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Summary (English)

Epidemiological studies investigate complex diseases of which most have a predis-
position through genetical factors, for example type 2 diabetes or cardiovascular
diseases. In order to discover genes involved in the disease aetiology, genome-wide
association studies (GWAS) are the state-of-the-art method. Hitherto, GWAS
comprise of up to 250 000 samples but despite these large sample sizes only a
fraction of the estimated heritability of the analysed phenotypes can be explained
by the discovered genes, so far. Moreover, the genes detected in GWAS have
to be further investigated to better understand biochemical processes underlying
the association. A promising instrument to gain further insight is the analysis of
metabolites. Metabolomics is the evolving field of measuring endogenous organic
compounds of a cell or body fluid. As metabolites are downstream products of ge-
netic processes, they are considered to exceed other phenotypes in power. Recently,
some GWAS with metabolomics have been conducted and revealed promising re-
sults analysing ratios between metabolite concentrations (metabolite ratios). To
decide whether a metabolite ratio carries more information than the two corre-
sponding single metabolite concentrations alone, the p-gain was introduced as an
objective measure. The p-gain is defined as the quotient of the smallest of the asso-
ciation p-values of the single metabolite concentrations to the association p-value
of the metabolite ratio.

In this thesis, two procedures for the incorporation of metabolites in the GWAS ap-
proach are presented and applied to different metabolomics data sets. In addition,
a statistical exploration of the p-gain is carried out to improve the examination
of metabolite ratios. In the first of the two presented procedures, metabolites
are used for an in-depth analysis of genetic candidate loci which have already
been discovered in GWAS of clinically relevant phenotypes. In the second pro-
cedure, metabolites are used to discover new genetic loci through conduction of
metabolomics GWAS. In a follow-up analysis, these novel loci should be further
analysed together with clinically relevant phenotypes. As application of the first

procedure, we conducted an analysis of 95 known serum lipid loci using 15 lipopro-
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tein subfractions. We revealed significant associations for eight of the loci and thus
gained further insight into different lipid pathways. As an application of the sec-
ond procedure, we conducted GWAS of more than 250 metabolites as well as all
pair-wise ratios, in total over 37 000 metabolic traits. These analyses revealed 37
loci which lead to further insight into various pathways of the human metabolism.
In a follow-up analysis, some loci also showed associations with clinically relevant
phenotypes. Finally, we determined the distribution of the p-gain and derived
critical values through extensive statistical exploration. In conjunction with this,
we demonstrated the power of the p-gain approach through a pathway enrichment
analysis.

In conclusion, this thesis shows by concrete examples that both procedures for the
incorporation of metabolomics data in the GWAS approach confirm and extend
current knowledge about genetics underlying various biochemical pathways as well
as discusses the advantages and limitations of both procedures and improves the

examination of metabolite ratios.



Summary (German)

In epidemiologischen Studien werden komplexe Erkrankungen untersucht, von de-
nen viele eine Pradisposition beziiglich genetischer Komponenten haben, z.B. Typ
2 Diabetes oder kardiovaskulidre Erkrankungen. Die Standardmethode fiir die Iden-
tifizierung von Genen, die in der Atiologie von Krankheiten eine wichtige Rolle spie-
len, sind Genom-weite Assoziationsstudien (GWAS). In den zurzeit grofsten GWAS
werden Daten von bis zu 250 000 Individuen ausgewertet. Trotz dieser grofen
Stichprobenumfiange wird bisher nur ein kleiner Teil der Erblichkeit von Phéno-
typen durch die entdeckten Gene erkldrt. Neben der Identifizierung der Gene,
sind die biochemischen Zusammenhéinge zwischen den Genen und der Krankheit
aufzuklaren. Ein vielversprechender Weg hierfiir ist die Analyse von Metaboliten.
Metabolomics ist ein sich entwickelndes Gebiet, in dem endogene organische Kom-
ponenten einer Zelle oder Korperfliissigkeit gemessen werden. Da die Metabolite
Produkte von genetischen Prozessen sind, birgt die Analyse von Metabolitendaten
eine hohere Power als von anderen Phéanotypen. Bisherige GWAS mit Metabo-
litendaten fiihrten bereits zu sehr vielversprechenden Ergebnissen in der Analyse
von Quotienten von Metabolitenkonzentrationen (Metabolitenquotienten). Um zu
bestimmen, ob ein Metabolitenquotient mehr Informationen enthélt als die beiden
zugehorigen Metabolitenkonzentrationen alleine wurde der p-gain als objektives
Mak eingefiithrt. Der p-gain ist definiert als Quotient des kleinsten p-Wertes der
Assoziationen der Metabolitenkonzentrationen zum p-Wert der Assoziation des
Metabolitenquotienten.

In dieser Dissertation werden zwei Verfahren zur Einbettung von Metaboliten
in den GWAS Ansatz vorgestellt und auf verschiedene Datensitze angewendet.
Dariiber hinaus wird eine statistische Analyse des p-gains durchgefiihrt, um die
Auswertung von Metabolitenquotienten zu verbessern. Die Idee des ersten der bei-
den vorgestellten Verfahren ist es, die Metaboliten fiir eine weiterfilhrende Analyse
von bereits bekannten genetischen Loci zu verwenden. Im Gegensatz dazu wer-
den in dem zweiten vorgestellten Verfahren neue genetische Loci in GWAS mit

Metabolitendaten entdeckt. In Folgeanalysen werden diese neuen Loci als Kan-
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didatenloci bei Analysen mit klinisch relevanten Phianotypen weiter ausgewertet.
Als Anwendung des ersten Verfahrens haben wir 95 bekannte Lipidloci mit Hilfe
von 15 Lipoproteinsubklassen nédher untersucht. Diese Analyse brachte fiir acht
Loci einen tieferen Einblick in Zusammenh#nge verschiedener Lipidstoffwechsel-
wege. Als Anwendung des zweiten Verfahrens haben wir mehr als 250 Metabolite,
sowie alle paarweisen Metabolitenquotienten analysiert, insgesamt mehr als 37000
Metabolitenphénotypen. Diese Analyse hat 37 assoziierte Loci hervorgebracht, die
neue Einblicke in verschiedene Stoffwechselwege geliefert haben. Dariiber hinaus
konnten fiir einige dieser Loci zusétzliche Assoziationen mit klinisch relevanten
Phénotypen gezeigt werden. Abschlieflend haben wir fiir die statistische Auswer-
tung des p-gains dessen Verteilung bestimmt, sowie zugehorige kritische Werte
hergeleitet. Um die Relevanz des p-gain Konzeptes zu zeigen wurde aufierdem
nachgewiesen, dass fiir Metabolitenquotienten mit signifikantem p-gain die zuge-
horigen einzelnen Metabolitenkonzentrationen vermehrt zu einem gemeinsamen
Stoffwechselweg gehoren.

Insgesamt zeigt diese Dissertation an konkreten Beispielen, dass beide vorgestellte
Verfahren zur Einbeziehung von Metaboliten in den GWAS Ansatz aktuelles Wis-
sen iiber genetische und biochemische Prozesse verschiedener Stoffwechselwege
sowohl bestétigen als auch erweitern. Dariiber hinaus werden in dieser Disser-
tation die Vor- und Nachteile der beiden Verfahren diskutiert und die Auswertung

von Metabolitenquotienten verbessert.

XII



1. Introduction

Complex diseases such as type 2 diabetes or cardiovascular diseases are an increas-
ing global health burden. According to the |World Health Organisation (2011a,bl),
346 million people worldwide suffer from type 2 diabetes whereas cardiovascular
diseases are the number one cause of death globally. Elucidation of the aetiology
of complex diseases in conjunction with an improvement of preventive medicine is
an aim of epidemiological studies. In these studies, the disease itself as well as re-
lated risk factors are investigated. Furthermore, because a genetical predisposition
exists for most complex diseases, the identification of genes involved in the disease
aetiology is essential. For this purpose, genome-wide association studies (GWAS)
are the state-of-the-art method. In order to gain further insight into genetical
and biochemical mechanisms underlying a disease, this thesis expands the GWAS
approach by incorporating metabolites as intermediate phenotypes between the

genes and diseases.

1.1 Genome-wide association studies

GWAS is the hypothesis-free approach of statistically testing associations between
a phenotype and millions of genetic variants, predominantly single nucleotide
polymorphisms (SNPs). The underlying idea of GWAS is that a number of
common SNPs are causal for a complex disease. Therefore, it is expected that
differences in frequency for these SNPs can be detected between cases and
controls (McCarthy et al., 2008; Pearson and Manolio, [2008)). The first GWAS
were conducted in 2007 for diseases such as type 2 diabetes, Crohn’s disease,
Prostate cancer or coronary artery disease (Sladek et al., 2007; [Libioulle et al.|
2007; [Yeager et al., 2007; [Burton et all 2007). These GWAS comprised of 500 to
2000 cases and 600 to 3000 controls and revealed up to nine associated genomic
regions. In the meantime, GWAS were also conducted for many quantitative
traits which are risk factors for various diseases. So far, a total of 1449 GWAS for
237 different traits are published (Hindorfl et al, 2011). The significant results



Figure 1.1: Published GWAS by June 2011. This Figure depicts significant asso-
ciations (p-value < 5 x 107%) detected in 1449 GWAS on 237 traits together with
their location on the human genome. The 237 traits are colour coded. Courtesy:
National Human Genome Research Institute (Hindorff et al., 2011)).

of these GWAS and their location on the genome are displayed in Figure [L.1
Although GWAS are a very popular method to reveal novel risk loci, one drawback
is the small effect size of SNPs. This results mostly in an explained variance of less
than 1 % or an odds ratio smaller than 1.2 (De Bakker et al., 2008)). Therefore,

large sample sizes are needed to detect significant associations. Enlarging the

sample size is often achieved through conduction of meta-analyses where multiple
teams carry out the same analysis in different cohorts and combine the results
afterwards (Zeggini and loannidis, [2009; [Thompson et al.| 2011). Currently, the
largest meta-analyses comprise of up to 250 000 samples, e.g. for body mass index
(BMI), height or serum lipids (Speliotes et al., [2010; Lango Allen et al. [2010;
Teslovich et all [2010). In these GWAS, 18 loci associated with BMI, 180 with
height and 95 with serum lipids were detected. Together, these loci explain 3 %
of the genetic variance of BMI, 13 % of height and 25 % — 30 % of serum lipids.

These numbers show that a noteworthy proportion of the estimated heritability

of these traits remains unexplained. This problem of the missing heritability
is a widely discussed topic. Among the suspected reasons are undetected rare
mutations which are not tagged well by common SNPs, common variants with a
low penetrance, other genomic variations such as copy number variants, gene-gene

and gene-environment interactions as well as inaccurate heritability estimates



(Maher, [2008)). Analyses to discover some part of the missing heritability address
the effects of many SNPs simultaneously. For example, analysing 294 831 SNPs
together in one regression model can explain 45 % of the genetic variance of height.
Additionally, some more of the unexplained heritability might be explained by
incomplete linkage disequilibrium (LD) between the analysed SNPs and the
causal variants (Yang et al., [2010). Larger sample sizes, refined phenotypes, more
densily genotyped SNPs as well as improved statistical methods might help to
find the missing heritability.

As follow-up of a detected association between a SNP and a phenotype, the gene
underlying the observed association has to be determined. Here, biological knowl-
edge about genes in the considered genomic region and the analysis of their tran-
script can bring further insight. Moreover, the causal variant underlying the as-
sociation does not have to be among the significant SNPs as only a fraction of
the existing SNPs was analysed. Thus, the genomic region has to be sequenced
within fine-mapping approaches. In addition to the determination of the causal
genetic variant, functional studies are needed to reveal biochemical mechanisms
influencing the observed association (McCarthy et al., 2008). These effords can be
complemented by in silico analyses of metabolomics and proteomics data (Plomin
et all [2009). So far, GWAS are only a first step in the investigation of genetical
and biochemical mechanisms of a complex disease and their risk factors. The hy-
potheses generated by GWAS together with the new candidate genes have to be

further investigated.

1.2 Metabolomics

Metabolomics is the rapidly evolving field of measuring endogenous organic
compounds of a cell or body fluid. It is estimated that the human metabolome,
which is defined as the complete set of all low-molecular weight molecules,
comprises at least 3000 different metabolites of various biochemical classes such as
amino acids, lipids, sugars or carnitines (Koal and Deigner} |2010). Metabolites are
influenced by genetic factors but also by environmental factors and are involved
in many biochemical processes of the cell. Therefore, the analysis of metabolites
can reveal insight on functional alterations in the cell and help to detect latent
connections between different diseases (Holmes et al., |2008; [Barderas et al. [2011]).
Furthermore, metabolomics is a highly sensitive technique for functional analyses

because metabolites are downstream products of genetic and proteomic processes.



As a result, changes in the organism are amplified in the metabolome compared
to the genome or proteome. These characteristics make metabolomics a promising
tool in the search for biomarkers which help to detect a disease early, to improve
the disease prognosis, to evaluate drug toxicity or to develop therapeutics (Nichol-
son and Lindon) 2008; Nagrath et al. 2011). For example, metabolomics plays
an emerging role in the field of cancer diagnostics and therapeutics, especially
when early detection is difficult such as for kidney cancer (Nagrath et al., [2011]).
The search for biomarkers is also upcoming in cardiovascular diseases. However,
only minimal improvements over conventional factors were achieved, so far
(Barderas et al. [2011)). Furthermore, ratios between metabolite concentrations
(metabolite ratios) are used in addition to raw metabolite concentrations in
the search for biomarkers, e.g. in systematic screens for genetic deficiencies in
newborns. An example are elevated concentrations of acylcarnitine ratios which
allow to detect medium-chain acyl-coenzyme A dehydrogenase deficiency (Maier
et al, 2005). Another example is the phenylalanine to tyrosine ratio which
is used to identify heterozygous carriers of phenylketonuria risk alleles (Hsial
1958)). Metabolite ratios are also used as biomarkers for detecting specific expo-
sures. For instance, the urinary hydroxyproline to creatinine ratio was proposed

as an indicator for personal exposure to nitrogen dioxide (Yanagisawa et al.,|1986)).

The measurement of metabolites reveals a snapshot of the current state of cells
in the analysed biospecimen. Predominantly, metabolomics analyses are based
on blood and urine as these biospecimens are easy to obtain. In principle, there
are two analysis strategies to measure metabolites. Whilst the non-targeted
approach aims at measuring all metabolites of a biospecimen, the targeted
approach focuses on the quantification of selected metabolites. The most ac-
cepted high-throughput methods to measure metabolites are mass spectrometry
(MS) and nuclear magnetic resonance (NMR) spectroscopy (Malet-Martino and
Holzgrabe, 2011). Among the different NMR methods, mainly 'H-NMR is used,
which detects hydrogen atoms in metabolites. NMR methods have the advantage
that the analyte does not require any treatment prior to analysis. In contrast,
MS has to be coupled to separation techniques, e.g. gas chromatography (GC) or
liquid chromatography (LC) but is usually more sensitive than NMR (Nicholson
and Lindon, [2008). When using GC/MS, the analyte has to be volatile and
thermally stable and sometimes requires a derivatisation step. Among others,
fatty acids, organic acids and sugars can be measured with GC/MS very well.

If a derivatisation is not possible or if the metabolites are not volatile, LC/MS



can be applied (Barderas et al), 2011). In some cases, tandem MS (MS/MS) is
applied which consists of multiple MS steps with a fragmentation step in between.
The use of MS/MS facilitates the identification of the measured molecules
(Horgan et all 2008). All together, the combination of different measurement

techniques is essential to gain the most comprehensive insight into the metabolome.

1.3 Genome-wide association studies with meta-

bolomics

As metabolites are downstream products of genetic as well as proteomic processes,
metabolites are closer connected to genetics in contrast to most of the other
analysed phenotypes. The investigation of the genetical basis of metabolites can
be achieved through the conduction of metabolomics GWAS.

The first GWAS with metabolomics was done by |Gieger et al| (2008). They
analysed 363 metabolites measured in 284 serum samples. The evaluated
metabolite data set comprised not only of lipids but also of amino acids, acyl-
carnitines and sugars. As initial analysis, a GWAS was conducted for each of
the measured metabolite concentrations. Since this analysis did not reveal a
significant association, GWAS of metabolite ratios were calculated in a follow-up
step. It is considered that the analysis of metabolite ratios increases the statistical
power, because systematic experimental errors that are common to the tested
metabolite pair are cancelled out, e.g. variance in sample dilution due to pipetting
inaccurancies. Furthermore, metabolite ratios can serve as proxies for enzymatic
reaction rates for closely biologically connected metabolites. Thus, it is expected
that associations with genes encoding enzymes are stronger for metabolite ratios
than for single metabolite concentrations. As a result of the metabolite ratio
analysis, associations with the FADS cluster (fatty acid desaturase) and the
LIPC locus (hepatic lipase) were discovered, among others. In addition to
further insight into biochemical mechanisms, it was also observed that the use
of metabolite ratios strengthens the association of multiple orders of magnitudes
compared to single metabolite concentrations. After increasing the sample size
to 1809 participants, the metabolite concentration and metabolite ratio GWAS
were repeated and 15 loci were discovered of which nine could be replicated (Illig

et all 2010). Many of the detected loci were located near enzyme-coding or



solute-carrier coding genes whose proteins match the associated metabolic trait.

Hence, these 15 loci helped to discover various processes of the human metabolism.

In the meantime, several metabolomics GWAS were conducted. Examples for
lipid based metabolites are GWAS which focus on phospho- and sphingolipids
(Hicks et al, [2009; Demirkan et all 2012), different polyunsaturated fatty
acids (Tanaka et al), 2009b; Lemaitre et al., 2011) and lipoprotein subfractions
(Chasman et al., 2009). In addition, a GWAS for metabolites measured in human
urine samples was also carried out (Suhre et al., 2011b). This GWAS focused on
the detoxification capacity of the human body and revealed loci associated with

chronic kidney disease and coronary artery disease, among others.

In the first metabolomics GWAS, the capability of metabolite ratio analyses was
discovered (Gieger et al. [2008). Whilst in some GWAS all possible pair-wise
metabolite ratios were analysed in a hypothesis-free approach, others focused on
biologically relevant metabolite ratios. In order to quantify the strengthening in
association when analysing metabolite ratios as compared to single metabolite
concentrations, the p-gain was introduced. The p-gain for the metabolite ratio
M /M, at a genetic locus X is defined as

Y

ain %X _ min(p-value(M;| X), p-value(Ms| X))
p g ]\42 °

p—value(AM—I; |X)

with ‘p-value(M;| X))’ representing the p-value of the association between the
genetic locus X and metabolite M;, ¢« = 1,2. So far, only a rule of thumb was
applied for determination of relevance of the p-gain because the specification of

the distribution of the p-gain and therefore of critical values is pending.

As the genetical analysis of metabolites is an evolving field, only some easily ob-
tained gains were achieved, so far. The already measured metabolite concen-
trations together with their ratios have to be investigated more accurately using
statistical and biochemical methods. Moreover, with the development of technolo-
gies to measure additional metabolites, analyses of these metabolites will bring

further insight into the human metabolism and disease causing mechanisms.



2. Aims of this thesis

Hitherto, GWAS of metabolites were the chosen method to incorporate large-scale
metabolomics data in the GWAS approach as well as to investigate the genetical
basis of metabolites. Instead of using a hypothesis-free approach it is also possible
to conduct a candidate locus approach using current knowledge for the selection of
genetic loci. Thus, there are two procedures for the incorporation of metabolomics
data in the GWAS approach:

a. Using metabolites for an in-depth analysis of genetic candidate loci which have

already been discovered in GWAS of clinically relevant phenotypes.

b. Discovering new genetic loci through conduction of GWAS with metabolites

followed by an analysis of these loci together with clinically relevant pheno-

types.

In the first procedure (a) metabolites can reveal functional insight into the mecha-
nisms underlying an observed association between a genetic locus and a phenotype.
In contrast, in the second procedure (b) metabolites are used to detect novel ge-
netic loci. These detected loci can then serve as candidate loci for clinically relevant
phenotypes in order to gain greater insight into disease causing mechanisms. In
the following, we refer to the first procedure (a) as candidate locus approach and

to the second procedure (b) as metabolomics GWAS approach.

The first aim of this thesis is to compare the two procedures regarding their ob-
jectives, advantages, limitations and feasibility. Therefore, we apply the candidate
locus approach to 15 lipoprotein subfractions which we analyse together with 95
lipid loci that were discovered in serum lipid GWAS. In addition, we conduct
GWAS of over 250 metabolite concentrations and all pair-wise metabolite ratios
covering about 60 biochemical pathways as application of the metabolomics GWAS
approach. After a presentation of the findings of both applications in Chapter

(Results), we compare the procedures in Chapter |5 (Discussion and Conclusion).



For the two procedures, it is possible to analyse not only metabolite concentrations
but also pair-wise metabolite ratios. In this case, the p-gain should be applied as
an objective measure. Since the distribution of the p-gain is not specified, so far,
our second aim is to improve the metabolite ratio analysis through a statistical
exploration of the p-gain. In detail, we determine the distribution of the p-gain
and derive critical values for different settings of correlations among the metabolic
traits. In addition, we show the power of the p-gain approach at the example
of the application of the metabolomics GWAS. Therefore, we conduct a pathway
enrichment analysis where we compare for metabolite ratios with significant p-gain
the membership to a common pathway with that of metabolite ratios with non-
significant p-gain. In Chapter |5| (Discussion and Conclusion), we consider the
implications of the statistical exploration of the p-gain for the two procedures and

the presented applications.



3. Material and methods

In order to address these objectives, we based our analyses on two different sets of
metabolites and a total of four different studies. The metabolites and studies are
described in the first Section of this Chapter followed by separate methods Sections

for each of the two procedures as well as for the statistical p-gain examination.

3.1 Material

3.1.1 Metabolites

For the candidate locus approach, we used 15 lipoprotein subfractions to further
characterise 95 lipid loci whereas we used a broad spectrum of metabolites cover-
ing different biochemical pathways in the application of the metabolomics GWAS
approach. These sets of metabolites were measured using two different technolo-

gies.

The lipoprotein subfraction distribution was assessed by NMR spectroscopy and
carried out at LipoFIT GmbH, Regensburg, Germany. The technology has been
patented (Huber et all [2005, 2011alb). Briefly, diffusion-weighted NMR spectra
of blood plasma were recorded on a Bruker 600 MHz spectrometer Avance IIplus
which revealed characteristic overall profiles of the lipoprotein signals. Using the
LipoFIT proprietary software, the regions of the spectra ranging from 0.6 to 1.5
ppm were decomposed into a set of 15 lipoprotein subfractions termed L1-L15 that
are characterised by different diffusion constants. The subfractions were defined
by LipoFIT in such a way that the corresponding diffusion constants agreed with
the presumed particle sizes given in Table in the Appendix and correspond
essentially to small, medium, large and very large high density lipoprotein (HDL)
(L1-L4), very small, small, medium, large and very large low density lipopro-
tein (LDL) (L5-L9), intermediate density lipoprotein (IDL) (L10), small and large
very low density lipoprotein (VLDL) (L11 and L12), remnants (L13) and small



and large chylomicrons (.14 and L.15) (Linsel-Nitschke et al) |2009). Since for the
calculation of particle numbers from the NMR data one has to make additional
assumptions about the shape, density and composition of these particles which
may bias the statistical analysis, we used the concentrations c¢; of methyl groups
from cholesterol and fatty acids in the different particle classes Li (i=1,...,15),

which can be directly measured by NMR.

For the application of the metabolomics GWAS approach, we evaluated metabo-
lites measured by Metabolon, an US commercial supplier of metabolic analy-
ses. For the metabolic profiling, they used two separate ultrahigh performance
LC/MS/MS injections and one GC/MS injection per sample (Evans et al., [2009)).
"The resulting (...) data were searched against a standard library generated by
Metabolon (...) [which, AK.P.| allowed for the identification of the experimen-
tally detected molecules (...)" (Suhre et al), 2011a). In total, more than 250
metabolites were profiled, covering over 60 biochemical pathways of the human
metabolism. The super pathways to which these metabolites belong to are lipids,
carbohydrates, amino acids, nucleotides, peptides, xenobiotics, cofactors and vita-
mins, among others. A full list of the measured metabolites is given in Table
in the Appendix.

