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1. INTRODUCTION 

 

1.1 HISTORY & BACKGROUND  
 

The chemistry of explosives, their development and application are as old as 220 years 

BC, when blackpowder was accidentally discovered by the Chinese. The history of 

energetic materials is well chronicled and therefore only a small look on milestone 

developments is given.[1] Knowledge of blackpowder in Western Europe was 

considerably later when it was independently found by the German monk Berthold 

Schwartz in the 14th century. The next major milestone came with the development of 

nitroglycerine (NG) in the 19th century by Ascanio Sobrero, however NG was initially 

only used as medication for heart disease. The explosive properties were noticed very 

soon after its discovery and led to the first industrial process development for high 

explosives by Alfred Nobel in the 1860s. Sensitivity was always an issue with the 

production of nitroglycerine and many accidents occurred during its preparation. After the 

repeated occurance of severe explosions during its manufacturing, nitroglycerine was 

mixed with kieselguhr forming a dough-like material (“dynamite”), which is far less 

sensitive and easier to handle than pure nitroglycerine. The growing use of explosives in 

coal mining also brought a corresponding increase on the number of gas and dust 

explosions, mandating replacement of the used explosives and promoting the 

development of new explosives such as picric acid or trinitrotoluene (TNT). While picric 

acid was suffering from substantial drawbacks like the formation of highly sensitive 

heavy metal complexes, the much less sensitive TNT was used as the standard explosive 

in the 1st World War. Research in the field of higher performing explosives for military 

use commenced and by the 2nd World War both pentaerythritol tetranitrate (PETN) and 

cyclotrimethylenetrinitramine (RDX) were investigated. RDX found greater use because 

it is less sensitive and more powerful than PETN. 
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Figure 1: Common explosives and their structures. 
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While other major explosives have been developed for specialized uses such as higher 

performance or a high degree of insensitivity, none have gained as wide use as RDX in 

the 20th century. 

The final progress in the last century in explosives science is the process of plastification 

as an approach to make the handling of these materials safer. While in the beginnings 

inert, non-energetic binders such as polystyrene were used, the trend was to replace inert 

binders by energetic binders, which in most cases are based on covalent azides or nitrate 

esters. Nowadays, not only the application for military purposes is studied, but the 

utilization of energetic materials for civilian use in mining, construction, demolition and 

safety equipment such as airbags, signal flares and fire extinguishing systems is 

extensively studied. The most recent developments in energetic materials concentrate on 

the synthesis of compounds with either outstanding thermal or mechanical stability or a 

very high explosive performance like highly cage strained molecules containing nitro- 

and nitramino moieties. The academic research mainly focuses on the work with novel 

energetic systems to determine factors affecting stability and performance and to bring 

new strategies into the design of energetic materials. The main challenge is the desired 

combination of a large energy content with a maximum possible chemical stability to 

ensure save synthesis and handling. 

 

1.2 DEFINITION & CLASSIFICATION OF ENERGETIC MATERIALS 
 

Many different applications have drawn attention and can be reached by the use of 

energetic materials. A definition of these materials and their subsequent classification is 

therefore necessary in order to clarify the wide area of application and development. In 

general, an energetic material is “a metastable compound or mixture capable of the rapid 

release of stored potential energy.”[2] The entirety of energetic materials is defined by the 

American Society for Testing and Material as “…a compound or mixture of substances 

which contains both the fuel and the oxidizer and reacts readily with the release of energy 

and gas…”.[3] Energetic materials themselves are then divided into three unique classes: 

explosives, propellants and pyrotechnics. The class of explosives can be divided further 

into primary and secondary explosives.  
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Primary explosives are very sensitive explosives, which can be easily initiated by 

friction, impact, spark or heat. The initiation of primary explosives leads to a fast 

deflagration to detonation process with a shock wave formed, which is able to set off the 

less sensitive charge (main charge, secondary explosive) of an explosive device. They 

undergo a very fast deflagration to detonation transition (DDT) and are therefore used in 

initiating devices. Common primary explosives are lead(II) azide, lead(II) styphnate and 

mercury fulminate (Figure 2). The obvious disadvantage of these compounds is the 

toxicity of the heavy metal cations. Therefore, new less toxic primary explosives based on 

organic, metal free compounds were investigated and developed. Besides the 

development of metal free organic primaries, the replacement of the toxic cations with 

less toxic metals like silver, iron or copper is another topic of current interest. 
O

NO2O2N

NO2

Lead styphnate Mercury fulminate

Pb(N3)2

O

Pb2+ Hg(CNO)2

Lead azide  
Figure 2: Common primary explosives  

 

Secondary explosives are not only much more stable in terms of friction, impact and 

electrostatic discharge, but also kinetically stable (metastable) compounds. Hence, they 

have to be ignited by much larger stimuli, mostly generated by a primary charge. After 

initiation by the detonation shockwave of primary explosives, the secondary explosive 

generates a shockwave which promotes the reaction front through the unreacted material. 

Although they need a much higher impetus to be detonated, secondary explosives exhibit 

much higher performances than primary explosives. Common secondary explosives are 

TNT, RDX, HMX, TATB and NQ (Figure 3). 
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Figure 3: Common secondary explosives  
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Propellants, in contrast to primary and secondary explosives, are not meant to 

detonate, but only burn or deflagrate.  Basically there are two main classes of propellants, 

which are propellant charges and rocket propellants. Propellant charges mostly consist of 

formulations including both oxidizer and fuel. A common propellant used in ammunition 

is nitrocellulose (single-based propellant), because the advantageous ratio of oxygen to 

carbon leads to a residue-free burning of the compound. In order to improve the 

performance, double-based and triple-based propellants were developed based on 

nitrocellulose. Double based propellants like nitrocellulose and nitroglycerine 

compositions possess an enhanced performance, unfortunately accompanied by a higher 

erosion of the gun barrel due to their higher combustion temperature. In order to decrease 

the erosion, triple-based propellants consisting of nitrocellulose, nitroglycerine and 

nitroguanidine were developed. Whereas the single-based propellant nitrocellulose is 

sufficient for ammunition of guns and pistols, the double- and triple-based propellants are 

used in tank and naval artillery ammunition. 

The required properties of rocket propellants differ from that of propellants for 

ammunition. Rocket propellants can be divided into solid and liquid propellants. Solid 

propellants are either homogenous mixtures of one or more macroscopically 

indistinguishable ingredients (e.g. nitrocellulose and nitroglycerine), or heterogeneous 

mixtures (composite propellants, e.g. ammonium perchlorate and aluminum). Liquid 

propellants are divided in monopropellants (hydrazine) and bipropellants, which are 

mixtures of an oxidizer and fuel (e.g. HNO3 and hydrazine/monomethyl-hydrazine). 

 

Pyrotechnics can be divided into three areas. The heat generating, the smoke 

generating and the light emitting pyrotechnics. Heat generating pyrotechnics are used for 

priming charges, detonators, incendiary compositions or matches. Smoke generating 

pyrotechnics are used for camouflage and signaling purposes. The light emitting 

pyrotechnics are used either for illumination (visible and infrared), fireworks or decoy 

flares. The discussion of pyrotechnic systems is omitted, since the primary objective of 

this thesis is the synthesis and characterization of secondary explosives and, to a certain 

extent, propellant systems. 
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1.3 REQUIREMENTS FOR MODERN EXPLOSIVES  
 

Many of the energetic materials, which are in use today, suffer from manifold drawbacks 

such as high toxicity or high sensitivity, which makes intensive research in possible 

replacements necessary. In the field of secondary explosives, the widely used RDX as 

well as its degradation and decomposition products reveals hazards like the toxicity for 

plants, microorganisms and microbes. RDX itself is toxic to organisms at the base of the 

food chain such as earthworms and also TNT and its degradation products are 

ecologically toxic. In general, improved physicochemical properties such as detonation 

parameters and stabilities outperforming the commonly used RDX are desired. The 

required properties for new energetic materials as RDX replacements are summarized in 

Table 1. The detonation velocity should exceed 9000 ms−1 and the detonation pressure 

should be higher than 380 kbar. The thermal stability of a newly synthesized material 

should exceed 180 °C in addition to a high long term thermal stability for the safe storage 

of explosives.  

Besides the performance properties, the desired criteria for a new material in order to 

become widely accepted are also insensitivity towards destructive stimuli such as 

electrostatic discharge, heat, friction, and impact to ensure safe handling procedures and 

enhance controllability of kinetic energy release. Further, a low water solubility and high 

hydrolytic stability is necessary for environmental reasons. 

 

Table 1: Goals for the preparation of new High Energy Density Materials (HEDM) 

Performance detonation velocity 
detonation pressure 
heat of explosion 

D > 9000 m s−1 
P > 380 kbar 
Q > 6200 kJ kg−1 

   

Stability thermal stability 
impact sensitivity 
friction sensitivity 
electrostatic sensitivity 

Tdec. ≥ 180°C 
IS > 7 J 
FS > 120 N 
ESD > 0.2 J 

   

Chemical properties hydrolytically stable, 
compatible with binder and plasticizer, 
low water solubility  (or non-toxic), 
smoke-free combustion, 
long-term stable (> 15 years under normal conditions) 
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1.4 STRATEGIES IN ENERGETIC MATERIALS DESIGN  
 

There are three major methods of introducing potentially explosive energy into a 

molecule: fuel and oxidizer being contained in the same molecule, compounds possessing 

ring or cage strain, and high heat of formation compounds. Classical secondary 

explosives like 2,4,6-trinitrotoluene (TNT) and nitroglycerine (NG) derive all their energy 

from the oxidation of the carbon backbone. Both compounds exhibit negative heats of 

formation and hence much lower performance rates than RDX. RDX itself obtains its 

energy from the oxidation of the carbon backbone but as well from the formation of 

dinitrogen due to the N–N bonds in the nitramine moieties. Therefore, a positive heat of 

formation is generated, which results (together with the higher density) in significantly 

higher performance values. The performance values and structures of NG, TNT and RDX 

are compiled in Figure 1. 

 

Table 2: Classical explosives and their performance characteristics. Values are taken from Ref.[4] 

 
 

  

Name systematic 1,2,3-Propanetrioltri-
nitrate (NG) 

2,4,6-Trinitrotoluene 
(TNT) 

1,3,5-Trinitro-1,3,5-
triazinane (RDX) 

Tm (°C) 13 80 204 
Tdec‘ (°C) 200 300 210 
N (%) 18.5 18.5 37.8 
Ω (%) 3.5 −73.9 −21.6 
ρ (g cm-3) 1.591 1.654 1.82 
ΔHf

0 (kJ mol-1) −349.7 −49.7 89.2 
Impact sensitivity (J) 0.2 15 7.5 
Friction Sensitivity (N) > 360 353 120 
Vdet. (m s-1) 7600 6900 8750 

 

 

The examples of TNT and RDX reveal the features necessary for modern explosives. 

They should have high positive heats of formation, paired with high densities and well 

balanced oxygen content.[5] Positive heats of formation can be obtained by the 

introduction of nitrogen, either catenated like in heterocyclic ring systems or in the form 

of nitramine and nitro groups. The backbone of new energetic materials with high heats 

of formation is often a five or six membered nitrogen heterocycle. Regarding those five 
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membered rings from pyrole to pentazole as well as the six membered rings from pyridine 

to hexazine, there is a wide spectrum of possible energy content and stabilities. 

Another very important point is the cage strain eminent in heterocyclic ring systems and 

structures, which additionally increases the energy of formation. When a caged or cyclic 

explosive compound possesses bond strain resulting from the geometry of the compound, 

this stored energy contributes to the energy released upon detonation. Thus, much more 

energy can be derived by the combination of the oxidation of carbon together with the 

energy delivered from the cage strain introduced to the backbone. These concepts led to 

new materials over the last decade, although one has to consider the expensive and often 

laborious synthesis of those molecules. Strained cage and ring systems have been 

developed like TEX (4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane), CL-20 

(2,4,6,8,10,12-hexanitro-hexaazaisowurtzitane), ONC (octanitrocubane) and TNAZ 

(1,3,3-trinitroazetine) (Figure 4). 

 

 
Figure 4: Modern explosives: a) TEX (4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane), b) CL-20 
(2,4,6,8,10,12-hexanitro-hexaazaisowurtzitane), c) ONC (octa nitrocubane), d) TNAZ (1,3,3-
trinitroazetine). 
 

In the design of new energetic materials for practical use, one needs to consider the 

performance, sensitivities, toxicities as well as cost of production. Of all the driving 

forces for research on energetic materials, environmental concerns are one of the most 

powerful. RDX as well as TNT show a high aqua toxicity and due to the overall release of 

HEDMs to the environment, they are increasingly becoming a soil and ground water 

contaminant. TNT has been demonstrated to have carcinogenic effects in rats, 

contaminates water at munition sites and affects male fertility. RDX, HMX, CL-20 and 

other nitramine containing explosives are no better, being possible human carcinogens.[6] 

Fortunately, explosives based on nitrogen-rich compounds are generally less toxic. The 

detonation products of these compounds are mainly dinitrogen, carbon dioxide and water, 

which would be the overall goal for a well performing novel explosive.[7] 
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1.5 MOTIVATION AND OBJECTIVES 
 

The general area of this thesis is the synthesis and full characterization of novel secondary 

explosives. Due to the dual-use nature of energetic materials (e.g. RDX is an explosive, 

but is also capable of being used in propellants), attention at times may briefly turn to the 

application of these materials in propellants. The concept of new green energetic 

compounds as explained above is thereby an important topic of this work. The benefits of 

the development of new high energetic density materials with a high nitrogen content 

paired with high positive heats of formation are improved performance and also 

environmental compatibility. With all respect to environmentally friendly compounds and 

high performance values to be realized, the compounds must exhibit also high thermal 

stabilities and, for better and safer handling, low sensitivities against impact, friction and 

electrostatic discharge.  

The focus of this thesis is on the synthesis an characterization of compounds composed of 

either two 1,2,4-triazole moieties or the combination of a triazole ring with a tetrazole 

ring. The connectivity is either established over an azo functionality or over direct C–C 

linkage of both heterocycles. The introduction of various energetic moieties like nitro, 

nitrimino, azido and dinitromethyl at the carbon atom of the triazole moiety leads to the 

selective tailoring of energetic properties. The effect of the formation of energetic salts on 

the thermo chemical and physical properties as well as the detonation parameters has also 

been extensively studied and compared to known secondary explosives. 

The development of new HEDMs with high performance as potential RDX replacement, 

guaranteed through high enthalpies of formation and high densities, combined with high 

thermal stabilities, was a major scope of this study. The academic research interest mainly 

focuses on gaining a deeper understanding of factors affecting stability and performance 

as key to a more rational design of novel compounds with tailored properties. 
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2. CONCLUSIONS  
 
In the course of this work, many novel energetic materials based on 1,2,4-triazole 

derivatives have been developed, leading to new primary and secondary explosives as 

well as materials with possible applications in the propellants and pyrotechnincs sector. 

The focus of this study is on the synthesis an characterization of compounds composed of 

either two 1,2,4-triazole moieties or the combination of a triazole ring with a tetrazole 

ring. The connectivity is either established over an azo functionality or over direct C–C 

linkage of both heterocycles. The introduction of various energetic moieties like nitro, 

nitrimino, azido and dinitromethyl at the carbon atom of the triazole moiety leads to the 

selective tailoring of energetic properties. 

CHAPTER 3 deals with the synthesis and characterization of 5,5´-dinitrimino-3,3´-azo-1H-

1,2,4-triazole and selected nitrogen-rich salts thereof. Since the impact and friction 

sensitivities for 5,5´-dinitrimino-3,3´-azo-1H-1,2,4-triazole are very high with an impact 

sensitivity of 2 J and an friction sensitivity of 20 N, corresponding nitrogen rich salts 

have been prepared first in order to decrease the sensitivity and also to increase the 

thermal stability. Both goals have been achieved for selected salts of 5,5´-dinitrimino-

3,3´-azo-1H-1,2,4-triazole, showing decomposition temperatures between 212 °C 

(ammonium) and 261 °C (guanidinium). All impact and friction sensitivities are well 

above the values of RDX, and hence much less sensitive, while the performance values of 

the bis(triaminoguanidinium) 5,5´-dinitrimino-3,3´-azo-1H-1,2,4-triazolate show 

promising values very close to RDX. 

 
Figure 1: Illustration of bis(triaminoguanidinium) 5,5´-dinitrimino-3,3´-azo-1H-1,2,4-triazolate. 
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CHAPTER 4 contains the synthesis and characterization of 3,3´-bis(dinitromethyl)-5,5´-

azo-1H-1,2,4-triazole. The performed single crystal X-ray diffraction measurement 

reveals a tetrahedral coordination at the dinitromethyl moiety typical for sp3-carbon atoms 

(Figure 2). With the high positive heat of formation (579.5 kJ mol–1) and a detonation 

velocity of 8433 m s–1, 3,3´-bis(dinitromethyl)-5,5´-azo-1H-1,2,4-triazole shows 

attractive energetic properties.  Unfortunately, in contrast to the corresponding nitrimino 

compound (discussed in chapter 3), the dinitromethyl moiety leads to a very low 

temperature of decomposition starting at 80 °C. 

 
Figure 2: Illustration of 3,3´-bis(dinitromethyl)-5,5´-azo-1H-1,2,4-triazole. 

 

CHAPTER 5 is a comparative study of structural and energetic properties of nitrogen-rich 

bis-1,2,4-triazoles directly connected via C–C bond carrying different energetic moieties 

like amino, nitro, nitrimino, azido and dinitromethylene groups.  

Regarding the stability values and energetic parameters, 3,3’-dinitro-5,5’-bis-1,2,4-

triazole (DNBT) shows the highest thermal stability of 251 °C together with an 

insensitivity towards friction and a moderate sensitivity towards impact (10 J). As 

expected, the nitrimino compound (DNABT) as well as the azido compound (DAzBT) 

are the most sensitive derivatives. The introduction of the dinitromethyl group (DNMBT) 

leads to the best detonation parameters (8499 ms–1, 341 kbar), but as it is also the case for 

the similar azo-bridged compound (see chapter 4), the thermal stability is decreased to 

121 °C. In summary, the compounds DNBT and DNABT can be considered as nitrogen-

rich starting materials for new energetic ionic derivatives in combination with nitrogen-

rich cations. 
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Figure 3: Illustration of bis-1,2,4-triazoles along with selected energetic moieties. 

 

CHAPTER 6 focuses on insensitive energetic compounds based on the 3,3’-dinitro-5,5’-

bis-1,2,4-triazolate anion in combination with nitrogen-rich cations. The most interesting 

compounds regarding the energetic properties are the hydroxylammonium and 

triaminoguanidinium salt. All of these compounds exhibit decomposition temperatures of 

above 200 °C and performance values (8477 m s–1 and 8365 m s–1) close to RDX. Worth 

mentioning is the guanidinium salt with a remarkable high decomposition temperature of 

335 °C and an insensitivity against friction and impact.  

 
Figure 4: Illustration of bis(triaminoguanidinium) 3,3’-dinitro-5,5’-bis-1,2,4-triazolate. 
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CHAPTER 7 deals with asymmetrically substituted bistriazoles connected via C–C bond. 

In this chapter, the synthesis and full structural and spectroscopic characterization of three 

asymmetrically substituted bis-1,2,4-triazoles, along with different energetic moieties like 

amino, nitro, nitrimino and azido moieties is presented. Additionally, selected nitrogen-

rich ionic derivatives have been prepared and characterized. The amine group of 5-(5-

amino-1H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole was further converted to energetic 

moieties (nitrimino and azido), which leads to the previously unknown asymmetric 

energetic bistriazole compounds. Regarding the stability values and energetic parameters, 

the nitrimino compound (NNBT) and the azido compound are sensitive towards impact 

sensitivity (8 J) but insensitive towards friction (360 N). With detonation velocities below 

8000 ms–1, both compounds are able to compete with commonly used TNT, however, the 

performance data for RDX are not reached. Energetic ionic compounds were synthesized 

from NNBT using nitrogen-rich cations,. The most interesting compounds regarding the 

energetic properties are the hydroxylammonium and triaminoguanidinium compound. 

Those compounds exhibit decomposition temperatures above 200 °C and performance 

values in the range of RDX (8706 m s–1 and 8707 m s–1).  

  
Figure 5: Illustration of asymmetrically substituted bistriazoles. 

 

CHAPTER 8 deals with the design of high performance insensitive energetic materials by 

the introduction of N-oxides to the triazole moiety. In this chapter, the synthesis and full 

structural as well as spectroscopic characterization of 3,3’-dinitro-5,5’-bis-1,2,4-triazole-

1,1’-diole and nitrogen-rich salts thereof is presented. It is possible to oxidize 3,3’-

dinitro-5,5’-bis-1H-1,2,4-triazole to the corresponding 1,1'-dihydroxy compound under 

mild, aqueous conditions in high yield. The simple and straightforward method of 
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N-Oxide introduction in triazole compounds using commercially available Oxone® 

improves the energetic properties and reveals a new synthetic pathway towards novel 

energetic 1,2,4-triazole derivatives. The most striking difference between the N-oxide 

containing compounds and their parent relatives is a higher crystal density (about 

0.1 g cm−3) compared to the corresponding N-oxide free compounds as a consequence of 

the N-oxide being involved in multiple intermolecular bonding interactions.  

The ionic derivatives were found to be high thermally stable, insensitive compounds that 

are highly powerful but safe to handle and prepare, all compounds show superior 

performance in comparison to the corresponding ones bearing no N–oxide. The most 

promising compound for industrial scale up and practical use is the hydroxylammonium 

salt, which shows a straightforward synthesis including only four cheap and facile steps. 

Especially the combination of an exceedingly high performance superior to RDX and 

insensitivity to mechanical stimuli highlights this compound as potential high explosive, 

which could find practical use as RDX replacement. 

 
Figure 6: Illustration of 3,3’-dinitro-5,5’-bis-1H-1,2,4-triazole-1,1’-diole and its corresponding 

hydroxylammonium salt. 

 

 

CHAPTER 9 contains the combination of a 1,2,4-triazole with a tetrazole via C–C 

connection. The starting material 5-(5-amino-1H-1,2,4-triazol-3-yl)-1H-tetrazole (ATT) 

was converted to energetic derivatives by introduction of nitro- (NTT), nitrimino- 

(NATT) and azido-moieties (AzTT).  
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Regarding the stability values and energetic parameters, compounds NATT and NTT 

show thermal stabilities (215 °C and 211 °C) in the range of RDX.  As expected, the 

nitrimino compound as well as the azido compound are the most sensitive derivatives 

with an impact sensitivity of less than 1 J and friction sensitivities of 18 N (NATT) and 

20 N (AzTT). In contrast, the nitro derivative shows moderate sensitivities towards 

friction (288 N) and impact (25 J). In general, the connection via C–C bond of a triazole 

ring with its opportunity to introduce a large variety of energetic moieties and a tetrazole 

ring implying a large energy content leads to the selective synthesis of precursors for 

primary and secondary explosives. 

 

  
Figure 7: Illustration of 5-(1,2,4-Triazol-3-yl)tetrazoles. 

 

CHAPTER 10 focuses on the C–C connection of a 1,2,4-triazole with a 1-hydroxy-

tetrazole. The influence of the variable energetic moieties as well as the C–C connection 

of a tetrazol-1-ol and a 1,2,4-triazole on structural and energetic properties is investigated. 

The beneficial influence of a 1-hydroxy-tetrazole on detonation parameters and the 

tailoring of energetic properties by the introduction of different energetic groups is 

discussed. In comparison to the corresponding compounds bearing no N-Oxide 

(chapter 9), the sensitivities are in the same range, however the thermal stability is 

remarkably lowered. Taking into account the high nitrogen contents of 56.6 % – 72.2 % 

and high heats of formation, those compounds could be considered as nitrogen rich 



___________________________________________________________________CONCLUSIONS 
 

17 | 

environmentally-friendly primary explosives with proper metal cations (AzTT), or be of 

interest as secondary explosive or propellant ingredient in combination with nitrogen-rich 

cations (NTT and NATT), respectively. As it is also the case for the tetrazolyl-triazole 

compounds discussed in chapter 9, the combination of a triazole ring with its opportunity 

to introduce a large variety of energetic moieties and a 1-hydroxytetrazole ring implying a 

large energy content leads to the selective synthesis of precursors for nitrogen rich ionic 

primary and secondary explosives. 

 
Figure 8: Illustration of 5-(1,2,4-Triazol-C-yl)tetrazol-1-ols. 

 

CHAPTER 11 presents the synthesis and characterization of selected nitrogen-rich salts 

based on 5-(1,2,4-Triazol-C-yl)tetrazoles and their 1-hydroxy-tetrazole analogues. The 

main focus is on the energetic properties of those ionic derivatives in comparison to the 

neutral compounds. Additionally, the positive influence of the introduction of N-Oxides 

in energetic materials is shown. The ionic N-Oxid compounds show lower decomposition 

temperature in comparison to the compounds bearing no N-Oxid, however the stability is 

mainly influenced by the corresponding cation. Most of the compounds show reduced 

sensitivities in comparison to their neutral precursors, especially the ionic nitrimino-

triazolate compounds are much safer to handle, since the stability towards friction and 

impact was considerably increased. In general, the triazol-C-yl-tetrazoles show lower 
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performance values in comparison to their 1-hydroxy-tetrazole analogues. For example, 

the detonation velocities of the hydroxylammonium salts are increased by about 500 ms–1 

due to the N-Oxide. The introduction of an N-Oxide in tetrazole based energetic materials 

obviously positively influences the detonation parameters due to a higher density and an 

even greater energy output, however this advantage comes along with lower 

decomposition temperatures. 

 
Figure 9: Illustration of 5-(5-Nitramino-1H-1,2,4-triazolate-3-yl)tetrazol-1-olate and 5-(3-Nitro-1,2,4-

triazolate-5-yl)tetrazol-1-olate anions. 
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3. SYNTHESIS AND CHARACTERIZATION OF BIS(TRI-

AMINOGUANIDINIUM) 5,5´-DINITRIMINO-3,3´-AZO-1H-1,2,4-

TRIAZOLATE – A NOVEL INSENSITIVE ENERGETIC MATERIAL 
As published in: 

Zeitschrift für Anorganische und Allgemeine Chemie, 2011, 637(9), 1181–1193. 

 

ABSTRACT: 

The synthesis of 5,5´-diamino-3,3´-azo-1H-1,2,4-triazole (3) by reaction of 

5-acetylamino-3-amino-1H-1,2,4-triazole (2) with potassium permanganate is described. 

The application of the very straightforward and efficient acetyl protection of 3,5-diamino-

1H-1,2,4-triazole allows selective reactions of the remaining free amino group to form the 

azo-functionality. Compound 3 is used as starting material for the synthesis of 5,5´-

dinitrimino-3,3´-azo-1H-1,2,4-triazole (4), which was subsequently reacted with organic 

bases (ammonia, hydrazine, guanidine, aminoguanidine, triaminoguanidine) to form the 

corresponding nitrogen-rich triazolate salts (5−9). All substances were fully characterized 

by IR and Raman as well as multinuclear NMR spectroscopy, mass spectrometry and 

differential scanning calorimetry. Selected compounds were additionally characterized by 

low temperature single crystal X-ray diffraction measurements. The heats of formation of 

4−9 were calculated by the CBS-4M method to be 647.7 (4), 401.2 (5), 700.4 (6), 398.4 

(7), 676.5 (8) and 1089.2 (9) kJ mol–1. With these values as well as the experimentally 

determined densities several detonation parameters were calculated using both computer 

codes EXPLO5.03 and EXPLO5.04. In addition, the sensitivities of 5−9 were determined 

by the BAM drophammer and friction tester as well as a small scale electrical discharge 

device. 
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INTRODUCTION 

In recent years, the synthesis of energetic, heterocyclic compounds has attracted an 

increasing amount of interest, since heterocycles generally offer a higher heat of 

formation, density and oxygen balance than their carbocyclic analogues.[1] In combination 

with the advances of a high nitrogen content such as the high average two electron bond 

energy associated with the nitrogen-nitrogen triple bond[2], those compounds are of great 

interest for investigations. The current widely used nitro-explosives TNT, RDX or HMX 

per se as well as their transformation products are toxic due to the presence of nitro (-

NO2), nitroso (-NO) or nitrito (-ONO) groups either in the explosives itself or its 

degradation products.[3] The development of new energetic materials therefore focuses − 

besides high performance and stability − on environmentally friendly compounds. 

Nitrogen-rich compounds mainly generate environmentally friendly molecular nitrogen 

as end-product of propulsion or explosion, therefore they continue to be the focus of 

energetic materials research across the globe.[4] A prominent family of compounds 

regarding the properties mentioned above are azole-based energetic materials, because 

they are generally highly endothermic compounds with relatively high densities and a 

high nitrogen content.[5] Since modern high energy density materials (HEDM) mostly 

derive their energy of ring or cage strain as well as of a high heat of formation, a lot of 

research has been done on explosives containing the azo-functionality. Several 

heterocyclic compounds like 4,4´-diamino-3,3´-azofurazan (a) and 3,3´-azobis(6-amino-

1,2,4,5-tetrazine) (b) have been reported in literature so far (Figure 1).[6] 
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Scheme 1: Formula structures of some heterocyclic compounds containing the azo-functionality. 

 

The combination of a high nitrogen content with a high heat of formation led to the 

development of azole-based compounds containing the azo-functionality. The recently 

reported 5,5´-azotetrazolate anion (Figure 2) is such an energetic compound with a very 

high nitrogen content and therefore suitable for the synthesis of energetic materials. There 

has been increased interest in the synthesis of energetic salts based on the 5,5´-
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azotetrazolate anion, since the neutral compound decomposes at room temperature.[7] 

Many 5,5´-azotetrazolate salts have found practical application in combination with 

nitrogen-rich bases (e.g. guanidinium, triaminoguanidinium, hydrazinium) as 

propellants,[8] in gas generators for airbags as well as in fire extinguishing systems.[9] 

Heavy metal salts have been used as initiators[10] and derivatives of 5,5´-azotetrazole are 

utilized as additives in solid rocket propellants.[11] 

Since triazole derivatives often tend to be thermally and kinetically more stable than their 

tetrazole analogous, research in this field of azo-bridged azoles shows great promise for 

energetic materials. For example, 5,5´-dinitro-3,3´-azo-1H-1,2,4-triazole and its 

nitrogen-rich salts have been in the focus as potential insensitive high nitrogen 

compounds and propellant burn rate modifiers.[12]  
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Scheme 2: Formula structures of the 5,5´-azotetrazolate anion (a) and 3,3´-dinitro-5,5´-azo-1H-1,2,4-

triazole (b). 

 

The literature known 5,5´-dinitro-3,3´-azo-1H-1,2,4-triazole was first synthesized at Los 

Alamos National Laboratories by Naud and coworkers in 2003.[13] Since this molecule 

and selected nitrogen-rich salts like the triaminoguanidinium compound reveal a high 

stability and attractive explosive properties,[14] our goal was the preparation of the 

corresponding nitrimino-compound as the introduction of this group is known to better 

the performance characteristics. 

 

RESULTS AND DISCUSSION 

SYNTHESIS 

The starting material used for nitration, 5,5´-diamino-3,3´-azo-1H-1,2,4-triazole (3), is 

not yet known in literature, since it is not accessible using 3,5-diamino-1H-1,2,4-triazole 

as a starting material. The formation of the azo-bridge apparently only works with a 

unique amino group in the molecule, which necessitates the protection of one amino 
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group first. The acetyl protecting group is suitable due to the fact that it is stable even in 

concentrated acids/bases at room temperature and the amine is not deprotected until using 

elevated temperatures. Theoretically, acylation of 3,5-diamino-1H-1,2,4-triazole can 

proceed both at the heterocyclic nitrogen atoms and at the two amino groups.[15] The 

treatment of 3,5-diamino-1H-1,2,4-triazole with acetic anhydride in water provides 1-

acetyl-diaminotriazole (1) in yields of about 98 %. The desired 5-acetylaminotriazole (2) 

is obtained in nearly quantitative yields via thermal isomerization by heating a suspension 

of 1 in decaline (Scheme 3) as it is described by Pevzner et al..[16] 
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Scheme 3: Reaction pathway towards 5,5’-amino-3,3’-azo-1H-1,2,4-triazole starting from 3,5-diamino-1H-

1,2,4-triazole. 

 

As shown in Scheme 3, the synthesis of 5,5´-diamino-3,3´-azo-1H-1,2,4-triazole (3) 

(DAAT) was performed with a stoichiometric amount of potassium permanganate which 

was added at 0 °C.  After removal of the ice bath, the mixture was allowed to warm to 

room temperature. Subsequent heating to 100 °C for 3 hours completes the formation of 

the azo-bridge, transforms the remaining permanganate to manganese(IV)-oxide and 

leads to a complete deprotection of both amine groups. After the removal of the generated 

manganese oxide by filtration, acidifying the solution to pH 7 leads to the precipitation of 

compound 3 as an orange solid. Drying at 110 °C over night provides DAAT as elemental 

analysis pure orange powder. The synthesis of the novel 5,5´-dinitrimino-3,3´-azo-1H-

1,2,4-triazole (4) was accomplished in good yields via nitration of 5,5´-diamino-3,3´-azo-

1H-1,2,4-triazole (3) as it is described for 3-amino-1H-1,2,4-triazole by Licht et. al [17] 
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using a volume ratio H2SO4/HNO3 of 6 : 1 and two equivalents of nitric acid per amino 

group (Scheme 4). 
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Scheme 4: Synthesis of 5,5´-dinitrimino-3,3´-azo-1H-1,2,4-triazole (4) via nitration of 3. 

 

DNAAT immediately precipitates as a yellow solid while pouring the nitration mixture 

on ice and can easily be isolated by filtration. After drying at 60 °C, the desired elemental 

analysis pure nitrimino compound (4) was obtained in yields of about 80%. The synthesis 

of the nitrogen-rich salts (5−9) was accomplished as shown in Scheme 5 by adding two 

equivalents of an organic base (ammonia, hydrazine, guanidine, aminoguanidine, 

triaminoguanidine) to a suspension of the neutral compound in water.  
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Scheme 5: Synthesis of nitrogen-rich salts (5 − 9) of DNAAT. 

 

The energetic salts of the di-anion DNAAT2- were obtained in good yields as yellow 

powder while storing the mixture at 5 °C over night. All energetic compounds were fully 

characterized by IR and Raman as well as multinuclear NMR spectroscopy, mass 

spectrometry and differential scanning calorimetry. Selected compounds were 

additionally characterized by low temperature single crystal X-ray spectroscopy. 
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NMR SPECTROSCOPY 

Due to the low solubility of compounds 2 and 3 in common NMR-solvents (but good 

solubility in bases), NMR spectroscopy was performed in D2O adding a stoichiometric 

amount of sodium hydroxide. The NMR signals given in Table 1 correspond to the 

sodium salts of 2a and 3a and present as well the neutral compounds 1 and 2 in [d6]-

DMSO. 

 
Table 1: NMR signals of compounds 1, 2, 2a and 3a. 

compound 

1H NMR 13C{1H} NMR 

CH3 C=O C-NH2  
C-NHAc 
(a) 

CH3 

1 2.33 170.5 
162.2, 

157.0 
 23.6 

2 1.99 169.8 161.6 156.4 22.9 

2a 2.03 174.1 162.5 154.1 22.7 

3a ‒ ‒ 165.0 170.0 ‒ 

(a) C-azo in the case of 3a 

 

In the case of compound 2 (2a), two different NMR signals for the triazole carbon atoms 

could be obtained due to the rearrangement of the acetyl protecting group. The NMR 

signals of the two carbon atoms of compound 3a can be found at 170.0 and 165.0 in the 
13C NMR spectra. The signals of the acetyl protecting group at 2.03 (1H NMR) and 22.7 

(13C NMR) could not be obtained anymore, indicating full deprotection of the amine 

groups. The signals in the NMR spectra for compounds 4−9 were recorded in [d6]-DMSO 

and are compiled in Table 2. The neutral compound (4) shows two signals for the 

different carbon atoms at 159.7 and 153.8 ppm, the nitrimino group is visible at ‒19 ppm 

in the 14N NMR-spectra. As expected in the case of compounds 5−9, all NMR signals are 

nearly identical. The single proton localized at the triazole ring appears at chemical shifts 

between 13.5−13.6 ppm in the 1H NMR spectra, while the signals of the two triazole 

carbon atoms can be found in the range between 166.9−167.7 ppm and 157.7−158.3 ppm. 

The nitrimino group is identified by a broad signal at around ‒15 ppm in the 14N NMR 

spectra. 
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Table 2: NMR signals of compounds 4−9. 

compound 
DNAAT2- cation 
1H 13C{1H} 14N{1H} 1H 14N{1H} 

4 / 159.7, 153.8 ‒19 / / 

5 13.58 167.7, 158.3 ‒14 7.23 -359 

6 13.51 166.9, 157.8 ‒16 7.28 -359 

     
13

C{1H} 

7 13.53 167.1, 157.9 ‒14 7.03 157.7 

8 13.61 167.0, 157.7 ‒15 7.89, 4.71 158.9 

9 13.48 167.3, 157.8 ‒14 8.59, 4.49 159.0 

VIBRATIONAL SPECTROSCOPY 

The isomerization reaction can easily be monitored by IR spectroscopy and is indicated 

by the shift of the C=O band from 1709 cm-1 (1) to 1683 cm-1(2).  

The complete deprotection of the amine groups during the synthesis of 3 can easily be 

monitored by the missing C=O vibration band at around 1700 cm-1 as well as the missing 

C-H valence vibrations at 2800–3100 cm-1 in the IR and Raman spectra. The latter is 

dominated by the absorption of the azo-moiety at 1348 cm-1,[7c, 18] the infrared spectrum 

by the deformation mode of the amino groups at 1624 cm-1. 

The Raman spectra of 4 is dominated by the vibration of the azo-moiety at 1436 cm‒1, the 

absorption of the amino groups in the infrared spectrum at 1624 cm-1 has disappeared. 

The N-NO2 groups result in a strong absorption at 1620–1560 cm-1 (υasym(NO2)) and 

1300–1240 cm-1 (υsym(NO2)). 

The symmetric and N=O valence vibrations of all nitrogen-rich salts (5−9) can be found 

at 1530 cm-1 (υsym(NO2)) and 1335 cm-1 (υasym(NO2)) in the IR spectrum, accompanied by 

the fundamental frequencies of the triazole ring in the range of 1300−1500 cm-1.[19] The 

N-H stretch modes of the amine group of the cations appear in the range of 3350 cm-1 to 

3100 cm-1 and the -NH2 deformation vibration at 1630−1680 cm-1. The very intense band 

of the azo-moiety at 1463 cm-1 in the Raman spectrum shows only a marginal shift in 

comparison to the neutral compound (4). 
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STRUCTURAL CHARACTERIZATION 

The single crystal X-ray diffraction data of 4, 5 and 9 were collected using an Oxford 

Xcalibur3 diffractometer equipped with a Spellman generator (voltage 50 kV, current 40 

mA) and a KappaCCD detector. The data collection was undertaken using the CRYSALIS 

CCD software [20] while the data reduction was performed with the CRYSALIS RED 

software.[21] The structures were solved with SIR-92[22] or SHELXS-97 [23] and refined with 

SHELXL-97[24] implemented in the program package WinGX[25] and finally checked using 

PLATON.[26] Further information regarding the crystal-structure determination have been 

deposited with the Cambridge Crystallographic Data Centre[27] as supplementary 

publication Nos. 807480 (4*DMSO), 807481 (4*THF), 807482 (5) and 807483 (9).  

 

The crystallization of azo-bridged triazole compounds is very difficult due to the 

completely planar configuration of the molecules and a lack of possibilities for hydrogen 

bonding. We were finally able to crystallize 4 from DMSO and also THF, but were not 

able to record a crystal structure of the neutral compound without incorporated solvent 

molecules. The same problem occurred with the ionic compounds. Only the ammonium 

salt (5) and the triaminoguanidinium salt (9) could be crystallized after a number of tries 

with different solvents and crystallization conditions. While 5 could only be crystallized 

with incorporated solvent molecules (DMSO), 9 crystallized with two molecules of 

crystal water per formula unit. Due to this circumstances, the structures of 4*DMSO, 

4*THF and 5*DMSO will not be discussed in detail since no results can be drawn from 

the discussion of the structure, thus only selected parameters and the asymmetric units of 

the compounds will be presented. The structure of the title compound 9 will be discussed 

in detail. 

 

The DMSO adduct of 5,5´-dinitrimino-3,3´-azo-1H-1,2,4-triazole (4) crystallizes in the 

monoclinic space group P21/c with 4 molecular moieties in the unit cell, while the THF 

adduct crystallizes in the monoclinic spacegroup P21/n with only two molecular moieties 

in the unit cell. Pycnometer measurements of 4 stated a density of 1.85 g cm-3
, while the 

densities derived from the crystallographic measurements are very low with 1.505 g cm-3 

for 4*DMSO and 1.374 g cm-3 for 4*THF, respectively, owed to the solvent 

incorporation. The asymmetric units for both adducts are displayed in Figure 1 and Figure 

2 together with the numbering scheme and selected bond distances and angles.  
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Figure 1: Molecular moiety of 4*DMSO. Thermal ellipsoids represent the 50% probability level. Selected 

bond lengths (Å): O1 N6 1.243(3), O2 N6 1.242(3), N1 C2 1.340(3), N1 N2 1.370(3), N1 H1 0.90(2), N2 

C1 1.307(3), N3 C2 1.352(3), N3 C1 1.355(3), N3 H3 0.913(16), N4 N10 1.280(3), N4 C1 1.397(3), N5 C2 

1.341(3), N5 N6 1.343(3); selected bond angles (°):C2 N1 N2 111.9(2), C2 N1 H1 132.8(16), N2 N1 H1 

115.2(16), C1 N2 N1 103.1(2) , C2 N3 C1 106.3(2), C2 N3 H3 119.7(15), C1 N3 H3 133.8(16), N10 N4 

C1 111.8(2), C2 N5 N6 115.7(2), O2 N6 O1 122.0(2), O2 N6 N5 115.7(3), O1 N6 N5 122.3(3), C4 N7 N8 

112.46(19), C4 N7 H7 128.8(15), N2 C1 N3 112.9(2), N2 C1 N4 119.3(3), N3 C1 N4 127.4(2), N1 C2 N5 

135.9(2), N1 C2 N3 105.8(2), N5 C2 N3 118.2(3). 

 
Figure 2: Molecular moiety of 4*THF. Thermal ellipsoids represent the 50% probability level. Selected 

bond lengths (Å): C4 C3 1.406(5), C4 C5 1.424(6), N6 1.244(3), N1 C2 1.356(4), N1 N2 1.368(3), N1 H1 

0.88(3), N2 C1 1.308(3), N5 C2 1.339(4), N5 N6 1.356(3), N4 N4 1.272(4), N4 C1 1.392(3), N3 C2 

1.346(3), N3 C1 1.368(4), N3 H4 0.94(3), N6 O2 1.239(3); selected bond angles (°):C2 N1 N2 111.8(3), C2 

N1 H1 129(2), N2 N1 H1 119(2), C1 N2 N1 103.6(2), C2 N5 N6 115.6(3), N4 N4 C1 112.2(3), C2 N3 C1 

106.8(2), C2 N3 H4 125(2), C1 N3 H4 128(2), O2 N6 O1 121.5(3), O2 N6 N5 116.0(3), O1 N6 N5 

122.4(2), N5 C2 N3 119.8(3), N5 C2 N1 134.8(3), N3 C2 N1 105.5(3), N2 C1 N3 112.3(2), N2 C1 N4 

120.8(2), N3 C1 N4 127.0(2). 
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The DNAAT molecule is nearly planar in both structures, indicating the presence of a 

delocalized π-electron system, as anticipated for these compounds. Bond lengths and 

angles are also as expected for this kind of compounds.[28] The bond length of the azo 

moiety is in the same range as for the azotetrazole compounds investigated by 

Hammerl[7c, 29] while the nitraminogroups also exhibit regular geometrical parameters. 

The interesting aspect of both structures is the presence of moderately strong 

intramolecular hydrogen bonds. N1 and N7 are utilized as donor atoms with O1 and O4 

function as acceptor atoms respectively for 4*DMSO, while N1 and O1 build up the 

hydrogen bond for 4*THF. Even though, the D–H•••A angles are pretty small with 

102.15(16)° (N1–H1•••O1, 4*DMSO), 105.8(1)° (N7–H7•••O4, 4*DMSO) and 

108.21(23)° (N1–H1•••O1, 4*THF), the D–A distances are very small, ranging between 

2.587(1) Å (N1–O1, 4*THF) and 2.606(4) Å (N1–O1, 4*DMSO). The hydrogen bonds 

are considered to be of electrostatic nature rather than being directed.[30] The build up of a 

six membered ring between the nitrimino group and the triazole ring, is making the 

backbone of the molecule more stable, which is also indicated by the very high thermal 

stabilities, unusual for this class of compounds. In addition the hydrogen atom can only 

be deprotonated with the use of earth alkaline bases, not with the bases used to form the 

di-anion. Further, the incorporated solvent molecules take their space due to the 

formation of hydrogen bonds with each of the four N–H hydrogen atoms. Thus both 

structures show the mutual number of solvent molecules surrounding each DNAAT 

molecule.  

 

Bis(ammonium) 5,5´-dinitrimino-3,3´-azo-1H-1,2,4-triazolate (5*DMSO) crystallizes in 

the triclinic space group P-1 , formally with only one molecular moiety occupying the 

unit cell. The density is as expected very low with only 1.483 g cm-3 due to the formation 

of the DMSO adduct. One molecular moiety together with selected bond length and 

angles is presented in Figure 3. 
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Figure 3: Molecular moiety of 5. Thermal ellipsoids represent the 50% probability level. Selected bond 

lengths (Å): O1 N6 1.270(2), O2 N6 1.260(2), N1 C2 1.345(3), N1 N2 1.368(2), N1 H1 0.917(15), N2 C1 

1.327(3), N3 C2 1.335(3), N3 C1 1.356(3), N4 N4 1.278(3), N4 C1 1.413(3), N5 N6 1.322(2), N5 C2 

1.381(3); selected bond angles (°): C2 N1 N2 110.46(19), C2 N1 H1 133.0(14), N2 N1 H1 116.5(14), C1 

N2 N1 101.00(19), C2 N3 C1 102.0(2), N4 N4 C1 112.0(2), N6 N5 C2 116.8(2), O2 N6 O1 120.4(2), O2 

N6 N5 123.6(2), O1 N6 N5 116.1(2),  

N2 C1 N3 116.5(2), N2 C1 N4 117.4(2), N3 C1 N4 126.2(2), N3 C2 N1 110.1(2), N3 C2 N5 117.9(2, N1 

C2 N5 132.0(2). 

 

The di-anion is completely planar within the ionic structures with only very slight 

deviations. The N1–H1•••O2 hydrogen bond builds up the six membered ring again, as 

seen for the neutral compound, keeping the nitriminogroup perfectly in plane with the 

triazole ring. Since the thermal decomposition temperature differs only by 3 °C when 

compared with 4 (209 °C (4) compared to 212 °C (5)) the formation of this stable 

configuration seems to have an very important impact on the stability of these 

compounds. The structure itself is build up from four moderately stable hydrogen bonds, 

all four of them involving the ammonium cation. An illustration of the surrounding of one 

ammonium cation is presented in Figure 4, while the parameters of the hydrogen bonds 

are compiled in Table 4. 
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Figure 4: Chemical surrounding of the ammonium cation in 5, displaying the hydrogen bonds. Thermal 

ellipsoids represent the 50% probability level. 

 
Table 4: Hydrogen bonds present in the crystal structure of 5. Since the N–H bonds of the ammonium ion 

had to be set as restraint, no standard deviation is presented.  

Atoms D–H–A Dist D–H [Å] Dist. H–A [Å] Dist. D–A [Å]  Angle D–H–A [°] 

N1 – H1 – O3i 0.917(15) 1.937(18) 2.786(3) 153.0(19) 

N7 – H7a – O1ii 0.96      2.00      2.929(2) 163.8     

N7 – H7b – O3 0.92      1.91      2.811(2) 167.1     

N7 – H7c – N3 0.92      1.98      2.872(3) 164.3     

N7 – H7d – 

N5iii 

0.93      2.05      2.951(3) 164.8     

Symmetry operators: (i) x, y-1, z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z.  

 

The dihydrate of the bis(triaminoguanidinium) 5,5´-dinitrimino-3,3´-azo-1H-1,2,4-

triazolate (9) crystallizes in the monoclinic space group P21/c with two formula units in 

the unit cell. The density is in the same range as other guanidinium salts of nitrimino-

compounds with 1.698 g cm-3. The density is also in good agreement with the 

experimentally determined density of the anhydrous compound being 1.72 g cm-3 

(pycnometer measurement). The molecular moiety of 9, as well as the numbering scheme 

and selected bond lengths and angles are presented in Figure 5. 
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Figure 5: Molecular moiety of 9. Thermal ellipsoids represent the 50% probability level. Selected bond 

lengths (Å): O1 N6 1.264(3), O2 N6 1.255(3), N1 N2 1.351(3), N1 C2 1.354(3), N1 H1 0.77(3), N2 C1 

1.323(3), N3 C2 1.336(3), N3 C1 1.344(3), N4 N4 1.277(4), N4 C1 1.407(3), N5 N6 1.310(3), N5 C2 

1.368(3), N7 C3 1.313(3), N7 N10 1.431(3),N8 C3 1.316(4), N8 N11 1.406(3), N9 C3 1.331(4), N9 N12 

1.419(3); selected bond angles (°): N2 N1 C2 110.2(2), N2 N1 H1 116(3), C2 N1 H1 134(3), C1 N2 N1 

101.8(2), C2 N3 C1 102.5(2), N4 N4 C1 111.9(3) 3_765, N6 N5 C2 117.7(2), O2 N6 O1 120.8(2), O2 N6 

N5 116.9(2), O1 N6 N5 122.2(2), N2 C1 N3 116.2(2), N2 C1 N4 116.7(2), N3 C1 N4 127.1(2), N3 C2 N1 

109.4(2), N3 C2 N5 118.2(2), N1 C2 N5 132.4(2),  

C3 N7 N10 118.3(2),  C3 N8 N11 121.9(3), C3 N9 N12 119.0(2). 

 

As seen in the structure of 5, the DNAAT2- anion is completely planar. The structural 

motive of two six membered rings, stabilizing the nitrimino groups is also evident in this 

structure. The donor acceptor distance is in the same range as for 4 and 5 with 2.579(9) Å 

and with the D–H•••A angle of 106.22(31)° of strong electrostatic nature. The complete 

structure is build up by a strong hydrogen network including 15 non-equivalent hydrogen 

bonds. All hydrogen bonds are compiled in Table 5 below. 
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Table 5: Hydrogen bonds present in the crystal structure of 9. H7, H8 and H9 had to be set restraint, thus 

no standard deviations are given for the D–H and H–A distances as well as for the D–H–A angles.  

     

Atoms D–H–A Dist. D–H [Å] Dist. H–A 

[Å] 

Dist. D–A [Å]  Angle D–H–A 

[°] 

     

     

N1 – H1 – O1 0.770(4) 2.256(37) 2.579(9) 106.2(9) 

N1 – H1 – O3 0.77(3)   1.98(4) 2.733(3) 165(4) 

N7 – H7 – O1i 0.88      2.34    2.995(3) 130.9  

N8 – H8 – O2ii 0.88      2.18    2.954(3) 146.3  

N9 – H9 – N5iii 0.88      2.37    3.186(3) 153.7  

N10 – H10a – O1 0.96(4)   2.14(4) 3.075(4) 163(3) 

N10 – H10b – 

N10ii 

0.83(4)   2.52(4) 3.198(4) 140(3) 

N10 – H10b – O2i 0.83(4)   2.57(4) 3.126(3) 125(3) 

N11 – H11a – 

N11iv 

0.827(19) 2.63(3) 3.142(5) 121(3) 

N11 – H11a – O2iii 0.827(19) 2.54(3) 3.147(3) 131(3) 

N11 – H11b – N5v 0.82(4)   2.37(4) 3.176(4) 168(3) 

N12 – H12a – N4vi 0.82(4)   2.46(4) 3.189(3) 148(3) 

N12 – H12b – N3iii 0.87(4)   2.20(4) 3.000(3) 154(3) 

N12 – H12a –O3 0.82(4) 2.71(3) 3.197(9) 119.6(3) 

O3 – H3a – N12vii 0.73(4)   2.31(4) 3.000(3) 159(4) 

O3 – H3b – N2vi 0.91(4)   2.04(4) 2.922(3) 163(4) 

     
Symmetry operators: (i) x, y+1, z; (ii) -x+1, y+1/2, -z+1/2; (iii) x-1, y+1, z; (iv) -x, y+1/2, -z+1/2; (v) x-1, 

y, z; (vi) -x+1, -y+1, -z; (vii) x, y-1, z.  

 

The structure consists of coplanar bands, build up from DNAAT2- anions, water 

molecules and triaminoguanidinium cations located approximately 1 Å below and above 

the layer spanned up by DNAAT2- anions. The water molecules are located between the 

DNAAT2- molecules forming strong and directed hydrogen bonds with the triazole rings, 

namely N1–H1•••O3 and O3–H3b•••N2vi. These hydrogen bonds are well below the sum 
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of van der Waals radii (rw(N) + rw(O) = 3.10 Å).[31] The third hydrogen bond is formed by 

the water molecule as donor, while N12vii functions as the donor. Again, the D–A 

distance is much shorter than the sum of van der Waals radii and the D–H•••A angle is 

159° which again indicates a rather directed than only electrostatic interaction. The only 

weak hydrogen bond build up by the H2O is N12–H12a•••O3, with a donor acceptor 

distance of 3.197(9) Å and therefore longer than the sum of van der Waals radii and an 

D–H•••A angle of only 119.6(3)°. All other hydrogen bonds formed are using the 

nitrogen atoms of the triaminoguanidinium cation as donor atoms. The two hydrogen 

bonds utilizing nitrogen atoms of the DNAAT2- anion as acceptors all show D–A 

distances smaller than the sum of van der Waals radii (rw(N) + rw(N) = 3.2 Å) at 3.186 Å 

(N9 – H9 – N5iii) and 3.000 Å (O3 – H3a – N12vii), respectively. The corresponding D–

H•••A angles (around 150°) indicate the bonds being moderately strong but mostly of 

electrostatic nature. The three hydrogen bonds using oxygen atoms as acceptors are 

moderately strong with D–A distances between 2.954 and 3.147 Å and with D–H•••A 

angles between 125° and 131° they are rather of electrostatic nature. The complete 

hydrogen bonding scheme within the bands is presented in Figure 6.  

 

 
Figure 6: Hydrogen bonding scheme within the band structures of 9. Thermal ellipsoids represent the 50% 

probability level. 
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The distance between the bands is 3.280 Å, while they are stacked along the b-axis. The 

bands are connected via hydrogen bonds formed between the triaminoguanidinium 

cations and interactions from the triaminoguanidinium cation with the nitramino groups, 

to form zig-zag layers presenting an angle of 133.99° between the individual bands. The 

hydrogen bonds involved are namely N11–H11a•••N11iv and N10–H10b•••N10ii, only 

involving the triaminoguanidinium cations, while N8–H8•••O2ii presents the interaction 

between the NH group of the triaminoguanidinium cation in one layer with the 

nitriminogroup of the DNAAT2- anion in the tilted layer. The layer scheme of the 

structure is displayed in Figure 7 along the along the a-axis. 

 
Figure 7: Layer structure of 9, showing the connectivity of the individual bands along the a-axis. Thermal 

ellipsoids represent the 50% probability level. 

 

The angle between the bands is due to the connectivity over hydrogen bonds formed by 

the triaminoguanidinium cations. The N10–H10b•••N10ii and N11–H11a•••N11iv 

hydrogen bonds are rather long with D–A distances of 3.142 and 3.198 Å, respectively, 

but shorter than the sum of van der Waals radii. D–H•••A angles of only 121° and 140°, 

respectively, indicate mostly electrostatic interactions. Since the donor atoms are the two 

amine groups, the angle between the bands is given. The third band connecting hydrogen 

bond N8–H8•••O2ii is rather short with a D–A distance of 2.954 Å. The bond is mainly of 

electrostatic nature, but also directed with a D–H•••A angle of 146.43°. The surrounding 

of one triaminoguanidinium cation is displayed in Figure 8, presenting the complete three 

dimensional hydrogen bonding network. Three moderately strong hydrogen bonds 

connect the bands towards the next layer, namely N11–H11b•••N5v, N12–H12a•••N4vi 

and N10–H10a•••O1. 
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Figure 8: Surrounding of one triaminoguanidinium cation in 9, showing the connectivity of the structural 

motive. Non participating atoms are set transparent, molecules are partially omitted for better clarity. 

Thermal ellipsoids represent the 50% probability level. 

 

THEORETICAL CALCULATIONS 

Due to the highly energetic character of 4−9, bomb calorimetric measurements could only 

be performed with small amounts, consequently doubtful combustion energies were 

obtained. Therefore an extensive computational study was accomplished for 4−9, which 

is presented in the following section. All calculations were carried out using the Gaussian 

G03W (revision B.03) program package.[32] The enthalpies (H) and free energies (G) 

were calculated using the complete basis set (CBS) method of Petersson and coworkers in 

order to obtain very accurate energies. The CBS models use the known asymptotic 

convergence of pair natural orbital expressions to extrapolate from calculations using a 

finite basis set to the estimated complete basis set limit. CBS-4 begins with a HF/3-

21G(d) geometry optimization; the zero point energy is computed at the same level. It 

then uses a large basis set SCF calculation as a base energy, and a MP2/6-31+G 

calculation with a CBS extrapolation to correct the energy through second order. A 

MP4(SDQ)/6-31+(d,p) calculation is used to approximate higher order contributions. In 
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this study we applied the modified CBS-4M method (M referring to the use of Minimal 

Population localization) which is a re-parametrized version of the original CBS-4 method 

and also includes some additional empirical corrections. [33] The enthalpies of the gas-

phase species M were computed according to the atomization energy method (eq. 1) 

(Tables 6–8).[34] 

 

ΔfH°(g, M, 298) = H(Molecule, 298) – ∑H°(Atoms, 298) + ∑ΔfH°(Atoms, 298)   (1) 

 
Table 6: Results obtained from theoretical calculations at the CBS-4M level of theory. 

 point group –H298 / a.u. NIMAG 

DNAAT C1 1111.064789 0 

DNAAT2- Cs 1110.009835 0 

A+ Td 56.796608 0 

Hy+ Cs 112.030523 0 

G+ C1 205.453192 0 

AG+ C1 260.701802 0 

TAG+ C3 371.197775 0 

H  0.500991 0 

C  37.786156 0 

N  54.522462 0 

O  74.991202 0 

Cl  459.674576 0 

 
Table 7: Literature values for atomic ΔH°f

298  / kcal mol–1  

 NIST [35] 

H 52.1 

C 171.3 

N 113.0 

O 59.6 

Cl 29.0 
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Table 8: Enthalpies of the gas-phase species M.  

M M ΔfH°(g,M) / kcal mol–1 

DNAAT C4H4N12O4 743.6 

DNAAT2- C4H2N12O4
2- 446.5 

A NH4
+ 151.9 

Hy N2H5
+ 184,9 

G CH6N3
+ 136.6 

AG CH7N4
+ 160.4 

DAG CH8N5
+ 184.5 

TAG CH7N4
+ 208.8 

 

The solid state energy of formation (Table 10) of DNAAT was calculated by subtracting 

the gas-phase enthalpy with the heat of sublimation (22.5 kcal mol–1) obtained by the 

TROUTON’S rule (ΔHsub = 188·Tm) (Tm=204 °C).[36] In the case of the salts, the lattice 

energy (UL) and lattice enthalpy (ΔHL) were calculated from the corresponding molecular 

volumes (Table 9) according to the equations provided by Jenkins et al..[37] With the 

calculated lattice enthalpy (Table 9) the gas-phase enthalpy of formation (Table 8) was 

converted into the solid state (standard conditions) enthalpy of formation. These molar 

standard enthalpies of formation (ΔHm) were used to calculate the molar solid state 

energies of formation (ΔUm) according to equation 2 (Table 7). 

ΔUm  =  ΔHm – Δn RT  (2) 

(Δn being the change of moles of gaseous components) 

 
Table 9:Lattice energies and lattice enthalpies.  

