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Abstract

The effects of radiation of high energy electron beams are a major issue in al-
most all types of charged particle accelerators. The objective of this thesis is both
the analytical and numerical study of radiation effects. Due to its many applica-
tions the study of the self force has become a very active and productive field of
research.

The main part of this thesis is devoted to the study of radiation effects in laser-
based plasma accelerators. Analytical models predict the existence of radiation
effects. The investigation of radiation reaction show that in laser-based plasma
accelerators, the self force effects lower the energy gain and emittance for mod-
erate energies electron beams and increase the relative energy spread. However,
for relatively high energy electron beams, the self radiation and retardation (radi-
ation effects of one electron on the other electron of the system) effects increase the
transverse emittance of the beam. The energy gain decreases to even lower value
and relative energy spread increases to even higher value due to high radiation
losses.

The second part of this thesis investigates with radiation reaction in focused
laser beams. Radiation effects are very weak even for high energy electrons. The
radiation-free acceleration and the simple practical setup make direct acceleration
in a focused laser beam very attractive.

The results presented in this thesis can be helpful for the optimization of future
electron acceleration experiments, in particular in the case of laser-plasma accel-

erators.






Zusammenfassung

Zusammenfassung

Die Strahlungseffekte von hochenergetischen Elektronen sind von grosser Be-
deutung in fast allen Arten von Teilchenbeschleunigern. Das Ziel dieser Arbeit ist
die analytische und numerische Untersuchung dieser Effekte. Die Untersuchung
der Selbstkraft ist, dank ihrer vielen Anwendungsgebiete, zu einem sehr aktiven
und produktiven Bereich der Forschung geworden.

Der Hauptteil dieser Arbeit widmet sich der Untersuchung von Strahlungsef-
fekten in Laser-Plasma-Beschleunigern. Analytische Modelle sagen die Existenz
von Strahlungseffekten voraus. Unsere Untersuchungen der Strahlungsriickwirk-
ung zeigen, dass die Selbstkraft den Energiegewinn sowie die Emittanz von Elek-
tronenstrahlen mittlerer Energie verringert und deren relative Energieverteilung
verbreitert. Fiir hochenergetische Elektronenstrahlen jedoch bewirken die Strahlun-
gseffekte (Strahlungsriickwirkung sowie retardierende Effekte) eine Erh6hung der
transversalen Emittanz und, aufgrund von Strahlungsverlusten, eine Verringerung
des Energiegewinns.

Der zweite Teil dieser Arbeit beschaftigt sich mit der Strahlungsriickwirkung
in fokussierten Lasern. Die Strahlungseffekte auf die Teilchenbeschleunigung sind
in diesem Fall nur sehr schwach ausgeprigt. Dies gilt auch fiir hochenergetis-
che Elektronen. Der strahlungsarme und relativ einfache Versuchsaufbau lassen
diesen Ansatz zur Elektronenbeschleunigung herausragen. Wir hoffen, dass un-
sere Ergebnisse bei der Optimierung von zukiinftigen Experimenten im Bereich
der Elektronenbeschleunigung von grossem Nutzen sind. Insbesondere gilt dies

fiir Versuche mit Laser-Plasma-Beschleunigern.

xi






CHAPTER 1

Introduction and motivation

1.1. Structure of the thesis

The thesis is structured as this

e Chapter 1 gives a general introduction into the subject and the motivation

for the investigations.

e Chapter 2 deals with the theoretical and numerical investigation of self-
radiation effects of high energy electron beams in a low density plasma chan-
nel. The growth and reduction of transverse emittance of the electron beam

in the plasma channel are shown.

* In Chapter 3 retardation and self-radiation effects are studied. A simple the-
oretical model for two interacting electrons is presented, which analyses the-
self radiation and retarded field effects of a bunch of electrons. This chapter

investigates the basic effects of retarded potentials.

* Chapter 4 is devoted to design parameters of a 1 TeV electron accelerator.
Five different density regimes are discussed. Almost all the basic parameters

for linear laser wakefield accelerators are given with their optimum values.
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¢ Chapter 5 investigates the retardation effects of a bunch of electrons in a

laser wakefield in low density plasma.

¢ Chapter 6 presents the numerical solutions of the equations of radiating
charged particles. Numerical schemes for equations of the point particles,
i.e., the Landau-Lifshitz and the Lorentz-Abraham-Dirac equation, and equa-

tion of a radiating charged sphere, i.e., the Caldirola equation, are discussed.

¢ Chapter 7 is devoted to the study of radiation effects in a focused laser beam.
A novel numerical approach is discussed to solve the Lorentz-Abraham-

Dirac equation.

1.2. Introduction

With the recent development of laser technology it is possible to obtain ultra in-
tense laser pulses. Laser pulses with normalized laser intensities a, = 8.5 x
10719N, (um)\/I,(W/em?) > 1 are considered to be ultra relativistic intensities as
they can accelerate electrons to much higher energies than their rest mass energy
(mec?) [1, 2], where A, and I, are the wavelength and intensity of the laser pulse.
The Chirped-Pulse-Amplification (CPA) technique makes it possible to generate
relativistically strong laser pulses with durations less than 100 fs [3]. Electron
acceleration by conventional accelerators is complex and expensive. Therefore,

electron acceleration via lasers has been of great interest.

1.3. Acceleration in plasma

In 1979 Tajima and Dawson proposed the idea of acceleration of electrons by
plasma waves [4]. Because relativistic intensities (a, > 1) are much higher than
intensities needed for target ionization the interaction of light with matter can be

assumed to be the interaction with fully ionized plasma. Electrons under the effect
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of such intense pulses oscillate and accelerate to high velocities in the transverse
and longitudinal directions [5, 6]. In a Laser-Wakefield-Accelerator (LWFA) an in-
tense laser beam with a duration 77, approximately equal to the plasma oscillation
period 27 /w, creates a large amplitude plasma wave with a phase velocity approx-
imately equal to the speed of light [7, 8, 9, 10, 11, 12]. The electrons with appro-
priate initial conditions are trapped and accelerated to high energies depending
on the density and type of the laser wakefield. For example, bubble regime has
high accelerating gradient as compared to the linear wakefield for same plasma
density.

The wakefield created by a laser pulse has two important advantages over
a conventional acceleration field; (i) the longitudinal electric field gradient is 2-3
orders of magnitude higher without breakdown limitation as is the case in conven-
tional accelerators and (ii) the acceleration length in the laser wakefield is much
smaller [13, 14]. In a plasma-based accelerator compact and high energy electron
beams can be produced over a much shorter distance than in conventional ac-
celerators (for a review see [15, 16]). This promises compact accelerator designs
and applications such as compact X-ray FELs (free electron lasers), high energy
frontier accelerators, radiolysis [17, 18], electron diffraction and interactive radio-
therapy [19] to name a few. Early experiments on laser wakefield were not able to
produce the electrons beam of desired standard. Until the end of the last decade
electron bunches from LWFAs with long exponentially small tails were obtained
while most of the electrons have energies < 10 MeV and the bunch charge is ~ nC
[20]. In 2004 the quality of the LWFA beams improved as reported by [21, 22, 23].
The obtained electron bunches have charge > 100 pC and a mean energy of ~ 100
MeV. In addition, the energy spread and transverse emittance were also small.
These high quality electron beams were obtained by better control of the laser and
plasma parameters. In particular, matching the acceleration length to the dephas-
ing length. A high quality electron beam of 1 GeV was obtained using a plasma
channel guided laser [24].
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The accelerating gradients in conventional rf-linear accelerators are usually
smaller than ~ 100 MV /m due to the breakdown limit. However, electron plasma

waves can sustain an electric field E, = cm.w)/e greater than 100 GeV/m, or

E,(V/)m = 964/n,cm=3, (1.1)

where n, is the background plasma density, w, = y/47mn.e2/m, is the frequency
of the electron plasma wave, m. and e are the mass and charge of the electron
respectively and c is the speed of light. Equation (1.1) is the cold non-relativistic

019 cm™3 the plasma wave

wave breaking field [25]. For a plasma density n, = 1
field is E, ~ 960 GeV/m, which is almost four orders of magnitude higher than
what is found in linac. Plasma accelerators are also produce electron bunches with
much smaller durations 7, < \,/c, where 7, is the bunch duration and A, is the

wavelength of the electron plasma wave.

The normalized laser intensity or laser strength parameter a, = eEy,/(mecwr,)
is an important parameter to study the laser-plasma interaction, where £}, is the
peak amplitude of the laser electric field and wy, is the frequency of the laser pulse.
The radiation pressure of the laser drives the wake in the plasma. Different aspects
of propagation and transport of the driver beams will be discussed in the subse-

quent sections.

1.3.1. Ponderomotive force

Wakefields are created by the ponderomotive potential of the laser beam in LW-
FAs. The electric and magnetic fields of the laser can be written as E = —0A4/0(ct)
and B = V x E, where A is the vector potential of the laser and is polarized in the
transverse directioni.e. A = A, cos(kz—wt)e . For an intensity a = e|A|/(mec?) <
1 the leading order electron motion is the quiver momentum p’' = m.cad given by

the Lorentz force equation dp/dt = —¢E. Let us suppose p' = p + p then the
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Figure 1.1.: Plasma wave phase representation. The normalized transverse force
F, and the longitudinal accelerating force F, felt by an electron. The
first quadrant (0 — 7/2) is appropriate for simultaneous focusing and

acceleration.

second order momentum is given by
0y

dt
ﬁp = —m.c*V(a?/2), (1.3)

= —(p/m-V)p—px (cV x @), (1.2)

where F, is the 3D ponderomotive force in the linear limit i.e. (a2 < 1). The
ponderomotive force is also called radiation pressure (i.e. the gradient of the elec-
tromagnetic energy density). In the 1D nonlinear limit, p; = a,;, which means in
the 1D nonlinear limit, the ponderomotive force is F,, = —(m.c?/2v)da? /dz. In
3D nonlinear regime, the leading order transverse motion of the electron fluid is
still the quiver motion, i, ~ @, for the situation that the laser is propagating in

the under-dense plasma and the laser spot size r, > A\, ~ Az. The second order

momentum is given by

— = V(p—1), (1.4)
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where V¢ is the space charge force and V7 is the generalized nonlinear pondero-
motive force ﬁpn = —Mec? ﬁfy, see [26,27,28]. A LWFA can be operated in different
regime depending on the intensity of the driver laser pulse. Non-relativistic laser

pulses (a, < 1) create a linear plasma wave.

1.3.2. Linear wakefield

In the linear (a, < 1) 3D regime, wakefield generation can be studied using cold
fluid equations, i.e., the Poisson equation, the continuity equation, and the mo-
mentum equation. A laser propagating in under-dense uniform plasma creates a

plasma wave

2
a— +w?)dn/n, = AV3a?/2, (1.5)
ot? p
s 2 2 2
(@ + wp)¢ = wpa /27 (16)

where én is the density perturbation associated with the electrostatic wake ¢ in

the linear intensity limit. The solutions to equations (1.5) and (1.6) are

on 62 t /. / 2 27— 41

T w2/0 dt’ sin(w,(t — ) V2a2(7,1') )2, (1.7)
o p

E t ! / 2 20— 4/

= = c/o dt’sin(w,(t — ) V2a2(F, ) )2. (1.8)

Equations (1.7) and (1.8) give the plasma wave of frequency w,, in the linear regime
(ap < 1 or £ <« E,) created by a laser pulse, where E, = m.cw,/e is the cold
non-relativistic wave-breaking field. The solution of equation (1.8) shows that the
maximum wakefield is generated when the envelope scale length of the incident
laser pulse is of the order of the plasma wavelength \,. Usually the axial gradient
of the wakefield is characterized by the length L of the pulse and the transverse

width is determined by the spot size r, of the laser.
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1.3.2.1. Linear regime sine pulse

Let us consider a circularly polarized laser pulse with a normalized intensity a? =
a2 exp(—2r2/r2)sin?(r€é/L) for 0 < ¢ < L, where £ = z — ct and a2 < 1. The
solution of equation (1.8) gives the wakefield created by the laser pulse and shows
that it is maximum for L ~ \,. The axial electric field and density perturbations

of the wake behind the pulse are [29]

% = —%ag exp (_f;z) cos(kp) (1.9)
and
5 8 22 —2r2,
n—f = —%ag {1 + @(1 — 7% )} exp( rgr )sm(k:pf) (1.10)

1.3.2.2. Linear regime Gaussian pulse

For a Gaussian pulse of circular polarization with profile a? = a2 exp(—2¢2/L?),

the amplitude of the wakefield behind the pulse is

Erax ra2 —k‘gLQ
B 7kaexp( : ), (1.11)

where E,,.; is the peak electric field of the wake. Equation (1.11) shows the de-
pendence of the wake amplitude on the laser pulse length L. The wake amplitude
is maximum when L = )\, /(7/2).

The transverse wakefield E, is related to the longitudinal wakefield E, by the
Panofsky-Wenzel theorem [30] given by 0F,/0r = J(E, — Bp)/0(z — ct), where
By is the azimuthal magnetic field. Hence in a wakefield an electron moving with
relativistic velocity i.e. v ~ c feels a radial force which is proportional to E, — By. It
is clear from the Panofsky-Wenzel theorem that if the axial field is given by E, ~
exp(—2r?/r2) cos(ky(z — ct)) the transverse field isE, ~ (4r/kyr?)exp(—2r?/r2)

sin (kp(z - ct)) and an electron moving on the axis feels no transverse force.
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1.3.3. Nonlinear plasma wave

For a laser intensity a, ~ 1 the plasma wave is highly nonlinear. In such a regime
E > E, holds. Wakefield generation in the 1D nonlinear regime can be examined
by assuming that the driver beam is non-evolving, i.e. the driver beam is a func-
tion of only the coordinate { = z — v,t, where v, < c is the phase velocity of the
plasma wave. The plasma fluid quantities are also considered functions of the co-
moving variable ¢ for the quasi-static approximation [31, 32]. The 1D quasi-static
fluid momentum and continuity equations provide us with the following set of

equation [16]

i —a; = 0, (1.12)
v —Bpu, —¢ = 0, (1.13)
n(ﬁp —B.) = BpTos (1.14)
and the poisson equation §%¢/9¢? = /-c%(n /no — 1) implies that
0%¢ 12,2 ’Yi

where v, = 1+u} =1+ad? 4, = (1 - 2),and S, = v,/c. The axial electric field
of the wake is £, = —E,0¢/0¢.
In the limit 75 > 1 equation (1.15) is reduced to

¢ 5 14a> 1
o = Mategr 7 e

The analytical solution of equation (1.16) can be found in terms of elliptic integrals
for square laser pulse profiles [33, 31, 32]. As the plasma wave amplitude becomes
nonlinear, the plasma wave steepens, which lengthens its period. The nonlinear

plasma wavelength in the limit ~;, > 1 for the ellitpical integral is given by
My = Ap(14 3(Emar/ Bo)?/16), if  Einas/Ey < 1 (1.17)
and

Aop = AP(QW(Emaw/EO—i—EO/Emm)), if Enee/E,>1  (1.18)
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where E,,,, is the peak electric field of the plasma wave and A\, = 27c/w,,.

The analytical modeling of the wakefield in the high intensity limit (a, ~ 1) is
possible in 1D. However, in the 3D high intensity limit, only numerical modeling
is possible. For a bounded pulse in three dimensions the structure of the wakefield
deviates significantly from the sinusoidal form with increasing laser intensity as
described by linear theory. Along with the wave steepening and period lengthen-
ing, which occur in the 1D limit, the radial structure of the wake can give rise to
nonlinearities. One of the basic effect is that the wave front of the plasma wave
can be curved.

Laser pulses with intensities well above the relativistic limit, a, > 1, create
a highly nonlinear plasma wave and wave breaking occurs after the first plasma
oscillation. It expels all electrons from the axis and immediately behind the laser
pulse and leaves behind an electron free ion cavity, which travels through the

plasma as a soliton-like structure. This is called the blow-out or bubble regime.

1.3.4. Bubble regime

In the blow-out regime a relatively high laser intensity is required to completely
expel all plasma electrons from the vicinity of the axis [34, 35, 36]. In the bub-
ble regime most of the plasma electrons are expelled, however, a fraction of the
plasma electrons can be self-trapped in the cavity and are accelerated to high en-
ergies.

The bubble regime can be created by both, laser [37] and electron or ion beam
drivers [38, 39]. For electron beam drivers Rosenweig [38] was the first to study the
blow-out regime and some early nonlinear Plasma-Wakefield-Accelerator (PWFA)
experiments have been done at the Stanford Linear Accelerator Center (SLAC) us-
ing 30-40 GeV electron beams to drive plasma waves [40, 41]. In the blow-out
regime of the PWFA (ny/n, > 1, kyo, < 1, and kyo, < 1, where o, and o, are

the axial and radial bunch lengths respectively) almost all the plasma electrons
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are driven out from the vicinity of and immediately behind the driver. As is the
case in the linear wakefield there exist two kinds of fields in the bubble regime.
The longitudinal accelerating field, which is constant as function of the radius and
varies linearly as a function of distance behind the driver and other one is the
focusing field that is linear as a function of radius. Due to these properties the
bubble regime can be beneficial, e.g., because the focusing force is linear, there-
fore, the normalized emittance of an accelerated electron bunch can be preserved.
Experiments at SLAC show an energy gain of 40 GeV for a fraction of the electrons
in the tail of the bunch in the blow-out regime [42].

Usually the focusing force of the bubble regime is very high, for example, the
transverse field of a long ion channel is E, = E,(k,r/2) [38]. The focusing field in

convenient units at the edge of an electron beam with radius o,
E.(MV/m) =~ 9.06 x 10~ %n,(ecm™)o,(um). (1.19)

This transverse focusing force will force a relativistic electron with v > 1 to
perform betatron oscillations about the axis with a betatron wavelength \g =
(27)1/2), [43]. The rms radius of a highly relativistic electron bunch is described
by the equation

d*o, 9
W + kﬁar =

2
_n
3 30
YOy

(1.20)

where ¢, is the normalized beam emittance, the focusing force is taken to be linear
and we have neglected the space charge of the beam, energy spread and acceler-
ation. Moreover, k3 = eE,/(ymcc*r) or kg = 21/\g = ky/(y/27) in the bubble
regime. The matched condition (i.e., the beam propagates with a constant bunch
radius) for an electron bunch in such a focusing channel is o, = \/€,,/(vkg). For
example, n, = 10" em™3, v = 1000, and ¢, = 1 rad mm give \g = 4.7 mm,
orm = 0.86 um, and E, = 780 MV /m [16].

If we assume a spherical ion cavity of radius R, which is centered at r = 0 and

¢ = 0 and is moving with relativistic velocity then the transverse focusing field

10
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E,, the longitudinal accelerating field E,, and azimuthal magnetic field By within

the cavity are given by [36, 44]

E, = Eafpf, 1.21)
B,k

E, = 2197’, (1.22)
Bk

By = — 41”", (1.23)

where ¢ = z — ct. The axial electric field will be maximum when ¢ = r3, where
rg is the amplitude of the betatron oscillation of an electron inside the ion cavity.
The radial wakefield is electromagnetic and the transverse force felt by a highly
relativistic electron inside the cavity is equal to F, = E, — By.

In the case of laser beam drivers, the bubble wakefield can be obtained for
many regimes, for example for the long pulse self-modulated regime [34, 45, 46,
47] and for the short pulse LWFA regime [35, 36, 44, 48, 49, 50]. For a long laser
pulse with slowly varying axial profile the plasma density profile can be calculated
by balancing the radial ponderomotive force with the space charge force. The

plasma density in the long pulse adiabatic limit is given by

no_ oy, Vivivd

1.24

assuming circular polarization. If we assume a Gaussian pulse profile of the form

a? = a2 exp(—2r?/r2) then the on axis density is

n(r =0) 4 a?
L2/ O B (1.25)
Mo roky /1 + a2
which suggests that a complete blowout of plasma electrons is possible if the in-
tensity of the laser satisfies the relation

2 k2
a T
o > p

V1+taz 4

In the relativistic intensity limit, ag > 1, the condition a, > kgrg /4 is required or

2
o

(1.26)

in terms of spot size r, < 2,/a,/k, has to hold to create a bubble. Moreover, to

cavitate the electrons from a larger radius requires higher intensity [16].

11
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For the case of a short intense laser pulse with L < ), and a?

> 1, a large
amplitude wake of highly nonlinear nature can be generated in a manner analo-
gous to that of an electron beam driver in the PWFA. The bubble regime created
by laser beams has been studied by Mora [34] for laser fields a, = 0.25 — 3, spot
sizes k,r, = 4 — 16, and pulses lengths k,L = 10 using a time averaged parti-
cle code. They observed the self-steepening pulse compression to k,L ~ 2, self-

focused propagation up to 30 Z, through a uniform plasma, where Z, = kr2/2is

the Rayleigh length of the laser.

