems small. Instead, calcium influx through NMDA receptors has been

suggested to play a role in nitric oxide signaling (Steinert et al., 2010).

Important for the functioning of inhibitory circuits is the change in chloride re-

versal potential that occurs in many brain regions during postnatal development

(reviews: Ben-Ari, 2002; Blaesse et al., 2009; Friauf et al., 2011). In the first days

after birth, the chloride reversal potential is usually positive, leading to depolariz-

ing synaptic events upon release of inhibitory transmitter that can even trigger APs,

for example in the LSO (Kullmann and Kandler, 2001). In the LSO, the depolar-

ization was suggested to be important to activate Cav1.3 channels that are crucial

for the proper development of the nucleus, synaptic pruning and the hyperpolariz-

ing shift in the chloride reversal potential (Kandler et al., 2009; Hirtz et al., 2011;

Hirtz et al., 2012). The mechanism underlying the hyperpolarizing developmental

shift is the increased expression and/or localization of the K-Cl transporter KCC2 to

the membrane (Balakrishnan et al., 2003). In the adult mammalian auditory system

inhibition is hyperpolarizing in all nuclei studied so far (Friauf et al., 2011).

Together with the maturation of synapses, intrinsic membrane properties develop,

usually leading to faster membrane time constants and lower input resistance (Kan-

dler and Friauf, 1995; Magnusson et al., 2005; Scott et al., 2005). The AP proper-

ties change and often lead to faster spiking neurons during development (Taschen-

berger and von Gersdorff, 2000; Cathala et al., 2003; Magnusson et al., 2005;

Scott et al., 2005; Etherington and Williams, 2011). These changes have partly been

described in the rat DNLL, where the membrane time constants of DNLL neurons
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accelerate until P18 and neurons are able to follow higher rates (Ahuja and Wu,

2000). Yet, there appear to be some species-specific differences as even juvenile

neurons possess very fast time constants compared to gerbils (Ahuja and Wu, 2000;

Porres et al., 2011).

In vivo, DNLL neurons of juvenile gerbils at P14 are hardly tuned to ITDs at

all and at P15 the response rates are still much lower than in the adult (Seidl and

Grothe, 2005). At P31 the mature in vivo ITD tuning curves can be observed (Seidl

and Grothe, 2005). Yet, little is known about the development of cellular properties

of DNLL neurons in gerbils during this period. Moreover, at the start of this thesis

no in vitro recordings in mature gerbils had been published.

The goal of the first study in this thesis was thus twofold. First, we aimed to

describe the physiological development of DNLL neurons to see which cellular pa-

rameters are tuned during late postnatal development and are thus important for its

physiological function in the mature circuit. This question may be of general in-

terest from a biophysical point of view as DNLL neurons in vivo exhibit very fast

firing and sustain peak firing rates as high as in the SOC (Pecka et al., 2010) while

displaying this very long lasting inhibition (Pecka et al., 2007). What cellular spe-

cializations a neuron needs to fulfill these tasks is unclear. Second, our goal was to

define a stage at which DNLL neurons are mature to study the cellular mechanisms

that underlie PI in the mature animal.

1.4 Integration of synaptic inhibition

In the second study we aimed to understand the role of GABAA receptor mediated

inhibition in the mature DNLL that produces PI.

Inhibition in neuronal circuits fulfills various different functions. It can alter

coding properties of neurons by modulating the rate or timing of the spiking output
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(Pouille and Scanziani, 2001; Brand et al., 2002; Chance et al., 2002; Mitchell and

Silver, 2003; Wehr and Zador, 2003; Vida et al., 2006; Silver, 2010). It can also act

as a gate by fully suppressing the propagation of activity (Tsuchitani and Boudreau,

1967; Sanes, 1990; Wehr and Zador, 2005; Kremkow et al., 2010).

In the auditory system inhibition is involved in shaping the response properties

at many processing stages (Pollak et al., 2002; Grothe, 2003; Pollak et al., 2003;

Trussell, 2012). One special feature of the auditory brainstem which makes it an

ideal model system to study inhibition is the organization of its different nuclei. This

organization leads to assemblies of inhibitory projection neurons like the DNLL

which can be studied more easily than, for instance, interneurons in the cortex that

are part of an intricate network.

The inhibition in the DNLL is inhibition in the classical sense: the suppression of

action potentials for a certain time upon release of inhibitory transmitter. The ques-

tion is, what cellular mechanisms cause such a strong and long lasting inhibition,

which is at the same time variable in duration depending on sound pressure level.

Generally, effectiveness and duration of inhibition depend on the location of

synapses as well as on synaptic and intrinsic properties of the neuron. Inhibition

targeting the soma or proximal dendrites is often used towards efficient suppression

of the spiking output, whereas dendritic inhibition performs more subtle compu-

tations (Miles et al., 1996; Liu, 2004; Wilson, 2007; Lovett-Barron et al., 2012;

Chiu et al., 2013).

For the open duration of an inhibitory receptor channel, inhibition exerts a shunt-

ing influence on incoming excitation by increasing the conductance of the cell

membrane (Fatt and Katz, 1953; Coombs et al., 1955). Apart from inherent re-

ceptor properties, activity-dependent processes such as spillover of transmitter (Al-

ger and Nicoll, 1982; Overstreet and Westbrook, 2003; Farrant and Nusser, 2005;

Balakrishnan et al., 2009; Tang and Lu, 2012) and asynchronous release (Lu and
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Trussell, 2000; Hefft and Jonas, 2005; Best and Regehr, 2009; Tang and Lu, 2012)

can slow down the conductance decay at inhibitory synapses. These mechanisms

have been proposed to play a role in the prolongation of GABAergic inhibitory

postsynaptic currents (IPSCs) in the juvenile gerbil (Saunier-Rebori, 2008; Porres

et al., 2011). Spillover describes the process during which transmitter diffuses out of

the synaptic cleft and acts on extra-synaptic receptors or even neighboring synapses

(Huang, 1998). Late binding of these transmitters then prolongs the decay of synap-

tic currents. A high concentration in the synaptic cleft can on its own already lead

to a delayed clearance and prolonged synaptic decay without spillover (Balakrish-

nan et al., 2009; Barberis et al., 2011). Asynchronous or delayed release is caused

by build-up of calcium during periods of high activity in the presynaptic termi-

nal(Ravin et al., 1997; Zucker, 1999). The increased intracellular calcium decouples

the release from single APs so that vesicles may fuse long after the last AP, thereby

leading to asynchronous release that can continue for hundreds of milliseconds af-

ter an action potential train (Goda and Stevens, 1994; Atluri and Regehr, 1998;

Lu and Trussell, 2000; Hefft and Jonas, 2005).

Besides these synaptic mechanisms, filtering through the membrane of the post-

synaptic neuron can additionally prolong the inhibitory effect beyond the dura-

tion of receptor opening for hyperpolarizing inhibition (Coombs et al., 1955; Ec-

cles, 1961). Active intrinsic conductances can further shape the inhibitory post-

synaptic potential (IPSP) and either prolong or curtail the inhibitory effect (Stu-

art, 1999; Williams and Stuart, 2003; Wilson, 2005; Hardie and Pearce, 2006;

Kopp-Scheinpflug et al., 2011). Whether the integration of inhibition in the DNLL

contributes to the long duration of PI in vivo is unknown. Reports about the expres-

sion of hyperpolarization-activated nonspecific cationic current (Ih) in the DNLL

(Fu et al., 1997; Koch et al., 2004) indicate that IPSPs may rather be shortened

by a fast return to rest as seen in other auditory nuclei (Bal and Oertel, 2000;
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Koch and Grothe, 2003; Leao et al., 2006; Felix et al., 2011; Kopp-Scheinpflug

et al., 2011).

In summary, many factors that potentially control the duration of inhibition in

the DNLL are unknown. In the second study (section 3) we thus aimed to describe

the GABAergic kinetics and test for activity-dependence of the IPSC decay at a

developmental stage where in vivo activity is fully developed. In addition, we in-

vestigated the contribution of postsynaptic integration to PI in DNLL neurons as

well as the mechanisms that shape the resulting IPSPs. Finally, we investigated

how the IPSPs interact with incoming excitation and which parameters are essential

to effectively suppress APs for a duration matching PI in vivo.
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Ammer JJ, Grothe B, Felmy F. Late postnatal development of
intrinsic and synaptic properties promotes fast and precise signal-
ing in the dorsal nucleus of the lateral lemniscus. J Neurophysiol
107: 1172–1185, 2012. First published November 30, 2011;
doi:10.1152/jn.00585.2011.—The dorsal nucleus of the lateral lem-
niscus (DNLL) is an auditory brain stem structure that generates a
long-lasting GABAergic output, which is important for binaural
processing. Despite its importance in binaural processing, little is
known about the cellular physiology and the synaptic input kinetics of
DNLL neurons. To assess the relevant physiological parameters of
DNLL neurons, their late postnatal developmental profile was ana-
lyzed in acute brain slices of 9- to 26-day-old Mongolian gerbils. The
observed developmental changes in passive membrane and action
potential (AP) properties all point toward an improvement of fast and
precise signal integration in these neurons. Accordingly, synaptic
glutamatergic and GABAergic current kinetics accelerate with age.
The changes in intrinsic and synaptic properties contribute nearly
equally to reduce the latency and jitter in AP generation and thus
enhance the temporal precision of DNLL neurons. Furthermore, the
size of the synaptic NMDA current is developmentally downregu-
lated. Despite this developmental reduction, DNLL neurons display
an NMDA-dependent postsynaptic amplification of AP generation,
known to support high firing rates, throughout this developmental
period. Taken together, our findings indicate that during late postnatal
development DNLL neurons are optimized for high firing rates with
high temporal precision.

binaural processing; passive membrane properties; action potential
properties; input-output function; synaptic inputs

THE DORSAL NUCLEUS of the lateral lemniscus (DNLL) lies within
the fibers of the lateral lemniscus (LL) ventral to the inferior
colliculus (IC; Fig. 1A). The DNLL contains mainly GABAergic
neurons (Adams and Mugnaini 1984; Roberts and Ribak 1987;
Saint Marie et al. 1997; Vater et al. 1997; Winer et al. 1995) of
heterogeneous morphology (Bajo et al. 1993; Iwahori 1986;
Kane and Barone 1980; Wu and Kelly 1995). Despite this
heterogeneity, these neurons stain almost homogeneously for
parvalbumin (PV) in guinea pig (Caicedo et al. 1996), rabbit
(Kuwada et al. 2006), rat (Lohmann and Friauf 1996), and bat
(Vater and Braun 1994). DNLL neurons receive ascending
excitatory inputs from neurons of the ipsilateral medial supe-
rior olive (MSO) (Glendenning et al. 1981; Kelly et al. 2009;
Oliver 2000; Shneiderman et al. 1988; Siveke et al. 2006) and
from the contralateral lateral superior olive (LSO) (Oliver
2000). A strong reciprocal connection between the bilateral
DNLL nuclei exists through the commissure of Probst (Glen-
denning et al. 1981; Kelly et al. 2009; Oliver and Shneiderman

1989; Shneiderman et al. 1988). Thus the GABAergic output
that DNLL neurons generate is at the same time equivalent to
one of their major inputs. Besides this reciprocal GABAergic
connection, the DNLL projects bilaterally to the IC (Adams
1979; Bajo et al. 1993; Gonzalez-Hernandez et al. 1996;
Shneiderman et al. 1988).

In accordance with the circuit’s anatomy, DNLL neurons
process binaural sound information (Brugge et al. 1970; Burger
and Pollak 2001; Kelly et al. 1998; Kuwada et al. 2006;
Markovitz and Pollak 1994; Meffin and Grothe 2009; Pecka et
al. 2007, 2010; Seidl and Grothe 2005; Siveke et al. 2006;
Yang and Pollak 1994). At the level of the DNLL the binaural
information has become more robust compared with the MSO
(Pecka et al. 2010). The temporal precision in response to
sound stimulation, judged by the vector strength, is high in
DNLL neurons (Seidl and Grothe 2005; Siveke et al. 2006) and
apparently maintained compared with superior olivary com-
plex (SOC) neurons (Brand et al. 2002; Pecka et al. 2008;
Smith et al. 1998; Tollin and Yin 2005; Yin and Chan 1990).
The physiology of the DNLL is suited to suppress the infor-
mation of bilateral spurious cues (Meffin and Grothe 2009) and
is thought to account for the suppression of sound information
during reverberations (Burger and Pollak 2001; Pecka et al.
2007). These features are related to the physiological hallmark
of the DNLL, the long-lasting persistent inhibition provided to
the contralateral counterpart and the IC (Burger and Pollak
2001; Faingold et al. 1993; Pecka et al. 2007; Yang and Pollak
1994). On the behavioral level, this GABAergic inhibition
might underlie the precedence effect. This perceptual phenom-
enon (Blauert 1997; Litovsky et al. 1999; Zurek 1987) de-
scribes the suppression of the ability to localize echoes.

Besides the importance of the GABAergic inputs, the prop-
erties of the excitatory inputs are crucial for defining the
DNLL’s output signal. In these neurons postsynaptic integra-
tion of excitatory inputs leads to faithful high-frequency firing,
sometimes with a small number of additional action potentials
(APs) trailing the stimulation (Porres et al. 2011). The fidelity
of generating APs at high rates depends also on the synaptic
NMDA component. In turn, the duration of the GABAergic
output signal correlates with both the number and the rate of
generated APs (Porres et al. 2011). This correlation suggests
that in DNLL neurons a synergy between the excitatory inte-
gration and the GABAergic release exists, which adjusts the
time course of the GABAergic output signal to the physiolog-
ically required duration.

Other cellular parameters that define the physiological
properties of DNLL neurons have been partially described
in juvenile gerbils (Porres et al. 2011) and in more mature
rats (Ahuja and Wu 2000; Wu and Kelly 1995). There exist
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substantial species-specific differences in some passive membrane
properties. In rats the membrane time constant (�m) is approx-
imately fourfold and the input resistance (Rin) approxi-
mately twofold smaller compared with gerbils. Despite
these differences, the resting potential and the firing behav-
ior of DNLL neurons are similar (Ahuja and Wu 2000;
Porres et al. 2011; Wu and Kelly 1995). In general, the APs
are brief as in other auditory brain stem areas, and almost all
cells respond with sustained firing during long-lasting cur-
rent injections.

During development the progressive change of a given
cellular parameter carves out its most important features.
Thus investigating the late postnatal development of intrin-
sic and synaptic properties reveals the functionally most
relevant parameters of the neurons studied. For DNLL
neurons the most important cellular parameters are those
that define the firing precision and integration properties,
especially as these neurons fire with high temporal fidelity at
high rates (Brugge et al. 1970; Kuwada et al. 2006; Pecka et
al. 2010; Seidl and Grothe 2005; Siveke et al. 2006) and, at
the same time, integrate inhibition over several milliseconds
(Burger and Pollak 2001; Pecka et al. 2007; Yang and Pollak
1994).

MATERIALS AND METHODS

Slice preparation. All experiments complied with institutional
guidelines and national and regional laws. Animal protocols were
reviewed and approved by the Regierung of Oberbayern according to
the Deutsches Tierschutzgesetz for the AZ 55.2-1-54.2531.8-211-10.
Slices were prepared from Mongolian gerbils (Meriones uniguicula-
tus) at postnatal days (P) 9–26. Animals were decapitated, brains were
removed in dissection solution containing (in mM) 50 sucrose, 25
NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 3 MgCl2, 0.1 CaCl2, 25
glucose, 0.4 ascorbic acid, 3 myo-inositol, and 2 Na-pyruvate (pH 7.4
when bubbled with 95% O2 and 5% CO2), and 200-�m-thick trans-
verse slices containing the DNLL were taken with a VT1200S
vibratome (Leica, Wetzlar, Germany). Slices were incubated in ex-
tracellular recording solution (same as dissection solution but with
125 mM NaCl, no sucrose, 2 mM CaCl2, and 1 mM MgCl2) at 36°C
for 45 min, bubbled with 5% CO2 and 95% O2.

Electrophysiology. After incubation slices were transferred to a
recording chamber attached to a microscope (BX50WI, Olympus,
Hamburg, Germany) equipped with gradient contrast illumination
(Luigs and Neumann, Ratingen, Germany) and continuously perfused
with extracellular solution. All recordings were carried out at near-
physiological temperature (34–36°C). Cells were visualized and im-
aged with a TILL Photonics system (Gräfelfing, Germany) composed
of an Imago CCD camera, a Poly-IV monochromator, and its control
unit. Voltage- and current-clamp recordings were performed with an
EPC10/2 amplifier (HEKA Elektronik, Lambrecht, Germany). For

Fig. 1. Developmental profile of the expression of calcium
binding proteins (CaBPs). A: schematic drawing of the
neuronal circuit of the dorsal nucleus of the lateral lem-
niscus (DNLL). IC, inferior colliculus; MSO, medial su-
perior olive; LSO, lateral superior olive; LL, lateral lem-
niscus; CP, commissure of Probst. GABAergic connec-
tions in blue, glutamatergic projections in red. B: overview
of the developmental changes of CaBP expression in the
DNLL. CR, calretinin; CB, calbindin; PV, parvalbumin; P,
postnatal day. Scale bar, 500 �m. C: overlaid image of
confocal scans of a P25 slice stained for PV and micro-
tubule-associated protein (MAP)-2. Arrows indicate cells
that were regarded as PV negative. Colors as indicated;
scale bar, 50 �m. D: same as C but for a P17 slice stained
for CB and MAP-2. Arrows indicate cells that were judged
as CB positive. E: the fraction of cells that express specific
CaBPs changed during late postnatal development. Open
symbols correspond to a single quantified DNLL section
(n � 11–15 sections from 3 or 4 animals; squares, CR;
diamonds, CB; circles, PV); filled symbols represent av-
erage values.
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voltage-clamp recordings access resistance was compensated to a
residual of 3 M� of its initial value; data were acquired at 20–40 kHz
and filtered at 3 kHz. In current-clamp mode the bridge balance was
set to 100% after estimation of the access resistance. For whole cell
voltage-clamp recordings an internal solution consisting of (in mM)
105 Cs-gluconate, 26.7 CsCl, 10 HEPES, 20 TEA-Cl, 5 Cs-EGTA,
3.3 MgCl2, 2 Na2-ATP, 0.3 Na2-GTP, 3 Na2-phosphocreatine, and 5
QX-314 (pH 7.2) was used. For whole cell current-clamp recordings
the internal recording solution consisted of (in mM) 145 K-gluconate,
5 KCl, 15 HEPES, 2 Mg-ATP, 2 K-ATP, 0.3 Na2-GTP, 7.5 Na2-
phosphocreatine, and 5 K-EGTA (pH 7.2).

Synaptic inputs were stimulated with a concentric bipolar electrode
(MCE-100X, Scientific Products) that was placed in the fiber tracts of
the LL or the commissure of Probst (Fig. 1A). The stimulation was
triggered by the EPC10/2 and conveyed with a stimulator unit (model
2100, A-M Systems, Scientific Products) that allowed manual adjust-
ment of the stimulation strength. Stimulations were applied as a
biphasic voltage deflection of 200-�s total duration. Synaptic currents
were pharmacologically isolated. GABAergic inputs were isolated
with 0.5 �M strychnine, 20 �M DNQX, and either 50 �M D-AP5 or
10 �M R-CPP. Excitatory inputs were isolated in the presence of 0.5
�M strychnine and 10 �M SR95531, and in some cases to isolate the
AMPA receptor-mediated component either 50 �M D-AP5 or 10 �M
R-CPP was added additionally.

Immunohistochemistry and confocal microscopy. Immunohisto-
chemistry was carried out in tissue from animals between P10 and
P25. The animals were anesthetized (0.5% chloral hydrate, 0.2 ml/10
g body wt) and perfused with phosphate-buffered saline (PBS) con-
taining 0.1% heparin and 155 mM NaCl for �5 min before the
perfusion was switched to 4% paraformaldehyde. After 20-min per-
fusion the brains were removed and postfixed overnight. Brains were
washed twice in PBS, and brain slices of 40- to 60-�m thickness were
taken with a VT1000S vibratome (Leica). Standard immunohisto-
chemistry procedures were carried out to stain free-floating slices with
primary antibodies (Abs) for calretinin (CR; monoclonal anti-mouse
Ab, clone 6B3 or polyclonal anti-rabbit Ab, catalog no. 7699/3H,
Swant, Bellinzona, Switzerland), calbindin (CB; polyclonal anti-
rabbit Ab, catalog no. CB38a, Swant), PV (polyclonal anti-rabbit Ab,
catalog no. PV 28, Swant), and microtubule-associated protein 2
(MAP-2; polyclonal anti-chicken Ab, catalog no. CH22103, Neurom-
ics, Acris Antibodies, Hildesheim, Germany). Secondary Abs were
applied the following day for 2 h at room temperature. These were
conjugated with Alexa 488 (Molecular Probes, Invitrogen, Karlsruhe,
Germany), or Cy3 (Dianova, Hamburg, Germany). Slices were
mounted in Vectashield medium (H-100, Vector Laboratories,
AXXORA, Lörach, Germany), and confocal scans were taken with a
Leica SP System. Images were acquired with a �25 objective (0.75
NA), leading to a pixel size of 0.781 nm2.

