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Preface

This dissertation combines three contributions to the fields of behavioral and political
economics. Each contribution corresponds to one chapter; all chapters are self-contained
and can be read independently. Despite their diverse topics, all chapters have a common
focus: the interdependence of expectations and economic choices.1

There are several ways how expectations and economic choices can be related to each
other. The obvious way concerns situations in which economic agents are making forward-
looking decisions under uncertainty. In such situations, an agent’s expectation regarding
the consequences of her decisions will determine her preferences over available alternatives
and, hence, her choice behavior. The standard economic approach for analyzing these
kinds of situations is expected utility theory; it rests, among others, on the following
two implicit assumptions. First, it is assumed that agents predict their utility from all
possible consequences of their actions correctly; in other words, agents know their future
preferences. Second, agents always choose the option with the highest expected utility,
which is calculated by weighting the utility of each consequence of an alternative with
its expected probability. Apart from this, expectations do not affect preferences over
alternatives.

Two recent theories from the field of behavioral economics dispense with these two as-
sumptions: Contrary to the first assumption, Loewenstein et al. (2003) argue that agents’
perceptions of their state-dependent future preferences are not necessarily correct and
instead biased towards their preferences at today’s state of the world. Contrary to the
second assumption, Kőszegi and Rabin (2007) show how probabilistic expectations may
affect preferences apart from weighting the utility of each possible consequence. They
argue that expectations serve as reference points that determine whether a consequence
is evaluated favorably as a gain or unfavorably as a loss. Whether or not these theories
describe behavior accurately ultimately needs to be studied empirically. This is the aim

1Throughout this preface, we will use the term “expectations” in the broad sense of describing an
agent’s general perception of situations involving uncertainty. In particular, we will make no distinc-
tion between expectations and beliefs. In the main chapters of this dissertation, however, the terms
“expectations” and “beliefs” will be used in their usual, more narrow, sense.
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of the first two chapters of this dissertation.

A second aspect of how choices and expectations are related is that the behavior of one
agent may affect the expectations of others. In particular, if information is asymmetrically
distributed, uninformed agents can learn from observing choice behavior of the well-
informed. This may create incentives for the well-informed parties to disclose or conceal
their information in order to influence the expectations – and, hence, actions – of the lesser
informed agents. In Chapter 3 we analyze theoretically, how such signaling considerations
may affect political transitions and the emergence of extreme political systems.

The first chapter, which is based on joint work with Thomas Kolaska, evaluates whether
individual expectations regarding their future preferences are, on average, correct. While
this assumption is generally maintained in standard economic theory, Loewenstein et al.
(2003) argue that individuals may actually have difficulties predicting their future utility
accurately. In particular, individuals tend to underestimate the degree to which their
future preferences will change due to changes in the state of the world. This bias –
labeled projection bias by Loewenstein et al. – can be illustrated by a simple example:
Individuals tend to overweight utility from food when hungry, which is why shopping on
an empty stomach should be avoided.

We test for projection bias by studying advance sales of an outdoor movie theater. In this
context, projection bias predicts that good weather on the purchase-date leads customers
to overvalue their utility from visiting the theater on the movie-date. Hence, the number
of advance sales for the theater should be positively related to good weather on the
purchase-date.

The decision problem of whether or not to buy tickets in advance has a number of char-
acteristics which make it a suitable testing ground for projection bias. First, utility from
visiting an open air theater is clearly weather- and, hence, state-dependent. Second, the
variation in the state “weather” is independent of the individual decision to buy tickets
such that the chain of causality is clear. Third, we demonstrate that weather is highly
variable at the location of the theater such that the current state (current weather) does
not provide useful information regarding the realization of future states (future weather).
Finally, the stochastic process of weather should be among the stochastic processes best
understood by individuals, as it is part of daily experience. This and the simplicity of the
decision problem should minimize the propensity of decisions being biased at all.

We contribute to the literature by demonstrating that projection bias affects choices
in an economically significant way even in this simple decision problem. According to
our estimates, a one standard deviation change in the daily sunshine duration (a salient
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indicator of weather) leads to a change in ticket sales between 10 and 25 percent on
average, irrespective of how many days (or even weeks) in advance tickets are sold.

We rule out a number of alternative explanations for this result. We demonstrate that
neither the information content of current weather, weather-related shifts in the number
of customers, nor weather-related capacity constraints of the movie theater can account
for all regularities we find in the data. Only projection bias is consistent with all our
findings.

Similar to the first chapter, the second is devoted to testing a behavioral theory for
decision making under risk. The theory tested here – Kőszegi and Rabin’s (2006; 2007)
model of reference dependent preferences – is an extension of the theory of loss aversion,
an essential part of one of the oldest and most influential behavioral models in economics:
Kahnemann and Tversky’s (1979) prospect theory.

Loss aversion describes the idea that individuals evaluate consequences of their choices
not only by the outcome itself, but also assess these outcomes in comparison to a reference
point. If the outcome is better than the reference point, they perceive this as a gain; on
the other hand, if the outcome is worse than the reference point, individuals experience a
loss. It is generally maintained that the experience of losses is a stronger feeling than the
experience of gains such that individuals dislike losses of a certain size more than they
like gains of the same size.

Since gains and losses emanate from comparing outcomes with reference points, the ques-
tion of what constitutes the reference point is central for any theoretical application of
loss aversion. The contribution of Kőszegi and Rabin is to provide a theory of how refer-
ence points are formed endogenously. Their central ideas are summarized in the following
quote: “A person’s reference point is the probabilistic belief she held in the recent past
about outcomes” (Kőszegi and Rabin, 2006, p. 1134; emphases added). It is worth elab-
orating on the implications of this quote because this allows us to derive the testable
prediction of Kőszegi and Rabin’s theory that is at the heart of our work.

First, equating the reference point with probabilistic beliefs about outcomes or, in other
words, expectations, implies that individuals feel gains and losses with respect to all
possible outcomes they expect. As an example, consider an individual endowed with a
lottery that pays 27 Euro or 7 Euro with equal probability. When the reference point
is given by the payments of this lottery, she will evaluate the unfavorable outcome of 7
Euro both with respect to itself (yielding neither gain nor loss) and with respect to the
favorable outcome of 27 Euro (yielding a loss of 20 Euro). Of course, the exact reverse
reasoning holds for the evaluation of the favorable outcome, which provides zero gain-loss
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utility when compared to itself and a gain of 20 Euro when compared to the payment
of 7 Euro. Since losses loom larger than gains, expecting to face a risky lottery and
incorporating this expectation in the reference point thus necessarily leads to negative
expected gain-loss utility. In contrast, expecting a safe outcome of, say, 15 Euro entails
gain-loss utility of zero, since expectations are always exactly met.

Second, only expectations held in the recent past (as opposed to current expectations)
are assumed to be relevant for the reference point; in other words, Kőszegi and Rabin
postulate that reference points adjust to new information only with a lag. Note that for
the evaluation of the lottery and the safe outcome in the above example it is important
whether or not the reference point adapts. If there is only a short time-span between
receiving information about the lottery and the resolution of uncertainty, the reference
point will not adapt to new information. Then, the payments of the lottery are compared
to the expectations previously held. The same holds for the safe outcome such that both
alternatives in the above example are compared to the same referent.

Clearly, an individual’s choices alter the distribution over future outcomes and thus her
expectations. By our above arguments, preferences for a lottery depend on whether or
not the reference point adapts to the new expectations (following from choice) before the
outcome of the lottery is revealed. In particular, the Kőszegi-Rabin model predicts that
individuals should be more likely to prefer a safe payment over a lottery in situations in
which the referent adapts compared to situations in which the referent does not adapt.
As we have argued above, this is because the expectation of a lottery always leads to
negative expected gain-loss utility.

In Chapter 2 we ask whether individual choice behavior is consistent with this prediction.
We analyze choice behavior of subjects in an experiment in which they had to decide
between a risky lottery and a safe payment. In a between subject design, we vary the
length of the lag between the time at which subjects make their choices and the time at
which the uncertainty for the lottery is resolved. In one treatment, individuals learn the
outcome of the lottery immediately after their choices; hence, reference points have only
very little time to adapt. In a second treatment, the outcome of the lottery is revealed
not until 24 hours after choices have been made, providing ample time for the reference
point to absorb new information.2

In contrast to the predictions of the Kőszegi-Rabin model, we find that the time structure
of the decision problem does not affect individual preferences for the lottery: the share of

2In a third treatment, we vary the timing of information about available alternatives relative to the
timing of uncertainty resolution. Kőszegi and Rabin predict that this affects choice behavior in a specific
way compared to the first two treatments discussed above. We refer to Chapter 2 for a detailed description
and discussion of this treatment.
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subjects choosing the lottery over the safe payment remains constant across treatments.
Nevertheless, our findings could be consistent with a theory of expectations-based ref-
erence points in which referents adapt almost immediately to new expectations. Such a
theory may be appropriate in experimental contexts in which the “attachment” of subjects
to previously expected outcomes is potentially weaker than in real-life situations.

While the first two chapters provide empirical tests of behavioral theories for individual
decision making under uncertainty, Chapter 3 – which is based on joint work with Robert
Ulbricht – studies the dynamics of political systems in a theoretical framework. Within
this framework, the interdependence of agents’ expectations and policy choices crucially
drives political dynamics, as will become clear below.

Chapter 3 is a contribution to the economic literature on political transitions (see, for
example, the seminal contributions of Acemoglu and Robinson 2000b, 2001). While the
previous literature has focused mainly on single transition events, our work places the
dynamic process that describes the evolution of political systems at the core of the anal-
ysis. More specifically, we ask the following questions: First, which types of political
systems arise endogenously when transitions occur peacefully via reforms or violently via
revolts? Second and related, through which transition mechanisms – reforms or revolts –
are democratic and autocratic political systems established? And third, how stable are
different political systems over time?

Providing answers to these questions requires a model in which the political system that
emerges from the transition mechanisms of reforms and revolts is endogenous to the
choices of political actors. For revolts, we assume that each agent who is excluded from
political power individually decides whether or not to participate in the risky undertaking
of revolting. If the revolt is successful, those agents who participated form the new regime.
Regimes after revolts are thus determined by the individual decisions of political outsiders.
The prospects of a revolt – and hence the incentives to support it – thereby depend, on
the one hand, on the fraction of political outsiders supporting it, and, on the other hand,
on the internal stability of the regime currently in place. The latter is private knowledge
of the ruling elite such that they are better informed than political outsiders about the
likelihood of a revolt to succeed.

To alleviate the potential threat of a revolt, members of the regime may reform the
political system by enfranchising an arbitrary fraction of political outsiders. A reform
thus reduces the mass of outsiders in the population and thereby the number of those
who potentially join a revolt. Since the scope of reforms is not fixed, the political system
emerging from reforms is a priori unspecified.
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Our first finding from the model is that reforms always lead to democratic political sys-
tems. At the heart of this finding is the signaling value of reforms. Because internally
weak regimes have, ceteris paribus, a higher incentive to conduct reforms than internally
strong regimes, political outsiders expect the regime to be weak when reforms are observed
in equilibrium. If the regime is weak, however, the incentives for political outsiders to join
the revolt are large. Hence, reforms need to enfranchise a large fraction of outsiders in
order to offset the increasing degree of coordination among outsiders (and to effectively
reduce revolutionary pressure).

In addition, we show that successful revolts always lead to autocracies. Our model thus
predicts that democracies are always established via reforms. This finding is in line with
findings from political science, according to which members of the old elites play an impor-
tant role in the establishment of democracies (e.g. Rustow, 1970). We further demonstrate
that democratic political systems are stable because they lack a meaningful opposition
of outsiders; in contrast, autocracies are instable due to being frequently overthrown by
revolts or succeeded by democracies after reforms. Nevertheless, given that revolts in gen-
eral result in autocracies similar to their predecessors, autocratic political systems persist
over time. Our model thus predicts a long-run distribution of political systems with
mass concentrated on extreme political systems, which mirrors the empirically observed
distribution.

6



Chapter 1

Projection Bias under Risk∗

1.1 Introduction

In many economic decision problems, the utility from choice materializes in the future such
that individuals need to predict their future utility in order to make informed decisions.
While standard economic models assume that individuals predict their utility correctly,
Loewenstein et al. (2003) argue that individuals make systematic errors. Specifically,
people tend to underestimate the extent to which changes in the state of the world alter
utility. Hence, predicted future utility (at unknown future states) is biased towards utility
at today’s state. Loewenstein et al. call this error projection bias.

There is accumulating evidence that projection bias affects economic decisions like house,
car, and apparel purchases (Conlin et al., 2007; Busse et al., 2012) or college choice
(Simonsohn, 2010). For example, in parallel work Busse et al. demonstrate that sales of
4-wheel drive vehicles increase by 6 percent after a snowstorm, that is at times when the
weather-related utility from owning a 4-wheel drive is very high. All these papers have
in common, however, that the weather-related dimension of utility, which serves as the
testing ground for projection bias, is most likely not of primary importance for decision
makers. If this is the case and individuals devote only limited attention to predicting the
weather-related dimension of utility for available alternatives, they may be more prone to
make errors in that dimension.1 Therefore, it remains an open question whether people
are able to overcome projection bias when their attention is drawn to the state-dependent
nature of utility.

In this study, we test for projection bias in a situation where state-dependent utility is

∗This chapter is based on joint work with Thomas Kolaska.
1See Schwartzstein (2012) for theoretical and Hanna et al. (2012) for empirical evidence on how

limited attention may lead to errors.
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expected to be at the center of decision makers’ attention: We study online advance sales
for an outdoor movie theater. In this context, projection bias predicts that good weather
on the purchase-date leads customers to overvalue their utility from visiting the theater
on the movie-date. Hence, the number of advance sales for the theater should increase if
purchase-date weather is good.

The state-dependent nature of utility in this setting is salient for a number of reasons.
First, the presence of risk when buying tickets in advance highlights the possibility of
facing a different state of the world in the future. Customers face risk when deciding
whether or not to buy tickets today for an outdoor movie night in the future because
only movie-date weather – as opposed to purchase-date weather – affects utility. This risk
is obvious because tickets are only valid for one particular show and are non-refundable
(tickets are a perishable good). Additionally, the ticketing website points out the risk in
a clear way by stating: “The show is going to take place regardless of weather conditions.
(...) You have to pay for your tickets even if you do not collect them.”2 We demonstrate
that there is considerable risk because weather at the location of the theater is highly
variable.

In addition to risk, two further characteristics of the decision problem are expected to
de-bias potential customers. First, the weather-related dimension of utility is a very
important component of total utility derived from the movie night – in a survey, the
majority of customers states that weather is at least as important as the movie shown.3

Since weather is important to customers, they should devote a considerable amount of
attention to predicting weather-related utility correctly. Second, when considering to
purchase tickets few days in advance, customers can condition their decision on reliable,
unbiased, and free information provided by weather forecasts to overcome projection bias.

Contrary to our conjecture that potential customers are by and large de-biased, we find
that variations in purchase-date weather explain variations in advance sales to a large
degree, controlling for the weather forecast. Across different time horizons – with the
number of days tickets bought in advance ranging from one day up to three weeks – a
one standard deviation increase in sunshine duration leads to an increase in sales between
10 and 25 percent on average. Our findings are robust to considering different subsets of
customers. Notably, the results do not change when we consider the behavior of customers
with prior bad experiences (defined as rainfall during a previous show they purchased
tickets for). The dependence of ticket orders on current weather is thus prevalent for
customers who had the possibility to learn from previous mistakes.

2Authors’ translation from https://www.didax.de/kms/index.php [4 October 2012].
3We conducted a survey at the theater on a total of 13 nights, interviewing 443 customers. For details,

see Section 1.3.3.
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We rule out a number of alternative explanations for this finding. First, we show that
purchase-date weather has at most negligible predictive power for movie-date weather,
ruling out the possibility that current weather is an informative signal for future weather.

Second, we investigate whether the positive effect of purchase-date weather on aggregate
sales merely reflects an increase in the number of potential customers who consider vis-
iting the theater as an attractive leisure activity without affecting individual decisions
directly. This may be the case, for example, if good current weather reminds people of
the possibility to visit the theater. We use a strategy similar to Conlin et al. (2007) to
distinguish between the latter explanation and projection bias by looking at the decision
to collect the tickets that have been purchased in advance. If, on the one hand, projection
bias affects individual purchase decisions, utility of customers is upward biased at times
of good purchase-date weather. Then, tickets are mistakenly purchased with a higher
likelihood. We therefore expect that the likelihood that customers let their tickets expire
increases with better purchase-date weather if projection bias affects decisions. If, on the
other hand, individual decisions are unbiased and purchase-date weather solely affects the
aggregate number of potential customers, there should be no effect on tickets collected.
We find a negative effect of purchase-date weather on the probability that tickets are
collected, providing further evidence for projection bias.

Third, we argue that weather-related market interactions cannot explain why sales depend
on purchase-date weather. In particular, there may be a “precautionary” rationale for
purchasing tickets at times of good weather as good weather may increase the perceived
probability for the theater to sell out in advance. However, this seems unlikely to be the
sole explanation for our findings for two reasons. On the one hand, sales well in advance
of the movie-date – when the probability for the theater to sell out is essentially zero – are
also weather-dependent. On the other hand, we show that hourly variations in weather
explain hourly changes in ticket sales. This is in line with projection bias, but does not
fit an explanation based on “precautionary” purchasing motives because the perceived
probability of the theater to sell out is unlikely to vary with hourly changes in weather.

By showing that projection bias affects individual decisions even in situations in which the
state-dependence of utility is particularly salient, our study complements the emerging
literature on projection bias in economics discussed above. In addition to this literature
in economics, there is a number of papers in psychology providing evidence for projection
bias. This literature deals mostly with how current visceral states – for example hunger
or sexual arousal – affect decision making.4 See Loewenstein and Schkade (1999) for an
overview.

4See for example Loewenstein (1996), Loewenstein et al. (1997), Read and van Leeuwen (1998), van
Boven and Loewenstein (2003), and Nordgren et al. (2007).
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Furthermore, it is important to note that projection bias is observationally equivalent to
agents holding subjective beliefs that assess the current state of the world to be more likely
in the future (this has been pointed out by DellaVigna, 2009).5 There is some evidence for
agents holding these types of beliefs, which Fuster et al. (2010) call “extrapolation bias”.
For example, several papers in behavioral finance find that individuals tend to choose
assets with high current returns more frequently even if current returns do not predict
future ones (Benartzi, 2001; Kaustia and Knüpfer, 2008; Barber et al., 2009; Choi et al.,
2009). Similar evidence comes from the literature on heterogeneous expectations (see
Hommes, 2011, for an overview of the literature). For example, Chavas (2000) estimates
that 47 percent of cattle producers use the current price as proxy for future prices when
planning future supply, despite large fluctuations in price over time (widely known as
“hog cycle”).

The remainder of the chapter is structured as follows. In the next section we develop a
simple model and derive predictions regarding how current weather may affect advance
sales and the subsequent decision of customers whether or not to visit the theater. In
Section 1.3 we describe the data in greater detail. Section 1.4 discusses our main empirical
findings. In Section 1.5 we evaluate alternative explanations for our findings as well as
their robustness. Section 1.6 concludes.

1.2 A Simple Model and Hypotheses

To fix ideas, this section provides a simple model of individual purchase decisions as well
as aggregate purchasing behavior. The model nests rational behavior as well as projection
bias and the “reminder-effect” of weather, where the latter two are models of how the
current state – weather on the purchase-date – may affect individual choices and total
sales. From the general model, we derive testable predictions to distinguish between
rational behavior and the two potential explanations for weather-dependent individual
decisions and sales.

1.2.1 Individual Purchase Decisions and Aggregate Sales

Individual Decisions Survey results indicate that weather is an important determinant
of the utility derived from an outdoor movie night.6 Overall, 81 percent of respondents
state that dry weather is “very important” or “important” for having a good night at

5Recall that projection bias is a mistake in predicting utility at unknown future states. The beliefs
regarding the likelihood of each state are assumed to be correct.

6See Section 1.3.3 for a description of the survey.
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the movie; comfortable temperatures are of importance for 66 percent. In our model,
therefore, each customer derives weather-related utility u(wτ ) when watching a movie
on date τ given weather conditions wτ ∈ R.7 The utility function u(·) is assumed to
be increasing, twice differentiable, and concave on the real line. When not visiting the
theater, individuals receive utility u(η) from a heterogeneous outside option η ∈ R, which
is distributed within the population according to the distribution G(·).

On the purchase-date t < τ , an individual decides whether or not to buy a ticket for the
movie-date at costs c (in utility terms). On the purchase-date, the realization of weather
on the movie-date is uncertain. We denote the distribution of wτ at t by H(·), which
is known to potential customers. We assume that H(·) belongs to the location family
of distributions with location parameter ft and is independent of actual weather wt (we
will justify this assumption empirically in Section 1.5.1).8 The parameter ft denotes
the weather forecast at t for the movie-date τ , which is available to individuals free of
charge. The forecast predicts expected weather on the movie-date and contains all relevant
information regarding movie-date weather at t: E[wτ | ft] = E[wτ | ft, wt] = ft, where E is
the expectations operator with respect to H(·).

To incorporate projection bias in our model, we adopt the formulation of “simple pro-
jection bias” (Loewenstein et al., 2003) and assume that the current state – in our case
current weather – receives weight α ∈ [0, 1] in an agent’s expected utility function. Clearly,
the case α = 0 represents fully rational behavior. The case α > 0 captures that individ-
uals cannot fully assess the extent to which a change in the state of the world will alter
their utility and thus unconsciously anchor their utility on the current state.9

Expected utility from purchasing a ticket on the purchase-date for an individual with
outside option η is then given by

vB(ft, wt, η) = (1−H(η))
(

(1− α)E[u(wτ )|wτ ≥ η, ft] + αu(wt)
)

+H(η)u(η)− c. (1.1)

A customer who owns a ticket will only visit the theater if movie-date weather exceeds
the outside option (wτ ≥ η). In this case, captured by the first term of (1.1), she receives
weather-related (expected) utility from visiting the theater, which may have excessive

7For simplicity, the model abstracts from potential explanations for ticket orders different from
weather such as the popularity of a movie. In the setting we are analyzing, these factors are orthog-
onal to purchase-date weather such that omitting them in this analysis does not alter the empirical
implication of the model. We control for popularity of the movie in one of the robustness checks in
Section 1.5.3.

8In practice, H(·) would depend on the forecast horizon τ − t and the season of the year as well.
Considering these factors does not change the analysis. To ease notation, we therefore omit them here.

9As mentioned in the introduction, this interpretation is equivalent to individuals holding beliefs
about the distribution of future states which are unconditionally biased towards the current state.

11



Projection Bias under Risk

weight on the current state. If movie-date weather turns out to be unexpectedly bad
(wτ < η), she will let her ticket expire and choose the outside option instead. In either
case, she has to bear the ticket costs c.

Clearly, an individual with outside option η̄ will be indifferent between buying and not
buying a ticket on the purchase-date iff

F P (ft, wt, η̄) ≡ vB(ft, wt, η̄)− u(η̄) = 0 (1.2)

A natural candidate for optimal choice behavior is that all individuals with low outside
options η ≤ η̄ buy tickets on the purchase-date and all individuals with high outside
options η > η̄ do not. Lemma 1.1 below states that optimal choices can indeed be
completely described by a unique η̄ satisfying (1.2). Before stating the lemma, however,
we need to assume sufficient conditions for a unique fixed point to exist.

Assumption 1.1.

(i) For all ft there exists an η satisfying FR(ft, η) ≡ (1−H(η))
(
E[u(wτ )|wτ ≥ η, ft]−

u(η)
)
−c = 0.

(ii) The hazard rate of H(·), h(w)/(1−H(w)), is weakly increasing.

Assumption 1.1 (i) ensures that there is at least one potential customer, who, given the
optimal use of information, would be indifferent between buying a ticket on the purchase-
date and not buying a ticket at all. This ensures existence of a fixed point of (1.2).
Assumption 1.1 (ii) is the monotone hazard rate assumption, which provides a sufficient
condition for uniqueness of the fixed point and holds for a variety of frequently used
distributions like the normal and uniform distributions. Given this, we can state the
following lemma:

Lemma 1.1. Suppose Assumption 1.1 holds. Then, for each (ft, wt) a unique η̄ satisfying
(1.2) exists.

All proofs are relegated to Appendix A.1. A direct implication of the above lemma is that
there is always a positive probability, G(η̄) ∈ (0, 1), that some customer will buy a ticket
on the purchase-date.

Aggregate Sales Given the individual propensity to buy a ticket, expected aggregate
sales depend on the total number of potential customers. Here, we incorporate the idea
in our model that good weather makes the choice option “outdoor movie theater” more
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salient and thus enlarges the customer base. One possible interpretation is that customers
face cognitive restrictions regarding the number of choice options they can consider at a
given time. For this reason, they consider a choice option only if it “comes to mind”,
which is supposed to be positively related to its attractiveness at the current state.10

If the number of potential customers is weather-dependent, ticket sales may be driven by
weather even if individual decisions to buy tickets are fully rational. To allow for this
explanation in our model, we assume that the number of potential customers n(wt) is
increasing in purchase-date weather wt. The expected total number of sales on purchase-
date t is thus given by y(ft, wt) = n(wt)G(η̄(ft, wt)). If customers are fully rational –
that is, they have all choice options in mind at all times –, n(·) is independent of wt.11

1.2.2 Hypotheses

Our empirical analysis in Section 1.4 is guided by testable predictions derived from the
model. Our first hypothesis deals with the effect of purchase-date weather on sales.

Hypothesis 1.1. If customers are rational (α = 0 and ∂n(wt)/∂wt = 0) advance sales
are independent of purchase-date weather. Otherwise, sales increase when purchase-date
weather is good.

If we reject the implications of rational behavior in our data – if variations in purchase-
date weather explain variations in advance sales –, our model assumes that this effect
can be explained by projection bias or a reminder-effect of current weather. For this
to be the case, we expect customers to be unaware of the limitations underlying their
choices – otherwise, they could adopt strategies to arrive at optimal choices neverthe-
less. This conjecture provides a plausibility test for our model: If customers are indeed
unaware of the impact on weather on their purchase decisions, sales should be affected
by purchase-date weather regardless of customers’ past experiences or the time horizon
between purchase-date and movie-date.

Furthermore, we derive testable predictions to disentangle whether the current state wt
affects individual decisions via projection bias or whether purchase-date weather solely
affects the total number of potential customers. Since we do not observe individuals who
abstain from buying a ticket, we answer this question by examining the individual decision

10Another possible interpretation for a weather-dependent customer base is that good weather at the
purchase-date facilitates the coordination of larger groups.

11A third possible explanation for a positive relation between good weather on the purchase-date and
sales is that customers expect the theater to be sold out with higher probability when purchase-date
weather is good. We discuss this potential explanation theoretically after Hypothesis 1.2 and empirically
in Section 1.5.2.
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to collect paid-for tickets on the movie-date. Our model predicts that individuals buy a
ticket if their outside option is worse than η̄ and to collect it if movie-date weather is
sufficiently nice (wτ > η). The probability that a customer collects her ticket is therefore
given by

Pr(collect | buy) = 1− Pr(wτ < η < η̄)
Pr(η < η̄) =

G(wτ )/G(η̄) if wτ < η̄

1 else.
(1.3)

If individual purchase decisions are affected by current weather, good weather increases
the expected utility of buying tickets in advance and thus leads to a higher η̄. Since
the realization of movie-date weather wτ is independent of purchase-date weather wt, the
likelihood that a customer prefers her outside option therefore increases if purchase-date
weather was nice. In contrast, if current weather has no effect on individual decisions (but
only on the aggregate number of customers), the likelihood of ticket collection is expected
to be independent of purchase-date weather. The following hypothesis summarizes this
argument.

Hypothesis 1.2. If customers are rational (α = 0 and ∂n(wt)/∂wt = 0) or if current
weather increases the pool of potential customers (∂n(wt)/∂wt > 0), the probability that
tickets are collected is independent of purchase-date weather. Otherwise – if individual
decisions are affected by projection bias (α > 0) and if movie-date weather is worse than
expected – the probability that tickets are collected decreases when purchase-date weather
was good.

