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I  General introduction 
 

 

 

This chapter contains sections from mini-review (in revision):  

Noga M, Winter G, Besheer A. Enzyme-responsive stealth coats for long-circulating 

nanomedicines 
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1 Medical nanotechnology 

Progress in nanotechnology over the last decades and its application in the biomedical field 

emerged as nanomedicine around the beginning of the millennium. According to the 

European Science Foundation´s (ESF) report “Forward Look on Nanomedicine” from 2005 

[1], the term nanomedicine characterizes nano-sized molecular tools for diagnosing, treating 

or preventing disease, injury and pain aiming at comprehensive monitoring, repair and 

improvement of biological systems [2-4]. In particular nanoparticles (NPs), such as 

liposomes, micelles and polymeric NPs gained attraction as carriers for small-molecule drugs, 

proteins and nucleic acids. These nanocarriers are designed to fulfill a number of tasks upon 

parenteral application, most importantly: efficient targeted cargo delivery (e.g. promoted by 

homing devices for passive or active targeting), protection of the active pharmaceutical 

ingredient (API) from degradative environment (e.g. labile protein or oligonucleotide drugs), 

reduction of undesirable side effects of the API (e.g. controlled release of highly-potent drugs 

upon stimuli-sensitive triggering at the target site), and controlling the pharmacokinetics (e.g. 

provided by sustained drug delivery systems) [5-7]. 

2 Polymeric gene delivery 

The central idea of gene therapy is introducing therapeutic genes into target regions in the 

human body for the purpose of curing patients suffering from inherited or acquired diseases. 

For this reason, the development of appropriate gene delivery systems is essential for 

improving the so far poor efficiency in gene transfer, as well as maintaining their safety and 

efficacy. Hurdles related to the use of viral vectors (e.g. immunogenicity of viral components 

[8-10]) and limitations of physical methods (such as gene gun, electroporation and 

microinjection) in reaching metastatic cancer and in the efficient delivery of genes, make non-

viral vectors based on polymers an attractive alternative carrier system. However, polymeric 

oligonucleotide complexes - so-called polyplexes – have to overcome several biological 

extra- and intracellular barriers to act as efficient nucleotide delivery system, including 

proneness to in vivo aggregation, rapid clearance from the bloodstream, and selective and 

successful gene expression at the desired target, all together presenting a huge challenge for 

efficient gene transfer [11, 12]. Polymeric carriers based on polyethylenimine (PEI) are often 

considered the gold standard polycations for gene delivery. This can be attributed to many 
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reasons, including PEI’s unique nucleic acid binding ability, protecting the genetic cargo 

against inactivation by degradation. This essential feature - paired with its high endosomolytic 

activity - makes the cationic polymer PEI an attractive carrier system for delivering nucleic 

acids [13]. Once entering the target cell by endocytosis, endosomal acidification increases 

PEIs´ cationic charge density leading to influx of chloride ions and osmotic water, a process 

described as proton-sponge-effect [14-16]. The continuous swelling provokes the rupture of 

the endo-/lysosomal membranes and the release of the genetic payload into the cytoplasm, a 

crucial step in intracellular trafficking as illustrated in  

Figure I. 1. However, PEIs´ favourable endosomolytic potency is simultaneously the main 

disadvantage of the cationic polymer – namely its cytotoxicity promoted by the high charge 

density [13].  
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Figure I. 1. Cellular trafficking of polymeric gene delivery systems. Cationic 
DNA/PEI polyplexes enter the target cell via endocytosis and escape the adversely 
acting endo-/lysosomal compartment due PEIs´ high charge density enabling 
osmotic swelling, membrane rupture and release of the payload into the cytosol. 
Once entered the nucleus, pDNA expression via transcription and translation 
results in the production of corresponding proteins.  

3 Functionalization of polymeric non-viral delivery systems - A 

step closer to artificial viruses 

In general, naked polymeric gene delivery systems are decorated with functionalized domains, 

mimicking artificial viruses. For successful in vitro and in vivo gene delivery, polymeric 

complexes are often equipped with shielding agents, targeting ligands, as well as domains 

facilitating endosomolysis and the nuclear entry. 

3.1 Targeting ligands 

For improving the efficacy and cytotoxicity of cationic polymer carriers like PEI, naked 

polymer/nucleic acid polyplexes are equipped with functionalized domains. For instance, 

targeting ligands are exposed on the nanoparticle surface for active cell targeting via ligand-

receptor interactions between the particulate system and the cell membrane structures. Several 

homing devices, e.g. antibodies, antibody fragments, glycoproteins, vitamins and peptides 

[17-21] enable enhanced cellular uptake of the carrier and its payload via receptor-mediated 

or related forms of endocytosis.  

 

Mimicking the uptake behavior of natural viruses, Nie et al. developed dual-targeted 

polymeric complexes, fusing transferrin and integrin targeting [20]. Systems equipped with 

dual-targeting domains showed significantly increased in vitro gene expression, where 

integrin-targeting domains predominantly mediated the cellular binding and transferrin-

targeting facilitated cellular uptake via receptor-mediated endocytosis [20]. Exposure of folic 

acid on the polyplex surface is another strategy increasing the efficiency of polymeric carrier 

systems. Folate receptors are abundant and over-expressed in certain tumor tissues [22], 

making this strategy attractive for tumor-targeted gene delivery [23]. Polyplexes based on 

poly(dimethylaminomethyl methacrylate) were decorated with folate-targeted PEG-coats 

[24]. Homing domain folate markedly increased the transfection levels of OVCAR-3 cells 
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related to the untargeted polyplexes [24]. Another ligand which gained great interest in gene 

delivery is the epidermal growth factor (EGF). Wagner and co-workers reported on EGF-

conjugated PEI/DNA polyplexes for targeted gene delivery [25]. The internalization of EGF-

conjugated complexes proceeded via the assumed endocytic EGF receptor-mediated pathway. 

EGF-conjugated PEI/DNA polyplexes resulted in up 300-fold increased gene transfection 

compared with the non-targeted counterpart [25]. Later the EGF-mediated internalization 

route was confirmed for EGF-conjugated polyplexes using live-cell imaging [26]. In another 

approach, the HER2-specific (human epidermal growth factor receptor-2) monoclonal 

antibody trastuzumab was coupled onto LPEI/DNA polyplexes [17]. The transfection 

efficiency in HER2-overexpressing breast cancer cell lines markedly increased compared to 

non-targeted LPEI polyplexes, while access of free trastuzumab in the cell culture medium 

diminished the level of transfection, clearly indicating HER2-mediated cellular uptake [17]. 

Similarly, flow cytometry analysis showed high HER2-targeting specificity for cyclodextrine-

PEI-oligopeptide conjugates leading to high in vitro and in vivo gene transfection activity 

[27].  

3.2 Domains for endosomolysis and the nuclear entry 

Designing artificial viruses is often associated with the incorporation of endosomolytic 

domains enhancing the escape of harsh conditions present in the endo-/lysosomal 

compartment. PEI is a proton sponge, leading to membrane rupture and endosomal escape 

under the effect of endosomal acidification. In order to further enhance the endosomolytic 

potency of cationic polymer carriers, polyplexes with surface-attached endosomolytic 

domains are developed. The endosomolytically active peptide melittin gained particular 

interest for escaping the endosome and releasing the payload into the cytosol [28, 29]. For 

instance, Boeckle et al. developed smart PEI-melittin conjugates for selective membrane 

destabilization at the acidic pH 5 present in the endosome. Melittin-incorporation markedly 

increased the transfection efficiency compared to polyplexes without fusion peptide 

attachment [30].  

 

Decorating polymeric gene carriers with nuclear localization signals (NLS) peptides is 

another promising option for efficient gene transfer. NLS peptides enable the transport of the 

genetic payload into the nucleus via nuclear pore complex. PEI polyplexes containing NLS 

signals showed markedly higher gene transfection efficiency both, in vitro and in vivo [31]. 
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However, coupling of NLS peptides onto DNA using polymerase chain reaction (PCR) did 

not significantly boost the transfection performance related to PEI/DNA complexes without 

nuclear entry domains [32]. 

3.3 Shielding agents 

Coating NPs with the hydrophilic polymer poly(ethylene glycol) PEG became the golden 

standard for imparting stealth character to nanoparticles. PEG is a neutral, hydrophilic and 

highly water-soluble polymer. Since the first experimental studies using PEG for the 

improvement of the in vivo biodistribution of large molecules in the 1970´s [33], the 

PEGylation technology was established as standard in masking drugs and drug carriers from 

the body´s immune system. Several advantages are provided by covalent attachment of PEG 

chains onto the target molecule: i) improvement of the drug solubility and stability, ii) 

extended blood circulation time, iii) reduced drug toxicity, and iv) reduced proneness of the 

drug to proteolytic degradation [34, 35].  

 

Meanwhile, several PEGylated protein, peptide and particulate pharmaceuticals entered the 

pharmaceutical market [36-38] and generate billions of dollars in turnover (e.g. PEGylated 

interferon (IFN)-α2b - PEGasys®, Cimzia® - a PEGylated anti-TNF- α Fab´, or Doxil®, a 

doxorubicin loaded PEGylated liposome system). A large number of other candidates are on 

the verge of being launched onto the market or under clinical trials. PEGylation can mediate 

particles´ escape from phagocytic uptake by making the particles “invisible” to the immune 

system. Surface-masking of polymeric gene delivery complexes using PEG coats is an 

important prerequisite for reaching distant targets after parenteral application. 

 

Apart from PEG, several alternative polymers as hydrophilic coating were investigated, 

including poly[N-(2-hydroxypropyl)methacrylamide] [39-41], poly(glycerol)s [42, 43], 

poly(saccharide)s [44-46], poly(oxazoline)s [47], poly(amino acid)s [48, 49]. All alternative 

approaches are aimed at masking the drug/gene delivery system with hydrophilic polymers 

escaping the phagocytic system and extending their in vivo half-life time. 
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4 Importance of shielding and deshielding in gene delivery 

The development and intravenous application of nano-sized particles can be used for cargo 

delivery to tumoral or inflammatory sites after parenteral application. Passive targeting of 

nanosystems to solid tumors and sites of inflammation can be achieved by extravasation into 

the sites of disease via the distinctive vascular architecture present in tumoral and 

inflammatory environment. Irregular shaped and leaky blood vessels and endothelial cells 

with large fenestrations allow the accumulation of long-circulating macromolecules and NPs 

into tumors by a phenomenon known as the enhanced permeability and retention (EPR) 

effect. Beside anatomical characteristics, factors like vascular endothelial growth factor 

(VEGF), nitric oxide (NO), prostaglandins and bradykinin promote further permeation [50, 

51] (for EPR effect reviews see [52-54]).  

 

However, a crucial prerequisite for exploiting the EPR effect is a sufficient long circulation 

time after parenteral application of nanomedicines, as well as sufficient colloidal particle 

stability in the blood stream. Cationic nanoparticles, such as naked LPEI polyplexes tend to 

electrostatically interact with blood components and non-target cells in the bloodstream, 

leading to uncontrolled in vivo aggregation. Aggregates of LPEI-based polyplex show a short 

in vivo half-life, due to rapid accumulation in the lung as well as elimination from the 

circulation by the reticuloendothelial system (RES) [55-57]. Surface-decoration of NPs with 

PEG became the gold standard for imparting stealth character to nanosystems as it offers 

several benefits: steric shielding, extended circulation times and escaping the body´s 

phagocytic system, allowing time for passive tumor-targeting by the EPR effect. 

Nevertheless, stealthiness provided by PEG brings about reduced efficiency, since the non-

biodegradable stealth polymer PEG can diminish cellular uptake, endosomal escape and 

intracellular trafficking by the effect of steric hindrance, what is known as the PEG-dilemma 

in gene delivery [58]. Additionally, production of anti-PEG antibodies [59] and the 

accelerated blood clearance of PEGylated NPs upon repeated injection [60, 61] further limit 

the applicability of PEGylated nanoparticles for gene delivery. For these reasons, several 

approaches were developed for overcoming the PEG-dilemma by shedding the interfering 

PEG coat after reaching the target site. Stimuli-sensitive linker molecules were designed and 

introduced between PEG and the nanoparticle surface, in order to get cleaved in response to 

triggers such as pH-value, temperature, reducing environment, ultrasound or enzyme activity 

[62-69].  
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5 Enzyme-triggered shedding approaches for nanomedicines 

The majority of enzymes used for deshielding approaches belong to enzyme category 3 (for 

classification see Table I. 1), for instance proteases, esterases and glycosidases. Such enzymes 

catalyze the hydrolysis of chemically labile bonds of the corresponding coating materials, 

allowing site- and stimuli-specific deshielding of nanoparticles. Selective and site-specific 

acting makes enzymes a promising tool for controlled unmasking strategies. 

 

Table I. 1. Classification of enzymes according to the Nomenclature Committee of 
the International Union of Biochemistry and Molecular Biology. 

 Enzyme category (EC) Catalyzed reaction 

EC 1 Oxidoreductases Catalysis of oxidative/reductive reactions 

EC 2 Transferases Catalysis of transfer reactions of functional groups 

EC 3 Hydrolases Catalysis of hydrolytic cleavage of chemical bonds 

EC 4 Lyases Catalysis of non-hydrolytic cleavage of chemical bonds 

EC 5 Isomerases Catalysis of transformation reactions of isomers 

EC 6 Ligases Catalysis of joining of chemical bonds 

5.1 Extracellular and intracellular shedding 

Imparting stealth character to NPs using hydrophilic coating materials is the state-of-the-art 

technology enabling efficient drug delivery with sufficient long residence in the bloodstream. 

Non-degradable stealth coats (specifically PEG coats) promote favorable features on the way 

to the target site (tumoral or inflammatory sites), namely increased stability and prolonged 

circulation time in the bloodstream by reduced undesired interactions to non-target cells and 

other biological components. However, after arrival at the target it would be desirable to shed 

down the disturbing non-degradable PEG-coat to facilitate efficient cellular uptake, 

endosomal escape and intracellular trafficking. Enzyme-induced surface deshielding 

represents a smart option for selective overcoming the PEG-dilemma due to its high selective 

and site-specific acting. 

As illustrated in Figure I. 2, two routes of enzymatically-catalyzed shedding are in the focus 

of scientific interest: i) extracellular or ii) intracellular enzyme-responsive decoating. 
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Figure I. 2. Stimuli-sensitive shedding of stealth coats – proposed mechanisms of 
extracellular (A/B) and intracellular (C) enzyme-induced decoating after reaching 
the pathological target site. A) Extracellular drug release upon controlled 
cleavage of the hydrophilic stealth polymer. B) Deshielding of nanoparticles in the 
extracellular matrix for enhanced cellular uptake by improved particle-membrane 
interactions due to shedding down of the sterically hindering stealth polymer 
coats. C) Intracellular deshielding approaches provide protection from 
degradative environment.  

Enzyme-responsive extracellular or intracellular shedding approaches are designed to allow 

scenarios of interaction with target cells and release of payload. For instance, deshielding of 

nanoparticles under the effect of extracellular-acting enzymes is advantageous, when the 

release of small-molecule drugs in the extracellular matrix is desired (Figure I. 2 A). Such 

small molecules can then enter the target cell by passive diffusion. Furthermore, extracellular 

shedding approaches are beneficial - for instance - when stealth coats prevent the 

nanoparticles from interacting with their target cells due to shielding their targeting moieties 

or their positive surface charge (Figure I. 2 B) [70]. The latter is the trigger for electrostatic 

interaction between positively charged particle and cell membranes with negative charge. 

Meanwhile, if shielded particles are phagocytosed, the polymer coat can provide protection 

for labile drugs and genes from degradative enzymes in the endo-/lysosome, however, stealth 

coats can reduce the carriers´ ability to escape the endo-/lysosomal compartment (Figure I. 2 

C). Intracellular shedding can allow efficient escape from the endosome [71].  
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5.2 Enzymatic deshielding strategies 

Designing enzyme-responsive stealth-coats is aimed at the combination of exploiting the 

advantages provided by shielding in the bloodstream, as well as functional reactivation under 

stimuli-sensitive shedding after arrival of the drug carrier system at the target site. Enzyme-

triggered decoating provides high cleavage selectivity. Two shedding strategies exist for 

enzyme-responsive stealth coats for nanosystems, namely: i) cleavage of a bioresponsive 

linker molecule between hydrophilic shielding polymer and anchor under enzymatic effect, 

and ii) cleavage of the fully biodegradable stealth coating material. These strategies are 

explained below.  

5.2.1 Strategy I: Enzymatic cleavage of a bioresponsive linker between stealth 

polymer and the anchor 

The incorporation of enzyme-labile bonds as linker molecule between well-established PEG 

polymers and the anchor molecules is the most applied shedding strategy in the field of 

enzyme-induced deshielding. These stimuli-sensitive linker molecules are susceptible to 

hydrolytic cleavage by proteases and esterases. Table I. 2 provides an overview of the 

different published approaches of bioresponsive shedding via enzyme-labile linker molecules. 

Table I. 2. Deshielding strategy I: Enzymatically-catalyzed cleavage of bioresponsive 

linkers between stealth polymer and anchor. 

Enzyme 

class 

Linker molecule 

 

Site of shedding Type of 

nanomedicine 

In vivo 

studies 

References 

Proteases MMP-sensitive 

peptide 

Extracellularly, tumor 

environment 

Fe3O4 NPs - 

+ 

[72] 

[73] 

   Quantum dots - [74] 

   Silica NPs + [75] 

   Liposomes + 

- 

[58, 76] 

[77] 

   Polycaprolactone NPs + [78] 

 Tetrapeptide Extracellularly, tumor 

environment 

Liposomes + [79] 

Esterases Ester linker Extracellularly, serum Vesicles, liposomes - 

+ 

[80] 

[81-84] 

   Solid lipid NPs + [85, 86] 
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Particularly, matrix-metalloproteinases (MMPs) have attracted great interest for 

enzymatically-catalyzed shedding approaches due to their high abundance in the extracellular 

tumor matrix. The group of MMPs is composed of a large number of versatile enzymes, 

classified by their substrate specifity, most notably the gelatinase (MMP-2 and MMP-9) and 

collagenase, and by their cellular localization in membrane-type matrix-metalloproteinases 

(mt-MMPs) [87]. MMPs are involved in degradation processes of the extracellular matrix 

(e.g. cleaving collagen) and in the tumor angiogenesis and metastasis. The predominant 

secretion in the tumor tissues makes MMPs a valuable trigger-system for targeted and 

controlled shedding approaches [87-89].  

The group of Harashima developed a multifunctional envelope type nano device (MEND) for 

controlled tumoral delivery of genes by the EPR effect [58]. MEND was composed of pDNA-

loaded liposomes equipped with an MMP-2-sensitive PEG-peptide-lipid for overcoming the 

PEG-dilemma. PEG coating enabled tumor accumulation, while the biodegradable PEG-

peptide-lipid resulted in 65 times higher luciferase transfection levels compared to the non-

degradable PEG-MENDs [58]. Similarly, PEGylated pDNA nanoparticles were generated 

using PEG-peptidyl lipids for controlled pDNA release in the tumor [77]. Peptide-linkers 

were elastase- (amino acid sequence: AAPV) or MMP-2-sensitive (amino acid sequence: 

GPLGV). Under enzymatic effect, the in vitro transfection was boosted by improved cellular 

uptake and intracellular trafficking [77]. Mok et al. reported on a PEG-shielded and MMP-2-

specifically deshielded quantum dot (QD) system with different PEG chain densities [74]. 

Shielding diminished the cytotoxicity of heavy metal ions of the QDs. Shedding the stealth 

coats upon addition of MMP-2 increased the uptake of QD by uncovering of surface-

immobilized cell penetrating peptides [74]. The group of Bhatia developed iron oxide NPs 

with MMP-2-sensitive PEG coats enabling particle self-assembly by the effect of shedding 

[72] and magnetofluorescent iron oxide NPs with prolonged blood circulation times (8x 

slower blood clearance) for passive tumor targeting and tumor imaging following enzymatic 

particle unmasking [73]. 

Other reports report on the use of masking and unmasking approaches for the controlled 

delivery and targeted-release of small cytotoxic molecules, such as docetaxel (DOC) or 

doxorubicin (DOX) [75, 78]. Liu et al. prepared PEGylated DOC-loaded poly(ɛ-

caprolactone)-based NPs with/without gelatinase-sensitive peptide linkers [78]. The 

therapeutic effect of DOC-PCL NPs was benchmarked against a commercially available DOC 

drug (Taxotere®). Reversible shielded DOC-PCL nanoparticles showed higher DOC release 

and cellular uptake under enzymatic stimuli compared with non-reversible coated NPs. In 
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vivo treatment revealed high tumor accumulation in the case of PEG-peptide-PCL NPs that 

was detectable for 72h. The developed DOC-loaded PCL NPs resulted in a higher therapeutic 

effect and lower cytotoxicity than the commercially available control [78]. Similarly, DOX-

loaded silica nanoparticles were decorated with MMP-degradable PEG-peptide. PEGylation 

drastically reduced the NPs´ toxicity via diminished undesired interaction with cell 

membranes. MMP-catalyzed dePEGylation restored the chemotoxic potency of highly-

cleavable DOX-loaded silica NPs contrary to non- or low-cleavable PEGylated analogs, 

indicating stimuli-triggered doxorubicin release in vitro and in vivo [75].  

The accelerated blood clearance (ABC) phenomenon of non-reversible PEGylated 

nanosystems following repeated injections is often reported in literature [60, 90]. In order to 

address this problem, PEGylated nanosystems can be equipped with enzymatically-cleavable 

PEG shields, where Zhao et al. showed that coating of solid lipid NPs using the esterase-

cleavable PEG-cholesteryl hemisuccinate (PEG-CHEMS) prevented the ABC phenomenon 

after both s.c. and i.v. injections [85]. PEG-lipids based on cholesterol, namely PEG-CHEMS, 

PEG-CHMC (PEG-cholesteryl chloroformate) and PEG-CHST (tris(hydroxymethyl) amino-

methane salt of cholesteryl hemisuccinate) were attached onto liposomal and vesicular 

systems to reduce or stop the induction of the ABC phenomenon [81]. In another approach 

overcoming the accelerated clearance of PEGylated NPs, the PEG-CHEMS conjugate was 

extended with the pH-sensitive hydrazone molecule to give a PEG-Hz-CHEMS conjugate that 

is susceptible to serum esterases and low pH values [83].  

The effect of the degree of PEG-decoration and enzyme concentrations on the extent of 

enzyme-triggered cleavage of PEG-lipids was investigated by Xu and co-workers [80]. 

Increasing the PEG chain density on the particle surface is associated with lowered extent of 

biodegradation, while the rate of biocleavage was enhanced under the effect of high enzyme 

concentrations. The enzymatic removal of the PEG coat induced controlled release of the 

loaded drug [80]. Stability issues were studied using PEGylated solid lipid nanoparticles. 

Upon addition of carboxylesterase polysorbate or PEG- monostearate coatings were gradually 

degraded after 60 min resulting in a decrease in the particle size. A 24h enzyme-treatment 

resulted in increased nanoparticle sizes induced by particle destabilization and enzyme-

triggered drug release [86]. Esterase-catalysis induced PEG detachment from the liposomes´ 

surface and resulted in tumor-specific pDNA gene expression [84]. 
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5.2.2 Strategy II: Fully biodegradable stealth coats for long-circulating nanosystems 

Beside the use of “bio-labile” linkers between the non-cleavable shielding polymer and the 

anchor molecule, only few attempts were performed implementing fully biodegradable 

coating materials for enzymatic shedding, mostly based on poly(amino acid)s and 

polysaccharides. Coating nanosystems using fully enzymatically-cleavable stealth shields 

offers benefits in relation to the shedding approach utilizing bioresponsive linker-molecules: 

i) easier-achievable synthesis and purification of the synthesis products due to two-component 

synthesis versus three-components approaches (e.g. poly(amino acid)-anchor vs. PEG-

peptide-anchor), ii) no need for incorporating unstable bonds over long-term and iii) two 

features provided by one component, namely shielding and deshielding ability. Shedding 

approaches using fully biodegradable coatings for nanosystems are listed in Table I. 3. 

 

Table I. 3. Deshielding strategy II: Enzymatically degradable shielding coats. 

Shielding agent 

                              

Enzyme class Site of shedding Type of 

nanomedicine 

In vivo 

studies 

References 

Poly(amino 

acid) 

Proteases 

 

 

Oxidoreductases 

Extracellularly, 

endo-/lysosomal 

compartment 

Mitochondrial area 

Liposomes, Fe3O4 

NPs 

 

Peptosome, 

lactosome 

- 

+ 

 

+ 

[48, 91, 92] 

[93] 

 

[49, 94] 

Dextrin 

 

Glycosidases Extracellularly, 

tumor environment 

Polymer-protein 

conjugate 

- 

 

+ 

[95, 96] 

 

[97] 

Hyaluronic acid Glycosidases Extracellularly Polymer-protein 

conjugate 

- [98] 

Starch Glycosidases Intracellularly, 

lysosome 

Silica NPs - [99] 

  

Romberg et al. generated poly(amino acid) coatings based on poly(hydroxyethyl L-glutamine) 

(PHEG) aiming at prolonged circulation time, liposome stabilization and drug release under 

enzymatic cleavage [48]. Following proteolytic shedding of the PHEG coat, dioleoyl 

phosphatidylethanolamine (DOPE)-based liposomes converted from the lamellar to the 

hexagonal state, which was monitored by dynamic light scattering as increase in the particle 

size and polydispersity of the liposomes and increased release of the encapsulated model-drug 

calcein [48]. In addition, the pharmacokinetic behavior of PHEG- and PHEA 
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(poly(hydroxyethyl L-asparagine))-decorated liposomes was assessed in rats. The hydrophilic 

coating materials significantly increased the half-life of shielded liposomes compared with the 

non-coated particles [93]. Poly(amino acid)s coatings are also used in the field of molecular 

imaging [49, 94]. Near-infrared fluorescence (NIRF)-labeled peptosomes [49] and lactosomes 

[94] were equipped with poly(sarcosine) shields for tumor targeting. A thin brush-layer of 

surface-grafted poly(sarcosine) can promote protein-repellent properties, an important 

prerequisite for efficient stealth polymer potency. Undesired protein interactions were 

diminished with increasing poly(sarcosine) surface density [100].  Incorporation of 

hydrophilic poly(sarcosine) onto the surface of molecular imaging nanocarriers encapsulated 

with a NIRF-probe allowed tumor accumulation by the EPR effect and cancer imaging [49, 

94]. Similarly, different poly(saccharide) polymers showed in several studies beneficial 

shielding and shedding performance for protein therapeutics, both in vitro and in vivo. For 

instance, in the research group around Ruth Duncan, the polymer-masked-unmasked-protein 

therapy (PMUPT) was applied using dextrin-phospholipase A2 (PLA2)-conjugates to 

decrease the systemic toxicity of phospholipase A2 (PLA2) from honey bee venom and 

restore its antitumoral activity after enzymatic unmasking [95]. Similar PMUPT approaches 

were made using stealth polymers dextrin or hyaluronic acid: Conjugates of dextrin and 

recombinant-human epidermal growth factor (rhEGF) protected the growth factor from 

proteolysis by elastase, while shedding by alpha-amylase restored rhEGF´s potency for 

increased proliferation of fibroblasts [96]. Dermal wound application with dextrin-rhEGF 

conjugates significantly accelerated wound healing compared to rhEGF application [97]. 

Coupling hyaluronic acid (HA) onto model-protein trypsin resulted in increased trypsin 

activity related to that of the free enzyme under the effect of the glycosidase [98].  The effect 

of adding pancreatin or β-D-galactosidase to starch-coated silica nanoparticles was studied on 

the release of the encapsulated dye. Upon enzymatic stimuli the dye was released in different 

manners depending on the grade of hydrolyzed starch [99].  

6 Alternative shielding agent: Hydroxyethyl starch (HES) 

An optimal coating material ideally comprises several beneficial characteristics: i) hydrophilic 

and non-charged polymer, ii) non-immunogenic and biodegradable coating material allowing 

efficient shielding and controlled deshielding, iii) protein-repellent properties, and iv) non-

toxic cleavage-products. While PEG offers many favorable properties, its lack of 
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biodegradability and immunogenic potential makes alternative candidates for stealth coating 

very attractive. In the current dissertation, hydroxyethyl starch (HES) was proposed as a 

biodegradable substitute of PEG offering an opportunity for controlled shielding and 

enzymatically-catalyzed deshielding of nanomedicines. 

HES is a water-soluble, biodegradable and semisynthetic starch derivative, mostly derived 

from amylopectin-rich waxy maize starch or potato starch. The polysaccharide predominantly 

consists of α-1,4-glycosidic D-glucose units with few sites of branching via α-1,6-glycosidic 

bonds (Figure I. 3). Industrial HES generation proceeds in three main stages, namely:  1st step: 

acid or enzymatic hydrolysis of amylopectin-rich starch (for adjustment of molecular weight), 

2nd step: hydroxyethylation of cleavage products via chemical modification with ethylene 

oxide under alkaline conditions (for adjustment of the degree of hydroxyethylation of HES), 

and 3rd step: purification/fractionation of HES (for adjustment of HES’ polydispersity) [101].  

 

Figure I. 3. General structure of hydroxyethyl starch . Numbers represent the 
order of enumerated carbohydrates of the anhydroglucose unit of HES. 
Hydroxyethylation of amylopectin-rich starches can take place at position C2, C6 
and C3 (ordered by frequency).    

Hydroxyethylation of starch increases the water solubility, lowers the viscosity and - more 

importantly - reduces the degree of biodegradability of the polymer, increasing the systemic 

half-life from few minutes (starch) up to several hours (HES) [102, 103]. Additionally, HES´ 

protein-repellent action [104, 105] has attracted great interest for the application of HES as 

substitute for PEG for macromolecules [101, 106, 107] and particulate systems [105, 108]. 

The rate and extent of enzymatic biodegradation triggered by serum α-amylases can be 

controlled by fine-tuning the HES´ molecular characteristics. Hydroxyethylation of 

amylopectin-rich starches predominantly takes place at position C2 of the HES´ 

anhydroglucose unit (AGU), less frequently at position C6 and C3. In particular, substitution 

of position C2 has deep impact on HES´ biodegradation kinetics, where the attached 

hydroxyethyl residues can reduce the level of biodegradability by the effect of strong steric 
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hindrance. Beside the degree of hydroxyethylation, the pattern of substitution – here most 

notably the C2/C6 ratio – and to a lower extent the molar mass of HES, can affect the degree 

and kinetics of cleavage of α-1,4-glycosid bonds of HES by serum-amylases [109, 110]. In 

addition, a high abundance of amylases in several tumor tissues, such as breast, lung, ovarian 

and pancreatic cancer [111-115], makes HES-decorated nanocarriers attractive for enzyme-

responsive drug and gene delivery to distant tumors. Alpha-amylases are mainly secreted by 

the saliva or the pancreas, act hydrolytically and are classified into enzyme-class EC 3.2.1.1 

(according to the Nomenclature Committee of the International Union of Biochemistry and 

Molecular Biology, see chapter I.5.1). Caldwell et al. reported 1953 on stability and activity 

issues of amylase and found that the cleavage performance of amylase is closely linked to the 

presence of chloride and calcium ions [116]. The mostly common industrial use of α-amylase 

is the application in detergents for removal of starches [117]. 

