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Abbreviations 

 
Aa.    arteriae 

ACSM    acellular corpus spongiosum matrix 

app.     approximately 

BAMG    bladder acellular matrix graft 

BPE    bovine pituitary extract 

BrdU    bromodeoxyuridine (5-bromo-2'-deoxyuridine) 

°C    degree Celsius 

CaCl2 calcium chloride 

CCC    collagen cell carrier 

CH charrière 

CK    cytokeratin 

cKSFM   complete keratinocyte serum-free medium 

cm  centimetre 

CO2 carbon dioxide 

Cy cyanine 

DAB    3,3'-diaminobenzidine 

DAPI    4',6-diamidino-2-phenylindole 

DMSO   dimethylsulphoxide 

DNA     deoxyribonucleic acid 

DPBS    Dulbecco's phosphate buffered saline 

e.g. “exempli gratia” = for example  

EDTA    ethylenediaminetetraacetic acid 

EGF    epidermal growth factor 

ELISA    enzyme linked immunosorbent assay 

etc.    et cetera 

EUS    external urethral sphincter 

FCS    fetal calf serum 

Fig.    figure 

FITC    fluorescein isothiocyanate 

FLUTD/FLUTI  feline lower urinary tract disease/ inflammation 

G    gauge 

g    grams OR gravitational force 

GMP    good manufacturing practice 
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h    hours 

HBSS    Hank’s balanced salt solution 

HE    haematoxylin-eosin 

HEPES   2-(4-(2-hydroxyethyl)piperazine-1-yl)ethanesulfonic acid 

HL human ureter 

HRP    horseradish peroxidase 

HUC    human urothelial cells 

i.e.    “id est” = that is 

IgG    immunoglobulin G 

i.m.  intramuscular 

IUS internal urethral sphincter 

i.v. intravenous 

IVC individually ventilated cage 

KC    keratinocyte 

KCl    potassium chloride 

kg    kilograms 

kIU    kilo international units 

KSFM    keratinocyte serum-free medium 

l    litre 

M mole 

mg    milligrams 

min    minutes 

ml  millilitre 

mm    millimetre 

mM millimole 

MSBL minipig bladder 

MSC mesenchymal stem cells 

MSHL minipig ureter 

MTS 3-(4,5-dimethyl-thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-

2-(4-sulfophenyl)-2H-tetrazolium 

MTT 3-(4,5-dimethyl-thiazoyl-2-yl)2,5 diphenyl-tetrazolium 

bromide 

n.a. not available 

ng    nanograms 

nm    nanometre 
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OD    optical density 

p passage 

PBS    phosphate-buffered saline 

PFA    paraformaldehyde 

PGA    polyglycolic acid 

PKH    Paul Karl Horan 

PLGA    poly (lactic-co-glycolic acid) 

Prol    proliferation 

PUC    porcine urothelial cells 

RT    room temperature 

s    seconds 

SIS    small intestinal submucosa 

Strat    stratification 

Tab.    table 

TE    tissue engineering 

UC    urothelial cells 

UK    United Kingdom 

US    United States 

V.    vena 

VEGF vascular endothelial growth factor 

Vol    volume 

vs.    versus 

Vv.    venae 

v/v volume to volume 

w with 

w/o without 

WST    water-soluble tetrazolium salt 

XTT    2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-  

    [(phenylamino)carbonyl]-2H-tetrazolium hydroxide) 

ZO    zonula occludens 

μg    micrograms 

μl  microlitre 

μm    micrometre 

Ω    ohm 
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1 Summary 
 
Tissue engineering (TE) is a new therapeutic approach to cope with the lack of donor 

organs or tissues. It aims to create organ substitutes to improve the function of the 

recipient’s organ or to replace it. The three basic principles of TE comprise the use 

of: 1) isolated cells or cell substitutes, 2) signal molecules that promote cell 

proliferation such as growth factors and 3) matrices i.e. natural or synthetic scaffolds. 

Using biomaterials as scaffolds, autologous cell-based transplants can be stabilised 

and consequently, a solid artificial organ can be constructed in vitro. 

This investigation was supposed to verify the suitability of a cell seeded collagen 

based scaffold (collagen cell carrier - CCC) to repair urethral lesions especially 

urethral strictures as an innovative therapeutic concept. Therefore, viability and 

proliferation of human and porcine urothelial cells as well as their adherence on the 

new cell carrier were examined. In vivo biocompatibility was tested by ectopic 

transplantation in nude rats and finally, cell seeded collagen matrices were applied in 

minipigs’ urethras after induction of a urethral stricture. 

In vitro as well as in vivo investigations proved the excellent suitability of CCC as a 

cell carrier to create artificial autologous urothelial transplants. Metabolic activity and 

proliferation of urothelial cells as well as their adherence on CCC were comparable to 

plastic seeding when high numbers of cells were used. The nude rat model and the 

minipig model proved the biocompatibility, integration, and degradation of the 

cell-matrix constructs in vivo. 

Hence the results of this study are of greatest value for future therapeutic options for 

urethral strictures and lay the foundations for potential clinical application. 
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1 Zusammenfassung  
 
Tissue Engineering (TE) ist ein neuer therapeutischer Ansatz, um dem Mangel an 

Spenderorganen oder -geweben gerecht zu werden. Er zielt darauf ab, Ersatzorgane 

herzustellen, um die Organfunktion des Empfängers zu verbessern oder zu ersetzen. 

Die drei Grundprinzipien des TE beinhalten die Nutzung von: 1) isolierten Zellen oder 

Zellersatz, 2) Signalmolekülen wie Wachstumsfaktoren, die die Zellproliferation 

fördern und 3) Matrices, das heißt natürlichen oder synthetischen Trägermaterialien. 

Durch die Nutzung von Biomaterialien als Trägermaterial können autologe 

zellbasierte Transplantate stabilisiert werden und damit ein strapazierfähiges 

künstliches Organ in vitro hergestellt werden. 

Mit dieser Untersuchung sollte die Tauglichkeit eines zellbesiedelten 

kollagenbasierten Gerüsts (collagen cell carrier - CCC) geprüft werden, 

Harnröhrenläsionen insbesondere Harnröhrenstrikturen als innovatives 

Therapiekonzept zu beheben. Dazu wurde die Viabilität und Proliferation humaner 

und porciner Urothelzellen ebenso wie deren Adhärenz auf dem neuen Zellträger 

untersucht. In vivo wurde die Biokompatibilität durch ektopische Transplantation im 

Nacktrattenmodell getestet und abschließend wurden zellbesiedelte 

Kollagenmatrices nach Induktion einer Harnröhrenstriktur in die Harnröhre von 

Minipigs eingesetzt. 

Sowohl die in vitro als auch die in vivo Daten belegten die exzellente Tauglichkeit 

von CCC als Trägermatrix zur Konstruktion artifizieller autologer 

Urotheltransplantate. Wurde eine große Anzahl an Zellen verwendet, so waren die 

metabolische Aktivität und Proliferation als auch die Adhärenz auf CCC vergleichbar 

mit der bei Aussaat auf Plastik. Das Nacktrattenmodell und das Minipigmodell wiesen 

die Biokompatibilität, die Integration und die Degradation der Zell-Matrix-Konstrukte 

in vivo nach. 

Damit sind die Ergebnisse dieser Studie von größter Bedeutung für die zukünftigen 

Therapiemöglichkeiten von Harnröhrenstrikturen und legen den Grundstein für die 

potentielle klinische Anwendung. 
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2 Introduction 
2.1 New concepts in regenerative medicine 

 
The need for new alternative therapy approaches in regenerative medicine is 

enormous: Organ donation cannot meet the requirements for transplants and current 

therapies often do not provide satisfying solutions with regard to the long-term 

outcome (LANGER & VACANTI, 1993). Compromises have to be made to arrange 

for an adequate individual therapy that can never achieve a total remission leading 

back to the original physiological state. Furthermore, organ donation does not 

provide a therapeutic opportunity for certain indications e.g. urethral damage. 

Therefore, new therapies are under investigation aiming to restore tissue that 

anatomically and functionally corresponds to the original. 

Tissue engineering (TE) is an interdisciplinary approach that combines life sciences 

with engineering and the ultimate goal is to design new organs or tissues that can 

restore, maintain or improve physiological function (FUCHS et al., 2001). The 

restoration and therewith the functional recovery of the relevant organ or tissue shall 

lead to an enhanced surgery outcome as well as improved patient satisfaction. 

Therefore, it is a promising technique for reconstructive surgery in the 21st century. 

Although TE has been rapidly evolving throughout the last years and numerous 

experimental trials have been conducted, the transfer into the clinical routine has not 

yet been realised. 

Concerning the basic methodical approaches of TE, some research groups favour 

synthetic or natural scaffolds while others work on cell-based therapies or the 

combination of both (cell seeding of materials). Biomaterials or artificial scaffolds 

used for reconstruction primarily have to feature the following properties: 

biocompatibility, no immunogenicity, sufficient mechanical stability, support of cell 

growth and angiogenesis, and preferably biodegradability (FUCHS et al., 

2001;WÜNSCH et al., 2005). Tissue-engineered transplants have to guarantee 

integration into the host and sufficient functional substitution of the original tissue 

without evoking distinct inflammatory reactions. Furthermore, they should be 

producible off-the-shelf and economically efficient. Besides biocompatibility and 

immunogenicity issues, the lack of neovascularisation and nerve ingrowth often limits 

sustained success (FEIL et al., 2011). For autologous approaches donor site 

morbidity can impair integration and incorporation into the host. 
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In contrast to numerous visions being pursued for the introduction of TE techniques 

in routine clinical use in human medicine, TE is still in its infancy in veterinary 

medicine. In fact, stem cells are currently the most important research field. Anyhow, 

it is gaining more importance on the one hand in terms of animal models for human 

medicine and on the other hand for the treatment of musculoskeletal disorders in 

horses and dogs (KOCH et al., 2009; RIBITSCH et al., 2010; FORTIER & TRAVIS, 

2011). 

 

2.2 The urethra 
2.2.1 Anatomy and physiology of the human urethra 

 
The urethra is part of the lower urinary tract and develops from the middle and lower 

section of the urogenital sinus, that also generates the bladder and genital glands 

(SÖKELAND et al., 2008). The blood supply and drainage come from branches of 

the Aa. and Vv. pudendae. 

There are three tissue layers to be distinguished within the urethra: the mucosa, the 

muscular layer, and the adventitia. The innermost coating consists of the epithelium 

with subepithelial blood vessels, glands, and connective tissue underneath (lamina 

propria). The proximal urethra is coated with urothelium which passes into a 

multilayer isoprismatic (pseudostratified) and then into a squamous epithelium at the 

distal end of the urethra. The subsequent muscular tissue is built of smooth muscle 

forming the internal urethral sphincter (IUS) muscle and partially striated muscle 

(external urethral sphincter, EUS). Another layer of connective tissue forms the 

outside of the urethra (HAUTMANN, 2010). 

In males the urethra can be divided into three parts, the prostatic (Pars prostatica), 

membranous (Pars membranacea), and the penile, bulbar, or spongy urethra (Pars 

spongiosa/cavernosa) and reaches about 22 cm of length (KOHLER et al., 2008). 

Others distinguish a fourth, the preprostatic part (PETERSEN, 1992) or even six 

different sections: bladder neck, prostatic, membranous, bulbar, penile, and fossa 

navicularis (YIEE & BASKIN, 2010). The intersection of the bladder and the urethra 

forms the IUS, a circular smooth muscle portion playing an important role in the 

continence mechanism. The spermatic duct and the prostatic ducts enter the urethra 

in the prostatic part. The EUS muscle is a striated muscle formed by the 

membranous section of the urethra. It covers the ventral side of the prostate and 

displays an omega-shaped structure around the urethra with the opening on the 
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dorsal side. Anyhow, the muscle fibres meet at the dorsal side of the urethra, partly 

forming a circular muscular coating (WALLNER et al., 2009). Being mobile and 

surrounded by the corpus spongiosum and the corpora cavernosa the penile section 

is also called Pars pendulans or Pars liber (SÖKELAND et al., 2008). The ducts of 

the urethral or periurethral glands (also Littré glands) and the bulbourethral gland 

(also Cowper's glands) enter in the spongy urethra. Persisting inflammations 

alongside these ducts can cause urethral strictures (RÖDDER et al., 2006). While 

passing the prostate the urethra curves 35-40° ventrally and almost 90° during its 

passage through the pelvis. This constitutes the narrowest point of the male urethra 

and can evoke problems in catheterisation and endoscopy of the bladder 

(PRADIDARCHEEP et al., 2011). 

In females the urethra is much shorter achieving an average length of 3.8 ±0.3 cm 

(MACURA et al., 2004). Here, the IUS and EUS are integrated into the pelvic floor 

muscles. The EUS consists of a superior omega-shaped part adjacent to the bladder 

with the opening on the dorsal side and an inferior part without contact to the bladder. 

The superior part covers the ventral and lateral side of the urethra while the inferior 

part covers the ventral and lateral side of the urethra and the lateral aspect of the 

vagina. This latter part is also known as the urethrovaginal sphincter. The EUS has 

no bony contacts but is attached to the levator ani muscle by a tendinous connection. 

The IUS forms a circular coating analogous to the male urethra in the superior part 

(WALLNER et al., 2009). 

 

2.2.2 The urothelium 
 

Urothelium covers the renal pelvis, ureter, bladder, and proximal parts of the urethra. 

In contrast to the renal pelvis/ureteral urothelium, which is mesoderm-derived, the 

bladder/urethral urothelium is of endodermal origin (WU et al., 2009). Urothelium is 

known as a typical transitional epithelium meaning that all cells are in contact with the 

basal membrane. However, electronic microscopy and immunohistological studies 

have revealed that this is not the case. In fact, it consists of a basal layer, 

intermediate cell layers, and a superficial cell layer (PRADIDARCHEEP et al., 2011). 

The topmost layer is constituted by the so-called “umbrella cells”, which are known 

as highly differentiated cells that do not extend to the basal membrane and generate 

a permeability barrier between the blood and urine preventing toxic substances and 

electrolytes from exchange. The two potential pathways, movement through tight 
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junctions or transcellular movement via apical membrane have to be impeded to 

guarantee impermeability, meaning that molecular exchange can only occur through 

active transport. With the transepithelial electric resistance in rabbit bladders 

reaching up to 75 000 Ω/cm2 it is one of the most effective biological barriers, if not 

the most effective one (LEWIS, 2000). Yet, infection, radiation, or toxic chemicals 

leading to inflammation can significantly reduce the barrier function. With a turnover 

rate of app. 200 days bladder urothelium is revolving quite slowly, however, 

progenitor cells can be found throughout it (WU et al., 2009). Due to urothelial 

plaques the inner surface of the urethra and bladder is quite flexible and therewith 

able to adapt to changes in tension and filling level. These plaques are concave 

biomembrane structures on the luminal surface as well as in the cytoplasm of the 

superficial umbrella cells and are made of uroplakin, 2D protein crystals (WU et al., 

2009). The travelling of plaques in vesicles from the surface into the cytoplasm of the 

umbrella cells and back is thought to account for the excellent adaptive ability of the 

urothelium. The luminal urothelial surface is covered with glycosaminoglycans 

likewise contributing to the impermeability of the urothelial barrier (LEWIS, 2000). 

 

2.3 Urethral stricture in veterinary practice 
 
In veterinary medicine alike in humans a urethral stricture appears first of all in male 

individuals, but it is still a rather uncommon event. Hence publications concerning 

this subject are rare. It occurs in male cats and dogs primarily as a sequela after 

catheterisation or surgery or in consequence of uroliths or trauma and is 

accompanied by stranguria, dysuria, pollakisuria, prolonged urination, and overflow 

incontinence. Diagnostic gold standards are retrograde urethrography and 

urodynamics, which is only feasible in specialist veterinary clinics (RAND, 2009). The 

treatment of transection injury, which can result from trauma, requires accurate and 

sophisticated surgery to prevent stricture formation (BOOTHE, 2000). The bypassing 

of the injured urethral segment can be essential for the healing process. 

Urethral strictures occur in goats and sheep as a sequela after perineal 

urethrostomy. Therefore, Stone et al. tested prepubic urethrostomy in a sheep and a 

goat with failed perineal urethrostomy attempt (STONE et al., 1997). The goat 

showed stricture recurrence after two months and was euthanised. Despite survival 

of the sheep for three years it showed periodical urinary tract infections and finally 

died from renal failure due to pyelonephritis. As both animals died due to sequelae of 
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this procedure it cannot be recommended as a primary option. Anyhow, in cases 

where other techniques are not successful, an improved prepubic urethrostomy 

procedure could possibly lead to a relief. Based on a case report of buccal mucosa 

graft urethroplasty for reversal of perineal urethrostomy in a goat the authors 

estimated this method to be a beneficial alternative for urethral reconstruction (GILL 

& SOD, 2004). In small ruminants urolithiasis is a quite prevalent affliction, which can 

result in urethral strictures as a critical complication. In a case report of Cruz-

Arambulo et al. urethral calculi were diagnosed in a male crossbreed goat-sheep that 

showed signs of stranguria and dysuria. Most likely these evoked chronic 

inflammation that led to secondary stricture formation. Positive contrast cystography, 

normograde urethrography, and retrograde urethrography were performed and 

revealed a urethral stricture in addition to other lower urinary tract defects (CRUZ-

ARAMBULO et al., 2003). 

In cats the urethral stricture can be assigned to the feline lower urinary tract disease/ 

inflammation (FLUTD/FLUTI) or feline urologic symptoms (FUS) complex, involving a 

symptom composite of stranguria, dysuria, pollakisuria or haematuria and mostly 

being idiopathic or attributed to obstructive diseases (NELSON & COUTO, 2003). 

Some authors include urolithiasis to the FLUTD complex, others presume idiopathic 

aetiology as a requirement. Cats with recurrent FLUTD episodes, in which a causal 

therapy is not possible, are usually ultimately treated by perineal urethrostomy to 

guarantee an unhindered urinary outflow. Although overall surgery outcome is 

favourable, stricture formation constitutes the most frequent short term complication 

after perineal urethrostomy (BASS et al., 2005). However, Corgozinho et al. did not 

observe any strictures after perineal urethrostomy in 15 cats (CORGOZINHO et al., 

2007). 

In case reports of Bennett et al. and Wood et al. a urethral stricture in a male and 

female dog was treated successfully with balloon dilatation (BENNETT et al., 2005; 

WOOD et al., 2007). Though, analogous to human medicine, urethrostomy or 

surgical interventions like anastomosis or grafting are more frequent. When porcine 

small intestinal submucosa (SIS) was used as an onlay graft for complex urethral 

augmentation in a dog, the stricture recurred after six months. After triple treatment 

by balloon dilatation the stricture was under control, but the dog remained to display 

mild to moderate incontinence. As the stricture was very close to the bladder outlet, 

this was most certainly due to damage of the sphincter structures (POWERS et al., 

2010). 
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As urethral strictures play a much more important role in human medicine, animals 

are used to serve as a model organism to develop new therapeutic options. Different 

grafts were therefore tested in dogs for experimental purposes: When the urethral 

mucosa of ten female dogs was completely removed and replaced by colonic 

mucosa a normal voiding stream and urethra morphology was assessed in nine 

animals after surgery (XU et al., 2003). The histological analysis of the grafted 

urethras revealed that after 12 weeks the plicated surface and unilaminar cylindric 

epithelium of colonic mucosa had been substituted by metaplastic transitional 

epithelium. Grafting by dint of autologous fascia lata isolated from the thigh showed a 

similar outcome. Good graft survival and incorporation was assessed in all 14 dogs 

involved in this study (ATALAN et al., 2005). 

 

2.4 Urethral stricture in humans 
2.4.1 Epidemiology and Pathogenesis  

 

„A urethral stricture is a scar of the subepithelial tissue of the corpus spongiosum that 

constricts the urethral lumen“ (MUNDY & ANDRICH, 2011). Urethral strictures have 

always been a common complaint but are decreasing in the last decades despite the 

ageing of the population. Unfortunately scientific prevalence data for urethral 

strictures in Germany is missing. Yet app. 2% of men who undergo intermittent 

self-catheterisation over two years develop urethral strictures requiring therapeutic 

intervention (MADERSBACHER, 2001). Estimated prevalences in the UK rise from 

app. 1/10 000 men under 34 years of age to over 1/1000 above 65 years 

(MCMILLAN et al., 1994). The US even report a rate of 0.6% for males over 65 years 

suffering from a urethral stricture (SANTUCCI et al., 2007). 

Most strictures in the developed world are iatrogenic resulting of repeated 

catheterisation, transurethral surgery, cystoscopy, prostatectomy surgery, or 

hypospadias repair (FENTON et al., 2005; KASHEFI et al., 2008; TANG et al., 2008). 

Patients with strictures due to hypospadias surgery are at a higher risk to develop 

further complications like meatal dystopia, residual curvature, meatal stenosis or 

fistula formation (FISCH, 2001). Other aetiologies for urethral stricture are urethral 

inflammation or trauma. Strictures are also found related to lichen sclerosus disease 

(STACK & SCHLOSSBERG, 1998). Altogether, chemical, physical, or biological 

noxes can provoke a urethral stricture. Congenital strictures are rare and often 

accompanied by other urologic disorders like hypospadias (RÖDDER et al., 2006). 
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Nevertheless, the aetiology remains unknown in 30% of the patients suffering from 

urethral strictures (KLEVECKA et al., 2010). 

Although objective data is lacking cicatricial urethral strictures in women are much 

less common than in men. This is probably due to the reduced length and the greater 

diameter of the female urethra. Anyhow, strictures appear due to radiation therapy for 

gynaecologic malignancies, genital trauma, previous manipulations or incontinence 

surgery, or urethritis (TRITSCHLER et al., 2011). 