Data and statistical analysis. Electrophysiological data were ana-
lyzed with IGOR Pro (WaveMetrics, Lake Oswego, OR) and Mi-
crosoft Excel. Spontaneous postsynaptic currents were extracted by a
custom-written template matching routine (Couchman et al. 2010).
The weighted decay time constant was derived from a biexponential
function fit to the data and calculated according to �w � �1·amplitude
(�1)/amplitude � �2 ·amplitude (�2)/amplitude. Immunocytochemistry
was quantified as described previously (Felmy and Schneggenburger
2004). In brief, each positively stained cell in each fluorescence
channel was marked in Adobe Photoshop and counted. Results are
presented as means � SE. Significance was determined with either
paired or unpaired Student’s t-test in Excel or, for more than two
groups of samples, with a one-way ANOVA test followed by a
multiple-comparison Tukey-Kramer test in IGOR Pro. Linear regres-
sion analysis was performed with a Tukey-type test on multiple
regressions in IGOR Pro. The significance level was set to P � 0.05
for all cases.

RESULTS

The goal of this study was to comprehensively describe the
functional late postnatal development of DNLL neurons. Dur-
ing the developmental period from P9 to P26 gerbils transform
from nonhearing to nearly mature hearing animals, with hear-
ing onset around P12 (Finck et al. 1972; Ryan et al. 1982a;
Smith and Kraus 1987). We investigated the expression of
calcium binding proteins (CaBPs) during maturation to evalu-
ate the neuronal heterogeneity and then characterized the
development of the intrinsic properties and the synaptic inputs
of DNLL neurons. This investigation was complemented by
estimating the impact of the observed developmental changes
in intrinsic and synaptic properties on the precision of AP
generation and the translation of excitatory synaptic charge
into APs in DNLL neurons at different developmental stages.

Development of calcium binding proteins. The profile of
CaBP expression changes during late postnatal development in
many mammalian auditory brain stem nuclei (Felmy and Sch-
neggenburger 2004; Lohmann and Friauf 1996). To describe
the developmental expression profile of CaBPs in the DNLL,
overview images (Fig. 1B) were complemented by analyzing
confocal images of the center of this nucleus. Single confocal
sections were used to count the MAP-2-positive cells as ref-
erence and the number of cells coexpressing a specific CaBP
(Fig. 1, C–E). PV expression was developmentally regulated
and was found in the neuropil and the cellular structures of the
DNLL (Fig. 1B). PV staining of cells of different shape
colocalized with MAP-2 expression (Fig. 1C). The fraction of
PV-expressing cells increased from near absence in P9 to
0.76 � 0.02 in P25 animals (Fig. 1E). CB expression appeared
nearly absent in overview images (Fig. 1B). However, several
cells of different shapes marked positive for CB in all sections
(Fig. 1D). The percentage of cells expressing CB was �25%
and showed only a modest change during late postnatal devel-
opment (0.17 � 0.01 in P9 to 0.26 � 0.02 in P25). CR
expression was largely absent at all ages tested (Fig. 1B), with
a negligible fraction of positively stained neurons (Fig. 1E).
Thus, similar to rats (Lohmann and Friauf 1996), the DNLL of
gerbils shows a mixed PV and CB expression pattern through-
out late postnatal development. It might therefore be expected
to encounter two distinct cellular behaviors in DNLL neurons
segregated according to the relative CaBP expression pattern.

Development of passive membrane properties. The passive
membrane properties of neurons such as resting membrane
potential (Erest), �m, Rin, and cell capacitance (Cm) influence the
integration of synaptic inputs and hence adjust the neuronal
input-output function.

To describe the development of these parameters in DNLL
neurons of gerbils, four age groups were investigated (P9/10,
P13, P17, and P23–26). Experimentally, these parameters can
be estimated from a small voltage deflection close to the resting
potential imposed by small hyperpolarizing current injections
(5–10 pA, 500 ms, at least 50 repetitions per cell; Fig. 2A). Erest
did not change significantly during the developmental period
investigated (Fig. 2B; P9/10: �58.7 � 1.2 mV; P13: �59.5 �
1.4 mV; P17 �60.8 � 1.7 mV; P23–26: �59.8 � 0.9 mV;
ANOVA, P 	 0.05). Exponential functions were fitted to the
onset and offset of the voltage response, and for each cell an
average value of �m was calculated. The population average of
�m became significantly shorter during late postnatal develop-
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ment (Fig. 2C; P9/10: 25.0 � 1.7 ms; P13: 14.5 � 2.6 ms; P17:
19.1 � 3.0 ms; P23–26: 9.6 � 0.9 ms; Tukey-Kramer P9/10
vs. P23–26: P � 0.05). During the same developmental period
Rin decreased 1.7-fold (P9/10: 231 � 20 M�; P13: 148 � 31
M�; P17: 170 � 24 M�; P23–26: 137 � 10 M�; Tukey-
Kramer P9/10 vs. P23–26: P � 0.05). The effective cell size,
Cm, is proportional to �m/Rin and decreased significantly during
development (Fig. 2C; P9/10: 118 � 8 pF; P13: 104 � 11 pF;
P17: 118 � 15 pF; P23–26: 70 � 4 pF; Tukey-Kramer P9/10
vs. P23–26: P � 0.05). This reduction in apparent cell size led
to further analysis of the specific leak conductance (the inverse
of Rin, normalized with Cm). The specific leak conductance
showed that the membrane of DNLL neurons became signifi-
cantly leakier during this developmental period (Fig. 2C;
P9/10: 47 � 4 pS/pF; P13: 108 � 26 pS/pF; P17: 76 � 15
pS/pF; P23–26: 140 � 16 pS/pF; Tukey-Kramer P9/10 vs.
P23–26: P � 0.05). Therefore, the changes in estimated cell
size and specific leak conductance lead to smaller membrane
time constants, allowing for a temporally more precise synaptic
integration. Note that, consistent with earlier reports (Porres et
al. 2011), the variability between cells even in a single age
group was substantial. However, for no age group was a
segregation of the data into two distinct subclasses, as might be
expected from the relative CaBP expression patterns, observed.

Development of action potential and firing properties. Be-
sides the basic membrane properties that influence the integra-
tion time course, the properties of AP generation and firing
behavior are important determinants describing the excitability
and the output pattern of a neuron. APs were elicited with a
1-ms current injection ranging from 0 to 2.5 nA incremented in
100-pA steps (Fig. 3A). From the first suprathreshold trial the
values of the current and voltage threshold and the AP ampli-
tude and half-width were extracted (Fig. 3B). During the late
postnatal development the current threshold (Ithr) of the AP
normalized to cell size decreased significantly (Tukey-Kramer
P23–26 vs. P9/10, P13, P17: P � 0.05) from 13.7 � 1 pA/pF
in P9/10 animals to 9.7 � 0.9 pA/pF in P23–26 animals. The

voltage threshold (Ethr) of AP generation between P9/10 and
P23–26 decreased significantly from �37.0 � 1.0 mV at P9/10
to �41.8 � 1.0 mV at P23–26 (Tukey-Kramer P9/10 vs.
P23–26: P � 0.05). The AP height was defined as the voltage
difference from Ethr to the peak of the AP and increased
significantly with age (Tukey-Kramer P23–26 vs. P9/10, P13:
P � 0.05), reaching a deflection of 82.2 � 1.5 mV in the most
mature animals. The same significant change was observed
when AP height was determined from rest and is opposite to
findings in the MSO, where somatic AP height decreases
during development (Scott et al. 2005). A major developmental
alteration occurred in the AP duration measured as AP half-
width. The AP half-width decreased almost fourfold from
663 � 67 �s in P9/10 to 177 � 5 �s in P23–26 (Tukey-Kramer
P23–26 vs. P9/10, P13: P � 0.05). It should be noted that,
apart from the AP half-width in mature animals, all parameters
related to AP generation showed a large cell-to-cell variability
even within a single age group, without segregating into two
distinct subclasses.

An important property of cells in the auditory brain stem
pathways is how rapidly two APs can be generated in succes-
sion, or how long the refractory period after a single AP lasts.
To estimate the refractory period, two current injections of 1
ms were delivered with interstimulus intervals ranging from
0.5 to 10 ms and incremented in 0.5-ms steps (Fig. 3C). The
amplitude of the current injection was set to 300 pA above Ithr
to ensure reliable generation of an AP with the control current
injection. The absolute refractory period (refabs) was defined as
the time window when no AP was generated upon the second
current injection. The relative refractory period (�rel) was
defined as the time constant of the recovery of the maximal AP
velocity (max V=). To quantify �rel, a single-exponential func-
tion was fitted to the average of the max V= values of each cell
(Fig. 3C). During late postnatal development the refabs de-
creased significantly from 1.58 � 0.24 ms in P9/10 animals
(Tukey-Kramer P23–26 vs. P9/10: P � 0.05) to 0.61 � 0.05
ms in P23–26 animals (Fig. 3D). An equally significant reduc-

Fig. 2. Passive membrane properties indicate a developmen-
tal decrease in the integration time window. A: voltage
response of a P24 DNLL neuron to a �5 pA current step of
500 ms. The 50 single-trial voltage responses are shown in
gray and the average in black. A single-exponential function
was fitted to the onset and offset of the average voltage
response (white dashed lines). B: resting potential (Erest) of
the DNLL neurons as a function of age. Erest was measured
as the average membrane potential before the onset of the
hyperpolarizing current injection, as shown in A. Open sym-
bols represent single cells (P9/10: n � 31, P13: n � 12, P17:
n � 15, P23–26: n � 29); filled symbols represent the
averages of the 4 age groups. C: passive membrane properties
given as a function of age. Top: membrane time constant (�m)
taken from the exponential fits shown in A. Upper middle:
input resistance (Rin) calculated from the steady-state voltage
deflection in A and the applied current amplitude. Lower mid-
dle: membrane capacitance (Cm) calculated from �m and Rin.
Bottom: calculated leak conductances of each neuron (G �
1/Rin) normalized with the corresponding Cm. Symbols as in B.
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tion (Tukey-Kramer P23–26 vs. P9/10: P � 0.05) was ob-
served for �rel (Fig. 3D). The shorter refractory periods indicate
that mature DNLL neurons are capable of firing higher rates of
APs compared with immature neurons.

To investigate whether mature DNLL neurons sustain higher
firing rates for prolonged periods, firing properties were inves-
tigated by analyzing the firing frequency and adaptation to a
500-ms step current injection with increasing intensity (�50 to
800 pA, 50-pA increments; Fig. 4A). Irrespective of age, all
neurons showed sustained AP firing. However, the AP fre-
quency increased about threefold from P9/10 to P23–26 at an
injected current of 600 pA (Fig. 4B). In addition, the maximal
firing frequency was computed for each neuron from the
response to the 500-ms current injection that yielded the
highest AP count. In accordance with the developmental de-
crease of the refractory period, this maximal firing rate in-
creased about fourfold from P9/10 (78 � 5 Hz) to P23–26
(212 � 15; Tukey-Kramer P23–26 vs. P9/10, P13, P17: P �
0.05; Fig. 4C). As in the MSO (Scott et al. 2005) and the
nucleus laminaris (Gao and Lu 2008), the current threshold to
long steps normalized to the cell’s size increased significantly
during late postnatal development (Fig. 4C; P9/10: 1.2 � 0.1
pA/pF; P23–26: 2.5 � 0.3 pA/pF; Tukey-Kramer P23–26 vs.
P9/10: P � 0.05). This apparent discrepancy to short current
injections (Fig. 3B) can be explained by the interplay between
the different pulse lengths and the developmental alterations in
the membrane time constant (Fig. 2C). Short current pulses are

not sufficiently long to charge the membrane to equilibrium
(Couchman et al. 2010). Compared with DNLL neurons in
younger animals, P23–26 DNLL neurons with smaller �m will
charge faster and get closer to the equilibrium of the membrane
potential during a 1-ms current injection. Therefore, to depo-
larize the membrane potential to Ethr more current is needed in
DNLL neurons of younger gerbils during short current injec-
tions compared with P23–26 neurons. The situation is different
when longer pulses have enough time to charge the membrane
potential to the equilibrium level (Fig. 4C). In this case the Rin
determines the degree of depolarization. In accordance with the
decreased Rin in P23–26 animals, these neurons display the
highest current threshold for long pulses compared with other
age groups.

Next, the AP frequency adaptation was analyzed for all cells
by extracting the interspike intervals (ISIs) at each neuron’s
individual half-maximal frequency. Plotting these ISIs against
their corresponding number (Fig. 4D) revealed that—in con-
trast to neurons from young animals—nearly no AP frequency
adaptation existed at mature stages. Averaging the different
age groups over the first 15 ISIs showed a clear developmental
reduction in adaptation indicated by shallower slopes in Fig.
4D, inset. Furthermore, an increase in the number of neurons
with a “pauser” firing behavior was found from P17 on. This
increase was evident as a prolonged initial ISI in P17 but was
mainly found in P23–26 data (Fig. 4D, inset). This prolonged
initial ISI in older animals indicates the increased expression of

Fig. 3. Neuronal excitability increases during late post-
natal development. A: sub- and suprathreshold voltage
responses were evoked by a short current pulse (1 ms,
between 0 and 2.5 nA in 100-pA increments). The
example shows recordings of a P23 neuron. The last
subthreshold trial and the first suprathreshold trial are
shown in black. The first action potential (AP) evoked
with the lowest current injection was used for further
analysis shown in B. B: development profile of AP
thresholds and waveform. Open circles are single cells
(P9/10: n � 25, P13: n � 12, P17: n � 15, P23–26: n �
25); filled circles are averages of the 4 age groups.
Current threshold (Ithr, normalized to membrane capac-
itance; top) and voltage threshold (Ethr; upper middle)
were extracted from trials of the first suprathreshold
response. AP amplitude (lower middle) reflects voltage
difference from Ethr to AP peak. AP half-width (HW;
bottom) was measured at half the AP amplitude from AP
threshold. C: refractory period of AP generation was
probed with a paired-pulse paradigm of 1-ms current
injections adjusted to 300 pA above Ithr and the inter-
pulse interval incremented with 0.5 ms between 0.5-ms
and 10-ms interspike intervals (ISIs; top). The last trial
that evoked no second AP and the first that triggered an
AP with both pulses are shown in black. AP refractory
period was analyzed from the peak of the first derivative
of the voltage responses shown in A (max V=; bottom).
The interpulse interval of the first dual AP response was
taken as the absolute refractory period (see D). The
relative refractory period was determined by fitting a
single-exponential function to max V= values starting
from the last pulse that evoked no AP. D: AP refractory
properties during the late postnatal development. Top:
absolute refractory period (refabs). Bottom: relative re-
fractory period (�rel) as a function of postnatal day. Open
circles represent single cells (P9/10: n � 6, P13: n � 6,
P17: n � 13, P23–26: n � 14); filled circles are averages
of the 4 age groups.
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a fast transient potassium current during development. Taken
together, our recordings suggest that developmental alterations
in membrane properties and channel expressions produce
DNLL neurons that are capable of precise AP firing at high
rates.

Development of GABAergic inputs to DNLL neurons. To
analyze the properties of the GABAergic input, pharmacolog-
ically isolated GABAergic inhibitory postsynaptic currents
(IPSCs) were evoked via the commissure of Probst with a
single fiber shock at different intensities (Fig. 5A). For each
stimulation intensity 10 trials were recorded to generate an
average IPSC (Fig. 5A). From these average IPSCs the peak
current and the decay time constant were determined. As the
decay of these IPSCs was best fitted with a biexponential
function, a weighted decay time constant was calculated. The
initial observation was that during development the decay of
the GABAergic IPSCs became significantly faster (Tukey-type
test for elevations P23–26 vs. P9/10, P13, P17: P � 0.05; Fig.
5B). The developmental reduction of the decay time constant
was partially dependent on an increase of the fast fraction of
the decay time constant (Fig. 5B). A second important finding
was that the decay time constants depended on the peak
amplitude of the respective IPSCs (Fig. 5B). Large IPSCs
tended to have a smaller fraction of the fast decay time constant
and hence were more dominated by the slow decay kinetics of
the GABAergic current. The dependence between the time
course of the IPSC and its amplitude suggests a postsynaptic
interaction of liberated neurotransmitter such as transmitter
pooling or spillover (Balakrishnan et al. 2009; Farrant and
Nusser 2005). Furthermore, the relationship between the
weighted decay time constant and the IPSC amplitude ap-
peared developmentally regulated (Fig. 5B). The slopes of
these linear regressions decreased during development (Fig.
5C). Thus the time course of the IPSC shows less amplitude
dependence in older animals compared with young animals,

indicative of a reduction of a possible postsynaptic contribution
to the IPSC time course.

To estimate the minimal kinetics of the GABAergic inputs,
spontaneous IPSCs (sIPSCs) were recorded in the same cells as
the evoked IPSC. An average sIPSC was generated from all
extracted sIPSCs of a given cell and fitted with a single-
exponential function for later analysis (Fig. 5D). For all de-
tected sIPSC events of a given cell a frequency histogram of
the peak sIPSC amplitudes was generated and fitted with a
Gaussian function to determine the mean of the sampled
sIPSCs (Fig. 5E). The extracted sIPSC amplitude is considered
to correspond closely to the quantal size of these inputs. During
development the mean peak amplitude of the GABAergic
sIPSCs became slightly larger, from 27.2 � 1.7 pA in P9/10
animals to 34.1 � 3.7 pA in P23–26 animals (Fig. 5F). The
20–80% rise time of the average GABAergic sIPSC indicated
a slight reduction from P9/10 (0.27 � 0.03 ms) to P23–26
(0.20 � 0.02 ms) that, however, remained insignificant (Fig.
5F). In contrast, the decay time constants of the averaged
GABAergic sIPSCs were reduced significantly during the
late postnatal development (Fig. 5G). Thus the kinetics of
both the evoked IPSCs and the sIPSCs become faster during
development.

Next, we asked whether the developmental refinement of the
time course of the evoked release can be explained by the
developmental changes in sIPSC kinetics. Therefore, the time
constants derived from the smallest evoked IPSCs were plotted
as a function of the cell’s sIPSC decay time constants (Fig.
5G). The size of the smallest evoked responses was not
significantly different for the tested age groups (�527 � 260
pA for P9/10 and �301 � 81 pA for P23–26 animals). The
decays of the evoked events were slower than those of the
spontaneous events for all age groups (paired t-test P � 0.05),
yet their relative difference remained constant for each age
group during development and the variance of the rise time of

Fig. 4. AP frequency increases during late postnatal develop-
ment. A: input-output functions were generated by current
injections of 500-ms step ranging from �50 to 800 pA in
50-pA increments. Example traces of a P24 neuron show
subthreshold responses in dark gray and the first suprathreshold
response in black. B: average input-output function for all 4 age
groups (P9/10: n � 24, P13: n � 12, P17: n � 15,; P23–26: n �
23). C: maximal firing frequency (top) for all individual neu-
rons (open) and averages for each age group (filled). The
input-output function (B) and the maximal frequency (C) were
computed from the spike count over the whole 500-ms duration
of the current injection. Ithr (bottom) represents the average
current amplitude needed to evoke an AP with the protocol
described in A normalized to the individual cell’s membrane
capacitance. D: duration of the ISI in milliseconds vs. number
of the respective ISI for all cells at their individual half-
maximal firing frequencies. Inset: pooled data for each age
group for the first 15 ISIs. The different slopes indicate stronger
adaptation in younger animals. Red, P9/10; green, P13; blue,
P17; black, P23–26.
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the evoked IPSCs remained unchanged. Together these find-
ings indicate a developmentally unchanged precision of the
release mechanism. These findings show that the developmen-
tal reduction of the decay time constants of the sIPSC can
largely explain the acceleration of the evoked responses. Thus
in mature animals GABAergic IPSCs follow a faster time
course than previously suggested (Pecka et al. 2007).

