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D7.4 10-[N,Ń ´-Bis(1-hexylheptyl)-N´-(4-phenylbenzyl)benzo[ghi]perylen-

1´,2´:3,4:9,10-tris(dicarboximid]-5,15-bis(2,6-dichlorophenyl)corrol (106)....... 296 



INHALTSVERZEICHNIS                                                                                                                  IX                                                                                                                                                                                   

D7.5  10-[2,11-Bis(1-hexylheptyl)-5-(4-phenyl)imidazolo-[4',5':3,4]anthra[2,1,9-

def:6,5,10-d'e'f']diisochinolin-1,3,10,12(2H,11H)-tetraon]-5,15-bis-(2,6-di- 

chlorophenyl)corrol (109) .................................................................................... 298 

D8 Funktionalisierte Perylenmonoimidfarbstoffe......................................................... 300 

D8.1 N-[4-(1,3-Dioxolan-2-yl)benzyl]perylen-3,4-dicarboximid (110) ....................... 300 

D8.1.1  Synthese in Chinolin ..................................................................................... 300 

D8.1.2  Synthese in Imidazol ..................................................................................... 300 

D8.2 N-(4-Formylbenzyl)perylen-3,4-dicarboximid (111)........................................... 302 

D8.2.1  Synthese in Chinolin ..................................................................................... 302 

D8.2.2  Synthese in Imidazol ..................................................................................... 302 

D8.2.3  Synthese durch säurekatalysierte Hydrolyse................................................. 303 

D8.3 N-{[4-(1,3-Dioxolan-2-yl)phenyl]benzyl}perylen-3,4-dicarboximid  (112) ....... 305 

D8.3.1  Synthese in Chinolin ..................................................................................... 305 

D8.3.2  Synthese in Imidazol ..................................................................................... 305 

D8.4 N-[(4-Formylphenyl)benzyl]perylen-3,4-dicarboximid (113) ............................. 307 

D8.5 N-(4-Phenyliminomethylbenzyl)perylen-3,4-dicarboximid (114) ....................... 309 

D8.6 N-(Phenyliminomethylphenylbenzyl)perylen-3,4-dicarboximid (115) ............... 310 

D8.7 N-(4-Butyliminomethylbenzyl)perylen-3,4-dicarboximid (116) ......................... 312 

D8.8 N-(4-Butyliminomethylphenylbenzyl)perylen-3,4-dicarboximid (117) .............. 313 

D8.9 N-[4-(4´-Carboxyphenyl)iminomethylbenzyl]perylen-3,4-dicarboximid (118) .. 315 

D8.10  N-[4-(4´-Carboxyphenyl)iminomethylphenylbenzyl]perylen-3,4-dicarbox-       

imid (119) ............................................................................................................. 317 

D9 Fluoreszenzmarkierung von Katalase...................................................................... 319 

D9.1 Fluoreszenzmarkierung von Katalase mit 103...................................................... 319 

D9.2 Fluoreszenzmarkierung von Katalase mit 105...................................................... 319 

D9.3 Fluoreszenzmarkierung von Katalase mit 7 .......................................................... 320 

D9.4 Fluoreszenzmarkierung von Katalase mit 72........................................................ 320 

D9.5 Fluoreszenzmarkierung von Katalase mit 21........................................................ 321 

D9.6 Fluoreszenzmarkierung von Katalase mit 24........................................................ 321 

D9.7 Fluoreszenzmarkierung von Katalase mit 12........................................................ 321 

D9.8 Versuch der Fluoreszenzmarkierung von Katalase mit 4...................................... 322 

D9.9 Fluoreszenzmarkierung von Katalase mit 111...................................................... 322 

D9.10  Fluoreszenzmarkierung von Katalase mit 113.................................................... 322 

D9.11 Fluoreszenzmarkierung von Katalase in verschiedenen Lösungsmitteln............ 323 



INHALTSVERZEICHNIS                                                                                                                  X                                                                                                                                                                                   

D9.11.1 Allgemeine Arbeitsvorschrift zur Umsetzung chromophorer Systeme mit           

Katalase (AAV)……………………………………………………………323 

D9.11.2 Markierung von Katalase unter Erhalt der Enzymatischen Funktion .......... 323 

D9.11.3 Markierung von Katalase unter Verlust der Enzymatischen Funktion ........ 323 

D9.11.4 Markierungversuche von Katalase unter Erhalt der Enzymatischen     

Funktion ......................................................................................................... 324 

D10 Funktionalierte Perylenbisimide............................................................................. 325 

D10.1 N,N´-Bis-[4-(1,3-dioxolan-2-yl)benzyl]perylen-3,4,9,10-bis(dicarboximid)      

(121) ..................................................................................................................... 325 

D10.2  N,N´-Bis-(4-formylbenzyl)perylen-3,4,9,10-bis(dicarboximid) (122)................ 326 

D10.3  2-(1-Hexylheptyl)-imidazo[2,1-a]anthra[2,1,9-def:6,5,10- d'e'f']diisochinolin-

1,3,8(2H)-trion (123)............................................................................................ 328 

D10.4  N2,N3-[Bis(1-hexylheptyl)benzo[ghi]perylen-2,3:8,9:11,12-hexacarboxyl-

2,3:8,9:11,12-tris(dicarboximid)]-N1,N1´-(1,2-ethyl)-[N2´-(1-hexylheptyl)perylen- 

3,4:9,10-bis(dicarboximid) (125) ......................................................................... 329 

D10.5  N-(1-Hexylheptyl)-N´-[4-formylbenzyl]perylen-3,4,9,10-bis(dicarboximid)     

(126) ..................................................................................................................... 331 

E Anhang............................................................................................................................ 333 

E1 Nomenklatur der Perylen- bzw. Benzoperylenfarbstoffe........................................ 333 

E2 Abkürzungen und Akronyme .................................................................................... 334 

E3 Abbildungsverzeichnis................................................................................................ 336 

E4 Lebenslauf.................................................................................................................... 344 

E5 Literaturverzeichnis .................................................................................................... 346 

 

 

 



ALLGEMEINER TEIL                                                                                                                                                        1                                                                                                                                                         

A Allgemeiner Teil 

 

A1 Einleitung 

 

Aufgrund der Tatsache, dass viele Informationen auf optischem Wege kommuniziert werden, 

sind Farbmittel für fast alle Lebewesen von zentraler Bedeutung bei der Wahrnehmung ihrer 

Umwelt. Das beginnt bei den intensiv grün und braun gefärbten Wäldern und Wiesen, geht 

über blautürkis glänzende Seen und Meere, die grelle schwarz-gelbe Signalfarbe von Bienen 

bis hin zu den hellen und bunten Farbtönen moderner menschlicher Kleidung und 

Gebrauchsgegenstände. Daher verwundert es nicht, dass die Geschichte der Menschheit eng 

mit der Geschichte der Farbmittel verknüpft ist. Farbmittel ist der Überbegriff für alle 

farbgebenden Stoffe. Man unterteilt sie in Farbstoffe und Farbpigmente. Während Farbstoffe 

in ihrem Anwendungsmedium löslich sind, werden unlösliche Farbmittel als Farbpigmente 

bezeichnet.[1] Schon vor Jahrtausenden benutzten wir Menschen Farbpigmente zur Höhlen- 

malerei. So waren die  Ägypter schon vor mehr als 4000 Jahren im Stande, ihre Textilien 

durch Verküpung von Indigo zu färben. Weitere bereits im Altertum bekannte Farbmittel sind 

unter anderem Alizarin, Kermes, Purpur oder Lackmus. Im Laufe der Jahrhunderte entdeckten 

die Menschen, dass der Anwendungsbereich von Farbstoffen und Farbpigmenten weit über 

die klassischen ästhetischen Verwendungen in Malerei, Kosmetik und Textil- bzw. 

Lebensmittelfärbung hinausgeht. So wurden im 19. und 20. Jahrhunderts biologisch und 

biochemisch bedeutende Farbstoffklassen wie beispielsweise Chlorophylle, Carotinoide und 

Hämoglobine entdeckt und strukturell aufgeklärt.[2,3,4] Ein Großteil der Naturfarbstoffe wird 

heutzutage durch synthetische Farbstoffe ersetzt. So finden synthetische Farbstoffe eine breite 

technische Anwendung. Beispiele hierfür sind unter anderem die Verwendung in optischen 

Datenspeichern, Flüssigkristallanzeigen, Solarfluoreszenzkollektoren, als Emittermoleküle in 

der Lasertechnologie sowie als Fluoreszenzmarker in der Medizin. Für die zuletzt genannte 

Anwendung ist neben der reinen Farbgebung des Chromophors vor allem seine Funktionalität 

von Bedeutung. Derartige Verbindungen werden daher auch als funktionelle Farbstoffe 

bezeichnet.[5] Auch in der Natur lassen sich derartige Farbstoffe wiederfinden. So besitzt der 

grüne Blattfarbstoff Chlorophyll als Ort der Photosynthese die Eigenschaft, aus energiearmen, 

anorganischen Verbindungen energiereiche Kohlenhydrate wie Glukose herzustellen.[6] Unter 

den synthetischen Farbstoffen erwiesen sich die im Rahmen dieser Arbeit behandelten 

Perylenfarbstoffe als hervorragende Vertreter funktioneller Farbstoffe.   
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A.1.1  Perylenfarbstoffe 

Die von M. Kardos entdeckten Perylenfarbstoffe[7] weisen eine Vielzahl charakteristischer 

Eigenschaften auf, die sie für den Einsatz als funktionelle Farbstoffe prädestinieren. So 

besitzen sie neben sehr hohen Absorptionskoeffizienten und Fluoreszenzquantenausbeuten 

eine enorme Photostabilität, sind in den gängigen organischen Lösungsmitteln beständig und 

in den meisten Fällen zudem auch noch toxikologisch unbedenklich.[8] Wichtige Vertreter 

derartiger Farbstoffe stellen die Perylenbis- bzw. Perylenmonoimide dar. Die Perylenbisimide 

1 wurden 1913 von M. Kardos, die Perylenmonoimide 3 1926 von  W. Neugebauer[9] entdeckt 

(siehe Abbildung 1).  

 

 

 
 

 

 

 

 

Abb. 1: Allgemeine Struktur der Perylenbisimide 1, Perylenmonoimidmonoanhydride 2, Perylen-3,4-

dicarbonsäureanhydrid (3) und der Perylenmomoimide (4). 

 

Anfänglich wurden Perylenimide aufgrund ihrer Schwerlöslichkeit vor allem als 

Farbpigmente eingesetzt.  Die starke Fluoreszenz der  Perylenbisimide 1 wurde erst Ende der 

1950er Jahre von Remy und Geissler entdeckt.[10] und es dauerte noch weitere zwei Jahrzehnte 

bis es Langhals gelang durch das Einführen sterisch sehr anspruchsvoller Reste R die 

Löslichkeit signifikant zu steigern.[11] Erst Anfang der 1990er Jahre fand Feiler einen 

Synthesewege zur Darstellung löslicher Perylenmonoimide 3 in guten Ausbeuten.[12] Dabei 

sind diese wahlweise ausgehend von Perylen-3,4-dicarbonsäureanhydrid (4) durch 

Kondensation entsprechender primärer Amine oder durch Decarboxylierung von 

Perylenmonoimidmonoanhydriden 2 zugänglich. Ebenso wie die Perylenbisimide sind auch 

Perylenmonoimide starke Fluorophore, welche abgesehen von den im Vergleich zu den 

Perylenbisimiden niedrigeren Absorptionskoeffizienten sämtliche für funktionelle Farbstoffe 

nötigen Anforderungen erfüllen. Aufgrund der Tatsache, dass die Stickstoffe der jeweiligen 

Imidfunktionalitäten sowohl im HOMO als auch im LUMO einen Orbitalknoten aufweisen, 

kann man durch gezielte Wahl der Reste R die physikalischen Eigenschaften der 

Verbindungen variieren, ohne dabei die Absorption und damit die Farbigkeit des 

Chromophors zu verändern. So erwiesen sich langkettige sec-Alkylgruppen als besonders 
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fördend für die Löslichkeit in organischen Lösungsmitteln. Des Weiteren lassen sich durch 

die geeignete Wahl der Reste R die Aggregationstendenz sowie die Photostabilität 

steuern.[13,14,15] Will man nun die Absorption des Chromophors verändern, so kann man dies 

durch geschickte Wahl der Reste R´ am Perylenkern erreichen. Eine interessante Möglichkeit 

zur Variation des Farbeindrucks, bietet die im Folgenden näher betrachtete Kernerweiterung 

des Perylengrundkörpers zu den so genannten  Benzoperylenfarbstoffen.   

 

A.1.2 Benzoperylenfarbstoffe 

Die ersten derartig kernerweiterten Perylenimide sind die 2000 von Kirner[16]  entwickelten 

Benzo[ghi]perylentrisimide 5 (siehe Abbildung 2 links). Dabei handelt es sich formal um eine 

Kernerweiterung des aromatischen Systems durch die Einführung einer C=C-Brücke.  

 

 

 

 

 

 

 

 

 

 

Abb. 2: Allgemeine Struktur der Benzo[ghi]perylentrisimide 5 und Benzo[ghi]perylenbisimide 6. 

 

Dadurch kommt es zu einer hypsochromen Verschiebung der Absorption im Vergleich zu den 

entsprechenden Perylenbisimiden. Die Ursache hierfür liegt in der starken Lokalisierung der 

Doppelbindung in den beiden in Abbildung 2 mit B bezeichneten Ringen. Lediglich die π-

Bindungen in den mit A und C bezeichneten Ringen bilden Elektronensextette. Dadurch 

erhält man für das gesamte Molekül eine gegenüber den entsprechenden Perylenbisimiden 

reduzierte Elektronenbeweglichkeit und somit eine hypsochrome Verschiebung der 

Absorptions- und Emissionsmaxima.[16] Diese beträgt ca. 60 nm bezogen auf die 

entsprechenden Perylenbisimiden, so dass die Verbindungen gelb bis orange erscheinen. 

Analog zu den Perylenbisimiden sind auch Benzoperylenfarbstoffe sehr lichtecht, in den 

gängigen organischen Lösungsmiteln löslich und in den meisten Fällen nicht toxisch.[11,13,14] 

Da sie ebenfalls stark fluoreszieren, erfüllen auch  sie die für funktionelle Farbstoffe 
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notwendigen Voraussetzungen.[5] Analoge kernerweiterte Reaktionen von Perylen- 

monoimiden zu Benzo[ghi]perylenbisimiden 6 (siehe Abbildung 2 rechts) sind bisher nicht 

bekannt, stellen aber eine sowohl aus synthetischer als auch photophysikalischer Sicht eine 

äußerst interessante Farbstoffklasse dar.  

 

A.1.4 Lumineszenz 

Unter Lumineszenz (lat. lumen = Licht) versteht man die durch den Übergang eines 

angeregten elektronischen Zustands in den elektronischen Grundzustand emittierte optische 

Strahlung eines chromophoren Systems.[17] Die Art der Anregung kann vielfältiger Natur sein. 

Bei der Chemolumineszenz erfolgt die Anregung mittels chemischer Reaktionen, wie 

beispielsweise bei dem in der Kriminaltechnik eingesetzen Blutnachweis mit Hilfe von 

Luminol. Sehr ähnlich verhält es sich bei der Biolumineszenz, mit dem Unterschied, dass 

hierbei die chemischen Reaktionen in lebenden Organismen ablaufen. Stellvertretend hierfür 

sei das Leuchten des Leuchtkäfers durch Oxidation von Luciferin erwähnt. Die Anregung 

durch elektrischen Strom bezeichnet man als Elektrolumineszenz. Diese findet in organischen 

und anorganischen Leuchtdioden bereits technische Anwendung.[18] Bei der in dieser Arbeit 

auftretende Photolumineszenz werden die chromophoren Systeme durch Photonen angeregt. 

Nach Anregung durch Lichtabsorption in einen elektronisch angeregten Zustand stehen einem 

zur Lumineszenz befähigten  chromophoren System prinzipiell zwei Relaxationsprozesse zur 

Verfügung, um wieder in den elektronischen Grundzustand zu gelangen. Dabei unterscheidet 

man je nach Zeitspanne der Lichtemission zwischen Fluoreszenz und Phosphoreszenz. In 

beiden Fällen erfolgt zunächst die Anregung aus dem Schwingungsgrundzustand des 

elektronischen Grundzustands in verschiedene Schwingungszustände elektronisch angeregter 

Zuständ S1. (Prozess 1 in Abbildung 3). Die Relaxation in den Schwingungsgrundzustand des 

elektronisch angeregten Zuständ S1 erfolgt als strahlungsloser Thermalisierungsprozess und 

wird als internal conversion bezeichnet. (Prozess 2 in Abbildung 3) Im Anschluss daran 

emittiert der Chromphor im Falle der Fluoreszenz zurück in die verschiedenen 

Schwingungszustände des elektronischen Grundzustands S0. (Prozess 3 in Abbildung 3). 

Während sich bei den Abläufen der Fluoreszenz die Gesamtspinquantenzahl nicht ändert, 

kommt es bei der Phosphoreszenz zu einer Änderung der Gesamtspinquantenzahl. Dieser  als 

intersystem crossing (ISC) bezeichnete Singulett-Triplett-Übergang ist gemäß der 

Spinauswahlregel eigentlich verboten. Jedoch überlagern sich im Regelfall die 

Potentialkurven des S1-Zustands und des energetisch niedrigsten Triplettzustands T1, was 

einen Übergang ohne Änderung der Kernkoordinaten ermöglicht. Die notwendige Änderung 
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des Gesamtspins wird durch die Spin-Bahn-Kopplung ermöglicht, wodurch stets eine gewisse 

Wahrscheinlichkeit für einen Wechsel der Spinkonfiguration besteht. (Prozess 4 in Abbildung 

3). Nach erneuter internal conversion in den Schwingungsgrundzustand des Triplettzustands 

T1 (Prozess 5 in Abbildung 3) folgt die finale Relaxation in den elektronischen  Grundzustand 

S0. (Prozess 6 in Abbildung 3). Auch  dieser zweite Singulett-Triplett-Übergang ist eigentlich 

verboten und erfolgt aus den bereits erläuterten Gründen. Aufgrund der Singulett-Triplett-

Übergange ist die Lebensdauer der Phosphoreszenz mit 10-4 bis 102 Sekunden deutlich länger 

als die entsprechende Fluoreszenzlebensdauern (ca. 10-8 s).[19] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Abb. 3: Jablonski-Termschema eines chromophoren Systems mit den Potentialkurven zu den Singulettzuständen 

S0 und S1 bzw. des Triplettzustands T1. 
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A.1.3 Phosphoreszenz- und Fluoreszenzmarkierung 

Ist die Fähigkeit eines Farbstoffs gefragt, auch nach Bestrahlung mit Licht noch länger im 

Dunkeln zu leuchten, sind Farbstoffe mit hoher Phosphoreszenzlebensdauer die Substanzen 

der Wahl. Beispiele für phosphoreszierende Materialien sind neben anorganischen Mineralien 

wie Calcit[20] auch organische Farbstoffe wie Eosin, Bengalrosa und Porphyrine.[21] 

Industrielle Anwendung finden phosphoreszierende Materialien in der Sicherheitstechnik 

(z.B. Markierung von Notausgängen, Banknoten),[22] als Leuchtzeiger in Uhren, zur 

Lichtschaltermarkierung und als phosphoreszierende Briefmarken in der Philatelie.[23]  

Die Anwendung von Farbstoffen zur Fluoreszenzmarkierung ist vor allem in der Medizin und 

der Biochemie von enormer Bedeutung. So lässt sich z. B. die Bewegung von Escherichia 

coli Bakterien mittels Fluoreszenzmarkierung sehr einfach fluoreszenzmikroskopisch 

verfolgen.[24] Ein aktueller Forschungserfolg ist die Fluoreszenzmarkierung  des pathogenen 

Dengue-Virus mit einem speziell funktionaliesierten Fluoreszenzfarbstoff.[25] Dadurch konn- 

ten wertvolle Informationen über die pathogene Wirkung des Virus durch Visualisierung der 

Virus-Zell Interaktionen zu verschiedenen Zeitpunkten der Pathogenese erhalten werden. Erst 

kürzlich gelang es chinesischen Forschern, aus - durch Thrombozyten verstopften - 

Blutgefäßen, Blutplasma zu isolieren und hieraus mittels Gelelektrophorese und 

anschließender Fluoreszenzmarkierung die Proteinzusammensetzung des erkrankten Plasmas 

zu erhalten.[26]  Dadurch konnten wesentliche Informationen über die Eigenschaften zukünftig 

zu entwickelnder Medikamente gewonnen werden. Die erwähnten Beispiele zeigen 

eindrucks- voll, welche Anforderungen ein zur Fluoreszenzmarkierung von Biomolekülen 

geeigneter Fluoreszenzfarbstoff zu erfüllen hat. Von großer Bedeutung ist hierbei neben der 

chemischen Beständigkeit, vor allem die hohe Lichtechtheit als Grundvoraussetzung für eine 

optimale Detektion der markierten Substanzen. Des Weiteren muss der Fluoreszenzfarbstoff 

eine, gegenüber der zu markierenden Spezies, reaktive funktionelle Gruppe besitzen, welche 

eine Verknüpfung zwischen Fluorophor und Zielmolekül erst ermöglicht. Sowohl 

funktionalisierte Perylenbisimide als auch Benzoperylentrisimide erwiesen sich bereits als gut 

geeignet zur Fluoreszenzmarkierung von Substanzen mit diversen funktionellen 

Gruppen.[27,28] Auch die strukturell eng verwandten Farbstoffklasse der Benzoperylenbisimide 

erscheinen daher sehr erfolgsversprechend für eine Anwendung im Bereich der 

Fluoreszenzmarkierung biologisch relevanter Verbindungen. Hierfür sind Benzoperylen- 

farbstoffe notwendig, welche an dem in Abbildung 2 als R´´ bezeichneten Rest reaktive 

funktionelle Gruppen tragen. Als funktionelle Gruppen eignen sich je nach zu markierenden 

Target beispielsweise Aldehyde, Carbonsäuren, Alkohole und Amine.  
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A.1.5 Förster-Resonanzenergietransfer  

Die Theorie des Förster-Resonanzenergietransfers (FRET) beschreibt den strahlungsfreien 

Energietransfer zwischen zwei Chromophoren. Dieses Phänomen wurde erstmals 1946 von T. 

Förster beschrieben.[29] Mit FRET können intermolekulare Abstände zwischen zwei 

Chromophoren von ca. 0.5 - 10 nm genau bestimmt werden.[30] Als optisches Nanometermaß 

fand der  Resonanzenergietransfer bereits in vielen biochemischen und zellbiologischen 

Studien Anwendung.[31] Auch die Natur findet ein derartiger Energietransfer statt. So ist der 

Förster-Resonanzenergietransfer gemeinsam mit dem Dexter-Energietransfer für die Funktion 

des Lichtsammelkomplexes bei der Photosynthese verantwortlich.[32] Um FRET beobachten 

zu können, ist ein System aus zwei Chromophoren notwendig, welche optimalerweise einen 

Abstand im einstelligen Nanometerbereich haben sollten. Dabei wird ein hypsochrom 

absorbierender Donorfarbstoff mittels elektromagnetischer Strahlung in einen elektronisch 

angeregten Zustand gebracht. Durch thermische Relaxation an die Umgebung erreicht der 

Donor den Schwingungsgrundzustand des elektronisch angeregten Zustandes. Von diesem 

Zustand ausgehend erfolgt über Dipol-Dipol-Wechselwirkungen der Energietransfer zu einem 

bathochrom absorbierenden Akzeptorfarbstoff. Sobald der Akzeptor den Schwingungs- 

grundzustand des elektronisch angeregten Zustandes über thermische Relaxation erreicht, 

kann die restliche Energie als Fluoreszenzlicht abgegeben werden. Ob und mit welcher 

Effizient ein Förster-Energietransfer stattfindet hängt von verschieden Faktoren ab. Die 

Effizienz E des Energieübertags wird durch Gleichung (I) angegeben. 

 

                                                                    kT 

                                                      E =    ___________                                                                                                       (I) 
                                                                kT + knr 
                                                      

 

Die Geschwindigkeitskonstante für die strahlungslose Desaktivierung des elektronischen 

angeregten Zustands des Donors ist durch knr gegeben, während kT die Förster-

Energietransferrate darstellt. Je kleiner das Verhältnis knr/kT ist desto höher ist die FRET-

Effizienz. Die Förster-Energietransferrate wird von mehreren Faktoren beeinflusst: 

 

                                                       1000 (ln10) κ2 J ΦD 
                                            kT =    __________________________                                                                                      (II) 
                                                          128 π2 NA τD R6                                         
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Die Fluoreszenzlebenszeit des Donorfarbstoffes ist mit τD gegeben. Der Abstand zwischen 

den Mittelpunkten der Übergangsdipolmomente der beiden Chromophore ist in Gleichung (II) 

durch R berücksichtigt. Die Förster-Energietransferrate ist indirekt proportional zur sechsten 

Potenz dieses Abstandes. Folglich haben schon sehr geringe Abstandsänderungen einen 

erheblichen Einfluss auf die FRET-Effizienz. Neuere Untersuchungen haben allerdings 

gezeigt, dass sich die Abstandsabhängigkeit anders verhält als sie in der klassischen Formel 

angenommen wird.[33,34] Das Überlappungsintegral J gibt die Stärke des Überlapps zwischen 

Emissionsspektrum des Donors und Absorptionsspektrum des Akzeptors an. Damit überhaupt 

ein Förster-Energietransfer stattfinden kann, ist es notwendig, dass beide Spektren 

überlappen. Je größer dieser Überlapp und die Fluoreszenzquantenausbeute ΦD des Donors 

ist, desto höher fällt kT und damit die Effizienz des Förster-Energietransfers aus. Neben den 

genannten Faktoren hat auch die relative Orientierung der elektronischen Übergangsdipol- 

monmente der beiden Chromophore zueinander einen Einfluss auf kT (siehe Abbildung 4). 

 

 

 

Abb. 4: Mögliche Orientierungen der dipolaren Übergangsmomente in einem bichromophoren System.[35] 

 

Die Orientierung der Momente ist mit κ2 in Gleichung (II) berücksichtigt und wird durch 

folgende Gleichung gegeben: 

 

                                               κ2 = (cosθΤ − 3cosθD cosθA)2                                                                            (III)  

       

 

Bei paralleler Ausrichtung beider Chromophore zueinander ist die FRET-Effizienz maximal. 

Für frei bewegliche Farbstoffe wird ein über alle möglichen Orientierungen gemittelter Wert 

von  κ2 = 2/3 angenommen. Nach der klassischen Förster-Theorie sollte bei orthogonaler 

Ausrichtung kein Energietransfer stattfinden. Allerdings wurde kürzlich gezeigt, dass schon 

kleinste Schwingungen - welche die Orthogonalität kurzfristig aufheben - ausreichend sind, 

um FRET mit sehr hoher Effizienz zu erzeugen.[33,36] 
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A.2 Motivation und Zielsetzung 

 

Aufgrund der vorstehend erläuterten Sachverhalte sollen im Rahmen dieser Arbeit folgende 

Themenkomplexe untersucht werden:  

 

 

� Synthese eines angularen Benzoperylenmonoimidmonoanhydrids sowie angularer 

Benzoperylenbisimide und deren photophysikalische und elektrochemische 

Untersuchung.  

 

� Synthese von mit aromatischen Aldehyden funktionalisierten, angularen 

Benzoperylenbisimiden sowie deren Umsetzung mit diversen primären Aminen zu 

den entsprechenden Iminen.  

 

� Fluoreszenzmarkierung des Enzyms Katalase mit diversen Perylenfarbstoffen 

sowie Optimierung der Reaktionsbedingungen der Markierungsreaktion. 

 

� Synthese cyclischer Amidine auf Basis angularer Benzoperylenbisimide.  

 

� Synthese kernsubstituierter Benzoperylenmonoimidmonoanhydride. 

 

� Synthese von Bichromophoren auf Basis von Benzoperylenbisimiden. Diese sollen 

bezüglich ihrer optischen Eigenschaften, insbesonders auf Resonanzenergie- 

transferprozesse untersucht werden. 

 

� Synthese bichromophorer Systemen mit kernsubstituierter Benzoperylenbisimiden. 

 

� Bichromophore Systeme von Corrolen mit Benzoperylenbis- und trisimiden sowie 

mit lateral heterocyclisch erweiterten Perylenbisimiden. 

 

� Synthese von mit aromatischen Aldehyden funktionalisierten Perylenmono- 

imiden sowie deren Umsetzung mit diversen primären Aminen zu den 

entsprechenden Iminen.  
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� Alternative Synthesewege zur Darstellung von Perylenbisimiden bzw. deren Bi- 

chromophore. 

 

� Untersuchung der Möglichkeit der Darstellung von Benzoterrylenderivaten 

ausgehend von angularen Benzoperylenmonoimidmonoanhydriden bzw. Benzo- 

perylenbisimiden. 
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B Theoretischer Teil 
 

B1 Angulare Benzoperylenbisimide 

 

B1.1 Literaturbekannte Benzoperylenimide 

Bisher sind in der Literatur nur die von Kirner[37] entwickelten Benzo[ghi]perylentrisimide 5 

bekannt (vgl. S.3). Deren chemische und physikalische Eigenschaften sind weitestgehend 

erforscht. So lassen diese sich ausgehend von Benzo[ghi]perylenbisimidmonoanhydrid 7 

durch Kondensationsreaktionen mit primären Aminen darstellen. Bi- bzw. multichromophore 

Systeme sind ebenfalls bezüglich photophysikalischer Effekte gut untersucht und entweder 

via Kondensation, nucleophile Substitution oder über metallorganische Kupplungsreaktionen 

zugänglich.[38] Im Gegensatz dazu ist von den Benzo[ghi]perylenbisimiden lediglich das 

bezüglich der Imidfunktionalitäten lineare N,N´-Bis(1-hexylheptyl)benzo[ghi]perylen-

3,4:9,10-bis(dicarboximid) (8)[16] bekannt. Des Weiteren ist noch das Benzo[ghi]perylen- 

monoimid 9 in der Literatur beschrieben.[39] Jedoch besitzt weder das Benzoperylenbisimid 8 

noch das Monoimid 9 die  für weitere Umsetzung notwendigen Funktionalitäten. Das lineare 

Bisimid unterscheidet sich zudem UV/Vis-spektroskopisch nicht nennenswert von den 

Benzo[ghi]perylentrisimiden 5. Ein für weitere chemische Umsetzungen geeignetes Benzo- 

perylenbisimid müsste also mindestens eine reaktive funktionelle Gruppe beinhalten. Die 

Darstellung diesbezüglich optimierter Benzoperylenbisimids sowie deren photophysikalische 

Untersuchung werden im Folgenden beschrieben.  

 

Abb. 5: Benzo[ghi]perylenbisimidmonoanhydrid 7, lineares Benzoperylenbisimid  8 und 

Benzoperylenmonoimid 9. 
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B1.2 Entwicklung eines angularen Benzo[ghi]perylenmonoimidmonoan- 

hydrids 

Die bezüglich der funktionellen Gruppen angularen Benzo[ghi]perylenmonoimidmonoan- 

hydride 10 wären geeignete Ausgangsverbindungen zur Synthese angularer Benzo[ghi]- 

perylenbisimide 6 (siehe Abbildung 6).   

 

 

 

 

 

 

 

 

Abb. 6: Allgemeine Struktur der Benzo[ghi]perylenbisimide 6 und Benzo[ghi]perylenmonoimidmono- 

anhydride 10 

 

Einen eleganten Zugang zu den literaturbekannten Benzo[ghi]perylenbisimidmonoanhydriden 

7 liefert die Umsetzung von Perylen-3,4:9,10-tetracarbonsäurebisimiden 1 mit Maleinsäurean- 

hydrid und anschließender Rearomatisierung mit dem Oxidationsmittel Chloranil.[37] Hierbei 

handelt es sich um eine Diels-Alder-Reaktion nach der Clar-Variante.[40] Da auch Benzo[ghi]- 

perylen über eine analoge Diels-Alder-Reaktion ausgehend von Perylen dargestellt werden 

kann ist,[41] (siehe Abbildung 7 oben) sollte eine Synthese angularer Benzo[ghi]perylenmono- 

imidmonoanhydriden 10 ausgehend von  Perylen-3,4-dicarboximiden 3 ebenfalls möglich 

sein (Abbildung 7 unten). Ein Derivat von 10 ist bereits einmal erwähnt worden,[42] dabei 

jedoch als schwerlösliches Material beschrieben worden, während eine verhältnismäßig 

leichtlösliche Substanz erwartet wird. Da zudem die analytischen Daten stark von den 

erwarteten Werten abwichen, bestehen begründete Zweifel an der Identität der beschriebenen 

Substanz. 
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Abb. 7: Darstellung von Benzoperylenanhydriden ausgehend von den entsprechenden Perylenderivaten (oben); 

Darstellung  angularer Benzo[ghi]perylenbisimidmonoanhydriden 10 ausgehend von  Perylen-3,4-dicarbox- 

imiden 3 (unten). 

 

Das präperativ gut zugängliche N-(1-Hexylheptyl)perylen-3,4-dicarboximid (11) [12] wird 

hierbei mit Maleinsäureanhydrid zum N-(1-Hexylheptyl)benzo[ghi]perylen-3,4,6,7-

hexacarbonsäure-3,4-dicarboximid-6,7-anhydrid (12) umgesetzt. Bei einer Diels-Alder-

Reaktion mit normalen Elektronenbedarf reagieren elektronenreiche Diene mit 

elektronenarmen Dienophilen in einer [4+2]-Cycloaddition. Während das elektronenarme 

Maleinsäureanhydrid als Dienophil fungiert, handelt es sich bei 11 aufgrund der 

elektronenziehenden Imidfunktion um ein relativ elektronenarmes Dien. Die hierdurch 

entstehende erhöhte Energiedifferenz zwischen HOMO des Diens und LUMO des Dienophils 

sowie das daraus resultierende, etwas geringere Überlappungsintegral der Orbitale ist bei der 

Synthese von 7 noch ausgeprägter, kann jedoch durch längere Reaktionszeiten kompensiert 

werden.[16] Das als Oxidationsmittel fungierende p-Chloranil führt durch Rearomatisierung 

des Diels-Alder-Produkts zur Bildung des Anhydrids 12 und verschiebt zusätzlich das 

Gleichgewicht auf die Seite von 12 (siehe Abbildung 8).  

 

 

 

 

 

 

Abb. 8: Synthese von N-(1-Hexylheptyl)benzo[ghi]perylen-3,4,6,7-hexacarbonsäure-3,4-dicarboximid-6,7-

anhydrid (12). 
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Maleinsäureanhydrid fungiert in dieser Reaktion sowohl als Reagenz als auch als Lösungsmit- 

tel. Nach Aufreinigung mittels Säulenchromatographie erhält man N-(1-Hexylheptyl)benzo- 

[ghi]perylen-3,4,6,7-hexacarbonsäure-3,4-dicarboximid-6,7-anhydrid (12) elementaranalysen- 

rein und in sehr guten Ausbeuten (> 85 %) als gelb-orangen, intensiv gelb-grün fluoreszieren- 

den Feststoff. Das Massenspektrum zeigt den Molekülpeak bei m/z = 598, sowie das durch 

Protonenabspaltung und McLafferty-Abspaltung des sekundären Alkylrests entstehende Frag- 

ment bei m/z = 415. Die hochauflösende Massenspektroskopie belegt ebenfalls die Bildung 

von 12. Das 1H-NMR-Spektrum stimmt weitestgehend mit dem Spektrum von 11 überein, nur 

die aromatischen Protonen des Benzoperylenkerns im Bereich von 8.36 bis 9.32 ppm sind 

gegenüber 11 etwas tieffeldverschoben. Das zwischen der Anhydrid- und Imidfunktion 

lokalisierte Proton des Benzoperylengerüst liefert ein deutlich tieffeldverschobens Singulett 

bei 10.09 ppm. Auch das 13C-NMR-Spektrum zeigt Signale der Carbonylkohlenstoffe des 

Anhydrids bei 166.9 und 167.1 ppm, die mit den Signalen der Carbonylkohlenstoffe des 

Imids überlagern. Im IR-Spektrum sind die Absorptionsbanden der (C=O)-Valenz- 

schwingungen der Anhydridfunktion bei 1776 und 1832 cm-1 zu beobachten. Im UV/Vis-

Absorptionsspektrum sind Maxima bei 347.6, 361.9 und 438.4 nm 477.6 nm zu sehen, welche 

im Vergleich zu 11 um ca. 30 nm hypsochrom verschoben sind. Besonders zu erwähnen ist 

die schwächere Absorptionsbande bei 477.6 nm, die in dieser Form weder im 

Perylenmonoimid 12 noch in den strukturell ähnlichen Benzo[ghi]perylenbisimidmono- 

anhydriden 7 auftreten. Im Fluoreszenzspektrum sind Maxima bei 502.5 und 530.1 nm zu 

beobachten welche im Vergleich zu den Fluoreszenzmaxima von 11 ebenfalls hypsochrom 

verschoben (siehe Abbildung 9). Mit einer  Fluoreszenzquantenausbeute von 64 % ist 12 ein 

starker Fluorophor.  

 

 

 

 

  

  

 

 

 

 

 

Abb. 9: Links: UV/Vis-Absorptions- (blau) und Fluoreszenzspektrum (magenta) von 12 im Vergleich zu 11 

(rot). Rechts: Chromophor 12 in Chloroform gelöst unter UV-Licht. 
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Da Elektronenübergange bei ausgedehnten π-Systemen primär zwischen den Grenzorbitalen 

stattfinden, wurden die Energien für das HOMO und das LUMO von 12 mit Hilfe von DFT-

Rechnungen quantenchemisch bestimmt. Um eine einfachere Berechnung zu ermöglichen, 

wurde der sekundäre Alkylrest durch eine Methylgruppe ersetzt. Wie in Abbildung 10 

ersichtlich ist, befindet sich sowohl im HOMO als auch im LUMO Knoten am Imidstickstoff. 

Der verbrückende Sauerstoff der Carbonsäureanhydridfunktion besitzt im HOMO keinen und 

im LUMO nur einen minimalen Orbitalfunktionswert, so dass die spektroskopischen 

Auswirkungen der Substitution dieses Sauerstoffs durch den Stickstoff neu eingeführter 

primärer Amine gering sein sollte.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 10: HOMO (links) und LUMO (rechts), des Methylderivats des Chromophors 12 (DFT-B3LYP). 
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B1.3 Darstellung angularer Benzo[ghi]perylenbisimide 

 

B1.3.1 Darstellung von Modell- bzw. Referenzverbindungen 

Ausgehend von N-(1-Hexylheptyl)benzo[ghi]perylen-3,4,6,7-hexacarbonsäure-3,4-dicarbox- 

imid-6,7-anhydrid (12) sollen im Folgenden angulare Benzo[ghi]perylenbisimide dargestellt 

werden. Um den Einfluss der Sauerstoffsubstitution durch einen Stickstofff auf den 

Chromophor zu untersuchen wird eine Reihe von entsprechenden Referenzsubstanzen 

synthetisiert. Zunächst erfolgt die Kondensation mit 1-Hexylheptylamin zu dem angularen 

Benzoperylentetracarbonsäurebisimid 13 (siehe Abbildung 11 oben). Dieses ist ein Regioiso- 

meres des literaturbekannten linearen Benzoperylenbisimids 8. Im Gegensatz zu 8, bei dem 

die beiden Carbonsäureimid-Einheiten linear angeordnet sind, stehen in 13 beide 

Carbonsäureimid-Einheiten senkrecht zueinander. Durch Einführung des zweiten 1-Hexyl- 

heptyl-Rests ist 13 hervorragend in lipophilen Medien löslich. Die Synthese von 13 erfolgt 

zunächst gemäß einer literaturbekannter Methode zur Darstellung von Benzo[ghi]perylen- 

trisimiden.[16] Dazu wird eine Lösung von 12 in Chinolin mit dem 1-Hexylheptylamin versetzt 

und 24 h bei 160 °C  erhitzt. Chinolin dient dabei nicht nur als Lösungmittel, sondern auch als 

Base. Die Base wird für die Bildung des Bisimids 13 benötigt, da die Nucleophilie des Amins 

durch Deprotonierung deutlich erhöht wird. Durch Verwendung der nicht nucleophilen Base 

Chinolin sollen eventuelle Nebenreaktionen des Lösungsmittels mit dem Anhydrid 3 

umgangen werden. Nach säulenchromatographischer Aufreinigung kann 13 als oranger 

Feststoff erhalten. Die Ausbeuten sind mit 34 % jedoch nicht befriedigend, weshalb zur 

Evaluierung der optimalen Reaktionsbedingungen die Kondensation in geschmolzenen 

Imidazol bzw. in angesäurter Chlorformlösung wiederholt wird. Beide Methoden sind bereits 

literaturbekannt[43] und werden auf die Synthese von 13 übertragen. Bei der Variante mit 

Imidazol werden 12, 1-Hexylheptylamin und katalytische Mengen Zinkacetat-Dihydrat in 

geschmolzenem Imidazol erhitzt. Da es sich bei Imidazol um eine im Vergleich zu Chinolin 

deutlich nucleophilere Base handelt, wird ein Anstieg der möglichen Konkurenzreaktionen 

mit 12 erwartet. Diese Vermutung bestätigt sich allerdings nicht. Bei der säurekatalysierten 

Kondensation wird 12 in Chloroform gelöst, mit einem Tropfen Trifluoressigsäure (TFA) 

sowie Dicyclohexylcarbodiimid (DCC) versetzt und 5 h unter Rückfluss erhitzt. In beiden 

Fällen erhält man das Bisimid 13 nach säulenchromatographische Aufreinigung als orangen, 

intensiv gelb-grün fluoreszierenden Farbstoff. Es werden bei beiden Kondensationsmethoden 

signifikant höhere Ausbeuten im Vergleich mit der chinolinbasierten Kondensation erzielt. 

Die säurekatalysierte Methode lieferte Ausbeute von ca. 75 %. Die Verwendung von Imidazol 
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führte sogar zu Ausbeuten über 90 %. Aufgrund der elementaranalysenreinen Darstellung 

sowie  der geringen Toxizität erweist sich Imidazol bei derartigen Synthesen als optimales 

Lösemittel. Das Massenspektrum zeigt den Molekülpeak bei m/z =  779 sowie die nach 

einfacher bzw. zweifacher McLafferty-Abspaltung der sekundären Alkylreste entstehenden 

Fragmente bei m/z = 597 bzw. m/z = 415. Durch die Reaktion zum Imid lässt sich im IR-

Spektrum die für Carbonsäureanhydride charakteristische (C=O)-Valenzschwingungen bei 

1832 cm-1 nicht mehr finden. Sowohl das  1H-NMR- als auch das 13C-NMR-Spektrum zeigt 

eine durch die Insertion des zusätzlichen 1-Hexylheptylrestes bedingte Verdoppelung der 

aliphatischen Signale. Die Maxima der Absorptions- und Emissionsspektren unterscheiden 

sich nicht wesentlich von denen des Anhydrids 12 (siehe Abbildung 11 unten). Damit stehen 

die experimentellen Ergebnisse in Einklang mit den  auf DFT-Rechnungen basierenden 

quantenchemische Vorhersagen. Die Fluoreszenzlebensdauer von 13 beträgt in Dichlor- 

methan 6.7 ns und ist damit etwas kürzer als die unter gleichen Bedingungen bestimmte Fluo- 

reszenzlebensdauer der Benzoperylentrisimide 5 (7.2 ns).[44] Mit einer Fluoreszenzquanten- 

ausbeute von 31 % ist das Bisimid 13 immer noch ein kräftiger Fluorophor, jedoch führt die 

Derivatisierung des Anhydrids 12 in das Imid 13 zu einer signifikanten Effizienzverringerung 

der Fluoreszenz.1  

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Abb. 11: Struktur des Bisimids 13 (oben); UV/Vis-Absorptions- und Fluoreszenzspektrum von 13 (unten). 

 

 

 

 
1 Details der photophysikalischen Untersuchung von 13 siehe B1.4.2.  
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Zur weiteren Abklärung des Einflusses der Imidbildung auf die photophysikalischen 

Eigenschaften ist es sinnvoll eine Reihe weiterer Benzoperylenbisimide 6 darzustellen und zu 

untersuchen. Methodisch entsprechen die Synthesen der des Bisimids 13. Durch Umsatz von 

Anilin, Ethylammoniumchlorid, cyclo-Hexylamin, 1-Naphthylamin und Benzylamin mit 12 in 

geschmolzenen Imidazol und säulenchromatographischer Aufreinigung erhält man die 

Benzoperylenbisimide 14 - 18 elementaranalysenrein und in hervorragenden Ausbeuten von 

84 -99 % (siehe Abbildung 12). Die Maxima der Absorptions- und der Fluoreszenzspektren 

entsprechen im Wesentlichen den Werten von 13. Mit Fluoreszenzquantenausbeuten liegen 

im Bereich von 20 bis 24 % und liegen damit etwas unter den bei 13 erhaltenen 

Quantenausbeuten. Im Falle von 17 können theoretisch zwei Atropisomere 17a bzw. 17b 

gebildet werden, da die Rotation des Naphthylrests um die N-C-Bindung, aufgrund der 

Wechselwirkung des Fünfringcarbonylsauerstoffs mit dem Naphthylproton in 8´-Position, 

sterisch behindert sein sollte (siehe 17c in Abbildung 12). Eine vergleichbare sterische 

Rotationshinderung ist bereits bei Fluorescein bekannt.[45] Erstaunlicherweise liefert auch die 

Umsetzung von 12 mit dem sterisch sehr anspruchsvollen tert-Butylamin das entsprechende 

Bisimid 19. Die Kondensation eines sterisch so anspruchsvollen Alkylamins konnte bisher 

lediglich für die aus Sechsringdicarboximiden aufgebauten Perylenbisimide beobachtet 

werden.[46] Kondensationsreaktionen von tert-Butylamin in sterisch anspruchsvollere 

Fünfringcarboximide, wie sie im Falle der Benzoperylenbisimide vorliegen, sind in der 

Literatur bisher nicht bekannt. Präperativ verläuft die Reaktion in Analogie zu den bisher 

beschriebenen Kondensationsreaktionen. Ein zur Überprüfung des Reaktionsfortschritts 

angefertigtes Dünnschichtschromatogramm zeigt nach 1.5 Stunden keine Spuren des Edukts 

12 sowie einen neuen sehr intensiv gelb-grünlich fluoreszierenden Spot in einem für angulare 

Benzoperylenbisimide zu erwartenden Rf-Bereich. Im Massenspektrum ist der Molekülpeak 

bei m/z = 653 sowie das durch Abspaltung des sekundären Alkylrestes entstehende Fragment 

bei m/z = 471 zu sehen. Ein zur Kontrolle angefertigtes Dünnschichtschromatogramm nach 

standardmäßiger Aufarbeitung in verdünnter salzsaurer Lösung zeigt jedoch ein deutlich 

verändertes Bild. Die Produktbande ist zwar noch vorhanden, jedoch weit weniger intensiv als 

noch vor der sauren Aufarbeitung. Zusätzlich sind nun wieder deutliche Banden von 12 zu 

erkennen (siehe Abbildung 13). Massenspektroskopische Untersuchungen vor und nach der 

Aufarbeitung bestätigen diese Beobachtung. Offenbar handelt es sich um eine 

säurekatalysierte partielle Hydrolyse des Bisimids 19. Aufgrund der beschriebenen 

Phänomene kann 19 auch lediglich in Ausbeuten von 20% erhalten werden. Die Maxima im 

UV/Vis-Absorptions- und Fluoreszenzspektrum entsprechen von der Bandenform den 
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bisherigen Benzoperylenbisimiden 13 -18, sind jedoch in beiden Fällen gegenüber 13 -18 um 

ca. 5 nm zu hypsochromen Wellenlängen verschoben (siehe Abbildung 13).         

 

Abb. 12: Struktur des Bisimide 14 - 19. 

 

 

                                                
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 13: Oben: UV/Vis-Absorptions- (blau) und Fluoreszenzspektrum (magenta) von 19 im Vergleich zu 13 

(rot). Unten: Dünnschichtchromatogramm von 19 aus dem Reaktionsgemisch (linke Spur), nach saurer 

Aufarbeitung (mittlere Spur) und 12 (rechte Spur). 
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B1.3.2 Darstellung funktionalisierter Benzo[ghi]perylenbisimide 

Nachdem die Darstellung angularer Bisimide mit Hilfe der Modellverbindungen 14 -18 

bezüglich Ausbeute und Reinheit optimiert werden konnte, soll im folgenden Abschnitt ein 

Zugang zu funktionalisierten angularen Benzo[ghi]perylenbisimide entwickelt werden. 

Hierfür werden primäre Amine benötigt, welche mindestens eine weitere, zur Fluoreszenz- 

markierung diverser Materialien erforderliche, funktionelle Gruppe besitzen. Im Folgenden 

wird die Synthese verschiedenst funktionalisierter Benzoperylenbisimide und deren Fähigkeit 

zur Fluoreszenzmarkierung untersucht.      

 

B1.3.2.1 Benzo[ghi]perylenbisimide mit Aldehydfunktionalität 

Die Synthese von mit Aldehyden funktionalisierten Perylenbisimiden und Benzoperylen- 

trisimiden konnte bereits erfolgreich gezeigt werden.[27,28] Dabei werden acetalgeschützte 

Aminoaldehyde mit den entsprechenden Anhydriden umgesetzt. Der Abstand zwischen dem 

Fluorophor und der Aldehydfunktion kann durch den Einbau  unterschiedlich strukturierter 

Aminoaldehyde variiert werden.  

 

B1.3.2.1.1 Synthese von N-(1-Hexylheptyl)-N´-[4-(1,3-dioxolan-2-yl)benzyl]benzo[ghi]- 

perylen-3,4,6,7-bis(dicarboximid) (20) und N-(1-Hexylheptyl)-N´-(4-formyl-

benzyl)benzo[ghi]perylen-3,4,6,7-bis(dicarboximid) (21) 

 

Die Synthese von 20 erfolgt in Analogie zur Darstellung von 13 durch Kondensation von 4-

(1,3-Dioxolan-2-yl)benzylamin mit 3 (siehe Abbildung 15 oben). Auch hierbei liefert 

Imidazol als Lösungsmittel und Base signifikant höhere Ausbeute als die Verwendung von 

Chinolin (81 gegenüber 34 %). Damit unterscheiden sich die Kondensationsrektionen von 

analogen Umsetzungen mit Benzoperylentrisimiden, bei denen mit Chinolin als 

Lösungsmittel sehr gute Ausbeuten erziehlt wurden.[28] 4-(1,3-Dioxolan-2-yl)benzylamin lässt 

sich ausgehend von kommerziell erhältlichen Cyanobenzaldehyd darstellen. Man schützt den 

Aldehyd zunächst durch eine säurekatalysierte Kondesationsreaktion mit Ethylenglykol.[47] 

Das durch die Verwendung des Diols Ethylenglykol gebildete cyclische Acetal erwies sich in 

früheren Untersuchungen als deutlich beständiger als entsprechende, offenkettige Acetale.[27] 

Durch anschließende Reduktion des geschützte Cyanobenzaldehyds erhält man 4-(1,3-

Dioxolan-2-yl)benzylamin (siehe Abbildung 14).  
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Abb. 14:  Synthese von 4-(1,3-Dioxolan-2-yl)benzylamin ausgehend von Cyanobenzaldehyd.[25] 

 

Um eine Spaltung des Acetals zu verhindern erfolgt sowohl die Synthese als auch die 

Aufarbeitung von 20 unter basischen Bedingungen. Nach säulenchromatographischer Auf- 

reinigung erhält man das Acetal 20 elementaranalysenrein als orangen Feststoff. Im Massen- 

spektrum ist der Molekülpeak bei m/z = 759 sowie das Fragment bei m/z = 715 sichtbar, 

welches durch Abspaltung der Acetalschutzgruppe entstehen. Im 1H-NMR-Spektrum sind 

neben den bereits von 12 bekannten Signalen zusätzliche Signale des einkondensierten 

Acetals zu sehen. So zeigt das Spektrum im Bereich von 4.04 - 4.07 und 4.14 - 4.16 ppm zwei 

Multipletts der acetalischen Methylengruppen sowie das Singulett benzylischen 

Methylengruppe bei 4.80 ppm. Des Weiteren kann dem Singulett bei 5.89 ppm die 

Methingruppe des Acetals zugeordnet werden. Bei 7.64 und 7.68 ppm zeigt das Spektrum 

zwei Dubletts mit je einer Kopplungskonstante von 9.0 Hz, die den aromatischen Protonen 

des einkondensierten Amins entsprechen (siehe Abbildung 15 unten). Darüber hinaus sind 

weder im 1H-NMR- noch im 13C-NMR-Spektrum Signale im für Aldehyde charakteristischen 

Bereich von ca. 10 bzw. 190 ppm zu sehen, was die Stabilität des Acetals belegt. Das IR-

Spektrum kann die (C-O-C)-Valenzschwingung des cyclischen Acetals bei 1078.5 cm-1 

gefunden werden. Sowohl das Absorptions- als auch das Fluoreszenzspektrum entsprechen 

den in 13 gefundenen Daten. Die Fluoreszenzquantenausbeute von 20 beträgt 28 %.   
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Abb. 15: Synthese (oben) und Ausschnitt des 1H-NMR-Spektrums von 20 in CD2Cl2
 (unten). 

 

Die Darstellung des Aldehyds 21 kann auf  drei verschiedenen Wegen erfolgen (siehe 

Abbildung 16 oben). Zum einen ist eine Synthese via Kondensation möglich. Dabei wird 

analog zu 20 einkondensiert. Das erhaltene Acetal 20 wird nun jedoch sauer aufgearbeitet. 

Dabei wird 20 gespalten und man erhält direkt den Aldehyd 21. Auffällig jedoch ist die 

erhöhte Stabilität von 20 gegenüber Säuren im Vergleich zu analog funktionalisierten 

Benzoperylentrisimiden. Diese sind durch Aufarbeitung in verdünnter Salzsäure zugänglich, 

wohingegen im Falle von 21 eine zusätzliche Behandlung mit Eisessig zur vollständigen 

Acetalspaltung nötig ist. Nach säulenchromatographischer Aufreinigung kann 21 in 

elementaranalysenreiner Form als intensiv gelb-grün fluoreszierender, oranger Feststoff 

erhalten werden. Der Aldehyd 21 ist auch via säurekatalysierter Hydrolyse des Acetals 20 

zugänglich. Dazu wird eine Lösung von 20 in THF mit 2 M Salzsäure-Lösung versetzt und 

unter Rückfluß erhitzt. Trotz viertägiger salzsaurer Behandlung kann das Acetal 20 nicht 

vollständig hydrolysiert werden. Hier muss aufgrund der bereits erwähnten, ungewöhnlich 

hohen Stabilität von 20 eine Aufarbeitung mit einem Gemisch aus Salzsäure und Eisessig 

(1:1) erfolgen. Erst dann kann 21 nach entsprechender Aufarbeitung  als oranger Feststoff 

erhalten werden.  
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Li et al. beschreibt den Zugang diverser Benzaldehydderivate durch Oxidation entsprechen- 

der Benzylalkohole.[48] Dabei wird der Benzylalkohol in DMSO gelöst, mit wässriger HBr-

Lösung versetzt und mehrere Stunden erhitzt (siehe Abbildung 16 unten). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Abb. 16: Synthese der aldehydfunktionalisierten angularen Benzoperylenbisimide 21 und 24 (oben); 

Oxidation von Benzylalkoholderivaten zu Benzylaldehydderivaten  mit DMSO/HBr nach Li et al. (unten). 

 

Der dabei ablaufende Mechanismus liegt in der Nucleophilie des Sauerstoffs von DMSO, in 

Kombination mit der Generierung eines H2O
+-Nucleofugs begründet. Entropisch begünstigt 

wird die Oxidation darüber hinaus durch die Freisetzung von Dimethylsulfid. Die analoge 

Umsatz von N-(1-Hexylheptyl)-N´-(4-hydroxymethylbenzyl)benzo[ghi]perylen-3,4:6,7-bis- 

(dicarboximid) (22)2 unter den genannten Bedingungen liefert ebenso den Aldehyd 21 

selektiv und in guten Ausbeuten. Somit ist 21 mit jeder der vorgestellten Methoden gut 
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zugänglich. Der Syntheseweg via saurer Aufarbeitung sowie via Oxidation des Benzylal- 

kohols 22 kann bevorzugt eingesetzt werden, wenn eine weitere Umsetzung des Aldehyds 

folgen soll, da auf diese Weise der Aldehyd ohne zusätzliche Zwischenschritte direkt 

freigesetzt wird. Wenn eine stabile Aufbewahrungs- und Lagerungsform erwünscht[28] ist 

bzw. eine mögliche Oxidation des Aldehyds zur Säure ausgeschlossen werden soll empfiehlt 

sich die Variante unter Erhalt der Acetalfunktion. Die Massenspektroskopie zeigt neben dem 

Molekülpeak von 21 bei m/z = 715 und  das durch die Abspaltung des sec-Alkylrests zustande 

kommende Fragment bei m/z = 533. Das aldehydische Proton ist im 1H-NMR-Spektrum als  

Singulett bei 10.10 ppm und im 13C-NMR-Spektrum bei 191.9 ppm sichtbar (siehe Abbildung 

17). Im IR-Spektrum überlagert die (C=O)-Valenzschwingung des freien Aldehyds mit den 

(C=O)-Valenzschwingungen der Imidfunktion des Grundgerüsts im Bereich von 1659 - 1701 

cm-1. Die Maxima im UV/Vis-Absorptions- und  Fluoreszenzspektrum sind identisch mit 

denen des Acetals 20. Die Fluoreszenzquantenausbeute von 21 beträgt 30 %.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 17: Ausschnitt des 1H-NMR-Spektrums in CD2Cl2
 von 21. 
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B1.3.2.1.2 Synthese von N-(1-Hexylheptyl)-N´-{[4-(1,3-dioxolan-2-yl)phenyl]benzyl}benzo- 

[ghi]perylen-3,4,6,7-bis(dicarboximid) (23) und N-(1-Hexylheptyl)-N´-[(4-formyl- 

phenyl)benzyl]benzo[ghi]perylen-3,4,6,7-bis(dicarboximid) (24) 

 

In Analogie zu B1.3.2.1.1 lässt sich das Acetal 23 durch Umsetzung von 12 mit 4'-(1,3-

Dioxolan-2-yl)biphenyl-4-methylamin darstellen. Dabei ist zunächst die Darstellung von 4´-

Formylbiphenyl-4-carbonitril nötig.[49] Dies gelingt mittels einer Suzuki-Kreuzkupplungs- 

reaktion. Die Suzuki-Reaktion beschreibt allgemein eine Palladium-katalysierte Kreuzkupp- 

lung zwischen aromatischen Organoboronsäuren und Arylhalogeniden.[50] Dabei erwiesen 

sich organische Boronsäurederivate als vorteilhaft im Vergleich zu anderen aromatischen 

Organometallderivaten, da sie sehr tolerant gegenüber diversen funktionellen Gruppen sind. 

Darüber hinaus sind sie im Vergleich zu anderen bekannten Kreuzkupplungskomponenten, 

wie beispielsweise bei der Stille-Reaktion, wenig toxisch.[51] Man verwendet 4-Brombenzo- 

nitril und 4-Formylphenylboronsäure, welche man mit katalytischen Mengen Tetrakis(tri- 

phenylphosphin)palladium(0) zu Formylbiphenyl-4-carbonitril umsetzt. Formylbiphenyl-4-

carbonitril lässt sich in Analogie zu B1.3.2.1.1 in einer zweistufigen Reaktion zu 4'-(1,3-Di- 

oxolan-2-yl)biphenyl-4-methylamin konvertieren[25] (siehe Abbildung 18).  

 

 

 

 

 

Abb. 18:  Synthese von Dioxolan-2-yl)biphenyl-4-methylamin.[27] 

 

Nach basischer Aufarbeitung und säulenchromatographischer Aufreinigung kann 23 als 

intensiv gelb-grün fluoreszierender oranger Feststoff erhalten werden (siehe Abbildung 19 

oben). Das Massenspektrum zeigt den Molekülpeak des Acetals 23 bei m/z = 835 sowie bei 

m/z = 653 durch einfache McLafferty-Abspaltung entstehende Fragment. Im 1H-NMR-

Spektrum spalten die beiden Methylengruppen des Acetals zu zwei Multipletts bei 3.99 – 4.03 

und 4.10 – 4.14 ppm auf. Darüber hinaus ist die der Imidfunktion benachbarte Methylen- 

gruppe als Singulett bei 4.70 ppm und die Methingruppe des Acetals als Singulett bei 5.81 

ppm zu sehen (siehe Abbildung 19 mitte). Im IR-Spektrum ist die acetaltypische (C-O-C)-

Valenzschwingung bei 1079.7 cm-1 sichtbar. Die Absorptionsmaxima im UV/Vis- und 

Fluoreszenzspektrum entsprechen den bisher beschriebenen angularen Benzoperylenbis- 

imiden. Die Fluoreszenzquantenausbeute beträgt 27 %. Darüber hinaus belegt eine korrekte 
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Elementaranalyse die hohe Reinheit des Acetals 23. Die Darstellung des Aldehyds 24 kann 

analog zu B1.3.2.1.1 ebenfalls auf verschiedenen Wegen erfolgen (siehe Abbildung 16 oben). 

Je nach Verwendungszweck, ob nun eine stabile Lagerungsform oder die Weiterverarbeitung 

des Aldehyds gewünscht wird, kann zwischen den verschiedenen Syntheserouten gewählt 

werden. Im Massenspektrum sind nicht nur der Molekülpeak bei m/z = 791, sondern auch der 

Basispeak bei m/z = 609 sichtbar, welcher durch Abspaltung des sec-Alkylrests zustande 

kommt. Das Proton der Aldehydgruppe erscheint im  1H-NMR-Spektrum als Singulett bei 

10.01 ppm und liefert im 13C-NMR-Spektrum ein Signal bei 191.8 ppm (siehe Abbildung 19 

unten). Die (C=O)-Valenzschwingung des freien Aldehyds wird durch die (C=O)-

Valenzschwingung des Imids überlagert. Erwartungsgemäß sind sowohl das Absorptions- als 

auch das Fluoreszenzspektrum mit den bisherigen angularen Benzoperylenbisimiden 

identisch.  Eine  Fluoreszenzquantenausbeute von 28 % stimmt somit gut mit den Werten der 

vorangegangenen Verbindungen überein. Darüber hinaus belegt eine korrekte Elementar- 

analyse die hohe Reinheit von 24. 
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Abb. 19: Synthese von 23 (oben); Ausschnitt des 1H-NMR-Spektrums von 23 (mitte) und 24 (unten) in CD2Cl2. 

 

B1.3.2.2 Fluoreszenzmarkierung nucleophiler Substrate 

Nach erfolgreicher Darstellung der Aldehyde 21 bzw. 24 werden diese im Folgenden mit 

diversen primären Aminen umgesetzt, um ihre Eignung als Fluoreszenzmarker zu studieren.  

Freie Aminogruppen sind ein sehr häufiges Strukturelement in biologisch aktiven Substanzen. 

Proteine, Enzyme oder die Purin- bzw. Pyrimidinbasen der menschlichen DNA sollen hier nur 

stellvertretend für eine Vielzahl weiterer biologisch aktiver Substanzen genannt werden.  

Daher ist es leicht nachzuvollziehen, dass eine durch erfolgreiche Markierung mit 

Fluorophoren ermöglichte Visualisierung der genannten Substanzen großes Potential für 

biochemische bzw. medizinische Anwendung besitzt. Die in dieser Arbeit neu synthetisierten 

Aldehyde reagieren mit primären Aminen in einer Kondensationsreaktion zu den 

entsprechenden Iminen. Derartige Reaktionen wurden erstmals Mitte des 19. Jahrhunderts 

von H. Schiff beobachtet, weshalb die Bezeichnung als Schiff´sche Basen bis heute in der 

Literatur zu finden ist.[52] Abbildung 20 zeigt den Mechanismus der Iminbildung.  

 

 

 

 

 

 

Abb. 20: Mechanismus der Iminbildung.[53] 
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Das Amin greift dabei mit seinem ungebundenen Elektronenpaar nucleophil am elektrophilen 

Carbonylkohlenstoff an, bildet das instabile Halbaminal (Ia) und reagiert unter Freisetzung 

eine Äquivalents Wasser zum Imin (II). Da sämtliche Reaktionsschritte reversible Gleichge- 

wichtsreaktionen sind, ist es zur Verlagerung des Gleichgewichts auf die Seite des Imins 

nötig, dass im letzten Schritt (II) freiwerdende Wasser aus der Reaktion zu entfernen. Des 

Weiteren wird die Wasserabspaltung des Halbaminals von Protonen katalysiert, weshalb es in 

manchen Fällen von Vorteil ist, Iminbildungen säurekatalysiert durchzuführen. Das Maxi- 

mum der Bildungsgeschwindigkeitskonstante des Imins liegt bei einem pH-Wert von 

ungefähr fünf. Unter noch acideren Bedingungen wird das primäre Amin zunehmend zum 

Ammoniumkation protoniert und verliert damit seinen nucleophilen Charakter.[53] 

Die Markierung aromatischer Aminen soll mit Hilfe der Reaktion von 21 bzw. 24 mit Anilin  

getestet werden. Mechanistisch analoge Reaktionen[27,54] werden ohne Säurekatalyse 

beschrieben, weshalb auch hier auf die Zugabe von Säure verzichtet wird. Man lässt eine 

Lösung des entsprechenden Aldehyds in einem Überschuss an Anilin  reagieren, wobei 

Letzteres sowohl als Lösemittel als auch als Edukt dient (siehe Abbildung 21). Nach 

Aufarbeitung werden die Imine 25 bzw. 26  als oranger Feststoff gewonnen. Eine 

säulenchromatographische Aufreinigung gelingt aufgrund der literaturbekannten Hydrolyse- 

empfindlichkeit des gebildeten Imine nicht.[27] Daher bezieht sich die analytische 

Charakterisierung auf die erhaltenen Rohprodunkte. Die Bildung der Imine 25 bzw. 26 kann 

massenspektroskopisch nachgewiesen werden. Weder das 1H- noch das 13C-NMR-Spektren 

weisen Signale des Aldehyds auf. Die 1H-NMR-Spektren  enthalten im Bereich von ca. 7.2 - 

7.5 ppm die in Form zweier Multipletts auftretenden Protonen des Anilins. Außerdem tritt bei 

8.61  bzw 8.47 ppm ein Singulett auf, welches dem Proton des jeweiligen Imins zuzuordnen 

ist.   

 

 

Abb. 21: Synthese der Imine 25 bzw. 26.  
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In den  13C-NMR-Spektren tritt ein für Iminkohlenstoffe charakteristisches Signal bei 159.6 

bzw. 159.9 ppm auf. Die Maxima der UV/Vis-Absorptions- und Fluoreszenzspektren 

entsprechen den Werten der Aldehyde 21 bzw. 24. Die Fluoreszenzquantenausbeute beträgt 

28 bzw 26 %. Diese durch die Derivatisierung kaum veränderte Intensität Fluoreszenz zeigt, 

dass die Aldehyde sehr gut zur Fluoreszenzmarkierung primärer Amine geeignet sind.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 22: Ausschnitt der 1H-NMR-Spektren von 25 und 26 (kleine Grafik) in CD2Cl2. 

 

 

Mit der Synthese von 27 bzw. 28 wird die Fluoreszenzmarkierung aliphatischer Amine durch 

die Aldehyde 21 bzw. 24 untersucht. Dazu wird eine mit Eisessig auf einen pH-Wert von fünf 

angesäuerte Lösung von 21 bzw. 24 in Chloroform unter Schutzgasatmosphäre mit einem 

Überschuss n-Butylamin versetzt und Magnesiumsulfat als Trockenmittel zugegeben (siehe 

Abbildung 23). Das zusätzliche Ansäuern des Reaktionsansatzes dient der säurekatalysierten 

Iminbildung durch Wasserabspaltung des Halbaminals. Der Zusatz des Trockenmittels 

verschiebt dabei zusätzlich das Gleichgewicht auf die Seite des Produkts, da das freiwerdende 

Wasser der Reaktion entzogen wird. 
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Abb. 23: Synthese der  Imine 27 bzw. 28. 

 

 

Nach entsprechender Aufarbeitung erhält man die Imine 27 bzw. 28 als orange Feststoffe. 

Aufgrund der bereits erwähnten Hydrolyseempfindlichkeit der gebildeten Imine werden auch 

diese Verbindungen nicht säulenchromatographisch aufgereinigt. Die Bildung der Imine 27 

bzw. 28 kann massenspektroskopisch belegt werden.  Für den vollständigen Umsatz der 

Aldehyde spricht, dass in den 1H- und 13C-NMR-Spektren keinerlei Signale vorhanden sind, 

die den entsprechenden Aldehyden zugeordnet werden können. Im 1H-NMR-Spektrum sind 

neben den bereits zuvor zugeordneten Benzoperylensignalen ein Singulett bei 8.38 bzw. 8.27 

ppm sichtbar, welches dem Proton der Iminfunktion entspricht. Die zur Iminfunktion 

benachbarten Methylengruppen spalten in einem Triplett bei 3.62 bzw. 3.57 ppm mit einer 

Kopplungskonstante von 8.4 bzw. 7.3 Hz auf. Die restlichen Methylengruppen des Butyl- 

restes erscheinen als Multiplett im Bereich von ca. 1.3 – 1.8 ppm. Die Methylgruppe des n-

Butylamins ist zusammen mit den Methylgruppen des sec-Alkylrests als Multiplett im 

Bereich von ca. 0.8 – 1.0 ppm zu beobachten (siehe Abbildung 24). Das 13C-NMR-Spektrum 

zeigt die Iminkohlenstoffe bei 159.8 ppm. Die Maxima in den Absorptions- und Fluoreszenz- 

spektren entsprechen ebenso wie die Fluoreszenzquantenausbeute von 27 bzw. 26 % den 

Werten der Aldehyde 21 bzw. 24. 
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Abb. 24: 1H-NMR-Spektrum von 27 und 28 (kleine Grafik) in CD2Cl2. 

 

Anhand der Synthese der Imine 29 bzw. 30 soll die Fluoreszenzmarkierung von Aminosäuren 

gezeigt werden. Dazu setzt man p-Aminobenzoesäure (PABA) mit den Aldehyden 21 bzw. 24  

in einem mit Eisessig auf einen pH-Wert von fünf angesäuertes Lösemittelgemisch aus 

Dichlormethan und Ethanol (5:2) um (siehe Abbildung 25). 

 

 

Abb. 25: Synthese der  Imine 29 bzw. 30. 
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Das verwendete Lösemittelgemisch dient der besseren Löslichkeit von PABA, welches als 

Anilinderivat aufgefasst werden kann, aber aufgrund der elektronenziehenden 

Carboxylgruppe bzw. der zwitterionischen Struktur eine geringere Nucleophilie aufweist. 

Nach entsprechender Aufarbeitung erhält man die Imine 29 bzw. 30 als orange Feststoffe. 

Aus den bekannten Gründen bezieht sich die Analytik auf die erhaltenen Rohprodukte. 

Sowohl in den nieder- als auch hochaufgelösten Massenspektren lässt sich die Bildung der 

Imine 29 bzw. 30 nachweisen. Die 1H-NMR - und 13C-NMR-Spektrum NMR-Spektren zeigen 

charakteristische Iminsignale. Es finden sich jedoch auch noch Signale der nicht umgesetzten 

Aldehyde 21 bzw. 24 wieder. So sind im 1H-NMR-Spektrum neben dem als Singulett 

erscheinenden Imin-Proton bei 8.52 bzw. 8.47  ppm auch das aldehydische Proton bei 10.02 

bzw. 9.97  ppm zu sehen. Ein Intensitätsvergleich der beiden Signale ergibt einen etwa 

äquivalenten Anteil von Imin und Aldehyd (siehe Abbildung 26). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 26: Ausschnitt der 1H-NMR-Spektren von 29 und 30 (kleine Grafik) in CD2Cl2/CD3OD (10:1). 
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NMR-Spektrum des Imins 30 keine relevanten Aussagen über die Bildung des Imins. Die 

Absorptions- sowie die Fluoreszenzspektren entsprechen  denen der vorhergehenden Imine           

Die  Fluoreszenzquantenausbeute betragen 26 bzw. 23 %.  

Die erhaltenen Ergebnisse zeigen dennoch eindrucksvoll, dass sich die Aldehyde 13 und 15 

hervorragend zur Fluoreszenzmarkierung diverser nucleophiler Substrate eignen. Darüber 

hinaus lassen sich keine signifikanten Löslichkeitsunterschiede zu den entsprechend 

funktionalisierten Benzoperylentrisimiden[28] feststellen.  
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B1.3.2.2 Benzo[ghi]perylenbisimide mit Aminfunktionalität 

 
Um den Einfluss einer peripheren Aminfunktion auf den Chromophor zu untersuchen wird 

eine Reihe entsprechender Referenzsubstanzen synthetisiert. Darüber hinaus stellen die im 

Folgenden beschriebenen aminfunktionalisierten, angularen Benzoperylenbisimide geeignete 

Ausgangsverbindungen, sowohl zur Fluoreszenzmarkierung elektrophiler Substanzen als auch 

zur Synthese bichromophorer Systeme dar.3 Zunächst soll das NH-Imid 31 hergestellt werden. 

Die Synthese verläuft analog zu einer von Langhals beschriebene Synthese für das 

entsprechende Benzo[ghi]perylentrisimid.[55] Amidosulfonsäure wird unter einer Argonatmo-

sphäre in geschmolzenem Imidazol in 12 einkondensiert. Nach säulenchromatographischer   

 

Abb. 27: Synthese von N-(1-Hexylheptyl)benzo[ghi]perylen-3,4,6,7-tetracarbonsäure-3,4,6,7-dicarboximid (31). 

 

Aufarbeitung erhält man das Imid 31 elementaranalysenrein als gelben Feststoff. Im 

Massenspektrum ist der Molekülpeak ist bei m/z = 597 zu sehen und das durch Abspaltung 

des sekundären Alkylrestes entstandene Fragment bei m/z = 415. Das IR-Spektrum zeigt die 

(N-H)-Valenzschwingung des sekundären Amins als breite Bande bei 3210 cm-1. Die Maxima 

im Absorptions- und Fluoreszenzspektrum sind mit denen des Anhydrids 12 identisch. Ein 

Vergleich mit den Spektren von 12 zeigt, dass die Substitution des Sauerstoffs gegen ein NH-

Äquivalent keinen Einfluss auf das Absorptions- und Emissionsspektrum hat. Jedoch ist die 

Fluoreszenzquantenausbeute mit 38  % niedriger als die des Anhydrids 12 aber etwas höher 

als die bisher entwickelten Benzoperylenbisimide. Um den Einfluss primärer Aminfunktionen 

auf die spektroskopischen Eigenschaften zu untersuchen, sollen nun unterschiedliche Diamine 

mit dem Anhydrid 12 umgesetzt werden. Dabei sollen Diamine mit den verschiedensten 

sterischen und elektronischen Ansprüchen eingesetzt werden. Abbildung 28 zeigt das 

Syntheseschema der hergestellten Benzoperylenbisimide sowie eine Übersicht der 

 
3 Zur Darstellung angularer Benzoperylenbisimid-Bichromophore siehe B.5.  
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eingesetzten Diamine, der entsprechenden aminfunktionalisierten Benzoperylenbisimide und 

deren Fluoreszenzquantenausbeute: 

Diamin Benzoperylenbisimid 
Fluoreszenzquantenausbeute 

[%] 4 

1,2-Ethylendiamin 32 22 

1,4-Phenylendiamin 33 <1 

Hydrazin-Monohydrat 34 1 

2,3,5,6-

Tetramethylphenylendiamin 
35 10 

trans-1,4-Diaminocyclohexan 36 20 

1,5-Diaminonaphthalin 37 1 

  

 

Abb. 28: Übersicht der eingesetzen Diamine sowie Verbindungsnummern und Fluoreszenzquantenausbeute der 

entsprechenden Benzoperylenbisimide (oben); Synthese der aminfunktionalisierten Benzoperylenbisimide 32 - 

37 (unten). 

 

 

Die Darstellung der Verbindungen 32 sowie 34 - 37  erfolgt unter Lichtausschluss in 

geschmolzenen Imidazol. Bei der Umsetzung mit 1,4-Phenylendiamin führt nur die 

Verwendung von Chinolin in Kombination mit Mikrowellenbestrahlung zu präperativen  

Ausbeuten von 33. Die Amine 32 - 37 können so nach entsprechender Aufarbeitung 
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elementaranalyenrein und in guten Ausbeuten erhalten werden. Das Naphthylaminderivat 37 

erhält man analog 17 als Racemat zweier schwer zu trennenden Atropisomere (vgl. B1.3.1).  

Die Absorptionsbanden der (N-H)-Valenzschwingung sämtlicher Amine sind im IR-Spektrum 

im Bereich von ca. 3200 - 3500 cm-1 zu finden. Im Falle der Kondensation von 1,2-

Ethylendiamin ist die Bildung des freien Amins 32 durchaus überraschend, da für die analoge 

Umsetzung mit Perylenmonoimidmonoanhydriden lediglich entsprechende cyclische Amidin 

38 isoliert werden kann. Dieses entsteht aufgrund der relativ hohen Beweglichkeit des 

Ethylaminrestes durch Reaktion der Aminogruppe mit einer der beiden Carbonylgruppen des 

Carbonsäureimids.[56] Für die Bildung einer analoge Verbindung 39 lassen sich in der 

Analytik keinerlei Indizien finden (siehe Abbildung 29).  

 

 

 

 

 

 

 

 

 

Abb. 29: Struktur des literaturbekannten Perylenamidinimids 38 (links) sowie des nicht gebildeten 

Benzoperylenamidinimids 39 (rechts).  

 

Lediglich im Massenspektrum ist neben einem intensiven Peak des Amins 32 auch ein 

schwacher Peak der Masse des Amidins 39 zu sehen, wobei sich nicht ausschließen lässt, dass 

sich dieses erst im Spektrometer gebildet hat. Im 1H-NMR-Spektrum erscheint nur ein Satz 

von Methylen-Protonen der Ethylgruppe, was impliziert, dass nur eins der zwei möglichen 

Produkte entstanden ist. Eine korrekte Elementaranalyse von 32 spricht ebenfalls für die 

ausschließliche Bildung des primären Amins 32. Die UV/Vis-Absorptionsspektren der Amine 

32 - 37 entsprechen dem des Anhydrids 12. Auch in den Fluoreszenzspektren ergeben sich bei 

den Maxima keine Veränderungen gegenüber 12. Signifikante Unterschiede sind jedoch beim 

Vergleich der Fluoreszenzquantenausbeuten ersichtlich. Während die aliphatischen 

Aminoderivate 32 und 36 mit Quantenausbeuten von ca. 20% nur leicht unterhalb der bisher 

funktionalisierten Benzoperylenbisimide liegen, liefert das aromatische Aminoderivat 35 nur 

eine Quantenausbeute von 10%. Die weiteren aromatischen Amine 33 und 37 sowie das Amin 

34 fluoreszieren praktisch gar nicht (Φ ≤ 1 %). Eine derartige Fluoreszenzlöschung wird auch 
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bei Perylenbisimiden und Benzoperylentrisimiden beobachtet.[33,36] Dabei kommt es zu einer 

Fluoreszenzdesaktivierung durch einen SET-Mechanismus (Single Electron Transfer). Das 

nichtbindende Elektronenpaar der Aminfunktion bzw. der aminosubstituierten Aromaten liegt 

in der Energielücke der Grenzorbitale des Chromophors (siehe Abbildung  30). Findet nun 

eine elektronische Anregung aus dem Benzoperylen-HOMO statt, kann ein nichtbindendes 

Elektron des Amins in das neugebildete SOMO übertragen werden. Damit ist dieses Orbital 

gefüllt und es kann nach dem Pauli-Prinzip keine weiteren Elektronen mehr aufnehmen. Eine 

Fluoreszenz ist somit unmöglich geworden. 

 

 

Abb. 30: SET-Mechanismus zur Fluoreszenzdesaktivierung.[33] 

 

Offensichtlich findet auch im Falle der aminfunktionalisierten Benzoperylenbisimide eine 

Fluoreszenzdeaktivierung via SET-Mechanismus statt. Dabei unterstützen die ausgedehnten 

aromatischen Systeme der Amine 33, 34 und 37 die elektronischen Wechselwirkungen mit 

dem Grundchromophor. Die im Vergleich zu den beschriebenen aromatischen Aminen 

signifikant erhöhte Fluoreszenzquantenausbeute von 35 (Φ = 10 %) lässt sich auf sterische 

Wechselwirkungen zurückführen. Durch die im Vergleich zu 33 zusätzlich vorhandenen 

Methylgruppen stehen die aromatischen Systeme von Grundchromophor und Spacer 

orthogonal zueinander. Die Methylgruppen drehen durch sterische Wechselwirkungen die 

Aminogruppe aus der Aromatenebene und schwächen die elektronischen Wechselwirkungen 

zwischen dem ungepaarten Elektronenpaar des Amins und dem verknüpften Phenylrings ab. 

Bemerkenswert ist in diesem Zusammenhang die annähernd komplette Fluoreszenzlöschung 

des sterisch noch anspruchsvolleren aber wahrscheinlich auch elektronenreicheren Amins 37. 

Dagegen sind die Amine 32 und 36 aliphatisch mit dem Imidstickstoff verbunden und das 

nichtbindende Elektronenpaar des Amins somit stärker vom restlichen Chromophor 

entkoppelt. Als Konsequenz bleibt das Energieniveau des nichtbindenden Elektronenpaares 

des Amins unterhalb des HOMOs des Benzoperylens, so dass ein SET in dieses nicht möglich 

ist.  
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B1.3.2.3 Weitere funktionalisierte Benzo[ghi]perylenbisimide  

Neben der bereits beschriebenen Funktionalierung mit Aldehyden und Aminen bietet 

Anhydrid-Gruppe von 12 vielfältige weitere Möglichkeiten, primäre Amine ganz unterschied- 

licher Funktionalität einzuführen und damit physikalische Eigenschaften der Substanzen 

gezielt zu modifizieren. So lassen sich beispielsweise durch Umsatz von Aminoalkoholen wie 

2-Aminoethanol oder (4-Aminomethylphenyl)-methanol die alkoholfunktionalisierten Benzo- 

perylenbisimide 40 und 22 gewinnen (siehe Abbildung 31). Beide Alkohole können 

elementaranalysenrein und in sehr guten Ausbeuten dargestellt werden. Im IR-Spektrum 

finden sich die (O-H)-Valenzschwingungen der Hydroxylgruppen bei 3457 bzw. 3515 cm-1. 

Die Absorptions- und Fluoreszenzspektren von 40 und 22 entsprechen denen von 12. Mit 

Fluoreszenzquantenausbeute von 25 % bei 40 bzw. 35 % bei 22 liegen die beiden Alkohole 

im Bereich der bisher entwickelten Benzoperylenbisimide. Anwendungsmöglichkeiten für 

alkoholfunktionalisierte Farbstoffderivate sind die im Falle der Perylenbisimide 

literaturbekannte Appel-Reaktion zum entsprechenden Bromid. Diese können letztendlich in 

SN2-Reaktionen zum entsprechenden Azid oder mit dem NH-Imid des Benzoperyentrisimid 

zu bichromophoren Systemen umgesetzt werden.[38,57] Darüber hinaus findet der Alkohols 22 

in dieser Arbeit Verwendung als alternative Ausgangssubstanz zur Gewinnung des Aldehyds 

21.5        

 

 

 

 

 

 

 

 

 

 

 

Abb. 31: Struktur der Alkohole 40 bzw. 22 sowie der Carbonsäure 41. 

 

 

 

 

 
5 Zur selektiven Oxidation des Alkohols 22 zum Aldehyd 21 siehe B1.3.2.1.1. 
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Durch Kondesation des Anhydrids 12 mit der Aminosäure 4-Aminobenzoesäure (PABA) 

erhält man das Carbonsäurederivat 41. Die (O-H)-Valenzschwingung der Carboxylatgruppen 

ist im IR-Spektrum bei 3083 cm-1 zu sehen. Auch die Carbonsäure 41 gleicht in den  

Absorptions- bzw. Fluoreszenzspektren den bisherigen Benzoperylenbisimiden. Analoges gilt 

für die Fluoreszenzquantenausbeute, welche 35 % beträgt. Das Carboxylatanion von 41 ist ein 

Amphiphil und eröffnet damit die Möglichkeit Benzoperylentrisimide in polaren Lösemitteln 

einzusetzen. Durch ihre Amphilie sollten derartig funktionalisierte Farbstoffe gut geeignet 

sein, um insbesondere an der Grenzschicht zwischen hydro- und lipophiler Phase 

tensidähnliche Wirkung zu entfalten. Dies ist beispielweise von großem Interesse für die 

Verwendung in farbstofffunktionalisierter Nanomicellen.[58] 

 

 

B1.4 Physikalische Untersuchungen angularer Benzo[ghi]perylenbisimide 

 

B1.4.1 Übergangsdipolmomente angularer Benzoperylenbisimide 

Die Orientierung der dipolaren Übergangsdipolmomente µ ist bei Farbstoffen von zentraler 

Bedeutung für das Verständnis der photophysikalischen Abläufe im Laufe der 

Lichtabsorption und Emission. So beeinflusst beispielsweise in bichromophoren Systemen die 

relative Orientierung der Dipolmomente der beteiligten Chromophore zueinander den 

Resonanzenergietransfer. Abbildung 32 zeigt schematisch die quantenchemisch berechneten 

Dipolmomente des angularen Benzoperylenbisimids 13. Um eine einfachere Berechnung zu 

ermöglichen, wurden die sekundären Alkylreste durch Protonen ersetzt. Hieraus lässt sich 

entnehmen, dass in angularen Benzoperylenbisimiden drei verschiedene Dipolmomente µ1 – 

µ3 auftreten. Diese entsprechen den jeweiligen elektronischen Übergangen S1 ← S0,  

S2 ← S0 und  S3 ← S0. Gemäß der Kasha-Regel [59] relaxieren die in die höheren 

elektronischen Zustände S2 und S3 angeregten Photonen sehr schnell mittels internal 

conversion in den energetisch niedrigsten angeregten Zustand S1, so dass die Fluoreszenz 

unabhängig von der Anregungswellenlänge stets von S1 in den elektronischen Grundzustand 

So erfolgt. Folglich bestimmt das in Abbildung als µ1 bezeichnete Übergangsdipolmoment den 

Ablauf von Emissions- und Energietransferprozessen. Im Vergleich zum Perylenmonoimid 

zeigt sich eine durch die verringerte Molekülsymmetrie verursachte Aufspaltung der 

Übergangsdipolmomente. Auch die strukturell ähnlichen Benzoperylentrisimide weisen 

symmetriebe- dingt  eine geringere Aufspaltung der Dipolmomente auf (siehe Abbildung 33).     
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Abb. 32: Berechnete Orientierungen der dipolaren Übergangsmomente angularer Benzoperylenbisimide (B3-

LYP / 6-311G). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Abb. 33: Berechnete Orientierungen der dipolaren Übergangsmomente von Perylenmonoimiden (links) und 

Benzoperylentrisimiden (rechts) (B3-LYP / 6-311G). 
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B1.4.2 Phosphoreszenz angularer Benzoperylenbisimide 

Man findet für das angulare Benzoperyletetracarbonsäurebisimid 13 Fluoreszenz- 

quantenausbeuten von ca. 30 %. Trotz dieser im Vergleich zum Anydrid niedrigeren 

Quantenausbeuten erzeugen Benzoperylenbisimide aber immer noch einen starken 

Fluoreszenzeindruck. Der primäre Grund für die verhältnismäßig niedrigen Fluoreszenz- 

quantenausbeuten ist ein intersystem crossing (ISC) in den Triplettzustand T1. Dieser Prozess 

verläuft mit einer Effizenz von ca. 70 % und induziert damit eine starke Triplettemission in 

Form von Phosphoreszenz. Die effiziente Bildung von Singulettsauerstoff lässt sich über 

dessen Lumineszenz nachweisen (siehe Abbildung 34). Es zeigt sich, das Benzoperylenbis- 

imide mit dem als ausgesprochen effizienten Sensilbilisator bekannten Tetraphenylporphyrin 

(TPP) konkurrieren können.[60] Die Lichtechtheit von 13 ist allerdings signifikant höher als 

die von Tetraphenylporphyrin. Diese Phosphoreszenzbeobachtung ist überraschend, weil es 

bisher nicht gelungen war in Perylenimid-Derivaten intersystem crossing in nennenswertem 

Maße nachzuweisen, weshalb bisher auch keine nennenswerte Phosphoreszenz gefunden 

wurde. Ungewöhnlich ist auch die Kombination von verhältnismäßig starker Fluoreszenz und 

Phosphoreszenz. Diese Eigenschaften machen angulare Benzoperylenbisimide als 

Triplettphotosensibilisatoren interessant. Vorteilhaft ist hierbei ist die ausgeprägte Fluores- 

zenz. Sie kann als einfacher Indikator für die Funktionstüchtigkeit des Sensibilisators 

eingesetzt werden. Bei Benzoperylentrisimiden 5 wird ebenfalls ein intersystem crossing 

gefunden. Jedoch ist die Effizienz des Triplettübergangs mit 20 % erheblich kleiner als bei 

den in dieser Arbeit entwickelten Benzoperylenbisimiden (siehe Abbildung 35). 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 34: Singulettsauerstoff-Phosphoreszenz in luftgesättigter Toluol-Lösung sensibilisiert durch 13 im 

Vergleich zu Benzoperylentrisimiden 5 und dem etablierten Tetraphenylporphyrin (TPP). 
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Abb. 35: Unkorrigierte Phosphoreszenz von 13 in festem Toluol bei 77 K im Vergleich zu 

Benzoperylentrisimiden 5. 

 

Triplettsensibilisatoren sind in der Technik und Forschung für eine Vielzahl von Anwendung 

von großer Bedeutung. Insbesondere sei an dieser Stelle die photochemische Gewinnung von 

Singulettsauerstoff aus dem gewöhnlichen, atmosphärischen Triplettsauerstoff erwähnt. Auch 

in chemischen Synthesen wird Singulettsauerstoff verwendet. Als reaktives, elektronenarmes 

En geht er effizient Diels-Alder-Reaktionen mit Dienen eine; hier ist die Synthese des 

pharmakologisch aktiven Askaridols ein prominentes Beispiel.[61] Darüber hinaus ist der 

Singulettsauerstoff auch zu en-Reaktionen und zu [2+2]-Cycloadditionen befähigt.[62] 

Singulettsauerstoff ist zudem eine „reaktive Sauerstoff-Spezies“ (ROS) und wird z. B. im 

medizinischen und sanitären Bereich zum Desinfizieren verwendet.[63] Aus den erwähnten 

Anwendungen resultiert die intensive Suche nach Systemen mit effizienter Phosphoreszenz. 