The polymer HES shows great structural similarity to human glycogen, the energy reserve 

stored in liver and muscle cells that can be transformed to glucose in the case of energy 

demand. This chemical resemblance between HES and glycogen is believed to be the cause 

for HES´ reduced immunogenicity [118]. HES solutions are in clinical application for decades 

as plasma volume expander in high doses showing good tolerability. Nevertheless, no effect 

without adverse effect. Pruritis - induced by longterm HES therapy in high dosages - is the 

most often adverse effect (< 10%) according to the manufacturer’s expert information 

(Fresenius Kabi). Blood volume substitution using HES improves the hemodilution by 

reduction of the coagulation factors fibrinogen, Factor VIII, von Willebrand´s factor, and of 

the platelet function, however, causing prolonged bleeding time [119-121]. Blood substitution 

using low molar mass HES types with low degree of substitution can minimize such effect 

[122]. In comparison to gelatin-, dextran- and albumin-based blood volume substitutes, HES 

infusions show the lowest tendency for anaphylactoid reactions with an incidence of 0.058% 

[123].   

Beside its clinical application as plasma substitute, HES was utilized for many biomedical 

applications. For instance, HES-drug conjugates were generated for increased in vivo half-life 

and sustained drug release of an erythropoietin mimetic peptide and the anti-cancer drug 5-

fluoruracil [124, 125]. In the field of magnetic resonance imaging, a novel macromolecular 

contrast agent based on HES was designed, allowing high-contrast imaging [126]. Harling et 

al. developed hydrogel microparticles based on HES for drug delivery. Lysozyme-loaded 

microparticles showed controlled release in vitro over 4 months that is expected to proceed 

faster under in vivo conditions in presence of amylase [127]. Similarly, FITC-labeled IgG was 
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encapsulated into hydrogel microspheres to achieve controlled release of macromolecules 

[128]. The use of HES as cryoprotecting agent is also described in the literature. For instance, 

hEHC cells for tissue engineering and human erythrocytes were cryopreserved using HES as 

additive [129, 130]. In another study, cross-linked HES nanocapsules with/without folic acid 

surface-attachment were prepared to study their unspecific or receptor-mediated cellular 

uptake. CLSM measurements confirmed the stealth character provided by HES, since HES 

nanocapsules without surface-modification resulted in markedly reduced unspecific cellular 

uptake related to folate-decorated HES nanocapsules [131]. In addition, the effect of particle 

shielding was reported on reduced phagocytic uptake of HESylated nanospheres by Besheer 

et al. [108]. 

7 Objectives of the thesis 

Dandelion spheres are formed of thick shields surrounding a small core, which get deshielded 

as a response to external stimulus (namely wind). Emulating nature’s design, this work 

describes the development and use of “nano-dandelions”: hydroxyethyl starch (HES)-coated 

core-shell nanoparticles with controlled shielding & deshielding for nucleic acid delivery. The 

concept is shielding the polyplexes in the blood stream from non-specific interactions, and 

enhancing the cellular uptake at the tumor site by the degradation of the coat under the action 

of α-amylase (Figure I. 4). 

 

Figure I. 4. Schematic illustration of the concept of controlled shielding and 
enzymatically-catalyzed deshielding of HES-decorated nano-dandelions. 

For this reason, the first major objective was to synthesize several HES-PEI conjugates with 

different molecular characteristics of HES, aiming at the generation of stable and 
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bioresponsive HES-decorated PEI/DNA polyplexes as a substitute for PEGylated polymeric 

complexes. The proof-of-concept of nanoparticle shielding and enzymatically-catalyzed 

polyplex surface deshielding using different HES coats and alpha-amylase was tested in 

several in vitro and in vivo model experiments. Additionally, the effect of lyophilization of 

HES-coated polyplexes on their long-term stability and gene expression activity after storage 

was investigated. Most of the experiments were performed with naked LPEI polyplexes and 

PEGylated polymeric complexes as controls. 

8 References 

1. European Science Foundation's Forward Look on Nanomedicine. 2005; Available 
from: http://www.esf.org. 

2. Duncan, R. and R. Gaspar, Nanomedicine (s) under the Microscope. Molecular 
pharmaceutics, 2011. 8(6): p. 2101-2141. 

3. Duncan, R., Nanomedicine gets clinical. Materials Today, 2005. 8(8): p. 16-17. 
4. Duncan, R., Polymer therapeutics as nanomedicines: new perspectives. Current 

Opinion in Biotechnology, 2011. 22(4): p. 492-501. 
5. Li, S.D. and L. Huang, Pharmacokinetics and biodistribution of nanoparticles. 

Molecular Pharmaceutics, 2008. 5(4): p. 496-504. 
6. Owens III, D.E. and N.A. Peppas, Opsonization, biodistribution, and 

pharmacokinetics of polymeric nanoparticles. International journal of pharmaceutics, 
2006. 307(1): p. 93-102. 

7. Torchilin, V.P. , Nanocarriers. Pharmaceutical research, 2007. 24(12): p. 2333-2334. 
8. Hacein-Bey-Abina, S., C. von Kalle, M. Schmidt, F. Le Deist, N. Wulffraat, E. 

McIntyre, I. Radford, J.L. Villeval, C.C. Fraser, and M. Cavazzana-Calvo, A 
serious adverse event after successful gene therapy for X-linked severe combined 
immunodeficiency. New England Journal of Medicine, 2003. 348(3): p. 255-256. 

9. McCaffrey, A.P., P. Fawcett, H. Nakai, R.L. McCaffrey, A. Ehrhardt, T.T.T. 
Pham, K. Pandey, H. Xu, S. Feuss, and T.A. Storm, The host response to 
adenovirus, helper-dependent adenovirus, and adeno-associated virus in mouse liver. 
Mol. Ther., 2008. 16(5): p. 931-941. 

10. Calcedo, R., L.H. Vandenberghe, G. Gao, J. Lin, and J.M. Wilson, Worldwide 
epidemiology of neutralizing antibodies to adeno-associated viruses. Journal of 
Infectious Diseases, 2009. 199(3): p. 381-390. 

11. Park, T.G., J.H. Jeong, and S.W. Kim, Current status of polymeric gene delivery 
systems. Advanced Drug Delivery Reviews, 2006. 58(4): p. 467-486. 

12. Al-Dosari, M.S. and X. Gao, Nonviral gene delivery: principle, limitations, and 
recent progress. The AAPS journal, 2009. 11(4): p. 671-681. 

13. Boussif, O., F. Lezoualc'h, M.A. Zanta, M.D. Mergny, D. Scherman, B. 
Demeneix, and J.-P. Behr, A Versatile Vector for Gene and Oligonucleotide Transfer 
into Cells in Culture and in vivo: Polyethylenimine. Proceedings of the National 
Academy of Sciences of the United States of America, 1995. 92(16): p. 7297-7301. 

14. Sonawane, N.D., F.C. Szoka, and A.S. Verkman, Chloride Accumulation and 
Swelling in Endosomes Enhances DNA Transfer by Polyamine-DNA Polyplexes J. 
Biol. Chem. 2003 2003. 278(45): p. 44826-44831. 



General introduction 

-19- 
 

15. Behr, J.-P., The proton sponge: a trick to enter cells the viruses did not exploit. 
CHIMIA International Journal for Chemistry, 1997. 51(1-2): p. 1-2. 

16. Akinc, A., M. Thomas, A.M. Klibanov, and R. Langer, Exploring 
polyethylenimine‐mediated DNA transfection and the proton sponge hypothesis. The 
journal of gene medicine, 2004. 7(5): p. 657-663. 

17. Chiu, S.-J., N.T. Ueno, and R.J. Lee, Tumor-targeted gene delivery via anti-HER2 
antibody (trastuzumab, Herceptin®) conjugated polyethylenimine. Journal of 
controlled release, 2004. 97(2): p. 357-369. 

18. Chan, P., M. Kurisawa, J.E. Chung, and Y.-Y. Yang, Synthesis and 
characterization of chitosan-< i> g</i>-poly (ethylene glycol)-folate as a non-viral 
carrier for tumor-targeted gene delivery. Biomaterials, 2007. 28(3): p. 540-549. 

19. Pandey, S., P. Garg, K.T. Lim, J. Kim, Y.-H. Choung, Y.-J. Choi, P.-H. Choung, 
C.-S. Cho, and J.H. Chung, The efficiency of membrane transport of vitamin B6 
coupled to poly (ester amine) gene transporter and transfection in cancer cells. 
Biomaterials, 2013. 34(14): p. 3716-3728. 

20. Nie, Y., D. Schaffert, W. Rödl, M. Ogris, E. Wagner, and M. Günther, Dual-
targeted polyplexes: One step towards a synthetic virus for cancer gene therapy. 
Journal of Controlled Release, 2011. 152(1): p. 127-134. 

21. Kunath, K., T. Merdan, O. Hegener, H. Häberlein, and T. Kissel, Integrin 
targeting using RGD‐PEI conjugates for in vitro gene transfer. The journal of gene 
medicine, 2003. 5(7): p. 588-599. 

22. Low, P.S. and S.A. Kularatne, Folate-targeted therapeutic and imaging agents for 
cancer. Current opinion in chemical biology, 2009. 13(3): p. 256-262. 

23. Lu, Y. and P.S. Low, Folate-mediated delivery of macromolecular anticancer 
therapeutic agents. Advanced drug delivery reviews, 2012. 64: p. 342-352. 

24. Van Steenis, J., E. Van Maarseveen, F. Verbaan, R. Verrijk, D. Crommelin, G. 
Storm, and W. Hennink, Preparation and characterization of folate-targeted pEG-
coated pDMAEMA-based polyplexes. Journal of controlled release, 2003. 87(1): p. 
167-176. 

25. Blessing, T., M. Kursa, R. Holzhauser, R. Kircheis, and E. Wagner, Different 
strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for 
targeted gene delivery. Bioconjugate chemistry, 2001. 12(4): p. 529-537. 

26. Mickler, F.M., L. Möckl, N. Ruthardt, M. Ogris, E. Wagner, and C. Bräuchle, 
Tuning Nanoparticle Uptake: Live-Cell Imaging Reveals Two Distinct Endocytosis 
Mechanisms Mediated by Natural and Artificial EGFR Targeting Ligand. Nano 
letters, 2012. 12(7): p. 3417-3423. 

27. Huang, H., H. Yu, G. Tang, Q. Wang, and J. Li, Low molecular weight 
polyethylenimine cross-linked by 2-hydroxypropyl-γ-cyclodextrin coupled to peptide 
targeting HER2 as a gene delivery vector. Biomaterials, 2010. 31(7): p. 1830-1838. 

28. Chen, C.-P., J.-s. Kim, E. Steenblock, D. Liu, and K.G. Rice, Gene transfer with 
poly-melittin peptides. Bioconjugate chemistry, 2006. 17(4): p. 1057-1062. 

29. Meyer, M., A. Zintchenko, M. Ogris, and E. Wagner, A dimethylmaleic acid–
melittin‐polylysine conjugate with reduced toxicity, pH‐triggered endosomolytic 
activity and enhanced gene transfer potential. The journal of gene medicine, 2007. 
9(9): p. 797-805. 

30. Boeckle, S., J. Fahrmeir, W. Roedl, M. Ogris, and E. Wagner, Melittin analogs 
with high lytic activity at endosomal pH enhance transfection with purified targeted 
PEI polyplexes. Journal of Controlled Release, 2006. 112(2): p. 240-248. 

31. Moffatt, S., S. Wiehle, and R. Cristiano, A multifunctional PEI-based cationic 
polyplex for enhanced systemic p53-mediated gene therapy. Gene therapy, 2006. 
13(21): p. 1512-1523. 



General introduction 

-20- 
 

32. Van der Aa, M., G. Koning, C. d'Oliveira, R. Oosting, K. Wilschut, W. Hennink, 
and D. Crommelin, An NLS peptide covalently linked to linear DNA does not 
enhance transfection efficiency of cationic polymer based gene delivery systems. The 
journal of gene medicine, 2004. 7(2): p. 208-217. 

33. Davis, F.F., The origin of pegnology. Advanced drug delivery reviews, 2002. 54(4): 
p. 457-458. 

34. Harris, J.M. and R.B. Chess, Effect of pegylation on pharmaceuticals. Nat Rev Drug 
Discov, 2003. 2(3): p. 214-221. 

35. Roberts, M., M. Bentley, and J. Harris, Chemistry for peptide and protein 
PEGylation. Advanced drug delivery reviews, 2012. 64: p. 116-127. 

36. Graham, M.L. , Pegaspargase: a review of clinical studies. Advanced drug delivery 
reviews, 2003. 55(10): p. 1293-1302. 

37. Bailon, P., A. Palleroni, C.A. Schaffer, C.L. Spence, W.-J. Fung, J.E. Porter, G.K. 
Ehrlich, W. Pan, Z.-X. Xu, and M.W. Modi, Rational design of a potent, long-
lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated 
interferon α-2a for the treatment of hepatitis C. Bioconjugate chemistry, 2001. 12(2): 
p. 195-202. 

38. Levy, Y., M.S. Hershfield, C. Fernandez-Mejia, S.H. Polmar, D. Scudiery, M. 
Berger, and R.U. Sorensen, Adenosine deaminase deficiency with late onset of 
recurrent infections: response to treatment with polyethylene glycol-modified 
adenosine deaminase. The Journal of pediatrics, 1988. 113(2): p. 312-317. 

39. Laga, R., Č. Koňák, V. Šubr, and K. Ulbrich, New, Hydrophilic, HPMA‐Based 
Polymers for Bioresponsive Shielding of Gene‐Delivery Vectors. Macromolecular 
Chemistry and Physics, 2009. 210(13‐14): p. 1138-1148. 

40. Jäger, E., A. Jäger, T. Etrych, F.C. Giacomelli, P. Chytil, A. Jigounov, J.-L. 
Putaux, B. Říhová, K. Ulbrich, and P. Štěpánek, Self-assembly of biodegradable 
copolyester and reactive HPMA-based polymers into nanoparticles as an alternative 
stealth drug delivery system. Soft Matter, 2012. 8(37): p. 9563-9575. 

41. Šubr, V., C. Konák, R. Laga, and K. Ulbrich, Coating of DNA/poly (L-lysine) 
complexes by covalent attachment of poly [N-(2-hydroxypropyl) methacrylamide]. 
Biomacromolecules, 2006. 7(1): p. 122-130. 

42. Maruyama, K., S. Okuizumi, O. Ishida, H. Yamauchi, H. Kikuchi, and M. 
Iwatsuru , Phosphatidyl polyglycerols prolong liposome circulation in vivo. 
International journal of pharmaceutics, 1994. 111(1): p. 103-107. 

43. Weber, T., Y. Gies, and A. Terfort, Bacteria-Repulsive Polyglycerol Surfaces by 
Grafting Polymerization onto Aminopropylated Surfaces. Langmuir, 2012. 28(45): p. 
15916-15921. 

44. Sheng, Y., C. Liu, Y. Yuan, X. Tao, F. Yang, X. Shan, H. Zhou, and F. Xu, Long-
circulating polymeric nanoparticles bearing a combinatorial coating of PEG and 
water-soluble chitosan. Biomaterials, 2009. 30(12): p. 2340-2348. 

45. Lemarchand, C., R. Gref, C. Passirani, E. Garcion, B. Petri, R. Müller, D. 
Costantini, and P. Couvreur, Influence of polysaccharide coating on the interactions 
of nanoparticles with biological systems. Biomaterials, 2006. 27(1): p. 108-118. 

46. He, M., Z. Zhao, L. Yin, C. Tang, and C. Yin, Hyaluronic acid coated poly (butyl 
cyanoacrylate) nanoparticles as anticancer drug carriers. International journal of 
pharmaceutics, 2009. 373(1): p. 165-173. 

47. Luxenhofer, R., Y. Han, A. Schulz, J. Tong, Z. He, A.V. Kabanov, and R. Jordan, 
Poly (2‐oxazoline) s as Polymer Therapeutics. Macromolecular rapid communications, 
2012. 33(19): p. 1613-1631. 

48. Romberg, B., F.M. Flesch, W.E. Hennink, and G. Storm, Enzyme-induced 
shedding of a poly (amino acid)-coating triggers contents release from dioleoyl 



General introduction 

-21- 
 

phosphatidylethanolamine liposomes. International journal of pharmaceutics, 2008. 
355(1): p. 108-113. 

49. Tanisaka, H., S. Kizaka-Kondoh, A. Makino, S. Tanaka, M. Hiraoka, and S. 
Kimura , Near-infrared fluorescent labeled peptosome for application to cancer 
imaging. Bioconjugate chemistry, 2007. 19(1): p. 109-117. 

50. Wu, J., T. Akaike, K. Hayashida, T. Okamoto, A. Okuyama, and H. Maeda, 
Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix 
metalloproteinases. Cancer Science, 2001. 92(4): p. 439-451. 

51. Wu, J., T. Akaike, and H. Maeda, Modulation of enhanced vascular permeability in 
tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide 
scavenger. Cancer research, 1998. 58(1): p. 159-165. 

52. Iyer, A.K., G. Khaled, J. Fang, and H. Maeda, Exploiting the enhanced 
permeability and retention effect for tumor targeting. Drug Discovery Today, 2006. 
11(17-18): p. 812-818. 

53. Maeda, H., J. Wu, T. Sawa, Y. Matsumura, and K. Hori, Tumor vascular 
permeability and the EPR effect in macromolecular therapeutics: a review. Journal of 
Controlled Release, 2000. 65(1): p. 271-284. 

54. Torchilin, V. , Tumor delivery of macromolecular drugs based on the EPR effect. 
Advanced drug delivery reviews, 2011. 63(3): p. 131-135. 

55. Fahrmeir, J., M. Gunther, N. Tietze, E. Wagner, and M. Ogris, Electrophoretic 
purification of tumor-targeted polyethylenimine-based polyplexes reduces toxic side 
effects in vivo. Journal of Controlled Release, 2007. 122(3): p. 236-245. 

56. Wightman, L., R. Kircheis, V. Rössler, S. Carotta, R. Ruzicka, M. Kursa, and E. 
Wagner, Different behavior of branched and linear polyethylenimine for gene 
delivery in vitro and in vivo. The journal of gene medicine, 2001. 3(4): p. 362-372. 

57. Coll, J.-L., P. Chollet, E. Brambilla, D. Desplanques, J.-P. Behr, and M. Favrot, 
In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Human 
gene therapy, 1999. 10(10): p. 1659-1666. 

58. Hatakeyama, H., H. Akita, K. Kogure, M. Oishi, Y. Nagasaki, Y. Kihira, M. 
Ueno, H. Kobayashi, H. Kikuchi, and H. Harashima, Development of a novel 
systemic gene delivery system for cancer therapy with a tumor-specific cleavable 
PEG-lipid. Gene Therapy, 2006. 14(1): p. 68-77. 

59. Ishida, T., X. Wang, T. Shimizu, K. Nawata, and H. Kiwada, PEGylated liposomes 
elicit an anti-PEG IgM response in a T cell-independent manner. Journal of Controlled 
Release, 2007. 122(3): p. 349-355. 

60. Ishida, T., M. Ichihara, X. Wang, K. Yamamoto, J. Kimura, E. Majima, and H. 
Kiwada, Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is 
responsible for rapid elimination of a second dose of PEGylated liposomes. Journal of 
controlled release, 2006. 112(1): p. 15-25. 

61. Dams, E.T.M., P. Laverman, W.J.G. Oyen, G. Storm, G.L. Scherphof, J.W.M. 
van der Meer, F.H.M. Corstens, and O.C. Boerman, Accelerated blood clearance 
and altered biodistribution of repeated injections of sterically stabilized liposomes. 
Journal of Pharmacology and Experimental Therapeutics, 2000. 292(3): p. 1071-1079. 

62. Chan, C.L., R.N. Majzoub, R.S. Shirazi, K.K. Ewert, Y.J. Chen, K.S. Liang, and 
C.R. Safinya, Endosomal escape and transfection efficiency of PEGylated cationic 
liposome–DNA complexes prepared with an acid-labile PEG-lipid. Biomaterials, 
2012. 33(19): p. 4928-4935. 

63. Nie, Y., M. Günther, Z. Gu, and E. Wagner, Pyridylhydrazone-based PEGylation 
for pH-reversible lipopolyplex shielding. Biomaterials, 2011. 32(3): p. 858-869. 



General introduction 

-22- 
 

64. Kim, T.H., Y. Chen, C.W. Mount, W.R. Gombotz, X. Li, and S.H. Pun, Evaluation 
of temperature-sensitive, indocyanine green-encapsulating micelles for noninvasive 
near-infrared tumor imaging. Pharmaceutical research, 2010. 27(9): p. 1900-1913. 

65. He, Y., G. Cheng, L. Xie, Y. Nie, B. He, and Z. Gu, Polyethyleneimine/DNA 
polyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted 
gene delivery. Biomaterials, 2012. 34(4): p. 1235-1245. 

66. Meyer, M., C. Dohmen, A. Philipp, D. Kiener, G. Maiwald, C. Scheu, M. Ogris, 
and E. Wagner, Synthesis and Biological Evaluation of a Bioresponsive and 
Endosomolytic siRNA−Polymer Conjugate. Molecular Pharmaceutics, 2009. 6(3): p. 
752-762. 

67. Zhu, C., M. Zheng, F. Meng, F.M. Mickler, N. Ruthardt, X. Zhu, and Z. Zhong, 
Reversibly shielded DNA polyplexes based on bioreducible PDMAEMA-SS-PEG-SS-
PDMAEMA triblock copolymers mediate markedly enhanced nonviral gene 
transfection. Biomacromolecules, 2012. 13(3): p. 769-778. 

68. Gao, W., R. Langer, and O.C. Farokhzad, Poly (ethylene glycol) with Observable 
Shedding. Angewandte Chemie International Edition, 2010. 49(37): p. 6567-6571. 

69. Gao, Z.G., H.D. Fain, and N. Rapoport, Controlled and targeted tumor 
chemotherapy by micellar-encapsulated drug and ultrasound. Journal of controlled 
release, 2005. 102(1): p. 203-222. 

70. Romberg, B., W. Hennink, and G. Storm, Sheddable Coatings for Long-Circulating 
Nanoparticles. Pharmaceutical Research, 2008. 25(1): p. 55-71. 

71. Walker, G.F., C. Fella, J. Pelisek, J. Fahrmeir, S. Boeckle, M. Ogris, and E. 
Wagner, Toward Synthetic Viruses: Endosomal pH-Triggered Deshielding of 
Targeted Polyplexes Greatly Enhances Gene Transfer in vitro and in vivo. Mol Ther, 
2005. 11(3): p. 418-425. 

72. von Maltzahn, G., T.J. Harris, J.H. Park, D.H. Min, A.J. Schmidt, M.J. Sailor, 
and S.N. Bhatia, Nanoparticle self-assembly gated by logical proteolytic triggers. 
Journal of the American Chemical Society, 2007. 129(19): p. 6064. 

73. Harris, T.J., G. von Maltzahn, M.E. Lord, J.H. Park, A. Agrawal, D.H. Min, M.J. 
Sailor, and S.N. Bhatia, Protease‐Triggered Unveiling of Bioactive Nanoparticles. 
small, 2008. 4(9): p. 1307-1312. 

74. Mok, H., K.H. Bae, C.H. Ahn, and T.G. Park, PEGylated and MMP-2 specifically 
dePEGylated quantum dots: comparative evaluation of cellular uptake. Langmuir, 
2008. 25(3): p. 1645-1650. 

75. Singh, N., A. Karambelkar, L. Gu, K. Lin, J.S. Miller, C.S. Chen, M.J. Sailor, 
and S.N. Bhatia, Bioresponsive Mesoporous Silica Nanoparticles for Triggered Drug 
Release. Journal of the American Chemical Society, 2011. 133(49): p. 19582-19585. 

76. Hatakeyama, H., H. Akita, and H. Harashima, A multifunctional envelope type 
nano device (MEND) for gene delivery to tumours based on the EPR effect: A 
strategy for overcoming the PEG dilemma. Advanced Drug Delivery Reviews, 2011. 
63(3): p. 152-160. 

77. Yingyuad, P., M. Mével, C. Prata, S. Furegati, C. Kontogiorgis, M. Thanou, and 
A.D. Miller , Enzyme-Triggered PEGylated pDNA-Nanoparticles for Controlled 
Release of pDNA in Tumours. Bioconjugate Chemistry, 2013. 24(3): p. 343-362. 

78. Liu, Q., R.T. Li, H.Q. Qian, M. Yang, Z.S. Zhu, W. Wu, X.P. Qian, L.X. Yu, X.Q. 
Jiang, and B.R. Liu, Gelatinase-stimuli strategy enhances the tumor delivery and 
therapeutic efficacy of docetaxel-loaded poly (ethylene glycol)-poly (ɛ-caprolactone) 
nanoparticles. International journal of nanomedicine, 2012. 7: p. 281. 

79. Zhang, J.X., S. Zalipsky, N. Mullah, M. Pechar, and T.M. Allen , Pharmaco 
attributes of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes 



General introduction 

-23- 
 

containing different types of cleavable lipopolymers. Pharmacological research, 2004. 
49(2): p. 185-198. 

80. Xu, H., Y. Deng, D. Chen, W. Hong, Y. Lu, and X. Dong, Esterase-catalyzed 
dePEGylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. 
Journal of Controlled Release, 2008. 130(3): p. 238-245. 

81. Xu, H., K.Q. Wang, Y.H. Deng, and D.W. Chen, Effects of cleavable PEG-
cholesterol derivatives on the accelerated blood clearance of PEGylated liposomes. 
Biomaterials, 2010. 31(17): p. 4757-4763. 

82. Wang, S., H. Xu, J. Xu, Y. Zhang, Y. Liu, Y. Deng, and D. Chen, Sustained liver 
targeting and improved antiproliferative effect of doxorubicin liposomes modified 
with galactosylated lipid and PEG-Lipid. AAPS PharmSciTech, 2010. 11(2): p. 870-
877. 

83. Chen, D., W. Liu, Y. Shen, H. Mu, Y. Zhang, R. Liang, A. Wang, K. Sun, and F. 
Fu, Effects of a novel pH-sensitive liposome with cleavable esterase-catalyzed and 
pH-responsive double smart mPEG lipid derivative on ABC phenomenon. 
International journal of nanomedicine, 2011. 6: p. 2053. 

84. Grosse, S.M., A.D. Tagalakis, M.F.M. Mustapa, M. Elbs, Q.H. Meng, A. 
Mohammadi, A.B. Tabor, H.C. Hailes, and S.L. Hart, Tumor-specific gene transfer 
with receptor-mediated nanocomplexes modified by polyethylene glycol shielding and 
endosomally cleavable lipid and peptide linkers. The FASEB Journal, 2010. 24(7): p. 
2301-2313. 

85. Zhao, Y., C. Wang, L. Wang, Q. Yang, W. Tang, Z. She, and Y. Deng, A 
frustrating problem: Accelerated blood clearance of PEGylated solid lipid 
nanoparticles following subcutaneous injection in rats. European Journal of 
Pharmaceutics and Biopharmaceutics, 2012. 81(3): p. 506-513. 

86. Howard, M.D., X. Lu, J.J. Rinehart, T. Dziubla, and M. Jay, Carboxylesterase-
Triggered Hydrolysis of Nanoparticle PEGylating Agents. Langmuir, 2012. 28(33): p. 
12030-12037. 

87. Nagase, H. and J.F. Woessner Jr, Matrix metalloproteinases. Journal of Biological 
Chemistry, 1999. 274(31): p. 21491-21494. 

88. Egeblad, M. and Z. Werb, New functions for the matrix metalloproteinases in cancer 
progression. Nature Reviews Cancer, 2002. 2(3): p. 161-174. 

89. Sternlicht, M.D. and Z. Werb, How matrix metalloproteinases regulate cell 
behavior. Annual review of cell and developmental biology, 2001. 17: p. 463. 

90. Ishihara, T., M. Takeda, H. Sakamoto, A. Kimoto, C. Kobayashi, N. Takasaki, K. 
Yuki, K.-i. Tanaka, M. Takenaga, and R. Igarashi, Accelerated blood clearance 
phenomenon upon repeated injection of PEG-modified PLA-nanoparticles. 
Pharmaceutical research, 2009. 26(10): p. 2270-2279. 

91. Yang, H.M., C.W. Park, T. Ahn, B. Jung, B.K. Seo, J.H. Park, and J.D. Kim, A 
direct surface modification of iron oxide nanoparticles with various poly (amino acid) 
s for use as magnetic resonance probes. Journal of Colloid and Interface Science, 
2012. 391: p. 158-167. 

92. Park, S.-I., E.-O. Lee, J.W. Kim, Y.J. Kim, S.H. Han, and J.-D. Kim, Polymer-
hybridized liposomes anchored with alkyl grafted poly (asparagine). Journal of colloid 
and interface science, 2011. 364(1): p. 31-38. 

93. Romberg, B., J.M. Metselaar, L. Baranyi, C.J. Snel, R. Bünger, W.E. Hennink, J. 
Szebeni, and G. Storm, Poly (amino acid) s: promising enzymatically degradable 
stealth coatings for liposomes. International journal of pharmaceutics, 2007. 331(2): p. 
186-189. 

94. Makino, A., S. Kizaka-Kondoh, R. Yamahara, I. Hara, T. Kanzaki, E. Ozeki, M. 
Hiraoka, and S. Kimura, Near-infrared fluorescence tumor imaging using 



General introduction 

-24- 
 

nanocarrier composed of poly (l-lactic acid)-< i> block</i>-poly (sarcosine) 
amphiphilic polydepsipeptide. Biomaterials, 2009. 30(28): p. 5156-5160. 

95. Ferguson, E.L. and R. Duncan, Dextrin− Phospholipase A2: Synthesis and 
Evaluation as a Bioresponsive Anticancer Conjugate. Biomacromolecules, 2009. 
10(6): p. 1358-1364. 

96. Hardwicke, J., R. Moseley, P. Stephens, K. Harding, R. Duncan, and D.W. 
Thomas, Bioresponsive Dextrin− rhEGF Conjugates: In Vitro Evaluation in Models 
Relevant to Its Proposed Use as a Treatment for Chronic Wounds. Molecular 
Pharmaceutics, 2010. 7(3): p. 699-707. 

97. Hardwicke, J.T., J. Hart, A. Bell, R. Duncan, D.W. Thomas, and R. Moseley, The 
effect of dextrin–rhEGF on the healing of full-thickness, excisional wounds in the 
(db/db) diabetic mouse. Journal of Controlled Release, 2011. 152(3): p. 411-417. 

98. Ferguson, E.L., A.M. Alshame, and D.W. Thomas, Evaluation of hyaluronic acid–
protein conjugates for polymer masked–unmasked protein therapy. International 
journal of pharmaceutics, 2010. 402(1): p. 95-102. 

99. Bernardos, A., L. Mondragón, E. Aznar, M.D. Marcos, R.n. Martínez-Máñez, F.l. 
Sancenón, J. Soto, J.M. Barat, E. Pérez-Payá, and C. Guillem, Enzyme-responsive 
intracellular controlled release using nanometric silica mesoporous supports capped 
with “saccharides”. Acs Nano, 2010. 4(11): p. 6353-6368. 