Before we continue, it is important to point out a few assumptions upon which our model
and hypotheses rest. First, as noted above, we assume that purchase-date weather has
no information value for movie-date weather. Otherwise, our results could be explained
by customers taking current weather as informative signal. We show in Section 1.5.1
that purchase-date weather is indeed not informative. Nevertheless, individuals could
perceive current weather to be informative for the future. As discussed in the introduction,
we cannot rule out this explanation if individuals perceive purchase-date weather to be
informative regardless of the time span between purchase-date and show. However, it is
natural to assume that the perceived information content of current weather is declining
in the time horizon one is trying to predict. Then, we would expect that the effect
of purchase-date weather on sales becomes weaker with increasingly long horizons. In
Section 1.5.2 we will see that this is not the case.

Finally, to keep the model simple, we have abstracted from the fact that potential cus-
tomers essentially face a dynamic problem when they decide on which date they would
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like to buy their tickets. Clearly, the timing of buying tickets can be affected by purchase-
date weather, for example if the latter affects the perceived probability that the theater
may sell out. We discuss this potential alternative explanation in more detail in Section
1.5.2.

1.3 Data

Our data comes from four different sources. An outdoor movie theater located in Munich,
Germany, provided us the record of their online advance tickets sales platform. The
Meteorological Institute of the University of Munich shared their detailed data on the
weather conditions in Munich with us; the local weather forecast was collected from the
archives of the newspaper “Süddeutsche Zeitung”, a high quality newspaper located in
Munich. Finally, we conducted a survey among visitors of the theater at 13 different
nights of the 2011 season.

1.3.1 Weather and Forecast

We collect data on weather and weather forecasts for the months June to August of the
years 2004 to 2011, which are the times at which the theater screens and for which we
have sales data (for details, see below).

The Meteorological Institute of the University of Munich provides us hourly measures for
precipitation (measured in 1/100 mm), temperature (measured in degrees Celsius) as well
as the average sunshine duration (in percent) between 8 am and 7 pm in Munich.12 Most
statistical inferences uses daily averages (24 hours) of these three weather variables.

We hand-collect the weather forecast from the archives of the daily newspaper “Süd-
deutsche Zeitung”, which is published every day except Sundays and public holidays.13

It provides a regional forecast for each day, one to four days in advance, for the South of
Bavaria including Munich. The forecast comprises of forecasted maximum and minimum
temperature (in degrees Celsius) and one of the following weather symbols: sunny, partly
sunny, shower, rain, and scattered thunderstorms.14

The weather in Munich is highly variable, especially during the summer months, when

12The latter restriction ensures that the changing times of dusk and dawn do not confound our measure
of sunshine duration.

13Weather forecasts take up a lot of memory capacity which is why they are not stored by any German
weather firm.

14There are in total 12 observations of the symbol overcast, which we group with “shower” to simplify
the exposition of results. Undoing this grouping does not lead to any significant changes throughout.
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Table 1.1: Summary Statistics: Weather and Forecast

Weather
All day Evening SD within day

Avg. Sunshine Duration 54.32 47.86 18.73
(34.99) (38.06) (13.96)

Avg. Temperature 19.01 19.15 3.01
(3.60) (3.99) (1.28)

Avg. Rainfall 11.23 20.27 28.38
(24.81) (63.16) (62.83)

Forecast
Minimum Maximum

Forecasted Temperature 12.66 23.56
(2.75) (4.02)

Notes: We report the means of variables; their standard deviations are in parentheses. Sunshine duration
is mesured in percent per hour, temperature is measured in degrees Celsius, and rainfall is reported in
1/100 mm per hour. In the column "SD within day" we report the average of the variables’ standard
deviations within a single day.

there are daily shows at the movie theater. This is mostly due to the proximity of the
Alps, which leads to frequent and often unexpected rainstorms. These tend to occur
especially in the evening hours. For this reason, there is high monthly precipitation in the
summer months when total precipitation is on average 123 mm per month (for comparison:
London 51 mm, New York City 92 mm, and Berlin 61 mm). Long periods of stable good
weather are the exception; rather, there are frequent shifts in weather patterns every few
days as reflected by the mean number of 12.4 rain days per month (days with at least 1
mm of rain) during the summer months (for comparison: London 10.5 days, New York
City 8 days, and Berlin 8.7 days).15

The weather varies within as well as across days. This can be seen in Table 1.1 where
the summary statistics of average daily weather are depicted in the first two columns.
Standard deviations of sunshine duration as well as rainfall are high compared to their
respective means; the coefficient of variation for sunshine duration is 1.55 and for rainfall
0.45. Furthermore, it is noteworthy that rainfall in the evening hours is considerably
higher than during the day reflecting the higher likelihood of rainstorms at these times.
The third column of Table 1.1 provides information about the variation of weather within
days by depicting the mean of within-day standard deviations of the respective weather
variable. Note that both sunshine duration and precipitation exhibit high within-day
variation. The within-day variation for temperature is not very informative, as there is a

15Sources of long term monthly averages: World Meteorological Organization
http://worldweather.wmo.int/ [4 October 2012].
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Figure 1.1: Distribution of Forecasted Weather (Symbols)
This figure plots the distribution of forecast symbols pooling over forecast horizons (one to four days in
advance).

cyclical pattern of temperature over the course of each day. (Keep in mind that sunshine
duration is only measured between 8 am and 7 pm such that darkness does not contribute
to the within-day variation of sunshine duration.)

Regarding the forecast, note first that average forecasted temperatures are in a similar
range as average temperatures (Table 1.1), which is what we expect. The distribution of
weather symbols for all forecast horizons – as shown in Figure 1.1 – again reflects the high
variations in local weather across days.16 Note furthermore that the forecast frequently
predicts scattered thunderstorms and showers, which indicates rather unstable weather
conditions within days as well.

1.3.2 Ticket Sales

The data on advance ticket sales were provided by “Kino, Mond und Sterne” [Movies,
Moon, and Stars], one of four outdoor movie theaters in Munich. The theater usually
screens daily during the months of June, July, and August, and shows the movie regardless
of weather conditions. The latter fact is important for our study because it implies that
tickets bought in advance are non-refundable. A consumer who buys a ticket for this
theater in advance thus bears the full weather risk.17 Customers are expected to be aware
of this risk, as it is explicitly mentioned prominently on the ticketing website.

16The distributions of symbols separately by each forecast horizon (one to four days in advance) do
not differ substantially.

17None of the seats are covered. See Appendix A.3 for a picture of the theater.
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The theater has a total of 1,300 seats available, tickets for which are sold at the box office
and various advance ticket sales locations. The majority of advance tickets are sold online
where tickets for a particular show are available until 6 pm on the day of the screening.
Our goal is to explain these advance sales such that our main data set comprises of all
online ticket orders for the theater between 2004 and 2011. This amounts to a total of
20,999 orders.18 For each order, the system records the number of tickets bought, the
exact date of the transaction and a unique alphanumeric customer ID, which allows us to
track repeat customers.

Additionally to the data on online sales for the years 2004 to 2011, we have data on the
total number of visitors of the theater – including box office sales – for the years 2009
to 2011. This allows us to assess the importance of advance online sales, which amount
to 24 percent of the total number of tickets during this period. More than half (almost
60 percent) of online tickets are sold on the day of the show. Our main analysis focuses
on sales between one and four days before the show, on which the weather forecast for
the movie-date is available. Within this period, 30 percent of online tickets are sold, with
percentages declining between one and four days in advance. The remaining 10 percent
of online tickets are sold five days or earlier before a show.

Our main variable of interest is aggregate ticket sales on a daily base. More precisely, one
observation is the sum of ticket orders on a single day for a specific show. If no tickets
are sold on a day at most 23 days before the show, we add an observation with aggregate
orders of zero. This results in at least 24 observations for every single movie shown, one
for each day between 0 and 23 days out. We construct additional aggregates of ticket sales
for robustness checks. For example, we count orders of repeat customers (identified by
their unique customer ID) who have bought tickets more than once since 2004. Another
noteworthy variable are ticket orders by repeat customers who had previously bought
tickets for a show during which it was raining.

For the years 2009 – 2011 we additionally know for each order whether tickets were in
fact collected at the evening of the show. Of the total of 4,102 orders, the vast majority
(88 percent) of tickets was collected on the movie-date.

The summary statistics for ticket sales are presented in Table 1.2, organized according
to how early in advance tickets were sold. The average number of ticket orders decreases
from 7 one day in advance to 1 four days in advance, representing the declining pattern
of orders. The number of tickets sold per order remains stable at about 2.6, independent
of the time horizon. About half of the ticket orders are placed by repeat customers, who
have bought tickets online more than once.

18Ticket prices have been stable at about 7.40 Dollar (5.70 Euro) each during the entire period.
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Table 1.2: Summary Statistics: Ticket Orders

Day of show 1 day out 2 days out 3 days out 4 days out

Avg. Orders 24.74 7.18 2.78 1.36 0.89
(33.97) (10.82) (4.30) (2.24) (1.37)

Tickets per Order 2.46 2.55 2.55 2.63 2.58
(0.69) (0.92) (0.88) (1.24) (1.24)

Notes: We report the means of daily ticket orders bought on the day of the show as well as one to four
days in advance. For the same five days we additionally provide average numbers of tickets per order.
Standard deviations in parentheses.

1.3.3 Survey

During the 2011 season, we conducted a survey among visitors of the cinema. As many
visitors spend some time in the theater before the movie starts, the willingness to par-
ticipate in the survey was high. Overall we received 443 questionnaires for 13 different
days with considerable variance in weather conditions (and accordingly varying number
of questionnaires obtained per day). This amounts to more than 10 percent of the audi-
ence on these days on average. Of all surveyed customers, 25 percent bought their ticket
online (compared to 24 percent of all customers in the years 2009 – 2011) and 7 percent
purchased it one to four days in advance (compared to 8 percent of all customers between
2009 and 2011). Throughout, we use the survey to provide supporting evidence for our
arguments. That being said, none of our main results depends on data from the survey.

1.4 Empirical Analysis

In this section we test the hypotheses derived in Section 1.2. We first show that weather
on the purchase-date explains variation in ticket orders for various model specifications,
rejecting rational behavior from Hypothesis 1.1. Furthermore, we show that good weather
on the purchase-date decreases the likelihood that the purchased tickets are collected on
the movie-date, providing evidence for projection bias (Hypothesis 1.2).

1.4.1 Purchase-Date Weather and Ticket Orders

Figure 1.2 illustrates the effect of weather on ticket orders by comparing the number of
orders across different weather conditions on the purchase-date. For the sample of ticket
orders one to four days ahead of the movie-date – which we use in the empirical analysis
below – we group ticket orders into bins based on five percent quantiles of purchase-date
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Figure 1.2: Purchase-Date Weather and Ticket Orders
This figure plots the average number of daily ticket orders (between one and four days in advance) for
bins based on five percent quantiles of purchase-date sunshine duration. Bins are sorted from dates with
shortest sunshine duration (to the left of the horizontal axis) to days with longest sunshine duration (to
the right of the horizontal axis).

sunshine duration and plot, for each of these bins, the average number of ticket orders
per day. Consistent with projection bias, Figure 1.2 shows that the average number of
daily ticket orders strongly rises parallel to an increase in sunshine duration from the left
to the right of the horizontal axis.

An obvious concern with the graphical analysis above is that other factors which explain
ticket sales – like the weather forecast – may possibly be correlated with purchase-date
weather. To address this concern, we estimate the effect of purchase-date weather on the
number of daily ticket orders in a number of regressions. In all of these regressions, we
include average sunshine duration as well as average precipitation on the purchase-date t
as explanatory variables (collected in the weather vector Wt).19 In addition, we control
for the weather forecast at t for the movie-date τ by adding the forecasted maximum and
minimum temperatures, as well as separate dummy variables for each forecast symbol as
independent variables; these variables are collected in the forecast vector Fτt. Because
the forecast is only available for a horizon ∆ of up to four days, we limit the sample to
ticket orders between one and four days ahead of the show.

19We omit average temperature from our analysis, since it is highly correlated with sunshine duration
(ρ = 0.6), which makes the analysis of the respective coefficients difficult. We chose to keep sunshine
duration for its greater salience compared to temperature. However, our results are not qualitatively
affected by this choice. For further details see the discussion in Section 1.5.3.
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For the first empirical model we organize the data in a panel structure with the movie-date
τ as unit of observation and advance sales one to four days in advance as observations
over time. Within this structure the model is

yτt = W′
tβW + F′τtβF + D′τtβD + vτt (1.4)

where Dτt includes dummy variables for each time difference between purchases and
show. We assume that the error term vτt is iid between different shows τ but may be
arbitrarily correlated between advance sales for the same show. To control for unobserved
heterogeneity possibly correlated with our regressors, we estimate (1.4) as a fixed effects
model.

For the second econometric model we organize our data as cross sections separately for
each purchase-date being ∆ ∈ {1, 2, 3, 4} days ahead of the movie-date. This gives us less
power due to limiting observations, but allows us to exploit cross sectional variation and
to include a set of controls Xτt which are for most observations time invariant between
t and τ . Specifically, we control for the day of the week of the show τ , average sunshine
duration and precipitation of the past two weeks before t, as well as dummy variables for
year and month. For each ∆, we estimate the following model:

yτt = W′
tβW + F′τtβF + X′τtβX + ετt. (1.5)

Since ∆ = (τ−t) is fixed, there is a single observation for each movie night τ . Imposing the
identifying assumption from above – that errors ετt are uncorrelated across movie-dates
τ – we can estimate (1.5) by OLS.

Table 1.3 displays the estimation results for the two models. Similar to the graphical
analysis in Figure 1.2, the results provide strong support for Hypothesis 1.1: the effect of
sunshine duration on aggregated ticket sales is positive and significant throughout. In the
fixed effects model (1.4) and the cross sections (1.5) for one and three days in advance,
average rainfall has furthermore a negative effect on ticket sales, which is significant at
least at the ten percent level. Moreover, as predicted by the theoretical model, we find
significant effects of the weather forecast on sales at least for one to three days out. This
is especially true for forecasted temperature. Forecast symbols seem to have an effect one
and two days out, only. In the fixed effect model (1.4) we find no statistically significant
effect of these symbols at all, which may mostly be explained by their limited within
variance.

In order to interpret the estimated parameters of the variables of interest and to compare
their impact across different advance sales horizons ∆, we calculate the statistic m(x) =
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Table 1.3: Effect of Purchase-Date Weather on Ticket Orders

Daily Ticket Orders

Fixed Effects 1 day out 2 days out 3 days out 4 days out

Avg. Sun 0.023∗∗∗ 0.027∗∗ 0.016∗∗∗ 0.0061∗ 0.0046∗∗
(0.0054) (0.014) (0.0054) (0.0032) (0.0021)

Avg. Rain −0.014∗∗ −0.028∗∗ 0.013 −0.0059∗ 0.0020
(0.0063) (0.014) (0.012) (0.0036) (0.0033)

Forecasted Maxtemp. 0.19∗∗ 0.68∗∗∗ 0.26∗∗∗ 0.15∗∗∗ 0.053∗
(0.072) (0.17) (0.084) (0.041) (0.027)

Forecasted Mintemp. −0.014 0.61∗∗ 0.12 −0.0063 0.019
(0.090) (0.24) (0.12) (0.056) (0.030)

Symbol Partly Sunny 0.30 −4.05∗ −2.31∗∗ 0.32 −0.55∗∗
(0.79) (2.19) (0.94) (0.40) (0.24)

Symbol Shower −0.21 −6.92∗∗∗ −3.30∗∗∗ −0.17 −0.46∗
(0.74) (2.23) (0.90) (0.37) (0.24)

Symbol Rain −1.13 −8.09∗∗∗ −3.19∗∗∗ 0.49 −0.61
(1.02) (2.62) (1.14) (0.59) (0.50)

Symbol T-Storm −0.53 −10.7∗∗∗ −1.95∗ 0.34 −0.12
(0.81) (2.32) (1.04) (0.47) (0.36)

2 Days Out −4.44∗∗∗
(0.38)

3 Days Out −5.94∗∗∗
(0.47)

4 Days Out −6.43∗∗∗
(0.49)

Time-invariant
Controls No Y es Y es Y es Y es

Observations 1635 413 411 406 405
Adjusted R2 0.282 0.350 0.306 0.205 0.181

Notes: We report the coefficients and robust standard errors of OLS regressions of total daily ticket
orders on purchase-date weather, forecast, and control variables. In the first column, the sample consists
of all daily ticket orders between one and four days before the show (show-date fixed effects and horizon
dummies included). In the remaining columns, the sample is split according to the number of days tickets
are purchased in advance. "Avg. Sun" is the average sunshine duration in percent on the purchase-date
between 8 am and 7 pm; "Avg. Rain" denotes average rainfall on the purchase-date in 1/100 mm.
Forecasted temperatures are from the forecast at the purchase-date for the movie-date and measured in
degrees Celsius. The variable "Symbol Partly Sunny" takes the value 1 if the forecast for the movie date
is partly sunny on the purchase-date and 0 otherwise. Other symbol-variables are defined accordingly;
the baseline forecast symbol is sunny.
Level of Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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β(x) s(x)/ȳ∆ for the estimated models. The nominator of m(x) is the product of the
coefficient β(x) of an independent variable x and its standard deviation s(x), which gives
us the impact of one standard deviation change of x on the number of advance sales. To
compare this effect across different advance sales horizons ∆, we normalize it by the mean
of the respective number of advance sales ȳ∆. Thus, the statistic m(x) denotes the impact
of a one standard deviation change of x on sales as percentage of mean sales for a given
empirical specification.

In the estimated model, one standard deviation change of actual sunshine duration leads
to a change in sales between 10 and 25 percent of the mean. In comparison, one standard
deviation of the forecasted temperature has an effect on sales between 10 and 40 percent
of the mean – the effects of these two determinants of sales are thus of comparable size.
This leads to our first result.

Result 1.1. Purchase-date weather has a statistically and economically significant effect
on aggregate ticket orders.

We further investigate the conjecture from Section 1.2.2 that the effect of weather on sales
is independent of customers’ past experiences to address the concern that the results are
driven by inexperienced customers.20 To this end, we estimate the fixed effects model
(1.4) replacing total advance sales on a given day by sales to three different subsets of
repeat customers as the dependent variable.

The results of this exercise are reported in Table A.1 in Appendix A.2.21 Average sunshine
duration has a positive and highly significant effect on sales to the sub-population of
repeat customers who had bought tickets at least once between 2004 and 2011. The
same holds for the subset of customers with multiple visits per season. Ticket orders by
customers who had previously bought tickets for a show during which it was raining can
also be explained by variations in sunshine duration on the purchase-date. The economic
significance as measured by statistic m(·) is in the same range for both forecast and
purchase-date weather as the estimates for the complete set of customers. These results
suggest that decisions of experienced customers are influenced by current weather even if
weather at previous visits turned out to be bad.

20We investigate the additional conjecture that the effect of weather is independent of the time horizon
between purchase-date and movie-date in Section 1.5.2

21Although we only report the results from the fixed effect model (1.4), similar results are obtained
from model (1.5). The results can be obtained from the authors on request.
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1.4.2 Purchase-Date Weather and Ticket Collection

So far, our analysis has focused on explaining aggregate purchase behavior. Using ag-
gregate data, we cannot distinguish whether the current state – purchase-date weather
– affects the number of potential customers (through reminding them of their choice op-
tions) or whether it affects individual decision making directly (through projection bias).
We assess to what extent purchase-date weather alters individual behavior by exploiting
information on the individual decision whether or not to collect paid-for tickets on the
movie-date.

According to the model in Section 1.2, the likelihood that tickets are collected decreases
with good weather on the purchase-date if individual decisions are directly affected. In
contrast, if good weather at purchase merely increases the number of potential customers,
the decision to actually visit the theater is expected to be independent of purchase-date
weather.

Let ψitτ = 1 denote the decision of a customer i to collect a ticket, which had been
purchased on the purchase-date t, at the movie-date τ . (The decision to let the ticket
expire is denoted by ψitτ = 0.) The likelihood that a customer collects her ticket on the
movie-date is estimated using the probit model

Pr(ψitτ = 1) = Φ(W′
tβWt + W′

τβWτ + F′τtβF + X′τtβX). (1.6)

Since the model predicts that individual collection decisions depend on the movie-date
weather, we include movie-date weather Wτ on the right hand side of (1.6) additional
to purchase-date weather Wt, forecast Fτt, and controls Xτt as defined in Section 1.4.1.
Since sunshine duration ceases to be a salient indicator for actual weather at night, we
add a dummy variable indicating whether tickets were purchased later than 8 pm to the
vector Xτt. In order to assess the robustness of the estimates, we re-estimate (1.6) without
controls Xτt.

The first two columns of Table 1.4 report the estimated coefficients from model (1.6) for
all customers who had purchased tickets one to four days in advance in the years 2009
to 2011. Extended sunshine duration on the purchase-date tends to reduce the likelihood
that tickets purchased in advance are actually collected at the box office. However, the
estimated coefficients are not significantly different from zero at any common level. We
conjecture that this is due to limited variance of the dependent variable: 93 percent of all
customers collect their ticket. In fact, the model predicts that the probability for advance
tickets to be collected equals one if the realized weather at the movie turns out to be at
least as good as the outside option of the marginal customer. In other words, our model
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Table 1.4: Effect of Purchase-Date Weather on Ticket Collection

Tickets Collected

(1) (2) (3) (4)
Full Sample Full Sample Restricted Sample Restricted Sample

Avg. Sun −0.0020 −0.0019 −0.0049∗∗ −0.0049∗
(0.0016) (0.0017) (0.0025) (0.0026)

Avg. Rain 0.00080 0.00062 0.0024 0.0000020
(0.0023) (0.0025) (0.0034) (0.0037)

2 Days Out −0.28∗∗∗ −0.30∗∗∗ −0.28∗∗ −0.39∗∗∗
(0.10) (0.11) (0.14) (0.15)

3 Days Out −0.084 −0.13 0.057 0.0036
(0.14) (0.15) (0.18) (0.20)

4 Days Out −0.52∗∗∗ −0.61∗∗∗ −0.40∗ −0.46∗
(0.16) (0.16) (0.23) (0.24)

Sun before Film 0.0067∗∗∗ 0.0065∗∗∗ 0.012∗∗ 0.016∗∗∗
(0.0015) (0.0017) (0.0047) (0.0046)

Rain Film −0.0011∗∗ −0.00099∗ −0.00098∗ −0.0018∗∗
(0.00050) (0.00056) (0.00059) (0.00076)

Temp. Film 0.15∗∗∗ 0.15∗∗∗ 0.17∗∗∗ 0.16∗∗∗
(0.020) (0.021) (0.025) (0.028)

Forecasted Maxtemp. −0.082∗∗∗ −0.086∗∗∗ −0.047∗ −0.057∗
(0.023) (0.026) (0.028) (0.032)

Forecasted Mintemp. −0.024 −0.018 −0.065∗ −0.061
(0.028) (0.029) (0.036) (0.039)

Symbol Partly Sunny 0.10 0.094 0.25 0.28
(0.13) (0.14) (0.20) (0.24)

Symbol Shower 0.0059 −0.012 0.10 0.12
(0.14) (0.15) (0.23) (0.25)

Symbol T-Storm 0.21 0.22 0.34 0.58∗∗
(0.17) (0.18) (0.24) (0.27)

No. of Tickets 0.097∗∗ 0.10∗∗ 0.046 0.051
(0.043) (0.044) (0.043) (0.044)

Evening 0.19∗ 0.20∗∗ 0.11 0.13
(0.097) (0.097) (0.14) (0.14)

Controls No Y es No Y es

Observations 2620 2620 874 874
Pseudo R2 0.220 0.227 0.200 0.218

Notes: We report the coefficients and robust standard errors of Probit regressions explaining individual
decisions to collect advance tickets. The first two columns refer to the full sample of all advance sales for
the seasons 2009 – 2011. Column (3) and (4) provide estimates for a restricted sample considering only
shows during which the weather was worse than expected (see the text for details). Variables indicating
purchase-date weather ("Avg. Sun" and "Avg. Rain") and variables of the purchase-date weather forecast
("Forecasted Max(Min)temp.", "Symbol . . . ") are defined as in Table 1.3. The baseline forecast is sunny.
We control for movie-date weather by "Sun before Film" (average sunshine duration between 5 pm and
7 pm in percent), "Rain Film" (rainfall in 1/100 mm between 7 pm and 11 pm), and "Temp. Film"
(temperature between 7 pm and 11 pm), as well as for whether the ticket was bought at darkness on the
purchase-date (Evening = 1), the number of tickets ordered ("No. of Tickets"), and the number of days
tickets were bought in advance ("x Days Out").
Level of Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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predicts that customers should decide to let their tickets expire only in cases in which
movie-date weather is a negative surprise. Including all customers in our analysis should
therefore bias the coefficient for purchase-date sunshine duration upwards.

To test this conjecture, we estimate (1.6) for a sample of movie-dates at which realized
weather was a negative surprise. For all movie-dates in the restricted sample, expected
sunshine duration Ŝt as predicted by model (1.7) in Section 1.5.1 is greater than realized
sunshine duration shortly before the movie starts. As predicted by the theoretical model,
almost all customers (97 percent) dropped from the sample chose to pick up their tickets;
in contrast, 15 percent of the remaining customers let their ticket expire.

The results from re-estimating (1.6) for this sample are depicted in columns (3) and (4) of
Table 1.4. It becomes apparent that the magnitude of the (negative) effect of purchase-
date sunshine duration on the likelihood of tickets to be collected doubles at the mean
of the sample. This confirms our conjecture that the coefficients in columns one and two
are upward biased.22 Furthermore, the coefficients become statistically significant at the
five and ten percent level, respectively. This leads to our second result.

Result 1.2. Customers are less likely to collect their tickets on the movie-date if they
experienced good weather on the purchase-date, providing evidence for projection bias (Hy-
pothesis 1.2).

1.5 Alternative Explanations and Robustness

In the previous section we have shown that projection bias can account for both, weather-
dependent sales and decisions to collect purchased tickets. However, there may exist
alternative explanations that could explain these findings as well. In this section, we
discuss plausible alternative explanations and the robustness of our results to different
empirical specifications.

1.5.1 Is Current Weather Informative for Future Weather?

An immediate concern of our analysis so far is that individuals use current weather to
update their beliefs about future weather conditions. There are two reasons why this could
be optimal. First, current weather may be informative by itself such that looking up the
weather forecast is unnecessary. Second, current weather may enhance the prediction of

22The estimates from the restricted sample are potentially still upward biased if customers are subject
to the sunk cost fallacy (Arkes and Blumer, 1985).
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Figure 1.3: Predictive Power of Current for Future Sunshine Duration
This figure provides a scatterplot of current sunshine duration against residuals of a regression of future
sunshine duration (1 to 4 days ahead, respectively) on month and year dummy variables. The black
solid line depicts the estimates of a regression of residuals on current weather, the grey lines depict the
95 percent confidence interval.

(a) 1 Day Ahead (b) 2 Days Ahead

(c) 3 Days Ahead (d) 4 Days Ahead

future weather, even given the weather forecast. This may be the case, for example, if
the forecast cannot take regional factors into account sufficiently well.

We argue that the information content of current weather for future weather is, in general,
limited if not nil due to large day to day fluctuations of local weather in Munich. In
Figure 1.3, we plot average sunshine duration one to four days ahead (purged for seasonal
effects by year and month dummies) against current sunshine duration (for the summer
months). It turns out that tomorrow’s sunshine hours are at best slightly positively
related to today’s sunshine duration. Furthermore, today’s weather has no explanatory
power for weather two or more days ahead.