Concerning pathogenesis it was shown that in the course of a metaplasia the 

columnar epithelium converts into a squamous one. This epithelium featuring a 

reduced flexibility tends to split and crack resulting in subsequent extravasation of 

urine and subepithelial fibrosis (spongiofibrosis). Remaining untreated the stricture 

can lead to inflammatory reactions such as cystitis, prostatitis, epididymo-orchitis, or 

urolithiasis and recurrent infections (CHAMBERS & BAITERA, 1977). Furthermore, 

hypertrophy of the detrusor muscle can evolve due to the high voiding pressure 

(RÖDDER et al., 2006). Compared to a sound urethra, stricture tissue contains less 

elastic fibres and a reduced blood vessel density after traumatic injuries 

(CAVALCANTI et al., 2007). The reduced blood vessel density was also recognised 

in a minipig model of urethral stricture by Sievert et al. Moreover, it was observed 

that inflammatory reactions decreased in minipigs over a period of 12 weeks, 

whereas fibrosis increased. For human stricture tissue a collagen I:III ratio of 4.8:1 

was found in comparison to 1.9:1 for sound urethral tissue (SIEVERT et al., 2012). 

The patients are confronted with symptoms of lower urinary tract obstruction such as 

hesitancy, poor streaming, terminal dribbling, and/or a feeling of incomplete bladder 

emptying (post void residual volume). Thus, a detailed anamnesis and urine analysis 

are first diagnostic steps. Further diagnostic proceedings to be performed are urinary 

flow rate study, a symptom score system, and possibly ultrasonography, retrograde 

urethrogram, voiding cystogram, or cystoscopy (MUNDY & ANDRICH, 2011). Hereby 

not only the presence but also the localisation and length of the stricture can be 

specified as well as the grade of spongiofibrosis. Uroflowmetry, analysing the urine 

flow rate (the quantity of fluid voided per unit of time) within the urinary outflow tract 

during micturition is a helpful advice to classify the severity of the outlet obstruction. 
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2.4.2 Current therapies 
2.4.2.1 Non-invasive or minimally invasive procedures 

 

Therapeutic intervention is only necessary if the patient is notably affected by the 

symptoms such as severe voiding problems, pain, discomfort or recurrent urinary 

tract infections. In an acute inflammatory situation it can be helpful to rest the urethra 

by installing a suprapubic catheter for a certain period of time before definite 

treatment (MUNDY & ANDRICH, 2011). 

The current curative and palliative treatment can be distinguished into instrumental 

methods and urethroplasty. Direct vision internal urethrotomy (urethrotomia 

interna according to Sachse) is the gold standard for patients being treated for 

urethral stricture for the first time and for short uncomplicated bulbar strictures as well 

as palliative treatment, though relapses are common (NAUDE & HEYNS, 2005; 

MUNDY & ANDRICH, 2011). On average 68% of the patients experience stricture 

recurrence (ENGEL & FISCH, 2010). Furthermore, urethrotomy can involve 

extravasation or infective complications (DESMOND et al., 1981). According to 

Rödder et al. 50-60% of the patients do not need further treatment after urethrotomy 

(RÖDDER et al., 2006). Dilatation of the urethra is also indicated in simple and short 

strictures in the bulbar urethra or can be used for palliative stricture management 

(MUNDY & ANDRICH, 2011). A different principle was pursued by the implantation of 

urethral stents, but in most cases they do not lead to a good long-term outcome 

concerning patient satisfaction (DE VOCHT et al., 2003). In a retrospective study 

complications like dribbling, recurrent urinary tract infections, obstruction, stent 

hyperplasia, stricture, stent encrustation, or urolithiasis occurred in 55% of the cases 

(HUSSAIN et al., 2004). For this reason they should not be part of the current 

therapeutic management of urethral strictures. 

 

2.4.2.2 Open surgery 
 
Most patients with severe strictures require open surgery as primary intervention or 

after failed urethrotomy to achieve freedom of affliction. Reconstructive surgery 

consists of excision and reanastomosis for short strictures or graft implementation 

(HAUSER et al., 2010). End-to-end anastomosis can be accomplished in bulbar or 

membranous strictures with a maximum of 2 cm of length and features a success 

rate over 85% over 10 years if performed with strict indication (RÖDDER et al., 
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2006). Al-Qudah and Santucci state that urethroplasty in general involves early 

complications in 40% and late complications in 48% of the patients though most 

remain minor (AL-QUDAH & SANTUCCI, 2005). This study comprised the main 

surgical techniques: anterior anastomosis, ventral onlay buccal mucosa, 

fasciocutaneous flap, and posterior anastomosis with mean follow-up of 29 months. 

For the fasciocutaneous flap technique a hairless transplant of skin and fascia is 

placed into the urethra in an onlay fashion. Most frequent complications after flap 

urethroplasty with penile shaft skin or foreskin are skin necrosis or fistulae (RÖDDER 

et al., 2006). While these flap techniques were routinely used in the past, today the 

use of buccal mucosa is the method of choice for long or complicated strictures. 

Nowadays favourable results with success rates about 85-96% (ventral vs. dorsal 

onlay) are achieved (BHARGAVA & CHAPPLE, 2004). However, complications can 

occur primarily during the first 12 postoperative months after ventral onlay graft 

surgery (FICHTNER et al., 2004). These comprise early complications like 

extravasation, inflammation, haematoma or micturition disorders and late 

complications like fistula or diverticulum formation, stricture recurrence, erectile 

dysfunction or incontinence (ENGEL & FISCH, 2010). Furthermore, donor site 

morbidity such as haemorrhage, infections, pain, swelling, damage to the parotid 

duct, reduced sensation, or numbness are common events (BHARGAVA & 

CHAPPLE, 2004). Meshgraft urethroplasty requires a two-step procedure and can 

be successful in complicated, long, and recurring strictures (RÖDDER et al., 2006). 

Combinations of different surgery procedures can be used when patients suffer from 

multiple disorders. 

In contrast to male stricture repair females cannot be treated by stricture excision and 

end-to-end urethroplasty due to the shortness of the female urethra. Thus, 

therapeutic approaches consist in endoscopic incision or flap urethroplasty by dint of 

autologous fascia (ROSENBLUM & NITTI, 2011). 

Beside the relatively frequent appearance of relapses, the aforementioned risks and 

the fact that some patients simply cannot provide an autologous graft make an 

alternative therapy with comparable success rates essential. 
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2.5 Tissue engineering for the treatment of urethral strictures 
2.5.1 Different scaffolds for urethra repair 

 
Different biomaterials are used for TE of the urethra. Depending on the respective 

reference and structural texture they are called scaffolds or matrices and can be of 

natural origin or synthetic materials. While synthetics like polyglycolic acid (PGA) can 

be standardised and modified according to the physician’s requirements, naturally 

derived biomaterials are often superior regarding biocompatibility and degradability. 

Different scaffolds for TE of the urethra were tested by Feng et al. to evaluate their 

stability and biocompatibility. Bladder acellular matrix graft (BAMG), SIS, acellular 

corpus spongiosum matrix (ACSM), and PGA all turned out to be suitable for 

urethroplasty and did not cause cytotoxic effects on smooth muscle cells. Concerning 

stability SIS, BAMG, and PGA had similar biomechanical properties to native rabbit 

urethra while ACSM even proved superior. Although pore size was biggest in PGA 

(>200 μm) a confluent cell layer did not develop on this matrix. On the other hand 

pore size did not allow for a sufficient infiltration on BAMG but multilayer cell growth 

was observed (FENG et al., 2010). 

Another study for evaluation of biocompatibility, stability, and cell morphology on 

commercially available biomaterials concluded that most materials showed better 

stability than native urothelium (WÜNSCH et al., 2005). In fact, cells grown on 

biogenic membranes resembled native urothelium meaning that they formed flat cell 

layers with many cell-cell contacts. When fibroblast and epithelial cell growth was 

evaluated on 13 different naturally derived scaffolds, Brehmer et al. showed that cell 

growth differed depending on the structure of the biomaterial used (BREHMER et al., 

2007). While cells grown on carrier-type scaffolds only formed a closed superficial 

layer, those grown on fleece-type ones showed ingrowth into the scaffold but did not 

form a complete epithelium. Sponge-type scaffolds provoked both ingrowth of cells 

and the formation of adherent epithelium. Table 1 gives an overview of different 

materials for bladder repair purposes modified according to Brehmer et al. 
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Table 1: Overview of different scaffolds for bladder repair modified according to Brehmer et al. 

Scaffold 
Type Definition Examples Pore size 

[μm] Manufacturer 

Equine collagen 
mixture 0-100 CliniCare 

Bovine collagen 
mixture n.a. Innocoll 

Porcine collagen n.a. Bard GmbH 
Human fascia lata 

explant n.a. Mentor 

70% collagen, 30% 
elastin membrane 0-25 Bioplex Medical, 

BV 

Carrier-
type 

scaffold 

Small pore size, 
no ingrowth of cells 

Small intestinal 
submucosa 10 Cook 

PGA fleece 0-200 A. Atala, Boston 
Mass., USA 

Fleece-
type 

scaffold 

Fibre construction, 
huge pore size 

Cellulose fleece n.a. Ethicon GmbH 

Bovine collagen I 
sponge 26 

Helmholtz 
Institute, RWTH 

Aachen 
Sponge-

type 
scaffold 

Pore size between 
20 and 40 μm 

Bovine mixed 
collagen sponge 10-60 ICN Biomedicals 

Inc. 
 

2.5.1.1 Small intestinal submucosa 
 

SIS is retrieved from porcine jejunum in which the tunica mucosa is mechanically 

removed from the inner surface as well as tunica muscularis and serosa from the 

outer surface. The product of this procedure is a thin translucent graft, mainly 

consisting of submucosal tissue. As SIS was shown to be non-immunogenic it was 

experimentally used for several urologic applications with varying success (CHENG 

& KROPP, 2000). While SIS was prepared autonomically in each laboratory in early 

studies, it is now commercially available as a solid or injectable material and has 

been applied in different fields of TE. 

In 1998, SIS was prepared in the laboratory, used as an onlay graft in rabbit urethras 

and compared to preputial skin grafts and sham operations (urethrotomy only). All 

animals treated by preputial skin grafts developed urethral diverticula whereas none 

of the SIS treated ones did. The SIS graft group revealed superior regeneration 

compared to the preputial skin graft group with the regenerated urethra containing 

three to four layers of urothelium. The main difference of the SIS grafted urethras 
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from the untreated regions was the presence of less smooth muscle content (KROPP 

et al., 1998). 

Although SIS prepared in the laboratory did not seem to induce cytotoxic effects on 

smooth muscle cells (FENG et al., 2010), reduced cell growth was observed when 

seeding urothelial cells (UC) on commercially available SIS (WÜNSCH et al., 2005). 

After incubation of porcine urothelial cells (PUC) with SIS conditioned medium, Feil et 

al. even observed cytotoxic effects. Cell viability being assessed via WST-1 assay 

declined to zero. In addition residual porcine DNA was discovered in this commercial 

SIS, which makes it ineligible for human application (FEIL et al., 2006).  

When rabbits were treated by graft urethroplasty with either onlay or tubularised 

elastin or self-made SIS, both materials revealed superior when they were used as 

an onlay graft. Tubular grafts induced inflammation and fibrosis and led to a 

significantly reduced urethral diameter after three months (XIE et al., 2007). 

Self-made SIS proved superior in animal studies, which could be due to the 

sterilisation or manufacturing processes. However, clinical approaches with 

commercial SIS partially showed promising outcomes: In a clinical trial 20 men 

suffering from a urethral stricture with a length of 2-8 cm were treated by onlay/inlay 

graft urethroplasty with unseeded SIS. Seventeen patients (85%) were successfully 

cured and did not require further treatment after surgery at a mean follow-up of 

21 months whereas the remaining three displayed stricture recurrence within three 

months after surgery (PALMINTERI et al., 2007). In a different study with 50 patients 

treated by SIS graft urethroplasty and a median follow-up of 31 months results were 

equally promising (FIALA et al., 2007). With an 80% cure rate the outcome was 

similar to the Palminteri study. 

SIS grafts could be a viable alternative in short and uncomplicated strictures in a 

one-layer design but seem to fail when the stricture length exceeds a certain calibre 

and the urethral bed is pathologically altered (e.g. spongiofibrosis). Sievert et al. also 

assessed that SIS grafts could be beneficial in selected cases and observed a 

positive outcome in 9 of 13 patients (SIEVERT et al., 2005). In a consecutive study 

with five patients with a mean stricture length of 9 cm SIS grafts did not lead to a 

satisfying result (HAUSER et al., 2006). Extravasation, urinary tract infections, and 

severe urethritis were observed in addition to recurrent stricture in four of them. 

When used as a tubular graft in nine patients, the procedure was not successful 

either (LE ROUX, 2005). Only two of them maintained urethral patency after surgery. 
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In summary, the success of SIS in urethroplasty seems to be heavily dependent on 

the initial situation regarding the stricture (length, urethral bed, spongiofibrosis, 

inflammation, scarring, etc.) and the surgical method (onlay vs. circumferential graft). 

 

2.5.1.2 Acellular matrix grafts 
 

Different animal trials as well as clinical studies have been performed on matrices 

derived from the bladder and urethra. For preparation of matrix grafts, the urethral or 

bladder tissue is retrieved from either a homologous or a heterologous source and 

decellularised by chemical and/or enzymatic treatment (SIEVERT & TANAGHO, 

2000). 

When heterologous (dog) and homologous acellular urethral matrix grafts were used 

for urethroplasty in rabbits, there was no significant difference between the two 

grafts and untreated controls with regard to urodynamic functionality and 

urethrography after eight months. Complete epithelialisation was observed in 

homologous grafts. Although smooth muscle content was less in dog urethras than in 

homologous grafts, there were no signs for significant inflammation or tissue rejection 

in both groups. In the tissue specimens of homologous graft treated rabbits, blood 

vessel and smooth muscle ingrowth was observed already after ten days (SIEVERT 

et al., 2000; SIEVERT et al., 2001). 

In a different experimental trial urethroplasty was performed in 18 rabbits with either 

unseeded BAMG or seeded biomaterial with epidermal cells from the foreskin. After 

histological and immunohistological investigation seeded scaffolds revealed superior. 

Eight of nine animals that received unseeded material developed strictures at the 

transplantation site whereas none of the seeded group did (FU et al., 2008). The 

enhanced regeneration in tubularised seeded acellular matrix grafts in contrast to 

unseeded scaffolds was determined in an earlier study with smooth muscle and 

epithelial cells in ten rabbits (DE FILIPPO et al., 2002). A different study claimed that 

urethral repair with unseeded matrices led to a satisfying cure when the replaced 

segment did not exceed 0.5 cm (DORIN et al., 2008). 

In a clinical trial of El-Kassaby et al. 28 patients suffering from a urethral stricture 

were treated by urethroplasty with unseeded human BAMG. The outcome was 

evaluated by medical history, physical examination, retrograde urethrography, 

cystoscopy, and uroflowmetry and revealed clinical improvement in 24 patients after 

surgery although urethral repair was performed in segments reaching up to 16 cm. 
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After a mean follow-up of 37 months urethrography showed wide patent urethras in 

these patients and average and mean maximum flow rates were increased 

considerably (EL-KASSABY et al., 2003). However, it is noteworthy that the group of 

patients was highly selected in this study. 

A recent clinical study with 30 patients revealed that the use of acellular bladder 

matrix does not provide an alternative to buccal mucosa urethroplasty for patients 

with previous surgical interventions (EL-KASSABY et al., 2008). The patients were 

divided randomly into two groups receiving either buccal mucosa transplants or 

BAMG. The outcome was assessed depending on the number of previous 

interventions and therewith on the presence of spongiofibrosis and the quality of the 

urethral mucosa. Patients showing physiological voiding pattern with steady stream 

at a mean follow-up of 25 months were considered as successful outcomes. Results 

concerning urethrography and uroflowmetry were comparable in patients with healthy 

urethral beds. However, buccal mucosa transplantation was superior to BAMG in 

patients with previous interventions and consequential urethral damages. In this 

group 66.7% of BAMG surgeries were not successful and required further treatment. 

While the length and location as well as the duration and the aetiology of the stricture 

did not have an impact on the therapeutic success, the quality of the urethral bed 

(fresh and vascular mucosa, no signs of spongiofibrosis) seemed to be crucial for the 

clinical outcome. 

The contrast between poor results of certain BAMG surgeries with unseeded 

matrices in the rabbit and good results in clinical studies may be explained by the 

degree of urethral damage, the surgical method, and perioperative management. 

Currently, there are no clinical studies using seeded BAMG. Anyhow, deductive to 

data of animal experiments seeded matrices might reveal superior than unseeded 

ones in a clinical setting. 

 

2.5.1.3 Other collagen based scaffolds 
 

Collagen membranes have already been discussed as graft material for urologic 

purposes in the 80ies (GORHAM et al., 1984). First in vitro experiments have been 

performed to evaluate its permeability to urine, stability, and influence on the 

formation of urinary crystals. Though, crystal formation was observed after six days 

of incubation in urine the authors assume that this could have been due to the 

experimental conditions and may not appear in vivo. 
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In a rabbit urethroplasty study a defined collagen biomatrix (based on bovine 

tendon) was compared to unseeded SIS and both turned out to be suitable materials 

for urethra grafting with similar results concerning urothelial and smooth muscle 

regeneration. The histological and immunohistological analysis was performed one, 

three, and nine months after the grafting procedure. Nevertheless, smooth muscle 

regeneration in the grafted parts was extremely poor in all groups with only single 

smooth muscle cells identified after nine months (NUININGA et al., 2003). In a later 

study urethroplasty was performed using a tubular type I collagen biomatrix with and 

without growth factors. Rabbits which received a graft supplemented with growth 

factors showed relative narrowing of the urethra or diverticula. However, the 

formation of organised urothelium, capillaries, and glands was superior in the growth 

factor group (NUININGA et al., 2010). This study advises to modify the collagen 

scaffold in a way that an excellent functional outcome can be merged with satisfying 

smooth muscle and urothelial regeneration as well as blood vessel and gland 

density. 

Based on their comparison of different scaffolds for TE of the urethra Feng et al. 

performed urethroplasty in 18 rabbits with seeded and unseeded ACSM. Corpus 

spongiosum matrix was isolated from porcine penile tissues and a 3D neo-urethra 

was constructed by seeding lingual keratinocytes and smooth muscle cells. Matrices 

seeded with both cell types displayed a multilayer urothelium and organised muscle 

bundles at six months after surgery while unseeded ACSM evoked inflammation and 

did not induce sufficient epithelial and muscular regeneration (FENG et al., 2011). 

Transplants of urothelial cells on collagen were tested in a clinical study for 

hypospadias repair in six boys (FOSSUM et al., 2007; FOSSUM & 

NORDENSKJÖLD, 2009; FOSSUM & NORDENSKJÖLD, 2010). In a first procedure 

UC were extracted by bladder washings and in a second step the boys were treated 

with autologous UC/collagen scaffold in an onlay graft technique. All displayed 

excellent results at mean follow-up time of 7.25 years with respect to cosmetic 

appearance, urinary flow curves, erection, and histology. Yet, postoperative 

complications like fistulae and strictures occurred in four of six patients. 

 

2.5.1.4 Synthetic matrices  
 

Synthetics feature different advantages in comparison to naturally derived materials. 

They can be produced according to a strict standard, do not hold the risk of infectious 
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agents and are constructed to build an impermeable urine-blood barrier replacing the 

urothelium. The most commonly used and best known synthetic materials for urologic 

TE purposes are PGA and poly (lactic-co-glycolic acid) (PLGA). 

In an in vitro approach of Selim et al. (SELIM et al., 2011) the best method of 

sterilisation for PLGA seeded with buccal mucosa cells was investigated. Although 

mechanical properties were impaired, regardless of the used method, fibre diameter 

was not significantly reduced by γ-irradiation. Treatment with both peracetic acid and 

γ-irradiation were suitable methods for sterilising PLGA scaffolds that remained 

sterile for over three months in antibiotic-free culture medium. 

Kundu et al. generated thin polymer matrices of three different synthetic substances 

by electrospin coating directly onto thin films. These composite scaffolds with films on 

the luminal surface were compared to the same electrospun materials alone and 

commercially available SIS. Adherence and proliferation of human urothelial cells 

(HUC) on the composite scaffold consisting of thin films attached to a highly porous 

fibrous matrix turned out to prove best. Also the barrier function, which was assessed 

by a permeability assay, was superior than in the other two test groups (KUNDU et 

al., 2011). 

A recent clinical study for urethral reconstruction in five patients resulted in 

satisfying outcome measurements (RAYA-RIVERA et al., 2011). Here a PLGA - PGA 

scaffold tube seeded with autologous urothelium and muscle cells was used for 

urethroplasty in five boys aged 10-14 years. Histological examination of regular 

biopsies revealed sound urethral architecture with epithelial and smooth muscle 

layers within the engineered section. Urodynamics as well as radiographic and 

endoscopic analysis showed wide urethral calibres without strictures for at least 

12 months after surgery. Although patient satisfaction was good at a median 

long-term follow-up of 71 months, this study must be judged critical. Patient number 

was very low, the bridged lengths are unknown, and in addition regular biopsies were 

performed in the children. 

 

2.5.2 Cell-based therapies 
 

For several years UC are cultivated and stratified successfully and cell sheets have 

been constructed in vitro (MAURER et al., 2005). Cells are routinely harvested from 

bladder or ureter biopsies, but new findings suggest that retrieval could prospectively 
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be realised by bladder washings, which are much less invasive (FEIL et al., 2008a; 

NAGELE et al., 2008). 

Fossum et al. created a three-layer substitute for the lower urinary tract consisting of 

UC, fibroblasts, and smooth muscle cells seeded in a “sandwich manner” (FOSSUM 

et al., 2004). Indeed, co-culture of the three different cell types was feasible and the 

preservation of the respective phenotype was confirmed immunohistologically. 

Anyhow, animal experiments are pending and it remains open why this concept was 

not further pursued in ensuing approaches of this group. 

After successful implementation of a porcine urethral stricture model UC suspensions 

have been injected into the urethra of 12 minipigs for stricture repair in an 

experimental approach (SEIBOLD et al., 2011). Histological analysis showed that the 

urethra healed without severe inflammation or stricture formation after surgery. 

Although the labelled transplanted cells could be retrieved up to eight weeks after 

sacrification, they did not always remain in the urothelium, but migrated throughout 

other penile layers. As a result of these cell-based studies, the seeding of 

biomaterials is an auspicious concept and accounts for a crucial part of tissue-

engineered constructs. 

