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Zusammenfassung

Der Vogel fliegt, die Zelle wandert, das Bakterium schwimmt. Jedes dieser Individuen
gehört zur Klasse der angetriebenen Partikelsysteme. Jedes besitzt seinen eigenen Antrieb.
Und jedes führt eine persistente Zufallsbewegung aus. Kommt es zu einer Anhäufung gleich-
artiger Individuen lässt sich oft ein beeindruckender Selbstorganisationsprozess beobach-
ten. Populäre Beispiele sind die Schwarmbildung von Vögeln oder das kohärente Bewegen
ganzer Zell- oder Bakterienkolonien. Die Entstehung von kollektiver Bewegung in diesen
Nichtgleichgewichtssystemen ist ein allgegenwärtiges Naturschauspiel —und auch ein be-
sonders faszinierendes. Vermutlich entspringt diese Faszination der Bildung zeitabhängiger
örtlicher Muster wie Cluster, Wirbel oder Wellen, deren charakteristische Ausdehnungen
die der Individuen bei weitem überragen. Für die Aufschlüsselung der physikalischen Prin-
zipien, die der Entstehung kollektiver Bewegung zu Grunde liegen, wurden diverse theore-
tische Studien durchgeführt; von partikelbasierten Simulationen über kinetische Theorien
bis hin zu hydrodynamischen Modellen. Diese Modelle wurden jedoch typischerweise von
der Idee inspiriert, dass die zugrundelegenden Nichtgleichgewichtsprozesse generisch und
universell sind, und damit vermissen sie den direkten Bezug zu echten, experimentellen
Systemen.

Diese Arbeit beinhaltet verschiedene theoretische Modellierungsansätze von angetriebe-
nen Partikelsystemen, deren Resultate entweder in qualitativer oder quantitativer Überein-
stimmung mit kürzlich durchgeführten Experimenten stehen. Im Speziellen werden zwei
experimentelle Systeme betrachtet: Der Aktin-

”
gliding assay“, in dem molekulare Motoren,

fixiert auf einer Oberfläche, Aktinfilamente bewegen, und der
”

vibrated polar disk assay“,
in welchem scheibenförmiges Granulat mit einer eingebauten polaren Asymmetrie durch
vertikale Vibrationen des Substrats angetrieben wird. Mittels diverser theoretischer Werk-
zeuge und Methoden, wie regelbasierter Automatenmodelle, numerischer Lösungen New-
tonscher Bewegungsgleichungen, kinetischer Theorie und Hydrodynamik, war es möglich
die folgenden neuen Erkenntnisse im Bereich angetriebener Partikel zu erzielen:

Es konnte gezeigt werden, dass die anomalen Krümmungsfluktuationen von einzelnen
Aktinfilamenten im

”
gliding assay“ durch zwei verschiedene Interaktionsarten mit den mo-

lekularen Motoren bedingt werden. Die Motoren ‘drücken’ oder ‘halten’, und erzeugen da-
mit entweder eine persistente Bewegung oder führen zu einem lokalen Stau, der wiederum
die beobachteten starken Krümmungen verursacht. Interessanterweise werden Erregung
und Relaxation dieser starken Kümmungen ausschließlich durch diese Interaktionen be-
dingt, wobei der thermische Anteil an Erregung und Relaxation nahezu irrelevant ist.
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Bei hohen Dichten entstehen im
”
gliding assay“ facettenreiche Muster bestehend aus sich

kohärent bewegenden Strukturen, wie Cluster, Wirbel oder Wellen. Es wurde gezeigt, dass
sich die Muster aufgrund von lokalen, ausrichtenden Wechselwirkungen, ähnlich denen im
Ferromagneten, bilden. In der späteren Phase der Musterbildung werden hydrodynamische
Wechselwirkungen relevant. Die kohärent bewegenden Cluster erzeugen einen der Bewe-
gungsrichtung entgegengesetzten Fluss der darüber liegenden Flüssigkeit, wodurch eine
repulsive hydrodynamische Interaktion zwischen Cluster und zwischen Cluster und Rand,
vermittelt wird.
Wenn man nun Verknüpferproteine zum

”
gliding assay“ bei hohen Filamentdichten hinzu

gibt, kann man die Entstehung eines sogenannten absorbierenden Zustands, bestehend aus
sich fortwährend drehenden Ringen, welche in zwei Morphologien (offen und geschlossen)
vorliegen, beobachten. Die Physik der Entstehung dieser Strukturen kann man sich als einen
Wettstreit von zwei Ereignissen vorstellen: dem Verschmelzen von Filamentstrukturen und
dem seitlichen Wachstum dieser, das wiederum die Krümmung einfrieren lässt. Diese Er-
kenntnis konnte durch die Verwendung eines geeigneten partikelbasierten Modells erlangt
werden. Darüber hinaus erlaubte es die qualitative Reproduktion der Ringradienverteilung
und des Ratios der offenen und geschlossenen Ringe als Funktion der

”
Noise“-Stärke des

Systems.
Der

”
polar vibrated disk assay“ hat eine Ausdehnung von nur etwa 20 Partikeldurch-

messern, was eine Festlegung der Art des Phasenübergangs zu einem geordneten, fließenden
Zustand unmöglich macht. Mittels eines mikroskopischen Modells konnte die Einzelparti-
kelbewegung im Experiment, die Details der binären Stöße, sowie die kollektive Dynamik
in der experimentellen Geometrie reproduziert werden. Genauer gesagt wurden alle Eigen-
schaften der persistenten Zufallsbewegung, die mittlere Geschwindigkeit, die Amplitude
und das Spektrum der Orientierungs- und Geschwindigkeitsfluktuationen im Experiment
vom Modell wiedergegeben. Die Übereinstimmung der Charakteristika der Stöße wurde
überprüft, indem die Wahrscheinlichkeitsverteilungen der Stoßlänge und Stoßdauer vergli-
chen wurden. Schlussendlich wurden die kollektiven Eigenschaften zwischen Modell und
Experiment durch eine Gegenüberstellung der mittleren Polarisation verglichen. Die quan-
titative Übereinstimmung all dieser Details erlaubte es, unser Modell im Computer hochzu-
skalieren und damit die Frage zu beantworten, ob der

”
polar vibrated disk assay“ tatsächlich

langreichweitige polare Ordnung ausbilden kann.
Darüberhinaus wurde ein regelbasiertes Automatenmodell für angetriebene Partikel

entworfen, um die Entstehung kollektiver Bewegung als Funktion der Zeit zu untersuchen.
Das zentrale Resultat ist, dass kollektive Bewegung nahe des Übergangs durch Nukleation
eines Clusters ausreichend großer Masse angeregt wird, und nicht wie verbreitet angenom-
men, aus einem Vergröberungsprozess von ausgerichteten Domänen hervorgeht.
Nahe der Phasengrenzkurve findet man wellenförmige Muster in teilchenzahlerhaltenden,
angetriebenen Partikelsystemen. Im Rahmen einer Analyse kinetischer Theorie für ange-
triebene Systeme werden keine wellenartigen Muster beobachtet, sobald die Teilchenzah-
lerhaltung verletzt wird.
Zudem finden wir, dass die Anwendung kinetischer Theorie angetriebener Systeme auf
schwachausrichtende Stöße beschränkt ist, in welchen der Winkel nach dem Stoß nur ge-
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ringfügig verglichen mit dem Relativwinkel vor dem Stoß reduziert wird. Die Aussage wurde
ermöglicht, indem kinetische Theorie für angetriebene Systeme bezüglich ausschlaggeben-
der qualitativer Eigenschaften von Stößen erweitert wurde, die aus kürzlich durchgeführten
Experimenten extrahiert wurden. Da kinetische Theorie Unordnung in Parameterbereichen
vorhersagt in denen sich echte (experimentelle) Systeme anordnen, konnten die inhärente
Einschränkung auf schwachausrichtende Stöße herausgearbeitet werden.
Außerdem wurden Newtonsche Gleichungen für angetriebene dissipative Kolloide nume-
risch analysiert. Es wurde entdeckt, dass nahe der Phasengrenzkurve die Mikrozustände
beim Einsetzen des Ordnungsübergangs nicht frei von Orientierungskorrelationen sind. Da-
mit ist die Annahme des molekularen Chaos —eine gar typische Annahme in kinetischen
Theorien— für angetriebene Partikelsysteme am Ordnungsübergang nicht erfüllt. Noch
wichtiger ist, dass die gefundenen Korrelationen für das betrachtete kolloidale System eine
qualitative Voraussetzung darstellen, damit kinetische Theorie für angetriebene Systeme
überhaupt einen Ordnungsübergang vorhersagt. Der Gewinn dieser Erkenntnis fusst auf
der Tatsache, dass der Stoßprozess quantitativ mit der mesoskopischen Beschreibung ver-
knüpft wurde, ohne eine Näherung zu verwenden. Dies erlaubt wiederum eine quantitative
Überprüfung der kinetischen Theorie. Implementiert man nun die beobachteten Korrela-
tionen in den kinetischen Zugang, stimmt die aus kinetischer Theorie berechnete Phasen-
grenzkurve im Regime geringer Packungsdichten mit der aus der numerischen Lösung der
Newtonschen Bewegungsgleichung gewonnenen, überein.

Zuletzt wurde das Regime großer Packungsdichten mittels eines geeigneten partikel-
basierten Modells für angetriebene Systeme untersucht. Durch Charakterisieren des Gra-
des von Translationsordnung und hexatischer Orientierungsordnung konnten die folgenden
generischen Zustände identifiziert werden: ein unpolarisierter, aktiver Kristall mit lang-
reichweitiger Orientierungs- und Translationsordnung, und eine polykristalline Phase, die
sich kollektiv bewegt und sich aus hexagonalen Domänen zusammensetzt. Es wurde ge-
zeigt, dass die jeweiligen Übergänge durch eine charakteristische Defektdynamik bestimmt
werden.

Die meisten Resultate dieser Arbeit veranschaulichen die Wichtigkeit eines direkten
Abgleichs der Vorhersagen des Experiments mit denen der korrespondierenden Theorie,
um angetriebene Systeme besser zu verstehen. Das zentrale Anliegen dieser Arbeit ist es
die Mikroskopik angetriebener Systeme mit deren Makroskopik zu verknüpfen, sowie eine
Beschreibung zu entwickeln, die den Beobachtungen im Experiment gerecht wird. Dieses
Vorgehen wurde einem generischen Zugang stets vorgezogen, wodurch entscheidende Fort-
schritte im Verständnis der Physik zweier experimenteller Systeme erzielt werden konnten.
Hoffentlich dient dieses Vorgehen als Vorlage und Motivation, analog auch in der Modellie-
rung anderer aktiver Systeme, wie in der für bewegende Zellen oder Bakterien, vorzugehen.
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Summary

Birds fly, cells crawl and bacteria swim. Each of these individuals has their own propulsion
mechanism leading to a persistent motion, hence they all belong to the class referred
to as propelled particle systems. Propelled particles in large number typically exhibit
impressive self-organization processes such as the flocking motion of birds, the coherent
motion of cell colonies and the swarming of bacteria. The emergence of collective motion
in these non-equilibrium systems constitutes a ubiquitous phenomenon in nature—and
perhaps one of the most fascinating. One reason for this might be the emergence of
highly dynamic, coherently moving spatial patterns such as clusters, swirls or waves, and
the fact that the patterns commonly extend over length scales much larger than the size
of the individuals. To elucidate the physical principles underlying the collective motion
of these particles, numerous theoretical studies have been devoted to model propelled
particle systems by approaching the problem on all levels of description. These range
from particle-based simulations to kinetic theory and hydrodynamic models. However,
these models were typically inspired by the idea of universality and tended to analyze
the generic non-equilibrium phenomena in propelled particle systems, thereby obscuring a
one-to-one relation to experimental studies.

This thesis focusses on theoretical modeling approaches for propelled particle systems
that are either in qualitative or quantitative agreement with recent observations and mea-
surements in experimental propelled particle systems. Two experimental systems are
specifically considered: The actin gliding assay, where molecular motors, immobilized on
a substrate, propel actin filaments, and the polar vibrated disk assay, where disk-like gran-
ular particles with a built-in polar asymmetry are driven by vertical vibrations. By means
of various theoretical tools including rule-based automaton models, numerical solution of
Newtonian equations of motion, and kinetic theory, the following central new findings and
insights within the field of propelled particle systems were discovered:

Anomalously strong curvature fluctuations of single actin filaments moving in the glid-
ing assay arise from two different interactions with the molecular motors. The motors either
“Push” or “Hold” locally, giving rise to persistent movement or localized jams, which, in
turn, lead to pronounced curvature kinks. Interestingly, both excitation and relaxation of
curvature originates from these interactions, and it is shown that the impact of thermal
fluctuations on the curvature distribution is negligible compared to these active fluctua-
tions.
At high densities, filaments in the gliding assay form beautiful patterns of coherent motion
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such as clusters, swirls and waves. These patterns were shown to be triggered by local
“ferromagnetic”-like alignment interactions between the filaments. In the later stages of
pattern formation, hydrodynamic interactions become relevant. Coherently moving clus-
ters induce a back-flow in the overlying fluid, mediating a ‘repulsive’ cluster–cluster or
cluster–boundary interaction.
With the addition of crosslinking molecules to the gliding assay at high filament densities,
an absorbing state comprised of open and closed rings can form. The assembly dynamics is
fully understood in terms of a competition between merging events of filaments and filament
growth that freezes the curvature. Specifically, by means of an appropriate particle-based
model, the statistical properties of the system, such as the characteristics of the ring radii
distribution and the ratio of open to closed rings as a function of the system’s noise level,
was qualitatively reproduced.

The vibrated polar disk assay has a size of only about 20 particle diameters —a fact
which precludes definitive conclusions on the nature of the underlying phase transition to
a polarized state of coherent motion. By means of a microscopic model, the experimental
single particle motion, the details of binary collisions and the collective dynamics in the
confined geometry were quantitatively reproduced. Specifically, we matched all properties
of the persistent random walk such as average speed, amplitude and spectrum of orien-
tational and velocity fluctuations. Agreement between the characteristics of the collisions
described by the model and those measured in the experiment, were verified by comparing
the probability distributions for collision extension and time. Finally, collective properties
were studied and likened by considering the average polarization within some restricted
area, again confirming a very good agreement between model and experiment. The quan-
titive match of all details of the experimental dynamics allowed us to use our models to
scale up the vibrated polar disk assay in-silico, proving that a long-range polar ordered
state would develop in the vibrated disk assay in the absence of boundaries.

Moreover, a generic automaton model for propelled particles was employed to analyze
the onset of collective motion in time. The central finding is that collective motion close
to the transition is induced by nucleation of a cluster of sufficiently large mass, and not by
a wide-spread coarsening process of polarized domains.
In particle-conserving, propelled particle systems wave-like patterns generically emerge
close to the phase boundary. Considering kinetic theory, there are clear indications that
wave-like patterns cannot exist in the absence of particle conservation.
Moreover, kinetic theory for propelled particle systems is found to be restricted to weak
aligning systems, whereby post-collision angles are only slightly reduced with respect to
pre-collision orientations. This conclusion was obtained by extending kinetic theory for
propelled particle systems with respect to significant qualitative features of collisions ob-
served in experimental propelled particle systems. Since kinetic theory predicts disorder
for regimes in which real (experimental) systems exhibit order, the inherent restrictions of
kinetic theory to weak aligning systems could be elucidated.
Furthermore, using a set of Newtonian equations of motion for propelled, dissipative col-
loids, we found that near the phase boundary, the microscopic states from which collective
motion develops are not free of orientational correlations, i.e. the assumption of molecular
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chaos that is commonly applied in kinetic theory is not valid for propelled particle sys-
tems at the onset of collective motion. Most importantly, the ensuing correlations at the
onset are —for the aforementioned system— a qualitative prerequisite for kinetic theory
to predict a phase transition to collective motion at all. This conclusion was made pos-
sible by quantitatively connecting the details of the microscopic collision process with the
mesoscopic kinetic description, in turn allowing for a quantitative test of the predictions
of kinetic theory. If the aforementioned correlations are implemented into the kinetic ap-
proach, the prediction of kinetic theory for the phase boundary quantitatively coincides
with the one obtained from the underlying microscopic Newtonian particle dynamics in
the regime of low packing fractions.

Finally, an appropriate particle-based model for propelled particle systems at large
packing fractions was analyzed in detail. Upon characterizing the degree of bond orienta-
tional and translational order, the following generic states were identified: An unpolarized
active crystal state with long-ranged orientational and translational order, and a polycrys-
talline state, which coherently flows and is composed of hexagonal domains. It was shown
that the underlying ordering transitions are defect–mediated.

Most of the results of this thesis exemplify the importance of a one-to-one comparison
between theoretical models and experimental studies in order to advance our understanding
of propelled particle systems. Rather than adopting a generic approach, the central goal of
this thesis is to develop both a bottom-up modeling framework as well as an experiment-
specific one. This formulation advances our understanding of the physics of two specific
experimental propelled particle systems and hopefully will serve as a starting point for
investigations of the dynamics in other active systems such as moving cells and bacteria.
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Chapter 1

Introduction to Propelled Particle
Systems

1.1 What is a Propelled Particle System?

For a system in thermal equilibrium, the probability of states is fully determined by
Boltzmann-Gibbs statistics. This permits the calculation of macroscopic average quan-
tities, such as energy or particle number. The ensuing fluctuations around these averages
are Gaussian distributed with the width solely given by the temperature and the sys-
tem’s susceptibilities. The assumption of local thermal equilibrium allows the concepts
of Boltzmann-Gibbs to be extended to a class of hydrodynamic non-equilibrium systems
and has been effective in predicting patterning dynamics on large length and time scales.
Paradigms for this broad class of pattern forming, non-equilibrium systems are the Tur-
ing [102] and Rayleigh-Bénard setup [27].

However, in-vivo biological systems such as living cells [62, 94, 92] and bacteria [32,
110, 78] eschew any description that relies on thermal equilibrium. In these systems,
the constituents consume energy that is converted into forces acting locally on the scale
of the individual particle. Specifically, the direction (and amplitude) of these forces are
determined by an inherent polarity of each particle, e.g. the long axis of a rod-like bacteria
with a distinct front and rear. The fact that the forces are local and depend on the particle’s
polarity defines the aforementioned systems as members of the class of propelled particle
systems [9, 81, 106, 65]. The ensuing particle motion is characterized by large distances
(typically several particle diameters) of rather persistent trajectories, only interrupted by
slight reorientation events due to fluctuations1. This particle motion is commonly referred
to as a persistent random walk 2.

Even though biological systems like cells and bacteria are undoubtedly of high rele-
vance and interest in biological physics, probing their physics often involves complications:

1Examples are interactions with the substrate, thermal fluctuations, fluctuations of the propelling
mechanism due to e.g. the limited availability of “fuel”, etc.

2In general, orientation and speed can fluctuate in the case of a persistent random walker [77].
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Several highly complex and unknown types of interactions in addition to repulsion and
adhesion exist between the constituents, such as chemotaxis, or non-linear and non-trivial
responses to stresses (pressure, temperature,...) determined by all internal degrees of free-
dom (e.g. involving all molecules and fibers in a cell). Forming an understanding of these
propelled particle systems requires disentangling certain physical phenomena. This can
be reached by considering only a few subparts of the actual in-vivo system (e.g. a few
constituents,...), leading to the development of in-vitro, reconstituted systems. In these
systems, interactions between the propelled particles are mostly known and usually only a
few different particle species are used. Motility assays consisting of purified proteins such
as molecular motors and bio-polymers [21, 90, 89, 93] are examples of reconstituted, pro-
pelled particle systems. Another line of attack is to build on the experience of the granular
physics community and shake man-made mm-sized solid objects [18, 71, 10, 58, 30, 91, 31].

The class of propelled particle systems (in-vivo and in-vitro) gives rise to a variety of
fascinating self-organization phenomena ranging from the emergence of phase-segregated
clusters [5, 8], to patterns of characteristic size such as asters and vortices [32, 18, 10, 58,
110], to collectively moving swarms [30, 31, 90]; see Fig. 1.1 for a selection of intriguing
patterns observed in propelled particle system. Moreover, all propelled particle systems
share several unifying features:

(i) inherent polarity of the constituents,

(ii) persistent trajectories,

(iii) an interaction that breaks (on average) rotational-symmetry (“ferromagnetic” align-
ment),

(iv) a density-dependent transition to an ordered collectively moving phase with various
kinds of patterns, such as waves, swirls or clusters,

(v) huge fluctuations in the particle density in the ordered phase, referred to as giant
number fluctuations3.

These similarities suggest universal organizing principles underlying the dynamics and the
ensuing pattern formation in these systems. Typically, theoretical models on all levels of
description are inspired by this universality. The “Swiss Army knife” of models for pro-
pelled particle systems is the so-called Vicsek-model [105] and will be detailed throughout
the next section.

3In order to measure number fluctuations, a e.g. quadratic domain of linear size Lbox is divided into M2

sub-boxes of linear size Lbox/M . For each size, the average particle number 〈N〉 and standard deviation
∆N :=

√
〈N2〉 − 〈N〉2 is calculated. Equilibrium systems lead to ∆N ∝ 〈N〉δ with δ = 1/2. Fluctuations

are termed as giant if δ > 1/2.
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To quantify the structure of swirls, we plot in Fig. 4(d)
the spatial velocity correlation function C!r" #
hv1 $ v2i=hjv1jjv2ji for a rod with velocity v1 and a rod
with velocity v2 separated by distance r. The correlations
decay over a distance of a few rod lengths which confirms
the lack of the long-range order in the system. However,
the structure of the velocity field is strongly correlated with
the orientation of the rods. We computed the distribution of
the angle between the direction of the velocity field ! in
and the mean orientation within a (2d% 2d) box both in
experiment and numerical simulations [Fig. 4(e)]. As seen
in Fig. 4(e), there is a significant maximum of this distri-
bution at angle 0, which indicates that rods predominantly
move along their axes.

In summary, we have studied the collective dynamics of
self-propelled polar rods with experiments and numerical
simulations. The phenomenology differs qualitatively from
that of collective motion of pointlike or round self-
propelled particles [4,5] which show no tendency to ag-
gregate near the walls and apolar rods which exhibit giant
density fluctuations. We observe aggregation of rods at the
boundaries because of the inability of rods to turn around
and escape under low noise conditions. As vibration
strength and thus noise is increased, the aggregation re-
duces and a uniformly distributed state displaying local
orientational order and swirls are observed. Although our
numerical and (especially) experimental studies were con-
ducted in fairly small systems, the accumulation of par-
ticles near the boundaries is expected for any closed sys-

tem. However, whether or not the steady state distribution
in the bulk for very large closed systems converges to that
for large periodic boundary conditions is an open question.
We observe greater than

!!!
n
p

density fluctuations which are
not accounted for by existing models and deserve further
study. In conclusion, our findings elucidate an important
and interesting interplay between the shape and the di-
rected motion in realistic self-propelled rods which pro-
foundly affects their collective dynamics.

The work was supported by the National Science
Foundation under Grant No. DMR-0605664 and by the
U.S. Department of Energy under Grant No. DE-FG02-
04ER46135.
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FIG. 4 (color online). Swirling in time-averaged velocity ob-
tained by computing particle displacements after " # 5 s:
(a) experiment (! # 3, N # 900), (b) numerics (F0 # 1:0, # #
0:68), and (c) example of swirls observed in a larger numerical
system (N # 5500, RL # 2:5RS). (d) Spatial velocity correlation
function C!r" as a function of distance between two rods (! # 3,
# # 0:31, # # 0:65); results of simulations are shown for small
(RS # 34:2d) and large (RL # 2:5RS) system sizes and for the
same density # # 0:68. (e) The distribution of the angle between
rod orientation and its velocity.
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Figure 1.1: Patterns in propelled particle systems : (a) Coherently moving keratocyte
cells [94], (b) swarming wild-type Bacillus subtilis [110], (c) large-scale vortex lattice
emerging from collectively moving microtubules [93], and (d) swarming and swirling gran-
ular rods on a vibrating dish [58]. Coherently moving groups/regions are depicted by
arrows.

1.2 Modeling Propelled Particle Systems — State of

the Art

Historically, generic agent-based models [105, 29, 40] constitute the first theoretical ap-
proach aiming to understand the minimal ingredients necessary for the emergence of col-
lective motion. Motivated by the question of how order can emerge spontaneously by means
of simple local interactions among propelled constituents, Vicsek et al. [105] suggested the
following principle: Collective motion is thought to be a consequence of a generic com-
petition between a local tendency of “ferromagnetic alignment” and noise. Specifically,
in their famous Vicsek-model, particle alignment is implemented as an update rule in the
spirit of a cellular automaton: Each particle aligns parallel to the average of all particles’
orientations within some defined finite neighborhood. The central result is that propelled
particle systems with “ferromagnetic alignment” interactions and noise can give rise to a
long-range ordered state of coherently moving constituents; a state with broken rotational
symmetry, or in brief a “polar state”. The phase transition to the polar state requires large
enough particle densities or, equivalently, low enough noise strength.

Moreover, Vicsek-like models have been instrumental in exploring the pattern forming
capabilities of propelled particle systems [105, 28, 29, 40, 22, 23, 11]: Analyzing the pat-
terning dynamics in time shows that localized coherently moving units emerge in the very
beginning. These units, commonly termed ‘clusters’, grow in size by successively taking
up surrounding particles and aligning them to the horde. This effect is reminiscent of a
“vacuum cleaner”, which leaves a depletion zone around the growing clusters, making it
even easier4 for them to assimilate further particles. The ensuing coarsening process leads

4Note that reorientations of a cluster only occur if colliding particles significantly alter the average
orientation of a “cluster particle’s” neighborhood, which is rather unlikely when single particles from the
depletion zone collide with a dense (“self-stabilized”) cluster.
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to clusters typically elongated along their average direction of motion [see Fig. 1.2].

Figure 1.2: Elongated
cluster at the very begin-
ning of the dynamics.

The long-time dynamics of the system can be summarized in
a density–noise phase diagram depicting the stationary phases
that develop in Vicsek-like models. The phase diagram is com-
prised of a disordered region with isotropic particle orientations
and a polar ordered regime with a stationary mean flow veloc-
ity [see Fig. 1.3]. Within the ordered region of the density–
noise phase diagram, one finds polar states with two different
spatial arrangements of the particles, namely a homogeneously
distributed state and a coherently moving wave-like pattern.
The latter solely exists close to the phase boundary, or in other
words, crossing from the isotropic region to the homogeneously
distributed polar phase, there are always states comprised of
wave-like patterns in between. Finally, in a polar state that
is homogeneously distributed, Vicsek-like models exhibit giant
number fluctuations, with a scaling coefficient δ ≈ 0.8 ([23], and
see footnote3).

Comparing the experimentally observed patterns [Fig. 1.1] with the phases found in
Vicsek-like models [Fig. 1.3] it is apparent that real systems do not develop states with
long-range polar order. Instead, real systems create coherently moving structures of finite
size, which, using the standard terminology for phase transitions [69, 49, 68, 57, 48], would
fall into the category of short-range order (or isotropic on large scales). The reason for
this discrepancy could be the fact that every experimental system is finite, hindering the
growth of long-wave length modes in the system. However, to understand the underlying
principles for the emergence of collective motion in real (experimental) systems, one must
go beyond simplistic Vicsek-like models by introducing certain system-specific features
into the modeling framework. Examples for potential modifications of Vicsek-like models
are including the actual shape and physical properties of the experimental boundary, or,
accounting for further interactions between the constituents, such as adhesion or repulsion.
Note that the original Vicsek model deals with point-like particles, neglecting the impact of
particles’ excluded volume. Only a few studies exist that included the particles’ excluded
volume [22, 40, 41, 74, 107, 76, 67, 17, 66, 46, 108]. Further extensions of the Vicsek model
could concern the explicit treatment of the surrounding solvent. Finally, it is tempting
to understand the impact of inertia by investigating the pattern formation in propelled
particle systems in terms of Newtonian equations of motion involving explicit forces for
propulsion, dissipation and interaction [63, 37, 36, 75, 34, 64, 42, 84, 43, 83]. In this thesis,
several distinctly different particle-based models are proposed, which are built on or at least
inspired by Vicsek-like models, but aim to unravel the essential new ingredients necessary
to reproduce the observations and findings of several different experimental systems within
the field of propelled particles.

Additionally, there are analytic approaches to quantify the phase transition and un-
derstand the pattern formation in propelled particle systems, namely hydrodynamic ap-
proaches and kinetic theory. On the one hand, hydrodynamic equations were constructed
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Figure 1.3: Density-noise phase diagram for Vicsek-like propelled particle systems: For
large noise strength or small particle densities, the overall state is isotropic. Increasing
density/decreasing noise leads to a transition to an ordered polar phase (divided by blue
lines), which is in turn comprised of regions with either wave-like patterns or a homogeneous
density. An example of a wave-like pattern found in the Vicsek-model is depicted at the
top right (taken from [23]).

based on conservation laws and symmetry arguments [96, 97, 101, 1, 82, 98, 39, 95], and an-
alyzed by means of a one-loop dynamic renormalization group calculation. It was proven
that collections of self-propelled particles can exhibit a true, long-range ordered, spon-
taneously broken symmetry state. Moreover, this approach predicted anomalously large
density fluctuations, referred to as giant number fluctuations and allowed the calculation
of the scaling coefficient δ = 0.8, which is in agreement with the findings in Vicsek-like
models.

