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1.1. Significance and Objective 
Lung cancer is the leading cause of cancer deaths in the US and worldwide. It is 

the most common cancer found in both men and women in the US after prostate 

and breast cancer [1]. Lung cancer outlooks in Germany are similarly dire [2] 

(Figure 1). Given these grim statistics there is a great urgency to improve 

treatment outcome. 

Traditional cancer therapy is based on a “one treatment fits all” theory. The 

mainstay treatment for locally, advanced lung cancer has long been radiation 

combined with chemotherapy [1]. Outcomes of this treatment regime are however 

unsatisfactory. Hallmarks of traditional cancer therapy are severe side effects and 

poor survival rates, especially in patients with advanced tumors. The 5-year 

survival rate for patients with non-small cell lung cancer (NSCLC) is as low as 

16% [1].  

Across the field of cancer therapies, there has been a recent trend towards 

utilizing newly discovered targeted agents. These drugs target specific features in 

the tumor and advance the field towards more “personalized medicine”. They tend 

to be less toxic to normal cells and thus better tolerable by patients.  

One great example for this concept is poly ADP-ribose polymerase (PARP) 

inhibitors. These drugs interfere with DNA repair by inhibiting the DNA repair 

enzyme PARP, thus leading to prolonged DNA damage. Normally other repair 

pathways can repair the damage, but some cancer cells harbor defects in the 

DNA repair machinery, rendering them specifically sensitive to PARP inhibitors. 

Promising results with PARP inhibitors have been achieved in breast, ovarian and 

prostate cancers, which contain those DNA repair defects [3]. 

Another example of targeted therapy is inhibitors against the tyrosine kinase of 

epidermal growth factor receptor (EGFR). These drugs are very effective in a 

subset of lung cancer patients, which harbor activating mutations in EGFR. Such 

cancers are dependent on the overactive survival and growth signaling of mutated 

EGFR; thus disruption with EGFR inhibitors leads to cancer cell death and 

impressive decrease of tumor size [4]. Despite great initial success, unfortunately, 

nearly all patients experience tumor progression, posing the need for yet another 

treatment strategy [5].  
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Our group is particularly interested in the treatment of lung cancer and the study 

of DNA repair pathways. With the need to find new treatment approaches for 

EGFR-mutant lung cancer patients, we aimed to find DNA repair defects 

exploitable for targeted therapy.  

We built our hypothesis on the following information: Our previous findings 

showed, that NSCLC are enriched for DNA repair defects. Birkelbach et al. found 

a prevalence of homologous recombination repair (HRR) defects in NSCLC in 

vitro and in vivo [6]. Furthermore, it has been observed in the clinic that EGFR-

mutant NSCLC exhibit increased sensitivity to platinum-based DNA damaging 

agents [7] [8] [9]. Thus we speculated to find new targets within the DNA repair 

machinery, and we hypothesized the following: 

“EGFR-mutant lung cancers harbor a common DNA repair defect, exploitable for 

targeted therapy.” 

A secondary aim was to investigate the influence of acquired resistance to EGFR 

tyrosine kinase inhibitors (TKI) on sensitivity to DNA damaging treatments in 

EGFR-mutant lung cancer cell lines. 

 

Aims of this Ph.D. thesis: 

1. To characterize the response of EGFR-mutant lung cancer cells to DNA 

damaging therapy: 

a. Elucidate the mechanism of defective DNA repair in EGFR-mutant 

lung cancers  

b. Exploit defective DNA repair for targeted treatment 

2. To determine whether acquired resistance to EGFR TKI alters the 

sensitivity of EGFR-mutant lung cancer cells to DNA damaging agents.  
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1.2. Lung cancer 

1.2.1. Characteristics of lung cancer 
Lung cancers are classified according to their histology: Non-small cell lung 

cancers (NSCLC) and small-cell lung cancers (SCLC) [5]. This study will focus on 

the more common type of NSCLC, which accounts for 84% of lung cancer cases 

[5]  [1]. 

The number one risk factor for developing lung cancer is smoking. The relative 

risk in men is 23. This means men, who smoke, are 23x more likely to develop 

lung cancer than their non-smoking fellows [1]. Furthermore there is a strong 

causal relationship between passive smoking and lung cancer [10]. Second in the 

rank is radon gas released from soil and building materials [1]. Other risk factors 

include asbestos, certain metals (chromium, cadmium, arsenic), some organic 

chemicals, radiation, air pollution, diesel exhaust and paint [1]. While all these risk 

factors can be avoided - especially smoking – this last one cannot: genetic 

susceptibility [1]. So far we have a very limited understanding of how genetic 

background could influence lung cancer development. Germline mutations in the 

epidermal growth factor receptor (EGFR), for example, may increase the risk to 

develop lung cancer [11]. EGFR is a cell surface receptor involved in growth and 

survival signaling; for more details see chapter 1.2.2.1. An ongoing study is further 

elucidating the association between EGFR germline mutations and increased lung 

cancer risk (ClinicalTrials.gov Identifier #: NCT01754025). Somatic EGFR 

activating mutations, on the other hand, seem to cluster in non-smokers of East-

Asian ethnicity [12] [5] [13]. However, the cause of this remains elusive.   

 

Unfortunately by the time lung cancer is detected, it has usually metastasized. 

Only 15% are diagnosed in an early stage [1]. For 2013, 228,190 new cases are 

expected in the US alone, which accounts for 14% of all cancer diagnoses [1]. 

This makes lung cancer, after prostate and breast cancer, the most common 

tumor type in both men and women [14]. In Germany lung cancer ranks third in 

incidence after prostate/breast and colon cancer [2] (Figure 1B).  

Treatment depends on the stage and histology of the tumor (NSCLC or SCLC). 

Conventional therapy includes surgery, radiation, chemotherapy and sometimes a 
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combination of all three [1]. New approaches are made with targeted drugs, such 

as bevacizumab, erlotinib or crizotinib [1]. Unlike conventional chemotherapy, the 

above drugs exploit characteristics specific to the tumor, which makes them less 

toxic and initially more effective.  

However, the 5-year survival rates of only 16% are dismal [1]. In the US, around 

159,480 deaths are expected for the year 2013. Thus lung cancer accounts for 

27% of all cancer deaths, killing more men and women than any other type of 

cancer (Figure 1C) [1]. In Germany, the situation is equally dire (Figure 1D). In 

women lung cancer is among the top 3 causes of cancer deaths. In men it is by 

far the leading cause, accounting for 26% of cancer related deaths [2].  
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Figure 1: A) Estimated new cancer cases for American men and women expected in 
2013. B) New cancer cases for German men and women in 2008. Graph adapted from 
Kaatsch et al, 2012. C) Estimated cancer related deaths for American men and women 
expected in 2013. D) Cancer related deaths for German men and women in 2008. Graph 
adapted from Kaatsch et al, 2012. [1] [2] 
 

 

1.2.2. EGFR and lung cancer  

1.2.2.1. EGFR function 

Epidermal growth factor receptor (EGFR/ErbB2/HER-1) is a cell-surface tyrosine 

kinase receptor [15]  [16]. It is a 170-kd transmembrane glycoprotein and a 

member of the ErbB family of receptors [15] [16] [5]. Other members include 

ErbB2/HER-2/neu, ErbB3/HER-3 and ErbB4/HER-4 [16] [5]. 

EGFR signaling leads to cellular proliferation, differentiation and anti-apoptotic 

survival signals [15] [16]. It is further associated with gene expression and 

angiogenesis [15]  [16]. In tumor cells, EGFR stimulation promotes tumor cell 

motility, adhesion and metastasis [16] (Figure 2). 

EGFR signaling is induced by extracellular ligands, mainly epidermal growth factor 

(EGF) and transforming-growth factor ! (TGF!) [15]  [16]. Upon ligand binding, 

EGFR transitions from an inactive monomeric form to an active homo- or 

heterodimer [15] [16]. EGFR heterodimerization occurs with HER2 [16]. After 

dimerization, EGFR is internalized into clathrin-coated pits [17] and EGFR tyrosine 

kinase is autophosphorylated [16]. Phosphorylated tyrosine kinase residues act as 

binding sites for signal transducers and activators of intracellular substrates [16]. 

Activated downstream pathways of EGFR include PI3K-Akt, RAS-RAF-MEK-ERK, 

JAK-SRC-STAT, and PLC-DAG-PKC [15] [16] (Figure 2). 

Besides activating the aforementioned signaling pathways, EGFR has also been 

shown to be able to translocate to the nucleus [15] [18] [19] [17]. Nuclear 

translocation has been associated with transcription activation [17], binding of 

cyclins D and E [17], and serving as a chaperone for transcription factor STAT5 

[17]. Furthermore, it has been suggested that nuclear EGFR may be able to 

influence DNA double strand break (DSB) repair [15] [20]. Others have shown that 

nuclear EGFR associates with and increases activity of DNA-PKcs, which plays 
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an important part in DNA DSB repair by non-homologous endjoining (NHEJ) [15] 

[20]. 

EGFR is overexpressed in many cancers such as breast cancer, head-and-neck 

cancer, NSCLC, renal, ovarian and colon cancer [16]. In fact EGFR is 

overexpressed in about 40-80% of NSCLC [16]. Overexpression of EGFR results 

in a high metastatic rate, poor tumor differentiation and increased rate of tumor 

growth [16]. Thus EGFR has long been a target for anti-cancer therapy. 

 

 

 
Figure 2: EGFR ligands (EGF, TGF!, amphiregulin) activate the receptor, leading to 
homo- or heterodimerization and phosphorylation of EGFR. Several downstream 
pathways can be activated by EGFR; some important ones are shown here. EGFR 
activates Akt via PI3K, which results in inhibition of apoptosis, cell proliferation and 
angiogenesis. By activating the Ras-MAPK pathway EGFR stimulates cell motility, gene 
expression and cell-cycle progression [15]. Graphic adapted from Nyati et al, 2006. 
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1.2.2.2. Mutant EGFR in lung cancer 

Somatic activating mutations in EGFR can be found in 10% of NSCLC patients in 

North America/Europe [12]. In NSCLC patients of East-Asian descent this number 

increases to 30% [12].  Besides East-Asian ethnicity, there is a higher prevalence 

of these activating mutations in non smokers and adenocarcinoma histology [12] 

[13]. Female sex seemed to correlate with mutant EGFR as well, however this 

may be due to the fact that women are more likely to have never smoked [12]. As 

for East-Asian ethnicity it is unclear whether the genetic background or the 

environment promotes EGFR mutations [12]. A study comparing the prevalence of 

EGFR mutations in lung cancer patients with US citizenship and East Asian 

descent to East Asian lung cancer patients would clarify this issue [12]. 

 

Mutations in EGFR occur mainly in four exons (18-21). These exons encode the 

ATP-binding pocket of the tyrosine kinase catalytic domain [12] [5]. The most 

common mutations are in-frame deletions in exon 19, which account for 50% of 

EGFR mutations [5]. The second most frequent mutation is substitutions at L858 

within exon 21, which alters the activation loop of EGFR [5]. The L858 mutation is 

responsible for 40% of mutations in EGFR [5]. With a frequency of only 5%, 

mutations found in exon 18 and 20 are less common [5]. All the above somatic 

mutations lead to very similar phenotypes except for mutations within exon 20 [5]. 

Most importantly all EGFR mutations mentioned, excluding mutations within exon 

20, render tumors equally sensitive to EGFR tyrosine kinase inhibitors in the clinic 

[5] [21] [22] [23]. Henceforth, all EGFR mutations will be referred to as “mutant 

EGFR”. 

 

Mutant EGFR contains oncogenic properties, driving tumor growth and survival 

[5]. Characteristic of mutant EGFR is its permanent active state independent of 

the presence of a ligand. As a consequence EGFR downstream pathways 

involved in cell growth and survival signaling, such as ERK1/2 and PI-3 

kinase/AKT pathway, are hyperactive [5]. Mutant EGFR acts as an activated 

oncogene for tumor cell survival and proliferation, rendering tumor cells 

dependent on overactive EGFR signaling [5] [24]. This phenomenon is termed as 

“oncogene addiction”, which was first coined by Bernard Weinstein [25] [26] [27] 
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[24]. Interestingly mutant EGFR signaling as the driving force of the tumor is also 

its Achilles Heel. The dependency on survival signals emanated by hyperactive 

EGFR makes the cancer cell vulnerable to disruption of EGFR signaling. When 

EGFR is inhibited the cancer cell looses its most important source of growth and 

survival signals and thus undergoes apoptosis. Clinically this phenomenon can be 

exploited with targeted therapy using EGFR tyrosine kinase inhibitors (TKI), such 

as gefitinib or erlotinib [12] [5]. These small-molecule inhibitors bind to the 

intracellular tyrosine kinase domain of EGFR and prevent EGFR tyrosine kinase 

phosphorylation, thus disrupting activation of EGFR downstream pathways. When 

mutant EGFR signaling is disrupted in this manner it results in massive tumor cell 

death in pre-clinical models [5] [24]. The clinical response of NSCLC patients with 

activating EGFR mutations to treatment with EGFR TKI is quite impressive and 

significant tumor shrinkage can be achieved [4] (Figure 3). Despite this initial 

success most patients relapse within 6-12 months of treatment [5]. Only a few 

patients benefit from this treatment for up to 5 years [5]. Eventually all patients 

develop drug resistance to these EGFR TKI and experience disease progression 

[12] [5]. 

 

There are a number of ways by which EGFR-mutant cancer cells can acquire 

resistance to EGFR inhibitors [28] [12] [13] [5]. No matter which resistance 

mechanism is present the outcome is the same, in that cancer cells maintain 

growth signaling in the presence of EGFR TKI [28]. Here, I will present two 

mechanisms that are clinically validated [28].  

In 50% of lung cancer patients, resistance is gained through the development of a 

“secondary” mutation within the EGFR catalytic domain [12] [5]. Moreover, 90 % 

of these secondary mutations are comprised of the T790M missense substitution, 

which restores ATP affinity to the catalytic domain and reduces susceptibility to 

TKI [12] [29] [5]. ATP outcompetes TKI for the catalytic domain and as a result 

EGFR autophosphorylation is restored and downstream signaling is maintained in 

the presence of TKI [5]. Second generation EGFR TKI may be able to circumvent 

this issue, by covalently binding to the receptor, thereby preventing ATP from 

accessing it irreversibly. So far two second-generation EGFR TKI showed 

promising results in advanced clinical trials (phase III) [12]  [30]. One of these 
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second-generation drugs, afatinib, is currently under review for approval by the 

FDA [31] [32] [33]. 

An alternative form of resistance towards EGFR TKI has been shown to be 

through the amplification of the gene encoding MET receptor tyrosine kinase [28] 

[12]  [5]. This alteration is seen in 5-10% of NSCLC patients with acquired TKI 

resistance [12]  [5] [30]. Amplified MET is able to sustain survival signals through 

the PI-3 kinase/Akt pathway when mutant EGFR is inhibited [5]. Thus applying 

combined treatment with an EGFR TKI and MET kinase inhibitor counteracts this 

problem and result in cancer cell death [5]. However, it is yet to be validated, if 

this strategy works in patients. 

Both resistance mechanisms, T790M and MET amplification, can be recapitulated 

in cell line models, reassuring the value of such preclinical studies [34, 35]. 

The overwhelming success of targeted therapy with EGFR inhibitors in mutant 

EGFR lung cancer justifies a targeted treatment approach. However given that all 

patients develop resistance to this treatment, there is a need to investigate new 

possible targets in this patient group. As the next section will explain, the DNA 

Damage Response (DDR) machinery is often defective in tumors, thus providing a 

pool of possible targets [36]. 

 
Figure 3: Pictures show a computer tomographic scan of the chest in a patient with 
refractory NSCLC before treatment with gefitinib (A) and 6 weeks after treatment with 
gefitinib was initiated (B) [4]. 
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1.3. DNA repair 

1.3.1. Defective DNA repair – Promoter and “Achilles 
Heel” of cancers 

At the core of any replicating cell lies its genetic blueprint, the DNA. It stores all 

the necessary information for any cell to exist, develop and function. The integrity 

of this crucial component is therefore of utmost importance. Exposure to 

exogenous threats, such as ionizing radiation (IR), UV radiation, and chemicals as 

well as endogenously arising reactive oxygen species (ROS) pose a constant 

challenge to keeping the DNA intact. 

When DNA damage occurs, the DNA damage response (DDR) is activated. This 

means, depending on the type of DNA damage, specific DNA repair pathways are 

activated to locate the damage, recruit other repair proteins and fulfill repair of the 

corrupted DNA. Alternatively, if the damage is too severe and cannot be repaired, 

cell death or senescence is initiated. However, if there are defects within the DDR, 

cells with faultily repaired DNA damage may be allowed to proliferate as well, 

which leads to DNA rearrangements and mutations in the subsequent 

generations. The presence of activated oncogenes, such as mutant EGFR, may 

exacerbate this phenomenon. Activated oncogenes often cause increased 

proliferation, which heightens replication stress, resulting in more DNA damage 

and increased need for the DDR. However not only cells with repaired damage 

continue to proliferate, those with defective DDR do so as well, which leads to 

mutations, genomic instability and eventually cancer development (Figure 4). 

Thus in tumorigenesis activated oncogenes may cause selection pressure for 

defects in the DDR. [36]  

Defective DDR could be seen as a double-edged sword. On the one hand 

defective DDR promotes carcinogenesis, on the other hand it may weaken the 

tumor’s ability to cope with DNA damage. Thus when challenged with DNA 

damaging agents, cancers with deficient DNA repair cannot cope with the 

overwhelming DNA damage and are therefore sensitized to such drugs. Many 

conventional chemotherapeutics are in fact DNA damaging agents and they may 

potentially exploit this phenomenon. In order to advance from toxic “one-size-fits 
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all” chemotherapy to more selective and better-tolerated targeted therapies, 

elucidating the precise DNA repair defect is of great interest.  

There is clinical evidence that EGFR-mutant lung cancer patients respond better 

to platinum-based DNA damaging agents, such as cisplatin, than patients 

harboring the wild-type version [7] [8] [9]. Hence we hypothesized that EGFR-

mutant tumors are defective in repairing the kind of DNA damage produced by 

platinum agents.  

 

 
Figure 4: Defective DNA damage response (DDR) can lead to genomic instability and 
malignant transformation. Such cancers are susceptible to DNA damaging agents due to 
the underlying defect in the DDR [36]. 
 
 

1.3.2. DNA Interstrand Crosslink (ICL) Repair 

1.3.2.1. DNA damaging agents: cisplatin and MMC 

Cisplatin, cisplatinum, or cis-diamminedichloroplatinum(II) (CDDP) was first 

synthesized and described in 1845 as Peyrone’s chloride [37]. More than 100 

years later, its biological activity was discovered by accident, yet it took only 3 

years thereafter for the first cancer patients to be treated [37] [38]. In 1978 

cisplatin gained FDA approval [37]. 

Mitomycin C (MMC) on the other hand is a naturally occurring product, which was 

originally derived from fungal sources [38]. It has been used clinically since 1956 

[38]. 

The mode of action of both drugs is very similar. In principal, the compound is 

activated intracellular and two leaving groups are ejected (Figure 5). In place of 
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the ejected chemical groups the compound covalently binds to DNA or proteins 

[37] [38]. In the case of cisplatin this activation happens as follows: Due to the low 

intracellular chloride levels, cisplatin is acquated, which means the two chloride 

molecules leave the cisplatin compound sequentially as they get replaced by 

water molecules. In this activated form cisplatin can covalently bind to DNA or 

proteins. As for DNA adducts, cisplatin preferentially binds to the N7-position of 

guanosine or adenosine, leading to monoadducts or in the case of two bases 

being bound leads to formation of crosslinks [38]. 

MMC is similarly activated intracellular by cycloreduction. It preferentially 

crosslinks guanosine residues [38]. 

If the two crosslinked bases are located on the same DNA strand, they are called 

intrastrand crosslinks. If the bases are located on opposing DNA strands, it results 

in much more toxic structures termed interstrand crosslinks (ICL) (Figure 5C).  

[37] [38]. Even though the damage caused by MMC consists of only 5-10% of ICL 

and in the case of cisplatin this is even less than 5%, it is believed that the toxicity 

of both compounds can be attributed to these lesions [38]. This is due to the 

genotoxic effect of ICL, if left unrepaired. Protein adducts and DNA intrastrand 

crosslinks are less harmful than ICL, as damaged protein can be replaced and 

intrastrand crosslinks can be bypassed during transcription and replication [38]. 