100. Lau, K.H.A., C. Ren, T.S. Sileika, S.H. Park, I. Szleifer, and P.B. Messersmith, 
Surface-Grafted Polysarcosine as a Peptoid Antifouling Polymer Brush. Langmuir, 
2012. 28(46): p. 16099-16107. 

101. Hey, T., H. Knoller, and P. Vorstheim, Half-Life Extension through HESylation®. 
Therapeutic Proteins: Strategies to Modulate Their Plasma Half-lives, 2012. 

102. Treib, J., J.-F. Baron, M. Grauer, and R. Strauss, An international view of 
hydroxyethyl starches. Intensive care medicine, 1999. 25(3): p. 258-268. 

103. Jungheinrich, C. and T.A. Neff, Pharmacokinetics of hydroxyethyl starch. Clinical 
pharmacokinetics, 2005. 44(7): p. 681-699. 

104. Lemarchand, C., R. Gref, and P. Couvreur, Polysaccharide-decorated 
nanoparticles. European journal of pharmaceutics and biopharmaceutics, 2004. 58(2): 
p. 327-341. 

105. Besheer, A., G. Hause, J. Kressler, and K. Mader, Hydrophobically Modified 
Hydroxyethyl Starch: Synthesis, Characterization and Aqueous Self-Assembly into 
Nano-Sized Polymeric Micelles and Vesicles. Biomacromolecules, 2007. 8(6): p. 
2045-2045. 

106. Orlando, M., Modification of proteins and low molecular weight substances with 
hydroxyethyl starch (HES). in Institut Biologie, Chemie und Geowissenschaften. 
2003, Justus Liebig Universität Giessen: Giessen. 

107. Kontermann, R.E., Strategies to extend plasma half-lives of recombinant antibodies. 
BioDrugs, 2009. 23(2): p. 93-109. 

108. Besheer, A., J.r. Vogel, D. Glanz, J.r. Kressler, T. Groth, and K. Mäder, 
Characterization of PLGA Nanospheres Stabilized with Amphiphilic Polymers: 
Hydrophobically Modified Hydroxyethyl Starch vs Pluronics. Molecular 
Pharmaceutics, 2009. 6(2): p. 407-415. 

109. Yoshida, M. and T. Kishikawa, A Study of Hydroxyethyl Starch. Part II. 
Degradation-Sites of Hydroxyethyl Starch by Pig Pancreas alpha-Amylase. Starch - 
Stärke, 1984. 36(5): p. 167-169. 

110. Yoshida, M., T. Yamashita, J. Matsuo, and T. Kishikawa, Enzymic Degradation of 
Hydroxyethyl Starch. Part I. Influence of the Distribution of Hydroxyethyl Groups on 
the Enzymic Degradation of Hydroxyethyl Starch. Starch - Stärke, 1973. 25(11): p. 
373-376. 



General introduction 

-25- 
 

111. Inaji, H., H. Koyama, M. Higashiyama, S. Noguchi, H. Yamamoto, O. Ishikawa, 
K. Omichi, T. Iwanaga, and A. Wada, Immunohistochemical, ultrastructural and 
biochemical studies of an amylase-producing breast carcinoma. Virchows Archiv, 
1991. 419(1): p. 29-33. 

112. Weitzel, J., P. Pooler, R. Mohammed, M. Levitt, and J. Eckfeldt, A unique case of 
breast carcinoma producing pancreatic-type isoamylase. Gastroenterology, 1988. 
94(2): p. 519. 

113. Lenler-Petersen, P., A. Grove, A. Brock, and R. Jelnes, Alpha-amylase in 
resectable lung cancer. European Respiratory Journal, 1994. 7(5): p. 941-945. 

114. Sandiford, J. and S. Chiknas, Hyperamylasemia and ovarian carcinoma. Clinical 
chemistry, 1979. 25(6): p. 948-950. 

115. Shimamura, J., L. Fridhandler, and J.E. Berk, Nonpancreatic-type 
hyperamylasemia associated with pancreatic cancer. Digestive Diseases and Sciences, 
1976. 21(4): p. 340-345. 

116. Caldwell, M.L. and J.-f.T. Kung, A Study of the Influence of a Number of Factors 
upon the Stability and upon the Activity of Pancreatic Amylase1. Journal of the 
American Chemical Society, 1953. 75(13): p. 3132-3135. 

117. Speckmann, H.-D., B. Kottwitz, K.-H. Maurer, and C. Nitsch, Detergents 
containing amylase and protease. 2002, Google Patents. 

118. Agreda‐‐‐‐Vásquez, G.P., I. Espinosa‐‐‐‐Poblano, S.A. Sánchez‐‐‐‐Guerrero, E. Crespo‐‐‐‐
Solís, S. Cabrera‐‐‐‐Vásquez, J. López‐‐‐‐Salmorán, J. Barajas, P. Peñaloza‐‐‐‐Ramírez, 
N. Tirado‐‐‐‐Cárdenas, and A. Velázquez, Starch and albumin mixture as replacement 
fluid in therapeutic plasma exchange is safe and effective. Journal of clinical 
apheresis, 2008. 23(5): p. 163-167. 

119. Warren, B.B. and M.E. Durieux, Hydroxyethyl starch: safe or not? Anesthesia 
Analgesia, 1997. 84(1): p. 206-212. 

120. Wilkes, M.M., R.J. Navickis, and W.J. Sibbald, Albumin versus hydroxyethyl 
starch in cardiopulmonary bypass surgery: a meta-analysis of postoperative bleeding. 
The Annals of thoracic surgery, 2001. 72(2): p. 527-533. 

121. Navickis, R.J., G.R. Haynes, and M.M. Wilkes, Effect of hydroxyethyl starch on 
bleeding after cardiopulmonary bypass: a meta-analysis of randomized trials. The 
Journal of Thoracic and Cardiovascular Surgery, 2012. 144(1): p. 223-230. 

122. Treib, J., J.F. Baron, M.T. Grauer, and R.G. Strauss, An international view of 
hydroxyethyl starches. Intensive Care Medicine, 1999. 25(3): p. 258-268. 

123. Laxenaire, M., C. Charpentier, and L. Feldman. Anaphylactoid reactions to colloid 
plasma substitutes: incidence, risk factors, mechanisms. A French multicenter 
prospective study. in Annales francaises d'anesthesie et de reanimation. 1994. 

124. Greindl, A., C. Kessler, B. Breuer, U. Haberl, A. Rybka, M. Emgenbroich, A.J. 
Pötgens, and H.-G. Frank, AGEM400 (HES), a novel erythropoietin mimetic 
peptide conjugated to hydroxyethyl starch with excellent in vitro efficacy. Open 
Hematology Journal, 2010. 4: p. 1-14. 

125. Luo, Q., P. Wang, Y. Miao, H. He, and X. Tang, A novel 5-fluorouracil prodrug 
using hydroxyethyl starch as a macromolecular carrier for sustained release. 
Carbohydrate Polymers, 2011. 87(4): p. 2642-2647. 

126. Besheer, A., H. Caysa, H. Metz, T. Mueller, J. Kressler, and K. Mäder, Benchtop-
MRI for in vivo imaging using a macromolecular contrast agent based on 
hydroxyethyl starch (HES). International Journal of Pharmaceutics, 2011. 417(1–2): p. 
196-203. 

127. Harling, S., A. Schwoerer, K. Scheibe, R. Daniels, and H. Menzel, A new hydrogel 
drug delivery system based on Hydroxyethylstarch derivatives. Journal of 
microencapsulation, 2010. 27(5): p. 400-408. 



General introduction 

-26- 
 

128. Wöhl-Bruhn, S., A. Bertz, S. Harling, H. Menzel, and H. Bunjes, 
Hydroxyethylstarch-based polymers for the controlled release of biomacromolecules 
from hydrogel microspheres. European Journal of Pharmaceutics and 
Biopharmaceutics, 2012. 81(3): p. 573-581. 

129. T'Joen, V., L. De Grande, H. Declercq, and M. Cornelissen. HESC 
cryopreservation: use of dimethylsulfoxide and hydroxyethylstarch in an adapted 
protocol for efficient hESC banking. in 17th Annual ISCT meeting (ISCT-2011). 
2011. 

130. Stoll, C., J.L. Holovati, J.P. Acker, and W.F. Wolkers, Synergistic effects of 
liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human 
erythrocytes. Biotechnology progress, 2012. 28(2): p. 364-371. 

131. Baier, G., D. Baumann, J.r.M. Siebert, A. Musyanovych, V. Mailänder, and K. 
Landfester, Suppressing unspecific cell uptake for targeted delivery using 
hydroxyethyl starch nanocapsules. Biomacromolecules, 2012. 13(9): p. 2704-2715. 

 



 

-27- 

II  Controlled shielding and deshielding of gene delivery 
polyplexes using hydroxyethyl starch and alpha-
amylase 

 

 

 

This chapter has been published in the Journal of Controlled Release:  

Noga M*, Edinger D, Rödl W, Wagner E, Winter G, Besheer A**. Controlled shielding and 

deshielding of gene delivery polyplexes using hydroxyethyl starch (HES) and alpha-amylase. 

Journal of Controlled Release 2012;159(1):92-103. 

 

* First author 

** Corresponding author 

 

The following study would not have been possible without our engaged cooperation partners 

Prof. Dr. Ernst Wagner and his group members Daniel Edinger and Wolfgang Rödl. All cell 

culture experiments, namely studies of the luciferase reporter gene expression, the metabolic 

activity of transfected cells, as well as flow cytometry experiments were performed together 

with Daniel Edinger under his guidance. Wolfgang Rödl provided purified LPEI material.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Controlled shielding and deshielding of HES-decorated polyplexes 

-28- 
 

Abstract 

The non-viral delivery of nucleic acids faces many extracellular and intracellular hurdles on 

the way from injection site to the site of action. Among these, aggregation in the blood stream 

and rapid elimination by the mononuclear phagocytic system (MPS) represent strong 

obstacles towards successful development of these promising therapeutic modalities. Even the 

state-of-the-art solutions using PEGylation show low transfection efficiency due to limited 

uptake and hindered endosomal escape. Engineering the carriers with sheddable coats reduces 

aggregation and phagocytosis due to the effective shielding, while the controlled deshielding 

at the desired site of action enhances the uptake and intracellular release. This work reports 

for the first time the use of hydroxyethyl starch (HES) for the controlled shielding/deshielding 

of polyplexes. HES, with different molar masses, was grafted to polyethylenimine (PEI) and 

characterized using 1H NMR, colorimetric copper-assay, and SEC. HES-PEI conjugates were 

used to generate polyplexes with the luciferase-expressing plasmid DNA pCMVluc, and were 

characterized by DLS and zeta potential measurements. Deshielding was tested in vitro by 

zeta potential measurements and, erythrocyte aggregation assay upon addition of α-amylase 

(AA) to the HES-decorated particles. The addition of AA led to gradual increase in the zeta 

potential of the nanoparticles over 0.5 to 1 h and to a higher aggregation tendency for 

erythrocytes due to the degradation of the HES-coat and exposure of the polyplexes’ positive 

charge. In vitro transfection experiments were conducted in 2 cell-lines ± AA in the culture 

medium. The amylase-treated HES-decorated complexes showed up to 2 orders of magnitude 

higher transfection levels compared to the untreated HES-shielded particles, while AA had no 

effect on the transfection of PEG-coated or uncoated polyplexes. Finally, flow cytometry 

showed that the addition of AA increased the amount of delivered DNA per cell for HES-

shielded polyplexes. This study shows that decorating nanoparticles with HES can be a 

promising tool for the controlled shielding/deshielding of polyplexes. 

Keywords  

Hydroxyethyl starch (HES), shielding and deshielding, bioreversible coats, nucleic acid 

delivery, polyplexes 
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1 Introduction 

Non-viral gene delivery to specific tissues and organs is a promising treatment modality for 

many diseases that are currently difficult to cure, most notably cancer. Since the seminal work 

of Theodore Friedmann in 1972 [1], the development of safe and efficient gene delivery 

systems has been the focus of many research groups, particularly the lipid- and polymer-

mediated nucleic acid transfection. They employ cationic lipids or polycations to condense the 

DNA into lipoplexes or polyplexes, respectively, and overcome many extracellular and 

intracellular hurdles on the way from the application site to the desired site of action. Among 

these hurdles, the nucleic acid complexes are prone to in vivo aggregation and rapid removal 

from the systemic circulation. This is because of the non-specific binding of cationic 

complexes to the anionic plasma proteins and erythrocytes, leading to aggregation and 

accmulation in the lungs. Additionally, they are rapidly eliminated by the mononuclear 

phagocytic system (MPS), and thus have a short systemic half-life. This is detrimental to 

targeted-tumor-therapy, since sufficiently long residence time in the bloodstream is 

indispensable to allow passive gene targeting through the leaky vasculature of tumors or 

inflammatory foci by the enhanced permeability and retention (EPR) effect [2, 3].  

PEGylation of nanomedicines is the state-of-the-art technology to overcome the 

aforementioned problems. Incorporating the hydrophilic polymer poly(ethylene glycol) (PEG) 

onto the surface of polyplexes [4, 5], and lipoplexes [6, 7] prevents aggregation by masking 

the surface charges and decreasing the non-specific electrostatic interactions. Additionally, 

PEGylation prolongs the in vivo circulation time [8] - an effect coined “stealth” effect - by a 

mechanism not yet fully known [9], however the effect might be due to 1) reducing protein 

adsorption and opsonization, 2) selective adsorption of dysopsonins [10, 11] or 3) due to 

influencing the rates of adsorption of different opsonization/desopsonization proteins [12].  

However, the PEG coat reduces transfection efficiency in vitro and in vivo, in what is known 

as the “PEG-dilemma” [13]. This is because it may 1) reduce the cellular interaction and 

uptake, 2) interfere with endosomal escape and 3) interfere with DNA release from the 

complexes [13, 14]. Different groups have addressed these problems by developing sheddable 

PEG coatings, which shield the DNA complexes in the bloodstream and are shed down 

gradually or at the target site (deshielding). For instance, PEG-lipids can be spontaneously 

extracted out of lipoplexes for DNA delivery, and the rate of extraction can be controlled by 

tuning the hydrophobicity of the lipid part [15]. Additionally, the linker between PEG and the 

delivery vector can be a stimuli-sensitive bond, which cleaves upon a drop of the pH [16-19], 
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presence in a reductive environment [20], or by the action of proteases on biodegradable 

peptide linkers [21, 22].  

Contrary to PEG, shields composed of biodegradable polymers can get deshielded by 

degradation of the protective coat itself. There are however very few reports on this approach 

[23, 24]. For instance, Romberg et al. used a protease-cleavable poly(hydroxyethyl-L-

asparagine) to impart stealth properties to liposomes [25, 26]. The latter polymer is then 

deshielded extra- or intracellularly by the action of proteases. Duncan’s group used dextrin for 

shielding and deshielding of proteins rather than nanoparticles, in what they dubbed as 

“polymer masked-unmasked protein therapy” (PMUPT) [27-29]. For instance, they coupled 

dextrin to rhEGF to stabilize it in wound environment, and slowly activate it by the action of 

amylase on dextrin [29]. To the best our knowledge, no similar approach was tested with 

polyplexes. In this work, we describe the use of a biodegradable polysaccharide, namely 

hydroxyethyl starch (HES), for the controlled shielding/deshielding of polyplexes for nucleic 

acid delivery.  

HES is a semisynthetic biodegradable polymer widely used as plasma volume expander [30-

32]. It is degraded in vivo by serum α-amylase (AA) [33, 34]. Contrary to the above 

mentioned biodegradable polymers, it offers the advantage of controllable biodegradation, 

where the rate and extent of degradation can be regulated by fine-tuning the molar mass and 

degree of hydroxyethylation. Additionally, it has a high water solubility, low hypersensitivity 

[35], and protein repellent characteristics [36]. These favourable properties raised interest in 

HES as a biomedical material, where it was tested as a macromolecular MRI contrast agent 

[37], and as a substitute for PEG in the half-life extension of peptides and proteins [38, 39].  

In this paper, the biodegradation of HES is integrated in the design of DNA complexes to 

serve a smart function, namely, the controlled shielding/deshielding of DNA complexes. To 

this end, HES with different molar masses was coupled to polyethylenimine (PEI) by Schiff´s 

base formation and reductive amination [40]. The HES-PEI copolymer was characterized by 
1H NMR, colorimetric cupper assay, and SEC. Biophysical characterization of the polyplexes 

included particle size and zeta potential measurements. Deshielding was tested in vitro by zeta 

potential measurements and erythrocyte aggregation assay upon addition of AA. The effect of 

shielding/deshielding on in vitro gene transfection was examined using Neuro2A as well as 

HUH7 cells in cell culture medium ± AA. Unmodified PEI polyplexes (unshielded) and PEG-

PEI polyplexes (shielded) were used as controls in most of the experiments.  
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2 Experimental Section 

2.1 Materials 

Hydroxyethyl starch (HES) with an average molar mass (Mw) of 70 kDa and a molar 

substitution of 0.5 (MS; the mean number of hydroxyethyl groups per glucose unit) was 

kindly provided by Serumwerk Bernburg, Germany. Sodium cyanoborohydride (NaBH3CN) 

was purchased from Merck Schuchardt OHG (Hohenbrunn, Germany). Linear 

polyethylenimine with an average molar mass of 22 kDa (PEI22) and the PEI22 – PEG20 

conjugate (PEG20: polyethylene glycol with the average molecular weight of 20 kDa) were 

synthesized as described in [41]. α-amylase (AA) from porcine pancreas (with 30 units 

amylase per mg), Triton-X 100, and citrated human plasma were bought from Sigma-Aldrich 

(Steinheim, Germany). Blood from C57BL/6 mice was obtained from the Institute of 

Pharmacology, Department of Pharmacy, Munich. Plasmid pCMVluc [42] was prepared by 

PlasmidFactory, Bielefeld, Germany. Phadebas® Amylase Test was purchased from Magle 

AB, Lund, Sweden. Label IT® Cy™ 5 Labeling kit was obtained from Mirus Bio Corporation 

(Madison, USA). Other solvents and chemicals were reagent grade and were used as received.   

2.2 Methods 

2.2.1 Acid hydrolysis of HES70 

The acid hydrolysis was performed according to the starch degradation process of Nitsch [43] 

with some modifications. Briefly, 5 g HES70 were dissolved in 100 mL HCl (0.05 M) and 

heated up to 100°C on oil bath (with reflux condensation). The reaction was stopped after 2 h 

by the addition of 1 M sodium hydroxide (NaOH) solution, and adjusting the pH to neutrality. 

The resulting solution was dialyzed against highly purified water for 48 hours (Cellu Sep T1, 

nominal MWCO 3500 Da, Membrane Filtration Products Inc, Seguin, TX, USA). The product 

was then lyophilized and stored in a desiccator at room temperature.  

 

2.2.2 Determination of the molar mass of acid-hydrolyzed HES using asymmetric 

flow field flow fractionation (AF4) 

The AF4 instrument used for the characterization of the hydrolyzed HES products consisted 

of an Eclipse 2 separation system (Wyatt Technology Corp., Santa Barbara, CA) that was 

coupled to an 18 angle multi-angle light scattering (MALS) detector (DAWN EOS MALS, 
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Wyatt Technology Corp.) with a laser of wavelength 690 nm. The Agilent HPLC system 1100 

Series was used (Agilent Technologies, Palo Alto, CA). It was equipped with a degasser, 

isopump, autosampler, and a refractive index (RI) detector. Samples were prepared at a 

sample concentration of 5 mg/mL in filtered 50 mM NaCl solution (0.1 µm cellulose nitrate 

filter, Whatman GmbH Dassel, Germany) with 0.02 % w/v NaN3 preservative. 100 µL sample 

volume was injected into the standard separation channel system (25 cm), with channel 

thickness of 350 µm and equipped with a 5 kDa cutoff regenerated cellulose ultrafiltration 

membrane (Wyatt Technology Europe, Dernbach, Germany). The separation was performed 

with an applied channel flow of 2 mL/min coupled to a linearly decreasing cross flow gradient 

(from 2 mL/min to 0 mL/min over 30 minutes) [44]. Molecular weight was calculated using 

ASTRA software version 5.3.2.22 (Wyatt Technology Corp.) using the refractive index 

increment (dn/dc) of 0.1475 cm3/g for HES [44].  

 

2.2.3 Biodegradation of HES70 and HES20 with pancreatic α-amylase (AA) 

The enzymatic activity of pancreatic AA was determined using the Phadebas Amylase Test 

according to the standard protocol provided by the manufacturer. Mixtures of HES70 or 

HES20 with AA were prepared at a HES concentration of 5 mg/mL in either HBG pH 6.0 or 

7.1 (HEPES buffered glucose; 20 mM HEPES, 5 % glucose (w/v)) or PBS pH 7.4. 100 µL 

sample volume was injected into the AF4 channel assembly, using a regenerated cellulose 

ultrafiltration membrane (Wyatt Technology, cut-off 5 kDa). All samples containing 

pancreatic AA were adjusted to an enzyme activity of 40 U/L. Mixtures were incubated at 25 

or 37 °C, and samples were withdrawn at time points 0, 0.5, 1, 2, 4, 6, and 24 h. To stop the 

enzymatic degradation of HES, samples were heated to 99 °C for 3 min. All samples and 

controls were treated under aseptic conditions with sterile filtration to prevent possible 

degradation caused by microbial contamination. The reduction in the molar mass of HES70 

and HES20 was followed by the Wyatt Eclipse 2 AF4 system in combination with MALS- 

and RI-detection as explained earlier. 

 

2.2.4 Synthesis and purification of HES-PEI conjugates 

Conjugates of HES20 and HES70 with PEI22 were prepared in the molar ratio of 25:1 HES to 

PEI according to a modified procedure of PEI modification described by Kircheis et al. [45]. 

PEI was attached to HES via Schiff´s base formation and reductive amination. An amount of 

50 mg linear PEI22 was added to HES20 or HES70 in 150 mM PBS buffer (pH 7.4), and was 
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shaken at room temperature. After 2 hours 59.8 mg of the reducing agent NaBH3CN was 

added and reductive amination was performed for 20 hours. Ion exchange chromatography 

was carried out to remove unbound HES, where HES-PEI mixtures were loaded onto a cation-

exchange column (Bio-Rad Macro-Prep high S HR 10/10, Hercules, CA, USA) and 

fractionated using a sodium chloride gradient from 0.5 M to 3.0 M salt concentration in 20 

mM HEPES, pH 7.3. PEI-containing fractions were detected by UV-spectroscopy at 280 nm. 

The collected fractions were dialyzed against highly purified water (Cellu Sep T1, nominal 

MWCO 3500 Da, Membrane Filtration Products Inc, Seguin, TX, USA), then lyophilized. 

 

2.2.5 Nuclear magnetic resonance spectroscopy 

For the 1H-NMR measurements, 10 mg samples of both polymer conjugates were dissolved in 

D2O, and the spectra were obtained by using Jeol JNMR-GX500 (500 MHz) spectrometer. 

 

2.2.6 Copper assay 

In accordance to Ungaro et al. [46], a calibration curve for PEI was created over the 

concentration range 5.0 to 50.0 µg/mL in 150 mM PBS, pH 7.4, and measured 

spectrophotometrically at 285 nm. An amount of 23 mg CuSO4 · 5 H2O were dissolved in 100 

ml 0.1 M sodium acetate buffer solution (pH 5.4), added to solutions of PEI or HES-PEI 

conjugate, and incubated at room temperature for 15 minutes. Photometric analysis was 

performed on an Agilent 8453 UV-vis Spectroscopy System (Agilent Technologies, 

Waldbronn, Germany). 

 

2.2.7 Size exclusion chromatography 

The characterization of the HES-PEI conjugates was performed using a combination of SEC 

with MALS at 18 angles using the Eclipse 2 separation system (Wyatt Technology Corp.) and 

the 1100 Series Agilent HPLC system (Agilent Technologies, Palo Alto, CA). Detection was 

carried out via MALS (DAWN EOS, Wyatt Technology Corp.). SEC experiments were 

performed with a TSKgel G5000PWXL-CP column (7.8 mm x 30.0 cm) that was kindly 

provided by Tosoh Bioscience GmbH, Stuttgart, Germany. The HES-PEI conjugate samples 

were prepared at a concentration of 5 mg/mL, the control solutions (mixture of HES and PEI, 

free PEI) were made at a PEI concentration of 1 mg/mL in 50 mM NaCl. An amount of 100 

µL sample was injected per SEC run, the fluid flow was 0.5 mL/min. ASTRA software 

(version 5.3.2.22, Wyatt Technology Corp.) was used for data analysis.  
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2.2.8 Preparation and characterization of polyplexes 

Naked polyplexes (nPx) were prepared by the rapid addition and mixing of PEI to the plasmid 

pCLuc (pDNA), to a final DNA concentration of 20 µg/mL in HBG pH 7.1, at N/P ratios of 

3.6, 4.8, 6.0, 7.2, or 8.4, then incubated at room temperature (RT) for 30 minutes prior to 

analysis. The N/P ratio is defined as the molar ratio of PEI nitrogen atoms to plasmid nucleic 

acid phosphate atoms. For instance, PEI/DNA transfection particles at the N/P ratio of 6.0 

were composed of 20 µg DNA and 16 µg PEI. HESylated polyplexes were produced in the 

same fashion as nPx, with the exception that pure PEI was partially replaced by HES-

modified PEI, e.g. HES70-PEI/DNA complexes at N/P ratio 6.0 and a ratio of PEI to HES-

modified PEI of 90:10 were made of 20 µg DNA, and a mixture of 14.4 µg PEI and 1.6 µg 

HES70-PEI22 (weigh of the PEI fraction). HES70-PEI/DNA (HES70Px) and HES20-

PEI/DNA (HES20Px) polyplexes were generated with three varying ratios of PEI to HES-PEI 

conjugates; namely 95:5, 90:10, and 85:15. Polyplexes containing PEG20-PEI (PEG20Px) 

were prepared at 90:10, molar ratio of free PEI to PEG-PEI conjugates.  

 

2.2.9 Particle size and zeta potential determination 

Measurements of the particle size and surface charge of various polyplexes (nPx, HES70Px, 

HES20Px, and PEG20Px) were performed in HBG pH 6.0 and/or pH 7.1 using a Malvern 

Zetasizer Nano ZS (Malvern Instruments, Worcestershire, United Kingdom). The 

measurements were conducted in semi-micro PMMA disposable cuvettes (Brand, Wertheim, 

Germany) and in folded capillary cells (Malvern Instruments, Worcestershire, United 

Kingdom) at 25 or 37 °C. For data analysis, the employed values for the viscosity of the 

dispersant (water with 5% glucose (w/v)) were 1.0366 mPas at 25 °C, and 0.8359 mPas at 37 

°C (viscosity values were already available in the MALVERN Zetasizer software V. 6.12). 

The resulting particle size data are the average of at least three measurements (n≥3), whereas 

every single measurement is composed of three serial runs of 15 subruns. Analysis of the 

particle surface charge was carried out in triplicates directly after particle size determination 

without further sample treatment. The performed voltage was set to 100 V, and the 

monomodal setup was applied. Malvern Zetasizer software version 6.12 (Malvern 

Instruments, Worcestershire, United Kingdom) was used for data acquisition and analysis. 
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2.2.10 Treatment of polyplexes with pancreatic α-amylase (AA) 

The effect of pancreatic AA (40 U/L and 100 U/L) on biophysical properties of HES-

decorated polyplexes was investigated. nPx and HES70Px were generated at the DNA 

concentration of 20 µg/mL in HBG pH 6.0, and at an N/P ratio of 6.0. HESylated polyplexes 

were prepared with varying ratios of PEI to PEI-conjugates (95:5, 90:10, 85:15). After 30 min 

incubation of the polyplexes at room temperature, AA stock solution (amylase activity 1000 

U/L) was added to the polyplex solution to give a final AA activity of 40 or 100 U/L, mixed 

intensively, and the resulting AA-polyplex mixture was analyzed using a Malvern Zetasizer 

Nano ZS instantly after combination of the enzyme and substrate. Analysis of particle size 

and zeta potential of PEI/DNA complexes was performed at time point 0, 0.25, 0.5, 1, 2, 4, 

and 6 h holding the polyplexes at 37 °C. 

 

2.2.11 Erythrocyte aggregation assay 

Fresh blood from 3 months old male C57BL/6 mice (Department of Pharmacy, Institute of 

Pharmacology, Munich) was collected, spiked with 3.2 % (m/v) sodium citrate to prevent 

coagulation, and washed by six centrifugation steps (2500×g, 10 min, 4 °C) with PBS pH 7.4 

until a colorless supernatant was obtained. The resuspension of erythrocytes was carried out 

in phosphate-buffered saline at a concentration of 2% (V/V). An amount of 50 µL of 

HES70Px and HES20Px (95:5, 90:10, and 85:15 molar ratio of free PEI to modified PEI, 

respectively) in HBG pH 7.1 was mixed with 100 µL erythrocyte suspension in PBS pH 7.4 ± 

AA with 40 U/L final concentration. Buffer, buffer + AA, nPx, and PEG20Px (90:10) were 

used as controls. The solutions were incubated in 24-well plates (Costar) for 90 min at 37 °C 

under constant gentle agitation. For microscopic analysis, pictures were taken with a Keyence 

VHX-500F digital microscope (Keyence Corporation, Osaka, Japan) with a 1000-fold 

magnification. 

 

2.2.12 Cell culture experiments 

Cell culture media, antibiotics and fetal calf serum (FCS) were purchased from Life 

Technologies (Karlsruhe, Germany). All cultured cells were grown at 37 °C in 5% CO2 

humidified atmosphere. Murine neuroblastoma, Neuro2A (ATCC CCl-131, purchased from 

DSMZ, Braunschweig, Germany) were cultured in Dulbecco's Modified Eagle Medium 

(DMEM). Human hepatoma cells HUH7 (JCRB 0403, Tokyo, Japan) were cultured in 
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DMEM/HAM's F12 medium (1:1). All media were supplemented with 10% FCS, 4 mM stable 

glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin.  

 

2.2.13 Luciferase reporter gene expression studies 

In vitro pDNA transfection efficiency was evaluated in murine Neuro2A and human HUH7 

cell lines. Experiments were performed in 96 well plates by seeding 1x104 cells per well in 

100 µL medium 24 h prior to transfection. Directly before transfection, the medium was 

exchanged against fresh medium with/without pancreatic AA (40 U/L). An amount of 10 µL 

polyplex solution (N/P 6.0, 20 µg/mL DNA concentration) was added to the cells. 4 h after 

transfection, the medium was replaced by fresh medium with/without AA . 24 h after pDNA 

transfection, the cells were treated with 100 µL cell lysis buffer (25 mM Tris pH 7.8, 2 mM 

EDTA, 2 mM DTT, 10% glycerol, 1% Triton X-100).  Luciferase activity in 35 µl cell lysate 

was measured in white 96 well plates using a luciferase assay kit (100 µL Luciferase Assay 

buffer, Promega, Mannheim, Germany) on a luminometer for 10 s (Centro LB 960 

instrument, Berthold, Bad Wildbad, Germany). The effect of using higher AA concentration 

on transfection efficiency in Neuro2A cells was tested by using the same procedure as above, 

but with 100 U/L of AA instead of 40 U/L. 