 

2.6 Objectives of this study 
 
In the present study a TE approach mainly for the therapy of urethral strictures was 

investigated by using a collagen cell carrier (CCC) seeded with autologous UC as a 

urethral transplant. It was based on a previous study where a porcine animal model 

of induced urethral stricture was established (SIEVERT et al., 2012). Different 

methods of stricture induction were tested and thermocoagulation proved to cause a 

stricture displaying the greatest similarity to human stricture tissue. The stricture 

formation was verified by urethrography and histological analysis. 

As a first step towards the development of an autologous transplant urethral stricture 

was subsequently treated by injection of UC suspension and application of cell 

sheets. Although functional regeneration was not analysed, it was hereby shown that 

the transplantation of autologous urothelium is feasible (SELENT et al., 2008; 

SEIBOLD et al., 2011). However, the cells could not be recovered exclusively in the 

urothelium, but throughout the corpus spongiosum and cavernosum. Furthermore, 

handling of the cell sheets was quite delicate due to their fragility that constitutes a 
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main disadvantage for reconstruction techniques and open surgery. Consequently, 

seeding of UC on a cell carrier was now favoured to overcome these hurdles. 

 

On account of this, a collagen matrix was tested substantially to increase the stability 

of bioartificial urothelium and to make it suturable and more manipulable for surgical 

instruments. By the use of a matrix that undergoes standardised processing and 

sterilisation procedures the risk of infection could be considered as excluded. 

Moreover, it affords the possibility to design it according to the requirements of cell 

culture and surgery and to industrialise its production. 

 

The following three main questions were to be addressed by this study: 

1. Does the CCC display good in vitro properties for seeding of UC? 
Metabolic activity and proliferation of UC seeded on CCC were compared to cells 

seeded on plastic surface. Adherence of UC on the CCC was investigated as 

well. 

2. Does the seeded CCC feature good in vivo biocompatibility 
characteristics in rats? 

Human urothelial cells seeded on CCC were transplanted on the musculus rectus 

abdominis of nude rats as a preliminary small animal approach to assess 

integration and differentiation of UC, degradation of the CCC and potential 

inflammatory reactions. 
3. Is urethral reconstruction and functional regeneration after stricture 

induction in minipigs feasible by application of CCC autografts? 
In a first intervention a urethral stricture was induced and bladder tissue was 

extracted for UC harvest. Then urothelial CCC transplants were constructed and 

autologous grafts were inserted in the urethra to assess the feasibility of this 

approach prior to clinical application. 
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3 Methods 
3.1 In vitro investigations 

3.1.1 Isolation and culture of urothelial cells 
3.1.1.1 Isolation of human urothelial cells 

 

After approval of the local ethical committee at the University of Tuebingen and 

consent of patients ureter tissue samples were collected from adult patients (aged 

29-74 years) undergoing open nephrectomy at the Department of Urology of the 

University Clinics of Tuebingen. Tissue was transported to the Laboratory for Tissue 

Engineering and stored at 4°C in transport medium until further processing modified 

according to Southgate et al. (SOUTHGATE et al., 1994). The transport medium’s 

main component was Hank’s balanced salt solution (HBSS) containing 

0.35 g/l NaHCO3
- and phenol red but no Ca2+ and Mg2+ (Biochrom). Furthermore, 

10 mmol/l HEPES (Gibco), 20 kIU/ml aprotinin (Bayer AG), and 1% 

penicillin/streptomycin (Gibco) were added.  

All isolation steps for HUC were performed under sterile conditions. After fat residues 

and stromal tissue were removed aseptically, the ureter specimens were opened by 

a pair of scissors and separated into pieces of 1-2 cm2. Tissue pieces were incubated 

in a 50 ml BD Falcon conical tube (BD Biosciences) filled with 15 ml of “stripping 

solution” consisting of HBSS buffered with 10 mmol/l HEPES, 20 kIU/ml aprotinin 

(Bayer AG), and 1% ethylenediaminetetraacetic acid (EDTA, Biochrom) for 3 h at 

37°C and 5% CO2. The HUC were then gently scraped off from the stroma using a 

cell scraper (Corning Inc.) and transferred into complete keratinocyte serum-free 

medium (cKSFM, see below) in a BD Falcon conical tube (BD Biosciences) followed 

by centrifugation at 250 g for 5 min at room temperature (RT). The cells were 

resuspended in cKSFM which is keratinocyte serum-free medium (KSFM), 

supplemented with 50 μg/ml bovine pituitary extract (BPE), 5 ng/ml human 

recombinant epidermal growth factor (EGF, all Gibco), and 30 ng/ml cholera toxin 

(LIST Biological Laboratories Inc.). Subsequently the isolated cells were seeded into 

25 cm2 culture flasks with CellBIND surface (Corning Inc.). The cultures were 

maintained at 37°C in a humidified atmosphere with 5% CO2. The cell culture 

medium was replaced the following day and thereafter every other day. 
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3.1.1.2 Subculture of human urothelial cells 
 

For further passaging medium was removed from subconfluent HUC cultures and the 

cells were incubated in phosphate-buffered saline (PBS) without Ca2+ and Mg2+ 

(Gibco) containing 0.1% EDTA (Biochrom) at 37°C for 5-10 min until the cells 

rounded and separated from each other. Thereafter the PBS/EDTA solution was 

aspirated and cells were exposed to TrypLE Express (Gibco) for one min at 37°C. By 

thorough agitation HUC were detached from the surface of the culture flask. After 

transferring the cells into cKSFM in a BD Falcon conical tube (BD Biosciences) a 

centrifugation step at 250 g for 5 min followed. The supernatant was aspirated and 

the cells were carefully resuspended in cKSFM and hereby ready to be distributed 

into flasks or seeded in well plates. To subculture the cell suspension was splitted at 

a ratio of 1/2 or 1/3 (v/v) referred to the original cell volume and seeded into new 

CellBIND culture flasks (Corning Inc.). At least 3 h later or on the following day when 

cells had attached to the flask’s surface further medium was added. 

 

3.1.1.3 Culture of porcine urothelial cells  
 

PUC were obtained from bladder biopsies and ureter specimens of minipigs. Tissue 

preparation, cell isolation, and culture were performed according to HUC with 

modifications (table 2). Established primary PUC cultures were retained in liquid 

nitrogen and thawed for the in vitro assays according to requirements. After thawing 

(see below) PUC were cultured according to HUC. 

For further cultivation subconfluent cell layers were passaged by first washing them 

with PBS without Ca2+ and Mg2+ and then incubating in 0.25% Trypsin (both Gibco) 

at 37°C for 4 min. The detached cells were collected in cKSFM supplemented by 

10% fetal calf serum (FCS, Gibco) centrifuged at 250 g for 5 min and resuspended in 

cKSFM without FCS. Cells were seeded into CellBIND culture flasks (Corning Inc.) at 

a splitting ratio of 1/2 or 1/3. 
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Table 2: Comparison between isolation and cell culture technique of HUC and PUC 

Operation step HUC PUC 

Preparation - 
Detachment of 

mucosa (only porcine 
bladder specimen) 

Incubation in stripping solution 3 h 2 h 

Pa
ss

ag
in

g Preincubation/Washing 
 
 

Cell Detaching 
 

Trypsin Neutralisation 

PBS w/o Ca2+ and 
Mg2+/ 0.1% EDTA 

 
TrypLE Express 

 
- 

PBS w/o Ca2+ and 
Mg2+ 

 

0.25% Trypsin 
 

cKSFM/10% FCS 
 

3.1.2 Cryoconservation of urothelial cells 
 

All urothelial cells, which have been used for in vitro assays, were frozen after 

isolation and thawed according to requirements. For freezing cells were detached 

from the culture flasks as described in chapter 3.1.1. After centrifugation at 250 g for 

5 min cells were resuspended in ice-cold freezing medium containing 50% cKSFM, 

40% FCS (Gibco), and 10% dimethylsulphoxide (DMSO, Sigma-Aldrich Chemie 

GmbH).  

Cells harvested from one 75 cm2 tissue culture flask were distributed into three cryo 

tube vials (Nunc GmbH & Co. KG) at 1 ml each. After resuspending the cells in 

freezing medium the vials were immediately transferred in a freezing container 

(Thermo Fisher Scientific GmbH) containing isopropanol at -80°C overnight to be 

placed in liquid nitrogen on the next day.  

For thawing, vials were placed in a water bath at 37°C until defrosting and cells were 

suspended in cKSFM in a BD Falcon conical tube (BD Biosciences). After 

centrifugation at 250 g for 5 min cells were resuspended in cell culture medium and 

seeded into CellBIND culture flasks (Corning Inc.). Two vials were seeded into one 

75 cm2 flask. Further medium was added on the following day. 
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3.1.3 Counting of living cells by trypan blue staining 
 

Trypan blue is a vital stain that allows to distinguish dead cells from living cells. As a 

diazo dye it incorporates selectively into the cell membrane of dead cells while intact 

membranes are not coloured. 

Cells were harvested as described before (see chapter 3.1.1), transferred in a BD 

Falcon conical tube (BD Biosciences), centrifuged at 250 g for 5 min and 

resuspended in cKSFM. An aliquot of cell suspension was diluted 1/2 (v/v) in trypan 

blue (Lonza Walkersville Inc.) in a 96-well Cellstar round bottom TC-plate (Greiner 

Bio-One GmbH). A Neubauer counting chamber (Glaswarenfabrik Karl Hecht 

GmbH&Co KG "Assistent") was loaded with the stained cells. The uncoloured living 

cells of the four edge quadrants were counted with a binocular microscope. After 

calculation of the average number of cells per quadrant and multiplication by the 

correction factors for chamber size (104) and dilution (2), the total number of viable 

cells per ml was determined as final value. 

 
3.1.4 Seeding of cells on collagen cell carrier  

 

The scaffold used in this study is an ultra-thin (20 μm in air-dried condition) collagen 

cell carrier (CCC, Viscofan Bioengineering) which features a biocompatible material 

derived from pure bovine collagen type I. It is produced on a large scale under highly 

standardised procedures minimising batch-to-batch variations. The mechanical 

stability and excellent suturability make it suitable for surgical application. 

Furthermore, due to its high transparency and its low autofluorescence it is the ideal 

material for the envisaged investigations. 

For the in vitro experiments and the rodent model urothelial cells were seeded on 

CCC of a cross section dimension of 14 mm fitting into the wells of a 24-well plate 

(Fig. 1). The CCC membranes were washed three times for 5 min at 37°C in 250 μl 

of pre-warmed Dulbecco's phosphate buffered saline (DPBS, Biochrom) in a 

CellBIND 24-well plate (Corning Inc.). Then DPBS was aspirated and the scaffolds 

were centred flatly in the well without any wrinkles and air bubbles underneath. After 

overnight drying in the operating laminar flow hood with plate lid left ajar, the CCC 

was ready for seeding. 

Prior to cell seeding the CCC was incubated in pre-warmed cKSFM for at least 

30 min at 37°C. HUC or PUC were detached from the flasks as described above and 
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seeded on the CCC in defined densities. For the in vitro assays - three parallels 

each - cells were seeded on CCC and on standard plastic surface as control. 

For the large animal model and immunofluorescence analysis of cell-seeded CCC, 

UC were seeded on 6-well CCC inserts of a cross section dimension of 34 mm 

(Fig. 1). The preparation of the CCC 6-well inserts was conducted according to the 

24-well inlays without overnight drying. The inserts were placed in a CellBIND 6-well 

plate (Greiner Bio-One GmbH) and washed three times with DPBS (see above). 

DPBS was filled in the insert (1.5 ml) and into the well (2.6 ml). Immediately after 

washing inserts were pre-incubated in cell culture medium and 3-4 x 105 cells/cm2 

were seeded on the insert-CCC. 

 

 

3.1.5 Stratification of urothelial monolayer cultures 
 

Established monolayer UC cultures were microscopically observed for growth 

behaviour. The quality of the cell culture was documented photographically prior to 

induction of multilayer formation with the Axiovert 200 M microscope and the 

integrated AxioCam HRc colour camera (both Zeiss) in 10-fold magnification. At a 

confluence state of 100%, defined as a gap-free cell monolayer, stratification was 

induced by increasing the calcium concentration of the cell culture medium as 

follows: 

Fig. 1: CCC membrane sample in a well plate (left, top) and CCC inserts (left, below), unseeded 
CCC in phase contrast microscopy (right) 
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For preparation of the stratification medium, the cell culture medium was 

supplemented with 5.5% CaCl2 (Baxter Deutschland GmbH) to the final concentration 

of 1.09 mM/l CaCl2 for cKSFM or 1.07 mM/l CaCl2 for CnT-02. The proliferation 

medium was then removed and stratification medium was added. For ongoing 

cultivation the stratification medium was changed every other day. Stratification 

morphology was recorded photographically as described above. After app. eight days 

the cell sheets were ready to be used. 

For harvesting multilayered human urothelial sheets from plastic surface of 6-well 

plates, the following procedure was performed: Dispase (BD Biosciences) was 

diluted in PBS w/o Ca2+ und Mg2+ (Gibco) in a ratio of 1/2 (v/v) to generate a dispase 

working solution of 25 U/ml. The culture medium was aspirated and 4 ml of PBS w/o 

Ca2+ und Mg2+ (Gibco) were added for washing. After aspiration of the washing 

medium the urothelial sheet was bordered with a cell scraper and swung gently in 

0.5 ml dispase working solution. After incubation at 37°C and 5% CO2 for 7-8 min the 

dispase solution was aspirated. The sheet was finally washed three times in 3 ml of 

PBS. 

For harvesting cell-seeded CCC, the seeded membrane was lifted out of the well with 

the aid of a forceps or the matrix was cut from the insert plastic holder, respectively. 

 

3.1.6 In vitro assays 
 

Ten different thawed HUC lines and four different thawed PUC lines were used for all 

the in vitro assays while for each of the eight experimental groups at least three 

different primary cultures were used. Bromodeoxyuridine (BrdU) assay was 

performed to evaluate proliferation and water-soluble tetrazolium salt (WST)-1 assay 

to evaluate metabolic activity of HUC and PUC in culture passages 2-7 seeded on 

CCC in comparison to cells seeded on standard plastic surface. 

For HUC thirteen experiments were performed in four different experimental groups: 

WST-1 and BrdU assay was performed on three or four primary cultures each to 

examine the cellular behaviour of HUC cultures. These two groups were further 

divided into experiments in the proliferative status (Prol, low seeding density; 

2.5 x 104 cells/cm2) as well as cell behaviour after induction of stratification (Strat, 

high seeding density; 4 x 105 cells/cm2). Regarding PUC the same principle was 

pursued with the respective four experimental groups including three different 
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primary cultures each (see table 3). For experiments in high seeding density 

stratification was induced as soon as the cultures were confluent. 

The assays were always performed with UC cultures seeded in CellBIND 24-well 

plates (Corning Inc., Corning, NY, USA) in the respective seeding density. HUC or 

PUC of one cell line were seeded in three parallels on CCC and on standard plastic 

as a control. Another three wells served as blanks without cells to take account of 

background absorbance in the measurement. Consequently, each assay experiment 

was performed for three parallels at four days after cell seeding or after induction of 

multilayer formation, respectively. 

Before performing BrdU or WST-1 assay, the status of the primary cultures was 

always documented photographically as described above. 

 

Table 3: Primary cultures used for the BrdU and WST-1 assays, HL = human ureter specimen, 
MSBL = minipig bladder specimen, MSHL = minipig ureter specimen, P = passage 

HUC assays  

BrdU Prol HL 10/18 P4 HL 10/19 P3 HL 10/26 P2 HL 07/49 P4 

BrdU Strat HL 10/3 P5 HL 04/005 P7 HL 10/21 P3 

WST-1 Prol HL 10/17 P3 HL 10/18 P3 HL 10/19 P3 

WST-1 Strat HL 07/47 P4 HL 07/14 P5 HL 10/21 P3 

PUC assays  

BrdU Prol MSBL 79930 P7 MSBL 79939 P5 MSHL 106597 P7 

BrdU Strat MSBL 79930 P7 MSBL 79939 P5 MSHL 106597 P6 

WST-1 Prol MSBL 79930 P4 MSHL 106597 P4 MSBL 79939 P7 

WST-1 Strat MSBL 79930 P6 MSHL 106597 P6 MSBL 200201 P5 

 
3.1.6.1 BrdU assay for evaluation of proliferation 

 

BrdU is a synthetic nucleoside that is an analogue of thymidine and therefore 

integrates into the cells’ DNA during mitosis. It is commonly used as a labelling 

reagent for in vitro and in vivo examinations. BrdU test is a fast, precise, and simple 

colorimetric method to evaluate proliferating cells. The test principle consists of the 

following steps: 1. BrdU is incorporated into the newly synthesised DNA of replicating 
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cells (during the S phase of the cell cycle), substituting for thymidine. 2. After 

denaturation and fixation, specific anti-BrdU antibodies can be used to detect the 

incorporated chemical, thus indicating cells that were actively replicating their DNA. 

3. Finally these immune complexes can be recovered through a substrate reaction 

and quantification of the absorbance of reaction products. The developing colour and 

resultant optical density values directly correlate to the amount of DNA synthesised 

and thus to cell proliferation. 

In the present study cell proliferation was quantified with the Cell Proliferation ELISA 

BrdU (Roche Diagnostics Deutschland GmbH). The cell culture medium was 

removed from the wells, 300 μl cKSFM were filled into each well and 30 μl BrdU 

labelling reagent were added. After gentle shaking, the cells were incubated at 37°C 

for 2 h to allow the BrdU to incorporate into the cells’ DNA. After removing the well 

content, 300 μl fixation and denaturation reagent was added followed by another 

30 min incubation period at RT. After removal of the fixation reagent, 250 μl of 

BrdU-peroxidase solution were added to bind to the incorporated BrdU during 

another 45 min of incubation at RT. Three washing steps with 300 μl washing buffer 

followed to remove the remaining free BrdU-peroxidase. Substrate solution (250 μl) 

was added to the wells for 5 min to be converted by the BrdU-peroxidase for 

colorimetric measurement. The reaction was then stopped by addition of 75 μl of 1 M 

sulfuric acid. Twice 100 μl of the content of each well was transferred to a 96-well 

ELISA microplate (Greiner Bio-One GmbH) to get doublets of each well resulting in 

18 wells for the measurement. Optical density of the developed colour was quantified 

at 450 nm with a kinetic ELISA microplate reader (Milenia Biotec GmbH) and 

analysed with SoftMax Pro software (Molecular Devices Inc.). 

 

3.1.6.2 WST-1 assay for evaluation of metabolic activity 
 

WST-1 is a tetrazolium salt that is cleaved to formazan by mitochondrial 

dehydrogenases when it gets in contact with metabolically active cells. The formazan 

concentration thus correlates indirectly with the total number of viable cells. The 

formazan dye is measured using a scanning spectrophotometer. The greater the 

number of metabolically active cells, the darker the formazan dye, the higher the 

optical density measured. The WST-1 test provides a spectrophotometric assay for 

measurement of viability, growth, chemo sensitivity, and proliferation in cell culture. It 

has evolved from the MTT [3(4,5-dimethyl-thiazoyl-2-yl)2,5 diphenyl-tetrazolium 
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bromide] colorimetric assay in the nineties. Being more rapid and easier to perform 

WST-1 test has frequently been used for evaluation of cytotoxic effects of viruses or 

drugs (FRANCOEUR & ASSALIAN, 1996). It displays sufficient reproducibility and 

can be completely automated (NISSEN et al., 1997). 

Hence the test provides evidence for viability of the cells seeded on CCC. WST-1 

assay was performed with the Cell Proliferation Reagent WST-1 (Roche Diagnostics 

Deutschland GmbH). First the cell culture medium was removed from the wells. For 

the assays in the proliferative status 400 μl of cKSFM were added to the wells 

together with 40 μl cell proliferation reagent WST-1 and for the assays in the 

stratifying status 600 μl of cKSFM together with 20 μl cell proliferation reagent 

WST-1. After incubation at 37°C for 3 h triplets of 100 μl of the content of each well 

were transferred to a 96-well ELISA microplate (Greiner Bio-One GmbH) to get 27 

wells ready to be measured. The measurement of optical density was performed as 

described above for BrdU assay at 450 nm. 

 
3.1.7 Investigations on cell adherence 

 

Analogous to the WST-1 and BrdU assays cell adherence was determined for 

cultures in low seeding density (analysis of proliferative phase, seeding density 

2.5 x 104 cells/cm2) and in high seeding density (analysis of stratifying phase, 

seeding density 4 x 105 cells/cm2). One day after seeding the supernatants from CCC 

seeded cells as well as from cells seeded on plastic were removed and pooled, three 

wells each in safe-lock tubes (Eppendorf AG). If necessary it was stored on ice until 

cell counting. After quick-centrifugation at 16000 g (Eppendorf centrifuge 5415C, 

Eppendorf AG) for 10 s, the supernatant was removed and the decanted cells were 

adjusted to 100 μl final volume. Living and dead cells in the supernatant were 

counted as described under 3.1.3. Cell adherence was investigated in different 

passages in 12 HUC experiments (6 in low seeding density, 6 in confluence, 

11 different primary cultures) and 12 PUC experiments (6 in low seeding density, 6 in 

confluence, 4 different primary cultures). 
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3.1.8 Quality control: Immunocytochemistry 
 

For quality control expanded HUC and PUC were seeded on eight chamber Lab-Tek 

Permanox Chamber Slides (Nunc GmbH & Co. KG) in a density of 5 x 104 cells/cm2 

and incubated in humidified atmosphere at 37°C and 5% CO2 until they reached 

80-90% confluence. 

Immunocytochemistry was performed with mouse monoclonal anti-cytokeratin 

cocktail AE1/AE3 (Millipore) to determine the epithelial phenotype, anti-fibroblasts 

monoclonal antibody clone TE-7 (Millipore), and anti-smooth muscle α-actin antibody 

clone 1A4 (Sigma-Aldrich Chemie GmbH) to demonstrate the absence of fibroblasts 

and smooth muscle cells, respectively. Negative controls were performed omitting 

the primary antibody. Washing steps in between every part of the following procedure 

were performed with PBS powder (bioMérieux Deutschland GmbH) dissolved in 

Ampuwa (Fresenius Kabi Deutschland GmbH). Reagents for immunocytochemical 

staining were taken from the EnVision+ System-HRP (DAB) kit (Dako Deutschland 

GmbH) working with a streptavidin-biotin method. 