Development of glutamatergic inputs to DNLL neurons. To
investigate the development of glutamatergic inputs to DNLL
neurons, the stimulation electrode was placed in the LL ventral
to the DNLL. For a comparison between age groups the
stimulation intensity was set to 20% above threshold of the
minimally evoked excitatory postsynaptic current (EPSC).
Glutamatergic inputs were segregated into synaptic AMPA and
NMDA currents by recording at holding potentials of �70 and
�50 mV, respectively. From 10–15 trials average evoked
EPSCs were generated and fitted with an exponential function to
quantify the amplitude and the decay time constant (Fig. 6A).
The amplitude of the AMPA current was taken from the peak
of the evoked current. To correct for developmental changes in
the decay time constant of the NMDA component, the ampli-

tude value of the synaptic NMDA current was measured at the
time indicated by its decay time constant (Fig. 6A). Under these
conditions the peak amplitude of the synaptic AMPA currents
did not change during late postnatal development (Fig. 6B,
top). In contrast, the NMDA-to-AMPA ratio decreased signifi-
cantly (Tukey-Kramer P23–26 vs. P9/10: P � 0.05) from 0.67 �
0.10 at P9/10 to 0.27 � 0.10 at P23–26, indicating a downregu-
lation of the synaptic NMDA current (Fig. 6B, bottom). Further-
more, a developmental speeding of the AMPA- and NMDA-
mediated components was observed. The decay time constant of
the synaptic AMPA currents nearly halved from 4.04 � 0.92 ms
at P9/10 to 2.28 � 0.45 ms at P23–26 (Fig. 6C), and the NMDA
current became threefold faster, with decay time constants de-
creasing from 26.03 � 1.3 ms at P9/10 to 8.10 � 1.96 ms at
P23–26 (Fig. 6C).

To estimate the minimal kinetics of the excitatory inputs to
DNLL neurons, AMPA-mediated spontaneous EPSCs (sEPSCs)
were recorded in the same cells. An average sEPSC was
produced from all isolated sEPSCs of a given cell to determine
the kinetics (Fig. 6D). The frequency histogram of all extracted
peak sEPSC amplitudes of each cell was fitted with a Gaussian

Fig. 5. GABAergic inputs to DNLL neurons accelerate dur-
ing development. A: GABAergic inhibitory postsynaptic cur-
rents (IPSCs) evoked with different stimulation intensities for
a P10 (top) and a P23 (bottom) neuron. Averages of 10 traces
at a given stimulation intensity are shown in black and single
trials in gray. The decay of the IPSCs was fitted with a
biexponential function (white dotted line). B: the relation
between decay time course and amplitude of GABAergic
currents changed during development. Top: weighted decay
time constants (�w) as a function of IPSC amplitude. Bottom:
effect of IPSC amplitude on the fraction of the fast decay
time constant for all different age groups. Lines represent
linear regressions (P9/10: 36 IPSCs from 9 cells; P13: 40
IPSCs from 10 cells; P17: 48 IPSCs from 10 cells; P23–26:
40 IPSCs from 10 cells). C: averages of the slopes of linear
regressions in B are plotted as a function of age. D: sponta-
neous IPSCs (sIPSCs) recorded in a neuron from a P26
animal. The average sIPSC (black trace) was used to calcu-
late the 20–80% rise time (F) and to determine the decay
time constant from a fit of an exponential function (white
dotted line) (G). E: the histogram of sIPSC amplitudes from
the same neuron as in D was fitted with a Gaussian, and the
peak of this function was used to compare sIPSC amplitudes
(G). F: sIPSC amplitudes (top) and rise times (bottom) as a
function of age. Open symbols represent single cell values;
filled symbols represent averages from a given age group.
G: for all neurons in which both evoked and sIPSCs were
recorded (P9/10: n � 8, P13: n � 10, P17: n � 8, P23–26:
n � 7), the time constants of the sIPSCs are plotted vs. time
constants of the smallest evoked IPSC. Throughout figure:
open circles, P9/10; filled circles, P13; open diamonds, P17;
filled diamonds, P23–26.
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function (Fig. 6E). The population average of the mean sEPSC
amplitudes derived from the peaks of the Gaussian fits did not
significantly change during development (Fig. 6F). In contrast,
the rise time of the average sEPSCs accelerated significantly
(Tukey-Kramer: P23–26 vs. P9/10: P � 0.05) during develop-
ment (Fig. 6F).

To illustrate the developmental change of the decay kinetics
of the EPSCs and the synchrony of release, the decay time
constants of the sEPSC and the evoked EPSC were plotted
against each other (Fig. 6G). Both the evoked EPSC and
sEPSC decay time constants accelerated significantly during
development (Tukey-Kramer: P23–26 vs. P9/10: P � 0.05).
The average sEPSC decayed with a time constant of 0.92 �
0.16 ms at P9/10 and with 0.55 � 0.08 ms at P23–26, whereas
the average evoked response decayed with a time constant of
4.05 � 0.82 ms at P9/10 and with 1.79 � 0.32 ms at P23–26.
Similar to the GABAergic inputs, the difference between
evoked EPSCs and sEPSCs was significant (paired t-test, P �

0.05 for P13, P17, P23–26), remaining three- to fourfold
throughout development. Thus the reduction of the decay time
constants of the sEPSC largely explains the acceleration of the
evoked responses. Furthermore, our data show that during
development the excitatory inputs to DNLL neurons became
faster. The reduction in NMDA current might imply that the
synaptic plasticity of DNLL neurons declines and that the
NMDA-dependent amplification (Porres et al. 2011) becomes
reduced.

Synaptic and intrinsic alterations contribute to the develop-
mentally improved precision of AP generation. The ability to
code signals fast and precisely is essential for neurons involved
in binaural auditory processing. Developmental changes in
intrinsic and synaptic properties have been shown to improve
the precision of excitatory postsynaptic potential (EPSP)-AP
coupling (Cathala et al. 2003), thus increasing response preci-
sion to incoming inputs. To dissect the influence of synaptic
and intrinsic changes on the precision of AP generation in the

Fig. 6. Glutamatergic inputs to DNLL neurons accelerate during development. A: excitatory postsynaptic currents (EPSCs) evoked via the lateral lemniscus with
stimulus intensity 20% above threshold. Traces of a P23 neuron exemplify the different decay time courses of EPSCs recorded at �70 and �50 mV. The decay
time constants were extracted from a fit of an exponential function (white dotted line) to the average of 10–15 stimulation repetitions (black line; gray represents
single trials). Values of EPSC amplitudes for recordings at �50 and �70 mV were taken at the location indicated by the open circles. For responses recorded
at �70 mV the minimal value after the stimulation artifact was extracted. For responses recorded at �50 mV the value at the decay time constant was used.
B: EPSC amplitudes recorded at �70 mV and evoked with 20% suprathreshold stimulation intensity as a function of age (top). Bottom: NMDA-to-AMPA (N/A)
ratio derived from the amplitude measurements as a function of age (P9/10: n � 10, P13: n � 9, P17: n � 10, P23–26: n � 9). C: for all individual neurons,
the decay time constants recorded at �50 mV are plotted vs. the decay time constants recorded at �70 mV. The dashed line indicates unity. D: spontaneous
EPSCs (sEPSCs) recorded in a neuron of a P26 animal. The average sEPSC (black trace) was used to calculate the 20–80% rise time (F) and fitted with an
exponential function (white dotted line) to determine the decay time constant (G). E: the histogram of sEPSC amplitudes was fitted with a Gaussian, and the peak
of this fit was used to compare sEPSC amplitudes between neurons (F). F: sEPSC amplitude and rise time of the average sEPSC as a function of age. Open
symbols represent single cell values; filled symbols represent average data of the specific age group. G: decay time constants of sEPSCs plotted vs. decay time
constants of the smallest evoked EPSC for each cell. Gray symbols represent single cell values, black symbols represent average values of the specific age group
(P9/10: n � 5, P13: n � 6, P17: n � 6, P23–26: n � 6), and dotted line indicates unity. Throughout figure: open circles, P9/10; filled circles, P13; open diamonds,
P17; filled diamonds, P23–26.
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DNLL, we injected current waveforms simulating the EPSC
kinetics of P9/10 (young) or P24–26 (mature) AMPA currents
into neurons of P9/10 and P24–26 (Fig. 7A). The current
amplitudes were scaled to evoke an AP in about half of the

trials (18–59%) to investigate AP precision directly at thresh-
old and ensure comparability of data among cells.

The mean latency and the jitter of AP generation are clas-
sically used as measures for AP precision. During late postna-
tal development, the mean latency decreased from 3.9 � 0.1
ms for the young EPSC and 2.9 � 0.06 ms for the mature
EPSC in P9/10 neurons to 2.4 � 0.14 ms and 2.0 � 0.08 ms
in the P24–26 neurons, respectively (Fig. 7B; t-test: P9/10
young vs. P24–26 young P � 0.05; t-test: P9/10 mature vs.
P24–26 mature P � 0.05). The jitter was reduced from 331 �
26 �s for the young EPSC and 242 � 21 �s for the mature
EPSC in P9/10 neurons to 247 � 28 �s and 185 � 14 �s in the
P24–26 neurons (Fig. 7C; t-test: P9/10 young vs. P24–26
young P � 0.05; t-test: P9/10 mature vs. P24–26 mature P �
0.05). Hence, the temporal precision of AP generation in-
creases about twofold during postnatal development.

The contribution of the changes in the synaptic and intrinsic
properties to AP precision can be estimated by comparing the
responses to the two different simulated EPSCs within and
between the two age groups. The mature EPSC waveform led
in both P9/10 and P24–26 to significantly reduced latency and
jitter (Fig. 7, B and C; all paired t-tests P � 0.05). The relative
change for the mean latency and the jitter in response to young
and mature injected current waveforms between P9/10 and
P24–26 indicates the contribution of the intrinsic developmen-
tal alterations to the AP generation. An increase in temporal
precision between 36% (mean latency) and 25% (jitter) is due
to a change in the intrinsic properties. The synaptic contribu-
tion to the increase in temporal precision is accordingly esti-
mated by calculating the relative change between young and
mature current injections for both age groups. This revealed
that between 21% (mean latency) and 26% (jitter) increase in
temporal precision is due to the decrease in the synaptic decay
time constant. Thus intrinsic and synaptic changes contribute
nearly equally to the developmentally increased precision in
AP generation.

Furthermore, it has been shown that the precision of AP
generation depends on the time the membrane potential spends
close to threshold (Rodriguez-Molina et al. 2007). Along this
line both, the developmental stage and the choice of injected
simulated EPSC influenced the time that the membrane poten-
tial remains within 1 mV of the maximum of the average
subthreshold response (top 1 mV EPSP: P9/10 young 1.5 � 0.1
ms; P9/10 mature 1.0 � 0.1 ms; P24–26 young 1.0 � 0.1 ms;
P24–26 mature 0.8 � 0.1 ms; besides P9/10 mature vs.
P24–26 young all pairings are significantly different, t-test,
P � 0.05). The time window that the membrane potential
spends within 1 mV of AP threshold corresponded well to the
observed jitter (Fig. 7D), again indicating that developmental
changes in both intrinsic and synaptic properties lead to faster
membrane potential dynamics near threshold and more precise
AP generation.

NMDA current supports AP generation throughout development.
Recently it was shown that the postsynaptic response of DNLL
neurons is amplified in an NMDA-dependent manner (Porres et
al. 2011), yet what the direct relation is between the NMDA
current and the postsynaptic amplification was not explored.
Here, we find that the synaptic NMDA component is develop-
mentally reduced, which poses the question of whether the
input amplification can be maintained during development and
how the different synaptic charge is integrated at different

Fig. 7. Development of synaptic and intrinsic properties enhances precision of
AP generation. A: current injections simulating the EPSC kinetics of P9/10
(top; young sim.EPSC, �decay � 4 ms) or P23 (bottom; mature sim.EPSC,
�decay � 2 ms) AMPA currents scaled to evoke an AP in �50% of trials.
Example traces of a P9/10 neuron show AP responses in black or dark gray and
average subthreshold response as black dotted line (52 APs at 56% success
rate, top; 53 APs at 58% success rate, bottom). B: latency of AP response
measured from the onset of the injected simulated EPSC for neurons of age
P9/10 (n � 13) and P23–26 (n � 11). C: jitter of AP generation measured as
standard deviation (SD) of AP response latency. D: time near AP threshold as
a function of AP precision: time that the membrane potential remains within 1
mV of the maximum of the average subthreshold response (top 1 mV EPSP)
plotted vs. the SD of the AP response latency for all cells and conditions. Gray
symbols represent single neurons and black symbols average values.
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stages of development. In addition, the membrane potential
influences the AP generation in DNLL neurons (Porres et al.
2011), and therefore perturbations of the cell by whole cell
recordings might alter postsynaptic integration. During on-cell
recordings the membrane potential is less affected by washout
effects, but APs can still be reliably detected. Thus on-cell
recordings are ideally suited to test whether NMDA currents
are indeed capable of amplifying AP generation in DNLL
neurons of different developmental stages.

First, to test the assumption that the current deflections
recorded in on-cell mode represent APs, responses to different
fiber stimulation intensities were recorded in on-cell mode and
subsequently after breakin in the current-clamp whole cell
configuration. The same stimulation intensities were repeated

10 times, and the responses were averaged for on-cell and
current-clamp whole cell recordings (Fig. 8A). In general, the
number of current deflections recorded in on-cell mode corre-
sponded with the number of APs recorded in the whole cell
configuration for both P23–26 (n � 2) and P14–15 (n � 7)
(Fig. 8B). Thus the current deflections recorded in on-cell
mode represent APs.

To directly test the involvement of NMDA currents in the
generation of multiple APs upon a single stimulation event,
synaptic NMDA currents were blocked by the specific antag-
onist R-CPP. For these experiments the stimulation strength
was adjusted so that multiple APs were evoked initially (Fig.
8C). After bath application of R-CPP the number of APs
recorded in on-cell mode was reduced to one (Fig. 8C). This

Fig. 8. NMDA currents enhance AP generation in
DNLL neurons throughout late postnatal development.
A: postsynaptic response of a P23 neuron to single
stimulation events in on-cell voltage-clamp (top) and
whole cell current-clamp (bottom) mode. Stimulation
strength was the same before and after break-in to the
cell. Ten repetitions are shown in gray, with single
example traces highlighted in black. B: number of APs
recorded in on-cell mode as a function of number of
APs recorded in whole cell mode. Different stimula-
tion intensities were applied for each cell. Stimulation
intensities were adjusted to the same levels during
on-cell and whole cell modes. P23 (n � 2) and P14–15
(n � 7) represent averages of number of APs from 10
trials. Dashed line indicates unity. C: on-cell record-
ings of evoked APs in a P23 neuron with the same
stimulation strength before (Control; left) and after
(right) R-CPP application. D: number of APs before
and after the application of R-CPP recorded on-cell for
2 age groups: P14–15 (circles; n � 3) and P23–26
(diamonds; n � 3) neurons. Gray symbols represent
single cells and black symbols average value. E: stim-
ulation intensity was adjusted to produce either 1 (not
shown) or 2 (top) APs during on-cell recordings. A
single example of 10 repetitions is highlighted in
black. After break-in, the glutamatergic inputs were
recorded at �50 mV and �70 mV for the same
stimulation intensities that corresponded to 1 (not
shown) or 2 (middle and bottom) APs. Black trace
represents average EPSC of 10 repetitions shown in
gray. The synaptic charge was calculated from the
average ESPC as indicated by the striped area.
F: synaptic charge of EPSCs recorded at �70 mV
evoked by stimulation intensities that elicited 1 or 2
APs: P13–15 neurons (n � 10) in gray, P23–26 (n �
8) in black. G: same as F, but for the EPSC charges
recorded at �50 mV. Throughout figure: open circles,
P13–15; filled diamonds, P23–26.
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NMDA-dependent reduction in AP number was observed in all
cells tested irrespective of age (n � 3 for P14/15 and n � 3 for
P23–26; Fig. 8D). Thus the NMDA-dependent amplification is
present throughout the late postnatal development, albeit the
developmental reduction of the synaptic NMDA current shown
above.

We next quantified the amount of the synaptic NMDA
current involved in amplifying the postsynaptic response at
different developmental stages (P13–14 and P23–26). There-
fore, on-cell recordings of APs were followed after the
break-in by voltage-clamp recordings at �70 and �50 mV
(Fig. 8E). The stimulation strength was adjusted to two differ-
ent intensities to evoke either one or two APs. From 10–15
synaptic stimulations an average EPSC was derived, and its
charge was extracted and compared with the number of evoked
APs (Fig. 8E). In mature animals the extracted EPSC charge
correlating with two APs was about threefold larger compared
with one AP at holding potentials of �70 and �50 mV (Fig. 8,
F and G; P � 0.05). Similarly, for immature animals, a two- to
threefold larger charge was correlated with two synaptically
evoked APs compared with one (Fig. 8, F and G; P � 0.05).
However, the absolute values for the EPSC charge indicated a
developmental trend. The synaptic charge extracted at �70
mV was 4.7 � 0.7 pC for one AP and 14.6 � 2.0 pC for
reliably triggering two APs in P23–26 animals (Fig. 8F). For
immature animals (P13–15) 10.0 � 2.8 pC and 22.2 � 4.7 pC
corresponded to one and two evoked APs, respectively (Fig.
8F). The charge transferred at �50 mV appeared smaller in
mature compared with young animals. In P23–26 animals
11.2 � 3.3 pC was associated with one AP and 36.3 � 11.4 pC
with two APs, whereas in P13–15 animals 42.3 � 16.7 pC was
extracted for one AP and 73.5 � 23.6 pC for two APs (Fig.
8G). Therefore, a clear trend to smaller charges underlying the
generation of one or two APs occurs during development (Fig.
8, F and G).

DISCUSSION

Here we report alterations of physiologically relevant pa-
rameters such as passive membrane properties, AP properties,
size and kinetics of synaptic inputs, precision of EPSP-AP
coupling, and the role of NMDA receptors in synaptically
evoked AP generation during late postnatal development in
DNLL neurons of Mongolian gerbils. This is complemented by
quantifying the heterogeneity of the developmentally regulated
CaBP expression pattern in the DNLL. Taken together, our
findings show that DNLL neurons improve fast and precise
signal integration during late postnatal development, a prereq-
uisite to sustaining high firing rates with high temporal preci-
sion. The temporal precision of DNLL neurons fits to the high
precision of lower stages of binaural processing and does not
conflict with the DNLL’s long-lasting GABAergic action
found in in vivo recordings.

Expression of calcium binding proteins indicates two sub-
populations of DNLL neurons. As described for other mam-
mals (Caicedo et al. 1996; Kuwada et al. 2006; Lohmann and
Friauf 1996; Vater and Braun 1994) DNLL neurons are pre-
dominantly parvalbuminergic in mature gerbils. The develop-
mental increase in PV expression appears to correlate with the
increased ability to hear (Finck et al. 1972; Ryan et al. 1982a;
Smith and Kraus 1987) and use sound information in a relevant

manner (Kelly and Potash 1986). The increase of endogenous
calcium buffers might be required to quench the possibly
enhanced Ca2� influx due to the increase in physiological
firing frequencies at later developmental stages (Seidl and
Grothe 2005). Similar to rats (Lohmann and Friauf 1996), a
fraction of �25% of DNLL neurons are calbindinergic
throughout late postnatal development. These CB-positive
cells appear morphologically indistinguishable from PV-posi-
tive cells. Furthermore, different CaBP expression appears not
to be indicative of different intrinsic or synaptic properties of
DNLL neurons. That the two CaBP subpopulations represent
low- versus high-frequency tuning of DNLL neurons of gerbils
is unlikely, as they are not clustered in a specific area related to
the known tonotopy of this nucleus (Ryan et al. 1982b). It
remains unclear whether the CB-positive fraction of DNLL
neurons marks hypothesized subpopulations with specific func-
tions (Meffin and Grothe 2009; Shneiderman et al. 1999) or an
excitatory subpopulation, as it has been estimated that �15%
of DNLL neurons are noninhibitory (Saint Marie et al. 1997).

Development of cellular properties tunes DNLL neurons for
fast and precise signal integration. A second anatomical alter-
ation during late postnatal development is the reduction of the
effective cell surface, as determined from the estimated cell
capacitance. A developmental decrease in cell surface is com-
mon among neurons in the auditory brain stem (Chirila et al.
2007; Rautenberg et al. 2009; Rietzel and Friauf 1998; Ro-
gowski and Feng 1981; Sanes et al. 1992). Such a decrease is
of functional importance, as it allows faster charging of the
membrane and therefore generates a shorter integration time
window. A shortening of the integration time window is further
promoted by the decrease in the specific input resistance of
these neurons. Thus, similar to rats (Ahuja and Wu 2000), the
developmental regulations of the passive membrane parame-
ters lead to a speeding of cellular voltage responses. This
acceleration suggests an improvement of the temporal preci-
sion in the information transfer from the SOC via the DNLL to
the IC during late postnatal development. This improvement
might underlie the capability of these neurons to respond with
high temporal fidelity at high rates to sound stimulations
(Brugge et al. 1970; Kuwada et al. 2006; Pecka et al. 2010;
Seidl and Grothe 2005; Siveke et al. 2006).