 

2.2.14 Metabolic activity of transfected cells 

The cellular metabolic activity after pDNA transfection was evaluated using MTT assay. 

Cells were seeded and transfected as explained above. 24 h after transfection, MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (Sigma-Aldrich, Germany) was 

dissolved in phosphate buffered saline at 5 mg/mL, and 10 µL aliquots were added to each 

well reaching a final concentration of 0.5 mg MTT/mL. After an incubation time of 2 h, 

unreacted dye with medium was removed and the cells were lyzed by incubation at -80 °C for 

30 min. The formazan product was dissolved in 100 µL/well dimethyl sulfoxide and 

quantified by a plate reader (Tecan, Groedig, Austria) at 590 nm with background correction 

at 630 nm. The metabolic activity (%) relative to control wells containing HBG treated cells 

was calculated as follows (Metabolic activity = A test/A control × 100). 

 

2.2.15 Flow cytometry experiment 

Uptake and binding of HES-decorated polyplexes and control particles, under the effect of 

AA (40 U/L), was studied in a murine Neuro2A cell line. Cells were seeded in 24 well plates 
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at a density of 1x105 cells per well in 500 µL medium 24 h prior to transfection. Directly 

before transfection, the medium was exchanged against fresh medium with/without pancreatic 

AA (40 U/L). An amount of 50 µL polyplex solution (N/P 6.0, 20 µg/mL final pDNA 

concentration) was added to the cells, where particles contained 10% Cy5-labeled pDNA. In 

the case of binding studies treated cells were kept at 4 °C for 30 min, washed with PBS 

(phosphate buffered saline), trypsinized (1x Trypsin/EDTA solution Biochrom AG, Berlin, 

Germany) and transferred to Eppendorf tubes. For uptake studies treated cells were kept at 37 

°C for 60 min incubated with heparin (1000 I.E./mL) to disassemble the polyplexes, washed, 

trypsinized and transferred to Eppendorf tubes. After 2 washing steps the amount of Cy5 

positive cells and mean fluorescence intensity was detected using a Flow cytometer (CyAn 

ADP; Dako Cytomation Fort Collins USA). Results were analyzed using Flow Jo software 

(Treestar, Inc., San Carlos, USA). 

3 Results 

3.1 Acid-induced fragmentation of HES70 

In order to test the effect of molar mass on the concept of shielding/deshielding, HES70 was 

degraded by acid hydrolysis to produce smaller fractions. Preliminary experiments using 1 M 

and 0.1 M HCl for cleavage of HES70 resulted in very rapid degradation and problems in 

controlling the molar mass of the product. Carrying out the hydrolysis reaction using 0.05 M 

hydrochloric acid yielded (after 2 h) a HES product of around 20 kDa molecular weight and a 

low polydispersity of 1.15 (vs. 1.96 for HES70) as determined by AF4-MALS. The yield was 

62 % w/w.  

3.2 HES degradation experiments with pancreatic α-amylase 

Figure II. 1 shows the degradation of HES70 and HES20 as a function of time in different 

buffers, pH and temperatures. Control samples lacking AA did not show any degradation, 

while in the presence of the enzyme, the degradation at 37 °C seems to be rapid at the 

beginning, levelling-off after approximately 2 h, whereas the degradation at 25 °C is slower at 

the beginning, but ultimately results in a degraded product of similar molar mass to the one 

degraded at 37 °C after 6 h. HES70 loses approximately 50 % of its molar mass after 6 h, 
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while HES20 loses approximately 20%. It seems that the pH has no effect on degradation rate 

as can be seen for HBG buffer at pH 7.1 and 6.0 (Figure II. 1 E), while degradation is clearly 

faster in PBS pH 7.4 compared to HBG pH 6. This is probably due to the fact that α-amylase 

is more active and stable in the presence of chloride ions [47].  

  

  

 

 

Figure II. 1.  Biodegradation of HES70 at 25°C (A), and 37°C (C) as well as 
HES20 at 25°C(B), and 37°C (D) with pancreatic α-amylase as a function of time. 
The effect of the pH on the biodegradation of HES20 (E) was also investigated. 
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3.3 Polycation modification: HES-conjugation to PEI22 

The graft copolymer was prepared by coupling HES20 and HES70 with the linear polyamine 

PEI22 in PBS pH 7.4 using a large excess of HES (molar ratio 25:1) to ensure Schiff’s base 

formation between the one single terminal aldehyde function of HES and the amine groups in 

PEI. The synthesis of modified PEI polymers proceeded in a two step reaction [48], as shown 

in Scheme II. 1. In the first step, HES-PEI copolymers were generated by grafting HES onto 

linear PEI by a condensation reaction via an unstable aminol intermediate that immediately 

rearranged to an enamine function. In the second step, the reducing agent sodium 

cyanoborohydride was added 2 h after the beginning of the reaction to reduce the enamine to 

secondary (or tertiary) amine groups. Ion exchange chromatography was used to purify the 

conjugates, which were then characterized using 1H NMR, UV spectroscopy (copper assay), 

and SEC. 

 

 
 

Scheme II. 1. PEI modification by Schiff’s base formation with HES and 
subsequent reductive amination. (scheme adapted from [48]) 

3.4 Characterization of polymeric HES-PEI conjugates 

1H NMR measurements were carried out for HES20-g-PEI22 and HES70-g-PEI22 to get 

information regarding the coupling efficiency and ratio of HES to PEI in the generated 

products. Figure II. 2 shows the NMR spectra of both polymer conjugates, where the peaks 

between 5.3 and 5.7 ppm belong to the proton at position C1 of the anhydroglucose unit 

(AGU) of HES, and the peaks between 2.8 and 3.1 ppm belong to the four protons of the 
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ethylene structure of PEI. Results show the following molar ratios, HES20:PEI22 1.44:1, and 

HES70:PEI22 2.35:1 (see Table II. 1).   

 

 
 

Figure II. 2.   1H NMR spectra of HES20-PEI22 (top) and HES70-PEI22 (bottom) 
in D2O with peak assignment.   

To confirm the results of 1H NMR spectroscopy, Copper Assay was performed to evaluate the 

quantity of PEI within the generated HES20-PEI22 and HES70-PEI22 conjugates. The 

photometric copper complex assay is based on the formation of a bluish complex, consisting 

of copper (II) ions and PEI, which can be detected by UV-vis spectroscopy at λmax 285nm 

[46]. A negative control using a mixture of pure HES and pure PEI was measured and showed 

no interference for HES in the measurements. The obtained results were in excellent 

agreement with the findings of the NMR measurements (see Table II. 1). 
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Table II. 1. Mass ratios and molar ratios for HES20-PEI22 and HES70-PEI22 as 
determined by 1H-NMR and the photometric copper complex assay. 

 Amount of HES20 in generated 

HES-PEI conjugates 

Amount of HES70 in generated 

HES-PEI conjugates 

Mass ratio [%] Molar ratio 

HES20 : PEI22 

Mass ratio [%] Molar ratio 

HES70 : PEI22 
1H-NMR 56.7 1.44 : 1 88.2 2.35 : 1 

Copper assay 56.7 ± 8.83 1.44 : 1 88,31±1.49 2.37 : 1 

 

SEC-MALS, the combination of size exclusion chromatography with multi-angle light 

scattering is a common mean for the characterization of polymers. The SEC chromatograms 

(see Figure II. 3) verified the successful conjugation of HES20 and HES70 to the linear 

polyamine PEI22, where the HES-PEI conjugates eluted earlier than the blends of HES and 

PEI. Additionally, only a low amount of unbound PEI22 appeared in the chromatogram. 
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Figure II. 3.  Size exclusion chromatograms of HES20-PEI22 (top) and HES70-
PEI22 (bottom) copolymers. Blends of free HES and PEI, as well as uncoupled PEI 
were used as controls. 

3.5 Biophysical characterization of the generated polyplexes 

The effect of different N/P ratios and various ratios of free PEI to HES-PEI on the formation 

of polyplexes and their properties, namely the particle size and zeta potential, was evaluated. 

For these studies, naked polyplexes and PEG-PEI complexes served as controls. By 

increasing the N/P ratio, the particle size of the polyplexes tends to decrease, but then levels 

off at approximately 70 nm at N/P ratio ≥ 6.0 (Figure II. 4, top). At lower values, nPx tend to 

aggregate since there are not enough excess charges for particle stabilization, while the HES- 

and PEG-modifications impart additional steric stabilization and prevent aggregation. It is 

worth noting that the HES70-PEI conjugate produced smaller particles at N/P ratio of 3.6 

compared to nPx and PEG-PEI polyplexes. This might point to the possibility of producing 

more stable polyplexes using HES conjugates, which can thus be used to administer lesser 

amounts of PEI and reduce the toxicity. 
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Figure II. 4.  (Top) Particle size of different polyplexes as a function of increasing 
N/P ratio. Insert shows a magnification of the smaller particle size region. 
(Bottom) Zeta potential of different polyplexes as a function of increasing N/P 
ratio. 

3.6 Treatment of polyplexes with pancreatic α-amylase 

To establish an in vitro model for the enzymatically-catalyzed deshielding, we planned to 

monitor the effect of AA on the zeta potential and size of the HES-decorated polyplexes over 
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6 hours. Accordingly, we tested the stability of naked polyplexes and HES70-PEI polyplexes 

in HBG buffer at pH 7.1 and 6 as seen in Figure II. 5. Results show that the polyplexes were 

not stable at pH 7.1 for the required test period of 6 h, where the zeta potential decreased, 

while the particle size increased. Meanwhile, the zeta potential and particle size of the 

polyplexes in pH 6 were much more stable over 6 h, probably due to the additional stability 

from the extra positive charges at this pH. Accordingly we decided to investigate the effect of 

AA on polyplexes at pH 6. 
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Figure II. 5.  Particle size and zeta potential of naked polyplexes (top) and HES70-
PEI polyplexes (bottom) in HBG buffer with pH 6 and pH 7.1 as a function of time. 
Particles were prepared with N/P ratio = 6. 

The addition of AA to polyplexes of HES70-PEI with different ratios of free PEI to PEI-

conjugate is shown in Figure II. 6. At low amount of HES70-PEI (5%), it is possible to see an 

increase in zeta potential, though not statistically significant. Using higher amounts of the 

conjugate (10 and 15%), the zeta potential increases gradually with time after addition of AA, 

and levels off after ca. 1 h at 37 °C, probably a second indication for the enzymatic 

deshielding. After 4-6 h, the polyplexes treated with AA increase in size. This might point to 

destabilization due to a reduction in steric stabilization as the HES coat is “eaten” up. 
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Figure II. 6.  Particle size and zeta potential as a function of time (left) for 
polyplexes with different ratios of PEI:HES70-PEI (from top to bottom 95:5, 90:10 
and 85:15) stored without AA (control) or with 40 U/L AA at 37 °C. Right graphs 
show the zeta potential alone for the same polyplexes with and without AA. 
Particles were prepared with N/P ratio = 6. 
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3.7 Erythrocyte aggregation assay 

The shielding of HES-decorated polyplexes and deshielding using AA were additionally 

tested using erythrocyte aggregation assay. nPx cause considerable aggregation as seen in 

Figure II. 7 due to the electrostatic interaction between their positive charge and the 

negatively charged nPx. Meanwhile, the effective shielding with PEG or HES (HES70 or 

HES20 with different ratios of PEI:PEI-conjugate) prevented the formation of such 

aggregates. The addition of AA triggered enzymatic deshielding, which led to development of 

small erythrocyte aggregates. The latter seemed to depend on the molar mass and amount of 

HES on the surface of polyplexes as seen in Figure II. 7. 

 
 

Figure II. 7. Erythrocyte aggregation assay for polyplexes prepared with different 
ratios of PEI:HES20-PEI or PEI:HES70-PEI ± 40 U/L AA. Shielding the 
polyplexes with different amounts of HES20-PEI or HES70-PEI prevents 
erythrocyte aggregation, while deshielding under the effect of AA leads to the 
formation of small erythrocyte aggregates. Controls included PEG-decorated 
polyplexes (PEG20Px), naked polyplexes (nPx), and buffer + AA. Particles were 
prepared with N/P ratio = 6. 

3.8 Cell culture experiments - Luciferase reporter gene transfection 

efficiency 

In vitro transfection experiments were conducted on Neuro2A cells and HUH7 cells in cell 

culture medium with/without AA to study the effect of HES-shielding and enzymatic 

deshielding on transfection efficiencies.. The transfection of Neuro2A cells using HES70-
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decorated polyplexes was similar to PEG polyplexes and was clearly less efficient compared 

to nPx. The shielding effect is additionally evidenced by the dependence on the polymer 

molar mass and amount in the nanoparticle shell. For instance, HES20 shows a higher 

transfection efficiency (and lower shielding) compared to HES70, while the transfection 

efficiency decreases by increasing the amount of HES in the nanoparticle shell (see Figure II. 

8 A). Meanwhile, the addition of AA to the culture medium leads to a 2-3 orders of magnitude 

increase in transfection efficiency both for HES70 and HES20. Such an effect cannot be seen 

for nPx or PEG-polyplexes, indicating that the deshielding due to the specific action of AA on 

HES is responsible for this effect (Figure II. 8 A). It is worth noting that the HES20 

polyplexes showed a higher efficiency compared to the nPx, a phenomenon that warrants 

further investigations to elucidate the possible reasons for this super-performance. 

HUH7 cells showed a quite similar trend to Neuro2A cells regarding gene transfection. In 

general, the transfection using HES20-coated polyplexes was more efficient (i.e. lower 

shielding efficiency) compared to HES70, and the addition of AA led to an enhancement of 1-

3 orders of magnitude in transfection (Figure II. 8 C). 

The metabolic activity of Neuro2A cells treated with the polyplexes was lower for HES-PEI-

containing particles than for PEG-PEI or PEI particles, while it was not affected in the case of 

HUH7 cells. Generally, HUH7 cells show slow proliferation rate, a less efficient transfection 

performance, and higher sensitivity to cytotoxicity compared to Neuro2A cells. It seems that 

HES-PEI interfered with the cell proliferation of Neuro2A cells (but not with cell viability) 

and thus led to the observed reduction in metabolic activity due to the smaller number of cells. 

This effect was not observed in the slowly proliferating HUH7 cells. The reason for the 

reduced metabolic activity with Neuro2A cells needs to be further investigated.  
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Figure II. 8.  Luciferase gene expression in Neuro2A cells (A) and the 
corresponding metabolic activity (B), as well as in HUH7 cells (C) and the 
corresponding metabolic activity (D). Polyplexes with different HES-PEI content 
(numbers represent the percentage of HES-PEI content relative to PEI) were 
freshly prepared prior to transfection, and given directly to the cells in medium 
containing AA (+AA), or lacking it. The analysis of the transfection performance 
and metabolic activity was carried out 24h post transfection. Naked PEI- and 
PEGylated- polyplexes (10:90 PEG-PEI:PEI) served as controls. Particles were 
prepared with N/P ratio = 6. 

3.9 Effect of AA activity 

The effect of 2 levels of AA activity (40 and 100 U/L) on the biophysical properties of the 

polyplexes and transfection efficiency was investigated. Amylase activity was determined 

using Phadebas amylase test, for which a normal range of clinical serum activity between 60-

310 U/L has been reported [49]. Tracking the zeta potential of the HES70-coated polyplexes 

(PEI:HES-PEI 90:10) incubated with 2 different amylase activities over 6 h show that 

increasing the AA activity from 40 to 100 U/L accelerates the increase in zeta potential, so 

that a plateau is reached after only 0.5 h rather than 1 h (Figure II. 9 A). Additionally, the 

higher amylase activity seems to increase the zeta potential to a higher level (though the 

difference in the plateau region is not statistically significant). The effect of amylase activity 

on the transfection efficiency of the HES70-decorated polyplexes in Neuro2A cells was also 

investigated. Results in Figure II. 9 B show that the polyplexes treated with the higher 

amylase activity show the same deshielding trend, reaching transfection efficiencies similar to 

nPx, while it had no effect on the controls (PEG-Px and nPx). These results show that the 

amylase activity has an effect on HES degradation and deshielding kinetics in vitro, but less 

influence on the extent of transfection.  
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Figure II. 9.  Effect of AA activity. The effect of 40 and 100 U/L of amylase on the 
zeta potential of HES70Px (90:10) as a function of time (A). Luciferase gene 
expression in Neuro2A cells ± 100 U/L AA (C.f. Fehler! Verweisquelle konnte 
nicht gefunden werden.). Naked PEI- and PEGylated- polyplexes (10:90 PEG-
PEI:PEI) served as controls (B). 

3.10 Binding and uptake experiments using flow cytometry 

Nie et al. [18] used flow cytometry to determine the effect of cleavable and non-cleavable 

PEGylation on the binding and uptake of cationic lipopolyplexes for DNA transfection. They 

showed that both types of PEGylation reduced the cellular binding and association at 4°C but 

did not affect cellular uptake at 37°C. They concluded that endoplasmic escape was more 

crucial for transfection than cellular uptake, since the non-PEGylated lipopolyplexes, as well 

as lipopolyplexes PEGylated with non-cleavable or cleavable PEG had equal uptake at 37°C. 

However, lipopolyplexes with intracellularly-cleavable PEG showed higher transfection 

efficiency than those having non-cleavable PEG, because the former showed less interference 

with endoplasmic escape [18].  

With these conclusions in mind, the in vitro binding and uptake of the HES-decorated 

polyplexes was investigated using flow cytometric analysis. Binding was performed at 4°C, 

where only non-specific adsorption to the cell-surface takes place, while the energy-

dependent uptake is inhibited. Results in Figure II. 10 A and B show that PEG20 and HES20 

were effective in inhibiting binding (compared to nPx), as it is illustrated in the percentage of 

cells associated with labelled-DNA as well as the mean fluorescence intensity (MFI, an 

indicator for the average amount of labelled DNA per cell). This shows the effective shielding 
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of PEG20 and HES20, and their ability to reduce non-specific adsorption. The apparent 

ineffectiveness of HES70 in preventing non-specific adsorption contradicts with results from 

transfection efficiency and erythrocyte aggregation assay, and is probably difficult to explain 

at this point. Finally, the addition of AA does not have a significant effect on binding, 

probably due to the low activity of AA at 4°C.  

Results of the uptake at 37°C in Figure II. 10 C and D show that the percentage of Cy5 

positive cells is much higher than at 4°C, but does not differ much between the different 

polyplexes before or after addition of AA, and lies between approximately 75-85 %. 

Meanwhile, MFI decreases for PEG20- and HES20-decorated polyplexes, in accordance with 

the binding experiments. Furthermore, the addition of AA leads to a significant increase in 

MFI by 28 % and 36 % for the HES20- and HES70-decorated polyplexes, respectively, 

without any significant effect on the nPx and PEG20 polyplexes. The above results are in 

agreement with those reported with Nie et al., where we show that HES can reduce 

nonspecific binding to the cells similar to PEG, but to a lesser extent. Meanwhile, although 

the addition of AA does not affect the percentage of cells which actively phagocytose the 

polyplexes, it can significantly increase the amount of delivered DNA per cell, which is an 

indication for effective degradation of the polymer shell. Results of the flow cytometry 

constitute an additional proof that HES-decorated polyplexes can be effectively deshielded by 

amylase, leading to an increase in the amount of DNA delivered per cell. This deshielding is 

also expected to reduce the interference with the endoplasmic escape and increase transfection 

efficiency as already observed with the luciferase transfection experiments. 
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Figure II. 10. Binding (A and B) and uptake (C and D) of the polyplexes studied 
using flow cytometry. The percentage of Cy5 positive cells (A and C) and the mean 
fluorescence intensity (B and D) for Neuro2A cells incubated with HES20- or 
HES70-decorated polyplexes (10:90 HES-PEI:PEI) at 4°C for 30 min (Binding, A 
and B) or at 37°C for 1 h (Uptake C and D) with/without AA.  Naked PEI- and 
PEGylated- polyplexes (10:90 PEG-PEI:PEI) served as controls. 

4 Discussion 

Li and Huang pointed out the importance of effective shielding and subsequent shedding of 

the PEG coat for successful tumor targeting [50]. However, due to the many disadvantages of 

PEG, there is a continuous search for better cleavable or biodegradable alternatives. For 

instance, Romberg et al. used a protease-cleavable poly(hydroxyethyl-L-asparagine) to impart 

stealth properties to liposomes [25, 26]. The latter polymer is then deshielded extra- or 

intracellularly by the action of proteases. “Polymer masked-unmasked protein therapy” 

(PMUPT) from Duncan’s lab [27-29] uses dextrin to screen the activity of proteins or 

enzymes, which is then regained by enzymatic cleavage of dextrin. In this work, we propose 

the use of hydroxyethyl starch (HES) for the controlled shielding/deshielding of polyplexes 

for nucleic acid delivery. HES is a biodegradable water soluble polymer with protein repellant 

activity, and was thus suggested as a possible substitute for PEG [44]. Compared to the 

aforementioned biodegradable polymers, it has the advantage of tunable biodegradation rate 

through changing its molar mass and degree of hydroxyethylation. This proof-of-concept 

study investigates the feasibility of capitalizing on the biodegradation of HES to regulate the 

shielding/deshielding and transfection of DNA polyplexes. 
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To carry out the in vitro deshielding experiments, the use of blood serum would have been the 

optimum choice, but it would greatly complicate this feasibility study. Accordingly, it was 

decided to use porcine α-amylase (AA) for HES deshielding. The ability of AA to cleave HES 

under different test conditions in vitro was evaluated. The concentration of AA was kept 

constant at 40 U/L. Results in Figure II. 1 show that indeed AA could cleave HES in vitro, 

and that the rate and extent of degradation depend on the molar mass, and to a lesser extent on 

the presence of chlorides in the buffer [47], but was not dependent on the pH. 

 

The synthesis of the HES-PEI copolymers was carried out by reductive amination according 

to Kircheis et al [45]. Linear PEI contains only secondary amines, and the ends are not 

primary amines, where one end contains the electrophilic initiator in the oxazoline 

polymerization; usually mesylate, while the other end contains a terminating hydroxyl group 

[51]. Those secondary amines are less reactive towards reductive amination, necessitating a 

large excess of the polysaccharide (up to 25 times molar excess). The synthesized polymers 

were characterized using 1H NMR, colorimetric copper assay (for the determination of PEI 

content in the conjugates) as well as SEC. The different characterization methods confirmed 

the successful conjugation, and the highly congruent results of the proton NMR and copper 

assay showed that the polymers were synthesized with molar ratios of 1.44:1 and 2.35:1 for 

HES20:PEI22 and HES70:PEI22, respectively (see Table II. 1).  

 

A considerable part of the study was then dedicated to the investigation of the shielding of the 

polyplexes with HES and deshielding using AA. Shielding could be shown by the effect of 

HES coating on the zeta potential. The latter is the measure of electronic potential at the slip 

plane between the bound solvent layer at the particle’s surface and the bulk solution. With the 

increase of this layer, for instance by adsorption or coupling of a nonionic hydrophilic 

polymer, the (absolute value of) zeta potential decreases [52]. This effect was observed for all 

the hydrophilic polymers tested, with the reduction in zeta potential (i.e. shielding) more 

pronounced for HES70>PEG20>HES20 (Figure II. 4). Additionally, the shielding effect 

could be shown by prevention of erythrocyte aggregation (Figure II. 7) as well as the 

reduction of transfection efficiency of the HES- and PEG-coated polyplexes in Neuro2A and 

HUH7 cells (Figure II. 8). In those transfection experiments, the increase in the amount of 

HES on the particle surface seemed to even reduce the transfection efficiency more 

effectively. Finally, the flow cytometry results show that HES and PEG could reduce the non-

specific association both during binding and uptake. All these results show that HES can act 
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as a shielding polymer conferring some stealth characters to the nanoparticles. These results 

are in accordance with previously reported experiments, which showed that hydrophobically-

modified HES adsorbed on PLGA nanoparticles, and could reduce protein adsorption and 

particle phagocytosis by murine macrophages [52]. 

 

Deshielding of HES-decorated polyplexes using AA was shown using a number of 

techniques. Addition of 40 U/L of AA to HES70-decorated polyplexes increased the zeta 

potential gradually over 1 h due to degradation of the HES coat and reduction of the bound 

polymer layer (Figure II. 6). The effect could be observed with different ratios of HES-PEI to 

PEI, where the higher amounts of HES-PEI show better shielding and lower plateau after 

degradation. Additionally, addition of AA to the HES70-shielded polyplexes led to decrease 

of the particle size by 5-7 nm (Figure II. 6). Incubation of RBCs with the HES70- or HES20-

polyplexes in the presence of AA also led to an increased tendency in erythrocyte aggregation 

(Figure II. 7). Addition of AA to the culture media during cell transfection led to 2-3 orders of 

magnitude increase in the transfection of luciferase reporter gene, both in Neuro2A and 

HUH7 cells (Figure II. 8). Evaluation of the effect of amylase activity revealed that the higher 

amylase activity affects the kinetics of HES degradation and the rate of deshielding, but not 

the extent of cell transfection (Figure II. 9). The employed amylase activities in this study (40 

and 100 U/L) are relevant to the clinical serum amylase levels (60 - 310 U/L) and show that 

indeed the deshielding of the polyplexes can occur at the serum amylase activities 

encountered in vivo, and that degradation kinetics can be an important factor for controlling 

delivery in vitro and in vivo. Finally, the uptake experiment using flow cytometry shed some 

light on the possible mechanisms of transfection after the action of amylase on the HES-

shielded polyplexes (Figure II. 10). Results show that, although the addition of AA did not 

increase the percentage of transfected cells, the amount of delivered DNA per cell increased 

by 28 % and 36 % for HES20 and HES70, respectively. Additionally, an enhancement of the 

endoplasmic escape (in comparison to the non-degradable PEG) as reported by Nie et al [18] 

is quite probable. It is worth noting that, the deshielding effect of AA on the HES-decorated 

polyplexes was specific, since it did not have any statistically significant effect on the controls 

used, namely naked polyplexes or PEGylated polyplexes.  

Having shown the feasibility of using HES and AA to regulate the shielding and deshielding 

of DNA polyplexes, future publications will present the in vivo behavior of HES-coated 

polyplexes, as well as the effect of molar mass, degree of hydroxyethylation and amount of 

polymer in the HES corona on the transfection efficiency. 
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5 Conclusions 

The results presented in this work show, for the first time, the possibility of using HES for the 

shielding and controlled enzymatically-catalyzed deshielding of DNA polyplexes. HES20 and 

HES70 were grafted onto linear PEI22 via Schiff´s base formation and reductive amination. 

The generated HES-g-PEI copolymers were characterized by 1H NMR, copper-assay, and 

SEC, where all methods verified the successful coupling of HES to PEI, with molar ratios of 

2.35:1 and 1.44:1 for HES70-g-PEI22 and HES20-g-PEI22, respectively. HES conjugates 

were used to form stable polyplexes with plasmid DNA, and their biophysical characterization 

at different N/P ratios revealed that both hydrodynamic diameter and surface charge were 

similar to PEGylated conjugates. The effect of amylase on zeta potential of HESylated 

nanoparticles was tested in vitro, showing a gradual increase in the surface charge of the 

nanoparticles over 1 h, indicating effective enzymatic deshielding. Furthermore, addition of 

amylase to mixtures of HESylated polyplexes and erythrocytes lead to erythrocyte 

aggregation, while aggregation did not occur in the absence of amylase. In vitro transfection 

experiments were performed on 2 cell-lines ± AA in the culture medium. The proof-of-

concept experiments revealed that addition of AA to the cell culture medium increased the 

transfection efficiency of HES-coated particles 2-3 orders of magnitude, while it had no effect 

on PEG-coated or the uncoated particles. Flow cytometry experiments showed that the 

addition of AA increased the amount of delivered DNA per cell. In brief, HES-PEI 

copolymers can be used for the controlled shielding/deshielding of polyplexes for gene 

delivery. The possibility to control the rate of HES biodegradation by varying its molecular 

weight and molar substitution offers a great potential for engineering the polyplexes and their 

site of degradation.  
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Abstract 

PEGylation is currently the gold standard in shielding cationic DNA-polyplexes against non-

specific interaction with blood components. However, it reduces cellular uptake and 

transfection, in what is known as the “PEG dilemma”. In an approach to solve this problem 

we developed nano-dandelions: hydroxyethyl starch (HES)-shielded polyplexes which get 

deshielded under the action of alpha amylase (AA). In this study, the effect of molar mass and 

degree of hydroxyethylation on the shielding and deshielding of the polyplexes as well as 

their in vivo performance were investigated. For this purpose, a battery of HES- 

polyethylenimine (PEI) conjugates was synthesized, and their rate and extent of 

biodegradation was investigated using asymmetric flow-field flow fractionation (AF4) and 

quartz-crystal microbalance with dissipation (QCM-D). Additionally, the transfection 

efficiency of the polyplexes was tested in Neuro2A cells and tumor-bearing mice. AF4 and 

QCM results show a rapid degradation for HES with lower degrees of hydroxyethylation. 

Meanwhile, in vitro transfection experiments showed a better shielding for higher HES molar 

masses, as well as deshielding with a significant boost in transfection upon addition of AA. 

Finally, in vivo experiments showed that the biodegradable HES markedly reduced the non-

specific lung transcription of the polyplexes, but maintained gene expression in the tumor, 

contrary to the non-degradable HES and PEG controls, which reduced both tumor and lung 

expression. This study shows that by controlling the molecular characteristics of HES it is 

possible to engineer the shielding and deshielding properties of the polyplexes for more 

efficient gene delivery. 

Keywords  

Hydroxyethyl starch (HES), linear polyethylenimine (LPEI), gene delivery, biodegradable 

coating, amylase, quartz crystal microbalance (QCM-D) 
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1 Introduction 

Designing carriers for safe and efficient delivery of therapeutic genes offers great potential for 

the treatment of many difficult-to-cure diseases, such as metastatic cancer. Although the use 

of viral carriers shows very high efficiency in gene transfection, their application is limited 

due to several safety concerns, most importantly the potential for flawed insertion of the 

virally-carried genetic material into the human genome, associated with the risk of developing 

cancer [1, 2], as well as the high incidence of immunogenic responses to recombinant viruses 

[3-5] possibly leading to death [6]. Meanwhile, polymeric carriers are extensively studied as 

possible alternatives to viral carriers, with poly(ethylene imine) (PEI) as the gold-standard, 

since it shows a high nucleic acid transfection efficiency [7]. The latter efficiency is due to 1) 

its high ability to compact DNA into nano-sized particles, 2) the high PEI-mediated cellular 

uptake due to its high surface charge, and 3) its capacity for endosomal release [7-9]. 

However, PEI-based polyplexes show non-specific interactions with blood components and 

cells, leading to aggregation and accumulation in the lung [10]. Despite the successful use of 

polyethylene glycol (PEG) to reduce these effects [11, 12], PEGylation compromises the 

cellular uptake and endosomal release, leading to lowered transfection efficiency in vitro and 

in vivo [13], in what is known as the “PEG-dilemma” [14]. Accordingly, several groups 

developed sheddable PEG-coats by incorporating labile linkers, which lead to shedding the 

disturbing PEG molecules in response to several stimuli, such as temperature, pH, reducing 

environment or tumor-specific enzymes [15-22].  