On the other hand, hydrodynamic equations for propelled particle systems were derived
by kinetic models, directly based on mesoscopic collision rules [7, 15, 6, 16, 51, 80, 79],
or on microscopic interactions [85, 86, 13, 12, 70]. However, to keep calculations feasible
these approaches neglect higher-order correlations and are formulated for the one-particle
density. This restricts their application to systems with interactions dominated by binary
particle encounters, i.e. dilute particle densities. However, as opposed to symmetry based
hydrodynamic approaches, which involve a vast number of unknown coefficients (e.g. the
viscosities), these coefficients are known in kinetic approaches allowing for quantitative
predictions of the ordering transition. More details on kinetic theory including its quanti-
tative predictions are discussed in section 2.3.2. There will be a separate part of this thesis,
which is devoted to extensions of kinetic theory for propelled particle systems in order to
appropriately account for recent qualitative experimental and numerical observations in
propelled particle systems.
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1.3 Outline

This thesis essentially consists of two parts5:
(A) The first part (section 2.1 and section 2.2) deals with specific, particle-based modeling
approaches for two experimental in-vitro systems within the field of propelled particle
systems: The actin gliding assay and the vibrated polar disk setup.
(B) The second part (section 2.3 and section 2.4) is devoted to the extensions of kinetic
theory for propelled particle systems as well as generic particle-based modeling approaches,
presenting several new hallmarks within the field of propelled particle systems.

5Due to the large amount of considered quantities in this thesis, the notation of variables is independent
for each of the four sections, 2.1 to 2.4.



Chapter 2

Modeling Propelled Particle Systems

In the following two sections, 2.1 and 2.2, two experimental paradigm systems within
the field of propelled particle systems are introduced, and the corresponding modeling
approaches are discussed. Section 2.3 is devoted to the analysis of generic models for
propelled particle systems under dilute conditions, while section 2.4 deals with phenomena
occurring in dense packing of propelled particles.

2.1 The Gliding Assay – A Paradigm for in-vitro Ac-

tive Systems

Three components are required to build a gliding assay [50, 109, 99, 103, 100, 44, 104, 19,
38]: Molecular motors, filaments and a planar surface (“coverslip”). Molecular motors are
nanometer-sized machines that can exert forces by the consumption of energy through hy-
drolyzing adenosine-tri-phosphate (ATP) to adenosine-di-phosphate (ADP)—the standard
“bio-fuel” for cellular processes. In the gliding assay, these motors, consisting of a molec-
ular “head” and “tail” region, are immobilized upon a planar surface by their tails. With
the “head” region they can bind to nearby filaments, e.g. actin or microtubules, which
are commonly purified from muscle or cell extracts. These filaments exhibit an intrinsic
polarity directed tangentially along the filament contour, determining the direction along
which the molecular motor can exert forces locally. This leads—even for several “working”
motors—to a perpetual transport of filaments within the gliding assay. The driving that
couples locally on the filament’s contour with a well-defined intrinsic polarity, makes the
filaments on the gliding assay a propelled particle system. For an illustration of the
gliding assay, please refer to Fig. 2.1.

The binding chemistry of molecular motors is in general complex and specific. For all
later studies, we will deal with heavy mero-myosin (HMM) [50] as the molecular motor and
actin filaments. For the convenience of the readers, a description of the most important
properties of HMM molecular motors and actin filaments are given below:
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The binding cycle of the HMM motor involves three crucial steps1: (i) The cycle starts
with a time period (denoted τh), where the motor is bound to the filament providing a link
between the planar substrate and the filament. Therefore, this is referred to as “Hold”
state. (ii) In the subsequent power-stroke phase the motors exert forces parallel to the
filament contour within a very short2 time period τs. The corresponding state is short-
handed “Push” in the following. (iii) Finally, the motor detaches, and its head region
remains inaccessible for further binding events for a long time period, denoted τoff. After
that, the cycle starts again from the beginning. A sketch of the binding cycle for HMM is
depicted in Fig. 2.1.

Actin filaments are semi-flexible polymers with an aspect ratio of 1000:1. The typical
length of the filament ranges in the order of 10µm and the diameter is about 10nm. Each
filament can be viewed as a two-stranded (right-handed) helix with the strands wrapped
around each other with a repeat period of about 70nm [50] [see Fig. 2.1]. In turn, each
strand consists of monomers with a size of about 5nm. A more coarse-gained but adequate
picture for our later theoretical description can be constructed by treating actin as a single
stranded polymer with a diameter of about 10nm. Finally, since the thermal persistence
length for actin `p = 17µm [24, 50] is about the typical filament length, the actin filament
constitutes a semi-flexible polymer with respect to Brownian fluctuations.

The following three sections will deal with experimental investigations and correspond-
ing modeling approaches for the actin gliding assay. Specifically, section 2.1.1 focuses
on the origin of anomalous, non-thermal contour fluctuations of single actin filaments.
Section 2.1.2 is devoted to the gliding assay at high filament densities finding the emer-
gence of coherently moving states with complex spatio-temporal patterns. Finally, by only
adding a single type of molecule, namely crosslinking molecules, the system’s dynamics
at high filament densities is altered severely, leading to “frozen” ring-like structures (see
section 2.1.3).

1Recently, it turned out that there could also be a further short time-period step in the HMM cycle,
called the “after-stroke”[3, 2]. For the presented approaches, however, we neglected this new phase due to
the limited amount of available data and the fact that this “second step” for Myosin-II is so fast that it
could not be detected in the experiments by direct measurements.

2Typical values are: τs ∼ 10−4s, τh ∼ 10−3s and τoff ∼ 5 · 10−2s (e.g. [50] and references therein).
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6 CHAPTER 2. POLAR PATTERNS OF DRIVEN FILAMENTS

Figure 2.1: Schematic representation of the high density motility assay and systems behaviour at low filament
densities. (A): the molecular motor HMM is immobilized on a cover slip. The filament motion is visualized by the use
of fluorescently labelled reporter filaments with a ratio of labelled to unlabelled filaments adjusted to ≈ 1:50 - 1:320.
The motor proteins propel the filaments in a succession of conformational changes in a mechanochemical cycle that
is depicted in (B). In step (1), displayed at the top, a nucleotide-free motor head is bound to actin. This attachment
is released upon binding of ATP (2). Hydrolyisis of ATP leads to a conformational change (3) and rebinding to actin
(4). The release of the ionic phosphate between step (4) and (1) results in a strained conformation which is relaxed
by the power stroke that propels the filament. For low filament densities, the action of the motor proteins leads to
a disordered phase (C). The individual filaments perform a persistent random walk without any specific directional
preference. Encounters between filaments lead to crossing events with only slight reorientations. The scale bar is
30 µm.

in a more controlled manner than myosin-II and without extended tail regions that interfere with
the active transport.

Myosin-II is an actin-based non-processive motor protein that by hydrolyzing ATP induces a slid-
ing movement of the actin filament and the myosin-II motor protein against each other [87, 88].
The chemomechanical cycle of the acto-myosin crossbridge involves a succession of conforma-
tional changes of the motor protein that are illustrated in Figure 2.1 B). In its nucleotide-free state
the myosin-II head is bound to actin. Upon binding of ATP, the motor head detaches and ATP
is hydrolyzed. This triggers a conformational change and myosin in its ADP · Pi state rebinds
to actin at a position 5 nm closer to the plus end of the filament. The phosphate release leads
to a conformational strain which is released through a conformational change back to the initial
configuration. This switch back is called power stroke and leads to a sliding motion of the actin
filaments in the motility assay.

The duty ratio, i.e. the fraction of time myosin-II is bound to actin during the mechanochemical
cycle, is of the order of 1/100, making myosin-II a highly non-processive motor protein [87, 166].
This opens up the possibility for many motor proteins to simultaneously move a single filament
in the motility assay. Although the frequency of the power stroke is limited to up to 100 /sec,
the concerted action of multiple motor proteins thus can lead to maximal actin gliding speeds
in the order of 5 µm/sec. In general, the gliding speed depends on both, the filament lengths
and the motor density at the surface. With decreasing motor concentration the maximal gliding
speed is declining. Further, this saturation level in velocity requires increasingly higher filament
lengths [217]. To avoid these effects, the experiments presented here were performed at high
motor densities at the surface in the order of 5000 µm−2, close to the saturation density [198,209].2

At low actin concentrations, the filaments, with a length of about 10 µm, perform persistent ran-
dom walks without any specific directional preference and a dynamic persistence length of ap-
proximately 5 µm (Figures 2.1 C and 2.2 A). On long time and length scales, the filament motion

2For details please see the materials and methods section.

LETTERS

Polar patterns of driven filaments
Volker Schaller1, Christoph Weber2, Christine Semmrich1, Erwin Frey2 & Andreas R. Bausch1

The emergence of collective motion exhibited by systems ranging
from flocks of animals to self-propelled microorganisms to the
cytoskeleton is a ubiquitous and fascinating self-organization
phenomenon1–12. Similarities between these systems, such as the
inherent polarity of the constituents, a density-dependent transi-
tion to ordered phases or the existence of very large density fluc-
tuations13–16, suggest universal principles underlying pattern
formation. This idea is followed by theoretical models at all levels
of description: micro- or mesoscopic models directly map local
forces and interactions using only a few, preferably simple, inter-
action rules12,17–21, and more macroscopic approaches in the
hydrodynamic limit rely on the systems’ generic symmetries8,22,23.
All these models characteristically have a broad parameter space
with a manifold of possible patterns, most of which have not yet
been experimentally verified. The complexity of interactions and
the limited parameter control of existing experimental systems are
major obstacles to our understanding of the underlying ordering
principles13. Here we demonstrate the emergence of collective
motion in a high-density motility assay that consists of highly
concentrated actin filaments propelled by immobilized molecular
motors in a planar geometry. Above a critical density, the fila-
ments self-organize to form coherently moving structures with
persistent density modulations, such as clusters, swirls and inter-
connected bands. These polar nematic structures are long lived
and can span length scales orders of magnitudes larger than their
constituents. Our experimental approach, which offers control of
all relevant system parameters, complemented by agent-based
simulations, allows backtracking of the assembly and disassembly
pathways to the underlying local interactions. We identify weak
and local alignment interactions to be essential for the observed
formation of patterns and their dynamics. The presented minimal
polar-pattern-forming system may thus provide new insight into
emerging order in the broad class of active fluids8,23,24 and self-
propelled particles17,25.

The molecular system that we consider consists of only a few
components: actin filaments and fluorescently labelled reporter fila-
ments that are propelled by non-processive motor proteins (heavy
meromyosin (HMM)) in the planar geometry of a standard motility
assay26 (Fig. 1). The molecular nature of this approach permits large
system sizes and possibly high particle densities with only a few, easily
adjustable key parameters. To investigate the stability and dynamics
of collective phenomena, the filament density, r, is chosen as control
parameter and is systematically varied.

Depending on r, two phases are discernable: a disordered phase
below a critical density, rc, of ,5 filaments per square micrometre,
and an ordered phase above rc. In the disordered phase at low actin
concentrations, the filaments, with a length of about 10 mm, perform
persistent random walks without any specific directional preference.
Their speed (v0 5 4.8 6 0.5 mm s21) is set by the motor proteins at the
surface and the adenosine tri-phosphate (ATP) concentration
(cATP 5 4 mM). The observed directional randomness is thermal in

nature but also reflects the motor distribution and activity at the
surface27.

Increasing the filament density above rc results in a transition to an
ordered phase that is characterized by a polymorphism of different
polar nematic patterns coherently moving at the speed v0 (Fig. 2).
These patterns can be further classified according to their size, orienta-
tional persistence, overall lifetime and assembly/disassembly mechan-
isms: in an intermediate-density regime above rc, moving clusters
(swarms) of filaments appear; in the high-density regime, starting at
a threshold density of r* (,20 filaments per square micrometre),
propagating waves start to form. Both patterns are characterized by
persistent density modulations.

The clusters encountered in the intermediate state move indepen-
dently and have cluster sizes ranging from about 20 mm to more than
500 mm in diameter (Fig. 2a, b). In general, clusters have an erratic
motion with frequent reorientations of low directional persistence
(Fig. 2a, b and Supplementary Movie 1). The low orientational per-
sistence affects the cluster’s shape but barely influences its tem-
poral stability. The cluster integrity is only affected if collisions with
boundaries or other clusters are encountered. Increasing the filament
density in this intermediate regime not only yields larger clusters but
also a more persistent cluster movement. Individual clusters spon-
taneously emerge from the dilute, disordered background and

1Lehrstuhl für Biophysik-E27, Technische Universität München, 85748 Garching, Germany. 2Arnold Sommerfeld Center for Theoretical Physics and CeNS, Department of Physics,
Ludwig-Maximilians-Universität München, 80333 Munich, Germany.
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Figure 1 | Schematic of the high-density motility assay. a, The molecular
motor HMM is immobilized on a coverslip and the filament motion is
visualized by the use of fluorescently labelled reporter filaments with a ratio
of labelled to unlabelled filaments of ,1:200 to 1:320. b, For low filament
densities, a disordered phase is found. The individual filaments perform
persistent random walks without any specific directional preferences.
Encounters between filaments lead to crossing events with only slight
reorientations. Scale bar, 50 mm.
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Figure 2.1: Illustration of the gliding assay: Actin filaments are depicted in red/grey.
HMM motors shown in blue are fixed on a planar surface. Only some of the filaments are
labelled [“labelled” (“unlabeled”) filaments are depicted in red (gray)] in order to increase
the contrast of density heterogeneities for the microscope (only necessary for large filament
densities). By hydrolysis of ATP to ADP, these motors can bind to the filament with a
certain relative distance and propel the actin filaments forward due to the intrinsic polarity
of the filament (top left). The motor passes through a rather complex cycle including the
“Hold” and ‘Push” states, which is depicted at the top right (for explanation see text;
sketch courtesy of Volker Schaller).

2.1.1 Anomalous Contour Fluctuations

Throughout this section we will consider the gliding assay with highly dilute filament
densities and intermediate motor surface densities c ≈ 1.5 ·103µm−2. In this case, filament-
filament interactions are extremely rare.

However, running the gliding assay at these dilute conditions, we found various kinds of
filament configurations, ranging from smoothly bent shapes to configurations with rather
strong pronounced kinks in the contour [Fig. 2.2(a–c)]. The filaments are approximately
of length L = 8µm, with the kinks occurring on a length scale on the order of 1µm. For a
thermally fluctuating polymer with a thermal persistence length larger or on the order of
the filament’s length (L . `p), large curvature events [Fig. 2.2(a,b)] should be very unlikely
and occur with a probability proportional to exp (−κ2/2`2

p) [24, 50], with κ denoting the
local curvature along the polymer contour. Any deviation from these statistics would
indicate a non-thermal influence on the fluctuations of the actin filament’s contour. In
order to study the curvature statistics of the filaments, we discretize the polymer contour
into segments and extract the local curvature values κ for each segment. The corresponding
curvature probability distribution clearly shows an anomalous tail [Fig. 2.3(a)], i.e. large
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Figure 2.2: Snapshots of typical filament configurations observed in the experiment (a)-
(c), and found in the stochastic simulation (d)-(f). Scale bar: 2µm.

curvature events are distributed exponentially. The Gaussian core in the distribution for
small curvatures indicates the residual impact of the thermal bath on the actin filament,
whereas the excitation of curvature that results in anomalous strong kinks can only be
related to the interactions between filaments and molecular motors.

To form an understanding of how motors give rise to these anomalous events, we study
the following stochastic model for a propelled actin polymer (for details, refer to Ap-
pendix C): Each filament has a length L and diameter d. We account for the bending
stiffness of the actin filaments, which in the presence of thermal fluctuations is solely char-
acterized by the ratio between the persistence length `p and the filament length L. The
interactions between the filament and the molecular motors on the two dimensional sub-
strate is modeled as a process of stochastic and independent binding events of motors along
the filament contour. For the binding cycle of the motors, we employ the aforementioned
simplified picture of “Push” and “Hold” as being the two essential states [Fig. 2.1(a)].
A motor begins its cycle with the “Hold” state by binding to the filament. We assume
that the motor attaches randomly at a certain segment of the filament with a probability
[number of segments]−1, independent of the binding history or state occupancy of a seg-
ment. After attaching to the filament, the motor acts as a rigid link between the substrate
and the filament for a period of time τh (holding time) if the displacement of the attached
filament segment is beyond a certain critical distance lc. Otherwise, the force exerted on
the segment is zero3. We assume that the critical length lc is essentially determined by
the average length of the tail of the HMM motor, which is in the order of 40nm. After
the holding time period, the molecular motor is modeled as a spring that is connected to
the filament and moves with a velocity ∆xs/τs (∆xs denotes the stroke length) during the
stroke time τs along the filament’s local tangent. Subsequently, the stochastic binding cycle
starts again. Along the filament’s contour, the total number of attached motors, denoted
mb, is chosen to be constant in time. The number of bound motors can be estimated from
the experimental surface density by mb ≈ c(da + 2lc)LD, where da ≈ 10nm is the diameter
of an actin filament. The quantity D denotes the duty ratio and accounts for the fact that
HMM is a non-processive motor [50]. It is defined as the ratio between (τs + τh) to the
time required for the motors to bind to the filament again. Measurements for HMM have

3In other words: Say a motor with coordinates Rm is bound to a filament segment with coordinates
Rs, there is only a force if: |Rs(t)−Rm| > lc.
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Figure 2.3: Curvature probability distribution P (κ): (a) For the experimental setup with
the control parameters of motor density c = 1.5 · 103µm−2 and filament length between
4-8µm. (b) For the stochastic model with parameters: mb = 30, `p = L and L = 100d.
Solution to Eq. (2.1) using the constitutive relations for λ and Dκ [see Eq. (2.2)] is indicated
by gray dashed lines. An exponential distribution is indicated by a dotted line with the
slope value, and a Gaussian distribution by a dashed-dotted line with the value of its
standard deviation. Multiplying the corresponding characteristic values for experiment
and model by filament length is in approximate quantitative agreement.

estimated this ratio to be D ≈ 1/50 [50], which leads to an approximate value of mb = 30
for a typical surface density c = 1.5 · 103µm−2.

Running the model for L ≈ `p and mb = 30, we observe very similar filament configu-
rations as in the experiments, including the anomalous non-thermal local curvature events
[Fig. 2.2(d-f)]. Analyzing the curvature statistics in the simulation, we also find that for
decreasing curvature values, the exponential anomalous tail transitions to a Gaussian core
[Fig. 2.3(b)]. To further examine the validity of the model, we studied the impact of the
control parameters such as filament length L and motor density mb in the experiment as
well as in the model. We find that length in experiment and model has no essential impact
on the curvature PDF P (κ) [Fig. 2.4(a,b)]. This observation disproves thermal bending
relaxation of large curvatures as a central determinant of the filament dynamics, because
the relaxation time of semi-flexible polymers exhibit a strong dependence on the filament
length [50]. However, increasing the motor density c in the experiment, or equivalently mb

in the model, results in the slope of the distribution tail to increase monotonically, both
for the experiment and the model. These observations clearly show that the molecular
motors contribute to the majority of the elastic energy in the filament (∝

∫∞
0

dκκ2P (κ)),
whereas the contributions of the thermal bath only plays a role for very small curvatures.
This raises a question: Can we understand the origin of anomalous curvature events, i.e.
excitation and relaxation of curvature?

To this end, we describe the mesoscopic impact of motors on the actin filament by
means of a simplified kinetic equation for the stationary curvature distribution P (κ). By
analyzing the stochastic model on the smallest time scale, i.e. the stroke time τs (which
is not accessible in the experiment) we are led to the following microscopic principle for
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Figure 2.4: (a) Experimental curvature probability distribution P (κ) for two different
motor densities (green: c = 103µm−2; blue: c = 5 · 103µm−2) and two different filament
length intervals (dotted: 1-4µm; solid: 4-8µm). (b) Square root of second moment of

curvature distribution in the model, denoted as M
1/2
2 for varying number of bound motors

mb (indicated by black solid squares; L = 100) and different filament length L (green and
grey solid circles correspond to mb = 20 and mb = 40, respectively).

curvature build-up in the filament bulk: A local configuration of motors with “holding”
motors at the front and “pushing” motors at the rear leads to a local build-up of curvature
[Fig. 2.5]. Then, there a two general scenarios: (i) A similar configuration of motors leads to
the emergence of anomalous large curvature events, while (ii) a reversed configuration with
“pushing” motors at the front and “holding” motors at the rear flattens the established
curvature. Our mesoscopic kinetic equation for P (κ) will exactly account for these two
scenarios. Specifically, we model the curvature build-up as a diffusion process with a
diffusion constant Dκ depending on the motor density mb. Moreover, the flattening process
is assumed to be composed of discrete events occurring with rate λ, which decreases the
curvature according to κ/η → κ, with η < 1 characterizing the strength of the flattening
process4. The resulting equation is then the following [56, 45, 92]:

0 = Dκ(mb)∂
2
κP (κ) +

λ

η
P (κ/η)− λP (κ). (2.1)

Rescaling the equation above by κ → κ/
√
Dκλ−1, the moments Mn =

∫
dκκnP (κ) can

be computed from the corresponding recursion relation Mn = n(n − 1)(1 − ηn)−1Mn−2,

leading to M2n = (2n)!
∏n

k=1

[
1− η2k

]−1
. From this equation the limit η → 0 can be

easily performed, leading to all even moments M2n = (2n)!, which are equal to those of an
exponential function in κ ∈ [0,∞). In particular, the normalized fourth moments yields
M4/M

2
2 = 6.

4The coefficient κ also determines the amount of energy dissipated relative to the energy input set by
the curvature diffusion constant Dκ. Since the elastic energy of the filament scales as ∝ κ2 and κ → ηκ,
the elastic energy scales as a function of of η also as ∝ η2. Therefore, 1− η2 is the ratio of energy that is
dissipated.
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...

push hold free

bent filament curvature build-up

...

... anomalous 
curvature

flattening
...

Figure 2.5: Illustration of the principle for curvature build-up: Brownian fluctuations
create a slightly bent filament contour, while the jam created by holding motors at the
filament’s front and pushing motors at the rear leads to a local build-up of curvature.
Similar motor configurations can then create anomalous curvature events, while a reversed
configuration flattens the contour.

In the limit η → 1, the procedure is a bit more intricate: The even moments, given by5

M2n = (2n − 1)!!(1 − η)−n, diverge in this case. Even though not directly obvious from
Eq. (2.1) the given singularity explains why setting η = 1 in Eq. (2.1) is not well-defined.
However, the limit η → 1 can be accomplished in Eq. (2.1) by expanding 1

1−εP (κ/ (1− ε))
into a Taylor series around ε = 1−η = 0, yielding: P (κ)+[P (κ)+κP ′(κ)]ε+O(ε3). Plugging
this series into Eq. (2.1) leads to a Gaussian distribution as a solution, P (κ) ∝ exp(−εκ2/2),
with κ denoting the rescaled curvature κ → κ/

√
Dκλ−1. The Gaussian limit for η → 1

also becomes obvious when considering the fourth normalized moment as a function of η,
which is given by M4/M

2
2 = 6/(1 + η2). This leads to M4/M

2
2 = 3 for η → 1, which is

exactly the value expected for a Gaussian distribution. Taken together, η → 0 lead to an
exponential curvature distribution, whereas the limit η → 1 corresponds to a Gaussian.

Moreover, the formula above for M4/M
2
2 allows us to eliminate η as an unknown param-

eter by measuring the fourth normalized moment from the experimental and model PDF
P (κ). Consequently, Eq. (2.1) has only two unknown parameters, namely the curvature
diffusion constant Dκ and the rate of the flattening events λ.

Following our aforementioned picture of the microscopic origin for curvature build-
up, we assume that the rate of the flattening events λ is primarily given by the larger
time-scale6, namely the holding time of the molecular motors τ−1

h . To account for minor
deviations to this assumption, we write λ = γh

τh
, with γh a dimensionless number O(1).

Now, we construct a constitutive equation for the curvature diffusion constant Dκ(mb)
that includes thermal fluctuations characterized by the persistence length `p, along with
the impact of the molecular motors, i.e. a dependence on the number of working motors.
An increasing average number of working motors, given by τs

τh
mb [mb: number of bound

motors], is thought to result in a larger curvature diffusion constant Dκ. We simplify
this monotonic increase by a linear dependence. Furthermore, we assume that the time-
scale related to this diffusion process is given by the stroke-time τs, with γs again some
dimensionless numberO(1) accounting for minor deviations to this assumption. This yields
the following constitutive equation for a curvature diffusion constant with a dimension

5The double factorial is defined as: (2n− 1)!! =
∏n
m=1(2m− 1).

6So far we did not find a really convincing argument that λ ∼ τ−1
h . However, this assumption leads to

excellent predictions for the curvature scale for the experiment and the numerical model.
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[
1/(time× length2)

]
:

Dκ(mb) =
1

`2
p

[
1 + δ

τs

τh
mb

]
γs
τs
, (2.2)

where δ measures the relative impact of a single working motor on Dκ compared to thermal
fluctuations. We consider this impact to be given by the relative amount of work a motor
exerts on a filament relative to its thermal energy. For a filament with L ≈ `p, the
corresponding energy content is about 1kbT , whereas a single motor exerts a work also
of approximately 1kbT (force ∼ 1pN , stroke displacement ∼ 10nm, refer to e.g. [50]).
Consequently, we estimate δ ≈ 1.

By means of the constitutive equations for λ and Dκ, the solutions of the kinetic equa-
tion (2.1) can now be quantitatively related to the curvature PDF of both, the experimental
assay and the numerical model, by rescaling the curvature as κ → κ/

√
Dκλ−1. Note that

only the ratio between the time-scale for stroke and holding time matters for the curva-
ture scale. We find that γs

γh
≈ 1 in order to reproduce the PDFs quantitatively for both

model and experiment. The corresponding results are given by the gray dashed lines in
Fig. 2.3(a,b), showing an excellent agreement between the kinetic model with the PDF
obtained for the model and experiment, thereby proving at least the approximate validity
of the constitutive equations for Dκ(mb) and λ.

We conclude that the mesoscopic impact of the molecular motors on the curvature
distribution of the filaments P (κ) is twofold: Although motors effectively increase the
polymer’s temperature (∝ Dκ), they give rise to anomalous flattening of the filament
contour otherwise, thereby invalidating any approach for the actin gliding assay relying
on thermal fluctuations [35] or “effective” temperature [60, 59]. Consequently, since the
fluctuations originate from the motor–filament interactions we refer to those as active
fluctuations.

In the next step, we plan to investigate the dynamical behavior of our active filaments
by means of studying tangent-tangent correlations as well as the correlations in time of the
end-to-end vector [61], and work out the deviation to thermally fluctuating, semi-flexible
polymers. A manuscript of the presented results that also includes the results on the
polymer’s dynamics is currently under preparation (see list of publications A).
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continuously lose and recruit filaments. As long as single clusters are
embedded in this homogeneous disordered background while they
move, this uptake and loss dynamics is balanced and leads to cluster
sizes that are stable for several minutes.

A further increase of filament concentration above r* results in
density waves characterized by correlated movement of high-density
regions. In this high-density regime, the filaments move predomi-
nantly in bands that are stable throughout the observation time (up
to 30min). The bands exceed the size of their constituents by up to
three orders of magnitude, almost spanning the entire system and
forming crescent-shaped substructures. The appearance of the bands
is a generic feature of the high-density motility assay. Whereas fila-
ments in the high-density regions move collectively with high orien-
tational persistence, filaments lying outside the bands perform
persistent random walks (Fig. 2c and Supplementary Movie 2).
The system is less sensitive to other control parameters, such as the
ATP concentration or the filament length.

In all states above rc, swirls or spirals of actin filaments can also be
observed, reminiscent of spiralling patterns predicted by active gel
theory23. They form spontaneously either from the random move-
ment of bands or individual clusters or on collision of different actin
bands or clusters (Fig. 3). These rotating structures are visible for up
to 10min, after which they dissolve or merge with adjacent and

interfering structures. Because all filaments move at the same speed,
v0, very large gradients of angular velocity are generated throughout a
swirl, leading to an inherently metastable structure most often with
an unsteady, possibly moving, centre (Fig. 3c and Supplementary
Movies 3 and 4).