During the late postnatal development the AP half-width
decreases threefold. Such a reduction is common in the audi-
tory brain stem and is observed in the MSO (Scott et al. 2005),
the medial nucleus of the trapezoid body (Taschenberger and
von Gersdorff 2000), and the avian nucleus laminaris (Gao and
Lu 2008). In addition to the voltage threshold, the current
threshold to short stimuli, which are more similar to the EPSC
time course compared with long current injections, decreases
in this developmental period. Together, these changes generate
neurons that are more excitable and temporally more precise.
This implication is illustrated by a decrease in the refractory
period, an increase in AP firing frequency, and reduced AP
firing adaptation. We suggest that an increase in sodium and
potassium channel density together with a decrease in cell
surface underlies the developmental increase in excitability.
An increase in sodium channel density agrees with the reduc-
tion of Ethr during late postnatal development. An increase in
potassium channel density is consistent with a reduction of Rin
and the increased number of “pauser” neurons. Physiologi-
cally, this enhanced excitability might partially explain the
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developmental increase of spike rates found in in vivo record-
ings (Seidl and Grothe 2005).

Besides the AP half-width, all physiological parameters
show a large cell-to-cell variability in the DNLL. The source
and the function of this variability remain unclear, as these
parameters do not cluster in distinct populations, which would
be expected for specific subcircuits. It is tempting to speculate
that the cell-to-cell variability of the physiological parameters
might match the different frequency contours in the gerbil
DNLL (Ryan et al. 1982b). However, the best frequency of a
neuron recorded in our slice preparation remains elusive, and it
is unlikely that the variability matches a ventro-dorsal gradient.
An alternative explanation for this cell-to-cell variability is that
each cell makes use of the same subset of cell parameters with
different weights to finally establish its physiologically re-
quired input-output function.

Implications of the developmental acceleration of GABAergic
inputs to DNLL neurons. Synaptic stimulation showed that the
kinetics of the GABAergic inputs to DNLL neurons accelerate
2.5-fold between P9/10 and P23–26. The decay time constants
of GABAergic currents reported here differ notably from
earlier reports (Pecka et al. 2007). The major difference be-
tween the recordings in these reports is the concentration of
intracellular chloride. The level of intracellular chloride was
recently shown to strongly affect the kinetics, especially the
decay time course, of GABAergic currents (Houston et al.
2009). Compared with the earlier work (Pecka et al. 2007), this
study employed lower intracellular chloride concentrations
closer to normal physiological values. Therefore, we suggest
that the GABAergic currents reported in the earlier work were
approximately twofold too slow.

The action of the GABAergic inhibition is thought to be the
cellular correlate for the persistent inhibition demonstrated in
in vivo recordings (Burger and Pollak 2001; Pecka et al. 2007;
Yang and Pollak 1994) that might underlie behavioral phenom-
ena such as the precedence effect (Blauert 1997; Litovsky et al.
1999; Zurek 1987). It had been speculated that the time course
of this GABAergic inhibition is mediated by a slow synaptic
current (Pecka et al. 2007). Here, however, the time course of
the fastest GABAergic currents measured does not directly
match the predictions of the inhibitory time course from in vivo
recordings (Burger and Pollak 2001; Pecka et al. 2007; Yang
and Pollak 1994). This discrepancy can partially be explained
by the membrane time constant that prolongs the inhibitory
postsynaptic potential (IPSP) in respect to the IPSC drive. Two
additional mechanisms might further help to explain the long-
lasting GABAergic time course found in vivo. On the network
level, the integration of many inputs with different latencies
could generate a long-lasting inhibition in the target cells in the
DNLL and IC. Second, synaptic mechanisms could prolong the
GABAergic time course during ongoing activity. This idea is
based on findings that show an increased IPSP decay time as a
function of stimulation pulse number (Porres et al. 2011).
Evidence that the time course of synaptic transmission might
depend on the level of release is given here, as larger GABAergic
currents decay slower than small currents. The underlying synap-
tic mechanism that prolongs the GABAergic IPSPs might be
transmitter pooling (Balakrishnan et al. 2009), spillover (Far-
rant and Nusser 2005), a transition between phasic and asyn-
chronous release (Lu and Trussell 2000), or changes in GABA
receptor desensitization (Jones and Westbrook 1995). Thus the

fast-decaying single IPSC in mature animals can turn into a
long-lasting inhibitory action by multiple mechanisms. There-
fore, the developmental acceleration of both the synaptic and
intrinsic parameters does not contradict the known long-lasting
inhibition in the DNLL or IC. In contrast, it might increase the
systems dynamic range, allowing for relatively short as well as
long-lasting inhibition.

Development of excitatory inputs supports reliable signal
transfer at high rates. Similar to nuclei in the SOC (Joshi and
Wang 2002; Kandler and Friauf 1995; Koike-Tani et al. 2005;
Magnusson et al. 2005; Taschenberger and von Gersdorff
2000), the size and kinetics of excitatory inputs to DNLL
neurons are subject to developmental changes. The size of the
NMDA current is developmentally downregulated. This de-
crease is inferred from the reduced NMDA-to-AMPA ratio
together with the developmental invariance of the size of
AMPA currents. Both the evoked NMDA and AMPA currents
become faster in decay during late postnatal development. The
kinetics of the excitatory inputs appear to be species specific,
as the decay time constants obtained from rats (Fu et al. 1997)
are about fourfold slower compared with those from gerbils.

From the developmental alterations of the synaptic AMPA
and NMDA currents it is expected that APs are triggered less
efficiently by excitatory synaptic inputs. The NMDA-depen-
dent postsynaptic amplification (Porres et al. 2011) is therefore
expected to be developmentally regulated. However, the de-
velopmentally increased excitability appears to counterbalance
this expectation. This interpretation is consistent with the
finding that less synaptic excitatory charge is required to
generate APs in the postsynaptic DNLL neurons of mature
gerbils.

Even at the oldest age tested, the decay time course of
evoked AMPA currents is still about threefold slower than that
of spontaneous events. The discrepancy between the AMPA
decay time courses of evoked and spontaneous events can be
interpreted as largely unsynchronized release. Interestingly, a
rather sluggish excitatory transmission might be useful for
DNLL neurons. Temporally extended excitatory inputs might
allow DNLL neurons to faithfully follow the high firing rates
of their presynaptic SOC neurons and produce failure-reduced
synaptic information transfer (Brugge et al. 1970; Kuwada et
al. 2006; Pecka et al. 2010; Siveke et al. 2006). We propose
that the developmental acceleration of EPSC decays and their
remaining unsynchronized release are balanced to allow DNLL
neurons to optimize the trade-off between high AP precision
and the sustaining of high firing rates. Such a mechanism could
be important to keep up the AP firing rates in DNLL neurons
and thereby induce a prolongation of the important GABAergic
output signal in adult animals (Porres et al. 2011).

This study also allows for a comparison of the developmen-
tal changes of inhibitory and excitatory inputs to DNLL neu-
rons. The refinement of synaptic GABA, AMPA, and NMDA
currents occurs at similar developmental stages in DNLL
neurons. Both inhibitory and excitatory inputs appear to mature
until P23–26, with the largest change in size, kinetics, or both
between P10 and P17. The similar developmental time course
of the different synaptic inputs indicates that keeping the
balance between excitation and inhibition is crucial throughout
late postnatal development and during maturity.
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Maturation of cellular properties enhances precision in
EPSC/EPSP-AP coupling. The interaction between synaptic
kinetics and intrinsic properties was analyzed in respect to their
influence on AP precision. The acceleration of both the syn-
aptic decay kinetics and �m increase the precision of AP
generation twofold between P9/10 and P24–26. Thus these
alterations produce neurons that are able to respond faster and
more precisely to incoming excitatory signals. It should be
noted that DNLL neurons are already very precise at age
P9/10. Compared with cortical neurons, juvenile DNLL neu-
rons are at least four times more precise (Fricker and Miles
2000; Rodriguez-Molina et al. 2007). Mature DNLL neurons
with an AP jitter of �185 �s match the high AP precision of
other auditory brain stem nuclei. In vitro recordings of bushy
cells in the anterior ventral cochlear nucleus showed that AP
generation jitters of �140 �s near threshold (Chanda and
Xu-Friedman 2010). In vivo recordings of neurons in the
medial nucleus of the trapezoid body and the MSO report a
jitter of first spike latencies between 100 and 900 �s (Kopp-
Scheinpflug et al. 2003; Lorteije and Borst 2011; Yin and Chan
1990). Together these findings demonstrate that auditory neu-
rons throughout the interaural time and level difference circuits
up to the DNLL are of exquisite temporal precision.

ACKNOWLEDGMENTS

We thank Claudia Aerdker for technical support with the immunohisto-
chemistry. J. J. Ammer is a member of the Graduate School for Systemic
Neurosciences at the Ludwig Maximilians University.

GRANTS

This study and J. J. Ammer were supported by the Deutsche Forschungs-
gemeinschaft (FE789/2-1).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: J.J.A., B.G., and F.F. conception and design of
research; J.J.A. and F.F. performed experiments; J.J.A. and F.F. analyzed data;
J.J.A., B.G., and F.F. interpreted results of experiments; J.J.A. and F.F.
prepared figures; J.J.A. and F.F. drafted manuscript; J.J.A., B.G., and F.F.
edited and revised manuscript; J.J.A., B.G., and F.F. approved final version of
manuscript.

REFERENCES

Adams JC. Ascending projections to the inferior colliculus. J Comp Neurol
183: 519–538, 1979.

Adams JC, Mugnaini E. Dorsal nucleus of the lateral lemniscus: a nucleus of
GABAergic projection neurons. Brain Res Bull 13: 585–590, 1984.

Ahuja TK, Wu SH. Developmental changes in physiological properties in the
rat’s dorsal nucleus of the lateral lemniscus. Hear Res 149: 33–45, 2000.

Bajo VM, Merchan MA, Lopez DE, Rouiller EM. Neuronal morphology
and efferent projections of the dorsal nucleus of the lateral lemniscus in the
rat. J Comp Neurol 334: 241–262, 1993.

Balakrishnan V, Kuo SP, Roberts PD, Trussell LO. Slow glycinergic
transmission mediated by transmitter pooling. Nat Neurosci 12: 286–294,
2009.

Blauert J. Spatial Hearing with Multiple Sound Sources and in Enclosed
Spaces. Cambridge, MA: MIT, 1997, p. 201–287.

Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B. Precise
inhibition is essential for microsecond interaural time difference coding.
Nature 417: 543–547, 2002.

Brugge JF, Anderson DJ, Aitkin LM. Responses of neurons in the dorsal
nucleus of the lateral lemniscus of cat to binaural tonal stimulation. J
Neurophysiol 33: 441–458, 1970.

Burger RM, Pollak GD. Reversible inactivation of the dorsal nucleus of the
lateral lemniscus reveals its role in the processing of multiple sound sources
in the inferior colliculus of bats. J Neurosci 21: 4830–4843, 2001.

Caicedo A, d’Aldin C, Puel JL, Eybalin M. Distribution of calcium-binding
protein immunoreactivities in the guinea pig auditory brainstem. Anat
Embryol (Berl) 194: 465–487, 1996.

Cathala L, Brickley S, Cull-Candy S, Farrant M. Maturation of EPSCs and
intrinsic membrane properties enhances precision at a cerebellar synapse. J
Neurosci 23: 6074–6085, 2003.

Chanda S, Xu-Friedman MA. Neuromodulation by GABA converts a relay
into a coincidence detector. J Neurophysiol 104: 2063–2074, 2010.

Chirila FV, Rowland KC, Thompson JM, Spirou GA. Development of
gerbil medial superior olive: integration of temporally delayed excitation
and inhibition at physiological temperature. J Physiol 584: 167–190, 2007.

Couchman K, Grothe B, Felmy F. Medial superior olivary neurons receive
surprisingly few excitatory and inhibitory inputs with balanced strength and
short-term dynamics. J Neurosci 30: 17111–17121, 2010.

Faingold CL, Anderson CA, Randall ME. Stimulation or blockade of the
dorsal nucleus of the lateral lemniscus alters binaural and tonic inhibition in
contralateral inferior colliculus neurons. Hear Res 69: 98–106, 1993.

Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic
activation of GABAA receptors. Nat Rev Neurosci 6: 215–229, 2005.

Felmy F, Schneggenburger R. Developmental expression of the Ca2�-
binding proteins calretinin and parvalbumin at the calyx of Held of rats and
mice. Eur J Neurosci 20: 1473–1482, 2004.

Finck A, Schneck CD, Hartman AF. Development of cochlear function in
the neonate Mongolian gerbil (Meriones unguiculatus). J Comp Physiol
Psychol 78: 375–380, 1972.

Fricker D, Miles R. EPSP amplification and the precision of spike timing in
hippocampal neurons. Neuron 28: 559–569, 2000.

Fu XW, Brezden BL, Kelly JB, Wu SH. Synaptic excitation in the dorsal
nucleus of the lateral lemniscus: whole-cell patch-clamp recordings from rat
brain slice. Neuroscience 78: 815–827, 1997.

Gao H, Lu Y. Early development of intrinsic and synaptic properties of
chicken nucleus laminaris neurons. Neuroscience 153: 131–143, 2008.

Glendenning KK, Brunso-Bechtold JK, Thompson GC, Masterton RB.
Ascending auditory afferents to the nuclei of the lateral lemniscus. J Comp
Neurol 197: 673–703, 1981.

Gonzalez-Hernandez T, Mantolan-Sarmiento B, Gonzalez-Gonzalez B,
Perez-Gonzalez H. Sources of GABAergic input to the inferior colliculus of
the rat. J Comp Neurol 372: 309–326, 1996.

Houston CM, Bright DP, Sivilotti LG, Beato M, Smart TG. Intracellular
chloride ions regulate the time course of GABA-mediated inhibitory syn-
aptic transmission. J Neurosci 29: 10416–10423, 2009.

Iwahori N. A Golgi study on the dorsal nucleus of the lateral lemniscus in the
mouse. Neurosci Res 3: 196–212, 1986.

Jones MV, Westbrook GL. Desensitized states prolong GABAA channel
responses to brief agonist pulses. Neuron 15: 181–191, 1995.

Joshi I, Wang LY. Developmental profiles of glutamate receptors and syn-
aptic transmission at a single synapse in the mouse auditory brainstem. J
Physiol 540: 861–873, 2002.

Kandler K, Friauf E. Development of glycinergic and glutamatergic synaptic
transmission in the auditory brainstem of perinatal rats. J Neurosci 15:
6890–6904, 1995.

Kane ES, Barone LM. The dorsal nucleus of the lateral lemniscus in the cat:
neuronal types and their distributions. J Comp Neurol 192: 797–826, 1980.

Kelly JB, Buckthought AD, Kidd SA. Monaural and binaural response
properties of single neurons in the rat’s dorsal nucleus of the lateral
lemniscus. Hear Res 122: 25–40, 1998.

Kelly JB, Potash M. Directional responses to sounds in young gerbils
(Meriones unguiculatus). J Comp Psychol 100: 37–45, 1986.

Kelly JB, van Adel BA, Ito M. Anatomical projections of the nuclei of the
lateral lemniscus in the albino rat (Rattus norvegicus). J Comp Neurol 512:
573–593, 2009.

Koike-Tani M, Saitoh N, Takahashi T. Mechanisms underlying develop-
mental speeding in AMPA-EPSC decay time at the calyx of Held. J
Neurosci 25: 199–207, 2005.

Kopp-Scheinpflug C, Fuchs K, Lippe WR, Tempel BL, Rubsamen R.
Decreased temporal precision of auditory signaling in Kcna1-null mice: an
electrophysiological study in vivo. J Neurosci 23: 9199–9207, 2003.

1184 PHYSIOLOGICAL DEVELOPMENT OF DNLL NEURONS

J Neurophysiol • doi:10.1152/jn.00585.2011 • www.jn.org

 on F
ebruary 9, 2012

jn.physiology.org
D

ow
nloaded from

 



Kuwada S, Fitzpatrick DC, Batra R, Ostapoff EM. Sensitivity to interaural
time differences in the dorsal nucleus of the lateral lemniscus of the
unanesthetized rabbit: comparison with other structures. J Neurophysiol 95:
1309–1322, 2006.

Litovsky RY, Colburn HS, Yost WA, Guzman SJ. The precedence effect. J
Acoust Soc Am 106: 1633–1654, 1999.

Lohmann C, Friauf E. Distribution of the calcium-binding proteins parval-
bumin and calretinin in the auditory brainstem of adult and developing rats.
J Comp Neurol 367: 90–109, 1996.

Lorteije JA, Borst JG. Contribution of the mouse calyx of Held synapse to
tone adaptation. Eur J Neurosci 33: 251–258, 2011.

Lu T, Trussell LO. Inhibitory transmission mediated by asynchronous trans-
mitter release. Neuron 26: 683–694, 2000.

Magnusson AK, Kapfer C, Grothe B, Koch U. Maturation of glycinergic
inhibition in the gerbil medial superior olive after hearing onset. J Physiol
568: 497–512, 2005.

Markovitz NS, Pollak GD. Binaural processing in the dorsal nucleus of the
lateral lemniscus. Hear Res 73: 121–140, 1994.

Meffin H, Grothe B. Selective filtering to spurious localization cues in the
mammalian auditory brainstem. J Acoust Soc Am 126: 2437–2454, 2009.

Oliver DL. Ascending efferent projections of the superior olivary complex.
Microsc Res Tech 51: 355–363, 2000.

Oliver DL, Shneiderman A. An EM study of the dorsal nucleus of the lateral
lemniscus: inhibitory, commissural, synaptic connections between ascend-
ing auditory pathways. J Neurosci 9: 967–982, 1989.

Pecka M, Brand A, Behrend O, Grothe B. Interaural time difference
processing in the mammalian medial superior olive: the role of glycinergic
inhibition. J Neurosci 28: 6914–6925, 2008.

Pecka M, Siveke I, Grothe B, Lesica NA. Enhancement of ITD coding within
the initial stages of the auditory pathway. J Neurophysiol 103: 38–46, 2010.

Pecka M, Zahn TP, Saunier-Rebori B, Siveke I, Felmy F, Wiegrebe L,
Klug A, Pollak GD, Grothe B. Inhibiting the inhibition: a neuronal network
for sound localization in reverberant environments. J Neurosci 27: 1782–
1790, 2007.

Porres CP, Meyer EM, Grothe B, Felmy F. NMDA currents modulate the
synaptic input-output functions of neurons in the dorsal nucleus of the lateral
lemniscus in Mongolian gerbils. J Neurosci 31: 4511–4523, 2011.

Rautenberg PL, Grothe B, Felmy F. Quantification of the three-dimensional
morphology of coincidence detector neurons in the medial superior olive of
gerbils during late postnatal development. J Comp Neurol 517: 385–396,
2009.

Rietzel HJ, Friauf E. Neuron types in the rat lateral superior olive and
developmental changes in the complexity of their dendritic arbors. J Comp
Neurol 390: 20–40, 1998.

Roberts RC, Ribak CE. GABAergic neurons and axon terminals in the
brainstem auditory nuclei of the gerbil. J Comp Neurol 258: 267–280, 1987.

Rodriguez-Molina VM, Aertsen A, Heck DH. Spike timing and reliability in
cortical pyramidal neurons: effects of EPSC kinetics, input synchronization
and background noise on spike timing. PLoS One 2: e319, 2007.

Rogowski BA, Feng AS. Normal postnatal development of medial superior
olivary neurons in the albino rat: a Golgi and Nissl study. J Comp Neurol
196: 85–97, 1981.

Ryan AF, Woolf NK, Sharp FR. Functional ontogeny in the central auditory
pathway of the Mongolian gerbil. A 2-deoxyglucose study. Exp Brain Res
47: 428–436, 1982a.

Ryan AF, Woolf NK, Sharp FR. Tonotopic organization in the central
auditory pathway of the Mongolian gerbil: a 2-deoxyglucose study. J Comp
Neurol 207: 369–380, 1982b.

Saint Marie RL, Shneiderman A, Stanforth DA. Patterns of gamma-
aminobutyric acid and glycine immunoreactivities reflect structural and
functional differences of the cat lateral lemniscal nuclei. J Comp Neurol
389: 264–276, 1997.

Sanes DH, Song J, Tyson J. Refinement of dendritic arbors along the
tonotopic axis of the gerbil lateral superior olive. Brain Res Dev Brain Res
67: 47–55, 1992.

Scott LL, Mathews PJ, Golding NL. Posthearing developmental refinement
of temporal processing in principal neurons of the medial superior olive. J
Neurosci 25: 7887–7895, 2005.

Seidl AH, Grothe B. Development of sound localization mechanisms in the
mongolian gerbil is shaped by early acoustic experience. J Neurophysiol 94:
1028–1036, 2005.