In contrast, the weather forecast is able to explain future sunshine duration well. Figure
1.4 again plots average sunshine duration purged for seasonal effects as above but this
time against the forecast as given by forecast symbols. Evidently, there is a clear positive
relationship between symbols indicating good future weather and realized sunshine du-
ration. Especially, the symbols “rain”, “partly sunny”, and “sunny” seem to predict the
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Figure 1.4: Predictive Power of the Weather Forecast for Future Sunshine Duration
This figure provides a scatterplot of current forecast symbols against residuals of a regression of future
sunshine duration (1 to 4 days ahead, respectively) on month and year dummy variables. The black
solid line connects the means of future sunshine conditional on the forecast, the grey lines connect the
95 percent confidence intervals of the conditional means.

(a) 1 Day Ahead (b) 2 Days Ahead

(c) 3 Days Ahead (d) 4 Days Ahead

weather quite well, even as far as four days into the future.

In order to reassure that the predictive power of current weather – even when not control-
ling for the forecast – is low, we complement the graphical analysis above with empirical
estimates. In particular, we forecast evening sunshine duration Sh (in percent) at some
date h > t with the following model

Sh = W′
tγW + F′htγF + V′tγV + ξht (1.7)

where controls Vt include average sunshine duration and precipitation of the past two
weeks before t as well as year and month dummies. Current weather Wt and forecast
indicators Fht are defined as above. We estimate model (1.7) with and without including
the forecast Fht; the results including the forecast are displayed in Table A.2, the results
without forecast in Table A.3 in Appendix A.2. Confirming the graphical results, current
weather does not help to assess future weather except for one day ahead where the coef-
ficients of current sunshine duration are statistically significant but small (a one percent
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increase in sunshine duration today leads to an increase in sunshine duration tomorrow of
at most 0.21 percentage points). In contrast, the predictive power of the forecast is sizable
since adding it to the model leads to a roughly threefold increase in variance explained.
To further appreciate the predictive power of weather symbols, note that if the forecast
symbol for four days in advance is “shower” instead of “sunny”, evening sunshine duration
decreases by 70 percent of one standard deviation.23

Given this, the question arises whether customers appreciate the predictive power of the
forecast. Our survey results indicate that this is indeed the case as customers report to
consult the weather forecast frequently and appreciate its reliability. From all respondents,
84 percent consult the weather forecast at least every other day or when they are planning
weather-related activities. Regarding forecast reliability, 85 (86) percent state that the
forecast for tomorrow (two days ahead) will be correct in at least 80 (60) percent of cases.

Overall, given the above results, it seems unlikely that customers knowingly base their
predictions of future weather-dependent utility on actual weather – especially since the
vast majority of customers are locals, who should be expected to know the regional weather
conditions well.

1.5.2 Probability of Ticket Availability

Another concern is that the ticket sales are driven by capacity constraints. The theater
has 1,300 seats such that higher ticket sales at any given point in time lead to a higher risk
that the movie may sell out. Thus, if customers believe that the likelihood that tickets
will be available on the movie-date decreases with good purchase-date weather, they have
a higher incentive to buy on the purchase-date. Such a “precautionary” motive for buying
tickets early at times of good weather would shift purchase decisions to earlier dates with
good weather, which is a potential explanation for our results.

In fact, the movie theater in question has been sold out in 13 percent of evenings over
the entire time span of our analysis, but has, so far, never been sold out in advance. In
general, customers seem to understand that they are always able to buy tickets online:
88 percent of customers state that it is “unlikely” or “very unlikely” that all tickets for
tomorrow’s screening will be sold out in advance.24

Some customers may nevertheless perceive the probability of ticket availability to depend

23Here, we assess the predictive power of current weather and the weather forecast for the main weather
indicator of interest – sunshine duration – only. Repeating the exercise for precipitation and temperature
gives similar results.

24The likelihood that the theater sells out, however, is empirically unrelated to weather (and the
forecast) prior to the movie-date.
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Table 1.5: Effect of Purchase-Date Weather on Early Ticket Orders

Daily Ticket Orders

5 - 11 9 - 15 13 - 19 17 - 23
Days Out Days Out Days Out Days Out

Avg. Sun 0.0012∗∗∗ 0.00091∗∗∗ 0.00041 0.00058∗∗
(0.00043) (0.00034) (0.00026) (0.00023)

Avg. Rain −0.00046 0.00036 −0.00014 −0.00022
(0.00043) (0.00034) (0.00029) (0.00021)

Horizon Indicators Y es Y es Y es Y es

Observations 3472 3472 3462 3437
Adjusted R2 0.035 0.010 0.004 0.002

Notes: Coefficients and robust standard errors are reported for OLS regressions of daily ticket orders on
purchase-date sunshine duration (in percent of time), purchase-date rainfall (in 1/100 mm), and horizon
indicators (dummy variables for the number of days between purchase-date and movie-date). Fixed effects
for the show are included. One observation is the number of sales for a particular show per day. The
column headings indicate how many days in advance tickets are purchased in the sample used.
Level of Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.

on current weather few days before the show. However, deferring the purchase decision to
a later date should be perceived to be risk-less for particularly early purchase-dates, for
instance five days in advance and earlier. Thus, if customers’ concerns that the theater
may sell out were the sole explanation for the effect of current weather on sales, partic-
ularly early ticket orders should be unaffected by purchase-date weather. In contrast, if
our results can be explained by projection bias (or a reminder-effect of good weather), we
expect to find an effect on early orders as well.

To analyze this prediction, we estimate (a variant of) the fixed effects model (1.4) for
separate sets of advance sales which are defined by how many days in advance tickets
were sold. More precisely, we estimate the effect of weather on ticket orders between 5
and 11 days in advance. Since weather forecasts for this time horizon are lacking, we
cannot include them in these regressions. We repeat this exercise for time spans between
9 and 15, 13 and 19, and 17 and 23 days in advance.25

Table 1.5 reports the results. It becomes apparent that the effect of average sunshine
duration on sales is significantly greater than zero at least at the five percent level for
most estimated models. The notable exception are the results with sales between 13 and
17 days in advance; here, the coefficient of sunshine duration is rather small.26 Regarding

25Obviously, the choice of beginning and end days of these time-spans is arbitrary. However, our
qualitative results do not depend on the exact location of the time spans as long as they are sufficiently
long (greater than four days) to allow for enough within variation for early sales.

26We observe fairly small coefficients for all intervals which include the time horizon of exactly 16 days.
Excluding observations for this time horizon leads to significant coefficients throughout, which suggests
that this time horizon is an outlier for which we have no plausible explanation.
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Table 1.6: Effect of Hourly Changes in Weather on Changes in Ticket Orders

Hourly Ticket Orders

Morning & Afternoon Morning Afternoon

Diff. Sun per h. 0.00038∗∗ 0.00043 0.00043∗
(0.00018) (0.00029) (0.00024)

Diff. Rain per h. 0.000019 −0.000028 0.000027
(0.000038) (0.000042) (0.000048)

Hour Indicators Y es Y es Y es

Observations 22454 8984 11225
Adjusted R2 0.001 0.001 0.000

Notes: We report the coefficients and robust standard errors of OLS regressions of the first difference of
hourly ticket orders on the first difference of hourly purchase-date sunshine duration (in percent of time),
the difference in purchase-date rainfall (in 1/100 mm), and hour indicator variables. Column 1 reports
coefficients for all orders between 8 am and 8 pm. The two remaining columns split the dataset into
orders before and after 2 pm.
Level of Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.

the economic interpretation of the estimates, one standard deviation change in weather
explains variations in sales between 10 and 17 percent of (quite low) mean sales for the
respective periods and is therefore in a similar range as for all our previous estimates in
Section 1.4.1.

Note that these results can also be seen as a robustness check for the concern that in-
formation content of current weather drives the results. As early as three weeks before
the movie-date, (perceived) information content of purchase-date weather for movie-date
weather should be nil.

Another instance in which changes in weather can naturally be assumed to have little
impact on the probability of ticket availability are variations in weather from one hour to
the next. Again, we only expect to find an effect of hourly changes in weather on changes
in ticket orders if the state of the world by itself – and not its effect on results of market
interactions – affects choice behavior.

To test this prediction, we regress, for a given movie-date, the first difference of ticket
orders per hour on the first difference of sunshine duration and precipitation. In addition,
hour dummies are included as independent variables to control for different sales volumes
over the course of the day. We restrict the sample to hours with potentially positive
sunshine duration (8 am to 8 pm) as well as to hours in the morning (8 am to 2 pm) and
afternoon (2 pm to 8pm) between one and four days ahead of the movie-date.

In this analysis, the effect of weather on ticket orders is identified through variations in
weather within a given day. Given the low within-day variation in sales and thus low mean
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differences as dependent variable, the estimated coefficients are rather small (see Table
1.6). Still, hourly changes in weather have a statistically significant effect on changes in
ticket orders. The estimates seem to be mainly driven by sales in the afternoon when
most tickets are ordered and therefore hourly variation in sales is highest.

In light of the evidence that both, very early sales as well as hourly changes in sales
are affected by current weather, we conclude that current weather explains ticket orders
even when the probability of ticket availability is independent of purchase-date weather.
Summarizing our above arguments, projection bias is the only explanation that can si-
multaneously account for all our empirical findings.

1.5.3 Robustness

We examine the robustness of our empirical results along various dimensions.27 First,
we check whether the results depend on estimating linear models in the form of (1.4)
and (1.5). We therefore repeat the entire analysis using count data models (poisson and
negative binomial regressions). None of the results are altered by estimating either of
these models.

Second, we evaluate whether the main results in Table 1.3, for which we have most
statistical power, are driven by specific subgroups of customers, movie genres, or the
weekday of the show. To this end, we repeat the analysis for the subgroup of orders
conditioning on the timing of the order (morning, afternoon, and evening), the number of
tickets ordered (one, two, three, and more than three), the age of the buyer (below and
above 30 years), movie genre (drama, comedy, and action/adventure), and the weekday
of sale and movie respectively (weekend, weekday). The number of total orders across
these subgroups varies considerably – for example, more than 50 percent of ticket orders
comprise of two tickets, while less than 10 percent of customers order three tickets – which
is accompanied by different degrees of statistical power for the analysis.

Nevertheless, the estimated effect of sunshine duration and (to a lesser extent) rainfall on
total orders continues to be statistically and economically significant at least for the fixed
effect model (1.4). The only exception from this rule are ticket orders on weekends (Friday
to Sunday), for which the number of observations is lowest (N = 291). Additionally, the
cross-section models (1.5) yield meaningful effects for current weather on sales for the
majority of specifications.

Third, we check whether our results are driven by the selection of average sunshine dura-

27Due to the large number of robustness checks, we do not include the detailed results here. The
estimation results for all analyses mentioned in this subsection are available from the authors on request.
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tion as the relevant weather variable. To do so, we substitute average sunshine duration
by average temperature in all regressions with ticket orders as the dependent variable.
By and large, this substitution leaves the results unchanged. Similarly, we test whether
our conclusions are sensitive to the choice of the independent variable. Instead of using
aggregated ticket orders as the quantity to be explained, we could have also used the
overall number of tickets sold as independent variable. These two measures are highly
correlated, such that it is not surprising that this modification does not lead to different
conclusions.

A fourth possible concern could be that ticket sales depend on recent rather than current
weather. For example, customers may be more inclined to buy tickets if weather was
good for a couple of days, possibly indicating a stable high pressure weather system. We
account for this by including one period lagged weather variables in our analysis of models
(1.4) and (1.5). In these empirical models, current weather persists to have explanatory
power, contrary to weather one day earlier.

Finally, we examine the robustness of all empirical results to the inclusion and exclusion
of various control variables. First, we attempt to proxy for the probability of ticket
availability directly by (a) including a dummy indicating whether the theater turned out
to sell out for the particular show of interest and (b) including the number of ticket orders
until the purchase-date in all variants of cross-section models (1.5). Second, we control
for the popularity of the movie by including either the number of theaters in which the
movie was shown on the opening weekend in Germany, or movie gross in Germany on
the opening weekend (or both) as independent variables in all variants of model (1.5).28

Neither of these modifications changes the results in any meaningful way. The same holds
true for excluding controls Dτt or Xτt in all the models we estimate.

1.6 Conclusion

There is a growing literature which shows that projection bias impedes the ability of
individuals to consistently predict future utility. Predicted utility at unknown future
states of the world tends to be biased towards utility at today’s state of the world.

This study presents evidence for projection bias in a simple decision problem (purchasing

28The choice of the popularity indicator is somewhat arbitrary; for example, we could have chosen the
total gross of the movie shown as well. We opted for opening weekend measures to avoid measurement
error due to the total time the particular movie has been screened in theaters. The concern for measure-
ment error arises because the outdoor movie theater in question shows recent films as well as classics.
All data for this analysis have been retrieved from the database http://www.boxofficemojo.com [October
2011].
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advance tickets for an outdoor movie theater), in which the transient nature of today’s
state is obvious due to risk and explicitly pointed out to decision makers. The extent
to which decisions are biased should therefore be minimal. The availability of unbiased
and precise forecasts regarding future states, on which individuals may condition their
decisions, should further reduce the extent to which projection bias affects choices. Nev-
ertheless, we find that the current state – current weather – influences choices to a large
extent, which suggests that de-biasing decision makers may turn out to be challenging.

Put in a broader context, our result that projection bias is present even in very simple
decision problems points towards the possibility that it may have important aggregate
implications This may especially be the case when decisions of individuals observing the
same state of the world are biased in the same direction. It has been shown recently
that such correlated errors can be amplified through feedback effects in markets, leading
to potentially large fluctuations (Hassan and Mertens, 2011). To evaluate this hypoth-
esis, further research is needed to answer the question whether projection bias affects
choices over alternatives whose utility depends on an endogenous state of the world (like
consumption and savings decisions depending on the state of the economy).

Finally, studying projection bias under risk highlights the need to understand how exactly
individuals mispredict future utility. Do they indeed undervalue the extent to which
utility varies with the state (and hold correct beliefs regarding future outcomes), the
standard interpretation of projection bias? Or are their beliefs regarding the likelihood
of future states biased towards the current state (and the predictions of state-dependent
utilities correct)? Answering these questions is certainly important for finding ways to
help individuals to predict future utility accurately.
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Chapter 2

Do Lagged Expectations Determine
Reference Points? — A Test of
Kőszegi and Rabin’s Equilibrium
Concepts

2.1 Introduction

Loss aversion, according to which individuals dislike losses more than they like equal-
sized gains, has been found to be an important factor in explaining individual decisions
under uncertainty. Gains and losses are defined relative to a reference point such that
the specification of the reference point is a key part of any application of loss aversion
to explaining choice behavior. While in many applications the identity of the reference
point represented a degree of freedom for the researcher, Kőszegi and Rabin (2006, 2007,
2009, henceforth KR) provide modeling discipline by introducing a theory of endogenous
reference points. In a series of influential papers, they argue that “a person’s reference
point is the probabilistic belief she held in the recent past about outcomes” (KR 2006, p.
1134).

Defining the reference point as recent probabilistic belief has two important implications.
First, if the reference point is given by probabilistic beliefs, it is possibly stochastic.1 This
means that individuals will compare each realized outcome as gain or loss compared to
the entire expected distribution of outcomes. To give an example, consider an individual

1The term “reference distribution” is probably more appopriate for describing a stochastic reference
point. However, we follow KR (and the subsequent literature) and use the term reference point regardless
of wheter the reference point is given by a degenerate or a non-degenerate distribution.
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endowed with a lottery paying 7 Euro or 27 Euro with equal probability, and let the ref-
erence point be given by the distribution of outcomes implied by this lottery. According
to KR, the individual will compare the unfavorable outcome of 7 Euro with equal prob-
ability both to itself (yielding neither gain nor loss) and to the favorable outcome of 27
Euro (yielding a loss of 20 Euro). The exact reverse holds for gain-loss utility attached to
the favorable outcome, which provides a gain of 20 Euro when evaluated in comparison
to the unfavorable outcome and zero gain-loss utility when compared to itself. Because
losses loom larger than gains, expecting to face a risky lottery and incorporating this
expectation in the reference point thus necessarily leads to negative expected gain-loss
utility. In contrast, being endowed with and expecting a safe payment yields expected
gain-loss utility of zero.

Second, equating the reference point with recent beliefs means that there is a lag be-
tween the time at which an individual receives new information about the distribution of
outcomes and the time at which this new information is incorporated into the reference
point. Clearly, whether or not the reference point adapts is important for how outcomes
are evaluated. If the reference point does not adapt to the expected distribution of out-
comes, all outcomes in the above examples are compared to the expectations previously
held. In this case, the lottery and the safe payment are evaluated relative to the same
distribution over outcomes such that both alternatives yield similar gain-loss utility.

To the extent that individual choices alter the expected distribution over outcomes, ref-
erence points may be endogenous to choice. Whether or not the reference point is en-
dogenous depends on the time structure of the decision problem: According to KR, there
needs to be sufficient time between individual choice and the resolution of uncertainty for
the reference point to adapt.

Kőszegi and Rabin argue that decision makers should anticipate whether the reference
point is affected by their choice. To account for this, KR introduce two conditions for
optimal choice behavior with choice-endogenous reference points. First, when there is
sufficient time for the reference point to adapt to the consequences induced by choice, the
condition of “Choice-Acclimating Personal Equilibrium” (CPE) applies. CPE requires
that choices are optimal given their distribution over outcomes as the reference point.
Second, when the reference point does not adapt to choices (because uncertainty is re-
solved directly after choosing), but the choice set is known well in advance, KR argue that
the reference point is given by choice plans. Because individuals cannot commit to plans,
the condition of “Preferred Personal Equilibrium” (PPE) requires that it is optimal for
individuals to stick to their plans given these plans as the reference point. Finally, while
CPE and PPE correspond to situations with choice-endogenous reference points, we label
situations in which there is insufficient time for the reference point to adapt “Surprise
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situations”. In these situations, the reference point is exogenously given by previously
held beliefs.

This study tests KR’s equilibrium conditions for the first time. Since the applicability
of these conditions depends on the time structure of the decision problem, a testable
prediction of KR’s theory is that individual preferences for a risky lottery compared
to a safe payment depend on the relative timing of information about the choice set,
decision making, and the resolution of uncertainty. Specifically, individuals are predicted
to take risks with higher likelihood in a Surprise than in a CPE or PPE situation because
expecting to face a risky lottery leads to negative expected gain-loss utility.

We conduct a controlled lab experiment to test whether the time structure of the decision
problem affects risk preferences as predicted by KR. We ask subjects to choose between a
safe payment and a lottery in three treatments. In the first treatment – corresponding to
a Surprise situation – the outcome of the lottery becomes known immediately after the
choice set is introduced and choices are made. In the second treatment – corresponding
to a CPE situation – uncertainty is resolved with a lag of 24 hours such that the reference
point can adapt to choices. In the third treatment – corresponding to a PPE situation
– we inform subjects about the choice set that they will encounter 24 hours later, elicit
their choices after that time, and resolve uncertainty immediately. In this situation, we
expect the reference point to adapt to choice plans, but not to factual choice. To avoid
confounds, subjects have to visit the laboratory on two consecutive days and are paid
after the second date in all treatments.

Note that the PPE-treatment allows us to distinguish KR’s theory from other theories
which predict that individuals prefer lotteries with early resolution of uncertainty (as in
the Surprise-treatment) to lotteries with delayed resolution (as in the CPE-treatment).
Drèze and Modigliani (1972) and Spence and Zeckhauser (1972) argue that there is an
option value in receiving information early because consumption plans can be optimally
adjusted.2 Moreover, Wu (1999) and Caplin and Leahy (2001) introduce the possibility
that individuals experience disutility from anxiety while waiting for the revelation of
risk. However, none of these theories relates observable risk preferences to the timing of
information about available choice options as inherent in PPE situations.

Summarizing the results of the experiment, risk preferences are statistically identical
across treatments. Compared to the Surprise situation, neither the possibility of plan-
ning nor the delayed resolution of risk affects the willingness of subjects to choose the
lottery. This finding is robust to controlling for individual risk preferences. Furthermore,

2See Kreps and Porteus (1978) and Epstein and Zin (1989) for axiomatic treatments on how prefer-
ences depend on the temporal resolution of uncertainty.
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the theory presented in Section 2.2 suggests that the treatment effect is present only for
individuals with risk preferences within a specific range. In contrast to this prediction, we
do not find evidence for heterogeneous treatment effects. Our results are thus consistent
with expected utility theory, but not with theories that predict a relationship between
preferences for risk and the temporal resolution of uncertainty. The results can be recon-
ciled with the KR-model, however, if referents adapt immediately to information in our
experimental setting.

This is the first study that seeks to test predictions of KR’s equilibrium conditions em-
pirically. Testing whether referents adapt to choices is important in order to evaluate
the recent theoretical literature that applies KR’s idea of stochastic reference points to
various settings.3 Often, these models differ with respect to whether they require con-
sistency between choices and reference points. For example, in the branch of behavioral
industrial organization that analyzes optimal contracts for loss averse consumers, some
models assume that consumption plans are a PPE. This assumption requires that the
(stochastic) reference points regarding price and quality of planned consumption are con-
sistent with the plans given these referents (Heidhues and Kőszegi, 2008; Karle and Peitz,
2010). In contrast, the approach of Carbajal and Ely (2012) introduces stochastic refer-
ents regarding the quality of the object consumed, but does not (necessarily) require that
these referents are consistent with the optimal consumption plans they induce.4

There is a growing literature that tests implications of the KR-models in the lab. The
majority of these papers is devoted to providing evidence for expectation-based reference
points (Abeler et al., 2011; Ericson and Fuster, 2011; Gill and Prowse, 2012).5 Relatedly,
Sprenger (2010) finds empirical support for stochastic reference points, confirming a key
prediction of KR.6 Yet, these papers do not tackle the question of how fast the referent
adapts to new information and choices, which is at the heart of our work. Rather, by
deriving their predictions using the concepts of CPE or PPE these papers have implicitly
assumed that the referent adjusts to changes in beliefs within time spans of few minutes
(within a single session in the lab).7 However, their findings that the referent adapts to

3In the following, we use the terms “reference point” and “referent” interchangeably.
4Similar work includes Herweg and Schmidt (2012) who study optimal contracts with the possibility

of renegotiating these contracts. In their model, renegotiation comes as a surprise such that the contract
serves as the referent. Furthermore, the studies by Herweg et al. (2010) and Daido and Murooka (2012)
on optimal incentive contracts in principal-agent relationships with loss averse agents rely on CPE as
equilibrium concept as well as work by Eisenhuth (2012) on auction design with loss averse buyers.

5Note that while an endowment effect based on expectations has been found by Ericson and Fuster
(2011), this finding could not be reproduced in similar settings by either Heffetz and List (2011) or Smith
(2008).

6These results are strengthened by the studies of Mas (2006), Card and Dahl (2011), Crawford
and Meng (2011), and Pope and Schweitzer (2011) all of which provide evidence for expectation-based
referents from field data.

7The exception to this rule is the work by Sprenger (2010) who assumes that the referent adjusts
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expectations as predicted is indicative for more or less immediate adaption of the referent
to new information, consistent with our results.

The evidence from a few studies, which explicitly tests whether referents adapt with a
lag to new information, remains inconclusive regarding the speed of adaptation. In a
lab experiment, Song (2012) varies whether subjects learn a fixed payment 24 hours or 5
minutes before the experiment and finds no effect on behavior. He thus concludes that
the referent adapts immediately.8 In contrast, Post et al. (2008) find that individual
risk aversion in a TV game show with large stakes depends on past expectations and
interpret this as evidence for lagged adaptation of reference points. Similarly, Matthey
and Dwenger (2008) argue that it takes time for the referent to adjust to expectations, as
original information provided long before their experiment influences risk taking while new
information provided during the experiment does not. Our work adds to this literature
by being the first that explicitly tests the implications of KR’s equilibrium concepts.

Finally, this study contributes to the small literature that evaluates whether the timing of
uncertainty resolution matters for behavior, and extends it by including the possibility for
subjects to make plans well before actually making a choice. In the existing experimental
studies, individuals have to take multiple choices such that the reference points predicted
by KR become very complex. Therefore, the result of this work cannot be related to the
predictions of KR tested in our study, in which subjects only make one decision. Nev-
ertheless, the literature does not find a clear pattern of how the temporal structure of
uncertainty resolution affects preferences. Van Winden et al. (2011) find that immediate
resolution of risk increases the willingness to invest in a risky project with high probabil-
ity of a fairly low good outcome but does not change investments into a (mirrored) risky
project with the same expected value but a low probability of a fairly high good outcome.
Our result that the timing of uncertainty resolution does not matter for behavior is con-
sistent with their results, as our probabilities and payoffs lie in the middle of their range.
All of these results can further be reconciled with findings from Gaudecker et al. (2011).
Their structural estimations suggest that choices of the median subject from a represen-
tative sample are independent of the temporal structure of uncertainty resolution, even
though these preferences are heterogeneously distributed within the population. This is
also consistent with the mixed results found when subjects can express their preferences
for the temporal resolution of uncertainty directly (Chew and Ho, 1994; Ahlbrecht and

quickly to the choice option repeatedly presented to subjects. Thus, in his context, referents adapt to
information, but not necessarily to the consequences induced by the option chosen.

8Somewhat relatedly, Zimmermann (2012) tests the prediction of KR (2009) according to which
individuals should prefer to receive information about outcomes clumped rather than piecewise since new
information may lead to feelings of losses with respect to previously held beliefs. Zimmermann finds that
individuals do not avoid piecewise information and interprets this as evidence that subjects do not expect
losses from changes in expectations, which could be the case if referents adapt immediately.

39



Do Lagged Expectations Determine Reference Points?

Weber, 1997; Arai, 1997; Noussair and Wu, 2006; Eliaz and Schotter, 2007; Kocher et al.,
2009).

The remainder of the chapter proceeds as follows. In Section 2.2 we derive the hypothesis
on how risk preferences are related to the relative timing of ‘information regarding the
choice set’, ‘individual choice’, and ‘uncertainty resolution’ from a theoretical framework
based on KR (2007). In Section 2.3 we describe the experiment and discuss its results in
Section 2.4. Section 2.5 concludes.

2.2 Theoretical Framework and Hypotheses

In this section, we derive the theoretical predictions which guide our experimental design.
As we are primarily interested in how the time span between learning the choice set,
making choices, and uncertainty resolution affects individual risk preferences in the KR
model, we derive the implications of this model first. We then compare KR’s predictions
with predictions from other models.

2.2.1 Kőszegi-Rabin Preferences and Equilibrium Concepts

According to the KR model, an individual i evaluates a sure consumption outcome c with
respect to a certain reference point r according to

ui(c|r) = mi(c) + µ(mi(c)−mi(r)).

The term mi(c) denotes individual consumption utility from c, while the function µ de-
notes gain-loss utility as a function of the difference in consumption utility between out-
come c and referent r. Following KR, we assume that gain-loss utility µ is piecewise
linear with µ(g) = ηg for g ≥ 0 and µ(g) = ληg for g < 0. The parameter η ≥ 0 mea-
sures the utility weight of gain-loss utility relative to consumption utility; the case η = 0
nests standard utility depending only on outcomes. The parameter λ > 1 denotes the
degree of loss aversion. Regarding individual consumption utility, we assume that mi is
strictly increasing and concave. Furthermore, we incorporate heterogeneity in the model
by assuming that individuals differ with respect to risk aversion over consumption utility
as represented by the curvature of mi. As will become clear below, the hypothesized
treatment effects depend on the presence of some heterogeneity within the population,
either in the parameters λ or η, or in the curvature of mi. We assume heterogeneity in
the curvature of mi because, first, there is substantial evidence for heterogeneity in risk
attitudes (see, for example, Holt and Laury, 2002, Bruhin et al., 2010, Dohmen et al.,
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2011, or Gaudecker et al., 2011), and second, because it allows us to derive an additional
testable hypothesis on the basis of our data.

