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1. INTRODUCTION 

 

1.1 Biogenesis and function of microRNAs 
 

In the early 90s, Ambros and Ruvkun discovered that the gene lin-4 encodes for a 

small RNA which posttranscriptionally regulates the lin-14 gene and thereby 

mediates temporal development in Caenorhabditis elegans. Henceforward, a vast 

number of studies have been conducted and much effort has been spent to 

understand the biogenesis, the physiological effects and the mechanism of these tiny 

RNA molecules known as microRNAs (miRNAs). miRNAs are small non-coding 

RNAs of ~22 nucleotides which are broadly conserved and endogenously regulate 

gene expression in plants and animals. In the nucleus, they are transcribed mostly by 

RNA polymerase II, resulting in primary transcripts (pri-miRNAs), which can be up to 

one kilobase in length and contain one or more hairpin structures. These motifs are 

then recognized by a protein complex which amongst others consists of the RNase III 

endonuclease Drosha. This microprocessor generates a 60 – 70 nucleotide stem 

loop called precursor miRNA (pre-miRNA), which is actively transported into the 

cytosol via Ran-GTP and Exportin 5. In the cytoplasm, pre-miRNAs are recognized 

by another protein complex containing the RNase III endonuclease Dicer, which 

cleaves the pre-miRNA resulting in a ~22 nucleotide mature miRNA duplex. Only one 

strand of the miRNA:miRNA* (miR:miR*) duplex is usually incorporated into the RNA-

induced silencing complex (RISC) and thus biologically active. The passenger strand 

(miRNA*) is mainly degraded, whereas the single-stranded mature miRNA enables 

the RISC, which contains Argonaute proteins (Ago), to recognize and target 

respective mRNAs due to partial sequence complementarity between the miRNA and 

the 3’UTR of the mRNA. Thereby, a perfect match of the seed, i.e. nucleotides 2 – 7 

at the 5’ end of the miRNA, is crucial for the miRNA functioning. Gene expression 

can be subsequently inhibited by two main mechanisms: deadenylation of the polyA 

tail of the target mRNA, which in consequence leads to destabilization and 

degradation of the mRNA; and blockade of translation by hindering either initiation or 

elongation. Moreover, mRNAs bound to the RISC can be stored in P-bodies, where 

they are either recycled or degraded. One additional possibility, though unlikely in 

mammals due to inadequate base pairing, is mRNA cleavage. This mechanism 
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requires perfect base pairing as it is for instance the case for siRNA and therefore 

frequently occurs in plants, in which a sufficient complementarity between miRNAs 

and target mRNAs is commonly given. Apart from the described gene silencing 

functions, some miRNAs have also been reported to rather activate than inhibit gene 

expression by binding to the 5’UTR of mRNAs, to have decoy activity by binding to 

RNA-binding proteins, or to regulate gene transcription by interacting directly with the 

DNA. Although the exact mechanisms and the actual relevance of these emerging 

miRNA functions have to be elucidated, these findings illustrate the complexity of 

miRNA-regulated gene expression (Figure 1). (1-6)  
 

 
 

Figure 1. Biogenesis and function of microRNAs 

In the nucleus, miRNAs are transcribed as primary transcripts (Pri-miR) and further processed into precursor 
miRNAs (Pre-miR). Upon transport into the cytoplasm, the precursors are finally converted into mature miRNAs 
which are then biologically active. (Pol II = RNA polymerase II; DGCR8 = Di George syndrome critical region 8, 
also knowm as Pasha in Drosophila melanogaster; RISC = RNA-induced silencing complex) 
(Adapted from Iorio MV, Croce CM. EMBO molecular medicine. 2012 Mar;4(3):143-59. © 2012 by WILEY)



INTRODUCTION 

3 

 

1.2 Role of microRNAs in cancer 
 

miRNAs are often dysregulated in many types of cancer being either up- or down-

regulated. Differential miRNA expression patterns between cancerous and normal 

tissue further implicate that these tiny RNAs play a crucial role in tumorigenesis. 

Depending on their expression levels and their respective targets, miRNAs can be 

divided into two groups: tumor suppressor (tumor-suppressor-miRs) and oncogenic 

(onco-miRs) miRNAs, which target oncogenes and tumor suppressor genes, 

respectively. Examples of prominent tumor suppressor and oncogenic miRNAs 

including some selected dysregulations and validated targets are shown in Table 1.  

 

miRNA  Expression level Function  Validated targets  

miR-15a and 

miR-16-1 

low in CLL, multiple myeloma and 

prostate cancer 

tumor 

suppressor BCL2, MCL1, WT1 

let-7 family 

low in lung, colon, breast, ovarian 

and stomach cancer 

tumor 

suppressor 

KRAS, NRAS, CDK6, 

MYC 

miR-29 family 

low in CLL, AML, lymphoma, lung, 

liver and breast cancer 

tumor 

suppressor 

MCL1, CDK6, diverse 

DNMTs 

miR-34 family 

low in colon, lung, breast, kidney, 

pancreas, liver and bladder cancer 

tumor 

suppressor 

BCL2, MET, MYC, 

CDK4, CDK6 

miR-155 

high in CLL, AML, lymphomas, lung, 

colon and breast cancer oncogene SHIP1 

miR-17-92 

cluster 

high in lung, breast, colon, pancreas 

and stomach cancer oncogene BIM, PTEN, E2F1 

miR-21 

high in CLL, AML, breast, pancreas, 

lung, prostate and stomach cancer oncogene PTEN, PDCD4 

 
Table 1. Selected tumor suppressor and oncogenic miRNAs. Examples of tumor-suppressor-miRs and onco-
miRs and their respective mRNA targets are depicted in the table. 
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In cancer cells, the loss of tumor-suppressor-miRs can be achieved by many different 

mechanisms, such as mutation, deletion or epigenetic silencing via promoter 

methylation or histone deacetylation. Furthermore, defects in the miRNA processing 

machinery, e.g. a loss of Drosha or Dicer, can result in a deregulated miRNA 

expression. On the other hand, onco-miRs can be up-regulated by gene 

amplification, translocation or transcriptional activation leading to a decreased 

expression of target tumor suppressors. Finally, these alterations comprise a 

complex regulatory network of different miRNAs and target genes which facilitates 

oncogenesis by causing pleiotropic effects, such as enhanced genomic instability, 

proliferation, invasion and reduced apoptosis. (5-8) 
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1.3 miR-200c and breast cancer  
 

Breast cancer is the most common malignancy in women with 230,000 estimated 

new cases and 40,000 estimated deaths in the United States in 2012 (9). Even 

though early detection methods and treatment options greatly improved due to a 

better understanding of the underlying molecular mechanisms, resistance to classical 

chemotherapeutics is still a tremendous challenge for breast cancer therapy. About 

30% of all breast cancer patients who are successfully treated at early stages are 

suffering a relapse accompanied by metastasis and chemoresistance to classical 

drugs (10, 11). While the response rates for first-line chemotherapy including 

anthracyclines and taxanes are up to 70%, the response rate falls to only 20 to 30% 

after disease progression. Besides metastasis, this acquired chemoresistance is a 

major obstacle in the treatment of breast cancer (12, 13). Hence, an advancement of 

the treatment by avoiding drug resistance and a better prediction of chemotherapy 

efficacy would improve the clinical outcome for breast cancer patients. 

miRNAs are shown to be dysregulated in many cancers, such as breast, prostate, 

colon and lung. Thereby, miRNAs can function as onco-miRs or tumor-suppressor-

miRs depending on their respective target genes (3, 7). Previous studies have also 

shown that miRNAs are able to modulate the sensitivity of cancer cells to 

chemotherapeutic drugs and therefore contribute to the acquisition of 

chemoresistance (14-18).  

The human miR-200 family, which consists of miR-200a/b/c, miR-141 and miR-429, 

is located in two fragile chromosomal regions and can be divided into two seed-

clusters depending on the sequence of the seed region (Figure 2).  
 

 
Figure 2.  Chromosomal location and seed-clusters of the miR-200 family 
 
The miR-200 family displays two sequence clusters, which differ in only one single nucleotide (U to C) in the seed 
region: miR-200bc/429 (red) and miR-200a/141(blue). The human miR-200 family is located in two fragile 
chromosomal regions on 1p36.33 (miR-200b, miR-200a and miR-429) and 12p13.31 (miR-200c and miR-141). 
(Adapted from Uhlmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, Burmester S, et al. 
Oncogene. 2010 Jul 29;29(30):4297-306. © by Nature publishing group) 
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In breast cancer, the miR-200 family is known to be differentially expressed and 

several of its functions are well described. The miR-200 family, in particular  

miR-200c, has been reported to regulate epithelial-mesenchymal transition (EMT) by 

targeting ZEB1 and ZEB2, the transcriptional repressors of the epithelial marker  

E-cadherin (19-21). Hence, high miR-200c levels in cancer cells determine an 

epithelial phenotype, which is defined by an elevated E-cadherin expression, a low 

migratory capacity and a cobble-stone-like cell morphology (22-24). By the inhibition 

of EMT and the regulation of several other genes important for cell motility, such as 

FHOD1, PPM1F, MSN and FN1, miR-200c reduces the migration and invasion of 

cancer cells preventing tumor dissemination and metastases (25-29). It has also 

been shown that miR-200c links breast cancer stem cells with normal stem cells and 

that the down-regulation of the miR-200 family is required for the formation and 

maintenance of cancer stem cells (30, 31). Recent findings have furthermore 

suggested that a loss of miR-200c may regulate resistance to chemotherapeutics, 

such as paclitaxel or cisplatin (32, 33). However, an exact mechanism of miR-200c-

dependent acquired chemoresistance has yet to be elucidated. 
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1.4 The proto-oncogene KRAS and its regulation by m icroRNAs 
 

In cancer, many cellular processes, such as differentiation, growth, migration and 

survival, are regulated by GTPases of the RAS family. Amongst them K-ras plays a 

pivotal role in oncogenesis due to its capability of transforming human cells into 

malignant tumor cells, particularly if harboring an activating mutation in codon 12 or 

13. KRAS mutations frequently occur in many types of human tumors, for example in 

70 – 90% in pancreas, 30 – 60% in colon and 15 – 50% in lung making KRAS one of 

the most prominent oncogenes (34, 35). Furthermore, activating oncogenic KRAS 

mutations are often associated with resistance to chemotherapy and targeted 

therapies (35-39). Due to the poor prognosis for cancer patients with mutated KRAS, 

much effort has been spent on developing specific therapies for targeting oncogenic 

KRAS. However, apart from specific RNAi methods, up to now there are no small 

molecules available which can specifically target K-ras. 

miRNAs represent endogenous regulators of KRAS and many other oncogenic 

pathways. Their differential expression in various cancerous tissues compared to 

normal tissues influences tumorigenesis (40), turning them either into tumor 

suppressors or oncogenes (8, 41). It has been shown that the let-7 family inhibits 

KRAS (42) resulting in slower proliferation and tumor growth of lung cancer  

cells (43-45). Moreover, miR-143 has been demonstrated to regulate tumorigenesis 

in colorectal and prostate cancer cells by targeting KRAS (46, 47). In pancreatic 

carcinogenesis it has been reported that the oncogene EVI1 leads to the activation of 

the KRAS pathway through suppression of the KRAS suppressor miR-96 (48).  

A recent study has revealed that miR-30c targets the KRAS oncogene as well and is 

deregulated in hereditary breast cancer (49). In contrast to these tumor suppressor 

miRNAs, which generally display a low expression level in cancer cells, miR-200c is 

differentially expressed among cancer cells and acts as molecular switch by 

modulating a multitude of cellular processes (50). Moreover, in resistant cancer cells 

miR-200c is able to restore sensitivity to anti-EGFR therapy (51, 52) as well as to 

classical chemotherapeutics (22, 32, 33). Therefore, a direct interaction of miR-200c 

and KRAS is of great interest in order to understand and predict tumor progression 

and therapy susceptibility of cancer patients. 
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1.5 Metastasis formation and the cancer stem cell-s pecific drug 
salinomycin 
 

Distant metastases are the major cause of death in patients suffering from cancer. In 

spite of this, there is a lack of effective treatments for patients with metastatic 

disease. Tumor spreading is driven by the two fundamental processes epithelial-

mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). As an 

early step of metastasis tumor cells undergo EMT, thereby acquiring an increased 

invasive and migratory capacity. Subsequently, these cells migrate into adjacent 

tissues, circulate in blood vessels and the lymphatic system and finally cause 

micrometastases in distant well-vascularized organs. To colonize and to form 

macrometastases, migrated tumor cells undergo MET and revert to an epithelial 

phenotype. (53-56) 

miRNAs are a potent class of molecules modulating a multitude of cellular pathways 

(3). It has been shown that miR-200c regulates various processes in cancer cells, 

such as stemness, apoptosis, MET and chemosensitivity (50). In the early phase of 

metastasis the loss of miR-200c promotes tumor dissemination by modulating 

migration-regulatory target genes (27, 28) as well as by inducing EMT. The latter 

results in tumor cells with low miR-200c and E-cadherin but high vimentin levels thus 

displaying mesenchymal traits with an elevated migratory potential (19-25). 

It has been reported that mesenchymal cancer cells are dedifferentiated and hence 

exhibit properties of cancer stem cells (CSC) (57). These CSC are important targets 

of cancer therapeutic approaches as they are assumed to be one of the major 

causes of relapse. Gupta et al. have recently found salinomycin to be a selective 

inhibitor of CSC obtained from immortalized transformed HMLER cells by a stable  

E-cadherin knockdown. Salinomycin reduced the proportion of CSC more than  

100-fold compared to paclitaxel, a commonly used chemotherapeutic breast cancer 

drug (58).  

Subsequent studies in a variety of different cancer types including breast, blood, 

lung, pancreas and colon have revealed diverse mechanisms of salinomycin action 

against cancer cells and CSC (Figure 3), such as induction of apoptosis and cell 

death, interference with cytoplasmic and mitochondrial ion transport as well as with 

ABC transporters, differentiation of CSC, and inhibition of oxidative phosphorylation 

and Wnt signaling (59-62). It has been also suggested that salinomycin inhibits 
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malignant traits in colorectal and prostate cancer cells either by selectively targeting 

CSC or by inducing oxidative stress (63, 64). When considering the mechanism of 

metastasis formation and the mesenchymal-like traits of CSC the question arises 

whether salinomycin is able to inhibit migration and metastasis by restraining cancer 

cells in an epithelial state. 

 

 
Figure 3.  Mechanisms of salinomycin action 

All mechanisms of salinomycin-induced apoptosis and cell death, which are published so far, are depicted in the 
graph. 
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1.6 microRNAs in cancer gene therapy 
 

Besides the replacement of tumor-suppressor-miRs or the inhibition of onco-miRs by 

various methods, miRNAs and their differential expression can be also utilized for 

tumor-specific gene therapy. Tumor restricted transgene expression is a well suited 

approach to minimize side effects of cancer gene therapy. One possibility is to de-

target the expression of toxic transgenes from non-cancerous tissues and hence 

protect them. miRNAs appear to be a suitable tool as they can regulate the 

expression of their target genes. miRNAs are highly conserved modulators of gene 

expression functioning as negative regulators of gene expression at the 

posttranscriptional level (1) affecting more than 60% of protein encoding genes (65). 

Malfunctioning miRNAs were found to be involved in several pathological processes 

including cancer (6) being either up- or down-regulated.  

For example, miR-143 is found in abundance in most human and murine tissues, but 

considerably down-regulated in many cancer types including colon (66), liver (67)  

and gastric cancer (68). Several proteins involved in cell survival, proliferation and 

differentiation, such as KRAS (46)  and Ras-responsive element-binding protein 1 

(RREB1) (69), NFκB and BCL2 (70) are regulated by miR-143, indicating a function 

as tumor suppressor. As miR-143 is also involved in suppressing invasion and 

metastasis, amongst others in colon (71, 72) and prostate cancer (73), it represents a 

suitable target for therapeutic intervention. Attempts have been conducted to 

overexpress miR-143 in cancer cells which have low levels or no expression of  

miR-143 either by transfecting tumor cells prior to implantation with plasmids 

encoding for pri-miR-143 (74) or by delivering nanoparticles with miR-143 (75).  

Alternatively, differential miR-143 expression between non-cancerous and cancerous 

tissue can be harnessed to de-target transgene expression from tissues with high 

miR-143 levels. For this purpose, multiple target sequences complementary to the 

sequence of miR-143 can be cloned into the 3’UTR of plasmid vectors encoding for 

different reporter or therapeutic genes. Thus, transgene transcription is only 

facilitated in miR-143 low-expressing cancer cells. This was shown for an oncolytic 

Herpes simplex virus 1 (HSV-1), where five miR-143 binding sites were placed 

between the 3’UTR and the polyadenylation signal of ICP4, an essential gene for 

HSV-1 replication (76). Albeit using the constitutively active CMV promoter driving 

ICP4 expression, the miR-143 binding sites inhibited virus replication in non-
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malignant prostate tissue, whereas virus replication in prostate cancer cells was 

unaffected. Similarly, several reports have shown miRNAs successfully controlling 

virus replication (77-81) as well as regulating transgene expression of viral vectors 

(82-85). However, this de-targeting approach has not yet been applied to non-viral 

gene delivery systems, which possess certain advantages over viral carriers in terms 

of design flexibility, production and safety (86). 
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1.7 Aims of the thesis 
 

Despite of improved early detection methods and novel targeted therapy approaches 

in the past 15 years, tumor progression including the formation of metastases and the 

acquisition of chemoresistance in response to conventional anti-cancer drugs still 

represents one of the largest hurdles in the successful treatment of cancer patients. 

A better understanding of the underlying pathological mechanisms is therefore 

needed to conceive novel treatment strategies, which will improve the clinical 

outcome of patients suffering from cancer.  

In this thesis, the first aim was to investigate the mechanism of acquired 

chemoresistance to doxorubicin (Adriamycin ®), a commonly used chemotherapeutic 

drug from the group of the anthracyclines. The focus was thereby laid on miRNAs 

and their regulated target genes and pathways. In particular, the aim was to elucidate 

the role of miR-200c in chemoresistance as well as to generally broaden its 

relevance in tumorigenesis. Therefore, the physiological effects of the miR-200c-

target interactions should be examined in order to evaluate its potential use in 

diagnosis and therapy.  

In addition, the antibiotic drug salinomycin, which has been reported to be a selective 

inhibitor of cancer stem cells and which has hence raised hope for an improved 

cancer treatment, should be evaluated for its therapeutic potential against advanced 

stages of cancer. The aim was thereby to investigate the role of salinomycin in 

inhibiting tumor progression with regard to therapy resistance and metastasis 

formation. 

Apart from classical therapeutic interventions including cytostatic drugs, antibodies or 

small molecules against certain oncogenic targets, the field of oligonucleotide based 

medicines, such as siRNAs, miRNAs or antagomiRs, has emerged in the last years. 

Here, the aim was to exploit the differential miRNA expression in healthy and 

cancerous tissue for tumor-specific non-viral gene therapy. Therefore, miR-143 as a 

prominent tumor suppressor miRNA was chosen. Plasmids which encode for reporter 

genes as well as for a therapeutic gene and which contain five binding sites 

complementary to the sequence of miR-143 should be investigated regarding their 

ability to specifically induce transgene expression in tumor cells by de-targeting non-

malignant cells. 
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2. MATERIALS AND METHODS 

 

2.1 miR-200c sensitizes breast cancer cells to doxo rubicin 
 

2.1.1 Primary antibodies 

 

Primary antibodies against the following proteins were used: E-cadherin (C20820, 

Transduction Laboratories); vimentin (V9) (SC-6260, Santa Cruz); TrkB (H-181)  

(SC-8316, Santa Cruz); Akt (#9272, Cell Signaling); p-Akt (S-473) (#4051, Cell 

Signaling); Bmi1 (PAI-16973, Thermo Scientific);  p53 (DO-1) (SC-126, Santa Cruz), 

actin (I-19) (SC-1616, Santa Cruz); α-tubulin (DM-1A) (T9026, Sigma). 

