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Abstract

In this thesis a concept for differentiability especially of Loeb measures will be
developed. A theory of differentiability of standard measures had been already
introduced by S.V. Fomin in 1966 and has been further developed by a number
of mostly Russian mathematicians. Some basic results of this extensive theory
that are essential for the understanding of our concept and its applications will be
stated at the beginning of this work, mostly modified in a way that makes them
suitable for the application of the principles of nonstandard analysis.

Internal measures of a nonstandard model of mathematics build the basis for
Loeb measures which are defined on specially rich o-fields. We introduce different
forms of differentiability for internal measures and discuss the resulting questions.
The achieved insights about internal measures will be used later to prove a number
of results concerning Loeb measures. The main result of this thesis is theorem
11.3, which shows the very general assumptions that lead to one of the strongest
forms of differentiability - the so-called Fomin-differentiability - for Loeb measures.

Studies of the differentiability properties of the Loeb measure produced by an
internal Gaussian measure on an internal Euclidian space lead to a number of new
results in context with the corresponding measure space. Thereby the operators
resulting from the differentiability of this measure - a kind of Malliavin derivative
as well as a form of the Skorokhod integral - will be discussed.

Hereby the consequences for an image measure of I'; defined on a standard
o-field enable - among other things - a new and obvious proof for the fact that

the classical Wiener space is in particular an abstract Wiener space.
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Zusammenfassung

In der vorliegenden Arbeit wird ein Konzept der Differenzierbarkeit speziell von
Loeb Maflen entwickelt. Eine Theorie der Differenzierbarkeit von standard Maflien
wurde bereits 1966 von S.V. Fomin eingefiithrt und seither von einer grofien Anzahl
vorwiegend russischer Mathematiker weiterentwickelt. Einige grundlegende In-
halte dieser sehr umfangreichen Theorie, die fiir das Verstandnis unseres Konzepts
und seiner Anwendungen unerlésslich sind, werden zu Beginn der Arbeit aufgezeigt,
groftenteils so modifiziert, dass sie sich fiir die Anwendung der Grundprinzipien
der Nonstandard Analysis eignen.

Interne Mafle eines Nonstandard Modells der Mathematik sind die Grundlage
fiir die auf besonders reichhaltigen o-Algebren definierten Loeb Mafle. Wir fiihren
verschiedene Formen der Differenzierbarkeit fiir interne Mafle ein und diskutieren
die sich daran ankniipfenden Fragestellungen. Die dabei gewonnenen Erkennt-
nisse iiber interne Mafle werden im folgenden genutzt, um eine Reihe von Ergeb-
nissen iiber Loeb Mafle zu beweisen. Das entscheidende Resultat dieser Arbeit
ist Theorem 11.3, in dem gezeigt wird, unter welchen sehr allgemeinen Vorausset-
zungen eine der starksten Formen der Differenzierbarkeit, die sogenannte Fomin-
Differenzierbarkeit, fiir Loeb Mafle folgt.

Untersuchungen tiber die Differenzierbarkeitseigenschaften des Loeb Mafles I';,
das durch ein internes Gaufl Maf§ I" auf einem internen euklidischen Raum erzeugt
wird, fiithren zu einer Reihe von neuen Ergebnissen im Zusammenhang mit dem
entsprechenden Mafiraum. Dabei werden auch die sich aus der Differenzierbarkeit
dieses Mafles ergebenden Operatoren - eine Form der Malliavin Ableitung sowie
eine Form des Skorokhod Integrals - diskutiert.

Die sich daraus ergebenden Folgerungen fiir ein Bildmafl von 'y, das auf einer
standard o-Algebra definiert ist, fiihren unter anderem zu einem neuen eleganten
Beweis fiir die Tatsache, dass der klassische Wiener Raum die Bedingungen fiir

einen abstrakten Wiener Raum erfillt.
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Introduction

The theory of differentiable measures on infinite dimensional spaces, introduced by
Fomin [15] in 1966 (see Bogachev [9] for more details), has become the foundation
for many applications in different fields such as quantum field theory (see e.g.
Kirillov [22] or Smolyanov and Weizsicker [34]) or stochastic analysis (see e.g.
Bogachev [9], [7], [8] and Smolyanov and Weizsicker [35]).

Differentiability (in the sense mentioned above) for Loeb measures has not been
studied previously as far as we are aware. In this thesis we present its foundation
and some basic results. As application we investigate differentiability properties
of a special Loeb measure I';, induced by an internal Gaussian measure I' on F¥
where F is an internal Euclidian space and H an infinite natural number. This
Loeb measure is introduced by H. Osswald in his approach to Malliavin calculus
in abstract Wiener spaces [30], generalizing Cutland’s and Ng’s construction of

Brownian motion [12].

The thesis is organized as follows: In the first sections we try to give an
impression of the richness of the (standard) theory of differentiable measures by
presenting some of the basic ideas, referring mainly to the works of Weizsacker,
Smolyanov and Bogachev. We pay particular attention to Gaussian measures
as they are differentiable and the space of differentiability coincides with the

characteristic Cameron-Martin space.

Since we want to obtain results for Loeb measures, in Chapter 7 to 10 we pro-
vide and discuss natural and very general assumptions for the underlying internal
measures, starting up from the questions dealt with by the standard literature.
The arising results for the Loeb measures - in particular a powerful theorem for
the case of Fomin-differentiability - are presented and discussed in Chapter 11.

Most of the ideas of these sections have already been published in [1].

Chapter 12 contains several lifting results we need for our studies of the Loeb
measure ['; introduced in Chapter 13. This section also presents an image measure
W of T';, defined on the Borel subsets of the space Cy of continuous functions
f :]0;1] — B, f(0) = 0, where B denotes a separable Banach space. The
construction of both measure spaces is derived from Osswald’s approach. In the
following sections we present nonstandard and standard representations of the
dual C and of a subspace Cy of Cp that later turns out to be the Cameron-
Martin subspace H (W). We show that the measure W is a Gaussian measure

and generalize Cutland’s nonstandard representation of Wiener integrals in [11].

1



Chapter 21 takes up again our main theme of measure differentiability. We
show the Fomin-differentiability of the Loeb measure I';. This yields the Fomin-
differentiability of the image measure W along the elements of Cy. At the end
of our thesis we present the well known - but not trivial - standard result that
the pair (Cp;Ch), and therefore in particular the classical Wiener space, is an
abstract Wiener space. This follows from our previous sections.

Describing the standard theory of differentiable measures and sketching Oss-
wald’s approach many nice results of excelent works will be cited. Although we
tried to present a well comprehensible text in these sections we occasionally omit-
ted proofs, especially if one can find them in important books like those of Ash
[5], Bogachev [10], Diestel and Uhl [13], Heuser [19], Kuo [24] or Osswald [30].



1 Some Definitions, Notations and Basics

We indicate here some definitions, notations and basic facts that will frequently
be used throughout this work. For sets A and B we write A C B if A is a
subset of B, where the inclusion needs not to be strict. AU B denotes the union
of A and B, AN B the intersection. A \ B denotes the set of all elements of
A, that do not belong to B. Let N := {1,2,...}. The set of real numbers is
denoted by R, R™ denotes n-dimensional Euclidian space and R* the set of all
sequences (an),cy With a, € R. For s,t € R, s < t, we define the intervals
[s;t] i={xeR:s<zx<t}and|s;t[:={x eR:s <z <t}

Let Q be any set and F a o-field on €, then (2, F) is called a measurable
space. If Q is a topological space we denote by by the Borel o-field on 2. Given
any measurable space (£, F), a measure v on ) denotes in this work always
a real-valued, countably additive function on F. The triple (2, F,v) is called
measure space. Note that a measure may take on negative values. For B € F

set

vt (B):=sup{v(A): Ae F,AC B},
v_(B):=—inf{v(A): Ae F,AC B}.

By the Jordan-Hahn decomposition theorem (see Ash [5]) vt and v~ are measures

+

on F and v = v™ — v~. We define the norm of total variation of the measure

vV as

Il = v (@) + v~ ().

Let (€2, F) be a measurable space, u and v two measures on F such that v is
nonnegative. We say that p is absolutely continuous with respect to v if
v (B) = 0 implies pu (B) = 0 for all B € F. In this case we write p < v. If p < v,
by the Radon-Nikodym theorem (see Ash [5]) there exists the Radon-Nikodym
derivative, i.e. a v-integrable function £ : 2 — R so that for all B € F

u(B)z/Baw)dw).

We will often use the term ‘;—’Ij instead of &.

Let (Q, F,v) and (€, F',v') be two measure spaces. We denote by F & F’ the
product o-field of F and F’ and by v ® v/ the product measure of v and v/'.

Let (2, F,v) be a measure space such that v is nonnegative. If a condition
holds outside of a set B € F with v(B) = 0 we say that the condition holds

3



v-almost surely or for v-almost all w € . Instead of v-almost surely and
v-almost all we simply write v-a.s. and v-a.a.

We will use the following theorem due to Nikodym (see Dunford and Schwartz
[14], Section II1.7.4, Corollary 4) :

1.1 Proposition

Let (Vn),en be a sequence of measures on a o-field F. If the limit

v(B):= lim v, (B)
exists for each B € F, then v is a measure and the o-additivity of the v, is uni-

form in n.

Given any locally convex space FE, let E’ denote the topological dual of F,
i.e. the space of all real-valued, linear and continuous functions on E. Sometimes
we say dual space instead of topological dual. Let E* denote the algebraic
dual of F, i.e. the space of all real-valued, linear functions on E. If B is a Banach
space, we denote the norm by |-| or |-| or || additionally provided with another

characteristic index. The topological dual B’ equipped with the norm

|olg = sup{p(z): 2 € B, ||y <1}

is itself a Banach space. Given any Hilbert space H we denote the inner product
by <;>pg and the corresponding norm by ||-||g. If H is understood, we simply
write <;> and ||-||. By the Riesz representation theorem (see Heuser [18]), we
can identify the dual space H' with H. Let xz,y € H. Then z is called orthogonal
to y if (x;y) = 0. In this case we write x Ly. Fix F,G C H. We define

rxlF & ifxlz forall z € F,

GLlF < ifzxlF forall x € G,
Ft={zcH:zlF}.

We further denote by span F' the linear subspace of H generated by F'. Let F' be
a finite dimensional subspace of H. By the projection theorem (see Heuser [18],

22.1), each x € H can be uniquely composed into a sum x = y, + 2., where y, € F’
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and z, € F+. The mapping
H .
prp H— F, z—y,
is called orthogonal projection from H onto F. For a subset B C F' we define

B+ Ft .= {xEH:x:ym—i-zmwhere yxEBandszFL}.

Let (2, F,v) be a measure space. For B € F we denote by 1p the indica-
tor function. Finite linear combinations of indicator functions are called simple
functions. Let p € N. Then L? (Q2,v) denotes the Hilbert space of all Borel

measurable functions f : 2 — R such that
[1s @) <.
Q

where we identify two Borel measurable functions f and g with f = g v—a.s. A

family § C L' (Q,v) is said to be uniformly integrable if

lim sup / |f| dv = 0.
Fooo{res)
{If1=k}

We will use the following applications of uniform integrability which are modifi-
cations of Theorem 7.5.2 and Theorem 7.5.3 in Ash [5], but they can be proved

similarly.

1.2 Proposition

Lete > O, (ft)—5<t<5
on §, such that for all w € Q the limat

be a uniformly integrable family of Borel measurable functions

lim f; (w) = f(w)

t—0

exists. Then f is integrable and



1.3 Proposition

A family (fi)_..,.. of Borel measurable functions on Q is uniformly integrable if

and only if the integrals fQ fidv are uniformly bounded and

sup [ fulw)dv () 0.

te]—s;s[B
as v(B) — 0.

Given any vector space (), a function g : {2 — R is called Gateaux differ-

entiable in the direction of a vector h € €, if for each w € €2 the limit

gt g )
t—0 t

=g (@) (h)

exists.

Fix any Banach space (B, |-|g). For a function f :[0,1] — B and a partition
P:0=ty<t; <...<t,=10f][0;1] we define

- Z |f(ts) — f(tiz1) g -

Let V (f) denote the supremum of V (P) over all partitions of [0;1]. V (f) is
called the variation of f. If V(f) < oo, we say that f is of bounded variation.

Let (Q, F,v) be a measure space. The Banach space B shall be equipped with

its Borel o-field. Functions of the form

k
E 07 1Bi7
i=1

with B; € F and «; € B, are also called simple functions. For a simple function

the Bochner integral is defined by

/(Za 1B>du —Zal (B;N B).

In general, a measurable function g : 2 — B is called Bochner integrable if

6



there exists a sequence (gy),,cy of simple functions g, : @ — B such that

lim [ |g, —glgdv =0.

n—oo

Q

In this case the Bochner integral || 5 9dv is defined for each B € F by

/gdu = lim [ g,dv,

n—o0o

B B

where the convergence is in (B, |-[g).

We will need the following important propositions about Bochner integrable

functions.

1.4 Proposition

(Diestel [13], II.2. Theorem 2.) A measurable function g : @ — B is Bochner
integrable if and only if |g|g is element of L' (Q,v).

1.5 Proposition
(Diestel [13], II.2. Theorem 9.) Let a,b € R,a < b, g : [a;b] — B be Bochner
integrable with respect to Lebesque measure \. Then

t+r
1
g(t) = lin% . g(s)ds for A\ —a.a.t € |a;b],
t

where the convergence is in (B, |-|g).

A Bochner integrable function g : 2 — B is called square Bochner integrable

if
/|g|§; dv < oo.
Q

The set of all square Bochner integrable functions g : 2 — B is denoted by
L* (v,B). Let J be a sub-o-field of F. The functions f,g : @ — B shall be

Bochner integrable. g is said to be the conditional expectation of f relative to

7



J if g is J-measurable and
/ gdy = / fdv
B B

for all B € J. The next proposition is an application of Jensen’s inequality.

1.6 Proposition

(Diestel [13], V.1.Theorem 4.) Let f : Q — B be square Bochner integrable, g the
conditional expectation of f relative to a sub-o-field J of F. Then

3 3
/ g2dv]| < / v
Q Q

The reader should be familiar with the concept of nonstandard analysis, in
particular the Loeb measure construction, presented e.g. by Albeverio et al. [2],
Osswald [30] or Loeb [27]. We will denote by * an elementary embedding from
the standard model of mathematics into an extended polysaturated model. Let
2 be an internal set. An internal function F': 2 — *R is called S-bounded if
there exists a number k € N such that |F(z)| < k for all z € Q. For a,b € *R we

write a ~ b if for all standard n € N

1
|b—al < —.
n

An element a € *R is called limited if there exists an n € N such that |a| < n,
otherwise a is called unlimited. An element a € *R is called nearstandard if

there is a real number b € R with a ~ b.

1.7 Proposition

(Osswald [30], Proposition 8.7.1.) An element a € *R is limited if and only if

there 1s a uniquely determined b € R with a =~ b.

We denote by Lim the set of all limited or - equivalently - all nearstandard num-
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bers. For any a € *R we define the standard part °a of a by

b ifais limited and b € R with a ~ b,
a = oo if ais unlimited and a > 0,

—o0 if ais unlimited and a < 0.

The standard part map st is given by
st: Lim — R, a+— °a.

Now we generalize these notations. Fix an infinite integer H € *N and define
T :={1,...,H}. In this context st denotes the surjective mapping

st: T —[0;1], n— °(%>

Let v be the internal counting measure on the internal set *P (T") of all inter-
nal subsets of T, i.e. v(A) = % for all A € *P(T), where |A| denotes the
*finite number of elements of A. We denote the Loeb-space over (T,*P (T),v) by
(T, L, ("P(T)) , vi)-

1.8 Proposition

(Albeverio et al. [2] or Osswald [30], Lemma 10.5.1.) A subset B C [0;1] is
Lebesgue measurable if and only if st™ [B] € L, (*P (T)). In this case

A(B) =v (st™'[B]).

Let (M;d) be a metric space. For x,y € *M we write x ~,; y if *d(x;y) ~ 0.
If M is a normed space, we write also x & ~y or simply = ~ y. A vector
x € *M is called nearstandard if there exists an element y € M such that
*d(x;y) ~ 0. Note, that in this case the vector y is uniquely determined. We call
y the standard part of x and write y = °z. An internal function F': *M — *R
is called S-continuous if F'(z) € Lim for all x € *M and F(x) ~ F(y) whenever
xR Y.

Given any internal measure space (2,4, 1) we denote by (€2, L,(A), 1) the
associated Loeb space. Let (B, ||3) be a Banach space.

An internal, A-measurable function F': Q — *B is called S,-integrable if for

9



all unlimited K € *N

/ |F|.gdp =~ 0.

{\F\*B ZK}

This property is equivalent to the condition, that fﬂ |F
e € R* there exists a § € R* such that

L

g A € Lim and for each

pdp <e,

for all A € A with u(A) <.

1.9 Proposition

(Osswald [30], Corollary 10.8.2.) Let F': Q — *R{ be an internal, A-measurable
function. F' is S,-integrable if and only if

°/Fd,u:/°Fd,uL<oo.
Q Q

We will very often use the following application of the so called “witness criterion”
(see Osswald [30], Section 10.11).

1.10 Proposition

Let F: Q) — *R be an internal, A-measurable function. If

/FQdu € Lim,
Q

then F is S,-integrable.

For p € N set

p

SLP (u) :=={F :Q — "B :|F|ly is S,-integrable} .

The next proposition is a slight modification of a lifting theorem of Anderson [4]
and Loeb [27].

10



1.11 Proposition

Let F : Q) — *B be an internal, A-measurable function.

(a) If [o|F
(b) F belongs to SLP (1) if and only if there exists a sequence (Gy), oy in SLP (1)

such that
/ F—G,
Q

Vs du is limited, then |F| is limited p-a.s.

1
wmdp < —
Bﬂn

for each n € N.

11



12



2 Definitions of Measure Differentiability

There are many different notions of measure differentiability. The following two
are most common (see e.g. Bogachev [9], Fomin [15] or Skorohod [33]). Let E be
a locally convex space equipped with its Borel o-field bg and y an element of F.
1) The measure v on by is called Fomin-differentiable along y if for all B € bg

the limit B B
- v(Btty) -~ v(B)

t—0 t

exists. By Proposition 1.1 the limit is a measure on bg.
2) The measure v on bg is called Skorokhod-differentiable along y, if there ex-
ists another measure v/ on by, such that for all continuous real-valued bounded

functions g on E

i 2 =L DD = oD _ )

The relationships between these two approaches were studied amongst others by

Averbukh, Smolyanov and Fomin [6] and Bogachev [9]. A very general definition
of differentiability of a curve of measures is given by Smolyanov and Weizsacker

in [35].

In this work we use the following modification of Smolyanov’s and Weizsécker’s
definition that is more suitable to serve as a basis for the definition of differen-
tiability of internal measures and Loeb measures. Let (2, F) be a measurable
space, (V) _c<i<e, € € RT, a curve of measures on F and C a set of F-measurable
real-valued bounded functions on 2. We say that the measure v := 1y is differ-
entiable in |—¢c;c[ with respect to the set C if there exists a measure v/ on
F, such that for all functions g of C

lim Jo. 9 = Jo gdv = / gdv'.
t—0 t Q

The measure v/ is called a derivative measure or simply a derivative of v.