ICL however, if left unrepaired, covalently bind opposing DNA strands together, 

thus preventing separation of the DNA double helix [38]. Separation of DNA 

strands is needed for transcription and replication [37] [38]. By inhibiting these 

most essential cellular processes, unrepaired ICL quickly lead to apoptosis [38].  
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Figure 5: A) Mechanism of activation of cisplatin: The two chloride ions are displaced by 
water molecules, due to low intracellular chloride levels. The activated compound can 
then bind to bases on the DNA strand, most commonly the N7-position of guanosine or 
adenosine [38]. B) Mechanism of activation of MMC: Through photon-mediated reduction 
of the molecule two moieties are ejected and the compound binds to DNA bases instead 
[38]. C) Cisplatin and MMC can either form monoadducts, interstrand crosslinks or 
intrastrand crosslinks when binding to DNA bases [39]. 
 

1.3.2.2. ICL repair by Fanconi Anemia (FA) pathway and 

Homologous Recombination Repair (HRR) 

ICL interfere with transcription and DNA replication; thus their removal is 

necessary throughout the cell cycle [40]. ICL repair in G1 phase differs from repair 

in S and G2 phase [40]. ICL are especially toxic during S phase, as they impede 

proper DNA replication. Therefore we will be focusing on replication-dependent 

repair occurring during S/G2 phase.  

During S-phase the replication fork will collide with unremoved ICL (Figure 6). 

Newer models suggest that a second replication fork might collide with the ICL 

from the other side [41]. However, these cell-free experiments were done studying 

replication of plasmids [41]. The likelihood of two replication forks converging at 
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the same ICL in a human cell is unknown [36]. Therefore, here we will describe 

the repair with just one fork colliding. 

Unable to move forward, the replication fork stalls and may collapse. A stalled 

replication fork initiates the DNA damage response (DDR) [40]. This entails 

activation of the Fanconi Anemia pathway for removal of the ICL, leaving a DSB, 

which is then repaired by Homologous Recombination Repair (HRR). Removal of 

an ICL happens in 3 phases:  

1. FA-proteins recognize the ICL and activate the FA-pathway  

2. Recruitment and activation of the FA-core complex and the “ID-complex”  

3. Incision and removal of ICL  

The ensuing repair intermediate is a one-ended DSB, which is subsequently 

repaired by HRR. Repair occurs in two main steps:  

1. The broken DNA end invades the sister chromatid, using it as a template 

for repair. This creates a Holliday junction where DNA strands cross over.  

2. The Holliday junction is resolved by nucleases, re-establishing an intact 

replication fork.  

In more detail ICL repair occurs as follows. The FANCM-FAAP24-MHF1/2 

complex recognizes the stalled replication fork at the DNA lesion. It is responsible 

for FA-pathway activation and the recruitment of the FA core complex (reviewed in 

[42]). FANCM hereby forms a heterodimeric complex with FAAP24. Together they 

recognize the DNA lesion, stabilize the stalled replication fork and initiate ATR-

CHK1-dependent signaling. ATR-CHK1 in turn phosphorylates and activates 

downstream FA proteins (FANCA/E/D2/I). MHF1 (Histone fold protein 1) and 

MHF2 help FANCM to maintain a stable association with chromatin. They further 

augment pathway activation and promote the recruitment of the Fanconi Anemia 

(FA) core complex to chromatin. 

The FA core complex consists of 8 proteins. These are FANCA, FANCB, FANCC, 

FANCE, FANCF, FANCG, FANCL and FANCM. Accessory proteins to the FA 

core complex are FAAP20, FAAP24 and FAAP100 [40] [42]. FANCM recruits the 

FA core complex to the site of damage, where the complex is responsible for a 

key regulatory step in the FA-pathway: ubiquitination of the downstream FA-

proteins FANCD2 and FANCI [40] [42]. FANCL serves as an ubiquitin E3 ligase, 

which monoubiquitinates FANCD2 at Lys561 and FANCI at Lys523 [40] [42]. 

Promoted by BRCA1, the monoubiquitinated FANCD2-I complex or “ID-complex” 
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then relocalizes to the DNA lesion [42], which can be visualized with 

immunofluorescent staining as sub nuclear foci [36]. Monoubiquitination of 

FANCD2 is necessary for localization of the ID-complex to the chromatin and lack 

of the monoubiquitination results in absence of FANCD2 foci [43] [44]. Except for 

FANCM, all members of the FA core complex are essential for monoubiquitiniation 

of the ID-complex [40]. Thus proficiency to form FANCD2 foci is not only a 

convenient biomarker to assess integrity of this key regulatory step, but also 

reveals if the FA core complex and upstream events in the FA-pathway are 

functioning. 

Next, the activated and monoubiquitinated ID-complex coordinates unhooking of 

the ICL [40] [42]. ICL unhooking occurs through incisions on either side of the ICL 

on the same DNA strand, leaving the ICL tethered to the complementary strand 

[40]. On the complementary strand trans-lesion synthesis (TLS) facilitates bypass 

of the tethered ICL lesion [40] [42], which is then removed completely by 

nucleotide excision repair (NER) [42].  

For ICL unhooking to occur, the ID-complex recruits and regulates the proteins 

involved in this step. ICL unhooking is an intricate interplay between several 

structure-specific endonucleases: XPF-ERCC1, MUS81-EME1, SLX1 and FAN1 

[40] [42]. The distinct and potentially overlapping roles of these endonucleases 

are not well defined. In the current model, ubiquitinated ID-complex serves as a 

docking site for endonucleases FAN1 and SLX4/FANCP [42]. Both nucleases 

contain the ubiquitin-binding domain UBZ4 (ubiquitin-binding zinc finger 4), which 

specifically recognizes and binds to the ubiquitin moiety of FANCD2 [42] [45]. 

SLX4/FANCP in turn recruits the remaining nucleases (XPF-ERCC1, MUS81-

EME1 and SLX1) [40] [42]. How exactly ICL unhooking occurs remains unclear. 

The nucleases differ in their preference to incise 5’- or 3’-flaps; thus responsibility 

to unhook the ICL 5’ or 3’ may be assigned among the different nucleases.  

FAN1 (FANCD2-associated nuclease 1, KIAA1018) is an endonuclease which 

preferentially incises 5’-flaps [45] [42]. It is of opposite polarity to nucleases 

MUS81-EME1 and XPF-ERCC1, which prefer to cleave 3’-flaps [45] [46] [47]. 

FAN1 is known to be required for resistance to ICL inducing drugs [40]. Human 

cells depleted of FAN1 are thus highly sensitized to MMC and cisplatin and 

display increased chromosomal radials when exposed to MMC [46] [45] [48]. 

FAN1 recruitment to ICL is dependent on the ubiquitinated ID-complex [40]. FAN1 
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is further epistatic to FANCD2, since knockdown of either or both yields similar 

levels of sensitivity to MMC treatment [45]. 

SLX4/FANCP in turn serves as a scaffold, modulator and cofactor for the 

remaining nucleases XPF-ERCC1, MUS81-EME1 and SLX1, thus providing a 

“tool belt” for ICL unhooking [40]  [42]. SLX4/FANCP in complex with SLX1 

functions as an endonuclease cleaving 5’-flaps and 3’-flaps at replication fork 

structures [42]. Depletion of SLX4/FANCP leads to hypersensitivity to MMC and 

cisplatin, but not UV or IR [42]. 

ICL unhooking results in a one-ended DSB, which is further repaired by HRR [40] 

[42] [49]. In a nutshell HRR uses the sister chromatid as a template to elongate 

the broken DNA strand. Using a template for repair makes HRR particularly 

faithful [42]. In more detail, for HRR to occur first the DSB needs to be resected by 

the MRN complex, creating 3’ overhangs coated with RPA [40] [42] [49] [50]. Then 

RAD51 is loaded onto 3’-overhangs, replacing RPA [42]. RAD51 is the key player 

in HRR, thus the ability to form RAD51 foci can be used as a biomarker for HRR 

integrity [51] [52] [53] [36] [6]. RAD51 loading is directly or indirectly promoted by 

many proteins including several FA-proteins, most importantly BRCA2/FANCD1 

and its partner PALB2/FANCN, which directly interacts with RAD51 protein to 

facilitate RAD51 loading. Other promoting proteins are FANCJ, RAD51C/FANCO, 

as well as BRCA1 [42]. RAD51 is responsible for homology search on the sister 

chromatid. Where homology is found the RAD51 coated DNA strand invades the 

sister chromatid. DNA polymerases use the sister chromatid as a template to 

elongate the invading DNA strand. This creates a D-loop and a Holliday junction 

(HJ) where DNA strands cross over [54] [55]. Finally the Holliday junctions are 

resolved to restore an intact replication fork [56]. How resolution occurs in detail 

remains elusive. However, it is known that FAN1 is implicated in late stage HRR 

and may be involved in the resolution of HRR intermediates [57] [58] [59] [60]. 

Interestingly FAN1’s binding partner FANCD2, as well as FANCI, showed high 

binding affinity to Holliday junctions [57]. Furthermore, FAN1-depleted cells 

sustain RAD51 foci, further supporting a role of FAN1 in late stage HRR [59] [57]. 

Besides FAN1 several other candidates have also been identified to play a role in 

the process, including BLM, MUS81-EME1, ID-complex, SLX4/FANCP-SLX1 

complex, GEN1, and RAD51C/FANCO [56] [40] [42].  
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The last step of repair includes the USP1-UAF1 DUB complex deubiquitinating 

FANCD2, which results in deactivation of the FA pathway and completion of DNA 

repair [40] [42]. 
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Figure 6: Repair of ICL by FA pathway and HRR. a. Unrepaired interstrand crosslink 
(ICL). b. During S-phase the replication fork collides and stalls at ICL. c. The FANCM-
FAAP24-MHF1/2 complex detects the lesion, recruits the FA core complex and initiates 
ATR-CHK1-dependent checkpoint response. ATR/CHK1 activates several FA proteins by 
phosphorylation. d. Activated FA core complex ubiquitinates the ID-complex and, 
promoted by BRCA1, recruits it to the lesion. e. Ubiquitinated FANCD2 recruits the 
nucleases involved in ICL incision f. Nucleases cut on either side of the ICL, thus 
“unhooking” it. g. TLS bypasses the unhooked ICL and NER finally removes it. h. MRN 
complex resects the one-ended DSB to create 3’-overhangs. i. RPA covers 3’ overhangs 
to protect them from degradation. RAD51 replaces RPA. RAD51 loading onto ssDNA is 
directly promoted by BRCA2 and PALB2, and indirectly by many other proteins. j. RAD51 
filaments are responsible for homology search on the sister chromatid. k. Where 
homology is found RAD51 mediates strand invasion, which leads to D-loop formation and 
a Holliday junction (HJ). The broken end is elongated by polymerases using the sister 
chromatid as a template. l. Several players are involved in HJ resolution m. An intact 
replication fork is recovered. USP1/UAF1 shuts down the repair response by de-
ubiquitinating the ID-complex [42] [40] [45] [49] [46].  
 

 

1.3.3. Targeting defects in DNA repair  

1.3.3.1. Concept of targeted therapies  

In general targeted therapies exploit characteristics which are specific to the tumor 

but absent in normal cells. With this approach the therapy is harmful to the cancer 

cell, while normal tissue is not affected. The NCI (National Cancer Institute) 

Dictionary of Cancer Terms defines targeted therapies as follows: “A type of 

treatment that uses drugs or other substances, such as monoclonal antibodies, to 

identify and attack specific cancer cells. Targeted therapy may have fewer side 

effects than other types of cancer treatments.”  

In contrast to this new treatment approach, conventional chemotherapy affects all 

rapidly dividing cells, thus leading to toxic side affects commonly seen in standard 

anticancer therapies. 

 

1.3.3.2. Targeted therapy with PARP inhibitors 

While there are many different approaches for targeted therapies, we were most 

interested in exploiting defects in the DNA repair machinery. PARP inhibitors are a 

promising group of new drugs, which target such repair defects. 
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1.3.3.2.1. PARP1 function 

PARP1 is a poly(ADP-ribose) polymerase and one of 17 members of the PARP 

protein family [61] [3]. PARP1 plays an important role in the repair of DNA single-

strand breaks (SSB) [3]. It is responsible for the detection of such lesions and the 

initiation of the SSB repair (SSBR) pathway [3]. When PARP1 detects a break in 

the DNA, it binds to it through its zinc finger domain [3]. PARP1 then catalyses the 

polymerization of ADP-ribose moieties, or PARsylation, onto target proteins. NAD+ 

is used as a substrate and nicotinamide is released in the process [3]. 

PARsylation of a protein changes its conformation, stability and activity. At SSB 

PARP1 catalyzes PARsylation mostly onto itself (automodification), but also onto 

histones (heteromodification) [3] [61]. “PAR-chains” attached to PARP1 serve like 

a beacon to direct and recruit DNA repair enzymes to the site of damage [61]. 

Furthermore, PARsylated histones are released from the DNA, the chromatin is 

relaxed and access of DNA repair proteins to the site of damage is facilitated [61]. 

Thus this shows that if PARP1 is inhibited, SSBR is compromised [3]. 

 

1.3.3.2.2. PARP inhibitors  

Nicotinamide, which is a side product of PARsylation, is a weak PARP1 inhibitor 

[3]. In order to develop potent PARP inhibitors, nicotinamide analogues were 

synthesized and further refined [3]. Currently the third generation of PARP 

inhibitors are being tested in the clinic [3]. Olaparib (AZD2281), which we used in 

this study, belongs to this promising group of new drugs [3]. 

 

In 2005 PARP inhibitors caused great excitement, when it was shown that they 

could selectively inhibit growth of cells with defective BRCA1 or BRCA2 [3]. The 

selectivity of PARP inhibitors can be explained with the concept of “synthetic 

lethality” (Figure 7) [62] [3]. This phenomenon was first described in fruit flies 

(Drosophila melanogaster) by the geneticist Calvin Bridges in 1922 [62]. The term 

“synthetic lethality” was later coined by his colleague Theodore Dobzhansky [63]. 

Synthetic lethality occurs when cells with mutations in gene A or gene B are 

viable, but those with mutations in both genes A and B are not [3] [61] [64] [62] 

[63]. While mutant BRCA cells are viable, defective BRCA and loss of PARP 
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function leads to cell death. Yet instead of an additional endogenous mutation, 

loss of viability is achieved by inhibiting PARP pharmacologically [3]. 

 

 
Figure 7: Concept of Synthetic Lethality. Two genes are synthetic lethal to each other, 
if a defect in either leaves the cell viable, but a defect in both leads to cell death [3] [61] 
[64] [62] [63]. 
 

 

Mechanistically synthetic lethality between BRCA and PARP can be explained as 

follows (Figure 8): 

It is known that PARP inhibitors impair SSB repair, however the precise 

consequence of PARP inhibition is a matter of debate. The original model argues 

that PARP inhibitors cause spontaneously occurring SSB to persist. Another 

model suggests PARP inhibitors trap PARP at SSB, thus hindering repair [65] 

[66]. Either way during DNA replication the replication fork runs into an unrepaired 

SSB, collapses, and the result is a toxic one-ended DSB. Normal cells can deploy 

HRR to repair the DSB and restore DNA integrity [3] [65]. BRCA1 and BRCA2 

play important roles in HRR. Cells defective in one of the BRCA genes are 

deficient in HRR, thus they are impaired in their ability to repair DSB resulting from 

PARP inhibition. The persisting DSB lead to cell death [3]. Therefore defects in 

HRR are associated with hypersensitivity to PARP inhibitors [67] [68] [52]. 
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Figure 8: Synthetic lethality between PARP inhibitors and HRR defects. PARP 
inhibitors impair SSB repair. Unrepaired SSB become DSB during DNA replication. Those 
DSB can be repaired by HRR in a wild-type cell, but remain unrepaired in cells defective 
in HRR. Unrepaired DSB are lethal. 
 

 

Several clinical studies are ongoing to prove this model in patients. Exciting 

results confirm a benefit for patients with BRCA1/2 mutated cancers from 

treatment with PARP inhibitors (reviewed in [3]). PARP inhibitors were further 

shown to be effective in BRCA1/2 mutated breast, ovarian and prostate cancer 

patients, leading to significant and durable antitumor responses [3]. A phase II trial 

yielded promising results for the treatment of breast or ovarian cancer patients 

with germline BRCA mutations [3]. PARP inhibitors are selectively lethal to the 

BRCA-mutated cancer cell. It is therefore not surprising, that many of the typical 

toxic side effects associated with standard chemotherapy are absent with PARP 

inhibitor treatment [3]. 
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The efficacy and low toxicity of PARP inhibitors encourages efforts to identify 

more patient groups who may benefit from this treatment, beyond those with 

BRCA-deficient cancers. PARP inhibitors may be synthetic lethal with defects in 

other proteins involved in HRR, as well as FA proteins [3] [65]. In this study we will 

suggest a new patient group, which may benefit from treatment with PARP 

inhibitors: EGFR-mutant lung cancer patients. 

 



!!!

!!!

2. MATERIALS AND 
METHODS 
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2.1. Materials 

2.1.1. Drugs, chemicals, antibodies 
Table 2.1: Drugs 

Drug Company 
Cisplatin (cp) Sigma-Aldrich 
Mitomycin C (MMC) Sigma-Aldrich 
Hydroxyurea (HU) Sigma-Aldrich 
LY 294002 LC laboratories 
Olaparib (AZ-2281) LC laboratories 
KU-55933 Chemdea 
Erlotinib LC laboratories 
Gefitinib LC laboratories 
puromycin Sigma-Aldrich 
NU7026 Sigma-Aldrich 
Ampicillin Stratagene 

 

Table 2.2: Antibodies 

Antibody Company/Brand Assay 
Primary Antibodies:   
Rad51  
 

Ms mAb [14B4]  
(GTX70230) 

GeneTex 
 

Immunofluorescent 
staining, 
Western Blot 

!H2AX  Phospho S139, Ms 
mAb [3F2] (ab22551) 

Abcam Immunofluorescent 
staining 

pATM  
 

Phospho S1981, Ms 
mAb 

Rockland Immunofluorescent 
staining 

RPA 
 

p34 Ab-1 (9H8), Ms 
mAb (MS-691-B0) 

Neo Markers  Immunofluorescent 
staining 

BRCA1 Anti-BRCA1 Mouse 
mAb Ab-1 (OP92) 

Calbiochem Immunofluorescent 
staining 

FANCD2 
 

Rb pAb (NB 100-182) Novus Biologicals Immunofluorescent 
staining 

PCNA Rb pAb (ab2426) Abcam Immunofluorescent 
staining 

EGFR  Ms mAb [1F4], 
specific for human 
EGFR (#2239) 

Cell Signaling  Western Blot 

EGFR  Rb pAb (sc-03) Santa cruz  Western Blot 
pEGFR  pY992, Rb pAb (44-

786G) 
Biosource Western Blot 

Akt  Rb Ab Cell signaling Western Blot 
pAKT  (S473) rabbit mAb Cell signaling Western Blot 
ERK 
  

p44/42 MAPK Erk1/2 
Rabbit Ab 

Cell signaling Western Blot 
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pERK P-p44/42 MAPK 
Erk1/2 
Rb Ab 

Cell signaling Western Blot 

FAN1 Rb pAb (ab95171) Abcam Western Blot 
Caspase 
3 

Anti-Caspase-3 
Rabbit pAb (235412) 

Calbiochem Western Blot 

!-actin Ms mAb Sigma-Aldrich  Western Blot 
Secondary Antibodies:   
Goat anti-rabbit Alexa 488 Invitrogen Immunofluorescent 

staining 
Goat anti-mouse Alexa 488 (A-
11029) 

Invitrogen Immunofluorescent 
staining 

Chicken anti-rabbit Alexa 488 Invitrogen Immunofluorescent 
staining 

Goat anti-rabbit Alexa 555 
(A21429) 

Invitrogen Immunofluorescent 
staining 

Goat anti-mouse Alexa 568 
(A11004) 

Invitrogen Immunofluorescent 
staining 

Goat anti-rabbit HRP (sc-2030) Santa cruz  Western Blot 
Goat anti-mouse HRP (sc-2031) Santa cruz  Western Blot 

 

Table 2.3: Kits 

Kit Company Assay 
MycoAlert® Mycoplasma Detection 
Kit 

Lonza Mycoplasma 
detection 

CometAssay® (#4250-050-K) Trevigen  Comet Assay 
PureLink™ Quick Plasmid Miniprep 
Kit (#K2100-10) 

Invitrogen Plasmid purification 

 

Table 2.4: Biochemicals, chemicals, cell culture material and other material 

(Bio)Chemicals, cell culture material 
and others  

Company Assay/Usage 

TripLETM Express (12604-013) Invitrogen  Cell culture 
DMSO (Dimethyl Sulfoxide) Sigma-Aldrich Cell culture, 

drug solvent 
SYTO® 60 Life 

technologiesTM 
Cell survival 

Formaldehyde Sigma-Aldrich  
4% Paraformaldehyde Boston 

BioProducts 
Foci 

PBS, 10X (Phosphate Buffered Saline), 
PH 7.4 
NaCl (800g), KCl (20g), Na2HPO4 (144g), 
KH2PO4 (24g) dissolved in 10l dH2O 

Fisher Scientific 
(NaCl) 
Sigma-Aldrich 
(all others) 