Shneiderman A, Oliver DL, Henkel CK. Connections of the dorsal nucleus
of the lateral lemniscus: an inhibitory parallel pathway in the ascending
auditory system? J Comp Neurol 276: 188–208, 1988.

Shneiderman A, Stanforth DA, Henkel CK, Saint Marie RL. Input-output
relationships of the dorsal nucleus of the lateral lemniscus: possible sub-
strate for the processing of dynamic spatial cues. J Comp Neurol 410:
265–276, 1999.

Siveke I, Pecka M, Seidl AH, Baudoux S, Grothe B. Binaural response
properties of low-frequency neurons in the gerbil dorsal nucleus of the
lateral lemniscus. J Neurophysiol 96: 1425–1440, 2006.

Smith DI, Kraus N. Postnatal development of the auditory brainstem response
(ABR) in the unanesthetized gerbil. Hear Res 27: 157–164, 1987.

Smith PH, Joris PX, Yin TC. Anatomy and physiology of principal cells of
the medial nucleus of the trapezoid body (MNTB) of the cat. J Neurophysiol
79: 3127–3142, 1998.

Taschenberger H, von Gersdorff H. Fine-tuning an auditory synapse for
speed and fidelity: developmental changes in presynaptic waveform, EPSC
kinetics, and synaptic plasticity. J Neurosci 20: 9162–9173, 2000.

Tollin DJ, Yin TC. Interaural phase and level difference sensitivity in
low-frequency neurons in the lateral superior olive. J Neurosci 25: 10648–
10657, 2005.

Vater M, Braun K. Parvalbumin, calbindin D-28k, and calretinin immuno-
reactivity in the ascending auditory pathway of horseshoe bats. J Comp
Neurol 341: 534–558, 1994.

Vater M, Covey E, Casseday JH. The columnar region of the ventral nucleus
of the lateral lemniscus in the big brown bat (Eptesicus fuscus): synaptic
arrangements and structural correlates of feedforward inhibitory function.
Cell Tissue Res 289: 223–233, 1997.

Winer JA, Larue DT, Pollak GD. GABA and glycine in the central auditory
system of the mustache bat: structural substrates for inhibitory neuronal
organization. J Comp Neurol 355: 317–353, 1995.

Wu SH, Kelly JB. In vitro brain slice studies of the rat’s dorsal nucleus of the
lateral lemniscus. II. Physiological properties of biocytin-labeled neurons. J
Neurophysiol 73: 794–809, 1995.

Yang L, Pollak GD. The roles of GABAergic and glycinergic inhibition on
binaural processing in the dorsal nucleus of the lateral lemniscus of the
mustache bat. J Neurophysiol 71: 1999–2013, 1994.

Yin TC, Chan JC. Interaural time sensitivity in medial superior olive of cat.
J Neurophysiol 64: 465–488, 1990.

Zurek PM. The Precedence Effect. New York: Springer, 1987, p. 85–105.

1185PHYSIOLOGICAL DEVELOPMENT OF DNLL NEURONS

J Neurophysiol • doi:10.1152/jn.00585.2011 • www.jn.org

 on F
ebruary 9, 2012

jn.physiology.org
D

ow
nloaded from

 





3 Long lasting inhibition in the

DNLL

Contributions

Julian Ammer (J.J.A.) and Felix Felmy (F.F.) conception and design of research;

J.J.A. performed experiments; J.J.A. analyzed data; J.J.A. and F.F. interpreted re-

sults of experiments; J.J.A. prepared figures; J.J.A. and F.F. drafted manuscript;

J.J.A. and F.F. edited and revised manuscript.

Acknowledgements

We thank Benedikt Grothe for generous support and helpful discussions, Martin

Stemmler for helpful discussions and George Pollak for comments on the manuscript.

This work was funded by DFG FE789/2-1 and the Elisabeth and Helmut Uhl Foun-

dation.

36



Activity-dependent inhibition gates information in

an echo processing circuit

Ammer J.J.1,2, Felmy F.1,3

1 Division of Neurobiology, Department for Biology II, Ludwig-Maximilians University Munich,

Großhaderner Straße 2 2, D-82152 Planegg-Martinsried, Germany
2 Graduate School of Systemic Neuroscience Munich D-82152 Planegg-Martinsried, Germany
3 Bioimaging Center, D-82152 Planegg-Martinsried, Germany

Abstract

The auditory system selectively suppresses the directional information of echoes to

achieve accurate sound localization in reverberant environments. The initial step

in this process is mediated by persistent GABAergic inhibition in the dorsal nu-

cleus of the lateral lemniscus (DNLL) that suppresses responses to trailing sounds

for tens of milliseconds. Here, we identify the cellular mechanisms in Mongolian

gerbils that flexibly control the duration of inhibition in the DNLL depending on

presynaptic activity. Activity-dependent GABA spillover and asynchronous release

translate high presynaptic firing rates into a prolongation of GABAergic IPSCs.

Passive integration of hyperpolarizing inhibition additionally prolongs IPSPs de-

pending on the conductance amplitude, due to the non-linear membrane relaxation

between GABA-reversal and resting potential. The resulting IPSP efficiently sup-

presses action potential generation for a duration matching in vivo findings. Thus,

these cellular mechanisms work in synergy to achieve an activity-dependent control

of inhibition that gates information during the categorization of echoes.
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Introduction

In reverberant environments, the auditory system suppresses the directional infor-

mation of echoes to localize primary sound sources faithfully. Psychophysically,

this selective filtering is known as the precedence effect1. The initial step in the

physiological implementation of this process is thought to take place in the cir-

cuitry of the dorsal nucleus of the lateral lemniscus (DNLL)2−5. The DNLL gen-

erates a GABAA-receptor mediated persistent inhibition (PI) that outlasts a leading

sound stimulus long enough to inhibit responses to lagging reverberant sounds in

the contralateral DNLL2−5. Depending on the intensity of the leading sound, the

duration of PI is dynamically adjusted acting like a variable gate to suppress activity

in the DNLL for up to 60 ms3−5. However, how this PI is generated on a cellular

level is still unclear. As there is no prolonged activity after a sound stimulus in the

presynaptic DNLL2,3,5, there is no continuous inhibitory input that could cause the

PI. Rather, the GABAA-receptor mediated inhibition has to be effective for tens of

millisecond after the last presynaptic action potential (AP).

Generally, duration and effectiveness of neuronal inhibition depend on synaptic

as well as on intrinsic membrane properties. Binding of transmitter to an inhibitory

receptor channel shunts excitation by increasing the conductance of the cell mem-

brane for the open time of the receptor6,7. The duration of transmitter action can

be prolonged by activity-dependent processes such as transmitter spillover 8−12 and

asynchronous release12−15. If inhibition is hyperpolarizing, the intrinsic filter prop-

erties of the membrane can lead to an inhibitory postsynaptic potential (IPSP) that

lasts longer than the receptor opening7,16,17.

In adult DNLL neurons, both synaptic and membrane time constants are too fast

to explain the in vivo duration of PI18. This discrepancy raises the general question,

how efficient long lasting inhibition is achieved in a fast spiking neuron with a fast

synaptic input. As one possible solution, activity-dependent synaptic mechanisms
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have been proposed in juvenile gerbils to translate the high firing rates in DNLL

neurons into a prolonged inhibitory output signal19.

Here, we identify several factors that are essential to generate long lasting inhibi-

tion in mature DNLL neurons. First, transmitter spillover and asynchronous release

prolong the decay of GABAergic IPSCs in a graded and activity-dependent manner.

Second, passive integration prolongs IPSPs preferentially for slow IPSCs in an am-

plitude dependent manner, indicating that a recruitment of more GABAergic inputs

automatically leads to longer lasting inhibition. And finally, the negative GABA

reversal potential leads to hyperpolarizing IPSPs which are far more effective in

suppressing action potentials than mere shunting inhibition.

Results

GABAergic inhibition is hyperpolarizing in DNLL neurons

PI in vivo is caused by GABAergic inhibition via the commissure of Probst (CP)

that competes with incoming excitation from lower brainstem nuclei (Fig. 1a). As

the reversal potential of an inhibitory synapse influences how inhibition affects the

computations in the postsynaptic neuron20, we first determined the GABAergic re-

versal potential (EGABA) in the DNLL (Fig. 1d-f). To get electrical access to the

neuron without altering the internal chloride concentration ([Cli]) we used Grami-

cidin perforated-patch recordings and altered the holding potential in current-clamp.

GABAergic IPSPs evoked via the CP (Fig. 1b,c) had an EGABA of −91.3±2.4 mV

(n = 8, Fig. 1d), which is about 15 mV lower than the average membrane potential

of −76.2±0.8 mV (n = 47). Thus, in line with the generally negative reversal poten-

tials for inhibition in the auditory brainstem and midbrain21, GABAergic inhibition

is hyperpolarizing in the DNLL. As [Cli] at GABAergic synapses not only controls

EGABA, but additionally influences the kinetics of the receptor and thus the duration
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Figure 1: The GABA reversal potential in DNLL neurons is hyperpolarizing. (a) Simplified DNLL circuit with main
glutamatergic and GABAergic connections in red and blue. Other projections were omitted for clarity. CP = commissure
of Probst, LL = lateral lemniscus, LSO/MSO = lateral/medial superior olive, IC = inferior colliculus. Inset: Recording
configuration with patch electrode in the DNLL and stimulation electrode in the CP. (b) Perforated-patch recording of a P25
neuron. The membrane potential was altered with constant current injections and IPSPs were stimulated via the CP. Traces
at resting membrane potential in red. (c) IPSP amplitudes were fitted with a linear function versus the holding potential to
calculate the GABA reversal potential (EGABA). (d) Pooled data of measured reversal potential and corresponding estimated
chloride concentration. Open symbols P18/19 n = 5, gray closed symbols P25 - 32 n = 3, average black closed symbols. Data
are given as mean ± sem.

of inhibition22, all subsequent recordings were performed with the estimated [Cli]

of 4.5 mM (Fig. 1d).

IPSC decay depends on presynaptic activity

The duration of PI in vivo depends on the intensity of the leading sound representing

the primary sound source. One possible mechanism for this dependency would be a

prolongation of the GABAergic inhibitory postsynaptic current (IPSC) decay after

increased presynaptic activity. Accordingly, we asked whether presynaptic activity

adjusts GABAergic decay kinetics in the DNLL at P30 - 35 where in vivo physiol-

ogy is fully developed23 by using in vivo -like stimulation frequencies of 10−400
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Figure 2: GABA decay kinetics are modulated by presynaptic activity. (a) IPSCs were evoked at stimulation frequencies
of 10 - 400 Hz with 2 - 20 stimuli. Shown are responses to 20 pulses at 100 (top) and 250 Hz (bottom). Black traces are
averages of the 4 single trials in gray. Artifacts are removed for clarity. (b) Aligned average decays after 20 pulses at different
frequencies depict increased summation and prolonged decays for higher frequencies. Traces are averages of 4 repetitions.
Inset shows last amplitude normalized traces. (c) IPSCs in response to 2, 10 and 20 pulses at 250 Hz. The inset shows last
amplitude normalized traces. (d) Summary plot of decay time constants vs. stimulation frequency. The decays of the IPSCs
after the stimulation trains were fitted with a bi-exponential function and a weighted decay time (τw) constant was computed.
Single cells gray symbols (n = 9), averages black. (e) For the 20 pulse trains, the envelope amplitude was analyzed as total
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Hz (Fig. a,b) applied with 2, 10 or 20 pulses (Fig. 2c). The IPSC decay was similar

for 2 pulses across all frequencies (4.4±0.6 ms at 10 Hz to 5.5±0.7 ms at 400 Hz,

ANOVA p = 0.95, n = 9, Fig. 2d) as well as for all pulse numbers tested at 10 Hz

(4.4±0.6 ms for 2 and 20 pulses at 10 Hz, ANOVA p = 0.995, n =9). However, an

activity-dependent IPSC prolongation was observed with increasing pulse number

at higher frequencies. At 400 Hz the IPSC decay increased twofold from 2 to 20
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pulses (ANOVA p = 0.004, n = 9). This effect is even stronger with 2 mM extra-

cellular calcium ([Ca2+
o ], Fig. S1). Thus, even if the synaptic kinetics alone can

not directly explain the whole range of PI duration in vivo3,5, the activity-dependent

prolongation of the GABAergic IPSCs might contribute to the generation of long

lasting inhibition in the DNLL. At other inhibitory synapses, such a prolongation

has been attributed to transmitter spillover, asynchronous release and desensitiza-

tion with subsequent reopening of receptors11−15,24.

Parallel to the IPSC prolongation, summation of IPSCs progressed during trains

and increased with frequency. IPSCs did not sum at 10 Hz but displayed a 1.7 fold

build-up during a 400 Hz train (Fig. 2e) even though individual IPSC amplitudes

showed depression during the stimulation trains (Fig. 2f). Thus, repetitive stimu-

lation leads to IPSC summation and prolongation in an activity-dependent manner,

thereby enhancing the inhibitory power at higher frequencies.

Spillover and asynchronous release prolong the IPSC during high activity

If transmitter spillover between GABAergic synapses in the DNLL contributes to

the IPSC prolongation, recruiting more presynaptic fibres should prolong the IPSC

decay11. To test this prediction, we evoked IPSCs of different amplitudes within

the same cells (Fig. 3a). The decay after single stimuli was unaffected by the

increase in amplitude (Fig. 3b, linear correlation coefficient r = 0.09, p = 0.54,

n = 50 IPSCS from 18 cells). In contrast, IPSC decays after 400 Hz trains were

prolonged with increasing final amplitude (Fig. 3b, linear correlation coefficient r =

0.59, p = 0.00002, n = 57 IPSCs from n = 18 cells), indicating an activity-dependent

induction of spillover.

In case of spillover, transmitter still binds to receptors during the decaying phase

of the IPSCs. This late binding should be reduced in the presence of a low-affinity

GABAA antagonist, like TPMPA, as such antagonists compete more efficiently for
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Figure 3: Spillover and asynchronous release contribute to activity-dependent IPSC prolongation. (a) GABAergic IPSCs
evoked with different stimulation intensities in response to 1 (top) and 20 pulses at 400 Hz (bottom). Traces are averages
of 2 - 5 repetitions. Different gray values signify different intensities. Insets: Amplitude normalized IPSCs. (b) Top: IPSC
decays of the cell in (a) vs. IPSC amplitude. Bottom: IPSC decay vs. amplitude for pooled data (SP: 50 IPSCs in 17 cells
correlation coefficient r = 0.088 p = 0.54; 400 Hz: 57 IPSCs in 18 cells, correlation coefficient r = 0.59, p = 0.00002) (c) IPSC
before (black) and after (red) bath application of 200 µM TPMPA in response to 400 Hz stimulation. Traces are averages of
2 repetitions. Inset shows last amplitude normalized traces. (d) Effect of TPMPA on IPSC amplitudes of single (SP) and 20
pulses at 250 Hz and 400 Hz. Bars represent average values, open symbols single cells (n = 11, paired t-tests SP p = 0.0003,
250 Hz p = 0.0009, 400 Hz p = 0.002) (e) Effect of TPMPA on IPSC decay (paired t-tests SP p = 0.43, 250 Hz p = 0.040, 400
Hz p = 0.016). (f) IPSCs before (black) and after bath application of 200 µM EGTA-AM (blue). Traces are averages of 4
repetitions. (g) Effect of EGTA-AM on IPSC amplitude (n = 9 -10, paired t-tests SP p = 0.004, 250 Hz p = 0.0009, 400 Hz p
= 0.0002 and (h) IPSC decay (paired t-tests SP p = 0.23, 250 Hz p = 0.054, 400 Hz p = 0.011). (i) IPSCs recorded in 200 µM
TPMPA (red) and after additional application of 200 µM EGTA-AM (blue). Traces are averages of 4 repetitions. (j) Effect
of EGTA-AM on IPSC amplitude after pre-application of 200 µM TPMPA (n = 7-9,paired t-tests SP p = 0.006, 250 Hz p =
0.001, 400 Hz p = 0.0002) and (k) decay (n = 7 - 9, paired t-tests SP p = 0.39, 250 Hz p = 0.13 400 Hz p = 0.04). Data are
given as mean ± sem. 43
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binding sites when transmitter concentration is low11,12,25. Thus, we tested whether

TPMPA application accelerated IPSC decay (Fig. 3c-e). 200 µM TPMPA reduced

the IPSC amplitude of single pulses (to 20% of control) and after train stimulation

(to 40% of control, Fig. 3d). In contrast to single pulses, the decay after train stim-

uli was significantly accelerated (from 10.0±1.1 to 8.7±0.9 ms at 400 Hz paired

t-test p = 0.016, 9.0±0.9 to 7.9±0.6 ms at 250 Hz, p = 0.04, Fig. 3e). Additionally,

TPMPA also reduced depression or even revealed facilitation (Fig. S2). This change

in short-term plasticity might reflect relief from saturation or desensitization26, but

in any case reveals strong maintained transmitter release during trains. This strong

release increases the probability of spillover of excess transmitter from the synaptic

cleft during times of high presynaptic activity11,27.

Having established the contribution of spillover, we next tested the role of asyn-

chronous release during the activity-dependent IPSC prolongation. The presence of

asynchronous release was assessed with application of the calcium chelator EGTA-

AM to reduce the intracellular accumulation of calcium during trains28. 200 µM

EGTA-AM effectively reduced IPSC amplitudes (to 50% for SP paired t-test p =

0.004; 39% for 250 Hz, p = 0.0008; 42% for 400 Hz, p = 0.0002, Fig. 3f,g), sug-

gesting micro-domain coupling of synaptic release at GABAergic synapses in the

DNLL29. Additionally, EGTA-AM accelerated IPSC decays after train stimulation

(Fig. 3h, from 7.4± 0.9 to 5.8± 0.7 ms at 250 Hz, paired t-test p = 0.054 and

from 9.5± 1.4 to 6.7± 0.9 ms at 400 Hz, p = 0.011). As buffering calcium by

EGTA-AM also reduces overall transmitter release and thus reduces spillover at the

same time as asynchronous release, we repeated the application of EGTA-AM with

prior block of the spillover component by TPMPA (Fig. 3i-k). Again, EGTA-AM

decreased IPSC amplitude (Fig. 3l, SP to 47%, paired t-test p = 0.0060; 250 Hz

to 40%, p = 0.0014; 400 Hz to 40%, p = 0.0002) and lead to a small acceleration

in IPSC decay after train stimulations (Fig. 3m, from 7.9± 1.0 to 7.1± 1.2 ms at
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250 Hz, paired t-test p = 0.13; 8.2± 0.7 to 7.0± 0.9 at 400 Hz, paired t-test p =

0.04). From this additive action of TPMPA and EGTA-AM we conclude that both

spillover and asynchronous release prolong the IPSC decay during increased presy-

naptic activity. Although the pharmacological alterations in the decay time constant

described here appear small, their contribution to the PI will in the following be

shown to be substantial.

Passive integration prolongs inhibition

How synaptic inputs influence the output of a neuron depends on how synaptic

currents are converted into postsynaptic potentials. To investigate this conversion,

the same GABAergic input was recorded in voltage- and current-clamp in a given

DNLL neuron. These recordings allow to directly compare the decay time constants

of IPSCs and IPSPs (Fig. 4a,b). IPSPs were generally slower than corresponding

IPSCs (Fig. 4c, paired t-tests for 100 Hz p = 0.009, 250 Hz p = 0.001, 400 Hz p =

0.002). Yet, the prolongation was not equal for all stimuli, but seemed to be stronger

for higher stimulation frequencies (Fig. 4c). Interestingly, the difference between

IPSP and IPSC decay correlated with the peak membrane potential of the IPSPs

(Fig. 4d, linear correlation r = -0.79, p = 0.000005). Thus, stronger hyperpolariza-

tion causes longer lasting IPSPs, an effect not explained by the intrinsic membrane

properties of DNLL neurons (Fig. S3).

