
Essays on

Applied Time Series and

Macroeconometrics

Inaugural-Dissertation

zur Erlangung des Grades

Doctor oeconomiae publicae (Dr. oec. publ.)

an der Ludwig–Maximilians–Universität München

2012

vorgelegt von

Xiaowen Jin

Referent: Professor Dr. Gerhard Illing

Korreferent: Professor Dr. Gebhard Flaig

Promotionsabschlussberatung: 15. Mai 2013



ii

To My Family



Contents

Acknowledgements xi

Acronyms xii

Preface xiv

1 Exchange Rate Pass-Through in China 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Theoretical Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Stylized Fact on Post-1990’s China . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Capital Market Deregulation . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Monetary Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Foreign Reserve and Exchange Rate Policy . . . . . . . . . . . . . . 9

1.3.4 Inflation and Exchange Rate . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Single Equation Analysis . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Vector Autoregressive Model . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 Exchange Rate Regime and Pass-Through . . . . . . . . . . . . . . 19

1.5.2 Explanation for Pass-Through Difference . . . . . . . . . . . . . . . 21

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.8.1 Date Resource and Special Treatment . . . . . . . . . . . . . . . . . 28

1.8.2 ERPT by OLS Estimation with Dummy Variable EX . . . . . . . . 29

1.8.3 Adjustment of Product Oil Price In China . . . . . . . . . . . . . . 30



iv CONTENTS

2 Forecasting GDP Growth in the Euro Area 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Linear statistical models for short-term GDP growth forecasting . . . . . . 33

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 Quarterly models for GDP growth . . . . . . . . . . . . . . . . . . . 36

2.2.3 Mixed frequency models . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.4 Factor and AR augmented models . . . . . . . . . . . . . . . . . . . 41

2.3 Data and forecast design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 Pseudo real-time design . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.3 Weighting scheme of indicator-based forecasts . . . . . . . . . . . . 44

2.3.4 Selection of maximum number of lags and number of common factors 46

2.4 Empirical results for statistical models . . . . . . . . . . . . . . . . . . . . 46

2.4.1 Forecasting performance . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.2 The marginal value of statistical models . . . . . . . . . . . . . . . 49

2.4.3 Splitting the sample: Great Moderation versus Financial crisis . . . 50

2.4.4 Assessing the building blocks of the models . . . . . . . . . . . . . . 53

2.5 Analysis of forecasts by professional analysts . . . . . . . . . . . . . . . . . 54

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8.2 State space representation of mixed frequency VAR and dynamic

factor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.8.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Factor Augmented MFVAR/MA Model for Monthly GDP Estimation 73

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Related Literatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.1 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.2 Construction of Coincident Index . . . . . . . . . . . . . . . . . . . 75

3.2.3 Estimation of Monthly Coincident Index based on GDP . . . . . . . 76

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2 Temporal Aggregation Strategy . . . . . . . . . . . . . . . . . . . . 78

3.3.3 Mix Frequency Model . . . . . . . . . . . . . . . . . . . . . . . . . 78



Contents v

3.3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Empirical Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.2 Model Specification and Evaluation . . . . . . . . . . . . . . . . . . 83

3.4.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7.1 Kalman Filter and Smooth . . . . . . . . . . . . . . . . . . . . . . . 92

3.7.2 Monthly Indicator Selection . . . . . . . . . . . . . . . . . . . . . . 93



vi Contents



List of Figures

1.1 Main Importers for China . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Total Market Value of Stock . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 One Year Interest Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Reserve Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Money Growth and Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Reserve and Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Nominal Exchange Rate vis-a-vis the U.S.Dollar . . . . . . . . . . . . . . . 11

1.8 CPI, PPI and NEER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.9 Impulse Response to NEER Shocks . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Schematic representation linear models for short-term GDP forecasting . . 34

2.2 Classification of linear models for short-term GDP forecasting . . . . . . . 35

2.3 Learning curve linear models . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Monthly Single Factor VS Quarterly GDP growth . . . . . . . . . . . . . . 82

3.2 PCA Single Factor’s Correlation with Individual Series . . . . . . . . . . . 83

3.3 GDP Growth Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4 GDP Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



viii List of Figures



List of Tables

1.1 Unit Root Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 ERPT by OLS Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Chow Test for Structural Break . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Long Run ERPT and Monetary Policy . . . . . . . . . . . . . . . . . . . . 20

1.5 Share of Imported Input, Non-tradables . . . . . . . . . . . . . . . . . . . . 23

1.6 Distribution Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Timing of forecast exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Comparison RMSFE, euro area and five largest EA countries . . . . . . . . 48

2.3 Comparison RMSFE, euro area and five largest EA countries . . . . . . . . 51

2.4 Incremental forecasting accuracy model structure, average country effect . 55

2.5 Comparison Consensus Forecasts with best linear model . . . . . . . . . . 58

2.6 Database description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 Pooling schemes for Quarterly Bridge Equation . . . . . . . . . . . . . . . 70

2.8 Pooling schemes for Quarterly Vector Autoregressive model . . . . . . . . . 70

2.9 Pooling schemes for Mixed Frequency VAR . . . . . . . . . . . . . . . . . . 71

2.10 Pooling schemes for Mixed Data Sampling . . . . . . . . . . . . . . . . . . 71

2.11 Pooling schemes for Quarterly Bridge equation with AR-term . . . . . . . 72

2.12 Pooling schemes for Mixed Data Sampling with AR-term . . . . . . . . . . 72

3.1 Model Evaluation by RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2 FA-MFVAR/MA Estimation Result for PCA Factor . . . . . . . . . . . . . 86

3.3 Database description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



x List of Tables



Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Dr. Gerhard Illing for

his continuous teaching, guidance and encouragement of academic work and personality

development. I am also grateful to my secondary supervisor Prof. Dr. Gebhard Flaig, for

his countless critical advice of time series econometrics and dissertation writing.

I thank my colleagues from Munich Graduate School of Economics and from Seminar

for Macroeconomics at LMU: Desislava Andreeva, Agnès Bierprigl, Jin Cao, Lei Hou,

Sebastian Jauch, Sebastian Missio, Monique Newiak, Angelika Sachs, Heike Schenkelberg,

Sebastian Watzka, Michael Zabel and Jiarui Zhang. They all helped the progress of my

project in many ways.

I am indebted to my research internship supervisor: Sebastian Willutzky from Allianz

Global Investors, for opening my eyes of Kalman Filter and mix frequency time series

analysis. In particular, I am grateful to my co-authors of my second chapter: Jasper de

Winter and Jos Jansen from De Nederlandsche Bank. It is my great pleasure to work with

you. The second chapter belongs to De Nederlandsche Bank’s research programme 2012.

Last but not least, many thanks to Zhejiang University, my mentors Prof. Dr. Yuexiang

Jiang and Yanmin Qian, my parents and husband.

Xiaowen Jin



xii Acronyms



Acronyms

ERPT Exchange Rate Pass-Through

NEER Nominal Effective Exchange Rate

REER Real Effective Exchange Rate

FPI Foreign Price Index

BDI Baltic Dry Index

MFVAR(/MA) Mix frequency Vector Autoregressive (/Moving Averaging Model)

FA-MFVAR Factor augmented MFVAR

RMS(F)E Root Mean Square (Forecast) Error

MIDAS(-AR) (Autoregressive) Mixed Data Sampling Regression Model

FA-MIDAS Factor augmented MIDAS

QVAR Quarterly VAR Model

(AR-)BEQ (Autoregressive) Bridge Equation

SFM Static Factor Model

DFM Dynamic Factor Model



xiv Preface



Preface

A time series is a sequence of data observed over successive time, such as weekly,

monthly, quarterly and yearly data. Time series analysis is the statistical models to ana-

lyze or represent characteristics of time series data. As a rapidly evolving field, it exerts

profound influence for empirical macroeconomic and monetary policy studies. For instance,

the co-integration and structural models are widely utilized to detect the association among

macroeconomic variables, autoregressive model is deemed to be the benchmark of time se-

ries forecasting.

The primary purpose of this dissertation is to apply modern time series technique on

macroeconomic issues. It consists of three self-contained essays. Chapter 1 estimates

exchange rate pass-through (ERPT) in China by both linear and VAR models, further

investigates its relationship with exchange rate regime, and explores the reasons for diver-

gent ERPT for different price indices. Chapter 2 and 3 have the identical focus of Gross

Domestic Production Index, large information set and mixed frequency data. Chapter 2

conducts a systematic comparison of the short-term forecasting performance of linear sta-

tistical models in a pseudo-real time setting. We also evaluate subjective GDP forecasts by

professional forecasters. Chapter 3 lays out a factor augmented mix frequency VAR/MA

model (FA-MFVAR/MA) to construct a GDP based monthly coincident index for German.

In Chapter 1, we shed light on the transmission movement from exchange rate to

price level for China, namely ERPT, especially in the background of exchange rate policy

reform. In the wake of dramatically increasing current account surplus, the revaluation

of Chinese Yuan causes heated controversy in international community. Albeit Chinese

Yuan appreciated almost 20% between 2005 and 2008, the adjustment of exchange rate

appears to be the result of be political pressure. For a long time, China is on the edge of

being labeled as currency manipulation country. Despite all of those, each step of exchange

rate reform is extremely sluggish, due to the anxiety of economic growth stagnation, high

unemployment and inflation.

We concentrate on the potential impact of exchange rate on inflation. If a low ERPT is
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measured, it reflects the fact that exchange rate adjustment has minor influence on price

stability. The implication behind is that, China’s central bank is qualified for pursing a

relatively independent monetary policy.

In the context of fixed exchange rate regime, the meaning of measuring ERPT casts

much doubt. Virtually, the exchange rate data employed for ERPT measurement covers

wide range of trade partners. US follows Japan, Korea and Taiwan, is merely the fourth

largest importing region for China. Researchers universally adopt weighted average ex-

change rate index, instead of exchange rate against one single country, i.e. the nominal

effective exchange rate (NEER), which takes all main trading partners’ currencies into ac-

count and fluctuates all the time. Henceforth the pegging to US dollar is not an obstruction

for our estimation.

To assess ERPT in China, we primarily sketch out an autoregressive distributed lag

model in accordance with Devereux and Yetman (2010). The linear regression is theo-

retically approaching the law of one price and producer pricing behavior. The dependent

variables include foreign price index, inflation rate, broad money supply, distribution cost

and output gap. In order to alleviate the endogeity issue of linear model, vector autoregres-

sive model with the identical variables is executed, by the mean of Cholesky decomposition

and impulse response function.

Different from the existing literatures, we firstly estimate China’s ERPT systematically

by both linear and VAR models. The concern about the connection between ERPT and

exchange rate regime is also a contribution. We introduce the dummy variables in the

linear model and adopt VAR model simultaneously. In contrast with the simple division

of sample as Wang and Li (2009), our treatment is more rigorous and reliable. Moreover,

we do a novel cause survey of disparate pass-through for CPI and PPI.

The linear model shows that 1% appreciation of NEER declines 0.132% CPI inflation

rate and 0.495% PPI inflation rate over the long run. The VAR model supports results

of the linear model, in terms of a fairly low CPI pass-through and relatively higher PPI

pass-through. With considering the exchange rate regime, we find that it matters for the

CPI pass-through, but not for the PPI. Inter alia, CPI pass-through in fixed exchange rate

period is higher. Combined with the fact that appreciation declines inflation rate, it implies

that Chinese government could pursue more flexible exchange rate policy. In addition, the

reasons for the low ERPT for CPI are also discussed. We consider price control, basket

and weight of Chinese price indices, distribution cost, non-tradable share and imported

input for analysis.

Chapter 2 and 3 revolve around the estimation and forecast of GDP, using a large-

scale datasets of monthly and quarterly data. Information on economic activity and its
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short-term prospects is of great importance to decision makers in governments, central

banks, financial markets and non-financial companies. The GDP, which refers to the mar-

ket value of all officially recognized final goods and services produced in a given period, is

regarded as the most comprehensive and reliable macroeconomic indicator. Nevertheless,

two drawbacks hinder its function for timely monitoring and precisely forecasting the state

of economy. At first, as a token of macroeconomic state, a monthly GDP indicator is

unavailable but requisite for a great amount of empirical economic studies. Economists

have to seek for substitution index, e.g. industrial production and composite index. Addi-

tionally, an initial estimate of quarterly real GDP is published around six weeks after the

end of the quarter. The substantial publication lags precipitate a front-edge topic for GDP

forecasting, namely nowcasting1 and short-term predicting. The estimation of monthly

GDP and forecast of quarterly GDP is distinguishing but also highly correlated issues. In

certain models, both problems can be solved simultaneously.

When the simple models are fully exploited, one branch of researchers deliberate the

added value of mixed frequency and large scale data. Generally, the mixed frequency

models here refer to the combination of monthly indicators and quarterly GDP data in

the same framework, the estimation relies on Kalman filter. Large scale data denotes the

large information sets which cover full range of economic activities (industrial production,

prices of goods and services, expenditures, unemployment, financial market prices, loans

and consumer and business confidence), the total number of series can be over 100. Former

studies adopted small scale series due to the feasibility of model estimation. Fortunately,

factor model creates an explicitly specified and statistically meticulous dimension reduction

scheme for large scale information sets.

Specifically, the superior performance of two state of art methodologies arises our at-

tention. Mariano and Murasawa (2010)’s mix frequency VAR model (MFVAR) displayed

a desirable performance of monthly GDP construction, while Angelini et al. (2011) and

Bańbura et al. (2011) put forward a dynamic factor model, which exhibited empirical

tractability and typically good fit forecasting performance, in the use of large and mixed

frequency datasets. As a consequence, the improvement and comparison of mixed fre-

quency and large scale approaches for GDP estimation and short-term forecasting become

our natural point of entry.

In Chapter 2, we investigate the optimal GDP short-term prediction mechanism han-

dling large information set, in a pseudo-real time setting. During the preceding financial

crisis, forecaster across the world failed to forecast the depth and duration of the crisis.

1Forecasting data in the current quarter or month.
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This phenomenon fuels concern about the forecasting performance of mechanical models

during crisis. There is a generally argument that it is hard to beat simple model (e.g.

random walk and autoregressive model). However, they did a bad job for the past crisis.

Therewithal, we doubt the status of simple model by more sophisticated models, like factor

model, mixed frequency model and professional forecasters, etc.

What we reinforce here is the pseudo-real time forecast design. Real time data stands

for the information delivered immediately after collection, often adjusted as better esti-

mates become available. In this definition, two problems concerning real time data are the

publication lag and data revision. Pseudo-real time setting means the mimic of real-time

flow of information. Owing to the incomplete revision histories for all monthly series, we

have to ignore the data revision issue. Luckily, strand of literatures support the argument

that, a truly real time data would most likely display minor impact of forecasting practise2.

Finally, we only aim at the publication lag issue, via replicating the availability of the data

at the time the forecast was made.

In all, we implement eleven models for the broad range of comparison. Concerning

the handling of a large information set, we contrast pooling with factor method. Pooling

approach is to estimate the relationship between each indicator and GDP growth individ-

ually and somehow average or weight these forecast to come up with one central forecast

for GDP growth. While factor model in the contrary, extracts the common factor out

of all indicators and regress that factor on GDP. Concerning the treatment of variables

at different frequencies, we contrast quarterly with mixed frequency model. Quarterly

model simply aggregates monthly indicators, while mixed frequency model incorporates

monthly and quarterly indicators in a framework. We also make comparison between

before-mentioned mechanical model with professional forecast. The intuition behind is

that expert judgement of the respondents could improve the forecast of the mechanical

models, since panelists seems to add a sizeable judgmental element to the forecasts. The

three categories of comparisons (i.e. pooling versus factor approach, quarterly versus mixed

frequency model, mechanical model versus professional forecast) comprise the linchpin of

our forecast evaluation.

This chapter could be partly viewed as an extension and update of Rünstler et al.

(2009). They paralleled a continuum of factor based method for short-term GDP fore-

casting of euro area. We add some novel methodologies, such as MFVAR, mixed data

sampling regression (MIDAS), and their factor augmented version. Our sample period

(1996.I-2011.III) allows us to compare the models’ forecasting abilities in the period before

2See Bernanke and Boivion (2003), Diron (2008), Foroni and Marcellino (2012), Schumacher and Bre-
itung (2008)
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the financial crisis of 2008 (Great Moderation) and the much more volatile subsequent pe-

riod (financial crisis and its aftermath). Our second contribution comes from the survey of

the potential usefulness of forecasts made by professional analysts (published by Consensus

Forecasts on a quarterly basis). They may be deemed to “wisdom of the crowds”, reflect

much more information than the statistical information set. However, the quarterly con-

sensus forecasts have only been used once, for a forecasting “horserace” for GDP growth

in the Netherlands (de Winter, 2011). König et al. (2003) also stated that it is the most

accurate professional forecaster, in contrast with other individuals. We investigate for our

six countries to what extent subjective forecasts by analysts contain information beyond

that generated by the best mechanical statistical model.

The empirical work has concern on the Eurozone and its five largest countries. We find

that it pays off to model monthly indicators, in particular as the horizon shortens and more

monthly information is processed. The static and dynamic factor model consistently out-

perform all other approaches. There is a significant difference between forecasting methods

that extract factors and pool single indicator models. Factor based models’ superiority is

most demonstrated in times of crisis. Statistical models significantly differ in the rate at

which they are able to absorb monthly information as time goes by. Contrast with me-

chanical models, the professional forecasts displays poor predicting performance on their

own, but contain valuable extra information from the view of encompassing test.

In Chapter 3, we verify whether the large scale and mixed frequency datasets benefit for

generating GDP based monthly indicator, in the framework of FA-MFVAR/MA model. To

compensate the lack of monthly GDP, one idea is to generate prominent Stock and Watson

coincident index. Nonetheless, this index is constructed via a large factor model purely

on monthly indices, abandoning the GDP data completely. Another idea is the aforesaid

MFVAR approach pursued by Mariano and Murasawa (2010), merely limited number of

series can be included notwithstanding. Angelini et al. (2011) is one among the few papers

that estimates the monthly GDP indicator through both large scale and mixed frequency

datasets. However, the results are disappointing.

In view of aforementioned weakness, our FA-MFVAR/MA method is a promising at-

tempt for monthly GDP construction. It proceeds in two steps. At first, the single factor

is extracted by either standard principal component or the latest two-step method. After-

ward, bivariate MFVAR/MA model is established between quarterly GDP and the single

factor. The estimation of the parameters and monthly GDP growth is realized by Kalman

filter and maximum likelihood estimation.

To the best of our knowledge, it is the first time that FA-MFVAR/MA model is ex-

ploited for monthly GDP construciton. Our methodology sufficiently accommodates infor-
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mation from both the quarterly GDP and numerous monthly indicators, broadly absorbs

essence from both factor and mix frequency VAR model. Notably, the fitness of our model

depends on specific datasets.

Taking Chow and Lin method, single indicator MFVAR model and dynamic factor

model as counterpart, we investigate the pros and cons of our FA-MFVAR/MA model by

employing German data. Our result renders considerable superiority of FA-MFVAR model

over the remaining methodologies, via the schematic analysis and out of sample root mean

square error comparison. It implies that large datasets might improve the performance of

index construction, but it relies on a plausible model setup.
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Chapter 1

An Empirical Study of Exchange

Rate Pass-Through in China

1.1 Introduction

The debate about revaluation of Chinese Yuan has been a hot topic for long time. Al-

though Chinese Yuan appreciated almost 20% during 2005 and 2008, the degree of appre-

ciation is not satisfied by international community. The exchange rate war restarted since

subprime crisis was eased. Krugman’s impossible trinity pointed out, in the framework

of an open economy, the exchange rate stability, domestic monetary policy independence

and free capital movement could not be obtained in the same time. It is no doubt that

China would open its capital market gradually. Therefore the reform of the exchange rate

is inevitable. Nevertheless, when and how would the reform be operated is still a major

issue for China’s central bank. After all, they would not like to sacrifice economic growth,

suffer from high unemployment and inflation.

The transmission movement from exchange rate to price level, namely exchange rate

pass-through (ERPT), is one of the concerns. In the new open economy macroeconomics,

the degree of ERPT is crucial for appropriate monetary policy. A low ERPT implies that

government need not worry about the price instability or inflation, when adjusting exchange

rate policy. It is thought to provide great freedom for pursuing an independent monetary

policy. In this chapter, we examine the movement from exchange rate to domestic price,

which may assist Chinese government to consider the revaluation issue of Chinese Yuan

in an manner. Additionally, due to the fact that Chinese Yuan experienced three years’

revaluation, does this appreciation influence ERPT?