 VM / nm3 UL / kJ mol–1 ΔHL / kJ mol–1 ΔHL / kcal mol–1 

(NH4)2DNAAT (5) 298 1306.1 1317.0 314.5 

(N2H5)2DNAAT (6) 312 1283.5 1294.4 309.2 

(G)2DNAAT (7) 388 1181.0 1191.9 284.7 

(AG)2DNAAT (8) 464 1102.3 1113.2 265.9 

(TAG)2DNAAT (9) 472 1095.0 1105.9 264.1 
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Table 10: Solid state energies of formation (ΔfU°) 

 ΔfH°(s) / 

kcal mol–1 

ΔfH°(s) / 

kJ mol–1 

Δn ΔfU°(s) / 

kJ mol–1 

M / 

g mol–1 

ΔfU°(s) / 

kJ kg–1 

DNAAT (4) 154.7 647.7 10 672.5 248.2 2366.3 

(NH4)2DNAAT (5) 95.8 401.2 14 435.9 318.3 1369.6 

(N2H5)2DNAAT 

(6) 
167.3 700.4 16 740.1 348.32 2124.6 

(G)2DNAAT (7) 95.2 398.4 18 443.0 402.4 1101.0 

(AG)2DNAAT (8) 161.6 676.5 20 726.1 432.42 1679.2 

(TAG)2DNAAT 

(9) 
260.1 1089.2 24 1148.7 492.50 2332.3 

 

DETONATION PARAMETERS AND THERMAL PROPERTIES 

The calculation of the detonation parameters was performed with the program package 

EXPLO5 (version 5.03 and 5.04).[38] The program is based on the chemical equilibrium, 

steady-state model of detonation. It uses the Becker-Kistiakowsky-Wilson’s equation of 

state (BKW EOS) for gaseous detonation products and Cowan-Fickett’s equation of state 

for solid carbon. The calculation of the equilibrium composition of the detonation 

products is done by applying modified White, Johnson and Dantzig’s free energy 

minimization technique.  The program is designed to enable the calculation of detonation 

parameters at the CJ point.  The BKW equation in the following form was used with the 

BKWN set of parameters (α, β, κ, θ) as stated below the equations and Xi being the mol 

fraction of i-th gaseous product, ki is the molar covolume of the i-th gaseous product [39]:  

 

pV / RT = 1 + xeβx     x  =  (κ Σ Xiki) / [V (T + θ)]α   

α  =  0.5,  β  =  0.176,  κ  =  14.71,  θ  =  6620.  

 

The detonation parameters calculated with the EXPLO5 versions V5.03  and V5.04 using 

the experimentally determined densities (X-ray) are summarized in Table 11.  
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Table 11: Physico-chemical properties of 4 - 9 in comparison with hexogen (RDX).  

 
DNAAT 

(4) 

(NH4)2 

DNAAT 

(5) 

(N2H5)2 

DNAAT 

(6) 

(G)2 

DNAAT 

(7) 

(AG)2 

DNAAT 

(8) 

(TAG)2 

DNAAT 

(9) 

RDX* 

Formula 
C4H4N12

O4 

C4H10N14

O4 

C4H12N16

O4 

C6H14N18

O4 

C6H16N20

O4 

C6H20N24

O4 

C3H6N6O

7 

Molecular 

Mass 

[g mol–1] 

284.16 318.21 348.12 402.14 432.17 492.38 222.12 

Impact 

sensitivity 

[J]a 

2 > 40 10 > 40 > 40 > 40 7 

Friction 

sensitivity 

[N]b 

20 > 360 > 360 > 360 > 360 160 120 

ESD–test [J] 0.1 0.15 0.05 0.35 0.2 0.2 -- 

N [%]c 59.15 61.62 64.35 62.67 64.80 68.27 37.8 

Ω [%]d  -45.25 -45.94 -59.65 -59.21 -58.48 –21.6 

Tdec. [°C]e 209 212, 257 154, 228 261 177 219 210 

ρ [g cm–3]f 1.85 1.70 1.70 1.70 1.70 1.70 1.80 

ΔfHm° 

[kJ mol–1]g 
647.7 401.2 700.4 398.4 676.5 1089.2 70 

ΔfU° [kJ kg–

1]h 
2366.3 1369.6 2124.6 1101.0 1679.2 2332.3 417 

EXPLO5 values:  V5.03 (V5.04)      

–ΔEU° 

[kJ kg–1]i 

5268 

(5339) 

4473 

(4461) 

5055 

(5026) 

3731 

(3690) 

4202 

(4147) 

4681 

(4602) 

6038 

(6125) 

TE [K]j 4237 

(4089) 

3362 

(3234) 

3583 

(3475) 

2855 

(2732) 

3048 

(2944) 

3213 

(3087) 

4368 

(4236) 

pC-J  [kbar]k 337 (298) 259 (267) 290 (294) 242 (241) 267 (262) 300 (290) 341 (349) 

VDet. [m s–1]l 8784 

(8723) 

8156 

(8229) 

8609 

(8575) 

8034 

(7944) 

8391 

(8244) 

8890 

(8596) 

8906 

(8748) 

Gas vol. 

[L kg–1]m 
732 (708) 

809  

(798) 
832 (816) 801 (781) 820 (797) 852 (822) 793 (739) 

[a] BAM drophammer, grain size (75–150 μm); [b] BAM friction tester, grain size (75–150 μm); [c] Nitrogen 

content; [d] Oxygen balance[40]; [e] Temperature of decomposition by DSC (β = 5 °C, Onset values); [f] X-ray 

structure, Pycnometer for DNAAT; [g] Molar enthalpy of formation; [h] Energy of formation; [i] Energy of 

Explosion; [j] Explosion temperature; [k] Detonation pressure; [l] Detonation velocity; [m] Assuming only 

gaseous products; * values based on Ref. [41] and the EXPLO5 database; n.d.: not determined. 
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The neutral compound 4 already shows a remarkably high thermal stability of 209 °C, 

but a quite high sensitivity towards friction and impact. Since salts of energetic 

compounds tend to be more stable as the neutral compound, the nitrogen-rich salts of 

DNAAT are expected to show an improved stability. The decomposition temperatures 

of the compounds 5−9 are in the range of the neutral compound, those of the 

ammonium and guanidium as well as the triaminiguanidinium salt are even higher and 

appear in the range from 212 °C up to 261 °C. The ammonium and the hydrazinium 

salts show two decomposition points in the DSC with the first decomposition starting 

at 212 °C and 154 °C, respectively. As expected, the sensitivity values of all 

nitrogen-rich salts are considerably higher in comparison to the neutral compound. 

Nearly all compounds are insensitive towards friction, impact and electrostatic 

discharge, only the hydrazinium salt is slightly sensitive towards impact (10 J) and the 

triaminoguanidium salt towards friction (160 N).  

 
 

Figure 9: Differential scanning calorimetry (DSC) curves for the neutral nitrimino compound 4 and 

the bis(triaminoguanidinium) salt of 4 (9). 
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The nitrogen rich salts of DNAAT all exhibit positive heats and energies of formation. 

The detonation velocities were calculated in the range of 7944 m s-1 (7) to 8596 m s-1 (9). 

The best performance was calculated for the triaminoguanidinium salt (9) with a 

detonation velocity of  8596 m s-1, which is only slightly lower than the performance of 

RDX. With the excellent sensitivity values for friction (160 N), impact (<40 J) and ESD 

(0.2 J) in addition to the remarkable high temperature of decomposition (219 °C) and a 

very low solubility in water (2.5 g L-1, 25 °C), the triaminoguanidinium salt (9) seems to 

be the best choice in terms of performance and sensitivity and makes this compound 

suitable as a potential new high explosive. Additionally, the DSC curves of the 5,5´-

dinitrimino-3,3´-azo-1H-1,2,4-triazole (4) and the corresponding 

bis(triaminoguanidinium) salt (9) are displayed in Figure 9.  

Since 3,5-diamino-1H-1,2,4-triazole was used previously as a starting material resulting 

in 3,3´-dinitro-5,5´-azo-1,2,4-triazole (DNAT) and its triaminoguanidinium salt,[13,14] we 

want to put the results obtained for these compounds into relation to the advances we 

were able to make. DNAT, synthesized by Naud et al. as mentioned in the introduction, 

shows a much lower sensitivity towards impact and friction with 12.5 J and 250 N, 

respectively, while the density is in the same region as observed for DNAAT (4) (1.85 g 

cm-3). DNAT as a neutral compound is therefore much more stable regarding outer 

stimuli, but shows lower performance characteristics than DNAAT with a detonation 

velocity of 8500 m s-1 (4: 8723 m s-1). Hence we were able to increase the performance of 

the molecule with the exchange of the nitro group with the nitrimino group, but the 

sensitivity values are much to high which prohibits the use as an energetic material (other 

than for primary explosives). This relation changes, when comparing the 

triaminoguanidinium salts of DNAT and DNAAT. In this case TAG2 DNAAT (9) is 

exceeding the properties of TAG2 DNAT in every respect: the decomposition temperature 

of 9 is higher (219 °C compared to 202 °C) together with the sensitivity values being 

much better in respect to the impact sensitivity (DNAT: 9.3 J, 9: > 40J) and close to equal 

with respect to the friction sensitivity (DNAT: 157 N, 9: 160 N). The performance 

characteristics of 9 cannot be compared directly, since they have been calculated at 

different densities, but we can state an overall increase in performance. At a density of 

1.58 g cm-3 TAG2 DNAT shows a detonation velocity of 8200 m s-1 and a detonation 

pressure at the Chapman-Jouguet point of 230 kbar while 9 exhibits a detonation pressure 

of 8596 m s-1 paired with a dentonation pressure of 290 kbar at a density of 1.70 g cm-3. 
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CONCLUSIONS 

 
The application of the very straightforward and efficient acetyl protection of 3,5-diamino-

1H-1,2,4-triazole allows selective reactions of the remaining free amino group and 

establishes a basis to a multitude of potential new energetic compounds that are now 

accessible. The synthesis of 5,5´-diamino-3,3´-azo-1H-1,2,4-triazole (3) by reaction of 

5-acetylamino-3-amino-1H-1,2,4-triazole (2) with potassium permanganate is described. 

3 acts as starting material for other new high energetic materials, since several 

modifications of the amine groups are possible. The subsequent nitration of 3 leads to the 

formation of 5,5´-dinitrimino-3,3´-azo-1H-1,2,4-triazole (4), which was fully 

characterized in terms of sensitivity and energetic properties as well as by single crystal 

X-ray diffraction. The molecule reveals promising energetic properties but quite high 

sensitivities towards friction (20 N), impact (2 J) and electrostatic discharge (0.1 J). 

Therefore, nitrogen rich salts were synthesized by reaction with high-nitrogen bases 

(ammonia, hydrazine, guanidine, aminoguanidine, triaminoguanidine). All salts were 

fully characterized by NMR-, IR- and Raman spectroscopy. Special attention was turned 

on the thermal stabilities and sensitivities values. The triaminoguanidinium salt (9) 

exhibits a remarkable high temperature of decomposition (219 °C) and detonation 

velocity (8596 m s-1) and therefore turned out to be the most promising compound in 

terms of performance and stability. The performance characteristics of 9 exceed the ones 

of TAG2 DNAT, which served as a reference molecule, especially when comparing the 

detonation pressure and sensitivity values. 
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EXPERIMENTAL PART 

Caution: Although all 3,5-diamino-1,2,4-triazolium derivatives reported in this publication are rather stable against 

friction, impact and electric discharge, proper safety precautions should be taken when handling dinitramide salts. The 

derivatives are energetic materials and tend to explode under certain conditions, especially under physical stress. 

Laboratories and personnel should be properly grounded, and safety equipment such as Kevlar gloves, leather coats, 

face shields and ear plugs are recommended. 

 

General. All chemical reagents, except 3,5-diamino-1,2,4-1H-triazole and solvents were 

obtained from Sigma-Aldrich Inc. or Acros Organics (analytical grade) and were used as 

supplied. 3,5-diamino-1,2,4-1H-triazole was obtained from ABCR. 1H, 13C{1H}, and 14N 

NMR spectra were recorded on a JEOL Eclipse 400 instrument in DMSO-d6 at or near 25 

°C. The chemical shifts are given relative to tetramethylsilane (1H, 13C) or nitromethane 

(14N) as external standards and coupling constants are given in Hertz (Hz). Infrared (IR) 

spectra were recorded on a Perkin-Elmer Spectrum BX FT-IR instrument equipped with 

an ATR unit at 25 °C. Transmittance values are qualitatively described as “very strong” 

(vs), “strong” (s), “medium” (m) and “weak” (w). Raman spectra were recorded on a 

Bruker RAM II spectrometer equipped with a Nd:YAG laser (1064 nm) and a reflection 

angle of 180°. The intensities are reported as percentages of the most intense peak and are 

given in parentheses. Elemental analyses were performed with a Netzsch Simultaneous 

Thermal Analyzer STA 429. Melting points were determined by differential scanning 

calorimetry (Setaram DSC141 instrument, calibrated with standard pure indium and 

zinc). Measurements were performed at a heating rate of 5 °C/min in closed aluminum 

sample pans with a 1 µm hole in the top for gas release under a nitrogen flow of 20 

mL/min with an empty identical aluminum sample pan as a reference.  

For initial safety testing, the impact and friction sensitivities as well as the electrostatic 

sensitivities were determined. The impact sensitivity tests were carried out according to 

STANAG 4489[42], modified according to instruction[43] using a BAM[44] drophammer. 

The friction sensitivity tests were carried out according to STANAG 4487[45] and 

modified according to instruction[46] using the BAM friction tester. The electrostatic 

sensitivity tests were accomplished according to STANAG 4490[47] using an electric 

spark testing device ESD 2010EN (OZM Research) operating with the “Winspark 1.15 

software package”. 
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1-Acetyl-3,5-diamino-1H-1,2,4-triazole (1) 

According to literature,[16] acetic anhydride (40.8 mL, 1.2 eq.) was added dropwise under 

vigorous stirring to a solution of 3,5-diamino-1,2,4-triazole (36.0 g, 0.36 mol) in 130 mL 

water at room temperature. After stirring for 1 h, the precipitate was filtered off, washed 

with water and dried at room temperature to yield 1 as a colorless powder (48.3 g, 

0.34 mol, 95% 1-acetyl-3,5-diamino-1H-1,2,4-triazole).  

 
1H NMR ([d6]-DMSO,25 °C): δ 7.35 (s, 2H, NH2), 5.64 (s, 2H, NH2), 2.33 (s, 3H, 

CH3);13C NMR ([d6]-DMSO, 25 °C): δ 170.5 (C=O), 162.2, 157.0, 23.6 (CH3); IR 

(ATR, 25 °C, cm-1): 3414(m), 3388(vs), 3295(m), 3127(s), 1709(s), 1640(vs), 1568(s), 

1448(m), 1393(s), 1365(vs), 1336(s), 1178(m), 1116(m), 1066(m), 1043(m), 973(m), 

839(w), 757(w), 699(w), 669(w); Raman (200 mW, 25 °C, cm-1): 3418(4), 3403(5), 

3220(10), 3183(9), 3132(9), 3022(35), 2989(16), 2934(68), 1711(100), 1641(40), 

1568(44), 1549(25), 1459(9), 1425(21), 1396(41), 1375(39), 1340(43), 1182(37), 

1155(80), 1118(25), 1037(42), 972(21), 840(25), 767(8), 719(11), 668(49), 590(15), 

577(17), 445(50), 399(15), 385(15), 345(39), 245(13), 224(18). 

 

3-Acetylamino-5-amino-1H-1,2,4-triazole (2) 

A mixture of 1-acetyl-3,5-diamino-1,2,4-triazole (1) (10.0 g, 70.9 mmol) and 100 mL 

decaline was refluxed without stirring at 187‒190 °C for 6 h. The solid was filtered off, 

washed with petrol ether (100 mL) and diethyl ether (100 mL) and dried in air to yield 2 

as a colorless powder (9.6 g, 68.0 mmol, 96 %). 

 
1H NMR D2O, NaOH, 25 °C): δ 2.03 (s, 3H, CH3); 13C NMR ([D2O, NaOH, 25 °C): 

δ 174.1 (C=O), 162.5 (C-NH2), 154.1 (C-NHAc), 22.7 (CH3); IR (ATR, 25 °C, cm-1): 

3426(m), 3251(s), 1682(vs), 1597(vs), 1581(vs), 1451(s), 1295(m), 1269(m), 1080(m), 

1026(w), 1010(w), 816(w), 714(m); Raman (200 mW, 25 °C, cm-1): 3243(5), 2933(39), 

1684(100), 1647(12), 1586(52), 1537(11), 1456(13), 1366(24), 1296(10), 1261(8), 

1084(47), 1027(45), 970(28), 818(11), 793(12), 694(4), 590(38), 493(12), 363(12), 

324(24). Elemental analysis: (C4 H7 N5 O1): calc: C 34.04, H 5.00, N 49.62; found: C 

34.11, H 4.86, N 49.12. 
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5,5´-Diamino-3,3´-azo-1H-1,2,4-triazole (3) 

Potassium permanganate (2/3 eq., 1.54 g, 9.7 mmol) was added over a period of 

10 minutes to a solution of 3-acetylamino-5-amino-1H-1,2,4-triazole (2, 2.0 g, 

14.2 mmol) in sodium hydroxide (32 %, 15 mL) at 0 °C. The mixture was allowed to 

warm to room temperature and subsequently refluxed for 3 h after addition of sodium 

hydroxide (5 mL, 2M). The generated manganese oxide was removed by filtration and the 

filtrate acidified with concentrated hydrochloric acid to pH = 6. The precipitate was 

filtered off and 5,5´-diamino-3,3´-azotriazole (3) was obtained as an orange solid (0.93 g, 

4.8 mmol, 68%). 
13C NMR (D2O, NaOH): δ 170.2 (C-N=N), 165.3 (C‒NH2); IR (ATR, 25 °C, cm-1): 

3452(s), 3351(s), 2677(m), 1624(vs), 1490(m), 1465(m), 1413(w), 1349(m), 1142(m), 

1102(m), 1051(m), 880(w), 799(w), 759(w), 708(vw), 676(vw); Raman (200 mW, 25 °C, 

cm-1): 3349(1), 1658(2), 1520(4), 1448(42), 1388(24), 1347(100), 1139(35), 1103(7), 

1056(9), 927(2), 912(3). Elemental analysis: (C4 H10 N10 O2, dihydrate): calc: 

C 20.87, H 4.38, N 60.85; found: C 21.58, H 3.85, N 59.05; 

 

5,5´-Dinitrimino-3,3´-azo-1H-1,2,4-triazole (4) 

5,5´-diamino-3,3´-azotriazole (0.35 g, 1.8 mmol) was dissolved in sulfuric acid (conc., 

1.75 mL) and nitric acid (conc., 0.30 mL, 7.2 mmol) was added at 0 °C. After stirring at 

0 °C for 30 minutes, the mixture was allowed to warm to room temperature, stirred for 

1 h and poured on ice (10 g). The precipitate was filtered off, washed with water and 

dried at 60 °C to obtain 4 as a yellow solid. 

DSC (Onset, 5 °C min-1): TDec.: 209 °C; 13C{1H} NMR ([d6]-DMSO, 25 °C): δ 159.7 (C-

N=N), 153.8 (C‒N-NO2); 14N NMR ([d6]-DMSO, 25 °C): δ −19 (NO2); IR (ATR, 25 °C, 

cm-1): 3066(s), 1695 (w), 1586(vs), 1542(m), 1522(s), 1493(m), 1436(m), 1273(s), 

1238(s), 1139(m), 1075(m), 1039(m), 979(m), 845(w), 770(w), 721(w); Raman 

(200 mW, 25 °C, cm-1): 1538(16), 1493(10), 1436(100), 1354(11), 1307(16), 1145(21), 

1091(7), 994(11), 905(4), 847(3), 754(2); Elemental analysis: (C4 H4 N12 O4): calc: C 

16.91, H 1.42, N 59.15; found: C 18.27, H 1.83, N 58.25; Sensitivities (grain size: 100‒

500 μm): FS: 20 N, IS: 2 J, ESD: 0.1 J. 
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General synthesis of nitrogen-rich salts of DNAAT 

The free nitrogen-rich base (2 eq., 22.8 mmol) was added to a suspension of 5,5´-

dinitrimino-3,3´-azo-1H-1,2,4-bistriazole (4, 3.24 g, 11.4 mmol) in 75 mL water at 60 °C. 

After cooling to 5 °C, the precipitate was filtered off, washed with cold water and dried at 

60 °C to yield the corresponding nitrogen-rich salt of 5,5´-dinitrimino-3,3´-azo-1H-1,2,4-

triazole (5−9) as a yellow solid. 

 

(NH4)2DNAAT (5) 

yield: 50%; DSC (onset, 5 °C min-1): TDec.: 212 °C; 1H NMR ([d6]-DMSO,25 °C): 

δ 13.58 (s, 2H, Nring-H), 7.23 (NH4
+); 13C NMR ([d6]-DMSO, 25 °C): δ 167.7 (C-N=N), 

158.3 (C‒N-NO2); 14N NMR ([d6]-DMSO, 25 °C): δ −14 (-NO2), −359 (NH4
+); IR 

(ATR, 25 °C, cm-1): 3171(s), 1692(w), 1641(w), 1594(m), 1530(s), 1474(s), 1432(s), 

1380(s), 1316(vs), 1168(m), 1078(s), 1035(w), 1004(m), 861(w), 770(m), 733(w) 698(w); 

Raman (200 mW, 25 °C, cm-1): 1544(25), 1466(100), 1403(53), 1352(84), 1167(30), 

1099(17), 1044(8), 1002(41), 924(12), 860(8), 748(6), 397(7); Sensitivities (grain size: 

100‒500 μm): FS: >360 N, IS: >40 J, ESD: 0.15 J. 

 

(N2H5)2DNAAT (6) 

yield: 54%; DSC (onset, 5 °C min-1): TDec.: 154 °C; 1H NMR ([d6]-DMSO,25 °C): 

δ 13.51 (s, 2H, Nring-H), 7.28 (N2H5
+); 13C NMR ([d6]-DMSO, 25 °C): δ 166.9 (C-N=N), 

157.8 (C‒N-NO2); 14N NMR ([d6]-DMSO, 25 °C): δ −16 (-NO2), −359 (N2H5
+); IR 

(ATR, 25 °C, cm-1): 3103(s), 1631(m), 1528(s), 1472(m), 1426(s), 1385(m), 1315(vs), 

1260(s), 1168(m), 1080(s), 996(m), 859(w), 769(w), 732(vw), 705(w); Raman (200 mW, 

25 °C, cm-1): 1541(9), 1461(100), 1403(36), 1353(54), 1258(3), 1162(19), 1100(10), 

1000(20), 924(7), 859(4), 747(2), 399(2); Sensitivities (grain size: 100‒500 μm): FS: 

>360 N, IS: 10 J, ESD: 0.05 J. 

 

G2DNAAT (7) 

yield: 73%; DSC (onset, 5 °C min-1): TDec.: 261 °C; 1H NMR ([d6]-DMSO,25 °C): 

δ 13.53 (s, 2H, Nring-H), 7.03 (s, G+); 13C NMR ([d6]-DMSO, 25 °C): δ 167.1 (C-N=N), 

157.9 (C‒N-NO2), 157.7 (G+); 14N NMR ([d6]-DMSO, 25 °C): δ −14 (-NO2); IR (ATR, 

25 °C, cm-1): 3336(m), 3241(m), 3167(m), 2790(w), 1680(m), 1635(s), 1532(m), 

1471(m), 1436(m), 1391(m), 1368(m), 1339(vs), 1255(m), 1162(m), 1085(s), 1011(m), 
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864(w), 770(m), 726(w), 690(w); Raman (200 mW, 25 °C, cm-1): 1536(14), 1462(100), 

1402(23), 1363(56), 1156(18), 1097(14), 1012(24), 917(8), 862(5), 402(5); Elemental 

analysis: (C6 H14 N18 O4): calc: C 17.91, H 3.51, N 62.67; found: C 18.49, H 3.59, 

N 62.12; Sensitivities (grain size: 100‒500 μm): FS: >360 N, IS: >40 J, ESD: 0.35 J. 

 

AG2DNAAT (8) 

yield: 87%; DSC (onset, 5 °C min-1): TDec.: 177 °C; 1H NMR ([d6]-DMSO,25 °C): 

δ 13.61 (s, 2H, Nring-H), 7.89 (s, AG+), 7.12 (s, AG+), 4.71 (s, AG+); 13C NMR ([d6]-

DMSO, 25 °C): δ 167.0 (C-N=N), 157.7 (C‒N-NO2), 158.9 (AG+); 14N NMR ([d6]-

DMSO, 25 °C): δ −15 (-NO2); IR (ATR, 25 °C, cm-1): 3435(m), 3341(m), 3252(vs), 

3183(s), 2888(w), 1685(vs), 1668(vs), 1530(s), 1475(m), 1436(m), 1386(m), 1346(vs), 

1257(m), 1164(w), 1086(s), 1009(m), 864(w), 770(m), 730(w), 692(w); Raman 

(200 mW, 25 °C, cm-1): 1534(16), 1488(12), 1463(100), 1409(22), 1367(51), 1156(20), 

1096(12), 1041(5), 1008(29), 918(9), 861(5), 746(4), 403(5); Elemental analysis: (C6 

H16 N20 O4); calc.: C 16.67, H 3.73, N 64.80; found: C 16.87, H 3.73, N 61.97; 

Sensitivities (grain size: 100‒500 μm): FS: >360 N, IS: >40 J, ESD: 0.20 J. 

 

TAG2DNAAT (9) 

yield: 85%; DSC (onset, 5 °C min-1): TDec.: 219 °C; 1H NMR ([d6]-DMSO,25 °C): 

δ 13.48 (s, 2H, Nring-H), 8.59 (s, TAG+), 4.49 (s, TAG+); 13C NMR ([d6]-DMSO, 25 °C): 

δ 167.3 (C-N=N), 157.8 (C‒N-NO2), 159.0 (TAG+); 14N NMR ([d6]-DMSO, 25 °C): 

δ −14 (-NO2); IR (ATR, 25 °C, cm-1): 3252(s), 1682(s), 1526(s), 1466(m), 1435(s), 

1315(vs), 1250(m), 1133(m), 1073(s), 1003(m), 857(w), 771(w), 728(w), 656(w); 

Raman (200 mW, 25 °C, cm-1): 1534(16), 1488(12), 1463(100), 1409(22), 1367(51), 

1156(20), 1096(12), 1041(5), 1008(29), 918(9), 861(5), 746(4), 403(5); Elemental 

analysis: (C6 H20 N24 O4); calc.: C 14.64, H 4.09, N 68.27; found: C 15.22, H 4.37, 

N 66.73; Sensitivities: (grain size: 100‒500 μm): FS: 160 N, IS: >40 J, ESD: 0.20 J. 
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4. SYNTHESIS AND CHARACTERIZATION OF 3,3´-BIS(DINITRO-

METHYL)-5,5´-AZO-1H-1,2,4-TRIAZOLE  
As published in: Zeitschrift für Anorganische und Allgemeine Chemie 2011, 637, 1453–

1457. 

 

ABSTRACT: 

The synthesis of 3,3´-bis(dinitromethyl)-5,5´-azo-1H-1,2,4-triazole (5) using the readily 

available starting material 2-(5-amino-1H-1,2,4-triazol-3-yl)acetic acid (1) is described. 

All compounds were characterized by means of NMR, IR and Raman spectroscopy. The 

energetic compound 5 was additionally characterized by single crystal X-Ray diffraction 

and DSC measurements. The sensitivities towards impact, friction and electrical 

discharge were determined. In addition, detonation parameters (e.g. heat of explosion, 

detonation velocity) of the target compound were computed using the EXPLO5 code 

based on the calculated (CBS-4M) heat of formation and X-ray density. 

 

INTRODUCTION 

Nitrogen rich heterocycles are traditional building blocks for nitrogen rich energetic 

materials and have been intensively investigated as high energy density materials [1]. In 

recent years, the synthesis of energetic, heterocyclic compounds has attracted an 

increasing amount of interest, since heterocycles generally offer a higher heat of 

formation, density and oxygen balance than their carbocyclic analogues [2]. In 

combination with the advances of a high nitrogen content such as the high average two 

electron bond energy associated with the nitrogen-nitrogen triple bond [3], those 

compounds are in the focus as propellants [4], in gas generators for airbags [5] as well as 
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in formulations for use as propellant burn rate modifiers [6]. Triazole derivatives 

generally exhibit desired properties such as a positive heat of formation, high densities 

and a high nitrogen content together with low sensitivity towards external forces like 

impact and friction [7]. Since modern high energy density materials (HEDM) mostly 

derive their energy of ring or cage strain as well as of a high heat of formation, a lot of 

research has been done on explosives containing the azo-functionality [8]. Due to its 

auspicious energetic properties, a variety of azole-based energetic compounds including 

the dinitromethyl-moiety have already been synthesized [9]. In this work the synthesis 

and characterization of 3,3´-bis (dinitromethyl)-5,5´-azo-1H-1,2,4-triazole (5) as potential 

new nitrogen-rich high energetic material is presented. 

 

RESULTS AND DISCUSSION 

The synthesis of the starting material 2-(5-amino-1H-1,2,4-triazol-3-yl)acetic acid (1) was 

performed using malonic acid and aminoguanidinium bicarbonate as described by 

Chernyshev et. al (Scheme 1) [10]. Compound 1 is formed via malonic acid 

diguanylhydrazide as an intermediate product followed by subsequent cyclisation with 

6 m sodium hydroxide solution.  

 

HO OH

O O

H2N N
H

NH2

NH

HN N

N
H2N

COOH

1) HCl, conc.

2) NaOH

1  
Scheme 1: Synthesis of starting material 1 

 

As shown in Scheme 2, the resulting 2-(5-amino-1H-1,2,4-triazol-3-yl)acetic acid (1) was 

reacted with sodium permanganate to form 2,2´-(3,3´-azo-bis(1H-1,2,4-triazol-5-

yl))diacetic acid (2). The two free acetic acid groups were protected using ethanol and 

oleum resulting in the formation of 3. Introduction of the NO2-moieties was achieved by 

nitration with sulfuric acid/nitric acid (6:1) to form the nitrated compound 4.  
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Scheme 2: Synthetic route towards 3,3´-bis(dinitromethyl)-5,5´-azo-1H-1,2,4-triazole (5) 

 

The ethyl ester hydrolyses in basic media and subsequent acidification with concentrated 

hydrochloric acid leads to the release of CO2 and the formation of 3,3´-bis(dinitro-

methyl)-5,5´-azo-1H-1,2,4-triazole (5). All compounds were characterized by means of 

NMR, IR and Raman spectroscopy. The complete decarboxylation of the acetic acid 

groups during the synthesis of 5 can easily be monitored by the missing C=O vibration 

band at 1766 cm-1 as well as the missing C-H valence vibrations in the range of 2800–

3100 cm-1 in the IR and Raman spectra. The latter is dominated by the absorption of the 

azo-moiety at 1462 cm-1 [8e, 11]. The neutral compound 5 shows two signals for the 

different triazole carbon atoms at 169.7 and 149.7 ppm as well as the signal for the 

dinitromethyl moiety at 124.9 ppm. The nitro groups can be found at –23 ppm in the 14N 

NMR spectra. 

 

Compound 5 as well as the corresponding sodium salt (6) were additionally characterized 

by low temperature single crystal X-ray spectroscopy. Crystals of 3,3´-bis(dinitromethyl)-

5,5´-azo-1H-1,2,4-triazole (5) have been obtained by recrystallisation from methanol. 

Compound 5 crystallizes in the monoclinic spacegroup P21/n with two formula units per 

unit cell and a density of 1.798 g cm-3. The molecular structure is shown in Figure 1. 
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Figure 1: ORTEP representation of the molecular moiety of 5 (DNMAT). Displacement ellipsoids are 

shown at the 50% propability level; Selected bond lengths (Å): N4−N4(i) 1.260(2), N4−C1 1.400(2), 

N3−C1 1.324(2), N3−C2 1.347(2), N2−C2 1.325(2), N2−N1 1.341(2), N1−C1 1.333(2), N1−H1 0.88(2), 

C3−C2 1.485(2), C3−N5 1.498(2), C3−N6 1.517(2), C3−H3 0.931(18), O1−N5 1.219(2), N5−O22 

1.214(2), N6−O3 1.198(2), N6−O4 1.211(2); Selected bond angles (°): C2−C3−N5 110.3(1), C2−C3−N6 

113.3(2), N5−C3−N6 106.2(1), C2−C3−H3 113.4(1), N5−C3−H3 107.6(1), N6−C3−H3 105.5(1); Selected 

torsion angles (°): N4(i)−N4−C1−N3 0.9(3), N4(i)−N4−C1−N1 -177.6(2); (i) = -x+1/2, y+1/2, -z+1/2. 

 

The azo-triazole moiety shows a planar assembly as expected. The proton of the 

dinitromethyl moiety is not located at the nitrogen atom N3 in the ring but at the carbon 

atom C3. This leads to a tetrahedral coordination typical for sp3 carbon atoms and a C2–

C3 distance in the range of a C–C single bond (1.485(2) Å) [12]. The proton of the 

dinitromethyl moiety can easily be deprotonated with common bases such as sodium 

hydroxide.  The molecular structure of 6 including the coordination sphere of the sodium 

atoms is shown in Figure 2. Atoms within the asymmetric unit are labeled, atoms 

generated by symmetry are set transparent. 

 
 
Figure 2: ORTEP representation of the molecular structure of 6 (Na2DNMAT) including the coordination 

sphere of the sodium atoms. Displacement ellipsoids are shown at the 50% propability level; atoms 

generated by symmetry are set transparent. Selected bond lengths (Å): C1−N2 1.326(3), C1−N3 1.359(3), 

C1−N4 1.408(3), C2−N3 1.324(3), C2−N1 1.340(3), C2−C3 1.457(4), C3−N5 1.382(3), C3−N6 1.405(3), 

N1−N2 1.356(3), N1−H1 0.81(3), N4−N4(i) 1.264(4), N5−O2 1.244(3), N5−O1 1.263(3), N6−O4 1.237(3), 

N6−O3 1.241(3); Selected bond angles (°): N5−C3−N6 120.9(2), N5−C3−C2 119.9(2), N6−C3−C2 

119.2(2); Selected torsion angles (°): N4−C1−N2−N1 -179.3(2), N4−C1−N3−C2 179.2(3). 
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Crystals of the sodium salt of 3,3´-bis(dinitromethyl)-5,5´-azo-1H-1,2,4-triazole (6) were 

obtained by recrystallization from water.  

The corresponding di-anion (6) shows a shorter C2–C3 distance than 5, which is in the 

range of a conjugated Csp2=Carom. double bond (1.457(4) Å) [12], indicating the presence 

of a delocalized π-electron system as anticipated for anionic azo-triazole derivatives. This 

leads to an increased thermal stability with a decomposition temperature of 209 °C for 

compound 6. Hence, the deprotonation of 5 appears promising for the synthesis of highly 

stable energetic materials including nitrogen rich cations. 

 

ENERGETIC PROPERTIES 

The energetic properties of compound 5 in comparison to RDX are compiled in Table 2. 

 

Table 2: Physico-Chemical Properties of 5 in comparison with hexogen (RDX) 

 5 RDX* 

Formula C6H4N12O8 C3H6N6O7 

FW [g mol–1] 372.17 222.12 

Impact sensitivity [J]a 4 7 

Friction sensitivity [N]b 360 120 

ESD–test [J] 0.15 0.2 

N [%]c 45.2 37.8 

Ω [%]d –25.8 –21.6 

Tdec. [°C]e 80 210 

ρ [g cm–3]f 1.798 1.80 

ΔfHm° [kJ mol–1]g 579.5 70 

ΔfU° [kJ kg–1]h 1557.2 417 

EXPLO5.4 values:   

–ΔEU° [kJ kg–1]i 5831 6125 

TE [K]j 4473 4236 

pC-J  [kbar]k 320 349 

VDet. [m s–1]l 8433 8748 

Gas vol. [L kg–1]m 661.2 739 
[a] BAM drophammer, grain size (75–150 μm); [b] BAM friction tester, grain size (75–150 μm); [c] Nitrogen content; [d] Oxygen 

balance [13]; [e] Temperature of decomposition by DSC (β = 5 °C, Onset values); [f] X-ray structure, Pycnometer for DNAAT; [g] Molar 

enthalpy of formation; [h] Energy of formation; [i] Energy of Explosion; [j] Explosion temperature; [k] Detonation pressure; [l] Detonation 

velocity; [m] Assuming only gaseous products; * values based on Ref. [14] and the EXPLO5 database. 
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As expected for azo-triazoles, compound 5 exhibits a high positive heat of formation of 

579.5 kJ mol–1. With a detonation velocity of 8433 m s–1 and a pressure at the C-J point 

of 320 kbar, the performance of compound 5 is only slightly below RDX. In addition, 

3,3´-bis(dinitromethyl)-5,5´-azo-1H-1,2,4-triazole is sensitive towards impact (4 J) but 

insensitive towards friction (>360 N). 

 

CONCLUSIONS 
The synthesis of 3,3´-bis(dinitromethyl)-5,5´-azo-1H-1,2,4-triazole (5) is straightforward 

using inexpensive and readily available starting materials. All intermediate compounds 

were fully characterized by means of IR and Raman as well as multinuclear NMR 

spectroscopy and differential scanning calorimetry. The target compound 5 as well as the 

corresponding sodium salt (6) were additionally characterized by low temperature single 

crystal X-ray diffraction measurements. With the high positive heat of formation 

(579.5 kJ mol–1) and a detonation velocity of 8433 m s–1, compound 5 reveals attractive 

energetic properties. The neutral compound shows low sensitivity towards friction, a high 

sensitivity towards impact paired with a very low temperature of decomposition starting 

at 80 °C. Deprotonation of compound 5 results in a delocalized π -electron system and an 

increase of the decomposition temperature up to 209 °C in the case of the sodium salt (6). 

Since literature known azo-triazole derivatives show excellent properties [8f, 15] the 

ability of deprotonating 3,3´-bis(dinitromethyl)-5,5´-azo-1H-1,2,4-triazole (5) to form the 

corresponding di-anion and its nitrogen-rich or metal salts offers promising opportunities 

for the synthesis of new ionic and highly stable energetic materials. 
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EXPERIMENTAL SECTION 
General. All chemical reagents, except solvents were obtained from Sigma-Aldrich Inc. 

or Acros Organics (analytical grade) and were used as supplied. 1H, 13C{1H}, and 
14N{1H} NMR spectra were recorded on a JEOL Eclipse 400 instrument in DMSO-d6 at 

or near 25 °C. The chemical shifts are given relative to tetramethylsilane (1H, 13C) or 

nitromethane (14N) as external standards and coupling constants are given in Hertz (Hz). 

Infrared (IR) spectra were recorded on a Perkin-Elmer Spectrum BX FT-IR instrument 

equipped with an ATR unit at 25 °C. Transmittance values are qualitatively described as 

“very strong” (vs), “strong” (s), “medium” (m) and “weak” (w). Raman spectra were 

recorded on a Bruker RAM II spectrometer equipped with a Nd:YAG laser (1064 nm) 

and a reflection angle of 180°. The intensities are reported as percentages of the most 

intense peak and are given in parentheses. Elemental analyses were performed with a 

Netzsch Simultaneous Thermal Analyzer STA 429. Melting points were determined by 

differential scanning calorimetry (Linseis PT 10 DSC), calibrated with standard pure 

indium and zinc. Measurements were performed at a heating rate of 5 °C/min in closed 

aluminum sample pans with a 1 µm hole in the top for gas release under a nitrogen flow 

of 20 mL/min with an empty identical aluminum sample pan as a reference. 

The single crystal X-ray diffraction data of 5 and 6 were collected using an Oxford 

Xcalibur3 diffractometer equipped with a Spellman generator (voltage 50 kV, current 40 

mA) and a KappaCCD detector. The data collection was undertaken using the CrysAlis 

CCD software [16] while the data reduction was performed with the CrysAlis Red 

software [17]. The structures were solved with Shelxs-97 [18], refined with 

Shelxl-97 implemented in the program package WinGX [19] and finally checked using 

Platon [20]. Further information regarding the crystal-structure determination have been 

deposited with the Cambridge Crystallographic Data Centre [21] filed under CCDC 

numbers 820713 (5) and 820714 (6). 

The heat of formation calculation of compound 5 was performed using the atomization 

method based on CBS-4M enthalpies described recently in detail in the literature [22].  

ΔfH°(g,M,298) = H(Molecule298) – ∑H°(Atoms298) + ∑ΔfH°(Atoms298) (1) 

All quantum chemical calculations were performed with the Gaussian G03W (revision 

B.03) program package [23]. The results are compiled in Table 2. The gas phase heat of 

formation (ΔfH°(g,M)) was converted into the solid state heat of formation (ΔfH°(s)) 

using the Jenkins equations [24]. 
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Compounds 1, 2 and 3 were synthesized according to known literature procedures [10]. 

 

Diethyl-2,2´-(3,3´-azo-bis(1H-1,2,4-triazol-5-yl))2,2´-dinitro-diacetate(4) 

Diethyl-2,2´-(3,3´-azo-bis(1H-1,2,4-triazol-5-yl))diacetate (3) (3.89 g, 11.6 mmol) was 

dissolved in sulfuric acid (conc., 25 mL) and nitric acid (fuming, 4.2 mL) was added 

dropwise at 0 °C. The mixture was allowed to warm to room temperature, stirred for 2 h 

and subsequently poured on ice. The precipitate was collected by filtration, washed with 

water and dried at 60 °C to yield diethyl-2,2´-(3,3´-azo-bis(1H-1,2,4-triazol-5-yl))2,2´-

dinitro-diacetate (4) as yellow solid (4.92 g, 9.5 mmol, 82 %). 1H NMR (DMSO-d6): 

δ = 4.48 (q, 3JHH = 7.15 Hz, 2H, CH2-CH3), 1.30 (t, 3JHH = 7.15 Hz, 3H, CH2-CH3) ppm. 
13C{1H} NMR (DMSO-d6): δ = 162.8 (C=O), 156.4 (CTriazol), 151.8 (CTriazol), 114.0 (CH2-

CH3), 67.5 (CH2-C=O), 14.0 (CH2-CH3)  ppm. 14N NMR (DMSO-d6): δ =  –23 ppm. IR: 

ʋ (cm−1) (rel. int.) = 3182 (w), 2360 (w), 2340 (w), 1766 (s), 1720 (w), 1588 (vs), 1444 

(w), 1372 (w), 1348 (w), 1302 (m), 1256 (s), 1182 (m), 1106 (s), 1018 (m), 1000 (m), 966 

(m), 854 (w), 834 (m), 804 (s), 772 (m), 754 (m), 624 (w). Raman (200 mW): ʋ (cm−1) 

(rel. int.) = 2983 (2), 2948 (3), 1769 (2), 1721 (3), 1599 (2), 1494 (63), 1448 (17), 1413 

(74), 1354 (100), 1177 (20), 1112 (8), 1025 (2), 972 (2), 921 (16), 857 (4), 803 (2), 371 

(4), 323 (3). Sensitivities (grain size: 100–500 μm): friction:  360 N, impact: 10 J. 

 

3,3´-Bis(dinitromethyl)-5,5´-azo-1H-1,2,4-triazole (5) 

Diethyl-2,2´-(3,3´-azo-bis(1H-1,2,4-triazol-5-yl))2,2´-dinitro-diacetate (4) (3.53 g, 

6.8 mmol) was dissolved in an aqueous solution of sodium hydroxide (2m, 30 mL) and 

stirred at room temperature for 2 h. The solution was subsequently acidified under gas 

evolution with concentrated hydrochloric acid to pH = 1. The precipitate was collected by 

filtration, washed with ice water and dried at 60 °C to yield 3,3´-bis(dinitromethyl)-5,5´-

azo-1H-1,2,4-triazole (5) as yellow solid (2.33 g, 6.3 mmol, 92%). 1H NMR (DMSO-d6): 

δ = 14.64 (HTriazol) ppm. 13C{1H} NMR (DMSO-d6): δ = 169.7 (CTriazol), 149.7 

(CTriazol),124.9 (C(NO2)2) ppm. 14N NMR (DMSO-d6): δ = –23 ppm. IR: ʋ (cm−1) (rel. 

int.) = 3610 (vw), 3234 (w), 2360 (vw), 2342 (vw), 1654 (vw), 1542 (m), 1438 (m), 1362 

(w), 1348 (w), 1268 (m), 1212 (vs), 1184 (m), 1138 (m), 1122 (m), 1094 (s), 1036 (w), 

986 (w), 830 (w), 768 (m), 744 (m), 692 (w). Raman (200 mW): ʋ (cm−1) (rel. int.) = 

1541 (16), 1487 (45), 1462 (100), 1413 (44), 1387 (56), 1363 (34), 1337 (88), 1308 (9), 

1292 (11), 1233 (14), 1185 (38), 1142 (3), 1104 (7), 1042 (4), 983 (32), 919 (15), 827 (8), 

778 (4), 479 (5), 370 (3), 305 (1). Elemental analysis (C6H4N12O8): calc.: C 19.36, 
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H 1.08, N 45.16; found: C 20.33, H 1.13, N 43.77. DSC (onset, 5 °C min-1): TDec.:  80 °C. 

Sensitivities (grain size: 100–500 μm): friction:  360 N, impact: 4 J, ESD: 0.15 J. 

 

Sodium 3,3´-bis(dinitromethyl)-5,5´-azo-1H-1,2,4-triazolate (6) 

A solution of sodium hydroxide (0.25 m, 6.4 mL, 1.6 mmol), was added to a solution of 

3,3´-bis(dinitromethyl)-5,5´-azo-1H-1,2,4-triazole (0.30 g, 0.8 mmol) in ethanol (50 mL). 

The precipitate was collected by filtration, washed with ethanol and dried at 60 °C to 

yield sodium 3,3´-bis(dinitromethyl)-5,5´-azo-1H-1,2,4-triazolate (6) as yellow solid 

(0.26 g, 0.6 mmol, 78%). 13C{1H} NMR (DMSO-d6): δ = 170.6 (CTriazol), 153.8 (CTriazol), 

128.3 (C(NO2)2) ppm. 14N NMR (DMSO-d6): δ = –23 ppm. IR: ʋ (cm−1) (rel. int.) = 

3484(w), 3325(w), 1632(w), 1517(m), 1450(m), 1427(m), 1388(w), 1366(m), 1204(vs), 

1150(s), 1131(vs), 1083(m), 1060(w), 1030(w), 1003(m), 985(w), 835(w), 783(w), 

760(m), 755(m), 745(m), 686(vw). Raman (200 mW): ʋ (cm−1) (rel. int.) = 1611(4), 

1564(6), 1557(6), 1523(12), 1460(82), 1449(81), 1427(30), 1395(39), 1353(100), 

1335(70), 1310(95), 1269(4), 1256(4), 1224(10), 1197(8), 1182(12), 1131(81), 1075(8), 

1065(7), 1008(11), 985(16), 937(17), 925(15), 925(15), 832(10), 782(4), 473(5), 457(5), 

452(5), 411(4), 361(5). DSC (onset, 5 °C min-1): TDec.:  209 °C. Sensitivities (grain size: 

100–500 μm): friction:  360 N, impact: 40 J, ESD: 0.5 J. 
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5. NITROGEN-RICH BIS-1,2,4-TRIAZOLES –A COMPARATIVE 

STUDY OF STRUCTURAL AND ENERGETIC PROPERTIES 
As published in: Chemistry – A European Journal 2012, 18(52), 16742–16753. 

 

ABSTRACT: 

In this contribution the synthesis and full structural and spectroscopic characterization of 

five bis-1,2,4-triazoles in combination with different energetic moieties like amino, nitro, 

nitrimino, azido and dinitromethylene groups is presented. The main goal is a 

comparative study on the influence of those energetic moieties on structural and energetic 

properties. A complete characterization including IR and Raman as well as multinuclear 

NMR spectroscopy of all compounds is presented. Additionally, X-ray crystallographic 

measurements were performed and deliver insight into structural characteristics as well as 

inter- and intramolecular interactions. The standard enthalpies of formation were 

calculated for all compounds at the CBS-4M level of theory, the detonation parameters 

were calculated using the EXPLO5.05 program. Additionally, the impact as well as 

friction sensitivities and sensitivity against electrostatic discharge were determined. The 

potential application of the synthesized compounds as energetic material will be studied 

and evaluated using the experimentally obtained values for the thermal decomposition, 

the sensitivity data, as well as the calculated performance characteristics. 

 

INTRODUCTION 

The synthesis of energetic materials that combine high performance and low sensitivities 

has attracted worldwide research groups over the last decades.[1] Nitrogen-rich 

heterocycles are promising compounds that fulfill many requirements in the challenging 

field of energetic materials research.[1f, 2] A prominent family of novel high-energy-

density materials (HEDMs) are azole-based compounds, since they are generally highly 

endothermic with high densities and low sensitivities towards outer stimuli. Owing to the 
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high positive heats of formation resulting from the large number of N–N and C–N 

bonds[3] and the high level of environmental compatibility, those compounds have been 

studied in our group over the last couple of years with growing interest. Especially 1,2,4-

triazoles show a perfect balance between thermal stability and high positive heats of 

formation, required for applications as prospective HEDMs.  

Many energetic compounds that combine the 1,2,4-triazole backbone with energetic 

moieties have been synthesized over the last decades. Examples for these kind of 

molecules are 5-amino-3-nitro-1,2,4-triazole (ANTA),[4] 2-azido-5-nitramino-1,2,4-

triazole[5] or trinitromethyl-substituted 1,2,4-triazoles[6]. Bridged compounds like 5,5’-

dinitro-3,3’-azo-1,2,4-triazole (DNAT)[7] or the analogue nitrimino-compound 

(DNAAT)[8] have already been investigated and show remarkably high decomposition 

temperatures and excellent energetic properties.  

Bis-1,2,4-triazoles connected via C–C bond are expected to show similar energetic 

properties in comparison to azo-bridged 1,2,4-triazole compounds and with regard to the 

outstanding properties of 5,5´-bistetrazoles[9]. Different synthetic pathways  towards 

5,5’-dinitrimino-3,3’-bis-1,2,4-triazole have been intensively investigated by russian 

scientists[10], the sensitivities (time to explosion delay, impact sensitivity) were first 

investigated by Astachov et al. [11]. Shreeve and Charlesworth determined the energetic 

properties of the nitrogen-rich salts and the crystal structure of the neutral compound.[12] 

3,3’-Dinitro-5,5’-bis-1,2,4-triazole has been mentioned in literature before, but only 

characterized by means of ultraviolet absorption and infrared spectroscopy.[13]  

The focus of this contribution is on the full structural and spectroscopic characterization 

of five different bis-1,2,4-triazoles carrying energetic moieties like amino, nitro, 

nitramino, azido and dinitromethyl groups. We present a comparative study on the 

influence of those energetic moieties on structural and energetic properties. The potential 

application of the synthesized compounds as energetic material will be studied and 

evaluated using the experimentally obtained values for the thermal decomposition, the 

sensitivity data, as well as the calculated performance characteristics. 
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RESULTS AND DISCUSSION 

SYNTHESIS 

The starting material 3,3’-diamino-5,5’-bis(1H-1,2,4-triazole) (DABT, 1) was first 

synthesized with a moderate yield of 56% by Shreve and Charlesworth.[14] We developed 

a straightforward synthetic procedure yielding DABT as elemental analysis pure 

compound in yields of up to 70%. The modified procedure starts with the reaction of 

oxalic acid and aminoguanidinium bicarbonate in concentrated hydrochloric acid at 

70 °C, followed by isolation of the intermediate product by filtration. While heating under 

reflux in basic media, the molecule undergoes cyclization which leads to the formation of 

DABT (Scheme 1).  
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Scheme 1: Synthesis of DABT (1). 
 

As shown in Scheme 2, oxidation of DABT was achieved by the well known Sandmeyer 

reaction via diazotization in sulfuric acid and subsequent reaction with sodium nitrite.[15] 

The formation of 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazole) (DNBT, 2) was first mentioned 

by russian scientists with a low yield of  31%.[13b] We were able to optimize the process 

by adding a suspension of DABT in 20% sulfuric acid to a solution of sodium nitrite in 

water at 40 °C, which leads to a remarkable increase of the yield up to 82%.  

The nitrimino compound (3) was first synthesized by Metelkina et al. using oxalic acid 

dihydrazide and 2-nitroguanidine,[10a] using 1-amino-2-nitroguanidine with oxalic acid[10b] 

or 1-methyl-2-nitro-1-nitrosoguanidine and oxalic acid dihydrazide[10c]. We followed the 

most efficient method first mentioned by Astachov et al.[11] starting from the amino 

compound 1. The nitration was optimized using concentrated sulfuric and nitric acid in a 

ratio of 3:1 resulting in a yield of 77%.  

The azido compound (4) was synthesized via diazotization in sulfuric acid and subsequent 

reaction with an excess of sodium azide. After recrystallisation from water, compound 4 

can be isolated as insensitive dihydrate. 
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Scheme 2: Synthesis of energetic bis-1,2,4-triazole derivatives 2–4 based on DABT (1). 

 

The synthesis of the dinitromethyl-bis1,2,4-triazole (5, DNMBT) was achieved via a 

completely different synthetic pathway (Scheme 3). The chlorination of sodium cyanide 

in ethanol and subsequent reaction with hydrazine leads to the formation of the 

oxalimidohydrazide.[16] This intermediate product was reacted with the commercially 

available 3-ethoxy-3-iminopropionic acid ethyl ester hydrochloride to form the 

3,3’-(diethyl acetate)-5,5’-bis-1,2,4-triazole. Introduction of the NO2-moieties was 

accomplished by nitration with nitric acid in a mixture of sulfuric acid and oleum (1:1). 

The ethyl ester hydrolyses rapidly while stirring the nitrated intermediate product in basic 

media and subsequent acidification with concentrated hydrochloric acid leads to the 

release of CO2 and the formation of 3,3´- dinitromethyl-5,5’-bis-1,2,4-triazole (5). 
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Scheme 3: Synthetic pathway towards DNMBT (5). 

 

All nitrogen-rich bis-1,2,4-triazoles (1–5) were fully characterized by IR and Raman as 

well as multinuclear NMR spectroscopy, mass spectrometry and differential scanning 

calorimetry. Additional X-ray crystallographic measurements deliver insight into inter- 

and intramolecular interactions. 
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CRYSTAL STRUCTURES:  

Single crystal X-ray measurements were accomplished for compounds 1, 2, 4 and 5 and 

are discussed in detail. The crystal structure of the nitrimino compound 3 has already 

been described in literature.[12] All compounds could only be recrystallized from water 

resulting in the formation of the dihydrate as crystalline species, only compound 2 could 

be obtained water free. 

Detailed examination of the crystal structures of all compounds, no difference is observed 

for the 1,2,4-triazole system in comparison to other triazole ring systems.[7, 17] The bond 

lengths within the 1,2,4-triazole ring in the molecular structures are all in between the 

length of formal C–N and N–N single and double bonds (C–N: 1.47 Å, 1.22 Å; N–N: 

1.48 Å, 1.20 Å).[18]  

Due to the very low solubility in any solvent, crystals of 5,5’-diamino-3,3’-bis-(1H-1,2,4-

triazole) (1) could only be obtained by recrystallisation from DMSO. Compound 1 

crystallizes as DMSO adduct in the monoclinic space group P21/c with a cell volume of 

750.55(14) Å3 and two molecular moieties in the unit cell, the crystal structure together 

with the labeling scheme is displayed in Figure 1.  

 

 
Figure 1: Crystal structure of DABT (1), only one orientation of disordered DMSO molecules is shown; 

Thermal ellipsoids are set to 50 % probability, symmetry: (i) 2-x, -y, 1-z. 

 

As expected, the bis-triazole moiety shows a completely planar assembly. In relation to 

the planar 1,2,4-triazole ring, the protons of the amine groups are twisted out of the plane 

by only 26.1°. The angles surrounding the nitrogen N4 are larger than expected for a 

sp3-atom in the range of 116(1)° (C2–N4–H5a) to 118(1)° (C2–N4–H5b), which could be 

a reason for the low nucleophilicity observed in reactions with compound 1. 

It is remarkable to note that all nitrogen atoms of the 1,2,4-triazole ring as well as the 

amine group participate in hydrogen bonds. All contacts are short with a D···A length of 

2.890(2) Å and 3.055(2) Å, but only the hydrogen bond N1–H1···N3 is strongly directed 

with a D–H···A angle of 170.8(17)° (Table 1). 
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Table 1: Hydrogen bonds present in 1. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–H···A) [Å] < (D–H···A) [°] 

N1–H1···N3i 0.881(18) 2.017(19) 2.890(2) 170.8(17) 

N4–H5a···N2ii 0.867(19) 2.25(2) 3.055(2) 154.9(18) 
Symmetry Operators: (i) x,3/2-y,1/2+z, (ii) -x,1/2+y,1/2-z.  

 

All hydrogen bond lengths lie well within the sum of van der Waals radii (rw(N) + rw (N) 

= 3.20 Å)[18a], resulting in a strong network of hydrogen bonds in the bc-plane (Figure 2). 

The DMSO molecules do not participate in hydrogen bonds within this plane, but connect 

the layers via interaction with the free hydrogen atom of the amine groups. 

 
Figure 2: Hydrogen bonding within the crystal structure of DABT (1), DMSO molecules are omitted for 

clarity since they do not participate in hydrogen bonds in the bc-plane; Thermal ellipsoids are set to 50 % 

probability; symmetry: (i) x, ½–y, –1/2+z, (ii) 2–x, –1/2+y, ½–z, (iii) x, ½–y, ½+z, (iv) 2–x, ½+y, ½–z. 

 

3,3’-Dinitro-5,5’-bis-(1H-1,2,4-triazole) (2) crystallizes in the monoclinic space group 

P21/n with a cell volume of 394.73(8) Å3 and one molecular moiety in the unit cell. The 

calculated density at 173 K is 1.902 g cm–3 and hence well above the density of the 

dihydrate (1.764 g cm–3)[17c].  Again, the molecule shows a completely planar assembly 

with a torsion angle of the nitro group towards the triazole ring of 2.9(2)°. The formula 

unit of 1 together with the atom labeling is presented in Figure 3. 
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Figure 3: Crystal structure of 2. Thermal ellipsoids are set to 50 % probability. Symmetry operators: (i) –x, 

1–y, 2–z. 

 

In contrast to compound 1, the structure is build up by only one individual hydrogen bond 

N1–H1···O1. The D–H···A angle is close to 180° with 171.9(2)° and the D···A length is 

shorter than the sum of van der Waals radii (rw(O) + rw (N) = 3.07 Å)[18a] with 2.902(2) Å 

(Figure 4a). In contrast to compound 1, the nitrogen atoms N2 and N3 do not participate 

as acceptor in any hydrogen bond. As shown in Figure 4, the crystal structure of 3 

consists of infinite zig-zag rows along the b-axis including an angle of 60.5°. The layers 

are stacked above each other with a layer distance of d = 2.96 Å.  The layers are 

connected by two short contacts, N2···N4(ii) and C1···O1(iii) (symmetry operators: (ii) 

3/2–x,1/2+y,1/2–z; (iii) 3/2–x,–1/2+y,1/2–z). Both contacts are shorter than the sum of 

van der Waals radii[18a], with N2···N4 being the shortest (2.922(2) Å) and C1···O1 being 

the longest (3.051(2) Å). The stacking of the layers is displayed in Figure 4b together 

with the distance d between the layers. 

 
Figure 4: a) Hydrogen bonding scheme in the crystal structure of 2. b) Wave-like arrangement of the 

infinite rows in the crystal structure of 2 (layer distance d = 2.96 Å). Thermal ellipsoids are set to 50 % 

probability. Symmetry Operators: (i) ½+x, ½–y, ½+z. 
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The azido-compound 4 crystallizes in the triclinic space group P–1 with a cell volume of 

256.34(9) Å3 and one molecular moiety in the unit cell, the calculated density for the 

dihydrate is 1.646 g cm–3. As shown in Figure 5, the proton is located at the nitrogen 

atom N1 next to the azido group and not next to the C–C bond as it is the case for the 

nitro-compound 2. The three nitrogen atoms of the azido group exhibit a slightly bent 

arrangement with a N4–N5–N6 angle of 172.34(17)°.  Both azido moieties are assembled 

parallel and point in the opposite direction. 

 
 
Figure 5: Crystal structure of 4. Thermal ellipsoids are set to 50 % probability. Symmetry operators: (i) 1–

x, 1–y, 2–z, (ii) –x, 1-y, 1-z. 