Cells were fixed at 90-100% confluence by incubation in 3.7% paraformaldehyde 

(PFA) for 10 min. Slides were then stored in PBS solution at 4°C until further 

processing. 

For AE1/AE3 and 1A4 staining urothelial cells had to be permeabilised by addition of 

0.1% saponin solution as a mild detergent for 10 min. Saponin solution was prepared 

from saponin stock solution (see annexe) diluted in PBS solution. AE1/AE3 antibody 

was diluted in saponin working solution whereas TE-7 and 1A4 were diluted in 

antibody diluent (Dako Deutschland GmbH) according to table 4. The chambers on 

the slide were incubated with the different unconjugated primary antibodies or 

antibody diluent for negative controls for 30 min. Horseradish peroxidase (HRP) 

labelled polymer was added and the cells were incubated another 30 min. HRP 

labelled polymer is conjugated to goat anti-mouse immunoglobulins and therefore 

binds to mouse primary antibodies. After incubation in DAB 

(3,3'-diaminobenzidine)+substrate chromogen for 3 min an Ampuwa (Fresenius Kabi 

Deutschland GmbH) bath followed. The conversion of DAB 

(3,3'-diaminobenzidine)+substrate chromogen by bound HRP lead to the brown 

dyeing. Counterstaining was performed with haematoxylin (Vector Laboratories Inc.) 

for 1 min followed by 10 min of rinsing with tap water for blueing. Binding to the 

primary antibody was detected as a brown colouration whereas negative cells only 
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showed blue haematoxylin nucleus staining. When the slide was dried, it was 

mounted in glycerol gelatine (Merck KGaA), covered with a microscope cover slip (R. 

Langenbrinck Labor- und Medizintechnik) and stored at RT. 
 

The slides were evaluated qualitatively for positive or negative antigen expression 

being visible by brown dyeing with the microscope Axiovert 200M (Zeiss) and 

photographed. 

 
Table 4: Antibodies for immunocytochemical staining 

Identification Antibody 
specificity Clone Dilution Company 

epithelial 
phenotype pancytokeratin AE1/AE3 1/500 Millipore 

fibroblasts fibroblasts TE-7 1/2000 Millipore 

smooth muscle smooth 
muscle α-actin 1A4 1/10000 Sigma-Aldrich Chemie 

GmbH 

 
3.1.9 PKH26 staining 

 
PKH26 is a red fluorescent cell linker for in vitro cell labelling, in vitro proliferation 

studies, and long term in vivo cell tracking. The half-life for elution of PKH26 from 

labelled rabbit red blood cells is greater than 100 days (see product description 

Sigma-Aldrich Chemie GmbH). It integrates into the cell membrane lipid layer and 

enables the experimenter to retrieve the sought cells and tissue in vitro and in vivo by 

fluorescence microscopy. In this study it served as a tracking system to detect the 

transplanted cells in vivo in the extracted tissue. PKH26 Red Fluorescent Cell Linker 

Kit (Sigma-Aldrich Chemie GmbH) including PKH26 cell linker and corresponding 

diluent was used. Two different staining protocols were applied: 

 

a) For the in vitro studies and the nude rat model UC were stained in suspension: 

Cells were detached from the culture flasks and counted (see above). As app. 50% 

of the cells were lost during the staining procedure double of the favoured final cell 

number had to undergo the procedure. 5 x 106 cells were transferred in a BD Falcon 

conical tube (BD Biosciences) and centrifuged at 250 g for 5 minutes. The 

supernatant was aspirated and the pellet was resuspended in 300 μl of diluent. 
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285 μl of diluent was mixed with 15 μl of PKH26 cell linker. The cell suspension was 

gently added to the staining solution and was incubated for 8 min (handwarm) by 

gentle agitation. The reaction was stopped by addition of 2 ml cell culture medium 

supplemented with 20% FCS (Gibco) and incubation for 1-2 min followed by 

centrifugation. After two washing steps with culture medium w/o FCS, successful 

staining was checked by fluorescence microscopy (Axiovert 200M, Zeiss) with the 

integrated red fluorescence filter F41-027 (AHF Analysentechnik). 

 

b) For the minipig model the staining protocol has been improved to increase the 

yield of stained cells. Here UC were stained as an adherent confluent cell layer in 

6-well inserts: Therefore, 300 μl of diluted PKH26 cell linker were mixed with 1 ml of 

the respective culture medium. After removal of the medium the insert was filled with 

1.3 ml staining solution while the bottom of the well was filled with 1.3 ml of medium. 

The cells were stained for 1 h at 37°C and 5% CO2. The reaction was then stopped 

by adding 3 ml of culture medium supplemented with 20% FCS into the insert and 

into the well. After 2 min of incubation the well and the insert were washed twice with 

culture medium w/o FCS and the staining success was checked as described above.  

 

3.1.10 Immunofluorescence of stratified human urothelial cells 
 

For the confirmation of urothelial phenotype, differentiation and the formation of 

cell-cell junctions immunofluorescent staining was performed with the antibodies 

against AE1/AE3 (pancytokeratin; epithelial phenotype), CK-20 (cytokeratin 20; 

urothelial differentiation marker), p63 (urothelial marker), E-Cadherin (epithelial 

adherence junctions), and ZO-1 (tight junctions) in stratifying HUC cultures. The cells 

were seeded on CCC inserts and plastic culture plates as a control. Specifities of the 

used primary antibodies, company, and dilution are listed in table 5. Negative 

controls were performed omitting the primary antibody. 

 
3.1.10.1 Cell culture preparations 

 

HUC were labelled with PKH26 (see 3.1.9) and 1.6 x 105 cells/cm2 were seeded on 

CCC 6-well inserts as described before (see 3.1.4). In addition, 2.8 x 105 cells/cm2 

were seeded on plastic surface of a CellBIND 6-well plate (Corning Inc.) as a control. 

Cells were cultured until formation of a confluent cell layer and stratification was 
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induced. After eight days of stratification the matrix-free cells were detached as 

described (see 3.1.5).  

The cells on CCC were washed three times with PBS solution and subsequently 

fixed in 3.7% PFA for 10 min, before they were washed twice again with PBS 

solution. The seeded matrix was cut from the insert’s plastic holder and placed flatly 

on tissue freezing medium (Leica microsystems Nussloch GmbH) analogous to the 

control. At -20°C cryostat sections of 5 μm thickness were cut perpendicular to the 

matrix surface, placed on SuperFrost microscope slides (R. Langenbrinck Labor- und 

Medizintechnik) and dried overnight at RT in the dark.  

 

3.1.10.2 Immunofluorescent staining procedure 
 

All washing steps throughout the immunofluorescence procedure were performed 

with PBS (bioMérieux Deutschland GmbH) dissolved in Ampuwa (Fresenius Kabi 

Deutschland GmbH) for 3-5 min.  

As p63 constitutes intranuclear staining the respective tissue sections had to undergo 

a citrate buffer treatment for cell permeabilisation prior to further antibody incubation 

steps. Therefore, a 10 mM citrate buffer of citric acid and sodium citrate diluted in 

Ampuwa (Fresenius Kabi Deutschland GmbH) was adjusted to pH 6.0. Then the 

slides were heated in the microwave thrice for 3 min with intermittent addition of 

Ampuwa. After 20 min of cooling in the citrate buffer the staining procedure was 

started. 

As the first step of immunofluorescent staining procedure the tissues were heated at 

40°C for 30 min on a heating plate to make the tissues stick to the slides. After 

cooling, the tissue section was encircled with the Dako Pen (Dako Deutschland 

GmbH) and washed twice. Unspecific binding was blocked with 5-10% rabbit IgG 

normal serum (Dako Deutschland GmbH) for 30 min. Incubation was performed in 

the dark in a humid chamber at RT as for all the following steps. The primary 

antibodies were diluted in antibody diluent (Dako Deutschland GmbH) according to 

table 5 and added to the tissue slides for 60 min. Two washing steps followed prior to 

addition of the secondary antibody rabbit anti-mouse IgG F(ab)2 Fluorescein 

isothiocyanate (FITC) which was diluted in antibody diluent (both Dako Deutschland 

GmbH) in a ratio of 1/40. Thirty min of incubation were followed by two more wash 

cycles. After drying, the slides were mounted in Vectashield (Vector Laboratories 
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Inc.) containing DAPI (4',6-diamidino-2-phenylindole), a cell nucleus fluorescent dye 

and stored at -20°C. 

The slides were evaluated qualitatively for positive or negative antigen expression 

using the microscope Axiovert 200M (Zeiss) and the integrated fluorescence filters of 

appropriate wavelengths (AHF Analysentechnik). The immunofluorescence results 

for urothelial sheets on CCC were compared to the dyeing of urothelial multilayer 

constructs seeded on standard plastic (controls). 

 

Table 5: Antibodies for immunofluorescent staining of multilayer sheets 

identification antibody 
specificity clone dilution company 

epithelial 
phenotype pancytokeratin AE1/AE3 1/100 Millipore 

urothelial 
differentiation 
(surface marker) 

cytokeratin 20 
(CK-20) KS20.8 1/50 

Dako 
Deutschland 
GmbH 

urothelial 
differentiation p63 4A4 1/50 DIANOVA 

GmbH 

epithelial 
adherence 
junctions 

E-Cadherin D33 1/100 
Dako 
Deutschland 
GmbH 

tight junctions 
(zonula occludens) ZO-1 ZO1-1A12 1/25 Invitrogen 

GmbH 

 

3.2 Animal models 
3.2.1 Nude rat model 

3.2.1.1 Study design and conditions 
 
The rodent experiments were performed according to the approval of the Regional 

Administrative Authority of Tuebingen (CU 1/10) with athymic nude rats 

(Crl:NIH-Foxn1nu, Charles River Laboratories). Twelve rats underwent surgery for 

the evaluation of biocompatibility of urothelium-CCC-constructs. Featuring reduced 

immunocompetence they are the ideal animal model for transplantation experiments 

in general. Female animals at the age of five weeks and with a body weight of app. 

130 g at the beginning of the experiment were used. They were kept in groups of four 
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Fig. 2: CCC seeded with PKH26 labelled HUC prior 
to transplantation. 

animals in Sealsafe individually ventilated makrolon cages (IVC) type IV 

(TECNIPLAST S.p.A.) at a temperature of 22 +/-2°C, 55 +/-10% relative humidity, 

and physiological day-night rhythm (12 h light/12 h dark) at a research animal facility 

of the University of Tuebingen. The cages were filled with litter (aspen) and cleaned 

weekly. The animals were given vegetal commercial laboratory animal food (ssniff 

Spezialdiäten GmbH) and water ad libitum. Environmental enrichment 

measurements were undertaken. 

Prior to the beginning of the experiment, the animals were allowed to adapt to the 

surrounding conditions for one week. Each animal underwent transplantation of 

urothelium-CCC-constructs onto the rectus abdominis to prove biocompatibility. After 

surgery carprofen (Rimadyl, Pfizer Deutschland GmbH) was injected daily at 5 mg/kg 

as an analgetic for the first three postoperative days. The physical condition of the 

rats as well as the wound healing was checked daily. Twice a week the body weight 

was determined as an evidence for potential suffering. The four animals each were 

sacrificed after one, two, and four weeks and the extracted rectus muscle was 

analysed histologically and immunohistologically. 

 

3.2.1.2 Preparation of the urothelial-collagen cell carrier transplants 
 

Thawed HUC were cultured as 

described above, labelled by 

PKH26 in suspension and seeded 

onto CCC in a CellBIND 24-well 

plate (Corning Inc.). On 

stratification day eight urothelium-

CCC-constructs were ready to be 

transplanted (Fig. 2). They were 

transported to the animal facility in 

an insulated polystyrene box. 

 

3.2.1.3 Surgery 
 

The urothelial cell-matrix-transplants were placed in an incubator at 37°C and 

5% CO2 under humidified atmosphere during the preparation of the surgery. The 

animals were anaesthetised by intraperitoneal injection of Xylazin 2% at 4 mg/kg and 
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Ketamin at 100 mg/kg (both Albrecht 

GmbH) mixed in a syringe. The depth of 

anaesthesia was checked by the 

negative righting reflex and negative 

interdigital reflex. After supine 

positioning, application of eye ointment, 

fixation of the animal and spacious skin 

disinfection, the rectus muscle was 

exposed by a midline abdominal incision 

of app. 2 cm. The superficial abdominal 

fascia was lifted from the subjacent 

muscle to build a pocket. Each 

transplant was washed in 0.9% NaCl (Fresenius Kabi Deutschland GmbH) prior to 

application. With a forceps, it was carefully placed flatly into the pocket between 

muscle and fascia (Fig. 3). With two to three single stitches the fascia was adapted 

prior to the skin closure in buried suture using the surgical suture Coated Vicryl 

(Ethicon Inc.). The rats were placed in a warm environment and monitored until they 

were conscious. The duration of the complete procedure was app. 30 min. 

 
3.2.1.4 Euthanasia procedure and tissue retrieval 

 

After the scheduled periods of one, two, and four weeks the animals were euthanised 

by intraperitoneal injection of pentobarbital-sodium 500 mg/kg (Narcoren, 160 mg/ml, 

Merial GmbH). The tissue of the transplantation site including skin, rectus abdominis 

muscle and serosa was removed spaciously (app. 3 x 3 cm) for histological work-up. 

Tissue from the non-transplanted side was taken as well to serve as control tissue. 

The tissue shrank to half of the original size after extraction. 

The tissue samples were placed in a BD Falcon conical tube (BD Biosciences) with 

saccharose solution 18% directly after extraction and stored at 4°C overnight. 

Saccharose served as a cryoprotective agent. 

The following day tissue samples were divided into pieces of app. 1.5 cm of length 

and placed in embedding moulds (Thermo Fisher Scientific GmbH) filled with tissue 

freezing medium (Leica microsystems Nussloch GmbH). The moulds were plunged 

in liquid nitrogen until they were completely frozen. Tissue samples were then stored 

at -80°C until further processing. 

Fig. 3: Application of cell seeded CCC onto the 
rectus abdominis muscle, transplant lying on 
the abdominal wound prior to transplantation 
(arrow indicates CCC)
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3.2.2 Minipig model 
3.2.2.1 Study design and conditions 

 
The pig represents a common and appropriate large animal model for transplantation 

research in preclinical studies because its anatomy and physiology are well known 

and the proportions are similar to humans (DEHOUX & GIANELLO, 2007). Eight 

male castrated Göttingen Minipigs at the age of app. nine months and of app. 

20-25 kg of weight at the beginning of the experiment were used for the syngenic 

animal study. The barrier-bred pigs were obtained from Ellegaard, Denmark and kept 

in the centre for experimental medicine of the University Clinics of Tuebingen at RT 

and physiological day-night rhythm. The animals were fed once a day with 

conventional minipig fodder (SDS Diets) and received water ad libitum. They were 

merged in one group in a compartment of 19 m2. Prior to the beginning of the 

experiment, the animals were allowed to adapt to the surrounding conditions for one 

week. 

Each animal underwent two surgical interventions. Prior to anaesthesia a fasting 

period of 24 h was kept. In a first approach the urethral stricture was induced by 

thermocoagulation, bladder tissue was harvested for the retrieval of autologous cells, 

and a vesicostomy was established. In a second intervention three weeks later the 

autologous urothelium-CCC-construct was applicated at the stricture site. After the 

respective observation periods euthanasia and extraction of the urethra for 

histological and immunohistological work-up were performed. Two animals each 

were put down after one, two, and four weeks after transplantation of seeded CCC 

transplants. The anaesthesia regime, perioperative medication, and euthanasia are 

listed in the annexe. All doses are approximate values and were adapted by the 

responsible veterinarian according to interindividual differences. 

 

3.2.2.2 Surgical procedures 
 

The porcine urethral stricture model was implemented at the Department of Urology 

of the University Clinics of Tuebingen in previous studies (SEIBOLD et al., 2011; 

SIEVERT et al., 2012). The large animal trial was recognized by the Regional 

Administrative Authority of Tuebingen (CU 1/08). 

The surgical procedure comprised two interventions. Blood samples were taken prior 

to any intervention to confirm good health status of all six minipigs. Prior to the first 
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intervention urine was analysed per Combur Test M sticks (Roche Diagnostics 

Deutschland GmbH). Prior to the manipulation of the urethra urethrography was 

performed with a c-arm X-ray unit at every intervention to record the physiological 

condition, the stricture formation or the stricture healing. 

 

a) First intervention: 

The minipigs were sedated by intramuscular injection in the housing compartment 

and were transported to the operating room. After installing a venous catheter into 

the auricular vein, general anaesthesia was induced and the animals were intubated. 

They were placed on the operation desk in supine position and the surgical field was 

cleaned, disinfected, and covered. The abdominal cavity was opened and the 

bladder was exposed (Fig. 4). 

 

 
 

After drawing 5-10 ml of urine for analysis a bladder specimen of app. 2 x 2 cm was 

excised, transferred into transport medium (see 3.1.1) and kept at 4°C until further 

work-up. The bladder was fixed to the abdominal wall and a vesicostomy was 

installed to allow free flow of urine during the stricture formation. 

Fig. 4: In the first surgical intervention the bladder was exposed to harvest urothelial cells. The 
tissue to be excised is marked (left). Urethral damage was induced by superficial circumferential 
electro coagulation (right). 
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Fig. 6: Autologous cell seeded CCC was held 
by forceps during transplantation into the 
porcine urethra. 

Fig. 5: The completed vesicostomy after the 
first surgery procedure. 

The freed urethra was opened distal to 

the future stricture site and contrast 

medium (Peritrast Infusio 31%, Dr. Franz 

Köhler Chemie GmbH) was instilled for 

contrast x-ray by a ureteric catheter 

CH04 (Coloplast GmbH). Urethrography 

was performed to document the normal 

urethral lumen prior to stricture 

induction. Afterwards the urethra was 

closed again with 5/0 Vicryl sutures 

(Ethicon Inc.). The urethral stricture was induced by circumferential electro 

coagulation (Fig. 4). The location of the lesion was marked by non-resorbable 

0 Prolene sutures (Ethicon Inc.) prior to adaptation of fascia and skin (Fig. 5). 

 

b) Second intervention: 

Three weeks after stricture induction procedure the minipigs were pre-medicated as 

in the first intervention. Anaesthetisation and urethrography were performed as 

described above. 

The urethra was exposed at the stricture 

site which was retrieved by the 

previously attached marking sutures. 

Cell seeded CCC was washed in NaCl. 

The construct was then sutured flatly to 

the urothelium with single stitches with 

the cells facing the lumen (Fig. 6). 

Finally the urethra and the abdomen 

were closed. 
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Fig. 7: Seeded CCC (with the letter “R” 
indicating rear unseeded side of the transplant)
was taken out of the Petri dish prior to 
transplantation. 

3.2.2.3 Construction of autologous transplants 
 

On the day of the first surgery bladder 

samples were transferred to the cell 

culture laboratory in transport medium 

and PUC were isolated according to the 

established protocol (see 3.1.1). Primary 

cell culture and subculture were 

performed as described. In contrast to 

the in vitro assays a different medium 

was used for cultivation. PUC were 

cultured in supplemented CnT-07 for 

proliferation or CnT-02 with 

1.07 mM/l CaCl2 for stratification (both 

CELLnTEC Advanced Cell Systems 

AG). Cells were cultivated for app. two weeks including one passage and finally 

3 x 105 cells/cm2 were seeded on the upper side of CCC inserts (see 3.1.4). On the 

subsequent day seeded cells were labelled with PKH26 (see 3.1.9) and stratification 

was induced 4 h later by changing the culture medium to CnT-02 and increasing the 

calcium concentration. On day seven to eight of stratification autologous urothelial 

cell-CCC-constructs were ready to be applied (Fig. 7). 

 

3.2.2.4 Urethral tissue retrieval 
 
After the determined periods of one, two, and four weeks blood samples were 

analysed again and two animals each were sacrificed according to the protocol (see 

annexe) by intravenous injection into the V. cava cranialis (Fig. 8). Briefly, the 

animals were pre-medicated and sedated by application of Azaperone 4.0 mg/kg, 

Midazolam 0.5 mg/kg, and Ketamin 14 mg/kg. Anaesthesia was deepened by 

application of pentobarbital and finally KCl (B. Braun Melsungen AG) until cardiac 

arrest. After a third urethrography large parts of the urethra surrounding the stricture 

site (app. 10-12 cm) were excised and transferred in a BD Falcon conical tube (BD 

Biosciences) with 18% saccharose solution directly after extraction and stored at 4°C 

overnight. 
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The following day connective tissue of the urethra was removed, the area around the 

transplant was divided into five sections of app. 1 cm length (Fig. 9) and placed in 

embedding moulds (Thermo Fisher Scientific GmbH) filled with tissue freezing 

medium (Leica microsystems Nussloch GmbH). The moulds were plunged in liquid 

nitrogen until they were completely frozen. Tissue samples were then stored at -80°C 

until further processing. 

 

 

Fig. 9: The extracted urethra was divided into five sections. Section three contained the main part 
of the transplant site. 

Fig. 8: Euthanasia by intravenous injection of the drugs into the V. cava cranialis (left). Extraction 
of urethral tissue with unresorbable sutures (arrows) confining the transplantation site (right) 
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3.2.3 Tissue processing, staining, and microscopic evaluation 
3.2.3.1 Cryotome cutting 

 

App. 200 cryostat sections of 5 μm thickness were made of each tissue with a Leica 

CM1900 cryotome (Leica microsystems Nussloch GmbH) at -20°C. They were 

placed on SuperFrost microscope slides (R. Langenbrinck Labor- und 

Medizintechnik) and dried overnight in the dark at RT. Slides were then stored at 

-20°C. 

 

3.2.3.2 Haematoxylin-eosin staining 
 

For histologic evaluation haematoxylin-eosin (HE) staining was performed on at least 

one tissue slide of every rat and on control tissue. Concerning minipigs’ tissues 

several slides were stained. First a 0.1% eosin solution was prepared: Therefore, 

Certistain Eosin G (Merck KGaA) was diluted in 90% ethanol and a drop of glacial 

acetic acid. 