The meaning of measuring ERPT is suspicious, since most of time Chinese Yuan is
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purely pegging to US dollar. Whereas, Figure 1.1 illustrates the major importing coun-

tries and regions for China in 2000, which demonstrated that exchange rate should not

only concern US dollar, but also other main currencies. Nominal effective exchange rate

(NEER), which fluctuates all the time, is universally used. It takes all main trading part-

ners’ currencies into account.

Figure 1.1: Main Importers for China, IMF IFS Data

In the empirical literature, three approaches are allied to gauge ERPT, single equation

method, vector Autoregressive (VAR) model and cointegration model. However, few stud-

ies calculated China’s EPRT. Ca’ Zorzi et al. (2007) analyzed plenty of emerging countries’

ERPT, including China. Shu and Su (2009), Wang and Li (2009), Chen and Liu (2007)

calculated China’s ERPT for a batch of price indices.

One contribution of this chapter is to exploit both single equation and VAR methods.

Each method has its own drawback, the systematically estimation of the ERPT by two

methods benefits from overcoming the deficiency in single approach. The second intrigu-

ing contribution is that it sheds light on the association between exchange rate regime

and ERPT comprehensively. Although Wang and Li (2009) mentioned the increase of the

ERPT during appreciation period by simple division of sample, their method is not con-

victable owing to the limited availability of data. We involve the dummy variables in the

single equation method and use VAR model additionally, which is more reliable. Last but

not least, we investigate the cause of pass-through discrepancy for various price indices

(CPI and PPI), while previous work only stated the discrepancy, but not the reasons.

To assess the degree of pass-through for CPI and PPI, we firstly adopt the ordinary

least square model (OLS). The results demonstrate that appreciation of Chinese Yuan could

decrease the CPI inflation rate, but the degree is statistically insignificant. The effect of

PPI is more noticeable than CPI’s in the long run. Nevertheless, the shortage of the single
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equation regression is that it neglects the impact of inflation on exchange rate. As a result,

VAR analysis with Cholesky decomposition could strengthen the robustness of previous

OLS measure, which regards all the variables endogenously. The impulse response function

illustrates a limited impact of NEER on CPI, and relative more conspicuous response in

the case of PPI. This finding is in line with OLS estimation.

Besides, the factors which influence pass-through are discussed. The linear regression

results show that exchange rate regime indeed impacts on CPI pass-through. The CPI

pass-through is higher in fixed exchange rate regime. Inspired by Bustein et al. (2003),

Campa and Goldberg (2006), we supply evidence which interprets the discrepancy between

CPI and PPI pass-through. The evidence covers the divergent composition of price indices,

the share of imported inputs and non-tradable goods, distribution cost.

This chapter is organized as follows. Section 1.2 is the literature review. In Section

1.3, the stylized facts on post 90’s China economy is illustrated. Section 1.4 presents two

analytical framework, namely OLS and VAR model. The results of ERPT measurement of

CPI and PPI are reported. Section 1.5 further discusses the pass-through topic, investigates

the relation between exchange rate regime and ERPT, and the reason for a fairly low CPI

pass-through. Section 1.6 concludes.

1.2 Literature Review

1.2.1 Theoretical Work

In the traditional open economy macroeconomic models, the purchasing power parity

holds all the time, which implies that pass-through is complete and immediate. Nonethe-

less, a strand of empirical works have demonstrated that neither the purchasing power

parity nor the law of one price holds in real world, see Ihrig et al. (2006), Bailliu and Fujii

(2004), etc.

One of the theoretical explanations is the export producers’ pricing to market behavior

(Krugman 1987). In an incomplete competition market, a firm will set different price for

its goods across segmented national markets, to compete with local firms. It will adjust

its mark-up in accordance with exchange rate shock additionally. A similar framework

stemming from pricing behavior is local currency pricing, suggested by Devereux and Engel

(2003). Instead of setting price in producer currency, a firm could choose local currency

pricing, when exporting to countries with relative low exchange rate variability or stable

monetary policies. Consequently, in new open economy macroeconomics, the incomplete

ERPT is explained by the fact that some firms follow local currency pricing, while some
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others practise producer currency pricing.

Another cause for the incomplete ERPT is the distribution cost of tradable goods,

which is proposed by Bustein et al. (2003). They stated that the costs of distributing

tradable goods such as transportation, wholesale and retail also contribute to the incom-

plete ERPT. They defined distribution margin and calculated it for America and Argentina

market. The results reflect the huge scale of distribution sectors. The growing globalization

of production (Campa and Goldberg 2006) is another explanation. If the proportion of

imported components is higher, then the domestic prices will be more sensitive to exchange

rate. Because it provides another channel for exchange rate transmission except importing

final goods. There is also argument related to slow adjustment of goods prices (Devereux

and Yetman 2010). Due to the endogenous sticky price and menu cost, the ERPT is not

complete.

1.2.2 Empirical Study

In empirical work, three methods are mainly applied to measure ERPT. Firstly is

linear model. From the law of one price, Ihrig et al. (2006) added interpretation terms like

trade barriers, lags of independent variables and other control variables in order to analyze

the association between import price, consumer price and exchange rate in G7 countries.

Especially, they employed a general to specific algorithm from Hendry and Krolzing (2001)

to select the appropriate specifications for independent variables. They found a fairly low

long-run ERPT of CPI in the period 1990-2004, from 0.002 to 0.083.

Campa and Goldberg (2005) started from the law of one price, and treated export

prices of foreign producer by a monopolistic mark-up over exporter marginal cost. They

estimated ERPT into import prices across OECD countries, the cross-country ERPT is

around 46% in short run and 65% in long run.

Based on monopolistic producers’ profit maximization, Bailliu and Fujii (2004) imple-

mented dynamic panel data GMM model to measure ERPT for 11 industrial countries.

On average, the estimated short and long-run ERPT of PPI are 0.202 and 0.301, while the

one for CPI are 0.080 and 0.160 respectively.

The second approach is the Vector Autoregressive model (VAR), see McCathy (2000).

This technique regards ERPT as the price response to the structural shock of exchange

rate. He examined the impact of exchange rate and import price shock on CPI and PPI for

industrial economies. By utilizing impulse response function and variance decomposition,

the results demonstrated that the aggregate consumer price pass-through is moderate in

most of the countries. Hahn (2003), Faruqee (2006) employed this method for euro area,
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while Ito and Sato (2008) applied it for east asian.

The third method is the Cointegration and Error Correction Model (ECM). Its advan-

tage is that the ERPT could be simply estimated by the stable cointegration relationship

among exchange rate, domestic price, foreign price. Kim (1998) adopted ECM on US data,

while Beirne et al. (2009) employed it on eastern Europe. Whereas, the conditions for a

cointegration estimation are much stronger than the ones of VAR model.

Concerning the empirical works of China, Ca’ Zorzi et al. (2007) executed VAR model to

plenty of emerging countries, including China. They found that 1% of exchange rate shock

leads to 0.08% response of consumer price over 4 quarters, and 0.77% over 8 quarters. The

corresponding results for China are higher in comparison with those in the other literatures.

Referring to similar approach, Chen and Liu (2007) advocated that 1% of NEER shock

only maximally causes 0.0076% response on the CPI. Shu and Su (2009) applied single

equation regression combined with general to specific method. The results illustrated that

1% of appreciation causes 0.065% and 0.104% fall of consumer price and producer price

respectively in short run, 0.201% and 0.367% decrease over long run. Meanwhile, the

estimation of long-run ERPT for CPI is 0.24 in Wang and Li (2009).

Furthermore, the relation between ERPT and monetary policy regime is often dis-

cussed. The idea that inflation environment could affect ERPT, was firstly advocated

by Taylor (2000). He established a simple sticky price setting model with market power.

Moreover, he claimed that the low inflation may be associated with less persistent changes

in the costs and the prices in other firms in the economy, which subsequently results in

a low ERPT. Bailliu and Fujii (2004) empirically supported Taylor (2000)’s argument.

They suggested that ERPT declined during inflation stabilization period for industrialized

countries. Choudhri and Hakura(2006) provided powerful evidence that there is a positive

relation between ERPT and average inflation rate across 71 countries. Ihrig et al. (2006)

also compared ERPT in subsamples, and found a significant decline for almost all G7

countries.

For emerging and transition countries, Coricelli et al. (2006) stated that the reform

towards more flexible exchange rate disconnects the link between exchange rate and price,

under an inflation targeting framework. Beirne et al. (2009) claimed that countries in fixed

regime across nine central and eastern European EU member states have higher ERPT.

Barhoumi (2005) applied the Panel Cointegration model for 24 developing countries. He

suggested that countries with fixed exchange rate, lower tariff barriers and higher inflation

rate are associated with a higher long-run import price pass-through. Wang and Li (2009)

found the increase of ERPT during appreciation period in China.
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1.3 Stylized Fact on Post-1990’s China

Due to the particularity of China economy, either exchange rate or inflation rate is

influenced by specific policy regulation. Especially for the exchange rate policy, the Krug-

man’s trilemma has claimed its close connection with monetary policy and capital market

control. In this section, the evolution of China’s policy regulations after 1990 is briefly

summarized.

1.3.1 Capital Market Deregulation

Heavy control is the principal characteristic of China’s capital market. As a result of

the reform and open-door policy, foreign direct investment (FDI) was liberalized in the

mid 90’s. Other restriction of remaining inflows and outflows are still fairly strict nowa-

days. For local financial institutions and those aboard, Chinese government introduced a

program called qualified foreign institutional investors (QFII) and qualified domestic in-

stitutional investors (QDII) in 2003. The institutions should satisfy the requirements on

the scale of registered capital, financial status etc., then the special invest quota will be

authorized. With the gradually deregulation, the number of QFII and QDII reaches 98 and

93 respectively. Non-QDII institution and individuals are forbidden to invest in the foreign

capital market. Although the government controls so strictly in the capital market, the

efficiency is not ideal. Large amount of hot money continuously flows in China, especially

around 2007.

Moreover, the domestic capital market is incomplete as well. Stock market is the

primary capital market in China. In 1990, Shenzhen and Shanghai stock exchanges were

set up successively. Accompanied with the establishment of China Securities Regulatory

Commission in Oct 1992, the period between 1993 and 1998 is the forming and initial

developing stage. Along with the promulgation of Securities Law in 1998, the evolution

of stock market stepped in the regularization stage. The reform of non-tradable shares is

another milestone in this stage. Up to the end of 2009, there are 1718 listed companies,

and the total market value reaches 24.40 trillion (see Figure 1.2). Stock becomes one of

the most important households of financial assets.

The bond market is relatively lagged behind. The treasury bills are the only issued

bond for a long time. In 2003 and 2004, the commercial paper and certificates of deposit

were introduced. Meanwhile, the corporate bond market is insignificant.
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Figure 1.2: Total Market Value of Stock, IMF IFS Data

1.3.2 Monetary Policy

The major monetary policy instruments of the PBC are interest rates, bank required

reservation ratio and money supply. Compared to market-based interest rate in the other

countries, the strict control of the PBC declined the efficiency prominently. The situation

was improved by the interest rate liberalization from 1996 (see Figure 1.3). The reform

started in the money and bond markets. The PBC marketized the interbank market rate,

the bond market rate and policy financial bonds. For the foreign currencies, the lending

rate and the large deposit rate were liberalized in 2000, afterwards the small deposit rate

of major foreign currency could also be determined by the commercial banks. In the

subsequent two years from 1998, the PBC has expanded three times of the floating band of

commercial lending rates, and attempted the liberalization of long-run large deposit rate.

Accompanied with the launch of Shanghai Interbank Offered Rate, the PBC’s commitment

of pursuing market-based interest rate is fulfilled gradually.

Required reverse ratio exerts much more influence than those from interest rate instru-

ment (see Figure 1.4). The original aim of reserve ratio is to maintain the liquidity of

banks, make sure the stability of banks in case of large withdrawals. Later, it is widely em-

ployed as an instrument of liquidity management, in order to control the credit growth and

indirectly affect money supply. The first significant reserve ratio change occurred in 1998.

After that, the PBC adjusted the reverse ratio 30 times from mid 2006 to 2008. Since Sep

25th 1998, the adjustment started to classify small and large financial institutions, in the

sense that large institutions required with a high reserve ratio. Meanwhile, excess reverse
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Figure 1.3: One Year Interest Rate, IMF IFS Data

ratio for commercial banks also exerts subsidiary function.

Figure 1.4: Reserve Ratio, IMF IFS Data

The control of base money supply is implemented through open market, currency and

bill issuance. The base money and the money multiplier (monitored by reverse ratio)

constitute the money supply. As China’s normal anchor, money supply is crucial for

execution of loosened or tightened monetary policy, although there is always a gap between

actual and target broad money supply (M2). An intriguing phenomenon is the close

correlation between inflation rate and M2 growth (see Figure 1.5), which implies that

M2 played a key role in price stability.
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Figure 1.5: Money Growth and Inflation(12 months change), IMF IFS Data

1.3.3 Foreign Reserve and Exchange Rate Policy

In the 21st century, attributed to the growing current account surplus and FDI inflows,

reserve accumulation increases rapidly (see Figure 1.6). The current account surplus was

growing especially fast from 2005, due to the trade surplus. The first time, the current

account surplus decreased in 2009 since 2000. Following a sudden raise in 1997, the FDI’s

growth is relatively smooth afterwards. Although China owns the largest reserve accumu-

lation all over the world, how to manage it is a severe task for PBC. Foreign reverse is

the major component, while the proposition of position in IMF, Special Drawing Right

(SDRs), and the other reserve is minor.

Oversize foreign reserve causes controversy about the exchange rate policy, consequently

precipitates the policy reform. The reform is propelled step by step. Before 1994, there

were two different exchange rates: the official rate and swap market rate. On Jan 1994,

government merged the two exchange rates, implemented a so-called market-based, single

and managed floating exchange rate system. However, it was still a pure US Dollar pegging

system, the nominal USD/CNY rate was adjusted suddenly from 5.8 to 8.7 (see Figure

1.7).
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Figure 1.6: Reserve and Component (Million Dollar), IMF IFS Data

Since then until 2005, the nominal value of USD/CNY fluctuated in a rather narrow

range around 8.28, even during the Asian financial crisis. Due to the imbalance of interna-

tional payments, the challenge of independent monetary policy, overheating concern and

pressure from western countries, China adopted a new manageable floating exchange rate

policy on July 21, 2005. This new policy was based on market supply and demand, and

with reference to a basket of currencies. The reference currencies consisted of US Dollar,

Euro, Japanese Yen and Korea Won, but the operation was not transparent yet. In the

subsequent 3 years, the nominal USD/CNY rate decreased from 8.28 to 6.84, appreciated

nearly 20%. Along with the breakout of subprime crisis, the step of appreciation was

ceased, and the nominal USD/CNY rate maintained in this level until 2010.

1.3.4 Inflation and Exchange Rate

Between 1992 and 1993, China experienced a serious inflation period. The CPI inflation

rate reached the peak around 28% in Oct 1994. The subsequent tightening policy lowered

the inflation rate successfully, without apparently negative impact on output. Whereas,

the Asian financial crisis brought the CPI to another direction: deflation. The deflation

was mild (the peak value was only 2.2% occurred in June 1999), but lasted until 2002.

Afterwards, China’s inflation rate was relatively low and stable except in 2007, when the

asset price bubble was serious. For the PPI inflation, the general trend is analogous to
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Figure 1.7: Nominal Exchange Rate vis-a-vis the U.S.Dollar, IMF IFS Data

that of CPI’s, merely with more conspicuous variation. Figure 1.5 already illustrates the

trend of CPI and PPI inflation rate based on yearly changes.

We has mentioned the importance of NEER in Section 1, Figure 1.8 describes the

co-movement between domestic price (CPI, PPI) and the NEER. The trend of the CPI

and PPI is similar. In comparison with NEER, they moved in the same direction during

1995-1997 and 2005-2010, while they varied in opposite direction during 1998 and 2004.

1.4 Empirical Analysis

1.4.1 Single Equation Analysis

Framework

Many literatures use single equation to regress the domestic price as a function of the

exchange rate, foreign price and control variables such as output gap, e.g. Ihrig et al.

(2006), Campa and Goldeberg (2005), Bailliu and Fujii (2004).

Following Devereux and Yetman (2010), we suppose a large number of import firms,

which purchase a differentiated consumer good from foreign countries and sell it to domestic

consumers. Demand function for firm i is as follows:
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Figure 1.8: CPI, PPI and NEER (2005=100, base year), IMF IFS Data

Ct(i) = (
Pt(i)

Pt
)−λCt (1.1)

where Ct(i) is the demand of firm i, Ct is the total demand, Pt(i) is the firm i’s price,

Pt is the composite price index for imported goods, λ is the elasticity of substitution.

The profit function for firm i is defined as:

Πt(i) = Pt(i)Ct(i)−
P ∗t
St

ΘtCt(i) (1.2)

where St is the exchange rate foreign currency per unit of domestic currency, P ∗t is the

all differentiated imported goods’ foreign currency price, Θt is the per unit distribution

cost. The firm i’s import price setting is defined as:

Pt(i) =
λ

λ− 1
Θt
P ∗t
St

(1.3)

Assuming all import firms are identical, Pt(i) = Pt. The logarithm version of this

equation can be written as:

pt = ζt + θt + p∗t − st (1.4)
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where ζt = ln( λ
λ−1), the small letters represent natural logarithm.

As a result, the import price could be expressed as a function of the markup, distribution

cost, exchange rate and foreign price. In order to control monetary policy’s influence for

domestic price, monetary policy instrument is introduced.

Data Description and Econometric Specification

We access two ERPTs respectively for consumer price index (CPI) and producer price

index (PPI). The import price index is ruled out due to the limited data length. The

NEER is used as the exchange rate index. Taking advantage of the definition of NEER

and the real effective exchange rate (REER), the foreign price index (FPI) is calculated

by FPI=NEER*CPI/REER. Through applying Hodrick-Prescott filter to gross industrial

production data, we get an approximation of output gap. The monthly average Baltic

Exchange Dry Index (BDI) is utilized to represent distribution cost (mainly transportation

cost). The monetary policy variable adopts broad money supply (M2)1.

Considering the price stickiness, the lagged variables for pt, p
∗
t and st are involved. In

what follows, the ERPT could be estimated by the following Autoregressive Distributed

Lag Model. Denoting the short-run ERPT by β0, the long-run ERPT can be written as

(
∑5

i=0 βi)/(1−
∑5

i=1 αi)
23.

dlncpi =
5∑
i=1

αidlncpit−i +
5∑
i=0

βidlnneert−i +
5∑
i=0

γidlnfpit−i + ζoutputgap

+ ηdlnbdi+ δdlnm2 (1.5)

dlnppi =
5∑
i=1

αidlnppit−i +
5∑
i=0

βidlnneert−i +
5∑
i=0

γidlnfpit−i + ζoutputgap

+ ηdlnbdi+ δdlnm2 (1.6)

1Detail description of data see Appendix 1.8.1.
2dln denotes the corresponding variable is in the first difference level of natural logarithm. lncpi and

lncpi are represented for pt, lnfpi for p∗t , lnneer for st, outputgap for ζt, lnbdi for θt, lnm2 for broad money
supply.

3Different versions of independent variables are taken into account. For instance, lagged variables only
consider lncpi, lnneer or lnfpi, and different numbers of lags. According to the information criteria such
as Akaike information criterion and adjusted R2, this form is more suitable than the others.
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Table 1.1: Unit Root Test
Variable Deterministic ADF test stat PP test stat 5% Crit Value Decision
lncpi c,t -1.312 -0.949 -3.438 I(1)
dlncpi none -2.962 -10.301 -1.943
lnppi c,t -1.807 -1.632 -3.436 I(1)
dlnppi none -5.746 -5.681 -1.943
lnneer c,t -2.364 -2.169 -3.436 I(1)
dlnneer none -8.347 -9.070 -1.943
lnfpi c,t -3.214 -2.904 -3.436 I(1)/I(0)
dlnfpi none -2.351 -5.758 -1.943
outputgap none -4.786 -8.963 -1.943 I(0)
lnbdi c,t -3.458 -2.150 -3.438 I(1)/I(0)
dlnbdi none -5.729 -7.910 -1.943
lnm2 c,t -0.503 - 2.773 -3.437 I(1)
dlnm2 c -7.088 -18.022 -2.879
Note: I(1) means the variable is integrated by order 1, I(0) presents that the corresponding
variable is stationary.