 

Ethanol, 200 proof (absolute), #E7023 Sigma-Aldrich  
Methanol Fisher Scientific  
Isopropanol (for molecular biology, !99%) Sigma-Aldrich  
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#I9516 
Vectashield mounting medium (H-1000) Vector 

laboratories 
Foci 

Nailpolish – clear #271 New York Color Foci 
TritonX Sigma-Aldrich Foci 
Dulbecco's modified Eagle's medium 
(DMEM)  

Sigma-Aldrich Cell culture 

RPMI-1640 Sigma-Aldrich Cell culture 
DMEM/F12 Sigma-Aldrich Cell culture 
!-MEM (#M8042) Sigma-Aldrich Cell culture 
FBS (fetal bovine serum) Gibco, Life 

Technologies 
 

BGS (bovine growth serum) HyClone Cell culture 
BSA (bovine serum albumin) Sigma-Aldrich  
DAPI (4',6-diamidino-2-phenylindole) Sigma-Aldrich Foci 
Propidium iodide Sigma-Aldrich Flow 

Cytometry 
RNase A (20mg/ml) Invitrogen Flow 

cytometry 
Igepal Sigma-Aldrich Flow 

Cytometry 
Lysis Buffer BioSource Western Blot  
PMSF Sigma-Aldrich  Western Blot  
Protease inhibitor Sigma-Aldrich Western Blot 
Bio-Rad Protein Assay dye reagent 
concentrate 

Bio-Rad Western Blot 

UltraPure 10% SDS GIBCO Western Blot 
Blotting-Grad Blocker, Nonfat dry milk 
(#170-6404) 

Bio-Rad Western Blot 

Novex® ECL HRP Chemiluminescent 
Substrate Reagent Kit 

invitrogen Western Blot 

Orange-G DNA loading dye (6X) (BM-
102G) 

Boston 
Bioproducts 

Plasmid 
identification 

Ethidium Bromide (E1510) Sigma  Plasmid 
identification 

Restriction Enzymes: 
Sal1 (20U/ul) (#R0138S) – red buffer 3 
Apa1 (50U/ul) (#R0114S) – green buffer 4 

New England 
Biolabs 

Plasmid 
identification 

Buffers for restriction enzymes: 
NEBuffer 3 (#B7003S) 
NEBuffer 4 (#B7004S) 

New England 
Biolabs 

Plasmid 
identification 

BSA for restriction digest: 
BSA, #B9001S 

New England 
Biolabs 

Plasmid 
identification 

High DNA Mass™ Ladder (#10496-016) Invitrogen Plasmid 
identification 

Standard Low -mr Agarose (#162-0102) Bio-Rad Plasmid 
identification 

TAE-Buffer 50X (Tris-acetate-EDTA 
Buffer) 

Boston 
BioProducts  

Plasmid 
identification 
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Metafectene®Pro Biontex Plasmid 
transfection 

Luria Broth (LB) Sigma-Aldrich Plasmid 
amplification 

Bacteriological Agar Sigma-Aldrich Plasmid 
amplification 

 

2.1.2. Equipment 
Table 2.5: Disposable Equipment 

Disposable equipment Company Assay 
Flasks: T25/75/175 cell 
culture flask 
(#353109/#353136/#353118) 

BD Biosciences  Cell culture, Cell 
survival (colony 
formation) 

CryoTubeTM vials 1.8ml Thermo Scientific Cell culture (freezing 
cells) 

Dishes: 60mm (#430166) Corning   
Dishes: 100mm Fisherbrand  
Plates: 12-well, 24-well 
(#3513/#3524) 

Costar  Cell survival (Syto60) 

Chamber slides: 4-well, 8-
well 

BD falcon Foci 

Premium Cover Glass (#12-
548-5E) 

Fisher Scientific Foci 

Microcentrifuge Tubes 1.5ml 
(#02-682-556) 

Fisher Scientific  

Tubes: 15ml, 50ml BD falcon  
Glass pipettes: 1ml, 2ml BD falcon  
Glass pipettes: 5ml, 10ml Fisher Scientific  
Glass pipettes: 25ml, 50ml Costar corning  
Pipettips: 10µl, 1000µl Corning  
Pipettips: 200µl Fisher Scientific  
Round bottom tube with cell 
strainer, 5ml 

BD falcon Flow Cytometry 

Parafilm “M”, PM-999 Pechiney Plastic 
Packaging 

 

Gloves: Purple Nitrile, 
#55081 

Kimberly clark  

Disposable Cell Scraper 
#08-100-241 

Fisher Scientific Western Blot (Lysates) 

Disposable plastic cuvette 
#14-955-127 

Fisher Scientific Western Blot  

Invitrolon PVDF Filter paper 
sandwich 0.45um pore size 

invitrogen Western Blot 

Amersham Hyperfilm ECL  GE Healthcare Western Blot 
Tissue-Tek® OCT™ 
Compound #4583 

Sakura Tissue freezing 
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Cryomold Fisher Tissue freezing 
S.O.C. Medium  Invitrogen Plasmid amplification 
Polypropylene Round-
Bottom Tubes, 14ml 
#352059 

Becton Dickinson Plasmid amplification 

Polystyrene Petri Dish 
100mm x 15mm 

Fisherbrand (Fisher 
Scientific) 

Plasmid amplification 

Disposable Inoculating 
Loops/Needles #22-363-609 

Fisher Scientific Plasmid amplification 

 

Table 2.6: Technical Equipment 

Technical equipment Company Assay 
CL2 Centrifuge Thermo Scientific  
Hemocytometer Reichert Cell culture 
Pipetman Gilson  
Microscope eclipse TS100 Nikon  
Odyssey Li Cor Infrared 
Fluorescence Detection 
Imager 

Li-Cor Biosciences Cell survival (Syto60) 

Odyssey v1.2 imaging 
software 

Li-Cor Biosciences Cell survival (Syto60) 

Shaker Thomas Scientific  
BD LSR II Flow Cytometer BD Bioscience Flow Cytometry 
FACSDiva 6.1.2 BD Bioscience Flow Cytometry 
FlowJo Software Tree Star Flow Cytometry 
Gene Quant Pro Amersham 

Biosciences 
 

Select Heatblock VWR Western Blot 
Xcell SureLock™ Mini-Cell Invitrogen Western Blot 

(electrophoresis) 
Mini-PROTEAN® 3 Cell Bio-Rad Western Blot (transfer) 
Micropulser  Bio-Rad Plasmid amplification 
Electroporation Cuvette, 
1mm Gap  

Fisher Biotech Plasmid amplification 

ElectroMAX DH10B™ Cells 
#18290-015 

Invitrogen Plasmid amplification 

37oC Bacterial Shaker Lab-Line Plasmid amplification 
Sorvall RC 5C Plus 
Centrifuge 

Thermo Scientific Plasmid amplification 

Sorvall SLA-1500 Rotor Thermo Scientific Plasmid amplification 
GeneFlash Syngene Bio 
Imaging 

Syngene DNA gel imaging 

Microfuge 18 Centrifuge Beckman Coulter  
Microfuge R Centrifuge Beckman Coulter  
GeneQuant Amersham 

Biosciences 
DNA/Protein 
concentration 

Quartz and Glass Micro 
Cells for 

Fisherbrand DNA concentration 
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Spectrophotometers, 
500µL #14-385-928A 
Olympus BX51 
fluorescence microscope 

Olympus  

OWL A4 electrophoresis 
tank + OSP-105 (powper 
supply) 

Thermo Scientific Comet Assay 

 

2.1.3. Company Addresses 
Table 2.7: Company addresses 

Company Address 
Abcam Cambridge, MA, USA 
Ambion (Life technologies) Carlsbad, CA, USA 
Amersham Biosciences (GE Healthcare) Pittsburgh, PA, USA 
Beckman Coulter Danvers, MA, USA 
Becton Dickinson (BD) - Biosciences San Jose, CA, USA 
Bethyl Laboratories Montgomery, TX, USA 
Bio-Rad Laboratories Hercules, CA, USA 
Biontex-USA San Diego, CA, USA 
Biosource (invitrogen, Life Technologies) Medford, MA, USA 
Boston Bioproducts Ashland, MA, USA 
Calbiochem (EMD Millipore) Billerica, MA, USA 
Cell Signaling Danvers, MA, USA 
Chemdea Ridgewood, NJ, USA 
Corning Tewksbury, MA, USA 
Costar (Corning) Tewksbury, MA, USA 
Falcon (Corning) Tewksbury, MA, USA 
Fisher biotech (Thermo Fisher Scientific) Cambridge, MA, USA 
Fisher Scientific (Thermo Fisher Scientific) Fair Lawn, NJ, USA 
Fisherbrand (Thermo Fisher Scientific) Cambridge, MA, USA 
GE Healthcare Boston, MA, USA 
GeneTex Irvine, CA, USA 
Gibco (invitrogen, Life technologies) Carlsbad, CA, USA 
Gilson Middleton, WI, USA 
Hyclone (Thermo Fisher Scientific) Cambridge, MA, USA 
Invitrogen (Life technologies) Carlsbad, CA, USA 
Kimberly Clark Franklin, MA, USA 
Lab-Line Melrose Park, IL, USA 
LC laboratories Woburn, MA, USA 
Li-Cor Biosciences Lincoln, NE, USA 
Life technologies Carlsbad, CA, USA 
Lonza Walkersville, MD, USA 
Neo Markers (Thermo Fisher Scientific) Fremont, CA, USA 
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New England Biolabs Ipswich, MA, USA 
New York Color Boston, MA, USA 
Nikon Melville, NY, USA 
Novus Biologicals Littleton, CO, USA 
Olympus Center Valley, PA, USA 
Pechiney Plastic Packaging Chicago, IL, USA 
Reichert Depew, NY, USA 
Roche Indianapolis, IN, USA 
Rockland Immunochemicals Gilbertsville, PA, USA 
Sakura Torrance, CA, USA 
Santa Cruz Dallas, TX, USA 
Sigma-Aldrich St. Louis, MO, USA 
Stratagene La Jolla, CA, USA 
Syngene Frederick, MD, USA 
Thermo Scientific (Thermo Fisher 
Scientific) West Palm Beach, FL, USA 

Thomas Scientific Swedesboro, NJ, USA 
Tree Star Ashland, OR, USA 
Trevigen Gaithersburg, MD, USA 
Vector laboratories Burlingname, CA, USA 
VWR Radnor, PA, USA 

 
 

2.2. Methods 

2.2.1. Cell lines 
Cell lines were selected from a previously published panel located in the Center 

for Molecular Therapeutics (CMT) at Massachusetts General Hospital, except for 

A549, H1650, and HCC4006, which were purchased directly from ATCC. Mouse 

embryonic fibroblasts (MEF) were kindly provided by Matt Meyerson. SV40-

transformed fibroblasts derived from patients with FA group D2 (PD20-D2) and 

their retrovirally complemented counterparts expressing wild-type protein 

(PD20+D2) were obtained from the OHSU Fanconi anemia cell repository [69]. 

The identity of each of the cell lines in the panel was tested as described 

previously [70].  

All media was supplemented with 10% Bovine Growth Serum (HyClone), 20 mM 

HEPES, 2 mM L-glutamine (Sigma–Aldrich), and 1% Penicillin-Streptomycin 

(Sigma-Aldrich).  
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Table 2.8: Cell lines 

Name Description Media 
1. Human NSCLC cell lines 
1.1 EGFR wild-type: 
A549  DMEM 
NCI-H1703  RPMI1640 
NCI-H1792  RPMI1640 
ABC1  DMEM/F12 
H1299  RPMI 
H2126  DMEM/F12 
H23  RPMI 
1.1 EGFR-mutant: 
PC3 EGFR mutation: del E746_A750 DMEM/F12 
PC9 EGFR mutation: del E746_A750 RPMI1640 
PC9sc Subclone of PC9 RPMI1640 
IR7 EGFR mutation: del E746_A750 (single 

gefitinib-resistant clone) 
RPMI + 2µM 
gefitinib 

GR7 EGFR mutation: del E746_A750 (single 
gefitinib-resistant clone) 

RPMI + 2µM 
gefitinib 

gt-PC9 #4 EGFR mutation: del E746_A750 (single 
gefitinib-resistant clone) 

RPMI + 2µM 
gefitinib 

gtpPC9, 
gtPC9-p 

EGFR mutation: del E746_A750 (pooled 
gefitinib-resistant population) 

RPMI + 2µM 
gefitinib 

etPC9 EGFR mutation: del E746_A750 (single 
erlotinib-resistant clone) 

RPMI + 2.5 µM 
erlotinib 

etmPC9 EGFR mutation: del E746_A750 (pooled 
erlotinib-resistant population) 

RPMI + 2.5 µM 
erlotinib 

PC14 EGFR mutation: exon 19, del E746_A750 RPMI1640 
HCC827 EGFR mutation: exon 19, del E746_A750 RPMI1640 
HCC GR6 EGFR mutation: exon 19, del E746_A750 RPMI + gefitinib 
NCI-H3255 EGFR mutation: L858R RPMI1640 
KHM-3S EGFR mutation: exon 19, del E746_A750 RPMI1640 
H1650 EGFR mutation: exon 19, del E746_A750 RPMI1640 
H4006 EGFR mutation: exon 19, del E746_A750 RPMI1640 
2. Mouse embryonic fibroblasts (MEF): 
NIH-3T3 wt transfected with pBabe puro expression 

vector containing human EGFRwt 
DMEM 

NIH-3T3 
L/R 

transfected with pBabe puro expression 
vector containing human EGFRmut (L858R) 

DMEM 

NIH-3T3 
del 

transfected with pBabe puro expression 
vector containing human EGFRmut (del 
E746_A750) 

DMEM 

3. Human Fibroblasts: 
PD20-D2 Fibroblasts, FANCD2 null !-MEM  
PD20+D2 Fibroblasts complemented with wild-type 

FANCD2 
!-MEM + 1µg/ml 
puromycin 
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2.2.2. Cell culture 
Cells were cultured as adherent monolayers at 37° C and 5% CO2 in a humidified 

incubator. Cells were grown in tissue culture flasks up to 80-90% confluency. To 

split cells, media was removed and remainders washed off with PBS. Cells were 

detached by using TripLETM Express and replated at a minimum of 8x10^5 

cells/75cm2. Cells were kept in culture for up to 20 passages. 

All cell lines were tested for mycoplasma and found negative. Tests were 

performed with the MycoAlert® Mycoplasma Detection Kit. 

 

Materials Company 
TripLETM Express (12604-013) Invitrogen  
MycoAlert® Mycoplasma Detection Kit Lonza  

 

2.2.3. Freezing, thawing, storage 
Cell lines were frozen at the lowest passage number possible. Cells were 

detached using TripLE and pelleted at 1,500 rpm for 5min. The cell pellet was 

resuspended in freezing media (10% DMSO in respective cell line media) at 106 

cells/ml and aliquots of 1ml were distributed in cryogenic vials. Vials were kept on 

ice for 20min, before freezing at -20°C for 24h and subsequent transfer to -80°C 

for short term storage. For long term storage, vials were kept in liquid nitrogen 

tanks. 

To thaw cells, vials were defrosted in a water bath at 37°C. Cell suspension was 

diluted in 10ml of warm media and cells were pelleted at 1,500 rpm for 5min. Cells 

were resuspended in 5ml media and transferred to a T25 flask. 24 hours later 

media was exchanged. Cells were passaged at least once before conducting 

experiments with them. 

 
Materials Company 
CryoTubeTM vials 1.8ml Thermo Scientific  

 

2.2.4. Creating EGFR TKI resistant cell lines 
We kindly received EGFR TKI resistant cell pairs from Dr. Settleman and Dr. 

Engelman [71] [34]. Additionally we created our own TKI-sensitive/-resistant cell 



2. MATERIALS AND METHODS  39 

 
 

pairs according to Sharma et al [71]. Briefly 105 cells were plated in 10 cm plates 

and allowed to adhere for 24 hours. Cells were then treated with 2 µM gefitinib or 

2.5 µM erlotinib. Fresh media-containing drug was replaced every 3 days until 

clones of drug-resistant cells appeared. Approximately fifty clones per dish 

appeared after 30 days of drug selection. Isolated clones were individually 

expanded in drug-containing media. Alternatively drug resistant populations were 

pooled for further propagation. 

 

2.2.5. Long-term cell survival: Colony formation assay 
Cells were seeded in T25 flasks and left to adhere over night for a maximum of 18 

hours before treatment. For survival after IR, cells were irradiated using a 

Siemens Stabilipan 2 X-ray generator operated at 250 kVp and 12 mA, at a dose 

rate of 1.98 Gy/min. For survival after drug, media was exchanged with media 

containing the drug. Cells were incubated for 1 hour. For olaparib incubation was 

increased to 72 hours. After incubation, drug-containing media was aspirated, 

cells were washed once with PBS and fresh media was added. Cells were left in 

the incubator to form colonies for 2-3 weeks. Colonies were fixed with methanol 

and stained with methylene blue. All colonies consisting of at least 50 cells were 

counted.  

 

Plating efficiency (PE) was determined as: PE = #colonies/#cells seeded 

Survival fraction (SF) was calculated as: SF = PE treated cells/PE untreated cells 

 

Methylene Blue solution: 

Methylene blue (Sigma)   2g 

Ethanol (190 proof, Fisher Scientific) 600ml 

Methylene blue was dissolved in ethanol by stirring with a magnet for 24 hours. 

Solution was stored in the dark for 1 month before use.  
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2.2.6. Short-term cell survival: Syto60 staining 
Cells were seeded in 12- or 24-well dishes and allowed to adhere over night. 3 

wells were filled with media only to assess background fluorescence. Cells were 

treated in triplicates for 72 hours. Media was removed, cells were washed once 

with PBS and fixed with 3.7% formaldehyde for 15 min. Formaldehyde was 

discarded and remainders washed off three times with PBS. Cells were stained 

with Syto60 diluted 1:8000 in PBS for 15min. Syto60 is a cell-permeant red 

fluorescent stain, which binds to nucleic acids. Staining solution was removed and 

cells were washed 3x with PBS. Plates were scanned with the Odyssey Li Cor 

Infrared Fluorescence Detection Imager. The integrated intensity per well was 

calculated using the corresponding software. Intensity readings were averaged for 

each triplicate treatment and the background intensity was subtracted. Survival 

was calculated as survival fraction (SF). 

  

SF [%] = average intensity (treatment) / average intensity (untreated) 

  

2.2.7. Foci formation assay  

2.2.7.1. Immunofluorescent staining in cell lines 

Cells were seeded in 4- or 8-well chamber slides and left to adhere over night. 

Cells were then irradiated or treated with drug. At specific time points after 

treatment cells were fixed. For fixation media was removed. Cells were washed 

once with PBS and fixed with 4% Paraformaldehyde for 10min. Three washes 

with PBS followed, before cells were subjected to permeabilization buffer or to 

0.25% TritonX/PBS (for Rad51 foci) for 10min. Three washes with PBS stopped 

permeabilization, and blocking buffer was applied for at least 1h or over night. 

Alternatively, for 53BPI foci staining the blocking solution consisted of 5% goat 

serum, 0.2% milk, 0.1% TritonX in PBS. For Rad51 foci staining, 5% FBS in PBS 

was used for blocking. Cells were rinsed once with PBS and incubated with the 

primary antibody dilutions according to the table below. After incubation with the 

primary, residues of the antibody are washed off with PBS for 3x 5min. Incubation 

with the secondary followed. After incubating for 1h, the antibody was washed off 
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in the same fashion. Then cell nuclei were stained with DAPI-solution (1:1000 in 

dH2O) for 2min. DAPI-solution was washed off with PBS twice. Chamber walls 

were detached from slide and excess liquid was aspirated. Vectashield mounting 

medium was dropped on each well and cover slips were placed onto each slide. 

Excess mounting medium was removed using a filter paper. Slides were sealed 

using translucent nail polish. Foci were visualized using an Olympus BX51 

fluorescence microscope. Foci per nuclei were counted for at least 100 cells for 

each condition. Slides were stored in the dark at 4°C for up to 2 weeks. 

