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Abstract 

 

Here, I studied the role of two candidate genes i.e. neuropeptide S receptor 1 

(Npsr1) and transmembrane protein 132D (Tmem132d), in two psychopathological 

animal models of anxiety-related behavior because of recent studies showing 

importance of these candidates in limbic areas and the frontal cortex of panic 

disorder patients, respectively. The two animal models are rat (r) and mouse (m), 

high anxiety-related behavior (rHAB/mHAB) and low anxiety-related behavior 

(rLAB/mLAB). 

To understand the anxiolytic role of neuropeptide S (NPS), basal Npsr1 mRNA 

expression was studied in limbic brain regions of HAB vs. LAB rodents, i.e. the 

paraventricular nucleus of hypothalamus (PVN) and amygdala, because these 

regions have been implicated in anxiety and fear attenuating responses of NPS and 

also due to differences in long-term activity based on cytochrome c oxidase activity 

in mHAB vs. mLAB. There was significantly lower basal Npsr1 mRNA expression in 

the basolateral amygdala of mHAB and also in the PVN of rHAB compared to 

corresponding LABs. To study the genetic underpinnings underlying this differential 

expression, Npsr1 DNA sequencing was carried out, which revealed several 

polymorphisms including single-nucleotide polymorphisms (SNP), insertions and 

deletions. By using dual reporter (luciferase) assays, I could show that the SNPs in 

the whole HAB promoter construct cause a significant decrease in promoter 

activity, thus confirming our in vivo findings in both rats and mice. Interestingly, 

however, when the promoter constructs were shortened to 500 bp relative to 

translational (ATG) start site, there was a two-fold higher HAB promoter activity, 

which could be attributed to the introduction of a polymorphism with putative 

binding site for the glucocorticoid receptor (GR) transcription factor. The higher 

HAB promoter activity was suppressed by dexamethasone (a GR activator), thus 

suggesting the presence of a polymorphism that favors GR binding. These findings 

are analogous to the higher HAB specific allele expression in cross-mated F1 

offspring, which allows us to study the HAB vs. LAB alleles in the same cellular 

environment, irrespective of any epigenetic or other environmentally mediated 

factors that might modulate or interact with cis-acting factors. In addition, there was 

no difference in Npsr1 mRNA expression in the basolateral amygdala of mHAB and 

mLAB subjected to environmental enrichment (EE) and unpredictable chronic mild 

stress (UCMS), respectively. Thus it is a non-plastic gene as it does not respond to 
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environmental challenges faced by the susceptible animal models. 

Similarly, for Tmem132d, using dual luciferase assays, two SNPs in the mHAB 

promoter region were shown to cause an increase in its corresponding promoter 

activity, and there was no difference in DNA methylation in the mHAB vs. mLAB 

Tmem132d promoter region, which explains the observed higher Tmem132d 

mRNA expression in the anterior cingulate cortex of mHAB. However, mHABs 

subjected to EE had higher Tmem132d mRNA expression, while mLAB undergoing 

UCMS had corresponding lower gene expression. To study the cis-trans 

interaction, we also subjected cross-mated F1 offspring to EE or UCMS and found 

that both groups have higher mLAB allelic expression, which could be attributed to 

differences in DNA methylation.  

Finally, I could show that there was no difference in DNA methylation in the basal 

mHAB vs. mLAB Tmem132d promoter and that two SNPs in the mHAB promoter 

were sufficient to cause a higher corresponding promoter activity, which explains 

the in vivo findings observed in the anterior cingulate cortex. Furthermore, F1 

offspring subjected to EE or UCMS had a significantly lower mHAB-specific allele 

expression which was negatively correlated with DNA methylation, in the 

Tmem132d promoter region, thus this suggests cross-talk between genetic and 

environmentally mediated epigenetic factors. 

