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Summary (English)

Epidemiological studies investigate complex diseases of which most have a predis-

position through genetical factors, for example type 2 diabetes or cardiovascular

diseases. In order to discover genes involved in the disease aetiology, genome-wide

association studies (GWAS) are the state-of-the-art method. Hitherto, GWAS

comprise of up to 250 000 samples but despite these large sample sizes only a

fraction of the estimated heritability of the analysed phenotypes can be explained

by the discovered genes, so far. Moreover, the genes detected in GWAS have

to be further investigated to better understand biochemical processes underlying

the association. A promising instrument to gain further insight is the analysis of

metabolites. Metabolomics is the evolving �eld of measuring endogenous organic

compounds of a cell or body �uid. As metabolites are downstream products of ge-

netic processes, they are considered to exceed other phenotypes in power. Recently,

some GWAS with metabolomics have been conducted and revealed promising re-

sults analysing ratios between metabolite concentrations (metabolite ratios). To

decide whether a metabolite ratio carries more information than the two corre-

sponding single metabolite concentrations alone, the p-gain was introduced as an

objective measure. The p-gain is de�ned as the quotient of the smallest of the asso-

ciation p-values of the single metabolite concentrations to the association p-value

of the metabolite ratio.

In this thesis, two procedures for the incorporation of metabolites in the GWAS ap-

proach are presented and applied to di�erent metabolomics data sets. In addition,

a statistical exploration of the p-gain is carried out to improve the examination

of metabolite ratios. In the �rst of the two presented procedures, metabolites

are used for an in-depth analysis of genetic candidate loci which have already

been discovered in GWAS of clinically relevant phenotypes. In the second pro-

cedure, metabolites are used to discover new genetic loci through conduction of

metabolomics GWAS. In a follow-up analysis, these novel loci should be further

analysed together with clinically relevant phenotypes. As application of the �rst

procedure, we conducted an analysis of 95 known serum lipid loci using 15 lipopro-
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tein subfractions. We revealed signi�cant associations for eight of the loci and thus

gained further insight into di�erent lipid pathways. As an application of the sec-

ond procedure, we conducted GWAS of more than 250 metabolites as well as all

pair-wise ratios, in total over 37 000 metabolic traits. These analyses revealed 37

loci which lead to further insight into various pathways of the human metabolism.

In a follow-up analysis, some loci also showed associations with clinically relevant

phenotypes. Finally, we determined the distribution of the p-gain and derived

critical values through extensive statistical exploration. In conjunction with this,

we demonstrated the power of the p-gain approach through a pathway enrichment

analysis.

In conclusion, this thesis shows by concrete examples that both procedures for the

incorporation of metabolomics data in the GWAS approach con�rm and extend

current knowledge about genetics underlying various biochemical pathways as well

as discusses the advantages and limitations of both procedures and improves the

examination of metabolite ratios.
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Summary (German)

In epidemiologischen Studien werden komplexe Erkrankungen untersucht, von de-

nen viele eine Prädisposition bezüglich genetischer Komponenten haben, z.B. Typ

2Diabetes oder kardiovaskuläre Erkrankungen. Die Standardmethode für die Iden-

ti�zierung von Genen, die in der Ätiologie von Krankheiten eine wichtige Rolle spie-

len, sind Genom-weite Assoziationsstudien (GWAS). In den zurzeit gröÿten GWAS

werden Daten von bis zu 250 000 Individuen ausgewertet. Trotz dieser groÿen

Stichprobenumfänge wird bisher nur ein kleiner Teil der Erblichkeit von Phäno-

typen durch die entdeckten Gene erklärt. Neben der Identi�zierung der Gene,

sind die biochemischen Zusammenhänge zwischen den Genen und der Krankheit

aufzuklären. Ein vielversprechender Weg hierfür ist die Analyse von Metaboliten.

Metabolomics ist ein sich entwickelndes Gebiet, in dem endogene organische Kom-

ponenten einer Zelle oder Körper�üssigkeit gemessen werden. Da die Metabolite

Produkte von genetischen Prozessen sind, birgt die Analyse von Metabolitendaten

eine höhere Power als von anderen Phänotypen. Bisherige GWAS mit Metabo-

litendaten führten bereits zu sehr vielversprechenden Ergebnissen in der Analyse

von Quotienten von Metabolitenkonzentrationen (Metabolitenquotienten). Um zu

bestimmen, ob ein Metabolitenquotient mehr Informationen enthält als die beiden

zugehörigen Metabolitenkonzentrationen alleine wurde der p-gain als objektives

Maÿ eingeführt. Der p-gain ist de�niert als Quotient des kleinsten p-Wertes der

Assoziationen der Metabolitenkonzentrationen zum p-Wert der Assoziation des

Metabolitenquotienten.

In dieser Dissertation werden zwei Verfahren zur Einbettung von Metaboliten

in den GWAS Ansatz vorgestellt und auf verschiedene Datensätze angewendet.

Darüber hinaus wird eine statistische Analyse des p-gains durchgeführt, um die

Auswertung von Metabolitenquotienten zu verbessern. Die Idee des ersten der bei-

den vorgestellten Verfahren ist es, die Metaboliten für eine weiterführende Analyse

von bereits bekannten genetischen Loci zu verwenden. Im Gegensatz dazu wer-

den in dem zweiten vorgestellten Verfahren neue genetische Loci in GWAS mit

Metabolitendaten entdeckt. In Folgeanalysen werden diese neuen Loci als Kan-
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didatenloci bei Analysen mit klinisch relevanten Phänotypen weiter ausgewertet.

Als Anwendung des ersten Verfahrens haben wir 95 bekannte Lipidloci mit Hilfe

von 15 Lipoproteinsubklassen näher untersucht. Diese Analyse brachte für acht

Loci einen tieferen Einblick in Zusammenhänge verschiedener Lipidsto�wechsel-

wege. Als Anwendung des zweiten Verfahrens haben wir mehr als 250 Metabolite,

sowie alle paarweisen Metabolitenquotienten analysiert, insgesamt mehr als 37000

Metabolitenphänotypen. Diese Analyse hat 37 assoziierte Loci hervorgebracht, die

neue Einblicke in verschiedene Sto�wechselwege geliefert haben. Darüber hinaus

konnten für einige dieser Loci zusätzliche Assoziationen mit klinisch relevanten

Phänotypen gezeigt werden. Abschlieÿend haben wir für die statistische Auswer-

tung des p-gains dessen Verteilung bestimmt, sowie zugehörige kritische Werte

hergeleitet. Um die Relevanz des p-gain Konzeptes zu zeigen wurde auÿerdem

nachgewiesen, dass für Metabolitenquotienten mit signi�kantem p-gain die zuge-

hörigen einzelnen Metabolitenkonzentrationen vermehrt zu einem gemeinsamen

Sto�wechselweg gehören.

Insgesamt zeigt diese Dissertation an konkreten Beispielen, dass beide vorgestellte

Verfahren zur Einbeziehung von Metaboliten in den GWAS Ansatz aktuelles Wis-

sen über genetische und biochemische Prozesse verschiedener Sto�wechselwege

sowohl bestätigen als auch erweitern. Darüber hinaus werden in dieser Disser-

tation die Vor- und Nachteile der beiden Verfahren diskutiert und die Auswertung

von Metabolitenquotienten verbessert.
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1. Introduction

Complex diseases such as type 2 diabetes or cardiovascular diseases are an increas-

ing global health burden. According to the World Health Organisation (2011a,b),

346 million people worldwide su�er from type 2 diabetes whereas cardiovascular

diseases are the number one cause of death globally. Elucidation of the aetiology

of complex diseases in conjunction with an improvement of preventive medicine is

an aim of epidemiological studies. In these studies, the disease itself as well as re-

lated risk factors are investigated. Furthermore, because a genetical predisposition

exists for most complex diseases, the identi�cation of genes involved in the disease

aetiology is essential. For this purpose, genome-wide association studies (GWAS)

are the state-of-the-art method. In order to gain further insight into genetical

and biochemical mechanisms underlying a disease, this thesis expands the GWAS

approach by incorporating metabolites as intermediate phenotypes between the

genes and diseases.

1.1 Genome-wide association studies

GWAS is the hypothesis-free approach of statistically testing associations between

a phenotype and millions of genetic variants, predominantly single nucleotide

polymorphisms (SNPs). The underlying idea of GWAS is that a number of

common SNPs are causal for a complex disease. Therefore, it is expected that

di�erences in frequency for these SNPs can be detected between cases and

controls (McCarthy et al., 2008; Pearson and Manolio, 2008). The �rst GWAS

were conducted in 2007 for diseases such as type 2 diabetes, Crohn's disease,

Prostate cancer or coronary artery disease (Sladek et al., 2007; Libioulle et al.,

2007; Yeager et al., 2007; Burton et al., 2007). These GWAS comprised of 500 to

2000 cases and 600 to 3000 controls and revealed up to nine associated genomic

regions. In the meantime, GWAS were also conducted for many quantitative

traits which are risk factors for various diseases. So far, a total of 1449 GWAS for

237 di�erent traits are published (Hindor� et al., 2011). The signi�cant results
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Figure 1.1: Published GWAS by June 2011. This Figure depicts signi�cant asso-
ciations (p-value < 5× 10−8) detected in 1449 GWAS on 237 traits together with
their location on the human genome. The 237 traits are colour coded. Courtesy:
National Human Genome Research Institute (Hindor� et al., 2011).

of these GWAS and their location on the genome are displayed in Figure 1.1.

Although GWAS are a very popular method to reveal novel risk loci, one drawback

is the small e�ect size of SNPs. This results mostly in an explained variance of less

than 1 % or an odds ratio smaller than 1.2 (De Bakker et al., 2008). Therefore,

large sample sizes are needed to detect signi�cant associations. Enlarging the

sample size is often achieved through conduction of meta-analyses where multiple

teams carry out the same analysis in di�erent cohorts and combine the results

afterwards (Zeggini and Ioannidis, 2009; Thompson et al., 2011). Currently, the

largest meta-analyses comprise of up to 250 000 samples, e.g. for body mass index

(BMI), height or serum lipids (Speliotes et al., 2010; Lango Allen et al., 2010;

Teslovich et al., 2010). In these GWAS, 18 loci associated with BMI, 180 with

height and 95 with serum lipids were detected. Together, these loci explain 3 %

of the genetic variance of BMI, 13 % of height and 25 % − 30 % of serum lipids.

These numbers show that a noteworthy proportion of the estimated heritability

of these traits remains unexplained. This problem of the missing heritability

is a widely discussed topic. Among the suspected reasons are undetected rare

mutations which are not tagged well by common SNPs, common variants with a

low penetrance, other genomic variations such as copy number variants, gene-gene

and gene-environment interactions as well as inaccurate heritability estimates
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(Maher, 2008). Analyses to discover some part of the missing heritability address

the e�ects of many SNPs simultaneously. For example, analysing 294 831 SNPs

together in one regression model can explain 45 % of the genetic variance of height.

Additionally, some more of the unexplained heritability might be explained by

incomplete linkage disequilibrium (LD) between the analysed SNPs and the

causal variants (Yang et al., 2010). Larger sample sizes, re�ned phenotypes, more

densily genotyped SNPs as well as improved statistical methods might help to

�nd the missing heritability.

As follow-up of a detected association between a SNP and a phenotype, the gene

underlying the observed association has to be determined. Here, biological knowl-

edge about genes in the considered genomic region and the analysis of their tran-

script can bring further insight. Moreover, the causal variant underlying the as-

sociation does not have to be among the signi�cant SNPs as only a fraction of

the existing SNPs was analysed. Thus, the genomic region has to be sequenced

within �ne-mapping approaches. In addition to the determination of the causal

genetic variant, functional studies are needed to reveal biochemical mechanisms

in�uencing the observed association (McCarthy et al., 2008). These e�ords can be

complemented by in silico analyses of metabolomics and proteomics data (Plomin

et al., 2009). So far, GWAS are only a �rst step in the investigation of genetical

and biochemical mechanisms of a complex disease and their risk factors. The hy-

potheses generated by GWAS together with the new candidate genes have to be

further investigated.

1.2 Metabolomics

Metabolomics is the rapidly evolving �eld of measuring endogenous organic

compounds of a cell or body �uid. It is estimated that the human metabolome,

which is de�ned as the complete set of all low-molecular weight molecules,

comprises at least 3000 di�erent metabolites of various biochemical classes such as

amino acids, lipids, sugars or carnitines (Koal and Deigner, 2010). Metabolites are

in�uenced by genetic factors but also by environmental factors and are involved

in many biochemical processes of the cell. Therefore, the analysis of metabolites

can reveal insight on functional alterations in the cell and help to detect latent

connections between di�erent diseases (Holmes et al., 2008; Barderas et al., 2011).

Furthermore, metabolomics is a highly sensitive technique for functional analyses

because metabolites are downstream products of genetic and proteomic processes.
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As a result, changes in the organism are ampli�ed in the metabolome compared

to the genome or proteome. These characteristics make metabolomics a promising

tool in the search for biomarkers which help to detect a disease early, to improve

the disease prognosis, to evaluate drug toxicity or to develop therapeutics (Nichol-

son and Lindon, 2008; Nagrath et al., 2011). For example, metabolomics plays

an emerging role in the �eld of cancer diagnostics and therapeutics, especially

when early detection is di�cult such as for kidney cancer (Nagrath et al., 2011).

The search for biomarkers is also upcoming in cardiovascular diseases. However,

only minimal improvements over conventional factors were achieved, so far

(Barderas et al., 2011). Furthermore, ratios between metabolite concentrations

(metabolite ratios) are used in addition to raw metabolite concentrations in

the search for biomarkers, e.g. in systematic screens for genetic de�ciencies in

newborns. An example are elevated concentrations of acylcarnitine ratios which

allow to detect medium-chain acyl-coenzyme A dehydrogenase de�ciency (Maier

et al., 2005). Another example is the phenylalanine to tyrosine ratio which

is used to identify heterozygous carriers of phenylketonuria risk alleles (Hsia,

1958). Metabolite ratios are also used as biomarkers for detecting speci�c expo-

sures. For instance, the urinary hydroxyproline to creatinine ratio was proposed

as an indicator for personal exposure to nitrogen dioxide (Yanagisawa et al., 1986).

The measurement of metabolites reveals a snapshot of the current state of cells

in the analysed biospecimen. Predominantly, metabolomics analyses are based

on blood and urine as these biospecimens are easy to obtain. In principle, there

are two analysis strategies to measure metabolites. Whilst the non-targeted

approach aims at measuring all metabolites of a biospecimen, the targeted

approach focuses on the quanti�cation of selected metabolites. The most ac-

cepted high-throughput methods to measure metabolites are mass spectrometry

(MS) and nuclear magnetic resonance (NMR) spectroscopy (Malet-Martino and

Holzgrabe, 2011). Among the di�erent NMR methods, mainly 1H-NMR is used,

which detects hydrogen atoms in metabolites. NMR methods have the advantage

that the analyte does not require any treatment prior to analysis. In contrast,

MS has to be coupled to separation techniques, e.g. gas chromatography (GC) or

liquid chromatography (LC) but is usually more sensitive than NMR (Nicholson

and Lindon, 2008). When using GC/MS, the analyte has to be volatile and

thermally stable and sometimes requires a derivatisation step. Among others,

fatty acids, organic acids and sugars can be measured with GC/MS very well.

If a derivatisation is not possible or if the metabolites are not volatile, LC/MS
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can be applied (Barderas et al., 2011). In some cases, tandem MS (MS/MS) is

applied which consists of multiple MS steps with a fragmentation step in between.

The use of MS/MS facilitates the identi�cation of the measured molecules

(Horgan et al., 2008). All together, the combination of di�erent measurement

techniques is essential to gain the most comprehensive insight into the metabolome.

1.3 Genome-wide association studies with meta-

bolomics

As metabolites are downstream products of genetic as well as proteomic processes,

metabolites are closer connected to genetics in contrast to most of the other

analysed phenotypes. The investigation of the genetical basis of metabolites can

be achieved through the conduction of metabolomics GWAS.

The �rst GWAS with metabolomics was done by Gieger et al. (2008). They

analysed 363 metabolites measured in 284 serum samples. The evaluated

metabolite data set comprised not only of lipids but also of amino acids, acyl-

carnitines and sugars. As initial analysis, a GWAS was conducted for each of

the measured metabolite concentrations. Since this analysis did not reveal a

signi�cant association, GWAS of metabolite ratios were calculated in a follow-up

step. It is considered that the analysis of metabolite ratios increases the statistical

power, because systematic experimental errors that are common to the tested

metabolite pair are cancelled out, e.g. variance in sample dilution due to pipetting

inaccurancies. Furthermore, metabolite ratios can serve as proxies for enzymatic

reaction rates for closely biologically connected metabolites. Thus, it is expected

that associations with genes encoding enzymes are stronger for metabolite ratios

than for single metabolite concentrations. As a result of the metabolite ratio

analysis, associations with the FADS cluster (fatty acid desaturase) and the

LIPC locus (hepatic lipase) were discovered, among others. In addition to

further insight into biochemical mechanisms, it was also observed that the use

of metabolite ratios strengthens the association of multiple orders of magnitudes

compared to single metabolite concentrations. After increasing the sample size

to 1809 participants, the metabolite concentration and metabolite ratio GWAS

were repeated and 15 loci were discovered of which nine could be replicated (Illig

et al., 2010). Many of the detected loci were located near enzyme-coding or
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solute-carrier coding genes whose proteins match the associated metabolic trait.

Hence, these 15 loci helped to discover various processes of the human metabolism.

In the meantime, several metabolomics GWAS were conducted. Examples for

lipid based metabolites are GWAS which focus on phospho- and sphingolipids

(Hicks et al., 2009; Demirkan et al., 2012), di�erent polyunsaturated fatty

acids (Tanaka et al., 2009b; Lemaitre et al., 2011) and lipoprotein subfractions

(Chasman et al., 2009). In addition, a GWAS for metabolites measured in human

urine samples was also carried out (Suhre et al., 2011b). This GWAS focused on

the detoxi�cation capacity of the human body and revealed loci associated with

chronic kidney disease and coronary artery disease, among others.

In the �rst metabolomics GWAS, the capability of metabolite ratio analyses was

discovered (Gieger et al., 2008). Whilst in some GWAS all possible pair-wise

metabolite ratios were analysed in a hypothesis-free approach, others focused on

biologically relevant metabolite ratios. In order to quantify the strengthening in

association when analysing metabolite ratios as compared to single metabolite

concentrations, the p-gain was introduced. The p-gain for the metabolite ratio

M1/M2 at a genetic locus X is de�ned as

p-gain

(
M1

M2

∣∣∣∣X) :=
min(p-value(M1|X), p-value(M2|X))

p-value(M1

M2
|X)

,

with `p-value(Mi|X)' representing the p-value of the association between the

genetic locus X and metabolite Mi, i = 1, 2. So far, only a rule of thumb was

applied for determination of relevance of the p-gain because the speci�cation of

the distribution of the p-gain and therefore of critical values is pending.

As the genetical analysis of metabolites is an evolving �eld, only some easily ob-

tained gains were achieved, so far. The already measured metabolite concen-

trations together with their ratios have to be investigated more accurately using

statistical and biochemical methods. Moreover, with the development of technolo-

gies to measure additional metabolites, analyses of these metabolites will bring

further insight into the human metabolism and disease causing mechanisms.
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2. Aims of this thesis

Hitherto, GWAS of metabolites were the chosen method to incorporate large-scale

metabolomics data in the GWAS approach as well as to investigate the genetical

basis of metabolites. Instead of using a hypothesis-free approach it is also possible

to conduct a candidate locus approach using current knowledge for the selection of

genetic loci. Thus, there are two procedures for the incorporation of metabolomics

data in the GWAS approach:

a. Using metabolites for an in-depth analysis of genetic candidate loci which have

already been discovered in GWAS of clinically relevant phenotypes.

b. Discovering new genetic loci through conduction of GWAS with metabolites

followed by an analysis of these loci together with clinically relevant pheno-

types.

In the �rst procedure (a) metabolites can reveal functional insight into the mecha-

nisms underlying an observed association between a genetic locus and a phenotype.

In contrast, in the second procedure (b) metabolites are used to detect novel ge-

netic loci. These detected loci can then serve as candidate loci for clinically relevant

phenotypes in order to gain greater insight into disease causing mechanisms. In

the following, we refer to the �rst procedure (a) as candidate locus approach and

to the second procedure (b) as metabolomics GWAS approach.

The �rst aim of this thesis is to compare the two procedures regarding their ob-

jectives, advantages, limitations and feasibility. Therefore, we apply the candidate

locus approach to 15 lipoprotein subfractions which we analyse together with 95

lipid loci that were discovered in serum lipid GWAS. In addition, we conduct

GWAS of over 250 metabolite concentrations and all pair-wise metabolite ratios

covering about 60 biochemical pathways as application of the metabolomics GWAS

approach. After a presentation of the �ndings of both applications in Chapter 4

(Results), we compare the procedures in Chapter 5 (Discussion and Conclusion).
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For the two procedures, it is possible to analyse not only metabolite concentrations

but also pair-wise metabolite ratios. In this case, the p-gain should be applied as

an objective measure. Since the distribution of the p-gain is not speci�ed, so far,

our second aim is to improve the metabolite ratio analysis through a statistical

exploration of the p-gain. In detail, we determine the distribution of the p-gain

and derive critical values for di�erent settings of correlations among the metabolic

traits. In addition, we show the power of the p-gain approach at the example

of the application of the metabolomics GWAS. Therefore, we conduct a pathway

enrichment analysis where we compare for metabolite ratios with signi�cant p-gain

the membership to a common pathway with that of metabolite ratios with non-

signi�cant p-gain. In Chapter 5 (Discussion and Conclusion), we consider the

implications of the statistical exploration of the p-gain for the two procedures and

the presented applications.
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3. Material and methods

In order to address these objectives, we based our analyses on two di�erent sets of

metabolites and a total of four di�erent studies. The metabolites and studies are

described in the �rst Section of this Chapter followed by separate methods Sections

for each of the two procedures as well as for the statistical p-gain examination.

3.1 Material

3.1.1 Metabolites

For the candidate locus approach, we used 15 lipoprotein subfractions to further

characterise 95 lipid loci whereas we used a broad spectrum of metabolites cover-

ing di�erent biochemical pathways in the application of the metabolomics GWAS

approach. These sets of metabolites were measured using two di�erent technolo-

gies.

The lipoprotein subfraction distribution was assessed by NMR spectroscopy and

carried out at LipoFIT GmbH, Regensburg, Germany. The technology has been

patented (Huber et al., 2005, 2011a,b). Brie�y, di�usion-weighted NMR spectra

of blood plasma were recorded on a Bruker 600 MHz spectrometer Avance IIplus

which revealed characteristic overall pro�les of the lipoprotein signals. Using the

LipoFIT proprietary software, the regions of the spectra ranging from 0.6 to 1.5

ppm were decomposed into a set of 15 lipoprotein subfractions termed L1-L15 that

are characterised by di�erent di�usion constants. The subfractions were de�ned

by LipoFIT in such a way that the corresponding di�usion constants agreed with

the presumed particle sizes given in Table A.1 in the Appendix and correspond

essentially to small, medium, large and very large high density lipoprotein (HDL)

(L1-L4), very small, small, medium, large and very large low density lipopro-

tein (LDL) (L5-L9), intermediate density lipoprotein (IDL) (L10), small and large

very low density lipoprotein (VLDL) (L11 and L12), remnants (L13) and small
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and large chylomicrons (L14 and L15) (Linsel-Nitschke et al., 2009). Since for the

calculation of particle numbers from the NMR data one has to make additional

assumptions about the shape, density and composition of these particles which

may bias the statistical analysis, we used the concentrations ci of methyl groups

from cholesterol and fatty acids in the di�erent particle classes Li (i=1, ..., 15),

which can be directly measured by NMR.