To investigate the dependence of IPSP duration on the membrane potential more

systematically, we injected artificial conductances (IPSGs) with different ampli-

tudes and decay time constants spanning the physiological parameter space. For

the same maximal conductance, more slowly decaying conductance waveforms

caused slower IPSPs (Fig. 4e). Strikingly, increasing the maximal conductance

for IPSGs with the same decay time constant also prolonged the resulting IPSP

(Fig. 4f) thereby leading to an equivalent relationship between IPSP time course
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Figure 4: Integration of GABAergic
IPSCs prolongs inhibition. (a+b)
GABAergic inputs recorded in voltage-
and current-clamp (VC, CC) in the
same neuron. Traces show responses
to 20 pulses at 100 Hz (a) and 400 Hz
(b). Top: IPSCs, Bottom: IPSPs. Sin-
gle trials in gray, averages in black. (c)
IPSP vs. IPSC decay. Gray symbols
represent single values, black symbols
averages across n = 8 cells (paired t-
tests IPSPs vs. IPSCs for 100 Hz p
= 0.009, 250 Hz p = 0.001, 400 Hz
p = 0.002). (d) The τw difference be-
tween IPSP and IPSC vs. membrane
potential, linear correlation coefficient
r = -0.79, p = 0.000005, fit not shown.
(e) IPSPs in response to IPSGs (gGABA)
with different decay kinetics. Voltage
traces are averages of 5 sweeps. The
bi-exponential decay consists of τ f ast =
5ms, τslow = 20 ms fractionfast = 0.7
(τw = 9.5 ms) (f) IPSPs in response
to the bi-exponentially decaying con-
ductance with amplitudes of 10 and 90
nS. Inset shows amplitude normalized
traces. (g) The difference in half-decay
times of IPSPs/IPSGs (tIPSP/2,tIPSG/2)
vs. membrane potential. Dotted lines
represent single cells, solid lines and
closed circles average data of n = 14
cells. (h) tIPSP/2 vs. conductance am-
plitude, same data as in (g). (i) Aver-
age tIPSP/2 vs. conductance decay (τw

IPSG) for the 10 and 90 ns conductance,
n = 14. Data are given as mean ± sem.
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and membrane potential as for the synaptic events (Fig. 4d,g). Thus, the correlation

between IPSP prolongation and membrane potential is caused by a conductance am-

plitude dependent mechanism (Fig. 4h). This amplitude dependence was stronger

for slower IPSGs (for τ = 5 ms from 8.4±0.3 ms at 10 nS to 11.7±0.3 ms at 90 nS,
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Kruskall-Wallis p = 2e-08; for τ = 20 ms from 19.9±0.8 ms at 10 nS to 36.7±1.3

ms at 90 nS, Kruskall-Wallis p = 2e-15, n = 14). Thus, small differences in synaptic

kinetics result in large differences in IPSP duration, at least for large conductance

amplitudes (Fig. 4i). As IPSCs in the DNLL usually have bi-exponential decays, we

also injected bi-exponentially decaying IPSGs. The resulting IPSPs are slower than

expected from the linear relationship between mono-exponential ISPG and IPSP

decays. Thus bi-exponentially decaying IPSCs might constitute an efficient way of

prolonging the resulting IPSP.

To understand the mechanism underlying the conductance amplitude dependent

IPSP prolongation we simulated a passive cell membrane with a capacitance, a leak

conductance (gleak) and a GABA conductance (gGABA). Applying the same IPSG

waveforms as in the conductance clamp measurements to this simple model (Fig.

5a) reproduced the experimental results unexpectedly well (Fig. 5b). This similarity

implies that DNLL neurons integrate inhibition passively, which is in accord with

the largely passive membrane dynamics between EGABA and the resting membrane

potential (Fig. S3). Therefore, active membrane properties are not required to cause

the IPSP prolongation. The mechanism that underlies the IPSP prolongation is the

non-linearity in the equilibrium potential between gGABA and gleak for increasing

gGABA (Fig. 5c). This relationship leads to a saturation of IPSP amplitude when

increasing gGABA and also influences IPSP dynamics. Because of the non-linearity,

an equal change in gGABA causes a smaller change in the equilibrium potential when

initial gGABA is high than when initial gGABA is low. Even if the responses to the

IPSGs are solely computed on the basis of the equilibrium potential, IPSPs are

prolonged for larger gGABA (Fig. 5d).

Experimentally, the non-linearity in the equilibrium potential can be demon-

strated by applying slowly decaying linear conductance ramps (Fig. 5e). Here,

an acceleration in the voltage response during the linearly decreasing gGABA would
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Figure 5: The equilibrium potential between resting and GABA conductance influences the IPSP shape (a) Simulations were
performed with a simple circuit representing the passive membrane with capacitance Cm = 80 pF, gleak = 9.1 nS, Eleak = -75
mV and a GABAergic conductance with EGABA = -90 mV and variable gGABA. Voltage traces are model responses to IPSGs
with decay time constants of 5 (black and gray) and 20 ms (red and light red) and amplitudes of 10 and 90 nS. (b) The half-
decay (tIPSP/2) of the IPSPs vs. conductance amplitude (gGABA). Continuous lines represent model responses, connected
symbols average values of DNLL data. (c) Equilibrium potential (Vequ = (gleak ∗Eleak + gGABA ∗EGABA)/(gleak + gGABA))
between gGABA and gleak as a function of gGABA. The inset shows dVequ/dgGABA . (d) Comparison of model response
with response computed with equilibrium potential. Inset shows amplitude normalized traces computed with the equilibrium
potential. (e) Response of a DNLL neuron to a conductance that ramps linearly from 90 nS to 0 nS in 1 s. The black trace
represents average of 10 single trials in gray. (f) The voltage response during the ramp in (e) vs. the conductance of the ramp
stimulus. Black trace represents the average of n = 8 neurons in gray, the neuron in (e) is shown in dark gray, the dotted line
is the prediction computed with Vequ with average gleak = 10.9 nS and Vm = - 78.3 of the 8 recorded neurons.

be predicted from the equilibrium potential. Indeed, the voltage responses were

markedly non-linear in all cases (Fig. 5f) and followed the prediction of the equi-

librium potential calculated with the measured input resistance and resting potential

of these neurons. Thus, this non-linearity within the equilibrium potential under-
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lies the conductance amplitude dependent IPSP prolongation. These results suggest

that integration of inhibition in DNLL neurons is largely passive and depict a gen-

eral mechanism by which IPSPs can be prolonged in neurons with fast membrane

time constants.

Inhibition in vitro matches PI duration

In the DNLL, GABAergic inhibition after a leading tone suppresses the response

to a lagging tone that is excitatory when played alone3−5. As the contralateral

DNLL is not persistently active to provide continuous inhibitory input for the tens

of milliseconds of PI5,30, the inhibition has to be effective for a long time after the

last presynaptic AP. Accordingly, we asked whether such a long lasting inhibitory

action can be achieved by synaptically evoked inhibition in our slice preparation.

Evoked GABAergic IPSPs were paired with an injection of an excitatory conduc-

tance train that was just supra-threshold when presented alone (Fig 6a). To de-

termine the underlying GABAergic conductances, we recorded IPSCs to identical

stimulation at different membrane potentials (Fig. 6b). Effectiveness of AP sup-

pression was quantified as the time of 50% AP probability after the last stimulation

pulse (Fig 6a). On average, APs were suppressed for 22± 3 ms by a conductance

of 44.9± 6.5 nS with a τw of 8.8± 1.0 ms (n = 9). The range of AP suppression

of 13 to 38 ms fits well to the PI in vivo3−5. Analysis of the stimulated conduc-

tances indicated that their decay and amplitude might determine AP suppression

(Fig. 6c, linear correlation coefficient decay r = 0.7, p = 0.005, amplitude r = 0.3, p

= 0.3). To systematically investigate the contributions of these conductance param-

eters on AP suppression, injections of artificial conductances resembling a typical

IPSC train with variable decays were used (Fig. 6d). Increasing the conductance

amplitude for a given decay caused longer and more effective AP suppression (Fig.

6d,e, eg. from 16.6± 2.7 at 10 nS to 56.7± 3.6 ms at 90 nS for τ = 20 ms, n =
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Figure 6: Suppression of APs by GABAergic inhibition in vitro matches PI in vivo. (a) The excitatory conductance (gexc)
was scaled to evoke APs with every EPSG pulse and shifted 5 ms relative to the GABAergic input stimulated with 20 pulses
at 400 Hz (stim). AP probability (PAP) was computed from 10 repetitions at each time shift. Inset: maximal time of 50% AP
suppression (t50%PAP) for n = 10 neurons. (b) gGABA determined from a linear fit to IPSC amplitudes recorded at different
holding potentials. Traces are averages of 4 repetitions. (c) t50%PAP vs. decay and gGABA for 14 conditions in 10 neurons.
(d) AP suppression by artificial gGABA scaled to final amplitudes of 10 - 90 nS with decays time constants of 5 - 20 ms and
EGABA = -90 mV. Excitation was shifted relative to inhibition in 2.5 ms increments. Traces show AP suppression by 30 and
90 nS with τ = 20 ms. PAP for τ = 20 ms and gGABA from 10 to 90 nS. (e) t50%PAP for different decays vs. gGABA. Dotted
lines represent single cells, solid lines average data, n = 9. The blue circle represents average of stimulated GABA input, with
τw = 8.8± 1.0 ms. (f) t50%AP for 10 and 90 ns vs. conductance decay, n = 10 for 0 ms decay, n = 9 for all other decays.
Kruskall-Wallis for 10 nS p =0.000004, for 90 nS p = 4 e-15. Average stimulated value in blue with gGABA = 44.9±6.5 nS.
Data are given as mean ± sem.
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9, Kruskall-Wallis p = 0.0000002). Slower decays generally produced longer AP

suppression (eg. 14.8± 1.6 for τ = 5 ms vs. 46.2± 3.4 ms for τ = 20 ms at 50

nS, Kruskall-Wallis p = 0.00005). The difference in duration of AP suppression

between the different underlying conductance decays was enhanced for large con-

ductance amplitudes (Fig. 6f). A conductance waveform with instantaneous decay

caused only very short AP suppression (4.8± 1.1 ms at 90 nS) suggesting only a

minor role for the membrane time constant in PI. From the comparison of AP sup-

pression by synaptically stimulated and artificial inhibition (Fig. 6e,f) we propose

that the conductance clamp technique is an adequate tool to study the integration of

inhibition in DNLL neurons. Taken together, an AP suppression that matches PI in

vivo can be achieved in vitro. Furthermore, these experiments suggest that the am-

plitude and the decay time constants of the inhibitory conductance, which we have

shown to influence the IPSP shape, also determine the duration of AP suppression.

Given the large variability of IPSC decays in the DNLL (τw = 3− 25 ms), we

tested the range of possible AP suppression using conductances with the fastest and

the slowest decaying phase (Fig. 7a,b). The slow decay produced a suppression of

more than the sampled interval of 82 ms at 90 nS in 7 of 10 neurons. The fastest

decay suppressed APs for only 15±1 ms. Hence, prolonging synaptic mechanisms

are crucial to generate an inhibitory conductance that can suppress APs for a phys-

iologically relevant duration. To assess the effect of spillover and asynchronous

release on PI in vitro, we compared the effect of conductance waveforms reflect-

ing the IPSC kinetics under control conditions and after treatment of TPMPA and

EGTA-AM (Control τw = 10.1 ms, TPMPA τw = 8.9 ms, EGTA-AM τw = 6.9 ms,

Fig. 7c). The different waveforms produced similar AP suppression for a 10 nS

conductance (siControl 5.6±1.0 ms; siTPMPA 5.1±1.0 ms; siEGTA 5.1±1.0 ms,

Kruskall Wallis p = 0.81), consistent with the finding that decay has little effect on

AP suppression for small conductances (Fig. 7d). For a 90 nS conductance AP
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Figure 7: Interaction of synaptic and integrational properties determine the PI duration. (a) AP suppression by the fastest
recorded IPSC decay in gray (τw = 3.4 ms) and the slowest (τw = 24.8) decay in black for gGABA = 90 nS. (b) t50%PAP for n
= 10 neurons. t50%PAP of the slow decay time constant was out of the sampled range (indicated by red dotted line) for 7 of
10 neurons. Therefore no average was computed. Bars represent average values, open circles single cells. (c) Bi-exponential
conductances simulating mean effects of TPMPA in red (siTPMPA, τw = 8.4 ms) and EGTA in blue (siEGTA, τw = 6.9 ms)
were compared with a decay simulating control conditions in black (siControl τw = 10.1 ms). Traces show responses to
siControl and siEGTA at gGABA = 90nS. (d) t50%PAP for n = 10 neurons. Kruskal-Wallis for 10 nS data p = 0.81, for 90 nS
data p = 0.036, Dunn-Holland-Wolfe significantly different pair siEGTA vs. siControl. (e) For siControl EGABA was set to
the resting potential of the neuron to produce shunting inhibition. Traces show responses to identical gGABA (siControl, 90nS)
with either hyperpolarizing (black) or shunting EGABA (gray). (f) t50%PAP for n = 11 neurons. The 10 nS gGABA in shunting
condition failed to reduce PAP below 50% in 10 out of 11 neurons and made computation of t50%PAP impossible (indicated
by values below zero, red dotted line). Paired t-test for 90 nS data p = 9e-07. Data are given as mean ± sem.

suppression differed significantly (siEGTA 29.0±2.4 ms, siTPMPA 32.0±2.7 ms

siControl 39.3±2.5 ms, n = 10 Kruskall Wallis p = 0.036). The ∼3 ms difference in

decay times between siControl and siEGTA translated into a ∼10 ms difference in
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AP suppression. Thus, little differences in IPSC decay can have large effects on AP

suppression. The activity-dependent prolongation of the IPSC is therefore ideally

suited to adjust the AP suppression time in the DNLL.

Next, we asked whether hyperpolarization due to the low EGABA in the DNLL is

crucial for the PI. AP suppression by an identical GABA conductance (siControl)

was assessed once with hyperpolarizing and once with shunting inhibition (Fig.

7e,f). For a 10 nS conductance, shunting inhibition failed to effectively suppress

APs in 10 out of 11 cells. At 90 nS, shunting inhibition reduced AP suppression

from 38.4± 1.3 ms to 20.4± 1.4 ms (n = 11, paired t-test p = 9e-07) compared

with hyperpolarizing inhibition. Thus, the negative EGABA works together with the

passive integration mechanism to produce long lasting hyperpolarizing IPSPs that

effectively suppresses APs for a duration matching PI in vivo.

Discussion

Synaptic and integrative properties of DNLL neurons in vitro lead to AP suppression

in a graded, activity-dependent manner - matching the in vivo description of PI and

therefore likely represent the cellular basis of the precedence effect1−5. To achieve

PI, the interplay between the activity-dependent IPSC prolongation by spillover and

asynchronous release and the passive integration based on a hyperpolarizing inhi-

bition are crucial. This interplay is required as the fast kinetics of a single IPSC

and membrane time constants in the mature DNLL cannot explain the duration of

PI in vivo18. Our mechanistic description furthermore explains the sound intensity

dependence of PI3−5. In general, the interactions between different cellular mecha-

nisms described here might be relevant for a dynamic control of inhibition in other

fast spiking neurons.

Both spillover and asynchronous release contribute to the IPSC prolongation in

an activity-dependent manner in the DNLL. Consistent with GABA spillover onto
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neighboring or extra-synaptic receptors the IPSC decay depended on the stimula-

tion frequency and amplitude and accelerated after application of the low-affinity

antagonist TPMPA9,11,12,25,27,31−33. Additionally, a facilitation of GABAergic IP-

SCs was revealed under TPMPA indicating saturation and/or desensitization of

receptors11,12,26. This facilitation of GABAergic IPSCs indicates a shift from low to

high release probability during strong synaptic activity. It is safe to assume that the

spillover-supporting facilitation is driven by accumulation of presynaptic calcium.

This accumulation links the basis for spillover with the increase of asynchronous re-

lease during high frequency stimulation that was revealed by applying EGTA-AM.

Buffering the internal calcium with EGTA-AM also reduced IPSC amplitudes in

the DNLL. This finding indicates a rather loose micro-domain coupling between

calcium influx and vesicle release29. Loose micro-domain coupling is ideally suited

to support calcium build-up and therefore facilitation as well as asynchronous re-

lease and is thus a basis for the generation of the activity-dependent prolongation of

GABAergic IPSCs in DNLL neurons.

The duration of inhibitory action not only depends on IPSC kinetics but also on

their integration. In contrast to other neurons in the auditory brainstem that express

prominent Ih and/or low threshold calcium currents34−37, the membrane proper-

ties of DNLL neurons are largely passive between the resting potential and EGABA.

Thus, in DNLL neurons, hyperpolarizing inhibition is passively integrated. If inte-

gration is passive and the membrane dynamics are slower than the synaptic kinetics,

the difference between IPSC decay time constants is reduced resulting in slow IP-

SPs with little variation17. Conversely, IPSC kinetics dominate the IPSP shape if

they are slower than the membrane dynamics and their temporal differences are

maintained38,39. Here, however, we find that IPSPs can decay more slowly than

either membrane or synaptic decay time constants, and the temporal differences be-

tween underlying IPSCs are even enhanced. This dynamic prolongation is made
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possible by the similarity between the IPSC decay and the membrane time constant

and is caused by the non-linearity in the equilibrium potential between gleak and

gGABA. During passive integration of strong hyperpolarizing inhibition this non-

linearity influences the decay of the IPSP, given that the membrane time constant is

not substantially slower than the synaptic conductance decay. On the circuit level

this mechanism can be exploited in two ways. First, the number of simultane-

ously activated presynaptic inhibitory neurons defines the size of the compound in-

hibitory conductance and therefore influences the time course of the IPSP. Second,

a frequency-dependent build-up in synaptic conductance of a single presynaptic

neuron prolongs the IPSP. Therefore, an increase in sound intensity, which recruits

more presynaptic neurons and leads to higher firing rates40,41 most efficiently ex-

ploits the passive integration to prolong the inhibitory action of the IPSP. As both

the amplitude and the decay of gGABA in the DNLL depend on the presynaptic ac-

tivity level, an integration mechanism that is sensitive to exactly these parameters

seems ideal to enable a graded encoding of stimulus strength.

The supra-threshold responses in the DNLL are, like the IPSP duration, affected

by the decay and amplitude of gGABA. The high variability in the activity-dependent

IPSC decay in our data leads to a wide range of possible durations of AP suppres-

sion. This variability might constitute specific adaptations of synaptic properties in

different cells, consistent with the large heterogeneity of PI duration in vivo3−5. To

explain at least the upper 50% of in vivo PI durations the activity-dependent IPSC

prolongation is required3−5. Spillover and asynchronous release add substantially

to this activity-dependent AP suppression, despite their apparently small effects on

the level of IPSC decays. Thus, these synaptic mechanisms play a crucial phys-

iological role in generating PI. Furthermore, hyperpolarizing inhibition generates

far longer and more effective AP suppression than mere shunting inhibition. Taken

together, inhibition in the DNLL is adjusted to the physiologically relevant duration
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by passive integration of hyperpolarizing inhibition with activity-dependent synap-

tic kinetics.

Together with previous work18,19, our findings elucidate the cellular physiology

of the neuronal circuitry generating PI. Incoming excitatory signals of ascending

binaural pathways are amplified in an NMDA-dependent manner generating high

firing rates in DNLL neurons18,19,42. The high firing rates in turn prolong the synap-

tic output of these neurons by pre- and postsynaptic mechanisms, based on asyn-

chronous release and spillover. This activity-dependent prolongation is enhanced

by the passive integration of hyperpolarizing GABAA-receptor mediated IPSCs in

DNLL neurons. These interacting mechanisms allow to shift the sensory processing

time scale from the microsecond to the millisecond level from the superior olivary

complex to the DNLL and the inferior colliculus. Overall, the properties of this

GABAergic input combined with the reciprocal inhibition between the two hemi-

spheres implement a flexible, context-dependent gating mechanism for the catego-

rization of echoes43,44.

Methods

Preparation

Slice preparation followed the same procedure as described previously18. Mongo-

lian gerbils (Meriones uniguiculatus) of postnatal day (P) 18 - 32 (Fig. 1) or P

30 - 36 (all other recordings) were first anesthetized and then decapitated and the

brains were removed in cold dissection solution containing (in mM) 50 - 120 su-

crose, 25 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 Na2HPO4, 3 MgCl2, 0.1 CaCl2, 25

glucose, 0.4 ascorbic acid, 3 myo-inositol and 2 Na-pyruvate, pH 7.4 when bubbled

with carbogen (95% O2 and 5% CO2). 200 µm thick transverse slices containing

the DNLL were cut with a vibratome (VT1200S Leica, Wetzlar, Germany). Slices
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were incubated for 45 minutes at 36°C in extracellular recording solution (same as

dissection solution but with 125 mM NaCl, no sucrose, 1.2 mM CaCl2 and 1 mM

MgCl2). All recordings were carried out at near physiological temperature (34-

36°C). Cells were visualized and imaged with a microscope (BX50WI, Olympus,

Hamburg, Germany) equipped with gradient contrast illumination (Luigs and Neu-

mann, Ratingen, Germany) and a TILL Photonics system (Gräfelfing, Germany)

composed of an Imago CCD-camera, a Poly-IV monochromator, and its control

unit.