We previously described an alternative approach for the controlled shielding and 

enzymatically-catalyzed deshielding of polyplexes using hydroxyethyl starch (HES) and α-

amylase (AA) [23]. In the later proof-of-concept study, the developed HES-decorated core-

shell nanoparticles showed effective shielding and reduced transfection in vitro, as well as 

deshielding and activation after partial cleavage of the HES-coat by AA. In the current study, 

we investigate the effect of HES’ molecular characteristics, namely molar mass and degree of 

molar substitution of hydroxyethyl groups on the rate and extent of biodegradation, as well as 

the shielding and deshielding characteristics of the polyplexes. Additionally, gene expression 

was evaluated in tumor-bearing mice to show the feasibility of this approach in vivo. LPEI 

and PEG20-PEI polymers served as controls in most of the experiments.  
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2 Experimental Section 

2.1 Materials 

HES70[0.5] with an average molar mass (Mw, nominal value as provided by supplier, number 

after HES) of 70 kDa and a molar substitution (MS = the mean number of hydroxyethyl 

groups per glucose unit; nominal value as provided by supplier, number in square brackets) of 

0.5 was kindly provided by Serumwerk Bernburg, Germany [23]. HES10[1.0], HES30[0.4], 

HES30[1.0], HES60[0.7], HES60[1.0] and HES60[1.3] were kindly provided by Fresenius 

Kabi, Friedberg, Germany. Linear polyethylenimine (LPEI) with an average molar mass of 22 

kDa and the PEG20-PEI conjugate (PEG20: polyethylene glycol with an average molar mass 

of 20 kDa) were synthesized as described in Ref. [24]. α-amylase (AA) from porcine pancreas 

was bought from Sigma-Aldrich (Steinheim, Germany, catalogue number A3176). Plasmid 

pCMVluc [25] was prepared by PlasmidFactory, Bielefeld, Germany. Phadebas® Amylase 

Test was purchased from Magle AB, Lund, Sweden. Other solvents and chemicals were 

reagent grade and were used as received.   

 

2.1.1 Synthesis and characterization of HES-PEI conjugates.  

The different HES molecules were used to synthesize a library of HES-PEI conjugates, which 

were characterized according to Ref. [23]. PEI was attached to HES via Schiff´s base 

formation between HES’ reducing ending group and PEI’s amino groups, followed by 

reductive amination. Briefly, 50 mg linear PEI were mixed with HES in 150 mM PBS buffer 

(pH 7.4). After 2 h, 59.8 mg of NaBH3CN were added for reductive amination over 20 h. Ion 

exchange chromatography was carried out to remove unbound HES using a cation-exchange 

column (Bio-Rad Macro-Prep high S HR 10/10, Hercules, CA, USA) and fractionated using a 

sodium chloride gradient from 0.5 M to 3.0 M NaCl concentration in 20 mM HEPES, pH 7.3. 

The collected fractions were dialyzed against highly purified water (Cellu Sep T1, nominal 

MWCO 3500 Da, Membrane Filtration Products Inc, Seguin, TX, USA), then lyophilized. 

HES-PEI copolymers were characterized by 1H NMR, colorimetry (using copper assay), and 

SEC as previously described [23]. 
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2.1.2 Investigation of the biodegradation of HES homopolymers with AA using AF4-

MALS 

Several HES homopolymers differing in their molar mass and molar substitution were 

dissolved at a concentration of 5 mg/mL in PBS pH 7.4. 100 µL sample volume was injected 

into the AF4 channel assembly, with a regenerated cellulose ultrafiltration membrane (Wyatt 

Technology, cut-off 5 kDa). All samples containing pancreatic AA were adjusted to an 

enzyme activity of 100 U/L using the Phadebas® Amylase Test. Mixtures were incubated at 

25 °C, and samples were withdrawn at time points 0, 0.5, 1, 2, 4, 6, and 24 h. To stop the 

enzymatic degradation of HES, samples were heated to 99°C for 3 min. All samples and 

controls (without AA) were treated under aseptic conditions with sterile filtration to prevent 

possible degradation caused by microbial contamination. The reduction in the molar mass of 

HES was followed by the Wyatt Eclipse 2 AF4 system (Wyatt Technology Corp., Santa 

Barbara, CA) in combination with MALS (DAWN EOS MALS, Wyatt Technology Corp.)- 

and RI-detection (Agilent Technologies, Palo Alto, CA). 

 

2.1.3 Quartz crystal microbalance with dissipation (QCM-D) 

The Q-Sense E4 instrument (Q-Sense, Gothenburg, Sweden) was used for the investigations 

on the enzymatic degradation of HES in the different HES-PEI conjugates. Prior to each 

measurement, the silica-coated QCM-D sensor crystals (QSX 303, Q-Sense) were washed 

with 2% SDS solution and treated with oxygen plasma (0.4 mbar, 150 W) for 45 minutes 

(TePla 100 System, Feldkirchen, Germany) to decontaminate the crystal surface. The system 

was operated at 25°C in the flow mode, interrupted by phases of no flow. A single QCM-D 

run comprised the following five steps: 1) System rinsing with buffer (15 min.), 2) polymer 

adsorption onto the SiO2 sensor (5 min. sample flow, 10 min. no flow), 3) system rinsing with 

buffer under flow (15 min.), 4) start of enzymatic degradation by supplementation of α-

amylase (5 min. sample flow, 55 min. no flow), and 5) system rinsing with buffer under flow 

(15 min.). A battery of HES-PEI copolymers was tested with the special focus on HES’ molar 

mass and degree of hydroxyethylation (HES30[0.4]-PEI, HES30[1.0]-PEI, HES60[0.7]-PEI, 

HES60[1.0]-PEI, HES60[1.3]-PEI and HES70[0.5]-PEI). LPEI and PEG20-PEI served as 

controls. All polymers were applied at a concentration of 100 µg/mL (based on LPEI) in HBG 

pH 7.1. The enzyme activity was set to 100 and 300 U/L (according to Phadebas® Amylase 

Test). To rule out polymer desorption, and to prove the enzyme-specific degradation, bovine 

serum albumin (BSA) was applied instead of AA as a negative control. The Sauerbrey 
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equation [26] was used to follow the adsorbed and desorbed mass onto the silica-coated 

quartz crystal. Changes in the mass ∆m [ng/cm2] on the quartz surface are defined as: 

n

fC
m

∆×−=∆  

whereas C is the mass-sensitivity constant (17.7 ng Hz-1 cm-2 for the 5 MHz quartz crystal), 

∆f [Hz] is the resonance frequency and n = 1, 3, 5, 7 is the overtone number. In the present 

analysis, the low overtone number 3 was used to avoid underestimation of the mass. QSoft 

4.01 software was used for data acquisition, QTools for data analysis (both from Q-Sense, 

Sweden). 

 

2.1.4 Preparation of HESylated polyplexes 

Naked LPEI polyplexes (nPx) were prepared by mixing of PEI to the plasmid pCMVluc 

(pDNA) to a final DNA concentration of 20 µg/mL in HBG pH 7.4 at N/P ratio of 6.0, then 

incubated at room temperature (RT) for 30 minutes prior to analysis. For instance, naked 

polyplexes (nPx) were composed of 20 µg DNA and 16 µg PEI. HESylated polyplexes (and 

PEGylated control particles) were produced in the same fashion as nPx, with the exception 

that the unmodified PEI was partially replaced by HES-PEI or PEG-PEI, e.g. HES70[0.5]-PEI 

complexes with DNA at the molar ratio of HES-PEI to free PEI of 10:90 were made of 20 µg 

DNA, and a mixture of 14.4 µg free PEI and an amount of 8.475 µg HES70[0.5]-PEI 

equivalent 1.6 µg PEI. Similarly, polyplexes for in vivo experiments were made at a final 

DNA concentration of 200 µg/mL and N/P ratio 6.0. 

 

2.1.5 Treatment of polyplexes with pancreatic α-amylase (AA) 

The effect of pancreatic AA on the biophysical properties of polyplexes with HES60 

decoration was investigated. HES60-decorated polyplexes were generated at the DNA 

concentration of 20 µg/mL in HBG pH 6.0, and at the N/P ratio of 6.0. HESylated polyplexes 

were prepared at the molar ratio 10:90 of PEI-conjugates to free PEI. After 30 min incubation 

of the polyplexes at room temperature, 100 µL of AA stock solution (amylase activity 1000 

U/L) was added to 900 µL polyplex solution to give a final AA activity of 100 U/L, mixed 

intensively, and the resulting AA-polyplex mixture was analyzed using a Malvern Zetasizer 

Nano ZS (Malvern Instruments, Worcestershire, United Kingdom) instantly after combination 

of the enzyme and substrate. Analysis of particle size and zeta potential of PEI/DNA 

complexes was performed at time points 0, 0.25, 0.5, 1, 2, 4, and 6 h holding the polyplexes at 
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37 °C. Measurements of the particle size and the zeta potential were conducted in semi-micro 

PMMA disposable cuvettes (Brand, Wertheim, Germany) and in folded capillary cells 

(Malvern Instruments, Worcestershire, United Kingdom), respectively. 

 

2.1.6 Cell culture experiments 

Cell culture media, antibiotics and fetal calf serum (FCS) were purchased from Life 

Technologies (Karlsruhe, Germany). Cultured cells were grown at 37 °C in 5% CO2 

humidified atmosphere. Murine neuroblastoma, Neuro2A (ATCC CCl-131, purchased from 

DSMZ, Braunschweig, Germany) were cultured in Dulbecco's Modified Eagle Medium 

(DMEM). DMEM was supplemented with 10% FCS, 4 mM stable glutamine, 100 U/mL 

penicillin, and 100 µg/mL streptomycin.  

 

2.1.7 In vitro luciferase reporter gene expression studies 

In vitro pDNA transfection efficiency was evaluated in murine Neuro2A cells. Experiments 

were performed in 96 well plates by seeding 1x104 cells per well in 100 µL medium 24 h 

prior to transfection. Directly before transfection, the medium was exchanged against 90 µL 

fresh medium with/without pancreatic AA (100 U/L). An amount of 10 µL polyplex solution 

(N/P 6.0, 20 µg/mL DNA concentration, 10% and 25% molar ratio of conjugate to free PEI) 

was added to the cells. 4 h after transfection, the medium was replaced by fresh medium 

with/without AA. 24 h after pDNA transfection, the cells were treated with 100 µL cell lysis 

buffer (25 mM Tris pH 7.8, 2 mM EDTA, 2 mM DTT, 10% glycerol, 1% Triton X-100).  

Luciferase activity in 35 µl cell lysate was measured in white 96 well plates using a luciferase 

assay kit (100 µL Luciferase Assay buffer, Promega, Mannheim, Germany) on a luminometer 

for 10 s (Centro LB 960 instrument, Berthold, Bad Wildbad, Germany).  

 

2.1.8 Metabolic activity of transfected cells 

The cellular metabolic activity after pDNA transfection was evaluated using MTT assay. 

Cells were seeded and transfected as explained above. 24 h after transfection, MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (Sigma-Aldrich, Germany) was 

dissolved in phosphate buffered saline at 5 mg/mL, and 10 µL aliquots were added to each 

well reaching a final concentration of 0.5 mg MTT/mL. After an incubation time of 2 h, 

unreacted dye with medium was removed and the cells were lyzed by incubation at -80 °C for 
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30 min. The formazan product was dissolved in 100 µL/well dimethyl sulfoxide and 

quantified by a plate reader (Tecan, Groedig, Austria) at 590 nm with background correction 

at 630 nm. The metabolic activity (%) relative to control wells containing HBG treated cells 

was calculated as follows (Metabolic activity = A test/A control × 100). 

 

2.1.9 In vivo transfection with HESylated polyplexes in tumor-bearing mice 

In vivo pDNA expression studies were evaluated in Neuro2A tumor-bearing A/J mice (6-8 

weeks, female, Harlan Winkelmann). A number of 1x106 Neuro2A cells in 100 µl PBS was 

inoculated subcutaneously into the flank of each mouse. Once the tumors reached the desired 

size of approximately 100 mm3, 250 µL of polyplexes’ solution were systemically 

administered via the tail vein. Two in vivo experiments were performed, where in the first 

one, the impact of the degradability of HES on gene expression in the lung and tumor was 

studied (n=5). For this purpose, nPx as well as polyplexes coated with HES70[0.5], 

HES60[1.3] and PEG20 were utilized. All polyplexes were generated at N/P ratio of 6.0 with 

a pCMVluc concentration of 200 µg/mL in HBG, pH 7.4. Particles decorated with 

HES70[0.5], HES60[1.3], and PEG20 were prepared in the same molar ratio of HES or PEG 

to total PEI (i.e. free PEI plus conjugated PEI) (see Table III. 1), so as to rule out differences 

in the number of HES or PEG molecules attached per PEI molecule. 

 

 

Table III. 1. Composition of various LPEI-based transfection particles used for 
the investigation of the effect of polymer biodegradability on in vivo transfection. 
It is expressed as the molar ratio of HES or PEG : total PEI as well as the molar 
ratio of HES-PEI or PEG-PEI : free PEI. 

 
Molar ratio of HES-PEI (or 

PEG-PEI) : free PEI 

Molar ratio of HES (or 

PEG) : total PEI 

LPEI --- --- 

HES70-PEI[0.5] 10:90 0.27:1 

HES60-PEI[1.3] 15:85 0.27:1 

PEG20-PEI 20:80 0:27:1 
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In the second experiment, the effect of different HES amounts on the luciferase gene 

expression in the lung and tumor (n=4) was investigated using HES70[0.5]-PEI. HES70[0.5]-

decorated polyplexes were prepared in the molar ratio of HES70[0.5]-PEI to free PEI of 

10:90, 30:70 or 50:50 (i.e. 10, 30 or 50%, see Table III. 2). Naked and PEGylated polyplexes 

served as controls.  

 

 

Table III. 2. Composition of various LPEI-based transfection particles used for 
the investigation of the effect of amount of HES70[0.5]-PEI in the polyplexes on 
the in vivo transfection. It is expressed as the molar ratio of HES or PEG : total 
PEI as well as the molar ratio of HES-PEI or PEG-PEI : free PEI.  

 
Molar ratio of HES-PEI (or 

PEG-PEI) to free PEI 

Molar ratio of HES (or 

PEG) to total PEI 

LPEI --- --- 

HES70-PEI[0.5] 10:90 0.27:1 

HES70-PEI[0.5] 30:70 0.81:1 

HES70-PEI[0.5] 50:50 1.35:1 

PEG20-PEI 30:70 0.81:1 

 

In all experiments, animals were sacrificed 24 h after polyplex-injection, and the lung and 

tumor tissues were resected and stored at -80°C. Tissues were homogenized in cell culture 

lysis reagent (25 mM Tris, pH 7.8, 2 mM EDTA, 2 mM DTT, 10% glycerol, 1% Triton X-

100) using a tissue and cell homogenizer (MP, FastPrep®-24, Solon, OH, United States), 

followed by a centrifugation step at 3000 g at 4°C for 10 min to separate insoluble cell 

components. 50 µl of the supernatants were transferred to white 96 well plates (TPP, 

Trasadingen, Switzerland) and luciferase activity was determined using a luciferase assay kit 

(100 µL Luciferase Assay buffer, Promega, Mannheim, Germany) and a Centro LB 960 

luminometer (Berthold, Bad Wildbad, Germany). Luciferase transfection performance is 

expressed as relative light units (RLU) per mg organ. 
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3 Results 

To study the effect of HES’ molecular characteristics, namely its molar mass and degree of 

molar substitution on the shielding and deshielding of HES-decorated polyplexes, we 

synthesized a battery of HES-PEI conjugates, where the HES fraction covers a broad range of 

molar masses (ranging from 10-70 kDa) and molar substitutions (MS, from 0.4-1.3) (see 

Table III. 3). 

 

 

Table III. 3. HES-PEI conjugates and the amounts of HES coupled to PEI as 
determined by 1H NMR and the colorimetric copper assay, using the methods 
described previously [23]. "MW" represents the weight average molar mass as 
reported by the producer (in kDa), and "MS" is the degree of molar substitution.  

MW 

(kDa) 
MS 

Amount of HES in HES-PEI 

conjugates (1H NMR) 

Amount of HES in HES-PEI 

conjugates (UV λ 285nm) 

Mass ratio [%] 
Molar ratio 

HES : PEI 
Mass ratio [%] 

Molar ratio 

HES : PEI 

10 1.0 35.12 1.36 : 1 28.04 ± 2.29 0.98 : 1 

30 0.4 74.74 2.47 : 1 72.83 ± 1.06 2.24 : 1 

30 1.0 50.39 0.85 : 1 51.01 ± 3.44 0.87 : 1 

60 0.7 79.97 1.67 : 1 79.62 ± 1.44 1.63 : 1 

60 1.0 75.40 1.28 : 1 76.01 ± 0.71 1.32 : 1 

60 1.3 79.97 1.67 : 1 77.17 ± 4.51 1.41 : 1 

70 0.5 88.20 2.68 :1 88.31 ± 1.49 2.71 : 1 

3.1 Biodegradation studies 

Studying the AA-catalyzed degradation of the unmodified HES was performed using 

asymmetric flow field flow fractionation coupled to multi-angle light scattering (AF4-

MALS), where the biodegradation experiments were performed using 100 U/L AA activity 



The effect of molar mass and degree of hydroxyethylation 

-71- 
 

(the normal activity of serum AA using the Phadebas® amylase test is between 60-310 U/L 

[27]). The absolute and relative degradation of various HES polymers as a function of 

incubation time in PBS pH 7.4 at 25 °C is illustrated in Figure III. 1. Control samples lacking 

the enzyme did not show any degradation (data not shown), while in the presence of AA, the 

degradation seemed to be rapid at the beginning, levelling-off after approximately 4-6 h. MS 

of HES had a clear impact on the rate and extent of the biodegradation, since polymers with 

the same molar mass but different MS showed higher degradation rates with lower MS. For 

instance, HES60[1.0] and HES30[1.0] lost approximately 5-10 % of their original molar mass 

after 6 h of treatment with the enzyme, while HES60[0.7] and HES30[0.4] lost around 25 % 

of their initial molar mass. Regarding the effect of molar mass on biodegradation, one 

observes that the rate and extent of degradation of HES70[0.5] is greater than HES30[0.4], 

despite their close MS. That might be an indication for better accessibility of α-1,4-glycosidic 

bonds of HES for AA in the case of the larger HES molecule.  

 

 
 

Figure III. 1.  Enzymatic biodegradation of HES using 100 U/L of AA as a function 
of time, with the decrease in HES’ molar mass as a function of incubation time 
(left), and the relative reduction in weight average molar mass as a function of 
incubation time (right). 

In order to study the kinetics and extent of degradation of HES in the different HES-PEI 

polymers, quartz crystal microbalance with dissipation (QCM-D) was used. In this setup, the 

positively charged PEI residues adsorb to the negatively charged SiO2-coated quartz crystal, 

while the HES molecules extend into the aqueous buffer, simulating the situation of the thin 

brush layer of HES at the surface of the polyplexes. The experiments involved 1) system 
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rinsing with buffer, 2) adsorption of HES-PEI conjugates on the SiO2-coated quartz crystals, 

3) washing off any unadsorbed polymers, 4) introducing AA solution into the chamber and 

incubation for 60 min, and finally 5) washing off of the AA solution. The changes in adsorbed 

mass were calculated using the changes in the frequency according to the Sauerbrey equation 

[26]. As can be seen in Figure III. 2, all HES-PEI conjugates are adsorbed to the SiO2 crystals 

and are not washed away by the buffer after step 3. As illustrated in Figure III. 2 A and B, MS 

has a considerable impact on HES’ degradation profile, with higher extent and rate of 

cleavage of the α-1,4-glycosidic bonds of HES with lower MS. For instance, HES30[0.4]-PEI 

showed rapid degradation at the beginning, followed by a phase of slower loss of mass. 

Meanwhile, the higher substituted HES30[1.0]-PEI copolymer was degraded very slowly. 

After 1 h treatment with 100 U/L α-amylase, HES30[0.4]-PEI lost about 35% of its initial 

mass, while HES30[1.0]-PEI lost only 5.5%. Similarly, HES60-PEI conjugates were degraded 

by AA in the following order with respect to the degree of molar substitution: 0.7 > 1.0 > 1.3 

(loss of mass about 15.5%, 5.8%, and 0%, respectively). Accordingly, HES60[1.3] is 

considered to be practically non-cleavable by AA. Increasing the enzyme activity to 300 U/L 

resulted in a more distinctive degradation (faster and higher extent of degradation), especially 

in the case of lower hydroxyethylated polymers. Regarding the effect of molar mass, 

HES70[0.5]-PEI showed a faster and stronger degradation compared to HES30[0.4]-PEI, in a 

manner similar to AF4-MALS results. This indicates that, beside the MS of HES and AA 

activity, HES’ molar mass probably has an impact on the extent and kinetics of the 

biodegradation too (Figure III. 2 C). Finally, a number of control experiments were performed 

to validate the observed results. The stability of AA was followed over time using the 

Phadebas® Amylase Test, where the assay proved full maintenance of the amylase activity for 

at least 2h. Additionally, the effect of AA on adsorbed LPEI22 and PEG20-PEI, both 

representing non-degradable polymers, as well as the use of bovine serum albumin instead of 

AA, did not show any changes in the mass (data not shown), confirming that the observed 

changes in mass were not due to desorption, but due to the enzyme-specific degradation of 

HES.  
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Figure III. 2.  QCM-D measurements. Enzymatic degradation of HES30[0.4]-PEI 
and HES30[1.0]-PEI conjugates (A), HES60[0.7]-PEI, HES60[1.0]-PEI and 
HES60[1.3]-PEI conjugates (B) as well as HES70[0.5]-PEI in comparison to 
HES30[0.4]-PEI (C) as a function of time in the presence of α-amylase with 100 
and 300U/L activity. Numbered arrows above the graphs highlight the 5 steps of 
the QCM-run; namely 1) system rinsing with buffer (15 min), 2) polymer 
adsorption onto SiO2 sensor (15 min), 3) system rinsing with buffer (15 min), 4) 
introducing α-amylase solution into the chamber and incubation for 60 min, and 5) 
system rinsing with buffer (15 min). 

The influence of HES’ degradation on the biophysical properties of the polyplexes was 

investigated by monitoring the changes in the measured surface charge upon addition of AA 

as seen in Figure III. 3. Polyplexes formed using HES60[0.7]-PEI or HES60[1.0]-PEI, with 

the molar ratio of 10:90 HES-PEI to free PEI, were incubated with AA (activity of 100 U/L) 

for 6 h at 37°C and the zeta potential was measured. The zeta potential of HES60[0.7]-coated 

polyplexes increased gradually with time after addition of AA, and levelled-off after 

approximately 1-2 h (Figure III. 3, left). Meanwhile, HES60-decorated particles with MS of 

1.0 (Figure III. 3, right) showed no increase of the surface charge over time. Similarly, no 
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effect of AA was observed on the zeta-potential of HES30-decorated particles (data not 

shown). 

 

Figure III. 3.  The effect of AA on biophysical characteristics of HESylated 
polyplexes. The surface charge of HES60[0.7]- (left) and HES60[1.0]-shielded 
(right) DNA polyplexes under the effect of AA as a function of time at 37 °C. 

3.2 Effect of molar mass and degree of hydroxyethylation on the 

luciferase reporter gene transfection efficiency in vitro 

The in vitro transfection efficiency of HES-decorated polyplexes was studied in Neuro2A 

cells incubated with DMEM in the presence or absence of 100 U/L AA. Results in Figure III. 

4 A provide clues for the effect of molar mass and amount of HES on the particle shielding, as 

evidenced by the transfection efficiency in the absence of AA (light grey bars). One notices 

that the expression of the luciferase reporter gene decreases with the increase in molar mass 

and in the amount of HES-PEI, with a decrease of 1-3 orders of magnitude compared to the 

nPx in the case of 25% HES60- and HES70-coated polyplexes, while a lower shielding effect 

was observed for the low amounts of low molar mass HES (namely HES10-PEI and HES30-

PEI with 10% HES-PEI:PEI) (see Figure III. 4 A). These results show that the molar mass 

and the amount of HES in the shell are indeed important parameters controlling the shielding 

of the polyplexes. Upon supplementation of AA, the HES-coat was degraded and the particles 

were “activated”, leading to an increase in luciferase gene expression by 1-3 orders of 

magnitude, whereas no effect could be observed for AA on the naked particles, as well as the 

particles shielded with non-degradable polymers, namely HES60[1.3] and PEG (Figure III. 4 

A). Similarly, the polymers with a low extent of biodegradation as evidenced by AF4 and 

QCM-D, i.e. HES30[1.0] and HES60[1.0], show no effect on transfection upon addition of 
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AA. Meanwhile, the most prominent effect of AA-addition is clear for polyplexes having 

higher amounts of the large molar mass HES with low MS (i.e. those strongly shielded 

polyplexes with long, highly biodegradable polymer chains, namely HES60[0.7] and 

HES70[0.5]). These polyplexes showed the highest shielding effect, and accordingly the 

addition of AA and elimination of the HES coat effectively deshielded the particles to reach a 

transfection level similar to that of nPx. The HES30[0.4]-coated polyplexes, having short 

highly biodegradable HES molecules, showed an intermediate shielding as well as an 

intermediate effect of the deshielding enzyme on the transfection efficiency. These results are 

a clear indication for selective particle activation of HESylated nanoparticles using AA, as 

well as the important effect of molar mass, MS and amount of HES in the nanoparticle corona 

on both the effective shielding and deshielding of the particles. Finally, the viability of 

Neuro2A cells was not affected by incubation with the polyplexes, independent of the 

presence of the enzyme, indicating the relative safety of these polyplexes (Figure III. 4 B&C). 
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Figure III. 4.  Cell culture experiments – Luciferase reporter gene expression (A) 
and metabolic activity (B, C) in Neuro2A cells. Surface shielding and deshielding 
studies were performed in cell culture medium without AA (-AA) and with the 
enzyme (+AA) (A). The metabolic activity was determined for cells incubated with 
the polyplexes without AA (B) and with the enzyme (C). Analysis of the reporter 
gene expression and the corresponding metabolic activity was carried out 24h 
after polyplex treatment. (Numbers after HES represent the nominal molar mass of 
HES as provided by supplier, numbers in brackets are the nominal values for MS, 
while those numbers on the X-axis represent the mixing ratio of HES-PEI (or PEG-
PEI) to free PEI in percentage, where 10% stands for 10:90 conjugate to free 
PEI). 

3.3 Gene transfer studies of HES-PEI polyplexes in vivo 

To prove the in vivo feasibility of the shielding and deshielding concept, we compared 

polyplexes coated with HES70[0.5], a polymer that shows effective shielding and AA-

catalyzed deshielding, against polyplexes coated with non-degradable polymers, namely 

HES60[1.3] and PEG20, as well as naked polyplexes. The naked polyplexes showed a high 

transfection efficiency in the lungs, indicating the formation of aggregates upon injection, 

which rapidly accumulate in the lungs (see Figure III. 5). Meanwhile, the incorporation of 

HES or PEG onto the polyplex surface reduced the gene expression in the lungs 2 to 4 orders 

of magnitude by surface shielding as illustrated in Figure III. 5. Meanwhile, by examining the 

tumor delivery of the different polyplexes, shielding the DNA polyplexes with the non-

degradable HES60[1.3] or PEG20 resulted in a very low to complete loss of gene expression 

at the tumor site, while the use of the biodegradable HES70[0.5] showed a generally higher 

transfection efficiency compared to the naked polyplexes (with the exception of one animal 

which showed an exceptionally high tumor expression with the naked polyplexes, and 

accordingly an increase in the mean expression value).  
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Figure III. 5.  Gene expression in the lungs (left) and tumor tissue (right) in 
Neuro2A-tumor-bearing A/J mice after systemic administration of naked 
polyplexes, as well as polyplexes coated with HES70[0.5] , HES60[1.3] and 
PEG20. The luciferase expression is presented as relative light units (RLU) per mg 
organ (n=5 per group), and the mean is represented as a short horizontal line. 

Another in vivo experiment was performed with HES70[0.5]-coated polyplexes to investigate 

the effect of the amount of the biodegradable polymer on the transfection efficiency in the 

lung and the tumor. Results in Figure III. 6 show that, similar to the previous experiment, the 

naked LPEI-based DNA complexes strongly accumulated in the lung, while the HES- or 

PEG-decorated particles resulted in a strong decrease in lung expression by 3 to 4 orders of 

magnitude (see Figure III. 6), almost entirely blocking the luciferase gene expression in the 

lung. Polyplexes with the lowest investigated amount of HES70-PEI resulted in an almost 2-

fold increase in luciferase expression in the tumor (illustrated in Figure III. 6, right) compared 

to nPx. Increasing the amount of HES70[0.5]-PEI three- or fivefold drastically reduced gene 

expression in the tumor, probably due to an incomplete deshielding of the higher amount of 

polymer in the particle corona, reaching expression level similar to the non-degradable PEG-

coated polyplexes. To summarize, the best results were obtained using a low degree of 

HES70[0.5]-decoration. This lead-candidate reduced the luciferase gene expression in the 

lungs 3 orders of magnitude, while maintaining good expression-levels in the tumor compared 

to the unmodified particles.  
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Figure III. 6.  In vivo luciferase expression in the lung (left) and tumor (right) 
tissue in Neuro2A-tumor-bearing mice. An amount of 50 µg pDNA (N/P ratio 6.0, 
with ratios of 10:90 (10%), 30:70 (30%) and 50:50 (50%) HES70[0.5]-PEI to free 
PEI, and 30:70 PEG20-PEI to free PEI was injected into the tail vein of A/J mice. 
Naked LPEI and PEGylated particles served as controls. The luciferase expression 
is presented as relative light units (RLU) per mg organ (n=4 animals per group), 
and the mean is represented as a short horizontal line. 