A key characteristic of pattern-forming systems are their dynamics
and stability far from thermal equilibrium. Whereas some systems
result in stationary patterns, which do not change their form and
structure in time, others may show highly dynamic spatiotemporal
patterns. The latter rely on a constant reorganization governed by
distinct assembly and disassembly pathways visible in the behaviour
of the order parameter. In the high-density motility assay, described
here, these reassembly processes result in a characteristic orientational
persistence, which increases with increasing filament density. The
orientational persistence can directly be related to the underlying dis-
assembly mechanisms using the velocity autocorrelation function,
G(t). For each grid point of a particle image velocimetry sampling
grid (Methods Summary), G(t) reflects local decorrelations assigned
to local orientational fluctuations. Averaging over particle image velo-
cimetry gridpoints for a large sample area results in a spatially averaged
autocorrelation function, ÆG(t)æ, which characterizes global decorre-
lations resulting from reorientations of larger areas or destructions of
entire clusters or patterns (Supplementary Information and Methods
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Figure 2 | Phase behaviour as a function of the filament density. For low
densities, a disordered phase is found. Above a certain critical density, rc, in
an intermediate-density regime, the disordered phase is unstable and small
polar nematic clusters of coherently moving filaments start to form
(a; Supplementary Movie 1). At higher densities, these clusters become
larger but remain homogeneous (b). Above a threshold density, r*, in the
high-density regime, persistent density fluctuations lead to the formation of
wave-like structures (c; Supplementary Movie 2). In addition, an enhanced

directional persistence is observed with increasing filament density. In a and
b, the trajectory of the clusters is shown by a colour-coded time overlay of
their movements in time (white line). The movement of the small cluster in
a has a low persistence length, LP< 65mm. The cluster in b is larger, less
prone to reorientations and has a considerably higher persistence length
(LP< 200mm). The insets in c show a magnified view and a local analysis of
the average flow direction. The density waves show only minor
reorientations over the time period of several minutes. Scale bars, 50 mm.
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Figure 3 | Swirling pattern of coherently moving filaments. a, Swirling
motion visualized in a time overlay of ten consecutive images over 1.17 s,
starting from the image depicted in the inset. Because all filaments move
with the same velocity, v0, swirls are characterized by great angular velocity
gradients, leading to an inherent destabilization of the pattern. b, c, The
resulting unsteadymovement can be studied by evaluating the velocity fields
and the corresponding vorticity profile (b). The maximum of the vorticity

profile, marking the centre of the anticlockwise-rotating swirls, performs an
anticlockwise trajectory (c). In the course of this movement, a deformation
of the initially well-defined swirl develops (at T5 290 s), eventually leading
to disintegration of the swirling pattern (Supplementary Movie 3). a.u.,
arbitrary units. d, The limited stability of swirling motions is visible in the
vicinity of the centre region, where crushing of the filament currents is likely
to occur (Supplementary Movie 4). Scale bars, 50mm.
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Figure 2.6: Phase diagram for the gliding assay as a function of the filament density:
a. For low densities, a disordered phase is found with filaments “mostly” moving randomly.
However, recent experimental investigations indicate the existence of weak orientational
correlations (private communication with Ryo Suzuki). b. Above a certain critical density
ρc small, homogeneous and polar clusters of coherently moving filaments start to form.
At higher densities, these clusters become larger and move more persistently. c. Above a
threshold density, ρ∗, in the high-density regime, wave-like patterns emerge. In a and b,
the trajectory of the clusters is shown by a color-coded time overlays of their movements
in time (white line). The movement of the small cluster in a has a low persistence length,
∼ 60µm, while the cluster in b is larger and less prone to reorientations (persistence length
∼ 200µm). The insets in c show a magnified view and a local analysis of the average flow
direction. The density waves show only minor reorientations over the time period of several
minutes. Scale bars: 50µm.

2.1.2 Gliding Assay at High Filament Densities

Now we turn to the gliding assay with a larger number of filaments. For dilute filament
densities, filaments move mostly randomly throughout the motility assay. However, in-
creasing the filament density above a critical value, denoted as ρc, results in a transition
to an ordered phase that is characterized by a plethora of different polar patterns, each
comprised of coherently moving units at approximately constant speed [see Fig. 2.6, for
further experimental findings please refer to publication B.1]:

a/b: In an intermediate-density regime directly above ρc, moving clusters (swarms) of
filaments appear [Figs. 2.6a and 2.6b].

c: Moreover, in the high-density regime exceeding a second threshold density, denoted
ρ∗ (about 20 filaments/µm2), propagating waves start to form [Fig. 2.6c].

a/b: The clusters encountered in the intermediate state have cluster sizes ranging
from about 20µm to more than 500µm in diameter. In general, clusters have an erratic
motion with frequent reorientations of low directional persistence. The low orientational
persistence affects the cluster’s shape but barely influences its temporal stability. The
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cluster integrity is only affected if they collide with boundaries or encounter other clusters.
Increasing the filament density in this intermediate regime not only yields larger clusters
but also a more persistent cluster movement. Individual clusters spontaneously emerge
from the dilute, disordered background and continually assemble and disassemble filaments.
In the absence of cluster-cluster interactions this uptake and loss dynamic is balanced and
leads to cluster sizes that are stable for several minutes.
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Figure 2.7: Filament col-
lisions (courtesy of Ryo
Suzuki).

c: A further increase of filament concentration above ρ∗

results in density waves characterized by correlated move-
ment of high-density regions. In this high-density regime,
the filaments move predominantly in bands that are stable
throughout the observation time (up to 30 min). The bands
exceed the size of their constituents by up to three orders
of magnitude, almost spanning the entire system and form-
ing crescent-shaped substructures. The appearance of the
bands is a generic feature of the high-density motility as-
say. Whereas filaments in the high-density regions move col-
lectively with high orientational persistence, filaments lying
outside the bands perform persistent random walks (“disor-
der sea of filaments”). The system is less sensitive to other
control parameters, such as the ATP concentration or the
filament length.

Assuming that the interactions between the filaments are
short-ranged, a fascinating question is: How do the interac-
tions between the constituents give rise to the emergence of
these wave-like patterns?

To give a first approximate answer, we developed an
agent-based simulations accounting for the probabilistic
movement of the filaments in presence of interactions. The
agents are finite-length filaments, each performing a persis-
tent random walk with a persistence length approximately
equal to the actin filaments. Moreover, we assume that filaments interact via weak re-
pulsion as well as weak local “ferromagnetic” alignment. Weak repulsion arises due to
the fact that the gliding assay is just a quasi two-dimensional system: Filaments fre-
quently cross each other (“indifferent event”). However, in between, one observes polar-
alignment events; see Fig. 2.7 for some exemplary trajectories at diluted filament den-
sities (left: parallel alignment event, right: indifferent event; pre-/post-collision state
is depicted top/bottom). In the simulations, the symmetry-breaking nature of the lo-
cal “ferromagnetic” interactions is crucial: Without it, filaments interact only sterically
and do not show collective motion at all. More details on the simulation as well as
the corresponding results can be found in publication B.1 or section 2.3.1, where the
same model is used to discover a new feature on the nature of the phase transition in
propelled particle systems. However, here, the most important results are that for fila-
ment densities above some critical density, polar wave-like patterns emerge [see Fig. 2.8].
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This phenomena is rather robust against variations of parameters (alignment strength,
density, etc.), as long as the density is above the threshold for collective motion. Interest-
ingly, the same phenomenology—wave-like patterns—has also been found for more generic,
agent-based models for spheres, called the Vicsek model (see e.g. section 1.2 or [22, 40, 23]).
There, each particle aligns polar to the average orientation calculated over all particles
within some finite neighborhood. As opposed to these generic agent-based models, our
model explicitly incorporates filament length. Further, it matches the persistence of the
ensuing random walk in the absence of interactions and accounts for weak repulsive inter-
actions. Therefore, it constitutes undoubtedly a more realistic model for the gliding assay
at large filament densities. However, the emergence of wave-like patterns seems to be a
rather generic phenomenon. From this we concluded that the essential mechanism for the
patterning instability in the gliding assay are local symmetry-breaking (“ferromagnetic”)
interactions.

Figure 2.8:
Wave pattern in
simulation.

However, a more refined experimental study of the gliding assay re-
vealed that hydrodynamic interactions play a crucial role in the later
stages of the pattern forming process (see publication B.2 for details).
We found that the approximately two-dimensional collectively moving
patterns induce a back-flow in the overlying fluid, which has been sug-
gested by preliminary Finite-Element simulations [see Fig. 2.9]. By
means of appropriate shear flow experiments this back-flow was shown
to be strong enough to influence the movement of nearby coherently
moving structures. Interestingly, the hydrodynamic interactions are also
crucial for a swarming cluster near a confining boundary: The cluster
feels a repelling force away from the boundary without being in direct
contact. Again, hydrodynamic interactions are assumed to be mediated
by the solvent above the coherently moving structure.

One remark is in order: Apart from the fascinating patterns reminis-
cent of flocks of birds of schools of fishes, the motility assay also exhibits
anomalous number fluctuations, called Giant-number fluctuations, and anomalous scalings
in the corresponding correlation functions of the hydrodynamic fields. These were recently
analyzed experimentally [87]. Astonishingly, all experimental measurements are in agree-
ment with the corresponding theoretical predictions based on dynamical renormalization
group theory [96, 97, 101, 95]. Taken together, since the gliding assay exhibits all the
hallmarks of collectively moving systems, it can be regarded as a paradigm that deserves
more attention and experimental studies to understand the physics of collective motion.
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Figure 2.9: Preliminary Finite-element simulations: A swarming cluster is idealized as a
rigid thin disk (height=50nm, diameter=50µm), moving with a constant velocity of about
5µm/s in the x-y-plane (moving direction is indicated by gray arrow). For the simulations,
we assume no-slip boundary conditions at the contact surface to the fluid surrounding. Left:
side view; Right: top view. Black arrows depict the hydrodynamic flow field. Iso-velocity
surfaces depict areas of constant flow velocity, with blue corresponding to 1/8 of the moving
velocity of the swarming cluster. The results clearly indicate that the moving “idealized”
swarm gives rise to a notable back-flow, which is assumed to mediate the aforementioned
hydrodynamic interactions between swarming clusters (see text).

2.1.3 Gliding Assay with Crosslinkers — Freezing of Activity

This section is devoted to the experimental study and a corresponding modeling approach
for the gliding assay at large filament densities when adding a certain amount of fascin
crosslinking molecules. Fascin is a so-called polar crosslinker, i.e. it only connects actin
filaments in an approximately polar and parallel configuration [25], while filaments in or-
thogonal or even anti-parallel configurations are not affected by the crosslinkers7. These
interactions mediate an ‘implicit alignment mechanism’ as they do not create explicitly
aligned structures, however, parallel structures are stabilized. In the following we will
investigate what happens to the patterning capability of the gliding assay at large fila-
ment densities when increasing the fascin concentration and we will discuss how we can
understand the patterning pathway by an appropriate model. Let us first start with the
experimental observations.

7The molecular binding mediated by the crosslinker is practically irreversible on the time-scales con-
sidered. However, non-thermal unbinding events (“forced-unbinding”) created by the molecular motors
cannot be excluded; unfortunately, this is also hard to quantify at these large filament densities.
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Experimental Observations: Emergence of Frozen Rings

Adding only a small amount of fascin does not change the pattern formation significantly8:
Still, coherently moving structures such as clusters and density waves emerge, as discussed
in the previous section [see also Fig. 2.10(a)]. This behavior drastically changes if the
added amount of fascin added exceeds a critical concentration. The presence of crosslink-
ers leads to the emergence of rotating polar (mostly planar) actin-fascin structures, with
a rotation speed of the rings of about 3µm/s. While structure formation in the high-
density motility assay relies on a balance between assembly and disassembly processes, the
addition of crosslinker molecules inhibits the disassembly. This leads finally to a quies-
cent steady state where all filaments are firmly incorporated in constantly rotating rings
[see also Fig. 2.10(b)] and where any orientational fluctuations on the single filament level
are completely arrested (“frozen-in”). The absence of disassembly pathways makes the
structure formation mechanism reminiscent of a coarsening process which ends up in an
absorbing state [48]. In this kind of “frozen” steady state, rotating rings are homoge-
neously distributed throughout the motility assay and no preferred direction of rotation
can be observed. Moreover, rings occur in two distinct conformations which are equally
abundant: open and closed [see also Fig. 2.10(b)]. Closed rings consist of self-contained
and constantly rotating actin-fascin fibers, while open rings also move on a stable circu-
lar trajectory with uniform curvature radius, as can be seen in a time overlay [see also
Fig. 2.10(b)]. We measure the distribution of ring radii P (r) in the steady state, which
exhibits the following three characteristics [Fig. 2.10(c)]:

(i) P (r) shows a pronounced maximum at around 9.5µm which is of the order of the
persistence length of individual filaments.

(ii) Towards small curvature radii, the distribution is characterized by a cut-off radius of
∼ 5µm, below which no rings are found.

(iii) The decay of the distribution for large radii is of double exponential shape [see also
Fig. 2.10(c)]. The double exponential nature of the curvature radii distribution is
highly robust upon parameter variation and is conserved throughout variations of
the fascin and actin concentrations, making this a generic feature of the system.

Analyzing the assembly dynamics in time of the open and closed rings allows us to
identify the two following competing mechanisms for the formation of the two ring mor-
phologies:

• growth-stiffening: Open rings seem to develop from strings (filament bundles of a few
filaments9) that assemble by smaller strings approaching from the sides. This growth
process seems to freeze the curvature of the string.

8Note that low fascin concentrations slightly dampen the inherent density fluctuations by crosslinking
events but are not sufficient to completely inhibit them.

9Note that single filaments cannot be distinguished experimentally from bundles consisting of a few
(say 5-10) actin filaments. Due to this limitation, we introduce the non-precise term: “string”.
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Figure 2.10: Phase behavior as a function of the fascin concentration: (a) Low fascin con-
centrations are not sufficient to significantly alter the pattern formation in the high-density
motility assay and at an actin concentration of ρ = 10µM , the characteristic traveling den-
sity waves evolve. Compared to the case without crosslinkers, the density waves are less
pronounced as the crosslinker slightly hinders the formation of density inhomogeneities.
(b) Above a critical fascin concentration of cc ∼ 0.075µM , the pattern formation dras-
tically changes as constantly rotating rings evolve that are either closed or open. In the
steady state, all actin filaments are incorporated in rotating rings and fluctuations on the
single filament level are absent. All scale bars are 50µm. Ring curvature distributions:
(c) shows the cumulative curvature radii distribution P (r) in the frozen steady state; the
inset depicts the noncumulative distribution. The distribution is comprised of two charac-
teristic decays, each corresponding to either closed or open rings. These two different ring
morphologies rely on distinct ring formation mechanisms that are related to the growth
mechanisms in the system (see text for details).

• ring-closure: Closed rings typically10 emerge from self-closure of strings if they are
long enough and the curvature is not yet frozen-in. While ring closure leads to
predominantly small ring diameters, the growth-stiffening process naturally yields
rings with larger curvature radii.

Modeling of Freezing

In the following, we aim to construct an appropriate model that reproduces the char-
acteristics of P (r) observed in the experiment [(i)-(iii)], and otherwise, includes the two
competing mechanisms of ring-closure and growth-stiffening. To this end, we developed an
agent-based model, where the experimentally observed actin-fascin strings are modeled as
elongated, polar strings that move with a velocity v0 on meandering trails [Fig. 2.11(a,b)].
The heads of these strings pursue circular trajectories with stochastically varying curva-
tures, and the tail strictly follows the head’s trajectory. Further, the strings are subjected
to aggregation process which result in a continuous string thickening and merging pro-
cesses between adjacent strings. The following describes the two basic ingredients of the

10Very rarely, open rings with frozen-in curvature build a closed ring by assembly of more flexible stings.
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simulations: (A) the computation of the random trajectories and (B) the incorporation
of the aggregation mechanisms.

(A) In the absence of aggregation processes, the trajectory of the strings is determined
by stochastic forces stemming from the HMM motor proteins at the surface. Similar to
worm-like bundles [47, 14], it can be expected that the curvature distribution is approx-
imately of Gaussian shape. Mathematically, such a distribution can be generated by a
stochastic process defined by the following update rule for the curvature:

κ(tn+1) =
1

2
(κ(tn) + η) , (2.3)

where n denotes the time step and η represents a random variable that is uniformly dis-
tributed over the interval [−α, α] (α characterizes the noise level in the system). Stochas-
tic changes of a given curvature occur with a rate ω, with equally spaced time intervals,
tn+1− tn = ω−1. For the resulting distribution, the reader is referred to the Supplementary
Material of publication B.3. It should be noted that Eq. (2.3) is not precisely equal
to equations of motion for a discrete Brownian walker described in curvature space. The
factor 1/2 introduces a memory term, which leads, however, only to weak deviation of P (r)
relative to a Gaussian distribution.

(B) Aggregation of the strings into longer and thicker bundles affects the trajectories of
the strings in a twofold way: While elongation of strings changes their probability to collide
and form even longer strings or closed loops, thicker bundles that are the result of lateral
aggregation are less susceptible to curvature changes. The elongation of strings is mainly
based on merging events between adjacent strings, which occur only for certain collision
parameters. The colliding beads, say beads 1 and 2, have to be within a capture distance
R1 + R2, where R1 and R2 denote the radii of the particular beads. The bead radius Ri

mainly depends on the excluded volume of the strings and scales with the number of strings
already merged according to11 Ri = R0

iML0/L, where R0
i denotes the initial radius and L

the length of the structure [see Fig. 2.11(a)]. Further, strings only merge if the collision
angle |θ| is smaller than a critical merging angle θc accounting for the binding properties of
fascin, which can only link approximately parallel orientated filaments [25]. The merging
naturally includes ring closure events when the head of a string interacts with its own tail.
The lateral aggregation is based on the continuous uptake of individual filaments and small
strings, leading predominantly to a growth in thickness. The increase in thickness results
in an increased stiffness of the strings that is modeled by a linear increase of what we call
a tenacity parameter b(t)

b(τn+1) = b(τn) + βb0, (2.4)

with b0 being the initial tenacity b(τ = 0) and β determining the thickening speed. The
time intervals are taken as equally spaced and τn+1 − τn = λ−1 defines the thickening rate

11This formula just expresses conservation of the two-dimensional particle surface (excluded volume),
since M2R0

iL0 is the surface of M merged strings, which shall be equal to the dynamic surface L(t)2Ri(t).
Implicitly, we neglect string growth in three dimensions, which is however, only a weak effect according to
experimental measurements of the light intensity (private communication with Volker Schaller).
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λ. The linear tenacity increase modeled in Eq. (2.4) is motivated by the fact that a linear
increase in the thickness of the strings implicitly implies an infinite filament reservoir. Since
the experimentally observed ring formation is completed long before the filament reservoir
is depleted, this is in good agreement with experimental observations. Thicker strings
have a higher tenacity and are thus less susceptible to curvature changes. This reduced
susceptibility to curvature changes can readily be modeled by modifying the update rule
of Eq. (2.3) with a weight factor w[b(t)] that depends on the tenacity

κ(tn+1) =
w[b(tn)]κ(tn) + η

w[b(tn)] + 1
. (2.5)

The functional dependence of the weight factor w on the tenacity b is given by w[b(t)] =
exp [(b(t)− b0)/b0]. The curvature distributions that result from the incorporation of
Eqs. (2.4) and (2.5) are fundamentally different from the curvature distributions that result
from the stochastic process defined by Eq. (2.3). The interested reader is referred to the
Supplementary Material of publication B.3.

Results: Competition between merging processes of actively transported strings and the
growth-stiffening embodied in the increase of b(t) and the weight factor w, seems sufficient
to retrieve the coexistence of open and closed rings [see Fig. 2.11(b)]. Omission of one of
these processes leads to the formation of either closed or open rings only. Most importantly,
the cumulative radii distributions P (r) for open and closed rings decay exponentially in
accordance with experimental observations [see Fig. 2.11(c)], with average ring radii of
open rings larger than the ones of closed rings.

Moreover, the simulations allow for a backtracking of the steady state properties to
the inherent noise in the active system which determines the stochasticity of each string
trajectory: Lowering the amplitude α or increasing the rate of curvature changes ω leads
to an increase in the fraction of open to closed rings, denoted Γ [see Fig. 2.11(d)]. This
prediction has also been verified in the experiment as the noise level in the system can be
addressed by varying the motor density on the cover slip σm. A decreased number of motor
proteins on the surface leads to more rugged trajectories and hence smaller curvature radii.
In accordance with simulations, a gradual decrease of the motor density (i.e. a larger noise
level, equal to larger α in the simulation) decreases the ratio between open and closed rings
Γ (not shown, see publication B.3). Taken together, the consistent predictions of the
model confirm that the assembly dynamics of rings in the gliding assay with crosslinkers
can be understood in terms of the competition between merging events of filaments and
filament growth that freezes the curvature.

In summary, the high-density motility assay serves as a versatile model system to ex-
plore the full breadth of non-equilibrium steady states in active systems. In section 2.1.2 it
was shown that the interplay between assembly and disassembly of driven filaments leads to
dynamic patterns like swirls, clusters, and density waves [Fig. 2.6]. These non-equilibrium
steady states are characterized by the perpetual formation and destruction of structures
driven by the on-going input of energy at the scale of an individual filament. Upon adding
just a single new ingredient, namely passive crosslinking molecules, we have found here
that the nature of the non-equilibrium steady state changes fundamentally; the presence



2.1 The Gliding Assay – A Paradigm for in-vitro Active Systems 23

Figure 2.11: Results of the Cellular automaton simulations: (a) The two experimentally
observed aggregation processes — merging and growth stiffening — are described using a
continuous agent-based simulation. The actin-fascin strings are modeled as polar elongated
strings that move with a velocity v0 on meandering trails . The tip is subjected to curvature
changes of rate ω and a noise level α, resulting in a meandering trajectory [inset (b)]. The
strings stiffen due to growth processes of rate λ. Furthermore, merging events with adjacent
objects occur if the relative angle θ between them is smaller than θc. These two aggregation
processes lead to the emergence of rings in two configurations — open and closed (b).
The occurrence of two ring configurations is reflected in the ring radii distribution p(r)
and the corresponding cumulative distribution P (r) that can be separated in open and
closed contributions (c). The distribution for open and closed rings decays approximately
exponential. The ratio of open to closed rings Γ increases with the rate of the random turns
ω, while it decreases with the noise level α, see (d). Parameters are: ω = 0.1, λ = 0.4,
α = 1, β = 0.2 and θc = 10 degrees. All scale bars are one string length L0. For more
details on the simulation, the reader is referred to Material and Methods as well as the
Supplementary Material of publication B.3.

of crosslinking molecules facilitates permanent filament aggregation and thereby switches
off the disassembly pathway. As a consequence, the system’s dynamics drive the filament
assembly into an absorbing state where the structure arrests while the filaments still move.
The coarsening process towards this absorbing state combines active driving with filament
aggregation. Once reached, this state is stable and independent of the activity of the
system, yet it directly maps the assembly pathway. This “structural memory” relies on
the intricate mechanical coupling between active transport and aggregation processes. This
coupling and the ensuing aggregation mechanisms fully determine the statistical properties
of the absorbing state.

Two remarks are in order: The phenomena discussed in this section are strongly deter-
mined by the type of the crosslinking molecule, in this case, the passive and polar crosslinker
fascin. Different crosslinking molecules give rise to a completely different structure forma-
tion: For example, one finds contracting gels (termed “active compactification”) in the
presence of non-polar cross linkers α-actinin [88]. Finally, if molecular motors are no more
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confined to the planar substrate, active gels with strongly localized density heterogeneities
are observed [55, 54].
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2.2 The Vibrated Polar Disk Assay

The setup for vibrated particle systems typically consists of the following three basic con-
stituents: Granular particles (“grains”) manufactured from hard solids like metal, a planar
substrate (“plate”) and a shaker-apparatus capable of periodically vibrating the substrate.
Granular particles are typically of size O(1mm) and come in various shapes: Disks [30, 31],
spheres (see e.g. Refs. in [9]) or rods [33, 18, 10, 58]. Particle movement, in general, occurs
due to interactions with the vibrating substrate and the time scale of the interactions is set
by the frequency of the plate vibration. During a vibration period each grain collides with
the plate where it gains momentum depending on the particle’s state12 at the moment of
contact. If the interaction with the plate is anisotropic due to e.g. the anisotropic shape
of the particles, one can observe a rather persistent motion for these asymmetric parti-
cles [33, 18, 10, 58, 30, 31]; see Fig. 2.12(c). Otherwise, if particles are perfectly isotropic
with respect to plate collisions, as in the case of spheres or disks, the ensuing single particle
motion is diffusive13 [Fig. 2.12(d)]. The driving, which is coupled to the granule’s inherent
asymmetry at the moment of contact with the plate, makes the vibrated granular particles
a propelled particle system.

In the following we consider a specific example of a vibrated granular system, where
particles are trapped between two plates, with the lower of both vibrated vertically (paral-
lel to the direction of gravity). Moreover, particles are perfectly round (disks) with respect
to inter-particle collisions. However, regarding the collisions with the vibrating substrate
underneath, these particles have a built-in polar anisotropy [see Figs. 2.12(a) and 2.12(b)]:
The rear part is made of rubber, while the front part consists of a tiny metal tip. During vi-
bration, this asymmetry leads to a rather persistent movement of these particles compared
to disks, which lack any built-in asymmetry [see Figs. 2.12(c) and 2.12(d)]. In the horizon-
tal direction, the system is confined by a flower-shaped solid boundary [see Fig. 2.12(e)],
where the specific shape of the boundary was chosen in order to reduce particles’ jamming
in sharp edges of e.g. a rectangular geometry. Interestingly, large collections of polar vi-
brated disks exhibit swirling and swarming patterns (see Fig. 2.12(e), left; and [30, 31])
quite similar to the gliding assay at high filament densities (refer to section 2.1.2). In order
to understand how these patterns develop at the particle level, we aim at a quantitative
modeling approach for the vibrated polar disk assay. Initially, the basic qualitative exper-
imental observations are presented in section 2.2.1. In section 2.2.2 a theoretical model
is discussed that quantitatively matches with the corresponding experimental observations
(the qualitative agreement is already indicated in Fig. 2.12(e), right). The quantitative
agreement of the model dynamics to those from experiment allows us to use the model to
investigate system sizes inaccessible for the experiment due to the inherent limitations14 of
the vibration apparatus. Therefore, the model offers the answer to the following question:
Can the experimental system exhibit a phase transition to a true long-range ordered, co-
herently moving state in the absence of confining boundaries?

12The state of a granular particle is given by its orientation and the center-of-mass coordinates.
13Diffusive trajectories are observed for time scales notably above the inverse vibration frequency.
14Increasing the size of the vibrating plate leads to bending modes interfering with the particle dynamics.
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Figure 2.12: (a) Photograph and (b) sketch of one polar disk, with particle’s polarity n
indicated. (c) Polar disks move typically move along persistent trajectories, while (d)
isotropic disks without built-in asymmetry mostly perform a random walk. (e) Typical
snapshots of the patterns observed in the petal-shaped geometry, for the experiment (left),
and the model (right). Particles that are aligned parallel [anti-parallel] to their neighbor-
hood are depicted in red [blue] (figures (c), (d) with courtesy of Oliver Dauchot).

2.2.1 Qualitative Experimental Observations
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Figure 2.13: Illustra-tion
of a typical collision.

Let us first summarize the main qualitative experimental find-
ings and observations from the vibrated polar disk assay [30, 31],
and give their implications for the equations of motion of a
model that adequately describes the dynamics:

• There are two, in generally non-parallel fields in the dy-
namics of the polar disks: Particle velocity and intrinsic
polarity [Fig. 2.12(b)]. This fact is illustrated in Fig. 2.13,
which depicts a typical collision. Blue arrows correspond
to the polarity and the solid line indicates the trajectory.
An appropriate model should therefore involve equations
of motion for both respective fields, and it is required to
capture adequately the coupling between both.

• Even though the particle polarity is rather persistent,
the velocity fluctuates comparably strongly. These pro-
nounced velocity fluctuations even lead to notable periods
of backward motion. A model should be able to account
for this finding and reproduce the ratio between backward
and forward displacements.

• Particles are made of hard materials and move in the absence of a surrounding dissi-
pating medium. Therefore, particle interactions in the model’s equations of motion
should be solely short-range and repulsive.
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• Collisions are observed to exhibit a rather peculiar feature [see Fig. 2.13]: One “en-
counter” typically involves many successive collisions, where each time the particles
bounce back without altering their polarity much, so that they quickly collide again.
These encounters last for a finite time and take place over some finite spatial exten-
sion. An appropriate model should be able to reproduce these characteristics as well
as the average extension and duration of these strange encounters.

• Particles are observed to move with significantly lowered speed close to the horizon-
tally confining boundary. This and the aforementioned “bouncing-back” collisions
imply that the model must account for particles’ inertia.

• The shape of the boundary was found to have a profound effect on the system’s pat-
terning properties due to accumulation of particles at the boundary. Therefore, the
shape of the boundary (i.e. the flower-shaped geometry) must be explicitly accounted
for.

In the following section we aim at a model, i.e. a set of equations of motion, that give
rise to the qualitative features listed above, and also allows us to reproduce the single and
collective dynamics quantitatively.

