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1   Einleitung 

 

 

1.1 Ovarialkarzinom 

 

1.1.1   Epidemiologie 

Das Ovarialkarzinom ist die fünfthäufigste Tumorart und die fünfthäufigste tumorbezogene 

Todesursache der Frau [1]. Die Inzidenz beträgt 15/100.000/Jahr [2]. Etwa 23.000 Frauen 

erkranken jedes Jahr neu am Ovarialkarzinom, 14.000 Frauen sterben jedes Jahr an den 

Folgen dieser Krebserkrankung [1].  

Bezüglich der Häufigkeit des Ovarialkarzinoms existieren sowohl ethnische als auch 

geographische Unterschiede. Nordeuropa, die USA und Israel haben die höchsten Inzidenzen, 

während Japan und die Entwicklungsländer die niedrigste Inzidenz aufweisen [3]. 

Die meisten Ovarialkarzinome treten sporadisch auf. Im Gegensatz dazu sind 5-10% aller 

Fälle familiär bedingt, meist als Folge einer Mutation der Tumorsuppressorgene Breast 

Cancer Antigen (BRCA) 1 oder 2 [4]. 

Das Ovarialkarzinom ist vor allem eine Erkrankung der peri- und postmenopausalen Frau. 

Etwa 80-90% der Patientinnen sind über 40 Jahre alt [4], der Erkrankungsgipfel liegt beim 60. 

Lebensjahr [5]. Erbliche Ovarialkarzinome treten im Mittel ca. 10 Jahre früher auf [6]. 

 

1.1.2   Ätiologie und Pathogenese 

Die Ätiologie des Ovarialkarzinoms ist weitgehend unklar. Eine multifaktorielle Genese ist 

wahrscheinlich [4]. Nach M. F. Fathalla ist die Anzahl der Ovulationen mit repetitivem 

Aufbrechen und anschließender Reparatur des ovariellen Oberflächenepithels mit einer 

erhöhten Wahrscheinlichkeit für spontane Mutationen und damit einem erhöhten 

Karzinomrisiko assoziiert [7]. Einer anderen Theorie zufolge spielen eine exzessive 

Gonadotropinstimulation der Ovarien und / oder erhöhte Androgenlevel für die Entwicklung 

eines Ovarialkarzinoms eine Rolle [8]. Parmley und Woodruff stellten 1974 die Theorie auf, 

dass das epitheliale Ovarialkarzinom durch eine Transformation des Oberflächenepithels 

entsteht, wenn es von Fremdstoffen kontaminiert wird oder Karzinogenen ausgesetzt ist [9]. 
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Der bedeutendste Risikofaktor für das Auftreten eines Ovarialkarzinoms ist eine positive 

Familienanamnese [4]. Weitere Risikofaktoren sind Infertilität [10] bzw. insbesondere 

Nulliparität [11] (die Schwangerschaft ist der ausschlaggebende Faktor [4]) und eine späte 

Menopause (Anzahl der Ovulationen im Leben einer Frau) [12]. Mit einem z.T. nur schwach 

erhöhten Ovarialkarzinomrisiko gehen u.a. Nikotinkonsum [13], der BMI [14], eine 

abgelaufene pelvine entzündliche Erkrankung [15] und das Polyzystische Ovarialsyndrom 

(PCO-Syndrom) [16] einher. Protektive Faktoren sind Multiparität (16-22%ige 

Risikoreduktion pro Geburt) [17, 18, 19], die Einnahme oraler Kontrazeptiva in Abhängigkeit 

von der Einnahmedauer [20, 21], eine Tubenligatur und eine Hysterektomie (ca. 67%ige 

Risikoreduktion) [22, 23]. 

Auch bezüglich der Pathogenese des Ovarialkarzinoms gibt es kontroverse Meinungen. In der 

ursprünglichen Theorie entsteht das Karzinom im Ovar und streut ins Becken und Abdomen, 

bevor es Lymphknoten- und Fernmetastasen bildet [24]. In einer anderen werden die 

Ovarialkarzinome in zwei Typen eingeteilt. Tumoren vom Typ 1 sind auf das Ovar 

beschränkt und entwickeln sich aus Vorläuferläsionen. Sie sind genetisch stabil und 

charakterisiert durch eine Reihe von Mutationen in verschiedenen Genen, einschließlich K-

ras, BRAF, PTEN und ß-Catenin. Tumoren vom Typ 2 sind sehr aggressiv, entwickeln sich 

nicht aus Vorläuferläsionen und sind nur selten auf das Ovar beschränkt. Sie weisen eine hohe 

genetische Instabilität auf und sind charakterisiert durch TP53-Mutationen. Sie streuen schnell 

oder aber sie entwickeln sich außerhalb des Ovars und involvieren dieses erst sekundär [24]. 

 

1.1.3   Klassifikation 

Unter dem Begriff „Ovarialkarzinom“ fasst man eine heterogene Gruppe unterschiedlicher 

Tumorarten zusammen, die sich hinsichtlich ihres Ursprungsgewebes unterscheiden. Die 

histologische Einteilung in die verschiedenen Subtypen erfolgt gemäß der WHO-

Klassifikation von 2003 (s. Kapitel 7.3). Eine Sonderform der epithelialen Ovarialkarzinome 

und – gemäß der Internationalen Vereinigung für Gynäkologie und Geburtshilfe - eigene 

Entität [25] stellen die Boderline-Tumoren oder Low Malignant Potential- (LMP-) Tumoren 

dar, die 10-20% der epithelialen Ovarialkarzinome ausmachen [26]. Sie erfüllen die 

histologischen Malignitätskriterien, haben aber eine deutlich bessere Prognose. 

Makroskopisch manifestieren sie sich häufig mit einer Peritonealkarzinose, die bei 

histologischer Aufbereitung aber nicht alle Kriterien einer Tumorinvasion erfüllt. Es zeigt 

sich weder eine stromale Invasion, noch ein aggressives Metastasierungspotential [27]. 
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1.1.4   Diagnostik und Staging 

Das Ovarialkarzinom wird oft erst spät und in einem fortgeschrittenen Stadium diagnostiziert, 

da das Abdomen dem Tumor ausreichend Platz bietet, um sich ungestört auszubreiten [28]. Es 

kommt zu einer frühzeitigen lokalen Ausdehnung mit Absiedlung des Tumors im kleinen 

Becken, im Oberbauch und Zwerchfell, sowie im Omentum majus [29]. Mehr als 50% der 

Ovarialkarzinome sind beidseitig lokalisiert [29]. Der Tumor metastasiert häufig lymphogen 

in die pelvinen und paraaortalen Lymphknoten und hämatogen in Leber, Knochen, Lunge und 

Gehirn [30]. 

Die Symptomatik ist oft unspezifisch und beinhaltet u.a. Bauchschmerzen, Zunahme des 

Leibesumfangs, gastrointestinale Beschwerden, Gewichtsabnahme, abnormale Blutungen und 

Miktionsbeschwerden [31]. In mehr als der Hälfte der Fälle liegt bei Diagnosestellung bereits 

eine Peritonealkarzinose vor, oft in Verbindung mit Aszites. Zeichen eines fortgeschrittenen 

Ovarialkarzinoms ist die tumorbedingte Kachexie mit typischem eingefallenem Gesicht 

(Facies ovarica) [32]. 

Nach einer ausführliche Anamnese und körperlichen Untersuchung mit bimanueller vaginaler 

Palpation erfolgt eine transvaginale Sonographie, die derzeitig wegen ihrer hohen Sensitivität 

und Spezifität Goldstandard in der Primärdiagnostik ist [33]. Ergänzende Untersuchungen 

sind Abdomen-Sonographie, Röntgen-Thorax und Mammographie [33, 34]. Unausweichlich 

in der Diagnostik von malignen Ovarialtumoren ist zudem das intraoperative Staging. Es 

erfolgt primär durch eine Laparotomie, um eine intraoperative Tumorzellverschleppung zu 

vermeiden und gleichzeitig eine komplette Tumorresektion anzustreben [33]. Nach Erhalt 

aller Befunde erfolgt die Stadieneinteilung des Ovarialkarzinoms nach der TNM- oder der 

FIGO-Klassifikation (Fédération Internationale de Gynécologie et d'Obstétrique) (siehe 

Kapitel 7.4). 

 

1.1.5   Therapie 

Für die Therapie des Ovarialkarzinoms ist eine systematische chirurgische Exploration und 

vollständige und radikale Tumorresektion essentiell, um die Überlebens- und 

Heilungschancen zu verbessern [35]. Die Radikalität der Operation richtet sich nach 

Histologie und FIGO-Stadium und beinhaltet nach Längsschnittlaparotomie neben der 

Inspektion, Palpation und Gewinnung von Biopsien auch eine beidseitige hohe 

Adnexexstirpation, eine Hysterektomie, Omentektomie (mindestens infrakolisch), 

Appendektomie (bei muzinösem und unklarem Tumortyp sowie bei makroskopischem 
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Tumorbefall) und eine beidseitige pelvine und paraaortale Lymphonodektomie bis zur Vena 

renalis [35]. In den fortgeschrittenen Tumorstadien FIGO IIB-IV erfolgt zusätzlich die 

Resektion des befallenen (parietalen) Peritoneums einschließlich des Zwerchfellperitoneums 

(Deperitonealisation). Sind bereits Dünn- oder Dickdarmanteile infiltriert, so erfolgt deren 

Resektion, wenn dadurch Tumorfreiheit erreichbar ist. Gleiches gilt für die Leber (-kapsel) 

und die Milz [35]. 

Beim Boderline-Tumor können prämenopausale Patientinnen mit Kinderwunsch und 

unilateralem Tumor unter Umständen fertilitätserhaltend operiert werden, indem nur das 

betroffene Ovar operativ entfernt wird [35]. 

Im Anschluss an die Operation erhalten die Patientinnen eine mindestens platinhaltige 

adjuvante Chemotherapie (üblicherweise 6 Zyklen i.v.). Einzige Ausnahme stellen 

Patientinnen mit Tumoren im Stadium IA G1 und Patientinnen mit Borderline-Tumoren dar 

[35]. In den fortgeschrittenen Stadien setzt sich das Standardregime aus Carboplatin und 

Paclitaxel zusammen [35]. Bei FIGO IIIB-IV kann eine zusätzliche Behandlung mit 

Bevacizumab erwogen werden [36], einem monoklonalen Antikörper, der die Angiogenese 

hemmt [37, 38]. Neuere Verfahren, wie z.B. die hypertherme intraperitoneale 

Chemoperfusion (HIPEC), bei welcher zur Therapie der Peritonealkarzinose eine auf 42°C 

erhitzte Chemotherapeutika-haltige Spüllösung für 30-90 Minuten in die Bauchhöhle 

perfundiert wird, wurden bisher nicht in die Leitlinien aufgenommen, da noch keine 

verlässlichen Daten vorliegen. Eine neoadjuvante Chemotherapie konnte die Ergebnisse 

bislang nicht verbessern [35]. 

Die Therapie der malignen Keimzelltumoren erfolgt i.d.R. sowohl operativ, als auch 

medikamentös [35]. Nach kompletter Tumorresektion und adäquatem Staging sollte bei 

unauffälligem kontralateralem Ovar und Uterus die Fertilität erhalten werden [35]. 

Bei Keimstrangstromatumoren ist ein operatives Staging mit Resektion des Tumors primäres 

Ziel [35]. Der Nutzen einer systematischen Lymphonodektomie bei unauffälligen 

Lymphknoten ist ebenso wenig belegt, wie der Nutzen einer systemischen adjuvanten 

Strahlen-, Chemo- oder endokrinen Therapie [35]. 

 

1.1.6   Prognose und Prognosefaktoren 

Aufgrund der oft erst späten Diagnose in fortgeschrittenen Stadien hat das Ovarialkarzinom 

eine hohe Mortalität. Die 5-Jahres-Überlebensrate liegt im FIGO Stadium I bei 93%, im 

Stadium II bei 70%, im Stadium III bei 37% und im Stadium IV bei nur mehr 25% [39]. 
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Somit ist das Tumorstadium zum Zeitpunkt der Erstdiagnose einer der wichtigsten Faktoren, 

um die Prognose einzuschätzen. Weitere Prognosefaktoren sind u.a. der postoperativ 

verbliebene Tumorrest [40], die DNA-Ploidie des Tumors [41, 42], das Alter [43], der 

klinische Zustand der Patientin bei Aufnahme [43] und die Ansprechrate des Tumors auf die 

Chemotherapie, gemessen an der Geschwindigkeit des CA125-Abfalls [44]. 

 

1.1.7   Tumormarker 

Für das seröse Ovarialkarzinom ist das CA125 der wichtigste Tumormarker mit hoher 

Sensitivität und Spezifität, für das muzinöse Ovarialkarzinom ist CA72-4 der führende 

Marker. Zum Zeitpunkt der Erstdiagnose und vor der ersten Therapie wird die kombinierte 

Bestimmung dieser beiden Marker empfohlen [45]. 

CA125 wird mit einer Gesamtsensitivität von 87% von der Mehrzahl der Ovarialkarzinome 

freigesetzt. Seine Spezifität wird dadurch eingeschränkt, das eine CA125-Erhöhung auch bei 

benignen Erkrankungen, wie z.B. einer Endometriose, Entzündungen oder viralen Infekten 

auftreten kann [46]. Da CA125 nicht tumor- und organspezifisch ist, ist eine Indikation als 

Screeningmethode nicht gegeben [45] Große Bedeutung hat das CA125 jedoch im Rahmen 

der Verlaufskontrolle bei Patientinnen mit epithelialen Ovarialkarzinomen, jedoch nur, wenn 

sein Wert zum Zeitpunkt der Diagnosestellung erhöht ist. Bei einem persistierenden Anstieg 

auch ohne Krankheitszeichen ist von einem Rezidiv auszugehen [46].  

Die Sensitivität des Tumormarkers CA72-4 ist im Gegensatz zu CA125 geringer. Erhöhte 

Konzentrationen können nicht nur beim Ovarialkarzinom, sondern auch bei anderen 

Adenokarzinomen (z.B. Mamma, Kolon und Magen) gemessen werden, insbesondere beim 

muzinösen Subtyp [47]. Leicht erhöhte CA72-4-Werte lassen sich auch bei einer 

Endometriose, bei benignen Ovarialtumoren und entzündlichen Erkrankungen des Ovars 

feststellen [48, 49, 50]. 

Mittels immunhistochemischer Färbung konnte gezeigt werden, dass 1/3 aller muzinösen 

epithelialen Ovarialkarzinome eine Überexpression an CEA aufweisen. Analog dazu konnten 

erhöhte Serumkonzentrationen von CEA bei Patientinnen mit muzinösen epithelialen 

Ovarialkarzinomen dokumentiert werden [51, 52]. Neben Tumoren des Ovars dient CEA auch 

als Tumormarker beim Kolon-, Ösophagus- und Mammakarzinom [53]. Es konnte gezeigt 

werden, dass seine Bestimmung im Rahmen des serösen und muzinösen Ovarialkarzinoms 

weder die diagnostische noch die differentialdiagnostische Aussagekraft von CA125 und 

CA72-4 steigert [45]. 
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1.2   Zirkulierende Mikropartikel 

 

1.2.1   Definition und Kennzeichen 

In den 40er Jahren wurde festgestellt, dass sich die Gerinnungszeit von Thrombozyten-armem 

Plasma nach high-speed-Zentrifugation verlängerte. Dies wies auf einen subzellulären 

gerinnungsfördernden Faktor hin [54]. Erst 1967 entdeckte P. Wolf, dass sich dieser Faktor, 

den er als „platelet dust“ bezeichnete, aus kleinen Partikeln zusammensetzt, die von 

aktivierten Thrombozyten stammen. Diese Partikel hatten die gleiche gerinnungsfördernde 

Aktivität wie aktivierte Thrombozyten [55]. Die klinische Relevanz dieser thrombozytären 

Partikel zeigte sich im Jahre 1979, als von einer jungen Frau berichtet wurde, die an einer 

unklaren angeborenen Gerinnungsstörung litt, die später als „Scott-Syndrom“ bezeichnet 

wurde. Diese seltene Krankheit ist durch eine gestörte Freisetzung von Mikropartikeln 

gekennzeichnet [56, 57]. 

 

Mikropartikel (MP) sind Membranabschnürungen eukaryotischer Zellen mit einer 

heterogenen Größe von 0,1-1µm [58], die sowohl unter physiologischen als auch unter 

pathologischen Umständen in unterschiedlicher Anzahl im Blut und in anderen 

extrazellulären Flüssigkeiten, wie dem Speichel [59] zirkulieren. Es sind intakte Vesikel, die 

von Membranen unterschiedlicher Protein- und Lipidzusammensetzung umhüllt sind [60]. 

Die genaue Zusammensetzung dieser Membranen hängt von der Art der Ursprungszelle und 

von der Art des Stimulus ab, der zur Freisetzung der MP führte. So spiegeln MP in gewisser 

Weise den antigenetischen Phänotyp ihrer Ursprungszelle wider und tragen viele ihrer 

Biomarker [61]. Die Ursprungszellen sind in der Lage, ihre MP mit spezifischen Antigenen 

und bioaktiven Agentien auszustatten. Sie enthalten sowohl transmenbranäre Proteine und 

Rezeptoren, als auch zytosolische Komponenten wie z.B. Enzyme, Transkriptionsfaktoren 

und mRNA ihrer Ursprungszelle [62]. 

Auch unter physiologischen Bedingungen existieren MP in niedriger Konzentration im 

Plasma [63]. Durch Erkrankungen, wie insbesondere Infektionen, Autoimmunerkrankungen 

und Krebserkrankungen sowie deren Progression kann sich die Menge, die Zusammensetzung 

und die Funktion zirkulierender MP verändern [58]. Es ist bisher allerdings unklar, ob diese 

MP zur Entstehung der Erkrankung beitragen, oder ob sie als Folge der Erkrankung auftreten 

[58]. 
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Abbildung 1: Elektronenmikroskopische 
Darstellung von MP bei einer 
Mammakarzinompatientin [64]. Die 
Größenmarkierung zeigt die Länge 1µm an. 

 

1.2.2   Entstehungsmechanismus 

MP sind unter anderem dadurch gekennzeichnet, dass sie das anionische Phosphatidylserin 

(PS) an der Außenseite ihrer Membran tragen. Unter physiologischen Bedingungen herrscht 

an der Zellmembran eine Asymmetrie in der Verteilung von Phospholipiden (PL) mit 

bevorzugtem Auftreten von Phosphatidylcholin (PC) und Sphingomyelin an der Außenseite 

[65] sowie Phosphatidylserin (PS) und Phosphatidylethanolamin (PE) an der Innenseite der 

Membran [63]. Die Aufrechterhaltung dieser PL-Asymmetrie ist essentiell für die Zelle und 

wird durch eine komplexe enzymatische Balance aufrechterhalten, an der die fünf Enzyme 

Gelsolin, Flippase, Floppase, Scramblase und Calpain beteiligt sind [63]. Diese Enzyme 

werden durch einen Anstieg des zytosolischen Calciums entweder induziert oder gehemmt 

[63]. Aufgrund des verstärkten Auftretens von PS an der Außenseite der Membran von MP 

wird vermutet, dass der MP-Freisetzung ein Verlust der PL-Membranasymmetrie der 

Ursprungszelle vorausgeht. So kommt es z.B. infolge von Zellstimulierung oder -aktivierung 

zu einem signifikanten zytoplasmatischen Calciumanstieg aus dem Endoplasmatischen 

Retikulum oder von außen, die PL-Membranasymmetrie kollabiert und die anionischen 

Phospholipide, insbesondere PS, treten vermehrt an der Außenseite der Zellmembran auf [63]. 