In summary, the data suggests a strong evolutionary conserved role of the NPS 

system considering the similar findings in rats and mice. However, Npsr1 is a non-

plastic gene as it is not amenable to the different environmental manipulations 

applied to the animals. On the other hand, the plastic gene Tmem132d, is 

differentially expressed, thus making the animals more susceptible to 

environmental influences. Here, it could be revealed, that SNPs in the mHAB 

Tmem132d promoter cause higher promoter activity and that environmental 

manipulation can modulate the gene’s corresponding expression through DNA 

methylation. 
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1.0 Introduction 

 

1.1 Emotional behavior and its theories 

Human behavior is a complex product of brain activity, governed by a combination of two 

mutually interacting factors i.e. heredity and environment (Bear et al., 2006). The life 

experiences of an individual and the variation in its genetic makeup makes the brain differentially 

susceptible to modification by subsequent experiences. The sum of inherited and experimental 

variations leads to physico-chemical changes in the brain, which give rise to a myriad of human 

behavior. Emotions are a ubiquitous and  universal characteristic of human behavior (Ekman & 

Friesen, 1971; Fessler, 1999; Haselton & Ketelaar, 2006)  defined as "a collection of 

psychological states that include subjective experience, expressive behavior (e.g., facial, bodily, 

verbal), and peripheral physiological responses (e.g., heart rate, respiration)" (Gross & Barrett, 

2011). There is also consensus that emotions are the core part of any psychological model of 

human mind, however, the rest is subject to debate (Gross & Barrett, 2011). 

In the nineteenth century, several theories were proposed to elucidate the nature and origin of 

emotions. The James-Lange theory, proposed independently by William James and Carl 

Lange, states that emotions are experienced in response to physiological changes in our body 

(Cannon, 1927). In the presence of a threatening stimulus, for instance, our sensory systems 

send information to the brain about a prevailing situation, and then the brain sends a processed 

signal to the body, leading to a change in heart rate, muscular tone, perspiration and dryness of 

mouth, among others. The sensory system subsequently reacts to the changes elicited by the 

brain and these changes constitute the emotions. James and Lange concluded that the 

physiological changes are the emotions and if they were removed there would be no emotions.  

However, the James-Lange theory was soon criticized by Walter Cannon who studied 

Sherrington’s work and demonstrated that a transection of the spinal cord in animals eliminated 

body sensations below the cut level, but it did not eliminate emotions (Cannon, 1927). Cannon’s 

work was supplemented by Philip Bard and the subsequent Cannon-Bard theory of emotion 

stated that the physiological responses are caused by emotional states and can even occur in 

absence of emotions. Another observation by Cannon that disproved the James-Lange theory 

was that there is no reliable correlation between the emotional experience and the physiological 

states of the body. He demonstrated that the same visceral responses such as changes in heart 

rate, pupil dilation and sweating can be associated with experience of fear or anger and can also 

be observed during fever, feeling cold or breathlessness. Thus, the physiological responses are 

too general to be linked to a specific emotional state of an individual (Cannon, 1927). 
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Darwin’s theory of emotion (Darwin, 1896), which was published thirteen years after ''On the 

Origin of Species'', stated that emotions such as fear evolved because of their adaptive nature 

for the survival of the species, and facial expression such as happiness or angriness are innate 

characteristics that evolved in an individual to convey the friendly or hostile nature to others, thus 

helping the survival of the species. Schachter and Singer's two factor theory of emotion 

(Schachter & Singer, 1962) states that emotions are a mix of physiological arousal and 

cognition, thus during physiological arousal, people search for cues in their immediate 

environment and label them either as pleasant or harmful e.g., when a person sees an 

approaching snake, physiological arousal is accompanied by cognitive interpretation, which 

labels the incidence as dangerous.  