The crystal structure of compound 4 is build up by two individual hydrogen bonds 

including the nitrogen atoms N1 and N2 as well as two water molecules (Figure 6). Two 

molecules of 4 form pairs via the strong hydrogen bond N1–H1···O1(i). A shown in Table 

2, the D–H···A angle is close to 180° with 174(2)° and the D···A length is considerably 

shorter than the sum of van der Waals radii (rw(O) + rw (N) = 3.07 Å)[18a]  

 
Table 2: Hydrogen bonds present in 4. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–H···A) [Å] < (D–H···A) [°] 

N1–H1···O1i 0.98(2) 1.70(2) 2.676(2) 174(2) 

O1–H1b···N2ii 0.92(2) 1.98(2) 2.892(2) 174(2) 
Symmetry Operators: (i) x,1+y,z, (ii) 2-x,1-y,-z.  
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The individual pairs are assembled coplanar which results in the formation of a layered 

structure within the bc-plane. The azido moieties do not participate in any hydrogen bond 

but are connected via a short contact N6···N6(i) with a distance of 3.067(2) Å (symmetry 

code: (i) 1-x,-y,1-z). 

 
Figure 6: Hydrogen bonding scheme in the crystal structure of 4. Thermal ellipsoids are set to 50 % 

probability. Symmetry Operators: (i) –x, 1–y, 1–z, (ii) –x, –y, 2–z, (iii) x, –1+y, 1+z. 

 

3,3´-Dinitromethyl-5,5’-bis-1,2,4-triazole crystallizes as dihydrate in the monoclinic 

spacegroup P21/c, the formula unit of 5 together with the atom labeling is presented in 

Figure 7. In comparison to all other bis-1,2,4-triazoles, the density of compound 5 is 

remarkably high with 1.951 g cm–3.  

 
Figure 7: Crystal structure of 5. Thermal ellipsoids are set to 50 % probability. Symmetry operators: (i) 1–

x, 1–y, –z. 

 

In contrast to the previously decribed 3,3´-bis(dinitro-methyl)-5,5´-azo-1H-1,2,4-

triazole[19], the proton of the dinitromethyl moiety is not located at the carbon atom C3 

but at the nitrogen atom N3 within the triazole ring. This leads to a completely planar 

assembly typical for sp2 carbon atoms and a C2–C3 distance in the range of a C–C double 
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bond (1.440(2) Å)[18a]. For comparison,  the C–C bond in the similar 5-dinitromethylene-

4,5-dihydro-1H-tetrazole is 1.418(2) Å.[20] The nitro groups are twisted out of the triazole 

plane by only 6.5(2) ° (O1-N4-C3-C2) and 0.9(2) ° (O3-N5-C3-C2), respectively. The planar 

assembly is encouraged by the formation of two intramolecular hydrogen bonds N1–

H1···O1 and N3–H3···O3. Both interactions show rather small D–H···A angles of 

117.9(16) ° and 113(2) ° but considerably short D–H···A distances of 2.558(2) Å and 

2.603(2) Å. The hydrogen bonds within the crystal structure of compound 5 are 

summarized in Table 3. 

 
Table 3: Hydrogen bonds present in 5. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–H···A) [Å] < (D–H···A) [°] 

N1–H1···O1 0.79(2) 2.090(18) 2.558(2) 117.9(16) 

N1–H1···O2i 0.79(2) 2.11(2) 2.839(2) 152.6(18) 

N3–H3···O3 0.92(3) 2.10(3) 2.603(2) 113(2) 

N3–H3···O5ii 0.92(3) 1.83(3) 2.711(2) 160(2) 

O5–H5b···O3iii 0.80(3) 2.09(3) 2.883(2) 173(3) 
Symmetry Operators: (i) -x,1/2+y,1/2-z, (ii) 1-x,1-y,-z, (iii) -1+x,1+y,z.  

In addition to the intramolecular hydrogen bonds, three intermolecular interactions 

including the crystal water as well as the oxygen atoms O2 and O3 of the nitro groups 

could be observed. Both nitrogen atoms N1 and N3 are involved as donor atoms in 

further hydrogen bonds N1–H1···O2 and N3–H3···O5, resulting in strong interactions with 

surrounding molecules (Figure 8).  

 
Figure 8: Surrounding and hydrogen bonds of a DNMBT molecule in the crystal structure of 5. Thermal 

ellipsoids are set to 50 % probability. Symmetry Operators: (i) 1–x, 1–y, –z; (ii) 1+x, –1+y, z; (iii) –x, –

1/2+y, ½–z, (iv) –x, ½+y, ½–z. 
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SPECTROSCOPIC DATA 

 

Vibrational spectroscopy 

IR and Raman spectra of all compounds were recorded and the frequencies were assigned 

according to literature.[21] The Raman spectrum of compound 1 is dominated by the 

deformation mode of the amino groups at 1579 cm–1. The valence stretching mode of the 

N–H bond is observed in the range of 3116 cm–1 to 3107 cm–1. The nitro groups of 

compounds 2 and 5 are observed with both, their symmetric and asymmetric stretching 

modes. The vibrational frequencies for the asymmetric stretching mode of the nitro group 

are observed in the range of 1550 cm–1 (2) to 1568 cm–1 (5). The symmetric stretching 

modes are located at lower energy at 1410 cm–1 (2) and 1403 cm–1 (5). The signals of the 

nitrimino moiety of compound 3 can be observed at 1565 cm–1 (νasym) and 1298 cm–1 

(νsym). The valence stretching mode of the N–H bond of the 1,2,4-triazole ring can be 

observed for all compounds in the range of 3154 cm–1  (3) to 3190 cm–1 (2). In addition, 

as for any heterocyclic compound, many combined stretching and deformation as well as 

torsion stretching modes can be observed in the fingerprint region between 1500 cm–1 and 

600 cm–1.[21b]  As shown in Figure 9, the Raman as well as IR spectrum of the azido 

compound 4 exhibits two signals for the individual asymmetric stretching modes of the 

azide groups in the expected range.[21c] The bands for the different ‘in-phase’ and ‘out-of-

phase’ stretching vibrations can be observed at 2171 cm–1 and 2142 cm–1  in the Raman 

spectrum and at 2156 cm–1 and 2137 cm–1 in the IR spectrum. 

 
Figure 9: Comparison of the IR and Raman spectra of 4. The individual stretching modes for the azide 

groups are expanded in the ellipse. 
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Multinuclear NMR spectroscopy 

All compounds were investigated using 1H, 13C and 14N NMR spectroscopy. Additional 
13C{1H} and 1H NMR spectra of compound 5 were recorded at elevated temperatures to 

give insight into the equilibrium between both possible isomers and will be discussed in 

the following paragraph. Due to insufficient solubility of compounds 1, 3 and 5 in DMSO 

or any other solvent, 15N NMR spectra could only be obtained for compounds 2 and 4. 

All compounds show two signals for the 1,2,4-triazole carbon atoms in the expected 

range.[7-8]  One singlet for the bridging carbon atom can be found at chemical shifts of 

142.1(3) to 149.3 ppm (1). The signal of the carbon atom connected to the energetic 

moieties is shifted in all cases to lower field and is observed in the range of 151.1 (5) to 

162.7 ppm (2). In the 14N{1H} NMR spectra, the nitro group of compounds 2, 3 and 5 can 

be identified by a broad singlet at –21 (3) to –26 ppm (2). The azido moiety in compound 

4 can be observed as a broad singlet at –145 ppm in the 14N NMR spectrum, well 

resolved resonances could only be observed in the 15N NMR spectrum (as discussed 

below). The NMR signals of all compounds are summarized in Table 4. 

 

Table 4: NMR signals of compounds 2, 3a–f in DMSO-d6. 

compound 
δ [ppm] 

13C{1H} 14N{1H} 1H 

1 157.3, 149.3 / 6.46 

2 162.7, 145.6 –26 9.68 

3 153.1, 142.1 –21 5.19 

4 157.7, 145.9 –145 14.86 

5 151.1 149.3* –23 13.45, 8.91, 3.90 

* recorded at 60 °C, C(NO2)2: 124.3 (5a), 106.5 (5b) 

 

As mentioned before, the existence of different isomers of compound 5 (see Scheme 4) 

could be demonstrated by recording 13C{1H} and 1H NMR spectra at elevated 

temperatures. Additionally, quantum chemical calculations at the B3LYP/aug-cc-pVDZ 

level of theory were performed.  
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Scheme 4: Equilibrium between the two isomers 5a and 5b. 

Since isomer 5a is obtained in the solid state (as discussed in the previous chapter), in this 

case a sp2 carbon atom (C3) is the thermodynamically most stable configuration.  

However, the signals of both isomers could be observed in both the 13C{1H} and 1H NMR 

spectrum at room temperature, indicating a small energy difference between both 

isomers.  

 
Figure 10: Comparison of 1H NMR spectra of DNMBT (5) at room temperature and at elevated 

temperatures in DMSO-d6; x-axis represents the chemical shift δ  in ppm. 
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Of course there is another possible isomer in which one ring is a 1,2,4-triazole and the 

other a 1,2,4-triazoline. This isomer could not be detected in any spectra at any 

temperature. Apparently this transition state is not an energetic minimum and is therefore 

not part of the further discussion.  Figure 10 shows a comparison of the experimentally 

obtained proton NMR spectra at different temperatures. At room temperature, isomer 5a 

is the dominant species resulting in a broad signal for both protons at 9.03 ppm (for 

comparison: protons of the similar 5-dinitromethylene-4,5-dihydro-1H-tetrazole appear at 

11.09 ppm).[20]  The signals of the bis-1,2,4-triazoline isomer (5b) can also be obtained at 

room temperature at 8.70 ppm (Ntriazole–H) and 3.87 ppm (Csp3–H). Owing to the fact that 

compound 5 is very acidic and was used as dihydrate (as obtained after recrystallisation), 

the constant signal at 6.85 ppm was assigned to the protons of the water molecules. 

With raising temperature, the signal of isomer 5a decreases and the two signals of isomer 

5b gain intensity. The conversion is completed at about 90 °C, the signal of 5a has 

disappeared completely. Simultaneously, the compound starts to decompose, resulting in 

small signals in the range of 8.60 ppm. As shown in Figure 11, the signals of the 1,2,4-

triazole carbon atoms in the 13C{1H} NMR spectrum at room temperature interfere with 

each other resulting in a broad multiplet in the range of 150.0 ppm. The sp2 carbon atom 

of isomer 5a (C3) appears at 124.3 ppm, the sp3 carbon atom of isomer 5b (C3’) could be 

found at 106.5 ppm. For comparison, similar sp2 carbon atoms appear at 124.9 ppm (3,3´-

bis(dinitromethylen)-5,5´-azo-1H-1,2,4-triazole)[19] and at 121.5 ppm (5-

dinitromethylene-4,5-dihydro-1H-tetrazole)[20].  

 
Figure 11: Comparison of 13C NMR spectra of DNMBT (5) at room temperature and at elevated 

temperatures in DMSO-d6; x-axis represents the chemical shift δ  in ppm. 



_____________________________________________________________________CHAPTER 5 

79 | 

At 60 °C, only the signals of isomer 5b could be observed. The triazole carbon atoms now 

show two well resolved resonances at 151.1 and 149.3 ppm, the sp3 carbon atom C3’ can 

be found at the identical chemical shift of 106.5 ppm (in comparison to R.T. 

measurement) as a broad singlet. Quantum chemical calculations at the B3LYP/aug-cc-

pVDZ level of theory reveal an energy difference between both isomers of 30.4 kJ mol–1 

(Table 5). The calculated values go well with the experimentally obtained 1H NMR 

spectra, especially with the exclusive appearance of isomer 5b in the NMR spectrum 

above 90 °C.  

 
Table 5: Calculations on Isomers of DNMBT (5) at the B3LYP/aug-cc-pVDZ level of theory 

 Isomer A Isomer B 

point group C2h C1 

–E [Hartree] 1380.136812 1380.125222 

Erel [kcal mol–1] 0.0 +7.3 

Erel [kJ mol–1] 0.0 +30.4 

The calculated optimized gas-phase structure of isomer 5a is in good agreement with the 

experimentally obtained crystal structure of compound 5 (Figure 12). The planar 

assembly of the dinitromethylene moiety is the thermodynamically most stable 

configuration. In addition, the carbon atom C3’ of isomer 5b shows the expected 

tetrahedral coordination as it is the case for the sp3 carbon atoms in the similar 

bis(dinitromethylen)-5,5´-azo-1H-1,2,4-triazole.[19] 

 

 
Figure 12: Comparison of calculated gas-phase structures of both isomers 5a and 5b. 

 

Due to insufficient solubility, 15N NMR spectra could only be obtained for compounds 2 

and 4. Four well resolved resonances are observed in the 15N NMR spectrum for the four 

nitrogen atoms of the dinitro-compound 2 (Figure 13). The signals were assigned by 

comparison to literature values.[21a, 22] The signals of the nitrogen atoms N1 and N2 of the 

diazido compound (4) appear in the same range as for compound 2, but are rather broad 
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in comparison to the sharp signals of 2. The three signal of the azido moiety are well 

resolved and can be found in the expected range with N4 being shifted to highest field 

with a chemical shift of –295.2 ppm. 

 

 
Figure 13: 15N NMR spectra of 5,5’-diazido-3,3’-bis-1H-1,2,4-triazole (4, top) and 3,3’-dinitro-5,5’-bis-

1H-1,2,4-triazole (2, bottom) recorded in DMSO-d6; x-axis represents the chemical shift δ  in ppm. 

 

THEORETICAL CALCULATIONS, PERFORMANCE CHARACTERISTICS AND STABILITIES   

All calculations regarding energies of formation were carried out using the Gaussian 

G09W Version 7.0 program package.[23] Since very detailed descriptions of the 

calculation process have been published earlier[8] and can be found in specialized 

books,[1b] only a short summary of computational methods will be given. The enthalpies 

(H) and Gibbs free energies (G) were calculated using the complete basis set method 

(CBS) of Petersson et al. in order to obtain very accurate energies. In this contribution, 

we used the modified CBS-4M method with M referring to the use of minimal population 

localization, which is a re-parameterized version of the original CBS-4 computational 

method and also includes additional empirical calculations.[24] The enthalpies of 

formation for the gas phase species were computed according to the atomization energy 

method, using NIST[25] values as standardized values for the atoms standard heats of 

formation (ΔfH0) according to equation 1.[26] 
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ΔfH0 (g, Molecule, 298) = H(Molecule) – ∑ H0
(Atoms) + ∑ ΔfH0

(Atoms, NIST) (1) 

 

The solid state enthalpy of formation for neutral compounds is estimated from the 

computational results using Troutons rule,[27] where Tm was taken equal to the 

decomposition temperatures.  

 

ΔHm = ΔfH0
(g, Molecule, 298) – ΔHsub = ΔfH0

(g, Molecule, 298) – (188 [J mol–1K–1]* Tm) (2) 

 

The solid state enthalpies of formation for the ionic compounds are derived from the 

calculation of the corresponding lattice energies (UL) and lattice enthalpies (HL), 

calculated from the corresponding molecular volumes, using the equations provided by 

Jenkins et al.[28]  The derived molar standard enthalpies of formation for the solid state 

(ΔHm) were used to calculate the solid state energies of formation (ΔUm) according to 

equation three, with Δn being the change of moles of gaseous components.[1b] 

 

ΔUm = ΔHm – ΔnRT  (3) 

 

The calculated standard energies of formation were used to perform predictions of the 

detonation parameters with the program package Explo5, Version 5.05.[29] The program is 

based on the chemical equilibrium, steady state model of detonation. It uses Becker-

Kistiakowsky-Wilsons equation of state (BKW EOS) for gaseous detonation products 

together with Cowan-Ficketts equation of state for solid carbon.[30] The calculation of the 

equilibrium composition of the detonation products is performed by applying modified 

White, Johnson and Dantzigs free energy minimization technique. The program was 

designed to enable calculations of detonation parameter at the Chapman-Jouguet point. 

The BKW equation as implemented in the Explo5.5 program was used with the BKW-G 

set of parameters (α, β, κ, θ) given below equation (4), in which Xi is the mol fraction of 

the i-th gaseous detonation product while ki is the molar co-volume of the i-th gaseous 

detonation product.[29-30]   

 

pV / RT = 1 + xeβx   with   x  =  (κ Σ Xiki) / [V (T + θ)]α (4) 

 

α  =  0.5,  β  =  0.096,  κ  =  17.56,  θ  =  4950 
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The results of the detonation runs, together with the calculated energies of formation and 

the corresponding sensitivities, are compiled in Table 6.  

 
Table 6: Physico-chemical properties of compounds 2–5 in comparison to hexogen (RDX). 

 DNBT (2) DNABT (3) DAzBT (4) DNMBT (5) RDX[n] 

Formula C4H2N8O4 C4H4N10O4 C4H2N12 C6H4N10O8 C3H6N6O6 

Molecular Mass [g mol–1] 226.1 256.1 218.2 344.2 222.1 

Impact sensitivity [J]a 10 3 3 20 7 

Friction sensitivity [N]b 360 108 48 360 120 

ESD–test [J] 0.1 0.5 0.04 0.2 -- 

N [%]c 49.45 54.68 77.05 40.70 37.8 

Ω [%]d –35.4 –37.5 –66.0 –27.9 –21.6 

Tdec. [°C]e 251 194 201 121 210 

ρ [g cm–3]f 1.90 1.80 1.70 1.95 1.80 

ΔfHm° [kJ mol–1]g 285 405 971 298 70 

ΔfU° [kJ kg–1]h 1338 1667 4532 946 417 

EXPLO5 values:  

V5.05 
     

–ΔEU° [kJ kg–1]i 4888 4973 4639 4977 6125 

TE [K]j 3890 3814 3670 3862 4236 

pC-J  [kbar]k 320 300 250 341 349 

VDet.  

[m s–1]l 8413 8355 7944 8499 8748 

Gas vol. [L kg–1]m 642 670 653 641 739 
[a] BAM drop hammer; [b] BAM friction tester; [c] Nitrogen content; [d] Oxygen balance; [e] Temperature of decomposition by DSC (β 

= 5 °C, Onset values); [f] derived from X-ray structure; [g] Molar enthalpy of formation; [h] Energy of formation; [i] Energy of 

Explosion; [j] Explosion temperature; [k] Detonation pressure; [l] Detonation velocity; [m] Assuming only gaseous products; [n] values 

based on Ref. [31] and the EXPLO5.5 database; *Density values of 3, 4 and 5 are based on X-ray densities of dihydrate spezies and 

additional pycnometer measurements of anhydrous compounds.  
 

As shown in Table 6, physico-chemical properties were calculated for the energetic 

compounds 2–5. For the starting material 3,3’-diamino-5,5’-bis(1H-1,2,4-triazole) 

(DABT, 1), only the sensitivities and the decomposition temperature was determined. 

Compound 1 is insensitive towards friction and impact and shows no decomposition 

below 450 °C. 

Compound 2 as well shows a remarkably high thermal stability of 251 °C together with 

an insensitivity towards friction and a moderate sensitivity towards impact (10 J). The 

beneficial detonation parameters of DNBT with vdet = 8413 m s–1 mainly stem from the 
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high positive heat of formation (285 kJ mol–1) and the remarkably high density of 

1.902 g cm–3 (X-ray measurement). 

As it is characteristically for nitramino- and nitrimino-1,2,4-triazoles,[8, 32] the nitrimino 

compound 3 is very sensitive towards impact (3 J) and sensitive towards friction (108 N). 

As expected, the decomposition temperature (194 °C) is lower in comparison to the 

Nitro-derivative (2). However, the decomposition temperature was found to be repeatably 

higher in comparison to the value detemined by Shreeve and coworkers  (165 °C[12] at a 

heating rate of 10 °C min–1). The calculated detonation parameters are well below the 

commonly used explosive RDX and in the same range compared to compound 2.  

The azido-compound (4) is the most sensitive compound with a friction sensitivity of 

48 N, an impact sensitivity of 3 J and a sensitivity towards electrical discharge of 40 mJ. 

The compound can therefore be classified as primary explosive and shows outstanding 

energetic properties for this class of energetic materials. 

 
Figure 14: DSC plots of DNBT (2), DAzBT (4), DNABT (3) and DNMBT (5) in order of decreasing 

decomposition temperature (onset). DSC plots were recorded with a heating rate of 5 °C min–1. 

 

Compound 5 shows the best performance of all compounds with a detonation velocity of  

8499 m s–1, a detonation pressure of 341 kbar and oxygen balance of –27.9%, which is in 

the range of RDX. Unfortunately, the introduction of the dinitromethyl group leads to a 

decrease of the decomposition temperature to 121 °C in comparison to the nitro-
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compound 2 (251 °C). 3,3’-Dinitromethyl-5,5’-bistriazole could therefore only be of 

interest for ionic derivatives in combination with nitrogen-rich cations, since 

deprotonation increases the thermal stability as it is known for the previously described 

3,3´-bis(dinitro-methyl)-5,5´-azo-1H-1,2,4-triazole.[19] The thermal stabilities of all 

compounds are illustrated in Figure 14. 

 

CONCLUSION 
The starting material DABT (1) was synthesized following a modified literature known 

procedure[14] resulting in an increase of the yield from 56% up to 70%. The optimization 

of the reaction conditions for the formation of 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazole)[13] 

(DNBT, 2) and 5,5’-dinitrimino-3,3’-bis(1H-1,2,4-triazole)[12] (DNABT, 3)  resulted in 

excellent yields and high purities.  The previously unknown syntheses of 3,3’-diazido-

5,5’-bis(1H-1,2,4-triazole) (DAzBT, 4) as well as 3,3’-dinitromethyl-5,5’-bis(1H-1,2,4-

triazole) (DNMBT, 5) are presented and reveal synthetic pathways towards numerous 

novel energetic 1,2,4-triazole derivatives. All compounds have been fully characterized 

by means of vibrational and multinuclear NMR spectroscopy, mass spectrometry and 

differential scanning calorimetry. Single crystal X-ray measurements were accomplished 

for compounds 1, 2, 4 and 5 and deliver insight into structural characteristics as well as 

inter- and intramolecular interactions.  

Regarding the stability values and energetic parameters, compound 2 shows the highest 

thermal stability of 251 °C together with an insensitivity towards friction and a moderate 

sensitivity towards impact (10 J). As expected, the nitrimino compound (3) as well as the 

azido compound (4) are the most sensitive derivatives with an impact sensitivity of 3 J 

and friction sensitivities of 108 N (3) and 48 N (4) and can therefore be classified as 

primary explosive. The introduction of the dinitromethyl group in compound 5 leads to 

the best detonation parameters with a detonation velocity of  8499 m s–1, a detonation 

pressure of 341 kbar and an oxygen balance of –27.9%. Unfortunately, the thermal 

stability is decreased to 121 °C, which limits the potential applications to ionic 

derivatives in combination with nitrogen-rich cations. In summary, compounds 2, 3 and 5 

are able to compete with commonly used TNT, however, the performance data for RDX 

are not reached. Those three compounds can be considered as nitrogen-rich starting 

materials for new energetic ionic derivatives in combination with nitrogen-rich cations, as 

it has already been shown by Shreeve and coworkers.[12] Since nitrogen-rich salts of 
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energetic compounds tend to be more stable compared to the uncharged compounds and 

often show performance characteristics in the range of modern secondary explosives, 

those ionic derivatives could find application as high-nitrogen energetic materials. 

 

EXPERIMENTAL SECTION 
Caution: Although all presented bis-1,2,4-triazoles are rather stable against outer stimuli, 

proper safety precautions should be taken, when handling the dry materials. Especially 

derivatives of 3,3’-Diazido-5,5’-bis(1H-1,2,4-triazole) (DAzBT, 2) are energetic primary 

materials and tend to explode under the influence of impact or friction. Lab personnel and 

the equipment should be properly grounded and protective equipment like earthed shoes, 

leather coat, Kevlar® gloves, ear protection and face shield is recommended for the 

handling of any energetic material.  

General. All chemical reagents and solvents were obtained from Sigma-Aldrich Inc. or 

Acros Organics (analytical grade) and were used as supplied without further purification. 
1H, 13C{1H}, 14N{1H} and 15N NMR spectra were recorded on a JEOL Eclipse 400 

instrument in DMSO-d6 at 25 °C. The chemical shifts are given relative to 

tetramethylsilane (1H, 13C) or nitro methane (14N, 15N) as external standards and coupling 

constants are given in Hertz (Hz). Infrared (IR) spectra were recorded on a Perkin-Elmer 

Spectrum BX FT-IR instrument equipped with an ATR unit at 25 °C. Transmittance 

values are qualitatively described as “very strong” (vs), “strong” (s), “medium” (m), 

“weak” (w) and “very weak” (vw). Raman spectra were recorded on a Bruker RAM II 

spectrometer equipped with a Nd:YAG laser (200 mW) operating at 1064 nm and a 

reflection angle of 180°. The intensities are reported as percentages of the most intense 

peak and are given in parentheses. Elemental analyses (CHNO) were performed with a 

Netzsch Simultaneous Thermal Analyzer STA 429. Melting and decomposition points 

were determined by differential scanning calorimetry (Linseis PT 10 DSC, calibrated 

with standard pure indium and zinc). Measurements were performed at a heating rate of 

5 °C min–1 in closed aluminum sample pans with a 1 µm hole in the lid for gas release to 

avoid an unsafe increase in pressure under a nitrogen flow of 20 mL min–1 with an empty 

identical aluminum sample pan as a reference.  

For initial safety testing, the impact and friction sensitivities as well as the electrostatic 

sensitivities were determined. The impact sensitivity tests were carried out according to 

STANAG 4489,[33] modified according to WIWEB instruction 4-5.1.02[34] using a 
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BAM[35] drop hammer. The friction sensitivity tests were carried out according to 

STANAG 4487[36] and modified according to WIWEB instruction 4-5.1.03[37] using the 

BAM[35] friction tester. The electrostatic sensitivity tests were accomplished according to 

STANAG 4490[38] using an electric spark testing device ESD 2010EN (OZM Research) 

operating with the “Winspark 1.15 software package”. 

Crystallographic measurements. The single crystal X-ray diffraction data of 1, 2, 4 and 

5 were collected using an Oxford Xcalibur3 diffractometer equipped with a Spellman 

generator (voltage 50 kV, current 40 mA) and a Kappa CCD detector. The data collection 

was undertaken using the CrysAlis CCD software[39] while the data reduction was 

performed with the CrysAlis Red software[40]. Crystals of compound 3c were investigated 

using a Bruker-Nonius Kappa CCD diffractometer equipped with a rotating 

molybdenum anode and Montel-graded multilayered X-ray optics. The structures were 

solved with Sir-92[41] or Shelxs-97[42] and refined with Shelxl-97[43] implemented in the 

program package WinGX[44] and finally checked using Platon[45]. CCDC 887530 (1), 

864398 (2), 887531 (4), 887532 (5) contains the supplementary crystallographic data for 

this paper. These data can be obtained free of charge from The Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

3,3’-Diamino-5,5’-bis(1H-1,2,4-triazole) (DABT, 1) 

Hydrochloric acid (60 mL) was added to a stirred mixture of oxalic acid (20.0 g, 

159 mmol) and aminoguanidinium bicarbonate (45.4 g, 332 mmol). The reaction was 

stirred at 70 °C for one hour and the precipitate was collected by filtration. The colorless 

solid was dissolved in water (240 mL) and alkalized with sodium hydroxide to pH = 14. 

The reaction mixture was refluxed for one hour and subsequently acidified with acetic 

acid acid to pH = 4. The resulting precipitate was collected by filtration, washed with 

water (appr. 200 mL) and dried in air to yield 3,3’-diamino-5,5’-bis(1,2,4-1H-triazole) (4) 

(18.6 g, 112 mmol, 70%) as a colorless solid.1H nmr (DMSO-d6): δ = 6.46 (s, 2H, NH2) 

ppm. 13C nmr (DMSO-d6): δ = 157.3, 149.3 ppm. IR: ν (cm−1) (rel. int.) = 3325(m), 

3116(m), 2863(m), 2784(m), 1706(s), 1668(s), 1654(s), 1618(m), 1606(m), 1484(m), 

1457(m), 1267(m), 1104(vs), 1061(s), 987(w), 956(w), 769(w), 721(s). Raman 

(200 mW): ν (cm−1) (rel. int.) = 1636(62), 1614(100), 1591(67), 1575(57), 1495(13), 

1439(21), 1432(21), 1361(9), 1152(24), 1143(23), 1059(23), 1042(34), 1022(22), 

980(27), 772(18), 554(7), 413(11), 328(12), 249(16). Elemental analysis (C4H6N10): 
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calc.: C 28.92, H 3.64, N 67.44; found: C 28.72, H 3.58, N 66.11. Mass spectrometry: 

m/z (DEI+): 166.1 [C4H7N8
+].  

 

 

3,3’-Dinitro-5,5’-bis(1H-1,2,4-triazole) (DNBT, 2) 

A solution of 3,3’-diamino-5,5’-bis(1H-1,2,4-triazole) (4) (11.9 g, 72 mmol) in 20% 

sulfuric acid (140 mL,) was added drop wise to a solution of sodium nitrite (10 eq., 

98.8 g, 1.4 mol) in water (140 mL) at 40 °C. The mixture was stirred at 50 °C for 1 h. 

After cooling down to room temperature the mixture was acidified with sulfuric acid 

(20%) until no evolution of nitrogen dioxide could be observed. The precipitate was 

collected by filtration and dissolved in boiling water. The hot solution was filtrated and 

allowed to cool to room temperature. Collection of the pale green precipitate affords 3,3’-

dinitro-5,5’-bis(1H-1,2,4-triazole) dihydrate (15.5 g, 59 mmol, 82%) as a crystalline 

solid. 
1H nmr (DMSO-d6): δ = 9.68 (s, 2H, HTriazole) ppm; 13C nmr (DMSO-d6): δ = 162.7, 

145.6 ppm; 14N nmr (DMSO-d6): δ = –26 (-NO2) ppm; 15N nmr (DMSO-d6): δ = –27.8 

(N4), –88.8 (N2), –141.7 (N3), –156.1 (N1) ppm. IR: ν (cm−1) (rel. int.) = 3599(m), 

3499(m), 3052(w), 2849(w), 2747(w), 2670(m), 2621(m), 2574(m), 2530(m), 2488(m), 

2419(m), 1844(w), 1609(m), 1532(vs), 1466(w), 1416(vs), 1314(vs), 1245(m), 1183(m), 

1024(m), 953(s), 837(s), 690(w), 690(w). Raman (200 mW): ν (cm−1) (rel. int.) = 

3192(3), 1641(100), 1546(28), 1519(5), 1485(75), 1468(43), 1458(95), 1413(18), 

1393(97), 1365(6), 1362(6), 1345(13), 1325(27), 1306(35), 1172(58), 1062(67), 

1015(31), 855(4), 774(8), 744(5), 619(4), 511(4), 452(5), 452(5), 399(9), 297(9), 203(6). 

Elemental analysis (C4H2N8O4): calc.: C 21.25, H 0.89, N 49.56; found: C 21.44, 

H 0.95, N 49.19. Mass spectrometry: m/z (FAB–): 225.1 [C4HN8O4
–]. Sensitivities 

(grain size: <100 μm): friction: 360 N, impact:   10 J, ESD: 0.1 J; DSC (onset, 5 °C min–

1): TDec.: 251 °C. 

 

3,3’-Dinitrimino-5,5’-bis(1H-1,2,4-triazole) (DNABT, 3) 

Synthesized according to modified literature known procedure:[12] 

Nitric acid (100%, 3.0 mL) was added slowly to a solution of 3,3’-diamino-5,5’-bis(1H-

1,2,4-triazole) (1) (1.0 g, 6.0 mmol)  in concentrated sulfuric acid (9.0 mL) at 0 °C. The 

mixture was allowed to warm to room temperature and stirred for one hour. The clear 

solution was poured on ice,  the precipitate was collected by filtration and recrystallized 
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from boiling water to yield 3,3’-Dinitrimino-5,5’-bis(1H-1,2,4-triazole) dihydrate (1.35 g, 

4.6 mmol, 77 %) as yellow crystalline solid. 
1H nmr (DMSO-d6): δ = 5.52 (s, 2H, HTriazole) ppm; 13C nmr (DMSO-d6): δ = 153.1, 

142.1 ppm; 14N nmr (DMSO-d6): δ = –21 (-NO2) ppm. IR: ν (cm−1) (rel. int.) = 3165(m), 

3154(m), 1565(vs), 1508(s), 1463(s), 1446(s), 1380(m), 1298(vs), 1229(vs), 1140(m), 

1085(m), 1054(s), 989(m), 947(s), 849(m), 778(s), 766(s), 751(s), 708(vs). Raman 

(200 mW): ν (cm−1) (rel. int.) = 1655(100), 1592(60), 1568(81), 1527(14), 1288(2), 

1224(7), 1123(26), 1072(2), 1019(25), 992(35), 851(11), 764(26), 691(2), 558(6), 520(2), 

440(2), 417(3), 407(3), 226(6). Elemental analysis (C4H2N8O4): calc.: C 16.44, H 2.76, 

N 47.94; found: C 16.73, H 2.69, N 47.73. Sensitivities (water free compound, grain size: 

<100 μm): friction: 108 N, impact: 3 J, ESD: 0.5 J; DSC (onset, 5 °C min–1): TDec.: 

194 °C. 

 

3,3’-Diazido-5,5’-bis(1H-1,2,4-triazole) (DAzBT, 4) 

A solution of sodium nitrite (3 eq., 0.37 g, 5.4 mol) in water (2.0 mL) was added 

dropwise to a suspension of 3,3’-diamino-5,5’-bis(1H-1,2,4-triazole) (1) (0.3 g, 

1.8 mmol) in 20% sulfuric acid (20 mL,) at 0 °C. The mixture was allowed to warm to 

room temperature and subsequently stirred at 40 °C for 1 h. After cooling down to room 

temperature, a solution of sodium azide (5 eq., 5.9 g, 9.0 mmol) in water (2.0 mL) was 

added dropwise. (DANGER: EVOLUTION OF HN3!). The suspension was stirred over 

night at room temperature to remove the excess of sodium azide and extracted with ethyl 

acetate (3×20 mL). The solvent was evaporated and the resulting solid recrystallized from 

water. Collection of the colorless precipitate affords 3,3’-diazido-5,5’-bis(1H-1,2,4-

triazole) dihydrate (0.25 g, 1.0 mmol, 56%) as a crystalline needles. 
1H nmr (DMSO-d6): δ = 14.86 (s, 2H, HTriazole) ppm; 13C nmr (DMSO-d6): δ = 157.7, 

145.9 (C-N3) ppm; 14N nmr (DMSO-d6): δ = –145 (-N3) ppm; 15N nmr (DMSO-d6): δ = 

–115.3 (N2), –141.9 (N3), –146.2 (N5), –153.0 (N6), –173.2 (N1), –295.2 (N4) ppm. IR: 

ν (cm−1) (rel. int.) = 3141(s), 3042(s), 2876(s), 2710(s), 2655(s), 2630(m), 2571(m), 

2435(m), 2362(m), 2240(m), 2228(m), 2156(vs), 2138(vs), 2137(vs), 1541(vs), 1518(s), 

1483(vs), 1457(s), 1420(vs), 1418(vs), 1391(s), 1333(s), 1299(m), 1299(m), 1275(s), 

1241(m), 1218(m), 1188(s), 1142(s), 1122(s), 1033(vs), 1014(m), 980(vs), 958(m), 

846(m), 799(s), 780(m), 729(s), 714(m), 661(m), 532(m). Raman (200 mW): ν (cm−1) 

(rel. int.) = 2171(14), 2142(17), 1620(56), 1605(100), 1551(17), 1551(16), 1549(17), 
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1548(17), 1547(17), 1515(44), 1503(24), 1501(26), 1500(27), 1423(16), 1422(16), 

1421(15), 1399(15), 1335(20), 1298(5), 1228(10), 1168(6), 1148(17), 1147(17), 

1147(17), 1066(16), 1065(17), 1039(22), 1038(22), 1024(31), 817(7), 705(3), 629(3), 

577(9), 436(6), 423(7), 397(9), 380(21), 326(24), 262(9), 247(16). Elemental analysis 

(C4H6N12O2): calc.: C 18.90, H 2.38, N 66.13; found: C 19.41, H 2.14, N 65.75. Mass 

spectrometry: m/z (DEI+): 218.1 [C4H2N12
+]. Sensitivities (grain size: <100 μm): 

friction: 48 N, impact:   3 J, ESD: 0.04 J; DSC (onset, 5 °C min–1): TDec.: 202 °C. 

 

 

3,3’-Dinitromethyl-5,5’-bis(1,2H-1,2,4-triazole) (DNMBT, 5) 

Precursors synthesized according to [16a] and [16b] 

 

3,3’-diethyl-acetate-5,5’-bis(1H-1,2,4-triazole) (0.5 g, 1.62 mmol) was dissolved in 

sulfuric acid (conc., 6 mL) and cooled to 0° C. Subsequently, nitric acid (conc., 4 mL) 

and oleum (60% SO3, 2 mL) were added slowly, the mixture was allowed to warm to 

room temperature and stirred at for 2h. The mixture was poured on ice, alkalized with 

sodium hydroxide and stirred until all solids were dissolved. The solution was acidified 

with sulfuric acid (conc.) until pH = 1. The precipitate was isolated by filtration and 

recrystallized from water. 3,3’-Dinitromethyl-5,5’-bis(1-H-1,2,4-triazole) (DNMBT, 7) 

was obtained as a yellow solid  (0.27g, 0.79mmol, 49%). 

 
1H nmr (DMSO-d6, 60°C): δ = 8.94 (NH), 3.91 (s, CH) ppm; 13C nmr (DMSO-d6, 

60°C): δ = 151.1, 149.3, 106.5 (C-C) ppm, 14N nmr (DMSO-d6, 60°C): δ = –23 (NO2); 

IR: ν (cm-1) (rel. int.) = 3544(m), 3467(m), 3319(m), 2360(vw), 2094(vw), 1643(w), 

1511(s), 1484(m), 1467(m), 1436(s), 1388(m), 1364(m), 1300(m), 1286(m), 1271(s), 

1200(vs), 1146(m), 1128(s), 1085(vs), 987(vs), 976(vs), 832(s), 779(w), 779(w), 745(s), 

722(s), 666(m). Raman (200 mW): ν (cm−1) (rel. int.) = 1646(78), 1575(75), 1559(100), 

1517(20), 1490(4), 1473(3), 1419(3), 1403(10), 1341(55), 1320(30), 1302(24), 1226(59), 

1213(43), 1163(15), 1101(4), 1025(4), 967(46), 834(16), 783(10), 753(2), 699(3), 475(7), 

435(4), 435(4), 379(2), 326(3), 209(4). Mass spectrometry: m/z (FAB-): 343 [M-H-

].Sensitivities: (grain size: <100 μm): friction: 360 N, impact: >20 J, ESD: 0.2 J; DSC 

(onset, 5 °C min-1): TDec.: 130 °C. 
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6. INSENSITIVE NITROGEN-RICH ENERGETIC COMPOUNDS 

BASED ON THE 3,3’-DINITRO-5,5’-BIS-1,2,4-TRIAZOLATE 

ANION  
As published in: European Journal of Inorganic Chemistry 2012, 21, 3474–3484. 

 

ABSTRACT: 

In this contribution the improvements achieved in the synthesis of the thermally stable 

energetic heterocycle 3,3’-dinitro-5,5’-bis-1H-1,2,4-triazole (DNBT) are described. The 

main goal was the synthesis of at least equally stable but more powerful energetic 

compounds based on the DNBT2– anion in combination with nitrogen-rich cations. A 

complete structural and spectroscopic characterization including IR and Raman as well as 

multinuclear NMR spectroscopy of the uncharged compound is presented. Additionally, 

X-ray crystallographic measurements of DNBT were performed revealing a very high 

density of 1.903 g cm–3. In order to increase both performance and stability, high 

nitrogen-rich salts of DNBT using the ammonium, hydroxylammonium, hydrazinium, 

guanidinium, aminoguanidinium and triaminoguanidinium cations were prepared and 

fully characterized by means of vibrational and multinuclear NMR spectroscopy, DSC 

measurements and X-ray diffraction measurements. The standard enthalpies of formation 

were calculated for selected compounds at the CBS-4M level of theory, the detonation 

parameters were calculated using the EXPLO5.05 program. Additionally, the impact as 

well as friction sensitivities and sensitivity against electrostatic discharge were 

determined. 
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INTRODUCTION 

The synthesis of energetic materials has attracted research groups worldwide over the last 

decades.[1] Nitrogen-rich compounds which mainly generate environmentally friendly 

molecular nitrogen as end-product of propulsion or explosion are in the focus of energetic 

materials research across the globe.[1f, 2] Those modern heterocyclic energetic compounds 

derive their energy not only from the oxidation of their backbone but additionally from 

ring or cage strain. Due to the high positive heats of formation resulting from the large 

number of N–N and C–N bonds[3] and the high level of environmental compatibility, 

those compounds have been studied in our group over the last couple of years with 

growing interest.  

A prominent family of novel energetic materials are azole-based compounds, since they 

are generally highly endothermic with high densities and low sensitivities towards outer 

stimuli. Especially triazoles show a perfect balance between thermal stability and high 

positive heats of formation, required for applications as prospective HEDMs. Even 

though the heats of formation are larger for tetrazoles (ΔHf
0 = + 237.2 kJ mol–1)[4] as well 

as 1,2,3-triazoles (ΔHf
0 = + 272 kJ mol–1),[5a] 1,2,4-triazoles (ΔHf

0 = + 109 kJ mol-1)[5b] 

are better suited for the development of energetic materials, since they have less catenated 

nitrogen atoms in one chain, which generally makes them more stable to outer stimuli.  

Many energetic compounds that combine the triazole backbone with energetic moieties 

such as nitro groups have been synthesized over the last decades. Examples for these kind 

of molecules are 5-amino-3-nitro-1,2,4-triazole (ANTA),[6] 3-nitro-5-triazolone (NTO)[7] 

or also azo bridged compounds like 5,5’-dinitro-3,3’-azo-1,2,4-triazole (DNAT).[8] The 

thermal stability of these materials is remarkably high with decomposition taking place 

well above 200 °C together with low sensitivity values. Especially the anionic species in 

combination with nitrogen-rich cations show excellent properties as future high 

explosives.[9] In general, deprotonation of triazole species positively influences the 

thermal stability as well the sensitivity. In addition, the nitrogen content and the 

performance is increased by introduction of nitrogen-rich cations. 

3,3’-Dinitro-5,5’-bis-1,2,4-triazole as well as its ammonium and guanidinium salt have 

been mentioned in literature before, but only characterized by means of ultraviolet 

absorption[10] and infrared spectroscopy[11] (DNBT) or investigated towards the use in 

gas-generating propellants (ammonium and guanidinium salt).[12] All compounds 
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presented in this contribution have not been characterized structurally or in terms of their 

energetic properties.  

The focus of this study is on the full structural and spectroscopic characterization of the 

title compound  3,3’-dinitro-5,5’-bis-1,2,4-triazole as well as the formation and complete 

characterization of nitrogen-rich salts using ammonium, hydrazinium, 

hydroxylammonium, guanidinium, aminoguanidinium, and triaminoguanidinium as 

counterions. The potential application of the synthesized compounds as energetic 

materials will be studied and evaluated using the experimentally obtained values for 

thermal decomposition as well as sensitivity data together with calculated performance 

characteristics. 

 

RESULTS AND DISCUSSION 
 

SYNTHESIS 

The starting material 3,3’-diamino-5,5’-bis(1H-1,2,4-triazole) (DABT, 1) was first 

synthesized with a moderate yield of 56% by Shreve et al. using oxalic acid and 

aminoguanidine hydrochloride in water.[13]  We developed a straightforward synthetic 

procedure yielding DABT as elemental analysis pure compound in yields of up to 70%. 

The modified procedure starts with reacting oxalic acid with aminoguanidinium 

bicarbonate in concentrated hydrochloric acid at 70 °C, followed by isolation of the 

intermediate product by filtration. While heating under reflux in basic media, the 

molecule undergoes cyclization which leads to the formation of DABT (Scheme 1).  

Oxidation of DABT was achieved by the well known Sandmeyer reaction via 

diazotization in sulfuric acid and subsequent reaction with sodium nitrite.[14] The 

formation of 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazole) (DNBT, 2) was first mentioned by 

Russian scientists[11] with a low yield of  31%. We were able to optimize the process by 

adding a suspension of DABT in 20% sulfuric acid to a solution of sodium nitrite in water 

at 40 °C, which leads to a remarkable increase of the yield up to 82%. 
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Scheme 1: Synthesis of DNBT (2). 
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The formation of the nitrogen-rich salts (3a–f) is straightforward. An ethanolic solution of 

the compound 2 was prepared and two equivalents of the corresponding nitrogen-rich 

bases were added (Scheme 2). Due to the high solubility of DNBT and the low solubility 

of compounds 3a–f in ethanol, all ionic compounds could be isolated in excellent yields 

and high purity.   
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Scheme 2: Synthetic pathway towards the formation of nitrogen-rich salts of 2 using the corresponding 

bases. 

 

All energetic compounds were fully characterized by IR and Raman as well as 

multinuclear NMR spectroscopy, mass spectrometry and differential scanning 

calorimetry. Selected compounds were additionally characterized by low temperature 

single crystal X-ray spectroscopy. 

 

MOLECULAR STRUCTURES 

Single crystal X-ray diffraction studies were undertaken for compounds 2, 3a, 3c, 3e and 

3f. All compounds were recrystallized from water as colorless plates or blocks, 

respectively. Selected crystallographic data of all compounds are compiled in Table S1 

(Supporting information).  

During the course of this study we only were able to obtain water free crystal structures of 

compound 2 as well as the nitrogen-rich salts salt 3c and 3f. Even though we used 

different solvents and crystallization methods only crystals too small for measurement 

(3b,d) or structures including crystal water (3a,e) were obtained. Selected bond lengths, 

bond angles and torsion angles of compounds 2, 3a, 3c, 3e and 3f are compiled in Table 

S2 (Supporting information). 

While having a closer look at the crystal structure of the uncharged compound, no 

difference is observed for the 1,2,4-triazole system in comparison to other triazole ring 

systems.[8, 9b, 15] The bond lengths within the triazole ring in the molecular structure of 2 
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are all in between the length of formal C–N and N–N single and double bonds (C–N: 1.47 

Å, 1.22 Å; N–N: 1.48 Å, 1.20 Å).[16] 3,3’-Dinitro-5,5’-bis-(1H-1,2,4-triazole) (2) 

crystallizes in the monoclinic space group P21/n with a cell volume of 394.73(8) Å3 and 

two molecular moieties in the unit cell. The calculated density at 173 K is 1.902 g cm–3 

and hence well above the density of the dihydrate (1.764 g cm–3)[15b]. As expected, the 

molecule shows a completely planar assembly with a torsion angle of the nitro group 

towards the triazole ring of 2.9(2)°. The formula unit of 1 together with the atom labeling 

is presented in Figure 1. 

 
Figure 1: Crystal structure of 2. Thermal ellipsoids are set to 50 % probability. Symmetry operators: (i) –x, 

1–y, 2–z. 

 

The structure is build up by only one individual hydrogen bond N1–H1···O1. The D–

H···A angle is close to 180° with 171.9(2)° and the D···A length is shorter than the sum 

of van der Waals radii (rw(O) + rw (N) = 3.07 Å)[16a] with 2.902(2) Å (Figure 2a). The 

nitrogen atoms of the triazole ring do not participate as acceptor in any hydrogen bond. 

As shown in Figure 2, the crystal structure of 3 consists of infinite zig-zag rows along the 

b-axis including an angle of 60.5°. The layers are stacked above each other with a layer 

distance of d = 2.96 Å.  The layers are connected by two short contacts, N2···N4(ii) and 

C1···O1(iii) (symmetry operators: (ii) 3/2–x,1/2+y,1/2–z; (iii) 3/2–x,–1/2+y,1/2–z). Both 

contacts are shorter than the sum of van der Waals radii[16a], with N2···N4 being the 

shortest (2.922(2) Å) and C1···O1 being the longest (3.051(2) Å). The stacking of the 

layers is displayed in Figure 2b together with the distance d between the layers.  
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Figure 2: a) Hydrogen bonding scheme in the crystal structure of 2. b) Wave-like arrangement of the 

infinite rows in the crystal structure of 2 (layer distance d = 2.96 Å). Thermal ellipsoids are set to 50 % 

probability. Symmetry Operators: (i) ½+x, ½–y, ½+z. 

 

In the case of the nitrogen-rich salts, only the crystal structures of compounds 3c and 3f 

will be discussed in detail. Illustrations as well as crystallographic details of the structures 

obtained for compounds 3a and 3e are collected in the Supporting Information. 

Hydroxylammonium 3,3’-dinitro-bis-(1,2,4-triazolate) 3c crystallizes in the monoclinic 

spacegroup P21/c with two molecular moieties in the unit cell and a density of 1.836 g 

cm–3. An illustration of the formula unit is shown in Figure S2 in the supporting 

information. As shown in Figure 3, each DNBT2– anion within the crystal structure is 

surrounded by six hydroxylammonium cations via strong hydrogen bonds towards the 

nitrogen atoms of the triazole ring and the oxygen O2 of the nitro group (Table 1). It is 

remarkable to note that all nitrogen atoms of the triazole ring act as acceptor for hydrogen 

bonds, which is merely possible due to the surrounding hydroxylammonium cations. All 

three contacts are short with a D···A length of 2.706(2) Å, 2.862(3) Å and 2.880(3) Å, 

but only the hydrogen bonds O3–H3···N1(i) and the N5–H5a···N2 are strongly directed 

with D–H···A angles of 172(3)° and 173(3)°. In addition, the oxygen atom O2 acts as an 

acceptor in the moderately strong hydrogen bond N5–H5b···O2(ii) which shows a D···A 

length of 2.965(3)  Å and a relatively small D–H···A angle of 164(3)°. Due to this strong 

network of hydrogen bonds with O1 being the only potential hydrogen bond acceptor 
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which does not participate in any short contact or other electrostatic interaction, the 

compound shows a remarkable high density of 1.836 g cm–3. 

 
Figure 3: Surrounding of the DNBT2– anion in the crystal structure of 3c, hydrogen bonds towards 

hydroxylammonium cations are marked as dotted lines. Thermal ellipsoids are set to 50 % probability. 

Symmetry operators: (i) 1–x, 1–y, –z; (ii) 1–x, ½+y, ½–z; (iii) 1+x, ½–y, ½+z; (iv) x, ½–y, –1/2+z; (v) –x, 

½+y, –1/2–z. 

 

The surrounding of the DNBT2– anions with hydroxylammonium cations leads to the 

formation of layers in the bc-plane (Figure 4). The hydroxylammonium cations build up 

infinite rows along the a-axis and therefore connect the layers via strong hydrogen bonds. 

This structure of stacked layers is supported by a short contact O1···O2 with a contact 

distance of 3.030(3) Å. 

 
Figure 4: Hydrogen bonding scheme in the crystal structure of 3c forming layers within the bc-plane. 

Thermal ellipsoids are set to 50 % probability. Symmetry operators: (i) 1–x, 1–y, –z; (ii) 1–x, ½+y, ½–z; 

(iii) x, ½–y, –1/2+z. 
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Table 1: Hydrogen bonds present in 3c. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–H···A) [Å] < (D–H···A) [°] 

O3–H3···N1i 0.90(4) 1.81(4) 2.706(2) 172(3) 

N5–H5a···N2 1.00(4) 1.87(4) 2.862(3) 173(3) 

N5–H5c···N3iv 0.90(3) 2.04(3) 2.880(3) 157(3) 

N5–H5b···O2ii 0.92(3) 2.07(3) 2.965(3) 164(3) 

N5–H5c···O3iii 0.90(3) 2.55(3) 3.018(2) 113(2) 
Symmetry Operators: (i) x,1/2–y,1/2+z; (ii) –1+x,1/2–y,–1/2+z; (iii) 1+x,y,z; (iv) 1–x,–1/2+y,1/2–z. 

 

The triaminoguanidinium salt (3f) crystallizes in the triclinic space group P–1 with a 

density of 1.664 g cm–3 and one formula unit in the unit cell. The molecular structure 

together with the labeling scheme is presented in Figure 5. 

 

 
Figure 5: Crystal structure of 3f. Thermal ellipsoids are set to 50 % probability. Symmetry operators: (i) 1–

x, 1–y, –z. 

 

As expected for ionic compounds, the structure is build up by strong hydrogen bonds 

including both cations and anions. The structural main motive are the infinite rows of 

DNBT2– anions along the b-axis. The layers of DNBT2– anions are stacked with a 

distance of 3.307 Å and connected via hydrogen bonds towards the TAG molecules 

(Figure 6).  
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Figure 6: Hydrogen bonding scheme within the crystal structure of 3f, displaying the connection of the 

infinite rows of DNBT anions by TAG cations. Thermal ellipsoids are set to 50 % probability. Symmetry 

operators: (i) 1–x, 2–y, 1–z; (ii) x, y, 1+z; (iii) 1–x, 1–y, –z; (iv) 1–x, 1–y, 1–z; (v) x, 1+y, z; (vi) x, –1+y, –

1+z; (vii) 1–x, 1–y, –1–z; (viii) x, y, –1+z; (ix) 1–x, 2–y, –z. 

 

All hydrogen bond lengths lie well within the sum of van der Waals radii (rw(O) + rw (N) 

= 3.07 Å, rw(N) + rw (N) = 3.20 Å)[16a] with 3.0443(16) Å (N5–H5a···O1(i)), 

3.0652(17) Å (N6–H6a···N3(ii)) and 2.9147(17) Å (N9–H9···N1) but are not strongly 

directed with angles of 147.0(14)°, 158.3(14)° and 143.4(15)°, respectively. 

 
Table 2: Hydrogen bonds present in 3f. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–H···A) [Å] <(D–H···A) [°] 

N5–H5a···O1i 0.851(16) 2.295(16) 3.0443(16) 147.0(14) 

N6–H6a···N3ii 0.890(16) 2.221(16) 3.0652(17) 158.3(14) 

N9–H9···N1 0.800(15) 2.233(15) 2.9147(17) 143.4(15) 
Symmetry operators: (i) 1–x,2–y,1–z; (ii) x,y,1+z. 
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SPECTROSCOPIC DATA 

 

Vibrational spectroscopy 

IR and Raman spectra of all compounds were recorded and the frequencies were assigned 

according to literature.[17] The Raman spectrum of compound 1 is dominated by the 

deformation mode of the amino groups at 1579 cm–1. The valence stretching mode of the 

N–H bond is observed at 3116 cm–1 (IR) and 3107 cm–1 (Raman). After oxidation of the 

amino groups, the deformation modes of the amine group disappear. Instead, the nitro 

groups of compound 2 are observed with both, their symmetric and asymmetric stretching 

modes. The vibrational frequencies for the νas stretching mode of the nitro group are 

observed at 1551 cm–1 (IR) and 1546 cm–1(Raman), the νs stretching modes are located at 

lower energy at 1410 cm–1 (IR) and 1393 cm–1 (Raman). The valence stretching mode of 

the N–H bond still can be observed at 3189 cm–1 (IR) and 3191 cm–1 (Raman). In 

addition, as for any heterocyclic compound, many combined stretching and deformation 

as well as torsion stretching modes can be observed in the fingerprint region between 

1200 cm–1 and 600 cm–1.[17b]  

The nitrogen-rich salts of 2 show absorption bands in the region between 3100 cm–1 and 

3500 cm–1 as expected for N–H valence stretching modes of the cations (ammonium, 

hydrazinium and guanidines). The νas stretching modes of the nitro group are shifted to 

higher energy when compared to 2 and are observed between 1582 cm–1 and 1562 cm–1 in 

the Raman spectrum and between 1521 cm–1 and 1508 cm–1 in the IR spectrum, 

respectively. The symmetric stretching modes of the nitro group are in the same range as 

for the uncharged compound and can be found at 1410–1380 cm–1 (IR) and 1407–

1383 cm–1 (Raman). 

The combined stretching and deformation modes as well as torsion modes for the triazole 

ring are again observed between 1200 cm–1 and 600 cm–1 for the nitrogen-rich salts.  
 

Multinuclear NMR spectroscopy 

 

All compounds were investigated using 1H, 13C and 14N NMR spectroscopy. Additionally, 
15N NMR spectra were recorded for compounds 2 and 3e. The two signals of the 

uncharged compounds 1 and 2 differ only slightly in the 13C{1H} NMR spectrum. Both 

compounds show two signals in the expected range.[8, 9c] One singlet for the bridging 
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carbon atom at 149.3 ppm for DABT (1) and at 145.6 ppm for DNBT (2). The oxidation 

of the amino group leads to a shift of the other carbon atom signal towards lower field 

from 157.3 ppm (1) to 162.7 ppm for compound 2. The proton located at the triazole ring 

can be observed for DNBT and is located at a chemical shift of 9.68 ppm. In the 14N{1H} 

NMR spectra, the nitro group of compound 2 can be identified by a broad singlet at –

26 ppm. The NMR signals of all compounds are summarized in Table 3. 

 
Table 3: NMR signals of compounds 2, 3a–f. 

compound 
DNBT2– * cation 

13C{1H} 14N{1H} 1H 14N{1H} 

2 162.7, 145.6 –26 / / 

3a 165.5, 157.4 –18 7.16 –359 

3b 165.0, 156.5 –22 7.24 –359 

3c 165.1, 155.5 –14 5.52 / 

    
13C{1H} 

3d 165.2, 156.6 –23 7.57 158.2 

3e 165.4, 157.1 –17 7.60, 4.73 157.8 

3f 165.6, 157.8 –16 7.61, 4.56 159.0 
* DNBT in the case of 2 

As described in previous publications for triazole compounds,[9b, 18] the deprotonation of 

DNBT with nitrogen-rich bases shifts the signals in the 13C{1H} NMR spectra to lower 

field. The carbon atom connecting both triazole rings can be found in the range of 155.5–

157.4 ppm, the carbon atom connected to the nitro group is located in the range of 165.1–

165.6 ppm.  A trend for the shift of the nitro group signal in the 14N{1H} NMR spectra 

could not be observed, all signals could be found at chemical shifts of –18 to –23 ppm. 

The 14N{1H} NMR spectra of  3a and 3b additionally show the signal of the 

corresponding cation at –359 ppm. The signals of all nitrogen-rich cations in the 1H NMR 

spectrum could be found in the expected range and assigned according to similar ionic 

compounds bases on triazolate anions.[9c]  

Four well resolved resonances are observed in the 15N NMR spectra for the four nitrogen 

atoms of both compounds 2 and 3f (Figure 12). In addition, the two signal of the 

triaminoguanidinium cation could be observed for compound 3f. The signals were 

assigned by comparison to literature values.[17a, 19]  
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Figure 7: 15N NMR spectra of 3,3’-dinitro-5,5’-bis-1H-1,2,4-triazole (2, top) and 

bis(triaminoguanidinium)-3,3’-dinitro-5,5’-bis-1H-1,2,4-triazolate (3e, bottom); x-axis represents the 

chemical shift δ  in ppm. 

 

As expected, the nitrogen atoms N1, N2 and N4 are shifted to lower field upon 

deprotonation. The largest effect can be observed for the nitrogen atom N1, which can 

now be found at a chemical shift of –55.3 ppm (–156.1 ppm for 2). 
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THEORETICAL CALCULATIONS, PERFORMANCE CHARACTERISTICS AND STABILITIES 

 

All calculations regarding energies of formation were carried out using the Gaussian 

G09W Version 7.0 program package.[20] Since very detailed descriptions of the 

calculation process have been published earlier[9c] and can be found in specialized 

books,[1b] only a short summary of computational methods will be given. The enthalpies 

(H) and Gibbs free energies (G) were calculated using the complete basis set method 

(CBS) of Petersson et al. in order to obtain very accurate energies. In this contribution, 

we used the modified CBS-4M method with M referring to the use of minimal population 

localization, which is a re-parameterized version of the original CBS-4 computational 

method and also includes additional empirical calculations.[21] The enthalpies of 

formation for the gas phase species were computed according to the atomization energy 

method, using NIST[22] values as standardized values for the atoms standard heats of 

formation (ΔfH0) according to equation 1.[23] 

 

ΔfH0 (g, Molecule, 298) = H(Molecule) – ∑ H0
(Atoms) + ∑ ΔfH0

(Atoms, NIST)  (1) 

 

The solid state enthalpy of formation for uncharged compounds is estimated from the 

computational results using Troutons rule,[24] where Tm was taken equal to the 

decomposition temperatures.  