 

2.1.2 Cell culture 

 

The breast cancer cell lines BT-474 and MDA-MB-436 were cultivated according to 

supplier’s instructions (ATCC). Briefly, BT-474 cells were grown in RPMI 1640 

medium (Gibco) supplemented with 10% fetal calf serum (FCS) and 2mM glutamine 

(Gibco) at 37°C and 5% CO2. MDA-MB-436 cells were cultivated in L-15 Leibovitz’s 

medium (Biochrom) supplemented with 10% FCS and 2mM glutamine at 37°C 

without CO2. 

 

2.1.3 Molecular evolution assay 

 

The epithelial breast cancer cell line BT-474 was treated with 50nM doxorubicin 

(doxorubicin hydrochloride, Sigma) for 72h when cells reached a confluency of 80%. 

After treatment doxorubicin containing medium was replaced by fresh medium. As 

soon as the cells recovered, they were seeded for RNA isolation, cell lysis (protein), 

cytotoxicity assays and the next treatment cycle. In this manner four rounds of the 

molecular evolution assay were performed. To obtain the appropriate rate of cell 

death in the molecular evolution assay, several doxorubicin concentrations were 
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tested in a preliminary experiment. Thereby, 50nM was obtained as the most suitable 

concentration. 

For cytotoxicity assays 5000 cells were seeded in 96-well plates after each round of 

the molecular evolution assay. 24h after seeding cells were treated with different 

concentrations of doxorubicin for 72h. After incubation a CellTiter Glo assay 

(Promega) was performed following manufacturer’s instructions. 

 

2.1.4 Quantitative RT-PCR 

 

For mRNA quantification total RNA was isolated with the miRCURY RNA Isolation Kit 

(Exiqon) followed by a reverse transcription using Transcriptor High Fidelity cDNA 

Synthesis Kit (Roche) according to manufacturers’ protocols.  

Primer  Sequence (5’ – 3’) 

miR-141 SLP GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACCCATCT 

miR-141 F GCGTAACACTGTCTGGTAAAGA 

miR-200a SLP GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACACATCG 

miR-200a F GAGTAACACTGTCTGGTAACGA 

miR-200b SLP GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACTCATCA 

miR-200b F GCGTAATACTGCCTGGTAATGA 

miR-200c SLP GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACTCCATC 

miR-200c F GCGTAATACTGCCGGGTAAT 

miR-429 SLP GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACACGGTT 

miR-429 F GAGTAATACTGTCTGGTAAAACC 

miR-143 SLP GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACGAGCTA 

miR-143 F GCGTGAGATGAAGCACTG 

miR-191 SLP GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACCAGCTG 

miR-191 F GCGCAACGGAATCCCAAAAG 

universal R GTGCAGGGTCCGAGGT 

Table 2. Primers used for the quantitative RT-PCR of miRNAs. (F = forward primer; R = reverse primer; SLP = 
stem loop primer) 
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Quantitative RT-PCR was performed on a LightCycler 480 system (Roche) using 

UPL Probes (Roche) and Probes Master (Roche). Genes of interest were normalized 

to GAPDH as reference. The following probes and primer sequences were used:  

E-cadherin, UPL Probe #35, left primer: CCCGGGACAACGTTTATTAC, right primer: 

GCTGGCTCAAGTCAAAGTCC; TrkB, UPL Probe #2, left primer: 

AGTGCCTCTCGGATCTGGT, right primer: TTTCTGGTTTGCGATGAAAAT; Bmi1, 

UPL Probe #54, left primer: TGTAAAACGTGTATTGTTCGTTACC, right primer: 

CAATATCTTGGAGAGTTTTATCTGACC; GAPDH, UPL Probe #60, left primer: 

AGCCACATCGCTCAGACAC, right primer: GCCCAATACGACCAAATCC. 

For miRNA quantification total RNA was isolated with the miRCURY RNA Isolation 

Kit. cDNA synthesis was carried out by a miRNA-specific reverse transcription using 

Transcriptor High Fidelity cDNA Synthesis Kit and a stem loop primer (SLP) which 

was specific for only one particular miRNA (87-89). Quantitative RT-PCR was then 

performed on a LightCycler 480 system using SYBR Green I Master (Roche). The 

expression of miR-200 family members (miR-141, miR-200a, miR-200b, miR-200c, 

miR-429) was normalized to miR-191 as reference (90). All sequences of the primers 

used for the miRNA quantification are shown in Table 2. Expression levels were 

normalized using the 2-∆Ct or 2∆∆Ct method. 

 

2.1.5 miR-200c inhibition 

 

BT-474 and MDA-MB-436 cells were seeded in 96-well plates at a density of 3000 

cells per well. The following day cells were transfected with 50nM miRCURY LNA 

miRNA Inhibitor for hsa-miR-200c (miR-200c inhibitor) (Exiqon) or miRCURY LNA 

miRNA Inhibitor Control Negative Control A (scrambled control) (Exiqon) using 

Lipofectamine 2000 (Invitrogen) according to manufacturer’s protocol.  

24h after transfection cells were treated with different concentrations of doxorubicin 

for 72h followed by a CellTiter Glo assay. 

 

2.1.6 miR-200c overexpression 

 

MDA-MB-436 and BT-474 cells were transfected in 6-well plates with 100pmol  

Pre-miR miRNA Precursor of hsa-miR-200c (pre-miR-200c) (Ambion) or Pre-miR 
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miRNA Negative Control (scrambled control) (Ambion) using Lipofectamine 2000 

according to manufacturer’s protocol. After three consecutive transfections, cells 

were harvested for RNA isolation, cell lysis (protein) and cytotoxicity assays.  

For cytotoxicity experiments transfected cells were seeded on 96-well plates at a 

density of 3000 cells per well. 24h after seeding cells were treated with different 

concentrations of doxorubicin for 72h followed by a CellTiter Glo assay. 

 

2.1.7 Cell lysis and immunoblotting 

 

Cells were washed with phosphate buffered saline (PBS) (Gibco) and incubated at 

4°C with lysis buffer (Promega) supplemented with phosphatase and protease 

inhibitors (Santa Cruz and Roche). Cellular debris was removed by centrifugation. 

Protein estimation was performed using the Micro BCA Protein Assay Kit (Thermo 

Scientific). Samples were suspended in SDS sample buffer (50mM Tris-HCl (pH 6.8), 

2% SDS, 10% glycerol, 1% β-mercaptoethanol, 12.5mM EDTA and 0.02% 

bromophenol blue), boiled for 5min and subjected to SDS-PAGE. For Western blot 

analysis, proteins were transferred to nitrocellulose membranes (Bio-Rad), which 

were subsequently blocked with NET-gelatine (150mM NaCl, 5mM EDTA, 50mM 

Tris-HCl (pH 8.0) and 0.05% Triton X-100, gelatine 0.25%) and incubated with the 

appropriate antibodies. After three steps of washing with NET-gelatine signals were 

developed using either Peroxidase Horse Anti-Rabbit IgG Antibody or Peroxidase 

Goat Anti-Mouse IgG Antibody (Vector Laboratories) and Lumi-LightPLUS Western 

Blotting Substrate (Roche). Western blot quantification was done with ImageJ (91). 

 

2.1.8 Immunofluorescence 

 

Cells were seeded on a cover slip and fixed with 4% paraformaldehyde. Cover slips 

were blocked with 10% FCS, 1% gelatine and 0.05% Triton X-100 and incubated with 

indicated primary antibodies. Immunofluorescence was visualized using Donkey anti-

Mouse IgG (Cy3) (PA1-29773, Thermo Scientific). Counterstaining was performed 

using 4’-6-diamidino-2-phenylindole (DAPI) (Sigma). Results were analyzed using 

Zeiss Laser Scanning Microscope LSM 510 Meta and Axiovert 200 software (Zeiss).
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2.2 miR-200c targets KRAS  

 

2.2.1 Oligonucleotides 

 

The following oligonucleotides were used: miRCURY LNA miRNA Inhibitor for  

hsa-miR-200c (inh) (Exiqon), miRCURY LNA miRNA Inhibitor Control Negative 

Control A (ctr) (Exiqon), Pre-miR miRNA Precursor of hsa-miR-200c (pre) (Ambion), 

Pre-miR miRNA Negative Control (ctr) (Ambion), ON-TARGETplus SMARTpool 

siRNA against human KRAS consisting of four different siRNAs (Dharmacon) (siRas) 

and the non-targeting control siRNA (siCtr), which was previously described (92). 

 

2.2.2 Cell culture 

 

The breast cancer cell lines MDA-MB-157, MDA-MB-436, MDA-MB-231,  

MDA-MB-435 (formerly regarded as breast cancer, in fact melanoma), MDA-MB-453,  

MDA-MB-468, MCF-7, BT-474 and 4T1 as well as the lung cancer cell lines A549 

and Calu-1 were cultivated according to supplier’s instructions (ATCC). 

 

2.2.3 Quantitative RT-PCR 

 

Total RNA was isolated followed by a reverse transcription and a quantitative  

RT-PCR as described previously (93). The following primers (Metabion) and 

hydrolysis probes (Roche) were used for mRNA quantification: KRAS, UPL Probe 42, 

left primer: TGGACGAATATGATCCAACAAT, right primer: 

TCCCTCATTGCACTGTACTCC; GAPDH, UPL Probe #60, left primer: 

AGCCACATCGCTCAGACAC, right primer: GCCCAATACGACCAAATCC. All 

primers used for the miR-200c quantification are listed in Table 2. 
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2.2.4 Cell lysis and immunoblotting 

 

Western blot experiments were performed as previously described (93) using the 

primary antibodies against the following proteins: K-ras (415700, Invitrogen), actin  

(I-19) (SC-1616, Santa Cruz) and α-tubulin (DM-1A) (T9026, Sigma). 

 

2.2.5 Molecular evolution assay 

 

BT-474 cells were treated with 50nM doxorubicin (doxorubicin hydrochloride, Sigma) 

for 72h as described previously (93). As soon as the cells recovered (confluency of 

80%) the next treatment round was started. After each cycle cells were harvested for 

RNA isolation and protein lysates. 

 

2.2.6 Oligonucleotide transfections 

 

Indicated cell lines were transfected with the above mentioned oligonucleotides using 

Lipofectamine 2000 (Invitrogen) according to manufacturer’s protocol. The following 

nucleotide amounts were thereby used: in 6-well plates (used for quantitative  

RT-PCR and Western blot) 75pmol, in 24-well plates (used for cell cycle) 15pmol, in 

48-well plates (used for proliferation) 7.5pmol and in 96-well plates (used for 

luciferase assays) 3pmol. 

 

2.2.7 Luciferase reporter assays 

 

A renilla luciferase reporter plasmid containing the almost entire 3’UTR of the KRAS 

gene was obtained from Addgene (Addgene plasmid 44571). This plasmid was 

generated by Frank Slack and is based on the plasmid with the let-7 mutated binding 

site LCS6m from the publication Chin et al. (94). The renilla luciferase reporter 

containing the 3’UTR of KRAS (RLuc) or the firefly luciferase control plasmid pGL3 

(Promega) (FLuc) were transfected into the indicated cell lines using Lipofectamine 

2000 (Invitrogen) according to manufacturer’s instructions. All RLuc signals were 

normalized to the respective FLuc signals as ratio (RLuc/FLuc). 
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Additionally, MDA-MB-436 cells were transfected with either pre-miR-200c (pre) or 

pre-miR-control (ctr) (Ambion) together with the reporter plasmid RLuc and the 

control plasmid FLuc for normalization. BT-474 cells were transfected with either the 

LNA miR-200c inhibitor (inh) or the LNA control inhibitor (ctr) (Exiqon) together with 

the reporter plasmid RLuc and the control plasmid FLuc for normalization. 

All luciferase assays were performed in 96-well plates at 48h post transfection. Firefly 

luciferase assays were in principle carried out as previously described (92). The 

renilla luciferase assays were analogously performed with the exception that 

coelenterazine (SynChem) was used as substrate instead of luciferin. Thereby, the 

alcoholic coelenterazine solution was prediluted in phosphate buffered saline (PBS) 

and used in a final concentration of 50µM. 

 

2.2.8 Proliferation assay 

 

To examine proliferation, cells were seeded in 48-well plates. The following day, cells 

were transfected with indicated oligonucleotides and starting with day one after 

transfection proliferation was measured over seven days at indicated time points 

using a Scepter cell counter (Millipore). 

 

2.2.9 Cell cycle analysis 

 

For the acquisition of the cell cycle, cells were seeded in 24-well plates and 

transfected with the indicated oligonucleotides the following day. At 48h or 72h after 

transfection the cells were subjected to flowcytometry. For this purpose, cells were 

trypsinized, centrifuged and incubated on ice for four hours in propidium iodide 

staining solution consisting of 0.1% sodium citrate, 0.1% Triton X-100 and 50µg/ml 

propidium iodide. Thereafter, cells were centrifuged, resuspended in phosphate 

buffered saline and analyzed with a CyAn ADP flowcytometer (Beckman Coulter). 

Doublets were discriminated by gating forward versus sideward scatter and forward 

scatter versus pulse width. The DNA content was measured through excitation of the 

dye at 488nm and detection of the emission with a 613/20 bandpass filter. Cell cycle 

analysis was carried out using FlowJo software. 
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2.2.10 Target prediction and KEGG pathway analysis 

 

Target prediction was achieved by utilizing the three different prediction algorithms 

TargetScan (95), miRanda (96) and DIANA microT (97, 98). A pathway analysis of all 

potential targets of miR-200c predicted by TargetScan was carried out, using the 

Database for Annotation, Visualization and Integrated Discovery (DAVID), and 

visualized by the Kyoto Encyclopedia of Genes and Genomes (KEGG)-pathway 

maps (99, 100). 
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2.3 Salinomycin targets migratory miR-200c low tumor cells 
 

2.3.1 Primary antibodies and reagents 

 

Primary antibodies against the following proteins were used: actin (I-19) (SC-1616, 

Santa Cruz) for Western blot (WB); vimentin (D21H3) XP (#5741, Cell Signaling) for 

WB and in vivo immunohistochemistry (IHC)/ immunofluorescence (IF); E-cadherin 

(24E10) (#3195, Cell Signaling) for WB and in vivo IHC/IF; E-cadherin (DECMA-1) 

(ab11512, Abcam) for in vitro IF; vimentin (V9) (SC-6260, Santa Cruz) for in vitro IF.  

Salinomycin (S6201) and doxorubicin hydrochloride (D1515) were obtained from 

Sigma. 

 

2.3.2 Cell culture 

 

The breast (BT-474, MCF-7, MDA-MB-231, MDA-MB-436 and 4T1) and lung  

(NCI-H1299 and Lewis lung carcinoma) cancer cell lines were cultivated according to 

supplier’s instructions (ATCC). 4T1-luc cells were a kind gift from Prof. Dr. Angelika 

Vollmar (LMU Munich). 

 

2.3.3 Transfections 

 

For miR-200c overexpression experiments cells were transfected either with Pre-miR 

miRNA Precursor of hsa-miR-200c (pre-miR-200c) (Ambion) or Pre-miR miRNA 

Negative Control (control) (Ambion) using Lipofectamine 2000 (Invitrogen) according 

to manufacturer’s protocol. 

 

2.3.4 Quantitative RT-PCR 

 

Total RNA was isolated with the miRCURY RNA Isolation Kit (Exiqon) according to 

manufacturer’s instructions. miRNA or mRNA was reversely transcribed and 

subjected to quantitative RT-PCR as described previously (93). All experiments were 

done in triplicates and the following primers (Metabion) and hydrolysis probes 
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(Roche) were used: E-cadherin (hsa), UPL Probe #35, left primer: 

CCCGGGACAACGTTTATTAC, right primer: GCTGGCTCAAGTCAAAGTCC; 

vimentin (hsa): UPL Probe #56 left primer: GTTTCCCCTAAACCGCTAGG, right 

primer: AGCGAGAGTGGCAGAGGA; Zeb2 (hsa): UPL Probe #68, left primer: 

AAGCCAGGGACAGATCAGC, right primer: CCACACTCTGTGCATTTGAACT; 

GAPDH (hsa), UPL Probe #60, left primer: AGCCACATCGCTCAGACAC, right 

primer: GCCCAATACGACCAAATCC; E-cadherin (mmu): UPL Probe #18, left 

primer: ATCCTCGCCCTGCTGATT, right primer: ACCACCGTTCTCCTCCGTA; 

vimentin (mmu): UPL Probe #79, left primer: TGCGCCAGCAGTATGAAA, right 

primer: GCCTCAGAGAGGTCAGCAAA; Zeb2 (mmu): UPL Probe #42, left primer: 

CCAGAGGAAACAAGGATTTCAG, right primer: AGGCCTGACATGTAGTCTTGTG; 

GAPDH (mmu): Universal ProbeLibrary Mouse GAPD Gene Assay (Roche). All 

primers used for the miR-200c quantification are depicted in Table 2. 

 

2.3.5 Cell lysis and immunoblotting 

 

Western blot experiments were performed as previously described (93) using the 

respective antibodies from the reagents section. 

 

2.3.6 Cell viability assay 

 

For cytotoxicity experiments cells were seeded on 96-well plates at a density of 5000 

cells per well. After 24h cells were incubated with respective drugs for 72h unless 

otherwise indicated. Subsequently, a CellTiter Glo (Promega) assay was performed 

according to manufacturer’s protocol. Cell viability was normalized to the respective 

mock-treated control cells and presented as percent of control. IC50 values for 

doxorubicin and salinomycin were obtained from several different drug 

concentrations using GraphPad Prism software for analysis. All experiments were 

done in triplicates. 
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2.3.7 Tumor cell co-culture 

 

MCF-7 and MDA-MB-436 cells were co-cultured in a DMEM/ Leibovtiz’s L-15 

medium (1/1). For cytotoxicity assays 5000 co-cultured cells per well were seeded in 

a 96-well plate and incubated overnight. Subsequently, cells were treated with 

0.25µM salinomycin, 0.25µM doxorubicin or the combination of 0.25µM salinomycin 

and 0.25µM doxorubicin for 72h. For immunofluorescence cells were seeded on 

cover slips at a density of 50 – 60%. 

 

2.3.8 In vitro salinomycin long-term treatment 

 

MDA-MB-436 cells received a pulsed salinomycin long-term treatment similarly as it 

was described previously for the molecular evolution assay of BT-474 cells with 

doxorubicin (93). Briefly, MDA-MB-436 cells were treated with 50nM salinomycin for 

72h when cells reached a confluency of 80%. After treatment salinomycin was 

removed and replaced by fresh medium. As soon as cells recovered they were 

treated again with salinomycin. After the fourth treatment cycle the recovered 

salinomycin-treated cells were harvested for RNA isolation, cell lysis (protein), 

cytotoxicity and migration assays. 

 

2.3.9 Boyden chamber migration assay  

 

Transwells (8µm pore size, Millipore) were placed in 24-well plates containing 10% 

fetal calf serum (FCS) (Gibco) in medium plus or minus doxorubicin or salinomycin. 

Cells were suspended in 250µl serum free medium plus or minus chemotherapeutic 

drugs, added to the top of each chamber and incubated for 18h. Subsequently, 

chambers were washed and cells were removed from the upper side of the chamber 

with a cotton swab. Migrated cells were fixed and stained using the cell stain solution 

(Chemicon International). The average number of migrated cells from 15 

representative fields (3 replicates per condition) was counted under a phase contrast 

microscope. For treatment experiments only drug concentrations causing 

approximately 10% cell death (as determined by a CellTiter Glo assay) were used. 