3.1.2 Studies

The Cooperative Health Research in the Region of Augsburg (KORA) study is
a series of independent, population-based epidemiological surveys and follow-up
studies of participants living in the region of Augsburg, Southern Germany (Wich-
mann et al.,[2005). All participants gave signed informed consent and are residents
of Germany with a German nationality identified through registration. The Bay-
erische Landesarztekammer has approved the studies. For most analyses of this
thesis, about 1800 samples of the follow-up study KORA F4 (2006 — 2008) of the
KORA 5S4 survey (1999 —2000) were evaluated. Within the KORA F4 study, 1814
randomly selected participants were genome-wide genotyped using the Affymetrix
GeneChip array 6.0. Genotypes were determined using the Birdseed2 clustering al-
gorithm and imputed using IMPUTE v0.4.2 (Howie et al.,[2009) based on HapMap
II. The blood samples which were used for the measurement of the metabolites
were collected between 2006 and 2008 during the KORA F4 examinations. "To
avoid variation due to circadian rhythm, blood was drawn in the morning between

8:00 a.m. and 10:00 a.m. after a period of (...) overnight fasting. (...) [One part of
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the blood, AK.P.] was drawn into serum gel tubes, gently inverted twice and then
allowed to rest for 30 min at room temperature (18 °C — 25 °C) to obtain complete
coagulation. The material was then centrifuged for 10 min (2,750 g at 15 °C).
Serum was divided into aliquots and kept for a maximum of 6 h at 4 °C, after
which it was deep-frozen to —80 °C until analysis" (Suhre et all |2011a). These
serum samples were used for the metabolite measurements at Metabolon. Another
part of the blood was drawn into ethylene diaminetetraacetic acid (EDTA) tubes,
gently inverted two times and left on the Sarstedt Universal mixer less than 5 min
to avoid mechanical hemolysis, followed by centrifugation for 10 min and 2, 750 g at
15 °C. Thereafter, plasma was separated, divided into 200 ul aliquots and kept at
4 °C, after which it was deep-frozen to —80 °C. After less than two weeks, plasma
was stored in the gaseous phase of liquid nitrogen (—196 °C). Following the trans-
port on dry ice to Regensburg for lipoprotein subfraction measurement it was kept
deep-frozen at —80 °C for two months. Then, plasma was thawed and immedi-
ately analysed. Serum lipids were measured on fresh samples using the Dimension
RxL (Dade Behring). Total cholesterol (TC) was determined by cholesterol es-
terase method (CHOL Flex, Dade-Behring, cholesterol oxidase-p-aminophenazone
(CHOD-PAP) method), HDL cholesterol (HDL-C) using the AHDL Flex (Dade-
Behring, CHOD-PAP method after selective release of HDL-C), LDL cholesterol
(LDL-C) using the ALDL Flex (Dade Behring, CHOD-PAP method after colour-
less usage of all non-LDL-C) and triglycerides (TG) were measured using a TGL
Flex (Dade Behring, enzymatic colorimetric test, glycerol phosphate oxidase-p-
aminophenazone (GPO-PAP) method). In the following, we refer to serum lipids
as the four traits HDL-C, LDL-C, TG and TC whereas we refer to lipoprotein

subfractions as L1-L15, which were measured in plasma.

The application of the candidate locus approach to lipoprotein subfractions was
done on 1791 samples of the KORA study. For replication of the results, data from
15 samples of the Human Metabolome (HuMet) study as well as from 1940 sam-
ples of the Genetic Regulation of Arterial Pressure of Humans in the Community
(GRAPHIC) study was evaluated.

The HuMet study is a highly controlled human trial of 15 young and metabolically
healthy men which were recruited with a very narrow age range and normal BMI
at the Human Study Center in Weihenstephan, Germany (Krug et al., |2012). For
a characterisation of the lipoprotein subfractions, data of the lipid tolerance test of
the HuMet study was evaluated. The oral lipid tolerance test drink consisted of a

3 : 1 mixture, containing three parts Fresubin® Energy Drink chocolate (Fresenius
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Kabi, Bad Homburg, Germany) and one part Calogen® (Nutricia, Zoetemeer,
Netherlands). Calogen® is a fat emulsion containing 50 g of long-chain TG per
100 ml. The test drink was served at room temperature at 8:00 a.m. after an
overnight fast for ingestion within 5 min. Plasma collections were performed after
0 min, 30 min, 60 min, 90 min, 120 min, 180 min, 240 min and 300 min after
the lipid ingestion. For comparison, fasting samples were taken on three days at
8:00 a.m. The second fasting sample was taken four weeks after the first fasting
sample. The third fasting sample was taken 24 h after the second fasting sample.
This trial was approved by the ethical commission of the Technische Universitét
Miinchen (#2087/08). Blood samples were collected into 9 ml EDTA K,-Gel tubes
(Sarstedt, Niimbrecht, Germany). EDTA-tubes were immediately centrifuged at
3,000 g for 10 min at 20 °C. Plasma was aliquoted by an automatic pipette and was
immediately deep-frosted on dry ice and stored at —80 °C until analysis, except
for the duration of the transport to Regensburg on dry ice.

The GRAPHIC study was used to replicate the findings of the genetic association
analysis. For the GRAPHIC study 2024 individuals from 520 nuclear families of
white European origin from Leicestershire in the United Kingdom were recruited.
The details of recruitment, phenotyping and sample analysis have been reported
by [Tomaszewski et al.|(2010). In brief, for families to be included both parents had
to be aged 40 to 60 with two offspring aged 18 or over, with all members agree-
ing to take part in the study. A standardised questionnaire was used to obtain
a comprehensive medical history from participants followed by physical examina-
tion, anthropometric measurements, clinic and 24 h ambulatory blood pressure
monitoring. The standard biochemistry measurements including HDL-C and TC
were performed on non-fasting serum samples using enzymatic assays in an Olym-
pus AU5430 analyser (Samani et al.l [2008). Genotypes were determined for the
GRAPHIC study using the Illumina HumanCVD BeadChip array (Tomaszewski
et al., 2010).

The application of the metabolomics GWAS was done on 1768 KORA samples as
well as on 1052 samples of the TwinsUK cohort. "The TwinsUK cohort is a British
adult twin registry (...). These unselected twins were recruited from the general
population through national media campaigns and were shown to be comparable
to age-matched population singletons in terms of disease-related and lifestyle char-
acteristics" (Suhre et al., 2011a; Andrew et all [2001). Written informed consent
has been given by all participants and the study has been approved by the Guy’s

and St. Thomas” Hospital Ethics Committee. "Blood samples were taken after at
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least 6 h of fasting. The samples were immediately inverted three times, followed
by 40 min of resting at 4 °C to obtain complete coagulation. The samples were
then centrifuged for 10 min at 2,000 g. Serum was removed from the centrifuged
brown-topped tubes as the top, yellow, translucent layer of liquid. Four aliquots of
1.5 ml were placed into skirted microcentrifuge tubes and then stored at —45 °C
until sampling" (Suhre et all 2011a). Genotyping of the TwinsUK data set was
done with a combination of Illumina arrays (HumanHap300, HumanHap610Q,
1IM-Duo and 1.2MDuo 1M) (Richards et al., [2008; [Soranzo et al., 2009). The Ill-
luminus calling algorithm (Teo et al.l 2007) was used to assign genotypes. After
extensive quality control, the data sets were merged and imputed using IMPUTE

v2 (Howie et al. 2009) with HapMap II as well as an own panel as reference.

The statistical analyses of the HuMet, GRAPHIC and TwinsUK cohorts were done

by investigators of the studies.

3.1.3 Genotypes

For the application of the candidate locus approach to lipoprotein subfractions,
101 SNPs at 95 lipid loci published by Teslovich et al.| (2010) were extracted from
the imputed genotypes of the KORA study (Table . For replication, the same
SNPs or SNPs in LD of more than 0.5 were seleced from the GRAPHIC study.

The metabolomics GWAS of the second approach were based on all genotyped
SNPs of the KORA and TwinsUK studies. For fine-mapping of interesting ge-
nomic regions, a detailed analysis was conduced using imputed genotype data of

the two cohorts.

3.2 Methods

3.2.1 Application of the candidate locus approach

For the evaluation of the lipoprotein subfractions together with the 95 lipid loci,
we first characterised the lipoprotein subfractions using serum lipids. This was
necessary since we used the concentrations c¢; of the lipoprotein subfractions Li
(i= 1,...,15) and not further derived values such as size or density. Therefore,

we conducted a cluster analysis of the lipoprotein subfractions together with the
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serum lipids. Moreover, plasma samples from the HuMet study for which measure-
ments were available at three fasting time points as well as at seven time points
during a lipid tolerance test were analysed to further characterise the lipoprotein
subfractions. After this exploratory work, we calculated associations between the
15 NMR-measured lipoprotein subfractions and 101 genetic variants within 95
lipid loci identified in GWAS (Teslovich et al.l 2010, Table . Additionally, we
tested the increase in information when analysing lipoprotein subfractions com-
pared to serum lipids using the p-gain approach. The inter-relationship among
the lipoprotein subfractions and the associations of the lipid loci were analysed in
1791 plasma samples of the KORA study. The replication of the significant results
of the lipid loci analysis was conducted in 1940 samples of the GRAPHIC study.

Data transformation. For the statistical analysis, all serum lipid and lipoprotein
subfraction values were naturally log-transformed to achieve normality. Summary
statistics for serum lipids and lipoprotein subfractions are combined in Table
in the Appendix.

Characterisation of lipoprotein subfractions

Correlation matriz. We used the ‘cor’ function implemented in the R-Project En-
vironment (R Development Core Team| 2010) to calculate the Pearson correlation
matrix of lipoprotein subfractions and serum lipids for all pair-wise complete ob-
servations. Furthermore, we conducted a linear regression analysis for each serum
lipid separately with all lipoprotein subfractions as well as age and sex as explain-
ing variables to calculate the proportion of variance of the serum lipids which is

explained by the subfractions, age and sex.

Cluster dendrogram. 1In order to visualise the correlation structure within the
lipoprotein subfraction data set, we used an unrooted phylogeny tree where the
length of each branch represents the distance between variables. This tree was
plotted by using the package ‘ape’ (Paradis et al, 2004) within the R-Project
Environment. The distance measure was based on the correlation between two
variables and for the clustering of the lipoprotein subfractions the average linkage
method was used. In addition, we applied a bootstrap method implemented in
the ‘pvclust’ package (Suzuki and Shimodairal 2006|) of the R-Project Environ-
ment with 10 000 bootstrap replications. In order to measure the confidence of
each branch, we used the approximately unbiased (AU) probability, which is more
accurate than the bootstrap probability (Shimodaira) 2002). The AU probability
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was calculated on multiscale bootstrap resamplings. Beside AU probabilities, we
also calculated standard errors to evaluate the confidence of each branch. High AU
probabilities and low standard errors indicate a strong support for a branch. For
the 15 HuMet samples were multiple measurements at fasting time points as well as
during a lipid tolerance test available. Aiming at illustrating the variation between
variables and not within individuals for the fasting dendrogram, the clustering of
the lipoprotein subfractions was based on average values of multiple measurements
from a participant. For the cluster plot of the lipoprotein subfractions during the
lipid tolerance test, we aimed to illustrate the variation over the time, so aver-
age values of the measurements retained at one time point from all participants
were calculated. In a second step, we incorporated the serum lipids in the cluster

analysis of KORA samples to classify the lipoprotein subfractions in a natural way.

Development plots. Time dependent graphs were plotted for each cluster to vi-
sualise the development of the subfractions during the lipid tolerance test. In
order to visualise the change of the subfractions in comparison to the measure-
ment at the starting time point, log-fold changes were used. A fold change is
the ratio of a measurement at a certain time point to the measurement at the
starting time point. Through calculation of the logarithm (logyo), the y-axis rep-

resents the change with positive values as increase and negative values as decrease.

Association with 95 lipid loci

Discovery. We analysed in KORA the 101 candidate SNPs described by [Teslovich
et al. (2010) to genetically characterise the lipoprotein subfractions. Therefore,
we used the software QUICKTEST (Johnson and Kutalik, 2008)) with an additive
linear model with age and sex as covariates. In order to correct for multiple testing,
we applied Bonferroni correction for the 101 candidate SNPs and 15 lipoprotein
subfractions, i.e. p-value < 3.3x107° = %. Additionally, we calculated p-gain
values to test the increase in information due to analysing lipoprotein subfractions

compared to serum lipids. Hence, we defined the p-gain as

p-gain(lipoprotein subfraction)
_ min(p-value(HDL-C), p-value(LDL-C), p-value(TG), p-value(TC))

p-value(lipoprotein subfraction)

We defined a SNP as clearly stronger associated with a subfraction than with a
serum lipid if the p-gain for a lipoprotein subfraction at a SNP was greater than

15. Finally, the explained variance of a SNP was calculated as the difference be-

15



tween the explained variance of a linear model with SNP, age and sex as explaining

variables and of a linear model with only age and sex as explaining variables.

Replication. In silico replication of the significant associations in the KORA study
was conducted in the GRAPHIC study. The analysis of association was carried
out using generalised estimation equations with exchangeable correlation structure
to account for familial correlations, adjusted for age, age? and sex under an ad-
ditive model of inheritance (Tomaszewski et al., 2010). We applied a Bonferroni
correction for the significant SNP - lipoprotein subfraction associations to correct

for multiple testing.

3.2.2 Application of the metabolomics GWAS approach

For the GWAS of the metabolites, we decided to analyse not only all metabo-
lite concentrations (N = 276 in KORA) but also all pair-wise metabolite ratios
(N = 37179 in KORA), in total 37 455 metabolic traits in KORA, since the
analysis of metabolite ratios showed good results in |Gieger et al.| (2008) and lllig
et al.| (2010). Due to the increased computational and data storage burden, we
conducted a stepwise approach. First, we performed all metabolite concentration
and metabolite ratio GWAS on genotyped SNPs. Then, we selected promising
signals between genomic regions and metabolic traits and repeated the association
analysis on genotyped and imputed SNPs of these regions. For loci which were
significant in this fine-mapping analysis, we specified candidate genes and clini-
cally relevant phenotypes which were reported to be associated with these loci. As
a follow-up analysis, we calculated associations between the metabolic traits and

selected clinically relevant phenotypes.

Quality control of metabolites and genotypes. For quality control of the meta-
bolomics data set, all data points with a distance of more than three standard
deviations to the mean of the metabolic traits were excluded. Moreover, only
metabolic traits with at least 300 non-missing values were analysed. In total, 276
metabolite concentrations and 37 179 metabolite ratios were available in KORA
whereas in TwinsUK 258 metabolite concentrations and 32 499 metabolite ratios
were available. A test of normal distribution for the metabolic traits showed that
for more cases the logjg-transformed values were closer to the normal distribution

than the untransformed values. Therefore, log,o-transformation was applied to all
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metabolic traits. Moreover, testing ratios between two metabolite concentrations
a and b should be independent of their order. This is achieved when analysing
log-scaled metabolite ratios due to the property log(a/b) = —log(b/a). This also
halves the multiple testing burden.

As quality control of the genotypes, we excluded all SNPs with a call rate less than
95 % and a p-value < 107° for deviation from the Hardy-Weinberg equilibrium.
In total, about 655000 autosomal SNPs were included in the GWAS of the KORA
study and about 535 000 autosomal SNPs in the GWAS of the TwinsUK study.

Metabolomics GWAS

GWAS and meta-analysis. The metabolomics GWAS were carried out on geno-
typed SNPs using an additive linear regression model for all metabolic traits. We
adjusted for age, sex and family structure. For the GWAS, the software PLINK
v1.06 (Purcell et al) 2007) and SNPTEST (Marchini et al.l 2007) were used in
KORA whereas Merlin (Abecasis et al.l [2002) which accounts for family struc-
ture was used in the TwinsUK study. In order to measure the strengthening in
association when analysing a metabolite ratio compared to the single metabolite
concentrations, the p-gain approach was applied. Furthermore, we calculated the
inflation factor A and plotted quantile-quantile plots to check for inflation of sum-
mary statistics which can reflect population stratification in the analysed sample
or an unappropriate statistical model (Devlin and Roeder, [1999; De Bakker et al.,
2008)). After this initial GWAS on genotyped SNPs, we selected the genomic re-
gions and metabolic traits which had an association p-value < 1076 in both cohorts
or a p-value < 1072 in one and a p-value < 107 in the other cohort for further
analysis. Additionally, for metabolite ratios we required the p-gain to be larger
than 250. For each of these genomic regions, associations were calculated for both
cohorts between the genotyped and imputed SNPs of the genomic region and the
selected metabolic traits. Afterwards, the results were meta-analysed using the
fixed-effects inverse variance method (De Bakker et al., 2008). The combination of
SNP and metabolic trait that yielded to the smallest p-value in this meta-analysis
was finally selected. In the following, we refer to the SNP with the smallest p-value

in the meta-analysis as lead SNP for the genomic region.

Correction for multiple testing. A conservative Bonferroni correction for multiple
testing was applied using the KORA study as a reference. The nominal signifi-
cance level of 5 % was corrected for tests on 655 658 SNPs and 37 455 metabolic

traits. This resulted in a Bonferroni corrected level of significance of 2.0 x 1072,
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For metabolite ratios, it was also required that the p-gain has to be larger than

250 which is approximately the number of tested metabolite concentrations.

Follow-up analysis of GWAS results

Candidate gene selection. Using knowledge about the function of genes which are
located near the lead SNP and about the biochemical characteristics of the asso-
ciated metabolic traits, we identified a single most likely candidate gene in many

cases.

Overlap with published associations. For each locus, SNPs were identified which
were previously reported to be associated with clinically relevant phenotypes.
These SNPs were required to have an LD of more than 0.8 with the lead SNP.
This search was done using the catalogue of published GWAS (Hindorff et al.l
2011]).

Assoctations with clinically relevant phenotypes. For selected loci we further tested
the association between a metabolic trait and a clinically relevant phenotype
through calculation of linear regression models. One tested clinically relevant
phenotype was the estimated glomerular filtration rate (eGFR) which is defined

as
eGFR = 175 x scr 1% x age 2% x 1.212 (if black) x 0.742 (if female)

with scr the serum creatinine measurement in mg/dl (Levey et al.l 2007). Another
clinically relevant phenotype which we analysed in the follow-up analysis was hy-
pertension. We defined a sample as hypertensive if the systolic blood pressure was
higher than 190 mmHg and the diastolic blood pressure was higher than 90 mmHg

or if the sample was on anti-hypertensive medication.

3.2.3 Statistical exploration of the p-gain

In order to statistically explore the p-gain, we derived critical values through de-
termination of the distribution of the p-gain. In case of uncorrelated metabolic
traits, the distribution can be calculated. For the other cases, we conducted a sim-
ulation approach. In addition, we investigated the characteristics of the p-gain in
the situation of Bonferroni correction for multiple testing as well as the depencence
of observed p-gain values on the sample size. Finally, we illustrated the power of

the p-gain approach by investigating the enrichment for common pathways among
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metabolite ratios with significant p-gain. The analysis of the dependence of ob-
served p-gain values on the sample size as well as the pathway enrichment analysis

were based on the concrete example of the application of the metabolomics GWAS

(Chapter and [4.2)).

Density of p-gain

For uncorrelated metabolic traits (calculation). As notation, we used ‘p-value(M;|X)’,
short ‘P(M;)’, to reference the p-value corresponding to a test for association be-
tween a genetic locus X and the metabolite M;, i = 1,2. This is often the test
of the effect size in a linear regression of a genetic locus X to the metabolite M;.
With this definition, the p-gain for the ratio M;/M> of metabolites M; and M, at

a genetic locus X is defined as

p-gain <% X) _ min(p—value(M1|X)],wp—value(M2|X)).
p—value(ﬁ; | X)

i 0

We further define the universal p-gain as the ratio of p-values belonging to two

uncorrelated metabolic traits:

. M,
p-galll iy E

Critical values of the distribution of the universal p-gain are conservative to the

M
, cor( My, ﬁl) =0. (2)
2

p-value(M;|X)
X )= T
p-value (71 X)

critical values of the distribution of the p-gain given in equation (1) because

p-value(M;|X) > min(p-value(M; | X), p-value(M;| X))
and therefore

p-value(M;|X)

p—value(% |.X)

min(p-value(M;|X), p-value(Ms| X))

p—Value(% |.X)

>

The variation of the distribution of the p-gain defined in equation (2) depends on
the correlation among M; and M;/M,. For example, highly correlated metabolic
traits contain mainly the same information and have similar p-values in association
tests. This results in p-gain values which are close to one. Hence, the variation of
the distribution is small. In contrast, weakly correlated metabolic traits contain
different information and may have different p-values in association tests. This
results in p-gain values distributed broadly around the one. Therefore, assuming
cor(My, My /M) = 0, as it was done in equation (2), results in a distribution of the

universal p-gain with largest possible variation and leads to the most conservative
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critical values. For the universal p-gain, the density can be calculated by using

the convolution formula for ratios:

+o0
f_ran) (p-gain) = / [t - fp(u) (P-gain - £) - fran ) (t)dt ¥ p-gain € R,

P(M,/Mg) o

with P(M;) and P(M;/Ms) having a uniform distribution on the interval [0, 1].

Transformations lead to

“+o0o
f pary (p-gain) Z/ It| - feean) (P-gain - t) - fp(ar jam) (t)dt

P(M; /M) oo

1
= / ¢+ from)(p-gain - t)dt
0

1

JoEm tdt =

1 .
o, pegain > 1

fol tdt =3, 0 < p-gain < 1.

The corresponding cumulative distribution is

p-gain 1-— 2-p—1gain’ p-gain > 1
F pouy (p—gain) :/ f pom (t)dt =
T 0 ) % p-gain, 0 < p-gain < 1.
Therefore,
F (p-gain) = (1— %) =1 ! (1-2) if pgain > 1
-gain) = (1 — — - =(1-= if p-gain
et P8 B 2 - p-gain B’ p-gamtt =

with «/ B being the significance level a;, Bonferroni corrected for B tests.

For correlated metabolic traits (simulation). To determine the density of the p-
gain as defined in equation (1), we assumed a given correlation structure among
the metabolic traits. This confers to a correlation structure among p-values corre-
sponding to these metabolic traits. With these correlated p-values the density of
the p-gain can be derived. For simulation of the variables with a given correlation
structure we chose the ‘copula’ package (Yan) [2007; Kojadinovic and Yan, 2010)
of the R-Project Environment. A copula is a joint probability distribution which
one-dimensional marginal distributions are uniformly distributed over the interval

[0,1]. It takes the dependency among the marginal distributions into account.
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After simulating variables using a copula, we transformed them with an inverse
normal transformation to gain normal distributed variables which is essential for
linear regressions. To simulate the p-values belonging to these variables, we gener-
ated additional variables and conducted linear regressions where these additional
variables were the independent and the variables simulated with the copula the
dependent variables. The received p-values contain a correlation structure which
belongs to the correlation structure of the metabolic traits. Out of these p-values,
we calculated the density of the p-gain empirically and derived critical values for

given significance levels.

Dependence of p-gain values on sample size

We determined the dependence of p-gain values on the sample size by drawing ran-
domly (with replacement) between 100 and 2000 samples from the KORA data
which we used for the application of the metabolomics GWAS (Chapter .
For each sample size, we repeated this analysis 1500 times. For all sample subsets
we calculated p-gain values. We then determined the median p-gain values as well

as the 1% and 3™ quantile of the p-gain values for each sample size.