Derzeit werden unter anderem Verbindungen wie halogensubstituierte Xanthenderivate wie 

Eosin Y oder Bengalrosa als Triplettsensilibisator eingesetzt.[64] Diese sind allerdings nur 

mäßig photostabil. Bisher wird dies durch Verwendung größerer Mengen ausgeglichen. 

Neben ökonomischen Gesichtspunkten entstehen so zusätzlich in nennenswertem Maße 

Zersetzungsprodukte durch photoinduzierten Bildung von Mineralsäuren, die bei vielen 

sauerstoffhaltigen Reaktionsprodukten zu weiteren Reaktionen führen kann. Als Alternative 

setzt man Porphyrine ein, die wegen mangelnder Lichtechtheit ebenfalls keine idealen 

Sensibilisatoren sind. Angulare Benzoperylenbisimide dagegen sind halogenfrei und sollten 

aufgrund weiterer Eigenschaften wie hoher Lichtechtheit (Photostabilität) hervorragend als 
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chemisch robuste Photosensibilisatoren geeignet sein. Zusätzlich liegen die Redoxpotentiale 

des verhältnismäßig elektronenarmen Bisimids 13 so günstig, dass eine Sensibilisierung nicht 

über zwischengeschaltete Elektronenübertragungsreaktionen erfolgt, sondern als direkte 

Energieübertragungsreaktion.[44] Dies ist für synthetische Anwendungen von besonderer 

Bedeutung, da man Singulettsauerstoff als reines Reagenz erhält und somit Nebenreaktionen 

z.B. durch das Involvieren freier Radikale in den Hintergrund treten.  

 

B1.4.3 Spektroskopische Untersuchungen angularer Benzoperylenbisimide 

            in einer Polymermatrix  

Zur vollständigen Untersuchung der Absorptions- und Emissionseigenschaften der angularen 

Benzoperylenbisimide wird das Bisimid 13 in einen polymerbasierten Lumineszenzsolar- 

kollektor eingebracht.[65] Dazu löst man kleine Mengen von 13 in frisch destillierten Methyl- 

methacrylat, versetzt die Lösung mit dem Radikalstarter Azobisisobutyronitril (AIBN) und 

polymerisiert die Monomer-Farbstofflösung gemeinsam in 5 mm breiten Formen aus. Man 

erhält so eine homogen mit 13 dotierte Platte aus Polymethylmethacrylat (PMMA). 

Abbildung 36 zeigt das UV/Vis-Absorptions- und Fluoreszenzspektrum eines homogen mit 

13 dotierten PMMA-Lumineszenzsolarkollektors.           

 

 

 
 

 

 

 

 

 

 

 

 

 

Abb. 36: Absorptions- und Fluoreszenzspektrum von 13 in einem PMMA-Lumineszenzsolarkollektor. 

 

Es zeigt sich, dass die Fluoreszenz auch in polymeren Medien stark ausgeprägt ist. Damit 

erfüllen die Benzoperylenbisimide eine wichtige Anforderung in Bezug auf technische 

Anwendungen zur effizientere Nutzung in der Solarenergie.    
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B2 Angulare Benzoperylenbisimide mit cyclischer Amidin-Teil- 

struktur 

 

Um ganz allgemein den Absorptions- und Emissionsbereich und damit den Farbeindruck von 

Chromophoren zu verschieben stehen mehrere Möglichkeiten zur Verfügung. Eine 

hypsochrome Verschiebung durch Kernerweiterung des Perylengrundkörpers ist bereits unter 

A1.2 bzw. B1.2 eingehend beschrieben. Will man dagegen den Absorptions- und Emissions- 

bereich bathochrom verschieben, so ist dies unter anderem durch die Vergrößerung des 

aromatischen Systems erreichbar. Bezüglich der Perylenfarbstoffe konnte dies durch Bildung 

cyclischer Perylenamidine bereits gezeigt werden. Dabei lassen sich die Amidine 42 - 45 

ausgehend von Perylendicarbonsäureanhydrid 4, Perylentetracarbonsäurebisanhydriden, 

Perylenmonoimidmonoanhydriden 2 oder Benzoperylenbisimidmonoanhydriden 7 durch 

Umsatz mit ausgewählten Diaminen darstellen[12,16,66] (siehe Abbildung 37).  

 

 

 

Abb. 37: Literaturbekannte Perylenamidine 42 - 45 (R = Aromat oder Aliphat, R´ = 1-Hexylheptyl). 

 

Unter den verwendeten Diaminen erzeugten aromatische Diamine eine signifikant 

ausgeprägtere Bathochromie als die eingesetzten aliphatischen Diamine. Besonders stark 

bathochrom absorbierend erscheinen die durch Umsatz von 1,8-Diaminonaphthalin 

synthetisierten Amidine.  
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B2.1  Entwicklung einer aromatischen Modellverbindung  

Aufgrund vorstehend erläuterten Argumenten soll überprüft werden, ob und wie ausgeprägt 

eine bathochrome Verschiebung bei Umsatz von 1,8-Diaminonaphthalin mit dem Anhydrid 

12 auftritt. Die Darstellung von 46 erfolgt analog zu einer von Kirner[16] beschrieben Synthese 

des entsprechenden Amidins 45. Dazu wird 1,8-Diaminonaphthalin mit 12 in 

Diethylenglycolmonoethylether umgesetzt.  

Abb. 38: Synthese des aromatischen Amidins 46. 

 

Nach der säulenchromatographischen Aufreinigung erhält man 46 als dunkelrotes Pulver. Das 

Massenspektrum der Verbindung zeigt den Molekülpeak bei m/z = 720 und die Fragmente der 

einfachen sec-Alkyrestabspaltung bei m/z = 538. Anhand des Massenspektrums und des 

Fehlens einer Bande im für primäre Amine typischen Bereich des IR-Spektrum lässt sich die 

Bildung einer offenen Aminform ausschließen. Die Naphthalinsignale erscheinen im 1H-

NMR-Spektrum bei 6.62 – 7.19 ppm und aromatischen Signale des Benzoperylens bei 7.45 – 

8.94 ppm. Durch die zusätzlichen Elektronen des Naphthalins werden die elektronen- 

ziehenden Effekte der Carbonyl- und der Imingruppe abgeschwächt, so dass die Protonen des 

Perylenkörpers im Vergleich zu Anhydrid 12 deutlich hochfeldverschobener erscheinen. Im 

Laufe der Reaktion können sich theoretisch die zwei Regioisomere 46a und 46b bilden 

(siehe Abbildung 39). 

 

 

 

 

 

 

 

 

 

Abb. 39: Mögliche Regioisomere von 46. 
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Im 13C-NMR-Spektrum ist jedoch nur ein Signal eines Iminkohlenstoffs bei 146.5 ppm zu 

erkennen. Dies ist ein Indiz dafür, dass ausschließlich eines der beiden Isomere entstanden ist. 

Ein NOESY-NMR-Spektrum der Substanz zeigt eine Wechselwirkung eines aliphatischen 

Protons des sec-Alkylrestes bei 1.54 ppm mit einem aromatischen Protons des Naphthalins 

bei 7.03 ppm. Diese ist nur in Isomer 46a möglich, da in 46b der Abstand zwischen 

Naphthalin und Alkykette zu groß wäre. Des Weiteren bewirkt die bekannte Rotations- 

hemmung der Alkylkette um die C-N-Bindung[67] im 1H-NMR-Spektrum eine Verdoppelung 

des Triplett-Signalsatzes der Methylprotonen des sekundären Alkylrests. Auch diese 

Behinderung der Rotation ist nur im Fall von 46a möglich. Alle genannten Indizien sprechen 

dafür, dass lediglich das Regioisomer 46a entstanden ist, obwohl dies das sterisch 

anspruchsvollere der beiden Regioisomere darstellt. Folglich haben offensichtlich 

elektronische Einflüsse eine signifikant stärkere Auswirkung auf die Bildung des Isomers als 

sterische Effekte. Für eine Strukturaufklärung über eine Einkristallstrukturanalyse konnten 

keine geeigneten Kristalle erhalten werden. Die Maxima des Absorptionsspektrums liegen bei 

357.2, 373.8, 447.2 und 501.2 nm mit bathochromen Ausläufern bis ca. 600 nm (siehe 

Abbildung 40). Diese enorme Bathochromie lässt sich durch das im Vergleich zu 12 

erweiterte π-System erklären, wodurch bereits geringere Energie zur Anregung der Elektronen 

ausreichend ist. Das Fluoreszenzspektrum von 46 mit Maxima bei 556.3, 628.3 und 702.0 nm 

ist ebenfalls bathochrom verschoben. Die Fluoreszenzquantenausbeute liegt bei 1 %, womit 

46 äußerst schwach fluoresziert. Überraschenderweise lässt sich auch kein intersystem 

crossing nachweisen, so dass die Fluoreszenzdeaktivierung nicht mit der Dominanz von 

Phosphoreszenzereignissen erklärt werden kann. Die Bildung von fluoreszenzlöschenden H-

Aggregaten kann ebenfalls ausgeschlossen werden, da die relativen Intensitäten der Banden in 

Absorptions- bzw. Fluoreszenzspektren ebenso konzentrationsunabhängig sind wie die 

Fluoreszenzquantenausbeuten. Letztlich bleibt lediglich die Erklärung der Fluoreszenzdes- 

aktivierung durch einen intramolekularen SET-Mechanismus, obwohl der ε-Wert von 46 mit 

ca. 58000 verhältnismäßig hoch ist, so dass eine spontane Fluoreszenz eigentlich begünstigt  

sein sollte. 
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Abb. 40: Absorptions- und Fluoreszenzspektrum von 46 (oben) sowie 46 in CHCl3 gelöst unter UV-Licht 

(unten). 
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B2.2 Entwicklung einer aliphatischen Modellverbindung 

 
Analog zu einer von Langhals et al.[66] beschrieben Synthese des Amidins 43 ausgehend von 

Perylenmonoimidmonoanhydrid 2 wird die Darstellung von 47 durchgeführt. 2,2-Dimethyl- 

propan-1,3-diamin wird dabei mit dem Anhydrid 12 in geschmolzenem Imidazol umgesetzt.  

 

 

Abb. 41: Synthese des aromatischen Amidins 47. 

 

Nach säulenchromatographischer Aufreinigung erhält man 47 als orangen Feststoff. Die 

Bildung von 47 ist im Massenspektrum anhand des Molekülpeaks bei m/z = 664 zu sehen. 

Zudem erscheint das durch einfache McLafferty-Abspaltung des sec-Alkylrestes entstandene 

Fragment bei m/z = 482. Das Fehlen der Banden eines primären Amins im IR-Spektrum 

belegt in Analogie zu B2.1 die ausschließliche Bildung des cyclischen Amidins 47. Die 

Protonen der beiden Methylgruppen am quartären Kohlenstoffatom des Amidinrings 

erscheinen im 1H-NMR-Spektrum als Singulett bei 1.20 ppm. Die Protonen der beiden 

Methylengruppen des Amidinrings sind als Singulett bei 3.66 bzw. 3.85 ppm zu sehen (siehe 

Abbildung 42). Ebenso wie bei 46 ist auch hier das Entstehen zweier Regioisomeren, in 

derselben Form wie in Abbildung 39 gezeigt, möglich. Jedoch ist im 1H-NMR-Spektrum nur 

ein Signalsatzzu finden. Auch das 13C-NMR-Spektrum liefert analog 46 nur das Signal eines 

Iminkohlenstoffs bei 150.1 ppm. Da das Dimethylpropan allerdings sterisch weniger 

anspruchsvoll ist als das Naphthalin, sind keine räumlichen Wechselwirkungen mit den sec-

Alkylresten zu erwarten. Bei Amidin 46 wird die bevorzugte Entstehung des Isomers 46a 

allerdings primär durch elektronische und nicht durch sterische Effekte beeinflusst. Deshalb 

ist es naheliegend, dass sich im Falle des sterisch weniger anspruchsvollen 2,2-

Dimethylpropan-1,3-diamin ebenfalls das 46a entsprechende Isomer bevorzugt bildet. Ein 

eindeutiger Beleg würde hier allerdings analog 46 über Einkristallstrukturanalysen möglich 

sein. Es werden allerdings keine geeigneten Kristalle erhalten. 
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Abb. 42: Ausschnitt des 1H-Spektrums von 47. 

 

Das UV/Vis-Absorptionsspektrum von 47 mit Maxima bei 345.0, 361.9, 424.2, 449.4 und 

464.3 nm ist ebenso wie das Fluoreszenzspektrum mit Maxima bei 475.0, 504.3 und 545.0 nm 

gegenüber den Spektren von 3 leicht hypsochrom verschoben (siehe Abbildung 43). Diese 

Beobachtung überrascht, da bei analogen Umsetzungen sowohl mit Perylenmomoimid- 

monoanhydrid 2 als auch mit Perylentertacarbonsäurebisanhydrid bathochrome Verschie- 

bungen von ca. 10 – 20 nm erhalten werden.[66] Zusätzlich unterscheidet sich die Banden- 

struktur von 47 vor allem im Fluoreszenzspektrum deutlich von den bisherigen 

Benzoperylenbisimiden (siehe Abbildung 43). Die Fluoreszenzquantenausbeute von 47 

beträgt 30 %. Da über die aliphatische Kette keine elektronische Kopplung zum 

chromophoren Grundgerüst erfolgt, kommt es bei 47 zu keiner SET-basierenden Fluoreszenz- 

desaktivierung.  
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Abb. 43: Absorptionsspektrum und Fluoreszenzspektrum von 47. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0,2

0,4

0,6

0,8

1

330 430 530 630

 λ  [nm]

E, I



THEORETISCHER TEIL                                                                                                                   51                                                                                                                                                                                                                                   

B3 Syntheseversuch von Benzoterrylenderivaten ausgehend von 

angularen Benzo[ghi]perylenfarbstoffen  

 

B3.1 Literaturbekannte Darstellung von Benzoterrylenderivaten 

Eine weitere Möglichkeit die Lichtabsorption bathochrom zu verschieben bietet eine axiale 

Kernerweiterung des Perylenbisimids 1 zum Terrylenbisimid 48.[68] Dafür kann man 

Perylenmonoimid 3 in einer Kreuzkupplungsreaktion nach Sakamoto[69] unter einer 

Schutzgasatmosphäre mit Naphthalinmonoimid und einem Gemisch der beiden Basen DBN 

und KOtBu zu 48 umsetzen. Das so entstandene Terrylenbisimid ist ein blauer Farbstoff, 

welchen man in Analogie zu Perylenmonoimid in einer Diels-Alder-Reaktion mit Maleinsäure 

umsetzen kann.[70] Dabei erhält man jedoch nicht nur das violette Monoaddukt Benzoterrylen- 

bisimidmonoanhydrid 49, sondern auch das durch zweifache Diels-Alder-Reaktion 

entstehende orange Bisaddukt Benzoterrylenbisimidbisanhydrid 50. Bisher gelang es jedoch 

nicht die beiden Diels-Alder-Addukte 49 und 50 zu trennen. Deshalb setzt man ein Gemisch 

der beiden mit 1-Nonyldecylamin zu den entsprechenden Benzoterrylentris- bzw. 

Benzoterrylentetraimiden 51 bzw. 52 um, welche sich in aufwendiger Weise voneinander 

trennen lassen (siehe Abbildung 44). Man erhält so die Verbindungen 51 und 52 in mäßigen 

Ausbeuten. Besonders das Monoaddukt 51 ist spektroskopisch von großem Interesse, da es 

einerseits als Breitbandabsorber fungieren kann und darüber hinaus einen Baustein für 

zukünftige Bichromophore Systeme auf der Basis von Benzoterrylen darstellt.   

 

             

Abb. 44: Synthese der Benzoterrylenderivate 49 - 52.[70] 

NO O
R

X

O

O

NO O
R

N
R

O O

NO O
R

DBN, KOtBu

Diglyme

NO O
R

NO O
R

48

+

X = O (49), NR (51)

NO O
R

X

O

O

NO O
R

X

O

O

+

OO O

Chloranil
1)

2) 1-Nonyldecyl-
     amin

3

X = O (50), NR (52)

R = 1-Nonyldecyl



THEORETISCHER TEIL                                                                                                                   52                                                                                                                                                                                                                                   

B3.2 Versuch der Darstellung von Benzo[ghi]terrylenbisimidmonoan- 

hydride ausgehend von Benzo[ghi]perylenmonoimidmonoanhydrid 

bzw.  Benzo[ghi]perylenbisimiden 

Eine denkbare Alternative zur Darstellung von Benzoterrylenbisimidmonoanhydriden 49 

wäre die Umsetzung von 12 mit Naphthalinmonoimiden. Auch hierbei soll eine 

Kreuzkupplung nach der Sakomoto-Methode angewandt werden (siehe Abbildung 45). Trotz 

sofortigen Farbumschlags von Orange nach Violett bei Zugabe von 3 zu einer unter Schutzgas 

befindlichen Lösung von Naphthalinimid, DBN und KOtBu in Diglyme kann man die 

Bildung von 49 bei derartigen Umsetzungen nicht nachweisen. Weder Massen- noch 

Absorptionsspektren deuten auf die Bildung von 49 hin. Der beschriebene violette 

Farbumschlag verschwindet bei Kontakt mit Luftsauerstoff. Man erhält neben dem 

nichtreagierenden Naphthalinimid lediglich das durch Reaktion mit KOtBu mit dem Anhydrid 

12 entstandene Nebenprodukt 53 (siehe Abbildung 45). Auch der Austausch des 

Lösungsmittels Diglyme durch Chinolin bzw. Toluol[71] liefert unveränderte Ergebnisse. Das 

zudem auch das Kupplungsprodukt zweier Naphthalinimide zum Perylenbisimid nur in 

Spuren entsteht, könnte daran liegen, dass das Anhydrid 12 möglicherweise als Inhibitor für 

derartige Kreuzkupplungsreaktionen wirkt. Um dies näher zu untersuchen lässt man anstelle 

des Anhydrids 12 nun das Bisimid 13 in analoger Weise mit Naphtylimiden reagieren. Die bei 

Zugabe von 13 entstehende violette Verfärbung verschwindet ebenfalls bei Kontakt mit 

Luftsauerstoff. Die Bildung von 51 kann hierbei nicht beobachtet werden. Man erhält 

lediglich ein Gemisch der nicht abreagierten Edukte.                

 

 

 

Abb. 45: Versuch der Darstellung der Benzoterrylenderivate 49 bzw. 51. 
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B4 Kernsubstituierte Benzoperylenmonoimidmonoanhydride 

 

B4.1 Kernsubstituierte Perylenmonoimide 

L. Feiler konnte zeigen, dass es möglich ist, die in  peri-Position des Perylenkerns 

befindlichen Protonen der Perylenmomoimide durch diverse Heteroatome substituieren.[12] 

Dabei gelingt es unter anderem die ein- bzw. zweifach substituierten Nitroderivate 54 bzw. 

55, die Aminoderivate 56 bzw. 57 sowie das monosubstituierte Bromderivat 58 darzustellen 

(siehe Abbildung 46). Die Lichtabsorption der Aminoderivate ist im Vergleich zu den 

Perylenmonoimiden deutlich bathochrom verschoben und weist zusätzlich eine ausgeprägte 

positive Solvatochromie auf. Darüber hinaus ist auch das monofunktionalisierte Iodderivat 59 

in der Literatur beschrieben. Letzteres erwies sich als nützliche Vorstufe zur Herstellung von 

Quaterrylenbisimiden.[72] Auch Bromderivate sind zum Aufbau komplexerer Strukturen 

geeignet.[33] Entsprechende Kernsubstitutionen sind am Benzoperylenkern linearer Benzo- 

perylentrisimide aufgrund der fehlenden Protonen in peri-Position nicht möglich. Angulare 

Benzoperylenmonoimidmonoanhydride 10 dagegen besitzen freie peri-Positionen. Daher soll 

im folgenden Abschnitt versucht werden diverse, in peri-Position des Benzoperylenkern 

substituierte, angulare Benzoperylenmonoimidemonoanhydride zu synthetisieren.      
 

 

 

 

 

 

 

 

 

 

 

 

Abb. 46: Kernsubstituierte Perylenmonoimide. 
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B4.2 Halogenierte Benzoperylenmonoimidmonoanhydride 

Eine Monohalogenierung des Anhydrids 10 in peri-Position kann prinzipiell über zwei 

Syntheserouten erfolgen. Zunächst bietet es sich an, 10 mit den entsprechenden 

Halogenierungsreagenzien umzusetzen und so die monohalogeniertes Benzoperylenmono- 

imidmonoanhydride 61a/61b zu erhalten. Alternativ ist es auch denkbar, zunächst 

monohalogeniertes Perylenmonoimid 60 ausgehend von Perylenmonoimid 3 zu synthetisieren 

und daraus im Anschluss in einer Diels-Alder-Reaktion mit Maleinsäuresanhydrid 61a/61b zu 

generieren. (siehe Abbildung 47).  

 

 

 
 

Abb. 47: Synthesemöglichkeiten monohalogenierter Benzoperylenmonoimidmonoanhydride. 
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B4.2.1 Bromierte Benzo[ghi]perylenmonoimidmonoanhydride 

Als optimal geeignetes Bromierungsreagenz für eine elektrophile aromatische Substitution 

von Perylen-3,4-dicarbonsäureimid 11 erwies sich elementares Brom in Kombination mit 

wasserfreiem K2CO3 in Chlorbenzol.[73] Dies lieferte selektiv und  in guten Ausbeuten 9-

Brom-N-(1-hexylheptyl)perylen-3,4-dicarboximid 58. Das Anhydrid 12 ist im Vergleich dazu 

noch elektronenärmer, so dass bei einer elektrophilen Substitution keine polybromierte 

Spezies zu erwarten ist. Das experimentelle Ergebnis offenbart jedoch ein anderes Bild. Bei 

Umsatz von 12 unter Lichtausschluss mit Brom und wasserfreiem K2CO3 in Chlorbenzol 

erhält man nicht wie erwartet eine selektiv bromierte Verbindung, sondern ein Gemisch aus 9-

Brom-N-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid-6,7-an- 

hydrid (62a), 10-Brom-N-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-di- 

carboximid-6,7-anhydrid (62b), 9,10-Dibrom-N-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-te- 

tracarbonsäure-3,4-dicarboximid-6,7-anhydrid (62c) sowie dem Edukt 12 (siehe Abbildung 

48 oben). Eine säulenchromatographische Auftrennung der erhaltenen bromierten Verbin- 

dungen ist nicht gelungen. Dies liegt offensichtlich an den sehr ähnlichen Rf-Werten der 

Benzoperylenmonoimidmonoanhydridderivate. Diese müssen mit einem sehr polaren Lauf- 

mittelgemisch eluiert werden, was die Auftrennung verschiedener Banden zusätzlich 

erschwert. Die Bildung des zweifachbromierten Anhydrids 62c ist überraschend, da ein 

analog zweifach bromiertes elektronenreicheres Perylenmonoimid unter gleichen Reaktions- 

bedingungen nicht gebildet wird.[73] Ein Grund für die Bildung der beiden Regioisomere 62a 

und 62b könnte die sehr ähnliche Elektronendichte an den beiden peri-Positionen von 12 sein 

(vgl. S.15 Abbildung 10). Versuche mit anderen Bromierungsregenzien, wie den 

katalytischen Einsatz  von in situ gebildeten Eisen(III )bromid[74] oder der Zugabe geringer 

Mengen von Iod zu einer einer essigsauren Lösung aus 12 und Brom[75] führten ebenfalls zu 

keinen zufriedenstellenden Ergebnissen. Deshalb wird nun auf die alternative Darstellungs- 

möglichkeit zurückgegeriffen. Hierzu wird zunächst das Perylen-3,4-dicarbonsäureimid 11 

selektiv in 9-Brom-N-(1-hexylheptyl)perylen-3,4-dicarboximid 58 überführt.[73] Nach 

anschließender Diels-Alder-Reaktion mit Maleinsäureanhydrid und Rearomatisierung erhält 

man beiden Regioisiomeren 62a und 62b. Die Bildung zweier Regioisomere erklärt sich 

durch zwei unterschiedliche, aber gleichreaktive Dien-Strukturelemente (siehe Abbildung 48 

unten). Diese lassen sich problemlos säulenchromatographisch in sehr guten Ausbeuten als 

orange Feststoffe von den Edukten abtrennen. Eine Auftrennung der beiden Regioisomere 

untereinander ist jedoch auch hier, aufgrund der bereits genannten Gründe nicht erfolgreich. 

Dies sollte jedoch die spektroskopischen Eigenschaften kaum beeinflussen. Bestätigt wird 
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dies in den UV/Vis-Absorptions- und Fluoreszenzspektren, welche im Wesentlichen den 

Spektren von 12 entsprechen. Mit einer Fluoreszenzquantenausbeute von nur 9 % 

unterscheiden sich die monobromierten Verbindungen dagegen signifikant von 12 (64 %). 

Diese Reduzierung der Fluoreszenzintensität lässt sich durch den Schweratomeffekt des 

eingeführten Broms erklären. Dabei erhöhen Schweratome in einem Farbstoff die 

Wahrscheinlichkeit eines Triplettübergangs nach Anregung mit Lichtenergie, so dass nur 

noch ein geringer Anteil der Photonen ihre Energie via Fluoreszenz abgeben kann. Der 

Großteil der Energie wird in Form von Phosphoreszenzlicht emittiert. Erstaunlicherweise ist 

dieser Effekt bei 9-Brom-N-(1-hexylheptyl)perylen-3,4-dicarboximid 58 mit einer 

Fluoreszenzquantenausbeute von 95 % nicht zu beobachten. 
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Abb. 48: Synthese der bromierten Benzoperylenmonoimidmonoanhydride ausgehend von 12 (oben) und 

Perylenmonoimid 11 (mitte) und Vergleich der Fluoreszenz von 62a/62b (unten rechts) mit 12 in CHCl3 unter 

UV-Licht (unten links). 
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B4.2.2 Iodierte Benzo[ghi]perylenmonoimidmonoanhydride 

Nachdem bei den bromierten Benzoperylenmonoimiden 62a/62b eine signifikante 

Reduzierung der Fluoreszenzquantenausbeute bestimmt worden ist, sollen im Folgenden nun 

iodierte Benzoperylenmonoimidmonoanhydride synthetisiert werden, da bei bei diesen 

Verbindungen ein noch effizienterer Schweratomeffekt zu erwarten ist. Damit sollte die 

Wahrscheinlichkeit eines Triplettübergang weiter erhöht werden und somit noch effizientere 

Phosphoreszenz ermöglicht werden. Das literaturbekannte 9-Iod-N-(1-hexylheptyl)perylen-

3,4-dicarboximid  59 ist durch Umsetzungen einer essigsauren Lösung von N-(1-

hexylheptyl)perylen-3,4-dicarboximid 11 mit Iod, Periodsäure und konzentrierter Schwefel- 

säure selektiv und in guten Ausbeuten zugänglich.[72] Dabei wird das elementare Iod in situ 

durch Periodsäure und Schwefelsäure zu einem Iodkation oxidiert, welches als Elektrophil 

von 11 angegriffen wird. Analog zur Bromierung wird auch hier zunächst die Iodierung 

ausgehend von 12 versucht. Im Gegensatz zur entsprechenden Bromierung findet bei der 

Iodierung fast kein Umsatz statt, so dass monoiodiertes Benzoperylenmonoimid- 

monoanhydrid 63 lediglich in minimalen Mengen mittels Massenspektroskopie nachgewiesen 

werden kann (siehe Abbildung 49 oben). Ein zweifach iodiertes Produkt wie bei 

entsprechender Bromierung bildet sich bei dieser Art der Iodierung nicht. Um einen 

präperativen Zugang zu selektiv monoiodierten Benzoperylenmonoimidmonoanhydriden zu 

erlangen wurde in Analogie zur Bromierung zunächst 9-Iod-N-(1-hexylheptyl)perylen-3,4-

dicarboximid  59 durch die oben beschriebene Methode aus N-(1-hexylheptyl)perylen-3,4-

dicarboximid  11 hergestellt. Dieses wird dann in der bekannten Art und Weise in einer Diels-

Alder-Reaktion zum Regiosomerengemisch 64a und 64b umgesetzt (siehe Abbildung 49 

mitte). Analog zu den bromierten Regioisomeren 62a und 62b lassen sich auch diese beiden 

Verbindungen problemlos säulenchromatographisch von den Edukten isolieren. Man erhält so 

64a und 64b in hoher Reinheit als orange Feststoffe. Das UV/Vis-Absorptionsspektrum ist 

ebenso wie das Fluoreszenzspektrum mit dem des Anhydrids 12 identisch. Jedoch ist die 

Signalintensität deutlich geringer. Dieser experimentelle Befund steht im Einklang mit einer 

gemessenen Fluoreszenzquantenausbeute von 2 % (siehe Abbildung 49 unten). Dies zeigt, das 

der Einführung eines Iods in noch beeindruckender Weise als die Einführung eines Broms zu 

einer Fluoreszenzdeaktivierung führt. In Analogie zu den bromierten Verbindungen 62a bzw. 

62b ist dies auch hier mit der erhöhten Wahrscheinlichkeit eines Triplettübergangs zu 

erklären.  
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Abb. 49: Synthese der iodierten Benzoperylenmonoimidmonoanhydride ausgehend von 12 (oben) und 

Perylenmonoimid 11 (mitte) und Vergleich der Fluoreszenz von 64a/64b (unten rechts) mit 12 in CHCl3 unter 

UV-Licht (unten links). 
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B4.3 Nitrierte Benzoperylenmonoimidmonoanhydride 

B4.3.1 Herstellung eines optimalen Precursors 

Die schwierige Trennung der unter B4.2 synthetisierten halogenierten Regioisomere lässt sich 

umgehen, indem man als Edukte Perylenmonoimide einsetzt, die in peri-Position nicht mono- 

sondern disubstituiert sind. Dadurch erhöht sich die Symmetrie der peri-substituierten 

Perylenmonoimide, so dass es bei der Umsetzung derartig substituierter Perylenmonoimiden 

in einer Diels-Alder-Reaktion zu keiner Regioisomerenbildung kommen kann. Die 

Darstellung bzw. Isolierung zweifach halogenierter Perylenmonoimide hat sich jedoch als 

sehr probematisch erwiesen (vgl. B4.2). Dagegen ist Synthese des dinitrierten 

Perylenmonoimids 55 bereits literaturbekannt.[12] Die Darstellung erfolgt mittels Nitrierung 

des Perylenmonoimids 11 (siehe Abbildung 50).      

 

 

 

 

 

 

 

 

 

Abb. 50: Synthese von 9,10-Dinitro-N-(1-hexylheptyl)perylen-3,4-dicarboximid 55.[12]  

 

Die Nitrierung von 11 verläuft analog der Halogenierung nach dem Mechanismus der 

elektrophilen Substitution. Als Elektrophil fungiert hierbei meist das Nitroniumkation NO2
+. 

Dieses kann auf verschiedene Weise in situ generiert werden. Die bekannteste Variante ist die 

Verwendung von Nitriersäure,[74] aber  auch andere Nitrierungsreagenzien wie Kupfernitrat in 

Acetanhydrid,[76] N2O4
[77] 6 oder Salpetersäure in Acetanhydrid[74] können zur Nitrierung von 

Aromaten verwendet werden. Letztere Variante erwies sich für die Nitrierung von 

Polyaromaten wie 11 als gut geeignet.[12] Hierbei handelt es sich um ein Nitrierungsreagenz 

welches trotz einer im Vergleich zur Nitriersäure geringeren Oxidationswirkung und 

Säurestärke eine ausreichend hohe Reaktivität aufweist. Bei Temperaturen unterhalb von 20 

˚C entsteht durch Autoprotolyse das Nitroniumkation und Wasser. Das Essigsäureanhydrid 
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6 Elektrophil = N3O5

+ 

NO O

11

NO O

55

HNO3 (65%)

Acetanhydrid, 
  a) 2 h 0 oC
  b) 4 h RT

NO2 NO2



THEORETISCHER TEIL                                                                                                                   60                                                                                                                                                                                                                                   

0

0,2

0,4

0,6

0,8

1

350 450 550 650 750

 λλλλ  [ [ [ [ nm]

E, I

Seite des Nitroniumkations. Steigen die Temperaturen über 20 ˚C entsteht Acetylnitrat, 

welches dann als reaktive Spezies wirkt.[78] Wegen der potentiellen Explosionsgefahr muss 

dieses Nitrierungsreagenz sowohl bei der Durchführung als auch bei der Aufarbeitung mit 

besonderer Vorsicht gehandhabt werden.[79]  Bei der Synthese  von 55 wird eine eisgekühlte 

Lösung aus konzentrierter Salpetersäure und Essigsäureanhydrid tropfenweise zu einer 

eisgekühlten Suspension von 11 gegeben und zwei Stunden unter Eiskühlung gerührt. Danach 

lässt man die Reaktionsmischung auf Raumtemperatur erwärmen und rührt weitere vier 

Stunden bei Raumtemperatur. Nach säulenchromatographischer Aufarbeitung  erhält man  

9,10-Dinitro-N-(1-hexylheptyl)perylen-3,4-dicarboximid 55 als roten, intensiv rot-orange 

fluoreszierenden Feststoff. Dabei kann 55 erstmals elementaranalysenrein und in etwas 

besseren Ausbeuten als in der Literatur beschrieben dargestellt werden. Abbildung 51 zeigt 

das UV/Vis-Absorptions- und  Fluoreszenzspektrum von 55.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 51: Absorptions- und  Fluoreszenzspektrum von 55. 

  

Sowohl das UV/Vis-Absorptions- als auch das Fluoreszenzspektrum zeigen eine deutlichere 

Bandenstruktur als die entsprechenden Spektren des Edukts 11. Die drei Absorptionsbanden 

bei 442.6, 471.6 und 505.4 sind charakteristisch für in 3,4:9,10-Position substituierte 

Perylenderivate.[73] Anders als in der Literatur [12] beschrieben, sieht man diesen symmetrie- 

bedingten Effekt auch im auch im Fluoreszenzspektrum. Darin sind die Emissionsbanden bei 

527.6 und 563.8 nm annähernd spiegelsymmetrisch zu den entsprechenden Banden des 

Absorptionsspektrums. Die Fluoreszenzquantenausbeute wird erstmals bestimmt und beträgt 
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anhähernd 100 %. Im IR-Spektrum erkennt man die charakteristischen (N=O)-Valenz- 

schwingungen der Nitrogruppen bei 1353 bzw. 1531 cm-1.     

    

B4.3.2 Darstellung des peri-dinitrierten Benzo[ghi]perylenmonoanhydrids 65 

Nach erfolgreicher Darstellung von 55 kann man dieses nun durch eine Diels-Alder-Reaktion 

mit Maleinsäureanhydrid und Rearomatisierung mit p-Chloranil zu 9,10-Dinitro-N-(1-hexyl- 

heptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid 65 umset- 

zen (siehe Abbildung 52).  

 

 

Abb. 52: Synthese von 9,10-Dinitro-N-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-   

dicarboximid-6,7-anhydrid  65. 

 

Hierbei handelt es sich wie auch bei den bisherigen Diels-Alder-Reaktionen um eine 
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Überlapp der beteiligten Grenzorbitale bekanntlich ein elektronenarmes Dienophil sowie ein 

elektronenreiches Dien. Als Dienophil fungiert weiterhin das elektronenarme Maleinsäure- 

anhydrid. Das als Dien eingesetzte 55 ist jedoch seiner beiden Nitrogruppen deutlich 

elektronenärmer als das entsprechend unsubstituierte Perylenmonoimid 11. Die daraus 
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Dienophils sollte mit eine deutlich geringere Reaktivität des Diens 55 im Vergleich zu 12 

einhergehen. Diese kann jedoch,wie schon bei analogen Diels-Alder-Reaktionen der ebenfalls 

sehr elektronenarmen Perylenbisimide 1, durch längere Reaktionszeiten kompensiert 

werden.[16] Wie bereits unter B1.2 erwähnt, verschiebt zudem das zur Rearomatisierung 

eingesetzte p-Chloranil das Gleichgewicht auf die Seite des Diels-Alder-Produkts.                      
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nitrierten Benzoperylenspezien nachweisen. Bei Verwendung von reinem 55 erkennt man die 

Bildung einer Benzoperylenspezies bei einer Temperatur von 140 ˚C schon nach einem Tag 

Reaktionszeit am Farbumschlag der Reaktionslösung von Rot nach Gelborange. Um die 

Ausbeuten zu erhöhen lässt man den Ansatz weitere zwei Tage unter den gegebenen 

Bedingungen reagieren. Man erhält auf diese Weise nach säulenchromatographischer 

Aufarbeitung das Anhydrid 65 elementaranalyenrein als orangen Feststoff. Die Ausbeute von 

ca. 60 % liegt im Bereich der ebenfalls sehr elektronenarmen Benzoperylenbisimid- 

monoanhydride 7.[16] Im IR-Spektrum erkennt man neben den (N=O)-Valenzschwingungen 

der Nitrogruppen bei 1325 bzw. 1539 cm-1 auch die Banden der (C=O)-Valenzschwingungen 

des Carbonsäureanhydrids bei 1775 und 1848 cm-1. Die aromatischen Protonen von 65 

erscheinen im 1H-NMR-Spektrum im Vergleich zu unsubstituierten Anhydrid 12 etwas 

tiefeldverschoben. Dies ist bedingt durch die stark elektronenziehenden Nitrogruppen. Im 

Vergleich mit dem  1H-NMR-Spektrum des Perylenmonoimids 55 erkennt man die Bildung 

zweier stark tieffeldverschobener Singuletts im aromatischen Bereich. Die Zuordnung der 

beiden Singuletts gelingt durch Analyse der HMBC-NMR-Spektren. Dabei koppelt das 

Singulett  bei 9.31 ppm mit einem direkt an eine Nitrogruppe gebundenen Kohlenstoff. Diese 

Kopplung kann nur durch das Proton A verursacht werden, während das etwas verbreiterte 

Singulett bei 10.31 ppm keine derartige Kopplung zeigt und so dem zwischen der Imid- und 

der Anhydridfunktion lokalisierten Proton B zugewiesen werden kann (siehe Abbildung 53). 

Im 13C-NMR-Spektrum erscheinen die beiden direkt an die Nitrogruppen gebundenen 

Kohlenstoffe bei 146.1 bzw. 147.5  ppm.  

 

 

    

 

 

 

 

 

 

Abb. 53: HMBC-NMR-Kopplungen von 65. 

 

Sowohl das Absorptions- als auch das Fluoreszenzspektrum sind im Vergleich zu 55 um ca. 
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Fluoreszenzquantenausbeute liegt diese deutlich unterhalb des im Falle des unsubstituierten 

Anhydrids 12 bestimmten Werts (64 %). Dies ist ungewöhnlich da weder die Einführung der 

beiden Nitrogruppen in das Perylenmonoimid 11 die Fluoreszenzquantenausbeute beeinflusst 

(Fluoreszenzquantenausbeute annähernd 100%) noch die alleinige Kernerweiterung des 

Perylenmonoimids 11 zum Benzoperylenmonoimidmonoanhydrid 12 eine derart intensive 

Abschwächung der Fluoreszenz verursacht. Als mögliche Gründe hierfür sind neben 

Excitonenwechselwirkungen und veränderten ISC-Raten auch Prädissoziationsprozesse 

vorstellbar, welche bereits bei mononitrierten Perylenmonoimiden diskutiert worden sind.[73]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 54a: Absorptions- (blau) und Fluoreszenzspektrum (magenta) von 65 im Vergleich zu 55 (rot). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 54b: Vergleich der Fluoreszenz von 12 (links) und 65  (rechts) in CHCl3
 unter UV-Licht. 
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B4.4 Donorsubstituierte Benzoperylenmonoimidmonoanhydride 

Die bisher beschriebenen Kernsubstitutionen angularen Benzoperylenbisimide haben keinen 

bzw. nur einen geringen Einfluss auf den Absorptions- bzw. Emissionsbereich der 

entstehenden Chromophore. Gemäß der Farbtheorie von König[80] und Ismailsky[81] sollte die 

Einführung von Elektronendonoren hingegen zu einer bathochromen Verschiebung des 

Absorptions- und Fluoreszenzbereichs führen. Dieser Theorie zufolge bestehen Farbstoffe 

häufig aus einem π-System, das sowohl mit Elektronendonor- als auch -akzeptorfunktionen 

versehen ist. Bei den in dieser Arbeit entwickelten angularen Benzoperylenmonoimidmono- 

anhydriden entspricht der Benzoperylenkern dem aromatischen System, während die 

Carbonylgruppen der Carbonsäureimide bzw. -anhydride die Elektronenakzeptoren darstellen.     

Wenn nun die fehlenden Elektronendonoren nachträglich eingeführt werden können, müsste 

dies eine bathochromen Verschiebung der Lichtabsorption zur Folge haben. Eine der 

effizientetsten Elektronendonoren sind Aminogruppen, weshalb im Folgenden versucht 

werden soll aminosubstituierter Benzoperylenmonoimidmonoanhydride zu generieren.     

    

B4.4.1 Bechamp-Reduktion des  peri-Dinitrobenzo[ghi]perylenmonoanhydrids 65  

Die Darstellung aminosubstituierter Perylenmonoimide gelingt Feiler[12] durch Reduktion  der 

entsprechenden nitrosubstituierten Perylenmonoimide. Dabei setzt er das in peri-Postion 

monosubstituierte 9-Nitro-N-(1-hexylheptyl)perylen-3,4-dicarboximid 54 in Ethanol mit 

Eisenstaub und konzentrierter Salzsäure um (siehe Abbildung 55).  

 

 

 

 

 

 

 

 

 

 

 

Abb. 55: Synthese von 9-Amino-N-(1-hexylheptyl)perylen-3,4-dicarboximid 56.[12] 
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Mit dieser als Bechamp-Reduktion[82] bekannte Methode erhält er 9-Amino-N-(1-

hexylheptyl)perylen-3,4-dicarboximid 56 als blauen Feststoff in guten Ausbeuten. Eine 

analoge Umsetzung des 9,10-Dinitro-N-(1-hexylheptyl)perylen-3,4-dicarboximid 55 ist 

dagegen nicht literaturbekannt. Aufgrund der Oxidationsempfindlichkeit aromatischer Amine 

wird auf eine Darstellung des diaminosubstituierten Benzoperylenmonoimidmonoanhydrids 

66 ausgehend von Diamin 55 verzichtet. Stattdessen bietet es sich an, das peri-Dinitro-

benzo[ghi]perylenmonoanhydrids 65 zum entsprechenden Diamin 66 zu reduzieren. Dabei 

wird die Dinitroverbindung 65 unter Lichtauschluss mittels der oben beschriebenen Bechamp-

Reduktion umgesetzt. Bereits wenige Minuten verfärbt sich die Reaktionslösung von Orange 

nach Rotviolett. Unmittelbar nach Beendigung der Reaktion kann die Bildung des Diamins 66 

zusammen mit dem Amidin 67 massenspekroskopisch nachgewiesen werden (siehe 

Abbildung 56a). Bereits wenige Stunden später lässt sich jedoch kein Diamin 66 mehr 

detektieren. Man kann eine Umwandlung von 66 in 67 annehmen. Derartige Reaktionen sind 

an 1,8-Diaminonaphthalinderivaten bereits bekannt.[83] Dabei ist jedoch die Zugabe von 

Essigsäureanhydrid notwendig, welches als Elektrophil fungiert und durch finale 

Wasserabspaltung die Cyclisierung zu Perimidindrivaten ermöglicht (siehe Abbildung 56b). 

Nachdem in der hier vorgestellten Darstellung von 67 kein Essigsäureanhydrid verwendet 

wird, kommt es möglicherweisezu einer Oxidation des als Lösungsmittel eingesetzten 

Ethanols zu Essigsäure oder reaktiven Intermediaten. Dabei kann nicht ausgeschlossen 

werden dass die Dinitroverbindung 65 als Oxidationmittel für die Oxidation von Ethanol zu 

Essigsäure fungiert und zusätzliche Folgereaktionen durch Eisen katalysiert werden. Für 

letztere Annahme spricht, dass ohne Zugabe von Eisen keine Umsetzung von 65 in Ethanol 

und konzentrierter Salzsäure erfolgt. Ebenso verhält es sich bei Substitution des Eisens durch 

2,2,6,6-Tetramethylpiperidin-1-oxyl (TEMPO). 

      

 

 

 

 

 

 

 

 

 

Abb. 56a: Reduktion von 65. 
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Abb. 56b: Möglicher Mechanismus der Bildung von Perimidinderivaten ausgehend von 1,8-

Diaminonaphthalinderivaten.  

 

Die Amidin 67 lässt sie sich nach säulenchromatographischer Aufreinigung als violetter 

Feststoff isolieren. Die Bildung von 67 wird durch die hochauflösende Massenspektroskopie 

belegt. Das IR-Spektrum zeigt eine Bande im Bereich der für Amidine charakteristischen (N-

H)-Valenzschwingung bei 3335 cm-1 sowie die amidinische (C=N)-Valenzschwingung bei 

1582 cm-1. Darüber hinaus gelingt die Aufnahme eines sehr stark verrauschten 1H-NMR-

Spektrums. Während die Signale des Benzoperylenkerns nur sehr schwach erscheinen, sind 

die aliphatischen Signale des sec-Alkylrestes sind deutlich besser zu erkennen. Das für 67 

charakteristische Singulett der amidinischen Methylgruppe überlagert offensichtlich mit den 

Methylengruppen des sec-Alkylrestes welche im Bereich von 1.07 - 1.36 erscheinen.  Da sich 

Perimidine oxidativ zu radikalischen Diazaphenalenylderivaten umwandeln lassen,[83b] soll 

abgeklärt werden, ob das schlechte Signal-Rausch-Verhältnis im 1H-NMR-Spektrum durch 

die Bildung einer radikalischen Spezies verursacht wird. ESR-Messungen liefern jedoch 

keinerlei Hinweise auf die Bildung eines Radikals. Ungewöhnlich für eine radikalische 

Spezies wäre auch die völlige Stabilität gegenüber Luftsauerstoff. Die Existenz eventueller 

Komplexverbindungen mit Eisen kann durch Gelpermeationschromatographie (GPC) ebenso 

ausgeschlossen werden wie die Bildung von Dimeren oder sonstiger Aggregate (siehe 

Abbildung 57c). Darüber hinaus lassen sich mittels Energiedispersiver Röntgenspektroskopie 

(EDX) keine signifikanten Mengen an Eisen, Kalium oder Silicium nachweisen. Abbildung 

57a zeigt die UV/Vis-Absorptions- und Fluoreszenzspektren des Amidins 67. Die Licht- 

absorption von 67 ist im Vergleich zum Edukt 65 stark bathochrom verschoben. Mit einem 

Absorptionsmaximum im UV/Vis-Spektrum bei 552 nm sowie einem Emissionsmaximum 

von 591 nm beträgt die bathochrome Verschiebung 100 bzw. 90 nm. Darüber hinaus zeigt 67 

eine ausgeprägte positive Solvatochromie, wie sie auch schon bei dem aminosubstituierten 

Perylenmonoimid 56 auftritt.[12] Hieraus lässt sich ableiten, dass 67 einen unpolaren 

elektronischen Grundzustand besitzt. Von polaren Lösungsmitteln wird dieser Grundzustand 

schlechter solvatisiert, was zu einer Anhebung des Energieniveaus führt. Daraus resultiert ein 

verkleinerter Energieunterschied zwischen elektronischen Grund- und ersten abgeregten 
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Zustand, was schließlich einen bathochromen Shift der Absorption und Fluoreszenz zu Folge 

hat (siehe Abbildung 57a). Dabei folgt die bathochrome Verschiebung von Absorption und 

Fluoreszenz im Wesentlichen der ET(30)-Skala.[84] 

Alternative Versuche wie die Reduktion von 65 mit Zinn[85] anstelle von Eisen oder die 

Reduktion mit Hydrazin und Raney-Nickel[85] führen ebenso zur Bildung von 67.   

 

 

 

 

 

 

 

 

 

Abb. 57a: UV/Vis-Absorptions- und Fluoreszenzspektren von 67 in CHCl3  (oben) sowie spektroskopische Daten 

in verschiedenen Lösungsmitteln (unten). 
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Abb. 57b: HOMO (links) und LUMO (rechts) des Methylderivats des Chromophors 67 (DFT-B3LYP). 

 

 

 

Abb. 57c: GPC-Messung von 67 ( Mn = 852 g/mol, PD = 1.04).   
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B4.4.2 Katalytische Hydrierung des  peri-Dinitrobenzo[ghi]perylenmonoanhydrids 65  

Nachdem die eindeutige Darstellung des Diamins 66 mit den bisher angewendeten 

Reduktionsmethoden nicht gelungen ist, soll abschließend die Reduktion von 65 mittels 

katalytischer Hydrierung mit molekularem Wasserstoff durchgeführt werden.[85] Dabei wird 

65 in einem Stahlautoklaven in THF gelöst, mit einem Gemisch aus Palladium auf Kohle 

versetzt und 18 Stunden unter einer Wasserstoffdruckatmosphäre (80 bar) bei Raum- 

temperatur gerührt. Man erhält auf diese Weise einen violetten Farbstoff mit orange-roter 

Fluoreszenz. Die Massenspektroskopie zeigt die Bildung des gewünschten Diamins 66, 

welches im Vergleich zu den bisherigen Versuchen auch in der hochaufgelösten Masse 

nachgewiesen werden kann. Dieses entsteht jedoch nur in geringen Mengen. Als 

Hauptprodukt erhält man das Dihydroxylamin 68, dessen Entstehung ebenfalls mittels 

hochaufgelöster Massenspektrometrie belegt werden kann (siehe Abbildung 58). In Analogie 

zu den unter B4.4.1 beschriebenen Vorgängen erweist sich das Diamin 66 auch hier als sehr 

instabil und lässt sich bereits nach wenigen Stunden nicht mehr detektieren. Die Aufnahme 

eines aussagekräftigen 1H-NMR-Spektrums gelingt analog zu B4.4.1 ebenfalls nicht. Das IR-

Spektrum zeigt Banden bei 3201, 3326 und 3611 cm-1 welche sich den  (N-H)-bzw. (O-H)-

Valenzschwingungen des Dihydroxylamins 68 zuordnen lassen.           

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 58: Struktur des Diamins 66 und Dihydroxylamins 68. 
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Abb. 59: UV/Vis-Absorptions- und Fluoreszenzmaxima von 68 in CHCl3 (oben) sowie spektroskopische Daten 

in verschiedenen Lösungsmitteln (unten). 

 

Wie aus Abbildung 59 ersichtlich, sind sowohl das Absorptions- als auch das 

Fluoreszenzspektrum von 68 - ähnlich wie 67 - im Vergleich zu Edukt 65 deutlich 

bathochrom verschoben (siehe Abbildung 59). Darüber hinaus besitzt 68 ebenfalls eine 

positive Solvatochromie. 

 

Zusammenfassend lässt sich feststellen, dass die Bildung des Diamins 66 durch Reduktion der 

Dinitroverbindung zwar nachgewiesen werden kann, eine Aufreinigung bzw. Isolierung 

aufgrund der Instabilität von 66 bisher nicht gelungen ist. Bislang sind auch keine 

Perylenderivate mit einem derartigen Substitutionsmuster bekannt. Dennoch kann gezeigt 

werden, dass die Einführung starker Elektronendonoren zu einer signifikat bathochromen 

Verschiebung des Farbeindrucks führt.      
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B5 Bichromophore auf Basis von angularen Benzoperylenbis-  

imiden 

Bichromophore Systeme fluoreszierender Verbindungen sind in den letzten Jahren verstärkt 

erforscht worden. Abhängig von der jeweiligen Orientierung der einzelnen Chromophore 

zueinander erhält man wertvolle Informationen in Bezug auf intramolekulare Energietransfer- 

prozesse wie beispielsweise den Fluoreszenzresonanzenergietransfer (FRET)[38b] oder 

Elektronenübertragungsprozesse wie den Single Electron Transfer (SET).[38c] Darüber hinaus 

finden Bichromophore Verwendung als Eichsubstanzen in der Fluoreszenzspektroskopie.[38b]  

Dabei wurden eine Vielzahl verschiedenster Farbstoffsysteme wie z.B. Naphthaline[86], 

Rhodamine [87] oder Diketopyrrolopyrrole[88] untersucht. Als eine besonders gut geeignete 

Substanzklasse erwiesen sich aufgrund hoher Photostabilität, Extiktionskoeffizienten und 

Fluoreszenzquantenausbeuten die Perylenfarbstoffe. Zunächst wurden identische Chromo- 

phore kovalent zu homogenen Systemen verknüpft, was unter  anderem zu einer über- 

proportionalen Zunahme der Extintionskoeffizienten durch räumliche Wechselwirkungen 

zwischen den einzelnen Chromophoren führte.[89] Die ersten heterogenen perylenbasierten 

Bichromophore waren die 2001 von Langhals entwickelten Perylenbisimid-Benzoperylen- 

trisimid-Bichromophore.[38b]  

 

 

B5.1 Perylenbisimid-Benzoperylentrisimid-Bichromophore 

Abbildung 60 zeigt die allgemeine Struktur bisher bekannter Perylenbisimid-

Benzoperylentrisimid-Bichromophore 69. 

 

 

 

 

 

 

 

 

 

 

Abb. 60: Allgemeine Struktur von Perylenbisimid-Benzoperylentrisimid-Bichromophore.  
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Bei derartigen Verbindungen lässt sich im Allgemeinen selbst bei selektiver Anregung des 

hypsochromer absorbierenden Benzoperylentrisimids lediglich die Fluoreszenz des 

bathochromer absorbierenden Perylenbisimids detektieren. Dies liegt daran, dass in einem 

FRET-Prozess sämtliche Fluoreszenz des als Donor fungierenden Benzoperylens von dem als 

Akzeptor wirkenden Perylenbisimid absorbiert wird, so dass lediglich die Fluoreszenz von 

Letzteren beobachtet werden kann. Durch die Variation des Spacers R kann aber die Natur 

und die Ausprägung der Energieübertragungsprozesse gesteuert werden. So führen 

beispielsweise elektronenreiche Spacer wie Biphenyle zu einem Absinken der 

Fluoreszenzquantenausbeute, da nun neben FRET- auch SET-Prozesse ausgehend vom 

Spacer in die Chromophore stattfinden.[36,38c] Ebenso verhält es sich bei signifikanter 

Verlängerung des Abstands der Chromophore, was durch Insertion entsprechender Spacer 

erreicht werden kann,[36,38c] sowie der Einführung sterisch anspruchsvoller Spacer mit 

aliphatischen Teilstrukturen. [36,38c] 

 

B5.2 Bichromophore angularer Benzoperylenbisimide mit Perylenbis- 

imiden 

Aus den in dieser Arbeit vorgestellten angularen Benzoperylenbisimide sollen im Folgenden 

ausgewählte Bichromophore synthethisiert werden. Dabei sollen heterogene Bichromophore 

angularer Benzoperylenbisimide mit Perylenbisimiden dargestellt werden und auf ihre 

spektroskopischen Eigenschaften insbesondere Resonanzenergietransferprozesse untersucht 

werden.  

 

B5.2.1 Bichromophore mit aromatischen Spacern 

Um die Resonanzenergietransferprozesse in Bichromophoren mit aromatischen Spacer zu 

untersuchen wird das Anhydrid 12 mit N-(1-Hexylheptyl)-N´-(4-amino-2,3,5,6-tetramethyl- 

phenyl)perylen-3,4,9,10-bis(dicarboximid) (70) zum Bichromophor 71 umgesetzt (siehe 

Abbildung 61). Als am besten geeignete Synthesemethode erweist sich die mikrowellen- 

unterstützte Kondensation mit dem Lösungsmittel Chinolin. Dies liefert 71 in passablen 

Ausbeuten von ca. 50%. Die Kondensation in Chinolin durch konventielle Wärmezufuhr über 

ein Ölbad, lieferte dagegen ebenso wie die Umsetzung in geschmolzenen Imidazol deutlich 

geringere Ausbeuten. Im Massenspektrum sieht man sowohl den Molekülpeak bei  m/z = 

1300 sowie die Abspaltungsprodukte der beiden Hexylheptylreste bei m/z = 1118 bzw. 936. 

Das 1H-NMR-Spektrum zeigt die Methylgruppen des Spacerfragments in Form zweier 

Singuletts bei 2.14 bzw. 2.26 ppm sowie die Methingruppen der beiden 1-Hexylheptylreste 
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als Multipletts bei 5.10 - 5.16 bzw. 5.23 - 5.31 ppm. Aufgrund der Methylgruppen des 

sterischen anspruchsvollen 2,3,5,6-Tetramethylphenyl-Spacers ist die Rotation der beiden 

chromophoren Einheiten behindert, was zu einer fixierten Anordung der aromatischen 

Systeme der beiden Chromophore zueinander führt. Da das Spacerfragment orthogonal zu 

beiden Chromophoren orientiert ist, lassen sich elektronische Wechselwirkungen der 

Chromophore über das π-System aussschließen. Dies wurde bereits an einem analogen 

Bichromophor mit Benzoperylentrisimid gezeigt.[36]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 61: Darstellung des Bichromophors 71.  
 

Das UV/Vis-Spektrum zeigt sowohl die Absorptionsmaxima des Benzoperylen- als auch des 

Perylenbisimid was einer Superposition der beiden Einzelchromophore entspricht. Das 

Fluoreszenzspektrum weist jedoch selbst bei selektiver Anregung der Benzoperyleneinheit 

lediglich die Fluoreszenz des Perylenbisimids auf (siehe Abbildung 62). Dies lässt sich durch 

einen Resonanzenergietransfer ausgehend von Benzoperylenbisimid auf das Perylenbisimid 
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erklären. Aufgrund der nicht orthogonalen Anordung der Übergangsdipolmomente der 

beteiligten Chromophore kann ein derartiger Energietransfer mit dem Förster-

Resonanzenergietransfer erklärt werden. Dabei erfolgt der Energietransfer nach selektiver 

Anregung des hypsochromer absorbierenden Donors Benzoperylen über Dipol-Dipol-

Wechselwirkungen auf den bathochromer absorbierenden Akzeptor Perylenbisimid, welcher 

die transferierte Energie schließlich als Fluoreszenzlicht emittiert. Die Fluoreszenzquanten- 

ausbeute beträgt selbst bei Anregung der Benzoperyleneinheit annähernd 100 %, obwohl die 

isolierten Benzoperyleneinheit lediglich mit einer  Fluoreszenzquantenausbeute von ca. 30 % 

emittieren. Dies spricht für einen sehr effizienten Förster-Energie-Transfer, der nicht nur mit 

der Fluoreszenz, sondern auch mit der spontanen Fluoreszenzdesaktivierung des 

Benzoperylen-Chromophors konkurrieren kann. Dies bestätigen auch photophysikalische 

Messungen. Demnach beträgt die Fluoreszenzlebensdauer in Dichlormethan bei Messung des 

Donorbande (λ = 480 nm) ≤ 10 ps und bei Messung an der Akzeptorbande (λ = 570 nm) 3.7 

ns. Damit besitzt der Energietransferprozess in 71 eine hohe Geschwindigkeitskonstante (kT ≥ 

1011 s-1), die erfolgreich mit einer Fluoreszenzlebensdauer der Benzoperyleneinheit von 

konkurrieren kann (τD = 6.7 ns).[90]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 62: UV/Vis-Absorptions- (blau)- und Fluoreszenzspektrum (magenta) des Bichromophors 71 im Vergleich 

zu den Absorptions- und Fluoreszenzspektren von 12 (orange) und  70 (grün). 
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Damit eignet sich der Bichromophor 71 herrvorragend zum Einsatz in Fluoreszenz- 

solarkollektoren. Um die Absorptions- und Fluoreszenzeigenschaften von 71  diesbezüglich 

näher zu untersuchen wird 71 in einen polymerbasierter Fluoreszenzsolarkollektor 

eingebracht.[65] Die Herstellung der Kollektoren erfolgt analog zu B1.4.3 durch radikalische 

Polymerisation einer Lösung aus frisch destillierten Methylmethacrylat, welche 71 enthält. 

Man erhält so eine homogen mit 71 dotierte Platte aus Polymethylmethacrylat (PMMA). 

Abbildung 63 zeigt das Absorptions- und Fluoreszenzspektrum eines solchen PMMA-

Fluoreszenzsolarkollektors.           

 

 

 
 

 

 

 

 

 

 

 

 

 

Abb. 63: Absorptions- und Fluoreszenzspektrum von 71 in einem PMMA-Lumineszenzsolarkollektor. 

 

Es zeigt sich das sowohl Absorption als auch Fluoreszenz auch in einer Polymermatrix stark 

ausgeprägt sind. Zudem erscheinen die Bandenformen- bzw. -intensitäten im Vergleich zum 

gelösten Zustand nicht wesentlich verändert. Dies ist von besonderer Bedeutung für 

solarenergetische Anwendungen der Bichromophors 71.  

 

Zur Überprüfung der Reaktivität der unter B.1.3.2.2 hergestellten aminfunktionalisierten 

Benzoperylenbisimide wird der Bichromophor 73 mittels mikrowellenunterstützer 

Kondensation des Amin 33 mit N-(1-Hexylheptyl)perylen-3,4-dicarboximid-9,10-anhydrid 

(72) dargestellt (siehe Abbildung 64). Die Nucleophilie von 33 ist im Vergleich zu 70 

geringer. Das freie Elektronenpaar des Aminstickstoffs von 33 wechselwirkt stärker mit dem 

π-System des Phenylspacers als das mit elektronenschiebenden Methylgruppen substituierte 

Amin 70.  Diese vergleichsweise geringe Reaktivität wird durch längere Reaktionszeiten 
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kompensiert. Im Massenspektrum erhält man den Molekülpeak bei m/z = 1243 und die 

Signale der einfachen und zweifachen Abspaltung der sec-Alkylreste bei m/z = 1061 und 878. 

Die Protonen des Phenylspacers sind im 1H-NMR-Spektrum bei 6.71 – 6.82  und 7.52 – 

7.68 ppm mit einer relativen Intensität von jeweils Zwei zu sehen. Das Absorptionsspektrum 

von 73 setzt sich additiv aus den Spektren der beteiligten Chromophore zusammen.  

 

 

 

 

 

 

Abb. 64: Darstellung des Bichromophors 73. 

 

In Analogie zu 71 kann man auch bei 73 aufgrund von Resonanzenergietransferprozessen 

ausschließlich die Fluoreszenz des Perylenbisimids detektieren (siehe Abbildung 65). Mit 

einer Fluoreszenzquantenausbeute von 97 % bei selektiver Anregung der Benzoperyleneinheit 

ist 73 ergeben sich keine wesentlichen Veränderungen zum Bichromophor 71. Im Gegensatz 

zu 71 ist aber die Rotation des Phenylspacers in 73 sterisch ungehindert, was zu einer 

variableren relativen Orientierung zwischen Spacer und den beteiligten Chromophoren führt. 

Die dadurch ermöglichte planare Anordung aller beteiligten aromatischen Systeme führt zu 
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erhöhter Aggreagationsbereitschaft, was sich anhand der schlechteren Löslichkeit von 73 im 

Vergleich zu 71 zeigt. Dieser Löslichkeitseffekt tritt auch schon bei entsprechenden 

Bichromophoren mit Benzoperylentrisimiden auf.[91]       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 65: Absorptions- und Fluoreszenzspektrum von 73. 

 

A. Esterbauer konnte anhand von Bichromophoren aus Benzoperylentrisimiden mit 

Perylenbisimiden zeigen, dass die Vergrößerung des aromatischen Systems der Spacer im 

Falle elektronenreicher Biphenyle zu einer partiellen FRET-Desaktivierung führt.[33] Grund 

hierfür sind SET-Prozesse ausgehend von der Biphenyleinheit in die beteiligten 

Chromophore. Es soll nun versucht werden einen Bichromophor mit Naphthylspacer zu 

synthetisieren um den Einfluss der Größe des aromatischen Systems des Spacer auf das 

spektroskopische Verhalten bezüglich des FRET-Übertrags der Benzoperylen- auf die 

Peryleneinheit zu untersuchen. Durch Reaktion von 37 und 72 unter den bekannten 

Synthesebedingungen kann der bichromophore Farbstoff 74 nach säulenchromato- 

graphischer Reinigung erhalten werden (siehe Abbildung 66). Die Bildung von 74 kann 

sowohl massenspektroskopisch als auch durch NMR-Spektroskopie nachgewiesen werden. So 

findet man den im Massenspektrum den Molekülpeak bei m/z = 1294 sowie im 1H-NMR-

Spektrum die Protonen des Naphthalins mit einer relativen Intensität von Sechs im Bereich 

von 7.56 – 8.03 ppm. Durch den Einsatz des  Amins 37 als Racemat wird auch der 

Bichromophor 74 als Gemisch zweier Enantiomere erhalten. Ein CD-Spektrum der Substanz 

zeigt keinerlei Signale, weshalb man davon ausgehen kann, dass auch 74 - wie erwartet - als 
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Racemat vorliegt. Ein Trennungsversuch der beiden Enantiomere mittels chiraler 

Dünnschichtchromatographie gelingt nicht. Ein Einfluss auf die optischen Spektren ist trotz 

des Vorliegens als Racemat nicht zu erwarten. Dies belegen auch die Absorptions- und 

Fluoreszenzspektren. Diese gleichen denen der bisher synthetisierten Bichromophore (siehe 

Abbildung 67). Das Absorptionsspektrum entspricht den Spektren der beiden Einzel- 

chromophore und das Fluoreszenzspektrum zeigt unabhängig von der Anregungswellenlänge 

nur die Fluoreszenz der Perylenbisimideinheit. Die Fluoreszenzquantenausbeute beträgt bei 

selektiver Anregung des Benzoperylens 96 %. Diese nahezu unverändert hohe Emission zeigt, 

dass die Vergrößerung des aromatischen Systems von Phenyl- zu Naphthylspacern keine 

Auswirkung auf die Effizienz des Resonanzenergietransfers hat. Als Resümee lässt sich 

feststellen, dass selbst bei der hier gegebenen, strukturbedingten zweidimensionale Seperation 

der beiden Chromophore ein nahezu vollständiger interchromophorer Energietransfer erfolgt.  
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Abb. 66: Darstellung (oben) sowie Absorptions- und Fluoreszenzspektrum (unten) von 74. 

 

B5.2.2 Bichromophore mit aliphatischen Spacern 

M. Speckbacher synthetisierte 2001 den ethylverbrückten Farbstoff 75 aus Benzoperylen- 

trisimid und Perylenbisimid (siehe Abbildung 67). Diese Verbindung war der erste heterogene 

Perylen-Benzoperylen-Bichromophor und findet seitdem u.a. als Eichsubstanz für Fluores- 

zenzspektrometer sowie als Fluoreszenzstandard zur Bestimmung von Fluoreszenzquanten- 

ausbeuten Verwendung.[38b]       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 67: Literaturbekannter Bichromophor 75.[38b] 
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Im Folgenden soll nun ein ethylverbrückter Bichromophor auf Basis angularer 

Benzoperylenbisimide hergestellt werden. Die Synthese der Verbindung 75 gelingt durch die 

SN2-Reaktion eines ethylbromidfunktionalisierten Perylenbisimids mit dem NH-Imid von 

Benzoperylentrisimid.[38b] Dieser Syntheseweg ist bisher alternativlos, da weder das freie 

Ethylaminderivat von Benzoperylentrisimid 5 noch von Perylenbisimid 1 bekannt ist. Eine 

Umsetzung via Kondensationsreaktion wurde deshalb bisher nicht in Betracht gezogen.        

Im Gegensatz dazu gelingt die Darstellung des ethylaminfunktionalisierten Benzoperylen- 

trisimids 32 ohne Probleme (vgl. B1.3.2.2). Der Bichromophor 76 kann so in bekannter Weise 

via mikrowellenunterstützer Kondensationsreaktion von 32 mit dem Anhydrid 72 in 

moderaten Ausbeuten erhalten werden (siehe Abbildung 68). Farbstoff 76 ist aufgrund 

fehlender löslichkeitssteigernder Substituenten im Spacerfragment nur mäßig in organischen 

Lösungsmitteln löslich.  Der Vergleich mit einer entsprechenden SN2-Umsetzung zeigt, dass 

75 via Kondensationsreaktionen  in deutlich weniger Syntheseschritten zugänglich ist. Das 

Massenspektrum zeigt den Molekülpeak bei m/z = 1196. Die Fragmente der einfachen bzw. 

zweifachen Abspaltung der sec-Alkylreste erscheinen bei m/z = 1012 und m/z = 832. Im 1H-

NMR-Spektrum sind die Protonen des Ethylspacers als Multipletts bei 3.54 – 3.74  und 3.96 – 

4.10 ppm zu sehen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 68: Darstellung des Bichromophors 76. 
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UV/Vis-Absorptions- und Fluoreszenzspektrum entsprechen den bisher beschriebenen 

bichromophoren Systemen (siehe Abbildung 69). Dies belegt, dass auch mit aliphatischen 

Spacern ein Energietransfer nach dem FRET-Mechanismus vom Benzoperylenbisimid in das 

Perylenbisimid stattfindet. Die relative Ausrichtung der Chromophore zueinander besitzt 

deutlich mehr Freiheitsgrade, da Rotationen um die sp3-hybridisierten Kohlenstoff-

Kohlenstoff-Bindungen des Ethylspacers prinzipiell möglich sein sollten. Die Fluoreszenz- 

quantenausbeute beträgt selbst bei selektiver Anregung der Benzoperyleneinheit 97 %. 

Ähnlich wie in 75 lässt sich somit fast die komplette Anregungsenergie des Donors 

Benzoperylens auf den  Akzeptor Perylenbisimid übertragen.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 69: Absorptions- und Fluoreszenzspektrum von 76. 

 

Durch die Einführung eines cyclischen aliphatischen Spacers soll sowohl der Einfluss der 

aliphatischen Kettenverlängerung als auch der Cyclisierung untersucht werden. Um zudem 

einen Vergleich zwischen aromatischen und aliphatischen Systemen zu erhalten erfolgt die 

Darstellung des Farbstoffs 77 durch Kondensation des cyclohexylfunktionalisierten Amins 36 

mit dem Anhydrid 72 (siehe Abbildung 70 oben). Cyclohexylspacer wurden bereits zur 

Untersuchung intramolekulerer Energietransferprozesse bei bichromophoren Systemen 

zwischen Porphyrinen und Flavinen[92] sowie bei Trichromophoren aus Naphthalinbisimiden 

und Tetrathiofulvalenen eingesetzt.[93] Cyclohexylverbrückte, multichromophore Systemen 

auf Perylenbasis sind jedoch bisher nicht bekannt. Erstaunlicherweise führt eine 
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Mikrowellenreaktion unter Verwendung des Lösungsmittels Chinolin zu keiner 

Produktbildung. Erst die Umsetzung der Reaktanden in geschmolzenem Imidazol und 

katalytischen Zusatz von Zn(OAc)2-Dihydrat ermöglicht Bildung des Bichromophors 77 mit 

einem trans-Cyclohexylspacer in mäßigen Ausbeuten. Das Massenspektrum zeigt den 

Produktpeak bei m/z = 1250 und die Fragmente nach ein- bzw. zweifacher Abspaltung der 

Alkylketten bei m/z = 1068 bzw. 885. Im 1H-NMR-Spektrum erscheinen die beiden 

Methinprotonen des Cyclohexyls in Form zweier Multipletts von 3.61-3.68 bzw. 3.99- 4.07 

ppm. Die Aufnahme eines aussagekräftigen 13C-NMR-Spektrums gelingt aus Löslichkeits- 

gründen nicht. Die UV/Vis-Absorptions- und Fluoreszenzspektren von 77 stehen im Einklang 

mit den bisherigen Bichromophoren (siehe Abbildung 70 unten). Da auch die Fluoreszenz- 

quantenausbeute unabhängig von der Anregungswellenlänge annähernd 100 % beträgt, hat die 

Cyclisierung alipathischer Spacerfragmente keinen Einfluss auf Energieübertragungs- 

prozesse. Auch im Vergleich zu Verbindung 73, welche als aromatisches Äquivalent von 77 

gesehen werden kann, sind keine Unterschiede bezüglich der spektroskopischen Eigen- 

schaften festzustellen.     
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Abb. 70: Darstellung (oben) sowie Absorptions- und Fluoreszenzspektrum (unten) von 77.  

 

B5.2.3 Direkt verknüpfter Bichromophor 

Wie vorstehend erörtert wird der Resonanzenergietransfer im Rahmen der hier vorgestellten 

Bichromophore 71 und 73-77 weder von deren Geometrie noch deren Elektronik der 

verwendeten Spacer wesentlich beeinflusst. Ein beide Farbstoffe direkt verknüpfender 

Bichromophor 78 erzeugt einen minimalen Interchromophor-Abstand und soll abklären, 

inwiefern sich das Fehlen eines Spacers auf die spektroskopischen Eigenschaften von 

Benzperylenbisimid-Perylenbisimid-Bichromophoren auswirkt. Hierbei konnte bereits anhand 

eines analogen Bichromophors mit Benzoperylentrisimid 5 gezeigt werden, dass trotz der 

räumlichen Nähe der beteiligten Chromophore weiterhin eine Energieübertragung nach dem 

FRET-Mechanismus stattfindet.[33] Dies lässt sich mit der orthogonalen Anordnung der 

aromatischen Ebenen der Einzelchromophore begründen. Durch diese Anordnung werden die 

interchromophoren sterischen Wechselwirkungen der Einzelchromophore minimiert, wodurch 

sich andere Übertragungsmechanismen ausschließen lassen. Durch eine mikrowellen- 

unterstützte Kondensationsreaktion des Amins 34 mit dem Anhydrid 72 kann der 

Bichromophor 78 nach säulenchromatographischer Aufarbeitung in passablen Ausbeuten als 

intensiv roter Feststoff erhalten werden (siehe Abbildung 71 oben). Die Löslichkeit ist besser 

als die der zuvor dargestellten Verbindungen 75-77 und vergleichbar mit der des 

Bichromophors 71. Die fixierte orthogonale Orientierung behindert demzufolge offensichtlich 

die Aggregation der Bichromophore 71 und 78. Das 1H-NMR-Spektrum setzt sich nahezu 

identisch aus den Spektren der entprechenden Einzelchromophore zusammen. Lediglich das 

Signal der NH2-Gruppe von 34 ist erwartungsgemäß nicht mehr zu sehen. Die Bildung eines 

bichromophoren Systems beweist die Massenspektrometrie. Dort lässt sich unter anderem der 
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Molekülpeak von 78 bei m/z = 1167 sowie die Abspaltung einer bzw. zweier sekundären 

Alkylketten bei  m/z = 985 bzw. 803 erkennen. Das Absorptionsspektrum von 78 ist eine 

Überlagerung der Spektren der eingesetzten Edukte und im Fluoreszenzspektrum lässt sich 

unabhängig von der Anregungswellenlänge nur die Fluoreszenz des Perylenbisimidteil 

detektieren (siehe Abbildung 71 unten). In Kombination mit einer Fluoreszenzquanten- 

ausbeute von 97 % bei Anregung des Benzoperylenteils lässt sich erkennen, dass analog den 

bisherigen Bichromophoren die Energie über einen FRET-Mechanismus übertragen werden 

muss. Andere Energieübetragungsmechanismen wie der Dexter-Energieübertragungs- 

mechanismus[94] setzen einen räumlichen Überlapp der beteiligten π-Orbitale der 

Chromophore voraus, welcher jedoch aufgrund der orthogonale Orientierung der beteiligten 

aromatischen Systeme nicht möglich ist.  
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Abb. 71: Darstellung (oben) sowie Absorptions- und Fluoreszenzspektrum (unten) von 78. 

 

 

 

B5.2.4 Bichromophore peri-disubstituierter angularer Benzo[ghi]perylenbisimide 

Aufgrund der strukturellen Verwandschaft zwischen angularen Benzoperylenbisimiden und 

Benzoperylentrisimiden resultieren ähnliche spektroskopische Eigenschaften der jeweiligen 

bichromophoren Verbindungen mit Perylenbisimiden, vor allem in Bezug auf 

Energietransferprozesse. Angulare Benzoperylenbisimide bieten allerdings die präperativ und 

spektroskopisch sehr interessante Option einer Funktionalisierung an den peri-Positionen des 

Benzoperylenkerns. Bei Benzoperylentrisimiden sind die peri-Positionen bereits durch 

Carbonsäureimidfunktionen besetzt, so dass eine Funktionalisierung dort nicht möglich ist. 

Die erfolgreiche Kernsubstitution angularer Benzoperylenspezies konnte dagegen bereits in 

Kapitel B4 vorgestellt werden. Dabei erweisen sich peri-disubstituierte Benzoperylene als 

geeignete Ausgangsverbindungen für weitere Umsetzungen, da hierbei im Gegensatz nur 

Monosubstitution die Bildung präperativ schwer zu trennenden Regioisomerengemische 

verhindert werden kann. Die Darstellung peri-disubstituierter Benzoperylenbisimid-

Perylenbisimid-Bichromophore eröffnet bei geeigneter Substitution die prinzipielle 

Möglichkeit zur weiteren Umsetzung der entstehenden Verbindungen zu multichromophoren 

Systemen oder die gezielte Einführung benötigter Funktionalitäten.  
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B5.2.4.1 Akzeptorsubstituierter Bichromophor 

Der unter B4.3.2 dargestellte peri-dinitrierte Benzoperylenfarbstoff 65  sowie das Amin 70 

stellen  optimale Edukte für die Darstellung eines akzeptorsubstituierten Bichromophors dar. 

Zunächst sollen die optimalen Reaktionsbedingungen für die Umsetzung mit dem 

Perylenbisimid 70 evaluiert werden. Dazu löst man 65 und 70 in Chinolin und lässt die 

Reaktionslösung unter Mikrowellenbestrahlung bei 210 ˚C reagieren. Dies führte jedoch nur 

zur Bildung von Spuren des gewünschten Bichromophors 79. Erst eine säurekatalytische 

Kondensation mit TFA und Aktivierung der Carbonylgruppen mit DCC liefert 79 in 

moderaten Ausbeuten (siehe Abbildung 72). Nach säulenchromatographischer Aufarbeitung 

kann der Bichromophor 79 in elementaranalysenreiner Form als roter Feststoff isoliert 

werden. Das Massenspektrum belegt die Bildung von 79 durch den Molekülpeak bei m/z = 

1390. Im 1H-NMR-Spektrum sieht man zwei signifikant tieffeldverschobene Singuletts bei 

10.32 und 10.61 ppm. Diese lassen sich analog zu 65 den beiden isolierten aromatischen 

Protonen des Benzoperylenteils zuweisen. Die Zuordnung der beiden Singuletts gelingt durch 

HMBC-NMR-Spektren und verhält sich wie im Falle von 65 (siehe B4.3.2).  Im 13C-NMR-

Spektrum erscheinen die charakteristischen Signale der beiden direkt an die Nitrogruppen 

gebundenen Kohlenstoffe bei 146.0 bzw. 147.3  ppm. Zwei intensive IR-Absorptionen bei 

1325 bzw. 1542 cm-1 kann den  (N=O)-Valenzschwingungen der beiden Nitrogruppen 

zugeordnet werden. Das UV/Vis-Spektrum enthält erwartungsgemäß sämtliche 

Absorptionsbanden der beiden Einzelchromophore. Dagegen liefert Fluoreszenzspektrum 

auch bei selektiver Anregung des Benzoperylenteils ausschließlich die Fluoreszenz des 

Perylenteils, wobei die beiden langwelligen Absorptionsbanden etwas weniger intensiv 

emittieren als entsprechende Perylenbisimide (siehe Abbildung 73). Die Fluoreszenzquanten- 

ausbeute beträgt bei Anregung des Benzoperylens 97 % und bei Anregung des Perylen- 

bisimids 99 %. Dies überrascht, da die Fluoreszenzquantenausbeute von 65 lediglich 12 % 

beträgt. Dies zeigt, dass es sich um einen sehr schnellen Energietransfer handeln muss, 

welcher mit der Fluoreszenzlebensdauer der Benzoperyleneinheit konkurrieren kann. Diese 

Ergebnisse zeigen, dass die Einführung starker Elektronenakzeptoren den Energietransfer 

nicht beeinträchtigt, so dass es auch im Falle von 79 ein Resonanzenergietransfer nach dem 

Förstermechanismus vorliegt.            
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Abb. 72: Darstellung des Bichromophors 79. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 73: Absorptions- (blau)- und Fluoreszenzspektrum (magenta) des Bichromophors 79 im Vergleich zu den 

Absorptions- und Fluoreszenzspektren von 65 (orange) und  70 (grün). 
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B5.2.4.2 Donorsubstituierter Bichromophor 

Die Darstellung donorsubstituierter Bichromophore aus Benzoperylenbisimiden und 

Perylenbisimiden eröffnet erstmals die Möglichkeit, bei Benzoperylen-Perylenbisimid-

Bichromophoren Donor und Akzeptorfunktion in intramolekularen Energietransferprozessen 

umzukehren. Wie bereits unter B4.4 beschrieben, führt die Einführung starker 

Elektronendonoren in angulare Benzoperylenderivate zu einer enormen bathochromen 

Verschiebung des Absorptionsbereichs. Diese sollte theoretisch ausreichend sein, damit die 

Benzoperyleneinheit in Bichromophoren mit Perylenbisimiden als Akzeptor fungieren kann. 

Durch Umsetzung der unter B4.4 erzeugten Verbindungen soll dies nun experimentell 

überprüft werden. Zunächst wird versucht, das unter B4.4 synthetisierte donorsubstituierte 

Benzoperylenderivat 67 durch Kondensationsreaktion mit dem Amin 70 umzusetzen. Die 

Lichtabsorption des Amidins 67 ist im Vergleich zum unsubstituierten Anhydrid 12 sehr stark 

bathochrom verschoben, so dass 67 als violette Verbindung erscheint. Leider erweist sich 67 

als resistent gegen jegliche Art der Kondensationschemie, so dass eine Darstellung 

donorsubstituierter Bichromophore über diesen Weg nicht gelingt. Um dennoch einen Zugang 

zu donorsubstituierten Bichromophoren zu erhalten, wird der neu entwickelte und präperativ 

gut zugängliche dinitrosubstituierte Bichromophor 79 reduziert (siehe Abbildung 74).  

Zunächst wird 79 in Analogie zu B4.4 mittels der Bechamp-Reduktion unter Lichtausschluss 

in ethanolischer Lösung mit Eisenstaub und konzentrierter Salzsäure umgesetzt. Dabei soll 

abgeklärt werden, ob das bei der Reduktion von 79 entstehenden Diamins ebenso instabil ist, 

wie das, bei  der Reduktion des dinitrosubstituierten Chromophors 65 gebildete Diamin 66. 

Tatsächlich verhalten sich beide Reaktionen identisch. Bereits kurze Zeit nach Erreichen der 

Reaktionstemperatur verfärbt sich die Reaktionslösung von Orange nach Rotviolett. Nach 

Beendigung der Reaktion lässt sich das Diamin 80 zusammen mit dem Amidin 81 

massenspektroskopisch nachweisen. Bereits wenige Stunden später lässt sich jedoch kein 80 

mehr detektieren. In Analogie zu den Vorgängen im Falle des entsprechenden mono- 

chromophoren Diamins 66 kann man auch hier eine Umwandlung von 80 in 81 annehmen. 

Die Bildung des Amidins 81 ausgehend von 79 bzw. 80 sollte analog zur unter B.4.4.1 

detailiert beschriebenen Bildung des Amidins 67 ablaufen.  
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Abb. 74: Bechamp-Reduktion des Bichromophors 79. 

 

Die Isolierung von 81 erfolgt säulenchromatographisch und liefert 81 als violetten Feststoff. 

Die Aufnahme aussagekräftiger NMR-Spektren gelingt analog 67 nicht. Das IR-Spektrum 

von 81 zeigt zwei Banden im Bereich der amidinischen (N-H)-Valenzschwingung bei 3186 
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Absorptionsbande bei 1700 cm-1, welche der amidinischen (C=N)-Valenzschwingung 

zugeschrieben werden kann. Abbildung 75 zeigt das UV/Vis-Absorptions- und 

Fluoreszenzspektrum von 81.  

 

 

 

    

 

 

 

 

 

 

 

 

 

 

Abb. 75: Absorptions- (blau) und Fluoreszenzspektren (magenta = λex = 490 nm; rot = λex = 560 nm) von 81.  

 

Man erkennt im UV/Vis-Spektrum drei signifikante Absorptionbanden bei 457.8, 490.0 und 

527.6 nm, welche dem Perylenbisimidteil von 81 zugeordnet werden können. Eine weitere 

stark verbreiterte Bande bei ca. 560 nm entspricht der Absorption des donorsubstituierten 

Benzoperylenteils. Während also das Absorptionsspektrum im Wesentlichen eine 

Überlagerung der Absorption beider Einzelchromophore darstellt, ist im Fluoreszenzspektrum 

selbst bei Anregung des Perylenbisimids bei 490 nm fast ausschließlich eine Emission bei ca. 

660 nm zu sehen. Die schwache Absorptionsbande bei ca. 537 nm wird nicht vom 

Perylenbisimidteil des Bichromophors 81 verursacht, sondern ist eine säulenchromato- 

graphisch nicht abtrennbare Verunreinigung von 81. Bei selektiver Anregung des 

donorsubstituierten Benzoperylens bei 560 nm erhält man ausschließlich die Fluoreszenz des 

Benzoperylens, jedoch bei einer Wellenlänge von ca. 680 nm. Ein möglicher Grund für die 

unterschiedlichen Emissionsmaxima könnte das Vorhandensein zweier verschiedener 

Verbindungen sein. Trotz aller Syntheseproblematik kann jedoch gezeigt werden, dass die 

Energieübertragung in 81 über einen FRET-Mechanismus verlaufen muss, da bei bevorzugter 

Anregung des Perylenbisimids keine signifikanten Emissionsbanden des Perylens erzeugt 

werden und darüber hinaus die Fluoreszenzquantenausbeute bei Anregung des Perylen- 
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bisimids lediglich 8 % beträgt. Des Weiteren besitzt  81 ebenso wie 67 ausgeprägte 

solvatochrome Effekte (siehe Abbildung 76).      

 

 

Abb. 76: UV/Vis-Absorptions- und Fluoreszenzmaxima von 81 in verschiedenen Lösungsmitteln. 

 

Zur eindeutigen Darstellung des Diamins 80 soll nun die Dinitroverbindung 79 mittels 

katalytischer Hydrierung mit molekularem Wasserstoff reduziert werden.[85] Dabei wird 79 in 

einem Stahlautoklaven in THF gelöst, mit einem Gemisch aus Palladium auf Kohle versetzt 

und 16 Stunden unter einer Wasserstoffdruckatmosphäre (80 bar) bei Raumtemperatur 

gerührt. Man erhält auf diese Weise einen rot-violetten Farbstoff mit orange-roter 

Fluoreszenz. Die Massenspektroskopie zeigt die Bildung des gewünschten Diamins 80, 

dessen Struktur mit einem hochaufgelösten Massenspektrum belegt werden kann. Dieses 

entsteht jedoch nur im Gemisch mit weiteren Reduktionsprodukten 82 - 85 (siehe Abbildung 

77) deren Entstehung ebenfalls mittels hochaufgelöster Massenspektrometrie belegt werden 

kann (siehe Abbildung 58). Die Substanzen  82 - 85 entstehen offensichtlich durch Oxidation 

von 80. In Analogie zu den bei der Bechamp-Reduktion beschriebenen Vorgängen erweist 

sich das Diamin 80 auch hier als sehr instabil und lässt sich bereits nach wenigen Stunden 

nicht mehr detektieren. Die Aufnahme eines aussagekräftigen 1H-NMR-Spektrums gelingt 

analog zu B4.4.1 ebenfalls nicht. Das IR-Spektrum zeigt eine Bande bei 3385 cm-1, welche 

sich den (N-H)-Valenzschwingungen zuordnen lassen.           

 

 

 

 

 

 

 

 
9 Relative Polarität nach der ET(30)-Skala.[84] 

Lösungsmittel ET(30)9 
Absorption 

[nm] 

Fluoreszenz 

[nm] 

Stokes Shift 

[nm] 

Toluol 33.9 457.1, 489.5, 527.4, 549.3. 610.5 61.2 

CHCl3 39.1 457.8, 490.0, 527.6, 561.4 680.1 (657.0) 118.7 (95.6) 

DMF 51.9 457.8, 490.0, 527.6, 598.0 614.0 16.0 
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Abb. 77: Reaktionsprodukte der katalytischen Hydrierung von 79 (oben) sowie UV/Vis-Absorptions- (blau) und 

Fluoreszenzspektren in CHCl3 (mitte) (magenta = λex = 550 nm; rot = λex = 560 nm) und spektroskopische Daten 

in verschiedenen Lösungsmitteln (unten) 

  . 

Das UV/Vis-Absorptionsspektrum entspricht mit drei signifikanten Perylenbisimidbanden bei 

457.8, 490.0 und 527.6 nm sowie einer verbreiterten Benzoperylenbande bei ca. 545 nm einer 

Überlagerung der Absorption beider Einzelchromophore. Im Fluoreszenzspektrum ist fast 

ausschließlich eine Emission mit Maxima bei 585.6, 630.4 und 709.6 nm zu sehen. Die 

 
10 Relative Polarität nach der ET(30)-Skala.[84] 

Lösungsmittel ET(30)10 
Absorption 

[nm] 

Fluoreszenz 

[nm] 

Stokes Shift 

[nm] 

Toluol 33.9 459.4, 491.2, 527.6, 540.2 578.6, 624.4, 695.5 38.4 

CHCl3 39.1 456.8, 489.6, 526.8, 545.4 585.6, 630.4, 709.6 40.2 

DMF 51.9 459.2, 490.8, 527.4, 599.8 634.1 34.3 
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schwache Emissionsbande bei ca. 537 nm ist eine Verunreinigung und wird nicht vom 

Perylenbisimidteil des Bichromophors verursacht. Analog zu 81 verläuft die Energie- 

übertragung auch hier über einen FRET-Mechanismus von Perylenbisimid auf die 

donorsubstituierten Benzoperyleneinheiten (siehe Abbildung 77 mitte). Des Weiteren ist hier 

ebenso wie 81 das Auftreten ausgeprägter solvatochromer Effekte feststellbar. 

 

Zusammenfassend lässt sich feststellen, dass die Bildung des Diamins 80 durch Reduktion der 

Dinitroverbindung zwar nachgewiesen werden kann, eine Aufreinigung bzw. Isolierung 

aufgrund der Instabilität von 80 bisher nicht gelungen ist. Bichromophore Perylenderivate mit 

einem derartigen Substitutionsmuster sind bislang noch nicht bekannt. Dennoch kann gezeigt 

werden, dass donorsubstituierte Benzoperylenbisimide die Akzeptoren bei FRET-

Energieübertragungen in Bichromophoren mit Perylenbisimiden darstellen können.         
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B5.3 Bichromophore zweier angularer Benzoperylenbisimide 

Nach ausführlichen Untersuchungen heterogener Bichromophore angularer Benzoperylen- 

bisimide wird  im folgenden Kapitel die Darstellung homogener Benzoperylen-Benzoperylen-

Bichromophore beschrieben. Homogene Bichromophore zweier methylenverbrückter Benzo- 

perylentrisimide wurden erstmals 2001 von M. Speckbacher entwickelt.[38a] Weitere bekannte 

Bichromophore auf Basis von Benzoperylentrisimid sind die phenylen- bzw. tetramethyl- 

phenylenverbrückten Bichromophore 87 bzw. 88[91] (siehe Abbildung 78).      