For the application of the metabolomics GWAS approach, we evaluated metabo-

lites measured by Metabolon, an US commercial supplier of metabolic analy-

ses. For the metabolic pro�ling, they used two separate ultrahigh performance

LC/MS/MS injections and one GC/MS injection per sample (Evans et al., 2009).

"The resulting (. . .) data were searched against a standard library generated by

Metabolon (. . .) [which, AK.P.] allowed for the identi�cation of the experimen-

tally detected molecules (. . .)" (Suhre et al., 2011a). In total, more than 250

metabolites were pro�led, covering over 60 biochemical pathways of the human

metabolism. The super pathways to which these metabolites belong to are lipids,

carbohydrates, amino acids, nucleotides, peptides, xenobiotics, cofactors and vita-

mins, among others. A full list of the measured metabolites is given in Table A.2

in the Appendix.

3.1.2 Studies

The Cooperative Health Research in the Region of Augsburg (KORA) study is

a series of independent, population-based epidemiological surveys and follow-up

studies of participants living in the region of Augsburg, Southern Germany (Wich-

mann et al., 2005). All participants gave signed informed consent and are residents

of Germany with a German nationality identi�ed through registration. The Bay-

erische Landesärztekammer has approved the studies. For most analyses of this

thesis, about 1800 samples of the follow-up study KORA F4 (2006− 2008) of the

KORA S4 survey (1999−2000) were evaluated. Within the KORA F4 study, 1814

randomly selected participants were genome-wide genotyped using the A�ymetrix

GeneChip array 6.0. Genotypes were determined using the Birdseed2 clustering al-

gorithm and imputed using IMPUTE v0.4.2 (Howie et al., 2009) based on HapMap

II. The blood samples which were used for the measurement of the metabolites

were collected between 2006 and 2008 during the KORA F4 examinations. "To

avoid variation due to circadian rhythm, blood was drawn in the morning between

8:00 a.m. and 10:00 a.m. after a period of (. . .) overnight fasting. (. . .) [One part of
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the blood, AK.P.] was drawn into serum gel tubes, gently inverted twice and then

allowed to rest for 30 min at room temperature (18 ◦C−25 ◦C) to obtain complete

coagulation. The material was then centrifuged for 10 min (2, 750 g at 15 ◦C).

Serum was divided into aliquots and kept for a maximum of 6 h at 4 ◦C, after

which it was deep-frozen to −80 ◦C until analysis" (Suhre et al., 2011a). These

serum samples were used for the metabolite measurements at Metabolon. Another

part of the blood was drawn into ethylene diaminetetraacetic acid (EDTA) tubes,

gently inverted two times and left on the Sarstedt Universal mixer less than 5 min

to avoid mechanical hemolysis, followed by centrifugation for 10min and 2, 750 g at

15 ◦C. Thereafter, plasma was separated, divided into 200 µl aliquots and kept at

4 ◦C, after which it was deep-frozen to −80 ◦C. After less than two weeks, plasma

was stored in the gaseous phase of liquid nitrogen (−196 ◦C). Following the trans-
port on dry ice to Regensburg for lipoprotein subfraction measurement it was kept

deep-frozen at −80 ◦C for two months. Then, plasma was thawed and immedi-

ately analysed. Serum lipids were measured on fresh samples using the Dimension

RxL (Dade Behring). Total cholesterol (TC) was determined by cholesterol es-

terase method (CHOL Flex, Dade-Behring, cholesterol oxidase-p-aminophenazone

(CHOD-PAP) method), HDL cholesterol (HDL-C) using the AHDL Flex (Dade-

Behring, CHOD-PAP method after selective release of HDL-C), LDL cholesterol

(LDL-C) using the ALDL Flex (Dade Behring, CHOD-PAP method after colour-

less usage of all non-LDL-C) and triglycerides (TG) were measured using a TGL

Flex (Dade Behring, enzymatic colorimetric test, glycerol phosphate oxidase-p-

aminophenazone (GPO-PAP) method). In the following, we refer to serum lipids

as the four traits HDL-C, LDL-C, TG and TC whereas we refer to lipoprotein

subfractions as L1-L15, which were measured in plasma.

The application of the candidate locus approach to lipoprotein subfractions was

done on 1791 samples of the KORA study. For replication of the results, data from

15 samples of the Human Metabolome (HuMet) study as well as from 1940 sam-

ples of the Genetic Regulation of Arterial Pressure of Humans in the Community

(GRAPHIC) study was evaluated.

The HuMet study is a highly controlled human trial of 15 young and metabolically

healthy men which were recruited with a very narrow age range and normal BMI

at the Human Study Center in Weihenstephan, Germany (Krug et al., 2012). For

a characterisation of the lipoprotein subfractions, data of the lipid tolerance test of

the HuMet study was evaluated. The oral lipid tolerance test drink consisted of a

3 : 1 mixture, containing three parts Fresubin R© Energy Drink chocolate (Fresenius
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Kabi, Bad Homburg, Germany) and one part Calogen R© (Nutricia, Zoetemeer,

Netherlands). Calogen R© is a fat emulsion containing 50 g of long-chain TG per

100 ml. The test drink was served at room temperature at 8:00 a.m. after an

overnight fast for ingestion within 5 min. Plasma collections were performed after

0 min, 30 min, 60 min, 90 min, 120 min, 180 min, 240 min and 300 min after

the lipid ingestion. For comparison, fasting samples were taken on three days at

8:00 a.m. The second fasting sample was taken four weeks after the �rst fasting

sample. The third fasting sample was taken 24 h after the second fasting sample.

This trial was approved by the ethical commission of the Technische Universität

München (#2087/08). Blood samples were collected into 9 ml EDTA K2-Gel tubes

(Sarstedt, Nümbrecht, Germany). EDTA-tubes were immediately centrifuged at

3, 000 g for 10min at 20 ◦C. Plasma was aliquoted by an automatic pipette and was

immediately deep-frosted on dry ice and stored at −80 ◦C until analysis, except

for the duration of the transport to Regensburg on dry ice.

The GRAPHIC study was used to replicate the �ndings of the genetic association

analysis. For the GRAPHIC study 2024 individuals from 520 nuclear families of

white European origin from Leicestershire in the United Kingdom were recruited.

The details of recruitment, phenotyping and sample analysis have been reported

by Tomaszewski et al. (2010). In brief, for families to be included both parents had

to be aged 40 to 60 with two o�spring aged 18 or over, with all members agree-

ing to take part in the study. A standardised questionnaire was used to obtain

a comprehensive medical history from participants followed by physical examina-

tion, anthropometric measurements, clinic and 24 h ambulatory blood pressure

monitoring. The standard biochemistry measurements including HDL-C and TC

were performed on non-fasting serum samples using enzymatic assays in an Olym-

pus AU5430 analyser (Samani et al., 2008). Genotypes were determined for the

GRAPHIC study using the Illumina HumanCVD BeadChip array (Tomaszewski

et al., 2010).

The application of the metabolomics GWAS was done on 1768 KORA samples as

well as on 1052 samples of the TwinsUK cohort. "The TwinsUK cohort is a British

adult twin registry (...). These unselected twins were recruited from the general

population through national media campaigns and were shown to be comparable

to age-matched population singletons in terms of disease-related and lifestyle char-

acteristics" (Suhre et al., 2011a; Andrew et al., 2001). Written informed consent

has been given by all participants and the study has been approved by the Guy's

and St. Thomas' Hospital Ethics Committee. "Blood samples were taken after at

12



least 6 h of fasting. The samples were immediately inverted three times, followed

by 40 min of resting at 4 ◦C to obtain complete coagulation. The samples were

then centrifuged for 10 min at 2, 000 g. Serum was removed from the centrifuged

brown-topped tubes as the top, yellow, translucent layer of liquid. Four aliquots of

1.5 ml were placed into skirted microcentrifuge tubes and then stored at −45 ◦C
until sampling" (Suhre et al., 2011a). Genotyping of the TwinsUK data set was

done with a combination of Illumina arrays (HumanHap300, HumanHap610Q,

1M-Duo and 1.2MDuo 1M) (Richards et al., 2008; Soranzo et al., 2009). The Ill-

luminus calling algorithm (Teo et al., 2007) was used to assign genotypes. After

extensive quality control, the data sets were merged and imputed using IMPUTE

v2 (Howie et al., 2009) with HapMap II as well as an own panel as reference.

The statistical analyses of the HuMet, GRAPHIC and TwinsUK cohorts were done

by investigators of the studies.

3.1.3 Genotypes

For the application of the candidate locus approach to lipoprotein subfractions,

101 SNPs at 95 lipid loci published by Teslovich et al. (2010) were extracted from

the imputed genotypes of the KORA study (Table A.3). For replication, the same

SNPs or SNPs in LD of more than 0.5 were seleced from the GRAPHIC study.

The metabolomics GWAS of the second approach were based on all genotyped

SNPs of the KORA and TwinsUK studies. For �ne-mapping of interesting ge-

nomic regions, a detailed analysis was conduced using imputed genotype data of

the two cohorts.

3.2 Methods

3.2.1 Application of the candidate locus approach

For the evaluation of the lipoprotein subfractions together with the 95 lipid loci,

we �rst characterised the lipoprotein subfractions using serum lipids. This was

necessary since we used the concentrations ci of the lipoprotein subfractions Li

(i= 1, . . . , 15) and not further derived values such as size or density. Therefore,

we conducted a cluster analysis of the lipoprotein subfractions together with the
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serum lipids. Moreover, plasma samples from the HuMet study for which measure-

ments were available at three fasting time points as well as at seven time points

during a lipid tolerance test were analysed to further characterise the lipoprotein

subfractions. After this exploratory work, we calculated associations between the

15 NMR-measured lipoprotein subfractions and 101 genetic variants within 95

lipid loci identi�ed in GWAS (Teslovich et al., 2010, Table A.3). Additionally, we

tested the increase in information when analysing lipoprotein subfractions com-

pared to serum lipids using the p-gain approach. The inter-relationship among

the lipoprotein subfractions and the associations of the lipid loci were analysed in

1791 plasma samples of the KORA study. The replication of the signi�cant results

of the lipid loci analysis was conducted in 1940 samples of the GRAPHIC study.

Data transformation. For the statistical analysis, all serum lipid and lipoprotein

subfraction values were naturally log-transformed to achieve normality. Summary

statistics for serum lipids and lipoprotein subfractions are combined in Table A.4

in the Appendix.

Characterisation of lipoprotein subfractions

Correlation matrix. We used the `cor' function implemented in the R-Project En-

vironment (R Development Core Team, 2010) to calculate the Pearson correlation

matrix of lipoprotein subfractions and serum lipids for all pair-wise complete ob-

servations. Furthermore, we conducted a linear regression analysis for each serum

lipid separately with all lipoprotein subfractions as well as age and sex as explain-

ing variables to calculate the proportion of variance of the serum lipids which is

explained by the subfractions, age and sex.

Cluster dendrogram. In order to visualise the correlation structure within the

lipoprotein subfraction data set, we used an unrooted phylogeny tree where the

length of each branch represents the distance between variables. This tree was

plotted by using the package `ape' (Paradis et al., 2004) within the R-Project

Environment. The distance measure was based on the correlation between two

variables and for the clustering of the lipoprotein subfractions the average linkage

method was used. In addition, we applied a bootstrap method implemented in

the `pvclust' package (Suzuki and Shimodaira, 2006) of the R-Project Environ-

ment with 10 000 bootstrap replications. In order to measure the con�dence of

each branch, we used the approximately unbiased (AU) probability, which is more

accurate than the bootstrap probability (Shimodaira, 2002). The AU probability
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was calculated on multiscale bootstrap resamplings. Beside AU probabilities, we

also calculated standard errors to evaluate the con�dence of each branch. High AU

probabilities and low standard errors indicate a strong support for a branch. For

the 15 HuMet samples were multiple measurements at fasting time points as well as

during a lipid tolerance test available. Aiming at illustrating the variation between

variables and not within individuals for the fasting dendrogram, the clustering of

the lipoprotein subfractions was based on average values of multiple measurements

from a participant. For the cluster plot of the lipoprotein subfractions during the

lipid tolerance test, we aimed to illustrate the variation over the time, so aver-

age values of the measurements retained at one time point from all participants

were calculated. In a second step, we incorporated the serum lipids in the cluster

analysis of KORA samples to classify the lipoprotein subfractions in a natural way.

Development plots. Time dependent graphs were plotted for each cluster to vi-

sualise the development of the subfractions during the lipid tolerance test. In

order to visualise the change of the subfractions in comparison to the measure-

ment at the starting time point, log-fold changes were used. A fold change is

the ratio of a measurement at a certain time point to the measurement at the

starting time point. Through calculation of the logarithm (log10), the y-axis rep-

resents the change with positive values as increase and negative values as decrease.

Association with 95 lipid loci

Discovery. We analysed in KORA the 101 candidate SNPs described by Teslovich

et al. (2010) to genetically characterise the lipoprotein subfractions. Therefore,

we used the software QUICKTEST (Johnson and Kutalik, 2008) with an additive

linear model with age and sex as covariates. In order to correct for multiple testing,

we applied Bonferroni correction for the 101 candidate SNPs and 15 lipoprotein

subfractions, i.e. p-value < 3.3×10−5 = 0.05
(101·15) . Additionally, we calculated p-gain

values to test the increase in information due to analysing lipoprotein subfractions

compared to serum lipids. Hence, we de�ned the p-gain as

p-gain(lipoprotein subfraction)

=
min(p-value(HDL-C), p-value(LDL-C), p-value(TG), p-value(TC))

p-value(lipoprotein subfraction)
.

We de�ned a SNP as clearly stronger associated with a subfraction than with a

serum lipid if the p-gain for a lipoprotein subfraction at a SNP was greater than

15. Finally, the explained variance of a SNP was calculated as the di�erence be-
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tween the explained variance of a linear model with SNP, age and sex as explaining

variables and of a linear model with only age and sex as explaining variables.

Replication. In silico replication of the signi�cant associations in the KORA study

was conducted in the GRAPHIC study. The analysis of association was carried

out using generalised estimation equations with exchangeable correlation structure

to account for familial correlations, adjusted for age, age2 and sex under an ad-

ditive model of inheritance (Tomaszewski et al., 2010). We applied a Bonferroni

correction for the signi�cant SNP - lipoprotein subfraction associations to correct

for multiple testing.

3.2.2 Application of the metabolomics GWAS approach

For the GWAS of the metabolites, we decided to analyse not only all metabo-

lite concentrations (N = 276 in KORA) but also all pair-wise metabolite ratios

(N = 37 179 in KORA), in total 37 455 metabolic traits in KORA, since the

analysis of metabolite ratios showed good results in Gieger et al. (2008) and Illig

et al. (2010). Due to the increased computational and data storage burden, we

conducted a stepwise approach. First, we performed all metabolite concentration

and metabolite ratio GWAS on genotyped SNPs. Then, we selected promising

signals between genomic regions and metabolic traits and repeated the association

analysis on genotyped and imputed SNPs of these regions. For loci which were

signi�cant in this �ne-mapping analysis, we speci�ed candidate genes and clini-

cally relevant phenotypes which were reported to be associated with these loci. As

a follow-up analysis, we calculated associations between the metabolic traits and

selected clinically relevant phenotypes.

Quality control of metabolites and genotypes. For quality control of the meta-

bolomics data set, all data points with a distance of more than three standard

deviations to the mean of the metabolic traits were excluded. Moreover, only

metabolic traits with at least 300 non-missing values were analysed. In total, 276

metabolite concentrations and 37 179 metabolite ratios were available in KORA

whereas in TwinsUK 258 metabolite concentrations and 32 499 metabolite ratios

were available. A test of normal distribution for the metabolic traits showed that

for more cases the log10-transformed values were closer to the normal distribution

than the untransformed values. Therefore, log10-transformation was applied to all
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metabolic traits. Moreover, testing ratios between two metabolite concentrations

a and b should be independent of their order. This is achieved when analysing

log-scaled metabolite ratios due to the property log(a/b) = −log(b/a). This also

halves the multiple testing burden.

As quality control of the genotypes, we excluded all SNPs with a call rate less than

95 % and a p-value < 10−6 for deviation from the Hardy-Weinberg equilibrium.

In total, about 655000 autosomal SNPs were included in the GWAS of the KORA

study and about 535 000 autosomal SNPs in the GWAS of the TwinsUK study.

Metabolomics GWAS

GWAS and meta-analysis. The metabolomics GWAS were carried out on geno-

typed SNPs using an additive linear regression model for all metabolic traits. We

adjusted for age, sex and family structure. For the GWAS, the software PLINK

v1.06 (Purcell et al., 2007) and SNPTEST (Marchini et al., 2007) were used in

KORA whereas Merlin (Abecasis et al., 2002) which accounts for family struc-

ture was used in the TwinsUK study. In order to measure the strengthening in

association when analysing a metabolite ratio compared to the single metabolite

concentrations, the p-gain approach was applied. Furthermore, we calculated the

in�ation factor λ and plotted quantile-quantile plots to check for in�ation of sum-

mary statistics which can re�ect population strati�cation in the analysed sample

or an unappropriate statistical model (Devlin and Roeder, 1999; De Bakker et al.,

2008). After this initial GWAS on genotyped SNPs, we selected the genomic re-

gions and metabolic traits which had an association p-value < 10−6 in both cohorts

or a p-value < 10−3 in one and a p-value < 10−9 in the other cohort for further

analysis. Additionally, for metabolite ratios we required the p-gain to be larger

than 250. For each of these genomic regions, associations were calculated for both

cohorts between the genotyped and imputed SNPs of the genomic region and the

selected metabolic traits. Afterwards, the results were meta-analysed using the

�xed-e�ects inverse variance method (De Bakker et al., 2008). The combination of

SNP and metabolic trait that yielded to the smallest p-value in this meta-analysis

was �nally selected. In the following, we refer to the SNP with the smallest p-value

in the meta-analysis as lead SNP for the genomic region.

Correction for multiple testing. A conservative Bonferroni correction for multiple

testing was applied using the KORA study as a reference. The nominal signi�-

cance level of 5 % was corrected for tests on 655 658 SNPs and 37 455 metabolic

traits. This resulted in a Bonferroni corrected level of signi�cance of 2.0× 10−12.
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For metabolite ratios, it was also required that the p-gain has to be larger than

250 which is approximately the number of tested metabolite concentrations.

Follow-up analysis of GWAS results

Candidate gene selection. Using knowledge about the function of genes which are

located near the lead SNP and about the biochemical characteristics of the asso-

ciated metabolic traits, we identi�ed a single most likely candidate gene in many

cases.

Overlap with published associations. For each locus, SNPs were identi�ed which

were previously reported to be associated with clinically relevant phenotypes.

These SNPs were required to have an LD of more than 0.8 with the lead SNP.

This search was done using the catalogue of published GWAS (Hindor� et al.,

2011).

Associations with clinically relevant phenotypes. For selected loci we further tested

the association between a metabolic trait and a clinically relevant phenotype

through calculation of linear regression models. One tested clinically relevant

phenotype was the estimated glomerular �ltration rate (eGFR) which is de�ned

as
eGFR = 175× scr−1.154 × age−0.203 × 1.212 (if black)× 0.742 (if female)

with scr the serum creatinine measurement in mg/dl (Levey et al., 2007). Another

clinically relevant phenotype which we analysed in the follow-up analysis was hy-

pertension. We de�ned a sample as hypertensive if the systolic blood pressure was

higher than 190 mmHg and the diastolic blood pressure was higher than 90 mmHg

or if the sample was on anti-hypertensive medication.

3.2.3 Statistical exploration of the p-gain

In order to statistically explore the p-gain, we derived critical values through de-

termination of the distribution of the p-gain. In case of uncorrelated metabolic

traits, the distribution can be calculated. For the other cases, we conducted a sim-

ulation approach. In addition, we investigated the characteristics of the p-gain in

the situation of Bonferroni correction for multiple testing as well as the depencence

of observed p-gain values on the sample size. Finally, we illustrated the power of

the p-gain approach by investigating the enrichment for common pathways among
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metabolite ratios with signi�cant p-gain. The analysis of the dependence of ob-

served p-gain values on the sample size as well as the pathway enrichment analysis

were based on the concrete example of the application of the metabolomics GWAS

(Chapter 3.2.2 and 4.2).

Density of p-gain

For uncorrelated metabolic traits (calculation). As notation, we used `p-value(Mi|X)',

short `P (Mi)', to reference the p-value corresponding to a test for association be-

tween a genetic locus X and the metabolite Mi, i = 1, 2. This is often the test

of the e�ect size in a linear regression of a genetic locus X to the metabolite Mi.

With this de�nition, the p-gain for the ratio M1/M2 of metabolites M1 and M2 at

a genetic locus X is de�ned as

p-gain

(
M1

M2

∣∣∣∣X) :=
min(p-value(M1|X), p-value(M2|X))

p-value(M1

M2
|X)

. (1)

We further de�ne the universal p-gain as the ratio of p-values belonging to two

uncorrelated metabolic traits:

p-gainuniv

(
M1

M2

∣∣∣∣X) :=
p-value(M1|X)

p-value(M1

M2
|X)

, cor(M1,
M1

M2

) = 0. (2)

Critical values of the distribution of the universal p-gain are conservative to the

critical values of the distribution of the p-gain given in equation (1) because

p-value(M1|X) ≥ min(p-value(M1|X), p-value(M2|X))

and therefore

p-value(M1|X)

p-value(M1

M2
|X)
≥ min(p-value(M1|X), p-value(M2|X))

p-value(M1

M2
|X)

.

The variation of the distribution of the p-gain de�ned in equation (2) depends on

the correlation among M1 and M1/M2. For example, highly correlated metabolic

traits contain mainly the same information and have similar p-values in association

tests. This results in p-gain values which are close to one. Hence, the variation of

the distribution is small. In contrast, weakly correlated metabolic traits contain

di�erent information and may have di�erent p-values in association tests. This

results in p-gain values distributed broadly around the one. Therefore, assuming

cor(M1,M1/M2) = 0, as it was done in equation (2), results in a distribution of the

universal p-gain with largest possible variation and leads to the most conservative
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critical values. For the universal p-gain, the density can be calculated by using

the convolution formula for ratios:

f P (M1)
P (M1/M2)

(p-gain) =
∫ +∞

−∞
|t| · fP (M1)(p-gain · t) · fP (M1/M2)(t)dt ∀ p-gain ∈ R+,

with P (M1) and P (M1/M2) having a uniform distribution on the interval [0, 1].

Transformations lead to

f P (M1)
P (M1/M2)

(p-gain) =
∫ +∞

−∞
|t| · fP (M1)(p-gain · t) · fP (M1/M2)(t)dt

=

∫ 1

0

t · fP (M1)(p-gain · t)dt

=


∫ 1

p-gain

0 t dt = 1
2·p-gain2 , p-gain ≥ 1∫ 1

0
t dt = 1

2
, 0 < p-gain < 1.