2.2.2 Quantitative Modeling of the Dynamics of Vibrated Polar
Disks

In the experimental setup, the polar disks are vibrated between two plates. Rather than
modeling their full three-dimensional dynamics, we describe their effective two-dimensional
motion. In other words, vertical vibrations are not treated explicitly. Instead, the vibration
amplitude enters implicitly via effective parameters. The major new features of the model
compared to Vicsek-like models [105, 28, 22, 40, 23] are: (i) The dynamics of the particle’s
intrinsic polarity with respect to their velocity is explicitly described, and (ii) no explicit
alignment rules are employed, but collisions are modeled explicitly. We assume that the
vibration frequency is large enough to allow us to describe driving and dissipation of
the particles via continuous forces. Building on the experimental observations detailed
in section 2.2.1, we were led to the following model15: Particle i is subject to a noisy
acceleration along its polarity axis ni (with anisotropic, intrinsic, “active” noise, with
respect to the particle’s polar symmetry), balanced by an effective linear friction term
along its velocity vi = d

dt
ri, with ri denoting the particle’s coordinates. Particles i and

j with |ri − rj| < d, where d is the particle diameter, interact by means of a pairwise,
inelastic, repulsive interaction force Fij

ε . Hence, we have

d

dt
vi = [µ+ η‖]n

i + η⊥ni⊥ − βvi +
∑

j

Fij
ε , (2.6)

15Other solutions were tested, but the one presented here is both simple and quantitatively consistent
with the data.
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where µ and β are constants giving rise to a stationary speed v = µ/β, ni⊥ is a unit
vector perpendicular to ni, η‖,⊥ represent Gaussian distributed white noises with zero
mean, i.e. 〈η‖,⊥(t)η‖,⊥(t′)〉 = 2D‖,⊥δ(t−t′), where D‖,⊥ denotes the corresponding diffusion
constant. The interaction force Fij

ε is given by the established spring dash-pot model
[52, 20], which, for hard particles, depends on just a single parameter, the restitution
coefficient ε. Specifically, Fij

ε = [−λ (vi − vj) · r̂ij + κ (d− |ri − rj|)] r̂ij, for |ri − rj| < d,

and Fij
ε = 0 otherwise, where r̂ij = ri−rj

|ri−rj | , and parameters λ and κ are related to the

(normal) restitution coefficient via ε = exp (−λτhc) with τhc = π [2κ− λ2]
−1/2

[52].
Eq. (2.6) must be complemented by one governing the polarity of particles, which

was observed to remain anti-aligned to the velocity during episodes of backward motion.
In other words, when αi = ∠(vi,ni), the angle between velocity and polarity, is acute,
frictional interactions with the vibrating plate are assumed to rotate ni towards vi, while
for |αi| > π/2, ni rotates towards −vi [see Fig. 2.15 for an illustration of the directions
of rotation]. We thus propose the following equation for the polarity angle θi [with ni =
(cos θi, sin θi)]:

d

dt
θi = ζ sinαi sign(cosαi), (2.7)

where ζ characterizes the strength of the coupling between polarity and velocity. This
parameter is expected to be rather small given the observed persistence of n even when v
changes sign abruptly.

3.1 Experimental System 83

Figure 3.5: Three samples of binary encounters of particles showing di↵erent aligning properties.
(a,b): Particles collide successively with each other, resulting in gradual alignment of
their directors. The encounter ends with particles a relatively large distance away from
the position of the first collision. (c): Two particles collide head-on and bounce repeatedly
o↵ each other. Their polarities hardly change until they finally pass by each other, each
particle continuing along in its original direction of motion. (Figures taken from [7,8])

where �xi(t,�t) = xi(t + �t) � xi(t) is the particle’s displacement during a time �t. The
time t in the sum is increased in discrete steps of �t. �t is chosen as the smallest timescale
accessible to observations, i.e. the time lag between two successive frames of the camera equal
to 5.75 ⌧0, where ⌧0 = f�1 is the timescale of the vibration. Since most motion occurs along
the axis defined by the particle’s intrinsic polar axis, Vk gives a measure of the particle’s
velocity. As can be seen in Fig. 3.4, the distribution of Vk is increasingly peaked around a
value vtyp = 0.025 for larger times. vtyp defines the typical velocity of particles in the system.
The diminishing probability of negative value of Vk with increasing time shows again the
elimination of “back-steps”.

The emergence of collective motion requires a mechanism that aligns particles’ directions
of motion during encounters. As the vibrated polar disks are isotropic with respect to the
interaction, their shape supplies no such mechanism. Further, since the disks are made of a
hard metal alloy, no mechanism analogous to that for soft interactions discussed in chapter
2 can be expected. Instead, the origin of the alignment mechanism must lie in the dynamics
of the director n and the instantaneous velocity of particles. As we have seen, the direction
of the instantaneous velocity of particles is coupled to the director, yet not identical to it. In
Fig. 3.5, sample trajectories of binary collisions of the vibrated polar disks are shown. These
trajectories follow very peculiar patterns. Particles bounce repeatedly against each other,
until either their polarities are aligned (Fig. 3.5a,b) or they pass each other by with hardly
any change to their directors (Fig. 3.5c). In this way, a particle encounter comprises a large
number of actual collisions between particles. This also leads to large spatial extensions of
encounters, especially in the case where the particles’ directors are aligned as a result of the
encounter (Fig. 3.5a,b). Further, this shows that alignment of directors is a gradual process
achieved over a large number of successive collisions.

For the investigation of collective motion in the experiment, N = 890 identical polar disks
are placed on the vibrating plate at the same time. At the boundary, particles tend to align
their directors to a direction parallel to the boundary. In a circular box, this would lead
to swirling motion and the emergence of a global vortex. To remedy this, the experimental
setup uses a box with a peculiar flower-shaped boundary. Although particles’ directors are

Figure 2.14: Illustra-
tion of an “indiffer-
ent” collision.

Before proceeding to the results, let us consider how Eq. (2.6)
and Eq. (2.7) can lead to parallel alignment of particles. In general,
there are two distinct particle configurations [Fig. 2.15]: (a) In one
case, director and velocity point into the same half-plane (defined
by the director, with cosα > 0), which applies to e.g. cases of
persistent movement. In the other case, (b) director and velocity
point into opposite half-planes (cosα < 0), e.g. after bouncing
back collisions or collisions with the boundary. It is the hard inter-
particle collision that spontaneously creates an angle α between
both fields, which is either reduced to zero (a) or increased towards
π (b). Then, depending on the relative orientation and spatial
arrangement of the two colliding particles, each rotation of the
particle itself (between two successive collisions) changes the relative orientation towards
a parallel or an anti-parallel configuration. This is reflected in the typical outcomes of
collisions, which are either aligned approximately parallel [Fig. 2.13] or “indifferent”, i.e.
their pre-collisional angle is approximately equal to the post-collisional angle [see Fig. 2.14].

Rescaling: To make contact with the experimental results, we rescale time t → t/τ0,
with τ0 the inverse of the vibration frequency f = 115 Hz [30, 31]. Length is measured
in particle diameters d: x → x/d. Our model possesses six parameters: µ, β, ζ, D‖, D⊥,
and ε. At fixed (dimensionless) experimental vibration amplitude16 Γ = 2πaf 2/g, one

16Vibration amplitude a is about 25µm and is measured at a peak acceleration of 1g at the given
frequency f .
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Figure 2.15: Coupling between velocity and director in Eq. (2.7): (a) If the velocity and
the director point into the same half-plane, the director is directed towards the velocity,
while (b) for the opposite case, the director is rotated towards the negative velocity.

parameter can be eliminated by matching the typical experimental speed with the model’s
velocity v = µ/β. In the following, we use the experimental data gathered at the vibration
amplitude Γ = 2.7, where the most ordered regimes have been observed, and for which
v = 0.025 [30, 31].

Single particle results: We first analyze the single-particle dynamics in order to test
the overall quality of the model and to estimate the remaining four parameters (i.e. β,
ζ, D‖, D⊥; the restitution coefficient ε only affects particle interactions). To find the
best-matching set of parameters, we consider the following two quantities: The angular
diffusion constant Dθ = 1

2τ
〈[θ(t + τ) − θ(t)]2〉t (with 〈...〉t denoting a time-average), and

the ratio of the displacement fluctuations parallel and perpendicular to the polarity, Π :=
〈∆r2‖〉t−〈∆r‖〉2t
〈∆r2⊥〉t−〈∆r⊥〉2t

, with ∆r‖,⊥(τ, t) =
∑(t+τ)/∆t

m=t/∆t [ri(m∆t + ∆t) − ri(m∆t)] · ni‖,⊥(m∆t), where

∆t = 5.75 τ0, equal to the experimental sampling time determined by the camera frame
rate. Scanning the four dimensional parameter space, we select a best-matching parameter
set for which both quantities agree with the experimental value within an error margin of
±30%. This is approximately equal to the imprecision arising due to different preparations
of the experimental setup. In spite of this modest accuracy, the model quantitatively
captures the observed experimental particle dynamics: We compare the distributions of
the parallel displacements normalized by τ , denoted as v‖(τ) = ∆r‖/τ , and of the angle
α(τ) = ∠(n(t), r(t + τ) − r(t)) to those recorded experimentally. We find a very good
agreement for all values of τ considered [Figs. 2.17(a) and 2.17(b)]. Note that, as expected,
the particles exhibit backward motion for significant time periods [tails in the negative
sector in Fig. 2.17(a), and peaks at ±π in Fig. 2.17(b)].

Binary collision results: We now turn to binary collisions, for which the restitution co-
efficient ε must be chosen. The following results are presented for ε = 0.4, but we observed
that changing ε in the range ±30% does not influence collision properties significantly.
Experiments have revealed that one “encounter” typically involves many successive colli-
sions, where each time the particles bounce back without changing their polarity much,
so that they quickly collide again. These encounters last for a finite time and take place
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over some finite spatial extension. It was found experimentally that they are well delim-
ited using the following criterion: An encounter starts when two particles get closer than
some threshold collision distance17, namely |ri − rj| ≤ dc = 1.7, and their polarities point
“inwards”, i.e. |(ri + ni)− (rj + nj)| ≤ |ri− rj| (see Fig. 2.16 for an illustration; and [31]).
An encounter ends when either particles are separated by more than dc, or their polari-
ties point “outwards”. We have used the same criterion for our model. Figures 2.17(c-
f) depicts the results of a scattering study for the experimental setup and the model.

Figure 2.16: Definition of
an encounter.

Thousands of binary encounters (hereafter called collisions
for simplicity) were recorded, and the outgoing relative angle
θout of the two particles plotted against their incoming rela-
tive angle θin, the impact parameter b ∈ [0, 1] [20] is shown
as color code [Figs. 2.17(c) and 2.17(d)]. The model data
shows a striking agreement with the results measured in the
experiments: Most collisions actually leave the polarities un-
changed (θout ' −θin), and a minority of them align the
particles almost perfectly (θout ' 0). We estimated the frac-
tion of polar aligned events, finding 0.14 for the model and
0.18 for the experiment18. The model also matches the dis-
tribution of head-on (b ≈ 0) and glancing (b ≈ 1) collision events. We further determined
the PDF of the duration of collisions τcol as well as that of their spatial extension `col,
given by the center of mass displacement. The model reproduces the observed exponential
distribution of τcol quantitatively, while it fails to reproduce the roughly algebraic decay
of `col (but nevertheless gives a correct mean extension). To what degree this is an actual
discrepancy between model and experiment remains to be clarified. In fact, the very exis-
tence of an algebraic decay for the experimental data can be questioned due to the small
number of collisions with large extensions.

Collective results: We performed simulations using the same flower-shaped geometry
[Fig. 2.12(e)], and number of particles (N = 890) as in the experiment [30, 31]. For
the parameter values matching the single particle dynamics and binary collisions (for
vibration amplitude Γ = 2.7), we observe, as in the experiments, fairly large, polar
aligned, moving clusters [compare Fig. 2.12(e) right/left]. However, the order parame-
ter ψ(t) = 1

M(t)
|∑i∈ROI ni|, with M(t) denoting the number of particles currently located

within the central “region of interest” (ROI) of radius 10, is typically smaller than in the
experiment [Fig. 2.17(g)]. The effective packing fraction observed in the ROI is found to
be very close to that of the experiment (φ ' 0.39, whereas the nominal packing fraction is

17The value of dc = 1.7 has been found empirically as optimal by means of the numerical model and the
experiments: Values significantly below this value “artificially” cut collisions with larger bouncing back
distances into two collisions, thereby altering the statistical quantities such as mean duration and mean
length of a collision. By means of the simulations we could show that values above dc = 1.7 notably
increase the number of “ghost” collisions, where particles move within the collision area defined by dc
[Fig. 2.16], but leave it without touching each other due to their intrinsic stochastic single particle motion.

18To avoid counting events whose outcomes are possibly influenced by the limited camera frame rate,
we neglected all events with θin < π/6. Moreover, polar events are defined by: θout > −θin/2.
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0.47), indicating that particles accumulate at the boundary in the model as well. Running
the model at φ = 0.39 in a box of approximately the same size but with periodic boundary
conditions—a privilege of the in silico approach— yields only a marginally larger average
polarization [Fig. 2.17(g)]: a frustration-free geometry is unable to restore enough order.

We also ran the model in square periodic domains of linear size L at the nominal packing
fraction φ = 0.47, and then found order being slightly stronger than in the experiment
[Fig. 2.17(g)]. Nevertheless, increasing system size L, we observe that the overall order
parameter 〈Ψ〉t = 〈 1

N
|∑N

i=1 ni|〉t decreases first rather slowly, then faster as a function of
L [inset of Fig. 2.17(h)]. Thus, no true long-range order is present at the exact conditions
probed experimentally.

Next we use a further privilege of in silico investigations—the freedom to change param-
eter values—and show that asymptotically ordered regimes would probably be observed in
slightly different experimental conditions. Experimentally, the vibration amplitude Γ was
used as a control parameter for the onset of collective motion. Decreasing Γ to around
2.7 in the experiments, order was observed to increase from near-zero to about 〈ψ〉t = 0.5.
Unfortunately, due to static friction, the particles stopped moving for Γ values below 2.7.
To mimic different Γ-values in the model we multiply both diffusion constants D‖ and
D⊥ by a coefficient γ2, with γ ∈ [0, 2], so that γ = 1 corresponds with the experiment
at Γ = 2.7. Varying γ, we find the transition to collective motion to be close to γ = 1
[Fig. 2.17(h)]. The transition point is observed to move slightly to smaller noise values γ as
the system size is increased. This confirms that vibrated polar disks, in the experimental
conditions, are asymptotically disordered, but signals that asymptotically ordered regimes
do exist nearby, constituting the first report of long-range orientational order in colliding
hard disks without explicit alignment.

Finally, we have performed a systematic exploration of the model, varying γ and the
packing fraction φ in square domains of linear size L = 200 with periodic boundary con-
ditions [not shown19]. For φ . 0.6, varying γ, we observe the usual phenomenology of
models with (effective) polar alignment like the Vicsek model [105, 40, 22, 23, 107]: Im-
mediately below the transition, the particles spontaneously segregate into high-density
high-order “bands”20 traveling in a low-density disordered sea. Further away from the
transition, these nonlinear structures disappear, leaving a homogeneous polar phase with
its characteristic giant number fluctuations and long-range correlations [96, 97, 101, 95].

To summarize, we have built a simple yet quantitatively consistent model for the dy-
namics of the vibrated polar disks studied in [30, 31]. This model constitutes one of the
first in which the dynamics of the particle’s intrinsic polarity with respect to their velocity
are taken into account [46, 94]. An adequate description of the granular system of vibrated
discs requires that the polarity is treated as a slow variable compared to the velocity, which
can change fast due to collisions with the plate or neighboring particles. Our in silico study
has shown that in the original experiments, the most ordered state reached was in fact in

19The interested reader is referred to publication B.6.
20Interestingly, for φ ≥ 0.6, we could not observe bands in the large noise regime. A detailed discussion

and its implication on the nature of the phase transition is described in publication B.6.
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Figure 2.17: (a) PDF of v|| and (b) PDF of the angle α = ∠(n(t),∆r(t+ τ)) [lin-log] for
selected values of the time increment τ . Experimental data are indicated with symbols;
model data are illustrated with lines. (c,d) Scatter graph θin − θout for the experiment
(c), and our model (d). Values of the impact parameter b are indicated by the color bar.
PDF of the duration τcol (e) [lin-log], and the extension `col of a collision (f) [log-log]. (g)
PDF of the average polarization ψ, evaluated within the ROI, for the experimental system,
the model in the petal-shaped geometry and in periodic boundaries using two values of
packing fractions: φ = {0.39, 0.47}. (h) Average polarization 〈Ψ〉t as a function of the noise
fraction γ2 =D‖/DΓ=2.7

‖ =D⊥/DΓ=2.7
⊥ , shown for three boundary sizes L ∈ {50, 100, 200}

and φ = 0.47. Inset: 〈Ψ〉t [log-log] for γ = 1 and φ = 0.47 as function of system size L.

the region of the transition to collective motion, slightly on the disordered side. However,
asymptotically-ordered regimes do exist nearby. In conclusion, concerning the initial ques-
tion of whether polar vibrated disks exhibit a phase transition to a true long-range ordered,
coherently moving state in the absence of confining boundaries, the answer is: “Yes”.



2.3 Modeling Propelled Particle Systems under Dilute Conditions 33

2.3 Modeling Propelled Particle Systems under Di-

lute Conditions

This section deals with modeling approaches suited to describe the dynamics of propelled
particle systems under dilute conditions. In contrast to the two previous sections, most
of the models described in this section do not explicitly refer to a specific experimental
setup. However, these models can be regarded as extensions of common, already established
models in order to appropriately account for recent qualitative experimental observations in
propelled particle systems. We will discuss these qualitative observations in the respective
sections in more detail.

In section 2.3.1, a lattice gas automaton for propelled particles with local “ferromag-
netic” interactions is introduced. By means of this model, we will show that the phase
transition to collective motion is induced by stochastically nucleated, coherently moving
clusters. All following sections are devoted to different kinetic approaches. For the reader’s
convenience, a digression, establishing the basic knowledge about kinetic theory for pro-
pelled particle systems is presented in section 2.3.2. A list of open questions in kinetic
theory is given in section 2.3.3, bridging the gap between the state of the art and the
research work performed in this thesis. Each of the subsequent section is then dedicated
to one of these open questions. Section 2.3.4 deals with the extension of the Boltzmann
equation to rod-like particles, and how ordering capabilities are changed due to the rod’s
shape. After that, in section 2.3.5, we investigate the role of particle conservation in collec-
tions of propelled particles, and investigate how pattern forming capabilities are influenced
if particle number is not conserved. The impact of a limited interaction range as well as
deviations from a popular generic interaction rule (called half-angle alignment rule) are
detailed in section 2.3.6. Finally, we show how kinetic theory must be modified in order
to obtain a quantitatively correct prediction for the phase boundary between the isotropic
and polarized state in the dilute limit; cf. section 2.3.7.

2.3.1 Rule-based Automaton with Local Interactions

While previous approaches on propelled particle systems focussed on the long-time dynam-
ics [105, 28, 29, 22, 40, 23, 11], e.g. the emergence of the polar state, or concentrated on
the analysis of the ensuing stationary patterns, the transient assembly processes leading
to collective motion remain largely elusive. In the introduction (section 1.2) we explained
that growing clusters act as “vacuum cleaners”, which successively take up surrounding
particles and align them to the horde. Since clusters already exist on the isotopic side of
the phase boundary it is not clear which criteria clusters must meet to induce a transition
(in time) to a polar state.

To investigate this question, we designed a rule-based automaton for (self-)propelled
particles moving on a hexagonal lattice which is efficient enough to deal with large system
sizes and particle numbers, thereby offering good statistics to study the time-dependent
dynamics on short and long time scales. In our model, particles of length L and width equal



34 2. Modeling Propelled Particle Systems

to one inter-lattice spacing, interact via an effective excluded volume interaction and a local
polar alignment field. Both enter into the model by supplementing the probabilities for the
unperturbed persistent random walk by appropriate factors [for details on the model please
refer to caption of Fig. 2.18(a)]. Since particles in the model move with constant speed
and interactions solely change the outcome with respect to the particles’ orientations, the
automaton model is restricted to dilute conditions where caging effects or the emergence
of bond orientational and translational order can be neglected.

In the absence of excluded volume interactions, we find—in agreement with other agent-
based models with ferromagnetic interactions, e.g. [105, 28, 22, 29, 40, 23]—a phase tran-
sition to collective motion above a critical packing fraction. Interestingly, strong excluded
volume interactions increase this critical packing fraction or even inhibit the development
of collective motion. This breakdown of collective motion at large particle densities has
also been found in other models [67], publication B.9 and publication B.8. A heuris-
tic explanation for this finding is the following: While ferromagnetic interactions tend to
build-up parallel orientations, repulsive interactions lead to anti-correlations in the veloc-
ity. Therefore, it is only a matter of the strength of the ferromagnetic to the repulsive
interaction whether collective motion emerges or not21.

Analyzing the dynamics of the pattern forming processes of N particles, we find that
collective motion is accompanied by a gain in free volume, ρ−γ, where ρ = NL/A [with A:
area of simulation domain, and N ∼ 106] is the (reduced) particle density and γ denotes
the fraction of occupied lattice sites. In the absence of polar alignment processes between
the filaments or for too strong excluded volume interactions, we find that γ fluctuates
around a constant value depending on the strength of the excluded volume interaction ε
[see Fig. 2.18(b), inset]. Adding polar alignment interactions leads to qualitatively different
behavior: There is a threshold density ρc, where the gain in free volume ρ − γ jumps to
a value much larger than the corresponding value for a non-interacting system. Moreover,
measuring the polar order parameters, it turns out that this jump actually coincides with
the onset of polar order. The jump in ρ − γ may, therefore, be taken as a signature to
map out the model’s phase diagram (not shown, see publication B.4). The gain in free
volume also clearly indicates that filaments must have formed some clusters much denser
than expected for a purely statistical (random) overlap of filaments. Fig. 2.18(b) shows
that these clusters are formed by a nucleation process: There is a lag-phase during which
γ remains largely close to a value obtained in the absence of polar alignment processes.
Subsequently, there is a time window [Tnuc, Tstat], where the available free volume fraction
ρ− γ increases towards a higher stationary value. The time to reach the final polar steady
state diverges as a power law Tstat ∝ (ρ− ρc)−ζ with ζ ≈ 1.

Due to the fact that small clusters are continuously assembled and disassembled dur-
ing the lag-phase, the sudden decrease of γ at Tnuc indicates that a notably larger cluster
develops. Until such an event occurs, the overall macroscopic state, characterized here by

21This argument only applies to models with equations of motion solely for particles’ velocities. Particles
with e.g. a direction and a velocity can sustain strong repulsive interactions, while keeping orientational
correlations. An example is the vibrated polar disk assay, which is discussed in section 2.2.
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the gain in free volume, is unchanged. A systematic analysis of the cluster mass distribu-
tion during the lag-phase corroborates our finding that the onset of collective motion is
triggered by a single nucleation events (details on evaluation of cluster mass distribution
see publication B.4), which manifests itself in a coherently moving cluster of sufficiently
large size/mass. We conclude that collective motion close to the critical density is induced
by a rare event, i.e. the nucleation of a cluster of sufficiently large mass, and not by a
wide-spread coarsening process of polarized domains.
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Figure 2.18: (a) Illustration of the rule-based lattice gas automaton: The particles’
dynamics are assumed to be fully determined by its head, while the tail strictly follows the
head’s trail. The persistent random walk is implemented by a stochastic process, where
each filament’s head x0 moves to one of its five neighboring sites xα according to a fixed set
of conditional probabilities Pprw(xα|x0). Excluded volume: For a lattice site that is already
k-times occupied, the probability for further occupation is reduced by a Boltzmann factor,
e−k ε, where ε characterizes the penalty for multiple occupations. Formally, for ε → ∞,
the limit of strict excluded volume is obtained. Alignment interaction: Each particle is
assigned an alignment field u(x, t) at its occupied and neighboring lattice sites (see black
arrows); it is directed along the particles contour. Overlapping alignment fields of different
particles are averaged. In a collision event, the alignment field modifies the transition
probability to move from x0 to x by the Boltzmann factor, αcosϕ, where ϕ is the relative
angle between the alignment field and the direction of motion of the respective collision
partner, ϕ = ∠(u(x),x − x0). Update rule: Given a configuration of N filaments we
use random sequential updating and move a chosen head from position x0 to a target
position x with probability P (x|x0; u, k) ∝ Pprw(x|x0) ·e−kε ·αcosϕ(u). (b) Lag-phase and
nucleation: Time traces of the ratio of occupied lattice sites γ for ρ = 0.6, and a set of
values: ε = 0, 0.5, 1 with α = 5, and ε = 1 with α = 1, from bottom to top. Close to the
phase boundary from the isotropic (ISO) to the polar ordered state (PO) [ε = 1; (red)],
a lag-phase exists, where the system waits for the nucleation of a cluster that triggers
the emergence of polar order; the time when nucleation occurs Tnuc and the time when γ
becomes stationary Tstat are indicated by vertical dotted or dashed lines. Inset : for α = 1,
no order develops, irrespective of the value of ε (ε = 0, 5, 100 from bottom to top).
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2.3.2 Digression: Kinetic Theory for Propelled Particle Systems
— Basic Assumptions & Findings

This section serves as a summary of the basics ingredients and predictions of kinetic theory
for propelled particle systems. A reader familiar with kinetic theory can proceed to the
next section on the open questions in kinetic theory for propelled particle systems.

Boltzmann Equation for Propelled Particle Systems

As in the case of monatomic gases, the Boltzmann equation for propelled particles moving
at constant speed in two dimensions [15, 16] provides a link between the system’s macro-
scopic behavior and the underlying “microscopic” physics of collisions. The latter is, e.g.
described by Newtonian equations of motion or automaton rules, as detailed in the pre-
vious section. The Boltzmann equation for propelled particles in two dimensions governs
the time-evolution of the one-particle density f(r, θ, t), which is a function of the spatial
coordinates r, the orientation of the velocity θ and time t. Considering solely the one-
particle density leads to22 the restriction to binary interactions between the constituent
particles, in turn limiting the validity of the Boltzmann equation to dilute conditions. Bi-
nary interactions are described by collision integrals with each kernel involving a measure
for the rate of collisions, known as the Boltzmann collision cylinder, as well as a collision
rule. The latter constitutes a mapping between the pre-collision angles θ1 and θ2 and
the post-collision orientations of the two colliding particles. The corresponding continu-
ous distribution function required to compute the rate of binary collisions is actually the
two-particle density f (2)(r, θ1, θ2, t). However, to obtain a closed equation for the time evo-
lution of the one-particle density f(r, θ, t), called the Boltzmann equation, the assumption
of molecular chaos is commonly applied [15, 16],23

f (2)(r, θ1, θ2, t) = f (r, θ1, t)f (r, θ2, t), (2.8a)

which neglects any correlations between the particles. Following Refs. [15, 16], the time
evolution of the one-particle density f(r, θ, t) is given by:

∂tf(r, θ, t) + v0v̂(θ) · ∇f(r, θ, t)︸ ︷︷ ︸
streaming

= N [f ](r, θ, t)︸ ︷︷ ︸
angular fluctuations

+ C[f (2)](r, θ, t)︸ ︷︷ ︸
interaction kernel

. (2.8b)

The second term on the l.h.s. is the streaming term accounting for movement of particles
with a velocity v0v̂(θ), where v̂(θ) = (cos θ, sin θ) is the orientation and v0 denotes the
constant speed. The first term on the r.h.s. in Eq. (2.8b) describes the influence of random
angular single particle fluctuations (or self-diffusion events) occurring at a rate λ and
reads [15, 16]:

N [f ](r, θ, t) = −λf(r, θ, t) + λ

∫ π

−π
dθ′ f(r, θ′, t)

∫ ∞

−∞
dη p0(η) δ(θ′ + η − θ), (2.8c)

22This is apparent when considering the Boltzmann equation as the first equation of the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy [53].

23Note that on the level of the Boltzmann equation collisions are assumed to occur locally at r.
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where angular fluctuations are assumed to be Gaussian-distributed according to p0(η)
with a standard deviation σ0. The periodicity of angles is accounted for by a sum of δ-
functions: δ(θ) =

∑∞
m=−∞ δ(θ + 2πm). The parameters λ and σ0 determine the strength

of background noise in the system. The single particle noise described above can either
originate from fluctuations of the particles’ propelling mechanism or stem form thermal
fluctuations (solely rotational diffusion).

The second term on the r.h.s. in Eq. (2.8b) is the collision integral C[f (2)] = C−[f (2)] +
C+[f (2)]. It captures the effects of binary collisions and can be split into a loss and a gain
contribution, C+[f (2)] and C−[f (2)]. These contributions capture the scattering of particles
out of (−), or into (+) an angle interval [θ, θ + dθ], respectively, and read:

C−[f ] = −
∫ π

−π
dθ′ Γ(θ′, θ)f (2)(r, θ, θ′, t), (2.8d)

C+[f ] =

∫ π

−π
dθ1

∫ π

−π
dθ2 Γ(θ1, θ2)f (2)(r, θ1, θ2, t)

∫ ∞

−∞
dη p(η) δ

(
θ̄ (θ1, θ2) + η − θ

)
, (2.8e)

where the stochasticity of collisions (later shortly referred to as collision noise) is modeled
by a Gaussian distribution p(η) with a standard deviation σ. Collision noise can, for
example, arise from the particles’ neglected spatial arrangements characterized by the
impact parameter. The kernel of the collision integrals [Eq. (2.8d) and Eq. (2.8e)] involves
a measure for the rate of collisions (i), denoted as Γ(θ1, θ2), as well as a collision rule (ii),
θ̄(θ1, θ2), implementing a mapping between pre- and post-collision orientations of the two
colliding particles.