 

 

 

 

 

 

 

 

 

 

 

Abb. 78: Homogene Benzoperylentrisimidbichromophore 86 - 88.[38a, 91] 

 

B5.3.1 Bichromophor mit aromatischem Spacer  

Zunächst wird ein homogener Benzoperylenbisimidbichromophor mit Phenylspacer 

hergestellt. Dabei lässt man das Amin 33 mit dem Anhydrid 12 in bekannter Art und Weise in 

einer mikrowellenunterstützten Kondensationsreaktion reagieren. Man erhält dadurch nach 

säulenchromatographischer Aufarbeitung den Bichromophor 89 als gelb-orangen Feststoff 

(siehe Abbildung 79 oben). Die vergleichsweise geringen Nucleophilie des Amins 33 wird 

analog zur Darstellung des heterogenen phenylenverbrückten Bichromophors 73 durch 

längere Reaktionszeiten kompensiert (vgl. B5.2.1). Der Molekülpeak von 89 ist im  Massen- 

spektrum zwar nicht sichtbar, die Produktbildung  lässt sich aber durch eindeutige Produkt- 

fragmente, wie die nach Abspaltung eines bzw. zweier Alkylreste entstehenden Fragmente bei 

m/z = 1086 bzw. 903 belegen. Zusätzlich besitzt die isolierte Verbindung 89 einen von beiden 

Edukten stark abweichenden Rf-Wert. Das 1H-NMR-Spektrum erscheinen die Protonen des 

Phenylspacers als Dupletts bei 7.43 bzw. 7.46 ppm mit einer Kopplungskonstante von jeweils 

7.0 Hz. Das Absorptionsspektrum entspricht mit seinen Maxima bei 349.2, 366.2, 414.0, 
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436.8 und 477.4 nm ebenso den für orthogonale Benzoperylenbiimide zu erwartenden 

Werten, wie das Fluoreszenzspektrum Maxima bei 497.8 und 527.0 nm (siehe Abbildung 79). 

Auch die Fluoreszenzquantenausbeute liegt mit 34 % im Bereich angularer 

Benzoperylenbisimide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 79: Darstellung (oben) sowie UV/Vis-Absorptions- und Fluoreszenzspektrum (unten) von 89.  
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B5.3.2 Bichromophor mit sterisch gehindertem aromatischem Spacer  

In Verbindung 89 können beide Benzoperyleneinheiten um die C-N-Verbindungsachse 

zwischen den Imidstickstoffen und den phenylischen Kohlenstoffen frei rotieren. Die 

Einführung sterisch anspruchsvoller Spacer wie 2,3,5,6,-Tetramethylphenylen führt aufgrund 

sterischer Wechselwirkungen der Methylgruppen des Spacers mit den Carbonylgruppen der 

Imide zu einer fixierten Orientierung der Benzoperyleneinheiten. Lässt man nun das Amin 35 

mit dem Anhydrid 12 reagieren erhält man die beiden Diastereomere 90a und 90b in 

moderaten Ausbeuten als gelb-orangen Feststoff (siehe Abbildung 81). Die säulenchromato- 

graphische Trennung beider Diastereomere gelingt nicht, weshalb sich die weitere Analytik 

auf das Diastereomerengemisch bezieht. Im Massenspektrum von 16 findet man neben dem 

Molekülpeak bei m/z = 1324, auch weitere charakteristische Fragmente. Wie bereits in den 

bisherigen Verbindungen sieht man die Abspaltung von  einem bzw. beiden sec-Alkylresten 

bei m/z =1141  bzw 959.  Das 1H-NMR-Spektrum liefert neben den üblichen Signalen des 

Benzoperylenkerns und der sekundären Alkylketten zwei fast identische Singuletts bei 2.356 

bzw. 2.361 ppm (siehe Abbildung 80). Langhals et al. konnte Rotationsbarrieren der sec- 

Alkylreste in Perylen- bzw. Benzoperylenimide bestimmen.[67] Die Annahme dass lediglich 

ein Diastereomer entstanden ist und die Signalaufspaltung durch verschiedene Orientierung 

der sekundären Alkylreste verursacht wird kann jedoch mittels temperaturabhängiger NMR-

spektropkopischer Messungen ausgeschlossen werden. Dabei ist im für Perylenbisimide 

typischen Temperaturbereich keine Koaleszenz der beiden Singuletts ersichtlich. Dadurch 

wird die Existenz eines Diastereomerengemischs auch experimentell belegt, da sowohl in 90a 

als auch in 90b alle vier Methylgruppen des Tetramethylphenylenspacers chemisch äquivalent 

sind, und somit in Falle der exklusiven Bildung eines Diastereomers nur ein Signal für die 

Methylgruppen sichtbar sein sollte.  

 

 

 

 

 

 

 

 

 

 

Abb. 80: Ausschnitt des 1H-NMR-Spektrums von 90. 
[ppm] 
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Abb. 81: Darstellung von 90. 

 

 

Die Maxima im Absorptions- und Fluoreszenzspektren erscheinen im Bereich der bisherigen  

Benzoperylenbisimide. Bei beiden Diastereomeren befinden sich die elektronischen 

Übergangsdipolmomente in fixierter Position, so dass Excitonenwechsewirkungen auftreten, 

die sich in einer Veränderung der Intensität der Absorptionsbanden im Vergleich zu 

Monochromophoren Bisimid 13 äußern (siehe Abbildung 80). Die Fluoreszenzquanten- 

ausbeute ist mit 36 % im Bereich entsprechender monochromophorer Benzoperylenbisimide. 
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Abb. 82: UV/Vis-Absorptions- (blau) und Fluoreszenzspektrum (magenta) von 90 sowie UV/Vis-

Absorptionsspektrum der monochromophoren Verbindung 13 (rot). 
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B6 Bichromophore auf Basis von Corrolen 

Corrole 91 gehören zur Verbindungsklasse der cyclischen Tetrapyrrole. Sie unterscheiden 

sich von den weitaus bekannteren Porphyrinen 92 durch das Fehlen einer Methinbrücke (siehe 

Abbildung 83). Mit insgesamt 18 π-Elektronen erfüllt 91 ebenso wie 92 die Hückel´sche 

Aromatizitätsregel. Durch die Einführung elektronenziehender Substituenten in den meso-

Positionen lässt sich die Photostabiltät von Corrolen weiter erhöhen.[95] Während die 

Porphyrine schon ausführlich bezüglich lichtinduzierter Prozesse untersucht wurden,[96] gibt 

es bei den Corrolen erst einige wenige Arbeiten, welche die Anwendung von corrolbasierten 

Konstruktionen zur Erzeugung lichtinduzierter Prozesse beschreiben. Dabei werden unter 

anderem bichromophore Systeme von Corrolen mit Farbstoffen wie Porphyrinen[97] und 

Naphthylimiden[98]  beschrieben.  

 

 

 

 

 

 

 

 

 
 

Abb. 83: Allgemeine Struktur der Corrole 91 und Porpyhrine 92. 

 

 

B6.1 Corrol-Perylen Bichromophore 

Ein weiteres Beispiel photoaktiver Substanzen sind die durch Verknüpfung von 

Perylenbisimiden mit Corrolen zugänglichen bichromophoren Verbindungen 93 - 95, die in 

der Lage sind, die absorbierte Lichtenergie in chemische Energie umzuwandeln (siehe 

Abbildung 84). Bei diesen Farbstoffen kommt es nach Anregung des Perylenbisimidteils zu 

einem sehr effizienter Single Electron Transfer (SET) des elektronenreichen Corrols auf das 

elektronenarme Perylenbisimid. Die Bildung dieses Charge-Separated-State (CS)  resultiert 

in einer annähernd vollständigen Fluoreszenzlöschung des Perylenbisimids.[99] Da derartige 

Prozesse sowohl in der Photosynthese als auch in der Photovoltaik von elementarer 
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Bedeutung sind, ist die Synthese weiterer Modellsubstanzen auf Basis von Corrolen äußerst 

interessant. Dabei ist neben der Effizienz des Elektronentransfers ΦCS vor allem die 

Lebenszeit des energiespeichernden CS-Zustandes τCS einer der wesentlichen Parameter im 

Bezug auf zukünftige technologische Anwendungen. Letztere ist von den Energien des CS-

Zustands ECS und der angeregten Zustände E* abhängig, indem mit steigender ECS
 bzw. E* 

auch τCS verlängert wird.[100] Benzoperylenbis -bzw. -trisimide absorbieren und emittieren 

Licht bei höherer Energie als entsprechende Perylenbisimide. Darüber hinaus sind sie 

elektronenärmere Systeme als Perylenbisimide, wodurch sie effizientere Elektronenakzep- 

toren darstellen sollten. Deshalb soll im Folgenden versucht werden, geeignet 

funktionalisierte angulare Benzoperylene, Benzoperylentrisimide und lateral erweiterte 

Perylenbisimide mit Corrolen zu den entsprechenden Bichromophoren umzusetzen. 

Abbildung 84 zeigt die bisher bekannten Corrrol-Perylenbisimid Bichromophore 93 - 95.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 84: Corrol-Perylenbisimid-Bichromophore 93 - 95. 
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B6.2 Bichromophore angularer Benzoperylenbisimide mit Corrolen 

 

B6.2.1 10-[N-(1-Hexylheptyl)-N´-(benzyl)benzo[ghi]perylen-3,4:6,7-bis(dicarboxim- 

id)] -5,15-bis(2,6-dichlorophenyl)corrol (98) 

Allgemein lassen sich Corrolderivate durch Umsetzung von Pyrrol mit Aldehyden gewinnen. 

Dabei entsteht durch säurekatalysierte Kondensation zweier Äquivalente Aldehyd mit vier 

Äquivalenten Pyrrol zunächst das lineares Tetrapyrrolderivat11 96. Der Ringschluss zum 

Corrol 97 erfolgt im Anschluss durch Oxidation mit Chloranil oder DDQ[101] (siehe 

Abbildung 85). Dadurch erhält man mit homogenen Resten substituierte Corrolderivate in 

guten Ausbeuten.     

 

 

Abb. 85: Synthese homogen substituierter Corrole 

 

Im Falle der hier benötigten heterogen substituierten Bichromophore ist diese Strategie jedoch 

nicht geeignet, da man unterschiedliche Reste an den Substitutionsstellen des Corrols 

benötigt. Die  für die ausreichende Photostabilität des Corrols benötigten Substituenten in 

meso-Positionen sollen identische sein, während die 10´-Position mit einem Benzoperylen- 

derivat substituiert sein soll. Ähnliche Anforderungen an die Syntheseplanung treten bereits 

bei den Corrol-Perylenbisimid-Bichromophoren 93 - 95 auf. Deshalb wird dort zunächst ein 

geeignet substituiertes Dipyrromethan hergestellt, welches mit aldehydfunktionalisierten 

Perylenbisimiden umgesetzt wird und nach Oxidation die Bichromophore 93 - 95 liefert.[99]  

Dieser Syntheseweg eignet sich auch zur Darstellung des Bichromophors 98. Die Synthese 

aldehydfunktionalisierter angularer Benzoperylenbisimide wurde bereits ausführlich unter 

B1.3.2.1 erörtert. Die säurekatalysierte Reaktion des Aldehyds 21 mit 2,6-Dichloro- 

phenyldipyrromethan 99 liefert zunächst das lineare Tetrapyrrolderivat 100, welches sich 

durch Zugabe von Chloranil zum Corrol-Benzoperylenbisimid-Bichromophor 98 cyclisieren 

 
11 Lineare Tetrapyrrole werden auch als Gallenfarbstoffe bezeichnet. 
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lässt (siehe Abbildung 86). Nach säulenchromatographischer Aufarbeitung erhält man 98 als 

grünen Feststoff.  

 

 

 

 

Abb. 86: Synthese des Corrol-Benzoperylenbisimid-Bichromophors 98. 
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Abspaltung des sekundären Alkylrests bzw. des Benzoperylenkerns entstehenden Fragmente 

bei m/z = 1091 bzw. 675. Die charakteristischen (N-H)-Valenzschwingungen des Corrolkerns 

sind im IR-Spektrum in Form zweier schwacher Banden bei 3854 und 3676 cm-1 sichtbar.     

Das 1H-NMR-Spektrum zeigt unter anderem ein stark tieffeldverschobenes verbreitertes 

Singulett bei 10.32 ppm, welches dem zwischen den Imidfunktionen lokalisierten Proton des 

Benzoperylengerüst zuzuordnen ist. Die Bildung des Corrolkerns belegt ein breites, extrem 

hochfeldverschobenes Singulett zwischen -2.94 und -2.77 ppm. Dieses wird durch die 

Protonen der drei sekundären Aminfunktionalitäten erzeugt. Aufgrund des Ringstromeffekt 

und der Lokalisierung werden diese Protonen sehr stark abgeschirmt, wodurch es zu dieser 

signifikanten Hochfeldverschiebung kommt (siehe Abbildung 87).   

 

Abb. 87: Ausschnitt des 1H-NMR-Spektrums von  98. 

 

Das Absorptionsspektrum zeigt Maxima bei 350.8, 366.0, 413.0, 433.8 und 473.9 nm sowie 

eine Reihe schwächerer Absorptionen bei 567.2, 608.0, 639.6 und 715.6 nm. Damit setzt sich 

das Spektrum 98 additiv aus den Werten des Aldehyds 21 und der Corrol-Referenzsubstanz 

101 zusammen. Eine Fluoreszenzquantenausbeute von weniger als 2 % bei Anregung des 

Benzoperylenbisimids ergibt eine annähernd vollständige Fluoreszenzdeaktivierung, der 

üblicherweise mit ca. 30 % Fluoreszenzquantenausbeute emittierenden Benzoperylen- 

bisimide. Es ist lediglich die schwache Eigenfluoreszenz des Corrols bei einem 
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Emissionsmaximimum von ca. 660 nm zu sehen (siehe Abbildung 88). Die drastische 

Reduktion der Fluoreszenzquantenausbeute zeigt, dass die Photophysik der elektronisch 

angeregten Zustände von 98 durch SET-Prozesse vom elektronenreichen Corrol-System auf 

die elektronenarme Benzoperylen-Einheit dominiert wird. Dadurch kommt es zur Bildung 

eines Charge Separated State (CS). Des Weiteren ist ersichtlich, dass der verbleibende FRET-

Prozess effizient mit der Fluoreszenz des Benzoperylen-Chromophors konkurrieren kann, 

denn bei der optischen Anregung des Benzoperylen-Chromophors wird dessen Fluoreszenz 

unterdrückt, und man beobachtet ausschließlich die Fluoreszenz des Corrols.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 88: Oben: UV/Vis-Absorptions- (blau) und Fluoreszenzspektren (magenta = λex = 410 nm; grün = λex = 366 

nm) von 98  im Vergleich mit UV/Vis-Absorptions- und Fluoreszenzspektren von 13 (rot) und C2 (violett); 

Unten: Struktur der Corrolreferenz 101. 
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B6.2.2 10-[N-(1-Hexylheptyl)-N´-(4-phenylbenzyl)benzo[ghi]perylen-3,4:6,7-bis(dicarb- 

oximid)]-5,15-bis(2,6-dichlorophenyl)corrol (102) 

Um die Auswirkungen des relativen Abstands beider Chromophore auf die Photophysik  zu 

untersuchen, ist eine Verlängerung des - die beiden Chromophore verbindenden - Spacers 

nötig. Dazu muss der Abstand der Aldehydfunktion zum Benzoperylenbisimid vergrößert 

werden. Der unter B1.3.2.1.2 dargestellte Aldehyd 24 ist im Vergleich zu 21 um eine Phenyl- 

einheit verlängert und erfüllt damit die nötigen Voraussetzungen für die Umsetzung. In 

Analogie zu  der unter B6.2.1 beschriebenen Synthese von 98 erhält man den phenylbenzyl- 

verbrückten Bichromophor 102 durch Umsetzung von 24 mit 99. Die Aufreinigung erfolgt 

säulenchromatographisch und liefert 102 als intensiv grünen Feststoff (siehe Abbildung 89). 

 

 

Abb. 89: Synthese des Corrol-Benzoperylenbisimid-Bichromophors 102. 

 

Im Massenspektrum sind neben dem Molekülpeak bei m/z = 1349 auch das nach Abspaltung 

des sekundären Alkylresten entstehende Fragment bei m/z = 1167 sichtbar. Das IR-Spektrum 

liefert die corrolischen (N-H)-Schwingungsbanden bei 3823 und 3744 cm-1. Man findet im 
1H-NMR-Spektrum ein Triplett bei 7.59 ppm mit einer Kopplungskonstante von 8.0 Hz, 

welches den para-ständigen Protonen des 2,6-Dichlorphenylsubstituenten zuzuordnen ist. 

Darüber hinaus erscheinen die Protonen der Aminfunktionen als breites Singulett in dem für 

derartig abgeschirmte Protonen zu erwartenden Bereich von -2.42 bis -1.47 ppm. Es gelingt 

auch erstmals die Aufnahme eines aussagekräftigen 13C-NMR-Spektrums von Corrol-

(Benzo)-Perylen-Bichromophoren. Darin sieht man unter anderem die Signale der 
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aliphatischen Kohlenstoffe der Alkylkette des Benzoperylens im Bereich von ca. 14 - 55 ppm 

sowie die Signale der Carbonylkohlenstoffe bei 168.1 und 168.7 ppm. Charakteristische 

Signale der Kohlenstoffe des Corrolgerüsts erscheinen unter anderem bei 109.1, 111.4 und 

116.2 ppm.  

 

Abb. 90: UV/Vis-Absorptions- (blau) und Fluoreszenzspektren (magenta = λex = 573 nm; grün = λex = 366 nm) 

von 102 im Vergleich mit den UV/Vis-Absorptions- und  Fluoreszenzspektren von 13 (rot) und 101 (violett). 

. 

Das Absorptionsspektrum entspricht analog dem Bichromophor 98 einer Überlagerung der 

Absorptionsbanden der isolierten Benzoperylen- bzw. Corrolspezies. Eine mit 98 

vergleichbare  Fluoreszenzdeaktivierung resultiert in einer Fluoreszenzquantenausbeute von 1 

% welche sich analog zu 98 mit der Bildung von CS-Zuständen aufgrund von SET-Prozessen 

des Corrol- in den Benzoperylenteil erklären lässt. Die Lebensdauer des CS-Zustand τCS 

beträgt 2.5 µs und liegt damit um über das 100fache höher als die CS-Lebensdauer des 

entsprechenden Perylenbisimid-Corrol-Bichromophors 95 (τCS = 24 ns). Dies lässt sich mit 

der im Vergleich zu 95 signifikant höheren Energie E* des nach Anregung des 

Benzoperylenteils entstehenden Zustands erklären (E* (102) = 2.56 eV,  E*(95) = 2.28 

eV).[102] Auch die Effizienz der Bildung des CS-Zustands ΦCS ist mit 75 % deutlich im 

Vergleich zu 95 erhöht (ΦCS (95) = 50 %).[102] Dies resultiert aus dem erheblich niedrigeren 

Standardpotential von Benzoperylenbisimiden 6 gegenüber Perylenbisimiden 1 (E0 (6) = 0.40 

V, E0 (1) = 0.62 V).[44, 103] Die minimale verbliebene Restfluoreszenz von 102 zeigt im 

Gegensatz zu 98 bei optischer Anregung des kürzerwellig absorbierenden Benzoperylens 

größtenteils die Fluoreszenz des Benzoperylenbisimids. Daneben ist auch eine schwache 

Emissionsbande bei ca. 660 nm zu sehen, welche aufgrund der in diesem Anregungsbereich 
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zwar intensitätsschwachen, aber deutlich messbaren Absorptionsbanden des Corrolkerns 

auftreten. Bei längerwelliger selektiver Anregung von Letzteren ist ausschließlich die 

Fluoreszenz des Corrols zu sehen. Die auftretende duale Fluoreszenz beider verbundener 

Chromophore ist ein Indiz dafür, dass die spontane Fluoreszenz des Benzoperylens nun mit 

dem - aufgrund des größeren interchromophoren Abstands - verlangsamten FRET-Prozess 

konkurrieren kann. 
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B6.3 Bichromophore von Benzoperylentrisimiden mit Corrolen 

 

B6.3.1 10-[N,N´´-Bis(1-hexylheptyl)-N´-(benzyl)benzo[ghi]perylen-1´,2´:3, 4:9,10-tris(di- 

carboximid]-5,15-bis(2,6-dichlorophenyl)corrol (104)  

Benzoperylentrisimide 5 besitzen im Vergleich zu den bisher vorgestellten angularen 

Benzoperylenbisimiden 6 eine zusätzliche Carbonsäureimidfunktionalität. Die Trisimide sind 

damit noch elektronenärmere Systeme als die Bisimide, was sie zu noch effektiveren 

Elektronenakzeptoren macht. Um den Einfluss der elektronischen Natur von Benzoperylenen 

auf die spektroskopischen Eigenschaften in Bichromophoren mit meso-disubstituierten 

Corrolen zu untersuchen, sollen im Folgenden die Benzoperylentrisimid-Corrol-

Bichromophore 104 und 106 synthetisiert werden. Hierfür sind in Analogie zu den  

Aldehyden 21 bzw. 24 aldehydfunktionale Benzoperylentrisimide notwendig. Die 

aldehydfunktionalisierten Benzoperylentrisimide 103 und 105 sind elementaranalysenrein und 

in guten Ausbeuten zugänglich.[28a] Der benzylverbrückte Bichromophor 104 lässt sich in 

Analogie zu den unter B6.2 entwickelten Corrol-Bichromophoren durch Reaktion des 

Aldehyds 103 mit dem Dipyrromethanderivat 99 darstellen (siehe Abbildung 91). Man erhält 

so nach säulenchromatographischer Aufreinigung elementaranalysenreines 104 in Form eines 

grünen Feststoffs.  

Der Molekülpeak erscheint im Massenspektrum bei m/z = 1524, die Fragmente ein- bzw. 

zweifacher Alkylkettenabspaltung bei m/z = 1342 bzw. 1160. Eine für corrolischen (N-H)-

Valenzschwingungen charakteristische Schwingungsbande lässt sich im IR-Spektrum bei 

3358 cm-1 erkennen. Auch die NMR-Spektroskopie liefert die für 104 erwartetenen Signale. 

So sieht man im 1H-NMR-Spektrum ein Triplett bei 7.59 Hz sowie ein Duplett bei 7.71 Hz, 

welche von den Protonen des 2,6-Dichlorphenylsubstituenten des Corrolkerns erzeugt 

werden. Bei 10.50 ppm erkennt man ein verbreitertes Singulett, welches sich den beiden 

zwischen den Imidfunktionen lokalisierten Protonen des Benzoperylengerüst zuweisen lässt. 

Die Protonen der Aminfunktionen des Corrols erscheinen aufgrund extremer Abschirmung als 

breites Singulett im Bereich von -2.94 bis -2.78 ppm (siehe Abbildung 92). Das 13C-NMR-

Spektrum liefert die Signale des Corrolkerns bei 109.4, 111.3 und 118.8 ppm sowie der 

Carbonylkohlenstoffe der Imidfunktionen bei 168.1 ppm. Die Maxima im Absorptions- 

spektrum erscheinen bei 377.6, 418.7, 431.0 und 467.1 nm gefolgt von schwächeren 

Absorptionsbanden bei 514.1, 567.6, 606.4 und 717.2 nm. Damit entspricht das Absorptions- 

spektrum einer Überlagerung der beiden Einzelchromophore. Die Fluoreszenzquanten- 

ausbeute ist mit 0.1 % verschwindend gering, was nahelegt, dass es sich bei 104 um eine 
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ähnlich effektive SET-Übertragung des Corrol-Chromophors auf den Benzoperylen- 

chromophor handelt, wie dies bei 98 der Fall ist. Bei Untersuchung der verbleibenden 

Fluoreszenz erkennt man bei selektiver Anregung des Benzoperylens fast ausschließlich 

dessen Fluoreszenz. Bei Anregung beider Chromophore ist sowohl die Fluoreszenz des 

Benzoperylens als auch die des Corrols zu sehen. Dies zeigt, dass im Trisimid 104 im 

Gegensatz zum Bisimid 98 keine FRET-Übertragung von Benzoperylen auf das Corrol 

stattfindet (siehe Abbildung 93). 

     

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 91: Synthese der Corrol-Benzoperylenbisimid-Bichromophore 104 und 106. 
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Abb. 92: Ausschnitt des 1H-NMR-Spektrums von  104. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 93: UV/Vis-Absorptions- (blau) und Fluoreszenzspektren (magenta = λex = 419 nm; grün = λex = 378 nm) 

von 104 im Vergleich mit den UV/Vis-Absorptions- und Fluoreszenzspektrum von 103 (rot) und 101 (braun). 
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B6.3.2 10-[N,N´´-Bis(1-hexylheptyl)-N´-(4-phenylbenzyl)benzo[ghi]-perylen-1´,2´:3,4: 

9,10-tris(dicarboximid]-5,15-bis(2,6-dichlorophenyl)corrol (106)  

Analog zu B6.2.2 können die photophysikalischen Auswirkungen einer Abstandsverlängerung 

der beteiligten Chromophore durch Einführung eines um eine Phenyleinheit verlängerten 

Spacers untersucht werden. Das geeignete aldehydfunktionalisierte Benzoperylentrisimid 105 

kann elementaranalysenrein und in guten Ausbeuten hergestellt werden.[28a] Entsprechend der 

unter B6.3.1 beschriebenen Synthese von 104 erhält man den phenylbenzylverbrückten 

Bichromophor 106 durch Umsetzung von 105 mit 99. Dabei kann durch Aufnahme eines 

Massenspektrums vor Zugabe des Oxidationsmittels die Bildung eines zu 100 analogen 

linearen Tetrapyrrolderivats zweifelsfrei bewiesen werden. Der Ringschluss zum Corrol 106 

erfolgt im Anschluss wie bisher durch Zugabe von Chloranil. Die Aufreinigung erfolgt 

säulenchromatographisch und liefert 106 als intensiv grünen Feststoff (siehe Abbildung 91). 

Im Massenspektrum sind neben dem Molekülpeak bei m/z = 1601 auch das nach Abspaltung 

eines sekundären Alkylrestes entstehende Fragment bei m/z = 1419 sichtbar. Die (N-H)-

Schwingungsbanden des Corollkerns sind im IR-Spektrum bei 3810 und 3718 cm-1 zu sehen. 

Im 1H-NMR-Spektrum erkennt man die Protonen des  2,6-Dichlorphenylsubstituenten in 

Form eines Triplett bei 7.62 ppm und zweier Dupletts bei 7.74 und 7.86 ppm mit 

Kopplungskonstante von jeweils 8.0 Hz. Ein stark tieffeldverschobenes verbreitertes Singulett 

bei 10.53 ppm, ist den beiden zwischen den Imidfunktionen lokalisierten Protonen des 

Benzoperylengerüst zuzuordnen. Die Protonen der Aminfunktionen erscheinen als breites 

Singulett im zu erwartenden Bereich von -2.93 bis -2.64 ppm. Das 13C-NMR-Spektrum zeigt 

ebenfalls Signale des Produkts 106. Darin sieht man charakteristische Signale der 

Kohlenstoffe des Corrolgerüsts bei 107.4, 108.6, 116.1 und 116.9 ppm. Die Carbonyl- 

kohlenstoffe der Imidfunktionen liefern ein Signal bei 167.7 ppm. Abschießend wird die hohe 

Reinheit von 106 durch eine korrekte Elementaranalyse belegt. Das Absorptionsspektrum von 

106 entspricht einer Addition der Absorptionsspektren der beteiligten Monochromophore und 

ist dem Absorptionsspektrum des Bichromophors 104 sehr ähnlich. Auch hier kommt es zu 

einer fast vollständigen Fluoreszenzdesaktivierung der beteiligten Chromophore, was durch 

eine Fluoreszenzquantenausbeute von 0.4 % eindrucksvoll belegt wird. Der Grund hierfür ist 

analog 102 die Bildung eines CS-Zustandes mit einer Effizienz ΦCS von 65 % und einer 

Lebensdauer τCS von 24 ns. Letztere ist damit identisch mit der des Perylenbisimid-Corrol-

Bichromophors 95, während der CS-Zustand jedoch deutlich effizienter gebildet als in 95 

(ΦCS (95) = 50 %).[102] Dies ist insofern ungewöhnlich, da aufgrund der im Vergleich zu 95 

signifikant höheren Energie E* des nach Anregung des Benzoperylenteils entstehenden 
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Zustands eine ähnlich lange Lebenszeit τCS wie bei 102 zu erwarten gewesen wäre (E* (106) = 

2.58 eV, E*(95) = 2.28 eV).[102] Zusätzlich steht eine deutlich effizientere CS-Zustandsbildung 

im Widerspruch mit den ähnlichen Standardpotentialen von Benzoperylentrisimiden 7 und 

Perylenbisimiden 1 (E0 (7) = 0.66 V , E0(1) = 0.62 V).[44, 103] Die marginale Restfluoreszenz 

zeigt bei Anregung des Benzoperylenteil größtenteils auch dessen Fluoreszenz, woraus 

abgeleitet werden kann, dass bei 106 in Analogie zu 104 kein FRET des Benzoperylens in das 

Corrol stattfindet (siehe Abbildung 94).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 94: UV/Vis-Absorptions- (blau) und Fluoreszenzspektren (magenta = λex = 568 nm; grün = λex = 366 nm) 

von 106 im Vergleich mit den UV/Vis-Absorptions- und Fluoreszenzspektrum von 105 (rot) und 101 (braun). 
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B6.4 Bichromophor eines lateral heterocyclisch erweiterten Perylenbis- 

imids mit einem Corrol 

Anhand der Synthese der Benzoperylen-Corrol-Bichromophore 98, 102, 104 und 106 konnte 

erfolgreich gezeigt werden, dass bei den - verglichen mit Corrolen - hypsochrom 

absorbierenden Benzoperylen-Chromophoren eine effektive Fluoreszenzdesaktivierung der 

Benzoperylenfluoreszenz durch SET-Prozesse des Benzoperylens in das Corrol stattfindet. 

Diese Ergebnisse stehen im Einklang mit einer ähnlich drastisch ausfallenden Fluoreszenz- 

desaktivierung der etwas bathochromer absorbierenden Perylenbisimide in den Bichromopho- 

ren 93 - 95 .[99] Darüber hinaus sind Corrol-Bichromophore mit Naphthalinimiden,[98] 

Porphyrinen[104], Phenothiazinen,[105] und Acridinen[106] bekannt. Derartige Bichromophore 

haben allerdings den Nachteil, dass sie entweder nicht stark, oder im Bereich der bisher 

vorgestellten Bichromophore auf Benzoperylen- bzw. Perylenbasis fluoreszieren. Aus den 

genannten Gründen wäre die Synthese eines bichromophores Corrolsystems mit einem 

intensiv fluoreszierenden Perylenderivat, welches einen - im Vergleich zum Perylenbisimid - 

bathochromeren Absorptions- und Emissionsbereich besitzt, von großem Interesse. A. 

Obermeier[107] und S. Kinzel[108] konnten zeigen, dass heterocyclisch lateral erweiterte 

Perylenbisimide 107 ca. 60 nm bathochromer absorbieren als Perylenbisimde und zusätzlich 

eine Fluoreszenzquantenausbeute von 100 % besitzen.  

 

 

 

 

 

 

 

 

 

Abb. 95: Struktur des lateral heteroyclischer Perylenbisimids 107.[108] 

 

Damit eignen sich derartige Chromophore nach entsprechender Aldehydfunktionalisierung 

ebenfalls zur Kopplung mit Corrolen und zur Untersuchung der spektroskopischen 

Eigenschaften der entstehenden Bichromophore. Dazu lässt man den Aldehyd 108 in 

Analogie zur Herstellung der Benzoperylen-Corrol-Bichromophore mit 99 zum Bichromo- 
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Bis(1-hexylheptyl)-5-(4-phenyl)imidazolo[4',5':3,4]anthra[2,1,9-def:6,5,10-d'e'f']diisochino- 

lin-1,3,10,12(2H,11H)-tetraon]5,15-bis-(2,6-dichlorophenyl)-corrol (109) als schwarzgrünen, 

leicht violett schimernden Feststoff (siehe Abbildung 96).       

     

 

Abb. 96: Synthese des Bichromophors 109. 

 

Das Massenspektrum zeigt die Bildung von 109 anhand des Molekülpeaks bei m/z = 1457 

sowie den Fragmenten nach ein- bzw. zweifacher Abspaltung des sekundären Alkylrestes bei 

m/z = 1275 bzw. 1093. Im IR-Spektrum sieht man die (N-H)-Valenzschwingungen des 

Corrol- und  Imidazolkerns bei 3358 und 3409 cm-1. Die entsprechenden Protonensignale 

erscheinen im 1H-NMR-Spektrum als breites Singulett im Bereich von -2.80 bis -2.59 ppm 

(corrolische NH-Protonen) und als Singulett bei 11.86 ppm (NH-Proton des Imidazolkerns) 

(siehe Abbildung 97). Das Absorptionsspektrum von 109 stellt - wie erwartet - eine Addition 

aus den Absorptionsspektren der beteiligten Monochromophore dar. Die Fluoreszenzquanten- 

ausbeute bei Anregung des lateral erweiterten Perylenbisimids ist kleiner 0.1 %, verglichen 

mit einer Fluoreszenzquantenausbeute von 100 % bei 108. Es kommt folglich zu einer fast 

vollständigen Fluoreszenzdeaktivierung, sowohl des lateral erweiterten Perylenbisimids, als 

auch des Corrols. Die Fluoreszenz des Letzteren ist selbst bei selektiver Anregung vollständig 

unterdrückt. Bei Anregung des lateral erweiterten Perylenbisimids sind lediglich äußerst 

schwache Emissionsbanden zu erkennen. Diese Beobachtungen sind signifikante Anzeichen 

auf eine ausgeprägte interchromophore Wechselwirkung auf Basis von SET-Prozessen.       
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Abb. 97: Ausschnitte des 1H-NMR-Spektrums von  109. 
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Abb.  98: UV/Vis-Absorptions- (blau) und Fluoreszenzspektren (magenta = λex = 410 nm; grün = λex = 546 nm) 

von 109 im Vergleich mit den UV/Vis-Absorptions- und Fluoreszenzspektrum von 108 (rot) und 101 (braun). 
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B7 Funktionalisierte Perylenmonoimidfarbstoffe 

Der Zugang zu funktionalisierten Fluoreszenzfarbstoffen wurde in dieser Arbeit bereits 

anhand angularer Benzoperylenbisimide vorgestellt. Zusätzlich sind funktionalisierte Perylen- 

bisimide und Benzoperylentrisimide bereits seit längerem bekannt.[27,28] Durch die Einführung 

verzweigter langkettiger Alkylreste an mindestens einer Imidfunktionalität ist es möglich, die 

Löslichkeit der Verbindungen zu steuern, ohne dabei die Absorptionsbereich des 

Chromophors zu verändern. Die Einführung funktioneller Gruppen kann mit einer der 

restlichen Imidfunktionalitäten erzielt werden. Etwas komplexer verhält es sich bei den 

Perylen-3,4-dicarbonsäuremonoimiden 3, im Folgenden als Perylenmonoimide bezeichnet 

(siehe Abbildung 100). Hier enthält der Chromophor lediglich eine Imidfunktion, über die 

man sowohl die Löslichkeit steuern als auch funktionelle Gruppen einführen muss. Dennoch 

sollten Perylenmonoimide hervorragend für die Anwendung als funktionelle Farbstoffe 

geeigent sein, da sie - analog den Perylenbisimiden - alle wichtigen Kriterien eines 

Fluoreszenzfarbstoffs erfüllen (vgl. A1.1). In Analogie zu funktionalisierten angularen 

Benzoperylenbisimiden ist eine Anwendung funktionalisierter Perylenmonoimide zur 

Kopplung biologisch aktiver Substanzen und der daraus resultierenden Möglichkeit der 

Visualisierung mittels Fluoreszenzspektroskopie denkbar. Als Vorausetzung dafür muss der 

Chromophor jedoch geeignet funktionalisiert werden. Wie bereits erfolgreich an 

Benzoperylen- und Perylenbisimidderivaten gezeigt, eignet sich aldehydfunktionalisierte 

Chromophore ausgezeichnet zur Fluoreszenzmarkierung nucleophiler Substrate. Das folgende 

Kapitel behandelt die Synthese aldehydfunktionalisierter Perylenmonoimide sowie deren 

Löslichkeitsverhalten. Allgemein lassen sich Perylenmomoimide 3 durch Kondensation 

primärer Amine mit Perylen-3,4-dicarbonsäureanhydrid 4 darstellen[73] (siehe Abbildung 99). 

 

 

 

 

 

 

 

Abb. 99: Allgemeine Struktur der Perylenmonoimide 3. 
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B7.1 Synthese der funktionalisierten Perylenmonoimide 

 

B7.1.1 Synthese von N-[4-(1,3-Dioxolan-2-yl)benzyl]perylen-3,4-dicarboximid (110) 

Der Syntheseweg von 3 wird auf die Herstellung von 110 übertragen. Man erhitzt dabei 4 mit 

4-(1,3-Dioxolan-2-yl)benzylamin wahlweise in Chinolin unter  Mikrowellenbestrahlung oder 

in geschmolzenem Imidazol unter Zusatz von Zinkacetat-Dihydrat (siehe Abbildung 100). 

Um eine Spaltung des Acetals zu verhindern erfolgt sowohl die Synthese als auch die 

Aufarbeitung jeweils unter basischen Bedingungen.  Da es sich bei Acetalen wie  110 um 

säurelabile Verbindungen handelt, die leicht zu den entsprechendenen Aldehyden 

hydrolysieren, reicht bereits die geringe Acidität der Hydroxylgruppen der Kieselgelober- 

fläche, um das Acetal 110 partiell in den Aldehyd 111 zu spalten. Obwohl aufgrund der Rf-

Werte theoretisch eine Trennung der Verbindungen möglich seine sollte, gelingt es nicht, das 

Acetal durch Säulenchromatographie vom Aldehyd zu separieren, so dass sich lediglich ein 

Gemisch aus beiden Substanzen isolieren lässt. Wenn man jedoch auf eine säulenchromato- 

graphische Aufreinigung verzichtet, erhält man durch Fällung einer konzentrierten Lösung 

von 110 in Chloroform mit Methanol das Acetal 110 frei von Aldehydspuren als roten 

Feststoff. Dabei erweist die Löslichkeit von 110 in Chloroform besser als erwartet. Ein 

möglicher Grund hierfür ist die relativ freie Drehbarkeit der benzylischen Methyleneinheit 

von 110, welche eine interchromophore Aggregation wesentlich erschwert.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 100: Herstellung von N-[4-(1,3-Dioxolan-2-yl)benzyl]perylen-3,4-dicarboximid (110). 
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Die Auswertung des Massenspektrums von 110 ergibt einen Molekül- und Basispeak bei m/z 

= 484. Außerdem entsteht ein Fragment bei der Abtrennung der Acetalschutzgruppe bei m/z = 

440. Neben den Protonen des Perylenkerns werden im 1H-NMR-Spektrum nun auch Signale 

des einkondensierten Substituenten sichtbar (siehe Abbildung 101). So erscheinen die Signale 

der para-disubstituierten Phenyl-Gruppe in Form zweier effektiver Dupletts bei 7.40 und 

7.52 ppm mit Kopplungskonstanten von jeweils 8.1 Hz. Außerdem erkennt man die Signale 

der Acetalschutzgruppe. Die vier Protonen der Ethylengruppe erzeugen ein Multiplett, das in 

einem Bereich von 3.96 - 4.07 ppm liegt. Das Singulett bei 5.38 ppm kann der benzylischen 

Methylengruppe zugeordnet werden.  Ein zweites Singulett bei 5.74 ppm, wird durch die 

Methingruppe des Acetals erzeugt. Im 13C-NMR-Spektrum ist, zusätzlich zu den 

aromatischen Signalen, die Methylengruppe bei 65.2 ppm sowie die Methingruppe des 

Acetals bei 103.4 ppm zu sehen. Außerdem erscheinen die beiden Kohlenstoffe der 

Carbonylgruppen bei einer Verschiebung von 166.9 und 168.0 ppm.  

 

 

Abb. 101: Ausschnitt des 1H-NMR-Spektrums von 110 in CD2Cl2. 
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Im IR-Spektrum von 110 kann die Absorption der (C-O-C)-Valenzschwingung der 

Acetalschutzgruppe bei 1070 cm-1 beobachtet werden. In der UV/Vis-Spektroskopie sind  

Absorptionsmaxima bei 487.2 und 508.8 nm sichtbar. Diese ähneln ebenso wie die Maxima 

des Fluoreszenzspektrums bei 542.3 und 582.8 nm den Signalen des Perylenmonoanhydrids 4 

(siehe Abbildung 102). Die Fluoreszenzquantenausbeute von 110 wird zu 95 % bestimmt.  

 

Abb.102: Absorptions (blau)- und Fluoreszenzspektrum (magenta) von 110 im Vergleich zu 4 (rot). 

 
 

B7.1.2 Synthese von N-(4-Formylbenzyl)perylen-3,4-dicarboximid (111) 
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Aufreinigung kann auf diese Weise 111 als roter Feststoff gewonnen werden. Der zweite Weg 
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Aldehyds zu verschieben, müssen wesentlich stärker saure Bedingungen vorherrschen. 

Vergleicht man die Ausbeuten der verschiedenen Synthesewege wird deutlich, dass die 

Methode unter Verwendung von Chinolin die besten Ausbeuten liefert. Die Entschützung von 

110 eignet sich gut, wenn das Acetal als Lagerform verwendet werden soll. Wird der Aldehyd 

für weitere Synthesen benötigt, ist die direkte Herstellungsart von Vorteil.  

 

 
Abb. 103: Herstellung von N-(4-Formylbenzyl)perylen-3,4-dicarboximid (111). 

 
Das Massenspektrum von 111 zeigt den Molekülpeak bei m/z = 439. Im 1H-NMR-Spektrum 

ist die gelungene Umsetzung durch das Erscheinen eines Singuletts der Aldehydgruppe bei 

einer chemischen Verschiebung von 9.98 ppm sichtbar. Die Signale des para-disubstituierten 
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was durch den Einfluss der Aldehydgruppe erklärt werden kann. Die effektiven Kopplungs- 

konstanten der beiden Dupletts betragen dabei jeweils 8.1 Hz. Der Kohlenstoff der Aldehyd- 

funktion erscheint im 13C-NMR-Spektrum bei 191.9 ppm.  
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Abb.104: Ausschnitt des 1H-NMR-Spektrums von 111 in CDCl3. 

 

Im IR-Spektrum von 111 ist eine intensive Absorption bei 1646 cm-1 zu erkennen, welche der 

(C=O)-Valenzschwingung des Aldehyds zugeordnet werden kann. Das Fehlen einer (C-O-C)-
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488.6 und 512.2 nm denen von 110. Analog verhält es sich bei Betrachtung des 

Fluoreszenzspektrums, welches Maxima bei 546.0 und 584.8 nm aufweist. Die 

Fluoreszenzquantenausbeute von 111 beträgt 91 %.  
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B7.1.3 Synthese von N-{[4-(1,3-Dioxolan-2-yl)phenyl]benzyl}perylen-3,4-dicarboximid 

 (112) 

Das Acetal 112 lässt sich analog 110 darstellen. Man erhitzt dabei 4 mit 4´-(1,3-Dioxolan-2-

yl)biphenyl-4-methylamin in Chinolin unter Mikrowellenbestrahlung bzw. in geschmolzenem 

Imidazol und Zinkacetat-Dihydrat (siehe Abbildung 105). Aufgrund der Säurelabilität von 

112 erfolgt auch hier sowohl die Synthese als auch die Aufarbeitung jeweils unter basischen 

Bedingungen. Auf eine säulenchromatographische Aufreinigung wird auf Grund der bereits 

beschriebenen Säurelabilität verzichtet. Stattdessen erhält man durch Fällung einer 

konzentrierten Lösung von 112 in Chloroform  mit Methanol das Acetal 112 frei von 

Aldehydspuren als roten Feststoff. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 105: Herstellung von N-{[4-(1,3-Dioxolan-2-yl)phenyl]benzyl}perylen-3,4-dicarboximid (112). 
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Abb. 106: Ausschnitt des 1H-NMR-Spektrums von 112 in CD2Cl2. 
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B7.1.4 Synthese von N-[(4-Formylphenyl)benzyl]perylen-3,4-dicarboximid (113) 

Aufgrund der Ergebnisse in  B7.1.2 erfolgt die Synthese von 113 durch Kondensation von 4 

mit 4´-(1,3-Dioxolan-2-yl)biphenyl-4-methylamin in Chinolin. Des Weiteren ist analog zu 

111 die Herstellung durch säurekatalysierte Hydrolyse des Acetals 112 möglich. Analog zu 

112 sind auch hier stark saure Bedingungen für eine vollständige Hydrolyse des Acetals 112 

unabdingbar. Nach säulenchromatographischen Aufreinigung über Kieselgel kann der 

Aldehyd 113 als intensiv rot-orange fluoreszierende Bande isoliert werden kann. Durch Fällen 

mit Methanol erhält man 113 als roten Feststoff (siehe Abbildung 107).  

 

 

 

 

Abb. 107: Herstellung von N-[(4-Formylphenyl)benzyl]perylen-3,4-dicarboximid (113). 

 

 

 

 

1) Chinolin, 
    Zn(OAc)2, 12 h, 165 oC
2) 2M HCl / HOAc (1:1)

OO O

4

H2N

O

O

NO O

O

O

112

2M HCl / HOAc (1:1)

NO O

H

O

113
CHCl3

2

2

2



THEORETISCHER TEIL                                                                                                                   126                                                                                                                                                                                                                                   

Im Massenspektrum von 113 erscheint der Molekülpeak bei m/z = 516 sowie das Fragement 

des Perylenkerns bei m/z = 250. Das 1H-NMR-Spektrum zeigt neben den bereits bekannten 

Signalen des Perylenkerns sowie des Biphenyl-Substituenten das Singulett der Aldehyd- 

funktion bei 10.0 ppm (siehe Abbildung 108). Das entsprechende Kohlenstoffsignal der 

Carbonylfunktion erscheint im 13C-NMR-Spektrum bei 191.9 ppm. Die Aldehydfunktion ist 

auch durch die Existenz einer zusätzlichen, intensiven (C=O)-Valenzschwingung bei 

1648 cm-1 im IR-Spektrum dokumentiert. Das UV/Vis-Spektrum von 113 entspricht mit 

Absorptionen bei 487.4 und 511.4 nm ebenso wie das Fluoreszenzspektrum mit Maxima bei 

545.1 und 583.8 nm den bisherigen Perylenmonoimiden. Die Fluoreszenzquantenausbeute 

beträgt hierbei 100 %.  

 

 

 

Abb. 108: Ausschnitt des 1H-NMR-Spektrums von 113 in CDCl3. 
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B7.2 Fluoreszenzmarkierung nucleophiler Substrate 

Wie vorstehend beschrieben, ist die Löslichkeit der Aldehyde 111 und 113 trotz fehlender 

stark löslichkeitssteigernder Gruppen ausreichend hoch, um sie in weitereren chemischen 

Umsetzungen einzusetzen. Deshalb soll diesem Kapitel - analog zu B1.3.2.2 - die 

Fluoreszenzmarkierung primärer Amine mit 111 bzw. 113 untersucht werden. Die Bildung 

der entsprechenden Schiff´schen Basen verläuft nach dem gleichen Mechanismus, wie die 

Bildung entsprechender Imine auf Basis angularer Benzoperylenbisimide(vgl. B1.3.2.2 ).    

Im Vergleich zu den bisher eingesetzen aldehydfunktionalisierten Perylen- bzw. 

Benzoperylenderivaten sind Perylenmonoimide relativ elektronenreich, was den Angriff von 

Nucleophilen eventuell erschweren könnte. Zur Evaluation dieser Annahme lässt man die 

Aldehyde 111 und 113 mit diversen primären Aminen reagieren und untersucht die 

Reaktionsprodukte auf die Bildung entsprechender Imine.  

   

Zunächst lässt man 111 bzw. 113 mit einem Überschuss Anilin zu den Iminen 114 bzw. 115 

reagieren (siehe Abbildung 109). Nach destillativer Entfernung des Anilins erhält man einen 

roten Feststoff. Auf eine säulenchromatographische Aufreinigung wird wie bei den bisher 

beschriebenen Iminen aus Gründen der Hydrolyseempfindlichkeit verzichtet. Stattdessen löst 

man das Rohprodukt in wenig Chloroform und fällt es mit Methanol aus.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 109: Herstellung der Imine 114 bzw. 115. 
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Das Massenspektrum bestätigt die Entstehung von der Imine 114 bzw. 115 durch das 

Auftreten des Molekülpeaks bei m/z = 515 bzw. 591. Die hochauflösende Masse stimmt in 

beiden Fällen gut mit den theoretisch berechneten Werten überein. Im 1H-NMR-Spektrum ist 

neben den bereits bekannten aromatischen Signalen des Perylengrundgerüsts und des Spacers 

ein zusätzliches Singulett bei 8.48 bzw. 8.51 ppm zu sehen, welches dem Proton der 

Iminfunktion von 114 bzw. 115 zugeordnet werden kann (siehe Abbildung 110). Die dem 

Anilinrest zuzuordnenden aromatischen Protonen äußern sich in Form mehrerer Multipletts 

zwischen 7.15 und 7.45 ppm. Während im 1H-NMR- Spektrum von 115 keine Aldehydsignale 

sichtbar sind, erscheint im 1H-NMR-Spektrum von 114 zusätzlich noch das Aldehydsignal als 

Singulett bei 9.96 ppm. Aus den Intensitäten der Protonensignale ergibt sich im Falle der 

Reaktion von 111 mit Anilin   ein Verhältnis von 51 % 114 und 49 % 111. Dies belegt neben 

dem unvollständigen Umsatz von 111 zu 114 aber auch die ausschließliche Bildung des Imins 

115 (siehe Abbildung 110).   
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Abb.110: Ausschnitte der 1H-NMR-Spektren von 115 und 114 (kleine Graphik) in CD2Cl2. 
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Absorptionsmaxima der UV/Vis- und Fluoreszenzspektren entsprechen den Werten der 

Aldehyde 111 bzw. 114 Die Fluoreszenzquantenausbeute beträgt 88 bzw 93 %. Diese durch 

die Derivatisierung erhaltene sehr hohe Fluoreszenzintensität zeigt, dass die Aldehyde 111 

und 114 gut zur Fluoreszenzmarkierung primärer Amine geeignet sind.  

  

Nach der gelungenen Fluoreszenzmarkierungen aromatischer Systeme soll nun die 

Kondensation eines aliphatischen Amins mit den Fluorophoren erfolgen. Dies soll anhand der 

Reaktion der Aldehyde 111 und 113 mit n-Butylamin demonstriert werden (siehe Abbildung 

111). Die Reaktion verläuft analog B1.3.2.2 in einer auf einen pH-Wert von fünf angesäuerten 

chloroformhaltigen Lösung und liefert nach entsprechender Aufarbeitung die Imine 116 bzw. 

117 als rote Feststoffe. Aufgrund der bereits erläuterten Hydrolyseempfindlichkeit wird auf 

eine säulenchromatographische Aufreinigung verzichtet. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abb. 111: Herstellung der Imine 116 bzw. 117. 
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0.95 ppm, ebenso wie die, dem Stickstoff der Iminfunktion benachbarte Methylengruppe bei 

3.56 bzw. 3.23  ppm. Die beiden mittelständigen Methylengruppen des Butylrestes erscheinen 

in Form zweier Multipletts im Bereich von 1.31 - 1.67 ppm (siehe Abbildung 112). Im 13C-

NMR-Spektrum ist der Iminkohlenstoff als charakteristisches Signal bei 159.9 bzw. 

148.2 ppm sichtbar. Die Maxima des UV/Vis-Absorptions- und der Fluoreszenzspektren 

beider Aldimine sind annähernd identisch mit den bisherigen Perylenmonoimiden. Es lässt 

sich eine Fluoreszenzquantenausbeute von 97 bzw. 100 % ermitteln.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb.112: Ausschnitte der 1H-NMR-Spektren von 116 und 117 (kleine Graphik) in CD2Cl2. 
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Abschließend soll anhand der Reaktion von 111 und 113 mit p-Aminobenzoesäure (PABA) 

die Fluoreszenzmarkierung von Aminosäuren veranschaulicht werden. In Analogie zu 

B1.3.2.2 setzt man PABA mit 111 bzw. 113  in einem leicht angesäuerten Lösungsmittel- 

gemisch aus Dichlormethan und Ethanol (5:2) um (siehe Abbildung 113). Nach Aufarbeitung 

können die Imine 118 bzw. 119 als rote Feststoffe gewonnen werden.  

 

 

Abb. 113: Herstellung der Imine 118 bzw. 119. 

 

 

Das Massenspektrum bestätigt eine erfolgreiche Bildung von 118 bzw. 119 durch das 

Auftreten eines Molekülpeaks bei m/z = 559 bzw. 634 ebenso wie die entsprechenden, 

hochaufgelösten Massen. Die (O-H)-Valenzschwingung der Carbonsäurefunktion ist im IR-

Spektrum als schwache, aber stark verbreiterte Absorption im Bereich von ca. 3100 – 3400 

cm-1 zu erkennen. Im 1H-NMR-Spektrum erscheint das Proton der Iminfunktion jeweils bei 

7.82 ppm und ist damit im Vergleich zu den bisherigen Iminsignalen etwas 

hochfeldverschoben. Dies liegt möglicherweise daran, dass aus Löslichkeitsgründen zur 

Aufnahme des NMR-Spektrums ein Lösungsmittelgemisch aus Chloroform und Methanol 

(10:1) verwendet wird. Das Aufreten eines aldehydischen Singuletts bei ca. 10 ppm zeigt, 

dass 111 bzw. 113 auch mit PABA nicht vollständig abregiert. Der Umsatz lässt sich aus den 

NMR-Intensitäten mit 55 bzw. 66 % bestimmen. Die Absorptions- und Fluoreszenzspektren 

gleichen denen der bisherigen Imine. Die Fluoreszenzquantenausbeuten betragen 88 bzw. 100 

% (siehe Abbildung 114). 
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 Abb.114: Ausschnitte der 1H-NMR-Spektren von 118 und 119 (kleine Graphik) in CDCl3/CD3OD (10:1). 

 

 

Zusammenfassenend kann man resümieren, dass aldehydfunktionalisierte Perylenmonoimide, 

trotz fehlender stark löslichkeitssteigerender Substituenten - wie sie entsprechend 

funktionalisierte Perylenbisimidderivate[27] besitzen - sehr gut zur Fluoreszenzmarkierung 

aliphatischer und aromatischer Aminen sowie zur Kopplung an Aminosäuren geeignet sind.   
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B8 Fluoreszenzmarkierung von Katalase 

Nachdem die Fluoreszenzmarkierung der niedermolekularen Amine sowohl mit den  

funktionalisierten angularen Benzoperylenbisimiden 21 bzw. 24 als auch mit den 

Perylenmonoimiden  111 bzw. 113 erfolgreich gelungen ist, stellt sich nun die interessante 

Frage, ob eine derartige Markierung auch an makromolekularen, freie Aminofunktionen 

tragenden Biomolekülen möglich ist. Hierfür soll im Rahmen dieser Arbeit exemplarisch das 

Enzym Katalase eingesetzt werden. Katalase ist ein natürlich vorkommendes Enzym, welches 

die Zersetzung des Zellgifts Wasserstoffperoxid zu Sauerstoff und Wasser katalysiert. Sie 

kommt in allen tierischen Organismen, besonders in der Leber und in Erythrozyten vor. 

Darüber hinaus findet sie sich auch in pflanzlichen Zellen sowie bei fast allen aeroben 

Mikroorganismen. Katalase wirkt durch die schonende Zersetzung des Wasserstoffperoxids 

der Bildung von freien, cytotoxischen Hydroxylradikalen durch die Fenton-Reaktion 

entgegen.[109] Strukturell ist das ubiquitäre Enzym ein tetrameres Hämprotein mit jeweils 

einer Häm-Gruppe als katalytisch aktives Zentrum sowie einem Äquivalent NADPH 

(Nicotinsäureamid-Adenin-Dinucleotid-Phosphat), welches das Enzym vor Oxidation durch 

H2O2 schützt. [110]Abbildung 115 zeigt eine monomere Untereinheit der Rinderleberkatalase.  

 

 

 

 

 

 

 

 

 

 

Abb. 115: Aus Rinderleber isoliertes Katalasemonomer  mit Hämgruppe und NADPH.[111] 

 

Katalase zeigt eine, für Enzyme einzigartige Thermo- und pH-Stabilität. Eine erhebliche 

Abnahme der Katalaseaktivität ist erst bei Temperaturen über 80 °C zu beobachten. Dieser 

Effekt wird mit der Veränderung der Sekundärstruktur bzw. der Ausbildung von Dimeren des 

Enzyms erklärt.[109a] Ein Monomer umfasst eine 506 Aminosäuren langes Polypeptidkette mit 

einem Molekulargewicht von 57000 g/mol.[110] Die basischen Seitengruppen der zahlreichen 

inkorperierten L-Lysin- und L-Arginineinheitem sowie die als N-Terminus bezeichneten freien 
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Aminogruppen an den Enden des Enzyms sollten gut zur Fluoreszenzmarkierung geeignet 

sein (siehe Abbildung 116).  

 

 

Abb. 116: Allgemeine Darstellung der Reaktion aldehydfunktionalisierter Chromophore mit primären 

Aminogruppen der Katalase. 

 

B8.1 Markierung von Katalase mit funktionalisierten Perylen- bzw. 

Benzo[ghi]perylenimiden  

 

B8.1.1 Markierung von Katalase mit funktionalisierten Perylenbisimiden 

Die Markierung von Katalase mit aldehydfunktionalisierten Perylenbisimiden ist bereits von 

T. Becherer beschrieben.[27] Dabei lässt sich markierte Katalase durch Umsatz mit den 

Fluorophoren in den Lösemitteln Dimethylsulfoxid (DMSO) oder N-Methyl-2-pyrrolidon 

(NMP) unter Zugabe von DCC bei Reaktionstemperaturen von  40 bis 50 °C gewinnen. In 

Analogie zur Reaktion niedermolekulerer Amine mit Aldehyden sind die Farbstoffe über 

Schiff´sche Basen kovalent mit der Katalase verknüpft. Auf diese Weise erhält man intensiv 

rot gefärbte Katalase, welche sich auch durch mehrmaliges Waschen mit Chloroform und 

anschließendes tagelanges Lagern in Chloroform nicht entfärbt.   

 

B8.1.2 Markierung von Katalase mit Benzo[ghi]perylentrisimiden 

Unter B6.3.1 werden die aldehydfunktionalisierte Benzoperylentrisimide 103 und 105 zum 

Aufbau der Corrol-Bichromophore 104 bzw. 106 verwendet. Die Aldehyde 103 bzw. 105 

können aber auch zur Katalasemarkierung eingesetzt werden. Bei analoger Reaktionsführung 

wie unter B8.2 beschrieben, erhält man gelb gefärbte, intensiv fluoreszierende Katalase, die 

sich auch nach mehrmaligem Waschen mit Chloroform nicht entfärbt. Im Festkörper- 

fluoreszenzspektrum sieht man ein breites Emissionsmaximum bei ca. 570 nm, welches im 

Bereich der Festkörperfluoreszenz von Benzoperylentrisimiden liegt[16] (siehe Abbildung 

117). 
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Abb. 117: Katalase unbehandelt (oben links), Katalase mit 103 markiert (oben mitte), Katalase mit 105 markiert 

(oben rechts); Festkörperfluoreszenzspektrum (magenta) und Festkörperfluoreszenzanregungsspektrum (blau) 

der mit 103 markierten Katalse (unten). 

 

Für eine eventuelle zukünftige Anwendung im biomedizinischen Bereich ist allerdings die 

Einhaltung physiologischer Bedingungen von zentraler Bedeutung. In diesem Zusammenhang 

ist die Verwendung des zur Aldehydaktivierung eingesetzen DCC´s sehr problematisch. 

Erstaunlicherweise ist die Katalasemarkierung mit 103 bzw. 105 auch ohne Zusatz von DCC 

bei ansonsten gleichbleibenden Reaktionparametern möglich. Da sich keine signifikanten 

Intensitätsunterschiede der markierten Katalase mit und ohne DCC-Zusatz  feststellen lassen, 

ist die Annahme der DCC-unterstützen Aktivierung[28] der Aldehydfunktion widerlegt. Um 

noch mildere Bedingungen zu prüfen, werden die Markierungsreaktionen bei exakt 38 °C 

durchgeführt. Auch dies führt zu keiner wesentlichen Reaktionsveränderung. Zur 

Überprüfung der Enzymaktivität der markierten Katalase werden einige Flocken des 

gefärbten Enzyms mit einem Tropfen wässriger Wasserstoffperoxid-Lösung versetzt. Ein 

Kontrollversuch mit unbehandelter Katalase führt zum sofortigen und starken Aufschäumen, 
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welches durch den freigesetzten Sauerstoff hervorgerufen wird. Ein derartiger Aktivitätstest 

zeigt, dass die Enzymaktivität bei Markierung mit den Aldehyden 103 bzw. 105 bei 

Verwendung des Lösungsmittels NMP vollständig erhalten bleibt, während eine analoge 

Markierung unter Verwendung des Lösungsmittels DMSO zur vollständige Desaktivierung 

der Enzymaktivität führt. Die Behandlung des Enzyms mit DMSO führt offensichtlich zum 

Verlust der katalytischen Fähigkeiten. Dies ist umso erstaunlicher, da DMSO im Vergleich zu 

NMP als deutlich weniger toxische Lösungsmittel bekannt ist und daher auch in 

biochemischen und medizinischen Applikationen eingesetzt wird.[112] Ein möglicher, jedoch 

rein spekulativer Grund für die Deaktivierung der Enzymaktivität könnte die nachgewiesene 

cytotoxische Wirkung von DMSO in konzentrierter Form sein.[113] 

 

B8.1.3 Markierung von Katalase mit angularen Benzo[ghi]perylenbisimiden 

Mit den unter B8.1.2 optimierten Reaktionsbedingungen lassen sich auch die aldehyd- 

funktionalisierten angularen Bisimide 21 bzw. 24 mit Katalase umsetzen. Man erhält hierbei 

ebenfalls gelb-orange markierte Katalase, welche in Analogie zur Markierung mit den 

Aldehyden 103 bzw. 105 ihre Aktivität bei Verwendung von NMP behält, wohingegen 

Selbige bei Verwendung von DMSO vollständig verschwindet. Abbildung 118 zeigt das 

Festkörperfluoreszenzspektrum der mit 21 markierten Katalase. Das darin sichtbare 

Emissionsmaximum bei ca. 590 nm entspricht den Festkörperemissionsmaxima angularer 

Benzoperylenbisimide. 
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Abb. 118: Katalase unbehandelt (oben links), Katalase mit 21 markiert (oben mitte), Katalase mit 24 markiert 

(oben rechts); Festkörperfluoreszenzspektrum (magenta) und Festkörperfluoreszenzanregungsspektrum (blau)  

der mit 21 markierten Katalase (unten). 

 

B8.1.4 Markierung von Katalase mit funktionalisierten Perylenmomoimiden 

Die in Kapitel B7.1 entwickelten Aldehyde 111 bzw. 113 können ebenso wie die bisherigen 

Aldehyde mit Katalase in NMP bzw. DMSO umgesetzt werden. Auch hier erhält man intensiv 

rot gefärbte Katalase, deren Enzymaktivität in Übereinstimmung mit den bisherigen 

Ergebnissen lediglich bei Verwendung des Lösungsmittels NMP aufrechterhalten bleibt. Die 

markierten Katalasen zeigen im Festkörperfluoreszenzspektrum breite Maxima bei ca. 650 nm 

die damit im für Perylenmonoimide erwarteten Bereich liegen.[12]  
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Abb. 119: Katalase unbehandelt (oben links), Katalase mit 111 markiert (oben mitte), Katalase mit 113 markiert 

(oben rechts); Festkörperfluoreszenzspektrum (magenta) und Festkörperfluoreszenzanregungsspektrum (blau)  

der mit 111 markierten Katalase (unten). 

 

B8.2 Markierung von Katalase mit Perylen- bzw. Benzo[ghi]perylenan- 

hydriden 

Nachdem in den bisherigen Fällen die Markierung stets mit einem aldehydfunktionalisierten 

Chromophor erreicht worden ist, soll nun die Fähigkeit der entsprechenden 

Carbonsäureanhydride zur Markierung von Katalase untersucht werden. Wie bereits 

ausführlich im Rahmen dieser Arbeit erläutert worden ist, reagieren die Carbonsäurean- 

hydride sämtlicher Perylen- bzw. Benzoperylenderivate mit primären Aminen zu den 

entsprechenden Carbonsäureimiden (siehe Abbildung 120).  

 

 

Abb. 120: Allgemeine Darstellung der Reaktion von Chromophoren mit Carbonsäureanhydridfunktion mit 

primären Aminogruppen der Katalase. 

 

Dies sollte prinzipiell auch mit einem makromolekularen Amin möglich sein. Dazu lässt man 

N-(1-Hexylheptyl)perylen-3,4-dicarboximid-9,10-anhydrid (72) in NMP in bewährter Art und 

Weise mit Katalase reagieren. Überraschenderweise erhält man auch in diesem Fall intensiv 
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rot gefärbte Katalase, welche bei Verwendung von NMP als Lösungsmittel im vollen Besitz 

ihrer katalytischen Fähigkeiten bleibt. Analoge Umsetzungen mit den Benzoperylentrisimid- 

bzw -bisimidanhydriden 7 und 12 liefern ebenso intensiv gelb-orange gefärbte Katalase. Die 

Festkörperfluoreszenzmaxima entsprechen den Werten der mit den entsprechenden 

Carbonsäureimiden markierten Katalase. Lediglich bei der Umsetzung von Perylen-3,4-

dicarbonsäureanhydrid 4 erhält man unmarkierte Katalase, was vermutlich mit der nur sehr 

mäßigen Löslichkeit von 4 in organischen Lösungsmitteln zu erklären ist. Abbildung 121 

zeigt die mit diversen Carbonsäureanhydriden markierte Katalase sowie das 

Festkörperfluoreszenzspektrum der Markierung von Katalase mit 72. Darin sind die für 

Perylenbisimide charakteristischen drei Emissionsbanden bei 527.8, 574.1 und 620.3 nm zu 

sehen. Ähnliche Fluoreszenzmaxima für Perylenbisimide sind in der Literatur beschrieben, 

was die Bildung einer Imidfunktion belegt.[114]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Abb. 121: Katalase mit 72, 7 und 12 markiert (oben von links nach rechts), 

Festkörperfluoreszenzspektrum(magenta) und Festkörperfluoreszenzanregungsspektrum (blau) der mit 72 

markierten Katalase (unten). 
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B8.3 Einfluss des Lösungsmittels auf den Erhalt der Enzymaktivität 

Zur genaueren Untersuchung des Lösungsmitteleinflusses auf den Erhalt der katalytischen 

Fähigkeiten der Katalase werden die Chromophore 7  und 72 in einer Reihe weiterer Lösungs- 

mittel nach der bisher bewährten Methode umgesetzt. Abbildung 122 zeigt die Ergebnisse des 

Screenings:  

 

Abb. 122: Markierungsversuche von Katalase mit 72 und 7 in verschiedenen Lösungsmitteln 

 

Wie aus Abbildung 122 ersichtlich gelingt eine Enzymmarkierung unter Erhalt der 

katalytischen Aktivität auch mit den dipolar aprotischen Lösungsmitteln DMF, N,N-

Dimethylacetamid und 1-Methyl-2-piperidon. Überraschenderweise gelingt eine Markierung 

mit dem strukturell ähnlichen N-Methylformanilid nicht, die Aktivität der Katalase bleibt 

Lösungsmittel Chromophor Markierung Enzymaktivität 
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7, 12, 21,24, 

72,104,106 
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positiv positiv 

DMSO 

7, 12, 21,24, 

72,104,106 

111,113 

positiv negativ 

DMF 72, 7 positiv positiv 

N,N-Dimethylacetamid 72, 7 positiv positiv 

1-Methyl-2-piperidon 72, 7  positiv positiv 

N-Methylformanilid 72, 7 negativ positiv 

DMPU 72, 7 negativ positiv 

DMEU 72, 7 negativ positiv 

Dioxan 72, 7 negativ positiv 

THF 72, 7 negativ positiv 

Ethylenglykoldimethylether 72, 7 negativ positiv 

Tetramethylharnstoff 72, 7 negativ positiv 

Ethylencarbonat, 72, 7 negativ positiv 

Sulfolan, 72, 7 negativ positiv 

tert-Amylalkohol,  72, 7 negativ positiv 

Aceton,  72, 7 negativ positiv 
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jedoch trotz der bedenklichen Toxikologie der verwendeten Lösungsmittel unverändert 

erhalten. Bei einer Reihe weiterer dipolar aprotischer Lösungsmittel wie DMPU, DMEU, 

Tetramethylharnstoff, Sulfolan und Aceton ist ein Markierungsversuch nicht erfolgreich.  

 

Zusammenfassend zeigt sich, dass eine Markierung nur in ausgewählten, dipolar aprotischen 

Lösungsmitteln möglich ist. Jedoch bleibt die Enzymaktivität selbst bei nicht erfolgreicher 

Markierung in allen Fällen erhalten. Offensichtlich besitzt lediglich DMSO spezifische 

Eigenschaften, die zur Degeneration der katalytischen Fähigkeiten der Katalase führen. 

Mögliche Ursachen hierfür wurden bereits unter B8.1.2 diskutiert.  
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B9 Chromophore auf Basis von Perylenbisimiden 

B9.1 Synthese eines symmetrisch difunktionalisierten Perylenbisimids 

Die Aldehydfunktionalisierung von Perylenbisimiden erfolgt analog der Synthese der 

entsprechend funktionalisierten Perylenmonoimide 111 bzw. 113. Man erhitzt dabei eine 

Suspension aus Perylen-3,4:9,10-tetracarbonsäureanhydrid 120 und 4-(1,3-Dioxolan-2-

yl)benzylamin zusammen mit katalytischen Mengen an Zinkacetat-Dihydrat in Chinolin. 

Nach basischer Aufarbeitung und mehrfacher Zentrifugation erhält man das Bisacetal 121 in 

guten Ausbeuten als intensiv roten Feststoff (siehe Abbildung 123).  

 

Abb. 123: Synthese der Perylenbisimide 121 und 122. 

 

Das Massenspektrum bestätigt die Bildung von 121 anhand des Molekülpeaks bei m/z = 715 

ebenso wie ein korrektes hochaufgelöstes Massenspektrum. Im IR-Spektrum sind im 

Vergleich zum 120 keine zusätzlichen Banden im Bereich der aldehydischer (C=O)- 

Schwingungen zu sehen, was den vollständigen Erhalt der bisacetalischen Struktur belegt. Die 

acetalcharakteristischen (C-O-C)-Valenzschwingungen sind dagegen bei 1068 und 1173 cm-1 

sichtbar. Trotz der sehr geringen Löslichkeit von 121 gelingt die Aufnahme von UV/Vis-

Absorptions- und Fluoreszenzspektren (siehe Abbildung 124). Diese entsprechen mit 

Absorptionsmaxima bei 461.8, 493.0 und 528.8 nm sowie Emissionsmaxima bei 535.9, 579.5 

und 630.6 nm, den für Perylenbisimide typischen Werten. Die Fluoreszenzquantenausbeute 

von 121 wird zu 94 % bestimmt.  
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Nach säurekatalysierter Entschützung des Bisacetals 121 erhält man den Bisaldehyd 122 in 

Form eines grünschwarzen Feststoffs in sehr guten Ausbeuten von 89%. Die Löslichkeit von 

122 in organischen Lösungsmitteln ist noch etwas geringer als dies bei 121 der Fall ist. Die 

vollständige Hydrolyse des Bisacetals 121 ist anhand des Massenspektrums belegt. Dort ist 

nur der Molekülpeak des Bisaldehyds 122 bei m/z = 627  zu finden, während von 121 keine 

Fragmente mehr sichtbar sind. Im IR-Spektrum erscheint eine zusätzliche intensive Absorp- 

tion bei 1609 cm-1, welche der (C=O)-Valenzschwingung zuzuschreiben ist. Die Absorptions- 

und Fluoreszenzspektren gleichen denen von 121. Mit einer Fluoreszenzquantenausbeute von 

100 % ist diese noch etwas höher als die Fluoreszenzquantenausbeute von 121.  

 

Vorstellbare Einsatzmöglichkeiten bisaldehydischer Perylenbisimide sind beispielsweise die 

Anwendung in polymeranalogen Reaktionen. Bisher sind bereits einige aldehydfunk- 

tionalisierte Perylenderivate bekannt, welche beispielsweise mit den Hydroxylgruppen des 

Polyvinylalkohols zu den entsprechenden Acetalen reagieren, wodurch man einen Zugang zu 

fluoreszenzmarkierten Polymeren erhält.[108, 115] Der bisfunktionalisierter Perylenbisimid 122 

wäre nun prinzipiell geeignet, um verschiedene Polymer-Einzelstränge im Sinne von 

Leitersprossen miteinander zu verbinden. 

 

     

 

Abb. 124: UV/Vis-Absorptions- und Fluoreszenzspektrum von 121. 

 

0

0,2

0,4

0,6

0,8

1

400 500 600 700

λλλλ  [nm]

E, I



THEORETISCHER TEIL                                                                                                                   144                                                                                                                                                                                                                                   

B9.2 Darstellung des aromatischen Perylenamidinimids 123 via 

mikrowellenvermittelter Oxidation    

Langhals et al. entwickelte das Perylenamidinimid 123 durch Umsetzung von N-(1-Hexyl- 

heptyl)perylen-3,4-dicarboximid-9,10-anhydrid (72) mit Ethylendiamin in geschmolzenem 

Imidazol (siehe Abbildung 125).[116] Sie erhielten dabei ein Gemisch der beiden cyclischen 

Amidinimide 38 und 123. Die Absorption des aromatischen Amidins 123 ist aufgrund der 

Inkorperation des Amidinrings in das aromatische System des Perylenchromophors stark 

bathochrom gegenüber 72 verschoben, so dass 123 als violetter Farbstoff erscheint.       

 

 

Abb. 125: Synthese der Perylenamidinimide  38 und 123 nach Langhals et al.[116] 

 

Nach längerem Lagern an Luftsauerstoff lässt sich eine partielle Oxidation von 38 zu 123 

feststellen. Um diesem Phänomen auf den Grund zu gehen, wird 38 in Chinolin gelöst und 

mehrere Stunden erhitzt. Dabei lässt sich jedoch keine signifikante Bildung von 123 

erkennen. Der Austausch des Lösungsmittels zu Imidazol bzw. Chloroform führte ebenso 

wenig zu einer Veränderung wie der Ausschluss von oder die Beleuchtung mit Tageslicht. 

Erstaunlicherweise führt dagegen die Umsetzung einer chinolinhaltigen Lösung von 38 in 

einer Mikrowellenapparatur unter leicht erhöhtem Druck bereits nach wenigen Stunden zur 

vollständigen Konversion von 38 zu 123 (siehe Abbildung 126). Die Bildung von 123 kann 

massenspektroskopisch und mittels Absorptionsspektroskopie eindeutig belegt werden. 

Offensichtlich führt die Kombination von Mikrowellenstrahlung und Druckerhöhung zur 

Oxidation der cyclischen Ethylenbrücke. Eine derartige mikrowellen- und druckunterstützte 

Oxidationsreaktion ist bisher nicht bekannt und eröffnet innovative Möglichkeiten für eine 

einfache und sehr effiziente Darstellung aromatischer Amidinstrukturen.  
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Abb. 126: Alternative Synthese des Perylenamidinimids 123. 
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B9.3 Darstellung des neuartigen Perylenbisimid-Benzoperylenbichromo- 

phors 124 via Ringöffnungsreaktion des  Perylenamidinimids 38 

Unter B5.2.2 wird die Synthese des ethylenverbrückten Perylenbisimid-

Benzoperylenbisimidbichromophors 76 durch Umsetzung des aminfunktionalisierten 

Benzoperylenbisimids 32 mit dem Perylenmonoimidmonoanhydrid 72 erreicht (siehe 

Abbildung 127). Versuche einer analogen Darstellung von Benzoperylentrisimid-

Perylenbisimidbichromophoren wie z.B. 75 sind bisher nicht möglich gewesen, da weder das 

freie Ethylaminderivat von Benzoperylentrisimid noch von Perylenbisimid bekannt ist. Der 

Zugang zu Verbindung 75 wird daher bisher in einer mehrstufigen Reaktion mit finaler SN2-

Reaktion eines ethylbromidfunktionalisierten Perylenbisimids mit dem NH-Imid des 

Benzoperylentrisimids erreicht.[38b] Die Bedeutung derartiger Bichromophore liegt in ihrer 

Anwendung als Fluoreszenzstandards und Kalibrierreagenzien für Fluoreszenzspektrometer. 

Daher wäre eine präperativ weniger aufwendige Darstellung eine wesentliche Erleichterung. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb.127: Literaturbekannter Bichromophor 75.[38b] 

 

Wie unter B9.2 beschrieben bildet sich bei der Umsetzung von 72 mit Ethylendiamin in 

moderaten Ausbeuten das cyclische Amidin 38. Allgemein können Amidine sowohl säure- als 

auch basenkatalysiert hydrolisiert werden.[117] Wenn es nun gelingt, 38 basenkatalysiert zu 

hydrolysieren, sollte es zumindest in situ zur kurzzeitigen  Bildung das Amin 124 kommen. 

Bei gleichzeitiger Anwesenheit des Anhydrids 7 ist somit die Bildung des neuartigen  

Bichromophors 125 denkbar (siehe Abbildung 128). Dieser besäße im Gegensatz zu 75 

ausschließlich sekundäre Alkylreste aus 1-Hexylheptyl, was zu einer besseren Handhabung 

NO O

N

O

O

N N

O

O

O

O

NO O

75



THEORETISCHER TEIL                                                                                                                   147                                                                                                                                                                                                                                   

von 125 führen sollte. Zur Evaluierung dieses Postulats setzt man das Perylenamidinimid 38 

in einer mikrowellenunterstützten Reaktion in Chinolin mit 7 um (siehe Abbildung 129).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 128: Mögliche alternative Syntheseroute für 125. 

 

Tatsächlich lässt auf diese Weise sich der Bichromophor 125 in Ausbeuten von 15% 

darstellen. Die Massenspektrometrie zeigt den Molekülpeak bei m/z = 1447 sowie die 

Fragmente nach Abspaltung eines bzw. zweier sekundären Alkylseitenketten bei m/z =1264 

bzw. 1082. Die hochauflösende Massenspektrometrie stimmt ebenfalls mit der theoretisch 

berechneten Masse von 125 überein. Neben den aromatischen Signalen der beteiligten 

Chromophore erscheinen die beiden Methylengruppen des Ethylspacers im 1H-NMR-

Spektrum in Form zweier Tripletts bei 4.44 und 4.74 ppm mit einer Kopplungskonstante von 
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jeweils 5.0 Hz (siehe Abbildung 130). Die entsprechenden Kohlenstoffsignale sind im 13C-

NMR-Spektrum bei 37.3 bzw. 39.7 ppm zu erkennen.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 129: Synthese des Bichromophors 125. 

 

Das Absorptionsspektrum entspricht einer Überlagerung der Absorptionsspektren der 

beteiligten Einzelchromophore. Im Fluoreszenzspektrum erkennt man selbst bei selektiver 

Anregung des Benzoperylenteil auschließlich die Fluoreszenz des Perylenbisimidteil. Dieser 

Effekt tritt auch schon bei 75 auf und ist durch den in dieser Arbeit schon ausführlich 

beschriebenen Resonanzenergietransfer (vgl. B5) des als Donor fungierenden Benzoperylen- 

trisimids auf das als Akzeptor wirkende Perylenbisimid zu erklären (siehe Abbildung 131). 

Die Fluoreszenzquantenausbeuten können analog 75 sowohl bei selektiver Anregung des 

Benzoperylens als auch des Perylenbisimids mit 100 % bestimmt werden.  
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Damit ist ein alternativer und präperativ weniger aufwendiger Zugang zu perylenbasierten 

Breitbandabsorbern und Energietransfersystemen möglich. Darüber hinaus führt die 

Substitution der 1-Octylnonyl-Seitenkette in 75 durch eine 1-Hexylheptyl-Seitenkette zu einer 

einfacheren Handhabung derartiger bichromophorer Systeme.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 130: Ausschnitt des 1H-NMR-Spektrums von 125. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 131: UV/Vis-Absorptions- und Fluoreszenzspektrum des Bichromophors 125.  

[ppm] 



ZUSAMMENFASSUNG UND AUSBLICK                                                                                         150                                                            

C Zusammenfassung und Ausblick  
 

Durch eine Diels-Alder-Reaktion des Perylenmonoimids 11 mit Maleinsäureanhydrid gelingt 

erstmals die Darstellung des angularen Benzo[ghi]perylenmonoimidmonoanhydrids 12. 

Dieses fungiert als Ausgangsmaterial für eine Vielzahl von Verbindungen. Durch 

Kondensationsreaktionen mit diversen primären Aminen können die angularen 

Benzo[ghi]perylenbisimide 13 - 19 synthetiert werden (siehe Abbildung 132). Neben einer 

moderaten Fluoreszenz von ca. 30 % besitzen diese Bisimide eine ungewöhnlich hohe ISC-

Raten von ca 70 %, wodurch sie sich hervorragend als Triplettphotosensibilatoren zur 

effizienten Bildung von wirtschaftlich bedeutenden Singulettsauerstoff sowie für  Phosphores- 

zenzanwendungen eignen. Angulare Benzoperylenisimide sind die ersten Perylenimid- 

derivate, bei denen ein signifikantes intersystem crossing nachgewiesen werden kann. 

Zusätzlich sind sie im Gegensatz zu bisher eingesetzen Triplettsensibilatoren um ein 

Vielfaches stabiler und besitzen über ihr  Fluoreszenzlicht einen intrinsischen Indikator für 

ihre Funktionstüchtigkeit. 

 

 

 

 

 

 

 

 

 

 

Abb. 132: Angulares Benzo[ghi]perylenmonoimidmonoanhydrid 12 und angularen Bisimide 13 - 19. 

 

Funktionalisierte angulare Benzoperylenbisimide sind durch Umsetzung von 12 mit  geeignet 

funktionalisierten Aminen zugänglich. So lassen sich die aldehydfunktionalisierten Bisimide 

21 bzw. 24 durch Kondensation der entsprechend acetalgeschützen Aminoaldehyde 

darstellen. Der Aldehyd 21 kann alternativ auch durch selektive Oxidation des Alkohols 22 

hergestellt werden. Die erfolgreiche Fluoreszenzmarkierung diverser primärer Amine kann 

durch deren Reaktion mit 21 bzw. 24 unter Ausbildung der entsprechenden Imine (Schiff´sche 

Basen) 25 - 30 gezeigt werden (siehe Abbildung 133 oben). Hierbei gelingt die Markierung 
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sowohl mit aliphatischen und aromatischen Aminen als auch mit biologisch bedeutenden 

Aminosäuren.  

Setzt man 12 dagegen mit Diaminen um, erhält man die aminfunktionalisierten Benzoperylen- 

bisimide 32 - 37 (siehe Abbildung 133 unten). Während es im Falle aromatischer Amine 33 -

35 und 37 aufgrund von SET-Prozessen der Aminogruppe in den Chromophor zu einer 

annähernd vollständigen Fluoreszenzdesaktivierung kommt, entsprechen die emissions- 

spektroskopischen Eigenschaften der aliphatischen Amine 32 bzw. 36 weiterhin denen der 

nichtfunktionalisierten Bisimide 13 - 19.           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 133: Aldehydfunktionalisierte Bisimide 21 bzw. 24 

und die Imine 25 - 30 (oben); Aminfunktionalisierte Bisimide 

32 -37 (unten). 

 

 

Des Weiteren lassen sich die alkoholfunktionalisierten Bisimide 22 bzw. 40 sowie das 

Carbonsäurederivat 41 durch Umsetzung von 12 mit Aminoalkoholen bzw. Aminosäuren 

darstellen. Dabei eignet sich besonders der amphiphile  Farbstoff 41, um an der Grenzschicht 

zwischen hydro- und lipophiler Phase tensidähnliche Wirkung zu entfalten. 

Ein alternativer Zugang zu den Benzoterrylenderivaten 49 bzw. 51 durch eine Sakamoto-

Kreuzkupplungsreaktion ausgehend von 12 oder 13 gelingt nicht.   
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Die Reaktion von 12 mit 1,8-Diaminonaphthalin bzw. 1,3-Diamino-2,2-dimethylpropan führt 

zur Bildung der cyclischen Benzoperylenamidinimide 46 bzw. 47 (siehe Abbildung 134 

links). Während sich das aliphatische Amidin 46 spektroskopisch nicht wesentlich von 12 

unterscheidet, erscheint das aromatische Amidin 47 signifikant bathochrom verschoben. Dies 

lässt sich durch die Inkorporation des π-Systems des Naphthalins in das aromatische π-System 

des Chromophors erklären.     

 

 

Abb. 134: Benzoperylenamidinimide 46 bzw. 47 (links); kernsubstituierte 

Benzoperylenmonoimidmonoanhydride 62 und 64 - 67 (mitte und rechts). 

 

Die Synthese von in peri-Position kernsubstituierter Benzoperylenderivate kann anhand der 

halogenierten Verbindungen 62a/b/c bzw. 64a/b nachgewiesen werden (siehe Abbildung 134 

mitte). Dabei kommt es aufgrund des Schweratomeffekts zu einer signifikanten 

Abschwächung der Fluoreszenz zugunsten einer ausgeprägten Phosphoreszenz. Aufgrund der 

schwer zu trennenden Regioisomerengemische erweist sich eine Monofunktionalisierung für 

weitere Umsetzungen jedoch nur als bedingt geeignet. Dieses Problem kann durch die 

Darstellung der bisfunktionalisierten Dinitroverbindung 65 gelöst werden. Der  Chromophor 

65 besitzt eine signifikant geringere Fluoreszenzquantenausbeute als 12, wofür Excitonen- 

wechselwirkungen, veränderten ISC-Raten oder auch Prädissoziationsprozesse verantwortlich 

sein könnten. Die Reduktion von 65 führt zur Bildung des Diamins 66, dessen UV/Vis-

Absorptionsspektren im Vergleich zu 12 signifikant bathochrom verschoben erscheinen. 

Damit gelingt erstmals die Darstellung einer stark fluoreszierender bathochrom 

absorbierender Benzoperylenspezies. Die Stabilität von 66 ist jedoch sehr gering, so dass 

dieses innerhalb weniger Stunden, abhängig von der Art der Reduktion entweder zum 

Dihydroxylamin 68 oder zum Amidin 67 reagiert. 
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Heterogene bichromophore Systeme angularer Benzoperylenbisimide mit Perylenbisimiden 

erhält man durch Umsetzung der aminfunktionalisierten Benzoperylenbisimide 32 - 37 mit 

dem Perylenmonoimidmonoanhydrid 72 (siehe Abbildung 135). Dabei kommt es unabhängig 

von der Natur der eingesetzten Spacer in den Verbindungen 71, 73, 74 und 76 - 78 zu einem 

vollständigen und sehr effizienten Förster-Resonanzenergietransfer des Benzoperylen- 

bisimids in das Perylenbisimid, so dass keinerlei Fluoreszenz des Benzoperylenbisimids 

messbar ist. Die Fluoreszenzquantenausbeute beträgt dabei selbst bei Anregung der Benzo- 

peryleneinheit annähernd 100%, obwohl die isolierten Benzoperyleneinheit lediglich mit einer  

Fluoreszenzquantenausbeute von ca. 30 % emittiert. Durch Kondensation des Anhydrids 65 

mit dem aminfunktionalisierten Perylenbisimid 70  erhält man erstmals den Zugang zum peri-

disubstituierten Benzoperylen-Perylenbisimid-Bichromophor 79 (siehe Abbildung 135), 

welcher spektroskopisch dem Bichromophor 71 entspricht. Die Reduktion von 79 liefert den 

diaminosubstituierten Bichromophor 80. Dessen Lichtabsorption ist analog dem zugrunde 

liegenden Diamin 66 bathochrom gegenüber 71 verschoben. Dadurch kommt es zu einem 

Förster-Resonanzenergietransfer der Perylenbisimideinheit in das Benzoperylenbisimid. Eine 

derartige Inversion der Richtung des Energietransfers in Benzoperylen-Perylen-

Bichromophoren ist bisher völlig unbekannt. In Analogie zu 66 ist auch  80 sehr instabil und 

reagiert innerhalb kurzer Zeit zum Dihydroxylamin 84 bzw. zum Amidin 81.    

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 135: Bichromophore Systeme auf Basis angularer Benzoperylenbisimide. 

 

Die homogenen Benzoperylen-Benzoperylen-Bichromophore 89 und 90a/b lassen sich durch 

Kondensation der Amine 33 und 35 mit dem Anhydrid 12 gewinnen (siehe Abbildung 136). 

Dabei kommt es bei der Umsetzung des sterisch anspruchsvollen Amins 35 zur Bildung eines 

schwer zu trennenden E/Z-Isomeren-Gemisch aus 90a und 90b.    
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Abb. 136: Homogene Benzoperylen-Benzoperylen-Bichromophore 89 und 90a/b. 

 

In den Bichromophoren angularer Benzoperylenbisimide bzw. Benzoperylentrisimiden mit 

meso-substituierten Corrolen 98 und 102 bzw. 104 und 106 kommt es zu einer fast 

vollständigen Fluoreszenzdeaktivierung aufgrund von SET-Prozessen des Benzoperylens in 

das Corrol (siehe Abbildung 137 links).  

 

Abb. 137: Corrol-Bichromophore 98, 102, 104 und 106 (links) sowie 109 (rechts). 