The blowout or bubble regime using a short ultra-intense laser pulse has also
been studied using PIC simulations and theoretical modeling by [35, 36, 48]. The
authors used a similarity theory in which the wake is characterized by the similar-
ity parameter S = k7 /(a,k?), where k is the wave vector. They found that a maxi-
mum wake amplitude can be generated for laser spot radius of k,r, ~ /a,, a pulse
length L = ¢ < r,, and a power P(GW) > 30(7(fs/A(um)))?. They also stated the
acceleration length equal to L. >~ 0.7(L/\)Zg and predicted the formation of a
quasi-monoenergetic electron bunch with energy W ~ 0.22(L/\) \/P(W Ymec?.

An analytical treatment is also developed by Lu Hung [36] for the generation
of a wake in the blowout regime. In the high intensity limit, a, > 4, they find an
optimal wake generation for a laser spot radius of k,r, ~ 2a,. They also predict
that in such a case the dimension of the bubble is approximately a sphere with a
radius 73 ~ (2/kp),/a,, which is similar to the result obtained from balancing the

radial ponderomotive force with the space charge force.

Laser-plasma interaction is a fast growing area of research due to many in-
teresting phenomenon and applications [37, 51, 52, 53]. However, there are some

factors, which limit the energy gain of the electrons from plasma waves.

12
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1.3.5. Electron acceleration limits and dephasing

There are many effects and process that can limit the energy gain of the trapped
particles in a LWFA. For example, laser diffraction, pump depletion, electron de-
phasing and some other instabilities arise due to laser plasma interaction. In vac-
uum a laser beam undergoes Rayleigh diffraction, which means that the laser
beam radius evolves according to rs = r,\/(1 + 22/Z%), where r, is the beam
waist at the focus point z = 0 and Zp, is the Rayleigh length. Without optical guid-
ing the laser plasma interaction distance will be limited to a few Zg [16]. A laser
driver that excites a plasma wave loses energy, i.e., depletes [54, 55, 56, 57]. The
pump depletion length L, is estimated by equating the laser pulse energy to the
energy left behind in the wakefield, which is given by the relation Eg Lyq ~ E% L,
where E7J, is the laser field.

We know that as an electron is accelerated its velocity increases and approaches
the speed of light, ¥ — c. The phase velocity of the plasma wave is normally
smaller than the speed of light. Therefore, the accelerating electron outruns the
plasma wave and moves into a region of deceleration. This phenomenon limits
the energy gain of electrons in a plasma wave and is commonly know as electron
dephasing. The dephasing length L, of an electron can be defined as the length
an electron must travel before its phase slips by one-half of a period with respect
to the plasma wave. For a highly relativistic electron, 7 ~ c the linear dephasing

length is given by
Li ~ (1.27)

assuming that v, = wr/w, > 1. The maximum energy gain after a dephasing
length is roughly Wy,a2 ~ €EpagLg ~ QWWI%(EmM /Eo)mec?® assuming Epo. < E,
[4, 58].

In the 1D limit, we consider a linearly polarized square profile laser pulse with

L ~ Anp. The dephasing and pump depletion length are given by [59, 60]

13
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. )\g 1, fora? < 1 (1.28)
d™~ 539
2X V2a,/(Npm),  fora2>1 (1.29)
. A3 2/a2, fora2 < 1 (1.30)
pd = Y2
AL | V2ao/(n),  foraZ>1 (1.31)

where N, is the number of plasma periods behind the laser pulse. The factor
A3 /(2A7) arises from the fact that a highly relativistic electron traveling in the wake
has a phase slip of \,/4, as only one quadrant of a plasma wave is suitable for
simultaneous focusing and acceleration.

In the linear regime (a2 < 1) the electron dephasing length is smaller than the
pump depletion length, i.e. Ly < L,4. Therefore, the energy gain of accelerat-
ing electrons is usually limited by dephasing not by pump depletion in the linear
regime. However, in the nonlinear regime (a2 > 1), Ly ~ L,q and the energy gain
is limited by pump depletion.

Rapid developments in laser technology have made the direct electron accel-
eration a competitor to wakefield acceleration. Electron acceleration by focused
laser beams and acceleration by laser produced plasma waves are of same order.
However, for ultra short intense laser pulses direct electron acceleration by a laser

pulse dominates.

1.4. Electron acceleration by a focused laser beam

With the development of the chirped-pulse-amplification technique table-top high-
peak power lasers have been successfully developed with light intensities as high
as I, ~ 10*' W/cm?, where I, is the laser intensity. Use of intense lasers to ac-
celerate electrons is also a very active field. The vacuum far-field acceleration has
the advantage of a simple experimental setup. Malka et al., [61] have shown a
0.9 MeV electron beam for a normalized laser intensity of a, = 3 and a few GeV

energy electron beams have been obtained by focused laser beam acceleration in
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1.4. Electron acceleration by a focused laser beam

vacuum as well [62, 63, 64]. However, electron acceleration by electromagnetic
fields in vacuum is not very efficient even if ultra-intense lasers are used. To accel-
erate an electron up to GeV energies by far fields in vacuum we need to capture
the electron by the laser field instead of reflecting or transmitting it, which mainly
depends on the initial parameters of the incident electron.

It is a well-know fact that an accelerating electron radiates and that the emit-
ted radiation reacts back on the electrons, which affects its energy gain, trajectory,
and other energy dependent properties. For both, laser wakefield and laser ac-
celeration in vacuum the accelerating electrons oscillate due to transverse electric
field components (in a laser wakefield off-axis electrons exhibit betatron oscilla-
tions). The oscillating electrons emit radiation and this radiation reacts back on
them. For low energy electron beams radiation effects are small, however, for
high energy electron beams the effects of emitted radiation become severe. For
example, in LWFA the transverse focusing field, in general, is of the order of the
longitudinal accelerating field. Trapped electrons exhibit betatron oscillations due
to the strong focusing force. The oscillating electrons in laser wakefields radiate
in a similar fashion as the electrons in an undulator field [65]. The power radi-
ated by a single electron in an undulator field scales as P, = 7y?k2a2, where 7 is
the relativistic factor of the electron, A, = 27/k, is the undulator wavelength and
a, = eBy/(kymec?) is the undulator strength parameter, where B, is the ampli-
tude of the undulator magnetic field with e, m. representing the charge and mass
of the electron and cis the speed of light [65]. The amount of energy radiated by an
electron can be substantial. It may have significant effects on the evolution of an
electron beam. The basic effect of the betatron radiation is the decrease in energy
gain of the electron beam which in turn affects the energy dependent properties
of it [19, 66, 67, 68].

The effects of radiation reaction in laser pulses [69, 70, 71] and in laser wake-
fields [19, 66, 67] have been studied. Currently relativistic electron bunches with
charge > 100 pC are produced in laser wakefields [21, 22, 23], which implies > 109
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1. Introduction and motivation

electrons per bunch. It is apparent that if the radiation of a single electron inside
the beam affects its own motion [19, 66, 67, 69] it should also affect the motion of
the other electrons of the beam for certain parameters. A numerical study of retar-
dation effects (radiation effects of one electron on the other electron of the system)
is carried out in [72, 73]. Due its complex structure the self fields and retarda-
tion effects have been studied separately. However, the realistic system requires
the investigation of accumulated effects (self-field effects plus the radiation effects
from other electrons of the system) of radiation. Moreover, there is very limited
literature available concerning the retardation effects. Therefore, there is a need
to investigate the accumulated effects of radiation on the electron motion. In this
thesis we study the effects of betatron radiation from a single particle and multiple
particles. Different cases of the electron motion will be studied, for example, the
case of a counter-propagating electron in the plane and circularly polarized elec-
tromagnetic wave, the motion of an electron beam in a plasma focusing channel

and in a focused laser beam.

1.5. Radiation reaction

The motion of an electron in external electromagnetic fields is studied with the
help of the Lorentz force equation mu® = —(e/c) F*%ug, where F? is the electro-
magnetic tensor, m, e are the mass and charge of the electron respectively, c is the
speed of light and ug is the four velocity of the electron. The Maxwell theory to-
gether with the Lorentz equation give the amount of the electromagnetic radiation
that an accelerating charged particle radiates

2
b _ ¢ (1.32)

2o T v,
dt  6me e ¢

where E is the energy and ¢, is the permittivity of free space. It is called the Lar-
mour formula. The reaction of energy-momentum loss given by equation (1.32) is

not included in the Lorentz equation. Thus, the Lorentz equation is limited to the
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1.5. Radiation reaction

case when the emitted radiation is small. Recently [69] has shown that a relativis-
tic electron with initial energy 7, = 1000 interacting head-on with a laser pulse of
normalized intensity a, = 100, back reaction of the emitted radiation cannot be
neglected. Lorentz himself provided another equation for the radiating electron,

which is given by [74]

dn . . 2
—p:e(E+6xB)+ ¢

. (1.33)

— 9.
6me,c3

1.5.1. The electron as a point particle

Later on Abraham developed a highly successful theory of the moving electron
[75, 76] before Einstein’s papers [77, 78] on special relativity, which appeared in
1905. He had derived the following equation of motion for a rigid sphere of charge

e and radius a in the approximation of small a

d(v7) o d(v7) e*y® |- 2o 5L
= Fp— 3727 -
S L Med =g G |V Y
+42[7 - 0+ 372(7 - 1'7)2]1;} , (1.34)

% is the electrodynamic mass of the charged sphere, FJ, is the

where meq = &

Lorentz force and the dot denotes the derivative with respect to time ¢. The sec-
ond term on the R.H.S of equation (1.34) can be combined with L.H.S to get the
observed rest mass of the sphere i.e. m, = m + m.4. This is called mass renor-
malization. Von Laue recognized the term in the square bracket of equation (1.34)

as the relativistic generalization of the last term in the Lorentz equation (1.33) and

o2
6meoc3

represented itas I'* = (H — 0 0%* /c?) [74]. Abraham also derived an equa-

tion for the energy change of a charged sphere, which is given by

d’7 — d ]_ 62’}/4 . 9 N2
N L Bt mea - — G4 30T 9)?]. (135
m— U mddt<’y 47>+67T6003v T+ 3v2(7 - ¥) (1.35)

However, if we take the dot product of equation (1.34) with ¢ then we see that it

does not yield equation (1.35). This is know as 3/4 problem and was solved by
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1. Introduction and motivation

Poincare leading to the following equation of motion [74]
mot = FI'—me0 + T, (1.36)

where m.s = €2/(8me,ac?). In 1939 after the development of quantum mechanics,
Dirac derived a classical equation for a point charge using Maxwell’s equations,
the conservation laws, and neglecting higher order terms. His equation is given

by [74]
mit = FI4TH, (1.37)

Dirac’s derivation is manifestly covariant, however, he did it for a point charge
therefore, the m., term is infinite in his derivation. Equation (1.37) is known as
the Lorentz-Abraham-Dirac (LAD) equation.

The LAD equation (1.37) is considered as one of the adequate equations to
describe the motion of a radiating electron but it and its non-relativistic form (i.e.,
equation 1.33) have unphysical solutions. For example, there is force-free acceler-
ation, which means that a charged particle accelerates indefinitely (it is called the
runaway solution) and the pre-acceleration, i.e., the charged particle accelerates
before the arrival of the force.

The unphysical solutions can be avoided by including all power of a in the
derivation of the equation. However, it can also be avoided without including
higher order size dependent terms. For runaway solution we can apply the asymp-
totic condition that the acceleration in the distant future vanishes. The pre- accel-
eration problem has been solved by removing its origin by Yaghjian [79].

He emphasized that the function used in the derivation of the LAD equation
must be analytical as one integrates over the retarded time. This analyticity is
violated when the force changes too quickly (when the time is short compared
to time it takes a light ray to cross the charged sphere). He introduced a smooth

function n(7), which vanishes for 7 < 0. He wrote equation (1.37) in a new form

mot = F}' 4 n*, (1.38)

18



1.5. Radiation reaction

equation (1.38) does not have pre-acceleration solution.

Many models have been developed to avoid these unphysical solutions by
Landau and Lifshitz [5], Eliezer [80], Mo and Papas [81], Caldirola [82], Yaghjian
[79] and Sokolov [83, 84]. However, the Landau-Lifshitz (LL) equation provides
a good first order approximation of the LAD equation. It can be obtained by the
perturbative expansion of the LAD equation by assuming that the radiation part

is smaller than the applied Lorentz term

OFp
e uwug — i(Faﬁngtﬂ — Fﬁyleulu[gua)}, (1.39)
x me

. e e
mu® = ——F"‘Bug - 77'0[
c c

where 7, = €?/(6me,mec?). The perturbative expansion is valid as long as radia-

tion reaction is smaller than the applied Lorentz force.

1.5.2. The charged sphere

The problem of infinite self-energy of the electron in the LAD equation can be
handled by considering a charged particle of finite size (i.e., a charged sphere). It
includes the work of Abraham and many others, for a review see [74]. We mention
the excellent work of Sommerfeld [85]. He showed that a sphere with uniform
surface charge can be described by the following delay differential equation in the

non-relativistic limit
i o= B —{—med% B(t — 2a/c) — 7(t)), (1.40)
m

where m.q = €%/ (6me,ac) is the electrodynamic mass, v is the velocity, and a is the
radius of the charged sphere. Equation (1.40) is a delay differential equation and

it describes the motion of any charged sphere of finite dimension.

1.5.3. The Caldirola equation

The Sommerfeld equation describes the motion of a charged sphere in the non-

relativistic limit. The relativistic generalization to the Sommerfeld equation was
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provided by Caldirola [82]

% [0(r — 2a/¢) + VM (T)0° (7)ol — 20/c)/?]. (1.41)

mot = FI'+meq
The Caldirola equation can be reduced to the LAD equation for a point particle,
i.e.,a — 0. In the limit @ — 0 the delay terms can be expanded using a Taylor

series expansion, which gives

lim v* (7 — 2a/c) = vH(T) — Q—a{;"(T) + Eﬁ“ +... (1.42)
a—0 c 22!
) 2a . 4a* ..
(ll_rf%)UO‘(T —2a/c) = v,(T) — ?UQ(T) + 2910 +.... (1.43)
With the information v®(7)v,(7) = —c? and v*(7)04(7) = 0 equation (1.41) can be
written as
1: 2 2a? 2a?
Mot = Ff 4 mes | = S0t 4 S0 (n) + S50 (n)ef (r)ia(7) /), (144)

where we have neglected the higher order terms as they are much smaller. We
have v¥(7)Uqa (1) = —0%(7)04(7) [74] and the first term in the square brackets will
be combined with the term on the left hand side to yield the empirical rest mass.
This is called mass renormalization and equation (1.44) will take the shape of the

LAD equation
mot = Fl o mer, [§#(r) — oH (1) 0% (1) 0a (1) /7). (1.45)

The Caldirola equation, which describes the motion of a radiating charged sphere,
has reduced to the LAD equation. Therefore, the Caldirola equation is equally
valid as the LAD equation.

Let us now derive the Caldirola equation from a simple assumption. To drive
the Caldirola equation we assume that an accelerating charge element de’ at posi-

tion /(') produces an electric field dE(r, t) and is given by

. B dq’ ]%/ - u(r’,t’) o
dE(r 1) = dAmeo[l — R - u/cJ {RICZ < | — ) xulr )
2.0 4/ R /gl
ol )y vl )]}, (1.46)

20



1.5. Radiation reaction

where u(r’,t') = dr'(t') /dt’ and (1, t') = d*r'(t') /dt"? are the velocity and acceler-
ation of the charge element at the retarded time ¢’ = ¢ — | R/(t')|/c respectively. The
factor R'(t') = 7 — 7 (t) is the distance between the observation position of the ob-
server and retarded position of the charge element de’ and &' = R'(')/|R'(t')| is a

unit vector along the observation direction. Its expansion in a power series about

t gives
. . R /74 A os L ((R-4)?  |a? R-@
/ f— —_— — —_— . _— — 2 —_—
R = R 26( . V(R w)R — 1) RR( a6
R-d)u i
+R2< 464) +663)+O(R3). (1.47)

In the proper frame of reference (i(r,t) = 0) equation (1.46) can be written as

. dq' {R x (R xua(t')) R — u(rl’t,)}
dE(r,t) = X + c<—1|. (148
(1) dmep[l — R-u/c]? Rc? R? (148)
We use the expansion
B . 2+ -3 B . 7+
(1 — Ru(t)) = 1+ 3R 4t)) + nl terms (1.49)
c c
and (1.48) can be written as
q dg (R(R-a())—a) wu) BRMR-ul)) R
E = — 1.
ECD = e [ R wet T et oge ) 050
and now
R(t) = R’(t)+@(R)2—@(5)3+--.+nlterm5 (1.51)
2 ‘e 6 ‘c ’
or we can write
R'(t) = i(t— R/c)+ nonlinear terms, (1.52)
similarly
@(t') = (t— R/c)+ nonlinear terms, (1.53)
u(t') = 4t — R/c)+ nonlinear terms, (1.54)
R(t') = R(t— R/c)+ nonlinear terms, (1.55)
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R'(t) = R- RR—F};(}S) + -+ + nl terms. (1.56)

The quantities on the R. H. S in equation (1.56) are function of the observation time

t. We can write

By B 3,R-u R, R-iR
R/3((t/)) =l (T )
+%E(§) %(%) +. ..]+nlterms. (1.57)

Inserting equations (1.53), (1.54), and (1.57) in equation (1.50) and integrating over
dq' = de’ and dgq = de for the total self force F, we are left with the integral of the

form
//Rmdd/ B 3//$23mdd’—2m+1 me? (1.58)
qaq = R2 qqim—l—Qae’ .
charge charge
Fi(t) = // [RR — I]dq'dq, (1.59)
charge
Fi(t) = [RR — I]dq dq, (1.60)
47r60
charge
a(t —
- / / R/C) dq'dq + nl terms, (1.61)
471'603
charge
1 ) (;211)%1 o+l
- C i(t) +nlt 1.62
127r60a20nz::0 (n+ 1)! otn+1 u(t) + nl terms, (1.62)

At = med% [i(t — 20/¢)]. (1.63)

Hence, the relativistic equation of motion of a particle of bare mass m under the

Lorentz force can be written as

mut = FI (1.64)

mokt = FF+ FH (1.65)
1

Fre = med?PMaUa(T—Qa/C), (1.66)
a
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FI = [0 = 20/0) + 00" (ualr — 20/l 2], (167)

mot = FY'+ med% [U“(T —2a/c) + vH(T)v*(T)va (T — 2a/c)/c2}. (1.68)

This is called the Caldirola equation and it is the relativistic form of the Sommer-

feld equation. Both are free from unphysical solutions.
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CHAPTER 2

The effects of betatron radiation on an electron

beam in a laser wakefield

2.1. Introduction

As stated earlier, in a laser wakefield accelerator (LWFA) trapped electrons exhibit
betatron oscillations due to the strong focusing force and these oscillations give
rise to betatron radiation. The basic effect of betatron radiation is the decrease in
energy gain of the electron beam, which in turn affects energy dependent proper-
ties of it [66].

The dynamics of the electron beam in a plasma channel is different from that
in an undulator field. In the undulator all the electrons of the beam feel almost the
same periodic transverse force, which is only a very weak function of the radius.
As a result they perform similar transverse oscillations independent of their ini-
tial positions. This is not, however, the case in a plasma channel, where the trans-
verse focusing field is a strong function of the radius. Hence, the lateral motion
of electrons inside the channel strongly depends on their initial radial position.

Electrons propagating along the axis of the plasma channel will not be affected by
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2. The effects of betatron radiation on an electron beam in a laser wakefield

the transverse focusing field of the latter. However, electrons initially off axis will
experience a strong transverse focusing force. Betatron radiation can be charac-
terized by the betatron strength parameter ag = vkgrg, where A\g = 27 /kg is the
betatron period and 74 is the radial amplitude of the betatron oscillation. A large
ag implies large radiation loss. Thus, electrons initially very close to the axis will
hardly loose any energy while those with large lateral positions will have large
betatron amplitudes and hence loose significant amounts of energy.

High energy loss by betatron radiation can expels electrons from the accelerat-
ing phase of the wake to the decelerating phase in the wakefield. As a consequence
the energy of the electrons decreases rapidly. This decrease in energy leads to the
increase in the amplitude of betatron oscillation, which in turn increases the trans-
verse emittance of the beam. The transverse emittance is the measure of the phase
space area occupied by the particles of the beam in transverse direction. It is an
important parameter along with others such as mean energy and energy spread.
High mean energy, low emittance, and low energy spread of the electron beam
represent a good quality particle accelerator.

In what follows ultra relativistic electron beams with relativistic initial energy

3 are studied.

moving in a laser wakefield with plasma density n, = 10'® cm™
The main emphasis is put on the investigation of the evolution of the transverse
emittance of the particle beam by radiation damping at high energy. Other beam
properties, e.g. mean energy and energy spread will also be discussed in short.
The low density regime has been selected because (i) in the low density LWFA the
transverse focusing force is strong even in the quasilinear regime [66, 19] while it
is severe in the bubble regime [35], (ii) radiation loss is mitigated until the electron
energy becomes very high, (iii) the one stage energy gain of electrons is so high
(TeV) that energy loss due to betatron radiation must be considered, (iv) a suffi-
ciently large accelerating gradient can be maintained that can compensate for the

enlarged betatron radiation effects.