 

1.2 Evolution of the emotional brain  

Single celled organisms such as Amoeba or Paramecia have sensing mechanisms that assist 

them in avoiding toxic substances and guide them towards food nutrients (Macnab & Koshland, 

1972). These motile organisms for instance, Paramecia have whip-like flagella attached to its 

cell membrane that aid in their forward movement through the surrounding medium. In addition, 

there are several receptors spread over the cell membrane that respond to different external 

cues to control the action of the flagella (Macnab & Koshland, 1972) and subsequently the 

behavior of the organism (Stein et al., 2009). The advent of marine invertebrates such as sea 

hare (Aplysia) in the Cambrian period, 500 million years ago, was accompanied by organization 

of group of cells into specialized organs with specific function. The Aplysia with a relatively 

simple nervous system other than detecting signals can represent contingencies between signal 

and event, learn and also remember (Stein et al., 2009). For example, chemical stimuli like 

shrimp juice normally ignored by the Aplysia when associated repeatedly with an electric shock 

could be made into a signal for escape response (Kandel, 1983). When the shrimp juice was 

presented second time, the Aplysia responded with additional defensive response such as gill 

withdrawal and release of protective ink clouds. Thus an innocuous event becomes a signal 

eliciting anticipatory state where response to threat is excessive, and this may illustrate a simple 

form of anticipatory anxiety (Stein et al., 2009).  

All the vertebrates share a common basic brain plan consisting of three broad areas namely; 

hindbrain, midbrain and forebrain with evolutionary conserved basic circuits. The basal ganglia 

are primitive brain structures that control complex species specific behavior such as courtship, 

aggression and grooming in reptiles and lower animals (Flannelly et al., 2007; Maclean, 1990). 

The basal ganglia represent an evolutionary early threat assessment system (ETAS) due to its 

participation in aggressive territorial displays in reptiles and primates (Maclean, 1990). Later the 
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limbic system, chiefly the amygdala evolved in early mammals for making emotional decisions 

regarding potential threats long before consciousness (Flannelly et al., 2007). 

In addition, prefrontal cortex is also important for emotional decision making, modulation of 

autonomic nervous system, reasoning and cognitive processing. These three brain regions i.e., 

basal ganglia, limbic system and prefrontal cortex has been proposed as an ETAS and there 

might be different ETAS for diverse potential threats such as height or predator attack (Flannelly 

et al., 2007). 

Thus similar to various components of the immune system, which protects our body against 

different types of pathogenic invasions (Marks & Nesse, 1994), there are several subtypes of 

emotion which protect us against any kind of threat. These emotions are adaptations shaped by 

natural selection (Darwin, 1896; Marks & Nesse, 1994). Emotional behavior often includes 

anxiety and fear, where anxiety can be defined as an emotional anticipation to uncertain 

aversive cues, while fear is a definite and directed response against threats (e.g. an approaching 

bear) to facilitate appropriate defensive behaviors to reduce harm or injury (Landgraf, 2003). 

 

1.3 Prevalence and categorization of anxiety disorders 

Anxiety disorders are among the most common psychiatric illnesses with a lifetime prevalence of 

about 30 %  (Alonso et al., 2011; Kessler & Wang, 2008) and they are highly comorbid with 

major depressive disorders (MDD), with 50-60% of individuals reporting more than one episodes 

of certain anxiety disorders (Kaufman & Charney, 2000). There are two major nosological 

systems available for characterization of mental disorders: 1. Diagnostic and Statistical Manual 

of Mental Disorders, fourth edition, text revision (DSM IV-TR) and 10th revision of International 

Statistical Classification of Diseases and Related Health Problems (ICD-10). The DSM IV-TR 

categorizes anxiety disorders into different classes such as generalized anxiety disorder (GAD), 

social anxiety disorder, specific phobia, panic disorder with and without agoraphobia, obsessive-

compulsive disorder (OCD), post-traumatic stress disorder (PTSD), anxiety secondary to 

medical condition, acute stress disorder (ASD), and substance-induced anxiety disorder (APA, 

2000; Rowney et al., 2010). According to the ICD-10, anxiety disorder is included under a 

broader category of ''neurotic, stress-related, and somatoform disorders''. The ICD-10 is mostly 

used to track the prevalence of health problems worldwide, while the DSM IV-TR is more 

commonly used by psychiatrist and psychologists (Adornetto et al., 2012; WHO, 1993). 