Given these primitives, the first important innovation of KR is that the referent r may
be stochastic and drawn from a distribution G such that each factual outcome may be
compared to multiple expected outcomes. Hence, with stochastic outcomes c drawn from a
distribution F , the general formulation of (expected) reference dependent utility becomes

Ui(F |G) =
∫ ∫

ui(c|r)dG(r)dF (c). (2.1)

To ease the following exposition and to cover the situation encountered by subjects in
the experiment, we consider a situation in which the individual has a choice between two
alternatives. One alternative pays a safe amount x for sure, while the other alternative
is given by a lottery F that pays ỹ or z̃ with equal probability. The expected value
of F is greater than x (1/2(ỹ + z̃) > x) and payoffs satisfy ỹ > x > z̃. We further
normalize mi(x) = x for every individual and define yi = mi(ỹ) − x and zi = x −mi(z̃)
as the difference in consumption utility between the safe option and the favorable and
unfavorable outcome of the lottery, respectively. As risk aversion in consumption utility
– given by the curvature of mi – translates into risk aversion in KR-preferences, the value
of the ratio yi/zi (which is decreasing in risk aversion in consumption utility) determines
the individually optimal choice between x and F .

KR’s second important innovation is that referents are given by lagged beliefs about out-
comes. This entails the notion that the reference distribution does not adjust immediately
to new information such that expected gain-loss utility – and hence, optimal choice – cru-
cially depends on the time span between receiving information regarding the distribution
of outcomes and the resolution of uncertainty. In the following, we closely follow KR
(2007) in defining properties of optimal choice in three situations that differ with respect
to the timing of information, choice making, and the resolution of uncertainty.

Consider first a situation in which an individual faces the choice between x and F un-
expectedly and uncertainty is resolved directly after choice. Since there is only a short
time between learning the choice set and uncertainty resolution, the previously held refer-
ence beliefs G do not adapt. Hence, outcomes are evaluated with respect to G such that
individual choice is optimal if it satisfies the following property.

Definition 2.1. For some expected distribution of outcomes G, selecting x from {x, F}
is a Surprise Equilibrium (SurpriseE) if Ui(x|G) ≥ Ui(F |G). Otherwise, F is the Surprise
Equilibrium.

Next, think of a situation in which the individual knows the choice set she will face well
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ahead, but will make her choice in the future. Uncertainty is resolved shortly after making
a choice. The individual’s reference point will then be unaffected by her decision at the
time she learns the outcome of her choice. However, the referent will be endogenous to
the choice plans the individual makes after learning the choice set. Then, her plan and
the reference beliefs thus induced are only consistent if she is willing to execute her plan
given her (reference) beliefs. In other words, an individual should only plan to choose x
if this choice is optimal given x as reference point (and equivalently for F ).

Definition 2.2. If selecting x from {x, F} is a Preferred Personal Equilibrium (PPE),
then Ui(x|x) ≥ Ui(F |x). If selecting F from {x, F} is a PPE, then Ui(F |F ) ≥ Ui(x|F ).
When Ui(x|x) ≥ Ui(F |x) and Ui(F |F ) ≥ Ui(x|F ) hold simultaneously, then x is the PPE
if Ui(x|x) ≥ Ui(F |F ); otherwise, F is the PPE.

Finally, when individuals commit to their decisions well before the outcome is realized, the
decision itself determines the beliefs with respect to which the outcome will be evaluated
as gain or loss. In such situations, the optimal choice is therefore given by the alternative
that maximizes expected reference-dependent utility given itself as the referent.

Definition 2.3. Selecting x from {x, F} is a Choice-Acclimating Personal Equilibrium
(CPE) if Ui(x|x) ≥ Ui(F |F ). Selecting F is a CPE if Ui(F |F ) ≥ Ui(x|x).

Because these three equilibrium conditions imply different requirements for optimal choice,
individual decisions may vary in a predictive way among different time structures. We will
evaluate next how preferences for risk are affected. For conciseness, we will thereby refer
to the situations described above by their corresponding equilibrium concepts whenever
no confusion arises.

2.2.2 Hypotheses

We begin by discussing the perception of the lottery F in a PPE situation compared
to a Surprise situation. In PPE, planning to choose F entails the expectation of gains
and losses of size yi + zi while planning to choose x does yield gain-loss utility of zero.
Thus, for an individual that selects F in PPE, the gain of F in consumption utility
compared to x needs to compensate for the negative gain-loss utility. In contrast, in
a Surprise situation both F and x are evaluated with respect to the same exogenous
reference lottery G (which may be degenerate). Hence, expecting G implies that gain-loss
utility after choosing either F or x is in a similar range such that choosing F over x does
not lead to additional expectations of losses.
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The difference between a PPE and CPE situation is that in a CPE situation individuals
can commit to an alternative which ex post may not be optimal given itself as referent,
but in a PPE situation they cannot. Since expecting risk decreases utility, there may be
cases in which an individual would prefer the safe outcome ex post in a PPE situation but
cannot commit to it ex ante. In such cases, the CPE is x but the PPE is F . Furthermore,
since agents are more risk averse in PPE than in Surprise situations, every individual
choosing x in a Surprise situation chooses x in a CPE situation.

In the following proposition, we use these arguments to link individually optimal choices
in different situations to risk aversion in consumption utility as measured by yi/zi. In
doing so, we need to ensure that at least some individuals are indeed willing to choose the
risky lottery in CPE and PPE situations, in which losses are expected for sure. Hence,
losses must not loom too large in comparison to gains and consumption utility. For our
parametrization, it turns out that choosing F can only be supported as PPE or CPE if
η(λ− 1) < 2.9

Proposition 2.1. Assume η(λ−1) < 2. Then, there exist a, a, and ā with 1 < a < a < ā

such that for individual i endowed with the choice set {x, F}

(i) F is the SurpriseE, PPE, and CPE if ā ≤ yi/zi,

(ii) F is the SurpriseE and PPE, and x is the CPE if a ≤ yi/zi < ā,

(iii) F is the SurpriseE, and x is PPE and CPE if a ≤ yi/zi < a, and

(iv) x is the SurpriseE, PPE, and CPE if yi/zi < a.

The proof is relegated to Appendix B.1. Proposition 2.1 contains two testable hypothe-
ses. The first is that the share of individuals choosing the safe option x should differ
between Surprise, PPE, and CPE situations if there is a positive mass of individuals
whose consumption utility satisfies yi/zi ∈ (a, a) and yi/zi ∈ (a, ā).

Hypothesis 2.1. The share of individuals choosing the safe option x from {x, F} is
highest in CPE situations and lowest in Surprise situations. In PPE situations, there is
an intermediate share of safe choices.

Furthermore, the time structure of the decision problem should only affect individuals
whose consumption utility satisfies a < yi/zi < ā.

Hypothesis 2.2. The effect from Hypothesis 2.1 is only present for individuals with
individual risk aversion over consumption utility in an intermediate range.

9Note that this holds for the frequently used parameter values η = 1 and λ ∈ (1, 3).
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Before describing the experiment designed to test Hypotheses 2.1 and 2.2 in Section 2.3,
we briefly discuss whether theories other than KR can account for the hypotheses derived
above.

2.2.3 Kőszegi and Rabin’s Hypotheses in Relation to Other
Models

We evaluate whether the models of disappointment aversion (Bell, 1985; Loomes and
Sugden, 1986), preferences for temporal resolution of uncertainty (starting with Kreps
and Porteus, 1978), or models of anticipatory emotions (Wu, 1999; Caplin and Leahy,
2001) can account for Hypothesis 2.1 or Hypothesis 2.2.

Disappointment Aversion The models of disappointment aversion (DA) of Bell (1985)
and Loomes and Sugden (1986) are closely related to KR in that they also represent
theories of expectation-based reference points. However, in their models the reference
point of a lottery is given by the certainty equivalent of the lottery and is therefore
not stochastic. Hence, expected reference-dependent utility is given by UDA

i (F |G) =∫
mi(c) + µ(mi(c) − EG[mi(r)])dF (c), where EG denotes the expectation operator with

respect to the distribution G.

Since the models of DA assume that the chosen option is a CPE (that is, it maximizes
UDA
i given itself as the referent), the models of disappointment aversion do not make

predictions on how the time structure of the decision problems affects behavior. In order
to compare KR’s results with the ones of DA nevertheless, we impose KR’s equilibrium
requirements of SurpriseE, PPE, and CPE on optimal choices under DA preferences.10

Now, consider how a referent that is based on the certainty equivalent of recent beliefs over
outcomes affects utility.11 We analyze a Surprise situation first. Here, gain-loss utility of
the lottery F and the safe option x depend on the value of expected consumption utility,
EMi(G) := EG[mi(r)], relative to the safe payoff x and the payoffs of F , x+yi and x−zi.12

If EMi(G) is close to x, the individual will appear more risk averse since it can avoid the
feeling of losses by choosing x. In contrast, if EMi(G) is close to one of the payoffs of F ,
gains and losses are of similar size regardless of choosing F or x; the individual will then
appear to be risk neutral. For this reason, the share of individuals predicted to choose
the safe option by the DA model in a Surprise situation may be larger or smaller than in

10See Appendix B.2 for exact definitions.
11For proofs of all claims in this and the next paragraph, see Appendix B.2.
12Note that by the definition of the certainty equivalent, EMi(G) is the consumption utility provided

by the reference point in the DA models.
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a PPE or CPE situation.

A similar reasoning applies when comparing PPE and CPE situations. Choosing F is
only optimal when its expected consumption utility EMi(F ) is larger than x. However,
expecting to choose F is only consistent with ex-post optimal behavior in a PPE situation
if EMi(F ) is distant enough to x, as otherwise choosing x is tempting to avoid the
expectation of relatively large losses from F . Thus, committing to F may be beneficial
in CPE situations but not consistent in PPE situations such that the DA model predicts
a lower share of safe options chosen in CPE than PPE situations, the exact opposite of
the KR model.

We conclude that the (modified) DA model cannot account for any of the predictions
from Hypothesis 2.1. Similar to Hypothesis 2.2, the DA model predicts that the timing
of the decision problem should only alter choices for individuals whose risk aversion over
consumption utility is within a certain range.

Preferences for Temporal Resolution of Uncertainty Individuals may have direct
preferences for the temporal structure of uncertainty resolution (see Kreps and Porteus,
1978, for an axiomatic treatment). Thus, individuals may directly prefer early resolution
to late resolution, for example due to the option value of forming optimal consumption
plans. Thus, such preferences could explain the first part of Hypothesis 2.1 according to
which the share of individuals choosing the safe option is higher in Surprise than in PPE
or CPE situations.

However, such preferences do in general not entail preferences over the timing of making
choices. Hence, in these utility representations, making choices and choice plans is equiv-
alent as long as the distribution over outcomes and the timing of uncertainty resolution
are unaffected. Thus, preferences for temporal resolution of uncertainty would predict no
difference in choice behavior between PPE and CPE situations, contrary to Hypothesis
2.1. Furthermore, preferences for the timing of uncertainty resolution and risk preferences
are typically not linked such that these preferences cannot account for Hypothesis 2.2.

Anticipatory Emotions The models of Wu (1999) and Caplin and Leahy (2001) in-
corporate anticipatory emotions evoked by uncertainty of future outcomes in utility rep-
resentations.13 As such, they are special cases of preferences for the time structure of
uncertainty resolution and, hence, can account for a higher willingness to take risks in
Surprise situations compared to PPE or CPE situations but not for differences in risk

13Wu incorporates anticipatory emotions by means of probability weighting depending on the time
of uncertainty resolution. Caplin and Leahy directly assume that anxiety is decreasing in the expected
value of future outcomes and increasing in their variance.
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taking between PPE and CPE situations. Since they are special cases of preferences for
the temporal structure of uncertainty resolution, models based on anticipatory emotion
cannot account for Hypothesis 2.2.

2.3 Experimental Procedure

The experiment is designed to capture the key elements from the model discussed above.
For achieving this goal, two aspects are of particular importance.

First, we need as much control as possible over choice-induced reference points. For this
reason, we let subjects make one choice in one decision problem only. Given this, the
calibration of the decision problem becomes important: if most subjects preferred the
same option, we were not to find any effects. Using a subject pool of undergraduate
students of the University of Munich, we therefore tested several parametrizations of
decision problems in which subjects could choose between a safe payment and a lottery.
From the decision problems tested, the one in which choices were most evenly distributed
was implemented in the experiment. This was the case for the choice between a safe
option paying 15 Euro for sure and a risky option paying either 7 Euro or 27 Euro with
equal probability.14

A second important aspect of the experimental design is the specification of the time lag
needed for the referent to adapt to expectations. As pointed out in the introduction,
existing empirical results do not provide clear guidance regarding the appropriate length
of the lag. For the experiment, we set the lag equal to 24 hours. One full day is a lag of
meaningful length providing subjects some time to ponder about the decision; the referent
should have at least partially adapted to expectations after that time. Furthermore, a lag
of 24 hours is of practical importance, because at both dates the experiment is conducted
at the same time of the day, which avoids possible time of the day confounds.

Treatments Given these considerations, we used a between-subject design to evaluate
whether risk preferences vary with the time structure of the decision problem as predicted
by KR. Across all treatments, the experiment started with a first set of instructions on the
first day and ended with paying the subjects on the second day. All subjects thus had to
visit the laboratory on two consecutive days, which was known in advance. Furthermore,
for all treatments the ordering of tasks subjects faced was identical.15

14At the time of the experiment, 15 Euro were approximately equal to 20 Dollar; 7 and 27 Euro
corresponded to about 9.5 and 39 Dollar, respectively.

15There is one exception to this rule: across treatments, all subjects were asked the parameters of the
lottery at the beginning of the second day’s session (at a different stage in the ordering of tasks). See
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Figure 2.1: Treatments
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Three treatments were designed to capture the time structure of Surprise, PPE, and
CPE situations (see Figure 2.1). In treatment Surprise, subjects learned that they could
choose between the safe and the risky option on the first screen of the experiment. Directly
thereafter, subjects had to make their choice, and uncertainty was resolved by the role of
a die as follows: A set of lucky numbers – either {1, 2, 3} or {4, 5, 6} – was assigned to
each subject who had chosen the risky option. Then, one randomly chosen subject rolled
a die and announced the number which had come up. If the number was in the set of a
subject’s lucky numbers, the subject received 27 Euro; otherwise, she received 7 Euro.

In treatment PPE, subjects learned their decision problem at the first date as well as
that they would be able to make their choice on the next day. As in treatment Surprise,
uncertainty was resolved by the role of a die directly after choices were made on the second
day. Finally, in treatment CPE subjects could make their choice on the first day of the
experiment knowing that uncertainty would not be resolved until the next day.

Procedural Details Across treatments, the experiment started with instructions being
read aloud.16 In the instructions, the task was described as a decision problem between
a safe payment called “Option A” and a lottery called “Option B” using other payments
than those encountered by subjects during the experiment in order to avoid possible

below for details.
16See Appendix B.3 for an English translation of the original German instructions.
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Table 2.1: Task for Elicitation of Risk Preferences

Option A Option B

Row with prob. 1/2 with prob. 1/2 with prob. 1/2 with prob. 1/2

1 18.00 e 16.00 e 24.00 e 6.00 e
2 18.00 e 16.00 e 20.00 e 10.00 e
3 18.00 e 16.00 e 16.00 e 14.00 e
4 22.00 e 12.00 e 16.00 e 14.00 e
5 23.50 e 10.50 e 16.00 e 14.00 e
6 25.00 e 9.00 e 16.00 e 14.00 e
7 26.50 e 7.50 e 16.00 e 14.00 e
8 28.00 e 6.00 e 16.00 e 14.00 e
9 29.50 e 4.50 e 16.00 e 14.00 e
10 31.00 e 3.00 e 16.00 e 14.00 e

Notes: Each row represents a decision problem between Option A and Option B. See the text for details.

reference point adaptation.17 Furthermore, the time structure of the decision problem
was emphasized.

In addition to providing information about the decision problem, subjects were informed
that they would be asked about details of the decision problem they were going to face on
the second day of the experiment. It was made clear that they could earn extra money
if details were recalled correctly. We included this information in the instructions to
provide incentives for subjects to memorize the choice problem and to have some control
over beliefs held on the second day of the experiment. Upon arrival on the second date,
subjects then had to recall all possible payments (15 Euro for the safe option and 7 Euro
or 27 Euro for the risky option) as well as the probabilities of the outcomes of the risky
option. They could earn up to 2 Euro if all details were recalled correctly.

On the second day (after the revelation of uncertainty in treatments PPE and CPE), we
further elicited subject’s risk preferences using a method suggested by Maier and Rüger
(2010).18 As in the standard risk elicitation task of Holt and Laury (2002), subjects had
to choose between two lotteries (again called Option A and Option B, respectively) in
a price list format displayed in Table 2.1. The main difference between this approach
and the one of Holt and Laury is that the riskiness of the gambles in the Holt and
Laury task is measured by the coefficient of risk aversion based on expected utility theory
while the riskiness of gambles in the Maier and Rüger task is based on the concept of

17Note that we need to avoid the adaptation of the reference point to the “true” choice set in treat-
ment Surprise. Furthermore, it follows directly from Proposition 2.1 that whether or not the reference
point adapts to the alternatives presented in the instructions in treatment Surprise is irrelevant for the
hypotheses tested.

18We provide a translation of the instructions for this part of the experiment at the end of Appendix
B.3.
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stochastic dominance. The Maier and Rüger risk elicitation task does therefore not rely
on a specific model of individual risk attitudes. This is important here, as it is our goal to
test predictions derived from the KR model, which differs substantially from the standard
expected utility framework.

To see how Maier and Rüger measure risk preferences, note first that the expected values
of both options as well as the probabilities of the good and bad outcomes remain constant
across the decision problems in Table 2.1. Because Option A has a higher expected
payment, risk neutral subjects would always choose it. Furthermore, in the first two
rows Option A is weakly less risky than Option B, and in row three Option A first order
stochastically dominates Option B. Therefore, there may be risk loving subjects who
switch from B to A in either the first or the second row and choose A thereafter. Finally,
from row four onward, Option A becomes strictly more risky in the sense that each later
row is second order stochastically dominated by earlier rows. Hence, very risk averse
subjects would switch from A to B early after the third row, and less risk averse subjects
switch in later rows.

In order to give subjects incentives to report their preferences truthfully, one decision
of two randomly selected subjects in each session was paid out (most sessions were con-
ducted with 24 subjects). In a short questionnaire at the end of the experiment, subjects
furthermore provided a measure of self-assessed risk preferences as well as few personal
details like their age, gender, and subject of study.

The experiment was conducted using z-tree (Fischbacher, 2007) at MELESSA, the social
science laboratory of the University of Munich. Subjects were invited using ORSEE
(Greiner, 2004); in total, 141 subjects participated in the experiment (45 subjects in
treatment Surprise and 48 subjects each in treatments PPE and CPE). Subjects average
total earnings from the experiment were 19.90 Euro including a show-up fee of 4 Euro.

2.4 Results

Consider, first, overall choice behavior in the experiment. In Figure 2.2 we plot the
fractions of subjects choosing the risky lottery and the safe payment across treatments.
In treatment Surprise, 33 percent of subjects preferred the safe option, which is slightly
less than in treatments PPE and CPE (40 percent). However, even though the safe
option is chosen more frequently in CPE and PPE than in Surprise as predicted by KR,
these differences are by no means statistically significant. Using a Wilcoxon rank-sum
test, we cannot reject the null-hypothesis that choice behavior in Surprise is identical to
choice behavior in PPE or CPE (p-value 0.48). Furthermore, the finding that behavior in
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Figure 2.2: Fraction of Risky and Safe Options Chosen by Treatments

treatments PPE and CPE is identical in the experiment contrasts the prediction of the
KR-model that the safe option is chosen more frequently in PPE than in CPE.

We further explore whether the reason why we do not find a treatment effect in the analysis
of summary statistics is that individual heterogeneity is not accounted for by experimental
randomization. Using a Probit model, we estimate the likelihood that a subject chooses
the safe option; the results of this exercise are reported in Table 2.2. Here, we control for
gender and age in all specifications. We add individual risk preferences as further controls
(columns (2) and (4)) and estimate separate treatment effects for subjects who recalled
the decision problem correctly on the second day of the experiment (columns (3) and
(4)).19 Risk preferences are controlled for by including dummy variables for the number
of times a subject had chosen Option A (with higher expected value) over Option B in
the risk elicitation task.20

In line with the previous findings, the treatment effects of CPE or PPE as compared
to Surprise are insignificant in all model specifications (all p-values are larger than 0.3).
Regarding the predicted treatment differences between PPE and CPE, note that in case
the coefficient of CPE is larger than the one of PPE as predicted, the difference between

1982 percent of subjects recalled the decision problem correctly.
20All results are robust to using other indicators of risk preferences such as the number of the first row

a subject switched from one option to the other. We chose the number of Option A choices as a measure
for risk preferences because it allows us to deal in a consistent manner with subjects who repeatedly
switched between A and B. This is important, since 30 percent of subjects displayed such inconsistent
choice behavior. Excluding these subjects from the analysis does not alter results. See below for a more
extensive discussion.
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Table 2.2: Probit Estimates of Treatment Effect on Choice of the Safe Payment

Choice of Safe Option = 1

(1) (2) (3) (4)

PPE 0.058 0.058 0.090 0.13
(0.10) (0.11) (0.12) (0.12)

× recall wrong −0.22 −0.18
(0.27) (0.26)

CPE 0.070 0.060 0.058 0.049
(0.10) (0.11) (0.11) (0.12)

× recall wrong −0.055 0.044
(0.37) (0.36)

Recall wrong 0.19 −0.0092
(0.36) (0.30)

Risk preferences No Y es No Y es
Gender and age Y es Y es Y es Y es

Observations 141 141 141 141

Notes: Marginal effects and standard errors of a Probit regression of subjects’ choices of the safe option
on treatment dummies (CPE, PPE) and controls are reported. Coefficients denote the treatment effects
of PPE and CPE compared to Surprise for all subjects (first two columns) and for subjects who recalled
the choice set correctly on the second day of the experiment (last two columns) at the sample mean.
"Recall wrong" equals 1 if the subject recalled the choice set correctly, and zero otherwise. We control
for risk preferences in columns (2) and (4) using dummy variables for the number of Option A choices in
the risk elicitation task.
Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.

the coefficients is rather small and by no means statistically significant.

Result 2.1. Across treatments, subjects are equally likely to choose the safe option.

Our results are thus contrary to Hypothesis 2.1, which states that individuals are most
likely to prefer the safe option in CPE and least likely to prefer it in Surprise.

As suggested by Hypothesis 2.2 we may not find treatment effects for the population of
all subjects because they are only there for specific subgroups. Therefore, we investigate
next whether there are heterogeneous treatments effects depending on subject’s individual
risk attitudes over consumption utility. To this end, we classify subjects as either risk
neutral, moderately risk averse, or highly risk averse according to their choices in the
risk elicitation task and evaluate the treatment effects for each class of risk preferences
separately.

Clearly, the method used to measure risk preferences determines how subjects are classi-
fied. To assess whether results are sensitive to the measure used, we use three different
methods of classification and compare the results obtained with each method. Table 2.3
shows how many subjects are categorized as risk neutral as well as moderately or highly
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Table 2.3: Number of Subjects by Risk Preferences for Different Classifications

# Option A 1st Switch 1st Switch & Consistent

Risk Neutral 27 30 18
Moderately Risk Averse 83 66 55
Highly Risk Averse 31 45 26

Notes: See the text on how subjects are classified as moderately or highly risk averse or risk neutral using
three different methods of classification.

risk averse for each of the method used, which we will describe in the following.

First, we measure a subject’s risk preferences by the total number of times she prefers
Option A over Option B. Since Option A has a higher expected payoff but is also – for
most decision rows – more risky, a higher count of Option A choices indicates less risk
aversion. Accordingly, we classify subjects with less than five choices of Option A as
highly risk averse (yielding 31 subjects in that category). Subjects who chose Option A
between five and seven times are classified as having a moderate degree of risk aversion
(83 subjects), and subjects with more than seven Option A choices are considered to be
approximately risk neutral (27 subjects). Note that the latter category also includes risk
seeking subjects, who choose Option B in the first one or two decision rows and Option
A in the remaining eight rows.

The second method classifies subjects according to the row in which they first switch
from Option A to B or vice versa. The mapping from the switch point to the class of
risk preferences is such that this method classifies consistent subjects – that is, subjects
who switch only once – in the same way as the method based on the count of Option A
choices. Hence, subjects with a switch point in row four or five are classified as highly
risk averse (31 subjects), and subjects who switched first in rows six, seven, or eight are
classified as moderately risk averse (66 subjects). The group of approximately risk neutral
subjects (30 subjects) comprises of those who either switched in row nine or never, and
of those who switched between rows one and three (remember that switching in the first
three rows indicates risk seeking behavior).

Third, we consider only subjects who showed consistent behavior by switching at most
once. For these subjects, both methods described above are equivalent and yield groups
of 18 risk neutral, 55 moderately risk averse, and 26 highly risk averse subjects.

Before we proceed, it is worth pointing out that the results presented in the following
are insensitive to the particular cutoff values used for assigning subjects to classes of risk
preferences. The cutoff values used here merely ensure that the sizes of the resulting
groups are as balanced as possible and do not become too small when considering only
consistent subjects.
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Table 2.4: Heterogeneous Treatment Effects on Choice of the Safe Payment

Choice of Safe Option = 1

Risk Measure # Option A 1st Switch Consistent
Model Probit OLS Probit OLS Probit OLS

Risk Neutral

PPE −0.26 −0.21 0.88∗∗∗ 0.15 −0.039
(0.17) (0.18) (0.025) (0.099) (0.048)

CPE 0.062 0.054 0.83∗∗∗ 0.40∗∗ 0.78∗∗∗ 0.36
(0.29) (0.26) (0.029) (0.19) (0.041) (0.25)

Moderate Risk Aversion

Mod. Risk A. −0.007 −0.007 0.99∗∗∗ 0.32∗∗∗ 0.95∗∗∗ 0.24∗∗
(0.21) (0.18) (0.005) (0.10) (0.033) (0.11)

PPE 0.14 0.13 0.068 0.074 0.094 0.090
(0.15) (0.14) (0.16) (0.17) (0.19) (0.19)

CPE 0.13 0.12 0.057 0.059 0.075 0.068
(0.13) (0.12) (0.13) (0.13) (0.15) (0.14)

High Risk Aversion

High Risk A. 0.35 0.35 1.00∗∗∗ 0.59∗∗∗ 0.99∗∗∗ 0.55∗∗∗
(0.25) (0.24) (0.002) (0.14) (0.007) (0.21)

PPE 0.080 0.070 0.024 0.026 0.20 0.18
(0.23) (0.23) (0.15) (0.18) (0.25) (0.24)

CPE −0.11 −0.13 −0.020 −0.025 −0.13 −0.15
(0.20) (0.25) (0.17) (0.21) (0.20) (0.28)

Gender and age Y es Y es Y es Y es Y es Y es

Observations 141 141 141 141 89 99
Notes: This table reports the estimated treatment effects and robust standard errors of CPE and PPE as
compared to Surprise for each group of subjects classified either as risk neutral, moderately risk averse,
or highly risk averse. The baseline group consists of risk neutral subjects; "Mod. Risk A." and "High
Risk A." take the value 1, if a subject is classified as belonging to this group. In the first two columns,
risk preferences are characterized by the number of choices of Option A in the risk elicitation task. In
the remaining columns, risk preferences are characterized by the row in which individuals switched first;
in the last two columns, only subjects with consistent switching behavior are considered (see the text for
details). For Probit models, we report the size of treatment effects at the sample mean. Standard errors
are adjusted accordingly.
Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 2.4 reports estimated treatment effects – both from a Probit and a Linear Probabil-
ity (OLS) Model – of CPE and PPE compared to Surprise separately for each class of risk
preferences and classification method. Irrespective of how risk preferences are measured,
these treatment effects are small and insignificant for risk averse subjects. The estimates
for these groups suggest that the likelihood of choosing the safe option in PPE and CPE is
at most ten percent larger than in Surprise, similar to the results from the pooled sample
above. Note furthermore that the treatment effect of CPE is never significantly larger
than the one of PPE, contrary to KR’s prediction.