Generally, derivative measures are not uniquely determined.

Note that this definition covers the cases mentioned above, since for a locally
convex space {2 and a fixed vector y €  a curve (14)_.<i<c can be defined by
n(B) =v(B+t-y) for all B € bg. When choosing C as the set of all continu-

13



ous, real-valued, bounded functions we obtain Skorohod-differentiability along .
When choosing C = {1 : B € F}, we obtain Fomin-differentiability along y.

We will use the term Fomin-differentiable if the differentiability is with respect
to C = {lg : B € F} and the term Skorokhod-differentiable if the differen-

tiability is with respect to the set of all continuous, real-valued, bounded functions.

Let (2, F,v) be a measure space. If € is a vector space, the idea of differen-
tiating along a vector can be extended as follows. Let h be a vector field, i.e. a

measurable mapping h : 2 — Q. Define transformations T} for —e <t < ¢ by
T,:Q— Q, 2T, (z) :=x—t-h(x).

Then a curve (;)_.<i<. is given by the image measures v, := v o T, *. If v is
differentiable in |—¢; e[ with respect to a set C, then v is also called differentiable

along the vector field h or simply along h.

The following integration by parts formula is a modification of a part of Proposi-
tion 3 in the article [35] of Smolyanov and Weizsécker. We adapted the assump-
tions there to our terminology. Furthermore, we don’t need boundedness of the

vector field, instead we have different demands on the set C.

2.1 Proposition

Let Q) be a locally convex space, v a measure on bg and h a vector field on €.
Suppose C to be a set of measurable, real-valued, bounded functions on ) that are
Gateauz differentiable in all directions h(x) with x € Q. If g € C the functions gs,
s € R\ {0}, defined by

g9z + s - h(z)) — g(z)

Js (l’) = s )

shall be uniformly integrable and ¢'(x)(h(z)):= limg_¢ gs (x). Let ¢'(z)(h(x)):=
limg .o gs (). Then the measure v is differentiable along the vector field h if and

only if there is a measure V' such that for all g € C

/Q g/ (@) (h()v (@) == [ gl (@)

Q

14



In this case V' is a derivative of v.

Proof: Let g € C. At first, note that for any ¢,s € R\ {0}, s = —t, we
have
Jogdvi — [qgdv  [qgoTidv — [ogdv
t B t B
[ St oty [ ot WD)y g
Q t Q S Q

Since the functions g, are uniformly integrable and lim, .o gs (x) = ¢'(x)(h(z))
for each x € €2, we can apply Proposition 1.2 to obtain that x +— ¢'(z)(h(z)) is

integrable and

1m/%w=44wwwwww.

s—0

Q

Hence
hm fQ gdyt - fQ ng _

t—0 t

—[gwwmmmww.

Now if v is differentiable with derivative v/, then

/gdu’ = lim Jogdin = Jogdv —/gl(x)(h(w))dy ().
Q Q

t—0 t

On the other side, if the integration by parts formula is fulfilled, then there is a

measure v’ with

/dil/ - _/le(ﬁ)(h(x))dy () = lim Jogdvi — [ gdul

t—0 t

If a measure v is differentiable and a derivative v/ is absolutely continuous with

respect to v, then the Radon-Nikodym derivative Z—”V/ is also called logarithmic
derivative. The next proposition and its proof stem from Section 2 in the article

[35] of Smolyanov and Weizsécker.

2.2 Proposition

Let (2, F) be a measurable space, (V;)_c<i<e a curve of nonnegative measures on
F. If v = vy is Fomin-differentiable in |—¢; €[, then the derivative V' is absolutely

continuous with respect to v.

15



Proof: Let v(N) = 0. Consider the function
fil-gel — Ry, t v (N)

Then f is differentiable at ¢ = 0 and f’(0) = v/ (N). Since f is nonnegative and
f(0) =0, the first derivative of f in 0 must be 0. Hence v/ (N) = 0. O
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3 Relationships between Different Forms of Dif-
ferentiability

The relationships between different forms of differentiability are described in great
detail in the standard literature. In this section we give a very short account,
confining ourselves on results we either need in the following or which gave the
inspiration for our contributions to the theory of differentiable Loeb measures.
Later in this thesis we will introduce several forms of S-differentiability of internal
measures and deal with their relationships. In this section, our aim is to scetch a
clear, tightly structured outline as basis for our following explanations.

Throughout this chapter, E is a locally convex space, equipped with its Borel
o-field bg, and the differentiability is always along a vector y € E. Hence, for any

measure v, the measure v; is given by the shift
n(A)=v(A+t-y).

The following helpful lemma is a special case of Proposition 2. of Smolyanov and
Weizsicker [35].

3.1 Lemma

Let v be a measure in bg. Suppose v to be differentiable in |—¢; e[ along a vector
y € E with respect to a set C. Let V' be a derivative of v. If for allt € |—¢;¢[ the

set C coincides with
{9 : E — R : there is a function f € C with g(x) = f(x +t-y) for all x € E},

then all measures v, are differentiable along y with respect to C and the measures

(v'), are derivatives.

Proof: Fix t € |—¢;¢[ . Choose ¢, f € C with g(z) = f(z+t-y). Then

lime g(x — s-y)dy(x fE x)dv(z _
s—0 S
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Jpglx —s-y—t-y)dv(z) - [pg(x—t-y)dv(z)

lim =

[E g@ — 1 y)dv'(z) = / g@)d (), (x). O

Note that the assumptions of Lemma 3.1 are in particular fulfilled, if v is Skorokhod-
differentiable or Fomin-differentiable along y. The following proposition shows the
strength of Fomin-differentiability. It is a special case of a part of Proposition 3 in
Smolyanov and Weizsécker [35]. In Section 8 we state a related result for internal

measures.

3.2 Proposition

Let v be a Borel measure on E. If v is Fomin-differentiable in |—¢; | along a vec-
tor y € E, then v s differentiable along y with respect to the set C of all bounded

Borel functions on E.

Proof: (See [35].) We have to show that

lim Jp gt = Jp 9 _ / %
E

t—0 t o

for all g € C. Obviously this is true for any simple function g. Now for arbitrary
g € C, there exists a sequence (g,),cy of simple functions g,, which converges
uniformly to g (see e.g. Ash [5], Section 1.5). Note that for ¢ € |—¢;¢[ also the
sequence (g, (r — ty)),,cy converges uniformly in x to g (x — ty). Moreover, since
the transformations T} : © — x — ty are bijective, for every § > 0, there is an
no € N, such that for all n > ny, for all x € E and all t € |—¢;¢[ the following
inequality (+) holds:

(+)  lgn(z—ty) —g(z —ty)| < 0.

Now define for all n € N

foil-ge[o R t— /gndz/t.
E

18



By Lemma 3.1, f,, is differentiable on |—¢; e[ with

fé(t)z/Egnd(vt)’z/Egn(:c—ty)du’(x).

By the inequality (+), the sequence (f,), oy converges uniformly on |—¢;¢ to a

function defined by |—e;e[ — R, t — [, g(x — ty)dv/(z). Since

lim f,(0) = lim [ g,(z)dv(z)= / g(x)dv(z),

— —

by elementary analysis, we can exchange the limits as follows

[ gdve — [, gdv S gndve — [ gndv

lim = lim lim =
t—0 t t—0 n—oo t
AUy — ndV
lim lim Jpon i = Jp9 = lim [ g,dV = / gd/'. 0O
n—oo t—0 t n—oo [ E

We will now show under which assumptions differentiability with respect to a
set C implies Fomin-differentiability. For this purpose we need the following two
lemmas, where the first one is obvious. Recall that ||v| = vT(E) + v~ (E) is the

norm of total variation of a measure v.

3.3 Lemma

For any measure v on bg and any t € R we have |11 = ||v||.

We call a space C of bounded Borel functions norm-defining if for each measure

vonbg

o :sup{/fdu Cfecand ||f],, < 1}.

Note that for any measure v being differentiable with respect to a norm-defining
set C the derivative v/ is uniquely determined. Furthermore, we have the following

application of Lemma 1.5 in Weizsicker [37].
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3.4 Lemma

Let v be differentiable in |—¢;e[ along a vector y € E with respect to a norm-

defining space C that coincides with
{g: E — R : there is a function f € C with g(x) = f(x +t-y) for all x € E}

for allt € |—¢e;¢[. Then|—e;e[ 3t v is continuous with respect to ||-|.

Proof: (In the proof we follow the argumentation in [37].) Choose g € C and
define fy(t) := [ gdv;. By the assumptions and Lemma 3.1 the function f, is
differentiable on |—¢; e[ with

)] = /gd(vt)' < gllsup 1) = gl - 11 -

E

For t, s € |—¢; ¢[ the mean value theorem yields
() = fo() < Nlgllyup - V11 - 18 = sl
Since the choice of g was arbitrary and C is norm-defining we obtain
e = wsll < I/ - [t = s,

and therefore the desired continuity. [J

The next proposition can be seen as application either of Section 4 in Norin
[28] or of Proposition 1.6 in Weizsicker [37].

3.5 Proposition

Let v be a measure in bg, € > 0, C be a norm-defining space that coincides with
{g: E — R : there is a function f € C with g(z) = f(x +1t-y) for allz € E}

for allt € |—¢;e[. Let v be differentiable in |—e; e[ with respect to C along a vector
y € E with derivative v'. If for each B € by the mapping |—e;e[ 2 t — (V'), (B)
is Lebesgue measurable and if V' is absolutely continuous with respect to v then v

is Fomin-differentiable in |—e; e[ along y.
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Proof: (The proof is very close to Weizsécker.) By Lemma 3.1 with v all measures
vi,t € ]—¢g;¢e[, are differentiable with respect to C with derivatives (1) = (V/),
and with the assumption each measure (l/t)l is absolutely continuous with respect
to 4. In the first part of the proof we establish a further measure p on bg and
two product measurable functions f and f’ on |—¢; e[ X E such that v, < p with
Radon-Nikodym derivative f(¢,-) and v, < p with Radon-Nikodym derivative
f'(t,-). Furthermore, there shall be the following relationship (++) between f
and f’:

b
(++) f(b,z) — f(a,z) = /f'(t,x)dt for all a,b € |—¢;¢[and allx € E.

In the second part of the proof we will work with these functions to show Fomin-
differentiability.
To define ji, choose an enumeration (), . of Q, and set

L 1 |th| o 1 |th|
=25 1o, | =25 vl

neN neN

Then p is a measure and v, < p for all n. With Lemma 3.4 it is not hard to see

that even vy < p for all t. Now we define a measure n’ on the product o—field on
|—&;¢[ x E by

W (A B) = /A V(B)dt.

We show that n’ < A® u, where A denotes Lebesgue measure. Let A® u(N) = 0,
then, by Fubini, p(V;) = 0 for A—a.a. t € |—¢; €], hence also v/(N;) = 0 for A—a.a.

t € |—¢; e[ and therefore n/(N) = 0. Let f’ be a Radon-Nikodym derivative —d(igu)

of n’ with respect to A ® p. Since p > 0, we have ||| = [, ’f’(t, x)‘ du A-a.s. By
Lemma 3.3, ||| = ||| for all ¢ € |—e; e[, Therefore, [* <fE (f/(t,w)] dﬂ) dt < 0o

for all a,b € |—¢;¢[. Hence we can define the functions f and f’ as follows:

0 it o€ Unennyont {a: - f/(t,@)’ dt — oo},

f(t,z) =< _
f'(z,t) otherwise.
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d(f\lgu and for each t € |—¢;¢[

the function f'(t,-) is a Radon-Nikodym derlvatwe . Set

Of course, also f’ is a Radon-Nikodym derivative

dVO

f(0,2) := m (x) and f(t,x) := f(0,x) +/f'(s,93)ds

To see that f(t,) = Ccll—l;f choose an arbitrary function g € C. Then

/ g(W)/tf’(S,W)dS dp (w) = / g(w) - f'(s,w)dA @ p(s,w) =

[0t xE
t ¢
//g(u))dn' (s,w) = / /g(w)d (V) (w) | ds.
0 B 0 \E
The differentiability of v, and the boundedness of (||(v/ )s||)se]_8;€[ imply that s —
Iy , 1s integrable on |—&;[. Hence
¢
/ /gd (), | ds = /gd(yt —1p).
0 \E E

Since the choice of g was arbitrary and since C is norm-defining, we obtain that
fot f'(s,x)ds = d(ytd—:'o)(x) and therefore ‘Zj T) = fot f(s,x)ds + C;—'ﬁ(x) = f(t,x).
Hence the relationship (++) is proved.

Now let us regard the functions fand f’ as mappings from |—¢;¢[ to L' (E, p).

Then f’ is Bochner integrable and

t+r

/ [(s)ds = f(t+1) — F(2)

By Proposition 1.5,

t — f(t
lim flt+r) = ft) — 1t =0 Xas.
0 r LY(E,p)
Hence
lim |[ 22— v =0 Xas.
r—0 r
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Since for each B € bg

Vir(B) — (B)

Vigr — Ut !
- . Y
r

—vé(B)‘ <

we obtain Fomin-differentiabilty of 14 for A-a.a. ¢t € |—¢;¢[. By Lemma 3.1 each

vy is Fomin-differentiable, in particular the measure v. [
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4 Gaussian Measures and their Subspaces of Dif-

ferentiability

Gaussian measures have a nice differentiability property we will need later. Hence
we will describe it in this section. To this end we have to give a short insight into
the theory of Gaussian measures on locally convex spaces and their corresponding
Cameron-Martin spaces. It is based on the works of Bogachev [10] and Norin [28].
We regard only centered measures, but the results are also true for the general

case.

For n € N and 0 € R" we define a Borel measure v™? on R™ by

no 1 " 1
Y9 (B) = (U 27r) /Bexp(—r'2 (x%+—|—$i)> dxy ...dx,.

4" is called centered Gaussian measure with variance ¢? on R". The

following lemma can be easily proved by induction and integration by parts.

4.1 Lemma

Let m e Nand 0 € RT. Then

1 22 0 vf misodd
/xmdvl"’(x) = /:Bme_za?dx = !
R

ov2m 1-3-5-...-(m—1)-0™ if miseven.

R

The next lemma is a special case of Lemma 2.4.4. in Bogachev [10]. For t € R we
define the shifted measure 7 by v,°(B) := v (B + t).

4.2 Lemma

Let v19 be a centered Gaussian measure on R. Then, for any real number t € R,

we have
H,yl,a _ %17"“ > 2—2exp (—%UQtQ) .

Throughout this chapter, let E be a locally convex space and by the o-field of
Borel subsets. A probability measure v in bg is called a centered Gaussian

measure if for each ¢ € £’ the measure v o ¢! is a centered Gaussian measure
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on R. Obviously, each measure 77 on R" is a centered Gaussian measure. The

following example shows that this also holds on R*°.

4.3 Example

(Bogachev [10], 2.3.5.) Regard R together with the family (p,,), oy of seminorms

where

pn() = pn (X1, 22,23, .., Xy, .. .)) = |2y] .

Let v be the countable product of y*'. Choose ¢ € (R*®)". By Proposition
64.10 in Heuser [18] there exists a real r € RT and finitely many py,,, ..., p,, such
that for all x € R*

<r. ) =7r-. .
lp(x)] <r A, P () =71 ie?llf{?fk}!xm

Hence ¢(x) = 0 if z,, = 0 for all @ € {1....,k}. This and the linearity of
@ yield that ¢ is a linear combination Zle @ -y, of the coordinate functions

©n, : T — Tp,. To see that v o ! is a centered Gaussian measure on R choose

B € br. Then

7o t[B] =4 <{x€R°°:Zai~xni EB}) =

i=1

k
,-)/7%1 <{($1,...,£L‘k) € RF . Z@zxz GB}) :Vk’logb_l [Bv]

i=1

where € (RF)'.

To describe the subspaces of differentiability of Gaussian measures we need some

properties of these measures, which we present in the following.

4.4 Lemma

If v is a centered Gaussian measure in by, then E' C L*(E,v).

Proof: For | € E’ the measure v o [~! is a centered Gaussian measure v
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on R. Hence

/l2d1/ = /x2d1/ ol !(z) = /xQdyl’U(x) =02,
E

R R

where we have used Lemma 4.1. O

4.5 Proposition

If v is a centered Gaussian measure in by and l € E' then exp (|l|) is an element
of LP(E,v) for all p € N.

Proof: Firstly, we show that exp (/) is v—integrable. Let again 7 = v o[™L.

/ exp (1) dv = / exp (2) dy"7 (z) = Nl% /R exp (x) exp (-2"’%) dr =

U\/%/e p(——(x —203;))613;:

e [ (o) (5 - ()

Therefore, exp (1) is v-integrable. Obviously, also exp (—1) is v-integrable. Define

A={z e E:l(x)>0}.
Then [, exp (I(z)) dv (x) < oo and fE\A exp (—I(x)) dv (z) < co. Thus

[ e (@) dviz) =

E

/eXp (I(x))dv(x)+ / exp (—I(x) dv (z) < oc.

A E\A

Let p € N. Then (exp (|l|))" = exp(p-|l]) = exp(|p-1|). Since p -1 is also an
element of E', exp (|p-1|) € L'(E,v). O

The following two lemmas are due to Bogachev [10]. Let v be a centered Gaussian
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measure on E. For h € E we define the shifted measure vy, by v,(A) :== v(A+h).

4.6 Lemma

If p € E', then

lvn = vl 2 || (o ™)y —vor™

forall h € E.

Proof: Choose p € E' and h € E. For any A € bg set By = ¢ ' (A). It’s
easily verified that o= (A + ¢ (h)) = B4 + h. Hence,

(vp —v) (Ba) = ((y o (pfl)@(h) —vo <p*1> (A).

Since the choice of A was arbitrary we obtain that

sup{(v, —v)(B): B €bg}> sup{((yo gp’l)w(h) —vo gofl) (A): Ae bR}

and

inf{(v, —v)(B): Bebg} < inf{((uogp’l)@(h) — yogp’l) (A): Ae bR}.

Thus the result follows. O

Two measures v and p in bg are called stngular if there exists a set B € by such
that v (B) =0 and u(F \ B) = 0.

4.7 Lemma

Let h € E. If ||vy, — v|| = 2, then the measures v and vy, are singular.

Proof: The proof uses only elementary measure theory (see for example Ash
[5], Section 2). O

Note that for any arbitrary measure v on E one has the Fourier transform
v defined by
v(l) = /exp (i-l(x))dv(x) forall [€FE.

E
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The following proposition is well known. It is a special case of Theorem 2.2.4. in
Bogachev [10].

4.8 Proposition

A measure v on E is a centered Gaussian measure if and only if its Fourier

transform has the form

/lgdu forall 1€ F.
E

DN | —

() =exp | —

In the following we assume v to be a centered Gaussian measure in E. Let us
denote by E! the closure of E’ in L?*(E,v). The next lemma and the idea of its
proof are due to Norin [28].