Tissues to be stained were heated at 56°C for 30 min on a heating plate and then 

incubated in haematoxylin (Vector Laboratories Inc.) for 20 s. This step was followed 

by 10 min of watering under running water and 5 s of dipping in Ampuwa (Fresenius 

Kabi Deutschland GmbH). Eosin staining was performed with the aforementioned 

0.1% eosin solution for 5 min. After a final wash under running water for 10 min, 

stained slides were dried at 37°C in a drying cabinet (BE 200, Memmert GmbH und 

Co. KG) and then mounted in Vectamount (Vector Laboratories Inc.). 

 

3.2.3.3 Immunofluorescence 
 

Concerning the investigation in rats immunofluorescent staining was performed on 

tissue slides of each animal with the primary antibodies specific for pancytokeratin, 

CK-20, p63, E-Cadherin, and ZO-1 according to the procedure described under 

3.1.10. Negative controls were performed omitting the primary antibody. The 

following modifications were made: As secondary antibodies Cy2 conjugated donkey 

anti-mouse IgG F(ab’)2 was used in a dilution of 1/50 and Cy2 conjugated goat anti-

mouse IgG (H+L) in a dilution of 1/100 (both DIANOVA GmbH). Due to the different 

host species donkey IgG normal serum and goat serum (both Dako Deutschland 

GmbH) were used as blocking serum. 
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Immunofluorescent staining of minipig tissues was also performed for all animal 

samples with the identical panel of primary antibodies. Here goat anti-mouse IgG 

(H+L) Cy2 conjugated antibody (DIANOVA GmbH) was used in a dilution of 1/100 as 

secondary antibody and goat serum (Dako Deutschland GmbH) was used for 

blocking. Furthermore, ZO-1 was diluted at a ratio of 1/40 in contrast to the previous 

investigations. Processed slides were mounted in Immunoselect (DIANOVA GmbH), 

containing DAPI, and covered with cover slips (R. Langenbrinck Labor- und 

Medizintechnik). 

 

3.2.3.4 Microscopic evaluation 
 
Microscopic evaluation was performed with a fluorescence microscope (Axiovert 

200M, Zeiss) with the red fluorescence filter F41-027, green fluorescence filter 

F41-020, and blue DAPI fluorescence filter F31-000 (all AHF Analysentechnik). The 

results were recorded with AxioCam HRc (Zeiss). 

Native tissue slides and HE stained slides were analysed microscopically with regard 

to the survival and integration of the transplanted cells as well as the degradation of 

the CCC and potential inflammatory reactions. The applicated cells were detected by 

red PKH26 fluorescence. 

For evaluation of the immunofluorescent stainings, green fluorescence was assessed 

distinguishing between positive or negative expression of the different antigens. 

Tissues were assessed with regard to double fluorescence showing urothelial 

phenotype (green fluorescence) of the transplanted cells (red fluorescence). 
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4 Results 
4.1 In vitro results 

4.1.1 Cell culture of urothelial cells 
 
Primary isolated HUC and PUC were adherent to the plastic surface or to the CCC 

24 h after being seeded. The growth behaviour of PUC differed significantly 

depending on the primary culture. After thawing (two vials in a 75 cm2 flask) HUC 

required app. five days to achieve confluence while PUC required app. two weeks. 

Altogether, PUC grew slower than HUC throughout the whole culture period. 

Moreover, the yield of PUC after detachment of the flask’s surface was much poorer. 

A confluent culture flask provided a yield of app. 4-6 x 104 HUC/cm2 or 2.5 x 104 

PUC/cm2. All cells showed typical morphology for urothelial cells, though, PUC 

morphology was not as uniform as HUC morphology. Figure 10 shows 

PKH26-labelled HUC on plastic surface in comparison to HUC seeded on CCC. 

The CCC was easy to handle, to stick to the well plate, and to remove. It did not 

break, shrink or crack during thorough manipulation, but stayed in its original shape. 

Due to its excellent handling characteristics and its stability it was judged as a 

suitable material for the projected in vivo investigations. 

 

 

Fig. 10: HUC grown on standard plastic (left) and on CCC (right) at day 1 after seeding. PKH26-
labelled HUC show red fluorescence. Phase contrast microscopy 
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4.1.2 Proliferation and metabolic activity of HUC on CCC 
 
BrdU and WST-1 assays were performed to evaluate proliferation and metabolic 

activity of HUC in proliferating and stratifying cultures. 

For each experiment the optical density measured in the control wells was set as 

100% and optical density of CCC seeded cells was set in relation to the control 

value. The results of BrdU and WST-1 assays were comparable concerning the 

kinetic development of proliferating and stratifying cultures on CCC compared to 

controls on standard plastic surface. While HUC showed reduced proliferative and 

metabolic capacity on the first two measuring points (24-25% for BrdU and 38-45% 

for WST-1) in low seeding density compared to controls, they approached values for 

HUC seeded on plastic on test days 3 and 4 (99-103% for BrdU and 70-91% for 

WST-1, Fig. 11 and 12). When seeded in confluence and stratification was induced 

HUC on CCC revealed 111-139% for BrdU and 89-91% for WST-1 and therewith 

corresponded to controls on all four measurement points or even revealed superior 

(Fig. 13 and 14). 

Altogether, HUC seeded on CCC, whether on later culture days in the proliferation 

phase or in the stratification phase, showed similar or even better proliferation and 

metabolic activity than controls seeded on plastic surface. Early HUC cultures (until 

day 4 after seeding) in the proliferating state revealed proliferation and metabolic 

activity rates considerably lower than controls. Table 6 and 7 show the data of optical 

density measurements in percentage of the controls. Definite test days after seeding 

for proliferation experiments (Prol, low seeding density: 2.5 x 104 cells/cm2) or after 

induction of stratification for stratification experiments (Strat, high seeding density: 

4 x 105 cells/cm2) are further presented in tables 6 and 7.  

For each of the eight experimental groups three different primary cultures were used 

except for BrdU assay on proliferating HUC which was performed on four different 

cell lines. Figure 11 demonstrates mean values of four independent BrdU 

experiments and figure 12 shows mean values of three independent WST-1 

experiments. Figures 13 and 14 demonstrate mean values of independent BrdU and 

WST-1 experiments on three stratifying HUC cultures each. Figure 15 shows a 

representative example of one WST-1 assay on a proliferating HUC culture to 

demonstrate development of optical density measurements over four test days. 
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Table 6: Percentage of optical density compared to controls of different  primary cell lines (BrdU: 
n = 4, WST-1: n = 3) showing growth development of proliferating HUC in an experimental period of 
seven days including four different test days (measurement time points days 1, 2, 4, and 7 after 
seeding) 

Day after seeding HUC 
Proliferation 1 2 4 7 

BrdU Prol 17%,20%, 
34%,30% 

21%, 23%, 
21%, 32% 

81%, 48%, 
183%, 82% 

129%, 128%, 
91%, 65% 

Mean 25% 24% 99% 103% 

WST-1 Prol 35%, 53%, 
47% 

18%, 67%, 
30% 

85%, 90%, 
34% 

63%, 135%, 
75% 

Mean 45% 38% 70% 91% 

 
Table 7: Percentage of optical density compared to controls of different primary cell lines (n = 3) 
showing growth development of stratifying HUC in an experimental period of eight days including four 
different test days (measurement time points days 0, 1, 4, and 8 of stratification) 

Day of stratification HUC 
Stratification 0 1 4 8 

BrdU Strat 148%, 149%, 
119% 

127%, 113%, 
108% 

109%, 129%, 
94% 

106%, 123%, 
123% 

Mean 139% 116% 111% 117% 

WST-1 Strat 90%, 95%, 
86% 

87%, 97%, 
88% 

102%, 86%, 
82% 

84%, 93%, 
89% 

Mean 90% 91% 90% 89% 
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Fig. 11: BrdU assay: mean values of proliferating HUC cultures (n = 4) seeded on CCC, optical 
densities as percentage of the control which was set as 100% for each experiment. Seeding 
density 2.5 x 104 cells/cm2 
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Fig. 12: WST-1 assay: mean values of proliferating HUC cultures (n = 3) seeded on CCC, optical 
densities as percentage of the control which was set as 100% for each experiment. Seeding 
density 2.5 x 104 cells/cm2 
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Fig. 13: BrdU assay: mean values of proliferating HUC cultures (n = 3) seeded on CCC, optical 
densities as percentage of the control which was set as 100% for each experiment. Seeding 
density 4 x 105 cells/cm2 

BrdU, HUC on CCC, Stratification

100% 100% 100% 100%

139%

116% 111% 117%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

0 1 4 8
culture day

op
tic

al
 d

en
si

ty
 p

er
ce

nt
ag

e

Control
CCC

Fig. 14: WST-1 assay: mean values of stratifying HUC cultures (n = 3) seeded on CCC, optical 
densities as percentage of the control which was set as 100% for each experiment. Seeding 
density 4 x 105 cells/cm2 
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4.1.3 Proliferation and metabolic activity of PUC on CCC 
 
BrdU and WST-1 assays were performed to evaluate proliferation and metabolic 

activity of PUC in proliferating and stratifying cultures.  

The results of BrdU assay for the different PUC lines were greatly varying. For PUC 

seeded in low density the proliferative capacity and metabolic activity decreased 

slightly over the four test days from mean value of 109% (WST-1 assay) and 102% 

(BrdU assay) on day one to 95% and 73% on day seven in comparison to controls. 

For stratifying PUC the general kinetic did not show considerable differences to the 

control group over the four test days but fluctuated slightly. 

The development of results of WST-1 assay resembled the ones for BrdU. PUC 

cultures in the proliferating and stratifying state revealed results similar or even 

superior to controls. Anyhow, for proliferating cultures metabolic activity and 

proliferation rates decreased throughout the culture period after seeding on CCC in 

comparison to the controls. Table 8 and 9 show the data of optical density 

measurements in percentage of the controls. Definite test days after seeding for 

proliferation experiments (Prol, low seeding density: 2.5 x 104 cells/cm2) or after 

Fig. 15: Representative WST-1 assay: Development of optical density (OD) in a WST-1 assay 
experiment of a proliferating HUC culture (2.5 x 104 cells/cm2, human ureter cell line HL 10/18 in 
culture passage 3). Red curve represents control (HUC on plastic surface), blue curve represents 
HUC on CCC. 
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induction of stratification for stratification experiments (Strat, high seeding density: 

4 x 105 cells/cm2) are further presented in tables 8 and 9. For all eight experimental 

groups three different primary cultures were used. Figure 16 and 17 demonstrate 

mean values of three independent BrdU and WST-1 experiments. Figures 18 and 19 

demonstrate mean values of independent BrdU and WST-1 experiments on three 

stratifying PUC cultures each. Figure 20 shows a representative example of one 

BrdU test on a stratifying PUC culture to demonstrate development of optical density 

measurements over four test days. 

 

Table 8: Percentage of optical density compared to controls of different primary cell lines (n = 3) 
showing growth development of proliferating PUC in an experimental period of seven days including 
four different test days (measurement time points days 1, 2, 4, and 7 after seeding) 

Day after seeding PUC 
Proliferation 1 2 4 7 

BrdU Prol 97%, 145%, 
65% 

71%, 103%, 
66% 

86%, 104%, 
68% 

88%, 89%, 
42% 

Mean 102% 80% 86% 73% 

WST-1 Prol 66%, 133%, 
128% 

54%, 124%, 
124% 

79%, 97%, 
83% 

89%, 100%, 
95% 

Mean 109% 101% 86% 95% 

 
Table 9: Percentage of optical density compared to controls of different primary cell lines (n = 3) 
showing growth development of stratifying PUC in an experimental period of eight days including four 
different test days (measurement time points days 0, 1, 4, and 8 of stratification) 

Day of stratification PUC 
Stratification 

0 1 4 8 

BrdU Strat 171%, 130%, 
64% 

133%, 104%, 
68% 

109%, 107%, 
77% 

104%, 114%, 
70% 

Mean 122% 102% 98% 96% 

WST-1 Strat 88%, 88%, 
135% 

103%, 93%, 
107% 

122%, 100%, 
109% 

137%, 96%, 
123% 

Mean 104% 101% 110% 119% 
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Fig. 17: WST-1 assay: mean values of proliferating PUC cultures (n = 3) seeded on CCC, optical 
densities as percentage of the control which was set as 100% for each experiment. Seeding 
density 2.5 x 104 cells/cm2 

WST-1, PUC on CCC, Proliferation

100% 100% 100% 100% 95%
86%

101%109%

0%

20%

40%

60%

80%

100%

120%

140%

160%

1 2 4 7
culture day

op
tic

al
 d

en
si

ty
 p

er
ce

nt
ag

e

Control
CCC

Fig. 16: BrdU assay: mean values of proliferating PUC cultures (n = 3) seeded on CCC, optical 
densities as percentage of the control which was set as 100% for each experiment. Seeding 
density 2.5 x 104 cells/cm2 
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Fig. 19: WST-1 assay: mean values of stratifying PUC cultures (n = 3) seeded on CCC, optical 
densities as percentage of the control which was set as 100% for each experiment. Seeding
density 4 x 105 cells/cm2 
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Fig. 18: BrdU assay: mean values of stratifying PUC cultures (n = 3) seeded on CCC, optical 
densities as percentage of the control which was set as 100% for each experiment. Seeding 
density 4 x 105 cells/cm2 
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4.1.4 Cell adherence 
 
Primary cell adherence was indirectly ascertained by counting the non-adherent 

cells in the culture supernatant one day after initial cell seeding. Data were 

determined for six HUC and six PUC cultures each seeded in low (Prol = 2.5 x 104 

cells/cm2) and high (Strat = 4 x 105 cells/cm2) density. Altogether, 12 HUC and 

12 PUC supernatant cell countings revealed the mean values presented in table 10. 

Based on the total number of seeded cells the following mean value data were 

achieved: When seeded in high density 2.2% of HUC did not adhere to the scaffold 

compared to 2.0% on plastic surface. For PUC 13.6% of the cells were counted 

compared to 12.7% of controls. Experiments in low seeding density revealed a 

greater difference in HUC and PUC seeded on CCC vs. on plastic. While 16.2% of 

HUC and 15.3% of PUC did not adhere to the CCC, it was only 2.2% and 6.6% on 

plastic, respectively (Fig. 21 and 22). 

Cells seeded in low density adhered to the CCC weaker than to plastic surface. In 

contrast, when seeded in confluence they revealed adherence to the CCC 

Fig. 20: Representative BrdU assay: Development of optical density (OD) in a BrdU assay 
experiment of a stratifying PUC culture (4 x 105 cells/cm2, minipig bladder cell line MSBL 79939 in 
culture passage 5). Red curve represents control (PUC on plastic surface), blue curve represents 
PUC on CCC. 
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comparable to plastic seeding. Furthermore, PUC showed inferior adherence to 

plastic and to CCC than HUC did. 

 
Table 10: Mean values in percentage of total number of seeded cells. 
Non-adherent cells counted in the culture supernatant one day after 
seeding in low (Prol = 2.5 x 104 cells/cm2) and high (Strat = 4 x 105 
cells/cm2) density on CCC and on plastic surface as a control, n = 6 
 

 
 
 
 
 
 

 

 

 
 
 

 Control CCC 
Prol 2.2% 16.2% 

HUC 
Strat 2.0% 2.2% 
Prol 6.6% 15.3% 

PUC 
Strat 12.7% 13.6% 

Fig. 21: Initial adherence of HUC: Mean values in percentage of total number of seeded cells. 
Non-adherent cells counted in the culture supernatant one day after seeding in low 
(Prol = 2.5 x 104 cells/cm2) and high (Strat = 4 x 105 cells/cm2) density on CCC and on plastic 
surface as a control, n = 6 
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4.1.5 Immunocytochemistry 
 

Immunocytochemistry was performed with anti-pancytokeratin marker for epithelial 

phenotype (clone AE1/AE3), anti-fibroblast marker (clone TE-7), and anti-smooth 

muscle α-actin marker (clone 1A4). Positive staining was evident by brown colour 

development of substrate chromogen. Negative controls did not show brown staining. 

All HUC and PUC seeded on chamber slides stained positive for AE1/AE3 and 

negative for both TE-7 and 1A4 (Fig. 23 and 24). Thus, epithelial phenotype was 

confirmed by the specific positive and negative staining which is typical for urothelial 

cells. 

 

Fig. 22: Initial adherence of PUC: Mean values in percentage of total number of seeded cells. 
Non-adherent cells counted in the culture supernatant one day after seeding in low 
(Prol = 2.5 x 104 cells/cm2) and high (Strat = 4 x 105 cells/cm2) density on CCC and on plastic 
surface as a control, n = 6 
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4.1.6 Immunofluorescence on cryostat sections 
 
Immunofluorescent staining showed that UC seeded on CCC inserts in 6-well plates 

did not form a stratifying cell sheet displaying an equal morphology as on plastic. In 

plastic seeded cultures cell layers resembled more compact and thick whereas on 

CCC the cell layers appeared thinner (Fig. 25 and 26). 

Negative controls did not show green fluorescence. All investigated antigens were 

detected by positive staining with pancytokeratin (epithelial phenotype) showing 

strong green fluorescence but slightly reduced in comparison to the control 

(Fig. 25 and 26). CK-20 (ongoing urothelial differentiation) was detected in single 

superficial cells (Fig. 27). Anti-p63 (urothelial phenotype) was bound throughout the 

basal cells of the urothelium and showed strong fluorescence comparable to the 

control (Fig. 28). E-Cadherin and ZO-1 (cell-cell junctions) were partially verified and 

were found weaker in signals than in the control tissue (Fig. 29 and 30). Altogether, 

stainings on CCC resembled minimally reduced compared to plastic seeded 

urothelium. 

 

Fig. 23: Immunocytochemical staining of HUC in culture passage 4 for smooth muscle α-actin
(left), fibroblast marker (centre), and pancytokeratin cocktail (right). Brown colour indicates positive 
staining. Bright field 

Fig. 24: Immunocytochemical staining of PUC in culture passage 7 for smooth muscle α-actin
(left), fibroblast marker (centre), and pancytokeratin cocktail (right). Brown colour indicates positive 
staining. Bright field 
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Fig. 27: Positive CK-20 staining of HUC seeded on plastic surface (left) and on CCC (right); red 
fluorescence (PKH26) of HUC, blue fluorescence (DAPI) of cell nuclei and green fluorescence of
CK-20 expression as a composite 

Fig. 26: Positive pancytokeratin staining of HUC seeded on CCC. Merged red fluorescence of
PKH26, blue cell nucleus fluorescence of DAPI and bright field (left); merged green fluorescence of
AE1/AE3, blue fluorescence of DAPI and bright field (centre); composite image w/o bright field
(right) 

Fig. 25: Positive pancytokeratin staining of HUC seeded on plastic surface. Merged red 
fluorescence of PKH26, blue cell nucleus fluorescence of DAPI and bright field (left); merged 
green fluorescence of AE1/AE3, blue fluorescence of DAPI and bright field (centre); composite 
image w/o bright field (right) 
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Fig. 29: Positive E-Cadherin staining of HUC seeded on plastic surface (left) and on CCC (right); 
red fluorescence (PKH26) of HUC, blue fluorescence (DAPI) of cell nuclei and green fluorescence 
of E-Cadherin expression as a composite.

Fig. 28: Positive p63 staining of HUC seeded on plastic surface (left) and on CCC (right); red 
fluorescence (PKH26) of HUC, blue fluorescence (DAPI) of cell nuclei and green fluorescence of
p63 expression as a composite 

Fig. 30: Positive ZO-1 staining of HUC seeded on plastic surface (left) and on CCC (right); red 
fluorescence (PKH26) of HUC, blue fluorescence (DAPI) of cell nuclei and green fluorescence of
ZO-1 expression as a composite 
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4.2 Results from animal experiments  
4.2.1 Nude rat model 

4.2.1.1 Surgery outcome and follow-up 
 
HUC were seeded on CCC and transplanted on the rectus abdominis muscle of 12 

nude rats. All animals survived anaesthesia and the respective experimental periods 

without incidents. They did not show any physical impairments or inflammatory 

reactions on the transplantation site throughout the experimental period. The wound 

healing proceeded without inflammation or apparent rejection reactions. The rats’ 

behaviour did not reveal any signs for discomfort like isolation, apathy or 

inappetence. The body weight developed analogous to reference data obtained from 

Charles River. 

Muscle tissue was extracted spaciously after euthanisation of the rats one, two, and 

four weeks after surgery. When extracted after one week, the transplant could be 

assumed gleaming slightly on the rectus muscle. After two weeks the transplant 

could be recovered as a white solid object resembling connective tissue in two 

animals (Fig. 31). In the other two animals the transplant could not be detected 

macroscopically. Four weeks after surgery the transplant was not visible anymore. 

 

 
4.2.1.2 Histologic evaluation 

 
The transplanted HUC could be detected by red PKH26 fluorescence in all animals 

(Fig. 32-34). The seeded CCC was lying folded between the skin and the rectus 

S 

Fig. 31: Tissue sample extracted one week after surgery was divided into two pieces. Transplant is 
not visible macroscopically (left). Tissue extraction two weeks after surgery with connective tissue 
formation (right). Arrow indicates transplant position 
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muscle in eight animals and reached into the muscle tissue in four of them. It showed 

excellent integration into the host tissue in eight animals, while four revealed 

additional tissue formation around the transplant. None of them showed severe 

inflammatory signs in the HE stained tissue slides. The CCC could be located easily, 

showing different states of degradation and different morphologies throughout the 

experimental period. In four animals the CCC appeared as a dark dense structure 

whereas it was light and homogeneous in the remaining ones. The CCC was almost 

completely degraded in two animals four weeks after transplantation (Fig. 34). 

 

 
 

 
 

Fig. 33: Cryostat section two weeks after transplantation. Unstained section showing red 
fluorescence of PKH26-labelled transplanted HUC (left). HE-stained section (right). S = skin, 
M = rectus abdominis muscle. Bright field

S 

M 

S

M

Fig. 32: Cryostat section one week after transplantation. Unstained section showing red 
fluorescence of PKH26-labelled transplanted HUC (left). HE-stained section (right). S = skin, 
M = rectus abdominis muscle. Bright field 
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4.2.1.3 Evaluation of immunohistological staining 
 
Cryostat tissue sections of CCC constructs in rectus muscle of nude rats were 

characterised via immunofluorescence. Negative controls did not show green 

fluorescence. None of the used primary antibodies showed unspecific binding to 

muscle and subcutaneous tissue surrounding the transplant. 