Microscopic pictures (phase contrast) show representative stained transwells. 
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2.3.10 Time-lapse microscopy and wound healing assa y 

 

Time-lapse microscopy was performed utilizing a live-cell imaging setup consisting of 

a microscope (Carl Zeiss MicroImaging) equipped with a Pln Apo 10x/0.45 DICII 

objective, motorized scanning table and a stage incubator at 37°C with or without 

CO2. Images were captured with an AxioCamMR Rev3 camera using the Axiovision 

Rel 4.8 software for microscope control and data acquisition. Indicated cells were 

seeded in 24-well plates at a density of 50 – 70% and grown overnight. For wound 

healing assays MDA-MB-436 cells were seeded in 24-well plates and grown until a 

confluency of 90 – 95%. Subsequently, a scratch was placed in the middle of the well 

with a sterile 200µl pipette tip (Eppendorf). After washing once with serum-free 

media, the respective treatments were performed. Media with FCS was added to 

control wells and media with different drugs was added to respective wells before 

starting the time-lapse imaging. The images were captured every 15min for 72h. 

Each reading was performed in triplicates. 10 random cells/ well, i.e. 30 random cells 

per condition, were manually tracked using ImageJ (91) and the data was analyzed 

using the ‘chemotaxis and migration tool’ plugin for ImageJ. 

 

2.3.11 In vitro immunofluorescence 

 

Cells were seeded on cover slips. At a confluency of 50 – 60% cells were fixed with 

4% paraformaldehyde and blocked with 10% FCS, 1% gelatine and 0.05% Triton X-

100. After permeabilizing with 0.2% Triton X-100, cover slips were incubated with the 

respective primary antibodies. Immunofluorescence was visualized using goat anti-

mouse Alexa 488 (Life Technologies) or donkey anti-rat Cy TM3 (Jackson 

ImmunoResearch) and DAPI for counterstaining the nuclei. Images were captured 

using 63x1.4 Oil DIC objective of Carl Zeiss Laser Scanning Microscope LSM 510 

Meta and analyzed using LSM Image Browser (Carl Zeiss). Representative images 

are shown. 
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2.3.12 Animal experiments 

 

All animal experiments were approved by the local ethical committee and performed 

according to the guidelines of the German law of protection of animal life. 

 

2.3.13 Salinomycin treatment of SpC-c-MYC transgeni c mice 

 

All SpC-c-MYC mice were obtained from Dr. Chitra Thakur and Prof. Dr. Ulf Rapp 

(Max-Planck-Institute, Martinsried). Animals were genotyped through tail DNA at the 

age of three weeks. They have similar genetic background (>90% C57Bl/6) and were 

maintained heterozygous. Mice develop multifocal hyperplasias, and 

bronchioloalveolar adenomas and carcinomas derived from alveolar type II (ATII) 

cells within 10 – 14 months. At the average age of 7 months mice develop early 

stages of tumor characterized by multifocal hyperplasias originating in the alveolar 

epithelium (101). 

A group of 11 SpC-c-MYC mice (72 weeks old) were injected intraperitoneally every 

second day with 5mg/kg salinomycin (2mg/ml in dimethyl sulfoxide (DMSO) stock 

solution was diluted in phosphate buffered saline) for three weeks. At the end of the 

experiment mice were sacrificed and organs were collected for further analysis. Mice 

at the same age from the previous study by Rapp et al. (102) served as controls. 

 

2.3.14 Subcutaneous 4T1-luc mouse model 

 

2x106 4T1-luc cells were subcutaneously injected into the left flank of 18 female 

BALB/c mice (Janvier). 9 animals were treated either with mock (DMSO in phosphate 

buffered saline) or 5mg/kg salinomycin (2mg/ml in DMSO stock solution was diluted 

in phosphate buffered saline) on day 3, 6, 8, 10, 13 and 15. Tumor growth was 

monitored for 17 days at indicated time points using a caliper. At the end of the 

experiment mice were sacrificed and tumors resected for further experiments. 
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2.3.15 Intravenous 4T1-luc mouse model 

 

1x105 4T1-luc cells were injected intravenously into the tail vein of 20 female BALB/c 

mice. 10 animals were treated either with mock (DMSO in phosphate buffered saline) 

or 5mg/kg salinomycin (2mg/ml in DMSO stock solution was diluted in phosphate 

buffered saline) on day 0, 3, 6 and 9. Tumor growth was monitored for 13 days at 

indicated time points using bioluminescence imaging (BLI). BLI was performed as 

described previously (103). One mouse in the control group was missing for the last 

BLI (day 13) as this mouse had to be sacrificed earlier due to severe medical 

condition. At the end of the experiment mice were sacrificed and lung, brain, spleen, 

kidneys and liver were resected for subsequent ex vivo luciferase assays. For this 

purpose, the obtained tissue was pulverized in liquid nitrogen and an aliquot 

homogenized in cell lysis buffer (Promega) using a tissue and cell homogenizer 

(FastPrep-24, MP Biomedicals). Luciferase activity was quantified as described 

previously (104). 

 

2.3.16 In vivo immunohistochemistry and immunofluorescence 

 

Immunohistochemistry (haematoxylin & eosin and marker stainings) of transgenic 

lung tumors and subcutaneous 4T1-luc tumors as well as immunofluorescence of 

4T1-luc tumors were performed as described previously (102). Representative 

images are shown. 

 

2.3.17 Statistical analysis 

 

All values are stated as mean ± SD unless otherwise indicated. For statistical 

analysis, student’s t-tests were performed (*p<0.5; **p<0.01; ***p<0.001; 

****p<0.0001). Outliers were identified using the ROUT (robust regression and outlier 

removal) method of GraphPad Prism. 
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2.3.18 MIRUMIR analysis 

 

For the evaluation of miR-200c as prognostic marker for patients, the recently 

published online tool MIRUMIR (105) was used. It provides Kaplan-Meier plots along 

with Cox regression survival analyses. Reported p-values are corrected by False 

Discovery Rate (FDR) control procedure, thus accounting for multiple datasets used 

in the analysis. 
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2.4 miR-143-controlled transgene expression 
 

2.4.1 Quantitative RT- PCR  

 

Total RNA was isolated with the miRCURY RNA Isolation Kit (Exiqon) according to 

manufacturer’s instructions. miRNA was reversely transcribed and subjected to 

quantitative RT-PCR as described previously (93). The obtained average CT values 

of miR-143 were normalized to the CT values of miR-191 using the 2-∆CT
 method and 

presented as ratio. All sequences of the primers used for the miRNA quantification 

are shown in Table 2. 

 

2.4.2 Cloning and propagation of plasmids 

 

All CpG-depleted plasmids were based on the commercially available plasmid  

pCpG-MCS (Cayla Invivogen).  The EGFP expression cassette was obtained from 

pEpito-hCMV/EF1-EGFP (106) by restriction with NheI and BglII, subcloned into 

pMOD-ZGFP (Invivogen), excised with AvrII and BamHI and ligated into the BglII and 

NheI digested pCpG-hCMV/EF1-LucSH (107) generating pCpG-hCMV/EF1-EGFP. 

The mCherry ORF from pRVmCherry was PCR amplified, BglII and NheI restriction 

sites were added and cloned into pGEM-T (Promega). Finally, the LucSH expression 

cassette in pCpG-hCMV/EF1-LucSH was exchanged for mCherry. The EF1 promoter 

element in all vectors was exchanged for the synthetic CMV-EF1α hybrid promoter 

(SCEP) (108) by digestion with SpeI and either HindIII or NcoI. 

A plasmid vector containing five tandem copies of complementary miR-143 binding 

sites was synthesized by Geneart as specified (76). miR-143 binding sites were 

excised by digestion with XbaI and NheI and inserted into the NheI site of  

pCpG-hCMV/SCEP-mCherry, pCpG-hCMV/SCEP-LucSH and pCpG-hCMV/SCEP-

TNFα, generating plasmids with five copies of the sequence complementary to  

miR-143. All plasmids were propagated in E.coli DB 3.1λ pir under zeocin selection 

pressure and purified using the Qiagen Plasmid Maxi Kit (Qiagen).  
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2.4.3 Cell culture 

 

PC3 (human prostate cancer, ATCC CRL-1435) were cultured in RPMI-1640, 

Neuro2A (murine neuroblastoma ATCC CCL-131) in DMEM, HUH7 (human 

hepatoma, JCRB 0403) in DMEM/Ham’s F-12 1:1, all supplemented with 10% fetal 

calf serum (FCS) (Gibco), 2mM stable glutamine, 100U/ml penicllin and 100µg/ml 

streptomycin (Biochrom). Primary porcine smooth muscle cells (PSMC) were 

cultivated in Ham’s F12 (Biochrom)/ Waymouth (Gibco) medium 1:1 with 3.75x10-3% 

sodium bicarbonate, 10mM HEPES, 10% FCS, 40mM stable glutamine, 100U/ml 

penicillin, 100µg/ml streptomycin and 1.25µg/ml amphotericin B (Sigma). 

 

2.4.4 SpC-c-MYC transgenic mice 

 

SpC-c-MYC mice were described and characterized by Rapp et al. (102). All mice                

were of similar genetic background (≥90% C57BL/6 mouse strain). 

 

2.4.5 In vitro transfections with EGFP and mCherry plasmids 

 

Cells were seeded 24h prior to transfection in 6-well (PC3, 1.25x105 cells; HUH7, 

PSMC, 105 cells) or 12-well plates (Neuro2A, 5x104 cells) and co-transfected with 

pCpG-hCMV/SCEP-EGFP and the indicated mCherry plasmid harboring either five or 

no copies of the miR-143 binding site using X-tremeGENE HP DNA (Roche) 

according to manufacturer’s protocol. 48h after transfection cells were trypsinised, 

washed and resuspended in phosphate buffered saline (PBS) and analyzed on a BD 

FACS Canto II Flow Cytometer (BD Bioscience). EGFP fluorescence was excited 

with the 488nm laser line and detected with a 530/30 bandpass filter. mCherry was 

excited with 635nm and emission was detected using a 660/20 bandpass filter. Cells 

were gated by forward versus sideward scatter to exclude cell debris and cell 

clusters. Data were recorded by BD FACSDiva Software and evaluated using 

Summit 4.3 software (Summit).  

 

 



MATERIALS AND METHODS 

30 

 

2.4.6 In vitro transfections with TNF α plasmids 

 

Cells were seeded 24h prior to transfection in 24-well plates at a density of 2.5x104 

(HUH7, PSMC), 3.125x104 (PC3) and 7.0x104 (Neuro2A) cells per well. 

Subsequently, cells were transfected with indicated plasmids using the G3-HD-OEI 

(polypropylenimine generation three grafted with oligoethylenimine via  

1,6-hexandioldiacrylate) polymer as previously described (109). 4h upon transfection 

medium was replaced by 500µL growth medium and 48h after transfection the 

conditioned medium was collected and frozen. TNFα was quantified using the Mouse 

TNF alpha ELISA Ready-SET-Go Kit (eBioscience) according to manufacturer’s 

protocol. 

 

2.4.7 L929 TNFα bioassay 

 

Cytotoxicity of soluble TNFα was tested on murine fibroblasts (L929). The assay was 

in principle carried out as described by Su et al. (110). Indicated cell lines were 

seeded 24h prior to transfection in 24-well plates at a density of 2.5x104 (HUH7, 

PSMC), 3.125x104 (PC3) and 7.0x104 (Neuro2A) cells per well. Subsequently, cells 

were transfected with indicated plasmids under optimized transfection conditions. 

After 4h of transfection medium was replaced by 500µL growth medium and 48h after 

transfection the conditioned medium was collected and stored frozen at -80°C. L929 

murine fibroblasts were seeded in a 96-well tissue plate at a density of 1.25x104 cells 

per well and cultured overnight at 37°C. The next day, the conditioned medium from 

transfected test cell lines was collected and supplemented with 1µg/mL actinomycin 

D (Sigma). The growth medium of L929 cells was replaced by 100µL per well of the 

conditioned medium. After an incubation time of 24h TNFα-mediated cytotoxicity of 

L929 cells was detected using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) assay as previously described (111). 
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2.4.8 In vitro transfections with luciferase plasmids 

 

Cells were seeded in their respective growth media 24h prior pDNA delivery in  

96-well plates (104 cells) and transfected with 200ng of the indicated plasmid using 

Lipofectamine 2000 (Invitrogen) according to manufacturer’s protocol. 24h after 

transfection luciferase activity was quantified as described previously (92). 

 

2.4.9 In vivo transfections 

 

All animal experiments were approved by the local ethical committee and performed 

according to the guidelines of the German law of protection of animal life. 6.5x106 

HUH7 cells were subcutaneously injected into the right flank of 8 weeks old female 

NMRI nude mice (Janvier). Animals received plasmids complexed with linear 

polyethylenimine (50µg plasmid in 250µl: pDNA/LPEI 1:0.78 (w:w) (N/P=6/1) in 

20mM HEPES, 5% glucose, pH7.4) via the lateral tail vein when tumors reached a 

size of approximately 10mm in diameter. 48h after application organs (lung, heart, 

liver, kidney and spleen) and tumors were resected, the tissue was pulverized in 

liquid nitrogen and an aliquot homogenized in cell lysis buffer (Promega) using a 

tissue and cell homogenizer (FastPrep-24, MP Biomedicals). Luciferase activity was 

quantified as previously described (104). To determine the miR-143 levels of murine 

tissues and HUH7 xenografts, 30mg pulverized sample was subjected to above 

described RNA isolation and cDNA synthesis followed by a quantitative RT-PCR. 
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3. RESULTS 
 

3.1 miR-200c sensitizes breast cancer cells to doxo rubicin 
 

3.1.1 Molecular evolution of breast cancer cells le ads to a chemoresistant 
phenotype and down-regulation of miR-200c 

 

Occurrence of chemoresistance is one of the major obstacles in chemotherapy of 

breast cancer patients. Thus, the pulse therapy of cancer patients applied in the 

clinics was mimicked by using an in vitro cell culture system. Therefore, the 

molecular evolution assay was established, in which the epithelial breast cancer cell 

line BT-474 was treated with doxorubicin for several cycles (Figure 4A). After each 

treatment round cells were harvested for cytotoxicity assays as well as RNA and 

protein isolation to investigate changes in chemosensitivity and gene expression. The 

cytotoxicity assays revealed that cells became more resistant from the third treatment 

cycle on. This effect did not get more significant after the fourth treatment round, 

indicating that the chemoresistant phenotype was obtained within three treatments 

(Figure 4B). In addition, the cell morphology changed from cells with a cobble-stone-

like appearance to spindle-like cells, which also showed more scattering (Figure 4C). 

To further characterize the altered phenotype of the doxorubicin-treated cells, the 

protein expressions of E-cadherin and vimentin were determined in the rounds of the 

molecular evolution assay. In accordance with the microscopic pictures, a decrease 

of E-cadherin and an increase of vimentin was observed suggesting an EMT-like 

mechanism (Figure 4D). As the miR-200 family is regulating EMT by inhibiting 

transcriptional repressors of E-cadherin (20, 21, 112, 113), the expression levels of 

all family members (miR-141, miR-200a, miR-200b, miR-200c and miR-429) was 

analyzed in BT-474 cells. Thereby, miR-200c was the most abundantly expressed 

family member, showing a more than 10-fold higher expression  

(Figure 4E). Hence, the miR-200c levels during the molecular evolution assay were 

determined and a significant down-regulation within three rounds without any further 

decrease after the fourth treatment was observed (Figure 4F). 
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Figure 4.  Molecular evolution of breast cancer cells leads to a chemoresistant phenotype and down-regulation of 
miR-200c  
 
A) Molecular evolution assay. The epithelial breast cancer cell line BT-474 was sequentially treated with 50nM 
doxorubicin for 72h. Subsequently, medium was replaced by fresh medium until cells recovered and reached a 
confluency of 80%. Finally, cells were harvested for RNA isolation, cell lysis (protein), cytotoxicity assays and the 
next treatment round. R0 represents the untreated control cell line, whereas R1, R2, R3 and R4 represents  
BT-474 cells which are treated for one, two, three and four times, respectively. 
B) Susceptibility to doxorubicin treatment. BT-474 cells of R1 to R4 were treated with 0.1 and 10µM doxorubicin 
for 72h. A CellTiter Glo assay was carried out to determine cell viability. Results are indicated as percentage of 
viable cells normalized to mock-treated cells. 
C) Cell morphology of untreated and treated BT-474 cells. Microscopic pictures (phase contrast) were taken from 
untreated BT-474 cells (R0) and from doxorubicin-treated and recovered cells of R4. 
D) Epithelial and mesenchymal marker expression in BT-474 cells of R0, R2 and R4 of the molecular evolution 
assay. E-cadherin and vimentin protein levels were determined by Western blot analysis. Actin was used as 
loading control.  
E) miR-200 family screen in BT-474 cells. Quantitative RT-PCR was performed to analyze the levels of miR-141, 
miR-200a, miR-200b, miR-200c and miR-429. The expression of the respective miRNA was normalized to  
miR-191 as reference and depicted as ratio. 
F) miR-200c expression in BT-474 cells which have undergone molecular evolution. Quantitative RT-PCR was 
performed to analyze miR-200c levels in BT-474 cells of R1 to R4. miR-200c expression was thereby normalized 
to miR-191. Results are depicted as fold expression compared to the untreated control cell line (R0).  
Experiments were done in triplicates. For statistical analysis a student’s t-test was performed (*p<0.05; **p<0.01; 
***p<0.001). 
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3.1.2 Characterization of the epithelial and the me senchymal breast cancer cell 
line BT-474 and MDA-MB-436  

 

To investigate the role of miR-200c in chemoresistance, a panel of different breast 

cancer cell lines was tested for the abundance of miR-200c. The mesenchymal cell 

lines (MDA-MB-436, MDA-MB-231 and MDA-MB-157) showed no expression of  

miR-200c, whereas the epithelial cell lines (MCF-7, MDA-MB-468 and BT-474) 

displayed high levels of miR-200c (Figure 5A). The cell line with the highest  

miR-200c expression (BT-474) and one with no miR-200c expression (MDA-MB-436) 

were further characterized.  
 

 

Figure 5.  Characterization of the epithelial and the mesenchymal breast cancer cell line BT-474  
and MDA-MB-436 
 
A) miR-200c levels in a panel of mesenchymal (MDA-MB-436, MDA-MB-231, MDA-MB-157) and epithelial  
(MCF-7, MDA-MB-468, BT-474) breast cancer cell lines. Quantitative RT-PCR was performed to assess the 
levels of miR-200c. Expression was normalized to miR-191 and presented as ratio. 
B) Epithelial and mesenchymal phenotype of BT-474 and MDA-MB-436 cells. To confirm the different 
phenotypes, microscopic pictures were taken from both cell lines (phase contrast, left panel). Furthermore, 
immunofluorescence and laser scanning microscopy was carried out to determine E-cadherin (red, middle panel) 
and vimentin (red, right panel) expression. Nuclei were stained with DAPI (blue). 
C) Dose reponse curves and IC50 values for doxorubicin. BT-474 and MDA-MB-436 cells were treated with 
different concentrations of doxorubicin for 72h. Subsequently, a CellTiter Glo assay was performed to determine 
the percentage of viable cells (normalized to mock-treated cells). IC50 values are shown in the table. 
Experiments were done in triplicates. Immunofluorescence stainings and microscopy were carried out by Prajakta 
Oak (PhD 2012, LMU Munich). 
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Consistent with the miR-200c expression, BT-474 cells grew in clusters with tight cell-

cell junctions representing an epithelial cell type, whereas MDA-MB-436 cells grew 

as single spindle-shaped cells resembling a mesenchymal morphology (Figure 5B) 

(114). Immunofluorescence confirmed the epithelial phenotype of BT-474 in terms of 

high membrane localized E-cadherin and low cytoplasmic vimentin expression. On 

the other hand, MDA-MB-436 exhibited high vimentin and only low E-cadherin levels 

(Figure 5B) (114). Finally, the IC50 values for doxorubicin in BT-474 and  

MDA-MB-436 were determined. Dose response curves revealed that BT-474 cells 

were approximately 22-fold more susceptible to doxorubicin treatment as compared 

to MDA-MB-436 cells (Figure 5C). 