 
Permeabilization 
Buffer 
0.5% Triton-X  
20mM HEPES, pH 7.9 
50mM NaCl 
3mM KCl 
300mM Sucrose 
1X PBS 

 
Antibodies Dilution Diluent Incubation 
1st Ab: Rad51 
2nd Ab: goat anti-mouse 

1:500 
1:200 

5% 
FBS/PBS 

1st Ab: Over night, 4°C, shaker 
2nd Ab: 1h, RT, shaker 

1st Ab: gH2AX  
2nd Ab: goat anti-mouse 

1:200 
1:1000 

2% 
BSA/PBS 

1st Ab: 2h, RT, shaker 
2nd Ab: 1h, RT, shaker 

1st Ab: 53BP1 
2nd Ab: goat anti-rabbit 

1:200 
1:1000 

3% 
GS/0.1% 
TritonX/PBS 

1st Ab: 1h, RT, shaker 
2nd Ab: 1h, RT, shaker 

1st Ab: pATM 
2nd Ab: goat anti-mouse 

1:200 
1:1000 

2% 
BSA/PBS 

1st Ab: 1h, RT, shaker 
2nd Ab: 1h, RT, shaker 

1st Ab: RPA 
2nd Ab: goat anti-mouse 

1:200 
1:1000 

2% 
BSA/PBS 

1st Ab: 3h, 37°C, humidified 
chamber 
2nd Ab: 1h, RT, shaker 

1st Ab: pRPA 32  
2nd Ab: Chicken anti-rabbit 

1:400 2% 
BSA/PBS 

1st Ab: 4h, RT, shaker 
2nd Ab: 1h, RT, shaker 

1st Ab: FANCD2 
2nd Ab: Chicken anti-rabbit 

1:500 
1:1000 

2% 
BSA/PBS 

1st Ab: 3h, 37°C, humidified 
chamber 
2nd Ab: 1h, RT, shaker 

 

2.2.7.2. Immunofluorescent staining in tissue 

Fresh tumor tissue was collected on protocols approved by Institutional Review 

Boards. The tumor biopsy was immediately placed into a 50ml Falcon tube 

containing 10ml of RPMI (same as for cell culture minus L-glutamine and Pen-

Strep). Tumor tissue was cut into three equal pieces, submerged in RPMI and 

Blocking Buffer 
0.5% NP40 
10% BGS 
0.3% NaN3 (sodium 
azide) 
1X PBS 
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incubated at 37°C and 5% CO2. The samples were treated with 10Gy, 10µM 

olaparib for 24 hours or left untreated. 24 hours after starting treatment, tumor 

pieces were each transferred into a 15ml falcon tube and washed once with PBS. 

A container was filled with liquid nitrogen and the bottom of a 100mm Petri dish 

was positioned to float in it. One drop of OCT Compound was placed in a 

Cryomold, the tumor piece put on top of it and covered with more OCT compound. 

The cryomold was set on the floating Petri dish for a few minutes until the OCT 

compound was frozen. Frozen tissue blocks were sliced, placed on slides and 

stored at -80°C.  

For staining, a slide with a tissue slice was retrieved from the freezer and thawed 

at RT for 20min. The tissue was fixed with 2% PFA for 15min, followed by 2 

washes with PBS, each 10min. Next the tissue was permeabilized with 0.5% 

TritonX for 5min at RT. Then the slide was washed 3 times with PBS for 10min 

each wash. Blocking ensued by covering the tissue with 8% BSA/PBS for 1h at 

RT in a humidified chamber. A 5min wash with PBS followed. Incubation with the 

primary antibody was done at 4°C over night. The antibody was washed off 3 

times for 5min using PBS. Incubation with the secondary antibody lasted for 1h at 

RT in a humid chamber covered from light. Again the antibody was washed off 3x 

for 5min using PBS. Nuclei were stained for 2min using a DAPI-solution (1µg/ml in 

dH2O followed by 2 quick washes in PBS. Tissue was covered with vectashield 

and coverslip. The slides were sealed with translucent nail polish and stored at 

4°C for up to 6 months. 

Additionally, control slides were stained with H&E (Hematoxylin and eosin).  

 

2.2.8. Flow Cytometry 
Cells were seeded in a T75 tissue culture flask at an appropriate density to yield 

~70% confluency at the time of harvest. Cells were treated with MMC (25ng/ml for 

24h) the day after seeding. After treatment, cells were detached by incubating 

with TripLE. To avoid cell clumping, TripLE-cell suspension was thoroughly mixed, 

using a 2ml glass pipette with a 10µl pipette tip attached to the former. The cell 

suspension was diluted with complete media and transferred to a 15ml BD Falcon 

tube. Cells were pelleted for 5 min at 1500rpm. Media was aspirated, and the cell 
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pellet was washed with 5ml PBS. Cells were pelleted, washed with PBS and 

pelleted again to be dissolved in 0.5ml PBS. 2ml of ice cold Ethanol (100%) was 

slowly added drop-wise, while vortexing on low speed. Samples were left at 4°C 

over night. The next day cells were spun down and supernatant discarded. The 

pellet was washed with 1ml 1% BSA/PBS and centrifuged. Washing and 

centrifuging was repeated. The cleaned cell pellet was resuspended in 0.2ml 1% 

BSA/PBS and pushed through cell strainer caps into round bottom Flow tubes. To 

ensure degradation of RNA, 10µl of RNase A solution (20mg/ml) was added to the 

cell suspension and incubated at 37°C for 30min. 490µl of freshly prepared 

fixative was added (4% propidium iodide/0.1% Igepal/PBS). Samples were kept 

protected from light. Cell cycle data collection was done using a 3 Laser LSRII 

running FACSDiva 6.1.2, and FlowJo Software was used for analysis. 

 

2.2.9. Western Blot 

2.2.9.1.  Isolation of proteins 

Cells were grown in 100mm dishes and, if required, treated before harvesting. 

Media was removed and cells were washed twice with ice cold PBS. 50µl of lysis 

buffer (0.5% PMSF/1% Protease inhibitor/Biosource Buffer) was distributed on 

each dish. While incubating for 30min on ice, dishes were rocked to spread the 

lysis buffer. Lysates were collected by scraping cells from the dish using a cell 

scraper and transferred into ice cold 1.5ml Eppendorf tubes. Lysates were mixed 

3x by pipetting up and down before spinning them at 14,000rpm for 10 min at 4°C. 

The supernatant was collected in fresh ice cold Eppendorf tubes. Lysates were 

stored at -20°C. 

 

2.2.9.2.  Protein quantification: The Bio-Rad protein assay 

The Bio-Rad protein assay is based on the method of Bradford [72]. In a 

disposable plastic cuvette, 2µl of the lysate was diluted with 798µl dH2O. 200µl 

Bio-Rad dye reagent concentrate was added and incubated for 5min before 

measuring the absorbance with a GeneQuant spectrophotometer at 596nm. To 

generate the standard calibration curve, the absorbance of samples with defined 

concentrations of BSA diluted in dH2O (0-5µg/ml) was measured.  
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2.2.9.3.  SDS-PAGE  

2.2.9.3.1. Sample preparation 

Samples were denatured and reduced before loading. To do so lysates containing 

40µg-100µg of protein were mixed with LDS Sample Buffer, Sample Reducing 

Agent and dH2O was added to a final volume of 25µl or 37µl depending on the 

well-size of the gel. Samples were heated at 70°C in a heatblock for 10min before 

loading. 

Materials Company 
NuPAGE® LDS Sample Buffer (4X) Invitrogen 
NuPAGE® Sample Reducing Agent (10X) Invitrogen 

 
2.2.9.3.2. Electrophoresis 

The Xcell SureLock™ Mini-Cell was assembled, the appropriate gel inserted and 

submerged in adequate running buffer. Samples were loaded into the wells. To 

monitor electrophoresis, transfer and approximate protein size, pre-stained protein 

standards were added in one well. Electrophoresis was performed at 100-200V 

until the dye molecule reached the bottom of the gel.  

Electrophoresis Buffer Company 
NuPAGE® MOPS SDS Running Buffer (20X) Invitrogen 
NuPAGE® MES SDS Running Buffer (20X) Invitrogen 
NuPAGE® Tris-Acetate SDS Running Buffer (20X) Invitrogen 

 
Gel Company 
NuPAGE® 3-8% Tris-Acetate Gel  Invitrogen 
NuPAGE® 4-12% Bis-Tris Gel  Invitrogen 
NuPAGE® 10% Bis-Tris Gel Invitrogen 

 
Protein Standard Company 
Novex® Sharp Pre-stained Protein Standard Invitrogen 
HiMark™ Pre-stained Protein Standard Invitrogen 

 
 

2.2.9.4. Transfer 

A wet transfer was performed using the Bio-Rad Protean 3 Cell System. Sponges 

and filter were soaked in transfer buffer. The membrane (PVDF) was immersed in 

methanol for 2min and subsequently incubated with transfer buffer. The gel was 

equilibrated with transfer buffer as well. A “sandwich” was assembled consisting 

of: sponge – filter paper – gel – membrane – filter paper – sponge. The sandwich 
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was tightly clamped together and inserted into the tank with the membrane facing 

the anode, the gel facing the cathode. Pre-chilled transfer buffer was added and 

an ice pack was placed next to the sandwich for additional cooling. The chamber 

was placed on ice, and the transfer was performed at 100V for about 1h. 

 
 
 
  

 
 

2.2.9.5.  Detection 

After transfer the membrane was briefly washed with TBST and blocked with 5% 

milk/TBST for 1h. Membrane was washed once with TBST and incubated with 

primary antibody solution (diluted 1:1,000 in 5% BSA/TBST) at 4°C on a shaker 

over night. The next day the membrane was washed 3x with TBST for 10min each 

before incubating with secondary antibody solution (diluted 1:10,000 in 5% 

BSA/TBST)  for 1h at RT on shaker. Membrane was washed 3x with TBST for 

10min each. Excess TBST was drained from membrane and the membrane was 

covered with a chemiluminescent enhancer mix (Novex® ECL HRP 

Chemiluminescent Substrate Reagent Kit) for 2min. The chemiluminescence 

emanating from the membrane was detected by manual exposure of X-ray films. 

 

TBST (Tris-Buffered Saline and Tween20) Solution, pH 7.6: 

Tris Base (Sigma-Aldrich)  242 g 
Sodium Chloride (Sigma-Aldrich) 800 g 
Tween20 (Sigma-Aldrich)   50 ml 
dH2O q.s. 10 l 

 

 

2.2.10. Chromatid aberrations 
Exponential growing cells were treated with 0.5µM MMC for 1 hour, collected in 

the first metaphase after treatment by adding colcemid (0.2 µg/ml) (Gibco) for 4 h 

and prepared for analysis by standard protocols. Slides were coded and 25–75 

metaphases were scored for the fraction of cells with tri- and quadriradials and 

expressed as average radials per cell. The assay was kindly performed by K. 

Transfer buffer 
NuPAGE® Transfer Buffer 
(20x) 
Methanol (10%) 
SDS (1%) 
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Borgmann (Center for Oncology, University Medical Center Hamburg-Eppendorf, 

University of Hamburg, Germany) according to previously described protocol [73] 

[74]. 

 

2.2.11. Transfections 

2.2.11.1. Plasmids 

Full-length human EGFR expression constructs encoding wild-type, L858R, or 

delL747-P753insS proteins were described previously [75]. A lentiviral expression 

vector encoding GFP-flagged FAN1 (PHAGE CMV N-EGFP-FL_FAN1) was a gift 

from Stephen Elledge [76].  Plasmid pEGFP-N1 was obtained from Invitrogen. 
 

2.2.11.2. Plasmid amplification 

2.2.11.2.1. Transformation  

Day 1 

Electroporation Cuvettes were chilled at -20°C, while thawing DH10B 

electrocompetent cells on ice. SOC media was pre-warmed at 37°C. For each 

plasmid, 10µl of electrocompetent cells were added in an Eppendorf tube and 

chilled on ice. 1µl pUC control plasmid (10pg/µl) or 1µl of plasmid of interest 

(100ng/µl) was added to 10µl cells on ice. Plasmid-DNA mix was resuspended 

and inserted into chilled cuvettes. Cuvettes were wiped off to remove 

condensation water and placed into electroporeser. Program was set to bacteria 

“Ec1” and time at “ms”. Transformation of DNA into Ecoli was performed by 

pressing “pulse” once. 1ml of pre-warmed SOC media was added into the cuvette 

to suspend bacteria. Bacterial suspension was then transferred to a 14ml bacterial 

tube. The tubes were incubated in a shaker at 37°C for 0.5-1h at 250rpm. In the 

meantime Luria Broth-Ampicillin plates (0.1mg/ml ampicillin) were placed into 

incubator at 37°C to warm up. For each plasmid, 3 plates were streaked with 

different volumes of the respective bacterial suspension (5-100µl). For the control 

plasmid just 1 plate was streaked with 5µl. Plates were placed into an incubator 

and left uncovered to dry for 10min. Plates were covered and overturned to 

incubate at 37°C over night, but not longer than 16 hours. 
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Day2 
For each plasmid, a single colony was picked from the plates, using a 10µl 

pipette. The entire tip was ejected into a 14ml BD falcon tube containing 5ml LB 

with antibiotic (0.1mg/ml ampicillin). Tubes were incubated in a bacteria shaker at 

37°C for 6-8h. 1ml of bacteria suspension was transferred to a fresh tube 

containing 5ml Ampicillin/Luria Broth (LB). Tubes were incubated in the bacteria 

shaker at 37°C over night (12-16h). 

 

Preparation of Luria Broth (LB) Solution: 

25g Luria Broth was dissolved in 1l dH2O, solution was autoclaved and stored at 

4ºC. 

 

Preparation of Luria Broth-Ampicillin plates: 

15g Bacteriological Agar was dissolved in 1l LB Solution. Mixture was microwaved 

on high and boiled for about 1min. Solution was left to cool down until warm to the 

touch, then ampicillin (100mg/l) was added and dissolved. 20ml of Ampicillin LB 

Solution was poured into polystyrene Petri dishes (100mmx15mm). Plates were 

left to cool down further, covered and stored at 4ºC. 

 

2.2.11.2.2. DNA Purification 

DNA was purified using PureLinkTM HQ Mini Plasmid Purification Kit. In a 

microcentrifuge tube, 1-3ml (1-2 x 109) of E. coli from overnight culture was 

pelleted at 1,500 x g for 15min. Pellet was resuspended in 240µl of Resuspension 

Solution containing RNase A (0.1mg/ml). 240µl of Lysis Buffer was added and 

mixed gently by inverting 4-8 times. Mix was incubated for 3-5 min at room 

temperature. 340µl of Neutralization/Binding Buffer was added and mixed gently 

by inverting 4-8 times. Mix was centrifuged at max. speed to clarify cell lysate. 

Supernatant was decanted into a PureLinkTM spin column sitting inside a 2ml 

collection tube. Supernatant was pushed through column by centrifuging at RT at 

14,000 x g for 1 min. Flowthrough was discarded and column placed back into the 

collection tube. 650µl of Wash Buffer containing ethanol was pipetted into the 

column and pushed through by centrifuging at RT at 14,000 x g for 1min. 

Flowthrough was discarded and column placed back into the collection tube. 
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Column was centrifuged again at maximum speed for 3 min to remove the 

residual wash buffer. Column was placed into a clean 1.7ml elution tube. 20-50µl 

of Elution Buffer was added to the center of the column, incubated for 1min at RT 

and centrifuged at max. speed for 1min. The collection tube containing the eluted 

plasmid was stored at -20°C.  

GeneQuant was used for assessing the concentration and 260/280 ratio of the 

eluted plasmid.  

 

2.2.11.3. Plasmid identification 

Identity of amplified plasmid was confirmed by DNA restriction digest and 

subsequent analyses of fragment sizes on an agarose gel. Restriction digest was 

mixed in 1.7ml Eppendorf tubes as follows: 

 

Restriction Reaction: 

Ingredient Volume 
10X NEBuffer (enzyme specific) 2 µl 
100X (1mgl/ml) BSA 0.2 µl 
Restriction enzyme 10U/µg DNA 
DNA 0.5 µg 
dH2O up to 20µl 
 

Restriction enzymes: 

Sal1 (20U/ul) – red buffer 3 

Apa1 (50U/ul) – green buffer 4 

 

Tubes were incubated for 1-3h at 37°C. In the meantime 500ml TAE Buffer was 

prepared by diluting 50X TAE with dH2O. The DNA gel was prepared by 

suspending 0.8g agarose in 100ml TAE and microwaving it until liquid was clear. 

5µl Ethidium bromide (10mg/ml) was mixed into liquid and poured into mold 

containing comb. Gel was let to set until solid, comb was removed, gel was placed 

in electrophoresis box and submerged in TAE buffer until completely covered. 

First well was filled with 10µl DNA ladder mixed with 2.5µl orange loading dye. 

0.25µg uncut plasmid mixed with 1µl loading dye and 4.5µl dH2O was run as a 

control in the second well. 4µl of loading dye was added to the 20µl of restriction 
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reaction and loaded into the third well. Gel was run at 80V for about 1h. DNA 

fragments in the gel were visualized using UV light and photographed in a 

GeneFlash chamber. 

 

2.2.11.4. Plasmid transfection 

A day prior to transfection, cells were seeded in 60mm dishes for western blot 

lysates or 4-well chamber slides for foci assays. Using antibiotic- and serum-free 

media, two Eppendorf tubes were prepared as follows: 

 

Tube A:  

For 60mm dish: 6 µg plasmid in 200µl media  

For 4-well chamber: 1.5µg plasmid in 50µl media  

 

Tube B: 

For 60mm dish: 18 µl Metafectene®Pro in 200µl media  

For 4-well chamber: 3µl Metafectene®Pro in 50µl media  

 

Content of tube A was added into tube B, pipetted up and down once and 

incubated for 15min at RT. Media on cells was replaced with fresh complete 

media. Transfection mix was added drop wise to cells and mixed by swirling dish 

or rocking chambers gently. Cells were incubated at 37°C and 5% CO2 and 

assayed at 48 hours after transfection. 

 

2.2.12. Gene silencing 
For siRNA transfections, exponentially growing A549 cells were mock-transfected 

or transfected with validated siEGFR or a scrambled control siRNA (Ambion). 

Transfections were carried out using the X-tremeGENE transfection kit according 

to the manufacturer’s instructions (Roche). Western blotting and subsequent 

experiments were performed 48 hours after transfection. The assay was kindly 

performed by Meng Wang. 
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2.2.13. Modified alkaline comet assay 
Cells were seeded in a 60mm dish and left to adhere over night. Cells were 

treated with 50µM cisplatin for 1h, washed once with PBS, and fresh media was 

replaced. Cells were left to repair for up to 24h. For harvesting, cells were 

irradiated with 12.5 Gy to introduce a fixed amount of DSB, immediately put on ice 

and protected from light throughout the assay. Two control samples were 

prepared in parallel: irradiated with 12.5 Gy and untreated cells. Dishes were 

rinsed once with ice cold PBS (Ca2+ and Mg2+ free), then cells were scraped off 

using a cell scraper and suspended in PBS at 1.5x105 cells/ml. Lysis Solution was 

prepared and chilled at 4°C for at least 20min before use. LMAgarose was melted 

in a beaker of boiling water for 5min and kept in a 37°C water bath for at least 

20min to cool down. Cell suspension and molten LMAgarose was combined at a 

ratio of 1:10 (v/v), and 50µl was immediately pipetted onto CometSlideTM. The 

side of the pipette was used to spread agarose/cells over the sample area. Slides 

were left at 4°C in the dark for 10min. Next, slides were immersed in prechilled 

Lysis Solution at 4°C for 30min. Excess buffer was drained from slides, and the 

slides were submerged in Alkaline Unwinding Solution for 40min at RT. Slides 

were placed in an electrophoresis slide tray at equidistance from electrodes. The 

tank was filled with Alkaline Electrophoresis Solution until slides were just fully 

covered. The tank was covered with the Slide Tray Overlay. Based on the 

distance between electrodes, the power supply was set to 22V (1V/cm) and run 

for 30min. Excess electrophoresis buffer was drained from slides, and slides were 

washed twice in dH2O for 5min each, then in 70% ethanol for 5min. Samples were 

dried for 15min. 100µl of diluted SYBR® Green I was placed on each sample and 

incubated for 5min at 4°. Excess SYBR solution was removed, and samples were 

dried completely at RT. Samples were covered with Vectashield mounting 

medium and a cover slip. Slides were sealed with translucent nail polish. Pictures 

were taken using Olympus BX51 microscope and attached camera. Tail moment 

was analysed using TriTek CometScoreTM software. 
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Lysis solution 
Provided by CometAssay® Reagent Kit from Trevigen® 
Comet LMAgarose  
Provided by CometAssay® Reagent Kit from Trevigen® 
Alkaline Unwinding Solution: 
NaOH Pellets         0.4g 
200mM EDTA      250µl (provided with the kit) 
dH2O                 49.75ml 
Alkaline Electrophoresis Solution: 
NaOH pellets                                             8g 
500mM EDTA, pH8                                  2ml 
dH2O (after NaOH is dissolved) q.s. to:   1l 
SYBR® Green I dilution 
SYBR® Green I        1µl (provided with the kit) 
TE Buffer, pH 7.5   10ml 
Storage: in the dark at 4°C for several weeks 
TE Buffer: 
10mM Tris-HCl pH 7.5 
1mM EDTA 

 
To quantify the amount of ICL remaining unhooked in the cell, we employed the 

following formula as previously described [20]: 

 

 
 

Cp.IR = Tailmoment of cisplatin treated and irradiated cells 

! = Tailmoment of untreated cells 

IR = Tailmoment of irradiated cells 

 

Cells are irradiated to introduce a fixed amount of DSB. ICL retain the DNA, 

shortening the tailmoment. Complete unhooking would therefore result in the 

same tailmoment as irradiated only controls.  The smaller the tail of cisplatin/IR 

treated cells, the less unhooking occurred and vice versa. 