Positive pancytokeratin expression was assessed at the transplant position for all 

animals one week and for two animals two weeks after surgery (Fig. 35). Expression 

of CK-20, p63, E-Cadherin, and ZO-1 was verified in the groups one and two weeks 

after surgery (Fig. 36-39). Four weeks after surgery anti-pancytokeratin, the most 

sensitive antibody for epithelial phenotype, was not bound (Fig. 40). 

 

 
 

S 

M

Fig. 34: Cryostat section four weeks after transplantation Unstained section showing red 
fluorescence of PKH26-labelled transplanted HUC (left). HE-stained section (right). Transplant 
almost vanished in the subcutaneous tissue. S = skin, M = rectus abdominis muscle. Arrows 
indicate CCC in degeneration. Bright field

M 

S 

Fig. 35: Positive pancytokeratin expression of cryostat section two weeks after 
transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, blue cell nucleus 
fluorescence of DAPI and bright field (left). Merged green fluorescence for pancytokeratin, blue cell 
nucleus fluorescence of DAPI and bright field (centre). Composite image w/o bright field (right) 



68 

 

 

 

 

 

 

 

Fig. 36: Positive CK-20 expression of cryostat section two weeks after transplantation.
Merged red fluorescence of PKH26-labelled transplanted HUC, blue cell nucleus fluorescence of 
DAPI and bright field (left). Merged green fluorescence for CK-20, blue cell nucleus fluorescence of 
DAPI and bright field (centre). Composite image w/o bright field (right)

Fig. 39: Positive ZO-1 expression of cryostat section two weeks after transplantation.
Merged red fluorescence of PKH26-labelled transplanted HUC, blue cell nucleus fluorescence of 
DAPI and bright field (left). Merged green fluorescence for ZO-1, blue cell nucleus fluorescence of 
DAPI and bright field (centre). Composite image w/o bright field (right)

Fig. 37: Positive p63 expression of cryostat section two weeks after transplantation. Merged 
red fluorescence of PKH26-labelled transplanted HUC, blue cell nucleus fluorescence of DAPI and 
bright field (left). Merged green fluorescence for p63, blue cell nucleus fluorescence of DAPI and 
bright field (centre). Composite image w/o bright field (right)

Fig. 38: Positive E-Cadherin expression of cryostat section two weeks after transplantation. 
Merged red fluorescence of PKH26-labelled transplanted HUC, blue cell nucleus fluorescence of 
DAPI and bright field (left). Merged green fluorescence for E-Cadherin, blue cell nucleus 
fluorescence of DAPI and bright field (centre). Composite image w/o bright field (right) 
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4.2.2 Minipig model 
4.2.2.1 Cell culture, surgery outcome, and follow-up 

 
All animals survived anaesthesia well and did not show impairments during the 

complete experimental period. White blood counts did not reveal systemic 

inflammation or rejection reactions. The vesicostomy healed well and all animals 

passed urine without complications. 

When the bladder was opened initially, two animals showed hyperaemia and swelling 

of the bladder wall as well as opaque and smelling urine. As these animals were in 

good general condition, they were set under the same antibiotic regime like all other 

animals after surgery. Cell culture success was suboptimal in these two animals, 

meaning that PUC were growing slowly and stratified cultures showed 

inhomogeneous morphology. In one of these animals urothelial cells only formed a 

thin urothelium while cells of the other animals formed thicker cell sheets. 

When the animals were sacrificed and the urethra removed, no inflammatory signs or 

stricture formation could be verified macroscopically. 

 

 

 

 

 

 

 

 

 

Fig. 40: Negative pancytokeratin expression of cryostat section four weeks after 
transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, blue cell nucleus 
fluorescence of DAPI and bright field (left). Merged green fluorescence for pancytokeratin, blue cell 
nucleus fluorescence of DAPI and bright field (centre). Composite image w/o bright field (right) 
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Fig. 41: Preoperative status of the urethra determined 
by urethrography demonstrating a physiological 
urethral lumen. Arrow indicates the end of the urethral 
catheter. 

4.2.2.2 Urethrographic evaluation 
 

Prior to surgery all animals showed 

urethral lumens without any signs 

of stricture or other impairments 

(Fig. 41). A defined stricture 

formation after thermocoagulation 

could not be demonstrated by 

contrast x-ray, but slight narrowing 

was observed in single minipigs 

(Fig. 42). More important, none of 

the animals showed stricture 

formation after transplantation of 

cell seeded CCC (Fig. 43). 

 

 
 

Evaluation of urethrographic photographs did not reveal a considerable difference in 

urethral morphology prior to surgery and after transplantation. 
 

4.2.2.3 Histologic evaluation 
 

The seeded CCC could be detected until four weeks after surgery though there were 

only small pieces of the CCC left due to degradation. It showed good tissue 

integration without signs of inflammation in HE-stained sections. The red 

Fig. 43: Urethral status four weeks after 
urethroplasty. Urethral patency is established. 
Arrow indicates former stricture site. 

Fig. 42: Urethral status three weeks after 
stricture induction by thermocoagulation. 
Arrow indicates potential stricture site with 
slight narrowing. 
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fluorescence of PKH26 was reduced in course of time meaning that strong 

fluorescence was detected after one and two weeks whereas it slightly decreased 

after four weeks. The red fluorescent cells were mostly lying in direct contact to 

native urothelium. However, in animals where the CCC was still intact, it was visible 

that the cells were shifted off in large part (Fig. 44-46). 

 

 

Fig. 44: Cryostat section at one week after 
transplantation. CCC can be located clearly 
in HE-stained section (top left). Parts of the 
transplanted cells (red fluorescence) are lying 
in direct contact to the native urothelium and 
to the matrix (top right and enlarged section 
below). L = urethral lumen, N = native 
urothelium, T = transplant; Bright field 
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Fig. 45: Cryostat section at two weeks after 
transplantation. Pieces of the CCC can be 
located in HE-stained section (top left). Parts 
of the transplanted cells (red fluorescence) are 
lying in direct contact to the native urothelium
(top right and enlarged section below). 
L = urethral lumen, N = native urothelium, 
T = transplant; Bright field 
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Fig. 46: Cryostat section at four weeks after 
transplantation. Pieces of the CCC can be 
located in HE-stained section (top left). Parts 
of the transplanted cells (red fluorescence)
are lying in direct contact to the native 
urothelium (top right and enlarged section 
below). Strong red fluorescence of suture 
material (s). L = urethral lumen, N = native 
urothelium, T = transplant; Bright field 

L

N 

s 
T 
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4.2.2.4 Evaluation of immunohistological staining 
 
Immunohistologically stained sections were checked for red PKH26 and green 

antibody fluorescence. Native urothelium stained positive for the tested markers 

pancytokeratin, CK-20, p63, ZO-1, and E-Cadherin and served as a positive control 

to confirm the methodical approach. 

Urothelial phenotype of the transplanted cells in vivo was proved by red PKH26 and 

green antibody double fluorescence. Pancytokeratin verified positive epithelial 

phenotype by double fluorescent areas in all animals though only weak fluorescence 

was detected after four weeks in contrast to native urothelium (Fig. 47-49). For 

CK-20 verification double fluorescence indicating the formation of umbrella cells was 

detected over the period of two weeks in single cells as well as for ZO-1 and 

E-Cadherin, both indicating cell-cell junctions. P63 was detected in PKH26 positive 

areas until two weeks after cell application (Fig. 50-53). 

 

 
 

 
 

Fig. 47: Positive pancytokeratin expression proven by double fluorescence of cryostat section
one week after transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, 
blue cell nucleus fluorescence of DAPI and bright field (left). Merged green fluorescence for 
pancytokeratin, blue cell nucleus fluorescence of DAPI and bright field (centre). Composite image 
w/o bright field (right) 

Fig. 48: Positive pancytokeratin expression proven by double fluorescence of cryostat section
two weeks after transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, 
blue cell nucleus fluorescence of DAPI and bright field (left). Merged green fluorescence for 
pancytokeratin, blue cell nucleus fluorescence of DAPI and bright field (centre). Composite image 
w/o bright field (right) 
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Fig. 52: Positive E-Cadherin expression proven by double fluorescence of cryostat section one 
week after transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, blue 
cell nucleus fluorescence of DAPI and bright field (left). Merged green fluorescence for E-Cadherin, 
blue cell nucleus fluorescence of DAPI and bright field (centre). Composite image (right) 

Fig. 49: Weak pancytokeratin expression proven by double fluorescence of cryostat section four 
weeks after transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, blue 
cell nucleus fluorescence of DAPI and bright field (left). Merged green fluorescence for 
pancytokeratin, blue cell nucleus fluorescence of DAPI and bright field (centre); Composite image 
(right). s = suture material 

s 

Fig. 50: Positive CK-20 expression proven by double fluorescence of cryostat section two weeks 
after transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, blue cell 
nucleus fluorescence of DAPI and bright field (left). Merged green fluorescence for CK-20, blue cell 
nucleus fluorescence of DAPI and bright field (centre). Composite image (right) 

Fig. 51: Positive p63 expression proven by double fluorescence of cryostat section two weeks 
after transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, blue cell 
nucleus fluorescence of DAPI and bright field (left). Merged green fluorescence for p63, blue cell 
nucleus fluorescence of DAPI and bright field (centre). Composite image (right) 
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Fig. 53: Positive ZO-1 expression proven by double fluorescence of cryostat section one week 
after transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, blue cell 
nucleus fluorescence of DAPI and bright field (left). Merged green fluorescence for ZO-1, blue cell 
nucleus fluorescence of DAPI and bright field (centre). Composite image (right) 
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5 Discussion 
5.1 In vitro properties of the CCC for seeding of HUC and PUC 

5.1.1 Cell culture and multilayer growth 
 
HUC and PUC showed good growth behaviour in all in vitro settings. Although cell 

culture was performed in cKSFM successfully in other studies and for all in vitro tests 

in this study, a different GMP-compliant medium is beneficial with regard to clinical 

application (WÜNSCH et al., 2005; FEIL et al., 2006; NAGELE et al., 2008; TURNER 

et al., 2011). As cKSFM contains ingredients of animal origin, it is not in accordance 

with the quality criteria of EU GMP guidelines and therewith German pharmaceutical 

law. Consequently, the culture medium was switched for the minipig model and PUC 

were then cultured in CnT medium prior to the in vivo application. In comparison to 

the culture of PUC in cKSFM they showed better growth behaviour and a more solid 

cell sheet on CCC. On account of this, CnT medium is preferred for future 

investigations on UC adapting cell culture conditions to current regulatory 

requirements. 

In cryostat sections of HUC and PUC grown on CCC it was observed that cells 

formed a sheet of thick layers on plastic but built up a thinner layered sheet on CCC. 

This was most likely due to physiological change of the cell formation when they 

were detached from the bottom of the culture dish or well plate. In this way the cell 

sheets contracted and appeared as a more compact tissue. In contrast, when cells 

stayed attached on the CCC, they remained in a stretched shape leading to plain cell 

sheets. 

Different approaches were pursued in the past to enforce the formation of compact 

multilayered cell sheets for TE purposes: As a previous study of Davis et al. 

discovered, UC show enhanced proliferation and viability when grown in a bioreactor 

system. For construction of artificial bladder tissue UC were seeded on acellular 

matrix scaffolds and grown under static conditions and in a bioreactor system 

mimicking varying bladder pressure. After three days the number of viable cells was 

significantly greater in the bioreactor group compared to the static culture (DAVIS et 

al., 2011). This indicates that UC require dynamic conditions for optimal proliferation 

and viability. Hence dynamic culture conditions could lead to an improved multilayer 

formation on CCC. 

Furthermore, the effect of growth factors was analysed in order to possibly accelerate 

growth and improve the morphology of UC sheets. To increase blood supply of 
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tissue-engineered urethral substitutes Guan et al. transduced rabbit urothelial cells 

with vascular endothelial growth factor (VEGF) gene-modified retrovirus and seeded 

them on decellularised rabbit artery. After subcutaneous transplantation in a nude 

mouse model VEGF modified cells formed a solid organised urothelium with similar 

morphology like native rabbit urethra and revealed stronger expression of urothelial 

differentiation markers in comparison to non-modified UC. Furthermore, a better 

microvessel formation and vascularisation of the tissue engineered constructs was 

observed (GUAN et al., 2008). Altogether, cell growth and multilayer formation on 

CCC could be improved under dynamic culture conditions or by addition of growth 

factors for example by special CCC coatings. 

 
5.1.2 Analysis of cell proliferation via BrdU assay 

 
BrdU assay was performed to evaluate proliferation of HUC and PUC on CCC in two 

different seeding densities in comparison to plastic seeded cells. This assay was 

estimated to be a reliable method for quantification of cell growth in preceding studies 

(MAGHNI et al., 1999). BrdU test was used to evaluate the proliferation of canine 

lymphocytes in comparison to MTT, XTT, and radioactive thymidine incorporation 

assay. BrdU turned out to correlate strongly with the previous gold standard, the 

thymidine incorporation assay and was therefore judged to be the most suitable non 

radioactive alternative (WAGNER et al., 1999). 

In the present study proliferation of HUC in low density was considerably below the 

controls while in higher density and stratification HUC demonstrated proliferation 

rates similar to or even higher than controls. PUC on CCC also revealed good 

proliferation rates in comparison to controls but a decrease over seven days when 

seeded in low density. In stratifying cultures PUC also reached higher proliferation 

rates than controls. Anyhow, all tests showed high variations between different 

primary cultures. This could be due to variabilities in substrate absorbance, growth 

behaviour or simply proliferative capacity. The differing morphology of the different 

primary cultures, especially in PUC cultures indicated these differences. More tests 

with a greater diversity of primary cultures could be performed to increase the validity 

of the results and minimise the effect of donor variabilities. 

Investigations on PUC were relevant with regard to the preclinical setting in minipigs. 

But with regard to clinical application proliferation of HUC on CCC is of greater 

interest because retrieval from an autologous cell source is intended. As it is 
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advisable to seed HUC in high density to induce stratification shortly afterwards, the 

results of HUC in the stratifying phase are most important. Compared with the other 

three experimental groups HUC in stratification revealed the best proliferation rates 

on CCC. This result is of utmost significance in the context of translational research 

and emphasises the excellent qualities of the CCC for urogenital reconstruction. 

 
5.1.3 Analysis of cell metabolic activity via WST-1 assay 

 

In the present study the WST-1 assay was used to analyse the viability by quantifying 

the metabolic activity of HUC and PUC on the collagen membrane in low and high 

seeding density. PUC seeded on CCC revealed equal or superior viability compared 

to controls independent of the cell density. Analogous to the BrdU assay viability of 

HUC seeded on CCC in lower density was slightly reduced compared to controls on 

standard plastic surface. When seeded in or grown to high density, HUC showed 

values of optical density close to the controls. Apparently HUC seeded on CCC 

required a longer period to develop the same viability like on plastic. Furthermore, the 

inferior adherence after low density seeding of UC on CCC may have led to inferior 

results also for viability. 

The high donor variabilities for single test days can be due to the different behaviour 

of the primary cultures in general and on CCC. The results also displayed internal 

variances in the experiments, which might be due to bias promoted by differing 

absorbance of the CCC samples alone. Sources of assay variation can generally 

result from differences between absorbance of plastic of different wells on the 

microplate and between two different microplates or the presence of small air 

bubbles (FRANCOEUR & ASSALIAN, 1996). Still, it remains unclear why some 

primary cultures display the same or even superior metabolic activity on CCC than on 

plastic while others remain lower. 

In general, the development of metabolic activity of HUC seeded on CCC 

corresponded to the proliferation rates determined by BrdU assay. HUC in high 

density showed excellent metabolic activity when seeded on CCC and after induction 

of stratification. As already quoted above, viability of HUC is of major importance for 

clinical application and underlines the suitability of the CCC for the intended purpose. 
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5.1.4 Cell adherence on CCC 
 
There are different methods to determine cell adherence on scaffolds. Most authors 

just give a subjective assessment of the microscopic picture (WÜNSCH et al., 2005; 

BREHMER et al., 2007); others evaluate proliferation by different assays shortly after 

seeding (SABBAGH et al., 1998; MONTZKA et al., 2011). Hodde et al. used liquid 

scintillation counting to assess the cell adherence on the scaffolds and investigated 

its relation to the method of scaffold sterilisation (HODDE et al., 2002). 

In this present study the principle of counting supernatant cells one day after seeding 

was chosen. It is an easy, systematic, and direct approach excluding many 

influencing variables possibly promoting bias. When HUC or PUC, respectively, were 

seeded in high cell numbers onto the scaffold and on plastic surface in parallel, the 

percentage of adherent cells was almost equal, whereas there was a considerable 

difference in experiments performed with low density seeding. In these cases UC did 

not adhere to the collagen surface as good as to the plastic. The histological analysis 

of the minipigs’ tissue sections showed that fractions of PUC did not remain on the 

CCC and therewith on the luminal side of the urethra but were spread in the corpus 

spongiosum (see 4.2.2.3). Hence, the results of the minipig study are in line with the 

in vitro results as PUC partly detached from the collagen surface under mechanical 

influence possibly resulting from animal movements. 

Other studies, where cell adherence of UC on different scaffolds was investigated did 

not use plastic adherence as a control level but just compared the different materials: 

Wünsch et al. equally assessed good cell adherence on special collagen matrices in 

comparison to synthetics when they seeded 1 × 105 PUC/cm2 (WÜNSCH et al., 

2005). Although keratinocytes and fibroblasts were used, Brehmer et al. performed a 

large study on cell growth on 13 different scaffolds, most of them collagen-based. 

They concluded that independent of the chemical composition of the biomaterial, a 

sponge type matrix has the best structure concerning ingrowth of cells and build-up 

of a complete epithelium (BREHMER et al., 2007). This was also found in an earlier 

study of Sabbagh et al., who assessed in vitro characteristics of a collagen sponge 

as urothelial graft material (SABBAGH et al., 1998). Multilayer urothelium was 

constructed successfully and there was also an ingrowth of cells into the sponge. 

Montzka et al. compared different collagen matrices with and without pores and could 

not find any difference with regard to the adherence of UC and smooth muscle cells, 

which might be due to an inconvenient pore size. Nevertheless, ingrowth of cells into 
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the scaffold was observed in scanning electron microscopy in 3D matrices 

(MONTZKA et al., 2011). In general, most authors support the notion that an 

adequate pore size would lead to an enhanced cell adherence (MURPHY & 

O'BRIEN, 2010). O’Brien et al. determined cell adherence and permeability of a 

collagen-glycosaminoglycan matrix and concluded that increasing the pore size leads 

to a decrease in specific surface area and increased permeability (O'BRIEN et al., 

2007). In their previous approach they had shown that cell adherence of osteogenic 

cells increased with increasing surface area (O'BRIEN et al., 2005). This 

investigation underlines the importance of creating a matrix featuring optimal pore 

size. 

In conclusion, best results were achieved with HUC and PUC seeded on the scaffold 

in high density and after early induction of stratification. This practice allowed for best 

results concerning cell adherence on the CCC. Coating of the CCC with special 

growth factors, fibronectin or rather laminin could promote better adherence as it was 

shown in a previous study (KLEINMAN et al., 1981). Furthermore, a modification of 

the CCC in order to create pores on the surface may promote better ingrowth and 

therewith improve cell adherence. Further studies regarding the improvement of cell 

adherence on CCC are necessary and should be object of future research. 
 

5.1.5 Quality control of urothelial cell cultures 
 

HUC and PUC underwent immunocytochemical staining to prove urothelial 

phenotype and to exclude the presence of other cell types with antibodies detecting 

the following markers: AE1/AE3 (pancytokeratin), TE-7 (fibroblasts), and 1A4 

(smooth muscle). As expected HUC and PUC revealed positive staining for AE1/AE3 

and negative staining for both TE-7 and 1A4. 
AE1/AE3 staining was performed to prove the typical cytokeratin pattern of urothelial 

cells. Cytokeratins are a heterogeneous group of polypeptides. As each type of 

epithelial cell expresses its own characteristic cytokeratin expression pattern, it can 

be used to evaluate the specific phenotype and simultaneously the degree of 

potential malignancy (SOUTHGATE et al., 1999). Hence, cytokeratins serve as 

differentiation markers being associated with the maturation of the cell. 

In line with an earlier study on HUC TE-7 and 1A4 detection was performed to 

exclude possible impurities by the associated cell types. Nagele et al. isolated HUC 

from bladder washings and investigated the expression of the respective markers in 
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monolayer and stratified cultures (NAGELE et al., 2008). Though, only monolayer 

cultures were used in contrast to the previous study immunohistological results were 

equal. This quality control verified the used protocol for isolation and culture of pure 

urothelial cell cultures. 
 

5.1.6 Immunofluorescence analysis of urothelial cells seeded on CCC 
 

Multilayer sheets of HUC seeded on standard plastic surface as well as on CCC 

were investigated for specific urothelial marker expression by immunofluorescent 

staining. For human urothelium CK-7, CK-8, CK-18, and CK-19 are expressed 

throughout all urothelial cell layers, CK-5 and CK-17 in basal cells, CK-13 in all 

except the basal cells and CK-20 in the superficial umbrella cells (SOUTHGATE et 

al., 1999). Hence, constituting a mixture of specific CK antigens pancytokeratin 

proves the epithelial character and CK-20 is a marker for final urothelial 

differentiation. 

Feil et al. inquired the immunoreactivity of p63 in monolayer and multilayer UC 

cultures in addition to other markers (AE1/AE3, CK-20, uroplakin III, fibroblast 

surface antigen) and found that p63 is crucial for the final differentiation in stratified 

urothelium. The results were similar to native urothelium: pancytokeratin (AE1/AE3) 

positive, fibroblast surface antigen negative, CK-20 positive in superficial cells and 

p63 positive in basal cells of multilayer constructs. Only uroplakin III did not show 

positive staining in contrast to native urothelium (FEIL et al., 2008b). In a different 

approach the presence of these markers was investigated in urothelium isolated from 

bladder washings and revealed identical results (NAGELE et al., 2008). 