1.4 Treatment of anxiety disorders 

The currently available drugs for psychiatric disorders were developed by serendipity in the 

1950s by clinical observations of at least three drug cases. First, a drug called reserpine given to 
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patients with high blood pressure caused psychotic symptoms in 20% of the cases. Second, 

anti-tuberculosis drugs such as isoniazid and iproniazid were found to have significant elevation 

of mood in patients. A closer look at these two clinical observations revealed, that reserpine 

irreversibly blocked the vesicular monoamine transporter, thus, loading of catecholamines and 

serotonin into synaptic vesicles was affected, and unprotected neurotransmitters were degraded 

by monoamine oxidase (MAO) and catechol-o-methyl transferase (COMT) (Kirsch, 2010). While, 

the anti-tuberculosis drugs were found to inhibit the MAO, thereby increasing the availability of 

these neurotransmitters in the synaptic cleft between neurons. Another study had earlier shown 

that a tricyclic antidepressant, imipramine inhibits the reuptake of released serotonin and 

norepinephrine, thus promoting their action in the neuronal synaptic cleft (Kuhn, 1958). All these 

observations gave birth to the monoamine hypothesis of mood disorders which states that 

depression is a result of decreased activity or deficit of monoamines, such as dopamine, 

serotonin, and norepinephrine in the brain. Despite these being anti-depressant drugs, they are 

often prescribed off-label for many types of anxiety disorders, thus indicating that they probably 

share common neural substrates. Treatment of anxiety disorders often involves a combination of 

drugs and psychotherapy, such as cognitive behavioral therapy. Selective serotonin reuptake 

inhibitors (SSRIs) such as fluoxetine, paroxetine or the more recent serotonin-norepinephrine 

reuptake inhibitors (SNRIs), such as venlafaxine are the first line of treatment for most types of 

anxiety disorders (Dunlop & Davis, 2008). For non-responders, benzodiazepines, such as 

diazepam, which mediate their effects through the inhibitory GABAergic neurotransmission, are 

prescribed along with antidepressants (Dunlop & Davis, 2008; Luscher et al., 2011). However, 

many of these drugs either do not work on a large number of patients, have various side effects 

or the patients relapse soon. Thus there has been a marked shift in focus towards the 

development of non-GABAergic drug targets and a more endophenotype-based research 

approach (Cryan & Slattery, 2007; Hasler et al., 2006). Anxiety and depression are thought to 

have similar genetic origins (Grillon et al., 2005; Kendler, 1996) and often coexist in clinical 

situations (Aina & Susman, 2006; Stahl, 1997). Furthermore, twin studies have suggested a 

strong heritable component for anxiety and comorbid depression (Gillespie et al., 2004; Lamb et 

al., 2010). These results, suggest that mood disorders run in families, and thus genes 

predispose certain individuals to these illnesses. An approximately 30-40% of genetic factors are 

estimated to contribute towards trait anxiety (Hettema et al., 2001). 

 

1.5 Predisposing factors of anxiety 

The insufficient monoamine hypothesis along with the above observations and subsequent 

epidemiological studies (Kendler et al., 1995; Magalhaes et al., 2010) showed that stress is a 
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major contributing factor in the development of anxiety and depressive disorder, and this 

highlighted the role of hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis activity provides 

endophenotypes for both anxiety (Kallen et al., 2008) and depression (Vreeburg et al., 2009). It 

has been consistently found to be hyperactive in these two psychiatric conditions and it does 

interact with the monoamine system (Magalhaes et al., 2010; Massart et al., 2012). During 

stress exposure, corticotropin-releasing hormone (CRH) is released from the hypothalamus into 

the hypophyseal portal blood which then travels to the anterior lobe of pituitary causing release 

of adrenocorticotropin hormone (ACTH). This in turn, acts on the adrenal glands to cause the 

release of cortisol or corticosterone (CORT) in the blood. Subsequently, this exerts various 

responses throughout the body (Bear et al., 2006). 