Electrophysiology

Recordings were performed using an EPC10/2 amplifier (HEKA Elektronik, Lam-

brecht, Germany). Data were acquired at 20-50 kHz and filtered at 3 kHz. In

whole-cell or perforated-patch current-clamp, the bridge balance was set to 100%

after estimation of the series resistance and was monitored repeatedly during record-

ings. Series resistance in whole-cell voltage-clamp was compensated to a residual

3 MΩ. For current-clamp and some voltage-clamp recordings the internal record-

ing solution consisted of (in mM): 145 K-gluconate, 4.5 KCl, 15 HEPES, 2 Mg-

ATP, 2 K-ATP, 0.3 Na2-GTP, 7.5 Na2-Phospocreatine, 5 K-EGTA (pH 7.3). For all

other voltage-clamp recordings the internal solution consisted of (in mM): 140 Cs-

gluconate, 15 HEPES, 3 Mg-ATP, 0.3 Na2-GTP, 5 Na2-Phospocreatine, 5 Cs-EGTA,

2.5 QX-Cl, 2 TEA-Cl (pH 7.3). A liquid junction potential of 17 mV was calcu-

lated and corrected for according to Barry (1994)45,with a custom written IGOR Pro

script on the basis of ion concentrations rather than their activity. 100 µM Alexa

488 or 568 were added to the internal solution to control for cell type and location.

For perforated-patch recordings the pipette was tip-filled with a solution contain-

ing (in mM) 130 KCl, 10 HEPES, 5 NaCl, 3 MgCl2, 0.5 K-EGTA and then back

filled with the same solution containing 50 µg Gramicidin A (Merck, Darmstadt,
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Germany) and 100 µM Alexa 568. Fluorescence was monitored repeatedly to de-

tect break-through of the membrane. Recordings were started usually 10 - 15 min

after formation of the gigaseal when the access resistance decreased below 50 MΩ

and canceled immediately when a breakthrough was detected by either fluorescence

inside the cell or a sudden change in GABAergic current.

Synaptic GABAergic currents were stimulated using a concentric bipolar stimu-

lation electrode (MCE-100X, Scientific Products or CBASD75, FHC) placed in the

commissure of Probst with a biphasic voltage deflection of 200 µs total duration

triggered by the EPC10/2, conveyed and adjusted with a stimulator unit (model

2100, A-M Systems, Scientific Products) and isolated pharmacologically in the

presence of 0.5 µM Strychnine, 20 µM DNQX and 10 µM R-CPP. GABAergic

currents were measured at holding potentials of -75 (Fig. 2c-h) or -50 mV (all other

recordings unless otherwise stated). Simulated conductances were injected with

an analogue conductance amplifier (SM-1, Cambridge Conductance, Royston, UK)

and the reversal potential of inhibition and excitation were set to the measured -90

and estimated 0 mV respectively. Conductance waveforms were either constructed

artificially in IGOR Pro (WaveMetrics, Lake Oswego, OR) or GABAergic currents

were cut, scaled and re-sampled where necessary. Gaps in recorded IPSCs due to

artifact removal (<1 ms) were filled with linear extrapolations. Constructed wave-

forms had decays with mono-exponential τs of 5, 10 and 20 ms or bi-exponential

decay time constants constructed from different contributions of τs of 5 and 20

ms in Figures 4-6 and following the mean values after pharmacological manipu-

lation (Fig. 3) in Figure 7. Excitatory conductances were constructed according

to the AMPA kinetics in P23 - 26 animals18 with decay time constants of τ = 2

ms. For AP suppression experiments the conductance amplitude was scaled to be

just supra-threshold in evoking one AP with every EPSG waveform. If paired with

synaptically evoked GABAergic input, AP probability was sampled every 5 ms with
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10 repetitions at 2 time-shifts with an inter-trial interval of 15 s. If paired with in-

jection of artificial inhibitory conductance AP probability was sampled every 2.5

ms with 10 repetitions at 4 time-shifts and inter-trial intervals of 2 s. All waveforms

were scaled and saved as HEKA templates using a customary modified PPT script

(Mendez and Würriehausen, Göttingen).

Data Analysis

Electrophysiological data were analyzed with custom written procedures in IGOR

Pro. Time constant, input resistance and capacitance of the neurons were deter-

mined as described previously18 from the deflection of and an exponential fit to the

voltage response response to small, hyperpolarizing current injections. The internal

chloride concentration was calculated from the GABA reversal potential using the

Nernst equation.

The voltage current relationship was measured for current injections from -250

to 800 pA in 50 pA increments. Peak and steady state values of the hyperpolarizing

responses were analyzed and the off responses were fitted with a mono-exponential

function. Firing rates are given as AP number/time. Adaptation was analyzed at

half maximal frequency in the range of up to 800 pA as interspike interval (ISI) vs

ISI number. The weighted decay time constant for the IPSC/Ps was derived from a

bi-exponential function fit to the average data of 2-4 traces and calculated according

to τw = τ1×amplitude(τ1)
amplitude + τ2×amplitude(τ2)

amplitude . As IPSPs for very slow and large artificial

conductances could not be fitted with an exponential function, the time from peak

IPSP/G to their half maximal amplitude was analyzed. To investigate build-up dur-

ing trains of stimulated IPSCs, the envelope amplitude was analyzed as total peak

current after each individual stimulation pulse normalized to the first IPSC peak. To

estimate the synaptic depression during the train, the amplitude of the individual IP-

SCs was analyzed and normalized to the first IPSC amplitude. AP probability was
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computed from 10 repetitions at each time shift. To get a robust measure to for the

duration of AP suppression, the time to 50% AP suppression (t50%PAP) was mea-

sured from the peak of conductance injection or from 1 ms after the last stimulation

pulse until PAP crossed 0.5. According to Ohms law, conductance amplitude was

estimated from the slope of a linear fit to the IPSC amplitudes recorded at different

holding potentials.

Statistical Analysis

Data are presented as mean ± sem. We used the Jarque- Bera test to test for normal

distribution and the Bartlett‘s test to test for equal variances. Significance was deter-

mined with either paired or unpaired Student‘s t-test, Wilcoxon rank-sum test or for

more than two groups of samples with either ANOVA or Kruskall-Wallis followed

by a post-hoc Tukey-Kramer or Dunn-Holland-Wolfe test.

Model circuit

A passive circuit was modeled in Igor Pro according to dV
dt = gGABA×(V −EGABA)−

gleak×(V −Eleak)/Cm with Cm = 80 pF, gleak = 9.1 nS, Eleak = -75 MOhm, and vari-

able gGABA as indicated with EGABA = -90 mV The equilibrium potential between

gleak and gGABA was computed with Vequ =(gleak×Eleak+gGABA×EGABA)/(gleak+

gGABA).

60



References

1 Litovsky, R. Y., Colburn, H. S., Yost, W. A. & Guzman, S. J. : The precedence effect. J Acoust

Soc Am 106, 1633-1654 (1999)

2 Yang, L. & Pollak, G. D. : The roles of GABAergic and glycinergic inhibition on binaural process-

ing in the dorsal nucleus of the lateral lemniscus of the mustache bat. J Neurophysiol 71, 1999-2013

(1994)

3 Yang, L. & Pollak, G. D. : Features of ipsilaterally evoked inhibition in the dorsal nucleus of

the lateral lemniscus. Hear Res 122, 125-141 (1998)

4 Burger, R. M. & Pollak, G. D. : Reversible inactivation of the dorsal nucleus of the lateral lemnis-

cus reveals its role in the processing of multiple sound sources in the inferior colliculus of bats. J

Neurosci 21, 4830-4843 (2001)

5 Pecka, M., Zahn, T. P., Saunier-Rebori, B., Siveke, I., Felmy, F., Wiegrebe, L., Klug, A., Pol-

lak, G. D. & Grothe, B. : Inhibiting the inhibition: a neuronal network for sound localization in

reverberant environments. J Neurosci 27, 1782-1790 (2007)

6 Fatt P., P. & Katz, B. : The effect of inhibitory nerve impulses on a crustacean muscle fibre. J

Physiol 121, 374-389 (1953)

7 Coombs, J. S., Eccles, J. C. & Fatt, P. : The inhibitory suppression of reflex discharges from

motoneurones. J Physiol 130, 396-413 (1955)

8 Alger, B. E. & Nicoll, R. A. : Pharmacological evidence for two kinds of GABA receptor on

rat hippocampal pyramidal cells studied in vitro. J Physiol 328, 125-141 (1982)

9 Overstreet, L. S. & Westbrook, G. L. : Synapse density regulates independence at unitary in-

hibitory synapses. J Neurosci 23, 2618-2626 (2003)

10 Farrant, M. & Nusser, Z. : Variations on an inhibitory theme: phasic and tonic activation of

61



Long lasting inhibition in the DNLL

GABA(A) receptors. Nat Rev Neurosci 6, 215-229 (2005)

11 Balakrishnan, V., Kuo, S. P., Roberts, P. D. & Trussell, L. O. : Slow glycinergic transmission

mediated by transmitter pooling. Nat Neurosci 12, 286-294 (2009)

12 Tang, Z.-Q. & Lu, Y. : Two GABAA responses with distinct kinetics in a sound localization

circuit. J Physiol 590, 3787-3805 (2012)

13 Lu, T. & Trussell, L. O. : Inhibitory transmission mediated by asynchronous transmitter re-

lease. Neuron 26, 683-694 (2000)

14 Hefft, S. & Jonas, P. : Asynchronous GABA release generates long-lasting inhibition at a hip-

pocampal interneuron-principal neuron synapse. Nat Neurosci 8, 1319-1328 (2005)

15 Best, A. R. & Regehr, W. G. : Inhibitory regulation of electrically coupled neurons in the in-

ferior olive is mediated by asynchronous release of GABA. Neuron 62, 555-565 (2009)

16 Eccles, J. C. : The Ferrier Lecture: The Nature of Central Inhibition. Proceedings of the Royal So-

ciety of London 153, 445-476 (1961) 17 Hardie, J. B. & Pearce, R. A. : Active and passive membrane

properties and intrinsic kinetics shape synaptic inhibition in hippocampal CA1 pyramidal neurons.

J Neurosci 26, 8559-8569 (2006)

18 Ammer, J. J., Grothe, B. & Felmy, F. : Late postnatal development of intrinsic and synaptic

properties promotes fast and precise signaling in the dorsal nucleus of the lateral lemniscus. J Neu-

rophysiol 107, 1172-1185 (2012)

19 Porres, C. P., Meyer, E. M. M., Grothe, B. & Felmy, F. : NMDA currents modulate the synaptic

input-output functions of neurons in the dorsal nucleus of the lateral lemniscus in Mongolian gerbils.

J Neurosci 31, 4511-4523 (2011)

20 Vida, I., Bartos, M. & Jonas, P. : Shunting inhibition improves robustness of gamma oscillations

in hippocampal interneuron networks by homogenizing firing rates. Neuron 49, 107-117 (2006)

62



21 Friauf, E., Rust, M. B., Schulenborg, T. & Hirtz, J. J. : Chloride cotransporters, chloride home-

ostasis, and synaptic inhibition in the developing auditory system. Hear Res 279, 96-110 (2011)

22 Houston, C. M., Bright, D. P., Sivilotti, L. G., Beato, M. & Smart, T. G. : Intracellular chlo-

ride ions regulate the time course of GABA-mediated inhibitory synaptic transmission. J Neurosci

29, 10416-10423 (2009)

23 Seidl, A. H. & Grothe, B. : Development of sound localization mechanisms in the mongolian

gerbil is shaped by early acoustic experience. J Neurophysiol 94, 1028-1036 (2005)

24 Jones, M. V. & Westbrook, G. L. : Desensitized states prolong GABAA channel responses to

brief agonist pulses. Neuron 15, 181-191 (1995)

25 Szabadics, J., Tamás, G. & Soltesz, I. : Different transmitter transients underlie presynaptic cell

type specificity of GABAA,slow and GABAA,fast. Proc Natl Acad Sci U S A 104, 14831-14836

(2007)

26 Chanda, S. & Xu-Friedman, M. A. : A low-affinity antagonist reveals saturation and desensi-

tization in mature synapses in the auditory brain stem. J Neurophysiol 103, 1915-1926 (2010)

27 Satake, S., Inoue, T. & Imoto, K. : Paired-pulse facilitation of multivesicular release and in-

tersynaptic spillover of glutamate at rat cerebellar granule cell-interneurone synapses. J Physiol

590, 5653-5675 (2012)

28 Atluri, P. P. & Regehr, W. G. : Delayed release of neurotransmitter from cerebellar granule

cells. J Neurosci 18, 8214-8227 (1998)

29 Eggermann, E., Bucurenciu, I., Goswami, S. P. & Jonas, P. : Nanodomain coupling between

Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nat Rev Neurosci 13, 7-21

(2012)

30 Siveke, I., Pecka, M., Seidl, A. H., Baudoux, S. & Grothe, B. : Binaural response properties

of low-frequency neurons in the gerbil dorsal nucleus of the lateral lemniscus. J Neurophysiol 96,

63



Long lasting inhibition in the DNLL

1425-1440 (2006)

31 Diamond, J. S. : Neuronal glutamate transporters limit activation of NMDA receptors by neuro-

transmitter spillover on CA1 pyramidal cells. J Neurosci 21, 8328-8338 (2001)

32 DiGregorio, D. A., Nusser, Z. & Silver, R. A. : Spillover of glutamate onto synaptic AMPA

receptors enhances fast transmission at a cerebellar synapse. Neuron 35, 521-533 (2002)

33 Crowley, J. J., Fioravante, D. & Regehr, W. G. : Dynamics of fast and slow inhibition from

cerebellar golgi cells allow flexible control of synaptic integration. Neuron 63, 843-853 (2009)

34 Bal, R. & Oertel, D. : Hyperpolarization-activated, mixed-cation current (I(h)) in octopus cells of

the mammalian cochlear nucleus. J Neurophysiol 84, 806-817 (2000)

35 Leao, K. E., Leao, R. N., Sun, H., Fyffe, R. E. W. & Walmsley, B. : Hyperpolarization-activated

currents are differentially expressed in mice brainstem auditory nuclei. J Physiol 576, 849-864

(2006)

36 Felix 2nd, R. A., Fridberger, A., Leijon, S., Berrebi, A. S. & Magnusson, A. K. : Sound rhythms

are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. J Neurosci 31,

12566-12578 (2011)

37 Kopp-Scheinpflug, C., Tozer, A. J. B., Robinson, S. W., Tempel, B. L., Hennig, M. H. & Forsythe,

I. D. : The sound of silence: ionic mechanisms encoding sound termination. Neuron 71, 911-925

(2011)

38 Curtis, D. R. & Eccles, J. C. : The time courses of excitatory and inhibitory synaptic actions.

J Physiol 145, 529-546 (1959)

39 Xie, R. & Manis, P. B. : Target-Specific IPSC Kinetics Promote Temporal Processing in Au-

ditory Parallel Pathways. J Neurosci 33, 1598-1614 (2013)

40 Yang, L. & Pollak, G. D. : GABA and glycine have different effects on monaural response

64



properties in the dorsal nucleus of the lateral lemniscus of the mustache bat. J Neurophysiol 71,

2014-2024 (1994)

41 Kelly, J. B., Buckthought, A. D. & Kidd, S. A. : Monaural and binaural response properties

of single neurons in the rat’s dorsal nucleus of the lateral lemniscus. Hear Res 122, 25-40 (1998)

42 Kelly, J. B. & Kidd, S. A. : NMDA and AMPA receptors in the dorsal nucleus of the lateral

lemniscus shape binaural responses in rat inferior colliculus. J Neurophysiol 83, 1403-1414 (2000)

43 Meffin, H. & Grothe, B. : Selective filtering to spurious localization cues in the mammalian

auditory brainstem. J Acoust Soc Am 126, 2437-2454 (2009)

44 Mysore, S. P. & Knudsen, E. I. : Reciprocal inhibition of inhibition: a circuit motif for flexi-

ble categorization in stimulus selection. Neuron 73, 193-205 (2012)

45 Barry, P. H. : JPCalc, a software package for calculating liquid junction potential corrections

in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction poten-

tial measurements. J Neurosci Methods 51, 107-116 (1994)

65



Long lasting inhibition in the DNLL

Supplementary Figures

a b

10ms

300pA

2mM Ca
2+

1.2mM Ca
2+

 

50ms

300pA
20ms

30

20

10

0τ w
 d

ec
ay

 (
m

s)

S
P  

25
0H

z  
40

0H
z  

2

1

0am
pl

. (
nA

)  1.2 mM Ca
2+

 2 mM Ca
2+

Figure S1: Effect of external calcium on IPSC prolongation (a) GABAergic IPSCs in response to a single pulse and 20
pulses at 400 Hz evoked in 2 mM (gray) and 1.2 mM Ca2+ (black). Train traces are averages of 4 repetitions. Artifacts are
removed for clarity. Inset shows amplitude normalized traces. (b) Amplitudes (top) and decay time constants (bottom) for
single pulses (SP), 250 Hz and 400 Hz trains in 1.2 mM and 2 mM Ca2+ (n = 9, Wilcoxon Rank Sum test for SP, p = 0.004,
paired t-test for 250 Hz p = 0.56, 400 Hz p = 0.95, paired t-tests for decay SP: p = 0.06, 250 Hz p = 0.017, 400 Hz p = 0.022,
n = 9).
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Figure S2: Short-term synaptic plasticity under TPMPA (a) GABAergic IPSCs in response to a 250 Hz train with 20 pulses
before (black) and after (red) TPMPA application. Traces are averages of 2 - 4 repetitions. Inset: traces normalized to first
IPSC amplitude to depict the difference in build-up between the two conditions. (b) Amplitudes of individual IPSCs to pulses
18 - 20 were averaged and normalized to the first IPSC amplitude to get a measure for the steady state depression during the
stimulation trains (ssIPSC). Dashed line indicates unity. The data points fall below the unity line, indicating less depression
or even facilitation under TPMPA treatment. Gray area indicates synaptic depression (ssIPSC < 1). (c) Envelope amplitude
of pulses 18 - 20 normalized to the first IPSC amplitude. Dashed line indicates unity.
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Figure S3: Intrinsic membrane properties of DNLL neurons (a) Voltage responses of a mature DNLL neuron to 500 ms
pulses from -250 pA to 800 pA. Sub-threshold- and first spiking response black, half-maximal response dark gray. (b) For
negative deflections peak (open circles) and steady state potentials (closed circles) were analyzed for n = 22 neuron (dashed
and solid lines for peak and steady state) and the offset was fitted with an exponential function (τo f f ). (c) Frequency-current
relationship. The black symbols display average of n = 16 neurons in gray. (d) Inter spike intervals (ISI) analyzed at half
maximal frequency versus ISI number for n = 16 cells. (e) Voltage responses to hyperpolarizing pulses between 25 and 500
ms. (f) The offset was fitted with an exponential function (τo f f ) and plotted vs. pulse duration.
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4 Discussion

During late postnatal developmental, DNLL neurons turn into fast spiking neurons

that respond with very precisely timed APs to incoming signals. Importantly, this

fast processing does not contradict the creation of PI. High presynaptic firing fre-

quencies together with the activity-dependent properties of the GABAergic synap-

tic transmission and the postsynaptic integration produce a long lasting inhibition.

These specific cellular properties enable DNLL neurons to take part in signal pro-

cessing on very different time scales. On the one hand, they are able to transmit

information fast and reliably. On the other hand, they display a prolonged filter

property that adds context to the processing of binaural cues.

4.1 Implications of fast and precise signaling in

the mature DNLL

The first study (section 2) revealed that both intrinsic and synaptic kinetics in DNLL

neurons accelerate during late postnatal development. The APs become very nar-

row. Moreover, DNLL neurons develop into extremely fast spiking neurons with

sustained firing rates of more than 400 Hz in some cases. Even at such high rates,

DNLL neurons show little spike frequency adaptation. The fast AP generation to-

gether with the fast synaptic kinetics and membrane time constants leads to very

precise AP responses upon just-suprathreshold stimuli. This high speed and pre-
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cision is in line with the fast processing of stimuli in the DNLL in vivo (Siveke et

al., 2006; Siveke et al., 2008), but is in contrast to the in vitro characterization of

rat DNLL neurons that suggest slow excitation and moderate firing rates in DNLL

neurons (Fu et al., 1997; Wu and Kelly, 1995a).