4 Discussion 

PEGylation of nanomedicines is the state-of-the-art-technique for imparting stealth character 

to nanocarriers and facilitating passive tumor targeting via the enhanced permeability and 

retention (EPR) effect [28, 29]. Similarly, the incorporation of the hydrophilic polymer PEG 

onto the surface of DNA-polyplexes increases their stability in the bloodstream and reduces 

the nonspecific interaction with blood components by the effect of surface charge shielding 

[11, 30, 31]. However, PEGylation of polymeric carriers for the delivery of nucleic acids 

reduces the gene expression by interfering with cellular uptake and endosomal release [13], 

both in vitro and in vivo. To overcome this PEG dilemma, many researchers have equipped 

PEGylated-systems with diverse labile bonds that enable shedding the disturbing PEG coat 

under the effect of various triggers [15-18, 20-22]. In a proof-of-concept study, we reported 

earlier on a novel molecular tool for tailored polyplex shielding and controlled enzymatic 

deshielding and activation using HES and α-amylase [23]. Building on our previous results, 

and in order to fine-tune the rate and extent of HES biodegradation and to harness this 

property for developing optimally designed polyplexes, we investigated the effect of molar 

mass and molar substitution on the shielding and deshielding of the polyplexes in vitro and in 

vivo. 
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Initially, the degradation rate and extent of different HES polymers under the effect of AA 

was studied in the case of the homopolymer using AF4-MALS, using QCM-D in the case of 

HES-PEI conjugates, and finally using zeta-potential measurements for the HES-coated 

polyplexes. AF4-MALS results show that the MS plays an important role in the kinetics and 

extent of the enzymatic cleavage of the α-1,4-glycosidic bonds of HES. These results were 

corroborated by the QCM experiments for the degradation of the different HES grades in the 

HES-PEI conjugates, where the polymers were adsorbed as a thin layer onto a SiO2-coated 

quartz crystal, simulating the situation at the surface of the shielded polyplexes. Both 

analytical methods showed that the biodegradation of HES under the effect of AA was faster 

and to a greater extent for the low substituted HES polymers, MS 0.4, 0.5 and 0.7, getting 

slower and less efficient with increasing MS to 1.0, and totally blocked with an MS of 1.3. In 

some cases (such as HES30[0.4] and HES70[0.5]), a rapid initial degradation, followed by 

slower HES cleavage was observed, indicating that the easier accessible α-1,4-glycosidic 

bonds of HES were cleaved at the beginning, whereas the less accessible bonds were 

degraded slower (Figure III. 1 and Figure III. 2). In a further experiment, the impact of the 

MS on the enzymatically-catalyzed degradation of HES in case of the polyplexes was 

indirectly studied by monitoring the zeta potential of HES60-decorated polyplexes. Addition 

of AA led to a gradual increase of the zeta potential in case of HES60[0.7] similar to our 

previous results with HES70[0.5] coatings [23], but had no effect for the HES60[1.0] coating, 

indicating that indeed the lower MS facilitates significant cleavage of the glycosidic bonds 

and reduction in the molar mass of HES leading to increase in the zeta potential, while in case 

of HES60[1.0], and although the polymer is relatively biodegradable, the lower extent of 

degradation (as evidenced in AF4 and QCM experiments) leads to a non-significant decrease 

in zeta potential. 

The effect of HES molar mass on its biodegradation is not unequivocal as that of MS. 

Comparing the biodegradation of HES30[0.4], HES70[0.5] and HES60[0.7], which have (to 

some extent) similar MS but different molar masses, one notices the highest rate of 

degradation in case of HES70[0.5] followed by HES30[0.4] then HES60[0.7] (see Figure III. 

1 and Figure III. 2). The lack of a clear trend in the effect of molar mass could be due to the 

slight differences in the MS of the investigated polymers. Meanwhile, molar mass has a clear 

effect on the shielding of the polyplexes, evidenced by a decrease in zeta potential with the 

increase in molar mass, as was shown previously [23]. This explains why AA had a 

significant effect on the zeta potential of the HES60[0.7]-coated polyplexes (Figure III. 3), but 

not on those coated with HES30[0.4], although both are biodegradable as evidenced by AF4 
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and QCM. As the polyplexes covered with higher molar mass HES were better shielded, that 

gives room for the effect of enzymatic degradation to show a significant increase in zeta 

potential. 

The observed effects of molar mass and MS have significant influences on the performance of 

the polyplexes in vitro, as evidenced by the transfection experiments using Neuro2A cells in 

the presence and absence of AA. In the absence of AA, polyplexes coated with high molar 

mass HES (i.e. HES60[0.7], HES60[1.0], HES60[1.3] and HES70[0.5]) showed a large 

reduction in luciferase expression compared to the naked polyplexes, and even lower 

transfection in relation to the polyplexes coated with the low molar mass HES, indicating that 

indeed the higher molar mass is effective in shielding the charge of the polyplexes as 

discussed above. Upon addition of AA, a 1-3 orders of magnitude increase in transfection 

efficiency is observed, most prominently for the biodegradable HES70[0.5] and HES60[0.7], 

and to a lesser extent with the low molar mass-low MS polymers (HES30[0.4]), and no 

increase was observed with all the high MS polymers (MS 1.0), and the non-degradable 

polymers (HES60[1.3] and PEG20). These results can be explained as follows: the high molar 

mass-low MS HES offers high shielding due to the large polymer chains (evidenced by a high 

reduction in zeta potential [23], and a high reduction in the transfection efficiency, compared 

to LPEI in the absence of AA) as well as high biodegradability due to the low MS (as seen in 

the AF4 and QCM-D results). Addition of AA degrades these highly shielded polyplexes 

leading to significant increase in the transfection efficiency. Polyplexes coated with low molar 

mass and low MS HES (HES30[0.4]) show a moderate increase in transfection, despite the 

fact that they have a highly biodegradable HES (as seen in AF4 and QCM-D) due to their 

originally low shielding (evidenced by their higher transfection efficiency in the absence of 

AA), so that the addition of AA does not have room to achieve a significant increase in zeta-

potential or transfection. Similarly, the lack of increase in transfection in the HES60[1.0]-

coated particles is due to the low degree of degradation as seen in the HES degradation 

experiments. Finally, the non-degradable polymers (HES60[1.3] and PEG20) as well as naked 

polyplexes did not show any response to the addition of AA, indicating the specificity of the 

effect of AA on biodegradable HES.   

Finally, the in vivo transfection efficiency of the HES shielded polyplexes was tested in tumor 

bearing mice. In general, the systemic administration of naked LPEI-polyplexes results in an 

uncontrolled nucleic acid delivery to different organs, with the highest gene expression levels 

observed in the lung [32], due to the non-specific interaction with blood components and the 

associated aggregation. Results in Figure III. 5 and Figure III. 6 show that our shielding and 
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deshielding concept is a promising approach, maintaining particle stability in the bloodstream 

as well as their transfection efficiency at the tumor site by enzymatic deshielding. For 

instance, while all shielded polymers show up to 4 orders of magnitude reduction in luciferase 

expression in the lungs compared to the naked polyplexes, the biodegradable HES70[0.5] 

maintained the tumor expression similar to or higher than the naked polyplexes, in contrast to 

the non-degradable polymers HES60[1.3] and PEG20, which nearly abolished the tumor 

expression (Figure III. 5 and Figure III. 6). The amount of HES70[0.5] in the shell proved to 

be important too, since increasing this amount reduced the tumor expression significantly to 

levels similar to the non-degradable PEG20 (Figure III. 6).  

5 Conclusions 

This study was designed to investigate the effect of HES’ molecular characteristics, namely 

molar mass and molar substitution (MS) on the shielding and deshielding of HES-coated 

polyplexes, as well as providing evidence for the in vivo feasibility of this approach. The AA-

catalyzed biodegradation of HES was investigated on different HES homopolymers using 

AF4-MALS, and on a battery of synthesized HES-PEI conjugates using QCM-D, and finally 

on HES-decorated polyplexes using zeta potential measurements. Results from these 

experiments showed higher rates and extents of HES biodegradation in case of low MS, 

decreasing with the increase in MS, and completely abolished for MS 1.3. Meanwhile, the 

molar mass and amount of HES played an important role in the shielding of the polyplexes, as 

evidenced by the decrease in the in vitro transfection efficiency in Neuro2A cells with 

increasing molar mass or amount of HES. Deshielding the polyplexes by addition of AA leads 

to a 1-3 orders of magnitude increase in the transfection efficiency, particularly for the highly 

degradable (i.e. low MS) high molar mass polymers, while the non-degradable polymers 

showed no effect for AA, indicating the specific influence of AA on HES deshielding. 

Finally, the in vivo experiments showed that indeed the concept of HES-mediated shielding 

can lead to significant reduction in lung expression, while the AA-catalyzed deshielding can 

maintain or increase tumor transfection levels, as seen with the HES70[0.5]-coated 

polyplexes. In conclusion, this study shows the importance of the fine balance between molar 

mass, MS and the amount of HES in controlling the shielding and AA-catalyzed deshielding 

of HES-coated polyplexes, and proves for the first time, the feasibility of this approach for the 

in vivo gene delivery. 
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Abstract 

Hydroxyethyl starch (HES) has been proposed as a biodegradable substitute of PEG for the 

shielding of DNA polyplexes, where the feasibility of this approach was shown both in vitro 

and in vivo. In this study, we report on the physicochemical characterization and 

biocompatibility of HES-decorated polyplexes. For this purpose, HES with different molar 

masses and molar substitutions was coupled to a 22 kDa linear polyethylenimine (LPEI22) to 

produce a library of nine different HES-PEI conjugates. Particle size and morphology of 

HES-decorated polyplexes were evaluated using DLS, atomic force microscopy (AFM), 

transmission electron microscopy (TEM) and zeta potential measurement. DLS results 

showed that, neither the molar mass of HES nor the amount of HES in the polyplexes affected 

the particle size, as they were all around 70-80 nm in diameter. Additionally, AFM and TEM 

images showed that both naked and HESylated polyplexes were in the same size range and 

had a spherical morphology. Meanwhile, the HES-mediated particle-shielding effect, 

manifested as reduction in the surface charge, strongly correlated with the molar mass of 

HES, where the charge decreased linearly with the increase in molar mass. Ethidium bromide 

binding assay showed that HES-PEI did not negatively affect DNA condensation at N/P ratios 

higher than 4. HES-conjugation also showed a stabilizing effect against salt-induced particle 

disassembly, and particle aggregation in protein-containing media. Biocompatibility tests 

included cellular viability with increasing polymer concentration, as well as erythrocyte 

aggregation and hemolysis assays. HES-PEI conjugates showed lower cytotoxicity, no 

aggregation and much lower hemolysis compared to unmodified PEI. In conclusion, these 

results show that the HES-PEI conjugates are promising gene delivery polymers with 

favorable physicochemical properties and biocompatibility profile.  

 

Keywords 

Hydroxyethyl starch (HES), linear polyethylenimine (LPEI), characterization, stability, 
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1 Introduction 

Polyplexes for non-viral gene and oligonucleotide delivery represent an actively studied field 

which holds promise for the treatment of acquired or inherited diseases. However, the 

experience from more than two decades in the field of polymeric gene delivery has shown that 

still a number of hurdles and limitations must be overcome, most importantly, the 

development of safe and highly efficient carriers that can overcome intra- and extracellular 

barriers.  

 

Since these polyplexes are prepared using polycations, most notably polyethylenimine [1, 2], 

they carry a positive charge, which leads to non-specific interaction with blood components, 

aggregation and premature elimination by the body’s immune system. One way to overcome 

this problem is using hydrophilic polymers, such as polyethylene glycol, to shield the 

polyplexes against these interactions. However, PEGylation is known to reduce cell-uptake 

and endosomal release by steric interference, in what is known as the “PEG-dilemma” [3-5]. 

Several strategies were introduced for shedding the interfering PEG molecules after reaching 

their destination by incorporating unstable bonds, which are responsive to diverse stimuli, 

such as reducing environment or acidic pH [6-9]. 

 

We recently proposed the use of hydroxyethyl starch (HES) as a substitute for PEG, with the 

aim of controlled shielding and enzymatically catalyzed deshielding using amylase [10, 11]. 

Those core-shell nanoparticles with HES-decoration showed a reduced in vitro transfection in 

the absence of alpha amylase (AA), indicating a successful particle shielding. However, the 

addition of AA caused up to 3 orders of magnitude increase in gene transfer in vitro [11]. An 

in vivo proof-of-concept study showed that HES strongly reduced non-specific aggregation 

and the associated accumulation in the lungs, and increased gene expression in the tumor, 

whereas gene-carriers with non-degradable HES or PEG coats showed low gene transfer in 

both the lung and tumor [10]. These results showed the feasibility of HES-PEI conjugates for 

effective gene transfer. 

 

For the future use and optimization of such HES-decorated nanoparticles, a thorough 

investigation of their physicochemical properties and biocompatibility is required.  In the 

current study, we provide a detailed insight into these properties, where the physicochemical 

characterization focused on the effect of HES molar mass on the particle size and the zeta 
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potential of the polyplexes, the condensation of DNA by the modified polycation, as well as 

the stability of the polyplexes in the presence of salt or serum. Additionally, the 

biocompatibility studies provided information about the cellular toxicity, hemolytic activity 

and erythrocyte aggregation of different HES-PEI copolymers. The homopolymer LPEI and 

copolymer PEG-PEI were used as controls in most of the experiments. 

2 Experimental section 

2.1 Materials 

HES 70[0.5] with a weight-average molar mass (Mw, number after HES; nominal value as 

provided by supplier) of 70 kDa and a molar substitution (MS is the mean number of 

hydroxyethyl groups per glucose unit; nominal value as provided by supplier; number in 

square brackets) of 0.5 was kindly provided by Serumwerk Bernburg, Germany. HES20[0.5] 

was synthesized from HES70[0.5] by acid hydrolysis as reported in [11]. HES10[1.0], 

HES30[0.4], HES30[1.0], HES60[0.7], HES60[1.0] and HES60[1.3] were kindly provided by 

Fresenius Kabi (Bad Homburg, Germany). Sodium cyanoborohydride (NaBH3CN) was 

purchased from Merck Schuchardt OHG (Hohenbrunn, Germany). Linear polyethylenimine 

with an average molar mass of 22 kDa (PEI22) and the PEG20-PEI conjugate (PEG20: 

polyethylene glycol with the average molecular weight of 20 kDa) were synthesized as 

described in [12]. Plasmid pCMVluc was prepared by PlasmidFactory, Bielefeld, Germany. 

Ethidium bromide solution and Triton-X 100 were purchased from Sigma-Aldrich (Steinheim, 

Germany). Cell culture medium, antibiotics and fetal calf serum (FCS) were purchased from 

Life Technologies (Karlsruhe, Germany). Other solvents and chemicals were reagent grade 

and were used as received. 

2.2 Methods 

2.2.1 Synthesis and characterization of HES-PEI co-polymers 

Conjugates of different HES molecules with LPEI22 were prepared via Schiff´s base 

formation and reductive amination as described earlier [10, 11]. Additionally, the purified 

samples were characterized using 1H-NMR, copper assay, and SEC [11]. 
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2.2.2 Preparation and biophysical characterization of polymer-based transfection 

particles 

Naked LPEI-based polyplexes (nPx) were prepared by the rapid addition and mixing of PEI to 

the plasmid pCMVluc (pDNA) (at a final DNA concentration of 20 µg/mL in HEPES 

buffered glucose (HBG); 20 mM HEPES, 5 % glucose (w/v), pH 7.1) at N/P 6.0, then 

incubated at room temperature for 30 minutes prior to analysis. For instance, PEI/DNA 

transfection particles at the N/P ratio of 6.0 were composed of 20 µg DNA and 16 µg PEI. 

HESylated polyplexes were produced in the same fashion as nPx, with the exception that pure 

PEI was partially replaced by HES-modified PEI, e.g. HES70-PEI/DNA complexes at N/P 

ratio 6.0 and a ratio of PEI to HES-modified PEI of 90:10 were made of 20 µg DNA, and a 

mixture of 14.4 µg PEI and 1.6 µg HES70-PEI (based on PEI). HESylated polyplexes were 

generated with the ratio 90:10 of PEI to HES-PEI conjugates (unless otherwise stated). 

Polyplexes containing PEG20-PEI were prepared at 90:10 molar rate of free PEI to PEG-PEI 

conjugates.  

 

2.2.3 Dynamic light scattering (DLS) 

The hydrodynamic diameter of LPEI-based polyplexes was studied using the Malvern 

Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK). Measurements were 

performed in disposable 70 µL micro UV-cuvettes (Brand, Wertheim, Germany). Samples 

were analyzed at 25°C (n ≥3). 

 

2.2.4 Transmission Electron Microscopy (TEM) 

TEM images were obtained using a TITAN 80-300 S/TEM (FEI Company). Naked 

polyplexes, HES-modified particles (70Px and 20Px, supplemented with 10% HES-PEI, 

respectively) were generated following the standard procedure allowing a 30 minutes 

polyplex formation time. The used grids (Formvar/carbon-filmed 400 mesh copper) were 

treated with oxidative H2/O2 gas chemistry applying the Solarus (Model 950) Advanced 

Plasma Cleaning System (Gatan GmbH, Germany) for the removal of hydrocarbon 

contaminations. The DNA-polymer solutions (5 µL) were placed onto the grid for 5 minutes 

allowing particle immobilization. The grid was dried using filter paper and rinsed twice with 

highly purified water. After drying, negative staining of the TEM sample was performed by 

adding a volume of 5 µL of 1% phosphotungstic acid for 5 minutes. Air-dried samples were 

measured applying a voltage of 80 kV. 
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2.2.5 Atomic Force Microscopy (AFM) 

Measurements were performed on a MFP-3D atomic force microscope (Asylum Research, 

Santa Barbara, CA), applying the tapping mode in air. Arrow-UHF-10 cantilevers 

(Nanoworld, Switzerland) were used at a drive frequency of approximately 306 kHz, the scan 

rate was set to 1 Hz with pixel scan points of 256 x 256 or 512 x 512. AFM images were 

analyzed using Igor Pro v.5.05A (WaveMetrics, US). LPEI-based polyplexes and HESylated 

particles (10% shielding domain) were generated following the standard procedure. 

Polyplexes were placed onto cover glass for 10 min allowing particle-on-surface 

immobilization. Following rinsing the glass basis cautiously with highly purified water the 

material was dried in air and analyzed. 

 

2.2.6 Zeta potential measurement 

The effect of different HES coatings on the surface charge characteristics of LPEI polyplexes 

was evaluated by zeta potential measurements using Malvern Zetasizer Nano ZS (Malvern 

Instruments, Worcestershire, United Kingdom) (n≥3). Measurements were performed with 

750 µL polyplex solution in folded capillary cells at 25°C. 

 

2.2.7 DNA binding evaluation using ethidium bromide (EtBr) binding assay 

HBG pH 7.1 or HBS (HEPES-buffered saline, 20 mM HEPES, 150 mM NaCl, pH 7.1) was 

pipetted into black 96-well plate (Nunc), six microgram pDNA and the corresponding 

quantity of polymers were added to give a final DNA concentration of 20 µg/mL nucleic acid 

in altogether 300 µL volume. Polyplexes were allowed to incubate for 30 minutes, before an 

amount of 20 µL EtBr solution (concentration 100 µg/mL in water) was supplemented. The 

pDNA binding ability of various HES-PEI conjugates was evaluated under the effect of 

increasing polymer concentrations. The reduction of intercalation of EtBr in DNA was 

followed using a Cary Eclipse Fluorescence Spectrophotometer (Varian), where λex 510 nm 

and λem 590 nm was utilized [13]. The relative fluorescence was calculated Fpolyplex / Fnaked 

DNA, where the fluorescence of naked DNA was 1.0 and the fluorescence of EtBr control 

solution was 0.  

 

2.2.8 Colloidal stability of HESylated PEI-based DNA complexes 

The intercalation behavior of nucleic acid intercalator EtBr was utilized to study the stability 

of polyplexes against sodium chloride. HBG pH 7.1 was pipetted into black 96-well plate 
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(Nunc), 6 µg pDNA and the corresponding quantum polymers were added to give a final 

DNA concentration of 6 µg nucleic acid in altogether 300 µL polyplex solution. DNA-

polymer complexes were generated at N/P ratio 6.0. Polyplexes containing HES-PEI were 

prepared at 90:10, molar ratio of free PEI to HES-PEI conjugates. HES20- and HES70-

decorated particles were additionally made at 75:25 and 50:50 ratios to study the impact of the 

amount of HES on the stability against sodium chloride. Polyplexes were allowed to incubate 

for 30 min, before 20 µL EtBr solution (100 µg/mL) was supplemented. A predefined amount 

of 5 M NaCl was stepwise added to the polyplex solutions (sodium chloride titration from 0 to 

1 M NaCl concentration). Samples were allowed to incubate for 5 min, and the EtBr 

fluorescence was followed using a Cary Eclipse Fluorescence Spectrophotometer (Varian), 

where λex = 510 nm and λem = 590 nm. The relative fluorescence (RF) was calculated as 

Fluorescencepolyplex / Fluorescencenaked DNA. A polynomial fit (2nd order) was performed to 

determine NaCl concentrations at RF 0.5 and 0.75.  

 

2.2.9 Polyplex stability in protein-containing medium  

HES20- and HES70-decorated polyplexes (90:10, molar ratio of free PEI to HES-PEI) were 

prepared according to the standard procedure, following 30 min particle generation time, 100 

µL polyplex solution was mixed with 900 µL DMEM (1 g/L glucose, 10% FCS). DLS 

measurements were performed in the high resolution mode (multiple narrow mode), where 

peak 1 was taken to analyze the large particle aggregates. Naked LPEI- and PEG20-decorated 

polyplexes served as controls. All measurements are given as mean values of three 

independent runs performed in triplicates. 

 

2.2.10 Evaluation of the cytotoxicity of plain HES-decorated PEIs  

All cultured cells were grown at 37 °C in 5% CO2 humidified atmosphere. Human hepatoma 

cells HUH7 (JCRB 0403, Tokyo, Japan) were cultured in DMEM (Dulbecco's Modified Eagle 

Medium)/HAM's F12 medium (1:1). The medium was supplemented with 10% FCS, 4 mM 

stable glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin. The viability of HUH7 

cells after treatment with increasing amounts of HES-modified PEIs was evaluated using the 

MTT assay. Twenty four hours before polymer treatment, human HUH7 cells were seeded at 

a density of 1x104 cells per well in 100 µL medium. Directly before addition of HESPEI, the 

medium was exchanged against fresh medium with/without pancreatic alpha amylase (AA; 

100 U/L). Various amounts of co-polymers were added to the cells up to the polymer 
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concentration 1 mg/mL (based on PEI). 4 h after addition of various amounts of HESPEI, the 

medium was replaced by fresh medium with/without AA. 24 h after polymer treatment, MTT 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was dissolved in PBS at 5 

mg/mL, and 10 µL aliquots were added to each well reaching a final concentration of 0.5 mg 

MTT/mL. After an incubation time of 2 h, unreacted dye with medium was removed and the 

cells were lyzed by incubation at -80 °C for 30 minutes. The formazan product was dissolved 

in 100 µL/well dimethyl sulfoxide and quantified using a plate reader (Tecan, Groedig, 

Austria) at 590 nm with background correction at 630 nm. The metabolic activity (%) relative 

to control wells containing HBG-treated cells was calculated (A test/A control x 100). 

 

2.2.11 Erythrocyte aggregation assay  

Fresh citrate buffered blood (25mM) from 1-year old female CD-1 nude mice was washed by 

centrifugation (2500rpm, 700-800g) with a PBS/sodium citrate mixture (9:1, 25mM sodium 

citrate) until a colorless supernatant was obtained. The erythrocyte pellet was diluted with 

PBS pH 7.4 at a concentration of 4% (V/V). An amount of 100µL red blood cell (RBC) 

suspension was mixed with 50µL of various polymer solutions. LPEI, HES70[0.5]-PEI and 

PEG20PEI were added at the final concentrations 10, 50 and 100 µL/mL (based on LPEI), 

polymer/erythrocyte solutions were incubated in 24-well plates for 30 and 120 minutes at 

37°C under constant gentle agitation. For microscopic analysis pictures were taken with a 

Keyence VHX-500F digital microscope with 1000-fold magnification.   

 

2.2.12 Hemolysis assay  

An amount of 75 µL RBC suspension (for preparation see erythrocyte aggregation assay) was 

mixed with 75µL of various polymer solutions in V-bottom 96 well plates. Polymers were 

supplemented at the final concentration 10, 50 and 100µg/mL based on LPEI and based on 

total polymer, respectively. Mixtures were incubated for 60 minutes at 37°C under constant 

gentle shaking. Following centrifugation, the absorbance of the excess was measured at 405 

nm. PBS buffer (0% released hemoglobin) and 1% (V/V) Triton-X (100% lysis) were used as 

controls. Erythrocyte leakage assay data are the means of experiments performed in 

quadruplicates. 
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3 Results 

3.1 HES-PEI conjugates synthesis and characterization   

HES-PEI copolymers were prepared by grafting HES onto the linear polyethylenimine PEI by 

Schiff’s base formation via an unstable aminol intermediate that immediately rearranges to an 

enamine function. In a second step, the reducing agent sodium cyanoborohydride reduces the 

enamine to secondary amine groups [10, 11]. A battery of HES-PEI conjugates was 

synthesized with varying HES molar masses and molar substitution and different ratios of 

coupled HES to PEI. The synthesized co-polymers were characterized using 1H NMR, UV 

spectroscopy (colorimetric copper assay), and SEC, as reported earlier [11]. Both 1H NMR 

spectroscopy and photometric copper assay delivered very similar results regarding the extent 

of coupling of HES to PEI, as illustrated in Table IV. 1. These co-polymers act as the basis for 

fine-tuning the properties of HES-coated polyplexes, which allow the controlled polyplex 

shielding and deshielding as previously demonstrated in vitro and in vivo . In this work, we 

report on some important physicochemical properties of these polyplexes, as well as the 

biocompatibility of these conjugates. 

 

Table IV. 1. Mass ratio and molar ratio of HES:PEI for generated HES-PEI 
copolymers as determined by 1H-NMR and the copper assay. 

 Amount of HES  in generated 

HES-PEI conjugates (1H NMR)  

Amount of HES in generated 

HES-PEI conjugates (UV) 

Mass ratio % Molar ratio 

HES : PEI 

Mass ratio % Molar ratio 

HES : PEI 

HES10[1.0]-PEI 35.12 1.36 : 1 28.0 ± 2.3 0.98 : 1 

HES20[0.5]-PEI 56.70 1.64 : 1 56.7 ± 8.8 1.64 : 1 

HES30[0.4]-PEI 74.74 2.47 : 1 72.8 ± 1.0 2.24 : 1 

HES30[1.0]-PEI 50.39 0.85 : 1 51.0 ± 3.4 0.87 : 1 

HES60[0.7]-PEI 79.97 1.67 : 1 79.6 ± 1.4 1.63 : 1 

HES60[1.0]-PEI 75.40 1.28 : 1 76.0 ± 0.7 1.32 : 1 

HES60[1.3]-PEI 79.97 1.67 : 1 78.0 ± 4.2 1.49 : 1 

HES70[0.5]-PEI 88.20 2.68 :1 88.3 ± 1.5 2.71 : 1 
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3.2 Physicochemical characterization of the generated polyplexes 

3.2.1 Particle size 

The effect of the modification of PEI with HES having different molar masses and degrees of 

substitution on the formation of polyplexes, their particle size and polydispersity were 

evaluated using DLS. All HES-decorated polyplexes were generated at N/P ratio of 6.0, 

where 90% PEI and 10% HES-PEI (based on PEI) were used. For these studies, naked 

polyplexes (LPEI alone) and PEG20-PEI polyplexes served as controls. DLS results show that 

all studied polyplexes displayed a very homogenous size distribution, with a polydispersity 

index of ~ 0.1, and particle sizes in the range of 70-80 nm, an ideal size range for passive 

tumor targeting [14], with a slightly higher size for particles shielded with PEG or high molar 

mass HES (Figure IV. 1A).  

 

A B C 

 

  

  

  

  

Figure IV. 1. Left panel: Particle size and polydispersity index of various HES-
decorated polyplexes. Middle panel: Transmission electron microscopy images 
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showing the size and morphology of the polyplexes (top: LPEI-Px; middle: 
HES70[0.5]-Px; bottom: HES20[0.5]-Px). Right panel: Atomic force microscopy 
images of the polyplexes (top: LPEI-Px; middle: HES70[0.5]-Px; bottom: 
HES20[0.5]-Px). 

Additionally, the morphology and particle size of 2 HES-shielded samples (namely 

HES70[0.5]-Px and HES20[0.5]-Px) as well as naked polyplexes were studied using TEM 

and AFM. TEM-samples showed that all 3 particles were spherically shaped, with particle 

sizes between 50-100 nm, which is in good agreement with the results determined from DLS 

measurements (see Figure IV. 1 A and B). It is worth noting that no significant difference in 

shape or size could be observed between the naked or the HES- decorated particles. Similarly, 

the AFM measurements performed applying the tapping mode in air showed that the LPEI- 

and HES-PEI complexes were spherical particles with smooth surfaces, with sizes in the same 

range as DLS and TEM measurements. No free pDNA could be observed in AFM 

measurements, which is an indication for successful nucleic acid condensation (Figure IV. 1 

C). 

3.2.2 Surface charge 

The effect of incorporation of HES with varying molar masses on the polyplexes´ surface 

charge was evaluated by measuring the zeta potential. As expected, the hydrophilic polymers 

shielded the nanoparticles and reduced the zeta potential. The effect of molar mass on the 

reduction of zeta potential showed a strong negative correlation (Figure IV. 2, R2 = 0.96). 

This shows that the surface charge can be fine-tuned by modifying the molar mass of HES.  

 

 
 



Characterization and biocompatibility of HES-PEI conjugates 

-96- 
 

Figure IV. 2. Surface charge HESylated polyplexes at N/P ratio 6.0 with the ratio 
of free PEI to HES-PEI 90/10 (Left). Zeta potential of HES-decorated particles 
plotted against the molar mass of HES (Right). 

3.3 DNA condensation by HES-PEI 

Building stable polyplexes via electrostatic interaction is a prerequisite for efficient delivery 

of genes.  

The effect of HES-PEI copolymers on DNA condensation was further evaluated by an EtBr 

exclusion assay. This is based on the fact that free EtBr exhibits a very low fluorescence 

intensity, which increases significantly upon intercalation with DNA. Accordingly, 

condensation of DNA by cationic polymers decreases fluorescence by inhibiting EtBr 

intercalation [15]. The DNA binding ability of LPEI and modified PEIs was studied under the 

effect of increasing N/P ratio. The relative fluorescence (RF) of LPEI-condensed polyplexes 

decreased with increasing N/P ratio (i.e. with increasing amounts of PEI), leveling-off at 

around N/P ratio 3, both in HBG and HBS (Figure IV. 3). In comparison to LPEI, the HES-

modified PEIs exhibited a lower nucleic acid binding ability at low polymer:DNA ratios up to 

approximately N/P ratio 4 in both HBG as well as the salt-containing HBS (probably due to 

steric hindrance), however, no difference in DNA condensation capacity could be observed at 

N/P ratios higher than 4.0, including N/P ratio 6, which is often used for in vitro and in vivo 

experiments [10, 11]. The molar mass of HES did not seem to have a significant influence on 

DNA binding, since the higher molar mass HES70[0.5]-PEI exhibited similar nucleic acid 

condensation ability as HES20[0.5]-PEI. Meanwhile, the DNA condensation turned out to be 

disturbed in the presence of the salt-containing buffer (HBS) in contrast to the sugar-

containing one (HBG), with the relative fluorescence leveling-off at approximately 0.2 in the 

case of salt-free HBG and at 0.4 in HBS, indicating a higher amount of EtBr binding in the 

latter case, and accordingly a less efficient condensation. This is probably due to ion-shielding 

of the charged groups and disturbance of the electrostatic interaction between the polycation 

and DNA.  
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Figure IV. 3. Ethidium bromide (EtBr) exclusion assay - DNA binding ability of 
HES-modified PEIs. Relative fluorescence of EtBr as a function of N/P ratio for 
HES20 and HES70- decorated polyplexes in HBG (Left) and HBS (Right). 