 

ΔHm = ΔfH0
(g, Molecule, 298) – ΔHsub = ΔfH0

(g, Molecule, 298) – (188 [J mol–1K–1]* Tm)   (2) 

 

The solid state enthalpies of formation for the ionic compounds are derived from the 

calculation of the corresponding lattice energies (UL) and lattice enthalpies (HL), 

calculated from the corresponding molecular volumes, using the equations provided by 

Jenkins et al.[25]  The derived molar standard enthalpies of formation for the solid state 

(ΔHm) were used to calculate the solid state energies of formation (ΔUm) according to 

equation three, with Δn being the change of moles of gaseous components.[1b] 

 

ΔUm = ΔHm – ΔnRT  (3) 
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The calculated standard energies of formation were used to perform predictions of the 

detonation parameters with the program package Explo5, Version 5.05.[26] The program is 

based on the chemical equilibrium, steady state model of detonation. It uses Becker-

Kistiakowsky-Wilsons equation of state (BKW EOS) for gaseous detonation products 

together with Cowan-Ficketts equation of state for solid carbon.[27] The calculation of the 

equilibrium composition of the detonation products is performed by applying modified 

White, Johnson and Dantzigs free energy minimization technique. The program was 

designed to enable calculations of detonation parameter at the Chapman-Jouguet point. 

The BKW equation as implemented in the Explo5 program was used with the BKW-G set 

of parameters (α, β, κ, θ) as stated below the equation, with Xi being the mol fraction of 

the i-th gaseous detonation product while ki is the molar co-volume of the i-th gaseous 

detonation product. [26-27]   

 

pV / RT = 1 + xeβx   with   x  =  (κ Σ Xiki) / [V (T + θ)]α   (4) 

 

α  =  0.5,  β  =  0.096,  κ  =  17.56,  θ  =  4950 

 

The results of the detonation runs, together with the calculated energies of formation and 

the corresponding sensitivities, are compiled in Table 4.  

Compound 2 already shows a remarkably high thermal stability of 251 °C together with 

an insensitivity towards friction and a moderate sensitivity towards impact (10 J), In 

comparison, the 3,3’-dinitrimino-5,5’-bis-1H-1,2,4-triazole recently published by Shreeve 

et al. decomposes at 165 °C.[29] The beneficial detonation parameters of DNBT with 

vdet = 8413 m s–1 are mainly based on the highly positive heat of formation (285 kJ mol–1) 

and the remarkably high density of 1.902 g cm–3 (X-ray measurement). 
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Table 4: Physico-chemical properties of compounds 2, 3a–f in comparison to hexogen (RDX). 

 2 3a 3b 3c 3d 3e 3f RDXn 

Formula C4H2 

N8O4 

C4H8 

N10O4 

C4H10N

12O4 

C4H8N1

0O6 

C6H12N

14O4 

C6H14N

16O4 

C6H18N

20O4 

C3H6N6

O6 

M [g mol–1] 226.1 261.0 290.2 292.1 344.2 374.2 434.3 222.1 

IS [J]a 10 40 15 40 40 40 40 7 

FS [N]b 360 360 360 360 360 360 360 120 

ESD–test [J] 0.1 0.5 0.15 0.5 0.75 1.0 0.5 -- 

N [%]c 49.45 53.84 57.92 47.94 56.96 59.88 64.50 37.8 

Ω [%]d –35.4 –49.2 –49.6 –49.2 –65.1 –64.1 –62.6 –21.6 

Tdec. [°C]e 251 252 237 204 335 253 201 210 

ρ [g cm–3]f 1.902 1.7* 1.7* 1.836 1.7* 1.7* 1.664 1.80 

ΔfHm° [kJ mol–1]g 285 109 412 189 125 355 828 70 

ΔfU° [kJ kg–1]h 1338 522 1530 617 470 1060 2027 417 

EXPLO5 (V5.05) values:        

–ΔEU° [kJ kg–1]i 4888 4176 4914 4277 3419 3839 4538 6125 

TE [K]j 3890 3121 3399 3111 2596 2782 3045 4236 

pC-J  [kbar]k 320 248 281 299 225 248 271 349 

VDet. [m s–1]l 8413 7938 8400 8477 7699 8020 8365 8748 

Gas vol.[L kg–1]m 642 771 798 771 760 780 811 739 
[a] BAM drop hammer; [b] BAM friction tester; [c] Nitrogen content; [d] Oxygen balance; [e] Temperature of decomposition by DSC (β = 

5 °C, Onset values); [f] derived from X-ray structure; [g] Molar enthalpy of formation; [h] Energy of formation; [i] Energy of Explosion; [j] 

Explosion temperature; [k] Detonation pressure; [l] Detonation velocity; [m] Assuming only gaseous products; [n] values based on Ref. [28] 

and the EXPLO5.4 database; *Density values of 3a, 3b, 3d and 3e based on pycnometer measurements and compared to trends in the 

row of  triazolate salts.[9c]  
 

Since salts of energetic compounds tend to be more stable as the uncharged compound, 

the nitrogen-rich salts of DNBT are expected to show an improved stability. The 

decomposition temperatures of the ammonium salt (3a) and aminoguanidinium salt (3e) 

are in the range of the uncharged compound, the decomposition temperature of the 

guanidium compound (3d) is even higher (335 °C). As shown in Figure 8, the 

decomposition temperature decreases in the row of compounds 3a–c with the ammonium 

salt (3a) showing the highest value of 252 °C and the hydroxylammonium salt (3c) 

showing a decomposition onset at 204 °C. The same trend can be observed for the series 

of guaninidium derivatives (3d-f). The guanidinium salt (3d) shows the highest 

decomposition temperature with 335 °C, followed by the amminoguanidinium salt (3e) 

(253 °C) and the triaminoguanidinium salt (3f) with a decomposition onset at 201 °C. 
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Nearly all compounds are insensitive towards friction, impact and electrostatic discharge, 

only the hydrazinium salt is moderatly sensitive towards impact (15 J).The nitrogen-rich 

salts of DNBT all exhibit highly positive heats and energies of formation in the range of 

the similar nitrimino compound.[29] The detonation velocities were calculated in the range 

of 7699 m s–1 (3d) to 8477 m s–1 (3b). The best performances were calculated for the 

hydrazinium salt (3f) with a detonation velocity of  8400 m s–1 and the 

hydroxylammonium salt (3c) with a detonation velocity of  8477 m s–1, which is around 

4% lower than the performance of RDX.  

 
Figure 8: DSC plots of DNBT (2), (NH4

+)2DNBT2– (3a), (N2H5
+)2DNBT2 (3b) (NH3OH+)2DNBT2– (3c), 

(G+)2DNBT2– (3d), (AG+)2DNBT2– (3e) and (TAG+)2DNBT2– (3f). DSC plots were recorded with a heating 

rate of 5 °C min–1.  
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Since the focus of this study was the evaluation of potential replacements for commonly 

used secondary explosive, only three compounds show suitable values regarding the 

detonation parameters, sensitivities and thermal stability. The best compounds suitable 

for replacing RDX would be the triaminoguanidinium as well as the hydroxylammonium 

salt, taking into account the performance values and sensitivities. Compound 3c displays 

the best performance with a calculated detonation velocity of 8477 m s–1, a detonation 

pressure of 299 kbar and a decomposition temperature of 204 °C. The 

triaminoguanidinium compound exhibits energetic properties in the same range with 

8365 m s–1, a detonation pressure of 271 kbar and a decomposition temperature of 

201 °C. In addition, both compounds are in contrast to RDX insensitive towards friction 

and impact.  

The performance characteristics of the hydrazinium compound (3b) would be even better 

in comparison to 3f with a calculated detonation velocity of 8400 m s–1 and a detonation 

pressure of 281 kbar. Unfortunately, the compound is sensitive towards impact (15 J). 

Although the guanidinium salt 3d shows lower performance values (vdet = 7699 m s–1, pC-

J = 225 kbar) than 3c and 3f, it displays an excellent decomposition temperature of 335 °C 

together with an insensitivity towards friction and impact and could therefore be a 

potential replacement for HNS. Even though all compounds are not able to perform better 

than RDX by calculations they can probably find use in certain applications for civilian 

use or as burn rate modifiers in military applications. 

 

CONCLUSION 
The starting material DABT (1) was synthesized following a modified literature known 

procedure[13] resulting in an increase of the yield from 56% up to 70%. The optimization 

of the reaction conditions for the oxidation of the amino compound to 3,3’-dinitro-5,5’-

bis(1H-1,2,4-triazole) (DNBT, 2)[11] resulted in an improvement of the yield from 31% up 

to 82%. Compound 2 can therefore be considered as low cost starting material for new 

energetic materials and has been fully characterized by means of vibrational and 

multinuclear NMR spectroscopy, mass spectrometry and differential scanning 

calorimetry. The uncharged compound 2 shows a thermal stability of 251 °C together 

with an insensitivity towards friction and a moderate sensitivity towards impact (10 J). 

Due to the calculated positive heat of formation (285 kJ mol–1), the detonation parameters 

(vdet = 8413 m s–1) are well in the range of RDX.  
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Energetic ionic compounds were synthesized from 2 using nitrogen-rich cations, all 

reactions were carried out using the free bases or their corresponding carbonates. All 

energetic, ionic compounds (3a–f) were characterized with the same techniques as 

described for the uncharged compounds. Crystal structures could be obtained from 

selected compounds and were discussed in detail for compounds 2, 3c and 3f. All ionic 

compounds reveal positive heats of formation in the range of 109 kJ mol–1 (3a) to 828 

kJ mol–1 (3f). The most interesting compounds regarding the energetic properties are the 

hydroxylammonium and triaminoguanidinium compound (3c and 3f) as well as the 

hydrazinium salt (3b). All of these compounds exhibit decomposition temperatures of 

above 200 °C and performance values in the range of RDX (8477 m s–1 (3c), 8365 m s–1 

(3f)). Worth mentioning is the guanidinium salt (3d) with a remarkable high 

decomposition temperature of 335 °C and an insensitivity against friction and impact. 

Those compounds could find application since they are easy to obtain, safe to handle and 

show performance characteristics in the range of modern secondary explosives.[2e]     

 

EXPERIMENTAL PART 
Caution: Although all presented nitroazoles are rather stable against outer stimuli, proper 

safety precautions should be taken, when handling the dry materials. All derivatives of 

DNBT are energetic materials and tend to explode under the influence of heat, impact or 

friction. Lab personnel and the equipment should be properly grounded and protective 

equipment like earthed shoes, leather coat, Kevlar® gloves, ear protection and face shield 

is recommended.  

General. All chemical reagents and solvents were obtained from Sigma-Aldrich Inc. or 

Acros Organics (analytical grade) and were used as supplied without further purification. 
1H, 13C{1H}, 14N{1H} and 15N NMR spectra were recorded on a JEOL Eclipse 400 

instrument in DMSO-d6 at 25 °C. The chemical shifts are given relative to 

tetramethylsilane (1H, 13C) or nitro methane (14N, 15N) as external standards and coupling 

constants are given in Hertz (Hz). Infrared (IR) spectra were recorded on a Perkin-Elmer 

Spectrum BX FT-IR instrument equipped with an ATR unit at 25 °C. Transmittance 

values are qualitatively described as “very strong” (vs), “strong” (s), “medium” (m), 

“weak” (w) and “very weak” (vw). Raman spectra were recorded on a Bruker RAM II 

spectrometer equipped with a Nd:YAG laser (200 mW) operating at 1064 nm and a 

reflection angle of 180°. The intensities are reported as percentages of the most intense 
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peak and are given in parentheses. Elemental analyses (CHNO) were performed with a 

Netzsch Simultaneous Thermal Analyzer STA 429. Melting and decomposition points 

were determined by differential scanning calorimetry (Linseis PT 10 DSC, calibrated 

with standard pure indium and zinc). Measurements were performed at a heating rate of 

5 °C min–1 in closed aluminum sample pans with a 1 µm hole in the lid for gas release to 

avoid an unsafe increase in pressure under a nitrogen flow of 20 mL min–1 with an empty 

identical aluminum sample pan as a reference.  

For initial safety testing, the impact and friction sensitivities as well as the electrostatic 

sensitivities were determined. The impact sensitivity tests were carried out according to 

STANAG 4489,[30] modified according to WIWEB instruction 4-5.1.02[31] using a 

BAM[32] drop hammer. The friction sensitivity tests were carried out according to 

STANAG 4487[33] and modified according to WIWEB instruction 4-5.1.03[34] using the 

BAM[32] friction tester. The electrostatic sensitivity tests were accomplished according to 

STANAG 4490[35] using an electric spark testing device ESD 2010EN (OZM Research) 

operating with the “Winspark 1.15 software package”. 

Crystallographic measurements. The single crystal X-ray diffraction data of 2, 3a, 3e, 

3f were collected using an Oxford Xcalibur3 diffractometer equipped with a Spellman 

generator (voltage 50 kV, current 40 mA) and a KappaCCD detector. The data collection 

was undertaken using the CrysAlis CCD software[36] while the data reduction was 

performed with the CrysAlis Red software[37]. Crystals of compound 3c were investigated 

using a Bruker-Nonius Kappa CCD diffractometer equipped with a rotating 

molybdenum anode and Montel-graded multilayered X-ray optics. The structures were 

solved with Sir-92[38] or Shelxs-97[39] and refined with Shelxl-97[40] implemented in the 

program package WinGX[41] and finally checked using Platon[42]. Further information 

regarding the crystal-structure determination were deposited with the Cambridge 

Crystallographic Data Centre[43] as supplementary publication Nos. 864398 (2), 864400 

(3a), 864399 (3c), 864397 (3e), 864401 (3f). 

 

3,3’-Diamino-5,5’-bis(1H-1,2,4-triazole) (DABT, 1) 

According to a modified literature procedure[13], hydrochloric acid (60 mL) was added to 

a stirred mixture of oxalic acid (20.0 g, 159 mmol) and aminoguanidinium bicarbonate 

(45.4 g, 332 mmol). The reaction was stirred at 70 °C for one hour and the precipitate was 

collected by filtration. The colorless solid was dissolved in water (240 mL) and alkalized 

with sodium hydroxide to pH = 14. The reaction mixture was refluxed for one hour and 
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subsequently acidified with acetic acid acid to pH = 4. The resulting precipitate was 

collected by filtration, washed with water (appr. 200 mL) and dried in air to yield 3,3’-

diamino-5,5’-bis(1,2,4-1H-triazole) (1) (18.6 g, 112 mmol, 70%) as a colorless solid. 
1H nmr (DMSO-d6): δ = 6.46 (s, 2H, NH2) ppm. 13C nmr (DMSO-d6): δ = 157.3, 149.3 

ppm. IR: ν (cm−1) (rel. int.) = 3325(m), 3116(m), 2863(m), 2784(m), 1706(s), 1668(s), 

1654(s), 1618(m), 1606(m), 1484(m), 1457(m), 1267(m), 1104(vs), 1061(s), 987(w), 

956(w), 769(w), 721(s). Raman (200 mW): ν (cm−1) (rel. int.) = 1636(62), 1614(100), 

1591(67), 1575(57), 1495(13), 1439(21), 1432(21), 1361(9), 1152(24), 1143(23), 

1059(23), 1042(34), 1022(22), 980(27), 772(18), 554(7), 413(11), 328(12), 249(16). 

Elemental analysis (C4H6N10): calc.: C 28.92, H 3.64, N 67.44; found: C 28.72, H 3.58, 

N 66.11. Mass spectrometry: m/z (DEI+): 166.1 [C4H7N8
+].  

 

3,3’-Dinitro-5,5’-bis(1H-1,2,4-triazole) (DNBT, 2) 

A solution of 3,3’-diamino-5,5’-bis(1H-1,2,4-triazole) (1) (11.9 g, 72 mmol) in 20% 

sulfuric acid (140 mL,) was added drop wise to a solution of sodium nitrite (10 eq., 

98.8 g, 1.4 mol) in water (140 mL) at 40 °C. The mixture was stirred at 50 °C for 1 h. 

After cooling down to room temperature the mixture was acidified with sulfuric acid 

(20%) until no evolution of nitrogen dioxide could be observed. The precipitate was 

collected by filtration and dissolved in boiling water. The hot solution was filtrated and 

allowed to cool to room temperature. Collection of the pale green precipitate affords 3,3’-

dinitro-5,5’-bis(1H-1,2,4-triazole) dihydrate (15.5 g, 59 mmol, 82%) as a crystalline 

solid. 
1H nmr (DMSO-d6): δ = 9.68 (s, 2H, HTriazole) ppm; 13C nmr (DMSO-d6): δ = 162.7, 

145.6 ppm; 14N nmr (DMSO-d6): δ = –26 (-NO2) ppm; 15N nmr (DMSO-d6): δ = –27.8 

(N4), –88.8 (N2), –141.7 (N3), –156.1 (N1) ppm. IR: ν (cm−1) (rel. int.) = 3599(m), 

3499(m), 3052(w), 2849(w), 2747(w), 2670(m), 2621(m), 2574(m), 2530(m), 2488(m), 

2419(m), 1844(w), 1609(m), 1532(vs), 1466(w), 1416(vs), 1314(vs), 1245(m), 1183(m), 

1024(m), 953(s), 837(s), 690(w), 690(w). Raman (200 mW): ν (cm−1) (rel. int.) = 

3192(3), 1641(100), 1546(28), 1519(5), 1485(75), 1468(43), 1458(95), 1413(18), 

1393(97), 1365(6), 1362(6), 1345(13), 1325(27), 1306(35), 1172(58), 1062(67), 

1015(31), 855(4), 774(8), 744(5), 619(4), 511(4), 452(5), 452(5), 399(9), 297(9), 203(6). 

Elemental analysis (C4H2N8O4): calc.: C 21.25, H 0.89, N 49.56; found: C 21.44, 

H 0.95, N 49.19. Mass spectrometry: m/z (FAB–): 225.1 [C4HN8O4
–]. Sensitivities 
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(grain size: <100 μm): friction: 360 N, impact:   10 J, ESD: 0.1 J; DSC (onset, 5 °C min–

1): TDec.: 251 °C. 

 

Ammonium 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazolate) (3a) 

3,3’-dinitro-5,5’-bis(1H-1,2,4-triazole) (9) (250 mg, 1.1 mmol) was dissolved in ethanol 

(50 mL). Ammonia was passed through the solution for 5 min. Collection of the 

precipitate by filtration affords ammonium 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazolate) (3a) 

(374 mg, 1.0 mmol, 91%) as a yellow solid. 
1H nmr (DMSO-d6): δ = 7.16 (s, 8H, NH4

+) ppm; 13C nmr (DMSO-d6): δ = 165.4, 159.1 

(CH7N4
+), 157.1 ppm; 14N nmr (DMSO-d6): δ = –18 (-NO2), –359 (NH4

+) ppm; 15N nmr 

(DMSO-d6): δ = –20.0 (N4), –58.6 (N1), –59.2 (N2), –147.3 (N3), –358.5 (NH4
+) ppm. 

IR: ν (cm−1) (rel. int.) = 3265(m), 2999(m), 2890(m), 2852(m), 2786(m), 1704(w), 

1671(m), 1521(s), 1457(s), 1438(s), 1408(s), 1390(vs), 1306(s), 1244(s), 1090(s), 

1036(m), 984(m), 841(s), 714(m), 661(m). Raman (200 mW): ν (cm−1) (rel. int.) = 

1572(58), 1555(7), 1541(1), 1523(7), 1480(10), 1472(24), 1427(3), 1405(39), 1399(51), 

1352(45), 1314(1), 1300(3), 1109(76), 1101(100), 1072(6), 1032(9), 850(13), 779(2), 

765(2), 521(1), 472(2), 420(2), 298(2), 298(2), 206(2). Elemental analysis (C4H8N10O4): 

calc.: C 18.47, H 3.10, N 53.84; found: C 18.79, H 3.04, N 53.28. Mass spectrometry: 

m/z (FAB+): 18 [NH4
+]. m/z (FAB–): 225.1 [C4HN8O4

–]. Sensitivities (grain size: <100 

μm): friction: 360 N, impact: 40 J, ESD: 0.5 J; DSC (onset, 5 °C min–1): TDec.: 252 °C. 

 

Hydrazinium 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazolate) (3b) 

3,3’-Dinitro-5,5’-bis(1H-1,2,4-triazole) (2) (250 mg, 1.1 mmol) was dissolved in ethanol 

(50 mL) followed by addition of hydrazine hydrate (0.11 mL, 2.2 mmol). Collection of 

the precipitate by filtration affords hydrazinium 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazole) 

(263 mg, 0.9 mmol, 83%) (3b) as a yellow solid. 
1H nmr (DMSO-d6): δ = 7.24 (s, N2H5

+) ppm; 13C nmr (DMSO-d6): δ = 165.0, 156.5 

ppm; 14N nmr (DMSO-d6): δ = –22 (-NO2), –359 (N2H5
+) ppm; IR: ν (cm−1) (rel. int.) = 

3346(w), 3258(w), 2648(m), 1642(w), 1586(w), 1509(s), 1455(vs), 1392(vs), 1306(s), 

1263(s), 1135(m), 1110(s), 1104(s), 1043(m), 990(m), 968(s), 836(vs), 709(m), 652(m). 

Raman (200 mW): ν (cm−1) (rel. int.) = 1575(30), 1554(3), 1525(4), 1516(5), 1485(16), 

1400(61), 1355(44), 1305(4), 1113(100), 1032(6), 970(2), 845(12), 778(2), 765(3), 

473(2), 408(2), 293(1), 210(4). Elemental analysis (C4H10N12O4): calc.: C 16.56, 

H 3.47, N 57.92; found: C 16.89, H 3.44, N 57.28. Mass spectrometry: n.d.  Sensitivities 
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(grain size: <100 μm): friction: 360 N, impact: 15 J, ESD: 0.15 J; DSC (onset, 5 °C min–

1): TDec.: 237 °C. 

 

Hydroxylammonium 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazolate) (3c) 

3,3’-Dinitro-5,-5’-bis(1H-1,2,4-triazole) (2) (250 mg, 1.1 mmol) was dissolved in ethanol 

(50 mL) followed by addition of hydroxylamine (50% in H2O, 145 mg, 2.2 mmol). The 

mixture was refluxed for 30 min and allowed to cool to room temperature. Collection of 

the precipitate by filtration affords hydroxylammonium 3,3’-dinitro-5,5’-bis(1H-1,2,4-

triazolate) (3c) (273 mg, 0.9 mmol, 93%) as a yellow solid. 
1H nmr (DMSO-d6): δ = 5.52 (s, NH3OH+) ppm; 13C nmr (DMSO-d6): δ = 165.1, 155.5 

ppm; 14N nmr (DMSO-d6): δ = –14 (-NO2) ppm; 15N nmr (DMSO-d6): δ = –22.5 (N4), –

64.0 (N1), –75.3 (N2), –155.8 (N3), –296.9 (NH4OH+). IR: ν (cm−1) (rel. int.) = 3174(w), 

2915(w), 2668(w), 2510(w), 1614(w), 1537(w), 1508(m), 1483(w), 1473(w), 1454(s), 

1401(vs), 1310(s), 1266(m), 1248(m), 1218(w), 1119(s), 1050(w), 998(m), 843(s), 

801(m), 766(w), 710(w), 656(w), 656(w). Raman (200 mW): ν (cm−1) (rel. int.) = 

1582(37), 1526(5), 1480(14), 1408(58), 1363(43), 1311(2), 1117(100), 1041(5), 1003(3), 

851(7). Elemental analysis (C4H8N10O6): calc.: C 16.44, H 2.76, N 47.94; found: 

C 17.03, H 2.74, N 47.90. Mass spectrometry: m/z (FAB+): 126.1 [Matrix+NH3O+]; m/z 

(FAB–): 224.9 [C4HN8O4
–].  Sensitivities (grain size: <100 μm): friction: 360 N, impact: 

40 J, ESD: 0.5 J; DSC (onset, 5 °C min–1): TDec.: 204 °C. 

 

Guanidinium 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazolate) (3d) 

3,3’-Dinitro-5,5’-bis(1H-1,2,4-triazole) (250 mg, 1.1 mmol) (2) was dissolved in ethanol 

(50 mL) followed by addition of guanidinium carbonate (198 mg, 1.1 mmol). The 

mixture was refluxed for half an hour, the precipitate was collected by filtration affording 

guanidinium 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazolate) (3d) (331 mg, 1.0 mmol, 87%) as a 

yellow solid. 
1H nmr (DMSO-d6): δ = 7.57 (s, 12H, CH6N3

+) ppm; 13C nmr (DMSO-d6): δ = 165.2, 

158.2 (CH6N3
+), 156.6 ppm; 14N nmr (DMSO-d6): δ = –23 (-NO2) ppm; IR: ν (cm−1) (rel. 

int.) = 3467(m), 3357(w), 3143(m), 1663(s), 1560(w), 1510(s), 1447(s), 1387(vs), 

1302(s), 1246(m), 1105(s), 1036(w), 990(w), 843(s), 716(m), 689(w), 655(w). Raman 

(200 mW): ν (cm−1) (rel. int.) = 1568(44), 1554(8), 1540(3), 1525(5), 1516(7), 1470(25), 

1401(56), 1389(43), 1348(71), 1298(4), 1099(100), 1088(77), 1065(14), 1060(20), 

1029(12), 1008(28), 849(16), 778(2), 764(3), 536(7), 472(5), 419(3), 207(3). Elemental 
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analysis (C6H12N14O4): calc.: C 20.93, H 3.51, N 56.96; found: C 19.88, H 4.95, 

N 47.06. Mass spectrometry: m/z (FAB+): 60.1 [CH6N3
+]. m/z (FAB–): 225 [C4HN8O4

–

].  Sensitivities (grain size: <100 μm): friction: 360 N, impact: 40 J, ESD: 0.75 J; DSC 

(onset, 5 °C min–1): TDec.: 335 °C 

 

Aminoguanidinium 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazolate) (3e) 

3,3’-Dinitro-5,5’-bis(1H-1,2,4-triazole) (2) (250 mg, 1.1 mmol) was dissolved in ethanol 

(50 mL) followed by addition of aminoguanidinium bicarbonate (299 mg, 2.2 mmol). The 

mixture was refluxed for 30 min and allowed to cool to room temperature. Collection of 

the precipitate by filtration affords aminoguanidinium 3,3’-dinitro-5,5’-bis(1H-1,2,4-

triazolate) (3e) (374 mg, 1.0 mmol, 91%) as a yellow solid. 
1H nmr (DMSO-d6): δ = 9.38 (s, 2H, AG+), 7.60 (s, 4H, CH7N4

+), 4.73 (s, 8H, CH7N4
+) 

ppm; 13C nmr (DMSO-d6): δ = 165.4, 159.1 (CH7N4
+), 157.1 ppm; 14N nmr (DMSO-d6): 

δ = –17 (-NO2) ppm; IR: ν (cm−1) (rel. int.) = 3265(m), 2999(m), 2890(m), 2852(m), 

2786(m), 1704(w), 1671(m), 1521(s), 1457(s), 1438(s), 1408(s), 1390(vs), 1306(s), 

1244(s), 1090(s), 1036(m), 984(m), 841(s), 714(m), 661(m). Raman (200 mW): ν (cm−1) 

(rel. int.) = 1572(58), 1555(7), 1541(1), 1523(7), 1480(10), 1472(24), 1427(3), 1405(39), 

1399(51), 1352(45), 1314(1), 1300(3), 1109(76), 1101(100), 1072(6), 1032(9), 850(13), 

779(2), 765(2), 521(1), 472(2), 420(2), 298(2), 298(2), 206(2). Elemental analysis 

(C6H14N16O4): calc.: C 19.25, H 3.77, N 59.88; found: C 18.17, H 3.81, N 46.95. Mass 

spectrometry: m/z (FAB+): 75.1 [CH7N3
+]. m/z (FAB–): 225.1 [C4HN8O4

–].  
Sensitivities (grain size: <100 μm): friction: 360 N, impact: 40 J, ESD: 1.0 J; DSC 

(onset, 5 °C min–1): TDec.: 253 °C. 

 

Triaminoguanidinium 3,3’-dinitro-5,5’-bis(1,2,4-1H-triazolate) (3f) 

3,3’-Dinitro-5,5’-bis(1H-1,2,4-triazole) (2) (250 mg, 1.1 mmol) was dissolved in ethanol 

(50 mL) followed by addition of triaminoguanidine (230 mg, 2.2 mmol). The mixture was 

refluxed for 30 min and allowed to cool to room temperature. Collection of the precipitate 

by filtration affords triaminoguanidinium 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazolate) (3f) 

(292 mg, 0.7 mmol, 61%) as a yellow solid. 
1H nmr (DMSO-d6): δ = 8.69 (s, 3H, CH9N6

+), 4.56 (s, 6H, TAG+) ppm; 13C nmr 

(DMSO-d6): δ = 165.6, 159.0 (CH9N6
+), 157.8 ppm; 14N nmr (DMSO-d6): δ = –16 (-

NO2) ppm; 15N nmr (DMSO-d6): δ = –19.4 (N4), –55.3 (N1), –56.3 (N2), –145.7 (N3), –

289.4 (CH9N6
+, NH), –329.8 (CH9N6

+, NH2) ppm.  IR: ν (cm−1) (rel. int.) = 3343(m), 
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3308(s), 3184(m), 1671(vs), 1585(m), 1520(s), 1446(s), 1380(s), 1347(m), 1295(s), 

1236(s), 1194(m), 1132(s), 1088(s), 1034(s), 978(vs), 962(s), 838(s), 739(w), 714(m). 

Raman (200 mW): ν (cm−1) (rel. int.) = 1573(10), 1563(49), 1555(31), 1542(4), 

1514(16), 1461(26), 1384(67), 1340(41), 1293(4), 1083(100), 1018(6), 990(2), 894(2), 

841(2), 765(2), 464(3), 412(2). Elemental analysis (C6H18N20O4): calc.: C 16.59, 

H 4.18, N 64.50; found: C 17.58, H 3.98, N 63.30. Mass spectrometry: m/z (FAB+): 

105.1 [CH9N6
+]. m/z (FAB–): 225.1 [C4HN8O4

–].  Sensitivities (grain size: <100 μm): 

friction: 360 N, impact: 40 J, ESD: 0.5 J; DSC (onset, 5 °C min–1): TDec.: 201 °C. 
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7. ASYMMETRICALLY SUBSTITUTED 5,5'-BISTRIAZOLES – 

NITROGEN-RICH MATERIALS WITH VARIOUS ENERGETIC 

FUNCTIONALITIES 
As published in: Dalton Transactions 2013, 42, 11136–11145. 

 

ABSTRACT: 

In this contribution the synthesis and full structural and spectroscopic characterization of 

three asymmetrically substituted bis-1,2,4-triazoles, along with different energetic 

moieties like amino, nitro, nitrimino and azido moieties is presented. Additionally, 

selected nitrogen-rich ionic derivatives have been prepared and characterized. This 

comparative study on the influence of these energetic moieties on structural and energetic 

properties contains a complete characterization including IR, Raman and multinuclear 

NMR spectroscopy. Single crystal X-ray crystallographic measurements were performed 

and deliver insight into structural characteristics as well as inter- and intramolecular 

interactions. The standard enthalpies of formation were calculated for all compounds at 

the CBS-4M level of theory, revealing highly positive heats of formation for all 

compounds.  The detonation parameters were calculated using the EXPLO5 program and 

compared to the common secondary explosive RDX as well as recently published 

symmetric bistriazoles. As expected, the measured sensitivities to mechanical stimuli and 

decomposition temperatures strongly depend on the energetic moiety of the triazole ring.  

All compounds were characterized in terms of sensitivities (impact, friction, electrostatic) 

and thermal stabilities, the ionic derivatives were found to be thermally stable, insensitive 

compounds 
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INTRODUCTION 

In the past, the chemistry of explosives has been largely guided by intuition, experience 

and testing. Nowadays, a better understanding of the basic principles and relationships 

which are necessary to predict the properties of an energetic material lead to a more 

rational design of novel compounds with tailored properties. The academic research 

mainly focuses on the work with energetic systems to determine factors affecting stability 

and performance and to bring new strategies into the design of energetic materials. 

The main challenge is the desired combination of a large energy content with a maximum 

possible chemical stability to ensure safe synthesis and handling. Modern heterocyclic 

energetic compounds derive their energy not only from the oxidation of their carbon 

backbone, but additionally from ring or cage strain, high-nitrogen content and high heats 

of formation.1-6. Nitrogen-rich heterocycles are promising compounds that fulfill many 

requirements in the challenging field of energetic materials research.5, 7-11 A prominent 

family of novel high-energy-density materials (HEDMs) are azole-based compounds, 

since they are generally highly endothermic with high densities and low sensitivities 

towards outer stimuli. Owing to the high positive heats of formation resulting from the 

large number of N–N and C–N bonds12 and the high level of environmental compatibility, 

triazole and tetrazole compounds have been studied over the last couple of years with 

growing interest.  

Many energetic compounds that combine the triazole backbone with energetic moieties 

have been synthesized over the last decades. Examples for these kind of molecules are 

5-amino-3-nitro-1,2,4-triazole (ANTA),13 2-azido-5-nitramino-1,2,4-triazole14 or 

trinitromethyl-substituted triazoles15. Bridged compounds like 5,5’-dinitro-3,3’-azo-1,2,4-

triazole (DNAT)16 or the analogue nitrimino-compound (DNAAT)17 have already been 

investigated and show remarkably high decomposition temperatures and excellent 

energetic properties. Recently investigated symmetrically substituted bistriazoles 

connected via C–C bond show promising properties as energetic materials. 18-27 

The focus of this contribution is on the full structural and spectroscopic characterization 

of three different asymmetrically substituted bis-1,2,4-triazoles along with energetic 

moieties like amino, nitro, nitramino and azido groups. We present a comparative study 

on the influence of those energetic moieties on structural and energetic properties in 

comparison to literature known symmetric 5-5'-bistriazoles The potential application of 

the synthesized compounds as energetic material will be studied and evaluated using the 
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experimentally obtained values for the thermal decomposition, the sensitivity data, as 

well as the calculated performance characteristics. 

 

RESULTS AND DISCUSSION 
 

SYNTHESIS 

3,3’-Diamino-5,5’-bis(1H-1,2,4-triazole) and 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazole) were 

synthesized according to literature.27 The synthesis is based on the reaction of oxalic acid 

and aminoguanidinium bicarbonate in concentrated hydrochloric acid and subsequent 

cyclisation in basic media. Oxidation of 3,3’-diamino-5,5’-bis(1H-1,2,4-triazole)  was 

accomplished by the well known Sandmeyer reaction via diazotization in sulfuric acid 

and subsequent reaction with sodium nitrite. As shown in Scheme 1, one nitro group of 

3,3’-dinitro-5,5’-bis(1H-1,2,4-triazole) was successfully reduced to 5-(5-amino-1H-1,2,4-

triazol-3-yl)-3-nitro-1H-1,2,4-triazole (1), similar to the selective reduction of the mono-

heterocycle 3,5-dinitro-1H-1,2,4-triazole.13  

N
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N
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N
O2N NH2N2H4

N
N
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N
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H

N

N
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1  
Scheme 1 Synthesis of 5-(5-amino-1H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (ANBT, 1) 

 

The amine group of 5-(5-amino-1H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (1) was 

further converted to a nitrimino and an azido moiety (Scheme 2). The treatment of 1 with 

a mixture of sulfuric acid/nitric acid (6:1) leads to the formation of 5-(5-nitrimino-1,3H-

1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (NNBT, 2). The azido compound 5-(5-azido-

1H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (AzNBT, 3) was synthesized via 

diazotization in sulfuric acid and subsequent reaction with an excess of sodium azide. 
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Scheme 2 Synthesis of 5-(5-nitrimino-1,3H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (NNBT, 

2) and 5-(5-azido-1H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (AzNBT, 3). 
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Additionally, selected nitrogen-rich ionic derivatives based on compound 2 have been 

prepared in order to increase both performance and stability. The formation of the 

nitrogen-rich salts (4a–c) is straightforward. An ethanolic solution of compound 2 was 

prepared and two equivalents of the corresponding nitrogen-rich bases were added 

(Scheme 3). Due to the high solubility of compound 2 and the low solubility of 

compounds 4a–c in ethanol, all ionic compounds could be isolated in excellent yields and 

high purity.   
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Scheme 3: Synthetic pathway towards the formation of nitrogen-rich salts of 2 using the 

corresponding bases. 

 

All energetic compounds were fully characterized by IR and Raman as well as 

multinuclear NMR spectroscopy, mass spectrometry and differential scanning 

calorimetry. Selected compounds were additionally characterized by low temperature 

single crystal X-ray diffractometry. 

 

VIBRATIONAL SPECTROSCOPY 

IR and Raman spectra of all compounds were recorded and the frequencies were assigned 

according to literature.28, 29 

The Raman spectrum of compound 1 is dominated by the deformation mode of the amino 

groups at 1629 cm–1. The valence stretching mode of the N–H bond is observed in the 

range of  3224–3402 cm–1. The vibrational frequencies for the asymmetric stretching 

mode of the nitro group are observed at 1397 cm–1 (IR) and 1434 cm–1 (Raman). The 

symmetric stretching modes are located at lower energy at 1308 cm–1 (IR) and 1396 cm–1 

(Raman). After nitration of the amino group, the deformation modes of the amine group 

disappear. Instead, the asymmetric valence stretching mode of the nitrimino moiety of 

compound 2 can be observed at 1581 cm–1. In the case of compound 3, a signal for the 
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asymmetric stretching modes of the azide group can be observed at 2160 cm–1 in the 

Raman spectrum and at 2143 cm–1 in the IR spectrum. The vibrational frequencies for the 

νas stretching mode of the nitro group are as well observed at 1540 cm–1 (IR) and 

1505 cm–1(Raman), the νs stretching modes are located at 1393 cm–1 (IR) and 1389 cm–1 

(Raman).  

The nitrogen-rich salts 4a–c show additional absorption bands in the region between 3100 

cm–1 and 3500 cm–1 as expected for N–H valence stretching modes of the cations 

(hydroxylammonium and guanidine derivatives).  

 

MULTINUCLEAR NMR SPECTROSCOPY 

All compounds were investigated using 1H, 13C and 14N NMR spectroscopy. Additionally, 
15N NMR spectra were recorded for compounds 1–3. All compounds show four signals in 

the 13C NMR spectrum for the 1,2,4-triazole carbon atoms in the expected range.  One 

singlet for the bridging carbon atom can be found at chemical shifts of 142.9 (2) to 150.6 

ppm (1). The signal of the carbon atom connected to the variable energetic moieties is 

shifted in all cases to lower field in comparison to compound 1 (153.1 (2) to 155.5 ppm 

(3)), the signal for the carbon atom connected to the nitro group remains almost constant 

in all cases similar to the symmetric 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazole).27 

In the 14N NMR spectra, the nitro group of compounds 1–3 can be identified by a broad 

singlet at –23 (1,2) to –30 ppm (3). The azido moiety in compound 3 can be observed as a 

broad singlet at –146 ppm in the 14N NMR spectrum. Well resolved resonances could 

only be observed in the 15N NMR spectrum (as discussed below). The NMR signals of all 

compounds are summarized in Table 1. 

 

Table 1: NMR signals of compounds 2, 3a–f in DMSO-d6. 

 
δ [ppm] 
13C{1H} 14N{1H} 1H 

 C-NO2 C-X[a] C-C   

1 163.5 158.3 150.6, 149.1 −23 6.41 

2 163.1 153.1 146.6, 142.9 −23 12.39 

3 163.0 155.5 147.3, 146.8 −30, −146 6.11 

[a] X = NH2 (1), =N-NO2 (2), N3 (3). 
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The deprotonation of compound 2 with nitrogen-rich bases shifts the signals in the 
13C{1H} NMR spectra to lower field.  The carbon atom connected to the nitro group is 

located in the range of 164.1–165.6 ppm, whereas the carbon atom connected to the 

nitrimino moiety can be found at 157.3–159.2 ppm. The nitro group signal in the 14N{1H} 

NMR spectra could be observed for all ionic compounds at −17 ppm. The 14N{1H} NMR 

spectra of  3b–c additionally show the signal of the corresponding cation at –359 ppm. 

 
Fig. 1 15N NMR spectra of of 5-(5-nitrimino-1,3H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (2, 

top), 5-(5-azido-1H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (3, middle) and 5-(5-amino-1H-

1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (1, bottom) recorded in DMSO-d6; x-axis represents 

the chemical shift δ  in ppm. 

 

The assignments in the 15N NMR spectra are based on the comparison with the symmetric 

bistriazoles27 and additional theoretical calculations using Gaussian 09 

(MPW1PW91/aug-cc-pVDZ).30 In all cases, four well resolved resonances are observed 
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in the 15N NMR spectrum for the four nitrogen atoms of the nitrotriazole moiety in the 

expected range (Figure 1). In the case of compound 1, the signals of the aminotriazole 

moiety are located at −106.5 ppm (N6), −173.8 ppm (N7), −199.7 ppm (N5) and 

−330.9 ppm (N8). The two signals of the nitrogen atoms N5 and N6 in the spectrum of 

compound 3 could not be observed, as it is often the case for 5-azidotriazoles due to a fast 

proton exchange.31 All other signals of the azido-triazole moiety  could be observed in the 

same range compared to 3,3’-diazido-5,5’-bis(1H-1,2,4-triazole.27 The three signal of the 

azido moiety are well resolved and can be found in the expected range with N4 being 

shifted to highest field with a chemical shift of –295.4 ppm. Compound 2 exhibits only 

the signals of the nitrogen atoms N6 (−108.4 ppm) and N8 (−159.7 ppm) of the triazole 

ring as well as the additional nitro group (N9, −22.1 ppm). Similar to compound 3, the 

signals for N5 and N7 are not visible 

 

SINGLE CRYSTAL X-RAY STRUCTURE ANALYSIS 

Single crystal X-ray diffraction studies were undertaken for compounds 2 and 3, both 

compounds were recrystallized from water to obtain crystals suitable for X-Ray analysis. 

In the following, the structural characteristics of these compounds will be discussed in 

detail in comparison to the recently published symmetric bistriazoles.27  

5-(5-nitrimino-1,3H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (2) crystallizes as 

tetrahydrate in the triclinic space group P−1 with a cell volume of 629.3(2) Å3 and two 

molecular moieties in the unit cell. The calculated density at 173 K is 1.653 g cm–3 and 

hence well below the corresponding symmetric dinitro- (1.902 Å3)27 and dinitrimino 

(1.772 Å3)23 compound. As expected, the bistriazole moiety shows a completely planar 

assembly due to the electron delocalization in the molecule, the nitrimino moiety is 

pointing towards the nitrogen atom N5 and participates in an  intramolecular hydrogen 

bond N5–H5···O3 with a D···A length of 2.619(3)Å and a D–H···A angle of 103(2)°.  

The asymmetric unit of compound 2 together with the atom labeling is presented in 

Figure 2. 
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Fig. 2 Asymmetric unit within the crystal structure of 2. Thermal ellipsoids are set to 50 % 

probability; Selected bond lengths [Å]: N7 C4 1.360(3), N7 C3 1.364(3), N7 H7 0.97(4), O4 N9 

1.273(3), N3 C2 1.320(3), N3 C1 1.350(3), N2 C1 1.313(3), N2 N1 1.348(3), N1 C2 1.347(3), N1 

H1 0.85(3), N8 N9 1.324(3), N8 C4 1.356(3), N9 O3 1.232(3), N6 C3 1.300(3), N6 N5 1.378(3), 

C4 N5 1.333(3), C2 C3 1.452(4), O2 N4 1.228(3), N5 H5 1.10(3), C1 N4 1.441(4), O1 N4 

1.234(3). 

 

The structure is build up by several intermolecular hydrogen bonds towards the 

surrounding water molecules. As shown in Figure 3, the dominating structures are infinite 

chains along the b-axis. The chains are connected by water molecules to a two 

dimensional network in the bc-plane, the layers are stacked above each other along the a-

axis.  The two dimensional network built up by strong hydrogen bonds is displayed in 

Figure 3. 

 
Fig. 3 Hydrogen bonding scheme in the crystal structure of 2 forming chains along the b-axis. 

Thermal ellipsoids are set to 50 % probability. Symmetry operators: (i) x, –1+y, z; (ii) x, 1+y, z. 
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Table 2: Hydrogen bonds present in the crystal structure of 2. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–H···A) [Å] < (D–H···A) [°] 

N1–H1···O4i 0.86(3) 1.94(4) 2.786(3) 168(3) 

N1–H1···O8i 0.86(3) 2.54(4) 3.189(4) 134(3) 

N5–H5···O5i 1.10(4) 1.62(4) 2.647(3) 152(3) 

N7–H7···O6 0.98(4) 1.61(4) 2.583(3) 174(3) 

O5–H5a···O7 0.84(4) 2.07(4) 2.835(4) 151(4) 

O5–H5b···O8 0.88(5) 1.95(5) 2.807(3) 167(5) 

O6–H6a···O7 0.84(2) 1.91(2) 2.746(3) 176(3) 

O6–H6b···O1ii 1.02(3) 2.10(3) 2.988(4) 144(2) 

O6–H6b···N2ii 1.02(3) 2.17(3) 3.008(4) 138(2) 

O7–H7a···O8iii 0.84(6) 1.96(6) 2.785(3) 167(6) 

O7–H7b···O2 0.84(3) 2.23(3) 3.036(4) 160(5) 

O8–H8a···O4 0.84(3) 2.11(3) 2.942(3) 169(4) 

O8i–H8b···O5 0.85(6) 1.97(6) 2.809(4) 167(6) 

Symmetry Operators: (i) x, –1+y, z; (ii) x, 1+y, z, (iii) 1-x,1-y,-z. 

 

The azido-compound 3 also crystallizes in the triclinic space group P–1 with a cell 

volume of 1013.55(18) Å3 and two molecular moieties in the asymmetric unit, the 

calculated density for the dihydrate is 1.692 g cm–3. As shown in Figure 4, the proton is 

located at the nitrogen atom N5 next to the azido group and not next to the C–C bond as it 

is the case for the nitrotriazole. Both heterocycles are now twisted by 180° around the 

C2–C3 bond, the three nitrogen atoms of the azido group exhibit a slightly bent 

arrangement with a N8–N9–N10 angle of 170.4(3)°. 
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Fig. 4 Crystal structure of 3. Thermal ellipsoids are set to 50 % probability; Symmetry operators: 

(i) 1–x, 1–y, –z; (ii) –x, 1–y, 1–z; Selected bond lengths [Å]: O1 N4 1.220(3), O2 N4 1.238(3), N1 

C2 1.350(4), N1 N2 1.356(3), N1 H1 1.01(3), N2 C1 1.325(4), N3 C1 1.335(4), N3 C2 1.339(4), 

N4 C1 1.451(4), N5 C4 1.353(4), N5 N6 1.354(4), N5 H5 0.84(4), N6 C3 1.332(4), N7 C4 

1.313(4), N7 C3 1.368(4), N8 N9 1.255(4), N8 C4 1.398(4), N9 N10 1.129(3), C2 C3 1.451(4). 

 

The crystal structure of compound 3 is build up by the formation of pairs via the strong 

hydrogen bond including oxygen atoms O5 and O7 of the water molecules. As shown in 

Table 3, the D–H···A angle is close to 180° and the D···A length is considerably shorter 

than the sum of van der Waals radii (rw(O) + rw (N) = 3.07 Å).32  

 

 
Fig. 5 Hydrogen bonding scheme in the crystal structure of 3; Thermal ellipsoids are set to 50 % 

probability. Symmetry operators: (i) x, y, 1+z; (ii) 1–x, 1–y, 1–z, (iii) –x, 1–y, 1–z, (iv) –x, –y, 1–z, 

(v) x, –1+y, z, (vi) 1+x, y, z.  
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The pairs of AzNBT molecules are further connected to a two dimensional network by 

several hydrogen bonds towards surrounding water molecules (Table 3). The azido 

moieties do not participate in any hydrogen bond but are connected via a short contact 

N10···N20 (distance d = 3.011(4) Å) towards each other and towards the oxygen atom O3 

of nitro group (N20···O3, distance d = 2.903(3) Å). 

 

Table 3: Hydrogen bonds present in the crystal structure of 3. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–H···A) [Å] < (D–H···A) [°] 

N1i–H1···O5ii 1.01(4) 1.62(4) 2.631(3) 175(3) 

N5v–H5···O8i 0.85(4) 2.08(3) 2.842(3) 149(3) 

N11–H11···O7iii 0.94(4) 1.70(4) 2.627(4) 166(3) 

N15–H15···N6v 0.89(4) 2.41(4) 3.048(4) 129(3) 

N15–H15···O6iv 0.89(4) 2.21(4) 2.906(3) 135(3) 

O5ii–H5b···N12 0.78(5) 2.27(5) 3.025(3) 165(5) 

O6iv–H6a···N3v 0.83(4) 2.07(4) 2.871(3) 163(4) 

O7iii–H7a···N2i 0.85(4) 2.12(3) 2.945(3) 162(3) 

O8–H8a···N13 0.81(5) 2.03(5) 2.796(3) 157(4) 

Symmetry Operators: (i) x, y, 1+z; (ii) 1–x, 1–y, 1–z, (iii) –x, 1–y, 1–z, (iv) –x, –y, 1–z, (v) x, –1+y, 

z, (vi) 1+x, y, .z 

 

PHYSICOCHEMICAL PROPERTIES: HEATS OF FORMATION, DETONATION PARAMETERS 

AND THERMAL STABILITIES 

The heats of formation of 1–3 and 4a–c have been calculated on the CBS-4M level of 

theory using the atomization energy method and utilizing experimental data (for further 

details and results refer to the Supporting Information). All compounds show highly 

endothermic enthalpies of formation with 267 kJ mol−1 (1), 360 kJ mol−1 (2) and 

635 kJ mol−1 (3), all by far outperforming RDX (85 kJ mol−1). The enthalpies of the ionic 

derivatives 4a and 4b are in the same range (243 kJ mol−1 (4a), 129 kJ mol−1 (4b)), the 

very high nitrogen content of compound 4c (65.5%) leads to the highest value of 

834 kJ mol−1. To estimate the detonation performances of the prepared compounds 

selected key parameters were calculated with EXPLO5 (version 5.05)33 and compared to 

RDX. The calculated detonation parameters using experimentally determined densities 

(gas pycnometry at 25 °C with dried compounds) and heats of formation are summarized 

in Table 4.  
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The starting material 5-(5-amino-1H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (1) is 

insensitive towards friction and impact and shows a decomposition temperature of 255 °C 

similar to the precursor 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazole) (251 °C).27 As shown in 

Figure 6, the introduction of energetic moieties dramatically decreases the thermal 

stability to 150 °C (2) and 181 °C (3). In comparison to the symmetric bistriazole 

compounds, the decomposition temperatures of all compounds are significantly lower, 

emphasizing the unique stability of bistriazoles. 

The sensitivities towards impact (8 J) were found to be in the range of RDX, surprisingly 

higher in comparison to the symmetric nitrimino- and azido-triazoles. The same trend 

could be observed for the friction sensitivity, which was found to be very low (360 N). 

Again, the symmetrically substituted bistriazoles are far more sensitive. Both compounds 

2 and 3 show lower detonation velocities and pressures than RDX, although all have 

higher heats of formation and comparable densities. The calculated detonation velocities 

of both compounds (7925 ms–1 (2), 7823 ms–1 (3)) are in the same range and well below 

the commonly used explosive RDX. In contrast to compound 2, the ionic derivatives 4a–c 

are insensitive towards friction and impact, only the hydroxylammonium salt is slightly 

sensitive towards impact (15 J).  

 
Fig. 6 DSC plots of ANBT (1), NNBT (2) and AzNBT (3); DSC plots were recorded with a 

heating rate of 5 °C min–1. 
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Fig. 7 DSC plots of NNBT (2) and ionic derivatives 4a–c; DSC plots were recorded with a 

heating rate of 5 °C min–1. 

 

As expected, the combination with nitrogen-rich cations increases both thermal stability 

and performance (Figure 7). The ionic derivatives show higher decomposition 

temperatures (174 °C (4a), 230 °C (4b), 193 °C (4c)) and enhanced detonation 

parameters. The detonation velocities were calculated in the range of 7611 m s–1 (4b) to 

8707 m s–1 (4c). The best performances were calculated for the triaminoguanidinium salt 

(4c) with a detonation velocity of 8707 m s–1 and the hydroxylammonium salt (3a) with a 

detonation velocity of  8706 m s–1, which is in the same range compared to RDX. Taking 

into account the high nitrogen content (50.2% (4a), 58.5% (4b), 65.5% (4c)), those 

compounds could be of interest as secondary explosive or burn rate modifiers 
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Table 4: Physico-chemical properties of compounds 1– 3 and 4a–c in comparison to hexogen 

(RDX). 

 (1) (2) (3) (4a) (4b) (4c) RDX[n] 

Formula C4H4N8O2 C4H3N9O4 C4H2N10O2 C4H9N11O6 C6H13N15O4 C6H19N21O4 C3H6N6O6 

M [g mol–1] 196.1 241.1 222.1 307.2 359.3 449.4 222.1 

IS [J]a 40 8 8 15 40 40 7 

FS [N]b 360 360 360 360 360 360 120 

ESD [J] 1.5 0.5 0.3 0.25 0.5 0.35 -- 

N [%]c 57.1 45.5 63.1 50.2 58.5 65.5 37.8 

Ω [%]d –65.3 –36.4 –50.4 –33.8 –64.5 –62.3 –21.6 

Tdec. [°C]e 255 150 181 174 230 193 210 

ρ [g cm–3]f 1.61 1.70 1.68 1.80 1.75 1.75 1.80 

ΔfHm° [kJ mol–1]g 267 360 635 243 129 834 85 

ΔfU° [kJ kg–1]h 1451 1577 2934 896 469 1976 417 

EXPLO5 (V5.05) values: 

–ΔEU° [kJ kg–1]i 3853 4965 4798 5287 3332 4432 6125 

TE [K]j 3061 3967 3880 3699 2542 2971 4236 

pC-J  [kbar]k 194 261 246 326 242 303 349 

VDet. [m s–1]l 7216 7925 7823 8706 7911 8707 8748 

Gas vol.[L kg–1]m 684 678 663 778 770 817 739 
[a] BAM drop hammer; [b] BAM friction tester; [c] Nitrogen content; [d] Oxygen balance; [e] Temperature of 

decomposition by DSC (β = 5 °C, Onset values); [f] Density values derived from gas-pycnometer 

measurements of anhydrous compounds at 25 °C; [g] Molar enthalpy of formation; [h] Energy of formation; 
[i] Energy of Explosion; [j] Explosion temperature; [k] Detonation pressure; [l] Detonation velocity; 
[m] Assuming only gaseous products; [n] values based on Ref. 34 and the EXPLO5.5 database. 
 

CONCLUSIONS 
The starting material 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazole) was successfully reduced to 

5-(5-amino-1H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (1). The amine group of 1 

was further converted to energetic moieties (nitrimino (2) and azido(3)), which leads to 

the previously unknown asymmetric energetic bistriazole compounds. All compounds 

have been fully characterized by means of vibrational and multinuclear NMR 

spectroscopy, mass spectrometry and differential scanning calorimetry. Single crystal 

X-ray measurements were accomplished for compounds 2 and 3 and deliver insight into 

structural characteristics as well as inter- and intramolecular interactions. Regarding the 

stability values and energetic parameters, the nitrimino compound (2) and the azido 



_____________________________________________________________________CHAPTER 7 

137 | 

compound (3) are sensitive towards impact sensitivity (8 J) but insensitive towards 

friction (360 N). With detonation velocities below 8000 ms–1, compounds 2 and 3 are 

able to compete with commonly used TNT, however, the performance data for RDX are 

not reached. Energetic ionic compounds were synthesized from 2 using nitrogen-rich 

cations, all reactions were carried out using the free bases or their corresponding 

carbonates. All energetic, ionic compounds (4a–c) were characterized with the same 

techniques as described for the uncharged compounds. All ionic compounds reveal 

positive heats of formation in the range of 129 kJ mol–1 (4b) to 834 kJ mol–1 (4c). The 

most interesting compounds regarding the energetic properties are the 

hydroxylammonium and triaminoguanidinium compound (4a and 4c). Those compounds 

exhibit decomposition temperatures above 200 °C and performance values in the range of 

RDX (8706 m s–1 (4a) and 8707 m s–1 (4c)).  

 

EXPERIMENTAL SECTION 
Caution: Due to the fact that energetic triazole compounds are to some extend unstable 

against outer stimuli, proper safety precautions should be taken when handling the 

materials. Especially dry samples are able to explode under the influence of impact or 

friction. Lab personnel and the equipment should be properly grounded and protective 

equipment like earthed shoes, leather coat, Kevlar® gloves, ear protection and face shield 

is recommended for the handling of any energetic material.  

General. All chemical reagents and solvents were obtained from Sigma-Aldrich Inc. or 

Acros Organics (analytical grade) and were used as supplied without further purification. 
1H, 13C{1H}, 14N{1H} and 15N NMR spectra were recorded on a JEOL Eclipse 400 

instrument in DMSO-d6 at 25 °C. The chemical shifts are given relative to 

tetramethylsilane (1H, 13C) or nitro methane (14N, 15N) as external standards and coupling 

constants are given in Hertz (Hz). Infrared (IR) spectra were recorded on a Perkin-Elmer 

Spectrum BX FT-IR instrument equipped with an ATR unit at 25 °C. Transmittance 

values are qualitatively described as “very strong” (vs), “strong” (s), “medium” (m), 

“weak” (w) and “very weak” (vw). Raman spectra were recorded on a Bruker RAM II 

spectrometer equipped with a Nd:YAG laser (200 mW) operating at 1064 nm and a 

reflection angle of 180°. The intensities are reported as percentages of the most intense 

peak and are given in parentheses. Elemental analyses (CHNO) were performed with a 

Netzsch Simultaneous Thermal Analyzer STA 429 (The N microanalysis values are all 
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lower than the calculated values. This is common with high N compounds and cannot be 

avoided). Melting and decomposition points were determined by differential scanning 

calorimetry (Linseis PT 10 DSC, calibrated with standard pure indium and zinc). 

Measurements were performed at a heating rate of 5 °C min–1 in closed aluminum sample 

pans with a 1 µm hole in the lid for gas release to avoid an unsafe increase in pressure 

under a nitrogen flow of 20 mL min–1 with an empty identical aluminum sample pan as a 

reference.  

For initial safety testing, the impact and friction sensitivities as well as the electrostatic 

sensitivities were determined. The impact sensitivity tests were carried out according to 

STANAG 448935, modified according to WIWeB instruction 4-5.1.0236 using a BAM37 

drop hammer. The friction sensitivity tests were carried out according to STANAG 

448738 and modified according to WIWeB instruction 4-5.1.0339 using the BAM friction 

tester. The electrostatic sensitivity tests were accomplished according to STANAG 449040 

using an electric spark testing device ESD 2010 EN (OZM Research). 

The single-crystal X-ray diffraction data of 2 and 3 were collected using an Oxford 

Xcalibur3 diffractometer equipped with a Spellman generator (voltage 50 kV, current 

40 mA), Enhance molybdenum Kα radiation source (λ = 71.073 pm), Oxford 

Cryosystems Cryostream cooling unit, four circle kappa platform and a Sapphire CCD 

detector. Data collection and reduction were performed with CrysAlisPro.41 The 

structures were solved with SIR9742, refined with full-matrix least-square procedures 

using SHELXL-9743, and checked with PLATON44, all integrated into the WinGX 

software suite45. The finalized CIF files were checked with checkCIF.46 Intra- and 

intermolecular contacts were analyzed with Mercury.47 CCDC 935564 (2) and 935565 

(3), contain the supplementary crystallographic data for this paper. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

3,3’-Diamino-5,5’-bis(1H-1,2,4-triazole) and 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazole) were 

synthesized according to literature.27 

 

5-(5-amino-1H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (ANBT, 1)  

3,3’-Dinitro-5,5’-bis(1H-1,2,4-triazole) dihydrate (13.0 g, 49.6 mmol) was suspended in 

hydrazine (50wt% in water, 105 mL) and stirred at 80 °C for 16 h. 50 % hydrochloric 

acid (500 mL) was added to the mixture resulting in a color change from red to colorless. 

The solution was extracted with ethyl acetate to remove unreacted 3,3’-dinitro-5,5’-
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bis(1H-1,2,4-triazole) (regained after evaporation of the solvent: 4.1 g, 18 mmol). The 

aqueous phase was brought to pH = 3 by adding a saturated solution of sodium acetate. 

The occuring precipitate was collected by filtration and resuspended in 0.25 M 

hydrochloric acid (400 mL). Filtration and washing with water, ethanol and diethyl ether 

yielded 5-(5-amino-1H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (4.00 g, 20.4 mmol, 

41%) as a colorless solid. 