The corresponding cumulative distribution is

F P (M1)
P (M1/M2)

(p-gain) =
∫ p-gain

0

f P (M1)
P (M1/M2)

(t)dt =


1− 1

2·p-gain , p-gain ≥ 1

1
2
p-gain, 0 < p-gain < 1.

Therefore,

F P (M1)
P (M1/M2)

(p-gain) = (1− α

B
)⇔ 1− 1

2 · p-gain
= (1− α

B
), if p-gain ≥ 1

⇔ p-gain =
B

2 α
, if

α

B
≤ 0.5,

with α/B being the signi�cance level α, Bonferroni corrected for B tests.

For correlated metabolic traits (simulation). To determine the density of the p-

gain as de�ned in equation (1), we assumed a given correlation structure among

the metabolic traits. This confers to a correlation structure among p-values corre-

sponding to these metabolic traits. With these correlated p-values the density of

the p-gain can be derived. For simulation of the variables with a given correlation

structure we chose the `copula' package (Yan, 2007; Kojadinovic and Yan, 2010)

of the R-Project Environment. A copula is a joint probability distribution which

one-dimensional marginal distributions are uniformly distributed over the interval

[0, 1]. It takes the dependency among the marginal distributions into account.
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After simulating variables using a copula, we transformed them with an inverse

normal transformation to gain normal distributed variables which is essential for

linear regressions. To simulate the p-values belonging to these variables, we gener-

ated additional variables and conducted linear regressions where these additional

variables were the independent and the variables simulated with the copula the

dependent variables. The received p-values contain a correlation structure which

belongs to the correlation structure of the metabolic traits. Out of these p-values,

we calculated the density of the p-gain empirically and derived critical values for

given signi�cance levels.

Dependence of p-gain values on sample size

We determined the dependence of p-gain values on the sample size by drawing ran-

domly (with replacement) between 100 and 2000 samples from the KORA data

which we used for the application of the metabolomics GWAS (Chapter 3.2.2).

For each sample size, we repeated this analysis 1500 times. For all sample subsets

we calculated p-gain values. We then determined the median p-gain values as well

as the 1st and 3rd quantile of the p-gain values for each sample size.

P-gain and metabolomics pathways

We used the KORA results of the application of the metabolomics GWAS (Chap-

ter 4.2) to analyse the enrichment of pathways for metabolite ratios with a large

p-gain. For this analysis, we additionally �ltered the GWAS results for minor

allele frequency (MAF) greater than 5 % and extracted for each metabolite ratio

the SNP with the largest p-gain. As terminology, we de�ned a metabolite ratio to

be on a pathway, whenever both metabolite concentrations of the metabolite ratio

belong to the same pathway. For pathway annotations, we applied di�erent map-

pings such as Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and

Goto, 2000; Kanehisa et al., 2006, 2010), the Small Molecule Pathway Database

(SMPDB) (Frolkis et al., 2010), levels two and three of the Human Metabolome

Database (HMDB) (Wishart et al., 2009), super- and sub-pathways provided by

Metabolon (Evans et al., 2009) and Gaussian graphical models (GGMs) (Krum-

siek et al., 2011). We coded the pathway information of each data base as one if

both metabolite concentrations of a ratio were on the same pathway, else zero. If

there was no information available about a metabolite ratio in one mapping, we

omitted this particular mapping from the following calculations for this metabolite

ratio. With this, we computed a percentage of the mappings which assigned both

metabolite concentrations of a ratio to the same pathway and tested the di�erence
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of the mean of pathway allocation for the best 100, 500, 1000 and 1500 metabolite

ratios vs. the mean of pathway allocation for all metabolite ratios using a t-test.

Additionally, we compared the allocation to a common pathway for all metabolite

ratios with a signi�cant p-gain vs. all metabolite ratios with a non-signi�cant p-

gain.
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4. Results

4.1 Application of the candidate locus approach:

Genetic associations with lipoprotein subfrac-

tions provide information on their biological

nature

Background

At present, 95 associated common variants are reported for HDL-C, LDL-C, TG

and TC (Teslovich et al., 2010). These loci explain 10 % − 12 % of the total

variance of serum lipids. Extreme levels of serum lipids are a major risk factor

for cardiovascular outcomes such as coronary artery disease, myocardial infarc-

tion and stroke (Castelli et al., 1977; Castelli, 1996). Whilst the contribution of

LDL-C to the development of coronary artery disease is well documented, the

role of other lipoprotein fractions (including HDL-C) in atherosclerosis and its

clinical manifestations is less well understood (Asztalos et al., 2004; Rader, 2006,

2009). For example, the torcetrapib failure revealed the complexity of the HDL

metabolism and implicated that further research on HDL and HDL fractions is

needed (Von Eckardstein, 2010). In order to obtain a more detailed view of the

lipid metabolism, subfractions of lipoproteins which can be measured using 1H-

NMR spectroscopy can be analysed. Using a 400 MHz NMR lipoprotein analyser,

Chasman et al. (2009) conducted a GWAS of the lipoprotein subfractions with the

aim of �nding new genetic lipid loci.

The aim of this application is to gain a more in-depth view into biological processes

of the lipid metabolism through analysing lipoprotein subfractions together with

known genetic lipid loci and to investigate if the analysis of subfractions reveals

more and stronger associations with genetic loci than the analysis of serum lipids.
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tree A tree B tree C tree D

branch AU SE AU SE AU SE AU SE

1 0.629 0.009 0.644 0.009 0.751 0.007 0.979 0.001

2 1.000 0.000 0.755 0.009 0.998 0.000 0.996 0.000

3 0.996 0.006 1.000 0.000 0.967 0.002 0.966 0.002

4 0.812 0.008 0.994 0.003 0.995 0.000 0.851 0.006

5 0.899 0.005 0.958 0.004 0.766 0.007 1.000 0.000

6 1.000 0.000 0.721 0.009 0.869 0.005 0.989 0.001

7 0.609 0.009 0.889 0.006 0.893 0.004 1.000 0.000

8 0.817 0.008 0.931 0.005 0.851 0.006 0.994 0.000

9 0.696 0.009 0.687 0.009 0.821 0.006 0.843 0.006

10 1.000 0.000 0.763 0.008 0.936 0.003 0.996 0.000

11 1.000 0.000 0.801 0.007 0.949 0.003 0.990 0.001

12 1.000 0.000 0.790 0.007 0.909 0.004 0.953 0.002

13 1.000 0.000 0.992 0.004 0.870 0.005 0.948 0.002

14 0.995 0.002

15 1.000 0.000

16 0.999 0.000

17 0.999 0.001

Table 4.1: AU probabilities and standard errors for cluster plots. AU probabilities
(AU) and standard errors (SE) of 10 000 bootstrap replications were provided for
each branch of the trees of Figure 4.1. High AU probabilities and low standard
errors indicate a strong support for a branch. Tree A lipoprotein subfractions
in KORA, tree B lipoprotein subfractions and serum lipids in KORA, tree C
lipoprotein subfractions in the fasting samples of HuMet and tree D lipoprotein
subfractions in the HuMet samples during the lipid tolerance test (Petersen et al.,
2012).

Results

Inter-relationship of lipoprotein subfractions

In order to be independent of assumptions about the shape of lipoprotein sub-

fractions, we assigned them to the serum lipids in a statistical analysis. First,

using linear regressions with all lipoprotein subfractions as explaining variables,

we observed that they explained a high proportion of serum lipid variance: 94 %

of the variance of TG, 84.6 % of TC, 82.5 % of HDL-C and 75.7 % of LDL-C.

To get a more in-depth view into the inter-relationship of lipoprotein subfractions,

we conducted a cluster analysis of the subfractions in KORA based on their cor-

relation matrix as a distance measure, followed by bootstrap replications to test

the robustness of the clustering. The results of this cluster analysis are displayed

in an unrooted tree (Figure 4.1 A). At �rst observation, the tree indicated that
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Figure 4.1: Cluster plots of lipoprotein subfractions. The cluster plots of the
inter-relationship of the lipoprotein subfractions were displayed in an unrooted
phylogeny tree using the correlation between the subfractions as distance measure.
The length of a branch represents the distance between the subfractions. Each
phylogeny tree was created out of 10 000 bootstrap replications. A lipoprotein
subfractions in KORA, B lipoprotein subfractions and serum lipids in KORA,
C lipoprotein subfractions in the fasting samples of HuMet and D lipoprotein
subfractions in the HuMet samples during the lipid tolerance test. In Table 4.1
are for all branches the AU probabilities and the standard errors summarised
(Petersen et al., 2012).
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L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 R2

HDL-C −0.11 0.69 0.81 0.39 0.67 0.15 0.51 −0.39 −0.26 −0.52 −0.53 −0.52 −0.54 −0.52 −0.28 0.83

LDL-C 0.29 −0.05 −0.004 0.59 0.29 0.74 0.50 0.35 0.49 0.33 0.29 0.26 0.20 0.21 0.17 0.76

TC 0.20 0.21 0.28 0.70 0.52 0.85 0.68 0.39 0.57 0.37 0.31 0.30 0.20 0.24 0.27 0.85

TG 0.24 −0.23 −0.44 −0.03 −0.28 0.29 −0.10 0.65 0.74 0.88 0.96 0.94 0.89 0.93 0.72 0.94

Table 4.2: Correlations between lipoprotein subfractions and serum lipids. The
Pearson correlation coe�cient was calculated for each lipoprotein subfraction and
serum lipid. The R2 is the explained variance which was calculated in the lin-
ear regression model using all subfractions, sex and age as explaining variables
(Petersen et al., 2012).

L1 is separate from the remaining subfractions. Furthermore, two major groups

were distinguished: L2-L7 and L8-L15. Each of the two major groups contained

two subgroups. In total, we had the following �ve clusters: (L1), (L2, L3, L5,

L7), (L4, L6), (L8, L10) and (L9, L11, L12, L13, L14, L15). For the mentioned

intersections, the bootstrap replications revealed an AU probability of one and a

standard error of zero, which means that these divisions are absolutely reliable

(Table 4.1, tree A). In the next step, we added the serum lipids to the tree to

get a lipid-based characterisation of the subfractions. After their inclusion, the

main inter-relationships between the subfractions remained unchanged (Figure 4.1

B). We found that HDL-C clustered together with (L2, L3, L5, L7), LDL-C and

TC with (L4, L6) and TG with (L9, L11, L12, L13, L14, L15). In the tree with

serum lipids, the AU probabilities were smaller than before but the divisions in the

mentioned �ve clusters were still very reliable (Table 4.1, tree B). In order to fur-

ther characterise the relations between lipoprotein subfractions and serum lipids,

we used Pearson correlations. The results revealed that the largest correlation of

HDL-C was with L3, of LDL-C and TC with L6 and of TG with L11 (Table 4.2).

Surprisingly, lipoprotein subfraction L1 was only weakly correlated with all serum

lipids.

Lipoprotein subfractions after nutritional intervention

To investigate whether the clustering of the subfractions was stable after nutri-

tional intervention, we repeated the clustering in plasma samples from the 15

young men of the HuMet study for whom lipoprotein subfraction measurements

were conducted at three fasting time points as well as at seven time points during

a lipid tolerance test. In the cluster plot of the fasting time points, we replicated

the main three clusters: L1, L2-L7 and L8-L15 (Figure 4.1 C). For these intersec-
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Figure 4.2: Development plots of lipoprotein subfractions during lipid tolerance
test. Each panel shows the development of a cluster of the lipoprotein subfractions
during the lipid tolerance test (Figure 4.1 D). The x-axis represents the time, the
y-axis the log-fold change, which describes the change of a measurement compared
to the �rst measurement (Petersen et al., 2012).

tions, we had reliable AU probabilities and standard errors (Table 4.1, tree C).

In contrast to the fasting cluster plot, we observed changes in the clustering of

the measurements during the lipid tolerance test (Figure 4.1 D). The lipoprotein

subfractions shifted and generated new groups, e.g. (L1, L6, L8). In the fasting

cluster plot, L1 was independent of all other subfractions, L6 belonged to the group

(L4, L6) and L8 belonged to the group (L8, L10). During the lipid tolerance test,

subfraction L13 was independent of the other subfractions. Moreover, subfraction

L7 changed from the group (L2, L3, L5, L7) into the group (L7, L9, L10, L11, L12,

L14, L15). For the major divisions, we observed again reliable AU probabilities

and standard errors (Table 4.1, tree D). Subfractions within each group showed a

similar trend during the lipid tolerance test (Figure 4.2). In group (L7, L9, L10,

L11, L12, L14, L15), all subfractions increased after 300 minutes but to a di�er-

ent extent. L7 and L10 only increased by about 0.1, whereas L14 increased by
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about 0.5. The subfractions (L2, L3, L4, L5) stayed nearly constant during the

lipid tolerance test whilst lipoprotein subfraction L13 decreased notably by about

0.2. Thus the lipid tolerance test revealed the di�erent in�uences of nutritional

intervention on lipoprotein subfractions. As a result, subfraction L1 was assorted

together with subfractions L6 and L8, which was in contrast to the results of the

fasting samples (Figure 4.1).

Proportion of variance explained by genes increases for subfractions

With this mapping of the lipoprotein subfractions, we next tested the association

between 101 SNPs and the 15 subfractions using an additive genetic model. In

addition to the Bonferroni corrected signi�cance level of 3.3× 10−5, we compared

the p-value of the subfractions with the p-value of the serum lipids through calcu-

lation of a p-gain. Eight of the analysed loci showed signi�cant associations with at

least one of the 15 subfractions (Tables 4.3 and 4.4). Moreover, associations with

FADS1-2-3, LIPC, PLTP, APOB and APOA1 had relevant p-gains (i.e. p-gain

> 15) in KORA whereas for CETP, SORT1 and GCKR, use of subfractions did

not strengthen the original association. For FADS1-2-3, LIPC, CETP, PLTP and

GCKR, we replicated all signi�cant associations as well as the relevant p-gains in

the GRAPHIC study (Table 4.4). For the remaining loci some associations were

not signi�cant in GRAPHIC after Bonferroni correction. Nevertheless, the direc-

tion of e�ect at these loci was consistent in KORA and GRAPHIC. In contrast,

when analysing associations of serum lipids together with lipid loci, we found that

only four loci in KORA were associated (CETP, SORT1, GCKR, APOA1 ). In

addition to this, for FADS1-2-3, LIPC, PLTP and APOB the explained variance

was clearly larger for lipoprotein subfractions than for serum lipids (Figure 4.3).

In detail, the explained variances between lipid loci and subfractions were up to

2.3 % (APOA1 and L8). For serum lipids, we explained up to 1.7 % of the vari-

ance (CETP and HDL-C). Altogether, the explained variance of the lipoprotein

subfractions ranged from 1.5 % (L9) to 4.5 % (L8) and of serum lipids from 1.0 %

(TC) to 3.3 % (TG). Summing up these results, we found more signi�cant as-

sociations with lipoprotein subfractions and in addition, we could explain more

of the variance of lipoprotein subfractions than of serum lipids. As a biological

classi�cation of the signi�cant eight genes, Figure 4.4 integrates the genes together

with the analysed lipoprotein subfractions in the lipid metabolism. The colours

indicate the assignment of the lipoprotein subfractions to the three main clusters:

L1, L2-L7 and L8-L15.
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Figure 4.3: Explained variance of lipoprotein subfractions and serum lipids. This
Figure presents the variance of the lipoprotein subfractions and serum lipids which
is explained by the signi�cantly associated loci. The explained variance is only
shown for associations having a p-value < 0.05. The diameter of each circle rep-
resents the explained variance, a circle highlighted in yellow corresponds to a
signi�cant association and a circle coloured in red corresponds to a signi�cant as-
sociation with relevant p-gain. Circles with a black cross belong to serum lipids.
The lipoprotein subfractions were ordered according to a hierarchical clustering
which is displayed on the y-axis of this Figure (Petersen et al., 2012).

When combining the observations made in the cluster analysis with the signi�cant

results of the association analysis, we detected comparable inter-relationships be-

tween the lipoprotein subfractions in both analyses. In the genetic analysis, we

found that all lipoprotein subfractions of the cluster (L2, L3, L5, L7), which is

correlated with HDL-C, were associated with LIPC whereas the subfractions L2

and L3 were also associated with CETP. With regard to subfraction L6 of the clus-

ter (L4, L6) together with LDL-C and TC we found a signi�cant association with

SORT1. When considering the association between L4 and SORT1, we saw an

e�ect although it was not signi�cant (p-value = 3.58× 10−5; Table 4.3). The sub-

fractions L8 and L10, which built cluster (L8, L10), were associated with GCKR,

APOB and APOA1. Subfractions L12 and L14 and subfractions L11, L12 and L13
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Figure 4.4: Classi�cation of lipoprotein subfractions and their associated loci in
the lipid metabolism. This Figure combines the results of the association analyses
with the lipid metabolism. We displayed each associated gene at least once in
this Figure and attached the associated lipoprotein subfractions to them. For
clarity, we restricted the lipid metabolism to pathways where the associated loci
are involved. The colour of the lipoprotein subfractions encodes the membership
to a cluster. We assigned the lipoprotein subfractions to the three larger clusters
L1, L2-L7 and L8-L15 to keep the Figure clear (Petersen et al., 2012).

of cluster (L9, L11, L12, L13, L14, L15) together with TG were associated with

GCKR and APOA1, respectively. Lipoprotein subfraction L1 was separate and

only associated with PLTP with a relevant p-gain. Although lipoprotein subfrac-

tion L3 was also associated with PLTP, the e�ect was in opposite directions for L1

and L3 (Table 4.4). In conclusion, the genetic analysis con�rms the observations

made in the clustering and reveals further information about biological aspects of

the lipoprotein subfractions.
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Biological discussion

Clustering reveals that L1 is not captured by serum lipids

Clustering of the lipoprotein subfractions measured in fasting samples together

with the serum lipids revealed �ve groups of subfractions. HDL-C clustered to-

gether with L2, L3, L5 and L7 whereas LDL-C and TC clustered together with L4

and L6 and TG clustered together with L9, L11, L12, L13, L14 and L15. In ad-

dition, we detected that lipoprotein subfraction L1 does not cluster together with

the serum lipids. Due to its size, L1 is considered to correspond to the smallest

HDL subfraction. This �nding matches the observations made by others that the

smallest HDL subfraction behaves in a di�erent way than the larger HDL subfrac-

tions (Chasman et al., 2009; Inouye et al., 2010). Inouye et al. (2010) speculated

that the smallest HDL subfraction may have pro-atherogenic potential which is in

contrast to the anti-atherogenic properties of HDL-C. However, con�icting data

on the association between cardiovascular disease risk and small HDL fractions

still complicate painting a concise picture of the fractions' speci�c role (Camont

et al., 2011). HDL-C clustered together with L2, L3, L5 and L7 which are consid-

ered to correspond to medium and large HDL and very small and medium LDL,

respectively. Interestingly, in addition to HDL related subfractions, LDL related

subfractions also clustered together with HDL-C. Furthermore, LDL-C clustered

together with L4 and L6 which are considered to be related to very large HDL

and small LDL, respectively. This cross-mixed correlation of HDL and LDL sub-

fractions needs further investigation. The subfractions clustered together with TG

are related to the more TG-rich subfractions of VLDL and chylomicrons. When

clustering the subfractions measured in plasma taken during a lipid tolerance test,

we got di�erent groups. The analysis of the lipoprotein subfractions during the

lipid tolerance test revealed that some subfractions were increased on response to

a standardised lipid tolerance test whereas other subfractions stayed nearly con-

stant. While subfractions which cluster together with TG tend to increase after

nutritional intervention, subfractions which cluster together with HDL-C stay the

same. Interestingly, subfraction L13, which relates to remnants, behaves di�er-

ent than the other subfractions which cluster together with TG. Thus, nutritional

intervention had di�erent in�uences on distinct subfractions. The analysis of sam-

ples during the lipid tolerance test was carried out in only 15 subjects. However,

HuMet is a highly controlled study and clustering of the subfractions at fasting

time points led to a clustering comparable to that of KORA samples.
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Using lipoprotein subfractions, we identi�ed eight loci that were signi�cantly as-

sociated in the KORA study whereas when analysing HDL-C, LDL-C, TC and

TG in the same individuals we found only half of the loci. These eight loci con-

tribute to diverse mechanisms of the lipid metabolism such as regulatory elements

or structural lipid components which is illustrated in Figure 4.4.

PLTP indicates the role of L1 in the lipid metabolism

PLTP encodes for the phospholipid transfer protein which transfers phospholipids

and other amphipathic compounds between lipoprotein particles (Huuskonen et al.,

2001; Rader, 2006) (Figure 4.4). Although the role of the phospholipid transfer

protein in the reverse cholesterol transport has long been studied, it still remains

controversial (Yazdanyar et al., 2011). It has been shown in a large meta-analysis

on serum lipids that PLTP is signi�cantly associated with HDL-C and TG levels

(Teslovich et al., 2010) as well as with HDL particle size (Chasman et al., 2009;

Kaess et al., 2011). Our analysis revealed that notably the lipoprotein subfraction

L1, which was only weakly correlated with HDL-C, and lipoprotein subfraction L3

were associated with PLTP with opposite directions of e�ect. The other subfrac-

tions L2, L5 and L7 which clustered together with HDL-C showed no association.

Here, the subfractions revealed an in-depth insight into the lipid metabolism. The

opposite directions of e�ect of the association of L1 and L3 presumably compensate

each other partly when analysing serum HDL-C. Moreover, due to the opposite

directions of e�ect, it can be speculated that PLTP is involved in the conversion of

L1 to L3 or vice versa. In addition, lipoprotein subfraction L1 was only marginally

captured by the measurements of serum lipids as L1 was weakly negatively corre-

lated with HDL-C and weakly positively with the other serum lipids. Therefore,

it is possible that L1 is involved in parts of the lipid metabolism which were not

covered by the measurement of the serum lipids. As L1 is related to the smallest

HDL subfraction, it is assumed that L1 represents nascent HDL which would be

an explanation for a negative correlation with HDL-C.

Lipoprotein subfractions revealed in-depth insight into mechanisms of

LIPC, CETP and FADS1-2-3

LIPC encodes for hepatic lipase which catabolises TG-enriched HDL and breaks-

down TG to diacyl- and monoacylglycerols and fatty acids (Rader, 2006). This

molecular function is observed in associations between LIPC and numerous con-

centrations of glycerophosphatidylcholines, glycerophosphatidylethanolamines and

sphingomyelins (Gieger et al., 2008). In our analysis, the strongest association oc-
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curred with L5 and L7 which clustered together with HDL-C and are considered

to be related to very small and medium LDL, respectively. Here, we observed the

largest increase in the proportion of explained variance compared to serum lipids.