4.9 Lemma

For alll € E' and g € E], we have

N | —

/z' ~g(x)exp (i-l(z))dv = —/l(m)g(m)du ~exp | —

E E

/ 12(x)dy

Proof: Choose arbitrary elements [,g € £’ and ¢t € R. Then also [ +t-¢g € E'.
By Proposition 4.8 the following equation (+) holds:

(4 [ exp i 1) + (@) dv o) = exp | = [ 1o) + 10 ()

E E

We will differentiate both sides of equation (4) with respect to ¢ at ¢ = 0. To
differentiate the left-hand side we use the following estimation, induced from the

Taylor development:

Cexpi-t-g(a) — 1
t <

p exp (i - ()

exp (i - (I(x) + tg(@))) — exp (i - l<w>>‘ _

exp (i-t-g(x)) =1
t

exp (|l(x)]) -

‘ < exp ([l()]) - [g(x)] - exp (|t - g()])-
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By Proposition 4.5 and the Holder inequality (see Ash [5])

z = exp ([l(z)]) - [g(x)] - exp ([t - g(x)])

is integrable. Hence, as application of the theorem of dominated convergence (see
Ash [5] and Heuser [19], 44.7) we obtain

d - (l+t-g)) — - 1
— /exp(z’-(l+tg))dz/ = lim exp(i-(I+¢-9) = exp(i )du:
dt t—0 t
E t=0 E
/Pr%eXp(l'(l—i_tgt))_eXp(Z.l)dl/:/i-g-exp(i-l)dl/.
E E

Now differentiating also the right-hand side of (+) yields:

/i ~g(z)exp (i-l(x))dv(x) = —/l(a:)g(a:)du (x) - exp —%/F(:U)dl/ (x)

E E E

For fixed [ this relation is true for all g € E’, hence also for all g € £/. O

We will now introduce a Hilbert subspace of F, depending on the measure v.
We will do this according to Bogachev [10]. Recall that E!, denotes the closure of
E’in L?(E,v). Together with the inner product of L*(E,v), E, becomes a Hilbert

space, usually called reproducing kernel Hilbert space of the measure v. Now
for h € E define

B := sup{l(h) rle Erand Il 2, < 1}

and set
Hv):={he E:|h| <oo}.

H (v) is called Cameron-Martin space of v on E or Cameron-Martin sub-

space of E.

4.10 Proposition

(Bogachev [10], Lemma 2.4.1.) Any given h € E lies in H(v) if and only if there
exists a function g € E!, such that [(h) = ng “ldv for alll € E'. In this case we
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obtain |[hl| = llgll L2 (z.)-

Proof: Take h € E and regard the mapping b : B/ — R, [ — [(h). If h € H(v)
this mapping is linear and bounded, hence continuous. By the theorem of Hahn-
Banach (see e.g. Heuser [18]) it can be extended to a linear and continuous
functional on E!,. Since F/, is a Hilbert space, we can apply the theorem of Riesz
(see e.g. Heuser [18]) to obtain an element g € E!, such that for all [ € E

1) =R 0) = (gi0) 2y = [ 91

E

On the other side, if there exists a function g € E], with I(h) = [, g - ldv for all
| € F', the mapping h : E/ — R, | — I(h) is continuous on E', hence bounded.
This implies ||A|| < co.

With elementary analysis it is easily shown that
sup {I(h) : 1€ B'and U] 2y <1} = 1902,y - O

4.11 Example

Let v be the Gaussian measure on R®, defined in Example 4.3. Let ¢, € (R®)'.
In Example 4.3 we have shown that ¢ and i are finite linear combinations of
coordinate functions. Hence,
min(k,l)
/So(x)lb(ﬁ)dfym:f]g (Zf:l Q- xm) ) (Zizl Bi - xmi>d7m = Z i f3;.

i=1

So, it is easy to verify that the Cameron-Martin space H (7*°) coincides with the
Hilbert space

? = {(:cn)neN €R™: Zmi < oo}

neN

Izl =, [ a2
neN

A measure p in bg is called Radon measure if for every B € bg and every

where the norm is given by
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e € RT there is a compact set K. C B with pu (B \ K.) < . The following three
propositions supply important information about Radon Gaussian measures, we
will need also in the next section. The first one follows from Section 2.4 and
Section 3.2. in Bogachev [10].

4.12 Proposition

Let v be a Radon Gaussian measure on E. Then there exists an isomorphism
F,: H(v) — E/, such that for any h € H (v),

for alll € E'. H (v) together with its norm

Al = / F2 () dv

E

turns out to be a separable Hilbert space.

The other two propositions are parts of Theorem 3.3.6 and Theorem 3.5.1, re-

spectively, in Bogachev [10].

4.13 Proposition

Let pn and v be two Radon Gaussian measures on E. Then the following conditions

are equivalent:

(1) [p*du < [, @*dv for all p € E.
(2) p(A) > v (A) for all convex Borel sets A with {—x:x € A} = A.

4.14 Proposition

Let v be a Radon Gaussian measure on E, (hy), .y an orthonormal base of the

Cameron Martin subspace H (v). Then

v =Y F,(hy)(x) hy v-a.s.,
n=1
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where the convergence is with respect to the topology of E and F, is the isomor-

phism, introduced in Proposition 4.12.

With the following main result of this section we return to measure differen-
tiability.

4.15 Theorem

(Norin [28], Theorem 4.15 (i).) Let v be a centered Gaussian measure on a sepa-
rable Banach space E. A vector h € E lies in the Cameron-Martin space H(v) if

and only if v is Fomin-differentiable along h.

Proof: The first part of the proof is due to Norin [28], Chapter 4. Let h € H(v).
By Proposition 4.10 there exists a function g € E], such that I(h) = [, g - ldv for
alll € E'. Let [ € E'. By Lemma 4.9 we have

/i cg(z)exp (i-l(x))dv(z) =

E
L[ L[
— [ l(x)g(x)dv (x)-exp —5 I“(x)dv () | = —l(h)-exp —3 I*(x)dv (x)
E E E
Define a measure v/ by v/(A) := — [, gdv for each A € by. Then we obtain the

following relationship for the Fourier transforms © and v':

o(1) = —i - I1(h) - (1)

We will show that v is Skorokhod-differentiable along h with derivative v/
Choose [ € E' and t € R. According to Section 3 we define 14 (B) :=v (B +1t - h).
Then

/exp (i-l(x)dy —v)(z) =

exp(—i-t-l(h))-/exp(i-l(x)) dv (z) —/exp (- l(z))dv(x) =

t

/ /exp(i-l(m)—i-s-l(h))du’(m) ds:/exp(@'-z(x))d(y'*w)(x),

0 E E
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where pM! is the image measure of Lebesgue measure A on [0, ¢] under the mapping
[0;t] s+ —s-h,

and v/ x p™M* denotes the convolution. Since the choice of | € E’ was arbitrary,
the Fourier transforms of v, — v and v/ x u™ coincide on E'. Since E is a Banach
space, the measures v, — v and /' x u™* coincide on bg. Therefore, we obtain for

all bounded, Borel measurable functions f:

[ ta—tm 5 /f A — ) (z) =

E

/f(a:) Vo / /fx—shdu r) | ds.

If we suppose f to be continuous, we can apply Fubini’s theorem (see Ash [5]) to

/t/f(x—sh)du’ ds—/ /fx—sh i (z).

Since f is bounded there is a k € N such that f (z) <k for all = € E, hence

obtain

fo f(x—sh)d <t-k
t B /

By the theorem of dominated convergence (see Ash [5]) and the fundamental

theorem of calculus we have

lim JpUlo=th) = f)dvie) /f(as)dV’ (z)

t—0 t

Hence, for any € € RT, v is Skorokhod-differentiable in |—¢; e[ along h. It is easily
verified that the space C of all real-valued, bounded and continuous functions on
E is norm-defining and that the mappings ¢ — (1) (B) are Lebesgue measurable
for each B € bg. Since v/ := —¢g - v we have v/ < v. Hence we can apply

Proposition 3.5 to obtain that v is Fomin-differentiable along h.

Now let h € E'\ H (v). We show that then the measures v and v, are singular.
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This part of the proof is due to Bogachev [10], Section 2.4. By definition,
sup{l(h) 1€ B and |l]| 25, < 1} — .

Hence, for any n € N there exists a functional [ € E, with ||l[|;2,) = 1 and
I(h) > n. Let us regard the Gaussian measure v ol~". Since [p #*d (vol™") (z) =
[ Pdv = 1, the measure v o [”! has variance 0* = 1. Applying Lemma 4.2 and

Lemma 4.6 we get
1
lvp, —v|| > 2 —2exp (—§n2>

for all n € N. Hence, |1, — v|| = 2 and therefore, by Lemma 4.7, the measures vy,
and v are singular. Note that h € E'\ H (v) implies +-h € E\ H (v) for all n € N,
Let A, € bg such that v(A,) =0 and vi, (E\A,) =v(E\A,+L-h) =0,
Since v is a probability measure, vi, (;1”) = 1 for all n € N. Define A :=
Unen An- Then '

Thus v is not Fomin-differentiable along h. [J

In Section 21 we will prove a related result for Loeb measures, which yields the

differentiability of a special Gaussian measure, the Wiener measure.
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5 Abstract Wiener Spaces

We will now apply Theorem 4.15 to abstract Wiener spaces. The concept of
abstract Wiener spaces was developed by L. Gross in [16] to obtain Gaussian
measures in infinite dimensional spaces. Since we need some facts about abstract
Wiener spaces also later, the essential ideas and results of Gross’s theory are
sketched in this section. For the proofs of most of the presented facts and more
details consult Osswald [30], Kuo [24] or Gross [17]. Our starting point is an
arbitrary infinite dimensional and separable Hilbert space (H;|-||). At first we
establish a finitely additive set function in H. To this end we start from Borel

subsets of finite dimensional subspaces of H. Let
E(H)={F C H: Eis a finite dimensional subspace of H} .

Fix ¢ € R*. For any given subspace E € & (H) with orthonormal basis (e, ..,

¢,) a centered Gaussian measure 27 on E can be defined by

VB (B) = 4™ ({(al, Q) €ER™: Zoziei € B}) =
i=1

1 " Ly 2
- e dxy...dx,,
(, /271'0'2) /{(041 ..... o) RS aieieB} €xp ( 202 (xl + + xn)) X1 x

where B € bp.

5.1 Lemma

(Osswald [30], Lemma 4.2.1.) The measure v on E does not depend on the

choice of the orthonormal basis of E.

A subset Z C H is called a cylinder set in H if there are elements F € & (H)
and B € bp such that Z = B + E*. In this case we define y%7(7) := v%7(B).
By Lemma 4.1.3 in Osswald [30], v¥7(Z) is well defined. We will also need the

following characterisation of cylinder sets.
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5.2 Lemma
(Osswald [30], Proposion 4.1.4.) A set Z € by is a cylinder set if and only if there
exist o; € H', n € N and A € bgn such that

Z = (9017 .. ,,(pn)_l(A).

withn € N, p; € H' and A € bgn.

Let Zy denote the set of all cylinder sets in H.

5.3 Proposition

(Osswald [30], Proposition 4.1.5, Proposition 4.2.4 and Kuo [24], Chapter I. Propo-
sition 4.1.)

(1) 2y is a field.

(2) ¥ is a finitely additive mapping on Zy.

(3) ¥ is not countably additive on Zy.

To obtain o-additivity, it was L. Gross’s idea to find a suitable extension of H.
If (B;|-]) is a Banach space such that H C B we can define cylinder sets in B

according to Lemma 5.2 by

Z = (9017 SRR 9071)_1("4)

where ¢; € B', n € N and A € bra. Denote by Zg the collection of all cylinder

sets in B. The following Lemma is obvious.

5.4 Lemma

If for all functionals of B’ the restrictions on H are elements of H', we obtain for
each Z € Zg that Z NH € Zy.

If the assumption of Lemma 5.4 holds we may define a mapping 7*7 on Zy
by

VH(Z) = ~"7(Z N H).
L. Gross introduced the concept of measurable norms. A norm | - | on H is called

measurable (with respect to o) if for each € > 0 there is an E. € £ (H) such
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that for all £ € £ (H) with £ L E.

VEC{r € Bz |>e}) <e.

5.5 Lemma

(Kuo [24], Chapter I. Lemma 4.2) If | - | is a measurable norm on H then there
exists a constant ¢ € RY such that | h |< c - ||h]| for all h € H.

Now let H and 7™° be as above. Assume |-| to be a measurable norm (with
respect to o) on H and (B, |-|) the Banach space completion of (H,|-|). Then
(H, |-]) is a dense subspace of (B, |:|). Therefore and by Lemma 5.5, B’ can be
regarded as a subset of H' and therefore - since we can identify H' with H - as a

subset of H. Furthermore we have

5.6 Lemma

The space B' is dense in (H; ||-]|).

Proof: Let h € H such that (¢;h)y = 0 for all ¢ € B'. Therefore, ¢ (h) = 0 for
all o € B'. Hence, h =0. O

g

By Lemma 5.4 we can establish the mapping 7®7 on Zz. The measurability

of the norm is essential for the proof of the following important proposition, that

is sometimes called theorem of Gross.

5.7 Proposition

(Kuo [24], Chapter 1. Theorem 4.1 und Theorem 4.2.) ~%7 can be extended
uniquely to a countably additive measure in the o-field generated by Zg. This

o-field is the Borel field by of B.

Let us denote the countably additive extension by 7. Then ~7 is called Wiener

measure and the pair (H,B) is called an abstract Wiener space.
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5.8 Lemma
The Wiener measure v° is a centered Gaussian measure on B.
Proof: The idea of the proof is due to Osswald [30]. Let ¢ € B’ and A € bg.

Since ¢ is also an element of H' = H, the space E = {\- ¢ : A € R} is a subspace
of H and we get

Yo (A) =7 ({r €H:p(2) € A}) =

YV ({zeE:p(x) € A} +EY) =

1 2
—_— /ex (_91:—) dx
. p .
o [lellg var Ja 2(0- HSOHH)Q

In Section 13, we will construct an internal probability space with the aid of
an abstract Wiener space.

To describe the differentiability of a Wiener measure we will show a rela-
tionship between the underlying Hilbert space H and the Cameron-Martin space

H(~7). For this purpose we need the following lemma.

5.9 Lemma

If v is a centered Gaussian measure on a separable Banach space (B; |-|), such that
the Cameron-Martin space H(v) is dense in B, then for all functionals ¢ of B the
restrictions on H(v) are elements of H(v)'. If we identify the restriction ¢ | H(v)

with an element of H(v), then B’ is a dense subset of H (v). Furthermore,

o 1 H ), = [ ¢ @av (o).

B

Proof: Let ¢ € B’ and ¢ € RT. Set

0= c )
V@ (@) dv ()

Now choose h € H (v), satisfying [|h[| 5, < d. Let F, be the isomorphism between
the Cameron-Martin subspace H (v) and the Hilbert space B/, introduced in
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Proposition 4.12. Then
o] = | [ (@) F, () (2) d (0)] <

1
2

[ ¢ @avie) [ (50 @ @) -

>
[ ¢ @avia)) Il <
B
Hence, ¢ | H(v) € H(v)'. Since ¢ | H(v) can be identified with an element of
H(v), B’ can be regarded as subset of H(r). With the same arguments as in the
proof of Lemma 5.6 follows that B’ is a dense subset of H(v). The last part of

the Lemma follows from the definition of |[-[[z,). O

5.10 Proposition

(Bogachev [10], Theorems 3.9.5. and 3.9.6.) Let (H,B) be an abstract Wiener
space with Wiener measure v'. Then H coincides with the Cameron Martin space
H(yY) of v+ of B. Conversely, if v is a centered Gaussian measure on a separable
Banach space B with norm |-| such that the Cameron Martin space H(v) is dense
in B, then the norm |-| restricted to H(v) is measurable with respect to o = 1 and

(H(v),B) is an abstract Wiener space with v =~y as Wiener measure.

Proof: The proof is very close to the proofs in [10]. Let (H,B) be an abstract
Wiener space with Wiener measure v!. Choose ¢, € B’. By Lemma 5.5 ¢ and
1 can also be regarded as elements of H. To avoid confusion, we denote these
elements of H by h, and hy. First note that [; ¢ - ¥dy' = (hy;hy), since by
Lemma 5.8,

/9026171 = /l’Zd (Y oe™) (@) = [yl

B R
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Let F,1 be the isomorphism between the Cameron Martin subspace H (v') and
the Hilbert space B, introduced in Proposition 4.12. Set h = F;l (). Then

0 = [ F (W) @) 0 (2) 7 @) = [0 @) 6 @) (2) = (hoihe) = v ().

Hence F;l (p) = hy. Since ||h,|> = Jz® (x)dy' () = 17l #7(,1) and since B’ is
dense in H (7!) as Well as in H, H (v') coincides with H.

To prove the converse, note that - again by Lemma 5.9 - each element of B’
can be regarded as an element of H (v)'. Hence, we can define the measure 7!
on Zg. Let ¢ € B'. By Lemma 5.9,

wrmwmwzfﬁ@mw@.

This implies that v coincides with 4! on Zg. It remains to prove the measura-

bility with respect to ¢ = 1 of the norm |-| on H (v). Fix ¢ > 0. Let (¢,), -y be

neN
an orthonormal base of B, satisfying (), oy C B'. Define

P, IB—>H ,:{:I—>Zg01 Z).

By Proposition 4.14, we have

lim |z — P, ()] =0 v-as.

n—oo

By Egoroff’s theorem (see Ash [5]) the convergence is in measure, hence there
exists a number N € N such that for all n,m > N

v({z €B:|P,(x) — P,(x)| >¢}) <e
To verify that {z € B : |P, (x) — Py, (z)| > ¢} € Zg, note that
{reB:|P,(z) = Pn(z)|>e}={zeB: |Z?:m+1g0i($)-F;1(<pi)| >e} =

{z €B: (Pmir(2), .., pn(2)) € A},

where A = {(ami1,...,a,) ER™ ™ |30 a4 F' ()| > €} € bpan. Since
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also
{reH{): \Z?:mﬂ i (z) - F1 (%’)‘ >} =

{:L‘ S H(V> : (Som-f-l(w)w : 790n(x)) € A}7

we obtain
v({z €B: [Py (x) = Pu(z)| >e}) ="' ({z € H(v) : |Py(2) = P (x)| > €}).

Let E. = span{F, ' (¢1),..., F,; ' (on)}. Chooseany E € £ (H (v)) with E L E..
By the projection theorem (see Section 1), each x € H can be composed uniquely
into a sum z = a +y where a € E and y € E+. Let prg(y) cH(v) — E, z+—a
be the orthogonal projection. Then Py <pr§[(”) (x)) =0 and

Jim Py (prif™ (2)) = pr® (@)

Again by the theorem of Egoroff (see Ash [5]) and by the definition of v#®):! it
is easily proved that

Y {z e B faf > e}) = lim v" ({2 € E: [Pyyr ()] > e}) =

lim ~)1 <{‘T €H(v): ‘PN““ <pr§(”) (x)ﬂ 7 6}> B

k—o0

lim ~H®)1 ({x € H(v): ‘(PNHC — Py) (prg(y) (ac))‘ > e}) .

k—o0

For the last step of the proof we use Proposition 4.13. Set
D:={xe€ H(v):|Pyr(z)— Py ()| <e}.

Obviously D € Zp,), hence D = B+ E* where E € £(H (v)) and B C E. We
regard the smallest finite dimensional space E € £ (H (v)) containing E and E
and the measures v%! and v51 o (prEE)_l. For y € F define ¢ (z) := (y; z)%. Note
that

@ (m@(@) = <y;pr§(r€)>E = <pr§(y>;x>E-
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By Lemma 5.9,

Hence Proposition 4.13 implies

AHW)1 ((prg(y)>1 (D)) = 7E,1 o (prg_)l <1§ + {x €E: xLE}) >

B <B + {:U €E: xLE}) = 4" (D).
Therefore,
10 (e 10 v P ) <

YO ({w € H (v) : |Pysk () = Py ()] > €}) .