Thus, BT-474 represents an epithelial breast cancer cell line with high levels of  

miR-200c and E-cadherin. On the contrary, MDA-MB-436 displays a mesenchymal 

phenotype with no expression of miR-200c, but with a high expression of the 

mesenchymal marker vimentin. Along with these findings, BT-474 cells were 

significantly more susceptible to doxorubicin treatment as compared to MDA-MB-436 

cells. These two cellular systems were suitable to investigate the role of miR-200c in 

chemoresistance by either inhibiting or overexpressing this particular miRNA.  

 

3.1.3 Inhibition of miR-200c in BT-474 cells causes  chemoresistance to 
doxorubicin treatment 

 

BT-474 and MDA-MB-436 cells were transfected with a miR-200c inhibitor (a locked 

nucleic acid (LNA) antisense molecule) as well as a scrambled control to prove 

whether there is a direct involvement of miR-200c in regulating chemosensitivity. As 

MDA-MB-436 cells have no miR-200c expression, this cell line served as a control to 

exclude off-target effects of the used LNAs. 

Transfection of BT-474 cells with the miR-200c inhibitor led to significantly reduced 

levels of miR-200c as compared to those cells transfected with the scrambled control 

(Figure 6A). miR-200c inhibition in BT-474 cells also resulted in a more elongated 

and spindle-shaped cell morphology (Figure 6B). There was no change in cell 

morphology in MDA-MB-436 cells (data not shown). Most notably, the transfection of 

BT-474 cells with miR-200c inhibitor resulted in significantly more resistant cells, 

when treated with doxorubicin. As expected, there was no significant effect 

observable in MDA-MB-436 cells (Figure 6C). 
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Figure 6.   Inhibition of miR-200c in BT-474 cells causes chemoresistance to doxorubicin treatment 
 
A) miR-200c expression after inhibiton. 24h after transfection with either miR-200c inhibitor or scrambled control, 
BT-474 cells were harvested for RNA isolation and quantitative RT-PCR. miR-200c expression was normalized to 
miR-191 and presented as ratio. 
B) Cell morphology. Micrographs (phase contrast) of BT-474 cells were taken 24h after transfection with either 
miR-200c inhibitor or scrambled control. 
C) Susceptibility to doxorubicin treatment. BT-474 and MDA-MB-436 cells, transfected with inhibitor or scrambled 
control, were treated with 1, 10 and 20µM doxorubicin for 72h. Cell viability was analyzed using CellTiter Glo. 
Experiments were done in triplicates with at least two biological replicates. For statistical analysis a student’s  
t-test was performed (ns = not significant; *p<0.05; **p<0.01; ***p<0.001). 

 

3.1.4 Overexpression of miR-200c in MDA-MB-436 cell s increases susceptibility 
to doxorubicin 

 

As demonstrated, miR-200c inhibition in BT-474 cells resulted in chemoresistance to 

doxorubicin. Hence, the question was raised whether it was possible to sensitize the  

miR-200c-negative and doxorubicin-resistant cell line MDA-MB-436 to doxorubicin 

treatment by overexpressing miR-200c. Thus, MDA-MB-436 cells were transfected 

with the miR-200c precursor (pre-miR-200c), resulting in a high ectopic 

overexpression of miR-200c (Figure 7A). In accordance with previous studies  

(19, 20, 22, 23), cell morphology of pre-miR-200c-transfected cells changed to a 

more epithelial-like phenotype with cells growing in clusters (Figure 7B). Finally, a 

cytotoxicity assay was performed to investigate whether the miR-200c 

overexpressing cells were more susceptible to doxorubicin treatment. In all 
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doxorubicin concentrations the miR-200c overexpressing cells displayed a higher 

sensitivity to the treatment. On the other hand, susceptibility of BT-474 cells did not 

increase by further overexpressing miR-200c (Figure 7C).  
 

 

Figure 7. Overexpression of miR-200c in MDA-MB-436 cells increases susceptibility to doxorubicin 
 
A) miR-200c levels after overexpression. After three consecutive transfections with either pre-miR-200c or 
scrambled control, MDA-MB-436 cells were harvested for RNA isolation and quantitative RT-PCR. miR-200c 
expression was normalized to miR-191 and presented as ratio. 
B) Cell morphology. Micrographs (phase contrast) of MDA-MB-436 cells were taken after three consecutive 
transfections with either pre-miR-200c or scrambled control. 
C) Susceptibility to doxorubicin treatment. With pre-miR-200c or scrambled control transfected MDA-MB-436 and 
BT-474 cells were treated with 1, 5 and 10µM doxorubicin for 72h. Cell viability was determined by a CellTiter Glo 
assay. 
Experiments were done in triplicates with at least two biological replicates. For statistical analysis a student’s  
t-test was performed (ns = not significant; *p<0.05; **p<0.01; ***p<0.001). 

 

3.1.5 TrkB and Bmi1 protein expression is hampered by overexpression of  
miR-200c in MDA-MB-436 cells 

 

miRNAs endogenously regulate gene expression by degrading mRNA or by inhibiting 

the translational process. Therefore, biological functions and physiological effects of 

miRNAs can be directly attributed to the silencing of their particular target genes. 

Thus, it was searched for candidates that are targeted by miR-200c and can interfere 

with cell survival or chemoresistance. 
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Howe et al. (27) have recently reported that TrkB (NTRK2), a member of the 

neurotrophic tyrosine receptor kinase family, is a direct target of miR-200c and 

responsible for anoikis resistance in breast cancer. It has also been shown that in 

neurons TrkB is involved in differentiation, proliferation and particularly in  

survival (115). To clarify whether TrkB can be silenced in the cell line MDA-MB-436 

upon miR-200c overexpression, MDA-MB-436 cells were transfected with  

pre-miR-200c or scrambled control. As expected, the protein expression of two TrkB 

isoforms (gp145 and gp95) was decreased in pre-miR-200c-transfected cells as 

compared to scrambled control-transfected cells (Figure 8A). On the contrary, TrkB 

mRNA levels were not altered suggesting that TrkB translation was repressed by 

miR-200c without degradation of the mRNA (Figure 8B). The receptor tyrosine kinase 

TrkB is signaling amongst other pathways via PI3K and Akt (115), which plays a 

pivotal role in cell survival. Thus, the phosphorylation status of Akt was analyzed 

upon miR-200c modulation. However, there were no detectable differences in the  

p-Akt levels of pre-miR-200c- and scrambled control-transfected cells. Hence,  

pre-miR-200c- as well as scrambled control-transfected MDA-MB-436 cells were 

treated with doxorubicin for 24h to induce Akt-dependent survival signaling. Here, the 

phosphorylation of Akt was enhanced in the scrambled control-transfected cells, 

whereas miR-200c overexpressing cells still showed low levels of p-Akt (Figure 8C). 

Another target of miR-200c is Bmi1, a regulator of stem cell self-renewal and 

senescence (31). It has been reported that Bmi1 confers cisplatin and docetaxel 

resistance in osteosarcoma and prostate cancer, respectively (116, 117). Thus, the 

mesenchymal cell line MDA-MB-436 was transfected with either pre-miR-200c or 

scrambled control. As hypothesized, Bmi1 was silenced in the pre-miR-200c-

transfected cells as compared to the scrambled control-transfected cells (Figure 8D). 

Consistent with TrkB, Bmi1 mRNA was also not degraded by miR-200c (Figure 8E). 

Bmi1 functions as transcriptional repressor leading to the repression of a variety of 

genes including p16Ink4a and p19Arf of the Ink4a locus. Since repression of p19Arf 

results in the degradation of p53 by MDM2 leading to anti-apoptotic effects (118), the 

protein expression of p53 was determined in pre-miR-200c-transfected cells. 

However, no regulation of p53 protein was observed in MDA-MB-436 as this cell line 

lacks intrinsic p53 (Figure 8F). 
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Figure 8.  TrkB and Bmi1 protein expression is hampered by overexpression of miR-200c in MDA-MB-436 cells 
 
Total cell lysates of pre-miR-200c- (pre) and scrambled control- (scr) transfected MDA-MB-436 cells were 
subjected to Western blot analysis and quantitative RT-PCR to determine expression of A) TrkB (gp145 and 
gp95) protein, B) TrkB mRNA, C) p-Akt protein either after treatment with 0.5µM doxorubicin for 24h (right panel) 
or untreated (left panel), D) Bmi1 protein, E) Bmi1 mRNA and F) p53 protein. α-Tubulin or actin was used as 
loading control. Western blot quantification of three independent experiments was carried out by analyzing the 
relative intensities (rel. int.) of TrkB or Bmi1 normalized to the rel. int. of α-tubulin or actin using ImageJ software. 
For quantitative RT-PCR TrkB and Bmi1 expressions were normalized to GAPDH as reference and presented as 
ratio. A student’s t-test was performed to assess statistical significance (ns = not significant; *p<0.05).  
DXR = doxorubicin. 

 

3.1.6 The protein expression of TrkB and Bmi1 is re gulated during the rounds 
of the molecular evolution assay in BT-474 cells 

 

After demonstrating the effects of miR-200c on the target genes TrkB and Bmi1, it 

was analyzed whether these proteins were also regulated in the molecular evolution 

assay. BT-474 cells showed a slight elevation of TrkB in the second round (R2) 

followed by a down-regulation in the last round (R4) (Figure 9A). Moreover, the 
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phosphorylation status of Akt, a downstream target of TrkB and an important 

regulator of cell survival, was determined. Consistent with the regulation of TrkB 

expression, p-Akt was considerably increased in round 2 (R2) and decreased in 

round 4 (R4) (Figure 9B). 

Bmi1 levels were also assessed in the protein lysates of the molecular evolution 

assay of BT-474 cells. An up-regulation of Bmi1 was observed with no protein 

expression in the control round (R0), a slight expression in the second (R2) and a 

high expression in the fourth round (R4) (Figure 9C). Consequently, the protein 

expression of p53 was determined and a decline of p53 in round 4 (R4) was 

observed (Figure 9D). The molecular evolution assay of BT-474 cells resulted in a 

regulation of TrkB and Bmi1 protein expression. The respective downstream targets 

p-Akt and p53 were modulated in accordance, presumably conferring the observed 

chemoresistance. 
 

 

Figure 9.  The protein expression of TrkB and Bmi1 is regulated during the rounds of the molecular evolution 
assay in BT-474 cells 
 
Total cell lysates of BT-474 cells derived from R0, R2 and R4 of the molecular evolution assay were subjected to 
Western blot analysis to determine protein expression of A) TrkB isoforms, B) p-Akt, C) Bmi1 and D) p53. Actin 
was used as loading control. 
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3.2 miR-200c targets KRAS 
 

3.2.1 KRAS is a predicted target of miR-200c and it s protein expression 
inversely correlates with miR-200c expression in br east cancer cells 

 

In order to examine whether miR-200c has any predicted target site in the 3’UTR of 

the KRAS gene, online prediction tools were utilized, which were based on the three 

different algorithms TargetScan (95), miRanda (96) and DIANA microT (97, 98). All 

applied algorithms uniformly predicted one specific binding site, which is broadly 

conserved among several species. This predicted site is located at position 305-311 

of the KRAS 3’UTR and comprises a 7mer-m8 seed, i.e. a perfect base pairing 

between the nucleotides 2-7 (seed region) and the nucleotide 8 of the mature miRNA 

and its target mRNA (Figure 10A). As miR-200c is well established and known to be 

differentially expressed in breast tumors, miR-200c (Figure 10B) and K-ras  

(Figure 10C) expression levels were analyzed in a panel of different breast cancer 

cell lines. The expression of miR-200c was found to inversely correlate with the K-ras 

protein expression (Figure 10D); i.e. breast cancer cells, which displayed a high  

miR-200c expression, had low protein levels of K-ras (Pearson r = -0.80). A typical 

characteristic of advanced cancer is acquired chemoresistance. miR-200c as well as 

particularly mutated K-ras have both been implicated in resistance to classical 

chemotherapy and targeted therapies (22, 32, 37, 38, 51, 52, 93, 119), but their 

direct interaction has not been shown yet. Therefore, it was investigated whether a 

reduction of miR-200c increases K-ras protein expression in an assay for induced 

chemoresistance, which was previously described as molecular evolution assay (93). 

The miR-200c-positive breast cancer cell line BT-474 was treated with doxorubicin 

for three rounds, which resulted in reduced miR-200c levels (Figure 10E) and an 

elevated K-ras protein expression (Figure 10F) suggesting a miR-200c-dependent 

regulation of KRAS. 
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Figure 10.  KRAS is a predicted target of miR-200c and its protein expression inversely correlates with miR-200c 
expression in breast cancer cells 

 
A) Target site prediction of miR-200c in the 3’UTR of the KRAS gene. By means of the three different prediction 
algorithms TargetScan, miRanda and DIANA microT, a unique conserved binding site with a 7mer-m8 seed at 
position 305 – 311 of the 3’UTR of the KRAS gene was found. 
B) miR-200c expression in a panel of breast cancer cell lines. miR-200c expression was normalized to miR-191 
and values are stated as mean ± SD (n=3). 
C) K-ras protein expression in a panel of breast cancer cell lines. Total cell lysates were subjected to Western blot 
analysis and incubated with indicated antibodies. 
D) Correlation of K-ras protein and miR-200c expression. The relative intensities of the Western blot were 
quantified using ImageJ software. K-ras signals were then normalized to the loading control α-tubulin and 
depicted as ratio. The values of the relative K-ras protein and miR-200c expression are listed in the table. The 
graph shows the Pearson correlation scatter plot of the relative K-ras and miR-200c levels in the different breast 
cancer cell lines (*p<0.05). 
Chemotherapeutic treatment of the miR-200chigh cell line BT-474. Cells were treated with 50nM doxorubicin as 
described for the molecular evolution assay. After each cycle cells were harvested for RNA isolation and protein 
lysates to determine E) the relative miR-200c expression and F) the K-ras protein levels of the indicated round. 
Values are stated as mean ± SD (n=3). For statistical analysis a student’s t-test was performed (**p<0.01; R0 
compared to R3). 
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3.2.2 miR-200c inhibits K-ras protein expression wi thout affecting KRAS mRNA 
levels  

 

For the validation of KRAS as a new target of miR-200c, a luciferase reporter assay 

was performed using a vector encoding for renilla luciferase and almost the entire 

3’UTR of the KRAS gene including the predicted miR-200c binding site. Ectopic 

expression of this reporter in two miR-200clow (MDA-MB-231 and MDA-MB-436) and 

two miR-200chigh (BT-474 and MCF-7) breast cancer cell lines showed high and low 

luciferase activities, respectively (Figure 11A). This correlation indicates a direct 

inhibition of the luciferase reporter via the KRAS 3’UTR by miR-200c. Next, it was 

examined whether miR-200c was able to regulate the luciferase reporter when 

overexpressed or inhibited. The luciferase reporter was therefore transfected 

together with pre-miR-200c in MDA-MB-436 cells or miR-200c inhibitor in BT-474 

cells. As expected, overexpression of miR-200c led to a decreased luciferase activity, 

whereas its inhibition resulted in an enhanced bioluminescence (Figure 11B). 
 

  

Figure 11.  miR-200c targets the 3’UTR of the KRAS mRNA 
 
A) Luciferase reporter assay with different breast cancer cell lines. The renilla luciferase reporter containing the 
3’UTR of KRAS including the predicted target site of miR-200c (RLuc) or the firefly luciferase control plasmid 
pGL3 (FLuc) were transfected into the indicated cell lines. Renilla reporter luciferase activity was normalized to 
the activity of the firefly control as ratio. Values are stated as mean ± SEM (n=5). 
B) Luciferase reporter assay upon miR-200c modulation. MDA-MB-436 cells were transfected with either  
pre-miR-200c (pre) or scrambled control (ctr). BT-474 cells were transfected with either miR-200c inhibitor (inh) or 
scrambled control inhibitor (ctr). Relative luciferase activities (RLuc/FLuc) are depicted in the graph. Values are 
stated as mean ± SEM (n=5). For statistical analysis a student’s t-test was performed (**p<0.01; ***p<0.001). 

 

To further prove the inhibition of KRAS expression by miR-200c, protein and mRNA 

levels were checked after either miR-200c inhibition or overexpression. Inhibition of 

miR-200c in BT-474 and MCF-7 cells led to an elevated K-ras protein expression, 

while KRAS mRNA levels were not changed (Figure 12A). Overexpression of  

miR-200c resulted in decreased K-ras protein and unaltered KRAS mRNA levels in 

MDA-MB-231 and MDA-MB-436 cells (Figure 12B).  
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Figure 12.  miR-200c inhibits K-ras protein expression without affecting KRAS mRNA levels 
 
A) miR-200c inhibition in the miR-200chigh cell lines BT-474 and MCF-7. Indicated cell lines were transfected with 
either miR-200c inhibitor (inh) or scrambled control inhibitor (ctr) and at 72h post transfection subjected to 
Western blot analysis (left panel) or quantitative RT-PCR (right panel). Values are stated as mean ± SD (n=3). 
B) miR-200c overexpression in the miR-200clow cell lines MDA-MB-231 and MDA-MB-436. Indicated cell lines 
were transfected with either pre-miR-200c (pre) or scrambled pre-miR-control (ctr) and at 72h after transfection 
subjected to Western blot analysis (left panel) or quantitative RT-PCR (right panel). Values are stated as  
mean ± SD (n=3). 
C) K-ras regulation by miR-200c in the miR-200cmedium cell line 4T1. K-ras protein levels were examined by 
Western blot analysis at 72h after transfection with either pre-miR-200c (pre) or miR-200c inhibitor (inh). The 
relative miR-200c expression of 4T1 cells was determined by quantitative RT-PCR in comparison to the  
miR-200chigh cell line BT-474 (right panel). 
D) KRAS-specific knockdown in MDA-MB-231 and MDA-MB-436. Cells were transfected either with a siRNA pool 
against human KRAS (siRas) or with a non-targeting control siRNA (siCtr). After 72h K-ras protein (left panel) and 
KRAS mRNA levels (right panel) were determined. Values are stated as mean ± SD (n=3). For statistical analysis 
a student’s t-test was performed (**p<0.01; ***p<0.001). 
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Moreover, in the murine breast cancer cell line 4T1, which endogenously displayed a 

medium expression of miR-200c, it was demonstrated that K-ras protein levels were 

both down- and up-regulated after miR-200c overexpression and inhibition  

(Figure 12C). As there was no regulation on the mRNA level in the cell lines tested 

before, the mRNA expression of KRAS upon miR-200c manipulation was not 

determined in 4T1 cells. In order to assess the silencing efficiency and the 

mechanism of the miR-200c-induced KRAS knockdown, the effects of miR-200c 

were compared with those of a siRNA-pool against KRAS (siRas). While the siRNA 

knockdown was similar on protein level, siRas also remarkably reduced KRAS mRNA 

(Figure 12D), consistent with the different known modes of action of miRNA and 

siRNA-induced gene silencing. Although it has been reported that miRNAs can also 

down-regulate target mRNAs by affecting their stabilities (120), miR-200c primarily 

inhibits the translation of KRAS, whereas siRas causes the expected mRNA 

cleavage. 

 

3.2.3 KRAS silencing by miR-200c and siRas leads to  reduced proliferation and 
changed cell cycle of breast cancer cells dependent  on the KRAS mutation 
status  

 

The significance of the oncogene KRAS is underlined by frequently occurring 

activating mutations in numerous tumors and cancer cell lines. According to the 

respective mutation status, different physiological effects were expected upon KRAS 

knockdown. Thus, the cell line MDA-MB-231, which harbors an activating G13D 

mutation in the KRAS gene, and the cell line MDA-MB-436, which expresses the 

wild-type KRAS gene (121, 122), were chosen for further experiments. By using pre-

miR-200c as well as siRas for the silencing of KRAS, the particular role of KRAS 

should be dissected from the role of all the other potential targets of miR-200c. 