But also L2 and L3, the other lipoprotein subfractions which clustered together

with HDL-C, were associated with LIPC. Interestingly, although all subfractions

which cluster together with HDL-C were signi�cantly associated with LIPC with

the same direction of e�ect, the association between LIPC and HDL-C itself was

not signi�cant (p-value = 1.60× 10−2, Table 4.3). For the remaining subfractions,

especially for the subfractions correlated with TG, we did not see an associa-

tion with LIPC as it is observed by others (Chasman et al., 2009). Whereas

LIPC was associated with all four lipoprotein subfractions which cluster together

with HDL-C, CETP was only associated with L2 and L3. CETP encodes a pro-

tein which exchanges cholesteryl esters for TG between lipoproteins (Boes et al.,

2009) (Figure 4.4). The FADS1-2-3 gene complex encodes for key enzymes in the

metabolism of long-chain polyunsaturated fatty acids. Our analysis revealed an

association between FADS1-2-3 and L4, an LDL-C correlated subfraction which

is considered to be related to large HDL. For LDL-C itself we did not see an as-

sociation with FADS1-2-3. Although FADS1-2-3 is strongly associated with TG

in the global lipids meta-analysis in more than 100 000 samples (Teslovich et al.,

2010), we observed only a small e�ect which was not signi�cant when based on

the analysis of 1791 samples. The strong association between FADS1-2-3 and L4

highlighted the potential of lipoprotein subfractions and hinted at further biologi-

cal implications of the FADS1-2-3 gene complex in the lipid metabolism.

More insight in pathway regulation and genes which encode structural

components

Among others, SORT1 and GCKR are genes that are involved in pathways reg-

ulating lipid and glucose metabolism. Musunuru et al. (2010) showed that hep-

atic expression of SORT1 alters LDL-C and VLDL levels and that SORT1 is

associated with coronary artery disease. In more detail, SORT1 encodes sor-

tilin which presumably controls the biogenesis and hepatic release of VLDL from

which LDL is generated by lipolysis (Kjolby et al., 2010) (Figure 4.4). In our

analysis, SORT1 was associated with L6, which clustered together with LDL-C

and relates to small LDL. APOB and APOA1 are genes that encode the struc-

tural components apolipoprotein B and apolipoprotein A-I. Apolipoprotein B is

the main apolipoprotein of chylomicrons, VLDL, IDL, LDL and lipoprotein(a)

whereas apolipoprotein A-I is the main apolipoprotein of HDL (Kane et al., 1980;
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Rader, 2006) (Figure 4.4). In our analysis of KORA samples, both genes were

predominantly associated with lipoprotein subfractions L8 and L10. These sub-

fractions did not cluster closely with one of the serum lipids but were more related

to the TG-correlated subfractions L9, L11, L12, L13, L14 and L15. These subfrac-

tions relate to VLDL as well as chylomicron subfractions. While APOB was only

associated with L8 and L10, APOA1 also showed associations with the particles

L11, L12 and L13 in KORA. The associations of APOA1 and APOB with L8 had

the same direction of e�ect in KORA and GRAPHIC samples although we did not

replicate them.

In total, we showed that lipoprotein subfractions provide a more detailed insight

into the lipid metabolism and thus strengthen the association with disease-relevant

genetic loci. Chasman et al. (2009) reported 43 loci associated with lipoprotein

subfractions when analysing 17 296 women. At that time, ten of these loci were

novel �ndings. By now, some of these loci were also found by Teslovich et al.

(2010) in a serum lipid meta-analysis of more than 100 000 samples. Kaess et al.

(2011) observed a strengthening in association when analysing HDL size and HDL

particle number. In our results, we observed an increase in the proportion of vari-

ance explained when analysing lipoprotein subfractions instead of serum lipids.

With the eight loci, we explained up to 4.5 % of the variance of the lipoprotein

subfractions whereas only up to 3.3 % of the variance of serum lipids could be

explained.

Overall, this study demonstrated that analysing well de�ned lipoprotein subfrac-

tions together with known genetic lipid loci leads to a genetic characterisation of

the lipoprotein subfractions as well as an in-depth insight into various processes of

the lipid metabolism. We identi�ed �ve distinct groups of lipoprotein subfractions,

one of them (L1) was only marginally captured by serum lipids and therefore ex-

tends our knowledge of lipoprotein biochemistry. During a lipid tolerance test, the

relationship between the individual classes changed and L1 lost its special position.

Based on this initial speci�cation of the lipoprotein subfractions, further testing in

clinical samples will reveal more information on their biological nature and their

impact in disease causing mechanisms. All in all, NMR-based �ne mapping of

lipoprotein subfractions provides novel information on their biological nature and

strengthens the association with genetic loci.
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Conclusion

In this application of the candidate locus approach were lipoprotein subfractions

analysed together with SNPs at 95 genetic lipid loci. This examination revealed

an in-depth insight into biological pathways underlying the associations between

the serum lipids and eight of the lipid loci. Moreover, the example of the PLTP

locus showed that the analysis of lipoprotein subfractions together with candidate

genes has the ability to detect opposed biological mechanisms which remained

undetected in the analysis of serum lipids. In conclusion, this application con�rmed

and extended current knowledge about the lipid metabolism.
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4.2 Application of the metabolomics GWAS ap-

proach: Human metabolic individuality in bio-

medical and pharmaceutical research

Background

Recent GWAS of metabolites have proven to be successful to reveal functional in-

sight into biochemical mechansims (Gieger et al., 2008; Hicks et al., 2009; Tanaka

et al., 2009b; Chasman et al., 2009; Illig et al., 2010; Suhre et al., 2011b; Demirkan

et al., 2012; Kettunen et al., 2012). For instance, knowledge about the genetical

basis of the β-oxidation or the biosynthesis of polyunsaturated fatty acids was

gained (Gieger et al., 2008; Illig et al., 2010). Whilst in some of the metabolomics

GWAS the analysis was focused on metabolite concentrations, others analysed

also selected metabolite ratios or all pair-wise metabolite ratios. Despite the in-

creased multiple testing burden when analysing all pair-wise metabolite ratios, this

hypothesis-free approach brought promising results. For example, 14 out of 15 loci

showed the strongest association with a metabolite ratio in Illig et al. (2010). How-

ever, one constraint of these metabolomics GWAS is that they were mostly based

on lipid related metabolites. Extending the metabolomics GWAS approach to a

broad set of metabolites covering many biochemical pathways will help to further

understand the role of genetic predispositions for disease aetiology as well as to

develop new and e�cient therapies, among others.

The aim of this application is to gain more insight into the human metabolism

through detection of novel genetic loci in an association analysis with over 250

blood metabolite concentrations as well as all pair-wise metabolite ratios. In ad-

dition to the GWAS, we link metabolic traits to clinically relevant phenotypes to

gain further information about possible metabolic changes associated with biolo-

gical processes underlying the clinically relevant phenotypes.

Results

In this application, we conducted GWAS of more than 250 metabolite concen-

trations as well as of about 37 000 pair-wise metabolite ratios in the KORA and

TwinsUK studies using a step-wise approach. For the GWAS, we assumed an

additive linear model and adjusted for age, sex and family structure. In most

cases, this assumption was valid and there was no in�ation of summary statistics
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Figure 4.5: Thirtyseven loci associated with blood metabolites. This Figure sum-
marises the 37 loci that were signi�cantly associated with the analysed metabolic
traits. Loci are shown colour coded by metabolic pathways together with selected
associated metabolic traits (Suhre et al., 2011a).

since λ values ranged from 0.940 to 1.024. After selection of promising genomic

regions and metabolic traits in the �rst step of our GWAS, 666 SNPs and 643

metabolic traits remained. These SNPs and metabolic traits belonged to 115 in-

dependent signals. The regions and metabolic traits of these independent signals

were further analysed using genotyped and imputed SNPs in KORA and TwinsUK,

followed by a meta-analysis of both cohorts. This analysis revealed 37 loci which

reached genome-wide signi�cance after Bonferroni correction (Table 4.5 and Figure

4.5). Quantile-quantile plots for the GWAS of the metabolic traits which belong

to the 37 loci are displayed in Figure A.1 in the Appendix. Since the observed

distribution of the p-values coincided with the expected distribution of p-values

for all except small p-values, we do not observe population strati�cation in our

cohorts. The di�erences in levels of metabolic traits strati�ed by genotype are

shown in the boxplots of Figure A.1. For metabolic traits such as butyrylcarni-

tine/propionylcarnitine and N-acetylornithine are the di�erences in the metabo-

lite level apparent for the genoptypes of rs2066938 and rs13391552, respectively.

In contrast, the strati�cation of decanoylcarnitine and isovalerylcarnitine by the

genotypes of rs8396 and rs272889, respectively, revealed smaller but still signi�-

cant variations. For 20 out of the 37 loci, the strongest association was observed
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with a metabolite ratio. This observation con�rms our strategy to conduct GWAS

of both, metabolite concentrations and metabolite ratios.

For the selection of a candidate gene for each locus, we used the chromosomal

position of the lead SNP to de�ne a set of putative candidate genes (see Regional

association plots of Figure A.1). Then, we used knowledge about the function of

the genes as well as of the associated metabolic traits to determine one single can-

didate gene. The selected candidate genes are used to label the loci in Table 4.5.

Afterwards, we used the catalogue of published GWAS (Hindor� et al., 2009) to

identify published associations between the 37 loci and clinically relevant pheno-

types. For 15 loci, published associations could be identi�ed (Table 4.6). Among

others, associations with chronic kidney disease, metabolic syndrome, Crohn's

disease and hypertriglyceridemia were identi�ed as well as associations with risk

factors for diseases such as serum lipids and fasting glucose-related traits.

Table 4.6: Published associations for genome-wide signi�cant loci. This Table
summarises the SNPs which are in LD> 0.8 to the lead SNP and which have been
reported to be associated with a clinically relevant phenotype in the catalogue of
published GWAS (Hindor� et al., 2011).

locus, SNP and metabolic trait SNPs in LD that

were reported in

published GWAS;

R2 and D' to lead

SNP

associated trait and reference

NAT8

rs13391552

N-acetylornithine

rs13538

R2 = 0.901

D'= 1.000

chronic kidney disease (Köttgen et al., 2010)

rs10206899

R2 = 0.901

D' = 1.000

serum creatinine (Chambers et al., 2010)

FADS1

rs174547

1-arachidonoylglycerophosphoethanol-

amine/1-linoleoylglycerophospho-

ethanolamine

same SNP resting heart rate (Eijgelsheim et al., 2010)

HDL-C (Kathiresan et al., 2009)

rs174550

R2 = 1.000

D' = 1.000

fasting glucose-related traits (Dupuis et al.,

2010)

rs174546

R2 = 1.000

D' = 1.000

TC, HDL-C, TG (Teslovich et al., 2010)

LDL-C (Sabatti et al., 2009; Teslovich et al.,

2010)

metabolic syndrome (Zabaneh and Balding,

2010)
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Table 4.6 (cont.)

locus, SNP and metabolic trait SNPs in LD that

were reported in

published GWAS;

R2 and D' to lead

SNP

associated trait and reference

rs102275

R2 = 1.000

D' = 1.000

Crohn's disease (Franke et al., 2010)

rs174583

R2 = 1.000

D' = 1.000

response to statin therapy (Barber et al., 2010)

rs174601

R2 = 0.864

D' = 0.963

alkaline phosphatase (Chambers et al., 2011)

rs174548

R2 = 0.800

D' = 1.000

HDL-C, TG (Waterworth et al., 2010)

UGT1A

rs887829

bilirubin (EE)/oleoylcarnitine

same SNP serum bilirubin levels (Sanna et al., 2009; Chen

et al., 2012)

rs6742078

R2 = 1.000

D' = 1.000

serum bilirubin levels (Johnson et al., 2009)

rs4148325

R2 = 1.000

D' = 1.000

bilirubin levels (Bielinski et al., 2011)

GCKR

rs780094

glucose/mannose

same SNP fasting glucose-related traits, fasting insulin-

related traits (Dupuis et al., 2010)

serum uric acid (Kolz et al., 2009)

TG (Willer et al., 2008; Wallace et al., 2008;

Aulchenko et al., 2009)

C-reactive protein (Ridker et al., 2008)

rs780093

R2 = 1.000

D' = 1.000

TG-Blood Pressure, Waist Circumference -

TG (Kraja et al., 2011)

Crohn's disease (Franke et al., 2010)

rs1260326

R2 = 0.932

D' = 1.000

platelet counts (Gieger et al., 2011)

gamma-glutamyl transferase (Chambers et al.,

2011)

C-reactive protein (Dehghan et al., 2011),

TC (Teslovich et al., 2010)

TG (Kathiresan et al., 2009; Teslovich et al.,

2010)

hypertriglyceridemia (Johansen et al., 2010)

chronic kidney disease (Köttgen et al., 2010)

two-hour glucose challenge (Saxena et al.,

2010)
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Table 4.6 (cont.)

locus, SNP and metabolic trait SNPs in LD that

were reported in

published GWAS;

R2 and D' to lead

SNP

associated trait and reference

rs1260333

R2 = 0.870

D' = 1.000

TG (Waterworth et al., 2010)

NAT2

rs1495743

1-methylxanthine/4-acetamido-

butanoate

rs1495741

R2 = 1.000

D' = 1.000

bladder cancer (Rothman et al., 2010)

TC, TG (Teslovich et al., 2010)

CYP3A4

rs17277546

androsterone sulfate

rs17277546

R2 = 1.000

D' = 1.000

serum dehydroepiandrosterone sulphate levels

(Zhai et al., 2011)

ABO

rs612169

ADpSGEGDFXAEGGGVR/

ADSGEGDFXAEGGGVR

rs514659

R2 = 1.000

D' = 1.000

coronary heart disease (Reilly et al., 2011)

rs505922

R2 = 1.000

D' = 1.000

venous thromboembolism (Trégouët et al.,

2009; Germain et al., 2011)

pancreatic cancer (Amundadottir et al., 2009)

rs657152

R2 = 0.931

D' = 1.000

serum phytosterol levels (Teupser et al., 2010)

plasma levels of liver enzymes (Yuan et al.,

2008)

SLC2A9

rs4481233

urate

rs7442295

R2 = 0.871

D' = 1.000

serum urate (Döring et al., 2008; Wallace

et al., 2008)

SLC22A1

rs662138

isobutyrylcarnitine

rs1564348

R2 = 0.906

D' = 1.000

TC, LDL-C (Teslovich et al., 2010)

SLCO1B1

rs4149081

eicosenoate (20:1n9 or 11)/

tetradecanedioate

rs4363657

R2 = 1.000

D' = 1.000

bilirubin levels (Bielinski et al., 2011)

FUT2

rs503279

ADpSGEGDFXAEGGGVR/

ADSGEGDFXAEGGGVR

rs504963

R2 = 1.000

D' = 1.000

Crohn's disease (McGovern et al., 2010)

rs281379

R2 = 0.966

D' = 1.000

Crohn's disease (Franke et al., 2010)

rs602662

R2 = 0.933

D' = 1.000

folate pathway vitamin levels (Tanaka et al.,

2009a)

rs492602

R2 = 0.816

D' = 1.000

TC (Teslovich et al., 2010)

plasma level of vitamin B12 (Hazra et al.,

2008)
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Table 4.6 (cont.)

locus, SNP and metabolic trait SNPs in LD that

were reported in

published GWAS;

R2 and D' to lead

SNP

associated trait and reference

rs516246

R2 = 0.816

D' = 1.000

gamma-glutamyl transferase (Chambers et al.,

2011)

ACE

rs4329

aspartylphenylalanine

rs4343

R2 = 0.816

D' = 1.000

angiotensin-converting enzyme activity

(Chung et al., 2010)

ENPEP

rs2087160

ADpSGEGDFXAEGGGVR/

DSGEGDFXAEGGGVR

rs6825911

R2 = 0.948

D' = 1.000

blood pressure (Kato et al., 2011)

ALPL

rs10799701

ADpSGEGDFXAEGGGVR/

DSGEGDFXAEGGGVR

rs1780324

R2 = 1.000

D' = 1.000

plasma levels of liver enzymes (Yuan et al.,

2008)

PDXDC1

rs7200543

1-eicosatrienoylglycerophosphocho-

line/1-linoleoylglycerophosphocholine

rs1136001

R2 = 1.000

D' = 1.000

height (Okada et al., 2010)

After the identi�cation of novel loci associated with blood metabolites, we further

analysed them together with clinically relevant phenotypes. As �rst example, we

selected from Table 4.6 the NAT8 locus which is published to be associated with

chronic kidney disease (Köttgen et al., 2010). In our analysis, we observed an

association between NAT8 and N-acetylornithine. Therefore, we were interested

whether N-acetylornithine was associated with eGFR which is a marker for kidney

function. As a result, we found an association with eGFR in KORA and TwinsUK

with p-value = 7.6 × 10−4 and p-value = 3.6 × 10−8, respectively, after adjusting

for age and sex as well as family structure in TwinsUK.

Another approach to select clinically relevant phenotypes for the follow-up analysis

is to use knowledge about gene function and biochemical pathways. An example

where we applied this procedure is the KLKB1 locus which encodes the kallikrein

B plasma (Fletcher factor) 1. Plasma kallikrein is known to be involved in the

regulation of blood pressure via the bradykinin pathway. This makes KLKB1 a

promising gene in a candidate gene analysis of hypertension (Lu et al., 2007). Thus,

we selected bradykinin which was associated with the KLKB1 locus to investigate
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the association with hypertension. As a result, this association analysis lead to a

p-value = 1.73× 10−9 and p-value = 0.0495 in KORA and TwinsUK, respectively,

after adjustment for the covariates age and sex as well as family structure in the

TwinsUK study.

Biological discussion

The discovered 37 loci may help to reveal further insight into biochemical mech-

anisms underlying the human metabolism. Therefore, we discuss exemplary the

associations of NAT8, KLKB1, ABO, FUT2, ALPL and ENPEP in the following.

Moreover, we take the examples of FADS1 and ACADS to illustrate the strength-

ening in association when analysing metabolite ratios compared to raw metabolite

concentrations.

NAT8 - N-acetylornithine - kidney function

An impaired kidney function is a risk factor for cardiovascular outcomes such

as myocardial infarction and stroke. One measure to determine a reduced kid-

ney function is the eGFR. Using this marker, GWAS have been conducted to

investigate the genetical basis of kidney function (Chambers et al., 2010; Köttgen

et al., 2010). Among others, the NAT8 gene was identi�ed in the 2p12-13 lo-

cus as a promising candidate. The NAT8 gene encodes the N-acetyltransferase

and is mainly expressed in the liver. Chambers et al. (2010) speculated that

NAT8 in�uences kidney function via the acetylation pathway which is an impor-

tant mechanism for the detoxi�cation process of medications as well as environ-

mental toxins (Chambers et al., 2010). Our metabolomics GWAS revealed an

association between NAT8 and N-acetylornithine which is involved in the acety-

lation process. Since the NAT8 locus was already published to be associated with

kidney function, we conducted a follow-up analysis and found an association be-

tween N-acetylornithine and eGFR. Therefore, our study con�rmed the hypothesis

that NAT8 in�uences kidney function via the acetylation pathway. Nevertheless,

causality cannot be inferred form our analysis and the clari�cation of the detailed

processes needs further investigation. This was also pointed out by Nicholson

et al. (2011) who found inconsistencies in the directionality of associations with

the NAT8 locus.
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KLKB1 - bradykinin - hypertension

The second locus for which we conducted a follow-up analysis with a clinically

relevant phenotype was KLKB1. In contrast to the NAT8 locus, GWAS of hyper-

tension as well as systolic and diastolic blood pressure did not reveal a signi�cant

association with KLKB1 (Newton-Cheh et al., 2009; Levy et al., 2009; Ehret et al.,

2011). So far, these GWAS comprised of up to 200 000 samples and resulted in

a p-value for rs4253252 in the KLKB1 locus of 0.622 for systolic blood pressure

and 0.221 for diastolic blood pressure (Ehret et al., 2011). These p-values are far

from being genome-wide signi�cant. Nevertheless, KLKB1 is a candidate gene

for the analysis of hypertenstion (Lu et al., 2007). KLKB1 encodes the kallikrein

B plasma (Fletcher factor) 1. Plasma kallikrein releases bradykinin in the blood

and activates renin. Through these biochemical changes is blood pressure regu-

lated by plasma kallikrein. Candidate gene studies showed an association between

KLKB1 and hypertension (Lu et al., 2007). This context is supported by our

study where we revealed an association between KLKB1 and bradykinin which

furthermore was associated with hypertension. One reason why it was not pos-

sible to detect the association between KLKB1 and hypertension in GWAS, so

far, might be that hypertension is in�uenced by many biochemical pathways. This

pathway diversity is re�ected in the broad spectrum of anti-hypertensive medi-

cations, e.g. angiotensin-converting-enzyme inhibitors, diuretics or beta blockers

(Newton-Cheh et al., 2009). However, it is essential to further investigate pathways

involved in blood pressure regulation as well as to develop new anti-hypertensive

drugs since a reduction of blood pressure achieves a reduction in risk for stroke,

among others.

GCKR - mannose/glucose

GCKR is localised on chromosome 2p23 and encodes the glucokinase (hexokinase

4) regulator (Warner et al., 1995). Hitherto, it is known that this glucokinase

regulating protein is oppositional in�uenced by fructose-6-phosphate and fructose-

1-phosphate (Van Schaftingen, 1989; Malaisse et al., 1990). Within the last years,

several GWAS revealed that GCKR is a major pleiotropic risk locus. Associations

with di�erent clinically relevant phenotypes were reported, for example fasting

glucose-related and fasting insulin-related traits (Dupuis et al., 2010), serum uric

acid (Kolz et al., 2009), C-reactive protein (Ridker et al., 2008) and serum lipids

(Teslovich et al., 2010) (Table 4.6). Our results showed an association of GCKR

with the mannose/glucose ratio. This metabolite ratio was remarkably stronger

associated with GCKR than the raw glucose concentrations (p-gain = 1.5× 1021).
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This �nding may help to explain the observed associations between GCKR and

some clinically relevant phenotypes as well as to further elucidate the role of man-

nose in the human metabolism. So far, it has been shown that mannose is used

for the synthesis of glycoproteins (Taguchi et al., 2005). For this glycosylation,

mannose is formed from mannose-6-phosphate which can enter cells using a man-

nose speci�c transporter which is insensitive to glucose (Panneerselvam and Freeze,

1996; Taguchi et al., 2005).

ABO, FUT2 - ADpSGEGDFXAEGGGVR/ADSGEGDFXAEGGGVR

and ALPL, ENPEP - ADpSGEGDFXAEGGGVR/DSGEGDFXAEG-

GGVR

All four loci (ABO, FUT2, ALPL and ENPEP) are associated in our study with a

ratio of two �brinogen A-α peptides. These peptides di�er in the phosphorylation

at serine. Additionally, the amino acid alanine is cleaved o� in DSGEGDFX-

AEGGGVR compared to ADpSGEGDFXAEGGGVR for ALPL and ENPEP. An

explanation for the association of �brinogen ratios which represent �brinogen phos-

phorylation with these loci might be through the phenotype alkaline phosphatase

which is a liver enzyme that is used as a marker for biliary obstruction (Chambers

et al., 2011). The three loci ABO, FUT2 and ALPL are known to be associated

with alkaline phosphatase (Yuan et al., 2008; Chambers et al., 2011). Among oth-

ers, the alkaline phosphatase is encoded by the ALPL locus. Furthermore, the

association between the alkaline phosphatase and the ABO locus can be explained

by an association between alkaline phosphatase and the ABO blood group (Whit-

�eld and Martin, 1983). The ABO locus encodes a glycosyltransferase which is

involved in the transfer of carbohydrates to the H antigen and thus encodes the

ABO blood group antigens (Amundadottir et al., 2009). Additionally, the expres-

sion of the ABO blood group antigens is also in�uenced by fucosyltransferase 2

which is encoded by FUT2 (Hazra et al., 2008). One may speculate now that

the loci ABO, FUT2 and ALPL in�uence the levels of alkaline phosphatase which

furthermore may be linked to �brinogen phosphorylation through a common pool

of phosphate. The role of the ENPEP locus in this context is not clari�ed, so far.