A weak betatron radiation can act as a cooling agent (in addition to being
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2.2. The laser wakefield

an energy damper) so that the emittance of some of the electrons can decrease
[66, 19]. However, strong radiation effects have a different impact, which will be
studied here. Therefore, as we shall see, particularly interesting radiation physics
can occur at very high energies in the low density LWFA regime (at higher density
it occurs at much smaller energies). The low density LWFA regime also gives
us the opportunity to study the spectral signature of betatron radiation at very
high energies (beyond 30 TeV) to see if it obeys the known dependence on v (as
discussed above) or deviates from it, as postulated in [86] as evidence of Lorentz

invariance violation.

2.2. The laser wakefield

In this section we present a review of the wakefield produced by an intense laser
pulse in a plasma and study the motion of a single test electron in the wakefield.
The study of test electrons is essential to understand the properties of the electron
beam inside the plasma channel.

An ultra intense laser pulse with a duration 77, approximately equal to a plasma
oscillation period 27 /w, creates a large amplitude plasma wave with a phase ve-
locity approximately equal to the speed of light [7, 8, 9, 10, 11, 12]. Let us consider
the propagation of a Gaussian laser pulse with the group velocity v, through a
uniform plasma medium along the longitudinal, say, 2-direction. It can be shown

that it generates the trailing ponderomotive potential

& = Omaze sin(kyf), 2.1)

where ¢ = Ta2Ep/(4ky), a, is the normalized laser intensity, ¢ = exp(—2r?/r2),
r is the transverse radius, 7, is the laser spot size, Fy;, = k:pmec2 /e is known as the
Tajima-Dawson field and A, = 27 /k), is the plasma wavelength. The plasma wave
travels almost with the group velocity of the laser pulse i.e. v, ~ v,. Representing

the phase of the plasma wave by ¢ = k,{, where { = z —v,4t. The longitudinal and
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2. The effects of betatron radiation on an electron beam in a laser wakefield

transverse wakefields can be written as

0
E, = —a—i = —FE,,e cos(y) , (2.2)
B = -2 _g i 2.3
T = T, o €T Sin() | (2.3)

where E., = (ma2/4)(kymec?/e), Eyo = (1a2/r%)(mec?/e), and x is the transverse

coordinate [87].

2.2.1. The motion of a single charged particle

Given the recent development of laser-driven plasma-based electron accelerators
it is possible to obtain high energy (TeV) electron beams with large energy lasers
and low density operation [19]. It seems possible that a (PeV) energy beam is ob-
tainable in the future [88]. As stated earlier, a beam that undergoes a strong trans-
verse focusing force in plasma waves exhibits betatron oscillations. These betatron
oscillations give rise to the emission of intense betatron radiation. It is obvious that
for a high energy electron beam the effect of betatron radiation becomes stronger
because the betatron radiation is a function of the electron energy. The betatron
radiation reduces the energy gain and affects the energy spread, emittance and
other properties of the beam in the plasma wave via radiation reaction.

The motion of a radiating electron can be described by the Landau-Lifshitz
(LL ) equation. The LL equation (1.39) in three vector notation can be written as

[5]

S o e d /= L = To€ e
E—i—va)—ma(E%—va)—i- {c(ExB
2

+(7 x B) x B) + (¢/c- E)E — 17% ((E+ % x B)? - (v/c- E)?) } . (24)

where @ = ~¥/c is the three vector momentum of the electron and v = V1 + @2

is the relativistic Lorentz factor of the electron. In what follows we consider only
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velocities v, and v,. Equation (2.4) then becomes

duy e 7,62 7,62

_ o 2 (2
d(Ct) = _mec2 E; + mgc?’ (UZEJ:EZ) - mgcg Uz (Egc - QvazEsz) , (2.5)
duy, e To€? 2 (12 2
T " —WEZ ~ 2’ (E2 - 20,02E, E.) (2.6)

where E,, E. are the electric field components in the z and z directions respec-
tively and ¢ = cv,. To obtain equations (2.5) and (2.6) we have assumed that
vy € v, = 9?2 = 1/(1 — v2). Inserting equations (2.2) and (2.3) in equations (2.5)

and (2.6) provides us with the following equations

dcix = —cK%zesin(v¥) — er,CK2xe? (v, cos(¥) sin(v)) — er, K4a2iy2e? sin? (1))
—27,C K22 xi?~? sin(¢) cos(v) /c, (2.7)
i—z = (ecos(tp) — T2 K4y x2e? sin?(¢) — 21, K22 xin? cos(¥) sin(v)),  (2.8)

where K? = eE,,/(mec?) and ¢ = eE,,/(m.c). To obtain equations (2.7) and (2.8)
we have assume that v ~ u,. Since the transverse trajectory of an electron is given

by & = cu, /v and 4,, ¥ are given by equations (2.7) and (2.8), we can write

. Cly  ClUg?y  Cly TV
xr == _— — D) = - —,
Y Y Y Y

(2.9)
which leads to
i = —cAK?zesin(y)/y — (iecos(y)/y — Ao K*axe?v, cos(v) sin() /v, (2.10)
where dot denotes the derivative with respect to time t. Since v, = m
holds it follow from equation (2.10)
i = =K wesin(y)/y — Ciecos(y) [y
— P12\ /1 — 1/~2 cos(¥) sin(¥) /7. (2.11)
We use the following normalized quantities t = twp, T = x/10, and 7 = v /7,. We
drop the (~) sign for simplicity and find
&= —nyresin(y)/y —npiecos(y)/y
~1eze? (V02 = 1/72) cos(¥) sin(¥) /7, (212)

i = gpecos(t) - mn e’ sin’ () — npe’win® cos(t) sin(w),  (2.13)

29



2. The effects of betatron radiation on an electron beam in a laser wakefield

where 1, = K2/ (wpvo), 18 = ¢/ (WpVo), Nz = T K2/ (wpnd), nr = 27, K*Cro,
and 1, = 7,2 K42y, /(wp).

Equations (2.12) and (2.13) describe the lateral motion and energy along the
z-axis of a single charged particle in a plasma wave. The first term on the R.H.S
of equation (2.12) simply represents the betatron oscillation of the electron with
frequency wg = cK/,/7 due to the transverse focusing force while the second term
describes the damping behavior of the particle. The damping term arises due to
the accelerating field. The third term is small as compared to the first and second
terms and it has a negligible effect. Overall equation (2.12) is the equation of a
damped harmonic oscillator provided the energy of the electron has the tendency

to increase or remain constant.

Equation (2.13) shows that the energy of the electrons increases due to the
accelerating field of the plasma wave while the radiative damping term, i.e. the
second term in equation (2.13), counteracts the energy increase. For low energy
and small radius the effect of radiation damping on the electron motion is almost
negligible. The radiative damping term, which is quadratic both in energy and
radial distance, will have a strong effect on the electrons with large initial radial
distance in the ultra relativistic energy electron beam. In such a case the electrons
will radiate a large amount of betatron radiation and will soon be dephased. In the
beginning the effect of radiation reaction is very small due to the sin(¢)) function
in the radiation damping term even for the electrons with large initial radii while
the accelerating term will be dominant due to the cos(¢) function. Later, however,
radiation reaction starts affecting the electron motion. This phase sensitivity of
the radiation damping could be vital for the beam dynamics. In particular, it can

affect the number of the trapped particles and consequently the beam charge.
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2.2. The laser wakefield

2.2.2. Electron beam dynamics

The behavior of an electron beam can be studied by averaging different quantities
of a single electron over the ensemble of the electrons in the beam. The mean en-
ergy, e.g., is given by () = >, vi/N, where ~; is the energy of the ith particle and
N is the number of electrons in the beam traveling in the plasma wave. However,
energy is not the only important parameter to consider. Some other parameters
also play a crucial role to fully reveal the underlying physics. Therefore, the per-
formance of a laser wakefield accelerators should be determined by considering

all parameters such as emittance, mean energy, and energy spread etc. [89].

2.2.2.1. Emittance

The normalized transverse emittance is the rms value of the phase space area

€&z = +/(ouol)?—c? (2.14)

uu’

where 0, = \/m, oy = \/m, and ¢y = /(un’) — (u)(u’) with
u =/ xand v = /7 dz/dt [87]. All of our results for emittance will correspond
to the transverse phase space area of the beam.

In an accelerator, the emittance is considered as the most crucial parameter
of the beam. For example, in the case of a collider, high luminosity is required
to meet the practical objectives. Since the decrease of the cross section is, in gen-
eral, inversely proportional to the energy of the beam, high luminosity is required
to detect new physics. To obtain high luminosity, we require an electron beam
with very low emittance [90]. In plasma-based accelerators, the emittance usually
increases or remains almost constant [66, 67, 87, 90]. For example, let us con-
sider beam parameters relevant for experiments on laser wakefield presented in
[19]. Where an electron beam with 1 GeV initial energy, ((7,) =~ 2000), and an
initial emittance of €,, = 2068 radym in a plasma channel of density n, = 10
3

cm™° is considered. The beam emittance decreases only to €, = 2045 um for the
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2. The effects of betatron radiation on an electron beam in a laser wakefield

final energy 0.5 TeV (y) = 1 x 105, of the beam which is almost constant [19].
Highly relativistic electron beams of this class can have a much lower initial emit-
tance, e.g. €, = 10 um, than has been assumed in the above example. However,
matching such a beam into a plasma channel would require a very small beam
radius, ~ 1077 um. Injecting such a radially small beam into the plasma channel
is difficult. If we inject a beam with the same emittance as mentioned above but
relatively large radius, say, 0, = 10 um, it would be highly mismatched and the
beam emittance would grow towards the matched value [66]. However, the super-
Gaussian wakefield reduces the betatron oscillations and make the electron orbit
ballistic over a single stage, which helps to preserve the initial small emittance

[67].

2.2.2.2. Energy Spread

The energy damping mechanism in a plasma focusing channel is very different
from the beam cooling and radiation damping using Thomson scattering [91] or
the one in a magnetic undulator [92]. The radiation damping strongly depends
on the initial radial positions of the electrons in the plasma focusing channel. The
electrons that are initially close to the axis of the plasma channel exhibit small
betatron oscillations due to weak focusing force and hence loose a very small
amount of energy through radiation as compared to the electrons which are far
away from the axis, i.e. near the boundary of the wakefield. This will, in turn,
increase the energy spread of the beam [66]. The relative energy spread is o /(7),
where 02 = (Ay?) = (%) — (7)? and () represents the average over the ensemble

of particles.

2.3. Emittance growth via betatron radiation

In this section we study the effects of the critical energy of the electron beam corre-

sponding to the given density of the laser wakefield on the emittance of the beam.
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2.3. Emittance growth via betatron radiation

2.3.1. The critical energy

The accelerating gradient created by a laser in a plasma of certain density, say,
n, behaves as an accelerator for an electron beam of a given average transverse
radius corresponding to a critical value of the initial energy. In equation (2.13),
let us consider the particular average value of the energy E.,;: = () and average
value of transverse radius z..+ = () for a given density of the plasma channel
such that d/dt ~ 0. Taking average of equation (2.13) over the dephasing phase

0 > ¢ < m/4 we have

0 =~ np-— Ty <’72>crit <$2>cm’ta (215)
B
<72>cm‘t = m, (2.16)

where we have neglected the third term in equation (2.13) because it is three orders
of magnitude smaller than the first and second terms and function ¢ has been
expanded assuming it has small argument. Equation (2.16) in a simplified form

for the electron beam can be written as

A(no)

<x2>crit

<72>crit = ) (217)

where A(n,) = :77—5 = TOTKCAIW is a density dependent parameter because both ¢
and K are density dependent as described in the last section. The equation (2.17)
gives the critical energy of the electron beam as a function of both the density of
the plasma wave and the average transverse radius of the beam.

Plots for the critical energy are shown in Figure 2.1 (a) versus the density
of the plasma for transverse average radius \/@ = um. Note that the critical
energy 7.rit decreases with increasing density of the plasma wave. It is due to the
fact that if we increase the density of the plasma wave radiation reaction effect

also increases, which in turn decreases the critical energy of the beam. Moreover

the critical energy also decreases as we increase the average radius keeping the
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Figure 2.1.: (a) The critical energy \/m of the electron beam versus density n,
of the plasma wave for average transverse radius /(z2) = 10~%m. (b)
The average transverse radius \/m of the electron beam versus
the average beam energy m in a plasma channel of density n, =

1.0 x 10%ecm 3.

density of the plasma constant. Equation (2.17) is rearranged in the form
A(no)
()

Equation (2.18) provides us with average value of the transverse radius of the

<x2>cm’t (2.18)

beam corresponding to the given energy and density of the plasma channel. Equa-
tion (2.18) has been plotted in Figure 2.1 (b). It gives the average value of radius as
a function of the energy of the beam and consequently helps us in estimating the
transverse emittance of the electron beam. It is clear from equation (2.18) that the
transverse radius of oscillations of electron decrease as the energy of the electrons

increase and vice versa.

2.3.2. Emittance growth

In a laser plasma-based accelerator, for an electron beam with initial energy well
below the E..;; the emittance can decrease due to radiation reaction [19, 66]. How-

ever, it can increase as well for certain threshold values of parameters of the beam.
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Figure 2.2.: The electron beam dynamics. (a) The mean energy (v), (b) the rela-
tive energy spread o, /() and (c) the transverse normalized emittance
€ Versus wyt or wg,t of the accelerating electrons. The electron beam
moves in plasma channel of density n, = 1.0 x 10°cm™3, initial emit-
tance ¢, = 2068 radum and initial relative energy spread 1%. In (a)’
initial energy (v,) = 4 x 107 and in (b)’ (7,) =~ 2000. Initially there
were 4000 electrons, 1624 have been dephased. Blue line represents
the numerical solution of equations (2.12) and (2.13) and red dashed
line represents the analytical expressions of corresponding quantities

given in Chapter 4.
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2. The effects of betatron radiation on an electron beam in a laser wakefield

If the initial energy of the beam is nearly equal to the critical value, i.e. E;,; >
Erit, then the particles of the beam can be split into two major categories; the first
one with large initial radius, they emit a large amount of radiation and some of the
electrons move into a region of decelerating phase of the plasma wave (the detail
is given in section 2.4). However, some radiating electrons can still remain inside
the accelerating phase. These particles are accelerated for a very short time and
then they cool down. The second one is those electrons that are very close to the
axis of the plasma channel and do radiate a very small amount of energy. These
particles are accelerated by the wakefield. The transverse betatron oscillation of
the electrons depends linearly on the energy. The decrease in energy leads to the
increase in the amplitude of oscillations. Therefore, the emittance of the beam
increases.

To make our point clearer we consider an ultra relativistic electron beam of
20.46 TeV initial energy, ({(7,) = 4 x 107), with relative energy spread o,/ (7o) =
1% and initial emittance of ¢, = 2068 radum injected into a plasma channel of
density n, = 10! cm~3. For the initially matched beam conditions the radius will
be 0, = 13 um. The propagation length for linear regime is almost 333m, which
corresponds to wyt = 2 x 109 and wg,t = 13100. The approximate final value of
the transverse emittance is 2600 rad;m after a propagation length of 333m. The
relative energy spread increases by 2.7 %. The results are shown in Figure 2.2 (a)’.
However, if we inject the electron beam keeping all the initial parameters same ex-
cept initial energy, which is now (v,) ~ 2000. The transverse emittance decreases
to a final value of 2046 ;m in this case. The relative energy spread decreases very
quickly in the beginning, however, later on it increases due to increase in the radia-
tion effects but it is still less than 0.3%, which is less than the initial energy spread
of 1%. The results are shown in Figure 2.2 (b)’. Red dashed line represents the
analytical expressions of the corresponding quantities given in Chapter 4, (equa-
tions (4.28) and (4.30)), and solid blue line represents corresponding quantities for

the numerical solution of equations (2.12) and (2.13). The analytical solution is in
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2.3. Emittance growth via betatron radiation

good agreement with the numerical solution, which also testifies our numerical
solution.

To examine the radiation effects in more detail, we need to study the behav-
ior of electrons with large initial transverse radius and the one with small initial
transverse radius from the axis of the plasma channel separately. As mentioned
earlier that electron with large initial radius radiate more as compared to the elec-
trons, which are near the axis. In the pervious example for high energy beam case
(7o) = 4 x 107), the emittance remains constant at the start when the radiation
damping term is small due to sin(¢) in equation (2.13), however, for later times the
electrons with large initial radius radiate a large amount of energy and fall in the
decelerating region of the plasma wave and its energy decreases. The radial am-
plitude of oscillations is given by 73 = ag/(ks~y), where ag is the betatron strength
parameter and A\g = 27/kg is the betatron period. Consequently the transverse
oscillation of such electrons increases, which increases the beam emittance. The
emittance increasing rate is very high for almost half of the propagation length
(165m) because of the high radiation effects. After half the propagation length the
electrons with large initial radial distance from the center of the plasma channel
are either move to decelerating phase or come much closer to the axis because of
their damped trajectories. There exists a lower lateral oscillation amplitude of the
trajectory for which transverse oscillations do not get damped any further. For a
detailed understanding see [93]. It is found that the transverse emittance of ac-
celerating electrons decreases while the total emittance increases. The results are
shown in Figures 2.3 (a)’. The relative energy spread of the accelerated electrons
decreases in the beginning but later on it increases due to relatively less increase in
the energy and increase in the radiation reaction. The mean energy of accelerated
electrons increase. The electrons which remain in accelerating phase of the plasma
wave after traveling a distance of 333 m are once again injected into plasma chan-
nel with their pervious initial conditions, which were preserved. It is found that

the mean energy of the electrons increases while transverse emittance decreases.
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Figure 2.3.: The electron beam dynamics. (a) The mean energy (7), (b) the relative

energy spread o-/(7y) and (c) the transverse normalized emittance ¢,
versus wyt of the accelerating electrons. The initial conditions are the
same as given in Figure 2.2. Initially there were 4000 electrons, 1624
have been dephased. (a)’ demonstrates the behavior of accelerating
particles and (b)' represents the rerun of accelerating particles. In the

second run all particles remain trapped
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2.3. Emittance growth via betatron radiation

The results are shown in Figure 2.3 (b)'.

If, however, we inject the beam with much lower initial emittance, say, €,, = 2
radpm, with 20.46 TeV initial energy, ((7,) = 4 x 107), and relative energy spread
0+0/{Yo) = 1% into a plasma channel of density n, = 10' cm™3 then there is
a small increase in the transverse emittance because there is no radiation effects.
Since the electrons of the beam have relatively small initial radial distance (for ex-
ample the maximum transverse radius in this case is 0., = 0.34 um) as compared
to the last example, therefore, electrons do not radiate much and remain all in the
accelerating phase. The beam gains 50 GeV more energy than for the high emit-
tance, €;, = 2068, radum electron beam case. The relative energy spread o, /(7)
decreases since there is only small radiation damping. The results are shown in
the Figure 2.4 (a)'.

It is obvious from equation (2.13) that the magnitude of radiation reaction
depends on the transverse distance of the electrons from the axis of the channel
and their energy. In the last example we have seen that if we reduce the initial
radius of the electrons the radiation effects are small and have no impact on the
beam dynamics. As mentioned earlier that the weak radiation effects lead to the
decrease in the transverse emittance of the beam [19, 66]. Thus, we conclude that
weak radiation effects decrease the emittance while the strong radiation effects

increase the emittance of the beam.

2.3.3. Impact of density on emittance growth

Both the transverse focusing and the longitudinal accelerating wakefields are func-
tions of the density of the plasma. The accelerating field £, and focusing param-
eter K scale as /n,. This means that the accelerating term (first term) in equation
(2.13) will increase as ,/n,. In the absence of radiation effects the energy gain of
the electron beam increases with increasing density of the plasma. Hence, as long

as w, < w, holds high densities are beneficial in the absence of radiation reac-
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Figure 2.4.: In (a)’ (a) The mean energy (7), (b) the relative energy spread o /(7)
and (c) the normalized transverse emittance €, versus wpt of the elec-
trons. The electron beam moves with an initial emittance ¢;, = 2
radpm, the all other initial parameters are the same as given in the
Figure 2.2. There are 10000 electrons. All remain in accelerating phase.
In (b) the forces felt by an electron with radiation and with out radia-
tion effects are represented by red-dashed and blue lines respectively.
(a) and (b) an electron in the plasma wave with initial energy 20.4 TeV,
transverse velocity v, = 1068 m/s and initial radius =, = 13.8 pm. (c)
initial radius =, = 0.138 pm, all the others quantities are same. F, and

F. represent the transverse and accelerating force respectively.
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2.4. Schematic representation of accelerating and decelerating phase

tion. However, we know that the electrons of the beam inside the plasma channel
exhibit betatron oscillations with frequency wp = c¢K/,/7 and that they emit be-
tatron radiation. Their betatron frequency wp increases as ,/n, with increasing
density of the plasma wave. This suggests that an electron radiates more with
increasing density.

From equation (2.13) we see that radiation reaction force scales as n2. This
means that the radiation reaction force increases faster than the acceleration force
with increasing plasma density. Therefore, plasma channels with higher plasma
density will have higher radiation loss as compared to focusing channels at low
density for a beam of same energy and average transverse radius. To avoid radia-
tion effects we need to use low density plasma channels.