We adopt monthly data from Jan 1996 to April 2010, taking 2005 as the base year

(index equal to 100 in 2005), and all the data series is seasonally adjusted by X12-ARIMA.

To exam the stationarity of these variables, Augmented Dickey-Fuller (ADF) Test and

Phillips-Perron (PP) Test are executed in Table 1.1. The results indicate that most of the

variables except output gap are integrated by order 1. Therefore in the OLS estimation,

all the variables except output gap are taken the logarithm-difference form.

Results

All the OLS estimation results are reported in Table 1.2. We observe that the lagged

CPI inflation has a positive influence on the current inflation. The coefficients of lnneert−1

and lnneert−5 are significant at the level of 10%, which implies that the movement from

NEER to inflation is not immediate. For FPI, it seems that both the current and lagged

FPI influence CPI inflation rate. The short and long-run CPI pass-through is 0.016 and

-0.132 respectively. It suggests that 1 percent increase in NEER (1% appreciation) leads to

0.016% incline of CPI inflation rate in the first month and 0.132% decline in the long run.

The hypothesis tests indicate neither short nor long-run ERPT is significantly different

from 0 at the significance level of 5%4.

4For the hypothesis test of long-run EPRT, delta method is utilized to compute the mean and variance,
and establish statistic based on normal distribution.
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Table 1.2: ERPT by OLS Estimation
CPI PPI
Variable Coefficient Variable Coefficient
dlncpi(-1) 0.104 (0.082) dlnppi(-1) 0.311***(0.081)
dlncpi(-2) 0.116 (0.082) dlnppi(-2) 0.147*(0.085)
dlncpi(-3) 0.070 (0.079) dlnppi(-3) 0.015 (0.088)
dlncpi(-4) 0.108 (0.078) dlnppi(-4) 0.120 (0.086)
dlncpi(-5) 0.138*(0.080) dlnppi(-5) 0.051 (0.076)
dlnneer 0.016 (0.027) dlnneer 0.012 (0.028)
dlnneer(-1) -0.058*(0.029) dlnneer(-1) -0.058*(0.031)
dlnneer(-2) 0.041 (0.029) dlnneer(-2) -0.069**(0.030)
dlnneer(-3) -0.036 (0.029) dlnneer(-3) -0.011 (0.031)
dlnneer(-4) 0.026 (0.028) dlnneer(-4) -0.031 (0.030)
dlnneer(-5) -0.050*(0.027) dlnneer(-5) -0.019 (0.030)
dlnfpi 0.613***(0.199) dlnfpi 0.999***(0.212)
dlnfpi(-1) 0.035 (0.206) dlnfpi(-1) 0.523 (0.233)
dlnfpi(-2) -0.392*(0.203) dlnfpi(-2) -0.112(0.224)
dlnfpi(-3) 0.260 (0.204) dlnfpi(-3) -0.150 (0.222)
dlnfpi(-4) -0.022 (0.214) dlnfpi(-4) -0.125 (0.229)
dlnfpi(-5) -0.527***(0.194) dlnfpi(-5) -0.578***(0.215)
outputgap 0.000 (0.000) outputgap 0.000 (0.000)
dlnbdi -0.003(0.002) dlnbdi 0.002 (0.002)
dlnm2 0.015 (0.034) dlnm2 0.052 (0.036)
R2 0.284 R2 0.647
Short Run Short Run
ERPT 0.016 (-) ERPT 0.012 (-)
Long Run Long Run
ERPT -0.132 (-) ERPT -0.495 (-+)
Note: The figures in parentheses are standard errors, the figures in square
parenthesis are p value. * significance at the 10% level, ** significance at the
5% level, *** significance at the 1% level. +(-) implies an ERPT elasticity is
significantly different from 0(1) at the 5% level. dlncpi(-i) denotes dlncpit−i.
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To keep the comparability of outcome, the same regression is applied on PPI, although

it is not the best choice in the sense of information criteria and adjusted R2. R2 improved

significantly compared to the same regression for CPI. According to the significance of

coefficients, the PPI inflation rate is affected by previous PPI inflation rate, previous

NEER change, and both current and prior FPI variation. The short and long-run PPI

pass-through is 0.012 and -0.495 respectively. Initially, the PPI response to NEER is

weaker than CPI, but over long run PPI pass-through is almost fourfold that of CPI’s.

The long-run ERPT is significant different from 0, while the short-run ERPT is not.

The measured ERPT from single equation illustrates that appreciation of domestic

currency has negative impact on the inflation rate, especially significant in the case of PPI.

The negative association between exchange rate and inflation is consistent with theory. In

principal, the appreciation of domestic currency reduces the price of import goods directly,

and declines the CPI and PPI partially. The impact on CPI and PPI is proportional with

the percentage of import goods in these indices. The composition of price index is one of

the main reason for the difference between CPI and PPI’s ERPT. This will be discussed

concretely in Section 1.5.2 .

In comparison with the industrial countries’ estimation (mainly concentrates on long-

run EPTR), the estimation of China’s CPI pass-through in this chapter is a bit higher. A

potential explanation is the divergence of economy structure. In view of other measurement

for China’s data, the long-run CPI pass-through is a little lower in our analysis. But the

significant gap between CPI and PPI is widespread phenomenon.

1.4.2 Vector Autoregressive Model

The single equation regression neglects the fact that inflation rate could impact on ex-

change rate. Thereby, VAR model with Cholesky decomposition is supplement to measure

ERPT. This approach regards all variables endogenously, strengthens the robustness of the

previous OLS measurement.

The variables for VAR model include CPI and PPI, NEER, output gap (control supply

shock), FPI and M2. All variables adopt the same form as OLS estimation. The baseline

VAR model involves CPI and PPI separately, contains five variables. Under the framework,

the results could be compared with the former OLS measurement.
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VAR Approach and Cholesky Decomposition

A reduced-form VAR(p) model is as follows,

Yt = c+ A(L)Yt + µt (1.7)

E(µtµ
′

t) = Ω (1.8)

where c is the deterministic, A(L) is a polynomial matrix of degree p in the lag operator

L, µt is the vector of reduced-form VAR residuals.

In order to generate structural shock, namely orthogonalized innovations εt, a unique

lower triangular Cholesky matrix C is applied,

Cεεt = µt (1.9)

where E(εtε
′
t) = I, CC

′
= Ω and C=


C11 0 0 0 0

C21 C22 0 0 0

C31 C32 C33 0 0

C41 C42 C43 C44 0

C51 C52 C53 C54 C55

.

According to the structure of Cholesky matrix C, the order indicates which shocks are

not allowed to contemporaneously affect which variables. Hence, selecting the appropriate

order of the endogenous variables through economic interpretation is crucial. Foreign price

index is ordered first because that its residual is hardly influenced by any other shocks.

Afterwards, we order the output gap. It is only affected by foreign price index and affects

all other shocks except foreign price index. Assuming that monetary policy does not react

to current inflation and NEER change, but to expected inflation (see Ito and Sato 2008),

M2 can be settled prior to NEER. NEER is ordered before domestic price. Strand of

empirical literature claimed that NEER granger causes price, but the opposite is not true.

To begin with, the vector for VAR model is (dlnfpi,outputgap,dlnm, dlnneer, dlnp), where

lnpt could be lncpi or lnppi. The number of lags is determined by Akaike Information

Criterion. Both CPI and PPI models are VAR(7).

Impulse Response Functions

In this section, we implement two baseline models with five variables, in order to check

the effects of domestic price to different structural shocks over two-year (24 months hori-
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zon). The results for NEER shock to CPI and PPI are in Figure 1.9. The vertical axis in

figures is the accumulative percentage change in domestic prices responding to 1% shock.

The dotted line denotes a 2 standard-error 95% confidence bands of the estimates. It is

computed by Monte Carlo method.

Figure 1.9: Impulse Response to NEER Shocks

The response of CPI to NEER shock is positive initially, posterior to slight fluctuation,

it remains around -0.040%. It means that an appreciation of NEER will reduce CPI

inflation in the long run. In addition, the response is statistically insignificant, as two

standard error confidence bands surround the zero line almost symmetrically.

In contrast, PPI response is much larger and lasts for a longer horizon, approximately

13 months. The initial impact of NEER shock to PPI is identical as to CPI. The distinct

appears one year later, the response of PPI reaches -0.786% which is 18 times larger than

the one of CPI 5.

5The order of variables is crucial for impulse response analysis. For robustness consideration, we apply
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1.5 Discussion

1.5.1 Exchange Rate Regime and Pass-Through

In Section 1.2.2, a flood of papers support that the monetary policy regime affects the

ERPT. It could be a change of inflation environment, such as an adoption of inflation

targeting or a structural break in inflation rate. It also could be a shift in exchange rate

regime from the fixed to the floating exchange rate policy. China has a relative stable

inflation environment, the concern comes from the influence of exchange rate regime.

To investigate the relation between ERPT and exchange rate regime, we still begin with

the single equation framework. The stability Chow test might be the most intuitive method

to judge whether the exchange rate policy reform causes a structural change. Regarding

2005 July as the potential breakpoint, the linear regression of CPI (equation 1.5) rejects the

null hypothesis of no breaks at the 10% significance level, while PPI’s regression (equation

1.6) accepts the above hypothesis.

Table 1.3: Chow Test for Structural Break
CPI
F Statistic 1.538 Prob.F(21,124) 0.077
Log likelihood ratio 38.426 Prob.Chi2(21) 0.012
Wald Statistic 32.298 Prob.Chi2(21) 0.055
PPI
F Statistic 0.584 Prob.F(21,124) 0.923
Log likelihood ratio 15.645 Prob.Chi(21) 0.789
Wald Statistic 12.255 Prob.Chi(21) 0.933
Note: The null hypothesis is there is no breaks in 2005M7 in
the OLS regression.

With the preliminary evidence from Chow test, a new econometric equation is laid

out for examining the association between exchange rate regime and ERPT. The dummy

variables EX is added to equation 1.5 and 1.6 for this distinction. EX equals to 1 during

nominal appreciating exchange rate period from July 2005 to July 2008, otherwise 0. The

ERPT is calculated as in Table 1.4, while the new econometric equation as follows6.

different orders. The results suggest there is little difference.
6Chen and Li (2009) estimated ERPT before and after the exchange rate reform. Even so, they simply

separated the sample size, the estimation based on only 44 observation data could not be so accurate.
My approach followed Edward (2006) could overcome this drawback, as the discrepancy during different
monetary policy regimes can not only be tested by gauging pass-through in different periods, but also by
the significance of dummy variables.
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dlncpi(dlnppi)t =
5∑
i=1

αidlncpi(lnppi)t−i +
5∑
i=0

βidlnneert−i +
5∑
i=0

γidlnfpit−i

+ ζoutputgap+ ηdlnbdi+ δdlnm2 +
5∑
i=1

ϕidlncpi(dlnppi)t−iEX

+
5∑
i=0

χidlnneert−iEX (1.10)

Table 1.4: Long Run ERPT and Monetary Policy
Expression CPI PPI

Whole period -0.132 -0.495

Fixed (
∑5

i=0 βi)/(1−
∑5

i=1 αi) -0.140 -0.502

Flexible (
∑5

i=0 βi +
∑5

i=0 χi)/(1−
∑5

i=1 αi −
∑5

i=1 ϕi) -0.031 -0.524
Note: the long run ERPT for different regime is calculated through the new econo-
metric equation, according to the expression part of table.

The regression results are presented in the Appendix 1.8.2. Table 1.4 lists the ERPT

estimation for different periods. Short-run ERPT coefficient is always insignificant, hence

more attention is paid to the long-run ERPT. There are two evidence supports that the

shift of exchange rate regimes affects the CPI pass-through, but not the PPI pass-through.

First, there is an obvious distinction of ERPT between two exchange rate regimes. In the

fix exchange rate regime, long-run CPI pass-through is -0.140, while it is -0.031 in the

flexible exchange rate regime. Nevertheless, one shortcoming of this study is the limited

sample size, especially for the flexible exchange rate regime. Due to the short period of

appreciation (only three years), the estimated ERPT in the flexible period can not be

completely trusted. Consequently, we compare CPI pass-through for the whole period

with the one in the fix exchange rate regime (-0.132 vs -0.140 respectively). It seems CPI

pass-through is slightly higher in the period when the flexible exchange rate period is ruled

out. Second, in Appendix 1.8.2 we can see that some coefficients of CPI equation for

interaction term (χi, ϕi) are significant.

In terms of PPI, the ERPT among divergent regime is consistent (-0.502 vs -0.524

respectively), and none of the interaction terms coefficients are significant. This conclusion

of higher CPI pass-through in the fix exchange rate regime is in line with Beirne et al.
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(2009) and Barhoumi (2005).

Analogously, VAR model is implemented to eliminate the endogeneity doubt from OLS.

The new VAR model is estimated within the reduced datasets from Jan 1996 to June 2005.

From Figure 1.9, the impulse response of subsample displays slight distinction with full

period analysis. Nevertheless, relatively significant response of both price indices within

fix exchange rate regime are found in long run7. The VAR analysis partially supports the

evidence from single equation, but failed to prove the divergent influence of exchange rate

regime for two price indices8.

The revaluation period between 2005 and 2008 is extraordinary for China’s economy. A

series of policies are implemented to response to the challenge. Figure 1.2-1.6 in Section 1.3

reflect the special volatility of policy and economy status from 2005 to 2008. Owing to the

intensive appreciation expectation in 2005, capital inflow inclined rapidly regardless of the

strict capital control (Figure 1.5), meanwhile the funds outstanding for foreign exchange

rose. This type of funds increased the base money supply, produced bubble in stock and

real estate market 9, finally led to a higher inflation rate. In order to control money supply

and liquidity, PBC heightened interest rate and bank reverse ratio vigorously (Figure 1.2

and 1.3). Nonetheless, with enlarged interest difference and appreciation expectation, hot

money even flew into more fiercely. The inflation rate was fairly high between 2006 and

2008, since it failed to be controlled. The challenge of the efficiency of monetary policy is

severe. With the chain reaction following the appreciation, we see that the inflation degree

here actually depends on the efficiency of monetary policy against the excess liquidity risk

in the beginning of the appreciation period.

1.5.2 Explanation for Pass-Through Difference

From the previous empirical work, the results indicate that the CPI pass-through is

much lower than PPI pass-through. China’s pass-through is obviously larger than those of

industrial countries. This section concentrates on explaining ERPT difference from various

aspects.

One explanation of CPI and PPI pass-through might be different definitions and com-

position of price indices. PPI reflects the price change when industrial product goes into

circulation for the first time, while CPI traces the price of consumer goods and service for

7By the end of two years, the responses of CPI and PPI before exchange rate reform are -0.068% and
-1.00%, compared with -0.040% and -0.713% for whole period.

8One explanation could be that impulse response function only consider the response of price indices
to NEER, while the computation of ERPT in linear model consider the response of NEER to itself.

9See Figure 1.1, the market value of stock market reached the peak in 2007.
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the final consumers. About the composition of price indices, different baskets and weights

of price indices could be the reason. Albeit Chinese government does not publish the

detailed construction of price indices, the general construction for CPI is as follows, food

33.2%, tobacco and alcohol 3.9%, clothes 9.1%, household equipment and maintenance ser-

vices 6.0%, medical care and personal products 10.0%, transportation and communications

10.4%, entertainment, education and culture 14.2%, residence 13.2%. In the composition

of PPI, means of production such as raw materials and machinery, electronics, chemical,

textile products are the majority, the weight of means of subsistence for resident final con-

sumption is less than 30%. Hence, the cross term is that CPI contains 50% of the industrial

consumer goods, while PPI includes 30% of the means of subsistence.

Furthermore, Bustein et al. (2003), Campa and Ihrig (2006) explained this puzzle by

considering imported inputs, the existence of non-tradable goods and distribution cost

through information from input-output table. This section follows these work and provide

the evidence from China 10.

Imported inputs and non-tradable sector

In Campa and Ihrig (2006), the calibration of ERPT into CPI demonstrated that

imported inputs can improve CPI pass-through, as higher imported inputs contribute to

the price of non-tradable goods and home produced tradable products. Imported inputs

ratio refers to the ratio of total value of imported intermediate inputs to the value of the

total intermediate inputs. In Table 1.5, the third column reports the share of imported

inputs for several countries. The ratio of imported inputs for China rises gradually from

0.087 in 1995 to 0.109 in 2002, due to the heightening degree of openness. Paralleling with

the other countries, the share of China is only a little lower.

There is a large consensus in literature that exchange rate only influences the price

of tradable goods. Although Campa and Ihrig (2006) pointed out that the price of non-

tradable goods can also be affected by exchange rate through imported inputs, the pass-

through is still much lower than for tradable goods. Therefore, the larger the scale of

non-tradable sector is, the lower CPI pass-through is, where CPI combines the price of

both tradable and non-tradable goods. In contrst, PPI is deemed to a proxy of domestic

price index for tradable goods, it can not be affected by the scale of non-tradable sector.

Following the method from Campa and Ihrig (2006), we compute the share of tradable

goods in consumption, as the ratio of the value of consumption by households in tradable

products relative to the value of total consumption by households. The tradable goods

10The resource of input-output table is OECD.
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is selected from the OECD input-output table (category 1 to 25) 11, while the rest of

categories are consider as non-tradable goods. The fourth column of Table 1.5 indicates

that the share of non-tradable consumption in China increased from 0.26 in 1995 to 0.468

in 2002. Particularly in the year 2000, the ratio is nearly half of US, France, Japan’s.

Meanwhile India and Indonesia have the identical composition of consumption, implies

that the degree of development in a country is proportional to the share of non-tradable

goods.

Table 1.5: Share of Imported Input, Non-tradables
Country Year Imported Inputs Non-tradables

to Consumption
China 1995 0.087 0.260

2000 0.095 0.304
2002 0.109 0.468

US 2000 0.797
France 2000 0.144 0.676
Japan 2000 0.070 0.779
UK 2000 0.160 0.682
Germany 2000 0.201 0.689
Indonesia 2000 0.210 0.432
Korea 2000 0.235 0.698
India 1998 0.117 0.396
Note: Some data is identical to Campa and Ihrig(2006),
due to the identical calculation method

Distribution cost

The concept of distribution cost comes from Bustein et al. (2003). They considered dis-

tribution cost as the cost of distributing tradable goods, such as transportation, wholesaling

and retailing. Moreover, they defined distribution margin as the ratio of the difference be-

tween retail price and producer price over retail price. It is obvious that high distribution

cost leads to low ERPT. In addition, distribution cost could also partially explain that why

PPI pass-through is higher than CPI. The definition of CPI involves more intermediate

distribution links, which lead to more distribution cost.

Whereas, there is no suitable data to calculate such type of margin12. Hence we use

11Category detail refers to OECD’s input-output table.
12In the linear model, we only consider one kind of distribution cost - transportation cost, as it is easier

to measure, compared with other distribution costs.
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input-output table to calculate the distribution margin for three final demand sections,

which is the final consumption expenditure by households, gross fixed capital formation

and exports. The distribution cost for service and non-tradable goods is assumed to be

zero, the whole cost is allocated to tradable goods. The distribution sectors are Wholesale

& Retail trade, Repairs, Land transport, Transport via pipelines, Water transport and Air

transport (category 31, 33-35).

The distribution margin for tradable goods is calculated as final demand divided by the

total inputs of tradable goods. Table 1.6 reports distribution margin for three sectors. In

all the countries, the distribution margin for final consumption expenditure by households

is larger than those of the export and gross fixed capital formation sections. For final

household consumption section, China’s distribution service consists of 10.2%, 10.3% and

16.5% of final consumer price in the year 1995, 2000 and 2002 respectively. In comparison

with other countries, the distribution sector is not an important element for tradable

consumption, since the ratio of industrial countries is above 60% in 2000. This differences

probably comes from distinct structure between developed and developing countries. As

we observe from Table 1.6, the distribution margins for Indonesia, Korea and India are

also smaller.