 

2.2.14. Alkaline comet assay 
The assay was conducted as described for the modified version, with the only 

difference that samples were not irradiated prior to harvesting. 
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2.2.15. Gene expression analysis 
Microarray expression data were obtained from the publicly available Cancer Cell 

Line Encyclopedia (CCLE) at http://www.broadinstitute.org/ccle/home. 
 

2.2.16. Statistical Analysis 
Statistical comparisons of data points were carried out by use of the t-test, either 

paired or one-sample on normalized data, as appropriate (GraphPad Prism 4.03, 

GraphPad Software, San Diego, CA, USA). Statistical significance was defined at 

the level of p = 0.05 or less. 

 

 



!!!

!!!

3. RESULTS 
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3.1. EGFR-mutant cell lines are impaired in 

repairing DNA damage resulting in a Fanconi 

Anemia like cellular phenotype 

3.1.1. EGFR-mutant cell lines exhibit increased 

sensitivity to ICL inducing agents 

In a first step we aimed to confirm the clinical observation of increased sensitivity 

to cisplatin of EGFR-mutant NSCLC in a panel of human lung cancer cell lines in 

vitro [7] [8] [9].  

We examined clonogenic survival of various EGFR-mutant lung cancer cell lines 

compared to EGFR-wild-type ones when treated with interstrand crosslinking 

agent cisplatin (Figure 1 A+B). As the clinical observation suggested, we found 

EGFR-mutant lung cancer cell lines to be more sensitive to cisplatin, with 3/6 

EGFR-mutant cell lines (PC9, PC14, KHM-3S) exhibiting survival fractions of only 

3.9-28.3% (at 8 µM) compared to >40% for the rest. 

To confirm increased sensitivity of EGFR-mutant cell lines to DNA ICL we tested 

another crosslinking agent mitomycin C (MMC). Similarly we found EGFR-mutant 

cell lines to be more sensitive to the drug than EGFR-wild-type ones (Figure 1 C). 
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Figure 1: A) Colony formation assay: pictures show colonies of an EGFR wild-type lung 
cancer cell line (left) versus an EGFR-mutant one (right). Cells were seeded, left to 
adhere over night, and treated with 16 µM cisplatin for 1h. About 2 weeks later colonies 
were fixed and stained with Methylene Blue. B) Clonogenic survival fractions of a panel of 
9 human lung cancer cell lines with wild-type versus mutant EGFR. Data points represent 
log mean ± standard error based on 2 or 3 biological repeats. C) Clonogenic survival of 
lung cancer cell lines. The previously published survival of isogenic PD20 fibroblasts with 
wild-type (wt) or mutant (mut) FANCD2 is indicated as dotted lines [44]. Clonogenic 
survival assays for HCC4006 and H1650 were kindly performed by Chake Tokadjian. 
Data points represent log mean ± standard error based on 2 or 3 biological repeats.  
 

3.1.2. EGFR mutation sensitizes to ICL inducing agents 

Next we wanted to assess the influence of EGFR mutation status on clonogenic 

survival. We obtained isogenic mouse embryonic fibroblasts stably transfected 

with plasmid containing either human EGFR-wild-type or EGFR-mutant. We 

confirmed equal expression levels of transfected human EGFR by Western Blot 

(Figure 2A) and evaluated clonogenic survival when treated with cisplatin or MMC 

(Figure 2B+C). Again the cell line expressing EGFR-mutant was more sensitive to 

both crosslinking agents, cisplatin and MMC, than the one expressing human 

EGFR-wild-type. 
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Figure 2: A) Western blot demonstrating expression of human EGFR in NIH3T3 MEFs 
stably transfected with plasmids containing human wild-type or mutant EGFR: 
E746_A750 (del19) or L858R EGFR. B) Clonogenic survival of isogenic MEF clones 
expressing human wild-type or mutant EGFR after 1 hour treatment with increasing 
concentrations of cisplatin. Data points represent log mean ± standard error based on 3 
(cisplatin) or 6 (MMC) biological repeats. C) Analogous to B, clonogenic survival of 
isogenic MEF clones expressing wild-type or mutant EGFR after 1 hour treatment with 
MMC. 
 

3.1.3. EGFR-mutant cell lines show increased 

unrepaired DNA damage upon treatment with 

cisplatin 

In addition to clonogenic survival we measured sensitivity to cisplatin by 

evaluating DNA damage levels. H2AX is a histone variant, which becomes 

phosphorylated if there is DNA damage in close proximity. Therefore 

phosphorylated H2AX, called !H2AX, is commonly used as a DNA damage 

marker [77]. !H2AX can be visualized as foci by employing immunofluorescence 

microscopy [77] [6]. We quantified !H2AX foci levels 24h after treatment with 

cisplatin. 5/6 EGFR-mutant cell lines showed increases of !H2AX foci of 1.1-1.7-

fold relative to EGFR wild-type cells (Figure 3). This indicates more unrepaired 

DNA damage remains in EGFR-mutant cell lines 24h after treating with cisplatin. 
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!H2AX foci levels further correlated with cisplatin sensitivity, r2=0.85, p=0.003 

(Figure 3D). 

 

 
 
Figure 3: A) Immunofluorescent staining of foci: cells are seeded, treated, fixed and 
stained in chamber slides. Proteins of interest accumulate at DNA damage. These protein 
clusters or “foci” can be visualized by incubating with primary antibody against the protein 
of interest and subsequent incubation with immunofluorescent secondary antibody 
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directed against the primary. Nuclei are stained with DAPI (blue). B) Fraction of cells with 
residual !H2AX foci correlates with clonogenic survival after cisplatin treatment. Shown 
are representative images of !H2AX foci in EGFR-mutant lung cancer cell lines. 24 hours 
after treatment with 8 µM cisplatin, cells were fixed and stained with anti-!H2AX antibody 
(green) and nuclei visualized with DAPI (blue). Cell lines are ranked according to 
decreasing clonogenic survival after treatment with 8 µM cisplatin based on data in Figure 
1 and illustrated by grey triangle on the left-hand side. C) Relative increase in the fraction 
of cells with !20 !H2AX foci/nucleus 24 hours after cisplatin treatment (8 µM for 1 hour), 
with number of foci in untreated cells subtracted. EGFR-mutant cell lines are ranked 
according to their relative cisplatin sensitivity. Bars show mean ± standard error based on 
2-3 biological repeats. wt, wild-type EGFR cisplatin-resistant A549 as control. D) 
Clonogenic survival fractions at 8 µM cisplatin correlates with residual !H2AX foci with r2= 
0.85 and p = 0.003.  
 

3.1.4. EGFR-mutant cells arrest in G2 phase when 

challenged with MMC 
ICL are repaired by the FA/HRR pathways during S-phase [40] [42]. Cells 

deficient in the FA pathway are unable to repair ICL and, due to the lingering DNA 

damage, arrest in G2 phase. In order to establish whether EGFR-mutant lung 

cancer cells display a similar phenotype, we set out to assess alterations in the 

cell cycle distribution after MMC treatment. We performed Flow Cytometry after 

exposure to 25ng/ml MMC for 24h and found pronounced G2/M cell cycle arrest 

of 46%-50% in the EGFR-mutant human lung cancer cell lines compared to only 

18% in the EGFR wild-type cell line (Figure 4A+C). As controls we measured cell 

cycle distribution of an isogenic cell pair, proficient or deficient in the FA pathway, 

after MMC and as expected found massive G2/M arrest in the FA-deficient cell 

line (41% versus 25%) (Figure 4B). In terms of cell cycle distribution after MMC 

treatment, we noticed striking resemblance of the EGFR-mutant human lung 

cancer cell line with the FA-deficient cell line, whereas the EGFR wild-type human 

lung cancer cells mirrored the FA-wild-type ones (Figure 4C). These results are 

the first indicator of a possible defect in the FA/HRR pathway in EGFR-mutant cell 

lines. 
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Figure 4: A) Flow cytometry demonstrating crosslinker-induced G2/M arrest: Cell cycle 
distribution measured by Flow cytometry with and without MMC treatment (25 ng/ml for 
24 hours). For EGFR wt/mut samples the fraction of cells in G2/M is given as mean ± 
standard error based on 2 biological repeats. B) Cell cycle distribution measured by flow 
cytometry analogous to A. The G2/M arrest seen in FANCD2-mutant PD20 fibroblasts 
treated with mitomycin C (MMC) at 25 ng/ml for 24 hours is comparable to the cell cycle 
profile obtained with the EGFR-mutant cell line PC14. C) Cell cycle distribution as 
measured in A+B depicted as bar graph. 

 

3.1.5. Increased chromosomal radials can be found in 

EGFR-mutant cells treated with MMC 

Cells deficient in the FA/HRR-pathway arrest in G2/M phase after treatment with 

crosslinking agents, because of an inability to repair ICL. During DNA replication, 

replication forks stall and collapse at ICL, which creates DNA breaks. Broken non-

homologous chromatids may erroneously fuse together, which can be visualized 

in metaphase spreads as chromosomal radials. Chromosomal radials disturb 

normal distribution of chromosomes to daughter cells. The cell cannot perform 

proper cell division and therefore arrests in G2/M phase. To establish whether 

EGFR-mutant cells display another hallmark of FA/HRR-defective cells, we 

quantified chromosomal radials after MMC treatment. MMC elicited 3-6x more 

chromosomal radials per cell in EGFR-mutant cell lines (PC9, PC14) compared to 

the EGFR wild-type cell line (H1703) (Figure 5 A+B). In this setting EGFR-mutant 

cells behaved similar to the FA-deficient cell line (PD20-D2), which exhibited 2.3x 

more radials/cell than the EGFR wild-type cell line (H1703) (Figure 5B).  
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Figure 5: A) Panel shows representative metaphase spread with MMC-induced 
chromosomal radials indicated by triangles. B) Graph shows the average number of 
radials per cell. Bars represent mean ± standard error based on 2-3 biological repeats. 
FANCD2-mutant PD20 fibroblasts are included as a control. These data were kindly 
obtained for us by Kerstin Borgmann at Center for Oncology, University Medical Center 
Hamburg-Eppendorf, Germany.  
 

3.1.6. EGFR mutation is associated with increased ATM 

activity  

FA-deficient cells have been reported to show elevated levels of phosphorylated 

and thus activated ataxia telangiectasia mutated (ATM) [78] [79]. Phosphorylated 

ATM (pATM) can be visualized as foci by immunofluorescence microscopy. We 

measured ATM activity in EGFR wild-type and mutant cell lines by quantifying 

pATM foci after treatment with cisplatin (Figure 6). 50-62% of cells scored positive 

for pATM foci in cisplatin sensitive EGFR-mutant cell lines (PC9, PC14). In 

comparison only 2-26% of cells were found positive in EGFR wild-type cells. 

Again cisplatin sensitive EGFR-mutant cell lines resembled a FA-deficient 

phenotype. 
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Figure 6: A) Representative pictures of pATM foci in EGFR wild-type and mutant lung 
cancer cell lines at 24 hours after treatment with 8 µM cisplatin for 1 hour. B) 
Corresponding graph to A. Fraction of cells with at least 10 subnuclear phospho-ATM foci 
were scored. Bars depict means ± standard error based on two biological repeats. 
Increased levels of pATM foci in mutant EGFR cell lines PC9 and PC14 correlate with 
cellular FA phenotype. 
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3.2. Mutated EGFR impairs FA/HRR pathway 

resulting in lack of repair protein RAD51 in 

response to ICL 

3.2.1. EGFR-mutant cells, like FA-deficient ones, do not 

form RAD51 repair foci in response to ICL 

We established that EGFR-mutant cell lines exhibit a FA-like phenotype upon 

treatment with crosslinking agents. We then set out to explore the underlying 

cause of this phenotype. Based on the results up to this point, we hypothesized 

the presence of a defect in the FA/HRR pathway in EGFR-mutant cell lines. 

RAD51 is a key repair protein within the HRR pathway. After removal or 

unhooking of the ICL, RAD51 assembles as filaments on processed DNA ends 

and mediates crucial subsequent steps of HRR [42]. RAD51 filaments can be 

visualized as RAD51 foci. The ability to form these foci is used as a marker for 

proficient HRR [6]. We treated EGFR-wild-type and –mutant lung cancer cell lines 

with cisplatin and assessed HRR proficiency by quantifying RAD51 foci. We found 

a pronounced reduction of RAD51 foci induction in the cisplatin-sensitive EGFR-

mutant cell lines (PC9, PC14, KHM-3S): only 1.7-2.8% of these mutant cells 

scored positive for RAD51 foci compared to 31-36% in EGFR wild-type cell lines 

(Figure 7 A+B). Lack of RAD51 foci correlated with cisplatin sensitivity: r2=0.69, 

p=0.01 (Figure 7C). Furthermore, we confirmed that disruption of the FA-pathway 

leads to reduced RAD51 foci levels, as FA-deficient cells form fewer RAD51 foci 

(PD20-D2, 16%) than FA-proficient ones (PD20+D2, 38%) upon treatment with 

MMC (Figure 7D). Birkelbach et al showed similar results using cisplatin for 

treatment [6]. 
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Figure 7: A) Representative pictures of RAD51 foci formation (green) in EGFR wild-type 
and mutant lung cancer cell lines overlaid with DAPI staining. Cells were treated with 8µM 
cisplatin for 1h and evaluated 5h afterwards. B) Corresponding graph to A. Fraction of 
cells with at least 10 subnuclear RAD51 foci were scored positive. Bars depict means ± 
standard error based on 2-3 biological repeats. C) Correlation of clonogenic survival at 
8µM cisplatin with fraction of cells containing ! 10 RAD51 foci. Line represents result of 
linear regression analysis. D) Crosslinker-induced RAD51 foci formation is impaired in 
FANCD2 mutant cells, comparable to our previously published findings [69]. PD20 cells 
were treated with 1 mg/ml MMC for 1 hour and analyzed for RAD51 foci at 5 hours after 
starting treatment with MMC. Bars represent means ± standard error based on 3 
biological repeats. 
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3.2.2. EGFR-mutant cells contain normal levels of 

RAD51 protein 

The inability of EGFR-mutant cells to form RAD51 foci upon treatment with 

crosslinking agents indicates a defect in HRR or further upstream in the FA-

pathway. We aimed to understand why EGFR-mutants cannot form RAD51 foci. 

First we wished to confirm that EGFR-mutants express RAD51 protein. Thus we 

measured RAD51 protein levels by western blotting and found levels to be normal 

in EGFR-mutants compared to –wild-type cells (Figure 8).  

 

 
Figure 8: RAD51 protein is expressed similarly across all cell lines analyzed regardless 
of EGFR mutation status. Whole cell lysates were obtained and RAD51 protein levels 
were detected using anti-RAD51 antibody. 
 

3.2.3. RAD51 foci defect in EGFR-mutant cells is 

specific for ICL damage  

We asked ourselves whether EGFR-mutant cells are generally defective in 

forming RAD51 foci or whether lack of RAD51 is specific for ICL damage. Unlike 

the FA-pathway, HRR is not only involved in ICL repair. HRR is deployed for DNA 

DSB repair during S/G2-phase. These DSB can be intermediate structures during 

ICL repair or may be caused directly, for example by DNA damaging agents such 

as IR. Interestingly we found EGFR-mutant cells to be proficient in forming RAD51 

foci when treated with IR. 33% of EGFR-mutant cells scored RAD51 positive, 

which is higher compared to just 5% when treated with cisplatin (Figure 9). In fact 

when treated with IR, EGFR-mutant cells contained almost as many RAD51 

positive cells as the EGFR wild-type cell line (49%). We therefore concluded the 
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defect must be upstream of RAD51 foci formation and within the FA-pathway as it 

is specific for ICL damage.  

 
 
Figure 9: A) Representative images are shown of nuclei with RAD51 foci induced 5 hours 
after treatment with cisplatin (cp, 8 µM for 1 hour) or ionizing radiation (IR, 8 Gy). B) 
Corresponding graph to A. Fractions of cells with ! 10 RAD51 foci are displayed. Bars 
represent mean ± standard error based on 2-3 biological repeats. 
 

3.2.4. EGFR nuclear translocation does not correlate 

with the observed FA/HRR defect 

We further aimed to elucidate how EGFR may influence the FA/HRR pathway. It 

has been shown that upon treatment with cisplatin wild-type but not mutant EGFR 

translocates into the nucleus where it may promote DNA repair by stimulating 

activity of DNA-PKcs [20]. We did indeed observe translocation of wild-type but 

not mutant EGFR into the nucleus upon cisplatin treatment, albeit to a very low 

degree (Figure 10). Only 6% of cells contained EGFR wild-type in the nucleus 

after treatment, which seems unlikely to be able to account for the pronounced 

RAD51 foci defect and cisplatin sensitivity seen in mutant EGFR cell lines.  
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Figure 10: Nuclear translocation of wild-type EGFR was induced by treatment with 8µM 
cisplatin for 1h in EGFR wild-type (A549) and EGFR-mutant (PC9) cells. EGFR staining 
was performed at 5h after starting treatment. Translocation of wild-type EGFR did not 
correlate with the magnitude of the repair defect seen in mutant cell lines. Images are 
overlays of DAPI and anti-EGFR stain (green) and illustrate nuclear translocation of 
EGFR. EGFR staining was kindly performed by Meng Wang. Percentages indicate mean 
± standard error based on two biological repeats. 

 

3.2.5. DNA-PKcs activity does not affect sensitivity to 

cisplatin 

To address the possibility that wild-type EGFR may promote DNA repair through 

increasing DNA-PKcs activity as others have claimed, we analyzed whether 

inhibition of DNA-PKcs has any sensitizing effect to cisplatin in EGFR wild-type, 

but not mutant cells [20]. However, pharmacological inhibition of DNA-PKcs with 

NU7026 in isogenic EGFR-wt and –mutant MEFs did not result in any significant 

changes in clonogenic survival upon cisplatin treatment (Figure 11). At 8µM 

cisplatin survival fractions of EGFR-wild-type MEFs were 28% compared to 32% 

when DNA-PK inhibitor was added. EGFR-mutant MEFs exhibited 12% survival 

when treated with 8µM cisplatin compared to 18% when DNA-PK inhibitor was 

added. Thus, we ruled out DNA-PK activity as a candidate through which mutant 

EGFR could sensitize to ICL damage.   
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Figure 11: Pharmacological DNA-PKcs inhibition has no influence on cellular 
sensitivity to cisplatin. The isogenic NIH-3T3 cell pair with wild-type (wt) or mutant 
(mut) EGFR was treated with increasing doses of cisplatin for 1 hour and clonogenic 
survival was determined. For combination treatment with a DNA-PKcs inhibitor, cells were 
treated with 10 µM of NU7026 for a total of 25 hours in addition to 1 hour of cisplatin 
treatment starting after 1 hour pre-incubation of NU7026. Following wash-off of NU7025 
at 25 hours, cells were allowed to form colonies for 2 weeks. Data points represent 
means ± standard error based on 2-3 biological repeats. 
 