P-gain and metabolomics pathways

We used the KORA results of the application of the metabolomics GWAS (Chap-
ter to analyse the enrichment of pathways for metabolite ratios with a large
p-gain. For this analysis, we additionally filtered the GWAS results for minor
allele frequency (MAF) greater than 5 % and extracted for each metabolite ratio
the SNP with the largest p-gain. As terminology, we defined a metabolite ratio to
be on a pathway, whenever both metabolite concentrations of the metabolite ratio
belong to the same pathway. For pathway annotations, we applied different map-
pings such as Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and
Goto, 2000; Kanehisa et all 2006, 2010), the Small Molecule Pathway Database
(SMPDB) (Frolkis et all [2010), levels two and three of the Human Metabolome
Database (HMDB) (Wishart et al., 2009), super- and sub-pathways provided by
Metabolon (Evans et al., [2009) and Gaussian graphical models (GGMs) (Krum-
siek et all 2011). We coded the pathway information of each data base as one if
both metabolite concentrations of a ratio were on the same pathway, else zero. If
there was no information available about a metabolite ratio in one mapping, we
omitted this particular mapping from the following calculations for this metabolite
ratio. With this, we computed a percentage of the mappings which assigned both

metabolite concentrations of a ratio to the same pathway and tested the difference
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of the mean of pathway allocation for the best 100, 500, 1000 and 1500 metabolite
ratios vs. the mean of pathway allocation for all metabolite ratios using a t-test.
Additionally, we compared the allocation to a common pathway for all metabolite
ratios with a significant p-gain vs. all metabolite ratios with a non-significant p-

gain.
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4. Results

4.1 Application of the candidate locus approach:
Genetic associations with lipoprotein subfrac-
tions provide information on their biological

nature

Background

At present, 95 associated common variants are reported for HDL-C, LDL-C, TG
and TC (Teslovich et al. 2010). These loci explain 10 % — 12 % of the total
variance of serum lipids. Extreme levels of serum lipids are a major risk factor
for cardiovascular outcomes such as coronary artery disease, myocardial infarc-
tion and stroke (Castelli et al. [1977; Castelli, 1996). Whilst the contribution of
LDL-C to the development of coronary artery disease is well documented, the
role of other lipoprotein fractions (including HDL-C) in atherosclerosis and its
clinical manifestations is less well understood (Asztalos et al., 2004; [Rader] 2006,
2009). For example, the torcetrapib failure revealed the complexity of the HDL
metabolism and implicated that further research on HDL and HDL fractions is
needed (Von Eckardstein) 2010). In order to obtain a more detailed view of the
lipid metabolism, subfractions of lipoproteins which can be measured using 'H-
NMR spectroscopy can be analysed. Using a 400 MHz NMR lipoprotein analyser,
Chasman et al.| (2009) conducted a GWAS of the lipoprotein subfractions with the
aim of finding new genetic lipid loci.

The aim of this application is to gain a more in-depth view into biological processes
of the lipid metabolism through analysing lipoprotein subfractions together with
known genetic lipid loci and to investigate if the analysis of subfractions reveals

more and stronger associations with genetic loci than the analysis of serum lipids.
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tree A tree B tree C tree D
branch AU SE AU SE AU SE AU SE
0.629 0.009 0.644 0.009 0.751 0.007 0.979 0.001

—

2 1.000 0.000 0.755 0.009 0.998 0.000 0.996 0.000
3 0.996 0.006 1.000 0.000 0.967 0.002 0.966 0.002
4 0.812  0.008 0.994 0.003 0.995 0.000 0.851 0.006
5 0.899 0.005 0.958 0.004 0.766 0.007 1.000 0.000
[§ 1.000 0.000 0.721 0.009 0.869 0.005 0.989 0.001
7 0.609 0.009 0.889 0.006 0.893 0.004 1.000 0.000
8 0.817 0.008 0.931 0.005 0.851 0.006 0.994 0.000
9 0.696 0.009 0.687 0.009 0.821 0.006 0.843 0.006
10 1.000 0.000 0.763 0.008 0.936 0.003 0.996 0.000
11 1.000 0.000 0.801 0.007 0.949 0.003 0.990 0.001
12 1.000 0.000 0.790 0.007 0.909 0.004 0.953 0.002
13 1.000 0.000 0.992 0.004 0.870 0.005 0.948 0.002
14 0.995 0.002

15 1.000 0.000

16 0.999 0.000

17 0.999  0.001

Table 4.1: AU probabilities and standard errors for cluster plots. AU probabilities
(AU) and standard errors (SE) of 10 000 bootstrap replications were provided for
each branch of the trees of Figure High AU probabilities and low standard
errors indicate a strong support for a branch. Tree A lipoprotein subfractions
in KORA, tree B lipoprotein subfractions and serum lipids in KORA, tree C
lipoprotein subfractions in the fasting samples of HuMet and tree D lipoprotein
subfractions in the HuMet samples during the lipid tolerance test (Petersen et al.,
2012).

Results

Inter-relationship of lipoprotein subfractions

In order to be independent of assumptions about the shape of lipoprotein sub-
fractions, we assigned them to the serum lipids in a statistical analysis. First,
using linear regressions with all lipoprotein subfractions as explaining variables,
we observed that they explained a high proportion of serum lipid variance: 94 %
of the variance of TG, 84.6 % of TC, 82.5 % of HDL-C and 75.7 % of LDL-C.
To get a more in-depth view into the inter-relationship of lipoprotein subfractions,
we conducted a cluster analysis of the subfractions in KORA based on their cor-
relation matrix as a distance measure, followed by bootstrap replications to test
the robustness of the clustering. The results of this cluster analysis are displayed
in an unrooted tree (Figure A). At first observation, the tree indicated that
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Figure 4.1: Cluster plots of lipoprotein subfractions. The cluster plots of the
inter-relationship of the lipoprotein subfractions were displayed in an unrooted
phylogeny tree using the correlation between the subfractions as distance measure.
The length of a branch represents the distance between the subfractions. Each
phylogeny tree was created out of 10 000 bootstrap replications. A lipoprotein
subfractions in KORA, B lipoprotein subfractions and serum lipids in KORA,
C lipoprotein subfractions in the fasting samples of HuMet and D lipoprotein
subfractions in the HuMet samples during the lipid tolerance test. In Table
are for all branches the AU probabilities and the standard errors summarised
(Petersen et al., [2012).
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L1 L2 L3 L4 L5 L6 L7 L8 L9 L0 L1l T12 T13 Ti14 TL15 R?2

HDL-C —0.11 0.69 0.81 0.39 0.67 0.15 0.51 —0.39 —0.26 —0.52 —0.53 —0.52 —0.54 —0.52 —0.28 0.83
LDL-C  0.29 —0.05 —0.004 0.59 0.29 0.74 0.50 0.35 0.49 0.33 0.29 0.26 020 0.21 0.17 0.76
TC 0.20 0.21 0.28 0.70 0.52 0.85 0.68 0.39 0.57 037 031 0.30 0.20 0.24 0.27 0.85
TG 0.24 —0.23 —-0.44 —0.03 —0.28 0.29 —0.10 0.65 0.74 0.88 096 094 0.89 0.93 0.72 0.94

Table 4.2: Correlations between lipoprotein subfractions and serum lipids. The
Pearson correlation coefficient was calculated for each lipoprotein subfraction and
serum lipid. The R2 is the explained variance which was calculated in the lin-
ear regression model using all subfractions, sex and age as explaining variables
(Petersen et al.l [2012).

L1 is separate from the remaining subfractions. Furthermore, two major groups
were distinguished: L2-1.7 and L8-1.15. Each of the two major groups contained
two subgroups. In total, we had the following five clusters: (L1), (L2, L3, L5,
L7), (L4, L6), (L8, L10) and (L9, L11, L12, L13, L14, L15). For the mentioned
intersections, the bootstrap replications revealed an AU probability of one and a
standard error of zero, which means that these divisions are absolutely reliable
(Table [4.1] tree A). In the next step, we added the serum lipids to the tree to
get a lipid-based characterisation of the subfractions. After their inclusion, the
main inter-relationships between the subfractions remained unchanged (Figure
B). We found that HDL-C clustered together with (L2, L3, L5, L7), LDL-C and
TC with (L4, L6) and TG with (L9, L11, L12, L13, L14, L15). In the tree with
serum lipids, the AU probabilities were smaller than before but the divisions in the
mentioned five clusters were still very reliable (Table tree B). In order to fur-
ther characterise the relations between lipoprotein subfractions and serum lipids,
we used Pearson correlations. The results revealed that the largest correlation of
HDL-C was with L3, of LDL-C and TC with L6 and of TG with L11 (Table [4.2).
Surprisingly, lipoprotein subfraction L1 was only weakly correlated with all serum

lipids.

Lipoprotein subfractions after nutritional intervention

To investigate whether the clustering of the subfractions was stable after nutri-
tional intervention, we repeated the clustering in plasma samples from the 15
young men of the HuMet study for whom lipoprotein subfraction measurements
were conducted at three fasting time points as well as at seven time points during
a lipid tolerance test. In the cluster plot of the fasting time points, we replicated
the main three clusters: L1, L2-L7 and L8-L15 (Figure [4.1/ C). For these intersec-
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Figure 4.2: Development plots of lipoprotein subfractions during lipid tolerance
test. Each panel shows the development of a cluster of the lipoprotein subfractions
during the lipid tolerance test (Figure 4.1| D). The x-axis represents the time, the
y-axis the log-fold change, which describes the change of a measurement compared
to the first measurement (Petersen et al., [2012).

tions, we had reliable AU probabilities and standard errors (Table [£.1] tree C).
In contrast to the fasting cluster plot, we observed changes in the clustering of
the measurements during the lipid tolerance test (Figure D). The lipoprotein
subfractions shifted and generated new groups, e.g. (L1, L6, L8). In the fasting
cluster plot, L1 was independent of all other subfractions, L6 belonged to the group
(L4, 1.6) and L8 belonged to the group (L8, 1.10). During the lipid tolerance test,
subfraction .13 was independent of the other subfractions. Moreover, subfraction
L7 changed from the group (L2, L3, L5, L7) into the group (L7, L9, L10, L11, L12,
L.14, L15). For the major divisions, we observed again reliable AU probabilities
and standard errors (Table tree D). Subfractions within each group showed a
similar trend during the lipid tolerance test (Figure [4.2)). In group (L7, L9, L10,
L11, L12, L14, L15), all subfractions increased after 300 minutes but to a differ-
ent extent. L7 and L10 only increased by about 0.1, whereas .14 increased by
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about 0.5. The subfractions (L2, L3, L4, L5) stayed nearly constant during the
lipid tolerance test whilst lipoprotein subfraction L13 decreased notably by about
0.2. Thus the lipid tolerance test revealed the different influences of nutritional
intervention on lipoprotein subfractions. As a result, subfraction 1.1 was assorted

together with subfractions L6 and L8, which was in contrast to the results of the
fasting samples (Figure [1.1).

Proportion of variance explained by genes increases for subfractions
With this mapping of the lipoprotein subfractions, we next tested the association
between 101 SNPs and the 15 subfractions using an additive genetic model. In
addition to the Bonferroni corrected significance level of 3.3 x 1075, we compared
the p-value of the subfractions with the p-value of the serum lipids through calcu-
lation of a p-gain. Eight of the analysed loci showed significant associations with at
least one of the 15 subfractions (Tables and [4.4). Moreover, associations with
FADS1-2-3, LIPC, PLTP, APOB and APOA1 had relevant p-gains (i.e. p-gain
> 15) in KORA whereas for CETP, SORT1 and GCKR, use of subfractions did
not strengthen the original association. For FADS1-2-3, LIPC, CETP, PLTP and
GCKR, we replicated all significant associations as well as the relevant p-gains in
the GRAPHIC study (Table . For the remaining loci some associations were
not significant in GRAPHIC after Bonferroni correction. Nevertheless, the direc-
tion of effect at these loci was consistent in KORA and GRAPHIC. In contrast,
when analysing associations of serum lipids together with lipid loci, we found that
only four loci in KORA were associated (CETP, SORT1, GCKR, APOA1). In
addition to this, for FADS1-2-3, LIPC, PLTP and APOB the explained variance
was clearly larger for lipoprotein subfractions than for serum lipids (Figure .
In detail, the explained variances between lipid loci and subfractions were up to
2.3 % (APOA1 and 1.8). For serum lipids, we explained up to 1.7 % of the vari-
ance (CETP and HDL-C). Altogether, the explained variance of the lipoprotein
subfractions ranged from 1.5 % (L9) to 4.5 % (L8) and of serum lipids from 1.0 %
(TC) to 3.3 % (TG). Summing up these results, we found more significant as-
sociations with lipoprotein subfractions and in addition, we could explain more
of the variance of lipoprotein subfractions than of serum lipids. As a biological
classification of the significant eight genes, Figure integrates the genes together
with the analysed lipoprotein subfractions in the lipid metabolism. The colours
indicate the assignment of the lipoprotein subfractions to the three main clusters:
L1, L2-L7 and L8-L15.
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Table 4.4: Detailed results and replication of significantly associated loci. Number of samples (N), coded (effect, minor) allele,
non-coded (major) allele, effect size (beta), standard error (SE), p-value of association, increase in the strength of association
compared to serum lipids (p-gain) and MAF are reported for KORA and GRAPHIC. Only relevant p-gain values (i.e. p-gain > 15)
are provided for KORA. Associations marked with * were replicated in GRAPHIC (Petersen et al.| |[2012).

KORA (N=1791) GRAPHIC (N=1940)
lipoprotein coded/ coded/
subfraction gene SNP chr position  DOD- beta SE p-value p-gain  MAF proxy non- beta SE p-value p-gain  MAF
coded coded
L2 LIPC 181532085 15 56470658 A/G  0.083 0.016 3.40 x 10~7 4.71 x 10* 0.351 rs4775041 C/G  0.064 0.015 2.39 x 10> 1.29 x 10® 0.307
L2 CETP  1s3764261 16 55550825 T/G  0.086 0.020 1.43 x 1075 — 0.327 — — 0.061 0.014 9.25 x 10~ — 0.321
L3 LIPC 181532085 15 56470658 A/G  0.081 0.016 4.22x 1077 3.80 x 10* 0.351 rs4775041 C/G  0.067 0.013 5.20 x 10~7 5.94 x 103 0.307
L3 CETP  1s3764261 16 55550825 T/G  0.099 0.019 3.59 x 10~7 — 0.327 — — 0.090 0.013 2.08 x 10~ 1 — 0.321
L3 PLTP 186065906 20 43987422 C/T —0.083 0.019 1.72x 1075 4.46 x 103> 0.182 186073952 A/CG —0.082 0.016 2.53 x 10~7 2.26 x 10° 0.213
L5 LIPC 181532085 15 56470658 A/G  0.072 0.011 527 x 10711 3.04 x 10% 0.351 rs4775041 C/G  0.061 0.010 1.41 x 10~2 2.20 x 105 0.307
L7 LIPC  1s1532085 15 56470658 A/G  0.057 0.009 7.28 x 10710 2.20 x 107 0.351 rs4775041 C/G  0.041 0.008 2.26 x 10~7 1.37 x 10* 0.307
L4 FADS1-2-3 1sl174546 11 61326406 T/C —0.025 0.006 1.38 x 10~° 1.59 x 103 0.303 18102275 G/A —0.025 0.006 1.41 x 1075 3.40 x 102 0.324
L6 SORT!  1s629301 1 109619829 C/A —0.032 0.007 1.46 x 1075 — 0.219 — —  —0.019 0.007 9.46 x 10—3 — 0.219
L1 PLTP 156065906 20 43987422 C/T  0.040 0.008 4.86x 10~7 1.58 x 105 0.182 186073952 A/CG  0.034 0.007 7.79 x 10~7 7.33 x 10* 0.213
L8 GCKR  rs1260326 2 27584444 T/C  0.055 0.012 9.25 x 106 — 0.425 — — 0.035 0.011 1.45x 1073 — 0.404
L8 APOB 151042034 2 21078786 G/A —0.064 0.015 1.08 x 1075 3.21 x 103 0.237 — —  —0.035 0.014 1.05x 102 2.38 x 10! 0.196
L8 APOA1  rs964184 11 116154127 G/C  0.126 0.018 4.82 x 10712 3.42 x 103 0.141 rs12286037 T/C  0.051 0.023 3.02 x 1072 4.92  0.061
L10 GCKR  rs1260326 2 27584444 T/C  0.066 0.014 3.73 x 10~6 — 0.425 — — 0.049 0.013 2.91 x 10—* — 0.404
L10 APOB 151042034 2 21078786 G/A —0.072 0.017 1.63 x 10~° 2.13 x 103 0.237 — —  —0.055 0.016 4.14 x 10~* 6.02 x 102 0.196
L10 APOA1  rs964184 11 116154127 G/C  0.135 0.021 9.47 x 10711 1.74 x 102 0.141 rs12286037 T/C  0.049 0.030 1.11 x 10~! 1.34  0.061
L11 APOAI 15964184 11 116154127 G/C  0.131 0.026 6.25 x 10~7 — 0.141 1512286037 T/C  0.071 0.037 5.53 x 10~2 — 0.061
L14 GCKR  rs1260326 2 27584444 T/C  0.095 0.022 2.01 x 102 — 0.425 — — 0.074 0.021 4.75 x 104 — 0.404
L12 GCKR  rs1260326 2 27584444 T/C  0.081 0.018 6.88 x 106 — 0.425 — — 0.064 0.017 1.67 x 104 — 0.404
L12 APOA1 15964184 11 116154127 G/C  0.137 0.027 2.72x 1077 — 0.141 rs12286037 T/C  0.070 0.038 6.54 x 10~2 — 0.061

L13 APOA1 rs964184 11 116154127 G/C 0.173 0.034 3.16 x 10~7 — 0.142 rs12286037 T/C 0.095 0.051 6.29 x 1072 — 0.061
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Figure 4.3: Explained variance of lipoprotein subfractions and serum lipids. This
Figure presents the variance of the lipoprotein subfractions and serum lipids which
is explained by the significantly associated loci. The explained variance is only
shown for associations having a p-value < 0.05. The diameter of each circle rep-
resents the explained variance, a circle highlighted in yellow corresponds to a
significant association and a circle coloured in red corresponds to a significant as-
sociation with relevant p-gain. Circles with a black cross belong to serum lipids.
The lipoprotein subfractions were ordered according to a hierarchical clustering
which is displayed on the y-axis of this Figure (Petersen et al., 2012).

When combining the observations made in the cluster analysis with the significant
results of the association analysis, we detected comparable inter-relationships be-
tween the lipoprotein subfractions in both analyses. In the genetic analysis, we
found that all lipoprotein subfractions of the cluster (L2, L3, L5, L7), which is
correlated with HDL-C, were associated with LIPC whereas the subfractions L2
and L3 were also associated with CETP. With regard to subfraction L6 of the clus-
ter (L4, L6) together with LDL-C and TC we found a significant association with
SORTI1. When considering the association between L4 and SORTI, we saw an
effect although it was not significant (p-value = 3.58 x 107°; Table . The sub-
fractions L8 and L10, which built cluster (L8, 1.10), were associated with GCKR,
APOB and APOA1. Subfractions L12 and L14 and subfractions L11, L12 and L13
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Figure 4.4: Classification of lipoprotein subfractions and their associated loci in
the lipid metabolism. This Figure combines the results of the association analyses
with the lipid metabolism. We displayed each associated gene at least once in
this Figure and attached the associated lipoprotein subfractions to them. For
clarity, we restricted the lipid metabolism to pathways where the associated loci
are involved. The colour of the lipoprotein subfractions encodes the membership
to a cluster. We assigned the lipoprotein subfractions to the three larger clusters
L1, L2-L7 and L8-L15 to keep the Figure clear (Petersen et al.l 2012).

of cluster (L9, L11, 112, 113, L14, L.15) together with TG were associated with
GCKR and APQOAI1, respectively. Lipoprotein subfraction L1 was separate and
only associated with PLTP with a relevant p-gain. Although lipoprotein subfrac-
tion L3 was also associated with PLTP, the effect was in opposite directions for L1
and L3 (Table . In conclusion, the genetic analysis confirms the observations
made in the clustering and reveals further information about biological aspects of

the lipoprotein subfractions.
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Biological discussion

Clustering reveals that L1 is not captured by serum lipids

Clustering of the lipoprotein subfractions measured in fasting samples together
with the serum lipids revealed five groups of subfractions. HDL-C clustered to-
gether with L2, 1.3, L5 and L7 whereas LDL-C and TC clustered together with L4
and L6 and TG clustered together with L9, L11, L12, L13, L14 and L15. In ad-
dition, we detected that lipoprotein subfraction L1 does not cluster together with
the serum lipids. Due to its size, L1 is considered to correspond to the smallest
HDL subfraction. This finding matches the observations made by others that the
smallest HDL subfraction behaves in a different way than the larger HDL subfrac-
tions (Chasman et al.l 2009; Inouye et al.l 2010). [Inouye et al. (2010) speculated
that the smallest HDL subfraction may have pro-atherogenic potential which is in
contrast to the anti-atherogenic properties of HDL-C. However, conflicting data
on the association between cardiovascular disease risk and small HDL fractions
still complicate painting a concise picture of the fractions’ specific role (Camont
et al.,2011). HDL-C clustered together with L2, L3, L5 and L7 which are consid-
ered to correspond to medium and large HDL and very small and medium LDL,
respectively. Interestingly, in addition to HDL related subfractions, LDL related
subfractions also clustered together with HDL-C. Furthermore, LDL-C clustered
together with .4 and L6 which are considered to be related to very large HDL
and small LDL, respectively. This cross-mixed correlation of HDL and LDL sub-
fractions needs further investigation. The subfractions clustered together with TG
are related to the more TG-rich subfractions of VLDL and chylomicrons. When
clustering the subfractions measured in plasma taken during a lipid tolerance test,
we got different groups. The analysis of the lipoprotein subfractions during the
lipid tolerance test revealed that some subfractions were increased on response to
a standardised lipid tolerance test whereas other subfractions stayed nearly con-
stant. While subfractions which cluster together with TG tend to increase after
nutritional intervention, subfractions which cluster together with HDL-C stay the
same. Interestingly, subfraction L13, which relates to remnants, behaves differ-
ent than the other subfractions which cluster together with TG. Thus, nutritional
intervention had different influences on distinct subfractions. The analysis of sam-
ples during the lipid tolerance test was carried out in only 15 subjects. However,
HuMet is a highly controlled study and clustering of the subfractions at fasting
time points led to a clustering comparable to that of KORA samples.
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Using lipoprotein subfractions, we identified eight loci that were significantly as-
sociated in the KORA study whereas when analysing HDL-C, LDL-C, TC and
TG in the same individuals we found only half of the loci. These eight loci con-
tribute to diverse mechanisms of the lipid metabolism such as regulatory elements

or structural lipid components which is illustrated in Figure [4.4

PLTP indicates the role of L1 in the lipid metabolism

PLTP encodes for the phospholipid transfer protein which transfers phospholipids
and other amphipathic compounds between lipoprotein particles (Huuskonen et al.|
2001} Rader| [2006) (Figure [4.4). Although the role of the phospholipid transter
protein in the reverse cholesterol transport has long been studied, it still remains
controversial (Yazdanyar et al., 2011)). It has been shown in a large meta-analysis
on serum lipids that PLTP is significantly associated with HDL-C and TG levels
(Teslovich et al.l 2010) as well as with HDL particle size (Chasman et al., 2009;
Kaess et al., [2011)). Our analysis revealed that notably the lipoprotein subfraction
L1, which was only weakly correlated with HDL-C, and lipoprotein subfraction L3
were associated with PLTP with opposite directions of effect. The other subfrac-
tions L2, 1.5 and L7 which clustered together with HDL-C showed no association.
Here, the subfractions revealed an in-depth insight into the lipid metabolism. The
opposite directions of effect of the association of L1 and L3 presumably compensate
each other partly when analysing serum HDL-C. Moreover, due to the opposite
directions of effect, it can be speculated that PLTP is involved in the conversion of
L1 to L3 or vice versa. In addition, lipoprotein subfraction L1 was only marginally
captured by the measurements of serum lipids as .1 was weakly negatively corre-
lated with HDL-C and weakly positively with the other serum lipids. Therefore,
it is possible that L1 is involved in parts of the lipid metabolism which were not
covered by the measurement of the serum lipids. As L1 is related to the smallest
HDL subfraction, it is assumed that L1 represents nascent HDL which would be

an explanation for a negative correlation with HDL-C.