Table 1.6: Distribution Margin
Country Year Final consumption Gross fixed Exports

expenditure by capital formation
households

China 1995 0.102 0.051 0.032
2000 0.103 0.046 0.094
2002 0.165 0.083 0.174

US 2000 0.904 0.189 0.263
France 2000 0.593 0.120 0.111
Japan 2000 1.052 0.332 0.181
UK 2000 0.616 0.221 0.278
Germany 2000 0.600 0.103 0.094
Indonesia 2000 0.253 0.240 0.134
Korea 2000 0.377 0.120 0.144
India 1998 0.279 0.140 0.280

To summarize, low imported inputs, considerable scale of non-tradable and distribution

sectors for China could partially explain the low CPI pass-through in China. However, the

impact from distribution and non-tradable sectors is much smaller than that in industrial

countries. Hence, there must be some other reasons, such as price regulation. Chinese



1.6 Conclusion 25

government controls price control mainly in the field of energy industry, agricultural com-

modities, land and resource. Particularly, the energy industry, retail price of petrol, diesel

oil and electricity are seriously administrated. Taking product oil as an example, the cor-

responding policy is that the price of domestic produced oil is made adjustment, while

the average price of crude petroleum in international market changes more than 4% in

consecutive 22 working days. This policy implies that the product oil price in China lacks

of elasticity and is hysteretic to international oil price fluctuation 13. Concerning electricity

industry, coal price is determined by market demand and supply, but not the electricity

price. Agricultural commodities price is also regulated, especially grain price. Paralleling

with other agricultural commodities, such as pork, vegetables, the variation of grain price

is always the lowest.

1.6 Conclusion

In this chapter, ERPT for China’s CPI and PPI is estimated by single equation re-

gression. The OLS model finds that 1% devaluation of exchange rate leads to 0.016% CPI

deflation in the short run and 0.132% CPI inflation over the long run. The ERPT for PPI

amounts to 0.495 in the long run, which is much higher. It is in conformity with prediction.

The VAR model supports the results of linear model, about a fairly low CPI pass-through

and relatively higher PPI pass-through. The negative correlation between exchange rate

variation and long-run inflation implies that appreciation could reduce inflation rate.

In light of the relation between exchange rate regime and pass-through, the exchange

rate regime impacts on pass-through to CPI, but not to PPI. In the long run, the periods

within fix exchange rate regime have higher CPI pass-through.

Different definitions, baskets and weights of price indices could be a reason for the

difference of CPI and PPI pass-throughs. Furthermore, the low ERPT could be partially

explained by low imported inputs, considerable magnitude of non-tradable and distribution

sector. Other potential reasons are left for the future research.

The estimation results suggest that government could pursue more flexible exchange

rate policy and maintains the independence of monetary policy. The unfavorable impacts

of exchange rate fluctuation on price stability is not a problem. Whereas, this conclusion is

not absolute. The variation of pass-through should be considered, as the ERPT may vary

in accordance with different macro factor, such as inflation performance (Taylor 2000), and

monetary policy regime (Devereux and Yetman 2010). More extremely, ERPT might be

13Appendix 1.8.3 gives details for product oil price adjustment.
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endogenous in the open economy macroeconomic framework (Devereux et al. 2004).
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1.8 Appendix

1.8.1 Date Resource and Special Treatment

CPI/PPI: China’s CPI and PPI data published in international database are mainly

based on CPPY=100 (current period previous year=100), e.g. International Financial

Statistics (IFS) from IMF. Ideal data for our estimation is based on one specific year,

afterwards the monthly growth could be obtained easily. In order to adjust these indices

to base on 2005=100, which is consistent with other index data, We use CPI’s chain index

data and CPI data based on CPPY=100 for CPI adjustment, and use PPI data based on

CPPY=100 and producer goods’ chain price index data for PPI adjustment.

Foreign Price Index: Undoubtly, the most ideal index presents the importing cost

would be the weighted average of export price index. Whereas, there are not enough data

to support the calculation of this index. Some literatures direct replaced export price index

by CPI. Nonetheless, in order to keep the consistency of weights within NEER, we adopt

Campa and Goldberg (2005)’s treatment. In line with IMF’s methodology, REERi =∏
j 6=i[

CPIiRi

CPIjRj
]Wij , where j is an index that runs over country i’s trade partners, Wij is the

competitiveness weight put by country i on country j, Ri, Rj is the nominal exchange rate

of country i and j’s currencies in US dollars. NEERi =
∏

j 6=i[
Ri

Rj
]Wij . Therefore, FPI =

NEERi ∗ CPIi/REERi =
∏

j 6=i[CPIj]
Wij , FPI is regards as an appropriate weighted

average of foreign countries’ CPI.

Per unit distribution cost: Per unit distribution cost is difficult to measure. BDI

is a daily average of prices to ship raw materials. It represents the cost paid by an end

customer to have a shipping company transport raw materials across seas on the Baltic

Exchange, which is the global marketplace for brokering shipping contracts. It actually

measures the transportation cost.

Data resource: CPI, PPI (CPPY=100), NEER, REER, Industrial Production,and

M2 collect from IMF IFS, downloaded through Data Stream. While Baltic Exchange Dry

Index make monthly sum of the daily data from Baltic Exchange, downloaded also from

Data Stream. CPI and producer goods chain price index from WIND info (authoritative

database in China).
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1.8.2 ERPT by OLS Estimation with Dummy Variable EX

CPI PPI
Variable Coefficient Variable Coefficient
dlncpi(-1) 0.045 (0.097) dlnppi(-1) 0.296*** (0.086)
dlncpi(-2) 0.020 (0.095) dlnppi(-2) 0.151* (0.091)
dlncpi(-3) 0.004 (0.092) dlnppi(-3) 0.003 (0.095)
dlncpi(-4) 0.108 (0.091) dlnppi(-4) 0.084 (0.092)
dlncpi(-5) 0.170* (0.093) dlnppi(-5) 0.094 (0.082)
dlnfpi 0.614*** (0.206) dlnfpi 0.976*** (0.220)
dlnfpi(-1) 0.013 (0.214) dlnfpi(-1) 0.486* (0.248)
dlnfpi(-2) -0.247 (0.206) dlnfpi(-2) -0.113 (0.235)
dlnfpi(-3) 0.188 (0.205) dlnfpi(-3) -0.106 (0.232)
dlnfpi(-4) -0.058 (0.218) dlnfpi(-4) -0.241 (0.243)
dlnfpi(-5) -0.523*** (0.194) dlnfpi(-5) -0.673** (0.230)
dlnneer 0.009 (0.028) dlnneer 0.014 (0.032)
dlnneer(-1) -0.055* (0.031) dlnneer(-1) -0.054 (0.034)
dlnneer(-2) 0.013 (0.030) dlnneer(-2) -0.068** (0.033)
dlnneer(-3) -0.036 (0.031) dlnneer(-3) -0.034 (0.034)
dlnneer(-4) 0.039 (0.030) dlnneer(-4) -0.028 (0.034)
dlnneer(-5) -0.062** (0.028) dlnneer(-5) -0.015 (0.033)
dlncpi(-1)* EX 0.146 (0.194) dlnppi(-1)* EX -0.005 (0.236)
dlncpi(-2)* EX 0.477** (0.188) dlnppi(-2)* EX 0.057 (0.266)
dlncpi(-3)* EX 0.222 (0.183) dlnppi(-3)* EX 0.119 (0.257)
dlncpi(-4)* EX -0.241 (0.186) dlnppi(-4)* EX 0.282 (0.268)
dlncpi(-5)* EX -0.306* (0.183) dlnppi(-5)* EX -0.290 (0.237)
dlnneer* EX 0.125 (0.083) dlnneer* EX -0.050 (0.093)
dlnneer(-1)* EX -0.061 (0.082) dlnneer(-1)* EX -0.037 (0.093)
dlnneer(-2)* EX 0.152** (0.076) dlnneer(-2)* EX 0.017 (0.084)
dlnneer(-3)* EX -0.013 (0.083) dlnneer(-3)* EX 0.120 (0.084)
dlnneer(-4)* EX -0.199** (0.089) dlnneer(-4)* EX 0.038 (0.096)
dlnneer(-5)* EX 0.077 (0.090) dlnneer(-5)* EX -0.011 (0.099)
dlnm2 0.008 (0.034) dlnm2 0.021 (0.035)
outputgap 0.000 (0.000) outputgap 0.000 (0.000)
dlnbdi -0.004* (0.002) dlnbdi -0.002 (0.002)
R2 0.367 R2 0.666
Note: The figures in parentheses are standard errors, the figures in square parenthesis are p value. *
significance at the 10% levels, **-significance at the 5% levels, ***- significance at the 1% levels. dlncpi(-i)
denotes dlncpit−i.
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1.8.3 Adjustment of Product Oil Price In China

Time Adjustment
Apr,13, 2010 Domestic petrol and diesel oil price increase 320 Yuan per ton
Nov, 11, 2009 Domestic petrol and diesel oil price increase 480 Yuan per ton
Sep, 30, 2009 Domestic petrol and diesel oil price decrease 190 Yuan per ton
Sep, 2, 2009 Domestic petrol and diesel oil price increase 300 Yuan per ton
July, 29, 2009 Domestic petrol and diesel oil price decrease 220 Yuan per ton
June, 29, 2009 Domestic petrol and diesel oil price increase 600 Yuan per ton
May, 31, 2009 Domestic petrol and diesel oil price increase 400 Yuan per ton
Mar, 25, 2009 Domestic petrol and diesel oil price increase 290 Yuan

Diesel oil price increase 180 Yuan per ton
Jan, 15, 2009 Domestic petrol and diesel oil price decrease 140 Yuan

Diesel oil price decrease 160 Yuan per ton
Dec, 12, 2008 Ex-factory price of petrol declines 900 Yuan per ton

Ex-factory price of diesel oil declines 1100 per ton
June, 20, 2008 Domestic petrol and diesel oil price raises 1000 Yuan per ton

Aviation kerosene price raises 1500 Yuan per ton
Nov, 1, 2007 Price of petrol, diesel oil increase 500 Yuan perton
Jan, 14, 2007 Ex-factory price of petrol decreases 220 Yuan per ton

Ex-factory price of aviation kerosene decreases 90 Yuan per ton
Mar, 26, 2006 Ex-factory price of petrol increases 300 Yuan per ton

Diesel oil by 200 Yuan per ton
Aviation kerosene by 300 Yuan per ton

July , 23, 2005 Increase ex-factory price of petrol by 300 Yuan per ton
Diesel oil by 250 Yuan per ton
Aviation kerosene by 300 Yuan per ton

June ,25, 2005 Increase ex-factory price of petrol by 200 Yuan per ton
Diesel oil by 150 Yuan per ton
Aviation kerosene by 300 Yuan per ton

May, 23, 2005 Decrease ex-factory price of petrol by 150 Yuan per ton
May, 10, 2005 Increase ex-factory price of diesel oil by 150 Yuan per ton
Mar, 23, 2005 Ex-factory price of petrol raises 300 Yuan per ton



Chapter 2

Number crunching or the wisdom of

the crowds? Forecasting GDP

Growth in the Eurozone and its five

largest Countries

2.1 Introduction

Information on economic activity and its short-term prospects is of great importance to

decision makers in governments, central banks, financial markets and non-financial compa-

nies. Monetary and economic policy makers and economic agents have to make decisions in

real time with incomplete and inaccurate information on current economic conditions. A

key indicator of the state of the economy is the growth rate of real GDP, which is available

on a quarterly basis only and also subject to substantial publication lags. In many coun-

tries an initial estimate of quarterly real GDP is published around six weeks after the end

of the quarter. Moreover, real GDP data are subject to sometimes substantial revisions,

as more source data becomes available to statistical offices over time.

Fortunately, there is a lot of statistical information related to economic activity that is

published on a more frequent and timely basis. This information includes data on industrial

production, prices of goods and services, expenditures, unemployment, financial market

prices, loans and consumer and business confidence. The forecasting literature has recently

developed several statistical approaches to exploit this potentially very large information set

in order to improve the assessment of real GDP growth in the current quarter (nowcast) and

its development in the near future. Examples are bridge models, factor models, mixed-data
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sampling models (MIDAS) and mix frequency vector autoregressive (MFVAR) models1.

These models differ in their solutions to the practical problems of how to handle a large-

scale information set and the fact that the auxiliary variables are observed at different

frequencies and with different publication lags.

For practitioners there is now a wealth of statistical models to choose from. So which

one should they use? As each model has strengths and weaknesses it is difficult to make

a choice on purely theoretical grounds. The ranking of the models in terms of forecasting

ability and how it may vary with the prediction horizon or the economic circumstances has

to be determined by empirical analysis. On these issues the jury is still out, however, as

large-scale comparative studies are scarce. The empirical work in many papers refers to a

single country and usually includes only a limited number of models. Furthermore, papers

differ in the size of the information set and the sample period2.

This chapter is motivated by this gap in the empirical literature. We undertake a

systematic comparison of a broad range of statistical linear models - eleven models in all -

that have been applied in the recent literature. To improve comparability and robustness,

we include six countries in our analysis (Germany, France, Italy, Spain, the Netherlands

and the euro area), utilizing the same information set across countries. Moreover, our

sample includes the volatile episode of the financial crisis of 2008 and its aftermath, which

may make it easier to discriminate between the various models. We contrast the models’

forecasting performance before 2008 and that during the crisis period. This may be of great

interest to policy makers, financial analysts and economic agents alike, as information on

where the economy stands and where it is heading in the immediate short run is particularly

valuable in times of great uncertainty.

Providing cross-country evidence on the relative performance of eleven different statis-

tical forecasting models is our first contribution to the literature. Model forecasts are the

result of purely mechanical recipes and do not incorporate subjective elements. Our second

contribution concerns the potential usefulness of forecasts made by professional analysts

(published by Consensus Forecasts on a quarterly basis). From a practical point of view,

such forecasts are very cheap and easy to use. Moreover, they may, as expression of the

“wisdom of the crowds”, reflect much more information than the statistical information

1See Baffigi et al. (2004) Rünstler et al. (2009).
2Rünstler et al.(2009) is an important exception, comparing three factor models, a bridge model and a

quarterly VAR model for ten European countries, but this study does not include the recent crisis episode.
Kuzin et al. (2012) analyze the relative forecasting performance of MIDAS models versus dynamic factor
models, including part of the crisis years (2008-2009). Liebermann (2012) analyzed the relative forecasting
performance during the period December 2001 - December 2011, of a range of models, but only for the
United States
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set, which is inevitably limited. A questionnaire by the European Central Bank (ECB)

among the participants of the ECB Survey of Professional Forecasters found that the pan-

elists regard forty percent of their short-term GDP forecasts to be judgment-based (ECB,

2009). We investigate for our six countries to what extent subjective forecasts by analysts

contain information beyond that generated by the best mechanical statistical model.

The remainder of the chapter is structured as follows. Second 2.2 discusses the chal-

lenges that large-scale and irregularly shaped datasets pose to the forecasting process and

describes how the eleven statistical models attempt to overcome these problems. Section

2.3 describes the data, models and our pseudo real-time forecast design. Section 2.4 and

Section 2.5 present the results for the mechanical models and the professional forecasts,

respectively. Section 2.6 summarizes our findings and concludes.

2.2 Linear statistical models for short-term GDP growth

forecasting

2.2.1 Overview

Utilizing auxiliary information for forecasting of real GDP in the immediate short

run in practice poses several challenges. The first challenge is posed by the large size

of the information set. There are countless potentially useful variables for forecasting

GDP. The size of the datasets in the empirical literature varies from 70 to more than

300 (e.g. Rünstler et al.,2009 and Giannone et al., 2008). The second problem relates

to the fact that indicator variables are more frequently (monthly, weekly, daily) observed

than GDP. Moreover, the dating of the most recent observation may vary across indicators

because of differences in publication lags. This is known as the “ragged edge” problem,

see Wallis (1986). The various statistical approaches in the literature deal with these

challenges in different ways. To facilitate the discussion, Figure 2.1 depicts a schematic

representation of the process of translating a large dataset into a single final forecast

along with several crucial modeling choices. Figure 2.1 shows that a forecasting procedure

involves two transformations of the dataset of indicators to produce a final forecast: an

aggregation and the application of a forecasting tool, which links auxiliary variables to real

GDP growth. The two transformations can be executed in a different order, representing

two fundamentally different strategies. The “factor strategy” takes the aggregation step

first by summarizing the large dataset by a small number of series. This strategy exploits

the fact that the auxiliary variables are correlated. Factor analysis is used to replace a
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Figure 2.1: Schematic representation linear models for short-term GDP forecasting

large number of correlated time series by a limited number of uncorrelated (unobserved)

factors or principal components representing the common information component of the

original data series. The implicit weights (factor loadings) are determined by the correlation

patterns in the original dataset. The factors serve as input for the forecasting procedure in

the next step. Examples of this modeling strategy are static and dynamic factor models. By

contrast, the second strategy first computes for each variable an indicator-specific forecast,

which are then aggregated into a single final forecast in the second step. We call this

strategy the “pooling strategy” as it pools a large number of individual indicator-based

forecasts. In this approach it is necessary to specify the weighting scheme of the individual

forecasts. A simple scheme is the simple average, which gives each forecast an equal

weight, but weights may also be recursively computed depending on the indicators’ (recent)

forecasting performance. Examples of the pooling strategy are bridge equations and VAR

models.

The specification of the forecasting tool is the second distinguishing feature of the

approaches. The traditional approaches, such as the bridge models and VAR models, rely

on forecasting equations that are solely cast in quarterly terms. That means that monthly

indicator variables first have to be aggregated to quarterly averages, before they can be

used for forecasting. As this may not be an efficient use of the available information,
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recently developed approaches accommodate both quarterly and monthly data within the

same equation or system of equations. These approaches take publication lags into account.

The mix frequency VAR (MFVAR) model treats GDP as an unobserved monthly variable

in a state-space framework. Monthly GDP is transformed to the growth rate of quarterly

GDP via an identity. The quarterly GDP growth rate is only observed in the third month

of every quarter. The mixed-data sampling (MIDAS) design relates quarterly GDP directly

to a large number of lags of monthly data series using a parsimonious specification of the

lag structure.

A third, more practical, specification issue is whether or not to include GDP’s own past

in the forecasting tool. In general, forecasting equations can easily be augmented by auto-

regressive (AR) terms. Several authors have found that the AR-versions of models tend

to result in modest improvements of forecasting performance (e.g. Foroni and Marcellino,

2012).
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Figure 2.2: Classification of linear models for short-term GDP forecasting

In this chapter we analyze eleven statistical models. They are denoted as follows:

(1) bridge model (BEQ), (2) BEQ with AR terms (BEQ-AR), (3) quarterly VAR model

(QVAR), (4) diffusion index or static factor model (SFM), (5) dynamic factor model

(DFM), (6) mix frequency VAR model (MFVAR), (7) factor-augmented MFVAR (FA-

MFVAR), (8) mixed-data-sampling model (MIDAS), (9) MIDAS with AR terms (MIDAS-

AR), (10) factor-augmented MIDAS (FA-MIDAS) and (11) FA-MIDAS with AR terms
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(FA-MIDAS-AR). Figure 2.2 classifies the eleven models according to the choices made on

the three issues discussed above. The horizontal axis puts factor strategies versus pooling

strategies. The vertical axis puts purely quarterly forecasting equations versus forecast-

ing models that combine monthly and quarterly data (labeled mixed frequency). Finally,

shaded areas signify models augmented with auto-regressive terms. The remainder of this

paragraph discusses the models depicted in Figure 2.2.

2.2.2 Quarterly models for GDP growth

This section describes the quarterly models we estimated.

Pooled bridge equations (BEQ)

The quarterly bridge equation is perhaps the most widely used method for forecasting

GDP using monthly indicators. For applications see Kitchen and Monaco (2003) and Baffigi

et al. (2004). Bridge equations are linear regressions that “bridge” the monthly variables,

such as industrial confidence and retail sales to quarterly real GDP growth. Usually the

monthly indicators are not known over the entire projection horizon. Therefore we proceed

in two steps. Firstly, consider a vector of monthly series xt = (x1,t, . . . , xn,t), t=1,. . . . The

monthly indicators are predicted over the forecasting horizon h on the basis of univariate

autoregressive models. Secondly, the monthly forecasts of x are aggregated to the quarterly

frequency (xQt ) and used to predict quarterly GDP (yQt ). The bridge model to be estimated

is:

yQt = αi +

pi∑
s=0

βi,sx
Q
i,t−s + εQi,t, εQi,t ∼ N(0, σ2

εQ) (2.1)

where αi is a constant term, p denotes the number of lags in the bridge equation and εQi
is a normally distributed error-term.

Pooled vector autoregressive models (QVAR)

The pooled VAR approach has much similarity to the bridge equation approach. In

contrast to bridge equations, the VAR models use the information content of GDP itself to

produce forecasts of GDP (e.g. Camba-Mendez et al., 2001). More precisely, we consider

the set of n monthly indicators xt aggregated to the quarterly frequency xQt and run a
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quarterly bivariate VAR including the indicator and GDP:

zQi,t = α +

pi∑
s=1

Asz
Q
i,t−s + εQi,t, εQi,t ∼ N(0,ΣεQ) (2.2)

where i = 1, . . . , n with zQi,t = (yQt , x
Q
i,t)
′, where αi is a constant term and εQi,t denotes the

residual which is bivariate normally distributed. From each VAR, we produce forecasts

yQt+h|t for GDP.