If the energy of the beam is near the critical energy electrons with large ini-
tial radius radiate a large amount of energy. Some of them lose so much energy
that they move quickly into decelerating phase of the plasma wave and leads to
an increase in the transverse oscillations and consequently there is an increase in
the transverse emittance. This emittance increasing is due to radiation reaction.
Therefore an increase in density can result in a further increase of the emittance.
Since increasing density increases the number of radiating electrons and also the

amount of radiated energy.

2.4. Schematic representation of accelerating and

decelerating phase

In this section we will present a graphical illustration of the accelerating and de-
celerating processes of the charged particles due to radiation reaction in a plasma
focusing channel. The plasma wave can be split into four sectors, each of them has
different impact on the electrons traveling inside the plasma wave. There is one

quarter-wave region that is most appropriate for good quality beam acceleration
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since focusing and acceleration act simultaneously. This region is the first sector
(0 — 7/2) in the Figure 2.4 (b)'. It is found that electrons with large initial radius
perform betatron oscillations with large amplitudes, loose a large amount of en-
ergy through betatron emission and quickly move into a region of deceleration.
In other words we can say that such electrons see accelerating or focusing region
for a very short time while the electrons, which are initially on axis or have small
initial radii, would not loose much energy and see a relatively long accelerating
or focusing region. For example, consider an electron with 20.4 TeV initial energy,
transverse initial velocity v, = 1086 m/s and initial radius 13.8 ym moving in
a plasma channel of density n, = 10'® cm~3. It feels almost the same transverse
focusing force with and without radiation damping. However, it feels a different
longitudinal accelerating force with and without radiation reaction. Since the radi-
ation effects are taken into accounts, the electron radiates a large amount of energy
and soon it goes into the region of deceleration. It is represented by red-dashed
line in Figure 2.4 (b)’ (b). If we ignore the radiation effects then the electron will be
accelerated over a full quarter-wave region (the blue line in Figure 2.4 (b)’ (b)). If,
however, we inject the same electron closer to the channel axis, say z, = 0.138 um
it will feel the same transverse and accelerating force with and without radiation

reaction as shown in Figure 2.4 (b)’ (c).

2.5. Summary of the chapter

The effects of radiation reaction on the emittance of the electron beam in a plasma
focusing channel are studied. We have examined the motion of test electrons to
estimate the evolution of the electron beam through numerical simulation of the
equation of motion of radiating electrons (the Landau-Lifshitz equation). The elec-
trons that are traveling far away form the axis of the plasma channel feel a strong
focusing force. These electrons start betatron oscillations in the transverse direc-

tion. The farther away an electron is from the axis of the plasma channel the larger
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will be its betatron oscillation amplitude and the more it will radiate. The betatron
radiation of electrons decreases the energy gain in the laser wakefield, which, in
turn, expels the electrons with large initial transverse radius from the accelerating
phase to the decelerating phase of the plasma wave. Consequently the amplitude
of transverse oscillation increases and results in the increase of transverse emit-
tance of the electron beam considerably.

A variety of cases are studied to testify our finding. For example, electron
beams with large and small initial radii have been injected by keeping the other
parameters the same. It is found that for weak radiation effects the transverse
emittance of an electron beam decreases. However, it can increase for strong ra-
diation effects. We have estimated the transverse emittance of the electrons in ac-
celerating phase and total transverse emittance separately to testify our findings.
The energy gain and energy spread of the beams are also studied. The radiation
reaction reduces the energy gain but increases the relative energy spread of the
electron beam. It is found that the effects of radiation reaction become very strong
near the critical energy (the energy at which radiation reaction and accelerating
force become equal) of the beam.

Moreover, the density dependence of the emittance is studied. The emittance
can be increased with increasing plasma density because it enhances the effects of
radiation.

In addition, we have noticed the phase sensitivity of the focusing and acceler-
ating forces in the radiation reaction terms. It could be crucial for the self trapping
and external injection of electron bunches. It could also limit the bunch length in

a high energy regime.

43






CHAPTER 3

Retardation and self radiation effects on electrons

in a laser pulse

3.1. Introduction

High energy charged particle beams are of fundamental importance and they are
the basic instrument to explore and investigate the fundamental physics of mat-
ter. Beams of energetic electrons, however, are subjected to the interaction with
radiation fields of co-propagating electrons and to their self fields.

In this chapter we will study the motion of an electron under the effects of
self radiation force and retardation fields (radiation fields of other electrons of the
system) in laser pulses of different polarization.

The effects of radiation reaction in a laser pulse [69, 70, 71] and in a laser wake-
field [19, 66, 67] have been studied. The numerical study of retardation effects is
carried out in [72, 73]. Due its complex structure the self fields and retardation
effects have been studied separately. However, the realistic system demands the
study of accumulated effects (self fields plus the effects of retarded fields) of radia-

tion. Moreover, there is very limited literature available concerning the retardation
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effects.

Currently relativistic electron bunches with charge > 100 pC are being pro-
duced in laser wakefields, [21, 22, 23] which implies > 109 electrons per bunch. It
is apparent that if the radiation of a single electron inside the beam affects its own
motion [19, 66, 67, 69] it should also affect the motion of the other electrons of the
beam for certain parameters. Therefore, there is a need to investigate the accumu-
lated effects of radiation on the electron motion. In the following we will study the
effects of betatron radiation from a single particle and multiple particles. We will
consider a simple model of two electrons (one of which may be a macro-particle),
which are interacting with each other through their retarded potentials, self fields,

and with the external electromagnetic fields of the laser pulse.

2. The radiation fields

Radiation fields produced by a radiating electron are known as Lienard-Wiechert

fields and are given by
5 > i x (= 5(t) x B(t)
Fav() 47760( )R] (1—a- AP IR ) o1
BLV[/'(T’ t) =n X )/C7 (32)

where 5(t') = #(t')/c is the velocity of the electron at retarded time, R(t/) =
(Z(t) — y(t')) is the distance between observation position and retarded position
(when it emit radiation) of electron, ¢ = t — |R(t')|/c is the retarded time, and
n = R(t')/|R(t")| is the unit vector along the observation position. Ezy (7,t) and
Brw (7, t) are the Lienard-Wiechert electric and magnetic fields. The first and sec-
ond terms in equation (3.1) represent the Coulomb and radiation fields of an ac-
celerating electron respectively. The Coulomb field is short-range and fall off as
R~2 whereas radiation field is usually transverse to R(#') and fall of as R™1. As
the Coulomb field is short-range and is very small as compared to the radiation

tield. Therefore, we will study the effects of the latter.
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Figure 3.1.: Two electrons counter-propagating to the laser pulse. The laser pulse
is propagating in the Z-direction. (a) Electrons are located on a line
parallel to the z-axis and are moving towards the laser. (b) R(t') is
almost parallel to unit vector 7 and is very greater than the mutual
distance d of electrons. P;(t') and P;(t) represent the retarded and

observation positions of the electron P; respectively.

3.2.1. Electrons-radiation interaction model

To study radiation effects we consider an arrangement of electrons as shown in
Figure 3.1 (a). We assume that two electrons are counter-propagating in a laser
pulse with almost the same longitudinal velocity v, located at a line which is par-
allel to the z-axis. The laser pulse is moving along the Z-axis while electrons are
moving to the (—Z)-direction. Particle P, is ahead of particle P, and both are sep-
arated by a small distance d, which is of the order of one laser wavelength. One
laser wavelength separation will make both electrons oscillate with same phase.
Let P;(t') and P;(t) represent the retarded and observation positions of the elec-
trons respectively, where ¢ = 1,2. For electrons moving relativistically, radiation
is emitted purely in the initial direction of motion (here —Z direction) within an
angle of 1/v [65]. Therefore, we assume that radiation emitted by P; in Figure
3.1 (a) at retarded time ¢’ at retarded position P;(¢') will catch the electron P, at
observation position P»(t) at time ¢, which is also taken as the observation time,
where ¢t > t'. However, radiation emitted by particle P» will have very weak ef-

fects on particle P; [72] as radiation is emitted in (—Z)-direction and unit vector
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n and the velocity of the electron will be in the opposite direction and the term
with 1/(1+ 7 - §)3 is very small as compared to the term with 1/(1 — 7 - 5)3. As
mentioned earlier that self radiation effects of an electron counter-propagating in
a laser pulse with relativistic velocity affect its motion considerably [69, 70, 71].
Therefore, we assume that both particles are affected by their own radiation as
well. Overall we can say that particle P is affected by its self force and by the
retarded potential of particle P; (which may be a macro-particle) whereas P; is
affected by its own radiation. However, both are affected by the electromagnetic
fields of the laser pulse. A bunch of N electrons located so close to each other that
they oscillate almost with the same phase under the impact of the external field
can be approximated as a single particle at distant position. This approximation is

good if the bunch size is very much smaller than the wavelength of the laser pulse

or external field.
The retarded quantities B, B(t), etc., in equation (3.1) can be expanded

about the observation time t for electrons with small mutual separation [79]

F) = Be-IEole. ©3)
) = E(t)—é(t)&f”+@<@> Yo (3.4)

Similarly other retarded quantities can be expanded around the observation time.
We will restrict ourself to the first order terms for R(t')/c < t and higher order
terms will be very small.

The distance R(t') for the orientation given in Figure 3.1 can be represented
in terms of the current mutual distance of two particles. It is given by the relation
[72]

_d
_1_6,2'

R = |R()|B:(t) +d, = |R()] (3.5)

If both electrons oscillate with same phase and they have same initial longitudinal
and transverse velocities then for weak retardation effects their mutual distance

d and unit vector n are almost undisturbed and the above relation remains valid.
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3.2. The radiation fields

Moreover, as R(t') is much greater than d, therefore, a small change in their veloc-

ities and mutual distance will not cause much effect.

3.2.2. Linear polarization

In general, the retarded fields are complex in structure and it is difficult to study
their effects analytically. From equation (3.1) it is clear that the components of
radiation fields depend upon the polarization of the external laser pulse. For ex-
ample, if external laser pulse is polarized in the 2-direction and is propagating to
the Z-direction then the electron will have its velocities in & and 2-directions. For
the unit vector 7 along the (—Z)-direction we will have only = component of the
retarded electric field.

Using expansion of the retarded quantities of the form given by equation (3.4)
in equations (3.1) and (3.2), we can write the retarded field components in a simple
form for different polarization. For linearly polarized laser pulse the retarded field

can be written as

- ) )
Be 2 " _ , 3.6
Lw 4weoc[<(1—ﬁz)3]}2(t’) (1= B)2|R(t))| oo
B%W = 9ETw, 3.7)

3.2.3. Circular polarization

Making use of the retarded quantities of the form given by equation (3.4) in equa-
tions (3.1) and (3.2), we can write the retarded field for circularly polarized laser

pulse as follows

Jors _ e [( _5956'2_' ) + ( _ﬂfﬁ - )]7 3.8
Lw dmeqe |\ (1 — B.)3|R(¢)] (1 = B2)%R(t)] o
Y _ € _Bsz ) ( —By )]

Evw dmeqe [((1 — B.)3|R(t)] " (1= BRI/ ] o)

Biw = —iEpy, (3.10)

BYw = 9F%,. (3.11)

49



3. Retardation and self radiation effects on electrons in a laser pulse

It should be noted that in equations (3.6)-(3.11) the first terms on R.H.S are smaller.
Therefore, only second terms will be used in our model. Moreover, to remember
that for relativistic electrons counter-propagating in a laser pulse the Coulomb

tield is 5-6 order of magnitude smaller than the radiation fields.

3.3. The analytical solution of the Landau-Lifshitz equation

In this section we will give an analytical solution of the LL equation by includ-
ing retarded fields. Arrangement of electrons considered in Fig 3.1 will help us to
understand the effects of emitted radiation of the electrons at different locations
inside the electron beam. The radiation effects of an electron (or bunch of elec-
trons) on the other electron is implemented through the Lienard-Wiechert fields.
The Landau-Lifshitz equation for such a system of particles under radiation effects
of other particles in three vector notation can be written as

d_' - —~(other — 5 (other d - — =
d%?:—@(E—i-E( th )—‘r’UX(B—i-B( th )))—TOB’Y£<E+’U><B)

rad

2 = ) -

4 LeC {C(E x B+ (% B) x B)+ (% E)E — ﬂ((EJrﬁx B¢ .E)Qﬂ,(s.lz)
mc C C C

dii) _ ﬁLo +F’:§Z.er + ﬁself7 (313)

where Fr,, Frqq and Fyey are the Lorentz force, the force due to the retarded
fields and self force respectively. The subscript "rad” in equation (3.12) stands for
retarded fields. It is convenient to use normalized quantities, i.e f=wit,7=7 /c,
and p = p/me, we drop (~) sign for simplicity. Equation (3.12) for P; and P, can

be written as

50



3.3. The analytical solution of the Landau-Litshitz equation

] (3.15)

where k = e/(m.wrc), superscript labels (1), (2) represent the corresponding par-

ticles in Figure 3.1 (a) and wy, is the laser frequency.

3.3.1. Linearly polarized plane wave

Let us consider a linearly polarized laser pulse propagating in the Z-direction and
polarized in the z-direction. The electric and magnetic field components of such a

pulse can be written as

E, = Epcos(t—z), E,=E, =0, (3.16)
E
B, = % cos(t — z), By = B, = 0. (3.17)

Using equations (3.6), (3.7), (3.16) and (3.17) in equations (3.14) and (3.15), we have
(2)

dpa _ 2 d
i ao(1 — v,) cos(t) — aprry(1 — vy) ECOS(T)
dp(l)
—a? r|Fx 1-— z 2 2 - 7 — 1
T e 619
dpgcl) 9 d
— Qo 1-— z — UoTyp 1-— z) S5
o ao(1 — v,) cos(T) — apTry(1 — v,) I cos(T)
—a’7, {pg)'y(l —u,)? 0052(7)} , (3.19)
d(vy *Pz)(l’Q) 2 2 .2
= —aity(y — p2) | (1 —vy)* cos™(T)], (3.20)

where a, = eE[/(mewrc) is the normalized laser intensity, o = Ze?/(4we,meoc?d),
Z is the number of electron in the marco-particle, 7 = t — z and 7, = 7,wr. We

have also assumed that for an electron moving in the (—2)-direction with large
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3. Retardation and self radiation effects on electrons in a laser pulse

initial energy, v, < v, holds. The terms with higher power in v, are neglected
because they are very small as compared to the other terms. As we have 7 =t —z,

therefore, we can substitute d/dt = (1 — v,)d/dr

dpt? o dptV
dj' = —a,c08(T) + ao7 K sin(1) — ?ﬁ — 2. pP K cos?(7), (3.21)
dp})
y = —a,cos(T) + aor K sin(r) — a2 pV K cos?(7), (3.22)
.
dK
— = —d’n.K?%cos?(7), (3.23)
dr

where 7—p, = K. The parameter K is almost same for both particles and therefore,
we drop the label for K. We can easily integrate the coupled equations (3.21) -

(3.23). Equation (3.23) =

K,
K = 3.24
1+ a27,K,(27 + sin(27))/4’ (324)

using equation (3.24) in equation (3.22) and integrating

(1) (7) = ! a ~ (9
pD(7) 6(1+77(27+sin(27)))( on + 6 — (907 + 6)

cos(T) + aon cos(37) — 6a,(1 + 271) sin(7)>. (3.25)

Using the values of K and pt in equation (3.21) and integrating, we have

1
@) (7 — dagn(1+ A3 — 2 1+A
P2 (") = 18001 + 27y + ysin(2r)) (60Caan(1 + A(3 —2rm) +3(1 +
—27nA)¢) — 90(aon(3 + 8A + 167nA) + 2(1 + A + 27nA)C) cos(T)
+30a,m cos(37) — 30(ao(6(1 + A) + (127 + 247A — 7TInA + 247%nA))
—33nA() sin(7) — 60nA(4da,n + 3¢) sin(27) 4+ 5nA(17a,n + 6¢) sin(37)
+3a,n* A sin(57)), (3.26)
where ¢ = a,7, K, n = a’7.K,/4and A = —0/K,. We know that 4> = 1 + p2 + p?
andp, =v— K
1+p;

K
— 27
2K 2’ (3:27)
1+ p2 K
P: = 53 5 (3.28)
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3.3. The analytical solution of the Landau-Litshitz equation

Making use of equations (3.27) and (3.28) we obtain

W(r) = : ; T 4+ sin(27
7o) 2Ko(1—|—?7(27-+sin(27'))) <Ko 3240001 + (27 + sin(27)))

(60(4a0m(1 + A(3 — 271)) + 3(1 + A — 2rA)C) — 90(aon(3 + SA + 1677A)

+2(1 4+ A+ 2mA)C) cos(7) + 30a,m cos(37) — 30(ao(6(1 + A) + n(127 + 247A

—71nA + 247%nA)) — 33nAL) sin(7) — 60nA(4ayn + 3¢) sin(27) + 5nA

(17aon + 6¢) sin(37) + 3a,n>A sin(57))2> , (3.29)
() = 1 - K? T in(2r
Py (1) 2K0(1 T sin(2¢))) ( K7 +32400(1 + n(27 + sin(271))) X

(60(4a0m(1 + A(3 — 27)) + 3(1 + A — 27A)C) — 90(aon(3 + SA + 1677A)
+2(1 + A+ 2mA)() cos(T) + 30a,m cos(37) — 30(as(6(1 + A) + n(127 + 247A
—T1nA + 247%nA)) — 33nAL) sin(7) — 60nA (4a,n + 3¢) sin(27) + 5nA

(17a,n + 6¢) sin(37) + 3a,n*A Sin(57))2> . (3.30)

The trajectories and the time t of the electrons are given by

dr i B T i
o= =il = /0 . (3.31)
t(r) = 74 2(7). (3.32)

Equations (3.26), (3.29) and (3.30) together with equation (3.32) give the transverse,
longitudinal momenta and the Lorentz factor ~ of the particle P, as a function of
laboratory time ¢ respectively. The expression of trajectories and time are long
and are given in Appendix A. For the limits 7, and ¢ — 0, which corresponds to
self and retarded effects equal to zero, equation (3.12) reduces to the Lorentz force
equation, therefore, the solution of equation (3.12) reduces to the solution of the
Lorentz equation for the same conditions.

For self force effects, we know that the LL equation is derived from the LAD

equation (i.e., equation 1.37) using perturbative expansion and assuming that the
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3. Retardation and self radiation effects on electrons in a laser pulse

0 200 400 600 800 1000

ao

Figure 3.2.: The validity limit of the LL equation in the (a,,v)-plane. The LL equa-

tion is applicable to all a,, y below the red line.

radiation reaction is smaller than the Lorentz force. The coefficient of leading
order term in the LL equation and the Lorentz force give

e2

= CFB’YF,YlulUﬁUO{ ~ Tomews a2y, (3.33)
e
eFaﬂU@ ~ MWy, (3.34)
104

MWL 0oy > Tomew%agyg, or v < (3.35)

N

Condition (3.35) gives the validity limit of the LL equation. For the normal-
ized laser intensity a, = 100, the use of the LL equation is valid if v is less than
1000. With the increase in the laser intensity, the LL equation violate the validity
limit at lower energy of the electron as shown in Figure 3.2. The solution of the LL
equation contains terms in power of normalized laser intensity up to aS while the
solution of the Lorentz equation contains power up to a2. Therefore, increasing
the intensity of the applied laser leads to RR dominated electron motion. At this
point the Lorentz force will not be able to predict the motion of charged particles
to a good approximation [69]. It becomes essential to use the LL or LAD equation
for such a regime.

The retarded effects become essential when the correction supplied by the
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3.3. The analytical solution of the Landau-Litshitz equation

retarded fields to the acceleration of the electron is comparable to the acceleration

given by the Lorentz force (3.12)
MeWrao =~ AMewrao, (3.36)

or in other words A ~ 1, where A « Ze/d, i.e it depends upon the total charge and
the mutual distance of the two particles.

The retarded quantities are expanded around the observation time assuming
IR(t)|/c <t~ At =t —t < t, which implies that ¢’ should be a positive definite
quantity. The |R(')| in terms of mutual distance d among the particles for Figure

3.1 (a) is given by

ROl = 5 337

for a relativistic particle moving to the —2-direction, 3, ~ 1, and
|R(t)| ~ 0.5d. (3.38)

The RR force and retarded fields arise from the emitted radiation and emission
of radiation depends on the acceleration of the charged particles, see equation
(1.32). Therefore, acceleration of electrons plays a vital role to study the radiation
effects. It is well known that the magnitude of acceleration obtained by hitting an
electron at rest with a laser pulse is usually small, however, for a head on collision
the electron feels a boosted force and higher acceleration can be obtained. Hence
in this chapter we are mainly going to study the motion of the electron counter-

propagating to the laser pulse.