Eine weitere Voraussetzung vor der Freisetzung von MP ist eine Veränderung des 

Zytoskeletts der Ursprungszelle: in Thrombozyten müssen Aktinfilamente, in anderen 

Zelltypen Aktin-Spektrin-Ankerplätze gespalten werden [63]. In ruhenden Thrombozyten 

werden die Aktinfilamente von den Proteinen Adducin und CapZ bedeckt, die eine Spaltung 

verhindern. Erst durch eine Gelsolin-Aktivierung bei einem zytoplasmatischen 

Calciumanstieg, wird diese Hemmung aufgehoben, das Zytoskelett kann gespalten und MP 
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können freigesetzt werden [63]. Im Rahmen der Apoptose fördert die aktivierte Rho-

assoziierte Kinase (ROCK I) die Kraftentwicklung zwischen Aktin und Myosin und 

beeinflusst über die Aktin-Myosin-Kopplung an die Plasmamembran die Vesikelbildung [62]. 

Wie von Leytin et al. 2009 nachgewiesen, scheint zudem eine Verstärkung der 

mitochondrialen Permeabilität ein wichtiger Faktor im Rahmen der MP-Freisetzung zu sein 

[66]. 

Auslösende Trigger für die Freisetzung von MP sind insbesondere Zellstimulierung, -

aktivierung und -apoptose. Auch durch Komplementaktivierung und viele andere Stimuli - 

meist als Reaktion auf Stresseinwirkung auf die Zelle – kommt es zur verstärkten Freisetzung 

von MP und damit zu einer erhöhten Anzahl an MP im Blut [63, 67]. 

 

1.2.3   Funktionen 

Die Funktionen von Mikropartikeln sind vielfältig. Sie sind Vektoren im transzellulären 

Austausch biologischer Informationen, die mit benachbarten oder weiter entfernten Zellen 

interagieren können [60]. Indem sie Zelltyp-spezifische Adhäsionsrezeptoren oder –liganden 

exponieren, können sie an bestimmte Zellen binden oder mit ihnen fusionieren und ihre 

Botschaft übermitteln (z.B. bioaktive Lipide, Zytokine und Wachstumsfaktoren) [68]. 

Die meistuntersuchte Eigenschaft von MP ist ihre gerinnungsfördernde Wirkung [69]. 

Vermittelt wird sie durch unterschiedliche Mechanismen. Zum einen fungieren die 

anionischen PL (insb. PS) an der Oberfläche der MP als Bindungsstellen für diverse 

Gerinnungsfaktoren (z.B. F.IXa, VIII, Va und IIa) und sind essentiell für die Bildung des 

Prothrombinase- und Tenasekomplexes [65]. Zum anderen sind einige MP in der Lage, Tissue 

Factor (TF) auf ihrer Oberfläche zu exprimieren, ihn auf andere Zellen zu transferieren oder 

durch ihre Bindung an eine Zelle deren TF-Produktion bzw. –Expression zu initiieren [58]. So 

können sie die Gerinnung über den TF/F.VII-abhängigen Weg verstärken [70]. Dennoch 

führen erhöhte MP-Level nicht notwendigerweise zu Thrombosen, da sie auch 

gerinnungshemmende Funktionen innehaben. MP, die von gesunden Kontrollen isoliert 

werden, fördern eine geringe Thrombinbildung. Dieses Thrombin ist fast vollständig an 

Thrombomodulin gebunden, was zu einer Aktivierung von Protein C und Inaktivierung der 

Faktoren Va und VIIIa führt. Das heißt, dass die MP-abhängige Thrombinbildung bei 

normaler Hämostase eine gerinnungshemmende Funktion hat [70].  

Eine weitere für die vorliegende Studie wichtige Funktion zirkulierender MP ist ihre Rolle im 

Rahmen von Krebserkrankungen. Indem sie z.B. die extrazelluläre Matrix so verändern, dass 
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ein lokales Fortschreiten des Tumors erleichtert wird [71, 72] und dem Tumor Strategien 

bieten, dem Immunsystem zu entkommen [73, 74] tragen neben PMP [60, 75, 76, 77, 78], 

EMP [79] und TF+-MP [80, 81, 82] auch Tumor-MP (TMP), die von malignen Tumorzellen 

selbst freigesetzt werden, zur Tumorprogression, Angiogenese und Metastasierung bei [83, 

71, 72]. Durch den horizontalen Transfer von Onkoproteinen, Wachstumsfaktoren, mRNA 

und miRNA können TMP z.B. den Phänotyp und die Natur von Zellen verändern und so zur 

Verbreitung der onkogenetischen Aktivität beitragen [84, 85, 86]. Die entscheidende 

Komponente, mit der nicht nur TMP die Angiogenese stimulieren, scheint Sphingomyelin zu 

sein, indem es die Endothelzellmigration und -invasion fördert [60]. Zudem können MP die 

Produktion pro- oder antiangiogenetischer Faktoren induzieren [87] und so die 

Endothelzellfunktion bezüglich Adhäsion, Migration und Proliferation (die drei 

Schlüsselschritte für die Bildung neuer Gefäße) verändern [87]. 

Neben ihrer Rolle für die Blutgerinnung und bei Krebserkrankungen sind MP in der Lage auf 

verschiedenen Ebenen ins Immunsystem einzugreifen. So tragen sie z.B. eine Reihe von 

Zytokinen und anderen Agenzien [60], z.B. IL-1 [88] sowie viele Entzündungsmarker, von 

denen man lange Zeit dachte, sie würden in einer löslichen Form im Plasma vorkommen [69]. 

Im Rahmen von Entzündungsreaktionen dienen MP als potente proinflammatorische 

Induktoren, die eine Reihe von Signaltransduktionswegen und Genexpressionsprofilen in 

Endothelzellen initiieren und dadurch die endotheliale Funktion beeinträchtigen [89]. Zudem 

tragen sie zu einer verbesserten Interaktion zwischen den an einer Entzündungsreaktion 

beteiligten Zellen bei [90]. 

Ebenso sind MP in der Lage, die Endothelfunktion zu beeinflussen [91, 92], eine endotheliale 

Dysfunktion und Veränderungen im NO- und Prostazyklin-Signalweg auszulösen [93]. 

Die meisten dieser für MP beschriebenen Funktion wurden in in vitro-Studien aufgedeckt. 

Inwieweit diese Funktionen auch in vivo zutreffen, ist – bis auf die gesicherte 

gerinnungsfördernde Funktion – bisher unklar [58]. Es steht jedoch fest, dass zirkulierende 

MP für den menschlichen Organismus sowohl „gut“ als auch „schlecht“ sein können. Unter 

physiologischen Bedingungen tragen sie zur Entwicklung, Angiogenese und Wundheilung 

von Geweben bei und spielen eine wichtige Rolle bei der Blutgerinnung [60]. Ist jedoch die 

Balance zwischen Proliferation, Stimulation und Zelltod gestört, so kommt es zu einer 

pathologischen Veränderung in der Zusammensetzung und Anzahl der verschiedenen 

zirkulierenden MP [60], was zu unerwünschten Wirkungen führen kann. 
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1.3   Hämostase bei Krebserkrankungen 

1865 erkannte der französische Professor Armand Trousseau (1801-1867) als Erster den 

Zusammenhang zwischen dem Auftreten von (Phlebo-)Thrombosen und malignen Tumoren. 

Er beschrieb drei Fälle, bei denen das Auftreten von „Phlegmasia alba dolens“ eindeutig an 

das Grundleiden eines viszeralen Malignoms gekoppelt war. Seitdem wurde der Begriff 

„Trousseau-Syndrom“ geprägt, der das Auftreten einer Thrombophlebitis als, auch 

möglicherweise erstes Zeichen, eines viszeralen Malignoms beschreibt [94]. 

Man vermutet, dass jeder fünfte Fall von symptomatischer tiefer Venenthrombose mit einem 

malignen Tumor assoziiert ist [95]. Das Risiko, eine Thrombose zu erleiden ist dabei stark 

von der Art des Tumors abhängig [96]. Malignome von Ovar, Pankreas, Gehirn und Knochen 

weisen die höchste kumulative Inzidenz venöser Thromboembolien auf [97]. Im Durchschnitt 

liegt die Inzidenz für ein thromboembolisches Ereignis bei einer Krebserkrankung bei 10-15% 

[98]. 

Als Ursachen für die gesteigerte Gerinnungsaktivität bei Krebspatienten gelten verschiedene 

Faktoren, die von malignen Zellen freigesetzt oder induziert werden und so die 

Gerinnungskaskade in Gang setzen können. Hierzu zählen z.B. proinflammatorische Zytokine 

(z.B. TNF-alpha, IFN-gamma) und Akute-Phase-Proteine, die die TF-Expression auf 

Monozyten oder Endothelzellen induzieren und so die Blutgerinnung verstärken. In 

immunhistochemischen Untersuchungen konnte gezeigt werden, dass viele Tumoren, die mit 

einer erhöhten Rate an Thromboembolien einhergehen, TF exprimieren [99]. Ein 

Zusammenhang zwischen der TF-Expression und dem Auftreten venöser Thromboembolien 

ist allerdings nicht bewiesen, so dass die An- oder Abwesenheit von TF im Tumorgewebe 

keine Aussagen über das absolute Risiko venöser Thromboembolien erlaubt [100]. Auch 

Chemotherapeutika, Operationen und zentrale Venenkatheter liefern einen entscheidenden 

Beitrag zum Auftreten thrombotischer Ereignisse. 

Da die wohl bekannteste Funktion von Mikropartikeln ihre gerinnungsfördernde Wirkung ist, 

rückten diese in der Vergangenheit zunehmend in den Fokus von Studien rund um das 

Trousseau-Syndrom. Eine Assoziation zwischen dem Auftreten venöser Thromboembolien 

(VTE) und erhöhten Konzentrationen an MP bei Krebspatienten wurde bereits mehrfach 

beschrieben [101, 102, 103, 104, 105]. Es gibt einige Hinweise, dass der prokoagulatorische 

Zustand bei Krebspatienten zumindest zum Teil auf MP zurückzuführen ist [106]. Die 

gerinnungsfördernde Wirkung von MP liegt v.a. darin begründet, dass sie eine 

Membranoberfläche zur Verfügung stellen, die für die Bildung von Komponenten der 
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Gerinnungskaskade wichtig ist [107]. Diese Aktivität wird verstärkt durch die Expression von 

Phosphatidylserin, TF und MUC1 [101, 108]. 

 

 

 

1.4   Zielsetzung 

In der vorliegenden Studie wurde bei Ovarialkarzinompatientinnen, Patientinnen mit 

Borderline-Tumoren und Frauen mit benignen Ovarialtumoren die Konzentration von 

zirkulierenden Mikropartikeln und verschiedenen MP-Subpopulationen (thrombozytäre MP, 

endotheliale MP, Tissue Factor tragende MP und spezifische MP, welche Antikörper 

exprimieren, die ebenso auf Ovarialkarzinomzellen zu finden sind) im Vergleich zu einer 

Kontrollgruppe mit gesunden Probandinnen untersucht. 

Ziel der Studie war die Konzentration und Subtypisierung der MP abhängig von der Dignität, 

dem Tumorstadium und dem Operationsstatus (prä- vs. postoperativ) in den Kollektiven zu 

analysieren. Zudem wurde die Gerinnungsaktivität (gemessen als D-Dimer-Konzentration) im 

Studienkollektiv bestimmt und mit der Konzentration der zirkulierenden MP, insbesondere 

der TMP korreliert.  
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2   Material und Methoden 

 

 

2.1   Patientenkollektiv 

Bei den Probandinnen handelte es sich um Patientinnen der Klinik und Poliklinik für 

Frauenheilkunde und Geburtshilfe des Klinikums der Universität München, Großhadern. 

Eingeschlossen wurden Frauen mit einem histologisch gesicherten primären Ovarialkarzinom, 

sowie Frauen mit benignen Ovarialtumoren, bei denen die Diagnose mittels Sonographie oder 

Laparoskopie gestellt wurde.  

Als Kontrollgruppe dienten gesunde Frauen mit anamnestischem Ausschluss von 

Karzinomerkrankungen in der Vorgeschichte, Nikotinkonsum, arteriellem Hypertonus und 

einer stattgehabten Hormonersatztherapie, bei denen innerhalb der letzten sechs Monate im 

niedergelassenen Bereich eine transvaginale Sonographie zum Ausschluss von 

Ovarialtumoren durchgeführt worden war. 

Alle Studienteilnehmerinnen wurden ausführlich über den Inhalt, die Art und das Ziel der 

Studie sowie über die Blutentnahme informiert und unterzeichneten eine schriftliche 

standardisierte Einverständniserklärung (siehe 7.5). Die Durchführung der Studie wurde durch 

die Ethikkommission der Ludwig-Maximilians-Universität München genehmigt (Projekt-Nr. 

349/02). 

Insgesamt wurde bei 64 Patientinnen und 55 gesunden Kontroll-Probandinnen Blut 

abgenommen. Durch Abnahmefehler, Ausschlusskritierien und Messfehler reduzierte sich die 

Fallzahl auf 16 Ovarialkarzinompatientinnen und 6 Borderline-Tumor-Patientinnen, 31 

Patientinnen mit benignem Ovarialtumor und 50 gesunde Kontrollen. 

 

Tabelle 1: Ein- und Ausschlusskriterien der Studie 

Einschlusskriterien Ausschlusskriterien 
Schriftliche Einverständniserklärung Hydrosalpinx 
Beninge Ovarialtumore Abszesse 
Histologisch gesicherte Ovarialkarzinome  Ovarialkarzinom-Rezidiv 
Borderline-Tumore Z.n. Mammakarzinom  
  Thrombozytopenie 
  Z.n. tiefer Venenthrombose und Lungenembolie 
  Einnahme von Heparin, ASS 
  (Z.n.) Hormonersatztherapie  
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2.2   Probengewinnung 

Die Proben wurden über einen Zeitraum von 13 Monaten gesammelt. Die Blutentnahme 

erfolgte stets zwischen 8.00-12.00 Uhr, um zu verhindern, dass tageszeitliche Schwankungen 

in der MP-Anzahl die Ergebnisse beeinflussen. 

Aus der Kubitalvene wurden jeweils 5ml Citratblut für die Bestimmung der MP-

Konzentration und der D-Dimere und 3ml EDTA-Blut zum Ausschluss einer 

Thrombozytopenie entnommen. Bei Patientinnen, bei denen im intraoperativen Schnellschnitt 

die Diagnose eines Ovarialkarzinoms gestellt wurde, wurde zwischen dem 4.-6. 

postoperativen Tag erneut eine Blutprobe zur Bestimmung der MP-Konzentration, der D-

Dimere und der Thrombozytenzahl entnommen. 

Die Blutabnahme erfolgte mit einer 20G-Monovette ohne vorhergehende venöse Stauung. 

Das Citratblut wurde innerhalb von 15 Minuten bei 3000 Umdrehungen pro Minute 20 

Minuten lang bei Raumtemperatur zentrifugiert (Zentrifuge Hermle ZK380, Gosheim, 

Deutschland) und der Plasmaüberstand in Proben von je 320µl in flüssigem Stickstoff 15 

Minuten lang schockgefroren und anschließend bei -80°C bis zur Messung gelagert. Bevor sie 

für die Messung aufbereitet werden konnten, wurden die Proben auf Eis langsam innerhalb 

einer Stunde aufgetaut. 

Das EDTA-Blut für ein kleines Blutbild wurde bei -5°C gekühlt, bevor es noch am gleichen 

Tag für die Messungen verarbeitet wurde. Zur Bestimmung der D-Dimere wurde ebenfalls der 

vom Citrat-Blut gewonnene und tiefgefrorene Plasmaüberstand herangezogen. 

 

 

 

2.3   Durchflusszytometrie 

 

2.3.1   Technik der Durchflusszytometrie 

Das Prinzip der Durchflusszytometrie oder Fluorescence Activated Cell Sorting (FACS) 

beruht auf der Messung optischer Signale von Zellen, die diese beim Passieren eines 

Laserstrahls aussenden [109]. Es handelt sich hierbei um Lichtstreuung und Fluoreszenz. Die 

zu untersuchenden Zellen oder Partikel müssen in Suspension vorliegen, welche über eine 

Kapillare in eine Messkammer transportiert und dort von der Trägerflüssigkeit erfasst wird. 
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Nach dem Prinzip der hydrodynamischen Fokussierung wird durch die laminare Strömung der 

Trägerflüssigkeit die Suspension im Zentrum der Messküvette konzentriert, so dass die Zellen 

bzw. Partikel nacheinander die Lichtquelle passieren und dabei jede Zelle einzeln erfasst wird 

(s. Abbildung 2). Als Lichtquelle dient ein Argonlaser mit einer Wellenlänge von λ = 488nm. 

Die Zellen werden von der Lichtquelle angeregt und emittierten Streulicht, welches vom 

Photomultiplier erfasst und digital gespeichert wird. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Abbildung 2: Prinzip der hydrodynamischen Fokussierung: Die Probenflüssigkeit wird 
durch die laminare Strömung der Trägerflüssigkeit im Zentrum der Messküvette fokussiert. 
Modifiziert nach [110]. 

 
 

Man unterscheidet Vorwärts- und Seitwärtsstreulicht. Vorwärtsstreulicht (forward scatter, 

FSC) wird im Winkel von 0-1° zum Laserstrahl emittiert und liefert Informationen über die 

Querschnittsfläche des zu untersuchenden Objekts und somit indirekt über seine Größe. 

Seitwärtsstreulicht (sideward scatter, SSC) bezeichnet die Lichtstreuung im Winkel von 90° 

und stellt als Korrelat des Refraktionsindex ein Maß für Granularität und Struktur des Objekts 

dar (s. Abbildung 3). Diese Technik wird zur Bestimmung einzelner Zellpopulationen im 

Vollblut angewandt. 
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Abbildung 3: Merkmale des Vorwärts- und Seitwärtsstreulichts im 
Durchflusszytometer: Vorwärtsstreulicht wird im Winkel von 0-1° emittiert und liefert 
Informationen über die Zellgröße; Seitwärtsstreulicht wird im Winkel von 90° emittiert und 
ermöglicht Rückschlüsse auf die Struktur des Objekts. Modifiziert nach [110]. 
 