ENPEP encodes a glutamyl aminopeptidase (aminopeptidase A) and is known to

be associated with blood pressure (Kato et al., 2011).

Hitherto, GWAS of up to 22000 samples have been conducted for blood �brinogen

concentrations. Despite these large sample sizes, none of them detected an asso-

ciation with any of the four loci (Dehghan et al., 2009; Danik et al., 2009; Lovely

et al., 2011). This observation may support the assumption that ABO, FUT2,
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ALPL and ENPEP are associated with the phosphorylation of �brinogen and not

with raw �brinogen concentrations.

FADS1 - 1-arachidonoylglycerophosphoethanolamine/1-linoleoylglycero-

phosphoethanolamine

The analysis of metabolite ratios strengthend the association compared to raw

metabolite concentrations for the loci GCKR, ABO, FUT2, ALPL and ENPEP.

Another example where this is the case is the FADS1 locus. FADS1 encodes

the fatty acid desaturase 1 and was best associated with 1-arachidonoylglycero-

phosphoethanolamine/1-linoleoylglycerophosphoethanolamine in our study. The

fatty acid desaturase which is encoded by FADS1 is a key enzyme in the metabolism

of long chain polyunsaturated omega 3 and omega 6 fatty acids where it con-

verts dihomo-γ-linolenic acid (20:3n-6) to arachidonic acid (20:4n-6) (Lattka et al.,

2010). These metabolites have an association p-value of 1.03 × 10−4 for dihomo-

linolenate (20:3n-3 or n-6) and of 2.3 × 10−21 for arachidonate (20:4n-6). For

arachidonate (20:4n-6), the FADS1 locus explains about 5.2 % of the observed

variance. In contrast, the p-value for the association between the ratio of these

metabolites, arachidonate (20:4n-6)/dihomo-linolenate (20:3n-3 or n-6) and the

FADS1 locus is 9.99× 10−66 and the explained variance 15.3 %. This strengthen-

ing in association corresponds to the biological function of the FADS1 gene. Thus,

the biochemical properties of the associated metabolite pair provides information

on the functional background of the association.

ACADS - butyrylcarnitine/propionylcarnitine

Another example where the gene function matches the associated metabolic trait

is the ACADS locus. The ACADS locus encodes an acyl-coenzyme A dehydro-

genase which catalyses the β-oxidation of short chain acylcarnitines (Corydon

et al., 1997). In our study, the ACADS locus was associated with butyrylcarni-

tine/propionylcarnitine. Therefore, this ratio matches the substrate and product

of the reaction of the short-chain acyl-coenzyme A dehydrogenase. Genes which

belong to the same family as ACADS are ACADM and ACADL. ACADM en-

codes an enzyme which catalyses the β-oxidation of medium chain acylcarnitines

whereas the enzyme encoded by ACADL catalyses the β-oxidation of long chain

acylcarnitines. Associations between metabolic traits and the three acyl-coenzyme

A encoding genes were observed by Illig et al. (2010).
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Overall, this application revealed 37 loci that were associated with metabolic traits

belonging to di�erent biochemical classes. For two loci, we showed an association

between a genetic variant, a metabolic trait and a clinically relevant phenotype:

NAT8 with N-acetylornithine and eGFR as well as KLKB1 with bradykinin and

hypertension. In total, the �ndings of this GWAS brought additional insight into

pathways of the human metabolism and generated hypotheses to test in future

studies.

Conclusion

This application of the metabolomics GWAS approach to more than 250metabolite

concentrations and over 37 000 pair-wise metabolite ratios revealed 37 loci to be

involved in the human metabolism. Moreover, a follow-up analysis showed further

associations between a metabolic trait and a clinically relevant phenotype for the

two loci NAT8 and KLKB1. All in all, this application con�rmed and extended

current knowledge about various processes of the human metabolism.
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4.3 Statistical exploration of the p-gain: On the

hypothesis-free testing of metabolite ratios in

genome-wide and metabolome-wide association

studies

Background

The analysis of metabolite ratios has proven to be successful. As observed in

Chapter 4.2, 20 out of 37 loci showed stronger associations with metabolite ratios

than with metabolite concentrations. In order to quantify the strengthening in

association when analysing metabolite ratios in comparison to metabolite concen-

trations, the p-gain was introduced (Gieger et al., 2008). So far, the number of

analysed metabolite concentrations was applied as an ad-hoc critical value of the

p-gain. This approach can merely be regarded as an intuitive rule of thumb since

a statistical determination of the distribution of the p-gain and herewith of the

critical values has not yet been conducted.

Therefore, one aim of this thesis is to derive critical values through determination

of the distribution of the p-gain and to provide a density table for readout of

critical values. In addition, we investigate the characteristics of the p-gain in the

situation of Bonferroni correction for multiple tests as well as the dependence of

observed p-gain values on the sample size. Finally, we illustrate the power of

the p-gain approach by investigating the enrichment for common pathways among

metabolite ratios with large p-gain at the concrete example of the application of

the metabolomics GWAS of Chapter 4.2.

Results and discussion

Formal de�nition of the p-gain

The p-gain was introduced in order to measure whether the association with a

genetic locus is signi�cantly stronger for a metabolite ratio than for the belonging

metabolite concentrations. The de�nition of the p-gain for the ratio M1/M2 of

metabolites M1 and M2 at a genetic locus X is as follows:

p-gain

(
M1

M2

∣∣∣∣X) :=
min(p-value(M1|X), p-value(M2|X))

p-value(M1

M2
|X)

. (1)

51



Conservative p-gain for common statistics

Although the p-gain was often used in metabolomics GWAS, only a rule of thumb

for the determination of critical values was applied, so far. The p-gain was consid-

ered as being relevant when its value exceeded the number of analysed metabolite

concentrations (Gieger et al., 2008; Illig et al., 2010, Chapter 4.1 and 4.2). Here,

we derive critical values of the p-gain by determination of the distribution to de-

�ne a more sensible threshold. As the distribution of the p-gain depends on the

correlation structure among the metabolic traits, conservative critical values are

bene�cial in case of analysing multiple sets of metabolic traits since they can be

applied to all analysed settings. For this purpose, we used an universal p-gain

de�ned as the ratio of p-values belonging to two uncorrelated metabolic traits:

p-gainuniv

(
M1

M2

∣∣∣∣X) :=
p-value(M1|X)

p-value(M1

M2
|X)

, cor(M1,
M1

M2

) = 0. (2)

Critical values of the distribution of this p-gain are conservative to the critical

values of the distribution of the p-gain given in equation (1) (see Chapter 3.2.3).

In the situation of the universal p-gain (equation (2)) we could use the convolution

formula for density ratios which gave us a split density:

f P (M1)
P (M1/M2)

(p-gain) =


1

2·p-gain2 , p-gain ≥ 1

1
2
, 0 < p-gain < 1

,

which is displayed in Figure 4.6 (black line). To determine critical values, we

derived the cumulative distribution function of the density, i.e.

F P (M1)
P (M1/M2)

(p-gain) =


1− 1

2·p-gain , p-gain ≥ 1

1
2
p-gain, 0 < p-gain < 1

.

Herewith, the critical value becomes 1
2·α with α denoting the level of signi�cance.

In the case of the typically used α level of 0.05, this yields a corresponding critical

value for the p-gain of 10.

Critical values for multiple testing

In the case of conduction of many analyses, a correction for multiple testing has

to be applied. When admitting a type I error rate of α and applying a Bonferroni
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Figure 4.6: Density of the p-gain. This Figure shows the density of the p-gain for
the calculated conservative p-gain of uncorrelated metabolic traits as well as for
four loci which were signi�cant in the application of the metabolomics GWAS ap-
proach (Chapter 4.2). The ACADS locus was found to be associated with butyryl-
carnitine/propionylcarnitine, FADS1 with 1-arachidonoylglycerophosphoethanol-
amine/1-linoleoylglycerophosphoethanolamine, GCKR with glucose/mannose and
NAT2 with 1-methylxanthine/4-acetamidobutanoate.

correction for B tests, i.e. aiming at a level of signi�cance of α
B
, the critical value

for the p-gain then becomes B
2·α . For example, assumption of a type I error rate

of α = 0.05 leads to a critical value of 10 · B which implies that for Bonferroni

correction of B tests the uncorrected critical value of 10 can be multiplied by the

number of tests B. Hence, the critical value of the p-gain in the situation of mul-

tiple testing is not the number of analysed metabolite concentrations, which was

used so far as an ad-hoc criterion, but rather ten times the number of tests where

the p-gain was applied.

P-gain for correlated metabolic traits

The case of uncorrelated metabolic traits (equation (2)) was conservative with

respect to the p-gain as de�ned in equation (1). Therefore, we analysed also the

density of the p-gain as de�ned in equation (1) for selected correlation settings.
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In the situation of correlated metabolic traits the convolution formula cannot be

applied anymore. Thus we simulated the density using a copula to generate the

correlation among the metabolic traits. After this simulation, we transferred the

correlation structure of the metabolic traits to a correlation structure among the

p-values through conduction of linear regressions. Quantiles for the p-gain densi-

ties of correlated metabolic traits are provided in Table A.5 for various correlation

settings. It can be observed that when any of the correlations cor(M1,M1/M2)

or cor(M2,M1/M2) increase, the values of the quantiles of the p-gain decrease.

This observation can be explained by the fact that the variation of the p-gain can

be reduced by increasing the correlation between a metabolite concentration and

the ratio (i.e. cor(M1,M1/M2) or cor(M2,M1/M2)). A reduction of the varia-

tion of the p-gain leads to smaller critical values. On the other hand, for �xed

cor(M1,M1/M2) and cor(M2,M1/M2), an increase in the correlation between M1

andM2 leads to an increase in the values for the p-gain quantiles when the correla-

tion betweenM1 andM2 is not close to 0. Extending these observations to the most

extreme and idealised case of having fully correlated metabolic traits which are un-

correlated with a third metabolic trait (i.e. cor(M1,M2) = 1, cor(M1,M3) = 0,

cor(M2,M3) = 0) we get the largest critical values and thus these critical values

are conservative to all correlation settings. Note that this idealised case is not

possible for two metabolite concentrations M1 and M2 together with their ratio

M3 =M1/M2 as for fully correlated metabolite concentrations the ratio reduces to

a numerical constant. This idealised case reduces the p-gain as de�ned in equation

(1) to the universal p-gain as de�ned in equation (2). For this case, we derived the

distribution using the convolution formula as well as through a simulation analysis.

The results of both analyses coincided (Figure 4.7, Table A.5).

Dependence of p-gain values on sample size

In order to examine the behavior of the p-gain in the situation of real data, we

computed the observed correlation structure among the metabolite ratios which

were signi�cant in the metabolomics GWAS of Chapter 4.2 (Table 4.7). This

data set includes nearly uncorrelated metabolites, such as the ratio between 1-

methylxanthine and 4-acetamidobutanoate (association with the NAT2 locus) as

well as highly correlated metabolites, such as the androsterone sulfate to epiandros-

terone sulfate ratio (association with the AKR1C locus). The distributions of

exemplary metabolite ratios are presented in Figure 4.6. As expected, the den-

sities for correlated metabolic traits display smaller variations than the universal

density for uncorrelated metabolic traits. Using this data set we conducted sim-
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Table 4.7: Correlation among 20 signi�cant metabolite ratios. This Table sum-
marises the correlation structure among the 20 metabolite ratios which were dis-
covered in the metabolomics GWAS of Chapter 4.2.

label metabolite ratio (M1/M2) correlation

(M1;M2) (M1;M1/M2) (M2;M1/M2)

ACADS butyrylcarnitine/propionylcarnitine 0.422 0.769 −0.255

FADS1 1-arachidonoylglycerophosphoethanolamine/
1-linoleoylglycerophosphoethanolamine

0.615 −0.547 0.323

UGT1A bilirubin (E,E)/oleoylcarnitine 0.627 0.731 −0.073

ACADM hexanoylcarnitine/oleate (18:1n9) 0.498 0.777 −0.159

SCD myristate (14:0)/myristoleate (14:1n5) 0.830 −0.131 −0.662

GCKR glucose/mannose 0.589 0.012 −0.801

NAT2 1-methylxanthine/4-acetamidobutanoate 0.038 0.896 −0.410

ABO ADpSGEGDFXAEGGGVR/ADSGEGDFXAEGGGVR 0.407 0.724 −0.335

CYP4A 10-nonadecenoate (19:1n9)/10-undecenoate (11:1n1) 0.555 0.555 −0.383

SLCO1B1 eicosenoate (20:1n9 or 11)/tetradecanedioate 0.303 0.513 −0.662

FUT2 ADpSGEGDFXAEGGGVR/ADSGEGDFXAEGGGVR 0.407 0.724 −0.335

ENPEP ADpSGEGDFXAEGGGVR/DSGEGDFXAEGGGVR 0.511 0.393 −0.589

AKR1C androsterone sulfate/epiandrosterone sulfate 0.920 0.464 0.081

ALPL ADpSGEGDFXAEGGGVR/DSGEGDFXAEGGGVR 0.511 0.393 −0.589

SLC7A6 glutaroyl carnitine/lysine 0.011 0.862 −0.497

PDXDC1 1-eicosatrienoylglycerophosphocholine/
1-linoleoylglycerophosphocholine

0.579 0.676 −0.210

AHR ca�eine/quinate 0.207 0.748 −0.495

ELOVL2 docosahexaenoate (DHA; 22:6n3)/
eicosapentaenoate (EPA; 20:5n3)

0.771 0.203 −0.467

IVD 3-(4-hydroxyphenyl)lactate/isovalerylcarnitine 0.327 0.552 −0.607

SLC16A10 isoleucine/tyrosine 0.441 0.592 −0.462
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Figure 4.7: Calculated and simulated density for universal p-gain. This Figure
shows that the calculated density of the universal p-gain and the simulated density
of the p-gain for the idealised case of fully correlated metabolic traits which are
uncorrelated with a third metabolic trait coincide. On the x-axis is the p-gain
value entered and on the y-axis the density. The red line is the calculated density
whereas the black line is the simulated density.

ulation tests to address the in�uence of the sample size on the observed p-gain

values. We chose randomly sets of samples sizes between 100 and 2000 samples

from the KORA study and calculated the p-gain for these sets. The results of this

analysis illustrate the dependence of the p-gain values on the sample size (Table

4.8). For example, we observe for the association between the ACADS locus and

the butyrylcarnitine to propionylcarnitine ratio a median p-gain value of 1.4× 102

for a sample size of N= 100, of 1.1× 105 for N= 500, of 2.8× 1010 for N= 1000, of

3.1× 1015 for N= 1500 and of 1.4× 1021 for N=2000.

Pathway enrichment for metabolite ratios with large p-gains

To show the power of the p-gain approach, we conducted a pathway enrichment

analysis for the 37 000 metabolite ratios of the application of the metabolomics

GWAS (Chapter 3.2.2 and 4.2). Therefore, we compared the common pathway

membership of metabolite ratios with a large p-gain in a GWAS to the overall

average of common pathway a�liation in the metabolite ratio data set. Pathway

membership of the metabolite concentrations was determined through evaluation

of di�erent pathway mappings (see Chapter 3.2.3). Moreover, we chose the largest

p-gain of each metabolite ratio GWAS as allocation of a p-gain to each of the
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Table 4.8: P-gain values for various sample sizes. This Table shows the dependence
of the p-gain on the sample sizes for the 20 signi�cant metabolite ratios of Chapter
4.2. The label of the locus, the metabolite ratio and SNP are given for each locus.
Furthermore, the median as well as the 1st and 3rd quartiles are speci�ed for
randomly drawn sample subsets from the KORA study.

label metabolite ratio SNP sample size

N= 100 N= 500 N= 1000 N= 1500 N=2000

ACADS butyrylcarnitine/

propionylcarnitine

rs2066938 1.4×102 1.1×105 2.8×1010 3.1×1015 1.4×1021
(3.0×100; (8.3×101; (2.1×103; (8.6×104; (2.5×107;
6.4×103) 1.7×1011) 4.9×1018) 2.7×1027) 2.0×1036)

FADS1
1-arachidonoyl-

glycerophospho-

ethanolamine/1-

linoleoylglycero-

phosphoethanol-

amine

rs174547 1.4×103 3.1×108 4.1×1017 4.8×1025 2.7×1035
(1.2×102; (1.4×103; (2.2×104; (3.2×108; (1.6×1015;
2.2×104) 4.1×1017) 1.2×1032) 3.3×1044) 2.2×1058)

UGT1A bilirubin (E,E)/

oleoylcarnitine

rs887829 4.1×101 3.2×104 4.9×108 3.1×1012 2.1×1017
(7.3×100; (4.1×101; (3.2×102; (3.2×104; (1.1×107;
3.3×102) 5.6×108) 9.7×1014) 4.3×1021) 2.7×1028)

ACADM hexanoylcarnitine/

oleate (18:1n9)

rs211718 3.7×100 1.8×101 2.5×102 6.1×103 1.3×105
(7.4×10−1; (1.5×100; (3.9×100; (1.0×101; (3.2×101;
1.7×101) 1.2×103) 2.0×105) 2.4×107) 3.4×109)

SCD
myristate (14:0)/

myristoleate

(14:1n5)

rs603424 5.1×101 7.1×104 3.5×109 8.4×1013 2.7×1019
(9.5×100; (5.1×101; (4.6×102; (7.2×104; (8.2×107;
4.7×102) 4.1×109) 1.1×1017) 9.1×1023) 5.3×1031)

GCKR glucose/mannose rs780094 4.1×100 1.6×101 9.5×101 7.8×102 7.3×103
(1.1×100; (1.8×100; (3.9×100; (8.4×100; (2.1×101;
2.7×101) 4.0×102) 1.8×104) 8.6×105) 2.6×107)

NAT2
1-methylxanthine/

4-acetamido-

butanoate

rs1495743 1.7×100 7.6×100 1.3×102 2.3×103 5.0×104
(6.1×10−1; (1.4×100; (2.8×100; (7.2×100; (3.1×101;
4.2×100) 1.8×102) 1.5×104) 1.5×106) 1.5×108)

ABO
ADpSGEGDFXA-

EGGGVR/ADSG-

EGDFXAEGGG-

VR

rs612169 3.2×100 4.2×101 3.8×103 3.2×105 5.5×107
(1.1×100; (3.0×100; (8.6×100; (4.1×101; (5.0×102;
1.0×101) 4.9×103) 5.6×106) 8.7×109) 1.1×1013)

CYP4A
10-nonadecenoate

(19:1n9)/10-unde

cenoate (11:1n1)

rs9332998 1.9×100 7.0×100 3.8×101 2.9×102 2.6×103
(5.2×10−1; (9.3×10−1; (1.8×100; (3.5×100; (7.8×100;
7.7×100) 1.6×102) 4.6×103) 1.7×105) 6.0×106)

SLCO1B1
eicosenoate

(20:1n9 or 11)/

tetradecane-

dioate

rs4149081 1.3×100 4.0×100 1.5×101 6.8×101 3.3×102
(5.1×10−1; (8.4×10−1; (1.4×100; (2.6×100; (5.0×100;
4.2×100) 4.1×101) 4.6×102) 5.4×103) 6.3×104)
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Table 4.8 (cont.)

label metabolite ratio SNP sample size

N= 100 N= 500 N= 1000 N= 1500 N=2000

FUT2
ADpSGEGDFXA-

EGGGVR/ADSG-

EGDFXAEGGG-

VR

rs503279 1.2×100 2.9×100 1.0×101 4.4×101 1.9×102
(6.0×10−1; (8.9×10−1; (1.4×100; (2.3×100; (4.3×100;
2.9×100) 2.0×101) 2.0×102) 1.8×103) 1.8×104)

ENPEP
ADpSGEGDFXA-

EGGGVR/DSGE-

GDFXAEGGGVR

rs2087160 1.0×100 1.9×100 4.3×100 1.0×101 2.6×101
(4.6×10−1; (7.0×10−1; (9.4×10−1; (1.4×100; (1.9×100;
2.4×100) 8.8×100) 3.8×101) 2.0×102) 9.1×102)

AKR1C
androsterone

sulfate/

epiandrosterone

sulfate

rs2518049 1.3×100 3.0×100 8.3×100 2.8×101 8.7×101
(5.5×10−1; (8.8×10−1; (1.3×100; (2.2×100; (3.4×100;
4.1×100) 1.9×101) 1.3×102) 8.1×102) 4.8×103)

ALPL
ADpSGEGDFXA-

EGGGVR/DSGE-

GDFXAEGGGVR

rs10799701 1.5×100 4.6×100 2.4×101 1.7×102 1.3×103
(5.6×10−1; (9.2×10−1; (1.7×100; (3.1×100; (6.7×100;
4.5×100) 5.4×101) 1.4×103) 3.6×104) 1.3×106)

SLC7A6 glutaroyl

carnitine/lysine

rs6499165 1.0×100 2.1×100 5.6×100 1.8×101 6.8×101
(5.2×10−1; (7.5×10−1; (1.1×100; (1.7×100; (2.7×100;
2.0×100) 9.8×100) 6.9×101) 4.7×102) 3.5×103)

PDXDC1
1-eicosatrienoyl-

glycerophospho-

choline/1-linoleoyl-

glycerophospho-

choline

rs7200543 1.3×100 2.8×100 6.8×100 1.9×101 5.9×101
(5.7×10−1; (7.6×10−1; (1.1×100; (1.7×100; (2.7×100;
4.0×100) 1.8×101) 1.1×102) 7.1×102) 4.2×103)

AHR ca�eine/quinate rs12670403 1.0×100 2.3×100 5.7×100 1.8×101 5.4×101
(4.6×10−1; (6.5×10−1; (9.0×10−1; (1.3×100; (2.0×100;
2.6×100) 1.7×101) 1.0×102) 6.3×102) 5.1×103)

ELOVL2
docosahexaenoate

(DHA; 22:6n3)/

eicosapentaenoate

(EPA; 20:5n3)

rs9393903 1.6×100 7.7×100 7.6×101 8.6×102 1.1×104
(6.7×10−1; (1.3×100; (2.9×100; (6.9×100; (2.0×101;
5.4×100) 1.4×102) 6.2×103) 3.3×105) 1.4×107)

IVD
3-(4-hydroxy

phenyl) lactate/

isovalerylcarnitine

rs10518693 1.0×100 2.1×100 5.5×100 1.6×101 4.9×101
(5.3×10−1; (7.1×10−1; (9.5×10−1; (1.3×100; (2.1×100;
2.3×100) 1.3×101) 7.4×101) 5.6×102) 3.1×103)

SLC16A10 isoleucine/tyrosine rs7760535 1.2×100 3.3×100 1.5×101 6.9×101 3.9×102
(5.8×10−1; (9.3×10−1; (1.5×100; (2.8×100; (6.0×100;
2.8×100) 2.7×101) 2.9×102) 4.5×103) 7.4×104)

37 000 metabolite ratios. Hence, we got a set of 37 000 `metabolite ratio - p-gain

- SNP' assignments which we further analysed. As result, the observed p-gains

varied from 10.02 to 1.68× 1066 with a fast decrease in the highest values. Ascer-

tainment of the metabolite ratios to pathway mapping revealed that on average

13.97 % of all metabolite ratios were on a pathway. In contrast, among the ten

metabolite ratios with largest p-gain 57 % were mapped to a pathway (Table 4.9).