 

Dabei bildet sich ein Charge-Separated-State (CS), dessen Lebensdauer τCS in 102 mit 2.5 µs 

über das 100fache höher als die Lebensdauer des entsprechenden Perylenbisimid-Corrol-

Bichromophors 95. Auch die Effizienz der Bildung des CS-Zustands ΦCS ist in 102 mit 75% 
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im Vergleich zu 95 signifikant erhöht. Langlebige CS-Zustände in Kombination mit einer 

hohen Effizienz ΦCS sind sowohl in der  Photosynthese als auch in der Photovoltaik von  

elementarer Bedeutung, weshalb in zukünftigen Studien die Eignung von Corrol-

Bichromophoren in Photozellen evaluiert werden soll. In diesem Zusammenhang wurde 

bereits der Bichromophor 109 synthetisiert, in  welchem die Kopplung eines Corrols mit 

einem heterocyclisch lateral erweiterten Perylenbisimid realisiert werden kann (siehe 

Abbildung 137 rechts). Auch in 109 kommt es zu einer beeindruckenden 

Fluoreszenzdesaktivierung, welche ebenfalls mit SET-Prozessen erklärt werden kann.   

 

Durch die Darstellung der Aldehyde 111 und 113 kann die Eignung funktionalisierter 

Perylenmonoimide zur erfolgreichen Fluoreszenzmarkierung zweifelsfrei belegt werden. 

Dabei lassen sich 111 bzw. 113  analog den angularen Benzoperylenbisimiden 21 bzw. 24 mit 

diversen primärer Amine in die Imine 114 - 119 überführen. Neben hohen Fluoreszenz- 

quantenausbeuten > 90 % erweist sich die Löslichkeit von 111 bzw. 113  in organischen 

Lösungsmitteln besser als erwartet.   

 

Abb. 138: Aldehydfunktionalisierte Monoimide 111 bzw. 113 (links) und die Imine 114 - 119 (rechts). 

 

Die Eignung funktionalisierter (Benzo)-Perylenimide zur Fluoreszenzmarkierung von 

biologisch aktiven Enzymen kann exemplarisch durch den Umsatz von Katalase mit den 

Aldehyden 21, 24, 103, 105, 111 und 113 gezeigt werden. Dabei erhält man jeweils gefärbte 

und intensiv fluoreszierende Katalase. Zusätzlich können die Reaktionsbedingungen der 

Markierungsreaktion optimiert werden. Eine Fluorezenzmarkierung gelingt auch mit den 

Anhydriden 7, 12 und 72, während eine Markierung mit 4 bedingt durch dessen geringe 

Löslichkeit nicht nachgewiesen werden kann. Bei sämtlichen Chromophoren bleibt die 

Enzymaktivität bei Verwendung der Lösungsmittel NMP, DMF, N,N-Dimethylacetamid oder 
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1-Methyl-2-piperidon vollständig intakt, während Umsetzungen in DMSO zu einer 

vollständigen  Desaktivierung der Enzymaktivität führen.  

 

Das neu entwickelte bisaldehydfunktionalisierte Perylenbisimid 122 ist für polymeranaloge 

Reaktionen vorgesehen, um dort verschiedene Polymer-Einzelstränge im Sinne von 

Leitersprossen miteinander zu verbinden. 

 

Ein alternativer Zugang zum aromatischen Perylenamidinimid 123 eröffnet sich durch die  

mikrowellen- und druckunterstützte Oxidationsreaktion des aliphatischen Amidins 38. 

Derartige Reaktionen sind bisher nicht bekannt und eröffnen die innovative Möglichkeit einer 

einfachen und sehr effizienten Darstellung aromatischer Amidinstrukturen.  

 

Der Benzoperylentrisimid-Perylenbisimid-Bichromophor 125 kann durch eine basen- 

katalysierte Hydrolyse des Amidins 38 bei Anwesenheit des Anhydrids 7 synthetisiert werden 

(siehe Abbildung 139). Damit ist ein alternativer und präperativ weniger aufwendiger Zugang 

zu perylenbasierten Breitbandabsorbern und Energietransfersystemen möglich. Darüber 

hinaus führt die Substitution der 1-Octylnonyl-Seitenkette in 75 durch eine 1-Hexylheptyl-

Seitenkette in 125 zu einer einfacheren Handhabung derartiger bichromophorer Systeme.   

 

 

 

 

 

 

 

 

 

 

 

Abb. 139: Fluoreszenzstandard 125. 
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D Experimenteller Teil 

 

D0 Reagenzien und Methoden 

 

D0.1 Synthese 

Die verwendeten Chemikalien wurden von den Firmen Sigma-Aldrich, Across, Fluka und 

VWR International bezogen und falls nicht anders angegeben, ohne weitere Reinigung 

eingesetzt. Die Reaktionen wurden soweit nicht anders erwähnt ohne Schutzgasatmosphäre 

durchgeführt. Die jeweiligen Lösemittel wurden nach den üblichen Vorschriften absolutiert 

und getrocknet oder in entsprechender Qualität bezogen. Die Ausbeuten beziehen sich, sofern 

nicht anders vermerkt, auf gereinigte Verbindungen. Soweit benötigt wurde unter Luft- und 

Feuchtigkeitsausschluss gearbeitet. Dabei wurden die Reaktionen an einer Feinvakuumanlage 

unter Verwendung der Schlenktechnik durchgeführt. Als Inertgas diente Stickstoff der Reinheit 

5.0. Flüssige Substanzen und Lösungen werden bei Arbeiten unter N2-Atmosphäre mit einer 

Einwegspritze über ein gasdichtes Septum in den Reaktionskolben eingespritzt.  Für 

Mikrowellenansätze wurde ein CEM Discover Mikrowellengerät verwendet. Die 

Mikrowellenapparatur wurde mit 200 W Leistung betrieben. Alle Mikrowellenreaktionen 

wurden in Chinolin als Lösemittel und in geschlossenen Gefäßen durchgeführt. Lösemittel 

werden zunächst am Rotationsverdampfer bei einem Druck von 10 mbar und danach letzte 

Lösemittelspuren im Feinvakuum (1 . 10-3 mbar) entfernt. Zum Kühlen von Reaktionslösungen 

wird je nach benötigter Temperatur ein Eisbad oder eine Mischung aus Eis, Wasser und 

Kochsalz verwendet. Die Einwaage der verwendeten Substanzen wurde an einer 

Analysenwaage B204-S der Firma Mettler Toledo mit einer Genauigkeit von ± 0.1 mg 

bestimmt   

 

D0.2 Reinigung 

Analytische Dünnschichtchromatographie wurde mit Fertigfolien  durchgeführt, welche mit 

einem Fluoreszenzindikator beschichtet waren („Alugramm SIL G/UV254“ (Kieselgel 60, 

Schichtdicke 0.25 mm, Firma Merck). Nachweise wurden durch ihre Fluoreszenz bei 

Einstrahlung von UV-Licht (λ = 254 bzw. 366 nm). Substanzgemische wurden mittels 

Säulenchromatographie präparativ aufgetrennt. Die Durchmesser der verwendeten Glassäulen 

waren von der Substanzmenge abhängig. Die Reinigung von Substanzmengen erfolgte 

chromatographisch an Kieselgel 200 (63-200 µm) Kieselgel 60 (40-60 µm) der Firma Merck. 
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Die verwendeten Laufmittel sind jeweils in der entsprechenden Versuchsvorschrift angegeben. 

Zentrifugationen wurden mit der Zentrifuge Rotofix 32A (4000 U/min) der Firma Hettich 

durchgeführt. 

 

D0.3 Charakterisierung 

Kernresonanzspektren wurden an den Geräten Varian Mercury VX 200 (200 MHz), Varian 

VnmrS (300 MHz), Varian Inova (400 MHz), Varian VnmrS (400 MHz), Varian VnmrS (600 

MHz) aufgenommen. Chemische Verschiebungen sind als δ -Werte in ppm gegen den Restpro- 

tonengehalt des verwendeten deuterierten Lösungsmittels bzw. dessen Kohlenstoff-Atome 

angegeben. Die Zuordnung der Signale erfolgte z.T. mit Hilfe von HMBC, HSQC und COSY-

Experimenten. Kopplungskonstanten nJ über n Bindungen wurden in Hertz angegeben. Zur 

Beschreibung der Signalmultiplizität wurden folgende Abkürzungen verwendet: s (Singulett), 

d (Duplett), t (Triplett), q (Quartett), sept (Septett), m (Multiplett), br (breites Signal). 

Massenspektren wurden auf einem Finnigan MAT 95 aufgenommen. Die Aufnahme der 

Masssenspektren erfolgte mittels EI (Elektronenstoß Ionisation) und ESI (Elektronenspray 

Ionisation). Infrarotspektren wurden an einem Spectrum Bx FT-IR-Spektrometer der Firma 

Perkin Elmer aufgenommen. Die Absorptionen ν~ werden in Wellenzahlen (cm-1) angegeben. 

Der Aufnahmebereich erstreckte sich von 4000 - 400 cm-1. Folgende Abkürzungen werden zur 

Charakterisierung der Banden benutzt: vs (sehr stark), s (stark), m (mittel), w (schwach), br 

(breites Signal). Schmelzpunkte wurden mit einem Melting Point B-540 der Firma Büchi 

bestimmt. Mit den Spektrometern Omega 20 von Bruins Instruments und Cary 500 von Varian 

wurden UV/Vis-Absorptionsspektren aufgenommen. Zur Aufnahme von Fluoreszenzspektren 

benutzte man ein Cary Eclipse Fluoreszenzspektrometer der Firma Varian.  Die Wellenlänge 

der Absorptionsmaxima wird in nm, der Extinktionskoeffizient in (L.mol-1.cm-1) angegeben. 
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D1 Vorstufen 

 

D1.1 N,N´-Bis-(1-hexylheptyl)perylen-3,4:9,10-bis(dicarboximid) (1)[14] 

Perylen-3,4:9,10-tetracarbonsäureanhydrid (120, 10.0 g, 

25.5 mmol) 1-Hexylheptylamin (11.9 g, 59.6 mmol) und 

Imidazol (30.0 g, 441 mmol) wurden 1.5 h unter Rückfluss 

erhitzt. Die zunächst pulvrige Mischung verflüssigte sich 

mit steigender Temperatur zunehmend. Der noch warmen 

Reaktionslösung wurde EtOH (15.0 mL) zugegeben. Die 

entstandene Suspension wurde unter Rühren mit wässriger 

HCl-Lösung (210 mL, 2 M) versetzt. Nach einer weiteren 

Stunde Rühren trennte man den Farbstoff durch Filtration 

ab. Der Filterkuchen wurde 24 h bei 110 °C getrocknet und im Anschluss 1 h mit CHCl3 (200 

mL) extrahiert. Nach Entfernen des Lösemittels ließ man das entstandene rote Pulver 24 h bei 

110 °C trocknen. Das Rohprodukt wurde durch Säulenchromatographie über Kieselgel (63 - 

200 µm) mit dem Laufmittel Chloroform aufgereinigt. Das Produkt erscheint nach einem 

gelben, schwach fluoreszierenden Vorlauf als intensiv rot-orange fluoreszierende Bande. Es 

wurde in wenig CHCl3 aufgenommen und mit MeOH ausgefällt. Man erhielt so N,N -́(1-

Hexylheptyl)perylen-3,4:9,10-bis(dicarboximid) (1) als rotes Pulver.  

   

Ausbeute: 14.0 g (1, 18.5 mmol, 73 %)  

 

Rf (Kieselgel, CHCl3): 0.75  

 
1H-NMR  (600 MHz, CDCl3): δ = 0.82 (t, 3J = 6.6 Hz, 12H, CH3), 1.21 - 1.38 (m, 32H, 

CH2CH2CH2CH2CH3), 1.78 - 1.94 (m, 4H, CHCH2), 2.16 - 2.35 (m, 4H, CHCH2), 5.10 - 5.24 

(m, 2H, NCH), 8.61 - 8.72 ppm (m, 8H, Harom).     
  
13C-NMR  (151 MHz, CDCl3): δ = 14.0, 22.6, 26.9, 29.2, 31.7, 32.4, 54.8, 123.0, 126.5, 

129.6, 131.2, 131.9, 134.5 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 459.0 (0.22), 489.2 (0.60), 526.4 nm (1.00).  

 

Fluoreszenz (CHCl3): λmax (Irel) = 534.4 (1.00), 574.2 (0.59), 623.0 nm (0.20). 

N

N

O O

OO
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MS (EI): m/z (%) = 756 (12) [M + 2H]+, 755 (44) [M + H]+, 754 (93) [M]+, 574 (18), 573 (48) 

[M + H - C13H26]
+, 572 (53) [M - C13H26]

+,392 (29), 391 (100) [M + H - 2 . C13H26]
+, 390 (42), 

390 (97) [M - 2 . C13H26]
+, 390 (56), 373 (13).  

 

HRMS (EI): ber.: C50H62N2O4 [M]+: 754.4710   

gef.:                                  754.4725 ∆ = 0.0015 

 

 

 

D1.2 N-(1-Hexylheptyl)perylen-3,4-dicarboximid-9,10-anhydrid  (72)[15] 

N,N´-Bis-(1-hexylheptyl)perylen-3,4:9,10-bis(dicarboximid) 

(1, 7.30 g, 9.67 mmol, 1.00 Äq.) werden in tert-Butanol 

(150 mL) aufgeschlemmt und 30 Minuten auf 105 °C 

erhitzt. Der entstandenen roten Lösung wird zügig fein 

gepulvertes KOH (85 %, 2.18 g, 38.8 mmol, 4.00 Äq.) 

zugegeben. Nach exakt 12 Minuten bei 105 °C wird der 

Reaktionsansatz vorsichtig mit einem Gemisch aus 2 M 

HCl/Eisessig (1:1, 150 mL)  versetzt. Anschließend lässt 

man auf Raumtemperatur abkühlen, filtriert den tiefroten Niederschlag ab, wäscht mit 

reichlich verdünnter Salzsäure und Wasser nach und lässt den Niederschlag im 

Trockenschrank über Nacht bei 110 °C trocknen. Zur Reinigung wird das Rohprodukt 

säulenchromatographisch mit Chloroform über Kieselgel aufgetrennt. Zunächst wird nicht 

umgesetztes Edukt als rote Bande und entstandenes Lactamimid in Chloroform eluiert. 

Anschließend wird das Laufmittel auf Chloroform/Eisessig 10:1 gewechselt und das Produkt 

als intensiv rote Bande eluiert. Das Produkt wird in wenig Chloroform aufgenommen und mit 

Methanol gefällt. Dies lieferte 72 als dunkelroten Feststoff. 

 

Ausbeute:  4.57 g (72,7.97 mmol, 82 %)  

 

Schmelzpunkt: > 250  °C 

 

Rf (Kieselgel, CHCl3): 0.05. 

 

N

O
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IR  (ATR): ν~   = 2955.3 (m), 2922.8 (s), 2853.8 (m), 1766.9 (vs), 1723.1 (s), 1700.2 (s), 

1699.5 (vs), 1657.6 (vs), 1592.0 (vs), 1577.2 (m), 1506.7 (w), 1455.8 (w), 1404.4 (m), 1353.8 

(m), 1313.4 (vs), 1246.1 (m), 1199.4 (w), 1176.8 (w), 1151.8 (w), 1139.7 (w), 1122.8 (m), 

1105.2 (w), 1010.9 (m), 853.6 (m), 808.0 (m), 775.9 (w), 735.7 cm-1 (m). 

 

1H-NMR  (600 MHz, CDCl3): δ = 0.82 (t, 3J = 6.6 Hz, 6H, CH3), 1.16 – 1.38 (m, 16H, 

CH2CH2CH2CH2CH3), 1.82 - 1.92 (m, 2H, CHCH2), 2.19 - 2.29 (m, 2H, CHCH2), 5.14 - 5.22 

(m, 1H, NCH), 8.64–8.76 ppm (m, 8H, CHarom). 

 
13C-NMR  (151 MHz, CDCl3): δ = 14.3, 22.8, 27.1, 29.4, 32.0, 32.6, 55.2, 119.3, 123.4, 

124.2, 126.8, 127.1, 129.7, 131.4, 132.1, 133.8, 136.7, 160.2 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) =  456.8 (0.23), 486.8 (0.61), 522.6 nm (1.00). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 532.5 (1.00), 573.5 (0.54), 625.8 nm (0.13). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E490 nm / 1cm = 0.0304, Referenz: S-13 

mit Φ = 1.00): Φ = 1.00  

 

MS (EI): m/z (%) = 573 (53) [M]+, 391 (100) [M - C13H26]
+, 374 (8)[M -C13H27O2]

+, 347 (10) 

[M – C14H26O2]
+, 319 (9). 

 

HRMS (EI): ber.: C37H35 NO5 [M]+:  573.2515  

 gef.:         573.2521 ∆ = 0.0006  
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D1.3 N,N´-Bis(1-hexylheptyl)benzo[ghi]perylen-2,3,8,9,11,12-hexacarbon-  

 säure-2,3,8,9-bis(dicarboximid)-11,12-anhydrid (7)[16] 

In einer Schmelze von Maleinsäureanhydrid (34.1 g, 331 

mmol) löste man bei 90 °C N,N -́(1-Hexylheptyl)perylen-

3,4:9,10-bis(dicarboximid) (1, 5.00 g, 6.62 mmol), erhitzte 

auf 140 °C, versetzte mit Chloranil (3.26 g, 13.2 mmol) und 

ließ das Reaktionsgemisch 4 Tage bei 140 °C rühren. Nach- 

dem das etwas abgekühlte, aber immer noch flüssige Re- 

aktionsmischung in Aceton (50.0 mL) dispergiert wurde, 

goss man die Reaktionslösung auf eine wässrige HCl-Lösung 

(250 mL, 2 M). Den entstandenen Niederschlag ließ man 

einen Tag altern und entfernte die überstehende Lösung anschließend durch Filtration. Der 

rotbraune Niederschlag wurde noch mit H2O gewaschen (2 . 100 mL) und 24 h bei 110 °C 

getrocknet. Es folgte zunächst eine säulenchromatographische Reinigung des Rohprodukts an 

Kieselgel (63 - 200 µm) mit CHCl3. Dadurch konnte man sowohl nicht umgesetzten 

Eduktfarbstoff als auch Chloranil abtrennen. Das gewünschte Produkt konnte mit einen 

Laufmittelgemisch aus CHCl3 und Eisessig (19:1) als intensiv gelb fluoreszierende Bande 

eluiert werden. Nach Entfernen des CHCl3 aus dem Lösemittelgemisch wurde N,N´-Bis(1-

hexylheptyl)benzo[ghi]perylen-2,3,8,9,11,12-hexacarbonsäure-2,3,8,9-bis(dicarboximid)-

11,12-anhydrid (7) mit H2O  gefällt und als rot-oranges Pulver erhalten        

 

Ausbeute: 3.32 g (7, 3.91 mmol, 59 %)  

 

Schmelzpunkt:  > 250 °C 

 

Rf (Kieselgel, CHCl3/Eisessig 19:1): 0.30  

 

IR (ATR): ν~ = 2954.4 (s), 2923.8 (vs), 2855.2 (s), 1844.1 (m), 1767.9 (s), 1704.9 (s), 1657.7 

(vs), 1624.4 (s), 1594.4 (s), 1523.0 (w), 1455.9 (m), 1413.9 (s), 1364.9 (s), 1318.6 (vs), 

1295.1 (s), 1280.8 (s), 1248.2 (m), 1199.9 (s), 1164.0 (vs), 1122.2 (s), 909.5 (vs), 863.2 (s), 

813.7 (vs), 762.8 (s), 748.0 (s), 723.7 (m), 659.2 (s), 584.6 cm-1 (m).   

 
1H-NMR  (600 MHz, CDCl3): δ = 0.82 (t, 3J = 6.5 Hz, 12H, CH3), 0.97 - 1.43 (m, 32H, 

CH2CH2CH2CH2CH3), 1.82 - 2.04 (m, 4H, CHCH2), 2.12 - 2.42 (m, 4H, CHCH2), 5.24 - 5.36 

N

N

O O

OO

7

O

O

O



EXPERIMENTELLER TEIL                                                                                                                                                   163                                        
                                                                                                                                              
 

(m, 2H, NCH), 9.31 (d, 3J = 8.4 Hz, 2H, CHCHCCO ), 9.52 (d, 3J = 8.4 Hz, 2H, CHCHCCO), 

10.35 ppm (s, 2H, CCHCCO).      

  
13C-NMR  (151 MHz, CDCl3): δ = 14.0, 22.6, 26.9, 29.2, 31.7, 32.4, 54.5, 123.4, 124.7, 

124.9, 127.4, 127.9, 128.7, 129.0, 129.2, 130.9, 131.6, 133.5, 162.3 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 264.6 (12790), 275.0 (13860), 332.0 (22650), 354.6 (24720), 

371.8 (23530), 413.8 (11530), 438.0 (30330), 486.6 nm (47780). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 477.8 (1.00), 511.6 (0.60), 550.4 nm (0.17).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 437 nm, E 435 nm / 1cm = 0.0136, Referenz: S-13 

mit Φ = 1.00): Φ = 0.41 

 

MS (EI): m/z (%) = 849 (30) [M + H]+, 848 (45) [M]+, 669 (21), 668 (62), 667 (100) [M - 

C13H26]
+, 665 (24) [M - C13H26]

+, 487 (18), 486 (72), 485 (74) [M + H - 2 . C13H26]
+, 484 (22) 

[M - 2 . C13H26]
+, 413 (14), 69 (10), 55 (16).   

 

HRMS (EI): ber.: C54H60N2O7 [M]+: 848.4401  

 gef.:                            848.4389 ∆ = 0.0012  

                              

C54H60N2O7 [849.1]  ber. (%): C: 76.39 H: 7.12 N: 3.30  

       gef. (%): C: 76.08  H: 7.12  N: 3.17 
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D1.4 N-(1-Hexylheptyl)perylen-3,4-dicarboximid (11)[12] 

Unter einer N2-Atmosphäre wurde Cu-Pulver (5.06 g, 

79.6 mmol) in 3-Picolin (600 mL)  suspendiert. Nach             

6 h Rühren bei 85 °C wird N-(1-Hexylheptyl)perylen-           

3,4-dicarboximid-9,10-dicarbonsäurebisanhydrid (2, 9.13 g, 

15.9 mmol) hinzugefügt und 16 h bei 155 °C erhitzt. 

Daraufhin wurde zur eisgekühlten Reaktionslösung wässrige 

HCl-Lösung (2 M, 100 mL) gegeben und anschließend die 

Reaktionsmischung auf wässrige HCl-Lösung (2 M, 500 mL) gegossen. Der ausgefallene 

Feststoff wurde abgenutscht, 12 h getrocknet und das Rohprodukt säulenchromatographisch 

an Kieselgel (63 - 200 µm) mit CHCl3 aufgereinigt. Das Produkt wurde als intensiv rot-

orange fluoreszierende Bande isoliert und das Lösemittel im Vakuum entfernt. Den erhaltenen 

Rückstand wurde in wenig CHCl3 aufgenommen und  anschließend mit MeOH gefällt. Es 

wurde 11 als roter Feststoff erhalten. 

 

Ausbeute:  5.43 g (11, 10.8 mmol, 68 %) 

 

Rf (Kieselgel, CHCl3):     0.83 

 

IR  (ATR): ν~ = 2960.0 (w), 2922.3 (w), 2854.5 (w), 2361.5 (w), 1695.9 (w), 1650.9 (s), 

1593.6 (m), 1574.9 (w), 1499.4 (w), 1465.5 (w), 1408.3 (w), 1354.4 (s), 1292.4 (w), 1244.8 

(m), 1173.8 (w), 1138.0 (w), 1107.9 (w), 855.8 (w), 839.5 (m), 810.5 (vs), 753.8 (vs), 668.0 

cm-1 (w). 

     
1H-NMR  (400 MHz, CDCl3): δ = 0.98 (t, 3J = 9.3 Hz, 6H, CH3), 1.21 – 1.38 (m, 16H, 

CH2CH2CH2CH2CH3), 1.82 – 1.91 (m, 2H, CHCH2), 2.22 – 2.30 (m, 2H, CHCH2),             

5.15 – 5.23  (m, 1H, NCH), 7.55 (t, 3J = 8.6 Hz, 2H, CCHCHCH), 7.86 (d, 3J = 8.6 Hz, 2H, 

Harom), 8.25 – 8.34 (m, 4H, Harom), 8.44 – 8.55 ppm (m, 2H, Harom).  

    
13C-NMR  (100 MHz, CDCl3): δ = 14.1, 22.6, 27.0, 29.3, 31.8, 32.4, 54.4, 120.1, 123.5, 

126.6, 126.9, 127.9, 129.1, 129.9, 130.7, 131.0, 131.8, 134.2, 136.8, 164.2, 165.2 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 265.0 (1.00), 482.0 (0.93), 506.0 nm (0.92). 

 

NO O
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Fluoreszenz (CHCl3): λmax (Irel) = 540.6 (1.00), 578.4 nm (0.85).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 482.0 nm, E482 nm / 1cm = 0.0217, Referenz: S-13 

mit Φ = 1.00): Φ = 1.00  

 

MS (EI): m/z (%) = 505 (2) [M + 2H]+, 504 (9) [M + H]+, 503 (23) [M ]+, 487 (2), 486 (6), 

333 (2), 323 (1) [M + 2H - C13H26]
+, 322 (6) [M + H - C13H26]

+, 321 (33) [M - C13H26]
+, 320 

(100) [M - H - C13H26]
+, 304 (3), 303 (2),  277 (5), 275 (1), 251 (2), 250 (2). 

 

HRMS (EI): ber.: C35H37O2N [M]+:  503.2824  

  gef.:         503.2827 ∆ = 0.0003   

 

 

D.1.5 Perylen-3,4-dicarbonsäureanhydrid (4)[12] 

N-(1-Octylnonyl)perylen-3,4-dicarbonsäureimid (4.01 g, 7.16 mmol) wurde 

solange bei  100 °C in tert-Butanol gerührt bis eine homogene Lösung vorlag. 

Anschließend gab man feingemörsertes KOH (85 %, 2.61 g, 46.5 mmol) 

hinzu und ließ bei 100 °C über Nacht rühren. Im Anschluss versetzte man die 

Reaktionsmischung mit einer wässrigen Lösung aus HCl (2 M) und Eisessig 

(1:1, 200 mL). Der gebildete Niederschlag wurde abfiltert, getrocknet und in 

wenig Chloroform aufgenommen. Es folgte eine säulenchromatographische 

Aufreinigung an Kieselgel (63 - 200 µm). Verunreinigungen konnten mit dem Laufmittel 

CHCl3 eluiert werden. Das Produkt konnte mit einen Laufmittelgemisch aus CHCl3 und 

Eisessig (10:1) als intensiv rot-orange-fluoreszierenden Bande eluiert werden.  

Nach Entfernen der Lösemittel im Vakuum nahm man den Rückstand in wenig CHCl3 auf 

und fällte ihn mit MeOH. Dies lieferte Perylen-3,4-dicarbonsäureanhydrid (4) als roten 

Feststoff. 

 

Ausbeute:  1.52 g (4, 4.72 mmol, 66 %) 

 

Schmelzpunkt: > 400 °C 

 

Rf (Kieselgel, CHCl3):     0.25 

 

OO O
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IR  (ATR): ν~ = 2364.4 (w), 1975.6 (w), 1782.6 (w), 1752.0 (m), 1724.0 (m), 1593.4 (m), 

1571.4 (m), 1500.0 (m), 1371.2 (m), 1343.1 (m), 1285.7 (m), 1234.0 (m), 1153.2 (w), 1133.3 

(m), 1076.7 (br, m), 1021.1 (s), 999.0 (m), 860.8 (w), 844.9 (m), 836.0 (m), 810.6 (s), 768.7 

(m), 742.2 (vs) 678.1 (w), 657.4 cm-1 (w). 

 
1H-NMR  (400 MHz, CDCl3): δ = 7.64 (t, 3J = 8.0 Hz, 2H, CCHCHCH), 7.93 (d, 3J = 8.3 Hz, 

2H, CCCHCHCH), 8.44 (d, 3J = 8.2 Hz, 2H, CCCHCHCH), 8.47 (d, 3J = 7.5 Hz, 2H, 

OCCCHCH), 8.57 ppm (d, 3J = 8.1 Hz, 2H, OCCCHCH). 

 

UV/Vis (CHCl3): λmax (Erel) = 488.2 (1.00), 508.4 nm (0.91).  

 

Fluoreszenz (CHCl3): λmax (Irel) = 547.1 (1.00), 584.5 nm (0.83). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 487 nm, E487 nm / 1cm = 0.0256, Referenz: S-13 

mit Φ = 1.00): Φ = 1.00 

 

MS (EI): m/z (%) = 324 (7) [M + 2H]+, 323 (49) [M + H]+, 322 (100) [M]+, 279 (9)  

[M + H - CO2]
+, 278 (44) [M - CO2]

+, 251 (18), 250 (98) [M - C2O3]
+ , 249 (20), 248 (28), 247 

(5), 246 (4), 161 (5), 125 (68), 124 (36), 112 (8), 69 (3). 

 

HMRS (EI): ber.: C22H10O3 [M]+:   322.0630  

gef.:                        322.0594 ∆ = 0.0036 
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D1.6 N-(1-Hexylheptyl)-N´-(4-amino-2,3,5,6-tetramethylphenyl)perylen-

 3,4,9,10-bis(dicarboximid) (70)[36] 

Unter Argon-Schutzgasatmosphäre sowie Lichtausschluss 

wurden N-(1-Hexylheptyl)perylen-3,4-dicarboximid-9,10-

anhydrid (2, 2.99 g, 5.22 mmol, 1.00 Äq.), 2,3,5,6-Tetra- 

methylphenylen-1,4-diamin ( 1.29 g, 7.73 mmol, 1.50 Äq.) 

und Imidazol (5.00 g) zusammengegeben und  4 h auf 

105°C erhitzt. Zu der noch warmen Reaktionslösung gab 

man EtOH (10.0 mL)  und goß das Reaktionsgemisch auf 

eine Mischung aus wässriger HCl-Lösung (100 mL, 2 M) 

und Eisessig (100 mL). Der Niederschlag wird nach 4 h  

abfiltriert, und 12 h bei 110°C über Nacht getrocknet. Es 

folgte zunächst eine säulenchromatographische Reinigung 

des Rohprodukts an Kieselgel (63 - 200 µm) mit CHCl3. Das gewünschte Produkt konnte mit 

einen Laufmittelgemisch aus CHCl3 und Ethanol (100:1) als dunkelrote, schwach 

fluoreszierende  Bande eluiert werden. Nach Entfernen der Lösemittel wurde das Produkt  in 

wenig CHCl3 gelöst und mit MeOH  gefällt. Auf diese Weise erhielt an das Amin 70 als rotes 

Pulver.     

 

Ausbeute: 1.81 g (70, 2.51 mmol, 48 %)  

 

Rf (Kieselgel, Chloroform/EtOH 25:1):     0.31 

 

IR  (ATR): ν~  = 3477.8 (w), 3392.1 (w), 2922.3 (s), 2854.3 (m), 1696.0 (s), 1651.9 (s), 1592.5 

(s), 1578.7 (s), 1506.2 (w), 1456.7 (w), 1430.1 (w), 1404.3 (m), 1348.1 (m), 1327.4 (s), 

1249.1 (s), 1173.8 (w), 1105.2 (w), 960.2 (w), 853.7 (w), 839.4 (w), 808.0 (w), 669.8 cm-1 

(w).   

         
1H-NMR  (600 MHz, CDCl3): δ = 0.82 (t, 3J = 7.0 Hz, 6H, CH2CH3), 1.16 - 1.41 (m, 16H, 

CH2CH2CH2CH2CH3), 1.80 - 1.91 (m, 2H, CHCH2), 2.06 (s, 6H, CCH3), 2.16 (s, 6H, 2 

CCH3), 2.19 - 2.32 (m, 2H, CHCH2), 3.70 (br, 2H, NH2), 5.13 - 5.21 (m, 1H, ΝCH), 8.63 - 

8.84 ppm (m, 8 H, CHarom).  
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13C-NMR  (151 MHz, CDCl3): δ = 14.1, 14.4, 15.3, 22.6, 27.0, 29.2, 31.9, 32.4, 54.6, 123.1, 

123.6, 123.8, 126.5, 126.9, 129.4, 130.0, 131.2, 132.5, 134.8, 135.3, 163.4, 163.9, 165.1 ppm.  

 

UV/Vis (CHCl3): λmax (E) = 460.2 (0.22), 489.9 (0.61), 527.6 nm (1.00) 

 

Fluoreszenz (CHCl3): λmax (Irel) = 535.5 (1.00), 579.0 (0.60), 622.7 nm (0.15)  

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 490 nm, E490 nm / 1cm = 0.0133, Referenz: S-13 

mit Φ = 1.00): Φ = 0.03  

 

MS (EI): m/z (%) = 721 (15) [M + H]+, [720 (55) [M]+, 719 (100) [M - H]+, 703 (3) [M – 

NH3]
+ , 539 (13) [M + H - C13H26]

+, 538 (34) [M - C13H26]
+, 537 (21) [M - H - C13H26]

+, 522 

(9), 520 (9), 519 (8), 506 (10), 505 (19), 504 (7), 391.1 (16), 390 (6), 373.1 (13), 346.1 (8), 

345.1 (9), 164.0 (9), 148 (13), 147 (35).   

 

HRMS (EI): ber.: C47H49N3O4[M]+:   719.3723    

 gef.: 719.3703 ∆ = 0.0020                               
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D1.7  N,N´´-Bis(1-hexylheptyl)-N´-(4-formylbenzyl)benzo[ghi]pery- 

          len-1´,2´:3,4:9,10-tris(dicarboximid) (103)[28] 

 

D1.7.1 Einstufige Synthese via Kondensation  

N,N´-Bis(1-hexylheptyl)benzo[ghi]perylen-2,3,8, 

9,11,12-hexacarbonsäure-2,3,8,9-bis(carboximid)- 

11,12-anhydrid (7, 948 mg, 1.12 mmol) wurden in 

frisch destillierten Chinolin (50.0 mL) gelöst und 

mit 4-(1,3-Dioxolan-2-yl)benzylamin (1.96 g, 

10.9 mmol) versetzt. Man erhitzte die Reaktions- 

lösung 12 h auf 170 °C. Im Anschluss wurde der 

Reaktionsansatz auf eine wässrige HCl-Lösung 

(500 mL, 2 M) gegossen und der entstandene Niederschlag 12 h bei Raumtemperatur gerührt. 

Nach dem Abtrennen der überstehenden Lösung durch Filtration erhielt man ein braunes 

Rohprodukt, welches noch mehrmals mit H2O gewaschen wurde. Nachdem das Rohprodukt 

12 h bei 110 °C getrocknet wurde, erfolgte eine säulenchromatographische Aufreinigung über 

Kieselgel (63 - 200 µm) mit einem Laufmittelgemisch aus CHCl3 und EtOH (100:1). N,Ń ´-

Bis(1-hexylheptyl)-N´-(4-formylbenzyl)benzo[ghi]perylen-1´,2´:3,4:9,10-tris(dicarboximid) 

(103) konnte auf diese Weise als intensiv gelb fluoreszierende Bande isoliert werden. Das 

Produkt wurde in wenig CHCl3 aufgenommen und mit MeOH ausgefällt. Dies lieferte 103 als 

orange-gelben Feststoff. 

 

D1.7.2 Zweistufige Synthese durch säurekatalysierte Hydrolyse 

Zu einer Lösung von N,Ń ´-Bis(1-hexylheptyl)-N´-[4-(1,3-dioxolan-2-yl)benzyl]benzo- 

[ghi]perylen-1´,2´:3,4:9,10-tris(dicarboximid) (36.0 mg, 35.6 µmol) in THF (10.0 mL) gab 

man eine wässrige HCl-Lösung (0.10 mL, 200 µmol, 2M) und erhitzte die Reaktionslösung 5 

h unter Rückfluss. Danach wurde das Lösemittel im Vakuum entfernt, der Rückstand in 

wenig CHCl3 aufgenommen und mit MeOH gefällt. Dadurch konnte man 103 als orange-

gelben Feststoff isolieren. 

 

D1.7.3 Synthese via Oxidation des Benzylalkohols  

N,Ń ´-Bis(1-hexylheptyl)-N´-(4-hydroxymethylbenzyl)benzo[ghi]perylen-1´,2´:3,4:9,10-tris- 

(dicarboximid) (22.0 mg, 22.7 µmol, 1.00 Äq.) wurde in DMSO (2.00 mL) gelöst, mit 

wässriger HBr-Lösung (48%, 67.0 µmol, 2.95 Äq.) versetzt und 24 h auf 110 ºC erhitzt. Nach 

N

N

O O

OO

103

N

O

O

O
H
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Beendigung der Reaktion  goß man den Ansatz auf wässrige HCl-Lösung (50.0 mL, 2 M). 

Daraufhin wurde das Reaktionsgemisch mit CHCl3 mehrmals extrahiert, bis die organische 

Phase farblos erschien. Die organische Phase wusch man erneut mit wässriger HCl-Lösung 

(50.0 mL, 2 M) und extrahierte nochmals mit CHCl3, bis die organische Phase erneut keine 

Färbung mehr aufwies. Nach dem Trocknen über MgSO4 wurde das Lösemittel im Vakuum 

entfernt und das erhaltene Rohprodukt unter Lichtausschluss säulenchromatographisch über 

Kieselgel (63 - 200 µm) mit einem Laufmittelgemisch aus CHCl3 und EtOH (100:1)  

aufgereinigt. Nach dem Entfernen des Lösemittels im Vakuum wurde der erhaltene Rückstand 

in wenig CHCl3 aufgenommen und mit MeOH gefällt. Man erhielt 103 nach dem Trocknen 

als orangen Feststoff. 

 

Ausbeute: D1.7.1: 760 mg (103, 787 µmol, 71 %)  

  D1.7.2: 33.0 mg (103, 34.0 µmol, 92 %) 

  D1.7.3: 11.0 mg (103, 11.4 µmol, 50 %) 

 

Schmelzpunkt: > 250 °C 

 

Rf (Kieselgel, CHCl3): 0.43  

Rf (Kieselgel, CH2Cl2):    0.80  

 

IR (ATR): ν~ = 2954.3 (s), 2923.6 (vs), 2855.7 (s), 2362.7 (w), 1769.7 (w), 1711.1 (vs), 

1687.7 (s), 1656.7 (vs), 1624.4 (w), 1610.2 (w), 1594.9 (m), 1523.7 (w), 1455.9 (w), 1413.8 

(m), 1395.1 (m), 1382.0 (m), 1364.0 (s), 1347.0 (m), 1318.1 (vs), 1272.6 (m), 1239.7 (m), 

1210.6 (m), 1167.4 (m), 1102.1 (w), 940.8 (w), 856.9 (w), 811.7 (m), 781.8 (w), 764.0 (m), 

748.3 (w), 723.0 (w), 659.9 (w), 623.9 (w), 586.0 cm-1 (w).  
 

1H-NMR  (600 MHz, CDCl3): δ = 0.83 (t, 3J = 6.7 Hz, 12H, CH3), 1.25 - 1.47 (m, 32H 

CH2CH2CH2CH2CH3), 1.91 - 2.10 (m, 4H, CHCH2), 2.27 - 2.49 (m, 4H, CHCH2), 5.25 (s, 

2H, NCH2), 5.22 - 5.41 (m, 2H, NCH), 7.78 (d, 3J(H,H) = 8.2 Hz, 2H, OCHCCHCH), 7.81 (d, 
3J(H,H) = 8.2 Hz, 2H, OCHCCHCH), 9.09 (d, 3J = 8.6 Hz, 2H, CHCHCCO ), 9.18 (d, 3J = 

8.4 Hz, 2H, CHCHCCO), 10.00 (s, CHO), 10.18 ppm (s, 2H, CCHCCO).      

 
13C-NMR  (151 MHz, CDCl3): δ = 14.0 , 22.6, 27.1, 29.3, 31.8, 32.5, 41.9, 55.4, 122.9, 123.8, 

124.4, 127.0, 127.4, 129.6, 130.3, 132.8  136.1, 167.5, 191.7 ppm. 
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UV/Vis (CHCl3): λmax (ε) =  273.2 (29030), 360.4 (29240), 378.0 (42380), 410.6 (15270), 

436.4 (39100), 466.4 nm (60180).     

  

Fluoreszenz (CHCl3): λmax (Irel) =  477.5 (1.00), 510.1 (0.75), 549.8 nm (0.25).  

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E435 nm / 1cm = 0.0078, Referenz: S-13 

mit Φ = 1.00): Φ = 0.17  

 

MS (EI): m/z (%) = 968 (14) [M + 2H]+, 967 (38) [M + H]+, 966 (49) [M]+, 785 (30) [M + H - 

C13H26]
+, 784 (54) [M - C13H26]

+, 783 (44), 604 (21), 603 (65) [M + H - 2 .C13H26]
+, 602 (100) 

[M - 2 . C13H26]
+, 601 (59), 574 (12), 573 (14), 496 (19), 119 (37), 105 (10), 91 (34), 69 (21), 

55 (27), 44 (35). 

 

 

HRMS (EI): ber.: C62H67N3O7 [M]+:  965.4979  

gef.:                             965.4978 ∆ = 0.0001                               

 

C54H60N2O7 [966.2]  ber. (%): C: 77.07 H: 6.99  N: 4.35 

       gef. (%): C: 77.30 H: 7.04 N: 4.24 
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D1.8 N,N´´-Bis(1-hexylheptyl)-N´-{[4-formylphenyl]benzyl}benzo[ghi]-  

perylen -1´,2´:3,4:9,10-tris(dicarboximid) (105)[28] 

 

D1.8.1 Einstufige Synthese via Kondensation 

N,N´-Bis(1-hexylheptyl)benzo[ghi]perylen-2,3,8, 

9,11,12-hexacarbonsäure-2,3,8,9-bis(carboximid)- 

11,12-anhydrid (7, 509 mg, 599 µmol) wurden in 

frisch destillierten Chinolin (25.0 mL) gelöst und 

mit 4'-(1,3-Dioxolan-2-yl)biphenyl-4-methylamin 

(1.50 g, 5.97 mmol) versetzt. Man erhitzte die 

Reaktionslösung 12 h auf 170 °C. Im Anschluss 

wurde der Reaktionsansatz auf eine wässrige HCl-

Lösung (200 mL, 2 M) gegossen und der 

entstandene Niederschlag 12 h bei Raumtemperatur gerührt. Nach dem Abtrennen der 

überstehenden Lösung durch Filtration erhielt man ein braunes Rohprodukt, welches noch 

mehrmals mit H2O gewaschen wurde. Nachdem das Rohprodukt 12 h bei 110 °C getrocknet 

wurde, erfolgte eine säulenchromatographische Aufreinigung über Kieselgel (63 -200 µm) 

mit CHCl3 als Laufmittel. N,Ń ´-Bis(1-hexylheptyl)-N´-[(4-formylphenyl)benzyl]benzo- 

[ghi]perylen-1´,2´:3,4:9,10-tris(dicarboximid) (105) konnte auf diese Weise als intensiv gelb 

fluoreszierende Bande isoliert werden. Das Produkt wurde in wenig CHCl3 aufgenommen und 

mit MeOH ausgefällt. Dies lieferte 105 als orange-gelben Feststoff. 

 

D1.8.2 Zweistufige Synthese durch säurekatalysierte Hydrolyse 

Zu einer Lösung von N,Ń ´-Bis(1-hexylheptyl)-N´-{[4-(1,3-dioxolan-2-yl)phenyl]benzyl}- 

benzo[ghi]perylen-1´,2´:3,4:9,10-tris(dicarboximid) (25.0 mg, 23.0 µmol) in THF (10.0 mL) 

gab man eine wässrige HCl-Lösung (0.10 mL, 200 µmol, 2 M) und erhitzte die 

Reaktionslösung 12 h unter Rückfluss. Danach wurde das Lösemittel im Vakuum entfernt, der 

Rückstand in wenig CHCl3 aufgenommen und mit MeOH gefällt. Dadurch konnte man 105 

als orange-gelben Feststoff isolieren. 

 
Ausbeute: D1.7.1: 337 mg (105, 323 µmol, 54 %)  

  D1.7.2: 22.0 mg (105, 21.0 µmol, 88 %) 

 

Schmelzpunkt:  > 250 °C 

N

N

O O
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Rf (Kieselgel, CHCl3): 0.50  

Rf (Kieselgel, CH2Cl2):    0.86  

 

IR (ATR): ν~ = 2956.5 (s), 2925.2 (s), 2855.9 (s), 2361.2 (w), 2341.7 (w), 1767.9 (w), 1704.3 

(vs), 1661.8 (vs), 1625.2 (m), 1603.4 (s), 1595.3 (s), 1560.3 (w), 1524.2 (m), 1456.4 (m), 

1435.1 (m), 1413.7 (s), 1396.2 (s), 1383.8 (s), 1364.4 (s), 1346.4 (s), 1317.1 (vs), 1259.4 (vs), 

1240.2 (s), 1207.5 (m), 1168.9 (m), 1090.6 (vs), 1014.7 (vs), 942.6 (m), 924.8 (m), 861.1 (m), 

845.6 (m), 809.6 (vs), 792.8 (vs), 764.8 (vs), 746.2 (s), 723.9 (m), 698.7 (m), 659.7 (s), 644.5 

(w), 633.4 (w), 624.4 (m), 607.8 cm-1 (m).  

 
1H-NMR  (600 MHz, CDCl3): δ = 0.83 (t, 3J = 6.6 Hz, 12H, CH3), 1.25 - 1.39 (m, 32H 

CH2CH2CH2CH2CH3), 1.91 - 2.09 (m, 4H, CHCH2), 2.28 - 2.47 (m, 4H, CHCH2), 5.23 (s, 

2H, NCH2), 5.23 - 5.42 (m, 2H, NCH), 7.54 - 7.94 (m, 8H, Carom), 9.07 (d, 3J = 8.6 Hz, 2H, 

CHCHCCO), 9.16 (d, 3J = 8.4 Hz, 2H, CHCHCCO), 10.03 (s, CHO), 10.23 ppm (s, 2H, 

CCHCCO).      

 
13C-NMR  (151 MHz, CDCl3): δ = 14.0, 22.6, 27.1, 29.3, 31.8, 32.5, 41.8, 55.4, 122.8, 123.7, 

127.1, 127.6, 127.8, 129.8, 130.3, 130.3, 135.3, 139.5, 136.5, 167.6, 191.8 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 276.2 (0.71), 290.8 (0.71), 360.8 (0.50), 377.8 (0.70), 410.2 

(0.26), 435.8 (0.65), 466.2 nm (1.00).    

 

Fluoreszenz (CHCl3): λmax (Irel) = 476.6 (1.00), 510.4 (0.74), 548.2 nm (0.23).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E435 nm / 1cm = 0.0101, Referenz: S-13 

mit Φ = 1.00): Φ = 0.20   

 

MS (EI): m/z (%) = 1044 (9) [M + 2H]+, 1043 (20) [M + H]+, 1042 (26) [M]+, 861 (14) [M + 

H - C13H26]
+, 860 (31) [M - C13H26]

+,  859 (31), 680 (21) , 679 (62) [M + H - 2 . C13H26]
+, 678 

(100) [M - 2 . C13H26]
+,  677 (45), 676 (7), 496 (15), 195 (37), 167 (18), 55 (11).     

 

HRMS (EI): ber.: C68H71N3O7 [M]+: 1041.5292  

gef.:    1041.5302 ∆ = 0.0010                               
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C68H71N3O7 [1042.3]  ber. (%): C: 78.36 H: 6.87 N: 4.03 

      gef. (%): C: 77.61 H: 6.77 N: 3.97 

   

 

D1.9 9,10-Dinitro-N-(1-hexylheptyl)perylen-3,4-dicarboximid (55)[12] 

Perylenmonoimid (11, 350 mg, 695 µmol, 1.00 Äq.) wurde 

in Essigsäureanhydrid (2.50 mL) suspendiert und auf  0 ºC 

gekühlt. Zu dieser Suspension gab man tropfenweise eine 

eisgekühlte Lösung aus konz. HNO3 (65%, 183 mg, 2.91 

mmol, 4.12 Äq.) in Essigsäureanhydrid (2.50 mL). Man ließ 

die Reaktionsmischung 2 h bei 0 ºC und weitere 4 h bei 

Raumtemperatur rühren. Anschließend goß man die 

zähflüssige, dunkelrote Suspension auf Eiswasser (200 mL), 

ließ den entstandenen Niederschlag 12 h altern und trennte ihn durch Filtration von der 

überstehenden Lösung ab. Das getrocknete Rohprodukt wurde danach säulenchromato- 

graphisch zweimal mit Kieselgel (63 -200 µm) und einem Laufmittelgemisch aus CHCl3 und 

Isohexan (3:1) aufgereinigt. Dabei konnte das Produkt jeweils als intensiv rot-orange 

fluoreszierende Bande eluiert werden. Danach wurde das Lösemittel im Vakuum entfernt, der 

Rückstand in wenig CHCl3 aufgenommen und mit MeOH gefällt. Dadurch erhielt man 55 als 

roten Feststoff. 

 

 

Ausbeute:  92.0 mg (55, 155 µmol, 22 %) 

 

Rf (Kieselgel, CHCl3/ Isohexan 3:1):     0.18 

 

IR  (ATR): ν~ = 2961 (m), 2923 (m), 2858 (m), 1703 (m), 1662 (s), 1598 (m), 1531 (s), 1461 

(w), 1410 (w), 1353 (s), 1320 (m), 1248 (w), 1184 (w), 1117 (w), 850 (w), 809 (w), 748 cm-1  

(w).  

     
1H-NMR  (600 MHz, CDCl3): δ  = 0.82 (t, 3J = 6.5 Hz, 6H, CH3), 1.19 – 1.38 (m, 16H, 

CH2CH2CH2CH2CH3), 1.80 – 1.96 (m, 2H, CHCH2), 2.14 – 2.33 (m, 2H, CHCH2),             

5.18 (tt, 3J = 9.3Hz, 3J = 5.9 Hz, 1H, NCH), 8.41 (d, 3J = 8.4 Hz, 2H, Harom), 8.61 (d, 3J = 8.5 

Hz, 2H, Harom), 8.63 (d, 3J = 8.1 Hz, 2H, Harom), 8.71 ppm (d, 3J = 8.3 Hz, 2H, Harom). 

NO O

NO2 NO2

55
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13C-NMR  (151 MHz, CDCl3): δ = 14.0, 22.6, 26.9, 29.2, 31.7, 32.3, 54.9, 118.8, 122.8, 

123.9, 125.7, 126.9, 129.2, 130.0, 133.0, 145.9, 163.2, 166.3 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 254.6 (0.54), 413.0 (0.07, sh), 442.6 (0.27), 471.6 (0.69), 505.4 

nm (1.00)    

 

Fluoreszenz (CHCl3): λmax (Irel) = 527.6 (1.00), 563.8 (0.80), 616.5 nm (0.26, sh).  

 

Fluoreszenzquantenausbeute (CHCl3, λexc =  473 nm, E 472 nm / 1cm = 0.0204, Referenz: S-13 

mit Φ = 1.00): Φ = 1.00   

 

MS (EI): m/z (%) = 595 (12) [M+H]+, 594 (36) [M]+, 593 (100) [M-H]+, 549 (6) [M+H-NO2]
+, 

548 (9) [M-NO2]
+, 547 (14) [M-H-NO2]

+, 413 (24) [M + H - C13H26]
+, 412 (80) [M- C13H26]

+, 

411 (83) [M - H - C13H26]
+, 365 (73), 336 (57), 335 (66), 308 (54).    

 

HRMS (EI): ber.: C35H35N3O6 [M]+:  593.2526  

  gef.:         593.2522 ∆ = 0.0004   

 

C35H35N3O6 [593.7]  ber. (%): C: 70.81 H: 5.94 N: 7.08 

       gef. (%): C: 70.76 H: 6.04 N: 7.02 
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D1.10  2-(1-Hexylheptyl)-10,11-dihydroimidazo[2,1-a]anthra[2,1,9-

  def:6,5,10-d'e'f' ]diisoquinoline-1,3,8(2H)-trion (38)[116] 

Das N-(1-Hexylheptyl)perylen-3,4-dicarboximid-9,10-di- 

carbonsäurebisanhydrid (2, 100 mg, 174 µmol, 1.00 Äq.), 

1,2-Diaminoethan (180 mg, 2.99 mmol, 0.20 mL, 17.2 Äq.) 

und Chinolin (10.0 mL) erhitzte man 2 h auf 180 ºC und 

anschließend auf ein Gemisch aus wässriger HCl-Lösung 

(50.0 mL, 2 M) und EtOH (25.0 mL) gegossen. Den 

entstandenen violetten Niederschlag ließ man 1 h altern und 

entfernte die über stehende Lösung durch Filtration. Nach 

Trocknen wurde das Rohprodukt an Kieselgel (63 - 200 

µm) mit einem Laufmittelgemisch aus CHCl3 und Aceton (5:1) chromatographiert. Sämtliche 

produktenthaltenden Fraktionen wurden vereinigt und erneut säulenchromatographisch an 

Kieselgel (63 - 200 µm) mit einem Laufmittelgemisch aus CHCl3 und Aceton (5:1) 

aufgereinigt. Das Produkt konnte jeweils als intensiv rot fluoreszierende Bande eluiert 

werden. Danach wurde das Lösemittel im Vakuum entfernt, der Rückstand in wenig CHCl3 

aufgenommen und mit MeOH gefällt. Dadurch erhielt man 38 als roten Feststoff isolieren. 

 

Ausbeute:  29.0 mg (38, 48.5 µmol, 28 %) 

 

Rf (Kieselgel, CHCl3/ Aceton 15:1):     0.21  

 

IR  (ATR): ν~ = 2958 (m), 2926 (m), 2853 (m), 1699 (s), 1660 (s), 1610 (w), 1589 (s), 1580 

(w), 1550(w), 1504 (m), 1391 (m), 1351 (s), 1335 (m), 1313 (m), 1286 (s), 1249 (m), 1230 

(w), 1179 (w), 1102 (w), 849 (s), 803 (s), 739 (s), 718 cm-1 (m).   

      
1H-NMR  (600 MHz, CDCl3): δ = 0.79 (t, 3J = 6.5 Hz, 6H, CH3), 1.14 – 1.41 (m, 16H, 

CH2CH2CH2CH2CH3), 1.77 - 1.89 (m, 2H, CHCH2), 2.07 - 2.30 (m, 2H, CHCH2), 4.00 (d, 3J 

= 7.7 Hz, 2H, CH2NCO), 4.11(d, 3J = 7.3  Hz, 2H, CH2NCCCH),   5.01 - 5.19 (m, 1H, NCH), 

7.76 - 8.02 (m, 6H, CHarom),  8.33 ppm (d, 3J = 7.2  Hz, 2H, CHarom).  

      
13C-NMR  (151 MHz, CDCl3): δ = 14.1, 22.7, 27.1, 29.4, 29.6, 32.0, 32.6, 44.0, 53.9, 54.6, 

121.1, 121.3, 121.8, 122.4, 122.8, 124.7, 125.9, 126.2, 126.6, 128.4, 129.0, 129.2, 130.8, 

131.1, 132.0, 132.7, 134.1, 134.6, 154.0, 159.2, 162.8, 164.1 ppm. 

NO O

N ON

38
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 UV/Vis (CHCl3): λmax (Erel) = 439.1 (0.09), 466.9 (0.25), 490.5 (0.65), 538.0 nm (1.00).   

 

Fluoreszenz (CHCl3): λmax (Irel) = 551.4 (1.00), 587.8 (0.60), 642.7 nm (0.12).  

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 494 nm, E494 nm / 1cm = 0.0288, Referenz: S-13 

mit Φ = 1.00): Φ = 0.96  

 

MS (EI): m/z (%) = 599 (3) [M+H]+, 598 (12) [M]+, 597 (29) [M-H]+, 580 (6), 417 (11) [M + 

H - C13H26]
+, 416 (44) [M- C13H26]

+, 415 (100) [M - H - C13H26]
+.  

 

HRMS (EI): ber.: C39H39N3O3 [M]+:  597.2991   

  gef.:         597.2943    ∆ = 0.0048  

 

 

D1.11 2,11-Bis(1-hexylheptyl)-5-(4-formylphenyl)imidazolo [4´,5´:3,4]  

anthra[2,1,9-def:6,5,10-d´e´f ]́diisochinolin-1,3,10,12(2H,11H)-

tetraon (108)[108] 

Perylenbisimid (1, 303 mg, 402 µmol 1.00 Äq.), 

Natriumamid (303 mg, 7.77 mmol 19.4 Äq.) und  

4-(1,3-Dioxolan-2-yl)benzonitril (7.60 g, 43.4 

mmol, 108 Äq.) wurden 20 h auf 165 °C erhitzt. 

Im Anschluss entfernte man überschüssiges 4-

(1,3-Dioxolan-2-yl)benzonitril destillativ im 

Feinvakuum und extrahierte den Rückstand mit 

CHCl3
 (150 mL) gegen wässriger HCl-Lösung 

(150 mL, 2 M). Nach Entfernung des Lösemittels 

im Vakuum wurde das rot-violette Rohprodukt an 

Kieselgel (63 - 200 µm) mit CHCl3 säulenchromatographisch aufgereinigt. Anschließend 

refluxierte man das erhaltene Produkt 8 h mit CHCl3 (100 mL) und einem Gemisch aus 

wässriger HCl-Lösung (150 mL, 2 M) und Eisessig (150 mL).Die organischen Lösemittel 

wurden im Vakuum entfernt, der Farbstoff in wenig CHCl3 gelöst und mit MeOH ausgefällt. 

Dies lieferte 108 als schwarz-violetten Feststoff.   

 

 

N

N

O O

O O

N

H
N

CHO

108
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Ausbeute:  56.0 mg (108, 62.3 µmol, 16 %) 

 

Rf (Kieselgel, CHCl3):     0.64 

 

IR  (ATR): ν~ = 3290.1 (w), 2951.6 (m), 2921.0 (s), 2853.1 (s), 1698.9 (s), 1681.5 (vs), 1649.3 

(s), 1637.2 (s), 1611.5 (m), 1592.6 (vs), 1573.9 (m), 1538.1 (w), 1495.5 (w), 1466.8 (w), 

1436.8 (w), 1414.3 (w), 1387.0 (w), 1340.9 (vs), 1305.5 (m), 1259.7 (m), 1213.9 (m), 1172.2 

(w), 1120.8 (w), 1063.0 (w), 1015.4 (w), 965.5 (w), 843.7 (w), 814.0 (m), 755.1 cm-1 (m). 

 
1H-NMR  (600 MHz, CDCl3): δ = 0.74-0.86 (m, 12H, CH3), 1.14-1.40 (m, 32H, CH2C 

H2CH2CH2CH3), 1.85-1.99 (m, 4H, CHCH2), 2.19-2.33 (m, 4H, CHCH2), 5.14-5.32 (m, 2H, 

NCH), 8.16 (d, 3J = 8.3 Hz, 2H,CHaryl), 8.50 - 8.58 (m, 2H, CHaryl), 8.63-8.88 (m, 5H, CH 

perylen), 10.15 (s, 1H. CHO), 10.81 (d, 3J= 8.0 Hz, 1H, CHperylen), 11.72 ppm (s, 1H, NH). 

 
13C-NMR  (151 MHz, CDCl3): δ = 14.1, 14.2, 22.6, 22.9, 25.4, 27.2, 27.3, 29.2, 32.1, 32.1, 

32.7, 54.7, 121.7, 123.4, 124.0, 127.5, 127.8, 128.5, 129.2, 130.8, 130.9, 131.1, 133.6, 135.2, 

138.6, 138.8, 143.8, 191.2 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 391.8 (0.19), 440.6 (0.16), 463.5 (0.16), 507.1 (0.17), 546.2 

(0.53), 591.4 nm (1.00). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 599.1 (1.00), 652.9 (0.42), 716.5 nm (0.08). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 546 nm, E546 nm / 1cm = 0.0347, Referenz: S-13 

mit Φ = 1.00): Φ = 1.00  

 

MS (EI): m/z (%) = 900 (62) [M+H]+, 899 (100) [M]+, 882 (5), 718 (6) [M + H - C13H26]
+, 717 

(12) [M- C13H26]
+, 536 (25) [M + H - 2 · C13H26]

+, 535 (33) [M - 2 · C13H26]
+. 

 

HRMS (EI): ber.: C58H66N4O5 [M]+:  898.5033   

  gef.:    898.5029 ∆ = 0.0004  
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D1.12 4-(1,3-Dioxolan-2-yl)benzonitril [47] 

 Eine Lösung von Cyanobenzaldehyd (25.8 g, 196 mmol) in Toluol (200 

mL) wurde mit Ethylengklykol (47.2 mL, 846 mmol) und einer 

Spatelspitze p-Toluolsulfonsäuremonohyrat versetzt und 12 h unter 

Rückfluss an einem Wasserabscheider gerührt. Nach Abkühlen und Zugabe von wässriger 

Na2CO3-Lösung (5%, 250 mL) wurde das Reaktionsgemisch mit Et2O (3 . 200 mL) extrahiert 

und die organische Phase mit gesättigter NaCl-Lösung (100 mL) gewaschen. Nach Trocknen 

über MgSO4 und Entfernen des Lösemittels im Vakuum erhielt man ein gelbliches Öl, 

welches bei Raumtemperatur langsam als hellgelber Feststoff auskristallisierte. Zur Reinigung 

wurde das Rohprodukt aus Et2O/n-Pentan (3:1, 5.00 mL) umkristallisiert und als farbloser 

kristalliner Feststoff erhalten. 

 

Ausbeute: 30.8 g (176 mmol, 89 %). 

 

Schmelzpunkt: 41 - 42 °C 

 

IR (ATR): ν~ = 3408.8 (w), 3101.9 (w), 3064.1 (w), 2958.4 (m), 2888.5 (s), 2363.0 (w), 

2228.0 (s), 1821.9 (w), 1690.3 (w), 1615.6 (w), 1508.0 (w), 1479.6 (w), 1428.6 (m), 1387.9 

(m), 1312.6 (w), 1286.5 (m), 1221.2 (m), 1138.0 (w), 1116.3 (w), 1074.1 (s), 1019.8 (m), 

976.8 (s), 952.7 (s), 834.3 (vs), 721.9 (w), 640.0 cm-1 (w). 

 
1H-NMR  (300 MHz, CDCl3): δ = 4.03 - 4.14 (m, 4H, OCH2CH2), 5.85 (s, 1H, OCH), 7.57 - 

7.59 (d, 3J = 8.2 Hz, 2H, CHCH), 7.68 ppm (d, 3J = 8.5 Hz, 2H, CHCH).             

 
13C-NMR  (75 MHz, CDCl3): δ = 65.5 (OCH2), 102.5 (OCH), 112.9 (CCHO), 118.6 (CCN), 

127.2 (CHCCHO), 132.2 (CHCCN), 143.1 ppm (CN).   

 

MS (EI): m/z (%) =  175 (28) [M]+, 174 (100) [M - H]+, 144 (10) [M - CH3O]+, 131 (5) [M - 

C2H4O]+ 130 (34) [M - C2H5O]+, 115 (13) [M - C2H4O2]
+, 102 (29) [M - C3H5O2]

+, 73 (26) 

[C3H5O2]
+. 

 

HRMS (EI): ber.: C10H9NO2 [M]+:  175.0633                      

gef.:     175.0626 ∆ = 0.0007                                     

 

NC

O

O
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C10H9NO2 [175.2]  ber. (%): C: 68.56  H: 5.18  N: 8.00  

       gef. (%): C: 68.46  H: 5.11  N: 7.91 

   

 

D1.13 4-(1,3-Dioxolan-2-yl)benzylamin [27,47] 

Unter N2-Atmosphäre wurde LiAlH4 (8.70 g, 229 mmol) in 

absolutiertem Diethylether (140 mL) suspendiert. Anschließend gab 

man bei 0 °C tropfenweise eine Lösung von 4-(1,3-Dioxolan-2-

yl)benzonitril (9.68 g, 55.3 mmol) in absolutiertem Diethylether (100 mL) hinzu und ließ den 

Reaktionsansatz 12 h bei Raumtemperatur rühren. Unter Eiskühlung wurde tropfenweise eine 

wässrige NaOH-Lösung (12%, 100 mL) zugegeben und die organische Phase mit 

Diethylether extrahiert (3 . 100 mL). Nach Trocknen der organischen Phase über MgSO4 und 

Entfernen des Lösungsmittels im Vakuum erhielt man 4-(1,3-Dioxolan-2-yl)benzylamin als 

gelbes Öl. 

 

Ausbeute: 5.47 g (30.5 mmol, 55 %). 

 

IR (ATR): ν~ = 3369.6 (m), 2951.8 (m), 2885.1 (s), 2360.2 (w), 1642.8 (w), 1616.1 (w), 

1513.9 (w), 1473.6 (w), 1428.8 (m), 1387.4 (m), 1300.0 (w), 1220.6 (m), 1177.9 (w), 1074.4 

(vs), 1018.5 (m), 966.3 (m), 940.2 (s), 810.4 (s), 723.0 cm–1 (w).  

 
1H-NMR  (300 MHz, CDCl3): δ = 1.52 (s, 2H, NH2), 3.87 (s, 2H, CH2N), 4.01 - 4.13 (m, 4H, 

OCH2CH2), 5.80 (s, 1H, OCH), 7.30 (d, 3J = 8.2 Hz, 2H, CHCCHCH), 7.43 ppm (d, 3J = 

8.2 Hz, 2H, CHCCHCH). 

 
13C-NMR  (75 MHz, CDCl3): δ = 46.3 (CH2NH2), 65.3 (OCH2), 103.7 (OCH), 126.7 

(CH2CCH), 127.1 (CH2CCHCH), 136.5 (CH2CCH), 144.4 ppm (OCHC).  

 

MS (EI): m/z (%) = 179 (9) [M]+, 178 (50) [M - H]+, 162 (24) [M - NH3]
+, 135 (4) [M - 

C2H4O]+, 134 (31) [M - C2H5O]+, 118 (20), 106 (100) [M - C3H5O2]
+, 91 (14), 73 (43) 

[C3H5O2]
+. 

 

HRMS (EI): ber.: C10H13NO2 [M]+: 179,0946  

  gef.:    179.0912 ∆ = 0.0034      

O

O

H2N
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C10H13NO2 [179.2]  ber. (%): C: 67.02  H: 7.31  N: 7.82  

       gef. (%): C: 67.28  H: 7.43  N: 8.01  

 

 

   

D1.14  4´-Formylbiphenyl-4-carbonitril[49] 

Unter einer N2-Atmosphäre wurde Tetrakis(triphenylphosphin)-

palladium(0) (1.26 g, 1.09 mmol) in Toluol (90.0 mL) gelöst und 

4-Brombenzonitril (8.03 g, 53.4 mmol, 1.20 Äq.) zugegeben. Diese 

Lösung wurde mit einer Suspension aus 4-Formylphenylborsäure  

(8.23 g, 45.2 mmol, 1.00 Äq.) in Methanol (40.0 mL) und wässriger Na2CO3-Lösung (55.0 

mL) versetzt, woraufhin sich ein Zwei-Phasen-Gemisch ausbildete. Nachdem der 

Reaktionsansatz 19 h unter Rückfluss erhitzt wurde, ließ man das Reaktionsgemisch abkühlen 

und entfernte das Lösemittel im Vakuum. Der Rückstand wurde in Dichlormethan 

aufgenommen und die organische Phase mit einem Gemisch aus wässriger Na2CO3-Lösung (2 

M, 170 mL) und konzentrierter Ammoniak-Lösung (34.0 mL) mehrmals gewaschen. Nach 

dem Trocknen der organischen Phase über MgSO4 wurde das Lösemittel im Vakuum entfernt 

und der erhaltene Rückstand mit kaltem Ethanol gewaschen und abgenutscht. Man erhielt das 

Produkt als hellgrauen Feststoff.  

 

Ausbeute: 6.30 g (30.4 mmol, 67 %) 

 

IR (ATR): ν~ = 3051.1 (w), 2842.3 (w), 2747.0 (w), 2223.8 (s), 2016.3 (w), 1933,1 (w), 

1697.4 (vs), 1682.8 (vs), 1603.6 (vs), 1574.9 (m), 1555.7 (m), 1519.4 (w), 1494.4 (m), 1428 

(w), 1392.9 (s), 1312.4 (m), 1295.5 (m), 1217.5 (s), 1205.8 (s), 1172.2 (s), 1110.0 (m), 1005.6 

(m), 969.9 (w), 909.8 (w), 839.3 (s), 811.6 (vs), 780.4 (s), 736.3 (m), 724.3 (m), 710.2 (w), 

687.6 (s), 628.7 cm-1 (m). 
 

1H-NMR  (200 MHz, CDCl3): δ = 7.72 – 7.80 (m, 6H, CHOCCHCHCCCHCH), 7.97 – 8.04 

(m, 2H, CHOCCH), 10.09 ppm (s, 1H, CHO). 

 
13C-NMR  (151 MHz, CDCl3): δ = 112.2 (CCN), 118.5 (CN), 127.9 (CHOCCHCH), 128.0 

(CCHCHCCN), 130.4 (CHOCCH), 132.8 (CHCCN), 136.1 (CCHO), 144.1 (CCCHCHCCN), 

144.9 (CCCHCHCCN), 191.6 ppm (CHO). 

NC
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MS (DEI): m/z (%) = 207 (81) [M]+, 206 (100) [M - H]+, 178 (31) [M - CHO]+, 151 (34), 75 

(49). 

 

HRMS (EI): ber.: C14H9NO [M]+:   207.0684  

gef.:                             207.0692 ∆ = 0.0012 

 

C14H9NO [207.2]  ber. (%): C: 81.14 H: 4.38  N: 6.76  

       gef. (%): C: 80.42  H: 4.46 N: 6.59  

 

 

D1.15 4´-(1,3-Dioxolan-2-yl)-biphenyl-4-carbonitril [27] 

Zu einer Lösung aus 4´-Formylbiphenyl-4-carbonitril (6.30 g, 

30.4 mmol, 1.00 Äq.) in Toluol (160 mL) wurde Ethylenglycol 

(7.00 mL, 125 mmol, 4.10 Äq.) und eine Spatelspitze p-Toluol-

sulfonsäuremonohydrat gegeben und der Reaktionsansatz an einem 

Wasserabscheider 18 h unter Rückfluss erhitzt. Nach dem Abkühlen der Reaktionslösung 

wurde diese mit wässriger Na2CO3-Lösung (5 %, 150 mL) versetzt und mit Diethylether (3 · 

170 mL) extrahiert. Daraufhin wurden die vereinigten organischen Phasen mit gesättigter, 

wässriger NaCl-Lösung (100 mL) gewaschen und anschließend über MgSO4 getrocknet. Das 

Lösemittel wurde im Vakuum entfernt und der erhaltene Rückstand zur Reinigung aus n-

Hexan/EtOH (5:1, 200 mL) umkristallisiert, so dass man das Produkt als farblosen Feststoff 

erhielt. 

 

 

Ausbeute:     5.19 g (20.7 mmol, 68 %)  
 

IR (ATR): ν~ = 3070.0 (w), 2956.2 (m), 2884.5 (s), 2364.8 (w), 2225.5 (vs), 1930.0 (w), 

1808.3 (w), 1607.0 (s), 1555.9 (w), 1495.9 (m), 1481.2 (w), 1432.2 (m), 1401.8 (s), 1386.3 

(s), 1312.4 (w), 1286.4 (w), 1227.2 (w), 1212.0 (w), 1184.5 (w), 1137.2 (w), 1117.2 (w), 

1073.1 (s), 1021.8 (m), 1005.9 (w), 971.7 (m), 942.1 (m), 860.5 (w), 817.4 (vs), 720.2 (w), 

689.9 (w), 648.7 cm-1 (w). 
 

1H-NMR  (200 MHz, CDCl3): δ = 4.02 – 4.20 (m, 4H, OCH2CH2), 5.87 (s, 1H, OCH), 7.58 – 

7.76 ppm (m, 8H, Harom).   

NC
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13C-NMR  (151 MHz, CDCl3): δ = 65.6 (OCH2), 103.5 (OCH), 111.4 (CCN), 119.1 (CN), 

127.4 (OCHCCHCH), 127.5 (OCHCCH), 128.0 (CHCHCCN), 132.8 (CHCCN), 138.7 

(OCHCCHCHC), 140.3 (CCHCHCCN), 145.5 ppm (OCHC).  

 

MS (EI): m/z (%) = 252 (9) [M + H]+, 251 (49) [M]+, 250 (100) [M - H]+, 207 (10) [M – 

C2H4O]+, 206 (34) [C10H8NO2]
+, 190 (18) [M - C2H5O2]

+, 179 (49) [M - C3H4O2]
+, 178 (14) 

[M - C3H5O2]
+, 177 (10), 151 (12), 73 (4) [C3H5O2]

+.   

 

HRMS (EI): ber.: C16H13NO2 [M]+:  251.0946  

  gef.:      251.0924 ∆ = 0.0022  

 

 

D1.16  4´-(1,3-Dioxolan-2-yl)biphenyl-4-methylamin [27] 

Unter einer Ar-Atmosphäre wurde eine Suspension               

aus LiAlH4 (2.53 g, 66.6 mmol, 4.30 Äq.) in absolutier-       

tem THF (70.0 mL) vorgelegt und unter Eiskühlung             

eine Lösung aus 4´-(1,3-Dioxolan-2-yl)biphenyl-4-carbonitril 

(3.89 g, 15.5 mmol, 1.00 Äq.) in absolutiertem THF (45.0 mL) innerhalb von 2 h zugetropft. 

Das Reaktionsgemisch ließ man auf Raumtemperatur erwärmen und bei Raumtemperatur 17 h 

rühren. Danach wurde unter Eiskühlung wässrige NaOH-Lösung (12 %, 50.0 mL) zugetropft 

und anschließend das dabei ausgefallene Lithium- bzw. Aluminiumhydroxid abgenutscht. Das 

Filtrat extrahierte man mit Diethylether (5 · 150 mL) und trocknete die organischen 

Phasen über MgSO4. Durch Entfernen des Lösemittels im Vakuum wurde das Produkt als 

weißer Feststoff gewonnen.    

 

 

Ausbeute: 1.68 g (6.56 mmol, 63 %)  

 

IR (ATR): ν~ =  3380.6 (w), 3029.2 (w), 2954.1 (w), 2888.8 (m), 2842.8 (m), 2587.5 (w), 

2189.2 (w), 1915.8 (w), 1644.5 (w), 1613.9 (m), 1558.0 (w), 1498.0 (m), 1484.1 (m), 1432.8 

(m), 1403.6 (s), 1382.7 (s), 1346.2 (m), 1310.4 (m), 1277.4 (m), 1229.5 (m), 1205.9 (s), 

1183.8 (m), 1137.3 (w), 1114.0 (m), 1074.2 (vs), 1016.9 (s), 1003.6 (s), 964.9 (vs), 940 (vs), 

874.1 (s), 838.4 (vs), 798.5 (vs), 713.0 (m), 697.1 (m), 627.7 cm-1 (m).  
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1H-NMR  (400 MHz, DMSO): δ = 1.74 (br, 2H, NH2), 3.71 (s, 2H, CH2NH2), 3.92 – 4.06 (m, 

4H, OCH2CH2), 573 (s, 1H, OCH), 7.39 (d, 3J = 9.1 Hz, 2H, Harom), 7.47 (d, 3J = 8.9 Hz, 2H, 

Harom), 7.57 (d, 3J = 9.1 Hz, 2H, Harom), 7.63 ppm (d, 3J = 8.9 Hz, 2H, Harom). 

 
13C-NMR  (100 MHz, DMSO): δ = 45.7 (CH2NH2), 65.3 (OCH2), 103.1 (OCH), 126.8 

(CHCCH2), 126.9 (CHCHCCH2), 127.6 (CHCHCCHO) 128.1 (CHCHCCHO), 137.4 

(CCH2NH2), 138.0 (CCHCHCH2), 141.4 (OCHCCHCHC), 144.3 ppm (OCHC).  

 

IR (ATR): ν~ =  3380.6 (w), 3029.2 (w), 2954.1 (w), 2888.8 (m), 2842.8 (m), 2587.5 (w), 

2189.2 (w), 1915.8 (w), 1644.5 (w), 1613.9 (m), 1558.0 (w), 1498.0 (m), 1484.1 (m), 1432.8 

(m), 1403.6 (s), 1382.7 (s), 1346.2 (m), 1310.4 (m), 1277.4 (m), 1229.5 (m), 1205.9 (s), 

1183.8 (m), 1137.3 (w), 1114.0 (m), 1074.2 (vs), 1016.9 (s), 1003.6 (s), 964.9 (vs), 940 (vs), 

874.1 (s), 838.4 (vs), 798.5 (vs), 713.0 (m), 697.1 (m), 627.7 cm-1 (m).  

 

MS (EI): m/z (%) = 256 (12) [M + H]+, 255 (66) [M]+, 254 (100) [M - H]+, 211 (8) [M - 

C2H4O]+, 210 (38) [M - C2H5O]+, 196 (12) [M - C2H3O2]
+, 183 (22) [M - C3H4O2]

+, 182 (48) 

[M - C3H5O2]
+, 181 (13) [M - C3H6O2]

+, 167 (33), 166 (60), 165 (38), 152 (19), 106 (24) [M - 

C9H9O2]
+, 73 (41) [C3H5O2]

+.  

 

HRMS (EI): ber.: C16H17NO2 [M]+:  255.1259  

gef.:      255.1240 ∆ = 0.0019                            

 

C16H17NO2 [255.3]  ber. (%): C: 75.27 H: 6.71 N: 5.49   

       gef. (%): C: 74.74  H: 6.78  N: 5.22 
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D1.17 2,6-Dichlorophenyldipyrromethan (99)[101] 

1,5 Dichlorobenzaldehyd (5.00 g, 28.6 mmol, 1.00 Äq.) wurden in Pyrrol 

(192 g, 2.86 mol, 198 mL, 100 Äq.) gelöst und 15 Minuten mit Argon 

gespült. Im Anschluss versetzte man die Reaktionslösung mit MgBr2 (2.63 

g, 14.3 mmol, 0.50 Äq.) und ließ den Ansatz für 1.5 h bei Raumtemperatur 

unter Argon-Spülung rühren. Nach Zugabe von NaOH (5.71g, 143 mmol, 

5.00 Äq.) wurde die Suspension durch Filtration über Kieselgur (Celite®)  von unlöslichen 

Rückständen befreit und Pyrrol  mittels Vakuumdestillation (3.7 · 10-1 mbar, 140 °C ) aus dem 

Filtrat entfernt. Das zurückbleibende braune, zähflüssige Öl reinigte man 

säulenchromatographisch an Kieselgel (63 – 200 µm) mit einem Laufmittelgemisch aus 

Cyclohexan/Ethylacetat/NEt3 (80:20:1) als  gelb gefärbte Bande. Nach Entfernung der 

organischen Lösemittel erhielt man ein gelb-braunes Öl, welches sich durch Zugabe von  

Cyclohexan (25.0 mL) kristallisieren ließ. Durch weitere Umkristallisation mit Cyclohexan 

(200 mL) ließ sich 99 in Form eines gelben Feststoffs gewinnen.   

 

Ausbeute: 4.18 g (99, 14.3 mmol, 50 %)  

 

Rf (Kieselgel, Cyclohexan/Ethylacetat/TEA 80:20:1):     0.43 

 
1H-NMR  (600 MHz, CDCl3): δ = 6.15 – 6.31 (m, 2H, HPyrrol), 6.26 – 6.31 (m, 2H, HPyrrol), 

6.56 (s, 1H, CH), 6.74 -6.77 (m, 2H, CPyrrol), 7.18 (t, , 3J = 8.3 Hz, 1H, Hphenyl), 7.40 (d, 3J = 

8.3 Hz, 2H, Hphenyl), 8.31 ppm (br, 2H, NH).   

    
13C-NMR  (151 MHz, CDCl3): δ = 40.1, 106.9, 108.7, 117.0, 128.8, 129.3, 129.9, 136.0, 

137.4 ppm.   

 

MS (EI): m/z (%) = 291 (50) [M]+, 290 (100) [M-H]+, 289 (52) [M-2H]+, 255 (4) [M-H-
35Cl]+, 253 (6) [M-H-37Cl]+, 224 (10), 188 (13), 145 (70). 

 

HRMS (EI): ber.: C15H12Cl2N2 [M]+:  290.0378    

 gef.:          290.0371 ∆ = 0.0007                               

 

 

ClCl

HNNH

99
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D2 Angulare Benzoperylenbisimide 

 

D2.1 N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-   

dicarboximid-6,7-anhydrid (12) 

N-(1-Hexylheptyl)perylen-3,4-dicarboximid (11, 5.43 g, 

10.8 mmol, 1.00 Äq.) und Maleinsäureanhydrid (217 g, 

2.21 mol, 205 Äq.) wurden 2 h bei 100 °C erhitzt und 

anschließend p-Chloranil (5.52 g, 22.6 mmol, 2.09 Äq.) 

hinzufügt und einen Tag bei 140 °C erhitzt. Der noch 

warmen Reaktionslösung fügte man Aceton (60.0 mL) hinzu 

und goss den Ansatz auf wässrige HCl-Lösung (2 M, 

250 mL). Den entstandenen Niederschlag ließ man 12 h altern und entfernte die überstehende 

Lösung durch Filtration. Nach Trocknen wurde das Rohprodukt säulenchromatographisch an 

Kieselgel (63 - 200 µm) mit CHCl3 aufgereinigt, wobei sowohl p-Chloranil als auch nicht 

umgesetztes Edukt entfernt wurde. Die Elution des Produkts erfolgte mit einem 

Laufmittelgemisch aus CHCl3/Eisessig (19:1) als intensiv gelb-grün fluoreszierende Bande. 

Nach Entfernen des Lösemittels im Vakuum wurde der erhaltene Rückstand in wenig CHCl3 

aufgenommen und mit MeOH gefällt, so dass 12 als rot-oranger Feststoff erhalten werden 

konnte. 

 

Ausbeute: 5.58 g (12, 9.33 mmol, 87 %)  

 

Schmelzpunkt:  344 - 348 °C 

 

Rf (Kieselgel, CHCl3/Eisessig 20:1):     0.59 

 

IR  (ATR): ν~  = 2956.3 (m), 2920.0 (m), 2852.7 (w), 2361.3 (w), 2337.7 (w), 1832.0 (m), 

1775.9 (m), 1705.7 (m), 1664.8 (vs), 1602.2 (m), 1489.6 (w), 1457.5 (w), 1403.5 (w), 

1378.2 (w), 1354.1 (w), 1328.6 (m), 1292.7 (s), 1216.0 (m), 1204.6 (w), 1174.6 (s), 

1165.8 (s), 1121.8 (m), 937.9 (w), 901.9 (w), 863.5 (w), 848.1 (w), 838.6 (s), 813.4 (m), 

765.9 (s), 754.8 (m), 740.1 (w), 724.9 (w), 666.2 (m), 655.6 cm-1 (w). 

       

NO O

O

O

O

12
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1H-NMR  (600 MHz, CDCl3): δ = 0.97 (t, 3J = 6.9 Hz, 6H, CH3), 1.17 – 1.30 (m, 16H, 

CH2CH2CH2CH2CH3), 1.94 – 2.02 (m, 2H, CHCH2), 2.27 – 2.41 (m, 2H, CHCH2), 5.28 - 

5.36 (m, 1H, NCH), 8.36 (t, 3J = 7.5 Hz, 1H, CCHCHCH), 8.48 (d, 3J = 9.0 Hz, 1H, 

NCOCCHCHCCCH), 8.53 (d, 3J = 7.8 Hz, 1H, OCOCCCHCHCCH), 9.08 – 9.16 (m, 2H, 

Harom), 9.30 – 9.32 (m, 2H, Harom), 10.09 ppm (s, 1H, CCHCCO).  

    
13C-NMR  (151 MHz, CDCl3): δ = 13.9, 22.8, 27.2, 29.4, 32.4, 32.5, 54.6, 119.1, 120.2, 

121.3, 121.5, 122.9, 123.1, 123.8, 124.3, 125.7, 126.4, 126.9, 128.5, 129.5, 130.1, 132.0, 

137.7, 138.4, 162.1, 166.9, 167.1 ppm.  

 

UV/Vis (CHCl3): λmax (ε) = 265.7 (19370), 295.0 (17180), 347.6 (34520), 361.9 (46660), 

438.4 (25500), 477.6 nm (10180). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 502.5 (1.00), 530.1 nm (0.74).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 347 nm, E347nm / 1 cm = 0.0288, Referenz: S-13 

mit Φ = 1.00): Φ = 0.64 

 

MS (EI): m/z (%) = 598 (12) [M ]+, 429 (4), 428 (5), 416 (97) [M - C13H26]
+, 415 (100) [M - H 

- C13H26]
+, 356 (3), 345 (6), 344 (17), 343 (25), 299 (5), 298 (5), 273 (2), 272 (4), 55 (3), 42 

(7), 37 (3). 

 

HRMS (EI): ber.: C39H35NO5[M]+:  597.2515  

 gef.:  597.2518 ∆ = 0.0003                               

 

C39H35NO5 [597.7]   ber. (%): C: 78.37 H: 5.90  N: 2.34  

     gef. (%): C: 78.12 H: 5.94 N: 2.29 
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D2.2 N-N´-Bis-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-bis(di-   

 carboximid) (13)  

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracar-

bonsäure-3,4-dicarboximid-6,7-anhydrid (13, 150 mg, 

251 µmol, 1.00 Äq.), 1-Hexylheptylamin (500 mg, 

2.51 mmol, 10.0 Äq.), Imidazol (6.00 g) sowie eine 

Spatelspitze Zinkacetat-Dihydrat wurden 2 h bei 130 

°C erhitzt. Anschließend wurde dem noch warmen 

Reaktionsansatz Ethanol (10.0 mL) zugefügt. Nach 

dem Erkalten gab man zu dem Reaktionsansatz 2 M HCl (1:1, 250 mL) hinzu. Daraufhin 

wurde das Reaktionsgemisch mit CHCl3 mehrmals extrahiert, bis die organische Phase farblos 

erschien. Die organische Phase wusch man mit 2 M HCl (3 · 150 mL) und extrahierte 

nochmals mit CHCl3, bis die organische Phase erneut keine Färbung mehr aufwies. Nach dem 

Trocknen über MgSO4 wurde das Lösemittel im Vakuum entfernt und das erhaltene 

Rohprodukt säulenchromatographisch über Kieselgel (63 - 200 µm) mit dem Laufmittel 

CHCl3 aufgereinigt, wobei das Produkt nach einem schwach gelb fluoreszierenden Vorlauf 

als intensiv gelb-grün fluoreszierende Bande eluiert werden konnte. Nach dem Entfernen des 

Lösemittels im Vakuum wurde der erhaltene Rückstand in wenig CHCl3 aufgenommen und 

mit MeOH gefällt. Man erhielt 13 nach dem Trocknen als orangen Feststoff. 

 
Ausbeute: 182 mg (13, 234 µmol, 93 %)  

 

Schmelzpunkt:  320 - 325 °C 

 

Rf (Kieselgel, CHCl3): 0.80 

 

IR (ATR): ν~  = 2951.4 (vs), 2922.2 (vs), 2854.5 (vs), 1759.6 (s), 1703.0 (vs), 1661.5 (vs), 

1626.3 (m), 1604.6 (m), 1579.2 (m), 1525.3 (w), 1447.0 (m), 1444.5 (m), 1421.3 (w), 1397.4 

(s), 1360.4 (vs), 1344.3 (vs), 1321.9 (vs), 1243.6 (m), 1203.1 (w), 1172.0 (w), 1121.2 (w), 

1081.2 (w), 836.8 (m), 811.6 (m), 764.1 (m), 750.0 (m), 723.7 (w), 664.2 cm-1 (w).      

     
1H-NMR  (600 MHz, CDCl3): δ = 0.83 (t, 3J = 6.9 Hz, 6H, CH3), 0.84 (t, 3J = 6.9 Hz, 6H, 

CH3), 1.24 – 1.30 (m, 16H, CH2CH2CH2CH2CH3), 1.34 – 1.45 (m, 16H, CH2CH2CH2CH2 

CH3),  1.87 – 1.94 (m, 2H, CHCH2), 1.95 – 2.02 (m, 2H, CHCH2), 2.26 – 2.32 (m, 2H, CH 

NO O

N

O

O

13
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CH2), 2.34 – 2.41 (m, 2H, CHCH2), 4.41 – 4.46 (m, 1H, NCHCH2), 5.27 – 5.36 (m, 1H, 

NCHCH2), 8.09 (t, 3J = 7.8 Hz, 1H, CCHCHCH), 8.22 (d, 3J = 9.6 Hz, 1H, NCOCCHCHCC 

CH), 8.29 (d, 3J = 7.8 Hz, 1H, OCOCCCHCHCCH), 8.91 (d, 3J = 7.8 Hz, 2H, Harom), 9.18 (d, 
3J = 9.0 Hz, 2H, Harom), 10.19 ppm (s, 1H, CCHCCO). 

  
13C-NMR  (151 MHz, CDCl3): δ = 14.0, 22.6, 26.9, 27.1, 29.1, 29.3, 31.7, 31.8,  32.5, 32.8, 

52.7, 54.9, 121.6, 122.2, 122.7, 123.2, 123.5, 124.3, 124.7, 126.1, 126.3, 127.4, 127.8, 128.1, 

128.5, 129.7, 131.7, 131.8, 134.2, 169.1, 169.6 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 266.9 (24810), 349.4 (27070), 364.1 (48930), 437.1 (28240),  

475.6 nm (8540). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 492.5 (1.00), 520.1 nm (0.70).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 349 nm, E349nm / 1cm = 0.0117, Referenz: S-13 

mit Φ = 1.00): Φ =  0.31 

 

MS (EI): m/z (%) = 780 (9) [M + H]+, 779 (28) [M]+, 778 (57) [M - H]+, 598 (26) [M + H– 

C13H26 ]
+, 597 (80) [M – C13H26]

+, 596 (100) [M – H - C13H26]
+, 511 (35), 427 (87), 416 (11) 

[M + H – 2 . C13H26 ]
+, 415 (35) [M – 2 . C13H26 ]

+, 414 (21) [M – H - 2 . C13H26 ]
+. 

 

HRMS (EI): ber.: C52H62N2O4[M]+:  778.4710 

gef.:    778.4685 ∆ = 0.0025                               

 

C52H62N2O4 [779.1]   ber. (%): C: 80.17 H: 8.02  N: 3.60  

        gef. (%): C: 79.84 H: 7.78 N: 3.67 
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D2.3 N-(1-Hexylheptyl)-N‘ -(phenyl)benzo[ghi]perylen-3,4:6,7-  

 bis(dicarboximid) (14) 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetra- 

carbonsäure-3,4-dicarboximid-6,7-anhydrid (12, 30.0 

 mg, 50.2 µmol, 1.00 Äq.) wurde mit Anilin (0.20 g, 

0.20 mL, 2.19 mmol, 4.30 Äq.) und Imidazol (2.18 g) 

versetzt. Die Reaktionsmischung wurde 4 h bei 130 °C 

gerührt. Der noch warmen Schmelze wurden EtOH 

(10.0 mL) zugeführt. Die erkaltete Suspension wurde 

in CHCl3 (50.0 mL) aufgenommen und zweimal mit einer wässrigen HCl-Lösung (2 M, 

30,0 mL) gewaschen. Das Lösemittel wurde entfernt und das Rohprodukt zweimal 

säulenchromatographisch an Kieselgel (63 – 200 µm) gereinigt. Zunächst wurde CHCl3 als 

Laufmittel verwendet, danach ein Laufmittelgemisch aus CHCl3/Isohexan (3:1). Das Produkt 

eluierte als intensiv gelbe fluoreszierende Bande. Die Lösemittel wurden entfernt, das Produkt 

in wenig CHCl3 aufgenommen und mit MeOH gefällt. Man erhielt 14 als orangen Feststoff. 