 
1H NMR (DMSO-d6): δ = 6.41 (s, 2H, -NH2) ppm; 13C NMR (DMSO-d6): δ = 163.5, 

158.3, 150.6, 149.1 ppm; 14N NMR (DMSO-d6): δ = −23 (-NO2) ppm. IR: ν (cm−1) (rel. 

int.) = 3578(w), 3402(m), 3320(m), 3224(m), 3155(m), 2922(w), 2709(m), 2584(m), 

1699(vs), 1660(m), 1550(s), 1533(m), 1522(s), 1476(m), 1463(m), 1446(m), 1430(m), 

1397(s), 1333(m), 1308(s), 1241(w), 1183(w), 1123(m), 1123(m), 1079(w), 1067(m), 

1023(w), 978(s), 890(m), 838(vs), 751(w), 713(m), 654(w). Raman (200 mW): ν (cm−1) 

(rel. int.) = 1709(4), 1660(7), 1629(79), 1549(8), 1530(10), 1471(8), 1434(36), 1420(32), 

1396(100), 1334(54), 1311(14), 1252(3), 1180(3), 1124(89), 1093(9), 1072(13), 

1036(22), 952(4), 843(14), 770(6), 754(7), 747(5), 591(2), 591(2), 497(3), 400(9), 332(6), 

318(7), 299(3), 243(4), 222(9). Elemental analysis (C4H4N8O2): calc.: C 24.50, H 2.06, 

N 57.13; found: C 24.20, H 2.39, N 55.02. Mass spectrometry: m/z (DEI+) 196.1 [M+]. 

 

5-(5-nitrimino-1,3H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (NNBT, 2) 

5-(5-amino-1H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (2.4 g, 12 mmol) was 

dissolved in concentrated sulfuric acid (24 mL) and cooled to 0 °C. Concentrated nitric 

acid (4.8 mL) was added dropwise and the mixture was stirred at room temperature for 

1 h. The solution was poured on ice and the resulting precipitate collected by filtration. 5-

(5-nitrimino-1,3H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (2.7 g, 11 mmol, 92%) 

was yielded as a colorless solid. 
1H NMR (DMSO-d6): δ = 12.39 ppm; 13C NMR (DMSO-d6): δ = 163.1, 153.1, 146.6, 

142.9 ppm; 14N NMR (DMSO-d6): δ = −23 ppm. IR: ν (cm−1) (rel. Int.) = 3564(w), 

3461(w), 3295(w), 2715(w), 1651(w), 1581(s), 1558(m), 1554(m), 1524(w), 1462(s), 

1408(m), 1383(m), 1350(m), 1312(vs), 1264(s), 1220(m), 1159(w), 1119(w), 1096(w), 

1037(w), 1001(vw), 951(vs), 879(m), 879(m), 842(m), 774(w), 756(w), 751(w), 735(w), 

709(s). Raman (200 mW): ν (cm−1) (rel. Int.) = 1652(77), 1610(8), 1581(100), 1561(20), 

1523(24), 1502(40), 1457(12), 1430(18), 1385(10), 1353(6), 1318(15), 1224(3), 1161(6), 

1122(22), 1099(3), 1016(23), 1004(27), 854(6), 844(4), 775(2), 759(20), 662(1), 596(1), 
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596(1), 550(1), 501(2), 469(1), 422(4), 252(5), 229(2). Elemental analysis (C4H3N9O4): 

calc.: C 19.92, H 1.25, N 52.28; found: C 22.26, H 1.60, N 50.20. Mass spectrometry: 

m/z (FAB−) 240.3 [C4H2N9O4
−]. Sensitivities (grain size: <100 μm): friction: 360 N; 

impact: 8 J; ESD: 0.5 J. DSC (onset 5 °Cmin-1): TDec: 150 °C. 

 

5-(5-azido-1H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (AzNBT, 3) 

3-Amino-3´-nitro-5,5´-bis(1H-1,2,4-triazole) (1.04 g, 5.30 mmol) was dissolved in 20% 

sulfuric acid (60 mL) and cooled to -5 °C. Sodium nitrite (0.37 g, 5.37 mmol) was 

dissolved in water (20 mL) and added dropwise. The solution was stirred for 3 h at room 

temperature. Sodium azide (1.72 g, 26.5 mmol, 5 eq) was dissolved in water (10 mL) and 

added dropwise (Danger: Evolution of HN3!). After stirring over night, the solution was 

extracted with ethyl acetate and the combined organic phases dried over magnesium 

sulfate. The solvent was removed in vacuum yielding 3-azido-3´-nitro-5,5´-bis(1H-1,2,4-

triazole) dihydrate (0.89 g, 3.99 mmol, 75%) as colorless solid. 
1H NMR (DMSO-d6): δ = 6.11 (s, 2H, HTriazole) ppm; 13C NMR (DMSO-d6): δ = 163.0, 

155.5, 147.3, 146.8 ppm; 14N NMR (DMSO-d6): δ = −30 (-NO2), −146 (-N3) ppm. IR: ν 

(cm−1) (rel. Int.) = 3231(w), 3150(w), 3044(w), 2944(w), 2830(w), 2221(vw), 2143(s), 

2139(s), 1614(w), 1541(vs), 1496(m), 1466(m), 1443(m), 1411(s), 1393(s), 1307(vs), 

1190(m), 1048(m), 1031(m), 968(m), 836(s), 800(m), 707(m), 707(m). Raman 

(200 mW): ν (cm−1) (rel. Int.) = 2160(11), 1617(100), 1548(33), 1505(55), 1452(5), 

1417(46), 1389(52), 1331(3), 1319(9), 1294(2), 1266(3), 1179(20), 1120(4), 1066(3), 

1048(3), 1033(8), 1020(19), 841(5), 804(3), 764(6), 717(1), 550(2), 500(1), 500(1), 

414(3), 391(13), 318(5), 210(4). Elemental analysis (C4H2N10O2): calc.: C 21.63, 

H 0.91, N 63.06; found: C 21.74, H 1.06, N 61.47; Mass spectrometry: m/z (DEI+) 222.0 

[C4H2N10O2
+]. Sensitivities (grain size: <100 μm): friction: 360 N; impact: 8 J; ESD: 

0.3 J. DSC (onset 5 °Cmin-1): TDec: 181 °C. 

 

Dihydroxylammonium 5-(5-nitrimino-1H-1,2,4-triazolate-3-yl)-3-nitro-1,2,4-triazolate 

(4a) 

5-(5-nitrimino-1,3H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (526 mg, 2.18 mmol) 

was dissolved in ethanol (50 mL) and hydroxylamine (50% in H2O, 0.27 mL, 4.36 mmol, 

2.2 eq) was added. The resulting precipitate was collected by filtration and yielded 

hydroxylammonium 5-(5-nitrimino-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazolate 

(540 mg, 1.76 mmol, 81%) as a colorless solid. 
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1H NMR (DMSO-d6): δ = 12.85, 8.69, 4.57 ppm; 13C NMR (DMSO-d6): δ = 165.7, 

159.2, 157.4, 156.9 ppm; 14N NMR (DMSO-d6): δ = −17 ppm. IR: ν (cm−1) (rel. Int.) = 

3579(w), 3013(w), 2711(m), 1611(w), 1521(m), 1480(w), 1451(s), 1405(m), 1344(m), 

1327(m), 1307(m), 1284(s), 1255(vs), 1209(m), 1138(m), 1123(m), 1107(s), 1017(w), 

1003(w), 986(s), 867(m), 842(s), 800(w), 800(w), 773(w), 765(m), 749(w), 726(m), 

685(vw), 655(vw). Raman (200 mW): ν (cm−1) (rel. Int.) = 1587(100), 1531(33), 

1482(18), 1465(18), 1458(17), 1442(10), 1412(65), 1388(35), 1340(25), 1311(9), 

1289(11), 1141(44), 1125(47), 1071(6), 1042(11), 1019(28), 1006(14), 989(11), 871(5), 

846(14), 775(2), 765(4), 751(12), 751(12), 728(3), 687(2), 603(2), 437(4), 258(2), 211(3). 

Elemental analysis (C4H9N11O6): calc.: C 15.64, H 2.95, N 50.16; found: C 15.39, 

H 3.22, N 47.61. Mass spectrometry: m/z (FAB+) 34 [NH3OH+] m/z (FAB−) 240.1 

[C4H2N9O4
−]. Sensitivities (grain size: <100 μm): friction: 360 N; impact: 15 J; ESD: 

0.25 J. DSC (onset 5 °Cmin-1): TDec: 174 °C. 

 

 

Diguanidinium 5-(5-nitrimino-1H-1,2,4-triazolate-3-yl)-3-nitro-1,2,4-triazolate (4b) 

5-(5-nitrimino-1,3H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (508 mg, 2.11 mmol) 

was dissolved in ethanol (50 mL). Guanidinium bicarbonate (380 mg, 2.11 mmol, 1 eq) 

was dissolved in water and added to the solution. The mixture was refluxed for 30 min. 

The formed precipitate was collected by filtration and yielded guanidinium 5-(5-

nitrimino-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazolate (655 mg, 1.82 mmol, 86%) as a 

yellow solid. 
1H NMR (DMSO-d6): δ = 13.20, 7.38 ppm; 13C NMR (DMSO-d6): δ = 165.3, 158.1 

(G+), 157.3, 156.0, 152.9 ppm; 14N NMR (DMSO-d6): δ = −17 ppm. IR: ν (cm−1) (rel. 

Int.) = 3604(vw), 3442(m), 3436(m), 3430(m), 3427(m), 3421(m), 3347(w), 3151(m), 

3146(m), 1680(s), 1668(s), 1665(s), 1643(s), 1576(w), 1524(m), 1509(m), 1479(m), 

1443(s), 1394(s), 1387(s), 1359(vs), 1313(s), 1283(vs), 1283(vs), 1259(m), 1143(w), 

1090(s), 1014(w), 983(m), 869(w), 843(m), 774(w), 761(m), 745(w), 726(m), 678(w), 

662(w). Raman (200 mW): ν (cm−1) (rel. Int.) = 1574(100), 1551(9), 1521(24), 1484(41), 

1447(3), 1396(65), 1382(50), 1313(11), 1298(13), 1287(6), 1259(3), 1146(21), 1096(64), 

1035(14), 1015(41), 985(2), 870(4), 844(14), 764(3), 747(7), 681(1), 604(1), 538(7), 

538(7), 533(7), 432(5), 420(6), 310(1), 253(2). Elemental analysis (C6H13N15O4): calc.: 

C 20.06, H 3.65, N 58.48; found: C 19.88, H 3.99, N 54.95. Mass spectrometry: m/z 
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(FAB+) 60 [CH6N3
+] m/z (FAB−) 240.1 [C4H2N9O4

−]. Sensitivities (grain size: <100 μm): 

friction: 360 N; impact: 40 J; ESD: 0.5 J. DSC (onset 5 °Cmin-1): TDec: 230 °C. 

 

Di(triaminoguanidinium) 5-(5-nitrimino-1H-1,2,4-triazolate-3-yl)-3-nitro-1,2,4-triazolate 

(4c) 

Triaminoguanidine (419 mg, 4.02 mmol, 2 eq) was added to a solution of 5-(5-nitrimino-

1,3H-1,2,4-triazol-3-yl)-3-nitro-1H-1,2,4-triazole (485 mg, 2.01 mmol) in ethanol 

(50 mL). Filtration of the precipitate yielded triaminoguanidinium 5-(5-nitrimino-1,2,4-

triazol-3-yl)-3-nitro-1H-1,2,4-triazolate (762 mg, 1.70 mmol, 85%) as a yellow solid. 
1H NMR (DMSO-d6): δ = 9.71 ppm; 13C NMR (DMSO-d6): δ = 164.9, 157.8, 154.8, 

151.4 ppm; 14N NMR (DMSO-d6): δ = −17 ppm. IR: ν (cm−1) (rel. Int.) = 3440(w), 

3360(m), 3356(m), 3326(m), 3187(m), 1688(vs), 1522(s), 1480(m), 1440(s), 1396(vs), 

1376(s), 1352(vs), 1305(m), 1297(m), 1279(s), 1227(w), 1212(m), 1139(m), 1083(m), 

1073(m), 1039(m), 1022(m), 979(s), 979(s), 857(w), 839(m), 775(w), 762(w), 704(m), 

660(m). Raman (200 mW): ν (cm−1) (rel. Int.) = 3225(4), 1686(2), 1655(2), 1575(100), 

1554(13), 1516(22), 1479(32), 1385(60), 1358(19), 1325(9), 1307(13), 1279(14), 

1256(4), 1133(13), 1085(73), 1024(11), 1008(28), 887(7), 861(5), 840(12), 750(6), 

420(8), 262(3), 262(3). Elemental analysis (C6H19N21O4): calc.: C 16.11, H 4.26, 

N 65.46; found: C 16.11, H 4.48, N 62.55. Mass spectrometry: m/z (FAB+) 105 

[CH9N6
+] m/z (FAB−) 240.2 [C4H2N9O4

−]. Sensitivities (grain size: <100 μm): friction: 

360 N; impact: 40 J; ESD: 0.35 J. DSC (onset 5 °Cmin-1): TDec: 193 °C. 
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8. A STUDY OF DINITRO-BIS-1,2,4-TRIAZOLE-1,1'-DIOL AND 

DERIVATIVES – DESIGN OF HIGH PERFORMANCE INSENSITIVE 

ENERGETIC MATERIALS BY THE INTRODUCTION OF N-OXIDES  
As published in: Journal of the American Chemical Society 2013, 135, 9931-9938. 

 

ABSTRACT: 

In this contribution we report on the synthesis and full structural as well as spectroscopic 

characterization of 3,3’-dinitro-5,5’-bis-1,2,4-triazole-1,1’-diol and nitrogen-rich salts 

thereof. The first synthesis and characterization of an energetic 1-hydroxy-bistriazole in 

excellent yields and high purity is presented. This simple and straightforward method of 

N-Oxide introduction in triazole compounds using commercially available Oxone® 

improves the energetic properties and reveals a straightforward synthetic pathway 

towards novel energetic 1,2,4-triazole derivatives. X-ray crystallographic measurements 

were performed and deliver insight into structural characteristics and strong 

intermolecular interactions. The standard enthalpies of formation were calculated for all 

compounds at the CBS-4M level of theory, revealing highly positive heats of formation 

for all compounds. The energetic properties of all compounds (detonation velocity, 

pressure, etc.) were calculated using the EXPLO5.05 program, the ionic derivatives show 

superior performance in comparison to the corresponding compounds bearing no N-oxide. 

All substances were characterized in terms of sensitivities (impact, friction, electrostatic) 

and thermal stabilities, the ionic derivatives were found to be high thermally stable, 

insensitive compounds that are exceedingly powerful but safe to handle and prepare. 
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INTRODUCTION 

The chemistry of explosives, their development and application are as old as 220 years 

BC, when blackpowder was discovered accidentally by the Chinese. Nowadays, not only 

the application for military purposes is studied, but the utilization of energetic materials 

for civilian use in mining, construction, demolition and safety equipment such as airbags, 

signal flares and fire extinguishing systems is extensively studied.1,2 The academic 

research mainly focuses on the work with novel energetic systems to determine factors 

affecting stability and performance and to bring new strategies into the design of 

energetic materials. The main challenge is the desired combination of a large energy 

content with a maximum possible chemical stability to ensure safe synthesis and 

handling. Several strategies for the design of energetic materials that combine the 

increasing demand for high performing materials with high thermal and mechanical 

stabilities have been developed by numerous research groups over the last decades.2-7  

Traditional energetic materials are based on the oldest strategy in energetic materials 

design: the presence of fuel and oxidizer in the same molecule. Modern heterocyclic 

energetic compounds derive their energy not only from the oxidation of their carbon 

backbone but additionally from ring or cage strain, high-nitrogen content and high heats 

of formation. Intense research is focused on the tailoring of new energetic molecules with 

performances and stability superior to that of RDX (1,3,5-trinitro-1,3,5-triazinane). 

Unfortunately, the synthesis of modern explosives with high performance like HMX  

(1,3,5,7-tetranitro-1,3,5,7-tetrazocane) or CL-20 (2,4,6,8,10,12-hexanitro-

2,4,6,8,10,12hexazaiso-wurtzitane) is often expensive and includes multiple steps which 

makes the industrial scale-up and practical use infeasible. Additonally, in many cases 

high performance and low sensitivity to mechanical stimuli appears to be mutually 

exclusive. Materials with sufficiently large energy content are often too sensitive to find 

practical use and many energetic materials with adequate stability do not possess the 

performance requirements. 

Nitrogen-rich heterocycles are promising compounds that fulfill many requirements in the 

challenging field of energetic materials research.6,8-12 A prominent family of novel high-

energy-density materials (HEDMs) are azole-based compounds, since they are generally 

highly endothermic with high densities and low sensitivities towards outer stimuli. Owing 

to the high positive heats of formation resulting from the large number of N–N and C–N 

bonds13 and the high level of environmental compatibility, triazole and tetrazole 
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compounds have been studied over the last couple of years with growing interest. 

Numerous compounds with promising properties as energetic materials arose from the C–

C connection of those heterocycles to 5,5'-bistetrazoles14-18 and 5,5'-bistriazoles19-27. 

 A further way of azole functionalization is the oxidation of the heterocycle to its 

corresponding N-hydroxy compound.  The introduction of N-oxides is a recently 

reintroduced method using oxidizing agents like trifluoroperacetic acid,28 potassium 

peroxomonosulfate (Oxone®),29 or hypofluorous acid.30 The additional oxygen atom 

generally leads to increased energetic properties due to a higher density and an even 

greater energy output.29,31-34 The oxidation of tetrazole compounds has been successfully 

accomplished recently, resulting in high performance explosives with low 

sensitivities.34,35 

Only few examples of the oxidation of 1,2,4-triazoles to 1-hydroxy-1,2,4-triazoles using 

H2O2/phtalic anhydride,36  3-chloro-benzenecarboperoxoic acid37 or hypofluorous acid38 

resulting in  low yields and different isomers are known in literature. The focus of this 

contribution is on the synthesis of the previously unknown 3,3’-dinitro-5,5’-bis(1,2,4-

triazole)-1,1’-diol as well as ionic derivatives thereof. We report on a simple and 

straightforward method of N-Oxide introduction in triazole compounds to improve 

energetic performance. The compounds were characterized using infrared and Raman as 

well as multinuclear NMR spectroscopy. Additionally, X-ray crystallographic 

measurements were performed and deliver insight into structural characteristics as well as 

intermolecular interactions. The potential application of the synthesized compounds as 

energetic materials were studied and evaluated using the experimentally obtained values 

for the thermal decomposition, the sensitivity data, as well as the calculated performance 

characteristics.. 

 

RESULTS AND DISCUSSION 
 

SYNTHESIS 

3,3’-Diamino-5,5’-bis(1H-1,2,4-triazole) (1) and 3,3’-dinitro-5,5’-bis(1H-1,2,4-triazole) 

(2) were synthesized according to literature.39 The synthesis is based on the reaction of 

oxalic acid and aminoguanidinium bicarbonate in concentrated hydrochloric acid and 

subsequent cyclisation in basic media. Oxidation of DABT was accomplished by the well 
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known Sandmeyer reaction via diazotization in sulfuric acid and subsequent reaction with 

sodium nitrite (Scheme 1). 

 

 
Scheme 1. Synthesis of 3,3’-dinitro-5,5’-bis-1H-1,2,4-triazole. 

 

3,3’-Dinitro-5,5’-bis(1H-1,2,4-triazole) was successfully oxidized in an buffered aqueous 

solution of Oxone at 40 °C similar to the recently published oxidation of 5-nitro- and 5-

azidotetrazole.35,40 (Scheme 2). Best results were obtained with a portionwise addition of 

Oxone and a carefully adjusted pH of 4–5, which leads to the selective oxidation to 

3,3'-dinitro-5,5'-bis-1,2,4-triazole-1,1'-diol. The simple and straightforward method of N-

Oxide introduction in triazole compounds is based on the unique properties of Oxone  

like suitable oxidation potential, moderate costs, simple handling and sufficient long time 

stability. Other oxidation agents like organic peracids, perborates, hydrogen peroxide or 

hyperfluoric acid are either more expensive or involve a larger effort regarding the whole 

process. 

 

 
Scheme 2. Synthesis of 3,3’-dinitro-5,5’-bis-1,2,4-triazole-1,1'-diol. 

 

The formation of the nitrogen-rich salts (4a–f) is straightforward. An ethanolic solution of 

the compound 3 was prepared and two equivalents of the corresponding nitrogen-rich 

base were added (Scheme 3). Due to the high solubility of DNBTO and the low solubility 

of compounds 4a–f in ethanol, all ionic derivatives could be isolated in excellent yields 

and high purity. 
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Scheme 3. Synthesis of ionic derivatives based on the 3,3’-dinitro-5,5’-bis-1,2,4-triazole-1,1'-

diolate anion. 

 

All compounds were fully characterized by IR and Raman as well as multinuclear NMR 

spectroscopy, mass spectrometry and differential scanning calorimetry. Selected 

compounds were additionally characterized by low temperature single crystal X-ray 

spectroscopy. 

 

MULTINUCLEAR NMR SPECTROSCOPY 

All compounds were investigated using 1H, 13C and 14N NMR spectroscopy. Additionally, 
15N NMR spectra were recorded for compounds 3 and 4c. The two signals of the 

compounds 2 and 3 differ only slightly in the 13C{1H} NMR spectrum. One signal for the 

bridging carbon atom can be observed at 145.6 ppm for DNBT (2) and at 134.4 ppm for 

DNBTO (3). The oxidation of the triazole ring leads to a shift of the carbon atom (C-

NO2) signal towards higher field from 162.7 ppm (2) to 154.9 ppm for compound 3. In 

the 14N{1H} NMR spectra, the nitro group of compound 3 can be identified by a broad 

singlet at –27 ppm.  

The deprotonation of DNBTO with nitrogen-rich bases shifts the signals in the 13C{1H} 

NMR spectra to higher field. The carbon atom connecting both triazole rings can be 

found in the range of 132.7–133.2 ppm, the one connected to the nitro group is located in 

the range of 150.7–152.3 ppm.  A trend for the shift of the nitro group signal in the 
14N{1H} NMR spectra could not be observed, all signals appeared at chemical shifts of –

20 to –33 ppm. The 14N{1H} NMR spectra of  4a and 4b additionally show the signal of 

the corresponding cation at –359 ppm. The signals of all nitrogen-rich cations in the 1H 

NMR spectrum could be observed in the expected range.27,41  
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Four well resolved resonances are detected in the 15N NMR spectra for the four nitrogen 

atoms of both compounds 3 and 4c (Figure 1). In addition, the signal of the 

hydroxylammonium cation could be observed for compound 4c at –298.7 ppm. The 

assignments were based on comparison with theoretical calculations using Gaussian 09 

(MPW1PW91/aug-cc-pVDZ).42 The signals mostly remain unchanged upon oxidation of 

the triazole ring in comparison to compound 2.39 Only the nitrogen atom N1, which is 

directly connected to the hydroxyl group is shifted towards higher field (–156.1 ppm (2), 

–121.5 ppm (3)). As expected, the nitrogen atoms N1 and N2 are shifted to lower field 

upon deprotonation in compound 4c. The largest effect can be observed for the nitrogen 

atom N1, which can now be found at a chemical shift of –95.9 ppm (––121.5 ppm for 3). 

 
Figure 1: 15N NMR spectra of compounds 3 and 4c in DMSO-d6; x-axis represents the chemical 

shift δ  in ppm. 

 

SINGLE CRYSTAL X-RAY STRUCTURE ANALYSIS 

Single crystal X-ray diffraction studies were accomplished for compounds 3 and 4a–f at 

173 K. All compounds were recrystallized from water and show high crystal densities 

(1.862 gcm–3 (3×2 H2O), 1.696 gcm–3 (4a×2 H2O), 1.841 gcm–3 (4b), 1.952 gcm–3 (4c), 

1.788 gcm–3 (4d), 1.764 gcm–3 (4e), 1.730 gcm–3 (4f×2 H2O)). In the following, the 

structural properties of compounds 3 and 4c will be discussed in detail to point out the 



_____________________________________________________________________CHAPTER 8 

153 | 

structural characteristics of N-oxides in comparison to the parent compounds without 

hydroxy group. Selected crystallographic data of all compounds 4a-f are compiled in 

Table S1 (Supporting information). A comparison of selected bond length and bond 

angles of compounds 4a–f with the values obtained for corresponding compounds bearing 

no N-oxide27 is given in Table S3 in the supporting information.  

The bond lengths of both bistriazolate anions (with and without N-oxide) are comparable 

within the limits of error in contrast to their bond angles. The average C1–N1–N2 angle of 

the N-oxide anions has an average value of 110.0° as compared to an average value of 

106.1° for the N-oxide free 3,3’-dinitro-5,5’-bis-1,2,4-triazolate anion. Both neighboring 

angles N1–C1–N3 (109.8°) and N1–N2–C2 (100.8°) are smaller in comparison to the 

average value of the triazolate anions (113.7° and 103.6°). 

This difference is not observed in the case of the corresponding free acids 2 and 3. Both 

compounds show comparable values for bond length and bond angles, the C1–N1–N2 

angle is only slightly elongated from 110.2° (2) to 112.1° (3) due to the introduction of 

the N-hydroxy group. 

The most striking difference between the N-oxide containing compounds and their parent 

relatives is observed in their extended structures. Each of the compounds 4a–f has a 

higher crystal density (about 0.1 g cm−3) compared to the corresponding N-oxide free 

compound as a consequence of the N-oxide being involved in multiple intermolecular 

bonding interactions as exemplified in the case of 4c.  

Hydroxylammonium 3,3’-dinitro-bis-(1,2,4-triazole)-1,1'-diolate 4c crystallizes in the 

monoclinic spacegroup P21/c with two molecular moieties in the unit cell.  The calculated 

density at 173 K is 1.952 gcm–3, which is notably higher than the corresponding 

hydroxylammonium salt of compound 2 (1.836 g cm−3).27 The remarkably high densities 

can be rationalized in terms of intermolecular interactions, as shown exemplarily for 

compound 4c in the following. Each DNBTO2– anion within the crystal structure of 4c is 

surrounded by six hydroxylammonium cations via strong hydrogen bonds towards the 

nitrogen atoms of the triazole (N2, N3) ring and the oxygen O3 of the N-oxide (Figure 2). 

It is remarkable to note that all accessible hydrogen bond acceptors in the triazole-N-

oxide moiety are connected to the surrounding hydroxylammonium cations. All three 

contacts are well within the sum of van der Waals radii (rw(O) + rw (N) = 3.07 Å, rw(N) + 

rw (N) = 3.20 Å)43 with a D···A length of 2.575(2) Å, 3.144(2) Å and 2.874(2) Å (Table 

1). The strong network is supported by several short contacts of the nitro group (O1, O2) 

with the nitrogen N5 of the cations (dashed lines in Figure 3). The O1···N5ii and 
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O2···N5iv contact distance are in the range of 2.834(2) Å to 3.069(2) Å. Additionally, one 

of the oxygen atoms (O2) of the nitro group is involved in an interaction with the π-

electrons of the overlying triazole ring, which leads to a stacking along the b-axis. 

 
Figure 2: Surrounding of the DNBTO2– anion in the crystal structure of 4c, hydrogen bonds 

towards hydroxylammonium cations are marked as dotted lines, short contacts as dashed lines. 

Thermal ellipsoids are set to 50 % probability. Symmetry operators: (i) 1+x, y, z; (ii) 1+x, −1+y, z; 

(iii) 1−x, −1.5+y, ½−z; (iv) x, −1+y, z. 

 

Table 1: Hydrogen bonds present in 4c. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–H···A) [Å] < (D–H···A) [°] 

O4i–H4···O3 0.92(2) 1.65(2) 2.575(2) 176(2) 

N5ii–H5c···N2 0.86(2) 2.33(2) 3.144(2) 159(2) 

N5iv–H5b···N3 0.93(2) 1.96(2) 2.874(2) 169(2) 

Symmetry Operators: (i) 1+x, y, z; (ii) 1+x, −1+y, z; (iii) 1−x, −1.5+y, ½−z; (iv) x, −1+y, z. 

 

The structure of the free acid 3 (dihydrate) at 100 K has monoclinic symmetry (P21/c) 

with two molecular moieties in the unit cell.  The calculated density is 1.883 g cm–3 

which is again notably above the density of the dihydrate of compound 2 (1.764 g cm–

3).44 As expected the N1–O3 bond is elongated from 1.30 Å (average value for 

compounds 4a–f) to 1.349(2) Å by protonation. The structure is also dominated by 

several intermolecular interactions such as strong hydrogen bonds (Table 2) and an 
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interaction of the oxygen atom O1 of the nitro group with the π-electrons of the triazole 

ring (Figure 3). 

 
Figure 3: Intermolecular interactions in the crystal structure of 3 (view along c-axis), hydrogen 

bonds are marked as dotted lines, dashed lines indicate the interaction between the oxygen atom 

O1 of the nitro group and the π-electrons of the triazole (contact distance: 3.041(1) Å 

[O1ii···Cg(πring)]). Thermal ellipsoids are set to 50 % probability. Symmetry operators: (i) −x, 1−y, 

1−z; (ii) x, 0.5−y, 0.5+z; (iii) x, 0.5−y, 0.5+z; (iv) −1−x, −y, 1−z. 

 

Table 2: Hydrogen bonds present in 3. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–H···A) [Å] < (D–H···A) [°] 

O3–H3···O4i 1.10(2) 1.34(2) 2.439(9) 174(2) 

O4iii–H42···O2 0.83(3) 2.26(3) 2.949(7) 141(2) 

O4iv–H41···N3 0.91(3) 2.00(3) 2.890(11) 164(2) 

Symmetry Operators: (i) −x, 1−y, 1−z; (ii) x, 0.5−y, 0.5+z; (iii) x, 0.5−y, 0.5+z; (iv) −1−x, −y, 1−z. 
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PHYSICOCHEMICAL PROPERTIES: HEATS OF FORMATION, DETONATION PARAMETERS 

AND THERMAL STABILITIES 

The heats of formation of 3 and 4a–4f and RDX have been calculated using the 

atomization energy method and utilizing experimental data (for further details and results 

refer to the Supporting Information). All compounds show highly endothermic enthalpies 

of formation in the range from 98 kJ mol−1 (4d) to 812 kJ mol−1 (4f). The enthalpy of 

formation for compound 3 (290  kJ mol−1) is similar in comparison to the starting material 

2 (285  kJ mol−1).27  To estimate the detonation performances of the prepared compounds 

selected key parameters were calculated with EXPLO5 (version 5.05),45 and compared to 

RDX. The calculated detonation parameters using experimentally determined densities 

(gas pycnometry at 25 °C, all compounds were dried before the measurements at 110 °C 

to remove moisture and crystal water) and above mentioned heats of formation are 

summarized in Table 3. 

The N-hydroxy compound 3 shows  the same sensitivities towards impact and friction and 

a lower decomposition temperature of 191 °C compared to the starting compound 2 (251 

°C),27 as it is expected for N-hydroxy azoles.34,35 Since salts of energetic compounds tend 

to be more stable in comparison to the non-ionic parent compound, the nitrogen-rich salts 

of DNBTO are expected to show an improved stability.  

The decomposition temperatures of all ionic compounds are higher than that of compound 

3 in the range from 207 °C (4f) to 329 °C (4d) and similar to the ones of the ionic 

derivatives of compound 2.27 The thermal stability decreases in the row of compounds 

4a–c with the ammonium salt (4a) showing the highest value of 257 °C and the 

hydroxylammonium salt (4c) having a decomposition onset at 217 °C. The same trend 

can be observed for the series of guaninidium derivatives (4d-f). The guanidinium salt 

(4d) shows the highest decomposition temperature with 329 °C, followed by the 

amminoguanidinium salt (4e) (246 °C) and the triaminoguanidinium salt (4f) with a 

decomposition onset at 207 °C. In addition, compounds 4a–f are mostly insensitive 

towards friction and impact, merely the hydrazinium compound 4b is sensitive towards 

outer stimuli (15 J, 324 N). 

The detonation velocities were calculated to lie within the range of 8102 m s–1 (4d) to 

9087 m s–1 (4c). In comparison to the ionic derivatives of compound 2,27 a marked 

performance increase is seen. The detonation velocities increase in the range from 

400 ms–1 to 600 ms–1.The introduction of the N-Oxide also positively influences other 
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detonation parameters like the detonation pressure or the energy of explosion, which are 

also a remarkably increased. 

 
Table 4: Physico-chemical properties of compounds 1– 3 and 4a–c in comparison to hexogen 

(RDX). 

 (3) (4a) (4b) (4c) (4d) (4e) (4f) RDX[n] 

Formula C4H2N8O6 C4H8N10O6 C4H10N12O6 C4H8N10O8 C6H12N14O6 C4H14N16O6 C6H18N20O6 C3H6N6O6 

M [g mol–1] 258.1 292.2 322.2 324.2 376.2 406.3 466.3 222.1 
IS [J]a 10 >40 15 >40 >40 35 >40 7 
FS [N]b 

360 360 324 >360 >360 >360 >360 120 
ESD [J] 0.40 0.80 0.15 0.50 0.80 0.24 0.20 -- 
N [%]c 43.4 47.9 52.2 43.2 52.1 55.2 60.0 37.8 
Ω [%]d –18.6 –32.9 –34.8 –19.7 –51.0 –51.2 –51.5 –21.6 
Tdec. [°C]e 191 257 228 217 329 246 207 210 
ρ [g cm–3]f 1.92 1.76 1.80 1.90 1.75 1.72 1.78 1.80 
ΔfHm° 

[kJ mol–1]g 290 104 413 213 98 339 812 70 

ΔfU°  

[kJ kg–1]h 1201 457 1391 756 366 944 1858 417 

EXPLO5 (V5.05) values: 

–ΔEU°  

[kJ kg–1]i 5786 4999 5654 5985 4161 4540 5106 6125 

TE [K]j 
4529 3628 3842 4153 3060 3212 3372 4236 

pC-J  [kbar]k 
362 297 342 390 263 272 328 349 

VDet. [m s–1]l 
8729 8388 8915 9087 8102 8268 8919 8748 

Gas vol. 

[L kg–1]m 647 763 795 734 770 790 818 739 

[a] BAM drop hammer; [b] BAM friction tester; [c] Nitrogen content; [d] Oxygen balance; [e] Temperature of 

decomposition by DSC (β = 5 °C, Onset values); [f] density values are based on gas pycnometer 

measurements at 25 °C of anhydrous compounds,  except 4c: density derived from X-ray structure 

measurement at 25 °C; [g] Molar enthalpy of formation (for further details refer to the Supporting 

Information); [h] Energy of formation; [i] Energy of Explosion; [j] Explosion temperature; [k] Detonation 

pressure; [l] Detonation velocity; [m] Assuming only gaseous products; [n] values based on Ref. 46 and the 

EXPLO5.05 database. 
 

As potential replacements for commonly used secondary explosive, two compounds show 

the most suitable values regarding the detonation parameters, sensitivities and thermal 

stability. The best compounds competing with RDX are the triaminoguanidinium (4f) as 



CHAPTER 8_____________________________________________________________________ 

| 158 

well as the hydroxylammonium salt (4c), taking into account the performance values and 

sensitivities. Compound 4c displays the best performance with a calculated detonation 

velocity of 9087 ms–1, a detonation pressure of 390 kbar and a decomposition temperature 

of 217 °C. The triaminoguanidinium compound exhibits energetic properties in the same 

range with 8919 m s–1, a detonation pressure of 328 kbar and a decomposition 

temperature of 207 °C. Both compounds outperform RDX by calculations and show 

lower sensitivities along with a higher nitrogen content.  Especially the 

hydroxylammonium salt 4c exhibits sufficient performance requirements and adequate 

stability in order to find application. 

Although lower performance values (vdet = 8102 m s–1, pC-J = 263 kbar) were calculated 

for the guanidinium salt 4d in comparison to 4c and 4f, this compound displays an 

excellent decomposition temperature of 329 °C together with an insensitivity towards 

friction and impact and could therefore be a potential replacement for hexanitrostilbene 

(HNS). 

 

CONCLUSIONS 
In this contribution we reported on the synthesis and full structural as well as 

spectroscopic characterization of 3,3’-dinitro-5,5’-bis-1,2,4-triazole-1,1’-diol and 

nitrogen-rich salts thereof. It is possible to oxidize 3,3’-dinitro-5,5’-bis-1H-1,2,4-triazole 

to the corresponding 1,1'-dihydroxy compound under mild, aqueous conditions in high 

yield. The ionic compounds 4a–f were synthesized by reaction of the neutral compound 3 

with the corresponding nitrogen rich bases. The simple and straightforward method of N-

Oxide introduction in triazole compounds using commercially available Oxone® 

improves the energetic properties and reveals a new synthetic pathway towards novel 

energetic 1,2,4-triazole derivatives. All compounds were characterized using infrared and 

Raman as well as multinuclear NMR spectroscopy, X-ray crystallographic measurements 

were performed for the first time and deliver insight into structural characteristics and 

strong intermolecular interactions. The most striking difference between the N-oxide 

containing compounds 4a–f and their parent relatives is a higher crystal density (about 

0.1 g cm−3) compared to the corresponding N-oxide free compounds as a consequence of 

the N-oxide being involved in multiple intermolecular bonding interactions as 

exemplified in the case of 4c.  
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The standard enthalpies of formation were calculated for all compounds at the CBS-4M 

level of theory, revealing highly positive heats of formation in all cases. The energetic 

properties (detonation velocity, pressure, etc.) were calculated using the EXPLO5.05 

program, all compounds show superior performance in comparison to the corresponding 

ones bearing no N-oxide. All compounds were characterized in terms of sensitivities 

(impact, friction, electrostatic) and thermal stabilities. In general, the deprotonation of 

3,3’-dinitro-5,5’-bis-1H-1,2,4-triazole-1,1’-diol influences the thermal stability as well 

the sensitivity values positively. Decomposition temperatures range from 207 °C to 

329 °C indicating the 3,3’-dinitro-5,5’-bis-1H-1,2,4-triazole-1,1’-dioxide anion has the 

ability to form thermally stable energetic materials with appropriate cation pairing. In 

addition, compounds 4a–f are mostly insensitive towards friction and impact, merely the 

hydrazinium compound 4b is sensitive towards outer stimuli (15 J, 324 N). In summary, 

the ionic derivatives were found to be high thermally stable, insensitive compounds that 

are highly powerful but safe to handle and prepare. The most promising compound for 

industrial scale-up and practical use is the hydroxylammonium salt 4c, which shows a 

straightforward synthesis including only four cheap and facile steps. Especially the 

combination of a exceedingly high performance superior to RDX and insensitivity to 

mechanical stimuli highlights this compound as potential high explosive, which could 

find practical use as RDX replacement  

 

EXPERIMENTAL SECTION 
Caution: Due to the fact that energetic triazole compounds are to some extend unstable 

against outer stimuli, proper safety precautions should be taken when handling the 

materials. Especially dry samples are able to explode under the influence of impact or 

friction. Lab personnel and the equipment should be properly grounded and protective 

equipment like grounded shoes, leather coat, Kevlar® gloves, ear protection and face 

shield is recommended for the handling of any energetic material.  

General. All chemical reagents and solvents were obtained from Sigma-Aldrich Inc. or 

Acros Organics (analytical grade) and were used as supplied without further purification. 
1H, 13C{1H}, 14N{1H} and 15N NMR spectra were recorded on a JEOL Eclipse 400 

instrument in DMSO-d6 at 25 °C. The chemical shifts are given relative to 

tetramethylsilane (1H, 13C) or nitro methane (14N, 15N) as external standards and coupling 

constants are given in Hertz (Hz). Infrared (IR) spectra were recorded on a Perkin-Elmer 
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Spectrum BX FT-IR instrument equipped with an ATR unit at 25 °C. Transmittance 

values are qualitatively described as “very strong” (vs), “strong” (s), “medium” (m), 

“weak” (w) and “very weak” (vw). Raman spectra were recorded on a Bruker RAM II 

spectrometer equipped with a Nd:YAG laser (200 mW) operating at 1064 nm and a 

reflection angle of 180°. The intensities are reported as percentages of the most intense 

peak and are given in parentheses. Elemental analyses (CHNO) were performed with a 

Netzsch Simultaneous Thermal Analyzer STA 429. Melting and decomposition points 

were determined by differential scanning calorimetry (Linseis PT 10 DSC, calibrated 

with standard pure indium and zinc). Measurements were performed at a heating rate of 

5 °C min–1 in closed aluminum sample pans with a 1 µm hole in the lid for gas release to 

avoid an unsafe increase in pressure under a nitrogen flow of 20 mL min–1 with an empty 

identical aluminum sample pan as a reference.  

For initial safety testing, the impact and friction sensitivities as well as the electrostatic 

sensitivities were determined. The impact sensitivity tests were carried out according to 

STANAG 448947, modified according to WIWeB instruction 4-5.1.0248 using a BAM49 

drop hammer. The friction sensitivity tests were carried out according to STANAG 

448750 and modified according to WIWeB instruction 4-5.1.0351 using the BAM friction 

tester. The electrostatic sensitivity tests were accomplished according to STANAG 449052 

using an electric spark testing device ESD 2010 EN (OZM Research). 

The single-crystal X-ray diffraction data of 3, 4a–4c were collected using an Oxford 

Xcalibur3 diffractometer equipped with a Spellman generator (voltage 50 kV, current 

40 mA), Enhance molybdenum Kα radiation source (λ = 71.073 pm), Oxford 

Cryosystems Cryostream cooling unit, four circle kappa platform and a Sapphire CCD 

detector. Data collection and reduction were performed with CrysAlisPro.53 The 

structures were solved with SIR9754, refined with SHELXL-9755, and checked with 

PLATON56, all integrated into the WinGX software suite57. The finalized CIF files were 

checked with checkCIF.58 Intra- and intermolecular contacts were analyzed with 

Mercury.59 CCDC 934360 (3), 934361 (4a), 934362 (4b), 934363 (4c), 934364 (4d), 

934365 (4e) and 934366 (4f) contain the supplementary crystallographic data for this 

paper. These data can be obtained free of charge from the Cambridge Crystallographic 

Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

3,3’-Diamino-5,5’-bis(1H-1,2,4-triazole) (1) and 3,3’-Dinitro-5,5’-bis(1H-1,2,4-triazole) 

(2) were synthesized according to literature.39 
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3,3’-Dinitro-5,5’-bis-1H-1,2,4-triazole-1,1’-diol (3) 

3,3’-Dinitro-5,5’-bis(1H-1,2,4-triazole) (5.0 g, 19 mmol) was dissolved in a solution of 

water (125 mL) and potassium acetate (25.0 g, 0.25 mol) and heated to 40 °C. Oxone 

(83.0 g, 0.27 mol) was added portion wise within 2 hours and the pH was meanwhile 

carefully adjusted to 4–5 by dropwise addition of potassium acetate (38.0 g, 0.38 mol) in 

water (50 mL). The mixture was subsequently stirred at 40 °C for 48 h. The solution was 

acidified with sulfuric acid (50 wt%, 150 mL) and extracted with ethyl acetate 

(4×100 mL). The combined organic phases were dried over magnesium sulfate and the 

solvent was evaporated in vacuum to yield 3 (4.0 g, 16 mmol, 81%) as a colorless solid. 
1H NMR (DMSO-d6): δ (ppm) = 9.01 (s, 2H, OH) ppm; 13C NMR (DMSO-d6): 

δ (ppm) = 154.9 (C-NO2), 134.4 (C-C); 14N NMR (DMSO-d6): δ (ppm) = –27 (NO2); 
15N NMR (DMSO-d6): δ (ppm) = –28.4 (N4), –90.7 (N2), –121.5 (N1), –140.6 (N3); IR: 

ν (cm−1) = 3502(m), 3462(s), 3346(s), 1628(m), 1550(vs), 1461(s), 1407(m), 1346(w), 

1314(m), 1232(m), 1177(m), 1041(w), 1006(w), 872(w), 831(m), 803(m), 760(w), 

753(w), 732(w), 669(w). Raman (200 mW): ν (cm−1) = 1670(15), 1664(15), 1653(14), 

1619(23), 1591(74), 1557(18), 1486(46), 1467(62), 1435(39), 1409(98), 1328(37), 

1255(46), 1182(100), 1036(65), 779(10), 767(9), 717(5), 473(3), 458(9), 415(12), 290(4), 

271(6), 214(3), 214(3); EA (C4H2N8O6): calcd: C 18.61, H 0.78, N 43.41; found: C 18.77, 

H 0.94, N 42.13 m/z (FAB−): 257.0 [C4N8O6H−]. Sensitivities (grain size: <100 μm): 

BAM friction: 360 N,  BAM impact: 10 J, ESD: 0.4 J; DSC (onset, 5 °C min−1): TDec.: 

191 °C. 

 

Diammonium 3,3’-dinitro-5,5’-bis-1,2,4-triazole-1,1-diolate (4a) 

Ammonia (gaseous) was led through a solution of  3 (0.30 g, 1.2 mmol) in ethanol 

(50 mL) for one minute.  The precipitate was collected by filtration to give 4a (0.29 mg, 

1.0 mmol, 83%) as orange powder.  
1H NMR (DMSO-d6): δ (ppm) = 6.93 (s, 8H, NH4

+) ppm; 13C NMR (DMSO-d6): δ (ppm) 

= 151.1 (C-NO2), 132.8 (C-C); 14N NMR (DMSO-d6): δ (ppm) = –26 (NO2), –359 

(NH4
+);  IR: ν (cm−1) = 3401(s), 3192(s), 2993(vs), 2877(s), 2132(w), 1680(w), 1640(w), 

1530(m), 1445(vs), 1412(vs), 1394(vs), 1387(vs), 1354(s), 1299(s), 1186(s), 1103(vs), 

1028(vs), 885(w), 835(m), 764(w), 754(w), 740(m), 680(w), 680(w). Raman (200 mW): ν 

(cm−1) = 1589(56), 1546(4), 1463(25), 1432(3), 1363(100), 1306(36), 1243(15), 1191(3), 

1141(50), 1106(10), 1089(6), 1027(42), 862(2), 782(5), 559(3), 461(2), 442(2). EA 
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(C4H8N10O4): calcd: C 16.44, H 2.76, N 47.94; found: C 16.04, H 2.99, N 45.61; m/z 

(FAB+): 18 [NH4
+]; m/z (FAB−): 257.0 [C4N8O6H−]; Sensitivities (grain size: <100 μm): 

friction: 360 N, impact: 40 J, ESD: 0.8 J; DSC (onset, 5 °C min−1): TDec: 297 °C. 

 

Dihydrazinium 3,3’-dinitro-5,5’-bis-1,2,4-triazole-1,1-diolate (4b)  

Compound 3 (0.30 g, 1.2 mmol) was dissolved in ethanol (50 mL) and hydrazine  (50 

wt% in water, 0.12 mL, 2.4 mmol) was added. The precipitate was collected by filtration 

to give 4b (0.33 mg, 1.0 mmol, 86%) as orange powder. 
1H NMR (DMSO-d6): δ (ppm) = 4.64 (s, 6H, N2H5

+) ppm; 13C NMR (DMSO-d6): 

δ (ppm) = 152.3 (C-NO2), 133.2 (C-C); 14N NMR (DMSO-d6): δ (ppm) = –22 (NO2), –

356 (N2H5
+); IR: ν (cm-1) (rel. int.) = 3350(w), 3293(w), 3065(w), 2932(m), 2799(m), 

2718(m), 2644(m), 2529(w), 1640(w), 1617(w), 1585(w), 1551(m), 1514(m), 1463(m), 

1386(s), 1356(s), 1297(s), 1173(s), 1115(s), 1093(vs), 1037(s), 1023(s), 965(vs), 965(vs), 

838(s), 750(s), 680(s). Raman: 1591(15), 1466(9), 1447(4), 1408(3), 1376(100), 

1315(15), 1249(14), 1130(10), 1113(22), 1031(15), 868(4), 560(2), 469(1), 453(2), 

369(1), 309(4), 293(2), 207(1).  EA (C4H10N12O6): calcd: C 14.91, H 3.13, N 52.17; 

found: C 15.25, H 2.97, N 51.94;  m/z (ESI−) 257.0 [C4N8O6H−]. Sensitivities: (grain size: 

<100 μm): friction: 324 N, impact: >15 J, ESD: 0.15 J; DSC (onset, 5 °C min–1): 

TDec: 228 ° C. 

 

Dihydroxylammonium 3,3’-dinitro-5,5’-bis-1,2,4-triazole-1,1-diolate (4c) 

Compound 3 (0.30 g, 1.2 mmol) was dissolved in ethanol (50 mL) and hydroxylamine (50 

wt% in water, 0.12 mL, 2.4 mmol) was added. The precipitate was collected by filtration 

to give 4c (0.36 g, 1.1 mmol, 93%) as orange powder. 
1H NMR (DMSO-d6): δ (ppm) = 10.24 (s, 6H, NH3OH+) ppm; 13C NMR (DMSO-d6): 

δ (ppm) = 152.3 (C-NO2), 133.3 (C-C); 14N NMR (DMSO-d6): δ (ppm) = –29 (NO2), –

359 (NH3OH+);  15N NMR (DMSO-d6): δ (ppm) = –27.4 (N4), –87.4 (N2), –95.9 (N1), –

144.0 (N3), –298.7 (NH3OH+);  IR: ν (cm–1) = 3261(w), 2361(w), 2332(w), 1534(m), 

1519(m), 1466(s), 1408(s), 1394(s), 1358(s), 1302(vs), 1171(s), 1035(vs), 1016(s), 

837(s), 740(s), 679(m). Raman: ν (cm–1) = 1601(52), 1465(16), 1437(4), 1363(100), 

1317(64), 1247(10), 1143(72), 1035(49), 872(9), 790(3), 756(2), 721(2), 565(8), 463(7), 

451(3), 343(3), 298(2).  EA (C4H8N10O8): calcd: C 14.82, H 2.49, N 43.21; found: C 

15.11, H 2.37, N 43.27; m/z (FAB+): 34.0 [NH4O+]; m/z (FAB–): 256.9 [C4N8O6H–]. 
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Sensitivities: (grain size: <100 μm): friction: 360 N, impact: >40 J, ESD: 0.5 J; DSC 

(onset, 5 °C min–1): TDec.: 217 °C. 

 

Diguanidinium 3,3’-dinitro-5,5’-bis-1,2,4-triazole-1,1-diolate (4d) 

Guanidinium carbonate (0.20 g, 1.2 mmol) was added to a solution of compound 3 

(0.30 g, 1.2 mmol) in ethanol (50 mL). The mixture was refluxed at 60 °C for 30 min and 

the precipitate was collected by filtration to give 4d (0.31 g, 0.84 mmol, 71%) as orange 

powder. 
1H NMR (DMSO-d6): δ (ppm) = 7.06 (s, 6H, NH2) ppm; 13C NMR (DMSO-d6): δ (ppm) 

= 158.1 (C-NH2), 151.1 (C-NO2), 132.9 (C-C); 14N NMR (DMSO-d6): δ (ppm) = –33 

(NO2); IR: ν (cm–1) = 3464(m), 3423(m), 3335(m), 3262(m), 3204(m), 3135(m), 

2790(m), 2703(m), 2491(w), 2363(m), 2339(m), 1653(vs), 1571(m), 1499(m), 1454(s), 

1387(s), 1367(vs), 1299(s), 1151(s), 1043(s), 1028(s), 837(m), 756(s), 756(s), 733(m). 

Raman: ν (cm–1) = 1588(41), 1502(3), 1455(6), 1431(4), 1369(100), 1314(35), 1245(21), 

1136(42), 1029(40), 863(16), 562(2), 542(2), 517(2), 465(4), 449(6), 303(7), 284(5), 

236(3). EA (C6H12N14O6): calc.: C 19.25, H 3.21, N 52.12; found: C 19.30, H 3.09, N 

50.85; m/z (FAB+): 60.1 [CH6N3
+]. m/z (FAB–): 257.0 [C4N8O6H–]. Sensitivities: (grain 

size: <100 μm): friction: 360 N, impact: >40 J, ESD: 0.8 J; DSC (onset, 5 °C min–1): 

TDec.: 329° C. 

 

Di(aminoguanidinium) 3,3’-dinitro-5,5’-bis-1,2,4-triazole-1,1-diolate (4e) 

Guanidinium carbonate (0.32 g, 2.3 mmol)) was added to a solution of compound 3 

(0.30 g, 1.2 mmol) in ethanol (50 mL). The mixture was refluxed at 60 °C for 30 min and 

the precipitate was collected by filtration to give 4e (0.39 g, 0.96 mmol, 83%) as orange 

powder. 
1H NMR (DMSO-d6): δ (ppm) = 7.36 (s, 4H, NH2), 5.56 (s, 1H, NH), 4.61 (s, 2H, NH2) 

ppm; 13C NMR (DMSO-d6): δ (ppm) = 158.9 (C-NH2), 150.9 (C-NO2), 132.7 (C-C); 
14N NMR (DMSO-d6): δ (ppm) = –22 (NO2); IR: ν (cm–1) = 3744(vw), 3449(m), 

3413(m), 3372(m), 3345(m), 3183(m), 2700(w), 2496(w), 2370(w), 1675(m), 1647(s), 

1627(m), 1520(s), 1464(s), 1380(s), 1355(s), 1298(vs), 1199(w), 1156(s), 1040(m), 

1028(s), 920(s), 836(s), 836(s), 748(s), 690(w), 673(w). Raman: ν (cm–1) = 1578(30), 

1502(1), 1463(11), 1401(6), 1361(100), 1314(25), 1239(18), 1165(3), 1132(43), 1103(5), 

1028(36), 922(6), 859(9), 847(2), 788(2), 559(2), 513(3), 463(5), 340(2), 289(2), 273(4), 

236(1), 208(1), 208(1). EA (C6H14N16O6): calcd: C 17.74, H 3.47, N 55.16; found: C 
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18.14, H 3.89, N 51.73; m/z (FAB+): 75.0 [CH7N3
+]; m/z (FAB–): 256.9 [C4N8O6H-]. 

Sensitivities: (grain size: <100 μm): friction: 360 N, impact: 35 J, ESD: 0.24 J; DSC 

(onset, 5 °C min–1): TDec.: 246 °C. 

 

Di(triaminoguanidinium) 3,3’-dinitro-5,5’-bis-1,2,4-triazole-1,1-diolate (4f) 

Triaminoguanidine (0.24 g, 2.3 mmol)) was added to a solution of compound 3 (0.30 g, 

1.2 mmol) in ethanol (50 mL). The mixture was stirred for 30 min and the precipitate was 

collected by filtration to give 4f (0.42 g, 0.95 mmol, 79%) as orange powder. 
1H NMR (DMSO-d6): δ (ppm) = 8.58 (s, 3H, NH), 4.46 (s, 6H, NH2) ppm; 13C NMR 

(DMSO-d6): δ (ppm) = 159.1 (C-NH2), 150.7 (C-NO2), 132.9 (C-C); 14N NMR (DMSO-

d6): δ (ppm) = –20 (NO2);  IR: ν (cm–1) = 3743(vw), 3627(w), 3341(m), 3180(m), 

2918(w), 2849(w), 2362(w), 1675(s), 1652(s), 1539(w), 1510(m), 1456(s), 1379(s), 

1340(s), 1293(vs), 1190(w), 1129(vs), 1034(m), 1020(s), 989(m), 953(m), 921(s), 

834(m), 834(m), 752(s), 693(w), 678(w). Raman: ν (cm–1) = 3372(2), 1683(3), 

1589(100), 1521(2), 1499(3), 1455(26), 1426(15), 1399(14), 1376(75), 1348(61), 

1308(71), 1247(48), 1203(5), 1112(71), 1013(94), 860(28), 847(3), 791(3), 750(2), 

555(8), 463(11), 305(3), 287(3), 287(3), 257(1), 226(2).  EA (C6H18N20O6): calcd: C 

15.45, H 3.89, N 60.07; found: C 15.32, H 3.96, N 57.12; m/z (FAB+): 105.1 [CH9N6
+]; 

m/z (FAB–): 257.0 [C4N8O6H–]. Sensitivities: (grain size: <100 μm): friction: 360 N, 

impact: 40 J, ESD: 0.2 J; DSC (onset, 5 °C min–1): TDec.: 207° C. 
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9. SYNTHESIS AND CHARACTERIZATION OF 5-(1,2,4-TRIAZOL-

3-YL)TETRAZOLES WITH VARIOUS ENERGETIC 

FUNCTIONALITIES 
As published in: Chemistry – An Asian Journal 2013, 8, 1463-1471. 

 

ABSTRACT: 

In this contribution the synthesis and full structural as well as spectroscopic 

characterization of three 5-(1,2,4-Triazol-3-yl)tetrazoles along with selected energetic 

moieties like nitro, nitrimino and azido groups are presented. The main goal is a 

comparative study on the influence of those variable energetic moieties on structural and 

energetic properties. A complete characterization including IR and Raman as well as 

multinuclear NMR spectroscopy of all compounds is presented. Additionally, X-ray 

crystallographic measurements were performed and deliver insight into structural 

characteristics as well as inter- and intramolecular interactions. The standard enthalpies of 

formation were calculated for all compounds at the CBS-4M level of theory, revealing 

high positive heats of formation for all compounds. The calculated detonation parameters 

(using the EXPLO5.05 program) are in the range of 8000 ms–1 (8097 ms–1 (5), 8020 ms–1 

(6), 7874 ms–1 (7)). As expected, the measured impact and friction sensitivities as well as 

decomposition temperatures strongly depend on the energetic moiety of the triazole ring.  

The C–C connection of a triazole ring with its opportunity to introduce a large variety of 

energetic moieties and a tetrazole ring implying a large energy content leads to the 

selective synthesis of primary and secondary explosives. 
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INTRODUCTION 

The design of energetic materials that combine high performance and low sensitivities has 

attracted worldwide research groups over the last decades.[1] Intense research is focused 

on the tailoring of new energetic molecules with performances and stability similar to that 

of RDX (cyclotrimethylenetrinitramine) to replace this widely-used high explosive. 

Those traditional energetic materials are based on the oldest strategy in energetic 

materials design: the presence of fuel and oxidizer in the same molecule. Modern 

heterocyclic energetic compounds derive their energy not only from the oxidation of their 

carbon backbone but additionally from ring or cage strain, high-nitrogen content and high 

heats of formation. Nitrogen-rich compounds which mainly generate environmentally 

friendly molecular nitrogen as end-product of propulsion or explosion are in the focus of 

energetic materials research across the globe.[1f, 2] Nitrogen-rich heterocycles are 

promising compounds that fulfill many requirements in the challenging field of energetic 

materials research.[1f, 2] A prominent family of novel high-energy-density materials 

(HEDMs) are azole-based compounds, since they are generally highly endothermic with 

high densities and low sensitivities towards outer stimuli. Owing to the high positive 

heats of formation resulting from the large number of N–N and C–N bonds[3] and the high 

level of environmental compatibility, those compounds have been studied in our group 

over the last couple of years with growing interest. Possessing high heats of formation 

and ring strain, triazoles and tetrazoles have been used for the preparation of high-

performance primary[4] and secondary explosives[5]. Energetic materials based on those 

heterocycles show the desirable compromise in properties with high nitrogen contents on 

the one hand, and surprising kinetic and thermal stabilities due to aromaticity on the 

other. Many research has been done on the combination of those heterocycles to 

bistetrazoles[6] and bistriazoles[7], resulting in numerous compounds with outstanding 

properties as energetic materials. The connection via C–C bond of a triazole ring with its 

opportunity to introduce a large variety of energetic moieties such as nitro groups (R–

NO2),[8] nitramines (R2N–NO2)[9] or azides (R–N3)[10] and a tetrazole ring implying a large 

energy content leads to energetic materials with tunable properties. 

The focus of this contribution is on the full structural and spectroscopic characterization 

of three selected triazolyl-tetrazoles carrying energetic moieties like nitro, nitramino and 

azido groups. We present a comparative study on the influence of those energetic 

moieties on structural and energetic properties. The potential application of the 
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synthesized compounds as energetic material will be studied and evaluated using the 

experimentally obtained values for the thermal decomposition, the sensitivity data, as 

well as the calculated performance characteristics. 