In contrast, we find moderate support for KR’s prediction that the safe option is chosen
more frequently in CPE and PPE than in Surprise for subjects classified as risk neutral
by their first switch point. The OLS estimates suggest that under PPE (CPE) – as
compared to Surprise – the safe option is 15 (40) percent more likely to be chosen. Yet,
these results are not robust to considering only those subjects who behave consistently
in the risk elicitation task; for them, the OLS model finds no statistically significant
treatment differences. In contrast to the OLS results, the treatment effects estimated
using a Probit model are always statistically significant but seem to be upward biased
(note that we report marginal effects in Table 2.4). They predict the safe option to be
chosen almost with certainty, even though only 37 percent of subjects classified as risk
neutral chose it under CPE.

Result 2.2. Overall, there is little evidence supporting Hypothesis 2.2, which predicts that
treatment effects should be heterogeneous and depend on subjects’ risk attitudes. Although
there are significant differences in choice behavior across treatments for risk neutral sub-
jects when classified by the first switch point, these results are not robust to considering
alternative measures of risk preferences.

2.5 Conclusion

In this study, we examined whether the time structure of a decision problem alters the
distribution of individual risk preferences. Standard expected utility predicts that indi-
vidual decisions should be independent of the length of lags between the date on which
the individual learns a decision problem, the date on which she takes a decision, and the
date on which uncertainty is revealed. In contrast, Kőszegi and Rabin (2007) argue that
reference points adapt to new information with a lag such that a given choice option will
be evaluated differently depending on whether or not there is sufficient time for the refer-
ent to adapt before the resolution of uncertainty. In our experimental data, however, we
find no support for their predictions that the time structure of decision problems affects
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behavior.

Of course, our results could be in line with the model of Kőszegi and Rabin (2007)
if we have misspecified the time needed for the referents to adapt. Since there is no
theoretical guidance of whether the referent adapts within a few minutes or only after a
number of days (or longer), this is a challenge we share with other approaches studying
the adjustment of reference points to new information (see, for example, Zimmermann,
2012). In our context, we were not to find any treatment effect if subjects perceived all
treatments equivalently, either because the factual time span needed for referents to adjust
is very short (a few minutes) or quite long (longer than a day). Given that most tests of
expectations as reference points (e.g. Abeler et al., 2011; Gill and Prowse, 2012) implicitly
assume that referents adapt within a single experimental session, it seems unlikely that
referents in our application only adapt after more than a day. Hence, our results can
be interpreted as evidence for a very short lag between new information and reference
adjustments.

As such short lags of adjustment are basically meaningless in real situations, the question
arises whether the speed of adjustment is context-dependent. Many studies, which use loss
aversion to explain individual behavior in field settings, require that it takes a significant
time for reference points to adjust.21It is thus a question for future work whether there
are certain factors – such as the attachment of individuals to certain outcomes – which
determine the speed of reference point adjustments.

21Consider, for example, the loss aversion based explanations for the well known disposition effect in
finance, according to which private investors are reluctant to realize paper losses from their assets they
own but quick to realize paper gains (Odean, 1998; Barberis and Xiong, 2009). Here, the purchase price
of the assets is typically taken as the reference point, even though there is typically a lot of information
regarding the actual asset value.
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Chapter 3

Emergence and Persistence of
Extreme Political Systems —
Transition Dynamics in an
Unrestricted Polity Space∗

3.1 Introduction

There is a growing economics literature exploring causes and circumstances of political
transitions. This recent literature describes how political reforms and revolts can be
supported within a rational-agents framework and how political systems are changed
by these transition mechanisms. Even though many aspects of political transitions are
dynamic in nature, these studies have largely abstracted from dynamic issues and focused
on isolated transition events. This study takes a step towards filling this gap, by placing
the dynamic process that describes the evolution of political systems at the core of the
analysis. To this end, we endogenize outcomes of political transitions to a continuum of
a priori attainable political systems and ensure the co-existence of reforms and revolts
along the equilibrium path, allowing us to focus on the endogenously arising dynamic
properties of political transitions.

More specifically, we introduce a dynamic framework where the space of political systems
ranges continuously from single-man dictatorships to full-scale democracies. Actual poli-
ties are determined endogenously and result from political transitions that either can be
initiated from within a regime (i.e., reforms) or can be enforced from outside (revolts); the
likelihood of transitions is thereby determined endogenously. Within this framework, we

∗This chapter is based on joint work with Robert Ulbricht.
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address the following key questions. Which types of political systems arise from reforms,
and which arise from revolts? Similarly, through which of these transition mechanisms
are particular systems such as democracies most likely to emerge? And how frequently is
either type of transition observed depending on the political system in place?

Model overview Our modeling approach aims to resemble the key mechanisms behind
political transitions explored in the literature, but generalizes them in order to ensure the
co-existence of reforms and revolts and to endogenize their outcomes.

To endogenize political systems that emerge after revolts, we dispense with the simplifying
approach of a representative “political outsider”. Instead we consider an economy in which
agents that are excluded from political power are heterogeneously adapted to the current
regime. As is standard in the literature, political outsiders can attempt to acquire political
power by supporting a subversive attempt against the regime. Prospects of subverting
depend on, first, an unobserved ability of the regime to withstand such an attempt and,
second, the total mass of outsiders supporting it. For deciding whether or not to support
a revolt, agents weight these prospects against their individual adaptation utility to the
current regime. As a consequence, a coordination game similar to the literature on global
games endogenously determines the regime type after a successful revolt.1

Reforms are modeled as in the seminal paper by Acemoglu and Robinson (2000b) in that
members of the current regime (“political insiders”) may conduct preemptive reforms in
order to alleviate the threat from a revolt. However, we generalize their original approach
by permitting political insiders to enfranchise an arbitrary fraction of the population,
allowing for a continuum of a priori unspecified political systems to emerge from these
reforms.

Finally, we assume that while insiders are perfectly informed about their ability to with-
stand a revolt, outsiders are strictly less informed about the prospects of subverting. As a
consequence, conducting reforms will be endogenously associated with being intrinsically
weak, which in equilibrium helps outsiders to coordinate their actions. This effectively
increases the costs of reforming and provides an incentive for weak regimes to take tough
stance rather than to negotiate on moderate reforms. Because, in equilibrium, excessive
repression translates into a substantial risk to be overthrown, asymmetric information,
crucially, ensures the co-existence of reforms and revolts along the equilibrium path and
allows us to jointly analyze these two transition mechanisms in our model.

1Although outsiders in our model share the same amount of information, we use heterogeneous
opportunity costs to ensure that subverting and not subverting is always a dominant strategy for some
outsiders in our model. Iterated elimination of (interim) dominated strategies then gives rise to a unique
outcome of this coordination game. This is essentially the same mechanism that determines equilibria in
global games.
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Results Our first set of findings characterizes the political systems that endogenously
arise in equilibrium. We show that while revolts result in autocracies where a minority
of the population forms the ruling class, political reforms enfranchise the majority of the
population and establish democratic political systems. Intermediate types of political
regimes, by contrast, do not arise along the equilibrium path, so that political systems
tend to be extreme.

Furthermore, this first set of results implies that democracies are only established from
within regimes, giving theoretical support to a long-standing view in political science
according to which members of former autocracies are key actors in the establishment of
democracies (Rustow, 1970; O’Donnell and Schmitter, 1973; Huntington, 1991). Or, as
Karl (1990, p. 8) puts it: “no stable political democracy [in South America] has resulted
from regime transitions in which mass actors have gained control, even momentarily, over
traditional ruling classes”.

Our second set of results concerns the stability and persistence of political systems. From
our analysis it follows that democratic regimes are intrinsically stable, characterized by
long episodes without political change. In contrast, autocracies are subject to frequent
regime changes—either via revolts or reforms. This is in line with the empirical literature
on regime stability, which observes that democratic political systems are significantly more
stable than autocratic ones (Przeworski, 2000; Gates et al., 2006; Magaloni and Kricheli,
2010).2

Nevertheless, our findings suggest that despite their instability, autocratic systems are
persistent over time. This is because even though single autocratic regimes are relatively
short lived, political change is frequently initiated by a small group of insurgents, resulting
in autocracies very similar to their predecessors. Interestingly, this reasoning further
implies that revolts tend to be serially correlated over time as they go along with a
selection into politically instable regimes, leading to periods of political instability.

In combination, our results imply that the long-run distribution of political systems is
double hump-shaped with mass concentrated on extreme political systems. Our model
thus provides a foundation to the empirically observed distribution of political systems
since World War I, plotted in Figure 3.1.3 Taking a look at the underlying dataset (for

2From these results it follows that the mode of transition—peaceful reforms or violent revolts—is
important for the characteristics of the resulting regimes. For transitions to democracy, a similar point
has been highlighted by Cervellati et al. (2007, 2011), who show that consensual transitions foster civil
liberties and property rights provision in contrast to violent transitions.

3The underlying data is taken from the Polity IV Project (for details, see Section 3.5). It has been
disputed whether intermediate scored regimes on this index should nevertheless be classified as either
democratic or autocratic due to nonlinearities in the index (Cheibub et al., 2010). Note, however, that
this is to say that different measurements would only lead to more mass on the extremes, not altering
the basic conclusion drawn for our purposes.
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Figure 3.1: Distribution of Political Systems since World War I
Political systems range from extremely autocratic (0) to extremely democratic (1). Units of observation
are country-days.

1

2

0 0.5 1
Polity

Density

details, see Section 3.5), we also find similar support for the findings outlined above.

Related literature So far, the literature on political transitions has primarily focused
on developing arguments for why autocratic regimes may conduct democratic reforms.
Bourguignon and Verdier (2000), Lizzeri and Persico (2004), and Llavador and Oxoby
(2005) argue that reforms are reflective of situations where autocratic decision makers are
better off in a democratized political system than under the status quo. A number of
other studies are based on the idea of preemptive reforms introduced by Acemoglu and
Robinson (2000b) (e.g., Conley and Temini, 2001; Boix, 2003). These papers share with
ours the basic logic behind reforms; i.e., autocratic regimes may use political reforms to
credibly commit to redistribution and to reduce revolutionary pressure.4

In contrast to these papers, the emphasis of this analysis is on the dynamics of political
transitions, including but not restricted to democratization. In this respect, this study
relates more closely to Acemoglu and Robinson (2001) and Acemoglu et al. (2010), who
consider settings where preemptive reforms co-exist with coups along the equilibrium
path, and to Ellis and Fender (2011), who consider preemptive reforms that co-exist with
mass revolutions. In particular, Ellis and Fender choose a similar approach in studying
how autocracies may strategically manipulate the degree of subversive coordination in

4See Aidt and Jensen (2012) and Przeworski (2009) for empirical studies suggesting that subversive
threats are indeed the driving force behind democratization.
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the presence of asymmetric information. In their model, outsiders sequentially choose
whether or not to support a subversive attempt, which succeeds only if it is unanimously
supported. They find that asymmetric information provides an incentive to refrain from
stabilizing reforms despite the presence of revolutionary pressure (see also Acemoglu and
Robinson, 2000a; and for information manipulation in global games, see Angeletos et al.,
2006 and Edmond, 2011).

However, all of these papers have in common that they exogenously restrict the set of
political systems that result from transitions. In contrast, our approach of an unrestricted
polity space leaves the outcomes of reforms and revolts unspecified. This is central to our
analysis, allowing us to endogenously derive the properties of these transition mechanisms
and to analyze their implications for the stability and persistence of political systems.

We also relate to Justman and Gradstein (1999), Jack and Lagunoff (2006), and Grad-
stein (2007), who study the incentives of political regimes to conduct democratic reforms
in frameworks, in which—as in our approach—continuous extensions of the franchise are
possible. Similar to the literature discussed above, these authors provide conditions under
which (possibly gradual) extensions of the franchise are to be expected. In contrast to
our work, however, they do not allow for political change to be initiated from political
outsiders (via revolts), preventing them from analyzing transition dynamics in the gener-
ality that follows from the interplay between reforms and revolts, which is at the core of
our contribution.

Outline The remainder of the chapter is organized as follows. Section 3.2 introduces
the model economy. In Section 3.3, we characterize the equilibrium and illustrate the
strategic considerations determining political transitions. The law of motion of the dy-
namic economy and our main predictions are derived in Section 3.4. In Section 3.5, we
present some empirical evidence, and Section 3.6 concludes.

3.2 The Model

We consider an infinite horizon economy with a continuum of two-period lived agents.
Each generation has a mass equal to 1. At time t, fraction λt of the population has the
power to implement political decisions, whereas the remaining agents are excluded from
political power. We refer to these two groups as (political) “insiders” and “outsiders”.

When born, the distribution of political power among the young is inherited from their
parent generation; that is, λt agents are born as insiders, while 1− λt agents are born as
outsiders. However, agents who are born as outsiders can attempt to overthrow the current
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regime and thereby acquire political power. To this end, outsiders choose individually and
simultaneously whether or not to participate in a revolt.5 Because we will assume that
all political change takes effect at the beginning of the next period, only young outsiders
have an interest in participating in a revolt. Accordingly, we denote young outsider i’s
choice by φit ∈ {0, 1} and use the aggregated mass of supporters, st =

∫
φit di, to refer to

the size of the resulting revolt.

The probability that a revolt is successful is given by

p(θt, st) = θth(st), (3.1)

where θt ∈ Θ is a random state of the world that reflects the vulnerability of the current
regime or their ability to put down a revolt, and h is an increasing and twice differentiable
function, h : [0, 1] → [0, 1], with h(0) = 0. That is, the threat of a revolt to the current
regime is increasing in the mass of its supporters and in the vulnerability of the regime.
When a revolt has no supporters (st = 0) or the regime is not vulnerable (θt = 0), it fails
with certainty.

The purpose of θt in our model is to introduce asymmetric information between insiders
and outsiders that, as will become clear below, explains the prevalence of revolts along the
equilibrium path. Formally we have that the state θt is uniformly distributed on Θ = [0, 1],
is i.i.d. from one period to the next, and is revealed to insiders at the beginning of each
period. Outsiders only know the prior distribution of θt.

After they learn θt, insiders may try to alleviate the threat of revolt by conducting reforms.
We follow Acemoglu and Robinson (2000b) by modeling these reforms as an extension of
the franchise to outsiders, which is effective in credibly preventing them from supporting
a revolt.6 However, since our model is aimed at endogenizing the polity λt, we generalize
this mechanism by allowing insiders to continuously extend the regime by any fraction,
xt − λt, of young outsiders, where xt ∈ [λt, 1] is the reformed political system.7 Because
preferences of insiders will be perfectly aligned, there is no need to specify the decision
making process leading to xt in detail.

Given the (aggregated) policy choices st and xt, and conditional on the outcome of a

5For notational convenience, we abstract from the possibility of insiders participating in a revolt. In
Appendix C.1.1, however, we show that this is without loss of generality, since it is never optimal for
insiders to support a revolt against fellow members of the regime.

6As argued in Footnote 5 and shown in Appendix C.1.1, it is indeed individually rational for enfran-
chised outsiders to not support a revolt.

7Note that by assuming xt ∈ [λt, 1], we are ruling out reforms that withdraw political power once it
has been granted. This is in line with the idea that granting someone the status of an insider is a credible
and irreversible commitment in the logic of Acemoglu and Robinson (2000b).
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revolt, the political system evolves as follows:

λt+1 =

st if the regime is overthrown, and

xt otherwise.
(3.2)

When a revolt fails (indicated by ηt = 0), reforms take effect and the old regime stays in
power. The resulting political system in t+ 1 is then given by xt. In the complementary
case, when a revolt succeeds (ηt = 1), those who have participated will form the new
regime. Accordingly, after a successful revolt, the fraction of insiders at t + 1 is equal to
st. Note that this specification prevents non-revolting outsiders from reaping the benefits
from overthrowing a regime; there are no gains from free-riding in our model.8

To complete the description of our model, we still have to specify how payoffs are dis-
tributed across the different groups of agents at t. As for outsiders, we assume that they
receive a constant per period payoff of γit which is privately assigned to each agent at
birth and is drawn from a uniform distribution on [0, 1]. We interpret this heterogene-
ity of outsiders as different degrees of economical or ideological adaptation to a regime,
determining their propensity to revolt.

In contrast, insiders enjoy per period payoffs u(λt), where u is twice differentiable, u′ < 0,
and u(1) is normalized to unity. One should think of u(·) as a reduced form function that
captures the various benefits of having political power (e.g., from extracting a common
resource stock, implementing preferred policies, etc.). One important feature of u is that
it is decreasing in the current regime size and, hence, extending the regime is costly for
insiders (e.g., because resources have to be shared, or preferences about policies become
less aligned). Another thing to note is that u(λt) ≥ γit for all λt and γit; that is, being part
of the regime is always desirable. In the case of full democracy (λt = 1) all citizens are
insiders and enjoy utility normalized to the one of a best-adapted outsider (i.e., u(1) = 1).

To simplify the analysis, we assume that members of an overthrown regime and partici-
pants in a failed revolt are worst-adapted to the new regime. Formally, γit = 0, resulting
in zero payoff.

For the upcoming analysis it will be convenient to define the expected utility of agents

8The theoretical possibility for free-riding arises since we depart from the common assumption of
treating the opposition as a single player in order to endogenize the political system resulting from
a revolt. However, as long as there are some private benefits that provide incentives for outsiders to
support a revolt, the working of this model is unaffected by (moderate) incentives to free-ride. Entirely
abstracting from the collective action problem is merely a model simplification.
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that are born at time t, which is given as follows:

V I(θt, λt, st, xt) = u(λt) + [1− p(θt, st)]× u(xt), (3.3)

V O(θt, γit, st, φit) = γit + φit p(θt, st)× u(st) + (1− φit)× γit, (3.4)

where superscript I and O denote agents that are born as insiders and outsiders, respec-
tively. In both equations, the first term corresponds to the first period payoff (unaffected
by the policy choices of the young agent’s generation), while the other terms correspond
to second period payoffs. (Since agents do not face an intertemporal tradeoff, we do not
need to define a discount rate here).

The timing of events within one period can be summarized as follows:

1. The state of the world θt is revealed to insiders.

2. Insiders may extend political power to a fraction xt ∈ [λt, 1] of the population.

3. Outsiders individually and simultaneously decide whether or not to participate in a
revolt.

4. Transitions according to (3.1) and (3.2) take place, period t+1 starts with the birth
of a new generation, and payoffs determined by λt+1 are realized.

In what follows, we characterize the set of perfect Bayesian equilibria that satisfy the
trembling-hand criterion (due to Selten, 1975); that is, perfect Bayesian equilibria that are
the limit of some sequence of perturbed games in which strategy profiles are constrained
to embody “small” mistakes.9 To increase the predictive power of our model, we thereby
limit attention to equilibria that are consistent with the D1 criterion introduced by Cho
and Kreps (1987), a standard refinement for signaling games. The D1 criterion restricts
outsiders to believe that whenever they observe a reform x′ that is not conducted in
equilibrium, the reform has been implemented by a regime with vulnerability θ′, for which
a deviation to x′ would be most attractive.10

9Here, the concept of trembling-hand perfection rules out “instable” equilibria, in which st = 0, but
iteratively best-responding to a (perceived) second-order perturbation of st would lead to a different
equilibrium with a first-order change in st. For details see the proof of Proposition 3.1. Except for
these instabilities, the set of trembling-hand perfect equilibria coincides with the set of perfect Bayesian
equilibria in our model. An alternative approach to rule out these instabilities would be to restrict
attention to equilibria which are the limit to a sequence of economies with a finite number of outsiders,
where each agent’s decision has non-zero weight on st.

10Formally, let V̄ I(θ′, λt) be the insiders’ payoff in a candidate equilibrium when the regime has a
vulnerability θ′. Then the D1 criterion restricts beliefs to the state θ′ that maximizes Dθ′,x′ = {θ̂ :
V I(θ′, λt, s(θ̂, x′), x′) ≥ V̄ I(θ′, λt)}, where s(θ̂, x′) is the mass of outsiders supporting a revolt, given the
beliefs θ̂ and reform x′. Dθ′,x′ is maximal here, if there is no θ′′, such that Dθ′,x′ is a proper subset
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Anticipating our results, we simplify our notation as follows. First, outsiders’ beliefs re-
garding the regime’s vulnerability will be uniquely determined in our setup. We therefore
denote the commonly held belief by θ̂t, dropping the index i. Second, there are no non-
degenerate mixed strategy equilibria in our game. Accordingly, we restrict the notation
in the main text to pure strategies and introduce mixed strategies only to define the
perturbations required by trembling-hand perfection.

This leads to the following definition of equilibrium for our economy.

Definition. Given a history δ = {λ0} ∪ {{φiτ : i ∈ [0, 1]}, θτ , xτ , ητ}t−1
τ=0, an equilibrium

in this economy consists of policy mappings xδ : (θt, λt) 7→ xt and {(φiδ : (θ̂t, xt) 7→ φit) :
i ∈ [0, 1]}, and beliefs θ̂δ(λt, xt) 7→ θ̂t, such that for all possible histories δ:

a. Reforms xδ maximize insider’s utility (3.3), given states (θt, λt), beliefs θ̂δ, and
perturbed policy mappings {ωkiδ : i ∈ [0, 1]} for all values of k;

b. Each outsider’s policy choice φiδ maximizes (3.4), given perturbed policy mappings
σkδ , {ωkjδ : j ∈ [0, 1] \ i}, and corresponding beliefs θ̂kδ for all values of k;

c. Beliefs θ̂δ = limk→∞ θ̂
k
δ (xt), where θ̂kδ are obtained using Bayes rule given σkδ ; and θ̂δ

satisfies the D1 criterion;

d. States (λt, ηt) are consistent with (3.1) and (3.2);

e. The perturbed policy mappings {{ωkiδ : i ∈ [0, 1]}, σkδ }∞k=0 are sequences of com-
pletely mixed strategy profiles converging to profiles that place all mass on {φiδ :
i ∈ [0, 1]} and xδ, respectively.

3.3 Political Equilibrium

In this section, we characterize the political equilibrium in the model economy. Our
analysis will be simplified considerably by the overlapping generations structure of our
model, which gives rise to a sequence of “generation games” between young insiders and
young outsiders. Since the distribution of political power at time t captures all payoff-
relevant information of the history up to t, the only link between generations is λt. We can
therefore characterize the set of equilibria in our model by characterizing the equilibria
of the generation games as a function of λt. All other elements of the history up to

of Dθ′′,x′ . That is, beliefs are attributed to the state in which a deviation to x′ is attractive for the
largest set of possible inferences about the regime’s vulnerability (implying that the regime gains most
by deviating).

64



Emergence and Persistence of Extreme Political Systems

time t may affect the equilibrium at t only by selecting between multiple equilibria of the
generation game.

The generation game consists of two stages that determine the polity at t + 1. First,
outsiders have to choose whether or not to support a revolt. Because the likelihood that a
revolt succeeds depends on the total mass of its supporters, outsiders face a coordination
problem in their decision to revolt. Second, prior to this coordination problem, insiders
decide on the degree to which political power is extended to outsiders. On the one hand
this will decrease revolutionary pressure along the extensive margin by contracting the
pool of potential insurgents. However, extending the regime may also contain information
about the regime’s vulnerability. As a result, reforms may increase revolutionary pressure
along the intensive margin by increasing coordination among outsiders who are not subject
to reforms. Insiders’ policy choices will therefore be governed by signaling considerations.

We proceed by backward induction in solving for the equilibrium, beginning with the
outsiders’ coordination problem.

3.3.1 Stage 2: Coordination Among Outsiders

Consider the outsiders’ coordination problem at time t. For any given belief, (θ̂t, ŝt) ∈
Θ× [0, 1], individual rationality requires all outsiders to choose a φit that maximizes their
expected utility Et{V O(·)}.11 At time t, outsider i with adaptation utility γit will therefore
participate in a revolt if and only if

γit ≤ p(θ̂t, ŝt)u(ŝt) ≡ γ̄(ŝt). (3.5)

Here γ̄(ŝt) is the expected benefit of participating in a revolt that is supported by a mass
of ŝt outsiders. Since γ̄(ŝt) is independent of γit, it follows that in any equilibrium the
set of outsiders who support a revolt at t is given by the agents who are least adapted
to the current regime. Suppose for the time being that γ̄(ŝt) ≤ 1. Then, γ̄(ŝt) defines
the fraction of young outsiders that participates in a revolt, and, therefore, the size of a
revolt, st, that would follow from γ̄(ŝt) is given by

f(ŝt) ≡ (1− xt) γ̄(ŝt). (3.6)

Further note that in any equilibrium it must hold that st = ŝt. Therefore, as long as
11Note that by our specification of p, V O is linear in θt, and thus Et{V O(θt, ·)} = V O(θ̂t, ·), where

θ̂t ≡ Et{θt}. That is, the expected value of θt, given the posterior distribution of θt (outsiders’ beliefs),
is a sufficient statistic for computing V O. Henceforth we define θ̂t accordingly, disregarding any higher
moments of outsiders’ beliefs.
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γ̄(ŝt) ≤ 1, the share of outsiders that support a revolt at t has to be a fixed point to (3.6).
To guarantee that this is always the case and to further ensure that a well-behaved fixed
point exists, we impose the following assumption.

Assumption 3.1. For ψ(s) ≡ h(s) · u(s),

a. ψ′ ≥ 0 and ψ′′ ≤ 0;

b. lims→0 ψ
′(s) =∞.

Intuitively, Assumption 3.1 states that participating in a revolt becomes more attractive if
the total share of supporters grows. This requires that the positive effect of an additional
supporter on the success probability outweighs the negative effect of being in a slightly
larger regime after a successful revolt. Put differently, 3.1 states that the participation
choices of outsiders are strategic complements. To ensure existence, we further require
that the strategic complementarity is sufficiently strong when a revolt is smallest, and is
decreasing as it grows larger.

Using 3.1, the above discussion leads to the following proposition.

Proposition 3.1. In any equilibrium, the mass of outsiders supporting a revolt at time t
is uniquely characterized by a time-invariant function, s : (θ̂t, xt) 7→ st, which satisfies
s(0, ·) = s(·, 1) = 0, increases in θ̂t, and decreases in xt.

All formal proofs are relegated to Appendix C. Proposition 3.1 establishes the already
discussed tradeoff of conducting reforms: On the one hand, reforms reduce support for
a revolt along the extensive margin. In the limit, as regimes reform to a full-scaled
democracy, any subversive threat is completely dissolved. On the other hand, if reforms
signal that the regime is vulnerable, they may backfire by increasing support along the
intensive margin.

3.3.2 Stage 1: Policy Choices of Insiders

We now turn to the insiders’ decision problem. Since more vulnerable regimes have higher
incentives to reform than less vulnerable ones, conducting reforms will shift beliefs towards
being vulnerable and, therefore, indeed stipulate coordination among outsiders who are
unaffected by reforms. This generates the tradeoff established in Proposition 3.1, which
is the main driving force behind the following result.

Proposition 3.2. In any equilibrium, policy choices of insiders and beliefs of outsiders are
uniquely characterized by time-invariant functions x : (θt, λt) 7→ xt and θ̂ : (λt, xt) 7→ θ̂t,
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such that

x(θt, λt) =

λt if θt < θ̄(λt)

ξ(θt) if θt ≥ θ̄(λt),

and

θ̂(λt, xt) =



θ̄(λt)/2 if xt = λt

θ̄(λt) if λt < xt < ξ(θ̄(λt))

ξ−1(xt) if ξ(θ̄(λt)) ≤ xt ≤ ξ(1)

1 if xt > ξ(1),

where ξ is a unique increasing function with ξ(θt) > λt + µ, and θ̄(λt) > 0 for all λt and
some µ > 0.

Proposition 3.2 defines insiders’ policy choices for generation t as a function of (θt, λt).
Because the logic behind these choices is the same for all values of λt, we can discuss the
underlying intuition keeping λt fixed. Accordingly, in Figure 3.2 we plot reform choices
(left panel) and the implied probability to be overthrown (right panel), sliced along a given
λt plane. It can be seen that whenever a regime is less vulnerable than θ̄(λt), insiders
prefer to not conduct any reforms (i.e., xt = λt), leading to a substantial threat for regimes
with θt close to θ̄(λt). Only if θt ≥ θ̄(λt), reforms will be conducted (xt = ξ(θt)), which in
equilibrium effectively mitigate the threat to be overthrown, ruling out marginal reforms
where ξ(θt)→ λt.