3.3.2. Circularly polarized plane wave

Now we solve the LL equation including retarded effects for a circularly polarized

electromagnetic wave. Let us consider a circularly polarized laser pulse propagat-

55



3. Retardation and self radiation effects on electrons in a laser pulse

ing in positive 2-direction. The field components are given by
E, = By=E,sin(t—z), E,=0, (3.39)
E, = —By=EFE,cos(t—z2), B,=0. (3.40)

Equation (3.12) for such a polarization can be written as

(2) (1)

dpm . g dpr
- _ —ayt K opP) — = 3.41
T aosin(7) — apm K (cos(T) + appy”’) % (3.41)
(2) (1)
dpy : (2) o dpy
= - olr - Wo - T ) 42
ir a, cos(T) + a7, K (sin(7) — a Dy ) % dr (3.42)
dp:(vl) . 2 (1)
g = sin(7) — aom K cos(1) — ai7. Kpy~/, (3.43)
) _ K si 25 Kp(V 3.44
g = T cos(7) + ao7 K sin(1) — ag7- Kpy (3.44)
Cfl—K = —ad’r. K2 (3.45)
-
Integration of equation (3.45) is straight forward
& q &
K = L (3.46)

1+ a27. K,
Inserting the value of K in equations (3.43) and (3.44) and integrating, we get

1 —cos(t) —n, (7' cos(T) + sin(v-))

(1) —

Py (7) ao iy (3.47)
1 Mo(cos(7) — 1) :

pg )(7-) = Tt o + a,sin(7), (3.48)

where 7, = agTrK o- Using the solutions of P and the value of K in equations

(3.41) and (3.42) and integrating we obtain

() = - +1W (a0(=1+ (=14 no(7 + 470))A) + 206AC + (a(1 + A

10 (T + 207 — 4o A + 1oAT?)) — 2,AL) cos(T)

—(aotlo(1 + 3A + 31oAT) + (14 A+ noA)O) sin(7)) ), (3.49)
Pg(f) (1) = ! (aono(L+ (3 —7no)A) + (1 4+ A = 71,A)C

(1 +no7)
—(aono(1 + 3A + 37moA) + (1 + A + 71A)¢) cos(T)

—(ao(L+ A+ no(T + 27A — dn,A + 7’21’]01\)) — 2n,AQ) sin(71)).  (3.50)
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3.3. The analytical solution of the Landau-Litshitz equation

To obtain the value of p. and -, we use the definition of v* = 1 4 p2 + p2 + p?

1+p§+p§ K

1+p2i+p, K
, = — - v 52
P Ve 5 (3.52)
1
Dy =— - (K2+((1 2 —1—3A +n,A
120 = sy (K24 (4 mor o1 = 30+ o)

+(=1 = A+ nA)C + (aono(1 + 3A 4+ 3n,A7) + (1 + A + noAT)() cos(T)

(—
+(ao(1 + A+ no(T 4+ 2A7 — 4AnyA + NoAT? )) — 2noCA) sin(7))2

+(a0(=1 4+ (=1 + 10(7 + 476))A) + 2n,CA
+(ao(1 + A+ 1o(1 + 2AT — 4, A + 1,AT?)) — 20, A) cos(7)
2
—(agn(1+ 3A + 3oA7) + (14 A+ ,A7)() sin(7)) ) (3.53)
1
@y L (g2 2 1
W) = sy~ K2 (0 ) (a1 - 38 4 o)
+(=1 = A+ noA)C + (aono(l + 3A + 3n,A7) + (1 + A + noAT)¢) cos(T)

(=
+(ao(1 + A + 1o(T + 2A7 — 4, A 4 17,AT?)) — 20,CA) sin(7)>2
+(a0(=1 + (=1 4 10(7 + 475)) A) + 276C A

+(ao(1+ A+ no(7 + 2A7 — AnoA + noAT?)) — 296CA) cos(r)

—(aon(1 4+ 3A + 31n,A7) + (1 + A + noAT)() sin(7))2). (3.54)
The trajectories and time t are given by equations (3.31) and (3.32). The analyti-
cal expression for trajectories and time t for circular polarized pulse are given in

Appendix B. Equation (3.49) - (3.54) along with equation (3.32) give the transverse

and longitudinal momenta of P as a function of laboratory time ¢.

3.3.3. Examples

Now we discuss examples of motion of P» in the linear and circular polarized
plane waves. We consider that the electrons P; and P» are initially moving to-

wards the laser pulse for head on collision with initial 7, = 1000. The laser pulse
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-0.75}

0.6
04
-0.801
0.2
2 o0 o 08y
7 _o2 ~ 090}
-04 —-0.95¢
-0.6¢
. —1.00¢:
T T

Figure 3.3.: The dynamics of counter-propagating electron P, with 7, = 1000 in
a linearly polarized plane wave with a, = 100. (a) The transverse ve-
locity v, /c and (b) the longitudinal velocity v, /c versus 7. The bunch
charge is 1.122 nC and mutual distance d between P; and P, is = 0.8
pm. The red dashed line represents the motion of P — 2 with the LL
equation plus retarded effects, solid blue line stands for the LL equa-

tion and dotted black line shows motion by the Lorentz equation.

has a normalized intensity a, = 100 and wavelength A;, = 0.8 um. Both, P, and P
are affected by their own radiation, however, P is also affected by the radiation

of Pl.

The solution of the Lorentz equation is well know and it gives transverse and
longitudinal momentum oscillations with the amplitude depending on the ampli-
tude of the incident laser field and shows a figure eight trajectory in the rest frame
of the electron. The solid black line in Figure 3.3 shows the transverse and longi-
tudinal momenta of P obtained by the Lorentz equation (without including the
retarded and self-force effects) counter-propagating to the linearly polarized laser
pulse. However, the LL equation predicts a transfer of the energy of a counter-
propagating electron in a laser pulse. As we can see in Figure 3.4 that the energy
of the electron in the transverse direction increases and it decreases in the longi-

tudinal direction. Along with this shift of energy the electron also loses its energy
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Figure 3.4.: The initial parameters and color scheme as mentioned in Figure 3.3.
(a) The transverse energy ~, and (b) the longitudinal energy . versus

7 of particle P, in a linearly polarized plane wave.

i.e., the total energy of a radiating electron is not conserve in a plane electromag-
netic wave as predicted by [69]. In other words, the self force in a laser pulse has
the ability to stop the counter-propagating electron. The solid blue line in Figures
3.3 and 3.4 represents the self radiation effects of P.

Currently femtosecond electron bunches with the charge of few pC are be-
ing produced in laser wakefield accelerators [22, 23]. For such kind of electron
bunches the average distance d between any two electrons in the bunch is less
than 1077 m. As an example, consider the retarded effects of 1.122 nC electron
bunch (P; in Figure 3.1) on an electron (P in Figure 3.1) with initial v, = 1000
counter-propagating to a linearly polarized laser pulse with a, = 100. The elec-
tron bunch is considered as a single macro particle located at a distance d = 0.8 um
from the electron under observation P». The effects of retarded fields are shown in
Figures 3.3 and 3.4 by the red dashed line. We see that the retarded effects reduce
the self force effects both in transverse and longitudinal direction. The momen-
tum has lower amplitude and now it lies between the Lorentz and LL equations.

The transverse energy 7, is decreasing and the longitudinal energy increasing to-
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3. Retardation and self radiation effects on electrons in a laser pulse

(@) (b)

Figure 3.5.: For a circularly polarized wave (a) the transverse velocity v, /c and (b)
the longitudinal velocity v,/c as a function 7 of particle P,. The color

scheme and numerical parameters as mentioned in Figure 3.3.

wards the end due to retardation effects, see Figure 3.4. The retarded field is weak
in the beginning because the transverse momentum of P; is small in the begin-
ning and retarded field depends linearly on derivative of transverse momentum.
Hence, the momenta of P, is same with and with out retarded effects of P; in the
beginning. However, as the transverse momentum of P; increases the retardation
effects also increase and momenta of P, differ with and with out retarded effects.

The same kind of effects are observed for the circularly polarized laser pulse
of same intensity as we have seen for laser pulse with linear polarization. For the
LL equation, however, we see a drift for the longitudinal momentum.

The retarded effects of a 1.122 nC electron bunch on an electron with initial
76 = 1000 counter-propagating in a circularly polarized laser pulse with a, = 100
for the same mutual distance mentioned above are shown in Figures 3.5 and 3.6 by
the red dashed line. The solid blue and black lines represent the LL and Lorentz
equations respectively. Again the retarded fields mitigate the self-force effects for
the momentum and energy of the electron as can be seen in Figures 3.5 and 3.6.

The solid blue line shows the energy gain in the transverse direction and energy
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Figure 3.6.: The numerical parameters and color scheme as mentioned in Figure

3.3. (a) The transverse energy 7, and (b) the longitudinal energy ~,

versus 7 of particle P, in a circularly polarized plane wave.
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Figure 3.7.: For a circularly polarized wave of a, = 100 (a) the transverse velocity
vy/c and the longitudinal velocity v,/c versus 7 of particle P, with

Yo = 1000. The dotted black, solid blue and red dashed lines represent
macro bunch with charge (80.1, 160.2 and 320)pC respectively.
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Figure 3.8.: The color scheme and other parameters as mentioned in Figure 3.7.
(a) The transverse energy ~, and (b) the longitudinal energy v, as a

function 7 of particle P;.

loss in the longitudinal direction of the electron due to radiation reaction while
red dashed line shows the counter action of retarded fields of a 1.122 nC electron
bunch P; on the self fields of electron P,. Clearly electron gains more energy
in the transverse direction for circular polarization. We can also notice that even
though the bunch have same total charge for both linearly polarized and circularly
polarized pulses, however, self-force and retarded fields are more effective for

circularly polarized laser pulse.

It should be noted that the normalized laser intensity a, and constant K, play
key roles to determine the strength of radiation and retarded effects. High inten-
sity laser pulse makes the electron radiates more energy because of high accel-
eration and as a consequence the retarded and self-field effects are severe. The
retarded effects increase linearly with total bunch charge and inversely to the mu-
tual distance between the particles. For an electron bunch of small duration and
high total charge the retarded effects are stronger. If we increase the charge of the
bunch the retardation effects also increase as expected, see Figures 3.7 and 3.8. The

transverse energy gain of P due to self fields reduces under the retarded effects
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Figure 3.9.: For linearly polarized plane wave. (a) Normalized retarded electric
field component E,,,4 and (b) the transverse electric field E, of laser
pulse felt by electron P, versus 7. Numerical parameters as mentioned

in Figure 3.3.

of electron bunch of higher charge. The dotted black, solid blue and red dashed
lines in Figures 3.7 and 3.8 represent the retarded effects on electron P, of bunches

with charge (80.1, 160.2 and 320)pC respectively.

In fact, the nature of the emitted betatron radiation is the same as the one
by a free-electron-laser in an undulator magnet [65]. In the examples considered
above, the electrons are moving relativistically, therefore, the radiation is emitted
purely in the initial direction of motion (—z direction) [65]. The polarization of the
emitted betatron radiation is always opposite to the polarization of applied exter-
nal laser pulse. Therefore, it always reduces the effects of applied laser pulse no
matter if electrons are initially co-propagating or counter-propagating as shown
in Figures 3.9 and 3.10. For the model considered in Figure 3.1, the betatron radi-
ation mitigates the fields of applied laser pulse and hence the total fields felt by
the electron become less, which makes self radiation effects small. The retarded
field is weak in the beginning because the transverse momentum of P; is small

in the beginning and retarded field depends linearly on derivative of transverse
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Figure 3.10.: Numerical parameters and color scheme as mentioned in Figure 3.3.
(a) Normalized retarded electric field component E,,,q and (b) the
transverse electric field E, of laser pulse felt by electron P, versus 7

in a circularly polarized plane wave.

momentum. Hence, the retarded field of P; felt by P is also small. However,
for later time as the transverse momentum of P; increases the retarded field also
increases. The total field Ey, + E,q felt by P, become less for later time because
both have opposite polarization, where E,,q4 are the retarded field of P; felt by P».
The results are shown in Figures 3.9 3.10.

The retarded effects are not usually beneficiary contrary to the eye meet in the
above mentioned results. In the laser wakefield it can reduce the effects of trans-
verse focusing force, which increases the transverse oscillation of the electrons.
The increase in amplitude of the transverse oscillation can cause an increase in the
transverse emittance of the electron beam in a plasma focusing channel as we will
see in Chapter 5.

Let us study the retarded effects of a single particle on the other electron sep-
arated by a small distance such that the retarded fields of one electron affect the
motion of the other electron. We assume that P; in Figure 3.1 consists of a single

electron. Both particles (P and F») are traveling opposite to the laser pulse with
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initial 7, = 1000. The laser intensity is the same as the one we have considered
in the pervious examples. It is interesting to mention that the retarded effects are
effective if both charges are separated by a distance, which is smaller than the

classical electron radius i.e. d < 10~ m.

3.4. Summary of the chapter

The retardation and radiation reaction effects on the motion of an electron in
laser pulses of different polarization are studied by using the Landau-Lifshitz (LL)
equation and the Lienard-Wiechert fields. The analytical solutions are presented
for the corresponding polarization.

We found that radiation reaction transfers the longitudinal energy of a rela-
tivistic electron counter-propagating in a laser pulse of high intensity to the trans-
verse energy. The total energy of the electron does not remain conserve in a plane
electromagnetic wave due to radiation reaction. It is found that the retardation
effects of an electron bunch of high density (i.e., high charge) mitigate the radia-
tion reaction effects for both momentum and energy. The retarded fields are al-
ways polarized in opposite direction to the polarization of the applied laser pulse.
Moreover, retardation effects increase with increasing bunch charge or with de-
creasing mutual distance between two interacting particles. Both, self force and
retarded fields are more effective for circularly polarized laser pulse as compared
to the linearly polarized laser pulse of same intensity. The retarded fields of a sin-
gle electron is considerable if it is located at a distance, which is smaller than the

classical electron radius from the other electroni.e d < r,.
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CHAPTER 4

TeV scale electron beam from multistage low

density laser-plasma accelerators

4.1. Introduction

As stated earlier the acceleration length of a single stage Laser-Plasma-Accelerator
(LPA) is limited by the dephasing of the accelerating particles or by the energy de-
pletion of a driver pulse. Therefore, to obtain a high energy charged particle beam,
which exceeds the energy gain of a single stage LPA, a multistage arrangement is
required. The total length of a large scale LPA consisting of periodic structures of
a coupling and a plasma accelerator can be determined by the single stage energy
gain for a given beam energy and the coupling distance between two stages. The
coupling section that installs both laser and beam focusing systems could be of
several meter in length. The application of multistage LPA for the high energy
physics experiments requires a high quality beam with small energy spread and
transverse emittance along with sufficient charge. These requirements reduce the
optimum operating plasma density below 106 cm™3. Moreover, the coupling of

different stages in LPA is complex and it leads to the degradation of the emit-
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4. TeV scale electron beam from multistage low density laser-plasma accelerators

tance. Therefore, low density LPAs are recommended. The advantage of working
with low density plasma accelerators is that the single stage energy gain increases,
while the accelerating gradient reduces and the pump depletion length L,q in-
creases. Usually the degradation of the transverse emittance and energy spread
is induced by dephasing and betatron oscillations of accelerated particles of the
beam that undergo strong accelerating and focusing in the multistage LPAs. Com-
promising between the linac length and the beam quality requirements allows us
to find the proper operating plasma density [19].

In this chapter we consider the design of the multistage LPAs operating in the
quasilinear regime i.e. a, ~ 1. The expressions for the single stage are presented
as a function of the operating plasma density. The total LPA length for a beam

energy of 1 TeV is calculated for operating plasma densities of 10'° to 10*® cm™3.

4.2. Accelerating field

As mentioned earlier in under-dense plasma an ultra-intense laser pulse creates
plasma waves with accelerating electric fields of the order of E, = mccw),/e, where
wp is the frequency of the plasma wave. The ponderomotive force of the laser
expels plasma electrons out of the laser pulse and the space charge force of im-
movable plasma ions can accelerate the electrons. In the linear wakefield regime

(ao ~ 1) the maximum accelerating wakefield driven by a Gaussian laser pulse is

given by
_ VT kpo?
B = Y02 Eokyo exp ( - T)’ (4.1)

where )\, = 27/k, is the plasma wavelength and o is the length of the laser pulse.
The maximum field Ej; ~ 0.33a2E, for the resonant condition kpo, = 2 for a
given plasma density. The optimum conditions can be determined by changing

the plasma density and pulse duration, which is k,0, = 1 and the maximum
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4.3. Energy gain, stage length and total LPA length

wakefield is given by

Mo 1/2

For a beam of total charge @, = elV;, where IV, is the number of particle in the
beam, the net accelerating field is determined by the beam loading that means the
energy absorbed per unit length

Mec? E%
8re E2

QE. = kg (1- M) 4.3)

where 1 — E2/E?, = 7, is the beam loading efficiency that is the fraction of the
plasma wave energy absorbed by particles of the beam with radius 7, and 7. =
e?/(4me,mec?) is the classical electron radius. With the help of (4.2) equation (4.3)

can be recast as

Mec? m 9 9By me\1/2
Qb ~ 397176 1— m kprbfo(nio) y (4:.4:)

where E,/E, = 0.35a2,/T — 7, for kpo. = 1 and n, is the critical plasma density.

4.3. Energy gain, stage length and total LPA length

Total length of the LPA for a beam energy Ej, is given by
Ltot = (Lstage + Lcoupl)Eb/Wstagm (45)

where L.y, is the required coupling distance for injecting a new drive laser pulse
and a charged particle beam into the next stage of the LPA, W4 is the energy
gain in a single stage, and Lg. is the single stage length of LPA. Usually the
stage length is determined by the pump depletion length L,; over which the total
field energy is equal to the half of the initial energy of the laser. For a laser pulse

of length k,0. = 1 of Gaussian shape the pump depletion length is given by the

relation
8uw? k202 n
kpLpg ~ ——£—— exp (£2) ~ 74—, (4.6)
rer wiy/mazkyo, ( 4 ) agn,
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4. TeV scale electron beam from multistage low density laser-plasma accelerators

where wy, is the frequency of the laser pulse. The pump depletion length is almost
8(ne/no) for a, = 1 and 3.4(n./n,) for a, = 1.4. The dephasing length is approxi-
mately given by Ly, = (A\p/2)(n¢/n0). In the quasi-linear regime a, ~ 1 the energy
gain is usually limited by dephasing not by pump depletion. The approximate
dephasing length in terms of pump depletion is given by L, = 0.85L,, [16].

The energy spread starts increasing after half of the dephasing length at which
it decreases to its minimum value due to the phase rotation of the bunch [66]. Re-
cently it has been shown that the energy spread of an externally injected electron
beam rapidly increases after half of the dephasing length in a weakly nonlinear
blowout regime [94]. Therefore, to minimize the energy spread, the stage length

should be set to half of the dephasing length, which means

Ap e AL 3/2
Lstage =~ ZFG = Z(nc/no> 5 (47)
where A7, is the laser wavelength and A\, = Af (nc / no) 1/2. The energy gain per

stage is equal to Wage >~ €E; Lytage

mmec? E, n,

W stage = 92 Eo Ny ) (48)
and total number of stages
E, 2yp B\ ey 1
N, = — 0~ —(= — 49
stage Wistage s (Eo) (no) ’ (49)

where ¢ = E,/(mcc?) is the relativistic Lorentz factor at the final beam energy.
The coupling distance between two LPA stages can be estimated by the following

relation Leoup = (AL/8)(ne/n0)%? [19] and the minimum LPA length is
3
Ltot = (Lstage + Lcoupl)Eb/Wstage = iLstageNstagea

3y AL/ Eo /ey 1/2
YWL(E)(ZT,) . (4.10)

4.4. Driver laser pulse and electron beam parameters

The self-focusing of the driver laser and self-injection of plasma electrons must be

suppressed in a multi-staged LPA to improve the beam quality. In the quasi-linear
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ag
v/ 1+4a2/2

where 7, is the laser spot size. The strong self-focusing can be avoided by the

condition Pr/P. = (kproa,)?/32 < 1, where Pr and P. = 2(m2c’/e®)w} /w2 are

regime the laser spot size must be k2r2/4 > to avoid bubble formation,

the peak and critical laser power respectively. With these conditions the laser spot
size should have the value 1.8 < k,r, < 5.7 for a, = 1 and 1.8 < k,r, < 5.7 for

ao = /2. The peak laser power can be obtained by the formula

(kproao)2 m2c® n,
PL == T 662 ;O (4.11)

The FWHM pulse length is c77, = 2v/In20, ~ 0.265), [16] and the laser energy per
stage can be calculated by the relation Uz, = Pr7y.

The envelope equation of the rms beam radius o, is given by

d?o K? €2
dz; TUT _ 727;3, =0, (4.12)
T

where ¢, is the normalized emittance. The solution of equation (4.12) for an un-
matched beam is well known and it gives the oscillations of the beam envelope
with betatron period A\ = /7/(27K) [95]. If the electron beam is initially matched
in the plasma channel and we assume that there are no betatron oscillations in the
radial envelope of the electron beam then o2 = ¢, /(K /7) [66].

Table 4.1 shows different parameters for a, = V2, beam loading efficiency

m = 1/2, kyr, =3, and kyo, = 1 for a linear laser wakefield.