The significant inheritance and the role of stress in mood disorders led to the development of the 

diathesis-stress model, which suggests that individuals are at risk to develop mental illness 

because of their genetic makeup or predisposition (diathesis) that makes them vulnerable to 

particular disorders under adverse conditions (Nemeroff, 1998). In particular, early childhood 

stress was found to cause  increase in both, the number of CRH expressing neurons and also 

the amount of CRH gene transcripts (Nemeroff, 1998). However, in recent years the role of glia 

in the pathophysiology of mood disorders has also been appreciated (Coyle & Schwarcz, 2000) 

(Sibille et al., 2009). The term glia (which means glue in German) was first coined by Rudolf 

Virchow after observing a sort of connective tissue underlying ependyma of cerebral ventricles in 

a psychiatric journal nearly 160 years ago (Virchow, 1846). Oligodendrocytes are one of the 

major types of glial cells, which produce myelin and thus insulate and support the axons of nerve 

cells in the central nervous system. However, oligodendrocytes have recently been implicated in 

emotional disorders after several studies showed that their cell numbers and related transcripts 

dwindle in the prefrontal cortex and amygdala of schizophrenia, major depression and other 

mood disorders (Aston et al., 2005; Hamidi et al., 2004; Uranova et al., 2004). 

 

1.6 Role of epigenetics in mood and anxiety disorders 

Traditional aetiological studies have largely focused on the search for genetic factors; however 

the role of epigenetic factors, in the regulation of gene expression independent of any changes 

to the underlying DNA sequence, has also come under focus in the development of mood 

disorders (Kubota et al., 2012; Tsankova et al., 2007).  

The word epigenetics was originally coined by Conrad Waddington in 1942 to describe how 

genes interact with their products to produce a particular phenotype while studying the 

development of embryos. However, epigenetics is best defined as, ''the structural adaptation of 

chromosomal regions so as to register, signal or perpetuate altered activity states'' (Bird, 2007). 
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Chromatin which contains histone and non-histone proteins bound to genomic DNA is a dynamic 

structure which responds to diverse environmental stimuli to regulate access to its DNA. The 

epigenetic processes that modulate this DNA access include DNA methylation, histone 

modifications, nucleosome modeling, nuclear dynamics and the interaction of chromatin with 

noncoding RNAs ("The dynamic epigenome," 2013). DNA methylation in mammals involves 

transfer of a methyl moiety from S-adenosylmethionine to the 5’ position of the cytosine ring, 

where these cytosine are usually followed by a guanosine, and are termed CpGs. This process 

is maintained by a family of DNA methyltransferase (DNMTs). An example of this process would 

be the erasure of DNA methylation in early embryonic stages, which is then reestablished during 

implantation (Bergman & Cedar, 2013), however studies in model organisms have shown that 

certain loci in the genome are resistant to this erasure and thus DNA methylation may serve as a 

marker for transgenerational inheritance (Lane et al., 2003; Xing et al., 2007). 

The importance of environment on the physiology, behavior and brain regulation has been 

recognized to cause stark differences in phenotypic variability (Benaroya-Milshtein et al., 2004; 

Larsson et al., 2002). To mimic socio-environmental stressors in rodents, unpredictable chronic 

mild stress (UCMS/stressed), has been shown to cause reduced hippocampal neurogenesis, 

impairment of HPA axis and these effects were reversible by fluoxetine treatment (Surget et al., 

2011). Likewise, environmental enrichment (EE/enriched) which is defined as ''a combination of 

complex inanimate and social stimulation'' (Rosenzweig et al., 1978) consists of an environment 

with toys, tunnels, ladders, running wheel that would lead to social interaction and stimulation of 

exploratory and motor behavior (van Praag et al., 2000). EE has been shown to cause increase 

in exploratory behavior and decrease in anxiety along with a reduction of ß-amyloid plaques in a 

mouse model of Alzheimer’s disease (Gortz et al., 2008). EE has also been shown to have 

reversing effects on the neuronal dysfunction and cognitive decline in rodent models of aging 

and neurodegenerative disorders (Frick & Benoit, 2010). 