In the present study five different markers served as a confirmation of urothelial 

character of the expanded cells. Pancytokeratin (AE1/AE3), CK-20, and p63 were 

used to demonstrate urothelial phenotype, ZO-1 and E-Cadherin to verify cell-cell 

contacts in stratified urothelium in vitro. The terminal differentiation suggests that the 

urothelium-CCC-construct can behave and function physiologically in vivo. Thus, the 

results of this study correspond to investigations of other authors (see above) and 

verify the expression pattern being in accordance with native urothelium. The 

continuous observation that the dyeings were slightly reduced on CCC seeded cells 

in comparison to cell sheets grown on standard plastic surface can be ascribed to the 

deformation of the cell sheet when it was detached from the plastic surface. The 
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compact structure of the contracted matrix-free cell sheet led to an optical impression 

of a stronger fluorescence signal. 

Although the marker pattern for urothelial differentiation in this present study was 

confirmed, aforementioned studies indicated that the antigenic environment of in vitro 

cultures urothelium does not completely correspond to native urothelium (e.g. 

uroplakin III detection) (FEIL et al., 2008b; NAGELE et al., 2008). Therefore, further 

efforts to enforce urothelial differentiation are crucial in order to bridge this gap. 

Cattan et al. investigated the construction of a human tissue-engineered tubular 

genitourinary graft consisting of fibroblasts and UC under dynamic (hydrostatic 

pressure and dynamic flow) and static conditions. When compared with regard to 

histology and their expression of uroplakins, CK-20, and tight junction protein ZO-1 

only the dynamically cultured graft showed multilayer formation and final 

differentiation. The authors reasoned that mechanical stimuli contribute to the 

differentiation process (CATTAN et al., 2011). Consequently, dynamic culture 

conditions could support both multilayer growth on CCC but also urothelial 

differentiation. 

Due to the similar antigen expression urothelium expanded in vitro will most probably 

behave like naturally grown tissue in vivo. The specific marker pattern indicates its 

resistance to aggressive urine components and the construction of a functional urine-

blood barrier. This was to be proved subsequently after in vivo application in both rat 

and minipig tissues. 

 

5.2 In vivo biocompatibility of the seeded CCC after application in nude rats 
 

HUC were seeded on CCC and transplanted on the rectus muscle of nude rats to 

prove cell survival, integration in the surrounding tissue, biodegradation of the CCC 

and potential inflammatory reactions. The health status of nude rats having received 

a human urothelial CCC transplant was not impaired at any time point of the 

experiment. The histological analyses revealed excellent biocompatibility of the cell 

carrier. It integrated well in the subcutaneous tissue and was almost completely 

degraded after four weeks. Only parts of the CCC were recovered in HE-stained 

sections. Nevertheless, slight additional tissue formation was observed when the 

transplants were placed deeply in the muscular tissue and moderate injury has been 

caused. 
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This particular matrix was tested on biocompatibility also by other authors. Schmidt et 

al. seeded human osteosarcoma cell line Saos-2, human mesenchymal stem cells, 

and rodent cardiomyocytes for in vitro biocompatibility testing. In comparison to other 

collagen matrices the CCC revealed superior growth of all three cell types 

(KNOELLER et al., 2010; SCHMIDT et al., 2011). After subcutaneous implantation of 

the unseeded CCC in rats, Knoeller et al. also reported excellent tolerability and the 

same group revealed good suitability as wound coverage (HELD et al., 2010). The 

degradation time of 42 days and the absence of inflammatory signs are in line with 

the in vivo results of the present study. 

For immunohistological investigation sections were stained with antibodies detecting 

AE1/AE3, CK-20, p63, E-Cadherin and ZO-1. All markers were verified after one and 

two weeks but considerably reduced after four weeks. The changes in the expression 

profile of urothelial antigens four weeks after surgery can most likely be attributed to 

the untypical tissue surrounding the transplanted UC and the absence of urine 

specific factors. It is reported that the specific differentiation of mesenchymal stem 

cells (MSC) is strongly influenced by direct cell-cell contact and paracrine effects 

(WANG et al., 2005; WANG et al., 2006). To a certain degree these results can 

probably be transferred to the differentiation mechanism of other cell types like UC. 

For those reasons the absence of urothelium specific antigens after four weeks 

seems to be perspicuous. With regard to the large animal model and to clinical use it 

can be expected that the urothelial phenotype will be confirmed when the transplants 

are placed in their definite target organ, the urethra. 

 

5.3 Feasibility of urethroplasty in the minipig model 
 
All six minipigs that underwent two surgical procedures were at good health during 

the whole experimental period. The removed tissues were analysed histologically 

and immunohistologically and showed excellent integration of the autologous CCC 

construct, the degradation of the matrix, no inflammatory reactions and the 

expression of urothelial markers. Contrast x-ray confirmed the absence of stricture 

formation after urethroplasty. 

Large animal studies for regeneration of urinary tract organs are rare and mainly 

concentrate on composite cystoplasty procedures (FRASER et al., 2004); (TURNER 

et al., 2011). This present urethroplasty study constitutes the first preclinical minipig 

trial using a tissue engineered construct based on a collagen membrane seeded with 
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UC. The methodology was implemented in a past study of Sievert et al., who 

compared three different stricture induction models in minipigs: ligation, urethrotomy 

and thermocoagulation (SIEVERT et al., 2012). Collagen I:III ratio, microvessel 

density and stricture histology were determined in human and porcine urethral 

stricture tissue to find the stricture model most similar to human pathology. 

Compared to other procedures thermocoagulation resulted in stricture formation 

histologically most resembling human stricture tissue. After urethral stricture 

induction a slight narrowing was observed by contrast x-ray. The urethral patency 

was fine before stricture induction and after urethroplasty. For future approaches it 

might be advisable to induce a more severe trauma to the urethral tissue or extend 

the period between stricture induction and transplantation to generate a definite 

stricture. As iatrogenic strictures can often be ascribed to thermocoagulation damage 

in the course of genitourinary surgery and due to the histological similarity this model 

appeared to be most suitable for imitating human stricture aetiology. 

Based on the detection of PKH26 fluorescence the transplanted cells could be 

located in all animals and were found partly shifted off the CCC in the course of time. 

Moreover, the transplants did not all remain at the urothelial site but were also 

detected in the corpus spongiosum tissue. This might be associated to different 

mechanical conditions (urine contact and streaming, tissue reorganisation, animal 

movements, etc.), deficiencies of cell adherence on CCC in vivo and the urothelial 

turnover. Although Wu et al. indicate ~200 days as turnover rate for bladder 

urothelium, the urethral urothelium especially after surgery most probably displays a 

much higher rate (WU et al., 2009). In the end it remains unclear why the seeded 

CCC could not be located directly at the lumen in histological sections. A better 

fixation to the native urothelium would be beneficial for future approaches and could 

be achieved by running sutures. Seibold et al. likewise used autologous PUC which 

were labelled by PKH26 for stricture therapy but this approach was matrix-free 

(SEIBOLD et al., 2011). After endoscopic application of PUC suspension with 

hyaluronic acid, the labelled cells could be retrieved up to eight weeks after 

application but were distributed throughout different penile layers. When epithelial 

phenotype was assessed by AE1/AE3, positive cells could only be detected in the 

urothelium. Cells which were integrated in the corpus spongiosum lost their epithelial 

phenotype. This is completely in accordance with the results of the present study. 

Immunofluorescence analysis revealed that native urothelium showed strong 

fluorescence for all the tested markers: Pancytokeratin (AE1/AE3), CK-20 and p63 
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(urothelial phenotype), ZO-1, and E-Cadherin (cell-cell junctions): This on the one 

hand confirms the methodical approach and serves as a positive control but on the 

other hand hampers evaluation of positive fluorescence. Therefore, only double 

fluorescence confirmed urothelial phenotype of the transplanted cells in this tissue 

surrounding. Evaluation was very demanding because strong PKH26 fluorescence 

was required as a precondition to confirm double fluorescence. However, it was 

reduced considerably in course of time. Anyhow, urothelial phenotype proven by 

AE1/AE3, CK-20, and p63 detection could be verified in single areas one and two 

weeks after transplantation as well as adherens and tight junction specific markers 

(E-Cadherin and ZO-1). After four weeks PKH26 fluorescence was rather weak and 

only pancytokeratin was detected in single cells. Green fluorescence of other 

markers could not be clearly assigned to the transplanted cells. Due to mechanical 

noxes (see above) only few of the transplanted cells were directly facing the lumen 

and were recovered as double fluorescent. Other cells located in the corpus 

spongiosum were exposed to untypical tissue surrounding and therefore probably 

lost urothelial phenotype. By considerably improving the adherence of the cells on 

CCC and the fixation of the transplant, it might remain close to the lumen and thereby 

be exposed to urine, native urothelium and urothelium-specific factors. This could in 

consequence lead to maintenance of urothelial phenotype. 

 

5.4 Assessment and consequences for future investigations 
5.4.1 Recommendations for further cell culture and animal experiments 

 
With regard to clinical application the in vitro data resulting from HUC experiments 

are of paramount importance because an autologous approach is favoured for 

clinical application. Results of WST-1 and BrdU assays revealed an excellent 

suitability of the CCC for constructing urothelial CCC transplants. Both assays 

showed that HUC display excellent proliferation and metabolic activity when seeded 

in high numbers on the collagen membrane followed by direct induction of 

stratification. Likewise, the adherence of HUC and PUC on CCC was much superior 

when cells were seeded in high numbers. Consequently, it is advisable for further 

investigations to perform the CCC seeding in the described way. Yet, the available 

cell number could be limited depending on the cell source. Multilayer formation and 

urothelial differentiation could be supported by the construction of CCC-cell 

transplants under dynamic culture conditions. Studies performed on different cell 
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types showed improved multilayer growth and differentiation behaviour when cells 

were grown in a bioreactor (see 5.1.1 and 5.1.6). 

The nude rat model served as a preliminary experiment with respect to the minipig 

model in order to prove in vivo biocompatibility of HUC-CCC constructs. Cells were 

recovered in all animals after application on rats’ rectus muscles without 

inflammatory reactions. Therefore, this small animal model laid the foundations for 

proceeding with investigations in the large animal. In minipigs, the cells and matrix 

could also be located until four weeks after urethroplasty with autologous PUC 

seeded on CCC. The urethral patency after transplantation was verified by contrast 

x-ray and suggests functional regeneration of the urethra. All in all, future 

investigations in the minipig should account for: 

1. Induction of a definite and manifest urethral stricture verified by urethrography 

2. Firm fixation of the CCC to the native urothelium by running sutures 

3. Improvement of cell adherence on CCC 

With regard to these aspects a xenogenic minipig model should be performed with 

transplantation of HUC. As HUC show better in vitro characteristics concerning 

adherence and uniform multilayer growth, xenogenic in vivo experiments will 

probably result in an excellent regeneration. 

 

5.4.2 Prospects for clinical application in human and veterinary 
medicine 

 
The present study showed that: 

1. The CCC displays good in vitro properties for seeding of HUC and PUC 

including viability, proliferation, adherence and maintenance of urothelial 

phenotype. 

2. The CCC seeded with UC features excellent in vivo biocompatibility 

characteristics proven in a rodent model. 

3. Urethral reconstruction and functional regeneration after induction of a 

urethral stricture in minipigs is feasible by application of CCC autografts. 

 

Hitherto urethral reconstruction does not play an important role in routine veterinary 

practice. Strictures are rather uncommon and sophisticated surgical procedures e.g. 

after traumatic urethral damage are often limited by financial considerations. 

Nevertheless, this innovative regenerative concept could offer a new therapeutic 
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option for selected patients, first of all horses and dogs. Moreover, animal models are 

essential for the introduction of new surgical methods in human medicine. 

 

After thorough assessment of this innovative therapy concept in a xenogenic large 

animal model, this particular knowledge is supposed to be transferred into the clinic 

to perform first-in-human trials. As mentioned before there is temporarily no adequate 

therapy for many patients suffering from complicated urethral strictures. Buccal 

mucosa urethroplasty is the gold standard, but comes along with high donor site 

morbidity and early complications. A new therapeutic approach being less invasive 

and displaying a better long-term outcome would be of utmost significance. The 

therapeutic procedure for selected cases could be the following: HUC are harvested 

non-invasively by bladder washings. After isolation, cultivation, and seeding of 

autologous HUC on CCC in high density, stratification should be induced the 

following day. App. four weeks later an autologous urothelial transplant can be 

provided for urethroplasty. This cell-based collagen transplant could be a beneficial 

alternative not only for stricture therapy but also for other urological disorders 

requiring bladder or urethra repair e.g. for hypospadias reconstruction. 
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6 Annexe 
6.1 Materials 

6.1.1 Consumables 
 
Adhesive tape Fixomull stretch BSN medical GmbH, Hamburg, 

Germany 
 
Canullas 20 G, 23 G, 25 G, 27 G B. Braun Melsungen AG, 

Melsungen, Germany 
 
Cell scraper Corning Inc., Corning, NY, USA 
 
Chamber slides 8-well Nunc GmbH & Co. KG , 

Langenselbold, Germany 
 
Collagen cell carrier Viscofan Bioengineering, 
(inlays for 24-well plate and inserts Weinheim, Germany 
for 6-well plate)  
 
Combur Test M Roche Diagnostics Deutschland 

GmbH, Mannheim, Germany 
 
Conical tube BD Falcon 15 ml/ 50 ml BD Biosciences, San Jose, CA, 

USA 
 
Counting chamber Neubauer Glaswarenfabrik Karl Hecht 

GmbH&Co KG "Assistent", 
Sondheim/Rhön, Germany  

 
Cryo tube vials 1.8 ml Nunc GmbH & Co. KG , 

Langenselbold, Germany 
 
Culture flask CellBIND 25 cm2/ 75 cm2 Corning Inc., Corning, NY, USA 
 
Culture plate CellBIND 6-well, 24-well Corning Inc., Corning, NY, USA 
 
Culture plate Cellstar 6-well Greiner Bio-One GmbH, 

Frickenhausen, Germany 
 
Dako pen Dako Deutschland GmbH, 

Hamburg, Germany 
 
Disposable embedding moulds Thermo Fisher Scientific GmbH 
Shandon Peel-A-Way Karlsruhe, Germany 
 
Disposable scalpels #11/#15 Aesculap/ B. Braun Melsungen 

AG, Melsungen, Germany 
 
Disposable scalpels #10/#11/#15 Servoprax, Wesel, Germany 
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Disposable serological pipettes Corning Inc., Corning, NY, USA 
 
Drape sheets Foliodrape Paul Hartmann AG, Heidenheim, 

Germany 
 
Endosgel lubricant Farco-Pharma GmbH, Köln, 

Germany 
 
Freezing container Nalgene 1°C Thermo Fisher Scientific GmbH, 

Karlsruhe, Germany 
 
Gloves DermaClean Ansell GmbH, München, Germany 
 
Microplate 96-well ELISA Greiner Bio-One GmbH, 

Frickenhausen, Germany 
 
Microplate 96-well round bottom Cellstar TC-plate Greiner Bio-One GmbH, 

Frickenhausen, Germany 
 
Microscope cover slips 24x50 mm R. Langenbrinck Labor- und 

Medizintechnik, Emmendingen, 
Germany 

 
Microscope slides SuperFrost R. Langenbrinck Labor- und 

Medizintechnik, Emmendingen, 
Germany 

 
Pasteur pipettes small/large Wilhelm Ulbrich GdbR, Bamberg, 

Germany 
 
Petri dish plastic Greiner Bio-One GmbH, 

Frickenhausen, Germany 
 
Pipette tips Greiner Bio-One GmbH, 

Frickenhausen, Germany 
 
Safe-lock tubes 1.5 ml/2 ml  Eppendorf AG, Hamburg, 

Germany 
 
Skin marker Mediware servoprax GmbH, Wesel, 

Germany 
 
S-Monovette EDTA K, 2.7 ml SARSTEDT AG & Co, 

Nürnbrecht, Germany 
 
S-Monovette Li- Heparin, 2.7 ml SARSTEDT AG & Co, 

Nürnbrecht, Germany 
 
Stand cover Mayo Cardinal Health Care, Dublin, 

Ireland 
 
Sterile surgery gowns CareFusion, San Diego, CA, US 
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Suction connecting tube Argyle Tyco Healthcare group, 

Tullamore, Ireland 
 
Suction tube CH 12 Tyco Healthcare group, 

Tullamore, Ireland 
 
Suprapubic catheter Cystofix CH 10 B. Braun Melsungen AG, 

Melsungen, Germany 
 
Surgical gloves Biogel Mölnlyncke Healthcare, Göteborg, 

Sweden 
 
Surgical gloves Sempermed supreme Semperit Technische Produkte, 

Wien, Austria 
 
Sutures Vicryl 5.0/ 6.0/ 7.0/ 8.0 Ethicon Inc., Somerville, NJ, US 
 
Sutures Prolene 0 Ethicon Inc., Somerville, NJ, US 
 
Syringes 1 ml, 5 ml, 10 ml, 20 ml B. Braun Melsungen AG, 

Melsungen, Germany 
 
Ureteral catheter CH 04 Coloplast GmbH, Hamburg, 

Germany 
 

6.1.2 Technical devices 
 

Autoclave 2540EK Tuttnauer Europe B.V, Breda, 
Netherlands 

 
Centrifuge Hettich Rotanta/S Andreas Hettich GmbH & Co KG, 

Tuttlingen, Germany 
 
Centrifuge Eppendorf 5415C Eppendorf AG, Hamburg, 

Germany 
 
Colour camera AxioCam HRc Zeiss, Oberkochen, Germany 
 
Cryotome LEICA CM1900 Leica Microsystems Nussloch 

GmbH, Nussloch, Germany 
 
Drying cabinet BE 200 Memmert GmbH und Co. KG, 

Schwabach, Germany 
 
Fluorescence filter red F41-027 AHF Analysentechnik, Tübingen, 

Germany 
 
Fluorescence filter green F41-020 AHF Analysentechnik, Tübingen, 

Germany 
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Fluorescence filter blue F31-000 AHF Analysentechnik, Tübingen, 
Germany 

 
Freezer Öko super -20°C Liebherr-International 

Deutschland GmbH, Biberach an 
der Riss, Germany 

 
Freezer V.I.P.-Series MDF-U71V -86°C SANYO North America 

Corporation, IL 60191 USA 
 
Heating plate MR82 Heidolph Instruments GmbH & 

Co. KG, Schwabach, Germany 
 
Incubator Heraeus Thermo Fisher Scientific GmbH 

Karlsruhe, Germany 
 
Kinetic ELISA microplate reader Vmax Milenia Biotec GmbH, Gießen, 

Germany 
 
Laminar air flow Waldner AG, Neuhaus, Germany 
 
Microscope SM-LUX Ernst Leitz GmbH, Wetzlar, 

Germany 
 
Microscope IM35 Zeiss, Oberkochen, Germany  
 
Microscope Axiovert 200M Zeiss, Oberkochen, Germany 
 
Microwave R-4V14 Sharp Electronics (Europe) 

GmbH, Hamburg, Germany 
 
Pipette controller accu-jet Brand GmbH & Co KG, Wertheim, 

Germany 
 
Refrigerator Robert Bosch Hausgeräte GmbH, 

München, Germany 
 
Software SoftMax Pro Molecular Devices Inc., 

Sunnyvale, CA, USA 
 
Vortex mixer VM-300 Gemmy industrial corporation, 

Taipei, Taiwan 
 
Water bath Köttermann GmbH & Co KG, 

Uetze/Hänigsen, Germany 
 
X-ray c-arm unit BV Pulsera Philips Deutschland GmbH, 

Hamburg, Germany 
 

 

 



92 

6.1.3 Animals and accessories 
 

Athymic nude rats (Crl:NIH-Foxn1nu) Charles River Laboratories, 
Sulzfeld, Germany 

 
Conventional minipig fodder SDS Diets, Essex, UK 
 
Göttingen Minipigs Ellegaard, Dalmose, Denmark 
 
Individually ventilated TECNIPLAST S.p.A., Buguggiate,  
cage (IVC) Sealsafe Italy 
 
Vegetal commercial laboratory animal food  ssniff Spezialdiäten GmbH, Soest, 

Germany 
 

6.1.4 Basic reagents 
 
Chemicals were provided by the pharmacy of the university clinics of Tuebingen and 
diluted in Ampuwa. 
 