Static Factor Model (SFM)

A different approach to extracting information from the dataset by running regression

for each individual indicator and pooling the forecast afterwards is to summarize the in-

formation in the vector if x′ts. The basic idea of this approach is to exploit the collinearity

of the n series in our panel by summarizing all the relevant information in a few common

factors r (r<< n).

The static factor model (or diffusion indices) due to Stock and Watson (2002) is one

of the simplest versions of factor models, as the dynamics of the factors are not explicitly

modeled. The forecasts of GDP growth are obtained in two steps. Firstly, we extract the

static principal components are from the covariance matrix of the complete list of monthly

indicators xt to obtain estimates f̂t of the r common static factors ft = (f1,t, f2,t, . . . , fr,t).

Formally:

xt = Λft + ξt, ξt ∼ N(0,Σξ) (2.3)

which relates the n×1 vector of monthly observations xt to the monthly factors ft via a

matrix of factor loadings Λ and an idiosyncratic component ξt = ξ1,t, . . . , ξn,t. In the second

step the monthly factors ft are aggregated to quarterly frequency fQt and the GDP forecast

can be derived from the “bridge” equation:

yQt+h|t = µ+ β′fQt + εt (2.4)

Note that in this equation GDP appears with a lead of h quarters. Hence, the h-step

ahead forecast yQt+h|t= β′fQt is found directly and there is no need to forecast the monthly

variables.
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2.2.3 Mixed frequency models

This section describes the mixed frequency models we estimated. Recently the interest

in these models amongst academics and policy makers has increased because of the general

failure of simple quarterly models to forecast the sharp downturn at the onset of the

financial crisis.

Dynamic factor model (DFM)

Dynamic factor models are all siblings of the static factor model. The dynamic factor

model approach has been shown to provide relatively accurate forecast in the United States

(Giannone et al., 2008), the euro area (see Bańbura et al., 2011; Rünstler et al., 2009),

Spain (Camacho and Perez-Quiros, 2010) and the Netherlands (den Reijer, 2005). The

main difference with the static factor model is that the dynamics in the factors are explicitly

modeled as a VAR(p) process. In this chapter we use the dynamic factor by Bańbura and

Rünstler (2011), that is used within several central banks within the euro area.

The first model equation of the DFM equals equation 2.3 of the SFM model and extracts

the static factors from the covariance matrix of x’s. Different from the SFM model the

factors are assumed to follow a vector autoregressive process of order p:

ft =

p∑
s=1

Asft−s + ζt (2.5)

Moreover, the dynamic factor model setup assumes the covariance matrix of the VAR (σζ)

is driven by a q dimensional standardized white noise ηt, where B is a r× q matrix and A

is a square r× r matrix:

ζt = Bηt, ηt ∼ N(0, Iq) (2.6)

Combining the monthly factor model with a forecast equation for mean-adjusted quar-

terly GDP growth completes the model. For this purpose the unobserved monthly GDP

growth rate yt is introduced. The monthly GDP growth rate yt is related to the monthly

factors ft via the equation:

yt = β′ft + εt, εt ∼ N(0, σ2
ε) (2.7)

The model is estimated in four steps. Firstly, the factors loadings Λ and estimated

static factors f̂t are obtained as described in section 2.2.2. Secondly the coefficient matrix
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Ai in equation 2.5 and β in equation 2.7 are estimated by Ordinary Least Squares using

f̂t. Thirdly, the covariance matrix is decomposed into one or more principal components.

Matrix B in equation 2.6 contains these components. By construction ηt is a white noise

term. In the final step, the model is cast in state space and the Kalman filter and smoother

are used to re-estimate the estimated factors (f̂t) and GDP growth.

Besides the dynamics in the factors the key feature of this approach is the use of the

Kalman filter. The filter allows for an efficient handling of the unbalancedness of the data

and mixing of the monthly frequency of the predictors xi and quarterly GDP yQi . The

state-space setup of the dynamic factor model we used is presented in section 2.8.2. For a

more elaborate description of the dynamic factor model see Bańbura and Rünstler (2011)3.

Mix frequency vector autoregressive models (MFVAR)

The basic idea of the Mix Frequency VAR Model (MFVAR) is to establish a VAR model

that efficiently mixes the monthly frequency of the indicator variables with the quarterly

frequency of GDP. In contrast to the quarterly VAR model we use all the information from

the monthly variables, and do not only use information when the monthly information over

the full quarter is known.

The econometric technique used is comparable to the dynamic factor model. That

is, we use the state space framework and the associated Kalman filter and smoother to

estimate all coefficients. In contrast to the dynamic factor model we do not extract factors

to summarize the signal from all indicators, but rather estimate bivariate MFVAR models

and afterwards combine this information by pooling. Our estimation is based on Kuzin

et al. (2011), but we modified the temporal aggregation scheme in order to be consistent

with the scheme employed in the dynamic factor model.

Let zi,t = (yt, xi,t)
′ be a vector of the latent monthly GDP variable and the variable

xi,t. The vector follows a VAR model:

zi,t − µzi =

p∑
s=1

As(zi,t−s − µzi) + εi,t, εi,t ∼ N(0,Σε) (2.8)

where µ means the expectation of corresponding variable. As documented by Kuzin et al.

(2011) the mean parameters µzi are often quite difficult to estimate. Therefore, we work

with demeaned GDP and monthly indicator series in estimation. After estimation we add

the mean back to get the final estimation.

3See Durbin and Koopman (2001) for a treatment of state space models and the use of the Kalman
filter and smoother.
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The model is cast in state space (detailed in section 2.8.2) for estimation. We estimate

the model by expectation-maximization algorithm as detailed in Mariano and Murasawa

(2010). Another possibility would be to estimate the model by maximum likelihood, but

we found this method had problems finding an optimal solution, especially for higher lag

orders and when aiming for relatively strict convergence criteria.

Mixed data sampling regression models (MIDAS)

The Mixed-Data Sampling Model (MIDAS) is a single equation regression connecting

monthly data (high frequency) to quarterly GDP (low frequency) (Ghysels et al., 2007),

and could forecast the low frequency data directly. It can be seen as the mixed frequency

version of the BEQ approach, as it is a single indicator model, mixing quarterly and

monthly frequencies in an elegant way. MIDAS is a single-equation approach, whereas

the MFVAR is a system approach that explains both GDP and the indicator. As such, a

misspecification in one equation can affect the estimation and forecast accuracy of the other

model equations. MIDAS has a sparse parameterization and does not have this problem.

On the other hand, the MIDAS restrictions on the lag polynomial (see below) that relates

the monthly indicator to quarterly GDP could be invalid, whereas the coefficients of the

MFVAR polynomials are estimated unrestrictedly. The MIDAS model is defined by the

following equation:

yQt+h = β0 + β1B(L(1/3); θ)x
(3)
i,t+w + εi,t+h (2.9)

where w is the gap of final data available between xt and yQt
4 and B(L(1/3); θ) is some lag

polynomial. x
(3)
t is skipped sampled from the monthly observations xt. Every third observa-

tion, starting from the tth, one is included in the regressor x
(3)
t ; thus, x

(3)
i,t = xi,t ∀ t=. . . ,T-

6,T-3,T. B(L(1/3); θ) =
∑K

k=0 c(k, θ)L
k/3 denotes a weighting function, and Lk/3x

(3)
i,t−1 =

x
(3)
i,t−1−k/3 represents a fractional lag operator. c(k, θ) is a specific lag polynomial, that

could be chosen from different lag polynomials. We follow Kuzin et al. (2011) and choose

the exponential Almon lag polynomial5, defined as:

4The last period of yQt is transformed to the corresponding monthly period.
5We compared this polynomial to the recently proposed unrestricted lag polynomial (Marcellino and

Schumacher, 2010) but this polynomial turns out to have a higher average RMSFE for most countries in
our sample. Details available upon request with the authors.
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c(k, θ) =
exp(θ1k + θ2k

2)∑K
k=0 exp(θ1k + θ2k2)

(2.10)

k in equation 2.10 is fixed at 12. The parameters include θ1, θ2, β0, β1 are estimated by

nonlinear least square, subject to θ1 < 5, θ2 < 0.

2.2.4 Factor and AR augmented models

Factor augmented models

Finally, we consider mixtures of the MIDAS and MFVAR models and the factor model

described above, by considering factor-augmented version of the MIDAS (FA-MIDAS) as

well as the factor augmented MFVAR (FA-MFVAR). While the basic MIDAS framework

consists of a regression of quarterly GDP on the monthly indicators, the factor-augmented

MIDAS and MFVAR approach exploits estimated factors rather than single indicators as

regressors. The Factor MIDAS model for forecast horizon h is:

yQt+h = β0 + β1B(L(1/3); θ)f̂
(3)
t+w + εt+h (2.11)

The estimation procedure equals the procedure outlined in section 2.2.3. Similarly, the

specification of the FA-MFVAR only needs a minor adjustment of equation 2.8 by replacing

xt by f̂t, then zQi,t = (yQt , f̂t)
′ and zi,t = (yt, f̂t)

′.

We follow the factor extraction algorithm proposed by Marcellino and Schumacher

(2010). We directly adopt the same framework of equation 2.3, 2.5 and 2.6. The extraction

of the monthly factors equals the factor extraction method used in the DFM, as described in

Marcellino and Schumacher (2010). The three equation system can be cast in state space,

where the Kalman filter and smoother allow for handing of the ragged edged dataset and

forecasting of GDP growth.

AR-augmented models

To compensate the absence of GDP’s own past in BEQ and MIDAS, we introduce AR-

term into those two models. For simplification, we only consider AR(1), AR-BEQ can be

written as

yQt = α + λyQt−1 +

pi∑
s=0

βi,sx
Q
i,t−s + εQi,t (2.12)
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λ is estimated simultaneously with α and βi,s.

The MIDAS with AR term (MIDAS-AR) is specified as proposed in Clements and

Galvão (2008), the multi-step analogue of the normal MIDAS-AR and factor augmented

MIDAS-AR (FA-MIDAS-AR) are defined as:

yQt+h = β0 + λyQt + β1B(L(1/3); θ)(1− λLh)x(3)i,t+w + εi,t+h (2.13)

yQt+h = β0 + λyQt + β1B(L(1/3); θ)(1− λLh)f̂ (3)
t+w + εt+h (2.14)

2.3 Data and forecast design

This section describes the dataset we used to estimate the mechanical linear models

(section 2.3.1), the pseudo real-time setup (section 2.3.2), the weighting scheme we used

for pooling the QVAR, BEQ, BEQ-AR, MFVAR, MIDAS and MIDAS-AR models (section

2.3.3). Finally, section 2.3.4 describes the selection of the number of lags in the models as

well as the factor selection criterion in the DFM and SFM model.

2.3.1 Dataset

Our monthly dataset consists of 72 monthly time-series variables, using harmonized

definitions across countries. The indicator variables fall into four groups: production &

sales, prices, monetary & financial indicators and surveys. Moreover, we added three com-

posite indicators from the OECD6. Table 2.6 in the appendix provides an overview of all

variables, the applied transformations and the starting date of the monthly series for each

country in our sample. Monthly data are usually available on a seasonally (and calen-

dar effects) adjusted basis at the source. When necessary, raw data series are seasonally

adjusted by the US Census X12-method. All monthly series are made stationary by dif-

ferencing or log-differencing (in case of trending data, such as industrial production, retail

sales and monetary aggregates). For factor based models, all variables are standardized by

subtracting the mean and dividing by the standard deviation. This normalization is neces-

sary to avoid overweighting of large variance series in the determination of common factors.

6The primary source of the data is the ECB Statistical Datawarehouse (see http://sdw.ecb.europa.

eu/). World trade and world industrial production are from the CPB World trade monitor ( see http:

//www.cpb.nl/en/world-trade-monitor). Commodity price and most financial market indicators were
taken from Thomson Reuters Datastream and most of the survey data from the European Commission
(see http://ec.europa.eu/economy_finance/db_indicators/surveys/index_en.htm).

http://sdw.ecb.europa.eu/
http://sdw.ecb.europa.eu/
http://www.cpb.nl/en/world-trade-monitor
http://www.cpb.nl/en/world-trade-monitor
http://ec.europa.eu/economy_finance/db_indicators/surveys/index_en.htm
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Quarterly GDP data for France, Italy, the Netherlands and Spain were taken from the

OECD release data and revisions database7. Quarterly GDP data for Germany are from

the Deutsche Bundesbank. Data refer to re-unified Germany from 1991.I onwards and to

West Germany before 1991.I8. We constructed a synthetic GDP series for the euro area

using the database underlying the ECB’s Area-Wide Model, supplemented with data from

the OECD9.

2.3.2 Pseudo real-time design

The forecast design aims to replicate the availability of the data at the time forecasts are

made in order to mimic as closely as possible the real-time flow of information. To this end,

we used a data set downloaded on January 16, 2012 and combined this with the typical data

release calendar to reconstruct the available dataset on the 16th of each month during the

period July 1995 - January 2012. All monthly indicator series start in January 1985, while

the quarterly GDP series start in 1985.I. We thus employ a pseudo real-time design, which

takes data publication delays into account, but ignores the possibility of data revisions for

GDP and some indicators, such as industrial production. The latter implies that we might

overestimate the forecasting accuracy of statistical models. However, the effects of data

revisions on the final forecast may largely cancel out, since statistical methods typically

attempt to eliminate noise in the process by either extracting factors from a large data

set or pooling a large number of indicator-based forecasts. For example, Schumacher and

Breitung (2008), using real-time data vintages for Germany, did not find a clear impact

of data revisions on the forecasting accuracy of factor models. Moreover, the effect on

the relative performance of models, which is the main focus of this chapter, is likely to

be quite small (see also Bernanke and Boivin 2003). Abstracting from data revisions may

affect the comparison of mechanical forecasts and forecasts by professional analysts to a

greater extent, because GDP data are subject to substantial revisions. However, there is

no obvious, feasible way to correct for this.

7The OECD release data and revisions database is publicly available athttp://stats.oecd.org/mei/
default.asp?rev=1 For France we used the January 2012 vintage, for Italy the January 2012, December
2011 and April 2006 vintages, for the Netherlands the January 2012 and July 2005 vintages and for
Spain the January 2012, November 2011, May 2005 and January 1999 vintages. The series for Italy, the
Netherlands and Spain were constructed by backdating the January 2012 GDP-series by applying the
quarter-on-quarter growth rates from the most recent GDP vintage.

8See http://www.bundesbank.de/statistik/statistik_zeitreihen.en.php?lang=en&open=

&func=row&tr=JB5000.
9See http://www.eabcn.org/data/awm/index.htm.

http://stats.oecd.org/mei/default.asp?rev=1
http://stats.oecd.org/mei/default.asp?rev=1
http://www.bundesbank.de/statistik/statistik_zeitreihen.en.php?lang=en&open=&func=row&tr=JB5000
http://www.bundesbank.de/statistik/statistik_zeitreihen.en.php?lang=en&open=&func=row&tr=JB5000
http://www.eabcn.org/data/awm/index.htm
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Table 2.1: Timing of forecast exercise (example: forecast for third quarter)

Quarter to be forecast Forecast made on 16th day of
Two quarter ahead 1 January

2 February
3 March

One quarter ahead 1 April
2 May
3 June

Nowcast 1 July
2 August
3 September

Backcast 1 October
2 November

We estimate the parameters of all models recursively using only the information avail-

able at the time of the forecast. See Rünstler et al. (2009), Giannone et al. (2008) and

Kuzin et al. (2011), among others, for a similar approach. We construct a sequence of

eleven forecasts for GDP growth in a given quarter, obtained in consecutive months. Table

2.1 explains the timing of the forecasting exercise, taking the forecast for the third quarter

of 2011 as an example. We make the first forecast in January 2011, which is called the

two-quarter-ahead forecast in month one. We subsequently produce a monthly forecast

for the next ten months through November. The last forecast is made just before the first

release of GDP in mid-November. Following the usual naming convention (see Bańbura

et al., 2011), forecasts refer to one or two quarter ahead forecasts, nowcasts refer to cur-

rent quarter forecasts and backcasts refer to forecasts for the preceding quarter, as long as

official GDP figures are not yet available. In case of our example 2011.III, we make two

quarter ahead forecasts from January to March, one quarter ahead forecasts from April to

June, nowcasts from July to September, and backcasts in October and November.

2.3.3 Weighting scheme of indicator-based forecasts

The models BEQ, BEQ-AR, QVAR, MFVAR, MIDAS and MIDAS-AR construct a

large number of different indicator-specific forecasts in the first stage, which have to be

aggregated in the second stage to obtain the final forecast. Taking a weighted average

of a large number of forecasts may ameliorate the effects of misspecification bias, pa-

rameters instability and measurement errors in the data, that may afflict the individual

forecasts (Timmerman 2006). We have investigated three different weighting schemes:
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(i) equal weights (simple mean); (ii) weights that are inversely proportional to the Root

Mean Squared Forecast Error (RMSFE) measured from the start of the sample period

until the previous quarter (recursive RMSFE scheme); and (iii) weights that are inversely

proportional to the RMSFE measured over the past four quarters (moving window RMSFE

scheme). Equal weights have been proven to work quite well as pooling mechanism (e.g.

Stock and Watson, 2004 and Clark and McCracken, 2010). The latter two methods assign

weights to the indicators based on their forecasting performance in the (recent) past. For-

mally, defining RMSFEi,t and RMSFE(4Q)i,t as the forecasting model’s recursive RMSFE

and moving window RMSFE using xi as a dependent variable respectively,

RMSFEi,t =

[
1
t−1

t−1∑
j=1

e2j,i

] 1
2

(2.15)

RMSFE(4Q)i,t =

[
1
4

t−1∑
j=t−4

e2j,i

] 1
2

(2.16)

Then, the recursive and moving window RMSFE scheme are:

yQt+h|t =
n∑
i=1

ωi,ty
Q
i,t+h|t, (2.17)

where ωi,t =
(1\RMSFEi,t)
n∑

i=1
(1\RMSFEi,t)

for recursive RMSFE scheme, and ωi,t =
(1\RMSFE(4Q)i,t)
n∑

i=1
(1\RMSFE(4Q)i,t)

for

moving window RMSFE scheme.

Tables 2.7 - 2.12 in the Appendix give an overview of the RMSFE of the three weighting

schemes by horizon and country for the six relevant models. The overall picture is that the

moving window RMSFE weighting scheme, which emphasizes performance in the recent

past, has the smallest RMSFE on average, although the difference with the recursive

RMSFE weighting scheme is quite small. In the rest of the chapter we therefore apply

the moving window RMSFE weighting scheme for all relevant models and all countries.
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2.3.4 Selection of maximum number of lags and number of com-

mon factors

Across models, countries and samples, the maximum number of lags in forecasting equa-

tions is determined recursively by the Schwartz information criterion (SIC). The maximum

number of lags that allowed is 4 for quarterly data and 6 for monthly data. There is one

exception. We find that the MFVAR for lag > 3 produces instable results, both when using

the expectation-maximization algorithm as with maximum likelihood maximization. We

conclude the specification with three lags results in the smallest RMSFE for most periods

and most countries, so we choose this model as the base model10.

Estimation of the static and dynamic factor model requires the specification of the

number of static and dynamic common factors, denoted by r and q respectively. We base

the choice of r and q on the combination that minimizes the RMSFE, evaluated over the

entire sample 1996.I-2011.III11. We limited the search for r to the interval [1,6]. The upper

bound of 6 was derived from the scree test of Cattell (1966). A grid search resulted in the

following number of static factors: euro area: r = 2; Germany: r = 1; France: r = 3; Italy:

r = 4; Spain: r = 3; Netherlands: r = 6.

We followed a similar procedure for the selection of the value of r and q in the dynamic

factor model, imposing the restrictions r≤6 and q≤r. The second restriction is motivated

by the finding of D’Agostino and Giannone (2012) that restricting the number of dynamic

factors to be smaller than the number of static factors does not hurt predictive accuracy.

Moreover, we applied the SIC to determine the maximum number of lags p in (equation

2.5) for p≤6 (given r and q). The specification search led to the following numerical values:

euro area: r = 6, q = 5, p = 4; Germany:r = 2, q = 2, p = 3; France: r = 5, q = 2, p = 6;

Italy: r = 6, q = 4, p = 2; Spain: r = 6, q = 2, p = 5; Netherlands: r = 6, q = 4, p = 2.