Finally we obtain v#! ({z € E : |z| > ¢}) <e. O

We close this section with the announced application of Theorem 4.15 to abstract

Wiener spaces.

5.11 Corollary

The Wiener measure v&1 of an abstract Wiener space (H,B) is Fomin-differentiable

along a vector h € B if and only if h € H .
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6 An Application of Measure Differentiability

One of the applications of measure differentiabilty is the construction of operators
comparable to those of Malliavin and Skorokhod in the Gaussian case. We will
describe this now, following closely the presentation of Weizsécker in [37]. Let v
be a nonnegative measure on a locally convex space £ and (H; ||||) a Hilbert
subspace of E, continuously embedded in E. Recall that in this case each element
@ € E’ can be regarded as an element of H. Let C2°(R™) be the set of all
infinitely continuously differentiable functions ¢ : R™ — R with compact support

and denote by d'g the partial derivatives. Define
C = {fEHRmf:g(SDl?ﬁOn) 2 EElage CEO(RH)}

Then C' is dense in L? (E, v) (see e.g. Smolyanov and Weizsacker [35]). Let f € C
and y € E. Then f is Gateaux differentiable in the direction of y and for z € E

we obtain f'(z)(y) = Y., 09 (o1 (x),...,0n(2)) - @i(y). If y € H, then the
following inequality (+) holds:

(+)  [f' (@) < nesupzegn (Z d'g (%) - flf) mazigizn il 19lla = ¢yl
i=1

Hence, the linear mapping f'(z) : H — R,y — f’(z)(y) is bounded, and therefore
an element of H'. Note that H' can be identified with H. Since the constant c;

depends only on f, the function
f' E—Hzw~— f(x)

is a bounded vector field from E to H. Denote by L% (v) the set of all vector fields

h : E —MH, such that
) 3
Itz = [ Il )" < o
E

Now we are ready to define a derivative operator Dy : C — L% (v) by Do(f) := f'.
Up to now we have not claimed nor used measure differentiability in this chapter.
But for the following, the measure v shall be Fomin-differentiable along all vectors
h € H. By Proposition 3.2, the derivatives are absolutely continuous with respect

to v. We denote by &, the logarithmic derivatives. Moreover, we assume that
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¢, € L*(E,v) for all y € H.

6.1 Proposition

(Smolyanov and Weizsécker [35], Proposition 6.) The operator Dy is closable in
L*(E,v), ie if C>f, — fand Df, — gthen Df =g.
L2(Ewv) Li(v)

Proof: Let (fn),en € C, fn — 0 and Dyf, — g. We will show that
L2(E L2(v)

N4

g = 0. To this end choose arbitrary elements v € C' and y € H. Then

/E u(z) - (g(x):y)y dv (2) = lim [ u(z) - (Dofu(x);y)y dv (z) =

tim [ w@) - fi@)w)a ().

Since the functions u and f,, are Gateaux differentiable in the direction of y, the
product rule yields that also each u - f,, is Gateaux differentiable in the direction

of y and
(u- fo)' (@)(y) = u'(2)(y) - falz) + ulz) - fo(z)(y).

Hence,

lim [ w(z) - fo(x)(y)dv (z) = lim [ ((u- fo)'(2)(y) =o' (2)(hy) - fulz)) dv (2),

and by (+),

(- fo) (@) W) < cu 1Yl [Fnllaup + ¢ Myl - Nullyy = a-

We like to apply Proposition 2.1 with respect to the functions w - f,, and the
constant vector field y. Let t € R\ {0}. By the mean value theorem there exists
a t, € R such that

(u- fo) (& +ty) — (u- fn) (x)
t

= (u- fu) (x + tzy)(y).

Hence we obtain for all £ € R\ {0},

/(ufn) (x—l—tyt) — (u- fp) (JT)dV(I) < /ady(x).
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By Proposition 1.3, the functions

(u- fo) (& +ty) = (u- fa) (x)
t

t—

are uniformly integrable. Thus we can apply Proposition 2.1 to obtain

/E (u- £2) (@) (y)dv (z) = / (u- f)(@)d (z).

E

Now

lim [ u(z) - fo(2)(y)dv (x) = im [ ((u- fo)'(2)(y) — ' (2)(hy) - fulz)) dv (2)

n—oo E n—oo E

= lim [ (u- fo)(z)dV (x) = lim [ u/(z)(y) - fu(z)dv (z) =

lim [ ((u- fo)(z) - & () = u'(2)(R) - fulz)) dv (x) =0,

n—oo E

since u, v’ are bounded and &, € L? (E,v). Hence, g =0. O

Let us denote by D the closure of Dy. Then D is a closed operator defined
on a dense subset of L? (E,v). The definition of D is analogical with the com-
mon definition of the Malliavin derivative presented for example in Nualart [29].
Just like there we introduce also the adjoint operator. Since D is densely defined,
by Reed and Simon [31], Section VIII, there exists the adjoint operator 4, (from
L% (v) to L*(E,v)), and the domain of §, can be characterised as follows. A
vector field h € L% (v) is in the domain of 4, if and only if there exists a constant
K, such that for all g € C

/ ¢ (@) (h (2))dv ()| < K - J / g (z) dv (z).

In this case there exists a uniquely determined element §,(h) € L? (E,v), such
that for all g € C

/g’(w)(h (2))dv (x) = /g(fv)~5u(h) (z) dv ().

E E
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The definition of 9, is in accordance with the introduction of the Skorokhod
operator by Nualart [29]. The next proposition summarizes several comments of
Weizsécker’s [37] Section 4.

6.2 Proposition

Let E, H, C and v defined as above. Fiz a vector field h € L% (v). Then h lies
in the domain of 0, if and only if v is differentiable along h with respect to C,
the derivative V' is absolutely continuous with respect to v and the logarithmic
derivative % is an element of L* (E,v). In this case we have Z—”V/ = —0,(h).

Proof: Firstly, we show that the assumptions of Proposition 2.1 are fulfilled.
Let g € C. Then g is Gateaux differentiable along all elements of H, in particular
along all vectors h (x). By the same arguments as in the proof of Proposition 6.1,

we obtain for all t € R\ {0}

/ g(z +th(z)) —g(x)

; dv (z) = /g’(:v+tx ~h(x)) (h(z))dv(z) <

/ o ) gy o ().

and therefore uniform integrability.

Now let A be an element of the domain of 9,. Since for all g € C
/g'(w)(h (z))dv (x) = /9(93) -0y (h) (z) dv (),
E E

by Proposition 2.1, v is differentiable along h with derivative

/(A) = / (=6, (h) (x)) dv ()

A

and the logarithmic derivative —d,(h) lies in L* (E, v).

For the other direction we apply again Proposition 2.1. Then for all g € C

[ d@n@nan ) = - [ g @) = [ o) & (@) v (o),

E E E
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with &, € L? (E,v). Hence, by the Holder inequality (see e.g. Ash [5]),

[ @iy @

J/fmmm»d/ﬁ@mwm

Hence, h is in the domain of §, and ¢, (h) = —=¢,. O

< [1oe) & @] dv ) <
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7 S-Differentiability of Internal Measures'

In this chapter we start dealing with internal measures. Throughout Section 7 to
Section 11 we have the following standing assumption. Let €2 be an internal set, A
an internal *o-field on © and g > 0 an internal S-bounded (*o-additive) measure
on A. Let (u¢)tes be an internal curve of nonnegative S-bounded measures on A.
Since we want to obtain an external curve of Loeb measures, we assume that for

some ¢ € R the internal parameter set J is either an interval of *R containing

the standard interval I =] —¢, e[ or J is a discrete interval {7, =2t . AL £}

with H e *N\N, k€ {1,...,H} and ¢ < % Finally we assume that p = pq.

The internal curve (p)ies is called S-continuous if p;(A) ~ us(A) for each
A € A whenever t =~ s. We now introduce S-differentiability for internal mea-
sures. The choice of the examples and the questions dealt with are based on the
standard literature especially those written by Smolyanov, Weizsécker and Bo-
gachev. Suppose we have a (not necessarily internal) set C of internal *R-valued
functions on €2, each being A-measurable and S-bounded. We say that the inter-
nal measure p is S-differentiable with respect to the set C if there exists an
internal S-bounded measure p' on A so that for all f € C and for all infinitesimals
teJ,t#0

Jo f(W)dp(w) = [ flw)dp
¢

(“zéﬂwwm.

We call ¢/ an (internal) derivative (measure) of u. If there exists an internal

p-integrable function § so that for all A € A
p A~ [ B dne),
then also (3 is called (internal) logarithmic derivative.
Note that a derivative measure is not uniquely determined by the above defi-
nition. If x4 is S-differentiable with respect to a set C and if for some infinitesimal

t € J the internal measure #* has limited values, then #-* is a derivative of .

In the next section we will regard and compare S-differentiability for different

!The main results and ideas of Section 7 to Section 11 have already been published in [1].
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sets C of functions.
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8 Different Forms of S-Differentiability and their
Relationships

Following the standard literature we define S-Fomin-differentiability. The internal
measure p is called S-Fomin-differentiable if the differentiability is with respect
toC = {14 : A€ A}. This definition yields the first lemma.

8.1 Lemma

If v is S-Fomin-differentiable each measure “—= with t = 0, t € J\ {0}, is a

derivative of .

The next proposition shows the power of S-Fomin-differentiability.

8.2 Proposition

If 1 is S-Fomin-differentiable and p' is a derivative of u, then u is S-differentiable
with repect to the set C of all (internal) S-bounded *R-valued A-measurable func-

tions. The Fomin-derivative (' is also a derivative with respect to C.

Proof: Let p be S-Fomin-differentiable and let p/ be a derivative of p. Let
t # 0 be an infinitesimal of J and set fi := #-£. Since ' ~ fi on A we ob-

tain [, f(w)dy/'(w) = [, f(w)di(w) for all S-bounded A-measurable functions
f:Q—="R. 0O

Now let €2 be a subset of *M where M is a metric space and let A be an in-
ternal *o-field on 2. The measure p is called S-Skorokhod-differentiable if it
is S-differentiable with respect to the set of all S-bounded, A-measurable func-

tions f : 2 — *R that are S-continuous.

As a consequence of Proposition 8.2, S-Fomin-differentiability implies S-Skorokhod-

differentiability. The following example shows that the converse is not true.

8.3 Example

Fix a natural number H € *N\ N and let Q C*R, Q={+ -z : z € *Z}. The

measure u is the counting measure defined on the field of internal subsets of €2,
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1.e.

| Anfo, %7 |
A) = H —_
u(4) 7
Here [0,2] = {0,%,..., 2=} and | A | is the internal number of elements.
Now let J CQJ=[-L L] with! €N, L ~ 1 andlet () be defined by
pi(A) = (A +t). Note that for any k € *N Wlth £ € J we obtain:
e —p k H—k H-1
A A — AN |——, ——
(0 Hta = p(1an 7.5 |- tan [T )
and
piok = o 1 k H H+k—1
A —(]A - [AN — ).
) Tt = flan [0 5| 1 - an |7 5 )

Now choose k € *N with £ € J and £ ~ 0 and set A = [0, %21]. Then

He — [ M=k
= (A) =0 and —&

3 —k
H H

—p

(4) = 1.

Hence p is not S-Fomin-differentiable. Now we show that p is S-Skorokhod-

differentiable with internal derivatives #-# for all infinitesimals ¢t € J \ {0}.

Assume f :  — *R is an internal S-bounded, A-measurable and S-continuous
function and k € *N with & € J and £ ~ 0 . Then, using (+) and the S-

continuity of f

Jo F@)dp s (w) = fo £ _ % i s (%)_% Hz_l f <%> ~ F(0)— f(1).

H i=—k

Of course, (++) yields the same result for —k, which completes the proof. We

will give a - well known - standard application of this example in Example 11.2.

Finally we consider S-differentiability with respect to *continuous functions. We
will see that this is equivalent to S-Fomin-differentiability. Let 2 be an inter-
nal *normal space, A the internal field of Borel subsets. Note that an internal

nonnegative measure p is *regular if for all A € A we have

p(A) =sup{p(C): C C Aand C'is *closed}
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and
p(A) =inf{u(0): AC OandOis *open}.

A measure p with Jordan-Hahn-decomposition g = p* + p~ is called *regular if

pu and p~ are both *regular.

8.4 Proposition

Let Q) be an internal *normal space, A the internal field of Borel subsets. If (iy)ies
s a curve of *reqular measures, then p is S-differentiable with respect to the set
C of all internal *continuous S-bounded functions if and only if p is S-Fomin-
differentiable.

Proof: By Proposition 8.2 we only have to prove ” = 7. Let A € A. We
have to show that for all infinitesimals ¢, s € J,
Mt — IU’(A> Hs — [

~ — € Lim.
t S

Fix t,s ~ 0. It is easy to verify that with u also #-% and #~£ are *regular
measures. By the definition of *regular there exists an open set O and a closed
set C' with C' C A C O and so that we get both:

&
o

(F=EroNe) ~ 0and (FF)7(0\0)

and

B0\ 0) ~ 0and (E)(0\0) & o,

s
By transfer of Urysohn’s Lemma (see Ash [5]) there exists a *continuous function

f:Q— 70,1 sothat f=1on C and f =0 on Q\ O. Hence

[r@a e = [rea(1) @ [red(“T) @

(“) - (B ) = )

t t

Similarly we have

[ @) ~ B,
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Now the Skorokhod-differentiability yields

as required. [
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9 S-Differentiability on Interal Vector Spaces

Throughout this section let €2 be an internal vector space. We change the standing
assumption of Section 7 in so far as we do not start with a given family of measures,
but only with one measure pu.

Due to the standard definitions, presented in Chapter 2, we use an internal vector
field h : Q2 — Q to define a transformation 7} for each t € J by

T,:Q—Qt—T (w) =w—t-h(w).

Then the curve (), ; is given by the internal image measures p; = ol If p
is S-differentiable with respect to a set C, then pu is called S-differentiable along
the vector field h. For a constant vector field h, with hA(w) = y for all w, we say
that p is S-differentiable along the vector y.

9.1 Proposition

Let (p11),c; be defined as above, h an internal vector field. Let C be a set of internal
*R-valued, A-measurable and S-bounded functions on 2 that have the following

property: for all w € € the functions

. flwt-hw)) = fw)
J\{0} = "R, t — "

are S-continuous. Then p is S-differentiable with respect to C along h if and only
if there exists an internal S-bounded measure y' such that for all f € C and
te J\{0} witht~=0

/fw+th))f /f ! (w

In this case the measure p' is a derivative of .

Proof: 7 = 7 Let u be S-differentiable with respect to C along h with derivative
1. Choose f € Cand t € J\ {0} with ¢t = 0. Set s := —t. Then

/Q )it  Jo f(@)dns(w fg _

Jo F(Ts(w)) — Jo fWdn(w) _ Jo flw—s-hw))du(w) — [ fw)dp(w)
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fQ flw+t-h(w — [ f(
t

7 <7 This direction follows the same argumentation. [J

The following lemma is an internal version of Lemma 3.1. It is easily verified.

9.2 Lemma

Let p be S-differentiable along a vector y € Q with respect to a set C. Let V' be a
deriwative of v. If for allt € J the set C coincides with

{g:Q — "R : there is an element f € C with g(x) = f(z +1t-y) for all x € Q},

then all measures vy are S-differentiable along y with respect to C and the measures

(V'), are derivatives.

9.3 Lemma

Let p be S-Fomin-differentiable along a vector y, then the curve (i), is S-

continuous.

Proof: Choose s,t € J with s~tand A€ A Set B:={weQ:w—1t-yec A}
Since s — t &~ 0, the S-Fomin-differentiability and Lemma 9.2 yield

ps(B) — pu(B)
s—t

€ Lim,

and therefore pug(B) — u(B) =~ 0. O
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10 S-Differentiability on the Euclidian
Space *RM

In this section we regard measures with nonnegative Lebesgue densities on *RM

with M € *N.

10.1 Theorem

Let Q = *RM with M € *N, A the internal field of Borel subsets, . an internal S-
bounded measure on A and h : *RM — *RM an internal vector field. Take J = *R
and define Ty : *RM — *RM s T, (z) := 2 —t - h(z) for all t € J. Finally set
py = po Tt Assume that i has an internal Lebesque density f satisfying the
following three conditions:

(1) f >0, f =0 only on a set of internal Lebesgue measure zero.

(2) f is *(Gateaux-)differentiable in the direction of h(x) for all x € *RM (with
derivative fy ) (x)(h(z)) := (f'(2); h(x))gar)-

(3) If t = 0, then there is a p-integrable internal function g : *RM — *R with
Jopn 9(x)dp(z) = 0 and for all v € *RM™ with f(z) # 0

1<f($+t'h<m)) —1> _ 1 < g(x).

t f(x) ()

Now if the internal function ﬁZ *RM — *R, defined by

sy | B 1@ #0
' 0 if fz) =0,

is Sy,-integrable, then p is S-Fomin-differentiable along the vector field h and if 1/

15 a deriwative then ﬂfj is a logarithmic derivative, hence for all A € A

W(A) ~ / B (@) da ().

Proof: Since 3 is S,-integrable, A — [, 8(x)du(x) defines an S-bounded
measure. Now let N = {x € *RM : f(x) = 0}. Then AM(N) = 0, where X is the
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internal Lebesgue measure. If t & 0, ¢t # 0, then

P2 [ hwiuta)

<

/ 1(f(:r+t.h(x)) _ 1) (@) du(z) < / g(@)du(z) ~ 0.
An | f(x) f(x) = g

Here we have used condition (3). O

The following example is the nonstandard version of a typical standard measure.

10.2 Example

Let 2 = *R, A be the internal field of Borel subsets and p defined by u(A) =
J4 752 d\(z). Fix an element y € *R and define h(z) = y. This yields

1

1y(A) = / dA(z), te'R.
Aty 1+ 27

If y is limited, then it is easy to see that the assumptions of Theorem 10.1 are

satisfied. Hence the measure u is S-Fomin-differentiable and if x4’ is a derivative,

then
—2xy

pA)~ [ T duta)

for each A € A. If y is an unlimited element of *R, then p is not S-Fomin-

differentiable, because for t = i and for the internal interval A = *[0, 1] C *R the

(A)=p(A)
t

value £ is unlimited.

In Section 21 we will use Theorem 10.1 to show S-Fomin-differentiability of a

nonstandard representation of the Wiener measure.
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11 Differentiability of Loeb Measures

In this section we show how S-differentiability of an internal measure yields differ-
entiability of the corresponding Loeb measure. Recall the standing assumption of
Section 7. In addition we claim that the curve (ut)ies is S-continuous. Then we
can define a curve of Loeb measures in a unique way. Let ¢ € RT as described in
the standing assumption, I =] — e, e[. For each r € I choose t € J such that t = r
and set p, := pt. Let us denote the associated Loeb spaces by (2, L, (A), ur).
Since the Loeb o-fields L, (AA) are not necessarily identical we choose a joint o-
field 7 C (), ¢; Ly, (A). We now define the curve ((yz),)rer of measures on F by
(ter)r := (pr); restricted to F. First let us mention some obvious connections

between S-differentiability and differentiability.