Several reports have shown that oncogenic K-ras stimulates proliferation in various 

cell types, highlighting its role in tumorigenesis (123-125). Therefore, the proliferation 

of the two breast cancer cell lines was analyzed upon transfection with pre-miR-200c 

or siRas. In the KRAS mutated cell line MDA-MB-231 the proliferation of  

pre-miR-200c- and siRas-transfected cells was similarly decreased (Figure 13A), 

whereas in the KRAS wild-type cell line MDA-MB-436 only pre-miR-200c was able to 

significantly reduce proliferation (Figure 13B).  
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Figure 13.  KRAS silencing by miR-200c and siRas leads to reduced proliferation and changed cell cycle of breast 
cancer cells dependent on the KRAS mutation status 
 
Proliferation of different breast cancer cell lines upon KRAS knockdown. A) MDA-MB-231 cells which harbor an 
activating (G13D) KRAS mutation and B) MDA-MB-436 cells which express wild-type KRAS were transfected with 
the indicated oligonucleotides. Values are stated as mean cell number ± SD (n=3). For statistical analysis a 
student’s t-test was performed (***p<0.001; ****p<0.0001). 
Cell cycle of different breast cancer cell lines upon KRAS knockdown. C) MDA-MB-231 cells and D) MDA-MB-436 
cells were subjected to flowcytometry at 72h after transfection with the indicated oligonucleotides. Cell cycle 
analysis was carried out using FlowJo software. Results are presented as histograms (y-axis: counts; x-axis:  
PE-Texas Red indicative for propidium iodide). 
Statistical analysis of the cell cycle phases upon KRAS silencing. The percentage of E) MDA-MB-231 and F) 
MDA-MB-436 cells in the respective cell cycle phase upon indicated oligonucleotide transfection was determined. 
Values are stated as mean ± SD (n=3). For statistical analysis a student’s t-test was performed (****p<0.0001). 
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As it has been demonstrated that oncogenic K-ras drives cell cycle progression by 

enabling cells to enter the S-phase and thereby promotes tumorigenesis (126, 127), 

cell cycle analyses were additionally performed to investigate whether the cell cycle 

was differentially affected. Consistent with the proliferation, the cell cycle of  

MDA-MB-231 cells was considerably changed upon both pre-miR-200c and siRas 

transfection (Figure 13C), whereas only pre-miR-200c changed the cell cycle of 

MDA-MB-436 cells (Figure 13D). Quantification of the cell cycle phases revealed that 

in MDA-MB-231 cells pre-miR-200c as well as siRas led to a decrease of the  

G1-phase and an increase of the S-phase (Figure 13E). In MDA-MB-436 cells, 

however, only pre-miR-200c achieved a reduction of the G1-phase and an increase 

of the S-phase, whereas siRas did not affect the cell cycle (Figure 13F). 

 

3.2.4 miR-200c and siRas also affect the cell cycle  in lung cancer cells by 
inhibiting KRAS  

 

As the relevance of KRAS mutations in breast cancer remains elusive, the 

physiological effects of miR-200c-dependent KRAS silencing were explored in a 

more relevant cancer type. Besides in pancreas and colon cancer, KRAS mutations 

occur very frequently in non-small cell lung cancer (NSCLC) (15-50%) (35, 37).  

Thus, the two NSCLC cell lines A549 and Calu-1 were used, which harbor the 

activating KRAS mutations G12S and G12C, respectively (128, 129). Both lung 

cancer cell lines displayed low miR-200c levels (Figure 14A) but a considerable K-ras 

protein expression (Figure 14B) as compared to the miR-200chigh breast cancer cell 

line BT-474. The cell cycle upon KRAS knockdown was determined in the two lung 

cancer cell lines to examine whether the effects were comparable to those of the 

KRAS mutated breast cancer cell line MDA-MB-231. Interestingly, the cell cycle of 

pre-miR-200c- as well as siRas-transfected A549 (Figure 14C) and Calu-1  

(Figure 14D) cells was similarly changed. In accordance with MDA-MB-231 cells, the  

G1-phase was decreased, whereas the S-phase was increased in A549 (Figure 14E) 

and Calu-1 (Figure 14F) cells.  
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Figure 14.  miR-200c and siRas also affect the cell cycle in lung cancer cells by inhibiting KRAS 
 
A) miR-200c expression and B) K-ras protein levels of the two KRAS mutated lung cancer cell lines A549 (G12S) 
and Calu-1 (G12D) in comparison to the breast cancer cell line BT-474. Values are stated as mean ± SD (n=3). 
Cell cycle of different lung cancer cell lines upon KRAS knockdown. C) A549 cells and D) Calu-1 cells were 
subjected to flowcytometry at 72h after transfection with the indicated oligonucleotides. Cell cycle analysis was 
carried out using FlowJo software. Results are presented as histograms (y-axis: counts; x-axis: PE-Texas Red 
indicative for propidium iodide). 
Statistical analysis of the cell cycle phases upon KRAS silencing. The percentage of E) A549 and F) Calu-1 cells 
in the respective cell cycle phase upon indicated oligonucleotide transfection was analyzed. Values are stated as 
mean ± SD (n=3). For statistical analysis a student’s t-test was performed (*p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001). 

 

These data suggest that miR-200c can generally interfere with cell proliferation and 

cell cycle by directly targeting oncogenic KRAS independent of the respective cancer 

type. Furthermore, these results highlight the prominent role of the miR-200c-

dependent regulation of KRAS, especially if applied to cell lines which are driven by 

oncogenic KRAS. 
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3.3 Salinomycin targets migratory miR-200c low tumor cells 
 

3.3.1 Salinomycin targets migrating cancer cells 

 

To investigate whether salinomycin is a potent inhibitor of migrating cancer cells, 

several breast and lung cancer cell lines were characterized in terms of their 

migratory capacity as well as their mesenchymal or epithelial marker expression.  
 

 

Figure 15. Characterization of a panel of breast and lung cancer cell lines 

A) Boyden chamber migration assays of different breast and lung cancer cell lines. The number of migrated  
BT-474 cells was set to a migratory capacity of one and the remaining cell lines were normalized as fold of the 
migratory capacity of BT-474 cells.  
B) Western blot analysis of different breast and lung cancer cell lines. Total cell lysates from indicated cell lines 
were analyzed for the protein expression of E-cadherin and vimentin.  
C) Heterogeneous cell population in the 4T1 cell line. Immunofluorescence staining was performed to assess the 
distribution of E-cadherin (red) and vimentin (green) in the murine breast cancer cell line 4T1. Nuclei were 
counterstained with DAPI (blue).  
D) Relative mRNA levels of EMT markers in the panel of cancer cell lines. Quantitative RT-PCR was carried out 
to determine the relative mRNA expression of E-cadherin, vimentin and Zeb2. The left panel presents all human 
cancer cell lines using human-specific primers, whereas the right panel shows the two murine cancer cell lines 
using mouse-specific primers. 
E)  Cell morphology of different cancer cell lines. Microscopic pictures (phase contrast) were taken from the 
indicated cell lines.  
Migration assays and the microscopy of the cell lines were conducted by Adam Hermawan (PhD study,  
LMU Munich). 
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The migratory potential of the panel of breast (BT-474, MCF-7, MDA-MB-231,  

MDA-MB-436 and 4T1) and lung (H1299 and LLC) cancer cell lines was determined 

by Boyden chamber assays (Figure 15A). Cell lines with an increased migratory 

capacity displayed a high vimentin and in most cases a low E-cadherin expression on 

both the protein and mRNA level (Figure 15B and Figure 15D). This was in line with 

their mesenchymal cell morphology (Figure 15E). 4T1 cells, however, displayed high 

vimentin and significant E-cadherin levels representing a heterogeneous cell 

population consisting of mesenchymal and epithelial cells (Figure 15C); i.e. cells 

which highly express vimentin have rather low levels of E-cadherin and vice versa. 
 

 
 

Figure 16. Salinomycin targets migrating cancer cells 

A) Correlation between migratory capacity and susceptibility to doxorubicin. IC50 values of doxorubicin were 
determined by a CellTiter Glo assay and correlated with the migratory capacity of the respective cell lines 
(Pearson r = 0.81; *p<0.05). Open circles represent the epithelial cell lines BT-474 and MCF-7. 
B) Correlation between migratory capacity and susceptibility to salinomycin. IC50 values of salinomycin were 
analogously obtained and correlated with the migratory capacity of the respective cell lines (Pearson r = -0.77; 
*p<0.05). 
C) Correlation of doxorubicin and salinomycin susceptibility. The IC50 values of doxorubicin were correlated with 
the IC50 values of salinomycin (Pearson r = -0.80; *p<0.05). 
D) Microscopy of single and co-cultured MCF-7 and/or MDA-MB-436 cells. Phase contrast and 
immunofluorescence pictures for E-cadherin (red) and vimentin (green) were taken either from MCF-7,  
MDA-MB-436 or MCF-7 (red arrows) + MDA-MB-436 (white arrows). Nuclei were stained with DAPI (blue).  
E) Treatment of co-cultured MCF-7 and MDA-MB-436 cells. Co-cultured cells were treated with indicated 
concentrations of salinomycin (sal) and/or doxorubicin (dxr). (Student’s t-test, two-tailed; ***p<0.001) 
Imunofluorescence and treatment experiments of the co-cultured cell lines were done by Prajakta Oak  
(PhD 2012, LMU Munich). 
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In order to examine the sensitivity of these differentially migrating cancer cell lines to 

doxorubicin, a classical chemotherapeutic, and to salinomycin, a new class of CSC-

specific drugs, the IC50 values of both drugs were determined for each cell line  and 

correlated with the respective migratory capacity (a numerical table is provided in 

Table 3). Cell lines with a high migratory potential were resistant to doxorubicin 

(Pearson r = 0.81) (Figure 16A), whereas they were sensitive to salinomycin 

(Pearson r = -0.77) (Figure 16B). Accordingly, the susceptibility to doxorubicin 

inversely correlated with the salinomycin sensitivity of the respective cell lines 

(Pearson r = -0.80) (Figure 16C). To further prove the selective targeting of epithelial 

and mesenchymal cells by doxorubicin and salinomycin, the epithelial non-migratory 

breast cancer cell line MCF-7 was co-cultured with the mesenchymal highly migratory 

breast cancer cell line MDA-MB-436. The obtained cell mix reflected the cellular 

heterogeneity in tumors comprising epithelial and mesenchymal cells as shown by 

immunofluorescence staining for E-cadherin and vimentin (Figure 16D). Single 

treatment as well as combined treatment with doxorubicin and salinomycin revealed 

that the combination of both drugs proved most beneficial, confirming the selective 

efficacy on the different cell types (Figure 16E). 

 

 

3.3.2 miR-200c is a marker for migration and therap y response  

 

miR-200c as key regulator of EMT/MET and modulator of several migration-relevant 

proteins represents a promising marker for cellular transitions and response upon 

chemotherapeutic treatment (27, 28, 130).  
 

 4T1 MDA-MB-436 LLC MDA-MB-231 H1299 MCF-7 BT-474 
Migratory cap. 2.31 1.89 1.82 1.82 1.35 1.08 1.00 

IC50 (dxr) [µM] 1.92 1.67 1.97 1.54 1.85 0.22 0.26 
IC50 (sal) [µM] 0.06 0.16 0.36 0.36 0.21 0.47 0.92 
miR-200c exp. 0.24 0.00 0.00 0.00 0.00 0.81 1.00 

Table 3. Migratory capacity, treatment susceptibility and miR-200c expression of the different cancer cell lines. 
Migratory capacity (Migratory cap.) was determined by Boyden chamber assays, IC50 values for doxorubicin (dxr) 
and salinomycin (sal) were analyzed using CellTiter Glo and relative miR-200c expression  levels (miR-200c 
exp.) were assessed by quantitative RT-PCR. 
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Figure 17.  miR-200c expression correlates with the migratory capacity of cancer cells and its ectopic 
overexpression induces MET in MDA-MB-436 cells 
 
A) miR-200c expression in different cancer cell lines. Relative miR-200c levels were determined by quantitative 
RT-PCR.  
B) Correlation between migratory capacity and relative miR-200c expression. A Pearson correlation was carried 
out to compare migratory capacity and relative miR-200c expression of the respective cell lines  
(Pearson r = -0.70). Open circles represent the epithelial cell lines BT-474 and MCF-7. 
C) miR-200c overexpression in MDA-MB-436 cells. Microscopic pictures (phase contrast) show the cell 
morphology of control- and miR-200c-transfected cells. Relative expression levels of miR-200c were determined 
by quantitative RT-PCR. (Student’s t-test, two-tailed; ****p<0.0001)  
D) Western blot analysis upon ectopic miR-200c overexpression in MDA-MB-436 cells. Total cell lysates were 
analyzed for the protein expression of E-cadherin and vimentin.  
E) Quantitative RT-PCR analysis upon miR-200c overexpression in MDA-MB-436 cells. Relative mRNA levels of 
the EMT markers E-cadherin, vimentin and Zeb2 were quantified. (Student’s t-test, two-tailed; ***p<0.001; 
****p<0.0001)  

 

Hence, the relative miR-200c levels were assessed in the panel of cancer cell lines 

(Figure 17A) and correlated with the respective migratory capacity (Figure 17B and 

Table 3). Thereby, the less migratory cells comprised cells with higher miR-200c 

levels. However, the murine breast cancer cell line 4T1 differed from this pattern as 

these cells displayed a medium expression of miR-200c. By ectopically 

overexpressing miR-200c, MET was induced in the mesenchymal breast cancer cell 

line MDA-MB-436 resulting in a more cobble-stone-shaped cell morphology  

(Figure 17C) and an epithelial-like marker expression with increased E-cadherin and 

slightly reduced vimentin levels (Figure 17D and Figure 17E). In addition, mRNA 

expression of Zeb2, a transcriptional repressor of E-cadherin and a direct target of 

miR-200c, was significantly reduced, which confirmed the induction of MET by  

miR-200c (Figure 17E). 
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Figure 18.  miR-200c is a functional marker for migration and salinomycin susceptibility in MDA-MB-436 cells 
 
A) Boyden chamber migration assay of MDA-MB-436 cells overexpressing miR-200c. The number of migrated 
control-transfected MDA-MB-436 cells was set to a migratory capacity of one. (Student’s t-test, two-tailed; 
***p<0.001)  
B) Time-lapse microscopy of MDA-MB-436 cells. Control and miR-200c overexpressing cells were monitored 
using time-lapse microscopy. The accumulated distance, the velocity and the direction of movement were 
analyzed. (Student’s t-test, two-tailed; ****p<0.0001)  
C) Cytotoxicity assay of miR-200c overexpressing MDA-MB-436 cells. Cells were treated with indicated 
concentrations of salinomycin and cell viability was assessed. (Student’s t-test, two-tailed; *p<0.05; **p<0.01) 
Migration assays were conducted by Adam Hermawan (PhD study, LMU Munich). Time-lapse microscopy was 
performed by Prajakta Oak (PhD 2012, LMU Munich). 

 

In addition, miR-200c overexpressing cells had a lower migratory capacity as 

determined by Boyden chamber assay (Figure 18A) and time-lapse microscopy. For 

the latter, the accumulated distance, the velocity and the direction of movement of 

MDA-MB-436 cells transfected with either pre-miR-200c or scrambled control were 

analyzed (Figure 18B). In a previous study, it has been shown that induction of MET 

in MDA-MB-436 cells by overexpressing miR-200c leads to an increased 

susceptibility to the classical chemotherapeutic drug doxorubicin (93). To prove that 

salinomycin selectively targets migrating mesenchymal cancer cells, miR-200c 

overexpressing MDA-MB-436 cells were tested for their salinomycin sensitivity 

(Figure 18C). Of note, these cells, which displayed more epithelial-like properties and 

were sensitized to doxorubicin, were less susceptible to salinomycin treatment. This 

confirmed the inverse correlation that highly migratory cells were sensitive to 

salinomycin but resistant to doxorubicin. 
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3.3.3 Short-term salinomycin treatment hampers migr ation in cancer cells 

 

To examine whether salinomycin has an immediate anti-migratory effect on highly 

migrating cancer cells, Boyden chamber assays were performed, in which  

MDA-MB-436, Lewis lung carcinoma (LLC) and 4T1 cells were treated with low 

concentrations of doxorubicin or salinomycin causing a comparable cytotoxicity 

(Figure 19B). In all salinomycin-treated cells migration was significantly reduced as 

compared to mock- or doxorubicin-treated cells (Figure 19A). Moreover, the 

immediate effect of salinomycin on MDA-MB-436 cells was characterized by time-

lapse microscopy. It was observed that mock- (control) as well as doxorubicin-treated 

cells migrated into the scratch, whereas salinomycin prevented wound closure  

(Figure 19C). Subsequent analysis revealed that the accumulated distance and the 

velocity of salinomycin-treated cells were significantly reduced as compared to mock- 

or doxorubicin-treated cells (Figure 19D and Figure 19E). This effect became even 

more evident when looking at the direction of the cells treated with salinomycin 

(Figure 19F). Although these results were in line with the anti-migratory effects of 

miR-200c in MDA-MB-436 cells, there was no immediate regulation of miR-200c 

upon salinomycin treatment (Figure 19G). The lack of miR-200c regulation was 

ascribed to the short treatment duration which may have prevented any phenotypic 

alterations. 
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Figure 19.  Short-term salinomycin treatment hampers migration in cancer cells 
 
A) Boyden chamber migration assays of different cancer cell lines during treatment. MDA-MB-436 (breast), LLC 
(lung) and 4T1 (breast) cells were treated for 18h with indicated drugs at a concentration resulting in 
approximately 90% viable cells (B). The number of migrated mock-treated (control) cells was set to 100%. 
(Student’s t-test, two-tailed, *p<0.05; **p<0.01) 
B) Cell viability upon doxorubicin or salinomycin short-term treatment. MDA-MB-436, LLC and 4T1 cells were 
treated for 18h with 10µM, 0.5µM and 0.5µM doxorubicin and 0.05µM, 0.5µM and 0.05µM salinomycin, 
respectively. Cell viability was determined by a CellTiter Glo assay and normalized to mock-treated control cells. 
C) Wound healing assay of MDA-MB-436 cells. Cells were treated either with mock (control), doxorubicin 
(0.05µM) or salinomycin (0.05µM).  
Time-lapse microscopy of MDA-MB-436 cells. The same cells as for the wound healing assay were used for time-
lapse microscopy. Manually tracked cells were analyzed for D) the accumulated distance, E) the velocity and F) 
the direction of movement. (Student’s t-test, two-tailed, ****p<0.0001)  
G) miR-200c expression upon short-term salinomycin treatment in MDA-MB-436 cells. Cells were treated with 
0.05µM salinomycin for the indicated period of time. Subsequently, relative miR-200c levels were determined 
using quantitative RT-PCR. 
Migration assays were performed by Adam Hermawan (PhD study, LMU Munich). Time-lapse microscopy was 
carried out by Prajakta Oak (PhD 2012, LMU Munich). 
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3.3.4 Long-term salinomycin treatment reduces migra tory capacity and 
modulates treatment susceptibility in MDA-MB-436 ce lls by inducing MET  

 

In order to allow phenotypic changes upon salinomycin treatment, a pulsed long-term 

treatment was performed as described previously for BT-474 cells and doxorubicin 

treatment (93). 
 