Citric acid 

Ethanol solution 90% 

Glacial acetic acid 

Isopropanol 

Paraformaldehyde 3.7% 

Sodium citrate 

Sulphuric acid 1 M 

 
6.1.5 Chemicals, buffers and solutions 

 
Ampuwa Fresenius Kabi Deutschland 

GmbH, Bad Homburg, Germany 
 
Calcium chloride 5.5% Baxter Deutschland GmbH, 

Unterschleißheim, Germany 
 
Cell proliferation ELISA, BrdU kit (colorimetric) Roche Diagnostics Deutschland 

GmbH, Mannheim, Germany 
 
Cell proliferation reagent WST-1 kit Roche Diagnostics Deutschland 

GmbH, Mannheim, Germany 
 
Dispase BD Biosciences, San Jose, CA, 

USA 
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DMSO Sigma-Aldrich Chemie GmbH, 
 Steinheim, Germany 
 
DPBS Biochrom, Berlin, Germany 
 
EDTA 1% Biochrom, Berlin, Germany 
 
EnVision+System-HRP (DAB) Dako Deutschland GmbH, 

Hamburg, Germany 
 
Eosin G Certistain Merck KGaA, Darmstadt, 

Germany 
 
Glycerol gelatine Merck KGaA, Darmstadt, 

Germany 
 
HBSS w phenol red, w 0.35 g/l NaHCO3, Biochrom, Berlin, Germany 
w/o Ca2+, Mg2+ 
 
Haematoxylin Vector Laboratories Inc., 

Burlingame, CA, USA 
 
HEPES buffer Gibco, Karlsruhe, Germany 
 
Immunoselect antifading mounting DIANOVA GmbH, Hamburg, 
medium DAPI Germany 
 
NaCl 0.9 %  Fresenius Kabi Deutschland 

GmbH, Bad Homburg, Germany 
 
Penicillin/streptomycin  Gibco, Karlsruhe, Germany 
 
Peritrast Infusio 31% Dr. Franz Köhler Chemie GmbH, 

Bensheim, Germany  
 
PKH26 red fluorescent cell linker Kit Sigma-Aldrich Chemie GmbH, 
 Steinheim, Germany 
 
PBS w/o Ca2+ and Mg2+ Gibco, Karlsruhe, Germany 
 
PBS powder bioMérieux Deutschland GmbH, 

Nürtingen, Germany 
 
D-saccharose AppliChem GmbH, Darmstadt, 

Germany 
 
Saponin from quillaja bark  Sigma-Aldrich Chemie GmbH, 
 Steinheim, Germany 
 
Tissue freezing medium Leica microsystems Nussloch 

GmbH, Nussloch, Germany 
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Trypan blue stain Lonza Walkersville Inc., 
Walkersville, MD, USA 

 
TrypLE Express  Gibco, Karlsruhe, Germany 
 
Trypsin 0.25% Gibco, Karlsruhe, Germany 
 
Vectamount Vector Laboratories Inc., 

Burlingame, CA, USA 
 
Vectashield Vector Laboratories Inc., 

Burlingame, CA, USA 
 

6.1.6 Culture basal media and additives 
 
Aprotinin Bayer AG, Leverkusen, Germany 
 
Bovine pituitary extract (BPE) Gibco, Karlsruhe, Germany 
 
Cholera toxin LIST Biological Laboratories Inc., 

Campbell, CA, USA 
 
CnT basal medium 1 CELLnTEC Advanced Cell 

Systems AG, Bern, Switzerland 
 
CnT-02 supplements (supplements A and B) CELLnTEC Advanced Cell 

Systems AG, Bern, Switzerland 
 
CnT-07 supplements (supplements A, B, and C) CELLnTEC Advanced Cell 

Systems AG, Bern, Switzerland 
 
Epidermal growth factor (EGF), Gibco, Karlsruhe, Germany 
human recombinant 
 
Fetal calf serum (FCS) Gibco, Karlsruhe, Germany 
 
Keratinocyte serum-free medium (KSFM) Gibco, Karlsruhe, Germany 
 

6.1.7 Supplemented substances 
 

Citrate buffer 10 mM citric acid and sodium citrate 
diluted in Ampuwa and adjusted to 
pH 6 

 
CnT-02 medium CnT basal medium 1 

supplemented with CnT-02 
supplements A and B 
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CnT-07 medium CnT basal medium 1 
supplemented with CnT-07 
supplements A, B, and C 

 
Dispase working solution dispase soluted in PBS (Gibco) in 

a ratio of 1/2 
 
Eosin staining solution 0.1% 0.1 g Certistain Eosin G in 100 ml 

of 90% ethanol solution and 1 
drop of glacial acetic acid 

 
cKSFM KSFM supplemented with 

50 μg/ml BPE, 5 ng/ml EGF, and 
30 ng/ml cholera toxin  

 
KC stratification medium cKSFM with calcium chloride 

5.5% at a final concentration of 
1.09 mM/l CaCl2 

 
PBS solution PBS powder soluted in 1l 

Ampuwa 
 
Saccharose solution 18% 18 g D-saccharose soluted in 

100 ml PBS solution 
 
Saponin stock solution 10% 10 g saponin and 23.8 g HEPES 

ad 100 ml PBS solution 
 
“Stripping solution” HBSS with 10 mmol/l HEPES, 

20 kIU/ml aprotinin, and 
0.1% EDTA 

 
Transport medium HBSS with 10 mmol/l HEPES, 

20 kIU/ml aprotinin, and 
1% penicillin/streptomycin 

 

6.1.8 Sera and antibody diluent 
 

Antibody diluent Dako Deutschland GmbH, 
Hamburg, Germany 

 
Donkey IgG normal serum Dako Deutschland GmbH, 

Hamburg, Germany 
 
Goat IgG normal serum Dako Deutschland GmbH, 

Hamburg, Germany 
 
Rabbit IgG normal serum Dako Deutschland GmbH, 

Hamburg, Germany 
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6.1.10 Secondary antibodies 
 

 

fluorophore host 
species isotype species reactivity company 

FITC Rabbit IgG F(ab)2 
Mouse, human, bovine, 

rat 

Dako 
Deutschland 

GmbH, 
Hamburg, 
Germany 

Cy2 Donkey IgG (H+L), 
F(ab)2 

Mouse, bovine, chicken, 
goat, guinea pig, Syrian 
hamster, horse, human, 

rabbit, rat, sheep 

Dianova 
GmbH, 

Hamburg, 
Germany 

Cy2 Goat IgG (H+L) Mouse, human, bovine, 
horse, rabbit, swine 

Dianova 
GmbH, 

Hamburg, 
Germany 

 

6.1.11  Medication for the nude rat model 
 
Xylazin 2% Albrecht GmbH, Aulendorf, 

Germany 
 
Ketamin Gräub Albrecht GmbH, Aulendorf, 

Germany 
 
Narcoren 160 mg/ml Merial GmbH, Hallbergmoos, 

Germany  
 
Regepithel eye ointment Alcon Pharma GmbH, Freiburg, 

Germany 
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6.2 Tables for cell adherence on collagen cell carrier 
6.2.1 Human urothelial cells’ adherence 

 

Seeding density for proliferating HUC cultures (2.5 x 104 cells/cm2) 

HUC Line and passage Non adherent HUC on 
standard plastic 

Non-adherent HUC on 
CCC 

10/17 P3 0.7% 17.5% 

10/18 P3 0.3% 3.5% 

10/19 P3 2.0% 18.2% 

10/18 P4 2.3% 19.0% 

10/26 P2 1.7% 12.7% 

07/49 P4 6.0% 26.0% 

Mean 2.2% 16.2% 
 

Seeding density for stratifying HUC cultures (4 x 105 cells/cm2) 

HUC Line and passage Non adherent HUC on 
standard plastic 

Non-adherent HUC on 
CCC 

07/14 P5 7.7% 8.8% 

10/21 P3 1.5% 1.2% 

10/3 P4 0.6% 0.8% 

07/47 P4 0.5% 0.8% 

04/005 P6 0.6% 0.8% 

10/27 P6 0.9% 1.0% 

Mean 2.0% 2.2% 
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6.2.2 Porcine urothelial cells’ adherence 
 

Seeding density for proliferating PUC cultures (2.5 x 104 cells/cm2) 

PUC Line and passage Non adherent PUC on 
standard plastic 

Non-adherent PUC on 
CCC 

79930 P4 4.3% 28.0% 

106597 P4 6.3% 11.7% 

79939 P7 9.0% 15.3% 

79930 P7 4.7% 9.0% 

79939 P5 4.0% 17.0% 

106597 P7 11.0% 11.0% 

Mean 6.6% 15.3% 
 

Seeding density for stratifying PUC cultures (4 x 105 cells/cm2) 

PUC Line and passage Non adherent PUC on 
standard plastic 

Non-adherent PUC on 
CCC 

79930 P6 6.8% 7.5% 

106597 P6 26.0% 25.9% 

200201 P5 1.5% 1.2% 

79930 P7 5.1% 6.2% 

79939 P5 7.2% 15.4% 

106597 P6 29.5% 25.3% 

Mean 12.7% 13.6% 
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Illustration register 
 
Fig. 1: CCC membrane sample in a well plate (left, top) and CCC inserts (left, 
below), unseeded CCC in phase contrast microscopy (right) 
 
Fig. 2: CCC seeded with PKH26 labelled HUC prior to transplantation. 
 
Fig. 3: Application of cell seeded CCC onto the rectus abdominis muscle, transplant 
lying on the abdominal wound prior to transplantation (arrow indicates CCC) 
 
Fig. 4: In the first surgical intervention the bladder was exposed to harvest urothelial 
cells. The tissue to be excised is marked (left). Urethral damage was induced by 
superficial circumferential electro coagulation (right). 
 
Fig. 5: The completed vesicostomy after the first surgery procedure. 
 
Fig. 6: Autologous cell seeded CCC was held by forceps during transplantation into 
the porcine urethra. 
 
Fig. 7: Seeded CCC (with the letter “R” indicating rear unseeded side of the 
transplant) was taken out of the Petri dish prior to transplantation. 
 
Fig. 8: Euthanasia by intravenous injection of the drugs into the V. cava cranialis 
(left). Extraction of urethral tissue with unresorbable sutures (arrows) confining the 
transplantation site (right) 
 
Fig. 9: The extracted urethra was divided into five sections. Section three contained 
the main part of the transplant site. 
 
Fig. 10: HUC grown on standard plastic (left) and on CCC (right) at day 1 after 
seeding. PKH26-labelled HUC show red fluorescence. Phase contrast microscopy 
 
Fig. 11: BrdU assay: mean values of proliferating HUC cultures (n = 4) seeded on 
CCC, optical densities as percentage of the control which was set as 100% for each 
experiment. Seeding density 2.5 x 104 cells/cm2 
 
Fig. 12: WST-1 assay: mean values of proliferating HUC cultures (n = 3) seeded on 
CCC, optical densities as percentage of the control which was set as 100% for each 
experiment. Seeding density 2.5 x 104 cells/cm2 
 
Fig. 13: BrdU assay: mean values of proliferating HUC cultures (n = 3) seeded on 
CCC, optical densities as percentage of the control which was set as 100% for each 
experiment. Seeding density 4 x 105 cells/cm2 
 
Fig. 14: WST-1 assay: mean values of stratifying HUC cultures (n = 3) seeded on 
CCC, optical densities as percentage of the control which was set as 100% for each 
experiment. Seeding density 4 x 105 cells/cm2 
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Fig. 15: Representative WST-1 assay: Development of optical density (OD) in a 
WST-1 assay experiment of a proliferating HUC culture (2.5 x 104 cells/cm2, human 
ureter cell line HL 10/18 in culture passage 3). Red curve represents control (HUC on 
plastic surface), blue curve represents HUC on CCC. 
 
Fig. 16: BrdU assay: mean values of proliferating PUC cultures (n = 3) seeded on 
CCC, optical densities as percentage of the control which was set as 100% for each 
experiment. Seeding density 2.5 x 104 cells/cm2 

 
Fig. 17: WST-1 assay: mean values of proliferating PUC cultures (n = 3) seeded on 
CCC, optical densities as percentage of the control which was set as 100% for each 
experiment. Seeding density 2.5 x 104 cells/cm2 
 
Fig. 18: BrdU assay: mean values of stratifying PUC cultures (n = 3) seeded on 
CCC, optical densities as percentage of the control which was set as 100% for each 
experiment. Seeding density 4 x 105 cells/cm2 

 
Fig. 19: WST-1 assay: mean values of stratifying PUC cultures (n = 3) seeded on 
CCC, optical densities as percentage of the control which was set as 100% for each 
experiment. Seeding density 4 x 105 cells/cm2 

 
Fig. 20: Representative BrdU assay: Development of optical density (OD) in a 
BrdU assay experiment of a stratifying PUC culture (4 x 105 cells/cm2, minipig 
bladder cell line MSBL 79939 in culture passage 5). Red curve represents control 
(PUC on plastic surface), blue curve represents PUC on CCC. 
 
Fig. 21: Initial adherence of HUC: Mean values in percentage of total number of 
seeded cells. Non-adherent cells counted in the culture supernatant one day after 
seeding in low (Prol = 2.5 x 104 cells/cm2) and high (Strat = 4 x 105 cells/cm2) 
density on CCC and on plastic surface as a control, n = 6 
 
Fig. 22: Initial adherence of PUC: Mean values in percentage of total number of 
seeded cells. Non-adherent cells counted in the culture supernatant one day after 
seeding in low (Prol = 2.5 x 104 cells/cm2) and high (Strat = 4 x 105 cells/cm2) density 
on CCC and on plastic surface as a control, n = 6 
 
Fig. 23: Immunocytochemical staining of HUC in culture passage 4 for smooth 
muscle α-actin (left), fibroblast marker (centre), and pancytokeratin cocktail (right). 
Brown colour indicates positive staining. Bright field 
 
Fig. 24: Immunocytochemical staining of PUC in culture passage 7 for smooth 
muscle α-actin (left), fibroblast marker (centre), and pancytokeratin cocktail (right). 
Brown colour indicates positive staining. Bright field 
 
Fig. 25: Positive pancytokeratin staining of HUC seeded on plastic surface. 
Merged red fluorescence of PKH26, blue cell nucleus fluorescence of DAPI and 
bright field (left); merged green fluorescence of AE1/AE3, blue fluorescence of DAPI 
and bright field (centre); composite image w/o bright field (right) 
 
Fig. 26: Positive pancytokeratin staining of HUC seeded on CCC. Merged red 
fluorescence of PKH26, blue cell nucleus fluorescence of DAPI and bright field (left); 
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merged green fluorescence of AE1/AE3, blue fluorescence of DAPI and bright field 
(centre); composite image w/o bright field (right) 
 
Fig. 27: Positive CK-20 staining of HUC seeded on plastic surface (left) and on CCC 
(right); red fluorescence (PKH26) of HUC, blue fluorescence (DAPI) of cell nuclei and 
green fluorescence of CK-20 expression as a composite 
 
Fig. 28: Positive p63 staining of HUC seeded on plastic surface (left) and on CCC 
(right); red fluorescence (PKH26) of HUC, blue fluorescence (DAPI) of cell nuclei and 
green fluorescence of p63 expression as a composite 
 
Fig. 29: Positive E-Cadherin staining of HUC seeded on plastic surface (left) and on 
CCC (right); red fluorescence (PKH26) of HUC, blue fluorescence (DAPI) of cell 
nuclei and green fluorescence of E-Cadherin expression as a composite. 
 
Fig. 30: Positive ZO-1 staining of HUC seeded on plastic surface (left) and on CCC 
(right); red fluorescence (PKH26) of HUC, blue fluorescence (DAPI) of cell nuclei and 
green fluorescence of ZO-1 expression as a composite 
 
Fig. 31: Tissue sample extracted one week after surgery was divided into two pieces. 
Transplant is not visible macroscopically (left). Tissue extraction two weeks after 
surgery with connective tissue formation (right). Arrow indicates transplant position 
 
Fig. 32: Cryostat section one week after transplantation. Unstained section 
showing red fluorescence of PKH26-labelled transplanted HUC (left). HE-stained 
section (right). S = skin, M = rectus abdominis muscle. Bright field 
 
Fig. 33: Cryostat section two weeks after transplantation. Unstained section 
showing red fluorescence of PKH26-labelled transplanted HUC (left). HE-stained 
section (right). S = skin, M = rectus abdominis muscle. Bright field 
 
Fig. 34: Cryostat section four weeks after transplantation Unstained section 
showing red fluorescence of PKH26-labelled transplanted HUC (left). HE-stained 
section (right). Transplant almost vanished in the subcutaneous tissue. S = skin, 
M = rectus abdominis muscle. Arrows indicate CCC in degeneration. Bright field 
 
Fig. 35: Positive pancytokeratin expression of cryostat section two weeks after 
transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, 
blue cell nucleus fluorescence of DAPI and bright field (left). Merged green 
fluorescence for pancytokeratin, blue cell nucleus fluorescence of DAPI and bright 
field (centre). Composite image w/o bright field (right) 
 
Fig. 36: Positive CK-20 expression of cryostat section two weeks after 
transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, 
blue cell nucleus fluorescence of DAPI and bright field (left). Merged green 
fluorescence for CK-20, blue cell nucleus fluorescence of DAPI and bright field 
(centre). Composite image w/o bright field (right) 
 
Fig. 37: Positive p63 expression of cryostat section two weeks after 
transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, 
blue cell nucleus fluorescence of DAPI and bright field (left). Merged green 
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fluorescence for p63, blue cell nucleus fluorescence of DAPI and bright field (centre). 
Composite image w/o bright field (right) 
 
Fig. 38: Positive E-Cadherin expression of cryostat section two weeks after 
transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, 
blue cell nucleus fluorescence of DAPI and bright field (left). Merged green 
fluorescence for E-Cadherin, blue cell nucleus fluorescence of DAPI and bright field 
(centre). Composite image w/o bright field (right) 
 
Fig. 39: Positive ZO-1 expression of cryostat section two weeks after 
transplantation. Merged red fluorescence of PKH26-labelled transplanted HUC, 
blue cell nucleus fluorescence of DAPI and bright field (left). Merged green 
fluorescence for ZO-1, blue cell nucleus fluorescence of DAPI and bright field 
(centre). Composite image w/o bright field (right) 
 
Fig. 40: Negative pancytokeratin expression of cryostat section four weeks 
after transplantation. Merged red fluorescence of PKH26-labelled transplanted 
HUC, blue cell nucleus fluorescence of DAPI and bright field (left). Merged green 
fluorescence for pancytokeratin, blue cell nucleus fluorescence of DAPI and bright 
field (centre). Composite image w/o bright field (right) 
 
Fig. 41: Preoperative status of the urethra determined by urethrography 
demonstrating a physiological urethral lumen. Arrow indicates the end of the urethral 
catheter. 
 
Fig. 42: Urethral status three weeks after stricture induction by thermocoagulation. 
Arrow indicates potential stricture site with slight narrowing. 
 
Fig. 43: Urethral status four weeks after urethroplasty. Urethral patency is 
established. Arrow indicates former stricture site. 
 
Fig. 44: Cryostat section at one week after transplantation. CCC can be located 
clearly in HE-stained section (top left). Parts of the transplanted cells (red 
fluorescence) are lying in direct contact to the native urothelium and to the matrix (top 
right and enlarged section below). L = urethral lumen, N = native urothelium, 
T = transplant; Bright field 
 
Fig. 45: Cryostat section at two weeks after transplantation. Pieces of the CCC 
can be located in HE-stained section (top left). Parts of the transplanted cells (red 
fluorescence) are lying in direct contact to the native urothelium (top right and 
enlarged section below). L = urethral lumen, N = native urothelium, T = transplant; 
Bright field 
 
Fig. 46: Cryostat section at four weeks after transplantation. Pieces of the CCC 
can be located in HE-stained section (top left). Parts of the transplanted cells (red 
fluorescence) are lying in direct contact to the native urothelium (top right and 
enlarged section below). Strong red fluorescence of suture material (s). L = urethral 
lumen, N = native urothelium, T = transplant; Bright field 
 
Fig. 47: Positive pancytokeratin expression proven by double fluorescence of 
cryostat section one week after transplantation. Merged red fluorescence of 
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PKH26-labelled transplanted HUC, blue cell nucleus fluorescence of DAPI and bright 
field (left). Merged green fluorescence for pancytokeratin, blue cell nucleus 
fluorescence of DAPI and bright field (centre). Composite image w/o bright field 
(right) 
 
Fig. 48: Positive pancytokeratin expression proven by double fluorescence of 
cryostat section two weeks after transplantation. Merged red fluorescence of 
PKH26-labelled transplanted HUC, blue cell nucleus fluorescence of DAPI and bright 
field (left). Merged green fluorescence for pancytokeratin, blue cell nucleus 
fluorescence of DAPI and bright field (centre). Composite image w/o bright field 
(right) 
 
Fig. 49: Weak pancytokeratin expression proven by double fluorescence of 
cryostat section four weeks after transplantation. Merged red fluorescence of 
PKH26-labelled transplanted HUC, blue cell nucleus fluorescence of DAPI and bright 
field (left). Merged green fluorescence for pancytokeratin, blue cell nucleus 
fluorescence of DAPI and bright field (centre); Composite image (right). s = suture 
material 
 
Fig. 50: Positive CK-20 expression proven by double fluorescence of cryostat 
section two weeks after transplantation. Merged red fluorescence of PKH26-
labelled transplanted HUC, blue cell nucleus fluorescence of DAPI and bright field 
(left). Merged green fluorescence for CK-20, blue cell nucleus fluorescence of DAPI 
and bright field (centre). Composite image (right) 
 
Fig. 51: Positive p63 expression proven by double fluorescence of cryostat section 
two weeks after transplantation. Merged red fluorescence of PKH26-labelled 
transplanted HUC, blue cell nucleus fluorescence of DAPI and bright field (left). 
Merged green fluorescence for p63, blue cell nucleus fluorescence of DAPI and 
bright field (centre). Composite image (right) 
 
Fig. 52: Positive E-Cadherin expression proven by double fluorescence of cryostat 
section one week after transplantation. Merged red fluorescence of PKH26-
labelled transplanted HUC, blue cell nucleus fluorescence of DAPI and bright field 
(left). Merged green fluorescence for E-Cadherin, blue cell nucleus fluorescence of 
DAPI and bright field (centre). Composite image (right) 
 
Fig. 53: Positive ZO-1 expression proven by double fluorescence of cryostat section 
one week after transplantation. Merged red fluorescence of PKH26-labelled 
transplanted HUC, blue cell nucleus fluorescence of DAPI and bright field (left). 
Merged green fluorescence for ZO-1, blue cell nucleus fluorescence of DAPI and 
bright field (centre). Composite image (right) 
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Table register 

 
Table 1: Overview of different scaffolds for bladder repair modified according to 
Brehmer et al. 
 
Table 2: Comparison between isolation and cell culture technique of HUC and PUC 
 
Table 3: Primary cultures used for the BrdU and WST-1 assays, HL = human ureter 
specimen, MSBL = minipig bladder specimen, MSHL = minipig ureter specimen, 
P = passage 
 
Table 4: Antibodies for immunocytochemical staining 
 
Table 5: Antibodies for immunofluorescent staining of multilayer sheets 
 
Table 6: Percentage of optical density compared to controls of different  primary cell 
lines (BrdU: n = 4, WST-1: n = 3) showing growth development of proliferating HUC 
in an experimental period of seven days including four different test days 
(measurement time points days 1, 2, 4, and 7 after seeding) 
 
Table 7: Percentage of optical density compared to controls of different primary cell 
lines (n = 3) showing growth development of stratifying HUC in an experimental 
period of eight days including four different test days (measurement time points days 
0, 1, 4, and 8 of stratification) 
 
Table 8: Percentage of optical density compared to controls of different primary cell 
lines (n = 3) showing growth development of proliferating PUC in an experimental 
period of seven days including four different test days (measurement time points 
days 1, 2, 4, and 7 after seeding) 
 
Table 9: Percentage of optical density compared to controls of different primary cell 
lines (n = 3) showing growth development of stratifying PUC in an experimental 
period of eight days including four different test days (measurement time points 
days 0, 1, 4, and 8 of stratification) 
 
Table 10: Mean values in percentage of total number of seeded cells. Non-adherent 
cells counted in the culture supernatant one day after seeding in low (Prol = 2.5 x 104 
cells/cm2) and high (Strat = 4 x 105 cells/cm2) density on CCC and on plastic surface 
as a control, n = 6 
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