2.4 Empirical results for statistical models

2.4.1 Forecasting performance

Table 2.2 presents data on the forecast performance of the eleven statistical models

for our six countries for the complete sample period 1996.I-2011.III (63 quarters). The

10Detailed results are available upon request with the authors.
11Alternatively one could choose the number of factors r and q on the basis of in-sample criteria, as

described in Bai and Ng (2002,2007). Our experience is that these criteria tend to indicate a relatively
large number of factors, leading to volatile and less accurate forecasts (higher RMSFE). Detailed results
are available upon request with the authors.
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underlying empirical analysis has been carried out on a monthly basis for eleven horizons.

To save space Table 2.2 (and the other tables in this chapter as well) reports results

for the two and one-quarter ahead forecasts, the nowcast and the backcast, which have

been calculated as the average of the corresponding monthly data. We measure forecast

performance by the root mean square forecast error (RMSE). The first column of Table 2.2

reports the RMSE of the benchmark model (AR model). For the other statistical models

the entries refer to their RMSE relative to that of the benchmark model in order to improve

the comparability of the results across countries and horizons. Shaded entries indicate the

model with the lowest RMSE in a row (for a particular horizon). Bold entries indicated

models that have an RMSE that is less than 10 per cent larger than that of the best model

and also smaller than the RMSE of the benchmark model12. The 10 per cent threshold

is meant as a rough assessment of the economic significance of differences in forecasting

ability. We will call models that meet this condition “competitive models” as in terms of

forecasting performance they do not differ “too much” from the best model13.

The outcomes in Table 2.2 point to several interesting results. First, incorporating

monthly information in statistical forecasting procedures pays off in terms of forecasting

accuracy, in particular for nowcasts and backcasts. The large majority of the relative

RMSEs are smaller than 1 and they also tend to fall if the horizon shortens and more

monthly information is absorbed. Second, for many models the gain is rather limited

when truly forecasting. For the 2-quarter ahead forecast, the best models have on average

an RMSE that is only 5% lower than the benchmark. Except for Spain, even the best

statistical model does not deliver an economic significant improvement. For the 1-quarter

ahead forecast the average improvement by the best models is 15% on the benchmark,

but the other models generally post gains that are less than 10% on the benchmark. For

the nowcast and backcast the average gain in accuracy is around a third for the best

performing models. This pattern suggests that statistical models have greater value added

when they can use information that pertains to the relevant quarter. Their relative strength

is to improve the assessment of the current state of the economy. Third, the static and

dynamic factor models display the best performance overall. Looking across countries and

horizons, either the static or the dynamic factor model performs best. The only exception

is the bridge model which is the best model in case of the 2-quarter ahead forecast for the

Netherlands. The dynamic factor model works better for nowcasts and backcasts, while

the static factor model has the edge for the 1-quarter ahead forecast. Fourth, many models

12If the best model has an RMSE of 0.6, the cut-off point is an RMSE of 0.66.
13Like other authors we refrain from doing conventional statistical tests as these are not discriminating

in practice.
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are competitive at the 2-quarter ahead horizon in most of the countries, but their number

quickly falls as the horizon shortens. For the majority of the countries there typically is only

one (other) competitive model for nowcasts and backcasts, usually the static or dynamic

factor model. The first result is another piece of evidence that predictions by statistical

models incorporate little information at the 2 quarters ahead horizon. The second result

suggests that the static and dynamic factor model display a significantly larger ability

to absorb monthly information than the other models. Within the latter group, factor-

augmented models (FA-MIDAS, FA-MIDAS-AR and FA-MFVAR) are the best of the rest,

while the quarterly and MFVAR models are the clear underperformers. Fifth, within our

sample of countries Spain is an exceptional case as all statistical models do badly for all

horizons, except for the static and dynamic factor model.

2.4.2 The marginal value of statistical models

Ranking models by their RMSE gives a first perspective on their relative usefulness.

This subsection focuses on the marginal value of models by investigating whether forecasts

generated by different models differ in their information content. As the various statistical

approaches follow different strategies of extracting monthly information, it is conceivable

that some models are complementary. In that case taking a weighted average of their

respective forecasts may improve forecast accuracy. Even a badly performing model may

have a positive marginal value provided it is able to pick up specific useful information.

We establish the marginal value of the models versus the best statistical model (lowest

RMSE) by running the encompassing test proposed by Stekler (1991). The test regression

is

yQt+h|t = λŷQa(t+h|t) + (1− λ)ŷQb(t+h|t) + εt (2.18)

where yQt is GDP growth in t, ŷQa(t+h|t) and ŷQb(t+h|t) are the forecasts for quarter t+h on time

t of the alternative and best model respectively, λ is the weight of the alternative model

and (1−λ) is the weight of the best model. In order to get interpretable results, we impose

the restriction that λ lies between 0 and 1. The alternative model contains additional

information compared to the best model if λ > 0. We estimate λ and its standard error on

the interval [0,1] by Maximum Likelihood (ML) and perform a one-sided (asymptotically

valid) test of the hypothesis λ = 0 at the 5% level of significance. All calculations refer to

the complete sample period 1996.I-2011.III (63 quarters).
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Table 2.3 reports the results of our encompassing test. Entries depict the RMSE of the

forecast combination relative to the RMSE of the best model as a measure of the potential

gains from using forecast combinations. The estimated weight λ itself is not reported; bold

entries signify λ estimates that are statistically greater than zero. A blank entry means

that de ML algorithm returned the corner solution λ = 0.

The main message of Table 2.3 is that the gains from combining forecasts by different

statistical models are limited in economic terms. Moreover, no model emerges as a clear

winner, the best model in terms of marginal value is country-specific. It thus appears that

the various approaches do not greatly differ with respect to the type of information they

extract from large-scale monthly datasets. In the majority of the cases there is no gain in

accuracy at all for horizons up to the nowcast. The best opportunities are for improving

backcasts, when models have absorbed the maximum amount of monthly information.

Except for Germany and Italy, the majority of the models offers some scope for improving

backcasts. For the euro area the maximum possible reduction in the RMSE is 9%, for

France 4%, for Spain 9% and for the Netherlands 6%. For nowcasts the maximum reduction

in the RMSE does not exceed 4%. At the 2 quarter ahead horizon a comparatively large

number of models appear to offer additional information, but the associated gains are

very small (typically 1% reduction in RMSE). Finally, Table 2.3 shows that statistical

significance and economic importance are different concepts. Most non-zero entries reflect

a significant test result for the encompassing test, while most of the gains in forecast

accuracy are very small.

2.4.3 Splitting the sample: Great Moderation versus Financial

crisis

Our sample includes the financial crisis when real GDP went through a particularly

volatile phase across the industrialized countries. An obvious question is whether and to

what extent the performance of statistical forecasting models differs between the financial

crisis period and the period before the financial crisis which was characterized by a large

degree of macroeconomic stability. The latter period has been labeled as the Great Mod-

eration. Most of the existing literature on short term forecasting is based on data from

the Great Moderation period. Forecasting in volatile times poses of course greater chal-

lenges, so the results of a comparative analysis will be more informative on the issue which

models are particularly apt at absorbing monthly information. Moreover, good forecasts

and nowcasts are of greater importance to economic agents and policy makers in a volatile

environment.
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We divide the sample period into two parts: 1996.I - 2007.IV (Great Moderation) and

2008.I - 2011.III (Financial crisis). We discuss the performance of the models on the basis

of their learning curve, which shows the relative decline in the RMSE as the forecasting

horizon shortens, averaged over five countries.14 We calculate a model’s learning curve as

the RMSE standardized by the RMSE for the first month of the 2 quarter ahead forecast.

Figure 2.3 shows the learning curves of selected models for the complete sample period and

the two subperiods (in the rows). The graphs on the left refer to models that aggregate

indicator-specific forecasts, the graphs on the right refer to models that rely on factor

analysis to summarize indicators. For presentational reasons we restrict the comparison to

the AR versions of the MIDAS, BEQ and FA-MIDAS models (as they perform better than

the non-AR versions) and leave out the QVAR model (as it learns in quarterly steps) and

FA-MFVAR (as its forecast performance is meager).

For the complete sample period we find that the DFM model displays the steepest

learning curve, with the SFM model being a close second. In addition, models involving

factor analysis have steeper learning curves than models that aggregate indicator-specific

forecasts. This is a stable pattern that holds both during the Great Moderation episode

and the crisis episode (and also across countries). It thus appears that the DFM and SFM

model are the fastest learning models in volatile as well as tranquil environments.

Predicting GDP is much more difficult in the crisis period. The RMSE of the benchmark

model during the crisis period is two to three times as large as that during the Great

Moderation. Part of this deterioration can be offset as the scope for improving forecasts

by utilizing monthly information appears to be larger in volatile times, in particular for

nowcasting and backcasting. For example, the RMSE of the dynamic factor model falls by

22% on average over the course of 11 months in the period before the crisis as compared to

58% in the crisis period. Differences in forecast accuracy across models are considerably

larger after the crisis than before the crisis. This also means that the number of competitive

models during the Great Moderation is much larger (about twice as many) than after the

financial crisis, even for the nowcasting and backcasting horizons. This outcome support

the outcome of d’Agostino and Giannone (2012) who show that the gain from using factor

models is substantial, especially in periods of high comovements, as was the case during the

Financial crisis. The crisis episode poses a more demanding test to models and consequently

fewer models manage to pass. This finding also implies that the cost of employing a

suboptimal model has increased after the crisis. Finally, the potential gains of combining

14We leave out Spain, because all statistical models fail to beat the benchmark model in the period
1996.I-2007.IV. Country details can be found in appendix which contains versions of Tables 2.2 and 2.3
for both subperiods.
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statistical models (marginal value) tend to be markedly smaller during de financial crisis

compared to the preceding period15.

2.4.4 Assessing the building blocks of the models

The fact that our analysis includes eleven models and six countries allows us to shed

some light on the issue which model features are especially valuable for forecasting. Refer-

ring to Figure 2.2, we focus on the following modeling choices: (1) employing factor analysis

to summarize monthly information; (2) allowing for mixed frequencies in the forecasting

equation or system; (3) exploiting GDP’s own past by adding an autoregressive term to

the forecasting equation. To assess a modeling feature’s effect on the RMSE we compare

(sets of) models that only differ in that aspect. Moreover, we take the average over five

countries (once again we exclude Spain) to average out the country-specific component.

To measure the impact of utilizing factor analysis for aggregating monthly information

rather than aggregating indicator-specific forecasts we can compare three pairs of models:

(FA-MIDAS, MIDAS), (FA-MIDAS-AR, MIDAS-AR) and (FA-MFVAR, MFVAR). For

the AR effect we can also exploit three pairs: (BEQ-AR, BEQ), (MIDAS-AR, MIDAS)

and (FA-MIDAS-AR, FA-MIDAS). We assess the mixed frequency effect in two different

ways. The first method involves the pairs (MIDAS, BEQ) and (MIDAS-AR, BEQ-AR),

which relates quarterly GDP data on the left-hand side to monthly data (as opposed to

quarterly averages of monthly data) on the right-hand side in a single forecasting equation

setting. The second method is based on the pair (MFVAR, QVAR) and includes the effect

of making GDP a monthly latent variable in a system.

Table 2.4 reports the impacts of the three modeling features (averaged over five coun-

tries) for the complete sample period and the two subperiods. Starting with the effect of

utilizing factor analysis, we find that this improves the accuracy of nowcasts and back-

casts, but for true forecasting factor augmented models show a weaker performance. This

suggests that summarizing information of monthly data is primarily helpful when the in-

formation pertains to the quarter of interest itself. When truly forecasting the inevitable

loss of information that summarizing implies appears to dominate any gains from the re-

moval of noise. For the complete sample the average gain is 6% for nowcasts and 12%

for backcasts. During tranquil times these gains are smaller, while in the crisis period

the gains are larger, up to 17% for backcasts. Allowing for mixed frequencies in a single

equation setting (MIDAS of BEQ) only modestly lowers the RMSE for backcasts, while for

15Moreover, the encompassing test is significant in only a few cases but this can partly be attributed to
the low number of observations.
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the other horizons the RMSE deteriorates slightly. In the crisis these effect are somewhat

more pronounced, but still small. Treating GDP as monthly latent variable in a system

has positive effects on all horizons for the whole sample, but this result appears to be

completely driven by the crisis period. Lastly, exploiting GDP’s own past by adding an

AR term tends to improve the accuracy of forecasts a little bit for most horizons, especially

for nowcasts (3%) and backcasts (5%) during the crisis episode.

2.5 Analysis of forecasts by professional analysts

The views of professional forecasters are an alternative and convenient source of in-

formation for policy makers and market participants. Currently, several surveys on the

economic outlook exist and are regularly updated. The European Central Bank under-

takes a quarterly survey among professional forecasters to get information on inflation

expectations and growth prospects for the euro area. In the US, the Federal Reserve Bank

of Philadelphia runs a well-known survey. Moreover, the private sector firm Consensus

Economics collects and publishes economic forecasts on a monthly basis in the publication

Consensus Forecasts. Consensus Forecasts offers an overview private analysts’ expecta-

tions for a set of key macroeconomic variables for a broad range of countries. Consensus

Forecasts is best known for its expectations on annual GDP growth for the current and

next year. However, it also provides quarterly forecasts for GDP, which we will use in this

chapter16. The panelists supply their forecasts for six consecutive quarters, starting from

the first unpublished quarter. The number of respondents varies somewhat over time, but

on average about nine institutions participate in the poll for the Netherlands, fifteen for

Italy and Spain, twenty for France and thirty for Germany and the euro area.

This section investigates two issues. The first issue is the quality of Consensus forecasts

as a separate forecasting device compared to the best statistical model. The second issue

is the marginal value of Consensus forecasts based on an encompassing test versus the

best model. In forming their expectations, analysts include subjective assessments on

potentially a multitude of relevant factors. If a mixture of model-based and (subjective)

Consensus forecasts improves the accuracy of forecasts, this can be viewed as evidence that

forecasts by analysts indeed embody a different type of valuable information (subjective

judgments).

We use the mean quarterly forecast as the measure of private sector expectations in our

16The annual Consensus forecasts have been analyzed in several papers (e.g. Ager et al. (2009), Batchelor
(2001), Loungani and Rodriguez (2008) and Lahiri et al. (2006)). The quarterly forecasts have not been
used before, except in a case study for the Netherlands by de Winter (2011).
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analysis. Fresh Consensus forecasts become available only once a quarter, in the second

week of the last month of each quarter. For the information set this means Consensus fore-

casts are not updated in the first and second month in a quarter, while monthly indicator

series are updated every month. Moreover, at the time panelists form their expectations

they have information on GDP growth in the preceding quarter. The backcast for quarter

t is therefore equal to the non-updated Consensus forecast published in the last month of

quarter t.

Table 2.5 presents the results for Consensus forecasts for six countries for the complete

sample period, the pre-crisis period and the crisis period17. For 2 quarter ahead forecasts

Consensus forecasts are better than the best statistical model in case of the euro area and

Spain, while they are a competitive model in another three cases over the whole sample.

When the horizon shortens, however, the relative performance versus the best model de-

teriorates starkly in all countries except for Germany and Spain. Consequently, purely

mechanical models seem to be (much) more adept at learning when monthly information

becomes available. In the relatively quiet pre-crisis period, Consensus forecasts fare very

poorly, usually ranking at the bottom of the list. However, Consensus forecasts do very

well in the case of Germany. By contrast, during the crisis period, when GDP displayed

extreme fluctuations, Consensus forecasts perform much better. At the 2 quarter ahead

horizon Consensus forecasts are the best model for five countries, and at the 1 quarter ahead

horizon they consistently belong to the top-three models. For Spain and the Netherlands

the difference is substantial. This suggests that analysts are better able to handle extreme

observations of GDP growth once they have occurred, while the quality of estimated mod-

els in mechanical procedures is more susceptible to extreme observations in the sample,

in particular when truly forecasting. This supports the outcome of Lundquist and Stekler

(2012) who conclude professional forecasters are very responsive to the latest information

about the state of the economy and adjust their predictions quickly. We find that despite

this head start, in most cases private sector forecasts still fall behind the best model as the

horizon becomes shorter and more monthly information can be used to improve forecasts.

For example, the RMSE of backcasts by Consensus forecasts is between 20% and 84%

larger than the RMSE associated with the best model (static or dynamic factor model).

Despite the fact that Consensus forecasts are a rather poor predictor of GDP on their

own, the results for the encompassing test show that they often contain valuable extra

information, which may be used to improve mechanical forecasts for all countries except

Italy. The most striking results concern the backcasts by Consensus forecasts, even though

17Consensus forecasts are available for the euro area from March 2002 onward only, so results in Table
4 refer to the period 2003.III-2011.III for the euro area.
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these actually reflect relatively dated information. Measured over the whole sample period,

enriching mechanical forecasts with subjective Consensus forecasts delivers a gain in accu-

racy of around 10% on average. During the crisis period Consensus forecasts, unlike their

statistical competitors, still offer added value for some countries. This holds in particular

for Spain and to a lesser extent for the Netherlands. During the pre-crisis period forecasts

for Germany and the euro area may benefit from Consensus forecasts. The outcomes of

the encompassing test suggests that subjective private sector forecasts potentially contain

information that cannot be picked up by sophisticated mechanical forecasting procedures.

An interesting topic for future research is to investigate how the potential of judgmental

forecasts may be taken on board in mechanical procedures in a real time context.

2.6 Conclusion

This chapter makes two contributions to the empirical literature on forecasting real

GDP in the short run. The first contribution is a systematic comparison of eleven statis-

tical linear models for six countries (Germany, France, Italy, Spain, the Netherlands and

the euro area), utilizing the same information set across countries. Our sample period

(1996.I-2011.III) allows us to compare the models’ forecasting abilities in the period before

the financial crisis of 2008 (Great Moderation) and the much more volatile subsequent

period (financial crisis and its aftermath). The second contribution concerns the potential

usefulness of (subjective) forecasts made by professional analysts. Such forecasts are very

cheap and easy to use, and they may incorporate valuable information that goes beyond

purely statistical data.

We summarize our findings in five points. First, monthly indicators contain valuable

information that can be extracted by mechanical statistical procedures, in particular as

the horizon shortens and more monthly information is processed. The largest gains in

accuracy are for nowcasts and backcasts, suggesting that statistical models are especially

helpful when they are able to use information that pertains to the quarter of interest.

Moreover, statistical models are generally more efficient in extracting monthly information

in volatile times. Their relative strength is thus to improve the assessment of the current

state of the economy. By contrast, predictions by statistical models generally incorporate

little information at the two quarters ahead horizon.

Second, the dynamic and static factor models consistently display the best forecasting

capabilities across countries in the period 1996.I-2011.III. Their relatively strong perfor-

mance in the volatile crisis episode is key to this result. The dominance of factor models
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Table 2.5: Comparison Consensus Forecasts with best linear model

Eval. period 1996Q1-2011Q3 (N=63) 1996Q1-2007Q4 (N=48) 2008Q1-2011Q3 (N=15)
Indicator rRMSE rank gain rRMSE rank gain rRMSE rank gain
euro area
2Q ahead 0.99 1 0.98 1.21 13 . 0.98 1 0.97
1Q ahead 1.06 3 0.98 1.42 13 . 1.04 2 0.98
nowcast 1.34 5 0.99 1.43 13 0.99 1.34 4 .
backcast 1.77 7 0.93 1.54 13 0.83 1.84 7 0.95
Germany
2Q ahead 1.04 7 . 1.05 10 0.99 1.04 7 .
1Q ahead 1.06 3 0.99 0.99 1 0.95 1.12 3 .
nowcast 1.12 3 0.98 0.91 1 0.90 1.35 6 .
backcast 1.00 2 0.91 0.76 1 0.76 1.40 6 0.99
France
2Q ahead 1.05 8 0.98 1.23 13 . 0.98 1 0.97
1Q ahead 1.18 7 . 1.30 13 . 1.11 3 .
nowcast 1.29 8 0.99 1.32 13 0.99 1.27 4 .
backcast 1.27 6 0.95 1.30 11 0.97 1.36 6 0.95
Italy
2Q ahead 1.11 13 . 1.32 13 . 0.99 1 0.99
1Q ahead 1.17 12 . 1.40 13 . 1.01 2 0.97
nowcast 1.36 11 . 1.45 13 0.99 1.27 4 .
backcast 1.47 12 0.99 1.43 13 0.97 1.67 6 .
Spain
2Q ahead 0.98 1 0.94 1.23 13 . 0.88 1 0.87
1Q ahead 1.10 3 0.96 1.27 13 . 0.99 1 0.90
nowcast 1.21 2 0.96 1.36 13 . 1.13 2 0.85
backcast 1.10 2 0.88 1.27 12 . 0.85 1 0.57
Netherlands
2Q ahead 1.06 9 0.98 1.27 13 . 0.90 1 0.90
1Q ahead 1.11 3 0.97 1.17 13 0.99 1.05 2 0.95
nowcast 1.23 9 0.98 1.29 13 0.99 1.15 3 0.95
backcast 1.39 12 0.91 1.56 13 0.98 1.20 4 0.87
Notes: rRMSFE: relative RMSFE against best linear model, rank: rank in 13 models; 12 linear models +
consensus forecasts, gain: gain in forecast accuracy from combining Consensus Forecasts with best linear
model.