11.1 Lemma

Let p be S-differentiable with respect to a set C of internal *R-valued, A-measurable
and S-bounded functions on Q and let i/ be an internal derivative of ju.

(1) Then for all f € C

UM )_%kfwmww>zoﬁéﬂmwmm

r—0 r

The convergence is uniform, if C is internal.
(2) Suppose

Cr :={g:Q— R : there is a function f € C with

*(J(w)) = g(w) for all w e Q}

and

Fur = (ﬂ LMT(A)) n Lu’(A)-

rel
Then the Loeb measure jir,, restricted to F,, is differentiable with respect to the
set Cr, and the Loeb extension (11'), of °('), restricted to F,u, is a derivative (ur,)’

of ur. This means that for all g € Cp:

R R A

r—0
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Note that if 1/ and " are two internal derivatives of u then [, g(w)d ('), (w) =
Jo9(W)d (7),, for all g € Cp,, but the Loeb measures (1), and (v'), on A and
hence also the o-fields L,/ (A) and L. (A) may be different.

11.2 Example

In Example 8.3 we defined an internal counting measure p. It is easily verified

that the curve ()i is S-continuous. Since p is S-Skorokhod-differentiable with

internal derivatives #~#, ¢ € J \ {0}, t = 0, we can apply Lemma 11.1. But as

k—l]

we have seen in Example 8.3, for k € *N with & € J and £ ~ 0 and 4 = [0, &1

(“5; “) (A) = 0 and (%) (A) = 1.

Nevertheless, there exists a o-field, on which the Loeb measures (@)L coincide
for all infinitesimals ¢ € J \ {0}. Let bg be the (standard) o-field of all Borel
subsets of R. For B €by let st™'[B] = {w € Q : °w € B}. By Proposition 1.8,
the set st~![B] is an element of L, (A) for all r € I and (u,)(st™![B]) = v,.(B),
where v,(B) =[5, Lo (2)d\(z) with standard Lebesgue measure A. But st~'[B]
is also an element of L i (A) for all infinitesimals t € J \ {0} and

<,Ut t— M)L(St—l[BD = 15(0) — 15(1).

Hence the Loeb measures <@>L, restricted to the o-field {st~![B] : B € bg)},
coincide for all infinitesimals ¢ € J \ {0}.

If we define a measure v/ on bg by v/(B) = 15(0)—15(1), then the S-differentiability
of the internal counting measure p yields the Skorohod-differentiability (along the
vector 1 € R) of the standard measure v with derivative 2/, a well known standard

result.

We will now see that in the case of S-Fomin-differentiability the o-field F doesn’t
depend on the chosen internal derivative and the derivative (p)" of uy, is uniquely
determined. Moreover, the differentiability of uy, is true not only with respect to
standard parts of internal functions, but also with respect to all F-measurable

bounded real-valued functions on §2.
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We gather these facts together into the following theorem, which is the main

result of this thesis.

11.3 Theorem

Let v be S-Fomin-differentiable and F = (1, ¢; Ly, (A). Then py is differentiable
on F with respect to the set Cp, = {1p : B € F} and the differentiability is uniform
on Cp. The derivative (ug) is uniquely determined and is absolutely continuous
with respect to pur. If @' is an internal derivative of p, then the Loeb extension

!/

(1) is defined on F and coincides with (ur) . In particular this is true for all

internal measures "=, where t € J \ {0} is infinitesimal.

Proof: Let i/ be a derivative of . We will show the following statements:
(A) For all internal sets A € A the limit

o (1) (A) = pu(4)

r—0 r

exists and is equal to (¢')1(A). The convergence is uniform on the internal field
A.
(B) If N € F is a puy-nullset, then

o () (V) = (V)

r—0 r

= 0.

The convergence is uniform for all pp-nullsets of F. Any pp-nullset of F is also a
(u')-nullset of F.

(C)If Be€ F and if A € Ais pr-equivalent to B, then

(pr)r(B) — pr(B) (pr)r(A) — pr(A)

lim = lim ,
r—0 r r—0 r

in particular the left limit exists. The convergence is uniform on F.
(D) The Loeb extension (') is defined on F and for all B € F

r—0 r

(A) follows from Lemma 11.1.
To prove (B) let N be a pp-nullset of F, i.e. there exists a sequence (N1 ),en C
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n+1

A so that for all n € N we have N € N1, N1 C N1 and p(N1) < . Let
; . Then N € F, ur(N) = 0 and we obtain for all r € T

(he)r(N) < (pr)r(N).

| (ML)T(N) - ML(N) ’ _ | (ML)T(N) | < | (ML)T‘(N> ’
r r - r '
Therefore it is sufficient to show that lim,_. (p)r(N) _ 0.

r

Now since pr(N) =0,

(e)r(N)_ (ue)e(N) = (V) B () (N ) — Bty 11, (N7)

T r r

n—00 r

3=

(wr)r(N1)=pr(N1) .
z - exists

It follows from (A), that for each n € N the limit lim, o
and is equal to (¢')(N1). Since (4')f, is defined on the smallest o-field containing

1
n

r

A, the limit lim, (1) (N1) = (1)1 (N) also exists. Because of the uniform

convergence stated in (A) and since (V1 ),en C A we can exchange the limits as

follows: B (1) (V1) (N1)
r 1) — 1
lim —WL)T(N) = lim lim e LA =
r—0 r r—0n—oo T
KL )r Ni)— M N1 ~
i i R T vy = )
n—oo r— T n—oo n

So the measure 4y, is differentiable at N and the value of the derivative is (1/) (V).
By Proposition 2.2 (¢')y, is absolutely continuous with respect to ..

The uniformity of the convergence can be seen by using again the uniform con-
vergence on A.

Of course (1) (N) = 0 since N € N. Hence the pz-nullsets of F are also (u/);-
nullsets of F.

(C) Here we show the differentiability for an arbitrary element of F. So let
B e F, A€ A pp-equivalent to B and r € I. Since pr(B) = pur(A), it is sufficient
to show that
(r)r(B) = (pr)r(A)

lim = 0.
r—0 r

64



Since p7, is nonnegative the following estimate is easily verified.

| (pL)r(B) = (ue)e(A) | < (pe)r(A A B),

where A A B denotes the symmetric difference (A\ B) U (B \ A). Now (B) yields

< i AL B)

r—0 r r—0 | r |

The uniform convergence follows from (A) and (B). Hence (C) is proved.
(D) follows from (A), (B) and (C). O

11.4 Lemma

Let 1 be a measure with internal Lebesque density satisfying the assumptions of
Theorem 10.1 for a fived y € *R¥. Recall that the internal curve is given by
pi(A) = (A +ty) for all Borel subsets A C *R¥. Let e € RT, [ =] —¢,¢[. Since
i is S-Fomin-differentiable along y, we can apply Lemma 9.3 and Theorem 11.3.
Hence py, is differentiable on F = (1, ; Ly, (A) with respect to C, = {1p : B €

F}. Moreover, for the uniquely determined derivative (ur)" we obtain:

) (B) = [ Bl (o)
B
Jor all B € F, where (3} is defined in Lemma 10.1.

The power of Fomin-differentiability is also shown in the last result. It can be
proved directly using routine integration theory or it can be derived from a more

general version of Proposition 3.2 in Smolyanov and Weizsécker [36].

11.5 Corollary

If w is S-Fomin-differentiable with an internal derivative ' and F is defined as
in Theorem 11.3, then the Loeb measure jiy,, restricted to F, is differentiable with
respect to the set Cr, of all F-measurable real-valued bounded functions on 2. The

Loeb measure (1)1, restricted to F, is the derivative of (u)r.
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12 Lifting and Integrability Results

Now we provide several lifting results we will need for the nonstandard approach
to abstract Wiener spaces in the following sections.

We fix an infinite integer H € *N. Recall that T'= {1, ..., H} and st denotes the
standard part map .

st: T —[0;1], n— O<ﬁ>

Let v be the internal counting measure on the internal set *P (T') of all internal
subsets of T'. Let (B, |:|) be a normed space. An internal function F' : T — *B is
called a lifting of f : [0,1] — B if for vi-a.a. n € T

We say that a function F': T'— *B is S-continuous if
(1) F(n) is nearstandard in B for all n € T" and

(2) for all n,m € T with we have F'(n) =) F(m).

12.1 Proposition

(Osswald [30], Proposition 9.7.1.) If F : T — *B is S-continuous, then

f:00,1] = B, t— °F(n) with

~t,

Tl s

is well defined and continuous.

Let H be a separable Hilbert space. Recall that £ (H) is the set of all finite
dimensional subspaces of H. The next lemma is a direct application of satura-

tion.

12.2 Lemma

There exists a set F € *£ (H) such that each orthonormal basis (e;);.y of H can
be extended to an internal orthonormal basis ()<, of F , i.e. (fi);, is an or-

thonormal basis of F and f; = *¢; for all i € N.

<w
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Fix any F with the property of Lemma 12.2. If A € H we define

I*Alls = [|or" CR) |5

Then it is easy to see that
1"l = {7l

We call an element z € F nearstandard in H, if there exists an A € H such
that || prg®(*h) — x”F ~ 0. Then we write *h = x and call °x := h the standard
part of x. Note that we use the symbol °x also for the standard part of x € *H
in H.

12.3 Corollary

(1) Assume that x € F is nearstandard in H. Then ||z||z = ||°%| g
(2) Assume that x € *H is nearstandard in H with standardpart h € H. Then

also prtt (z) is nearstandard in H with standardpart h.

Now we can introduce F-valued liftings. An internal function F : T — F is
called a lifting of f : [0,1] — H if for vj-a.a. n €T

We call a function f : [0,1] — H continuous A-a.e., if the set
{t € [0;1] : f is continuous in ¢}

is a Lebesgue set of measure 1.

12.4 Proposition

Let f:]0,1] — H be Lebesgue measurable and continuous A-a.e. Then

PiT—F, nepr (f(5)

is a lifting of f.
Proof: Define T} := st~ [{t € [0;1] : f is continuous in ¢}]. By Proposition 1.8,
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v (Ty) = 1. Now let n € T}. Since f is continuous in ° (%) we obtain

Ss) e S ((5))

for all s € *[0;1] with s =
(2) follows

+. Hence * f (%) ~g f (O(%)) By Corollary 12.3

Fin) = prif (“F(5) = “(F(°(5). O

The next proposition is a slight modification of the Loeb-Anderson lifting theorem

(see Loeb and Osswald [26]).

12.5 Proposition

(a) A function f :[0;1] — H is Lebesque measurable if and only if f has a lifting

F:T—>F.

(b) A function f : [0;1] — H is Bochner integrable with respect to Lebesgue
1

measure and (fol | f1I1% d)\)g < oo if and only if f has a lifting F : T — F with
F e SLP(v). In this case

1

[ twari = [ Fnavin)

0

and

/ 1F(E) I dA (8) ~ / |Em)|[2 dv (n).

Let f:[0;1] — H be a mapping. We define prgf (*f) : *[0;1] — F by

pre (CF) (1) o= pr” (“F (1))

for all ¢ € *[0; 1].

12.6 Lemma

(a) Let f :[0;1] — H be Bochner integrable with respect to the Lebesgue measure.
Then prg (*f) is Sey-integrable.
(b) Let f :[0;1] — H be Bochner integrable with respect to the Lebesque measure
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where <f01 ||g||Hd)\>; < 0o . Then ||prg (*f)||y is S-a-integrable.

Proof: (a) First note that by transfer fol I1*f(s)|l.g d*A(s) is limited. Hence

also fol Hpr]}H (*f) (S)HF d*A(s) is limited. It remains to show that for each € > 0

there is a § > 0 such that for all internal Lebesgue measurable sets B

B)<(5:>/B||pr]}H(*f) (s)|[gd*A(s) <e.

Fix € > 0. By Proposition 12.5(b) f has an S,-integrable lifting F. Hence there
exists & > 0 so that for all internal A ¢ T

V(A) < 6 = /A IF@)|, dv(n) < =

Now let A be a Lebesgue set with A (A) < §. Then M(A) = v (st7}(4)) =

°(v(B)) where B is a vz-approximation of st~!(A). Hence
JUslaare = [ P o) -
A st—1(A)

[ 1@l dveto) & [ 1@ dv(m) <

By transfer, we obtain for all internal Lebesgue sets B with *A\(B) < §

Lo Cn @l axs) < [ 1 Fllad Ao <<

(b) can be proved similarly. O

The next useful lifting result is a special case of Anderson’s Luzin theorem [4]:

12.7 Proposition

Let f:]0;1] — H be measurable. Then for *A-a.a. t € *[0; 1]
) e f(01).

In [32] Rodenhausen gives a lifting construction for elements of L'(R,\). Cut-
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land presents in [11] a new proof for the same statement. We extend now this

construction to H-valued functions. Our proof is due to Cutland.

12.8 Lemma

Let f :]0,1] — H be Bochner integrable and define F : T — F by
n+l
H
Pl i= Hepri | [ 5(9d°x6) |
%

1
then F is an S,-integrable lifting of f. If in addition, (fol ||f||Hd)\)p < o0, for
p €N, then F € SLP (v).

Proof: Let us regard *f : *[0; 1] — F. By Proposition 12.7 and Corollary 12.3 we

have
“f(s) ~r [(°s)
for *\- a.a. s € *[0;1]. By Lemma 12.6(a) prg™ (*f) is S-y-integrable. The crucial

idea is to regard the bijective, measurable mapping

1 -1
[T x™[0; E[—> “[0; 1, (n;7) — nT + 7.

On T we have again the counting measure v, on [0; %[ we take the internal measure
p= H-*)\. Then we have *) (A) = v @ u (I7' (A)). Hence we can apply Keisler’s
Fubini theorem in the version for Bochner integrals (see Osswald [30], 10.12.4).
Thus for v;-a.a n € T the function

* 1 *H /% n

fot 05— By pri (F) (55 4 5)
is S,-integrable and the function n — fo% prit (*f) (3 + s) du(s) is S,-integrable.

Since
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F'is S, -integrable and for vp-a.a. n € T

1

@)= ()t -

) " *H /% n o
pri () (55 + ) diuls) = ° (F(n)).
0
Hence F'is an S,-integrable lifting of f.
Now assume that (fol ||f||Hd)\>; < oo for some p € N. By Lemma 12.6(b),

|| prs? (*f)”; is S.-integrable. Let A be an internal subset of 7 and A =
U, calZ: 1] Note that *A (21) — v (A). Thus

H7
1 1 Ea g
G WP =5 1 [ e eneanae)| <
neA neA % F
n+l
" *H % P g«
S [ e e Gl -
neA %
. - € Lim for all internal A C T,
JARIC[EE ,
A ~ 0 if v(A) = 0. O

In the remain of this section we regard lifting conditions for functions of bounded

variation. Note that any function of bounded variation is in particular bounded.

12.9 Proposition

Let f :[0,1] — H be of bounded variation. Then f is measurable, Bochner inte-

grable and <f01 ||f||Hd/\> ’ <00 for all p € N. Furthermore, f is continuous a.e.
Proof: f is measurable if and only if for each a € H the function f,(¢) = (a; f(t))

is measurable. Let a € Hand 0 =ty < t; < ... <t, =1 be a partition of [0, 1].
Then

Z |fa(ti) = fa(tizi)| = Z [(f(t:) = f(tica); a)g| < Z 1f(t:) = i)l - llallg
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hence f, is also of bounded variation. With elementary analysis it is easy to prove
that f, is then Riemann integrable and therefore Lebesgue measurable. So also

f is measurable. This and the boundedness of f yield the Bochner integrability

1

and that (f01 ||f||HdA)5 < oo for all p € N.

Now we show that the set of all ¢ € [0;1] so that f is not continuous in t is
countable. We denote the variation V(f) by k. For each n € N define

A :={t €[0;1]: for all 6 > Othereis a t5 € [0;1] with [t —ts5| <

3=

and [1£(2) = f(t) g >~}

Assume A1 to be infinite. Then we can choose n - k elements ¢, ... ¢, of Ax.
Let 0 > 0 so that

d <min{|t; —¢;| i, j€{l,...,n-k},i#j},

and choose for each i € {1,...,n-k} at; € [0;1] with |t; —¢;;| < 0 and

1£8) = £t > %

The set {t;,t;; : i € {1,...,n - k}} can be reordered to an increasing sequence and
extended to a partition 0 =ty <t; <... <t =1o0f [0,1]. Then

l
ST IA) = fltg) > ko =k
j=1

in contrary to our preliminary. Hence A1 is finite and the set A = J, .y A1 is

countable. Thus f is continuous a.e. 0

12.10 Lemma

If f:[0,1] — H is of bounded variation then F : T —F, n— prf (*f(%)) is a
lifting of f and

>l F(i) = Fi = 1) |lp € Lim.

Furthermore, ||[F(n)||p is limited for allm € T and therefore, F € SL' (v).
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Proof: The lifting result follows immediately from Proposition 12.9 and Propo-
sition 12.4.

Since f is of bounded variation we obtain for all n € N

Slr(2)-r(50)] <vwn
i=2 H
By transfer, we get
2 i—1
—fl— <V (f).
£4(3)- (), v

Since

|F(i) = F(i— )|z = |prg ("f) (%) —pre” () (Z ;Il)

b ()= (2], =) ()

the first part of the Lemma is proved. Since F is a lifting, there is of course one
n € T so that ||F(n)||p is limited. Now take any other m € T'. Without loss of

generality assume m < n. Then

<
F

*H

E ()l — 1F(m)l[g| < [[F(n) = F(m)|ly < Z 1£(@) = F@i = Dllg < V().

1=m+1

Hence also [|F(m)||p is limited. Thus this is true for all n € 7. Obviously F is
then an element of SL! (v).
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13 The Internal Probability Space

From now on we work with abstract Wiener spaces and with a nonstandard model
of these, developed by Osswald (see for example [30]). In this section we will
sketch Osswald’s construction by presenting the essential steps and those parts of
the proofs we will need. For the detailed proofs see [30], Sectionll. We use the
notation in Section 4 and 5. Let us start from an arbitrary separable Hilbert space
(H;|-])). Choose any F € *£(H) with the property of Lemma 12.2 and denote
its dimension by w. Fix an infinite integer H € *N to define the space F. Let

HAJT : ) H -
v HV 1 be the internal Gaussian measure on *R¥#  i.e.

S (B)=< %) /B exp (—% 2 x?(j)) A7: (g

iSw,j<H

Fix an orthonormal basis (¢;);., of F. According to the definition of vE9 in

Section 5 we define an internal Gaussian measure I' on F¥ by

['(A) = yw‘Hv\/g (@i (4))i<wjcrr (Z x; () - 61) €A

J<H

for each internal A € bpu. By Lemma 5.1 the measure I' does not depend on the

choice of the ONB of F.