4.5. Single particle motion

Let us study the motion of an electron beam moving in a laser wakefield. As stated
earlier a charged particle moving in a laser wakefield feels a transverse focusing
force along with an axial accelerating force. In the quasilinear regime the focusing

constant K is related to the accelerating field

4 E,, .
K? = ﬁf@ln@b), (4.13)
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Table 4.1.: Parameters for 1 TeV linear laser plasma accelerator

Beam final energy E; (TeV) 1 1 1 1 1
Injection beam energy E; (GeV) 1 1 1 1 1
Plasma density n, (cm™?) 10'° 10'6 2.3x 10 10%7 10'8
Plasma wavelength A, (1)m 1056 334 220 106 33
Acceleration field E. (GV/m) 15 47 7.2 15 47
Energy gain per stage Witage (GeV) 500 45 19 4.5 0.47
Number of stages Nstage 2 22 50 222 2125
Stage length Lstage (m) 333 9.7 2.8 0.3 0.01

Total linac length Liotai (Leoup:)m  1000(167)  321(49) 210(1.4)  100(0.15)  32(0.005)
Total linac length Liotas (Leoupr)m  686(10)  433(10)  640(10)  2287(10)  21271(10)

Total linac length Liotar (Leoupt)m 668(1) 235(1) 190(1) 289(1) 2146(1)
Particles per bunch N, (10%) 7.5 24 1.6 0.75 0.24
Initial emittance €,,, rad(um) 2068 646 432 209 54
Initial beam radius oz, (um) 168 53 35 17 53
Bunch length . (um) 4.1 1.3 0.9 04 0.13
Normalized laser intensity a, 14 1.4 14 14 14
Laser wavelength A, (1m) 1 1 1 1 1
Laser pulse duration 7z, (fs) 950 300 200 100 30
Laser spot radius 1, (pm) 504 160 105 51 16
Laser peak power Pr, (TW) 10913 1091 474 109 11
Laser energy per stage Uz (J) 10367 327 95 11 0.33

where (sin 1)) is set to be an average value over the dephasing phase 0 < ¢ > 7 /4.
The LL equation (1.39) for a single electron moving in a laser wakefield can be

written as

d
du: = K%z — ct, K ?u, (1 4+ K2y2?), (4.14)
c
d
Yz _ n — et KAy, (4.15)
dct

where = eFE,/(mec?), and @ = ~¥/c is the electron three vector momentum.

Moreover, we have used the fact that for an electron beam traveling along the
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4.5. Single particle motion

z-direction with large initial ~,, v, < v,. We assume v ~ u,

duy

= —cK%z — A1, Ku (1 + K2y2?), (4.16)
Z—Z = (-, K422, (4.17)

where ¢ = cn as we have & = cu, /v, u, and ¥ are given by equations (4.16) and

(4.17). With this information we can write
i+ Ci/y + AR /vy =0, (4.18)

The transverse motion of the electron will be damped as is clear from the equation
(4.18). The frequency of oscillation is given by wg = ckg = cK/\/7, [4]. For
simplicity we introduce the normalized quantities ¥ = v/v,, ¥ = x/x, and t =

wgot in equations (4.17) and (4.18)

T+ ET/A+E/7=0, (4.19)

¥ =& — 20773, (4.20)

where &, = (/(Wgoo), § = oK 2 v,/ (2ws,) and 22, = 22 + u2, (k:%fyg) is the
maximum transverse radius, z, and u,, are the initial transverse position and

momentum of the particle respectively.

4.5.1. The solution

To solve the coupled equations (4.19) and (4.20), we use the separation of time
scales as done in [66]. The time scale of fast betatron oscillations is of the order
of wEl and the time scale of slow radiation damping oscillations is usually of the
order of §~!, where § < 1. The expansion of the quantities in a series of J gives

=20 4621 and 4 = 3 4+ §5(). The zeroth order equations are

50 150 /500 4 5050 — 4.21)

7O = ¢, (4.22)
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The solution of equation (4.22) is 7(*) = 1 4 &, and of equation (4.21)
cos(v)

;0 = (4.23)
z — , )
7 (0)1/4
the first order equation in ¢ for 7 is
AW = 9732 = _9(5(0)3/2 o2 (y)). (4.24)

We perform the time average over the fast oscillations which yields

AU = —(50)3/2, (4.25)
- 2 -
7 = §<1 _ (7(0))5/2)’ (4.26)
as we have 7 = 50 4+ §5(1) which implies that
2 5/2
¥ = Yo+ (t+ 2vao {1 — (1 + Ct) } (4.27)
5¢ Yo

4.5.2. Electron beam dynamics

The behavior of the electron beam can be studied by averaging different quantities
for the motion of a single electron over an ensemble of electrons. Single particle
quantities will be expanded about the ensemble averaged value of that quantity
plus small perturbation. For example, the initial energy 7, = (7o) + 7, where ()
represents the average over the ensemble of particles. Suppose that there are NV
electrons in the beam and we want to estimate (for example) the mean energy of
the beam. The mean energy (y) = Y, 7i/IN, where ~; is the energy of the ith par-
ticle. Equation (4.27) for the mean energy to the lowest order for a beam injected

on axis can be written as

7 ()2
() = e+t ‘j,fg)f’[l— (1+ <7i>t)5/ ] (4.28)

The relative energy spread of the electron beam is 0., /(7y), where o2 is given by

oy = (07 ={(?) -7 (4.29)
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Figure 4.1.: The electron beam dynamics: (a) the mean energy (v), (b) the relative

energy spread o, /(7), and (c) the normalized transverse emittance &,,,.

The electron beam moves with an initial energy of 1 GeV, an initial

energy spread 1% and with an initial transverse emittance €,,, = 2068

pm in a plasma channel of density of 101% cm~3.

3
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~
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The particle trajectories and transverse momenta are obtained from the numeri-
cal solution of the coupled equations (4.19) and (4.20). Using the numerical results
for the ensemble of test particles the different quantities such as energy spread and
transverse emittance of the electron beam can be obtained as well. We have cal-
culated the solution for 10* particles in plasma channels of density 10'® cm~3, the
column 1 case of Table 4.1. We have mainly focused on the first stage of accelera-
tion. For multistage accelerators there are other effects that need to be considered
such as injection jitters and beam focusing error between two subsequent stages,
etc. The numerical solutions together with the analytical estimates for the mean
energy () (equation 4.28) and relative energy spread o, /() (equation 4.30) are
shown in Figure 4.1. As can be seen in Figure 4.1 the numerical estimates are in
good agreement with the analytical solutions. The relative energy spread in the
beginning decreses approximately linearly in time due to the linear increase in the
mean energy of the beam. However, for t* > o2,/({y)373), it increases due to

radiative effects.

If the beam is matched initially then the normalized transverse emittance de-
creases (with out acceleration fields) as e,,, = €,,0(1—30t/2) [66]. For a mismatched
beam with small initial energy spread the transverse emittance increases in the
beginning for very short time due to the fact that the different particles undergo
betatron oscillations with different frequencies, which leads to the decoherence
that is the slippage of the particles with respect to each other. Once the emittance

reaches the matched value it remains almost constant.

As we have used a low density plasma channel the radiative damping is small
and hence the emittance decreases linearly with time. Roughly speaking the trans-

verse emittance remains almost constant in one stage in low density plasma.
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4.6. Summary of the chapter

In this chapter we have considered design issues for high energy laser-based plasma
accelerators working in the quasilinear regime operating at plasma densities 10'°,
1016, 2.3x10'6, 10'7 and 10'® cm™3. The accelerating field is 1.5, 4.7, 7.2, 15,
and 47 GeV for fixed laser intensity a, = 1.4 and the beam loading efficiency
m ~ 50%. If we take the stage length equal to the effective dephasing length Lg ~
(Ap/4)(nc/n,) the energy gain per stage is 500, 45, 19, 4.5 and 0.47 GeV for each
case respectively. The total LPAs length can be minimized if we choose the cou-
pling length equal to half of the effective dephasing length L oup = (Ap/8)(nc/10),
which gives a total stage length equal to 1.5 Lq4.. Higher operating density gives
smaller LPAs length, however, the mm coupling length is not practical to install
with both laser and beam focusing. If we increase the coupling distance to a meter
range or above the total length of the LPA increases even for the high density case.
Moreover, the total number of stages increases with a increasing density, which
makes it complex and leads to degradation of the beam parameters. On the other
hand, at lower operating density the total number of stages reduce with low accel-
erating gradient to a small total LPA length. Moreover, the total energy gain per
stage increases for low density LPA. In particular, the less number of stages helps

to get a beam with the desired parameters.
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CHAPTER D

Retardation effects on electron beams in laser

wakefields

As discussed earlier radiation emitted by a relativistic electron bunch of charge >
100 pC affects the subsequent motion of the electrons of the beam [19, 66, 67, 68].
In Chapter 3 we have studied the electron motion in a laser pulse under the re-
tarded effects of an electron bunch and saw that the retarded effects become es-
sential for a high charge electron bunch with smaller size. Now we will investigate
the accumulated effects (self radiation and retardation effects) of radiation on the

evolution of the properties of an electron beam in a laser wakefield.

In this chapter we will study the motion of an electron bunch in a plasma
focusing channel. We suppose that every particle of the bunch is affected by the
laser wakefield, self radiation field, and also by the retarded potentials of other
electrons in the bunch. Let us assume that there are N electrons in the bunch and
that the ith particle (which is the particle under observation) is under the effect
of retarded potentials of a, say, bunch of particles (the remaining N-1 electrons).
Similarly, next we take the jth= (i + 1)th particle and so on. In other words,

each electron of the beam is under the retarded effects of all the other electrons
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5. Retardation effects on electron beams in laser wakefields

of the beam and it is also affected by its own radiation (self force effects). In our
model, the self force effects of emitted radiation is included through LL equation
and retarded effects are implemented through Lienard-Wiechert fields.

We study the motion of test electrons which are traveling in a laser wakefield
and estimate the beam properties in the latter. Electron beam properties will be
estimated by averaging different quantities of single electron over an ensemble of

particles as done in Chapter 4.

5.1. Single particle motion

Let us consider an electron beam moving along the z-axis in a plasma focusing
channel of axially uniform but varying transverse potential as discussed in [66].
To study the retarded effects in a laser wakefield we will use the same approach
as discussed in the Chapter 3. We notice that for our formulation the retarded
effects mainly acts in the transverse direction for linearly and circularly polarized
laser pulses. Moreover, the retarded effects on an electron can be implemented
through the momentum of the radiating electron. Equations (4.14) and (4.15) for
P, including retarded effects of P; can be written as

dug _1dvug

Tt = ~K?2 — e, Ku, (1 4+ K?ya?) — oo(1 — vs) Tt (5.1)
‘f;;j — (- er, KAy, (5.2)
For particle P, it takes the form
d;cx; = —K%n1 — cr K ug (14 K*y127), (5.3)
d;;l = (- cr Kyl (5.4)

where K2 = %%(sin V), (; = eE,/(mec?) as discussed in Chapter 4, @ = y/c is
three vector momentum of the electron, and o, = Ze?/(4ne,dm.c?). The different
quantities in this section correspond to particle P in Figure 3.1 (a) if not labeled.

We have assumed that for an electron beam traveling in the 2-direction with large
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5.1. Single particle motion

initial ~,, v, < v,. From equations (5.1) - (5.4) it is clear that both particles have
the same expressions for energy and there is one extra term for the trajectory of
particle P,. Therefore, from now on we will write the expressions only for electron
P,. The corresponding expressions for electron P; can be obtain by taking the limit

0, — 0. From equations (5.1) and (5.2) we obtain

d;tx = G, = —cK?z — C2TOK2ux(1 + K2'y:c2) — 0001, (5.5)
e e 56)

where the (1 — v,) term in equation (5.1) can be expanded using a power series
as v, < 1 and we have assumed that v ~ u.. For simplicity we introduce the
normalized quantities § = /7o, & = /T, T1 = wWpot, and x7, = x5 + u3,/(k3,73)-

With the trajectory & = cu, /v equations (5.5) and (5.6) can be written as

o= —EB/7—E/7 - XxE1/A, (5.7)

5 o= € —2e9%32, (5.8)

where & = (. /(WpoYo), € = oK 432 75/ (2ws0), X = To/70, and 71 is the accelera-

tion of particle P, and is given by
I o= =& /5 - 3/ (5.9)

To solve the coupled equations (5.7) and (5.8) without retarded effects we use the
separation of time scales as has been done in [66] and has been discussed in detail
in Chapter 4. Thus, we write here only analytical expression for mean energy and

relative energy spread of the electron beam.

5.1.1. Electron beam dynamics

The behavior of the electron beam can be studied by averaging the different quan-
tities for the motion of a single electron over an ensemble of the electrons of the

beam. Single particle quantities will be expanded about the ensemble averaged
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Figure 5.1.: Electron beam dynamics. (a) The mean energy (v), (b) the relative

energy spread o/(v), and (c) the transverse emittance ¢, of an elec-
tron beam with initial energy (v,) = 2000, relative energy spread of
1%, and initial transverse emittance ¢,, = 2068 radum propagating
in a plasma channel of density n, = 10'> ecm™3. The solid black and
blue lines represent the corresponding quantities with retarded and
without retarded effects, respectively, obtained numerically. The red

dashed line represents the corresponding analytical expressions.
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value of that quantity plus small perturbation. For example, the initial energy is
Yo = (Vo) + 070, where () represents the average over the ensemble of particles.
Suppose that there are N electrons in the beam. Then, for example, the mean en-
ergy () = Y_;7i/N, where 7; is the energy of the ith particle. The equation for the

mean energy to the lowest order for a beam injected on axis can be written as

200 ()5 ¢ 52
= (7o) +Ct+ 1— (14 —=t)""]. 5.10
() (Yo) + ¢ % [1—( o )] (5.10)
The relative energy spread of the electron beam is o /(7), where o2 is equal to

a2 = (07%) = () — (1)?

W = (<70> + Ct)_ [0"/0 +

The transverse emittance of the beam will be obtained by the numerical solution

402 (y)a
25¢2

(1= 1+ 750" (Ot + F22))- G

of equations (5.7) and (5.8) with and without retarded effects.

Consider the case of a femtosecond electron bunch of 0.801 nC charge (5.0 x
10° electrons), with 1.02 GeV ((7,) =~ 2000) initial energy moving in a plasma
channel of density n, = 101> cm~3. The initial transverse emittance is €,, = 2068
radym, which is the matched beam emittance for a low density plasma channel
[19]. The mutual distance d between any two electrons is taken to be 0.01 pum,
which is still large. Electrons in an electron bunch can have much smaller mutual
distances than what we have taken. The transverse emittance ¢, increases to a
final value of 22000 radpm, which is almost 1.5 times greater than the initial emit-
tance. The relative energy spread also increases to a final value of 3 %. There is
also a small decrease in the mean energy of the electron beam due to retardation
effects. The results are shown in Figure 5.1. The solid black line represents the cor-
responding quantities with retardation effects while the solid blue line represents
the quantities with out retardation effects and the red dashed line represents the
analytical expressions of the corresponding quantities given by equations (5.10)
and (5.11). The analytical expressions are in good agreement with the numerical

solutions without retarded effects, which eliminates any possibility of error in the
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numerical approach. If we decrease the total bunch charge or decrease the trans-
verse bunch size the retardation and self radiation effects become less.

As discussed in Chapter 2 the electrons of the beam with large initial radius
feel a strong focusing force in the laser wakefield. This transverse force gives
rise to betatron oscillations and the electrons emit radiation. The frequency of
oscillations is wg = cK/,/y and depends on the plasma density and the energy
of the electrons. Electrons with large initial radius radiate more as compared to
electrons, which are close to or on the axis of the channel.

We know that the retarded field has its component in the transverse direction.
In a laser wakefield this transverse component of the retarded potential will in-
crease the amplitude of oscillation of the electrons. The electrons that are initially
close to the axis do not radiate but are under the effect of strong radiation of those
electrons, which are initially far away from the axis and radiate. This will cause an
increase in the amplitude of oscillation of the near axis electrons of the beam. As a
consequence the transverse emittance and energy spread of the beam can increase
as is seen in Figure 5.1. Since the electron beam is relativistic the emitted radiation
will be purely in the 2-direction, therefore, the electrona at the front of the beam

will be affected more as compared to the ones that are in the tail of the bunch.

5.2. Summary of the chapter

The retarded and radiation reaction effects on the motion of an electron beam in
a laser wakefield have been studied by using the Landau-Lifshitz (LL) equation
and the Lienard-Wiechert fields.

It is found that for an electron bunch of sufficiently high charge (of the order of
a few pC) with very small duration ( of the order of a femtosecond) the retarded
fields are strong and affect the properties of the electron beam. It reduces the
energy gain, increases the energy spread and transverse emittance of the electron

beam with large initial radius.
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CHAPTER O

Numerical solutions of the self force equations

6.1. Introduction

The numerical solution of the self-force equations, e.g., the Lorentz-Abraham-
Dirac (LAD) equation, the Landau-Lifshitz (LL) equation and the Caldirola equa-
tion is difficult due to their complex structures. For example, the LAD equation
contains a second derivate of velocity and its analytical solution shows unphysical
behavior. The LL equation is highly nonlinear in external fields and velocity and
thus maintaining accuracy and stability is a challenge. The Caldirola equation is
a delay differential equation and there is no well developed and trust worthy nu-
merical technique to solve it. On the other hand to study the effects of radiation
in laser-plasma interaction and the motion of high energy electron beams in laser-
based plasma wakefield accelerators it becomes essential to implement numerical
solvers for the self-radiation forces.

In this chapter we will develop numerical recipes to solve different radiation
reaction forces. We will mainly use the Boris-Yee scheme for Particle-In-Cell (PIC)
simulations. PIC is being used in numerical plasma physics for several decades.

The radiation reaction force with the best numerical results will be implemented
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6. Numerical solutions of the self force equations

in the Plasma Simulation Code (PSC) originally developed by H. Ruhl [96]. The
code already includes many features of plasma simulations, however, it does not
include radiation reaction. The present work is to extend the PSC for the study
of motion of high energy electrons beams where radiation reaction considerably
affects the motion of the electrons.

The PSC solves the Vlasov-Boltzmann equations, which are kinetic equations
for the one particle probability distributions of electrons, ions and neutral atoms.
The PSC method makes the assumption that the distribution functions can be ap-
proximated by a finite number of quasi-particles, for which classical equations of
motion in the presence of external electromagnetic fields are derived. The elec-
tromagnetic fields are calculated from the Maxwell equations and momentum of
the particles is updated by the Lorentz force equation in the absence of radiation
reaction. To include the effects of self radiation the momentum of the particles will
be updated by any of the self-force equations. The kinetic description of plasma
gives the most detailed account of the collision-less interaction of the plasma elec-
trons with waves. We will give here a short summary of the PSC code. The details

about the PSC code can be found in a number of articles and books (e.g. [96, 97]).

6.2. Numerical schemes

The idea of the PIC method is to combine the continuous variables of particles in
configuration and momentum space with the grid representation of fields, poten-
tials and densities. The freely moving particles are represented on the grid. An
approximate distribution function fj, of particles of sort k using a finite number of
quasi-particles is defined as

(7, pi(t))

- , (6.1)
Hf:l Ap;

@R = 37 D6 )

where n, is the background plasma density. The summation over i is performed

over all particles of a particular type. The term n,/N. is the density of quasi-
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6.2. Numerical schemes

particles, where V. is the mean number of quasi-particles in one cell. ¢ and £ are

form factors of the particles, which are used to integrate them for a representation

on the grid
3
(@ &) = ] 8y, @iyt (6.2)
7j=1
3
g(ﬁ: @) = H pjupz] (6.3)
7j=1
where
— @
1- K forw;; — Ax; <xz; <z;yi + Ax; (6.4
S, wii(t) = { = Az, : J §S TS T j (64)
0, else (6.5)

and similarly for S;(p;, pi;(t)).

As we need only represent the position of the particles on the grid, the distri-
bution function uses finite size form factors in configuration space and é-functions
in momentum space. Thus Ap; — 0, which produces the following form of the

distribution function
RN No - = o
FERD = R Y6 - E(0)8 - Bilb), ©6)

which is used to get the charge and current densities.

6.2.1. Equations of motion

The equations of motion of the quasi-particles can be obtained by using the Vlasov

equation

) ) )
(aﬂ S+ F 87j)f_o, 6.7)

where F is the electromagnetic force on the quasi-particles. We multiply equation

(6.7) by the momentum p'and integrate it over momentum space

0 . 0 . d =
o [ drir+ o [dvurs- [dvs(Fpf=o ©8)
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6. Numerical solutions of the self force equations

Inserting the discrete representation of the distribution function (6.1) in equation

(6.8) and integrating yields

3 (5 2 + Y (5 - Fle@a) =0, 69)
J

. 0i; 0
J

where the momenta p; result from the J-function in the distribution function.
Since the form factor ¢ is symmetric the two derivatives in the first sum anni-
hilate. To validate the equality of the remaining two sums the equality must hold

for every single j. Integrating over the volume V of one cell we get

dz;
bt R 5 (6.10)
dt J

dp; 1 / 3 e R

@i _ 2 (|4 V). 6.11

The product in the denominator on the right hand equation arises from the inte-
gration over the volume in equation (6.9). As i7is independent of x the integration
can be performed and gives the volume of one cell. The motion of the quasi-
particle j is described by equations (6.10) and (6.11), which have the same form as
usual Newtonian equations under the approximations made [97].