What is the role of the fast and precise processing to which DNLL neurons are

tuned during development? Why create fast kinetics in neurons that serve to supply

such a slow signal as the PI? One reason may be the increased flexibility related to

the activity-dependent processes described in the second study (section 3) that will

be discussed in detail in section 4.2. Another reason is that the efferent projections

of the DNLL shape many response features in the IC. For this purpose reliable and

fast signalling is essential. In the IC, the excitation from the MSO and LSO and the

inhibition from the DNLL give the system a set of inputs with which various dif-

ferent and more complex response patterns can be built (Pollak et al., 2002). Some

IC neurons, for instance, display what has been called a de novo ILD sensitivity (Li

and Kelly, 1992; Burger and Pollak, 2001). In fact, the term de novo is misleading

as these neurons do not perform a novel ILD comparison. Instead, the DNLL im-

prints its "negative" ILD selectivity as inhibition on monaural excitation from the

CN (Park and Pollak, 1993; Burger and Pollak, 2001). Thus, the DNLL, which it-

self inherits its response properties from the LSO, imposes direction selectivity on

the "de novo" cells. Other IC neurons have response functions that are shifted in a

less drastic way by inhibitory DNLL inputs, or are entirely unaffected (Pollak et al.,

2002).

Thus, the DNLL shapes the response properties in the IC not only for the pro-

cessing of lagging sounds, but actively takes part in ITD and ILD processing on fast

time scales. In the case of ITD sensitivity, it has been shown that the tuning curves

in the DNLL are sharpened and mutual information is enhanced compared with the

MSO (Kuwada et al., 2006; Pecka et al., 2010). For ITD functions with higher best
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frequencies, the increase in information stems from an increase in dynamic range

(Pecka et al., 2010). It has been hypothesized that the reciprocal inhibition through

the commissure of Probst plays a part in reducing the trough response rates and

thus increases the dynamic range, but this has been difficult to demonstrate in vivo

(Siveke, 2007). Another possible mechanism to reduce trough rates may be the

convergence of multiple MSO neurons onto one DNLL neuron. Here, the low rates

during the troughs in the response curves may disappear through a postsynaptic

thresholding effect. A specific role of the NMDA receptor mediated current could

then be the selective amplification of supra-threshold responses. The non-linearity

of the NMDA receptor activation may be ideally suited to increase the response at

the peak of the response curve but leave the troughs unaffected. Whether this spe-

cific effect holds true needs further testing in in vivo experiments under application

of NMDA receptor antagonists. An amplification of firing rate, as proposed in the

first study here (section 2) and supported by Porres et al. (2011), can also be seen in

vivo (Siveke, unpublished results).

For ITD functions of neurons with low preferred frequency, the enhanced rep-

resentation in the DNLL is achieved through a reduction in the response rate vari-

ability from trial to trial compared to the MSO. In this case, the high fidelity of AP

generation in DNLL neurons may play a role in combination with an NMDA recep-

tor dependent effect. In vivo and in vitro data show that NMDA receptor mediated

current plays a pivotal part at maintaining the firing rates and reducing the response

variability (Siveke, unpublished results).

Taken together, the DNLL not only serves to slow down processing compared

to signaling in the SOC, but is capable of operating on a fast time scale. This fast

processing is a prerequisite to shape the processing of interaural disparity cues in

the IC.
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Synergistic actions as cellular mechanism of persistent inhibition

Figure 4.1: Circuit mechanisms that could create PI. 1. NMDA receptor mediated current amplifies
the rate coded signal from the SOC. 2. The output of the GABAergic synapse in the contralateral
DNLL is prolonged and increased in an activity-dependent manner. 3. The passive integration boosts
IPSP for strong inputs.

4.2 Synergistic actions as cellular mechanism of

persistent inhibition

The physiological hallmark of DNLL neurons is the persistent inhibition of activity

mediated by the contralateral DNLL after an ipsilateral sound stimulus. Previously,

slow kinetics of the GABAergic inhibition mediated by the DNLL projections via

the commissure of Probst have been proposed to be the cellular mechanism of PI

(Pecka et al., 2007).

Yet, the first study (section 2) shows that the GABAergic kinetics accelerate dur-

ing development and become too fast to explain the PI. In addition, it has to be

considered that the duration of the PI is not fixed, but depends on sound intensity

(Yang and Pollak, 1998; Pecka et al., 2007). This variable duration speaks against

a "hard coding" of synaptic kinetics to achieve the long lasting inhibition.

As a possible solution to this problem, this thesis together with the study of Por-
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res et al. (2011) suggests that multiple cellular mechanisms in the DNLL circuitry

interact to adjust the duration of inhibition in an activity-dependent manner (Figure

4.1). Specifically they are the following: High response rates in DNLL neurons sup-

ported by an NMDA receptor dependent input amplification (1), activity-dependent

processes at the pre- and postsynaptic side of the GABAergic synapse (2) and an in-

tegration mechanism that is sensitive to the amplitude and kinetics of the inhibitory

input (3).

4.2.1 NMDA receptor dependent input amplification

As described in section 4.1, NMDA receptor mediated current is able to boost re-

sponse rates in vivo and in vitro. In line with these results, it has been shown previ-

ously in rats (Kelly and Kidd, 2000) that blockade of NMDA receptors in the DNLL

reduces inhibition in the IC. Importantly, our data show that prolonged activity me-

diated by NMDA receptors in the DNLL after the offset of the sound stimulus is

not necessary to produce PI (Wu and Kelly, 1996; Kelly and Kidd, 2000). Rather,

the NMDA receptor component leads to sustained high firing rates (Porres et al.,

2011). These high rates are one prerequisite to trigger the activity-dependent mech-

anisms at the GABAergic synapse in the DNLL. Whether the same holds true for the

GABAergic synapse in the IC is speculative, but the data of Kelly and Kidd (2000)

suggest that a similar mechanism is feasible. Not all DNLL neurons or at least

not all excitatory synapses in our data of the first study (section 2) contain NMDA

receptors. However, whether this heterogeneity constitutes a functional difference

between different inputs from the SOC remains elusive.
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4.2.2 Synaptic mechanisms

The high firing rates that DNLL neurons can sustain are translated into a prolon-

gation of GABAergic IPSCs. We propose that spillover and asynchronous release

contribute to this graded, activity-dependent prolongation. These mechanisms are

not apparent after single stimulation pulses but build up during repetitive stimula-

tion. As discussed in the second study (section 3), the frequency dependence of the

IPSC decay, the amplitude dependence and the acceleration after application of the

low-affinity antagonist TPMPA are in line with transmitter spillover (Diamond and

Jahr, 1995; DiGregorio et al., 2002; Overstreet and Westbrook, 2003; Szabadics

et al., 2007; Balakrishnan et al., 2009; Crowley et al., 2009; Satake et al., 2012;

Tang and Lu, 2012).

Another possible explanation for the observed prolongation would be a pro-

gressing receptor desensitization during the stimulation train with subsequent re-

opening of receptors during the late phase of the IPSC (Jones and Westbrook,

1995). Desensitization would also explain the facilitation of release revealed after

TPMPA application (Chanda and Xu-Friedman, 2010). Yet, there are several argu-

ments that support spillover over desensitization. First, desensitization fails to ex-

plain the slowing of the decay upon recruitment of multiple inputs, which suggests

the involvement of transmitter pooling after spillover (Balakrishnan et al., 2009;

Tang and Lu, 2012). Second, the fact that there is a build-up of IPSCs during stimu-

lation trains rather than a depression under control conditions is better explained by

saturation than by desensitization. In case of desensitization, a decreasing number

of available receptors would be expected during the train which should lead to a

decreasing amplitude. The strong transmitter release during the stimulation trains

suggests an increased lifetime of transmitter in the cleft which could lead to late ac-

tivation of receptors during the IPSC and spillover of transmitter (Clements, 1996;

Nusser et al., 2001; Balakrishnan et al., 2009; Karayannis et al., 2010; Barberis et
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al., 2011).

The facilitation of release during trains is probably driven by accumulation of

intracellular calcium that also drives asynchronous release during high frequency

stimulation. Buffering intracellular calcium with EGTA-AM reduced IPSC ampli-

tudes as well as the decay time constants of IPSCs at high stimulation frequencies.

This acceleration occurred even after the pre-application of TPMPA to block the

spillover mediated current. This additive effect of the low affinity antagonist and

the calcium buffer supports the hypothesis that asynchronous release contributes

to the IPSC prolongation in the DNLL. Yet, the effect of asynchronous release on

the decay is not as strong as described at other synapses (Lu and Trussell, 2000;

Otsu et al., 2004; Hefft and Jonas, 2005; Maximov and Südhof, 2005; Best and

Regehr, 2009; Tang and Lu, 2012).

Although the change in synaptic kinetics in our data is rather modest, the resulting

prolongation of inhibition is substantial, as the synaptic decay can be shifted from

being faster than the membrane time constant to being slower. This shift enables an

effective prolongation of the IPSP with the mechanism discussed in section 4.2.3

and long lasting AP suppression. Thus, pre- and postsynaptic mechanisms seem

to work in synergy to create a GABAA receptor mediated IPSC, whose amplitude

and decay depend on the firing rate of single presynaptic neurons as well as on the

number of active presynaptic neurons.

4.2.3 Postsynaptic integration

As introduced in section 1.4, the influence of IPSC kinetics on the IPSP shape de-

pends on passive and active membrane properties. In the DNLL, the hyperpolariz-

ing inhibition is integrated largely passively. During passive integration, either the

kinetics of the synaptic conductance or the membrane time constant can dominate

the IPSP shape. The slower process controls the IPSP decay. When the membrane
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time constant is slower than the conductance decay, the decay of the IPSP follows

the membrane time constant. Thus, during conversion of IPSCs to IPSPs the differ-

ence between different synaptic time courses is reduced (Hardie and Pearce, 2006).

On the other hand, IPSC kinetics dominate the IPSP shape if the synaptic decay

time constant is larger than the membrane time constant (Curtis and Eccles, 1959;

Xie and Manis, 2013). In this case, differences in synaptic kinetics are preserved

on the level of the IPSP (Xie and Manis, 2013).

One interesting finding in our study is that IPSPs can decay more slowly than

expected from either membrane or synaptic decay time constants. We tested this in

more detail using artificial conductance injection and modeling and attributed it to a

conductance amplitude dependent mechanism. The non-linearity in the equilibrium

potential between leak and GABA conductance eventually leads to a saturation of

IPSP amplitude (Koch, 1999) and in our case also influences the IPSP dynamics.

A prerequisite for the influence of the equilibrium potential is that the membrane

time constant is not substantially larger than the conductance decay time constant.

Importantly, this mechanism becomes active before a saturation in IPSP amplitude

is reached and is observed for realistic conductance kinetics and amplitudes.

The amplitude dependence might help neurons to obtain a good population read-

out of presynaptic activity. Synchronous inputs would sum up and lead to an in-

creased conductance amplitude, thereby causing a longer lasting IPSP. A require-

ment for this interaction are inhibitory inputs that target the soma or cells that

are electrotonically compact enough to avoid a compartmentalization of synaptic

charge (Williams, 2004). In the DNLL, neurons are electrotonically relatively com-

pact (Ammer et al., 2012) and inhibitory inputs target mainly the soma and proximal

dendrites (Iwahori, 1986; Oliver and Shneiderman, 1989). As both the amplitude

and the decay of the GABA conductance in the DNLL depend on the level of presy-

naptic activity, an integration mechanism that is sensitive to exactly these parame-

75



Discussion

ters seems an ideal way to enable a graded encoding of stimulus strength.

The AP suppression in the DNLL depends, like the IPSP duration, on the kinet-

ics and amplitude of the GABA conductance. This result adds to the previously

reported dependence of AP suppression on the kinetics of the IPSC (Balakrishnan

et al., 2009; Tang and Lu, 2012).

As the IPSP shape seems largely dominated by the GABA conductance and a hy-

perpolarization alone leads to only a very short AP suppression, one might speculate

that the inhibition exerts its AP suppressing action mainly through shunting the ex-

citation. Yet, the shunting influence of the conductance alone is by far less effective

as when it is combined with a hyperpolarizing GABA reversal potential. The low

reversal potential in DNLL neurons is in line with the low inhibitory reversal po-

tential throughout the auditory brainstem (Ehrlich et al., 1999; Löhrke et al., 2005;

Magnusson et al., 2005; Milenkovic et al., 2007; Kopp-Scheinpflug et al., 2011),

which is often achieved by strong expression of KCC2 transporters (for review see

Friauf et al., 2011). In vivo, the contribution of the negative GABA reversal poten-

tial to AP suppression might be even more prominent, as hyperpolarization effec-

tively reduces activation of NMDA receptors that contribute to AP generation in the

DNLL (Wu and Kelly, 1996; Kelly and Kidd, 2000; Porres et al., 2011).

Taken together, interacting cellular mechanisms can explain the duration and the

activity-dependence of PI in vivo on the basis of the synaptic and intrinsic properties

of DNLL neurons. Thus, no sustained activity in the DNLL or lower nuclei is

necessary to explain PI. However, whether this mechanism is indeed used by the

DNLL circuit in vivo remains an open question. In vivo whole-cell recordings would

be necessary to get a definite answer. The most straightforward experiment would

be to record from a DNLL neuron while simultaneously increasing the intensity on

the ipsilateral ear. The prediction from our data would be that increased intensity on
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the ipsilateral ear would recruit more presynaptic neurons that additionally respond

with increased firing rates in the contralateral DNLL. Thus, presynaptic neurons

would sum their conductance in the ipsilateral postsynaptic DNLL neuron and cause

an increasingly stronger hyperpolarization. Along with this hyperpolarization, a

longer decay of the IPSP would be expected. It remains possible that in vivo the

underying mechanism is a prolonged activity in the contralateral DNLL. In this case,

an ongoing hyperpolarization that is continuously prolonged with sound intensity

would be expected.

4.3 Persistent inhibition and the precedence effect

The activity-dependence of inhibition in our in vitro data is in line with the in vivo

data in which a louder monaural sound or larger ILD on the ipsilateral ear leads to

longer PI (Yang and Pollak, 1998; Pecka et al., 2007). Therefore, why is the PI

activity-dependent at all? Would it not be better to have a constant delay for echo

suppression? One reasonable explanation for the intensity dependence would be

that louder sounds can also lead to stronger reflections. Thus, more inhibitory power

is needed to suppress those reflections. In the AP suppression experiments in section

3 as well as in in vivo experiments in gerbils (Pecka et al., 2007), the testing stimu-

lus that represents the lagging sound is kept constant while the leading stimulus is

increased. This is of course not a naturalistic experiment, as in a natural scene both

stimuli are interdependent. In psychophysical experiments, higher overall sound

intensity even causes lower echo thresholds, meaning that the lagging sound can

be localized earlier at higher overall sound levels (Shinn-Cunningham et al., 1993;

Litovsky et al., 1999). Even if many processing stages follow the DNLL and thus

these behavioral results cannot be linked directly to the DNLL physiology, it is

tempting to speculate why this could happen. One possibilty is that inhibition sat-
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urates prior to excitation. This imbalance would lead to shorter PI at high sound

intensity and thus maybe to a shorter echo threshold.

When the sound intensity on one ear is increased, the ILD is changed simultane-

ously. Higher ILDs and thus more lateral stimuli cause a longer PI and should - if the

percept was only based on the DNLL response - have a longer echo threshold. The

echo threshold should then decrease when the tone would arrive from a more frontal

position. This scenario does not hold true in behavioral experiments. The echo

threshold is equivalent even for echoes in the vertical midline and azimuth (Litovsky

and Yin, 1998a). This result lead the authors to speculate that a spectral, maybe

monaural component contributes to the precedence effect (Litovsky and Yin, 1998a;

Litovsky and Yin, 1998b). Zahn (2003), however, suggested in a modelling study

that the DNLL circuit is able to suppress responses to echoes even in the midline,

as long as the two hemispheric response curves of the LSO populations sufficiently

overlap.

Alternatively, one can argue that the long PI for lateral sounds makes sense as

this would just strongly suppress responses to echoes that come from the contralat-

eral hemifield. Such a sequence of sounds is likely caused by a reflection or in-

terference of sound sources and not, for instance, by a naturally occuring move-

ment (Meffin and Grothe, 2009). If the sound source moves gradually along the

azimuthal axis, it will cause slowly changing binaural cues that should not be sup-

pressed. In addition, directional information that comes from the opposite hemi-

field would be more distracting than directional cues from the vicinity of the pri-

mary sound source. Yet, as there is no indication of horizontal position on echo

threshold, it is unclear how this property relates to behavior. One concept to con-

sider is the complex effect the inhibition in the DNLL has on the response func-

tions in the IC. As already described in section 4.1, the DNLL shapes response

features in various ways in the IC. All neurons that are affected by the inhibitory
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input from the DNLL will change their response properties upon DNLL inactiva-

tion by a prior tone stimulus. The most drastic change is seen as a full disinhibi-

tion or full inhibition of IC neurons by a preceding stimulus (Bauer et al., 2000;

Burger and Pollak, 2001). As described previously (section 1.1.4.1), the disinhibi-

tion leads to additional activity in response to the lagging sound in a population of

IC neurons, which could be used as an identification signal for echoes in higher cen-

ters. Other IC neurons are expected to show a shift in their response function as they

are only gradually affected by the inhibition from the DNLL (Pollak et al., 2002;

Li and Pollak, 2013). How, and at which level this change in response features is

then finally read out and interpreted are open questions.

To demonstrate the involvement of the DNLL in the precedence effect, it would

be ideal to conduct behavioral experiments while controlling the DNLL activity.

For this purpose, viral expression of halorhodopsin would constitute a suitable tool.

Compared to classical tools such as lesioning and injections of kynurenic acid, ex-

pression of halorhodopsin has several advantages: First, DNLL neurons could be

repeatedly switched on and off by light. Second, this method is more selective and

does not interfere with information that is transmitted through fibers of passage.

However, lesioning the commissure of Probst in rats severely impaired the ability

to localize sounds with an increase of 22° in the minimal audible angle (Ito et al.,

1996). This result is promising and suggests that switching off the input from the

DNLL indeed hampers sound localization. Yet, the specific role of the DNLL in

echo suppression has yet to be demonstrated. Two possible experiments could be

conducted with the help of optogenetics. In the first experiment, the sound local-

ization performance of gerbils could be tested with and without optically silencing

the DNLL contralateral to the sound source. The light pulse would mimick the PI

that would have been caused by a preceding ipsilateral sound stimulus. If our hy-

pothesis about the role of the DNLL is correct, the optically silenced trials would
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correspond to simulated echoes and the localization performance should be ham-

pered. The second experiment could use the standard paradigm with a leading and

a lagging tone with ILDs favoring opposite hemifields. Here, the localization per-

formance for the lagging tone could be tested with or without optically silencing the

excitatory DNLL response to the first stimulus. This silencing would abolish the PI

in the contralateral DNLL, which would then be responsive to the trailing sound

and inhibit neurons in the IC. If our hypothesis is correct, localization performance

of the lagging sound should be enhanced in this scenario.

Another open question in this neural circuit is the role of glycinergic inhibition

from the LSO to both DNLL and IC (Glendenning et al., 1992; Saint Marie et al.,

1989; Oliver, 2000). The DNLL may be used as a model system to investigate how

two different inhibitory transmitter systems interact in one cell type, and the poten-

tially distinct physiologial functions they serve. Yang and Pollak (1994) showed in

bats that the gycinergic inputs in the DNLL contribute to the inhibition primarily

during the tone and only little to PI. This fact is intriguing, especially as the inhibi-

tion arrives during times when little incoming excitation is expected anyway as the

inhibition stems from the ipsilateral LSO. It might serve to enhance the representa-

tion of ILDs in the DNLL by reducing the firing rates for stimuli from the ipsilat-

eral hemifield. Alternatively, glycinergic inhibition could reset the DNLL activity

in case of a strong lagging stimulus. In this way the glycinergic inhibition could

constitute an additional switch with which the ipsilateral DNLL could be silenced

rapidly. This silencing would deprive the contralateral DNLL from its inhibition

and allow the new signal to be passed. The presence of this glycinergic inhibition

is especially interesting considering that it only exists for the LSO projections to

the DNLL and not for the MSO projections to the DNLL (Glendenning et al., 1992;

Oliver, 2000). An equivalent functional connection from the MSO would be in-

hibitory projections targeting the DNLL on the contralateral side. Yet, projections
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from the MSO to the DNLL seem to be predominantly ipsilateral (Kelly et al., 1998;

Siveke et al., 2006). By comparing the processing that takes place between MSO

and DNLL with that between LSO and DNLL, the role of this additional glycinergic

inhibitory input to the DNLL may become apparent.
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Nomenclature

AMPA 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid

AP action potential

AVCN anterior ventral cochlear nucleus

CN cochlear nucleus

DNLL dorsal nucleus of the lateral lemniscus

GABA γ -aminobutyric acid

IC inferior colliculus

ILD interaural level difference

IPSC inhibitory postsynaptic current

IPSP inhibitory postsynaptic potential

ITD interaural time difference

LNTB lateral nucleus of the trapezoid body

LSO lateral superior olive

MNTB medial nucleus of the trapezoid body

MSO medial superior olive

NMDA N-methyl-D-aspartate

PI persistent inhibition
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