 

Ausbeute: 33.0 mg (14, 49.1 µmol, 97 %) 

 

Rf (Kieselgel, CHCl3): 0.76 

 

Schmelzpunkt: > 250 °C. 

 

IR  (ATR): ν~  = 3078.2 (w), 2951.8 (m), 2924.4 (s), 2854.9 (s), 1936.4 (w), 1765.4 (m), 

1703.4 (vs), 1658.3 (vs), 1624.8 (s), 1603.9 (s), 1580.9 (m), 151.6 (s), 1455.5 (m), 1444.7 

(m), 1421.9 (w), 1391 (m), 1376.0 (s), 1355.3 (m), 1323.4 (s), 1289.8 (m), 1244.9 (m), 1223.3 

(w), 1203.4 (w), 1181.7 (w), 1158.4 (m), 1113.1 (m), 971.6 (w), 941.1 (w), 885.8 (w), 837.7 

(m), 811.2 (m), 764.6 (m), 750.9 (m), 724.9 (w), 690.7 (w), 664.0 cm-1 (w). 
 

1H-NMR  (600 MHz, CDCl3): δ = 0.90 (t, ³J = 7.0 Hz, 6H, CH3), 1.32 – 1.37 (m, 8H, 

CH2CH2CH2CH2CH3), 1.41 – 1.53 (m, 8H, CH2CH2CH2CH2CH3), 2.02 – 2.08 (m, 2H, 

NCHCH2), 2.24 – 2.32 (m, 2H, NCHCH2), 5.17 – 5.21 (m, 1H, NCH), 7.50 – 7.56 (m, 2H, 

HPhenyl), 7.67 (d, ³J = 1.3 Hz, 2H, HPhenyl), 7.68 – 7.69 (m, 2H, HPerylen), 7.72 (t, ³J = 7.3 Hz, 

1H, HPhenyl), 7.81 (d, ³J = 7.1 Hz, 1H, HPerylen), 8.16 (d, ³J = 8.0 Hz, 1H, HPerylen), 8.21 (d, 

N

O

NO O

O

14
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³J = 7.2 Hz, 1H, HPerylen), 8.27 (d, ³J = 8.4 Hz, 1H, HPerylen), 8.47 – 8.49 (m, 1H, HPerylen), 9.09 

ppm (s, 1H, CCHCCO). 
 

13C-NMR  (151 MHz, CDCl3): δ = 14.1, 22.7, 27.3, 29.4, 29.7, 31.9, 32.5, 54.9, 120.4, 120.6, 

120.7, 122.0, 122.2, 122.8, 123.9, 124.4, 125.5, 126.0, 126.3, 127.1, 128.0, 129.0, 129.2, 

130.8, 131.1, 131.4., 132.5, 166.3, 166.8 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 349.6 (41000), 367.8 (72980), 416.8 (30620), 438.3 (43570), 

479.9 nm (14070). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 497.5 (1.00), 523.1 nm (0.74). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 350 nm, E350 nm / 1cm = 0.0283, Referenz S-13 

mit Φ = 1.00) Φ = 0.21 

 

MS (EI): m/z (%) = 673 (14) [M ]+, 672 (26) [M - H]+, 491 (66) [M - C13H26]
+,  490 (100) [M 

- H - C13H26]
+, 445 (12). 

 

HRMS (EI): ber.: C45H40N2O4 [M]+: 672.2988 

  gef.:    672.2997 ∆ = 0.0009 
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D2.4 N-(1-Hexylheptyl)-N‘ -(ethyl)benzo[ghi]perylen-3,4:6,7-  

 bis(dicarboximid) (15) 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbon- 

säure-3,4-dicarboximid-6,7-anhydrid (12, 30.0 mg, 

50.2 µmol, 1 .00 Äq.) wurde unter einer Stickstoff- 

atmosphäre mit Ethylaminhydrochlorid (35.0 mg, 

439 µmol, 8.70 Äq.) und Imidazol (2.25 g) versetzt. Die 

Reaktionsmischung wurde unter Schutzgas 4 h bei 130 °C 

gerührt. Das Rohprodukt wurde durch Zugabe von EtOH 

(20 mL) aus der Schmelze ausgefällt. Der Niederschlag wurde abgesaugt und getrocknet. Das 

Rohprodukt wurde säulenchromatographisch an Kieselgel (63 – 200 µm) mit CHCl3 

aufgereinigt. Das Produkt eluierte als intensiv gelb fluoreszierende Bande. Das Lösemittel 

wurde entfernt und das Produkt in etwas CHCl3 aufgenommen und mit MeOH ausgefällt. 

Man erhielt 15 als orangen Feststoff. 

 

Ausbeute: 31.0 mg (15, 49.6 µmol, 99  %). 

 

Rf´(Kieselgel, CHCl3): 0.68  

 

Schmelzpunkt: 249 °C. 

 

IR  (ATR): ν~  = 3077.8 (w), 2952.3 (m), 2925.2 (s), 2855.9 (m), 1761.0 (m), 1703.3 (vs), 

1658.8 (vs), 1626,3 (w), 1604.4 (m), 1579.2 (w), 1526.5 (w), 1442.3 (m), 1400.9 (s), 1375.7 

(s), 1349.5 (s), 1323.5 (s), 1286.8 (m), 1244.5 (m), 1206.7 (w), 1178.8 (w), 1122.1 (w), 

1103.5 (w), 1043.3 (w), 984.8 (w), 964.4 (w), 941.9 (w), 902.3 (w), 837.8 (m), 811.9 (m), 

765.2 (m), 751.3 (m), 724.5 (w), 664.2 (w), 654.0 cm-1 (w).  
 

1H-NMR  (600 MHz, CDCl3): δ = 0.92 – 0.95 (m, 6H, CH3), 1.38 – 1.45 (m, 8H, 

CH2CH2CH2CH2CH3), 1.46 (t, ³J = 7.2 Hz, 3H, NCH2CH3), 1.48 – 1.59 (m, 8H, 

CH2CH2CH2CH2CH3), 2.04 – 2.11 (m, 2H, NCHCH2), 2.29 – 2.39 (m, 2H, NCHCH2), 3.76 

(q, ³J = 7.6 Hz, 2H, NCH2CH3), 5.16 – 5.28 (m, 1H, NCH(CH2)2), 7.29 – 7.38 (m, 1H, Harom), 

7.51 – 7.70 (m, 2H, Harom), 7.82 – 8.12 (m, 3H, Harom), 8.36 – 8.53 (m, 1H, Harom), 9.07 ppm 

(s, 1H, CCHCCO). 

N OO
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13C-NMR  (151 MHz, CDCl3): δ = 14.1, 22.7, 27.2, 29.4, 31.9, 32.5, 41.4, 41.3, 54.9, 121.1, 

121.3, 121.6, 122.3, 123.1, 123.4, 124.0, 125.2, 125.3, 127.7. 127.9, 129.4, 131.3, 168.3, 

168.7 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 349.0 (20450), 365.6 (36860), 436.8 (27040), 476.9 nm (7990). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 494.02 (1.00), 519.3 nm (0.73). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 349 nm, E349 nm / 1cm = 0.0110, Referenz S-13 

mit Φ = 1.00) Φ = 0.20 

 

MS (EI): m/z (%) = 626 (10) [M + H]+, 625 (20) [M]+, 444 (20) [M + H – C13H26]
+, 443 (70) 

[M – C13H26]
+, 442 (100) [M – H – C13H26]

+, 427 (16), 343 (6). 

 

HRMS (EI): ber.: C41H40N2O4 [M]+: 624.2988 

  gef.:    624.2975 ∆ = 0.0013 

 

C41H40N2O4 [624.8]   ber. (%): C: 78.82 H: 6.45 N: 4.48 

    gef. (%): C: 78.58 H: 6.45 N: 4.35 
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D2.5 N-(1-Hexylheptyl)-N‘ -(cyclohexyl)benzo[ghi]perylen-   

 3,4:6,7-bis(dicarboximid) (16) 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracar- 

bonsäure-3,4-dicarboximid-6,7-anhydrid (12, 30.0 

 mg, 50.2 µmol, 1.00 Äq.), Cyclohexylamin (49.8 mg, 

502 µmol, 10.0 Äq.) und Imidazol (2.10 g) wurden 

mit katalytischen Mengen Zinkacetat-Dihydrat 

versetzt und 2 h bei 140 °C gerührt. Das Rohprodukt 

wurde durch Zugabe von EtOH (15.0 mL) aus der 

Schmelze ausgefällt. Der Niederschlag wurde 

abgesaugt und getrocknet. Nach säulenchromatographischer Aufreinigung an Kieselgel (63 – 

200 µm) mit CHCl3 eluierte das Produkt als intensiv gelb fluoreszierende Bande. Das 

Lösemittel wurde entfernt und das Produkt in etwas CHCl3 aufgenommen und mit MeOH 

ausgefällt. Man erhielt 16 als orangen Feststoff. 

 

Ausbeute: 30.0 mg (16, 44.2 µmol, 88 %) 

 

Rf (Kieselgel, CHCl3): 0.78 

 

Schmelzpunkt: > 250 °C 

 

IR  (ATR):  = 2948.4 (s), 2924.1 (vs), 2854.5 (s), 2361.2 (w), 2337.3 (w), 1760.6 (m), 1704.2 

(vs), 1660.9 (vs), 1625.8 (m), 1604.6 (s), 1577.8 (m), 1555.9 (w), 1456.4 (w), 1392.0 (s), 

1370.8 (vs), 1323.7 (vs), 1289.2 (w), 1261.1 (m), 1244 (m), 1171.9 (w), 1116.5 (w), 1095.0 

(w), 1056.7 (w), 1019.8 (w), 837.1 (s), 811.0 (vs), 764.0 (s), 750.1 (s), 664.0 (m), 654.3 cm-1  

(m). 

 
1H-NMR  (600 MHz, CDCl3): δ = 0.92 (t,³J = 7.1 Hz, 6H, CH3), 1.33 – 1.39 (m, 8H, 

CH2CH2CH2CH2CH3), 1.43 - 1.63 (m, 11H, CH2CH2CH2CH2CH3 + CH2 cyclohexyl), 1.85 - 1.91 

(m, 1H, CH2 cylohexyl), 2.03 – 2.13 (m, 6H, NCHCH2   + CH2 cyclohexyl), 2.32 – 2.38 (m, 2H, 

NCHCH2), 2.40– 2.47 (m, 2H, CH2 cylohexyl), 4.24 - 4.31 (m, 1H, CH cylohexyl), 5.23 – 5.28 (m, 

1H, NCH), 7.57 – 7.62 (m, 1H, Harom), 7.74 (t, 3J = 6.9 Hz, 1H, CCHCHCH), 7.86 (d, 
3J = 6.6 Hz, 1H, CCHCHCH), 8.16 – 8.24 (m, 2H, Harom), 8.37 (d, 3J = 7.6 Hz, 1H, Harom), 

8.47 – 8.56 (m, 1H, Harom), 9.29 ppm (s, 1H, CCHCCO). 

NO O

N
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13C-NMR  (151 MHz, CDCl3): δ = 14.1, 22.7, 25.3, 26.3, 27.3, 29.4, 30.2, 31.9, 32.5, 51.1, 

54.8, 120.5, 120.9, 122.0, 122.4, 122.6, 123.5, 123.8, 124.5, 124.8, 125.5, 127.0, 127.7, 129.1, 

130.7, 130.8, 132.5, 167.9, 168.2 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 280.6 (17850), 333.5 (13300), 350.2 (26620), 366.0 (48380), 

437.4 (27740), 478.2 nm (7990). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 490.4 (1.00), 518.5 nm (0.72).  

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 349 nm, E349 nm / 1cm = 0.0144, Referenz S-13 

mit Φ = 1.00) Φ = 0.22 

 

MS (EI, 70eV): m/z (%) = 680 (25) [M+H]+, 679 (47) [M]+, 662 (8), 594 (5) [M - 2H - 

Cyclohexyl]+, 498 (24) [M + H - C13H26]
+, 497 (71) [M - C13H26]

+, 496 (100) [M - H - 

C13H26]
+, 543 (10), 415 (31), 414 (43).                                    

 

HRMS (EI): ber.: C45H46N2O4 [M]+: 678.3458  

  gef.:    678.3454 ∆ = 0.0004  

 

C45H46N2O4 [678.9]  ber. (%): C: 79.62 H: 6.83 N: 4.13  

    gef. (%): C: 79.12 H: 6.83 N: 4.08 

   

 

 

 

 

 

 

 

 

 

 



EXPERIMENTELLER TEIL                                                                                                                                                   196                                        
                                                                                                                                              
 

D2.6 N-(1-Hexylheptyl)-N‘ -(1-naphthyl)benzo[ghi]perylen-  

 3,4:6,7-bis(dicarboximid) (17) 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracar- 

bonsäure-3,4-dicarboximid-6,7-anhydrid (12, 30.0 mg, 

50.2 µmol, 1.00 Äq.), 1-Aminonaphthalin (53.9 mg, 

377 µmol, 7.50 Äq.) und Imidazol (2.00 g) wurden mit 

katalytischen Mengen Zinkacetat-Dihydrat versetzt 

und 2 h bei 140 °C gerührt. Das Rohprodukt wurde 

durch Zugabe von EtOH (15.0 mL) aus der Schmelze 

ausgefällt. Der Niederschlag wurde abgesaugt und getrocknet. Nach  

säulenchromatographischer Aufreinigung an Kieselgel (63 – 200 µm) mit CHCl3 eluierte das 

Produkt als intensiv gelb fluoreszierende Bande. Das Lösemittel wurde entfernt und das 

Produkt in etwas CHCl3 aufgenommen und mit MeOH ausgefällt. Man erhielt 17 als orangen 

Feststoff. 

 

Ausbeute: 31.0 mg (17, 42.9 µmol, 85 %) 

 

Rf (Kieselgel, CHCl3): 0.65 

 

Schmelzpunkt: > 250 °C 

 

IR  (ATR): ν~  = 3087.3 (w), 3054.3 (w), 2950.4 (m), 2923.5 (s), 2854.3 (m), 2359.2 (w), 

2338.4 (w), 1765.2 (m), 1711.6 (vs), 1657.2 (vs), 1622.7 (m), 1602.9 (s), 1576.5 (m), 1511.7 

(w), 1464.2 (m), 1398.9 (vs), 1361.5 (vs), 1344.9 (vs), 1324.9 (vs), 1291.5 (s), 1246.6 (m), 

1223.7 (m), 1183.1 (m), 1159.8 (m), 1098.8 (s), 944.8 (w), 889.1 (w), 840.0 (vs), 811.4 (vs), 

795.0 (vs), 775.0 (vs), 765.4 (vs), 751.0 (s), 721.0 (s), 663.7 cm-1 (s).  
 

1H-NMR  (600 MHz, CDCl3): δ = 0.77 -  0.89 (m, 6H, CH3), 1.16 – 1.42 (m, 16H, 

CH2CH2CH2CH2CH3), 1.88 – 2.03 (m, 2H, CHCH2), 2.28 – 2.40 (m, 2H, CHCH2), 5.25 - 

5.33 (m, 1H, NCH), 7.49 -7.53 (m, 1H, Hnaphthyl), 7.55 - 7.58 (m, 1H, Hnaphthyl), 7.72 (dd, 1H, 
3J = 7.2Hz, 3J = 8.3Hz, Hnaphthyl), 7.77 (dd, 1H, 3J = 1.1Hz, J = 7.1Hz, Hnaphthyl), 7.82 (d, 1H, 
3J = 8.6 Hz, Hnaphthyl), 8.01 (d, 1H, 3J = 8.0 Hz, Hnaphthyl), 8.08 (d, 1H, 3J = 8.3 Hz, Hnaphthyl), 

8.25 (t, 1H, 3J = 7.7 Hz, Harom), 8.41 (d, 1H, 3J = 9.0 Hz, Harom), 8.45 (d, 1H, 3J = 7.5 Hz, 

N

O

O
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Harom), 9.00 - 9.09 (m,  1H, Harom),  9.16 (d, 2H, 3J = 8.3 Hz, Harom),  9.38 (d, 1H, 3J = 8.9 Hz, 

Harom), 10.32 ppm (s, 1H, CCHCCO).     

   
13C-NMR  (151 MHz, CDCl3): δ = 14.0, 22.6, 27.0, 29.3, 29.7, 31.8, 32.5, 55.0, 122.1, 122.6, 

123.4, 124.0, 125.6, 126.6, 127.2, 127.4, 128.5, 128.7, 130.1, 132.2, 132.5, 134.6, 167.5, 

168.7 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 280.6 (27100), 349.3 (30210), 366.4 (46370), 417.2 (19510), 

438.3 (28480), 480.1 nm (8310). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 499.3 (1.00), 527.2 nm (0.75).  

 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 350 nm, E350 nm / 1cm = 0.0144 , Referenz S-13 

mit Φ = 1.00) Φ = 0.24 

 

MS (EI, 70eV): m/z (%) =  724 (12) [M+H]+, 723 (27) [M]+, 542 (26)  [M +H - C13H26]
+, 541 

(87) [M - C13H26]
+, 540 (100) [M - H - C13H26]

+, 495 (20), 425 (5), 344 (4), 270 (3), 128 (2).   

 

HRMS (EI): ber.: C49H42N2O4 [M]+:  722.3145  

  gef.:                                     722.3130 ∆ = 0.0015 

 

C49H42N2O4 [722.9]   ber. (%): C: 81.42 H: 5.86 N: 3.88  

    gef. (%): C: 81.59 H: 5.81 N: 3.80 
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D2.7 N-(1-Hexylheptyl)-N‘ -(benzyl)benzo[ghi]perylen-   

 3,4:6,7-bis(dicarboximid) (18) 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracar- 

bonsäure-3,4-dicarboximid-6,7-anhydrid (12, 30.0 mg, 

50.2 µmol, 1.00 Äq.) und Benzylamin (53.8 mg, 

502 µmol, 10.0 Äq.) wurden mit Imidazol (2.10 g) 

versetzt und 2.5 h bei 130 °C gerührt. Die Schmelze 

wurde mit EtOH (10.0 mL) suspendiert und danach in 

CHCl3 (30.0 mL) aufgenommen. Die organische Phase 

wurde zweimal mit einer wässrigen HCl-Lösung (2 M, 

50.0 mL) gewaschen. Die wässrige Phase wurde solange mit CHCl3 extrahiert bis sie farblos 

erschien. Das Lösemittel der vereinigten organischen Phasen wurde entfernt und das 

Rohprodukt säulenchromatographisch an Kieselgel (63 – 200 µm) mit CHCl3 aufgereinigt. 

Das Produkt eluierte als intensiv gelb fluoreszierende Bande. Nach Entfernen der Lösemittel 

wurde das Produkt in etwas CHCl3 aufgenommen und mit MeOH gefällt. Man erhielt 18 als 

orangen Feststoff. 

 

Ausbeute: 29.0 mg (18, 42.2µmol, 84 %)  

 

Rf (Kieselgel, CHCl3): 0.85 

 

Schmelzpunkt: > 250 °C  

 

IR  (ATR): ν~  = 3079.3 (w), 3031.7 (w), 2948.4 (m), 2922.3 (s), 2853.7 (m), 2359.2 (w), 

2337.3 (w), 1762.0 (m), 1700.5 (vs), 1659.0 (vs), 1625.0 (m), 1603.8 (m), 1577.0 (w), 1455.0 

(w), 1432.0 (m), 1393.0 (s), 1379.8 (s), 1339.8 (m), 1322.5 (vs), 1285.2 (m), 1243.2 (m), 

1177.5 (w), 1097.5 (w), 1065.8 (m), 1030.6 (w), 941.1 (m), 837.6 (vs), 811.5 (vs), 764.1 (vs), 

752.4 (vs), 746.1 (vs), 700.4 cm-1 (vs). 
 

1H-NMR  (600 MHz, CDCl3): δ = 0.97 (t, 3J = 7.0 Hz, 6H, CH3), 1.39 – 1.46 (m, 8H, 

CH2CH2CH2CH2CH3), 1.48 – 1.57 (m, 8H, CH2CH2CH2CH2CH3), 2.06 – 2.14 (m, 2H, 

CHCH2), 2.28 -2.37 (m, 2H, CHCH2), 4.70 (s, 2H, NCH2), 5.16 – 5.24 (m, 1H, NCH), 6.55 

(d, 3J = 8.2 Hz, 2H, Harom), 6.85 – 6.92 (m, 1H, Harom), 7.12 (t, 3J = 7.6 Hz, 1H, Harom),  7.31 – 

NO O
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7.35 (m, 2H, Harom), 7.51 – 7.58 (m, 5H, Harom),  7.63 (d, 3J = 6.5 Hz, 1H, Harom), 7.64 (d, 3J = 

8.3 Hz, 1H, Harom), 8.13 -8.22 (m, 1H, Harom), 8.59 ppm (s, 1H, CCHCCO). 

  
13C-NMR  (151 MHz, CDCl3): δ = 14.2, 22.8, 27.4, 29.5, 29.7, 32.0, 32.5, 41.5, 54.8, 119.5, 

119.8, 120.2, 121.1, 122.2, 122.5, 123.3, 123.6, 124.2, 125.4, 126.1, 127.4, 128.4, 128.6, 

128.8, 129.6, 129.8, 131.7, 136.6, 166.5, 166.7 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 286.2 (16140), 349.3 (26530), 365.4 (48780), 417.1 (18120), 

437.4 (27460), 478.2 nm (8460). 

   

Fluoreszenz (CHCl3): λmax (Irel) = 496.1 (1.00) 524.2 nm (0.76).  

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 348 nm, E348 nm / 1cm = 0.0125, Referenz S-13 

mit Φ = 1.00) Φ = 0.23 

 

MS (EI, 70eV): m/z (%) = 688 (6)  [M+H]+, 687  (16) [M]+, 686 (31)[M+H]+, 506 (20) [M + 

H - C13H26]
+, 505 (71) [M - C13H26]

+, 504 (100) [M - H - C13H26]
+, 427 (5), 344 (5), 343 (5), 

91 (12).   

  

HRMS (EI): ber.: C46H42N2O4 [M]+:  686.3145  

  gef.:                             686.3141 ∆ = 0.0004 

 

C46H42N2O4 [686.8]   ber. (%): C: 80.44 H: 6.16 N: 4.08  

    gef. (%): C: 79.91 H: 6.16 N: 4.06 

  

 

 

 

 

 

 

 



EXPERIMENTELLER TEIL                                                                                                                                                   200                                        
                                                                                                                                              
 

D2.8 N-(1-Hexylheptyl)-N‘ -(tert-butyl)benzo[ghi]perylen-   

 3,4:6,7-bis(dicarboximid) (19) 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracar- 

bonsäure-3,4-dicarboximid-6,7-anhydrid (12, 30.0 mg, 

50.2  µmol, 1.00 Äq.) und tert-Butylamin (36.7 mg, 

502 µmol, 10.0 Äq.) wurden mit Imidazol (2.60 g) 

versetzt und 1.5 h bei 130 °C gerührt. Die Schmelze 

wurde mit EtOH (10.0 mL) suspendiert und danach in 

CHCl3 (30.0 mL) aufgenommen. Die organische Phase 

wurde zweimal mit einer wässrigen HCl-Lösung (2 M, 50.0 mL) gewaschen. Die wässrige 

Phase wurde solange mit CHCl3 extrahiert bis sie farblos erschien. Das Lösemittel der 

vereinigten organischen Phasen wurde entfernt und das Rohprodukt säulenchromatographisch 

an Kieselgel (63 – 200 µm) mit CHCl3 aufgereinigt. Das Produkt eluierte als intensiv gelb 

fluoreszierende Bande. Nach Entfernen der Lösemittel wurde das Produkt in etwas CHCl3 

aufgenommen und mit MeOH gefällt. Man erhielt 19 als orangen Feststoff. 

 

Ausbeute: 6.50 mg (19, 9.96 µmol, 20 %) 

 

Rf (Kieselgel, CHCl3): 0.86 

 

Schmelzpunkt: > 250 °C  

 

IR  (ATR): ν~  = 3080.9 (w), 2953.0 (s), 2923.7 (vs), 2854.4 (s), 2358.2 8w), 2339.9 (w), 

1758.8 (m), 1702.7 (vs), 1660.1 (vs), 1625.9 (m), 1604.1 (s), 1583.7 (w), 1460.5 (m), 1399.8 

(m), 1374.0 (m), 1358.8 (m), 1350.6 (m), 1335.1 (vs), 1324.3 (vs), 1294.1 (w), 1243.4 (m), 

1209.7 (w), 1200.0 (m), 1103.9 (m), 1017.7 (m), 943.4 (w), 901.2 (w), 836.7 (vs), 811.3 (vs), 

764.0 (s), 750.1 (vs), 664.0 cm-1 m). 

 

1H-NMR  (600 MHz, CDCl3): δ =  0.87 (t, 3J = 7.1 Hz, 6H, CH2CH3), 1.28 – 1.35 (m, 8H, 

CH2CH2CH2CH2CH3), 1.40 – 1.52 (m, 8H, CH2CH2CH2CH2CH3), 1.95 (s, 9H, CCH3)  2.00 – 

2.07 (m, 2H, CHCH2), 2.34 – 2.43 (m, 2H, CHCH2), 5.26 - 5.34 (m, 1H, NCH), 7.88 (d, 
3J = 8.7 Hz, 1H, Harom), 7.92 (t, 3J = 7.6 Hz, 1H, Harom),  8.09 (d, 3J = 7.5 Hz, 1H, Harom), 8.53 

(d, 3J = 8.2 Hz, 2H, Harom), 8.69 – 8.80 (m, 2H, Harom), 9.76 ppm (s, 1H, CCHCCO).  
 

N
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13C-NMR  (151 MHz, CDCl3): δ = 14.1, 22.7, 27.2, 29.4, 31.9, 32.6, 54.8, 58.4, 121.1, 121.8, 

122.5, 123.0, 123.4, 124.1, 125.2, 125.3, 126.6, 127.7, 129.4, 131.2, 133.4, 169.5, 169.8 ppm.  

 

UV/Vis (CHCl3): λmax (ε) = 265.1 (27340), 330.2 (14470), 347.8 (28940), 362.8 (53600), 

423.2 (21980), 437.6 (28410), 471.6 nm (10180). 

  

Fluoreszenz (CHCl3): λmax (Irel) = 487.8 (1.00), 519.6 nm (0.76).  

  

Fluoreszenzquantenausbeute (CHCl3, λexc = 348 nm, E348 nm / 1cm = 0.0074, Referenz S-13 

mit Φ = 1.00) Φ = 0.29 

 

MS (EI, 70eV): m/z (%) = 654 (17) [M+H]+, 653 (41) [M]+, 636 (7), 567 (5), 471 (89)  [M - 

C13H26]
+, 470 (100) [M - H - C13H26]

+, 456 (30), 415 (88), 414 (92), 397 (13), 343 (7), 313 

(4), 300 (3). 

 

HRMS (EI): ber.: C43H44N2O4 [M]+: 652.3301  

  gef.:    652.3301 ∆ = 0.0000 
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D2.9 N-(1-Hexylheptyl)-N´-[4-(1,3-dioxolan-2-yl)benzyl]benzo- 

[ghi]perylen-3,4:6,7-bis(dicarboximid) (20) 

D2.9.1  Synthese in Chinolin  

Eine Lösung von N-(1-Hexylheptyl)benzo[ghi]- 

perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid-

6,7-anhydrid (12, 30.0 mg, 50.2 µmol, 1.00 Äq.) in 

Chinolin (10.0 mL) wurde mit 4-(1,3-Dioxolan-2-

yl)benzylamin (90.4 mg, 502 µmol, 10.0 Äq.) 

versetzt und 3 Tage bei 165 °C erhitzt. Danach 

wurde Chinolin durch Destillation im Feinvakuum 

(67 °C, 2 · 10-2 mbar) entfernt und der erhaltene 

Rückstand säulenchromatographisch an Kieselgel (63 - 200 µm) mit einem Gemisch aus 

CHCl3/EtOH (100:1) aufgereinigt. Das Produkt konnte als intensiv gelb-grün fluoreszierende 

Bande eluiert werden. Nach Entfernen des Lösemittels im Vakuum nahm man den Rückstand 

in wenig CHCl3 auf, fällt mit MeOH und erhielt so 20 als orangen Feststoff. 

D2.9.2  Synthese in Imidazol  

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid 

(12, 0.33 g, 0.55 mmol, 1.00 Äq.) und Imidazol (12.5 mg) wurden mit 4-(1,3-Dioxolan-2-

yl)benzylamin (0.25 g, 1.38 mmol, 2.50 Äq.) sowie eine Spatelspitze Zinkacetat versetzt. 

Nach Erhitzen auf 130 °C wurde 2.5 h bei dieser Temperatur gerührt. Danach wurde die noch 

warme Reaktionslösung mit Ethanol (15.0 mL) versetzt und nach dem Abkühlen wässrige 

NaOH-Lösung (2 M, 200 mL) hinzu gegeben. Anschließend extrahierte man das 

Reaktionsgemisch so lange mit CHCl3, bis die organische Phase farblos erschien. Die 

vereinigten organischen Phasen wurden nochmals mit wässriger NaOH-Lösung gewaschen 

(4 · 25 mL) und die wässrige Phase erneut mit CHCl3 extrahiert, bis die organische Phase fast 

keine Färbung mehr aufwies. Anschließend wurden die organischen Phasen über MgSO4 

getrocknet. Nach dem Entfernen des Lösemittels im Vakuum erfolgte die 

säulenchromatographische Reinigung des Rohprodukts an Kieselgel (63 - 200 µm) mit einem 

Laufmittelgemisch aus CHCl3/EtOH (100:1), wobei Imidazol entfernt wurde. Das Produkt 

konnte als intensiv gelb-grün fluoreszierende Bande isoliert werden. Nach Entfernen des 

Lösemittels im Vakuum wurde der Rückstand in wenig CHCl3 aufgenommen und mit MeOH 

gefällt. Dies lieferte 20 als orangen Feststoff. 

NO O

N

O

O

O
O

20



EXPERIMENTELLER TEIL                                                                                                                                                   203                                        
                                                                                                                                              
 

Ausbeute: Synthese in Chinolin:  13.0 mg  (20, 17.1 µmol, 34 %)  

 Synthese in Imidazol:    329 mg  (20, 0.43 mmol, 79 %) 

                         

Schmelzpunkt:  335 - 340 °C 

 

Rf (Kieselgel, CHCl3/EtOH 10:1):     0.76  

 

IR  (ATR): ν~  = 2957.3 (m), 2923.2 (m), 2856.5 (w), 2360.5 (w), 1924.5 (w), 1763.6 (m), 

1702.0 (s), 1659.7 (vs), 1625.9 (w), 1604.6 (m), 1578.2 (w), 1517.5 (w), 1431.4 (w), 

1394.6 (s), 1380.9 (s), 1341.7 (m), 1323.9 (vs), 1286.8 (w), 1244.1 (w), 1222.1 (w), 

1178.1 (w), 1119.5 (w), 1078.5 (m), 1022.7 (w), 971.0 (w), 941.6 (m), 904.6 (w), 839.0 (s), 

812.0 (s), 787.7 (w), 764.6 (s), 752.3 (m), 724.6 (w), 665.0 (m), 654.9 (w), 633.5 (w),    

625.8  cm-1 (w). 

     
1H-NMR  (600 MHz, CDCl3): δ = 0.97 (t, 3J = 6.6 Hz, 6H, CH3), 1.39 – 1.56 (m, 16H, 

CH2CH2CH2CH2CH3), 2.07 – 2.13 (m, 2H, CHCH2), 2.32 – 2.39 (m, 2H, CHCH2),            

4.04 – 4.07 (m, 2H, OCH2), 4.14 – 4.16 (m, 2H, OCH2), 4.80 (s, 2H, NCH2), 5.22 (qi, 3J = 7.4 

Hz, 1H, NCH), 5.89 (s, 1H, OCH), 6.87 – 6.91 (m, 1H, Harom), 7.15 (s, 1H, Harom), 7.32 (s, 1H, 

Harom), 7.57 – 7.60 (m, 1H, Harom), 7.64 (d, 3J = 9.0 Hz, 2H, OCHCCHCH), 7.68 (d, 
3J = 9.0 Hz, 2H, OCHCCHCH), 7.79 – 7.87 (m, 2H, Harom), 8.30 (s, 1H, Harom), 8.73 ppm (s, 

1H, CCHCCO).  

    
13C-NMR  (151 MHz, CDCl3): δ = 14.0, 22.8, 27.4, 29.5, 32.0, 32.5, 41.1, 54.7, 65.4, 103.4, 

119.8, 120.2, 120.7, 121.2, 121.5, 122.5, 122.6, 123.1, 123.7, 123.8, 124.6, 125.7, 126.5, 

127.0, 127.6, 128.7, 129.5, 130.0, 130.2, 132.0, 137.6, 138.5, 162.6, 163.1, 163.6, 164.0, 

166.9, 167.0 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 349.2 (34430), 365.6 (57690), 417.9 (22880), 436.7 (35190), 

478.9 nm (9510). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 496.3 (1.00), 521.3 nm (0.76).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E435nm / 1cm = 0.0105, Referenz: S-13 

mit Φ = 1.00): Φ = 0.28  
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MS (EI): m/z (%) = 760 (6) [M + H]+, 759 (18) [M]+, 758 (33) [M -H]+, 716 (3) [M + H - 

C2H4O]+, 715 (8) [M - C2H4O]+, 714 (21) [M – H - C2H4O ]+, 713 (24) [M - 2H - C2H4O]+, 

685 (2) [M - C3H6O2]
+, 609 (2) [M - C9H10O2]

+, 596 (1) [M - C10H11O2]
+, 595 (2) [M - 

C10H12O2]
+, 578 (18) [M + H - C13H26]

+, 577 (60) [M - C13H26]
+, 576 (100) [M - H - C13H26]

+, 

575 (27) [M - 2H - C13H26]
+, 534 (24) [M - H - C2H4O - C13H26]

+, 533 (68) [M - C2H4O - 

C13H26]
+, 532 (52) [M - C2H4O - C13H26]

+, 531 (20) [M - 2H - C2H4O - C13H26]
+, 505 (15) [M 

+ H - C3H5O2 - C13H26]
+, 504 (31) [M - C3H5O2 - C13H26]

+, 503 (11) [M - C3H5O2 - C13H26]
+, 

429 (4) [M + H - C9H9O2 - C13H26]
+, 428 (9) [M - C9H9O2 - C13H26]

+, 427 (21) [M - C9H9O2 - 

C13H26]
+, 415 (2) [M + H - C10H11O2 - C13H26]

+, 414 (7) [M - C10H11O2 - C13H26]
+, 413 (7) [M 

- C10H11O2 - C13H26]
+, 344 (14), 343 (14), 288 (33), 287 (18), 266 (18), 265 (13), 149 (37), 

119 (20), 91 (16). 

 

HRMS (EI): ber.: C49H46 N2O6 [M]+: 758.3356  

 gef.:  758.3351 ∆ = 0.0005                               

 

C49H46 N2O6 [758.9]  ber. (%): C: 77.55 H: 6.11  N: 3.69  

   gef. (%): C: 77.60 H: 5.97 N: 3.51 
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D2.10 N-(1-Hexylheptyl)-N´-(4-formylbenzyl)benzo[ghi]perylen-3,4:6,7-   

bis(dicarboximid) (21) 

 

D2.10.1 Synthese via Kondensation      

Zu N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-

tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid 

(12, 0.99 g, 1.65 mmol, 1.00 Äq.) und Imidazol 

(37.5 mg) wurden 4-(1,3-Dioxolan-2-yl)benzyl- 

amin (0.74 g, 4.13 mmol, 2.50 Äq.) und eine 

Spatelspitze Zinkacetat gegeben. Der Ansatz wurde 

2.5 h bei 130 °C erhitzt. Anschließend gab man 

dem noch warmen Reaktionsgemisch Ethanol (45.0 

mL) hinzu und versetzte den Reaktionsansatz mit einem Gemisch aus 2 M HCl/Eisessig (1:1, 

250 mL). Daraufhin wurde so lange mit CHCl3 extrahiert, bis die organische Phase farblos 

erschien, wusch diese mit 2 M HCl/Eisessig (1:1, 5 · 100 mL) und extrahierte erneut mit 

CHCl3. Nach Trocknen der vereinigten organischen Phasen über MgSO4 wurde das 

Lösemittel im Vakuum entfernt. Das Rohprodukt wurde anschließend durch Säulenchromato- 

graphie an Kieselgel (63 - 200 µm) mit einem Gemisch aus CHCl3/EtOH (100:1) aufgereinigt. 

Das Produkt wurde als intensiv gelb-grün fluoreszierende Bande isoliert und nach Entfernen 

des Lösemittels im Vakuum in wenig CHCl3 aufgenommen. Durch Fällen mit MeOH wurde 

21 als oranger Feststoff erhalten. 

 

D2.10.2 Synthese via säurekatalysierte Hydrolyse  

Eine Lösung des Acetals 20 (25.0 mg, 33.0 µmol) in THF (10.0 mL) wurde mit wässriger 

HCl-Lösung (2 M, 0.10 mL) versetzt und 4 Tage unter Rückfluss erhitzt. Anschließend 

entfernte man das Lösemittel im Vakuum, nahm den Rückstand in wenig CHCl3 auf und 

wusch mit einem Gemisch aus 2 M HCl/Eisessig (1:1, 3 · 100 mL). Nachdem das Lösemittel 

im Vakuum entfernt wurde, wurde der erhaltene Rückstand erneut in wenig CHCl3 

aufgenommen und mit MeOH gefällt. Dadurch konnte 21 als oranger Feststoff isoliert 

werden. 

 

D2.10.3 Synthese via Oxidation des Benzylalkohols 22 

Der Benzylalkohol 22 (21.0 mg, 29.3 µmol, 1.00 Äq.) wurde in DMSO (2.00 mL) gelöst, mit 

wässriger HBr-Lösung (48%, 67.0 µmol, 2.28 Äq.) versetzt und und für 24 h auf 110 ºC 

NO O

N

O

O

21
O

H
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erhitzt. Nach Beendigung der Reaktion  goss man den Ansatz auf wässrige HCl-Lösung 

(50.0 mL, 2 M) hinzu. Daraufhin wurde das Reaktionsgemisch mit CHCl3 mehrmals 

extrahiert, bis die organische Phase farblos erschien. Die organische Phase wusch man erneut 

mit wässriger HCl-Lösung (50.0 mL, 2 M) und extrahierte nochmals mit CHCl3, bis die 

organische Phase erneut keine Färbung mehr aufwies. Nach dem Trocknen über MgSO4 

wurde das Lösemittel im Vakuum entfernt und das erhaltene Rohprodukt unter 

Lichtausschluss säulenchromatographisch über Kieselgel (63 - 200 µm) mit einem 

Laufmittelgemisch aus CHCl3 und EtOH (100:1)  aufgereinigt. Nach dem Entfernen des 

Lösemittels im Vakuum wurde der erhaltene Rückstand in wenig CHCl3 aufgenommen und 

mit MeOH gefällt. Man erhielt 21 nach dem Trocknen als gelb-orangen Feststoff. 

 

Ausbeute: D2.10.1:   964 mg  (21, 1.35 mmol, 82 %)   

 D2.10.2:   23.0 mg (21, 32.2 µmol, 96 %) 

 D2.10.3:   17.0mg (21, 23.8 µmol, 81%) 

 

Schmelzpunkt:  331 - 333 °C 

 

Rf (Kieselgel, CHCl3/EtOH 10:1):     0.79  

 

IR  (ATR): ν~   = 2956.8 (m), 2918.4 (m), 2851.7 (w), 2192.6 (w), 1974.0 (w), 1764.3 (m), 

1700.8 (vs), 1658.5 (s), 1604.7 (m), 1578.0 (w), 1430.0 (w), 1394.3 (m), 1380.7 (m), 

1344.3 (m), 1323.3 (s), 1243.7 (m), 1209.6 (m), 1169.0 (m), 1090.2 (w), 941.9 (w), 

838.0 (vs), 811.8 (s), 781.3 (m), 764.1 (s), 752.0 (s), 723.1 (m), 664.1 (m), 654.0 (w), 

642.8 (w), 625.8 cm-1 (m). 

     
1H-NMR  (600 MHz, CDCl3): δ = 0.90 (t, 3J = 6.8 Hz, 6H, CH3), 1.31 – 1.54 (m, 16H, 

CH2CH2CH2CH2CH3), 2.02 – 2.18 (m, 2H, CHCH2), 2.30 -2.49 (m, 2H, CHCH2), 5.05 (s, 2H, 

NCH2), 5.25 – 5.37 (m, 1H, NCH), 7.44 – 7.54 (m, 1H, Harom), 7.69 – 7.77 (m, 2H, Harom), 

7.83 (d, 3J = 8.4 Hz, 2H, CHCHCCHO), 8.01 (d, 3J = 8.4 Hz, 2H, CHCHCCHO), 8.20 – 8.30 

(m, 1H, Harom), 8.33 – 8.44 (m, 2H, Harom), 8.60 – 8.71 (m, 1H, Harom), 9.36 – 9.40 (m, 1H, 

CCHCCO), 10.10 ppm (s, 1H, CHO). 
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13C-NMR  (151 MHz, CDCl3): δ = 14.2, 22.8, 27.4, 29.5, 32.0, 32.6, 41.3, 55.0, 120.1, 120.4, 

120.7, 121.5, 121.9, 122.7, 123.4, 124.0, 125.1, 126.0, 126.8, 127.6, 128.9, 130.0, 130.2, 

130.5, 132.2, 132.9, 136.2, 142.8, 166.9, 167.1, 191.9 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 350.2 (31450), 366.1 (57620), 415.1 (20800), 436.9 (31260), 

479.7 nm (9450). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 499.9 (1.00), 529.8 nm (0.75).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E435nm / 1 cm = 0.0135, Referenz: S-13 

mit Φ = 1.00): Φ = 0.30  

 

MS (EI): m/z (%) = 716 (3) [M + H]+, 715 (9) [M]+, 714 (18) [M - H]+, 697 (3), 629 (2), 685 

(1) [M  - H - CHO]+, 547 (2), 546 (2), 545 (4), 534 (16) [M + H - C13H26]
+, 533 (63) [M - 

C13H26]
+, 532 (100) [M – H - C13H26]

+, 515 (3), 505 (2) [M + H - CHO - C13H26]
+, 504 (4) [M 

- CHO - C13H26]
+, 503 (5) [M – H - CHO - C13H26]

+, 428 (2) [M - C7H5O - C13H26]
+, 427 (5) 

[M - H - C7H5O - C13H26]
+, 414 (1) [M - C8H7O - C13H26]

+, 413 (2) [M – H - C8H7O - 

C13H26]
+, 345 (3), 344 (5), 343 (5), 267 (2), 266 (2), 265 (2), 119 (7), 91 (4), 55 (2). 

 

HRMS (EI): ber.: C47H42 N2O5 [M]+: 714.3094  

 gef.:   714.3065 ∆ = 0.0029                               

 

C47H42 N2O5 [714.8] ber. (%): C: 78.97 H: 5.92  N: 3.92  

      gef. (%):  C: 79.00 H: 5.78 N: 3.74 
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D2.11    N-(1-Hexylheptyl)-N´-(4-hydroxymethylbenzyl)benzo[ghi]-  

    perylen-3,4:6,7-bis(dicarboximid) (22)  

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-

tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid 

(12, 200 mg, 335 µmol, 1.00 Äq.) und (4-

Aminomethylphenyl)methanol (69.0 mg, 503 

µmol, 1.50 Äq.) wurden in Chinolin (5.00 mL) 

gelöst und 4 h in einer Mikrowellenapparatur 

erhitzt (210 °C, 200W, 2.00 Bar). Anschließend 

goß man den  Reaktionsansatz auf  2 M HCl (250 mL). Daraufhin wurde so lange mit CHCl3 

extrahiert, bis die organische Phase farblos erschien, wusch diese mit 2 M HCl (3 · 150 mL) 

und extrahierte erneut mit CHCl3. Nach Trocknen der vereinigten organischen Phasen über 

MgSO4 wurde das Lösemittel im Vakuum entfernt. Das Rohprodukt wurde anschließend 

durch Säulenchromatographie an Kieselgel (63 - 200 µm) mit einem Gemisch aus CHCl3 und 

EtOH (60:1) aufgereinigt. Die Produktfraktion erscheint als intensiv gelb-grün 

fluoreszierende Bande. Das Produkt löst man in wenig CHCl3 aufgenommen und fällt mit 

MeOH aus. Man erhielt so den Alkohol 22 als oranges Pulver.  

 

Ausbeute: 163 mg (22, 228 µmol, 68 %)  

 

Schmelzpunkt:  343 - 349 °C 

 

Rf (Kieselgel, CHCl3/EtOH 50:1): 0.35   

 

IR (ATR): ν~  = 3514.6 (m,br), 2952.7 (s), 2923.8 (vs), 2855.2 (s), 1762.8 (m), 1701.0 (vs), 

1657.5 (vs), 1624.9 (m), 1604.0 (s), 1578.0 (m), 1513.6 (w), 1443.9 (m), 1430.7 (m), 1393.9 

(s), 1380.3 (s), 1323.3 (vs), 1286.4 (m), 1244.1 (m), 1173 (w), 1091.8 (m), 1046.3 (m), 

1019.8 (m), 940.1 (w), 838.3 (m), 811.9 (m), 786.4 (w), 764.9 (m), 752.0 (m), 664.5 cm-1 (w).      

     
1H-NMR  (600 MHz, CDCl3): δ = 0.96 (t, 3J = 6.6 Hz, 6H, CH3), 1.20 – 1.51 (m, 16H, 

CH2CH2CH2CH2CH3), 2.06 – 2.17 (m, 2H, CHCH2), 2.27 -2.38 (m, 2H, CHCH2), 4.80 (s, 2H, 

CH2OH), 5.14 (s, 2H, NCH2), 5.20 - 5.27 (m, 1H, NCH), 7.04 - 7.16 (m, 1H, Harom), 7.41 - 

7.60 (m, 3H, Harom), 7.65 - 7.69 (m, 1H, Harom), 7.73 (d, 3J = 9.0 Hz, 2H, Hphenyl), 7.76 (d, 3J = 

9.0 Hz, 2H, Hphenyl), 8.19 - 8.33 (m, 2H, Harom), 8.69 - 8.84 ppm (m, 1H, Harom).  

N OO

N

O

O

22 OH
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13C-NMR  (151 MHz, CDCl3): δ = 13.2, 21.8, 26.5, 28.5, 31.6, 41.3, 55.1, 63.7, 120.0, 120.4, 

120.8, 121.5, 121.7, 122.9, 123.2, 124.1, 125.8, 126.1, 126.8, 127.5, 128.5, 130.1, 130.2, 

130.6, 132.4, 132.8, 135.9, 142.6, 165.9, 166.8 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 266.8 (27310), 349.2 (29210), 365.6 (53920), 412.8 (20090), 

437.4 (29640), 478.6 nm (9720). 

 

Fluoreszenz (CHCl3): λmax (Irel) =  498.0 (1.00), 525. nm (0.76).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc =  349 nm, E349nm / 1cm =  0.0239, Referenz: S-13 

mit Φ = 1.00): Φ = 0.35 

 

MS (EI): m/z (%) = 718 (4) [M + 2H]+, 717 (20) [M+ H]+, 716 (41) [M]+, 715 (13) [M - H]+, 

714 (23) [M - 2H]+, 701 (13) [M+ H - OH]+,700 (25) [M- OH]+, 536 (10) [M + 2H– C13H26 ]
+, 

535 (47) [M + H – C13H26]
+, 534 (100) [M – C13H26]

+, 533 (47)  [M - H – C13H26]
+,  532 (62)  

[M - 2H – C13H26]
+, 519 (44), 518 (63), 517 (29), 504 (13), 503 (24), 415 (24), 414 (41).  . 

 

HRMS (EI): ber.: C47H44N2O5  [M]+: 716.3250  

gef.:                             716.3240 ∆ = 0.0010                               

 

C47H44N2O5 [716.9]   ber. (%): C: 78.75 H: 6.19 N: 3.91  

       gef. (%): C: 78.22 H: 6.25 N: 3.89  
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D2.12 N-(1-Hexylheptyl)-N´-{[4-(1,3-dioxolan-2-yl)phenyl]benzyl}-    

benzo[ghi]perylen-3,4:6,7-bis(dicarboximid) (23) 

Zu N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-

tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid 

(12, 0.40 g, 0.67 mmol, 1.00 Äq.), Imidazol 

(14.3 mg) und einer Spatelspitze Zinkacetat gab 

man 4´-(1,3-Dioxolan-2-yl)biphenyl-4-methylamin  

(0.40 g, 1.56 mmol, 2.33 Äq.) und erhitzte 7 h bei 

130 °C. Danach wurde dem noch warmen 

Reaktionsgemisch Ethanol (20.0 mL) zugegeben 

und nach dem Abkühlen mit wässriger NaOH-

Lösung (2 M, 200 mL) versetzt. Man extrahierte mit CHCl3, bis die organische Phase farblos 

erschien, und wusch diese mit wässriger NaOH Lösung (2 M, 4 · 100 mL). Die wässrige Phase 

wurde noch einmal so lange mit CHCl3 extrahiert, bis die organische Phase farblos blieb. 

Nachdem die organischen Phasen über MgSO4 getrocknet wurden, wurde das Lösemittel im 

Vakuum entfernt und das Rohprodukt an Kieselgel (63 - 200 µm) mit einem 

Laufmittelgemisch aus CHCl3/EtOH (100:1) säulenchromatographisch aufgereinigt. Das 

Produkt konnte als intensiv gelb-grün fluoreszierende Bande eluiert und das Lösemittel im 

Vakuum entfernt werden. Nun wurde der erhaltene Rückstand in wenig CHCl3 aufgenommen 

und Fällen mit MeOH lieferte 23 als orangen Feststoff.  

 

Ausbeute: 427 mg (23, 0.51 mmol, 76 %)   

 

Schmelzpunkt:  344 - 346 °C 

 

Rf (Kieselgel, CHCl3/EtOH 10:1):     0.80  

 

IR  (ATR): ν~  = 2953.3 (m), 2925.2 (m), 2856.4 (w), 2360.5 (w), 1763.2 (m), 1702.4 (s), 

1660.2 (vs), 1625.7 (w), 1604.8 (m), 1578.0 (w), 1499.9 (w), 1431.2 (m), 1394.9 (s), 

1381.5 (s), 1341.2 (s), 1323.9 (vs), 1286.1 (m), 1244.1 (w), 1223.2 (w), 1209.6 (w), 

1177.9 (w), 1117.6 (w), 1079.7 (m), 1027.7 (w), 1007.0 (w), 981.3 (w), 941.6 (m), 906.5 (w), 

856.2 (w), 838.3 (s), 811.9 (vs), 792.6 (m), 765.2 (s), 752.0 (m), 724.0 (w), 664.5 (m), 

654.7 (w), 626.2 (m), 617.9 cm-1 (w). 
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1H-NMR  (600 MHz, CDCl3): δ = 0.98 (t, 3J = 6.9 Hz, 6H, CH3), 1.40 – 1.59 (m, 16H, 

CH2CH2CH2CH2CH3), 2.06 – 2.13 (m, 2H, CHCH2), 2.30 -2.38 (m, 2H, CHCH2), 3.99 – 4.03 

(m, 2H, OCH2), 4.10 – 4.14 (m, 2H, OCH2), 4.70 (s, 2H, NCH2), 5.17 – 5.22 (m, 1H, NCH), 

5.81 (s, 1H, OCH), 6.76 – 6.80 (m, 1H, Harom), 7.05 – 7.10 (m, 1H, Harom), 7.21 - 7.26 (m, 1H, 

Harom), 7.45 – 7.48 (m, 1H, Harom), 7.57 (d, 3J = 9.0 Hz, 2H, HBiphenyl), 7.64 (d, 3J = 9.0 Hz, 2H, 

HBiphenyl), 7.67 – 7.70 (m, 2H, Harom), 7.72 (d, 3J = 9.0 Hz, 2H, HBiphenyl), 7.76 (d, 3J = 9.0 Hz, 

2H, HBiphenyl), 8.10 - 8.16 (m, 1H, Harom), 8.54 ppm (s, 1H, CCHCCO).  

 
13C-NMR  (151 MHz, CDCl3): δ = 14.0, 22.8, 27.4, 29.5, 32.0, 32.5, 41.0, 54.7, 65.3, 103.4, 

120.4, 121.1, 122.5, 123.6, 124.3, 126.3, 127.0, 127.1, 128.6, 129.8, 130.0, 135.8, 137.5, 

140.6, 141.3, 166.7, 166.9 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 349.3 (31310), 365.4 (54920), 414.2 (20600), 437.3 (29810), 

478.2 nm (9850).  

 

Fluoreszenz (CHCl3): λmax (Irel) = 496.0 (1.00), 524.8 nm (0.76).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E435nm / 1cm = 0.0094, Referenz: S-13 

mit Φ = 1.00): Φ = 0.27  

 

MS (EI): m/z (%) = 836 (4) [M + H]+, 835 (11) [M]+, 834 (18) [M - H]+, 791 (3) [M - 

C2H4O]+, 790 (12) [M - C2H5O ]+, 654 (14) [M + H - C13H26]
+, 653 (38) [M - C13H26]

+, 652 

(58) [M – H - C13H26]
+, 651 (21) [M - 2H - C13H26]

+, 611 (5) [M + H - C15H13O2]
+, 610 (19) 

[M + 2H - C2H4O - C13H26]
+, 609 (51) [M + H - C2H4O - C13H26]

+, 609 (51) [M - C15H13O2]
+ , 

608 (24) [M - C2H4O - C13H26]
+, 596 (6) [M + H - C16H15O2]

+, 595 (4) [M - C16H15O2]
+, 581 

(50) [M + 2H - C3H5O2 - C13H26]
+, 580 (100) [M + H - C3H5O2 - C13H26]

+, 579 (11) [M - 

C3H5O2 - C13H26]
+, 504 (2) [M + H - C9H9O2 - C13H26]

+, 503 (3) [M - C9H9O2 - C13H26]
+, 429 

(5) [M + 2H - C13H26 - C15H13O2 ]
+, 428 (14) [M + H - C13H26 - C15H13O2 ]

+, 427 (26) [M - 

C13H26 - C15H13O2 ]
+, 415 (19) [M + 2H - C13H26 - C16H15O2 ]

+, 414 (8) [M + H - C13H26 - 

C16H15O2 ]
+, 344 (24), 343 (20), 326 (31), 325 (18), 304 (19), 303 (15), 299 (17), 195 (50), 

167 (46), 166 (21), 165 (44), 55 (17), 44 (33) [C2H4O]+. 
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HRMS (EI): ber.: C55H50 N2O6 [M]+:    834.3669  

 gef.:  834.3648 ∆ = 0.0021                               

 

C55H50 N2O6 [835.0]  ber. (%): C: 79.11 H: 6.04  N: 3.35  

      gef. (%):  C: 79.35 H: 5.89 N: 3.16 

   

 

 

D2.13    N-(1-Hexylheptyl)-N´-[(4-formylphenyl)benzyl]benzo[ghi]-  

    perylen-3,4:6,7-bis(dicarboximid) (24) 

D2.13.1  Synthese via Kondensation     

 N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetra- 

carbonsäure-3,4-dicarboximid-6,7-anhydrid (12, 

1.00 g, 1.67 mmol, 1.00 Äq.), 4´-(1,3-Dioxolan-2-

yl)biphenyl-4-methylamin (1.01 g, 3.91 mmol, 

2.34 Äq.), Imidazol (35.7 mg) sowie eine 

Spatelspitze Zinkacetat wurden 7 h bei 130 °C 

erhitzt. Anschließend wurde dem noch warmen 

Reaktionsansatz Ethanol (20.0 mL) zugefügt. Nach 

dem Erkalten gab man zu dem Reaktionsansatz ein Gemisch aus 2 M HCl/Eisessig (1:1, 

250 mL) hinzu. Daraufhin wurde das Reaktionsgemisch mit CHCl3 mehrmals extrahiert, bis 

die organische Phase farblos erschien. Die organische Phase wusch man mit 2 M HCl/Eisessig 

(1:1, 5 · 150 mL) und extrahierte nochmals mit CHCl3, bis die organische Phase erneut keine 

Färbung mehr aufwies. Nach dem Trocknen über MgSO4 wurde das Lösemittel im Vakuum 

entfernt und das erhaltene Rohprodukt säulenchromatographisch über Kieselgel (63 - 200 µm) 

mit einem Laufmittelgemisch aus CHCl3/EtOH (100:1) aufgereinigt, wobei das Produkt als 

intensiv gelb-grün fluoreszierende Bande eluiert werden konnte. Nach dem Entfernen des 

Lösemittels im Vakuum wurde der erhaltene Rückstand in wenig CHCl3 aufgenommen und 

mit MeOH gefällt. Man erhielt 24 nach dem Trocknen als orangen Feststoff. 
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D2.13.2 Synthese via säurekatalysierte Hydrolyse    

Man versetzte eine Lösung des Acetals 23 (25.0 mg, 29.9 µmol) in THF (10.0 mL) mit 

wässriger HCl-Lösung (2 M, 0.10 mL) und erhitzte 4 Tage unter Rückfluss. Anschließend 

entfernte man das Lösemittel im Vakuum, nahm den Rückstand in wenig CHCl3 auf und 

wusch mit einem Gemisch aus 2 M HCl/Eisessig (1:1, 3 · 100 mL). Nach Entfernung des 

Lösemittels im Vakuum, wurde der erhaltene Rückstand in wenig CHCl3 aufgenommen und 

mit MeOH gefällt. Auf diese Weise wurde 24 als oranger Feststoff erhalten. 

 

Ausbeute: Kondensation: 1.05 g  (24, 1.33 mmol, 79 %) 

 Hydrolyse:  24.0 mg (24, 30.3 µmol, 100 %) 

 

Schmelzpunkt:  334 - 339 °C 

 

Rf (Kieselgel, CHCl3/EtOH 10:1):     0.80  

 

IR  (ATR): ν~  = 2954.8 (m), 2925.9 (m), 2855.5 (w), 2360.4 (w), 2003.7 (w), 1763.9 (m), 

1701.4 (vs), 1659.7 (s), 1625.8 (w), 1604.4 (m), 1579.3 (w), 1561.1 (w), 1525.4 (w), 

1495.8 (w), 1430.2 (w), 1394.5 (m), 1381.4 (m), 1324.3 (s), 1287.6 (w), 1244.0 (w), 

1208.1 (m), 1170.5 (m), 1122.5 (w), 1091.9 (w), 1005.9 (w), 983.2 (w), 941.6 (w), 907.5 (w), 

838.1 (s), 811.7 (s), 792.9 (m), 764.4 (s), 751.9 (m), 740.0 (w), 722.6 (w), 702.3 (w), 

664.2 (m), 654.3 (w), 633.6 (w), 625.5 (w), 616.2 cm-1 (w). 

     
1H-NMR  (600 MHz, CDCl3): δ = 0.92 (t, 3J = 6.6 Hz, 6H, CH3), 1.38 – 1.60 (m, 16H, 

CH2CH2CH2CH2CH3), 2.05 – 2.13 (m, 2H, CHCH2), 2.34 – 2.43 (m, 2H, CHCH2), 4.91 (s, 

2H, NCH2), 5.27 (qi, 3J = 7.2 Hz, 1H, NCH), 7.30 – 7.36 (m, 1H, Harom), 7.53 – 7.62 (m, 2H, 

Harom), 7.74 (m, 4H, HBiphenyl),  7.79 (d, 3J = 8.7 Hz, 2H, HBiphenyl), 7.94 (d, 3J = 8.7 Hz, 2H, 

HBiphenyl), 8.07 – 8.13 (m, 1H, Harom), 8.19 (m, 2H, Harom), 8.50 (m, 1H, Harom), 9.18 (s, 1H, 

CCHCCO), 10.01 ppm (s, 1H, CHO). 
 

13C-NMR  (151 MHz, CDCl3): δ = 14.2, 22.7, 27.3, 29.5, 31.9, 32.6, 41.3, 54.9, 120.5, 121.0, 

121.9, 122.3, 123.0, 123.2, 123.9, 124.5, 125.6, 127.7, 129.1, 130.1, 130.3, 130.8, 132.7, 

135.4, 136.8, 139.7, 146.4, 167.2, 167.5, 191.8 ppm. 
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UV/Vis (CHCl3): λmax (ε) = 292.9 (45680), 349.8 (30980), 365.6 (57870), 415.9 (19500), 

437.4 (29850), 478.6 nm (8470).   

 

Fluoreszenz (CHCl3): λmax (Irel) = 497.6 (1.00), 526.7 nm (0.76).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E435nm / 1cm = 0.0110, Referenz: S-13 

mit Φ = 1.00): Φ = 0.28  

 

MS (EI): m/z (%) = 792 (3) [M + H]+, 791 (9) [M]+, 790 (15) [M - H]+, 791 (3) [M  - H - 

CHO]+, 611 (5) [M + H - C13H9O]+, 610 (27) [M - C13H9O]+, 610 (27) [M + H - C13H26]
+, 609 

(77) [M - C13H9O]+, 609 (77) [M - C13H26]
+, 608 (100) [M – H - C13H26]

+, 597 (2) [M + H - 

C14H11O]+, 596 (7) [M - C14H11O]+, 595 (10) [M - C14H11O]+, 581 (11) [M + 2H - CHO - 

C13H26]
+, 580 (16) [M + H - CHO - C13H26]

+, 579 (5) [M - CHO - C13H26]
+, 504 (3) [M + H - 

C7H5O - C13H26]
+, 503 (4) [M - C7H5O - C13H26]

+, 429 (3) [M + 2H - C13H9O - C13H26]
+, 428 

(10) [M + H - C13H9O - C13H26]
+, 427 (18) [M - C13H9O2 - C13H26]

+, 415 (17) [M + 2H - 

C13H26 - C14H11O]+, 414 (9) [M + H - C13H26 - C14H11O]+, 413 (1) [M - C13H26 - C14H11O]+, 

372 (13), 435 (12), 344 (25), 343 (24), 305 (13), 304 (19), 303 (14), 299 (13), 195 (50), 167 

(22), 166 (12), 165 (21), 70 (12), 69 (21), 56 (12), 55 (26), 43 (18), 41 (14). 

 

HRMS (EI): ber.: C53H46N2O5 [M]+:    790.3407  

 gef.:  790.3306 ∆ = 0.0101                               

 

C53H46N2O5 [790.9]  ber. (%): C: 80.48 H: 5.86  N: 3.54  

       gef. (%):  C: 80.13 H: 5.81 N: 3.68 
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D2.14    N-(1-Hexylheptyl)-N´-(4-phenyliminomethylbenzyl)benzo[ghi]-  

    perylen-3,4:6,7- bis(dicarboximid) (25) 

Eine Lösung des Aldehyds 21 (25.0 mg, 

35.0 µmol, 1.00 Äq.) in destilliertem Anilin 

(2.50 mL, 27.4 µmol) wurde mit MgSO4 

(300 mg) versetzt und 12 h bei Raum-

temperatur gerührt. Nachdem das Trocken-

mittel abfiltriert wurde, wusch man den 

Filterkuchen so lange mit CHCl3, bis das 

Filtrat farblos erschien. Anschließend 

entfernte man die Lösemittel durch 

Destillation im Feinvakuum (CHCl3, 1 Atm., 59 °C; Anilin: 8 · 10-1 mbar, 38 °C) und nahm 

den Rückstand in wenig CHCl3 auf. Durch Fällen mit MeOH wurde 25 als oranger Feststoff 

gewonnen.  

 

Ausbeute: 27.8 mg (25, 35.2 µmol, 99 %) 

 

Schmelzpunkt:  333 °C 

 

Rf (Kieselgel, CHCl 3/EtOH 10:1):     0.81 

 

IR  (ATR): ν~ = 2960.4 (w), 2921.1 (m), 2852.9 (w), 2360.1 (w), 1764.1 (m), 1700.7 (m), 

1658.8 (m), 1626.0 (w), 1604.2 (w), 1590.1 (w), 1577.4 (w), 1519.5 (w), 1485.5 (w), 1444.1 

(w), 1430.7 (w), 1393.9 (m), 1379.9 (m), 1339.8 (w), 1322.7 (m), 1286.7 (w), 1259.4 (m), 

1203.2 (w), 1190.8 (w), 1170.5 (w), 1086.8 (s, br), 1015.1 (s, br), 941.7 (w), 908.2 (w), 855.4 

(w), 838.0 (m), 793.1 (vs), 763.5 (s), 751.8 (m), 724.7 (w), 692.6 (m), 663.8 (w), 633.4 (w), 

618.0 cm-1 (w). 

     
1H-NMR  (400 MHz, CDCl3): δ = 0.96 (t, 3J = 7.8 Hz, 6H, CH3), 1.22 – 1.59 (m, 16H, 

CH2CH2CH2CH2CH3), 2.03 – 2.14 (m, 2H, CHCH2), 2.29 – 2.40 (m, 2H, CHCH2),            

4.80 – 4.88 (m, 2H, NCH2), 5.22 (quintett, 3J = 7.0 Hz, 1H, NCHCH2), 7.21 – 7.31 (m, 3H, 

Harom), 7.35 – 7.45 (m, 3H, HAnilin), 7.60 – 7.69 (m, 1H, Harom), 7.73 (d, 3J = 8.4 Hz, 2H, 

HPhenyl), 7.79 – 7.93 (m, 2H, Harom), 8.07 (d, 3J = 8.4 Hz, 2H, HPhenyl), 8.22 – 8.36 (m, 2H, 

Harom), 8.61 (s, 1H, CHNCCH), 8.66 – 8.87 ppm (m, 2H, Harom).   
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13C-NMR  (100 MHz, CDCl3): δ = 13.9, 22.8, 27.3, 29.5, 29.6, 32.0, 32.5, 41.2, 54.7, 120.6, 

120.9, 121.3, 122.5, 125.7, 126.0, 126.5, 127.6, 128.7, 129.1, 129.8, 130.0, 130.1, 130.2, 

132.0, 136.4, 139.7, 151.9, 159.6, 166.9, 167.0 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 268.0 (0.82), 331.6 (0.41), 349.6 (0.61), 365.6 (1.00), 418.4 

(0.35), 437.4 (0.52), 479.0 nm (0.15). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 497.2 (1.00), 526.7 nm (0.75).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E435nm / 1cm = 0.0132, Referenz: S-13 

mit Φ = 1.00): Φ = 0.28  

 

MS (EI): m/z (%) = 792 (2) [M + 3H]+, 791 (5) [M + 2H]+, 790 (13) [M + H]+, 789 (21) [M ]+, 

610 (5) [M + 3H - C13H26]
+, 610 (5) [M + H - C13H10N]+, 609 (24) [M + 2H - C13H26]

+, 609 

(24) [M - C13H10N]+, 608 (75) [M + H - C13H26]
+, 607 (100) [M - C13H26]

+, 595 (3) [M - 

C14H12N]+,  532 (8) [M + 2H - C6H5 - C13H26]
+, 530 (6) [M - C6H5 - C13H26]

+, 504 (4) [M + H 

- C7H6N - C13H26]
+, 503 (2) [M - C7H6N - C13H26]

+,  428 (3) [M + H - C13H10N - C13H26]
+, 

427 (7) [M - C13H10N - C13H26]
+, 415 (4) [M + 2H - C14H12N - C13H26]

+, 414 (6) [M + H - 

C14H12N - C13H26]
+, 369 (3), 345 (4), 344 (7), 343 (6), 305 (11), 304 (23), 303 (28), 299 (3), 

194 (9) [C14H12N]+, 193 (5), 180 (2) [C13H10N]+, 116 (3), 104 (6) [C7H6N]+, 91 (20), 77 (8) 

415 (4) [C6H5]
+, 69 (4), 55 (8), 43 (3), 41 (4).     

 

HRMS (EI): ber.: C53H47N3O4 [M]+:    789.3567  

 gef.:  789.3544 ∆ = 0.0023                               
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D2.15 N-(1-Hexylheptyl)-N´-(4-phenyliminomethylphenylbenzyl)-   

benzo[ghi]perylen-3,4:6,7-bis(dicarboximid) (26) 

Zu einer Lösung des Aldehyds 24 (25.0 mg, 

31.6 µmol, 1.00 Äq.) in destilliertem Anilin 

(2.70 mL,  29.6 µmol) wurde MgSO4 (300 

mg) gegeben und 4 Tage bei Raumtemperatur 

gerührt. Anschließend wurde das Trocken-

mittel abfiltriert und der Filterkuchen so 

lange mit CHCl3 gewaschen, bis das Filtrat 

farblos erschien. Die Lösemittel wurden 

durch Destillation im Feinvakuum (CHCl3: 

1 Atm., 59 °C; Anilin: 9 · 10-1 mbar, 39 °C) entfernt, der Rückstand in wenig CHCl3 

aufgenommen und mit MeOH gefällt. Dies lieferte 26 als orangen Feststoff. 

 

Ausbeute: 23.0 mg (26, 26.6 µmol, 85 %) 

 

Schmelzpunkt:  347 - 352 °C 

 

Rf (Kieselgel, CHCl3/EtOH 10:1):     0.78 

 

IR  (ATR): ν~  = 2959.4 (w), 2924.9 (w), 2855.7 (w), 2360.1 (w), 1763.8 (m), 1702.4 (m), 

1660.1 (m), 1625.4 (w), 1605.0 (m), 1589.4 (w), 1577.9 (w), 1557.5 (w), 1497.0 (w), 1484.8 

(w), 1430.1 (w), 1394.5 (m), 1381.4 (m), 1340.6 (w), 1324.0 (m), 1286.7 (w), 1260.7 (m), 

1173.5 (m), 1091.0 (m, br), 1018.7 (s, br), 941.7 (w), 907.8 (w), 876.9 (w), 863.2 (w), 837.9 

(m), 810.6 (s), 797.0 (vs), 764.3 (s), 751.8 (m), 724.2 (w), 693.2 (w), 664.2 (w), 654.4 (w), 

633.6 cm-1 (w). 

     
1H-NMR  (400 MHz, CDCl3): δ = 0.93 (t, 3J = 6.8 Hz, 6H, CH3), 1.35 – 1.56 (m, 16H, 

CH2CH2CH2CH2CH3), 2.02 – 2.13 (m, 2H, CHCH2), 2.31 – 2.43 (m, 2H, CHCH2), 4.90 (s, 

2H, NCH2), 5.22 – 5.30 (m, 1H, NCHCH2), 7.16 – 7.24 (m, 2H, Hanilin), 7.31 – 7.44 (m, 3H, 

Hanilin),  7.53 – 7.83 (m, 8H, Harom), 7.96 (d, 3J = 8.4 Hz, 2H, HBiphenyl), 8.08 – 8.34 (m, 3H, 

Harom),  8.47 (s, 1H, CHNCCH), 8.49 – 8.55 (m, 1H, Harom), 9.04 – 9.30 ppm (m, 2H, Harom). 
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13C-NMR  (100 MHz, CDCl3): δ = 13.9, 22.7, 27.3, 29.4, 29.6, 31.9, 32.5, 41.2, 54.7, 120.8, 

121.0, 123.0, 124.4, 125.9, 127.3, 127.4, 127.8, 129.1, 129.2, 130.0, 130.6, 135.5, 136.4, 

140.0, 143.2, 152.0, 159.5, 167.3, 167.9 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 296.2 (0.74), 329.0 (0.61), 349.6 (0.73), 365.6 (1.00), 418.6 

(0.33), 437.4 (0.48), 478.6 nm (0.14). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 497.0 (1.00), 523.1 nm (0.76).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E435nm / 1cm = 0.0113, Referenz: S-13 

mit Φ = 1.00): Φ = 0.26  

 

MS (EI): m/z (%) = 867 (2) [M + 2H]+, 866 (20) [M + H]+, 865 (35) [M ]+, 788 (5)    [M - 

C6H5]
+, 686 (8) [M + H - C13H10N]+, 685 (34) [M - C13H10N]+, 685 (34) [M + 2H - C13H26]

+, 

684 (94) [M + H - C13H26]
+, 683 (92) [M - C13H26]

+, 610 (10) [M + H - C19H14N]+, 609 (19) 

[M - C19H14N]+,  608 (25) [M + 2H - C6H5 - C13H26]
+, 607 (9) [M + H - C6H5 - C13H26]

+, 596 

(5) [M + H - C20H16N]+, 595 (3) [M - C20H16N]+,  580 (4) [M + H - C7H6N - C13H26]
+, 579 (3)   

[M - C7H6N - C13H26]
+,  503 (4) [M - C13H10N - C13H26]

+, 429 (2) [M + 2H - C19H14N - 

C13H26]
+, 428 (21) [M + H - C19H14N - C13H26]

+, 427 (10) [M - C19H14N - C13H26]
+, 414 (44) 

[M + H - C20H16N - C13H26]
+, 415 (32) [M + 2H - C20H16N - C13H26]

+, 344 (23), 342 (36), 341 

(37), 270 (14) [C20H16N]+, 256 (6) [C19H14N]+, 119 (28), 93 (23), 91 (19), 77 (21) [C6H5]
+, 57 

(20), 55 (24), 44 (100), 41 (18).  

 

HRMS (EI): ber.: C59H51N3O4 [M]+:    865.3880  

 gef.:  865.3820 ∆ = 0.0060                               
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D2.16 N-(1-Hexylheptyl)-N´-(4-butyliminomethylbenzyl)benzo[ghi]-   

perylen-3,4:6,7-bis(dicarboximid) (27) 

Zu einer mit Eisessig (4 Tropfen) auf pH 5 

angesäuerten Lösung des Aldehyds 21 (30.0 mg, 

42.0 µmol, 1.00 Äq.) in CHCl3 (3.00 mL) wurde 

n-Butylamin (42.0 µL, 420 µmol, 10.0 Äq.) und 

MgSO4 (400 mg) gegeben. Der Reaktionsansatz 

wurde 4.5 h unter Argon unter Rückfluss erhitzt. 

Anschließend filtrierte man das Trockenmittel 

ab und wusch den Filterkuchen so lange mit 

CHCl3, bis das Filtrat farblos erschien. Nach Entfernen des Lösungsmittels im Vakuum wurde 

der erhaltene Rückstand in wenig CHCl3 aufgenommen und mit MeOH gefällt. Dadurch 

erhielt man 27 als orangen Feststoff. 

 

Ausbeute: 31.7 mg (27, 41.1 µmol, 98 %)   

 

Schmelzpunkt:  316 - 317 °C 

 

Rf (Kieselgel, CHCl 3/EtOH 10:1):     0.75 

 

IR  (ATR): ν~  = 2959.9 (w), 2925.6 (m), 2855.5 (w), 2360.3 (w), 1764.3 (m), 1702.2 (m), 

1659.7 (m), 1625.5 (w), 1604.5 (m), 1577.9 (w), 1515.2 (w), 1430.5 (w), 1394.8 (m), 1380.9 

(w), 1343.6 (w), 1323.6 (m), 1287.3 (w), 1260.1 (m), 1204.5 (w), 1171.3 (w), 1090.3 (m, br), 

1017.6 (s, br), 942.0 (w), 904.6 (w), 862.1 (w), 838.1 (m), 810.0 (s), 795.7 (vs), 764.0 (m), 

751.6 (m), 723.9 (w), 702.8 (w), 664.1 (m), 654.3 (w), 625.6 cm-1 (w). 

     
1H-NMR  (400 MHz, CDCl3): δ  = 0.81 – 1.01 (m, 9H, CH3CH2CH2CH2CH2 + 

CH3CH2CH2CH2NCH), 1.21 – 1.61 (m, 16H, CH2CH2CH2CH2CH3), 1.63 – 1.83 (m, 4H, 

CH3CH2CH2CH2NCH + CH3CH2CH2CH2NCH), 2.03 – 2.16 (m, 2H, CHCH2), 2.29 – 2.41 

(m, 2H, CHCH2), 3.62 (t, 3J = 8.4 Hz, 2H, CH3CH2CH2CH2NCH), 4.80 (s, 2H, OCNCH2), 

5.17 – 5.24 (m, 1H, OCNCH), 6.93 (d, 3J = 8.8 Hz, 2H, Harom), 7.22 – 7.28 (m, 1H, Harom),   

7.37 (t, 3J = 7.6 Hz, 1H, Harom), 7.61 – 7.72 (m, 3H, Harom), 7.82 – 7.91 (m, 4H, Harom), 8.25 – 

8.31 (m, 1H, Harom), 8.38 (s, 1H, CH2NCH), 8.72 ppm (s, 1H, CCHCCO). 
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13C-NMR  (100 MHz, CDCl3): δ = 13.6, 13.9, 20.5, 22.8, 27.3, 29.5, 32.0, 32.5, 33.0,  41.2, 

54.7, 61.3, 119.9, 120.2, 120.6, 121.3, 121.6, 122.6, 123.1, 123.9, 124.7, 126.5, 127.6, 128.3, 

128.7, 129.6, 130.1, 130.2, 132.1, 136.6, 139.0, 142.8, 159.8, 166.9, 167.1 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 334.2 (0.38), 350.4 (0.64), 366.0 (1.00), 419.0 (0.38), 437.4 

(0.55), 479.2 nm (0.17). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 497.6 (1.00), 524.0 nm (0.79).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E435nm / 1cm = 0.0118, Referenz: S-13 

mit Φ = 1.00): Φ = 0.27  

 

MS (EI): m/z (%) = 771 (18) [M + 2H]+, 770 (48) [M + H]+, 769 (85) [M ]+, 728 (5)  [M + 2H 

- C3H7]
+, 727 (8) [M + H - C3H7]

+, 726 (11) [M - C3H7]
+, 687 (4) [M + 2H - C5H10N]+, 686 

(11) [M + H - C5H10N]+, 685 (13) [M - C5H10N]+, 609 (3) [M - C11H14N]+, 596 (2) [M + H - 

C12H16N]+, 595 (8) [M - C12H16N]+, 589 (33) [M + 2H - C13H26]
+, 588 (75) [M + H - C13H26]

+, 

587 (53) [M - C13H26]
+, 546 (2) [M + 2H - C3H7 - C13H26]

+, 545 (10) [M + H - C3H7 - 

C13H26]
+, 544 (23) [M - C3H7 - C13H26]

+, 532 (59), 531 (31), 505 (35) [M + 2H - C5H10N - 

C13H26]
+, 504 (41) [M + H - C5H10N - C13H26]

+, 503 (14) [M - C5H10N - C13H26]
+, 429 (13) [M 

+ 2H - C11H14N - C13H26]
+, 428 (40) [M + H - C11H14N - C13H26]

+, 427 (97) [M - C11H14N - 

C13H26]
+, 415 (39) [M + 2H - C12H16N - C13H26]

+, 414 (27) [M + H - C12H16N - C13H26]
+, 413 

(4) [M - C12H16N - C13H26]
+, 344 (32), 343 (34), 273 (30), 272 (32), 131 (53), 130 (87), 118 

(100), 91 (46), 84 (39) [C5H10N]+. 

 

HRMS (EI): ber.: C51H51N3O4 [M]+:    769.3880  

 gef.:  769.3868 ∆ = 0.0012                               
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D2.17    N-(1-Hexylheptyl)-N´-(4-butyliminomethylphenylbenzyl)benzo- 

    [ghi]perylen-3,4:6,7-bis(dicarboximid) (28) 

Unter Argon wurde eine mit Eisessig 

(12 Tropfen) auf pH 5 angesäuerte Lösung des 

Aldehyds 24 (100 mg, 126 µmol, 1.00 Äq.) in 

CHCl3 (9.00 mL) mit n-Butylamin (125 µL, 

1.26 mmol, 10.0 Äq.) und MgSO4 (1.00 g) 

versetzt und das Reaktionsgemisch 4.5 h unter 

Rückfluss erhitzt. Anschließend wurde das 

Trockenmittel abfiltriert und der Filterkuchen 

mehrmals mit CHCl3 gewaschen, bis das Filtrat farblos erschien. Nachdem das Lösemittel im 

Vakuum entfernt wurde, wurde der erhaltene Rückstand in wenig CHCl3 aufgenommen und 

mit MeOH gefällt. Daraus gewann man 28 als orangen Feststoff. 

 

Ausbeute: 102 mg (28, 120 µmol, 96 %)   

 

Schmelzpunkt:  344 °C 

 

Rf (Kieselgel, CHCl3/EtOH 10:1):     0.82 

 

IR  (ATR): ν~   = 2925.3 (m), 2853.1 (m), 2364.8 (w), 1927.3 (w), 1763.6 (m), 1700.9 (vs), 

1658.9 (s), 1604.0 (m), 1577.6 (w), 1495.9 (w), 1430.4 (w), 1394.0 (s), 1379.7 (s), 1323.1 (s), 

1285.7 (w), 1261.5 (w), 1243.3 (w), 1206.0 (w), 1170.1 (w), 1090.2 (m), 1005.8 (m), 941.2 

(w), 905.7 (w), 837.7 (s), 811.2 (vs), 764.0 (s), 751.5 (m), 723.8 (w), 671.6 (w), 663.9 (m), 

654.0 (w), 632.1 (w), 625.6 (w), 616.4 cm-1 (w). 

     
1H-NMR  (600 MHz, CDCl3): δ = 0.85 – 1.03 (m, 9H, CH3CH2CH2CH2CH2 + 

CH3CH2CH2CH2NCH), 1.30 – 1.59 (m, 20H, CH2CH2CH2CH2CH3 + CH3CH2CH2CH2NCH 

+ CH3CH2CH2CH2NCH), 2.06 – 2.17 (m, 2H, CHCH2), 2.29 – 2.41 (m, 2H, CHCH2), 3.57 (t, 
3J = 7.3 Hz, 1H, CH3CH2CH2CH2NCH), 4.76 (s, 2H, OCNCH2), 5.17 – 5.24 (m, 1H, 

OCNCH), 6.98 (d, 3J = 9.5 Hz, 1H, Harom), 7.22 – 7.30 (m, 1H, Harom), 7.38 (t, 3J = 7.5 Hz, 1H, 

Harom), 7.65 – 7.91 (m, 11H, Harom), 8.22 (br, 1H, Harom),  8.27 (s, 1H, CH2NCH), 8.71 ppm (s, 

1H, CCHCCO). 
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13C-NMR  (151 MHz, CDCl3): δ = 13.6, 13.9, 20.4, 22.7, 27.3, 29.5, 32.0, 32.5, 33.0,  41.1, 

54.7, 61.3, 119.8, 120.2, 120.6, 121.3, 121.6, 122.6, 123.2, 123.8, 123.9, 124.7, 125.0, 126.6, 

127.1, 127.3, 127.6, 128.4, 128.7, 130.0, 130.1, 130.2, 135.8, 136.1, 140.3, 142.2, 159.8, 

166.9, 167.1 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 281.4 (0.94), 349.4 (0.58), 365.8 (1.00), 419.0 (0.36), 437.2 

(0.54), 478.8 nm (0.16). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 496.7 (1.00), 526.3 nm (0.75).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E435nm / 1cm = 0.0115, Referenz: S-13 

mit Φ = 1.00): Φ = 0.26  

 

MS (EI): m/z (%) = 847 (16) [M + 2H]+, 846 (55) [M + H]+, 845 (81) [M ]+, 763 (6)  [M + 2H 

- C5H10N]+, 762 (13) [M + H - C5H10N]+, 761 (16) [M - C5H10N]+, 686 (4) [M + H - 

C11H14N]+, 685 (16) [M - C11H14N]+, 665 (39) [M + 2H - C3H7]
+, 664 (84) [M + H - C3H7]

+, 

663 (44) [M - C3H7]
+, 634 (38), 622 (28) [M + 2H - C3H7 - C13H26]

+, 621 (74) [M + H - C3H7 - 

C13H26]
+, 620 (73) [M - C3H7 - C13H26]

+, 611 (2) [M + 2H - C17H18N]+, 610 (6) [M + H - 

C17H18N]+, 609 (16) [M - C17H18N]+, 608 (39) [M - H - C17H18N]+, 597 (20) [M + 2H - 

C18H20N]+, 596 (23) [M + H - C18H20N]+, 595 (26) [M - C18H20N]+, 581 (50) [M + 2H - 

C5H10N - C13H26]
+, 580 (74) [M + H - C5H10N - C13H26]

+, 579 (5) [M - C5H10N - C13H26]
+, 

505 (3) [M + 2H - C11H14N - C13H26]
+, 504 (4) [M + H - C11H14N - C13H26]

+, 503 (3) [M - 

C11H14N - C13H26]
+, 429 (7) [M + 2H - C17H18N - C13H26]

+, 428 (21) [M + H - C17H18N - 

C13H26]
+, 427 (48) [M - C17H18N - C13H26]

+, 415 (6) [M + 2H - C18H20N - C13H26]
+, 414 (21) 

[M + H - C18H20N - C13H26]
+, 413 (13) [M - C18H20N - C13H26]

+, 311 (32), 310 (71), 297 (55), 

296 (35), 206 (100), 194 (45), 167 (59), 118 (55), 84 (69), 55 (44), 44 (34), 41 (33). 

 

HRMS (EI): ber.: C57H55N3O4 [M]+:    845.4193  

 gef.:  845.4169 ∆ = 0.0024  
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D2.18    N-(1-Hexylheptyl)-N´-[4-(4´-carboxyphenyl)iminomethyl-  

    benzyl]benzo[ghi]perylen-3,4:6,7-bis(dicarboximid) (29) 

Ein mit Eisessig (4 Tropfen) auf pH 5 

angesäuertes Lösemittelgemisch aus 

Dichlormethan/EtOH (5:2, 3 mL) wurde 

mit dem Aldehyd 21 (25.0 mg, 

35.0 µmol, 1.00 Äq.), p-Aminobenzo- 

esäure (15.0 mg, 109 µmol, 3.10 Äq.) 

und MgSO4 (300 mg) versetzt. Das 

Reaktionsgemisch wurde 2.5 h unter 

Rückfluss erhitzt und anschließend bei 

Raumtemperatur weitere 12 h gerührt. Im Anschluss wurde das Trockenmittel abfiltriert und 

der Filterkuchen mit dem bereits erwähnten Lösemittelgemisch gewaschen, bis das Filtrat 

farblos erschien. Das Lösemittelgemisch wurde im Vakuum entfernt. Der erhaltene Rückstand 

wurde in Dichlormethan/EtOH (5:2) aufgenommen und so weit eingeengt, bis ein Nieder- 

schlag sichtbar wurde, welcher mit MeOH vollständig gefällt wurde. Dies lieferte 29 als 

orangen Feststoff. 

 

Ausbeute: 28.5 mg (29, 34.2 µmol, 98 %)   

 

Schmelzpunkt:  340 - 342 °C 

 

Rf (Kieselgel, CHCl 3/EtOH 10:1):     0.80 

 

IR  (ATR): ν~   = 3258.1 (w), 2956.0 (w), 2924.7 (m), 2855.7 (w), 2363.0 (w), 2337.8 (w), 

1927.6 (w), 1764.0 (m), 1702.0 (s), 1684.4 (m), 1660.1 (s), 1628.2 (w), 1596.0 (s), 

1572.0 (w), 1421.3 (m), 1394.2 (m), 1380.9 (m), 1323.7 (s), 1285.1 (m), 1261.1 (m), 

1244.7 (w), 1203.6 (w), 1166.2 (m), 1089.3 (m, br), 1017.6 (m, br), 981.8 (w), 941.4 (w), 

889.1 (w), 858.3 (w), 838.2 (s), 811.6 (vs), 794.6 (s), 778.3 (m), 764.0 (s), 752.2 (m), 

727.7 (w), 700.1 (w), 663.9 (w), 654.0 (m), 621.9 (m), 612.0 cm-1 (w). 

     
1H-NMR  (600 MHz, CD2Cl2: CD3OD = 10:1): δ = 0.79 – 0.90 (m, 6H, CH3), 1.19 – 1.36 (m, 

16H, CH2CH2CH2CH2CH3), 1.98 – 2.08 (m, 2H, CHCH2), 2.38 (br, 2H, CHCH2), 5.06 – 5.12 

(m, 2H, NCH2), 5.26 – 5.31 (m, 1H, NCHCH2), 7.22 (d, 3J = 8.7 Hz, 1H, Harom), 7.51 – 7.56 
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(m, 1H, Harom),  7.61 – 7.67 (m, 1H, Harom),  7.70 – 7.75 (m, 1H, Harom),  7.81 (t, 3J =  8.4 Hz, 

1H, Harom),  7.85 – 8.09 (m, 5H, Harom), 8.52 (s, 1H, NCHCCH), 8.58 – 8.83 (m, 4H, Harom), 

9.53 – 9.69 (m, 3H, Harom), 10.02 ppm (s, 1H, CHO)*.  

 
13C-NMR  (151 MHz, CD2Cl2: CD3OD = 10:1): δ = 13.7, 22.6, 27.1, 29.3, 29.6, 31.8, 32.7, 

41.5, 54.9, 119.7, 120.2, 120.9, 124.9, 125.2, 126.8, 129.4, 129.9, 131.4, 131.7, 135.6, 136.0, 

143.1, 159.3, 162.5, 163.0, 163.7, 164.5, 166.9, 167.6, 191.7* ppm. 

* Signal kann dem Edukt zugeordnet werden 

 

UV/Vis (CHCl3): λmax (Erel) = 268.4 (0.76), 333.8 (0.36), 349.4 (0.57), 365.8 (1.00), 419.2 

(0.38), 437.6 (0.56), 480.0 nm (0.18). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 497.6 (1.00), 526.0 nm (0.78).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E435nm / 1cm = 0.0087, Referenz: S-13 

mit Φ = 1.00): Φ = 0.26  

 

MS (EI): m/z (%) = 835 (1) [M + 2H]+, 834 (4) [M + H]+, 833 (7) [M ]+, 788 (6) [M - CO2H]+, 

714 (23) [M + 2H - C7H5O2]
+, 713 (2) [M + H - C7H5O2]

+, 685 (3) [M - C8H6O2N]+, 653 (4) 

[M + 2H - C13H26]
+, 652 (20) [M + H - C13H26]

+, 651 (37) [M - C13H26]
+, 635 (24), 634 (50),  

609 (10) [M - C14H10O2N]+, 608 (29) [M + 2H - CO2H - C13H26]
+, 607 (41) [M + H - CO2H - 

C13H26]
+, 606 (23) [M - CO2H - C13H26]

+, 605 (32) [M - H - CO2H - C13H26]
+, 595 (3) [M - 

C15H12O2N]+, 534 (25) [M + 4H - C7H5O2 - C13H26]
+, 533 (2) [M + 3H - C7H5O2 - C13H26]

+, 

532 (100) [M + 2H - C7H5O2 - C13H26]
+, 504 (26) [M + H - C8H6O2N - C13H26]

+, 503 (16) [M 

- C8H6O2N - C13H26]
+, 428 (16) [M + H - C14H10O2N - C13H26 ]

+, 427 (22) [M - C14H10O2N - 

C13H26]
+, 415 (21) [M + 2H - C15H12O2N - C13H26]

+, 414 (23) [M + H - C15H12O2N - C13H26]
+, 

413 (2) [M - C15H12O2N - C13H26 ]
+, 345 (17), 344 (32), 343 (30), 326 (23), 325 (17), 299 

(18), 207 (19), 182 (18) [C13H26]
+, 97 (22), 91 (36), 84 (17), 83 (30), 70 (29), 69 (53), 57 (22), 

56 (34), 55 (56), 43 (25), 42 (29), 40 (37).  