 

RESULTS AND DISCUSSION 
 

SYNTHESIS 

The synthesis of 5-amino-1H-1,2,4-triazole-3-carbonitrile (ATCN, 3) starts with the in 

situ chlorination of the 5-amino-1H-1,2,4-triazole-3-carboxylic acid with thionyl chloride 

in ethanol and subsequent formation of the carboxylic acid ester (1). The intermediate 

product ethyl 5-amino-1H-1,2,4-triazole-3-carboxylate (1) is reacted with ammonia 

resulting in the formation of 5-amino-1H-1,2,4-triazole-3-carboxamide (2). 5-amino-1H-

1,2,4-triazole-3-carbonitrile (3) is obtained by dehydration of the carboxamide using 

phosphorus pentoxide in acetonitrile. 5-(5-Amino-1,2,4-1H-triazol-3-yl)-1H-tetrazole (4) 

was synthesized on the basis of the procedure developed by Sharpless and coworkers, 

which has been widely used in the synthesis of tetrazole-5-yl-azole compounds.[11] The 

[3+2] cycloaddition of sodium azide with the nitrile proceeds readily in water with zinc 

chloride as catalyst in excellent yields (Scheme 1). This modified synthesis leads to the 

previously unknown combination of a triazole ring with a tetrazole ring connected by a 

C–C bond.  
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Scheme 1: Synthesis of 5-(5-amino-1H-1,2,4-triazol-3-yl)-1H-tetrazole (4, ATT) 

 

The starting material 5-(5-amino-1H-1,2,4-triazol-3-yl)- (4) was converted to energetic 

derivatives by introduction of nitro-, nitrimino- and azido-moieties (Scheme 2). The 

treatment of 5-(5-amino-1H-1,2,4-triazol-3-yl)-1H-tetrazole with a mixture of sulfuric 

acid/nitric acid (6:1) leads to 5-(5-nitrimino-1H-1,2,4-triazol-3-yl)-1H-tetrazole (NATT, 
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5). 5-(3-Nitro-1H-1,2,4-triazol-5-yl)-2H-tetrazole (NTT, 6) was obtained by the well 

known Sandmeyer reaction via diazotization in sulfuric acid and subsequent reaction with 

the excess of sodium nitrite. The azido compound (AzTT, 7) was as well synthesized via 

diazotization in sulfuric acid and subsequent reaction with an excess of sodium azide. 
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Scheme 2: Synthesis of 5-(5-nitrimino-1H-1,2,4-triazol-3-yl)-1H-tetrazole (5, NATT), 5-(3-nitro-

1H-1,2,4-triazol-5-yl)-2H-tetrazole (6, NTT) and 5-(5-azido-1H-1,2,4-triazol-3-yl)tetrazole (7, 

AzTT). 

 

 

SINGLE CRYSTAL X-RAY STRUCTURE ANALYSIS  

Single crystal X-ray measurements were accomplished for compounds 3 and 5–7 and are 

discussed in detail. Due to the very low solubility of the amino compound 4, this 

molecule could only be crystallized from 2m HCl as a chloride salt (see supporting 

information). All other compounds were recrystallized from water and obtained as 

hydrated species. 

5-Amino-1H-1,2,4-triazole-3-carbonitrile (3) crystallizes in the monoclinic space group 

P21/c with a cell volume of 462.88(10) Å and four formula units per unit cell. As 

expected, the molecule shows a complete planar assembly. In relation to the triazole ring, 

only the protons of the amine group are slightly twisted out of the plane by 29°. The C–C 

bond length between the nitrile and the triazole ring is as expected (1.438(3) Å) in 

comparison to literature known Csp2–Csp1 carbon atoms (1.44 Å).[12] All nitrogen atoms 

participate in hydrogen bonds which leads to the formation of dimers via N1···N2. Those 

dimers are connected by the nitrile group which acts as acceptor in the hydrogen bond 
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N1–H1···N5 (Figure 1). The resulting tetramers consist of four individual molecules and 

are connected with each other by hydrogen bonds summarized in Table 1.  

 
Figure 1: Hydrogen bonds within the crystal structure of 3, thermal ellipsoids are set to 50 % 

probability, symmetry codes: (i) 1−x, 2−y, −z; (ii) 1+x, −1+y, z; (iii) −x, −1/2+y, 1/2−z; (iv) −x, 

1/2+y, 1/2−z; (v) −1+x, 1+y, z. 

 
Table 1: Hydrogen bonds present in  the crystal structure of 3. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–H···A) [Å] < (D–H···A) [°] 

N1–H1···N5ii 0.87(3) 2.26(3) 2.995(3) 142(2) 

N1– H1···N2i 0.87(3) 2.36(2) 2.952(2) 126(2) 

N4–H4B···N3iii 0.84(3) 2.17(3) 3.007(3) 175.4(19) 
Symmetry codes: (i) 1−x, 2−y, −z; (ii) 1+x, −1+y, z; (iii) −x, −1/2+y, 1/2−z.  

 

The bond lengths and torsion angles within the azole ring of compounds 5–7 are all in the 

expected range in comparison to similar triazole and tetrazole compounds.[6a, 8, 13] The 

bond lengths within the triazole and the tetrazole ring in the crystal structures are all in 

between the length of formal C–N and N–N single and double bonds (C–N: 1.47 Å, 1.22 

Å; N–N: 1.48 Å, 1.20 Å).[12, 14] The small torsion angle N3–C2–C3–N5 between the 

heterocycles indicates a completely planar ring, which together with the bond lengths 

leads to the assumption of an aromatic ring system. In the case of the nitrimino compound 

5, the torsion angle between the two heterocycles is 0.2(3)°. The protons at the triazole 

ring are located at the nitrogen atoms N1 and N3, therefore the compound can be 

classified as nitrimino-triazole. In addition, the intramolecular hydrogen bond N1–

H1···O3 keeps the nitrimino moiety within the plane of the triazole ring due to the 
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formation of a six membered ring (Figure 2), which is often the case for nitrimino-

triazoles. [7f, 15] The D–H···A angle is only 107(2)°, but the D···A length is very short 

with 2.621(2) Å. 5-(5-nitrimino-1H-1,2,4-triazol-3-yl)-1H-tetrazole (NATT, 5) 

crystallizes as trihydrate in the monoclinic space group P21/c with a cell volume of 

1031.09(15) Å3 and four molecular moieties in the unit cell. The molecular structure of 5 

together with the atom labeling is presented in Figure 2. 

 
Figure 2: Molecular structure of 5-(5-nitrimino-1H-1,2,4-triazol-3-yl)-1H-tetrazole (NATT, 5), 

thermal ellipsoids are set to 50 % probability, symmetry codes: (i) −x, 1/2+y, 1/2−z; (ii) x, 1+y, z. 

 

NATT forms tetramers via a threefold hydrogen bond with the oxygen atom O5 acting 

both as acceptor and donor. Three further nitrogen atoms N1, N3 and N6 are involved as 

donor atoms in further hydrogen bonds (Table 2), resulting in strong interactions with 

surrounding molecules. The bifurcated hydrogen bond N6–H6···O2 and N6–H6···N4 

connect the tetrazole ring to the nitrimino moiety (Figure 3). 

 
Figure 3: Hydrogen bonds within the crystal structure of 5, thermal ellipsoids are set to 50 % 

probability, symmetry codes: (i) x, 1+y, z; (ii) 1+x, −1+y, z; (iii) 1+x, y, z; (iv) 1−x, −1/2+y, 1/2−z. 
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Table 2: Hydrogen bonds present in  the crystal structure of 5. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–H···A) [Å] < (D–H···A) [°] 

N1–H1···O1 0.92(2) 2.20(2) 2.621(2) 107(2) 

N1–H1···O3 0.92(2) 1.89(2) 2.762(2) 157(2) 

N3–H3···O5i 0.94(2) 1.70(2) 2.625(2) 170(2) 

O3–H3B··· O4iv 0.91(3) 1.87(3) 2.776(2) 172(2) 

O4iv–H4B···O2iii 0.89(3) 1.96(3) 2.843(2) 170(3) 

O5ii–H5A···N7 0.84(3) 2.10(3) 2.934(2) 173(2) 

O5ii–H5B···N8 0.86(2) 2.00(2) 2.853(2) 171(2) 

N6–H6···O2iii 0.93(2) 1.85(2) 2.752(2) 165(2) 

N6–H6···N4iii 0.93(2) 2.45(2) 3.187(2) 136(2) 

Symmetry codes: (i) 1−x, 2−y, −z; (ii) 1+x, −1+y, z; (iii) −x, −1/2+y, 1/2−z.  

 

Furthermore, 5-(3-nitro-1H-1,2,4-triazol-5-yl)-2H-tetrazole (NTT, 6) crystallizes as 

dihydrate in the triclinic space group P–1 with a cell volume of 436.08(8) Å3 and two 

molecular moieties in the unit cell. Again, the molecule shows a nearly planar assembly 

with a torsion angle between the two heterocycles of 5.0(2)°. The nitro group is twisted 

out of the triazole plane by only 5.1(2)°. The proton is located at the nitrogen atom N1 

next to the C–C bond and not next to the energetic moiety as it is the case for the 

nitrimino compound 5. The formula unit of 6 together with the atom labeling is presented 

in Figure 4. 

 
Figure 4: Molecular structure of 5-(3-nitro-1H-1,2,4-triazol-5-yl)-2H-tetrazole (NTT, 6) and 

hydrogen bonds towards surrounding water molecules, thermal ellipsoids are set to 50 % 

probability, symmetry codes: (i) 1−x, 1−y, 1−z; (ii) 1+x, y, z; (iii) 1−x, −y, 1−z; (iv) −1+x, −1+y, 

1+z. 
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The crystal structure of 6 is build up by planes of NTT molecules that are kept together by 

several threefold hydrogen bonds with the water molecules (Figure 5a). In contrast to the 

crystal structure of compound 5, there is no direct interaction between two NTT 

molecules. The Oxygen atoms O3 and O4 act both as donor and acceptor, all hydrogen 

bonds lengths lie well within the sum of van der Waals radii (rw(N) + rw(O) = 3.07 Å)[14], 

resulting in a strong network of hydrogen bonds. The layers are stacked above each other 

with a layer distance of d = 3.18 Å.  The layers are connected by two short contacts, 

C1···O3 (d(C···O) = 3.02 Å) and C1···O4 (d(C···O) = 3.08 Å). The stacking of the layers 

is displayed in Figure 5b together with the distance d between the layers. 

 

 

 
Figure 5: a) Formation of planes in the crystal structure of 6; b) stacking of layers (layer distance 

d = 3.18 Å, water molecules are omitted for clarity). Thermal ellipsoids are set to 50 % 

probability. 
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Table 3: Hydrogen bonds present in 6. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–H···A) [Å] < (D–H···A) [°] 

N1–H1···O4iii 0.921(19) 1.781(19) 2.6895(18) 168.7(17) 

O3i–H3A··· N3 0.89(3) 2.05(3) 2.9384(16) 174(2) 

O3i–H3B ···N7 0.83(3) 2.15(3) 2.9649(18) 166(2) 

O4i–H4A···O1 0.839(18) 2.266(19) 3.0274(18) 151(2) 

O4ii–H4B···N2 0.96(4) 2.10(4) 3.036(2) 167(3) 

N6–H6···O3iv 0.97(2) 1.70(2) 2.6566(18) 168.1(19) 

Symmetry codes: (i) 1−x, 1−y, 1−z; (ii) 1+x, y, z; (iii) 1−x, −y, 1−z; (iv) −1+x, −1+y, 1+z.  

 

Finally, the azido-compound 7 (AzTT) shows again a nearly planar assembly with a 

torsion angle between the two heterocycles of 1.3(3)°. The azido moiety is slightly bent 

with an angle of 172.1(2)° and nearly in plane with the triazole ring (torsion angle N5–

N4–C1–N3: 3.0(3)°). 5-(5-Azido-1H-1,2,4-triazol-3-yl)tetrazole  crystallizes as dihydrate 

in the orthorhombic space group Fdd2 with a cell volume of 3545.1(2) Å3 and 16 

molecular moieties in the unit cell. It is worth mentioning that the hydrogen atoms at the 

tetrazole ring are disordered, the hydrogen atoms are located one time at nitrogen atom 

N7 and the other at N9. This enables the formation of pairs of AzTT molecules via the 

hydrogen bond N7–H7···N7(i) as only intermolecular interaction with a short D···A 

length of  2.830(2) Å (Figure 6). In addition, the water molecules are as well disordered 

and therefore not shown in figure 6. They act both as donor and acceptor for several 

further hydrogen bonds which connect the pairs of AzTT molecules. 

 
Figure 6: Molecular structure of 5-(5-azido-1H-1,2,4-triazol-3-yl)tetrazole (AzTT, 7), disordered 

hydrogen atoms are located one time at nitrogen atom N7 and the other at N9, thermal ellipsoids 

are set to 50 % probability, symmetry codes: (i) 1−x, −y, z. 
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MULTINUCLEAR NMR SPECTROSCOPY  

All compounds were investigated using 1H, 13C and 14N NMR spectroscopy. Due to 

insufficient solubility of compound 5 in DMSO or any other solvent, 15N NMR spectra 

could only be obtained for compounds 6 and 7. 

Compounds 4–7 show two signals for the triazole carbon atoms and one signal for the 

tetrazole carbon atom in the expected range.[5c, 8]  Two singlets for the carbon atoms of 

the C–C bridge can be found at chemical shifts of 141.8 ppm (5) to 150.2 ppm (4). The 

signal of the carbon atom connected to the energetic moieties is shifted in all cases to 

lower field and is observed in the range of 153.0 (5) to 162.9 ppm (6). In the 14N{1H} 

NMR spectra, the nitro group of compounds 5 and 6 can be identified by a singlet at 

−22 (5) to −26 ppm (6). The azido moiety in compound 7 can be observed as a broad 

singlet at −143 ppm in the 14N NMR spectrum, well resolved resonances could only be 

observed in the 15N NMR spectrum (as discussed below). The NMR signals of all 

compounds are summarized in Table 4. 

 
Table 4: NMR signals of compounds 4–7 in DMSO-d6. 

compound 

δ [ppm] 
13C{1H} 

CTriazole 

13C{1H} 

CTetrazole
 

14N{1H} 1H 

4 158.2, 150.2 148.2 – 6.50 

5 153.0, 148.4 141.8 −22 11.52 

6 162.9, 148.3 145.4 −26 14.44 

7 155.5, 146.3 148.5 −143 11.83 

 

Due to the insufficient solubility of compound 5, 15N NMR spectra could only be 

obtained for compounds 6 and 7. Six well resolved resonances are observed in the 15N 

NMR spectrum of the nitro-compound 6 (Figure 7). The signals were assigned by 

comparison to literature values of similar bistetrazole and bistriazole compounds.[16] The 

signals of the triazole nitrogen atoms N1, N2 and N3 as well as the nitro group can be 

found in the expected range similar to the recently published 3,3’-dinitro-5,5’-

bistriazole.[16c] The nitrogen atoms N4 and N4' are equal and show a broad signal at 

−89.4 ppm, the nitrogen atoms N5 and N5' appear at a chemical shift of −19 ppm.  
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Figure 7: 15N NMR spectra of 5-(5-nitrimino-1,4H-1,2,4-triazol-3-yl)-1H-tetrazole (5), 5-(3-nitro-

1H-1,2,4-triazol-5-yl)-2H-tetrazole (6) and 5-(5-azido-1H-1,2,4-triazol-3-yl) tetrazole (7)  

recorded in DMSO-d6; x -axis represents the chemical shift δ  in ppm. 

 

The signals of the  nitrogen atoms N3, N4 and N5 of the azido compound (7) can be 

observed in the same region in comparison to the nitro-compound (−143.2(N3), −97.0 

(N4), −11.5 (N5)). The signals of the nitrogen atoms N1 and N2 of the azido compound 

(7) are not observable even with a saturated solution due to the high acidity of the proton 

and the resulting fast proton exchange. In the case of the similar 5,5'-diazido-3,3'-

bistriazole[16c], the nitrogen atoms N1 and N2 are as well hardly visible and appear as 

very broad signals. The three signal of the azido moiety are well resolved and can be 

found in the expected range with N6 being shifted to highest field with a chemical shift of 

−294.9 ppm. 
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THEORETICAL CALCULATIONS, PERFORMANCE CHARACTERISTICS AND STABILITIES   

All calculations regarding energies of formation were carried out using the Gaussian 09 

(revision C.01) program package.[17] Since very detailed descriptions of the calculation 

process have been published earlier[5c] and can be found in specialized books,[1b] only a 

short summary of computational methods will be given. The enthalpies (H) and Gibbs 

free energies (G) were calculated using the modified complete basis set method (CBS-

4M) of Petersson et al.[18] in order to obtain very accurate energies. The enthalpies of 

formation for the gas phase species were computed according to the atomization energy 

method, using NIST[19] values as standardized values for the atoms standard heats of 

formation (ΔfH°) according to equation 1.[20] 

 

ΔfH° (g, Molecule, 298) = H(Molecule) – ∑ H° (Atoms) + ∑ ΔfH° (Atoms, NIST)  (1) 

 

The solid state enthalpy of formation for neutral compounds is estimated from the 

computational results using Troutons rule,[21] where Tm was taken equal to the 

decomposition temperatures.  

 

ΔfH°(s, M.) = ΔfH°(g, M.) − ΔsubH = ΔfH°(g, M.) − (188 [J mol−1K−1] × Tm [K])  (2) 

 

The solid state enthalpies of formation for the ionic compounds are derived from the 

calculation of the corresponding lattice energies (ΔUL) and lattice enthalpies (ΔHL), 

calculated from the corresponding molecular volumes, using the equations provided by 

Jenkins et al.[22]  The derived molar standard enthalpies of formation for the solid state 

(ΔHm) were used to calculate the solid state energies of formation (ΔUm) according to 

equation three, with Δn being the change of moles of gaseous components.[1b] 

 

ΔUm = ΔHm − ΔnRT  (3) 

 

The calculated standard energies of formation were used to perform predictions of the 

detonation parameters with the program package Explo5, Version 5.05.[23] The program is 

based on the chemical equilibrium, steady state model of detonation. It uses Becker-

Kistiakowsky-Wilsons equation of state (BKW EOS) for gaseous detonation products 

together with the Cowan-Ficketts equation of state for solid carbon.[24] The calculation of 
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the equilibrium composition of the detonation products is performed by applying a 

modified free energy minimization technique of White, Johnson and Dantzig.[24] The 

program was designed to enable calculations of detonation parameter at the Chapman-

Jouguet point.  

As shown in Table 5, physicochemical properties were calculated for the energetic 

compounds 5–7. The starting material 5-(5-amino-1H-1,2,4-triazol-3-yl)-1H-tetrazole (4) 

is insensitive towards friction and impact and shows a very high decomposition 

temperature of 347 °C. As shown in Figure 8, the introduction of energetic moieties 

dramatically decreases the thermal stability to 215 °C (5), 211 °C (6) and 164 °C (7). The 

lowest thermal stability was obtained for the azido compound 7 with a decomposition 

onset at 164 °C. In comparison to the recently synthesized bistriazole compounds,[5c, 13d] 

the decomposition temperatures of all compounds are significantly lower. The 

introduction of the tetrazole moiety obviously decreases the thermal stability and 

emphasizes the unique stability of bistriazoles. 

As it is characteristically for nitramino- and nitrimino-triazoles,[5c, 9, 26] the nitrimino 

compound 5 is very sensitive towards impact (<1 J) and sensitive towards friction (18 N), 

which is in the same range as the azido compound with a friction sensitivity of 20 N and 

an impact sensitivity of less than 1 J. Both compounds are in addition sensitive towards 

electrostatic discharge with values of 0.07 J (5) and 0.05 J (7).  

The calculated detonation velocities of all compounds (8097 ms–1 (5), 8020 ms–1 (6) and 

7874  ms–1 (7)) are in the same range and well below the commonly used explosive RDX. 

In contrast to compounds 5 and 7, the nitro compound 6 shows moderate sensitivities 

towards friction (288 N) and impact (25 J). 5-(3-Nitro-1,2,4-1H-triazol-5-yl)-2H-tetrazole 

(6) could therefore be of interest as secondary explosive or propellant ingredient 

especially as ionic derivative in combination with nitrogen-rich cations, since those 

generally  increases both thermal stability and performance[7i, 13a].  
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Table 5: Physicochemical properties of compounds 4–7 in comparison to hexogen (RDX). 

 
ATT 

(4) 

NATT 

(5) 

NTT 

(6) 

AzTT 

(7) 
RDX[n] 

Formula C3H4N8 C3H3N9O2 C3H2N8O2 C3H2N10 C3H6N6O6 

M [g mol–1] 152.1 197.1 182.1 178.1 222.1 

IS [J]a >40 <1 25 <1 7 

FS [N]b >360 18 288 20 120 

ESD–test [J] 1.5 0.07 0.85 0.05 -- 

N [%]c 73.7 64.0 61.5 78.6 37.8 

Ω [%]d –84.1 –44.6 –43.9 –62.8 –21.6 

Tdec. [°C]e 347 215 211 164 210 

ρ [g cm–3]f 1.61 1.71 1.73 1.66 1.80 

ΔfH(g)° [kJ mol–1]g 511 577 519 859 176 

ΔfHm° [kJ mol–1]h 394 485 428 777 70 

ΔfU° [kJ kg–1]i 2688 2549 2430 4444 417 

EXPLO5 values: V5.05 

–ΔEU° [kJ kg–1]j 3040 4804 4735 4578 6125 

TE [K]k 2452 3774 3810 3602 4236 

pC-J  [kbar]l 187 266 265 241 349 

VDet. [m s–1]m 7193 8097 8020 7874 8748 

Gas vol. [L kg–1]n 691 712 681 674 739 
[a] BAM drop hammer; [b] BAM friction tester; [c] Nitrogen content; [d] Oxygen balance; [e] Temperature of 

decomposition by DSC (β = 5 °C, Onset values); [f] Density values of 5–7 derived from gas-pycnometer 

measurements of anhydrous compounds at 25 °C; [g] Molar enthalpy of formation in the gas phase; [h] Molar 

enthalpy of formation; [i] Energy of formation; [j] Energy of Explosion; [k] Explosion temperature; [l] 

Detonation pressure; [m] Detonation velocity; [n] Assuming only gaseous products; [o] values based on Ref. 
[25] and the EXPLO5.5 database.  
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Figure 8: DSC plots of ATT (4), NATT (5), NTT (6) and AzTT (7). DSC plots were recorded 

with a heating rate of 5 °C min–1. 

 

CONCLUSION 
The previously unknown syntheses of 5-amino-3-cyano-1H-1,2,4-triazole (ACT, 3) is 

presented and reveals new synthetic pathways towards numerous novel energetic 1,2,4-

triazole derivatives. 5-(3-Amino-1,2,4-1H-triazol-5-yl)-1H-tetrazole (4) was synthesized 

from compound 3 on the basis of the procedure developed by Sharpless and coworkers, 

which has been widely used in the synthesis of tetrazole-5-yl-azole compounds.[11] The 

reaction of sodium azide with the nitrile proceeds readily in water with zinc chloride as 

catalyst in excellent yields. This modified synthesis leads to the previously unknown 

combination of a triazole ring with a tetrazole ring connected by C–C bond.  

The starting material 5-(5-amino-1H-1,2,4-triazol-3-yl)-1H-tetrazole (4) was converted to 

energetic derivatives by introduction of nitro-, nitrimino- and azido-moieties. Those 

different energetic groups containing oxygen or nitrogen lead to variable energetic 

properties. All energetic compounds have been fully characterized by means of 

vibrational and multinuclear NMR spectroscopy, mass spectrometry and differential 

javascript:popupOBO('CHEBI:35598','b812529e')
javascript:popupOBO('CHEBI:24433','b812529e')
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scanning calorimetry. Single crystal X-ray measurements deliver insight into structural 

characteristics as well as inter- and intramolecular interactions.  

Regarding the stability values and energetic parameters, compounds 5 and 6 show thermal 

stabilities (215 °C (5), 211 °C (6)) in the range of RDX.  As expected, the nitrimino 

compound (5) as well as the azido compound (7) are the most sensitive derivatives with 

an impact sensitivity of less than 1 J and friction sensitivities of 18 N (5) and 20 N (7). In 

contrast, the nitro derivative shows moderate sensitivities towards friction (288 N) and 

impact (25 J) and could therefore be of interest as secondary explosive or propellant 

ingredient. In summary, compounds 5–7 are able to compete with commonly used TNT 

regarding their detonation parameters. However, the performance data for RDX are not 

reached. Compound 6 can be considered as nitrogen-rich starting material for energetic 

ionic derivatives. Due to the fact that nitrogen-rich salts of energetic compounds tend to 

be more stable compared to the uncharged compounds and often show performance 

characteristics in the range of modern secondary explosives,[7i, 13a] those ionic derivatives 

could find application as high-nitrogen energetic materials. In general, the connection via 

C–C bond of a triazole ring with its opportunity to introduce a large variety of energetic 

moieties and a tetrazole ring implying a large energy content leads to the selective 

synthesis of primary and secondary explosives.  

 

EXPERIMENTAL SECTION 
Caution: Due to the fact that energetic triazole- and tetrazole compounds are to some 

extend rather instable against outer stimuli, proper safety precautions should be taken  

when handling the dry materials. Especially derivatives of azido- and nitrimino-triazoles 

are energetic primary materials and tend to explode under the influence of impact or 

friction. Lab personnel and the equipment should be properly grounded and protective 

equipment like earthed shoes, leather coat, Kevlar® gloves, ear protection and face shield 

is recommended for the handling of any energetic material.  

General. All chemical reagents and solvents were obtained from Sigma-Aldrich Inc. or 

Acros Organics (analytical grade) and were used as supplied without further purification. 
1H, 13C{1H}, 14N{1H} and 15N NMR spectra were recorded on a JEOL Eclipse 400 

instrument in DMSO-d6 at 25 °C. The chemical shifts are given relative to 

tetramethylsilane (1H, 13C) or nitromethane (14N, 15N) as external standards and coupling 

constants are given in Hertz (Hz). Infrared (IR) spectra were recorded on a Perkin-Elmer 
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Spectrum BX FT-IR instrument equipped with an ATR unit at 25 °C. Transmittance 

values are qualitatively described as “very strong” (vs), “strong” (s), “medium” (m), 

“weak” (w) and “very weak” (vw). Raman spectra were recorded on a Bruker RAM II 

spectrometer equipped with a Nd:YAG laser (200 mW) operating at 1064 nm and a 

reflection angle of 180°. The intensities are reported as percentages of the most intense 

peak and are given in parentheses. Elemental analyses (CHNO) were performed with an 

Elementar Vario EL. Melting and decomposition points were determined by differential 

scanning calorimetry (Linseis DSC-PT10, calibrated with standard pure indium and zinc). 

Measurements were performed at a heating rate of 5 °C min–1 in closed aluminum sample 

pans with a 1 µm hole in the lid for gas release to avoid an unsafe increase in pressure 

under a nitrogen flow of 20 mL min–1 with an empty identical aluminum sample pan as a 

reference.  

For initial safety testing, the impact and friction sensitivities as well as the electrostatic 

sensitivities were determined. The impact sensitivity tests were carried out according to 

STANAG 4489,[27] modified according to WIWEB instruction 4-5.1.02[28] using a 

BAM[29] drop hammer. The friction sensitivity tests were carried out according to 

STANAG 4487[30] and modified according to WIWEB instruction 4-5.1.03[31] using the 

BAM[29] friction tester. The electrostatic sensitivity tests were accomplished according to 

STANAG 4490[32] using an electric spark testing device ESD 2010 EN (OZM Research). 

Crystallographic measurements. The single crystal X-ray diffraction data of 3–6 were 

collected using an Oxford Xcalibur3 diffractometer equipped with a Spellman generator 

(voltage 50 kV, current 40 mA) and a Kappa CCD detector. The data collection and 

reduction was undertaken using the CrysAlisPro software[33]. Crystals of compound 7 

were investigated using a Bruker D8-Quest diffractometer equipped with a I\μS 

microfocus X-Ray source. The structures were solved with Sir92[34] or Shelxs-97[35] and 

refined with Shelxl-97[35] implemented in the program package WinGX[36] and finally 

checked using Platon[37]. CCDC 906004 (3), 906005 (4·HCl), 906006 (6), 906007 (5) and 

906008 (7) contains the supplementary crystallographic data for this paper. These data 

can be obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 
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5-Amino-1H-1,2,4-triazole-3-carboxamide (2) 

Thionyl chloride (18.7 mL, 258 mmol) was added dropwise to a suspension of 5-amino-

1H-1,2,4-triazole-3-carboxylic acid (25.0 g, 195 mmol) in 260 mL of ethanol at 0 °C. 

Subsequently, the mixture was refluxed for 2 hours and the solvent evaporated in 

vacuum. A saturated solution of sodium acetate (200 mL) was added to the remaining 

highly viscous residue, the resulting precipitate was collected by filtration and washed 

with cold water. The obtained colorless solid was dissolved in concentrated aqueous 

ammonia (150 mL) and heated to 70 °C for 2 hours. The mixture was cooled to room 

temperature, acidified with concentrated acetic acid to pH = 4 and the resulting 

precipitate was collected by filtration to yield 5-amino-1H-1,2,4-triazole-3-carboxamide 

(17.5 g, 136 mmol, 70%) as a colorless solid. 
1H NMR (DMSO-d6): δ = 12.5 (s, Htriazole), 7.42 (s, NH2), 6.03 (s, NH2) ppm; 13C NMR 

(DMSO-d6): δ = 161.9 (C=O), 158.4 (CNH2), 154.1 (CTriazole-CONH2) ppm; Raman 

(200 mW): ν (cm−1) (rel. int.) =3354(8), 3338(8), 3255(7), 3166(9), 3140(17), 3135(18), 

1676(15), 1651(9), 1573(73), 1522(100), 1425(29), 1358(5), 1316(21), 1139(23), 

1109(19), 1068(79), 1014(72), 795(9), 788(12), 690(20), 574(6), 537(6), 433(42), 

414(25), 361(5), 233(61). Elemental analysis (C3H5N5O): calc.: C 28.35, H 3.96, 

N 55.10; found: C 28.64, H 3.76, N 55.03. 

 

5-Amino-3-cyano-1H-1,2,4-triazole (3) 

5-Amino-1H-1,2,4-triazole-3-carboxamide (5.0 g, 40 mmol) and phosphorus pentoxide 

(30 g, 105 mmol) was suspended in 1.0 L dry acetonitrile and the flask was sealed. After 

stirring for 72 hours at room temperature, the acetonitrile was evaporated in vacuum and 

the remaining solid dissolved in water (1.0 L). The resulting clear solution was extracted 

with ethyl acetate (3×200 mL), the combined organic layers were dried over magnesium 

sulfate and the solvent was removed in vacuum to yield  5-amino-3-cyano-1H-1,2,4-

triazole as a colorless powder (3.1 g, 28 mmol, 70%). 
1H NMR (DMSO-d6): δ = 12.9 (s, Htriazole),6.49 (s, -NH2) ppm; 13C NMR (DMSO-d6): 

δ =157.9 (C-NH2), 136.2 (C-CN), 114.2 (CN) ppm; IR: ν (cm−1) (rel. int.) =3430(m), 

3284(m), 3156(m), 2260(m), 1624(s), 1583(s), 1561(s), 1541(m), 1485(s), 1429(m), 

1359(m), 1306(s), 1127(m), 1101(m), 1051(m), 1017(s), 757(s), 728(s), 709(s), 704(s), 

701(s), 696(s), 674(vs), 674(vs), 667(vs), 659(s). Raman (200 mW): ν (cm−1) (rel. int.) 

=3286(3), 2263(100), 2209(3), 1690(3), 1641(5), 1592(10), 1563(14), 1490(11), 1445(7), 



_____________________________________________________________________CHAPTER 9 

187 | 

1363(13), 1310(5), 1130(8), 1115(5), 1102(5), 1050(19), 1016(12), 978(7), 770(4), 

681(2), 564(7), 491(6), 421(9), 414(9), 414(9), 239(2); Elemental analysis (C2H3N5): 

calc.: C 33.03, H 2.77, N 64.20; found: C 33.11, H 2.82, N 62.47. Mass spectrometry: 

m/z (DEI+): 109.1 [C2H3N5
+]. 

 

5-(5-Amino-1H-1,2,4-triazole-3-yl)-1H-tetrazole (4) 

 

3-Amino-5-cyano-1H-1,2,4-triazole (2.61 g, 23.9 mmol), sodium azide (1.71 g, 

26.3 mmol) and zinc chloride (4.0 g, 29.3 mmol) were suspended in 120 ml water and the 

reaction mixture was refluxed for 16 h. After cooling to room temperature, 20 ml of 

2 m HCl solution were added to avoid precipitation of zinc hydroxide. The precipitate 

was collected by filtration, washed with water and dried in air to yield 5-(5-amino-1H-

1,2,4-triazole-3-yl)-1H-tetrazole (4) (3.41 g, 22.4 mmol, 94%) as colorless solid. 
1H NMR (DMSO-d6): δ = 6.50 (s, –NH2) ppm;  13C NMR (DMSO-d6): δ = 158.2 (C-

NH2), 150.2, 148.2 ppm; IR: ν (cm−1) (rel. int.) = 3381(m), 3327(m), 3214(w), 1645(vs), 

1583(s), 1524(m), 1444(w), 1386(m), 1346(w), 1290(s), 1210(w), 1152(w), 1108(m), 

1102(m), 1068(w), 1035(w), 988(w), 849(w), 738(w), 695(m), 661(w); Raman 

(200 mW): ν (cm−1) (rel. int.) = 1640(14), 1618(100), 1550(2), 1445(4), 1388(5), 1288(4), 

1211(18), 1153(4), 1118(7), 1076(5), 1035(5), 986(2), 776(4), 758(9), 530(3), 446(10), 

413(5), 380(8), 297(4), 233(4), 203(6); Elemental analysis (C3H4N8): calc.: C 23.69, 

H 2.65, N 73.66; found: C 24.01, H 2.66, N 71.95; Mass spectrometry: m/z (DEI+) = 

152.1 ([C3H4N8]+); Sensitivities (grain size < 100 μm): friction: 360 N, impact: 40 J, 

ESD: n.d.; DSC (onset, 5 °C min−1): Tdec. = 347 °C. 

 

5-(5-Nitrimino-1,4H-1,2,4-triazol-3-yl)-1H-tetrazole (5) 

Nitric acid (100%, 1.0 mL) was added slowly to a solution of 4 (0.5 g, 3.3 mmol) in 

concentrated sulfuric acid (6.0 mL) at 0 °C. The mixture was allowed to warm to room 

temperature and stirred for one hour. The clear solution was poured on ice and the 

precipitate was collected by filtration to yield 5 (0.4 g, 2.4 mmol, 65 %) as colorless solid. 
1H NMR (DMSO-d6): δ = 7.81 (s, Htriazole/tetrazole) ppm; 13C NMR (DMSO-d6): δ = 153.0 

(CNNO2), 148.4 (Ctriazole), 141.8 (Ctetrazole) ppm; 14N NMR (DMSO-d6): δ = −23 ppm; IR: 

ν (cm−1) (rel. int.) = 3309(m), 1681(vs), 1650(m), 1628(m), 1376(s), 1257(m), 1194(m), 

1121(m), 1091(s), 1054(m), 1035(m), 972(vs), 958(s), 910(s), 756(m), 745(m), 723(m); 

Raman (200 mW): ν (cm−1) (rel. int.) = 1650(97), 1606(100), 1537(15), 1511(6), 
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1494(7), 1405(3), 1310(9), 1258(10), 1237(23), 1130(39), 1099(4), 1070(7), 1059(25), 

995(18), 983(27), 865(10), 760(32), 752(6), 705(2), 663(2), 534(2), 500(3), 416(8), 

416(8), 306(12), 228(11); Elemental analysis (C3H3N9O3): calc.: C 18.28, H 1.53, 

N 63.95; found: C 18.64, H 1.67, N 63.26; Mass spectrometry: m/z (DCI+) = 198.1 

([C3H3N9O3]+);  Sensitivities (grain size < 100 μm): friction: 20 N, impact: <1 J, ESD: 

0.05 J; DSC (onset, 5 °C min−1): Tdec. = 215 °C. 

 

5-(3-Nitro-1,2,4-1H-triazol-5-yl)-2H-tetrazole (6) 

A suspension of 4 (0.5 g, 3.3 mmol) in 20% sulfuric acid (6.0 mL,) was added drop wise 

to a solution of sodium nitrite (30 eq., 6.8 g, 98 mmol) in water (10 mL) at 40 °C. The 

mixture was stirred at 50 °C for one hour. After cooling down to room temperature the 

mixture was acidified with sulfuric acid (20%) until no evolution of nitrogen dioxide 

could be observed. The reaction mixture was extracted with ethyl acetate, dried over 

magnesium sulfate and the solvent was evaporated to yield 6 (0.49 g, 2.7 mmol, 82 %) as 

colorless solid. 
1H NMR (DMSO-d6): δ = 7.32 (s, Htriazole/tetrazole) ppm; 13C NMR (DMSO-d6): δ = 163.0 

(CNO2), 148.3 (Ctriazole), 145.4 (Ctetrazole) ppm; 14N NMR (DMSO-d6): δ = −26 ppm; 
15N NMR (DMSO-d6): δ = −19.1 (N6), −29.0 (N4), −89.4 (N5), −90.9 (N2), −141.9 (N3), 

−159.5 (N1) ppm; IR: ν (cm−1) (rel. int.) = 3135(m), 3019(w), 2970(w), 2790(m), 

2730(w), 2646(w), 1754(w), 1630(w), 1555(s), 1506(w), 1486(m), 1477(m), 1460(w), 

1420(m), 1384(w), 1365(s), 1338(s), 1312(vs), 1241(m), 1174(s), 1129(s), 1075(m), 

1034(m), 1034(m), 1023(m), 971(s), 899(s), 842(vs), 774(m), 767(m), 708(s), 692(m), 

644(s), 622(w), 606(w); Raman (200 mW): ν (cm−1) (rel. int.) = 1631(100), 1608(4), 

1557(6), 1504(25), 1477(15), 1446(4), 1420(42), 1366(18), 1340(5), 1315(9), 1244(4), 

1212(3), 1187(17), 1175(9), 1128(26), 1078(10), 1035(2), 1019(20), 970(5), 844(2), 

776(2), 768(8), 468(5), 468(5), 395(10), 334(9), 261(2), 247(2), 236(4); Elemental 

analysis (C3H2N8O2): calc.: C 19.79, H 1.11, N 61.53; found: C 20.12, H 1.11, N 60.95; 

Mass spectrometry: m/z (DEI+) = 182.1 ([C3H2N8O2]+).  Sensitivities (grain size 100–

500 μm): friction: 288 N, impact: 25 J, ESD: 0.85 J; DSC (onset, 5 °C min-1): Tdec. = 

211 °C. 

 

5-(5-Azido-1H-1,2,4-triazol-3-yl)tetrazole (7) 

A solution of sodium nitrite (0.72 g, 10 mmol) in water (6.0 mL) was added dropwise to a 

suspension of 4 (1.1 g, 7.0 mmol) in sulfuric acid (25 wt%, 30 mL) at 0 °C. The mixture 
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was allowed to warm to room temperature and subsequently stirred at 40 °C for 30 

minutes. After cooling down to room temperature, a solution of sodium azide (5 eq., 

2.3 g, 35 mmol) in water (10 mL) was added dropwise. (DANGER: EVOLUTION OF 

HN3!). The suspension was stirred over night at room temperature to remove the excess 

of sodium azide and subsequently extracted with ethyl acetate (3×30 mL). The solvent 

was evaporated and 7 (0.8 g, 4.5 mmol, 64%) was obtained as a colorless solid. 
1H NMR (DMSO-d6): δ = 11.83 (s, Htriazole/tetrazole) ppm; 13C NMR (DMSO-d6): 

δ = 155.5, 148.5, 146.3 ppm; 14N NMR (DMSO-d6): δ = −143 (N8) ppm; 15N NMR 

(DMSO-d6): δ = −11.5 (N5), −97.0 (N4), −143.2 (N3), −145.2 (N7), −152.0 (N8), −294.9 

(N6) ppm; IR: ν (cm−1) (rel. int.) = 3141(m), 3055(w), 2929(w), 2862(w), 2381(vw), 

2233(vw), 2148(vs), 1754(w), 1625(m), 1559(s), 1544(s), 1493(m), 1484(s), 1412(m), 

1392(s), 1322(w), 1265(s), 1194(s), 1140(w), 1081(m), 1054(m), 1043(s), 981(s), 981(s), 

827(w), 819(w), 813(m), 811(m), 800(m), 790(m), 784(m), 775(m), 773(m), 769(m), 

764(m), 759(m), 755(m), 753(m), 743(m), 738(m), 736(m), 727(s), 710(w), 696(s); 

Raman (200 mW): ν (cm−1) (rel. int.) = 2148(7), 1627(100), 1560(8), 1485(16), 1441(4), 

1415(8), 1268(8), 1243(4), 1196(3), 1143(10), 1084(2), 1062(6), 1043(13), 1012(1), 

981(2), 801(1), 766(2), 559(3), 514(1), 412(4), 403(7), 358(5), 295(3), 295(3); Elemental 

analysis (C3H2N10): calc.: C 20.23, H 1.13, N 78.64; found: C 21.09, H 1.10, N 75.83. 

Mass spectrometry: m/z (DEI+) = 178.1 ([C3H2N10]+); Sensitivities (grain size < 

100 μm): friction: 20 N, impact:  < 1 J, ESD: 0.05 J; DSC (onset, 5 °C min−1): Tdec. = 

164 °C. 
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10. A STUDY OF 5-(1,2,4-TRIAZOL-C-YL)TETRAZOL-1-OLS: 

COMBINING THE BENEFITS OF DIFFERENT HETEROCYCLES 

FOR THE DESIGN OF ENERGETIC MATERIALS 
As published in: Chemistry – A European Journal 2013, in press. 

 

ABSTRACT: 

This study features the synthesis and full structural as well as spectroscopic 

characterization of three 5-(1,2,4-triazol-C-yl)tetrazol-1-ol compounds along with 

selected energetic moieties like nitrimino (5), nitro (6) and azido (7) groups. The 

influence of those variable energetic moieties as well as the C–C connection of a tetrazol-

1-ol and a 1,2,4-triazole on structural and energetic properties is investigated. All 

compounds were well characterized by various means, including IR and multinuclear 

NMR spectroscopy, mass spectrometry,and DSC. The molecular structures of 5–8 in the 

solid state were determined by single-crystal X-ray diffraction. The standard heats of 

formation were calculated on the CBS-4M level of theory utilizing the atomization 

energy method, revealing highly positive values for all compounds. The detonation 

parameters were calculated using the EXPLO5 program and compared to the common 

secondary explosive RDX. Additionally, the sensitivities towards impact, friction and 

electrostatic discharge were determined. The potential application of the synthesized 

compounds as energetic materials will be studied and evaluated using the experimentally 

obtained values for the thermal decomposition, the sensitivity data, as well as the 

calculated performance characteristics. 
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INTRODUCTION 

The chemistry of explosives, their development and application are as old as 220 years 

BC, when blackpowder was discovered accidentally by the Chinese. Nowadays, not only 

the application for military purposes is studied, but the utilization of energetic materials 

for civilian use in mining, construction, demolition and safety equipment such as airbags, 

signal flares and fire extinguishing systems is extensively studied. The academic research 

mainly focuses on the work with novel energetic systems to determine factors affecting 

stability and performance and to bring new strat-egies into the design of energetic 

materials.[1,2] Compared to typical explosives in current use, like 2,4,6-trinitrotoluene 

(TNT) or 1,3,5-trinitro-1,3,5-triazinane (RDX), they derive their energy upon detonation 

not from the oxidation of a carbon backbone but rather from their high heats of formation. 

This is especially the result of the contained nitrogen single and double bonds, with the 

formation of molecular dinitrogen and its very stable N–N triple bond as the main driving 

force.[3] A prominent family of novel high-energy-density materials (HEDMs) are azole-

based compounds, since they are generally highly endothermic with high densities and 

low sensitivities towards outer stimuli. Owing to the high positive heats of formation and 

the high level of environmental compatibility, those compounds have been studied in 

numerous research groups over the last couple of years with growing interest. 

Triazoles and tetrazoles have been used for the preparation of high-performance 

primary[4] and secondary[5] explosives, owing to the fact that energetic materials based on 

those heterocycles show the desirable compromise between a high nitrogen content on the 

one hand and excellent kinetic and thermal stabilities due to aromaticity on the other. 

Many research has been done on the combination of those heterocycles to bistetrazoles[6] 

and bistriazoles,[7] resulting in numerous compounds with outstanding properties as 

energetic materials. The recently published C–C connection of a tetrazole and a 1,2,4-

triazole leads to energetic materials with variable properties.[8] 

The introduction of N-oxides is a recently reintroduced method to raise the densities of 

the compounds for an even greater energy output[9]. One method for achieving this is the 

oxidation of the nitrogen-rich heterocycles with oxidizing agents like tri-fluoroperacetic 

acid,[10] potassium peroxomonosulfate (Oxone®),[11] or hypofluorous acid.[12] The often 

low selectivity and high oxidation potential of those compounds can lead to several 

isomers or even a complete decomposition of the starting material, especially when 

thinking of compounds with several oxidizable nitrogen atoms. An appropriate alternative 
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are 1-hydroxytetrazoles, owing to the fact that the oxygen atom is introduced during the 

synthesis of the tetrazole ring instead of subsequent oxidation.[13] 

 

RESULTS AND DISCUSSION 
 

SYNTHESIS 

The synthesis of the starting material 5-amino-1H-1,2,4-triazole-3-carbonitrile (1) was 

accomplished by dehydration of the corresponding carboxamide using phosphorus 

pentoxide in acetonitrile as published recently.[8] 

The energetic moieties were introduced by modification of the amine group of compound 

1 as shown in Scheme 1. 

N NH

N NH2NC

1

N NH

N H
NNC 2

N NH

N NO2NC
3

N NH

N N3NC 4

NO2

H2SO4
HNO3

H2SO4
NaNO2

H2SO4
(1) NaNO2

(2) NaN3  
Scheme 1: Synthesis of 5-nitramino-1H-1,2,4-triazole-3-carbonitrile (2), 5-nitro-1H-1,2,4-

triazole-3-carbonitrile (3) and 5-azido-1H-1,2,4-triazole-3-carbonitrile (4). 

 

The treatment of 5-amino-1H-1,2,4-triazole-3-carbonitrile with a mixture of sulfuric 

acid/nitric acid (6:1) leads to 5-nitramino-1H-1,2,4-triazole-3-carbonitrile (2). 5-Nitro-

1H-1,2,4-triazole-3-carbonitrile (3) was obtained by the well-known Sandmeyer reaction 

via diazotization in sulfuric acid and subsequent reaction with the excess of sodium 

nitrite. The azido compound (4) was as well synthesized via diazotization in sulfuric acid 

and subsequent reaction with an excess of sodium azide. 

The synthesis of the 1-hydroxytetrazole moiety was accomplished according to the 

literature known methods used for similar compounds.[13] As shown in Scheme 2, the 

reaction of hydroxylamine with the nitrile moiety of 2–4 leads to the formation of the 

corresponding amidoxime. Those intermediate compounds were not isolated but 

subsequently reacted with sodium nitrite after addition of hydrochloric acid. The 

diazotization in hydrochloric acid causes the formation of the chloroxime compounds 2a–
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4a, which were collected by filtration to remove traces of unreacted nitrile. The following 

chlorine to azide exchange readily takes place in ethanol and leads to the azidoxime 

compounds 2b–4b. The final cyclisation works best for compounds 2b and 3b in 

concentrated hydrochloric acid within 12 h and the energetic 1-hydroxytetrazole 

compounds 5–6 were isolated in excellent yields. 

Due to the high sensitivity of compound 4b, a different cyclization method was chosen in 

comparison to 2b and 3b. The extraction of the azidoxime with diethyl ether after the 

chlorine to azide exchange without evaporation of the ether avoids isolation of the pure 

and highly sensitive compound. Subsequent saturation of the ether solution with HCl gas 

and stirring for two days also leads to the formation of compound 7. After removal of the 

ether and the excess of HCl gas, 7 could also be isolated nearly quantitatively. 

Surprisingly, in the case of the azidoxime 3b, the utilization of this method selectively 

leads to the chlorine compound 8. Apparently, a nitro to chlorine exchange occurs while 

stirring 3b in a saturated solution of HCl in ether and leads to the formation of the less-

energetic, undesired chlorine compound. 

All three main 5-(1,2,4-triazol-C-yl)tetrazole-1-ol compounds 5–7 were fully 

characterized by IR and Raman as well as multinuclear NMR spectroscopy and mass 

spectrometry. The molecular structures of 5–8 in the solid state were determined by 

single-crystal X-ray diffraction. 
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Scheme 2: Synthesis of 5-(5-nitrimino-1,4H-1,2,4-triazol-3-yl)tetrazol-1-ol (NATTO, 5), 5-(3-

nitro-1H-1,2,4-triazol-5-yl)tetrazol-1-ol (NTTO, 6), 5-(5-azido-1H-1,2,4-triazol-3-yl)tetrazol-1-ol 

(AzTTO, 7) and 5-(5-chloro-1H-1,2,4-triazol-3-yl)tetrazol-1-ol (8). 
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SINGLE CRYSTAL X-RAY STRUCTURE ANALYSIS  

Single-crystal X-ray measurements were performed for compounds 5–8 and are discussed 

in the following. The crystal structure of the undesired side compound 8 can be found in 

the supporting information. The bond lengths and torsion angles within the azole ring of 

compounds 5–8 are all in the expected range in comparison to similar triazole and 

tetrazole compounds.[6a,14] The bond lengths within the triazole and the tetrazole ring in 

the crystal structures are all between the length of formal C–N and N–N single and 

double bonds (C–N: 1.47 Å, 1.22 Å; N–N: 1.48 Å, 1.20 Å).[15] As expected,[7f,16]  the 

bistriazole moiety shows a completely planar assembly due to the electron delocalization 

in the molecule, the nitrimino moiety is pointing towards the nitrogen atom N1 and 

participates in an  intramolecular hydrogen bond N1–H1•••O3 with a D•••A length of 

2.555(2)Å and a D–H•••A angle of 111.7(17)° (Figure 1). In comparison to the recently 

published 5-(5-nitrimino-1,4H-1,2,4-triazol-3-yl)-1H-tetrazole, the density is increased 

from 1.618 g cm−3 to 1.741 g cm−3 by introduction of the 1-hydroxytetrazole. The 

molecular structure of 5 together with the atom labeling is presented in Figure 1. 

 
Figure 1. Molecular structure of 5-(5-nitrimino-1,4H-1,2,4-triazol-3-yl)tetrazol-1-ol (NATTO, 5). 

Thermal ellipsoids are set to 50 % probability. Symmetry code: (i) −x, y, 3/2−z. 

 

The structure is dominated by chains along the a-axis, established by the threefold 

hydrogen bond of the oxygen atom O5 acting both as acceptor and donor. Four further 

nitrogen atoms N1, N2, N3 and N6 are involved in additional hydrogen bonds (Table 1), 

resulting in strong interactions with surrounding molecules within the chains. The water 

molecule O4 at the edge acts as linker between two chains, which are arranged in a zigzag 
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row including an angle of 141°. The rows are stacked along the b-axis with a layer 

distance d = 3.31 Å and stabilized by the intermolecular hydrogen bonds O6i–H6A···O3 

and O6i–H6B···O4. 

 
Figure 2. a) Formation of chains along the a-axis in the crystal structure of 5; b) zigzag 

arrangement of chains (layer distance d = 3.31 Å, water molecules are omitted for clarity). 

Thermal ellipsoids are set to 50 % probability Symmetry codes: (i) 1−x, y, 3/2−z; (ii) 1−x, −y, 

1−z; (iii) −x, −y, 1−z; (iv) −1+x, y, z. 

 
Table 1. Hydrogen bonds present in the crystal structure of 5. 

D–H···A d(D–H) [Å] d(H···A) [Å] d(D–H···A) [Å] < (D–H···A) [°] 

N1–H1···O2 0.82(2) 2.14(2) 2.555(2) 112(2) 

N1–H1···O2iii 0.82(2) 2.10(2) 2.890(2) 162(2) 

N3–H3···O4 0.96(2) 1.62(2) 2.576(2) 179(5) 

O1–H1··· O5 1.12(3) 1.31(3) 2.422(2) 173(2) 

O4i–H4B···N6 0.83(2) 1.95(2) 2.752(2) 165(2) 

O5ii–H5B···N2 0.95(3) 1.87(3) 2.813(2) 173(2) 

O5iv–H5A···O3 0.86(3) 1.90(3) 2.750(2) 177(3) 

O6i–H6A···O3 0.85(2) 1.98(2) 2.796(4) 160(5) 

O6i–H6B···O4 0.84(2) 2.36(4) 3.018(5) 136(4) 

Symmetry codes: (i) 1−x, y, 3/2−z; (ii) 1−x, −y, 1−z; (iii) −x, −y, 1−z; (iv) −1+x, y, z. 
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5-(3-Nitro-1H-1,2,4-triazol-5-yl)tetrazol-1-ol (NTTO, 6) crystallizes as dihydrate in the 

triclinic space group P−1 with a cell volume of 429.8(1) Å3 and two molecular moieties 

in the unit cell. As expected, the torsion angle between the two heterocycles is very small 

(7.5(3)°), the nitro group is also only slightly twisted out of the triazole plane (−2.4(3)°). 

As it is also the case for the nitrimino compound 5, the density is increased from 

1.661 g cm−3 to 1.809 g cm−3 in comparison to 5-(3-nitro-1H-1,2,4-triazol-5-yl)-2H-

tetrazole. The formula unit of 6 together with the atom labeling is presented in Figure 3. 

 
Figure 3. Molecular structure of 5-(3-nitro-1H-1,2,4-triazol-5-yl)tetrazole-1-ol (NTTO, 6). 

Thermal ellipsoids are set to 50 % probability. Symmetry code: (i) 1−x, −y, 1−z. 

 

In the crystal structure of 6, the NTTO molecules are arranged in planes and are kept 

together by several threefold hydrogen bonds with the water molecules (Figure 4a). A 

direct interaction between two NTTO molecules could not be observed, in contrast to the 

crystal structure of compound 5. A strong network of hydrogen bonds is built up by the 

Oxygen atoms O4 and O5, which act both as donor and acceptor. The layers are are 

connected by a short contact O1···N8 (d(O···N) = 3.03 Å) between the hydroxy group and 

the nitrogen atom of the nitro group and stacked above each other with a layer distance of 

d = 2.99 Å. The stacking of the layers is displayed in Figure 4b together with the distance 

d between the layers. 
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Figure 4. a) Formation of planes in the crystal structure of 6; b) stacking of layers (layer distance 

d = 2.99 Å, water molecules are omitted for clarity). Thermal ellipsoids are set to 50 % 

probability. Symmetry codes: (i) 2−x, 1−y, 1−z; (ii) 1−x, −y, 1−z; (iii) x, −1+y, z; (iv) 2−x, 1−y, −z; 

(v) 1−x, −y, −z. 

 
Table 2. Hydrogen bonds present in the crystal structure of 6. 

D–H···A d(D–H) [Å] d(H···A) [Å] d(D–H···A) [Å] < (D–H···A) [°] 

N1–H1···O5ii 0.97(3) 1.70(3) 2.663(2) 170(2) 

O1–H1··· O4 1.06(3) 1.42(3) 2.471(2) 173(3) 

O4iv–H4A ···N3 0.85(3) 2.11(3) 2.948(2) 170(3) 

O4i–H4B···N6 0.86(3) 2.07(3) 2.922(3) 176(3) 

O5v–H5A···O2 0.82(3) 2.28(3) 3.065(2) 160(3) 

O5iii–H5B···N2 0.89(3) 2.09(3) 2.971(3) 171(2) 

Symmetry codes: (i) 2−x, 1−y, 1−z; (ii) 1−x, −y, 1−z; (iii) x, −1+y, z; (iv) 2−x, 1−y, −z; (v) 1−x, −y, −z. 

 

Finally, 5-(5-azido-1H-1,2,4-triazol-3-yl)tetrazol-1-ol (AzTTO, 7) crystallizes as a 

monohydrate in the triclinic space group P−1 with two molecules in the unit cell and a 

cell volume of 416.35(9) Å³. The formula unit of 7 together with the atom labeling is 

presented in Figure 5. The structure of the 5-azido-1,2,4-triazole moiety is similar to that 
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of the recently published 5-(5-azido-1H-1,2,4-triazol-3-yl)tetrazole.[8] The molecule 

shows a nearly planar assembly with a torsion angle between the two heterocycles of 

2.9(2)°. The azide group is bent with an angle of 172.1(2)° and slightly twisted out of the 

triazole plane by −7.3(2)°. In contrast to the nitro derivative 6 the proton is located at the 

nitrogen atom next to the C–N bond, similar to 5 and 4. The oxygen and the azide are 

pointing into the same direction, similar to the chloroxime precursor 4a.[17] 

 
Figure 5. Molecular structure of 5-(5-azido-1H-1,2,4-triazol-3-yl)tetrazol-1-ol (AzTTO, 7). 

Thermal ellipsoids are set to 50 % probability. Symmetry code: (i) x, y, 1+z. 

 

The molecules are forming dimers between two triazole rings with a very weak and 

mostly electrostatic N1–H1···N2ii hydrogen bond (d(N1···N2ii): 3.175(2) Å). This is 

similar to the precursor 4, but there the bond is much stronger (d(N1···N2i): 

2.993(2) Å).[17] The dimers in turn are forming endless parallel chains utilizing the water 

molecule and with N6 and N7 of the tetrazole ring acting as additional acceptors. The 

connection between the chains is established by a directed Nγ···O interaction between the 

terminal nitrogen atom of the azide and the hydroxyl group (d(N10···O1iv): 2.879(2) Å; 

d(N9–N10···O1v): 166.7(1)°) well below the sum of the van der Waals radii. The primary 

hydrogen bonding network and the short contact are illustrated in Figure 6 and the 

parameters are compiled in Table 3. Finally, the planes are connected by a strong 

hydrogen bond O1–H1O···O2i between the hydroxyl proton and the water molecule. 



CHAPTER 10____________________________________________________________________ 

| 204 

 
Figure 6: Formation of planes in the crystal structure of 7, made up from infinite parallel chains. 

Thermal ellipsoids at 50 % probability. Symmetry codes: (ii) −x, 1−y, 1−z; (iii) x, 1+y, 1+z; (iv) 

1−x, −y, 2−z. 

 

Table 3. Hydrogen bonds present in the crystal structure of 7. 

D–H···A d(D–H) [Å] d(H···A) [Å] d(D–H···A) [Å] < (D–H···A) [°] 

N1–H1···O2 0.91(2) 2.07(2) 2.824(2) 140(2) 

N1–H1···N2ii 0.91(2) 2.51(2) 3.175(2) 130(2) 

O1–H1O···O2i 0.97(3) 1.61(3) 2.574(2) 175(3) 

O2–H2A···N7ii 0.87(2) 1.94(2) 2.805(2) 170(2) 

O2–H2B···N6v 0.85(2) 1.99(2) 2.838(2) 177(2) 
Symmetry code: (ii) −x, 1−y, 1−z; (iii) x, 1+y, 1+z; (iv) 1−x, −y, 2−z. (v) x, −1+y, −1+z. 

 
 
MULTINUCLEAR NMR SPECTROSCOPY  

All title compounds were investigated using 1H, 13C and 14N NMR spectroscopy. Due to 

insufficient solubility of compound 5 15N NMR spectra could only be obtained for 

compounds 6 and 7. Compounds 5–8 show two singlets for the carbon atoms of the C–C 

bridge in the expected range.[5c,14b] The signal of the carbon atom connected to the 

energetic moieties is observed at lower field in the range of 148.9 ppm (8) to 163.2 ppm 

(6). While the nitro group of compounds 5 and 6 can be identified by a sharp singlet at 

−24 ppm (6) and −25 ppm (5) in the 14N NMR spectra, the azido moiety of compound 7 

shows a broad singlet at −136 ppm. The NMR signals of all compounds are summarized 

in Table 4. 
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Table 4. NMR signals of compounds 4–8 in DMSO-d6. 

compound 
δ [ppm] 

13C{1H} CTriazole 13C{1H}CTetrazole
 14N 1H 

5 152.5, 140.5 138.7 −25 7.10 

6 163.2, 143.3 138.0 −24 8.09 

7 155.2, 144.6 139.7 −136 9.51 

8 148.9, 144.8 139.0 / 9.62 

 

Due to the insufficient solubility of compound 5, 15N NMR spectra could only be 

obtained for compounds 6 and 7, as illustrated in Figure 7. Eight well resolved resonances 

are observed in the 15N NMR spectrum of the nitro-compound 6. The assignments were 

based on comparison with theoretical calculations using Gaussian 09 (MPW1PW91/aug-

cc-pVDZ).[18]  

 
Figure 7. 15N NMR spectra of 5-(3-nitro-1H-1,2,4-triazol-5-yl) tetrazol-1-ol (6) and 5-(5-azido-

1H-1,2,4-triazol-3-yl) tetrazol-1-ol (7) recorded in DMSO-d6. The x-axis represents the chemical 

shift δ  in ppm. 