Choose a norm |-| on H, which is measurable with respect to ¢ = 1 and let
(B;|-|) be the Banach completion. By Lemma 5.5, for each ¢ € B’ the restric-
tion ¢ | H is continuous with respect to ||-||. Therefore we can consider B’ as
a subspace of H. By Lemma 5.6 B’ is dense in (H;||-||). Denote by (Cg;|-|,,)
the Banach space of all continuous functions f : [0;1] — B, f(0) = 0, together
with the supremums norm |f[, = sup {|f(¢)| : ¢ € [0;1]} . Now we describe the

relationship between FH and the Banach space Cf, given by

the internal mapping?:

B:F'"xT —F, (X,n)— > X

i=1

ZNote that B is an internal Brownian motion (see [30], Chapter 11 for the definition and
details). Since - apart from Lemma 13.1 - we don’t use the typical properties of Brownian
motions we go on without this term.
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We use the following abbreviations:

Bn:]FH—>IF,X»—>zn:XZ~

=1
B(X):T—F, n— Y X,
=1
13.1 Lemma

(a) Let a € F with |lal|zy = 1. Then {(a; B,) is normally distributed with variance

n

7
(b) Let a € F with |jal|y = 1, n,m € T with m > n. Then (a; B, — B,,) is
normally distributed with variance "2*.

The aim is to establish a relationship between the internal functions B(X) and
the elements of Cp. Since |-| is measurable with respect to o = 1, there exists a
function g : N — £(H) with g(n) C g(n + 1) for each n € N and such that for
each m € N and for each F € E(H) with E L g(m)

1 1
Bl :
¥ <{:13€E.|:E|22—m})<2m+1.

By transfer, the inequality is also true for each m € *N and for each E € *£(H)
with E L *g(m).

13.2 Lemma
Let m € *N and F € *E£(H) with E L *g(m) and E C F. Then
1. Bl ({x eEE:|z|> 2%”}) =T ({X e FH . }pr% (BH(X)){ > 2%” ) and

2. T ({X e Fo . max lpr (Ba(X)) > <
ne

77|
2m
o ({X e F1: |prf (Br(X))| = 55 }) 2

Hence we obtain for each m € *N and each F € *£(H) with E' L *g(m) and E C F

<ot 1
— .2m+1_2_m'

Pri (B,(X)) > 1

= om

neTl

T ({X e F1 . max

3Note that 2. is a version of Levy’s inequality [25].
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The next step is the construction of an ONB (b;),.y of H by recursion. Fix any
ONB (¢;);y of H and start with the space span {g(1) U {e:}}. Let (bh;),o;, be
an ONB of this space. Assume that (b;), , is already defined and is an ONB
of span{g(n)U {e1,...,e,}}. Then let (f);)igln+1 be an extension of (h;),, to
an ONB of span {g(n + 1)U {e1,...,enrs}}. Then (h;),cy is an ONB of H and,
by Lemma 12.2, it can be extended to an internal ONB (h;),. of F. The next

Lemma follows from the inequality above.

1<w

13.3 Lemma

For allm e N and all k € *N with [,, < k < w

r <{X e FH . mag Z (Bn(X);b;) - b;

i=k+1

Now set for each m € N

> (Ba(X);bi) - b

i=lm

U,, = {X e FY : max

nel

1}
>
= om

and define

Uy = U ﬂ U,

peNmM>p

It is easy to see that 'y (Uy) = 1. Finally let U :=

Uy N m{X € F™ : the function (B(X); h;) : T — *R, n Z (X5 b:)
ieN j=1

is S — continuous}.

13.4 Lemma

(1) TL(U)=1.
(2) Let X € U. For alln,k € T with



In addition, there exists a function hyx : N — N, such that for each k € N the
sequence (Z?jl(m) °(Bp(X); b;) - hl) is a Cauchy sequence in B and
N

me

hx (m)

Bi(X) =y lim Y °(Bu(X):b;) - b; €B.

m—oo 4
=1

Hence By(X) is nearstandard in B.

The next result follows from the previous lemma and Proposition 12.1.

13.5 Proposition

For T'p-a.a. X € FY the internal function B(X) is S-continuous. Therefore the
function
bx : [0;1] = R, t — °B,(X)

with % =~ t, is well defined and an element of Cg.
According to the construction of H. Osswald in [30] we define b : F x [0;1] — B,

/n bx (° (7)) = °Bn(X) if B(X) is S-continuous
b (x (2)) (° (&) t

0 otherwise.

Before we define a measure on C using b, we state a kind of reverse of Proposition
13.5.

13.6 Proposition

For each f € Cg there exists an X € FY such that B(X) is S-continuous and
bx = f.

The last step in the construction of Osswald is the definition of a probability

measure W on be,. To this end set
k:FY = Cp, X — by.

Then £ is surjective and Borel measurable. Note that k™' [A] = {X € F® : by € A}
for all A €be,. Set Fo ={x ' [A] : A € bc,} and denote by F the o-field generated
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by Foy and all I';-nullsets. Now let us define the probability measure W for each
Ae bc]B by
W(A) =T, (/(1 [A]) )

In the following sections we will see that W is a Gaussian measure and we will
specify the corresponding Cameron Martin subspace of Cg. In contrast to Osswald

in [30] we will do this on the basis of measure differentiability.

79



30



14 A Nonstandard Representation of C

We work again with the abstract Wiener space (H,B) and the Banach space
(C]B; ]-lsup> introduced in Chapter 13. In this section we present a nonstandard
characterisation of a subspace Cy of Cg that in Section 22 turns out to be the
Cameron Martin subspace H (). Define

Cy :={f :]0;1] — H : there exists a square Bochner integrable function

f e L*(\H) so that f(t) = /tf(s)ds for all t € [0;1]}.
0

Since H C B, Cy is a subspace of C'g containing all absolutely continuous, H-valued

functions with square Bochner integrable derivative.

14.1 Lemma

Cy is dense in (C’B; |-|Sup) .

Proof: Denote by A, the set of all functions f € Cp that take values of H

on {1 2 2+ and that are linear between these points. Set A = J, oy An-

n'n’ on

Clearly, A C Cy. Since H is dense in B, and since all functions of Cy are abso-

lutely continuous, A is dense in (CB; Hsup). Hence, this is also true for Cy. [0

An inner product on Cy is given by
1
Fi9)e, = [ £(6)-dls
0

for f,g € Cy. It is easy to check that (Cy; ||||C]HI) is a separable Hilbert space.
As shown in Section 13, there is a relationship between Cg and F given by the
mapping B: F? x T — F, (X,n) — > i, X;. We will show now which elements
of F! are mapped by B onto functions of Cy. Define

H n
He:={Y € F":H-) |Vill2 € Limand ) Y;

i=1 =1

is nearstandard in H for all n € T'}.
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14.2 Remark

Note the following obvious relationship between elements of Cy and Hy: For

Y € Hp define the derivative Ai(ty) of B(Y') by

At "

H

2
V<Z) = %Zszl ||H : Y;||I2F

Therefore, -3, ||Y;l[3 is the integral [, || 22000
F

14.3 Proposition

(1) For'Y € Hp the internal function B(Y') is S-continuous and by € Cy.

or [ € Cy the vector Yy=(pr =) - — 1es 1 Hp an
2) For [ € Cy th Y; (U (8) = (% ) Hy and
by = f.

Proof: (1) Let Y € Hp. Define the internal function G : T' — *R, i — H - Y;.

Since

T

H
1 .
/ GG dv(i) = = S (B2 |Vil2) = H - S IVl € Lim,

1:1 i=1

by Proposition 1.10, G is S,-integrable. Hence, for n,m € T with & ~ % and
m<n

0~ [ 160 it ZH I¥ills = ZHYHF
Therefore,

[1Bm(Y) = Bu(Y)lr =

< Y Wil =o.

F 1=m-+1

i=m+1

Since, by the definition of Hp, B,(Y) is nearstandard in H for all n € T', B(Y")
is S-continuous. Hence by is well defined and an element of Cg. Obviously by is
H-valued.

We prove now that f := by is absolutely continuous. Let ¢ > 0. Since G is
S,-integrable there is a 6 > 0 such that JAIG@)||gdv(i) < e if A € C and
v(A) < 6. Set § := g and let {]ay;b1[,...]ag; bg[} be a family of pairwise disjunct
open subintervals of [0; 1] with total length at most 6. Choose n,,,n, € T such
that a; ~ "2 b, ~ — for all ¢ € {1,...,k} and such that ny, # ng,,, for all
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i€ {1,....k—1}. Set A := U ]na,;m,] Where Jn,,;ny,] is an interval in T.

Then i i
Ny, — Ny, g Ng. ~
% % _ 7 <5 5
; H ;(1{ H>— <
Hence
k
Zuf e~ 3 v, <Z||YHF [ 160 av(i) <=
i=1 ||j=na;+1 JjEA

So f is absolutely continuous. It remains to prove that f is square Bochner
integrable. We will do this due to N. Cutland’s ideas to the real valued case (see
Theorem 5.1 with proof in [11]). Since G is S,-integrable, ||G(n)||y is nearstandard
for the elements n of a Loeb-set T, with v (T,) = 1. Choose a sequence (A,,) GN of
increasing internal subsets of T, such that v(A,,) > 1 — -=-. Define A = |
Then A C T, and v (A) = 1. Define g : ' — H by

meN

°G(n) if ne A
0 if n¢ A.

g(n) =

G is an S,-integrable lifting of g, hence g is L, (C)-measurable and Bochner vp-
integrable. Now we use the fact that H-S.7 ||Y;||2 € Lim to show first that g and
as a result of this that f is square Bochner-integrable. Set M := H - ZZ iz
Since [, ||G2(j)|lzdv(j) = M it is easy to check that |G - 14, |7 is S,-integrable
for all m € N. Since G - 1,4, is a lifting of ¢ - 14,,, Proposition 12.5(b) implies

[ 190 0, Gave() = = ([ 166 Lo, Ghavti)) < br

By the theorem of monotone convergence (see Ash [5], 1.6.2) we obtain

/T LG v () < °M

For a,b € [0;1], ng,ny € T with Z

[ iwar=s0 - s =+ ([ " Gan)) -

~a
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st = [ g

Since fost: T — H, n — f(° (%) is measurable with respect to the o-field
J =st7! (5[0;1]) and since the Lebesgue measure is the image measure of vy, with

respect to st we obtain for all B € J

/B]é<o(%))dVL(n):/Bg(n)duL(n).

So f o st is the conditional expectation of ¢ relative to J. Since g is square

integrable Proposition 1.6 says

(o) enlfanen) = ([ swanior)

and thus
dt = /” fost duL /Hg HdeL n) <

[ il
(2) (See also Cutland [11], Theorem 3.5.) For f € Cy let

ne’l

So Y, =prg ( i “f(s )ds), and therefore, by Lemma 12.8, n — H - Y,/ is an
H .
element of SL?*(v) and it is a lifting of f. Hence

Hy i~ [ e
n=1

Since 3.1, Y/ = pri® (*f (%)), Lemma 12.5 implies that Y ;" Y/ is nearstan-
dard for all n € T. Hence Y/ € H.p and obviously by; = f. O

2
‘ ds.
H

In the next section the special case B = H = R is required. Then

Ci = {f : [0;1] — R : there exists a square integrable function f € L*([0;1], )
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so that f(t) = /t f(s)ds for all t € [0;1]}
0
and

H
Hy = Hy={Y € "R" |H-> Y? € Lim}.

i=1
The nearstandard condition follows here directly from the fact that H - Zszl Y? €

Lim.
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15 A Standard Characterisation of Cy

For the sake of completeness we will also state a natural standard characterisation
of Cy. It has been already mentioned by Kuelbs and Lepage [23], but we give

here our own proof.

15.1 Proposition

Let f:]0;1] — H be measurable. The following statements are equivalent.

(]) f e Cy.
(2) For each ONB (¢;),.y of H there exists a sequence <f¢>i€N C L2 ([0; 1], \) with

Y ieN fo ff )ds < 0o and such that
</ fz )ds - ¢; )
for all t € [0;1].

If (1) and (2) hold, we have HfHQCH Y ien fo f2(s)ds, where f;(t) fo fi(s

1€N

Proof: 7(1) = (2)” Assume f € Cy. Let Y € Hp with by = f. Choose an
arbitrary ONB (e;),. of H and let (e;),

i<, be the extension to F. We denote by
Y;; the scalar (Y;;e;)p. Since

w H

H
HO S VRS H-S VR € Lim.

=1 j=1 =1

we have in particular that H - Zl 1 Yj is limited for all j € {1,...,w}. Hence,
(Yij)icicy € H«r. By Proposition 14.3, for each j € {1,...,w} there exists a
function fi € L2([0;1],\) with [} fi(s)ds = ° (31, Vi;), where % ~ ¢, and - as
shown in the proof of Prop081t10n 14.3 - such that fo f2 Yds < ° (ZZ . ”)

Hence, for all m € N

m m o
Z/lff(s)dSSZO (szé) _
=17 j=1 i—1
m H w I
O(HZZ}Q?)SO(H ZK?)
j=1 i=1 P
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Thus » 1f0 f2 )ds < oo.
Now fix any ¢ € [0;1]. Choose n € T with  ~ t. Then

Z/O fi(s)ds - ¢; :Z ° <ZYU> -

Let € > 0. Since Y ", Y; is nearstandard in H it is easily checked that there is an

and

mo € N such that for all m € {my,...,w}

j=m+1

Now for each m € N, m > mg

-3 [ e

(£ )£ ()
(5 (£(52)) £ (2)-
(2602 ()

Jj=m+1
w n 2
3 (z@ .
=1

j=m+1

F

Hence - .
fi(s)ds - e; = 1i fi(s)ds - e; = f(t)

as required.

“(2) = (1)” Assume (2) holds for f. Fix any ONB (¢;),.y of H and a corresponding

sequence <f1> C L?([0;1],\). For each i € N the product f;-e; lies in L2(\, H),
ieN
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fi(s) - e; ds = fo f2(s)ds. Hence 37| fi-e; € L*(\,H) for each

n € N. We show now that (ZZ 1 fi- ei> is a Cauchy sequence in L?(\, H).
neN

Let ¢ € RT. Choose ng € N such that > ;" nfo f2(s)ds < €2 for all n,m > ny.

Hence
/1

L2(\H) 0

1
because fo

2

Zf‘ez‘

Zfz(s) T 6

H

Oj (i f?‘<3>2> s = Ji ([ d)as <=

1=n

Since L?(\,H) is complete (see e.g. Diestel [13]) there exists a limit function

f € L*(\H). To see that f(t) = [ f(s)ds for any t € [0,1] we show that the
sequence
t

S ([ i)

— \Jo
converges to fo s)ds for n — oo. Let ¢ € RT and ny € N such that for all
n > ng

= e; — < eE.
L2(\H)

Then

> ([ tas) e [ Fiopas

> ([ -eas) = [ Fiops

/(Zf(S)'ei—f(8)>d8 S/ s) e — f(s)|| ds <
/Zﬂ(s) ei— f(s)|| ds< s)-e— f(s)|| ds<e.

The first inequality follows from Diestel [13], II. Theorem 4. Hence f is a derivative
of f and therefore f € Cy.
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Now (2) yields

1 1
112, = [ 15 Eas = [
0 0

iEZN (/Ot Fi(s)ds - ei)

/Z (/Otfi(5>d5)2d5: Z/Ol fA(s)ds. O

ds =

2
H
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16 From B’ to Cj

Recall that Cf is the Banach space of all continuous and linear real-valued func-
tions on Cg. We will represent the elements of C; by integrals following the way
of proceeding in the real valued case (see e.g. Heuser [18], Section 56). To this

end we use B'-valued functions. Let f € Cp and
0 :[0;1] = B, t — ¢

Define for each partition P, : 0 =ty < t; < ... <t, =1 of [0;1]
[ 1P = 3 (o = o) ().
i=1

We say that the integral of f with respect to ¢ exists if for each sequence
(Pn),en of partitions with maxcfo1,..ny [ti —tici| — 0 for n — oo the limit
lim, oo [ f(P,)dp(P,) exists and it does not depend on the choice of the sequence.
We denote this limit then by [ f(¢)de(t). The following proposition is easily

verified.

16.1 Proposition

Let ¢ : [0;1] — B’ be of bounded variation with variation V (p) =: k. Then for
each f € Cy the integral of f with respect to o exists. Furthermore,

/0 F(t)do(t) < k- |fl0, -

In the following example we construct a special class of functions of bounded

variation we need later.

16.2 Example

Let ® € Cf. According to the theorem of Hahn-Banach (see e.g. Heuser [18],

36.2) there exists a linear and continuous extension ® of ® to the space Bg of all
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bounded B-valued functions on [0; 1] such that

te[0;1]

sup {‘é(m)‘ :x € Bgand sup |z(t)|g < 1} = |CI)|C{B'
Now set for each t € [0;1] and b € B
gOt(b) = (i) (1[0;75[ . b) .
Then ¢; € B'. We will prove now that the function
0 :[0;1] = B, t—

is of bounded variation. To this end define k£ := \(ID\CI,B and let ¢ > 0. Take a
partition P, : 0 =ty <t; <...<t, =1 of [0;1]. We will show that

Z |90ti — Pt
=1

Let us choose b; € B for each i € {1,...,n} such that |b;]z <1 and

y <k+e

€
[ — by [ — | ob:) — o, (bim1) || < o
For o« € R we use the abbreviation

0 ifa=0,
= ifa#0.

|

sgn{a} =

Then

Z |90t1 — Pt
=1

Z ’&) (bl : 1[%—1;%[)) +ée= Z sgn {&) (bl . 1[%-1;%[)} . (i (bl : 1[ti—1;ti[) +e=
=1 =1

B < Z ‘%i(bz’) - (pti71<bi>‘ +e=
i=1

&) <Z sgn {@ (bz . 1[ti71;ti[)} . bz . 1[ti1§tz‘[> +e€.

=1

Since
n

sup <1

te(0;1]

sgn {(I) (bl ’ 1[ti—1§ti[)} “b - 1[ti—1§ti[(t)
1

= B
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we have

® (Z sgn {(I) (bz ’ 1[ti—1§ti[)} ~bi - 1[ti—1;ti[> <k

i=1

and hence ® (Z?:l sgn {QJ (bi . ]‘[ti—ﬂti[)} b - ]‘[ti—IZti[) + e < k + ¢, as required.

Now we state an integral representation of the elements of Cf.

16.3 Proposition

(1) Let ¢ : [0;1] — B’ be of bounded variation. Then the function

O:Cs— R, f|—>/0 F(O)do(t)

is well defined and an element of Cy.
(2) Let ® € Cf. Then there exists a function ¢ : [0;1] — B’ of bounded variation
such that for all f € Cy

B(f) = / F(t)dolh)

Proof: (1) Let ¢ : [0;1] — B’ be of bounded variation. By Proposition 16.1 the
integral is well defined. The linearity of ¢, yields the linearity of the integral. The
continuity of the integral is also a consequence of Proposition 16.1.

(2) Let ® € Cp and ¢ as in Example 16.2. For f € Cy define

fn = Z f(tifl) : 1}%—1;%]'
i=1
Then f,, € Bp and lim,, oo SUpsepoq | f(t) — fu(t)| = 0. Thus

lim &(f,) = (f) = (/).

But .
d(f,) = Z o (f(ti—l) : (1[0;ti] - 1[0;t¢,1)) =
i—1

n

D (en = en) (f(timr)) = F(Pa)do(Py).