 

HRMS (EI): ber.: C54H47N3O6 [M]+:   833.3465  

 gef.:         833.3474 ∆ = 0.0009                               
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D2.19    N-(1-Hexylheptyl)-N´-[4-(4´-carboxyphenyl)iminomethyl-  

    phenylbenzyl]benzo[ghi]perylen-3,4:6,7-bis(dicarboximid) (30) 

Zu einem mit Eisessig (4 Tropfen) auf 

pH 5 angesäuerten Lösemittelgemisch 

aus Dichlormethan/EtOH (5:2, 4.00 mL) 

wurden das Aldehyd 24 (25.0 mg, 

31.6 µmol, 1.00 Äq.), p-Aminobenzoe-

säure (13.5 mg, 98.5 µmol, 3.10 Äq.) 

und MgSO4 (400 mg) gegeben und 2 h 

unter Rückfluss erhitzt. Anschließend 

wurde weitere 12 h bei Raumtem- 

peratur gerührt, das Trockenmittel 

abfiltriert und der Filterkuchen mit Dichlormethan/EtOH (5:2) gewaschen, bis das Filtrat 

farblos erschien. Nach dem Entfernen der Lösemittel im Vakuum wurde der erhaltenen 

Rückstand in dem bereits erwähnten Lösemittelgemisch aufgenommen und so weit eingeengt, 

bis ein Niederschlag sichtbar wurde, welchen man mit MeOH vollständig fällte. Man erhielt 

so 30 als orangen Feststoff. 

 

Ausbeute: 24.0 mg (30, 26.4 µmol, 83 %)   

 

Schmelzpunkt:  330 - 333 °C 

 

Rf (Kieselgel, CHCl 3/EtOH 10:1):     0.80 

 

IR  (ATR): ν~  = 3199.5 (w), 2960.1 (m), 2921.6 (m), 2868.9 (w), 2360.6 (w), 1764.1 (w), 

1710.1 (w), 1685.6 (w), 1661.0 (w), 1627.6 (w), 1593.2 (w), 1576.9 (w), 1524.9 (w), 

1496.6 (w), 1458.8 (w), 1420.9 (w), 1395.4 (w), 1378.7 (w), 1325.4 (w), 1285.0 (w), 

1259.3 (m), 1198.6 (w), 1166.0 (w), 1086.9 (m, br), 1014.3 (s, br), 941.8 (w), 862.8 (w), 

837.7 (w), 793.0 (vs), 764.4 (m), 725.9 (w), 696.9 (w), 663.9 (w), 622.0 cm-1 (w).   

     
1H-NMR  (400 MHz, CD2Cl2/MeOD 30:1): δ = 0.97 – 1.03 (m, 6H, CH3), 1.23 – 1.27 (m, 

16H, CH2CH2CH2CH2CH3), 1.97 – 2.05 (m, 2H, CHCH2), 2.15 – 2.20 (m, 2H, CHCH2), 5.06 

– 5.11 (m, 2H, NCH2), 5.16 – 5.18 (m, 1H, NCHCH2), 7.19 – 7.24 (m, 2H, Harom), 7.40 – 7.43 

(m, 4H, Harom), 7.72 – 7.80 (m, 4H, Harom),  7.90 – 7.93 (m, 1H, Harom), 7.94 – 8.01 (m, 1H, 
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Harom), 8.02 – 8.11 (m, 2H, Harom), 8.15 – 8.19 (m, 1H, Harom),  8.47 (s, 1H, CHNCCH), 8.80 – 

9.01 (m, 4H, Harom), 9.79 – 9.85 (m, 1H, CCHCCO), 9.97 ppm (s, 1H, CHO)*. 
* Signal kann dem Edukt zugeordnet werden 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 435 nm, E435nm / 1cm = 0.0105, Referenz: S-13 

mit Φ = 1.00): Φ = 0.23  

 

UV/Vis (CHCl3): λmax (Erel) = 269.0 (0.68), 295.0 (0.70), 334.8 (0.71), 349.4 (0.84), 365.6 

(1.00), 413.6 (0.37), 437.0 (0.43), 476.6 nm (0.20).   

 

Fluoreszenz (CHCl3): λmax (Irel) = 498.2 (1.00), 526.0 nm (0.78).   

 

MS (EI): m/z (%) = 909 (3) [M ]+, 727 (11) [M - C13H26]
+, 685 (2) [M - C14H10O2N]+, 682 (2) 

[M - CO2H - C13H26]
+, 610 (25) [M + H - C20H14O2N]+, 609 (68) [M - C20H14O2N]+, 608 (87) 

[M + 2H - C7H5O2 - C13H26]
+, 595 (6) [M - C21H16O2N]+, 579 (6) [M - C8H6O2N - C13H26]

+, 

509 (29), 508 (37), 503 (3) [M - C14H10O2N - C13H26]
+, 427 (16) [M - C20H14O2N - C13H26]

+, 

413 (17) [M - C21H16O2N - C13H26]
+, 374 (19), 346 (26), 344 (18), 343 (23), 195 (47), 167 

(17), 165 (20), 141 (18), 127 (27), 125 (32), 113 (27), 111 (37), 109 (24), 99 (27), 97 (39), 95 

(24), 91 (28), 85 (44), 84 (20), 83 (49), 82 (30), 81 (21), 71 (61), 70 (20), 69 (74), 67 (20), 57 

(68), 56 (18), 55 (56), 44 (100), 43 (40), 41 (45). 

 

HRMS (EI): ber.: C60H51N3O6 [M]+:    909.3778  

 gef.:  909.3799 ∆ = 0.0021                               
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D2.20    N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure- 

    3,4:6,7-dicarboximid (31) 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäu- 

re-3,4-dicarboximid-6,7-anhydrid (12, 50.0 mg 83.6 µmol, 

1.00 Äq.), fein pulverisierte Amidosulfonsäure (325 mg, 

3.35 mmol, 40.0 Äq.) und Imidazol (3.5 g) wurden unter 

Argonatmosphäre zusammengegeben und 4 h auf 160 °C 

erhitzt. Im Anschluss wurde die noch warme Schmelze mit 

EtOH (5.00 mL) suspendiert. Die erkaltete Reaktions- 

mischung wurde in CHCl3 (50 mL) aufgenommen, zweimal mit einer wässrigen HCl-Lösung 

(2 M, 150 mL) und einmal mit H2O (150 mL) gewaschen. Das Lösemittel wurde entfernt und 

das Rohprodukt säulenchromatographisch an Kieselgel (63 – 200 µm) gereinigt. Zunächst 

wurde ein Laufmittelgemisch CHCl3/Aceton (5:1) verwendet. Das noch leicht verunreinigte 

Produkt wurde ein weiteres Mal säulenchromatographisch mit CHCl3 aufgereinigt, wobei sich 

ein Vorlauf abgetrennen ließ. Die Elution des Produkts erfolgte mit einem Laufmittelgemisch 

aus CHCl3/Aceton (10:1) als intensiv gelb-grün fluoreszierende Bande. Die Lösemittel 

wurden entfernt, das Produkt in wenig CHCl3 aufgenommen und mit MeOH gefällt. Man 

erhielt 31 als orangen Feststoff. 

 

Ausbeute: 25.0 mg (31, 41.9 µmol, 50 %). 

 

Rf (Kieselgel, CHCl3/Aceton 15:1): 0.31 

 

Schmelzpunkt: > 250 °C. 

 

IR  (ATR): ν~  = 3210.0 (m, br), 3068.2 (w), 2953.7 (m), 2923.9 (s), 2855.2 (s), 1935.9 (w), 

1875.1 (w), 1768.4 (m), 1726.3 (s), 1726.3 (s), 1701.7 (s), 1647.7 (vs), 1626.0 (m), 1604.1 

(s), 1583. (m), 1525.2 (w), 1456.2 (w), 1444.6 (w), 1991.5 (w), 1391.5 (w), 1376.4 (w), 

1353.5 (m), 1324.6 (m), 1312.9 (s), 1294.8 (m), 1240.6 (m), 1206.1 (w), 1172.5 (w), 1120.1 

(w), 1083.1 (w), 1042.2 (w), 990.1 (w), 940.9 (w), 838.2 (m), 812.0 (m), 795.7 (w), 763.9 

(m), 748.4 (w), 723.9 (w), 646.7 cm-1 (m). 

 
1H-NMR  (600 MHz, CDCl3): δ = 0.82 (t, ³J = 7.0 Hz, 6H, CH3), 1.24 – 1.29 (m, 16H, 

CH2CH2CH2CH2CH3), 1.94 – 2.02 (m, 2H, NCHCH2), 2.32 – 2.41 (m, 2H, NCHCH2), 5.28 – 
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5.34 (m, 1H, NCH), 8.23 (t, ³J = 7.7 Hz, 1H, CHCHCH), 8.33 (d, ³J = 8.9 Hz, 1H, Harom), 8.41 

(d, ³J = 7.6 Hz, 1H, Harom), 9.00 – 9.08 (m, 1H, Harom), 9.16 (d, ³J = 2.6 Hz, 1H, Harom), 9.17 

(d, ³J = 3.4 Hz, 1H, Harom), 9.21 (d, ³J = 8.8 Hz, 1H, Harom), 10.20 ppm (s, 1H, CCHCCO). 
 

13C-NMR  (151 MHz, CDCl3): δ = 14.0, 22.6, 27.1, 29.3, 29.7, 31.8, 122.1, 122.7, 124.2 

128.6, 129.8, 132.1 ppm.* 

* Aufgrund schlechter Löslichkeit keine weiteren Signale sichtbar. 

 

UV/Vis (CHCl3): λmax (ε) = 295.0 (9180), 347.8 (24729), 363.2 (43376), 437.4 (22893), 475.8 

nm (7287). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 496.4 (1.00), 524.6 nm (0.76). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 348 nm, E348 nm / 1cm = 0.0311, Referenz S-13 

mit Φ = 1.00) Φ = 0.38 

 

MS (EI): m/z (%) = 598 (8) [M + H]+, 597 (18) [M]+, 416 (18) [M + H – C13H26]
+, 415 (70) 

[M – C13H26]
+, 414 (100) [M – H – C13H26]

+, 397 (12), 343 (14), 299 (10). 

 

HRMS (EI): ber.: C39H36N2O4 [M]+: 596.2675 

  gef.:    596.2653 ∆ = 0.0022 

 

C39H36N2O4 [596.7]  ber. (%): C: 78.50 H: 6.08  N: 4.69 

    gef. (%): C: 78.13 H: 6.09  N: 4.45 
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D2.21    N-(1-Hexylheptyl)-N‘ -(2-aminoethyl)benzo[ghi]perylen-3,4:6,7- 

    bis(dicarboximid) (32) 

 N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-

tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid  (12, 

200 mg, 335 µmol, 1.00 Äq.) wurde mit Etylendiamin 

(201 mg, 220 µL, 3.35 mmol, 10.0 Äq.) und mit 

Imidazol (5.07 g) versetzt. Die Reaktionsmischung 

wurde 2 h unter Lichtausschluss auf 130 °C erhitzt. 

Im Anschluss wurde das Produkt aus der noch 

warmen Schmelze mit EtOH (20.0 mL) ausgefällt. 

Den entstandenen Niederschlag ließ man über Nacht altern, trennte ihn von der überstehenden 

Lösung durch Filtration ab und wusch noch mehrfach mit EtOH. Nach dem Trocknen erhielt 

man 32 als gelben Feststoff. 

 

Ausbeute: 182 mg (32, 284 mmol, 85 %) 

 

Rf (Kieselgel 10:1 CHCl3/AcOH):  0.01 

 

Schmelzpunkt: > 250 °C 

 

IR  (ATR): ν~  = 3369.5 (w), 3321.9 (w), 3078.5 (w), 2950.9 (m), 2925.0 (m), 2856.1 (m), 

1760.4 (m), 1703.4 (vs), 1655.0 (s), 1623.9 (m), 1603.4 (m), 1579.1 (w), 1437.8 (w), 1397.5 

(m), 1381.6 (m), 1353.8 (w), 1324.2 (m), 1287.7 (w), 1245.9 (w), 1099.0 (w), 938.8 (w), 

874.8 (w), 838.1 (m), 812.2 (m), 766.4 (m), 752.1 (m), 724.8 (w), 665.0 (w), 654.1 (w), 628.1 

cm-1 (w). 
 

1H-NMR  (600 MHz, CDCl3): δ = 0.89 (t, ³J = 7.0 Hz, 6H, CH3), 1.30 – 1.38 (m, 8H, 

CH2CH2CH2CH2CH3), 1.41 – 1.51 (m, 8H, CH2CH2CH2CH2CH3), 2.01 – 2.10 (m, 2H, 

NCHCH2), 2.34 – 2.44 (m, 2H, NCHCH2), 3.22 (t, ³J = 6.2 Hz, 2H, NCH2CH2NH2), 3.95 (t, 

³J = 6.3 Hz, 2H, NCH2CH2NH2), 5.27 – 5.30 (m, 1H, NCH), 7.81 (d, ³J = 7.2 Hz, 1H, Harom), 

7.91 (t, ³J = 6.8 Hz, 1H, CHCHCH), 8.03 (d, ³J = 6,5 Hz, 1H, Harom), 8.52 – 8.63 (m, 3H, 

Harom), 8.70 – 7.79 (m, 1H, Harom), 9.59 ppm (s, 1H, CCHCCO). 
 

N OO

N

O

O
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13C-NMR  (151 MHz, CDCl3): δ = 14.1, 22.7, 27.2, 29.4, 31.9, 32.5, 41.1, 41.3, 54.9, 121.1, 

121.3, 121.4, 122.3, 123.1, 123.2, 124.0, 124.7, 125.2, 125.3, 126.4, 127.7, 127.9, 129.4, 

131.2, 131.34, 131.4, 168.3, 168.7 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 266.8 (16800), 349.8 (20560), 366.3 (34170), 416.0 (17700) 

437.6 (26020), 478.4 nm (7650). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 496.7 (1.00), 521.9 nm (0.78). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 348 nm, E348 nm / 1cm = 0.0290, Referenz S-13 

mit Φ = 1.00) Φ = 0.22 

 

MS (EI): m/z (%) = 641 (6) [M + H]+, 640 (10) [M]+, 623 (14) [M – NH3]
+, 622 (28), 611 (18) 

[M – CH2NH2]
+, 441 (26) [M +H – C13H26 – NH3]

+, 440 (70) [M – C13H26 – NH3]
+, 439 (100) 

[M – H – C13H26 – NH3]
+. 

 

HRMS (EI): ber.: C41H42N3O4 [M+H]+: 640.3175 

  gef.:    640.3166 ∆ =  0.0009 

 

C41H41N3O4 [639.8]   ber. (%): C: 76.97 H: 6.46 N: 6.57 

    gef. (%): C: 76.74 H: 6.46 N: 6.22 
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D2.22    N-(1-Hexylheptyl)-N‘ -(4-aminophenyl)benzo[ghi]perylen-  

    3,4:6,7-bis(dicarboximid) (33) 

 N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-

tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid  

(12, 200 mg, 335 µmol, 1.00 Äq.) und 271 mg p-

Phenylendiamin (2.51 mmol, 7.50 Äq.) wurden in 

Chinolin (1.70 mL) gelöst. Die Reaktionslösung 

wurde 5 h in der Mikrowellenapparatur (200 W, 

210 °C, 2.00 bar) erhitzt. Die abgekühlte 

Reaktionsmischung wurde langsam auf eine wässrige HCl-Lösung (2 M, 200 mL) gegossen. 

Den entstandenen Niederschlag ließ man über Nacht alteren und filtrierte ihn anschließend 

von der überstehenden Lösung ab. Das so erhaltene Rohprodukt wurde 

säulenchromatographisch an Kieselgel (63 – 200 µm) mit einem Laufmittelgemisch aus 

CHCl3/EtOH (50:1) gereinigt. Das Produkt eluierte als gelbe, nichtfluoreszierende Bande. 

Nach dem Entfernen des Lösungsmittels, wurde der Rückstand in wenig CHCl3 

aufgenommen und mit MeOH gefällt. Man erhielt 33 als orange-braunen Feststoff. 

 

Ausbeute: 119 mg (33, 173 µmol, 52 %) 

 

Rf(Kieslgel, CHCl3/EtOH 50:1): 0.15 

 

Schmelzpunkt: > 250 °C. 

 

IR  (ATR): ν~  = 3454.2 (w), 3376.1 (m), 3078.8 (w), 2951.5 (m), 2923.8 (s), 2854.6 (s), 

1944.2 (w), 1764.8 (m), 1702.3 (vs), 1656.8 (vs), 1624.6 (s), 1603.8 (s), 1581, (m), 1515.5 

(vs), 1455.2 (m), 144.6 (m), 1391.2 (s), 1376.3 (s), 1355.3 (m), 1322.7 (s), 1289.2 (s), 1244.3 

(m), 1223.4 (w), 1203 (w), 1182.2 (w), 1158.0 (m), 1112 (m), 971.9 (w), 941.7 (w), 885.4 

(w), 837.2 (m), 840.4 (m), 764.0 (m), 750.1 (m), 663.8 cm-1 (w). 
 

1H-NMR  (600 MHz, CDCl3): δ = 0.79 – 0.91 (m, 6H, CH3), 1.23 – 1.32 (m, 8H, 

CH2CH2CH2CH2CH3), 1.33 – 1.48 (m, 8H, CH2CH2CH2CH2CH3), 1.95 – 2.04 (m, 2H, 

NCHCH2), 2.23 – 2.36 (m, 2H, NCHCH2), 3.78 – 4.18 (m, 2H, NH2), 5.16 – 5.24 (m, 1H, 

NCH), 6.90 – 7.04(m, 2H, HPhenyl), 7.40 – 7.49 (m, 2H, HPhenyl), 7.65 – 7.74 (m, 1H, HPerylen), 

N

O

O

NO O

33

NH2
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7.76 – 7.84 (m, 1H, HPerylen), 7.88 – 7.97 (m, 1H, HPerylen), 8.26 – 8.40 (m, 2H, HPerylen), 8.46 – 

8.61 (m, 2H, HPerylen), 9.30 ppm (s, 1H, CCHCCO). 
 

13C-NMR  (151 MHz, CDCl3): δ = 14.1, 22.6, 27.12, 29.3, 29.7, 31.8, 115.9, 121.8, 123.3, 

123.9, 127.5, 127.7, 128.1, 129.2, 131.8 ppm.* 

*Aufgrund schlechter Löslichkeit keine weiteren Signale sichtbar. 

 

UV/Vis (CHCl3): λmax (ε) = 259.4 nm (32640), 349.6 (24720), 365.6 (32880), 417.5 (22650), 

439.1 (27570), 478.4 nm (6960). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 500.7 (1.00), 524.3 nm (0.80). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 346 nm, E346 nm / 1cm = 0.0241, Referenz S-13 

mit Φ = 1.00) Φ < 0.01 

 

MS (EI): m/z (%) =  689 (24) [M + H]+, 688 (42) [M]+, 671 (6) [M – NH3]
+, 507 (22) [M + H 

– C13H26]
+, 506 (70) [M – C13H26]

+, 505 (100) [M – H – C13H26]
+, 460 (12), 343 (10). 

 

HRMS (EI): ber.: C45H41N3O4 [M]+: 687.3097 

  gef.:    687.3085 ∆ = 0.0012 

 

C45H41N3O4 [687.8]   ber. (%): C: 78.58 H: 6.01  N: 6.11 

    gef. (%): C: 78.27 H: 5.99  N: 5.92 
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D2.23 N-(1-Hexylheptyl)-N‘ -(amino)benzo[ghi]perylen-3,4:6,7-

bis(dicarboximid) (34) 

Zu N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracar- 

bonsäure-3,4-dicarboximid-6,7-anhydrid (12, 50.0 mg 

83.6 µmol, 1.00 Äq.) und Imidazol (3.24 g) wurde unter 

Argonatmosphäre und Lichtausschluss Hydrazin-

Monohydrat (6.27 mg, 125.4 µmol, 1.50 Äq.) gegeben. 

Die Reaktionsmischung wurde 1 h unter Lichtausschluss 

und Argonatmosphäre auf 105 °C erhitzt. Anschließend 

wurde der noch warmen Schmelze Ethanol (10.0 mL) zugefügt, die Suspension in CHCl3 

(50.0 ml) aufgenommen und mit einer wässrigen HCl-Lösung (2 M, 50.0 mL) gewaschen. Das 

Lösemittel wurde entfernt und das Rohprodukt säulenchromatographisch an Kieselgel (63 -

200 µm) mit CHCl3 gereinigt. Das Produkt eluierte als gelbe, nicht fluoreszierende Bande. 

Nach dem Entfernen des Lösungsmittels wurde der  Rückstand in wenig CHCl3 

aufgenommen und mit MeOH gefällt. Man erhielt 34 als gelben Feststoff. 

 

Ausbeute: 26.3 mg (34, 42.5 µmol, 51 %) 

 

Rf (Kieselgel, CHCl3): 0.17 

 

Schmelzpunkt: > 250 °C 

 

IR  (ATR): ν~ = 3329.2 (w), 3250.8 (w), 3078.4 (w), 2923.1 (s), 2854.7 (s), 1936.7 (w), 1771.3 

(m), 1701.3 (vs), 1654.4 (vs), 1624.6 (m), 1603.7 (s), 1578.2 (m), 1518.1 (w), 1455.7 (w), 

1444.6 (w), 1401.8 (s), 1376.0 (m), 1354.8 (m), 1323.1 (s), 1286.4 (s), 1243.6 (m), 1170.0 

(w), 1101.3 (w), 967.4 (w), 918.4 (w), 836.8 (m), 811.2 (m), 763.8 (m), 751.9 (m), 736.7 (w), 

663.5 (w), 653.2 cm-1 (w). 

 
1H-NMR (600 MHz, CDCl3): δ = 0.86 (t, 3J = 7.0 Hz, 6H, CH3), 1.28 – 1.35 (m, 8H, 

CH2CH2CH2CH2CH3), 1.40 – 1.54 (m, 8H; CH2CH2CH2CH2CH3), 2.01 – 2.10 (m, 2H, 

NCHCH2), 2.33 – 2.43 (m, 2H, NCHCH2), 4.35 (s, 2H, NH2), 5.25 – 5.33 (m, 1H, NCH), 7.96 

– 7.99 (m, 1H, Harom), 8.00 (d,³J = 7.6 Hz, 1H, Harom), 8.11 (d, ³J = 7.5 Hz, 1H, Harom), 8.72 – 

8.76 (m, 2H, Harom), 8.79 – 8.91 (m, 2H, Harom), 9.74 ppm (s, 1H, CCHCCO). 

N

O

O

NH2
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13C-NMR (151 MHz, CDCl3): δ =  14.1, 22.7, 27.2, 29.4, 31.9, 32.5, 55.1, 121.8, 122.4, 

122.6, 123.7, 125.3, 126.9, 128.1, 129.6, 131.4, 131.8, 166.6, 167.1 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 267.6 nm (8080), 349.6 (13530), 367.8 (30560), 415.3 (17150), 

437.6 (25650), 481.4 nm (6520). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 502.2 (1.00), 531.9 nm (0.78). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 350 nm, E350 nm / 1cm = 0.0276, Referenz S-13 

mit Φ = 1.00) Φ = 0.01 

 

MS (EI): m/z (%) = 613 (9) [M + H]+, 612 (17) [M]+, 597 (10) [M +2H – NH3]
+, 431 (16) [M 

+ H – C13H26], 430 (56) [M – C13H26], 429 (100) [M – H – C13H26]
+, 414 (66) [M – C13H26 - 

NH]+, 369 (6) 344 (14), 343 (22), 299 (10). 

 

HRMS (EI):  ber.: C39H37N3O4 [M]+: 611.2784 

  gef.:    611.2778 ∆ = 0.0006 

 

C39H37N3O4 [611.7]   ber. (%): C: 76.57 H: 6.10  N: 6.87 

    gef. (%): C: 77.80 H: 5.86  N: 6.79 
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D2.24    N-(1-Hexylheptyl)-N´-(4-Amino-2,3,5,6-tetramethylphenyl)-  

     benzo[ghi]perylen-3,4:6,7-bis(dicarboximid) (35) 

Unter einer Schutzgasatmosphäre und Lichtaus- 

schluss wurden N-(1-Hexylheptyl)benzo[ghi]- 

perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboxim- 

id-6,7-anhydrid (12, 100 mg, 167 µmol, 1.00 

Äq.), 2,3,5,6-Tetramethyl-1,4-phenylendiamin 

(41.2 mg, 251 µmol, 1.50 Äq.), Imidazol (3.00 g) 

sowie eine Spatelspitze Zinkacetat-Dihydrat 2 h 

bei 105 °C erhitzt. Anschließend wurde dem noch 

warmen Reaktionsansatz Ethanol (10.0 mL) zugefügt. Nach dem Erkalten gab man zu dem 

Reaktionsansatz wässriger HCl (2 M, 250 mL) hinzu. Daraufhin wurde das Reaktionsgemisch 

mit CHCl3 mehrmals extrahiert, bis die organische Phase farblos erschien. Die organische 

Phase wusch man mit 2 M HCl (3 · 150 mL) und extrahierte nochmals mit CHCl3, bis die 

organische Phase erneut keine Färbung mehr aufwies. Nach dem Trocknen über MgSO4 

wurde das Lösemittel im Vakuum entfernt und das erhaltene Rohprodukt unter 

Lichtausschluss säulenchromatographisch über Kieselgel (63 - 200 µm) mit einem 

Laufmittelgemisch aus CHCl3 und EtOH (100:1)  aufgereinigt. Nach dem Entfernen des 

Lösemittels im Vakuum wurde der erhaltene Rückstand in wenig CHCl3 aufgenommen und 

mit MeOH gefällt. Man erhielt 35 nach dem Trocknen als orangen Feststoff. 

 

Ausbeute: 86.0 mg (35, 115 µmol, 69 %)  

 

Schmelzpunkt:  295 - 299 °C 

 

Rf (Kieselgel, CHCl3/EtOH 100:1): 0.35   

 

IR (ATR): ν~  = 3491.4 (w), 3399.9 (m), 2951.7 (s), 2925.1 (s), 2856.1 (s), 1767.3 (m), 1707.7 

(vs), 1660.4 (vs), 1626.4 (s), 1604.6 (s), 1578.5 (m), 1457.3 (m), 1421.9 (m), 1394.6 (m), 

1374.2 (s), 1323.5 (vs), 1290.4 (m), 1239.6 (m), 1171.4 (w), 1113.0 (s), 943.8 (w), 882.3 (w), 

838.1 (m), 811.8 (m), 777.6 (w), 764.5 (m), 751.2 (m), 660.0 cm-1 (m). 

     
1H-NMR  (600 MHz, CDCl3): δ = 0.81 (t, 3J = 6.3 Hz, 6H, CH2CH3), 1.18 – 1.43 (m, 16H, 

CH2CH2CH2CH2CH3), 1.88 – 1.98 (m, 2H, CHCH2), 2.23 (s, 12H, CCH3) , 2.29 – 2.40 (m, 

NO O

N
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2H, CHCH2), 5.25 – 5.34 (m, 1H, NCH), 8.22 (t, 3J = 7.4 Hz, 1H, CCHCHCH), 8.40 (d, 3J =  

8.6Hz,  1H, Harom), 8.43 (d, 3J = 7.3 Hz,1H, Harom), 8.99 - 9.09 (m, 1H, Harom),  9.14 – 9.22 (m, 

2H, Harom), 9.42 (d, 3J = 8.7 Hz, 1H, Harom), 10.42 ppm (d, 3J = 24.1 Hz, 1H, CCHCCO). 

 
13C-NMR  (151 MHz, CDCl3): δ = 14.0, 14.3, 15.6, 22.6, 27.0, 29.3, 29.7, 31.7, 31.8,  32.4, 

32.8, 55.0, 122.0, 122.8, 123.7, 123.9, 125.0, 125.2, 126.4, 126.9, 127.8, 128.1, 128.3, 128.5, 

129.0, 129.7, 130.0, 131.7, 132.3, , 133.7, 135.1, 164.8, 169.3 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 267.4 (32190), 330.8 (13390), 350.0 (27070), 365.4 (49520), 

417.6 (18690), 439.8 (25910), 477.8 nm (6940). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 501.2 (1.00), 527.6 nm (0.80).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc =  349 nm, E349nm / 1cm =  0.0167, Referenz: S-13 

mit Φ = 1.00): Φ = 0.10   

 

MS (EI): m/z (%) =  745 (7) [M + H]+, 744 (18) [M ]+, 743 (36) [M - H]+, 563 (10) [M + H– 

C13H26 ]
+, 562 (27) [M– C13H26]

+, 207 (69), 221 (36), 281 (38), 355 (16), 97 (82), 57 (100). 

 

HRMS (EI): ber.: C49H49N3O4 [M]+: 743.3723 

gef.:                           743.3735 ∆ = 0.0012                               

 

C49H49N3O4 [743.9]  ber. (%): C: 79.11 H: 6.64 N: 5.65  

       gef. (%): C: 78.13 H: 6.44 N: 5.55 
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D2.25    N-(1-Hexylheptyl)-N‘ -(4-aminocyclohexyl)benzo[ghi]perylen- 

     3,4:6,7-bis(dicarboximid) (36) 

 N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-

tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid 

(12, 100 mg, 167 µmol, 1.00 Äq.), trans-1,4-

Diaminocyclohexan (191 mg, 1.67 mmol, 

10.0 Äq.) und Imidazol (3.00 g) wurden mit 

katalytischen Mengen Zinkacetat-Dihydrat 

versetzt und 2 h unter Lichtausschluss bei 

140 °C gerührt. Das Rohprodukt wurde durch Zugabe von EtOH (25.0 mL) aus der Schmelze 

ausgefällt. Nach Abtrennung des Niederschlags von der überstehenden Lösung und 

anschließender Trocknung erhielt man 36 als orangen Feststoff. 

 

Ausbeute: 117 mg (36, 167 µmol, 100 %) 

 

Rf (Kieselgel, CHCl3/EtOH 50:1): 0.01 

 

Schmelzpunkt: > 250 °C 

 

IR  (ATR): ν~  = 3357.1 (w), 3225.1 (w), 2952.3 (m), 2920.2 (s), 2851.5 (s), 2359.1 (vs), 

2338.3 (vs), 1760.1 (m), 1732.3 (w), 1703.9 (s), 1661.9 (vs), 1635.2 (m), 1607.4 (m), 1575.7 

(m), 1557.9 (w), 1538.1 (w), 1520.2 (w), 1506.3 (w), 1470.7 (m), 1456.8 (m), 1419.1 (w), 

1397.3 (m), 1367.6 (m), 1323.8 (s), 1288.3 (w), 1254.6 (w), 1244 (m), 1220.9 (m), 1171.3 

(w), 1133.7 (w), 1018.7 (w), 939.4 (w),  836.3 (m), 812.5 (m), 762.9 (m), 747.1 (m), 667.8 

cm-1 (s). 

 
1H-NMR  (600 MHz, CDCl3): δ = 0.85 (t, 3J = 6.6 Hz, 6H, CH3), 1.18 – 1.36 (m, 16H, 

CH2CH2CH2CH2CH3), 2.38 (s,br, 2H, NH2) 1.99 – 2.19 (m, 8H, CHCH2 + CH2 cyclohexyl), 2.55 

– 2.63 (m, 2H, CH2 cyclohexyl), 2.94 – 3.02 (m, 2H, CH2 cyclohexyl), 4.34 - 4.41 (m, 1H, CHNH2), 

5.25 - 5.39 (m, 2H, NCH), 8.09 (t, 3J = 7.1 Hz, 1H, Harom), 8.14 (d, 3J = 8.0 Hz, 1H, Harom), 

8.27 (d, 3J = 7.0 Hz, 1H, Harom), 8.82 – 8.93 (m, 3H, Harom), 9.00 (d, 3J = 7.8 Hz, 1H, Harom), 

9.96 ppm (s, 1H, CCHCCO). 
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13C-NMR  (151 MHz, CDCl3): δ =  14.1, 22.6, 27.1, 28.6, 29.3, 29.7, 31.8, 32.5, 36.2, 49.7, 

50.4, 54.9, 120.8, 121.5, 122.0, 122.3, 122.6, 123.5, 123.9, 124.5, 124.8, 125.5, 128.1 128.9 

129.0, 129.1, 130.1, 130.6, 132.0, 167.9, 168.2 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 264.4 (0.39), 348.6 (0.57), 365.2 (1.00), 413.4 (0.36), 436.0 

(0.51), 475.0 nm (0.18).   

 

Fluoreszenz (CHCl3): λmax (Irel) = 496.7 (1.00), 523.0 nm (0.79).  

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 349 nm, E349 nm / 1cm = 0.0188, Referenz S-13 

mit Φ = 1.00) Φ = 0.20 

 

MS (EI, 70eV): m/z (%) = 695 (29) [M+H]+, 694 (55) [M]+, 677 (12) [M - NH3]
+, 638 (7), 512 

(22) [M - C13H26]
+, 511 (33) [M - H - C13H26]

+, 456 (23), 441 (22), 415 (80), 414 (100). 344 

(18), 343 (22), 299 (13).  

 

HRMS (EI): ber.: C45H47N3O4 [M]+:  693.3567  

  gef.:                                693.3560 ∆ = 0.0007  

 

 

 

 

 

 

 

 

 

 

 

 

 



EXPERIMENTELLER TEIL                                                                                                                                                   239                                        
                                                                                                                                              
 

D2.26    N-(1-Hexylheptyl)-N‘ -(5-amino-1-naphthyl)benzo[ghi]perylen- 

    3,4:6,7-bis(dicarboximid) (37) 

 N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-

tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid 

(12, 100 mg, 167 µmol, 1.00 Äq.), 1,5-

Diaminonaphthalin (199 mg, 1.26 mmol, 

7.50 Äq.) und Imidazol (4.50 g) wurden mit 

katalytischen Mengen Zinkacetat-Dihydrat ver- 

setzt und 2 h unter Lichtausschluss bei 140 °C 

gerührt. Das Rohprodukt wurde durch Zugabe von EtOH (25.0 mL) aus der Schmelze 

ausgefällt. Der Niederschlag wurde abgesaugt, getrocknet in CHCl3 gelöst und erneut 

abfiltriert. Das Filtrat wurde im Vakuum vom Lösemittel befreit und unter Lichtausschluss 

säulenchromatographisch an Kieselgel (63 – 200 µm) mit CHCl3 aufgereinigt. Das Produkt 

eluierte dabei als gelbe sehr schwach fluoreszierende Bande. Das Lösemittel wurde entfernt 

und das Produkt in etwas CHCl3 aufgenommen und mit MeOH ausgefällt. Man erhielt 37 als 

orangen Feststoff. 

 

Ausbeute: 79.0 mg (37, 107µmol, 64 %) 

 

Rf (Kieselgel, CHCl3/EtOH 50:1): 0.17 

 

Schmelzpunkt: > 250 °C 

 

IR  (ATR): ν~  = 3466.4 (w), 3439.2 (w), 2956.3 (m), 2920.1 (s), 2849.2 (m), 1766.0 (m), 

1714.1 (vs), 1656.1 (vs), 1625.3 (m), 1602.3 (s), 1575.7 (m), 1514.3 (w), 1431.0 (w), 1415.9 

(s), 1365 (vs), 1322.5 (vs), 1286.0 (s), 1222.9 (m), 1111.8 (m), 838.1 (s), 810.9 (s), 764.1 (vs), 

749.4 (s), 668.1 cm-1 (s).    
 

1H-NMR  (600 MHz, CDCl3): δ = 0.79 -  0.91 (m, 6H, CH3), 1.19 – 1.38 (m, 16H, 

CH2CH2CH2CH2CH3), 1.89 – 2.02 (m, 2H, CHCH2), 2.29 – 2.41 (m, 2H, CHCH2), 4.31 (s,br, 

CNH2), 5.27 - 5.37 (m, 1H, NCH), 6.86 (d, 1H, 3J = 7.6 Hz, Hnaphthyl), 7.30 - 7.34 (m, 1H, 

Hnaphthyl), 7.68 (dd, 1H, 3J = 7.2 Hz, 3J = 8.4 Hz, Hnaphthyl), 7.72 (dd, 1H, 3J = 7.7 Hz, Hnaphthyl), 

7.80 -7.87 (m, 1H, Hnaphthyl), 8.08 (d, 1H, 3J = 8.2 Hz, Hnaphthyl), 8.28 (t, 1H, 3J = 7.6 Hz, 

Harom), 8.45 (d, 1H, 3J = 8.6 Hz, Harom), 8.48 (d, 1H, 3J = 7.8 Hz, Harom), 9.02 - 9.20 (m, 2H, 

N OO

N

O

O
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NH2
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Harom),  9.24 (d, 1H, 3J = 8.6 Hz, Harom),  9.43 (d, 1H, 3J = 8.8 Hz, Harom), 10.40 ppm (s, 1H, 

CCHCCO).     
 

13C-NMR  (151 MHz, CDCl3): δ =14.1, 22.6, 27.3, 29.3, 31.9, 32.2, 32.6, 55.0, 110.4, 113.3, 

121.6, 123.0, 123.6, 124.4, 125.8, 127.6, 127.7, 128.3, 129.9, 131.8, 132.2, 134.0, 142.9, 

167.8, 168.4 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 279.7 (22600), 292.7 (22360), 349.3 (37320), 366.0 (57890), 

416.0 (22970), 438.3 (31760), 479.1 nm (10130). 

 

Fluoreszenz (CHCl3): λmax (Irel) =  498.8 (1.00), 530.8 nm (0.65).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 349 nm, E349 nm / 1cm = 0.0081, Referenz S-13 

mit Φ = 1.00) Φ = 0.01 

 

MS (EI, 70eV): m/z (%) = 739 (9) [M+H]+, 738 (30) [M]+, 737 (58)  [M - H]+, 721 (3) [M - 

NH3]
+, 557 (19) [M + H - C13H26]

+, 556 (64) [M - C13H26]
+, 555 (100) [M - H - C13H26]

+, 415 

(26), 414 (40).  

 

HRMS (EI): ber.: C49H43N3O4 [M]+: 737.3254  

  gef.:       737.3237 ∆ = 0.0017  

 

C49H43N3O4 [737.9]   ber. (%): C: 79.76 H: 5.87 N: 5.69  

    gef. (%): C: 79.64 H: 5.83 N: 5.33 
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D2.27    N-(1-Hexylheptyl)-N‘ -(2-hydroxyethyl)benzo[ghi]perylen- 

    3,4:6,7-bis(dicarboximid) (40) 

 N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracar- 

bonsäure-3,4-dicarboximid-6,7-anhydrid (12, 30.0  

mg, 50.2 µmol, 1.00 Äq.) und 2-Aminoethanol 

(31.0 mg, 502 µmol, 10.0 Äq.) wurden mit Imidazol 

(2.50 g) versetzt und 3 h bei 125 °C gerührt. Die 

Schmelze wurde mit EtOH (10.0 mL) suspendiert und 

danach in CHCl3 (30.0 mL) aufgenommen. Die 

organische Phase wurde zweimal mit einer wässrigen HCl-Lösung (2 M, 50.0 mL) gewaschen. 

Die wässrige Phase wurde solange mit CHCl3 extrahiert bis sie farblos erschien. Das 

Lösemittel der vereinigten organischen Phasen wurde entfernt und das Rohprodukt 

säulenchromatographisch an Kieselgel (63 – 200 µm) mit einem Laufmittelgemisch aus 

CHCl3/EtOH (50:1) gereinigt. Das Produkt eluierte als intensiv gelb fluoreszierende Bande. 

Nach Entfernen der Lösemittel wurde das Produkt in etwas CHCl3 aufgenommen und mit 

MeOH gefällt. Man erhielt 40 als orangen Feststoff. 

 

Ausbeute: 28.0 mg (40, 44.8 µmol, 88 %) 

 

Rf (Kieselgel, 50:1 CHCl3/EtOH):  0.12 

 

Schmelzpunkt: > 250 °C 

 

IR  (ATR): ν~  = 3457.3 (m), 3080.0 (w), 2950.1 (m), 2925.1 (s), 2856.2 (m), 1940.0 (w), 

1868.2 (w), 1762.1 (m), 1703.3 (vs), 1645.7 (s), 1622.0 (m), 1602.0 (m), 1578.7 (w), 1526.9 

(w), 1486.3 (w), 1459.6 (w), 1440.1 (w), 1430.0 (w), 1396.4 (m), 1381.9 (s), 1355.7 (s), 

1355.7 (m), 1324.3 (s), 1287.0 (m), 1246.8 (m), 1197.3 (w), 1174.2 (w), 1147.3 (w), 1122.1 

(w), 1098.6 (w), 1080.8 (w), 1054.4 (w), 1027.3 (w), 937.0 (w), 913.9 (w), 863.2 (w), 838.0 

(m), 812.2 (m), 767.63 (m), 752.1 (m), 724.8 (w), 665.2 (w), 654.1 cm-1  (w). 
 

1H-NMR  (600 MHz, 10:1 CDCl3/CD3OD): δ = 0.82 (t,³J = 7.1 Hz, 6H, CH3), 1.24 – 1.30 (m, 

8H, CH2CH2CH2CH2CH3), 1.35 – 1.45 (m, 8H, CH2CH2CH2CH2CH3), 1.95 – 2.04 (m, 2H, 

NCHCH2), 2.28 – 2.37 (m, 2H, NCHCH2), 3.98 – 4.03 (m, 4H, NCH2CH2OH), 5.21 – 5.27 

N

O

O

OH

NO O

40
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(m, 1H, NCH), 7.90 – 8.02 (m, 3H, Harom), 8.10 – 8.16 (m, 1H, Harom), 8.65 – 8.91 (m, 3H, 

Harom), 9.67 ppm (s, 1H, CCHCCO). 
 

13C-NMR  (151 MHz, CDCl3): δ = 13.9, 22.5, 27.1, 29.2, 29.6, 31.7, 32.4, 40.7, 55.0, 60.0, 

121.6, 122.3, 123.6, 126.7, 129.7, 169.3, 169.7 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 267.6 (19530), 349.6 (23150), 365.2 (44310), 437.4 (25150), 

478.2 nm (6590). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 503.1 (1.00), 528.2 nm (0.82). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 349 nm, E349 nm / 1cm = 0.0274, Referenz S-13 

mit Φ = 1.00) Φ = 0.25 

 

MS (EI, 70eV): m/z (%) = 642 (14) [M + H]+, 641 (34) [M]+, 623 (8) [M + H – OH]+, 460 

(22), 459 (80) [M – C13H26]
+, 458 (100) [M –H – C13H26]

+, 427 (50), 414 (22). 

 

HRMS (EI): ber.: C41H40N2O5 [M]+: 640.2937 

  gef.:    640.2928 ∆ = 0.0009 

 

C41H40N2O5 [640.8]   ber. (%): C: 76.85 H: 6.29 N: 4.37 

    gef. (%): C: 76.50 H: 6.26 N: 4.11 
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D2.28    N-(1-Hexylheptyl)-N´-(4-carboxyphenyl)benzo[ghi]perylen- 

    3,4:6,7-bis(dicarboximid) (41) 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-

tetracarbonsäure-3,4-dicarboximid-6,7-anhy- 

drid (12, 30 mg, 50.2 µmol, 1.00 Äq.), p-

Aminobenzoesäure (81.0 mg, 591 µmol, 11.7 

Äq.), Imidazol (3.00 g) sowie eine Spatelspitze 

Zinkacetat-Dihydrat wurden 2 h bei 130 °C 

erhitzt. Anschließend wurde dem noch warmen 

Reaktionsansatz Ethanol (10.0 mL) zugefügt. Nach dem Erkalten gab man zu dem 

Reaktionsansatz 2 M HCl (1:1, 250 mL) hinzu. Daraufhin wurde das Reaktionsgemisch mit 

CHCl3 mehrmals extrahiert, bis die organische Phase farblos erschien. Die organische Phase 

wusch man mit 2 M HCl (3 · 150 mL) und extrahierte nochmals mit CHCl3, bis die organische 

Phase erneut keine Färbung mehr aufwies. Nach dem Trocknen über MgSO4 wurde das 

Lösemittel im Vakuum entfernt und das Rohprodukt anschließend durch 

Säulenchromatographie an Kieselgel (63 - 200 µm). Nicht umgesetzte Edukte wurden 

zunächst mit einem Gemisch aus CHCl3 und EtOH (10:1) entfernt. Durch Umstellen des 

Laufmittels auf ein Gemisch aus CHCl3 und Eisessig (20:1) konnte das Produkt als intensiv 

gelb fluoreszierende Bande eluiert werden. Nach dem Entfernen der Lösemittel im Vakuum 

wurde der erhaltene Rückstand in wenig CHCl3 aufgenommen und mit MeOH gefällt. Man 

erhielt 41 nach dem Trocknen als orangen Feststoff.   

 

Ausbeute: 30.0 mg (41, 41.9 µmol, 83 %)  

 

Schmelzpunkt:  326 - 331 °C 

 

Rf (Kieselgel, CHCl3/EtOH 10:1): 0.50    

 

IR (ATR): ν~  = 3082.6 (w), 2951.2 (s), 2923.9 (vs), 2854.2 (s), 1766.5 (m), 1714.9 (vs), 

1687.9 (vs), 1659.5 (vs), 1625.3 (m), 1604.0 (vs), 1579.7 (m), 1512.8 (m), 1457.3 (w), 1422.3 

(m), 1358.5 (vs), 1323.9 (vs), 1288.7 (vs), 1245.8 (m), 1178.4 (m), 1160.2 (m), 1116.7 (m), 

938.9 (w), 839,8 (m), 811.6 (m), 765.8 (m), 750.8 (m), 663.8 cm-1 (w). 

  

N OO

N
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1H-NMR  (400 MHz, CDCl3/MeOD 5:1): δ = 0.80 (t, 3J = 6.8 Hz, 3H, CH3), 0.85 (t, 3J = 6.6 

Hz, 3H, CH3),  1.21 – 1.47 (m, 16H, CH2CH2CH2CH2CH3), 1.92 – 2.06 (m, 2H, CHCH2), 

2.14 – 2.27 (m, 2H, CHCH2), 5.03 - 5.15 (m, 1H, NCH), 7.31 - 7.33 (m, 4H, Hphenyl), 7.53 - 

7.60 (m, 1H, Harom), 7.64 (d, 3J = 7.5 Hz, 1H, Harom), 7.69 (d, 3J = 8.1 Hz, 1H, Harom), 7.92 - 

8.05 (m, 2H, Harom), 8.28 (d, 3J = 8.0 Hz, 2H,), 8.86 ppm (s, 1H, Harom).  

 
13C-NMR  (151 MHz, CD2Cl2/MeOD 5:1): δ = 15.5, 22.5, 26.7, 27.4, 29.0, 29.8, 31.2, 31.9, 

32.3, 32.8, 54.9, 120.6, 121.6, 122.2, 122.7, 123.2, 123.5, 124.3, 124.7, 125.8, 126.1, 126.3, 

126.6 127.4, 127.8, 128.1, 128.5, 129.7, 131.7, 131.8, 134.2, 149.1, 149.5, 169.1, 169.6, 178.3 

ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 262.4 (0.81), 352.6 (0.53), 368.2 (1.00), 417.8 (0.35), 439.2 

(0.52), 479.4 nm (0.15). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 502.2 (1.00), 529.4 nm (0.77).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc =  349 nm, E349nm / 1cm =  0.0186, Referenz: S-13 

mit Φ = 1.00): Φ = 0.35   

 

MS (EI): m/z (%) = 718 (2) [M + H]+, 717 (8) [M]+, 716 (13) [M - H]+, 673 (3) [M – CO2]
+, 

536 (21) [M + H– C13H26 ]
+, 535 (72) [M – C13H26]

+, 534 (100) [M - H  – C13H26]
+, 492 (4) [M 

+ H– C13H26 - CO2 ]
+, 491 (10) [M – C13H26 - CO2]

+, 490 (18) [M - H  – C13H26 - CO2]
+, 343 

(14), 173 (12), 91 (12), 55 (11), 44 (12). 

 

HRMS (EI): ber.: C46H40N2O6 [M]+: 716.2886  

gef.:   716.2870 ∆ = 0.0016                               

 

C46H40N2O6 [716.8]  ber. (%): C: 77.08 H: 5.62 N: 3.91 

       gef. (%): C: 75.53 H: 5.73 N: 3.75 
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D3 Angulare Benzoperylenbisimide mit cyclischer Amidin-

Teilstruktur 

  

D3.1 Darstellung des aromatischen Amidins 46 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracar- 

bonsäure-3,4-dicarboximid-6,7-anhydrid (12, 30.0 

mg, 50.2 µmol, 1.00 Äq.) und 1,8-Diamninonaph- 

thalin (78.0 mg, 501 µmol, 10.0 Äq.) wurden in 

Diethylenglycolmonoethylether (5.00 mL) gelöst und 

5 h bei 150 °C gerührt. Die erkaltete Reaktionslösung 

wurde mit H2O (20.0 mL) verdünnt und so lange mit 

CHCl3 extrahiert bis die wässrige Phase farblos erschien. Das Lösemittel wurde im Vakuum 

entfernt, das Rohprodukt in CHCl3 (50.0 mL) aufgenommen und zweimal mit H2O (30.0 mL) 

gewaschen. Die vereinigten wässrigen Phasen wurden erneut mit CHCl3 extrahiert bis sie 

farblos erschienen. Das Rohprodukt wurde wieder von Lösemittel befreit und zweimal 

säulenchromatographisch an Kieselgel (63 – 200µmol) gereinigt. Zunächst wurde CHCl3 als 

Laufmittel eingesetzt, anschließend wurde ein Laufmittelgemisch aus CHCl3/Isohexan (3:1). 

Das Produkt eluierte als tiefrote, nicht fluoreszierende Bande. Das Lösemittel wurde entfernt 

und das Produkt in etwas CHCl3 aufgenommen und mit MeOH ausgfeällt. Man erhielt das 

aromatische, cyclische Amidin 46 als dunkelroten Feststoff.  

 

Ausbeute: 21.0 mg (46, 29.2 µmol, 58 %). 

 

Rf (Kieselgel, CHCl3): 0.48 

 

Schmelzpunkt: > 250 °C. 

 

IR  (ATR): ν~ = 3052.8 (w), 2952.8 (m), 2923.2 (m), 2854.5 (m), 1925.1 (w), 1719.0 (m), 

1697.9 (m), 1653.9 (vs), 1635.9 (m), 1624.0 (m), 1603.1 (m), 1580.1 (m), 1525.4 (w), 1500.2 

(w), 1485.9 (w), 1455.0 (m), 1407.7 (s), 1377.4 (m), 1351.0 (w), 1326.8 (s), 1295.4 (w), 

1259.9 (w), 1243.3 (w), 12.09 (w), 1189.4 (w), 1169.5 (w), 1138.5 (w), 1107.8 (w), 1057.7 

(w), 1028.0 (w), 994.7 (w), 942.8 (w), 836.7 (m), 823.7 (m), 809.6 (m), 799.7 (w), 761.0 (m), 

750.1 (m), 729.9 (w), 666.3 (w), 654.6 cm-1 (w). 

NO O

N
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1H-NMR  (600 MHz, CDCl3): δ  = 0.81 – 0.92 (m, 3H, CH3) 0.93 – 1.00 (m, 3H, CH3), 1.18 – 

1.35 (m, 8H, CH2CH2CH2CH2CH3), 1.36 – 1.46 (m, 4H, CH2CH2CH2CH2CH3), 1.47 – 1.56 

(m, 4H, CH2CH2CH2CH2CH3), 2.04 – 2.11 (m, 2H, NCHCH2), 2.28 – 2.39 (m, 2H, 

NCHCH2), 5.20 – 5.25 (m, 1H, NCH(CH2)2), 6.62 – 6.72 (m, 1H, HNaphtalin), 6.76 – 6.85 (m, 

1H, HNaphtalin), 6.88 – 7.05 (m, 3H, HNaphtalin), 7.12 – 7.19 (m, 1H, HNaphtalin), 7.45 – 7.57 (m, 

2H, Harom), 7.66 – 7.84 (m, 3H, Harom), 7.95 – 8.12 (m, 2H, Harom), 8.94 ppm (s, 1H, 

CCHCCO). 
 

13C-NMR  (151 MHz, CDCl3): δ  = 14.1, 14.2, 22.7, 22.8, 27.3, 29.3, 29.7, 32.0, 32.5, 108.9, 

120.7, 121.9, 122.1, 122.5, 125.5 126.9, 129.0 130.1, 132.7, 137.9, 146.5, 161.7, 162.0 ppm. 

 

NOESY-NMR (CDCl3): Kreuzsignale von CH2 bzw. CHNapthalin bei δ = (1.54, 7.03) ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 340.8 (24300), 357.2 (34810), 373.8 (57850), 447.2 (22050), 

501.2 (30660), 580.8 nm (6360). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 556.3 (0.22), 628.3 (1.00), 702.0 nm (0.67). 

 

Fluoreszenzquantenausbeute  

(CHCl3, λexc = 357 nm, E357 nm / 1cm = 0.0196, Referenz S-13 mit Φ = 1.00) Φ = 0.01 

(CHCl3, λexc = 357 nm, E357 nm / 1cm = 0.0099, Referenz S-13 mit Φ = 1.00) Φ = 0.01 

(CHCl3, λexc = 357 nm, E357 nm / 1cm = 0.0050, Referenz S-13 mit Φ = 1.00) Φ = 0.01 

 

MS (EI): m/z (%) = 721 (38) [M + H]+, 720 (66) [M]+, 538 (70) [M – C13H26]
+, 537 (100) [M -

H - C13H26]. 

 

HRMS (EI): ber.: C49H41N3O3 [M]+: 719.3148 

  gef.:    719.3137 ∆ = 0.0011 

 

C49H41N3O3 [719.9]   ber. (%): C: 81.75 H: 5.74 N: 5.84 

    gef. (%): C: 80.88 H: 5.60 N: 6.15 
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D3.2 Darstellung des aliphatischen Amidins 47 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbon- 

säure-3,4-dicarboximid-6,7-anhydrid (12, 30.0 mg, 50.2 

µmol, 1.00 Äq.) und 2,2-Dimethylpropan-1,3-diamin 

(154 mg, 1.51 mmol, 30.0 Äq.) wurden unter  einer 

Argonatmosphäre zu Imidazol (2.10 g) gegeben. Die 

Reaktionsmischung wurde 2 h bei 180 °C gerührt. Die 

Schmelze ließ man erstarren und löste sie dann in CHCl3. 

Das Rohprodukt wurde zweimal säulenchromatographisch an Kieselgel (63 – 200 µm) 

gereinigt. Zunächst wurde CHCl3 als Laufmittel verwendet, danach ein Laufmittelgemisch aus 

CHCl3/Isohexan (3:1). Das Produkt eluierte als intensiv grün-gelb fluoreszierende Bande. Das 

Lösemittel wurde entfernt, das gereinigte Produkt in etwas CHCl3 aufgenommen und mit 

MeOH gefällt. Auf diese Weise wurde erhielt man das aliphatische, cyclische Amidin 47 als 

gelben Feststoff. 

 

Ausbeute: 8.00 mg (47, 12.1 µmol, 24 %) 

 

Rf (Kieselgel, CHCl3): 0.41 

 

Schmlezpunkt: 244 °C. 

 

IR  (ATR): ν~  = 3070.0 (w), 2955.0 (m), 2924.3 (s), 2855.8 (m), 1934.0 (w), 1713.2 (m), 

1699.7 (s), 1654.0 (vs), 1626.8 (w), 1603.7 (m), 1578.2 (w), 1527.8 (w), 1466.6 (m), 1445.9 

(w), 1407.2 (m), 1393.4 (m), 1377.6 (m), 1324.2 (s), 1247.9 (m), 1174.9 (w), 1137.2 (w), 

1118.5 (w), 1104.1 (w), 1032.3 (w), 1016.1 (w), 951.8 (w), 923.5 (w), 905.4 (w), 880.6 (w), 

834.7 (m), 812.1 (m), 763.5 (m), 749.9 (m), 727.3 (w), 663.8 (w), 653.8 cm-1 (w).  
 

1H-NMR  (600 MHz, CDCl3): δ  = 0.85 (t, ³J = 7.2 Hz, 6H, CH3), 1.20 (s, 6H, CCH3), 1.26 – 

1.33 (m, 8H, CH2CH2CH2CH2CH3), 1.37 – 1.52 (m, 8H, CH2CH2CH2CH2CH3), 1.97 – 2.08 

(m, 2H, NCHCH2), 2.35 – 2.45 (m, 2H, NCHCH2), 3.66 (s, 2H, COCNCH2C), 3.85 (s, 2H, 

CCNCH2C), 5.27 – 5.36 (m, 1H, NCH(CH2)2), 7.91 (t, ³J = 7.9 Hz, 1H, CHCHCH), 7.96 (d, 

³J = 8.8 Hz, 1H, Harom), 8.07 (d, ³J = 7.4 Hz, 1H, Harom), 8.72 (d, ³J = 7.7 Hz, 1H, Harom), 8.77 

– 8.89 (m, 2H, Harom), 8.94 (d, ³J = 8.8 Hz, 1H, Harom), 10.30 ppm (br, s, 1H, CCHCCO). 
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13C-NMR  (151 MHz, CDCl3): δ  = 14.1, 22.7, 25.1, 27.2, 28.3, 29.4, 31.9, 32.6, 48.5, 59.7, 

121.1, 121.8, 122.5, 123.1, 123.9, 124.0, 126.5, 126.9, 127.2., 128.0, 129.2, 130.9, 131.3, 

150.1, 168.0 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 345.0 (20960), 361.9 (35000), 424.2 (22900), 449.4 (29480), 

464.3 nm (13580). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 475.0 (1.00), 504.3 (0.58), 545.0 ppm (0.17). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 345 nm, E345 nm / 1cm = 0.0118, Referenz S-13 

mit Φ = 1.00) Φ = 0.30 

 

MS (EI): m/z (%) = 665 (20) [M + H]+, 664 (36) [M]+, 482 (74) [M – C13H26]
+, 481 (100) [M 

– H – C13H26]
+, 466 (18), 397 (24), 369 (12). 

 

HRMS (EI): ber.: C44H45N3O3 [M]+: 663.3461 

  gef.:    663.3454 ∆ = 0.0007 
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D4 Versuch der Darstellung von Benzoterrylenderivaten 

 

D4.1  N,N´-Bis-(1-hexylheptyl)benzo[ghi]terrylen-3,4:6,7:11,12- 

  tetracarbonsäure-3,4:11,12-bisimid-6,7-anhydrid (49)  

    

D4.1.1 Syntheseversuch in Toluol 

DBN (566 µL, 568 mg, 4.58 mmol, 24.0 Äq.) und tert-

BuOK (407 mg, 3.62 mmol, 19.0 Äq.) wurden unter 

absolutem Luft- und Feuchtigkeitsausschluss in einer 

Stickstoffatmosphäre in absolutiertem Toluol (5.00 mL) 

gelöst und 1 h auf 130 °C erhitzt. Hierzu gab man langsam 

eine Suspension von getrocknetem N-(1-Hexylheptyl)- 

benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarbox- 

imid-6,7-anhydrid (12, 114 mg, 191 µmol, 1.00 Äq.) und 

getrocknetem N-(1-Hexylheptyl)-1,8-naphthalimid (138 

mg, 362 µmol, 1.90 Äq.) in absolutiertem Toluol (5.00 

mL), welche ebenfalls unter strikter N2-Atmosphäre 

hergestellt wurde. Dabei verfärbte sich der Reaktions- 

ansatz unmittelbar nach Zugabe der Farbstoffe von Gelb-Orange nach Dunkelviolett. Nach 3 

h Rühren bei 130 °C  ließ man die Reaktionsmischung erkalten, entfernte das Lösemittel im 

Vakuum und löste den gelb-braunen Rückstand in CHCl3. Daraufhin wurde das Reaktions- 

gemisch mit wässriger HCl-Lösung (2 M, 50.0 mL) versetzt und mehrmals mit  CHCl3 

extrahiert. Die organische Phase wurde im Vakuum vom Lösemittel befreit. Auf diese Weise 

erhielt man einen gelb-braunen Feststoff. Die aufgenommenen Massenspektren (Methoden: 

DEP/EI und MALDI) zeigten nicht den Massenpeak des gewünschten Produkts 49.  

 

 

Ausbeute: nicht umgesetztes N-(1-Hexylheptyl)-1,8-naphthalimid und 53a/53b  

 

MS (EI): m/z (%) = 710 (1) [M]+.  

 

 

 

NO O

O

O

O

NO O

49
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D4.1.2 Syntheseversuch in Chinolin 

DBN (124 mg, 998 µmol, 24.0 Äq.) und tert-BuOK (88.7 mg, 790 µmol, 19.0 Äq.) wurden 

unter in einer N2-Atmosphäre in Chinolin (1.00 mL) gelöst und 1 h auf 130 °C erhitzt. Hierzu 

gab man das N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarbox- 

imid-6,7-anhydrid (12, 24.9 mg, 41.6 µmol, 1.00 Äq.) und  eine Lösung von N-(1-Hexyl- 

heptyl)-1,8-naphthalimid (30.0 mg, 79.0 µmol, 1.90 Äq.) in Chinolin (1.00 mL). Dabei 

verfärbte sich der Reaktionsansatz nach Zugabe der Farbstoffe von Orange nach Dunkelrot. 

Danach ließ man die Reaktion 4.5 h bei 130 °C und weitere 2 h bei 170 °C rühren. 

Anschließend goß man den Ansatz auf wässrige HCl-Lösung (2 M, 100.0 mL). Daraufhin 

wurde das Reaktionsgemisch mehrmals mit CHCl3 extrahiert. Die organische Phase wurde im 

Vakuum vom Lösemittel befreit. Auf diese Weise erhielt man einen braunen Feststoff. Dessen 

Massenspektren (Methode: DEP/EI) zeigte nicht den Massenpeak des gewünschten Produkts 

49.  

 

Ausbeute: nicht umgesetztes N-(1-Hexylheptyl)-1,8-naphthalimid und Zersetzungspro-  

dukte von N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-

dicarboximid-6,7-anhydrid (12)  

 

D4.1.3 Syntheseversuch in Diglyme 

DBN (100 mg, 803 µmol, 24.0 Äq.) und tert-BuOK (71.0 mg, 636 µmol, 19.0 Äq.) wurden 

unter in einer N2-Atmosphäre in Diglyme (1.00 mL) gelöst und mit dem N-(1-Hexylheptyl)- 

benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid  (12, 20.0 mg, 

33.5 µmol, 1.00 Äq.) versetzt und 1 h auf 170 °C erhitzt. Dabei verfärbte sich der 

Reaktionsansatz unmittelbar nach Zugabe des Anhydrids 12 von Gelb-Orange nach 

Dunkelviolett. Anschließend  tropfte man langsam eine Lösung von  N-(1-Hexylheptyl)-1,8-

NO O

CO2K

CO2tBu

NO O

CO2tBu

CO2K

53a 53b
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naphthalimid (24.0 mg, 63.4 µmol, 1.90 Äq.) in Diglyme (1.00 mL) zu und ließ die Reaktion 

3 h bei 170 °C rühren. Anschließend goß man den Ansatz auf wässrige HCl-Lösung (2 M, 

50.0 mL). Daraufhin wurde das Reaktionsgemisch mehrmals mit CHCl3 extrahiert. Die 

organische Phase wurde im Vakuum vom Lösemittel befreit. Auf diese Weise erhielt man 

einen braun-schwarzen Feststoff. Dessen Massenspektren (Methode: DEP/EI) zeigte nicht den 

Massenpeak des gewünschten Produkts 49.  

 

Ausbeute: nicht umgesetztes N-(1-Hexylheptyl)-1,8-naphthalimid und Zersetzungspro- 

dukte von N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-

dicarboximid-6,7-anhydrid (12)  

 

 

D4.2  N,N´N´´-Tris-(1-Hexylheptyl)benzo[ghi]terrylen-3,4:6,7:11,12-

  hexacarbonsäure-3,4:11,12-trisimid (51) 

 

D4.2.1 Syntheseversuch in Toluol 

DBN (76.0 µL, 76.5 mg, 616 µmol, 24.0 Äq.) 

und tert-BuOK (54.7 mg, 488 µmol, 19.0 Äq.) 

wurden unter absolutem Luft- und Feuchtig- 

keitsausschluss in einer N2-Atmophäre in 

absolutiertem Toluol (5.00 mL) gelöst und 1 h 

auf 130 °C erhitzt. Hierzu gab man langsam  

eine Lösung von N-N´-Bis-(1-hexylheptyl)- 

benzo[ghi]perylen-3,4:6,7-bis-(dicarboximid) 

(13, 20.0 mg, 25.7 µmol, 1.00 Äq.) und 

getrocknetes N-(1-Hexylheptyl)-1,8-naphthal- 

imid (18.5 mg, 4.88 µmol, 1.90 Äq.) in 

absolutiertem Toluol (5.00 mL) welche 

ebenfalls unter strikter N2-Atmosphäre hergestellt wurde. Dabei verfärbte sich der 

Reaktionsansatz unmittelbar nach Zugabe der Farbstoffe von Gelb-Orange nach 

Dunkelviolett. Nach 6.5 h erhitzen auf 130 °C  ließ man die Reaktionsmischung erkalten, 

entfernte das Lösemittel im Vakuum und löste den gelb-braunen Rückstand in CHCl3.  

Daraufhin wurde das Reaktionsgemisch mit wässriger HCl-Lösung (2 M, 50.0 mL) versetzt 

und mehrmals mit  CHCl3 extrahiert. Die organische Phase wurde im Vakuum vom 

NO O

N

O

O

NO O

51
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Lösemittel befreit. Auf diese Weise erhielt man einen gelb-braunen Feststoff. Die 

aufgenommenen Massenspektren (Methoden: DEP/EI und MALDI) zeigten nicht den 

Massenpeak des gewünschten Produkts 51.  

 

Ausbeute: nicht umgesetzte Edukte  N-N´-Bis-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-

  bis(dicarboximid) (13)   und  N-(1-Hexylheptyl)-1,8-naphthalimid  

 

D4.2.2 Syntheseversuch in Chinolin 

DBN (53.6 mg, 431 µmol, 24.0 Äq.) und tert-BuOK (38.3 mg, 341 µmol, 19.0 Äq.) wurden 

unter in einer N2-Atmosphäre in Chinolin (1.00 mL) gelöst und 1 h auf 130 °C erhitzt. Hierzu 

gab man eine Lösung von N-N´-Bis-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-bis- 

(dicarboximid) (13, 14.0 mg, 18.0 µmol, 1.00 Äq.) in Chinolin (1.00 mL) sowie eine Lösung 

von N-(1-Hexylheptyl)-1,8-naphthalimid (13.0 mg, 34.1 µmol,  1.90 Äq.) in Chinolin (1.00 

mL). Danach ließ man die Reaktion 4 h bei 130 °C rühren. Anschließend goß man den Ansatz 

auf wässrige HCl-Lösung (2 M, 100.0 mL). Daraufhin wurde das Reaktionsgemisch mehrmals 

mit CHCl3 extrahiert. Die organische Phase wurde im Vakuum vom Lösemittel befreit. Auf 

diese Weise erhielt man einen braunen Feststoff. Dessen Massenspektren (Methode: DEP/EI) 

zeigte nicht den Massenpeak des gewünschten Produkts 51.  

 

Ausbeute: nicht umgesetzte Edukte  N-N´-Bis-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-

bis(dicarboximid) (13) und N-(1-Hexylheptyl)-1,8-naphthalimid 
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D5 Kernsubstituierte Benzoperylenmonoimidmonoanhydride 

 

D5.1 Halogenierte Benzoperylenmonoimidmonoanhydride 

D5.1.1  Bromierung  

D5.1.1.1 Regioisomere 9-Brom-N-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetra- 

carbonsäure-3,4-dicarboximid-6,7-anhydrid (62a) und 10-Brom-N-(1-

hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-

dicarboximid-6,7-anhydrid (62b)  

D5.1.1.2 9,10-Dibrom-N-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-

tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid (62c)  

 

Synthese ausgehend von 9-Brom-N-(1-hexylheptyl)perylen-3,4-dicarboximid (58) 

9-Brom-N-(1-hexylheptyl)perylen-3,4-dicarboximid (58, 25.0 mg, 42.9 µmol, 1.00 Äq.) und 

Maleinsäureanhydrid (987 mg, 10.1 µmol, 235 Äq.) wurden auf 100 °C erhitzt und 

anschließend p-Chloranil (21.1 mg, 85.8 µmol, 2.00 Äq.) hinzufügt und einen Tag bei 125 °C 

erhitzt. Der noch warmen Reaktionslösung fügte man Aceton (3.00 mL) hinzu, goss den 

Reaktionsansatz auf 2 M HCl (1:1, 250 mL) hinzu und extrahierte das Reaktionsgemisch so 

lange mit CHCl3, bis die organische Phase farblos erschien. Die organische Phase wusch man 

mit 2 M HCl (3 · 150 mL) und extrahierte nochmals mit CHCl3, bis die organische Phase 

erneut keine Färbung mehr aufwies. Nach Trocknen wurde das Rohprodukt 

säulenchromatographisch an Kieselgel (63 - 200 µm) mit CHCl3 aufgereinigt, wobei sowohl 

p-Chloranil als auch nicht umgesetztes Edukt entfernt wurde. Die Elution des Produkts 

erfolgte mit einem Laufmittelgemisch aus CHCl3 und Eisessig (20:1) als mäßig gelb-grün 

fluoreszierende Bande. Nach Entfernen des Lösemittels im Vakuum wurde der erhaltene 

NO O

O

O

O

62a

NO O

O

O

O

62b

NO O

O

O

O
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Br Br Br Br
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Rückstand in wenig CHCl3 aufgenommen und mit MeOH gefällt, so dass ein Gemisch der 

Regioisomere 62a und 62b als oranger Feststoff erhalten werden konnte. 

 

Synthese ausgehend von N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure- 

3,4-dicarboximid-6,7-anhydrid (12) 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid 

(12, 100 mg, 167 µmol, 1.00 Äq. ) wurden unter Lichtausschluss in Chlorbenzol (15.0 mL) 

gelöst und mit einer Lösung aus Brom (4.01 g, 25.1 mmol, 150 Äq.) in Chlorbenzol (3.00 

mL) sowie wasserfreiem K2CO3 (328 mg, 2.37 mmol, 14.2 Äq.) versetzt und 24 h bei 50 °C 

gerührt. Anschließend goß man den  Reaktionsansatz auf  CHCl3  (200 mL)  und extrahierte 

mehrmals mit gesättigter wässriger NaS2O3-Lösung (je 200 mL). Nach Trocknen der 

organischen Phase über MgSO4 wurden die Lösemittel im Vakuum entfernt. Das Rohprodukt 

wurde säulenchromatographisch an Kieselgel (63 - 200 µm) mit  einem Laufmittelgemisch 

aus CHCl3 und Eisessig (50:1) gereinigt. Die Elution des Produkts erfolgte als mäßig gelb-

grün fluoreszierende Bande. Nach Entfernen des Lösemittels im Vakuum wurde der erhaltene 

Rückstand in wenig CHCl3 aufgenommen und mit MeOH gefällt, so dass ein Gemisch der 

Isomere 62a/b und 62c als oranger Feststoff erhalten werden konnte. 

 

 

Ausbeute:  

 

Synthese ausgehend von 9-Brom-N-(1-hexylheptyl)perylen-3,4-dicarboximid (58):  

25.0 mg (62a/b, 36.9 µmol, 86 %)  

 

Synthese ausgehend von N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-

3,4-dicarboximid-6,7-anhydrid (12):  

81.0 mg 

 

Schmelzpunkt: 352 -356 °C 

 

Rf (Kieselgel, CHCl3/Eisessig 20:1): 0.63   

 

IR (ATR): ν~   = 2956.6 (s), 2923.7 (vs), 2855.8 (s), 2361.8 (m), 2336.2 (m), 1834.1 (vs), 

1776.0 (s), 1708.6 (m), 1666.1 (vs), 1598.8 (m), 1570.2 (w), 1327.8 (m), 1294.1 (s), 1287.5 
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(s), 1219.4 (m), 1204.9 (w), 1165.7 (vs), 1123.4 (m), 937.7 (w), 836.2 (m), 811.6 (m), 764.3 

(w), 659.7 cm-1 (w).    

 

Monobromierte Spezies 62a/b:  
1H-NMR  (600 MHz, CDCl3): δ  = 0.76 (t, 3J = 7.1 Hz, 6H, CH3)

** , 0.81 (t, 3J = 7.0 Hz, 6H, 

CH3)
*** , 1.16 – 1.32 (m, 2· 16H, CH2CH2CH2CH2CH3)

*, 1.85 – 1.95 (m, 2· 2H, CHCH2)
*, 

2.23 – 2.35 (m, 2· 2H, CHCH2)
*, 5.20 -5.29 (m, 2 · 1H, NCH)*, 8.36 (t, 3J = 7.9 Hz, 1H, 

CCHCHCH)** , 8.52 (d, 3J = 8.4 Hz, 1H, Harom), 8.83 (d, 3J = 9.1 Hz, 2· 1H, Harom)*, 9.06 (d, 
3J = 8.5 Hz, 1H, Harom), 9.08 – 9.17 (m, 2H, Harom), 9.21 (d, 3J = 9.3 Hz, 1H, Harom), 9.23 (d, 
3J = 8.3 Hz, 1H, Harom),  9.28 (d, 3J = 8.4 Hz, 1H, Harom), 9.30 (d, 3J = 7.7 Hz, 1H, Harom), 9.37 

(s, 1H, CHCBr)** , 10.10 (s, 1H, CCHCCO)** . 10.15 ppm (s, 1H, CCHCCO)*** .  

 

* doppelte Intensität  ** 9´-Br  *** 10´-Br 

  

UV/Vis (CHCl3): λmax (Erel) = 265.0 (0.36), 274.4 (0.33) 290.8 (0.35), 330.2 (0.52), 346.8 

(0.78), 362.6 (1.00), 424.8 (0.50), 446.8 (0.61), 479.5 nm (0.22). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 502.9 (1.00), 529.3 nm (0.77).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 348 nm, E348nm / 1cm =  0.0282, Referenz: S-13 

mit Φ = 1.00): Φ = 0.09 

 

Monobromierte Spezies 62a/b:  

MS (EI): m/z (%) = 678 (2) [M + H (Br81)]+, 677 (2) [M (Br81)]+, 676 (1) [M + H (Br79)]+, 675 

(3) [M (Br79)]+, 496 (14) [M + H (Br81) - C13H26]
+,  495 (16) [M (Br81) - C13H26]

+, 494 (15) [M 

+ H (Br79) - C13H26]
+, 493 (13) [M + H (Br79) - C13H26]

+, 415 (7), 111 (24), 97 (37), 85 (50), 

71 (63), 57 (100).    

 

Bisbromierte Spezies 62c : 

MS (EI): m/z (%) = 757 (13) [M (Br81)]+ , 756 (7), 755 (10), 754 (8), 753 (9) [M (Br79)]+, 575 

(72) [M (Br81) - C13H26]
+, 574 (85) [M - C13H26]

+, 573 (100) [M - C13H26]
+, 572 (34)  [M - 

C13H26]
+ 571 (45) [M (Br79) - C13H26]

+, 423 (15), 421 (12), 81 (40) [Br81]+, 79 (38).    
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HRMS (EI): Monobromierte Spezies 62a/b: 

ber.: C39H34
79BrNO5 [M]+:  675.1620  

gef.:            675.1624 ∆ = 0.0004  

                             

Bisbromierte Spezies 62c: 

ber.: C39H33
79Br2NO5 [M]+:  753.0725  

gef.:    753.0740 ∆ = 0.0015   

  

 

C39H34BrNO 5 [676.6]  ber. (%): C: 69.23 H: 5.07 N: 2.07   

       gef. (%): C: 67.93 H: 5.32 N: 2.02  
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D5.1.2 Iodierung  

 

D5.1.2.1 Regioisomere 9-Iod-N-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracar- 

bonsäure-3,4-dicarboximid-6,7-anhydrid (64a) und 10-Iod-N-(1-hexyl- 

heptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid-6,7-

anhydrid (64b)  

 

 

 

 

 

 

 

 

 

 

Synthese ausgehend von 9-Iod-N-(1-hexylheptyl)perylen-3,4-dicarboximid (59)  

9-Iod-N-(1-hexylheptyl)perylen-3,4-dicarboximid (59, 49.0 mg, 77.8 µmol, 1.00 Äq.) und 

Maleinsäureanhydrid (1.57 g, 16.0 mmol, 205 Äq.) wurden auf 100 °C erhitzt und 

anschließend p-Chloranil (38.5 mg, 156 µmol, 2.00 Äq.) hinzufügt und einen Tag bei 125 °C 

erhitzt. Der noch warmen Reaktionslösung fügte man Aceton (3.00 mL) hinzu, goss den 

Reaktionsansatz auf 2 M HCl (1:1, 250 mL) hinzu und extrahierte das Reaktionsgemisch so 

lange mit CHCl3, bis die organische Phase farblos erschien. Die organische Phase wusch man 

mit 2 M HCl (3 · 150 mL) und extrahierte nochmals mit CHCl3, bis die organische Phase 

erneut keine Färbung mehr aufwies. Nach Trocknen wurde das Rohprodukt 

säulenchromatographisch an Kieselgel (63 - 200 µm) mit CHCl3 aufgereinigt, wobei sowohl 

p-Chloranil als auch nicht umgesetztes Edukt  entfernt wurde. Die Elution des Produkts 

erfolgte mit einem Laufmittelgemisch aus CHCl3 und Eisessig (20:1) als schwach gelb-grün 

fluoreszierende Bande. Nach Entfernen des Lösemittels im Vakuum wurde der erhaltene 

Rückstand in wenig CHCl3 aufgenommen und mit MeOH gefällt, so dass ein Gemisch der 

Regioisomere 64a und 64b als oranger Feststoff erhalten werden konnte.  

 

 

 

NO O

O

O

O

64a

NO O

O

O

O

64b

I I



EXPERIMENTELLER TEIL                                                                                                                                                   258                                        
                                                                                                                                              
 

Synthese ausgehend von N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure- 

3,4-dicarboximid-6,7-anhydrid (12) 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid 

(12, 200 mg, 335 µmol, 1.00 Äq.) wurde in CHCl3 (2.00 mL) und Eisessig (2.00 mL) 

suspendiert und Iod (82.4 mg, 325 µmol, 0.97 Äq.), H5IO6 (45.0 mg, 198 µmol, 0.60 Äq.) und 

H2SO4 (30 %, 1.00 mL) zugegeben. Nachdem man die Reaktionsmischung  einen Tag auf 85  

°C erhitzte, gab man zusätzliche Mengen an CHCl3 (2.00 mL) Eisessig (2.00 mL), Iod (82.4 

mg, 325 µmol, 0.97 Äq.), H5IO6 (45.0 mg, 198 µmol, 0.60 Äq.) und H2SO4 (30 %, 1.00 mL) 

zu und ließ den Reaktionsansatz weitere fünf Tage bei 85 °C rühren. Anschließend goß man 

den Reaktionsansatz auf eine gesättigte wäßrige NaHSO3-Lösung (2 · 200 mL) und 

extrahierte so lange mit CHCl3, bis die organische Phase farblos erschien. Nach Trocknen der 

vereinigten organischen Phasen über MgSO4 wurde das Lösemittel im Vakuum entfernt. Das 

Rohprodukt wurde anschließend einer Säulenchromatographie an Kieselgel (63 - 200 µm) mit 

einem Gemisch aus CHCl3 und Eisessig (Anfangs 100:1 danach 20:1) unterzogen. Dabei 

konnte eine monoiodierte Spezies von N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-

hexacarbonsäure-3,4-dicarboximid-6,7-anhydrid in Spuren als Produktgemisch mit dem 

Eduktfarbstoff als gelb-oranger Feststoff nachgewiesen werden.  

 

 

Ausbeute: 

  

Synthese ausgehend von 9-Iod-N-(1-hexylheptyl)perylen-3,4-dicarboximid (59):  

24.0 mg (64a/b, 33.2 µmol,43 %)  

 

Synthese ausgehend von N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-

3,4-dicarboximid-6,7-anhydrid (12):  

--- (nur in Spuren entstanden!) 

 

Schmelzpunkt:  322 - 329 °C 

 

Rf (Kieselgel, CHCl3/ Eisessig 20:1): 0.77   

 

IR (ATR): ν~  = 2952.8 (s), 2921.0 (vs), 2853.1 (vs), 1833.4 (s), 1771.1 (s), 1731.7 (w), 

1704.2 (s), 1663.1 (vs), 1619.4 (m), 1597.9 (s), 1569.1 (m), 1511.1 (w), 1482.0 (w), 1455.3 
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(m), 1435.2 (m), 1404.8 (m), 1369.0 (m), 1343.8 (m), 1324.3 (s), 1294.1 (s), 1285.8 (s), 

1219.5 (m), 1203.7 (m), 1164.8 (s), 1117.1 (m), 989.4 (w), 902.1 (w), 835.7 (m), 809.9 (m), 

763.5 (m), 657.9 cm-1 (w).  

     
1H-NMR  (600 MHz, CDCl3): δ  = 0.78 - 0.89 (m 2· 6H, CH3)

*,  1.19 – 1.46 (m, 2· 16H, 

CH2CH2CH2CH2CH3)
*, 1.96 – 2.06 (m, 2· 2H, CHCH2)

*, 2.31 – 2.45 (m, 2· 2H, CHCH2)
*, 

5.27 -5.37 (m, 2 · 1H, NCH)*, 8.24 (t, 3J = 7.7 Hz, 1H, CCHCHCH)** , 8.46 (d, 3J = 9.0 Hz, 

1H, Harom), 8.56 (d, 3J = 7.5 Hz, 1H, Harom), 8.67 - 8.79 (m, 2H, Harom), 8.82 – 8.99 (m, 2H, 

Harom), 9.03 - 9.24 (m, 4H, Harom), 9.36 (s, 1H, CHCI)** , 9.94 (s, 1H, CCHCCO)** . 10.01 ppm 

(s, 1H, CCHCCO)*** .  

 

* doppelte Intensität  ** 9´-I   *** 10´-I 

 
13C-NMR  (151 MHz, CDCl3): δ  =  14.0, 14.1 22.6, 22.7, 27.1, 29.3, 29.4, 29.7, 31.8, 31.9, 

55.3, 106.8, 121.9, 122.4, 122.9, 123.6, 124.2, 124.7, 125.2, 125.7, 126.2, 128.5, 128.7, 128.9, 

129.5, 130.0,  133.9, 135.3, 140.3, 161.9, 162.5 ppm.  

 

UV/Vis (CHCl3): λmax (Erel) =  267.4 (0.48), 292.4 (0.52), 330.8 (0.67), 348.6 (0.85), 364.2 

(1.00 = 52702), 430.4 (0.70), 453.4 (0.86), 482.3 nm (0.24). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 503.4 (1.00), 526.9 nm (0.75).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 430 nm, E430nm / 1cm =  0.0160, Referenz: S-13 

mit Φ = 1.00): Φ = 0.02   

 

MS (EI): m/z (%) = 726 (2) [M + 2H]+, 725 (11) [M + H]+, 724 (28) [M ]+, 543 (27) [M + H - 

C13H26]
+, 542 (89) [M - C13H26]

+, 541 (100) [M - H - C13H26]
+, 469 (24), 415 (29), 343 (14), 

297 (6).     

 

HRMS (EI): ber.: C39H34INO5 [M]+:  723.1482  

gef.:                            723.1475 ∆ = 0.0007                               

 

C39H34INO 5 [723.6]  ber. (%): C: 64.73 H: 4.74 I: 17.54 N: 1.94  

      gef. (%): C: 63.98 H: 5.08 I: 17.13 N: 1.89 
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D5.2 Nitrierte Benzoperylenmonoimidmonoanhydride 

 

D5.2.1 9,10-Dinitro-N-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-   

dicarboximid-6,7-anhydrid (65)  

9,10-Dinitro-N-(1-hexylheptyl)perylen-3,4-dicarboximid 

(55, 422 mg, 711 µmol, 1.00 Äq.) und Maleinsäurean- 

hydrid (20.9 g, 213 mmol, 300 Äq.) wurden auf 100 °C 

erhitzt, anschließend p-Chloranil (524 mg, 2.13 mmol, 3.00 

Äq.) hinzufügt und 3 d bei 140 °C erhitzt. Der noch 

warmen Reaktionslösung fügte man Aceton (60.0 mL) 

hinzu und goss den Ansatz auf wässrige HCl-Lösung (2 M, 

150 mL). Den entstandenen Niederschlag ließ man 4 h 

altern und entfernte die überstehende Lösung durch Filtration. Nach dem Trocknen wurde das 

Rohprodukt säulenchromatographisch an Kieselgel (63 - 200 µm) mit CHCl3 aufgereinigt, 

wobei sowohl p-Chloranil als auch nicht umgesetztes Edukt entfernt wurde. Die Elution des 

Produkts erfolgte mit einem Laufmittelgemisch aus CHCl3/Eisessig (20:1) als intensiv gelb-

grün fluoreszierende Bande. Die produktenthaltendenden Fraktionen wurden im Vakuum von 

den organischen Lösemitteln befreit und erneut säulenchromatographisch an Kieselgel (40 - 

63 µm) mit  einem Laufmittelgemisch aus CHCl3/Eisessig (20:1) aufgereinigt. Nach 

Entfernen des Lösemittels im Vakuum wurde der erhaltene Rückstand in wenig CHCl3 

aufgenommen und mit MeOH gefällt, so dass 65 als oranger Feststoff erhalten werden konnte. 

 

Ausbeute: 302 mg (65, 439 µmol, 62 %)   

 

Rf (Kieselgel, CHCl3/Eisessig 100:1):     0.18 

 

Schmelzpunkt: > 250 °C 

 

IR (ATR): ν~ = 2955.7 (m), 2924.1 (s), 2854.5 (m), 2359.9 (w), 1848.3 (m), 1775.4 (m), 

1725.6 (m), 1705.8 (s), 1161.0 (vs), 1628.2 (m), 1608.1 (w), 1599.3 (w), 1581.7 (w), 1538.9 

(vs), 1520.6 (s), 1457.0 (w), 1442.8 (w), 1405.9 (m), 1358.9 (vs), 1324.8 (vs), 1295.1 (m), 

1261.0 (m), 1214.5 (m), 1171.0 (s), 1111.8 (w), 1028.0 (w), 1012.7 (w), 912.1 (m), 817.0 (m), 

810.9 (m), 744.5 (vs), 667.0 (m), 655.3 cm-1 (m). 

  

NO O

NO2 NO2

O

O

O

65
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1H-NMR  (600 MHz, CDCl3): δ = 0.82 (t, 3J = 6.1 Hz, 6H, CH3), 1.21 – 1.39 (m, 16H, 

CH2CH2CH2CH2CH3), 1.91 – 2.03 (m, 2H, CHCH2), 2.27 – 2.41 (m, 2H, CHCH2), 5.24 - 

5.35 (m, 1H, NCH), 8.93 - 8.98 (m, 1H, Harom), 9.24 - 9.35 (m, 1H, Harom), 9.46 - 9.59 (m, 2H, 

Harom), 9.95 (s, 1H, NO2CCHCCCO), 10.31 ppm (s, br, 1H, COCCHCCCO).  

    
13C-NMR  (151 MHz, CDCl3): δ =14.0, 22.6, 26.8, 29.2, 29.7, 31.7, 32.4, 55.7, 117.1, 122.8, 

123.6, 123.9, 125.4, 125.5, 125.9, 126.6, 126.9, 127.8, 128.5, 129.2, 131.5, 132.0, 132.6, 

133.6, 146.1, 147.5, 161.5, 162.0 ppm.  

 

UV/Vis (CHCl3): λmax (ε) =  286.1 (14760), 338.7 (31870), 348.2 (33950), 364.6 (25700), 

408.8 (12030), 424.4 (28090), 451.6 nm (39010).  

 

Fluoreszenz (CHCl3): λmax (Irel) = 472.0 (1.00), 501.2 nm (0.82).  

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 349 nm, E349nm / 1cm = 0.0186, Referenz: S-13 

mit Φ = 1.00 ): Φ = 0.12 

 

MS (EI): m/z (%) =  690 (6) [M + 2H]+, 689 (22) [M + H]+,  688 (56) [M]+, 508 (25) [M + 2H 

- C13H26]
+, 507 (94) [M + H - C13H26]

+, 506 (100) [M - C13H26]
+, 490 (22). 430 (72), 402 (), 

330 (44), 111 (33).                                                                                                                                                                                                                                    

 

HRMS (EI): ber.: C39H33N3O9 [M]+:  687.2217  

  gef.:                          687.2197 ∆ = 0.0020 

 

C39H33N3O9 [687.7] ber. (%): C: 68.11 H: 4.84  N: 6.11   

gef. (%): C: 68.03 H: 4.82 N: 6.00   
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D5.3 Donorsubstituierte Benzoperylenmonoimidmonoanhydride 

 

D5.3.1 9,10-Diamino-N-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-   

dicarboximid-6,7-anhydrid (66) / 9,10-Hydroxylamin-N-(1-hexylheptyl)benzo- 

[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid (68) 

 

Katalytische Hydrierung mit Pd/C: 

 

 

 

 

 

 

 

 

 

 

 

9,10-Dinitro-N-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid-

6,7-anhydrid (65, 5.00 mg, 7.27 µmol, 1.00 Äq.) wurde in THF (11.0 mL) gelöst, mit Pd/C  

(6.5 mol%, 500 µg, 10% Pd) versetzt und in einem Stahlautoklaven 18 h unter einer 

Wasserstoffdruckatmosphäre (80 bar, 23 °C) gerührt. Im Anschluss wurde der Katalysator  

mittels Filtration abgetrennt und das violett  gefärbte Filtrat bei Raumtemperatur  im Vakuum  

vom Lösungsmittel befreit. Man erhielt auf diese Weise ein Gemisch der Verbindungen 66 

und 68 als rotvioletten Feststoff.      