 

Zusätzlich ist es möglich, bestimmte Oberflächenmoleküle auf Zellen oder Partikeln mit 

fluoreszierenden Antikörpern zu markieren. Dabei werden Fluorochrome durch das Laserlicht 

angeregt. Diese emittieren Licht einer für sie charakteristischen Wellenlänge. In der 

vorliegenden Arbeit fanden folgende Fluorochrome Verwendung: Fluoresceinisothiocyanat 

(FITC) mit einem Absorptionsmaximum bei 488nm und einem Emissionsmaximum bei 

520nm sowie R-Phycoerythrin (R-PE) mit drei Absorptionsmaxima bei 480, 546 und 565nm 

und einem Emissionsmaximum bei 578nm. 

Während der Datenaufnahme wurde ein sogenannter Schwellenwert (threshold) definiert, 

oberhalb dessen ein Signal erst detektiert wird. Damit wurden Störsignale ausgeblendet und 

die Messung auf die Signale der zu bestimmenden Objekte fokussiert (Kapitel in Anlehnung 

an [64]). 

 
 

2.3.2   Grundlösungen 

Zur Herstellung der Phosphat-gepufferten Salin (PBS)-Grundlösung wurden 9g NaCl in 

1000ml destilliertem Wasser gelöst (entsprechend 154mmol/l NaCl 0,9%) und 0,25g 

Hydrogenphosphat-Natrium zugegeben (entsprechend 1,4mmol/l Phosphat). Der pH-Wert der 

PBS-Grundlösung lag bei 7,5. Für die Calcium-Grundlösung wurden 1,47g CaCl2 in 100ml 

destilliertem Wasser gelöst (entsprechend 0,1mol/l CaCl2). Die Citrat-Grundlösung bestand 
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aus 3,2g Trinatriumcitrat, welches in 100ml destilliertem Wasser gelöst wurde (entsprechend 

3,2% Trinatriumcitrat) (nach [64]). 

 

Tabelle 2: Verwendete Chemikalien 

Chemikalie Hersteller 
CaCl2 (Calciumchlorid) Merck, Darmstadt, Deutschland 

Na2HPO4 (Dinatriumhydrogenphosphat) Merck, Darmstadt, Deutschland 

NaCl (Natriumchlorid) Merck, Darmstadt, Deutschland 
Na3C6H5O7 (Trinatriumcitrat) Merck, Darmstadt, Deutschland 

NaOH (Natronlauge) 1mol/l Merck, Darmstadt, Deutschland 
HCl (Salzsäure) 1mol/l Merck, Darmstadt, Deutschland 

 

2.3.3   Arbeitslösungen 

Die Arbeitslösungen wurden vor jeder Messung aus den Grundlösungen frisch hergestellt. Die 

Calcium-Pufferlösung setzte sich aus PBS und der Calcium-Grundlösung im Verhältnis 

39ml:1ml zusammen, die Citrat-Pufferlösung aus PBS und der Citrat-Grundlösung im 

Verhältnis 9ml:1ml. Die Kalibrierung der Arbeitslösungen auf einen pH-Wert zwischen 7,36 

und 7,44 erfolgte mit einem pH-Meter der Firma inoLab pH 720, WTW Series, Weilheim, 

Deutschland. Vor der Verwendung wurden die Arbeitslösungen filtriert, um eine 

Verunreinigung zu vermeiden (Minisart, non-pyrogenic, 0,20µm, steril, Sartorius, Göttingen, 

Deutschland) (nach [64]). 

 

2.3.4   Verfahren 

Vor der Konzentrationsbestimmung wurden die Proben eine Stunde lang auf Eis aufgetaut 

und nach Durchmischung mittels Vortex (Vortex Genie 2TM, Firma Bender&Hobein AG, 

Zürich, Schweiz) 250µl entnommen. Diese wurden bei 17570g und 20°C 30 Minuten 

zentrifugiert (Zentrifuge Mikro 22R, Hettich, Tutting, Deutschland). 225µl MP-freier 

Überstand wurden abpipettiert und verworfen. Die verbleibenden 25µl wurden mit 225µl 

Citrat-Pufferlösung verdünnt (PBS mit 10,9mmol/Trinatriumcitrat), erneut mittels Vortex 

gemischt und bei 17570g und 20°C 30 Minuten zentrifugiert. 

Danach wurden 225µl Überstand entnommen und die verbleibenden 25µl mit 75µl Citrat-

Pufferlösung vermischt. 5µl dieser MP-reichen Suspension wurden jeweils mit 35µl Calcium-

Pufferlösung (CaCl2 2,5mmol/l in PBS) verdünnt. Zur Detektion der MP wurde 5µl 
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Allophycocyanin (APC)-markiertes Annexin V zugegeben sowie 5µl eines spezifischen 

Antikörpers (s.u.) bzw. Kontrollantikörpers. Annexin V und die spezifischen Antikörper 

wurden zuvor bei 17570g und 20°C 5 Minuten zentrifugiert und mit Calcium-Pufferlösung 

verdünnt. 

Die Proben wurden 15 Minuten bei Raumtemperatur im Dunkeln inkubiert und die Reaktion 

dann mit 900µl Calcium-Pufferlösung (bei der Annexin V-Kontrollprobe mit Citrat-

Pufferlösung) gestoppt. 

Zur Analyse wurde ein FACScan-Durchflusszytometer der Marke Becton Dickinson 

(Heidelberg, Deutschland) unter Verwendung der Cell Quest Software (Becton Dickinson; 

San Jose, CA, USA) genutzt. FSC und SSC wurden in einen logarithmischen Maßstab 

gesetzt. MP wurden anhand ihrer Größe (< 1µm Durchmesser), Dichte sowie Annexin V-

Bindung identifiziert. Die Annexin V-Messergebnisse wurden um die Autofluoreszenz 

korrigiert. Die Fluoreszenzen der spezifischen Antikörper wurden mit Hilfe Isotyp-

spezifischer Kontrollantikörper gleicher Konzentration korrigiert. 

Die Proben wurden über 1 Minute im Durchflusszytometer untersucht, wobei vor jeder 

Messung der Wassereinzug des Geräts (V) in µl/min bestimmt und der Messwert um den 

aktuellen Wassereinzug korrigiert wurde. Zur Ermittlung der MP-Konzentration wurde die 

Zahl der MP (N) im oberen rechten Quadranten (FL1 vs FL2) um Isotypkontrolle und 

Autofluoreszenz korrigiert und die Werte wurden in folgende Formel eingefügt: MP/l = N x 

[100/5] x [950/V] x [106/250] [70]. (Kapitel in Anlehnung an [64]) 

 

Tabelle 3: Verwendete Reagenzien 

Reagenzien Hersteller 
Annexin-FITC Immuno Quality Products, Groningen, Niederlande 
Annexin-PE Immuno Quality Products, Groningen, Niederlande 
IgG 1-FITC Immunotech, Marseille, Frankreich 
IgG 1-PE Immuno Quality Products, Groningen, Niederlande 
CD61-PE BD Biosciences Pharmingen, Heidelberg, Deutschland 
CD63-PE Immunotech, Marseille, Frankreich 
CD142-PE BD Biosciences Pharmingen, Heidelberg, Deutschland 
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Tabelle 4: Antikörper-Verdünnungen  

Antikörper Antikörper-Menge Puffer-Menge 

Annexin-FITC 6µl Annexin-FITC 54µl Ca-Puffer 
IgG 1-PE 2µl IgG-PE 18µl Ca-Puffer 
CD61-PE 2µl CD61-PE 18µl Ca-Puffer 
CD63-PE 10µl CD63-PE 10µl Ca-Puffer 
CD142-PE Unverdünnt  
EpCAM-PE Unverdünnt  
Annexin-PE 2µl Annexin-PE 38µl Ca-Puffer 
IgG 1-FITC 2µl IgG-FITC 18µl Ca-Puffer 
CD144-FITC 10µl CD144-FITC 10µl Ca-Puffer 

 

2.3.5   Spezifische Antikörper 

2.3.5.1   Annexin V 

Annexin V ist ein Protein der Größe 36kDa, das Calcium-abhängig negativ geladene 

Phospholipide bindet. Es hat eine hohe Affinität für das anionische Phosphatidylserin, 

während es nur minimal an Phosphatidylcholin und Sphingomyelin bindet. Da Phospholipide 

an der Aktivierung der Gerinnungskaskade beteiligt sind, wirkt Annexin V durch seine 

Phospholipid-Bindung gerinnungshemmend [111]. 

MP sind u.a. dadurch gekennzeichnet, dass sie Phosphatidylserin an der Außenseite ihrer 

Membran exponieren. Durch seine starke Affinität und Bindung an PS eignet sich FITC- oder 

PE-markiertes Annexin V deshalb zum durchflusszytometrischen Nachweis von MP. 

 

2.3.5.2   Immunglobulin G1 

Immunglobulin G (IgG) ist ein 150KDa-Protein, bestehend aus zwei leichten und zwei 

schweren Ketten, die durch Disulfidbrücken miteinander verbunden sind [112]. Vier IgG-

Subklassen mit homologer Grundstruktur der schweren Ketten sind bekannt [112]. IgG 1 ist 

die größte Subklasse, gefolgt von 2, 3 und 4 [112]. IgG 1 bindet unspezifisch an MP und 

eignet sich daher als Isotypen- oder Negativkontrolle bei der durchflusszytometrischen 

Messung der MP. Da alle verwendeten Antikörper IgG 1-Antikörper sind, wird untersucht, 

wie stark das Ausmaß der IgG 1-unspezifischen Bindung ist. 
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2.3.5.3   Anti-CD61-PE 

Anti-CD61-PE ist ein monoklonaler Antikörper, der mit R-Phycoerythrin markiert ist. Er setzt 

sich aus den schweren Ketten und den kappa-Leichtketten des IgG 1 von Mäusen zusammen. 

Der Antikörper reagiert mit Integrin ß3, einem transmembranen Glykoprotein (105kDa), das 

auf Thrombozyten, Megakaryozyten, Osteoklasten und Endothelzellen exprimiert wird. Er ist 

ein selektiver Marker für Thrombozyten und deren Vorläuferzellen. Integrin ß bildet mit 

CD41 einen Komplex, der als Rezeptor für vWF, lösliches Fibrin und Fibronectin fungiert 

und eine zentrale Rolle in der Plättchenaktivierung, -adhäsion und –aggregation spielt [113]. 

In der vorliegenden Studie dient Anti-CD61-PE zur Bestimmung der MP-Anzahl, die der 

Gesamtzahl ruhender Thrombozyten entstammen. 

 

2.3.5.4   Anti-CD63-PE 

Anti-CD63-PE ist ein monoklonaler Antikörper, der mit R-Phycoerythrin markiert ist und 

sich aus den schweren Ketten und den kappa-Leichtketten des IgG 1 von Mäusen 

zusammensetzt. 

CD63 ist ein Glykoprotein mit einer Größe von 53kDa und ein Mitglied der Tetraspanin-

Familie. Es wird v.a. auf der Oberfläche und im Zytoplasma verschiedener hämatopoetischer 

und nicht-hämatopoetischer Zellen (Endothelzellen, Fibroblasten, Osteoklasten, etc.) 

exprimiert. Die Exposition von CD63 auf der Oberfläche von Zellen erfolgt in der Regel 

durch die Aktivierung der Zelle. Im Zytoplasma ist es in Endosomen, Lysosomen und 

sekretorischen Vesikeln vorhanden. CD63 interagiert mit Integrinen und ist in der Lage 

Phagozytose und Zellmigration auszulösen. Zudem kann die Expression von CD63 genutzt 

werden, um Aussagen über die Prognose von Karzinomen in frühen Stadien zu machen [114]. 

In der vorliegenden Studie dient Anti-CD63-PE zur Bestimmung der MP, die von aktivierten 

Thrombozyten stammen. 

 

2.3.5.5   Anti-CD142-PE 

Anti-CD142-PE ist ein monoklonaler Antikörper, der mit R-Phycoerythrin markiert ist und 

sich aus den schweren Ketten und den kappa-Leichketten des IgG 1 von Mäusen 

zusammensetzt. 

Anti-CD142 reagiert mit einem Einzelketten-Typ-I-Transmembranprotein (45-47kDa), das 

auch als Tissue Factor (TF) bekannt ist. TF ist der Initiator des extrinsischen Wegs der 

Blutgerinnung, der, im Gegensatz zum intrinsischen Weg, tatsächlich in vivo vorkommt. Er 
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ist der Rezeptor für F.VII/F.VIIa; ihr Komplex aktiviert sowohl F.X, als auch F.IX, um die 

Blutgerinnung zu initiieren [115]. Im Gegensatz zur Zell-gebundenen Form von TF z.B. auf 

Zellen der Gefäßwand, glatten Muskelzellen und Perizyten, sind TF+-MP eine Quelle für TF 

innerhalb des Blutflusses. Abgesehen von seiner Lokalisation im und um das Blut, zeigen 

auch verschiedene Gewebe eine unterschiedlich stark ausgeprägte TF-Expression. Mit Hilfe 

immunhistochemischer Methoden konnte festgestellt werden, dass auch Tumore, v.a. solche 

epithelialen Ursprungs, z.T. hohe TF-Level exprimieren [99].  

In der vorliegenden Studie dient Anti-CD142-PE zur Detektion TF+-MP. 

 

2.3.5.6   Anti-EpCAM-PE 

Anti-EpCAM ist ein monoklonaler Antikörper, der mit R-Phycoerythrin markiert ist und sich 

aus den schweren Ketten und den lambda-Leichtketten des IgG 1 von Mäusen zusammensetzt. 

Er ist gegen das menschliche epitheliale zelluläre Adhäsionsmolekül (EpCAM, 40kDa) 

gerichtet. EpCAM hat neben seiner Funktion als Zelladhäsionsmolekül eine wichtige Rolle 

bei der Bildung, Entwicklung, Aufrechterhaltung, Reparatur und Funktion von 

Epithelgeweben [116]. Hierfür ist es an der Regulierung von Prozessen wie Zellmigration, 

Zellzyklus und Zellsignalisierung beteiligt [116]. Im Gegensatz zu den übrigen CAMs, die ein 

breites Expressionsmuster aufweisen, wird EpCAM nur auf normalen Epithelzellen 

exprimiert [116]. Zudem wurde schon früh die EpCAM-Überexpression auf epithelialen 

Karzinomen beschrieben. Die erhöhten EpCAM-Konzentrationen stören hier die 

regulatorische Balance und erleichtern die abnorme zelluläre Proliferation und 

Differenzierung, die für Karzinome typisch ist [116]. Zudem wird vermutet, das EpCAM an 

der Metastasierung maligner Tumoren beteiligt ist [117, 118]. Zu den Karzinomen, die eine 

EpCAM-Überexpression aufweisen, zählt u.a. das Ovarialkarzinom [119]. Hier konnte 

festgestellt werden, dass die EpCAM-Überexpression mit einem reduzierten Überleben 

einhergeht [120]. 

Anwendungsgebiete von Anti-EpCAM sind z.B. die Detektion zirkulierender Tumorzellen 

während des Vorgangs der Metastasierung und das Ansprechen mikrometastatischer Zellen 

auf adjuvante Therapien [121]. In der vorliegenden Studie dient Anti-EpCAM zur Detektion 

derjenigen MP, die epithelialen Ursprungs sind bzw. die von Ovarialkarzinomzellen 

freigesetzt werden (sog. Tumor-MP oder TMP). 
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2.3.5.7   Anti-CD144-FITC 

Anti-CD144-FITC ist ein monoklonaler Antikörper, der mit Fluoreszein-Isothiocyanat 

markiert ist und sich aus den schweren Ketten sowie den kappa-Leichtketten des IgG 1 von 

Mäusen zusammensetzt.  

CD144 reagiert mit einem Calcium-unabhängigen Epitop auf dem Cadherin-5, einem 

Mitglied der Cadherin-Familie. Cadherine (Calcium adhering) sind Calcium-abhängige 

transmembranäre Glykoproteine aus der Familie der Adhäsionsproteine. Sie kommen u.a. in 

Desmosomen vor und bewirken Zellkontakte in verschiedenen Geweben. Cadherin-5 wird in 

vivo und in vitro auf Endothel-Zellen exprimiert. Möglicherweise spielt es eine Rolle bei der 

Organisation lateraler endothelialer Zellverbindungen und bei der Kontrolle von 

Permeabilitätsfähigkeiten des vaskulären Endothels [122]. 

In der vorliegenden Studie dient Anti-CD144 zur Detektion endothelialer MP (EMP), die von 

Endothelzellen bei deren Aktivierung und Apoptose freigesetzt werden [123, 124]. Sie 

spiegeln also eine Endothelaktivierung oder einen Endothelzellschaden [125] wider, wie z.B. 

bei Patienten mit Atherosklerose und v.a. Patienten mit Plaque-Instabilität [126, 127]. Da 

Zytokine, proinflammatorische und prothrombotische Stimuli sowie oxidative Substanzen in 

vitro zur Freisetzung von EMP führen können [128], spielen sie eine große Rolle im Rahmen 

von Entzündungen, Gefäßverletzungen, Angiogenese und Thrombosen [125]. 

 

 

 

2.4   Gerinnungsaktivität 

Zur Beurteilung der Gerinnungsaktivität wurden die D-Dimer-Konzentrationen im 

Studienkollektiv bestimmt. D-Dimere sind Fibrin-Spaltprodukte, die im Rahmen der 

Fibrinolyse entstehen. Ihre Bestimmung im venösen Citratblut bei vermuteter venöser 

Thrombose oder Thromboembolie hat einen hohen negativ-prädiktiven Wert [129] und findet 

seit ca. 23 Jahren Verwendung im klinischen Alltag. 

Für diese Messung wurde das tiefgefrorene Plasma herangezogen, das auch für die MP-

Messungen verwendet wurde. Nach dem Auftauen wurden die Proben mit Hilfe des BCS XP 

Systems von Siemens Healthcare Diagnostics (Deutschland) unter Verwendung des 

INNOVANCE-D-Dimer-Sets analysiert. Es handelt sich hierbei um einen voll-automatischen 

partikelverstärkten, immunoturbidimetrischen Test für die quantitative Bestimmung von D-

Dimer im Plasma. Werte > 0,55mg/l werden als erhöht angesehen. 
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Die D-Dimer-Konzentration wurde bei allen 16 Patientinnen mit malignen, allen 6 

Patientinnen mit semimalignen, bei 41 Patientinnen mit benignen Ovarialtumoren und 12 

gesunden Kontrollen bestimmt. Innerhalb der Gruppe mit malignen Tumoren wurde 

zusätzlich noch bei 9 Patientinnen die D-Dimer-Konzentration am 4.-6. postoperativen Tag 

bestimmt. 

 

 

 

2.5   Statistik 

Parametrisch verteilte Daten werden im Folgenden als Mittelwert ± Standardabweichung 

(SD) sowie Minimum - Maximum, alle anderen Daten als Median, Minimum - Maximum und 

Interquartilsabstand (Q1 - Q3) dargestellt. 

Die Analyse der nicht-normalverteilten Variablen erfolgte mittels Kruskal-Wallace-Test 

(nicht-parametrischer Test für > 2 Stichproben), Mann-Whitney-U-Test (nicht-parametrischer 

Test für 2 unverbundene Stichproben) und Wilcoxon-Test (nicht-parametrischer Test für 2 

verbundene Stichproben). Die Analyse der normalverteilten Variablen erfolgte mittels T-Test 

für unverbundene Variablen. 