Bold figures indicate encompassing test indicates difference is statistically significant at 5% level.
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is somewhat weaker during the more tranquil period of the Great Moderation.

Third, regarding the question which modeling features are critical to success, we find

that employing factor analysis to summarize the available monthly information clearly

delivers better results than the alternative of averaging indicator-based forecasts in the

case of nowcasts and backcasts. Factor strategies work better than pooling strategies.

Moreover, allowing for mixed frequencies and autoregressive terms (GDP’s own past) in

forecasting procedures leads to minor improvements in forecast reliability. All of these

effects are more pronounced during the crisis period, implying that the cost of employing

a suboptimal forecasting model is larger in periods of high volatility.

Fourth, statistical models significantly differ in the rate at which they are able to absorb

monthly information as time goes by. However, the information content of the resulting

forecasts appears to overlap to a large extent and the unique model-specific component

appears to be small (in relation to the best model). The different models do not seem to

have a comparative advantage of extracting a certain type of information, offering perspec-

tives that complement each other. The scope for improving GDP forecasts by combining

the ’views’ of various models is rather limited in economic terms, although there are some

exceptions. This is particularly true during volatile episodes when reliable assessments of

the current situation and short run prospects are most needed, unfortunately.

Lastly, forecasts by professional analysts, which contain judgmental elements, appear

to be a different category. Such forecasts are in many cases a rather poor predictor of

GDP compared to the best statistical model. However, they tend to perform better during

the crisis, when it really counts, and they often embody information that sophisticated

mechanical forecasting procedures fail to pick up. Subjective private sector forecasts thus

seems to offer the potential of enhancing mechanical forecasts.

The results of our large-scale comparative analysis may useful to policy makers, financial

analysts and economic agents alike, as information on where the economy stands and

where it is heading to in the immediate short run is particularly valuable in times of great

uncertainty. The dynamic factor model and the static factor model, which is a quite simple

procedure from a technical point of view, are obvious candidate models for generating short

term forecasts in practice. An interesting topic for future research is to investigate how

the potential of judgmental forecasts may be taken on board in mechanical procedures in

a real time context.
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Pooling approach Factor approach
Evaluation period 1996.I - 2011.III (N=63)

Evaluation period 1996.I - 2007.IV (N=48)
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2.8.2 State space representation of mixed frequency VAR and

dynamic factor model

Mixed frequency VAR

This section describes the state space representation of the mixed frequency VAR de-

scribed in section 2.2.3. Let p∗ = max(p, 3) and the transition equation of state vector is

as follows:


zi,t+1 − µzi
zi,t − µzi

...

zi,t−p∗+2 − µzi

 =

[
A1 A2 ... Ap 02×2(3−p∗)

I2(p∗−1) 02(p∗−1)×2

]
zi,t − µzi
zi,t−1 − µzi

...

zi,t−p∗+1 − µzi

+

[
Σ

1/2
ε

02(p∗−1)×2

]
vt,

(2.19)

where vt ∼ N(0, I2). The measurement equation is:

zQi,t − µzQi =

[
1/3 0 1/3 0 1/3 0 01×(p∗−6)

0 1 0 0 0 0 01×(p∗−6)

]
zi,t − µzi
zi,t−1 − µzi

...

zi,t−p∗+1 − µzi

 (2.20)

Since, yQt is only available on the third month of the quarter we fill the missing observations

in month 1 and 2 with a random draw from the standard normal distribution N(0, 1),

in accordance with Mariano and Murasawa (2010). As a consequence, we modify the

measurement equation of month 1 and month 2, to accommodate the missing observation

treatment. For the month yQt is unavailable, the upper row of the matrix in the right hand

side of equation 2.20 is all equal to zero, and white noise is added.

Dynamic factor model

The equations of the DFM, i.e equation 2.3 and 2.5 to 2.7 can be cast in state space

form as illustrated below for the case of p = 1. The aggregation rule is implemented in

a recursive way in equation 2.22 by introducing a latent cumulator variable Ξ for which:

Ξt = 0 for t corresponding to the first month of the quarter and Ξt = 1 otherwise. The
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monthly state space representation is given by the following observation equation:

[
xt

yQt

]
=

[
Λ 0 0

0 0 1

] ftyt
ŷQt

+

[
ξt

εQt

]
(2.21)

and the transition equation:

 Ir 0 0

−β′ 1 0

0 −1
3

1


ft+1

yt+1

ŷQt+1

 =

Ar1 0 0

0 0 0

0 0 Ξt+1


 ftyt
ŷQt

+

ζt+1

εt

0

 (2.22)

The application of the Kalman filter and smoother provides the minimum mean square

linear estimates (MMSLE) of the state vector αt = (ft, yt, ŷ
Q
t ) and enables the forecasting

of quarterly GDP growth yQt and dealing efficiently with an unbalanced dataset of missing

observations at the beginning and at the end of the series by replacing the missing data

with optimal predictions. Moreover, when compared with the use of principal components

technique alone, the two-step estimator enables the dynamics of the common factors and

the cross-sectional heteroskedasticity of the idiosyncratic component.

2.8.3 Sensitivity Analysis
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Chapter 3

A Factor Augmented Mix Frequency

VAR/MA Model for Monthly GDP

Estimation

3.1 Introduction

The gross domestic product (GDP), which refers to the market value of all officially

recognized final goods and services produced in a given period, is the most comprehensive

and reliable macroeconomic indicator. However, the lack of monthly frequency data hinders

its function for timely monitoring the state of economy.

The aim of this chapter is to construct a GDP based monthly coincident index, which

sufficiently accommodate information from both quarterly GDP and numerous monthly

indicators. Three elements are pivotal for estimating monthly GDP. Firstly, how many

monthly indicator should be contained? inter alia the trade-off between more indicators

and the curse of dimensionality. Secondly, how to connect the quarterly and monthly data,

namely the mix frequency problem. Thirdly, which kind of model should be assumed for

the latent monthly GDP data?

There are two state of art methodologies arise our attention. One is Angelini et al.

(2008)’s dynamic factor model, which integrates bridge equation with factor model to es-

timate monthly GDP. Albeit this method alleviates the large dimension issue successfully,

whether the dynamic factor model is plausible for GDP construction is indeterminate.

Another one is Mariano and Murasawa (2010)’s mix frequency VAR (MFVAR) model.

This structure preserves the inherent nature of time series-autoregression, and the mul-

tivariate setup dissolves the underlying endogeity issue. Nonetheless, attributing to the
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overparametrization issue, it constrains to limited amount of variables.

Absorbing essence from both approaches, we answer aforementioned three questions

by a sophisticated factor augmented mix frequency VAR/MA (FA-MFVAR/MA) model.

Instead of extracting factor and estimating the monthly series simultaneously in a state

space form (see Angelini et al. 2008), we proceed the assessment in two stages. At first,

a single factor is extracted from vast monthly indicators. Subsequently the foregoing ex-

tracted factor and quarterly GDP are conjuncted by a bivariate MFVAR model. Realizing

the potential moving average component, the model is extended to VARMA case.

To the best of our knowledge, it is the first time that FA-MFVAR/MA model is ex-

ploited. The intriguing incorporation of VAR/MA model and factor extraction compen-

sates the shortcoming of solely MFVAR/MA or dynamic factor model, produces a monthly

indicator enable inclusion of large magnitude and mix frequency datasets.

The evaluation based on the estimation of monthly German GDP. We investigate the

pros and cons of our model, in contrast with the parsimonious Chow and Lin method, single

indicator MFVAR model and Angelini et al. (2008)’s dynamic factor model. The reference

models represent for the benchmark interpolation technique, MFVAR model without factor

extraction, and the large datasets but purely factor based methodology. The out of sample

root mean square error (RMSE) and estimated monthly GDP delineation uniformly confirm

that the FA-MFVAR model unilaterally beats the remaining techniques. More precisely,

the substantial distinction from dynamic factor model reflects the strengthen of VAR based

method over factor based one for monthly GDP estimation, which adopts the identical large

information set.

This chapter is constructed as following. The literatures are summarized in Section 3.2.

We sketch out the factor augmented mix frequency VAR and VARMA model respectively

in Section 3.3. Section 3.4 implements the evaluation with German data. Section 3.5

concludes.

3.2 Related Literatures

3.2.1 Interpolation

Temporal disaggregation for quarterly GDP and constructing a monthly macroeconomic

coincident index are two disparate but also correlated problem. Issue of interpolation,

namely disaggregate high frequency data from low frequency data, received much attention

in literature. The Chow & Lin (1971) approach is quite convenient and canonical for

interpolation. Their approach established linear regression between low frequency data and
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related series firstly, afterwards assumed the same regressor coefficient for unobservable

high frequency data and corresponding high frequency related series, to implement the

disaggregation. The linear regression is estimated by generalized least square. Geared

toward the residuals assumption, Fernández (1981) suggested the residual follows a random

walk, while Litterman (1983) assumed ARIMA (1,1,0) process with unit root. Santo and

Cardoso (2001) and Mitchell et al. (2005) pursued the approach on another direction, by

involving divergent dynamic structure to the Chow & Lin technique.

Structural time series model, which mainly concerns components like trend, seasonal,

cycle and irregular, is prevailing for disaggregation. Harvey & Chung (2000) casted a

bivariate local linear trend model, to estimate the underlying change in unemployment in

UK. Moauro & Savio (2005) put forward local linear trend model for the multivariable,

and further developed seemingly unrelated time series equations model.

One branch of literatures merely utilized the dynamic structure of low frequency data

to execute the disaggregation, without the assist of any other series. Wei & Stram (1990)

and Harvey & Pierse (1984) are two distinguished examples, both assumed a ARIMA

model of unobservable time series, but divergent from the approach to interpolate. The

former’s point of entry is the autocovariances, they used available autocovariances of an

aggregated model, to access the autovariance structure of the unobservable disaggregated

series. While the latter treated the disaggregated series as missing observations, introduced

state space representation to obtain the unobservable high frequency data. Since Harvey

& Pierse (1984) and Harvey (1989), Kalman Filter became a versatile method to solve

disaggregation issue, such as Bernanke, Gertler and Watson (1997), Cuche & Hess (2000),

Liu & Hall (2001).

3.2.2 Construction of Coincident Index

The construction of coincident economic index solely relies on the monthly macroeco-

nomic indicators, precludes influence of quarterly GDP data. Factor model is the under-

pinning of this kind of research. Stock & Watson (1991) firstly provided a dynamic factor

model for generating coincident and leading economic indicators. The standard estimation

method of small scale factor models is solved by maximizing the likelihood function and

means of the Kalman filter.

For high-dimension system, Stock and Watson (2002a,b) heuristically devised a non-

parametric static principal components method. From then on, the tractable principal

component algorithm holds powerful appeal, i.e. Boivin and Ng (2006)’s weighted version,

Forni et al. (2000)’s dynamic generalized version, for consistent estimation of the factors
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in approximate dynamic factor models. More specifically, perceiving the factor dynamics

and idiosyncratic heteroscedasticity, Doz et al. (2011) provided a two step estimator for

large approximate dynamic factor model.

One disadvantage of Stock & Watson (1991) and further factor model is that the con-

stant parameter assumption. Hamilton (1989)’s Markov switching model proposed an

famed approach for regime change, via supposing the parameters of an autoregression as

the outcome of a discrete-state Markov process. As a result, the variables’ growth rate are

allowed to correlated with the status of business cycle, compensates the drawback of factor

model. Carriero & Marcellino (2007) compared the performance of constructing coincident

indices for European countries by both factor and Markov switching model, and found out

the performance of Markov switching is implausible, while factor model renders favorable

result.

3.2.3 Estimation of Monthly Coincident Index based on GDP

A flood of papers synthesized the interpolation and coincident index technique, gauging

GDP based monthly economic coincident index. The methodologies which associate with

factor model are distinguished by the scale of information set. The small scale models

are all motivated by the seminal contribution of Stock and Watson (1991). Mariano and

Murasawa (2003) incorporated the mix frequency data, modeled the mixture of quarterly

and monthly series in a static factor model as Stock and Watson (1991), casted in a linear

state space framework. Proietti and Moauro (2006) extended their method by introducing

a non-linear temporal aggregation constraints, while Frale et al. (2011) further exploited

the decomposition sector of GDP components. The static factor model suffers from the

number limitation of series. For large information set, researchers concentrate on finding

the optimal connection between factor and quarterly GDP data. Angelini et al. (2008)

laid out a bridge with factor framework to estimate the monthly GDP, which integrates

bridge equation with factor model.

3.3 Methodology

3.3.1 Factor Model

The striking advantage of factor model for large datasets is creating a explicitly specified

and statistically meticulous dimension reduction scheme. In what follows, we adopt two

algorithms, viz the prototypical Stock and Watson method and the state of art two step
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estimator.

Stock and Watson Approach

Presumed that the N monthly time-series observations ξt with length T observed sat-

isfies a factor model representation:

ξt = ΛFt + et, E(ete
′
t) = Ψ (3.1)

where Ft = (F1,t, F2,t, . . . , Fr,t) is a vector of r common dynamic factors, Λ is N × r

matrix of loading, and et comprises the idiosyncratic disturbances.

Stock and Watson (2002a,b) delivered analytical solution of factors by principal com-

ponent algorithm. Considering the following least square issue:

min T−1
T∑
t−1

(ξt − ΛFt)
′
(ξt − ΛFt) (3.2)

The minimization issue amounts to maximizing trace(Λξ
′
ξΛ), after concentrating out

F. Where ξ = (ξ′1, ξ
′
2, ..., ξ

′
T )′, and subject to ΛΛ

′
= Ir. The solution of Λ̂ is the eigenvectors

of ξξ
′

corresponding to the r largest eigenvalues, and the estimator of F is:

F̂ = Λ̂
′
ξ (3.3)

In practice, the number of optimal factor r could be determined by eminent Bai and Ng

(2002) information criterion. In virtue of our intention to diminish the model dimension,

we directly choose the single factor. Generally speaking, the first factor contains the most

information.

Two Step Estimation

Maintaining the factor structure as equation 3.1, Doz et al. (2011) introduced autore-

gressive factors and idiosyncratic heteroscedasticity of residuals, imposed a extra VAR(p)

process on Ft.

Ft =

p∑
i=1

HiFt−i + Jut, ut ∼ N(0, Iq) (3.4)



78 3. Factor Augmented MFVAR/MA Model for Monthly GDP Estimation

The estimation proceeds in four stages. Firstly, the factors loadings Λ and initial

estimated factors F̂ of the static factors are obtained by the standard principal component

analysis. Secondly, the coefficient matrix Hi in equation 3.4 is estimated by Ordinary Least

Squares in use of F̂ . Thirdly, the covariance matrix JJ’ is decomposed into one or more

principal components in equation 3.4. Ultimately, the common factor is updated in a state

space form, when the Kalman smoother facilitates the treatment of the underlying ragged

edge issue 1.

3.3.2 Temporal Aggregation Strategy

What need reinforce is that, the growth rate of GDP instead of stock data is esti-

mated, avoiding the possible complication from parameter estimation and diffuse Kalman

filter iteration of non-stationary series. The aggregation strategy refers to Mariano and

Murasawa (2003), which takes logarithm difference transformation to the original non-

stationary data. Let xt be the quarterly GDP series observable every third period, x∗t be

the latent monthly GDP. They supposed xt is the geometric mean of x∗t ,x
∗
t−1,x

∗
t−2, namely

lnxt = 1
3
(lnx∗t + lnx∗t−1 + lnx∗t−2), which is confirmed as a good approximation by Mitchell

et al. (2005).

Let yt,1 = 43lnxt to be the quarterly GDP growth rate, y∗t,1 = 4lnx∗t to be the monthly

GDP growth rate. The first difference form is written as:

yt,1 =
1

3
y∗t,1 +

2

3
y∗t−1,1 + y∗t−2,1 +

2

3
y∗t−3,1 +

1

3
y∗t−4,1 (3.5)

3.3.3 Mix Frequency Model

The combination of unobservable monthly GDP growth y∗t,1 and the extracted single

factor yt,2 is presumed a VAR/MA process. The involvement of moving average component

is always controversial for macroeconomic estimation and forecast. In this chapter, we

exploit both VAR and VARMA models, inspect their performance by out of sample RMSE.

The MFVARMA model can be written as:

Φ(L)(y∗t − µy∗) = Θ(L)$t, $t ∼ IN(0,Σ2) (3.6)

where $t is the disturbance, Φ(L) indicates all coefficient matrices, µ denotes the ex-

pectation of corresponding variable. µyt,1 = 3µy∗t,1 , due to the association between monthly

1The operation detail see Marcellino and Schumacher (2010) and Giannone et al. (2005)
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and quarterly GDP2. The VARMA Model could be reduced to VAR model by setting

Θ(L) = I2.

Let yt = [y′t,1, y
′
t,2]
′ to indicate the mixture of quarterly growth rate of GDP and ex-

tracted single factor. y∗t and yt is associated by the equation:

yt − µyt =

([
1/3 0

0 1

]
L+

[
2/3 0

0 0

]
L2 +

[
1 0

0 0

]
L3 +

[
2/3 0

0 0

]
L4 +

[
1/3 0

0 0

]
L5

)
(y∗t − µy∗t )

(3.7)

3.3.4 Algorithm

In this section, we elaborate the algorithm. The estimation of the parameters and

monthly GDP growth rate y∗t,1 is realized by Kalman filter and maximum likelihood esti-

mation 3. Beforehand, the mix frequency model should be casted in a state space form.

State space representation

For MFVAR model, the state space representation is in line with Mariano and Murasawa

(2010). Let p*=max(p, 5), zt is the disturbance, zt ∼ IN(0, I2), we define the state vector

as:

st :=


y∗t − µy∗
y∗t−1 − µy∗

. . .

y∗t−p∗+1 − µy∗

 (3.8)

The state space representation is:

st+1 = Ast +Bzt, (3.9)

yt − µyt = Ctst, (3.10)

2For simplifying estimation, we initially use the demeaned series, and afterwards add mean back to get
final result.

3For VAR model expectation maximization could be easily applied. However, for VARMA model, it is
hard to impose restriction on parameters. To make sure the comparability of disparate models, we apply
MLE for both model.
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where

A :=

[
Φ1 Φ2 . . . Φp O2×2(p∗−5)

I2(p∗−1) O2(p∗−1)×2 O2×2(p∗−5)

]
, B :=

[
Σ1/2

O2(p∗−1)×2

]
(3.11)

Ct :=

(
1/3 0 2/3 0 1 0 2/3 0 1/3 0 01×(p−10)

0 1 0 0 0 0 0 0 0 0 01×(p−10)

)
(3.12)

With respect to MFVARMA model, the structure is more strenuous, see Harvey and

Pierse (1984). The state vector and the matrices in state space form are modified as follows:

st :=



y∗t − µy∗
Σm
i=2Φi(y

∗
t−i+1 − µy∗) + Σm

i=2Θi−1zt−i+2

. . .

Φm(y∗t−1 − µy∗) + Θm−1zt

y∗t−1 − µy∗
. . .

y∗t−4 − µy∗


, A :=



Φ1 I2 O2 ... O2 O2 O2 O2 O2

Φ2 O2 I2 ... O2 O2 O2 O2 O2

. . . . . . . . .

Φm O2 ... O2 O2 O2 O2 O2

I2 O2 ... O2 O2 O2 O2 O2

O2 O2 ... O2 I2 O2 O2 O2

O2 O2 ... O2 O2 I2 O2 O2

O2 O2 ... O2 O2 O2 I2 O2


,

(3.13)

B :=

 I2

Θ

O8×2

Σ
1/2
2 , Ct :=

(
1/3 0 0 . . . 0 2/3 0 1 0 2/3 0 1/3 0

0 1 0 . . . 0 0 0 0 0 0 0 0 0

)
(3.14)

where zt ∼ (0, I2),m = max(p, q + 1),Θ = (Θ1, . . . ,Θm−1)
′.