As mentioned earlier we are interested to incorporate the radiation reaction in
the PSC code. Therefore, instead of the Lorentz force equation in equation (6.11)

we will solve the self force equation.

6.2.2. Numerical scheme for the LL equation

To get an accuracy up to second order in the integration the PSC uses staggered
steps in both, space and time. One basic advantage of this concept over taking half
the step sizes is a reduction of computational effort and an increase of stability
[97]. We describe the scheme in some detail for one complete time step to show
in which order the different variables are updated. We assume that all quantities
except the current density j are known at the time step n and before. The time step

is denoted by a superscript n. The Euler method for half time steps, if n represents
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6.2. Numerical schemes

the starting time step, gives

= 7 (6.12)
—n+i _ =n
. 6.13)
2
At
it = Tt 5 (6.14)

As the velocity ¢ and the momentum p’ have the same direction, therefore, the

velocity-momentum relation gives

—

. (6.15)
V1 IpP
Instead of the velocity v™ we use the momentum p™ to obtain
At p"
o= gy P (6.16)

21+
The numerical recipe for the LL equation is as follows: With the use of the electric

and magnetic fields at half integer time steps the normalized LL equation (3.12) in

three vector notation for one particle can be written as

n+Li —
Pk = o st B 4 (s BrrE)

T,y,z

+n’AtKEn+% « §n+%) (@t BB Bty
- 1 1 1 — 1 1 = 1 = 1
F(EME gt Rt —ont 2 ((En+§ R X Brta)?  (Bnte .{;’"‘*‘5)2” ,(6.17)

where n = e¢E,/(mc.cwr) , wr, is the laser frequency, c is the speed of light, e and

me are the charge and mass of the electron and 1’ = a?

Towr,. Subscripts z,y and z
represent the corresponding components of the different quantities. We have also
neglected the derivative term of the LL equation as it is much smaller than the
other terms of the LL equation. Equation (6.17) in component form can be written
as

PZH—pm-H?At{Ex 2+( n+§BZ _ n+§BZ+ )}

—

1
. B" %) nta _52(n+%)v”+§

N:\»—t

+77’At[( By BT BB 4 (o

= 1 1
B BT oy, (6.18)
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6. Numerical solutions of the self force equations

pZH = +nAt{Ey+2 n < n+an+2 _ n+2Bn+2>}
—|—77’At[(E?+éB;+é - EZ+%BZ+%> + (@ By BT _ gantd) e
(BT )BT UZ+%T”}, (6.19)
Pt =l At [ENTE 4 (o gl )]

+n/At[<E;+§B;+% _ E§+%B§+%) + (v _gn+§)Bg+% ECES Mies:

N 1 1
F(EME gt EDT UZ“T"}, (6.20)

T = ((Br+s ot < Brid)? - (B t)?) (6.21)

P = g gnERE 4y an(By BT R (622)
P = gnAEY T g A(BE B BRI (623)
ittt = pf %nAtEl”% + %n’At(E;Hr%B;JF% - E§+%B§+%), (6.24)
o= pg— %nAtE;”% - %U’At(E{}*%BZ*% - EQ%B;%), (6.25)
po= py - %nAtEZ’}*% = %n’At(E,?JF%BT% ~ETBITE), (6.26)
o= p— %nAtE”*Q _ %n’At(ET%B;*% ~ETBET). (627)
Inserting equations (6.22)-(6.27) in equations (6.18)-(6.20) we have
R G B AN PO [CA R T
B (s ) ], (6.29)
p;j —p, = nAt(vZ QBnJrQ — UT%B:JF%) +n' At [(U”*é .§"+%)BS+%
_52<n+%>vg+% (BT ], 6.29)
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1 N 1
pf —ps =nAt(vy 2By —wy TBy ) of At [(ﬁ”*é Br+iypite
1 1
62(n+ ”+2 + (EnJr% 1—}fn+%)EZ+§ _ ?JFQT”}, (6.30)
Equation (6.15) leads to
n+%
il = ——— — (6:31)
n+3 n+s3 n+3
Vit @tz opte 4 ooty
where we have
p;,y,z + p;,y,z = pgzlz + pg,y,z (632)
and
+1 Pt + 1k
p;y 2 = w, (6.33)
+ —
_l’_
pg,—i@;? — px,y,z 5 px,y,z (634)
up to first order of accuracy and finally
g
it = ey e — (6.35)
2\/1 P +pz 2 4 (Py ;pr )2 4 (B= erpz )2
Introducing new variables
AtBH3
Teyz — 7 i [ 5 (6.36)

+ = - +
2\/1 + (pz ;pz )2 + (Py 2py )2 + (pz 42rpz )2
1
o = 0 At(E,Ey + B, B,)""2 6.37)
+ - - = ’
2\/1+ pz+pm )2 4 (Py Dy )2 4 (pz %2-172 )2
0 AELE, + ByB,)""3
S ( ++ )2+7, (6.38)
2\/1 4 (pz ;pz )2 4 (Py pr )2 4 (pz 42rpz )2
1
o3 = ' AH(EyE. + B, B,)"" 2 (6.39)
2\/1 + (p$+p;)2 + (szﬂ’i )2 4 (pi+p2)2
2 2 2
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6. Numerical solutions of the self force equations

and inserting equations (6.35)-(6.39) in equations (6.28)-(6.30) and simplifying we

have

Py jom
p;' =X py_ s (640)
p 2
where y = A~ B with
(1—/\1) —(Ul—f—Tz) Ty — 02
A= Ty — 01 (1—)\2) —(Tx+0'3)
—(1y +02) (1 —o03) (1—2X3)
and
(I+A)  (o1+7) —(ry—o02)
B = —(1s—o01) (14 A2) (T2 + 03) ;
(ry +02) —(mz—03) (1+X3)
where
/At 2_B+E2n+%_frn
N <( +x)7 +) ) (6.41)
n =
2\/1 pz +pz (py 2py )2 + (pz ;pz )2
i At —6+E2 s _yn
A3 = <( +y)_ +) , (6.42)
n =
2\/1 Pa Pz +px (Py 2Py )2 4 (pz 42-pz )2
/At o + E2 n+% -
A3 = <( P +Z)7 +> . (6.43)
n =
2\/1 z+pz (py 2py )2+(pz ;pz )2
In the limit 7, — 0, which is a radiation free case, the matrix xy becomes
1+ Tg — 7'y2 — 722 27, Ty + 27, 27, T, — 2Ty
1
Xrf =7 = 2T, Ty — 27, 1—-72 4 Ty2 — 72 2TyT, + 27, (6.44)
27, T, + 27y 2TyT, — 27, 1-— 7'% — Ty2 + 7'22
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6.2. Numerical schemes

where 7% = 72 + 77 + 72. The matrix x, s represents a rotation. It can be shown up

to first order of accuracy that

+ _ 2 P+ — 2 + _ 2
+ + + — _ -
(pzp> +<y2py> +<Pzp> — P4t epst (645)

This relation also holds if we include the radiation reaction, however, the algebra
is much more cumbersome for the matrix x, which is very lengthy but we can
simplify it for a particular case. Let us consider a circularly polarized plane wave

propagating to the 2-direction. For such a wave the matrix x is

Qs 2(01(1 = A3) + 727y)  2(0172 + (A2 — 1)1y
1
Xep = Qil 2(0’1(1 - /\3) + TmTy) Qg 2((1 - )\1)7'3; - O'17'y) ,(64:6)
2((1 = A1y —017)  2((M1 — 1)1 + 017y) Qy
where

Y = 147247 —0r—MTh — AT, +A307 — A1 — A2 — A3
+)\1)\2 + )\1A3 + )\2)\5 — /\1)\2)\3 - ZTITyUh (647)
Q= 1+A) (A2 —=1)(A3 = 1) +72) + 20177, + (A2 — 1)1 — 05 (A3 — 1), (6.48)
Qs = 1+ A) (M —1DAs=1)+77) + 20177, + (A — )77 — 07 (A3 — 1), (6.49)
Q = (1+X) (M —DA2—1)—07) + 201707y + (Ao — )77 — (M — )77, (6.50)

Equation (6.40) together with equation (6.46) updates the momentum of the par-
ticle for a circularly polarized plane wave. We will discuss some numerical exam-

ples in the next section.
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6. Numerical solutions of the self force equations

One complete time step can be summarized as follows

pn BI" Fnts
— E"+% — 1
B" —— B2
antl sl
g EURETE
O R T | nt3
A R L A (6.51)
4 P73 S 1
j k)
St L
pgrrs B2 B+t

E’n—i—% Bn+17jn+1

En+1

6.2.3. Numerical scheme for the Caldirola equation

The motion of a radiating charged sphere is described by the Caldirola equation

as we have discussed in chapter 1 and it is given by
: . 1
meu® = —eF*Pug 4 %(UQ(T —2a/c) + C—Qua(T)u’B(T)uﬁ(T - 2a/c)>, (6.52)

where m.q = €2/ (6me,ac), a is the radius of the charged sphere and 2a/c is the time
required by the light to transverse the charged sphere. In three vector notation

equation (6.52) can be written as

p o= e(E + (T x E)) + T;L‘;d [17(7’ —1)— 17(7)(7(7‘)7(7‘ —71)

_17(7) (T —7) )}’

c2

(6.53)

where 71 = 2a/c. It reduces to the LAD equation in the limit « — 0, which corre-

sponds to a point particle [74]. Equation (6.53) in normalized unit is given by
7= n(E+@xB))+m[otr—n) - o) (v()y(r —7)
—i(r) - o(r — )], (6.54)

where n = eE,/(mecwr) and m = meq/(2awrm.). We have used the follow-

ing normalized quantities p' = p/(mec), ¥ = T/c, t' = wrt, E = E/EL, and
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6.2. Numerical schemes

B' = B/B, with B, = Er,/c. We have dropped the prime in equation (6.54) for
simplicity.

To solve it numerically we proceed as follows. The delay time 7, = 2a/c has a
constant value so we introduce a positive integer m > 1 and set the time step such

that At = 71 /m. With this information we can write

t = nAt and 7 = mAt, (6.55)

v(t) = 0" and v(t—m7)=0""" (6.56)

In other words, the delay terms will be obtained from the history of the motion
of the particles. Obviously this scheme cannot be used for large scale simulations.
Using the Euler method and assuming that n is the starting time step the normal-

ized Caldirola equation (6.54) can be written as

pitl = pi,.+nAt [E;L,Zé + (73 x §n+%)zw] +mAt [v;7yj;n>
oy (Y aymts g gtnem)). (6.57)
We introduce new variables of the kind
pZH = pi+ %n At E;Hr% + %771 At v:(rn_m), (6.58)
o= pl+ %n At E;”% + %m At v{r™), (6.59)
it = pf+ %n At ENTE %m At v{"™), (6.60)
Py = Py — %77 At TR - %m At o™ (6.61)
Py = Dy — %17 At E;H% - %171 At vé"_m), (6.62)
Vo= pr o gn BTy Arafr), (6.63)

Since #"~™) is the velocity of the particle at pervious times. We can treat the pre-

vious velocities as known quantities. Inserting equations (6.58)-(6.63) in equation
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(6.57), we get

1 1 1 1 1
p —py =nAt(vy 2B ol Iy oy Ateg 2 T,

1 1 1 1 1
p—py = nAt(ur IR i TR BITR) o Aty TR TR,

_ +3 Nt +3 onts +3
Py —p; ZnAt(U;L QB;} Z—UZ 2B, 2)—7]1 At vy S
where
T, = (W"Jr%v(”_m) — - ﬁ(”‘m)).

(6.64)
(6.65)
(6.66)

(6.67)

Using equations (6.35) and (6.36) in equations (6.64)-(6.66) and simplifying we

have

Py Py

Py | = Xo p, |

Py Pz
where y, = C~'D with

1+0 -1, Ty 1-0 7, —7,
C = T, 1+ -7, D= -7, 1—06 Tz
—Ty T 1+06 Ty -7, 1-0
and
mAtYT,

)

- T — o -
2\/1_'_(1%;1% )2+(Py 2Py )2+(pz ;pz )2

After some cumbersome algebra we get the matrix x, as follows

Lt =7 =T+ M 27,7y +27.(1 4+ ©) 27,7, — 27,(1 + ©)

XO:E

27,7y — 27,(1 + O 1—724+72 724+ N\ 27,7, + 27,(1 + O
Yy x Yy z Yy

(6.68)

27,7, + 274(1 + ©) 27y T, — 27, 1—72— 7'5 + 7124+ Ay
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where A; = O(1 — 72 —© — %) and Ay = 1 + 7 + O(3 + 7 + 30 + ©2). For the
radiation free case, which corresponds to © — 0, the above matrix clearly reduces
to the one we have seen for the Lorentz force case in the last section and is given in
[97]. The complete time step will remain the same as what we mentioned earlier

for the case of the LL equation.

6.2.4. Numerical scheme for the LAD equation

We rewrite the LAD equation, which we discussed in chapter 1
meu® = Ff + mer,(i® — 1P ugu®/c?). (6.69)

The normalized LAD equation (6.69) in three vector notation can be written as

= N2
5 = n(maxgwm(a_(ah(ug) i), (6.70)

where n = eEr/(mecwr) and 7. = Towr. We have normalized p by mc, v by ¢, ¢
with w, and E by E,.

To solve it numerically we first update the velocity using the Lorentz force

part
[ 1 1 0l LR N
A N AR CAR AR ARy A I
nt1 n [ ontd | fntd sl ol snedy |
Dy = p, +nAt|E, +(Uz By * -V, *B; ),
n+1 n [+l | nkd mntl bl znaldy ]
Pt = A B 4 (@R 6 BT 6.71)

The detailed description has been already given. In the next step we calculate

the acceleration and the derivative of acceleration by using the central difference

method
dom gl — gl
a2 gt — 2gm — gt
ol AP +O(At?), (6.73)
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6. Numerical solutions of the self force equations

to maintain second order accuracy. The momentum is again updated using the
radiation part of the LAD equation and hence there are some extra steps in the
calculation. In large scale simulations, where we deal with millions of particles
one extra step costs much. Therefore, this scheme does not seem practical for
large scale simulations. Moreover, this numerical scheme, which is used to solved
the LAD equation is perturbative to some extent. The Caldirola equation also de-
mands much memory to save the entire history of the particle motion to integrate
the delay term. We can say that the numerical solutions of the three self-force
equations show that the LL equation is the best compromise for large scale simu-

lation.

6.3. Numerical Examples

In this section we will show numerical results for the LL, the LAD and the Caldirola
equations. A comparison of an analytical solution of the LL equations with the nu-
merical solutions of the LL equation and the Caldirola equation will be given as
well. The analytical solution of the LL equation is given in Chapter 3. As stated
earlier we have studied the motion of an electron counter-propagating to a laser
pulse of different polarization. In all examples, which are given in this section,
the numerical values of the different quantities are as follows, a, = 100 is the
normalized laser intensity and 7, = 1000 is the electron initial energy. The laser
pulse propagates along the 2-direction and the electron is initially moving along
the (—2)-direction. The laser wavelength is w;, = 2.0 x 10557}, electron mass
me = 9.109 x 1073 kg, and the electronic charge is taken to be 1.6022 x 10~19C.
Figure 6.1 (a) shows the momenta and energy versus 7 of a counter-propagating
electron in a linearly polarized laser pulse. The solid blue line represents the an-
alytical solution and red dashed line represents the numerical solution of the LL
equation. The analytical solution is in good agreement with the numerical solu-

tion.
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Figure 6.1.: Counter-propagating electron motion in a laser pulse. Normalized

transverse velocity v,/c, normalized longitudinal velocity v,/c, and
the Lorentz factor  of an electron versus 7 counter-propagating to a
laser pulse of normalized intensity a, = 100 and with initial energy
7o = 1000. The solid blue and red dashed lines represent the analyti-
cal and numerical solutions of the LL equation respectively. (a) Linear

polarization and (b) circular polarization.
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6. Numerical solutions of the self force equations

Similarly Figure 6.1 (b) demonstrates the motion of a counter-propagating
electron in a circularly polarized laser pulse. The color scheme is the same as
mentioned before. However, here we notice a small discrepancy between the ana-
lytical and numerical solutions.

The comparison between the numerical solutions of the LL and Caldirola
equations is given in Figure 6.2 (a). The solution of the Caldirola equation agrees
well with the LL equation if the radius of the sphere for the Caldirola equation
is taken to be as small as 2.3 x1071® m. It is less than the radius of the classical
electron.

We have also studied the effect of the radius of the sphere on its self-force
tields. The self radiation effects are reduced with increasing radius. A sphere with
three different radii (3, 2.3, 2) x10~1? is shown in Figure 6.2 (b). The dotted black,
red dashed, and solid blue lines represent the radii ( 3, 2.3,2) x 10~ 1° respectively. It
can be seen that the large sphere has less momentum oscillations and the radiation
rate is also much less. It should be remember that the Caldirola equation is not a
valid equation if the radius of the sphere is less than 2r., where r. is the radius of

the classical electron.

6.4. Summary of the chapter

In this chapter we have numerically solved different equations of motion of a
radiating electron, for example, the Landau-Lifshitz (LL) equation, the Lorentz-
Abraham-Dirac (LAD) equation, and the Caldirola equation. Our main objective
is to incorporate the best radiation reaction scheme into the large-scale Plasma-
Simulation-Code (PSC).

The numerical solutions have been compared with the analytical solution of
the LL equation. We have found good agreement between numerical and ana-
lytical solutions. Moreover, we have solved the delay differential equation (the

Caldirola equation) of a radiating charged sphere. The solution of the Caldirola
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Figure 6.2.: The normalized transverse velocity v, /¢, normalized longitudinal ve-

locity v, /c, and the Lorentz factor v of an electron versus 7 counter-
propagating to a linearly polarized laser pulse of normalized intensity
a, = 100 and with initial electron energy v, = 1000. (a) The solid
blue and red dashed lines represent the numerical solutions of the LL
and Caldirola equations respectively. The radius of the charged sphere
is 2.3 x1071° m for the Caldirola equation. (b) The dotted black, solid
blue and red dashed lines represent the radius of charged spheres with

(3,2.3,2) x1071° m respectively.
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6. Numerical solutions of the self force equations

equation gives the same radiation effects as the one obtained by the LL equation
if we take the radius of the charged sphere to be equal to 2.3 x1071. The effects
of radiation decrease with increasing radius of the charged sphere as one would
expect.

We have compared numerical schemes of different equations. The numerical
scheme, which is used to solved the LAD equation is weakly perturbative and
it makes the LAD equation a numerical version of the LL equation to some ex-
tent. Moreover, it requires extra steps to incorporate the radiation reaction, which
makes it costly. The Caldirola equation is a delay differential equation and its nu-
merical technique demands extra memory to save the entire history of the particle
motion to integrate the delay term. On the other hand the LL equation is highly
nonlinear in external fields and velocity and it is difficult to maintain second or-
der accuracy in its numerical solution. However, there is good agreement with
its analytical solution. Over all, we can say that the numerical solutions of three
self-force equations show that with the numerical techniques presented here the

LL equation is a good choice to use for large scale simulation.
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CHAPTER 7

Radiation reaction in a tightly focused laser beam

7.1. Introduction

The configuration of direct electron acceleration by a tightly focused laser beam is
shown in Figure 7.1. It is the same set up as considered in [63, 62, 64]. Most theo-
retical studies of electron acceleration use low-order Hermit-Gaussian modes [98].
We consider a x-polarized laser beam, which propagates along the Z-direction. The

transverse electric field component is given by

2

E.(z,y,z,t) = EL%exp(—wgi(z)) exp{—i(wt—kz—q/}G—1/)3—1/}0)},(7.1)

where E, is the amplitude of the laser field, w, is the beam radius at focus, w(z) =
wor/1 + (2/2)2, Zr = kw?/2 is the Rayleigh length with k = 27 /\p, r? = 22 + 42,
1, is the initial phase, ¢)g = kr?/2R is the phase associated with the curvature of
the wave fronts and ¢ = tan~!(z/z,) is the Guoy phase associated with the fact
that a Gaussian beam undergoes a total phase change of 7 as z changes from —oo

to 400, and Ay, is the laser wavelength [64].