Zur Analyse der Unabhängigkeit zweier Alternativmerkmale wurde der Chi²-

Unabhängigkeitstest angewandt. 

Zum Vergleich der Sensitivitäten und Spezifitäten der MP-Subpopulationen mit denen der 

konventionellen Tumormarker für das Ovarialkarzinom (CA125 und CA72-4) wurde für jede 

MP-Subpopulation eine ROC-Kurve erstellt. Die Flächen unterhalb der ROC-Kurve 

ermöglichen einen direkten Vergleich mehrerer Diagnoseverfahren. 

Um eine Korrelation zwischen der MP-Konzentration und der Gerinnungsaktivität (D-Dimer-

Konzentration) zu ermitteln, wurde der Korrelationskoeffizient nach Spearman (r) bestimmt. 

P-Werte < 0,05 wurden als statistisch signifikant erachtet. Die Daten wurden mit SPSS 

für Windows (Version 16.0 und 21.0, Chicago, Illinois, USA) ausgewertet. 
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3   Ergebnisse 

 

 

3.1   Patientenkollektiv 

Bei 20 Patientinnen mit semimalignen und malignen Ovarialtumoren wurde eine 

Stadieneinteilung des Tumors entsprechend der FIGO-Klassifikation durchgeführt. 8 

Patientinnen (40%) befanden sich im FIGO-Stadium I, 2 Patientinnen (10%) im FIGO-

Stadium II, 7 Patientinnen (35%) im FIGO-Stadium III und 3 Patientinnen (15%) im FIGO-

Stadium IV. Bei 2 Patientinnen mit malignem Befund war das FIGO-Stadium unbekannt. 

 

Das Alter der Patientinnen mit malignen Ovarialtumoren war signifikant höher als das Alter 

der Patientinnen mit benignen Ovarialtumoren (p = 0,021) bzw. der Patientinnen mit 

semimalignen Ovarialtumoren (p = 0,045). In der Kontrollgruppe existierte ein signifikanter 

Altersunterschied zu den Patientinnen mit malignen Ovarialtumoren (p = 0,045). Die übrigen 

Studienkollektive unterschieden sich nicht signifikant im Alter. 

Bezüglich des Body Mass Index (BMI) und der Hämoglobin-Konzentration zeigten sich keine 

signifikanten Unterschiede innerhalb Studienkollektiv. 

Die Thrombozytenkonzentration war in der Gruppe der malignen Ovarialtumoren am 

höchsten und unterschied sich signifikant von der Thrombozytenkonzentration in der 

Kontrollgruppe (p = 0,038). 

Die Leukozyten waren in der Kontrollgruppe am niedrigsten, gefolgt von den benignen 

Ovarialtumoren, den semimalignen Ovarialtumoren und den höchsten Werten bei den 

malignen Ovarialtumoren. In dieser Gruppe war die Leukozytenzahl im Vergleich zur 

Kontrollgruppe signifikant erhöht (p = 0,001), jedoch nicht signifikant erhöht im Vergleich 

zum Kollektiv der benignen Ovarialtumoren (p = 0,067). 

Das CA125 unterschied sich signifikant zwischen den Patientinnen mit benignen und 

malignen Ovarialtumoren (p < 0,001) sowie zwischen den Patientinnen mit semimalignen und 

malignen Ovarialtumoren (p = 0,017). Auch das CA72-4 zeigte sich im Kollektiv der 

malignen Ovarialtumoren im Vergleich zur Gruppe der benignen (p = 0,001) und zur Gruppe 

der semimalignen Ovarialtumore (p = 0,040) signifikant erhöht. 

Alle weiteren Parameter (Nikotinkonsum, Anamnese einer Hysterektomie und Zyklus) 

unterschieden sich nicht signifikant innerhalb des Studienkollektivs. 
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Tabelle 5: Studienkollektiv - Alter, BMI, Hämoglobin, Thrombozyten-, Leukozytenzahl und 
konventionelle Tumormarker in der Studienpopulation, bestehend aus Patientinnen mit 
malignen, semimalignen und benignen Ovarialtumoren, sowie der Kontrollgruppe; Daten 
präsentiert als Mittelwert ± Standardabweichung, (Minimum – Maximum) und Anzahl der 
untersuchten Probandinnen. Bei der Kontrollgruppe wurde keine Tumormarkerbestimmung 
durchgeführt. 
 
* = signifikanter Unterschied zwischen malignen Ovarialtumoren und Kontrollgruppe 
** = signifikanter Unterschied zwischen malignen und benignen Ovarialtumoren 
*** = signifikanter Unterschied zwischen malignen und semimalignen Ovarialtumoren 

 Kollektiv Maligne Tumore Semimaligne Tumore Benigne Tumore Kontrollgruppe 

Alter 62,1 ± 11,6*/**/*** 50,5 ± 10,5*** 50,5 ± 17,4** 56,6 ± 8,7* 

(33 - 78) (41 - 64) (15 - 84) (38 - 78) 

(n = 16) (n = 6) (n = 31) (n = 50) 

BMI (kg/m²) 23,9 ± 2,8 25,3 ± 5,9 24,6 ± 4,5 24,7 ± 3,7 

(19,9 - 29,1) (20,4 - 36,4) (18,8 - 38,6) (19,5 - 39,5) 

(n = 16) (n = 6) (n = 30) (n = 47) 

Hämoglobin (g/dl) 13,1 ± 2,5 13,7 ± 1,0 13,8 ± 1,1 13,7 ± 0,8 

 
(5 - 16) (12 -15) (11 - 16) (12 - 15) 

 
(n = 16) (n = 6) (n = 30) (n = 27) 

Thrombozytenzahl (G/l) 351,4 ± 150,0* 281,7 ± 47,8 278,2 ± 69,9 267,3 ± 66,0* 

 
(172 - 721) (213 - 340) (132 - 405) (90 - 436) 

 (n = 16) (n = 6) (n = 29) (n = 49) 

Leukozytenzahl (G/l) 8,6 ± 1,7* 7,82 ± 1,0 7,5 ± 2,2 6,8 ± 1,9* 

 
(6,7 - 11,6) (6,7 - 9,6) (4,2 - 13,3) (3,3 - 11,8) 

 (n = 16) (n = 6) (n = 30) (n = 47) 

CA125 (U/ml) 733,3 ± 1066,5**/*** 70,7 ± 81,7*** 19,5 ± 13,5**   

(9 - 4052) (11 - 186) (6 - 57)   

(n = 16) (n = 6) (n = 28) (n = 0) 

CA72-4 (U/ml) 54,0 ± 123,1**/*** 1,6 ± 0,8*** 1,6 ± 2,0**   

 
(0,7 - 432) (0,6 - 2,6) (0,4 - 11,1)   

 
(n = 16) (n = 6) (n = 27) (n = 0) 
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3.2   Mikropartikel 

 

3.2.1   MP-Konzentrationen im Studienkollektiv 

Für die Auswertung der MP-Konzentrationen im Studienkollektiv wurden 16 Patientinnen mit 

malignen, 6 mit semimalignen, 31 mit benignen Ovarialtumoren und insgesamt 50 gesunde 

Kontrollen untersucht. 

Die Gesamtzahl der MP (Annexin V+-MP) zeigte die höchste Konzentration bei Patientinnen 

mit malignen Ovarialtumoren, ohne jedoch im Vergleich mit der Kontrollgruppe sowie den 

semimalignen und benignen Ovarialtumoren eine statistische Signifikanz zu erreichen. 

Die Plättchen-MP (CD61+-MP) zeigten von allen gemessenen MP-Subpopulationen die 

höchste Konzentration. Die Unterschiede zwischen den Studiengruppen waren jedoch 

statistisch nicht signifikant. Die höchste Konzentration der PMP, die von aktivierten 

Thrombozyten stammen (CD63+-MP) zeigte die Gruppe mit malignen Ovarialtumoren und 

die Kontrollgruppe. Der Unterschied zwischen Patientinnen mit malignen und semimalignen 

Ovarialtumoren erwies sich als statistisch signifikant (p = 0,021), ebenso der Unterschied 

zwischen malignen und benignen Ovarialtumoren (p = 0,008). Zudem war die Konzentration 

an CD63+-MP in der Kontrollgruppe signifikant höher als bei semimalignen und benignen 

Ovarialtumoren (p < 0,001 und p = 0,008). 

Bezüglich der Tumorzell-spezifischen MP (EpCAM+-MP) zeigten sich die höchsten 

Konzentrationen innerhalb der Kontrollgruppe. Signifikant niedriger als in der Kontrollgruppe 

waren die EpCAM+-MP in der Gruppe mit malignen Ovarialtumoren (p = 0,005), mit 

semimalignen (p < 0,001) und benignen Ovarialtumoren (p < 0,001). 

Bei den endothelialen MP (CD144+-MP) zeigten sich die höchsten Konzentrationen in der 

Kontrollgruppe, die niedrigsten in der Gruppe der semimalignen Ovarialtumoren. Eine 

vergleichbare Konzentration fand sich zwischen benignen und malignen Ovarialtumoren. 

Fasst man die beiden Kollektive „semimaligne und maligne“ zusammen, so fand sich ein 

signifikanter Unterschied in der Konzentration der EMP im Vergleich zur Kontrollgruppe (p 

= 0,045). Die Konzentration der EMP in der Gruppe der semimalignen Ovarialtumore war 

statistisch signifikant niedriger als in der Kontrollgruppe (p = 0,002) und als in der Gruppe 

der benignen Ovarialtumore (p = 0,025). Auch der Unterschied zwischen benignen 

Ovarialtumoren und Kontrollgruppe erwies sich als statistisch signifikant (p = 0,049). 
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Die Unterschiede TissueFactor+-MP (CD142+-MP) innerhalb des Studienkollektivs erwiesen 

sich als statistisch nicht signifikant (p > 0,05). Die höchste Konzentration an TF+-MP ließ sich 

in der Kontrollgruppe messen, während maligne, semimaligne und benigne Ovarialtumore 

ähnliche Konzentrationen aufwiesen. 

 
 
Tabelle 6: Konzentration der MP-Subpopulationen (jeweils x106/l) in den 
Studiengruppen mit malignen, semimalignen und benignen Ovarialtumoren, sowie in der 
Kontrollgruppe; Daten präsentiert als Median, (Minimum - Maximum) und 
(Interquartilsabstand Q1 - Q3). 
 
* = signifikanter Unterschied zwischen malignen Ovarialtumoren und Kontrollgruppe 
** = signifikanter Unterschied zwischen malignen und benignen Ovarialtumoren 
***  = signifikanter Unterschied zwischen malignen und semimalignen Ovarialtumoren 
**** = signifikanter Unterschied zwischen Kontrollgruppe und semimalignen Ovarialtumoren 
***** = signifikanter Unterschied zwischen Kontrollgruppe und benignen Ovarialtumoren 
****** = signifikanter Unterschied zwischen benignen und semimalignen Ovarialtumoren 

Kollektiv AnV+-MP CD61+-MP CD63+-MP EpCAM +-MP CD142+-MP CD144+-MP 

maligne 5859 4289 285*/** 123* 215 1528 

(n = 16) (2744 - 26746) (2242 - 26006) (64 - 948) (53 - 311) (118 - 281) (671 - 9391) 

  (4480 - 8760) (3420 - 8447) (142 - 432) (90 – 2239) (196 - 245) (1208 - 2893) 

semi- 4398 3713 123***/**** 118**** 199 905****/****** 

maligne (2749 - 10438) (2387 - 9859) (55 - 190) (50 - 170) (139 - 685) 8715 - 1818) 

(n = 6) (2998 - 6672) (2543 - 6356) (58 - 177) (72 - 160) (155 - 365) 8813 - 1443) 

benigne 4882 4231 152***** 131***** 226 1579***** 

(n = 31) (1434 - 12505) (1216- 10188) (40 - 390) (37 - 212) (106 - 523) (440 - 5083) 

  (3599 - 7371) (2926 - 5899) (79 - 212) (53 - 177) (168 - 310) (1212 - 2146) 

Kontrolle 5099 4513 269 216 272 1945 

  (1343 - 13207) (995 - 125519) (46 - 791) (145 - 390) (77 - 418) (609 - 4908) 

  
(3074 - 6284) (2673 - 5262) (152 - 421) (196 - 259) (169 - 341) (1434 - 2594) 

(n = 44) (n = 44) (n = 44) (n = 19) (n = 27) (n = 50) 
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Abbildung 4: Konzentration der CD63+-MP (x106/l) (y-Achse) in den 
Studienpopulationen (x-Achse), dargestellt als Boxplot; Daten präsentiert als Median und 
Interquartilsabstand; 12, 52 und 80 stellen Ausreißer innerhalb der einzelnen Gruppen dar;  
(p-Wert < 0,05 = signifikant). 
 

 

  
Abbildung 5: Konzentration der EpCAM +-MP (x106/l) (y-Achse) in den 
Studienpopulationen (x-Achse), dargestellt als Boxplot; Daten präsentiert als Median und 
Interquartilsabstand; 64 stellt einen Ausreißer innerhalb der Kontrollgruppe dar; (p-Wert < 
0,05 = signifikant). 
 

p = 0,008 

p < 0,001 

p = 0,008 

p = 0,021 

p = 0,005 

p < 0,001 

p < 0,001 
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Abbildung 6: Konzentration der CD144+-MP (x106/l) (y-Achse) in den 
Studienpopulationen (x-Achse), dargestellt als Boxplot; Daten präsentiert als Median und 
Interquartilsabstand; 21, 28, 35, 54, 55 und 59 stellen Ausreißer innerhalb der einzelnen 
Gruppen dar; (p-Wert < 0,05 = signifikant). 
 

 

3.2.2   MP-Konzentrationen in Abhängigkeit vom Tumorstadium 

Zur Auswertung der MP-Konzentrationen bei den jeweiligen Tumorstadien konnten 20 

Patientinnen herangezogen werden, von denen 15 Patientinnen einen malignen und 5 einen 

semimalignen Ovarialtumor aufwiesen.  

Eine statistische Signifikanz konnte nur für die Konzentrationen der Plättchen-MP (CD63+-

MP) im Vergleich der Tumorstadien FIGO I und FIGO IV nachgewiesen werden (p = 0,041). 

Die Konzentrationen der Annexin V+-MP und der CD61+-MP stiegen mit zunehmendem 

Tumorstadium, jedoch ohne eine statistische Signifikanz zu erreichen (p = 0,163 und 0,672). 

Auch die übrigen MP-Subpopulationen zeigten einen z.T. deutlichen Anstieg ihrer 

Konzentration im Vergleich zwischen FIGO I und IV, ohne eine weitere Steigung in den 

Zwischenstadien II und III aufzuweisen. 

 
 

 

 

 

p = 0,002 

p = 0,049 

p = 0,025 
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Tabelle 7: Konzentration der MP-Subpopulationen (x106/l) nach FIGO; Daten präsentiert 
als Median, (Minimum - Maximum) und (Interquartilsabstand Q1 - Q3).  
* = signifikanter Unterschied der MP-Konzentration zwischen Stadium FIGO I und FIGO IV 

  AnV+-MP CD61+-MP CD63+-MP EpCAM +-MP CD142+-MP CD144+-MP 

FIGO I 4540 4187 148* 137 211 1256 

(n = 8) (2744 - 10438) (2387 - 9859) (55 - 785) (50 - 298) (161 - 6859 (715 - 2978) 

  (3105 - 6952) (2652 - 6505) (96 - 185) (69 - 167) (194 - 235) (974 - 1792) 

FIGO II 4581 4249 246 114 188 775 

(n = 2) (3744 - 5417) (3310 - 5189) (59 - 433) (89 - 139) (118 - 258) (671 - 878) 

FIGO III 4873 4399 233 101 208 1588 

(n = 7) (4391 - 26746) (2916 - 26006) (64 - 546) (59 - 311) (150 - 278) (748 - 9391) 

  (4550 -11139) (3751 - 10361) (143 - 319) (90 - 236) (192 - 246) (1440 - 2638) 

FIGO IV 9295 9028 291* 186 280 3190 

(n = 3) (6138 - 19064) (2242 - 18008) (279 - 948) (80 - 256) (195 -281) (1247 - 3431) 

 
 
 
 
 

  
 
Abbildung 7: Konzentration der CD63+-MP (x106/l) (y-Achse) nach FIGO (x-Achse), 
dargestellt als Boxplot; Daten präsentiert als Median und Interquartilsabstand; 13 und 14 
stellen Ausreißer innerhalb der Stadien FIGO I und III dar; (p-Wert < 0,05 = signifikant). 

 
 
 
 
 

p = 0,041 
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Verglich man die Konzentration der MP in den Tumorstadien mit der Kontrollgruppe, zeigte 

sich ein signifikanter Unterschied für die EpCAM+-MP sowie für die CD144+-MP mit einer 

höheren Konzentration in der Kontrollgruppe. Die EpCAM+-MP waren sowohl im FIGO-

Stadium I (p = 0,005), als auch im Stadium II (p = 0,010) deutlich niedriger als in der 

Kontrollgruppe. Gleiches galt für die CD144+-MP (p = 0,037 und p = 0,009). Zudem zeigten 

sich die AnnexinV+-MP im FIGO-Stadium IV deutlich höher als in der Kontrollgruppe (p = 

0,029). 

 

 

  

Abbildung 8: Konzentration der AnnexinV+-MP (x106/l) (y-Achse) in der 
Kontrollgruppe sowie nach FIGO (x-Achse), dargestellt als Boxplot; Daten präsentiert als 
Median und Interquartilsabstand; 21, 61, 64 und 68 stellen Ausreißer innerhalb dem Stadium 
FIGO III und der Kontrollgruppe dar; (p-Wert < 0,05 = signifikant). 

 

 

p = 0,029 



38 
 

  

Abbildung 9: Konzentration der EpCAM +-MP (x106/l) (y-Achse) in der Kontrollgruppe 
sowie nach FIGO (x-Achse), dargestellt als Boxplot; Daten präsentiert als Median und 
Interquartilsabstand; 13 und 64 stellen Ausreißer innerhalb des Stadiums FIGO I und der 
Kontrollgruppe dar; (p-Wert < 0,05 = signifikant). 

 
 
 

  

Abbildung 10: Konzentration der CD144+-MP (x106/l) (y-Achse) in der Kontrollgruppe 
sowie nach FIGO (x-Achse), dargestellt als Boxplot; Daten präsentiert als Median und 
Interquartilsabstand; 13, 21, 54, 55 und 59 stellen Ausreißer innerhalb des Stadiums FIGO I 
und III sowie der Kontrollgruppe dar; (p-Wert < 0,05 = signifikant). 

p = 0,010 

p = 0,005 

p = 0,037 

p = 0,009 
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Verglich man die MP-Subpopulationen in den FIGO-Stadien mit denen der Gruppe der 

benignen Ovarialtumore, so zeigten sich signifikant höhere Konzentrationen an CD63+-MP 

im FIGO-Stadium IV als in der Gruppe der benignen Ovarialtumore (p = 0,004). Zudem 

waren die CD144+-MP im FIGO-Stadium II signifikant niedriger als in der Gruppe der 

benignen Ovarialtumore (p = 0,015). 