 

Ausbeute: 4.50 mg  

 

Rf (Kieselgel, CHCl3/EtOH 10:1): 0.10 – 0.79       

 

IR (ATR): ν~ = 3611.0 (w), 3325.8.0 (br), 3201.0 (br),  2955.4 (s), 2923.4 (vs), 2854.4 (s), 

1827.9 (w), 1765.2 (w), 1696.3 (s), 1654.2 (s), 1604.9 (s), 1591.9 (s), 1579.7 (s), 1457.7 (m), 

1418.8 (s), 1361.4 (m), 1332.8 (m), 1260.1 (vs), 1200.9 (vs), 1172.8 (m), 1092.9 (m), 1019.3 

(vs), 907.6 (m),  862 (m), 802.5 (vs), 737.3 cm-1 (m). 

N

O

O O

O

O

NH2 NH2

66

N

CO2H

CO2H

O O

NH NH

68

OH OH
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UV/Vis (CHCl3): λmax (Erel) = 530.2 nm.  

UV/Vis (EtOH): λmax (Erel) = 542.0 nm.  

UV/Vis (Toluol): λmax (Erel) = 500.0 nm.  

 

Fluoreszenz (CHCl3): λmax (Irel) = 589.6 nm  

Fluoreszenz (EtOH): λmax (Irel) = 620.7 nm  

Fluoreszenz (Toluol): λmax (Irel) = 569.3 nm. 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 500 nm, E500nm / 1cm = 0.0068, Referenz: S-13 

mit Φ = 1.00 ): Φ = 0.39    

 

MS (EI): m/z (%) = 678 (19) [Ma]+, 677 (48) [Ma-H]+, 628 (3) [Mb]+, 627 (8) [Mb -H]+, 496 

(28) [Ma- C13H26]
+, 495 (57) [Ma- H - C13H26]

+ , 446 (10) [Mb- C13H26]
+, 445 (16) [Mb- H - 

C13H26]
+ , 423 (22), 207 (21), 182 (55), 41 (100). 

a Dihydroxylamin 68  b Diamin 66 

 

Diamin 66: 

 

HRMS (EI):   ber.: C39H37N3O5 [M]+: 627.2683 

    gef.:             627.2733 ∆ = 0.0050  

Dihydroxylamin 68: 

 

HRMS (EI):   ber.: C39H39N3O8 [M]+: 677.2737 

    gef.:             677.2790 ∆ = 0.0053  
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D5.3.2  Amidinsubstituiertes Benzoperylenmonoimidmonoanhydrid 67 

 

Bechamp-Reduktion: 

Eine  Suspension von Eisenpulver (34.9 mg, 624 µmol, 7.40 

Äq) in EtOH (15.0 mL) wurde unter Lichtausschluss mit 

9,10-Dinitro-N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-

tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid (65, 58.0 

mg, 84.3 µmol, 1.00 Äq.) und konzentrierter wässriger 

HCl-Lösung (37%, 1.20 mL, 14.4 mmol, 171 Äq.). versetzt 

und 1 h auf unter Rückfluss erhitzt. Im Anschluss 

neutralisierte man die rote Reaktionsmischung mit  wässriger 

KOH-Lösung (25%, 2.10 mL, 14.4 mmol, 171 Äq.) wobei 

ein Farbumschlag nach Rotviolett zu erkennen war. Der entstandene Niederschlag wurde 

durch Filtration abgetrennt, das Filtrat im Vakuum vom  Lösemittel befreit und 1h bei 80 °C 

getrocknet. Das rotviolette Rohprodukt wurde unter Lichtausschluss säulenchromatographisch 

an Kieselgel (63 - 200 µm) mit CHCl3 aufgereinigt, wobei ein gelb-grün fluoreszierender 

Vorlauf abgetrennt werden konnte. Die Elution des Produkts erfolgte mit einem 

Laufmittelgemisch aus CHCl3/EtOH (10:1) als intensiv rot fluoreszierende Bande. Durch 

anschließende Umstellung des Laufmittels auf EtOH konnten weitere signifikante Mengen 

Produkt eluiert werden. Nach Entfernen des Lösemittels im Vakuum wurde der erhaltene 

Rückstand in wenig CHCl3 aufgenommen und mit Pentan gefällt. Der erhaltenene Feststoff 

wurde filtriert und mehrmals mit n-Pentan und warmen bidestillierten  Wasser gewaschen.  

Nach dreitägigem Trocknen im Vakuum bei 70 °C erhielt man 67 als violetten Feststoff.  

 

Ausbeute: 29.0 mg (67,  44.5 µmol, 53 %)  

 

Rf (Kieselgel, EtOH):     0.11- 0.89  

 

Schmelzpunkt: > 100 ºC Zers. 

 

IR (ATR): ν~ = 3335.0 (w), 2954.3 (s), 2921.6 (vs), 2851.3 (s), 2360.0 (m), 2336.7 (m), 

1828.9 (w), 1760.0 (w), 1688.9 (s), 1652.1 (s), 1607.9 (s), 1581.8 (vs), 1571.6 (vs), 1456.7 

(s), 1377.5 (s), 1350.4 (m), 1297.8 (m), 1259.9 (vs), 1172.8 (m), 1144.2 (w), 1092.9 (vs), 

1017.8 (vs), 862 (w), 801.4 (vs), 757.5 (m), 667.5 cm-1 (m). 

N

O

O O

O

O

N NH

67
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 1H-NMR  (600 MHz, CDCl3): 0.78 - 0.91 (m, 6H, CH3), 1.07 – 1.36 (m, 19H, 

CH2CH2CH2CH2CH3 + NCCH3), 1.85 – 2.08 (m, 2H, CHCH2), 2.21 – 2.48 (m, 2H, CHCH2), 

5.23 - 5.38 (m, 1H, NCH), 8.28 - 8.40 (m, 1H, Harom), 8.53 - 8.82 (m, 1H, Harom), 8.85 - 9.01 

(m, 1H, Harom), 9.17 - 9.32 (m, 1H, Harom), 9.34 - 9.46 (m, 1H, Harom), 9.70 ppm (s, br, 1H, 

COCCHCCCO).  

 

UV/Vis (CHCl3): λmax (Erel) = 370.4 (0.64), 551.8 nm (1.00).  

UV/Vis (EtOH): λmax (Erel) = 370.7 (0.58), 565.6 nm (1.00).  

UV/Vis (Toluol): λmax (Erel) = 530.0 nm.  

 

Fluoreszenz (CHCl3): λmax (Irel) = 591.2 nm  

Fluoreszenz (EtOH): λmax (Irel) = 620.4 nm  

Fluoreszenz (Toluol): λmax (Irel) = 563.4 (1.00), 612.0 nm (0.77).   

Fluoreszenzquantenausbeute (CHCl3, λexc = 510 nm, E510nm / 1cm = 0.0217, Referenz: S-13 

mit Φ = 1.00): Φ = 0.51  

 

MS (FAB+): m/z (%) = 652 (100) [M]+, 516 (50), 470 (100) [M - C13H26]
+, 444 (18), 398 (89).  

                                 

MS (MALDI, Anthracen): m/z (%) = 652 (100) [M]+, 628 (98)*, 470 (38) [M - C13H26]
+, 446 

(31).                                             
* Molekülpeak des Diamins 66 

 

HRMS (FAB+): ber.: C41H38N3O5 [M + H]+: 652.2811     

   gef.:                          652.2824 ∆ = 0.0013  
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D6 Bichromophore auf Basis angularer Benzoperylenbisimide 

 

D6.1 N2-(1-Hexylheptyl)-N1-[N-(1-hexylheptyl)-N´-(2,3,5,6-tetramethyl- 

phen-4-yl)perylen-3,4,9,10-bis(dicarboximid)]benzo[ghi]perylen-

3,4:6,7-bis(dicarboximid) (71) 

 

 

 

 

 

 

 

 

 

 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid 

(12, 55.4 mg, 92.7 µmol, 1.00 Äq.) und N-(1-Hexylheptyl)-N´-(4-Amino-2,3,5,6-

tetramethylphenyl)perylen-3,4,9,10-bis(dicarboximid) (70, 100 mg, 139 µmol, 1.50 Äq.) 

wurden in Chinolin (3.00 mL) gelöst und 4 h in einer Mikrowellenapparatur erhitzt (210 °C, 

200W, 2.00 Bar). Anschließend goß man den  Reaktionsansatz auf  2 M HCl (250 mL). 

Daraufhin wurde so lange mit CHCl3 extrahiert, bis die organische Phase farblos erschien, 

wusch diese mit 2 M HCl (3 · 150 mL) und extrahierte erneut mit CHCl3. Nach Trocknen der 

vereinigten organischen Phasen über MgSO4 wurde das Lösemittel im Vakuum entfernt. Das 

Rohprodukt wurde anschließend durch Säulenchromatographie an Kieselgel (63 - 200 µm) 

mit einem Gemisch aus CHCl3/EtOH (50:1) aufgereinigt. Die Produktfraktion erscheint nach 

einem gelben, schwach fluoreszierenden Vorlauf als intensiv rot-orange fluoreszierende 

Bande, welche ein weiteres Mal säulenchromatographisch an Kieselgel (63 - 200 µm) mit 

einem Gemisch aus CHCl3/EtOH (100:1) gereinigt wurde. Das Produkt löst man in wenig 

CHCl3 aufgenommen und fällt mit MeOH aus. Man erhielt so den Bichromophor 71 als rotes 

Pulver. 

 

Ausbeute: 64.0 mg (71, 49.2 µmol, 53 %)  

 

NO O

N

O

O

71

N

O

O

N

O

O
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Schmelzpunkt:  317 - 321 °C 

 

Rf (Kieselgel, CHCl3/EtOH 50:1): 0.18   

 

IR (ATR): ν~  = 3074.2 (w), 2953.9 (s), 2921.7 (vs), 2852.6 (vs), 1714.9 (m), 1660.0 (m), 

1632.2 (m), 1593.4 (m), 1461.0 (s), 1404.5 (m), 1377.2 (m), 1340.0 (m), 1260.6 (m), 1097.0 

(m), 1023.5 (m),  967.5 (w), 808.6 (s), 767.3 (w), 746.7 (m), 721.7 (m), 696.2 (m), 658.4 cm-1 

(w). 

     
1H-NMR  (600 MHz, CDCl3): δ = 0.74 -0.78 (m, 12H, CH2CH3), 1.11 – 1.24 (m, 32H, 

CH2CH2CH2CH2CH3), 1.77 - 1.85 (m, 2H, CHCH2), 1.86 - 1.94 (m, 2H, CHCH2), 2.14 (s, 

6H, CCH3), 2.17 – 2.23 (m, 2H, CHCH2), 2,26 (s, 6H, CCH3), 2.28 – 2.37 (m, 2H, CHCH2),  

5.10 - 5.16 (m, 1H, NCH), 5.23 - 5.31 (m, 1H, NCH), 8.21 (t, 3J = 7.7 Hz, 1H, Harom), 8.40 - 

8.44 (m, 2H, Harom), 8.62 - 8.68 (m, 5H, Harom), 8.74 - 8.78 (m, 2H, Harom), 8.96 - 9.05 (m, 2H, 

Harom),  9.16 (d, 3J = 7.7 Hz, 1H, Harom), 9.17 (d, 3J = 8.6 Hz, 1H, Harom), 9.41 (d, 3J = 8.9 Hz, 

1H, Harom), 10.43 ppm (br.d, 3J = 20.4 Hz, 1H, CCHCCO).  

 
13C-NMR  (151 MHz, CDCl3): δ = 14.0, 15.4, 15.9, 22.6, 22.7, 26.9, 27.0, 29.2, 29.3, 29.5, 

31.7, 31.8, 31.9, 32.4, 54.8, 55.0, 122.1, 122.9, 123.2, 123.3, 123.4, 123.7, 124.0, 124.9, 

125.3, 126.5, 126.8, 127.1, 127.2, 128.5, 128.8, 129.6, 130.1, 130.2, 130.5, 132.0, 132.1, 

132.3, 132.4, 132.8, 134.3, 134.4, 134.8, 135.3, 162.8, 168.2 ppm.    

 

UV/Vis (CHCl3): λmax (ε) = 261.6 (67340), 350.4 (34560), 366.4 (61880), 438.8 (34560), 

456.0 (34710), 491.0 (63800), 527.8 nm (99690).  

 

Fluoreszenz (CHCl3): λmax (Irel) = 535.9 (1.00), 578.7 (0.51), 628.7 nm (0.11).  

 

Fluoreszenzquantenausbeute 

(CHCl3, λexc =  350 nm, E350nm / 1cm =  0.0041, Referenz: S-13 mit Φ = 1.00): Φ = 0.97    

(CHCl3, λexc =  490 nm, E490 nm / 1cm =  0.0076, Referenz: S-13 mit Φ = 1.00): Φ = 0.99   

 

MS (FAB+): m/z (%) = 1301 (0.5) [M + H ]+, 1300 (1) [M ]+, 1299 (1) [M - H]+, 1298 (1) [M  

- 2H]+, 1119 (0.5) [M  + H - C13H26]
+, 1118 (1) [M - C13H26]

+,  1117 (0.5) [M  - H - C13H26]
+, 
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937 (0.5) [M +H - 2 · C13H26]
+, 936 (1) [M - 2 · C13H26]

+, 935 (1) [M - H - 2 · C13H26]
+, 934 

(0.6) [M - 2H - 2 · C13H26]
+, 664 (2), 545 (2), 465 (27), 198 (100), 69 (66), 55 (93).    

 

HRMS (EI): ber.: C86H83N4O8 [M+H]+:  1299.6211  

gef.:                                 1299.6190 ∆ = 0.0021                               

 

C86H82N4O8 [1299.6] ber. (%): C: 79.48  H: 6.36 N: 4.31  

      gef. (%): C: 78.50 H: 6.34 N: 4.14 

   

  

D6.2 N2-(1-Hexylheptyl)-N1-[N-(1-hexylheptyl)-N´-(phen-4-yl)perylen-

3,4,9,10-bis(dicarboximid)]benzo[ghi]perylen-3,4:6,7-bis(dicarbox- 

imid) (73) 

 

 
 

 

 

 

 

 

 

 

Das Amin 33 (20.0 mg, 29.1 µmol, 1.50 Äq.) und N-(1-Hexylheptyl)perylen-3,4-

dicarboximid-9,10-anhydrid (72, 11.0 mg, 19.3 µmol, 1.00 Äq.) wurden in Chinolin 

(1.00 mL) gelöst und in einer Mikrowellenapparatur (200 W, 210 °C, 18 h, 3.00 bar) erhitzt. 

Die abgekühlte Reaktionsmischung wurde in CHCl3 (30.0 mL) aufgenommen und mit einer 

wässrigen HCl-Lösung (2 M, 50 mL) gewaschen. Die wässrige Phase wurde so lange mit 

CHCl3 gewaschen bis sie farblos erschien. Das Lösemittel der vereinigten organischen Phasen 

wurde entfernt und das Rohprodukt zweimal säulenchromatographisch an Kieselgel (43 – 

60 µm) mit CHCl3 gereinigt. Das Produkt 73 eluierte als intensiv rot-orange fluoreszierende 

Bande. 

 

Ausbeute: 17.0 mg (73, 13.8 µmol, 71 %). 
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Schmelzpunkt:  > 250 °C 

 

Rf (Kieselgel, CHCl3/EtOH 50:1): 0.20 

 

IR (ATR): ν~  = 2957.3 (s), 2922.7 (vs), 2853.1 (s), 2359.0 (w), 2338.0 (w), 1767.3 (m), 

1711.0 (vs), 1657.1 (vs), 1603.7 (m), 1592.8 (s), 1577.1 (m), 1456.4 (m), 1403.6 (s), 1375.0 

(m), 1352.5 (m), 1339.5 (vs), 1325.3 (m), 1259.1 (vs), 1175.6 (w), 1161.6 (w), 1092.2 (vs), 

1017.2 (vs), 943.5 (w), 838.4 (m), 809.5 (vs), 797.9 (vs), 765.2 (s), 743.9 (s), 667.0 cm-1 (m). 

 
1H-NMR  (600 MHz, CDCl3): δ = 0.77 – 0.92 (m, 12H, CH3), 1.16 – 1.39 (m, 32H, 

CH2CH2CH2CH2CH3), 1.75 – 1.82 (m, 2H, NCHCH2), 1.86 – 1.93 (m, 2H, NCHCH2), 1.94 – 

2.02 (m, 2H, NCHCH2), 2.31 – 2.40 (m, 2H, NCHCH2), 5.28 – 5.40 (m, 2H, NCH(CH2)2), 

6.71 – 6.82 (m, 2H, Hphenyl), 7.52 – 7.68 (m, 2H, Hphenyl), 7.92 – 8.00 (m, 1H, Harom), 8.21 – 

8.25 (m, 1H, Harom), 8.28 (t, ³J = 8.0 Hz, 1H, CHCHCH), 8.43 (d, ³J = 9.2 Hz, 1H, Harom), 8.47 

(d, ³J = 7.9 Hz, 1H, Harom), 8.54 – 8.72 (m, 3H, Harom), 8.75 – 8.82 (m, 1H, Harom), 9.00 – 9.13 

(m, 2H, Harom), 9.14 – 9.20 (m, 1H, Harom), 9.23 (d, ³J = 8.5 Hz, 1H, Harom), 9.35 – 9.47 (m, 

2H, Harom), 10.38 ppm (s, br, 1H, CCHCCO). 
 

13C-NMR  (151 MHz, CDCl3): δ = 14.1, 22.7, 29.3, 29.7, 31.9, 54.1, 121.9, 123.5, 125.2, 

127.0, 128.3, 130.1, 131.8 ppm.* 

*Aufgrund schlechter Löslichkeit sind keine weiteren Signale sichtbar. 

 

UV/Vis (CHCl3): λmax (ε) = 314.6 (60680), 351.2 (40790), 368.0 (69640), 439.8 (40790), 

490.6 (65660), 527.4 nm (99480). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 533.6 (1.00), 574.8 (0.49), 625.4 nm (0.12). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 351 nm E351 nm / 1cm = 0.0041, Referenz 71 mit 

Φ = 0.97) Φ = 1.00, (λexc = 491 nm, E491nm / 1cm = 0.0067, Referenz 71 mit Φ = 0.99) Φ = 1.00 

 

MS (FAB+): m/z (%) = 1244 (0.4) [M + H]+, 1243 (0.4) [M]+, 1061 (0.5) [M – C13H26]
+, 878 

(1) [M – 2 x C13H26]
+, 689 (1.5), 639 (0.9). 

 

 



EXPERIMENTELLER TEIL                                                                                                                                                   270                                        
                                                                                                                                              
 

HRMS (FAB+): ber.: C82H75N4O8 [M+H]+: 1243.5585 

   gef.:    1243.5593 ∆ = 0.0008 

 

 

D6.3 N2-(1-Hexylheptyl)-N1-[N-(1-hexylheptyl)-N´-(naphth-5-yl)perylen-

3,4,9,10-bis(dicarboximid)]benzo[ghi]perylen-3,4:6,7-

bis(dicarboximid) (74) 

 

 

 

 

 

 

 

 

 

N-(1-Hexylheptyl)-N‘-(5-amino-1-naphthyl)benzo[ghi]perylen-3,4:6,7-bis(dicarboximid)  37  

(83.0 mg, 113 µmol, 1.50 Äq.) und N-(1-Hexylheptyl)perylen-3,4-dicarboximid-9,10-anhy- 

drid (72, 43.0 mg, 74.9 µmol, 1.00 Äq.) wurden in Chinolin (2.00 mL) gelöst und 18 h in 

einer Mikrowellenapparatur (200 W, 230 °C, 1.00 bar) erhitzt. Die erkaltete Reaktionslösung 

wurde in CHCl3 (30.0 mL) aufgenommen und mit einer wässrigen 2 M HCl-Lösung (2 M, 

100 mL) gewaschen. Die wässrige Phase wurde solange mit CHCl3 extrahiert bis sie farblos 

erschien. Das Lösemittel der vereinigten organischen Phasen wurde entfernt und das 

Rohprodukt dreimal säulenchromatographisch an Kieselgel (43 – 63 µm) mit einem 

Laufmittelgemisch aus CHCl3/Isohexan (3:1) aufgereinigt. Das Produkt 73 eluierte dabei als 

intensiv rot-orange fluoreszierende Bande. Zur Reinstisolation wurde ein Teil des erhaltenen 

Produkts einer präparativen Dünnschichtchromatographie an Kieselgel mit CHCl3
 als 

Laufmittel unterzogen (DC-Fertigplatten Kieselgel 60 F254).  

 

Ausbeute: 22.5 mg (73, 17.4µmol, 23 %). 

 

Schmelzpunkt:  > 250 °C 
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Rf (Kieselgel, CHCl3): 0.15 

 

IR (ATR): ν~  = 3071.1 (w), 2954.6 (s), 1924.8 (vs), 2854.5 (s), 2358.8 (w), 2335.8 (w), 

1770.4 (m), 1714.9 (vs), 1701.9 (vs), 1660.4 (vs), 1625.6 (w), 1603.1 (m), 1593.1 (s), 1577.7 

(m), 1510.0 (w), 1456.0 (m), 1415.1 (m), 1403.7 (s), 1366.4 (s), 1352.5 (s), 1339.8 (vs), 

1324.4 (s), 1259.5 (s), 1203.2 (w), 1175.4 (w), 1103.0 (s), 1019.6 (s), 839.0 (m), 809.8 (vs), 

765.1 (m), 746.0 (m), 664.9 cm-1 (m).   

 
1H-NMR  (600 MHz, CHCl3): δ = 0.81 – 0.93 (m, 12H, CH3), 1.19 – 1.37 (m, 32H, 

CH2CH2CH2CH2CH3), 1.88 – 2.03 (m, 4H, NCHCH2), 2.25 – 2.40 (m, 4H, NCHCH2), 5.22 

(ddd, ³J  =5.8Hz, ³J  =9.3Hz, ³J  =15.4Hz, 1H, NCH), 5.30 – 5.38 (m, 1H, NCH), 7.56 - 7.61 

(m, 1H, Hnaphthyl), 7.63 (d, 3 J = 7.7 Hz, 1H, Hnaphthyl), 7.66 - 7.70 (m, 1H, Hnaphthyl), 7.73 (d, 3 J 

= 7.7 Hz, 1H, Hnaphthyl),  7.88 (d, 3 J = 8.90 Hz, 1H, Hnaphthyl), 8.03 (d, 3 J = 8.7 Hz, 1H, 

Hnaphthyl), 8.30 (t, 3 J =7.7 Hz, 1H, Harom), 8.50 (t, 3 J =7.7 Hz, 2H, Harom), 8.56 - 8.71  (m, 5H, 

Harom),  8.79 (d, 3 J =7.7 Hz, 1H, Harom), 8.80 (d, 3 J =7.5 Hz, 1H, Harom),   9.05 - 9.17 (m, 2H, 

Harom), 9.27 (d, 3 J = 8.1 Hz, 2H, Harom), 9.48 (d, 3 J = 9.0 Hz, 1H, Harom), 10.40 - 10.52 ppm 

(br,1H, CCHCCO).  
 

13C-NMR  (151 MHz, CDCl3): δ = 14.0, 14.1, 22.6, 22.7, 27.1, 29.3, 29.7, 31.8, 31.9, 54.7, 

55.0, 121.7, 121.8, 121.9, 122.0, 122.1, 122.2, 126.6, 126.8, 127.0, 127.3, 128.1, 130.0, 132.1, 

132.9, 164.7, 166.2 ppm.    

 

UV/Vis (CHCl3): λmax (ε) = 347.8 (32130), 365.4 (47830), 411.8 (16420), 435.6 (25700), 

453.0 (24990), 489.2 (46400), 527.2 nm (71390). 

 

Fluoreszenz (CHCl3): λmax (Irel) =  536.6 (1.00), 580.7 (0.49), 631.7 nm (0.11). 

 

Fluoreszenzquantenausbeute  

(CHCl3, λexc = 350 nm, E350nm / 1cm = 0.0039, Referenz 71mit Φ = 0.97) Φ = 0.99  

(CHCl3, λexc = 490 nm, E490nm /1 cm = 0.0057, Referenz 71 mit Φ = 0.99) Φ = 1.00  

 

MS (FAB+): m/z (%) = 1295 (35) [M + H]+, 1294 (30) [M]+, 1113 (8) [M + H - C13H26]
+, 1112 

(20) [M - C13H26]
+, 1111 (37) [M – H - C13H26]

+, 931 (13) [M + H – 2 x C13H26]
+,  930 (25) [M 

– 2 x C13H26]
+, 929 (45) [M - H – 2 x C13H26]

+, 541 (7). 
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HRMS (FAB+): ber.: C86H77N4O8 [M + H]+ : 1293.5741  

   gef.:    1293.5748 ∆ = 0.0007 

    

C86H76N4O8 [1293.5] ber. (%): C: 79.85 H: 5.92 N: 4.11  

     gef. (%): C: 77.52 H: 6.03 N: 4.33 

   

 

D6.4 N2-(1-Hexylheptyl)-N1-[N-(1-hexylheptyl)-N´-(ethyl)perylen-3,4,9,10-

bis(dicarboximid)]benzo[ghi]perylen-3,4:6,7-bis(dicarboximid) (76) 

 
 

 
 
 
 
 
 
 

 

 

 

 

Das Amin 32 (30.0 mg, 46.9 µmol, 1.50 Äq.) und N-(1-Hexylheptyl)perylen-3,4-

dicarboximid-9,10-anhydrid (72, 18.0 mg, 31.3 µmol, 1.00 Äq.) wurden in Chinolin 

(1.00 mL) gelöst und 4 h in einer Mikrowellenapparatur (200 W, 210 °C, 1.00 bar) erhitzt. 

Die erkaltete Reaktionslösung wurde in CHCl3 (30.0 mL) aufgenommen und mit einer 

wässrigen 2 M HCl-Lösung (2 M, 50.0 mL) gewaschen. Die wässrige Phase wurde solange 

mit CHCl3 extrahiert bis sie farblos erschien. Das Lösemittel der vereinigten organischen 

Phasen wurde entfernt und das Rohprodukt dreimal säulenchromatographisch an Kieselgel 

(43 – 63 µm) aufgereinigt. Zunächst wurde CHCl3, danach ein Laufmittelgemisch aus 

CHCl3/Isohexan (3:1) und zuletzt wurde erneut CHCl3 als Laufmittel verwendet. Das Produkt 

eluierte dabei jeweils als intensiv rot-orange fluoreszierende Bande. 

 

Ausbeute: 14.0 mg (76, 11.7 µmol, 37 %). 

 

Schmelzpunkt:  > 250 °C 
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Rf (Kieselgel, CHCl3/EtOH 50:1): 0.27 

 

IR (ATR): ν~ = 2959.8 (s), 2921.7 (vs), 2852,1 (s), 2359.1 8w), 2337.9 (w), 1762.4 (w), 

1698.1 (vs), 1658.6 (vs), 1603.6 (m), 1594.1 (s), 1577.7 (w), 1438.4 (w), 1402.3 (m), 1378.2 

(m), 1343.1 (s), 1322.3 (s), 1258.8 (vs), 1092.2 (vs), 1016.6 (vs), 840.2 (m), 808.9 (vs), 797.2 

(vs), 766.4 (m), 745.2 (s), 703.1 (w), 666.9 cm-1  (w). 

 
1H-NMR  (600 MHz, CHCl3): δ = 0.73 – 0.91 (m, 12H, CH3), 1.12 – 1.44 (m, 32H, 

CH2CH2CH2CH2CH3), 1.74 – 1.83 (m, 2H, NCHCH2), 1.84 – 1.97 (m, 2H, NCHCH2), 2.16 – 

2.27 (m, 2H, NCHCH2), 2.28 – 2.45 (m, 2H, NCHCH2), 3.54 – 3.74 (m, 2H, NCH2CH2N), 

3.96 – 4.10 (m, 2H, NCH2CH2N), 5.34 – 5.52 (m, 2H, NCH(CH2)2), 7.75 – 7.82 (m, 1H, 

Harom), 7.89 – 7.94 (m, 1H, Harom), 7.95 – 8.00 (m, 1H, Harom), 8.01 – 8.08 (m, 1H, Harom), 8.09 

– 8.15 (m, 1H, Harom), 8.19 – 8.28 (m, 1H, Harom), 8.29 – 8.55 (m, 3H, Harom), 8.56 – 8.70 (m, 

2H, Harom), 8.71 – 8.76 (m, 1H, Harom), 8.98 – 9.29 (m, 3H, Harom), 10.16 ppm (s, 1H, 

CCHCCO). 
 

13C-NMR  (100 MHz, CDCl3): δ = 14.1, 22.7, 29.4, 29.6, 29.9, 31.9, 36.1, 39.3, 65.9, 70.6, 

115.0, 123.2, 124.1, 130.9 ppm. 

*Aufgrund schlechter Löslichkeit sind keine weiteren Signale sichtbar. 

 

UV/Vis (CHCl3): λmax (Erel) = 349.8 (0.36), 364.6 (0.66), 436.6 (0.40), 452.0 (0.38), 490.6 

(0.62), 528.0 nm (1.00). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 534.8 (1.00), 576.2 (0.54), 623.6 nm (0.14). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 350 nm, E350nm / 1cm = 0.0039, Referenz 71 mit 

Φ = 0.97) Φ = 1.00, (λexc = 491 nm E491nm / 1cm = 0.0066, Referenz 71 mit Φ = 0.99) Φ = 1.00 

 

MS (FAB+): m/z (%) = 1197 (0.1) [M + 2H]+, 1196 (0.2) [M + H]+, 1012 (0.1) [M +H – 

C13H26]
+, 832 (0.3) [M + H – 2 x C13H26]

+, 727 (0.3), 460 (4). 

 

HRMS (FAB+): ber.: C78H75N4O8 [M + H]+: 1195.5585 

   gef.:    1195.5570 ∆ = 0.0015 
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C78H74N4O8 [1195.4] ber. (%): C: 78.37  H: 6.24 N: 4.69  

     gef. (%): C: 77.80 H: 6.23 N: 4.49 

   

 

D6.5 N2-(1-Hexylheptyl)-N1-[N-(1-hexylheptyl)-N´-(cyclohexyl-4-

yl)perylen-3,4,9,10-bis(dicarboximid)]benzo[ghi]perylen-

3,4:6,7-bis(dicarboximid) (77) 

 

 

 

 

  

 

 

 

 

 

N-(1-Hexylheptyl)-N‘-(4-aminocyclohexyl)benzo[ghi]perylen-3,4:6,7-bis(dicarboximid) 36 

(100 mg, 147 µmol, 1.50 Äq.) und N-(1-Hexylheptyl)perylen-3,4-dicarboximid-9,10-anhydrid 

(72, 56.0 mg, 98.2 mmol, 1.00 Äq.) sowie eine Spatelspitze Zinkacetat-Dihydrat wurden mit  

Imidazol (3.00 g) versetzt und  6 h bei 160 °C erhitzt. Anschließend wurde dem noch warmen 

Reaktionsansatz Ethanol (10.0 mL) zugefügt. Nach dem Erkalten gab man zu dem 

Reaktionsansatz 2 M HCl (1:1, 250 mL) hinzu. Daraufhin wurde das Reaktionsgemisch mit 

CHCl3 mehrmals extrahiert, bis die organische Phase farblos erschien. Die organische Phase 

wusch man mit 2 M HCl (3 · 150 mL) und extrahierte nochmals mit CHCl3, bis die organische 

Phase erneut keine Färbung mehr aufwies. Nach dem Trocknen über MgSO4 wurde das 

Lösemittel im Vakuum entfernt und das erhaltene Rohprodukt säulenchromatographisch über 

Kieselgel (63 - 200 µm) mit einem Laufmittelgemisch aus CHCl3/Isohexan (3:1) aufgereinigt, 

wodurch neben kleinen Mengen von 77 vor allem diverse Verunreinigungen als Vorläufe 

abgetrennt werden konnten. Der Großteil des Produkts 77 sammelte sich am Säuleneingang. 

Dieser wurde separat isoliert und 1h unter Rückfluss mit CHCl3/EtOH (100:1) extrahiert. Der 

Extrakt wurde im Vakuum von den Lösemitteln befreit und säulenchromatographisch über 

Kieselgel (63 - 200 µm) mit CHCl3 aufgereinigt. Dabei konnte das Produkt 77 als intensiv rot-
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orange fluoreszierende Bande intensiv eluiert werden. Nach dem Entfernen des Lösemittels 

im Vakuum und Trocknen erhielt man 77  als roten Feststoff. 

 

Ausbeute: 21.0 mg (77, 16.8 µmol, 17 %). 

 

Schmelzpunkt:  > 250 °C 

 

Rf (Kieselgel, CHCl3/EtOH 50:1): 0.68 

 

IR (ATR): ν~ = 2953.5 (s), 2920.5 (vs), 2850.6 (s), 2358.9 (vs), 2338.6 (s), 1733.6 (w), 1699.9 

(m), 1683.9 (w), 1659.0 (s), 1653.0 (s), 1634.8 (s), 1575.5 (s), 1558.8 (m), 1539 (w), 1505.8 

(m), 1464.6 (s), 1456.1 (s), 1367.5 (s), 1260.8 (m), 1186.9 (w), 1078.9 (w), 1010.6 (s), 847.5 

(s), 809.6 (s), 725.0. (w), 661.3 cm-1 (m). 

 
1H-NMR  (600 MHz, CHCl3): 0.78 – 0.93 (m, 12H, CH3), 1.15 – 1.41 (m, 32H, 

CH2CH2CH2CH2CH3), 1.68 – 2.04 (m, 12H, NCHCH2 + CH2 cyclohexyl), 2.21 – 2.39 (m, 4H, 

NCHCH2), 2.36 – 2.47 (m, 2H, NCHCH2), 3.61 - 3.68 (m, 1H, CHCH2), 3.99 - 4.07 (m, 1H, 

CHCH2), 5.21 – 5.27 (m, 2H, NCH), 7.50 – 7.55 (m, 1H, Harom), 7.68 – 7.72 (m, 1H, Harom), 

7.92 (t, 3J = 7.6 Hz, 1H, Harom), 7.08 – 8.14 (m, 1H, Harom), 8.25 – 8.33 (m, 1H, Harom), 8.34 – 

8.39 (m, 1H, Harom), 8.44 – 8.51 (m, 1H, Harom), 8.44 – 8.51 (m, 1H, Harom), 8.55 – 8.61 (m, 

1H, Harom), 8.63 – 8.67 (m, 1H, Harom),  8.70 – 8.74 (m, 1H, Harom), 8.84 – 8.87 (m, 1H, Harom),          

8.84 – 8.87 (m, 1H, Harom), 8.89 – 8.92 (m, 1H, Harom), 9.06 – 9.10 (m, 1H, Harom), 9.28 – 9.32 

(m, 1H, Harom), 9.35 – 9.38 (m, 1H, Harom), 9.75 ppm (s, 1H, CCHCCO). 

  

UV/Vis (CHCl3): λmax (Erel) = 261.0 (0.65), 347.0 (0.33), 364.2 (0.61), 435.6 (0.36), 451.2 

(0.36), 488.2 (0.62), 526.4 nm (1.00). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 534.6 (1.00), 577.3 (0.50), 627.9 nm (0.11). 

 

Fluoreszenzquantenausbeute  

(CHCl3, λexc = 350 nm, E350nm / 1cm = 0.0043, Referenz 71 mit Φ = 0.97) Φ = 1.00  

(CHCl3, λexc = 491 nm E491nm / 1cm = 0.0090, Referenz 71 mit Φ = 0.99) Φ = 1.00  
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MS (EI): m/z (%) = 1252 (0.8) [M + 2H]+, 1251 (1.0) [M + H]+, 1250 (0.1) [M ]+, 1069 (2) [M 

+H – C13H26]
+, 1068 (2) [M - C13H26]

+, 887 (0.7) [M + H – 2 x C13H26]
+, 886 (2) [M + H – 

2 x C13H26]
+, 885 (3) [M - H – 2 x C13H26]

+. 

 

MS (MALDI, Anthracen): m/z (%) =1250 (58) [M]+, 1249 (68) [M - H]+, 1248 (67) [M - 

2H]+, 1068 (18) [M – C13H26]
+, 1066 (35) [M - 2H - C13H26]

+, 884 (2) [M - 2H - 2 x C13H26]
+. 

 

HRMS (EI):  ber.: C69H54N4O8 [M - C13H26]
+:  1066.3942 

   gef.:      1066.3986 ∆ = 0.0044 

    

 

   ber.: C56H29N4O8 [M +H - 2 × C13H26]
+: 885.2026 

   gef.:      885.1985 ∆ = 0.0041 

 

 

D6.6 N2-(1-Hexylheptyl)-N1-[N-(1-hexylheptyl)perylen-3,4,9,10-bis(di- 

carboximid)]benzo[ghi]perylen-3,4:6,7-bis(dicarboximid) (78) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Das Amin 34 (21.0 mg, 34.3 µmol, 1.50 Äq.) und N-(1-Hexylheptyl)perylen-3,4-

dicarboximid-9,10-anhydrid (72, 13.0 mg, 22.9 µmol, 1.00 Äq.) wurden in Chinolin (1.1 ml) 

gelöst und in einer Mikrowellenapparatur (200 W, 210 °C, 3.00 bar) 4 h erhitzt. Die 

Reaktionsmischung wurde in CHCl3 (30 mL) aufgenommen und mit einer wässrigen HCl-

Lösung (2 M, 50.0 mL) gewaschen. Die wässrige Phase wurde solange mit Chloroform 

extrahiert bis sie farblos erschien. Das Lösemittel von den vereinigten organischen Phasen 
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wurde entfernt und das Rohprodukt zweimal säulenchromatographisch aufgereinigt. Eine 

Vorreinigung gelang zunächst an Kieselgel (63 – 200 µm) mit CHCl3. Im Anschluss wurde 

das noch leicht verunreinigte Produkt über Kieselgel (40 – 63 µm) mit einem 

Laufmittelgemisch aus CHCl3/Isohexan (3:1) chromatographiert. Das Produkt eluierte als 

intensiv rot-orange fluoreszierende Bande. 

 

Ausbeute: 12.0 mg (78, 10.3 µmol, 46 %) 

 

Schmelzpunkt:  > 250 °C 

 

Rf (Kieselgel, CHCl3): 0.33 

 

IR (ATR): ν~  = 2953.6 (m), 2922.6 (s), 2853.7 (m), 2358.7 (w), 2337.9 (w), 1785.9 (w), 

1739.4 (s), 1722.4 (s9, 1698.8 (vs), 1658.9 (vs), 1591.9 (vs), 1577.8 (s), 1455.6 (w), 1403.1 

(s), 1353.3 (m), 1322.9 (vs), 1290.4 (m), 1259.3 (s), 1250.4 (s), 1205.4 (m), 1171.0 (m), 

1101.4 (s), 1018.9 (s), 964.0 (m), 840.1 (m), 809.0 (vs), 799.6 (vs), 765.0 (s), 753.0 (s), 737.8 

(s), 667.5 cm-1 (m). 
 

1H-NMR  (600 MHz, CDCl3): δ = 0.79 – 0.91 (m, 12H, CH3), 1.21 – 1.50 (m, 32H, 

CH2CH2CH2CH2CH3), 1.89 – 1.99(m, 2H, NCHCH2), 2.03 – 2.12 (m, 2H, NCHCH2), 2.24 – 

2.35 (m, 2H, NCHCH2), 2.36 – 2.47 (m, 2H, NCHCH2), 5.17 – 5.25 (m, 1H, NCH(CH2)2), 

5.27 – 5.37 (m, 1H, NCH(CH2)2), 7.89 – 8.12 (m, 2H, Harom), 8.20 – 8.34 (m, 2H, Harom), 8.37 

– 8.54 (m, 3H, Harom), 8.57 – 8.83 (m, 5H, Harom), 8.85 – 9.05 (m, 3H, Harom), 9.66 ppm (s, 1H, 

CCHCCO). 
 

13C-NMR  (151 MHz, CDCl3): δ = 14.1, 22.6, 27.1, 27.3, 29.3, 29.4, 29.7, 31.8, 31.9, 32.4, 

54.9, 55.0, 110.7, 122.1, 122.6, 126.7, 129.1, 130.2, 132.6, 133,6. 160.6, 163.9, 164.2 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 261.0 (58540), 350.8 (32460), 366.4 (56790), 438.2 (32690), 

459.2 (29240), 492.8 (59560), 528.6 nm (89160). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 537.8 (1.00), 578.2 (0.49), 629.1 nm (0.12). 
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Fluoreszenzquantenausbeute (CHCl3, λexc = 351 nm, E351 nm / 1cm  = 0.0105, Referenz 71 mit 

Φ = 0.97) Φ = 1.00, (λexc = 493, E493 nm / 1cm = 0.0196, Referenz 71 mit Φ = 0.99) Φ = 1.00 

 

MS (FAB+): m/z (%) = 1168 (1.4) [M +H]+, 1167 (1.4) [M]+, 985 (4) [M – C13H26]
+, 827 (3), 

803 (4) [M – 2 x C13H26]
+, 755 (9), 741 (3), 715(3). 

 

HRMS (FAB+): ber.: C76H71N4O8 [M+H]+: 1167.5272 

   gef.:    1167.5292 ∆ = 0.0020 

 
 

D6.7  N2-(1-Hexylheptyl)-N1-[N-(1-hexylheptyl)-N´-(2,3,5,6-tetramethyl- 

phen-4-yl)perylen-3,4,9,10-bis(dicarboximid)] {9,10-dinitro-

benzo[ghi]perylen-3,4:6,7-bis(dicarboximid)} (79) 

 

 

 

 

 

 

 

 

 

 

9,10-Dinitro-N-(1-hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid- 

6,7-anhydrid (65, 141 mg, 205 µmol, 1.00 Äq.) und N-(1-Hexylheptyl)-N´-(4-amino-2,3,5,6-

tetramethylphenyl)perylen-3,4,9,10-bis(dicarboximid) (70, 162 mg, 225µmol, 1.10 Äq.) 

wurden in CHCl3 (13.0 mL) gelöst, mit DCC (217 mg, 1.05 mmol, 5.12 Äq.) und TFA (3 

Tropfen) versetzt. Man ließ die Reaktionslösung 5 h bei 100 °C rühren und goß den  

Reaktionsansatz anschließend  auf  2 M HCl (100 mL). Daraufhin wurde so lange mit CHCl3 

extrahiert, bis die organische Phase farblos erschien. Danach wusch man die organische 

Phasen mit 2 M HCl (3 · 150 mL) und extrahierte erneut mit CHCl3. Nach Trocknen der 

vereinigten organischen Phasen über MgSO4 wurde das Lösemittel im Vakuum entfernt. Das 

Rohprodukt wurde anschließend durch Säulenchromatographie an Kieselgel (63 - 200 µm) 

mit CHCl3 aufgereinigt. Die Produktfraktion erscheint nach einem gelben, schwach 

NO O

NO2 NO2

N

O

O

79

N

O

O

N

O

O



EXPERIMENTELLER TEIL                                                                                                                                                   279                                        
                                                                                                                                              
 

fluoreszierenden Vorlauf als intensiv rot-orange fluoreszierende Bande, welche ein weiteres 

Mal säulenchromatographisch an Kieselgel (63 - 200 µm) mit einem Laufmittelgemisch aus 

CHCl3 und Isohexan (3:1) gereinigt wurde. Das Produkt löst man in wenig CHCl3 

aufgenommen und fällt mit MeOH aus. Man erhielt so den Bichromophor 79 als roten 

Feststoff. 

 

Ausbeute: 54.0 mg (79, 39.0 µmol, 19 %) 

 

Schmelzpunkt:  > 250 °C  

 

Rf (Kieselgel, CHCl3): 0.16   

 

IR (ATR): ν~ = 2957.4 (s), 2920.7 (vs), 2851.3 (s), 1772.0 (w), 1706.4 (vs), 1697.2 (vs), 

1658.3 (vs), 1592.5 (vs), 1577.8 (s), 1542.1 (s), 1520.3 (m), 1457.0 (m), 1404.1 (s), 1354.2 

(s), 1337.9 (vs), 1324.7 (vs), 1256.5 (vs), 1206.4 (w), 1174.4 (m), 1096.0 (s), 1015.3 (vs), 

963.5 (m), 864.4 (m), 853.0 (m), 810.8 (vs), 798.5 (vs), 756.8 (vs), 747.5 (vs), 701.0 (m), 

661.1 cm-1 (s). 

     
1H-NMR  (600 MHz, CDCl3): δ = 0.84 (t, 3J = 6.4 Hz, 6H, CH2CH3), 0.88 (t, 3J = 7.0 Hz, 6H, 

CH2CH3), 1.20 – 1.38 (m, 32H, CH2CH2CH2CH2CH3), 1.86 - 2.02 (m, 4H, CHCH2), 2.17 - 

2.39 (m, 4H, CHCH2), 2.21 (s, 6H, CCH3), 2,28 (s, 6H, CCH3), 5.17 - 5.23 (m, 1H, NCH), 

5.30 - 5.35 (m, 1H, NCH), 9.22 - 9.31 (m, 1H, Harom), 8.67 -8.78 (m, 6H, Harom), 8.83  (d, 
3J = 7.7 Hz, 2H, Harom), 8.94 (d, 3J = 8.4 Hz, 1H, Harom), 9.50 (d, 3J = 8.4 Hz, 1H, Harom), 9.53 

(d, 3J = 8.3 Hz, 1H, Harom), 10.32 (s, 1H, NO2CCHCC CO), 10.61 ppm (s, br, 1H, 

COCCHCCCO).  

  
13C-NMR  (151 MHz, CDCl3): δ = 14.0, 14.1, 15.4, 15.9, 19.7, 22.7, 23.2, 24.5, 26.7, 26.9, 

27.0, 28.9, 29.4, 29.5, 30.0, 30.1, 31.9, 32.4, 32.6, 32.7, 33.7, 37.1, 37.4, 54.8, 55.5, 116.9, 

123.1, 123.2, 123.4, 123.9, 124.8, 125.0, 125.9, 126.2, 126.5, 126.9, 127.2, 127.4, 127.6, 

128.5, 129.6, 129.8, 130.3, 132.1, 133.1, 133.5, 134.0, 135.2, 135.4, 146.0, 147.3, 162.8, 

162.9, 166.8 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 350.2 (29680), 365.2 (31710), 423.2 (26250), 450.6 (41790), 

490.4 (45020), 527.4 nm (74940).  
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Fluoreszenz (CHCl3): λmax (Irel) = 535.8 (1.00), 578.2 (0.40), 629.1 nm (0.07).  

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 367 nm, E367nm / 1cm = 0.0060, Referenz 71 mit 

Φ = 0.97) Φ = 0.96, (λexc = 490 nm, E490 nm / 1cm = 0.0081, Referenz 71 mit Φ = 0.99) Φ = 0.99 

 

MS (MALDI, Anthracen): m/z (%) =1390 (74) [M]+, 1360 (30), 1353 (31), 1344 (29) [M - 

NO2]
+,1133 (11), 1017 (23), 858 (100).   

 

MS (FAB-): m/z (%) = 1390 (4) [M]+, 1389 (4) [M -H]+ , 1375 (1), 1360 (1), 1344 (2) [M - 

NO2]
+, 851 (35), 791 (20).   

 

HRMS (FAB-):  ber.: C86H80N6O12 [M]+: 1388.5834  

    gef.:             1388.5854 ∆ = 0.0020 

                             

C86H80N6O12 [1389.6] ber. (%): C: 74.33 H: 5.80 N: 6.05 

gef. (%): C: 73.92 H: 5.23 N: 6.46 
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D6.8 N2-(1-Hexylheptyl)-N1-[N-(1-hexylheptyl)-N´-(2,3,5,6-tetramethyl- 

phen-4-yl)perylen-3,4,9,10-bis(dicarboximid)] {9,10-diaminobenzo- 

[ghi]perylen-3,4:6,7-bis(dicarboximid)} (80) / Amidinsubstituierter 

Bichromophor 81 

 

Katalytische Hydrierung mit Pd/C: 

 

 

 

 

 

 

 

 

N2-(1-Hexylheptyl)-N1-[N-(1-hexylheptyl)-N´-(2,3,5,6-tetramethylphen-4-yl)perylen-3,4,9,10-

bis(dicarboximid)]{9,10-dinitrobenzo[ghi]perylen-3,4:6,7-bis(dicarboximid)} (79, 1.70 mg, 

1.22 µmol, 1.00 Äq.) wurde in THF (9.00 mL) gelöst, mit Pd/C (0.40 mg, 0.38 µmol, 0.31 

Äq., 10% Pd) versetzt und in einem Stahlautoklaven 16 h unter einer Wasserstoffatmosphäre 

(80 bar, 23 °C) gerührt. Im Anschluss wurde der Katalysator unter einer Ar-Atmosphäre 

mittels Filtration abgetrennt und das Lösungsmittel bei Raumtemperatur im Vakuum entfernt. 

Man erhielt auf diese Weise einen rotvioletten Feststoff, welcher ein   Gemisch der 

Verbindungen 80 und 82 - 85 darstellt.     

 

Ausbeute: 1.45 mg  

  

IR (ATR): ν~  = 3385.3 (s,br), 2957.6 (s), 2923.3 (vs), 2853.9 (s) 2360.8 (w), 2337.3 (w), 

1770.0 (w), 1698.1 (vs), 1658.2 (vs), 1593.4 (s), 1577.7 (m), 1558.0 (w), 1540.0(w), 1506.3 

(w), 1458.8 (m), 1433.0 (m), 1404.1 (m), 1339.9 (vs), 1259.4 (vs), 1211.0 (w), 1155.5 (w) 

1094.5 (vs), 1015.8 (vs), 860.0 (m), 796.6 (s), 748.2 cm-1(m). 

  

UV/Vis (CHCl3): λmax (Erel) = 368.1 (0.35), 456.8 (0.32), 489.6 (0.65), 526.8 (1.00), 545.4 nm 

(0.20). 
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82 (X = NO2, Y = NH2)

83 (X = NH2, Y = NHOH)

84 (X = Y = NHOH)

85 (X = NO2, Y = NHOH)
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UV/Vis (DMF): λmax (Erel) = 459.2 (0.20), 490.8 (0.61), 527.4 (1.00), 599.8 nm (0.09). 

UV/Vis (Toluol): λmax (Erel) = 459.4 (0.22), 491.2 (0.61), 527.6 (1.00), 540.2 (0.20) nm . 

 

Fluoreszenz (CHCl3): λmax (Irel) = 585.6 (1.00), 630.4 (0.60), 709.6 nm (0.17)  . 

Fluoreszenz (DMF): λmax (Irel) = 634.1 nm. 

Fluoreszenz (Toluol): λmax (Irel) = 578.6 (1.00), 624.4 (0.72), 695.5 nm (0.28). 

 

MS (MALDI, Anthracen): m/z (%) = 1375 (25), 1360 (40), 1344 (75), 1330 (100), 1329 (85).  

 

MS (FAB+): m/z (%) = 1377 (2.5) [M(85)], 1360 (1.3) [M(82/84)], 1346 (2.0), [M(83)], 1330 

(1.1) [M (80)]+ 

 

HRMS (FAB+): 80: ber.: C86H85N6O8 [M + H]+: 1329.6384 

    gef.:             1329.6376 ∆ = 0.0008  

     

   82: ber.: C86H82N6O10 [M]+: 1358.6092 

    gef.:             1358.6079 ∆ = 0.0013 

 

83: ber.: C86H84N6O9 [M]+: 1345.6300 

    gef.:             1345.6327 ∆ = 0.0027  

 

   84: ber.: C86H84N6O10 [M]+: 1360.6249 

    gef.:             1360.6206 ∆ = 0.0043 

    

   85: ber.: C86H82N6O11 [M]+: 1374.6042 

    gef.:             1374.6030 ∆ = 0.0012 
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Bechamp-Reduktion: 

 

 

 

 

 

 

 

 

 

 

Eine  Suspension von Eisenpulver (2.68 mg, 48.0 µmol, 7.40 Äq) in EtOH (2.00 mL) wurde 

unter Lichtausschluss mit N2-(1-Hexylheptyl)-N1-[N-(1-hexylheptyl)-N´-(2,3,5,6-tetramethyl- 

phen-4-yl)perylen-3,4,9,10-bis(dicarboximid)]{9,10-dinitro-benzo[ghi]perylen-3,4:6,7-bis- 

(dicarboximid)} (79, 9.00 mg, 6.48 µmol, 1.00 Äq.) und konzentrierter wässriger HCl-Lösung 

(37%, 0.09 mL, 1.08 mmol, 166 Äq.) versetzt und 6  h unter Rückfluss erhitzt. Im Anschluss 

neutralisierte man die rot-violette Reaktionsmischung mit wässriger KOH-Lösung (25%, 0.16 

ml, 1.08 mmol, 166 Äq.). Der entstandene Niederschlag wurde durch Filtration abgetrennt 

und das Filtrat im Vakuum vom  Lösemittel befreit und 1h bei 80 °C getrocknet. Das 

rotviolette Rohprodukt wurde säulenchromatographisch zunächst an Kieselgel (63 - 200 µm) 

mit CHCl3 aufgereinigt, wobei gelb und orange fluoreszierende fluoreszierende Vorläufe 

abgetrennt werden konnten. Die Elution des Produkts erfolgte mit einem Laufmittelgemisch 

aus CHCl3/EtOH (200:1) als violette nicht fluoreszierende Bande. Nach Entfernen des 

Lösemittels im Vakuum und weiterem Trocknen für 1 Tag bei Raumtemperatur unter 

Lichtausschluss erhielt man 81 als violetten Feststoff.  

 

Ausbeute: 5.00 mg (81, 3.69 µmol, 57 %) 

  

Schmelzpunkt: Zersetzung bei > 100 °C  

 

Rf (Kieselgel, CHCl3/EtOH 100:1 ): 0.28     
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IR (ATR): ν~ =  3358.9 (m), 3185.9 (w), 2954.0 (vs), 2921.9 (vs), 2851.9 (vs) 2360.0 (m), 

2337.0 (m), 1752.7 (w), 1699.8 (s), 1658.3 (vs), 1630.2 (s), 1593.4 (s), 1576.0 (m), 1558.0 

(w), 1538.3 (w), 1505.5 (w), 1467.6 (m), 1455.1 (m), 1402.6 (m), 1376.4 (w), 1361.1 (w), 

1339.1 (s), 1271.3 (m), 1259.3 (s), 1089.7 (m), 1021.0 (m), 864.4 (w), 807.9 (s), 746.2 (w), 

667.7 cm-1 (s).  

 

UV/Vis (CHCl3): λmax (Erel) = 367.1 (0.17), 375.2 (0.16), 428.4 (0.06), 457.8 (0.20), 490.0 

(0.57), 527.6 (1.00), 561.4 nm (0.21). 

UV/Vis (DMF): λmax (Erel) = 457.8 (0.19), 490.0 (0.56), 527.6 (1.00), 598.0 nm (0.68). 

UV/Vis (Toluol): λmax (Erel) = 457.1 (0.22), 489.5 (0.60), 527.4 (1.00), 549.3 nm (0.18). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 680.1 nm.  

Fluoreszenz (DMF): λmax (Irel) = 614.3 nm. 

Fluoreszenz (Toluol): λmax (Irel) = 610.5 nm. 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 490 nm, E490nm / 1cm = 0.0045, Referenz S-13 

mit Φ = 1.00) Φ = 0.08, (CHCl3, λexc =  560 nm, E560nm / 1cm = 0.0017, Referenz S-13 mit 

Φ = 1.00) Φ = 0.03   

 

MS (MALDI, Anthracen): m/z (%) = 1354 (100) [M + H]+, 1328 (80)*, 990 (9) [M + H - 

2·C13H26]
+, 964 (4). 

* [M - 2H]+ des Diamins 80 

 

MS (FAB+): m/z (%) = 1354 (5) [M + H]+,  1327 (1)*, 1172 (2) [M +H- C13H26] 
+, 990 (1) [M 

+H- 2·C13H26]
+.     

* [M - 3H]+ des Diamins 80 

 

HRMS (FAB+):  ber.: C88H85N6O8 [M + H]+:  1353.6429  

   gef.:              1353.6440 ∆ = 0.0011 
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D6.9 N2-(1-Hexylheptyl)-N1-[N-(1-hexylheptyl)-N´-(phen-4-yl)benzo[ghi]- 

perylen-3,4,9,6,7-bis(dicarboximid)]benzo[ghi]perylen-3,4:6,7-bis(di- 

carboximid) (89) 

 

 

 

 

 

 

 

 

 

 

 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid 

(12, 42.9 mg, 71.7 µmol, 1.00 Äq.) und N-(1-Hexylheptyl)-N‘-(4-aminophenyl)benzo[ghi]- 

perylen-3,4:6,7-bis(dicarboximid) (33, 74.0 mg, 107 µmol, 1.50 Äq.) wurden in Chinolin 

(2.00 mL) gelöst und 18 h in einer Mikrowellenapparatur erhitzt (230 °C, 200W, 2.00 Bar). 

Anschließend goß man den  Reaktionsansatz auf  2 m HCl (250 mL). Daraufhin wurde so 

lange mit CHCl3 extrahiert, bis die organische Phase farblos erschien, wusch diese mit 

2 M HCl (3 · 150 mL) und extrahierte erneut mit CHCl3. Nach Trocknen der vereinigten 

organischen Phasen über MgSO4 wurde das Lösemittel im Vakuum entfernt. Das Rohprodukt 

wurde anschließend durch Säulenchromatographie an Kieselgel (63 - 200 µm) mit einem 

Laufmittelgemisch aus CHCl3/Isohexan (3:1) aufgereinigt. Die Produktfraktion erscheint nach 

einem schwach fluoreszierenden Vorlauf als intensiv gelb fluoreszierende Bande. Diese 

wurde in wenig CHCl3 aufgenommen und mit MeOH ausgefällt. Man erhielt so 89 als gelb-

orangen Feststoff. 

 

Ausbeute: 4.00 mg (89, 19.6 µmol, 4 %)  

 

Schmelzpunkt:  > 250 °C 

 

Rf (Kieselgel, CHCl3/Isohexan 3:1): 0.48   
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IR (ATR): ν~  = 2956.5 (s), 2922.3 (vs), 2852.3 (s), 2358.4 (w), 2333.0 (w), 1766.9 (m), 

1710.4 (vs), 1702.5 (vs), 1657.4 (vs), 1603.5 (s), 1578.1 (w), 1502.6 (w), 1466.2 (m), 1455.2 

(m), 1444.2 (m), 1388.8 (s), 1371.8 (vs), 1323.5 (vs), 1290.5 (m), 1259.6 (vs), 1215.3 8w), 

1178.1 (w), 1094.9 (s), 1016.1 (vs), 837.8 (vs), 810.7 (vs), 798.3 (vs), 750.8 (vs), 663.9 cm-1 

(s). 

     
1H-NMR  (600 MHz, CDCl3):  δ  = 0.85 (t, 3 J = 7.0 Hz, 12H, CH3), 1.22 – 1.31 (m, 20H, 

CH2CH2CH2CH2CH3), 1.35 – 1.46 (m, 12H, CH2CH2CH2CH2CH3), 1.97 – 2.05 (m, 2H, 

NCHCH2), 2.33 – 2.40 (m, 2H, NCHCH2), 5.28 – 5.34 (m, 2H, NCH), 7.43 (d, 3 J = 7.0 Hz, 

2H, Hphenyl), 7.46 (d, 3 J = 7.0 Hz, 2H, Hphenyl), 8.15 (t, 3 J = 7.7 Hz, 2H, Harom), 8.19 – 8.24 (m, 

2H, Harom), 8.31 – 8.33 (m, 1H, Harom), 8.36 (d, 3 J = 9.1 Hz, 1H, Harom), 8.41 (d, 3 J = 7.5 Hz, 

1H, Harom), 8.93 – 9.00 (m, 4H, Harom), 9.06 – 9.09 (m, 1H, Harom), 9.13 (d, 3 J = 8.8 Hz, 1H, 

Harom), 9.32 (d, 3 J = 8.9 Hz, 1H, Harom), 10.04 (s, 1H, CCHCCO), 10.25 ppm (s, 1H, 

CCHCCO). 

 
13C-NMR  (151 MHz, CDCl3): δ  = 14.1, 19.6, 20.0, 20.5, 21.4, 22.6, 27.1, 29.3, 29.7,  31.8, 

32.5, 54.9, 119.7, 121.7, 122.0, 122.4, 123.1, 123.4, 123.7, 124.0, 124.1, 124.3, 124.5, 125.2, 

125.5, 126.0, 126.2, 126.6, 127.8, 128.4, 129.9, 130.4, 132.1, 160.7, 164.4 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 292.8 (23930), 326.8 (23200), 349.2 (38430), 366.2 (72500), 

414.0 (27550), 436.8 (39150), 477.4 nm (10880). 

 

Fluoreszenz (CHCl3): λmax (Irel) =  497.8 (1.00), 527.0 nm (0.72).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 350 nm, E350nm / 1cm =  0.0118, Referenz: S-13 

mit Φ = 1.00): Φ = 0.34  

 

MS (EI): m/z (%) = 1087 (1) [M +2H - C13H26]
+, 1086 (1) [M +H - C13H26]

+, 905 (4) [M +2H 

- 2·C13H26]
+, 904 (8) [M +H - 2·C13H26]

+, 903 (12) [M - 2·C13H26]
+, 859 (5), 716 (2), 715 (3), 

701 (9), 700 (16), 532 (11), 518 (61), 414 (40), 345 (51), 299 (35), 182 (100), 129 (75).  

 

HRMS (EI):  ber.: C49H42N3O6 [M - C35H32NO2]
+:   768.3074 

   gef.:       768.3032 ∆ = 0.0042 
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   ber.: C47H44N3O4
+ [M - C37H30NO4]

+:  714.3326   

   gef.:        714.3335 ∆ = 0.0009 

 

   ber.: C46H42N3O4
+ [M - C38H32NO4]

+:  700.3170   

   gef.:        700.3281 ∆ = 0.0111 

 

 

 

D6.10  N2-(1-Hexylheptyl)-N1-[N-(1-hexylheptyl)-N´-(2,3,5,6-tetramethyl 

phen-4-yl)benzo[ghi]perylen-3,4,9,6,7-bis(dicarboximid)]benzo- 

[ghi]perylen-3,4:6,7-bis(dicarboximid) (90a/b) 

 

 

N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracarbonsäure-3,4-dicarboximid-6,7-anhydrid 

(12, 32.0 mg, 53.8 µmol, 1.00 Äq.) und N-(1-Hexylheptyl)-N´-(4-amino-2,3,5,6-tetramethyl 

phenyl)benzo[ghi]perylen-3,4:6,7-bis(dicarboximid) (35, 60.0 mg, 80.7 µmol, 1.50 Äq.) 

wurden in Chinolin (3.00 mL) gelöst und 4 h in einer Mikrowellenapparatur erhitzt (210 °C, 

200W, 2.00 Bar). Anschließend goß man den  Reaktionsansatz auf  2 M HCl (250 mL). 

Daraufhin wurde so lange mit CHCl3 extrahiert, bis die organische Phase farblos erschien, 

wusch diese mit 2 M HCl (3 · 150 mL) und extrahierte erneut mit CHCl3. Nach Trocknen der 

vereinigten organischen Phasen über MgSO4 wurde das Lösemittel im Vakuum entfernt. Das 

Rohprodukt wurde anschließend durch Säulenchromatographie an Kieselgel (63 - 200 µm) 

mit einem Gemisch aus CHCl3/EtOH (100:1) aufgereinigt. Die Produktfraktion erscheint nach 

einem gelben, schwach fluoreszierenden Vorlauf als intensiv gelb fluoreszierende Bande. Es 

folgte  eine weitere säulenchromatographische Aufreinigung des Produktgemisches an 
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Kieselgel (63 - 200 µm) mit CHCl3. Dadurch konnte erneut ein gelber, schwach 

fluoreszierender Vorlauf abgetrennt werden. Durch Umstellung des Laufmittels auf ein 

Gemisch aus CHCl3 und Ethanol (50:1)  konnte das Produkt als intensiv gelb fluoreszierende 

Bande eluiert werden. Dieses wurde in wenig CHCl3 aufgenommen und mit MeOH 

ausgefällt. Man erhielt so den Bichromophor 90 als Gemisch der beiden Regioisomere 90a 

und 90b als oranges Pulver. 

 

Ausbeute: 26.0 mg (90a/b,19.6 µmol, 37 %) 

 

Schmelzpunkt:  > 400 °C 

 

Rf (Kieselgel, CHCl3): 0.61   

 

IR (ATR): ν~ = 3854.0 (w), 3735.1 (w), 3367.5 (w), 2959.5 (s), 2922.0 (vs), 2852.4 (s), 

2361.3 (vs), 2338.6 (s), 1768.7 (m), 1719.1 (s), 1702.0 (m), 1662.2 (s), 1605.5 (m), 1457.3 

(m), 1357.9 (m), 1342.3 (m), 1326.0 (m), 1260.2 (s), 1232.1 (m), 1094.4 (s), 1019.2 (s), 866.3 

(w), 838.1 (m), 799.8 (s), 765.0 (m), 667.8 cm-1 (m).    

     
1H-NMR  (600 MHz, CDCl3): δ = 0.80 - 0.93 (m, 12H, CH2CH3), 1.20 – 1.44 (m, 32H, 

CH2CH2CH2CH2CH3), 1.93 – 2.00 (m, 4H, CHCH2), 2.36 (2 · s, 12H, CCH3), 2.27 – 2.46 (m, 

4H, CHCH2), 5.32 (m, 2H, NCH), 8.34 (dd, 3J = 7.5 Hz, 3J = 15.1 Hz, 2H, Harom), 8.55 (dd, 
3J = 5.3 Hz, 3J = 13.1 Hz, 4H, Harom), 9.09 – 9.18 (m, 2H, Harom), 9.31 – 9.36 (m, 4H, Harom), 

9.53 – 9.57 (m, 2H, Harom), 10.55 ppm (br. d, 3J = 21.1 Hz, 2H, CCHCCO).  
 

13C-NMR  (151 MHz, CDCl3): δ = 14.0, 14.1, 15.9, 16.0, 22.6, 22.7, 27.0, 29.3, 29.4, 29.7, 

30.0, 30.2, 31.4, 31.8, 31.9, 38.7, 65.5, 68.1, 122.1, 123.0, 123.4, 123.7 124.0 124.4, 124.5, 

125.1, 125.5, 126.6, 127.2, 127.3, 128.8, 129.1, 129.6, 130.3, 130.7, 132.3, 132.4, 134.5 

167.7, 168.3 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 265.0 (0.53), 329.8 (0.25), 348.8 (0.48), 366.8 (1.00), 413.8 

(0.30), 436.2 (0.44), 477.2 nm (0.14). 

 

Fluoreszenz (CHCl3): λmax (Irel) =  498.0 (1.00), 527.2 nm (0.72).   

 



EXPERIMENTELLER TEIL                                                                                                                                                   289                                        
                                                                                                                                              
 

Fluoreszenzquantenausbeute (CHCl3, λexc = 350 nm, E350nm / 1cm =  0.0172, Referenz: S-13 

mit Φ = 1.00): Φ = 0.36  

 

MS (FAB-): m/z (%) = 1325 (0.6) [M  + H]+, 1324 (1) [M]+, 1223 (1) [M  - H]+, 1141 (0.5) [M  

- H - C13H26]
+, 959 (0.5) [M - H - 2 · C13H26]

+, 701 (2), 474 (16), 306 (72), 153 (100).  

 

HRMS (FAB-): ber.: C88H83N4O8 [M + H]+:  1323.6211    

    gef.:              1323.6244 ∆ = 0.0033 
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D7 Bichromophore auf Basis von Corrolen 

 

D7.1 10-[N-(1-Hexylheptyl)-N´-(benzyl)benzo[ghi]perylen-3,4:6,7-bis(di- 

carboximid)]-5,15-bis(2,6-dichlorophenyl)corrol (98) 

N-(1-Hexylheptyl)-N´-(4-formylbenzyl)benzo[ghi]- 

perylen-3,4:6,7-bis(dicarboximid)  (21, 200  mg, 280 

µmol, 1.00 Äq.) und 2,6-Dichlorophenyldipyrrome- 

than (163 mg, 560 µmol, 2.00 Äq.) wurden unter 

Lichtausschluss in CH2Cl2 (7.00 mL) gelöst und mit 

TFA (12.8 mg, 112 µmol, 0.40 Äq.) versetzt. 

Nachdem man die Reaktionsmischung 20 Minuten 

bei Raumtemperatur rühren ließ, wurde zuerst TEA 

(11.3 mg, 112 µmol, 0.40 Äq.) und anschließend 

p-Chloranil (207 mg, 840 µmol, 3.00 Äq) hinzufügt. 

Nach weiteren 24 h Rühren unter Lichtaussschluss 

bei Raumtemperatur entfernte man das Lösungsmittel 

im Vakuum und reinigte das Rohprodukt unter Licht- 

ausschluss säulenchromatographisch an Kieselgel (63 

- 200 µm) mit CH2Cl2, wobei das Produkt als erste 

grün gefärbte Fraktion isoliert werden konnte. Nach Entfernen des Lösemittels im Vakuum 

wurde der erhaltene Rückstand in wenig CHCl3 aufgenommen und mit MeOH gefällt. Dies 

liefert 98 in Form eines grünen Feststoffs.  

 

 

Ausbeute: 35.0 mg (98, 27.5 µmol, 10 %)  

 

Schmelzpunkt:  > 400 °C  

 

Rf (Kieselgel, CH2Cl2): 0.85   

 

IR (ATR): ν~  = 3854.1 (w), 3676.0 (w), 2951.1 (s), 2923.5 (vs), 2854.3 (s), 2361.6 (vs), 

2337.7 (vs), 1702.1 (s), 1661.5 (s), 1605.4 (m), 1558.4 (m), 1457.7 (m), 1428.4 (m), 1396.0 

(m), 1325.3 (m), 1111.7 (w), 796.0 (w), 667.9 cm-1(w).    
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1H-NMR  (600 MHz, CDCl3): δ = -2.91 - (-2.79) (s br, 3H, NH), 0.81 (t, 3J = 7.0 Hz, 6H, 

CH3), 1.22 – 1.27 (m, 16H, CH2CH2CH2CH2CH3), 1.95 – 2.03 (m, 2H, CHCH2), 2.32 -2.44 

(m, 2H, CHCH2), 5.26 – 5.37 (m, 1H, NCH), 5.42 (s, 2H, NCH2), 7.61 – 7.67 (m, 2H, HCl-

Phenyl) 7.65 (d, 3J = 7.9 Hz ,2H, HCl-Phenyl), 7.69 – 7.77 (m, 2H, HCl-Phenyl), 7.83 – 7.89 (m, 2H, 

Harom), 8.03 - 8.12 (m, 3H, Harom), 8.22 (d, 3J = 4.3 Hz ,1H, Harom), 8.32 – 8.35 (m, 1H, Harom), 

8.36 – 8.40 (m, 1H, Harom),   8.45 – 8.49 (m, 1H, Harom),  8.51 – 8.54 (m, 1H, Harom), 8.60 (d, 
3J = 4.8 Hz ,1H, Harom), 8.68 (d, 3J = 4.7 Hz ,1H, Harom),  8.75 (d, 3J = 4.3 Hz ,1H, Harom), 9.09 

– 9.11 (m, 1H, Harom), 8.99 – 9.07 (m, 2H, Harom), 9.13 – 9.17 (m, 2H, Harom), 9.30 (d, 3J = 8.7 

Hz ,1H, Harom), 10.32 ppm (s, 1H, CCHCCO).  

 

UV/Vis (CHCl3): λmax (ε) = 350.8 (25190), 366.0 (42250), 413.0 (81240), 433.8 (67430), 

473.9 (10560), 567.2 (9840), 608.0 (6500), 639.6 (4880), 715.6 nm (810).  

 

Fluoreszenz (CHCl3):  

λmax (Irel) = 663.1 (1.00), 720.4 nm (0.36) (λexc = 366 nm).  

λmax (Irel) = 660.0 nm (1.00) (λexc = 571 nm).   

 

Fluoreszenzquantenausbeute  

(CHCl3, λexc = 565 nm, E565nm / 1cm =  0.0111, Referenz: S-13 mit Φ = 1.00): Φ = 0.0212   

(CHCl3, λexc = 350 nm, E350nm / 1cm  =  0.0307, Referenz: S-13 mit Φ = 1.00): Φ = 0.0184   

 

MS (FAB+): m/z (%) =  1274 (1) [M+H]+,1273 (2) [M]+, 1272 (2) [M-H]+, 1271 (1) 1092 (0.3)  

[M+H-C13H26]
+ ,1091 (0.3)  [M - C13H26]

+ ,1090 (0.3)  [M - H - C13H26]
+, 675 (0.5) [Corrol + 

Benzylspacer]+.   

 

HRMS (FAB+): ber.: C77H59Cl4N6O4 [M + H]+:  1273.3345   

gef.:                                1273.3331 ∆ = 0.0014  

 

C77H58Cl4N6O4 [1273.1]  ber. (%): C: 72.64 H: 4.59 N: 6.60 

      gef. (%): C: 69.74 H: 4.65 N: 5.85  
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D7.2 10-[N-(1-Hexylheptyl)-N´-(4-phenylbenzyl)benzo[ghi]perylen-3,4:6,7-

bis(dicarboximid)]-5,15-bis(2,6-dichlorophenyl)corrol (102) 

N-(1-Hexylheptyl)-N´-(4-formylphenylbenzyl)benzo- 

[ghi]perylen-3,4:6,7-bis(dicarboximid)  (24, 200  mg, 

253 µmol, 1.00 Äq.) und 2,6-Dichlorophenyldi- 

pyrromethan (147 mg, 506 µmol, 2.00 Äq.) wurden 

unter Lichtausschluss in CH2Cl2 (5.00 mL) gelöst und 

mit TFA (12.2 mg, 101 µmol, 0.40 Äq.) versetzt. 

Nachdem man die Reaktionsmischung 20 Minuten 

bei Raumtemperatur rühren ließ, wurde zuerst TEA  

(11.1 mg, 101 µmol, 0.40 Äq.) und anschließend 

p-Chloranil (187 mg, 759 µmol, 3.00 Äq) hinzufügt. 

Nach weiteren 24 h Rühren unter Lichtausschluss bei 

Raumtemperatur entfernte man das Lösungsmittel im 

Vakuum und reinigte das Rohprodukt unter Lichtaus- 

schluss säulenchromatographisch an Kieselgel (63 - 

200 µm) mit CH2Cl2, wobei das Produkt als grün 

gefärbte Fraktion isoliert werden konnte. Nach Entfernen des Lösemittels im Vakuum wurde 

der erhaltene Rückstand in wenig CHCl3 aufgenommen und mit MeOH gefällt. Dies liefert 

102 in Form eines grünen Feststoffs.  

 

Ausbeute: 33.9 mg (102, 25.1 µmol, 10 %)  

 

Schmelzpunkt: > 400 °C  

 

Rf (Kieselgel, CH2Cl2): 0.91  

 

IR (ATR): ν~  = 3823.2 (w), 3743.9 (w), 2954.3 (s), 2926.4 (s), 2856.7 (s), 2361.8 (m), 2337.2 

(m), 1764.2 (s), 1704.0 (vs), 1660.8 (vs), 1604.5 (s), 1557.1 (s), 1427.3 (s), 1394.4 (s), 1323.6 

(vs), 1005.7 (m), 955.2 (s), 838.0 (s), 811.8 (s),  790.0 (s), 706.2 cm-1 (m).    
 

1H-NMR  (600 MHz, CDCl3): δ = -2.42 - (-1.47) (s br, 3H, NH), 0.84 (t, 3J = 7.1 Hz, 6H, 

CH3), 1.21 – 1.32 (m, 16H, CH2CH2CH2CH2CH3), 1.93 – 2.08 (m, 2H, CHCH2), 2.31 -2.46 

(m, 2H, CHCH2), 5.09 (s, 2H, NCH2), 5.30 - 5.39 (m, 1H, NCH), 7.59 (t, 3J = 8.0 Hz, 2H, 
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CHCHCl), 7.71 (d, 3J = 8.0 Hz, 2H, CHCHCl), 7.74 – 7.82 (m, 2H, CHCHCl), 7.85 – 8.07 

(m, 6H, Harom), 8.11 - 8.42 (m, 6H, Harom), 8.47 - 8.86 (m, 6H, Harom), 8.94 – 9.06 (m, 2H, 

Harom), 9.08 – 9.17 (m, 2H, Harom), 9.21 - 9.30 (m, 1H, HMIM-BP ), 10.26 ppm (s, 1H, 

CCHCCO). 
 

13C-NMR  (151 MHz, CDCl3): δ =  14.1, 22.7, 27.3, 29.4, 29.7, 31.9, 32.6, 41.5, 54.9, 109.1, 

111.4, 116.2, 120.7, 121.3, 123.3, 123.7, 125.0, 125.9, 126.0, 127.2, 127.7, 127.9, 128.0, 

130.2, 130.3, 134.4,  135.2, 137.2, 138.4, 139.2, 140.8, 141.0, 168.1, 168.7 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 351.0 (47760), 365.6 (77720), 411.2 (93640), 430.0 (80530), 

476.1 (23410), 570.2 (10300), 610.2 (8430), 718.8 nm (1870).   

 

Fluoreszenz (CHCl3):  

λmax (Irel) = 499.3 (1.00), 528.2 (0.67), 660.2 nm (0.09) (λexc = 366 nm).   

λmax (Irel) = 660.4 nm (1.00) (λexc = 573 nm).   

 

Fluoreszenzquantenausbeute  

(CHCl3, λexc = 573 nm, E573nm / 1cm =  0.0052, Referenz: S-13 mit Φ = 1.00): Φ = 0.0266   

(CHCl3, λexc = 351 nm, E351nm / 1cm =  0.0177, Referenz: S-13 mit Φ = 1.00): Φ = 0.0128   

 

MS (FAB+): m/z (%) = 1350 [M+H]+, 1349 [M]+, 1168 [M+H-C13H26]
+, 1167 [M -C13H26]

+. 

 

HRMS (FAB+): ber.: C83H62Cl4N6O4 [M ]+:  1348.3582  

gef.:            1348.3558 ∆ = 0.0024  

 

C83H62Cl4N6O4 [1349.2]  ber. (%): C: 73.89 H: 4.63 N: 6.23 

       gef. (%): C: 72.31 H: 4.55 N: 6.09 
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D7.3 10-[N,N´´-Bis(1-hexylheptyl)-N´-(benzyl)benzo[ghi]perylen-1´,2´:3, 

4:9,10-tris(dicarboximid]-5,15-bis(2,6-dichlorophenyl)corrol (104) 

N,Ń ´-Bis(1-hexylheptyl)-N´-(4-formyl- 

benzyl)benzo-[ghi]perylen-1´,2´:3,4:9, 

10-tris(dicarboximid) (103, 134 mg, 139 

µmol, 1.00 Äq.) und 2,6-

Dichlorophenyldipyrromethan (81.0 mg, 

278 µmol, 2.00 Äq.) wurden unter 

Lichtausschluss in CH2Cl2 (5.00 mL) 

gelöst und mit TFA (6.34 mg, 55.6 

µmol, 0.40 Äq.) versetzt. Nachdem man 

die Reaktionsmischung 20 Minuten bei 

Raumtemperatur rühren ließ, wurde 

zuerst TEA  (5.63 mg, 55.6 µmol, 0.40 

Äq. gelöst in 0.25 mL CH2Cl2) und 

anschließend p-Chloranil (103 mg, 417 

µmol, 3.00 Äq) hinzufügt. Nach 

weiteren 24 h Rühren unter Lichtausschluss bei Raumtemperatur entfernte man das 

Lösungsmittel im Vakuum und reinigte das Rohprodukt unter Lichtausschluss 

säulenchromatographisch an Kieselgel (63 - 200 µm) mit CH2Cl2, wobei das Produkt als erste 

grün gefärbte Fraktion isoliert werden konnte. Nach Entfernen des Lösemittels im Vakuum 

wurde der erhaltene Rückstand in wenig CHCl3 aufgenommen und mit MeOH gefällt. Dies 

liefert 104 in Form eines grünen Feststoffs. 

 

Ausbeute: 35.0 mg (104, 22.9 µmol, 17 %)  

 

Schmelzpunkt:  ~ 250 °C  

 

Rf (Kieselgel, CH2Cl2): 0.80   

 

IR (ATR): ν~ = 3357.9 (m), 3077.4 (w), 2953.6 (s), 2926.3 (vs), 2856.4 (s), 1770.1 (w), 

1709.9 (s), 1689.3 (vs), 1679.4 (vs), 1664.4 (vs), 1595.3 (w), 1572.3 (m), 1557.9 (w), 1428.1 

(w), 1414.5 (w), 1397.0 (w), 1364.3 (w), 1318.2 (m), 1238.0 (w), 1111.3 (m), 812.0 (w), 

756.1 (w), 712.5 cm-1 (w).     
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1H-NMR  (600 MHz, CDCl3): δ = -2.94 - (-2.78) (s br, 3H, NH), 0.80 (t, 3J = 7.0 Hz, 12H, 

CH3), 1.17 – 1.34 (m, 32H, CH2CH2CH2CH2CH3), 1.89 – 1.98 (m, 4H, CHCH2), 2.28 -2.39 

(m, 4H, CHCH2), 5.25 – 5.36 (m, 2H, NCH2), 5.46 (s, 2H, NCH), 7.59 (t, 3J = 8.1 Hz, 2H, 

CHCHCl), 7.71 (d, 3J = 8.1 Hz, 4H, CHCHCl), 7.97 (d, 3J = 8.0 Hz, 2H, Harom), 8.19 (d, 3J = 

7.9 Hz, 2H, Harom), 8.36 (d, 3J = 4.0 Hz, 2H, Harom), 8.46 (d, 3J = 4.6 Hz, 2H, Harom), 8.56 (d, 3J 

= 4.6 Hz, 2H, Harom), 8.95 (d, 3J = 4.0 Hz, 2H, Harom), 9.13 – 9.20 (m, 2H, Harom), 9.35 (d, 3J = 

8.3 Hz, 2H, Harom),  10.50 ppm (s, 2H, HBenzoperylen).  
 

13C-NMR  (151 MHz, CDCl3): δ =  14.0, 22.6, 27.0, 29.2, 29.7, 31.8, 32.5, 42.3, 55.3, 109.4, 

111.3, 118.8, 120.7, 123.3, 123.9, 124.9, 125.9, 126.0, 127.1, 127.7, 127.8, 128.0, 130.3, 

130.5, 135.0, 137.3, 138.4, 139.5, 141.8, 143.2, 168.1 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 272.4 (39810), 377.6 (60140), 418.7 (105300), 431.0 (83350), 

467.1 (65270), 514.1 (7960), 567.6 (9860), 606.4 (7740), 717.2 nm (3130). 

 

Fluoreszenz (CHCl3):  

λmax (Irel) = 476.7 (1.00), 512.2 (0.76), 550.1 (0.29), 651.1 (0.22), 723.8 nm (0.23)  

                  (λexc = 378 nm).  

λmax (Irel) = 665.1 nm (1.00) (λexc = 571 nm).  

 

Fluoreszenzquantenausbeute  

(CHCl3, λexc = 569 nm, E569nm / 1cm =  0.0079, Referenz: S-13 mit Φ = 1.00): Φ = 0.0014   

(CHCl3, λexc = 378 nm, E378nm / 1cm =  0.0439, Referenz: S-13 mit Φ = 1.00): Φ = 0.0021   

 

MS (FAB+): m/z (%) = 1525 (1) [M+H]+,1524 (1) [M]+, 1523 (1) [M-H]+, 1343 (0.3)  [M+H-

C13H26]
+ ,1342 (0.3)  [M - C13H26]

+ ,1341 (0.3)  [M - H - C13H26]
+ ,1160 (0.2)  [M - 2 . C13H26]

+ 

,1159 (0.2)  [M – H - 2 . C13H26]
+ , 675 (0.4) [Corrol + Benzylspacer]+. 

 

HRMS (FAB+): ber.: C92H84Cl4N7O6 [M + H]+: 1524.5237  

  gef.:     1524.5215 ∆ = 0.0022  

                              

C92H83Cl4N7O6 [1524.5] ber. (%): C: 72.48 H: 5.49 Cl: 9.30 N: 6.43 

         gef. (%): C: 72.00 H: 5.62 Cl: 8.86  N: 6.19 

  



EXPERIMENTELLER TEIL                                                                                                                                                   296                                        
                                                                                                                                              
 

D7.4 10-[N,N´´-Bis(1-hexylheptyl)-N´-(4-phenylbenzyl)benzo[ghi]perylen-

1´,2´:3,4:9,10-tris(dicarboximid]-5,15-bis(2,6-dichlorophenyl)corrol 

(106) 

N,Ń ´-Bis(1-hexylheptyl)-N´-(4-formyl- 

phenylbenzyl)-benzo[ghi]perylen-1´,2´: 

3,4:9,10-tris(dicarboximid) (105, 358 

mg, 343 µmol, 1.00 Äq.) und 2,6-

Dichlorophenyldipyrromethan (200 mg, 

687 µmol, 2.00 Äq.) wurden unter 

Lichtausschluss in CH2Cl2 (10.0 mL) 

gelöst und mit TFA (15.6 mg, 137 

µmol, 0.40 Äq.) versetzt. Nachdem man 

die Reaktionsmischung 20 Minuten bei 

Raumtemperatur rühren ließ, wurde 

zuerst TEA  (13.9 mg, 137 µmol, 0.40 

Äq.) und anschließend p-Chloranil 

(253 mg, 1.03 mmol, 3.00 Äq) 

hinzufügt. Nach weiteren 24 h Rühren 

unter Lichtausschluss bei Raumtemperatur entfernte man das Lösungsmittel im Vakuum und 

reinigte das Rohprodukt unter Lichtausschluss säulenchromatographisch an Kieselgel (63 - 

200 µm) mit CH2Cl2, wobei das Produkt als grün gefärbte Fraktion isoliert werden konnte. 

Nach Entfernen des Lösemittels im Vakuum wurde der erhaltene Rückstand in wenig CHCl3 

aufgenommen und mit MeOH gefällt. Dies liefert 106 in Form eines grünen Feststoffs. 

 

Ausbeute: 49.0 mg (106, 30.6 µmol, 9 %)  

 

Schmelzpunkt: > 400 °C 

 

Rf (Kieselgel, CH2Cl2): 0.89  

 

IR (ATR): ν~  = 3809.7 (w), 3718.4 (w), 2951.0 (s), 2922.6 (vs), 2852.2 (s), 1771.4 (w), 

1707.6 (vs), 1662.8 (vs), 1594.7 (w), 1557.6 (w), 1427.3 (m), 1363.4 (s), 1317.2 (vs), 1238.3 

(m), 955.5 (m), 811.4 (s), 792.5 (m), 659.8 cm-1 (w).     
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1H-NMR  (600 MHz, CDCl3): δ = -2.93 - (-2.64) (s br, 3H, NH), 0.83 (t, 3J = 6.9 Hz, 12H, 

CH3), 1.20 – 1.38 (m, 32H, CH2CH2CH2CH2CH3), 1.91 – 2.01 (m, 4H, CHCH2), 2.30 -2.42 

(m, 4H, CHCH2), 5.34 (s, 2H, NCH2), 5.29-5.39 (m, 2H, NCH), 7.62 (t, 3J = 7.8 Hz, 2H, 

CHCHCl), 7.74 (d, 3J = 8.0 Hz, 2H, CHCHCl),  7.86 (d, 3J = 7.6 Hz, 2H, Harom), 7.91 (d, 3J = 

8.9 Hz, 2H, Harom),   7.96 - 8.13 (m, 4H, Harom), 8.18 – 8.32 (m, 2H, Harom), 8.49 – 8.92 (m, 

6H, Harom), 8.97 - 9.05 (m,1H, Harom), 9.12 – 9.26 (m, 3H, Harom), 9.44 (d, 3J = 8.8 Hz ,2H, 

HBP), 10.53 ppm (s, 2H, HBP).  
 

13C-NMR  (151 MHz, CDCl3): δ =  14.1, 22.7, 29.4, 29.7, 31.9, 32.5, 39.9, 42.0, 55.4, 107.4, 

108.6, 116.1, 116.9, 122.8, 123.6, 125.8, 125.9, 127.1, 127.3, 127.8, 128.0, 128.6, 129.3, 

129.8, 130.3, 135.1, 135.8, 137.1, 137.3, 138.5, 167.7 ppm. 
 

UV/Vis (CHCl3): λmax (ε) = 376.8 (105710), 408.2 (137140), 432.8 (142850), 464.4 (120000), 

563.8 (10000), 607.0 (7140), 716.6 nm (2860). 

 

Fluoreszenz (CHCl3):  

λmax (Irel) = 479.9 (1.00), 510.7 (0.87), 546.5 (0.31), 659.8 (0.30), 726.1 nm (0.18) (λexc = 366  

nm).  

λmax (Irel) = 656.4 nm (1.00), 729.6 nm (0.61) (λexc = 568 nm).  

 

Fluoreszenzquantenausbeute  

(CHCl3, λexc =  570 nm, E570nm / 1cm =  0.0089, Referenz: S-13 mit Φ = 1.00): Φ = 0.0044   

(CHCl3, λexc =  378 nm, E378nm / 1cm =  0.0477, Referenz: S-13 mit Φ = 1.00): Φ = 0.0040   

 

MS (FAB+): m/z (%) = 1601 [M]+, 1600 [M-H]+, 1419 [M - C13H26]
+ ,1418 [M - H - C13H26]

+      

 

HRMS (FAB+): ber.: C98H88Cl4N7O6 [M + H]+:  1600.5552   

gef.:                                1600.5464  ∆ = 0.0088  

 

C98H87Cl4N7O6 [1600.6]  ber. (%): C: 73.54 H: 5.48 N: 6.13 

       gef. (%): C: 73.06 H: 5.59  N: 5.91 
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D7.5  10-[2,11-Bis(1-hexylheptyl)-5-(4-phenyl)imidazolo-  

[4',5':3,4]anthra[2,1,9-def:6,5,10-d'e'f' ]diisochinolin-

1,3,10,12(2H,11H)-tetraon]-5,15-bis-(2,6-dichlorophenyl)- 

 corrol (109)  

N-(1-Hexylheptyl)-N´-(4-formylbenzyl)benzo[ghi]- 

perylen-3,4:6,7-bis(dicarboximid) (108, 41.0 mg, 45.6 

µmol, 1.00 Äq.) und 2,6-Dichlorophenyldipyrrome- 

than (39.8 mg, 137 µmol, 3.00 Äq.) wurden unter 

Lichtausschluss in CHCl3 (3.00 mL) gelöst und mit 

TFA (4.16 mg, 36.5 µmol, 0.80 Äq.) versetzt. 

Nachdem man die Reaktionsmischung eine Stunde 

bei Raumtemperatur rühren ließ, wurde zuerst TEA  

(3.69 mg, 36.5 µmol, 0.80 Äq.) und anschließend 

p-Chloranil (33.6 mg, 137 µmol, 3.00 Äq.) hinzufügt. 