CHAPTER 10____________________________________________________________________ 

| 206 

The signals of the triazole nitrogen atoms as well as the nitro group can be found in the 

expected range similar to the recently published 5-(3-nitro-1H-1,2,4-triazol-5-yl)-2H-

tetrazole,[8] at shifts of −157.7 (N1), −91.2 (N2), −139.9 (N3), and −28.5 ppm (NO2). In 

contrast to this, the azido-compound 7 shows only eight well resolved resonances instead 

of the expected ten, similar to 5-(5-azido-1H-1,2,4-triazol-3-yl)tetrazole.[8] The two 

missing signals are the triazole nitrogen atoms N1 and N2, probably resulting from a fast 

proton exchange. The remaining signals are at shifts of −150.8 (N3), −295.3 (N8), −145.6 

(N9), and −144.0 ppm (N10). The signals of the tetrazol-1-ol are similar for both 

compounds and to 5,5′-bis(tetrazol-1-ol),[19] and found at −112.8 (N4), −17.2 (N5), −4.2 

(N6), and −54.8 ppm (N7) for 6 and at −117.8 (N4), −18.1 (N5), −4.1 (N6), and 

−55.3 ppm (N7) for 7, respectively. 

 

THEORETICAL CALCULATIONS, PERFORMANCE CHARACTERISTICS AND STABILITIES   

The heats of formation of 5–7 and RDX have been calculated on the CBS-4M level of 

theory using the atomization energy method and utilizing experimental data (for further 

details and results refer to the Supporting Information). The results are summarized in 

Table 5. All compounds show highly endothermic enthalpies of formation with 

446 kJ mol−1 (6), 515 kJ mol−1 (5) and 795 kJ mol−1 (7), all by far outperforming RDX 

(85 kJ mol−1). To estimate the detonation performances of the prepared compounds 

selected key parameters were calculated with EXPLO5 (version 5.05),[20] and compared 

to RDX. The calculated detonation parameters using experimentally determined densities 

(gas pycnometry at 25 °C with dried compounds) and above mentioned heats of 

formation are summarized in Table 5. All three compounds 5–7 show lower detonation 

velocities and pressures than RDX, although all have (much) higher heats of formation 

and comparable densities. 

The thermal stabilities of the title compounds 5–7 were analyzed by differential scanning 

calorimetry with a heating rate of 5 °C min−1 (Figure 8). The compounds were dried 

before the measurements at 60 °C (5, 7) or 110 °C (6), respectively, to remove moisture 

and crystal water. The determined thermal stabilities are rather low with decomposition 

beginning at 116 °C (5), 144 °C (7) and 152 °C (6). The azide derivative 7 is the only one 

to feature a melting point, starting at 83 °C. While the decomposition point of 7 is almost 

identical to the derivative lacking the nitrogen bound hydroxyl group, except for the 

missing melting point of the latter, 6 and especially 5 are much less thermally stable 

(NTT: 211 °C; NATT: 215 °C).[8] This trend is similar to those reported for 5-nitro-2H-
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tetrazole vs. 5-nitrotetrazol-2-ol,[21] and 5,5′-bistetrazole vs. 5,5′-bis(tetrazol-1-ol) and 

5,5′-bis(tetrazol-2-ol).[22] As with the bistetrazoles, deprotonation of the hydroxyl group 

should clearly raise the thermal stabilities if paired with the right cation. For example 

while neutral 5,5′-bis(tetrazol-2-ol) decomposes at 165 °C its ammonium salt is stable up 

to 265 °C and the guanidinium salt even until 331 °C.[22] 

 
Figure 8. DSC plots of NATTO (5), NTTO (6) and AzTTO (7) with a heating rate of 5 °C min−1. 

 

For an initial safety testing the impact and friction sensitivities as well as the sensitivity 

towards electrostatic discharge of compounds 5–7 were determined and assigned 

according to the UN recommendations on the transport of dangerous goods.[23] All 

compounds have been dried beforehand (same temperatures as before). Interestingly, the 

nitrimino derivative 5 is the most sensitive of the three compounds and has to be 

classified as very sensitive against both impact (< 1 J) and friction (60 N). While the 

azido derivative 7 is sensitive against both impact (4 J) and friction (120 N), the nitro 

derivative is almost insensitive (35 J, 360 N). Concerning the sensitivities towards 

electrostatic discharge both nitro substituted compounds 5 and 6 are more sensitive than 

7, with 130 mJ (5 and 6) and 260 mJ (7), respectively. 
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Table 5. Physicochemical properties of compounds 5–7 and hexogen (RDX). 

 NATTO (5) NTTO (6) AzTTO (7) RDX [o] 

Formula C3H3N9O3 C3H2N8O3 C3H2N10O C3H6N6O6 

M [g mol−1] 213.11 198.10 194.11 222.10 

IS [J] [a] < 1 35 4 7.4 

FS [N] [b] 60 360 120 120 

ESD [mJ] [c] 130 130 260 200 

N [%] [d] 59.2 56.6 72.2 37.8 

Ω [%] [e] −33.8 −32.3 −49.4 −21.6 

Tdec. [°C] [f] 116 152 144 204 

ρ [g cm−3] [g] 1.85 1.86 1.69 1.80 

∆fH° [kJ mol−1] [h] 515 446 795 85 

∆fU° [kJ kg−1] [i] 2502 2335 4180 481 

Calculated detonation parameters (EXPLO5 V5.05) 

−Qv [kJ kg−1] [j] 5470 5407 5360 6186 

Tex. [°C] [k] 4126 4217 4207 4260 

pC–J [kbar] [l] 342 337 275 353 

D [m s−1] [m] 8776 8655 8239 8787 

V0 [L mol−1] [n] 708 677 693 738 

[a] Impact sensitivity; [b] friction sensitivity; [c] sensitivity against electrostatic discharge; [d] nitrogen 

content; [e] oxygen balance; [f] decomposition temperature (DSC, 5 °C min−1); [g] density (25 °C); [h] 

calculated solid state enthalpy of formation; [i] calculated solid state energy of formation; [j] energy of 

explosion; [k] explosion temperature; [l] detonation pressure; [m] detonation velocity; [n] volume of 

gaseous detonation products; [o] taken from  the literature.[24] 

 

The calculated detonation velocities are  8776 m s–1 (5),  8655 m s–1 (6) and 8239 m s–1 

(7). In comparison to the corresponding compounds bearing no hydroxyl group at the 

tetrazole ring,[8] a marked performance increase is seen. The detonation velocities 

increase in the range from 350 ms–1 (7) to about 650 ms–1 (5 and 6). The introduction of 

the N-Oxide also positively influences other detonation parameters like the detonation 

pressure or the energy of explosion, which are also a remarkably increased. 
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CONCLUSION 
The recently introduced 5-amino-1H-1,2,4-triazole-3-carbonitrile (1) was further 

derivatized to the nitrimino (2), nitro (3) and azido (4) compounds, which in turn were 

cyclized to the respective tetrazol-1-ols 5–7 via the amidoxime, chloroxime and 

azidoxime intermediates, utilizing adapted literature-known methods. This innovative 

synthesis leads to the previously unknown C–C connection of a triazole ring with a 

tetrazol-1-ol ring.  

Those different energetic groups containing oxygen or nitrogen and the concept of 

combining the benefits of two different azoles lead to variable energetic properties. In 

general, the combination of a triazole ring with its opportunity to introduce a large variety 

of energetic moieties and a 1-hydroxytetrazole ring implying a large energy content leads 

to the selective synthesis of precursors for nitrogen-rich ionic primary and secondary 

explosives. All energetic compounds have been fully characterized by means of 

vibrational and multinuclear NMR spectroscopy, mass spectrometry and differential 

scanning calorimetry. Single-crystal X-ray measurements were accomplished for 

compounds 5–8 and deliver insight into structural characteristics as well as inter- and 

intramolecular interactions.  

As expected, the nitrimino (5) as well as the azido-compound (7) are the most sensitive 

derivatives with an impact sensitivity of less than 1 J and 4 J, respectively, and friction 

sensitivities of 60 N (5) and 120 N (7). In contrast, the nitro-derivative (6) shows 

moderate sensitivities towards friction (360 N) and impact (35 J). Compounds 5–7 are 

able to compete with commonly used TNT regarding their detonation parameters, 

however, the performance data for RDX are not reached. But, taking into account the 

high nitrogen contents of 59.2 % (5), 56.6 % (6) and 72.2 % (7) and high heats of 

formation, those compounds could be considered as nitrogen-rich environmentally-

friendly primary explosives with proper metal cations (7), or be of interest as secondary 

explosive or propellant ingredient in combination with nitrogen-rich cations (5 and 6), 

respectively. 
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EXPERIMENTAL SECTION 
Caution! Due to the fact that energetic triazole- and tetrazole compounds are to some 

extend rather unstable against outer stimuli, proper safety precautions should be taken  

when handling the dry materials. Especially derivatives of azido- and nitrimino-triazoles 

are energetic primary materials and tend to explode under the influence of impact or 

friction. Lab personnel and the equipment should be properly grounded and protective 

equipment like earthed shoes, leather coat, Kevlar® gloves, ear protection and face shield 

is recommended for the handling of any energetic material.  

General. All chemical reagents and solvents were obtained from Sigma-Aldrich Inc. or 

Acros Organics (analytical grade) and were used as supplied without further purification. 
1H, 13C{1H}, 14N and 15N NMR spectra were recorded on a JEOL Eclipse 400 instrument 

in DMSO-d6 at 25 °C. The chemical shifts are given relative to tetramethylsilane (1H, 
13C) or nitro methane (14N, 15N) as external standards and coupling constants are given in 

Hertz (Hz). Infrared (IR) spectra were recorded on a PerkinElmer BX FT IR spectrometer 

equipped with a Smiths DuraSamplIR II diamond ATR unit. Transmittance values are 

qualitatively described as “very strong” (vs), “strong” (s), “medium” (m), “weak” (w) and 

“very weak” (vw). Raman spectra were recorded on a Bruker RAM II spectrometer 

equipped with a Nd:YAG laser (200 mW) operating at 1064 nm and a reflection angle of 

180°. The intensities are reported as percentages of the most intense peak and are given in 

parentheses. Low resolution mass spectra were recorded on a JEOL MStation JMS-700 

with 4-nitrobenzyl alcohol as matrix for FAB measurements. Elemental analyses (CHN) 

were performed with an Elementar Vario EL. Melting and decomposition points were 

determined by differential scanning calorimetry (Linseis DSC-PT10, calibrated with 

standard pure indium and zinc). Measurements were performed at a heating rate of 

5 °C min−1 in closed aluminum sample pans with a 0.1 mm hole in the lid for gas release 

to avoid an unsafe increase in pressure under a nitrogen flow of 20 mL min−1 with an 

empty identical aluminum sample pan as a reference. Melting points were checked with a 

Büchi Melting Point B-540 in open glass capillaries. 

For initial safety testing, the impact and friction sensitivities as well as the electrostatic 

sensitivities were determined. The impact sensitivity tests were carried out according to 

STANAG 4489,[25] modified according to WIWeB instruction 4-5.1.02[26] using a 

BAM[27] drop hammer. The friction sensitivity tests were carried out according to 

STANAG 4487[28] and modified according to WIWeB instruction 4-5.1.03[29] using the 
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BAM friction tester. The electrostatic sensitivity tests were accomplished according to 

STANAG 4490[30] using an electric spark testing device ESD 2010 EN (OZM Research). 

Crystallographic measurements. The single-crystal X-ray diffraction data of 5–8 were 

collected using an Oxford Xcalibur3 diffractometer equipped with a Spellman generator 

(voltage 50 kV, current 40 mA), Enhance molybdenum Kα radiation source (λ = 

71.073 pm), Oxford Cryosystems Cryostream cooling unit, four circle kappa platform and 

a Sapphire CCD detector. Data collection and reduction were performed with 

CrysAlisPro.[31] The structures were solved with SIR97,[32] refined with SHELXL-97,[33] 

and checked with PLATON,[34] all integrated into the WinGX software suite.[35] The 

finalized CIF files were checked with checkCIF.[36] Intra- and intermolecular contacts 

were analyzed with Mercury.[37] CCDC 926336 (5), 926337 (6), 926338 (7, 173 K), 

926339 (7, 298 K) and 926340 (8) contain the supplementary crystallographic data for 

this paper. These data can be obtained free of charge from the Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

5-Amino-1H-1,2,4-triazole-3-carbonitrile (1),[8] 5-azido-1H-1,2,4-triazole-3-carbonitrile 

(4) and 5-azido-1H-1,2,4-triazole-3-chloroxime (4a) were prepared according to the 

literature.[17] 

 

5-Nitramino-1H-1,2,4-triazole-3-carbonitrile (2): Nitric acid (100 %, 3.3 mL) was 

added slowly to a solution of 5-amino-1H-1,2,4-triazole-3-carbonitrile (1, 2.2 g, 

20 mmol) in concentrated sulfuric acid (20 mL) at 0 °C. The mixture was stirred at 0 °C 

for one hour, poured on ice (250 g) and extracted with ethyl acetate (3 × 100 mL). The 

combined organic phases were dried over magnesium sulfate and the solvent was 

removed in vacuum to yield a colorless powder (2.7 g, 18 mmol, 87 %). 1H nmr (DMSO-

d6): δ = 14.40 (s, Htriazole) ppm. 13C nmr (DMSO-d6): δ = 151.1 (C–NNO2), 135.7 (C–

CN), 112.9 (CN) ppm. 14N nmr (DMSO-d6): δ = −32 (NNO2) ppm. IR: ν (rel. int.) = 

3137(w), 2797(w), 2265(vw), 1716(w), 1614(m), 1569(m), 1516(m), 1468(w), 1354(w), 

1323(s), 1263(vs), 1185(w), 1144(m), 1099(s), 1032(w), 1015(w), 1005(m), 868(m), 

864(m), 838(w), 769(m), 758(m), 733(vs), 733(vs), 721(s), 679(s) cm−1. Raman 

(200 mW): ν (rel. int.) = 2266(43), 1722(1), 1641(2), 1565(20), 1535(9), 1473(15), 

1367(6), 1324(4), 1268(4), 1147(4), 1116(2), 1094(2), 1041(12), 1017(3), 1005(6), 

847(1), 758(2), 684(1), 625(2), 567(1), 487(6), 432(4), 362(3), 362(3), 220(3) cm−1. 
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Elemental analysis (C3H2N6O2): calc.: C 23.38, H 1.31, N 54.54 %; found: C 23.17, 

H 1.49, N 51.78 %. Mass spectrometry: m/z (DEI+) = 154.1 ([C3H2N6O2]+). 

Sensitivities (grain size < 100 μm): friction: 360 N; impact: 6 J; ESD: 0.2 J. DSC (5 °C 

min−1): Tdec. = 130 °C. 

 

5-Nitramino-1H-1,2,4-triazole-3-chloroxime (2a): Hydroxylamine (50 wt% in water, 

1.2 eq., 1.4 mL) was added to a solution of 2 (2.7 g, 18 mmol) in water (30 mL). The 

clear solution was stirred at 70 °C for 30 minutes. The mixture was acidified with 

hydrochloric acid (37 %, 30 mL) and cooled to 0 °C. A solution of sodium nitrite (1.5 eq., 

1.9 g, 27 mmol) in water (15 mL) was added dropwise and the solution was subsequently 

stirred for two hours at room temperature. The precipitate was collected by filtration, 

washed with cold water and dried in air to yield a pale yellow powder (3.1 g, 15 mmol, 

83 %). 1H nmr (DMSO-d6): δ = 14.44 (s, 1H, Htriazole), 13.31 (s, 1H, NHNO2), 6.16 (s, 

1H, NOH) ppm. 13C nmr (DMSO-d6): δ = 153.5 (C–NNO2), 144.5 (C–CNOHCl), 125.4 

(CNOHCl) ppm. 14N nmr (DMSO-d6): δ = −19 (NNO2) ppm. IR: ν (rel. int.) = 3430(w), 

3336(w), 2987(w), 2836(w), 2604(w), 1616(m), 1585(m), 1547(m), 1503(w), 1451(w), 

1420(w), 1289(s), 1220(vs), 1131(m), 1089(w), 1049(w), 1024(m), 1015(m), 998(s), 

925(s), 853(m), 777(m), 759(w), 759(w), 745(w), 729(m), 669(m) cm−1. Raman 

(200 mW): ν (rel. int.) = 1614(47), 1586(48), 1557(100), 1507(9), 1463(3), 1297(5), 

1219(8), 1137(11), 1118(6), 1057(4), 993(37), 922(3), 875(4), 857(11), 759(25), 673(6), 

518(3), 489(3), 430(2), 407(2), 318(4), 246(5), 226(5), 226(5), 219(5) cm−1. Mass 

spectrometry: m/z (FAB−) = 205.2 ([C3H2N6O3Cl]−). Sensitivities (grain size 

< 100 μm): friction: 240 N; impact: 5 J. DSC (5 °C min−1): Tdec. = 126 °C. 

 

5-Nitramino-1H-1,2,4-triazole-3-azidoxime (2b): A solution of sodium azide (1.3 g, 

20 mmol) in water (8 mL) was added dropwise to a solution of 2a (3.1 g, 15 mmol) in 

ethanol (100 mL). The suspension was stirred at room temperature for 12 hours and 

subsequently poured on 2 m HCl (400 mL). The clear solution was extracted with ethyl 

acetate (3 × 100 mL), the combined organic phases were dried over magnesium sulfate 

and the solvent was removed in vacuum to yield a colorless powder (3.0 g, 14 mmol, 

93 %). 1H nmr (DMSO-d6): δ = 14.23 (s, 1H, Htriazole), 12.46 (s, 1H, NHNO2), 10.00 (s, 

1H, NOH) ppm. 13C nmr (DMSO-d6): δ = 153.6 (C–NNO2), 143.3 (C–CNOHN3), 133.6 

(CNOHN3) ppm. 14N nmr (DMSO-d6): δ = −18 (NO2), −147 (N3) ppm. IR: ν (rel. int.) = 
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3426(w), 3199(w), 2153(m), 2102(w), 1695(w), 1621(m), 1595(m), 1557(s), 1512(m), 

1462(m), 1388(w), 1305(s), 1266(m), 1253(m), 1218(vs), 1131(m), 1094(w), 1044(m), 

1007(s), 996(s), 987(m), 940(w), 924(m), 924(m), 862(m), 773(w), 730(w), 688(w), 

667(w) cm−1. Raman (200 mW): ν (rel. int.) = 2263(3), 2157(4), 2107(2), 1622(59), 

1600(16), 1559(100), 1514(9), 1473(5), 1308(7), 1222(5), 1134(8), 1076(6), 1058(3), 

1052(2), 998(13), 985(18), 943(2), 864(12), 761(15), 520(2), 486(3), 419(3), 332(4), 

332(4), 280(4), 236(6) cm−1. Mass spectrometry: m/z (FAB−) = 212.1 ([C3H2N9O3]−). 

Sensitivities (grain size < 100 μm): friction: 80 N; impact: 4 J; ESD: 0.13 J. DSC (5 °C 

min−1): Tdec. = 66 °C. 

 

5-(5-Nitrimino-1,4H-1,2,4-triazol-3-yl)tetrazol-1-ol (NATTO, 5): A solution of 2b 

(3.0 g, 14 mmol) in concentrated hydrochloric acid (50 mL) was stirred at room 

temperature for 10 hours. The clear solution was poured on ice and extracted with ethyl 

acetate (3 × 100 mL), the combined organic phases were dried over magnesium sulfate 

and the solvent was removed in vacuum to yield a colorless solid (2.8 g, 13 mmol, 94 %). 
1H nmr (DMSO-d6): δ = 7.10 (s, Htriazole) ppm. 13C nmr (DMSO-d6): δ = 152.5 (C–

NNO2), 140.5 (Ctriazole), 138.7 (Ctetrazole) ppm. 14N nmr (DMSO-d6): δ = −25 (NNO2) ppm. 

IR: ν (rel. int.) = 3607(w), 3398(w), 3186(w), 1650(w), 1605(m), 1583(m), 1550(w), 

1519(m), 1469(m), 1407(w), 1317(s), 1243(vs), 1202(s), 1138(w), 1089(w), 1061(w), 

999(w), 958(m), 923(w), 868(w), 799(w), 774(m), 717(m), 717(m), 684(m) cm−1. Raman 

(200 mW): ν (rel. int.) = 1648(100), 1596(48), 1579(47), 1532(11), 1521(12), 1481(3), 

1420(2), 1336(2), 1267(7), 1154(4), 1129(15), 1115(16), 1012(28), 973(4), 877(5), 

775(2), 762(7), 746(4), 738(7), 499(2), 446(2), 423(3), 292(2), 292(2), 257(8) cm−1. 

Elemental analysis (C3H3N9O3): calc.: C 16.91, H 1.42, N 59.15 %; found: C 17.32, 

H 1.59, N 56.77 %. Mass spectrometry: m/z (FAB−) = 212.2 ([C3H2N9O3]−). 

Sensitivities (grain size: < 100 μm): friction: 60 N; impact: < 1 J; ESD: 0.13 J. DSC 

(5 °C min−1): Tdec. = 116 °C. 

 

3-Nitro-1H-1,2,4-triazole-5-carbonitrile (3): A solution of 5-amino-1H-1,2,4-triazole-3-

carbonitrile (1, 2.2 g, 20 mmol) in 20 % sulfuric acid (40 mL,) was added dropwise to a 

solution of sodium nitrite (10 eq., 14 g, 22 mmol) in water (40 mL) at 0 °C. The mixture 

was subsequently stirred at 40 °C for 30 minutes. After cooling down to room 

temperature the mixture was acidified with sulfuric acid (20 %) until no evolution of 
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nitrogen dioxide could be observed. The aqueous solution was extracted with ethyl 

acetate (3 × 50 mL), the combined organic phases were dried over magnesium sulfate and 

the solvent was removed in vacuum to yield an orange solid (2.6 g, 18 mmol, 92 %). 
1H nmr (DMSO-d6): δ = 15.56 (s, 1H, Htriazole) ppm. 13C nmr (DMSO-d6): δ = 161.3 (C–

NO2), 135.2 (C–CN), 111.6 (CN) ppm. 14N nmr (DMSO-d6): δ = −29 (NO2) ppm. IR: ν 

(rel. int.) = 3141(w), 2263(vw), 1692(w), 1561(vs), 1530(m), 1484(w), 1427(s), 1374(m), 

1314(vs), 1258(w), 1176(w), 1048(m), 1013(m), 838(vs), 708(m) cm−1. Raman 

(200 mW): ν (rel. int.) = 2266(100), 2212(1), 1577(5), 1566(5), 1527(3), 1486(3), 

1451(81), 1419(13), 1380(19), 1319(13), 1188(14), 1059(15), 1017(4), 841(4), 775(3), 

712(5), 639(1), 569(1), 504(3), 472(7), 406(5), 264(3), 255(4), 255(4) cm−1. Elemental 

analysis (C3HN5O2): calc.: C 25.91, H 0.72, N 50.36 %; found: C 26.40, H 0.88, 

N 49.86 %. Mass spectrometry: m/z (DEI+) = 139.0 ([C3HN5O2]+). Sensitivities (grain 

size < 100 μm): friction: 360 N; impact: 40 J. DSC (5 °C min−1): Tdec. = 196 °C. 

 

3-Nitro-1H-1,2,4-triazole-5-chloroxime (3a): Hydroxylamine (50 wt% in water, 1.2 eq., 

1.4 mL) was added to a solution of 3 (2.6 g, 18 mmol) in water (20 mL). The clear 

solution was stirred at 70 °C for 30 minutes. The mixture was acidified with hydrochloric 

acid (37 %, 20 mL) and cooled to 0 °C. A solution of sodium nitrite (1.5 eq., 1.9 g, 

27 mmol) in water (10 mL) was added dropwise and the solution was subsequently stirred 

for two hours at room temperature. The precipitate was collected by filtration, washed 

with cold water and dried in air to yield a pale yellow powder (2.8 g, 15 mmol, 82 %). 
1H nmr (DMSO-d6): δ = 13.39 (s, 1H, Htriazole), 6.04 (s, 1H, NOH) ppm. 13C nmr 

(DMSO-d6): δ = 162.3 (C–NO2), 149.9 (C–CNOHCl), 125.3 (CNOHCl) ppm. 14N nmr 

(DMSO-d6): δ = −27 (NO2) ppm. IR: ν (rel. int.) = 3575(w), 3358(w), 3215(w), 2454(w), 

1845(w), 1578(w), 1555(m), 1482(s), 1400(m), 1336(w), 1322(m), 1178(w), 1100(s), 

1040(m), 1023(vs), 920(s), 844(m), 751(m), 728(m), 662(w) cm−1. Raman (200 mW): ν 

(rel. int.) = 1609(76), 1587(26), 1556(22), 1506(14), 1485(100), 1468(55), 1425(46), 

1403(28), 1339(15), 1324(27), 1179(24), 1104(3), 1041(35), 1025(14), 924(12), 848(8), 

775(6), 731(7), 662(12), 580(5), 544(8), 455(14), 373(5), 373(5), 349(10), 270(7), 

251(12), 225(28) cm−1. Mass spectrometry: m/z (DEI+) = 191.1 ([C3H2N5O3Cl]+). 

Sensitivities (grain size < 100 μm): friction: 360 N; impact: 40 J; ESD: 0.2 J. DSC (5 °C 

min−1): Tdec. = 195 °C. 
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3-Nitro-1H-1,2,4-triazole-5-azidoxime (3b): A solution of sodium azide (1.3 g, 

20 mmol) in water (8 mL) was added dropwise to a solution of 3a (2.8 g, 15 mmol) in 

ethanol (50 mL). The suspension was stirred at room temperature for two hours and 

subsequently poured on 2 m HCl (200 mL). The clear solution was extracted with ethyl 

acetate (3 × 80 mL), the combined organic layers were dried over magnesium sulfate and 

the solvent was removed in vacuum to yield a colorless powder (2.8 g, 14 mmol, 93 %). 
1H nmr (DMSO-d6): δ = 12.61 (s, Htriazole) ppm. 13C nmr (DMSO-d6): δ = 162.5 (C–

NO2), 148.7 (C-CNOHN3), 133.4 (CNOHN3) ppm. 14N nmr (DMSO-d6): δ = −26 (NO2), 

−146 (N3) ppm. IR: ν (rel. int.) = 3391(w), 3192(w), 2568(w), 2488(w), 2162(m), 

2115(m), 1886(w), 1684(m), 1620(m), 1587(w), 1556(s), 1478(m), 1401(m), 1378(m), 

1339(m), 1317(m), 1292(s), 1275(s), 1178(m), 1120(s), 1038(m), 1013(m), 938(vs), 

938(vs), 861(m), 834(m), 777(w), 749(w), 733(m) cm−1. Raman (200 mW): ν (rel. int.) = 

2988(8), 2977(7), 2946(18), 2170(9), 2122(7), 1689(7), 1623(84), 1591(33), 1567(25), 

1514(8), 1489(99), 1415(31), 1320(23), 1280(16), 1185(17), 1116(5), 1040(23), 

1008(14), 943(13), 864(8), 852(5), 841(7), 777(4), 777(4), 739(5), 637(4), 458(12), 

383(5), 369(9), 361(9), 293(18), 253(10), 207(3) cm−1. Mass spectrometry: m/z (DEI+) 

= 198.1 ([C3H2N8O3]+). Sensitivities (grain size < 100 μm): friction: 240 N; impact: 20 J. 

DSC (5 °C min−1): Tdec. = 124 °C. 

 

5-(3-Nitro-1,2,4-1H-triazol-5-yl)tetrazol-1-ol (NTTO, 6): A solution of 3b (2.8 g, 

14 mmol) in concentrated hydrochloric acid (50 mL) was stirred at room temperature for 

10 hours. The clear solution was poured on ice and extracted with ethyl acetate 

(3 × 100 mL). The combined organic layers were dried over magnesium sulfate and the 

solvent was removed in vacuum to yield a colorless solid (2.6 g, 13 mmol, 94 %). 
1H nmr (DMSO-d6): δ = 14.15 (s, 1H, Htriazole), 8.30 (s, 1H, OH) ppm. 13C nmr (DMSO-

d6): δ = 163.2 (C–NO2), 143.3 (Ctriazole), 138.0 (Ctetrazole) ppm. 14N nmr (DMSO-d6): δ = 

−24 (NO2) ppm. 15N nmr (DMSO-d6): δ = −4.2 (N6), −17.2 (N5), −28.5 (N8), −54.8 

(N7), −91.2 (N2), −112.8 (N4), −139.9 (N3), −157.7 (N1) ppm. IR: ν (rel. int.) = 

3585(w), 3144(w), 2916(w), 2848(w), 2608(w), 1908(vw), 1691(m), 1620(w), 1555(s), 

1520(m), 1472(m), 1411(s), 1309(vs), 1239(m), 1188(m), 1092(w), 1028(w), 1011(w), 

983(s), 931(m), 836(s), 737(w), 709(w), 709(w), 666(w) cm−1. Raman (200 mW): ν (rel. 

int.) = 1674(41), 1622(100), 1610(92), 1556(19), 1521(33), 1513(38), 1488(29), 

1477(29), 1442(61), 1414(76), 1359(27), 1338(10), 1312(15), 1292(8), 1277(12), 
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1246(44), 1202(23), 1191(59), 1161(5), 1147(21), 1098(38), 1031(12), 1015(34), 

1015(34), 984(8), 847(4), 773(7), 747(20), 739(18), 563(5), 503(3), 398(12), 337(6), 

303(5), 247(4), 230(6), 216(4) cm−1. Elemental analysis (C3H2N8O3×H2O): calc.: 

C 16.67, H 1.87, N 51.58 %; found: C 19.47, H 1.87, N 50.13 %. Mass spectrometry: 

m/z (FAB−) = 197.3 ([C3HN8O3]−). Sensitivities (anhydrous, grain size < 100 μm): 

friction: 360 N; impact: 35 J; ESD: 0.13 J. DSC (5 °C min−1): Tdec. = 152 °C. 

 

5-(5-Azido-1H-1,2,4-triazol-3-yl)tetrazol-1-ol (AzTTO, 7): Sodium azide (1.95 g, 

30.0 mmol) was dissolved in water (27 mL) and added to a solution of 4b (3.75 g, 

20.0 mmol) in ethanol (33 mL) at 0 °C. The solution was stirred for 15 minutes at that 

temperature, then for two hours at room temperature. The suspension was acidified with 

hydrochloric acid (2 m, 20 mL), stirred for 30 minutes, extracted with diethyl ether 

(5 × 300 mL) and the combined organic phases were dried over magnesium sulfate. 

Hydrogen chloride gas was passed into the stirred solution at 0 °C for 75 minutes, 

whereby the temperature rose up to 19 °C (it should not rise higher!). The flask was 

stoppered and the resulting solution was stirred for two days at room temperature under a 

hydrogen chloride overpressure. After evaporation of the solvent to almost complete 

dryness water was added and completely evaporated at ambient conditions to yield a 

colorless solid (3.71 g, 17.5 mmol, 80 %). 1H nmr (DMSO-d6): δ = 9.51 (br). 13C nmr 

(DMSO-d6): δ = 155.2 (Ctriazole), 144.6 (C–N3), 139.7 (Ctetrazole). 14N nmr (DMSO-d6): δ = 

−136 (N9). 15N nmr (DMSO-d6): δ = −4.1 (N6), −18.1 (N5), −55.3 (N7), −117.8 (N4), 

−144.0 (N10), −145.6 (N9), −150.8 (N3), −295.3 (N8). IR: ν (rel. int.) = 3233(s), 

2477(w), 2375(w), 2232(w), 2154(vs), 1604(m), 1535(vs), 1479(s), 1336(s) 1296(m), 

1275(m), 1223(m), 1190(m), 1152(w), 1129(m), 1071(w), 1046(w), 1014(w), 982(m), 

855(w), 781(m), 753(w), 712(w), 696(w), 658(w) cm−1. Raman (200 mW): ν (rel. int.) = 

2154(8), 1605(100), 1537(20), 1485(10), 1422(8), 1397(4), 1336(12), 1276(17), 1191(2), 

1130(5), 1062(2), 1045(6), 1015(5), 980(7), 805(3), 757(3) cm−1. Mass spectrometry: 

m/z (FAB−) = 193.3 ([C3HN10O]−). Elemental analysis (C3H4N10O2): calc.: C 16.99, 

H 1.90, N 66.03 %; found C 17.53, H 1.87, N 65.16 %. Sensitivities (anhydrous, grain 

size < 100 μm): friction: 120 N; impact: 4 J; ESD: > 260 mJ. DSC (5 °C min−1): Tmelt. = 

83 °C, Tdec. = 144 °C. 
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11. A COMPARATIVE STUDY ON INSENSITIVE ENERGETIC 

DERIVATIVES OF 5-(1,2,4-TRIAZOL-C-YL)-TETRAZOLES AND 

THEIR 1-HYDROXY-TETRAZOLE ANALOGUES 
As published in: Zeitschrift für Anorganische und Allgemeine Chemie 2013, in press. 

 

ABSTRACT: 

In this contribution, the synthesis and characterization of selected nitrogen-rich salts 

based on 5-(1,2,4-Triazol-C-yl)tetrazoles and their 1-hydroxy-tetrazole analogues is 

presented. The combination with guanidinium, triaminoguanidinium and 

hydroxylammonium cations leads to enhanced performance and sensitivities. The main 

focus of this work is on the energetic properties of those ionic derivatives in comparison 

to the neutral compounds. Additionally, the positive influence of the introduction of N-

oxides in energetic materials is shown. Structural characterization was accomplished by 

means of Raman, IR and multinuclear NMR spectroscopy. The standard enthalpies of 

formation were calculated for selected compounds at the CBS-4M level of theory, the 

detonation parameters were calculated using the EXPLO5.05 program. Additionally, 

thermal stability was measured via DSC and sensitivities against impact, friction and 

electrostatic discharge were determined. 
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INTRODUCTION 

In the last decades, research in the field of energetic materials faced a profound change. 

Numerous studies raised awareness of the toxicity of widely-used substances like TNT, 

RDX and HMX and their degradation products towards humans and the environment.[1] 

Additionally, modern safety requirements of the armed forces[2] cause a growing demand 

for material less vulnerable to stimuli like shock, heat and bullet impact. Research around 

the globe focuses strongly on compounds based on nitrogen-rich heterocycles, since those 

liberate mostly molecular nitrogen as innoxious product of combustion or explosion. 

Furthermore, attractive energetic properties due to substantial ring strain and highly 

positive heats of formation attract notice to the research of environmentally friendly high-

power energetic materials[3].  

Recent studies on C–C connected heterocycles like bistriazoles and bistetrazoles revealed 

excellent characteristics regarding stability and detonation properties.[3a, 4] The connection 

via C–C bond of a triazole ring with its opportunity to introduce a large variety of 

energetic moieties and a tetrazole or a N-hydroxy-tetrazole ring implying a large energy 

content leads to energetic materials with tunable properties.[5] Due to the fact that 

nitrogen-rich salts of energetic compounds show an increased stability compared to the 

uncharged compounds, we present the treatment of energetic triazole compounds with 

several nitrogen-rich bases to form the corresponding salts. Cations like guanidinium, 

triaminoguanidinium or hydroxylammonium not only increase the overall nitrogen 

content and thus the heat of formation, but also improve the performance 

characteristics.[4a, 6]. 

The focus of this study is on the synthesis and full characterization of energetic salts of 5-

(1,2,4-Triazol-C-yl)tetrazoles (1,2) and their 1-hydroxy-tetrazole analogues (3,4). The 

energetic performance and sensitivity data of the ionic compounds are presented and 

compared to the neutral precursors. Additionally, the positive influence of the 

introduction of N-oxides in energetic materials is shown. 
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RESULTS AND DISCUSSION 
 

SYNTHESIS 

All four neutral 5-(1,2,4-Triazol-C-yl)tetrazoles (1, 2) and 5-(1,2,4-Triazol-C-yl)tetrazol-

1-oles (3, 4) were synthesized as published recently  starting from 5-amino-1H-1,2,4-

triazole-3-carbonitrile.[5] In the case of compounds 1 and 2, first of all the tetrazole ring 

was built up by a cycloaddition with sodium azide, followed by introduction of the 

energetic moieties via Sandmeyer reaction or nitration with nitric acid. (Scheme 1).[5a]  
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Scheme 1: Synthesis of NTT (1) and NATT (2). 

 

A different approach was used for the synthesis of compounds 3 and 4. The energetic 

moieties were primarily introduced by modification of the amine group of 5-amino-1H-

1,2,4-triazole-3-carbonitrile. Multiple reaction steps including the formation of an 

amidoxime, chlorination, chlorine to azide exchange and finally cyclization lead to the 1-

hydroxy-tetrazole compounds 3 and 4 (Scheme 2).[5b]  
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Scheme 2: Synthesis of 5-(3-nitro-1H-1,2,4-triazol-5-yl)tetrazol-1-ol (NTTO, 3) 5-(5-nitrimino-

1,4H-1,2,4-triazol-3-yl)tetrazol-1-ol (NATTO, 4). 
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Preparation of the corresponding salts of compounds 1–4 was accomplished by diluting 

the neutral compound in ethanol and addition of two equivalents of the corresponding 

organic base. This step benefits from the very poor solubility of the ionic target 

molecules, contrary to the neutral ones which dissolve readily in ethanol. Precipitation of 

the desired ionic compounds occurred almost quantitative and led to high purities. 
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Scheme 3: Synthetic route to the nitrogen-rich salts derived from 1–4 using the corresponding 

nitrogen-rich bases (hydroxylamine, guanidinium carbonate, triaminoguanidine). 

 

MULTINUCLEAR NMR SPECTROSCOPY 

All compounds were investigated using 1H, 13C and 14N NMR spectroscopy. The 
13C{1H}-spectra show three signals for the carbon atoms in the expected range, 

deprotonation with nitrogen-rich bases shifts the signals of all carbon atoms to  lower 

field in comparison to the uncharged compounds. The signal of the carbon atom next to 

the energetic moiety is shifted furthest downfield for all compounds in the range of 157.3 

ppm (2c) and 165.9 ppm (3b).  
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The signal of the bridging carbon of the triazole ring can be observed in the range of 

151.4 ppm (2a) to 157.3 ppm (1c) and the corresponding signal of the tetrazole carbon 

atom is located in the range of 148.4 ppm (2a) to 156.4 ppm (1c) for the triazolyl-

tetrazole compounds. In the case of the tetrazole-1-N-oxide compounds, all signals of the 

bridging carbon atoms are shifted to higher field. The signal of the triazole ring can be 

observed in the range of 147.8 ppm (4a) to 152.8 ppm (3c) and the corresponding signal 

of the tetrazole carbon atom is located in the range of 137.7 ppm (4c) to 139.2 ppm 

(3a).The 14N{1H} NMR spectra of all compounds show a broad signal for the nitro group 

between –10 ppm and –25 ppm. Based on comparable ionic compounds[4a, 6], the proton 

signals of all cations can be found in the expected range. 

 
Figure 1: 15N{1H}NMR spectra of compounds 1c (bottom) and 3c (top) recorded in DMSO-d6. 

The x-axis represents the chemical shift δ  in ppm. 
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Due to the insufficient solubility of compound 2a–c and 4a–c, 15N{1H} NMR spectra 

were recorded for compounds 1c and 3c, as illustrated in Figure 1. The assignments are 

based on comparison with similar molecules and additional theoretical calculations using 

Gaussian 09 (MPW1PW91/aug-cc-pVDZ).[7] The signals of the triazole nitrogen atoms as 

well as the nitro group can be found in both cases in the expected range very similar to 

the recently published 3,3'-dinitro-5-5'-bistriazolate anion.[8] Two well resolved 

resonances are observed in the 15N NMR spectrum of the tetrazolate-compound 1c at −7.3 

(N5/6), and −67.6 ppm (N4/7), which is in good agreement with the resonances of the 5-

5'-bistetrazolate anion (−3.0, −66.0).[3a] The tetrazole-N-oxide ring of compound 3c shows 

four well resolved resonances. The signals can be observed at shifts of −82.4 (N4), −20.2 

(N5), −17.0 (N6), and −54.0 ppm (N7), comparable with the signals of the similar 5,5'-

bistetrazole-1,1'-diolate anion.[9] 

 

SINGLE CRYSTAL X-RAY STRUCTURE ANALYSIS  

All compounds were recrystallized from water, which mainly led to the formation of 

microcrystalline material not suitable for X-ray analysis. Only crystals of compounds 3b 

were appropriate and the crystal structure is discussed in the following. The bond lengths 

and torsion angles within the azole rings are all in the range of formal C–N and N–N 

single and double bonds (C–N: 1.47 Å, 1.22 Å; N–N: 1.48 Å, 1.20 Å).[10] The C3–N5–N6 

angle of the N-oxide anion has an value of 108.7(1)° as compared to 109.9(2)° for the 

neutral compound 3. As expected the N5–O3 bond length is shortened to 1.317(2) Å upon 

deprotonation (1.345(2) Å in 3). The torsion angle between both heterocycles and the one 

of the nitro group is very small (2.7(2)° and 0.8(2)°), which leads to a nearly planar 

assembly.  Compound 3b crystallizes as a monohydrate in the monoclinic space group 

P21/n with a density of 1.639 g cm−3, the formula unit is shown in Figure 2. 
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Figure 2: Molecular structure of Guanidinium 5-(3-Nitro-1,2,4-triazolate-5-yl)tetrazol-1-olate 

(3b). Thermal ellipsoids are set to 50 % probability. 

 

Due to the planarity of both cation and anion, the crystal structure of 3b is built up by 

planes that are kept together by a strong network of hydrogen bonds.  As shown in Figure 

3, each NTTO2– anion is surrounded by five guanidinium cations via strong hydrogen 

bonds towards the atoms of the azole rings and the oxygen O1 of the nitro group 

(Table 1).  

 

Table 1: Hydrogen bonds present in 3b. 

D–H···A d (D–H) [Å] d (H···A) [Å] d (D–A) [Å] < (D–H···A) [°] 

O4i–H4b···N2 0.87(2) 2.06(2) 2.916(2) 169(2) 

N9ii–H9a···O4 0.86 (2) 1.98(2) 2.801(2) 158(2) 

N9iv–H9b···N3 0.85(2) 2.10(2) 2.920(2) 165(2) 

N10iv–H10a···N8 0.90(2) 2.20(2) 3.095(2) 175(2) 

N11–H11a···N6 0.86 (2) 2.32(2) 3.175(2) 173(2) 

N11ii–H11b···O4 0.86(2) 2.32(2) 3.053(2) 143(1) 

N12i–H12a···O3 0.86(2) 2.10(2) 2.814(2) 140 (2) 

N12v–H12b···N7 0.86(2) 2.40(2) 3.199(2) 155(2) 

N13i–H13a···N1 0.89(2) 2.16(2) 3.040(2) 170(2) 

N13i–H13b···N2 0.89(2) 2.32(2) 3.152(2) 154(2) 

N14iii–H14a···O1 0.87(2) 2.19(2) 3.044(2) 164(2) 

N14v–H14b···N7 0.87(2) 2.37(2) 3.172(2) 154(2) 
Symmetry Operators: (i) 1/2−x, ½+y, 1/2−z; (ii) x, -1+y, z; (iii) 1-x, −y, -z; (iv) ½+x, 1/2−y, −1/2+z; (v) 1−x, 

1−y, −z. 
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It is remarkable to note that all accessible nitrogen atoms (and the N-oxide O3) act as 

acceptor for hydrogen bonds, which is merely possible due to the several N-H groups of 

the surrounding guanidinium cations. All contacts lie well within the sum of van der 

Waals radii (rw(O) + rw (N) = 3.07 Å, rw(N) + rw (N) = 3.20 Å)[11] with a D···A length 

between 2.801(2) Å and 3.199(2) Å. Most of the hydrogen bonds are strongly directed 

with D–H···A angles between 155(2)° and 175(2)°. In addition, the oxygen atom O1 is 

involved in a electrostatic interaction with the π-electrons of the overlying tetrazole ring, 

which supports the stacking of the layers.   

 
Figure 3: Formation of planes in the crystal structure of 3b; Thermal ellipsoids are set to 50 % 

probability. Symmetry codes: (i) 1/2−x, ½+y, 1/2−z; (ii) x, -1+y, z; (iii) 1-x, −y, -z; (iv) ½+x, 

1/2−y, −1/2+z; (v) 1−x, 1−y, −z. 

 

THEORETICAL CALCULATIONS, PERFORMANCE CHARACTERISTICS AND STABILITIES   

The heats of formation of all compounds have been calculated on the CBS-4M level of 

theory using the atomization energy method and utilizing experimental data (for further 

details and results refer to the Supporting Information). All compounds show highly 

endothermic enthalpies of formation in the range of 234 kJ mol−1 (1b) to 1009 kJ mol−1 

(4c), all by far outperforming RDX (70 kJ mol−1). 

In order to estimate the detonation performances of the prepared compounds selected key 

parameters were calculated with EXPLO5 (version 5.05)[20] and compared to RDX. The 

calculated detonation parameters using experimentally determined densities (gas 
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pycnometry at 25 °C with dried compounds) and calculated heats of formation are 

summarized in Table 2.  

 

Sensitivity 

Regarding the precursor compounds NATT (2) and NATTO (4), both show very high 

sensitivity towards impact, friction and electrostatic discharge. One of the key aspects of 

this study was the synthesis of ionic derivatives that are safer to handle, while being at 

least equally energetic. In the case of compounds 2a-c, the sensitivity towards impact is 

reduced from 1 J to 40 J and the sensitivity towards friction could be lowered to 160 N 

(2a), 324 N (2b) and 360 N (2c). Compounds 4a–c also show lower sensitivity values 

(8 J (4a), 40 J (4b), 10 J (4c)) in comparison to the neutral compound 4, however the low 

sensitivities of the corresponding compounds bearing no N-oxide are only reached for 

compound 4b. Figure 1 shows the thermal decomposition of the ionic derivatives 2a–c 

(solid lines) and 4a–c (dashed lines). As expected, the thermal stability of all ionic 

compounds mostly depends on the cation, however the ionic N-oxide compounds (4a–c) 

all show a lower decomposition temperature in comparison to compounds 2a–c as it is 

expected for N-hydroxy azoles.[12] With a decomposition temperature of 238 °C (2b) and 

212 °C (4b), only the guanidinium salts show a higher onset temperature compared to 

RDX (Figure 4). 

 
 
Figure 4: DSC plots of ionic derivatives 2a–c (solid lines) and 4a–c (dashed lines). DSC plots 
were recorded with a heating rate of 5 °C min–1.  
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The sensitivity of the neutral NTT (1) and NTTO (3) towards external stimuli could also 

be further decreased by deprotonating with organic bases. All compounds (except 3a) 

show an impact sensitivity of 40 J and friction sensitivity of 360 N. As shown in Figure 3, 

the guanidinium salt (3b) shows a remarkably high decomposition temperature (296 °C) 

in comparison to the neutral compound 1, whereas compound 3c starts to decompose at 

190 °C and 3a at 182 °C. Again, the ionic N-oxide compounds (3a–c) show lower 

decomposition temperatures in comparison to compounds 1a–c, only the guanidinium salt 

3b exceeds 200 °C with a thermal stability of 269 °C (Figure 5). 

 
Figure 5: DSC plots of ionic derivatives 1a–c (solid lines) and 3a–c (dashed lines). DSC plots 

were recorded with a heating rate of 5 °C min–1. 

 

Performance 

The results of theoretical calculations regarding performance are summarized in Tables 2a 

and 2b. In general, the triazol-C-yl-tetrazoles show lower performance values in 

comparison to their 1-hydroxy-tetrazole analogues. As expected, the additional oxygen 

atom generally leads to increased energetic properties due to a higher density and an even 

greater energy output.[12b, 14] In comparison to the ionic derivatives of compounds 1 and 2, 

a marked performance increase is seen. The detonation velocities of the 

hydroxylammonium salts 3a and 4a are increased by about 500 ms–1. For the 

guanidinium salts 3b and 4b, the influence of the additional oxygen is slightly lower, 

however the detonation velocity is still increased by about 270 ms–1.  The introduction of 
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the N-oxide also positively influences other detonation parameters like the detonation 

pressure or the energy of explosion (increased by appr. 500 kJ kg−1). 

 
Table 2a: Physico-chemical properties of compounds 1 and 3 and their corresponding ionic 
derivatives (a–c) in comparison to hexogen (RDX). 

 1  
NTT 

3 
NTTO 1a 1b 1c 3a 3b 3c RDX[n] 

Formula C3H2N8O2 C3H2N8O3 
C3H8N10O

4 
C5H12N14

O2 
C5H18N20

O2 
C3H8N10O

5 
C5H12N14

O3 
C5H18N20

O3 
C3H6N6O6 

Molecular Mass 
[g mol–1] 182.1 198.10 248.16 300.24 390.33 264.15 316.24 406.32 222.12 

Impact 
sensitivity [J]a 25 35 40 40 40 8 40 10 7 

Friction 
sensitivity [N]b 288 360 360 >360 >360 360 360 360 120 

ESD–test [J] 0.85 0.13 0.15 0.6 0.4 0.2 0.5 0.35 -- 

N [%]c 61.5 56.6 56.44 65.3 71.8 53.0 62.0 68.9 37.8 

Ω [%]d –43.9 −32.3 -38.7 -74.6 -69.7 -30.3 -65.8 -63.0 –21.6 

Tdec. [°C]e 211 152 182 296 190 175 269 181 210 

ρ [g cm–3]f 1.70 1.86 1.78 1.71 1.68 1.81 1.72 1.70 1.82 
ΔfHm° [kJ mol–

1]g 518 446 316 234 958 356 260 977 70 

ΔfU° [kJ kg–1]h 2430 2335 1385 896 2582 1456 936 2529 417 

EXPLO5 (V5.05) values:        

–ΔEU° [kJ kg–1]i 4730 5407 5201 2866 4285 5750 3471 4688 6128 

TE [K]j 3833 4217 3651 2259 2830 3939 2593 3073 4207 

pC-J  [kbar]k 254 337 291 219 290 352 244 299 349 
VDet. 
[m s–1]l 7919 8655 8473 7682 8644 8996 7974 8728 8749 

Gas vol. [L kg–

1]m 682 677 808 773 826 799 781 831 740 

 

Of all described compounds, the triaminoguanidinium salt 3c and the hydroxylamonium 

salt 4a exhibit the best calculated performance values regarding the detonation 

parameters, sensitivities and thermal stability. Compound 4a displays the best 

performance with a calculated detonation velocity of 9014 ms–1, a detonation pressure of 

348 kbar and a decomposition temperature of 179 °C. The triaminoguanidinium 

compound exhibits energetic properties in the range of RDX with 8728 m s–1, a 

detonation pressure of 299 kbar and a decomposition temperature of 181 °C, along with a 

very high nitrogen content of 68.9 %.  

Although lower performance values (vdet = 7974 m s–1 and 7970 m s–1) were calculated 

for the guanidinium salts 3b and 4b, these compounds displays the highest decomposition 

temperatures of 269 °C and 212 °C together with an insensitivity towards friction and 

impact. 
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The most interesting compounds regarding the energetic properties are the 

hydroxylammonium and triaminoguanidinium compounds (4a and 3c). Those compounds 

exhibit decomposition temperatures slightly below 200 °C and performance values in the 

range of RDX (8728 m s−1 (3c)) or even well above (9014 m s−1 (4a)). 

 
Table 2b: Physico-chemical properties of compounds 2 and 4 and their corresponding ionic 
derivatives (a–c) in comparison to hexogen (RDX). 

 2  
NATT 

4 
NATT

O 
2a 2b 2c 4a 4b 4c RDX[n] 

Formula C3H3N9O2 C3H3N9O3 
C3H9N11O

4 
C5H13N15

O2 
C5H19N21

O2 
C3H9N11O

5 
C5H13N15

O3 
C5H19N21

O3 
C3H6N6O6 

Molecular 
Mass [g mol–1] 197.1 213.11 263.2 315.26 405.34 279.17 331.25 421.34 222.12 

Impact 
sensitivity [J]a <1 < 1 40 40 40 8 40 10 7 

Friction 
sensitivity [N]b 18 60 160 >360 324 288 360 288 120 

ESD–test [J] 0.07 0.13 0.15 0.6 0.2 0.1 0.8 0.3 -- 

N [%]c 64.0 59.2 58.5 66.6 72.6 55.2 63.4 69.8 37.8 

Ω [%]d –44.6 −33.8 -38.7 -74.6 -69.7 -31.5 -65.2 -62.6 –21.6 

Tdec. [°C]e 215 116 194 238 191 179 212 186 210 

ρ [g cm–3]f 1.70 1.85 1.75 1.68 1.66 1.79 1.70 1.67 1.82 
ΔfHm° [kJ mol–

1]g 576 515 354 261 978 418 304 1009 70 

ΔfU° [kJ kg–1]h 2549 2502 1458 946 2542 1607 1033 2521 417 

EXPLO5 (V5.05) values:        
–ΔEU° [kJ kg–

1]i 4804 5470 5273 2915 4246 5769 3495 4643 6128 

TE [K]j 3781 4126 3684 2281 2814 3898 2600 3033 4207 

pC-J  [kbar]k 262 342 293 221 289 348 242 288 349 
VDet. 
[m s–1]l 8062 8776 8500 7709 8628 9014 7970 8628 8749 

Gas vol. [L kg–

1]m 712 708 807 773 827 818 791 836 740 
 

[a] BAM drophammer, grain size (75–150 μm); [b] BAM friction tester, grain size (75–150 μm); [c] Nitrogen content; 
[d] Oxygen balance; [e] Temperature of decomposition by DSC (β = 5 °C, Onset values); [f] densities based on gas-

pycnometer measurements of anhydrous compounds at 25 °C; [g] Molar enthalpy of formation; [h] Energy of 

formation; [i] Energy of Explosion; [j] Explosion temperature; [k] Detonation pressure; [l] Detonation velocity; 
[m] Assuming only gaseous products; [n] values based on Ref. [13]. 
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CONCLUSION 
By reacting the nitro- and nitrimino triazolyl-tetrazole compounds (1, 2) and their 1-

hydroxy-tetrazole analogues (3,4) with nitrogen-rich organic bases, twelve ionic nitrogen 

rich energetic materials were synthesized and fully characterized by means of vibrational 

and NMR spectroscopy as well as sensitivity towards impact and friction. Their thermal 

behavior was investigated with differential scanning calorimetry and their energetic 

properties calculated theoretically. The ionic N-oxide compounds (3a–c, 4a–c) show 

lower decomposition temperature in comparison to the compounds bearing no N-oxide, 

however the stability is mainly influenced by the corresponding cation. Most of the 

compounds show reduced sensitivities in comparison to their neutral precursors, 

especially the ionic compounds based on NATT (2a-c) and NATTO (4a–c) are much 

safer to handle, since the stability towards friction and impact was considerably 

increased. 

Regarding the detonation properties, the performance is mostly affected by the cation. 

The guanidinium salts always show the lowest detonation velocities, the 

hydroxylammonium and triaminoguanidinium salts are basically in the same range. In 

general, the triazol-C-yl-tetrazoles show lower performance values in comparison to  their 

1-hydroxy-tetrazole analogues. The detonation velocities of the hydroxylammonium salts 

are increased by about 500 ms–1 due to the N-oxide. For the guanidinium salts, the 

influence of the additional oxygen is slightly lower, however the detonation velocity is 

still increased by about 270 ms–1. The introduction of an N-oxide in tetrazole based 

energetic materials obviously positively influences the detonation parameters due to a 

higher density and an even greater energy output, however this advantage comes along 

with lower decomposition temperatures. 
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EXPERIMENTAL SECTION 
Caution: Although all presented nitroazoles are rather stable against outer stimuli, proper 

safety precautions should be taken when handling the dry materials. The neutral 

nitraminoazole is of high sensitivity and tends to explode under the influence of heat, 

impact or friction. Lab personnel and the equipment should be properly grounded and 

protective equipment like earthed shoes, leather coat, Kevlar® gloves, ear protection and 

face shield is recommended.  

General. All chemical reagents and solvents were obtained from Sigma-Aldrich Inc. or 

Acros Organics (analytical grade) and were used as supplied without further purification. 
1H, 13C{1H}, 14N{1H} and NMR spectra were recorded on a JEOL Eclipse 400 instrument 

in DMSO-d6 at 25 °C. The chemical shifts are given relative to tetramethylsilane (1H, 
13C) or nitro methane (14N) as external standards and coupling constants are given in 

Hertz (Hz). Infrared (IR) spectra were recorded on a Perkin-Elmer Spectrum BX FT-IR 

instrument equipped with an ATR unit at 25 °C. Transmittance values are qualitatively 

described as “very strong” (vs), “strong” (s), “medium” (m), “weak” (w) and “very weak” 

(vw). Raman spectra were recorded on a Bruker RAM II spectrometer equipped with a 

Nd:YAG laser (200 mW) operating at 1064 nm and a reflection angle of 180°. The 

intensities are reported as percentages of the most intense peak and are given in 

parentheses. Elemental analyses (CHNO) were performed with a Netzsch Simultaneous 

Thermal Analyzer STA 429. Melting and decomposition points were determined by 

differential scanning calorimetry (Linseis PT 10 DSC, calibrated with standard pure 

indium and zinc). Measurements were performed at a heating rate of 5 °C min–1 in closed 

aluminum sample pans with a 1 µm hole in the lid for gas release to avoid an unsafe 

increase in pressure under a nitrogen flow of 20 mL min–1 with an empty identical 

aluminum sample pan as a reference.  

For initial safety testing, the impact and friction sensitivities as well as the electrostatic 

sensitivities were determined. The impact sensitivity tests were carried out according to 

STANAG 4489,[15] modified according to WIWEB instruction 4-5.1.02[16] using a 

BAM[17] drop hammer. The friction sensitivity tests were carried out according to 

STANAG 4487[18] and modified according to WIWEB instruction 4-5.1.03[19] using the 

BAM[17] friction tester. The electrostatic sensitivity tests were accomplished according to 

STANAG 4490[20] using an electric spark testing device ESD 2010EN (OZM Research). 
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Crystallographic measurements. The single-crystal X-ray diffraction data of 3b was 

collected using an Oxford Xcalibur3 diffractometer equipped with a Spellman generator 

(voltage 50 kV, current 40 mA), Enhance molybdenum Kα radiation source (λ = 

71.073 pm), Oxford Cryosystems Cryostream cooling unit, four circle kappa platform and 

a Sapphire CCD detector. Data collection and reduction was performed with 

CrysAlisPro.[21] The structure was solved with SIR97[22], refined with SHELXL-97[23], 

and checked with PLATON[24], all integrated into the WinGX software suite[25]. The 

finalized CIF file was checked with checkCIF.[26] Intra- and intermolecular contacts were 

analyzed with Mercury.[27] CCDC 946356 (3b), contains the supplementary 

crystallographic data for this paper. These data can be obtained free of charge from the 

Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

The precursors 1 and 2 as well as 3 and 4 were synthesized according to literature.[5]  

 

Hydroxylammonium 5-(5-nitro-1,2,4-triazolate-3-yl)-tetrazolate (1a) 

5-(5-nitro-1,2,4-triazol-3-yl)-tetrazole (NTT, 1) (0.5 g, 2.7 mmol) was diluted in 25 ml of 

EtOH and hydroxylamine (50 wt% in water, 0.32 mL, 5.5 mmol) was added. The 

precipitate was filtered off and washed with EtOH and Et2O to yield 3a (0.51 g, 2.0 

mmol, 74%) as slightly yellow powder.  
1H NMR (DMSO-d6): δ (ppm) = 9.43 (s, 3H, NH3-OH); 13C NMR (DMSO-d6): δ (ppm) 

= 164.7, 153.5, 153.3; 14N NMR (DMSO-d6): δ  (ppm)= −18 (NO2); IR: 3624(w), 

3562(w), 3016(m), 2699(s), 1643(m), 1617(m), 1513(s), 1480(m), 1469(vs), 1407(s), 

1393(vs), 1321(m), 1308(s), 1292(m), 1284(m), 1252(s), 1236(s), 1191(m), 1144(m), 

1114(m), 1102(s), 1047(w), 1011(m), 1011(m), 1001(s), 842(s), 777(s), 764(s), 730(m), 

716(m), 655(m); Raman (200 mW): ν (cm−1) (rel. int.):  1583(95), 1522(5), 1513(4), 

1473(9), 1410(45), 1399(49), 1323(35), 1293(8), 1285(16), 1194(7), 1145(5), 1115(100), 

1105(22), 1087(11), 1047(9), 1040(11), 1006(13), 847(12), 778(4), 765(4), 395(6), 

343(5); Elemental analysis (C3H8N10O4): calc.: C 14.25, H 3.25, N 56.44; found: 

C 14.68, H 3.44, N 52.38. Mass spectrometry: m/z (FAB-): 181.0 [C3HN8O2
-]; (FAB+):  

34.1 [NH4OH+]; DSC (Onset, 5 °C/min): TDec: 190 °C. Sensitivities (grain size: < 100 

µm): FS: > 360 N, IS: 40, ESD: 0.15 J. 
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Guanidinium 5-(5-nitro-1,2,4-triazolate-3-yl)-tetrazolate (1b) 

5-(5-nitro-1,2,4-triazol-3-yl)-tetrazole (NTT, 1) (0.5 g, 2.7 mmol) was diluted in 20 ml of 

EtOH. A solution of guanidinium carbonate (0.49 g, 2.7 mmol) in water (5 mL) was 

added, the mixture was refluxed for 15 min and subsequently cooled to room temperature. 