 

 

  

Abbildung 11: Konzentration der CD63+-MP (x106/l) (y-Achse) in der Gruppe der 
benignen Ovarialtumore und nach FIGO (x-Achse), dargestellt als Boxplot; Daten 
präsentiert als Median und Interquartilsabstand; 13, 14 und 52 stellen Ausreißer innerhalb der 
Stadien FIGO I und III sowie der Gruppe der benignen Ovarialtumore dar; (p-Wert < 0,05 = 
signifikant). 

 
 

p = 0,004 
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Abbildung 12: Konzentration der CD144+-MP (x106/l) (y-Achse) in der Gruppe der 
benignen Ovarialtumore und nach FIGO (x-Achse), dargestellt als Boxplot; Daten 
präsentiert als Median und Interquartilsabstand; 13, 21, 28 und 35 stellen Ausreißer innerhalb 
der Stadien FIGO I und III sowie der Gruppe der benignen Ovarialtumore dar; (p-Wert < 0,05 
= signifikant). 

 
 

3.2.3   MP-Konzentrationen prä- und postoperativ 

Bei 9 Patientinnen mit malignem Ovarialtumor wurde am 4.-6. postoperativen Tag eine 

zweite Blutprobe für die MP-Bestimmung entnommen. Im prä- vs. postoperativen Vergleich 

der MP-Subpopulationen zeigte sich ein signifikanter Unterschied in der Konzentration der 

TF+- (CD142+-)MP (p = 0,008). 

 

Tabelle 8: Konzentration der MP-Subpopulationen (x106/l) im prä- und postoperativen 
Vergleich; Daten präsentiert als Median, (Minimum – Maximum) und (Interquartilsabstand 
Q1 - Q3) im Kollektiv der malignen Ovarialtumoren.  
* kennzeichnet signifikante Unterschiede. 

 AnV +-MP CD61+-MP CD63+-MP EpCAM +-MP CD142+-MP CD144+-MP 

präoperativ 
(n = 16) 

5859 
(2744 – 26746) 
(4480 – 8760) 

4289 
(2242 – 26006) 
(3420 – 8447) 

285 
(64 – 948) 
(142 – 432) 

123 
(53 – 311) 
(90 – 223) 

215* 
(118 – 281) 
(196 – 245) 

1528 
(671 – 9392) 
(1208 – 2893) 

postoperativ 
(n = 9) 

6073 
(2091 – 13325) 
(3781 – 10568) 

5263 
(1823 – 11116) 
(3300 – 9719) 

270 
(79 – 1197) 
(164 – 480) 

151 
(42 – 195) 
(127 – 180) 

305* 
(214 – 353) 
(258 – 336) 

1724 
(1145 – 6111) 
(1464 – 3080) 

 

p = 0,015 
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Abbildung 13: Konzentration der CD142+-MP (x106/l) (y-Achse) im prä- und 
postoperativen Vergleich (x-Achse) als Boxplot; Daten präsentiert als Median und 
Interquartilsabstand; 2 und 17: Patientinnen mit CD142+-MP-Konzentration unterhalb des 
Interquartilsabstandes; (p-Wert < 0,05 = signifikant). 

 
 

3.2.4   Sensitivitäts- und Spezifitätsunterschiede zu CA125 und CA72-4 

Im Vergleich der ROC-Kurven zeigt CA125, gefolgt von CA72-4 bezogen auf die 

Zustandsvariable „Malignität“ die höchste Sensitivität und Spezifität. Sämtliche MP-

Subpopulationen zeigen sich im Vergleich zu den konventionellen Tumormarkern als weniger 

sensitiv. Innerhalb der Mikropartikel weisen die CD63+-MP die höchste Sensitivität und 

Spezifität auf, gefolgt von den AnnexinV+-MP und den CD61+-MP. 

Verarbeitete Fälle: positiv (n = 16), negativ (n = 33), fehlend (n = 58). 

 
 
Tabelle 9: Flächen unter der ROC-Kurve (Area under the curve [AUC]) bezogen auf die 
Zustandsvariable „Malignität“  

  
AnV+-

MP 
CD61+-

MP 
CD63+-

MP 
EpCAM +-

MP 
CD142+-

MP 
CD144+-

MP CA125 CA72-4 

AUC 0,657 0,623 0,752 0,600 0,489 0,604 0,919 0,808 

 

 

p = 0,008 



42 
 

 

Abbildung 14: ROC-Kurven für alle MP-Subpopulationen und die Tumormarker 
CA125 und CD72-4 für die Zustandsvariable „Malignität“. Die Bezugslinie stellt das zu 
erwartende Ergebnis eines Zufallsprozesses (Fläche unter der Kurve von 0,5) dar. (Sensitivität 
= richtig positive Ergebnisse [y-Achse]; 1-Spezifität = falsch positive Ergebnisse [x-Achse]). 

 
 

3.2.5   Assoziation zwischen MP und D-Dimeren 

3.2.5.1   D-Dimere im Studienkollektiv 

Es besteht ein signifikanter Unterschied in der Gerinnungsaktivität (gemessen als D-Dimer-

Konzentration) bei den einzelnen Studienkollektiven (p < 0,001). Der Unterschied der Höhe 

der D-Dimere erweist sich als statistisch signifikant zwischen der Kontrollgruppe und der 

Gruppe der malignen Ovarialtumoren (p < 0,001), zwischen den benignen und malignen 

Ovarialtumoren (p < 0,001) sowie zwischen den semimalignen und den malignen 

Ovarialtumoren (p = 0,001). 
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Tabelle 10: Konzentration der D-Dimere (µg/ml) im Studienkollektiv;  Daten präsentiert 
als Median, (Minimum – Maximum), (Interquartilsabstand Q1 – Q3) und Anzahl der 
untersuchten Probandinnen. 
 
* = signifikanter Unterschied zwischen Kontrollgruppe und malignen Ovarialtumoren 
** = signifikanter Unterschied zwischen benignen und malignen Ovarialtumoren 
*** = signifikanter Unterschied zwischen semimalignen und malignen Ovarialtumoren 

  Kontrollgruppe benigne Tumore semimaligne Tumore maligne Tumore 

präoperativ 0,31* 0,26** 0,24*** 1,3*/**/*** 

  (0,2 - 0,7) (0,2 - 2,7) (0,2 - 0,6) (0,2 - 4,5) 

  (0,27 - 0,52) (0,19 - 0,44) (0,17 - 0,43) (0,73 - 2,42) 

  (n = 12) (n = 29) (n = 6) (n = 16) 

postoperativ     2,48 4,49 

      (2,5 - 2,5) (3,0 - 4,5) 

  
  

(2,48 - 2,48) (4,48 - 4,5) 

   (n = 0)  (n = 0) (n = 1) (n = 8) 

 
 
 

 

Abbildung 15: Präoperative D-Dimer-Konzentration (µg/ml) (y-Achse) in den 
Studienpopulationen (x-Achse) als Boxplot; Daten präsentiert als Median und 
Interquartilsabstand; 49 stellt einen Ausreißer innerhalb der Gruppe der benignen 
Ovarialtumoren dar; (p-Wert < 0,05 = signifikant). 

 
 
 

p < 0,001 

p < 0,001 

p = 0,001 



44 
 

3.2.5.2   D-Dimere in Abhängigkeit vom Tumorstadium 

Die Konzentration der D-Dimere unterscheidet sich nicht signifikant zwischen den 

Tumorstadien FIGO I-IV sowohl im prä- als auch im postoperativen Vergleich (p > 0,05). 

 

Tabelle 11: Konzentration der D-Dimere (µg/ml) nach FIGO-Stadium; Daten präsentiert 
als Median, (Minimum – Maximum), (Interquartilsabstand Q1 – Q3) und Anzahl der 
untersuchten Probandinnen. 

  FIGO I FIGO II FIGO III FIGO IV 

präoperativ 0,64 0,25 1,32 1,76 

  (0,2 - 4,5) (0,2 - 0,3) (0,6 - 4,2) (0,8 - 4,5) 

  (0,17 - 1,66) (0,18 - 0,25) (0,61 - 2,57) (0,75 - 1,76) 

  (n = 8) (n = 2) (n = 7) (n = 3) 

postoperativ 4,48   4,5 2,96 

  (2,5 - 4,5)   (4,5 - 4,5) (3,0 - 3,0) 

  (2,48 - 4,48) 
 

(4,48 - 4,5) (2,96 - 2,96) 

  (n = 3)  (n = 0) (n = 5) (n = 1) 

 

 

 

3.2.5.3   D-Dimere in Vergleich zwischen prä- und postoperativ 

In der Gruppe der malignen Ovarialtumoren unterscheidet sich die Höhe der D-Dimere 

statistisch signifikant im Vergleich zwischen präoperativ und postoperativ (p = 0,018) mit 

höheren Konzentrationen postoperativ. 

 

Tabelle 12: Konzentration der D-Dimere (µg/ml) in Anhängigkeit vom OP-Zustand; 
Daten präsentiert als Median, (Minimum – Maximum), (Interquartilsabstand Q1 – Q3) und 
Anzahl der untersuchten Probandinnen. 

 OP-Zustand präoperativ postoperativ 

D-Dimere (µg/ml) 1,3 4,49 

 
(0,2 - 4,5) (3,0 - 4,5) 

  (0,73 - 2,42) (4,48 - 4,5) 

  (n = 16) (n = 8) 
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3.2.5.4   Korrelation der MP-Subpopulationen mit der D-Dimer-Konzentration bei den 

malignen Ovarialtumoren 

In der Gruppe der malignen Ovarialtumore besteht präoperativ eine Korrelation zwischen der 

Konzentration an Annexin V+-MP (r = 0,299, p = 0,024), CD63+-MP (r = 0,421, p =  

0,001), CD144+-MP (r = 0,281, p = 0,026) und der Gerinnungsaktivität (gemessen als D-

Dimer-Konzentration). 

Postoperativ kann keine Korrelation zwischen MP-Subpopulationen und D-Dimer-

Konzentration nachgewiesen werden.  
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4   Diskussion 
 

In der vorliegenden prospektiven Fall-Kontroll-Studie wurden zirkulierende MP bei 

Patientinnen mit benignen und malignen Ovarialtumoren sowie bei einer gesunden 

Kontrollgruppe analysiert. Zudem wurde erforscht, inwieweit MP als Tumormarker bzw. als 

Marker für eine vermehrte Gerinnungsaktivität dienen. 

Die Konzentration der CD63+-MP zeigte sich in der Gruppe der malignen Ovarialtumore 

signifikant höher als in den beiden anderen Gruppen. Zudem fand sich eine höhere Gesamt-

MP-Konzentration bei Ovarialkarzinompatientinnen im Vergleich zu benignen 

Ovarialtumoren bzw. der Kontrollgruppe. Schlüsselt man die Gruppe der malignen 

Ovarialtumoren nach Tumorstadium auf, so lassen sich signifikant höhere Annexin V+-MP 

(AnV+-MP) im Tumorstadium FIGO IV im Vergleich zur Kontrollgruppe feststellen. 

Diese Ergebnisse stützen die bisherige Datenlage, dass MP in Prozesse wie Angiogenese [76, 

60, 87, 130, 78] und Metastasierung [77, 131, 132, 133, 134] von Tumoren involviert sind. In 

der Literatur gibt es bezüglich der AnV+-MP bisher widersprüchliche Aussagen. Zahra et al. 

zeigten 2011 [135], dass sich die Anzahl AnV+-MP bei gynäkologischen Tumoren nicht 

signifikant von einer Kontrollgruppe unterschied. Eine große Studie von Thaler et al. konnte 

2011 [136] bei Krebspatienten jedoch signifikant erhöhte AnV+-MP im Vergleich zu einer 

gesunden Kontrollgruppe feststellen. Insgesamt wurden in dieser Studie 728 Krebspatienten 

unterschiedlicher Tumorentitäten (u.a. Mammakarzinome, Brochialkarzinome, 

Magenkarzinome, Kolorektale Karzinome, Lymphome etc.) eingeschlossen. Möglicherweise 

liegen die kontroversen Ergebnisse darin begründet, dass nicht bei allen Tumorentitäten 

erhöhte Gesamt-MP-Konzentrationen vorliegen. Bei beiden Studien wurden verschiedene 

Tumorerkrankungen untersucht und es erfolgte keine Fokussierung auf eine Tumorentität. 

Außerdem wurde bei beiden Studien das Tumorstadium nicht berücksichtigt, das, wie unsere 

Daten zeigen, von entscheidender Bedeutung für das Ergebnis sein kann. In Übereinstimmung 

mit unseren Daten konnten Liebhardt et al. 2010 bei Mammakarzinompatientinnen mit 

Lymphknotenmetastasen signifikant höhere Konzentrationen an AnV+-, CD66+-, BCRP1+- 

und Hsp27+- MP feststellen als bei einer gesunden Kontrollgruppe [137]. 

Thrombozytäre MP (PMP) wie CD61+- und CD63+-MP, stellen die Hauptpopulation der MP 

im Plasma dar [83] und sind mit einer Größe von 0,02-0,1µm kleiner als andere MP-

Subpopulationen [138]. In unserer Studie zeigten die CD63+-MP in der Karzinom-Gruppe 
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signifikant höhere Werte als in der Gruppe mit den semimalignen und benignen 

Ovarialtumoren, während sich für die CD61+-MP keine Konzentrationsunterschiede zwischen 

den Studienkollektiven feststellen ließen. Betrachtet man die Werte in Abhängigkeit vom 

Tumorstadium, so stellt man einen stetigen Anstieg der CD61+-MP zwischen Stadium FIGO I 

und IV fest. Hier konnte allerdings keine statistische Signifikanz erreicht werden. Dies gelang 

nur für CD63+-MP im Stadium IV im Vergleich zum Stadium I. Man könnte also postulieren, 

dass CD63+-MP in den Prozess der Fernmetastasierung involviert sind, was bereits für 

Thrombozyten gezeigt werden konnte [139, 140] und dass sie als Marker für fortgeschrittene 

Tumorstadien eingesetzt werden könnten. Tatsächlich wurde bereits in diversen Studien 

gezeigt, dass PMP in Prozesse wie Tumorprogression, -angiogenese und –metastasierung 

involviert sind [75, 76, 77, 78]. Kim et al. fanden 2002 erhöhte Konzentrationen an 

zirkulierenden CD41+-PMP, VEGF, IL-6 und RANTES bei Patienten mit Magenkarzinom 

und stellten einen möglichen Einsatz von PMP für die Detektion bereits metastasierter 

Karzinompatienten in Aussicht [141]. 

Die signifikante Erhöhung der CD63+-MP als Indikator für eine Thrombozytenaktivierung 

[142] bei den Ovarialkarzinompatientinnen legt eine Aktivierung der Hämostase nahe, wie 

durch die Auswertung der D-Dimere mit signifikant erhöhten Werten in der Gruppe der 

malignen Ovarialtumoren bekräftigt werden konnte. Zudem zeigte sich eine signifikante 

Korrelation zwischen der Konzentration CD63+-MP und der D-Dimer-Konzentration. 

Eventuell ist eine erhöhte Konzentration CD63+-MP bei Ovarialkarzinompatientinnen ein 

Faktor, welcher zum erhöhten Risiko für das Auftreten einer VTE beiträgt. 

Thrombozytäre MP sind potente Initiatoren des plasmatischen Gerinnungssystems [143]. Sie 

haben 50-100mal höhere gerinnungsfördernde Fähigkeiten als die identische Oberfläche 

aktivierter Thrombozyten [143]. Sie tragen neben PS auch F.V/Va, GP IIb/IIIa, GP Ib/IX, 

Membranrezeptoren für Gerinnungsfaktoren und signifikante Mengen an vWF an ihrer 

Oberfläche, die alle zusammen vermutlich zu den prothrombotischen Fähigkeiten von PMP 

beitragen [144, 69, 145]. Zudem konnte festgestellt werden, dass das Thrombusgewicht mit 

der PMP-Konzentration korreliert [146]. Ähnlich zu unserem Studienergebnis konnten bei 

Patientinnen mit Mamma-Karzinom im Vergleich zu einer Gruppe mit benignen Mamma-

Tumoren erhöhte Konzentrationen an MP gemessen werden, die 

Thrombozytenaktivierungsmarker trugen [147]. Auch Caine et al. [148] zeigten eine erhöhte 

Rate an aktivierten Thrombozyten bei Patienten mit fortgeschrittenen Karzinomen und stützen 

die hier vorliegenden Ergebnisse. Insgesamt wurden auch in unserer Studie in der Gruppe der 

malignen Ovarialtumoren die höchsten Thrombozytenkonzentrationen festgestellt. Diese 
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unterschieden sich signifikant von denen der Kontrollgruppe, aber nicht signifikant von den 

Patientinnen mit den semimalignen und benignen Ovarialtumoren. Thrombozyten sind in der 

Lage, zur Metastasierung und zum Wachstum von Tumoren beizutragen [139, 140], weshalb 

eine Erhöhung im Blut der Betroffenen nicht verwunderlich ist. 

Gegenstand derzeitiger Diskussionen ist der zelluläre Ursprung von „thrombozytären MP“ 

[149, 150, 151]. Es wird vermutet, dass CD61+-MP von Megakaryozyten freigesetzt werden 

[149, 151], während bekräftigt wurde, dass CD63+-MP von aktivierten Thrombozyten 

stammen. Da Thrombozyten im Gegensatz zu Megakaryozyten eine Rolle beim Wachstum 

eines Tumors sowie bei der Metastasierung spielen [139, 140], könnte man postulieren, dass 

Ähnliches für ihre jeweiligen MP gilt. Wenn also CD61+-MP in Wahrheit von 

Megakaryozyten stammen und CD63+-MP thrombozytären Ursprungs sind, wäre es nicht 

abwegig, dass lediglich die CD63+-MP im Rahmen einer Krebserkrankung – in unserem Fall 

dem Ovarialkarzinom – erhöht sind. 

Ein Vergleich unserer Ergebnisse mit denen anderer Studien wird erschwert durch die 

uneinheitliche Definition thrombozytärer Mikropartikel durch ihre Oberflächenantigene. 

Häufig verwendete Marker sind CD41, CD42, CD61, CD62P und CD63. Bisherige Studien, 

bei denen erhöhte PMP-Konzentrationen mit malignen Erkrankungen assoziiert waren, 

verwendeten oft CD41 und CD42 als thrombozytäre Marker [152, 78]. Zudem muss erwähnt 

werden, dass es aufgrund der unteren Nachweisgrenze der Durchflusszytometrie von ca. 

500nm und der teils sehr geringen PMP-Größe oft zur Messung von falsch niedrigen PMP-

Konzentrationen kommt.  