There are also several studies showing how environment affects the epigenome of the 

organism. This is illustrated with increased pup licking, grooming and arched-back nursing by rat 

mothers, which altered their offspring epigenome at the glucocorticoid receptor (GR) gene 

promoter in the hippocampus (Weaver et al., 2004). This study provides a mechanistic link 

between maternal behavior and modification of the stress response system in offspring. Another 

study showed that methyl supplemented diets of maternal mice altered the epigenetic state of 

the agouti gene, leading to a change in coat color of their offspring (Wolff et al., 1998). Similarly, 

changes in DNA methylation patterns were observed in response to  pathogen attack in plants 

(Boyko et al., 2007), and transient exposure of gestating female rats to environmental toxins, 

such as vinclozolin (an antiandrogenic compound) led to an increased incidence of male 
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infertility (Anway et al., 2005). All these studies show that alterations in gene expression persist 

throughout lifetime and sometimes may be transmitted to the next generation (Daxinger & 

Whitelaw, 2010), thus altered traits and properties can be inherited (at least partially) in a 

Lamarckian-like way.  

 

1.7 Allelic expression imbalance 

Allelic expression imbalance (AEI) is a phenomenon where the two alleles of a given gene are 

expressed at different levels in a given cell, either because of epigenetic inactivation of one of 

the two alleles, or because of genetic variation in regulatory regions. Monoallelic expression 

occurs due to imprinting based on the parent-of-origin of allele. For instance, monoallelic 

expression has been demonstrated for a long non-coding RNA gene (H19) and insulin-like 

growth factor 2 (Igf2) from the maternal and paternal chromosomes, respectively, due to the 

presence of certain epigenetic marks, laid down during gametogenesis leading to gene silencing 

or genomic imprinting (Reik & Walter, 2001). Random monoallelic expression occurs due to 

epigenetic mechanisms like DNA methylation, where a long non-coding Xist mRNA has been 

shown to randomly envelope one copy of the X-chromosome, packaged in heterochromatin 

during female development, leading to inactivation of all genes on one X-chromosome in every 

cell of the organism. This is stably transmitted during mitosis, representing an exception to the 

Mendelian inhertiance (Lyon, 1961). Studies in the past decade have shown such random 

monoallelic expression to be common for many autosomal genes and their subsequent 

inheritance by daughter cells, like genes for interleukins, immunoglobulin or odorant receptor 

genes (Lo et al., 2003; Palacios et al., 2009; Zwemer et al., 2012). Furthermore, other studies 

have shown that subtle changes in allelic expression of disease susceptibility genes can affect 

predisposition to a certain disease. As an example, AEI has been observed for adenomatous 

polyposis coli (APC) gene in colon cancer (Yan et al., 2002), chitinase 3-like 1 (CHI3L1) and 

COMT gene in schizophrenia (Hill et al., 2011). Furthermore, other illustrations of AEI include 

COMT (Bray et al., 2003), and tryptophan hydroxylase 2 (TPH2) gene in major depression and 

suicide (Lim et al., 2007). These AEI occur due to regulatory polymorphisms with previous 

studies having identified cis-regulatory variants by measuring total expression (both alleles) in 

several individuals and then using this as expression quantitative trait locus (eQTL) to identify 

nearby cis-regulatory regions (Wagner et al., 2010). However, environmental influences can 

causes differences in interindividual differences in expression. Thus, genotyping data 

accompanied by measurement of relative allelic expression in the same cell, wherein alleles are 

exposed to the same cellular environment, allows for a more precise measurement of cis-

regulatory sequences causing differential expression (Wagner et al., 2010). 
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1.8 Identification of genetic variants 

There are three basic approaches to identify genetic variants of mental disorders;  

1. Linkage analysis and association studies: these methods give powerful results for single-

gene disorders such as Huntington’s disease, but are less appropriate for anxiety and other 

psychiatric disorders having multiple players of small effects. In addition, researchers found few 

genes with main effects that were difficult to reproduce (Caspi & Moffitt, 2006).  

2. Endophenotypes: The term endophenotype (intermediate phenotype) is a quantitative 

biological trait proposed to understand the genetic contribution in the etiology of psychiatric 

disorders. They are associated with illness, heritable and found in affected families at higher rate 

than in general population (Kendler & Neale, 2010). Widely known examples of endophenotypes 

are the cognitive abnormalities found in schizophrenia patients which are likely modulated by 

genetic factors, as well as environmental factors, such as famine (Susser et al., 1996) or birth 

complications (Jones et al., 1998; Susser et al., 1996). The HPA axis is also an endophenotype 

shown to consistently maladaptive in anxiety and depression (Kallen et al., 2008; Vreeburg et 

al., 2009). 