The precipitate was filtered off and washed with EtOH and Et2O to yield 3b (0.75 g, 2.5 

mmol, 91%) as yellow powder. 
1H NMR (DMSO-d6): δ (ppm) = 7.46 (s, 6H, NH2, G+). 13C NMR (DMSO-d6): δ (ppm) = 

165.6, 158.8, 156.3, 155.9; 14N NMR (DMSO-d6): δ  (ppm)= -25 (NO2); IR:  3428(m), 

3343(m), 3084(m), 1680(s), 1653(s), 1635(s), 1582(m), 1503(m), 1465(s), 1398(s), 

1377(vs), 1302(s), 1276(m), 1187(m), 1148(m), 1141(m), 1091(s), 1035(w), 1010(w), 

1002(m), 838(m), 781(w), 775(w), 775(w), 716(w), 657(w); Raman (200 mW): ν (cm−1) 

(rel. int.):  1585(76), 1556(7), 1520(6), 1471(7), 1399(50), 1391(66), 1310(33), 1278(39), 

1190(2), 1105(100), 1094(79), 1061(4), 1043(10), 1037(10), 1013(19), 841(14), 778(3), 

765(2), 536(10), 507(2), 474(2), 394(3); Elemental analysis (C5H12N14O2): calc.: 

C 20.00, H 4.03, N 65.31; found: C 20.60, H 4.13, N 62.96. Mass spectrometry: m/z 

(FAB+): 60.0 [CH6N3
+]; (FAB-): 181.1 [C3HN8O2

-]; DSC (Onset, 5 °C/min): TDec: 286 

°C. Sensitivities (grain size: < 100 µm): FS: > 360 N, IS: 40 J, ESD: 0.6 J.  

 

Triaminoguanidinium 5-(5-nitro-1,2,4-triazolate-3-yl)-tetrazolate (1c) 

Triaminoguanidine (0.57 g, 5.5 mmol) was added to a solution of 5-(5-nitro-1,2,4-triazol-

3-yl)-tetrazole (NTT, 1) (500 mg, 2.746 mmol) in ethanol (20 mL) and the mixture was 

refluxed for 15 minutes. After cooling to room temperature, the precipitate was collected 

by filtration, washed with EtOH and Et2O to yield 3c (0.98 g, 2.5 mmol, 91 %) as yellow 

powder. 
1H NMR (DMSO-d6): δ (ppm) = 8.79 (s, 3H, NH, TAG+), 4.61 (s, 6H, NH2, TAG+); 
13C NMR (DMSO-d6): δ (ppm) = 165.6, 159.3, 157.3, 156.4; 14N NMR (DMSO-d6): 

δ  (ppm)= −14 (NO2); 15N NMR (DMSO-d6): δ  (ppm)= −7.3 (N5/6), −19.2 (N8), −57.8 

(N1), −59.0 (N2), −67.6 (N4/7), −146.2 (N3), −288.3 (TAG+, NH), −328.8 (TAG+, NH2); 

IR: 3367(m), 3299(m), 3155(m), 1685(vs), 1671(vs), 1601(w), 1509(s), 1462(m), 

1380(s), 1336(m), 1293(m), 1264(m), 1219(w), 1194(w), 1141(s), 1083(s), 1013(m), 

994(s), 936(s), 834(m), 721(m), 662(w), 641(m), 641(m); Raman (200 mW): ν (cm−1) 

(rel. int.):  1574(81), 1559(30), 1513(4), 1464(9), 1393(32), 1379(79), 1305(32), 

1277(20), 1265(24), 1193(3), 1096(99), 1087(95), 1038(8), 1031(11), 996(2), 885(8), 

836(10), 781(4), 640(2), 405(5); Elemental analysis (C5H18N20O2): calc.: C 15.39, 
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H 4.65, N 71.77; found: C 17.55, H 4.25, N 71.58. Mass spectrometry: m/z (FAB+): 

105.1 [CH9N6
+], (FAB-): 181.1 [C3HN8O2

-]; DSC (Onset, 5 °C/min): TDec: 192 °C;  

Sensitivities (grain size: < 100 µm): FS: > 360 N, IS: 40 J, ESD: 0.4 J. 

 

Hydroxylammonium 5-(5-nitrimino-1,2,4-triazolate-3-yl)-tetrazolate (2a) 

Hydroxylamine (50 wt% in water, 0.26 mL, 4.5 mmol) was added to a solution of 5-(3-

nitrimino-1,2,4-triazol-3-yl)-tetrazole (2) (0.5 g, 2.2 mmol) in ethanol (30 mL). The 

precipitate was collected by filtration and washed with EtOH and Et2O to yield 4a 

(0.30 g, 1.2 mmol, 54 %) as slightly yellow solid.  
1H NMR (DMSO-d6): δ (ppm) = 10.64 (s, 3H, NH3OH); 13C NMR (DMSO-d6): δ (ppm) 

= 157.7, 151.4, 148.4; 14N NMR (DMSO-d6): δ  (ppm) = −16 (NO2); IR: 3187(w), 

2938(m), 2698(m), 2691(m), 1627(w), 1573(m), 1532(m), 1512(m), 1486(m), 1450(m), 

1445(m), 1417(m), 1390(m), 1370(m), 1341(s), 1333(s), 1306(m), 1263(vs), 1239(s), 

1209(s), 1185(m), 1164(m), 1137(m), 1137(m), 1114(m), 1104(s), 1091(m), 1079(m), 

1060(m), 1007(m), 1000(s), 969(m), 879(w), 850(m), 832(m), 777(m), 761(s), 746(m), 

732(m), 720(s), 693(w); Raman (200 mW): ν (cm−1) (rel. int.): 1629(91), 1597(94), 

1568(68), 1531(28), 1512(16), 1487(19), 1426(5), 1381(6), 1371(6), 1263(7), 1212(5), 

1187(6), 1167(4), 1144(22), 1115(31), 1081(13), 1063(8), 1040(7), 1028(28), 999(41), 

881(5), 854(8), 756(16), 756(16), 748(12), 428(4), 329(4), 314(4), 235(4); Elemental 

analysis (C3H9N11O4): calc.: C 13.69, H 3.45, N 58.54; found: C 15.04, H 2.99, N 58.67. 

Mass spectrometry: m/z (FAB+): 34.0 [NH4O+]; (FAB-):  196.1 [C3H2N9O2
-]; DSC 

(Onset, 5 °C/min): TDec: 194 °C. Sensitivities (grain size: < 100 µm): FS: 160 N, IS: 40, 

ESD: 0.15 J. 

 

Guanidinium 5-(5-nitrimino-1,2,4-triazolate-3-yl)-tetrazolate (2b) 

5-(5-nitrimino-1,2,4-triazol-3-yl)-tetrazole (2) (0.5 g, 2.1 mmol) was dissolved in 30 ml 

of EtOH. A solution of guanidinium carbonate (0.39 g, 2.2 mmol) in water (5 mL) was 

added, the mixture was refluxed for 15 min and subsequently cooled to room temperature. 

The precipitate was collected by filtration and washed with EtOH and Et2O to yield 4b 

(0.60 g, 1.9 mmol, 89 %) as yellow powder. 
1H NMR (DMSO-d6): δ (ppm) = 7.68 (s, 6H, NH2, G+). 13C NMR (DMSO-d6): δ (ppm) = 

158.3, 157.7, 155.2, 152.3; 14N NMR (DMSO-d6): δ  (ppm) = -17 (NO2); IR: 3385(m), 

1699(m), 1665(m), 1651(s), 1637(s), 1579(w), 1516(m), 1457(m), 1399(m), 1358(m), 

1333(vs), 1280(vs), 1236(m), 1187(m), 1136(m), 1079(s), 1039(w), 1009(w), 982(m), 
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857(w), 766(m), 750(w), 733(m), 733(m); Raman (200 mW): ν (cm−1) (rel. int.): 

1593(98), 1561(5), 1512(28), 1461(21), 1357(5), 1279(6), 1189(3), 1141(10), 1132(8), 

1062(5), 1013(36), 860(4), 751(6), 550(5), 424(3), 321(3), 258(3); Elemental analysis 

(C5H13N15O2): calc.: C 19.05, H 4.16, N 66.64; found: C 19.50, H 4.14, N 64.67. Mass 

spectrometry: m/z (FAB+): 60.0 [CH6N3
+]; (FAB-):  196.1 [C3H2N9O2

-]; DSC (Onset, 5 

°C/min): TDec: 238 °C. Sensitivities (grain size: < 100 µm): FS: > 360 N, IS: 40, ESD: 

0.6 J. 

 

Triaminoguanidinium 5-(5-nitrimino-1,2,4-triazolate-3-yl)-tetrazolate (2c) 

Triaminoguanidine (380 mg, 3.65 mmol) was added to a solution of 5-(5-nitrimino-1,2,4-

triazol-3-yl)-tetrazole (2) (360 mg, 1.83 mmol) in ethanol (30 mL). The mixture was 

refluxed for 20 minutes and cooled down to room temperature. The precipitate was 

collected by filtration and washed with EtOH and Et2O to yield 4c (0.69 g, 1.7 mmol, 93 

%) as colorless powder.  
1H NMR (DMSO-d6): δ (ppm) = 12.80 (s, 1H, HTriazole); 8.71 (s, 3H, NH, TAG+); 4.57 (s, 

6H, NH2, TAG+). 13C NMR (DMSO-d6): δ (ppm) = 159.2 (TAG+), 157.3, 155.3, 153.0; 
14N NMR (DMSO-d6): δ  (ppm)= −17 (NO2); IR: 1687(vs), 1624(m), 1517(s), 1464(m), 

1401(m), 1353(vs), 1272(s), 1210(m), 1179(m), 1140(s), 1061(s), 1047(s), 986(vs), 

958(s), 857(w), 778(w), 763(w), 731(m), 716(m), 634(w); Raman (200 mW): ν (cm−1) 

(rel. int.):  1587(100), 1518(55), 1466(17), 1402(10), 1359(14), 1274(11), 1137(19), 

1077(6), 1053(7), 1008(50), 859(5); Elemental analysis (C5H19N21O2): calc.: C 14.28, 

H 4.72, N 72.57; found: C 16.51, H 4.98, N 70.28. Mass spectrometry: m/z (FAB+): 

105.1 [CH9N6
+]; (FAB-):  196.1 [C3HN9O2

-]; DSC (Onset, 5 °C/min): TDec: 191 °C. 

Sensitivities (grain size: < 100 µm): FS: 324 N, IS: 40, ESD: 0.2 J. 

 

Hydroxylamonium 5-(3-Nitro-1,2,4-1H-triazolate-5-yl)tetrazol-1-olate (3a) 

Hydroxylamine (50 wt% in water, 0.3 mL, 5.0 mmol) was added to a solution of 5 (0.5 g, 

2.5 mmol) in ethanol (50 mL) and stirred at 60 °C for 5 minutes. After cooling down to 

room temperature the precipitate was collected by filtration, washed with ethanol and 

diethyl ether and dried in air to yield 3a as pale yellow powder. (0.54 g, 2.04 mmol, 81 

%). 1H NMR (DMSO-d6): δ = 9.76 (s, 3H, NH3OH) ppm; 13C NMR (DMSO-d6): δ = 

165.6 (C–NO2), 150.9 (Ctriazole), 139.2 (Ctetrazole) ppm. 14N NMR (DMSO-d6): δ = −14 

(NO2) ppm; IR: ν (rel. int.) = 3204(w), 2953(m), 2707(m), 2703(m), 1623(w), 1540(m), 

1508(m), 1478(vs), 1422(m), 1401(m), 1352(m), 1319(m), 1306(m), 1238(m), 1220(s), 
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1205(vs), 1149(m), 1049(w), 1015(m), 1000(s), 839(s), 758(m), 715(m), 715(m), 658(m) 

cm−1; Raman (200 mW): ν (rel. int.) = 1586(100), 1477(12), 1402(66), 1355(13), 

1320(23), 1239(18), 1208(4), 1149(54), 1139(41), 1116(14), 1050(3), 1031(20), 1016(9), 

845(4), 766(4), 753(8), 416(4), 378(3), 333(3), 271(3) cm−1; Elemental analysis 

(C3H2N8O3): calc.: C 13.64, H 3.05, N 53.02 %; found: C 14.79, H 3.17, N 54.79 %. 

Mass spectrometry: m/z (FAB+): 34.2 [NH3OH+], m/z (FAB−): 197.1 [C3HN8O3
−]. 

Sensitivities (anhydrous, grain size < 100 μm): friction: 360 N; impact: 8 J. DSC (5 °C 

min−1): Tdec. = 175 °C. 

 

Guanidinium 5-(3-Nitro-1,2,4-1H-triazolate-5-yl)tetrazol-1-olate (3b) 

A solution of guanidinium carbonate (0.45 g, 2.5 mmol) in water (5 mL) was added to a 

solution of 5 (0.5 g, 2.5 mmol) in ethanol (50 mL) and refluxed for 30 minutes. After 

cooling down to room temperature the precipitate was collected by filtration, washed with 

ethanol and diethyl ether and dried in air to yield 3b as yellow powder. (0.6 g, 1.9 mmol, 

75 %). 1H NMR (DMSO-d6): δ = 7.33 (s, 6H, NH2, G+) ppm. 13C NMR (DMSO-d6): δ = 

165.9 (C–NO2), 158.7 (CGu), 151.9 (Ctriazole), 138.7 (Ctetrazole) ppm. 14N NMR (DMSO-d6): 

δ = −13.6 (NO2) ppm; IR: ν (rel. int.) = 3478(m), 3423(m), 3303(m), 3116(s), 1679(s), 

1648(s), 1634(s), 1580(m), 1507(m), 1468(vs), 1390(vs), 1352(vs), 1304(s), 1241(s), 

1213(m), 1149(m), 1075(s), 993(m), 840(vs), 766(s), 711(m), 675(s), 656(vs), 656(vs)  

cm−1; Raman (200 mW): ν (rel. int.) = 1581(78), 1509(8), 1468(3), 1392(100), 1351(39), 

1305(17), 1283(58), 1242(4), 1216(2), 1150(16), 1111(8), 1081(85), 1035(8), 1026(11), 

1014(14), 842(9), 767(2), 755(4), 540(4), 494(2), 425(3), 318(2), 249(3), 249(3) cm−1; 

Elemental analysis (C3H2N8O3): calc.: C 18.99, H 3.82, N 62.01 %; found: C 19.57, 

H 3.69, N 60.71 %. Mass spectrometry: m/z (FAB+): 60.0 [C6HN3
+], m/z (FAB−): 197.3 

[C3HN8O3
−]. Sensitivities (anhydrous, grain size < 100 μm): friction: 360 N; impact: 

40 J. DSC (5 °C min−1): Tdec. = 269 °C. 

 

Triaminoguanidinium 5-(3-Nitro-1,2,4-1H-triazolate-5-yl)tetrazol-1-olate (3c) 

Triaminoguanidine (0.52 g, 5.0 mmol) was added to a solution of 5 (0.5 g, 2.5 mmol) in 

ethanol (50 mL) and the mixture was stirred at 40 °C for 30 minutes. After cooling down 

to room temperature the precipitate was collected by filtration, washed with ethanol and 

diethyl ether and dried in air to yield 3c as pale yellow powder. (0.67 g, 1.6 mmol, 66 %). 
1H NMR (DMSO-d6): δ = 8.7 (s, 3H, NH, TAG+), 4.5 (s, 6H, NH2, TAG+) ppm. 
13C NMR (DMSO-d6): δ = 166.3 (C–NO2), 159.7 (CTAG), 152.8 (Ctriazole), 138.9 (Ctetrazole) 
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ppm; 14N NMR (DMSO-d6): δ = −10 (NO2) ppm; 15N NMR (DMSO-d6): δ  (ppm)= 

−17.0 (N6), −18.3 (N8), −20.2 (N5), −54.0 (N7), −57.0 (N1), −60.2 (N2), −82.4 (N4), 

−143.7 (N3), −289.4 (TAG+, NH), −329.8 (TAG+, NH2); IR: ν (rel. int.) = 3320(m), 

3175(m), 1678(s), 1662(s), 1530(m), 1465(s), 1384(s), 1343(m), 1308(s), 1191(s), 

1132(s), 1100(m), 987(s), 956(s), 953(s), 907(s), 904(s), 877(m), 839(vs), 796(m), 756(s), 

718(m), 703(m), 703(m), 699(s), 695(s), 684(s), 660(s), 652(s)  cm−1; Raman (200 mW): 

ν (rel. int.) = 3221(2), 1891(2), 1577(82), 1466(11), 1413(19), 1386(87), 1349(7), 

1308(25), 1296(20), 1236(23), 1195(4), 1123(10), 1102(100), 1032(6), 1015(14), 883(3), 

839(5), 759(4), 639(3), 502(2), 418(6), 370(3) cm−1; Elemental analysis (C3H2N8O3): 

calc.: C 14.45, H 4.47,N 68.94 %; found: C 14.72, H 4.75, N 64.97 %; Mass 

spectrometry: m/z (FAB+): 105.1 [CH9N3+], m/z (FAB−): 197.2 [C3HN8O3
−]. 

Sensitivities (anhydrous, grain size < 100 μm): friction: 360 N; impact: 10 J. DSC (5 °C 

min−1): Tdec. = 181 °C. 

 

Hydroxylamonium 5-(5-Nitramino-1H-1,2,4-triazolate-3-yl) tetrazol-1-olate (4a) 

Hydroxylamine (50 wt% in water, 0.3 mL, 4.6 mmol) was added to a solution of 3 (0.5 g, 

2.3 mmol) in ethanol (50 mL) and the mixture was stirred at 60 °C for 5 minutes. After 

cooling down to room temperature the precipitate was collected by filtration, washed with 

ethanol and diethyl ether and dried in air to yield 4a as colorless powder. (0.52 g, 1.9 

mmol, 80 %). 1H NMR (DMSO-d6): δ = 8.42 (s, 3H, NH3OH+) ppm. 13C NMR (DMSO-

d6): δ = 158.1 (C–NHNO2), 147.8 (Ctriazole), 138.6 (Ctetrazole) ppm. 14N NMR (DMSO-d6): 

δ = −10 (NO2) ppm; IR: ν (rel. int.) = 3464(s), 3366(s), 3179(s), 1644(vs), 1523(s), 

1470(vs), 1425(s), 1405(m), 1375(s), 1344(vs), 1273(s), 1242(s), 1209(s), 1101(s), 

1085(s), 1003(s), 988(s), 764(s), 724(vs) cm−1; Raman (200 mW): ν (rel. int.) = 

1606(97), 1600(100), 1539(20), 1491(15), 1481(20), 1386(12), 1359(6), 1319(3), 

1252(9), 1152(21), 1138(17), 1085(3), 1030(25), 1017(34), 985(7), 876(7), 763(11), 

755(10), 732(3), 600(3), 442(5), 303(2), 280(4), 280(4), 253(2) cm−1; Elemental analysis 

(C3H2N8O3): calc.: C 12.91, H 3.25, N 55.19 %; found: C 13.19, H 3.33, N 53.72 %; 

Mass spectrometry: m/z (FAB+): 34.1 [NH3OH+], m/z (FAB−): 212.1 [C3HN9O3
−]. 

Sensitivities (anhydrous, grain size < 100 μm): friction: 288 N; impact: 8 J. DSC (5 °C 

min−1): Tdec. = 179 °C. 
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Guanidinium 5-(5-Nitramino-1H-1,2,4-triazolate-3-yl)tetrazol-1-olate (4b) 

A solution of guanidinium carbonate (0.42 g, 2.3 mmol) in water (5 mL) was added to a 

solution of 3 (0.5 g, 2.3 mmol) in ethanol (50 mL) and the mixture was refluxed for 30 

minutes. After cooling down to room temperature the precipitate was collected by 

filtration, washed with ethanol and diethyl ether and dried in air to yield 4b as colorless 

powder. (0.66 g, 2.0 mmol, 85 %). 1H NMR (DMSO-d6): δ = 7.23 (s, 6H, NH2, G+) ppm. 
13C NMR (DMSO-d6): δ = 158.6 (C, G+), 157.9 (C–NHNO2), 148.8 (Ctriazole), 138.1 

(Ctetrazole) ppm; 14N NMR (DMSO-d6): δ = −11 (NO2) ppm; IR: ν (rel. int.) = 3548(vw), 

3456(m), 3370(m), 3179(m), 3116(m), 1681(m), 1642(vs), 1587(w), 1523(m), 1468(s), 

1425(m), 1382(s), 1369(s), 1345(vs), 1259(m), 1243(s), 1210(m), 1159(m), 1100(m), 

1084(s), 1010(m), 987(s), 863(w), 863(w), 764(s), 746(m), 723(s), 677(m) cm−1; Raman 

(200 mW): ν (rel. int.) = 3217(2), 1594(100), 1524(34), 1474(21), 1425(5), 1413(4), 

1406(4), 1371(19), 1349(6), 1262(3), 1247(4), 1213(5), 1161(8), 1134(7), 1087(3), 

1023(52), 1011(34), 988(3), 865(5), 773(6), 748(8), 539(7), 451(5), 451(5), 442(8), 

273(4), 247(3) cm−1; Elemental analysis (C3H2N8O3): calc.: C 18.13, H 3.96, 

N 63.43 %; found: C 17.80, H 4.17, N 59.31 %; Mass spectrometry: m/z (FAB+): 60.1 

[CH6N3
+], m/z (FAB−): 212.1 [C3HN9O3

−]. Sensitivities (anhydrous, grain size 

< 100 μm): friction: 360 N; impact: 40 J. DSC (5 °C min−1): Tdec. = 212 °C. 

 

Triaminoguanidinium 5-(5-Nitramino-1H-1,2,4-triazolate-3-yl)tetrazol-1-olate (4c) 

Triaminoguanidine (0.49 g, 4.6 mmol) was added to a solution of 5 (0.5 g, 2.3 mmol) in 

ethanol (50 mL) and the mixture was stirred at 40 °C for 30 minutes. After cooling down 

to room temperature the precipitate was collected by filtration, washed with ethanol and 

diethyl ether and dried in air to yield 4c as colorless powder. (0.83 g, 2.0 mmol, 84 %). 
1H NMR (DMSO-d6): δ = 8.59 (s, 3H, NH, TAG+), 4.36 (s, 6H, NH2, TAG+) ppm. 
13C NMR (DMSO-d6): δ = 159.6 (CTAG), 158.1 (C–NHNO2), 148.7 (Ctriazole), 137.7 

(Ctetrazole) ppm; 14N NMR (DMSO-d6): δ = −10 (NO2) ppm. IR: ν (rel. int.) = 3320(m), 

3207(s), 1685(vs), 1524(m), 1468(s), 1328(vs), 1237(m), 1198(m), 1133(s), 1076(m), 

980(s), 967(s), 856(m), 768(s), 728(m) cm−1; Raman (200 mW): ν (rel. int.) = 3321(6), 

3236(9), 1682(5), 1592(100), 1524(46), 1469(22), 1370(13), 1236(4), 1187(3), 1140(13), 

1084(2), 1009(37), 883(13), 865(9), 749(10), 638(4), 417(6), 270(6) cm−1; Elemental 

analysis (C3H2N8O3): calc.: C 14.25, H 4.55, N 69.81 %; found: C 13.82, H 4.78, 

N 64.78 %; Mass spectrometry: m/z (FAB+): 105.0 [CH9N6
+], m/z (FAB−): 212.1 
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([C3HN9O3
−]). Sensitivities (anhydrous, grain size < 100 μm): friction: 288 N; impact: 

10 J. DSC (5 °C min−1): Tdec. = 186 °C. 
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12. APPENDIX 
 

LIST OF ABBREVIATIONS 
 

  Å Angström (10-10 m) 
ADN Ammonium dinitramide 
AG Aminoguanidinium cation 
ANTA 5-Amino-3-nitro-1H-1,2,4-triazole 
AP Ammonium perchlorate 
ATR Attenuated total reflection 
d doublet 
δ Chemical shift 
DCI Desorption chemical ionization (MS) 
DCT 4,5-Dicyano-1,2,3-triazolate anion 
dec. Decomposition 
DEI  Desorption electron impact (MS) 
DSC Differential Scanning Calorimetry 
EI Electron impact (MS) 
FAB Fast atom bombardment (MS) 
FW Formula weight 
G Guanidinium cation 
HMX 1,3,5,7-tetranitro-1,3,5,7-tetrazocane 
Hz Hertz 
IR Infrared 
J Coupling constant (NMR); Joule (Sensitivity) 
KDN Potassium dinitramide 
m medium (IR); multiplett (NMR) 
m/z mass per charge (MS) 
MeNO2 Nitromethane 
MS Mass spectrometry 
N Newton 
NMR Nuclear Magnetic Resonance 
NQ Nitroguanidine 
PC-J Detonation pressure at the Chapman-Jouguet point 
ppm parts per million (NMR) 
q quartet 
ρ Density (g cm-3) 
RDX 1,3,5-trinitro-1,3,5-triazinane 
rw van der Waals radii 
S Goodness of Fit 
s strong (IR); singlet (NMR) 
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STANAG Standardization agreement 
t triplet 
T Temperature 
TATB Trinitrotriaminobenzene 
Tex Temperature of explosion 
TAG Triaminoguanidinium cation 
TLC Thin layer chromatography 
TMS  Tetramethylsilyl 
TNT Trinitrotoluene 
vs very strong (IR) 
Ω Oxygen balance 
w weak (IR) 
Z Number of asymmetric units in unit cell 
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SUPPORTING INFORMATION FOR CHAPTER 5 

 

Table S1: Crystallographic data and parameter for compounds 1,2 4 and 5. 

     
 DABT × DMSO 

(1) 

DNBT 

(2) 

DAzBT 

(4) 

DNMBT 

(5) 

Formula C8H18N8O2S2 C4H2N8O4 C4H6N12O2 C6H8N10O10 
FW [g mol-1] 322.4 226.1 254.2 380.2 
Crystal system monoclinic monoclinic triclinic monoclinic 
Space Group P21/c P21/n P-1 P21/c 

Color / Habit colorless block colorless block colorless rod colorless block 
Size [mm] 0.35x0.20x0.10 0.2x0.2x0.1 0.58x0.07x0.06 0.31x0.19x0.05 
a [Å] 
b [Å] 
c [Å] 
α [°] 
β [°] 
γ [°] 

9.530(1) 
8.6066(7) 
9.958(1) 

90 
113.22(1) 

90 

5.0559(6) 
6.3080(7) 

12.4268(14) 
90 

95.136(11) 
90 

3.5621(7) 
7.2277(13) 

10.509(2) 
72.298(18) 
85.348(17) 
84.947(15) 

5.1144(3) 
8.8867(5) 

14.2716(9) 
90 

93.531(6) 
90 

V [Å3] 750.55(14) 394.73(8) 256.34(9) 647.41(7) 
Z 2 2 1 2 
ρcalc. [g cm-3] 1.4267(3) 1.9024(4) 1.6465(6) 1.9503(2) 
µ [mm-1]  0.370 0.169  0.137 0.184 
F(000) 340 228 130 388 
λMoKα  [Å] 0.71073 0.71073 0.71073 0.71073 
T [K] 173 173 173 173 
Theta Min-Max [°] 4.28– 28.88 4.23–26.50 4.25–32.21 4.15–33.45 
Dataset h 
Dataset k 
Dataset l 

-11; 5 
-10; 9 

-12; 12 

-6; 6 
-7; 7 

-15; 8 

-5; 4 
-8; 8 

-12; 12 

-6, 6 
-10; 11 
-12; 18 

Reflections collected 1460 2036 2576 3565 
Independent 
reflections 

1251  809 996 1406 

Observed reflections 1088 678 798 1170 
No. parameters 144 77 94 134 

Rint 0.0220 0.0283 0.0337 0.0290 

R1, wR2 (I>σI0) 0.0397; 0.0927 0.0347; 0.0827 0.0335; 0.0739 0.0353; 0.0902 
R1, wR2 (all data) 0.0481; 0.0976 0.0434; 0.0891 0.0480; 0.0811 0.0457; 0.0972 
S 1.143 1.036 1.051 1.064 
Resd. Dens. [e Å-3] 0.225; -0.316 0.201; -0.281 0.155; -0.162 0.376; -0.254 
Device type Oxford Xcalibur3 

CCD 
Oxford 

 Xcalibur3 CCD 
Oxford Xcalibur3 

CCD 
Oxford Xcalibur3 

CCD 
Solution  SHELXS-97 SHELXS-97 SHELXS-97 SHELXS-97 
Refinement SHELXL-97 SHELXL-97 SHELXL-97 SHELXL-97 
Absorption 
correction 

multi-scan multi-scan multi-scan multi-scan 

CCDC 887530 864398 887531 887532 
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Table S1: Crystallographic data and parameter for DNBT and the corresponding salts. 

 DNBT (2) 
NH4-DNBT x 2 

H2O (3a) Hx-DNBT (3c) 
AG-DNBT x 
2 H2O (3e) 

TAG-DNBT 
(3f) 

Measurement  hx016 gx391 qn034 gx384 gx380 
Formula C4H2N8O4 C4H12N10O6 C4H8N10O6 C6H18N16O6 C6H18N20O4 
FW [g mol-1] 226.110 296.202 292.170 410.311 434.340 
Crystal system monoclinic monoclinic monoclinic triclinic triclinic 

Space Group P21/n P21/n P21/c P-1 P-1 

Color / Habit colorless block colorless plate colorless rod yellow plate colorless block 

Size [mm] 0.2x0.2x0.1 0.59x0.58x0.11 0.25x0.09x0.03 
0.42x0.21x0.0

1 0.44x0.41x0.39 

a [Å] 
b [Å] 
c [Å] 
α [°] 
β [°] 
γ [°] 

5.0559(6) 
6.3080(7) 

12.4268(14) 
90 

95.136(11) 
90 

7.1796(16) 
11.736(2) 
7.6060(15) 

90 
104.65(2) 

90 

3.8248(2) 
14.2620(10) 

9.7288(7) 
90 

95.014(4) 
90 

4.7081(6) 
7.5734(10) 
12.197(2) 

105.107(14) 
94.072(12) 
97.894(10) 

7.1460(8) 
7.4574(9) 
8.4596(8) 
93.973(9) 

101.610(9) 
99.154(9) 

V [Å3] 394.73(8) 620.1(2) 528.67(6) 413.29(10) 433.57(8) 
Z 2 2 2 1 1 
ρcalc. [g cm-3] 1.9024(4) 1.5864(5) 1.8354(2) 1.6486(4) 1.6635(3) 
µ [mm-1]  0.169 0.143 0.167 0.142 0.139 
F(000) 228 308 300 214 226 
λMoKα  [Å] 0.71073 0.71073 0.71073 0.71073 0.71073 
T [K] 173 173 173 173  
Theta Min-Max [°] 4.23–26.50 4.44– 26.49 3.55–25.31 4.55–26.49 4.24–26.50 
Dataset h 
Dataset k 
Dataset l 

-6; 6 
-7; 7 

-15; 8 

-7; 9 
-13; 14 
-9; 9 

-4, 4 
-17; 17 
-11; 11 

-5; 5 
-9; 8 

-13; 15 

-8, 8 
-9; 9 

-10; 10 

Reflections collected 2036 3198 3411 2152 4595 
Independent 
reflections 

809 1266 962 1660 1791 

Observed reflections 678 1119 805 947 1376 

No. parameters 77 
115 107 161 163 

Rint 
0.0283 

0.0200 0.0348 0.0166 0.0219 

R1, wR2 (I>σI0) 0.0347; 0.0827 0.0588; 0.1351 0.0400; 0.0936 0.0408; 
0.0827 

0.0323; 0.0832 

R1, wR2 (all data) 0.0434; 0.0891 0.0641; 0.1367 0.0512; 0.0998 
0.0819; 
0.0892 0.0448; 0.0870 

S 1.036 1.208 1.091 0.824 0.982 
Resd. Dens. [e Å-3] 0.201; -0.281 0.327; -0.330 0.236; -0.244 0.180; -0.313 0.180; -0.289 

Device type Oxford 
Xcalibur3 CCD 

Oxford 
Xcalibur3 CCD 

Kappa CCD 
Oxford 

Xcalibur3 
CCD 

Oxford 
Xcalibur3 

CCD 
Solution  SHELXS-97 SHELXS-97 SHELXS-97 SHELXS-97 SHELXS-97 
Refinement SHELXL-97 SHELXL-97 SHELXL-97 SHELXL-97 SHELXL-97 
Absorption correction multi-scan multi-scan none multi-scan multi-scan 
CCDC 864398 864400 864399 864397 864401 
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Table S2: Selected bond lengths[Å], bond angles [°] and torsion angles [°] of compounds 2 and  

3a–f. 

 DNBT 

(2) 

(NH4)2 

DNBT × 

2H2O 

(3a) 

(NH3OH)2 

DNBT  

(3c) 

(AG)2 DNBT 

× 2H2O 

(3e) 

(TAG)2  

DNBT  

(3f) 

      

bond length [Å]      

N1-N2 1.3497(18) 1.372(3) 1.364(2) 1.358(3) 1.3672(15) 

N2–C2 1.315(2) 1.320(4) 1.322(3) 1.323(3) 1.3240(17) 

C2–N3 1.3456(18) 1.336(4) 1.338(3) 1.329(3) 1.3337(16) 

N3–C1 1.3282(19) 1.352(4) 1.345(3) 1.352(3) 1.3443(17) 

C1–C1(i) 1.453(2) 1.471(4) 1.453(3) 1.448(3) 1.4630(18) 

C2–N4 1.4533(19) 1.450(4) 1.437(3) 1.447(3) 1.4429(17) 

N4–O1 1.2360(17) 1.226(4) 1.218(2) 1.231(2) 1.2318(15) 

N4–O2 1.2223(18) 1.223(4) 1.226(3) 1.229(3) 1.2296(14) 

      

bond angles [°]      

      

N1–N2–C2 100.57(13) 104.3(2) 103.82(16) 102.95(18) 103.35(10) 

N2–C2–N3 118.10(13) 116.4(3) 116.65(18) 117.8(2) 117.38(12) 

C2–N3–C1 100.57(11) 100.0(3) 99.85(16) 99.25(18) 99.37(10) 

N3–C1–N1 110.57(13) 113.8(3) 113.59(17) 113.26(19) 114.01(11) 

C1–N1–N2 110.19(13) 105.6(3) 106.09(16) 106.75(17) 105.89(10) 

O1–N4–O2 124.39(12) 124.3(3) 123.60(18) 124.87(18) 123.58(11) 

      

torsion angles [°]      

      

O1–N4–C2–N2 2.9(2) -1.7(4) -9.4(3) -6.2(3) -2.83(19) 

O2–N4–C2–N3 2.9(2) 0.4(5) -7.6(3) -7.4(3) -3.83(19) 
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Figure S1: Molecular structure of ammonium 3,3’-dinitro-bis-(1,2,4-triazolate) (3a). Thermal 

ellipsoids present the 50 % probability level; symmetry operator: (i) 1-x, -y, 2-z 

 

 
Figure S2: Molecular structure of hydroxylammonium 3,3’-dinitro-bis-(1,2,4-triazolate) (3c). 

Thermal ellipsoids present the 50 % probability level; symmetry operator: (i) 1-x, 1-y, -z. 
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Figure S3: Molecular structure of aminoguanidinium 3,3’-dinitro-bis-(1,2,4-triazolate) (3e). 

Thermal ellipsoids present the 50 % probability level; Symmetry operator: (i) -1-x, 1-y, 1-z. 
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Heats of Formation 

In bomb calorimetric measurements nitrogen-rich highly energetic compounds tend to 
burn incompletely due to the trend of explosion. Oftentimes wrong heats of combustion 
(∆cH) and finally wrong heats of formation (∆fH°) are obtained. Therefore the heats of 
formation of 5–7 have been calculated on the same level for better comparison. All 
calculations were carried out using the Gaussian 09 (revision C.01) program package.[1] 
The enthalpies (H) were calculated using the complete basis set (CBS) method described 
by Petersson and coworkers in order to obtain very accurate values. In this study we 
applied the modified CBS-4M method (M referring to the use of minimal population 
localization) which is a re-parameterized version of the original CBS-4 method and also 
includes some additional empirical corrections.[2] 

The enthalpies of the gas-phase species M were calculated by the atomization energy 
method according to Equation 1,[3] using literature values for atomic ∆fH°(g,A).[4] 

 ∆fH°(g,M) = H298
(g,M) − ∑ H298

(g,A) + ∑ ∆fH°(g,A) (1) 

The solid-state enthalpy of formation for neutral compounds can be estimated with 
Trouton’s rule according to Equation 2,[5] where T is either the melting point or the 
decomposition temperature (in K) if no melting occurs prior to decomposition.  

 ∆fH°(s) = ∆fH°(g) − ∆subH = ∆fH°(g) − (188 / J mol−1 K−1 × T) (2) 

Finally, the solid-state molar enthalpies of formation (∆fH°) were used to calculate the 
solid-state energies of formation (∆fU°) according to Equation 3, with ∆n being the 
change of moles of gaseous components. 

 ∆U = ∆H − ∆nRT (3) 
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Table S1: CBS-4M calculation results. 

M PG [a] −H / a.u. [b] ∆fH°(g) / kJ mol−1 [c] −∆n [d] 

1 C1 833.286389 587.7 7.5 

2 C1 778.023249 526.3 6.5 

3 C1 737.128110 862.2 6.5 

NNBT2− C1 945.400176 229.1 – 

NH4O+ Cs 131.863249 164.1 – 

G+ C1 205.453192 137.1 – 

TAG+ C3 371.197775 208.8 – 

4a – – 915.5 13.0 

4b – – 800.3 16.0 

4c – – 1102.1 22.0 

RDX C1 896.346781 174.2 9.0 

[a] Point group, [b] CBS-4M calculated enthalpy, [c] gas-phase enthalpy of formation, [d] change of moles 

of gaseous components. 

 
Table S2.  Literature values for atomic ΔH°f

298  / kcal mol-1  

 NIST 4 

  

H 52.1 

C 171.3 

N 113.0 

O 59.6 

 
 
Table S3: Molecular volumes, lattice energies and lattice enthalpies. 

 VM /nm3 UL /kJ mol−1 ∆HL / kJ mol−1  

4a 0.271 1353.8 1358.8 

4b 0.345 1235.3 1242.8 

4c 0.431 1134.2 1141.6 
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Table S1: Crystal density, selected bond lengths[Å] and bond angles [°] of compounds 2, 3 and  

4a–f. 
 DNBT 

(2) 

DNBTO 

(3) 

(NH4)2 

DNBTO 

(4a) 

(N2H5)2 

DNBTO 

(4c) 

(NH3OH)

2 

DNBTO 

(4c) 

(G)2 

DNBTO 

(4c) 

(AG)2 

DNBTO 

(4c) 

(TAG)2 

DNBTO 

(4c) 

DNBT2- 

(average) 

DNBTO2- 

(average) 

           

Crystal density 

[gcm–3] (173 K) 

1.764 

(×2 H2O) 

1.862 

(×2 H2O) 

1.696 

(×2 H2O) 

1.841 1.952 1.788 1.764 1.730 

(×2 H2O) 

/ / 

           

bond length [Å]           

N1-N2 1.350(2) 1.339(2) 1.351(2) 1.354(3) 1.352(2) 1.349(4) 1.343(3) 1.348(5) 1.36 1.35 

N2–C2 1.315(2) 1.328(2) 1.330(2) 1.330(3) 1.333(2) 1.328(5) 1.336(3) 1.336(5) 1.32 1.33 

C2–N3 1.346(2) 1.333(2) 1.329(2) 1.339(3) 1.323(2) 1.328(5) 1.329(3) 1.334(5) 1.33 1.33 

N3–C1 1.328(2) 1.342(2) 1.347(2) 1.350(3) 1.343(2) 1.348(5) 1.344(3) 1.346(5) 1.35 1.35 

C1–C1(i) 1.453(2) 1.451(2) 1.452(3) 1.461(3) 1.443(2) 1.462(5) 1.451(3) 1.438(6) 1.46 1.45 

C1–N1 1.349(2) 1.350(2) 1.358(2) 1.358(3) 1.364(2) 1.361(5) 1.363(3) 1.375(5) 1.35 1.36 

C2–N4 1.453(2) 1.452(2) 1.448(2) 1.442(3) 1.433(2) 1.454(5) 1.440(3) 1.427(5) 1.45 1.44 

N1–O3 / 1.349(2) 1.313(2) 1.294(3) 1.307(2) 1.294(4) 1.302(2) 1.296(4) / 1.30 

           

bond angles [°]           

           

N1–N2–C2 100.6(1) 99.8(1) 100.7(1) 101.4(2) 100.5(1) 101.0(3) 100.7(2) 101.0(3) 103.6 100.8 

N2–C2–N3 118.1(1) 118.0(1) 118.3(2) 117.6(2) 118.1(2) 118.5(3) 118.0(2) 117.9(4) 117.2 118.3 

C2–N3–C1 100.6(1) 101.5(1) 100.9(1) 101.0(2) 101.7(1) 100.6(3) 101.3(2) 101.6(3) 99.7 101.1 

N3–C1–N1 110.6(1) 108.6(1) 110.1(2) 110.3(2) 109.4(1) 110.4(3) 109.6(2) 109.4(3) 113.7 109.8 

C1–N1–N2 110.2(1) 112.1(1) 110.0(1) 109.7(2) 110.2(1) 109.5(3) 110.5(2) 110.2(3) 106.1 110.0 

           

 

 

Heats of Formation 

In bomb calorimetric measurements nitrogen-rich highly energetic compounds tend to 

burn incompletely due to the trend of explosion. Oftentimes wrong heats of combustion 

(∆cH) and finally wrong heats of formation (∆fH°) are obtained. Therefore the heats of 

formation of RDX, 3 and 4a–f have been calculated on the same level for better 

comparison. All calculations were carried out using the Gaussian 09 (revision C.01) 

program package.[1] The enthalpies (H) were calculated using the complete basis set 

(CBS) method described by Petersson and coworkers in order to obtain very accurate 

values. In this study we applied the modified CBS-4M method (M referring to the use of 
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minimal population localization) which is a re-parameterized version of the original CBS-

4 method and also includes some additional empirical corrections.[2] 

The enthalpies of the gas-phase species M were calculated by the atomization energy 

method according to Equation 1,[3] using literature values for atomic ∆fH°(g,A).[4] 

 ∆fH°(g,M) = H298
(g,M) − ∑ H298

(g,A) + ∑ ∆fH°(g,A) (1) 

The solid-state enthalpy of formation for neutral compounds can be estimated with 

Trouton’s rule according to Equation 2,[5] where T is either the melting point or the 

decomposition temperature (in K) if no melting occurs prior to decomposition.  

 ∆fH°(s) = ∆fH°(g) − ∆subH = ∆fH°(g) − (188 / J mol−1 K−1 × T) (2) 

Finally, the solid-state molar enthalpies of formation (∆fH°) were used to calculate the 

solid-state energies of formation (∆fU°) according to Equation 3, with ∆n being the 

change of moles of gaseous components. 

 ∆U = ∆H − ∆nRT (3) 

Table S2: CBS-4M calculation results. 

M Point group −H / a.u. 

3 C1 1041.39643 

DNBTO2− C1 1040.299863 

NH4
+ Td 56.796608 

N2H5
+ Cs 112.030523 

NH4O+ Cs 131.863249 

G+, C(NH2)3
+   C1 205.453192 

AG+, (H2N)2C(NHNH2)+ Cs 260.701802 

TAG+ C3 371.197775 

RDX C1 896.346781 

 

Table S3. Literature values for atomic ΔH°f
298  / kcal mol-1  

 NIST 4 

  

H 52.1 

C 171.3 

N 113.0 

O 59.6 
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Table S4: Enthalpies of the gas-phase species M. 

M sum formula ∆fH°(g) / kJ mol−1 

3 C4H2N8O6 380.0 

DNBTO2− C4N8O6
2− 192.4 

NH4
+ NH4

+ 151.9 

N2H5
+ N2H5

+ 185.1 

NH4O+ NH4O+ 164.1 

G+   CH6N3
+ 137.1 

AG+ CH7N4
+ 161.0 

TAG+ CH9N6
+ 208.8 

RDX C3H6N6O6 174.2 

4a C4H8N10O6 827.7 

4b C4H10N12O6 965.8 

4c C4H8N10O8 878.8 

4d C6H12N14O6 763.6 

4e C4H14N16O6 863.1 

4f C6H18N20O6 1065.4 

 
Table S5: Molecular volumes, lattice energies and lattice enthalpies. 

 VM /nm3 UL /kJ mol−1 ∆HL / kJ mol−1  

4a 0.272 1351.9 1359.4 

4b 0.291 1318.4 1325.8 

4c 0.276 1344.9 1352.3 

4d 0.350 1229.2 1236.7 

4e 0.383 1187.4 1194.9 

4f 0.446 1119.3 1126.7 
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Table S6: Solid state energies of formation (∆fU°). 

 
∆fH°(s) / 

kJ mol−1 
∆n[a] 

∆fU°(s) / 

kJ mol−1 
M /g mol−1 ∆fU°(s) /kJ kg−1 

3 290.1 8.0 310.0 258.11 1200.9 

4a 103.6 12.0 133.4 292.17 456.5 

4b 413.4 14.0 448.1 322.20 1390.8 

4c 212.8 13.0 245.1 324.17 756.0 

4d 98.1 16.0 137.8 376.25 366.2 

4e 338.9 18.0 383.6 406.28 944.1 

4f 811.7 22.0 866.3 466.34 1857.6 

[a]: n being the change of moles of gaseous components 
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Table S1: Crystallographic data and parameters for compounds 3–7. 

      
 ACT 

(3) 

ATT*Cl 

(4*Cl) 

NATT * 3H2O 

(5) 

NTT * 2H2O 

(6) 

AzTT * 2H2O 

(7) 

Formula C3H3N5 C3H7N8Cl C3H9N9O5 C3H6N8O4 C3H6N10O2 
FW [g mol-1] 109.1 206.6 251.2 218.1 214.1 
Crystal system monoclinic monoclinic monoclinic triclinic orthorhombic 
Space Group P21/c P21/c P21/c P-1 Fdd2 

Color / Habit colorless block colorless plate colorless plate orange block colorless rod 
Size [mm] 0.41x0.35x0.17 0.40x0.40x0.03 0.20x0.20x0.05 0.58x0.50x0.45 0.27x0.08x0.04 
a [Å] 
b [Å] 
c [Å] 
α [°] 
β [°] 
γ [°] 

5.2690(8) 
5.4724(6) 

16.0548(19) 
90 

90.816(12) 
90 

5.2168(4) 
9.4832(6) 

17.0149(10) 
90 

90.685(6) 
90 

7.2260(5) 
4.5579(4) 
31.331(3) 

90 
92.270(7) 

90 

5.0703(6) 
9.0366(9) 

9.9467(11) 
92.601(8) 

102.184(10)  
100.668(9) 

22.8925(8) 
42.7552(14) 
3.62200(10) 

90 
90 
90 

V [Å3] 462.88(10) 841.70(10) 1031.09(15) 436.08(8) 3545.1(2) 
Z 4 4 4 2 16 
ρcalc. [g cm-3] 1.5654(3) 1.63033(19) 1.6180(2) 1.6613(3) 1.60493(9) 
µ [mm-1]  0.116 0.431 0.147 0.149 0.135 
F(000) 224 424 520 224 1760 
λMoKα  [Å] 0.71073 0.71073 0.71073 0.71073 0.71073 
T [K] 173 173 173 173 173 
Theta Min-Max [°] 4.60– 26.47 4.19–26.50 4.52–26.00 4.21–25.99 2.61 –27.48 
Dataset h 
Dataset k 
Dataset l 

-6; 6 
-6; 6 

-20; 17 

-6; 6 
-11; 11 
-21; 21 

-8; 8 
-5; 5 

-37; 38 

-6, 3 
-9; 11 

-12; 12 

-29, 29 
-54; 54 

-4; 4 
Reflections collected 2333 8601 4958 2252 22687 
Independent 
reflections 

954 1746 2024 1689 1177 

Observed reflections 649 1481 1466 1430 1102 
No. parameters 85 139 190 160 158 

Rint 0.0413 0.0335 0.0380 0.0083 0.0345 

R1, wR2 (I>σI0) 0.0435; 0.0888 0.0292; 0.0735 0.0374; 0.0752 0.0332; 0.0830 0.0312; 0.0807 
R1, wR2 (all data) 0.0746; 0.1061 0.0373; 0.0790 0.0608; 0.0826 0.0332; 0.0830 0.0344; 0.0823 
S 1.042 1.059 1.014 1.041 1.080 
Resd. Dens. [e Å-3] 0.228; -0.180 0.306; --0.252 0.205; -0.191 0.222; -0.183 0.216; -0.168 
Device type Oxford 

Xcalibur3 
CCD 

Oxford 
 Xcalibur3 

CCD 

Oxford  
Xcalibur3 

CCD 

Oxford 
Xcalibur3 

CCD 

Bruker  
D8 Quest 

Solution  SHELXS-97 SHELXS-97 SHELXS-97 SHELXS-97 SIR-97 
Refinement SHELXL-97 SHELXL-97 SHELXL-97 SHELXL-97 SHELXL-97 
Absorption correction multi-scan multi-scan multi-scan multi-scan multi-scan 
CCDC 906004 906005 906007 906006 906008 
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Crystals of the chloride salt of 4 suitable for X-Ray analysis could be obtained by slow 

evaporation of a solution of 4 in 2 m hydrochloric acid. Figure S1 shows the crystal 

structure of the chloride salt together with the labeling scheme. As it is typical for triazole 

compounds, the most basic nitrogen atom N3 is protonated, the hydrogen atoms of the 

amino group are now completely in plane with the triazole ring. Due to the formation of 

the tetrazole ring, the C2–C3 bond length is increased from 1.438(3) Å (3) to 1.451(2) Å 

in the chloride salt of compound 4. 

 

 
Figure S1: Molecular structure of 5-(5-amino-1,4H-1,2,4-triazolium-3-yl)-1H-tetrazole chloride, 

thermal ellipsoids are set to 50 % probability, symmetry codes: (i) 1−x, 1/2+y, 1/2−z; 

(ii) 1−x, -y, -z. 
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SUPPORTING INFORMATION FOR CHAPTER 10 

Table S1: Crystallographic data for 5, 6 and 7 (173 K). 

 5 6 7 

Formula C3H9N9O6 C3H6N8O5 C3H4N10O2 

M / g mol−1 267.16 234.13 212.16 

Color colorless colorless colorless 

Habit block plate block 

Crystal size / mm 0.45 × 0.40 × 0.20 0.35 × 0.20 × 0.02 0.40 × 0.21 × 0.12 

Crystal system monoclinic triclinic triclinic 

Space Group C2/c (15) P−1 (2) P−1 (2) 

a / Å 12.5692(7) 7.1459(9) 7.3393(8) 

b / Å 6.6184(5) 7.1453(9) 7.3888(10) 

c / Å 24.9737(13) 9.0182(11) 7.8723(9) 

α / ° 90 75.900(10) 97.515(10) 

β / ° 101.062(5) 74.281(10) 95.120(9) 

γ / ° 90 85.007(10) 98.213(10) 

V / Å3 2038.9(2) 429.78(9) 416.35(9) 

Z 8 2 2 

ρcalc. / g cm−3 1.741 1.809 1.692 

T / K 173(2) 173(2) 173(2) 

F(000) 1104 240 216 

µ / mm−1 0.161 0.166 0.143 

λMoKα / Å 0.71073 0.71073 0.71073 

θ range / ° 4.47–27.00 4.21–26.49 4.29–26.00 

Dataset (h; k; l) −14:16; −8:7; −31:26 −8:8; −8:4; −10:11 −8:9; −8:9; −7:9 

Reflections collected 5523 2340 2174 

Independent reflections 2200 1754 1618 

Observed reflections 1646 1287 1409 

Rint. 0.0280 0.0207 0.0145 

Parameters 212 163 152 

R1 (obs.) 0.0396 0.0430 0.0344 

wR2 (all data) 0.1000 0.0976 0.0924 

S 1.075 1.041 1.034 

Res. dens. / e Å−3 −0.221:0.337 −0.291:0.208 −0.212:0.268 

Solution  SIR97 SIR97 SHELXS-97 

Refinement SHELXL-97 SHELXL-97 SHELXL-97 

Absorption correction multi-scan multi-scan multi-scan 

CCDC 926336 926337 926338 
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Table S2: Crystallographic data for 7 (298 K) and 8. 

 7 8 

Formula C3H4N10O2 C3H4ClN7O2 

M / g mol−1 212.16 205.56 

Color colorless colorless 

Habit block rod 

Crystal size / mm 0.41 × 0.22 × 0.09 0.54 × 0.19 × 0.03 

Crystal system triclinic monoclinic 

Space Group P−1 (2) C2/c (15) 

a / Å 7.4228(11) 25.021(9) 

b / Å 7.4330(11) 3.9720(9) 

c / Å 7.9156(13) 19.722(7) 

α / ° 95.424(13) 90 

β / ° 97.670(13) 126.96(6) 

γ / ° 97.908(12) 90 

V / Å3 425.86(11) 1566.2(9) 

Z 2 9 

ρcalc. / g cm−3 1.655 1.744 

T / K 298(2) 173(2) 

F(000) 216 832 

µ / mm−1 0.140 0.469 

λMoKα / Å 0.71073 0.71073 

θ range / ° 4.24–26.37 4.15–25.99 

Dataset (h; k; l) −7:9; −9:9; −8:9 −30:30; −4:4; −21:24 

Reflections collected 2308 3689 

Independent reflections 1729 1525 

Observed reflections 1406 1177 

Rint. 0.0164 0.0282 

Parameters 152 130 

R1 (obs.) 0.0391 0.0380 

wR2 (all data) 0.0970 0.1094 

S 1.109 1.048 

Res. dens. / e Å−3 −0.209:0.149 −0.211:0.252 

Solution  SIR97 SIR97 

Refinement SHELXL-97 SHELXL-97 

Absorption correction multi-scan multi-scan 

CCDC 926339 926340 
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Crystal Structures 

The undesired side-product 5-(5-chloro-1H-1,2,4-triazol-3-yl)tetrazol-1-ol (8) crystallizes 

also as monohydrate in the monoclinic space group C2/c with two molecules in the unit 

cell and a cell volume of 1566.2(9) Å³. The formula unit of 8 together with the atom 

labeling is presented in Figure S1.  

 
Figure S1: Molecular structure of 5-(5-chloro-1H-1,2,4-triazol-3-yl)tetrazol-1-ol (8). 

Thermal ellipsoids are set to 50 % probability. 

 

Heats of Formation 

In bomb calorimetric measurements nitrogen-rich highly energetic compounds tend to 

burn incompletely due to the trend of explosion. Oftentimes wrong heats of combustion 

(∆cH) and finally wrong heats of formation (∆fH°) are obtained. Therefore the heats of 

formation of 5–7 have been calculated on the same level for better comparison. All 

calculations were carried out using the Gaussian 09 (revision C.01) program package.[1] 

The enthalpies (H) were calculated using the complete basis set (CBS) method described 

by Petersson and coworkers in order to obtain very accurate values. In this study we 

applied the modified CBS-4M method (M referring to the use of minimal population 

localization) which is a re-parameterized version of the original CBS-4 method and also 

includes some additional empirical corrections.[2] 

The enthalpies of the gas-phase species M were calculated by the atomization energy 

method according to Equation 1,[3] using literature values for atomic ∆fH°(g,A).[4] 

 ∆fH°(g,M) = H298
(g,M) − ∑ H298

(g,A) + ∑ ∆fH°(g,A) (1) 

The solid-state enthalpy of formation for neutral compounds can be estimated with 

Trouton’s rule according to Equation 2,[5] where T is either the melting point or the 

decomposition temperature (in K) if no melting occurs prior to decomposition.  
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 ∆fH°(s) = ∆fH°(g) − ∆subH = ∆fH°(g) − (188 / J mol−1 K−1 × T) (2) 

Finally, the solid-state molar enthalpies of formation (∆fH°) were used to calculate the 

solid-state energies of formation (∆fU°) according to Equation 3, with ∆n being the 

change of moles of gaseous components. 

 ∆U = ∆H − ∆nRT (3) 

Table S3: CBS-4M calculation results. 

M PG [a] −H / a.u. [b] ∆fH°(g) / kJ mol−1 [c] −∆n [d] 

5 C1 833.286389 587.7 7.5 

6 C1 778.023249 526.3 6.5 

7 C1 737.128110 862.2 6.5 

RDX C1 896.346781 174.2 9.0 

H  0.500991   

C  37.786156   

N  54.522462   

O  74.991202   

[a] Point group, [b] CBS-4M calculated enthalpy, [c] gas-phase enthalpy of formation, [d] 

change of moles of gaseous components. 
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SUPPORTING INFORMATION FOR CHAPTER 11 

Heats of Formation 

In bomb calorimetric measurements nitrogen-rich highly energetic compounds tend to 

burn incompletely due to the trend of explosion. Oftentimes wrong heats of combustion 

(∆cH) and finally wrong heats of formation (∆fH°) are obtained. Therefore the heats of 

formation of all compounds have been calculated on the same level for better comparison. 

All calculations were carried out using the Gaussian 09 (revision C.01) program 

package.[1] The enthalpies (H) were calculated using the complete basis set (CBS) method 

described by Petersson and coworkers in order to obtain very accurate values. In this 

study we applied the modified CBS-4M method (M referring to the use of minimal 

population localization) which is a re-parameterized version of the original CBS-4 

method and also includes some additional empirical corrections.[2] 

The enthalpies of the gas-phase species M were calculated by the atomization energy 

method according to Equation 1,[3] using literature values for atomic ∆fH°(g,A).[4] 

 ∆fH°(g,M) = H298
(g,M) − ∑ H298

(g,A) + ∑ ∆fH°(g,A) (1) 

The solid-state enthalpy of formation for neutral compounds can be estimated with 

Trouton’s rule according to Equation 2,[5] where T is either the melting point or the 

decomposition temperature (in K) if no melting occurs prior to decomposition.  

 ∆fH°(s) = ∆fH°(g) − ∆subH = ∆fH°(g) − (188 / J mol−1 K−1 × T) (2) 

Finally, the solid-state molar enthalpies of formation (∆fH°) were used to calculate the 

solid-state energies of formation (∆fU°) according to Equation 3, with ∆n being the 

change of moles of gaseous components. 

 ∆U = ∆H − ∆nRT (3) 
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Table S1: CBS-4M calculation results. 

M PG [a] −H / a.u. [b] ∆fH°(g) / kJ mol−1 [c] −∆n [d] 

NTT2− C1 701.815176 405.4 – 

NATT2− C1 757.100721 407.9 – 

NTTO2− C1 776.901276 405.4 – 

NATTO2− C1 832.187768 405.4 – 

NH4O+ Cs 131.863249 164.1 – 

G+, CH6N3
+   C1 205.453192 137.1 – 

TAG+, 

CH9N6
+ 

C3 371.197775 208.8 – 

1a – – 1091.7 11.0 

1b – – 976.6 14.0 

1c – – 1248.4 20.0 

2a – – 1094.3 12.0 

2b – – 979.1 15.0 

2c – – 1281.0 21.0 

3a – – 1091.8 11.5 

3b – – 976.6 14.5 

3c – – 1278.4 20.5 

4a – – 1091.8 12.5 

4b – – 976.6 15.5 

4c – – 1278.5 21.5 

RDX C1 896.346781 174.2 9.0 

[a] Point group, [b] CBS-4M calculated enthalpy, [c] gas-phase enthalpy of formation, [d] 

change of moles of gaseous components. 
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Table S2.  Literature values for atomic ΔH°f
298  / kcal mol-1  

 NIST 4 

  

H 52.1 

C 171.3 

N 113.0 

O 59.6 

 

Table S3: Molecular volumes, lattice energies and lattice enthalpies. 

 VM /nm3 UL /kJ mol−1 ∆HL / kJ mol−1 

1a 0.224 1454.3 1461.7 

1b 0.298 1306.1 1313.5 

1c 0.384 1185.7 1193.2 

2a 0.239 1419.4 1426.8 

2b 0.313 1282.0 1289.4 

2c 0.399 1168.4 1175.8 

3a 0.240 1417.2 1422.1 

3b 0.314 1280.4 1287.8 

3c 0.400 1167.3 1174.7 

4a 0.270 1355.7 1360.7 

4b 0.344 1236.7 1244.1 

4c 0.430 1135.2 1142.7 
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