 

Tumorzellen setzen – ebenso wie alle anderen eukaryotischen Zellen – MP (sog. Tumor-MP 

oder TMP) frei. So wurden in unserer Studie EpCAM+-MP bestimmt, da Ovarialkarzinome 

vielfach epithelialen Ursprungs sind. Es konnten keine erhöhten EpCAM+-MP bei den 

malignen und semimalignen Tumoren festgestellt werden. Vielmehr zeigten sich signifikant 

höhere Werte bei der Kontrollgruppe im Vergleich zu den übrigen Kollektiven und auch 

(nicht signifikant) höhere Werte bei den benignen Tumoren als bei den malignen. Im 

Vergleich der Kontrollgruppe mit den Karzinompatientinnen waren die EpCAM+-MP jedoch 

nur in den frühen Tumorstadien (FIGO I und II) signifikant niedriger, nicht jedoch in den 

Stadien FIGO III und IV. Hier war der Unterschied nicht signifikant. 

TMP haben phänotypische Eigenschaften der entsendenden Tumorzelle und sind mit 

Onkoproteinen [86], mRNA [153] und anderen bioaktiven Stoffen ausgestattet. Mit Hilfe 

ihrer Fracht tragen die TMP zur Tumorprogression, -angiogenese und –metastasierung bei 
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[73, 74, 84, 85, 86]. Möglicherweise entsenden Ovarialkarzinomzellen v.a. in den frühen 

Tumorstadien EpCAM+-MP nicht primär in die Zirkulation, sondern in die lokale Umgebung. 

Erst kürzlich konnten Press et al. 2012 im Aszites von fortgeschrittenen serösen 

Ovarialkarzinomen eine hohe Anzahl EpCAM+-MP feststellen [154]. Auch in unserer Studie 

konnten im Tumorstadium FIGO IV, welches durch Fernmetastasen gekennzeichnet ist, 

deutlich höhere Konzentrationen an EpCAM+-MP gemessen werden als im Stadium FIGO I, 

jedoch ohne eine statistische Signifikanz zu erreichen. Welche Rolle EpCAM+-MP bei der 

Fernmetastasierung maligner Tumoren spielen, sollte in künftigen Studien weiter untersucht 

werden. 

 

Um einen möglichen Einfluss von endothelialen MP bei malignen Prozessen, z.B. Tumor-

Angiogenese oder –metastasierung zu untersuchen, wurde im vorliegenden Studienkollektiv 

auch die Konzentration dieser MP-Subpopulation. Die Ergebnisse zeigten, dass die EMP in 

der Kontrollgruppe signifikant höher waren als in der Gruppe der benignen und der Gruppe 

der malignen inklusive semimalignen Ovarialtumoren, v.a. in den frühen Tumorstadien FIGO 

I und II. In der Gruppe der semimalignen Ovarialtumoren ließen sich die niedrigsten EMP-

Konzentrationen messen mit signifikantem Unterschied zur Gruppe der benignen Tumoren. 

Die EMP-Konzentrationen in den Gruppen der malignen und benignen Ovarialtumoren waren 

ähnlich. Da zur Detektion der EMP der endotheliale Oberflächenmarker CD144 (VE-

Cadherin) verwendet wurde, stimmen die vorliegenden Ergebnisse mit denen von Ferdeghini 

et al. [155] überein, die feststellten, dass die präoperativen Plasmalevel des endothelialen 

Aktivierungsmarkers E-Selektin ebenfalls keinen Unterschied zwischen Patienten mit 

gutartigen und bösartigen Ovarialtumoren zeigten [156]. 

Die höheren EMP-Konzentrationen bei der Kontrollgruppe im Vergleich zu den Tumor-

Kollektiven lassen sich eventuell dadurch erklären, dass der Effekt von EMP auf die 

Angiogenese dosisabhängig ist, und dass EMP in vitro die Angiogenese in niedrigen 

Konzentrationen fördern, während sie sie in hohen Konzentrationen hemmen [79]. Der 

proangiogenetische Effekt wird hierbei vermutlich über Matrixmetalloproteinasen vermittelt 

[157]. 

 

Gewebefaktor (TF) fungiert neben seiner Rolle als Initiator des extrinsischen Wegs der 

Blutgerinnung als Regulator von Tumorwachstum, -angiogenese und –metastasierung [82]. Er 

vermittelt die Hochregulierung von EGF (endothelial growth factor), wodurch TF+-MP 

Endothelzellen zur Gefäßbildung stimulieren könnten [83]. TF+-MP sind eine Quelle für TF 
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innerhalb des Blutflusses und werden auch als sog. blood-borne TF bezeichnet. Die meisten 

TF+-MP werden vermutlich von Monozyten [107] und im Rahmen von Krebserkrankungen 

von Tumorzellen freigesetzt [107, 81, 158]. In der vorliegenden Studie unterschieden sich die 

Konzentrationen der TF+-MP nicht signifikant zwischen den Studienkollektiven. Innerhalb 

der Gruppe der Ovarialkarzinome zeigten sich die höchsten Werte im Stadium FIGO IV, ohne 

jedoch statistische Signifikanz zu erreichen. 1983 demonstrierten Dvorak et al., dass PS+- und 

TF+-MP von kultivierten Krebszellen freigesetzt werden [159]. Sie vermuteten, dass diese MP 

das Tumorwachstum begünstigen. Diese Hypothese wurde in einer Vielzahl von Studien 

bestätigt [81, 160]. Erhöhte TF+-MP wurden inzwischen bei diversen Krebserkrankungen, wie 

z.B. dem Kolorektalen Karzinom entdeckt [101, 102, 104, 161]. Möglicherweise werden aber 

TF+-MP, die im Rahmen maligner Erkrankungen v.a. von Tumorzellen freigesetzt werden 

[107, 81, 158], wie bereits für die EpCAM+-MP vermutet, nicht primär in die Zirkulation 

entsandt, sondern in die lokale Umgebung des Tumors. Graves et al. fanden 2004 höhere 

Konzentrationen an MMP- und uPA-reichen MP im Aszites von Patientinnen mit späten 

Stadien von Ovarialkarzinom als bei Patientinnen mit frühen Stadien [162]. Es wäre also 

durchaus denkbar, dass abhängig von der Tumormasse und der Progression eine zunehmende 

Anzahl TF+-MP in die lokale Tumorumgebung freigesetzt wird. Es sind weitere 

Untersuchungen nötig, um diese Vermutung zu bekräftigen.  

Zwicker et al. konnten 2009 feststellen, dass in der üblichen Licht-streuenden 

Durchflusszytometrie wie sie in unserer Studie verwendet wurde, keine erhöhten TF+-MP bei 

Karzinompatienten gemessen werden konnten, während dies durch Nutzung der Impedanz-

basierten Durchflusszytometrie sehr wohl der Fall war. So konnte diese Forschergruppe 

erhöhte TF+-MP bei Pankreas-, Mamma-, Kolon- und Ovarialkarzinomen feststellen [163]. 

Neben oben genannter Rolle von TF+-MP für Tumorprogression, -angiogenese und -

metastasierung konnte gezeigt werden, dass von Tumorzellen freigesetzte TF+-MP 

gerinnungsfördernde Fähigkeiten haben und mit venösen Thromboembolien assoziiert sind 

[163, 164, 104, 105, 102, 103]. TF+-MP dienen vermutlich der Aufrechterhaltung der 

Gerinnung und dem Größenwachstum des Thrombus [165, 166]. Hron et al. stellten 2007 

zweifach höhere Konzentrationen an TF+-MP bei Patienten mit Kolorektalem Karzinom fest 

als bei der Kontrollgruppe und diese TF+-MP korrelierten mit der Höhe der D-Dimere [104]. 

Beides konnte in unserer Studie beim Ovarialkarzinom nicht bekräftigt werden. Wie bereits 

oben diskutiert, könnte eine mögliche Ursache für die fehlende Erhöhung der TF+-MP in 

unserer Studie die Wahl der Messmethode und die Wahl des zu untersuchenden Materials 

(Blut vs. Aszites) sein. Zudem könnten - wie bereits von Rank et al. 2012 [156] gemutmaßt, 



51 
 

die Ergebnisse unserer Studie auf einen Selektions-Bias zurückgeführt werden. 

Möglicherweise exprimierten die Ovarialkarzinomzellen der in unsere Studie 

eingeschlossenen Patientinnen nur eine schwache oder fehlende TF-Aktivität, was von der 

Tatsache gestützt wird, dass keine unserer Patientinnen eine VTE erlitt [156]. Es gab jedoch 

kein Follow-up, um zu klären, ob künftig VTEs entwickelt wurden. Zwicker et al. 

untersuchten in einem 2-Jahres-Follow-up 30 Krebspatienten mit VTE und 60 Krebspatienten 

ohne VTE und konnten feststellen, dass die Anwesenheit TF+-MP bei Krebspatienten mit 

einem 7fach erhöhten Risiko für eine künftige VTE einherging, im Vergleich zu 

Krebspatienten, die keine TF+-MP im Blut aufwiesen [105]. Dies legt nahe, dass erhöhte 

Konzentrationen an TF+-MP als prädiktive Marker für eine VTE bei Krebspatienten dienen 

könnten [107]. Da die Anzahl TF+-MP bei unterschiedlichen Krebsarten variieren, scheinen 

TF+-MP nicht bei allen Krebsarten ein nützlicher Biomarker für das Thromboserisiko zu sein 

[107].  

 

Der Vergleich der prä- und postoperativen Werte zeigt in der Gruppe der 

Ovarialkarzinompatientinnen für alle MP-Subpopulationen einen Anstieg am 4.-6. Tag nach 

operativem Eingriff. Eine statistische Signifikanz konnte jedoch nur für die TF+-MP 

festgestellt werden. Berücksichtigt man die Funktionen von MP, so lassen sich die Ergebnisse 

mit der postoperativ erhöhten Heilungs- und Gerinnungsaktivität, einem erhöhten 

Verletzungsgrad des Endothels und einer gesteigerten Entzündungsreaktion erklären und 

nachvollziehen. 

Da der postoperative Zustand bekanntlich ein erhöhtes Risiko für venöse Thromboembolien 

birgt und sowohl TF selbst als auch TF+-MP an der Initiierung und Förderung der Gerinnung 

beteiligt sind [167, 168] könnten die erhöhten TF+-MP Zeichen einer gesteigerten 

Gerinnungsaktivität postoperativ sein und möglicherweise mit einem erhöhten Risiko für eine 

VTE einhergehen. In Übereinstimmung mit diesen Ergebnissen konnten postoperativ 

signifikant höhere D-Dimer-Konzentrationen gemessen werden als präoperativ. Dies ist ein 

Zeichen für eine deutlich gesteigerte Gerinnungsaktivität. 

Im Gegensatz zu den Ergebnissen unserer Studie beobachteten Zwicker et al. 2009 [163], dass 

die TF+-MP bei Patienten mit Pankreaskarzinom nach radikaler Pankreatektomie signifikant 

abnahmen. Es muss jedoch bedacht werden, dass es sich hier einerseits um eine Studie mit 

sehr geringer Fallzahl (n = 3) handelt und andererseits die TF+-MP erst zwischen dem 26. und 

44. postoperativen Tag, also deutlich später als in unserer Studie, gemessen wurden. In dieser 

Zeit kann es bereits zum Abbau der bei uns erhöht gemessenen TF+-MP gekommen sein. 
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Ikeda et al. stellten 2003 fest, dass PMP bei Tumoren des oberen Gastrointestinaltrakts 

postoperativ erhöht sind und möglicherweise zu thrombotischen Komplikationen beitragen 

[169]. Obwohl sich diese Ergebnisse mit unserer Studie decken, muss erwähnt werden, dass 

hier andere antigenetische Marker zur Detektion der thrombozytären MP, nämlich GPIX, 

herangezogen wurden, und dass in unserer Studie bezüglich der PMP keine statistische 

Signifikanz erreicht werden konnte. 
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5   Zusammenfassung 

 

Das Ovarialkarzinom weist eine hohe Mortalität auf, da es meist erst in fortgeschrittenen 

Stadien symptomatisch wird. Eine gefürchtete und häufige Komplikation stellt die venöse 

Thromboembolie dar. In der vorliegenden Studie wurde untersucht, ob zirkulierende 

Mikropartikel (MP) – kleine, funktionell aktive Abschnürungen eukaryotischer Zellen - mit 

dem Tumorstadium und der Gerinnungsaktivität im Zusammenhang stehen und inwiefern MP 

als Tumormarker für das Ovarialkarzinom einsetzbar sind. 

In einem Kollektiv bestehend aus malignen, semimalignen und benignen Ovarialtumoren 

sowie einer gesunden Kontrollgruppe wurden die Konzentrationen verschiedener MP-

Subpopulationen mittels Durchflusszytometrie bestimmt. 

CD63+ thrombozytäre MP (PMP) waren bei Karzinompatientinnen signifikant höher als bei 

benignen Ovarialtumoren und stiegen signifikant bei Fernmetastasierung an. Passend zu den 

erhöhten Konzentrationen an CD63+-MP, die eine gesteigerte Thrombozytenaktivität 

widerspiegeln, wurden signifikant erhöhte D-Dimer-Konzentrationen und somit eine 

gesteigerte Gerinnungsaktivität bei Karzinompatientinnen im Vergleich zur Kontrollgruppe 

festgestellt. Wenn auch insgesamt weniger sensitiv als die konventionellen Tumormarker 

CA125 und CA72-4 ließen sich bei fortgeschrittenen, bereits fernmetastasierten 

Ovarialkarzinomen deutlich höhere Gesamt-MP-Konzentrationen feststellen als bei der 

Kontrollgruppe. Für die Tumorzell-spezifischen MP (TMP / EpCAM+-MP), zeigten sich 

signifikant niedrigere Werte bei den Karzinomen als in der Kontrollgruppe, v.a. in den frühen 

Tumorstadien. Diese Tatsache weist darauf hin, dass TMP primär in die lokale Umgebung des 

Tumors und nicht in die Zirkulation entsandt werden und somit eine Bestimmung im Aszites 

in fortgeschrittenen Stadien sinnvoll wäre. Auch die endothelialen MP (EMP / CD144+-MP) 

waren bei benignen und malignen Tumoren signifikant niedriger als bei der Kontrollgruppe. 

Dies stützt die These, dass EMP die Angiogenese dosisabhängig beeinflussen. Hohe Werte 

scheinen die Angiogenese zu hemmen, während niedrige Werte stimulierend wirken. Für 

TissueFactor+-MP konnte bei Karzinompatientinnen ein signifikanter postoperativer Anstieg 

festgestellt werden. Auch die D-Dimere waren postoperativ signifikant erhöht. 

Insgesamt konnte somit gezeigt werden, dass einzelne MP-Subpopulationen in Abhängigkeit 

von der Tumorgröße und Metastasierung variieren und dass insbesondere die Konzentration 

der PMP die Gerinnungsaktivität widerspiegelt. Die Dissertationsstudie könnte 

Ausgangspunkt sein für weitere prospektive Studien mit einem größeren Patientenkollektiv 

und zusätzlicher Bestimmung weiterer hämostaseologsicher Marker.  



54 
 

6   Literaturverzeichnis 

 
[1]  Greenlee RT, Murray T, Bolden S, Wingo PA: Cancer statistics, 2000. CA Cancer J 

Clin, 2000. 50: 7-33. 

[2]  Stauber M, Weyerstahl T: Duale Reihe - Gynäkologie und Geburtshilfe, 2. Auflage, 
Thieme-Verlag, 2005. S. 293. 

[3]  Coleman MP, Esteve J, Damiecki P, et al.: Trends in cancer incidence and mortality. v. 
121. Lyon, France: IARC Scientific Publications, 1993. S. 477-498.  

[4]  Holschneider CH, et al.: Ovarian Cancer: Epidemiology, Biology, and Prognostic 
Factors. Seminars in Surgical Oncology, 2000. 19: 3-10.  

[5]  Yancik R: Ovarian cancer. Age contrasts in incidence, histology, disease stage and 
diagnosis, and mortality [Review]. Cancer, 1993. 71 (Suppl 2): 517-523.  

[6]  Goldberg JM, Piver MS, Jishi MF, Blumenson L: Age at onset of ovarian cancer in 
women with a strong family history of ovarian cancer. Gynecol Oncol,1997. 66: 3-9. 

[7]  Fathalla MF: Incessant ovulation – a factor in ovarian neoplasia? Lancet, 1971. 2 
(7716): 163.  

[8]  Helzlsouer KJ, Alberg AJ, Gordon GB, et al.: Serum gonadotropins and steroid 
hormones in the development of ovarian cancer. JAMA,1995. 274: 1926-1930.  

[9]  Parmley TH, Woodruff JD: The ovarian mesothelioma. Am J Obstet Gynecol, 1974. 
120: 234-241. 

[10]  Bristow RE, Karlan BY: Ovulation induction, infertility, and ovarian cancer risk 
[Review]. Fertil Steril,1996. 66: 499-507.  

[11]  Negri E, Franceschi S, Tzonou A, et al.: Pooled analysis of 3 European case-control 
studies. I. Reproductive factors and risk of epithelial ovarian cancer. Int J Cancer, 
1991. 49: 50-56.  

[12]  Franceschi S, La Vecchia C, Booth M, et al.: Pooled analysis of 3 European case-
control studies of ovarian cancer: II. Age at menarche and menopause. Int J Cancer, 
1991. 49: 57-60.  

[13]  Doll R, Gray R, Hafner B, et al.: Mortality in relation to smoking: 22 years´ 
observations on female British doctors. Br Med J, 1980. 280(6219): 967-971.  

[14]  Purdie D, Green A, Bain C, et al.: Reproductive and other factors and risk of epithelial 
ovarian cancer: an Australian case-control study. Int J Cancer, 1995. 62: 678-684.  

[15]  Risch HA, Howe GR: Pelvic inflammatory disease and the risk of epithelial ovarian 
cancer. Cancer Epidemiol Bio Prev, 1995. 4: 447-451.  

[16]  Schildkraut JM, Schwingl PJ, Bastos E, et al.: Epithelial ovarian cancer risk among 
women with polycystic ovary syndrome. Obstet Gynecol,1996. 88(4 Pt 1): 554-559.  

[17]  Risch HA, Marrett LD, Howe GR: Parity, contraception, infertility, and the risk of 
epithelial ovarian cancer. Am J Epidemiol, 1994. 140: 585-597.  

[18]  Hankinson SE, Colditz GA, Hunter DJ, et al.: A prospective study of reproductive 
factors and risk of epithelial ovarian cancer. Cancer, 1995. 76: 284-290.  

[19]  Adami HO, Hsieh CC, Lambe M, et al.: Parity, age at first child-birth, and risk of 
ovarian cancer. Lancet, 1994. 344(8932): 1250-1254.  

[20]  Schlesselman JJ: Net effect of oral contraceptive use on the risk of cancer in women in 
the United States. Obstet Gynecol, 1995. 85(5 Pt 1): 793-801.  



55 
 

[21]  Gross TP, Schlesselman JJ: The estimated effect of oral contraceptive use on the 
cumulative risk of epithelial ovarian cancer. Obstet Gynecol, 1994. 83: 419-424.  

[22]  Hankinson SE, Hunter DJ, Colditz GA, et al.: Tubal ligation, hysterectomy, and risk of 
ovarian cancer. A prospective study. JAMA, 1993. 270: 2813-2818.  