3.4 Stability of HES-decorated polyplexes 

Polyplexes usually suffer from insufficient colloidal stability in physiological environment, 

leading to their disassembly or aggregation, which represents a major limitation for their in 

vivo application [16, 17]. For this reason, these factors were tested in vitro. First, the stability 

against disassembly due to increasing ionic strength was evaluated. The dissociation behavior 

of HES-decorated polyplexes was studied by making use of a modified EtBr-based DNA-PEI 

binding assay at increasing concentrations of sodium chloride. Sodium chloride interfered 

with the DNA condensation by the polycation leading to partial or complete disassembly of 

the polyplexes, allowing the intercalation of DNA and EtBr. Accordingly, at higher salt 

concentrations, the DNA was not bound sufficiently and the RF took the value 1 similar to 

uncondensed pDNA. Results show that the naked polyplexes were more sensitive towards 

NaCl, while the presence of HES seemed to reduce the disassembly of the polyplexes (Figure 

IV. 4 and Table IV. 2). The effect of the molar mass and the total amount of HES on the 

polyplex stability against NaCl-induced disassembly was investigated with the HES20- and 

HES70-PEI conjugates. HES20 increased the resistance of the particles to disassembly with 

increasing amount of HES (Figure IV. 4 A and Table IV. 2), while increasing amounts of 

HES70 led to reduction in terms of colloidal stability (Figure IV. 4 B and Table IV. 2). 
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Figure IV. 4. Colloidal stability of HES-modified polyplexes. Relative 
fluorescence of EtBr in a polyplex solution as a function of increasing NaCl 
concentration for different HES-PEI:PEI ratios of HES20-decorated (A) and 
HES70-decorated (B) polyplexes. 

 

Table IV. 2. Colloidal stability of HES-modified polyplexes. The relative 
fluorescence (RF) of 1.0 represents naked pDNA, RF ~ 0.15 is the initial RF for 
compactly bound pDNA in the polymeric matrix.  

 

 Conc. of NaCl [M] 

leading to RF 0.50 

Conc. of NaCl [M] 

leading to RF 0.75 

LPEI  0.210 0.435 

HES20PEI 

10% 0.222 0.466 

25% 0.254 0.591 

50% 0.263 0.591 

HES70PEI 

10% 0.269 0.573 

25% 0.254 0.553 

50% 0.249 0.500 

 

Another experiment evaluated the aggregation behavior of the nanoparticles in the presence of 

serum proteins. For this purpose, the particle size of the polyplexes was followed in DMEM 

cell culture medium supplemented with 10% fetal calf serum (FCS) using DLS. Once in 

contact with the cell culture medium, naked polyplexes showed a significant increase in size, 

  

A B 
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probably because the negatively charged proteins seemed to physically cross-link the 

positively charged particles. Meanwhile, particle shielding using HES and PEG diminished 

the tendency to form large protein aggregates with the effect HES20 < PEG20 = HES70 

(Figure IV. 5). 

 

 

 

Figure IV. 5. Polyplex stability in protein-containing medium. DLS measurements 
of particle size for naked polyplexes, as well as polyplexes decorated with HES20, 
HES70 and PEG20 at time points 0, 30 and 60 min after mixing the polyplexes 
with DMEM supplemented with 10% FCS. 

3.5 Biocompatibility of HES-PEI conjugates 

3.5.1 Cytotoxicity of HES-PEI to HUH7 cells 

The cytotoxicity of HES-PEI copolymers was tested on HUH7 cells using the MTT assay. 

Results show that the cellular metabolic activity of the HUH7 cells decreased with increasing 

polymer concentrations, where LPEI homopolymer induced significant cell death at 

concentrations > 10 µg/mL. Meanwhile, all HES-PEI copolymers exhibited reduced cell 

toxicity, manifested as higher metabolic activity compared to LPEI at the same concentrations 

(Figure IV. 6). While HES70[0.5]-PEI showed the lowest cytotoxicity, probably due to the 

fact that it has the highest molar mass, and accordingly the best steric hindrance, the effect of 
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HES’ molar mass is not unequivocal, since lower molar masses showed mixed cytotoxicities 

(Figure IV. 6). 

 

 

Figure IV. 6. The viability of HUH7 cells under the effect of increasing 
concentrations of PEI or HES- PEI conjugates as determined by the MTT assay. 

3.5.2 Hemocompatibility of modified LPEIs  

The erythrocyte aggregation assay was performed to study the interaction of modified PEIs 

with RBCs. For this purpose, erythrocytes were incubated with different concentrations of 

LPEI and modified LPEIs ranging from 10 µg/mL to 100 µg/mL. Homopolymer LPEI formed 

large aggregates via electrostatic interaction between the cationic polyamine and anionic cell 

membranes. PEG20-modified PEI showed a tendency to form small erythrocyte aggregates at 

high concentration after 2 h incubation. Modification of LPEI with HES70[0.5] could prevent 

polymer-induced RBC aggregation by the effect of charge shielding at 10, 50 and 100 µg/mL 

PEI concentration after 30 and 120 minutes incubation time (see Table IV. 3 and SI).  
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Table IV. 3. Erythrocyte aggregation assay. LPEI, PEG-PEI and HES70[0.5]-PEI 
in concentrations of 10, 50 and 10 µ g/mL were incubated with RBCs for 30 or 120 
min, and the aggregation was observed using an optical microscope. 
Classification: - no aggregation, + weak aggregation, + + medium aggregation,  
+ + + strong aggregation 

 Conc. [µg/mL] 

based on LPEI 

Incubation time [min] Visual characterization 

(100 µg/mL, 120min) 30 120 

LPEI 

10 + + + + 

 

50 + + + + + 

100 + + + + + + 

 

HES70[0.5]-

PEI 

10 - - 

 

50 - - 

100 - - 

 

PEG20-PEI 

10 - - 

 

50 - - 

100 + + 

 

 

 

Additionally, hemolytic activity of HES70[0.5]-PEI was compared to LPEI and PEG-PEI. It 

was calculated after 60 minutes of incubation using the following correlation: 

 

Hemolysis = %100
)(

)(
×

−
−

− bufferXTriton

bufferPolymer

ODOD

ODOD
 

+ + + 

- 

+ 
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where OD is the optical density measured at 405 nm.  

 

The hemolytic activity of LPEI, HES70[0.5]-PEI and PEG20-PEI showed a  strong 

concentration-dependence, increasing with increasing concentration. HESylation of PEI 

drastically reduced the PEI-induced hemolysis, whereas PEG20-PEI resulted in a marginally 

reduced hemolytic activity in comparison to LPEI (Figure IV. 7). For instance, erythrocyte 

treatment with 100 µg/mL of HES70[0.5]-PEI (based on LPEI) induced significantly lower 

hemolysis compared to 10 µg/mL LPEI and is considered to be not hemolytically active 

according to Richardson et al. [18]. 

 

 

 

Figure IV. 7. Hemolytic activity of shielded and naked LPEI polymers. 
Erythrocytes were treated with different amounts of LPEI and modified PEIs. The 
hemolysis was determined by measuring the optical density relative to Triton X 
(100% lysis) and buffer (0% lysis) after 60 min incubation at 405 nm.  
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4 Discussion 

The design and development of stable and biocompatible non-viral DNA carriers is an 

inevitable prerequisite for safe and efficient in vivo applications. We reported earlier on the 

use of HES-PEI for the controlled delivery of pDNA in vitro and in vivo [10, 11]. In vitro 

results showed that HES-coated polyplexes have a reduced transfection in comparison to 

naked polyplexes in the absence of alpha amylase (AA). Addition of AA increased the 

transfection efficiency by 2-3 orders of magnitude, indicating the effective deshielding of the 

particles using AA [11]. In vivo results showed that HES coating reduced the transfection in 

the lung approximately 3 orders of magnitude, indicating effective shielding of the particles 

and prevention of aggregation in the blood stream. At the same time, the transfection 

efficiency in the tumor was nearly doubled compared to PEGylated polyplexes, pointing to 

the deshielding action of serum alpha amylase in vivo [10]. 

 

For the sake of a better understanding of these novel polyplexes, and their optimum use for 

nucleotide delivery, we further studied their physicochemical properties and biocompatibility. 

Accordingly, a battery of HES-PEI copolymers was synthesized by reductive amination, with 

different HES molar masses and degrees of hydroxyethylation. The polymers were 

characterized using 1H NMR and UV-spectroscopy, and the results were reported earlier (see 

Reference [10] and Table IV. 1).  

 

Regarding the physicochemical characterization of the HES-decorated polyplexes, we found 

that surface modification with HES did not affect the particle size, polydispersity index or the 

morphology of the polyplexes. Regardless of the coating polymer, all polyplexes showed 

hydrodynamic diameters of ~70-80 nm, as well as a spherical morphology with smooth 

surface as determined by TEM and AFM (see Figure IV. 1). This size range is ideal for 

passive tumor targeting, since particles with approximately 100 nm size can passively 

accumulate into leaky tumor tissue by the help of the EPR effect [19]. Meanwhile, the 

incorporation of the hydrophilic polymer HES reduced the zeta potential of LPEI-based 

transfection complexes from more than +30 mV in the case of naked polyplexes down to less 

than +10 mV for HES70-decorated particles. The effect of shielding strongly correlated with 

the molar mass of HES (see Figure IV. 2). The effective reduction in zeta potential is 

important in preventing non-specific electrostatic interaction with blood components, thus 

hindering the formation of aggregates and lung accumulation [20]. These results show that it 
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is possible to fine tune the charge of the particles by controlling the molar mass of the utilized 

HES.  

 

Another important issue in polyplex formation is the effect of the conjugated HES on the 

DNA condensation by LPEI. As described by other groups [21-23], polycation modification 

using hydrophilic polymers often leads to hindered nucleic acid compaction capacity of the 

homo-polymer. This conforms to the observed ethidium bromide binding experiments 

showing a reduction in the DNA binding ability of HES-PEI copolymers at low N/P ratios 

compared to LPEI. However, no differences in DNA compaction could be observed at N/P 

ratios higher than 4 (Figure IV. 3). This means that at the N/P ratio of 6, the commonly used 

ratio for polyplex formation and use, DNA condensation should not be a concern for HES-

modified PEIs.  

 

The stability of the polyplexes towards disassembly by increasing ionic strength or 

aggregation upon addition to protein-containing medium is essential for evaluating polyplex 

efficiency and performance. Accordingly, the polyplex stability against sodium chloride-

induced disassembly was evaluated using a modified EtBr exclusion assay. Small amounts of 

NaCl solution were added to pre-generated particles and the fluorescence was followed under 

the effect of increasing salt concentrations. Incorporation of HES-PEI into LPEI/pDNA 

polyplexes increased their colloidal stability towards disassembly, presumably due to steric 

hindrance. The disassembly between the 2 polyelectrolytes requires coordinated movement 

between their many building units, and this movement seems to be hindered by the presence 

of the bulky HES molecules leading to higher resistance to disassembly. While this theory is 

supported by the fact that using higher amounts of HES20[0.5]-PEI results in better stability, 

HES70[0.5]-PEI showed a lower stability with increasing ratio in the polyplexes (Figure IV. 4 

and Table IV. 2). This is probably due to the interference of the higher amounts of the larger 

HES with polyplex condensation, so that it becomes easier to disassemble the particles. As for 

the stability against aggregation in protein-containing medium, monitoring the particle size of 

HES-coated polyplexes by DLS showed that HES-decoration reduced LPEIs tendency for 

building large aggregates by the effect of steric hindrance (Figure IV. 5). The larger 

HES70[0.5] molecule shielded and stabilized the particles more effectively than the smaller 

HES20[0.5]. However, incorporation of hydrophilic stealth polymers HES or PEG onto the 

nanoparticle surface could not completely prevent protein adsorption, leading to a slight 

increase in particle size to approximately 200 nm.  
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For assessing the biocompatibility of HES-PEI conjugates, we tested their cytotoxicity in 

HUH7 cells, as well as their interaction with RBCs. As for cytotoxicity, the high density of 

amino groups of LPEI was described to be the trigger for toxicity [24-26], where the cellular 

membrane integrity is disturbed by the electrostatic interaction between the cationic polymer 

and the anionic cell structures [27]. Coupling PEG onto the polyamine was found to decrease 

the polymer toxicity by the effect of steric hindrance and decreased zeta potential [23, 24]. 

The homopolymer LPEI induced complete cell death at a concentration of 50 µg/mL, while 

all HES-modified conjugates exhibited improved cell viability. Similar to PEGylation [23], 

polyamine modification using HES shielded the amino groups and reduced the cytotoxicity, 

where HES with the highest molecular weight showed the best cellular viability 

(approximately 50% viability at 50 µg/mL based on PEI concentration, Figure IV. 6). Testing 

the hemolytic activity, LPEI and PEG20-PEI exhibited hemolysis > 15 % for all the tested 

concentrations. Meanwhile, conjugation of HES70[0.5] to LPEI significantly reduced the 

hemolytic activity of < 15 % for concentrations up to 50 µg/mL (see Figure IV. 7). This is 

considered negligible, as polymers are regarded as not hemolytically active in case of <15 % 

hemolysis [18]. As for the PEI-induced erythrocyte aggregation, it could be efficiently 

prevented using HES- and PEG-decoration (Table IV. 3). Such prevention of polymer-

induced red blood cell aggregation and hemolysis are few of many prerequisites for in vivo 

applications of polyplexes. 

5 Conclusion 

In this work we performed detailed studies on the physicochemical properties and 

biocompatibility of HES-PEI conjugates and HES-coated pDNA polyplexes. Physicochemical 

characterization involved particle size and morphology determination using DLS, TEM and 

AFM.  DLS measurements showed that the all the particles had hydrodynamic diameters of 

approximately 70-80 nm, with no significant effect for HES-decoration on size. These 

findings could be confirmed by particle visualization using AFM and TEM analysis, where 

the latter 2 methods additionally demonstrated the spherical morphology of the naked and 

HES-decorated particles. Zeta potential measurements revealed the effective shielding of 

LPEI polyplexes using HES, with a clear molar mass dependence, allowing fine tuning of the 

nanoparticle charge. The ethidium bromide exclusion assay showed the effective DNA 

condensation by the HES-PEI at N/P ratios above 4.0, which is relevant to in vitro and in vivo 
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transfection experiments. The biocompatibility of HES-decorated polyplexes was also 

evaluated, showing a lower cytotoxicity, no erythrocyte aggregation and much lower 

hemolysis compared to unmodified LPEI. Together with the previous in vitro and in vivo 

experiments, these results show the promise of HES-PEI conjugates as comparatively safe and 

effective polymers for gene delivery.  
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V Effect of HES-decoration on storage stability of pDNA 
polyplexes – A benchmark study against PEGylation 
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Abstract 

Despite their great potential, gene delivery polyplexes have a number of limitations, including 

their tendency for aggregation in vivo due to interaction with blood components, as well as 

upon storage due to their propensity to reduce the interfacial energy. In previous studies, we 

could show that hydroxyethyl starch (HES)-decoration of polyplexes reduces aggregation in 

vitro and in vivo, in a manner comparable to, or better than polyethylene glycol (PEG), the 

standard polymer for nanoparticle stabilization. Since HES is a well-known cryo- and 

lyopreservative, this study investigates the ability of HES-decoration in improving the storage 

stability of polyplexes after frozen storage or lyophilisation. For this purpose, freeze thaw 

(FT) studies were conducted to assess the action of HES- and PEG-coats in the presence of 

standard excipients (glucose, sucrose or trehalose) on the particle size of LPEI-based pDNA 

polyplexes. While HES-decoration showed a better stabilization compared to PEGylated and 

naked polyplexes in solutions containing glucose as an amorphous excipient, both polymers 

were effective in inhibiting particle aggregation in the presence of trehalose or sucrose. The 

protection from polyplex aggregation changed after lyophilisation, where freshly lyophilized 

samples showed that the HES shield acted both cryo- and lyoprotective, while PEGylation 

enhanced polyplex aggregation after freeze-drying. Storage stability studies were conducted 

for 10 weeks at 2-8, 25 and 40°C, and the results show that the particle size of naked, HES- 

and PEG-decorated polymeric complexes was not affected by storage compared to freshly 

lyophilized particles. Evaluating the gene transfer efficiency of the stored lyophilized particles 

showed that efficiency of the naked polyplexes decreased by a factor of 10 compared to 

freshly prepared polyplexes, while the polymer-coated polyplexes were not negatively 

affected by the storage for 10 weeks. In general, the results show that while both the HES and 

PEG coats could prevent aggregation of polyplexes under frozen storage, the HES-coat 

resulted in distinctly superior protective effect in the case of lyophilization, with possible 

consequences for the in vivo application, where aggregated particles cannot be used. In 

summary, our developed HES-coats provided effective cryo- and lyoprotection to LPEI-based 

polyplexes. 

Keywords  

Hydroxyethyl starch (HES), polymeric gene delivery, lyophilization, storage stability 
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1 Introduction 

Non-viral gene delivery systems based on cationic polymers like polyethylenimine (PEI) 

show great potential for the treatment of severe diseases, such as metastatic cancer. However, 

they tend to aggregate in the blood stream due to interaction with different blood components, 

leading to rapid elimination and lack of tissue specificity. In order to enhance their stability in 

the bloodstream, prolong their circulation time, and allow time for passive tumor targeting by 

the enhanced permeability and retention effect (EPR effect [1-3]), such cationic nanosystems 

are mostly equipped with a stealth polyethylene glycol (PEG) coat [4-6]. These non-

degradable coats, however, reduce transfection efficiency in vitro and in vivo by steric 

hindrance of the cellular uptake and endosomal release [7, 8]. Methods to overcome this 

problem include the use of stimuli-sensitive linkers, which respond to local triggers, such as 

pH changes, reducing milieu or tumor-specific enzymes, shedding the PEG coat at the site of 

action [9-12]. Recently, we proposed the use of hydroxyethyl starch (HES) as a biodegradable 

substitute for PEG, and showed that it can be degraded by the action of alpha amylase, 

leading to stabilization in the bloodstream and slow degradation at the tumor site of action 

[13, 14].  

Still one of the major limitations for developing pharmaceutically acceptable products 

concerns from polymeric gene delivery systems is their poor stability in aqueous solutions, 

necessitating tedious fresh preparation before use. This is because of their 

thermodynamically-driven tendency for reducing the interfacial surface area over time, 

leading to particle aggregation. Since size integrity is crucial for efficient and safe gene 

transfer [15, 16], frozen storage or dehydration by lyophilization could be viable options to 

maintain long-term stability and reducing the risk of batch-to-batch variations by fresh 

preparation prior to each application. Contrary to protein formulations, immobilization of 

nanoparticles by the formation of a rigid glassy matrix using protective additives is a helpful 

mechanism for preventing particle aggregation, however not necessarily required [17, 18]. 

Separating individual colloidal particles during freezing and dehydration is the key to hinder 

particle aggregation regardless of whether a glass matrix is formed, as assumed in the particle 

isolation hypothesis [18]. Among the excipients used for preservation of frozen or lyophilized 

samples, HES has been extensively studied with many successful outcomes. Several 

approaches report on the successful use of hydroxyethyl starch as cryo- and lyoprotector, for 

instance for the cryopreservation of red blood cells [19], keratinocytes [20] and stem cells 

[21]. Based on these observations, we wanted to test if our previously-reported use of HES for 
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nanoparticle decoration would impart positive effects on storage stability in frozen and 

lyophilized states. For this purpose, HES-decorated polyplexes were compared to PEG-

decorated ones, as well as to naked polyplexes. We studied the effect freeze-thawing and 

freeze-drying as well as storage at different temperatures for 10 weeks on particle size (by 

DLS measurements) as well as the in vitro transfection efficiency of luciferase reporter gene 

and toxicity in Neuro2A cells.  

2 Experimental Section 

2.1 Materials 

HES 70[0.5] with an average molar mass (Mw, number after HES; nominal value as provided 

by supplier)) of 70 kDa and a molar substitution (MS is the mean number of hydroxyethyl 

groups per glucose unit; nominal value as provided by supplier; number in square brackets) of 

0.5 was kindly provided by Serumwerk Bernburg, Germany. Sodium cyanoborohydride 

(NaBH3CN) was purchased from Merck Schuchardt OHG (Hohenbrunn, Germany). Linear 

polyethylenimine with an average molar mass of 22 kDa (PEI22) and the PEI22 – PEG20 

conjugate (PEG20: polyethylene glycol with the average molecular weight of 20 kDa) were 

synthesized as described in [22]. The excipients sucrose (AppliChem GmbH, Darmstadt, 

Germany) and trehalose (VWR International BVBA, Leuven, Belgium) were used without 

further purification. Alpha-amylase (AA) from porcine pancreas was bought from Sigma-

Aldrich (Steinheim, Germany, catalogue number A3176). Phadebas® Amylase Test was from 

Magle AB, Lund, Sweden. Plasmid pCMVluc was prepared by PlasmidFactory, Bielefeld, 

Germany. Cell culture medium, antibiotics and fetal calf serum (FCS) were purchased from 

Life Technologies (Karlsruhe, Germany). Other solvents and chemicals were reagent grade 

and were used as received.  

2.2 Methods 

2.2.1 Synthesis and characterization of HESPEI co-polymers using 1H-NMR, copper 

assay, and SEC.  

The synthesis and characterization of HES-PEI conjugates was performed as described 

previously [13]. In short, conjugates of transfection agent LPEI22 and different HES types 
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with a wide range of molar masses (from 10-70kDa) and degrees of hydroxyethylation (from 

0.4-1.3) was prepared in the molar ratio of 1:25 LPEI to HES via Schiff´s base formation and 

reductive amination using sodium cyanoborohydride, the product was purified by ion 

exchange chromatography and characterized using 1H-NMR, UV-photometric copper assay 

and size exclusion chromatography. 

 

2.2.2 Preparation of LPEI-based pDNA polyplexes.  

Naked LPEI-based polyplexes (nPx) were manufactured by the rapid addition and mixing of 

PEI to the plasmid pCMVluc (pDNA) at N/P ratio 6.0 and a final pDNA concentration of 20 

µg/mL in HBG pH 7.1 (HEPES buffered glucose; 20 mM HEPES, 5 % glucose (w/v)). 

Polyplexes were allowed to incubate at RT for 30 minutes prior to analysis. For instance, a 

volume of 1 mL of naked PEI/DNA transfection particles at N/P ratio of 6.0 was composed of 

20 µg pDNA and 16 µg LPEI. HESylated and PEGylated polyplexes were prepared in the 

same fashion as nPx, with the exception that pure PEI was partially replaced by modified PEI, 

e.g. HES70[0.5]-PEI/DNA complexes at N/P ratio 6.0 and a ratio of PEI to HES-modified 

PEI of 75:25 were made of 20 µg DNA, and a mixture of 12.0 µg PEI and 4.0 µg 

HES70[0.5]-PEI22 per 1 mL (based on PEI). HES- and PEG-decorated polyplexes were 

generated with the ratio 90:10, 75:25, 70:30 and 50:50 of PEI to HES-PEI or PEG-PEI 

conjugates.  

 

2.2.3 Polyplex stability against shelf-freezing (SF) and liquid nitrogen (LN 2) 

immersion stress. 

For freeze-thaw (FT) studies, naked, HES-decorated and PEGylated polymeric pDNA 

complexes were prepared following the afore-mentioned standard preparation (20µg/mL final 

pDNA concentration, N/P ratio 6.0, HBG pH 7.4). Controlled SF cycles were conducted once 

or three times in 2R vials using a Lyostar II freeze drier (SP Scientific, Stone Ridge, US). 

Polyplex solutions were treated following the scheme: freezing at -1°C/min from 10°C to -

50°C with a 30 minutes hold at -50°C, thawing at 1°C/min to 10°C with 30 minutes hold. For 

fast freezing, polyplexes were frozen by 5 minutes LN2 immersion. To control the thawing 

step, SF- and LN2-treated samples were tempered at 25°C (water-bath) prior to analysis.  

 

 



Storage stability of lyophilized HESylated LPEI/DNA complexes  

-114- 
 

2.2.4 Excipient screening. 

For glucose replacement, polymeric complexes were prepared in isotonic (9.25 m/V %), 

glucose-free 20mM HEPES buffer (pH 7.4) in presence/absence of the following cryo- and 

lyoprotectors: trehalose (Tre; HEPES buffer trehalose, “HBTre”), sucrose (Suc, HEPES 

buffered sucrose, “HBSuc). Unmodified LPEI particles and modified polyplex nanosystems 

were treated once and three times by SF as described above. 

 

2.2.5 Lyophilization studies of HES-decorated polyplexes.  

Polyplex samples (20µg/mL DNA concentration, N/P ratio 6.0) for freeze-drying (FD) were 

formulated in HBTre buffer pH 7.4 (Tre, 9.25%, m/V) and HBSuc buffer pH 7.4 (Suc, 9.25%, 

m/V) and aseptically produced. Freeze-drying was performed using a Christ EPSILON 2-6D 

freeze-dryer (Martin Christ Freeze Dryers GmbH, Osterode am Harz, Germany).  An amount 

of 150 µL polyplex solution per 2R vial was lyophilized following the scheme: freezing at -

1°C/min from 10°C to -50°C, hold time 120 minutes; primary drying at 0.5°C/min from -

50°C to -20°C, hold time 24 hours; secondary drying at 0.1°C/min from -20°C to 30°C, hold 

time 10 hours. Afterwards the system was vented with nitrogen and the polyplex samples 

were stoppered at approximately 800mbar. Lyophilized as well as frozen polyplex samples 

were stored at 2-8°C, 25°C and 40°C for 10 weeks. Transfection particles were characterized 

in terms of particle size, surface charge, residual moisture, thermic stability, in vitro reporter 

gene transfer and metabolic activity before and after 10 week mid-term storage.  

 

2.2.6 Biophysical characterization of pDNA polyplexes. 

The particle size and zeta potential of naked LPEI, HES-decorated and PEGylated polyplexes 

with/without FT stress was studied using the Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, United Kingdom) in semi-micro PMMA cuvettes and in folded capillary 

cells. The viscosity of polyplex samples in HBG was set to 1.0366 mPas at 25°C. Malvern 

software (version 6.32) was used for data analysis and acquisition. Measurements of the 

hydrodynamic diameter of frozen/freeze-dried samples were performed at room temperature 

on a DynaPro Titan platereader (Wyatt Technology Europe, Dernbach, Germany). 30 minutes 

prior to DLS analysis the lyophilized product was reconstituted with 150 µL highly purified 

water. DLS studies were performed at an acquisition time of 5 seconds and the number of 5 

acquisitions in 96 well-plates (Costar, Corning, USA). The viscosity was set to 1.3045 cP at 

20°C. Dynamics V6.12.03 was used DLS data analysis and data acquisition. 
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2.2.7 Thermoanalytical analysis. 

Dynamic scanning calorimetry (DSC) measurements (n=3) were carried out using a Mettler 

Toledo DSC821 (Mettler Toledo GmbH, Giessen, Germany) to study the glass transition 

temperature of the maximally frozen concentrate (Tg´), as well as the glass transition 

temperature of the lyophilized product (Tg) directly after FD and after 10 week storage at 2-

8°C, 25°C and 40°C. For Tg determination, an amount of 25 µL polyplex solution in HBTre 

or HBSuc was analyzed in 40µl aluminum crucibles. The samples were frozen at -1°C/min 

from 20°C to -50°C, with 60 minutes hold, and reheated at 5°C/min from -50°C to 20°C. An 

amount of around 15 mg lyophilized product in 40 µl aluminum crucibles was cooled (-

10°C/min) from RT to -10°C, heated up to 110°C (10°C/min). This procedure was repeated 

once. The Tg value of various lyophilized polyplexes was determined in the second heating 

step to eliminate relaxation phenomena. 

 

2.2.8 Karl-Fischer titration. 

Residual moisture content of lyophilized polyplex samples was determined directly after 

freeze-drying process and after 10 week mid-term storage (n=3). Coulometric Karl-Fischer 

titrations of approximately 15 mg lyophilisate were conducted using an Aqua 40.00 titrator 

(Analytik Jena AG, Jena, Germany) with headspace module without special  or a 737 KF 

Coulometer (Metrohm, Filderstadt, Germany). Using 737 KF Coulometer polyplex 

lyophilisates were dissolved in dry Methanol, the methanol solutions were injected into the 

titration solution (HydranalTM-Coulomat AG, Riedel-de Haen, Seelze, Germany), and the 

water content was determined. Empty vials served as blanks. 

 

2.2.9 Cell culture experiments.  

Cultured cells were grown at 37 °C in 5% CO2 humidified atmosphere. Murine 

neuroblastoma, Neuro2A (ATCC CCl-131, purchased from DSMZ, Braunschweig, Germany) 

were cultured in Dulbecco's Modified Eagle Medium (DMEM). DMEM medium was 

supplemented with 10% FCS, 4 mM stable glutamine, 100 U/mL penicillin, and 100 µg/mL 

streptomycin.  
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2.2.10 Luciferase reporter gene expression studies. 

For assessing the transfection activity of HES-decorated polyplexes after lyophilisation, 

freeze-thawing and 10 week mid-term storage at 2-8°C, 25°C and 40°C, in vitro pDNA 

transfection efficiency study was carried out in murine Neuro2A cell lines. The gene transfer 

performance of HES-decorated polyplexes after FT-, FD- and storage stress was benchmarked 

against the transfection efficiency of identically treated naked LPEI- and PEGylated particles. 

Experiments were performed in 96 well plates by seeding 1x104 cells per well in 100 µL 

medium 24 h prior to transfection. A cell confluency of around 60-80% was reached at the 

point of transfection. Directly before transfection, the medium was exchanged against fresh 

medium. Polyplex lyophilisates were reconstituted 30 minutes prior to transfection with an 

amount of 150 µL highly purified water to give a final pDNA concentration of 20 µg/mL. 

N2A cells were treated with freshly prepared transfection particles, 10 week stored freeze-

dried polyplexes, as well as nanocomplexes after 10 week frozen storage at -80°C. HBTre and 

HBSuc (20 mM HEPES, 9.25% m/V Tre or Suc, pH 7.4, respectively) served as negative 

controls. An amount of 10 µL polyplex solution (N/P 6.0, 20 µg/mL DNA concentration) was 

added to the cells to give a total volume of 100 µl per well. The medium was replaced 4 hours 

after point of transfection by 100µL fresh medium. Luciferase transfection efficiency was 

evaluated 24 h after pDNA transfection. Cells were treated with 100 µL cell lysis buffer (25 

mM Tris pH 7.8, 2 mM EDTA, 2 mM DTT, 10% glycerol, 1% Triton X-100) for 30 minutes 

and the luciferase activity in 35 µl cell lysate was measured in white 96 well plates using a 

luciferase assay kit (100 µL Luciferase Assay buffer, Promega, Mannheim, Germany) on a 

luminometer for 10 s (Centro LB 960 instrument, Berthold, Bad Wildbad, Germany). Values 

are given as relative light units (RLU) per well (mean ± standard deviation of quadruplicates).  