Lipoprotein subfractions revealed in-depth insight into mechanisms of
LIPC, CETP and FADS1-2-3

LIPC encodes for hepatic lipase which catabolises TG-enriched HDL and breaks-
down TG to diacyl- and monoacylglycerols and fatty acids (Rader, 2006). This
molecular function is observed in associations between LIPC and numerous con-
centrations of glycerophosphatidylcholines, glycerophosphatidylethanolamines and

sphingomyelins (Gieger et al., |2008). In our analysis, the strongest association oc-
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curred with L5 and L7 which clustered together with HDL-C and are considered
to be related to very small and medium LDL, respectively. Here, we observed the
largest increase in the proportion of explained variance compared to serum lipids.
But also 1.2 and L3, the other lipoprotein subfractions which clustered together
with HDL-C, were associated with LIPC. Interestingly, although all subfractions
which cluster together with HDL-C were significantly associated with LIPC with
the same direction of effect, the association between LIPC and HDL-C itself was
not significant (p-value = 1.60 x 1072, Table . For the remaining subfractions,
especially for the subfractions correlated with TG, we did not see an associa-
tion with LIPC as it is observed by others (Chasman et al., 2009). Whereas
LIPC was associated with all four lipoprotein subfractions which cluster together
with HDL-C, CETP was only associated with L2 and L3. CETP encodes a pro-
tein which exchanges cholesteryl esters for TG between lipoproteins (Boes et al.l
2009)) (Figure [£.4). The FADS1-2-3 gene complex encodes for key enzymes in the
metabolism of long-chain polyunsaturated fatty acids. Our analysis revealed an
association between FADSI1-2-8 and L4, an LDL-C correlated subfraction which
is considered to be related to large HDL. For LDL-C itself we did not see an as-
sociation with FADS1-2-3. Although FADS1-2-3 is strongly associated with TG
in the global lipids meta-analysis in more than 100 000 samples (Teslovich et al.,
2010), we observed only a small effect which was not significant when based on
the analysis of 1791 samples. The strong association between FADS1-2-3 and L4
highlighted the potential of lipoprotein subfractions and hinted at further biologi-
cal implications of the FADS1-2-8 gene complex in the lipid metabolism.

More insight in pathway regulation and genes which encode structural
components

Among others, SORT1 and GCKR are genes that are involved in pathways reg-
ulating lipid and glucose metabolism. |[Musunuru et al.| (2010) showed that hep-
atic expression of SORT1 alters LDL-C and VLDL levels and that SORTI is
associated with coronary artery disease. In more detail, SORT! encodes sor-
tilin which presumably controls the biogenesis and hepatic release of VLDL from
which LDL is generated by lipolysis (Kjolby et al) 2010) (Figure 4.4). In our
analysis, SORT1 was associated with L6, which clustered together with LDL-C
and relates to small LDL. APOB and APOA1 are genes that encode the struc-
tural components apolipoprotein B and apolipoprotein A-I. Apolipoprotein B is
the main apolipoprotein of chylomicrons, VLDL, IDL, LDL and lipoprotein(a)
whereas apolipoprotein A-I is the main apolipoprotein of HDL (Kane et al., 1980;
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Rader, 2006) (Figure [4.4). In our analysis of KORA samples, both genes were
predominantly associated with lipoprotein subfractions L8 and L10. These sub-
fractions did not cluster closely with one of the serum lipids but were more related
to the TG-correlated subfractions 19, L11, L12, 113, L14 and L15. These subfrac-
tions relate to VLDL as well as chylomicron subfractions. While APOB was only
associated with L8 and L10, APOA1 also showed associations with the particles
L11, L12 and L.13 in KORA. The associations of APOA{ and APOB with L8 had
the same direction of effect in KORA and GRAPHIC samples although we did not

replicate them.

In total, we showed that lipoprotein subfractions provide a more detailed insight
into the lipid metabolism and thus strengthen the association with disease-relevant
genetic loci. (Chasman et al. (2009) reported 43 loci associated with lipoprotein
subfractions when analysing 17 296 women. At that time, ten of these loci were
novel findings. By now, some of these loci were also found by (Teslovich et al.
(2010) in a serum lipid meta-analysis of more than 100 000 samples. Kaess et al.
(2011) observed a strengthening in association when analysing HDL size and HDL
particle number. In our results, we observed an increase in the proportion of vari-
ance explained when analysing lipoprotein subfractions instead of serum lipids.
With the eight loci, we explained up to 4.5 % of the variance of the lipoprotein
subfractions whereas only up to 3.3 % of the variance of serum lipids could be

explained.

Overall, this study demonstrated that analysing well defined lipoprotein subfrac-
tions together with known genetic lipid loci leads to a genetic characterisation of
the lipoprotein subfractions as well as an in-depth insight into various processes of
the lipid metabolism. We identified five distinct groups of lipoprotein subfractions,
one of them (L1) was only marginally captured by serum lipids and therefore ex-
tends our knowledge of lipoprotein biochemistry. During a lipid tolerance test, the
relationship between the individual classes changed and L1 lost its special position.
Based on this initial specification of the lipoprotein subfractions, further testing in
clinical samples will reveal more information on their biological nature and their
impact in disease causing mechanisms. All in all, NMR-based fine mapping of
lipoprotein subfractions provides novel information on their biological nature and

strengthens the association with genetic loci.
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Conclusion

In this application of the candidate locus approach were lipoprotein subfractions
analysed together with SNPs at 95 genetic lipid loci. This examination revealed
an in-depth insight into biological pathways underlying the associations between
the serum lipids and eight of the lipid loci. Moreover, the example of the PLTP
locus showed that the analysis of lipoprotein subfractions together with candidate
genes has the ability to detect opposed biological mechanisms which remained
undetected in the analysis of serum lipids. In conclusion, this application confirmed

and extended current knowledge about the lipid metabolism.
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4.2 Application of the metabolomics GWAS ap-
proach: Human metabolic individuality in bio-

medical and pharmaceutical research

Background

Recent GWAS of metabolites have proven to be successful to reveal functional in-
sight into biochemical mechansims (Gieger et al., [2008; |Hicks et al., 2009; Tanaka
et al., [2009b; (Chasman et al.l, 2009; lllig et al., 2010; |Suhre et al., 2011b; [Demirkan
et al., 2012; Kettunen et al. 2012)). For instance, knowledge about the genetical
basis of the [-oxidation or the biosynthesis of polyunsaturated fatty acids was
gained (Gieger et al., [2008; Illig et al., 2010)). Whilst in some of the metabolomics
GWAS the analysis was focused on metabolite concentrations, others analysed
also selected metabolite ratios or all pair-wise metabolite ratios. Despite the in-
creased multiple testing burden when analysing all pair-wise metabolite ratios, this
hypothesis-free approach brought promising results. For example, 14 out of 15 loci
showed the strongest association with a metabolite ratio in Illig et al.|[(2010). How-
ever, one constraint of these metabolomics GWAS is that they were mostly based
on lipid related metabolites. Extending the metabolomics GWAS approach to a
broad set of metabolites covering many biochemical pathways will help to further
understand the role of genetic predispositions for disease aetiology as well as to

develop new and efficient therapies, among others.

The aim of this application is to gain more insight into the human metabolism
through detection of novel genetic loci in an association analysis with over 250
blood metabolite concentrations as well as all pair-wise metabolite ratios. In ad-
dition to the GWAS, we link metabolic traits to clinically relevant phenotypes to
gain further information about possible metabolic changes associated with biolo-

gical processes underlying the clinically relevant phenotypes.

Results

In this application, we conducted GWAS of more than 250 metabolite concen-
trations as well as of about 37 000 pair-wise metabolite ratios in the KORA and
TwinsUK studies using a step-wise approach. For the GWAS, we assumed an
additive linear model and adjusted for age, sex and family structure. In most

cases, this assumption was valid and there was no inflation of summary statistics
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Table

(cont.)

KORA (N=1768) TwinsUK (N= 1052) meta-analysis (N= 2820)

locus metabolic trait SNP chr position A/B MAF beta, p-value beta, p-value beta p-value p-gain
SLCOI1B1 eicosenoate (20:1n9 or 11)/ rs4149081 12 21269288 A/G 0.205 —0.098 2.0 x 10713 —0.109 3.7 x 1072 —0.102 2.8 x 10722 4.5 x 108
tetradecanedioate
FUT2 ADpSGEGDFXAEGGGVR/ rsb03279 19 53900822 C/T 0.464 0.050 5.3 x 1073  0.061 85x 1078  0.053 4.3 x 10720 2.9 x 10°
ADSGEGDFXAEGGGVR
ACE aspartylphenylalanine rs4329 17 58917190 G/A 0.465 —0.058 7.6 x 10~'1 —0.069 8.2 x 10~ —0.062 8.2 x 1020 —
PHGDH serine rsd77992 1 120059099 A/G 0.313 —0.019 4.9 x 10~7 —0.029 6.0 x 108 —0.023 2.6 x 10714 —
ENPEP ADpSGEGDFXAEGGGVR/ rs2087160 4 111554179 G/T 0.207 —0.048 1.1 x 10~7 —0.093 3.6 x 10~7 —0.057 6.5 x 10713 1.7 x 107
DSGEGDFXAEGGGVR
AKRIC  androsterone sulfate/ rs2518049 10 5128036 A/G 0.175 —0.027 4.8 x 1076 —0.039 1.1 x10~7 —0.032 6.7 x 10~13 1.1 x 1010
epiandrosterone sulfate
NT5E  inosine rs494562 6 86173848 G/A 0.106 0.087 53x 1076 0.189 1.2x107° 0.115 7.4 x 10713 —
PRODH proline rs2023634 22 17352450 G/A 0.091 0.054 4.3 x 10721 0.027 2.9x 1073  0.046 2.0 x 1022 —
HPS5  alpha-hydroxyisovalerate rs2403254 11 18281722 T/C 0.525 —0.053 2.6 x 10716 —0.039 1.4 x 107> —0.048 1.0 x 1020 —
ALPL  ADpSGEGDFXAEGGGVR/ rs10799701 1 21693577 A/G 0.435 —0.060 2.2 x 10715 —0.062 1.9 x 107°> —0.061 2.9 x 10720 5.0 x 10
DSGEGDFXAEGGGVR
SLC7A6  glutaroyl carnitine/lysine rs6499165 16 66883701 A/C 0.266 0.047 1.5 x 10714  0.041 4.1 x 107>  0.045 9.8 x 1071? 1.4 x 10°
KLKB1! bradykinin, des-arg(9) rs4253252 4 187394452 T/G 0.492 —0.126 5.9 x 107 —0.098 4.2 x 107> —0.118 6.6 x 1018 —
GLS2  glutamine rs2657879 12 55151605 G/A 0.187 —0.015 3.2 x 10713 —0.016 1.5 x 10~% —0.015 3.1 x 10~17 —
PDXDC1! 1-eicosatrienoylglycerophospho- rs7200543 16 15037471 G/A 0.304 —0.035 1.2 x 10~ —0.030 5.4 x 107> —0.033 4.5 x 10~16 5.9 x 10°
choline/1-linoleoylglycerophospho-
choline
SLC22A4 isovalerylcarnitine 1s272889 5 131693277 A/G 0.370 0.041 9.2x 10715 0.021 1.1x1072  0.035 7.4 x 10716 —
AHR  caffeine/quinate rs12670403 7 17275804 C/A 0.487 0.122 54 x 107! 0.083 4.0x 1073  0.112 4.8 x 1071 2.3 x 10*
ETFDH  decanoylcarnitine rs8396 4 159850267 C/T 0.304 —0.050 2.3 x 10712 —0.034 4.7 x 10~* —0.045 5.5 x 10713 —
ELOVL2 docosahexaenoate (DHA; 22:6n3)/ 159393903 6 11150895 A/G 0.242 —0.030 1.2 x 10~'' —0.021 9.5 x 1074 —0.027 1.7 x 10714 6.7 x 10°
eicosapentaenoate (EPA; 20:5n3)
SLC16A9 carnitine rs7094971 10 61119570 G/A 0.147 —0.022 1.1 x 10~ —0.022 1.5x 10~7 —0.022 3.4 x 10~ 14 —
1vD 3-(4-hydroxyphenyl)lactate,/ rs10518693 15 38487314 T/C 0.396 0.043 1.7x 107'! 0.028 2.9x 1073 0.038 1.1 x 10713 1.3 x 103

isovalerylcarnitine

SLC16A10 isoleucine/tyrosine rs7760535 6 111853776 G/C 0.401 —0.017 2.1 x 10719 —0.012 4.5 x 1073 —0.015 1.4 x 10712 6.8 x 10°
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Figure 4.5: Thirtyseven loci associated with blood metabolites. This Figure sum-
marises the 37 loci that were significantly associated with the analysed metabolic
traits. Loci are shown colour coded by metabolic pathways together with selected
associated metabolic traits (Suhre et al., 2011a)).

since A values ranged from 0.940 to 1.024. After selection of promising genomic
regions and metabolic traits in the first step of our GWAS, 666 SNPs and 643
metabolic traits remained. These SNPs and metabolic traits belonged to 115 in-
dependent signals. The regions and metabolic traits of these independent signals
were further analysed using genotyped and imputed SNPs in KORA and TwinsUK,
followed by a meta-analysis of both cohorts. This analysis revealed 37 loci which
reached genome-wide significance after Bonferroni correction (Table and Figure
. Quantile-quantile plots for the GWAS of the metabolic traits which belong
to the 37 loci are displayed in Figure in the Appendix. Since the observed
distribution of the p-values coincided with the expected distribution of p-values
for all except small p-values, we do not observe population stratification in our
cohorts. The differences in levels of metabolic traits stratified by genotype are
shown in the boxplots of Figure For metabolic traits such as butyrylcarni-
tine/propionylcarnitine and N-acetylornithine are the differences in the metabo-
lite level apparent for the genoptypes of rs2066938 and rs13391552, respectively.
In contrast, the stratification of decanoylcarnitine and isovalerylcarnitine by the
genotypes of rs8396 and rs272889, respectively, revealed smaller but still signifi-

cant variations. For 20 out of the 37 loci, the strongest association was observed
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with a metabolite ratio. This observation confirms our strategy to conduct GWAS

of both, metabolite concentrations and metabolite ratios.

For the selection of a candidate gene for each locus, we used the chromosomal
position of the lead SNP to define a set of putative candidate genes (see Regional
association plots of Figure . Then, we used knowledge about the function of
the genes as well as of the associated metabolic traits to determine one single can-
didate gene. The selected candidate genes are used to label the loci in Table
Afterwards, we used the catalogue of published GWAS (Hindorff et al., [2009) to
identify published associations between the 37 loci and clinically relevant pheno-
types. For 15 loci, published associations could be identified (Table . Among
others, associations with chronic kidney disease, metabolic syndrome, Crohn’s
disease and hypertriglyceridemia were identified as well as associations with risk

factors for diseases such as serum lipids and fasting glucose-related traits.

Table 4.6: Published associations for genome-wide significant loci. This Table
summarises the SNPs which are in LD> 0.8 to the lead SNP and which have been
reported to be associated with a clinically relevant phenotype in the catalogue of
published GWAS (Hindorft et al., 2011)).

locus, SNP and metabolic trait SNPs in LD that associated trait and reference
were reported in
published GWAS;
R2 and D’ to lead

SNP
NATS rs13538 chronic kidney disease (Kottgen et al.l[2010)
rs13391552 R2 =0.901
N-acetylornithine D’=1.000
rs10206899 serum creatinine (Chambers et al., 2010
R2 =0.901
D’ = 1.000
FADSI same SNP resting heart rate (Eijgelsheim et al.| [2010)
rs174547 HDL-C (Kathiresan ef al}, [2009)
1-arachidonoylglycerophosphoethanol-
amine/ 1-linoleoylglycerophospho- rs174550 fasting glucose-related traits (Dupuis et all
ethanolamine R? = 1.000 2010)
D’ =1.000
rs174546 TC, HDL-C, TG (Teslovich et al.,2010)
R2 = 1.000 LDL-C (Sabatti et all [2009} [Teslovich et al.,
D’ = 1.000 2010)
metabolic syndrome (Zabaneh and Balding,
2010)
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Table |R| (cont.)

locus, SNP and metabolic trait

SNPs in LD that associated trait and reference
were reported in
published GWAS;
R? and D’ to lead

SNP
rs102275 Crohn’s disease (Franke et al.l [2010)
R? = 1.000
D’ =1.000
rs174583 response to statin therapy (Barber et al.,/2010)
R2 = 1.000
D’ =1.000
rs174601 alkaline phosphatase (Chambers et al.l [2011)
R2? =0.864
D’ =0.963
rs174548 HDL-C, TG (Waterworth et al.l,[2010)
R2 = 0.800
D’ = 1.000
UGTIA same SNP serum bilirubin levels (Sanna ef al,[ 2009} [Chen
rs887829 et al), [2012)
bilirubin (EE)/oleoylcarnitine
rs6742078 serum bilirubin levels (Johnson et al., 2009)
R? = 1.000
D’ =1.000
rs4148325 bilirubin levels (Bielinski et al., 2011)
R? = 1.000
D’ = 1.000
GCKR same SNP fasting glucose-related traits, fasting insulin-
rs780094 related traits (Dupuis et al., [2010)
glucose/mannose serum uric acid (Kolz et al., |2009)
TG (Willer et al., |2008; Wallace et al.l |2008;
Aulchenko et al., [2009)
C-reactive protein (Ridker et al.l |[2008)
rs780093 TG-Blood Pressure, Waist Circumference -
R2 = 1.000 TG (Kraja et all), [2011))
D’ =1.000 Crohn’s disease (Franke et al.l [2010)
rs1260326 platelet counts (Gieger et al., |2011)
R2 =0.932 gamma-glutamyl transferase (Chambers et al.,
D’ =1.000 2011))

C-reactive protein (Dehghan et all |2011)),
TC (Teslovich et al., 2010}

TG (Kathiresan et al., 2009; (Teslovich et al.,
2010)

hypertriglyceridemia (Johansen et al.l2010)
chronic kidney disease (Kottgen et al., [2010)
two-hour glucose challenge (Saxena et all
2010)
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Table |R| (cont.)

locus, SNP and metabolic trait

SNPs in LD that
were reported
published GWAS;
R? and D’ to lead

associated trait and reference

SNP
rs1260333 TG (Waterworth et al., 2010}
R% = 0.870
D’ = 1.000
NAT2 rs1495741 bladder cancer (Rothman et al., |2010)
rs1495743 R2 =1.000 TC, TG (Teslovich et al.l [2010)
1-methylxanthine/4-acetamido- D’ =1.000
butanoate
CYP3A) rsl7277546 serum dehydroepiandrosterone sulphate levels
rsl7277546 R2 = 1.000 (Zhai et al., 2011
androsterone sulfate D’ =1.000
ABO rsb14659 coronary heart disease (Reilly et all [2011)
rs612169 R? = 1.000
ADpSGEGDFXAEGGGVR/ D’ = 1.000
ADSGEGDFXAEGGGVR
rs505922 venous thromboembolism (Trégouét et al.l
R2 = 1.000 2009} [Germain et all, [2011))
D’ =1.000 pancreatic cancer (Amundadottir et al., 2009)
rs657152 serum phytosterol levels (Teupser et al.l, [2010)
R2 =0.931 plasma levels of liver enzymes (Yuan et al.
D’ =1.000 2008)
SLC2A9 rs7442295 serum urate (DOring et al) [2008; [Wallace
rs4481233 R2 =0.871 et ol [2008))
urate D’ = 1.000
SLC22A1 rs1564348 TC, LDL-C (Teslovich et al., 2010
15662138 R? = 0.906
isobutyrylcarnitine D’ =1.000
SLCO1B1 rs4363657 bilirubin levels (Bielinski et al., 2011])
54149081 R2 = 1.000
eicosenoate (20:1n9 or 11)/ D’ =1.000
tetradecanedioate
FUT2 rs504963 Crohn’s disease (McGovern et al., |2010)
rsb03279 R2 = 1.000
ADpSGEGDFXAEGGGVR/ D’ = 1.000
ADSGEGDFXAEGGGVR
rs281379 Crohn’s disease (Franke et al., 2010
R? = 0.966
D’ = 1.000
rs602662 folate pathway vitamin levels (Tanaka et al.l
R2 =0.933 2009a))
D’ = 1.000
rs492602 TC (Teslovich et al., 2010}
R2 =0.816 plasma level of vitamin B12 (Hazra et all
D’ =1.000 2008)
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Table |R| (cont.)

locus, SNP and metabolic trait SNPs in LD that associated trait and reference
were reported in
published GWAS;
R? and D’ to lead

SNP
rs516246 gamma-glutamyl transferase (Chambers et al.,
R2 =0.816 2011))
D’ =1.000
ACE rs4343 angiotensin-converting enzyme activity
rs4329 R2 =0.816 (Chung et al. [2010)
aspartylphenylalanine D’ = 1.000
ENPEP rs6825911 blood pressure (Kato et al.} [2011)
52087160 R% =0.948
ADpSGEGDFXAEGGGVR/ D’ =1.000
DSGEGDFXAEGGGVR
ALPL rs1780324 plasma levels of liver enzymes (Yuan et al.|
rs10799701 R2 = 1.000 2008)
ADpSGEGDFXAEGGGVR/ D’ =1.000
DSGEGDFXAEGGGVR
PDXDC1 rs1136001 height (Okada et al.l [2010)
57200543 R? = 1.000
1-eicosatrienoylglycerophosphocho- D’ =1.000

line/1-linoleoylglycerophosphocholine

After the identification of novel loci associated with blood metabolites, we further
analysed them together with clinically relevant phenotypes. As first example, we
selected from Table the NATS locus which is published to be associated with
chronic kidney disease (Kottgen et al.l 2010). In our analysis, we observed an
association between NATS8 and N-acetylornithine. Therefore, we were interested
whether N-acetylornithine was associated with eGFR which is a marker for kidney
function. As a result, we found an association with eGFR in KORA and TwinsUK
with p-value = 7.6 x 10™* and p-value = 3.6 x 1078, respectively, after adjusting

for age and sex as well as family structure in TwinsUK.

Another approach to select clinically relevant phenotypes for the follow-up analysis
is to use knowledge about gene function and biochemical pathways. An example
where we applied this procedure is the KLKB1 locus which encodes the kallikrein
B plasma (Fletcher factor) 1. Plasma kallikrein is known to be involved in the
regulation of blood pressure via the bradykinin pathway. This makes KLKBI1 a
promising gene in a candidate gene analysis of hypertension (Lu et al..[2007). Thus,

we selected bradykinin which was associated with the KLKB1 locus to investigate
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the association with hypertension. As a result, this association analysis lead to a
p-value = 1.73 x 107 and p-value = 0.0495 in KORA and TwinsUK, respectively,
after adjustment for the covariates age and sex as well as family structure in the
TwinsUK study.

Biological discussion

The discovered 37 loci may help to reveal further insight into biochemical mech-
anisms underlying the human metabolism. Therefore, we discuss exemplary the
associations of NATS8, KLKB1, ABO, FUT2, ALPL and ENPEP in the following.
Moreover, we take the examples of FADS? and ACADS to illustrate the strength-
ening in association when analysing metabolite ratios compared to raw metabolite

concentrations.