3.2.6. Overactive EGFR signaling in mutant cells does 

not account for lack of RAD51 foci 
Unlike the wild-type version, mutant EGFR is constantly phosphorylated and 

therefore downstream signaling is continually activated independent of the 

presence of EGF ligand [5]. EGFR signaling involves AKT activation and AKT has 

been shown to suppress HRR [80]. Thus, we hypothesized that the overactive 

downstream signaling of mutant EGFR might impair FA/HRR resulting in lack of 

RAD51 foci. We therefore tested whether we could revert this impairment by 

reducing EGFR signaling in a mutant EGFR lung cancer cell line (PC9) with an 

EGFR inhibitor (erlotinib) or disrupt the pathway further downstream with a 

PI3K/AKT inhibitor (LY294002) before treating with cisplatin (Figure 12). Panels A 

and C show that the respective inhibitors were active in the cells. However, no 

matter whether we incubate with inhibitor for 2h or increased incubation to 19h or 

increased inhibitor concentrations, neither inhibitor led to rescue of RAD51 foci 

upon subsequent treatment with cisplatin. In all cases RAD51 foci positive cells 

remained well below 10%. 
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Figure 12: Kinase-independent regulation of DNA repair by EGFR. A) Inhibition of 
EGFR phosphorylation and downstream signaling in EGFR-mutant PC9 cells, 
complementing B. Western blot demonstrates that erlotinib concentrations between 0.01-
5 µM decrease phospho-EGFR levels to varying degrees as expected. The effect on p-
ERK was more pronounced than on p-Akt.  B) RAD51 foci formation in erlotinib-treated 
EGFR-mutant PC9 cells. Cells were exposed to erlotinib for 2 hours (illustrated by arrows 
in the left figure insert) or 19 hours (right insert) prior to adding cisplatin (8 µM). Bars 
represent mean ± standard error based on 2 biological repeats. C) Inhibition of EGFR 
downstream signaling with the PI3K inhibitor LY294002. In order to assess effective 
inhibition of EGFR downstream signaling, a wild-type (wt) EGFR cell line (A549) and a 
mutant (mut) cell line (PC9) were treated with two different doses of the PI3K inhibitor. 
Phosphorylation of AKT decreased markedly in cells treated with 50 µM LY294002 for 2 
hours and almost vanished with 100 µM. D) Disrupting PI3K-Akt axis does not rescue 
RAD51 foci formation, analogous to B. Control samples (first two bars) were untreated or 
treated with 8 µM cisplatin for 1 hour and RAD51 foci were analyzed at 5 hours. 
Alternatively, cells were pretreated with 50 or 100 µM PI3K inhibitor for either 2 or 19 
hours prior to adding cisplatin. Cells were maintained in PI3K inhibitor until fixation at 5 
hours after cisplatin treatment. Bars represent means ± standard error based on two 
biological repeats.  
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3.2.7. EGFR impairs FANCD2/RAD51 pathway kinase-

independently 
We dismissed overactive mutant EGFR signaling as a likely candidate to be 

responsible for impaired FA/HRR. Next we sought to elucidate the effect of wild-

type EGFR on RAD51 foci formation. Therefore we transfected human wild-type 

EGFR into a mutant EGFR lung cancer cell line (PC9), treated with cisplatin and 

quantified RAD51 foci (Figure 13). Interestingly we observed a pronounced 

increase in RAD51 foci from 7.5% in the EGFR-mutant control cell line compared 

to 17.9% in the EGFR-mutant cell line transfected with EGFR wild-type.  

Inhibiting EGFR in a wild-type cell line (A549) had no effect on cisplatin-induced 

RAD51 foci levels (Figure 13D). However, silencing wild-type EGFR triggers an 

“EGFR-mutant phenotype” (Figure 13 C+D), resulting in decreased cisplatin-

induced RAD51 foci levels. 

 

 
Figure 13: A) The western blot shows protein levels of EGFR in a mutant EGFR cell line 
(PC9) following transient transfection of 1 or 5 µg of an expression vector encoding wild-
type (wt) EGFR. B) Graph displays fraction of cells with ! 10 RAD51 foci 5 hours after 
cisplatin treatment (8 µM for 1 hour) and 48 hours after transfection with either 5 µg of the 
wild-type EGFR vector or an empty control. Bars represent mean ± standard error based 
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on 2 biological repeats. C) Western blot shows A549 cells transfected with scrambled 
control (CON) siRNA or siRNA against EGFR. These data were kindly provided by Meng 
Wang. D) Graph indicates fraction of cells with RAD51 foci analogous to panel B. These 
data were kindly provided by Meng Wang. 
 

3.3. Repair defect is downstream of FANCD2 at 

the stage of ICL unhooking involving failed 

recruitment of FAN1  

3.3.1. EGFR mutation is epistatic to FANCD2  

To further elucidate the repair defect in mutant EGFR cell lines, we sought to 

establish if the impairment lies within the FA/HRR pathway or parallel to it. 

Therefore, we tested for epistasis between EGFR-mutation and disruption of the 

FA/HRR pathway by FANCD2 mutation. If EGFR mutation sensitizes to cisplatin 

by impairing the FA/HRR pathway, then the EGFR mutation should have no 

increased sensitization effect to ICL-inducing agents in a cell with already 

impaired FA/HRR pathway. In fact cells with EGFR-mutation alone or impaired 

FA/HRR alone or EGFR-mutation in addition to impaired FA/HRR should all show 

similar sensitization to crosslinking agents (Figure 14C). To test this we 

transfected FA/HRR-proficient (PD20+D2) and –deficient (PD20-D2) isogenic cell 

lines with EGFR-wild-type or EGFR-mutant, treated with MMC and evaluated 

unrepaired DNA damage by quantifying !H2AX foci. To ensure that only cells are 

considered that contained transfected EGFR,, we performed co-transfection with a 

GFP encoding plasmid in a ratio 5:1 (EGFR-plasmid to GFP-plasmid). Thus cells 

that incorporated GFP-plasmid should contain EGFR-plasmid as well. These cells 

could easily be recognized due to their green hue and only these cells were 

included in the evaluation. Indeed, we observed similarly elevated !H2AX foci 

levels of 60-65% in all cell lines containing one or both mutations compared to the 

double wild-type cell line. In an EGFR and FANCD2 wild-type context, there were 

only about half as many !H2AX positive cells (35%). 
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Figure 14: DNA repair defect caused by EGFR mutation is epistatic with FANCD2. 
A) Mutant EGFR increases the number of !H2AX foci in FANCD2 wild- type but not 
mutant cells after treatment with mitomycin C (MMC). The isogenic PD20 cell pair either 
mutant (mut) for FANCD2 or complemented with wild-type (wt) FANCD2 was transfected 
with expression vectors coding for wild-type or mutant EGFR together with GFP at a 5:1 
molar ratio. Forty-eight hours after transfection, cells were treated with 1 µg/ml MMC for 1 
hour. At 24 hours, cells were stained for !H2AX foci. Only successfully transfected cells 
expressing GFP were scored. Representative pictures are shown. B) Graph shows 
quantification of A. Bars represent mean ± standard error based on 3 biological repeats. 
C) Principle of epistasis: mutant EGFR is epistatic to mutant FANCD2, if either or both 
mutations lead to the same level of DNA damage. Mutations would be additive if an 
increase in DNA damage levels was seen. 
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3.3.2. Increased replication fork stalling in EGFR-mutant 

cells  

So far we have shown that EGFR-mutant cells harbor a defect within the FA/HRR 

pathway, which results in failure to form RAD51 foci. Furthermore EGFR-mutants 

are able to form RAD51 foci except when treated with ICL inducing agents, for 

which FA/HRR is needed. Thus we hypothesized the impairment to be within the 

FA/HRR pathway upstream of RAD51 foci formation. In order to unravel the 

precise defect within EGFR-mutant cell lines, we evaluated events within the 

FA/HRR pathway upstream of RAD51 foci formation.  

RPA accumulates on exposed single-stranded DNA at stalled replication forks, 

which can be visualized as foci [81] [82] [83]. With some additional repair steps in 

between, RPA is later replaced by RAD51. We found EGFR-mutant cell lines to 

be capable in forming RPA foci when challenged with cisplatin. In fact we noticed 

elevated levels of RPA foci in EGFR-mutant cell lines (9-17%) compared to the 

EGFR wild-type one (3%), indicating increased replication fork stalling in the 

former. 

 

 
 
Figure 15: Illustration of increased replication fork stalling in EGFR-mutant PC9 cells. 
Shown is the fraction of cells with !10 replication protein A (RPA) foci 5 hours after 
treatment with 8 µM cisplatin for 1 hour. Bars represent means ± standard error based on 
2-3 biological repeats. 
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3.3.3. Defect downstream of BRCA1 

Next we evaluated the ability of EGFR-mutant cells to form BRCA1 foci, meaning 

the accumulation of BRCA1 at ICL. BRCA1 foci formation is an early step in the 

FA/HRR pathway. It is necessary for FANCD2 foci formation [42] [84]. FANCD2 

foci formation is a crucial step within FA/HRR [42] [40]. BRCA1 foci formed 

normally in EGFR-mutant cell lines (PC9) upon treatment with cisplatin (Figure 

16).  

 

 
Figure 16: Representative images of subnuclear BRCA1 foci formation, which is 
upstream of FANCD2 foci, with and without treatment with 8 µM cisplatin for 1 hour. 
These data were kindly provided by Natalie Ferraiolo. 

 

3.3.4. Defect downstream of core complex, FANCD2 

Within the FA-pathway several upstream events are necessary for FANCD2 foci 

to be able to form. One important upstream event is the assembly of several FA-

proteins, forming the core complex at the ICL, which then mono-ubiquitinates 

FANCD2. This step is necessary for FANCD2 foci formation [43] [44]. Thus 

FANCD2 foci are a good marker for the integrity of such upstream events. EGFR-

mutant cell lines (PC9, PC14) were proficient in forming FANCD2 foci after 

treatment with MMC. In fact levels were slightly elevated at 65-78% of FANCD2 

foci positive cells in the EGFR-mutant cell lines compared to 53% in the EGFR 

wild-type one (Figure 17). We concluded from these data that the repair defect 

must lie downstream of FANCD2 foci formation, but upstream of RAD51 foci 

formation. 
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Figure 17: Intact FANCD2 foci formation in EGFR-mutant cells. A) Representative 
immunofluorescence microscopy images of intact subnuclear FANCD2 foci formation 
corresponding to graph in B. B) Fraction of nuclei with ! 10 FANCD2 foci in wild-type (wt) 
and mutant EGFR cell lines 24 hours after treatment with 0.5 µg/ml MMC for 1 hour. Bars 
represent mean ± standard error based on 2 biological repeats. 

 

3.3.5. Impaired ICL unhooking 

Incision or unhooking of the ICL occurs downstream of FANCD2 foci formation 

and upstream of RAD51 foci formation [40] [42]. This crucial step within ICL repair 

can be measured with a modified alkaline comet assay [20] [85] [86]. ICL keep 

DNA strands tied together and hinder DNA from migrating during electrophoresis. 

Therefore the more ICL, the less DNA migration and the shorter the comet tail. 

We treated an EGFR-mutant cell line (PC9), as well as an EGFR wild-type one 

(H1703) with cisplatin and evaluated unhooking of ICL at several time points after 

treatment by measuring the tail moment. We found the EGFR-mutant cell line to 

be strikingly deficient in unhooking ICL. At 24h after treatment, 55% of maximum 

detectable ICL remained compared to just 3% in EGFR wild-type cells. In an 

isogenic cell pair we detected similar results. ICL unhooking occurred much more 

slowly in the EGFR-mutant cells. Thus EGFR mutation correlates with defective 

ICL unhooking.  
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Figure 18: Determining ICL repair using a modified alkaline Comet assay. A) 
Representative images show comets 5 hours after treating cells with 50 µM cisplatin for 1 
hour and/or irradiating with 12.5 Gy ionizing radiation (IR) just before harvesting. Cells 
were irradiated to introduce a fixed number of random DNA DSB. ICL retain the double-
stranded DNA, thereby shortening the tail moment. Complete unhooking would, therefore, 
result in the same tail moment as for irradiated only controls. The smaller the tail of 
cisplatin/IR-treated cells, the less unhooking occurred. Tails of mutant EGFR cells treated 
with cisplatin/IR are shorter than those in wild-type EGFR cells, indicating reduced 
unhooking of ICL. 
B) Corresponding graph to A. Comparison of ICL repair in wild-type (wt) (H1703) and 
mutant (mut) (PC9) EGFR cell lines. Results are expressed as a percentage decrease in 
tail moment, so that 100% represents ICL saturation directly after irradiation resulting in 
complete restriction of DNA migration and 0% corresponds to maximum unhooking of 
induced ICL. Black arrow indicates time point when treatment with cisplatin was initiated. 
Data points represent mean ± standard error based on 2-3 biological repeats. C) 
Quantification of remaining ICL in % in the isogenic NIH-3T3 cell pair with or without 
stable expression of mutant EGFR. Cells were treated and assay performed analogous 
A+B. The largest difference of unhooked ICL can be seen at 5 hours after starting 
treatment, with significant delay of unhooking in the mutant line even after 24 hours. Data 
points represent means ± standard error based on 2 biological repeats 
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3.3.6. EGFR-mutant cells have low FAN1 gene 

expression 

In order to elucidate why ICL unhooking is impaired in EGFR-mutant cell lines, we 

first analyzed gene expression levels of several nucleases involved in this step in 

a panel of 174 lung cancer cell lines (Figure 19). We found gene expression of 

one nuclease, FAN1, to be significantly lower (p=0.009) in EGFR-mutant cell lines 

compared to EGFR wild-type ones. 

 
Figure 19: Gene expression of factors involved in ICL unhooking. The relative gene 
expression is shown on the y-axis. Cell lines are grouped into EGFR wild-type versus 
mutant based on the information in the data base. Horizontal lines represent the mean 
gene expression in each group. P-values are based on a two-tailed T-test. With a 
p=0.009, FAN1 nuclease expression was the only factor that was significantly lower in 
expression in the EGFR-mutant group compared to wild-type. 

 

3.3.7. FAN1 protein levels tend to be reduced in EGFR-

mutant cells 

Next we examined whether low FAN1 gene expression translates into low protein 

expression, which could account for impaired ICL unhooking in EGFR-mutant 
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cells. Using western blotting we could not find striking differences in FAN1 protein 

levels between EGFR wild-type and mutant cell lines, however we did observe a 

tendency for low FAN1 protein expression in the mutant lines (Figure 20).  

 
Figure 20: Western blot of FAN1 protein expression in wild-type and mutant EGFR lung 
cancer cell lines. FAN1 protein is expressed in all cell lines to varying degree, with a trend 
towards lower expression in the cell lines with known EGFR mutation. 

 

3.3.8. EGFR-mutant cells fail to recruit FAN1 to ICL 

We next wished to investigate FAN1 function. FAN1 is recruited by ubiquitinated 

FANCD2 to ICL. Accumulation of FAN1 at ICL can be visualized as foci. Since 

FAN1 primary antibodies currently on the market yielded unsatisfactory staining 

qualities, we circumvented this problem by transfecting GFP-tagged FAN1 into 

isogenic cell lines expressing either EGFR wild-type or EGFR-mutant. We treated 

with MMC and quantified FAN1 foci in transfected cells. Indeed, we found EGFR-

mutant cells were impaired in FAN1 foci formation, with only 14% FAN1 positive 

cells compared to 35% positive cells in the EGFR wild-type one.  

 
Figure 21: A) Representative immunofluorescence microscopy images are shown for an 
isogenic MEF cell pair with wild-type (wt) or E746_A750 (mut) EGFR transiently 
transfected with GFP-tagged FAN1. Cells were treated with 80 ng/ml MMC for 24 hours. 
B) Corresponding graph to A. It shows fraction of cells with ! 5 foci FAN1. Bars represent 
mean ± standard error based on 3 biological repeats. 
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3.4. Impaired FAN1 recruitment and HRR 

sensitizes EGFR-mutant cells to PARP 

inhibitors  
The data gathered so far indicates a new DNA repair defect specific to EGFR-

mutant lung cancers: EGFR mutation correlates with impaired FAN1 function, 

reduced unhooking of ICL and increased sensitivity to ICL inducing agents.  As 

we aimed to find new, targeted treatment approaches for this specific group of 

lung cancer patients, we scrutinized FAN1 function and found it to be involved not 

only in ICL unhooking, but also in late stages of HRR (Figure 23A) [58] [59] [60]. 

We hypothesized FAN1 recruitment to be reduced in EGFR-mutant cells 

independent of the type of damage inflicted. This should not only lead to impaired 

ICL repair, but also result in inefficient late stage HRR. Defects in HRR can be 

exploited with PARP inhibitors, as success in HRR-deficient (BRCA1/2 mutant) 

breast cancers shows [3]. Thus, we hypothesized targeted therapy with PARP 

inhibitors to be effective in EGFR-mutant cancers.  

 

3.4.1. EGFR-mutant cells fail to form FAN1 foci in 

response to PARP inhibitor olaparib 

First, we aimed to validate the notion of EGFR-mutant cells being impaired in 

recruiting FAN1 in response to PARP inhibitors. We treated an EGFR wild-type 

and mutant isogenic cell pair with the PARP inhibitor olaparib and evaluated 

FAN1 recruitment to DNA damage by quantifying FAN1 foci. Indeed, the EGFR-

mutant cell line was unable to form FAN1 foci efficiently, resulting in less than half 

the amount of cells with foci compared to the EGFR wild-type cell line: 13% 

versus 29% in EGFR wild-type cells (Figure 22). 

 



3. RESULTS   80 

 
 

 
 

Figure 22: A) Representative images of subnuclear GFP signal (green) overlaid with 
DAPI (blue) in an isogenic MEF pair with wild-type (wt) or mutant (mut) EGFR transiently 
transfected with GFP-tagged FAN1. Cells were treated with 10 µM olaparib for 24 hours. 
B) Corresponding graph to A. Fraction of cells with ! 5 FAN1 foci. Bars represent mean ± 
standard error based on 3 biological repeats. 
 

3.4.2.  EGFR-mutant cells are impaired in RAD51 foci 

resolution after PARP inhibitor treatment  

Next we wished to determine whether reduced recruitment of FAN1 results in 

impaired HRR by evaluating the induction and resolution of RAD51 foci. PARP 

inhibitors cause DNA damage indirectly by inhibiting the repair of existing SSB, 

which then become DSB during S-phase. Thus, we chose 24h after treatment as 

the first time point to allow the creation of DSB in cells entering S-phase. For the 

later time point we aimed to give cells enough time for RAD51 resolution to occur, 

yet we wanted to avoid evaluating any apoptotic cells. Apoptosis can occur as 

early as 24h after lethal DSB are inflicted. We reasoned 34h after olaparib 

treatment, which is equivalent to about 10h after DSB creation should be an 

adequate time point to evaluate RAD51 resolution. 

We quantified RAD51 foci in an EGFR wild-type (A549) and EGFR-mutant lung 

cancer cell line (PC9) at 24h and 34h after treatment with olaparib (Figure 23). At 

the early time point after treatment we observed normal RAD51 foci formation in 

EGFR-mutants (33% versus 31% in EGFR wild-type cells). However, while 

RAD51 foci amounts drop to background levels in EGFR wild-type cells at 34h 

(84% reduction), foci levels remained high in EGFR-mutant ones (only 22% 

reduction). Interestingly a similar phenomenon is observed in an FANCD2 
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proficient/deficient isogenic cell pair. While RAD51 foci levels drop to background 

levels in the wild-type cell line at 34h, levels remain high in the mutant one.  

 

Figure 23: A) Panel shows FAN1’s role in ICL unhooking and late stage HRR. B) Panel 
shows SSB repair, when PARP is inhibited. FAN1 is involved in late stage HRR. C) 
RAD51 foci formation in cell lines as indicated, treated with 10 µM olaparib for 24 or 34 
hours. Cells with !10 RAD51 foci/nucleus were scored. Bars represent mean ± standard 
error based on 2-5 biological repeats. 

 

3.4.3. EGFR-mutant cells treated with olaparib contain 

large amounts of unrepaired DNA damage  

As a consequence of decreased FAN1 recruitment to DNA damage and impaired 

HRR we postulated increased unrepaired DNA damage in EGFR-mutant cells 



3. RESULTS   82 

 
 

treated with olaparib. Indeed we were able to show elevated levels of DNA 

damage, indicated by !H2AX foci, in EGFR-mutant lung cancer cell lines after 

treatment with olaparib (Figure 24). !H2AX foci are especially pronounced in PC9 

and PC14 EGFR-mutant cell lines, which - as shown next – are also sensitive to 

olaparib treatment.   

Figure 24: A) Representative images of !H2AX foci in EGFR wild-type and mutant cell 
lines treated with 10 µM olaparib for 24 hours. B) Subnuclear !H2AX staining correlates 
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with increasing cellular sensitivity to olaparib based on data in Figure 25. Cell lines are 
ranked from top to bottom by increasing sensitivity to olaparib. Representative images 
with overlaid DAPI and !H2AX stain are shown. 
 

3.4.4. EGFR-mutant cell lines exhibit increased 

sensitivity to olaparib 

However, is this HRR defect observed in EGFR-mutant cells severe enough to 

sensitize to treatment with PARP inhibitor? To answer this question, we performed 

colony formation assays, evaluating the sensitivity of EGFR wild-type and mutant 

lung cancer cell lines to olaparib (Figure 25). Indeed 3/6 EGFR-mutant cell lines 

showed decreased clonogenic survival of 1.0-7.6% at 10µM olaparib compared to 

15.7-53.5% for wild-type cell lines. We could further confirm increased sensitivity 

of EGFR-mutant cells in an isogenic cell pair. Survival fractions were 5.0% for the 

EGFR-mutant cell line compared to 18.9% for the wild-type one. Thus mutant 

EGFR sensitizes to PARP inhibitor olaparib. 

Figure 25: A) Clonogenic survival of lung cancer cell lines with wild-type or mutant EGFR 
after treatment with increasing concentrations of olaparib for 72 hours. Concentrations at 
which survival curves intercept with dotted horizontal line indicate IC50 (inhibitory 
concentrations to achieve 50% survival). Data points represent mean ± standard error 
based on 2-3 biological repeats. B) Clonogenic survival of isogenic MEFs with wild-type 
or mutant (del19) EGFR. Cells were treated analogous to A. Data points represent mean 
± standard error based on 3 biological repeats. 