=1
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Therefore

B(f) = lim f(P,)do(P,) = / f(do(t). O

n—oo

In the next section we use Proposition 16.3 for a nonstandard characterisation of
Cy.
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17 A Nonstandard Characterisation of Cj

Remember that
H n

Hp :={Y ¢ F¥ . H~Z |Y;||Z € Lim and ZY} is nearstandard in H for all n € T'}
i=1 i=1

is a nonstandard characterisation of the space

Cy :={f :]0;1] — H : there exists a square Bochner integrable function

f e L?(\H) so that f(t) = /tf(s)ds for all t € [0;1]}.
0

To give a nonstandard characterisation of Cy we need the following operator norm
on F

|y |p=sup{|<y,z >p| :x € Fand | z |p< 1}.

Recall that there is a constant ¢ > 0 such that |z|z < ¢ ||z|| for all x € F. So
for y € F we have ||y|lp < ¢ |ylg . Now let us define

H
Haz = {YG]FH:YH:O, H-3" 1Y~ Yii |€ Lim
1=2

and Z Y, 1is nearstandard in H for all n € T}.

i=1

At first we list some properties of Ha p.

17.1 Lemma
HA,]F C Hp.
Proof: Tt is enough to show that H - Y7 ||Y;||2 € Lim for all Y € Hap. Let
Y € Hyp. Then
H
H-Y | Y=Y |w€ Lim
i=2

and therefore

H
HZHY;—Y;_l ||]F€ Lim.

1=2
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Since Yy = 0 we obtain for all n € T that H- || Y,, |[r€ Lim. Choose m € T such
that || Y,, ||lr = maxser || Y; ||p. Let v := H- || Y, ||r. Since r € Lim we get

H
H-Y ||V IP<SH-H || Yy |P=1%€ Lim. O

=1

In particular b(Y) is well defined and an element of Hy for all Y € Hap. The

following lemma is very useful. It can be easily proved by induction.

17.2 Lemma

For all vectors X andY inFH there is the following partition of the scalar product

H-1 H-1 H i—1
Y <V Xizp= > <Vp, Xi>s + Y <Y -Yi) X;>p.
i=1 i=1 i=2 Jj=1

Note that for arbitrary V,Y € Hp with by = by we cannot generally conclude
that

H H
H-) | Yili~ H-Y | Yilli
=1 =1

But this is true if Y, Y € Har.

17.3 Lemma

LetY € Howr. Then for all X,f( € U such that bx = by we have

H H
H-Y <Y, X;> ~ H-Y <Y, X;> € Lim.
=2

=1

In particular if Y, Y e Har such that by = by then

H H
HY Y|P~ B> |V
i=1 =1
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Proof: If Yy = 0 we obtain by Lemma 17.2 that

H H i—1
<V Xi>= > <Yia-Y, ) X;>
=1 =1 7j=1

Now let Y € HaF, X,f( € U such that bx = bg. Then

H H H
|H-Z<Yi;Xi>F —H-Z<Yi;ffi>F‘ = ‘H-Z@;Xi - %),
i=1 =1 1=1

(5-3)))-

H i—
H-). <YH - Y;
~ .

K3 J=

5 (v-5)

H
H - (Z Yi- n_1|B,) ~ 0,
=1

~ 0. It re-
B

B

.....

mains to show that the sums are limited.

H H i1
|H'Z<Yi;Xi>]F = H'Z <Yz' —Yz‘—1;ZXj> <
i=1 i=2 Jj=1 F
i1 H
B |25 (HZ ¥i- n—llﬁ/) ¢ Lim,
j=1 B =1
since both factors are limited. O

Now we state the main theorem of this section.
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17.4 Theorem

(1) Let Y € Hap. Then the function

H
Py :Cp—R, fr7° (H‘Z<Xi;yi>1p> ;
i=1
where X is any element of U with bx = f, is well defined and an element of Cy.

(2) Conversely, let ® € Cf. Then there exists a vector Y® € Har such that for
all f € Cy and X € U with bx = f

H
~H-Y (XY,
i=1

Proof: (1) Let Y € Hap, ®y asin (1) and ry := H - Zf{:Q | Y; =Y, |p. By
Lemma 17.3 ®y is well defined. The linearity of @y follows immediately from the

definition. To see that ®y is continuous let € > 0 and ¢§ = o:jy. Since &y =0
if ry ~ 0 and therefore an element of Cf, we may assume that °ry > 0. Now let
f € Cp with [f[,, < ¢ and X € U so that bx = f. Then ;1 <4 for all
1t € T. By Lemma 17.2

H

H-Y (Vi Xi)g

=1

[Py (f) =

:HZ<Y Y1,2X> <b-ry.

Thus |Py (f)| < ¢, as required.
(2) Let ® € C%. Define ® and ¢ as in Example 16.2. Since we can identify B’ with
a subspace of H, ¢ can be regarded as H-valued, and for all h € H

o (h - Lpar) = @e(h) = (p(t); h)y -

By Lemma 5.5 ¢ is of bounded variation also with respect to |-||;;. Hence, by
Lemma 12.10,

A:T —TF, nHAn:pr%HC(p(%))

is an S,-integrable lifting of ¢ and

ZHF F(n—1) ||p€ Lim.
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Thus A = (A,),er € F7 and for all 2 € F and n € T we have *pn (z) = (Ay; 7).
Now let us define Y® € F¥ by

Ay — A,
Y2 = HT for all n € T.

First, we show that for all f € Cp and X € U with bx = f

H
~H- Z <Xi;Y;(I>>F.
i=1

Let f € Cp and X € U with bx = f. Define

f:*0;1] — *B, ti—>z<ZX)

i

Il
—
.
Il
—
.
Il
—
-
Il
—_

where we again have used Lemma 17.2.

It remains to show that Y® € Hyp. Since A is an S,-integrable lifting of ¢ we

have for alln € T (2)
- ‘(&
i ; ") (t)

hence £ - Y1 | A; is nearstandard in H. Now

nyr =y A A—AH—— A
Zzlz Z

=1
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Thus >, V;® is also nearstandard in H.

To prove that
H
H-> | Y*=Y2, [we Lim,
=2

we regard ¢ again as function with values in B’. Since ¢ is of bounded variation,
we can define M := V(p) € R such that for all n € N

2| () - (5)l, =
— n n B
By transfer we have for all n € *N
) ﬂﬁ<i)-—*w(l ) < M.
n n

i—1 ®)

Fix i€ {2,...,H}. Then
H- | Yz‘q> - Y;'q—)I |B’:| Ai - Ai—l |IB%’:

sup{|< A; — A;_1,x >p| :x €Fand |z |p< 1} =

o< 5) - o(5)

() 0o () @) ve Band (o) -

() (7))
o(5)- (%)

cxeFand |z [p<1} <

sup{

Thus

H H
H-Y |V =Y < ) s M
=2 =1

* (&)

as required. 0
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18 The Dual Space C} as Subspace of Cy

The theorem of Riesz (see e.g. Heuser [18]) presents analytic representations of
linear functionals. So for each element W of Cf; there exists a vector h € Cy so that
<h; l~z> =v (ﬁ) for all h € Cy. Conversely, each vector h € Cy determines an
elemen?:YH\I/ of Cj; by this equality. It is also well known that an arbitrary element of
C}; needs not to have a continuous extension to an element of C;. Functionals of
CYy, that have this property, will be characterised in this section. At first, we show
that Cf can be regarded as subset of Cf, in the sense that for each ¢ € C} the

restriction ¢ [ H belongs to Cf;. This follows immediately from the first Lemma:

18.1 Lemma

There erists a constant ¢ € R such that |h|, < c- ||k, for all h € Cy.

sup

Proof: By Lemma 5.5, there is a constant ¢ € R such that | z [p< ¢ ||z||n
for all x € H. Let h € Cy and t € [0;1]. Then by Diestel [13], I.2. Theorem 4,

and the Holder inequality
t
<c- / Hh (s)
0

t

‘/Mg@ gc.jh@ms

0 B

ds <
H

H

t
. 2
. !/thﬂmdsgc.wmqw
0

Since t was arbitrary, |hl,,, <c-[hllg, . O

sup —

18.2 Proposition

Let h € Cy so that the corresponding functional can be extended to an element ®
of Cf. Define ¢ as in Example 16.2. Then for all t € [0;1]

Proof: Let u := ¢(1) — ¢. Then u is of bounded variation and therefore, by
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Lemma 12.9, square Bochner integrable. Thus
t
hy @ [0;1] — H, tr—>/ u(s)ds
0

is an element of Cy. It remains to prove that h, = h. This can be done by showing

o (iz) = /01 <u(s); iL(S)>H ds

for all h € Cy. Let Y'® be defined as in the proof of Theorem 17.4. Then the
internal function

U:T—F, n—sH-Y?

is an element of SL?(v) and a lifting of u. To obtain a suitable lifting of h, let
us define G(n) := H 'prI*FH< 7, *ﬁ(s)ds). By Lemma 12.8, G € SL*(v) and

. H
it is a lifting of h. Furthermore, as in the proof of Theorem 14.3(2) shown, %

is S-continuous and b(w = h. Tt is easily checked that (U(-); G(-))p is an

H )nGT

S,-integrable lifting of <u(), h(-)>H. Hence

Now we can characterise Cj as subset of Cy.

18.3 Theorem

The corresponding functional of an element h € Cy can be extended to an element
of Cy if and only if h has a derivative h [0; 1] — B, that is of bounded variation.

Proof: By Proposition 18.2 it is enough to prove ” < 7. Assume h € Cy
has a derivative h : [0;1] — B, that is of bounded variation. Then it is easily
seen that (Yy,), ., with Y, := & - prg® (*h (%)), for n € {1,2,...,H — 1} and
Yr = 0, where we again identify elements of B’ with elements of H, lies in Hap.

It remains to show that ®y (71) = <h; l~z>c . Choose again the lifting G with
H

G(n) == H - prgt (fi *E(s)ds) of h. Then, with the same arguments as in the
H
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proof of Proposition 18.2
H

@y<ﬁ)=H-Z<K-%>F:%~§;

=1

It has to be mentioned that the results presented in Proposition 18.2 and Theorem

18.3 are already well known.

18.4 Corollary
(C{B; HHCH) is a dense subspace of (CH; HHCH)
Proof: Note that each simple function is of bounded variation. By Diestel [13],

Section IV.1, the simple functions ¢ : [0; 1] — H are dense in L? (A, H). Since also
B’ is dense in (H; ||-||) the result follows from Theorem 18.3. [
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19 W is a Gaussian Measure

The fact that the measure W on (Cg, Fy), introduced in Section 13 is a Gaussian
measure can be derived from the literature (see e.g. Osswald [30]) but we will
present here our own proof. We will use the following lemma, that we also need

in the next sections.

19.1 Lemma

Let X, Y € F2. Then

/(Z <X2-;Y1->F> ar(x) = 5 Il

and

/(ZH; X;;Ys) >4dF( =3 ( Z||Y||F>

FH B

Proof: We prove only the second equality. The proof of the first one is then
straightforward. Choose any ONB (e,)
(Yi; en)p by Y. Applying Lemma 4.1 it is easily verified that

<, Of F. We again denote the scalar

- 4
/ (Z (Xi;Yz‘>]F> dl' (X) =
g \i=l
3 4 1 S
(i;n)ETX{l ,,,,, UJ} (Z,n) - T X {17 e ,W}
(jim) €T x {1,...,w}
(i;n) # (j;m)

3. ((%-fjum;) ~ (%-iumn%)) a

19.2 Proposition

The probability measure W on be, is a centered Gaussian measure.
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Proof: By Proposition 4.8 it is enough to show that the Fourier transform W of

W has the representation

(@) =exp (5 [ (W ()

Cp

for all ® € Cp. Fix ® € Cf . We have to show that

/exp(i-(I)(f))dW(f)zeXp —%/®2<f)dW(f)

C]B CIB

We will do this with our nonstandard representations. Let Y® € H ar be the
corresponding vector, introduced in Theorem 17.4. First we use Proposition 1.10
to see that X +— Y27, (X;;Y;®), € SL*(I'). By the lemma above and since
Y® € Hap

/(H-§;<Xi;1g¢>F>4dr (X) = 3- (H-i”}g‘buéy € Lim.

FH
By Proposition 1.9

H 2

(r-fo s s () i

FH i=1 FH

/ &2 (1 (X)) dI'y (X) = / 2 (f)dW (f).

FH Cp

With similar arguments one can prove that
H
°/exp<i~<H- <Xi;Yf’>]F)>dF—/eXp(i-Q)(f))dW(f).
o i=1 e

Now we apply transfer of Proposition 4.8 to the internal Gaussian measure I' and

obtain for the internal Fourier transform I' and for all elements Y of (IF‘H )/ = FH
H

/exp (z (Z <XZ-;YZ-)]F>> dl' (X) = exp —%/ (Z (XZ»;YZ)F) dr (X)

pH i=1 g \i=l

106



Since H - Y® € F¥, we get

/exp(i-<1>(f))dW(f) = °/exp ( (Z <Xz-;H-32‘P>F>> dr (

Cy FH

(SETEEIRE)
exp ( / <I>2(f)dW(f>)- =

N | —
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20 The Wiener Integral

A further class of functionals on Cp is given by the Wiener integrals. We will
introduce these integrals now by generalizing the usual definition for the classical
Wiener space represented for example by Kuo [24] or Norin [28]. Let g € L*(\, H)
and choose simple functions g, = anl_l a; + g, With g" Lmﬂ : g. By Lemma
5.6 (B',||-||) is dense in (H, ||-||), hence all a; can be chosen in B’. Define the

Wiener integral I,» on Cg by

kn—1

In(f) = /0 g"(t)df, = Z ai(f(tiv) — f(t:))

=1

for each f € Cg. Since W is a Gaussian measure, by Proposition 4.5 [ €
L?(Cy, W). We show, that the sequence (Iyn),  is Cauchy in L?(Cg, W). Choose
n,m € N. Let g" — g™ = Zle Bi + Ltjst,,00 With B € B'. Then (Ign — Igm) (f) =
Z?Zl Bi (f(tj+1) — f(t;)) . Choose nq,...,n, € T, such that % ~ t;. If X € F”
with b(X) = f, then

k

k
Z < *ﬁj; an—i-l + an+2 . nj+1 F~ Z ]+1 (tj)) :

j=1

By Lemma 19.1,

k 4
/FH (Z < By Xpyr + Xjro oo+ X s >> dr (X) =
j=1
1 & i
3 (EZ "Bl - (41 — ”j)) =
j=1
2 2
(Z H BJHF <n3+1 - _>> (Z HﬁJHH tiv1 — )) :

By Proposition 1.10 the internal function

k
X — Z < By Xpyjr1 + Xojq2 o+ Xy >w
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is an element of SL? (T'). The definition of the measure W, Proposition 1.9 and

Lemma 19.1 yield

/ <Zﬁj tiv1) (tm) AW (f) =

Cp N

/FH <Z B (K (X) (tj41) — K (X) (t]))> dr'y, (X) =

j=1

k 2
/ ( <*Bj; X1+ Xy -+ Xy >> dr'p (X) =
FH

(L

k 2
Z < B Xy + Xojyz o+ Xy >> dl' (X) | =

Jj=1

k
ZHﬁJ”H tit _tj>-

Since
2
lg™ = 9" 1Z2 0 g ai(®) Z 185 - (t1 = 13)
we obtain that || — Ign|l 20wy = 19" = 9™ 20 - Since (g"),cy is Cauchy

in L? (X, H) the sequence of Wiener integrals (I;»),  is Cauchy in L*(Cg, W).
Hence the Wiener integral I, of g can be defined as L*(Cg, W)-limit of (Ign), -
Obviously I, is independent from the choice of the step functions. Now we give a
nonstandard characterisation of the Wiener integrals. This is again inspired from
Cutland [11], who described the classical Wiener space, and from the introductions
to the Ito-integral by Osswald in [30].

20.1 Theorem

Let g € L*(\,H) and G : T — F be a lifting of g with G € SL*(v). Then for
I'j-a.a. X € FH

’ (Z (G(i)§Xi>]F> =1, (f), where b(X) = f.
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Proof: First we show that the representation is independent from the choice of
the lifting. Let G, G’ € SL? (v) be liftings of g. Then by Lemma 19.1

/FH <Z (G(i); Xi) F — Z (G'(1); X;) F) dl’ —

= i=1

> IO -GOE _ [y66) - gratzavts ~ o0

Thus 3.7 (GG); X)) r ~ S (G'(i); X)) p for Tp-aa. X € FH. Hence it is

enough to prove the result for one particular lifting. As above, suppose (™), oy to
be a sequence of B’-valued step-functions ¢ = Zf:; ! Lot With g™ Lm{ : qg.
Choose nq,...,ng, €T, such that %] ~ t; and define
Ko —1
G":T—Fi— Z " Ly [
j=1

Notice that each G™ is an element of SL? (v) and a lifting of g™, and

1G™ = Gl p2m = 9™ = 9" 20 -
Furthermore, for f € Cp and X € F¥ with b(X) = f we obtain
H km—1 Njt+1 km—1
D (@M@ Xi)e =] <*aj;ZXi>w > i (fltg) = f(t) = In(f)
=1 j=1 i=n; J=1

We will obtain a suitable lifting by using the ideas of Osswald in his proof of

Theorem 10.8.1 in [30]. Let again G’ € SL? (v) be a lifting of g. Since g™ (—/\>) g,
H

the convergence is also in measure. Hence for all € > 0

Tim v ({i €T+ [ G™ (i) — G ()]} > €}) <

Tim A ({t€ 01 g™ (6 = g ()] > 5 }) =0,

111



By saturation, (G™), .y can be extended to an internal sequence (G™), ..y of

measurable functions and there exists a K € *N \ N such that
v({ieT: ||GM @) -G (i), >¢}) =0

for all M € *N\ N with M < K and for all ¢ > 0. Hence GM is a lifting of
g. Again by saturation, there is a strictly increasing function £ : N — N and an
unlimited M < K, such that

. 112 1
/||GM (i)~ G2 v <
T

for all n € N. By Proposition 1.11(b) it follows that GM € SL? (v). Let m € N
or m = M. Since G™ € SL? (v) we obtain by Lemma 19.1

/, (Z (@ (0 X) ) ar (x) -

3. ((%éuemmn;) (7 inam F)> e Lim.

By Proposition 1.7, X — 27 (G™(i);
19.1 implies for all n € N

)F is an element of SL?(T"). Lemma

H H

/]FH (Z (GH(E) X)w = Z<Gk(”)(i);X>F>2dr (X) =

=1 i=1

]_ H M /- k(n) N ]_
Note that by I rOpOSition 1.9

H H

/. (Z (@M@ X) e = (G @:X) F>2dr (X) =

i=1 i=1

/ <Z<GM F_Z<Gk”) X>F>2dFL(X),
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By Proposition 1.11(a) there exists a set A € Lp(F?) with I';, (A) = 1 und such
that for all X € A

€ Lim and € Lim.

Z (GM(1); X )

> (G0 X) v

We apply again Proposition 1.9 to obtain that

/A ( (zH; <GM(i)?X>F> - (i <Gk(”’(i);X>F)>2er (X) =

/Ao <Z<GM(Z');X>]F_Z<Gk(n)(i);X>F> dr, (X).