To see why marginal reforms are not effective in reducing revolutionary pressure consider
Figure 3.3. Here we plot equilibrium beliefs (left panel) and the corresponding mass of
insurgents (right panel) as functions of xt. If the political system is left unchanged by
insiders, outsiders only learn the average state θ̄(λt)/2 of all regimes that pool on xt = λt

in equilibrium. On the other hand, every extension of the regime—how small it may be—
leads to a non-marginal change in outsiders’ beliefs from θ̂t = θ̄(λt)/2 to θ̂t ≥ θ̄(λt) and,
hence, results in a non-marginal increase in revolutionary pressure along the intensive
margin. It follows that there exists some x̃(λt), such that for all xt < x̃(λt) the increase of
pressure along the intensive margin dominates the decrease along the extensive margin.
Thus, reforms smaller than x̃(λt) will backfire and increase the mass of insurgents (as seen
in the right panel of Figure 3.3), explaining why effective reforms have to be non-marginal.

Furthermore, optimality of reforms requires that the benefit of reducing pressure com-
pensates for insiders’ disliking of sharing power. Because x̃(λt) − λt > 0, it follows that
u(x̃(λt)) − u(λt) < 0. Moreover, any reform marginally increasing the regime beyond

67



Emergence and Persistence of Extreme Political Systems

Figure 3.2: Equilibrium Reforms and Implied Probability to be Overthrown
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Figure 3.3: Equilibrium Beliefs and Implied Mass of Insurgents
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x̃(λt) leads only to a marginal increase in the likelihood to stay in power. Hence, there
exists a non-empty interval, given by [x̃(λt), ξ(θ̄(λt))], in which reforms are effective, yet
insiders prefer to gamble for their political survival in order to hold on to the benefits of
not sharing power in case they survive. This explains the substantial threat for regimes
with θt close to θ̄(λt), as seen in the right panel of Figure 3.2.12

3.3.3 Existence and Uniqueness of Equilibrium

Propositions 1 and 2 uniquely pin down the policy choices in every state, which in return
determine the evolution of polities. We conclude that there is no scope for multiple
equilibria in our model economy; if there exists an equilibrium it is unique. Verifying the

12More precisely, gambling for survival increases the likelihood to be overthrown in two ways. First,
since on the margin it is more vulnerable regimes that join the pool at xt = λt, these regimes obviously
face a high threat by not conducting reforms. Second, since these regimes also shift the pooling belief
towards more vulnerable, the threat further increases for regimes of all vulnerabilities in the pool.
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existence then permits us to reach the following result.

Proposition 3.3. There exists an equilibrium, in which for all histories δ, policy map-
pings xδ and {φiδ : i ∈ [0, 1]}, as well as beliefs θ̂δ correspond to the time-invariant
mappings given by Propositions 3.1 and 3.2. Furthermore, for any given initial political
system λ0, this equilibrium is unique.

3.4 Transition Dynamics

In the preceding section, we have established that in the unique equilibrium, policy map-
pings are time-invariant, implying that (λt, θt) is a sufficient statistic for characterizing
the transition dynamics of the political system from time t to t + 1. Integrating out θt,
political systems in our equilibrium follow a Markov process where the probability that
λt+1 ∈ Λ is given by

Q(λt,Λ) = ρS(λt)×QS(λt,Λ) + ρR(λt)×QR(λt,Λ)

+ {1− ρI(λt)− ρR(λt)} × 1λt∈Λ. (3.7)

Here ρS and ρR denote the probabilities that a transition occurs via subversive attempts
(i.e., revolts) and reforms, respectively; QS and QR are conditional transition functions;
and 1 is an indicator function equal to unity whenever λt ∈ Λ.13 Accordingly, the first
term in (3.7) defines the probability that state λt+1 ∈ Λ emerges through a revolt, the
second term defines the probability that λt+1 ∈ Λ emerges from a reform, and the third
term refers to the event of no transition. Decomposing the law of motion into these
conditional channels, we are now ready to state our main predictions.

3.4.1 Political Systems after Transition

By (3.7), political systems that arise after transitions are summarized by QS and QR.
Our first result states that polities that emerge after reforms differ fundamentally from

13Formally, we have that

ρS(λt) =
∫ 1

0 p̀(θ) dθ

ρR(λt) =
∫ 1
θ̄(λt) {1− p̀(θ)} dθ

QS(λt,Λ) = {ρS(λt)}−1∫
θ:s̀(θ)∈Λ p̀(θ) dθ

QR(λt,Λ) = {ρR(λt)}−1∫
θ:x̀(θ)∈Λ\λt

{1− p̀(θ)} dθ,

where x̀(θ) ≡ x(λt, θ), s̀(θ) ≡ s(θ̂(λt, x̀(θ)), x̀(θ)), and p̀(θ) ≡ p(θ, s̀(θ)).
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those that emerge from revolts. The following proposition states the formal result.

Proposition 3.4. For all states λt,

QR(λt, (1
2 , 1]) = 1 and QS(λt, (0, 1

2)) = 1;

i.e., reforms lead to majority regimes with λt+1 >
1
2 and revolts lead to minority regimes

with λt+1 <
1
2 .

The first part of Proposition 3.4 states that any reform leads to a democratic polity, in
which the majority of citizens holds political power. The intuition for this result mirrors
the one for Proposition 3.2. Because conducting reforms will be associated with being
intrinsically weak, coordination is increased along the intensive margin. For the benefits
along the extensive margin to justify these costs, reforms therefore have to be far-reaching,
leading to the enfranchising of the majority of the population.

In contrast, the second part of Proposition 3.4 establishes that successful revolts always
lead to minority regimes, in which a small elite rules over a majority of political outsiders.
Underlying this result is that in equilibrium subversive attempts are conducted by only
a small group of insurgents. Mass revolutions on the other hand are off-equilibrium. To
see what drives the result, first note that rationality of reforms implies that revolts are
largest when regimes abstain from reforms and choose to repress the population. However,
because abstaining from reforms is optimal, both, in times when regimes are strong and
when they hide their weakness through taking tough stance, uncertainty about a regime’s
weakness is largest from the perspective of outsiders exactly when a regime abstains from
reforms. Accordingly, prospects of revolting are only moderate and only those with large
gains from winning political power (i.e., outsiders who are least adapted to the current
regime) will find it rational to take the risk of revolting.

An interesting implication of Proposition 3.4 is that democratic regimes arise if and only
if it is optimal for the regime to enfranchise former political outsiders. The commonly
made assumption in the previous literature that democracies are established by means
of reforms conducted by the elites is thus an endogenous outcome of our model. The
other channel through which democracies hypothetically could be established are mass
revolutions. Their severe threat, however, is always mitigated by rational regimes, such
that mass revolts are events off the equilibrium path. This observation gives support to a
long-standing view in political science, according to which members of former autocracies
are key actors in the establishment of democracies, which is based on, e.g., the observation
of Karl (1990, p. 8) that no stable South American democracy has been the result of mass
revolutions (see also Rustow, 1970; O’Donnell and Schmitter, 1973; Huntington, 1991).
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Finally, note that from Proposition 3.4 it follows that there is a (possibly quite large)
open interval Λ̄ around 1/2, such that Q(λt, Λ̄) = 0 for all λt. That is, there is a range of
intermediate regimes that are completely off the equilibrium path, suggesting a long-run
distribution with mass only on the extremes. In a parametric example below, we will see
that this is indeed the case.

3.4.2 Probabilities of Transition

The next proposition describes how the likelihood of either type of political transition
depends on the political system λt.

Proposition 3.5. For all λt > λ̄, ∂ρS/∂λt < 0 and ∂ρR/∂λt ≤ 0; and for all λt < ¯
λ,

∂ρS/∂λt < 0 and ∂ρR/∂λt > 0 if limλ→0 ∂u/∂λ < ¯
u, and ∂ρS/∂λt > 0 and ∂ρR/∂λt < 0

if limλ→0 ∂u/∂λ > ū, and some (λ̄,
¯
λ, ū,

¯
u) ∈ [0, 1)2 × R2

−, whereas λ̄ ≥ ¯
λ > 0 if θ̄(0) < 1.

From Proposition 3.5 it follows that as regimes become more democratic, they eventually
become more stable. This is generally true for polities, in which no reforms are conducted;
and further holds for sufficiently democratic regimes (λt > λ̄). For autocratic polities, in
contrast, properties of the likelihood of political change depend on the exact specification
of u. Still, Proposition 3.5 suggests that ρR and ρS are hump-shaped when marginal
reforms for autocratic regimes are very costly or rather cheap, respectively. Otherwise,
the likelihood for either type of transition tends to be decreasing as the political system
becomes more democratic.

3.4.3 A Parametric Example

To illustrate the dynamics implied by Propositions 3.4 and 3.5 and to further study the
implications of the model in the long-run, we now introduce a parametrized version of
our model economy. We choose the following functional forms,

h(st) = sαt

and

u(λt) = − exp(β1λt) + β0.

Here one may think of β0 as a common resource stock or some other type of private
benefits, which decline at a exponential rate β1 as power is shared with more agents. To
pin down the free parameters, we further assume that ψ′(1) = 0; i.e., the strategic effect of
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an additional outsider supporting a revolt becomes negligible when revolts are supported
by the full population. Together with our assumptions on u and h, this pins down α and
β0 in terms of β1, which is restricted to approximately satisfy β1 ∈ (0, 0.56).14

Intuitively, β1 measures the costs of enfranchising political outsiders. In practice, these
costs are expected to be high if members of the regime have access to a large pool of
resources, or if there is a large degree of economic and political inequality.15 Thus, when
β1 is close to its upper bound, extending the franchise is costly and the incentives to
gamble for survival are strong. Consequently, for large β1, one should expect to observe
revolts frequently in equilibrium. On the other hand, if β1 is low, conducting reforms
is cheap and one should expect political insiders to quickly reform to a fully integrated
society.

To give an overview of the transition dynamics, Figure 3.4 displays a simulated time series
of the model economy for different values of β1 and for 500 periods each. For each time
path, we plot the political system, λt, at time t and indicate the dates where transitions
occur via revolts (marked by ∆) and reforms (marked by ×). It can be seen that low
costs of reforms in Setting 1 (β1 = 0.35) result in immediate democratic reforms and
the absence of successful subversive attempts. As the costs of reforms are increasing in
Setting 2 (β1 = 0.40) and Setting 3 (β1 = 0.45), successful revolts become more frequent
and are followed by periods of frequent regime changes, where autocracies succeed each
other. In contrast, democratic reforms give rise to long periods of political stability.

Polarization Although Figure 3.4 is the result of a random simulation, it captures many
essential transition dynamics that arise in our model. First, in line with Proposition 3.4, it
can be seen that transitions lead to a polarization of regimes; i.e., revolts lead to autocratic
regimes, whereas reforms result in fairly inclusive democracies. A more complete picture
is provided by Figure 3.5, which displays the distribution of political systems that emerge
from each transition mechanism for β1 = 0.4.16 From the left panel, it becomes apparent
that approximately two different types of autocracies emerge after revolts: dictatorships,
corresponding to regimes that emerge after revolts against democracies, and autocracies
which emerge after succeeding other autocracies. From the right panel of Figure 3.5, it
becomes apparent that reforms lead to democratic political systems where political power

14The implied values for the other two parameters are α = β1 exp(β1) and β0 = exp(β1)+1, restricting
β1 ∈ (0, exp(−β1)) ≈ (0, 0.56).

15In particular, note that u(λ) = exp(β1)− exp(β1λ) + 1 is increasing in β1 for all λ, so that also the
inequality between insiders and the average outsider,

∫
(u(λ)− γ) dγ, is increasing in β1 for all λ.

16For computing the distributions, originating polities are weighted by their long-run distribution Ψ;
e.g., the distribution of polities after reforms is given by pdf(λt+1) =

∫ 1
0 QR(λt, λt+1) dΨ(λt). While the

long-run distribution itself varies considerably with β1 (see also Figure 3.8), the conditional distributions
displayed in Figure 3.5 remain largely unaffected by changes in β1.
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Figure 3.4: Simulated Time Series of the Model Economy
Reforms are marked by “×”, successful revolts are marked by “4”.
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Figure 3.5: Distribution of Political Systems after Revolts and Reforms
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Figure 3.6: Likelihood of Revolts and Reforms
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is shared among the majority of the population. Furthermore, it can be seen that a large
set of polities around 1/2 is neither emerging from reforms, nor from revolts.

Stability The second observation that can be drawn from the simulations in Figure 3.4
concerns the stability of political regimes. In line with Proposition 3.5, it is evident that
democracies are characterized by long episodes without political change. In contrast,
autocracies are subject to frequent regime changes. The underlying transition probabilities
are depicted in Figure 3.6. Here we plot the likelihood of political transitions via revolts
(left panel) and reforms (right panel) as a function of λt. It can be seen that both relations
are decreasing in λt, such that autocracies are more likely than democracies to experience
transitions of either type.

Turbulent and peaceful times Another interesting observation suggested by the sim-
ulations in Figure 3.4 is that revolts tend to be serially correlated over time. Underlying
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Figure 3.7: Serial Correlation of Revolts
Likelihood of a Successful revolt at time t+ s conditional on a revolt s periods before (solid) and uncon-
ditional likelihood (dashed).
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this observation is a statistical selection into autocratic regimes after successful revolts,
seen in Figure 3.5. Because succeeding autocracies are frequently overthrown themselves,
seen in Figure 3.6, the serial correlation follows. A direct assessment of this effect is
provided in Figure 3.7, which plots the likelihood of a revolt at time t+ s conditional on
a successful revolt at time t (represented by the downward sloping solid line).

The converse is true for reforms, which by Propositions 3.4 and 3.5 lead to democratic
regimes, for which further political change is unlikely. Our model predicts, therefore, that
via selection into particular polities, revolts lead to “turbulent” times, while reforms lead
to “peaceful” periods.

Persistence A side effect of the considerations in the preceding paragraph is that de-
spite their instability, autocratic systems are persistent over time. That is, while individ-
ual autocracies are relatively short-lived, they are frequently overthrown by small groups
of insurgents, resulting in autocracies very similar to their predecessors. Settings 2 and 3
of our simulations in Figure 3.4 illustrate this implication further.

Long-run distribution Taken together, polarization to extreme regimes and the per-
sistence of these suggests that the long-run distribution of polities is polarized as well. In
Figure 3.8, we plot the invariant distribution of polities for different values of β1. It can
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Figure 3.8: Invariant Distribution of Political Systems
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be seen that the distributions are double hump-shaped, with most mass concentrated on
extreme political systems. Whether polities are mostly democratic or autocratic depends
on the costs of reform as given by β1. For low values of these costs (Settings 1 and 2),
reforms are commonly used to mitigate most subversive threats, revolts are unlikely, and
mass is mainly concentrated on democratic systems. If the costs of conducting reforms
are high (Settings 3 and 4), less reforms are conducted, revolts are more frequent, and
most mass is concentrated on autocratic political systems.

3.5 A Look at the Data

Our model predicts a number of properties about political transitions that are in principle
accessible to an empirical investigation. In this section, we take an exploratory look at
data that combines information on political transitions and political systems to evaluate
the model’s predictions. While we are able to demonstrate that our predictions are con-
sistent with descriptive statistics from the data, we make no claims of capturing causal
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relations, which would be beyond the scope of this exercise.

3.5.1 Data Construction

As a measure for the model’s polity variable, we use the polity variable, scaled to [0, 1],
from the Polity IV Project (Marshall and Jaggers, 2002), which ranks political regimes
on a 21 point scale between autocratic and democratic. In order to examine the model’s
predictions, we combine this dataset with data on political transitions.

To classify successful revolts, we use the Archigos Dataset of Political Leaders (Goemans
et al., 2009). The dataset is available for the time period between 1919 and 2004 such
that we limit attention to political systems and transition in these years. We record a
successful revolt if a leader is irregularly removed from office due to domestic popular
protest, rebel groups, or military actors (defined by Archigos’ exitcodes 2, 4 and 6), and
if at the same time the leader’s successor takes office in irregular manner (defined by an
entrycode 1). Furthermore, we take a revolt to be causal for a change in the political
system if a polity change is recorded in the Polity IV database within a two week window
of the revolt.

Finally, we use the dataset on the Chronology of Constitutional Events from the Compar-
ative Constitution Project (Elkins et al., 2010) to classify reforms. We define reforms by
a constitutional change (evnttype equal to new, reinstated, or amendment) accompanied
by a positive change in the political system (as indicated by the variable durable from the
Polity IV Project) which is not matched to a revolt or another irregular regime change
from the Achigos Dataset.

The resulting dataset is a daily panel on the country level, which covers 175 countries and
records 251 revolts and 97 reforms.

3.5.2 Empirical Properties of Political Systems and Transitions

Overview Table 3.1 summarizes the resulting dataset. Panel A displays average polities
and annualized empirical likelihoods for a transition of either type. It can be seen that on
average, revolts are observed with a frequency of 2.8 percent per year and country, and
reforms are observed with a frequency of 1.1 percent. On average, this corresponds to a
transition every 25 years per country.

The mean polity is given by 0.49—almost exactly the midpoint of the polity scale. As can
be seen in the second column, however, the standard deviation of polities is quite large.
The reason for this becomes clear in light of Figure 3.1, which displays the distribution
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Table 3.1: Descriptive Statistics

Mean Standard Deviation Observations

A. Regimes

Polities 0.493 0.376 3 289 400
Annual likelihood of a revolt
Unconditional 0.028 3 289 400
If polity ≤ 0.25 0.030 1 452 533
If polity ≥ 0.75 0.012 1 238 720

Annual likelihood of a reform
Unconditional 0.011 3 289 400
If polity ≤ 0.25 0.018 1 452 533
If polity ≥ 0.75 0.001 1 238 720

B. Transitions

Resulting polities
After revolts 0.316 0.235 251
After reforms 0.672 0.242 97

Notes. Units of observation in Panel A are country-days. Units of observation in Panel B are transitions.

of political systems in our dataset: Only a minority of regimes are located in the middle
of the polity scale. Instead, in line with our predictions, most mass is concentrated on
extreme political systems. More precisely, 44 percent of all regimes are rather autocratic
with a polity index of 0.25 and below, while 38 percent of all regimes are rather democratic
with an index value of 0.75 and above.

Our model identifies two reasons for why the distribution of polities is extreme: Polariza-
tion via the transition mechanism and persistence of extreme polities.

Polarization To examine whether regimes are polarized via political transitions, con-
sider Panel B of Table 3.1, which displays the mean polity index for regimes emerging
after revolts and reforms, respectively. As predicted by Proposition 3.4, revolts on aver-
age lead to autocratic regimes with a polity index of 0.32, while reforms lead to rather
democratic political systems with a mean polity index equal to 0.67.

Further insight can be gained from the conditional distribution of polities emerging after
either type of transition. Figure 3.9 displays these distributions. From the left panel
it is obvious that indeed the majority of political systems that emerge after revolts is
autocratic. In contrast, the evidence about political reforms is less clear. On the one hand,
the right panel of Figure 3.9 suggests that the majority of systems that are established
through reforms are democratic. On the other hand, it also can be seen that, in contrast
to the model’s predictions, a significant number of reforms lead to regimes that are less
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Figure 3.9: Empirical Distribution of Political Systems after Revolts and Reforms
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Figure 3.10: Empirical Likelihood of Revolts and Reforms
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democratic.

However, while some reforms are less democratic than predicted, Figure 3.9 still sug-
gests that the majority of democratic regimes are established via reforms, consistent with
Proposition 3.4.

Stability and persistence To examine the stability of political systems, consider Fig-
ure 3.10. Here we plot the empirical likelihood functions for revolts and reforms, derived
from a local polynomial estimation. Both likelihoods are hump-shaped in the polity index,
with regimes in the middle of the scale being most likely to be overthrown. Neverthe-
less, as can be seen in Panel A of Table 3.1, autocracies with a polity index of 0.25 or
below are more than twice as likely to fall to a revolt than democratic regimes with an
index value of 0.75 and above. Moreover, autocratic regimes are about 18 times more
likely to conduct reforms than democracies. Overall, autocracies survive for an average
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Figure 3.11: Empirical Serial Correlation of Revolts
Empirical likelihood of a revolt at date t+s conditional on a revolt s years before (solid) and unconditional
likelihood for all countries (dashed) and countries with at least one transition (dotted).
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of about 21 years, while democracies survive for an average of about 79 years. Hence,
while in contrast to Proposition 3.5 full-scale democracies face a nonzero probability to be
overthrown, they are nevertheless considerably more stable than all other regime types,
confirming the qualitative predictions made by the model.

According to our model, even though autocracies are more instable than democracies, a
serial correlation between revolts results in a persistence of autocratic political systems.
The descriptive statistics reported above already suggest that the statistical selection
mechanism underlying the persistence in our model might also be at work in the data.
That is, we have seen that revolts are likely to result in autocracies, which are themselves
likely to be overthrown again (see the left panels of Figures 3.9 and 3.10). As can be seen
in Figure 3.11, the suggested correlation is indeed present in the data. The solid line in
Figure 3.11 reflects the likelihood of observing a revolt at date t + s conditional on that
there was a successful revolt s years before. This likelihood is considerably larger than the
unconditional likelihood of revolts across all countries (dashed line) and also compared
to the unconditional likelihood in countries with at least one observed transition (dotted
line). Compared to the latter benchmark, the difference is statistically significant at the
5 percent level for s ≤ 15.

Summary In summary, the moments and correlations predicted by our model are con-
sistent with the corresponding empirical moments and correlation. As predicted by the
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model, transitions lead to a polarization of political regimes, giving rise to autocracies
after revolts and democracies after political reforms. While democracies are found to be
empirically stable, autocracies are found to be short-lived. Yet, consistent with the model,
a statistical selection gives rise to autocorrelation of successful subversions, explaining per-
sistence of autocracies in the long-run. Consistently, as predicted by the model, the overall
empirical distribution has mass mainly concentrated on extreme political systems.

3.6 Concluding Remarks

This is the first study which analyzes the dynamic properties of political transitions in a
general framework allowing for endogenous outcomes of reforms and revolts. Our results
suggest that transitions to democracy occur peacefully via reforms under participation of
the former ruling elites. In contrast, violent transitions are driven by a small groups of
insurgents and thus always lead to autocratic political regimes. Furthermore, democratic
political systems face only a small opposition and are, hence, inherently stable, while
autocratic regimes are short-lived due to the significant threat of revolts and the resulting
strong incentives to conduct reforms.

These predictions are derived from a model in which the threat of revolt is the driving
force of political change. We enrich the pioneering work of Acemoglu and Robinson
(2000b) by allowing for arbitrary reforms conducted by the elite and endogenous formation
of revolts through coordination of outsiders. While the predictions from this model fit
descriptive statistics on political transitions quite well, our work points out promising
avenues for future research. In particular, one simplifying assumption of our model is
that the vulnerability of the incumbent regime is independently drawn anew in each
period. Relaxing this assumption by allowing for serial correlation of the incumbents’
strength would allow outsiders to learn about the prospects of revolting over time. A
model, in which such endogenous learning is possible, could thus foster our understanding
of the dynamic processes which ultimately lead to transition events (revolts or reforms).

Another interesting question regards the existence of mass movements. While from Fig-
ure 3.9 one can see that the majority of regimes that emerge after successful revolts is
indeed autocratic in the data, there is also a nonzero mass of democratic regimes emerging
from revolts. In our model mass revolutions and, hence, violent transitions to democracy
are events off the equilibrium path. Therefore, only strategic mistakes could trigger mass
revolts within our framework. For example, the elite may erroneously signal weakness
by making small concessions, or outsiders may rally because of a commonly held belief
that the regime is weak (for example due to information cascades as in Kuran, 1989 or
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Lohmann, 1994). While it seems plausible that costly mass revolutions are the result of
strategic mistakes, there thus remains the challenge to find a rational explanation for the
emergence of mass revolutions when the regime has the power to counteract them via
reforms.
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Appendix to Chapter 1

A.1 Proofs

A.1.1 Proof of Lemma 1.1

We begin the proof by making two observations. First, it is easy to see that FR(ft, η) is
strictly decreasing and convex in η due to strict concavity of u(·). Hence, the fixed point
η̃ satisfying FR(ft, η̃) = 0, which exists by assumption 1.1 (i) is unique. Second, note that
for all η > wt we have that

F P (ft, wt, η) < (1−H(η))
(

(1− α)E[u(wτ )|wτ ≥ η, ft] + αu(η)− u(η)
)
−c ≤ FR(ft, η),

since E[u(wτ )|wτ ≥ η, ft] ≥ u(η). Thus, for large η, FR(·) is an upper bound for F P (·),
where the former is smaller than zero for η > η̃.

Now, note that there always exists a fixed point η̄ for which F P (ft, wt, η̄) = 0. To
see this, consider the cases α = 0 and α = 1. For α = 0, F P (ft, wt, ηt) = FR(ft, ηt)
and by assumption 1.1 (i) there always exists η′ satisfying FR(ft, η′) = 0. For α = 1,
F P (ft, wt, η) = (1 − H(η)) (u(wt)− u(η)) − c, which equals zero for some η′′ < wt due
to the strict concavity of u(·). Hence, some η̄ ∈ [η′, η′′] satisfies F P (ft, wt, η̄) = 0 for
α ∈ (0, 1).

Finally, we need to show that η̄ is unique. Because FR(·) is an upper bound for F P (·)
for large η, it is sufficient to show that F P (·) is quasi-convex in η. The first and second
derivatives of F P (·) with respect to η are

∂F P (ft, wt, η)
∂η

= αh(η) (u(η)− u(wt))− (1−H(η))u′(η)
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and

∂2F P (ft, wt, η)
∂η2 = αh′(η) (u(η)− u(wt)) + (1 + α)h(η)u′(η)− (1−H(η))u′′(η).

Hence, if there is some η̂ with ∂F P (ft, wt, η̂)/∂η = 0, we have

∂2F P (ft, wt, η̂)
∂η2 = (1−H(η̂))h′(η̂) + h(η̂)2

h(η̂) u′(η̂) + αh(η̂)u′(η̂)− (1−H(η̂))u′′(η̂) > 0,

since (1−H(η̂))h′(η̂) + h(η̂)2 ≥ 0 by assumption 1.1 (ii). This completes the proof.

A.1.2 Proof of Hypothesis 1.1

Clearly, ∂y/∂wt > 0 if either ∂n(wt)/∂wt > 0 or ∂η̄/∂wt > 0. The second follows directly
from application of the implicit function theorem on (1.2), iff α > 0.