 

3.4.5.  EGFR-mutant sensitizes to olaparib in vivo 

Finally we aimed to investigate the sensitization effect of mutant EGFR to olaparib 

in vivo. Therefore we obtained fresh tumor biopsies from lung cancer patients 

containing EGFR wild-type or mutant. We treated the samples with olaparib and 
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stained for !H2AX foci formation using an ex-vivo foci assay, previously 

established by Birkelbach et al. [6] PARP inhibitors cause lethal DNA DSB only 

during S-phase. Keeping in mind that lung cancer tissue contains a much smaller 

S-phase fraction than cell lines, we identified olaparib-specific !H2AX foci by co-

staining with the S-phase marker PCNA (Figure 26) [6]. Indeed, quantification of 

!H2AX foci in PCNA-positive cells confirmed in-vitro results, with elevated !H2AX 

foci levels in EGFR-mutant lung cancer tissue compared to wild-type (21% versus 

4%, p=0.03). 

Figure 26: A) Ex-vivo assay for assessing DNA double-strand break formation in 
response to olaparib. Fresh tumor tissue is obtained from core biopsies or other methods. 
Viable tumor tissue not required for pathological diagnosis is placed in RPMI medium and 
hand-carried to the laboratory where it is aliquoted. Samples are subjected to mock or 
olaparib (10 µM) treatment for 24 hours. Samples are then snap frozen and processed for 
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staining. B) Representative low-power images of a core biopsy section from a patient with 
an EGFR-mutant lung adenocarcinoma. Arrows indicate 2 cells double positive for a 
subnuclear PCNA staining patterns that is consistent with S-phase and !H2AX foci. C) 
Pictures show a representative nucleus after counterstaining tumor tissue derived from a 
lung cancer patient with DAPI (blue), PCNA (red), and !H2AX (green). D) Graph shows 
the fraction of PCNA positive nuclei containing !H2AX foci following ex-vivo treatment of 
EGFR-mutant versus wild-type tumor tissue with 10 µM olaparib for 24 hours. Bars 
represent average number of positive nuclei ± 95% confidence intervals. These data were 
gathered with great help from Liliana Gheorgiu. 

 

3.5. Treatment with DNA damaging agents: Effect 

of EGFR TKI resistance on sensitivity 

Lung cancer patients with EGFR mutations currently receive EGFR inhibitors as 

first line treatment [87] [88] [89] [90] [91]. As mentioned earlier, initially impressive 

results can be achieved with these drugs, but unfortunately all patients relapse 

eventually [5]. Thus we investigated alterations in sensitivity to additional DNA 

damaging treatments, such as cisplatin, IR or PARP inhibitors. 

 

3.5.1. EGFR TKI resistance may not result in cisplatin 

resistance 

Utilizing colony formation assays we assessed sensitivity of EGFR-mutant lung 

cancers with acquired resistance to EGFR inhibitors erlotinib or gefitinib (Figure 

27). Three EGFR TKI resistant cell lines showed slightly increased resistance to 

cisplatin. Survival fractions at 8 µM cisplatin were 13%-18% compared to 4% for 

the EGFR TKI parental cell line (PC9). Cell lines with survival fractions of <20% 

can be considered sensitive given that several cisplatin-resistant EGFR wild-type 

cell lines show more than 70% survival at this dose. A fourth EGFR TKI resistant 

cell line was created from a pooled population (gtPC9-p). This cell line showed 

little increase in resistance to cisplatin when compared to the EGFR TKI sensitive 

parent cell line (5% versus 4% survival at 8µM cisplatin). We therefore concluded 

that EGFR TKI resistance does not confer cisplatin resistance back to the degree 

seen in EGFR wild-type cell lines. 
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Figure 27: A) Left panel: Survival curves measured by Syto60 assay in response to 
increasing concentrations of EGFR inhibitor erlotinib. Depicted are the EGFR TKI 
sensitive lung cancer cell line (pink: PC9) and derived cell lines with acquired resistance 
to erlotinib (purple: etmPC9, etPC9). Right panel: Survival curves analogous to the left 
panel, but gefitinib was used and depicted are cell lines with acquired resistance to 
gefitinib (purple: IR7, gtpPC9) in addition to the sensitive parental line (pink: PC9). B) 
Clonogenic survival fractions of EGFR TKI sensitive (pink: PC9) and derived EGFR TKI 
resistant lines (purple) in response to increasing doses of cisplatin. Data points represent 
mean ± standard error based on 3 biological repeats.  

 

3.5.2. EGFR TKI resistance might sensitize to IR  

We further assessed sensitivity of EGFR TKI resistant cell lines to radiation using 

colony formation assays (Figure 28). At 8 Gy there was a negligible increase in 

resistance to IR of 0.3% in a gefitinib-resistant cell line (HCCGR), which was 

derived from the EGFR TKI sensitive parental cell line “HCC827” (Figure 28A).  

Interestingly EGFR TKI resistant cell lines derived from a different EGFR TKI 

sensitive parental cell line “PC9” showed a slight increase in sensitivity to IR 

(Figure 28B). Survival fractions at 8Gy dropped by more than half, from 4.6% to 

0.9 – 2.0%. This increase in sensitivity may be due to more apoptosis in these 



3. RESULTS   87 

 
 

EGFR TKI resistant cells. Using western blotting increasing amounts of caspase 3 

fragmentation can be found in TKI-resistant cells when treated with 8Gy (Figure 

28C). In addition, TKI-resistant cells showed elevated sub G1 fractions of 21-29% 

after IR treatment compared to just 6.5% in the parental PC9 cell line (Figure 

28D). We used PC9 cells treated with erlotinib as a positive control for caspase 3 

cleavage, since this cell line is known to apoptose heavily upon EGFR TKI 

treatment. Thus, at least in this one cell pair, EGFR TKI resistance may increase 

sensitivity to IR by elevating apoptosis. 

 
Figure 28: A) Clonogenic survival fractions of EGFR TKI sensitive cell line (pink: 
HCC827) and derived gefitinib-resistant cell line (purple: HCCGR) in response to 
increasing doses of irradiation. Data points represent mean ± standard error based on 3 
biological repeats. B) Clonogenic survival fractions of the parental EGFR TKI sensitive 
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cell line (pink: PC9) and derived gefitinib/erlotinib-resistant lines (purple) in response to 
increasing doses of irradiation. Data points represent mean ± standard error based on 3 
biological repeats. C) Western Blot depicting increased caspase 3 cleavage in TKI-
resistant cell lines after 8Gy. Cell lines were irradiated with 8Gy and caspase 3 cleavage 
was assessed 48h after treatment. TKI sensitive cells treated with 2µM erlotinib are 
known to undergo apoptosis and are thus included as a positive control (last column). 
Note: 100µg protein was loaded except for the last column, which contains 40µg. D) Sub 
G1 cell cycle fractions were determined using flow cytometry. Cell lines were irradiated 
with 8Gy and sub G1 fractions were assessed at 72h after treatment. TKI sensitive cells 
treated with 2µM erlotinib are used as a positive control. Bars represent mean ± standard 
error based on 4 biological repeats.  

 

3.5.3. EGFR TKI-resistance sensitizes to PARP 

inhibitors possibly due to more endogenous SSB 

Lastly we investigated sensitivity of EGFR TKI resistant cell lines to treatment with 

PARP inhibitor olaparib. Strikingly we saw pronounced sensitization to olaparib in 

EGFR TKI resistant cell lines (Figure 29A). Survival fractions at 10 µM olaparib 

dropped from 18% survival in the TKI-sensitive HCC827 lung cancer cell line to 

1% in the TKI-resistant one. Similarly in the PC9 lung cancer cell line, survival 

dropped by >10x, from 4% to 0.4-0.06% in the TKI-resistant lines. 

 

Sensitivity to olaparib was underscored by high levels of unrepaired DNA damage 

indicated by !H2AX foci in EGFR TKI resistant cell lines. An increase in DNA 

damage levels is especially pronounced in HCCGR6 cells, when compared to its 

parental line HCC827 (Figure 29B). The EGFR TKI sensitive line PC9 is already 

considered sensitive to olaparib, thus containing high levels of !H2AX foci. This 

makes any increase of foci in the derived EGFR TKI resistant lines hard to judge 

by eye.   

 

PARP inhibitors prevent DNA SSB endogenously present from being repaired. 

We hypothesized EGFR TKI resistant cells may contain more endogenous DNA 

breaks than TKI sensitive cells, which could account for their increased sensitivity 

to PARP inhibition. Utilizing an alkaline comet assay we measured DNA breaks in 

an untreated EGFR TKI sensitive (PC9) and TKIR resistant (IR7) cell pair. In the 

absence of any drug the EGFR TKI resistant cell line (IR7) contains significantly 
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more DNA breaks than the EGFR TKI sensitive one (PC9), p = 0.0001 (Figure 

29C). 

 

 
Figure 29: A) Left panel: clonogenic survival fractions of the parental EGFR TKI sensitive 
cell line (pink: PC9) and derived gefitinib/erlotinib-resistant lines (purple) in response to 
increasing doses of olaparib. Right panel: Clonogenic survival fractions of an EGFR TKI 
sensitive cell line (pink: HCC827) and derived gefitinib-resistant line (purple: HCCGR) in 
response to increasing doses of olaparib (72h). Data points represent mean ± standard 
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error based on 3 biological repeats. B) Representative images of EGFR TKI sensitive and 
-resistant cell lines treated with 10µM olaparib and stained for !H2AX foci 24h after 
starting treatment. C) Tail moment of untreated EGFR TKI-sensitive and –resistant cells 
as measured by alkaline comet assay. Increase in Tail Moment indicates significantly 
more DNA SSB/DSB in the TKI-resistant cell line. Bars represent mean ± standard error 
based on 3 biological repeats.  
 
 



 
 

4. DISCUSSION 
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The dire statistics of lung cancer pose the need for improved therapy. In this work 

we focused on EGFR-mutant lung cancers and studied their ability to repair 

treatment inflicted DNA damage. 

 

The key insights are the following:  

EGFR-mutant cells show a FA-like DNA repair defect, which accounts for their 

increased sensitivity to ICL-inducing agents. The precise nature of the DNA repair 

defect renders EGFR-mutant cells defective in HRR, which can be exploited by 

targeted therapy with PARP inhibitors. 

Investigating the influence of EGFR TKI resistance on sensitivity to DNA 

damaging agents in EGFR-mutant lung cancer cells, we found no adverse effect 

on sensitivity, in fact TKI resistance may have a sensitizing effect on treatment 

with radiation or PARP inhibitors. 

 

4.1. Cells with mutant EGFR show impaired ICL 

repair and a FA-like phenotype 
We started out confirming the clinical observation of increased sensitivity to 

platinum-based chemotherapy in EGFR-mutant lung cancers [7] [8] [9]. In a panel 

of 9 human lung cancer cell lines, we saw decreased clonogenic survival in 

EGFR-mutant cell lines compared to EGFR wt cells when treated with cisplatin 

(Figure 1 A+B). Cisplatin causes different types of damage to the cell, but its 

toxicity is thought to be derived from detrimental DNA ICL [38]. In addition to 

cisplatin, EGFR-mutant lung cancer cell lines compared to EGFR wt cells show 

decreased clonogenic survival upon treatment with MMC, another crosslinking 

agent (Figure 1C). Even though there is a trend that EGFR-mutant cells are more 

sensitive to crosslinking agents, it should be noted that there is overlap in 

sensitivity between mutant and wild-type EGFR populations. Conceivably different 

genetic context between cell lines may dilute or emphasize the sensitizing effect 

of mutant EGFR to ICL-inducing drugs. 

In an isogenic cell pair, we eliminated heterogenic background to tease out the 

sensitizing effect of mutant EGFR to ICL damage. We show that EGFR wild-type 

or mutant isogenic cell lines are sensitized to both cisplatin and MMC, if harboring 
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mutant EGFR (Figure 2). We acknowledge the sensitizing effect may be relatively 

small in vitro, however it seems to be clinically relevant, given that lung cancer 

patients with mutant EGFR respond better to platinum-based therapy [7] [8] [9]. 

 

Next we show that the increased sensitivity to cisplatin in EGFR-mutant cell lines 

may be due to unrepaired DNA damage. EGFR-mutant cells contain increased 

levels of DNA damage marked as !H2AX foci when treated with cisplatin. !H2AX 

foci levels further correlate with sensitivity to cisplatin (Figure 3).  

!H2AX foci have long been established as a DNA damage marker and are most 

often used as an indicator for DNA DSB. Furthermore, !H2AX foci are induced by 

ICL and foci associate with HRR factors required for ICL repair [92] [93] [94] [95] 

[96] [97] [98]. In the case of ICL damage, !H2AX foci may be induced independent 

of DSB formation associated with ICL repair. Thus persisting !H2AX foci may 

indicate remaining ICL as well as DSB resulting from unhooked ICL [92]. !H2AX is 

a very sensitive marker for detecting DNA damage associated with ICL-inducing 

agents. It is 6-10x more sensitive than the modified alkaline comet assay, which is 

another method to detect ICL [92]. !H2AX foci persist in cells defective in ICL 

unhooking (ERCC1 defective) or defective in HRR (XRCC3 defective) [92]. 

Persistence of !H2AX foci correlates with prolonged ICL-unhooking and with 

increased sensitivity to the ICL-inducing drug (Figure 3) [92] [6]. 

 

ICL are repaired by the Fanconi Anemia pathway and subsequent HRR. Cells 

defective in the Fanconi Anemia pathway are impaired in repairing ICL and show 

specific phenotypic hallmarks such as increased sensitivity to ICL inducing drugs, 

damage induced chromosomal radials, as well as pronounced G2/M cell cycle 

arrest when challenged with crosslinking agents [57] [99].   

We found EGFR-mutant cell lines to be positive for all three of these hallmarks 

indicating a defect in the FA pathway. EGFR-mutant cell lines arrest in G2/M cell 

cycle phase similarly to the FANCD2 deficient control cell line (Figure 4). 

Pronounced MMC-induced chromosomal radial formations can be observed in 

EGFR-mutant cells (Figure 5). Such an increase in aberrations can be caused by 

mutations of FANCD2, which we used as an assay control [84] [73]. We show 

increased sensitivity to ICL inducing drugs above, which has been previously 
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implicated with genetic or epigenetic defects in the FA pathway, such as 

mutations in FANCD2 sensitize to cisplatin and MMC [100] [36] [84] [101] [73] 

[44].  

 

These results associate mutant EGFR with defective ICL repair resulting in 

hallmarks of FA defective cells, prolonged ICL damage visible by !H2AX foci and 

increased sensitivity to ICL inducing drugs. These findings indicate a defect within 

the FA/HRR pathway. 

 

4.2. Defect in FA/HRR pathway is independent of 
EGFR-mutant kinase function 

As the key player in HRR, RAD51 foci formation has been established as a 

biomarker for the integrity of this pathway [51] [52] [53] [6] [36]. After inducing ICL 

the FA pathway is activated followed by HRR. Intact RAD51 foci formation 

therefore reveals integrity of upstream events [38]. Thus we used RAD51 foci 

formation as a marker for proficiency of ICL repair. EGFR-mutant cells had 

reduced ability to form RAD51 foci when challenged with cisplatin and low foci 

levels correlated with sensitivity to cisplatin (Figure 7).  

Interestingly, the RAD51 foci defect seen in EGFR-mutant cells is specific for ICL 

damage (Figure 9). EGFR-mutant cells are perfectly able to form RAD51 foci 

when challenged with IR. Unlike cisplatin, IR introduces DNA DSB and other DNA 

damage, but not ICL. ICL need to be unhooked via the FA-pathway before HRR 

can occur [40] [42]. EGFR-mutant cells show impaired RAD51 foci formation after 

treatment with cisplatin, but not with IR. Thus, when exposed to IR, which does 

not cause ICL, EGFR-mutant cells are able to form RAD51 foci. This indicates that 

there is no general RAD51 foci defect. Rather the repair defect in EGFR-mutant 

cells treated with a crosslinking agent needs to be upstream of RAD51 foci 

formation. A defect in the FA pathway upstream of HRR has been previously 

shown to lead to a RAD51 foci defect and we confirm this phenomenon (Figure 

7D) [102] [69]. We therefore suspected EGFR-mutant cells harbor a repair defect 

in the FA-pathway upstream of RAD51 foci formation. 
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How does EGFR impair the FA/HRR pathway? Mutant EGFR downstream 

signaling is overactive and AKT among others is constitutively activated [5]. AKT 

has been reported to suppress HRR [80]. Thus overactive EGFR signaling may 

have an adverse effect on HRR. However, we did not see rescue of RAD51 foci 

formation in response to cisplatin when we inhibited EGFR signaling with an 

EGFR inhibitor or PI3K/AKT inhibitor (Figure 12). Furthermore inhibiting EGFR 

signaling in an EGFR wild-type cell line had no effect on cisplatin-induced RAD51 

foci levels (Figure 13D). Thus EGFR signaling does not seem to influence the 

FA/HRR pathway. 

 

Wild-type EGFR, but not the mutant receptor, has been shown to translocate to 

the nucleus, where it may activate transcription genes [103] [20]. It has been 

further suggested, that wild-type EGFR may increase DNA-PKcs activity in the 

nucleus. DNA-PK plays an important role in DSB repair through NHEJ, an 

alternative DSB repair pathway to HRR [20] [104]. DSB are an intermediate 

structure in ICL repair; it is therefore thought that NHEJ and HRR “compete” for 

the repair of these intermediates. It has been previously shown that EGFR-mutant 

cells are sensitized to IR and cisplatin [20]. This sensitization was attributed to an 

inability of mutant EGFR to translocate to the nucleus and thus reduced DNA-PK 

activity [20].  

We tested this notion and confirmed that mutant EGFR does not translocate to the 

nucleus when challenged with cisplatin. We did observe some translocation of 

wild-type EGFR (Figure 10). However, such few cells contained the receptor in 

response to cisplatin that it is unlikely that EGFR nuclear translocation could 

cause the difference in sensitivity to cisplatin.  

We further were not convinced that inability of EGFR-mutant cells to increase 

DNA-PK activity in the nucleus should account for sensitization to cisplatin, as 

previously claimed [20]. If this was the case, cells containing wild-type EGFR 

should be sensitized to cisplatin by inhibition of DNA-PK. However in our hands 

we show that there is no sensitization by DNA-PK inhibition to cisplatin in wild-

type EGFR cells (Figure 11). In cells expressing mutant EGFR, DNA-PK inhibition 

may even increase resistance to cisplatin very slightly. We concluded from our 

results that loss of DNA-PK activity does not sensitize to ICL in either mutant or 

wild-type EGFR cell lines.  
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Increased DNA-PK activity previously seen in wild-type EGFR cells may account 

for IR resistance, but ICL repair differs greatly from repair of IR induced DNA 

damage [20] [105]. Supporting our results, increased DNA-PK activity has 

previously been shown to have an adverse effect on ICL-repair: DNA-PK is a key 

player in DSB repair by NHEJ, which is an error-prone alternative to HRR for DSB 

repair [104] [106] [38]. NHEJ is not required for ICL-repair [38] [107] [108]. It is 

believed to compete with HRR for the repair of DSB, occurring as intermediates in 

ICL-repair. The FA-pathway channels repair into high-fidelity HRR by inhibiting 

NHEJ [104] [38]. Thus FA deficiency leads to chromosomal radials and ICL 

sensitivity presumably through the lack of inhibition of NHEJ. Underscoring this 

idea are findings that inhibition of NHEJ in a FA deficient background reverses 

toxicity of ICL-inducing drugs [104] [109] [110] [38]. 

 

We discarded EGFR signaling, EGFR translocation, and EGFR’s influence on 

DNA-PK activity as possible mechanisms for impairing the FA/HRR pathway. 

Surprisingly, overexpression of wild-type EGFR in a mutant EGFR cell line was 

able to rescue RAD51 foci in response to cisplatin (Figure 13). We concluded from 

these data that wild-type EGFR is capable of overriding the adverse effect of 

mutant EGFR on the FA/HRR pathway, resulting in rescue of RAD51 foci 

formation after treatment with cisplatin. 

Furthermore EGFR silencing, but not kinase inhibition, triggered an “EGFR-mutant 

phenotype” in an EGFR wild-type cell line, as cisplatin-induced RAD51 foci levels 

were markedly reduced (Figure 13D).  

Thus we concluded the repair defect is not genetically fixed.  Wild-type EGFR may 

play a role in ICL repair, which is inhibited by mutant EGFR in a dominant 

negative fashion. Only when overexpressed can wild-type EGFR compete away 

the mutant version, resume its role in ICL repair and thus rescue RAD51 foci (see 

model). Since we have already studied EGFR signaling and nuclear translocation, 

future research could be done on EGFR dimerization. EGFR is known to form 

homo- or heterodimers with HER2 [15] [16]. It is conceivable that there may be 

differences in dimerization preference between the mutant and the wild-type 

receptor. It could be envisioned that distinct dimerization patterns may have 

different effects on cellular processes and possibly DNA repair. Thus, in a next 

step I would like to suggest performing immunoprecipitation of EGFR and HER2 
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to assess any differences in dimerization preferences between mutant and wild-

type EGFR. 