(i) The rate of collision, also referred to as Boltzmann scattering cylinder, is, as follows,
derived on geometrical grounds for spheres assuming a completely uncorrelated, isotropic
and homogeneously distributed state: Consider a collision between two particles with ori-
entations θ1 and θ2. Given short-ranged repulsive interactions, the two spherical particles
collide if their relative distance becomes less than the particles’ diameter d. Going into
the reference frame of e.g. particle 2, the velocity of particle 1 is given by the relative
velocity v12 = v0 [v̂(θ1)− v̂(θ2)]. A collision between the two particles occurs within the
time interval [t, t+ dt] if particle 1 can be found in a rectangle of length |v12| dt and width
2d. Back in the laboratory frame, this rectangle deforms into a parallelogram retaining
its surface area given by 2dv0 |v̂(θ1)− v̂(θ2)| dt =: Γ(θ1, θ2)dt [15, 16]. This function is
commonly referred to as Boltzmann collision cylinder and determines the rate of collisions
in the uncorrelated (pre-collision) state for spherical particles moving ballistically in two
dimensions. The function Γ depends solely on the relative angle θ12, and can be written
as follows:

Γ(θ12) = 4dv0 |sin (θ12/2)| . (2.8f)

(ii) The collision rule can be measured experimentally, or can be obtained from simu-
lation or just postulated. In Refs. [7, 15, 6, 16], a very simplistic collision rule, from now
on termed as “half-angle alignment rule”, is used [see Fig. 2.21(a) for an illustration]:

θ̄(θ1, θ2) =
1

2
(θ1 + θ2) , (2.8g)
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which is commonly [7, 15, 6, 16] used for all relative angles θ12 = θ1− θ2 ∈ [0, π] (maximal
angular interaction range). Equations (2.8a)–(2.8g) constitute the kinetic theory for pro-
pelled particle systems as proposed by Refs. [15, 16]. The central control parameters are:
noise level, characterized by the single particle noise σ0 and the collision noise σ, and the
homogeneous density ρ0 = 2πf0 [f0: homogenous one-particle density]. Before we discuss
the open questions, we will give a short overview of the most important results of kinetic
theory for propelled particle systems.

Properties & Results

• conservation of particle number: Noting that the hydrodynamic density ρ(r, t) =∫ π
−π dθf(r, θ, t) and the hydrodynamic velocity u(r, t) = v0

ρ(r)

∫ π
−π dθf(r, θ, t), simple

integration leads to the continuity equation,

∂tρ+∇ · (ρu) = 0, (2.9)

implying that particle number is conserved.

• continuous equation for the momentum field: The equations for the momentum
field τ = ρu can be regarded as Navier-Stokes Equations, for which conservation of
momentum as well as Galileian invariance is broken. For a complete presentation of
these equations and their derivation, we refer the reader to Refs. [15, 16]. Here, for the
sake of brevity, we neglect all gradient terms, leading to the following hydrodynamic
equations:

∂tτ = ν τ − γ τ 2τ +O(∇τ ,∇ρ), (2.10)

where ν and γ constitute two kinetic coefficients that are fully determined by the
control parameters σ0, σ and ρ0, as well as all microscopic properties such as particle
size d, speed v0, and the collision rule Eq. (2.8g). From Eqs. (2.10) two important
predictions can be made:

(i) Phase Boundary: Since the kinetic coefficient ν < 0 as a function of the
control parameters changes24 sign [15, 16], a homogeneous states with τ = 0
becomes unstable, and tends toward a polarized state with a finite polarization.
The manifold in the control parameter space (σ0, σ, ρ0) for which ν(σ0, σ, ρ0) = 0
determines the phase boundary between the isotropic and polarized state25, with

ρt(σ0, σ)
∣∣
ν=0

defining the transition density or the critical single particle noise

σ0,c(ρ0, σ)
∣∣
ν=0

.

24Small values of σ0 [or σ] or large enough values for ρ0 lead to ν > 0.
25Strictly speaking, the homogeneously distributed, polarized state is not stable with respect to spatially

inhomogeneous perturbations; for this see next set of bullet points.
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(ii) Existence of Fixed Points: For ν > 0, there is a stationary fixed point with
τ0 = τ0e, where e denotes some arbitrary broken symmetry axis, and the value
of the fixed point is given by τ0 =

√
ν/δ.

• Predictions of the Inhomogeneous Equations: Testing the inhomogeneous
equations (refer to [15, 16]) against wave-like perturbations ∝ eiq·r [q: wave number]
leads to the following central findings:

(i) Long Wave Length Instability: The isotropic state τ0 = 0 undergoes a
long wave length instability, with q = 0 as the fastest growing mode (type IIIs
instability according to ref. [26]). This finding allows us to restrict to Eq. (2.10)
to determine the phase boundary26.

(ii) Longitudinal Modes in the Polarized State: For ρ > ρt a spatially homo-
geneous, polarized state with τ = τ0 is unstable with respect to longitudinal
perturbations. These perturbations are parallel to the wave vector q and the
fixed point polarization τ0. The corresponding longitudinal modes are the most
unstable ones, i.e. their growth rates are larger than any other modes. It is ex-
pected —but not proven— that these modes give rise to a polarized state with a
stationary wave-like spatial pattern, as already found earlier in agent-based sim-
ulation such as the Vicsek-model [23]. Specifically, Bertin et al. [16] showed that
the Boltzmann equation [Eq. (2.8)] supports a solitary wave solution, however,
stability of this solution has not been analyzed so far.

2.3.3 Kinetic Theory for Propelled Particle Systems:
Open questions

In this section we give a short list of open questions in kinetic theory for propelled particle
systems given by Eqs. (2.8), bridging the gap between the last section and the research
work performed, which is discussed throughout the subsequent sections:

The Boltzmann cylinder Eq. (2.8f), which determines the rate of binary collisions, is related
to spherical particles, therefore, naturally the following question arises:

(1) What is the Boltzmann collision cylinder for rod-like propelled particles, and is there
an impact on the ordering transition due to the rod shape? → section 2.3.4

Furthermore, the Boltzmann equation Eq. (2.8) deals with a single particle species, with
the corresponding particle number being conserved. Therefore, it is natural to ask:

(2) Are the patterning instabilities affected (e.g. the longitudinal instability) when the
total particle number is not conserved? → section 2.3.5

26An instability with a characteristic mode, e.g. Rayleigh–Bénard convection, requires to include the
gradient terms in order to predict the regions in the control parameter space with convection roles.
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Commonly, propelled particles are assumed to interact on the mesoscopic scale for all
relative angles (θ12 ∈ [0, π]) via the so-called half-angle alignment rule (see Eq. (2.8g),
and [7, 15, 6, 16]. A number of well-characterized experimental model systems includ-
ing actin and microtubule gliding assays ([90, 93], and section 2.1), and shaken granular
particles ([30, 31], and section 2.2) highlight that actual collisions differ from this generic
interaction rule in two important respects: (i) The post-collision particle orientations are
not symmetric with respect to the average of the pre-collision directions, but depend on
both the relative orientation and relative position of the colliding particles before the col-
lision [Figures 2.19(a) and 2.19(b)]. (ii) Frequently, one finds “indifferent” events where
collisions do not change the relative orientations of the collision partners [30, 31]. There-
fore, the region of configuration space supporting aligning collisions is restricted, and it is
thus far from obvious whether binary, dissipative interactions actually contribute to the
formation of order in active systems. This raises an interesting question:

(3) With no additional assumptions to be made, does the integrated effect of realistic
binary particle interactions in propelled particle systems suffice to establish a state
of collective motion on macroscopic scales? → section 2.3.6

Finally, the Boltzmann approach relies on the fundamental assumption of molecular
chaos, i.e. it neglects spatial and orientational correlations between the particles which
are about to collide (assumption of molecular chaos). Using the phase boundaries be-
tween the isotropic and polarized states obtained from molecular dynamics simulations as
a benchmark, we ask:

(4) Are correlations essential for a quantitative agreement between the phase boundaries
obtained from kinetic theory and from molecular dynamic simulations. And if so,
how is the Boltzmann equation to be modified in order to archieve quantitatively
correct predictions of kinetic theory under dilute conditions? → section 2.3.7

2.3.4 Particle Length in a Kinetic Description

This section is devoted to the question how the Boltzmann collision cylinder changes when
particles are of rod shape [refer to Eq. (2.8f) for spheres], and whether the rod shape has
an impact on the ordering transition from the isotropic to the polarized phase. In the
following we consider sphero-cylindrical rods of length L and diameter d, as illustrated
in Fig. 2.20(a), with each rod moving with a constant velocity v0. The collision cylinder
Γ(L, d, θ12) depends on the relative angle θ12 and can be derived in an isotropic and homoge-
neously distributed state by geometrical considerations [cf. Fig. 2.20(a)]: On the scale of the
Boltzmann equation, binary collisions occur locally, say in an infinitesimal volume element
centered at r. Assume that particle 1 has an orientation θ1. Then, Γ(L, d, θ12) dt gives the
area around particle 1 in which every particle with orientation θ2 will collide during a time
interval [t, t + dt] with particle 1. As a consequence Γ(L, d, θ12) f(r, θ1, t) f(r, θ2, t)dθ1dθ2

equals the number of collisions per unit time and unit area at time t and position r for
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Figure 2.19: (a) Rod interactions within an angular alignment range ψ̄ (grey shaded) lead
to polar alignment, whose direction typically deviates from the half-angle alignment. (b)
Simulated example trajectory for a model of propelled rigid rods (relative angle ψ ≈ π/3,
impact parameter b ≈ 0 in units of rod diameter, w(π/3, 0) ≈ 1.3). For definition of w,
refer to Eq. (2.22) and the corresponding section. Details on the model used to create the
depicted trajectories are detailed in publication B.7.

two colliding particles with orientations θ1 and θ2, with f(r, θ, t) denoting the one-particle
distribution function. To determine Γ(L, d, θ12), we take a microscopic point of view. Since
the model employed in this work assigns to each particle a velocity vector pointing along
its rod axis, we can distinguish “head” and “tail”. Referring to Fig. 2.20(a), without loss of
generality, we assume π−θ12 ≡ θ ∈ [0, π] (negative relative angles lead to the same result),
and consider the blue rod, with the position of its head indicated by the blue dot. All rods
of relative orientation θ12 = θ1− θ2, and with their heads lying in the area S = A∪S1 ∪S2

at time t, will collide with the blue rod during the time interval [t, t+ dt]. Since A, S1 and
S2 are disjoint27,

|S| = |A|+ |S1|+ |S2| , (2.11)

where |X| denotes the area of the region X. The respective areas are given by:

|A| = dt vrel (L− d)| sin θ| = dt vrel (L− d)| sin θ12|, (2.12)

and

|S2|+ |S1| = dt vrel d

∫ π−θ

−θ
dφ sin(φ+ θ) = 2 dt vrel d . (2.13)

Returning to the laboratory frame, we have vrel = v0|v̂(θ1) − v̂(θ2)| = 2 v0| sin(θ12/2)|.
Noting that Γ = |S|/dt [cf. Eq. (2.11)], we find28:

Γ(L, d, θ12) = 4v0 d

∣∣∣∣sin
(
θ12

2

)∣∣∣∣
(

1 +
ξ − 1

2
|sin θ12|

)
, (2.14)

27Implicitly, we also assumed that the rods move ballistically, therefore we neglected angular changes
by noise within the collision cylinder.

28Preliminary investigations of binary collisions of short (∼ 5µm) actin filaments in the gliding assay
indicate that the calculated characteristics as a function of length (shift of maximum to smaller relative
angles, zero at θ12 = 0) is also found experimentally (private communications with Ryo Suzuki).
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Figure 2.20: (a) Illustration of the collision cylinder in the rest frame of the blue rod. The
red lines indicate the excluded volume due to the finite expansion of the rods. The quantity
vrel denotes the magnitude of the relative velocity of those rods making a relative angle
θ12 = π−θ with the blue rod’s axis, and is given by vrel = v0|v̂(θ)− v̂(0)| = 2v0| sin(θ12/2)|.
(b) Γ(L, d, θ12) as a function of the relative angle θ12 for different values of aspect ratio
ξ = L/d. For the figure, we chose for particle width d = 1 and for particle velocity v0 = 1.
Increasing the aspect ratio ξ, the most probable collision approaches θ12 = π/2, whereas
for ξ = 1 the most probable collision shifts towards θ12 = π.

Integral I0,0 I1,0/I0,0 I1,1/I0,0 I2,0/I0,0 I2,1/I0,0

Value 8dv(2+ξ)
3π

− 4+ξ
5(2+ξ)

3
16

8+π(ξ−1)
2+ξ

6−13ξ
35(2+ξ)

3
16
π(1−ξ)−8

2+ξ

Table 2.1: Summary of relevant collision integrals In,k as a function of the aspect ratio
ξ = L/d, where d denotes the particle diameter and v is the particle velocity. The quantities
In,k/I0,0 depend only weakly on the aspect ratio ξ. In particular, the signs of In,k/I0,0 do not
change with ξ, leaving all our present conclusions (see section 2.3.2, Properties & Results)
made on the basis of the Boltzmann equation (2.8) qualitatively unchanged.

where ξ = L/d denotes the aspect ratio. In Fig. 2.20(b), Γ(L, d, θ12) is shown as a function
of relative angle θ12 for different particle lengths, whereby the particle width d is kept fixed.
In the case of a sphere, i.e. ξ = 1, head-on collisions (θ12 = π) are most probable because
those lead to the largest value of the relative velocity vrel. Increasing the aspect ratio ξ
shifts the most probable collision from θ12 = π towards θ12 = π/2 for ξ →∞. This limiting
case is equal to a needle for which the largest target area is exposed for θ12 slightly29 larger
than π/2.

Now let us turn to the question whether the rod-like characteristics embodied in L/d > 1
and described by Eq. (2.14) have an impact on the ordering transition. To this end, we
have to give a short digression on how the hydrodynamic equations [e.g. Eqs. (2.10) for the
homogeneous state] are obtained from the Boltzmann equation (2.8). First, the Boltzmann

29Note that the maximum of the relative velocity vrel for θ12 = π prohibits Γ to be maximal for θ12 = π/2
in the limit of infinitely long rods. The maximum of Γ for ξ →∞ is at θ12 ≈ 1.91.
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equation is Fourier transformed, with f̂k(r, t) =
∫ π
−π dθ e

ikθf(r, θ, t), leading to:

∂tf̂k + +
v0

2

[
∂x(f̂k+1 + f̂k−1)− i∂y(f̂k+1 − f̂k−1)

]
=

− λ
(

1− e−k
2σ2

0/2
)
f̂k −

∞∑

q=−∞

(
In,0 − e−k

2σ2/2In,k

)
f̂qf̂k−q, (2.15)

where we suppressed the reference to time space coordinates for brevity. The coefficients
In,k are given by:

In,k =
1

2π

∫ π

−π
dθ Γ(L, d, |θ|) cos

[(
n− k

2

)
θ

]
. (2.16)

Then, the Fourier space representation of the Boltzmann equation Eq. (2.15) lends itself
as a starting point to the derivation of the hydrodynamic equations by an appropriate
truncation of the Fourier representation. For details on the truncation scheme we refer the
interested reader to refs. [16], publication B.5, B.7 or B.8. Importantly, since all kinetic
coefficient in the hydrodynamic equations are fully determined by the coefficients In,k,
one can already understand the impact of L/d by rescaling the Fourier space Boltzmann
equation (2.15). To this end we introduce following characteristic scales for time and space:

τ̂λ = λ−1 and ˆ̀
e = v/λ. (2.17)

Noting that I0,0 is equal to the total scattering cross section, the characteristic scale for the

one-particle distribution can be constructed from the noise time scale τ̂λ: f̂ → f̂ · I0,0 τ̂λ,
which gives as scaling for the In,k:

In,k → In,k ·
1

I0,0

. (2.18)

These coefficients In,k which are essential in the derivation for the momentum field equation
(see publication B.5 for details on the derivation) are depicted in table 2.1. Importantly,
the signs of In,k/I0,0 do not change with ξ ≥ 1, leaving all predictions (see section 2.3.2,
Properties & Results) made on the basis of the Boltzmann equation (2.8) qualitatively
unchanged. This suggests that the effect of particle shape is merely quantitative and
affects “only” the values for transition density or the fixed point.

2.3.5 Role of Particle Conservation for Propelled Particle Sys-
tems

In this section we address the significance of constraints for particle number by highlighting
the differences in the collective properties between particle conserving systems and those in
contact with a particle reservoir. Our focus will be on the comparison of two archetypical
scenarios, which we will refer to as the canonical (particle conserving), and the grand
canonical (violating particle conservation) scenarios, respectively.
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Figure 2.21: (a) Cluster assembly: Illustration of two single particle species (light orange)
with a pre-collisional relative angle of θ12, colliding such that they align collinear to the
average angle θ̄ (half angle alignment rule). Both particles assemble to a cluster species
(indicated in blue) after the collision. (b) Evaporation: A particle leaves the cluster by a
random change of its direction at a characteristic rate. (c) Condensation: A single particle
joins a cluster by perfectly aligning to the cluster particles (blue). (d) Cluster-cluster-
interaction: In our modeling framework clusters are assumed to interact via half-angle
alignment.

To this end, we will resort to the kinetic approach given by Eqs. (2.8) for propelled
particle systems and extend this description. Specifically, we are led by a physical picture
of collective motion that has been developed over the last decade based on observations in
agent-based simulations of locally interacting, particle conserving systems [40, 23, 75, 107].
Among the most pertinent phenomena that have been reported in the context of these stud-
ies is the formation of intricate local structures pervading these systems in the vicinity of the
ordering transition: Densely packed cohorts of coherently moving particles—subsequently
referred to as clusters—incessantly “nucleate” and “evaporate” on local scales, even below
threshold, rendering the system isotropic and homogeneous only in the limit of macro-
scopic length scales. Individual particles exhibit superdiffusive behavior in this regime,
performing quasi-ballistic “flights” as long as they are part of a cluster, and undergoing
conventional particle diffusion if they are not. Above threshold, collective motion mani-
fests itself on macroscopic scales in the form of coherently moving and dense bands, which
are submersed in an isotropic low-density “particle sea”. Spatially homogeneous flowing
states, in contrast, are observed only well beyond the ordering threshold [40].

In light of the above, we suggest a simplified modeling framework be implemented in
kinetic theory in order to incorporate the intricate role of clusters on the ordering behavior
(for technical details please refer to publication B.5):
Particles interact via binary collisions with a scattering cross section which is explicitly
derived as a function of particle shape [see Eq. (2.14)]. Depending on whether a given
particle is part of a cluster or not, it will be associated with one of two distinct particle
classes, which we will refer to as the class of cluster particles and the class of single parti-
cles, respectively. Based on this two-species framework, we propose the following type of
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interactions among the species of equivalent and different type [refer to Fig. 2.21]:
(a) Single particles are “converted” to cluster particles by “cluster assembly” every time
two single particles collide with each other, with their post-collision orientations deter-
mined by the half-angle alignment rule. Conversely, (b) cluster particles are “converted”
back to single particles by an “evaporation” process, which we assume to occur at some
constant (possibly particle shape dependent [75]) rate. (c) Single particles can join the
cluster by “condensation”, i.e. they perfectly align to the cluster’s direction of motion.
(d) Cluster particles interact with each other via half-angle alignment30. All inter-particle
collisions are assumed to involve an interaction noise of amplitude σ [analog to Eq.(2.8e)].
Moreover, in the absence of interactions, cluster particles will be assumed to move ballisti-
cally, whereas single particles will be assumed to perform random walks. Taken together,
the conversion dynamics and the class-specificity of particle motion provide a simple way
to implement the typical superdiffusive behavior of individual particles that was alluded
to above.

To assess the importance of particle conservation in the context of pattern formation,
we analyzed two variants of this model: First, we studied closed systems in which the
total number of particles is conserved (canonical scenario) and where, consequently, the
denser cluster phase grows at the expense of the single phase. Secondly, we examined open
systems in contact with a particle reservoir (grand canonical scenario), where the particle
current out of the single phase is compensated for so as to retain the density of the isotropic
sea of single particles at a constant level; cf. Fig. 2.23.

Inspecting the corresponding hydrodynamic equations (for details on the derivation,
please refer to publication B.5), we were able to establish the following physical picture,
portraying the formation of collective motion via dissipative particle interactions. For both,
the canonical and the grand canonical model, we identified two characteristic density scales
ρ̄ and ρ(c)(σ), with ρ(c)(σ) > ρ̄, which allowed us to distinguish three density regimes. These
are illustrated in Fig. 2.22, with single particles and cluster particles depicted by orange
dots and blue arrows, respectively.

(i) For low densities, ρ < ρ̄, the rate at which particles collide is much smaller than the
rate at which clusters disassemble. In terms of a particle based picture, this regime
corresponds to a situation, where particle clusters are unstable, evaporating shortly
after their nucleation. In the stationary state, the vast majority of particles populates
the single particle phase, rendering the system homogeneous and isotropic even on
mesosopic scales. This low density regime terminates at the characteristic density ρ̄,
where both classes exchange particles at equal rates.

(ii) In the contiguous regime of intermediate densities, ρ̄ < ρ < ρ(c), the overall rate
of cluster formation and growth outstrips the rate at which clusters evaporate, and
the majority of particles become organized in clusters. Translated to a particle based

30Usually, the outcome of a cluster-cluster interaction is an intricate process involving disassembly events
and in general leads to a cluster size/mass dependent post-collisional orientation [75]. However, within
our simplified framework of two species, those processes are neglected.
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notion, clusters grow to finite sizes and persist over macroscopic time scales. Clusters
of coherently moving particles now dominate the physical picture on mesoscopic
scales. Yet, interactions among clusters are too rare to establish a macroscopic state
of collective motion. On hydrodynamic length scales, the system can be viewed as a
homogeneous and isotropic sea of clusters.

(iii) For densities exceeding the critical density, ρ > ρ(c)(σ), collisions within the cluster
phase occur at sufficiently high rates and macroscopic collective motion emerges. The
homogeneous and isotropic state, which has been shown to be stable within the two
preceding regimes, thus becomes unstable and rotational symmetry is spontaneously
broken.
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Figure 2.22: Illustration of
the three clustering regimes.

While the qualitative features of the canonical and the
grand canonical model are the same in the low and the in-
termediate density regime (ρ < ρc), the establishment of col-
lective motion in the high density (ρ > ρc) regime differs in
important respects in both models:

We found that in the grand canonical model, a broadly
extended region in parameter space exists, where a spatially
homogeneous state of macroscopic collective motion exists
and is actually stable. Except density, the key parameter
controlling the stability of a spatially homogeneous flowing
state is the noise amplitude σ. For low noise levels the homo-
geneous flowing state is destabilized by transverse perturba-
tions31 (i.e. perturbations with wavevectors q perpendicular
to the direction of the macroscopic flow). Interestingly, this
transverse instability vanishes altogether if angular diffusion
is slightly enhanced by increasing σ. Hence, for these noise
values, the system directly establishes a homogeneous state
of collective motion, which is stable with respect to arbitrary
perturbations of small magnitude.

In the case of the canonical model, a spatially homoge-
neous base state is destabilized by longitudinal perturbations
(i.e. perturbations with wavevectors q parallel to the direc-
tion of the macroscopic flow) for all values of the noise parameter σ. Both the magnitude of
the macroscopic velocity field and the particle density are prone to this kind of instability.
This is in agreement with previous analytical [16] and numerical [40] results for particle
conserving systems where the emergence of solitary wave structures has been reported to

31We note, however, that these instabilities are remarkably weak, meaning that the corresponding growth
rates are smaller than those of the longitudinal instability in the canonical model by a factor of ∼ 10.
All results are obtained via a standard linear stability analysis, hence speculation about the resulting
stationary pattern must be taken with a grain of salt. An appropriate answer of the role of the transversal
instability could only be given by a numerical solution of the kinetic equations, which is currently in
progress.
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be in the vicinity of the ordering transition ρ ∼ ρ(c)(σ). The longitudinal instability thus
seems to be quite a generic feature of particle conserving systems with short-ranged (met-
ric) interactions. For an interesting counterexample we refer the reader to Ref. [80], where
a particle conserving system with topological interactions has been studied.

We can now combine our findings for both the canonical and the grand canonical
model, to offer the following mechanistic explanation concerning the emergence of the
longitudinal instability. The prerequisite underlying the establishment of coherent motion
is embodied by two basic processes: Cluster nucleation by collisions among single particles,
and cluster growth by alignment of single particles to clusters. Only if, by virtue of these
processes, the concentration of cluster particles reaches a sufficient size clusters are able to
synchronize their movements by coagulation. Macroscopic collective motion then emerges.
In the following, we will consider the effect of a density fluctuation in a homogeneous
state of macroscopic collective motion which shall be described by the equations for a
homogeneous state. For the two scenarios considered, the corresponding hydrodynamic
equations are (derivation see publication B.5):

• In the case of the grand canonical model we find

∂tρc = −ρc︸︷︷︸
evaporation

+ ρ0
sρ

0
s︸︷︷︸

cluster assembly

+ ρcρ
0
s︸︷︷︸

condensation

, (2.19)

where ρc denotes the density of cluster particles, and ρ0
s is the constant particle density

of the single particles. The superscript “0” indicates that the single particle density ρs
is a non-dynamical quantity. The terms on the r.h.s. describe evaporation (∝ −ρc),
cluster assembly (∝ ρ0

sρ
0
s) and condensation (∝ ρsρc), respectively. Analyzing the

fixed point of the hydrodynamic equations leads to the condition ρ0
s < 1 for all finite

values of the total particle density ρ.

• For the canonical model we obtain

∂tη = ρ(ρ− η)︸ ︷︷ ︸
assembly and condensation

− (η + ρ)︸ ︷︷ ︸
evaporation

, (2.20)

with ρ = ρs + ρc as the total particle number density and η = ρc − ρs [ρs: single
particle density]. The first term on the r.h.s. describes cluster assembly (∝ ρ2

s)
and condensation (∝ ρsρc), and the second term corresponds to cluster evaporation
(∝ −ρc).

Let us start with the mechanistic explanation for the absence of the longitudinal instability
in the grand canonical model. To this end, we consider a polarized state with a homo-
geneous density of cluster particles ρ0

c and assess the implications of fluctuations on the
cluster particles by writing ρc = ρ0

c + δρc, which by virtue of Eq. (2.19), leads to:

∂tδρc = −δρc
(
1− ρ0

s

)
︸ ︷︷ ︸

>0

. (2.21)
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5. Stability of inhomogeneous hydrodynamic equations

In the previous sections we examined the homogeneous equations by ignoring all

spatial derivative in the hydrodynamic equations. In this section we investigate the

consequences of spatial fluxes in the hydrodynamic equations for both, the canonical

and grand canonical model.

Since in our system of units all of the following results are virtually independent of

the particles’ aspects ratio ⇠, we will henceforth set C: ⇠ = 0, let us define ⇠ as real aspect

ratio with ⇠ = 1 as the limit of the sphere. OK? If yes to be changed throughout the

entire manuscript!. The ⇠-dependence of the various quantities is then easily recovered

(to a very good approximation) by returning to original units.

5.1. Linearization around stationary, spatially homogeneous base states

For the canonical model we showed throughout the previous section that stationary,

spatially homogeneous states of the form

⇢ = ⇢0 = const., (42a)

⌘ = ⌘⇤(⇢) =
⇢2 � ⇢

⇢+ 1
, (42b)

g = g0 2
⇢

0,

r
�⌫1⌫2

4µ

�
ê, (42c)

are solutions to the full canonical hydrodynamic equations (28a) to (28c). In the

following we are going to investigate the linear stability of these solutions against wave-

like perturbations, employing the following ansatz:

⇢(x, t) = ⇢0 + �⇢(x, t), (43a)

⌘(x, t) = ⌘⇤ + �⌘(x, t), (43b)

g(x, t) = g0 + �g(x, t), (43c)

where

�⇢(x, t) = �⇢0 est+iq·x, (44a)

�⌘(x, t) = �⌘0 est+iq·x, (44b)

�g(x, t) = �g0 est+iq·x. (44c)

In the equations above, q denotes the wave vector and s is the growth rate. Inserting

this ansatz into equations (28a) to (28c), we find for the canonical model:

s�⇢0 = � iq cos( )�gx,0 � iq sin( )�gy,0, (45a)

s�⌘0 = (2⇢0 � ⌘0 � 1) �⇢0 � (1 + ⇢0) �⌘0 (45b)

� iq cos( )�gx,0 � iq sin( )�gy,0,

s�gx,0 =


1

2
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integration leads to the continuity equation,

@t⇢+ r · (⇢u) = 0, (2.2)

implying that particle number is conserved.

• continuous equation for the momentum field: The equations for the momen-
tum field ⌧ = ⇢u can be regarded as Navier-Stokes Equations, for which conservation
of momentum as well as Galileian invariance is broken. For a complete presentation
of these equation, we refer the reader to refs. [4, 5]. Here, for reasons of brevity, we
neglect all gradient terms, i.e. O(r⌧ ) or O(r⇢), leading to the following hydrody-
namic equations:

@t⌧ = ⌫ ⌧ � � ⌧ 2⌧ + O(r⌧ ,r⇢), (2.3)

where ⌫ and � constitute two kinetic coe�ecnts that are fully determined by the
control parameters �0, � and ⇢̄, as well as all microscopic properties such as particle
size d, speed v0, and the collision rule Eq. ??. From the homogeneous equation for
⌧ two important predictions can be made:

(i) Phase Boundary: Since the kinetic coe�cient ⌫ as a function of the control
parameters changes sign [4, 5], from negative values for large �0 [or �] and
small ⇢̄, to positive values, a homogeneous states with ⌧ = 0 becomes unstable.
The manifold in the control parameter space (�0, �, ⇢̄) for which ⌫(�0, �, ⇢̄) = 0
determines the phase boundary, with

⇢t(�0, �)[⌫ = 0]

defining the transition density.