A.1.3 Proof of Hypothesis 1.2

Obvious, following the same argument as in the proof of Hypothesis 1.1.
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A.2 Tables

Table A.1: Effect of Purchase-Date Weather on Ticket Orders for Repeat Customers

Daily Ticket Orders

Fixed Effects Fixed Effects Fixed Effects
Multiple Orders Multiple Orders Multiple Orders

per Season with Bad Experience

Avg. Sun 0.012∗∗∗ 0.0080∗∗∗ 0.0037∗∗∗

(0.0028) (0.0018) (0.00089)
Avg. Rain −0.0074∗∗∗ −0.0031∗ −0.00018

(0.0028) (0.0017) (0.00080)
Forecast Y es Y es Y es

Horizon Indicators Y es Y es Y es

Observations 1635 1635 1635
Adjusted R2 0.260 0.241 0.132

Notes: Coefficients and robust standard errors are reported for OLS regressions of daily ticket orders
on purchase-date weather (sunshine duration in percent of time and rainfall in 1/100 mm), forecast of
movie-date weather (forecasted temperatures and indicator variables for symbols), and horizon indicators
(dummy variables for the number of days between purchase-date and movie-date). Fixed effects for the
show are included. In the first column, the sample is restricted to sales to customers who have previously
ordered tickets at least once between 2004 and 2011. In the second column, the sample is restricted
to customers with multiple orders per season and in the final column to customers who had previously
experienced rainfall during a show they had tickets for.
Level of Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.2: Predictive Power of Current Weather and Forecast

Evening Sunshine Duration

1 Day Out 2 Days Out 3 Days Out 4 Days Out

Avg. Sun 0.032 0.023 −0.0027 0.077
(0.051) (0.050) (0.050) (0.052)

Avg. Rain 0.076 0.012 −0.040 −0.027
(0.068) (0.071) (0.074) (0.076)

Forecasted Maxtemp. 1.27∗∗ 0.91 1.39∗∗ 0.95
(0.62) (0.71) (0.68) (0.70)

Forecasted Mintemp. −0.38 −0.026 0.097 0.13
(0.79) (0.93) (0.93) (0.85)

Symbol Partly Sunny −20.6∗∗∗ −27.0∗∗∗ −16.3∗∗∗ −19.8∗∗∗

(4.86) (4.98) (5.41) (5.62)
Symbol Shower −47.9∗∗∗ −45.4∗∗∗ −31.7∗∗∗ −27.4∗∗∗

(5.10) (5.36) (5.42) (5.58)
Symbol Rain −43.2∗∗∗ −43.0∗∗∗ −36.3∗∗∗ −25.2∗∗∗

(5.98) (6.21) (6.64) (6.70)
Symbol T-Storm −63.7∗∗∗ −59.1∗∗∗ −47.1∗∗∗ −31.9∗∗

(9.04) (10.1) (12.0) (14.0)
MA Rain 14 days −0.11 0.27 0.29 0.11

(0.27) (0.28) (0.29) (0.29)
MA Sun 14 days 0.19∗∗ 0.23∗∗ 0.31∗∗∗ 0.25∗∗

(0.093) (0.098) (0.10) (0.10)
Year and Month Y es Y es Y es Y es

Indicators

Observations 470 469 470 471
Adjusted R2 0.369 0.302 0.246 0.159

Notes: We report the coefficients and robust standard errors of OLS regressions estimating expected
sunshine duration (in percent) in the evening between 5 pm and 7 pm based on information one to
four days in advance (indicated in the column heading). The information comprises of current average
sunshine duration, current rainfall (in 1/100 mm), the current weather forecast for the respective time
horizon, a moving average of sunshine duration and rainfall of the past fortnight as well as year and
month dummies.
Level of Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.3: Predictive Power of Current Weather without Forecast

Evening Sunshine Duration

1 day out 2 days out 3 days out 4 days out

Avg. Sun 0.16∗∗∗ 0.043 0.024 0.052
(0.049) (0.049) (0.050) (0.050)

Avg. Rain −0.064 −0.051 −0.071 −0.0047
(0.065) (0.066) (0.066) (0.066)

MA Sun 14 days 0.29∗∗∗ 0.35∗∗∗ 0.33∗∗∗ 0.27∗∗∗

(0.100) (0.10) (0.10) (0.10)
MA Rain 14 days −0.058 0.14 −0.00052 −0.12

(0.28) (0.29) (0.29) (0.29)
Year and Month Y es Y es Y es Y es

Indicators

Observations 572 570 568 566
Adjusted R2 0.130 0.099 0.088 0.082

Notes: We report the coefficients and robust standard errors of predictions of evening sunshine duration.
The estimated models are identical to Table 8 with the exception that the variables of the weather forecast
are excluded from the dependent variables.
Level of Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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A.3 Picture

Figure A.1: Location of the Theater
This picture shows the location of the theater. Visitors are sitting in the amphitheater on different rows

on flaggings or on wooden boards (the area at the bottom left corner of the picture). The screen is on

the left of this picture (not shown).
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Appendix to Chapter 2

B.1 Proof of Proposition 2.1

We consider an individual i with KR-preferences as described by (2.1) who faces the
choice between a safe option with consumption utility normalized to x and a lottery F
providing consumption utility yi + x and x− zi with equal probability. KR (2007) show
in their Proposition 4 that an individual who prefers F in a PPE situation never prefers
x in a Surprise situation, and in Proposition 8 that an individual who prefers x in a PPE
situation never prefers F in a CPE situation.

Lemma B.1. (KR 2007) If F is a PPE in the choice set {x, F}, then for any lottery G,
Ui(F |G) > Ui(x|G). Furthermore, if x is the PPE from choice set {x, F}, then F is not
a CPE.

The proof is a simple application of Propositions 4 and 8 from KR (2007).

Given Lemma B.1, it is left to show that a, a, and ā satisfying the conditions given in
Proposition 2.1 exist. Consider first case (ii) that F is the SurpriseE and PPE and x is
the CPE. Using Lemma B.1 this implies

Ui(F |x) ≥ Ui(x|x) > Ui(F |F ). (B.1)

The first inequality can be written as x+1/2 (yi−zi)+1/2 η(yi−λzi) ≥ x, or yi

zi
≥ 1+λη

1+η =:
a. The second inequality of (B.1) requires x > x + 1/2 (yi − zi) + 1/4 η(1 − λ)(yi + zi),
or yi

zi
> 1+λη−1/2η(1+λ)

1+η−1/2η(1+λ) =: ā. Note that ā > 0 due to η(λ − 1) < 2 and that ā > a due to
λ > 1. Thus, x is the CPE and F is the PPE and SurpriseE if a ≤ yi/zi < ā, showing (ii)
of Proposition 2.1. Note that our arguments so far also imply case (i): F is SurpriseE,
PPE, and CPE if ā ≤ yi/zi.
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Now, consider case (iii) requiring that F is the SurpriseE given reference distribution G
and x is PPE and CPE. That x is the PPE implies Ui(x|x) > Ui(F |x) which is equivalent
to yi/zi < a by the arguments above. Then, x is the CPE by Lemma B.1. For F to be
the SurpriseE it has to hold that Ui(F |G) ≥ Ui(x|G). This inequality can be written as

yi

(
1 + η

(
G(x+ yi) + λ[1−G(x+ yi)]

))
+η(λ− 1)

∫ x+yi

x
(r − x)dG(r) ≥

zi

(
1 + η

(
G(x− zi) + λ[1−G(x− zi)]

))
+η(λ− 1)

∫ x

x−zi

(r − x)dG(r).

Integrating by parts and collecting terms gives

(yi − zi)(1 + ηλ) ≥ η(λ− 1)
(∫ x+yi

x
G(r)dr −

∫ x

x−zi

G(r)dr
)
. (B.2)

Note that an upper bound of the right hand side (RHS) of (B.2) is given by η(λ −
1) (yiG(x+ yi)− ziG(x− zi)) such that a sufficient condition for (B.2) to hold is yi

zi
≥

1+η+η(λ−1)(1−G(x−zi))
1+η+η(λ−1)(1−G(x+yi)) . Since the lower bound of the RHS of (B.2) is 0, a necessary condition
for (B.2) is yi

zi
≥ 1. Thus, there is some a ∈ [1, 1+η+η(λ−1)(1−G(x−zi))

1+η+η(λ−1)(1−G(x+yi)) ] such that (B.2) holds
with equality for yi/zi = a. Furthermore, note that a ≤ 1+η+η(λ−1)(1−G(x−zi))

1+η+η(λ−1)(1−G(x+yi)) < a such
that there exists some yi/zi satisfying a ≤ yi/zi < a. In this case, F is the SurpriseE and
x is the PPE and CPE proving case (iii). Case (iv) follows because for yi/zi < a, x is the
SurpriseE and, by Lemma B.1, also the PPE and CPE. This completes the proof.

B.2 Optimal Choice in the DA-Model

In this section we show how optimal choices predicted by the DA-model differ across
Surprise, PPE, and CPE situations. For the presence of treatment differences, however,
we need to apply the equilibrium concepts of SurpriseE, PPE, and CPE on preferences
described by the DA-model first. Before stating the proposition to be shown, we thus
start with a few definitions.

In the DA-model, the reference point is given by the certainty equivalent of consumption
utility given beliefs about future outcomes r as described by the distribution G(·). We
therefore define EMi(G) := EG[mi(r)]. As in the main text, the DA-utility of a lottery
described by the distribution F (·) over outcomes c given reference beliefs distributed
according to G(·) is then given by

UDA
i =

∫
mi(c) + µ(mi(c)− EMi(G))dF (c).
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Given this, we apply the concepts of SurpriseE, PPE, and CPE to the DA model yielding
the following definitions.

Definition B.1. For some expected distribution of outcomes G, selecting x from {x, F}
is a DA Surprise Equilibrium (DA-SurpriseE) if UDA

i (x|G) ≥ UDA
i (F |G). Otherwise, F is

the DA surprise equilibrium. If selecting x from {x, F} is a DA Preferred Personal Equi-
librium (DA-PPE), then UDA

i (x|x) ≥ UDA
i (F |x). If selecting F from {x, F} is a DA-PPE,

then UDA
i (F |F ) ≥ UDA

i (x|F ). When UDA
i (x|x) ≥ UDA

i (F |x) and UDA
i (F |F ) ≥ UDA

i (x|F )
hold simultaneously, then x is the DA-PPE if UDA

i (x|x) ≥ UDA
i (F |F ); otherwise, F is the

DA-PPE. Finally, selecting x from {x, F} is a DA Choice-Acclimating Personal Equilib-
rium (DA-CPE) if Ui(x|x) ≥ Ui(F |F ). Selecting F is a DA-CPE if Ui(F |F ) ≥ Ui(x|x).

Given these definitions, we can state the following proposition.

Proposition B.1. Assume η(λ− 1) < 2. Then, there exist b, b, and b̄ with 1 < b < b < b̄

such that for individual i endowed with the choice set {x, F}

(i) F is the DA-CPE if yi/zi ≥ b and x is the DA-CPE otherwise,

(ii) F is the DA-PPE if yi/zi ≥ b and x is the DA-PPE otherwise,

(iii) F is the DA-SurpriseE if yi/zi ≥ b̄ and x is the DA-SurpriseE for yi/zi ≤ 1. For
1 < yi/zi < b̄, the DA-SurpriseE depends on the location of EMi(G).

Consider first case (i), the optimal choice under DA-CPE. If F is the DA-CPE this
implies UDA

i (F |F ) ≥ UDA
i (x|x), which, after some algebra, implies yi

zi
≥ 2+η(λ−1)

2+η(λ+1) =: b.

Given this, consider the consistency requirement for F to be a DA-PPE, UDA
i (F |x) ≥

UDA
i (x|x). Since choosing F given x as the referent can only be optimal if it has higher

expected consumption utility (EMi(F ) > x), the latter requirement can be written as
EMi(F )+1/2η

(
yi−EMi(F )+λ(zi−EMi(F )]

)
≥ xi+ηλ(xi−EMi(F )), with EMi(F ) =

xi + 1/2(yi − zi). This is equivalent to yi

zi
≥ 2+η(3λ−1)

2+η(λ+1) =: b. Clearly, b > b such that if F
is a DA-CPE it also is a DA-PPE.

The consistency requirement for x to be a DA-PPE is given by UDA
i (x|x) ≥ UDA

i (F |x).
Since yi + x > x > x − zi, this implies that expecting x may be consistent if x ≥
EMi(F ) + 1/2η(yi − λzi) which is equivalent to yi

zi
≤ 1+ηλ

1+η . Since 1+ηλ
1+η > b > b, x is the

DA-PPE if yi/zi < b. This completes the proof of (ii).

Whether F or x are the DA-SurpriseE for individual i given beliefs over outcome G
depend on the value of EMi(G). We have to distinguish the cases (a) EMi(G) > x + yi

or EMi(G) < x− zi, (b) x > EMi(G) ≥ x− zi, and (c) yi + x ≥ EMi(G) ≥ x.
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Consider case (a) first and assume that EMi(G) > x + yi, such that the individual
will always experience losses regardless of choosing F or x. Then, F is a SurpriseE if
UDA
i (F |G) ≥ UDA

i (x|G), which – after some algebra – can be shown to be equivalent to
yi/zi ≥ 1. This also holds for the case EMi(G) < x − zi, in which individuals always
experience gains.

Now, consider case (b), x > EMi(G) ≥ x− zi. In this case, the individual will experience
losses only if she chooses F and the low outcome x− zi is realized. The condition for F
to be the SurpriseE can be written as

yi(1 + η) ≥ zi(1 + ηλ)− η(λ− 1)(x− EMi(G)). (B.3)

Since η(λ− 1)(x−EMi(G)) ≥ 0 and (x−EMi(G)) ∈ [0, zi], (B.3) holds with equality for
some yi

zi
∈ [1, 1+ηλ

1+η ] depending on the value of EMi(G). For case (c), a similar argument
establishes that the indifferent individual is characterized by yi

zi
∈ [1, 1+ηλ

1+η ] as well. With
b̄ := 1+ηλ

1+η and summarizing cases (a), (b), and (c) we thus conclude that F is the SurpriseE
for all yi

zi
≥ b̄ and x is the SurpriseE for all yi

zi
≤ 1. For all values yi

zi
∈ (1, b̄), it depends

on the value of EMi(G) whether F or x is the SurpriseE.

B.3 Instructions

Below, we provide English translations of the instructions for the experiment; we thereby
replicate the typeset as closely as possible. In passages, in which treatments differ, this
is indicated by square brackets [. . . ].1

Welcome to the experiment and thank you for your
participation!

From now on, please do not talk to other participants of the experiment and switch off
your mobile phones.

This experiment serves the investigation of economic decision making. You can earn
money, which will be paid to you in cash after the experiment in private. The entire
experiment is split to take place on two dates. The second date of this experiment
is tomorrow at the same time. If you are not going to have time tomorrow, please
raise your hand now. During the experiment, you and all other participants will be
asked to make decisions.

1The experiment by Pahlke et al. (2012) was conducted at MELESSA shortly before the experiment
presented here. Since their decision problem was similar to ours, we benefited from being able to re-use
parts of their instructions.
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On each date, the experiment lasts approximately 45 minutes. Please raise your hand
in case you have any questions during the experiment. The experimenter will then come
to you and answer your question in private. In the interest of clarity, we use male terms
only in the instructions.

Payment

You receive 4 Euro for arriving in time in addition to your earnings from the experiment.
This premium for arriving in time as well as your entire earnings from your decisions during
the experiment will be paid tomorrow after the second date of the experiment.
Thus, you will receive no payment today.

Support

Please type your decisions into the computer. While making your decisions, there is a
clock counting down in the right upper corner of the computer screen. This clock serves
as a guide for how much time it should take for you to make your decisions. Of course,
you are allowed to exceed the time. Only information screens, on which you are not asked
to make a decision, will be skipped automatically when the clock has counted down.

Lottery decision making
You do not interact with other participants of the experiment at any point during the
experiment. Your final payment is determined exclusively by your own decisions and
according to the rules explained in the following. Other participants do not learn your
decisions or how much you have earned at any point during or after the experiment. Nor
will you learn the decisions of other participants and how much they have earned.

Task

In the experiment, you have to decide once between two options. On your screen,
the decision problem will look like the following diagram.
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In the above example, you have the choice between an Option A, which yields 2 Euro
with certainty, and an Option B, which yields 4 Euro with a probability of 50
% and 1 Euro with the probability of 50 %. An alternative like Option A in the
above example is called a “safe payment” since it is paid with probability 100 %. An
alternative like Option B in the above example is called a “lottery” since either the first
amount is paid with probability of 50 % or the second amount is paid with probability of
50 %.
[PPE: In the experiment, you will have to make one single decision between a safe
payment and a lottery like in the above example not until tomorrow. However, you
will learn the decision problem already today and you will be asked to state the
decision you are likely to make tomorrow. Yet, your (tentative) decision today comes
without any commitment. Only your decision tomorrow will determine your
payment from this part of the experiment.]
[Surprise & CPE: In the experiment, you will have to make one single decision today
between a safe payment and a lottery like in the above example.] Note, however, that the
payments of the alternatives you face in the experiment are considerably larger
than in the above example. Think about your decision carefully, as it will deter-
mine your earnings from the experiment to a large degree. [PPE: You can also
think about your decision over the course of the day.] Note as well that tomorrow you will
be asked about details of both options (payments and probabilities). Tomorrow,
you will be able to earn additional money with each correct answer.

Determination of payments

[Surprise & CPE: If you have chosen the safe payment,] [PPE: If you choose the
safe payment tomorrow,] you will receive the amount of the safe payment at the end of
tomorrows’ date.
[Surprise & CPE: In case you have chosen the lottery] [PPE: In case you choose the
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lottery tomorrow], numbers ranging from 1 to 6 are assigned to each payment. Since
each payment in the lottery you will be able to choose has a probability of 50 % to get
paid, the lottery numbers 1, 2, and 3 are assigned to one amount and the numbers 4,
5, and 6 to the other amount. The computer determines randomly which amount gets
assigned to the low numbers and which amount gets assigned to the large numbers. You
will learn the assignment of the lottery numbers [Surprise: directly after your decision]
[PPE: tomorrow directly after your decision] [CPE: not until tomorrow]. (If you
have chosen the safe payment, lottery numbers are not assigned as you will receive the
safe payment for sure.) [Surprise: Directly thereafter] [PPE & CPE: When you have
learned the assignment of the lottery numbers tomorrow,] a randomly chosen
participant throws a die under the supervision of the experimenter. At the end
of tomorrows date, all participants who have chosen the lottery will receive the amount,
which has been assigned to the number rolled. Thus, if you choose the lottery [PPE:
tomorrow], you will learn your payment [Surprise: today directly after your decision.]
[PPE: tomorrow directly after your decision.] [CPE: not until tomorrow.]

Example: [Surprise & CPE: You] [PPE: Tomorrow, you] choose Option B, which pays
4 Euro with probability 50 % and 1 Euro with probability 50 %. You learn [Surprise:
directly after your choice] [PPE: tomorrow directly after your choice] [CPE:
tomorrow] that the computer has assigned lottery numbers 4, 5, and 6 to the
amount of 4 Euros and lottery numbers 1, 2, and 3 to the amount of 1 Euro.
You thus have a 50 % probability to receive 4 Euro and a 50 % probability to receive 1 Euro.
[Surprise: Thereafter,] [PPE & CPE: When you have learned the assignment
of lottery numbers tomorrow,] a randomly chosen participant roles a die once and
determines your payment. If a 2 is rolled, your earnings are 1 Euro. If, on the other
hand, a 6 is rolled you receive 4 Euro.

End of the first set of instructions.

Below, we provide an English translation of the instructions for the risk elicitation task
following Maier and Rüger (2010). These instructions were handed out (and read aloud)
on the second date of the experiment and after the resolution of uncertainty for the main
task in treatments CPE and PPE. Until these instructions were handed out, subjects did
not know that they would be facing an additional choice task.
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Decisions between lotteries
In this part of the experiment, you have to make a total of 10 decisions between two
lotteries. The decision problems will be displayed in a table with the following form:

In the above table, each row represents a decision problem between an Option A
and an Option B. For example, in the first row of the table above, you may choose Option
A, which pays out 18 Euro with a probability of 50 % and 16 Euro with a probability of 50
%. Option B in the first row, on the other hand, pays out 24 Euro with a probability 50 %
and 6 Euro with a probability of 50 %. Note that the probabilities are identical across
decision problems. With 50 % probability the high amount of each option will be paid out
and with probability 50 % the low amount will be paid out. However, the amounts that
each option pays vary across decision problems. Option A becomes (from top to bottom
of the table) increasingly risky since the spread between high and low amounts increases,
while Option B becomes rather safer (or does not change at all) since the spread between
high and low amounts decreases. In each decision problem – in each row of the table –
you have to make a decision between Option A and Option B.

Determination of payments

When all participants have made their decisions, the computer determines randomly
two participants for each of whom one decision will be paid out. (The probability
to be chosen by the computer is identical for all participants and completely independent
of your choices.) For the two participants chosen, the computer randomly chooses one of
the decision problems that will determine the payment. (Each decision problem – that
is each row of the table – is chosen to be payoff relevant with the same probability.)
The payment from the option that the participant has chosen in the relevant decision
problem will then be determined by the participant by the role of a die. The high
amount of each option will be paid out if a 1, 2, or 3 is rolled. The low amount
of each option will be paid out if a 4, 5, or 6 is rolled. If you are not chosen by
the computer for being paid out, you will not receive a payment from this part of the
experiment.
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Example: A participant chooses Option A in the third row of the table and makes other
decisions in the remaining 9 rows of the table. He is chosen by the computer as one of
two participants whose decision is paid out. For the participant chosen, the computer
determines randomly the decision problem in row 3 as payoff relevant. Thereafter, the
participants roles a die. If, for example, a 3 comes up, he receives 18 Euro (the
high amount of Option A). If, one the other hand, a 5 comes up, he receives 16
Euro (the low amount of Option A).

End of the second set of instructions.
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C.1 Proofs

C.1.1 Insiders never subvert, outsiders always join the regime

Insiders’ choice set includes xt ∈ [λt, 1]. It thus holds that (1 − p(·, xt))u(xt) ≥ (1 −
p(·, 1))u(1) = u(1) ≥ ψ(1) ≥ ψ(st) ≥ θ̂tψ(st), where the first inequality follows from
revealed preferences, the second inequality follows from h(·) ∈ [0, 1], the third inequality
follows from ψ increasing, and the last inequality follows from θt ∈ [0, 1]. Hence, it is not
attractive for any individual insider to support a revolt against his own regime. As for
outsiders we need to differentiate two cases. First, outsiders that are targeted by a reform
and would otherwise support a revolt prefer to join the regime using exactly the same
argument as above. Second, outsiders that are targeted by a reform and would otherwise
not support a revolt prefer to join the regime since again by revealed preferences it holds
that (1− p(·, xt))u(xt) ≥ (1− p(·, 1))u(1) = u(1) ≥ γit for all i and t.

C.1.2 Proof of Proposition 3.1

We first establish that any solution to the outsiders’ coordination problem is a fixed point
to equation (3.6). From our discussion in the main body of the paper it is clear that this
is the case if and only if γ̄(ŝt) ≤ 1 for all ŝt. From Assumption 3.1 it follows that γ̄ is
increasing in ŝt, and therefore γ̄(ŝt) ≤ 1 holds if γ̄(1) = p(θ̂t, 1)u(1) ≤ 1. Since u(1) = 1
and p(·) ∈ [0, 1] this is indeed the case.

Hence, consider any fixed point to (3.6). Since f(0) = 0 for all (θ̂t, xt) ∈ Θ× [0, 1], there
always exists a fixed point at ŝt = 0. Whether or not ŝt = 0 is consistent with the concept
of trembling-hand perfection, and whether or not other fixed points exist, depends on the

98



Appendix to Chapter 3

values of θ̂t and xt. We have to distinguish two cases.

First, if θ̂t = 0 or xt = 1, then f(ŝt) = 0 for all ŝt, and therefore ŝt = 0 is obviously
the only fixed point to (3.6). To establish that ŝt = 0 is also trembling-hand perfect, it
suffices to show that for all i, φit = 0 is a best response to some sequence of totally mixed
strategy profiles {ωkjt : j ∈ [0, 1] \ i}∞k=0 that converges to the equilibrium profile where all
i play φit = 0 with probability 1. Since for θ̂t = 0 and xt = 1 playing φit = 0 is a (weakly)
dominant strategy, this is trivially true.

Second, consider the case where θ̂t 6= 0 and xt 6= 1. In this case the fixed point at ŝt = 0
is not trembling-hand perfect. To see this let zk = mini{ωkit(1)} denote the minimum
probability with which any agent i plays φit = 0 in the kth element of sequence ωkit.
The requirement of trembling-hand perfection that {ωkit} is totally mixed for all i and k
implies that zk > 0 for all k. Hence, skt = (1− xt)

∫
i ω

k
it(1) di ≥ (1− xt) zk > 0. However,

from h(0) = 0 in combination with Assumption 3.1(b) it follows that for any skt > 0,
γ̄(skt ) = θ̂tψ(skt ) > 0 and, hence, a strictly positive fraction of outsiders strictly prefers
to choose φit = 1 in response to {ωkjt : j ∈ [0, 1]}. We conclude that ŝt = 0 can not be
supported in any trembling-hand perfect equilibrium if θ̂t 6= 0 and xt 6= 1.

Having ruled out ŝt = 0 as a solution to the coordination problem for θ̂t 6= 0 and xt 6= 1,
we now show that there is a unique ŝt > 0 solving (3.6) for θ̂t 6= 0 and xt 6= 1, which is
also consistent with the concept of trembling-hand perfection. From γ̄ ∈ [0, 1] it follows
that f is bounded by its support, [0, 1− xt]. Moreover, by Assumption 3.1 we have that
limŝ→0 ψ

′(ŝ) =∞, implying that limŝ→0 f
′(ŝ) =∞. Hence, there exists a s̃ > 0, such that

f(s̃) > s̃. Together with continuity of ψ (and thus of f), it follows that there exists a
strictly positive fixed point to (3.6), which by concavity of ψ (and thus of f) is unique on
(0, 1].

Let s∗t = f(s∗t ) denote this fixed point. It remains to be shown that s∗t is consistent
with the concept of trembling-hand perfection. To show this, consider the following
sequences ωkit(1) = 1 − εk for all i ∈ {j : γjt ≤ γ̄(s∗t )} and ωkit(1) = γ̄(s∗t )

1−γ̄(s∗t )ε
k for all

i ∈ {j : γjt > γ̄(s∗t )}, with some {εk}∞k=0 such that limk→∞ ε
k = 0. Then, by construction,

skt = (1− xt)
(

(1− εk) γ̄(s∗t ) + γ̄(s∗t )
1− γ̄(s∗t )

εk(1− γ̄(s∗t ))
)

= (1− xt) γ̄(s∗t ) = f(s∗t ),

and hence {φit : i ∈ [0, 1]} being mutually best responses implies that {φit : i ∈ [0, 1]} are
best responses to {ωkit : i ∈ [0, 1]} for all values of k.

The above arguments establish that st is uniquely determined by a (time-invariant) func-
tion s : (θ̂t, xt) → st. It remains to be shown that ∂s/∂θ̂t ≥ 0 and ∂s/∂xt ≤ 0. Given
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that st is a fixed point to (3.6), we have that

π(st, xt) ≡ st − (1− xt) θ̂t ψ(st) = 0.

Implicit differentiation implies that

∂st
∂xt

= −θ̂t ψ(st)×
(
∂πt
∂st

)−1

and

∂st

∂θ̂t
= (1− xt)ψ(st)×

(
∂πt
∂st

)−1

,

where

∂πt
∂st

= −(1− xt)
∂γ̄

∂st
+ 1.

Since ψ is bounded by ψ(1) = 1, (3.6) implies that limθ̂t→0 s
∗
t = limxt→1 s

∗
t = 0, and

therefore the case where θ̂t = 0 or xt = 1 is a limiting case of θ̂ 6= 0 and xt 6= 1. From
the implicit function theorem it then follows that s is differentiable on its whole support.
Moreover, the previous arguments imply that f(s̃) > s̃ for all s̃ < s∗t and f(s̃) < s̃ for
all s̃ > s∗t , implying that f ′(s∗t ) < 1 or, equivalently, ∂γ̄/∂st < (1 − xt)−1 at s∗t . Thus
∂πt/∂st > 0 for all (θ̂t, xt) ∈ Θ× [0, 1], which yields the desired results.

Finally, while we focused on pure strategies when proving the results above, it is easy to
see that the proposition generalizes to mixed strategies. By the law of large numbers, any
mixed strategy equilibrium beliefs about s are of zero variance and, hence, the arguments
above apply, implying that all outsiders, except a zero mass i with γi = γ̄(s∗t ), strictly
prefer φi = 0 or φi = 1. We conclude that there is no scope for (nondegenerate) mixed
best responses.

C.1.3 Proof of Proposition 3.2

The proof proceeds by a series of lemmas. To simplify notation, in what follows we
drop λt as an argument of x and θ̂ where no confusion arises. Furthermore, we use
Ṽ I(θt, θ̂t, xt) = (1 − θth(st))u(xt) to denote insider’s indirect utility (up to a constant
u(λt)), as follows from st = s(θ̂t, xt) given Proposition 3.1.