For example, SNPs in the FADS1 gene (rs174547) were associated with the ratio 1-

58



T
ab
le
4.
9:

T
en

m
et
ab
ol
it
e
ra
ti
os

w
it
h
la
rg
es
t
p-
ga
in

va
lu
es
.
T
hi
s
T
ab
le
su
m
m
ar
is
es

th
e
te
n
m
et
ab
ol
it
e
ra
ti
os

w
hi
ch

ha
ve

th
e
la
rg
es
t

p-
ga
in

va
lu
es

in
ou
r
pa
th
w
ay

en
ri
ch
m
en
t
an
al
ys
is
of

17
68

K
O
R
A
sa
m
pl
es
.
F
or

ea
ch

m
et
ab
ol
it
e
ra
ti
o
th
e
as
so
ci
at
ed

SN
P
to
ge
th
er

w
it
h
th
e
e�
ec
t
si
ze

(b
et
a)
,
st
an
da
rd

er
ro
r
(S
E
),
p-
va
lu
e
an
d
p-
ga
in

of
th
e
as
so
ci
at
io
n
ar
e
pr
ov
id
ed
.
T
he

pa
th
w
ay

sc
or
e
sp
ec
i�
es

th
e
p
er
ce
nt
ag
e
of

pa
th
w
ay

m
ap
pi
ng
s
w
hi
ch

al
lo
ca
te

b
ot
h
m
et
ab
ol
it
es

of
th
e
ra
ti
o
to

a
co
m
m
on

pa
th
w
ay
.

m
et
a
b
o
li
te

ra
ti
o

S
N
P

g
en
e

b
et
a

S
E

p
-v
a
lu
e

p
-g
a
in

p
a
th
w
ay

sc
o
re

(%
)

1
-a
ra
ch
id
o
n
oy
lg
ly
ce
ro
p
h
o
sp
h
o
et
h
a
n
o
la
m
in
e/

1
-l
in
o
le
oy
lg
ly
ce
ro
p
h
o
sp
h
o
et
h
a
n
o
la
m
in
e

rs
1
7
4
5
4
7

F
A
D
S
1

−
0
.0
9

0
.0
0
4

1
.1
5
×

1
0
−
8
0

1
.6
8
×

1
0
6
6

8
0

b
u
ty
ry
lc
a
rn
it
in
e/
p
ro
p
io
n
y
lc
a
rn
it
in
e

rs
2
0
6
6
9
3
8

A
C
A
D
S

0
.2
1

0
.0
0
6

6
.0
7
×

1
0
−
2
2
0

6
.1
5
×

1
0
4
2

8
0

m
y
ri
st
a
te

(1
4
:0
)/
m
y
ri
st
o
le
a
te

(1
4
:1
n
5
)

rs
6
0
3
4
2
4

S
C
D

0
.0
5

0
.0
0
4

5
.2
9
×

1
0
−
4
3

4
.2
2
×

1
0
3
5

8
0

b
il
ir
u
b
in

(E
,E
)/
o
le
oy
lc
a
rn
it
in
e

rs
8
8
7
8
2
9

U
G
T
1
A

0
.1
1

0
.0
0
7

1
.1
5
×

1
0
−
5
6

2
.6
3
×

1
0
3
2

3
3

1
-a
ra
ch
id
o
n
oy
lg
ly
ce
ro
p
h
o
sp
h
o
ch
o
li
n
e/

1
-e
ic
o
sa
d
ie
n
oy
lg
ly
ce
ro
p
h
o
sp
h
o
ch
o
li
n
e

rs
1
7
4
5
7
7

F
A
D
S
2

−
0
.0
9

0
.0
0
6

7
.7
9
×

1
0
−
5
2

1
.3
4
×

1
0
3
2

6
0

A
D
p
S
G
E
G
D
F
X
A
E
G
G
G
V
R
/
A
D
S
G
E
G
D
F
X
A
E
G
G
G
V
R

rs
6
1
2
1
6
9

A
B
O

0
.0
7

0
.0
0
7

8
.2
7
×

1
0
−
2
5

5
.0
6
×

1
0
1
5

8
0

m
y
o
-i
n
o
si
to
l/
N
-a
ce
ty
lo
rn
it
h
in
e

rs
7
6
0
7
0
1
4

A
L
M
S
1

0
.2
1

0
.0
0
7

6
.3
5
×

1
0
−
1
5
8

1
.0
5
×

1
0
1
5

1
7

b
u
ty
ry
lc
a
rn
it
in
e/
p
a
lm

it
a
te

(1
6
:0
)

rs
1
0
4
3
1
3
8
4

M
L
E
C

0
.1
7

0
.0
0
6

3
.3
8
×

1
0
−
1
3
6

1
.5
8
×

1
0
1
3

2
0

h
ex
a
n
oy
lc
a
rn
it
in
e/
o
le
a
te

(1
8
:1
n
9
)

rs
1
2
1
3
4
8
5
4

A
C
A
D
M

−
0
.0
8

0
.0
0
5

9
.1
7
×

1
0
−
5
4

5
.4
2
×

1
0
1
0

2
0

a
ce
ty
lc
a
rn
it
in
e/
h
ex
a
n
oy
lc
a
rn
it
in
e

rs
6
6
9
9
6
8
2

M
S
H
4

0
.0
7

0
.0
0
6

7
.1
4
6
×

1
0
−
4
0

1
.2
1
×

1
0
1
0

1
0
0

59



arachidonoylglycerophosphoethanolamine/1-linoleoylglycerophosphoethanolamine,

among others. This metabolite ratio was mapped to the metabolic pathways of

biosynthesis of unsaturated fatty acids and the linoleic acid metabolism (Kanehisa

and Goto, 2000; Kanehisa et al., 2006, 2010). It has been shown that the delta-

5 desaturase, which is encoded by the FADS1 gene, converts dihomo-γ-linolenic

acid (20:3n-6) to arachidonic acid (20:4n-6) and eicosatetraenoic acid (20:4n-3) to

eicosapentaenoic acid (20:5n-3) (Lattka et al., 2010). Therefore, the metabolite

ratios which were associated in our analysis with SNPs in the FADS1 gene match

the known function of the delta-5 desaturase. Another example is the ACADS

locus. Here, we observed an association with the metabolite ratios butyrylcarni-

tine/propionylcarnitine, among others. Metabolites of this ratio are quaternary

amines and were mapped to the pathway of carnitine metabolism (Evans et al.,

2009). The ACADS locus encodes a gene of the acyl-coenzyme A dehydrogenase

family. This enzyme catalyses the initial step of the mitochondrial fatty acid β-

oxidation pathway. Among others, increased butyrylcarnitine, or `C4 carnitine',

is a biomarker for short chain acyl-coenzyme A dehydrogenase de�ciency (Jethva

et al., 2008). In addition to these results of the ten ratios with largest p-gain,

among the metabolite ratios with the 100 largest p-gains 49.10 % were mapped to

common pathways. The di�erence to the overall average of 13.97 % corresponds to

a p-value of 7.24× 10−17. When examining the metabolite ratios with the largest

500, 1000 and 1500 p-gains, still 34.90 %, 29.13 % and 25.66 %, respectively, were

on the same pathway. The entire development of pathway allocation of metabolite

ratios is displayed in Figure 4.8. Moreover, among the metabolite ratios with sig-

ni�cant p-gain after Bonferroni correction, i.e. p-gain ≥ 10 · 37 000, 43.57 % were

on a common pathway compared to 13.8 % for metabolite ratios with a p-gain

< 10 · 37 000. This di�erence corresponds to a p-value of 9.64× 10−26. These re-

sults highlight the impact of metabolite ratios together with the p-gain as a useful

tool when analysing `omics data.

Conclusion

Taken together, we showed that the p-gain is an appropriate measure for large scale

`omics data which emphasises metabolite ratios enriched for biochemical pathways.

For the p-gain, we derived critical values to determine signi�cance for various

situations. Given the success of the approach in the metabolomics �eld, hypothesis

free testing of ratios between biologically related quantitative traits should also be

considered for association studies with other `omics data sets.
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Figure 4.8: Mean pathway membership among metabolite ratios across di�erent
p-gain sizes. This Figure depicts the relationship between the p-gain and the
pathway allocation for metabolite ratios. The underlying data set is composed of
the SNP association of each metabolite ratio GWAS which yielded to the largest
p-gain. The x-axis carries the p-gain whereas the percent of pathway allocation
is entered on the y-axis. The grey line represents the overall average of 13.97 %
pathway allocation. The black line represents the cumulative mean of the path-
way allocation, beginning with the metabolite ratios with the largest p-gains, i.e.
the �rst point corresponds to the pathway allocation of the metabolite ratio with
largest p-gain, the second to the mean pathway allocation for the two metabo-
lite ratios with largest p-gains, the third to the mean pathway allocation for the
three metabolite ratios with largest p-gains, . . . and the last point corresponds to
the mean pathway allocation across all analysed metabolite ratios and therefore
coincides with the grey line of overall percentage of pathway allocation.
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5. Discussion and Conclusion

In this thesis two procedures for the integration of metabolomics data in the GWAS

approach are presented and applied to concrete examples. The candidate locus

approach utilises metabolites in order to gain further understanding of the pro-

cesses underlying known associations between genetic loci and clinically relevant

phenotypes. This approach was applied to a data set of 15 lipoprotein subfrac-

tions to reveal novel information about the role of 95 known lipid loci in the lipid

metabolism. As a result, signi�cant associations with lipoprotein subfractions

were detected for eight of the analysed loci. Additionally, for �ve of these loci a

strengthening in association was observed when analysing lipoprotein subfractions

compared to serum lipids.

In the metabolomics GWAS approach, hypothesis-free analysis of metabolic traits

are conducted to discover novel genetic loci which serve as candidate loci for fur-

ther analyses with clinically relevant phenotypes. This approach was applied to

a metabolomics data set comprising of more than 250 metabolites covering 60

di�erent pathways and all pair-wise metabolite ratios with the aim to �nd novel

loci associated with blood metabolites. These GWAS resulted in the discovery

of 37 loci which belonged to di�erent metabolic pathways. In a follow-up analy-

sis, the detected associations between KLKB1 and bradykinin as well as NAT8

and N-acetylornithine were further investigated with respect to the phenotypes

hypertension and eGFR, respectively.

Finally, the p-gain concept is statistically explored in this thesis. In detail, the

distribution of the p-gain and its critical values were derived for di�erent corre-

lation settings among the metabolic traits and the power of the p-gain approach

was shown in a pathway enrichment analysis. This statistical exploration of the

p-gain improved the analysis of metabolite ratios substantially.

The two presented procedures incorporate metabolites in the GWAS approach in

di�erent ways. Despite their di�erent proceeding, the objective of both approaches

is to gain knowledge about genetical and biochemical mechanisms underlying clin-
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ically relevant phenotypes. Thus, an improved understanding of metabolic pro-

cesses can lead to the speci�cation of new biomarkers for disease detection and

prediction, to the development of new drug targets or the elucidation of adverse

reactions to medication. Regarding this aim of an improved understanding of bio-

chemical mechanisms, the application of the candidate locus approach revealed

further insight into the role of the PLTP locus in the HDL metabolism, among

others. So far, the behaviour of HDL in atherosclerosis is not completely clari�ed.

To this end, the detected associations of L1 and L3 with PLTP may help to re-

solve some of the ambiguities of HDL. In connection with the application of the

metabolomics GWAS approach, knowledge was gained about di�erent biochemical

mechanisms. For example, associations were discovered which yielded insight into

the bradykinin pathway or nephrotic detoxi�cation processes. It is essential to un-

derstand these pathways as the bradykinin pathway is involved in the regulation

of blood pressure whereas a reduced ability to detoxify nephrotic medications can

lead to impaired kidney function.

Despite the comparable aim of both procedures, each procedure has its own ad-

vantages and limitations. A characteristic of the candidate locus approach is that

only genetic loci which were already detected in GWAS of clinically relevant phe-

notypes are further analysed. This restriction to preselected candidate loci is an

advantage since it results in a reduced multiple testing burden compared to the

metabolomics GWAS approach. For example, in the application of the candidate

locus approach, 101 SNPs at 95 lipid loci were analysed together with 15 lipopro-

tein subfractions leading to a Bonferroni corrected level of signi�cance of 3.3×10−5.
In contrast, more than 250 metabolite concentrations and about 37 000 pair-wise

metabolite ratios were analysed on 600 000 genome-wide SNPs in the application

of the metabolomics GWAS approach. This resulted in a Bonferroni corrected

level of signi�cance of 2.0× 10−12.

Another advantage of the candidate locus approach is that existing knowledge

about relationships between genes and phenotypes is applied and extended. This

knowledge was gained in GWAS which comprised of tens of thousands of samples.

For instance, the 95 lipid loci analysed in the application of the candidate locus

approach were discovered in GWAS of more than 100 000 samples of 46 di�erent

studies (Teslovich et al., 2010).

Despite these advantages, the restriction to candidate loci is also a limitation of

this approach. Metabolites are more re�ned phenotypes than most other clinically

relevant phenotypes which often represent aggregated variables comprising of dif-
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ferent sub-phenotypes. For example, four HDL related lipoprotein subfractions

were analysed in the application of the candidate locus approach instead of aggre-

gated HDL-C. As a consequence, with the utilisation of metabolites it is possible

to discover loci which have not been detected in GWAS of the aggregated phe-

notypes. With the detection of additional loci, metabolites can help to elucidate

parts of the missing heritability of the related aggregated phenotypes. Due to the

restriction to candidate loci, this procedure does not have the ability to discover

novel loci. Nevertheless, the example of the PLTP locus illustrates this ability

of metabolites. Regarding the minor allele of rs6065906, PLTP has an increasing

e�ect on L1 and a decreasing e�ect on L3. In the analysis of aggregated HDL-C

these opposite e�ects cancel out each other partly leading to a small decreasing

e�ect of the minor allele of rs6065906 on HDL-C. To discover loci with a small

e�ect size, large sample sizes are necessary as it was the case in Teslovich et al.

(2010).

In contrast to the candidate locus approach, the possibility to discover novel loci

is a strength of the metabolomics GWAS approach. In total, 37 loci were de-

tected when analysing about 2800 samples in the application presented in this

thesis. For many of these loci, the function of the gene matches the associated

metabolic trait. One example is the ACADS locus which is associated with bu-

tyrylcarnitine/propionylcarnitine. These metabolites are a substrate-product pair

of acyl-coenzyme A dehydrogenases which are encoded by ACADS. Another ex-

ample is the NAT8 locus which is associated with N-acetylornithine. The NAT8

locus encodes N-acetyltransferase whose function matches N-acetylornitine. This

illustrates that the biological mechanisms underlying an association are easier to

understand for associations with metabolic traits than for associations with clini-

cally relevant phenotypes.

A limitation of the second procedure is the multiple testing burden as already

described. The level of signi�cance applied in the application of the metabolomics

GWAS approach was set to 2.0 × 10−12. This level was derived by Bonferroni

correction for all tested pair-wise metabolite ratios as well as for all tested genome-

wide SNPs. In the situation of metabolomics GWAS, Bonferroni correction is

very conservative since many SNPs are in LD and some of the metabolites are

highly correlated due to a close biological relationship. Moreover, the amount

of correlated metabolites is arti�cially increased in case of analysing all pair-wise

metabolite ratios.

Another limitation of the metabolomics GWAS approach is the computational

as well as data storage burden, especially if all pair-wise metabolite ratios were
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analysed. Whilst it is possible to carry out an application of the candidate locus

approach using an usual personal computer, it is necessary to have a large linux

cluster as well as appropriate data storage devices available for the feasibility of

the metabolomics GWAS.

Strategies which are similar to the two procedures presented in this work were also

applied by others to incorporate metabolomics data in the GWAS approach. For

example, a study published by Tukiainen et al. (2012) uses lipoprotein subfractions

and lipid related metabolites to further characterise the 95 lipid loci published by

Teslovich et al. (2010). This study is comparable to the application of the candidate

locus approach presented in this thesis as it also analyses lipoprotein subfractions

together with known genetic lipid loci. Despite this, the objectives of both studies

are di�erent. The study by Tukiainen et al. (2012) further characterises the lipid

loci through associated lipoprotein subfractions, aims at detecting causal variants

through a �ne-mapping approach of the loci and searches for independent genetic

signals in the loci. In contrast, our application characterised the lipoprotein sub-

fractions through a clustering with serum lipids and an analysis of samples during

nutritional intervention followed by a mutual characterisation of the subfractions

and lipid loci in a genetic association analysis. This lead to further insight into

the lipid metabolism.

Concerning the second procedure, examples of metabolomics GWAS are the pub-

lications of Gieger et al. (2008), Hicks et al. (2009), Tanaka et al. (2009b), Chas-

man et al. (2009), Illig et al. (2010), Suhre et al. (2011b), Lemaitre et al. (2011),

Kettunen et al. (2012) or Demirkan et al. (2012). Within these studies, di�er-

ent metabolites were investigated to gain a better understanding of the genet-

ics underlying the analysed metabolites. The application of the metabolomics

GWAS presented in this work is in-line with this approach. As an extension of

the metabolomics GWAS, for some of the detected loci associations with addi-

tional clinically relevant phenotypes were examined. Another aspect to mention

is that beside metabolite concentrations also all pair-wise metabolite ratios were

analysed in the application presented here. This was also done by Illig et al. (2010)

whereas others analysed only selected ratios, e.g. Hicks et al. (2009), Kettunen

et al. (2012), or focused solely on the analysis of metabolite concentrations, e.g.

Tanaka et al. (2009b).
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So far, this hypothesis-free analysis of all possible metabolite ratios has proven to

be successful even if it increases the multiple testing burden. Furthermore, the p-

gain was used together with a provisional cut-o� rule as an objective measure of the

increase in information. To improve the application of the p-gain, the second aim

of this thesis was to conduct a statistical exploration. As a result, the critical p-

gain value after Bonferroni correction for B tests is at B
2·α with α being the nominal

signi�cance level. This �nding implicates that the critical value of the p-gain in

Chapter 4.1 should be corrected for the 21 signi�cant SNP - lipoprotein subfraction

associations. This leads to a critical p-gain value of 210 = 21 · 10 instead of 15.

When we apply this critical value to the results, the association between APOA1

and L10 has no signi�cant p-gain value anymore. In addition to this, the results of

the statistical p-gain exploration should also be applied to the results in Chapter

4.2. Here, the critical p-gain value of 10 should be corrected for the number of

tests where the p-gain was applied. This number depends on the analysis strategy.

In the case of a one step approach a simultaneous �lter is applied to the p-value

and p-gain. The number of tests is equal to the number of calculated associations

between metabolite ratios and SNPs, which was approximately 37 000 · 600 000

in Chapter 4.2. In the situation of a step-wise approach where in a �rst step a

p-value �lter is applied and in a second step a �lter for a p-gain, this number will

be smaller. However, to consider a p-gain larger than 250 as relevant, as it was

done in Chapter 4.2, is not accurate anymore.

As another consequence of the exploration of the p-gain, it is now possible to eval-

uate the GWAS of the metabolite ratios of Chapter 4.2 according to a signi�cant

p-gain instead of a signi�cant p-value. Such an evaluation will reveal metabolite

ratios which are signi�cantly better associated with a genetic locus than the cor-

responding single metabolite concentrations. For this purpose, the SNP with the

largest p-gain was determined for each metabolite ratio and these 37 000 `metabo-

lite ratio - SNP - p-gain' sets were tested according to a p-gain larger than the

critical p-gain value of 370 000 = 37 000
(2·0.05) . As a result, some loci were detected that

were not among the loci reported in Chapter 4.2, e.g. MLEC or MSH4. Since this

evaluation of the GWAS of metabolite ratios according to a signi�cant p-gain was

only started in Chapter 4.3, further extinctive explorations are needed.

Finally, we showed a dependence of the observed p-gain values of the metabolomics

GWAS on the sample size. Building on the knowledge gained about the distribu-

tion of the p-gain, it is now possible to conduct an analysis of the statistical power

of the p-gain.
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In total, both presented procedures have proven to be successful as they con-

�rmed and extended current knowledge about di�erent genetical and biochemical

mechanisms. As a consequence of their distinct advantages and limitations, the

procedures exploit di�erent properties of the metabolomics data and thus comple-

ment each other. Hence, for a most extensive evaluation of metabolomics data it

is preferable to utilise both procedures. Furthermore, it is recommendable to eval-

uate metabolite ratios together with the p-gain as an objective measure. Overall,

this thesis proved that the incorporation of metabolites in the GWAS approach is a

promising way to gain understanding of the genetical and biochemical mechanisms

underlying disease aetiology. An expansion of the discussed procedures to the in-

corporation of multiple `omics technologies such as transcriptomics, proteomics or

epigenomics will lead towards a further understanding of complex diseases such as

type 2 diabetes or cardiovascular diseases.
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Appendix

Table A.1: De�nition of lipoprotein subfractions L1-L15. The lipoprotein subfrac-
tions L1-L15 and their correspondence to subfractions de�ned by Linsel-Nitschke
et al. (2009) (Petersen et al., 2012).