[23]  Miracle-McMahill HL, Calle EE, Kosinski AS, et al.: Tubal ligation and fatal ovarian 
cancer in a large prospective cohort study. Am J Epidemiol, 1997. 145: 349-357.  

[24]  Kurman RJ, et al.: Pathogenesis of Ovarian Cancer: Lessons From Morphology and 
Molecular Biology and Their Clinical Implications. Int J Gynecol Pathol, 2008. 27(2):  
151-160. 

[25]  Scully RE: World Health Organization classification and nomenclature of ovarian 
cancer. Natl Cancer Inst Monogr, 1975. 42: 5-7.  

[26]  Barakat RR: Borderline tumors of the ovary. Obstet Gynecol Clin North Am, 1994. 21: 
93-105.  

[27]  Rein D, Arnold N, Niederacher D: Ovarialkarzinom – Epidemiologie, Genetik und 
Prävention. Gynäkologe, 2006. 39: 420-427.  

[28]  Stauber M, Weyerstahl T: Duale Reihe - Gynäkologie und Geburtshilfe, 2. Auflage, 
Thieme-Verlag, 2005, S. 281. 

[29]  Stauber M, Weyerstahl T: Duale Reihe - Gynäkologie und Geburtshilfe, 2. Auflage, 
Thieme-Verlag, 2005, S. 294. 

[30]  Stauber M, Weyerstahl T: Duale Reihe - Gynäkologie und Geburtshilfe, 2. Auflage, 
Thieme-Verlag, 2005, S. 295. 

[31]  Stauber M, Weyerstahl T: Duale Reihe - Gynäkologie und Geburtshilfe, 2. Auflage, 
Thieme-Verlag, 2005, S. 283-284. 

[32]  Stauber M, Weyerstahl T: Duale Reihe - Gynäkologie und Geburtshilfe, 2. Auflage, 
Thieme-Verlag, 2005, S. 284. 

[33]  Sehouli J, Henrich W, Braicu I, Lichtenegger W: Präoperative Diagnostik beim 
Ovarialkarzinom. Gynäkologe, 2006. 39: 428-437.  

[34]  Stauber M, Weyerstahl T: Duale Reihe - Gynäkologie und Geburtshilfe, 2. Auflage, 
Thieme-Verlag, 2005, S. 283-288. 

[35]  Kommission Ovar der Arbeitsgemeinschaft Gynäkologische Onkologie e.V.: 
Empfehlungen für die Diagnostik und Therapie maligner Ovarialtumoren (S2k 
Leitlinie), 2009.  

[36]  Kommission Ovar der Arbeitsgemeinschaft Gynäkologische Onkologie e.V.: 
Aktualisierte Empfehlungen der Kommission Ovar auf der Grundlage der S2k Leitlinie 
(Version 1.0, Mai 2007), Juni 2012.  

[37]  Shojaei F: Anti-angiogenesis therapy in cancer: current challenges and future 
perspectives. Cancer Lett, 2012. 320: 130-137.  

[38]  Burger RA, Sill MW, Monk BJ, Greer BE, Sorosky JL: Phase II trial of bevacizumab in 
persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a 
Gynecologic Oncology Group Study. J Clin Oncol, 2007. 25: 5165-5171.  

[39]  Trimble EL, Kosary CA, Cornelison TL, et al.: Improved survival for women with 
ovarian cancer [Abstract]. In Proceedings of the Society for Gynecologic Oncology, 
1999. Abstract 136.  

[40]  Eisenkopp SM, Friedman RL, Wang HJ: Complete cytoreductive surgery is feasible and 
maximizes survival in patients with advanced epithelial ovarian cancer: a prospective 
study. Gynecol Oncol, 1998. 69: 103-108.  



56 
 

[41]  Vergote IB, Kaern J, Abeler VM, et al.: Analysis of prognostic factors in stage I 
epithelial ovarian carcinoma: importance of degree of differentiation and 
deoxyribonucleic acid ploidy in predicting relapse. Am J Obstet Gynecol, 1993. 169: 
40-52.  

[42]  Silvestrini R, Daidone MG, Veneroni S, et al.: The clinical predictivity of biomarkers of 
stage III-IV epithelial ovarian cancer in prospective randomized treatment protocol. 
Cancer, 1998. 82: 159-167.  

[43]  Omura GA, Brady MF, Homesley HD, et al.: Long-term follow-up and prognostic 
factor analysis in advanced ovarian carcinoma: the Gynecologic Oncology Group 
experience. J Clin Oncol, 1991. 9: 1138-1150.  

[44]  Frasci G, Conforti S, Zullo F, et al.: A risk model for ovarian carcinoma patients using 
CA 125: time to normalization renders second-look laparotomy redundant. Cancer, 
1996. 77: 1122-1130.  

[45]  Institut für Klinische Chemie der LMU München: Sinnvoller Einsatz von 
Tumormarkern - Ovarialkarzinom [Online]. http://www.klinikum.uni-
muenchen.de/Institut-fuer-Klinische-Chemie/Onkologische-Labordiagnostik/de/einsatz-
tm/Tumorarten/tumor-ovarial.html. [Zugriff am 30 03 2013]. 

[46]  Sehouli J, Akdogan Z, Heinze T, et al.: Preoperative determination of CASA (Cancer 
Associated Serum Antigen) and CA-125 for the discrimination between benign and 
malignant pelvic tumor mass: a prospective study. Anticancer Res, 2003. 23(2A): 1115-
1118.  

[47]  Bayerl B, Meier W, Stieber P, Albiez M, Eirmann W, Fateh-Moghadam A: Significance 
of CA72-4 in the diagnosis of ovarian cancer. Recent results in tumor therapy and 
diagnosis, 1990. Klapdor R (ed), Zuckschwedt-Verlag, München. S. 111–112. 

[48]  Lenhard MS, Nehring S, Nagel D, Mayr D, Kirschenhofer A, Hertlein L, et al.: 
Predictive value of CA 125 and CA 72-4 in borderline ovarian tumors. Clin Chem Lab 
Med, 2009. 47: 537–542.  

[49]  Negishi Y, Iwabuchi H, Sakamoto M, Okabe B, Sato H, et al.: Serum and tissue 
measurements of CA72-4 in ovarian patients. Gynecol Oncol, 1993. 48: 148–154.  

[50]  Fayed ST, Ahmad SM, Kassim SK, Khalifa A: The value of CA125 and CA72-4 in 
management of patients with epithelial ovarian cancer. Dis Markers, 1998. 14: 155–
160.  

[51]  Hogdall EV, Christensen L, Kjaer SK, Blaakaer J, Jarle IC, Gayther S, et al.: Protein 
expression levels of carcinoembryonic antigen (CEA) in Danish ovarian cancer 
patients: from the Danish 'MALOVA' ovarian cancer study. Pathology, 2008. 40(5): 
487–492. 

[52]  Tholander B, Taube A, Lindgren A, Sjoberg O, Stendahl U, Tamsen L: Pretreatment 
serum levels of CA-125, carcinoembryonic antigen, tissue polypeptide antigen, and 
placental alkaline phosphatase in patients with ovarian carcinoma: influence of 
histological type, grade of differentiation, and clinical stage of disease. Gynecol Oncol, 
1990. 39(1): 26–33.  

[53]  Institut für Klinische Chemie der LMU München: Sinnvoller Einsatz von 
Tumormarkern [Online]. http://www.klinikum.uni-muenchen.de/Institut-fuer-
Klinische-Chemie/Onkologische-Labordiagnostik/de/einsatz-tm/index.html. [Zugriff 
am 30 03 2013]. 

[54]  Chargaff E, West R: The biological significance of the thromboplastic protein of blood. 
J Biol Chem, 1946. 166: 189-197.  
 



57 
 

[55]  Wolf P: The nature and significance of platelet products in human plasma. Br J 
Haematol, 1967. 13: 269-288.  

[56]  Sims PJ, Wiedmer T, Esmon CT, Weiss HJ, Shattil SJ: Assembly of the platelet 
prothrombinase complex is linked to vesiculation of the platelet plasma membrane. 
Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol 
Chem, 1989. 264: 17049-17057.  

[57]  Weiss HJ, Vicic WJ, Lages BA, Rogers J: Isolated deficiency of platelet procoagulant 
activity. Am J Med, 1979. 67: 206-213.  

[58]  Toth B, Lok CAR, Böing A, Diamant M, van der Post JAM, Friese K, Nieuwland R: 
Microparticles and Exosomes: Impact on Normal and Complicated Pregnancy. Am J 
Reprod Immunol, 2007. 58: 389-402.  

[59]  Berckmans RJ, Sturk A, van Tienen LM, Schaap MCI, Nieuwland R: Cell-derived 
vesicles exposing coagulant tissue factor in saliva. Blood, 2011. 117(11): 3172-3180.  

[60]  Freyssinet JM: Cellular microparticles: what are they bad or good for? J Thromb 
Haemost, 2003. 1: 1655-1662.  

[61]  Ahn YS: Cell-derived microparticles: ´Miniature envoys with many faces´. J Thromb 
Haemost, 2005. 3: 884-887.  

[62]  VanWijk MJ, et al.: Microparticles in cardiovascular diseases. Cardiovasc Res, 2003. 
59(2): 277-287.  

[63]  Piccin A, et al.: Circulating microparticles: pathophysiology and clinical implications. 
Blood Reviews, 2007. 21: 157-171.  

[64]  Liebhardt S: Neue diagnostische Marker bei Mammkarzinompatientinnen. Medizinische 
Dissertation LMU München, 2011.  

[65]  Horstman LL, et al.: Platelet microparticles: a wide-angle perspective. Critical Reviews 
in Oncology/Haematology, 1999. 30: 111-142.  

[66]  Leytin V, Allen DJ, Mutlu A, Gyulkhandanyan AV, Mykhaylov S, Freedman J: 
Mitochondrial control of platelt apoptosis: effect of cyclosporin A, an inhibitor of the 
mitochondrial permeability transition pore. Lab Invest, 2009. 89: 374-384.  

[67]  Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, et al.: High shear stress can 
initiate both platelet aggregation and shedding of procoagulant containing 
microparticles. Blood, 1996. 88: 3456-3464.  

[68]  Barry OP, Partico D, Lawson JA, FitzGerald GA: Transcellular activation of platelets 
and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest, 1997. 
99: 2118-2127.  

[69]  Horstman LL, Jy W, Jimenez JJ, Bidot C, Ahn YS: New horizons in the analysis of 
circulating cell-derived microparticles. Keio J Med, 2004. 53(4): 210-230.  

[70]  Berckmans RJ, Nieuwland R, Böing AN, Romijn FPHTM, Hack CE, Sturk A: Cell-
derived microparticles circulate in healthy humans and support low grade thrombin 
generation. Thromb Haemost, 2001. 85: 639-646.  

[71]  D´Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on novel 
microenvironment modulators and prospective cancer biomarkers. Genes Dev, 2012. 
26: 1287-1299.  

[72]  Muralidharan-Chari V, Clancy JW, Sedgwick A, D´Souza-Schorey C: Microvesicles: 
ediators of extracellular communication during cancer progression. J Cell Science, 
2010. 123: 1603-1611.  

[73]  Albanese J, Meterissian S, Kontogiannea M, Dubreuil C, Hand A, et al.: Biologically 
active Fas antigen and its cognate ligand are expressed on plasma membrane-derived 



58 
 

extracellular vesicles. Blood, 1998. 91: 3862-3874.  

[74]  Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, et al.: Induction of 
lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp 
Med, 2002. 195: 1303-1316.  

[75]  Mause SF, Riztel E, Liehn EA, Hristov M, Bidzhekov K, Müller-Newen G, et al.: 
Platelet microparticles enhance the vasoregenerative potential of angiogenic early 
outgrowth cells after vascular injury. Circulation, 2010. 122: 494-506.  

[76]  Brill A, Deshevsky O, Rivo J, Gozal Y, Varon D: Platelet-derived microparticles 
induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res, 
2005. 67(1): 30-38.  

[77]  Janowska-Wieczorek A, Wysoczynski M, Kijowski J, et al.: Microvesicles derived from 
activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer, 
2005. 113(5): 752-760.  

[78]  Kim HK, Song KS, Chung JH, Lee KR, Lee SN: Platelet microparticles induce 
angiogenesis in vitro. British Journal of Haematology, 2004. 124: 376-384.  

[79]  Lacroix R, Sabatier F, Mialhe A, Basire A, Pannell R, Borghi HE, et al.: Activation of 
plasminogen into plasmin at the surface of endothelial microparticles: a mechanism 
that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood, 
2007. 110: 2432-2439.  

[80]  Yu J, May L, Milsom C, et al.: Contribution of host-derived tissue factor to tumor 
neovascularization. Arterioscler Thromb Vasc Biol, 2008. 28(11): 1975-1981.  

[81]  Rak J: Microparticles in cancer. Semin Thromb Hemost, 2010. 36: 888-906.  

[82]  Mackman N: Role of tissue factor in hemostasis, thrombosis, and vascular 
development. Arterioscler Thromb Vasc Biol, 2004. 24: 1015-1022.  

[83]  Hugel B, Martínez C, Kunzelmann C, Freyssinet JM: Membrane Microparticles: Two 
Sides of the Coin. Physiology, 2005. 20: 22-27.  

[84]  Skog J, Würdinger T, van Rijn S, et al.: Glioblastoma microvesicles transport RNA and 
proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol, 
2008. 10(12): 1470-1476.  

[85]  Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J: Endothelial expression of 
autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic 
EGFR. Proc Natl Acad Sci USA, 2009. 106(10): 3794-3799.  

[86]  Al-Nedawi K, Meehan B, Micallef J, et al.: Intercellular transfer of the oncogenic 
receptor EGFRvIII by microvesicles derived from tumor cells. Nat Cell Biol, 2008. 
10(5): 619-624.  

[87]  Soleti R, Benameur T, Porro C, Panaro MA, Andriantsitohaina R, et al.: Microparticles 
harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion 
proteins and proangiogenic factors. Carcinogenesis, 2009. 30: 580-588.  

[88]  MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A: Rapid 
secretion of interleukin-1 beta by microvesicle shedding. Immunity, 2001. 15: 825-835.  

[89]  VanWijk MJ, Nieuwland R, Boer K, van der Post JAM, VanBavel E, Sturk A: 
Microparticle subpopulations are increased in preeclampsia: Possible involvement in 
vascular dysfunction? Am J Obstet Gynecol, 2002. 187: 450-456.  

[90]  Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambyashi J: High-shear-
stress-induced activation of platelets and microparticles enhances expression of cell 
adhesion molecules in THP-1 and endothelial cells. Atherosclerosis, 2001. 158: 277-
287.  



59 
 

[91]  Brodsky SV, Zhang F, Nasjietti A, Gollgorsky MS: Endothelium-derived 
microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol, 
2004. 286: H1910-H1915.  

[92]  Pfister SL: Role of platelet microparticles in the production of thromboxane by rabbit 
pulmonary artery. Hypertension, 2004. 43: 428-433.  

[93]  Martin S, Tesse A, Hugel B, Martinez MC, Morel O, Freyssinet JM, et al.: Shed 
membrane particles from T lymphocytes impair endothelial function and regulate 
endothelial protein expression. Circulation, 2004. 109: 1653-1659.  

[94]  Khorana AA, James P: Malignancy, thrombosis and Trousseau: the case for an 
eponym. J Thromb Haemost, 2003. 1(12): 2463-2465.  

[95]  Heit JA, O´Fallon WM, Petterson TM, et al.: Relative impact of risk factors for deep 
vein thrombosis and pulmonary embolism: a population-based study. Arch Intern Med, 
2002. 162: 1245-1248.  

[96]  Svendsen E, Karwinski B: Prevalence of pulmonary embolism at necropsy in patients 
with cancer. J Clin Pathol, 1989. 42: 805-809.  

[97]  Blom JW, Vanderschoot JP, Oostindier MJ, Osanto S, van der Meer FJ, et al.: Incidence 
of venous thrombosis in al large cohort of 66,329 cancer patients: results of a record 
linkage study. J Thromb Haemost, 2006. 4: 529-535.  

[98]  Nijiziel MR, et al.: From Trousseau to angiogenesis: the link between the haemostatic 
system and cancer. Neth J Med, 2006. 64(11): 403-410.  

[99]  Rao LVM: Tissue factor as a tumor procoagulant. Cancer and Metastasis Reviews, 
1992. 11: 249-266.  

[100] Callander NS, Varki N, Rao LVM: Immunohistochemical identification of tissue factor 
in solid tumors. Cancer, 1992. 70(5): 1194-1201.  

[101] Aharon A, Brenner B: Microparticles, thrombosis and cancer. Best Pract Res Clin 
Haematol, 2009. 22(1): 61-69.  

[102] Tesselaar MET, Romijn FPHTM, Van der Linden IK, Prins FA, Bertina RM, Osanto S: 
Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J 
Thromb Haemost, 2007. 5: 520-527.  

[103] Tilley RE, Holscher T, Belani R, Nieva J, Mackman N: Tissue factor activity is 
increased in a combined platelet and microparticle sample from cancer patients. 
Thromb Res, 2008. 122(5): 604-609.  

[104] Hron G, Kollars M, Weber H, Sagaster V, Quehenberg P, Eichinger S, Kyrle PA, 
Weltermann A: Tissue factor-positive microparticles: Cellular origin and association 
with coagulation activation in patients with colorectal cancer. Thromb Haemost, 2007. 
97(1): 119-123. 

[105] Zwicker JI: Predictive value of tissue factor bearing microparticles in cancer 
associated thrombosis. Thromb Res, 2010. 125(Suppl 2): 84-88.  

[106] Zahra S, Anderson JAM, Stirling D, Ludlam CA: Microparticles, malignancy and 
thrombosis. Brit J Haematol, 2011. 152: 688-700.  

[107] Owens III AP, Mackman N: Microparticles in Hemostasis and Thrombosis. Circ Res, 
2011. 108: 1284-1297.  

[108] Diamant M, Tushuizen ME, Sturk A, Nieuwland R: Cellular microparticles: new 
players in the field of vascular disease? Eur J Clin Invest, 2004. 34(6): 392-401.  

[109] Sack U, Tárnok A, Rothe G: Zelluläre Diagnostik: Grundlagen, Methoden und 
klinische Anwendung der Durchflusszytometrie. Basel, 2007. S. 27-70. 



60 
 

[110] Einführung in die Durchflusszytometrie: Trainingsvorbereitung. Becton Dickinson 
GmbH, 2005.  

[111] Vermes I, et al.: A novel assay for apoptosis. Flow cytometric detection of 
phosphatidylserine expression on early apoptotic cells using fluorescein labelled 
Annexin V. J Immunol Methods, 1995. 184(1): 39-51.  

[112] Papadea C, Check IJ: Human immunoglobulin G and immunoglobulin G subclasses: 
biochemical, genetic, and clinical aspects. Crit Rev Clin Lab Sci, 1989. 27(1): 27-58.  

[113] GENTAUR GmbH - Molekulare Produkte: Datenblatt Anti-CD61-PE [Online]. 
http://www.antibody-antibodies.com/de/product2926687-Cytognos-
Antibody__CD61_PE_; _Clone__PM6_13_; _Isotype__IgG1.html. [Zugriff am 30 03 
2013]. 