 

Figure 20.  Long-term salinomycin treatment reduces migratory capacity and modulates treatment susceptibility in 
MDA-MB-436 cells by inducing MET 
 
MDA-MB-436 cells were treated in rounds with 0.05µM salinomycin followed by a recovery phase until the next 
round started. Cells which had received four treatment rounds and which had completely recovered (sal 4x) were 
harvested for the following experiments. 
A) Migratory capacity of control and salinomycin-treated cells (sal 4x). The migratory capacity of control cells was 
set to one. (Student’s t-test, two-tailed; ***p<0.001)  
B) miR-200c expression of salinomycin-treated MDA-MB-436 cells (sal 4x) compared to control cells. Relative 
miR-200c levels were determined by quantitative RT-PCR. Microscopic pictures (phase contrast) show the cell 
morphology of control and salinomycin-treated cells. (Student’s t-test, two-tailed; ***p<0.001) 
C) Western blot analysis. Total cell lysates of control and salinomycin-treated cells (sal 4x) were analyzed for the 
protein expression of E-cadherin and vimentin.  
D) Quantitative RT-PCR analysis. Relative mRNA levels of the EMT markers E-cadherin, vimentin and Zeb2 were 
quantified in control and salinomycin-treated cells (sal 4x). (Student’s t-test, two-tailed; *p<0.05; ***p<0.001)  
Cytotoxicity assays for salinomycin and doxorubicin. Salinomycin-treated (sal 4x) as well as control cells were 
treated with indicated concentrations of either E) salinomycin or F) doxorubicin. (Student’s t-test, two-tailed; 
*p<0.05; **p<0.01; ***p<0.001) 
Migration assays and cytotoxicity assays with salinomycin and doxorubicin were conducted by Adam Hermawan 
(PhD study, LMU Munich). 
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Here, MDA-MB-436 cells were treated with salinomycin for several rounds, which 

was in each case followed by a recovery phase until the next cycle started. The 

recovered cells after four rounds of treatment (sal 4x) were then harvested and used 

for further experiments. Repeated long-term treatment of MDA-MB-436 cells with 

salinomycin significantly hampered migration as compared to control cells  

(Figure 20A). Consistent with the reduced migratory capacity, miR-200c levels were 

considerably increased and the cell morphology of salinomycin-treated cells changed 

to clones growing in clusters with an epithelial-like appearance (Figure 20B). 

Moreover, the mesenchymal expression pattern switched to a more epithelial-like 

expression pattern with an increase of E-cadherin and a decrease of vimentin on 

both the protein and mRNA level (Figure 20C and Figure 20D). In addition, the 

mRNA expression of Zeb2, a direct target of miR-200c and an inducer of EMT in 

mesenchymal cancer cells, was significantly reduced (Figure 20D). Finally,  

MDA-MB-436 cells subjected to a long-term treatment with salinomycin (sal 4x) were 

compared to untreated control cells in terms of their sensitivity to salinomycin or 

doxorubicin. Salinomycin-treated epithelial-like and less migratory MDA-MB-436 cells 

were significantly more resistant to salinomycin as compared to their mesenchymal 

and highly migratory counter parts (Figure 20E). However, in accordance with the 

inversely correlating susceptibilities of mesenchymal and epithelial cells, salinomycin-

treated cells were now more sensitive to the classical chemotherapeutic drug 

doxorubicin (Figure 20F). 

 

3.3.5 Salinomycin induces MET in a syn- and transge nic mouse tumor model 

 

To evaluate the potential of salinomycin to induce MET in vivo, luciferase expressing 

4T1 (4T1-luc) cells and syngenic BALB/c mice were utilized in a subcutaneous tumor 

model. Tumor-bearing mice were treated with either salinomycin or mock (control) 

every second or third day and monitored for 17 days. No significant effect on tumor 

growth was observed (Figure 21A). The minor effect on tumor growth of the 

salinomycin-treated mice can be explained by increased apoptosis, which was 

determined by immunohistochemistry of cleaved caspase 3 (Figure 21B). Of note, 

consistent with the in vitro results of salinomycin-treated MDA-MB-436 cells, 

salinomycin-treated tumors displayed an increased miR-200c expression  
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(Figure 21C) and elevated E-cadherin protein levels as determined by Western blot 

analysis (Figure 21D). Immunofluorescence stainings of 4T1-luc tumor sections 

revealed a heterogeneous cell population consisting of either E-cadherin-positive or 

vimentin-positive cells. The latter disappeared after salinomycin treatment, resulting 

in an epithelial-like tumor with considerable E-cadherin expression (Figure 21E).  
 

 
 
Figure 21.   Salinomycin induces MET in a syngenic mouse tumor model 
 
A) Tumor growth of subcutaneous 4T1-luc tumors. 2x106 4T1-luc cells were subcutaneously injected into the right 
flank of 9 female BALB/c mice per group. Animals were treated either with mock (control) or 5mg/kg salinomycin 
on day 3, 6, 8, 10, 13 and 15. Tumor growth was monitored for 17 days at indicated time points using a caliper 
and depicted as tumor volume [mm3].  
B) Immunohistochemistry of subcutaneous 4T1-luc tumors. On day 17 mice were sacrificed and tumors resected. 
Sections of paraffin embedded control and salinomycin-treated tumors were used for immunohistochemistry and 
stained for cleaved caspase 3.  
C) miR-200c expression in 4T1-luc tumors. Relative miR-200c levels of salinomycin- and mock-treated (control) 
4T1-luc tumors were determined by quantitative RT-PCR. (Mean ± SEM; student’s t-test, two-tailed; **p<0.01)  
D) Western blot analysis and immunofluorescence of 4T1-luc tumors. Lysates from representative control and 
salinomycin-treated tumors were analyzed for E-cadherin protein expression.   
E) Immunofluorescence of 4T1-luc tumors. Respective sections were stained for E-cadherin (green) and vimentin 
(red). 
Immunohistochemistry and immunofluorescence were performed by Vijay Ulaganathan (Max-Planck-Institute, 
Martinsried). Annika Herrmann (veterinary MD study, LMU Munich) assisted in the syngenic mouse model 
experiment. 

 

Moreover, a c-MYC driven transgenic mouse model of non-small cell lung cancer 

(SpC-c-MYC mouse) was used, which was previously described by Rapp et al. (102). 

The animals received nine treatments with salinomycin every second day. 

Immunohistochemistry of salinomycin-treated and control SpC-c-MYC mice also 

demonstrated an epithelial-like expression pattern with increased E-cadherin levels 

upon salinomycin treatment (Figure 22A). Vimentin expression was low and could not 

be further down-regulated (Figure 22B). Consistent with the syngenic mouse model, 
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salinomycin-treated lung tumors showed increased PARP cleavage, indicating 

augmented apoptosis upon treatment (Figure 22C). Hence, salinomycin treatment of 

subcutaneous 4T1-luc as well as of transgenic SpC-c-MYC lung tumors led to an 

induction of MET with increased E-cadherin and miR-200c levels. 
 

 
 
Figure 22.  Salinomycin induces MET in the transgenic SpC-c-MYC mouse model 
 
Immunohistochemistry of lung tumors obtained from tumor-bearing transgenic mice. SpC-c-MYC mice at the age 
of 72 weeks received 12 treatments with 5mg/kg salinomycin every second day. Untreated tumor-bearing  
SpC-c-MYC mice at nearly the same age were used as control group. Paraffin embedded sections were stained 
either for F) E-cadherin, G) vimentin or H) cleaved PARP.  
SpC-c-MYC mice were obtained from Chitra Thakur and Ulf Rapp (Max-Planck-Institute, Martinsried). 
Salinomycin treatments were carried out by Nefertiti Elnikhely (Max-Planck-Institute, Bad Nauheim). 
Immunohistochemistry was done by Vijay Ulaganathan (Max-Planck-Institute, Martinsried). 
 

3.3.6 Salinomycin hampers metastasis in a syngenic intravenous mouse tumor 
model 

 

Based on these observations, the question was raised whether salinomycin was able 

to prevent metastasis in vivo by up-regulating miR-200c. The migratory capability of 

4T1-luc cells after miR-200c overexpression was therefore investigated. Boyden 

chamber assay (Figure 23A) and time-lapse microscopy (Figure 23B) demonstrated 

that miR-200c significantly reduced the migratory capacity as well as the 

accumulated distance, the velocity and the movement of miR-200c overexpressing 

4T1-luc cells.  
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Figure 23.  Salinomycin hampers metastasis in a syngenic intravenous mouse tumor model 
 
A) Boyden chamber migration assay of 4T1-luc cells upon ectopic overexpression of miR-200c. The number of 
migrated control-transfected 4T1-luc cells was set to a migratory capacity of one. (Student’s t-test, two-tailed, 
***p<0.001)  
B) Time-lapse microscopy of 4T1-luc cells. Cells transfected with control or miR-200c were monitored using time-
lapse microscopy. The accumulated distance, the velocity and the direction of movement were analyzed. 
(Student’s t-test, two-tailed; ****p<0.0001)  
C) Tumor growth of 4T1-luc tumors in lungs. 1x105 4T1-luc cells were intravenously injected into 10 female 
BALB/c mice per group. Animals were treated either with mock (control) or 5mg/kg salinomycin on day 0, 3, 6 and 
9. Tumor growth was monitored for 13 days at indicated time points using bioluminescence imaging.  
D) miR-200c expression of 4T1-luc tumor-bearing lungs. Mice were euthanized on day 13 and the relative  
miR-200c levels in the resected lungs were analyzed by quantitative RT-PCR. (Mean ± SEM; Student’s t-test, 
two-tailed; *p<0.05)  
E) Metastasis in 4T1-luc tumor-bearing mice. Brain, spleen, kidneys and liver were analyzed for metastases using 
an ex vivo luciferase assay. (Student’s t-test, one-tailed; *p<0.05; **p<0.01) 
Migration assays were done by Adam Hermawan (PhD study, LMU Munich). Time-lapse microscopy was 
conducted by Prajakta Oak (PhD 2012, LMU Munich). Annika Herrmann (veterinary MD study, LMU Munich) 
assisted in the syngenic mouse model experiment. 
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Thus, 4T1-luc cells were injected into the tail vein of BALB/c mice and treated with 

mock or salinomycin at indicated time points. Primary tumor formation in the lungs 

was monitored in vivo using bioluminescence imaging. As observed in the 

subcutaneous model, there was no significant effect of salinomycin treatment on 

primary tumor formation and growth (Figure 23C). When analyzing the miR-200c 

expression after salinomycin treatment, considerably elevated miR-200c levels were 

observed, which was in concordance with the subcutaneous 4T1-luc tumors  

(Figure 23D). Notably, metastases were significantly reduced in brain, spleen and 

kidneys after salinomycin treatment as determined by an ex vivo luciferase assay 

(Figure 23E). These findings suggest that salinomycin is able to induce MET in a 

syngenic intravenous mouse tumor model resulting in a significantly smaller 

metastatic tumor burden. 



RESULTS 

62 

 

3.4 miR-143-controlled transgene expression 
 

3.4.1 miR-143 is down-regulated in a variety of can cer cell lines and cancerous 
tissues 

 

Since miR-143 was reported as tumor suppressor miRNA in different cancer types, 

such as colon, gastric, prostate and cervical cancer, this supposed differential 

expression was utilized for tumor-specific gene therapy.  
 

 

Figure 24.  miR-143 is down-regulated in a variety of cancer cell lines and cancerous tissues 

miR-143 was quantified by quantitative RT-PCR and the levels normalized to miR-191 either from cells in vitro (A) 
or from murine tissues (B-C). All values are stated as mean ± SD of relative miRNA levels. 
A) Porcine smooth muscle cells (PSMC), murine neuroblastoma Neuro2A, human prostate carcinoma PC3 and 
human hepatoma HUH7; (****p<0.0001, ANOVA (Dunnett), n=4).  
B) Lung, heart, liver, kidney, spleen and HUH7 tumor of NMRI nude mice bearing a subcutaneous HUH7 tumor; 
(n=4). 
C) SpC-c-MYC transgenic mouse tumors (lung tumor) and wild type lungs (wt lung); (***p<0.001, student’s t-test, 
two tailed, n=3). 

 

Therefore, miR-143 levels were determined in the human hepatocellular cancer cell 

line HUH7, in the human prostate cancer cell line PC3, in the murine neuroblastoma 

cell line Neuro2A and in primary porcine smooth muscle cells (PSMC) representing 

cells from healthy tissue. PSMC showed the highest miR-143 expression, whereas 

an either low or moderate expression was observed in HUH7, PC3 or Neuro2A cells 

(Figure 24A). Furthermore, miR-143 levels of healthy mouse tissue and HUH7 

xenografts were determined in a NMRI nude/ HUH7 mouse xenograft model to prove 

this differential expression in vivo. As expected, HUH7 xenografts showed the lowest 

miR-143 expression followed by mouse spleen, kidneys, liver, heart and most notably 

mouse lung (Figure 24B).  Finally, miR-143 levels were investigated in lung tumors of 

SpC-c-MYC transgenic mice as well as in the respective wild type lungs (SpC-c-MYC 

transgenic mouse model for spontaneous non-small cell lung cancer has been 
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previously described (102)). Consistent with the previous findings, this transgenic 

mouse model illustrated the high expression of miR-143 in wild type lung tissue as 

compared to the low expression in cancerous tissue of SpC-c-MYC transgenic mice 

(Figure 24C). Here, it was demonstrated that the miR-143 is differentially expressed 

in healthy and cancerous tissue with high expression in PSMC as well as in wild type 

mouse organs. In contrast, the cancer cell lines PC3, HUH7 and Neuro2A showed 

only low or moderate expression levels of miR-143, confirming the role of miR-143 as 

tumor suppressor miRNA. 

 

3.4.2 Reporter gene as well as therapeutic transgen e expression can be 
controlled by miR-143 

 

All vectors used for this study were based on the previously optimized combination of 

human cytomegalovirus (hCMV) enhancer and synthetic CMV-EF1α hybrid promoter 

(SCEP) in a backbone completely devoid of CpG motifs (108). To analyze the 

regulation by miR-143, several different reporter plasmids were developed.  

pCpG-hCMV/SCEP-mCherry encoding for red fluorescent protein was cloned 

containing either no (mCherry) or five miR-143 binding sites (mCherry-miR143-bs) in 

the 3’UTR (Figure 25A). pCpG-hCMV/SCEP-EGFP (EGFP) encoding for enhanced 

green fluorescent protein was employed as control for transfection efficiency. PSMC, 

Neuro2A, PC3 and HUH7 were co-transfected with pCpG-hCMV/SCEP-EGFP and 

one of the vectors encoding for mCherry. Flow cytometric analysis showed a 

considerable decrease of mCherry intensity in PSMC upon transfection with the 

mCherry plasmid containing five copies of the miR-143 target sequence. To a lesser 

extent, mCherry intensity was also decreased in Neuro2A and PC3 cells after 

transfection with the same plasmid. However, HUH7 cells were not able to down-

regulate the expression of the plasmid with five miR-143 binding sites (Figure 25B). 

For quantitative analysis of the effects induced by the inclusion of miR-143 target 

sequences, the mCherry fluorescence of each sample was normalized to mean 

mCherry fluorescence of cells transfected with the plasmid without miR-143 binding 

sites (Figure 25C). 
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Figure 25.  Reporter gene as well as therapeutic transgene expression can be controlled by miR-143 

A) Scheme of mCherry and TNFα plasmids. Five tandem copies of the miR-143 binding sequence separated by a 
five nucleotide linker were inserted into the pCpG-hCMV/SCEP-mCherry or pCpG-hCMV/SCEP-TNFα vector. 
β-Glo=matrix attached region (MAR) from the β-globin gene; E=human cytomegalovirus (hCMV) enhancer; 
P=synthetic CMV-EF1α hybrid promoter (SCEP); SI=synthetic intron; pA=late simian virus 40 (SV40) 
polyadenylation signal; IFN-MAR=MAR from the 5’ region of the human IFN-β gene; R6=R6K ori from E. coli; 
Zeo=Zeocin-resistance gene. 
B) Representative density blots of transfected cells. PSMC, Neuro2A, PC3 and HUH7 cells were co-transfected 
with pCpG-hCMV/SCEP-EGFP (EGFP) and one of the plasmids encoding for mCherry containing either no 
(mCherry) or five miR-143 binding sites (mCherry-miR143-bs). After 48h cells were harvested for flow cytometric 
analysis. x-axis: Alexa Fluor 488 (indicative for EGFP-positive cells), y-axis: APC-A (indicative for mCherry-
positive cells).  
C) Intensity of mCherry fluorescence relative to mean mCherry fluorescence of cells transfected with the mCherry 
plasmid containing no miR-143 binding site. Transfection efficiency was normalized to EGFP expression and 
values are stated as mean ± SD of relative mCherry fluorescence; (**p<0.01, ****p<0.0001, ns = not significant, 
student’s t-test, two-tailed, n=6-10). 
D) Determination of soluble TNFα by ELISA. TNFα concentration in the supernatant of cells transfected with 
indicated plasmids were determined by ELISA 48h after transfection. Indicated plasmids were compared to 
untransfected control (*p<0.05, ****p<0.0001, ANOVA, Tukey, n=8) and TNFα was compared to TNFα-miR143-bs 
(••p<0.01, ••••p<0.0001, ns = not significant, student’s t-test, two-tailed, n=3). 
E) Cytotoxicity of soluble TNFα on murine fibroblasts L929. PSMC, Neuro2A, PC3 and HUH7 cells were 
transfected either with the TNFα, TNFα-miR-143-bs or Luc plasmid. 48h post transfection supernatants were 
collected and transferred to L929 cells. After 24h cell viability was determined by a MTT assay. Results are 
presented as mean of viable L929 cells ± SEM normalized to Luc-transfected control cells; (*p<0.05,  
ns = not significant, student’s t-test, one-tailed, n=8).  
Experiments were done by Maria Schnoedt and adapted from her Master Thesis (LMU Munich, 2011). 
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To assess the suitability of the differential miR-143 expression for therapeutic 

transgene expression, PSMC, Neuro2A, PC3 and HUH7 cells were transfected with 

pCpG-hCMV/SCEP-TNFα plasmids containing either no (TNFα) or five miR-143 

binding sites (TNFα-miR143-bs) (Figure 25A). pCpG-hCMV/EF1-LucSH (Luc), a 

plasmid coding for firefly luciferase, was used to determine the endogenous TNFα 

concentration in response to cell transfection. Soluble TNFα was analyzed in the 

supernatant by ELISA 48h after transfection (Figure 25D). TNFα gene expression 

was effectively suppressed in PSMC if the miR-143 binding sequences were included 

into the coding plasmid. Statistical analysis revealed no significant differences in 

TNFα protein concentration in supernatants of untransfected cells, cells transfected 

with the plasmid encoding for firefly luciferase and cells transfected with the TNFα 

plasmid containing five target sequences of miR-143. Similar results were obtained 

from Neuro2A cells, which were shown to express relatively high levels of miR-143 

as compared to PC3 and HUH7 cells. Consistently, no significant decrease of TNFα 

production was observed in PC3 and HUH7 cells after transfection with either 

plasmid. To investigate the physiological effects of miRNA-regulated gene therapy, 

the TNFα-induced cytotoxicity was analyzed by utilizing a model system which was 

previously described by Su et al. (110). Murine fibroblasts (L929) were treated with 

supernatants of tumor cells transfected either with the TNFα, TNFα-miR-143-bs or 

Luc plasmid. The obtained L929 cell viabilities after TNFα treatment reflected the 

results of the TNFα ELISA (Figure 25E).  Thus, the miR-143-dependent expression 

of the mCherry reporter as well as of the therapeutic gene TNFα was demonstrated, 

emphasizing the potential role of miR-143 in cancer cell-specific targeting. All 

plasmids were cloned by Maria Schnoedt and Rudolf Haase (LMU Munich). The flow 

cytometry, TNFα ELISA and TNFα cytotoxicity experiments were performed by Maria 

Schnoedt and adapted from her Master Thesis (LMU Munich, 2011). 