Nach weiteren 24 h Rühren unter Lichtaussschluss 

bei Raumtemperatur versetzte man die Reaktions- 

lösung mit Isohexan (1.00 mL) und reinigte das Roh- 

produkt im Anschluss unter Lichtausschluss säulen- 

chromatographisch an Kieselgel (63 - 200 µm) mit einem Laufmittelgemisch aus CHCl3/ Iso- 

hexan (3:1), wobei das Produkt als erste dunkelgrau-violett gefärbte Fraktion isoliert werden 

konnte. Nach Entfernen des Lösemittels im Vakuum erhielt man 109 in Form eines 

schwarzgrünen Feststoffs. 

 

Ausbeute: 6.00 mg (109, 4.12 µmol, 9 %)  

 

Schmelzpunkt:  > 250 °C  

 

Rf (Kieselgel, CHCl3/Isohexan 3:1): 0.73   

 

IR (ATR): ν~  = 3409.0 (w), 3358.0 (w), 2954.3 (s), 2920.4 (vs), 2851.0 (s), 2358.4 (w), 

2337.4 (w), 1733.7 (w), 1689.8 (m), 1652.8 (m), 1641.7 (m), 1608.4 (w), 1592.1 (m), 1557.8 

(w), 1539.0 (w), 1463.9 (s), 1428.2 (m), 1411.3 (w), 1377.1 (m), 1344.5 (m), 1303.0 (w), 

1259.1 (s), 1214.7 (s), 1186.9 (w), 1091.4 (s), 1017.4 (s), 964.8 (m), 870.3 (w), 799.0 (vs), 

757.1 (vs), 720.6 (m), 708.7 (w), 667.6 cm-1 (m).   
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1H-NMR  (600 MHz, CDCl3): δ = - 2.80 - (-2.59) (s br, 3H, NHcorrol), 0.76 - 0.89 (m 12H, 

CH3), 1.16 – 1.39 (m, 32H, CH2CH2CH2CH2CH3), 1.83 – 2.00 (m, 4H, CHCH2), 2.21 -2.39 

(m, 4H, CHCH2), 5.15 – 5.25 (m, 1H, NCH2), 5.28 – 5.36 (m, 1H, NCH2), 7.65 – 7.72 (m, 

2H, HCl-Phenyl), 7.79 (d, 3J = 7.9 Hz ,3H, HCl-Phenyl), 7.88 – 7.96 (m, 1H, HCl-Phenyl), 8.27 - 8.37 

(m, 1H, Harom), 8.42 - 8.47 (m, 1H, Harom), 8.49 - 8.55 (m, 2H, Harom), 8.59 - 8.63 (m, 1H, 

Harom), 8.67 - 8.80 (m, 6H, Harom), 8.83 - 8.86 (m, 1H, Harom),  8.88 - 8.91 (m, 1H, Harom), 8.94 

- 8.99 (m, 1H, Harom), 9.02 - 9.05 (m, 2H, Harom), 9.11 - 9.21 (m, 1H, Harom), 10.91 (d, 3J = 8.1 

Hz, 1H, Hperylen), 11.86 ppm (s, 1H, NHperylen). 

    

UV/Vis (CHCl3): λmax (Erel) = 291.2 (0.79), 409.2 (1.00), 425.6 (0.75), 466.1 (0.30), 506.6 

(0.20), 544.6 (0.43), 590.4 (0.65), 639.4 (0.09), 714.6 nm (0.03).   

 

Fluoreszenz (CHCl3):  

λmax (Irel) = 600.7 (0.61), 654.1 (1.00), 715.7 nm (0.47) (λexc = 546 nm)   

  

Fluoreszenzquantenausbeute  

(CHCl3, λexc = 546 nm, E546nm / 1cm =  0.0332, Referenz: S-13 mit Φ = 1.00): Φ = 0.0051  

 

MS (FAB+): m/z (%) = 1458 (0.8) [M + H]+, 1457 (1) [M]+,1275 (0.3) [M - C13H26]
+, 1274 

(0.2)[M - H - C13H26]
+, 1094 (0.4) [M + H - 2·C13H26]

+, 1093 (0.2) [M - 2·C13H26]
+, 872 (9), 

871 (8), 706 (10), 664 (100), 663 (65), 650 (62), 531 (59), 411 (73), 392 (50).   

 

HRMS (FAB+): ber.: C88H82Cl4N8O4 [M + H]+:  1457.5278 

gef.:                                1457.5289 ∆ = 0.0011  
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D8 Funktionalisierte Perylenmonoimidfarbstoffe 

 

D8.1 N-[4-(1,3-Dioxolan-2-yl)benzyl]perylen-3,4-dicarboximid (110) 

 

D8.1.1  Synthese in Chinolin 

Perylen-3,4-dicarbonsäureanhydrid (4, 50.0 mg, 0.155 mmol, 1.00 

Äq.) wurde in Chinolin (2.00 mL) gelöst und 4-(1,3-Dioxolan-2yl)- 

benzylamin (55.6 mg, 0.310 mmol, 2.00 Äq.) zugegeben. Man ließ die 

Lösung 4 h bei 210 °C (200 W, 1 bar) in einer Mikrowellenapparatur 

rühren. Das Lösungsmittel wurde durch Destillation im Feinvakuum 

(90 - 100 °C, 6 . 10-2 mbar) entfernt und der erhaltene Feststoff 

säulenchromatographisch (Kieselgel: 63 - 200 µm, CHCl3/EtOH 50:1) 

aufgereinigt. Das Produkt war Teil einer intensiv rot-orange-

fluoreszierenden Bande. N-[4-(1,3-Dioxolan-2-yl)benzyl]perylen-3,4-

dicarboximid (110) konnte jedoch nur als Gemisch mit dem entsprechenden Aldehyd N-(4-

Formylbenzyl)perylen-3,4-dicarboximid (111) in Form eines roten Feststoffs isoliert werden.  

 

D8.1.2  Synthese in Imidazol 

Perylen-3,4-dicarbonsäureanhydrid (4, 84.0 mg, 0.261 mmol, 1.00 Äq.) und Imidazol (4.00 g) 

wurden vorgelegt und 4-(1,3-Dioxolan-2-yl)benzylamin (93.6 mg, 0.522 mmol, 2.00 Äq.), 

sowie eine Spatelspitze Zinkacetat zugegeben. Nachdem 2 h bei 105 °C gerührt worden war, 

wurde der Reaktion Ethanol (10.0 mL) zugegeben. Nach Zugabe von NaOH (3 · 100 mL, 2M) 

wurde solange mit Chloroform (2 · 100 mL) extrahiert, bis die organische Phase farblos 

erschien. Die vereinigten organischen Phasen wurden über MgSO4 getrocknet und CHCl3 im 

Vakuum entfernt. Zur Reinigung des Feststoffs wurde dieser in etwas Chloroform 

aufgenommen und mit Methanol gefällt. N-[4-(1,3-Dioxolan-2-yl)benzyl]perylen-3,4-

dicarboximid (110) konnte als roter Feststoff isoliert werden.  

 

Ausbeute:  

Synthese in Chinolin:   33.0 mg  

Synthese in Imidazol:   126 mg (110, 0.261 mmol, 100 %) 

 

Schmelzpunkt: 348 - 350 °C 

 

NO O

O
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Rf (Kieselgel, CHCl3/EtOH 50:1):     0.33 

 

IR  (ATR): ν~ = 2966.1 (vw), 2888.4 (w), 2361.8 (w), 2337.8 (vw), 2168.1 (vw), 1966.9 (vw), 

1920,1 (vw), 1684.1 (s), 1646.8 (s), 1619.6 (w), 1590.7 (s), 1572.5 (m), 1500.8 (w), 1432.1 

(w), 1395.8 (w), 1373.1 (s), 1338.3 (s), 1294.0 (m), 1242.0 (m), 1223.3 (w), 1185.3 (w), 

1127.7 (w), 1103.9 (w), 1069.9 (s), 1022.4 (m), 986.4 (m), 971.8 (m), 956.4 (w), 946.9 (w), 

938.8 (w), 858.4 (w), 845.9 (w), 835.2 (m), 811.9 (vs), 793.8 (m), 761.9 (m), 749.9 (s), 713.9 

(w), 701.5 (w), 663.7 (w), 632.9 cm-1 (m). 

 
1H-NMR  (400 MHz, CD2Cl2): δ = 3.96 - 4.07 (m, 4H, OCH2), 5.38 (s, 2H, NCH2), 5.74 (s, 

1H, OCH), 7.40 (d, 3J = 8.1 Hz, 2H, HPhenyl), 7.52 (d, 3J = 8.1 Hz, 2H, HPhenyl), 7.66 (t, 3J = 

7.7 Hz, 2H, HPerylen), 7.94 (d, 3J = 8.3 Hz, 2H, HPerylen), 8.48 (m, 4H, HPerylen), 8.60 ppm (d, 
3J = 8.4 H, 2H, HPerylen). 

 
13C-NMR  (100 MHz, CDCl3): δ = 65.2, 103.4, 126.4, 126.8, 128.2, 128.4, 137.3, 138.1, 

141.4, 142.7, 157.1, 160.5, 166.9, 168.0 ppm. 

 

UV/Vis (CHCl3): λmax (ε) = 487.2 (37330), 508.8 nm (35830). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 542.3 (1.00), 582.8 nm (0.81). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 487 nm, E487nm / 1cm = 0.0175, Referenz: S-13 

mit Φ = 1.00): Φ = 0.95 

 

MS (EI): m/z (%) = 485 (6) [M + H]+, 484 (33) [M]+, 483 (100) [M - H]+, 482 (29) [M - 2H]+, 

440 (14) [M - C2H4O]+, 412 (9), 411 (26) [M - C3H5O2]
+, 307 (10), 306 (11) [M - 

C10H11NO2]
+, 305 (33), 304 (27), 278 (13), 277 (40), 276 (22), 275 (14), 251 (17) [M - 

C12H11NO4]
+, 250 (32) [M - C12H11NO4]

+, 241 (12), 219 (16), 162 (22), 125 (21), 44 (9). 

 

HRMS (EI): ber.: C32H21NO4 [M]+:  483.1471 

  gef.:                          483.1455 ∆ = 0.0016 

 

C32H21NO4 [483.5]  ber. (%): C: 79.49 H: 4.38  N: 2.90 

     gef. (%): C: 77.71 H: 4.24 N: 2.85 
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D8.2 N-(4-Formylbenzyl)perylen-3,4-dicarboximid (111) 

 

D8.2.1  Synthese in Chinolin 

Zu einer Lösung aus Perylen-3,4-dicarbonsäureanhydrid (4, 229 mg, 

0.710 mmol, 1.00 Äq.) in Chinolin (20.0 mL) gab man 4-(1,3-Dioxolan-

2-yl)benzylamin (254 mg, 1.42 mmol, 2.00 Äq.) sowie eine Spatelspitze 

Zinkacetat und erhitzte 12 h auf 165 °C. Nach dem Erkalten wurde ein 

Gemisch aus 2M HCl/Eisessig (1:1, 250 mL) zugegeben und solange mit 

Chloroform extrahiert bis die organische Phase farblos erschien. Die rot-

orange Lösung wurde über MgSO4 getrocknet und das Lösungsmittel im 

Vakuum entfernt. Letzte Rückstände von Chinolin wurden durch eine 

Destillation im Feinvakuum (200 °C, 1.5 . 10-2 mbar) entfernt. Es folgte 

eine Aufreinigung des Rohprodukts durch Säulenchromatographie an Kieselgel (63 - 200 

µm). Verunreinigungen konnten mit Chloroform als Laufmittel eluiert werden. Anschließend 

wurde auf ein Laufmittelgemisch aus CHCl3/EtOH (100:1) umgestellt, wobei das Produkt 

Teil einer intensiv rot-orange-fluoreszierenden Bande war und als roter Feststoff isoliert 

werden konnte. Anschließend wurde dieser mit einer Mischung aus 2M HCl/Eisessig (1:1, 

500 mL) versetzt und solange mit CHCl3 extrahiert, bis die organische Phase keine Färbung 

mehr aufwies. Es folgte eine weitere säulenchromatographische Aufreinigung an Kieselgel 

(63 - 200 µm) mit einem Laufmittelgemisch aus CHCl3/EtOH (100:1). Das Produkt konnte als 

intensiv rot-orange-fluoreszierende Bande isoliert werden. Das Lösungsmittel wurde im 

Vakuum entfernt und der Rückstand in wenig Chloroform aufgenommen. Fällen mit 

Methanol lieferte N-(4-Formylbenzyl)perylen-3,4-dicarboximid (111) als roten Feststoff. 

 

D8.2.2  Synthese in Imidazol 

Perylen-3,4-dicarbonsäureanhydrid (4, 50.0 mg, 0.155 mmol, 1.00 Äq.), eine Spatelspitze 

Zinkacetat, Imidazol (2.00 g) und 4-(1,3-Dioxolan-2-yl)benzylamin (55.6 mg, 0.310 mmol, 

2.00 Äq.) wurde 2 h auf 130 °C erhitzt und anschließend mit Ethanol (5.00 mL) versetzt. 

Nach Zugabe einer Mischung aus 2M HCl/Eisessig (1:1, 250 mL) wurde solange mit 

Chloroform extrahiert, bis die organische Phase farblos erschien. Der Reaktionsansatz wurde 

über MgSO4 getrocknet und das Lösungsmittel im Vakuum entfernt. Es folgte eine 

säulenchromatographische Aufreinigung an Kieselgel (63 - 200 µm) mit einem Gemisch aus 

CHCl3/EtOH (50:1). Das Produkt konnte als intensiv rot-orange-fluoreszierende Bande 

NO O

111

O

H
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isoliert werden. Nach Entfernen des Laufmittels im Vakuum erhielt man N-(4-

Formylbenzyl)perylen-3,4-dicarboximid (111) als roten Feststoff.  

 

D8.2.3  Synthese durch säurekatalysierte Hydrolyse 

N-[4-(1,3-Dioxolan-2-yl)benzyl]-perylen-3,4-dicarboximid (110, 76.3 mg, 0.237 mmol) 

wurde mit einer Mischung aus 2M HCl/Eisessig (1:1, 2 · 100 mL) versetzt und solange mit 

Chloroform extrahiert, bis die organische Phase farblos erschien. Nachdem über MgSO4 

getrocknet worden war, wurde das Lösungsmittelgemisch im Vakuum entfernt und der 

Rückstand in wenig Chloroform aufgenommen. Das Produkt N-(4-Formylbenzyl)perylen-3,4-

dicarboximid (33) konnte nach Fällen mit n-Pentan als roter Feststoff isoliert werden.  

 

Ausbeute:   

Synthese in Chinolin:  235 mg (111, 0.535 mmol, 69 %) 

Synthese in Imidazol:  16.0 mg (111, 36.4 µmol, 24 %) 

Säurekatalysierte Hydrolyse: 97.2 mg (111, 0.221 mmol, 85 %) 

 

Schmelzpunkt: 355 - 359 °C 

 

Rf (Kieselgel, CHCl3/EtOH 50:1):     0.54 

 

IR (ATR): ν~ = 3056.5 (w), 2710.0 (w), 2363.6 (w), 2341.7 (w), 1946.0 (w), 1703.4 (m), 

1687.9 (m), 1646.1 (s), 1605.6 (w), 1592.2 (m), 1570.1 (m), 1522.4 (w), 1500.3 (w), 1423.5 

(w), 1373.6 (m), 1340.9 (m), 1293.9 (m), 1240.5 (m), 1207.1 (m), 1163.8 (m), 1136.1 (w), 

1126.0 (w), 1099.9 (m), 1056.2 (w), 1014.0 (w), 954.0 (m), 871.8 (w), 859.8 (w), 835.8 (m), 

809.7 (vs), 786.1 (m), 758.6 (s), 747.9 (s), 727.8 (m), 661.5 (w), 641.5 (w), 627.8 (m), 612.3 

cm-1 (w). 

 
1H-NMR  (600 MHz, CDCl3): δ = 5.48 (s, 2H, NCH2), 7.66 (t, 3J = 7.8 Hz, 2H HPerylen), 7.70 

(d, 3J = 8.1 Hz, 2H, HPhenyl), 7.84 (d, 3J = 8.1 Hz, 2H, HPhenyl), 7.93 (d, 3J = 7.9 Hz, 2H, 

HPerylen), 8.45 - 8.49 (m, 4H, HPerylen), 8.64 (d, 2H, 3J = 8.0 Hz, HPerylen), 9.98 ppm (s, 1H, 

CHO). 

 
13C-NMR  (151 MHz, CDCl3): δ = 43.4, 120.3, 120.6, 124.0, 127.1, 127.9, 129.1, 129.2, 

130.0, 131.2, 132.0, 137.4, 164.0, 191.9 ppm.  
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UV/Vis (CHCl3): λmax (ε) = 488.6 (23610), 512.2 nm (22430).  

 

Fluoreszenz (CHCl3): λmax (Irel) = 546.0 (1.00), 584.8 nm (0.81). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 488 nm, E488nm / 1cm = 0.0127, Referenz: S-13 

mit Φ = 1.00): Φ = 0.91 

 

MS (EI): m/z (%) = 441 (5) [M + 2H]+, 440 (27) [M + H]+, 439 (100) [M]+, 422 (7) [M - 

HO]+, 307 (11), 306 (6) [M - C8H7NO]+, 305 (19), 304 (10), 278 (7), 277 (23), 276 (8), 275 

(6), 251 (10) [M +H - C10H7NO3]
+, 250 (15) [M - C10H7NO3]

+, 125 (13). 

 

HRMS (EI): ber.: C30H17NO3 [M]+:  439.1208  

  gef.:                          439.1209 ∆ = 0.0001 

 

C30H17NO3 [439.5]  ber. (%): C: 81.99 H: 3.90  N: 3.19 

     gef. (%): C: 81.19 H: 3.83 N: 3.15 
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D8.3 N-{[4-(1,3-Dioxolan-2-yl)phenyl]benzyl}perylen-3,4-dicarboximid  

(112) 

 

D8.3.1  Synthese in Chinolin 

Perylen-3,4-dicarbonsäureanhydrid (4, 42.1 mg, 0.131 mmol, 

1.00 Äq.) wurde in Chinolin (2.00 mL) gelöst, 4´-(1,3-Dioxolan-2-

yl)biphenyl-4-methylamin (66.6 mg, 0.261 mmol, 2.00 Äq.) zugege- 

ben und 12 h auf 165 °C erhitzt. Im Anschluss wurde durch 

Destillation im Feinvakuum (160 °C, 1.8 . 10-1 mbar) das Lösungs- 

mittel entfernt, das Rohprodukt in etwas Chloroform aufgenommen 

und mit Methanol gefällt. Es folgte eine säulenchromatographische 

Aufreinigung an Kieselgel (63 - 200 µm), wobei Verunreinigungen 

zunächst mit CHCl3/Isohexan (1:1) eluiert wurden. Nach Umstellen 

auf das Laufmittelgemisch CHCl3/EtOH (50:1) war das gewünschte Produkt Teil einer 

intensiv rot-orange-fluoreszierende Bande, wobei lediglich ein Gemisch aus N-{[4-(1,3-

Dioxolan-2-yl)phenyl]benzyl}perylen-3,4-dicarboximid (112) und N-[(4-Formylphenyl)- 

benzyl]perylen-3,4-dicarboximid (113) als roter Feststoff isoliert werden konnte.  

 

D8.3.2  Synthese in Imidazol 

Perylen-3,4-dicarbonsäureanhydrid (4, 84.0 mg, 0.261 mmol, 1.00 Äq.), sowie Imidazol 

(4.00 g) wurden vorgelegt und 4´-(1,3-Dioxolan-2-yl)biphenyl-4-methylamin (133 mg, 

0.522 mmol, 2.00 Äq.) mit einer Spatelspitze Zinkacetat zugegeben. Den Reaktionsansatz ließ 

man 2 h bei 105 °C rühren. Die Reaktion wurde mit Ethanol (10.0 mL) und anschließend mit 

wässriger NaOH-Lösung (2M, 200 mL) versetzt. Es wurde mit Chloroform (2 · 150 mL) 

extrahiert bis die organische Phase farblos erschien und die vereinigten organischen Phasen 

über MgSO4 getrocknet. Nachdem das Lösungsmittel im Vakuum entfernt worden war, wurde 

das Produkt in etwas Chloroform aufgenommen und mit Methanol gefällt. Dies lieferte  

N-{[4-(1,3-Dioxolan-2-yl)phenyl]benzyl}perylen-3,4-dicarboximid (112) als roten Feststoff. 

 

Ausbeute:     

Synthese in Chinolin:   48.0 mg  

Synthese in Imidazol:   121 mg (112, 0.216 mmol, 83 %) 

 

Rf (Kieselgel, CHCl3/EtOH 50:1):     0.29 

NO O

112

2

O

O
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Schmelzpunkt: 330 - 335 °C 

 

IR (ATR): ν~ = 2959.8 (w), 2882.7 (w), 2363.3 (w), 2338.0 (w), 1916.5 (w), 1688.8 (m), 

1648.0 (s), 1593.5 (m), 1572.5 (m), 1500.0 (m), 1430.2 (w), 1405.7 (w), 1375.7 (m), 1340.5 

(m), 1310.4 (w), 1293.7 (w), 1242.9 (m), 1219.6 (w), 1184.3 (w), 1167.8 (m), 1137.5 (w), 

1103.8 (m), 1076.1 (m), 1007.5 (w), 954.9 (m), 858.4 (w), 835.5 (m), 809.5 (vs), 758.3 (s), 

746.1 (s), 730.0 (w), 700.0 (w), 661.8 (w), 626.1 cm-1 (m). 

 
1H-NMR  (400 MHz, CD2Cl2): δ = 3.99 - 4.12 (m, 4H, OCH2), 5.42 (s, 2H, NCH2), 5.79 (s, 

1H, OCH), 7.50 (d, 3J = 8.4 Hz, 2H, HBiphenyl), 7.55 - 7.61 (m, 6H, HBiphenyl), 7.65 (t, 3J = 7.8 

Hz, 2H, HPerylen), 7.92 (d, 3J = 7.9 Hz, 2H, HPerylen), 8.43 - 8.49 (m, 4H, HPerylen), 8.59 ppm (d, 
3J = 8.1 Hz, 2H, HPerylen). 

 
13C-NMR  (100 MHz, CD2Cl2): δ = 43.1, 65.3, 103.4, 120.3, 123.6, 126.8, 126.9, 127.0, 

129.0, 131.0, 131.5, 137.0, 137.3, 141.6, 159.3, 163.8 ppm. 

 

UV/Vis (CHCl3): λmax  (ε) = 487.0 (29880), 508.8 nm (28470). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 544.4 (1.00), 583.8 nm (0.83). 

 

Fluoreszenzquantenausbeute: (CHCl3, λexc = 487 nm, E487nm / 1cm  = 0.0223, Referenz: S-13 

mit Φ = 1.00): Φ = 1.00 

 

MS (EI): m/z (%) = 561 (9) [M + H]+, 560 (38) [M]+, 559 (100) [M - H]+, 558 (22) [M - 2H]+, 

516 (13) [M - C2H4O]+, 488 (20), 487 (48) [M - C3H5O2]
+, 307 (12), 306 (17) [M - H - 

C16H15NO2]
+, 305 (56), 304 (13), 279 (23), 278 (21), 277 (66), 276 (15), 275 (11), 257 (13), 

251 (20), 250 (32) [M - C18H15NO4]
+, 243 (12), 167 (14), 165 (23), 125 (19), 124 (10), 44 

(15). 

 

HRMS (EI): ber.: C38H25NO4 [M]+:   559.1784  

  gef.:                          559.1762  ∆ = 0.0022 

 

C38H25NO4 [559.6]  ber. (%): C: 81.56 H: 4.50  N: 2.50 

     gef. (%): C: 80.56 H: 4.64 N: 2.80 
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D8.4 N-[(4-Formylphenyl)benzyl]perylen-3,4-dicarboximid (113) 

Perylen-3,4-dicarbonsäureanhydrid (4, 375 mg, 1.16 mmol, 1.00 Äq.) 

wurde in Chinolin (20.0 mL) gelöst und anschließend 4´-(1,3-Di-oxolan-

2-yl)biphenyl-4-methylamin (594 mg, 2.33 mmol, 2.00 Äq.) sowie eine 

Spaltelspitze Zinkacetat zugegeben. Nachdem 12 h auf 165 °C erhitzt 

worden war, wurde der Ansatz mit einem Gemisch aus 2M HCl/Eisessig 

(1:1, 250 mL) versetzt, mit Chloroform (2 · 200 mL) extrahiert und die 

vereinigten organischen Phasen über MgSO4 getrocknet. Das 

Lösungsmittel wurde im Vakuum entfernt. Es folgte eine 

säulenchromatographische Aufreinigung des Rohproduktes über 

Kieselgel (63 - 200 µm). Zunächst wurden Verunreinigungen mit Chloroform entfernt. Im 

Anschluss wurde auf das Laufmittelgemisch CHCl3/EtOH (100:1) umgestellt. Das Produkt 

war Teil einer intensiv rot-orange-fluoreszierende Bande. Der erhaltene, rote Feststoff wurde 

nochmals mit 2M HCl/Eisessig (1:1, 250 mL) versetzt und mit CHCl3 extrahiert. Es folgte 

eine zweite Reinigung durch Säulenchromatographie an Kieselgel (63 - 200 µm) mit einem 

Lösungsmittelgemisch aus CHCl3/EtOH (100:1), wobei das gewünschte Produkt als intensiv 

rot-orange-fluoreszierende Bande eluiert werden konnte. Nach Entfernen des Lösungsmittels 

im Vakuum, wurde die Substanz in etwas Chloroform aufgenommen. Die Fällung mit 

Methanol lieferte N-[(4-Formylphenyl)benzyl]perylen-3,4-dicarboximid (113) als roten 

Feststoff.  

 

Ausbeute: 223 mg (113, 0.433 mmol, 37 %) 

 

Schmelzpunkt: 356 - 361 °C 

 

Rf (Kieselgel, CHCl3/EtOH 50:1): 0.31 

 

IR (ATR): ν~ = 3029.4 (w), 2363.8 (w), 1970.0 (w), 1689.6 (m), 1648.4 (s), 1594.4 (m), 

1574.8 (w), 1500.7 (w), 1430.1 (w), 1376.3 (m), 1339.9 (m), 1309.1 (w), 1293.5 (w), 1242.6 

(m), 1216.3 (w), 1206.1 (w), 1184.3 (w), 1167.5 (m), 1137.1 (w), 1103.8 (m), 1055.5 (w), 

1006.2 (w), 955.4 (m), 874.0 (w), 831.8 (m), 808.4 (vs), 757.5 (s), 744.0 (m), 722.0 (w), 

703.5 (w), 661.8 (m), 632.7 (w), 625.1 cm-1 (w).  

 

NO O

113

O
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1H-NMR  (400 MHz, CDCl3): δ = 5.46 (s, 2H, NCH2), 7.58 (d, 3J = 8.4 Hz, 2H, HBiphenyl), 

7.61 - 7.67 (m, 4H, HBiphenyl, HPerylen), 7.70 (d, 3J = 8.1 Hz, 2H, HBiphenyl), 7.90 (d, 3J = 8.5 Hz,  

4H, HBiphenyl, HPerylen), 8.42 - 8.47 (m, 4H, HPerylen), 8.63 (d, 3J = 8.1 Hz, 2H, HPerylen), 10.0 

ppm (s, 1H, CHO). 

 
13C-NMR  (151 MHz, CDCl3): δ = 43.3, 120.5, 120.8, 123.9, 127.1, 127.4, 127.6, 129.1, 

129.6, 130.2, 131.1, 131.9, 134.3, 135.1, 138.8, 139.1, 140.1, 164.0, 191.9 ppm. 

 

UV/Vis (CHCl3): λmax (ε)  = 487.4 (33510), 511.4 nm (31650). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 545.1 (1.00), 583.8 nm (0.81). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 487 nm, E487nm / 1cm  = 0.0211, Referenz: S-13 

mit Φ = 1.00): Φ = 1.00 

 

MS (EI): m/z (%) = 517 (7) [M + H]+, 516 (32) [M]+, 515 (100) [M -H]+, 307 (6), 306 (7), 305 

(24) [M - C14H11O2]
+, 278 (7), 277 (28), 276 (4), 258 (8), 257 (4), 251 (6), 250 (10) [M - 

C16H11O3N]+, 125 (5). 

 

HRMS (EI): ber.: C36H21NO3 [M]+:  515.1521  

  gef.:                          515.1521 ∆ = 0.0001 

 

C36H21NO3 [515.6]  ber. (%): C: 83.87 H: 4.11  N: 2.72 

     gef. (%): C: 82.62 H: 4.36 N: 2.69 
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D8.5 N-(4-Phenyliminomethylbenzyl)perylen-3,4-dicarboximid (114) 

Zu einer Lösung aus N-(4-Formylbenzyl)perylen-3,4-dicarboximid 

(111, 20.0 mg, 45.5 µmol, 1.00 Äq.) und frisch destilliertem Anilin 

(2.50 mL, 27.4 mmol) gab man MgSO4 (300 mg) und ließ 12 h bei 

Raumtemperatur rühren. Nachdem das Trockenmittel abfiltriert 

worden war, wurde der Filterkuchen solange mit Chloroform 

gewaschen, bis das Eluat farblos erschien. Anschließend wurden 

die Lösungsmittel Chloroform und Anilin durch Destillation 

(CHCl3: 1 Atm., 59 °C; Anilin: 5.9 · 10-1 mbar, 39 °C) entfernt. Das 

Rohprodukt wurde in etwas Chloroform aufgenommen und mit 

Methanol gefällt. So konnte ein Gemisch aus N-(4-Phenylimino- 

methylbenzyl)perylen-3,4-dicarboximid (114) und dem Edukt N-(4-Formylbenzyl)perylen-

3,4-dicarboximid (111) als roter Feststoff gewonnen werden.  

 

Ausbeute: 19.9 mg  

 

Rf (Kieselgel, CHCl3/EtOH 50:1):     0.54 

 

IR (ATR): ν~ = 3052.3 (w), 2962.6 (m), 2923.8 (w), 2851.2 (w), 1942.6 (w), 1690.2 (m), 

1647.9 (s), 1593.5 (m), 1571.1 (m), 1499.8 (m), 1423.6 (w), 1374.9 (m), 1341.7 (m), 1293.9 

(m), 1259.6 (m), 1241.9 (m), 1207.6 (w), 1189.7 (w), 1165.8 (m), 1136.0 (w), 1099.4 (s), 

1015.0 (s), 954.4 (m), 860.0 (w), 836.2 (w), 810.1 (vs), 791.8 (s), 759.7 (s), 748.1 (m), 730.0 

(w), 692.4 (m), 661.9 (w), 619.5 (w), 628.1 cm-1 (w). 
 

1H-NMR  (400 MHz, CD2Cl2): δ = 5.44 (m, 2H, NCH2), 7.15 - 7.17 (m, 2H, HAnilin), 7.33 - 

7.35 (m, 3H, HAnilin),7.63 (t, 3J = 7.5 Hz, 2H, HPerylen), 7.67 (d, 3J = 8.1 Hz, 2H, HPhenyl), 7.83 

(d, 3J = 8.5 Hz, 2H, HPhenyl), 7.91 (d, 3J = 8.4 Hz, 2H, HPerylen), 8.40 - 8.46 (m, 4H, HPerylen), 

8.48 (s, 1H, CHNCCH), 8.55 (d, 3J = 8.1 Hz, 2H, HPerylen), 9.96 ppm (s, 1H, CHO)*.  
 

13C-NMR  (100 MHz, CDCl3): δ = 43.2, 119.0, 119.7, 120.0, 120.2, 120.6, 123.2, 123.9, 

124.5, 127.0, 127.6, 128.9, 129.2, 129.6, 130.2, 131.0, 131.6, 137.5, 144.4, 163.7, 191.6* 

ppm. 
* Signal kann dem Edukt zugeordnet werden 

 

NO O

114

N
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UV/Vis (CHCl3): λmax (Erel) = 488.0 (1.00), 511.0 nm (0.95). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 545.7 (1.00), 586.8 nm (0.82). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 488 nm, E488nm / 1cm  = 0.0177, Referenz: S-13 

mit Φ = 1.00): Φ = 0.88 

 

MS (EI): m/z (%) = 515 (6) [M]+, 514 (14) [M - H]+, 440 (28), 439 (93) [M + H - C6H5]
+, 305 

(19) [M - C14H13N2]
+, 277 (25) [M - C15H12NO2]

+, 250 (17) [M - C16H12N2O2]
+, 155 (15), 141 

(16), 127 (21), 125 (17), 113 (22), 111 (26), 99 (31), 97 (43), 85 (61), 71 (72), 69 (34), 57 

(100), 43 (33). 

 

HRMS (EI): ber.: C36H22N2O2 [M]+:  514.1681  

  gef.:    514.1662 ∆ = 0.0019 

 

 

D8.6 N-(Phenyliminomethylphenylbenzyl)perylen-3,4-

dicarboximid (115) 

Eine Lösung aus N-[(4-Formylphenyl)benzyl]perylen-3,4-

dicarboximid (113, 25.0 mg, 48.5 µmol, 1.00 Äq.) wurde mit frisch 

destilliertem Anilin (2.50 mL, 27.4 mmol) und MgSO4 (300 mg) als 

Trockenmittel versetzt. Nachdem 12 h bei Raumtemperatur gerührt 

worden war, wurde das Trockenmittel abfiltriert und der Filter- 

kuchen solange mit Chloroform gewaschen, bis keine Färbung des 

Lösungsmittels mehr sichtbar war. Im Anschluss wurden die 

organischen Lösungsmittel durch Destillation (CHCl3: 1 Atm., 

59 °C; Anilin: 6 · 10-1 mbar, 39 °C) entfernt. Das Rohprodukt 

wurde in wenig Dichlormethan aufgenommen und mit Methanol gefällt. Auf diese Weise 

konnte N-(4-Phenyliminomethylphenyl-benzyl)perylen-3,4-dicarboximid (115) als roter 

Feststoff gewonnen werden. 

 

Ausbeute: 27.2 mg (115, 46.1 µmol, 96 %) 

 

Rf (Kieselgel, CHCl3/EtOH 50:1):     0.31 

NO O

115

N

2
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IR (ATR): ν~ = 2962.0 (m), 1688.5 (m), 1647.9 (m), 1592.0 (m), 1573.1 (w), 1498.4 (w), 

1411.9 (w), 1374.3 (m), 1341.7 (w), 1292.6 (w), 1259.2 (s), 1168.8 (w), 1086.8 (s), 1014.1 

(s), 955.8 (w), 861.2 (w), 792.5 (vs), 756.1 (s), 744.0 (m), 692.5 (m), 661.7 (m), 627.3 (w), 

611.2 cm-1 (w). 

 
1H-NMR  (600 MHz, CD2Cl2): δ = 5.45 (s, 2H, NCH2), 7.21 - 7.27 (m, 2H, HAnilin), 7.38 - 

7.45 (m, 3H, HAnilin), 7.53 – 7.77 (m, 10H, Harom), 7.96 (d, 3J = 8.3 Hz, 2H, Harom), 8.47 – 8.55 

(m, 4H, Harom), 8.51 (s, 1H, CHNCCH), 8.61 – 8.65 ppm (m, 2H, Harom)  
 

13C-NMR  (151 MHz, CD2Cl2): δ  = 43.0, 120.3, 120.5, 120.8, 122.1, 122.8, 123.1, 123.9, 

124.1, 124.5, 124.8, 126.1, 126.9, 127.0, 127.5, 128.9, 129.7, 130.0, 131.0, 131.3, 131.5, 

132.6, 135.1, 137.4, 138.0, 140.5, 142.1, 155.8, 162.5. 

 

UV/Vis (CHCl3): λmax (Erel) = 487.0 (1.00), 510.4 nm (0.94). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 544.3 (1.00), 584.6 nm (0.82). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 487 nm, E487nm / 1cm  = 0.0197, Referenz: S-13 

mit Φ = 1.00 ): Φ = 0.93 

 

MS (EI): m/z (%) = 591 (24) [M]+, 590 (48) [M - H]+, 515 (27) [M + H - C6H5]
+, 355 (23), 

305 (46) [M - C20H17N2]
+, 295 (27), 282 (16), 281 (55), 278 (16), 277 (55) [M - C21H16NO2]

+, 

250 (22), 221 (33), 208 (22), 207 (100), 97 (17), 93 (23), 85 (18), 73 (33), 71 (24), 57 (33), 43 

(17). 

 

HRMS (EI): ber.: C42H26N2O2 [M]+:  590.1994  

  gef.:    590.2005 ∆ = 0.0011 
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D8.7 N-(4-Butyliminomethylbenzyl)perylen-3,4-dicarboximid (116) 

Zu einer Lösung aus N-(4-Formylbenzyl)perylen-3,4-dicarboximid 

(111, 30.0 mg, 68.3 µmol,  1.00 Äq.) in CHCl3 (3.00 mL), die mit 

Eisessig (3 Tropfen) auf pH 5 angesäuert wurde, gab man n-Butylamin 

(49.9 mg, 0.683 mmol, 10.0 Äq.) sowie MgSO4 (400 mg) hinzu. Es 

wurde 4 h unter Rückfluss erhitzt, anschließend das Trockenmittel 

abfiltriert und der Filterkuchen solange mit CHCl3 gewaschen, bis das 

Filtrat farblos erschien. Nachdem die organische Phase im Vakuum 

entfernt worden war, wurde der Rückstand in etwas DCM 

aufgenommen und mit Methanol gefällt. N-(4-Butyliminomethyl- 

benzyl)perylen-3,4-dicarboximid (116) konnte als Gemisch mit N-(4-Formylbenzyl)perylen-

3,4-dicarboximid (111) als roter Feststoff gewonnen werden.  

 

Ausbeute: 23.0 mg  

 

Rf (Kieselgel, CHCl3/EtOH 50:1):     0.54 

 

IR  (ATR): ν~ = 2959.9 (m), 2928.8 (m), 2870.8 (w), 2834.2 (w), 2361.7 (w), 2335.0 (w), 

2165.9 (w), 2116.0 (w), 1929.4 (w), 1690.0 (s), 1648.0 (vs), 1607.7 (w), 1594.1 (s), 1571.1 

(m), 1524.3 (w), 1501.6 (m), 1485.5 (w), 1456.9 (w), 1426.3 (m), 1375.1 (s), 1338.2 (s), 

1301.8 (w), 1293.3 (m), 1260.2 (w), 1242.6 (m), 1219.6 (w), 1207.1 (w), 1186.3 (w), 1166.5 

(m), 1135.5 (w), 1124.8 (w), 1098.6 (s), 1056.4 (w), 1014.2 (m), 975.8 (w), 954.3 (m), 919.3 

(w), 872.0 (w), 858.0 (w), 836.3 (m), 808.2 (s), 789.8 (m), 759.7 (m), 747.6 (s), 732.2 (w), 

661.5 (m), 627.7 (m), 610.6 cm-1 (w). 

 
1H-NMR  (400 MHz, CD2Cl2): δ = 0.92 (t, 3J = 7.4 Hz, 3H, CH3CH2CH2CH2NCH), 1.34 - 

1.39 (m, 2H, CH3CH2CH2CH2NCH), 1.59 - 1.67 (m, 2H, CH3CH2CH2CH2NCH), 3.56 (t, 3J = 

7.0 Hz, 2H, CH3CH2CH2CH2NCH), 5.36 (s, 2H, NCH2), 7.54 – 7.59 (m, 4H, Harom), 7.68 (d, 
3J = 8.1 Hz, 2H, Harom), 7.81 – 7.86 (m, 2H, Harom), 8.23 – 8.35 (m, 4H, Harom), 8.28 (s, 1H, 

CH2NCH), 8.42 – 8.47 (m, 2H, Harom), 9.97 ppm (s, 1H, CHO)*. 

 
13C-NMR  (100 MHz, CD2Cl2): δ  = 13.6, 25.5, 29.5, 43.0, 120.1, 120.6, 123.7, 123.8, 126.9, 

127.0, 127.6, 127.9, 128.8, 128.9, 129.0, 129.6, 130.8, 130.9, 131.3, 131.4, 134.1, 137.1, 

140.0, 159.9, 163.6, 191.6* ppm. 

NO O
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* Signal kann dem Edukt zugeordnet werden 

 

UV/Vis (CHCl3): λmax (Erel)  = 488.0 (1.00), 511.6 nm (0.95). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 546.2 (1.00), 583.2 nm (0.81). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 488 nm, E488nm / 1cm = 0.0123, Referenz: S-13 

mit Φ = 1.00 ): Φ = 0.97 

 

MS (EI): m/z (%) = 494 (10) [M]+, 441 (7), 440 (31), 439 (100) [M + 2H - C4H9]
+, 422 (7), 

307 (11) [M + H - C12H16N2]
+, 306 (7) [M - C12H16N2]

+, 305 (18), 304 (11), 278 (7), 277 (23) 

[M + H - C13H16NO2]
+, 251 (10), 250 (15) [M - C24H21N2O2]

+, 219 (9), 125 (17). 

 

HRMS (EI): ber.: C34H26N2O2 [M]+:  494.1994  

  gef.:    494.1985 ∆ = 0.0009 

 

 

 

D8.8 N-(4-Butyliminomethylphenylbenzyl)perylen-3,4-dicarboximid (117) 

Unter Argonatmosphäre wurde zu einer Lösung aus N-[(4-

Formylphenyl)benzyl]perylen-3,4-dicarboximid (113, 30.0 mg, 

58.2 µmol, 1.00 Äq.) in CHCl3 (3.00 mL), die zuvor mit Eisessig 

(3 Tropfen) auf pH 5 angesäuert worden war, MgSO4 (400 mg) und n-

Butylamin (42.6 mg, 0.582 mmol, 10.0 Äq.) gegeben. Es wurde 4 h 

unter Rückfluss erhitzt, anschließend das Trockenmittel abfiltriert und 

der Filterkuchen solange mit CHCl3 gewaschen, bis dieser beinahe 

farblos erschien. Das Lösungsmittel wurde im Vakuum entfernt, der 

Rückstand in wenig DCM aufgenommen und mit Methanol gefällt. Auf 

diese Weise konnte ein Gemisch aus N-(4-Butyliminomethylphenylbenzyl)perylen-3,4-di-

carboximid (117) und dem Edukt N-[(4-Formylphenyl)benzyl]perylen-3,4-dicarboximid  

(113) als roter Feststoff isoliert werden.  

 

Ausbeute: 30.0 mg  
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Rf (Kieselgel, CHCl3/EtOH 50:1):     0.31 

 

IR (ATR): ν~ = 2962.1 (m), 2361.9 (w), 2333.1 (w), 1932.0 (w), 1688.1 (m), 1647.8 (m), 

1593.7 (m), 1573.9 (w), 1499.8 (w), 1412.0 (w), 1376.2 (m), 1340.0 (m), 1293.8 (w), 1258.4 

(s), 1218.3 (w), 1167.5 (w), 1082.2 (s), 1012.5 (vs), 955.6 (w), 861.5 (m), 794.5 (vs), 757.5 

(m), 744.1 (w), 701.9 (m), 661.4 (m), 625.3 cm-1 (w). 

 
1H-NMR (400 MHz, CD2Cl2): δ = 0.95 (t, 3J = 7.2 Hz, 3H, CH3CH2CH2CH2NCH), 1.31 - 

1.35 (m, 2H, CH3CH2CH2CH2NCH), 1.50 - 1.60 (m, 2H, CH3CH2CH2CH2NCH), 3.23 (t, 3J = 

6.5 Hz, 2H, CH3CH2CH2CH2NCH), 5.44 (s, 2H, NCH2), 7.60 - 7.69 (m, 6H, Harom), 7.76 (d, 
3J = 8.2 Hz, 2H, HBiphenyl), 7.90 - 7.99 (m, 4H, Harom), 8.47 (s, 1H, CH2NCH), 8.42 - 8.50 (m, 

4H, HPerylen), 8.59 (d, 3J = 8.1 Hz, 2H, HPerylen), 10.03 ppm (s, 1H, CHO)*. 

 
13C-NMR  (100 MHz, CD2Cl2): δ = 29.5, 42.5, 120.3, 122.3, 122.5, 123.9, 124.1, 125.1, 

127.1, 127.3, 127.5, 128.2, 129.0, 129.2, 130.0, 131.0, 131.5, 134.3, 137.0, 137.3, 137.4, 

148.2, 163.8, 191.7* ppm. 
* Signal kann dem Edukt zugeordnet werden 

 

UV/Vis (CHCl3): λmax (Erel)  = 486.8 (1.00), 510.6 nm (0.95). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 545.0 (1.00), 583.8 nm (0.82). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 487 nm, E487nm / 1cm = 0.0202, Referenz: S-13 

mit Φ = 1.00 ): Φ = 1.00 

 

MS (EI): m/z (%) = 571 (0.37) [M]+, 570 (0.70) [M -H]+, 515 (11) [M + H - C4H9]
+, 429 (6), 

415 (7), 400 (7), 357 (5) [M - C15H19N]+, 356 (6), 355 (24), 342 (8), 341 (21), 321 (6) [M + H 

- C18H20N]+, 295 (7), 283 (10), 282 (15), 281 (52) [M - C21H23N]+, 277 (8) [M + H - 

C19H21N2O]+, 266 (12), 223 (9), 222 (15), 221 (69), 209 (14), 208 (20), 207 (100), 147 (58), 

133 (13), 96 (11), 73 (56). 

 

HRMS (EI): ber.: C40H30N2O2 [M]+:  570.2307   

  gef.:    570.2287 ∆ = 0.0020 
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D8.9 N-[4-(4´-Carboxyphenyl)iminomethylbenzyl]perylen-3,4-di-

carboximid (118) 

N-(4-Formylbenzyl)perylen-3,4-dicarboximid (111, 13.0  

mg, 29.6 µmol, 1.00 Äq.) wurde in einem Lösungsmittel- 

gemisch aus DCM und Ethanol (10:4, 3.00 mL), das mit 

Essigsäure (3 Tropfen) auf pH 5 angesäuert wurde, gelöst 

und mit p-Aminobenzoesäure (40.6 mg, 0.296 mmol, 

10.0 Äq.) sowie MgSO4 (200 mg) versetzt. Man ließ den 

Reaktionsansatz unter Rückfluss über Nacht rühren und 

filtrierte anschließend das Trockenmittel ab. Der Filter- 

kuchen wurde solange mit dem Lösungsmittelgemisch 

gewaschen, bis keine Färbung des Eluats mehr zu erkennen 

war. Die organische Phase wurde im Vakuum entfernt, überschüssige p-Aminobenzoesäure 

durch Zugabe von Methanol gelöst und durch Filtration vom Feststoff getrennt. Auf diese 

Weise konnte ein Gemisch aus N-[4-(4´-Carboxyphenyl)iminomethylbenzyl]perylen-3,4-

dicarboximid (118) und dem Edukt N-(4-Formylbenzyl)perylen-3,4-dicarboximid (111) 

isoliert werden.  

 

 

Ausbeute: 9.00 mg  

 

Rf (Kieselgel, CHCl3/EtOH 50:1):     0.54 

 

IR  (ATR): ν~ = 3118.4 (w), 2963.8 (w), 2667.8 (w), 2552.0 (w), 2362.0 (w), 2165.7 (w), 

1931.7 (w), 1678.1 (s), 1648.0 (vs), 1593.5 (vs), 1570.4 (m), 1502.0 (w), 1424.7 (m), 1374.1 

(s), 1338.8 (s), 1318.5 (m), 1294.7 (s), 1242.2 (m), 1167.3 (s), 1137.5 (m), 1126.1 (m), 1100.1 

(m), 1056.0 (w), 1013.7 (w), 981.4 (w), 955.5 (m), 895.5 (m), 872.7 (m), 857.9 (m), 836.0 

(m), 809.8 (vs), 792.6 (w), 779.9 (m), 761.7 (m), 748.3 (m), 737.6 (m), 698.4 (m), 664.3 (m), 

654.0 (w), 623.8 cm-1 (s). 

 
1H-NMR  (600 MHz, CDCl3: CD3OD = 10:1): δ  = 5.44 (s, 2H, NCH2), 7.50 (d, 3J = 8.4 Hz, 

2H, HPABA), 7.63 (t, 3J = 7.5 Hz, 2H, HPerylen), 7.80 (d, 3J = 8.4 Hz, 2H, HPABA), 7.82 (s, 1H, 

CHNCCH), 7.89 (d, 3J = 8.2 Hz, 2H, HPhenyl), 7.92 (d, 3J = 8.5 Hz, 2H, Hphenyl), 7.97 (d, 3J = 

8.2 Hz, 2H, Harom), 8.43 - 8.49 (m, 4H, Harom), 8.59 (m, 2H, Harom), 9.90 ppm (s, 1H, CHO)*.  

NO O

118

N

CO2H
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* Signal kann dem Edukt zugeordnet werden 

 

UV/Vis (CHCl3): λmax (Erel) = 488.6 (1.00), 511.2 nm (0.97). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 547.4 (1.00), 585.7 nm (0.82). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 489 nm, E489nm / 1cm = 0.0152, Referenz: S-13 

mit Φ = 1.00 ): Φ = 0.88 

 

MS (EI): m/z (%) = 559 (3) [M]+, 558 (6) [M - H]+, 439 (33) [M + H - C7H5O2]
+, 321 (50), 

305 (18), 277 (32) [M - C16H12NO4]
+, 250 (20) [M - C17H12N2O4]

+, 207 (17), 137 (59), 127 

(17), 125 (21), 124 (15), 120 (64), 113 (20), 111 (38), 109 (16), 99 (33), 98 (21), 97 (63), 96 

(18), 95 (24), 92 (25), 85 (62), 83 (60), 71 (76), 69 (62), 57 (100), 55 (69), 44 (67), 43 (55), 

41 (47). 

 

HRMS (EI): ber.: C37H22N2O4 [M]+:  558.1580  

  gef.:    558.1582 ∆ = 0.0002 
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D8.10 N-[4-(4´-Carboxyphenyl)iminomethylphenylbenzyl]perylen-3,4-

dicarboximid (119) 

Nachdem N-[(4-Formylphenyl)benzyl]perylen-3,4-dicarb- 

oximid (113, 9.00 mg, 17.5 µmol, 1.00 Äq.) in einem zuvor 

mit Eisessig (2 Tropfen) auf pH 5 angesäuerten Gemisch aus 

DCM und Ethanol (10:4, 2.00 mL) gelöst worden war, 

wurden p-Aminobenzoesäure (23.9 mg, 0.175 mmol, 

10.0 Äq.) sowie MgSO4 (200 mg) zugegeben. Man ließ den 

Reaktionsansatz über Nacht unter Rückfluss rühren und 

filtrierte anschließend das Trockenmittel ab. Der Filter- 

kuchen wurde solange mit dem Lösungsmittelgemisch 

gewaschen, bis das Filtrat farblos erschien. Nach Entfernen 

des Lösungsmittels im Vakuum und Waschen mit Methanol, konnte N-[4-(4´-

Carboxyphenyl)iminomethylphenylbenzyl]perylen-3,4-dicarboximid (119) als Gemisch mit 

dem Edukt N-[(4-Formylphenyl)benzyl]perylen-3,4-dicarboximid (113) als roter Feststoff 

erhalten werden.  

 

Ausbeute: 5.00 mg  

 

Rf (Kieselgel, CHCl3/EtOH 50:1):     0.31 

 

IR (ATR): ν~ = 3359.4 (m), 2959.3 (m), 2922.2 (s), 2852.3 (m), 2361.5 (w), 2337.9 (w), 

1691.6 (m), 1649.6 (m), 1632.6 (m), 1595.2 (m), 1576.1 (w), 1501.6 (w), 1466.5 (m), 1425.3 

(w), 1411.1 (w), 1377.4 (m), 1340.3 (w), 1293.0 (w), 1259.5 (s), 1166.8 (m), 1088.8 (s), 

1014.1 (s), 955 (w), 860.8 (w), 798.2 (vs), 757.7 (m), 743.6 (m), 703.2 (m), 661.3 (m), 631.9 

(w), 606.1 cm-1 (w). 
 

1H-NMR  (600 MHz, CDCl3: CD3OD = 10:1): δ  = 5.43 (s, 2H, NCH2), 7.45 (d, 3J = 8.3 Hz, 

2H, HPABA), 7.60 - 7.63 (m, 4H, HBiphenyl), 7.67 (t, 3J = 7.9 Hz, 2H, HPerylen), 7.75 (d, 3J = 8.3 

Hz, 2H, HBiphenyl), 7.82 (s, 1H, CHNCCH), 7.92 (d, 3J = 8.4 Hz, 2H, HPABA), 7.94 - 7.96 (m, 

4H, Harom), 8.50 - 8.51 (m, 1H, HPerylen), 8.51 - 8.54 (m, 3H, Harom), 8.61 (d, 3J = 8.1 Hz, 2H, 

Harom), 9.99 ppm (s, 1H, CHO)*. 
* Signal kann dem Edukt zugeordnet werden 

 

NO O

119

N

2

CO2H
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UV/Vis (CHCl3): λmax (Erel) = 487.6 (1.00), 510.6 nm (0.95). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 545.4 (1.00), 585.1 nm (0.81). 

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 488 nm, E488nm / 1cm = 0.0189, Referenz: S-13 

mit Φ = 1.00 ): Φ = 1.00 

 

MS (EI): m/z (%) = 634 (12) [M]+, 516 (40), 515 (100) [M + 2H - C7H5O2]
+, 307 (12), 306 

(16), 305 (52), 278 (17), 277 (63), 257 (14), 251 (17), 250 (27), 137 (59), 125 (21), 124 (11), 

120 (59), 92 (20), 69 (16), 57 (20), 44 (61). 

 

HRMS (EI): ber.: C43H26N2O4 [M]+:  634.1893  

  gef.:    634.1899 ∆ = 0.0006  
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D9 Fluoreszenzmarkierung von Katalase 

 

D9.1 Fluoreszenzmarkierung von Katalase mit 103  

 

Variante 1: 

N,Ń ´-Bis(1-hexylheptyl)-N´-(4-formylbenzyl)benzo[ghi]perylen-1´,2´:3,4:9,10-tris(dicarbox- 

imid (103, 32.0 mg, 33.1 µmol) wurden bei 38 °C in NMP (20.0 mL) gelöst und mit Katalase 

versetzt. Dem Reaktionsgemisch fügte man eine Spatelspitze N,N’-Dicyclohexylcarbodiimid 

(DCC) hinzu und ließ den Reaktionsansatz 2 h  bei 38 °C rühren.  Danach wurde die  Katalase 

wurde  durch Filtration von der Reaktionslösung abgetrennt und solange  mit Chloroform und 

Wasser gewaschen bis das Filtrat keine Färbung mehr aufwies. Auf diese Weise erhielt man  

gelb gefärbte Katalase. Die Enzymreaktivität wurde durch Verhalten der markierten Katalase 

gegenüber wässriger H2O2-Lösung (30 %) getestet. Durch Versetzten einigen Flocken 

markierter Katalase mit einem Tropfen H2O2-Lösung konnte eine starke Blasenentwicklung 

beobachtet werden.   

 

Fluoreszenz (Festkörper): λmax (Irel.) = 483.9 (0.62), 571.1 (1.00), 594.1 (0.94).   

 

Variante 2:  

Analog Variante 1, jedoch Verwendung von DMSO (20.0 mL) an Stelle von NMP als 

Lösungsmittel. Man erhielt orange-gelb gefärbte Katalase. Der Aktivitätstest mit wässriger 

H2O2-Lösung (30 %) wurde analog Variante 1 durchgeführt. Es konnte keine Blasenentwick- 

lung beobachtet werden.  

 

D9.2 Fluoreszenzmarkierung von Katalase mit 105  

 

Variante 1: 

N,Ń ´-Bis(1-hexylheptyl)-N´-[(4-formylphenyl)benzyl]benzo[ghi]perylen-1´,2´:3,4:9,10-tris- 

(dicarboximid) (105, 28.0 mg, 26.9 µmol) wurden bei 38 °C in NMP (20.0 mL) gelöst und 

mit Katalase versetzt. Dem Reaktionsgemisch fügte man eine Spatelspitze N,N’-Dicyclo- 

hexylcarbodiimid (DCC) hinzu und ließ den Reaktionsansatz 2 h  bei 38 °C rühren.  Danach 

wurde die  Katalase  durch Filtration von der Reaktionslösung abgetrennt und solange  mit 

Chloroform und Wasser gewaschen bis das Filtrat keine Färbung mehr aufwies. Auf diese 
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Weise erhielt man gelb gefärbte Katalase. Die Enzymreaktivität wurde durch Verhalten der 

markierten Katalase gegenüber wässriger H2O2-Lösung (30 %) getestet. Auch hier konnte 

eine starke Blasenentwicklung beobachtet werden.   

 

Variante 2:  

Analog Variante 1, jedoch Verwendung von DMSO (20.0 mL) an Stelle von NMP als 

Lösungsmittel. Man erhielt ockergelb gefärbte Katalase. Der Aktivitätstest mit wässriger 

H2O2-Lösung (30 %) wurde analog Variante 1 durchgeführt. Es konnte keine Blasenent- 

wicklung beobachtet werden.  

 

D9.3 Fluoreszenzmarkierung von Katalase mit 7 

N,N´-Bis(1-hexylheptyl)benzo[ghi]perylen-2,3,8,9,11,12-hexacarbonsäure-2,3,8,9-bis(di- 

carboximid)-11,12-anhydrid (7, 26.0 mg, 30.6 µmol) wurden bei 38 °C in NMP (20.0 mL) 

gelöst und mit Katalase versetzt. Im Anschluss ließ man den Reaktionsansatz 2 h  bei 38 °C 

rühren. Danach wurde die  Katalase  durch Filtration von der Reaktionslösung abgetrennt und 

solange  mit Chloroform und Wasser gewaschen bis das Filtrat keine Färbung mehr aufwies. 

Auf diese Weise erhielt man gelb gefärbte Katalase. Die Enzymreaktivität wurde durch 

Verhalten der markierten Katalase gegenüber wässriger H2O2-Lösung (30 %) getestet. Die 

Enzymreaktivität wurde durch Verhalten der markierten Katalase gegenüber wässriger H2O2-

Lösung (30 %) getestet. Es konnte eine starke Blasenentwicklung beobachtet werden.   

 

Fluoreszenz (Festkörper): λmax (Irel.) = 570.0 (1.00), 594.1 nm (0.96).   

 

D9.4 Fluoreszenzmarkierung von Katalase mit 72 

N-(1-Hexylheptyl)perylen-3,4-dicarboximid-9,10-anhydrid (72, 20.0 mg, 34.9 µmol) wurden 

bei 38 °C in NMP (20.0 mL) gelöst und mit Katalase versetzt. Im Anschluss ließ man den 

Reaktionsansatz 2 h  bei 38 °C rühren.  Danach wurde die  Katalase  durch Filtration von der 

Reaktionslösung abgetrennt und solange  mit Chloroform und Wasser gewaschen bis das 

Filtrat keine Färbung mehr aufwies. Auf diese Weise erhielt man rot gefärbte Katalase. Die 

Enzymreaktivität wurde durch Verhalten der markierten Katalase gegenüber wässriger H2O2-

Lösung (30 %) getestet. Die Enzymreaktivität wurde durch Verhalten der markierten Katalase 

gegenüber wässriger H2O2-Lösung (30 %) getestet. Es lies sich eine starke Blasenentwicklung 

beobachten.   
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Fluoreszenz (Festkörper): λmax (Irel.) = 527.8 (1.00), 574.1 (0.68), 620.3 nm (0.33).   

 

D9.5 Fluoreszenzmarkierung von Katalase mit 21  

Eine 38 °C warme Lösung von N-(1-Hexylheptyl)-N´-[(4-formylphenyl)benzyl]benzo[ghi]- 

perylen-3,4:6,7-bis(dicarboximid) (21, 10.0 mg, 13.2 µmol) in N-Methyl-2-pyrrolidon 

(4.00 mL) versetzte man mit Katalase und ließ den Reaktionsansatz 3 h bei der genannten 

Temperatur rühren. Nach dem Abkühlen des Reaktionsgemisches wurde die Katalase durch 

Filtration von der Reaktionslösung abgetrennt und so lange mit CHCl3 gewaschen, bis das 

Filtrat farblos erschien. Somit erhielt man gelb-orange markierte Katalase, deren Enzym- 

aktivität durch Verhalten gegenüber wässriger H2O2-Lösung (30 %) getestet wurde. Dazu 

tropfte man auf einige Flocken der gefärbten Katalase einen Tropfen H2O2-Lösung, was zu 

heftigem Aufschäumen führte und die Enzymaktivität der markierten Katalase belegte. 

 

Fluoreszenz (Festkörper): λmax = 590.6 nm.   

 

D9.6 Fluoreszenzmarkierung von Katalase mit 24  

Eine 38 °C warme Lösung von N-(1-Hexylheptyl)-N´-(4-formylbenzyl)benzo[ghi]perylen-

3,4:6,7-bis(dicarboximid) (24, 7.00 mg, 8.85 µmol) in N-Methyl-2-pyrrolidon (4.00 mL) 

versetzte man mit Katalase und ließ den Reaktionsansatz 3 h bei der genannten Temperatur 

rühren. Nachdem die Reaktionsmischung abgekühlt war, wurde die Katalase durch Filtration 

von der Reaktionslösung abgetrennt und mehrmals mit CHCl3 gewaschen, bis das Filtrat 

farblos erschien. Auf diese Weise erhielt man gelb-orange markierte Katalase, deren 

Enzymaktivität durch Verhalten gegenüber wässriger H2O2-Lösung (30 %) getestet wurde. 

Dazu wurden einige Flocken der gefärbten Katalase mit einem Tropfen H2O2-Lösung 

versetzt, was zu Aufschäumen führte und die Enzymaktivität der markierten Katalase belegte. 

 

D9.7 Fluoreszenzmarkierung von Katalase mit 12  

Eine 38 °C warme Lösung von N-(1-Hexylheptyl)benzo[ghi]perylen-3,4:6,7-tetracar-

bonsäure-3,4-dicarboximid-6,7-anhydrid (12, 20.0 mg, 33.5 µmol) in N-Methyl-2-pyrrolidon 

(10.0 mL) versetzte man mit Katalase und ließ den Reaktionsansatz 3 h bei der genannten 

Temperatur rühren. Nachdem die Reaktionsmischung abgekühlt war, wurde die Katalase 

durch Filtration von der Reaktionslösung abgetrennt und mehrmals mit CHCl3 gewaschen, bis 

das Filtrat farblos erschien. Auf diese Weise erhielt man gelb-orange markierte Katalase, 

deren Enzymaktivität durch Verhalten gegenüber wässriger H2O2-Lösung (30 %) getestet 
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wurde. Dazu wurden einige Flocken der gefärbten Katalase mit einem Tropfen H2O2-Lösung 

versetzt, was zu Aufschäumen führte und die Enzymaktivität der markierten Katalase belegte. 

 

Fluoreszenz (Festkörper): λmax = 589.3 nm.   

 

D9.8 Versuch der Fluoreszenzmarkierung von Katalase mit 4 

Eine 38 °C warme Lösung von Perylen-3,4-dicarbonsäureanhydrid (4, 10.0 mg, 31.0 µmol) in 

N-Methyl-2-pyrrolidon (10.0 mL) versetzte man mit Katalase und ließ den Reaktionsansatz 3 

h bei der genannten Temperatur rühren. Nachdem die Reaktionsmischung abgekühlt war, 

wurde die Katalase durch Filtration von der Reaktionslösung abgetrennt und mehrmals mit 

CHCl3 gewaschen, bis das Filtrat farblos erschien. Es konnte lediglich unmarkierte Katalase 

isoliert werden. Die Enzymaktivität wurde durch Verhalten gegenüber wässriger H2O2-

Lösung (30 %) getestet. Dazu wurden einige Flocken der benutzten Katalase mit einem 

Tropfen H2O2-Lösung versetzt, was zu Aufschäumen führte.  

 

D9.9 Fluoreszenzmarkierung von Katalase mit 111  

N-(4-Formylbenzyl)perylen-3,4-dicarboximid (111, 5.00 mg, 11.4 µmol) wurde in N-Methyl-

2-pyrrolidon (1.00 mL) gelöst und auf 38 °C erwärmt. Dazu gab man Katalase (20.0 mg) und 

ließ 2 h rühren. Nachdem der Ansatz abgekühlt war, wurde die Katalase durch Filtration 

abgetrennt und solange mit CHCl3 gewaschen, bis keine Färbung des Lösungsmittels mehr zu 

erkennen war. Die Katalase wies daraufhin eine deutliche Rotfärbung auf. Anschließend 

wurde die Enzymaktivität der markierten Katalase getestet. Dazu wurde ein Tropfen einer mit 

H2O2-Lösung (30 %) auf einige Flocken der Katalase getropft. Die einsetzende Schaumbil- 

dung deutete auf einen Erhalt der Enzymaktivität hin, wobei die Schaumentwicklung im 

Vergleich zur nicht markierten Katalase etwas geringer war.  

 

D9.10  Fluoreszenzmarkierung von Katalase mit 113  

Eine Lösung aus N-[(4-Formylphenyl)benzyl]perylen-3,4-dicarboximid (113, 14.0 mg, 

31.9 µmol) in N-Methyl-2-pyrrolidon (3.00 mL) wurde auf 38 °C erhitzt und anschließend mit 

Katalase (20.0 mg) versetzt. Man ließ den Ansatz 2 h rühren und trennte die Katalase, 

nachdem der Ansatz abgekühlt war, durch Filtration von der Reaktionslösung ab. Der 

Filterkuchen wurde solange mit CHCl3 gewaschen, bis das Filtrat farblos erschien. Die 

isolierte Katalase wies eine rote Färbung auf. Um die Enzymaktivität der markierten Katalase 

zu testen, gab man einen Tropfen einer H2O2-Lösung (30 %) auf wenige Flocken der 
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Katalase. Dabei konnte nun eine deutliche Schaumbildung beobachten. Diese wies jedoch im 

Vergleich zu der nicht markierten Katalase eine etwas geringere Intensität. 

 

Fluoreszenz (Festkörper): λmax = 650.4 nm.   

 

 

D9.11   Fluoreszenzmarkierung von Katalase in verschiedenen   

    Lösungsmitteln 

 

D9.11.1   Allgemeine Arbeitsvorschrift zur Umsetzung chromophorer Systeme mit  

      Katalase (AAV) 

Der eingesetzte Farbstoff (10.0 mg) wurde im jeweiligen Lösungsmittel (15.0 mL) auf 38 °C 

erhitzt und anschließend mit Katalase (20.0 mg) versetzt. Man ließ den Ansatz 2 h rühren und 

trennte die Katalase, nachdem der Ansatz abgekühlt war, durch Filtration von der 

Reaktionslösung ab. Der Filterkuchen wurde mehrmals  mit CHCl3 gewaschen. Um die 

Enzymaktivität der umgesetzten Katalase zu testen, gab man einen Tropfen einer H2O2-

Lösung (30 %) auf wenige Flocken der Katalase.  

 

D9.11.2   Markierung von Katalase unter Erhalt der Enzymatischen Funktion  

Gemäß AVV wurde N-(1-Hexylheptyl)perylen-3,4-dicarboximid-9,10-anhydrid (72) bzw. 

N,N´-Bis(1-hexylheptyl)benzo[ghi]perylen-2,3,8,9,11,12-hexacarbonsäure-2,3,8,9-bis(carbox- 

imid)-11,12-anhydrid (7) in einem Lösungsmittel A* umgesetzt. Man erhielt  jeweils rot bzw. 

gelb gefärbte Katalase. Bei Zugabe einer H2O2-Lösung (30 %) auf wenige Flocken der 

Katalase, konnte eine deutliche Schaumbildung beobachten. 

    

D9.11.3   Markierung von Katalase unter Verlust der Enzymatischen Funktion 

Gemäß AVV wurde N-(1-Hexylheptyl)perylen-3,4-dicarboximid-9,10-anhydrid (72) bzw. 

N,N´-Bis(1-hexylheptyl)benzo[ghi]perylen-2,3,8,9,11,12-hexacarbonsäure-2,3,8,9-bis(carbox- 

imid)-11,12-anhydrid (7) in DMSO umgesetzt. Man erhielt rot bzw. gelb gefärbte Katalase. 

Bei Zugabe einer H2O2-Lösung (30 %) auf wenige Flocken der Katalase, konnte keine 

Schaumbildung beobachten werden. 
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D9.11.4 Markierungversuche von Katalase unter Erhalt der Enzymatischen    

Funktion 

Gemäß AVV wurde N-(1-Hexylheptyl)perylen-3,4-dicarboximid-9,10-anhydrid (72) bzw. 

N,N´-Bis(1-hexylheptyl)benzo[ghi]perylen-2,3,8,9,11,12-hexacarbonsäure-2,3,8,9-bis(carbox- 

imid)-11,12-anhydrid (7) in einem Lösungsmittel B**  umgesetzt. Man erhielt jeweils  

unmarkierte Katalase als graues Pulver. Bei Zugabe einer H2O2-Lösung (30 %) auf wenige 

Flocken der Katalase, konnte eine deutliche Schaumbildung beobachten. 

 
* Lösungsmittel A: DMF, N,N-Dimethylacetamid, 1-Methyl-2-piperidon 
** Lösungsmittel B: DMPU, DMEU, Dioxan, THF, Ethylenglycoldimethylether, TMU, 

Ethylencarbonat, Sulfolan, tert-Amylalkohol, Aceton, N-Methylformanilid  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



EXPERIMENTELLER TEIL                                                                                                                                                   325                                        
                                                                                                                                              
 

D10 Funktionalierte Perylenbisimide 

 

D10.1 N,N´-Bis-[4-(1,3-dioxolan-2-yl)benzyl]perylen-3,4,9,10-

bis(dicarboximid) (121) 

Perylen-3,4:9,10-tetracarbonsäureanhydrid (120, 200 

mg, 509 µmol), 4-(1,3-Dioxolan-2-yl)benzylamin (11.9 

g, 1.53 mmol) und eine Spatelspitze Zinkacetat-

Dihydrat wurden in Chinolin (5.00 mL) suspendiert und 

4 h auf 180 °C erhitzt. Nach dem Erkalten erhielt man 

eine dunkelrot gefärbte Reaktionsmischung, welche mit 

einer Lösung von KOH (0.50 g) in MeOH (50.0 mL) 

versetzt wurde. Der dadurch entstehende Feststoff 

dieser Suspension wurde mittels Zentrifugation (4000 

U/min) von der überstehenden Lösung abgetrennt. Der 

Feststoff wurde erneut mit der oben beschriebenen 

KOH/MeOH-Lösung versetzt und zentrifugiert. Nach 

mehrmaliger Wiederholung dieses Verfahrens erhielt 

man nach Trocknen des Feststoffs das Bisacetal 121 in Form eines dunkelroten Pulvers.    

 

Ausbeute:  292  mg (121, 408 µmol, 80 %) 

 

Rf (Kieselgel, CHCl3/Eisessig 20:1):     0.00 

 

IR  (ATR): ν~ = 2885.9 (w), 2360.1 (w), 2336.2 (w), 1702.9 (m), 1694.7 (s) 1654.7 (vs), 

1591.0 (vs), 1576.3 (s), 1507.1 (w), 1431.8 (s), 1401.8 (s), 1370.8 (s), 1338.2 (vs), 1244.7 (s), 

1224.0 (m), 1172.6 (s), 1068.2 (vs), 1021.0 (s), 999.0 (s), 982.3 (s), 912.7 (s), 853.3 (m), 

848.0 (m), 819.4 (m), 809.1 (vs), 793.8 (m), 775.2 (m), 745.5 (vs), 716.5 (w), 656.0 cm-1 (m). 

     

UV/Vis (CHCl3): λmax (Erel) = 461.8 (0.23), 493.0 (0.60), 528.8 nm (1.00). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 535.9 (1.00), 579.5 (0.49), 630.6 nm (0.10).  

 

NO O

O

O

121

NO O

O

O
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Fluoreszenzquantenausbeute (CHCl3, λexc = 490 nm, E490nm / 1cm = 0.0133, Referenz: S-13 

mit Φ = 1.00): Φ = 0.94  

 

MS (EI): m/z (%) = 716 (12) [M + H]+, 715 (45) [M]+, 714 (100) [M - H]+, 671 (13) [M  - 

C2H4O]+,  670 (33) [M  - H - C2H4O]+, 669 (26), 626 (12) [M  - H -  2·C2H4O]+, 535 (17), 162 

(93), 149 (60). 

 

HRMS (EI): ber.: C44H30N2O8 [M]+:   714.2002  

  gef.:         714.2003 ∆ = 0.0001   
 

C44H30N2O8 [714.7]   ber. (%): C: 73.94 H: 4.23  N: 3.92 

    gef. (%): C: 71.80 H: 4.03  N: 4.01 

  

 

 

D10.2    N,N´-Bis-(4-formylbenzyl)perylen-3,4,9,10-bis(dicarboximid) (122) 

Eine Suspension des Bisacetals 121 (60.0 mg, 84.0 µmol) in 

THF (20.0 mL) wurde mit wässriger HCl-Lösung (2 M, 0.30 mL) 

versetzt und 12 h unter Rückfluss erhitzt. Nach dem Erkalten Der 

Reaktionsmischung wird der sich Feststoff durch Filtration von 

der überstehenden Lösung abgetrennt. Nach mehrmaligem 

Waschen mit H2O wurde der Feststoff für 12 h bei 110 °C 

getrocknet. Man erhielt auf diese Weise den Bisaldehyd 122 in 

Form eines grünschwarzen Feststoffs.    

 

 

Ausbeute:  47.0  mg (122, 75.0 µmol, 89 %) 

 

Rf (Kieselgel, CHCl3/Eisessig 20:1):     0.00 

 

IR  (ATR): ν~ = 2359.0 (m), 2338.0 (m), 1695.4 (vs), 1657.7 (vs), 1608.6 (s), 1591.5 (vs), 

1576.2 (s), 1506.4 (w), 1437.1 (m), 1401.8 (m), 1367.1 (vs), 1339.1 (s), 1328.4 (vs), 1302.3 

(m), 1245.4 (m), 1213.3 (m), 1168.0 (m), 1129.6 (w), 1010.3 (m), 995.0 (m), 854.3 (m), 834.5 

(m), 810.2 (vs), 792.4 (s), 773.3 (m), 745.4 (vs), 725.1 (m), 667.7 cm-1 (m).    

NO O

122

NO O

O

O

H

H
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UV/Vis (CHCl3): λmax (Erel) = 460.8 (0.23), 492.6 (0.61), 528.6 nm (1.00). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 536.4 (1.00), 580.4 (0.49), 631.2 nm (0.10).  

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 490 nm, E490 nm / 1cm = 0.01227, Referenz: S-13 

mit Φ = 1.00): Φ = 1.00  

 

MS (EI): m/z (%) = 628 (11) [M + H]+, 627 (37) [M]+, 626 (100) [M - H]+, 488 (36), 487 (10), 

302 (14), 44 (23). 

 

HRMS (EI): ber.: C40H22O2N6 [M]+:  626.1478    

  gef.:    626.1488  ∆ = 0.0010  

 

C40H22N2O6 [626.6]   ber. (%): C: 76.67 H: 3.54 N: 4.47 

    gef. (%): C: 74.75 H: 3.32 N: 4.31 
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D10.3 2-(1-Hexylheptyl)-imidazo[2,1-a]anthra[2,1,9-def:6,5,10- 

d'e'f' ]diisochinolin-1,3,8(2H)-trion (123) 

2-(1-Hexylheptyl)-10,11-dihydroimidazo[2,1-a]anthra[2,1,9-

def:6,5,10-d'e'f']diisochinolin-1,3,8(2H)-trion (38, 10.0 mg, 

16.7 µmol) wurde in Chinolin gelöst und 18 h in einer 

Mikrowellenapparatur (200 W, 230 °C, 1.00 bar) erhitzt. Die 

erkaltete Reaktionslösung wurde in CHCl3 (30.0 mL) 

aufgenommen und mit einer wässrigen HCl-Lösung (2 M, 

100 mL) gewaschen. Die wässrige Phase wurde solange mit 

CHCl3 extrahiert bis sie farblos erschien. Das Lösemittel der 

vereinigten organischen Phasen wurde entfernt und der 

Rückstand 1 Tag bei 110 ºC getrocknet. Man erhielt auf diese Weise 123 als violetten 

Feststoff.  

 

Ausbeute:  9.55 mg (123, 16.0 µmol, 96 %)  

 

Rf (Kieselgel, CHCl3/EtOH 50:1): 0.27  

 
1H-NMR  (600 MHz, CDCl3): δ = 0.78 (t, 3J = 5.5 Hz, 6H, CH3), 1.16 – 1.38 (m, 16H, 

CH2CH2CH2CH2CH3), 1.79 - 1.91 (m, 2H, CHCH2), 2.11 - 2.34 (m, 2H, CHCH2), 5.06 - 5.24 

(m, 1H, NCH), 7.36 (d, 3J = 1.8  Hz, 1H, NCHCHN), 7.81 (d, 3J = 1.9 Hz, 1H, NCHCHN),  

8.42 - 8.65 ppm (m, (H, CHarom)  

  

UV/Vis (CHCl3): λmax (Erel) = 365.6 (0.16), 428.5 (0.11), 541.7 (1.00), 569.2 nm (0.96). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 608.1 (1.00), 665.4 nm (0.73).  

 

Fluoreszenzquantenausbeute (CHCl3, λexc = 540 nm, E540nm / 1cm = 0.0088, Referenz: S-13 

mit 1.00): Φ = 0.13  

 

MS (EI): m/z (%) = 597 (23) [M + H]+, 596 (11) [M]+, 415 (89) [M + H]+, 414 (80) [M – 

C13H26]
+, 343 (100), 269 (30), 241 (34), 149 (39).  

 

 

NO O

N ON

123
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HRMS (EI):  ber.: C39H37N3O3  [M]+: 595.2835  

  gef.:    595.2800 ∆ = 0.0035  

                             

 

D10.4    N2,N3-[Bis(1-hexylheptyl)benzo[ghi]perylen-2,3:8,9:11,12- 

    hexacarboxyl-2,3:8,9:11,12-tris(dicarboximid)]-N1,N1´-(1,2- 

    ethyl)-[N2´-(1-hexylheptyl)perylen3,4:9,10-bis(dicarboximid)  

    (125) 

 

 

 

 

 

 

 

 

 

 

2-(1-Hexylheptyl)imidazo[2,1-a]anthra[2,1,9-def:6,5,10-d'e'f']diisochinolin-1,3,8(2H)-trion 

(38, 30.0 mg, 46.9 µmol, 1.50 Äq.) und N,N´-Bis(1-hexylheptyl)benzo[ghi]perylen-

2,3:8,9:11,12-hexacarbonsäure-2,3,8,9-bis(carboximid)-11,12-anhydrid (7, 18.0 mg, 31.3 

µmol, 1.00 Äq.) wurden in Chinolin (1.00 mL) gelöst und 18 h in einer Mikrowellenapparatur 

(230 W, 210 °C, 1.00 bar) erhitzt. Die erkaltete Reaktionslösung wurde in CHCl3 (30.0 mL) 

aufgenommen und mit einer wässrigen 2 M HCl-Lösung (2 M, 50.0 mL) gewaschen. Die 

wässrige Phase wurde solange mit CHCl3 extrahiert bis sie farblos erschien. Das Lösemittel 

der vereinigten organischen Phasen wurde entfernt und das Rohprodukt mehrmals 

säulenchromatographisch an Kieselgel (43 – 63 µm) mit einem Laufmittelgemisch aus 

CHCl3/Isohexan (3:1) aufgereinigt. Der Bichromophor 125 eluierte dabei jeweils als intensiv 

rot-orange fluoreszierende Bande. 

 

 

Ausbeute: 5.00 mg (125, 3.46 µmol, 15 %)  

 

NO O

N
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Schmelzpunkt:  > 250 °C  

 

Rf (Kieselgel, CHCl3): 0.25   

 

IR (ATR): ν~  =  2954.5  (s), 2924.8 (vs), 2855.1 (s), 1769.5 (w), 1731.9 (m), 1702.2 (s), 

1663.4 (vs), 1624.7 (m), 1593.6 (m), 1579.5 (w), 1456.2 (w), 1436.5 (m), 1406.8 (m), 1362.2 

(m), 1341.7 (m), 1319.1 (s), 1275.9 (w), 1246.0 (w), 1172.5 (w), 966.6 (w), 942.8 (w), 852.1 

(w), 810.0 (s), 765.4 (m), 747.3 (w), 658.9 cm-1 (w).  

 
1H-NMR  (600 MHz, CDCl3): δ = 0.76 (t, ³J = 6.9 Hz, 6H, CH3), 0.80 (t, ³J = 7.1 Hz, 6H, 

CH3),  0.87 (t, ³J = 7.0 Hz, 6H, CH3), 1.15 - 1.39 (m, 48H, CH2CH2CH2CH2CH3), 1.82 – 1.95 

(m, 6H, NCHCH2), 2.19 – 2.35 (m, 6H, NCHCH2), 4.44 (t, ³J = 5.0 Hz, 2H, NCH2CH2N), 

4.74 (t, ³J = 5.0 Hz, 2H, NCH2CH2N), 5.12 – 5.18 (m, 1H, NCH(CH2)2), 5.20 – 5.27 (m, 2H, 

NCH(CH2)2), 8.50–8.57 (m, 4H, CHperylen), 8.50–8.57 (m, 4H, CHperylen), 9.10 - 9.23 (m, 2H, 

CHbenzoperylen), 9.41 (d, 3J = 8.3 Hz, 2H, CHbenzoperylen), 10.37 ppm (s, 2H, CHbenzoperylen).      

 
13C-NMR  (151 MHz, CDCl3): δ = 13.9, 14.0, 22.5, 22.6, 26.8, 26.9, 29.1, 29.2, 29.7, 31.6, 

31.7, 32.3, 37.3, 39.7, 54.7, 55.2, 122.8, 123.0, 123.1, 123.5, 125.0, 126.4, 126.8, 127.8, 

128.0, 129.4, 129.8, 131.6, 131.8, 135.2, 163.9, 168.2 ppm. 

 

UV/Vis (CHCl3): λmax (Erel) = 354.2 (0.44), 370.6 (0.54), 408.0 (0.23), 435.0 (0.57), 465.1 

(0.95), 489.6 (0.60), 528.2 nm (1.00).   

 

Fluoreszenz (CHCl3): λmax (Irel) = 536.3 (1.00), 581.5 (0.48), 632.0 nm (0.11). 

 

Fluoreszenzquantenausbeute  

(CHCl3, λexc = 371 nm, E371nm / 1cm = 0.0090, Referenz: S-13 mit Φ = 1.00): Φ = 1.00    

(CHCl3, λexc = 435 nm, E435nm / 1cm = 0.0096, Referenz: S-13 mit Φ = 1.00): Φ = 1.00   

(CHCl3, λexc = 490 nm, E490nm / 1cm = 0.0101, Referenz: S-13 mit Φ = 1.00): Φ = 1.00   

 

MS (FAB-): m/z (%) = 1447 (3) [M]+, 1446 (5) [M - H]+, 1445 (6) [M - 2H]+, 1264 (2)  [M - H 

- C13H26]
+, 1263 (2)  [M - 2H - C13H26]

+, 1262 (2) [M - 3H - C13H26]
+, 1082 (1) [M - H -

2·C13H26], 977 (11), 965 (30), 951 (15), 777 (18), 692 (16), 509 (10), 482 (15), 439 (22), 384 

(14), 153 (30). 
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HRMS (FAB+): ber.: C93H99N5O10 [M]+:  1446.7425  

gef.:    1446.7515 ∆ = 0.0090  

 

D10.5 N-(1-Hexylheptyl)-N´-[4-formylbenzyl]perylen-3,4,9,10-

bis(dicarboximid) (126) 

Der N-(1-Hexylheptyl)-N´-[4-hydroxymethylbenzyl]pery- 

len-3,4,9,10-bis(dicarboximid) (25.0 mg, 36.1 µmol, 1.00 

Äq.) wurde in DMSO (2.00 mL) gelöst, mit wässriger HBr-

Lösung (48%, 67.0 µmol, 1.86 Äq.) versetzt und 24 h auf 

110 ºC erhitzt. Nach Beendigung der Reaktion goß man 

den Ansatz auf wässrige HCl-Lösung (50.0 mL, 2 M). 

Daraufhin wurde das Reaktionsgemisch mit CHCl3 

mehrmals extrahiert, bis die organische Phase farblos 

erschien. Die organische Phase wusch man erneut mit 

wässriger HCl-Lösung (50.0 mL, 2 M) und extrahierte 

nochmals mit CHCl3, bis die organische Phase erneut keine 

Färbung mehr aufwies. Nach dem Trocknen über MgSO4 

wurde das Lösemittel im Vakuum entfernt und das erhaltene Rohprodukt unter 

Lichtausschluss säulenchromatographisch über Kieselgel (63 - 200 µm) mit einem 

Laufmittelgemisch aus CHCl3 und EtOH (50:1)  aufgereinigt. Nach dem Entfernen des 

Lösemittels im Vakuum wurde der erhaltene Rückstand in wenig CHCl3 aufgenommen und 

mit MeOH gefällt. Man erhielt 126 nach dem Trocknen als roten Feststoff. 

 

 

Ausbeute:  17.0 mg (126, 24.6 µmol, 78 %)  

 

Rf (Kieselgel, CHCl3/EtOH 50:1): 0.22  

 
1H-NMR  (600 MHz, CDCl3): δ = 0.82 (t, 3J = 7.0 Hz, 6H, CH3), 1.19–1.39 (m, 16H, 

CH2CH2CH2CH2CH3), 1.86–1.92 (m, 2H, CHCH2), 2.23–2.29 (m, 2H, CHCH2), 5.18 (tt, 3J = 

5.9Hz, 3J = 9.3Hz, 1H, NCH), 5.43 (s, 2H, NCH2), 7.69 (d, 3J(H,H) = 8.2 Hz, 2H, 

OCHCCHCH), 7.84 (d, 3J(H,H) = 8.4 Hz, 2H, OCHCCHCH), 8.46 (d, 3J = 8.2 Hz, 2H, 

CHperylen), 8.50 (d, 3J = 8.2 Hz, 2H, CHperylen), 8.56 (d, 3J = 8.0 Hz, 2H, CHperylen), 8.59 – 8.65 

(m, 2H, CHperylen), 9.97 ppm (s, 1H, CHO).   

N
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UV/Vis (CHCl3): λmax (Erel) = 459.5 (0.22), 491.3 (0.60), 527.6 nm (1.00). 

 

Fluoreszenz (CHCl3): λmax (Irel) = 538.1 (1.00), 579.0 (0.52), 628.4 nm (0.14).   

 

Fluoreszenzquantenausbeute (CHCl3, λexc =  490 nm, E490 nm / 1cm = 0.0437, Referenz: S-13 

mit 1.00): Φ = 1.00 

 

MS (EI): m/z (%) = 691 (35) [M]+, 509 (100) [M - C13H26]
+, 374 (14), 346 (19), 44 (15).  

 

HRMS (EI): ber.: C45H42N2O5  [M]+:  690.3094  

  gef.:     690.3069 ∆ = 0.0025  
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E Anhang 

 

E1 Nomenklatur der Perylen- bzw. Benzoperylenfarbstoffe 

 
Die Benennung der Perylen- bzw. Benzoperylenfarbstoffe gestaltet sich nach den strengen 

Regeln der IUPAC-Nomenklatur als äußerst problematisch, da diese für eine systematische 

Namensfindung derart verschachtelter Heterocyclen nicht ausgelegt ist. Eine exakte 

Bezeichnung gelingt nur sehr aufwendig und führt nicht in allen Fällen zu einem eindeutigen 

Ergebnis. Die einfachen Perylenfarbstoffe werden hierbei nach dem größten im Molekül 

vorhandenen Heterocyclus, üblicherweise dem Isochinolin, benannt. Diese Systematik wird 

jedoch selbst bei CAS nicht konsequent und logisch angewandt, so dass in dieser Arbeit die 

Benennung der Perylenfarbstoffe nach der in der Literatur üblichen Weise erfolgte. Hierbei 

wurden Perylenfarbstoffe durchgängig als Perylenderivate betrachtet und als Perylen- 

monoinide bzw. Perylenbisimide bezeichnet. Analog verhält es sich bei den Benzoperylen- 

farbstoffen, welche als Benzoperylenbisimide bzw. Benzoperylentrisimide angesehen wurden. 

Soweit jedoch möglich, wurde die systematische Benennung der in dieser Arbeit aufgeführten 

Verbindungen mit Unterstützung des Programms ChemDraw Ultra 7.0.1 (2002) durchgeführt. 
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E2 Abkürzungen und Akronyme 

 
Abb. Abbildung 

AIBN Azobisisobutyronitril 

Äq. Äquivalent(e) 

ber. berechnet 

bzw. Beziehungsweise 

CD Circularer Dichroismus 

COSY correlated spectroscopy 

CS charge seperated state 

δ chemische Verschiebung 

d Tag(e)  

DBN 1,5-Diazabicyclo[4.3.0]non-5-en 

DCC Dicyclohexylcarbodiimid 

DFT Dichtefunktionaltheorie 

DMEU N,N-Dimethylethylenurethan 

DMF  N,N-Dimethylformamid 

DMPU N,N-Dimethylpropylenurethan 

EDX Energiedispersive Röntgenspektroskopie 

eV Elektronenvolt 

Fa. Firma 

FRET Förster-Resonanzenergietransfer 

gef. Gefunden 

GPC Gelpermeationschromatographie 

h Stunde(n)               

HMBC heteronuclear multiple-bond correlation 

HRMS hochaufgelöste Massenspektrometrie (proton magnetic resonance spectroscopy) 

HSQC heteronuclear single-quantum correlation 

Hz Hertz 

IR Infrarotspektroskopie 

ISC intersystem crossing 

J Kopplungskonstante 

[M]+ Molekülionenpeak 

mg Milligramm  
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MHz Megahertz 

min Minute 

mL Milliliter 

µL Mikroliter 

mmol Millimol 

MS Massenspektrometrie 

m/z Masse/Ladung 

NADPH Nicotinsäureamid-Adenosin-Dinucleotid-Phosphat 

nm Nanometer 

NMR Kernresonanzspektroskopie (nuclear magnetic resonance)  

ν~ Wellenzahl 

PMMA Polymethylmethacrylat 

ppm parts per million 

R Rest 

Rf retention factor 

RT Raumtemperatur  

S-13 N,N´-Bis-(1-hexylheptyl)perylen-3,4:9,10-bis(dicarboximid) (1)  

sec sekundär 

SET single electron transfer 

t (Reaktions-)Zeit 

TEA Triethylamin 

TEMPO 2,2,6,6-Tetramethylpiperidin-1-oxyl  

THF Tetrahydrofuran 

TFA Trifluoressigsäure 

TMU Tetramethylurethan  

UV/Vis ultraviolett/visible 

W Watt 

z.B. zum Beispiel 
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