=1

Therefore

/A ( <2H:<GM(Z');X>F> _ o (Zi: <Gk<n>(i);X>F>>2er (X) <

i=1

S

According to Ash [5], Section 2.5, there is a subsequence k (n) such that for
') —aa X eFH

Jim (i <Gl~€(n)(i>;Xi>1F) ="° (i (GM(i); X) IE‘) :

=1

Hence we obtain for I'p-a.a. X with b(X) = f that
H
’ (Z <GM(@');X>F> =1I,(f). O
i=1

Now we want to introduce an internal Wiener integral. We will see in the next
section that in the context with differentiability of I', the internal Wiener integral

is the negative logarithmic derivative. For Y € F¥ let Iy be the mapping
H
Iy : F¥ — *R, XHH-Z(XZ-;YZ«)]F.
i=1

We call Iy the internal Wiener integral.
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20.2 Proposition

For Y € F" the Wiener integral Iy is an element of SL?(T) if and only if
H-S Y2 € Lim.

Proof: 7 = 7 If the Wiener integral Iy is an element of SL?(T'), then

/(]Y (X)>2dF (X) € Lim.
Since by Lemma 19.1
/<[Y(X)>2dr (X) =/<H-i<Xi;Y;>F>2dF (X) =

H 1 H
HY iz 5 = H- ) IYlz,
=1 =1

this direction is proved.
” &7 To see the converse let Y € F¥ such that H - S>7 ||Yi||z € Lim. We will

072
show that then [., [(Iy (X)) ] dl' (X) € Lim. Then, by Proposition 1.10, the
Wiener integral Iy is an element of SL? (T'). Now by Lemma 19.1

/ [(fy <X>)Tdr<x> -

FH

(Z <Xi;YZ->F> dr (X) = H* 3. (%Z”Yi”;) _

=1

[
FH

3 ((Hénmn;)-(Hénnn;)) € Lim. [

20.3 Corollary

If Y € Hy, then the Wiener integral Iy is an element of SL?(T'). In the special
case B=H =R, Y € Hy if and only if Iy is an element of SL* (T).
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20.4 Remark

Let g € Cy, with derivative g. Let Y be defined as in the proof of Proposition
14.3B, i.e. Y, =prg ( o *g(s)ds>. We have seen that Y € Hyr and by = ¢. In
H

addition, we have proved that
G:T—F i1— H-Y;

is an element of SL?(T') and a lifting of g. By the above, we obtain that the
Wiener integral I, of the derivative g of ¢ is the standard part of the internal
Wiener integral Iy. So for I'z-a.a. X € FH

1y (f) :/0 g(t)dfy = ° (Z (G(’i);XmF) =" (H <Yi§Xi>IF> = °(Iy(X)),

i=1 i=1

where b(X) = f. Since two derivatives ¢; and ¢gp of g differ only on a set of

Lebesgue measure 0, the Wiener integral I is uniquely determined.
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21 Fomin-Differentiabilitiy of I';

This section takes up again our main theme of measure differentiability. Now we
will show the Fomin-differentiability of the Loeb measure I';. Recall that v~ v

is the internal Gaussian measure on *R¥ ¥ i.e.
T 7\"" H
wH/ L _ _ 2, (9
WV (B) = ( —%) /B exp( 5 i<w§j<H% (J)> dz; (f)igwg<n

for all internal Borel subsets B C *R*# and T is the internal Gaussian measure
on F# defined by

I'(A) = 'YW.HW/% (i (j))igw,ng : (Z ;i (j) 91) €A

for each internal A € bpu, where (e;), is an arbitrary orthonormal basis of F.

At first we prove the following standard lemma we will need below.

21.1 Lemma

For allt € [-1;1]\ {0}, r € RS and z € R the following inequality holds:

exp (—tz — t?r) — 1
t

+ 2| < [t]-exp (r) - (exp (—2) + exp (+2)) -

Proof: We will use the Taylor series exp(x) = >, ",”C—If So,

(ftzftQT) .

exp (—tz —t*r) — 1 B 1+22021T—1 B
y zZl = 7 +z| =
Stk (—z— )P Stk (—z— )P
N <
2 A + z z r+kz:; i + 2z <
= (2] + Jt] )"
tor+> I = (4).
k=2
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Since [t| < 1, we have

[t (|z] + )" \Z|+7“ = [t (2] + )"
1) < |t - 7‘+Z <|t|-(r—|—1)+|t|-|z|+ZT§
k=2

2] - <1+ |Z|+T+Z & +r ) = [t]-exp (|2 +7) = [¢] - exp (|2]) - exp (1) <
|t] - exp (r) - (exp (—z) + exp (+2)). O

Now we show that v+ Vi s S-Fomin-differentiable along all measurable vector
fields h : *R<H — *RH  which fulfill the following conditions:

~ 2
(A) There is a fixed & € N, such that H - S (h@:))i <k for all X € *R¥H.
(B) [t €XD ( H-Y 0 h(a )z-) dy* TN (2) s limited.
(C) [.gu-rr €XP (-I—H Z T ﬁ(m)z> dv‘”'H’\/g(m) is limited.

(D)x — —H-Y Mo, h(z); is S H\/T—integrable.
VIV H

21.2 Theorem

Let h : *RH — *R<H pe ¢ measurable vector field, such that the conditions

(A), (B), (C) and (D) hold. Define Ty(z) = a — t - h(zx) and (wﬂv\/%) (A) =
t
y i %(T[1 [A]) for all internal Borel subsets A C *RYH and all t € J := *R.
~ /
Then *Hv o s S-Fomin-differentiable along h and if <”y”'H’V %> s a derivative

of yw'H’\/g, then for all internal Borel subsets A C *R¥H

FIVE) ()~ [ B @)y (@),
( PnE

where 6hW.H\/I(X> = —H -y h(x),.

v UV H

Proof: We show that 7W'H’\/g fulfills the conditions of Theorem 10.1. Since
VW'H’\/E is nonnegative and yw'H’\/% ("RH) =1, 7‘”{’\/g is S-bounded. vw'H’\/g
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has the positive Lebesgue density

w-H w-H
H H
f RWH *R, X — ( 2—) exp (—3 E x?)
=1

™

that is *differentiable in the direction of all z € *R*. To prove condition 3) let

t~0,t# 0. Then

U fatrei@y [\ S@0E@)
t\ @

—H - (T2 e b)) - (VE) e (S X202

yt\-exp<§g(ﬁ(m))>-<exp< ZH% )—l—exp(—i-;Hxh )))

i=1

For the last inequality we used transfer of Lemma 21.1. Now let us define

g: "R - *R by g(z):=

|t|-exp<§§<ﬁ(w)>2>-<exp< ZH:@ )+exp<+;Hmh )))

=1

Of course, ¢ is *Borel-measurable, and by the conditions (A), (B) and (C') we get

[, stV @) -

119



w-H

+

/ |t] - exp <
*Rw-H

[RW.H 1] - exp (Z% (M@)j) - exXp (—i—ZHsz(m),) dy“"Hv\/g(x) <
s o (S o) oo

g(ﬁ ))) exp( ZH:EZ )dVWH\/_()

i=1

*Rw-H

w-H
er It exp <+ZH.TJL($)Z> dfy‘“‘Hv\/%(x) ~ 0
*RW-H

i=1

since |t| ~ 0. Hence condition (3) is verified. Now for all x € *R«#

fete) (5 500

7(a)

By condition the internal function ﬁi‘ oS O RYH — R with

w-H, +r
0% H

; 7'@) (b)) o
N DI R

is S i, \/g—integrable. Thus all preliminaries of Theorem 10.1 are given, and

therefore the theorem is proved. [

We will see now that Theorem 21.2 holds in particular for all constant vector
fields i (z) =y € *RH where H - .M 42 € Lim .

Note that, as a consequence of the translation invariance of \**# for all y € *R“H

i=1

We need also the next lemma.
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21.3 Lemma

For y € *R¥H define the internal functions f and g on *R“H by f(x) =
exp (2 -H - Z:‘):Il{ xiyi> and g(x) := exp ( 2-H-> 7 xzyl> . Then

[R“‘H eV @) = [RW‘H gla)dy* "V () = exp <2H : Z@f ) .

=1

Proof:
[ Vi) -

w-H w-H
H w- H
< %> . lRW.H exp (2 - H - Zx1y1> exp (—— Zx ) d\

=1

( %) : [RW’H exp <_§ : ; (z; — 2y¢)2> exp <2H Zyz> d\H (z
o (2H S > | (@) | [W o <‘§ SNCE 2yi)2> X () =

=1

w-H
exp <2H . ny) .
i=1

The proof for g is similar. [

21.4 Proposition

Fiz y € *R* and define (7‘”{’\/%) (A) = VW'H’\/E(A + ty) for all internal
Borel subsets A C *RH and all t € J :=*R . If H - Zf?yf 1s limited, then

VW'H:\/E is S-Fomin differentiable along y. The function (3Y e D RUH R,
VVH

y _ 2 w-H, L
defined by ﬁﬂﬂ'Hv\/E< xr):=—-H- Zz 1 Tiy; 15 an element of SL (7 H) and

/!
if <7“'H’ %) is a derivative of v~V %, then for all internal Borel subsets A C
*Rw-H
w-H Y wH,\/L
(v /ﬁwa 2) dy BV (z),

Proof: By Corollary 20.3 3Y e is an element of SL?2 (W‘UH\/E> We only

H

have to check the conditions (B) and (C') of Theorem 21.2. But they follow imme-
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diately from Lemma 21.3. Hence, all preliminaries of Theorem 21.2 are given. [

With Theorem 21.2 and Proposition 21.4 the following main theorem is obvious.

21.5 Theorem

Let h : F — T be a measurable vector field which fulfills the following condi-

tions:

(A) There is a fived k € N, such that H - 10 |W(X)|lz < k for all X € FY.

(B) Jou exp (—H S X h(X)i>F) dr (X) is limited.
(C) fow exp (+H - I, (X h(X)i)y ) dT (X)) s Timited.

(D)X — —H -7 (X;;h(X);)p is Sr-integrable.

Then T is S-Fomin-differentiable along the vector field h and if I is a derivative
of I then for all internal Borel subsets A € byu

P~ [ 800 @)

where B (X) = —H - S (X h(X)i)g. This holds in particular for constant
vector fields h =Y € P when H - 3.7 ||Vi||2 € Lim, in which case we obtain
that the logarithmic derivative Ccll—l;/ s the negative internal Wiener integral Iy .

Now we apply Theorem 11.3 and Lemma 11.4 to obtain Fomin-differentiability
of the Loeb measure I';,. Recall Lemma 9.3, that for S- Fomin-differentiable

measures the curve of measures is S-continuous.

21.6 Proposition

We take the assumptions of Theorem 21.5. For some ¢ € R™ let J be an interval
of *R containing the standard interval I =] —e,e[. For r € I choose t € J such
that t ~ r and set p, = p, and F := (g L, (bpr). Then we can define
the curve ((pr)r)rer of Loeb measures on F by (ur), = (p,); restricted to F.
Since T' is S-Fomin-differentiable along the vector field h, the Loeb measure 'y, is

Fomin-differentiable along h with derivative measure I'; : F — R,

B T)(B) = / Gk (X) dT'; (X))
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where B (X) := —H -2 (X (X)) IfY € B with H -1 ||Yill3 € Lim,

Iy is Fomin-differentiable along Y with ‘2—1; (X) = °Iy(X). This holds in partic-
ular when Y € Hp.

At the end of this chapter we apply Proposition 9.1 to get an integration by part
formula. Note that by Corollary 11.5 S-Fomin-differentiability of I" implies the
differentiability of I';, with respect to the set Cp of all F-measurable real-valued

bounded functions on F*. This yields the next proposition.

21.7 Proposition

We take the assumptions of Proposition 21.6. Let C be a set of internal *R-valued,
bpr -measurable and S-bounded functions on F that have the following property:
for each X € T the function

fX +t-h(X)) = f(X)

J\{0} = "R, t —
is S-continuous. Let
Cr = {g:F¥ =R : gis Gateaur differentiable in all directions h(X)

and there is an element f € C with °(f(X)) = g(X) for all X € F"}.

Then T', is differentiable with respect to Cr, along h and for all g € Cy,

g(X)dT, (X) = — / g(X) -l (X) dT'y (X).

FH

/FH ¢ (X)(M(X))dl'L, (X) = _/

FH

In Section 6 we introduced generalizations of Malliavin derivative and Skorokhod
operator. In the situation of Proposition 21.7 ¢’ is a kind of Malliavin derivative
and —ff is a kind of internal Skorokhod integral of the vector field h. If h (X) =
Y € F¥, with H - 3.7 |Vi|li € Lim, this Skorokhod integral is the internal

Wiener integral.
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22 Fomin-Differentiability of the Wiener Mea-

sure

Recall the construction of the Wiener measure W on bc, in Section 13. There
k is the surjective and Borel measurable mapping x : F¥ — Cg, X — by,
Fo={rk"t[A]| A€ be,} and

W(A) =Ty (v [A4]).

for each A € be,. Denote by F the o-field generated by Fy. We shall see in this
section that W is Fomin-differentiable along all elements of Cy. Note that for
feCyand A€ bg, also A+7r- f € bg, for all r € R.

22.1 Theorem

Let f € Cy. Then there is a measure W' on be, such that for A € be,

th(AJrr-f)—W(A)

r—0 r

— W(A).

Furthermore, W'(A) = [, & (w)dW (w), and the logarithmic derivative £ is the
Wiener integral I5.

Proof: Let f € Cy. By Proposition 14.3(2) the vector

(o (1) (7).

lies in Hy and by = f. Hence for all r € R and A € b,

KUV A+r- fl=r"[Al+1- Y}

Of course, Fy CF = (),cg L1, (A). Now
limVV(Aer-f) —W(A) _
r—0 r
lim I'p ('%71 [A] + TY) Y (Kfl [A]) _ F/L(Iﬂ_l [A]) _

r—0 r
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/le °BY (X)dly, = /Bg(w) AW (),

where we have used Proposition 21.6. [
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23 (Cp,Cy) as Abstract Wiener Space

In the last chapter we list some well established standard results that follow from

the previous sections.

23.1 Theorem
The space (Cu; ||||CH) is the Cameron-Martin subspace H(W') of (C’B; |-|Sup>.

Proof: According to Theorem 22.1 the measure W is Fomin-differentiable along
all elements of Cy. Theorem 4.15 shows that Cy C H (W). By Lemma 14.1 Cy is
dense in (CB; || ) Hence, also H (W) is dense in (CB; ||

sup ) Therefore, we can

sup
apply Lemma 5.9 to obtain that Cj is a dense subspace of <H (W); H~||H(W)). Fi-
nally, as proved in Section 18, C} is a dense subspace of (Ciy; H||CH) By Theorem

18.3 it is enough to show that

1Ay = 1Nl

for all f € Cy which have a derivative f of bounded variation.

Let f € Cy with a derivative f : [0;1] — B/, that is of bounded variation. By
Theorem 18.3 the corresponding functional on Cy can be extended to an element
O € Cf. At first we show that @ = Ry (f). As in the proof of 18.3 we define
(YJ)nGT by Y./ = & - pr® (*f (%)) forn € {1,2,...,H —1} and Y}, = 0, and
use that (Ynf)nET lies in Hap, bys = f and n+— H - Y,/ is an element of SL? (v)
and a lifting of f . Choose an arbitrary functional ® € Cp and let Y € Hap
the nonstandard representation, introduced in Section 17. By Lemma 19.1 the
functions X — H-37 (Y X)pand X — H-3 7 <Yz-f; Xi>]F are both elements
of SL? (T'). Hence we obtain, again using that W is the image measure of 'y, and

using the properties of Gaussian measures:

[ st) - e o) -

Cp

/ 5 (H.XH:<YJ;X,~>F) Lo <H‘2H:<Y%;X¢>F> 0T} (X) =

pH i=1 i=1
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/H2 (Y1 X,) - (¥ X, dT (X) ﬂ(iﬂ-@ﬂm}):w).

The fact that n — H - Y./ is an element of SL? (v) and a lifting of f yields that
n— (H-YI;H-YI) isan S, -integrable lifting of f2. Hence,

Hf“iI(W):/q)z( )AW (w) / <H i< >> dl'p (X) =

Cy FH =1

[ stmn) |

=1

= -

DR E Yf>>

=1

1
[ vinyha = [ Peds= g, o
T 0

Now we show that the set of Wiener integrals coincides with the reproducing

kernel Hilbert space.

23.2 Proposition

Let 1 € L? (Cg,W). Then there exists a g € L* (\,H) such that

for W-a.a. f € Cg if and only if | € Cy .

Proof:” = " isobvious. 7 <=7 Let | € Cp y,. Then there exists an element h € Cy
with ®(h) = [, I w)dW (w) for all & € Cf. With the same arguments as
in the proof of Theorem 23.1 one can show that ® (h) = [, I; (W)dW (w).

Proposition 4.12 yields that [ (f) = I;, (f) W-a.s. O

23.3 Theorem

(Osswald [30]) (Cg, Cy) together with the measure W is an abstract Wiener space.

Proof: By Lemma 14.1 the space Cf is dense in Cg. Therefore, the result follows
from Proposition 5.10. [
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We close the thesis with a view at the classical Wiener space. It arises from
the special case B = H = R. Recall that then

B:*RY x T — "R, (X,n)HZXZ»,

Cr = {f : [0;1] — R : there exists a square integrable function f € L*[0; 1]

so that f(¢) / f(s)ds for all t € [0;1]}

and
H
Hy =Hp={Y € R":H-> Y€ Lim}.
i=1
The next lemma follows from Proposition 13.1. The independence is easily veri-
fied.

23.4 Lemma

Let 1 <n<m<k<leT. Then B,, — B, and B; — By are independent,

normally distributed random variables with variances ™7"* and %

Note that the classical Wiener measure P is a probability Borel measure on Cg
such that for any partition 0 =ty <t; <...<t, <1land (ai,...,qa,) € R"

P{feCr: f(t;) <q;foralll <i<n})=

«
o1

2
I P

[ B (e

where yo = 0. (See e.g. Cutland [11] or Kuo [24].)

23.5 Proposition

(Cutland [11], Theorem 2.2.) The Wiener measure W on Cg is the classical

Wiener measure.

Proof: (Cutland [11]) Let 0 = ¢p < t; < ... < t, < 1 and (ay,...,q,) € R
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Pick n; € T, =~ t; for each i. Then, by Lemma 23.4
Iy (st {f€Cr: f(t;) <ayforalll <i<n})=
I'p({X e RY: °(B,, (X)) <ogforalll <i<n})=

1
lim I'; ({X € *RY . B, (X) <a;+—foralll <i< n}) =
m

m—00

1
lim T,({X € " R”: B, (X) <oy +—,
m

m—0o0

1
B, (X) =By, , (X)<ai+——B,,_,(X) forall2 <i <n}) =
m

a1 Q2—T1 3—T2—T1 an—Tn—1—"Tn—2"...—

e (- xiity)
lim / / / H AR dry...dz, =

m—oo 21 (tz’—&—l — tz)

—00 —00 —00 —00 =0
o1 Onp—1 2
1 (yi+1—yi)
cexp | ——————— | dy; . .. dyp,
_Z _Z i=0 V 27T (tz—‘,-l - tz) ( 2 (ti-‘rl - t’&)

where yo = 0,1 = 21,y = »_;_, z;. Hence the image measure W of I'y, coincides

with the classical Wiener measure P. O

By proving this last proposition we completed a new proof for the old - but

not trivial - result that the classical Wiener space is an abstract Wiener space.
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