NMR related particle average

lipoprotein lipoprotein diameter density

subfraction subfraction [nm] [g/ml]

L1 small HDL 7−8.5 1.200

L2 medium HDL 8.5−10 1.120

L3 large HDL 10−13 1.090

L4 very large HDL 13−16 1.063

L5 very small LDL 16−19 1.060

L6 small LDL 19−21 1.045

L7 medium LDL 21−22 1.035

L8 large LDL 22−25 1.027

L9 very large LDL 25−30 1.019

L10 IDL 30−40 1.015

L11 small VLDL 40−60 1.010

L12 large VLDL 60−80 1.006

L13 remnants 80−100 1.000

L14 small chylomicrons 100−150 0.980

L15 large chylomicrons > 150 0.960
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Table A.2: Metabolites measured in KORA and TwinsUK. This Table summarises
the super pathway, measurement platform, number of samples in KORA and
TwinsUK for which we measured the metabolite (N KORA, N TwinsUK), the
normalised minimal and maximal values and the median relative standard devi-
ation (RSD) for each metabolite. The minimal and maximal value and the RSD
are calculated from technical replicates of a pool of human plasma that has been
well characterised at Metabolon (Evans et al., 2009). "The biochemical identity of
the metabolites is in general determined using adequate pure substances; in cases
where metabolite identities were inferred based on their fragmentation spectrum
and other biochemical evidence, these are indicated by a `*'" (Suhre et al., 2011a).

metabolite super pathway measurement

platform

N

KORA

N

TwinsUK

Min

Value

Max

Value

RSD

(%)

2-aminobutyrate amino acid LC/MS pos 1775 1051 0.671 1.407 8.7

2-hydroxybutyrate

(AHB)

amino acid GC/MS 1775 1052 0.734 1.726 9.0

2-hydroxyisobutyrate amino acid GC/MS 1641 930 0.385 1.906 21.7

2-methylbutyroyl-

carnitine

amino acid LC/MS pos 1706 1027 0.348 2.217 17.2

3-(3-hydroxyphenyl)-

propionate

amino acid LC/MS neg 276 100

3-(4-hydroxyphenyl)-

lactate

amino acid LC/MS neg 1770 1052 0.657 1.307 8.3

3-hydroxy-2-

ethylpropionate

amino acid GC/MS 894 0 0.484 1.465 18.9

3-indoxyl sulfate amino acid LC/MS neg 1774 1051 0.686 1.185 5.6

3-methoxytyrosine amino acid LC/MS pos 1468 379 0.598 2.452 21.3

3-methyl-2-oxobutyrate amino acid LC/MS neg 1776 1044 0.540 1.415 10.4

3-methyl-2-oxovalerate amino acid LC/MS neg 1776 1052 0.601 1.351 8.3

3-methylhistidine amino acid LC/MS neg 661 742 0.664 1.327 8.0

3-phenylpropionate (hy-

drocinnamate)

amino acid LC/MS neg 1268 855 0.511 1.635 17.2

4-acetamidobutanoate amino acid LC/MS pos 1621 715 0.481 1.728 15.3

4-hydroxyphenylacetate amino acid GC/MS 388 0 0.462 1.438 17.9

4-methyl-2-oxopenta-

noate

amino acid LC/MS neg 1776 1052 0.653 1.376 9.3

5-oxoproline amino acid LC/MS pos 1776 1052 0.713 1.190 5.7

alanine amino acid GC/MS 1775 1052 0.367 1.828 15.1
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Table A.2 (cont.)

metabolite super pathway measurement

platform

N

KORA

N

TwinsUK

Min

Value

Max

Value

RSD

(%)

alpha-hydroxyisovalerate amino acid LC/MS neg 1776 1052 0.634 1.348 9.6

arginine amino acid LC/MS neg 1746 1017 0.309 1.648 14.5

asparagine amino acid GC/MS 1768 1045 0.310 1.918 25.5

aspartate amino acid GC/MS 1732 1049 0.228 2.220 25.9

beta-hydroxyisovalerate amino acid LC/MS neg 1595 992 0.437 1.995 18.9

betaine amino acid LC/MS pos 1775 1052 0.381 1.566 9.0

C-glycosyltryptophan* amino acid LC/MS pos 1774 1049 0.647 1.297 9.4

citrulline amino acid LC/MS pos 1767 1047 0.702 1.606 10.3

creatine amino acid LC/MS pos 1776 1052 0.796 1.122 5.4

creatinine amino acid LC/MS pos 1775 1052 0.683 1.556 10.8

cysteine amino acid GC/MS 1771 1013 0.197 1.769 22.9

cysteine-glutathione

disul�de

amino acid LC/MS pos 1638 367

cystine amino acid GC/MS 1412 0

dimethylarginine (SDMA

+ ADMA)

amino acid LC/MS pos 1776 1052 0.599 2.190 14.0

glutamate amino acid GC/MS 1775 1052 0.459 2.058 15.7

glutamine amino acid LC/MS pos 1776 1052 0.772 1.248 7.0

glutaroyl carnitine amino acid LC/MS pos 1729 1012 0.588 1.600 11.8

glycine amino acid GC/MS 1775 1052 0.277 1.715 15.3

histidine amino acid LC/MS neg 1776 1052 0.790 1.218 5.4

homocitrulline amino acid LC/MS pos 1412 650 0.448 2.244 26.1

homostachydrine* amino acid LC/MS pos 1471 162 0.379 1.878 17.0

hydroxyisovaleroyl carni-

tine

amino acid LC/MS pos 1530 960 0.241 3.771 34.6

indoleacetate amino acid LC/MS pos 1750 935 0.511 1.556 14.4

indolelactate amino acid LC/MS pos 1500 921 0.236 2.684 25.9

indolepropionate amino acid LC/MS pos 1775 1051 0.493 1.465 12.7

isobutyrylcarnitine amino acid LC/MS pos 1776 1049 0.575 1.391 8.8

isoleucine amino acid LC/MS pos 1776 1052 0.774 1.179 6.0

isovalerylcarnitine amino acid LC/MS pos 1762 1041 0.606 1.808 12.9

kynurenine amino acid LC/MS pos 1776 1052 0.706 1.303 7.8

leucine amino acid LC/MS pos 1776 1052 0.772 1.133 6.0
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Table A.2 (cont.)

metabolite super pathway measurement

platform

N

KORA

N

TwinsUK

Min

Value

Max

Value

RSD

(%)

levulinate (4-oxovalerate) amino acid LC/MS pos

or neg

1066 993 0.321 44.868 204.1

lysine amino acid LC/MS pos 1776 1052 0.457 1.700 13.5

methionine amino acid LC/MS neg 1776 1052 0.745 1.202 6.5

N-(2-furoyl)glycine amino acid LC/MS pos 429 102 0.385 1.925 22.3

N-acetylalanine amino acid LC/MS neg 1711 1051 0.642 1.764 11.7

N-acetylglycine amino acid GC/MS 1515 835 0.216 2.948 21.9

N-acetylornithine amino acid LC/MS pos 1762 1044 0.387 2.303 26.2

N-acetylthreonine amino acid LC/MS neg 1416 880 0.414 2.092 22.2

ornithine amino acid LC/MS pos 1776 1040 0.315 3.312 26.6

p-cresol sulfate amino acid LC/MS neg 1776 1052 0.756 1.152 3.6

phenol sulfate amino acid LC/MS neg 1776 1052 0.571 1.182 4.9

phenylacetate amino acid LC/MS neg 777 793 0.503 1.965 22.4

phenylacetylglutamine amino acid LC/MS pos 1776 1051 0.756 1.257 6.9

phenylalanine amino acid LC/MS pos 1776 1052 0.787 1.144 5.8

phenyllactate (PLA) amino acid LC/MS neg 1081 630 0.488 1.518 15.8

pipecolate amino acid LC/MS pos 1776 1052 0.687 1.303 7.4

proline amino acid LC/MS pos 1776 1052 0.791 1.211 5.9

pyroglutamine* amino acid LC/MS pos 1772 1051 0.721 1.455 9.3

serine amino acid GC/MS 1775 1052 0.372 2.164 17.1

serotonin (5HT) amino acid LC/MS pos 1758 1008

stachydrine amino acid LC/MS pos 1775 1049 0.758 1.205 6.4

threonine amino acid LC/MS pos 1694 1039 0.623 1.371 10.1

tiglyl carnitine amino acid LC/MS pos 1339 0 0.405 2.357 24.3

trans-4-hydroxyproline amino acid GC/MS 1775 1051 0.615 2.152 12.5

tryptophan amino acid LC/MS pos 1776 1052 0.787 1.157 6.2

tyrosine amino acid LC/MS pos 1776 1052 0.745 1.156 6.1

urea amino acid GC/MS 1775 1052 0.510 1.481 10.1

valine amino acid LC/MS pos 1776 1052 0.792 1.139 5.9

1, 5-anhydroglucitol (1, 5-

AG)

carbohydrate LC/MS neg 1772 1051 0.755 1.288 5.6

1, 6-anhydroglucose carbohydrate GC/MS 418 296 0.335 1.845 20.3

arabinose carbohydrate GC/MS 1011 567 0.358 1.800 21.0
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Table A.2 (cont.)

metabolite super pathway measurement

platform

N

KORA

N

TwinsUK

Min

Value

Max

Value

RSD

(%)

arabitol carbohydrate GC/MS 1770 0 0.161 1.602 18.9

erythronate* carbohydrate GC/MS 1755 1032 0.519 2.225 15.9

erythrose carbohydrate GC/MS 1465 838 0.117 2.876 36.0

fructose carbohydrate GC/MS 1774 1052 0.021 2.763 26.7

glucose carbohydrate GC/MS 1775 1052 0.720 1.649 9.6

glycerate carbohydrate GC/MS 1762 1035 0.157 1.607 13.2

lactate carbohydrate GC/MS 1775 1052 0.734 1.885 8.6

mannitol carbohydrate GC/MS 1529 799 0.311 2.145 31.4

mannose carbohydrate GC/MS 1775 1052 0.109 1.995 17.1

pyruvate carbohydrate GC/MS 1735 984 0.196 3.223 37.1

threitol carbohydrate GC/MS 1640 898 0.358 2.077 23.5

alpha-tocopherol cofactors and

vitamins

GC/MS 1770 1042 0.324 2.796 19.3

ascorbate (Vitamin C) cofactors and

vitamins

GC/MS 1581 518 1.000 1.000 0.0

bilirubin (E,E)* cofactors and

vitamins

LC/MS pos 1776 1042 0.458 2.060 21.5

bilirubin (E,Z or Z,E)* cofactors and

vitamins

LC/MS pos 1489 775 0.301 3.148 35.0

bilirubin (Z,Z) cofactors and

vitamins

LC/MS neg 1728 976 0.666 2.738 31.0

biliverdin cofactors and

vitamins

LC/MS neg 1181 518 0.198 3.226 28.8

gamma-tocopherol cofactors and

vitamins

GC/MS 983 620 0.311 2.444 22.7

heme* cofactors and

vitamins

LC/MS pos 1702 818 0.431 2.066 24.3

pantothenate cofactors and

vitamins

LC/MS pos 1664 981 0.616 1.989 18.4

pyridoxate cofactors and

vitamins

LC/MS neg 1732 1045 0.539 1.592 13.4

ribo�avin (Vitamin B2) cofactors and

vitamins

LC/MS pos 308 0

threonate cofactors and

vitamins

GC/MS 1775 1047 0.215 3.799 18.7

trigonelline (N'-methyl-

nicotinate)

cofactors and

vitamins

LC/MS pos 745 0 0.637 1.634 13.9
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Table A.2 (cont.)

metabolite super pathway measurement

platform

N

KORA

N

TwinsUK

Min

Value

Max

Value

RSD

(%)

acetylphosphate energy GC/MS 1775 1052 0.539 1.884 18.0

alpha-ketoglutarate energy GC/MS 1125 496 0.240 3.414 30.2

citrate energy GC/MS 1774 1052 0.614 1.757 9.2

malate energy GC/MS 1588 854 0.396 3.420 25.1

phosphate energy GC/MS 1775 1052 0.658 1.507 7.6

succinylcarnitine energy LC/MS pos 1545 786 0.613 1.837 15.9

1-arachidonoylglycero-

phosphocholine*

lipid LC/MS pos 1625 913 0.356 6.295 47.0

1-arachidonoylglycero-

phosphoethanolamine*

lipid LC/MS neg 1774 1051 0.253 5.307 38.2

1-arachidonoylglycero-

phosphoinositol*

lipid LC/MS neg 1770 1047 0.519 2.184 20.7

1-docosahexaenoyl-

glycerophosphocholine*

lipid LC/MS pos 1776 1040 0.244 6.081 55.4

1-eicosadienoylglycero-

phosphocholine*

lipid LC/MS pos 1648 711 0.317 6.934 62.3

1-eicosatrienoylglycero-

phosphocholine*

lipid LC/MS pos 1776 1051 0.083 5.910 42.1

1-heptadecanoyl-

glycerophosphocholine

lipid LC/MS pos 1741 882 0.302 10.327 71.2

1-linoleoylglycerol

(1-monolinolein)

lipid LC/MS neg 1766 1044 0.109 13.084 75.0

1-linoleoylglycero-

phosphocholine

lipid LC/MS pos 1775 1051 0.266 5.341 39.5

1-linoleoylglycero-

phosphoethanolamine*

lipid LC/MS neg 1776 1052 0.239 3.967 32.4

1-myristoylglycero-

phosphocholine

lipid LC/MS pos 1774 1051 0.244 4.290 43.8

1-oleoylglycerol (1-mono-

olein)

lipid LC/MS pos 1699 717 0.282 6.173 64.5

1-oleoylglycerophospho-

choline

lipid LC/MS pos 1776 1052 0.376 3.101 33.9

1-oleoylglycerophospho-

ethanolamine

lipid LC/MS neg 1745 1020 0.133 3.986 38.1

1-palmitoleoylglycero-

phosphocholine*

lipid LC/MS pos 1776 1052 0.312 5.059 45.6

1-palmitoylglycerol

(1-monopalmitin)

lipid GC/MS 1617 927 0.269 2.370 19.9
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metabolite super pathway measurement
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KORA

N

TwinsUK

Min

Value

Max

Value

RSD

(%)

1-palmitoylglycero-

phosphocholine

lipid LC/MS pos 1776 1052 0.310 2.413 24.4

1-palmitoylglycero-

phosphoethanolamine

lipid LC/MS neg 1760 1032 0.235 3.144 28.8

1-palmitoylglycero-

phosphoinositol*

lipid LC/MS neg 1512 907 0.564 2.162 18.9

1-stearoylglycerol

(1-monostearin)

lipid GC/MS 1418 794 0.244 1.972 23.5

1-stearoylglycero-

phosphocholine

lipid LC/MS pos 1776 1052 0.476 4.345 37.6

1-stearoylglycero-

phosphoethanolamine

lipid LC/MS neg 1578 875 0.177 3.313 34.8

1-stearoylglycero-

phosphoinositol

lipid LC/MS neg 1748 1036 0.345 2.712 22.8

2-hydroxypalmitate lipid LC/MS neg 1776 1052 0.384 1.676 13.8

2-hydroxystearate lipid LC/MS neg 1771 1015 0.317 1.637 16.2

2-linoleoylglycero-

phosphocholine*

lipid LC/MS pos 1688 1015 0.333 4.841 41.2

2-linoleoylglycero-

phosphoethanolamine*

lipid LC/MS neg 1078 0 0.221 3.793 42.4

2-oleoylglycerophospho-

choline*

lipid LC/MS pos 1770 1050 0.266 4.162 34.8

2-palmitoylglycero-

phosphocholine*

lipid LC/MS pos 1776 1052 0.118 4.967 40.5

2-stearoylglycero-

phosphocholine*

lipid LC/MS pos 1775 1046 0.417 11.443 68.7

2-tetradecenoyl carnitine lipid LC/MS pos 1649 741 0.445 2.608 30.4

3-carboxy-4-methyl-5-

propyl-2-furanpropano-

ate (CMPF)

lipid LC/MS neg 1768 1051 0.626 1.338 9.2

3-dehydrocarnitine* lipid LC/MS pos 1776 1052 0.693 2.317 10.9

3-hydroxybutyrate

(BHBA)

lipid GC/MS 1775 1052 0.668 1.444 8.0

5-dodecenoate (12 : 1n7) lipid LC/MS neg 1762 1047 0.496 1.766 14.5

7-alpha-hydroxy-3-oxo-4-

cholestenoate (7-Hoca)

lipid LC/MS neg 1776 1050 0.497 4.109 29.2

10-heptadecenoate

(17 : 1n7)

lipid LC/MS neg 1776 1052 0.650 1.868 10.2
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N

KORA

N

TwinsUK

Min

Value

Max
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RSD

(%)

10-nonadecenoate

(19 : 1n9)

lipid LC/MS neg 1776 1052 0.464 1.694 12.3

10-undecenoate

(11 : 1n1)

lipid LC/MS neg 1776 1049 0.516 1.680 17.1

acetylcarnitine lipid LC/MS pos 1776 1052 0.575 1.317 8.5

adrenate (22 : 4n6) lipid LC/MS neg 1776 1052 0.530 2.854 27.0

androsterone sulfate lipid LC/MS neg 1772 1049 0.679 1.215 6.9

arachidonate (20 : 4n6) lipid LC/MS neg 1776 1052 0.688 1.245 6.7

butyrylcarnitine lipid LC/MS pos 1774 1051 0.635 1.977 14.0

caprate (10 : 0) lipid LC/MS neg 1776 1051 0.789 1.271 6.9

caproate (6 : 0) lipid LC/MS neg 1776 1052 0.636 1.839 13.3

caprylate (8 : 0) lipid LC/MS neg 1776 1052 0.703 1.423 9.8

carnitine lipid LC/MS pos 1776 1052 0.804 1.203 5.7

cholate lipid LC/MS neg 1214 790 0.285 1.786 22.0

cholesterol lipid GC/MS 1775 1052 0.720 1.749 9.7

cortisol lipid LC/MS pos 1773 1051 0.770 1.311 7.5

cortisone lipid LC/MS pos 1730 910 0.480 1.599 17.4

choline lipid LC/MS pos 1775 1052 0.747 1.215 7.5

decanoylcarnitine lipid LC/MS pos 1776 1052 0.585 1.473 12.3

dehydroisoandrosterone

sulfate (DHEA-S)

lipid LC/MS neg 1776 1052 0.583 1.142 4.2

deoxycholate lipid LC/MS neg 1455 750 0.378 2.286 25.7

dihomo-linoleate

(20 : 2n6)

lipid LC/MS neg 1776 1052 0.609 1.673 11.1

dihomo-linolenate

(20 : 3n3 or n6)

lipid LC/MS neg 1776 1052 0.580 1.588 9.4

docosahexaenoate (DHA;

22 : 6n3)

lipid LC/MS neg 1776 1052 0.662 1.288 8.5

docosapentaenoate

(n3 DPA; 22 : 5n3)

lipid LC/MS neg 1776 1052 0.527 1.694 11.8

dodecanedioate lipid LC/MS neg 946 898 0.451 1.853 20.7

eicosapentaenoate (EPA;

20 : 5n3)

lipid LC/MS neg 1776 1052 0.568 1.475 9.7

eicosenoate

(20 : 1n9 or 11)

lipid LC/MS neg 1776 1052 0.571 1.487 12.9
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N
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Min
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epiandrosterone sulfate lipid LC/MS neg 1773 1049 0.645 1.218 5.4

estrone 3-sulfate lipid LC/MS neg 261 105 0.784 1.580 12.8

glycerol lipid GC/MS 1775 1052 0.011 1.447 8.9

glycerol 3-phosphate

(G3P)

lipid GC/MS 1775 1050 0.374 2.561 15.6

glycerophosphorylcholine

(GPC)

lipid LC/MS pos 1772 1049 0.239 2.722 14.6

glycochenodeoxycholate lipid LC/MS neg 1576 984 0.531 1.569 14.1

glycocholate lipid LC/MS pos 1168 685 0.678 1.395 10.1

glycodeoxycholate lipid LC/MS neg 874 609 0.429 1.762 18.8

heptanoate (7 : 0) lipid LC/MS neg 1775 1052 0.639 1.671 12.2

hexadecanedioate lipid LC/MS neg 1022 906 0.530 2.104 20.0

hexanoylcarnitine lipid LC/MS pos 1776 1044 0.572 1.502 12.6

hyodeoxycholate lipid LC/MS neg 1314 640 0.525 1.428 13.6

inositol 1-phosphate

(I1P)

lipid GC/MS 1391 0

isovalerate lipid LC/MS neg 1730 1014 0.488 1.481 12.8

lathosterol lipid GC/MS 841 425 0.381 1.713 20.8

laurate (12 : 0) lipid LC/MS neg 1776 1052 0.783 1.626 10.6

laurylcarnitine lipid LC/MS pos 1578 765 0.286 4.025 29.2

linoleamide (18 : 2n6) lipid LC/MS pos 1776 0

linoleate (18 : 2n6) lipid LC/MS neg 1776 1052 0.718 1.255 6.1

linolenate [alpha or

gamma; (18 : 3n3 or 6)]

lipid LC/MS neg 1776 1052 0.693 1.316 8.2

margarate (17 : 0) lipid LC/MS neg 1776 1052 0.626 1.565 11.3

myo-inositol lipid GC/MS 1775 1052 0.391 1.625 14.3

myristate (14 : 0) lipid LC/MS neg 1776 1052 0.741 1.296 7.1

myristoleate (14 : 1n5) lipid LC/MS neg 1776 1052 0.741 1.281 7.8

n-Butyl Oleate lipid GC/MS 1374 695 0.479 1.746 18.9

nonadecanoate (19 : 0) lipid LC/MS neg 1767 1041 0.448 1.841 18.6

octadecanedioate lipid LC/MS neg 1513 941 0.258 2.321 27.5

octanoylcarnitine lipid LC/MS pos 1776 1052 0.643 1.390 10.0

oleamide lipid LC/MS pos 1776 0 0.234 11.500 83.4
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oleate (18 : 1n9) lipid LC/MS neg 1776 1052 0.735 1.257 6.7

oleoylcarnitine lipid LC/MS pos 1772 1042 0.289 2.189 24.3

palmitate (16 : 0) lipid LC/MS neg 1776 1052 0.717 1.363 7.8

palmitoleate (16 : 1n7) lipid LC/MS neg 1776 1052 0.737 1.454 7.5

palmitoylcarnitine lipid LC/MS pos 1763 1032 0.297 2.473 28.6

pelargonate (9 : 0) lipid LC/MS neg 1776 1052 0.701 1.337 8.5

pentadecanoate (15 : 0) lipid GC/MS 1716 1018 0.397 2.978 21.9

propionylcarnitine lipid LC/MS pos 1776 1052 0.688 1.488 10.8

scyllo-inositol lipid GC/MS 1511 897 0.475 1.831 28.1

sebacate (decanedioate) lipid LC/MS neg 400 0

stearate (18 : 0) lipid LC/MS neg 1776 1052 0.691 1.302 8.8

stearidonate (18 : 4n3) lipid LC/MS neg 1769 1050 0.546 1.463 13.3

stearoylcarnitine lipid LC/MS pos 1607 841 0.349 3.503 29.4

taurochenodeoxycholate lipid LC/MS neg 1051 611 0.191 1.834 20.5

taurocholate lipid LC/MS neg 706 488 0.405 2.616 26.9

taurodeoxycholate lipid LC/MS neg 968 601 0.372 1.814 21.2

taurolithocholate 3-sul-

fate

lipid LC/MS neg 1592 959 0.178 2.873 27.4

tetradecanedioate lipid LC/MS neg 662 532

thromboxane B2 lipid LC/MS neg 1752 1031 0.428 1.386 7.6

undecanoate (11 : 0) lipid LC/MS neg 1757 1037 0.541 2.361 16.9

ursodeoxycholate lipid LC/MS neg 962 674 0.429 1.814 16.6

valerate lipid LC/MS neg 1440 742 0.406 2.463 28.0

7-methylguanine nucleotide LC/MS pos 1665 978 0.434 3.013 33.4

adenosine nucleotide LC/MS pos 411 0

allantoin nucleotide GC/MS 742 583 0.455 2.672 27.9

guanosine nucleotide LC/MS pos 1655 697

hypoxanthine nucleotide LC/MS neg 1762 1030 0.280 1.660 16.8

inosine nucleotide LC/MS neg 1739 944

N1-methyladenosine nucleotide LC/MS pos 1775 1052 0.672 1.543 12.0

N2,N2-dimethyl-

guanosine

nucleotide LC/MS pos 825 261 0.586 4.034 28.9

pseudouridine nucleotide LC/MS pos 1776 1052 0.600 1.797 14.6
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urate nucleotide LC/MS neg 1776 1052 0.680 1.175 4.9