3. Gene-environmental (GxE) interactions are based on the observation that mental disorders 

also have environmental causes and people show a wide heterogeneity in their response to 

these environmental stimuli (Moffitt et al., 2005; Tsuang et al., 2001). Gene-environmental 

interactions are based on the diathesis-stress hypothesis, which occur when effects of exposure 

to environmental stimuli is moderated based on the genotype of a particular individual. 

Pioneering studies by (Caspi et al., 2002) showed that maltreated children carrying a functional 

polymorphism in the neurotransmitter-metabolizing enzyme (MAO-A) causes corresponding 

reduced activity and were found to have engaged in violent behavior. These studies were further 

met with a mixed reaction with a meta-analysis finally showing the effect to be true (Kim-Cohen 

et al., 2006). However, another study had only confirmed in the predicted direction (Haberstick et 

al., 2005), or the effect was observed only in a particular race (Widom & Brzustowicz, 2006), 

while another study failed to replicate the GxE effect (Surtees et al., 2006). Another example of 

gene environmental interaction is the short (''s'') allele of the serotonin transporter (5-HTT) gene 

promoter polymorphism, exhibiting higher depression and suicidal tendency following stressful 

life events (Caspi et al., 2003). A recent study also showed how epigenetic factors play a role in 

mediating gene-environment interactions, here researchers showed how childhood trauma 

influenced DNA demethylation in regulatory regions of a stress regulatory gene, FKBP5, leading 

to long term dysregulation of the stress hormone system (Klengel et al., 2013). Furthermore, 

recent studies have also started looking at neural substrates of GxE interactions e.g., people 
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with the low MAO-A allele were found to have reduced limbic volume and a hyper-responsive 

amygdala during emotional arousal (Meyer-Lindenberg et al., 2006) Thus, it might happen that 

certain other genetic variations within a cohort may dilute the GxE findings, thus imaging 

genomics could be used to complement the data from GxE findings, and to root out false 

positive data (Caspi & Moffitt, 2006). In addition, data from imaging genomics which can identify 

neural substrates tend to be quantitatively distributed, thus, low prevalence of environmental 

exposure does not constitute a problem (Caspi & Moffitt, 2006). Several studies in the past few 

years have utilized functional neuroimaging to compare responses of genotype groups (Egan et 

al., 2001; Hariri et al., 2006), thus, this would allow a novel population stratification, and finally, 

those studies with modest effects could turn out to show stronger effects (Caspi & Moffitt, 2006). 

An alternative model of GXE interactions called differential susceptibility hypothesis (Belsky 

et al., 2009), has been proposed to account for the deficiencies of the diathesis-stress 

hypothesis, which states that vulnerable individuals respond both to positive and negative stimuli 

for better or for worse. i.e., genes are inherently neither bad nor good, but individuals vary in 

their susceptibility or plasticity and depending on the environment, this makes individuals 

succumb to psychopathology or help in coping in an enriched environment. A very interesting 

study showing how environment can also have positive effects was shown by (Caspi et al., 

2007), presenting that breastfed children had higher IQ, and this association was moderated by 

a genetic variant in the fatty acid desaturase 2 (FADS2) gene, which is involved in fatty acid 

pathways. Also coming back to the MAO-A allele, (Foley et al., 2004) showed that boys with low 

MAO-A activity were more likely to be diagnosed with behavioral disorders if they were exposed 

to high levels of childhood adversity or neglect. A meta-analysis study of the MAO-A gene (Kim-

Cohen et al., 2006) also supported the differential susceptibility hypothesis over the diathesis-

stress hypothesis (Belsky et al., 2009).  