NATS8 - N-acetylornithine - kidney function

An impaired kidney function is a risk factor for cardiovascular outcomes such
as myocardial infarction and stroke. One measure to determine a reduced kid-
ney function is the eGFR. Using this marker, GWAS have been conducted to
investigate the genetical basis of kidney function (Chambers et al., [2010; Kottgen
et al.l 2010). Among others, the NAT8 gene was identified in the 2p12-13 lo-
cus as a promising candidate. The NATE gene encodes the N-acetyltransferase
and is mainly expressed in the liver. |Chambers et al. (2010) speculated that
NATS influences kidney function via the acetylation pathway which is an impor-
tant mechanism for the detoxification process of medications as well as environ-
mental toxins (Chambers et al) [2010). Our metabolomics GWAS revealed an
association between NATS8 and N-acetylornithine which is involved in the acety-
lation process. Since the NATS8 locus was already published to be associated with
kidney function, we conducted a follow-up analysis and found an association be-
tween N-acetylornithine and eGFR. Therefore, our study confirmed the hypothesis
that NATS influences kidney function via the acetylation pathway. Nevertheless,
causality cannot be inferred form our analysis and the clarification of the detailed
processes needs further investigation. This was also pointed out by Nicholson
et al. (2011) who found inconsistencies in the directionality of associations with
the NATS locus.
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KLKB1 - bradykinin - hypertension

The second locus for which we conducted a follow-up analysis with a clinically
relevant phenotype was KLKB1. In contrast to the NATS8 locus, GWAS of hyper-
tension as well as systolic and diastolic blood pressure did not reveal a significant
association with KLKB1 (Newton-Cheh et al.,[2009; |Levy et al., 2009; Ehret et al.l
2011). So far, these GWAS comprised of up to 200 000 samples and resulted in
a p-value for rs4253252 in the KLKB1 locus of 0.622 for systolic blood pressure
and 0.221 for diastolic blood pressure (Ehret et al) 2011). These p-values are far
from being genome-wide significant. Nevertheless, KLKB1 is a candidate gene
for the analysis of hypertenstion (Lu et al), 2007). KLKBI1 encodes the kallikrein
B plasma (Fletcher factor) 1. Plasma kallikrein releases bradykinin in the blood
and activates renin. Through these biochemical changes is blood pressure regu-
lated by plasma kallikrein. Candidate gene studies showed an association between
KLKB1 and hypertension (Lu et al., 2007). This context is supported by our
study where we revealed an association between KLKB1 and bradykinin which
furthermore was associated with hypertension. One reason why it was not pos-
sible to detect the association between KLKBI and hypertension in GWAS, so
far, might be that hypertension is influenced by many biochemical pathways. This
pathway diversity is reflected in the broad spectrum of anti-hypertensive medi-
cations, e.g. angiotensin-converting-enzyme inhibitors, diuretics or beta blockers
(Newton-Cheh et al.,2009). However, it is essential to further investigate pathways
involved in blood pressure regulation as well as to develop new anti-hypertensive
drugs since a reduction of blood pressure achieves a reduction in risk for stroke,

among others.

GCKR - mannose/glucose

GCKR is localised on chromosome 2p23 and encodes the glucokinase (hexokinase
4) regulator (Warner et al) |1995). Hitherto, it is known that this glucokinase
regulating protein is oppositional influenced by fructose-6-phosphate and fructose-
1-phosphate (Van Schaftingen, [1989; [Malaisse et al., 1990). Within the last years,
several GWAS revealed that GCKR is a major pleiotropic risk locus. Associations
with different clinically relevant phenotypes were reported, for example fasting
glucose-related and fasting insulin-related traits (Dupuis et all [2010), serum uric
acid (Kolz et al. 2009), C-reactive protein (Ridker et al. 2008) and serum lipids
(Teslovich et all [2010) (Table [4.6). Our results showed an association of GCKR
with the mannose/glucose ratio. This metabolite ratio was remarkably stronger

associated with GCKR than the raw glucose concentrations (p-gain = 1.5 x 102).
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This finding may help to explain the observed associations between GCKR and
some clinically relevant phenotypes as well as to further elucidate the role of man-
nose in the human metabolism. So far, it has been shown that mannose is used
for the synthesis of glycoproteins (Taguchi et al., 2005). For this glycosylation,
mannose is formed from mannose-6-phosphate which can enter cells using a man-
nose specific transporter which is insensitive to glucose (Panneerselvam and Freeze,
1996; Taguchi et al.l 2005).

ABO, FUT2 - ADpSGEGDFXAEGGGVR/ADSGEGDFXAEGGGVR
and ALPL, ENPEP - ADpSGEGDFXAEGGGVR/DSGEGDFXAEG-
GGVR

All four loci (ABO, FUT2, ALPL and ENPEP) are associated in our study with a
ratio of two fibrinogen A-a peptides. These peptides differ in the phosphorylation
at serine. Additionally, the amino acid alanine is cleaved off in DSGEGDFX-
AEGGGVR compared to ADpSGEGDFXAEGGGVR for ALPL and ENPEP. An
explanation for the association of fibrinogen ratios which represent fibrinogen phos-
phorylation with these loci might be through the phenotype alkaline phosphatase
which is a liver enzyme that is used as a marker for biliary obstruction (Chambers
et al.. 2011). The three loci ABO, FUT2 and ALPL are known to be associated
with alkaline phosphatase (Yuan et al., [2008; Chambers et al.,[2011]). Among oth-
ers, the alkaline phosphatase is encoded by the ALPL locus. Furthermore, the
association between the alkaline phosphatase and the ABO locus can be explained
by an association between alkaline phosphatase and the ABO blood group (Whit-
field and Martin, 1983)). The ABO locus encodes a glycosyltransferase which is
involved in the transfer of carbohydrates to the H antigen and thus encodes the
ABO blood group antigens (Amundadottir et al.l 2009). Additionally, the expres-
sion of the ABO blood group antigens is also influenced by fucosyltransferase 2
which is encoded by FUT2 (Hazra et al., [2008). One may speculate now that
the loci ABO, FUT2 and ALPL influence the levels of alkaline phosphatase which
furthermore may be linked to fibrinogen phosphorylation through a common pool
of phosphate. The role of the ENPEP locus in this context is not clarified, so far.
ENPEP encodes a glutamyl aminopeptidase (aminopeptidase A) and is known to
be associated with blood pressure (Kato et al., |2011).

Hitherto, GWAS of up to 22000 samples have been conducted for blood fibrinogen
concentrations. Despite these large sample sizes, none of them detected an asso-
ciation with any of the four loci (Dehghan et al., 2009; Danik et al.. 2009; [Lovely
et al., |2011)). This observation may support the assumption that ABO, FUT2,
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ALPL and ENPEP are associated with the phosphorylation of fibrinogen and not

with raw fibrinogen concentrations.

FADS1 - 1-arachidonoylglycerophosphoethanolamine/1-linoleoylglycero-
phosphoethanolamine

The analysis of metabolite ratios strengthend the association compared to raw
metabolite concentrations for the loci GCKR, ABO, FUT2, ALPL and ENPEP.
Another example where this is the case is the FADSI locus. FADS1 encodes
the fatty acid desaturase 1 and was best associated with 1-arachidonoylglycero-
phosphoethanolamine/1-linoleoylglycerophosphoethanolamine in our study. The
fatty acid desaturase which is encoded by FADST is a key enzyme in the metabolism
of long chain polyunsaturated omega 3 and omega 6 fatty acids where it con-
verts dihomo-v-linolenic acid (20:3n-6) to arachidonic acid (20:4n-6) (Lattka et al.|
2010). These metabolites have an association p-value of 1.03 x 10~ for dihomo-
linolenate (20:3n-3 or n-6) and of 2.3 x 107%! for arachidonate (20:4n-6). For
arachidonate (20:4n-6), the FADSI locus explains about 5.2 % of the observed
variance. In contrast, the p-value for the association between the ratio of these
metabolites, arachidonate (20:4n-6)/dihomo-linolenate (20:3n-3 or n-6) and the
FADST locus is 9.99 x 1079 and the explained variance 15.3 %. This strengthen-
ing in association corresponds to the biological function of the FADS1 gene. Thus,
the biochemical properties of the associated metabolite pair provides information

on the functional background of the association.

ACADS - butyrylcarnitine/propionylcarnitine

Another example where the gene function matches the associated metabolic trait
is the ACADS locus. The ACADS locus encodes an acyl-coenzyme A dehydro-
genase which catalyses the [-oxidation of short chain acylcarnitines (Corydon
et al. (1997). In our study, the ACADS locus was associated with butyrylcarni-
tine/propionylcarnitine. Therefore, this ratio matches the substrate and product
of the reaction of the short-chain acyl-coenzyme A dehydrogenase. Genes which
belong to the same family as ACADS are ACADM and ACADL. ACADM en-
codes an enzyme which catalyses the -oxidation of medium chain acylcarnitines
whereas the enzyme encoded by ACADL catalyses the f-oxidation of long chain
acylcarnitines. Associations between metabolic traits and the three acyl-coenzyme

A encoding genes were observed by [llig et al.| (2010).
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Overall, this application revealed 37 loci that were associated with metabolic traits
belonging to different biochemical classes. For two loci, we showed an association
between a genetic variant, a metabolic trait and a clinically relevant phenotype:
NATS with N-acetylornithine and eGFR as well as KLKB1 with bradykinin and
hypertension. In total, the findings of this GWAS brought additional insight into
pathways of the human metabolism and generated hypotheses to test in future

studies.

Conclusion

This application of the metabolomics GWAS approach to more than 250 metabolite
concentrations and over 37 000 pair-wise metabolite ratios revealed 37 loci to be
involved in the human metabolism. Moreover, a follow-up analysis showed further
associations between a metabolic trait and a clinically relevant phenotype for the
two loci NAT8 and KLKB1. All in all, this application confirmed and extended

current knowledge about various processes of the human metabolism.
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4.3 Statistical exploration of the p-gain: On the
hypothesis-free testing of metabolite ratios in
genome-wide and metabolome-wide association

studies

Background

The analysis of metabolite ratios has proven to be successful. As observed in
Chapter 20 out of 37 loci showed stronger associations with metabolite ratios
than with metabolite concentrations. In order to quantify the strengthening in
association when analysing metabolite ratios in comparison to metabolite concen-
trations, the p-gain was introduced (Gieger et al.l [2008). So far, the number of
analysed metabolite concentrations was applied as an ad-hoc critical value of the
p-gain. This approach can merely be regarded as an intuitive rule of thumb since
a statistical determination of the distribution of the p-gain and herewith of the

critical values has not yet been conducted.

Therefore, one aim of this thesis is to derive critical values through determination
of the distribution of the p-gain and to provide a density table for readout of
critical values. In addition, we investigate the characteristics of the p-gain in the
situation of Bonferroni correction for multiple tests as well as the dependence of
observed p-gain values on the sample size. Finally, we illustrate the power of
the p-gain approach by investigating the enrichment for common pathways among

metabolite ratios with large p-gain at the concrete example of the application of
the metabolomics GWAS of Chapter 4.2

Results and discussion

Formal definition of the p-gain

The p-gain was introduced in order to measure whether the association with a
genetic locus is significantly stronger for a metabolite ratio than for the belonging
metabolite concentrations. The definition of the p-gain for the ratio M;/Ms; of

metabolites M; and M, at a genetic locus X is as follows:

M, X) _ min(p—value(M1|X),p—value(M2|X)). 1)

-gain | —
P8 (M2 p—value(f—é[X)
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Conservative p-gain for common statistics

Although the p-gain was often used in metabolomics GWAS, only a rule of thumb
for the determination of critical values was applied, so far. The p-gain was consid-
ered as being relevant when its value exceeded the number of analysed metabolite
concentrations (Gieger et al., 2008; [llig et al., [2010, Chapter and [.2)). Here,
we derive critical values of the p-gain by determination of the distribution to de-
fine a more sensible threshold. As the distribution of the p-gain depends on the
correlation structure among the metabolic traits, conservative critical values are
beneficial in case of analysing multiple sets of metabolic traits since they can be
applied to all analysed settings. For this purpose, we used an universal p-gain
defined as the ratio of p-values belonging to two uncorrelated metabolic traits:
My

, cor(My, E) = 0. (2)

M, p-value(M; | X)
X | = i
p—Value(ﬁ2 |.X)

p'gainuniv (M
Critical values of the distribution of this p-gain are conservative to the critical
values of the distribution of the p-gain given in equation (1) (see Chapter [3.2.3)).

In the situation of the universal p-gain (equation (2)) we could use the convolution

formula for density ratios which gave us a split density:

1 .
2.p-gain?’ b-gaill > 1

f ] )(p—gaiﬂ) = :
v z, 0 < p-gain < 1

which is displayed in Figure (black line). To determine critical values, we

derived the cumulative distribution function of the density, i.e.

1 .
1-— 2-p-gain ’ p-gain > 1

F _rar) (p-gain) =

P(M, /M)

% p-gain, 0 < p-gain <1

1
2.«

In the case of the typically used « level of 0.05, this yields a corresponding critical

Herewith, the critical value becomes with a denoting the level of significance.
value for the p-gain of 10.
Critical values for multiple testing

In the case of conduction of many analyses, a correction for multiple testing has

to be applied. When admitting a type I error rate of a and applying a Bonferroni
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Figure 4.6: Density of the p-gain. This Figure shows the density of the p-gain for
the calculated conservative p-gain of uncorrelated metabolic traits as well as for
four loci which were significant in the application of the metabolomics GWAS ap-
proach (Chapter[1.2). The ACADS locus was found to be associated with butyryl-
carnitine/propionylcarnitine, FADS! with 1-arachidonoylglycerophosphoethanol-
amine/1-linoleoylglycerophosphoethanolamine, GCKR with glucose/mannose and
NAT?2 with 1-methylxanthine/4-acetamidobutanoate.

correction for B tests, i.e. aiming at a level of significance of %, the critical value

B
for the p-gain then becomes %. For example, assumption of a type I error rate
of @ = 0.05 leads to a critical value of 10 - B which implies that for Bonferroni
correction of B tests the uncorrected critical value of 10 can be multiplied by the
number of tests B. Hence, the critical value of the p-gain in the situation of mul-
tiple testing is not the number of analysed metabolite concentrations, which was
used so far as an ad-hoc criterion, but rather ten times the number of tests where

the p-gain was applied.

P-gain for correlated metabolic traits
The case of uncorrelated metabolic traits (equation (2)) was conservative with
respect to the p-gain as defined in equation (1). Therefore, we analysed also the

density of the p-gain as defined in equation (1) for selected correlation settings.
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In the situation of correlated metabolic traits the convolution formula cannot be
applied anymore. Thus we simulated the density using a copula to generate the
correlation among the metabolic traits. After this simulation, we transferred the
correlation structure of the metabolic traits to a correlation structure among the
p-values through conduction of linear regressions. Quantiles for the p-gain densi-
ties of correlated metabolic traits are provided in Table for various correlation
settings. It can be observed that when any of the correlations cor(My, M, /M)
or cor(Msy, M;/M,) increase, the values of the quantiles of the p-gain decrease.
This observation can be explained by the fact that the variation of the p-gain can
be reduced by increasing the correlation between a metabolite concentration and
the ratio (i.e. cor(M;, My/M,) or cor(Msy, My/Ms)). A reduction of the varia-
tion of the p-gain leads to smaller critical values. On the other hand, for fixed
cor(My, My/Ms) and cor(Ms, My /M), an increase in the correlation between M,
and M; leads to an increase in the values for the p-gain quantiles when the correla-
tion between M; and M, is not close to 0. Extending these observations to the most
extreme and idealised case of having fully correlated metabolic traits which are un-
correlated with a third metabolic trait (i.e. cor(M;, Ms) = 1, cor(My, M3) = 0,
cor(Ms, M3) = 0) we get the largest critical values and thus these critical values
are conservative to all correlation settings. Note that this idealised case is not
possible for two metabolite concentrations M; and M,y together with their ratio
My = M, /M, as for fully correlated metabolite concentrations the ratio reduces to
a numerical constant. This idealised case reduces the p-gain as defined in equation
(1) to the universal p-gain as defined in equation (2). For this case, we derived the
distribution using the convolution formula as well as through a simulation analysis.
The results of both analyses coincided (Figure [4.7 Table [A.5)).

Dependence of p-gain values on sample size

In order to examine the behavior of the p-gain in the situation of real data, we
computed the observed correlation structure among the metabolite ratios which
were significant in the metabolomics GWAS of Chapter (Table [4.7). This
data set includes nearly uncorrelated metabolites, such as the ratio between 1-
methylxanthine and 4-acetamidobutanoate (association with the NAT2 locus) as
well as highly correlated metabolites, such as the androsterone sulfate to epiandros-
terone sulfate ratio (association with the AKR1C locus). The distributions of
exemplary metabolite ratios are presented in Figure As expected, the den-
sities for correlated metabolic traits display smaller variations than the universal

density for uncorrelated metabolic traits. Using this data set we conducted sim-
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Table 4.7: Correlation among 20 significant metabolite ratios. This Table sum-
marises the correlation structure among the 20 metabolite ratios which were dis-

covered in the metabolomics GWAS of Chapter

label metabolite ratio (My/Ma) correlation
(My;Ma) (MM /Ma) (Ma; My /Ma)

ACADS butyrylcarnitine/propionylcarnitine 0.422 0.769 —0.255
FADS1 1-arachidonoylglycerophosphoethanolamine/ 0.615 —0.547 0.323

1-linoleoylglycerophosphoethanolamine
UGTIA bilirubin (E,E)/oleoylcarnitine 0.627 0.731 —0.073
ACADM hexanoylcarnitine/oleate (18:1n9) 0.498 0.777 —0.159
SCD myristate (14:0)/myristoleate (14:1n5) 0.830 —0.131 —0.662
GCKR glucose/mannose 0.589 0.012 —0.801
NAT2 1-methylxanthine/4-acetamidobutanoate 0.038 0.896 —0.410
ABO ADpSGEGDFXAEGGGVR/ADSGEGDFXAEGGGVR 0.407 0.724 —0.335
CYP4A 10-nonadecenoate (19:1n9)/10-undecenoate (11:1n1) 0.555 0.555 —0.383
SLCO1B1 eicosenoate (20:1n9 or 11)/tetradecanedioate 0.303 0.513 —0.662
FUT2 ADpSGEGDFXAEGGGVR/ADSGEGDFXAEGGGVR 0.407 0.724 —0.335
ENPEP ADpSGEGDFXAEGGGVR/DSGEGDFXAEGGGVR 0.511 0.393 —0.589
AKRIC androsterone sulfate/epiandrosterone sulfate 0.920 0.464 0.081
ALPL ADpSGEGDFXAEGGGVR/DSGEGDFXAEGGGVR 0.511 0.393 —0.589
SLCTA6 glutaroyl carnitine/lysine 0.011 0.862 —0.497
PDXDC1 1-eicosatrienoylglycerophosphocholine/ 0.579 0.676 —0.210

1-linoleoylglycerophosphocholine
AHR caffeine/quinate 0.207 0.748 —0.495
ELOVL2 docosahexaenoate (DHA; 22:6n3)/ 0.771 0.203 —0.467

eicosapentaenoate (EPA; 20:5n3)
VD 3-(4-hydroxyphenyl)lactate/isovalerylcarnitine 0.327 0.552 —0.607
SLC16A10  isoleucine/tyrosine 0.441 0.592 —0.462
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Figure 4.7: Calculated and simulated density for universal p-gain. This Figure
shows that the calculated density of the universal p-gain and the simulated density
of the p-gain for the idealised case of fully correlated metabolic traits which are
uncorrelated with a third metabolic trait coincide. On the x-axis is the p-gain
value entered and on the y-axis the density. The red line is the calculated density
whereas the black line is the simulated density.

ulation tests to address the influence of the sample size on the observed p-gain
values. We chose randomly sets of samples sizes between 100 and 2000 samples
from the KORA study and calculated the p-gain for these sets. The results of this
analysis illustrate the dependence of the p-gain values on the sample size (Table
[1.8). For example, we observe for the association between the ACADS locus and
the butyrylcarnitine to propionylcarnitine ratio a median p-gain value of 1.4 x 102
for a sample size of N= 100, of 1.1 x 10° for N= 500, of 2.8 x 10! for N= 1000, of
3.1 x 10" for N= 1500 and of 1.4 x 10?* for N=2000.

Pathway enrichment for metabolite ratios with large p-gains

To show the power of the p-gain approach, we conducted a pathway enrichment
analysis for the 37 000 metabolite ratios of the application of the metabolomics
GWAS (Chapter and [4.2). Therefore, we compared the common pathway
membership of metabolite ratios with a large p-gain in a GWAS to the overall
average of common pathway affiliation in the metabolite ratio data set. Pathway
membership of the metabolite concentrations was determined through evaluation
of different pathway mappings (see Chapter . Moreover, we chose the largest

p-gain of each metabolite ratio GWAS as allocation of a p-gain to each of the
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Table 4.8: P-gain values for various sample sizes. This Table shows the dependence
of the p-gain on the sample sizes for the 20 significant metabolite ratios of Chapter
The label of the locus, the metabolite ratio and SNP are given for each locus.
Furthermore, the median as well as the 1% and 3" quartiles are specified for
randomly drawn sample subsets from the KORA study.

label metabolite ratio SNP sample size
N= 100 N=500 N=1000 N=1500 N=2000
ACADS  pbutyrylcarnitine/ rs2066938  1.4x102 1.1x10° 2.8x1010  3.1x10'5  1.4x10%!
propionylcarnitine (3.0x10%  (8.3x10%; (2.1x10% (8.6x10% (2.5x107;
6.4x10%)  1.7x10'1) 4.9x10'8) 2.7x10%7) 2.0x1036)
FADS;  ‘-arachidonoyl- 1s174547  1.4x103  3.1x10°  4.1x107  4.8x10%  2.7x10%
glycerophospho- (1.2x10%;  (1.4x103%; (2.2x10%  (3.2x10%; (1.6x10%%;
ethanolamine/1- 2.2x10%)  4.1x10'7) 1.2x10%2) 3.3x10%) 2.2x10%8)
linoleoylglycero-
phosphoethanol-
amine
UGT1A bilirubin (E,E)/ rs887829  4.1x10! 3.2x10* 4.9%x108 3.1x10%2  2.1x10'7
oleoylcarnitine (7.3x10%  (4.1x10%; (3.2x10% (3.2x10%  (L.1x107;
3.3x10%)  5.6x10%)  9.7x10'%) 4.3x10%') 2.7x10%%)
ACADM  hexanoylcarnitine/ 15211718 3.7x10° 1.8x10! 2.5x102 6.1x103 1.3x10°
oleate (18:1n9) (7.4x107% (1.5x10%  (3.9x10%  (1.0x10;  (3.2x10%;
1.7x10Y)  1.2x10%)  2.0x10%°) 2.4x107)  3.4x107)
SCD myristate (14:0)/ 1603404 5.1x100  7.Ax100  35x10°  8.4x10'  2.7x109
myristoleate (9.5x10%  (5.1x10%; (4.6x10%; (7.2x10% (8.2x107;
(14:1n5) 4.7x102)  4.1x10%) 1.1x10'7) 9.1x1023) 5.3x1031)
GCKR glucose/mannose rs780094  4.1x10° 1.6x10! 9.5x10! 7.8x102 7.3x103
(1.1x10%  (1.8x10%; (3.9x10%; (8.4x10°; (2.1x10%;
2.7x10')  4.0x10%) 1.8x10%)  8.6x10°) 2.6x107)
NaTg  methybanthine/ o743 175100 7.6x10°  1.3x102  23x10°  5.0x10%
4-acetamido- (6.1x107%; (1.4x10°; (2.8x10%; (7.2x100; (3.1x10%;
butanoate 4.2x10°)  1.8x10%) 1.5x10%)  1.5x10%) 1.5x10%)
ABO ADpSGEGDFXA- 1619169 3.2x100  4.2x10'  3.8x103  3.2x10°  5.5x107
EGGGVR/ADSG- (1.1x10%  (3.0x10% (8.6x10%; (4.1x10%; (5.0x10%;
EGDFXAEGGG- 1.0x101)  4.9x10%)  5.6x10%)  8.7x10%)  1.1x10'3)
VR
cypya  10-nonadecemoate  g335998 193100  7.0x10°  3.8x10'  2.9x102  2.6x103
(19:1n9)/10-unde (5.2x10~1; (9.3x10~1; (1.8x10%; (3.5x10%;  (7.8x10°;
cenoate (11:1nl) 7.7x100)  1.6x10%)  4.6x103)  1.7x10%)  6.0x106)
SLCO1py eicosenoate rs4149081 1.3x10°  4.0x10°  1.5x10'  6.8x10'  3.3x102
(20:1n9 or 11)/ (5.1x10~1; (8.4x10~1; (1.4x10%; (2.6x10%  (5.0x10°;
tetradecane- 4.2x100)  4.1x10')  4.6x10%)  5.4x103)  6.3x10%)
dioate
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Table |E| (cont.)

label metabolite ratio SNP sample size
N= 100 N=500 N=1000 N=1500 N=2000

FUT?2 ADPSGEGDFXA- 503579 12x10°  2.9%x100  1.0x10'  44x10'  1.9x102
EGGGVR/ADSG- (6.0x107%; (8.9x1071; (1.4x10% (2.3x10%  (4.3x10;
EGDFXAEGGG- 2.9x100)  2.0x10')  2.0x10%) 1.8x10%)  1.8x10%)
VR

gnpEp  APPSGEGDFXA- 9007160 1.0x10°  1.9x100  4.3x10°  1.0x10'  2.6x10!
EGGGVR/DSGE- (4.6x10~1; (7.0x1071; (9.4x1071; (1.4x10%  (1.9x10°;
GDFXAEGGGVR 2.4x100)  8.8x109)  3.8x10')  2.0x10%)  9.1x102)