(ii) Existence of Fixed Point: For ⌫ > 0, there is a stationary (and homo-
geneously stable) fixed point with ⌧0 = ⌧0e, where e denotes some arbitrary
broken symmetry axis, and the value of the fixed point is given by ⌧0 =

p
⌫/�.

• Predictions of the Inhomogeneous Equations: Testing the inhomogeneous
equations against spatial wave-like perturbations / eiq·r [q: wave number] yields
to following central findings:

(i) Long Wave Length Instability: The ensuing instability is a long wave length
instability, with q = 0 as the fastest growing mode (type IIIs instability accord-
ing to ref. [8]). This finding satisfies a restriction on the homogenous equations
for the polarization field to determine the phase boundary

(ii) Fastest Growing Modes: Longitudinal modes, corresponding to perturba-
tions parallel to the wave vector q and the fixed point polarization ⌧0, are the
most unstable ones, i.e. their growth rates are larger compared to any other
modes. It is expected — but not proved — that these modes give rise to a
polarized state with a stationary wave-like pattern, as already found earlier in

Figure 2.23: Illustration of the canonical and grand canonical modeling framework, high-
lighting the quintessential differences in the context of pattern formation. In the homo-
geneously polarized state (left), the cluster particles density (blue arrows) constitutes the
system’s macroscopic net momentum τ0, while some fraction of the system’s particles,
the single particles (orange dots) exhibit zero net momentum. Spatial perturbations of
both density fields lead to two fundamentally different outcomes: (i) In case of a closed
system obeying total particle conservation (single particles and cluster particles), termed
the canonical model, the homogeneously polarized state is longitudinally unstable, with a
wave vector q parallel to the polarized state τ0, potentially enforcing a wave-like pattern.
(ii) In contrast, open systems (grand canonical model) turn out to be stable against this
kind of density fluctuations.

As can be seen from this equation, locally enhancing (δρc > 0) the density of cluster parti-
cles implies a net current from the cluster particle phase into the single particle phase, thus
counteracting the effect of the original density fluctuation. Conversely, locally diminishing
(δρc < 0) the density of cluster particles leads to the opposite effect. Density fluctuations
are thus damped in the grand canonical model (see Fig. 2.23 for an illustration) and do
not impact the macroscopic velocity field, which is set up by the cluster particles.

Exactly the opposite happens in the particle conserving canonical model. Again, con-
sider a spatially homogeneous base state of macroscopic collective motion. Particles are
then distributed among the phases of cluster particles and single particles as determined
by the balance equation ρ(ρ−η) = ρ+η [cf. Eq. (2.20)]. Now, consider a small fluctuation
in the total density ρ, i.e. ρ → kρ, where, for the sake of simplicity, the relative density
η is assumed to remain constant. In regions, where the fluctuation leads to an increase in
the total density by a factor k > 1 we have kρ(kρ − η) > kρ + η, which leads to ∂tη > 0
[with η = ρc − ρs]. Hence, the number of particles in the cluster particle phase grows.
Since the cluster particles are the “carriers” of the macroscopic momentum, the local value
of the momentum current density increases. In contrast, in regions where the fluctuation
decreases the total density by a factor k′ < 1 we have k′ρ(k′ρ − η) < k′ρ + η, yielding
∂tη < 0. Therefore, the cluster particle phase gets depleted and the local magnitude of
the momentum current density declines. As a result, high density regions move at faster
speeds than low density regions, gathering more and more particles on their way through
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the system. Conversely, lower density regions continually lose particles to the faster high
density structures. In particle conserving systems, every density fluctuation thus automat-
ically triggers a corresponding fluctuation in the momentum current density, which in turn
amplifies the density fluctuation. As a result of this process, high density bands of collec-
tively moving cluster particles might emerge [40] (see Fig. 2.23 for an illustration). These
bands are interspersed by regions where the particle density has fallen below the critical
density ρ(c) (and possibly below ρ̄), leading to local destruction of clusters and collective
motion.

2.3.6 Non-perfect Active Collisions:
Deviations from Half-angle Alignment

In this section the aim is to establish an appropriate kinetic description of the collision
process observed experimentally in gliding assays [90, 93] and shaken granular particles [30,
31] by generalizing the popular [7, 15, 6, 16, 79] half-angle alignment rule [Eq. (2.8g)].
Since in these experimental systems the particle speed is mostly constant, it is sufficient to
describe each collision by the impact parameter b capturing the particles’ relative spatial
arrangements, and a pre- and post-collision angle for each particle, θi and θ′i (i ∈ {1, 2}),
respectively. As already mentioned in section 2.3.3, these experiments highlight that actual
collisions differ from the half-angle alignment rule in two important respects:

(i) Collisions may be classified either as “indifferent”, where the relative scattering angle
remains virtually unchanged (θ′12 ≈ θ12), or “polar alignment” events with θ′12=0. In
general these two regimes are delineated by a rather sharp boundary ψmax(b) in
the b-θ12 space. For simplicity, we approximate this boundary by a single angle
ψ̄ = maxb ψmax(b), which we refer to as the effective alignment range.

(ii) Within the alignment range (θ12 ≤ ψ̄), the post-collision angle θ′12 is in general an
intricate function of the pre-collision angles and the impact parameter b. Due to
rotational invariance it is of the form θ′ = w(θ12, b) θ1 + [1 − w(θ12, b)] θ2, where
w(θ12, b) can be interpreted as a microscopic alignment weight characteristic of the
respective system or model considered. Since we are aiming at a Boltzmann approach
which does not resolve length scales comparable to the size of single particles, we
adopt a mean-field approach and average over all impact parameters to introduce a
mesoscopic alignment weight w(θ12) := 〈w(θ12, b)〉b. It defines the relative magnitude
of the pre-collision angles in the post-collision angle:

θ′ = w(θ12) θ1 + [1− w(θ12)] θ2. (2.22)

Taken together, the alignment range ψ̄ and the alignment weight w(θ12) constitute a gen-
eralized mesoscopic scattering rule. It accounts for indifferent scattering events as well as
deviations from half-angle alignment [w = 1

2
, cf. Eq. (2.8g)]. Additionally, numerically
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Figure 2.24: (a) Transition density ρt as a function of collision parameter w̄: Curves from
left to right (dash-dotted, dashed, solid) correspond to σ = {0.7, 0.5, 0} with ψ̄ = π. (b)
ρ−1
t (w̄, ψ̄) for σ = 0.5. The limiting case of half-angle alignment is depicted by the cross

at the top left corner. Parameters for (c) and (d): L/d = 1, σ0 = 0.5.

investigating two archetypical models for propelled rods also confirms the need for the ex-
tensions (i) and (ii) discussed above. For details on the results of these numerical studies
please refer to publication B.7.

Upon integrating the mesoscopic collision rule into a Boltzmann equation (2.8), but
now using Eq. (2.22) instead of Eq. (2.8g) and considering only the integration range for
the relative angle32 to [0, ψ̄], we determine the transition density between the isotropic and
polarized state, denoted ρt, as a function of the interaction range ψ̄ and the alignment
weight w̄(θ12), finding:

ρt[w(ψ); ψ̄] =
1− e−σ2

0/2

I0,1[w(ψ); ψ̄] + I1,1[w(ψ); ψ̄]
, (2.23)

where I1,1 and I0,1 denote are Fourier components of the collision integral, which can be
defined in analogy to Eq. (2.16) [refer to publication B.7 for definition and details on
the derivation of the above equation]. Importantly, ρt depends on the alignment range
ψ̄ and the alignment weight function w(ψ). However, all functions w̃(ψ) consistent with
ρt[w̃(ψ); ψ̄] = ρ̄t yield the same location of the ordering transition. Therefore, it is sufficient
to consider a constant alignment weight w̄ with ρ̄t = ρt[w̃(ψ); ψ̄] = ρt[w̄, ψ̄] in order to
analyze how the threshold density depends on the characteristic features of the binary
collisions33. The symmetry of the Boltzmann equation (2.8b) with respect to w̄ → 1− w̄,
allows us to consider w̄ ≥ 0.5 without loss of generality.

Fig. 2.24(a) shows the threshold density ρt as a function of the alignment weight w̄.
For deterministic collisions, σ = 0, we observe finite but sharply increasing transition
densities ρt for increasing alignment weights w̄ < 1 [solid curve in Fig. 2.24(a)]. In the limit

32The collision integrals Eqs. (2.8d) and (2.8e) can easily be written in terms if the relative angle θ12.
33That the equation of w̄ actually has a unique solution for ρ̄t ≥ 0 will be shown in the Supplementary

Material of publication B.7.
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w̄ → 1, the post-collision angle coincides with one of the pre-collision angles, cf. Eq. (2.22).
This type of binary collision is, on average, equivalent to a specular reflection: Due to
particle exchange symmetry, two particles with pre-collision angles θ1 and θ2 are both
either scattered into θ1 (↗↖ → ↖↖) or θ2 (↗↖ → ↗↗). Since both outcomes occur
with equal probability, we have 1

2
(↖↖ +↗↗) ≡ ↖↗, i.e. the collision corresponds to

a specular reflection. As a consequence, polar order cannot build up from a disordered
state, and ρt → ∞ as w̄ → 1. In light of this discussion, the parameter w̄ − 1 ≡ δ can
be reinterpreted as an angular dispersion factor : While, for δ = 0 the angular distribution
remains invariant, for δ < 0, any deviation from an isotropic distribution is amplified by
collisions. For δ > 0 the opposite effect is observed. Obviously, the threshold density ρt
also diverges for ψ̄ → 0 (data not shown), which corresponds to the limiting case where all
collisions are indifferent, i.e. to non-interacting particles.

Adding stochasticity to the collisions, σ > 0, the poles of ρt are increasingly shifted
towards the limiting case (w̄, ψ̄) = (1

2
, π) corresponding to half-angle alignment over the

entire angular range [Figs. 2.24(a) and 2.24(b)]. Surprisingly, to compensate for the dis-
aligning effect of collision noise, one needs both a weaker angular dispersion w̄, and a
larger alignment range ψ̄: Even in the optimal case of half-angle alignment, w̄ = 1

2
, any

stochasticity during the collision process immediately sets a lower bound for the alignment
range ψ̄, which cannot be abrogated by increasing collision frequencies. This is illustrated in
Fig. 2.24(b) for σ = 0.5: While parameters (w̄, ψ̄) in the colored region are associated with
finite threshold densities ρt, choosing parameters in the white region renders the system
disordered. In other words, the presence of collision noise imposes a ‘minimum efficiency
requirement’ on microscopic particle interactions. We also addressed the impact of w̄ and
ψ̄ on patterning capability, and numerically solved the Boltzmann equation (2.8b). For
these studies the interested reader is referred to publication B.7.

In summary, we have investigated the physics of binary collisions between propelled
rod-like particles and their impact on the emergence of polar order within the framework
of kinetic theory. To this end, we have introduced a representation of the scattering process
in terms of an alignment range ψ̄ and a mesoscopic alignment weight w(ψ). Employing a
Boltzmann approach this allowed us to determine the transition density ρt to polar order
as a functional of these quantities, and the collision noise σ. This leads, most importantly,
to the following findings: (i) In the absence of collision noise, any collision process with
a negative angular dispersion factor δ leads to polar ordered states at sufficiently large
densities. (ii) For a finite noise strength, there is a bounded region in the (ψ̄, δ)-space
where polar order is possible. Outside of this parameter region, the physics of binary
collisions encoded in the Boltzmann equations not suffice to give rise to a polar ordered
state, even at very high densities.

As a consequence, the popular half-angle alignment rule overestimates the effect of
binary collisions on the build-up of orientational order. This is indeed the case for the
paradigmatic numerical studies of propelled rods and stiff polymers (not shown, refer to
publication B.7): Upon using the corresponding microscopic scattering functions ψmax(b)
and w(ψ, b), we computed the transition density ρt by means of Eq. (2.23). To get a pre-
cise estimate we fully accounted for the functional dependence of the collision integrals on
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the microscopic alignment weight w(ψ, b), only assuming uniformly distributed collision
parameters b. Interestingly, the ensuing threshold densities for both models turn out to be
negative. Thus, these systems fail to establish polar order by means of binary collisions
alone, despite the fact that the underlying collision dynamics is highly dissipative. How-
ever, indirect evidence from various experimental studies [90, 110, 78] suggest that polar
order in these systems might still be possible. This would indicate that a Boltzmann the-
ory is inadequate to describe the ordering process for propelled rod-like particles, and one
has to seek for mechanisms beyond binary collisions. Possible candidates can be inferred
from questioning the basic assumptions underlying Boltzmann’s kinetic approach. In par-
ticular, recent numerical and experimental work [75, 107, 78] highlights the importance of
nucleation and growth of clusters in the formation of large scale non-isotropic structures.
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Figure 2.25: Illustration of
the validity of the Boltz-
mann equation.

Within clusters, particles are densely packed and move in
a coherent manner. This implies that orientational fluctu-
ations of neighbouring cluster particles about the cluster’s
axis are strongly correlated. These correlation effects entail
an effective ‘stiffness’ of the cluster’s orientation and there-
fore provide the basis for its growth and, subsequently, the
establishment of order. At the same time, such correlations
necessarily invalidate the molecular chaos assumption, which
is a key ingredient in the derivation of Boltzmann’s equation.

We thus conclude that the kinetic approach we adopted
in this work should be applicable to active systems where
the formation of order is driven by a gradual reduction in
the spread of particle orientations by means of weakly align-
ing binary collisions; cf. Fig. 2.25 for an illustration on the
validity range. Therein, red areas correspond to outcomes
of the depicted pre-collision orientations (indicated by black
arrows) for which the Boltzmann equation is invalid. In con-
trast, systems in which the establishment of order proceeds
via the formation of coherently moving clusters, are charac-
terized by the build-up of higher order correlations, whose
description lies beyond the scope of Boltzmann’s equation34.

2.3.7 Scrutinizing Quantitatively Kinetic Theory:
Role of Correlations

This section is devoted to a quantitative test of the predictions for the phase boundary
obtained from kinetic theory for propelled particle systems. In order to quantitatively scru-
tinize the underlying Boltzmann equation (2.8) (see e.g. section 2.3.2 for an introduction

34The Boltzmann approach can be extended to systems where the molecular chaos assumption can be
carried over to a picture of ‘binary’ cluster-cluster interactions as detailed in publication B.5 or by
explicitly accounting for correlations; cf. publication B.8 or section 2.3.7.
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Figure 2.26: Illustration of our “renormalized” kinetic theory (Explanation see text).

on kinetic theory), the collision rule cannot just be postulated, as it is the case for the
popular [7, 15, 16] half-angle alignment rule Eq. (2.8g). Instead, we developed a procedure
which we call the “renormalized” kinetic theory [see Fig. 2.26]:
First, (i) the collision rule is determined from the microscopic equations of motion by
studying the details of binary scattering numerically. Second, (ii) these equations of mo-
tion are used to follow numerically the multi-particle dynamics and compute the phase
boundary between isotropic and polar states. Finally, (iii) we employ the collision rule
from the binary scattering studies to calculate the phase boundary by means of kinetic
theory. Both phase boundaries—from kinetic theory and the multi-particle simulations—
are then compared, and in case of any discrepancy, assumptions underlying the kinetic
approach can be revised. In particular, it will be interesting to see to what degree the
molecular chaos assumption [Eq. (2.8a)] of the classical Boltzmann theory remains valid
for propelled particle systems.

Let us start with the microscopic equations of motion. In the following, we focus on the
dynamics for active colloids in two dimensions [63, 36, 34, 64, 42] in terms of Newtonian
equations of motion with the three following forces: An active propelling force capturing
the internal propulsion mechanism, which is balanced by a dissipative force accounting for
the particle’s loss of kinetic energy. Finally, particles interact by means of a two-body
interaction force denoted Fij. In our studies we restricted ourselves to soft, repulsive
interactions. The Newtonian equations of motion read [63, 37, 84, 83]:

d

dτ
ṽi = µv̂i︸︷︷︸

driving

− |ṽi| v̂i︸ ︷︷ ︸
dissipation

+
∑

j

{
κ ξ̃ij r̂ij if ξ̃ij ≥ 0,

0 else,
(2.24)

where ṽi = dr̃i/dτ is the dimensionless velocity and v̂i = vi/ |vi| is the corresponding
unit vector of the velocity. Moreover, repulsive interactions are described by a harmonic
repelling force, with r̂ij =

ri−rj
|ri−rj | and ξ̃ij = ξij/d is the dimensionless penetration depth.

The model includes two parameters: The interaction strength κ and the driving amplitude
µ.
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(i) In the first step of our “renormalized” kinetic theory we use the above microscopic
equations of motion to study the binary scattering dynamics and compute the collision rule.
Due to the short-ranged nature of the repulsive interaction potential in Eq. (2.24), one can
give a precise definition of the instant when two particles come into contact. Capturing
all possible configurations for particle encounters then amounts to defining an appropriate
set of parameters describing the geometry at this first moment of contact. For identical
particles moving with equal speed, the configuration at the moment of contact (the collision
geometry) is completely determined by the the relative angle θ12 = ∠(v1,v2) [Fig. 2.27(a)]
and the impact parameter b. The latter is given by b = − cos γ, with sin γ = −v12 · ê/ |v12|
and ê = r1 − r2/ |r1 − r2| [see Fig. 2.27(b)]. The impact parameter characterizes the type
of collision: b = 0 signifies a head-on collision in the relative frame or symmetric collision
in the laboratory frame, whereas b = ±1 corresponds to glancing collisions where particles
are barely touching each other. For |b| > 1 there is no collision. For the scattering studies
we prepared the two particles with b ∈ [−1, 1] and θ12 ∈ [0, π]. The results of the scattering
study are depicted in Fig. 2.27(c), showing the change in the direction of motion of particle
2, ∆θ2 (called scattering angle) as a function of the collision geometry (θ12, b). We discover
a non-trivial, highly non-linear mapping35, which will serve as a starting point for the
subsequent kinetic description (see iii).

(ii) In the next step of our “renormalized” kinetic theory we employ the equations
of motion [Eq. (2.24)] to numerically follow the dynamics of a large number of particles
and compute the phase boundary between the isotropic and polarized states. To this end,
the equations of motion are complemented by a stochastic element accounting for noise
in the system. Since Brownian noise is irrelevant in active systems [90, 58, 32, 110, 93,
30, 31], we restrict ourselves to a stochastic element that solely leads to fluctuations in
the particles’ orientations, e.g. Refs. [105, 40, 23, 42]. Specifically, we implement noise as
an additive, uncorrelated stochastic force periodically changing the particles’ orientation
with a rate λ. The velocity at time t obtained from integrating the deterministic model
equations Eqs. (2.24) is then rotated by a Gaussian-distributed random angle η. The
Gaussian distribution of the random angle η has zero mean and variance σ2

0. In general, the
parameters λ and σ0 together determine the strength of noise in the system. However, for
all of our later studies the exact value of the rate λ is not a central issue. To determine the
phase-diagram we perform molecular dynamics simulations of a large number of particles
of about N ∼ 105–106, moving in a square box of linear size Lbox = 250d with periodic
boundary conditions. Before starting the simulations particles are placed randomly in the
simulation box. Overlapping particles are relocated until no more particle overlaps occur36.
Particle velocities are initialized in randomized directions with their modulus set equal to
the stationary velocity, which is given by µ in dimensionless units. In order to numerically

35Note that, by means of the scattering study we also worked out the underlying principle of alignment
and analyzed the alignment tendency as a function of the model parameters κ and µ. For this the interested
reader is referred to publication B.8.

36For larger packing fractions, this procedure becomes unfeasible. To complete the numerical phase
diagram, starting from random positions, we used an over-damped algorithm prior to the actual simulation,
where only the interaction forces induce movement until remaining overlaps have been minimized.
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Figure 2.27: Illustration of the collision geometry defined by the impact parameter b and
the relative angle θ12. (a) Particles 1 and 2 are moving with their respective velocities
v1 and v2, enclosing the relative angle θ12 = ∠(v1,v2). (b) Definition of relative velocity
v12, unit vector ê, and impact parameter b. The unit vector ê is defined as the normalized
vector connecting the particle centers at the very moment of contact, and 2R b gives the
offset from a head-on collision. (c) Change in the direction of motion of particle 2, ∆θ2

(scattering angle), as a function of the collision geometry (θ12, b). Since both particles are
identical spheres, the scattering behavior of the particle 1 can be read off at the point
(−θ12, b) in the plot. Parameters: µ = 0.01, κ = 10−1, corresponding to maximal average
alignment (for proof see publication B.8).

determine the phase boundary, we typically computed 10 realizations of different initial
coordinates and velocity directions for a set of values of the single particle noise σ0 and
the packing fraction Φ = Nπd2

4L2
box

. Running the simulations for sufficiently long times, we

classify a point in Φ-σ0-parameter space to be macroscopically polarized if the system’s
polarization ψ = N−1

∑N
i=1 v̂i [with v̂i = vi/ |vi|] exceeds a value of ψ > 0.6 for at least

one realization. Otherwise, the parameter set is classified as isotropic. The resulting phase
diagram is depicted in Fig. 2.28(a): Red dots indicate the values of the control parameters
(Φ, σ0) where a transition to a polar state is observed, while gray squares correspond to
isotropic states.

(iii) In the last step of our “renormalized” approach, by means of kinetic theory we aim
to determine the phase boundary based on the results of the scattering study [Fig. 2.27(c)],
which we are going to compare to the phase boundary obtained from the multi-particle
MD simulations [see Fig. 2.28(a)]. This comparison allows us to scrutinize quantitatively
the validity of kinetic theory since the collision rule is devoid of any approximation. The
collision rule required to set up the Boltzmann equation maps the pre-collision orientations
given by the angles θ1 and θ2 on the post-collision orientations, denoted θ′1 and θ′2. Denoting
the angular change for particle j ∈ {1, 2} by ηj(θ12), the collision rule has the following
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general form:37

(θ1, θ2)→ (θ1 + η1(θ12), θ2 + η2(θ12)) . (2.25)

Since the above collision rule required for the Boltzmann equation does not resolve length
scales comparable to the size of single particles, the impact parameter b must be reduced
from the mapping given in Fig. 2.27(c). In a collision with given relative pre-collisional
angle θ12, a scattering angle ηj(θ12) occurs with probability pj(ηj|θ12)dηj where

pj(ηj|θ12) =
1

2

∫ +1

−1

db δ
(
∆θj(b, θ12)− ηj

)
. (2.26)

Since pj(ηj|θ12) is computed from ∆θj(b, θ12) [see Fig. 2.27(c)] by integrating over the
impact parameter b, we have now transitioned from a deterministic description to a prob-
abilistic treatment of the collision process. For a detailed discussion of pj(ηj|θ12), the
interested reader is referred to publication B.8.

To implement pj(ηj|θ12) into the Boltzmann equation (2.8), it suffices to modify the
gain part of the collision integral Eq. (2.8e):

C+[f (2)] =

∫ π

−π
dθ1

∫ π

−π
dθ2 Γ(θ1, θ2)f (2)(r, θ1, θ2, t)

1

2

2∑

j=1

∫ ∞

−∞
dηj pj(ηj|θ12) δ(θj + ηj − θ).

(2.27)
In the modified gain contribution C+[f (2)], each of the the two terms (j = 1, 2) accounts for
the scattering of one of the particles in a binary collision using the respective distribution
p1(η1|θ12) or p2(η2|θ12) [Eq. (2.26)] corresponding to particle 1 or 2. The factor 1/2 is
required to avoid counting collisions twice. Note that in the collision process above the
interaction noise σ = 0 [see Eq. (2.8e)], and ηj(θ12) is fully determined by the numerical
results of the scattering study. Therefore, in the following, the control parameters are the
single particle noise characterized by σ0 and the homogeneous packing, i.e. Φ = ρ0πd

2/4
where ρ0 is the homogenous hydrodynamic particle density and d denotes the particle
diameter.

To make contact with the Φ-σ0-phase diagram from multi-particle simulations, we cal-
culate the critical single particle noise by the condition ν(Φ, σ0) = 0. Note that ν is defined
in Eq. (2.10) [details on the derivation of ν can be found in publication B.8]. Interestingly,
by assuming that the initial states at the onset of collective motion are devoid of angular
correlations, i.e. the assumption of molecular chaos is fulfilled [Eq. (2.8a)], we find that
ν < 0 for all control parameters Φ and σ0. This would imply that the system’s isotropic
state remains stable for arbitrary values of the control parameters, which is obviously at
odds with the phase diagram obtained from multi-particle simulations [Fig. 2.28(a)]. This
clearly indicates that the state of the system preceding a transition to a polarized state can-
not be free of correlations, casting doubt on the validity of the molecular chaos assumption
Eq. (2.8a). In contrast, in a monatomic gas, elastic collisions on average prohibit a build-
up of inter-particle correlations over time, thereby supporting the validity of the molecular

37Instead of the half angle alignment rule, Eq. (2.8g), i.e. (θ1, θ2)→
(
θ1 + 1

2 (θ2 − θ1) , θ2 + 1
2 (θ1 − θ2)

)
,

we determine ηj from the binary scattering studies.
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Figure 2.28: (a) Phase diagram as function of packing fraction Φ and angular noise σ0

[degrees]: Results obtained from multi-particle simulations are displayed by symbols, while
lines correspond to analytical predictions for the phase boundary. Multi-particle simulation:
Red dots indicate polarized states while gray squares correspond to control parameter
sets where no change in the initial isotropic state has been observed. Analytical results:
The solid line depicts the phase boundary obtained from kinetic theory incorporating
the function χ as obtained from numerical measurements. The phase boundary shows
an excellent agreement with the numerical multi-particle phase diagram at low packing
fractions Φ < 0.08. (b) Snapshot of a state with pre-cursor angular correlations: Only
a small section of the entire simulation system is shown. The state is approximately
homogeneous, but the distribution of relative orientations clearly deviates from a typical
molecular chaos state [see publication B.8 for the numerical results on χ(θ)].

chaos assumption. However, our actively propelled constituents give rise to highly dissi-
pative collisions resulting in orientational correlations. To account for these orientational
correlations, we introduce the function χ(θ12), leading to the following modified “closure
relation” for the two-particle density:

f (2)(r, θ1, θ2, t) = χ(θ12)f(r, θ1, t)f(r, θ2, t). (2.28)

Measuring χ(θ12) in the multi-particle MD simulations we find, slightly below the ordering
transition, pronounced deviations from χ(θ12) = 1, indicating the existence of angular cor-
relations38 [see Fig. 2.28(b) for a snapshot]. Due to the appearance close to the ordering
transition we refer to these correlations as pre-cursor correlations. Most importantly, these
angular correlations are strong enough to trigger a sign-change in the kinetic coefficient ν,
thereby allowing kinetic theory to predict an ordering transition. Moreover, the predicted
phase boundary perfectly matches the one obtained from the multi-particle simulations in
the regime of small packing fractions [see Fig. 2.28(a)]. However, for intermediate packing

38A detailed presentation and discussion of the dependence of χ(θ12) can be found in publication B.8.
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fraction 0.1 < Φ < 0.4, kinetic theory underestimates the systems’s ordering capability.
One reason for this discrepancy could be the omission of spatial correlations. Otherwise,
analyzing videos of the ordering process (see attached video material) indicates that at
these packing fractions an intricate clustering process triggers the ensuing coarsening dy-
namics. An appropriate description of clustering involves multi-particle collisions, which
requires (within the framework of a single particle description39) accounting for higher-
order correlations by means of f (3), f (4)....

In summary, we generalized kinetic theory for propelled particles moving with constant
speed [15, 16] as detailed in section 2.3.2 regarding the two following aspects: The collision
rule is quantitatively determined by the results of the microscopic scattering study, and
Eq. (2.28) accounts for angular correlations among the active particles, where the deviation
to the molecular chaos χ(θ12) is explicitly measured in the multi-particle MD simulations.
Our “renormalized” kinetic theory seems to be flexible enough to accommodate the com-
plex behavior of soft active colloids, e.g. the occurrence of pre-cursor angular correlations.
We are convinced that our approach is also perfectly suited to reconsile microscopic exper-
imental studies of propelled particle systems [90, 93, 30], in which pre-cursor correlations
are likely to exist, and their corresponding quantitative mesoscopic descriptions. This
could pave the way to understanding the patterning process leading to the rich manifold
of experimentally observed patterns.

39An alternative way to describe the clustering process is by introducing a further species, and is detailed
in section 2.3.5.
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2.4 Propelled Particle Systems at High Densities

This section is devoted to the generic phenomena occurring in propelled particle systems
at large packing fractions. Whereas under dilute conditions, denser regions act as “vacuum
cleaners”, collecting more and more particles and aligning those parallel to the horde, the
picture for the emergence of collective motion under highly packed conditions is expected
to be distinctively different:

• Particles’ excluded volume gives rise to strong repulsive interactions leading to anti-
correlations in the velocity. As long as ferromagnetic alignment interactions only
affect40 the particles’ velocities, as in Vicsek-like models (refer to section 1.2 for
details, or [105]), repulsive interactions impair the local build-up of coherently moving
units, especially at large packing fractions.