Lemma C.1. x is weakly increasing in θt.
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Proof. Suppose to the contrary that x(θ′′) < x(θ′) for θ′ < θ′′. Let x′ ≡ x(θ′), x′′ ≡ x(θ′′),
u′ ≡ u(x′), u′′ ≡ u(x′′), h′ ≡ h(s(θ̂(x′), x′)), and h′′ ≡ h(s(θ̂(x′′), x′′)). Optimality of x′

then requires that Ṽ I(θ′, θ̂(x′′), x′′) ≤ Ṽ I(θ′, θ̂(x′), x′), implying u′h′−u′′h′′ ≤ (u′−u′′)/θ′ <
(u′ − u′′)/θ′′, where the last inequality follows from θ′ < θ′′ and u′ < u′′. Hence,
Ṽ I(θ′, θ̂(x′′), x′′) ≤ Ṽ I(θ′, θ̂(x′), x′) implies that Ṽ I(θ′′, θ̂(x′′), x′′) < Ṽ I(θ′′, θ̂(x′), x′), con-
tradicting optimality of x′′ for θ′′.

Lemma C.2. Suppose x is discontinuous at θ′, and define x− ≡ limε↑0 x(θ′ + ε) and
x+ ≡ limε↓0 x(θ′ + ε). Then for any x′ ∈ (x−, x+), the only beliefs consistent with the D1
criterion are θ̂(x′) = θ′.

Proof. Let θ′′ > θ′, and let x′′ ≡ x(θ′′). Optimality of x′′ then requires that
Ṽ I(θ′′, θ̂(x′′), x′′) ≥ Ṽ I(θ′′, θ̂(x+), x+) and, thus for any θ̃,

Ṽ I(θ′′, θ̃, x′) ≥ Ṽ I(θ′′, θ̂(x′′), x′′) implies that

Ṽ I(θ′′, θ̃, x′) ≥ Ṽ I(θ′′, θ̂(x+), x+) .

Moreover, arguing as in the proof of Lemma C.1,

Ṽ I(θ′′, θ̃, x′) ≥ Ṽ I(θ′′, θ̂(x+), x+) implies that

Ṽ I(θ′, θ̃, x′) > Ṽ I(θ′, θ̂(x+), x+) .

Hence, if Ṽ I(θ′′, θ̃, x′) ≥ Ṽ I(θ′′, θ̂(x+), x+) = V̄ I(θ′′), then Ṽ I(θ′, θ̃, x′) >

Ṽ I(θ′, θ̂(x+), x+) = V̄ I(θ′). Therefore, Dθ′′,x′ is a proper subset of Dθ′,x′ if θ′′ > θ′.
(For the definition of Dθ,x, see Footnote 10.) A similar argument establishes that Dθ′′,x′

is a proper subset of Dθ′,x′ if θ′′ < θ′ and, thus, the D1 criterion requires that θ̂(x′) = θ′

for all x′ ∈ (x−, x+).

Lemma C.3. There exists θ̄(λt) > 0, such that x(θt, λt) = λt for all θt < θ̄(λt). Moreover,
x(θ′′) > x(θ′) > λt + µ for all θ′′ > θ′ ≥ θ̄(λt) and some µ > 0.

Proof. First, consider the existence of a connected pool at xt = λt. Because for θt = 0,
xt = λt dominates all xt > λt, we have that x(0) = λt. It follows that there exists a pool
at xt = λt, because otherwise θ̂(λt) = 0 and, therefore, p(·, s(θ̂(λt), λt)) = 0, contradicting
optimality of x(θ) > λt for all θ > 0. Moreover, by Lemma C.1, x is increasing, implying
that any pool must be connected. This proves the first part of the claim.

Now consider x(θ′′) > x(θ′) for all θ′′ > θ′ ≥ θ̄(λt) and suppose to the contrary that
x(θ′′) ≤ x(θ′) for some θ′′ > θ′. Since x is increasing, it follows that x(θ) = x+ for all
θ ∈ [θ′, θ′′] and some x+ > λt. W.l.o.g. assume that θ′ is the lowest state in this pool.
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Then Bayesian updating implies that θ+ ≡ θ̂(x+) ≥ (θ′ + θ′′)/2 > θ′ and, therefore,
Ṽ I(θ′, θ−, x+) > Ṽ I(θ′, θ+, x+) for all θ− ≤ θ′. Hence, because θ′ prefers x+ over x(θ−), it
must be that x(θ−) 6= x+ for all θ− ≤ θ′ and, hence, x(θ−) < x+ by Lemma C.1. Accord-
ingly, let x− ≡ maxθ−≤θ′ x(θ−). Then from continuity of Ṽ I and θ+ > θ′ it follows that
there exists an off-equilibrium reform x′ ∈ (x−, x+) with Ṽ I(θ′, θ′, x′) > Ṽ I(θ′, θ+, x+).
Hence, to prevent θ′ from choosing x′ it must be that θ̂(x′) > θ′. However, from Lemma
C.2 we have that θ̂(x′) = θ′, a contradiction.

Finally, to see why there must be a jump-discontinuity at θ̄(λt) note that
Ṽ I(θ̄(λt), θ̄(λt)/2, λt) = Ṽ I(θ̄(λt), θ̄(λt), x(θ̄(λt))); otherwise, there necessarily exists
a θ in the neighborhood of θ̄(λt) with a profitable deviation to either λt or x(θ̄(λt)).
From the continuity of Ṽ I and the non-marginal change in beliefs from θ̄(λt)/2 to θ̄(λt)
it follows that x(θ̄(λt)) > λt + µ for all λt and some µ > 0.

Lemma C.4. x is continuous and differentiable in θt on [θ̄(λt), 1].

Proof. Consider continuity first and suppose to the contrary that x has a discontinuity
at θ′ ∈ (θ̄(λt), 1). By Lemma C.1, x is monotonically increasing in θt. Hence, because
x is defined on an interval, it follows that for any discontinuity θ′, x− ≡ limε↑0 x(θ′) and
x+ ≡ limε↓0 x(θ′) exist, and that x is differentiable on (θ′ − ε, θ′) and (θ′, θ′ + ε) for some
ε > 0. Moreover, from Lemmas C.2 and C.3 it follows that in equilibrium θ̂(x′) = θ′ for all
x′ ∈ [x−, x+]. Hence, Ṽ I(θ′, θ′, x−) = Ṽ I(θ′, θ′, x+), since otherwise there necessarily exists
a θ in the neighborhood of θ′ with a profitable deviation to either x− or x+. Accordingly,
optimality of x(θ′) requires Ṽ I(θ′, θ′, x′) ≤ Ṽ I(θ′, θ′, x−) and, thus, Ṽ I(θ′, θ′, x−) must
be weakly decreasing in x. Therefore, ∂Ṽ I/∂θ̂t < 0 and limε′↓0 ∂θ̂(x− − ε′)/∂xt > 0
(following from Lemma C.3) imply that limε′↓0 ∂Ṽ

I(θ′, θ̂(x−−ε′), x−−ε′)/∂xt < 0. Hence,
a profitable deviation to x− − ε′ exists for some ε′ > 0, contradicting optimality of x(θ′).

We establish differentiability by applying the proof strategy for Proposition 2 in Mailath
(1987). Let g(θ, θ̂, x) ≡ Ṽ I(θ, θ̂, x)− Ṽ I(θ, θ′, x(θ′)), for a given θ′ > θ̄(λt), and let θ′′ > θ′.
Then, optimality of x(θ′) implies g(θ′, θ′′, x(θ′′)) ≤ 0, and optimality of x(θ′′) implies that
g(θ′′, θ′′, x(θ′′)) ≥ 0. Letting a = (αθ′+(1−α)θ′′, θ′′, x(θ′′)), for some α ∈ [0, 1] this implies

0 ≥ g(θ′, θ′′, x(θ′′)) ≥ −gθ(θ′, θ′′, x(θ′′))(θ′′ − θ′)− 1
2gθθ(a)(θ′′ − θ′)2,

where the second inequality follows from first-order Taylor expanding g(θ′′, θ′′, x(θ′′))
around (θ′, θ′′, x(θ′′)) and rearranging the expanded terms using the latter optimality
condition. Expanding further g(θ′, θ′′, x(θ′′)) around (θ′, θ′, x(θ′)), using the mean value
theorem on gθ(θ′, θ′′, x(θ′′)), and noting that g(θ′, θ′, x(θ′)) = gθ(θ′, θ′, x(θ′)) = 0, these
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inequalities can be written as

0 ≥ gθ̂(θ
′, θ′, x(θ′)) + x(θ′′)− x(θ′)

θ′′ − θ′
× [gx(θ′, θ′, x(θ′))

+ 1
2gxx(b(β))(x(θ′′)− x(θ′)) + gθ̂x(b(β))(θ′′ − θ′)] + 1

2gθ̂θ̂(b(β))(θ′′ − θ′)

≥ −[gθθ̂(b(β
′)) + 1

2gθθ(a)](θ′′ − θ′)− gθx(b(β′))(x(θ′′)− x(θ′)),

for b(β) = (θ′, βθ′ + (1− β)θ′′, βx(θ′) + (1− β)x(θ′′)) and some β, β′ ∈ [0, 1]. Because Ṽ I

is twice differentiable, all the derivatives of g are finite. Moreover, continuity of x implies
that x(θ′′)→ x(θ′) as θ′′ → θ′ and, therefore, for θ′′ → θ′,

0 ≥ gθ̂(θ
′, θ′, x(θ′)) + lim

θ′′→θ′
x(θ′′)− x(θ′)

θ′′ − θ′
gx(θ′, θ′, x(θ′)) ≥ 0.

By Lemma C.3, x and, hence, θ̂ are strictly increasing for all θ ≥ θ̄(λt). Arguing similarly
as we did to show continuity, optimality of x, therefore, requires that gx = ∂Ṽ I/∂xt 6= 0
and, hence, the limit of (x(θ′′)− x(θ′))/(θ′′ − θ′) is well defined, yielding

dx

dθt
= −∂Ṽ

I/∂θ̂t

∂Ṽ I/∂xt
. (C.1)

Lemma C.5. x(θt, λt) = ξ(θt) for all θt > θ̄(λt), where ξ is unique and ∂ξ/∂θt > 0.

Proof. From Lemma C.4 we have that ξ is differentiable, and by Lemma C.3, ∂ξ/∂θt > 0.
We thus only need to show that ξ is unique. By the proof to Lemma C.4, dx/dθt is pinned
down by the partial differential equation (C.1), which must hold for all xt ≥ x(θ̄(λt)).
Moreover, whenever θ̄(λt) < 1, in equilibrium θ̂(x(1)) = 1 and, therefore, it obviously
must hold that x(1, λt) = arg maxxt Ṽ

I(1, 1, xt), providing a boundary condition for (C.1).
Because Ṽ I is independent of λt, it follows that x(θt, λt) is uniquely characterized by a
function, i.e., ξ : θt 7→ xt, for all θt ≥ θ̄(λt).

Lemma C.6. θ̄(λt) is unique.

Proof. Suppose to the contrary that θ̄(λt) is not unique. Then there exist θ̄′′ > θ̄′,
defining two distinct equilibria for a given λt. By Lemma C.5, there is a unique
ξ(θ) characterizing reforms outside the pool for both equilibria. Optimality for type
θ ∈ (θ̄′, θ̄′′) then requires Ṽ I(θ, θ, ξ(θ)) ≥ Ṽ I(θ, θ̄′/2, λt) in the equilibrium defined
by θ̄′, and Ṽ I(θ, θ, ξ(θ)) ≤ Ṽ I(θ, θ̄′′/2, λt) in the equilibrium defined by θ̄′′. However,
Ṽ I(θ, θ̄′/2, λt) > Ṽ I(θ, θ̄′′/2, λt), a contradiction.

This establishes uniqueness of x(θt, λt), with all properties given by Lemmas C.3 and C.5,
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and the corresponding beliefs θ̂(λt, xt) following from Lemma C.2 and Bayesian updating.
Again, for the purpose of clarity we have established this proposition by focusing on pure
strategy equilibria. In the following we outline how the proof generalizes to mixed strategy
equilibria; a detailed version of these steps can be attained from the authors on request.

Replicating the proof of Lemma C.1, it is trivial to show that if Ṽ I(θ′, θ̂(x′), x′) =
Ṽ I(θ′, θ̂(x′′), x′′), then Ṽ I(θ′′, θ̂(x′), x′) < Ṽ I(θ′′, θ̂(x′′), x′′) for all θ′ < θ′′ and x′ < x′′.
It follows that (i) supports, X (θ), are non-overlapping, and (ii) minX (θ′′) ≥ maxX (θ′).
Moreover, noting that x̃(θ) ≡ maxX (θ) has a jump-discontinuity if and only if type θ
mixes in a nondegenerate way, (ii) further implies that there can be only finitely many
types that mix on the closed interval [0, 1]. Lemmas C.2, C.3, and C.4 then apply with
minor changes, ruling out any jumps of x̃ on [θ̄(λt), 1]. This leads to the conclusion that
at most a mass zero of types (i.e., θt = θ̄(λt)) could possibly mix in any equilibrium
(with no impact on θ̂) and, thus, there is no need to consider any nondegenerate mixed
strategies.

C.1.4 Proof of Proposition 3.3

From the discussion in the main body of the paper it is clear that the equilibrium is
uniquely pinned down by the time-invariant mappings given by Propositions 3.1 and 3.2
if it exists. We are thus left to show existence, which requires us to verify that the
equilibrium mappings are consistent with the D1 and trembling-hand criterion. The first
is a direct implication from the proof of Proposition 3.2 where we apply Lemma C.2 to
restrict off-equilibrium beliefs, such that θ̂ is necessarily consistent with the D1 criterion.

To show consistency with the concept of trembling-hand perfection, we need to show that
{φi : i ∈ [0, 1]} and x are best responses to a sequence of completely mixed strategy profiles
{{ωki : i ∈ [0, 1]}, σk}∞k=0 that converge to a profile that places all mass on {φi : i ∈ [0, 1]}
and x, respectively.

Accordingly, for φi(θ̂k(·, xt), xt) to be a best-response to xt and the perturbed strat-
egy profile {ωki : i ∈ [0, 1]} for the marginal outsider i with γi = γ̄(st), we need that
θ̂k(·, xt)ψ(skt (xt)) = γ̄(st), requiring any change in beliefs along the perturbation path to
be offset by trembles of outsiders j 6= i. Because for x ∈ [ξ(1), 1], θ̂(·, x) = 1 can never
be sustained in a completely mixed equilibrium with a continuum of types, this implies
that we need to adjust for θ̂k(·, x) < θ̂(·, x) by introducing asymmetric trembles, leading
to sk(x) > s(θ̂(·, x), x). Hence, let sk(x(1)) = s(x(1)) + εk for some {εk}∞k=0 such that
limk→∞ ε

k = 0 and εk ∈ (0, ε̄) for all k.

A necessary (and for θ ∈ (θ̄(·), 1) sufficient) condition for x ∈ [ξ(θ̄(·)), ξ(1)] to be optimal
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against sk is that sk(x) satisfies the inverse differential equation (C.1) for x(·, θ) fixed,

dsk

dx
= −∂V

I/∂x

∂V I/∂s

∣∣∣∣∣
s=sk

, (C.2)

which in combination with sk(x(1)) pins down sk(x) for all x ∈ [ξ(θ̄), ξ(1)]. Note that
sk(x(1)) > s(·, x(1)) implies that sk(x) > s(·, x) for all x ∈ [ξ(θ̄), ξ(1)] since the in-
difference condition (C.1) is unique. Moreover, since optimality of x requires that θ̄ is
necessarily indifferent between λt and ξ(θ̄), sk(ξ(θ̄)) pins down sk(λt) > s(·, λt).

For off-equilibrium x ∈ (λ, ξ(θ̄))∪ (ξ(1), 1] we are free to assign any sk(x) that (1) assures
optimality of x, and (2) converges to s(·, x). As to (1), we can for instance set sk(x) =
s(θ̄, x) + sk(ξ(θ̄)) − s(·, ξ(θ̄)) for x ∈ (λ, ξ(θ̄)) (which is continuous around ξ(θ̄) and has
slope ds(θ̄, x)/dx ≥ dsk(ξ(θ̄))/dx, so that by (C.2) no type has an incentive to deviate),
and sk(x) = s(·, x) + εkfk(x) for x ∈ (ξ(1), 1] with some fk : [ξ(1), 1] → R+ such that
dfk(ξ(1))/dx = {dsk(ξ(1))/dx−ds(·, ξ(1))/dx}/εk and fk sufficiently convex for V I to be
concave on [ξ(1), 1], so that ξ(1) is the global optimum for θ = 1.

Note that these definitions imply that sk(x) ↓ s(θ̂(·, x), x) for all x and, hence, θ̂k(·, x) ↑
θ̂(·, x) for all x as implied by the indifference condition of the marginal outsider, θ̂k(x) =
γ̄(s(·, x))/ψ(sk(x)) ∈ (0, θ̂(·, x)). By construction, these sequences assure optimality of
{φi : i ∈ [0, 1]} and x along the perturbation path. To conclude the proof it therefore
suffices to show the existence of {{ωki : i ∈ [0, 1]}, σk}∞k=0 yielding {sk, θ̂k}∞k=0.

Consider {sk}∞k=0 first. Define ε̃ such that maxx sk(x) < 1−λ for εk = ε̃ and suppose that
ε̄ ≤ ε̃.1 Then any sk can be sustained by setting

ωki (1)(x) =

1− εk for all i : γi ≤ γ̄(s(θ̂(·, x), x))

ck(x)εk for all i : γi > γ̄(s(θ̂(·, x), x)),

with ck(x) = {sk(x)− (1− εk)s(·, x)}/{(1− x)(1− γ̄(x))εk}. Note that ωki is completely
mixed if ε̄ < 1 and εkck(x) ∈ (0, 1) ⇐⇒ ck(x) ∈ (0, 1/εk) ⇐⇒ sk(x) + εks(·, x) < 1− x.
From sk(x) > s(·, x) we have that ck(x) > 0 and because sk → s, using the same arguments
as in Footnote 1, there exists some ε̂ such that ck(x) < 1/εk holds for all ε̄ ≤ ε̂.

Finally, consider {θ̂k}∞k=0. It is straightforward to verify by Bayes rule that any θ̂k with

1To see that ε̃ exists, note that s(θ̂(·, x), x) < 1 − x ≤ 1 − λt since otherwise γ̄t = 1, which requires
θ̄t = 1 and st = 1, contradicting that s is strictly decreasing in x. Convergence of sk to s then implies
that one can always find some ε̃ that is sufficiently small.
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θ̂k(x) > 0 for all x can be sustained by setting

σk(x)(θ, ·) =



εk if θ > θ̂k(x) and (x > λt or θ > θ̄t)

dk(x)εk if θ < θ̂k(x) and x > λt

1−Rk(θ) if θ ≥ θ̄(λt) and x = ξ(θ)

T k if θ ≤ θ̂k(λt) and x = λt

Zk if θ ∈ (θ̂k(λt), θ̄(λt)) and x = λt,

with dk(x) = (1 − θ̂k(x))2/θ̂k(x)2, Rk(θ) =
∫
θ>θ̂(x) ε

k dx +
∫
θ<θ̂(x) d

k(x)εk dx, T k =
infθ<θ̄(λt)(1−Rk(θ)), and Zk = {T kθ̂k(x)2 + εk[2(1− θ̄(λt))θ̂k(λt)− 1 + θ̄(λt)2]}/{θ̄(λt)−
θ̂k(λt)}2. With a slight abuse of notation, in the definition of σk, Rk , T k and Zk denote
probabilities, while εk are understood to be probability densities. Note that σk is com-
pletely mixed if T k, Rk(θ) ∈ (0, 1) and Zk ∈ (0, Rk(θ)) for all θ. This is obviously true
for some ε̆, such that ε̄ < ε̆. Finally, note that the above definition is incomplete in the
sense that Rk(θ) + T k < 1 or Rk(θ) +Zk < 1 for some types θ < θ̄(λt). In these cases the
remaining probability mass can be distributed (almost) arbitrary over atoms on (λt, 1]
without impact on the resulting beliefs.2

We conclude the proof by setting ε̄ = min{1, ε̃, ε̂, ε̆}.

C.1.5 Proof of Proposition 3.4

Consider QR(λt, (1
2 , 1]) = 1 first. By Proposition 2, for any reform xt > λt, xt = ξ(θt),

with ξ increasing. To show the claim, it thus suffices to show that x̃ ≡ ξ(θ̃) > 1/2
for θ̃ = minλ θ̄(λ). Also, define λ̃ = arg minλ θ̄(λ). Then, optimality of x̃ implies s∗ ≡
s(θ̃/2, λ̃) > s(θ̃, x̃) ≡ s∗∗. Using (3.6),

s∗ = (θ̃/2)(1− λ̃)ψ(s∗) ≡ w∗ψ(s∗), (C.3)

s∗∗ = θ̃(1− x̃)ψ(s∗∗) ≡ w∗∗ψ(s∗∗). (C.4)

Note that, in analogue to the proof of Proposition 3.1, for a general wt ≡ θ̂t(1 − xt) it
holds that

∂st
∂wt

= −ψ(st)
(
∂πt
∂st

)−1

> 0.

2For instance, each type θ could place the remaining probability mass on an atom at x = λt + θ(1−
λt)/θ̄(λt).
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Hence, s∗ > s∗∗ implies w∗ > w∗∗, or (θ̃/2)(1 − λ̃) > θ̃(1 − x̃). Rearranging, then proves
the claim,

x̃ > 1− 1− λ̃
2 ≥ 1

2 .

Now consider QS(λt, (0, 1
2)) = 1. Again, optimality of xt implies that s(θ̂(λt, x), x) is

decreasing in x. Hence, for all λt,

s(θ̂(λt, xt), xt) ≤ s(θ̄(λt)/2, λt) ≤ s(1/2, 0),

where the last inequality follows since s is increasing in its first and decreasing in its
second argument. Hence, it suffices to show that s(1/2, 0) < 1/2.

Let s∗ ≡ s(1, 0) ≤ 1 and let s∗∗ ≡ s(1/2, 0). From (3.6), s∗ = ψ(s∗) and s∗∗ = ψ(s∗∗)/2.
Moreover, by Proposition 3.1, s∗ > s∗∗. Hence, since ψ is strictly increasing,

s∗∗ = ψ(s∗∗)
2 = ψ(ψ(s∗∗)/2)

2 <
ψ(ψ(s∗)/2)

2 = ψ(s∗/2)
2 <

ψ(s∗)
2 = s∗

2 ≤
1
2 .

C.1.6 Proof of Proposition 3.5

From Footnote 13,

ρS(λt) =
∫ θ̄(λt)

0
θh
(
s
(
θ̄(λt)/2, λt

))
dθ +

∫ 1

θ̄(λt)
θh (s (θ, x(θ))) dθ, (C.5)

and

ρR(λt) =
∫ 1

θ̄(λt)
(1− θh (s (θ, x(θ)))) dθ. (C.6)

Also, note that θ̄(λt) ∈ (0, 1] is implicitly defined as the solution to

F (θ̄, λt) ≡ Ṽ I(θ̄, θ̄/2, λt)− Ṽ I(θ̄, θ̄, ξ(θ̄)) = 0, (C.7)

if an interior solution exists. Otherwise, for λt there is a corner solution θ̄(λt) = 1, which
implies Ṽ I(1, 1/2, λt) > Ṽ I(1, 1, ξ(1)).

First, consider λt > λ̄. Suppose that there exists λ̄, such that for all λt ∈ (λ̄, 1], θ̄(λt) is
a corner solution. Then clearly for all λt > λ̄, ∂θ̄(λt)/∂λt = 0, such that ∂ρS(λt)/∂λt =
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∂h(s(1/2, λt))/∂λt < 0, by Proposition 3.1. Furthermore, ∂ρR(λt)/∂λt = 0. Otherwise,
if there exists no λ̄, such that for all λt ∈ (λ̄, 1], θ̄(λt) is a corner solution, then there
necessarily exists a λ∗, such that for λt ∈ (λ∗, 1], θ̄(λt) is an interior solution. But then,
because ρS(1) = ρR(1) = 0, continuity of ρS and ρR implies that ∂ρS(λt)/∂λt < 0 and
∂ρR(λt)/∂λt < 0 for all λt > λ̄ and some λ̄ < 1.

Now consider λt < ¯
λ and θ̄(0) < 1. Then, F differentiable implies that θ̄(λt) has an interior

solution and is differentiable for all λt ∈ [0, λ∗) for some λ∗ > 0. Implicit differentiation
of F , substituting for x′(θ̄) from (C.1), and using F (θ̄, λt) = 0 yields

∂θ̄(λ)
∂λ

= −θ̄h
p
1s
p
2u

p + (1− pp)up1
θ̄
2h

p
1s
p
1u

p + up−us

θ̄

, (C.8)

where subscript i denotes the derivative with respect to the ith argument, and super-
scripts p and s denote that the function is evaluated at the pooling or separating values,
respectively (where θ̂p = θ̄

2 , x
p = λ and θ̂s = θ̄, xs = x(θ̄)).

Using this, the signs of ∂ρS/∂λt and ∂ρI/∂λt are given by

sign
{
∂ρS(λt)
∂λt

}
= sign

{
uP
(

(pP − pS)(1− 2pS)
1− pS

)
+

+ (1− pP )uP1
(

(1− λt)−
2(pP − pS)
θ̄hP1 s

P
2

)}
(C.9)

and

sign
{
∂ρR(λt)
∂λt

}
= sign

{
−∂θ̄(λt)

∂λt
(1− pS)

}
, (C.10)

where we have used that (1−pP )uP = (1−pS)uS from (C.7) and sP1 /(−sP2 ) = 2(1−λt)/θ̄
by the proof of Proposition 3.1.

Evaluated at λt = 0, all terms except u1 in (C.9) are strictly positive.3 Thus, ∂ρS(0)/∂λt
is weakly positive if and only if for λt = 0 it holds that

uP1 ≥ −uP
(

(pP − pS)(1− 2pS)
1− pS

)[
(1− pP )

(
(1− λt)−

2(pP − pS)
θ̄hP1 s

P
2

)]−1

. (C.11)

3Note that pS = θ̄h(sS) < 1/2 for λt = 0 is not obvious. To see that this is indeed the case, assume
to the contrary pS > 1/2 implying pP = θ̄/2h(sP ) > 1/2. By Proposition 3.4, sP = θ̄/2h(sP )u(sP ) =
pP /2u(sP ) < 1/2 and hence u(sP ) < 1/pP < 2 by pP > 1/2. Furthermore, optimality of ξ̄ ≡ ξ(θ̄)
requires (1−pS)u(ξ̄) ≥ 1, since an indirect utility of 1 is always attainable by setting x = 1. This implies
u(ξ̄) ≥ 2 by pS > 1/2. Thus, pS > 1/2 implies u(sP ) < 2 ≤ u(ξ̄) for λt = 0. However, by Proposition
3.4, sP < 1/2 < ξ̄ such that u(sP ) > u(ξ̄), a contradiction.
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Likewise, note that the sign of ∂ρR/∂λt is the opposite sign of ∂θ̄(λt)/∂λt. Hence, because
all terms except u1 in (C.8) are strictly positive, ∂ρR/∂λt is weakly negative if and only if

uP1 ≥ θ̄hp1s
p
2u

p(1− pP )−1. (C.12)

Let u′ and u′′ be the values of the right hand sides of (C.11) and (C.12) when evaluated at
λt = 0. Then, from our discussion above it follows, that ∂ρS(0)/∂λt > 0 and ∂ρR(0)/∂λt <
0 if u1(0) > ū ≡ max{u′, u′′}. The converse—that is, ∂ρS(0)/∂λt < 0 and ∂ρR(0)/∂λt >
0—holds true, if u1(0) <

¯
u ≡ min{u′, u′′}. Differentiability of ρS and ρR around 0 thus

establishes the claim for all λt ∈ [0,
¯
λ] for some

¯
λ > 0.
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