 

4.3. EGFR-mutant cells show reduced FAN1 
recruitment and impaired ICL unhooking 

We confirmed our hypothesis of a defect within and not in parallel to the FA 

pathway by showing epistasis between mutant EGFR and disruption of the FA 

pathway by FANCD2 mutation (Figure 14). No matter whether cells had either or 

both mutations, after treatment with MMC we observed similar DNA damage 

levels, as measured by !H2AX foci. 

 

Narrowing down the defect, we concluded it to be downstream of the core 

complex, BRCA1 and FANCD2, since EGFR-mutant cells are proficient in forming 

both BRCA1 and FANCD2 foci in response to ICL-inducing drugs (Figure 16 + 

17). Early in ICL repair BRCA1 promotes chromatin loading of FANCD2-Ub [42]. 

Later it promotes RAD51 loading [42]. FANCD2 foci on the other hand appear 

downstream of the core complex and are abrogated if the core complex is not 

intact [42]. To further strengthen intact FANCD2 function in EGFR-mutant cells, 

mono-ubiquitination of FANCD2 in response to cisplatin treatment could be 

checked by western blotting. In fact this experiment has been done in the 

meantime by my colleague Liliana Gheorghiu, and proper mono-ubiquitination of 

FANCD2 in cisplatin treated EGFR-mutant cells was confirmed [111]. 

 

We found the repair defect in EGFR-mutant cells to be at the stage of ICL 

unhooking (Figure 18). ICL can be indirectly quantified by a modified alkaline 

comet assay [20] [85] [86]. To further characterize this ICL unhooking defect we 

investigated the nucleases involved in the ICL unhooking step [40] [42]. EGFR-

mutant NSCLC have previously been shown to contain low ERCC1 expression 

[112]. However, we do not see this in our cell lines (Figure 19). We did however 

observe low FAN1 expression (Figure 19 + 20). EGFR-mutant cells were further 

impaired to form FAN1 foci in response to ICL-inducing drugs (Figure 21). From 

these data we concluded that mutant EGFR is associated with reduced ability to 
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recruit FAN1 and impaired ICL unhooking, leading to defective ICL repair and 

increased sensitivity to ICL-inducing drugs.  

 

Supporting this model are findings that silencing of FAN1 leads to persistence of 

!H2AX foci and increased chromosomal radials similar to FANCD2 depleted cells 

in response to cisplatin [59]. FAN1 is not required for ubiquitination of FANCD2 or 

FANCI, thus FANCD2 foci are intact [59]. Additionally, FAN1 is not required for 

resection of DSB or RPA foci formation; in fact an increase in RPA foci may be 

observed [59]. We could detect the same phenomena in EGFR-mutant cells as 

described above. Furthermore the downstream RAD51 foci defect, which we 

observe in EGFR-mutant cells, is consistent with an unhooking defect or a defect 

within the FA pathway. Mutated FANCD2 leads to an abrogation of RAD51 foci 

(Figure 7D) [102] [113] [69]. Also, ICL unhooking and DSB resection is needed to 

create the 3’ overhangs, which is the substrate for HRR and RAD51 foci formation 

[40] [114].  

Yet lack of FAN1 recruitment may not be entirely responsible for failed ICL 

unhooking. Other nucleases involved in ICL-unhooking are XPF-ERCC1, MUS81-

EME1 and SLX1 [40] [42]. SLX4/FANCP is responsible for recruiting those 

nucleases [40] [42]. Interestingly, others have reported RAD51 foci to be intact 

after depletion of either FAN1 or SLX4/FANCP [59]. Conceivably additional 

nucleases may be malfunctioning in EGFR-mutant cells. We see diminished 

RAD51 foci formation in EGFR-mutant cells, which suggests both FAN1 and 

SLX4/FANCP function may be disrupted. It would be interesting to study SLX4 

foci formation in EGFR-mutant cells treated with cisplatin. In the meantime Mrs. 

Gheorghiu has been examining this, however so far, available SLX4 antibodies 

have not yielded results with adequate quality for publication. To circumvent the 

problem of poor SLX4 antibody one could transfect tagged SLX4/FANCP to study 

foci formation in wild-type versus mutant EGFR cells treated with cisplatin.  

Assuming impaired function of several endonucleases, the question remains: how 

could mutant EGFR disrupt their recruitment? Ubiquitinated FANCD2 is 

responsible for delivering FAN1 and SLX4/FANCP to the site of damage [42]. It 

could be speculated that wild-type EGFR promotes the recruitment of these 

endonucleases by FANCD2 and this promoting role would be disrupted by the 

mutant version. We have already shown mutant EGFR to be able to impair FAN1 



4. DISCUSSION   99 

 
 

foci formation. In order to elucidate any influence of EGFR on direct interactions 

between ubiquitinated FANCD2 and FAN1 and/or SLX4/FANCP, 

immunoprecipitation of FANCD2 and FAN1 or SLX4/FANCP should shed light on 

possible differences in complex formation in wild-type and mutant EGFR cells. 

 

4.4. DNA repair defect in EGFR-mutant cells is 

exploitable with PARP inhibitors 
We aimed to exploit the DNA repair defect found in EGFR-mutant cells for 

targeted therapy. PARP inhibitors are a new group of targeted drugs, which 

exploit HRR defects [3]. They are currently tested for the treatment of HRR 

defective breast, ovarian and prostate cancer patients [61]. It has been previously 

reported that not only HRR defects but also impairments in the FA pathway 

sensitize to PARP inhibitors [65]. In addition, FAN1 seems to have a dual role in 

ICL unhooking and late stage HRR, where it may be involved in resolving Holliday 

junctions (Figure 23A) [58] [59] [60].  

 

We hypothesized EGFR-mutant cells to harbor a general defect in FAN1 

recruitment to sites of DNA damage. This would compromise not only ICL 

unhooking, but also late stage HRR, thus leading to sensitivity to PARP inhibitors. 

 

Supporting the first part of our hypothesis we confirmed EGFR-mutant cells to be 

generally impaired in recruiting FAN1, which we concluded from their reduced 

ability to form FAN1 foci in response to the PARP inhibitor olaparib (Figure 22).  

 

To investigate compromised HRR, we used RAD51 foci formation as a marker for 

any alterations of HRR in EGFR-mutant cells treated with olaparib (Figure 23). We 

observed intact RAD51 foci induction, but RAD51 foci persist at a later time point. 

We interpreted these results as follows: PARP inhibitor treatment results in 

unrepaired DNA SSB [65] [66]. SSB become DSB during DNA replication and 

require HRR for reliable repair [65] [66] [3]. Recall that EGFR-mutant cells are 

impaired in ICL unhooking, yet here there is no need to unhook any ICL to form 

DSB, which are the substrate for RAD51 loading. Thus, with DSB present after 
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PARP inhibitor treatment, RAD51 protein can be loaded onto DNA strands at DSB 

resulting in RAD51 foci formation in EGFR-mutant cells. Holliday junctions, which 

are late stage HRR structures, contain RAD51 protein filaments, which 

disassemble when the Holliday junction (HJ) is resolved [115] [116]. Persisting 

RAD51 foci have been previously established as a marker for unresolved HJ [115] 

[116]. Prolonged RAD51 foci formation in EGFR-mutant cells, as we have seen, 

may thus point to an inability to resolve Holliday junctions in response to olaparib.  

We further found that FANCD2 mutant cells, like EGFR-mutant ones, show 

persisting RAD51 foci after olaparib. FANCD2 is responsible for the recruitment of 

endonucleases, such as FAN1, to ICL and presumably to HJ as well [40] [42]. 

Therefore these data support our notion that RAD51 persistence and possibly 

unresolved HJ may be due to reduced presence of FANCD2-dependent 

endonucleases, such as FAN1, at the site of damage.  

Again FAN1 may not be the only culprit for impairing late stage HRR and 

sensitization to PARP inhibitors. Like ICL unhooking, there are several nucleases 

involved in resolving HJ: BLM, MUS81-EME1, ID-complex, SLX4/FANCP-SLX1 

complex, GEN1, and RAD51C/FANCO [56] [40] [42]. Similarly future research 

could investigate impaired recruitment of these nucleases by analyzing foci or, if 

that proves technically difficult, tagging the nuclease of interest. 

 

What is the link between mutant EGFR and a replication-fork specific DNA repair 

defect? Here we can only speculate. Mutant EGFR has been previously 

associated with altered FA/BRCA function. EGFR-mutant lung cancers have been 

described in patients with BRCA germline mutations [117]. Furthermore increased 

EGFR expression has been reported in BRCA1 mutant breast cancers [118]. 

Mutated EGFR has oncogenic properties, such as increased proliferation [5]. It is 

tempting to suggest that mutated EGFR causes replication fork stress through 

increased proliferation in pre-cancerous cells. This could lead to mutations and 

malignant transformation in cells defective in replication-fork specific DNA repair 

and thus mutant EGFR would ultimately select for cells with defects in the 

FA/HRR pathway. 

 

Finally, defective repair in EGFR-mutant cells treated with olaparib does indeed 

lead to increased sensitivity to the drug in vitro and in vivo. This is evident by 
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decreased clonogenic survival and increased DNA damage levels in EGFR-

mutant cell lines challenged with olaparib (Figure 24 + 25). Similar to crosslinker 

sensitivity, not all EGFR-mutant cell lines show striking sensitivity to olaparib. As 

discussed above differences in genetic context might exacerbate or compensate 

for the repair defect associated with mutant EGFR. A clinical trial could determine 

the potential clinical significance of the association between olaparib sensitivity 

and EGFR mutation status. 

 

In vivo, lung cancer tissue obtained from patients harboring mutant or wild-type 

EGFR shows significantly more DNA damage in the mutant tissue compared to 

the wild-type control tissue, when treated with olaparib (Figure 26). The ex-vivo 

foci method had been previously validated [6] [119]. We need to acknowledge that 

the patient sample of two is small. Ideally, follow up experiments would include 

mutant (e.g. PC9) and wild-type (e.g. A549) EGFR xenografts to further 

strengthen the difference in sensitivity to olaparib in vivo. Nevertheless these 

results show a trend and may raise hopes for some EGFR-mutant lung cancer 

patients to be able to benefit from targeted treatment with PARP inhibitors.  

 

4.5. DNA damaging treatments: No adverse 

influence of EGFR TKI resistance on 
sensitivity 

A secondary aim of this thesis project was to investigate any influence of 

resistance development to first line treatment with EGFR inhibitors on sensitivity to 

DNA damaging treatments, such as IR, cisplatin or olaparib. 

 

We found no significant change in clonogenic survival between TKI sensitive and 

resistant EGFR-mutant lung cancer cell lines when treated with cisplatin (Figure 

27B).  
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EGFR TKI resistance may have a sensitizing effect to IR, since clonogenic 

survival decreased and more apoptosis was seen in at least one EGFR-mutant 

cell line with acquired TKI resistance (Figure 28). 

 

Strikingly EGFR TKI resistance had a pronounced sensitizing effect on treatment 

with olaparib, as evident by decreased clonogenic survival and increased levels of 

DNA damage indicated by !H2AX foci in EGFR TKI resistant cell lines compared 

to sensitive ones when treated with olaparib (Figure 29B). While the difference in 

!H2AX foci levels between EGFR TKI resistant and sensitive cell lines can be 

seen by eye, future experiments should further quantify that. 

What could be the reason for increased sensitivity of EGFR TKI resistant cells to 

PARP inhibition? PARP is involved in SSB repair, which become DSB during S-

phase, when PARP is inhibited [120] [3]. The more SSB are present 

endogenously the more can become DSB during S-phase, which require HRR for 

repair. Yet, as we have shown in this work, EGFR-mutants are defective in that 

pathway. The increase in sensitivity to olaparib seen in EGFR TKI resistant cells 

compared to TKI sensitive ones may therefore be due to more endogenous SSB. 

Utilizing an alkaline comet assay we did indeed observe more DNA breaks in 

EGFR TKI resistant cells (Figure 29C). It should be noted that with this assay both 

SSB and DSB are captured [121]. In future experiments one could single out the 

amount of SSB by performing an alkaline and neutral comet assay in parallel. The 

neutral comet assay measures DSB only [122]. Subtracting the amount of breaks 

found in the neutral assay from those yielded by the alkaline assay results in the 

amount of SSB.  

 

What may be the connection between EGFR and increased amount of SSB in 

EGFR TKI resistant cells? It has been shown that, EGFR inhibition can cause 

oxidative stress [123] [124]. Oxidative stress can result in increased DNA damage 

including DNA SSB [120] [3]. EGFR TKI resistant cells are continuously cultured 

in the presence of EGFR inhibitor, which could be responsible for introducing SSB 

due to more oxidative stress. Assessing differences in oxidative stress among 

EGFR TKI resistant and sensitive cell lines, for example by measuring intracellular 
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reactive oxygen species (ROS), could be a valuable future experiment to further 

investigate this idea.  

 

4.6. Implications of findings for the clinic: 
The results of our study could be useful for making treatment choices in the clinic. 

It is of great interest to identify patients who may benefit from targeted therapy. 

Yet herein lays the difficulty. We acknowledge that EGFR mutation alone may not 

be a perfect biomarker for sensitivity to olaparib. Not all of our cell lines showed 

increased sensitivity to the drug, thus some may have evolved mechanisms to 

compensate for the DNA repair defect. Therefore one could perform a biopsy on 

lung cancer patients with mutant EGFR and utilize our ex-vivo foci assay to 

identify tumors with increased sensitivity to PARP inhibitor. Those patients should 

benefit from treatment with PARP inhibitors alone or in combination with a 

platinum-based chemotherapeutic. This would be a very interesting clinical study 

– one that we hope to see succeeding in the future. 
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5.1. Summary of findings 

Lung cancer is the leading cause of cancer deaths, emphasizing the need for 

better treatments. In patients with EGFR-mutant NSCLC, increased responses to 

platinum-based chemotherapies have been seen, compared to EGFR wild-type 

cancers. However, the mechanisms underlying this association have remained 

elusive. Here, we confirmed in a panel of 9 lung cancer cell lines, that mutant 

EGFR was associated with a range of cisplatin sensitivities, with the most 

sensitive cell line displaying a more than 35-fold lower survival fraction than EGFR 

wild-type lines (for 16 µM cisplatin). 

Cisplatin sensitivity can be associated with defects in the Fanconi Anemia (FA) 

pathway, which functions in the detection and repair of DNA ICL at stalled 

replication forks. Strikingly, EGFR-mutant cells displayed the hallmarks of the FA 

phenotype, namely increased cell kill, damage-induced G2 cell-cycle arrest, and 

chromosomal radial formation in response to ICL introduced by mitomycin C.  

In ICL repair the FA pathway produces DSB intermediates, which are 

subsequently repaired by HRR. RAD51 is the key mediator in HRR. EGFR-mutant 

cells exhibited an impaired RAD51 foci response specifically after ICL induction. 

Impaired RAD51 foci formation in EGFR-mutant cells was resistant to inhibition of 

EGFR downstream signaling, implying a kinase-independent regulation of HRR. 

Supporting this notion, overexpression of wild-type EGFR in EGFR-mutant cells 

was able to rescue RAD51 foci formation, while siRNA-mediated depletion of wild-

type EGFR, but not kinase inhibition suppressed RAD51 foci. 

The effect of EGFR mutation was epistatic with a defective FA pathway caused by 

mutated FANCD2, as the presence of either or both of these mutations resulted in 

virtually identical DNA damage levels. We identified a defect downstream of 

FANCD2 at the level of recruitment of the FAN1 nuclease and ICL unhooking.  

FAN1 has a putative dual role in unhooking ICL and in resolving HJ late in HRR. 

HRR defects can be exploited by targeted treatment with PARP inhibitors. Indeed, 

in response to the PARP inhibitor olaparib, FAN1 foci failed to form in EGFR-

mutant cells compared to wild-type cells (13% versus 29%). Interestingly RAD51 

foci formed initially normally in EGFR-mutant cells, suggesting that the RAD51 foci 

defect seen after ICL induction was due to a lack of DNA substrate secondary to 



5. SUMMARY   106 

 
 

failed ICL incision. However, RAD51 foci persisted >24 hours (25.6% vs 5.1%) in 

EGFR-mutant cells, indicating an inability to complete HRR. 

EGFR-mutant lung cancer cell lines demonstrated reduced clonogenic survival 

after olaparib treatment, with IC50 values < 6 µM for 8/9 cell lines, compared to > 

6 µM for all EGFR wild-type cell lines. Consistent with this phenotype, we 

observed increased DNA damage levels in biopsy material from EGFR-mutant 

NSCLC treated with olaparib ex-vivo compared to wild-type tumor, i.e., 21% vs 

4% cells with !H2AX foci (p=0.03).  

In conclusion, we describe an EGFR kinase-independent disruption of the FA 

pathway downstream of FANCD2 in EGFR-mutant cells, which impairs ICL 

unhooking or completion of HRR in response to cisplatin or olaparib treatment, 

respectively. EGFR-mutant lung cancer patients thus may benefit from treatment 

with PARP inhibitors. 

 

In a secondary aim we show that acquired resistance in EGFR-mutant cell lines to 

first line therapy with EGFR inhibitor may not have adverse effects on sensitivity to 

DNA damaging treatments, such as IR, cisplatin or olaparib. 
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5.2. Model 

 
 
 
Wild-type EGFR promotes DNA repair. It may be involved in the recruitment of FAN1, and 
possibly other nucleases, by FANCD2 to the site of DNA damage. Mutant EGFR disrupts 
this function in a dominant negative fashion leading to impaired recruitment of FAN1 and 
possibly other nucleases to the site of damage.  
In case of crosslinker damage, this results in failed ICL unhooking and blocked HRR, as 
indicated by a secondary RAD51 foci defect.  
On the other hand in PARP inhibitor treated cells lack of FAN1 and other nucleases leads 
to unresolved Holliday junctions and persisting RAD51 foci. 
Unrepaired DNA damage leads to cell death and thus increased sensitivity to crosslinking 
agents, as well as PARP inhibitors seen in EGFR-mutant cells. 
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7.1. Abbreviations 

Abbreviations   
ATM ataxia telangiectasia mutated 
BRCA1/2 breast cancer 1/2, early onset 
BSA bovine serum albumin 
cp cisplatin 
DDR DNA damage response 
dH2O deionized H2O 
DNA Deoxyribonucleic acid 
DSB double strand break 
EGFR epidermal growth factor receptor 
FA Fanconi Anemia 
FAN1 FANCD2-associated nuclease 1, KIAA1018 

FANCA/B/C/… Fanconi Anemia complementation group 
A/B/C… 

HJ Holliday junction 
HRR homologous recombination repair 
ICL interstrand crosslink 
IR irradiation 
mAb monoclonal antibody 
MAPK mitogen-activated protein kinase 
max maximum 
MEF mouse embryonic fibroblasts 
min minutes 
MMC mitomycin C 
MRN complex Mre11, Rad50 and NSB1 
Ms mouse 
mut mutant 
NER nucleotide excision repair 
NSCLC Non-small cell lung cancer 
pAb polyclonal antibody 
PARP poly(ADP-ribose) polymerase  
Pen-Strep penicillin streptomycin 
PFA paraformaldehyde 
PI3K phosphatidylinositol 3-kinase 
q.s. quantum satis 
Rb rabbit 
RPA replication protein A 
RT  room temperature 
SCLC Small cell lung cancer 
ser serine 
SF survival fraction 
SOC medium Super optimal broth with catabolite repression 
SSB single-strand break 
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SSBR single-strand break repair 
STAT signal transducer and activator of transcription 
TBST Tris-Buffered Saline and Tween20) Solution 
TKI tyrosine kinase inhibitor 
TLS translesion synthesis 
UBZ4 ubiquitin-binding zinc finger 4 
wt wild-type 
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Journal Articles: 

 
Heike N. Pfäffle, Meng Wang, Liliana Gheroghiu, Natalie Ferraiolo, Patricica 
Greninger, Kerstin Borgmann, Jeffrey Settleman, Cyril H. Benes, Lecia V. Sequist, 
Lee Zou, and Henning Willers, EGFR activating mutations correlate with a 
Fanconi anemia-like cellular phenotype that includes PARP inhibitor 
sensitivity. Cancer Research, epub ahead of print 2013 
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Dahm-Daphi, J., Kachnic, L. A., Willers, H., Detection of impaired homologous 
recombination repair in NSCLC cells and tissues. J Thorac Oncol, 2013. 8(3): 
p. 279-86. 
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Book Chapter: 
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160. 

 
 

Poster and Oral Presentation: 
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Lee Zou, and Henning Willers, EGFR-mutant lung cancer cells exhibit a 
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