The remaining electric and magnetic field components are given by the rela-

103



7. Radiation reaction in a tightly focused laser beam
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Figure 7.1.: Schematic diagram of the setup and the electron motion in the laser
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7.2. Governing equations

The dynamics of the electron will be described by the LL equation (i.e equation

3.12). Leading order terms of the LL equation for the field components given by

equations (7.1)-(7.3) can be written as

dug
dt

du,

dt

dy
dt

—ao(Ex — 1o /) + 102 (= BoBs + u:Bo B [y — ua 7y {(7% + w2) B2 +
(v2 = u2)E2 = 2yu. B2 + 2(7* — ), B, s} ), (7.4)
—ao(E: + ug By /7) + 103 ( B2 + e B B. [y — u. [y {y*(v* + u2) B2 +
(¥ = u2) B2 = 2y, B2 + 2y — w)us By Bo} ) (7.5)
—ao(up By — uB2) [y + 702 (77 + u2) B2 + (47 — u2) B2 — 2yu. B2

+2(y — u)umExE) (7.6)
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7.2. Governing equations

where a, = eEr/(mecwy,) is the normalized laser intensity, where wy, is the laser
frequency, 7, = 7T,wr, and @ = ~U is three vector momentum of electron. The
magnetic field component is only along the y-direction and has the value B, ~
E,/c. All quantities in equations (7.4) - (7.6) are normalized and have their usual
definitions, v is normalized by ¢, t by laser frequency wy,, and the length r by the
laser wavelength .

The analytical solution of the coupled equations (7.4) to (7.6) is almost impos-
sible, therefore, we solve them numerically for a single particle. The trajectories of

the electron are given by the relation
Fo= / v 7.7)

An electron, which is initially located at some distance from the focus of the beam,
is fired towards the beam axis near the focus, where it is captured by the transverse
electric field component and accelerated by the axial electric field. However, it can
also be reflected by the strong ponderomotive potential of the laser or it can be
transmitted depending on its initial parameters (initial energy, incident angel and
incident distance from the focus of the beam).

In our all examples that will be considered here, the electron starts from a
point (x,, 0, z,), which lies outside the boundaries of the beam and travels towards
a point located at a distance s from the focus on the axis of the beam. The bound-
aries of the beam in the xz-plane are represented by x = +w(z). These are not
the actual boundaries of the beam, however, it provides a good approximation
of the beam boundaries to understand the reflection, capture and transmission of
an electron by the laser beam. Strictly speaking the field intensity on the curves
x = +w(z) falls off to 1/e? of its maximum value on axis. Thus, an electron be-
yond these boundaries will be weakly affected by the fields of the beam [64]. An
electron will be considered as reflected if it crosses the lower boundary x = —w(z)
twice and if it crosses the boundary = = w(z) it will be considered as transmitted,

otherwise it is captured by the laser beam.
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Figure 7.2.: The motion of an electron in a focused laser pulse. (a) The energy v
versus laboratory time wy,t and (b) the trajectory in xz-plane. The elec-
tron travels with initial energy 7, = 130 from the initial coordinates
(xo = —(s — 2o) tanb,0, 2z, = —3)mm, and 0§ = 6° towards s = 0 from
the focus of the beam. The normalized laser intensity is a, = 100. The
solid blue and red dashed lines stand for the Lorentz and LL equations
respectively and black lines in (b) represent the boundaries of the laser

beam.

An electron gains maximum energy in a focused laser beam if it is captured
by the beam. Since we want to study the radiation effects, which are the signature

of relatively high energy, we will mainly discuss the capture case.

Let us consider the example of an electron, which is fired towards a point
located at the axis of the laser beam at a distance (s=0) from the focus of the beam
with initial coordinates, (z, = —(s — 2,) tan6,y, = 0,2z, = —3)mm. The incident
angle of the electron with the laser beam axis is § = 6°. The normalized laser
intensity is a, = 100 and the initial energy of the electron is 66.5 MeV. The electron
is captured by the laser field and accelerated to a final energy of 8.44 GeV after
traveling a total distance of about 67.22 mm as shown in Figure 7.2 (a). We have

chosen a relatively long total time to study the effects of emitted radiation. It

106



7.2. Governing equations

should be noted that the electron get most of its energy in a very short fraction of

time, which implies a high acceleration rate.

As stated earlier we have used the LL equation to study the self-radiation ef-
fects. The final energy predicted by the LL equation is about 6.5 GeV (red dashed
line in Figure 7.2 a), which is almost 2 GeV less than the energy gain shown by the
Lorentz equation (solid blue line in Figure 7.2 a). Remember that the LL equation
is derived by a perturbative expansion of the LAD equation assuming that the
radiation part is smaller than the applied Lorentz partie. F,.,q < Fr. The coef-
ficients of the Lorentz force and leading order terms of the LL equation give the
condition (3.35), which is the validity limit of the LL equation. For a normalized
laser intensity a, = 100 and v = 1000 the electron lies at the edge of the radiation
dominant regime predicted by the LL equation. For higher intensities the validity
of the LL equation shifts to even lower values of the electron energy. On the other
hand the energy gain and the acceleration of the electron is expected to increase

with increasing laser intensity.

In the last example, at the beginning, when the electron has small energy the
radiation force is smaller than the Lorentz force, however, as the energy of the
electron increases beyond v = 1000 the radiation force becomes greater than the
Lorentz force and hence the LL equation no longer valid. On the other hand, both,
high energy and violent acceleration of electrons demands the study of radiation

reaction.

To resolve this issue, let us return to the basic equation of a radiating electron,
the LAD equation, to estimate the radiation dominant regime and its effects. The

equation (1.36) can be written as

Yy
mei = Futmenn (i 5@ - 50 78)

where all the quantities have their usual definition and the dot is the derivative
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Figure 7.3.: (a) The radiation dominant regime predicted by the LAD equation,
energy < versus normalized laser intensity a,. (b) The energy ~ ver-
sus normalized laboratory time wyt. The electron travels with initial
energy 7, = 370 from initial coordinates (z, = —(s — z,) tan 6,0, z, =
—3)mm and 6 = 6° towards the point at distance s = 0.0003 m from
the focus of the beam. The normalized laser intensity a, = 500. The
solid blue and red dashed lines stand for the Lorentz and the LAD

equations.

with respect to the time ¢. In normalized units equation (7.8) can be written as

(ﬁ;y;“") )a), (7.9)

U = —ao(E+0x B)+ry(ii - (i -

where a, = eEr/(mecwr) and 7, = Towr. We have normalized i by ¢, 0 by ¢, ¢

with wy,, and E by E,. We can write equation (7.9) in component form as follows

ey
iLac - _ao(Eac - usz/’Y) + Tr")/(ﬁa: - (UQ - (ufy;l) >uac)7 (710)
= 9
= —ao(B t upBy/v) + 7y (it — (02— <u,ygu>“2) (7.11)
where we have considered only v, and v, as a simple case.

For convenience we represent the radiation terms in equation (7.10) and (7.11)
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Figure 7.4.: Electron motion with the LAD equation. (a) Normalized transverse
E,/E, and (b) longitudinal fields F./FE, of laser beam felt by the elec-
tron versus time wy,t. The initial parameters are the same as in Figure

7.3 (b).

as the radiation fields in their respective directions, which means

e = —ao(By —uBy/v) + (B3 — ET,), (7.12)
i = —ao(B. 4 upBy/v) + (B - B, ) (7.13)
with
Ered = 1y, EY =i, (7.14)
Ered — (z'ﬁ - W;E)Q). (7.15)

For the fields given by equation (7.1) - (7.3) equations (7.12) and (7.13) are solved
numerically. The numerical scheme is as follows: We will first numerically solve
the Lorentz equation for given external fields using Mathematica and hence esti-
mate the acceleration and the derivative of the acceleration of the electron. With
the help of the acceleration and the derivate of acceleration of an electron we will
calculate the radiation fields given by equations (7.14) and (7.15). Now we have

radiation fields along with external fields.
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7. Radiation reaction in a tightly focused laser beam

In the next step we will insert these fields in the LAD equation and solve it.
This is also a perturbative approach, however, it does not have the restrictions as
the ones with the LL equation. It is a kind of self-consistent perturbative approach.
If the acceleration provided by the Lorentz equation and by the LAD differs more
than one order of magnitude then this numerical solution can differ from the ana-
lytical solution of the LL equation. We will discuss this later.

We can estimate the radiation dominant regime by equation (7.9). The accel-
eration du/dt ~ 1 for laser intensities in the range of a, =100-500, therefore, the

leading order terms of radiation damping and the Lorentz force give

a6 ~ T (7.16)

v o~ 10%/a,, (7.17)

where we have assumed that for the highly relativistic electron v ~ w, and 4 is
much less as compared to the other terms of the radiation part of equation (7.9).
The LL equation predicts that for normalized laser intensity a, = 100 the radiation
damping becomes comparable to the acceleration provided by the Lorentz force
for v = 1000. However, condition 7.17 gives a higher value of v = 10° for radiation
damping to be comparable to the Lorentz force term. The maximum energy gain
of an electron in the laser beam of intensity a, = 100 is v = 16 500 by using the
Lorentz force as can be seen in Figure 7.2 (a), which is far less than the radiation
reaction dominant regime. If we increase the laser intensity the corresponding
minimum energy of the electron required to include radiation effects also grows
up as shown in Figure 7.3 (a).

Figure 7.3 (b) shows the energy gain of the electron with the normalized laser
intensity a, = 500. The electron is injected with initial energy v, = 370 from
initial coordinates (z, = —(s — z,) tan#,0, 2z, = —3)mm, and 6 = 6° towards the
point, which is at distance s = 0.0003 m from the focus of the beam. The electron is
captured by the laser beam and we obtain a final energy of v = 62000. We have not

noticed any difference in the energy gain with and without radiation reaction. The
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Figure 7.5.: Electron motion with the LAD equation. (a) The acceleration a, nor-
malized transverse radiation field E,,,; and normalized longitudinal
radiation field E,,,4 felt by the electron versus normalized laboratory
time wzt. The initial parameters of the electrons are the same as given
in Figure 7.3(b) and (b) The normalized transverse velocity v,, the
longitudinal velocity v./c and energy ~ versus normalized laboratory
time wrt. The electron is counter-propagating in the laser with initial
energy 7, = 1000 and a, = 100. The solid blue and red dashed lines
represent the analytical solution of LL equation and numerical solu-

tion of LAD equation respectively.
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7. Radiation reaction in a tightly focused laser beam

value of v is almost 2.24x 105 for the radiation damping to be effective whereas
the electron gains energy up to v = 6.2 x 10% in this case. The external laser
fields felt by an electron inside a focused laser beam of normalized laser intensity
a, = 500 are shown in Figure 7.4 while acceleration of the electron and radiation
fields felt by the electron are shown in Figure 7.5 (a). Although the radiation fields
are stronger, however, they are still much smaller than the electric fields of the
laser.

To test the authenticity of our approach used to solve the LAD equation we
have studied the case of a counter-propagating electron with initial v, = 1000 in a
linearly polarized laser pulse with normalized intensity a, = 100. The numerical
solution shows a good agreement with the analytical solution of the LL equation,
which clearly approves our approach. The results have been shown in Figure 7.5
(b). The solid blue line stands for the analytical solution of the LL equation and
the red dashed line represents the numerical solution of the coupled equations

7.12 and (7.13) respectively.

7.3. Summary of the chapter

In this chapter we have studied the radiation effects on the motion of an electron
in a focused laser beam. The dynamics of the electron is described by the LL and
the LAD equations. It is found that the LL equation is not suitable to study the
motion of an electron in a laser beam of high intensity because of its lower validity
limit. Using the LAD equation, it is found that the self-radiation effects are usually
unimportant for acceleration with the laser intensities up to a, = 500. It is due to
the fact that the energy gained by the electron for a given laser intensity is far less
than the corresponding energy of the electron required for the radiation effects
to be important. Therefore, the Lorentz force is a suitable candidate to study the
electron dynamics in the focused laser beam up to the normalized laser intensity

a, = 500. Moreover the critical energy (minimum electron energy required for the
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7.3. Summary of the chapter

radiation effects to be important) of the electron increases as ,/a, with increasing
laser intensity.

We have also verified our numerical approach of the LAD equation by com-
paring the motion of a counter-propagating electron in a linearly polarized laser
pulse, which shows good agreement with the analytical solution of the LL equa-

tion.
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CHAPTER 8

Conclusions

This work is mainly devoted to the theoretical and numerical investigation of radi-
ation effects on the motion of electrons in laser wakefield accelerators. The exper-
iments concerning electron acceleration are being conducted in many laboratories
around the world. GeV energy electron beams have been produced using laser
wakefield accelerators and efforts are being made to obtain TeV energy electron
beams. Different applications require electron beams with different properties,
however, there are some basic effects, which need to be studied before making
them available for medical or scientific purposes. High energy charged particle
beams radiate a large amount of energy, in particular in a laser wakefield due to
transverse betatron oscillations. This radiation affects the energy dependent prop-
erties of the charged particle beams, for example, mean energy, energy spread and
transverse emittance. Before conducting costly experiments one needs to first op-
timized the laser wakefield parameters to obtain good quality beams. This is our
main emphasis in this thesis: Design a high energy linear laser wakefield acceler-
ator and study the radiation effects of high energy electron beams in laser wake-

fields.
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8. Conclusions

8.1. 1 TeV energy linear wakefield electron accelerator

As discussed in Chapter 4 the dephasing length and energy gain per stage in-
creases in low density plasma and, therefore, a relatively high energy electron
beam can be obtained without going into the trouble of coupling and the com-
plexity of many stages in laser wakefield accelerator. Different parameters have
been optimized to generate a linear wakefield for different background plasma
densities. It is found that relatively high laser peak power is required to create
a linear laser wakefield for a plasma density n, = 10'® cm™3. However, the ac-
celerated beam charge and beam energy per stage are much higher than in the
high density plasma case. Therefore, both less number of stages and high bunch
charge make the plasma density of 10'® cm =3 suitable for experiments and practi-
cal applications where high charge electron bunches are required along with high
energy and small emittance. The comparison of different parameters correspond-

ing to different background plasma densities is given in Table 8.1

8.2. Retardation and radiation effects in strong external

fields

High energy charged particles radiate when they are accelerated. An electron can
be affected by two kinds of radiation, the first one is self-radiation and second
one is the radiation fields of other electrons called retarded fields. Self-radiation
of a relativistic electron counter-propagating to an intense laser pulse transfers
its energy from the longitudinal direction to the transverse direction. On the other
hand, retardation fields always have their polarization opposite to the polarization
of the applied laser pulse, therefore, they reduce the effect of the applied laser
pulse and hence the electron is less affected by its self-force.

In laser wakefields the electrons exhibit betatron oscillations due to the trans-

verse focusing force and this gives rise to betatron radiation. It is found that for

116



8.2. Retardation and radiation effects in strong external fields

Table 8.1.: Parameters for TeV scale linear laser plasma accelerator

Beam final energy E; (TeV) 1 1 1 1 1
Injection beam energy E; (GeV) 1 1 1 1 1
Plasma density n, (cm™?) 10'° 10'6 2.3x 10 10%7 10'8
Plasma wavelength A, (1)m 1056 334 220 106 33
Acceleration field E. (GV/m) 15 4.7 7.2 15 47
Energy gain per stage Wtage (GeV) 500 45 19 4.5 0.47
Number of stages Nstage 2 22 50 222 2125
Stage length Lstage (m) 333 9.7 2.8 0.3 0.01

Total linac length Liotar (Leoupr)m 1000 (167) 321 (49) 210 (1.4) 100 (0.15) 32 (0.005)
Total linac length Liotas (Leoupr)m 686 (10)  433(10) 640 (10) 2287 (10) 21271 (10)
Total linac length Liotai (Leoupr)m 668 (1) 235(1) 190 (1) 289 (1) 2146 (1)

Particles per bunch N (10%) 7.5 24 1.6 0.75 0.24
Initial emittance €,,, rad(um) 2068 646 432 209 54
Initial beam radius o4, (um) 168 53 35 17 5.3
Bunch length oy, (um) 4.1 1.3 0.9 04 0.13
Normalized laser intensity a, 14 14 14 14 1.4
Laser wavelength A, (1m) 1 1 1 1 1
Laser pulse duration 77, (fs) 950 300 200 100 30
Laser spot radius r, (pm) 504 160 105 51 16
Channel depth at r,An./n, 0.44 0.44 0.44 0.44 0.44
Laser peak power Pr, (TW) 10913 1091 474 109 11
Laser energy per stage UL (]) 10367 327 95 11 0.33

weak self radiation effects the transverse emittance of the beam can decrease, how-
ever, it increases for strong self-radiation effects. Moreover, we also studied retar-
dation effects (effects of radiation of one electron on other electrons in the system)
of an electron beam. It is found that for an electron bunch with a total charge in
the range of pC and with bunch length smaller than a ym the retardation effects
become essential. Retardation effects can increase the transverse emittance of an
electron beam. The retardation effects decrease with decreasing bunch charge and

transverse size and vice versa as discussed in Chapter 5. Thus it is concluded
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that in order to obtain a high energy electron beam with small transverse emit-
tance one must inject an electron bunch with smaller size as both, self radiation
and retardation effects are low for an electron beam with smaller initial transverse

size.

8.3. Numerical simulation of self force equations

In Chapter 6 the numerical recipes for the Lorentz-Abraham-Dirac (LAD) equa-
tion, the Landau-Lifshitz (LL) equation, and the Caldirola equation are discussed.
A numerical solver for the self force equation has to be implemented in the large
scale computing code (e.g., the Plasma Simulation Code) to study the radiation
effects in laser plasma interaction and also to study the motion of high energy
electron beams in laser based plasma wakefield accelerators. We have discussed
numerical solutions of these three equations, but the LL equation appears to be
most appropriate candidate to use for large scale simulations because the results
of the numerical simulation of the LL equation are in good agreement with its
analytical solution. The Caldirola equation is not suitable because one needs to
calculate the delay term from the history of the electron motion, which requires
a lot of memory storage. The numerical solver of the LAD equation needs some

extra steps to integrate the radiation terms, which makes it costly.
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APPENDIX A

Linearly polarized plane wave

Trajectories of P, for a linearly polarized plane wave
1073
54432k2
—194400a, (1 4+ A)%¢ + 24a,n> A(163056 + 168311A)¢ — 7200727 (—36 + a2 (—18 + A(—54 + 16917 + 6(—6 + 551%)A))

2 5 4

2P (r) = (210(2592001@3% +207360a2 757 A% + 259200027473 A(1 + 2A) + o203 A(2235617 + 12234456A)

+6a,nA(16 + 41A)¢ 4 18A(1 + A)¢?) + 1800m(72 — 9a2(1 4+ A)(11 + 40A) + 581A(1 4+ A)n?) — 96007°n% (a2 (-9
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A. Linearly polarized plane wave

1
(2700k,)

+150(18k,x, + (127nA — 1872nA + 187(1 4+ A))C) + 450(an(6(1 + A)
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+1(=16TnA + 2472nA + 127(1 4 2A))) — 45nAQ) cos(T) + 450nA(4a,n + 3¢) cos(27)
—25nA(17a,n + 6¢) cos(37) — 9a,n? A cos(57) — 1350(aen(7 + 16(1 + 271)A)

+2(1 + A+ 2mA)¢) sin(7) + 150a,n sin(37)). (A.2)

t=71+22 (A.3)
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APPENDIX B

Circularly polarized plane wave

Trajectories of P for a circularly polarized plane wave

23 = (601k§) (6@375773]\2 + 1502743 A (1 4 2A) + 3072106 (1 + a2(1 + A(2 + 202 (—1
+A) + A))) + 60(k2z0 + aZno(1 + A2 + A+ 202 (=1 + 8A)))) + 107°n2(1 + a2(1
+A(6 + TA + 2n2A)) + 4a,meA%C + 2A%¢%) + 307(1 — k2 + 2a2(n2(—1 + A)? + 1603 A2
H(1+ D)%) + 4aono(1+ A2+ A+ 872 A))¢ + 2(1 + A2+ A + 473 A))¢?) — 601, (a2 (1
—T1o + 28 — 200 (T + no) A + (1 + 16(1670 + 7(=T — 7716 + (=36 + 7°)12)))A?)
FaoT(—1 4+ A(=2 + (=1 + (=34 + 7)n2)A))¢ — 671, A%¢?) cos(T) + 60(aZ(—1

—o(T 4 215) = 2A + 2715 (=1 + n2)A + (=1 — 0o + (=8 + 7302 + 7(=16 + 72)1?
4+2(=26 + 572)n2)A?) + aono(—3 + A(—6 + (=3 + (=50 + 972)

15)A))C+ (=14 A(=2+ (=1 + (=10 + 7%)15)A))¢?) Sin(T)), (B.1)
y? = 7(2]10) (Qkoyo + ao(=2(1 + A) + 7o(1876A — 72n,A + 7(2 4 6A))) + (610A — 727, A
+27(1 4+ A))C + 2(ao(1 + A+ 7o(7 + 27A — INoA + 72n,A))

—3noAQ) cos(T) — 2(aono(2 + 5A + 51noA) + (1 + A + m1o,A)() sin(7), (B.2)
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B. Circularly polarized plane wave

) — (27110)(214:0330 —2a, (T 4+ 210) + ao(—=10n, + 7(=2 4+ 1o (7 + 81) ) ) A — 2¢
FO(=1 + 2710)AC + 2(a0lo(2 + BA + 57) + (1 + A + 71,A)C) cos(r)
+2(ao(1 4+ A + 0o (T + 27A — 9o A + 721,A)) — 31,AC) sin(T)) . (B.3)

t=r1+23 (B.4)
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