• At highly dense packings, particles are forced to arrange in spatial configurations
reminiscent of solids in classical statistical mechanics. Here, in the case of a propelled
particle system, the fundamental question is [69, 49, 68, 57, 48]: Which degree of
spatial order (short-range, quasi-long range or true long-range) can develop in the
presence of ferromagnetic alignment interactions?

• Additionally, for packing fractions close to the maximum,41 transport of displace-
ments (phonons) by repulsive interactions is expected to be fast relative to the local
ferromagnetic alignment interactions. This separation of time-scales could lead to
intermittency in the order parameters, i.e. on-going fluctuations in time and space
without any relaxation in a stationary state. Fluctuations in the order parameters,
e.g. of the net polarization, correspond to collisions (in particular compression and
shear) of largely extended coherently moving regions. These encounters create strong
compressions at their contact zones potentially giving rise to shock-waves propagating
with a speed much larger than the individual particle velocities.

In order to analyze and understand the phenomena occurring in propelled particle sys-
tems at large packing fractions, we will propose an agent-based model in section 2.4.1,
which can be regarded as the Vicsek-model [105] extended by repulsion [41, 40]. In sec-
tion 2.4.2 we will discuss the numerical results of this model, including a classification of the
ensuing states. In particular, we characterize the degree of orientational and transitional
order of all observed states at large packing fractions.

2.4.1 Agent-based Model

To study active soft matter at high densities, we consider an off-lattice system of N particles
that have a tendency to align their velocity with neighboring particles and repel each other
if they come too close. These interactions are implemented by the following parallel update

40A counterexample is the vibrated disk assay, which is detailed in section 2.2.
41In two dimensions, the maximal packing fraction is ∼ 0.91.
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rules for the velocity vi(t) and position xi(t) of each particle i with some discrete time
interval42 ∆t:

vi(t+ ∆t) = va

∑
j∈Ai

nj(t)

|∑j∈Ai
nj(t)|

+ vr
∑

j∈Ai

′ xij(t)

|xij(t)|
, (2.29)

xi(t+ ∆t) = xi (t) + vi (t+ ∆t) ∆t . (2.30)

Here ni := vi/|vi| denotes the particle director, and xij := xi − xj signifies the relative
distance vector between particles i and j. The first term in Eq. (2.29) is an alignment
interaction as introduced by Vicsek et al. [105] where the updated velocity of particle i
is given by the average velocity of all particles within a spherical area Ai of radius 2R
centered on particle i. The parameter va characterizes the strength of alignment as well
as the particles’ propelling speed. The second term in Eq. (2.29) describes a soft, and
pairwise additive repulsive interaction between a given particle i and all its neighbors
within the same area43 Ai. It displaces a particle pair, whose distance |xij(t)| ≤ 2R,
radially outward by a constant amount vr ∆t. In the following, we will refer to R as the
particle radius. Length and time are measured in units of the particle diameter, D = 2R,
and the corresponding time to traverse this distance, τ = 2R/va, respectively.

We are mainly interested in the collective dynamics as a function of the packing fraction
ρ = N πR2/L2

box [Lbox: linear side length of simulation box], and the relative strength of
the repulsive and alignment interaction, ν := vr/va. Noting that va ∆t sets the maximal
penetration depth in binary collisions, we choose the other parameters such that va∆t �
2R in order to reduce the number of events where particles would pass through each other.
Specifically, the updating time is fixed to ∆t = 1 and we choose va = 0.05. All simulations,
if not stated otherwise, were performed in a periodic square box of side-length Lbox = 100,
i.e. the simulation typically comprised N ∼ 104 particles.

2.4.2 Results for Propelled Particles at Large Densities

First, we analyze the degree of polar and bond orientational (hexatic) order. The global
polarization is defined as P(t) = |〈ni(t)〉i|, where 〈...〉i denotes an average over all particles
in the system. Local hexatic order is characterized by Ψ6,l = |Nl|−1

∑
m∈Nl

eı6θlm , where
the summation extends over the Nl topological (Voronoi) nearest neighbors of particle l,
and θlm is the angle of the bond between particles l and m relative to some arbitrary axis.
The absolute value of Ψ6,l characterizes the degree of local hexatic order and its direction
gives the hexatic cell’s orientation.

Figs. 2.29(a) and 2.29(b) illustrates the degree of polar and hexatic order as a function
of the packing fraction and the relative strength of repulsive and alignment interaction.

42Note that our model is discrete, thereby ∆t is a model parameter, characterizing the time between
two successive updates of the alignment and repulsive interaction, see Refs. [105, 29, 22, 40, 23, 11].

43The model is easily generalized to account for different radii for alignment and repulsion, Ra and Rr,
respectively. Here, we focus on the competition between alignment and repulsion, hence we choose 2Rr =
Ra. Previous studies of the Vicsek model with repulsion were restricted to the limit Rr � Ra [22, 74].
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Figure 2.29: Global polar order parameter P (a) and hexatic order parameter Ψ6 (b) as
a function of ρ and ν. The dashed white lines indicate tentative boundaries between polar
and isotropic states, and solid-like states exhibiting hexatic order from fluid-like states,
respectively. Snapshots of local hexatic order Ψ6 for ν = 0.25 (c), ν = 0.75 (d), and
ν = 1.5 (e) at a high packing fraction ρ = 0.85. See also videos attached to this thesis
(for a Video description please refer to publication B.9). Scale bars indicate a distance
of 10D.

We observe that global polar order, characterized by the time-averaged polarization P =
〈P(t)〉t, is well-established for ν . 1, but then at ν ≈ 1 sharply drops to very small values
[Fig. 2.29(a)]. The phase boundary between polar and isotropic states, tentatively defined
by P = 0.2, is nearly independent of the packing fraction ρ. To discern the different
degrees of bond-orientational or translational order is more difficult. As can be inferred
from Fig. 2.29(b), the degree of hexatic order grows with increasing packing fraction ρ,
indicating a solid-like regime; the dashed white line in Fig. 2.29(b) correspond to a value
of Ψ6 = |〈〈Ψ6,i〉i〉t| = 0.2.

To characterize the degree of order at high densities it is necessary to go beyond the
global hexatic order parameter Ψ6 and have a closer look at the number as well as the spa-
tial organization and dynamics of topological defects. To this end we analyzed appropriate
quantities44 leading to the following central results, illustrated in Fig. 2.30 (for details on
the study, the interested reader is referred to publication B.9):

44In particular, we considered the correlation functions [73, 72], C(r) = 1∑
i |Ψi|2

∑
|xi−xj |=r ΨiΨ

∗
j , for

both the hexatic (bond orientational), Ψi = Ψ6,i, and the translational, Ψm = ΨG,m = exp(−ıGrm),
order parameter [G: one of the three lattice vectors].
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In the fluid-like regime the correlation functions characterizing the degree of trans-
lational and (bond) orientational order decay exponentially, indicating that the ensuing
order is short-ranged [Fig. 2.30, red boundaries]. However, in the solid-like regime we find
two distinct regions in the ν-ρ-parameter space [Fig. 2.30, green boundaries]:

(1) [ν > 1]: An active crystal with long-range bond orientational and translational
order; regarding the polarization, the state is isotropic [Fig. 2.30, blue boundaries].
Topological defects45 vanish out of the system by ring-like contraction and pair–
annihilation [see attached Videos].

(2) [ν < 1]: A polycrystalline active solid that coherently flows into a certain direc-
tion (i.e. there is a broken-symmetry axis) with long-range polar order [Fig. 2.30,
blue boundaries]. Moreover, these states are characterized by hexagonal patches of
different relative bond orientations, implying exponentially decaying correlations of
the bond orientational order parameter. However, correlations of translational order
decay as a power-law (quasi-long range), indicating the crystalline nature of these
states. Additionally, the region in parameter space for the polycrystalline active solid
can be tentatively divided according to their fluctuations (in all order parameters
and the number of defects):

(A) [0.375 . ν < 1] Order (polar and spatial order) in these states exhibits strong
fluctuations in time, i.e. the degree of polar order (and spatial order) suddenly
drops to a finite, but non-zero value (say around 0.2), while ordered regimes
show e.g. a polarization of about 0.8; hence, we termed this regime intermittent
[Fig. 2.30, dashed boundaries]. This behavior leads to a bimodal probability
distribution for the number of topological defects. Moreover, the drop-down of
order is typically accompanied by shock-waves. For an illustration the reader is
referred to the video material.

(B) [ν . 0.375] Order in these states fluctuates only little in time compared to
(A). The fluctuations occur concomitantly with weak rotations of the broken-
symmetry axis. The probability distribution of the number of defects is found
to be of Gaussian shape.

Even though our numerical studies discovered and characterized a plethora of new and
unknown states within the field of propelled particle systems, many questions remain unan-
swered:
(i) Is the “list” of states and phenomena already complete, and how can these states be
verified experimentally? Moreover, if we extend our model by a simple growth process, does
it lead to a transition to a glass state46 in time, as found recently in dense cell sheets [4]?
(ii) At packing fractions close to the maximal packing, fast non-linear modes analogous to

45Particles having not six Voronoi neighbors (computed via CGAL library version 4.8).
46Hallmarks of the glass transition are the occurrence of dynamical heterogeneities (pronounced diversity

in migration velocities) and a sub-diffusive mean-square displacement.
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Figure 2.30: Summary of the characteristic states in the ν-ρ control parameter space for
propelled particles with “ferromagnetic alignment” in the regime of large packing fractions.

phonons in an equilibrium crystal occur, which we roughly termed shock-waves. What is
the dispersion-relation of theses non-linear modes, and what sets their propagation speed?
Moreover, how are they related to the system’s ordering capability?
(iii) What are the essential ingredients for a corresponding analytic (continuous) descrip-
tion characterizing these modes?
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B.1 Polar Patterns of Driven Filament

title Polar patterns of driven filaments
authors Volker Schaller, Christoph A. Weber,

Christine Semmrich, Erwin Frey, Andreas R. Bausch
status published
journal Nature, Vol. 467, 09312, 2010.
supplement yes, attached
published video material http://www.nature.com/

nature/journal/v467/n7311/full/nature09312.html

Summary

The emergence of collective motion exhibited by systems ranging from flocks of animals
to self-propelled microorganisms to the cytoskeleton is a ubiquitous and fascinating self-
organization phenomenon. Similarities between these systems, such as the inherent polarity
of the constituents, a density-dependent transition to ordered phases or the existence of
very large density fluctuations, suggest universal principles underlying pattern formation.

To increase the understanding underling the self-organization in active systems we
consider an experimental system consisting of actin filaments that move on a carpet of
molecular myosin motors. We find that, at sufficiently high filament densities, persistent
collective motion emerges: The filaments self-organize into moving clusters, rotating vor-
tices or collectively moving wave-patterns.

Our experimental approach, which offers control of relevant system parameters such as
filament density, is complemented by agent-based simulations, which allow backtracking of
the assembly and disassembly pathways to the underlying local interactions. We identify
weak and local alignment interactions to be essential for the observed formation of pat-
terns and their dynamics. The presented minimal polar-pattern-forming system may thus
provide new insights into emergent phenomena in other propelled particle systems.
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B.2 Polar Pattern Formation: Hydrodynamic Cou-

pling of Driven Filaments

title Polar pattern formation:
hydrodynamic coupling of driven filaments

authors Volker Schaller, Christoph A. Weber,
Erwin Frey, Andreas R. Bausch

status published
journal Soft Matter, 7, 3213, 2011.
supplement yes, attached
published video material http://pubs.rsc.org/

en/Content/ArticleLanding/2011/SM/c0sm01063d

Summary

In our recent studies of the motility assay at high filament densities we showed that local
alignment interactions trigger the emergence of coherently moving patterns (see B.1). How-
ever, in the later stages of the patterning process, we found indications that hydrodynamic
interactions play a crucial role for the systems dynamics.

Therefore, in this project we investigated the role of hydrodynamic interactions in
the actin gliding assay at high filament densities. We find that the approximately two-
dimensional collectively moving structures induce a back-flow in the overlying fluid. By
means of appropriate shear flow experiments we were able to proof that this back-flow is
strong enough to influence the movement of nearby coherently moving structures. More-
over, these long ranged hydrodynamic interactions play a crucial role in the pattern forming
mechanisms: Stability and size of the patterns is set by the fluid-mediated interaction. Fi-
nally, studying the role of confining boundaries we found that a swarming cluster effectively
feels a repelling force without being in direct contact that points away from the boundary.
This force also originates from hydrodynamic interactions between cluster and boundary,
again mediated by the solvent above the coherently moving structure.
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Summary

In this project we study the actin motility assay at large densities in the presence of
cross-linking molecules. Surprisingly, we find an absorbing state with frozen fluctuations
that at first sight seems to be impossible for active matter driven by the incessant input of
energy. While such states were reported for externally driven systems through macroscopic
shear or agitation, the investigation of frozen active states in inherently active systems like
cytoskeletal suspensions or active gels were still at large. By means of the high-density
gliding assay experiments, we demonstrate that frozen steady states can arise in active
systems if active transport is coupled to growth processes.

Specifically, we show that the interplay of only three components, actin filaments, HMM
motor proteins, and fascin crosslinkers is sufficient for the emergence of a frozen active
steady state that consists of highly symmetric structures, rings, and elongated filament
bundles that are actively assembled and propelled by the motor proteins. We complement
our approach by agent-based simulations allowing us to correlate the formation of a frozen
steady state with the mechanical properties of the emergent structures. We identify the
crosslinkers as the central determinant mediating the emergence of frozen active steady
states: Crosslinkers support the growth to larger filament bundles and thereby freeze the
structures configurations.
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Summary

Motivated by our recent findings of collective patterns in the actin motility assay at large
filament densities (see B.1), we analyzed a numerical model able to capture the main fea-
tures of the filament-filament interactions. Many other models for self-propelled particles
systems have been analyzed numerically, mainly focusing on the long-time dynamics, e.g.
the emergence of a broken symmetry state, or concentrated on the analysis of the ensuing
stationary pattern. However, the time-dependent assembly processes leading to collective
motion so far remained elusive.

To close this gap, we used a simple agent-based model for (self-)propelled particles,
which interact via an effective excluded volume interaction and a local polar alignment
field, to analyze the dynamics of the pattern forming processes in time. As already found
for other models for aligning (self-)propelled particles systems, also our model shows a
phase transition to collective motion above a critical density. Interestingly, we find that
the onset of collective motion is accompanied by a gain in free volume over time. Close
to the critical density, the onset of collective motion is shown to require the spontaneous
formation of a cluster of sufficiently large mass that acts as a nucleus and triggers the
transition to collective motion. The corresponding lag-time shows a power-law divergence
upon approaching the critical density.

The fact that the ordering process is driven by the formation of a critical nucleation
cluster hopefully motivates to consider the time dependent characteristics of a broader
class of active systems.
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Summary

The emergence of collective motion in driven or self-propelled particle systems is a fas-
cinating field of recent interdisciplinary interest. Actively propelled particles undergoing
dissipative collisions are known to develop a state of spatially distributed coherently mov-
ing clusters. For densities larger than a critical value clusters grow in time and form a
stationary well-ordered state of coherent macroscopic motion. Many analytical approaches
for self-propelled particles systems have been proposed, mainly focussing on particle con-
serving systems. The impact of a particle reservoirs on the system’s patterning properties
remains largely elusive.

To close this gap we suggest and analyze a simple two-species kinetic model. Led
by observations of localized coherently moving clusters pervading these systems in the
vicinity of the ordering transition, we use these two species to depict some of the interaction
properties between freely moving particles and particles integrated in clusters. Specifically,
we account for coalescence of clusters from single particles, assembly of single particles on
existing clusters, collisions between clusters, and cluster disassembly. By means of our
model we then address two questions:

1. What is the role of the particles’ aspect ratio in the context of cluster formation, and
does the particle shape affect the system’s behavior on hydrodynamic scales?

2. To what extent does particle conservation influence pattern formation?

Coarse-graining our kinetic model, (1) we demonstrate that particle shape (i.e. aspect ratio)
slightly shifts the scale of the transition density, but does not impact pattern formation
properties. (2) We show that the validity of particle conservation determines the existence
of a longitudinal instability, which tend to amplify density heterogeneities locally in turn
triggering a wave pattern with wave vectors parallel to the axis of macroscopic order. If
the system is in contact with a particle reservoir the ensuing instability vanishes again,
which can be traced back to a compensation of the ensuing density heterogeneities.



B.6 Long-range Ordering of Vibrated Polar Disks 73

B.6 Long-range Ordering of Vibrated Polar Disks

title Long-range Ordering of Vibrated Polar Disks
authors Christoph A. Weber, Timo Hanke, Julien Deseigne,
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Summary

The emergence of collective motion in driven or self-propelled particle systems is a fasci-
nating field of recent interdisciplinary interest. Many models for self-propelled particles
systems have been analyzed numerically or analytically, usually lacking a quantitative
connection to a concrete experimental system. To close this gap, we propose a simple
particle-based model for propelled particles, in order to describe the dynamics of granular
disks vibrated by a shaking apparatus.

Vibrated polar disks have been used experimentally to investigate collective motion
of driven particles, and allow for a detailed characterization of the particles dynamics.
Specifically, by means of direct comparison with experimental data, we show that our
model reproduces quantitatively the single, binary and collective properties of this system.
The quantitative agreement with the experimental system allows us to use the model to
study the systems dynamics at system sizes, which are not accessible in the laboratory.
Therefore we can answer the question: “Can vibrated disks really order?”. Moreover,
we explore the models parameter space and find a phase diagram qualitatively different
from that of dilute or point-like particle systems. In particular, our findings might reopen
the debate about the possibility of a continuous transition to collective motion, since the
structures “responsible” for its discontinuous character—the bands—cannot not be found
for packing fractions above some critical value.
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Summary

Here we study a generalized Boltzmann equation to assess the polar ordering transition in
systems of self-propelled rods, based on an explicit microscopic picture of particle inter-
actions, and critically examine its range of applicability to experimentally relevant active
systems. In recent studies on active matter, the Boltzmann equation has been used by
several authors to describe spontaneous symmetry breaking and to study the emergence of
spatial patterns. All these approaches are based on a simplified picture of particle inter-
actions, which, in essence, translates Vicsek’s alignment rule for agent based simulations
to the case of binary particle collisions. These studies are able to reproduce a number
of phenomena previously observed in agent based simulations, including the formation of
polar order and traveling wave solutions. However, to which extent a Boltzmann approach
is appropriate to capture the characteristic features of active systems when based on the
actual physics of particle interactions, remains an open question.

In this contribution, we present for the first time a Boltzmann description of the macro-
scopic polar ordering process in active systems, which is fully based on a microscopic picture
of binary particle interactions. To make contact with the characteristics of the microscopic
collision processes, we present binary scattering studies for rigid and for semiflexible, self-
propelled rods in two-dimensions moving in an over-damped environment. Based on a
thorough analysis of these scattering studies, we then set up a generalized kinetic descrip-
tion of such systems, which explicitly keeps track of the essential features of binary collisions
in the form of “scattering functions”. To assess the ordering processes predicted by these
kinetic equations, we use both, a standard analytical procedure to derive the macroscopic
equations of motion, and a full numerical solution of the underlying Boltzmann equation it-
self. We find that the Vicsek-like alignment rule is qualitatively consistent with the pattern
formation properties of general weakly aligning systems, but systematically underestimates
the transition scales toward the formation of polar order. In particular, we demonstrate
that in the presence of collision noise, kinetic theory predicts a complete breakdown of
order formation below a noise-dependent, non-zero angular interaction range, even in the
case of optimal Vicsek-like alignment.
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Summary

Many models for self-propelled particles systems have been analyzed numerically or analyt-
ically, usually relying on the assumption that binary interactions between the constituents
contribute the major part to their alignment capabilities. In the following letter we ad-
dressed the question, whether the collective dynamics in propelled particle systems can
be understood by solely considering binary interactions between the constituents, by a
combination of molecular dynamics (MD) simulations and kinetic theory. Specifically, we
considered a system of active spherical particles interacting by a short-ranged and repul-
sive harmonic force. In the absence of interactions, these soft particles move at constant
speed determined by a balance between a driving and a dissipative force. From MD sim-
ulations for this system of soft active colloids we determined the phase boundary between
the isotropic and the polarized state. To connect these numerical studies with a kinetic
approach, we employed the MD simulations to also analyze binary scattering of particles.
Thereby one could extract the underlying collision-rule, i.e. the mapping of the pre-collision
to the post-collision velocities, which served as a starting point to set up a Boltzmann equa-
tion for the one-particle distribution function. The microscopic origin of the collision rule
offered the opportunity to quantitatively scrutinize the predictions of kinetic theory for pro-
pelled particle systems through direct comparison with multi-particle simulations. Thereby
we identified local pre-cursor correlations at the onset of collective motion to constitute
the essential determinant for a qualitative and quantitative validity of kinetic theory. In
particular, only if the kinetic description included these correlations, the analytic predic-
tion of the phase boundary coincided quantitatively for small packing fractions with the
one from multi-particle simulations. Most importantly, if orientational correlations were
neglected, kinetic theory for propelled particles failed, i.e. it predicted that ordering is
absent, which is at odds with corresponding molecular dynamics simulations.
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Summary

Since activity and active transport processes play a crucial role in all biological system,
many theoretical models have been developed to unravel the fundamental ingredients for
the emergence of the developing patterns and phenomena. A subclass of active systems
are propelled particle systems. Famous members of this class are gliding bacteria, driven
cytoskeletal filaments or shaken granules. In general, propelled particle systems can give
rise to collective motion patterns reminiscent to flocks of birds or schools of fish. To
investigate the physical properties of these systems the numerical analysis of particle-based
models turned out as one of the major tools. The most famous particle-based model within
the field of propelled particle systems has been proposed by Vicsek et al. [Vicsek, Phys.
Rev. Let., 1995]. It is essentially equal to a XY-model for propelled particle system and
rests on the competition between parallel alignment and some noise. This model lead to
an intense growth of the field with a large number of contributions from scientist of various
field of physics: granular media, biological physics and critical phenomena & kinetic theory.
However, most of these studies so far considered solely dilute systems.

In our manuscript we study a particle-based model in the spirit of the one proposed
by Vicsek et al., but focus on the regime of large densities close the maximal packing
fraction in two dimensions and analyze the competition between parallel alignment and
particles’ excluded volume. We find a number of unknown states and phenomena: In
particular, we discover the emergence of two new active crystalline phases with distinctively
different properties compared to the states at dilute particle densities. For dominating
alignment strength the stationary state is polarized (long-range ordered), but fluctuations
cause an intermittency (reminiscent to shock-waves) in the order parameter leading to
the creation of topological defects. Interestingly, the number of defects in the system
remain approximately constant and are arranged in interconnected grain boundaries. For
dominating excluded volume we find an active crystal: In contrast to thermal systems, the
fluctuations of the propelled particle system preserve—unlike thermal fluctuations—long-
range translational order without creating topological defects.
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How do topological defects affect the degree of order in active matter? To answer this question
we investigate an agent-based model of self-propelled particles, which accounts for polar alignment
and short-ranged repulsive interactions. For strong alignment forces we find collectively moving
polycrystalline states with fluctuating networks of grain boundaries. In the regime where repul-
sive forces dominate, the fluctuations generated by the active system give rise to quasi-long-range
transitional order, but—unlike thermal system—without creating topological defects.
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For a system in thermodynamic equilibrium, phases
with a broken continuous symmetry in two spatial di-
mensions are prohibited by general theorems [1, 2]. Yet,
for two-dimensional solids, XY magnets, and superflu-
ids there is a clear qualitative difference between a low-
temperature phase exhibiting quasi-long-range order and
a high-temperature phase where correlation functions de-
cay exponentially [3]. Since for crystalline solids the
low- and high-temperature phases are separated by two
broken symmetries, namely translational and orienta-
tional symmetry, melting can proceed by two steps, me-
diated by the unbinding of dislocations [4–7] or disclina-
tions [6, 7], respectively. With its two successive contin-
uous phase transitions with an intervening hexatic phase
it provides an alternative melting scenario to a discon-
tinuous first-order transition [8, 9].

These statements may no longer remain valid for sys-
tems driven out of thermodynamic equilibrium. Indeed,
for active systems where individual particles are self-
propelled, an antagonism between dissipative processes
favoring “ferromagnetic” alignment of the particles’ ve-
locities and noise can trigger a phase transition from an
isotropic to a long-range ordered polar state, where par-
ticles move collectively. This was first demonstrated by
Vicsek et al. [10] who employed a two-dimensional agent-
based model where particle alignment is implemented as
an update rule: Each particle aligns parallel to the aver-
age of all particles’ orientations within some defined finite
neighborhood. Interestingly, computer simulations of the
Viscek model show that the transition is discontinuous,
and the polar state exhibits propagating wave-like excita-
tions [11, 12]. The basic mechanism for the phase transi-
tion is believed to constitute a low-density phenomenon.
In the corresponding kinetic description the formation of
order is driven by a gradual reduction in the spread of
particle orientations by means of weakly aligning binary
collisions [13–15]. Experimental investigations support-
ing this picture are motility assays where cytoskeletal
filaments are propelled by some lawn of molecular mo-
tors [16–19], and vibrated granular systems [20, 21].

In contrast, much less is known about ordered states

of active matter at high densities, where in addition to
polar order the active system may also exhibit different
degrees of liquid crystalline [23] or even crystalline order.
Numerical studies of models for (self-)propelled particles
discovered jammed [24], and also crystalline-like states
at large packing fractions [11, 25]. Recently, a mean-
field theory combining elements from phase-field models
of crystals [26] and hydrodynamic theories of active sys-
tems [27–29] was proposed and shown to exhibit a wealth
of crystalline states of different symmetry and degrees
of polar order [30]. Although all these theoretical stud-
ies suggest the interesting possibility of the emergence
of translational and orientational order in active parti-
cle systems, a characterization of the nature of these or-
dered states and the transition between them remains
elusive. In this context, one might suppose that topolog-
ical defects will play an important role. Indeed, recent
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FIG. 1. Global polar order parameter P (a) and hexatic
order parameter Ψ6 (b) as a function of ρ and ν. The dashed
white lines indicate tentative boundaries between polar and
unpolarized states, and crystalline states exhibiting hexatic
order from fluid-like states. Snapshots of local hexatic order
|Ψ6,i| for ν = 0.25 (c), ν = 0.75 (d), and ν = 1.5 (e) at a high
packing fraction ρ = 0.85. See also videos in the Supplemental
Material [22]. Scale bars indicate a distance of 20R.
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experimental and theoretical studies of active liquid crys-
tals [23, 31] show that activity leads to generation and
swarming of topological defects. Active dislocations have
also been shown to drive growth of bacterial cell walls
through dislocation climb [32].

In this study we investigate the role of topological de-
fects for the nature of ordered states in active matter at
high densities. To this end, we build on a generalized
Vicsek model introduced by Grégoire and Chaté [11, 33],
which accounts for Viscek-like alignment interactions as
well as short-ranged repulsive interactions. Depending
on the relative strength of these interactions we find
different degrees of crystalline and polar order. In the
regime where repulsion is dominant, we observe no po-
lar order, i.e. no collective motion of the particles. In-
terestingly, however, the fluctuations generated by the
active system lead to an intriguing state of matter ex-
hibiting quasi-long-range translational order but – unlike
systems in thermal equilibrium – devoid of any topolog-
ical defects. In contrast, in the regime where dissipative
alignment dominates we find collectively moving poly-
crystalline states with hexagonally ordered crystalline
domains of characteristic size. These states exhibit pro-
nounced defect fluctuations and sound-wave-like excita-
tions.

To study active soft matter at high densities, we con-
sider an off-lattice system of N particles which have a
tendency to align their velocity with neighboring parti-
cles and repel each other if they come too close [11, 33].
These interactions are implemented by the following par-
allel update rules for the velocity ~vi(t) and position ~xi(t)
of each particle i with some discrete time interval ∆t:

~vi(t+ ∆t) = va

∑
j∈Ai

~nj(t)

|∑j∈Ai
~nj(t)|

+ vr
∑

j∈Ai

′ ~xij(t)
|~xij(t)|

, (1)

~xi(t+ ∆t) = ~xi (t) + ~vi (t+ ∆t) ∆t . (2)

Here ~ni := ~vi/|~vi| denotes the particle director, and
~xij := ~xi − ~xj signifies the relative position vector be-
tween particles i and j. The first term in Eq. (1) is an
alignment interaction as introduced by Vicsek et al. [10]
where the updated velocity of particle i is given by the
average velocity of all particles within a circular area Ai
of radius 2R centered on particle i. The parameter va
characterizes the strength of alignment as well as the
particles’ propulsion speed. The second term in Eq. (1)
describes a soft, pairwise additive repulsive interaction
between a given particle i and all its neighbors within
the same area Ai. It displaces a particle pair, whose sep-
aration |~xij(t)| ≤ 2R [i 6= j, indicated by the primed
sum], radially outward by a constant amount vr ∆t. In
the following, we will refer to R as the particle radius.
Length and time are measured in units of the particle di-
ameter, 2R, and the corresponding time to traverse this
distance, τ = 2R/va, respectively. The model can easily
be generalized to account for different radii for alignment
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FIG. 2. (a) Defect ratio d as a function of time t for
(ρ, ν) = (0.85, 1.5). The black curve is an average over 50
realizations (grey lines) with error bars indicating the stan-
dard deviation. (b) Probability distribution P (d) [lin(d)-log]
of the defect ratio for (ρ, ν) = (0.85, 0.25) (green, triangles),
and (ρ, ν) = (0.85, 0.75) (blue, circles). (c, d) Snapshots il-
lustrating the defect dynamics for (ρ, ν) = (0.85, 1.5) where
the system shows a high degree of crystalline order: (c)
Early phase with roughly homogeneous distributed defects
and small hexagonal patches; (d) Formation of ring-like dis-
location lines at larger times that contract (indicated by black
arrows). The left and right half of each figure depict the
Voronoi triangulation and the hexatic order parameter, re-
spectively. Particles with 5/7-fold coordination are indicated
by red/yellow dots, and green dots corresponds to particles
with more than 7-fold or less than 5-fold coordination. The
scale bars correspond to 10 particle diameters (20R).

and repulsion, Ra and Rr, respectively. Here, we focus
on the competition between alignment and repulsion, and
therefore have chosen the two radii as 2Rr = Ra; previous
studies of the Vicsek model with repulsion were restricted
to the limit Rr � Ra [34, 35]. We are mainly interested
in the collective dynamics as a function of the packing
fraction ρ = N πR2/L2, and the relative strength of the
repulsive and alignment interaction ν := vr/va.