 

3.4.3 miR-143-dependent silencing of a luciferase r eporter system in vitro and 
in vivo 

 

To test the ability of miR-143-regulated transgene expression in vivo, the mCherry 

coding sequence was exchanged for the luciferase sequence (Figure 26A). First, the 

effectiveness of miRNA regulation was investigated in an in vitro luciferase assay. 
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Therefore, all cell lines were transfected with either pCpG-hCMV/SCEP-LucSH (Luc) 

or pCpG-hCMV/SCEP-LucSH containing five miR-143 binding sites (Luc-miR143-bs). 

As expected, no significant difference in luciferase expression was observed between 

PC3 and HUH7 cells transfected with either plasmid. However, PSMC were able to 

effectively reduce luciferase activity to 40% if transfected with the plasmid containing 

the miR-143 target sequences. Neuro2A cells could still achieve a reduction of 

luciferase activity to 60% (Figure 26B). 
 

 
Figure 26.  miR-143-dependent silencing of a luciferase reporter system in vitro and in vivo 
 
A) Scheme of luciferase plasmids. Five tandem copies of the miR-143 binding sequence separated by a five 
nucleotide linker were inserted into the pCpG-hCMV/SCEP-LucSH vector.  
β-Glo=matrix attached region (MAR) from the β-globin gene; E=human cytomegalovirus (hCMV) enhancer; 
P=synthetic CMV-EF1α hybrid promoter (SCEP); SI=synthetic intron; pA=late simian virus 40 (SV40) 
polyadenylation signal; IFN-MAR=MAR from the 5’ region of the human IFN-β gene; R6=R6K ori from E. coli; 
Zeo=Zeocin-resistance gene. 
B) Expression profile of luciferase reporter plasmids. PSMC, Neuro2A, PC3 and HUH7 cells were transfected with 
the luciferase reporter containing either no (Luc) or five copies of the miR-143 binding sequence  
(Luc-miR143-bs). Luciferase expression was monitored after 24h from whole cell lysates. Values are stated as 
mean ± SD of relative light units (RLU) per 104 seeded cells; (**p<0.01, ns = not significant, student’s t-test, two-
tailed, n=3).  
C) Luciferase expression after in vivo transfections. HUH7 tumor-bearing mice were treated either with Luc or 
Luc-miR143-bs plasmids via the tail vein using LPEI as carrier. 48h after treatment luciferase signals were 
detected ex vivo by a luciferase assay of the resected lungs (lung) and HUH7 tumors (tumor); (***p<0.001,  
ns = not significant, u-test, Mann-Whitney, n=8). 
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For in vivo application linear polyethylenimine (LPEI) polyplexes were chosen, which 

have a strong preference of transfecting lungs after intravenous administration in 

mice (109). It was therefore interesting whether luciferase expression could be 

specifically regulated in an in vivo mouse xenograft tumor model by de-targeting the 

lungs. Thus, HUH7 cells, which display low miR-143 levels and which have been 

reported to result in well vascularized and transfectable tumors (131), were injected 

into the right flanks of NMRI nude mice. When tumors reached a diameter of 10mm, 

mice were treated with plasmids encoding either for Luc or Luc-miR143-bs 

complexed with LPEI or mock-treated (HEPES buffered glucose, pH 7.4). Luciferase 

activity was analyzed in all groups 48h after transfection with an ex vivo luciferase 

assay. In concordance with the miR-143 expression levels, a significant  

miR-143-dependent decrease of the luciferase signal was achieved in the lungs of 

Luc-miR143-bs-treated mice. In contrast, there was no significant regulation of the 

luciferase signal detectable in the miR-143 low-expressing tumor tissue (Figure 26C). 

All luciferase signals of Luc- and Luc-miR143-bs-treated mice were significantly 

above the background signal of mock-treated animals (3.9 RLU/µg protein).  

Apparently, differential miR-143 expression could be used for specific tumor targeting 

by de-targeting the lung, suggesting that this might be suitable for tumor-specific 

gene therapy. 
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4. DISCUSSION 
 

4.1 miR-200c sensitizes breast cancer cells to doxo rubicin 
 

In breast cancer treatment classical chemotherapy is largely used besides hormone 

therapy and novel targeted therapy approaches (12, 132). For instance, the 

anthracycline doxorubicin (Adriamycin®) is commonly used as single-agent or in 

combination with other drugs like docetaxel (Taxotere®) and cyclophosphamide 

(TAC regimen) in an adjuvant or neo-adjuvant setting (133). Generally, 

chemotherapy regimens are administered sequentially, i.e. in case of the TAC 

regimen patients are treated six times every three weeks (134, 135). In this study, 

this pulse chemotherapy of breast cancer was mimicked in an in vitro cell culture 

model by treating the epithelial breast cancer cell line BT-474 sequentially in four 

cycles with doxorubicin. The treatment of BT-474 cells with a recovery phase 

followed by the next treatment cycle resembles the therapy regimen of patients and 

thereby provides a model for acquired chemoresistance. The molecular evolution 

assay of BT-474 cells was demonstrated to result in significantly more resistant cells 

within three treatment cycles. Acquisition of chemoresistance was accompanied by a 

change in cell morphology and in the expression of the epithelial marker E-cadherin 

and the mesenchymal marker vimentin suggesting that an EMT-like mechanism 

might be involved. Besides the well investigated and established regulation of EMT 

(3, 19, 20, 119), recent findings also suggest that the loss of miR-200c regulates 

resistance to paclitaxel or cisplatin (22, 32, 33). However, an exact mechanism of  

miR-200c-dependent acquired chemoresistance had to be elucidated. Here, it was 

shown that the sequential doxorubicin treatment of the epithelial breast cancer cell 

line BT-474 led to an altered phenotype with decreased miR-200c levels resulting in 

doxorubicin resistance. 

To further investigate the role of miR-200c in acquired chemoresistance, two different 

cell lines were utilized, with which it was possible to modulate chemoresistance by 

molecular manipulation of the respective miR-200c levels. First, miR-200c was 

inhibited in the epithelial, doxorubicin-sensitive and miR-200c high-expressing cell 

line BT-474. Thereby, the inhibition of miR-200c resulted in cells which were 
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significantly more resistant to doxorubicin treatment. Second, miR-200c was 

overexpressed in the mesenchymal, doxorubicin-resistant and miR-200c-negative 

cell line MDA-MB-436. Accordingly, miR-200c expressing MDA-MB-436 became 

significantly more susceptible to doxorubicin treatment. Thus, it was demonstrated in 

two different cell types that miR-200c alone was able to regulate sensitivity to 

doxorubicin, confirming the findings of the molecular evolution assay. 

Since miRNAs are endogenously modulating gene expression by degrading mRNA 

or by inhibiting translation, biological functions of these tiny RNAs can be attributed to 

their targets (1-3, 7, 136). Howe et al. (27) have reported that TrkB is targeted by 

miR-200c in breast cancer conferring anoikis resistance. Moreover, Trk receptors 

including TrkB are essential for the development and functioning of the nervous 

system by mediating cell migration, proliferation and most notably survival. Thereby, 

TrkB is signaling via PLCγ, the MAP kinases or PI3K and Akt (115). Phosphorylation 

of Akt plays a pivotal role in cell survival and anti-apoptotic signaling by 

phosphorylating and thereby inhibiting pro-apoptotic factors like Bad or caspase 9 

(137, 138). The molecular evolution assay of BT-474 cells resulted in a differential 

expression of TrkB over the cycles with an increase in the second round followed by 

a reduction in the fourth round. Consistent with the TrkB regulation, Akt 

phosphorylation was remarkably enhanced in the second round and reduced again in 

the fourth round. The discrepancy in the extent of TrkB and p-Akt regulation can be 

explained by other clonal selection events influencing the Akt survival pathway. As 

the molecular evolution assay is based on clonal selection processes, a linear 

regulation of resistance markers, such as TrkB or p-Akt, is not necessarily expected 

(139). Dependent on the particular condition of a treated cell, such as genetic 

background, phase of cell cycle or extent of DNA damage, distinct survival pathways 

are preferred to circumvent chemotherapy. To ascertain the role of TrkB as  

miR-200c-dependent resistance factor, miR-200c was overexpressed in the 

mesenchymal and doxorubicin-resistant cell line MDA-MB-436. In accordance with 

the increased susceptibility to doxorubicin, TrkB protein was silenced in miR-200c 

overexpressing cells. However, there were no differences in p-Akt levels between 

pre-miR-200c- and scrambled control-transfected cells. This was ascribed to a 

missing stimulus which may induce survival signaling in the transfected cells. 

Therefore, miR-200c overexpressing as well as control cells were treated with 
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doxorubicin to activate survival signaling. Thereafter, phosphorylation of Akt was 

induced by doxorubicin treatment in the scrambled control-transfected cells, whereas 

in the pre-miR-200c-transfected cells it was blocked at basal levels comparable to 

untreated cells. 

Because miRNAs regulate the expression of numerous target genes (2, 3, 9), it was 

assumed that the down-regulation of miR-200c promotes chemoresistance by 

modulating more than one target gene. Shimono et al. (31) have reported that Bmi1, 

a member of the polycomb group proteins, is targeted by miR-200c linking breast 

cancer stem cells with normal stem cells. Furthermore, Bmi1 is involved in the 

maintenance of stemness and in the regulation of senescence (140-142). Thereby, 

Bmi1 functions as transcriptional repressor of a variety of genes including p16Ink4a 

and p19Arf of the Ink4a locus. Repression of p19Arf results downstream in the 

degradation of p53 by MDM2 leading to anti-apoptotic effects (118). Additionally, 

recent studies have shown that Bmi1 promotes cisplatin and docetaxel resistance in 

osteosarcoma and prostate cancer, respectively (116, 117). Thus, Bmi1 protein 

expression was investigated over the rounds in the molecular evolution assay of  

BT-474 cells and in miR-200c overexpressing MDA-MB-436 cells. Accordingly, a 

continuous up-regulation of Bmi1 over the rounds in BT-474 cells and a clear down-

regulation after miR-200c overexpression in MDA-MB-436 cells were observed. 

Moreover, p53 levels were demonstrated to be decreased after the fourth cycle of 

doxorubicin treatment, which was in line with the increased chemoresistance in the 

molecular evolution assay. However, the mesenchymal and resistant cell line  

MDA-MB-436 was p53-negative independent of the miR-200c levels. This indicates 

that in MDA-MB-436 cells Bmi1 may mediate resistance via other pathways than p53, 

for instance via the PI3K/Akt pathway (117), and that p53 might be silenced through 

epigenetics, e.g. through promoter methylation. Additionally, miR-200c is a key 

modulator of a variety of genes which can potentially contribute to chemoresistance. 

Therefore, one has to be aware of the possibility that more than these two target 

genes described in this study can provide different resistance mechanisms 

dependent on the respective genetic background. Nevertheless, these findings 

illustrate how a single miRNA is able to regulate the circuitry of many pathways to 

render cancer cells susceptible or resistant to chemotherapy. 
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Figure 27.  Model of miR-200c-regulated chemoresistance 
 
Treatment of miR-200c high-expressing epithelial cancer cells with doxorubicin leads to clonal evolution of  
miR-200c low-expressing and mesenchymal-like cells. In consequence, a variety of miR-200c target genes are 
up-regulated. Besides the induction of EMT by the up-regulation of the E-cadherin (CDH1) repressors Zeb1 and 
Zeb2 (54, 119), this loss of miR-200c can cause an elevation of resistance factors like TrkB and Bmi1 resulting in 
enhanced cell survival. This leads to the activation of anti-apoptotic pathways like the phosphorylation of Akt or 
the degradation of p53, which can be further modulated by a complex crosstalk. 

 

In conclusion, doxorubicin treatment of a heterogeneous cancer cell population leads 

to clonal evolution and selection of miR-200c low-expressing cells and subsequently 

to an up-regulation of various target genes including EMT inducing repressors like 

Zeb1 and Zeb2 (54, 119) as well as chemoresistance inducing factors like TrkB or 

Bmi1, resulting in enhanced survival signaling (Figure 27).  

This study is one step forward in the understanding of miR-200c-dependent 

regulation of chemoresistance. Furthermore, these results provide an insight into the 

complex interaction network of miRNAs and their numerous target genes, highlighting 

the challenges in cancer therapy and supporting strategies utilizing miRNA-

modulating anticancer drugs in the future. 
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4.2 miR-200c targets KRAS 
 

The GTPase K-ras is involved in a variety of cellular processes, such as 

differentiation, proliferation and survival. However, activating mutations, which 

frequently occur in many types of cancer, turn KRAS into one of the most prominent 

oncogenes. Likewise, miR-200c plays an important role in tumorigenesis as a 

molecular switch between an epithelial, non-migratory, chemosensitive and a 

mesenchymal, migratory, chemoresistant state. While it has been reported that 

KRAS is regulated by several tumor suppressor miRNAs, this is the first report on the 

interaction of these two key players in oncogenesis.  

In this study, it was shown that KRAS is a predicted target of miR-200c and that the 

protein expression of KRAS inversely correlates with the miR-200c expression in a 

panel of human breast cancer cell lines. KRAS was experimentally validated as a 

target of miR-200c by Western blot analyses and luciferase reporter assays. 

Interestingly, upon molecular evolution, an assay for acquired chemoresistance in 

which cancer cells were sequentially treated with doxorubicin, BT-474 cells displayed 

a significantly reduced miR-200c and a remarkably enhanced K-ras protein 

expression. Even though BT-474 cells express wild-type K-ras (121), the up-

regulation of K-ras is a reasonable way to overcome the chemotherapeutic treatment 

as those cells have an amplification of the pro-survival gene encoding for the 

receptor tyrosine kinase HER2 (143), which signals downstream among others via 

the RAS/MAPK signaling pathway. This suggests that not only the presence of 

mutated but also the expression levels of wild-type K-ras are important for tumor 

progression and may serve as predictive marker for therapy efficacy, especially when 

occurring in combination with other genetic alterations such as EGFR mutations or 

HER2 amplifications. 

Furthermore, the inhibitory effect of miR-200c-dependent KRAS silencing on 

proliferation and cell cycle was demonstrated in different breast and lung cancer cell 

lines. Thereby, the particular role of KRAS was dissected from the role of all other 

potential targets of miR-200c by specific knockdown experiments using siRNA 

against KRAS. Cell lines harboring an activating KRAS mutation (MDA-MB-231, 

A549 and Calu-1) were similarly affected by miR-200c as well as by the siRNA 

against KRAS. The observed decrease of the G1-phase together with the increase of 
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the S-phase indicates that the DNA replication upon K-ras knockdown might be 

slowed down, hence leading to the reduced proliferation. However, in the KRAS wild-

type cell line MDA-MB-436 only miR-200c was able to change proliferation and cell 

cycle. Uhlmann et al. (144) have shown that in MDA-MB-231 cells the  

miR-200bc/429 seed-cluster, in particular miR-200c, inhibits EGF-driven invasion as 

well as proliferation and cell cycle progression, the latter by decreasing the  

G1-population. However, they ascribed the physiological effects to a miR-200c-

induced down-regulation of PLCγ1, regardless of the KRAS mutation status. While 

the effects on invasion were nicely reflected by a specific knockdown of PLCγ1, the 

effects on proliferation were only mimicked in part. Here, it was shown that the effects 

on proliferation and cell cycle are coinciding for miR-200c and siRas if an activating 

KRAS mutation is present. These results indicate that in MDA-MB-231 cells, which 

harbor the activating KRAS mutation G13D, miR-200c inhibits proliferation and cell 

cycle progression more likely via a down-regulation of KRAS. On the contrary, in cells 

harboring wild-type KRAS, only miR-200c is able to alter proliferation and cell cycle 

presumably via other targets than KRAS, for instance BMI1. The polycomb group 

repressor Bmi1 induces transcriptional repression of a variety of genes including 

p16Ink4a of the Ink4a locus, which causes cell cycle arrest and senescence (118). 

Hence, miR-200c shows a broader efficacy against cancer cells by targeting multiple 

genes and pathways. 

Activating mutations in the KRAS gene are important drivers of carcinogenesis in 

many types of cancer, such as lung, colon and pancreas (34, 35). However, it has 

been reported that human tumors display a remarkable intratumoral heterogeneity 

(145), which is furthermore associated with drug resistance and the failure of cancer 

therapies (146). Oncogenic K-ras might not necessarily be expressed across an 

entire tumor, but rather cellular subpopulations may exist, which display the wild-type 

KRAS gene. These cell populations can additionally contribute to tumor progression 

and to an aggressive phenotype including a high propensity of cancer cells to 

metastasize and to overcome drug treatment. Therefore, usage of miR-200c may be 

superior to that of a siRNA against KRAS as this miRNA has multiple targets (50), 

which regulate crucial events for tumor progression, e.g. epithelial-mesenchymal 

transition (EMT), acquisition of stem-like properties or therapy resistance (Figure 28).  
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Figure 28.  Regulatory network of miR-200c 
 
While siRas can only specifically target KRAS mRNA, miR-200c regulates a variety of genes involved in tumor 
progression, metastasis and therapy resistance. By controlling a multitude of cellular processes, miR-200c causes 
stronger effects against various cancer cells independent of the mutational status of KRAS. The targets depicted 
in the diagram and their respective biological roles are reviewed in (50). 

 

Moreover, KEGG-pathway analysis of all potential miR-200c targets predicted by 

TargetScan (95) revealed that miR-200c might strongly interact with the MAPK and 

ERBB signaling pathway by regulating a multitude of target genes, such as central 

adaptor proteins like Shc and Sos, kinases like MEKK1 and PKC or transcription 

factors like SRF and JUN. Although the direct regulation of these targets needs to be 

proven, these findings suggest that miR-200c may have additional regulating 

functions as a kind of gatekeeper of tumor progression and therapy resistance by 

controlling a complex network of oncogenic pathways including the RAS/MAPK 

pathway. 
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4.3 Salinomycin targets migratory miR-200c low tumor cells 
 

It has been suggested that intratumoral heterogeneity derived from genetic and non-

genetic alterations can remarkably influence clinically important events, such as 

metastasis formation and therapy resistance (145). This implicates that a tumor 

comprises different cellular phenotypes amongst them migratory, mesenchymal, 

more chemoresistant cells, as well as non-migratory, epithelial, commonly 

chemosensitive cells. Developing novel therapeutic strategies for targeting all the 

different cell populations within a tumor is crucial for a successful cancer therapy. 

Hence, the discovery of the new class of CSC targeting drugs such as salinomycin 

raised hope for improved treatment options for cancer patients. Interestingly, 

Naujokat and Steinhart have reported promising case studies where patients with 

exhausted therapeutic options were treated with salinomycin (59). 

Considering that CSC display traits of cells which have undergone epithelial-

mesenchymal transition (EMT) (57) and that down-regulation of miR-200c induces 

EMT (26, 29) and links normal stem cells with breast cancer stem cells (31) 

implicates that miR-200c may represent a functional marker for therapy response, 

disease progression and tumor dissemination. In this study, it was demonstrated that 

miR-200c expression correlates with the migratory capacity in a panel of cancer cell 

lines and that ectopic overexpression leads to reduced migration and sensitivity to 

salinomycin due to the induction of mesenchymal-epithelial transition (MET). 

Moreover, the migratory potential of the cancer cell lines used in this study correlated 

directly with salinomycin susceptibility and inversely with doxorubicin susceptibility, 

i.e. highly migratory mesenchymal cells with low miR-200c levels were sensitive to 

salinomycin but resistant to doxorubicin. Combined treatment of co-cultured cancer 

cells consisting of epithelial non-migratory MCF-7 and mesenchymal migratory  

MDA-MB-436 cells with salinomycin and doxorubicin confirmed the selective 

targeting of the two cell types. Salinomycin had considerable inhibitory effects on cell 

migration in several different cancer cell lines including MDA-MB-436 (breast), LLC 

(lung) and 4T1 (breast) when applied at low dose for a short period of time. Short-

term salinomycin treatment did not influence miR-200c expression levels in  

MDA-MB-436 cells, whereas long-term treatment inhibited migration and induced 

MET resulting in more differentiated epithelial cells with elevated miR-200c levels. 
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Thus, there are two consequences of salinomycin treatment: first, an immediate 

effect on mesenchymal cells blocking the migration and second, long-term survival 

and persistence of epithelial-type tumor cells.  As suggested by recent publications 

(60, 61, 147), epithelial cells may have a higher capability than mesenchymal cells to 

initiate autophagy and thereby to circumvent salinomycin treatment, hence explaining 

the differential salinomycin susceptibility of these two cell types. Moreover, 

salinomycin-treated tumors may also acquire epithelial traits in several other ways. 