AKRic ~ @ndrosterone rs2518049  1.3x10°  3.0x10°  8.3x10°  2.8x10'  8.7x101
sulfate/ (55x107%; (8.8x1071; (1.3x10%; (2.2x10%  (3.4x10°;
epiandrosterone 4.1x10%  1.9x10') 1.3x10%) 8.1x10%) 4.8x10%)
sulfate

ALPIL ADpSGEGDFXA- 10799701 1.5x10° 4.6x10° 2.4x10" 1.7x102 1.3x10°
EGGGVR/DSGE- (5.6x1071; (9.2x1071; (1.7x10°; (3.1x10%; (6.7x10°;
GDFXAEGGGVR 4.5x100)  5.4x10')  1.4x103)  3.6x10%)  1.3x106)

SLCTA6  glutaroyl rs6499165 1.0x100 2.1x10° 5.6x10° 1.8x10! 6.8x10!
carnitine/lysine (5.2x1071; (7.5x107%; (1.1x10%;  (1.7x10%; (2.7x10%

2.0x10%)  9.8x10°)  6.9x10')  4.7x10%) 3.5x10%)
ppxpcy  l-eicosatrienoyl- 137200543 1.3x10°  2.8x10°  6.8x10°  1.9x10'  5.9x10'
glycerophospho- (5.7x1071; (7.6x10~1; (1.1x100; (1.7x10°; (2.7x10°;
choline/1-linoleoyl- 4.0x109)  1.8x10Y)  1.1x10%) 7.1x10%)  4.2x103)
glycerophospho-
choline
AHR caffeine/quinate rs12670403 1.0x10° 2.3x100 5.7x10° 1.8x101 5.4x101
(4.6x107%; (6.5x107%; (9.0x1071; (1.3x100;  (2.0x100;
2.6x10%)  1.7x10')  1.0x10%) 6.3x10%) 5.1x10%)
pLovLe docosahexaenoate  g393903 165100 7.7x100  7.6x10'0  8.6x102  1.1x10%
(DHA; 22:6n3)/ (6.7x1071; (1.3x10%;  (2.9x100; (6.9x10°; (2.0x10%;
eicosapentaenoate 5.4x100)  1.4x10%) 6.2x10%)  3.3x10%)  1.4x107)
(EPA; 20:5n3)

IVD 3-(4-hydroxy rs10518693 1.0x10°  2.1x10°  55x109  1.6x10%  4.9x10!
phenyl) lactate/ (5.3x10~1; (7.1x101; (9.5x10~1; (1.3x10%; (2.1x10°;
isovalerylcarnitine 2.3x10%)  1.3x10')  7.4x10')  5.6x10%)  3.1x10%)

SLC16A10 isoleucine/tyrosine 157760535 1.2x10° 3.3x10° 1.5x10! 6.9x10! 3.9x102

(5.8x1071; (9.3x107%; (1.5x10%; (2.8x10%; (6.0x10°;
2.8x100)  2.7x10Y)  2.9x10%) 4.5x10%) 7.4x10%)

37 000 metabolite ratios. Hence, we got a set of 37 000 ‘metabolite ratio - p-gain
- SNP’ assignments which we further analysed. As result, the observed p-gains
varied from 10.02 to 1.68 x 10 with a fast decrease in the highest values. Ascer-
tainment of the metabolite ratios to pathway mapping revealed that on average
13.97 % of all metabolite ratios were on a pathway. In contrast, among the ten
metabolite ratios with largest p-gain 57 % were mapped to a pathway (Table .
For example, SNPs in the FADS1 gene (rs174547) were associated with the ratio 1-
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arachidonoylglycerophosphoethanolamine/1-linoleoylglycerophosphoethanolamine,
among others. This metabolite ratio was mapped to the metabolic pathways of
biosynthesis of unsaturated fatty acids and the linoleic acid metabolism (Kanehisa
and Gotol [2000; Kanehisa et al., 2006, 2010). It has been shown that the delta-
5 desaturase, which is encoded by the FADS! gene, converts dihomo-v-linolenic
acid (20:3n-6) to arachidonic acid (20:4n-6) and eicosatetraenoic acid (20:4n-3) to
eicosapentaenoic acid (20:5n-3) (Lattka et al) 2010). Therefore, the metabolite
ratios which were associated in our analysis with SNPs in the FADSI gene match
the known function of the delta-5 desaturase. Another example is the ACADS
locus. Here, we observed an association with the metabolite ratios butyrylcarni-
tine/propionylcarnitine, among others. Metabolites of this ratio are quaternary
amines and were mapped to the pathway of carnitine metabolism (Evans et al.l
2009). The ACADS locus encodes a gene of the acyl-coenzyme A dehydrogenase
family. This enzyme catalyses the initial step of the mitochondrial fatty acid -
oxidation pathway. Among others, increased butyrylcarnitine, or ‘C4 carnitine’,
is a biomarker for short chain acyl-coenzyme A dehydrogenase deficiency (Jethva
et al., [2008). In addition to these results of the ten ratios with largest p-gain,
among the metabolite ratios with the 100 largest p-gains 49.10 % were mapped to
common pathways. The difference to the overall average of 13.97 % corresponds to
a p-value of 7.24 x 10717, When examining the metabolite ratios with the largest
500, 1000 and 1500 p-gains, still 34.90 %, 29.13 % and 25.66 %, respectively, were
on the same pathway. The entire development of pathway allocation of metabolite
ratios is displayed in Figure [£.8] Moreover, among the metabolite ratios with sig-
nificant p-gain after Bonferroni correction, i.e. p-gain > 10 - 37 000, 43.57 % were
on a common pathway compared to 13.8 % for metabolite ratios with a p-gain
< 10 -37000. This difference corresponds to a p-value of 9.64 x 10726. These re-
sults highlight the impact of metabolite ratios together with the p-gain as a useful

tool when analysing ‘omics data.

Conclusion

Taken together, we showed that the p-gain is an appropriate measure for large scale
‘omics data which emphasises metabolite ratios enriched for biochemical pathways.
For the p-gain, we derived critical values to determine significance for various
situations. Given the success of the approach in the metabolomics field, hypothesis
free testing of ratios between biologically related quantitative traits should also be

considered for association studies with other ‘omics data sets.
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Figure 4.8: Mean pathway membership among metabolite ratios across different
p-gain sizes. This Figure depicts the relationship between the p-gain and the
pathway allocation for metabolite ratios. The underlying data set is composed of
the SNP association of each metabolite ratio GWAS which yielded to the largest
p-gain. The x-axis carries the p-gain whereas the percent of pathway allocation
is entered on the y-axis. The grey line represents the overall average of 13.97 %
pathway allocation. The black line represents the cumulative mean of the path-
way allocation, beginning with the metabolite ratios with the largest p-gains, i.e.
the first point corresponds to the pathway allocation of the metabolite ratio with
largest p-gain, the second to the mean pathway allocation for the two metabo-
lite ratios with largest p-gains, the third to the mean pathway allocation for the
three metabolite ratios with largest p-gains, ... and the last point corresponds to
the mean pathway allocation across all analysed metabolite ratios and therefore
coincides with the grey line of overall percentage of pathway allocation.
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5. Discussion and Conclusion

In this thesis two procedures for the integration of metabolomics data in the GWAS
approach are presented and applied to concrete examples. The candidate locus
approach utilises metabolites in order to gain further understanding of the pro-
cesses underlying known associations between genetic loci and clinically relevant
phenotypes. This approach was applied to a data set of 15 lipoprotein subfrac-
tions to reveal novel information about the role of 95 known lipid loci in the lipid
metabolism. As a result, significant associations with lipoprotein subfractions
were detected for eight of the analysed loci. Additionally, for five of these loci a
strengthening in association was observed when analysing lipoprotein subfractions
compared to serum lipids.

In the metabolomics GWAS approach, hypothesis-free analysis of metabolic traits
are conducted to discover novel genetic loci which serve as candidate loci for fur-
ther analyses with clinically relevant phenotypes. This approach was applied to
a metabolomics data set comprising of more than 250 metabolites covering 60
different pathways and all pair-wise metabolite ratios with the aim to find novel
loci associated with blood metabolites. These GWAS resulted in the discovery
of 37 loci which belonged to different metabolic pathways. In a follow-up analy-
sis, the detected associations between KLKBI and bradykinin as well as NATS
and N-acetylornithine were further investigated with respect to the phenotypes
hypertension and eGFR, respectively.

Finally, the p-gain concept is statistically explored in this thesis. In detail, the
distribution of the p-gain and its critical values were derived for different corre-
lation settings among the metabolic traits and the power of the p-gain approach
was shown in a pathway enrichment analysis. This statistical exploration of the

p-gain improved the analysis of metabolite ratios substantially.

The two presented procedures incorporate metabolites in the GWAS approach in
different ways. Despite their different proceeding, the objective of both approaches

is to gain knowledge about genetical and biochemical mechanisms underlying clin-
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ically relevant phenotypes. Thus, an improved understanding of metabolic pro-
cesses can lead to the specification of new biomarkers for disease detection and
prediction, to the development of new drug targets or the elucidation of adverse
reactions to medication. Regarding this aim of an improved understanding of bio-
chemical mechanisms, the application of the candidate locus approach revealed
further insight into the role of the PLTP locus in the HDL metabolism, among
others. So far, the behaviour of HDL in atherosclerosis is not completely clarified.
To this end, the detected associations of L.1 and 1.3 with PLTP may help to re-
solve some of the ambiguities of HDL. In connection with the application of the
metabolomics GWAS approach, knowledge was gained about different biochemical
mechanisms. For example, associations were discovered which yielded insight into
the bradykinin pathway or nephrotic detoxification processes. It is essential to un-
derstand these pathways as the bradykinin pathway is involved in the regulation
of blood pressure whereas a reduced ability to detoxify nephrotic medications can

lead to impaired kidney function.

Despite the comparable aim of both procedures, each procedure has its own ad-
vantages and limitations. A characteristic of the candidate locus approach is that
only genetic loci which were already detected in GWAS of clinically relevant phe-
notypes are further analysed. This restriction to preselected candidate loci is an
advantage since it results in a reduced multiple testing burden compared to the
metabolomics GWAS approach. For example, in the application of the candidate
locus approach, 101 SNPs at 95 lipid loci were analysed together with 15 lipopro-
tein subfractions leading to a Bonferroni corrected level of significance of 3.3 x 1075.
In contrast, more than 250 metabolite concentrations and about 37 000 pair-wise
metabolite ratios were analysed on 600 000 genome-wide SNPs in the application
of the metabolomics GWAS approach. This resulted in a Bonferroni corrected
level of significance of 2.0 x 10712,

Another advantage of the candidate locus approach is that existing knowledge
about relationships between genes and phenotypes is applied and extended. This
knowledge was gained in GWAS which comprised of tens of thousands of samples.
For instance, the 95 lipid loci analysed in the application of the candidate locus
approach were discovered in GWAS of more than 100 000 samples of 46 different
studies (Teslovich et al., 2010).

Despite these advantages, the restriction to candidate loci is also a limitation of
this approach. Metabolites are more refined phenotypes than most other clinically

relevant phenotypes which often represent aggregated variables comprising of dif-
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ferent sub-phenotypes. For example, four HDL related lipoprotein subfractions
were analysed in the application of the candidate locus approach instead of aggre-
gated HDL-C. As a consequence, with the utilisation of metabolites it is possible
to discover loci which have not been detected in GWAS of the aggregated phe-
notypes. With the detection of additional loci, metabolites can help to elucidate
parts of the missing heritability of the related aggregated phenotypes. Due to the
restriction to candidate loci, this procedure does not have the ability to discover
novel loci. Nevertheless, the example of the PLTP locus illustrates this ability
of metabolites. Regarding the minor allele of rs6065906, PLTP has an increasing
effect on L1 and a decreasing effect on L3. In the analysis of aggregated HDL-C
these opposite effects cancel out each other partly leading to a small decreasing
effect of the minor allele of rs6065906 on HDL-C. To discover loci with a small
effect size, large sample sizes are necessary as it was the case in [Teslovich et al.
(2010).

In contrast to the candidate locus approach, the possibility to discover novel loci
is a strength of the metabolomics GWAS approach. In total, 37 loci were de-
tected when analysing about 2800 samples in the application presented in this
thesis. For many of these loci, the function of the gene matches the associated
metabolic trait. One example is the ACADS locus which is associated with bu-
tyrylcarnitine /propionylcarnitine. These metabolites are a substrate-product pair
of acyl-coenzyme A dehydrogenases which are encoded by ACADS. Another ex-
ample is the NAT8 locus which is associated with N-acetylornithine. The NATS
locus encodes N-acetyltransferase whose function matches N-acetylornitine. This
illustrates that the biological mechanisms underlying an association are easier to
understand for associations with metabolic traits than for associations with clini-
cally relevant phenotypes.

A limitation of the second procedure is the multiple testing burden as already
described. The level of significance applied in the application of the metabolomics
GWAS approach was set to 2.0 x 1072, This level was derived by Bonferroni
correction for all tested pair-wise metabolite ratios as well as for all tested genome-
wide SNPs. In the situation of metabolomics GWAS, Bonferroni correction is
very conservative since many SNPs are in LD and some of the metabolites are
highly correlated due to a close biological relationship. Moreover, the amount
of correlated metabolites is artificially increased in case of analysing all pair-wise
metabolite ratios.

Another limitation of the metabolomics GWAS approach is the computational

as well as data storage burden, especially if all pair-wise metabolite ratios were
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analysed. Whilst it is possible to carry out an application of the candidate locus
approach using an usual personal computer, it is necessary to have a large linux
cluster as well as appropriate data storage devices available for the feasibility of
the metabolomics GWAS.

Strategies which are similar to the two procedures presented in this work were also
applied by others to incorporate metabolomics data in the GWAS approach. For
example, a study published by [Tukiainen et al.[(2012)) uses lipoprotein subfractions
and lipid related metabolites to further characterise the 95 lipid loci published by
Teslovich et al.|(2010)). This study is comparable to the application of the candidate
locus approach presented in this thesis as it also analyses lipoprotein subfractions
together with known genetic lipid loci. Despite this, the objectives of both studies
are different. The study by Tukiainen et al|(2012) further characterises the lipid
loci through associated lipoprotein subfractions, aims at detecting causal variants
through a fine-mapping approach of the loci and searches for independent genetic
signals in the loci. In contrast, our application characterised the lipoprotein sub-
fractions through a clustering with serum lipids and an analysis of samples during
nutritional intervention followed by a mutual characterisation of the subfractions
and lipid loci in a genetic association analysis. This lead to further insight into
the lipid metabolism.

Concerning the second procedure, examples of metabolomics GWAS are the pub-
lications of Gieger et al.| (2008), |Hicks et al.| (2009), [Tanaka et al.| (2009b)), Chas-
man et al.| (2009), Ilig et al.| (2010), Suhre et al| (2011b), Lemaitre et al.| (2011),
Kettunen et al.| (2012) or Demirkan et al.| (2012)). Within these studies, differ-
ent metabolites were investigated to gain a better understanding of the genet-
ics underlying the analysed metabolites. The application of the metabolomics
GWAS presented in this work is in-line with this approach. As an extension of
the metabolomics GWAS, for some of the detected loci associations with addi-
tional clinically relevant phenotypes were examined. Another aspect to mention
is that beside metabolite concentrations also all pair-wise metabolite ratios were
analysed in the application presented here. This was also done by [llig et al.| (2010)
whereas others analysed only selected ratios, e.g. [Hicks et al.| (2009), Kettunen
et al.| (2012), or focused solely on the analysis of metabolite concentrations, e.g.
Tanaka et al.| (2009h)).
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So far, this hypothesis-free analysis of all possible metabolite ratios has proven to
be successful even if it increases the multiple testing burden. Furthermore, the p-
gain was used together with a provisional cut-off rule as an objective measure of the
increase in information. To improve the application of the p-gain, the second aim
of this thesis was to conduct a statistical exploration. As a result, the critical p-
gain value after Bonferroni correction for B tests is at % with o being the nominal
significance level. This finding implicates that the critical value of the p-gain in
Chapter [4.1should be corrected for the 21 significant SNP - lipoprotein subfraction
associations. This leads to a critical p-gain value of 210 = 21 - 10 instead of 15.
When we apply this critical value to the results, the association between APOA1
and LL10 has no significant p-gain value anymore. In addition to this, the results of
the statistical p-gain exploration should also be applied to the results in Chapter
Here, the critical p-gain value of 10 should be corrected for the number of
tests where the p-gain was applied. This number depends on the analysis strategy.
In the case of a one step approach a simultaneous filter is applied to the p-value
and p-gain. The number of tests is equal to the number of calculated associations
between metabolite ratios and SNPs, which was approximately 37 000 - 600 000
in Chapter [£.2] In the situation of a step-wise approach where in a first step a
p-value filter is applied and in a second step a filter for a p-gain, this number will
be smaller. However, to consider a p-gain larger than 250 as relevant, as it was
done in Chapter is not accurate anymore.

As another consequence of the exploration of the p-gain, it is now possible to eval-
uate the GWAS of the metabolite ratios of Chapter according to a significant
p-gain instead of a significant p-value. Such an evaluation will reveal metabolite
ratios which are significantly better associated with a genetic locus than the cor-
responding single metabolite concentrations. For this purpose, the SNP with the
largest p-gain was determined for each metabolite ratio and these 37000 ‘metabo-
lite ratio - SNP - p-gain’ sets were tested according to a p-gain larger than the
critical p-gain value of 370 000 = (?;_7098%. As a result, some loci were detected that
were not among the loci reported in Chapter [d.2] e.g. MLEC or MSH/. Since this

evaluation of the GWAS of metabolite ratios according to a significant p-gain was

only started in Chapter further extinctive explorations are needed.

Finally, we showed a dependence of the observed p-gain values of the metabolomics
GWAS on the sample size. Building on the knowledge gained about the distribu-
tion of the p-gain, it is now possible to conduct an analysis of the statistical power

of the p-gain.
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In total, both presented procedures have proven to be successful as they con-
firmed and extended current knowledge about different genetical and biochemical
mechanisms. As a consequence of their distinct advantages and limitations, the
procedures exploit different properties of the metabolomics data and thus comple-
ment each other. Hence, for a most extensive evaluation of metabolomics data it
is preferable to utilise both procedures. Furthermore, it is recommendable to eval-
uate metabolite ratios together with the p-gain as an objective measure. Overall,
this thesis proved that the incorporation of metabolites in the GWAS approach is a
promising way to gain understanding of the genetical and biochemical mechanisms
underlying disease aetiology. An expansion of the discussed procedures to the in-
corporation of multiple ‘omics technologies such as transcriptomics, proteomics or
epigenomics will lead towards a further understanding of complex diseases such as

type 2 diabetes or cardiovascular diseases.
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Appendix

Table A.1: Definition of lipoprotein subfractions L1-L15. The lipoprotein subfrac-
tions L1-L15 and their correspondence to subfractions defined by |Linsel-Nitschke
et al.| (2009) (Petersen et al., 2012).

NMR related particle average
lipoprotein lipoprotein diameter density
subfraction subfraction [nm] |g/ml]
L1 small HDL 7—8.5 1.200
L2 medium HDL 8.5—10 1.120
L3 large HDL 10—-13 1.090
L4 very large HDL 13—-16 1.063
L5 very small LDL 16—19 1.060
L6 small LDL 19-21 1.045
L7 medium LDL 21-22 1.035
L8 large LDL 22-25 1.027
L9 very large LDL 25—-30 1.019
L10 IDL 30—40 1.015
L11 small VLDL 40—60 1.010
L12 large VLDL 60—80 1.006
L13 remnants 80—100 1.000
L14 small chylomicrons 100—150  0.980
L15 large chylomicrons > 150 0.960
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Table A.2: Metabolites measured in KORA and TwinsUK. This Table summarises
the super pathway, measurement platform, number of samples in KORA and
TwinsUK for which we measured the metabolite (N KORA, N TwinsUK), the
normalised minimal and maximal values and the median relative standard devi-
ation (RSD) for each metabolite. The minimal and maximal value and the RSD
are calculated from technical replicates of a pool of human plasma that has been
well characterised at Metabolon (Evans et al., 2009). "The biochemical identity of
the metabolites is in general determined using adequate pure substances; in cases
where metabolite identities were inferred based on their fragmentation spectrum
and other biochemical evidence, these are indicated by a “*’" (Suhre et al.l [2011a)).

metabolite super pathway measurement N N Min Max RSD
platform KORA  TwinsUK  Value Value (%)

2-aminobutyrate amino acid LC/MS pos 1775 1051 0.671 1.407 8.7

2-hydroxybutyrate amino acid GC/MS 1775 1052 0.734 1.726 9.0

(AHB)

2-hydroxyisobutyrate amino acid GC/MS 1641 930 0.385 1.906 21.7

2-methylbutyroyl- amino acid LC/MS pos 1706 1027  0.348 2.217 17.2

carnitine

3-(3-hydroxyphenyl)- amino acid LC/MS neg 276 100

propionate

3-(4-hydroxyphenyl)- amino acid LC/MS neg 1770 1052 0.657 1.307 8.3

lactate

3-hydroxy-2- amino acid GC/MS 894 0 0.484 1.465 18.9

ethylpropionate

3-indoxyl sulfate amino acid LC/MS neg 1774 1051 0.686 1.185 5.6

3-methoxytyrosine amino acid LC/MS pos 1468 379 0.598 2.452 21.3

3-methyl-2-oxobutyrate amino acid LC/MS neg 1776 1044  0.540 1.415 10.4

3-methyl-2-oxovalerate amino acid LC/MS neg 1776 1052  0.601 1.351 8.3

3-methylhistidine amino acid LC/MS neg 661 742 0.664 1.327 8.0

3-phenylpropionate (hy- amino acid LC/MS neg 1268 855 0.511 1.635 17.2

drocinnamate)

4-acetamidobutanoate amino acid LC/MS pos 1621 715  0.481 1.728 15.3

4-hydroxyphenylacetate amino acid GC/MS 388 0 0.462 1.438 17.9

4-methyl-2-oxopenta- amino acid LC/MS neg 1776 1052  0.653 1.376 9.3

noate

5-oxoproline amino acid LC/MS pos 1776 1052 0.713 1.190 5.7

alanine amino acid GC/MS 1775 1052  0.367 1.828 15.1
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Table |A.2| (cont.)

metabolite super pathway measurement N N Min Max RSD
platform KORA  TwinsUK Value Value (%)
alpha-hydroxyisovalerate amino acid LC/MS neg 1776 1052 0.634 1.348 9.6
arginine amino acid LC/MS neg 1746 1017 0.309 1.648 14.5
asparagine amino acid GC/MS 1768 1045 0.310 1.918 25.5
aspartate amino acid GC/MS 1732 1049  0.228 2.220 25.9
beta-hydroxyisovalerate amino acid LC/MS neg 1595 992  0.437 1.995 18.9
betaine amino acid LC/MS pos 1775 1052 0.381 1.566 9.0
C-glycosyltryptophan* amino acid LC/MS pos 1774 1049  0.647 1.297 9.4
citrulline amino acid LC/MS pos 1767 1047  0.702 1.606 10.3
creatine amino acid LC/MS pos 1776 1052 0.796 1.122 5.4
creatinine amino acid LC/MS pos 1775 1052  0.683 1.556 10.8
cysteine amino acid GC/MS 1771 1013 0.197 1.769 22.9
cysteine-glutathione amino acid LC/MS pos 1638 367
disulfide
cystine amino acid GC/MS 1412 0
dimethylarginine (SDMA  amino acid LC/MS pos 1776 1052 0.599 2.190 14.0
+ ADMA)
glutamate amino acid GC/MS 1775 1052 0.459 2.058 15.7
glutamine amino acid LC/MS pos 1776 1052 0.772 1.248 7.0
glutaroyl carnitine amino acid LC/MS pos 1729 1012  0.588 1.600 11.8
glycine amino acid GC/MS 1775 1052  0.277 1.715 15.3
histidine amino acid LC/MS neg 1776 1052 0.790 1.218 5.4
homocitrulline amino acid LC/MS pos 1412 650  0.448 2.244 26.1
homostachydrine* amino acid LC/MS pos 1471 162 0.379 1.878 17.0
hydroxyisovaleroyl carni- amino acid LC/MS pos 1530 960 0.241 3.771 34.6
tine
indoleacetate amino acid LC/MS pos 1750 935 0.511 1.556 14.4
indolelactate amino acid LC/MS pos 1500 921  0.236 2.684 25.9
indolepropionate amino acid LC/MS pos 1775 1051 0.493 1.465 12.7
isobutyrylcarnitine amino acid LC/MS pos 1776 1049  0.575 1.391 8.8
isoleucine amino acid LC/MS pos 1776 1052 0.774 1.179 6.0
isovalerylcarnitine amino acid LC/MS pos 1762 1041  0.606 1.808 12.9
kynurenine amino acid LC/MS pos 1776 1052 0.706 1.303 7.8
leucine amino acid LC/MS pos 1776 1052 0.772 1.133 6.0
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Table |A.2| (cont.)