First, we analyze the degree of polar and bond-
orientational order. The global polarization is defined
as a system average 〈...〉i of all the particles’ orienta-
tions ~ni(t): P(t) = |〈~ni(t)〉i|. Local bond-orientational
order is characterized by the hexatic order parameter
Ψ6,i = |Ni|−1

∑
j∈Ni

eı6θij , where the summation ex-
tends over all Ni topological (Voronoi) nearest neighbors
of particle i, and θij is the “bond”-angle between par-
ticles i and j relative to an arbitrarily chosen reference
axis.
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Figures 1(a,b) illustrate the degree of polar and hex-
atic order as a function of the packing fraction ρ, and the
relative strength of repulsive and alignment interactions
ν. We observe that global polar order, characterized by
the time-averaged polarization P = 〈P(t)〉t [〈...〉t: time-
average], is well-established for weak repulsion ν . 1, but
at ν ≈ 1 sharply drops to very small values [Fig. 1(a)].
The respective phase boundary between polar and un-
polarized states is tentatively defined by P = 0.2. Note
that it is nearly independent of the packing fraction ρ,
indicating that the transition from a polar collectively
moving state to an unpolarized state is mainly driven by
an antagonism between repulsive and alignment forces
but not the particle density. To discern the different de-
grees of bond-orientational or translational order is more
difficult. As can be inferred from Fig. 1(b), there are dif-
ferent degrees of global hexatic order, Ψ6 = 〈|〈Ψ6,i〉i|〉t,
with a maximum for large packing fraction ρ and strong
repulsive interaction (large ν); the dashed white line in
Fig. 1(b) correspond to a value of Ψ6 = 0.2. Strikingly,
the loss of polar order is concomitant with the emergence
of a high degree of crystalline order, and vice versa.

While the global polar and hexatic order parameters
provide a first rough estimate of the degree and nature of
the ordered states, a full characterization thereof requires
an in-depth analysis of the spatio-temporal dynamics. In
particular, as for thermodynamic equilibrium systems,
the dynamics and the spatial organization of topological
defects are especially important indicators of crystalline
order. Figs. 1(c-e) depict snapshots of the local hexatic
order |Ψ6,i| at a large packing fraction of ρ = 0.85 for a
set of values for ν. Depending on the relative strength
of repulsive and alignment interaction marked differences
in the spatial organization of defects are clearly visible.
While for ν . 0.25 dislocations align to form a network of
rather well-defined grain boundaries, they tend to cluster
in the intermediate regime 0.375 . ν . 1.0 [Figs. 1(c,d)].
For ν & 1.0, concomitant with the loss of polar order,
the defects become more evenly spread and slowly disap-
pear from the system; see Fig. 1(e) for a snapshot, and
Fig. 2(a) for the dynamics of the defect density. This
reassures the observation made on the basis of the order
parameters, namely that polar and crystalline order are
mutually exclusive.

There are even more dramatic differences in the spatio-
temporal dynamics of the defects; see the videos in the
Supplemental Material [22]. For ν . 0.375, we ob-
serve a flowing polycrystalline state where changes in
the flow direction strongly affect the network of grain
boundaries. In the stationary regime, the defect frac-
tion d = D/N is Gaussian-distributed around a mean
of about 7% [Fig. 2(b)]; here D is the number of all
particles with a coordination different from 6-fold. In
the intermediate regime, we find intermittent dynamics
where episodes of polycrystalline and polar order alter-
nate with episodes of disorder which are accompanied by
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FIG. 3. Static structure factor S(~q) for (ρ, ν) =
(0.85, 1.5) (a) and (ρ, ν) = (0.85, 0.25) (b), respectively, both

in the stationary regime. Reciprocal lattice vectors ~G are
indicated by white arrows. Correlation function C~G(r) for
(ρ, ν) = (0.85, 1.5) (c) [log(r)-lin, dashed line is a power law
with exponent 0.04] and (ρ, ν) = (0.85, 0.25) (d). Results
correspond to a simulation box of size L = 400 containing
N = 172156 particles; see Supplemental Material [22] S5 for
the corresponding pair correlation functions and details on
the data evaluation.

sound waves (see Supplemental Material [22], S1, S4).
This dynamics is reflected in a bimodal shape of the de-
fect probability density P (d) [Fig. 2(b)]: While the peak
at low values of d corresponds to particle configurations
with a high degree of polar order, the peak at higher
values originates from time intervals where the collective
motion breaks down and strong density inhomogeneities
arise.

Dynamics and spatial organization of topological de-
fects change qualitatively for strong repulsive interaction,
ν & 1, where polar order is also absent. Starting from an
initial disordered state [Fig. 2(c)], we observe that first
the spatial distribution of defects coarsens quickly and
then organizes into dislocation lines [Fig. 2(d)]. Sub-
sequently these defect lines contract and self-annihilate,
leaving the system in a state with evenly spread iso-
lated and paired dislocations; see also videos in the Sup-
plemental Material [22]. The annihilation processes of
these dislocations are seen as periods of steep decline
in the time traces for the defect fraction [Fig. 2(a),
grey curves]. After each steep decline, the decrease in
defect number slows down significantly due to an en-
larged inter-defect distance. We observe that the num-
ber of isolated defects decreases extremely slowly; see
the asymptotic decline in the average defect fraction in
Fig. 2(a). Moreover, we find evidence that the topolog-
ical defects even move sub-diffusively (see Supplemental
Material [22], S3). Taken together, it is numerically not
feasible to study the asymptotic dynamics significantly
beyond what is shown in Fig. 2(a). To check whether a
defect-free crystal is stable we initialized the system in an
unpolarized and perfectly hexagonal ordered state, and
waited until the global hexatic order parameter Ψ6(t)
converged to a stationary value. Even though the ac-
tive dynamics leads to a reduction of the hexatic order
parameter to a stationary value of Ψ6 ≈ 0.9, it is not
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strong enough to create any defects for densities larger
than ρ ≈ 0.8. Hence, we conclude that the stationary
states for ν & 1 and large density (ρ & 0.8) are indeed
free of topological defects. When decreasing the packing
fraction below 0.8, there is a small range of packing frac-
tions where fluctuations trigger the creation of defects
(see Supplemental Material [22], S2). However, in the
ensuing non-equilibrium steady state dislocations are al-
ways found in pairs, indicating that the corresponding
states exhibit quasi-long-range order; exploring parame-
ter space we could not identify hexatic phases with iso-
lated dislocations. Further decreasing the packing frac-
tion, the defect ratio d(ρ) increases to a rather high value
d ∼ 0.4, signaling a transition to a fluid-like phase.

In order to further scrutinize the nature of order within
the crystalline regime we computed the pair correlation
function g(~r), the corresponding static structure factor
S(~q), and the correlation functions [3, 22]

Cα(r) =
1∑

i |Ψα,i|2
∑

|~xi−~xj |=r
Ψα,iΨ

∗
α,j (3)

for the hexatic Ψ6,i, and the translational Ψ~G,i = e−ı ~G~ri

order parameter with ~G denoting a reciprocal lattice vec-
tor. As discussed above, for ν > 1, dislocation pairs de-
cay extremely slowly and, as a consequence, the asymp-
totic non-equilibrium steady state can not be reached
within a computationally accessible time. Therefore, to
obtain steady state results for the correlation functions,
we initialized the system in a hexagonal and isotropic
configuration (Ψ6 = 1, P ≈ 0); the corresponding re-
sults for simulations starting from an disordered initial
state are discussed in the Supplemental Material [22]. We
find that both S(~q) [Figs. 3(a) and 3(b)] and g(~r) [see
Supplemental Material S5] exhibit a sharp and discrete
pattern of hexagonal symmetry, clearly indicating a high
degree of translational order. This is confirmed by C6(r)
being constant over the whole system size [Fig. 4(a)],
and the slow decay of the translational correlation func-
tion C~G(r). The decay follows a power-law with a very
small exponent of about 0.04 [see Fig. 3(c), dashed grey
line], which is difficult to discern from a logarithmic de-
cay. Taken together, these results lead us to conclude
that this state of active matter is an active crystal, free
of topological defects with long-range bond-orientational
order and quasi-long-range translational order. In con-
trast, in the parameter regime of polycrystalline order,
the static structure factor shows the ring-like features of
a liquid [Figs. 3(b)]; see also Supplemental Material [22]
S5. These features are due to the different orientations
of the hexagonally ordered patches, as also evident from
the exponential decay in C6 [Fig. 4(a)] and the fast decay
of C~G(r) [Figs. 3(d)].

To further quantify the nature of the polycrystalline
state we compare the global hexatic order parameter,
Ψ6 = 〈|〈Ψ6,i〉i|〉t, with an order parameter characteriz-
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FIG. 4. (a) Correlation function C6(r) in lin(r)-log (inset:
log-log) for the same parameters as in Figs. 1c-d: ρ = 0.85,
and ν = 1.5 (red, square), ν = 0.75 (blue, circle), and ν = 0.25
(green, triangle). Correlations were computed in a box of size
L = 400 including N = 172156 particles. (b) Local and global
hexatic order parameter, Ψ|6| and Ψ6, as a function of ν for
different values of ρ [ρ = 0.85 (blue/black); ρ = 0.6 (light
grey)].

ing local hexatic order, Ψ|6| := 〈〈|Ψ6,i|〉i〉t. For poly-
crystalline solids, one expects Ψ6 to be small since the
complex numbers Ψ6,i of particles from different ordered
patches cancel in the average 〈. . .〉i. In contrast, using
the absolute values |Ψ6,i| there is no such cancellation
of phases. Therefore, the value of Ψ|6| should be close
to 1 in a polycrystalline phase because most particles
have six-fold coordination and are not located at grain
boundaries. Figure 4(b) depicts both order parameters
as a function of ν for two different densities, with the
lower value corresponding to the fluid-like and the larger
one to the crystalline regime. In the fluid-like regime,
local bond orientational order, Ψ|6|, is moderately devel-
oped while global orientational order, Ψ6, is close to zero.
Moreover, both order parameters are only weakly depen-
dent on ν. This is in stark contrast to the behavior at
higher densities, ρ = 0.85. There Ψ6 shows a steep and
large decrease at ν ≈ 1, while Ψ|6| remains approximately
constant, indicating that we have a polycrystalline phase
for ν . 1. Since the active crystal phase (ν & 1) exhibits
quasi-long-range order, local and global hexatic order are
likewise well developed.

Topological defects are the hallmark of phase transi-
tions in two-dimensional crystalline systems. For systems
in thermodynamic equilibrium they drive the successive
breaking of translational and bond-orientational order.
Our investigations of active crystalline matter at high
density have revealed: While defects still play a decisive
role, the emerging defect dynamics and phase behavior
differ qualitatively from their equilibrium analogues. In
active systems, the non-equilibrium steady states include
different types of polycrystalline phases, and a crystalline
phase with quasi-long-range translational order but com-
pletely devoid of any topological defects. Our theoretical
findings can readily be tested by experimental model sys-
tems [22].
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All simulations of the agent-based model were, if not stated otherwise, performed in a square box of side-length
L = 100 [unit length: particle Diameter 2R] with periodic boundary conditions and typically containing N ∼ 104

particles. Noting that va ∆t sets the maximal penetration depth in binary collisions, we choose the other parameters
such that va∆t � 2R in order to reduce the number of events where particles would pass through each other.
Specifically, the updating time is fixed to ∆t = 1, and we take va = 0.05.

Initialization at high densities

In general, we initialized the numerical simulations of the agent based model in two different configurations, which
we termed:

(R) Random. Particle initial positions and orientations were chosen randomly. Since this leads to strong overlaps of
the particle interaction radii R, we let the system first evolve in time with repulsive interactions only, until most of
of the overlaps vanished and the defect ratio has reached a value of d = 0.2. Then, both propulsion and alignment
interaction were switched on, and data were recorded.

(H) Hexagonal. Particle orientations were chosen randomly, while their positions were placed in a perfect hexagonal
configuration with a hexagonal lattice spacing of 2R. This implies a global hexatic order parameter Ψ6 = 1 and the
absence of defects, i.e. d = 0, at the time when simulations were started.

Triangulation

We used standard 2D Voronoi Triangulation functions as implemented by the CGAL library [http://www.cgal.org].

Fourier transformation and structure factor

In Fig. 3 we computed the pair correlation function g(r) = (L/N)
2 ∑

i,j δ (r− (ri − rj)), and the corresponding

static structure factor S(q) = 1 + N
L2

∫
dr2g(r)eiq·r. We numerically determined S(q) by using standard fast Fourier

transform (FFTW) libraries with a spatial resolution of 0.1 unit length.

Correlation function of the translational order parameter

Since global (bond) orientational is not perfect for ν > 1 (e.g. for ρ = 0.85 we have Ψ6 ≈ 0.9), the inverse lattice
vector G must be determined properly. We varied the corresponding angle of the inverse lattice vector G with a
step size of 5 · 10−4 rad, and thereby determined the optimal value of G with the weakest decay of CG; the ensuing
results are depicted in Fig. 3(c,d,g,h), and Fig.S5 and Fig.S6 in the Supplementary Material. Note that a non-optimal
choice of the lattice angle leads—even for a perfectly hexagonal configuration—to an underestimation of translational
order[1].

Experimental realization at high density

Active matter at high density may be realized experimentally using emulsion droplets containing extensile micro-
tubule bundles [2]. They have been shown to exhibit spontaneous motility when in frictional contact with a hard
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surface; depending on the availability of ATP their motion can be tuned from passive Brownian motion to active
persistent random walks. We envisage that large assemblies of such active soft droplets are ideal model systems to
test our theoretical predictions. Though the detailed mechanisms of the interaction between the droplets is different
from the interaction rules of the agent-based model, we expect that the main features of the dynamics and phase
behavior to be generic for active matter at high densities. Another promising experimental system are active colloidal
particles. Recent studies of photo-activated colloidal particles [3] and carbon-coated Janus particles [4] show various
types of pattern and cluster formation. The versatility of colloidal systems should also allow the design of experiments
to explore the dynamics of active matter at high density at high density.

Video descriptions

For all attached videos we chose the following parameter values: Interaction radii R = 0.5, updating time dt = 1.0,
alignment strength va = 0.05, and system size L = 100.

The videos depict the Voronoi triangulation of the particles (left) and the local hexatic order parameter |Ψ6,i| (right).
Voronoi triangulation: Particles with a coordination different from 6-fold are illustrated by color: red= 5 neighbors,
yellow= 7 neighbors, green is equal to more than 7 or less than 5 neighbors.
Local hexatic order parameter: 1 = yellow, 0 = black, with the color code shown in Fig. 1 (main text).

Parameters for density ρ and ν are indicated in the file names. Each video corresponds to an initialization with
different random particle coordinates and orientations (R).

ADDITIONAL MATERIAL

In this section we provide additional graphs substantiating certain statements made in the main text.

[1] C.-C. Liu et al., Journal of Polymer Science Part B: Polymer Physics 48, 2589 (2010).
[2] T. Sanchez et al., Nature 491, 431 (2012).
[3] J. Palacci et al., Science 339, 936 (2013).
[4] I. Buttinoni et al., Phys. Rev. Lett. 110, 238301 (2013).
[5] H. Chaté, F. Ginelli, G. Grégoire, and F. Raynaud, Phys. Rev. E 77, 046113 (2008).
[6] E. R. Weeks and D. A. Weitz, Phys. Rev. Lett. 89, 095704 (2002).
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FIG. S1: Intermittent states: In oder to find the ν-parameter regime for the intermittent states, we analyzed the total polarity
P and the fluctuations in time of P(t), denoted as δP . Both quantities are depicted as a function of ν for a fluid-like density
ρ = 0.55 and a crystalline density ρ = 0.85 [refer to Fig. 1, main text]. Pronounced fluctuations in polarity P(t) exist for
0.375 . ν . 1.0 (i.e. δP > 0.08), indicating the intermittent regime. Moreover, our results indicate that the unpolarized–
polarized transition with a fluid-like density ρ = 0.55 is very steep, reminiscent of the discontinuous phase transition found in
the Vicsek model without repulsion [5]. In contrast, the existence of the intermittent states at large densities (e.g. ρ = 0.85)
flattens the slope of the total polarity in the transitional region between the crystalline regime (ν > 1) and the polarized
non-intermittent regime (ν . 0.375).

bound 
dislocations

d=0

FIG. S2: Averaged defect ratio 〈d〉t for ν = {1.2, 1.6} as a function of density ρ (left and right solely differ in a different plot
range for the density). The system is initialized in an unpolarized and fully ordered hexagonal configuration (H). The fluid-like
phase is characterized by a rather large defect ratio 〈d〉t ∼ 0.4. Increasing the density, we observe a small density region (e.g.
around ρ ≈ 0.7 for ν = 1.6), where active fluctuations are strong enough to create a non-zero defect ratio. However, the defect
ratio is rather small, i.e. 〈d〉t ∼ 0.005. Moreover, within this region, isolated disclinations are absent and dislocations are always
found in pairs. This indicates that the corresponding states exhibit quasi long-range order and that there is no hexatic phase
in our model. Increasing the density further (& 0.775 for ν = 1.6), one observes a defect-free stationary state with d = 0. The
decay of the averaged defect ratio can be roughly fitted by 〈d〉t ∝ (ρc − ρ)δ, with δ being in the interval [0.35, 0.4]. Snapshots:
Each snapshot depicts the state’s triangulation for a representative configuration in time and corresponds to ν = 1.6 (blue data
points). The respective density ρ is indicated by means of the black arrows.
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FIG. S3: Motion of topological defects: Since the number of topological defects is rather small in the stationary state, their
motion cannot be characterized by studying the defect’s mean square displacement within an appropriate statistical accuracy.
Therefore, we analyzed (a) the particles’ mean square displacement δX(τ) =

√
〈[xi(t0 + τ)− xi(t0)]2〉i, with i denoting the

particle index and t0 is a time point where the number of defects d(t) have become approximately stationary. We find a
sub-diffusive particle motion for small and intermediate time scales with δX ∼ τ0.05 (red dash-dotted line). At large time scales
there is a crossover to a diffusive regime with δX ∼ τ0.5 (grey dotted line). Moreover, we evaluated (b) the cage correlation
function [6], CC(τ), here defined as the ratio of particles which have changed at least once their neighborhood (often referred to
as “cage”). In the time regime corresponding to sub-diffusive particle motion, mostly none of the particles have rearranged their
neighborhood. We find that in the considered time regime CC(τ) increases according to a power-law CC(τ) ∼ τ0.3, whereby the
ratio of rearranged cages remains relativity small; until the crossover to the diffusive regime only about 5% of the particles have
rearranged their cage(s). Since defects can either move by cage rearrangements or particle motion, we can conclude that defect
also move sub-diffusively—as the particles—at least for small time scales. The slow movements of the topological defects makes
is practically unfeasible to follow numerically the annihilation processes of just a few remaining dislocations in the system, i.e.
the process d → 0 for large time scales when starting with a random initial condition (R). Parameters: ρ = 0.75, ν = 1.2,
random initial condition R.
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FIG. S4: Illustration of the spatial arrangements of dislocations for ν < 1 (left: weakly intermittent ν = 0.25; right: intermittent
state ν = 0.75), and densities ρ = 0.85 and ρ = 0.75. For ρ = 0.85, three representative configurations in time (no particular
order in time) are depicted for each of the two ν-values. Even though intermittency is different for ν = 0.25 and ν = 0.75,
one finds a similar arrangement of dislocations ranging from periods with mostly connected grain boundaries, to periods of
pronounced coexistence between bound and free dislocations. In contrast, for ρ = 0.75, defects are large in number (d ∼ 0.2)
and appear spatially disordered. Therefore, we term this state fluid-like.
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FIG. S5: Pair correlation function g(r), static structure factor S(q) and Correlation function CG for decreasing values of
ν (from top to bottom). (a,b,c) corresponds to (ρ, ν) = (0.85, 1.5), (d,e,f) to (ρ, ν) = (0.85, 0.75) and (d,e,f) to (ρ, ν) =
(0.85, 0.25), respectively. Reciprocal lattice vectors G are indicated by white arrows in (b). Note that since the stationary
states for ν < 1 develop very fast, there is no difference in the results obtained by either starting from a hexagonal (H) or a
disordered (R) configuration. Results correspond to a simulation box of size L = 400 containing N = 172156 particles.
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FIG. S6: (a) Comparison of the translational correlation function CG of the considered crystalline state (ρ = 0.85, ν = 1.5)
for the two different initial conditions: Random(R) and hexagonal(H). The black curve depicts the results already presented in
the main text [Fig. 3(c)]. It corresponds to a defect-free (d = 0) stationary state. For this hexagonal(H) initial conditions were
chosen since the time for all defects to vanish out of the system increases to time scales that cannot be addressed numerically
(explanation see caption of Supplemental Fig. S3). The blue curve corresponds to the same parameter set, but the system
was initialized in a random configuration (R). We selected the realization with the smallest number of topological defects
and computed CG within the “last quasi-stationary” regime. The corresponding time trace of the defect ratio d(t) is shown
in (b). The begin of the“last quasi-stationary” plateau is marked by an arrow. The existence of defects (d 6= 0) leads to an
underestimation of the decay of CG.



Appendix C

Materials & Methods for Section on
Anomalous Contour Fluctuations

Stochastic molecular dynamic model:

The stochastic model treats the polymer as N discretized beads of size d, which are
coupled by harmonic springs for tangential stretching and bending. For bending forces
along the polymer contour, we employ the well-establishedWorm-like Chain model [24],
with the bending force at bead i given by

Fbend
i =

E
d

∂

∂xi

∑

j

Tj ·Tj+1, (C.1)

where Ti(t) denotes the tangent of the i-th bead, defined as Ti = xi−xi−1/|xi−xi−1|, and
E [energy×length] is the bending rigidity. Each bead is exposed to uncorrelated thermal
fluctuations ξ(t), i.e.

〈ξi(t)ξj(t′)〉 = 2µkbTδ(t− t′)δij, (C.2)

where µ denoting the hydrodynamic mobility of the bead. We neglect filament stretching
by choosing the corresponding spring constant Kc much larger than E/d2, thereby the
only quantity characterizing the thermal filament dynamics is the the persistence length
`p = E/kbT and the longest relaxation time [?]

τc =
ζ

`pkBT
(L/4.73)4, (C.3)

where L = Nd is the filament length and ζ denotes the friction coefficient of the consid-
ered rod segment. We chose the parameters according to experimental measurements for
actin [?], with `p ≈ 15µm and τc ≈ 0.6s for L = 8µm.

We simplify the interactions between the filament and the 2d-motor lawn to a process of
stochastic and independent binding events of motors along the filament contour. A motor
begins its cycle with the “Hold”-state by binding randomly at bead i (with coordinates xi)
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with probability 1/N , independent of the bead’s binding history or state occupancy. After
attaching to the filament, say at time t = 0, the motor attains the spatial coordinates
of the randomly selected bead, plus some small randomly chosen distance Ri (1). The
motor stays in this configuration, called holding state, for a time period of the holding
time τh. During this time period the motor provides a rigid link between substrate and
filament for displacements beyond some critical distance lc. Specifically, the corresponding
restoring force is zero for |xi(0)−xi(t)| < lc, and proportional to Kh for |xi(0)−xi(t)| ≥ lc
(harmonic force Fhold

i pointing parallel to xi(0) − xi(t), and with Kh ≈ Kc). We assume
that the upper bound for this critical length is essentially given by the S2 domain of HMM
(tail part of the molecular motor), which is approximately 65nm [50]. However, the tail
is probably partly attached to the substrate, thus we choose lc equal to 30nm. After the
holding time period, the stroke phase of the molecular motor is modeled as a spring that
is connected to the filament, thereby exerting a force Fpush

i on the filament while moving
with a velocity ∆xs/τs (∆xs denotes the stroke length) within the stroke time τs along its
contour. For simplicity, we employ a linear spring with a constant Ks ≈ Kc. A typical
filament in the experiment is about 8µm in length and the stroke displacement has been
estimated by measurements to be about 8nm [50], which is in agreement with our choice
for ∆xs = L · 10−3 in the simulation. Moreover, we matched the time scales characterizing
the molecular motor, i.e. τh = 0.001s and τs/τh = 0.1 [50], with the thermal relaxation
time relaxation time τc: τc/τh ≈ 6 · 102.

Finally, we checked that fluctuations of the number of bound motors in time do not have
any qualitative impact on the ensuing filament dynamics, therefore we kept the number of
bound motors, denoted as mb (either in “Hold” or “Push” state), constant. Apart from
thermal fluctuations, the only stochastic element in our model is where (at which bead)
the motor binds to the filament.

In summary, measuring distance in units of the bead diameter d, xi → xi/d and time
we rescale as t → t/ d2

µkbT
[µ = (0.5ζd)−1 is the Rousse mobility of a sphere], we face the

following discretized Langevin equation:

xi(t+ ∆t)− xi(t) = ∆t
`p
d

[
∂

∂xi

∑

j

Tj ·Tj+1

]
+ F̃stretch

i ∆t+
√

2∆tξ(t)(0,1)(C.4)

+∆t

{
F̃hold
i if t ∈ [0, τh], |xi(0) + Ri − xi(t)| ≥ lc,

F̃push
i (∆xs/τs) if t ∈ [τh, τh + τs],

(C.5)

where F̃... denoting the respective non-dimensional forces 2, τ is the simulation time-scale,
and Ri denotes the aforementioned random distance with respect to bead i and Ti is
the the local tangent. ξ(t)(0,1) is an uncorrelated random number drawn from a Gaussian
distribution with zero mean and standard deviation equal to 1.

1For simplicity, Ri is a vector with random orientation and randomly chosen radii within [0, lc].
2We skip to write down an explicit form of these non-dimensional forces, since their spring constants are

chosen such that their relaxation occurs on some ∆t. However, it is worth noting that their characteristic
on/off time scales (i.e. τh and τh) are crucial for the dynamics.
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[28] A. Czirók, H.E. Stanley und T. Vicsek, Journal of Physics A: Mathematical and
General 30 (1997), 1375.
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[80] A. Peshkov, S. Ngo, E. Bertin, H. Chaté und F. Ginelli, Phys. Rev. Lett. 109 (2012),
098101.

[81] S. Ramaswamy, Annual Review of Condensed Matter Physics 1 (2010), 323.

[82] S. Ramaswamy, R.A. Simha und J. Toner, Europhys. Lett. 62 (2003), 196.

[83] P. Romanczuk, M. Bär, W. Ebeling, B. Lindner und L. Schimansky-Geier, The
European Physical Journal - Special Topics 202 (2012), 1.

[84] P. Romanczuk und L. Schimansky-Geier, Phys. Rev. Lett. 106 (2011), 230601.

[85] D. Saintillan und M.J. Shelley, Phys. Rev. Lett. 99 (2007), 058102.

[86] D. Saintillan und M.J. Shelley, Phys. Rev. Lett. 100 (2008), 178103.

[87] V. Schaller und A.R. Bausch, Proceedings of the National Academy of Sciences 110
(2013), 4488.

[88] V. Schaller, B. Hammerich und A. Bausch, The European Physical Journal E 35
(2012), 1.

[89] V. Schaller, C.A. Weber, B. Hammerich, E. Frey und A.R. Bausch, Proceedings of
the National Academy of Sciences 108 (2011), 19183.

[90] V. Schaller, C.A. Weber, C. Semmerich, E. Frey und A. Bausch, Nature 467 (2010),
73.

[91] A. Snezhko und I.S. Aranson, Nature Materials 10 (2011), 698703.

[92] A. Snezhko, K. Barlan, I.S. Aranson und V.I. Gelfand, Biophysical journal 99 (2010),
3216.

[93] Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté und K. Oiwa,
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Außerdem möchte ich mich bei Flo und Volker bedanken. Kollaborieren mit Euch war
schlichtweg der Hammer. Danke, dass ich mit Euch zusammenarbeiten durfte, und danke
Euch auch als Freund!

Danke auch an meine lieben Kollegen am Lehrstuhl, mit ganz besonderem Dank an meinen
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