uridine nucleotide LC/MS neg 1776 1052 0.743 1.205 7.4

xanthine nucleotide LC/MS pos 1771 1052 0.253 2.193 22.1

ADpSGEGDFXAEGG-

GVR*

peptide LC/MS pos 1773 1045 0.160 1.708 16.4

ADSGEGDFXAEGGGVR* peptide LC/MS pos 1776 1052 0.597 1.319 10.9

aspartylphenylalanine peptide LC/MS pos 1758 1050 0.746 1.090 12.9

bradykinin, des-arg(9) peptide LC/MS pos 1504 819 0.438 1.303 10.3

DSGEGDFXAEGGGVR* peptide LC/MS pos 1775 1051 0.372 1.838 20.4

gamma-glutamyl-

glutamate

peptide LC/MS pos 654 285 0.478 2.202 20.1

gamma-glutamyl-

glutamine

peptide LC/MS pos 1776 1052 0.533 1.557 15.3

gamma-glutamyl-

isoleucine*

peptide LC/MS pos 1023 373 0.558 2.185 16.8

gamma-glutamylleucine peptide LC/MS pos 1776 1051 0.650 1.484 10.9

gamma-glutamyl-

methionine*

peptide LC/MS pos 1384 862 0.414 2.321 23.1

gamma-glutamyl-

phenylalanine

peptide LC/MS pos 1761 1010 0.425 1.674 17.0

gamma-glutamyl-

threonine*

peptide LC/MS pos 1345 476 0.268 1.900 21.5

gamma-glutamyltyrosine peptide LC/MS pos 1677 903 0.567 2.110 17.2

gamma-glutamylvaline peptide LC/MS pos 1755 1033 0.726 1.429 9.3

glycylvaline peptide LC/MS pos 1215 905

HWESASXX* peptide LC/MS pos 1722 1052 0.552 1.365 11.4

leucylleucine peptide LC/MS pos 1060 968 0.716 1.312 8.7

pro-hydroxy-pro peptide LC/MS pos 1774 1052 0.400 2.035 20.1

pyroglutamylglycine peptide LC/MS neg 793 798 0.790 1.210 8.2

1, 3, 7-trimethylurate xenobiotics LC/MS neg 314 483

1, 7-dimethylurate xenobiotics LC/MS neg 1025 805 0.651 1.289 8.4

1-methylurate xenobiotics LC/MS pos 1113 553 0.584 2.236 22.9

1-methylxanthine xenobiotics LC/MS pos 1184 606 0.923 1.077 7.7

2-methoxyacetamino-

phen sulfate*

xenobiotics LC/MS neg 26 187
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RSD
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2-hydroxyacetaminophen

sulfate*

xenobiotics LC/MS neg 76 328 0.813 1.314 9.2

2-hydroxyhippurate (sali-

cylurate)

xenobiotics LC/MS neg 355 351 0.738 1.262 19.2

3-(cystein-S-yl)acet-

aminophen*

xenobiotics LC/MS pos 18 165

3-ethylphenylsulfate* xenobiotics LC/MS neg 166 0 0.599 2.585 24.9

3-methylxanthine xenobiotics LC/MS pos 1127 533 0.415 2.168 24.8

4-acetamidophenol xenobiotics GC/MS 0 143 1.000 1.000 0.0

4-acetaminophen sulfate xenobiotics LC/MS neg 122 376 0.667 1.566 8.6

4-ethylphenylsulfate xenobiotics LC/MS neg 1423 866 0.541 1.820 14.2

4-vinylphenol sulfate xenobiotics LC/MS neg 1733 1001 0.684 1.591 6.5

7-methylxanthine xenobiotics LC/MS pos 1319 581 0.422 3.144 33.2

benzoate xenobiotics LC/MS neg 1763 1052 0.673 1.378 9.7

ca�eine xenobiotics LC/MS pos 1721 1038 0.591 1.458 12.2

catechol sulfate xenobiotics LC/MS neg 1776 1052 0.745 1.232 4.9

cotinine xenobiotics LC/MS pos 284 126 0.607 1.611 15.7

erythritol xenobiotics GC/MS 1772 1048 0.371 1.604 15.1

glycerol 2-phosphate xenobiotics GC/MS 1237 559 0.255 3.184 21.5

hippurate xenobiotics LC/MS pos 1766 1051 0.603 1.607 15.0

hydroquinone sulfate xenobiotics LC/MS neg 354 103 0.928 1.072 7.2

hydroxypioglitazone* xenobiotics LC/MS pos 6 2

ibuprofen xenobiotics LC/MS neg 25 66 0.618 2.037 17.3

metoprolol xenobiotics LC/MS pos 69 1

metoprolol acid metabo-

lite*

xenobiotics LC/MS pos 149 57

naproxen xenobiotics LC/MS neg 2 7

p-acetamidophenyl-

glucuronide

xenobiotics LC/MS pos 60 231 0.524 2.727 25.9

paraxanthine xenobiotics LC/MS pos 1667 969 0.544 1.645 13.2

pioglitazone* xenobiotics LC/MS pos 6 2

piperine xenobiotics LC/MS pos 1746 966 0.514 1.765 15.7

quinate xenobiotics GC/MS 1460 737 0.265 1.978 23.9

saccharin xenobiotics LC/MS neg 410 322
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salicylate xenobiotics GC/MS 484 197 0.475 1.616 19.8

salicyluric glucuronide* xenobiotics LC/MS neg 272 99 1.000 1.000 0.0

theobromine xenobiotics LC/MS pos 1755 1042 0.730 1.331 8.3

theophylline xenobiotics LC/MS neg 1653 977 0.625 1.725 15.8

thymol sulfate xenobiotics LC/MS neg 1064 626 0.590 1.554 10.0

carbamazepine* LC/MS pos 5 4
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Table A.3: One hundred and one SNPs published by Teslovich et al. (2010). This
Table summarises the 101 SNPs that were extracted from the KORA genotype data
for the application of the candidate locus approach together with proxy SNPs for
the replication of signi�cant associations in the GRAPHIC study.

gene SNP chr position proxy position R2 D'

LDLRAP1 rs12027135 1 25648320

PABPC4 rs4660293 1 39800767

PCSK9 rs2479409 1 55277238

ANGPTL3 rs2131925 1 62823186

EVI5 rs7515577 1 92782026

SORT1 rs629301 1 109619829 rs646776 109620053 1 1

ZNF648 rs1689800 1 180435508

MOSC1 rs2642442 1 219037216

GALNT2 rs4846914 1 228362314

IRF2BP rs514230 1 232925220

APOB rs1367117 2 21117405

APOB rs1042034 2 21078786

GCKR rs1260326 2 27584444

ABCG5/8 rs4299376 2 43926080

RAB3GAP1 rs7570971 2 136039146

COBLL1 rs12328675 2 165249046

COBLL1 rs10195252 2 165221337

IRS1 rs2972146 2 226837161

RAF1 rs2290159 3 12603920

MSL2L1 rs645040 3 137409312

KLHL8 rs442177 4 88249285

SLC39A8 rs13107325 4 103407732

ARL15 rs6450176 5 53333782

MAP3K1 rs9686661 5 55897543

HMGCR rs12916 5 74692295

TIMD4 rs6882076 5 156322875

MYLIP rs3757354 6 16235386

HFE rs1800562 6 26201120

HLA rs3177928 6 32520413
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Table A.3 (cont.)

gene SNP chr position proxy position R2 D'

HLA rs2247056 6 31373469

C6orf106 rs2814982 6 34654538

C6orf106 rs2814944 6 34660775

FRK rs9488822 6 116419586

CITED2 rs605066 6 139871359

LPA rs1564348 6 160498850

LPA rs1084651 6 161009807

DNAH11 rs12670798 7 21549442

NPC1L1 rs2072183 7 44545705

TYW1B rs13238203 7 71767603

MLXIPL rs17145738 7 72620810

KLF14 rs4731702 7 130083924

PPP1R3B rs9987289 8 9222556

PINX1 rs11776767 8 10721339

NAT2 rs1495741 8 18299989

LPL rs12678919 8 19888502

CYP7A1 rs2081687 8 59474251

TRPS1 rs2737229 8 116717740

TRPS1 rs2293889 8 116668374

TRIB1 rs2954029 8 126551803

PLEC1 rs11136341 8 145115531

TTC39B rs581080 9 15295378

ABCA1 rs1883025 9 106704122

JMJD1C rs10761731 10 64697616

CYP26A1 rs2068888 10 94829632

GPAM rs2255141 10 113923876

AMPD3 rs2923084 11 10345358

SPTY2D1 rs10128711 11 18620817

LRP4 rs3136441 11 46699823

FADS1-2-3 rs174546 11 61328054 rs102275 61314379 1 1

APOA1 rs964184 11 116154127 rs12286037 116157417 0.588 1

UBASH3B rs7941030 11 122027585

ST3GAL4 rs11220462 11 125753421

PDE3A rs7134375 12 20365025
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Table A.3 (cont.)

gene SNP chr position proxy position R2 D'

LRP1 rs11613352 12 56130316

MVK rs7134594 12 108484576

BRAP rs11065987 12 110556807

HNF1A rs1169288 12 119901033

SBNO1 rs4759375 12 122362191

ZNF664 rs4765127 12 123026120

SCARB1 rs838880 12 123827546

NYNRIN rs8017377 14 23952898

CAPN3 rs2412710 15 40471079

FRMD5 rs2929282 15 42033223

LIPC rs1532085 15 56470658 rs4775041 56461987 0.536 0.904

LACTB rs2652834 15 61183920

CTF1 rs11649653 16 30825988

CETP rs3764261 16 55550825

LCAT rs16942887 16 66485543

HPR rs2000999 16 70665594

CMIP rs2925979 16 80092291

STARD3 rs11869286 17 35063744

OSBPL7 rs7206971 17 42780114

ABCA8 rs4148008 17 64386889

PGS1 rs4129767 17 73889077

LIPG rs7241918 18 45418715

MC4R rs12967135 18 56000003

ANGPTL4 rs7255436 19 8339196

LDLR rs6511720 19 11063306

LOC55908 rs737337 19 11208493

CILP2 rs10401969 19 19268718

APOE rs4420638 19 50114786

APOE rs439401 19 50106291

FLJ36070 rs492602 19 53898229

LILRA3 rs386000 19 59484573

ERGIC3 rs2277862 20 33616196

MAFB rs2902940 20 38524901

TOP1 rs6029526 20 39244689
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Table A.3 (cont.)

gene SNP chr position proxy position R2 D'

HNF4A rs1800961 20 42475778

PLTP rs6065906 20 43987422 rs6073952 43970339 0.877 1

UBE2L3 rs181362 22 20262068

PLA2G6 rs5756931 22 36875979
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Table A.5: Quantiles of the p-gain density. Reported are the quantiles for various
combinations of correlation values among the metabolic traitsM1,M2 andM3 with
commonly M3 = M1/M2. Note that some correlation settings are not possible if
M3 = M1/M2. Nevertheless, we extended the simulation analysis of the p-gain
density to these correlation settings for the reason of completeness. In addition,
we provided the quantiles for the simulated (sim) and calculated (calc) densities
for the idealised case of fully correlated metabolic traits which are uncorrelated
with the third metabolic trait.

correlation quantiles

(M1;M2) (M1;M3) (M2;M3) 1 % 2.5 % 5 % 10 % 50 % 90 % 95 % 97.5 % 99 %

0 0 0 34.13 13.18 6.59 3.30 0.63 0.10 0.05 0.02 0.01

0 0 ±0.2 32.25 12.45 6.48 3.25 0.64 0.11 0.05 0.03 0.01

0 0 ±0.4 25.57 10.76 5.80 3.04 0.64 0.11 0.06 0.03 0.01

0 0 ±0.6 17.82 8.28 4.71 2.69 0.65 0.13 0.07 0.04 0.02

0 0 ±0.8 8.54 4.97 3.25 2.10 0.67 0.16 0.09 0.05 0.02

0 0 ±1 1.00 1.00 1.00 1.00 0.99 0.20 0.10 0.05 0.02

0 ±0.2 ±0.2 28.46 11.86 6.21 3.15 0.64 0.11 0.05 0.03 0.01

0 ±0.2 ±0.4 23.96 10.44 5.61 2.97 0.64 0.12 0.06 0.03 0.01

0 ±0.2 ±0.6 15.63 7.64 4.48 2.57 0.65 0.13 0.07 0.04 0.02

0 ±0.2 ±0.8 7.83 4.61 3.04 2.01 0.67 0.16 0.09 0.05 0.02

0 ±0.4 ±0.4 18.27 8.44 4.78 2.70 0.64 0.12 0.07 0.03 0.01

0 ±0.4 ±0.6 12.15 6.42 3.82 2.32 0.65 0.14 0.08 0.04 0.02

0 ±0.4 ±0.8 5.82 3.61 2.53 1.78 0.68 0.18 0.10 0.06 0.03

0 ±0.6 ±0.6 7.80 4.50 2.98 1.94 0.66 0.16 0.09 0.06 0.03

0 ±0.6 ±0.8 3.27 2.26 1.73 1.34 0.72 0.21 0.13 0.08 0.04

0 ±0.8 ±0.8 3.16 2.23 1.72 1.34 0.71 0.22 0.13 0.08 0.04

±0.2 0 0 32.68 13.20 6.53 3.30 0.64 0.10 0.05 0.02 0.01

±0.2 0 ±0.2 31.44 12.59 6.50 3.27 0.64 0.11 0.05 0.03 0.01

±0.2 0 ±0.4 25.23 11.19 5.81 3.07 0.64 0.12 0.06 0.03 0.01

±0.2 0 ±0.6 16.49 8.05 4.62 2.65 0.65 0.13 0.07 0.04 0.02

±0.2 0 ±0.8 8.64 4.92 3.24 2.11 0.68 0.16 0.09 0.05 0.02

±0.2 ±0.2 ±0.2 29.32 12.72 6.35 3.23 0.64 0.11 0.05 0.03 0.01

±0.2 ±0.2 ±0.4 24.63 10.72 5.61 2.96 0.64 0.12 0.06 0.03 0.01

±0.2 ±0.2 ±0.6 16.02 7.95 4.61 2.64 0.65 0.13 0.07 0.04 0.02

±0.2 ±0.2 ±0.8 8.25 4.82 3.15 2.08 0.67 0.16 0.09 0.05 0.02
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Table A.5 (cont.)

correlation quantiles

(M1;M2) (M1;M3) (M2;M3) 1 % 2.5 % 5 % 10 % 50 % 90 % 95 % 97.5 % 99 %

±0.2 ±0.2 ±1 1.00 1.00 1.00 .001 0.99 0.21 0.11 0.06 0.02

±0.2 ±0.4 ±0.4 21.08 9.46 5.20 2.84 0.65 0.12 0.07 0.03 0.02

±0.2 ±0.4 ±0.6 14.16 7.00 4.17 2.45 0.65 0.14 0.08 0.04 0.02

±0.2 ±0.4 ±0.8 7.19 4.24 2.86 1.93 0.67 0.17 0.10 0.05 0.02

±0.2 ±0.6 ±0.6 9.65 5.22 3.34 2.12 0.66 0.16 0.09 0.05 0.03

±0.2 ±0.6 ±0.8 4.66 3.01 2.19 1.60 0.67 0.20 0.12 0.07 0.04

±0.2 ±0.8 ±0.8 2.48 1.85 1.49 1.22 0.71 0.25 0.16 0.11 0.06

±0.4 0 0 33.47 13.62 6.85 3.42 0.65 0.11 0.05 0.03 0.01

±0.4 0 ±0.2 32.43 12.73 6.72 3.38 0.66 0.11 0.06 0.03 0.01

±0.4 0 ±0.4 25.58 11.09 5.90 3.13 0.66 0.12 0.06 0.03 0.01

±0.4 0 ±0.6 17.22 8.18 4.66 2.69 0.68 0.13 0.07 0.04 0.02

±0.4 0 ±0.8 7.77 4.58 3.05 2.04 0.71 0.17 0.09 0.05 0.02

±0.4 ±0.2 ±0.2 29.70 12.35 6.41 3.30 0.66 0.11 0.06 0.03 0.01

±0.4 ±0.2 ±0.4 25.85 11.19 5.92 3.10 0.66 0.12 0.06 0.03 0.01

±0.4 ±0.2 ±0.6 18.47 8.57 4.87 2.75 0.67 0.14 0.07 0.04 0.02

±0.4 ±0.2 ±0.8 8.76 5.01 3.28 2.15 0.70 0.17 0.09 0.05 0.02

±0.4 ±0.4 ±0.4 21.56 9.93 5.38 2.91 0.66 0.13 0.07 0.04 0.01

±0.4 ±0.4 ±0.6 14.84 7.62 4.38 2.58 0.67 0.14 0.08 0.04 0.02

±0.4 ±0.4 ±0.8 8.46 4.84 3.16 2.07 0.69 0.18 0.10 0.06 0.03

±0.4 ±0.4 ±1 1.00 1.00 1.00 1.00 1.00 0.23 0.12 0.07 0.03

±0.4 ±0.6 ±0.6 11.44 6.04 3.72 2.28 0.66 0.16 0.09 0.05 0.03

±0.4 ±0.6 ±0.8 6.16 3.80 2.61 1.81 0.68 0.20 0.12 0.07 0.04

±0.4 ±0.8 ±0.8 3.12 2.24 1.75 1.37 0.69 0.25 0.17 0.11 0.07

±0.6 0 0 35.09 14.02 7.15 3.54 0.70 0.12 0.06 0.03 0.01

±0.6 0 ±0.2 32.62 13.16 6.79 3.45 0.70 0.12 0.06 0.03 0.01

±0.6 0 ±0.4 25.85 11.29 5.97 3.17 0.70 0.13 0.06 0.03 0.01

±0.6 0 ±0.6 15.78 7.87 4.64 2.68 0.73 0.15 0.08 0.04 0.02

±0.6 0 ±0.8 6.39 3.90 2.69 1.88 0.80 0.18 0.09 0.05 0.02

±0.6 ±0.2 ±0.2 31.86 13.11 6.83 3.46 0.69 0.12 0.06 0.03 0.01

±0.6 ±0.2 ±0.4 27.85 11.48 6.14 3.23 0.70 0.13 0.07 0.03 0.01

±0.6 ±0.2 ±0.6 17.86 8.71 5.01 2.86 0.71 0.15 0.08 0.04 0.02

±0.6 ±0.2 ±0.8 8.27 4.83 3.24 2.15 0.75 0.18 0.09 0.05 0.02

±0.6 ±0.4 ±0.4 25.18 10.85 5.74 3.13 0.70 0.13 0.07 0.04 0.02

±0.6 ±0.4 ±0.6 16.80 8.23 4.79 2.73 0.70 0.15 0.08 0.04 0.02
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Table A.5 (cont.)

correlation quantiles

(M1;M2) (M1;M3) (M2;M3) 1 % 2.5 % 5 % 10 % 50 % 90 % 95 % 97.5 % 99 %

±0.6 ±0.4 ±0.8 8.76 5.14 3.36 2.20 0.73 0.18 0.10 0.06 0.02

±0.6 ±0.6 ±0.6 13.19 6.79 4.18 2.51 0.70 0.16 0.09 0.05 0.03

±0.6 ±0.6 ±0.8 7.54 4.51 3.00 2.01 0.71 0.20 0.12 0.07 0.04

±0.6 ±0.6 ±1 1.00 1.00 1.00 1.00 1.00 0.27 0.16 0.09 0.04

±0.6 ±0.8 ±0.8 4.50 3.01 2.23 1.63 0.71 0.25 0.17 0.11 0.07

±0.8 0 0 38.42 15.56 7.75 3.92 0.76 0.13 0.06 0.03 0.01

±0.8 0 ±0.2 35.55 14.04 7.21 3.70 0.76 0.13 0.07 0.03 0.01

±0.8 0 ±0.4 25.56 11.38 6.19 3.34 0.79 0.15 0.07 0.04 0.01

±0.8 0 ±0.6 14.46 7.00 4.26 2.59 0.84 0.17 0.09 0.04 0.02

±0.8 0 ±0.8 9.38 5.33 3.41 2.21 0.82 0.18 0.09 0.05 0.02

±0.8 ±0.2 ±0.2 34.37 14.11 7.24 3.74 0.76 0.14 0.07 0.03 0.01

±0.8 ±0.2 ±0.4 30.08 12.81 6.75 3.55 0.77 0.14 0.07 0.03 0.01

±0.8 ±0.2 ±0.6 18.04 8.76 5.10 2.98 0.80 0.17 0.09 0.04 0.02

±0.8 ±0.2 ±0.8 8.55 4.99 3.32 2.20 0.84 0.20 0.10 0.05 0.02

±0.8 ±0.4 ±0.4 26.61 11.53 6.23 3.37 0.76 0.15 0.08 0.04 0.02

±0.8 ±0.4 ±0.6 18.11 8.94 5.19 2.98 0.77 0.17 0.09 0.05 0.02

±0.8 ±0.4 ±0.8 9.32 5.31 3.51 2.32 0.81 0.21 0.11 0.06 0.03

±0.8 ±0.6 ±0.6 15.78 7.78 4.66 2.77 0.76 0.18 0.10 0.06 0.03

±0.8 ±0.6 ±0.8 8.98 5.27 3.46 2.25 0.78 0.22 0.13 0.08 0.04

±0.8 ±0.8 ±0.8 6.24 3.87 2.71 1.92 0.76 0.26 0.17 0.12 0.07

±0.8 ±0.8 ±1 1.00 1.00 1.00 1.00 1.00 0.37 0.24 0.17 0.10

±1 (sim) 0 (sim) 0 (sim) 50.72 20.04 10.00 4.99 1.00 0.20 0.10 0.05 0.02

±1 (calc) 0 (calc) 0 (calc) 50 20 10 5 1 0.2 0.1 0.05 0.02

±1 ±0.2 ±0.2 47.25 18.75 9.49 4.80 1.00 0.20 0.10 0.05 0.02

±1 ±0.4 ±0.4 38.57 16.16 8.45 4.42 1.00 0.23 0.12 0.06 0.03

±1 ±0.6 ±0.6 22.51 11.12 6.46 3.68 1.00 0.27 0.16 0.09 0.05

±1 ±0.8 ±0.8 9.30 5.65 3.83 2.60 1.00 0.38 0.26 0.18 0.11

±1 ±1 ±1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Figure A.1: Quantile-quantile plots, boxplots and regional association plots for
37 signi�cant loci. This Figure consists of 37 Sub�gures; one for each locus.
Quantile-quantile plot The observed vs. expected distribution of −log10 p-
values is plotted in the quantile-quantile plots. A deviation of the observed p-
value distribution from the expected p-value distribution for small p-values (large
−log10 p-values) indicates an association signal whereas a deviation for large p-
values (small −log10 p-values) can indicate population strati�cation. The black
line shows the results of the GWAS in KORA and the grey line of the GWAS in
TwinsUK. Boxplot The measurements of the metabolic traits are strati�ed for the
three genotypes (major allele homozygote, heterozygote, minor allele homozygote)
at a SNP for KORA and TwinsUK separately. The number of samples per group
is indicated above the plot. Notches indicate the 95 % con�dence intervals around
the means. The data is presented on a log-normal scale and normalised to the
mean of the major allele homozygotes in each study. Regional association plot
This plot shows the association signal for TwinsUK, KORA and the meta-analysis
(Meta). Each point corresponds to a SNP in the region (genotyped SNPs are in-
dicated in blue; imputed SNPs in black, the lead SNP in red). The genome-wide
level of signi�cance (2.0×10−12) is indicated by horizontal grey lines. In the lower
part of this plot are the genes (green arrows) summarised.
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