metabolite super pathway measurement N N Min Max RSD
platform KORA  TwinsUK Value Value (%)
levulinate (4-oxovalerate) amino acid LC/MS pos 1066 993  0.321 44.868 204.1
or neg
lysine amino acid LC/MS pos 1776 1052  0.457 1.700 13.5
methionine amino acid LC/MS neg 1776 1052  0.745 1.202 6.5
N-(2-furoyl)glycine amino acid LC/MS pos 429 102 0.385 1.925 22.3
N-acetylalanine amino acid LC/MS neg 1711 1051  0.642 1.764 11.7
N-acetylglycine amino acid GC/MS 1515 835 0.216 2.948 21.9
N-acetylornithine amino acid LC/MS pos 1762 1044  0.387 2.303 26.2
N-acetylthreonine amino acid LC/MS neg 1416 880 0.414 2.092 22.2
ornithine amino acid LC/MS pos 1776 1040  0.315 3.312 26.6
p-cresol sulfate amino acid LC/MS neg 1776 1052  0.756 1.152 3.6
phenol sulfate amino acid LC/MS neg 1776 1052 0.571 1.182 4.9
phenylacetate amino acid LC/MS neg T 793  0.503 1.965 22.4
phenylacetylglutamine amino acid LC/MS pos 1776 1051 0.756 1.257 6.9
phenylalanine amino acid LC/MS pos 1776 1052  0.787 1.144 5.8
phenyllactate (PLA) amino acid LC/MS neg 1081 630 0.488 1.518 15.8
pipecolate amino acid LC/MS pos 1776 1052  0.687 1.303 7.4
proline amino acid LC/MS pos 1776 1052  0.791 1.211 5.9
pyroglutamine* amino acid LC/MS pos 1772 1051 0.721 1.455 9.3
serine amino acid GC/MS 1775 1052 0.372 2.164 17.1
serotonin (5HT) amino acid LC/MS pos 1758 1008
stachydrine amino acid LC/MS pos 1775 1049 0.758 1.205 6.4
threonine amino acid LC/MS pos 1694 1039  0.623 1.371 10.1
tiglyl carnitine amino acid LC/MS pos 1339 0 0.405 2.357 24.3
trans-4-hydroxyproline amino acid GC/MS 1775 1051 0.615 2.152 12.5
tryptophan amino acid LC/MS pos 1776 1052 0.787 1.157 6.2
tyrosine amino acid LC/MS pos 1776 1052  0.745 1.156 6.1
urea amino acid GC/MS 1775 1052 0.510 1.481 10.1
valine amino acid LC/MS pos 1776 1052 0.792 1.139 5.9
1, 5-anhydroglucitol (1,5- carbohydrate LC/MS neg 1772 1051  0.755 1.288 5.6
AG)
1, 6-anhydroglucose carbohydrate GC/MS 418 296  0.335 1.845 20.3
arabinose carbohydrate GC/MS 1011 567  0.358 1.800 21.0
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Table |A.2| (cont.)

metabolite super pathway measurement N N Min Max RSD
platform KORA  TwinsUK Value Value (%)
arabitol carbohydrate GC/MS 1770 0 0.161 1.602 18.9
erythronate* carbohydrate GC/MS 1755 1032  0.519 2.225 15.9
erythrose carbohydrate GC/MS 1465 838 0.117 2.876 36.0
fructose carbohydrate GC/MS 1774 1052 0.021 2.763 26.7
glucose carbohydrate GC/MS 1775 1052  0.720 1.649 9.6
glycerate carbohydrate GC/MS 1762 1035 0.157 1.607 13.2
lactate carbohydrate GC/MS 1775 1052 0.734 1.885 8.6
mannitol carbohydrate GC/MS 1529 799 0.311 2.145 31.4
mannose carbohydrate GC/MS 1775 1052 0.109 1.995 17.1
pyruvate carbohydrate GC/MS 1735 984  0.196 3.223 37.1
threitol carbohydrate GC/MS 1640 898  0.358 2.077 23.5
alpha-tocopherol cofactors and GC/MS 1770 1042 0.324 2.796 19.3
vitamins
ascorbate (Vitamin C) cofactors and GC/MS 1581 518  1.000 1.000 0.0
vitamins
bilirubin (E,E)* cofactors and LC/MS pos 1776 1042 0.458 2.060 21.5
vitamins
bilirubin (E,Z or Z,E)* cofactors and LC/MS pos 1489 775 0.301 3.148 35.0
vitamins
bilirubin (Z,Z) cofactors and LC/MS neg 1728 976  0.666 2.738 31.0
vitamins
biliverdin cofactors and LC/MS neg 1181 518  0.198 3.226 28.8
vitamins
gamma-tocopherol cofactors and GC/MS 983 620 0.311 2.444 22.7
vitamins
heme* cofactors and LC/MS pos 1702 818  0.431 2.066 24.3
vitamins
pantothenate cofactors and LC/MS pos 1664 981 0.616 1.989 18.4
vitamins
pyridoxate cofactors and LC/MS neg 1732 1045  0.539 1.592 13.4
vitamins
riboflavin (Vitamin B2) cofactors and LC/MS pos 308 0
vitamins
threonate cofactors and GC/MS 1775 1047  0.215 3.799 18.7
vitamins
trigonelline (N’-methyl- cofactors and LC/MS pos 745 0 0.637 1.634 13.9
nicotinate) vitamins
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Table |A.2| (cont.)

metabolite super pathway measurement N N Min Max RSD
platform KORA  TwinsUK Value Value (%)

acetylphosphate energy GC/MS 1775 1052 0.539 1.884 18.0

alpha-ketoglutarate energy GC/MS 1125 496  0.240 3.414 30.2

citrate energy GC/MS 1774 1052 0.614 1.757 9.2

malate energy GC/MS 1588 854  0.396 3.420 25.1

phosphate energy GC/MS 1775 1052 0.658 1.507 7.6

succinylcarnitine energy LC/MS pos 1545 786  0.613 1.837 15.9

1-arachidonoylglycero- lipid LC/MS pos 1625 913  0.356 6.295 47.0

phosphocholine*

1-arachidonoylglycero- lipid LC/MS neg 1774 1051  0.253 5.307 38.2

phosphoethanolamine*

1-arachidonoylglycero- lipid LC/MS neg 1770 1047 0.519 2.184 20.7

phosphoinositol*

1-docosahexaenoyl- lipid LC/MS pos 1776 1040 0.244 6.081 55.4

glycerophosphocholine*

1-eicosadienoylglycero- lipid LC/MS pos 1648 711 0.317 6.934 62.3

phosphocholine*

1-eicosatrienoylglycero- lipid LC/MS pos 1776 1051 0.083 5.910 42.1

phosphocholine*

1-heptadecanoyl- lipid LC/MS pos 1741 882  0.302 10.327 71.2

glycerophosphocholine

1-linoleoylglycerol lipid LC/MS neg 1766 1044 0.109 13.084 75.0

(1-monolinolein)

1-linoleoylglycero- lipid LC/MS pos 1775 1051  0.266 5.341 39.5

phosphocholine

1-linoleoylglycero- lipid LC/MS neg 1776 1052 0.239 3.967 32.4

phosphoethanolamine*

1-myristoylglycero- lipid LC/MS pos 1774 1051 0.244 4.290 43.8

phosphocholine

1-oleoylglycerol (1-mono- lipid LC/MS pos 1699 717 0.282 6.173 64.5

olein)

1-oleoylglycerophospho- lipid LC/MS pos 1776 1052 0.376 3.101 33.9

choline

1-oleoylglycerophospho- lipid LC/MS neg 1745 1020 0.133 3.986 38.1

ethanolamine

1-palmitoleoylglycero- lipid LC/MS pos 1776 1052 0.312 5.059 45.6

phosphocholine*

1-palmitoylglycerol lipid GC/MS 1617 927  0.269 2.370 19.9

(1-monopalmitin)
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Table |A.2| (cont.)

metabolite super pathway measurement N N Min Max RSD
platform KORA  TwinsUK Value Value (%)

1-palmitoylglycero- lipid LC/MS pos 1776 1052  0.310 2.413 24.4

phosphocholine

1-palmitoylglycero- lipid LC/MS neg 1760 1032 0.235 3.144 28.8

phosphoethanolamine

1-palmitoylglycero- lipid LC/MS neg 1512 907  0.564 2.162 18.9

phosphoinositol*

1-stearoylglycerol lipid GC/MS 1418 794  0.244 1.972 23.5

(1-monostearin)

1-stearoylglycero- lipid LC/MS pos 1776 1052  0.476 4.345 37.6

phosphocholine

1-stearoylglycero- lipid LC/MS neg 1578 875  0.177 3.313 34.8

phosphoethanolamine

1-stearoylglycero- lipid LC/MS neg 1748 1036  0.345 2.712 22.8

phosphoinositol

2-hydroxypalmitate lipid LC/MS neg 1776 1052  0.384 1.676 13.8

2-hydroxystearate lipid LC/MS neg 1771 1015 0.317 1.637 16.2

2-linoleoylglycero- lipid LC/MS pos 1688 1015 0.333 4.841 41.2

phosphocholine*

2-linoleoylglycero- lipid LC/MS neg 1078 0 0.221 3.793 42.4

phosphoethanolamine*

2-oleoylglycerophospho- lipid LC/MS pos 1770 1050 0.266 4.162 34.8

choline*

2-palmitoylglycero- lipid LC/MS pos 1776 1052 0.118 4.967 40.5

phosphocholine*

2-stearoylglycero- lipid LC/MS pos 1775 1046  0.417 11.443 68.7

phosphocholine*

2-tetradecenoyl carnitine lipid LC/MS pos 1649 741 0.445 2.608 30.4

3-carboxy-4-methyl-5- lipid LC/MS neg 1768 1051 0.626 1.338 9.2

propyl-2-furanpropano-

ate (CMPF)

3-dehydrocarnitine* lipid LC/MS pos 1776 1052 0.693 2.317 10.9

3-hydroxybutyrate lipid GC/MS 1775 1052  0.668 1.444 8.0

(BHBA)

5-dodecenoate (12 :1n7)  lipid LC/MS neg 1762 1047  0.496 1.766 14.5

7-alpha-hydroxy-3-oxo-4-  lipid LC/MS neg 1776 1050  0.497 4.109 29.2

cholestenoate (7-Hoca)

10-heptadecenoate lipid LC/MS neg 1776 1052  0.650 1.868 10.2

(17 : 1n7)
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Table |A.2| (cont.)

metabolite super pathway measurement N N Min Max RSD

platform KORA  TwinsUK Value Value (%)
10-nonadecenoate lipid LC/MS neg 1776 1052 0.464 1.694 12.3
(19 : 1n9)
10-undecenoate lipid LC/MS neg 1776 1049 0.516 1.680 17.1
(11 : 1n1)
acetylcarnitine lipid LC/MS pos 1776 1052 0.575 1.317 8.5
adrenate (22 : 4n6) lipid LC/MS neg 1776 1052 0.530 2.854 27.0
androsterone sulfate lipid LC/MS neg 1772 1049  0.679 1.215 6.9
arachidonate (20 : 4n6) lipid LC/MS neg 1776 1052  0.688 1.245 6.7
butyrylcarnitine lipid LC/MS pos 1774 1051  0.635 1.977 14.0
caprate (10 : 0) lipid LC/MS neg 1776 1051  0.789 1.271 6.9
caproate (6 : 0) lipid LC/MS neg 1776 1052 0.636 1.839 13.3
caprylate (8 :0) lipid LC/MS neg 1776 1052 0.703 1.423 9.8
carnitine lipid LC/MS pos 1776 1052  0.804 1.203 5.7
cholate lipid LC/MS neg 1214 790  0.285 1.786 22.0
cholesterol lipid GC/MS 1775 1052 0.720 1.749 9.7
cortisol lipid LC/MS pos 1773 1051 0.770 1.311 7.5
cortisone lipid LC/MS pos 1730 910  0.480 1.599 17.4
choline lipid LC/MS pos 1775 1052 0.747 1.215 7.5
decanoylcarnitine lipid LC/MS pos 1776 1052  0.585 1.473 12.3
dehydroisoandrosterone lipid LC/MS neg 1776 1052  0.583 1.142 4.2
sulfate (DHEA-S)
deoxycholate lipid LC/MS neg 1455 750 0.378 2.286 25.7
dihomo-linoleate lipid LC/MS neg 1776 1052  0.609 1.673 11.1
(20 : 2n6)
dihomo-linolenate lipid LC/MS neg 1776 1052  0.580 1.588 9.4
(20 : 3n3 or n6)
docosahexaenoate (DHA;  lipid LC/MS neg 1776 1052 0.662 1.288 8.5
22 : 6n3)
docosapentaenoate lipid LC/MS neg 1776 1052  0.527 1.694 11.8
(n3 DPA; 22 : 5n3)
dodecanedioate lipid LC/MS neg 946 898  0.451 1.853 20.7
eicosapentaenoate (EPA;  lipid LC/MS neg 1776 1052  0.568 1.475 9.7
20 : 5n3)
eicosenoate lipid LC/MS neg 1776 1052 0.571 1.487 12.9

(20 : 1n9 or 11)
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Table |A.2| (cont.)

metabolite super pathway measurement N N Min Max RSD
platform KORA  TwinsUK Value Value (%)
epiandrosterone sulfate lipid LC/MS neg 1773 1049 0.645 1.218 5.4
estrone 3-sulfate lipid LC/MS neg 261 105 0.784 1.580 12.8
glycerol lipid GC/MS 1775 1052  0.011 1.447 8.9
glycerol 3-phosphate lipid GC/MS 1775 1050 0.374 2.561 15.6
(G3P)
glycerophosphorylcholine  lipid LC/MS pos 1772 1049  0.239 2.722 14.6
(GPC)
glycochenodeoxycholate lipid LC/MS neg 1576 984 0.531 1.569 14.1
glycocholate lipid LC/MS pos 1168 685 0.678 1.395 10.1
glycodeoxycholate lipid LC/MS neg 874 609  0.429 1.762 18.8
heptanoate (7 : 0) lipid LC/MS neg 1775 1052 0.639 1.671 12.2
hexadecanedioate lipid LC/MS neg 1022 906  0.530 2.104 20.0
hexanoylcarnitine lipid LC/MS pos 1776 1044  0.572 1.502 12.6
hyodeoxycholate lipid LC/MS neg 1314 640  0.525 1.428 13.6
inositol 1-phosphate lipid GC/MS 1391 0
(I1P)
isovalerate lipid LC/MS neg 1730 1014  0.488 1.481 12.8
lathosterol lipid GC/MS 841 425  0.381 1.713 20.8
laurate (12 :0) lipid LC/MS neg 1776 1052  0.783 1.626 10.6
laurylcarnitine lipid LC/MS pos 1578 765  0.286 4.025 29.2
linoleamide (18 : 2n6) lipid LC/MS pos 1776 0
linoleate (18 : 2n6) lipid LC/MS neg 1776 1052 0.718 1.255 6.1
linolenate [alpha or lipid LC/MS neg 1776 1052  0.693 1.316 8.2
gamma; (18 : 3n3 or 6)]
margarate (17 : 0) lipid LC/MS neg 1776 1052  0.626 1.565 11.3
myo-inositol lipid GC/MS 1775 1052  0.391 1.625 14.3
myristate (14 : 0) lipid LC/MS neg 1776 1052  0.741 1.296 7.1
myristoleate (14 : 1n5) lipid LC/MS neg 1776 1052 0.741 1.281 7.8
n-Butyl Oleate lipid GC/MS 1374 695  0.479 1.746 18.9
nonadecanoate (19 : 0) lipid LC/MS neg 1767 1041  0.448 1.841 18.6
octadecanedioate lipid LC/MS neg 1513 941  0.258 2.321 27.5
octanoylcarnitine lipid LC/MS pos 1776 1052 0.643 1.390 10.0
oleamide lipid LC/MS pos 1776 0 0.234 11.500 83.4
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Table |A.2| (cont.)

metabolite super pathway measurement N N Min Max RSD
platform KORA  TwinsUK Value Value (%)
oleate (18 : 1n9) lipid LC/MS neg 1776 1052  0.735 1.257 6.7
oleoylcarnitine lipid LC/MS pos 1772 1042  0.289 2.189 24.3
palmitate (16 : 0) lipid LC/MS neg 1776 1052 0.717 1.363 7.8
palmitoleate (16 : 1n7) lipid LC/MS neg 1776 1052 0.737 1.454 7.5
palmitoylcarnitine lipid LC/MS pos 1763 1032 0.297 2.473 28.6
pelargonate (9 : 0) lipid LC/MS neg 1776 1052  0.701 1.337 8.5
pentadecanoate (15 : 0) lipid GC/MS 1716 1018  0.397 2.978 21.9
propionylcarnitine lipid LC/MS pos 1776 1052 0.688 1.488 10.8
scyllo-inositol lipid GC/MS 1511 897  0.475 1.831 28.1
sebacate (decanedioate) lipid LC/MS neg 400 0
stearate (18 : 0) lipid LC/MS neg 1776 1052 0.691 1.302 8.8
stearidonate (18 : 4n3) lipid LC/MS neg 1769 1050  0.546 1.463 13.3
stearoylcarnitine lipid LC/MS pos 1607 841  0.349 3.503 29.4
taurochenodeoxycholate lipid LC/MS neg 1051 611  0.191 1.834 20.5
taurocholate lipid LC/MS neg 706 488  0.405 2.616 26.9
taurodeoxycholate lipid LC/MS neg 968 601  0.372 1.814 21.2
taurolithocholate  3-sul-  lipid LC/MS neg 1592 959  0.178 2.873 27.4
fate
tetradecanedioate lipid LC/MS neg 662 532
thromboxane B2 lipid LC/MS neg 1752 1031  0.428 1.386 7.6
undecanoate (11 : 0) lipid LC/MS neg 1757 1037  0.541 2.361 16.9
ursodeoxycholate lipid LC/MS neg 962 674  0.429 1.814 16.6
valerate lipid LC/MS neg 1440 742 0.406 2.463 28.0
7-methylguanine nucleotide LC/MS pos 1665 978  0.434 3.013 33.4
adenosine nucleotide LC/MS pos 411 0
allantoin nucleotide GC/MS 742 583  0.455 2.672 27.9
guanosine nucleotide LC/MS pos 1655 697
hypoxanthine nucleotide LC/MS neg 1762 1030  0.280 1.660 16.8
inosine nucleotide LC/MS neg 1739 944
N1-methyladenosine nucleotide LC/MS pos 1775 1052 0.672 1.543 12.0
N2,N2-dimethyl- nucleotide LC/MS pos 825 261 0.586 4.034 28.9
guanosine
pseudouridine nucleotide LC/MS pos 1776 1052  0.600 1.797 14.6
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Table |A.2| (cont.)

metabolite super pathway measurement N N Min Max RSD
platform KORA  TwinsUK Value Value (%)

urate nucleotide LC/MS neg 1776 1052 0.680 1.175 4.9
uridine nucleotide LC/MS neg 1776 1052 0.743 1.205 7.4
xanthine nucleotide LC/MS pos 1771 1052  0.253 2.193 22.1
ADpSGEGDFXAEGG- peptide LC/MS pos 1773 1045  0.160 1.708 16.4
GVR*
ADSGEGDFXAEGGGVR* peptide LC/MS pos 1776 1052  0.597 1.319 10.9
aspartylphenylalanine peptide LC/MS pos 1758 1050 0.746 1.090 12.9
bradykinin, des-arg(9) peptide LC/MS pos 1504 819  0.438 1.303 10.3
DSGEGDFXAEGGGVR* peptide LC/MS pos 1775 1051  0.372 1.838 20.4
gamma-glutamyl- peptide LC/MS pos 654 285  0.478 2.202 20.1
glutamate
gamma-glutamyl- peptide LC/MS pos 1776 1052 0.533 1.557 15.3
glutamine
gamma-glutamyl- peptide LC/MS pos 1023 373 0.558 2.185 16.8
isoleucine*
gamma-glutamylleucine peptide LC/MS pos 1776 1051  0.650 1.484 10.9
gamma-glutamyl- peptide LC/MS pos 1384 862 0.414 2.321 23.1
methionine*
gamma-glutamyl- peptide LC/MS pos 1761 1010  0.425 1.674 17.0
phenylalanine
gamma-glutamyl- peptide LC/MS pos 1345 476  0.268 1.900 21.5
threonine*
gamma-glutamyltyrosine peptide LC/MS pos 1677 903  0.567 2.110 17.2
gamma-glutamylvaline peptide LC/MS pos 1755 1033 0.726 1.429 9.3
glycylvaline peptide LC/MS pos 1215 905
HWESASXX* peptide LC/MS pos 1722 1052 0.552 1.365 11.4
leucylleucine peptide LC/MS pos 1060 968 0.716 1.312 8.7
pro-hydroxy-pro peptide LC/MS pos 1774 1052  0.400 2.035 20.1
pyroglutamylglycine peptide LC/MS neg 793 798  0.790 1.210 8.2
1, 3, 7-trimethylurate xenobiotics LC/MS neg 314 483
1, 7-dimethylurate xenobiotics LC/MS neg 1025 805 0.651 1.289 8.4
1-methylurate xenobiotics LC/MS pos 1113 553  0.584 2.236 22.9
1-methylxanthine xenobiotics LC/MS pos 1184 606 0.923 1.077 7.7
2-methoxyacetamino- xenobiotics LC/MS neg 26 187

phen sulfate*
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Table |A.2| (cont.)

metabolite super pathway measurement N N Min Max RSD
platform KORA  TwinsUK Value Value (%)

2-hydroxyacetaminophen  xenobiotics LC/MS neg 76 328 0.813 1.314 9.2

sulfate*

2-hydroxyhippurate (sali-  xenobiotics LC/MS neg 355 351  0.738 1.262 19.2

cylurate)

3-(cystein-S-yl)acet- xenobiotics LC/MS pos 18 165

aminophen*

3-ethylphenylsulfate* xenobiotics LC/MS neg 166 0 0.599 2.585 24.9

3-methylxanthine xenobiotics LC/MS pos 1127 533 0.415 2.168 24.8

4-acetamidophenol xenobiotics GC/MS 0 143 1.000 1.000 0.0

4-acetaminophen sulfate xenobiotics LC/MS neg 122 376 0.667 1.566 8.6

4-ethylphenylsulfate xenobiotics LC/MS neg 1423 866  0.541 1.820 14.2

4-vinylphenol sulfate xenobiotics LC/MS neg 1733 1001  0.684 1.591 6.5

7-methylxanthine xenobiotics LC/MS pos 1319 581  0.422 3.144 33.2

benzoate xenobiotics LC/MS neg 1763 1052  0.673 1.378 9.7

caffeine xenobiotics LC/MS pos 1721 1038  0.591 1.458 12.2

catechol sulfate xenobiotics LC/MS neg 1776 1052  0.745 1.232 4.9

cotinine xenobiotics LC/MS pos 284 126 0.607 1.611 15.7

erythritol xenobiotics GC/MS 1772 1048 0.371 1.604 15.1

glycerol 2-phosphate xenobiotics GC/MS 1237 559  0.255 3.184 21.5

hippurate xenobiotics LC/MS pos 1766 1051  0.603 1.607 15.0

hydroquinone sulfate xenobiotics LC/MS neg 354 103 0.928 1.072 7.2

hydroxypioglitazone* xenobiotics LC/MS pos 6 2

ibuprofen xenobiotics LC/MS neg 25 66 0.618 2.037 17.3

metoprolol xenobiotics LC/MS pos 69 1

metoprolol acid metabo-  xenobiotics LC/MS pos 149 57

lite*

naproxen xenobiotics LC/MS neg 2 7

p-acetamidophenyl- xenobiotics LC/MS pos 60 231 0.524 2.727 25.9

glucuronide

paraxanthine xenobiotics LC/MS pos 1667 969 0.544 1.645 13.2

pioglitazone* xenobiotics LC/MS pos 6 2

piperine xenobiotics LC/MS pos 1746 966 0.514 1.765 15.7

quinate xenobiotics GC/MS 1460 737  0.265 1.978 23.9

saccharin xenobiotics LC/MS neg 410 322
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Table |A.2| (cont.)