On the one hand, genetic instability and clonal selection as suggested by Cahill et al. 

(139) may determine surviving clones which display epithelial properties and elevated 

miR-200c levels when treated with salinomycin. One of the possible mechanisms for 

miR-200c up-regulation has been reported by Hur et al. (55). In their study, they have 

shown hypomethylation of the promoter region of the miR-200c/141 cluster in liver 

metastases of colorectal cancer. On the other hand, salinomycin treatment may 

induce miR-200c expression by transcriptional regulation via signaling cascades. 

Taking into account that there was no immediate response on miR-200c expression 

in salinomycin-treated MDA-MB-436 cells and that long-term treatment induced MET 

with elevated miR-200c levels, the first mechanism of a clonal selection of epithelial-

like cancer cells appears to be more likely. Salinomycin was also able to increase 

miR-200c expression and induce MET in subcutaneously inoculated 4T1-luc cells 

and in the transgenic SpC-c-MYC mouse model of metastasizing non-small cell lung 

cancer (102), confirming the in vitro results. Of note, metastasis formation in brain, 

spleen and kidneys from primary 4T1-luc tumors in the lungs was considerably 

reduced by salinomycin treatment, even though the growth of the primary lesion was 

not significantly hampered.  

In summary, the in vitro and in vivo results show that salinomycin - initially a cancer 

stem cell-specific drug - inhibits the migration of various cancer cells and restrains 

them in an epithelial state preventing tumor dissemination. Salinomycin treatment 

can hamper cancer cell migration and metastasis in two ways: an immediate short-

term response on migration and a long-term effect resulting in MET and differentiated 

tumor cells. Therefore, treatment with salinomycin leads to less aggressive cancer 

cells and tumors in terms of lower migratory capacity, less metastasis and higher 

susceptibility to classical chemotherapy. Salinomycin treatment may therefore render 

cancer better controllable and improve the clinical outcome of patients suffering from 

metastatic cancer. 
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The analysis of two published studies on miRNA expression profiles in early primary 

breast cancers (148) and in high-risk estrogen receptor-positive (ER+)  

tamoxifen-treated breast cancers (149) revealed miR-200c as promising prognostic 

marker for survival. By means of the recently published online tool MIRUMIR (105) 

an overall survival probability of patients with high miR-200c levels (divided by the 

median miR-200c expression) was obtained which was slightly improved for early 

primary breast cancers and significantly superior for the high-risk ER+ breast cancers 

(Figure 29A).  

In order to target all the heterogeneous cell populations, a treatment regimen is 

suggested which includes the combination of classical chemotherapeutics such as 

doxorubicin, targeted approaches such as tamoxifen or trastuzumab, and 

salinomycin for aggressive migratory cancer cells (Figure 29B). Since tumor 

heterogeneity increases upon cancer progression (145), and low miR-200c 

expression has been linked to high tumor stages with poor differentiation (150), the 

differential miR-200c expression was assigned to the respective stages of breast 

cancer (151). Accordingly, beneficial effects of a combined treatment with 

salinomycin and doxorubicin were particularly expected for tumors at higher stages, 

i.e. with lower miR-200c expression. Those patients who suffer from advanced breast 

cancer may benefit from salinomycin treatment in addition to classical chemotherapy 

as salinomycin prevents tumor progression and metastasis. Long-term salinomycin 

treatment selectively kills highly migratory mesenchymal cancer cells with low  

miR-200c levels, which are usually hard to target by conventional chemotherapies  

(93, 152-154). In addition, a sensitizing effect of salinomycin to DNA damaging and 

anti-mitotic drugs has been also suggested in recent studies (155, 156). Hence, the 

eradication of these chemoresistant subpopulations with low miR-200c expression by 

salinomycin treatment results in elevated miR-200c levels and MET, turning 

advanced cancers into less aggressive tumors with reduced migratory capacity and 

higher susceptibility to classical anti-cancer drugs. Such a therapeutic approach 

might improve the outcome and overall survival of cancer patients suffering from 

advanced and recurrent therapy-refractory malignancies, eventually rendering cancer 

controllable. 
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Figure 29.  Novel sequential treatment strategy with salinomycin and doxorubicin 
 
A) miR-200c-dependent survival probability. Analysis of data from two miRNA expression studies in early primary 
breast cancers (left panel) (148) and high-risk estrogen receptor-positive breast cancers (right panel) (149) was 
carried out using MIRUMIR. Patients were divided by the median into two groups either with high or low miR-200c 
expression. The resulting Kaplan-Meier survival curves are depicted in the graphs. 
B) Sequential therapeutic approach for advanced tumors. Cancer stages are categorized in terms of their 
progression into localized miR-200chigh (stage I), early locally advanced miR-200clow (stage II) and late locally 
advanced or metastatic miR-200clow (stage III/IV) tumors. Salinomycin in addition to classical chemotherapy, for 
instance doxorubicin, may improve cancer therapy at all stages by targeting migratory and therapy-resistant 
mesenchymal cells with low miR-200c expression, resulting in MET and more differentiated tumors, which display 
higher miR-200c levels. These cells are less migratory and more susceptible to classical chemotherapy like 
doxorubicin treatment, which may result in a significant shrinkage or even an eradication of the existing tumor 
(respective combinatorial effects are shown on the right sides). In addition to the induction of MET, salinomycin 
can immediately inhibit the migration of spreading cancer cells in more advanced metastatic tumors (as indicated 
for tumors at stage III/IV). On the contrary, treatments limited to classical chemotherapeutic drugs will lead to 
clonal selection of aggressive cancer cells with low miR-200c expression, resulting in tumor progression, 
recurrence and metastases (as depicted on the left sides). 
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4.4 miR-143-controlled transgene expression 
 

miRNA dysregulation often results in the development and progression of cancer. For 

instance, miR-143 is ubiquitously expressed in most human and murine tissues but 

down-regulated in many cancer types. This differential miRNA expression between 

healthy and cancerous tissue can be utilized for targeted cancer gene therapies. The 

concept of regulating transgene expression through miRNAs, which was initially 

described by Naldini and coworkers using viral vectors (82), should be now applied to 

non-viral vectors. 

In this study, multiple copies of the miR-143 complementary target sequence were 

inserted into the 3’UTR of plasmid vectors encoding either for different reporter genes 

or for the therapeutic gene TNFα. All plasmids were shown to be precise sensors for 

the cellular levels of miR-143 both in vitro and in vivo. It was shown that the 

differential miR-143 expression between tumors and healthy tissues can be exploited 

for the de-targeting of healthy tissue. To utilize the endogenous miRNA machinery for 

the improved control of transgene expression at the posttranscriptional level is one 

step forward in decreasing side effects in cancer gene therapy. However, the ectopic 

expression of plasmids containing miRNA target sequences may affect the regulation 

of endogenous target genes by competition and saturation effects. In case of  

miR-143, this may lead to unfavorable side effects due to an up-regulation of several 

oncogenes. Nevertheless, combining different therapeutic strategies, such as specific 

targeting of the tumor, e.g. through certain ligands or tissue-specific promoters, and 

de-targeting, e.g. through miRNAs, may avoid these undesired side effects.  

Recently, a combination of targeted delivery of plasmids and radiation (157) or 

chemotherapeutic drugs (110) was applied to cancer gene therapy using peptide 

targeted non-viral gene carriers. The described de-targeting approach in combination 

with novel polymeric carriers (104) including specific targeting ligands (158) will 

further improve efficiency, specificity and safety of such approaches, paving the way 

towards preclinical development. 
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5. SUMMARY 
 

The progression of tumors into advanced stages, which are characterized by an 

increased therapy resistance and a higher risk of metastasis formation, still 

represents the major threat for cancer patients. Despite of improved early detection 

methods and treatment options, the acquisition of chemoresistance to classical 

chemotherapeutic drugs and the switch from early local to late advanced and 

metastatic disease remain enormous challenges in the treatment of recurrent 

cancers. miRNAs have been previously demonstrated to be crucial regulators in 

oncogenesis modulating important processes like proliferation, migration, invasion 

and therapy susceptibility.  

In this thesis, the molecular evolution assay, which mimics the pulsed chemotherapy 

of cancer patients in an in vitro cell culture assay, was established to analyze the 

underlying mechanisms of acquired chemoresistance in breast cancer cells. On the 

basis of the molecular evolution assay, an epithelial-mesenchymal transition  

(EMT)-like resistance mechanism was identified in which the loss of miR-200c was 

demonstrated to be responsible for the acquisition of doxorubicin resistance. By 

overexpressing miR-200c, doxorubicin-resistant breast cancer cells were sensitized 

to doxorubicin treatment due to the modulation of several miR-200c targets including 

TrkB, Bmi1 and K-ras. The respective targets were mechanistically linked to 

prominent cellular survival pathways, i.e. PI3K/AKT, p53 and RAS/MAPK pathway, 

deciphering a complex network of miR-200c-regulated acquired chemoresistance. 

Furthermore, the prominent proto-oncogene KRAS was for the first time reported to 

be a direct target of miR-200c. This interaction between miR-200c and KRAS was not 

only shown to be involved in resistance formation in breast cancer, but also to be 

relevant for tumorigenesis in general as miR-200c could interfere with mutated 

oncogenic KRAS resulting in reduced proliferation and disturbed cell cycle 

progression. Interestingly, the effect of miR-200c and siRNA against K-ras was 

comparable in cell lines harboring activated oncogenic KRAS, whereas only  

miR-200c displayed inhibitory effects on proliferation and cell cycle in KRAS wild-type 

cells. The negative regulation of cellular survival pathways and the interaction with 

the RAS pathway suggest a novel tumor suppressive role of miR-200c, making it a 

promising candidate also for cancer therapy. Thereby, miR-200c may directly 
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suppress tumor growth or sensitize cancer cells to additionally applied classical 

chemotherapy. 

Moreover, the recently published cancer stem cell-specific drug salinomycin was 

evaluated for its therapeutic potential. Here, it was proven that salinomycin effectively 

inhibits cancer cell migration already at low doses. At higher doses, salinomycin was 

demonstrated to preferentially affect mesenchymal migratory cancer cells with low 

miR-200c expression, which were shown to be resistant to doxorubicin treatment. On 

the other hand, epithelial non-migratory cells with high miR-200c expression were 

rather resistant to salinomycin but susceptible to doxorubicin, revealing the 

differential activity of salinomycin and doxorubicin against mesenchymal and 

epithelial cancer cells. When applied in a long-term assay, salinomycin treatment 

induced mesenchymal-epithelial transition (MET) resulting in epithelial-like cancer 

cells with lower migratory capacity and higher susceptibility to doxorubicin. The 

switch from mesenchymal to epithelial cancer cells with elevated miR-200c levels 

upon salinomycin treatment was also verified in vivo using a syn- and transgenic 

mouse model. Furthermore, the metastatic tumor burden in a syngenic mouse model 

could be significantly reduced by salinomycin treatment. These findings led to the 

proposal of a sequential treatment regimen consisting of salinomycin and 

doxorubicin, in which salinomycin restrains the tumor in an epithelial, non-migratory 

and doxorubicin-sensitive state by targeting mesenchymal, migratory and commonly 

chemoresistant cancer cells. Thereby, miR-200c emerged as promising marker for 

cellular transitions upon treatment, therapy efficacy and the overall survival of breast 

cancer patients as determined by in silico analysis of miRNA expression profiles. 

With this novel treatment strategy the effects of ectopically overexpressed miR-200c 

could be mimicked by salinomycin treatment avoiding the difficulties of in vivo miRNA 

delivery. Thus, the outcome of patients suffering particularly from advanced or 

metastatic disease may be improved. 

In addition, an alternative therapeutic approach was evaluated, utilizing the 

differential miRNA expression in healthy and cancerous tissue for tumor-specific non-

viral gene therapy. miR-143 was validated as a suitable tumor suppressor miRNA 

displaying low and high expression levels in cancerous and non-malignant tissue, 

respectively. Five copies of the sequence complementary to miR-143 were inserted 

into the 3’UTR of plasmid vectors encoding either for different reporter genes or for 
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the therapeutic gene TNFα. All plasmids containing the miR-143 target sequences 

were shown to be precise sensors for miR-143 expression in vitro. In a xenograft 

mouse tumor model using miR-143low cancer cells and a polymeric carrier for gene 

delivery, specific transgene expression was achieved in miR-143low tumors by de-

targeting miR-143high non-cancerous tissues. This de-targeting approach in 

combination with novel carriers and specific targeting ligands may further improve the 

efficiency, the specificity and hence the safety of gene delivery systems, smoothing 

the path towards preclinical development. 
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6. APPENDIX 
 

6.1 Abbreviations 
 

ABC Adenosine triphosphate (ATP) binding cassette 

Ago Argonaute 

ALL Acute lymphocytic leukemia 

ATCC American Type Culture Collection 

BLI Bioluminescence imaging 

cDNA Complementary DNA 

CLL Chronic lymphocytic leukemia 

CMV Cytomegalovirus 

CSC Cancer stem cells 

Ct Cycle of threshold 

DAPI 4',6-diamidino-2-phenylindole 

DAVID Database for Annotation, Visualization and Integrated Discovery 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

dxr Doxorubicin 

EDTA Ethylenediamine tetraacetic acid 

EF1α Human elongation factor 1 alpha 

ELISA Enzyme linked immunosorbent assay 

EMT Epithelial-mesenchymal transition 

FCS Fetal calf serum 

FDR False discovery rate 

Fluc Firefly luciferase control plasmid 

GTPase Guanosine triphosphatase 

hsa Homo sapiens 

HSV-1 Herpes simplex virus 1 

IHC   Immunohistochemistry 

IF Immunofluorescence 

KEGG Kyoto Encyclopedia of Genes and Genomes 

LNA Locked nucleic acid 
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LPEI Linear polyethylenimine 

LSM Laser scanning microscopy 

MET Mesenchymal-epithelial transition 

miRNA MicroRNA 

mmu Mus musculus 

mRNA MessengerRNA 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NET Buffer containing NaCl, EDTA and Tris-HCl 

N/P Nitrogen residues per phosphate of DNA 

PBS Phosphate buffered saline 

polyA Polyadenylation 

PSMC Porcine smooth muscle cells 

RISC RNA-induced silencing complex 

Rluc Renilla luciferase reporter plasmid 

RNA Ribonucleic acid 

RNAi RNA interference 

ROUT Robust regression and outlier removal 

RT-PCR Reverse transcription - polymerase chain reaction 

sal Salinomycin 

SCEP Synthetic CMV-EF1α hybrid promoter 

SD Standard deviation 

SDS Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulfate - polyacrylamide gel 

SEM Standard error of the mean 

siRNA Small interfering RNA 

SLP Stem loop primer 

SpC Surfactant associated protein C promoter 

TrisHCl Tris(hydroxymethyl)aminomethane hydrochloride 

UTR Untranslated region 

w:w Weight to weight ratio 

WB Western blot 
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6.2 Genes and proteins 
 

Akt Protein kinase B (PKB) 

Bad Bcl-2-associated death promoter 

BCL2 B-cell lymphoma 2 

BIM BCL2-like 11 

BMI1 Polycomb ring finger oncogene 

CDK4/6 Cyclin-dependent kinase 4/6 

DGCR8 Di George syndrome critical region 8 (= Pasha in D. melanogaster) 

DNMTs DNA methyltransferases 

E2F1 Transcription factor E2F1 

EGFP Enhanced green fluorescent protein 

EGFR Epidermal growth factor receptor 

ERBB Epidermal growth factor receptor family 

EVI1 Ecotropic virus integration site 1 protein homolog 

FAP-1 Protein tyrosine phosphatase, non-receptor type 13  

(APO-1/CD95 (Fas)-associated phosphatase) 

FHOD1 Formin homology (FH1/FH2) domain-containing protein 1 

FN1 Fibronectin 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

HDAC4 Histone deacetylase 4 

HER2 Human epidermal growth factor receptor 2 

ICP4 Transcriptional regulator ICP4 (HSV) 

JUN Jun proto-oncogene 

KRAS Kirsten rat sarcoma viral oncogene homolog 

lin-14 Protein lin-14 (C. elegans) 

lin-4 MicroRNA lin-4 (C. elegans) 

LucSH Fusion gene of firefly luciferase and the Sh ble gene  

conferring Zeocin resistance 

MAPK Mitogen-activated protein kinases 

MCL1 Myeloid cell leukemia sequence 1 

MDM2 Mouse double minute 2 homolog oncogene, E3 ubiquitin  

protein ligase 
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MEKK1 Mitogen-activated protein kinase kinase kinase 1 

MET Met proto-oncogene, hepatocyte growth factor receptor 

MSN Moesin 

MYC V-myc avian myelocytomatosis viral oncogene homolog 

NFκB Protein complex, nuclear factor kappa-light-chain-enhancer  

of activated B cells 

NRAS Neuroblastoma RAS viral (v-ras) oncogene homolog 

p16Ink4a Cyclin-dependent kinase inhibitor 2A (CDKN2A), multiple tumor 

suppressor 1 

p19Arf Transcript with an alternate open reading frame from the  

CDKN2A gene 

p53 Tumor protein p53 

Pol II RNA polymerase II 

PDCD4 Programmed cell death 4 (neoplastic transformation inhibitor) 

PI3K Phosphatidylinositide 3-kinases 

PKC Protein kinase C 

PLCγ Phopholipase C, gamma (phosphatidylinositol-specific) 

PPM1F Protein phosphatase 1F 

PTEN Phosphatase and tensin homolog 

RREB1 Ras-responsive element-binding protein 1 

Shc Src homology 2 domain containing transforming protein 1 

SHIP1 Inositol polyphosphate-5-phosphatase containing a  

N-terminal SH2 domain 

SIRT1 Sirtuin 1 

Sos Son of sevenless homologs, guanine nucleotide exchange factors 

SRF Serum response factor (c-fos serum response element-binding 

transcription factor) 

SUZ12 SUZ12 polycomb repressive complex 2 subunit 

TNFα Tumor necrosis factor alpha 

TRKB Neurotrophic tyrosine kinase, receptor, type 2  (NTRK2) 

TUBB3 Tubulin, beta 3 class III 

Wnt Wingless-type MMTV integration site family 

WT1 Wilms tumor protein 1 

ZEB1/2 Zinc finger E-box binding homeobox 1/2 (TCF8/SIP1) 
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7. PUBLICATIONS 
 

7.1 Original articles 

Oak PS, Kopp F, Thakur C, Ellwart JW, Rapp UR, Ullrich A, Wagner E, Knyazev P, 

Roidl A. Combinatorial treatment of mammospheres with trastuzumab and 

salinomycin efficiently targets HER2-positive cancer cells and cancer stem cells. Int J 

Cancer. 2012 Dec 15;131(12):2808-19. doi: 10.1002/ijc.27595. Epub 2012 May 21. 
 

Kopp F, Oak PS, Wagner E, Roidl A. miR-200c sensitizes breast cancer cells to 

doxorubicin treatment by decreasing TrkB and Bmi1 expression. PLoS One. 

2012;7(11):e50469. doi: 10.1371/journal.pone.0050469. Epub 2012 Nov 29. 
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Generation of a tumor- and tissue-specific episomal non-viral vector system. BMC 
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