[114] EXBIO, Prag: Datenblatt Anti-CD63-PE [Online]. 
http://www.exbio.cz/pdf/data_sheet_new.py/CLO000000000000057/16/17/datasheet-
1Y-343-T025.pdf. [Zugriff am 30.03.2013]. 

[115] Mathivanan S, Ji H, Simpson RJ: Exosomes: extracellular organelles important in 
intercellular communication. J Proteomics, 2010. 73: 1907-1920.  

[116] Trzpis M, McLaughlin PMJ, de Leij LMFH, Harmsen MC: Epithelial Cell Adhesion 
Molecule. American J Pathol, 2007. 171: 386-395.  

[117] Schmidt DS, Klingbeil P, Schnolzer M, Zoller M: CD44 variant isoforms associate with 
tetraspanins and EpCAM. Exp Cell Res, 2004. 297: 329-347.  

[118] Claas C, Wahl J, Orlicky DJ, Karaduman H, Schnolzer M, Kempf T, Zoller M: The 
tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem J, 2005. 
389: 99-110.  

[119] Sebastian M, Kuemmel A, Schmidt M, Schmittel A: Catumaxomab: A bispecific 
trifunctional antibody. Drugs Today (Barc), 2009. 45(8): 589-597.  

[120] Spizzo G, Went P, Dirnhofer S, Obrist P, Moch H, Baeuerle PA, et al.: Overexpression 
of epithelial cell adhesion molecule (Ep-CAM) is an independent prognostic marker for 
reduced survival of patients with epithelial ovarian cancer. Gynecol Oncol, 2006. 103: 
483-488.  

[121] BD Biosciences: Datenblatt Anti-EpCAM [Online]. 
http://www.bdbiosciences.com/external_files/is/doc/tds/Datasheets_RUO/live/web_ena 
bled/23-5534-00_EpCAM_ruo.pdf. [Zugriff am 30 03 2013].  

[122] BD Biosciences: Datenblatt Anti-CD144-FITC [Online]. 
http://www.bdbiosciences.com/external_files/pm/doc/tds/stem_cell/live/web_enabled/ 
560411.pdf. [Zugriff am 30 03 2013]. 

[123] Combes V, Simon A, Grau G, Arnoux D, Camoin L, Sabatier F, et al.: In vitro 
generation of endothelial microparticies and possible prothrombotic activity in patients 
with lupus anticoagulant. J Clin Invest, 1999. 104: 93– 102.  

[124] Jimenez JJ, Jy W, Mauro LM, Horstman LL, Ahn YS: Elevated endothelial 
microparticles in thrombotic thrombocytopenic purpura: findings from brain and renal 
microvascular cell culture and patients with active disease. Br J Haematol, 2001. 112: 
81–90.  

[125] Chironi GN, et al.: Endothelial microparticles in diseases. Cell Tissue Res, 2009. 335: 
143-151.  

[126] Simak J, Holada K, Risitano AM, Zivny JH, Young NS, Vostal JG: Elevated 
circulating endothelial membrane microparticles in paroxysmal noctural 
haemoglobinuria. Brit J Haematol, 2004. 125(6): 804-813.  



61 
 

[127] Koga H, Sugiyama S, Kugiyama K, Watanabe K, Fukushima H, et al.: Elevated levels 
of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes 
mellitus and coronary artery disease. J Am Coll Cardiol, 2005. 45: 1622-1630.  

[128] Leroyer AS, Tedgui A, Boulanger CM: Role of microparticles in atherothrombosis. J 
Int Med, 2008. 263: 528-537.  

[129] Di Nisio M, Squizzato A, Rutjes AWS, Büller HR, Zwinderman AH, Bossuyt PM: 
Diagnostic accuracy of D-dimer test for exclusion of venous thromboembolism: a 
systematic review. J Thromb Haemost, 2006. 5: 296-304.  

[130] Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, et al.: Endothelial 
progenitor cell derived microparticles activate an angiogenic program in endothelial 
cells by a horizontal transfer of mRNA. Blood, 2007. 110: 2440-2448.  

[131] Poste G, Nicolson GL: Arrest and metastasis of blood-borne tumor cells are modified 
by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad 
Sci, 1980. 77: 399-403.  

[132] Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, et al.: Platelet-
derived microparticles stimulate proliferation, survival, adhesion, and chemotaxix of 
hematopoietic cells. Exp Hematol, 2002. 30: 450-459.  

[133] Di Vizio D, Kim J, Hager MH, et al.: Oncosome formation in prostate cancer: 
association with a region of frequent chromosoam deletion in metastatic disease. 
Cancer Res, 2009. 69(13): 5601-5609.  

[134] Lima LG, Chammas R, Monteiro RQ, Moreira ME, Barcinski MA: Tumor-derived 
microvesicles modulate the establishment of metastatic melanoma in a 
phosphatidylserine-dependent manner. Cancer Lett, 2009. 283(2): 168-175.  

[135] Zahra S, Anderson JAM, Stirling D, Ludlam CA: Plasma microparticles are not 
elevated in fresh plasma from patients with gynaecological malignancy - An 
observational study. Gynecol Oncol, 2011. 123: 152-156.  

[136] Thaler J, Ay C, Weinstabl H, Dunkler D, Simanek R, et al.: Ciculating procoagulant 
microparticles in cancer patients. Ann Hematol, 2011. 90: 447-453.  

[137] Liebhardt S, Ditsch N, Nieuwland R, Rank A, Jeschke U, Von Koch F, Friese K: CEA-, 
Her2/neu-, BCRP- and Hsp27-positive microparticles in breast cancer patients. 
Anticancer Res, 2010. 30(5): 1707-1712.  

[138] Nomura S: Function and Clinical Significance of Platelet-Derived Microparticles. Int J 
Hematol, 2001. 74: 397-404.  

[139] Honn KV, Tang DG, Chen YQ: Platelets and cancer metastasis: more than an 
epiphenomenon. Semin Thromb Haemost, 1992. 18: 392-415.  

[140] Borsig L, Wong R, Feramisco J, et al.: Heparin and cancer revisited: mechanistic 
connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. 
Proc Natl Acad Sci USA, 2001. 98: 3352-3357.  

[141] Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Kim HK, Ryu KW, Bae JM, Kim S: 
Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in 
patients with gastric cancer: possible role of a metastasis predictor. European Journal 
of Cancer, 2003. 39: 184-191.  

[142] Tschoepe D, Spangenberg P, Esser J, Schwippert B, Kehrel B, Roesen P, et al.: Flow-
cytometric detection of surface membrane alterations and concommitant changes in the 
cytoskeletal actin status of activated platelets. Cytometry, 1990. 11: 652-656.  

[143] Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, et al.: Platelet 
microparticle membranes have 50- to 100-fold higher specific procoagulant activity 



62 
 

than activated platelets. Thromb Haemost, 2007. 97(3): 425-434.  

[144] Kim HK, Song KS, Lee ES, Lee YJ, Park YS, Lee KR, Lee SN: Optimized flow 
cytometric assay for the measurement of platelet microparticles in plasma: pre-analytic 
and analytic considerations. Blood Coagulation and Fibrinolysis,2002. 13: 393-397.  

[145] Reininger AJ, Heijnen HF, Schumann H, Specht HM, Schramm W, Ruggeri ZM: 
Mechanism of platelet adhesion to von Willebrand factor and microparticle formation 
under high shear stress. Blood, 2006. 107: 3537-3545.  

[146] Ramacciotti E, Hawley AE, Farris DM, Ballard NE, Wrobleski SK, et al.: Leukocyte- 
and platelet-derived microparticles correlate with thrombus weight and tissue factor 
activity in an experimental mouse model of venous thrombosis. Thromb Haemost, 2009. 
101(4): 748-754.  

[147] Toth B, Liebhardt S, Steinig K, Ditsch N, Rank A, Bauerfeind I, Spannagl M, Friese K: 
Platelet-derived microparticles and coagulation activation in breast cancer patients. 
Thromb Haemost, 2008. 100(4): 663-669.  

[148] Caine GJ, Harris AL, Christodoulos K, Lip GY, Blann AD: Analysis of combination 
anti-angiogenesis therapy on markers of coagulation, platelet activation and 
angiogenesis in patients with advanced cancer. Cancer Lett, 2005. 219(2): 163-167.  

[149] Flaumenhaft R, Dilks JR, Richardson J, Alden E, Patel-Hett SR, et al.: Megakaryocyte-
derived microparticles: direct visualization and distinction from platelet-derived 
microparticles. Blood, 2009. 113: 1112-1121.  

[150] Norol F, Guichard J, Breton-Gorius J, Vainchenker W, Massé JM, et al.: Ultrastructure 
of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood, 
1997. 89: 2336-2346.  

[151] Rank A, Nieuwland R, Delker R, Köhler A, Toth B, Pihusch V, Wilkowski R, et al.: 
Cellular origin of platelet-derived microparticles in vivo. Thromb Res, 2010. 126(4): 
255-259.  

[152] Dashevsky O, Varon D, Brill A: Platelet-derived microparticles promote invasiveness 
of prostate cancer cells via upregulation of MMP-2 production. Int J Cancer, 2009. 124: 
1773-1777.  

[153] Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, et al.: Tumour-derived microvesicles 
carry several surface determinants and mRNA of tumour cells and transfer some of 
these determinants to monocytes. Cancer Immunol Immunother, 2006. 55(7): 808-818.  

[154] Press JZ, Reyes M, Pitteri SJ, Pennil C, Garcia R, Goff BA, et al.: Microparticles from 
ovarian carcinomas are shed into ascites and promote cell migration. Int J Gynecol 
Cancer, 2012. 22(4): 546-552.  

[155] Ferdeghini M, Gadducci A, Prontera C, Annicchiarico C, Gagetti O, et al.: Preoperative 
serum intercellular adhesion molecule-1 (ICAM-1) and E-selectin in patients with 
epithelial ovarian cancer. Anticancer Res, 1995. 15(5B): 2255-2260.  

[156] Rank A, Liebhardt S, Zwirner J, Burges A, Nieuwland R, Toth B: Circulating 
microparticles in patients with benign and malignant ovarian tumors. Anticancer Res, 
2012. 32: 2009-2014.  

[157] Taraboletti G, D´Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V: Shedding of the 
matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-
associated components by endothelial cells. Am J Pathol, 2002. 160: 673-680.  

[158] Haubold K, Rink M, Spath B, Friedrich M, Chun FK, Marx G, et al.: Tissue factor 
procoagulant activity of plasma microparticles is increased in patients with early-stage 
prostate-cancer. Thromb Haemost, 2009. 101: 1147-1155.  



63 
 

[159] Dvorak HF, Van deWater L, Bitzer AM, et al.: Procoagulant activity associated with 
plasma membrane vesicles shed by cultured tumor cells. Cancer Res, 1983. 43: 4434-
4442.  

[160] Mueller BM, Reisfeld RA, Edgington TS, Ruf W: Expression of tissue factor by 
melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci USA, 
1992. 89(24): 11832-11836. 

[161] Rauch U, Antoniak S: Tissue factor-positive microparticles in blood associated with 
coagulopathy cancer. Thromb Haemost, 2007. 97: 9-10.  

[162] Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack MS, Fishman DA: Proinvasive 
properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res, 2004. 64: 
7045-7049.  

[163] Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, Furie BC, et al.: Tumor-
derived tissue factor-bearing microparticles are associated with venous 
thromboembolic events in malignancy. Clin Cancer Res, 2009. 15(22): 6830–6840.  

[164] Tesselaar ME, Romijn FP, van der Linden IK, Bertina RM, Osanto S: Microparticles-
associated tissue factor activity in cancer patients with and without thrombosis. J 
Thromb Haemost, 2009. 7(8): 1421-1423.  

[165] Mackman N: The role of tissue factor and factor viia in hemostasis. Anesth Analg, 
2009. 108: 1447-1452.  

[166] Hathcock JJ, Nemerson Y: Platelet deposition inhibits tissue factor activity: in vitro 
clots are impermeable to factor xa. Blood, 2004. 104: 123-127.  

[167] Giesen PLA, Rauch U, Bohrmann B, Kling D, Roqué M, Tallon JT, et al.: Blood-borne 
tissue factor: Another view of thrombosis. Proc Natl Acad Sci USA, 1999. 96: 2311-
2315.  

[168] Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B: Real-time in vivo imaging of 
platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. 
Nature Medicine, 2002. 8(10): 1175-1180.  

[169] Ikeda M, Iwamoto S, Imamura H, Furukawa H, Kawasaki T: Increased platelet 
aggregation and production of platelet-derived microparticles after surgery for upper 
gastrointestinal malignancy. Journal of Surgical Research, 2003. 115: 174-183.  

[170] Scully R, Sobin LH: Histological Typing of Ovarian Tumours (World Health 
Organization). International Histological Classification of Tumours, 2. Auflage, 
Springer-Verlag, 1999.  

 
 
  



64 
 

7   Anhang 

 

7.1   Abbildungsverzeichnis 

Abbildung 1:  Elektronenmikroskopische Darstellung von Mikropartikeln. ........................................ 14 

Abbildung 2: Prinzip der hydrodynamischen Fokussierung ................................................................ 21 

Abbildung 3:  Merkmale des Vorwärts- und Seitwärtsstreulichts im Durchflusszytometer. ................ 22 

Abbildung 4:  Konzentration der CD63+-MP in den Studienpopulationen ........................................... 34 

Abbildung 5:  Konzentration der EpCAM+-MP in den Studienpopulationen. ...................................... 34 

Abbildung 6:  Konzentration der CD144+-MP in den Studienpopulationen ......................................... 35 

Abbildung 7: Konzentration der CD63+-MP nach FIGO ..................................................................... 36 

Abbildung 8:  Konzentration der AnnexinV+-MP in der Kontrollgruppe sowie nach FIGO ............... 37 

Abbildung 9: Konzentration der EpCAM+-MP in der Kontrollgruppe sowie nach FIGO ................... 38 

Abbildung 10: Konzentration der CD144+-MP in der Kontrollgruppe sowie nach FIGO. .................. 38 

Abbildung 11: Konzentration der CD63+-MP in der Gruppe der benignen Ovarialtumore und nach 

FIGO ............................................................................................................................................. 39 

Abbildung 12: Konzentration der CD144+-MP in der Gruppe der benignen Ovarialtumore und nach 

FIGO ............................................................................................................................................. 40 

Abbildung 13: Konzentration der CD142+-MP im prä- und postoperativen Vergleich ....................... 41 

Abbildung 14: ROC-Kurven für alle MP-Subpopulationen, CA125 und CD72-4 .............................. 42 

Abbildung 15: Präoperative D-Dimer-Konzentration in den Studienpopulationen ............................. 43 

 

7.2   Tabellenverzeichnis 

Tabelle 1: Ein- und Ausschlusskriterien der Studie ............................................................................. 19 

Tabelle 2: Verwendete Chemikalien .................................................................................................... 22 

Tabelle 3: Verwendete Reagenzien ...................................................................................................... 24 

Tabelle 4: Antikörper-Verdünnungen .................................................................................................. 25 

Tabelle 5: Studienkollektiv. .................................................................................................................. 31 

Tabelle 6: Konzentration der MP-Subpopulationen in den Studiengruppen ........................................ 33 

Tabelle 7: Konzentration der MP-Subpopulationen nach FIGO .......................................................... 36 

Tabelle 8: Konzentration der MP-Subpopulationen im prä- und postoperativen Vergleich ................ 40 

Tabelle 9: Flächen unter der ROC-Kurve ............................................................................................. 41 

Tabelle 10: Konzentration der D-Dimere im Studienkollektiv ............................................................. 43 

Tabelle 11: Konzentration der D-Dimere nach FIGO .......................................................................... 44 

Tabelle 12: Konzentration der D-Dimere  in Anhängigkeit vom OP-Zustand ..................................... 44 



65 
 

7.3   WHO-Klassifikation der Ovarialkarzinome 2003 

1 Oberflächenepithel-Stroma-Tumore (90%) 
  1.2 Seröse Tumore 

  1.3 Muzinöse Tumore, endozervix-ähnlich und intestinaler Typ 

  1.4 Endometrioide Tumore 

  1.5 Übergangszelltumore 

  1.6 Plattenepithelkarzinome 

  1.7 Gemischte epitheliale Tumore 

  1.8 Undifferenzierte Karzinome 

2 Keimstrangstromatumore (6%) 
  2.1 Granulosazelltumore 

  2.2 Thekome 

  2.3 Androblastome / Sertoli-Leydigzell-Tumore 

  2.4 Gynandroblastome 

  2.5 Lipidzelltumore 

  2.6 Andere 

3 Keimzelltumore (3%) 
  3.1 Dysgerminom 

  3.2 Endodermaler Sinus-Tumor 

  3.3 Embryonales Karzinom 

  3.4 Polyembryom 

  3.5 Chorionkarzinom 

  3.6 Teratom 

  3.7 Gemischte Keimzelltumore 

4 Andere 
 
 

7.4   Stadieneinteilung des Ovarialkarzinoms nach FIGO-Kriterien 

FIGO-Stadium Beschreibung 

I   Karzinom auf die Ovarien begrenzt 

  IA Nur ein Ovar befallen, kein Aszites, kein Tumor auf der Oberfläche, Kapsel intakt 

  IB Beide Ovarien befallen, kein Aszites, kein Tumor auf der Oberfläche, Kapsel intakt 

  IC Wie Stadium IA oder IB, aber mit Tumor auf der Oberfläche eines Ovars / beider Ovarien oder mit 
Kapselruptur oder mit positivem Aszites oder positiver Peritonealspülung   

II   Karzinom eines oder beider Ovarien mit Ausdehnung im kleinen Becken 

  IIA Ausdehnung / Metastasen auf Uterus oder Tuben 

  IIB Ausdehnung auf andere Gewebe im kleinen Becken 

  IIC Wie Stadium IIA oder IIB, aber mit Tumor auf der Oberfläche eines Ovars / beider Ovarien oder mit 
Kapselruptur oder mit positivem Aszites oder positiver Peritonealspülung 

III   Karzinom mit intraperitonealer (auch nur histologisch nachweisbarer) Metastasierung außerhalb des 
kleinen Beckens und / oder positiven retroperitonealen oder inguinalen Knoten, 
Leberkapselmetastasen 

  IIIA Tumor makroskopisch auf das kleine Becken begrenzt ohne retroperitoneale Knoten, aber mit 
histologisch gesicherter Metastasierung in viszeralem oder parietalem Peritoneum 

  IIIB Karzinom eines oder beider Ovarien mit histologisch gesicherten intraabdominalen Metastasen, deren 
Größe 2cm nicht überschreitet, keine retroperitonealen Knoten 

  IIIC Abdominale Metastasen >2cm im Durchmesser und / oder retroperitoneale oder inguinale Knoten 

IV   Karzinom eines oder beider Ovarien mit Fernmetastasen, bei Pleuraergüssen nur bei positivem 
Tumorzellnachweis, Leberparenchymmetastasen 

modifiziert nach [30]  

modifiziert nach [170] 
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7.5   Einverständniserklärung der Probandinnen 
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