 

2.2.11 Metabolic activity of transfected cells. 

The viability of Neuro2A cells after LPEI-based pDNA transfection was evaluated using 

MTT assay. For determination of the metabolic activity of transfected cells, N2A cells were 

seeded and transfected as explained above. 24 h after transfection, MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (Sigma-Aldrich, Germany) was 

dissolved in phosphate buffered saline at 5 mg/mL, and an amount of 10 µL of a 5 mg/mL 

solution of MTT was added to each well reaching a final concentration of 0.5 mg MTT/mL. 

Cells were incubated for 2 h, the unreacted dye with medium was removed and the cells were 

lyzed by incubation at -80 °C for at least 30 min. The formazan product was dissolved in 100 
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µL/well dimethyl sulfoxide, incubated at 37°C for 30 minutes under constant agitation and 

quantified by optical absorbance using a plate reader (Tecan, Groedig, Austria) at 590 nm 

with background correction at 630 nm. The metabolic activity [%] relative to control wells 

containing HBG treated cells (set to 100%) was calculated as follows (Metabolic activity = A 

test/A control × 100). 

3 Results  

In the present work, we report on the effect of HES-decoration on the stability of frozen and 

lyophilized pDNA polyplexes. In all the experiments, naked polyplexes as well as PEG-

coated polyplexes were used for comparison. 

 

Before studying the biophysical behaviour of LPEI/DNA complexes with HES-decoration 

after freeze-drying process, the effect of freeze-thaw (FT) stress on the particle stability was 

investigated. Since HBG (HEPES buffered glucose; 20 mM HEPES, 5 % w/v glucose, pH 

7.4) is a widely used formulation buffer for the preparation and application of polymeric 

polyplexes, it was used for the preliminary FT experiments. The latter were performed by 

applying either controlled shelf-freezing (SF) or fast liquid nitrogen immersion (LN2), and the 

particle size of unmodified-, HES-decorated and PEGylated polyplexes was measured. Figure 

V. 1 shows that SF leads to a stronger aggregate formation for all polyplexes compared to 

LN2. For instance, the particle size of naked polyplexes increased > 1 µm after 1 FT cycle of 

SF, and > 3 µm following 3 FT, compared to only 150 and 400 nm for 1 and 3 FT cycles of 

LN2, respectively. The use of PEG coat did not prevent aggregation under both FT techniques, 

while the HES coat significantly reduced the aggregation tendency, particularly with the more 

stressful SF procedure. It is worth noting that the ratio of HES-PEI:PEI did not show a 

difference in the stabilizing effect, while increasing the ratio of PEG-PEI:PEI seemed to have 

a negative effect on nanoparticle aggregation.  
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Figure V. 1. Freeze-thaw stress studies (SF: shelf-freezing; LN2: liquid nitrogen 

immersion). Incorporation of hydrophilic polymers provided steric stabilization of 

polyplexes against controlled SF with the effect of HES > PEG > no hydrophilic 

component. Fast freezing reduced the tendency of aggregation. 

 

Since glucose is known to have a very low Tg, besides its tendency to react with amino 

groups through Maillard’s reaction, sucrose (Suc) and trehalose (Tre) were evaluated as better 

alternatives and well-established cryo- and lyoprotectors. The particle size of naked LPEI-, 

HES70- and PEG20-decorated polyplexes was studied under the effect of controlled (SF) FT 

treatment in isotonic formulations of Tre or Suc. The minimal freezing temperature for FT 

and subsequent FD processes was kept below the Tg´ of various formulations at -50°C (Table 

V. 1). Results in Figure V. 2 show that in the absence of any cryoprotective excipient – the so-

called “HEPES” formulation – all generated polymeric complexes formed large aggregates in 

the micron-range under the effect of freezing and thawing. The tendency towards particle 

clustering was markedly reduced by the addition of cryoprotective excipients. Even in the 

presence of Tre and Suc, naked LPEI polyplexes showed the strongest proneness towards the 

formation of aggregates. Meanwhile, incorporation of both hydrophilic polymers PEG and 

HES onto the polyplex surface markedly reduced the aggregation. Surface masking using 

10% HES-PEI:PEI or PEG-PEI:PEI significantly improved the resistance of LPEI-based 

polyplexes against FT stress. Higher amounts of HES-PEI or PEG-PEI completely stabilized 

the polyplexes and maintained the initial particle size of freshly prepared particles (~ 80 nm). 

These results demonstrate the stabilizing and cryoprotective action of both the HES and PEG 

coats for polyplexes, and show the beneficial effect of Tre and Suc as stabilizing excipients. 

Accordingly, they were further tested in freeze-drying (FD) experiments. 
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Table V. 1. Glass transition temperatures of the maximally frozen concentrates (Tg´). 

All FT and FD studies were kept far below the Tg´ of the formulation buffers to ensure 

entire sample freezing.  

 

Tre 9.25% m/V -29.72 ± 0.18 

Suc 9.25% m/V -32.12 ±  0.16 
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Figure V. 2. Excipient screening studies. 20mM HEPES pH 7.4 supplemented with 

9.25 m/V % Tre or Suc provided high resistance against FT stress. In addition, HES 

and PEG acted cryoprotective by steric stabilization. 

 

In freeze drying experiments, naked polyplexes as well as HES70- and PEG20- coated 

polyplexes with 10, 25 and 50% shielding agent in 20 mM HEPES and 9.25 % (w/v) Tre or 

Suc were lyophilized and analyzed directly after lyophilization. All lyophilized polyplexes 

showed good lyo-cake appearance after FD process with short reconstitution times in water (< 
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3s). Naked LPEI polyplexes in Tre or Suc showed acceptable stability, manifested as a small 

increase in hydrodynamic diameter to approximately 130 nm following the FD process. 

Highest resistance and lowest tendency to the formation of aggregates under the effect of 

freeze drying was observed for HESylated polyplexes (size ~ 110-120 nm). The total amount 

of incorporated HES-PEI played a minor role in the steric stabilization of polymeric 

polyplexes during FD process, since already the amount of 10% HES-PEI provided high lyo-

resistance. Increasing the amount of HESPEI to 25 % and 50 % did not show any additional 

stabilizing effect. Meanwhile, PEG-decoration led to the formation of large particle clusters of 

around 250-350 nm after lyophilization (see Figure V. 3). These results show that, in contrast 

to FT experiments, where the PEG-coat showed good cryoprotective effect, it did not act as a 

good lyoprotectant, but was even worse than the naked polyplexes, promoting particle 

aggregation.  

 

 

Figure V. 3. Excipient screening and FD pre-experiments. HBTre and HBSuc 

formulations showed the best protection again lyo-induced particle aggregation. 

Incorporation of HES onto the polyplex surface increased the particle stability against 

FD stress by steric stabilization compared to unmodified LPEI polyplexes, PEG 

decoration resulted in poor stabilizing effect. 

Finally the effect of 10 weeks mid-term storage of frozen (at -80°C) and lyophilized 

polyplexes, stored at 2-8 °C, 25 °C and 40 °C, on the physicochemical properties of the 



Storage stability of lyophilized HESylated LPEI/DNA complexes  

-121- 
 

lyophilisate (particle size, glass transition temperature and residual moisture) was 

investigated. Additionally, the in vitro reporter gene expression and metabolic activity of the 

polyplexes were assessed. For this purpose, naked, HES- and PEG-decorated nanoparticles 

were used, and the results were compared to freshly prepared particles. Results of DLS for the 

particle size of the 10 weeks frozen storage are similar to the 1 freeze thaw cycle, where the 

HES- and PEG-coated polyplexes maintain their original particle size, while the naked 

polyplexes markedly increase in size to approximately 130 nm after 1 FT cycle, and to ~200 

nm after 10 weeks storage, irrespective of the stabilizing excipient. Similarly, results of the 10 

weeks storage of the freeze dried samples are similar to the sample analyzed directly after 

lyophilization, with no significant difference between the different temperatures or the 

stabilizing excipient used (Tre vs. Suc), where the HES-coat showed the lowest increase in 

particle size (~120 nm particle size), followed by a slightly larger size for the naked 

polyplexes (~140 nm), and a dramatic increase for the PEGylated ones (~200-350 nm). In 

general, the results show that HES-decoration is good both as cryo- and lyoprotectant, with 

the particles maintaining the size for 10 weeks storage at different temperatures, while 

PEGylation was only effective as a cryoprotectant but not as a lyoprotectant. 
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Figure V.  4. Z-average particle size of freshly prepared polyplexes, freeze-thawed 

(FT) and freeze-dried (FD) nanoparticles. A+B: HBTre formulation, C+D: HBSuc 

formulation. The particle size was studied directly after FT and FD (FT t0 and FD t0) 

and after storage of 10 weeks at different storage conditions (-80 °C, 2-8 °C, 25 °C 

and 40 °C). 

 

Analysis of the glass transition temperature of the lyophilisates (Tg) and the residual moisture 

are shown in Table V. 2. Results show an increase in residual moisture with time and 

temperature, associated with decrease in Tg for both stabilizing excipients Tre and Suc. For 

instance, the Tg of Tre-containing formulations moved from around 90 °C directly after 

lyophilization to approximately 70 °C after 10 weeks storage at 2-8 °C and to 54 °C for 

storage at 40 °C. Simultaneously, the residual moisture increased from ~ 0.4 % (w/w), to ~ 

0.9 % (w/w) and to 1.7 % (w/w), respectively. Modifying the surface of LPEI polyplexes 

using hydrophilic polymers HES and PEG did not affect the Tg and RM of lyophilized 

samples, since the excipient to nanoparticle mass ratio exceeded 2000 : 1, stabilizer to 

polyplex. The reduction of Tg of Suc formulations stored at 40°C to 38°C lead to a 

macroscopic collapse of the cakes, while all the other samples maintained their cake 

appearance. It is worth noting that changes in residual moisture and Tg did not have a strong 

impact on the particle size of the stored particles as shown above. 

 

Table V. 2. Physical characterization of polymeric nanocomplexes using DSC and KF 

titrations. FT and FD studies were run below the Tg´ of HBTre and HBSuc at -50°C to 

ensure entire glass formation. Tg and RM of lyophilized samples were studied directly 

after FD and after 10 weeks of storage at 2-8 °C, 25 °C and 40 °C (n=3). 
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   After FD Storage @ 2-

8°C 

Storage @ 

25°C 

Storage @ 

40°C 

Tre 9.25% 

Tg [°C] 

LPEIPx 

 
89.00±6.63 67.15±9.16 56.87±2.59 54.78±2.79 

HES70Px 

10% 
91.29±2.71 69.81±4.25 59.08±3.23 54.97±2.83 

HES70Px 

25% 
91.12±3.00 71.23±2.46 57.56±2.17 53.76±3.21 

PEG20Px 

10% 
91.52±2.33 70.81±2.82 57.23±2.30 52.49±4.43 

PEG20Px 

25% 
89.80±5.26 70.39±3.34 58.19±2.32 53.96±3.05 

RM [%w/w] 

LPEIPx 

 
0.40±0.07 0.87±0.30 1.31±0.37 1.70±0.48 

HES70Px 

10% 
0.39±0.06 0.93±0.24 1.42±0.21 1.60±0.24 

HES70Px 

25% 
0.38±0.04 0.83±0.21 1.46±0.41 1.73±0.51 

PEG20Px 

10% 
0.37±0.02 1.00±0.41 1.36±0.17 1.57±0.53 

PEG20Px 

25% 
0.38±0.04 0.90±0.28 1.38±0.29 1.87±0.14 

 

Suc 9.25% 

Tg [°C] 

LPEIPx 

 
61.73±2.54 51.13±2.36 44.67±0.73 38.26±0.89 

HES70Px 

10% 
62.68±1.22 51.62±2.11 44.56±0.55 37.24±1.93 

HES70Px 

25% 
63.23±1.06 51.83±2.10 44.34±0.33 37.91±1.05 

PEG20Px 

10% 
61.67±2.64 51.97±2.14 44.23±0.41 37.57±1.45 

PEG20Px 

25% 
61.08±3.59 50.84±2.63 44.73±0.83 38.10±0.92 

      

RM [%w/w] 

LPEIPx 

 
0.43±0.04 0.95±0.33 1.32±0.41 1.54±0.29 

HES70Px 

10% 
0.44±0.04 0.88±0.27 1.26±0.34 1.68±0.37 

HES70Px 

25% 
0.42±0.05 1.00±0.18 1.22±0.24 1.44±0.48 

PEG20Px 

10% 
0.44±0.04 1.05±0.25 1.16±0.51 1.63±0.23 

PEG20Px 

25% 
0.48±0.10 0.97±0.28 1.34±0.27 1.54±0.45 
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We also investigated the effect of frozen and lyophilized storage of the polyplexes with HES 

and PEG corona on the in vitro transfection efficiency using a luciferase reporter gene 

expression in murine Neuro2A cells as well as metabolic activity of those cells (as a surrogate 

for toxicity). Results of the transfection efficiency show that freeze drying and mid-term 

storage of lyophilized LPEI polyplexes reduced their initial transfection efficiency up to 1 

order of magnitude, independent of the storage condition. The 10% HES-decorated 

polyplexes seemed to maintain their transfection efficiency upon storage at 2-8 and 25°C, but 

the transfection efficiency seemed to reduce by an order of magnitude upon storage at 40°C 

for 10 weeks. On the other hand, the transfection efficiency of the higher level of HES-

decoration (25%) increases slightly upon storage for 10 weeks, irrespective of the storage 

temperature. As for the PEGylated polyplexes, transfection efficiency remains relatively 

constant at both concentration levels and irrespective of the storage temperature. Meanwhile, 

results of the viability test show that the Neuro2A cells were not negatively affected upon 

exposure to freshly-prepared, or stored frozen and lyophilized polyplexes (Figure V. 65). This 

is a clear indication for safety of the polyplexes at the applied dose. 

 

Figure V. 5. The metabolic activity of N2A 24h after polyplex treatment. N2A cell 

incubation with differently treated nanoparticles (fresh, FT and FD) did not affect the 

cellular viability. 
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Figure V. 6. Luciferase reporter gene expression studies in N2A cells. Cell culture 

experiments were performed with naked, HES70[0.5]- and PEG20-decorated 

polyplexes after 10 weeks of lyophilized storage at different storage conditions. 

Freshly prepared particles formulated in HBTre served as controls.  

4 Discussion 

Non-viral gene vectors face many hurdles that hamper their development to pharmaceutically-

acceptable products. These include their tendency to aggregate in the blood stream and their 

rapid elimination by phagocytosis. Even PEGylation, the state-of-the-art solution to these 

problems, can reduce transfection efficiency, because PEG interferes with cellular-uptake and 

DNA release (so-called “PEG-dilemma” [8, 23-26]). An optimum coat would thus show 

effective shielding to increase stability in blood stream and reduce in vivo elimination, as well 

as a controlled deshielding to enhance cellular uptake and release. In previous studies, we 

reported on the successful use of biodegradable HES coats for polyplex shielding and 

enzymatically-catalyzed deshielding under the effect of alpha-amylase, both in vitro and in 
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vivo [13, 14]. In this study we evaluate if the proposed use of HES coats would also offer an 

advantage for long term storage stability of polymeric gene delivery systems. The latter are 

known to have poor stability and short shelf-life as they aggregate in solution or after freeze-

drying [27, 28], thus requiring fresh preparation of the nanoparticles before application. Due 

to the documented advantages of HES as a cryo- and lyopreservative [19-21], its use as a 

nanoparticle shielding agent might have additional advantages towards frozen or freeze-dried 

stability compared to the more commonly used PEG coat. This is because the latter is known 

to crystallize upon freezing, leading to possible stability problems [29-31]. 

 

Initially, the effect of freeze-thaw stress on the particle size of polyplexes was studied in the 

standard formulation buffer HBG pH 7.4. Differently composed polymeric complexes were 

frozen by controlled shelf-freezing (SF, freezing rate -1°C/min), as well as faster uncontrolled 

freezing using liquid nitrogen immersion (LN2). DLS results after 1 and 3 FT cycles showed 

that all LPEI-based pDNA particles were prone to aggregation following freezing and 

thawing, however the extent of aggregation significantly differed between naked LPEI 

polyplexes, HES-decorated and PEGylated nanoparticles. Incorporation of hydrophilic 

polymer HES delivered the best results in terms of particle size maintenance under controlled 

FT treatment by the effect of steric stabilization, while PEGylated and also naked LPEI 

polyplexes formed larger particle clusters compared to HES-shielded polyplexes (Figure V. 

1). Glucose is known have a very low Tg´ (- 45°C according to [32]), and together with the 

low Tg´ of PEG (- 67°C as reported by [33]) compared to HES (- 15°C according to [34]), 

this might be one reason for the aggregation of PEG coated particles under the slow shelf 

freezing, where the nanoparticles remained in a viscous environment long enough to 

aggregate, while the higher Tg´ of HES might have prevented such aggregation. Nevertheless, 

and due to the potential interaction of glucose with amines through Maillard´s reaction, we 

further tested Tre and Suc (in isotonic concentration, 9.25 % m/V) as better and well-

established stabilizers. While those disaccharides could not prevent the aggregation of naked 

polyplexes after FT treatment, both HES- and PEG-decoration could stabilize the polyplexes 

against aggregation in those formulations (Figure V. 2). Accordingly, they were further 

investigated under freeze drying conditions.  

 

Upon DLS measurement of particle size of the nanoparticles directly after lyophilisation, one 

notices that, while both HES- and PEG-coats had a cryostabilizing effect on the polyplexes 

under FT conditions, only HES possessed lyostabilizing effect, while the PEG-decoration 
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seemed to destabilize the particles in comparison to the naked polyplexes (see Figure V. 3). 

Incorporation of HES onto the surface of the nanocomplexes provided very good resistance 

against freeze-drying stress, with nearly maintained initial particle sizes of freshly prepared 

particles. Surface charge shielding using PEG induced strong particle aggregation after 

lyophilisation compared to the naked polyplexes (presumably due to PEG crystallization), 

irrespective of the stabilizing excipient. 

 

We further studied the effect of 10 weeks storage of naked, HES- and PEG-coated polyplexes 

in the frozen as well as the freeze-dried states. The z-average particle size measured by DLS 

showed that 10 weeks of frozen storage at -80°C leads to an increase in the particle size of 

naked polyplexes (to > 200 nm). Meanwhile, the particle size of HES- and PEG-coated 

particles remains constant, indicating the effectiveness of these coats in protecting the 

particles for such a relatively long period of time. It is worth noting that the effect on particle 

size is similar to that after 1 FT cycle (see Figure V. 4), indicating that storage at -80°C was at 

low enough temperature to inhibit any dynamic processes in the frozen liquid, and that the 

destabilization of the naked particles occurred during the freezing and/or thawing procedure 

similar to what happened after 1 FT cycle. Meanwhile, the freeze-dried particles showed a 

different picture, where the HES-coated particles showed the lowest increase in particle size 

(from 80 to 120 nm), followed by the naked particles, while the PEG –coat seemed to 

destabilize the lyophilized particles, increasing the particle size up to 300 nm. The 

aggregation of PEGylated nanoparticles after lyophilisation due to PEG crystallization is 

mentioned several times in literature. For instance, lyophilisation of PEO-grafted PLA 

nanoparticles induced aggregation. The addition of lyoprotectors improved the particle 

resistance against freeze-drying, however the size integrity of PLA particles decorated with 

high surface density of low molecular weight PEO was impaired by FD in the presence of 

lyoprotectors due to crystallization of PEO [35]. Also in the case of PEGylated cross-linked 

polyplex micelles [10] and drug-loaded PLGA-mPEG nanoparticles [30] PEG crystallization 

during lyophilisation induced particle aggregation. In addition, Hinrichs and co-workers 

reported on the importance of the optimal choice of the protective additives [36, 37]. 

PEGylated lipoplexes in inulin were stable after FD, while the dextran formulation resulted in 

particle clustering due to the incompatibility of PEG and dextran leading to phase separation. 

[18]. It is worth noting that the particle size of the naked, HES- and PEG-decorated 

polyplexes after 10 weeks of storage seemed to be independent of storage temperature, and 
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similar to the results obtained with freshly lyophilized samples, indicating that the main effect 

was due to the water removal process and not much affected by the storage time.  

 

In general, the particle size of polymeric complexes is not only an important quality feature, 

but represents also a crucial factor affecting the levels of gene transfer. The size of 

nanoparticles can influence the in vitro transfection efficiency as well as the in vivo 

performance of gene delivery polyplexes, such as biodistribution, cellular uptake, endosomal 

release, cytoplasmic and nuclear trafficking [8, 38, 39]. As a surrogate for these effects, we 

measured the gene expression rate of LPEI polyplexes in vitro on Neuro2A cells using 

luciferase as a reporter gene. The transfection efficiency of naked polyplexes decreased upon 

lyophilisation and storage approximately by the factor 10, while the transfection efficiency of 

particles with HES-and PEG-coats was not diminished (Figure V. 6). Finally, results in Figure 

V. 5 showed that the metabolic activity of Neuro2A cells was not affected by treatment with 

freshly prepared, as well as frozen-stored and freeze-dried naked and modified (HES- and 

PEG-decorated) LPEI polyplexes, indicating fairly low cell toxicity. The residual moisture as 

well as the glass transition temperature of the lyophilized polyplex samples (Table V. 2) had 

no significant impact on the particle size or the gene transfection efficiency, despite the slight 

increase in RM and decreasing Tg of the lyophilisates during the storage for 10 weeks.  

 

Evaluation of the different results of this study shows that frozen storage of both HESylated 

and PEGylated could be used to maintain the stability of the polyplexes, with no influence on 

the particle size or transfection efficiency. Meanwhile, lyophilisation results show that 

although both polymers showed acceptable results in the in vitro transfection efficiency 

experiments, HES offers significant advantages over PEG in stabilising the particles against 

aggregation. The latter is important for in vivo application, since aggregated particles could 

lead to changes in biodistribution, and most importantly accumulation in the lung and 

premature elimination from the circulation. The apparent particle stability shown in this study 

could avoid such problems. 
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5 Conclusions 

The present work was designed for studying if using HES for coating polyplexes would offer 

advantages for their frozen storage and lyophilisation. FT studies in the standard formulation 

buffer HBG were conducted to assess the action of HES- and PEG-coats in the presence of 

glucose on the particle size of LPEI-based pDNA complexes. HES coats significantly reduced 

the tendency to formation of aggregates upon FT treatment, though not optimally due to the 

poor stabilizing ability provided by glucose. Subsequently Tre and Suc in isotonic 

concentrations were tested with good results for polymer-decorated particles in freeze-thaw 

cycles. The protection from polyplex aggregation changed after lyophilisation, where HES 

shields acted both cryo- and lyoprotective, while PEGylation induced polyplex aggregation 

after freeze-drying. In comparison to freshly lyophilized particles, the particle size of naked, 

HES- and PEG-decorated polymeric complexes was not affected by storage for 10 weeks at 2-

8°C, 25°C and 40°C. The gene transfer efficiency of lyophilized, naked polyplexes decreased 

by a factor of 10 compared to freshly prepared polyplexes, while the coated polyplexes were 

not negatively affected by the storage for 10 weeks. Benchmarking HES against PEG as 

shielding agents resulted in distinctly superior lyoprotective performance in the case of 

polyplexes with HES-coats, with possible consequences for the in vivo use, since aggregated 

particles are not applicable in vivo. In summary, our developed HES-coats provided cryo- and 

lyoprotection to LPEI-based polyplexes after storage without any loss of transfection 

efficiency compared to freshly prepared HESylated particles. 
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VI   Final summary of the thesis 
 

 The current thesis describes the development of novel bioresponsive conjugates based on 

hydroxyethyl starch (HES) and polyethylenimine (PEI) for controlled shielding and 

enzymatically-triggered polyplex deshielding under the effect of alpha amylase. HES was 

tested as biodegradable alternative substitute for non-biodegradable shielding agent 

polyethylene glycol (PEG) - so far as known - for the first time in the field of polymeric 

nucleic acid delivery. 

 

In the early stage of the project, a battery of conjugates of several types of HES with different 

molecular characteristics and linear PEI was synthesized via Schiff´s base formation and 

reductive amination, subsequently purified using preparative ion exchange separation and 

characterized by 1H NMR, colorimetry (using the copper assay), and size exclusion 

chromatography (SEC). Mixtures of the homopolymer LPEI and HES-PEI copolymers were 

used to produce stable HESylated core-shell nano-dandelions, which was confirmed by AFM- 

and TEM-measurements, as well as DLS studies. Polymeric complexes with HES coats were 

found to have similar biophysical properties in terms of particle size and polydispersity 

compared with naked and PEG-shielded control pDNA polyplexes. Incorporation of 

hydrophilic polymer HES onto the particle surface resulted in the reduction of the zeta 

potential by the effect of particle shielding. This effect was most pronounced in the case of 

high total amounts of high molecular weight HES shields. Shielding the cationic charge of 

PEI provided by HES coats reduced the DNA binding ability of the homopolymer PEI, 

however, particle formation at N/P ratio 6.0 was not affected by the HES coatings. 

 

The key issue for overcoming the PEG dilemma in gene delivery is shedding down the 

disturbing stealth polymer coat after arrival at the target site. HES is a biodegradable polymer, 

the biocleavage kinetics can be controlled by fine-tuning HES´ molecular characteristics. 

Different analytical tools were used in order to investigate parameters affecting the enzymatic 

degradation of HES, namely the type and the composition of the buffer, different enzyme 

concentrations and the effect of the degree of substitution and the molar mass of HES. 

Initially, the degradation rate and extent of different HES polymers under the effect of AA 

was studied in the case of the homopolymer using AF4-MALS, using QCM-D in the case of 

HES-PEI conjugates, and finally using zeta-potential measurements for the HES-coated 

polyplexes. Degradation studies showed that the rate and extent of biodegradation strongly 
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correlated with the degree of hydroxyethylation of HES. HES polymers with low degree of 

substitution were degraded strongly and rapidly, while the biodegradability of the 

polysaccharide was diminished with increasing degree of hydroxyethylation. The cleavage of 

α-1,4-glycosidic bonds of HES was monitored as loss of HES molecular weight (AF4-

MALS), as mass reduction of adsorbed HES-PEI conjugates (QCM) and as increase in the 

zeta potential by gradual eating up of the shielding coat over time.  

 

As first proof-of-concept, the effect of polyplex shielding and enzymatic polyplex deshielding 

was studied in vitro in N2A cells. HES coating promoted efficient surface charge shielding 

and was found to significantly reduce the luciferase gene expression similar to the PEGylated 

counterparts in comparison to the naked LPEI polyplexes with the highest surface net charge. 

In presence of alpha amylase the HES coat was gradually degraded and the particle was 

reactivated resulting in a boost of 2-3 orders of magnitude in gene expression reaching the 

transfection levels of LPEI polyplexes, while naked as well as PEGylated particles were not 

affected by the enzyme. Efficient deshielding was only feasible in the case of low substituted 

HES coats, while high degrees of substitution prevented enzymatic particle reactivation. A 

satisfying biocompatibility is an important prerequisite for conducting in vivo studies.  

HESylation of cationic polymer LPEI could reduce PEI´s cytotoxicity that was confirmed by 

studies investigating the cellular metabolic activity, the tendency to form aggregates upon 

incubation with red blood cells and the polymer´s hemolytic potency. A second PoC 

experiment was performed in tumor-bearing A/J mice. The lead polyplex with an amount of 

10% shielding agent HES70-PEI was found to significantly reduce the lung accumulation and 

toxicity provided by LPEI with the effect of up to 3 orders of magnitude and maintained the 

tumoral gene expression of LPEI polyplexes. Increasing the amount of stealth polymer HES, 

as well as using non-biodegradable PEG shields resulted in what is known as the PEG-

dilemma, namely a safe particle with low transfection activity. 

  

In the last part of the project, the use of HES coats is described for improving the long-term 

stability of LPEI/DNA complexes. Freeze-thaw and freeze-dry studies confirmed the cryo- 

and lyoprotective action provided by hydrophilic HES coats. Stabilization by the effect of 

steric hindrance is considered as reason for HES´ beneficial action on the polyplex surface. 

HES-decorated nano-dandelions showed high particle size resistance against the 

lyophilization-process and a 10-week storage time with maintained enzymatic activability and 

high transfection efficiency after freeze-drying and storage. LPEI control particles showed 
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higher proneness to form aggregates following freeze-thaw- and freeze-dry-stress and 

significantly reduced gene expression levels after storage. The PEG-shielded particles were 

found to show high resistance against freeze-thaw stress, however, assumed PEG-

crystallization on the polyplex surface induced strong particle clustering following 

lyophilization, making PEGylated polyplexes unattractive for in vivo applications. 

 

 

 

 



 

-136- 

PUBLICATIONS ASSOCIATED WITH THIS THESIS 

 

Research articles 

Noga M, Edinger D, Rödl W, Wagner E, Winter G, Besheer A. Controlled shielding and 

deshielding of gene delivery polyplexes using hydroxyethyl starch (HES) and alpha-amylase. 

Journal of Controlled Release, 2012. 159(1): 92-103. 

 

Noga M, Edinger D, Kläger R, S.V. Wegner, J.P. Spatz, Wagner E, Winter G, Besheer A. The 

effect of molar mass and degree of hydroxyethylation on the controlled shielding and 

deshielding of hydroxyethyl starch-coated polyplexes. Biomaterials, 2013. 34(10): 2530-

2538. 

 

Noga M, Edinger D, Wagner E, Winter G, Besheer A. Characterization and biocompatibility 

of hydroxyethyl starch-polyethylenimine copolymers for DNA delivery. submitted 

 

Noga M, Edinger D, Wagner E, Winter G, Besheer A. Lyophilized HESylated pDNA 

polyplexes for increased nanoparticle stability and maintained gene transfer efficiency – A 

benchmark study against PEG. In preparation 

 

Review article 

Noga M, Winter G, Besheer A. Enzyme-responsive stealth coats for long-circulating 

nanomedicines. In preparation 

 

Patent 

Besheer A, Noga M, Winter G, Wagner E, Edinger D. Method for the controlled intracellular 

delivery of nucleic acids. 2013, WO/2013/021056. 

 

 

 

 

 

 

 

 



 

-137- 
 

PRESENTATIONS ASSOCIATED WITH THIS THESIS 

 

Oral presentation 

Noga M, Edinger D, Wagner E, Winter G, Besheer A. Can HES-decorated polyplexes 

overcome the PEG-dilemma. DPhG Doktorandentagung, Weimar, Germany, November 2012. 

 

Poster presentations 

Noga M, Edinger D, Wagner E, Winter G, Besheer A. Controlled shielding & deshielding of 

HES-decorated polyplexes using alpha amylase. 39th Annual Meeting & Exposition of the 

Controlled Release Society, Québec City, Canada, July 2012. 

 

Noga M, Edinger D, Wagner E, Winter G, Besheer A. Can nano-dandelions overcome the 

„PEG-dilemma“ in gene delivery? – Designing HES-decorated core-shell polyplexes with 

controlled shielding & deshielding. 8th World Meeting on Pharmaceutics, Biopharmaceutics 

and Pharmaceutical Technology, Istanbul, Turkey, March 2012. 

 

Noga M, Winter G, Besheer A. HES-PEI copolymers for gene delivery: synthesis, 

characterization and generation of HES-decorated polyplexes. 8th World Meeting on 

Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Istanbul, Turkey, March 

2012. 

 

 

 

 

 

 

 