Missing observation

Aware of the fact that yt,1 is only available on the third month of the quarter, we fill the

missing observations in month 1 and 2 with 0. Referring to Durbin and Koopman (2001)

Ch 4.8, we modify the measurement equation to accommodate the missing observation

treatment. For the month when yt,1 is unavailable, the upper row of the matrix in Ct is

all equal to zero. Subsequently, the Kalman filter and smoother would simply skip the

missing observation.
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Identification

The parameters for estimation includes the coefficients for autoregressive component

Φ(L), covariance component Σ2 and coefficients for moving average component Θ(L) in

the case of VARMA model. We execute maximum likelihood estimation accompanied by

Quasi-Newton algorithm, and update the Hessian Matrix by Broyden, Fletcher, Goldfarb,

and Shanno (bfgs) approach.

Specific constraint for parameters need be emphasized. First and foremost, either the

VAR or VARMA model should be stationary according to our methodology. For this rea-

son, the parameters in Φ(L) should satisfy that the eigenvalues are all less than 1. Instead

of imposing this constraint on MLE process, we estimate the parameters without con-

straint and investigate whether Φ(L) satisfies the stationary condition in the end. Besides,

we assume the covariance matrix Σ2 is positive definitive, which rules out the identities in

data. This condition is satisfied if Σ2 could be Cholesky decomposed, namely Σ2 = L ∗L′,
L is a lower triangular matrix, and the diagonal element of L is strictly positive.

3.4 Empirical Result

3.4.1 Data Set

The performance of our FA-MFVAR/MA model is judged by estimating monthly real

GDP of Germany. The selection of monthly variables refers to Stock and Watson (2002b)

for the US data, Proietti (2008) and Banbura et al. (2010) for the euro area. Only balanced

data is taken account for, consequently there are 91 monthly series available4. They are

classified into several categories: industrial production (index of industrial, turnover and

capacity utilization rate), labor market (employment,unemployment and wage), construc-

tion, trade, orders, monetary and financial indicators, price index, external trade, survey

and cyclical index. Data spans from 1991Q1 to 2010Q4 5.

We take priority to seasonal adjusted series, and apply ARIMA-X12 seasonal adjust-

ment (Eviews) for series without seasonal adjustment 6. To reach the requirement of factor

model, we treat monthly indicators as follows. First of all, ξt should be stationary series.

Therefore we examine the stationarity by augmented Dicky-Fuller test. The first difference

4The two step method is fairly convenient for ragged-edge data. Nevertheless, we believe balanced data
is better for estimating monthly GDP.

5Detailed in the appendix 3.7.2.
6This seasonal adjustment depends on the trend of each series, we make this adjustment only for the

series having discernible seasonal element.
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or log difference transformation is adopted for non-stationary data. Subsequently, all series

are demeaned, standardized and screened for outliers 7.

Figure 3.1 manifests that the distinction of single factor series estimated from Stock

and Watson (short for PCA) and two step (short for TS) method is tiny. Due to the

stagnation in 2008, there is an abrupt incline in the single factor, akin to the sudden

decline in the quarterly GDP growth several months later. The extracted factor appears

to a quick signalling of growth slowdown, in contrast with the quarterly GDP growth. It

is not hard to image, since the single factor is extracted from monthly indicators, which

are regarded as more timely data. Moreover, the volatility bands of the single factor and

quarterly GDP growth are essentially identical, mainly between ± 0.05, except the break

due to financial crisis.

Figure 3.1: Monthly Single Factor VS Quarterly GDP growth

The PCA single factor could explain almost 20% variance of full data set. More con-

cretely, the constitute of single factor is under scrutiny. Figure 3.2 depicts the association

between the single factor and individual monthly indicator. The first two bars describe the

R2 and correlation coefficient from OLS regression between factor and individual series,

while the third bar plots the loading of each series. We can perceive that none of series

7Outliers are defined as the observation exceeding 10 times the interquartile range from the median,
and they were replaced by the previous one period’s value. See Stock and Watson (2002a) for detail.
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extremely dominates the single factor, whereas the importance of industrial production

and orders series is notable, afterwards is the price and survey data8.

Figure 3.2: PCA Single Factor’s Correlation with Individual Series

3.4.2 Model Specification and Evaluation

For the sake of performance evaluation, we consider three methodologies as counterpart.

Firstly, Chow and Lin method is regarded as a benchmark model, they introduced how

related series can be used to interpolate with a GLS estimator. This approach is based

on the assumption that high frequency observations of the series could be expressed as a

multiple regression relationship with several high frequency related series. For this method,

stationary series is not necessary. Hereby, we measure the level of monthly GDP, and

then transform to the growth rate for comparison. The four related series we employ are

industrial production, total retail, number of employed person and ifo business climate

index.

Secondly, to investigate the implication of factor extraction, we parallel the result of

our methodology with single indicator MFVAR model, by exploiting industrial production

and ifo business climate index respectively.

8For the two step method, only the R2 and correlation coefficients can be plotted, result is quite closed
to PCA’s, hence the graph is skipped.
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Thirdly, Angelini et al. (2008)’s dynamic factor model need be emphasized, as it is

enable inclusion of the same large datasets, but distinct from the structure of factor and

underlying monthly GDP. They supposed that the monthly growth rate y∗t is conjectured

with the common factor by static equation 3.15, where β is the coefficient matrix for factor.

Combined with equation 3.5, the estimation and forecasting can be reckoned in state space

form as well9.

y∗t = βft + εt, εt ∼ N(0,Σε) (3.15)

Predictive ability exerts prominent function in evaluation of econometric models, except

the Chow and Lin approach10. The out of sample RMSE is acknowledged as our principal

criterion. We split the full sample into two parts, leaving 2 quarterly GDP data for out

of sample test11, the remainder is for in sample estimation. Initially, either the VAR or

VARMA model is applied for in sample data to measure parameters. The lag of order is

determined by information criteria (AIC, BIC) and the specific performance of estimation.

Subsequently, these parameters estimated are used for forecasting. The first period of

Kalman filter forecasting is:

E(sT+1 | ΩT , sT ) = AE(sT | sT ) (3.16)

E(yT+1 − µyt | ΩT ) = Ct+1E(sT+1 | ΩT ) (3.17)

where ΩT = (y1, y2, , , , yT ), T is the end period of in sample data12.

The rest of forecasting could be implemented by recursively applying Kalman filter

forecasting. Posterior to obtaining a quarterly forecasts of GDP growth, the out of sample

RMSE between quarterly forecasts and real GDP growth data are computed to assess the

relative performance of diverse models.

RMSE =

√√√√ 1

n
[
n∑
i=1

(yT+i − E(yT+i | ΩT ))2] (3.18)

9Model detail see Angelini et al. (2008).
10Chow and Lin approach could not extend to forecasting so convenient as the rest models, the compar-

ison with Chow and Lin approach mainly relies on graphical analysis.
11We only consider two period for forecast due to two reason. On one side, Kuzin et al. (2011) stated this

sophisticated model benefit for short run forecasting. On the other side, the performance of interpolation
should be more associated with short-run forecasting.

12Notice µyt
is the mean for in sample part’s quarterly observation, not full sample.
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Table 3.1: Model Evaluation by RMSE

Model Monthly Series RMSE Model Monthly Series RMSE
MFVAR(1) PCA 1.492e-4 MFVARMA(1,1) PCA 3.615e-4

TS 1.824e-4 TS 9.537e-4
IP 6.900e-4 IP 1.157e-3
IFO 2.524e-3 IFO 1.461e-3

Dynamic Factor Model 2.400e-3
Note: PCA represents single factor estimated by Stock and Watson’s method, TS represents
single factor estimated by two step approach, IP means industrial production as the monthly
indicator for interpolation, IFO is the IFO business climate index. Full sample period is from
1991Q2 to 2010Q4.

where yT+i is the realization of quarterly GDP growth during out of sample period, E(yT+i |
ΩT ) is predicted GDP growth based on information until time T. n is the length of quarterly

data for out of sample evaluation.

3.4.3 Result

For the VAR model, we select the lag of order from 1 to 4, and chose VAR(1) ulti-

mately. And for VARMA model, due to the difficulty of identification, we only consider

VARMA(1,1) model. Table 3.1 reports the one step ahead RMSE for MFVAR(1) and

MFVARMA(1,1), with the monthly indicator choose among factor analysis (PCA and TS)

and single series (industrial production, ifo business climate index), and dynamic factor

model. The first four lines on the left side distinguish among the selection of monthly

indicator of MFVAR model. Parallelling the factor estimated by principal component and

two step approach, PCA factor outperforms the TS factor slightly. This is in conformity

with recently research finding of factor extraction, the parsimonious and standard prin-

cipal component method generates the optimal factors. To benchmark MFVAR model

between single factor and monthly indicator, it is conspicuous that single factor’s RMSE

is smaller than monthly indicator’s. The statement stands also for FA-MFVARMA’s re-

sult. More specifically, when we benchmark among disparate approaches, the FA-MFVAR

model yields the lowest RMSE, FA-MFVARMA model ranks second, while the dynamic

factor model produce much worse result.

We presents the estimation results of FA-MFVAR and FA-MFVARMA model for PCA

factor in Table 3.2. Majority of parameters are significant at the level of 1% and coefficient

matrix and residual covariance matrix are all plausible for FA-MFVAR model. Whilst the
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Table 3.2: FA-MFVAR/MA Estimation Result for PCA Factor
FA-MFVAR FA-MFVARMA

Parameter Φ -0,7398* -0,8027* 0,4822* 0,0009
Matrices -0,0343* 0,4742* -6,6518* 0,5784*

Σ 9,33e-06 -3,89e-05 3,05e-06 7,43e-06
-3,89e-05 8,22e-04 7,43e-06 6,80e-04

Θ . . -0,3881* -0,0464*
3,4864* -0,3078*

AR Roots -0,7621 0,4965 0,5303± 0,0580i
MA Roots . . 0,3480± 0,4003i
Log Likelihood 700,858 718,193
Note: * denotes the corresponding coefficient is significant at the level
of 1%. Sample Period:1991Q2-2010Q4.

moving average component is included, the parameters estimation seems problematic, and

causes unreasonable large coefficient for VARMA(1,1). The AR characteristic roots are all

inside the unit root, implies that the estimated monthly GDP growth series is stationary.

After carefully description of model estimation and RMSE, we plot the quarterly and

estimated monthly GDP growth from PCA factor in Figure 3.3. The trend of monthly

and quarterly GDP growth is consistent, except Chow and Lin approach. One explanation

is that Chow and Lin approach is based on the level data, while the rest models consider

growth rate data. Furthermore, the growth rate estimation from FA-MFVAR is much

more volatile than the remainder models. Whereas, it is hard to recognize the optimal

model only from the growth plot. To provide more intuitive evidence of graphical analysis,

we transform the monthly GDP growth back to level series. The monthly GDP index is

achieved by making the cumulative sum of the growth rate data and taking the exponential

transformation afterwards. Figure 3.4 delineates the monthly GDP index estimated by

four models, which displays the huge distinction among various models. From the aspect

of tracking the movement of quarterly GDP, FA-MFVAR model exhibits an unbelievable

excellent performance, unilaterally beats all other models. FA-MFVARMA model still

ranks the second. Although the growth rate plot of Chow and Lin method is not ideal,

it hits the dynamic factor model from Figure 3.4. The latter completely fails to trace the

trend of quarterly GDP.

To summarize, both RMSE comparison and graphical analysis verify the goodness of

FA-MFVAR model. FA-MFVAR outperforms the single indicator MFVAR and Chow

and Lin method, implies that the construction of GDP based monthly indicator benefits
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Figure 3.3: GDP Growth Comparison



88 3. Factor Augmented MFVAR/MA Model for Monthly GDP Estimation

Figure 3.4: GDP Comparison
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from large information set. Whereas, the unfavorable dynamic factor estimate reveals the

linchpin of appropriate model setup. Large dynamic factor model earns good reputation of

short run forecasting, but it does not guarantee its fitness for GDP interpolation. Last but

not least, adding the moving average component fuels concern about strenuous parameter

estimation, and does not improve the performance. It is better to constraint to VAR model.

3.5 Conclusion

In closing, we design a sophisticated mechanism of generating GDP based monthly co-

incident index in this chapter, which successfully combines a large scale monthly indicators

with quarterly GDP data, incorporates factor analysis with traditional vector autoregres-

sive model. We could not promise our method is the optimal for estimating monthly GDP,

as the performance indeed relies on the specific data set. Whereas, our estimator contains

large information set and could be deemed to a favorable GDP based monthly coincident

index.

Furthermore, the application of German data exhibits substantial advantage over the

remaining methodologies, i.e. single indicator MFVAR model, Chow and Lin approach, and

dynamic factor model, through the diagram analysis and out of sample RMSE comparison.

It implies that large dataset might improve the performance of index construction, but it

relies on an appropriate model setup. In addition, adding the moving average term may

jeopardize the accuracy of parameter estimation, leads to a deterioration of performance.

One crucial issue for estimating monthly GDP is the difficulty to evaluate the per-

formance of diverse method. Up to now, the evaluation relies on out of sample RMSE.

Nonetheless, it virtually is not one criterion for estimation, but for forecasting. In fu-

ture, it could be splendid if an adequate approach is devised for evaluation performance of

disaggregation series.
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3.7 Appendix

3.7.1 Kalman Filter and Smooth

Kalman Filter Iteration

Initial state:

s1|0 = 0

P1|0 = B ∗B′

where Pt|t−1 = E((st|t−1 − E(st|t−1))(st|t−1 − E(st|t−1))
′, st|t−1 = E(st|st−1)

Update equation:

st|t−1 = A ∗ st−1|t−1

Pt|t−1 = A ∗ Pt−1|t−1 ∗ A′ +BB′

Prediction equation:

y+t|t−1 = Ctst|t−1

Prediction error:

vt = y+t − y+t|t−1

Variance of y+t :

Dt = CtPt|t−1C
′
t

Kalman filter:

Kt = Pt|t−1C
′
tD
−1
t

Adjust prediction by Kalman filter:

st|t = st|t−1 +Ktvt
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Pt|t = Pt|t−1(I −KtCtPt|t−1)

Log likelihood function:

logL = −T ∗ log(2π)− 1

2
log(|Dt|)−

1

2
vtD

−1
t v′t

One problem is that we need the inverse of Dt for Kalman filter calculation. As Dt is a

2*2 matrix, there will be situation that the inverse does not exist. In that case, we take

the Moore-Penrose pseudoinverse if Dt is not nonsingular.

Fixed-iterative Smoothing

In order to obtain expectation and variance of st based on whole information set from

time period 1 to T, instead of only from 1 to t-1, fixed iterative smoothing method suggested

by de Jong(1989) is utilized. Assume rT+1 = 0, RT+1 = O, and for t=T,,,1,

rt := C ′tD
−1
t vt + L′trt+1

Rt := C ′tD
−1
t Ct + L′tRt+1Lt

where

Lt := A(I −KtCt)

The smoothing equations are for t=1,...,T,

st|T = Ast|t−1 + Pt|t−1rt

Pt|T = Pt|t−1 − Pt|t−1RtPt|t−1

3.7.2 Monthly Indicator Selection
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Table 3.3: Database description

Series Description Transform type

Industrial Production

IP including construction Volume index,sa 2

IP manufacturing Volume index,sa 2

IP: mining and quarrying Volume index,sa 2

IP: manufacture of food,beverages and tobacco Volume index,sa 2

IP: textile and apparel Volume index,sa 2

IP: leather goods Volume index,sa 2

IP: wood and wood prod Volume index,sa 0

IP: pulp,paper and paper prods,publishing and printing Volume index,sa 2

IP: coke,refined petroleum prod and nuclear fuel Volume index,sa 0

IP: chemical prod Volume index,sa 2

IP: rubber and plastic prod Volume index,sa 2

IP: other non-metallic mineral prod Volume index,sa 0

IP: computer,electronic and optical prod Volume index,sa 2

IP: furniture, jewelery, musical instrument N.E.C. Volume index,sa 2

IP: electricity, gas ,steam and air conditioning supply Volume index,sa 0

IP: extraction of crude petroleum and natural gas Volume index,sa 0

IND. Total Turnover: intermediate goods Price index,sa 2

IND. Total Turnover: capital goods Price index,sa 2

IND. Total Turnover: durable cons.goods Price index,sa 0

IND. Total Turnover: non-durable cons.goods Price index,sa 2

IND. Total Turnover: cons.goods Price index,sa 2

Civil Engineering : capacity utilization rate %,sa 2

CNSTR.IND.: capacity utilization rate %, sa 0

BLDG.CNSTR.: capacity utilization rate %, sa 2

Labor Market

Unemployment rate(pan from sept 1990) Volume,na 2,X12

Unemployment : % civilian labor sa 2

Employed persons(work place concept) na 2

Vacancies(pan from M0790) Volume,na, 2,X12

Construction

Housing permits issued for BLDG.CNSTR, new Volume,na 2,X12

Building permits granted: non-resid,indl. CNSTR Current prices,sa 0

Construction permits granted-non-resid Current prices, sa 0

Construction permits granted-new homes sa 2

Continued on next page. . .
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Table 3.3 – Continued

Series Description Transform type

Construction orders received sa 2

Construction orders received: buildings sa 2

Construction orders received: residential buildings sa 2

Construction orders received: industrial buildings sa 2

Construction orders received: public buildings sa 0

Construction orders received: civil engineering sa 0

Construction orders received: industrial clients sa 2

Employment in construction sa 0

Trade

Total retail trade(value) Price index,sa 0

Total wholesale trade(value) Price index,na 2,X12

Sales of manufactured durable consumer goods Volume index,na 2,X12

Sales of manufactured intermediate goods Volume index,na 2,X12

Sales of manufactured investment goods Volume index,na 0,X12

Sales of manufactured non-durable consumer goods Volume index,na 0,X12

Sales of total manufactured goods Volume index,na 2,X12

Orders

New orders to manufacturing price index,sa 2

New orders to manufacturing-intermediate goods Price index,sa 2

New orders to manufacturing-capital goods Price index,sa 2

New orders to manufacturing-consumer goods Price index,sa 2

Manufacturing orders Price index,sa 2

New registrations-cars Volume,na 0,X12

Money and Finance

Money supply M0 Current prices,na 2,X12

Money supply,germen contribution to euro M1 Current prices,na 2

Money supply M2 Current prices,na 2

Money supply M3 Current prices,na 2

FIBOR - 3 month(monthly avg) % 2

Long term government bond yield(9-10 years) % 2

Three-month money market rate-frankfurt % 2

Day -to -day money market rate -frankfurt % 2

Bank lending to entps. and indiv-median/long Current prices,na 2

Bank lending to entps. and indiv-long/advanced Current prices,na 2

Bank lending to government-long term loan Current prices,na 2

DAX share price index Price index,na 2

Continued on next page. . .
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Table 3.3 – Continued

Series Description Transform type

Price Index

CPI (excluding energy) sa 2

CPI - food sa 2

CPI sa 2

export price index sa 2

import price index sa 2

PPI:indl. prod,total,sold on the domestic market na 2

WPI na 2,X12

International Trade

terms of trade-on the basis of price indices Price index,sa 2

terms of trade(pan frm 1991) Price index,na 2

exports FOB(pan M0790) Current prices,sa 2

imports CIF(pan M0790) Current prices,sa 2

visible trade balance Current prices,sa 2

German Mark to US Dollar MTH.AVG. 2

US Dollar to 1 EURO MTH.AVG 2

Survey and Cyclical Index

Business expectations Index, sa 2

Consumer confidence indicator Index,sa 1

Consumer confidence index sa 2

IFO business climate index Index, sa 2

Assessment of business situation Index, sa 2

Productivity: output per man-hour worked in industry Index, sa 2

GFK consumer survey: economic situation next 12 mth Index, sa 1

GFK consumer survey: financial situation next 12 mth Index, sa 1

GFK consumer survey: major purchases over next 12 mth Index, sa 0

GFK consumer survey: prices next 12 mth Index, sa 1

GFK consumer survey: saving next 12 mth Index, sa 0

GFK consumer survey: unemployment next 12 mth Index, sa 1

Notes: 0 denotes the level data, 1 denote differentiated data, 2 denoted the log differentiated

data, X12 denotes X12-ARIMA seasonal adjustment for corresponding data series. Data

period from 1991Q1 to 2010Q4.
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