metabolite super pathway measurement N N Min Max RSD

platform KORA  TwinsUK Value Value (%)
salicylate xenobiotics GC/MS 484 197 0.475 1.616 19.8
salicyluric glucuronide* xenobiotics LC/MS neg 272 99  1.000 1.000 0.0
theobromine xenobiotics LC/MS pos 1755 1042  0.730 1.331 8.3
theophylline xenobiotics LC/MS neg 1653 977  0.625 1.725 15.8
thymol sulfate xenobiotics LC/MS neg 1064 626  0.590 1.554 10.0
carbamazepine* LC/MS pos 5 4
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Table A.3: One hundred and one SNPs published by Teslovich et al.| (2010). This
Table summarises the 101 SNPs that were extracted from the KORA genotype data
for the application of the candidate locus approach together with proxy SNPs for
the replication of significant associations in the GRAPHIC study.

gene SNP chr  position Proxy position R2 D’
LDLRAPI rs12027135 1 25648320
PABPCY, rs4660293 1 39800767
PCSK9 152479409 1 55277238
ANGPTLS rs2131925 1 62823186
EVI5 rs7515577 1 92782026
SORT1 rs629301 1 109619829 15646776 109620053 1 1
ZNF648 rs1689800 1 180435508
MOSC1 1$2642442 1 219037216
GALNT2 rs4846914 1 228362314
IRF2BP rs514230 1 232925220
APOB rs1367117 2 21117405
APOB rs1042034 2 21078786
GCKR rs1260326 2 27584444
ABCG5/8 154299376 2 43926080
RAB3GAPI rs7570971 2 136039146
COBLL1 1512328675 2 165249046
COBLL1 rs10195252 2 165221337
IRS1 r$2972146 2 226837161
RAF1 152290159 3 12603920
MSL2L1 rs645040 3 137409312
KLHLS rs442177 4 88249285
SLC39A8 rs13107325 4 103407732
ARL15 rs6450176 5 53333782
MAP3K1 rs9686661 5 55897543
HMGCR rs12916 5 74692295
TIMD/ rs6882076 5 156322875
MYLIP rs3757354 6 16235386
HFE 151800562 6 26201120
HLA rs3177928 6 32520413
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Table [A.3| (cont.)

gene SNP chr  position proxy position R?2 D’
HLA rs2247056 6 31373469
C6orf106 rs2814982 6 34654538
Cé6orf106 rs2814944 6 34660775
FRK rs9488822 6 116419586
CITED2 rs605066 6 139871359
LPA rs1564348 6 160498850
LPA rs1084651 6 161009807
DNAH11 rs12670798 7 21549442
NPCI1L1 rs2072183 7 44545705
TYWIB rs13238203 7 71767603
MLXIPL rs17145738 7 72620810
KLF14 rs4731702 7 130083924
PPPIR3B rs9987289 8 9222556
PINX1 rs11776767 8 10721339
NAT?2 rs1495741 8 18299989
LPL rs12678919 8 19888502
CYP7A1 rs2081687 8 59474251
TRPS1 rs2737229 8 116717740
TRPS1 rs2293889 8 116668374
TRIBI rs2954029 8 126551803
PLEC1 rs11136341 8 145115531
TTC39B rsb81080 9 15295378
ABCA1 rs1883025 9 106704122
JMJIDI1C rs10761731 10 64697616
CYP26A1 rs2068888 10 94829632
GPAM rs2255141 10 113923876
AMPDS3 rs2923084 11 10345358
SPTY2D1 rs10128711 11 18620817
LRP/ rs3136441 11 46699823
FADS1-2-3 rs174546 11 61328054 rs102275 61314379 1 1
APOA1 rs964184 11 116154127 rs12286037 116157417 0.588 1
UBASHS3B rs7941030 11 122027585
ST3GALY rs11220462 11 125753421
PDE3A rs7134375 12 20365025
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Table [A.3[ (cont.)

gene SNP chr  position Proxy position R2 D’
LRP1 1511613352 12 56130316
MVK rs7134594 12 108484576
BRAP rs11065987 12 110556807
HNF1A rs1169288 12 119901033
SBNO1 rs4759375 12 122362191
ZNF66/ rs4765127 12 123026120
SCARBI1 rs838880 12 123827546
NYNRIN rs8017377 14 23952898
CAPN3 rs2412710 15 40471079
FRMDS5 152929282 15 42033223
LIPC 151532085 15 56470658 rs4775041 56461987 0.536 0.904
LACTB 152652834 15 61183920
CTF1 1511649653 16 30825988
CETP rs3764261 16 55550825
LCAT rs16942887 16 66485543
HPR 152000999 16 70665594
CMIP 152925979 16 80092291
STARD3 1511869286 17 35063744
OSBPL7 rs7206971 17 42780114
ABCAS rs4148008 17 64386889
PGS1 rs4129767 17 73889077
LIPG rs7241918 18 45418715
MC4R rs12967135 18 56000003
ANGPTLY 157255436 19 8339196
LDLR rs6511720 19 11063306
LOC55908 rs737337 19 11208493
CILP2 rs10401969 19 19268718
APOE 154420638 19 50114786
APOE rs439401 19 50106291
FLJ36070 15492602 19 53898229
LILRAS3 rs386000 19 59484573
FERGICS3 r$2277862 20 33616196
MAFB 152902940 20 38524901
TOP1 rs6029526 20 39244689
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Table [A.3| (cont.)

gene SNP chr  position proxy position R?2 D’
HNF/A rs1800961 20 42475778

PLTP rs6065906 20 43987422 rs6073952 43970339 0.877 1
UBE2L3 rs181362 22 20262068

PLA2GS6 rsb756931 22 36875979
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Table A.4: Summary statistics of lipoprotein subfractions.

Means and standard deviations of age, BMI, serum lipids (HDL-C,

LDL-C, TC, TG) and lipoprotein subfractions (L1-L.15) were summarised for each cohort. Statistics were calculated for males and
females separately. In addition, a stratification by parents and offspring was done in GRAPHIC. * The units for the serum lipids
are mg/dl for KORA and mmol/l for GRAPHIC. The conversion factor is [mmol/1] * 38.67 = [mg/dl] for cholesterol and [mmol/l]

*87.5 = [mg/dl| for TG (Petersen et al.| 2012).
KORA GRAPHIC HuMet HuMet lipid
fasting tolerance test
males (N=873) females (N=918) fathers (N=497) mothers (N=488) sons (N=491) daughters (N=472) males (N=15) males (N=15)
age (years) 61.1 (8.8) 60.5 (8.8) 53.8 (4.3) 51.8 (4.4) 25.1 (5.1) 25.96 (5.4) 27.8 (2.08)
BMI (kg/m?)  28.4 (4.3) 27.9 (5.3) 27.8 (4.0) 27.0 (4.5) 24.9 (4.1) 24.6 (4.9) 23.1 (1.76)
HDL-C? 51.0 (12.7) 61.8 (14.4) 1.32 (0.30) 1.64 (0.39) 1.3 (0.28) 1.47 (0.36) NA NA
LDL-C? 138.0 (34.2) 141.9 (35.6) NA NA NA NA NA NA
TC? 215.7 (38.7) 227.5 (38.9) 5.58 (0.99) 5.68 (0.97) 4.52 (0.89) 4.5 (0.82) NA NA
TGa 149.7(111.5)  115.8 (69.0) NA NA NA NA NA NA
(nmol/1) 23450.5 (3848.5) 22480.4 (3890.7) 20390.6 (3107.6) 18988.8 (3324)  19116.4 (3083.9) 18181.1(3124.4)  18054.5 (3624.9) 18760.2 (3070.3)
(nmol/l)  4003.4 (1773.3) 5356.7 (1702.2)  3525.3 (1349.4) 4983.9 (1483.3)  3466.4 (1415.2) 4447.2 (1611.3) 3515.7 (1006.3)  3136.2 (852.6)
(nmol/1) 1468.9 (729.2) 2173.8 (916.5) 1407.6 (552.8) 2068.8 (735.7) 1367.5 (528.6) 1791.1 (692.6) 1439.7 (588.7) 1356.0 (521.7)
(nmol/l)  1075.9 (175.4)  1184.9 (181.4)  883.02 (144.3)  968.6 (146.2) 750.8 (108.6)  838.5 (151.04) 746.8 (124.4)  755.8 (132.4)
L5 (nmol/1) 338.7 (111.2) 436.8 (126.5) 283.9 (79.2) 366.8 (93.8) 238.3 (67.8) 298.3 (90.2) 238.3 (84.4) 227.2 (73.3)
(nmol/1)  329.4 (65.4) 352.2 (61.0) 275.4 (52.7) 299 (52.9) 222.4 (40) 246.4 (49.8) 220.0 (40.4) 210.5 (42.2)
(nmol/1)  254.9 (69.9) 303.3 (66.7) 218.02 (50.2)  252.04 (52.5) 175.6 (37.4) 202.3 (46.7) 164.1 (45.7) 178.8 (47.5)
(nmol/1)  228.6 (102.5)  207.7 (77.8) 196.96 (62.7) 182.3 (52.5) 147.5 (48.8)  142.15 (40.6) 140.1 (36.4) 118.1 (40.6)
(nmol/1)  189.8 (88.0) 175.9 (64.4) 149.6 (54.1)  135.02 (43.7) 109.8 (43.8)  102.01 (31.8) 92.9 (29.9) 109.6 (32.9)
L10 (nmol/l)  114.4 (57.4) 96.2 (42.5) 104.3 (40) 86.7 (33.5) 78.7 (32.6) 66.04 (25.6) 67.4 (22.4) 71.8 (26.9)
L11 (nmol/1) 76.7 (50.67) 58.5 (36.3) 60.7 (32.2) 44.9 (23.9) 43.4 (24.9) 32.3 (16.5) 35.8 (17.3) 40.1 (17.5)
L12 (nmol/1) 14.0 (10.9) 10.3 (6.5) 13.3 (7.5) 9.7 (5.1) 9.97 (5.9) 3(3.7) 2(3.1) 11.2 (6.3)
L13 (nmol/1) 1.2 (0.98) 0.90 (0.73) 1.0 (0.69) 0.65 (0.48) 0.69 (0.5) 0.45 (0.32) 0.56 (0.35) 0.46 (0.29)
L14 (nmol/1) 0.59 (0.60) 0.39 (0.35) 0.57 (0.42) 0.38 (0.26) 0.42 (0.32) 0.27 (0.18) 0.27 (0.16) 0.48 (0.32)
L15 (nmol/1)  0.047 (0.06) 0.037 (0.02) 0.068 (0.06) 0.04 (0.03) 0.049 (0.05) 0.03 (0.02) 0.026 (0.01) 0.036 (0.03)
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Table A.5: Quantiles of the p-gain density. Reported are the quantiles for various
combinations of correlation values among the metabolic traits My, M, and M3 with
commonly Ms = M;/M,. Note that some correlation settings are not possible if
M3 = M;/M,. Nevertheless, we extended the simulation analysis of the p-gain
density to these correlation settings for the reason of completeness. In addition,
we provided the quantiles for the simulated (sim) and calculated (calc) densities
for the idealised case of fully correlated metabolic traits which are uncorrelated
with the third metabolic trait.

correlation quantiles

(M1;My)  (Mi;Ms)  (MasMs) 1%  25% 5%  10% 50% 90% 95% 97.5% 99%

0 0 0 34.13 13.18 6.59 3.30 0.63 0.10 0.05 0.02 0.01
0 0 +0.2 32.25 1245 6.48 3.25 0.64 0.11 0.05 0.03 0.01
0 0 +0.4 25.57 10.76  5.80 3.04 0.64 0.11 0.06 0.03 0.01
0 0 +0.6 17.82  8.28 4.71 2.69 0.65 0.13 0.07 0.04 0.02
0 0 +0.8 8.54 4.97 3.25 2.10 0.67 0.16 0.09 0.05 0.02
0 0 +1 1.00 1.00 1.00 1.00 0.99 0.20 0.10 0.05 0.02
0 +0.2 +0.2 28.46 11.86 6.21 3.15 0.64 0.11 0.05 0.03 0.01
0 +0.2 +0.4 23.96 10.44 5.61 2.97 0.64 0.12 0.06 0.03 0.01
0 +0.2 +0.6 15.63 7.64 4.48 2.57 0.65 0.13 0.07 0.04 0.02
0 +0.2 +0.8 7.83 4.61 3.04 2.01 0.67 0.16 0.09 0.05 0.02
0 +0.4 +0.4 18.27  8.44 4.78 2.70 0.64 0.12 0.07 0.03 0.01
0 +0.4 +0.6 12,15 6.42 3.82 2.32 0.65 0.14 0.08 0.04 0.02
0 +0.4 +0.8 5.82 3.61 2.53 1.78 0.68 0.18 0.10 0.06 0.03
0 +0.6 +0.6 7.80 4.50 2.98 1.94 0.66 0.16 0.09 0.06 0.03
0 +0.6 +0.8 3.27 2.26 1.73 1.34 0.72 0.21 0.13 0.08 0.04
0 +0.8 +0.8 3.16 2.23 1.72 1.34 0.71 0.22 0.13 0.08 0.04
+0.2 0 0 32.68 13.20 6.53 3.30 0.64 0.10 0.05 0.02 0.01
+0.2 0 +0.2 3144 12,59 6.50 3.27 0.64 0.11 0.05 0.03 0.01
+0.2 0 +0.4 25.23 11.19 5.81 3.07 0.64 0.12 0.06 0.03 0.01
+0.2 0 +0.6 16.49  8.05 4.62 2.65 0.65 0.13 0.07 0.04 0.02
+0.2 0 +0.8 8.64 4.92 3.24 2.11 0.68 0.16 0.09 0.05 0.02
+0.2 +0.2 +0.2 29.32 1272 6.35 3.23 0.64 0.11 0.05 0.03 0.01
+0.2 +0.2 +0.4 24.63 10.72 5.61 2.96 0.64 0.12 0.06 0.03 0.01
+0.2 +0.2 +0.6 16.02  7.95 4.61 2.64 0.65 0.13 0.07 0.04 0.02
+0.2 +0.2 +0.8 8.25 4.82 3.15 2.08 0.67 0.16 0.09 0.05 0.02
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Table [A.5( (cont.)

correlation quantiles

(My;M)  (MiMs)  (Ma;Ms) 1% 25% 5% 10% 50% 90% 95% 97.5% 99%

+0.2 +0.2 +1 1.00 1.00 1.00 .001 0.99 0.21 0.11 0.06 0.02
+0.2 +0.4 +0.4 21.08 9.46 5.20 2.84 0.65 0.12 0.07 0.03 0.02
+0.2 +0.4 +0.6 14.16  7.00 4.17 2.45 0.65 0.14 0.08 0.04 0.02
+0.2 +0.4 +0.8 7.19 4.24 2.86 1.93 0.67 0.17 0.10 0.05 0.02
+0.2 +0.6 +0.6 9.65 5.22 3.34 2.12 0.66 0.16 0.09 0.05 0.03
+0.2 +0.6 +0.8 4.66 3.01 2.19 1.60 0.67 0.20 0.12 0.07 0.04
+0.2 +0.8 +0.8 2.48 1.85 1.49 1.22 0.71 0.25 0.16 0.11 0.06
+0.4 0 0 33.47 13.62 6.85 3.42 0.65 0.11 0.05 0.03 0.01
+0.4 0 +0.2 3243 1273  6.72 3.38 0.66 0.11 0.06 0.03 0.01
+0.4 0 +0.4 25.58 11.09 5.90 3.13 0.66 0.12 0.06 0.03 0.01
+0.4 0 +0.6 17.22 8.18 4.66 2.69 0.68 0.13 0.07 0.04 0.02
+0.4 0 +0.8 7.7 4.58 3.05 2.04 0.71 0.17 0.09 0.05 0.02
+0.4 +0.2 +0.2 29.70 1235 6.41 3.30 0.66 0.11 0.06 0.03 0.01
+0.4 +0.2 +0.4 25.85 11.19 5.92 3.10 0.66 0.12 0.06 0.03 0.01
+0.4 +0.2 +0.6 18.47  8.57 4.87 2.75 0.67 0.14 0.07 0.04 0.02
+0.4 +0.2 +0.8 8.76 5.01 3.28 2.15 0.70 0.17 0.09 0.05 0.02
+0.4 +0.4 +0.4 21.56  9.93 5.38 2.91 0.66 0.13 0.07 0.04 0.01
+0.4 +0.4 +0.6 14.84  7.62 4.38 2.58 0.67 0.14 0.08 0.04 0.02
+0.4 +0.4 +0.8 8.46 4.84 3.16 2.07 0.69 0.18 0.10 0.06 0.03
+0.4 +0.4 +1 1.00 1.00 1.00 1.00 1.00 0.23 0.12 0.07 0.03
+0.4 +0.6 +0.6 11.44 6.04 3.72 2.28 0.66 0.16 0.09 0.05 0.03
+0.4 +0.6 +0.8 6.16 3.80 2.61 1.81 0.68 0.20 0.12 0.07 0.04
+0.4 +0.8 +0.8 3.12 2.24 1.75 1.37 0.69 0.25 0.17 0.11 0.07
+0.6 0 0 35.09 14.02 7.15 3.54 0.70 0.12 0.06 0.03 0.01
+0.6 0 +0.2 32.62 13.16 6.79 3.45 0.70 0.12 0.06 0.03 0.01
+0.6 0 +0.4 25.85 11.29 597 3.17 0.70 0.13 0.06 0.03 0.01
+0.6 0 +0.6 15.78  7.87 4.64 2.68 0.73 0.15 0.08 0.04 0.02
+0.6 0 +0.8 6.39 3.90 2.69 1.88 0.80 0.18 0.09 0.05 0.02
+0.6 +0.2 +0.2 31.86 13.11 6.83 3.46 0.69 0.12 0.06 0.03 0.01
+0.6 +0.2 +0.4 27.85 11.48 6.14 3.23 0.70 0.13 0.07 0.03 0.01
+0.6 +0.2 +0.6 17.86 8.71 5.01 2.86 0.71 0.15 0.08 0.04 0.02
+0.6 +0.2 +0.8 8.27 4.83 3.24 2.15 0.75 0.18 0.09 0.05 0.02
+0.6 +0.4 +0.4 25.18 10.85 5.74 3.13 0.70 0.13 0.07 0.04 0.02
+0.6 +0.4 +0.6 16.80 8.23 4.79 2.73 0.70 0.15 0.08 0.04 0.02
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Table [A.5( (cont.)

correlation quantiles

(M1;Ms)  (My;Ms)  (MosMs) 1%  25% 5% 10% 50% 90% 95% 97.5% 99%

+0.6 +0.4 +0.8 8.76 5.14 3.36 2.20 0.73 0.18 0.10 0.06 0.02
+0.6 +0.6 +0.6 13.19  6.79 4.18 2.51 0.70 0.16 0.09 0.05 0.03
+0.6 +0.6 +0.8 7.54 4.51 3.00 2.01 0.71 0.20 0.12 0.07 0.04
+0.6 +0.6 +1 1.00 1.00 1.00 1.00 1.00 0.27 0.16 0.09 0.04
+0.6 +0.8 +0.8 4.50 3.01 2.23 1.63 0.71 0.25 0.17 0.11 0.07
+0.8 0 0 38.42  15.56  7.75 3.92 0.76 0.13 0.06 0.03 0.01
+0.8 0 +0.2 35.556 14.04 7.21 3.70 0.76 0.13 0.07 0.03 0.01
+0.8 0 +0.4 25.56 11.38  6.19 3.34 0.79 0.15 0.07 0.04 0.01
+0.8 0 +0.6 14.46  7.00 4.26 2.59 0.84 0.17 0.09 0.04 0.02
+0.8 0 +0.8 9.38 5.33 3.41 2.21 0.82 0.18 0.09 0.05 0.02
+0.8 +0.2 +0.2 34.37 1411 7.24 3.74 0.76 0.14 0.07 0.03 0.01
+0.8 +0.2 +0.4 30.08 12.81 6.75 3.55 0.77 0.14 0.07 0.03 0.01
+0.8 +0.2 +0.6 18.04 8.76 5.10 2.98 0.80 0.17 0.09 0.04 0.02
+0.8 +0.2 +0.8 8.55 4.99 3.32 2.20 0.84 0.20 0.10 0.05 0.02
+0.8 +0.4 +0.4 26.61 11.53 6.23 3.37 0.76 0.15 0.08 0.04 0.02
+0.8 +0.4 +0.6 18.11 8.94 5.19 2.98 0.77 0.17 0.09 0.05 0.02
+0.8 +0.4 +0.8 9.32 5.31 3.51 2.32 0.81 0.21 0.11 0.06 0.03
+0.8 +0.6 +0.6 15.78 7.78 4.66 2.77 0.76 0.18 0.10 0.06 0.03
+0.8 +0.6 +0.8 8.98 5.27 3.46 2.25 0.78 0.22 0.13 0.08 0.04
+0.8 +0.8 +0.8 6.24 3.87 2.71 1.92 0.76 0.26 0.17 0.12 0.07
+0.8 +0.8 +1 1.00 1.00 1.00 1.00 1.00 0.37 0.24 0.17 0.10
+1 (sim) 0 (sim) 0 (sim) 50.72  20.04 10.00 499 100 020 0.10 0.05 0.2
+1 (calc) 0 {calc) 0 (calc) 50 20 10 5 1 0.2 0.1 0.05 0.02
+1 +0.2 +0.2 4725 1875 949 4.80 1.00 0.20 0.10 0.05 0.02
+1 +0.4 +0.4 38.57 16.16 8.45 4.42 1.00 0.23 0.12 0.06 0.03
+1 +0.6 +0.6 22,51 11.12  6.46 3.68 1.00 0.27 0.16 0.09 0.05
+1 +0.8 +0.8 9.30 5.65 3.83 2.60 1.00 0.38 0.26 0.18 0.11
+1 +1 +1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Figure A.1: Quantile-quantile plots, boxplots and regional association plots for
37 significant loci. This Figure consists of 37 Subfigures; one for each locus.
Quantile-quantile plot The observed vs. expected distribution of —log;, p-
values is plotted in the quantile-quantile plots. A deviation of the observed p-
value distribution from the expected p-value distribution for small p-values (large
—log,, p-values) indicates an association signal whereas a deviation for large p-
values (small —log,, p-values) can indicate population stratification. The black
line shows the results of the GWAS in KORA and the grey line of the GWAS in
TwinsUK. Boxplot The measurements of the metabolic traits are stratified for the
three genotypes (major allele homozygote, heterozygote, minor allele homozygote)
at a SNP for KORA and TwinsUK separately. The number of samples per group
is indicated above the plot. Notches indicate the 95 % confidence intervals around
the means. The data is presented on a log-normal scale and normalised to the
mean of the major allele homozygotes in each study. Regional association plot
This plot shows the association signal for TwinsUK, KORA and the meta-analysis
(Meta). Each point corresponds to a SNP in the region (genotyped SNPs are in-
dicated in blue; imputed SNPs in black, the lead SNP in red). The genome-wide
level of significance (2.0 x 107'?) is indicated by horizontal grey lines. In the lower
part of this plot are the genes (green arrows) summarised.
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Locus SLC7A6 (rs6499165):
glutaroyl carnitine/lysine
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