Similarly, studies by (Taylor et al., 2006) showed that GxE interactions were observed for the 

(''s'') allele of 5-HTT, only when the participants experienced an early or recent adversity, but 

significantly less depressive symptoms if the participants experienced an early or recent positive 

experience compared to (''s/l'') or ('ll'') allele of 5 HTT, thus further supporting the differential 

susceptibility hypothesis. This susceptibility framework has also been documented for anxiety 

where individuals with (''s'') allele, reported more anxiety in the evening, when daily event stress 

was high and vice versa compared to individuals with other genotype (Gunthert et al., 2007). 

 

1.9 Methods to develop animal models 

To understand the neurobiological basis of affective disorders and the corresponding genetic 

underpinnings, we need good animal models. An animal model is supposed to recapitulate the 
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human physiological, pathophysiological, behavioral, anatomical and biochemical processes in a 

non-human organism. There are several methods utilized to develop animal models of 

neuropsychiatric disorders, like brain lesion, transgenic knockout and knockin, random 

mutagenesis, selective breeding and optogenetic manipulations of circuits (Nestler & Hyman, 

2010), but a lack of proper knowledge of brain regions and candidate genes in anxiety which 

have variable penetrance with modest effects, does not allow the use of most of these 

approaches. However, selective breeding is one approach that allows the genetic variation 

associated with a certain trait e.g., anxiety to be represented at a higher frequency after several 

generations, leading to homozygosity at loci conferring this trait (Falconer & Mackay, 1996). 

Nonetheless, an animal model should meet certain validation criteria before it could be used to 

study the pathophysiological mechanisms and to search for novel drug targets. Thus, McKinney 

and Bunney proposed four criteria to model depression-like behavior in the 1960s: first, 

considerable analogy to human disorder in terms of symptoms; second, reproducibility of the 

model; third, similar response to treatment as in human and fourth, agreement between 

investigators (McKinney & Bunney, 1969).These criteria were further refined by Paul Willner who 

proposed three criteria in the 1980s, i.e., construct validity, means to recreate the etiological 

processes that causes the disorder in animals, face validity refers to that recapitulation of 

behavioral, anatomical or biochemical processes and predictive validity, means the animal 

model should respond to pharmacological agents similar to those in humans (Willner, 1991).   

These criteria reveal the difficulty of creating animal models of MDD and anxiety as the etiology, 

anatomical and biochemical processes of these disorders are largely unknown.  However, risk 

factors are known and individual facets can be modeled. 

1.10 Behavioral tests to measure anxiety-related and depression-like behavior                       

Animals cannot model every aspect of human disorders, however, the clinical heterogeneity of 

the anxiety disorder suggests that there are distinct neurobiological circuits for each. Thus, it is 

imperative to see if different tests for anxiety can reveal those differences (Bourin et al., 2007). 

Animal models of anxiety can be classified into two groups, one involves animal’s conditioned 

response to stressful stimuli (e.g., electric foot shock), the second includes ethologically based 

tests involving the animal’s spontaneous or natural reactions (e.g., flight, avoidance and 

freezing) to stressful stimuli that do not explicitly involve pain or discomfort (e.g., exposure to 

predator, novel environment or highly illuminated novel chamber). By employing ethologically 

valid, non-painful, aversive stimuli to induce anxiety, these tests are thought to minimize 

confounding factors, like state anxiety, which can vary from one moment to another and also to 

control for other factors, such as motivational, learning or memory (Steimer, 2011).                 
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The open field (OF) test is a common measure of exploratory behavior and general locomotor 

activity in rats and mice, which generally consists of a circular enclosure with surrounding walls 

to prevent escape. The animal is placed in the apparatus facing the periphery and parameters, 

such as time spent in the center and activity within the first 5 minutes are used to measure 

activity and, with the correct illumination, aspects of anxiety (Gould, 2009).                        

The light-dark (LD) box test is based on the innate aversion of rodents to brightly illuminated 

areas and on the spontaneous exploratory behavior of animals, applying mild stressors such as 

novel environment and light. The test apparatus consist of one-third small dark ‘secure’ 

compartment and two-third large illuminated ‘aversive’ compartment (Gould, 2009).                        

The elevated plus-maze (EPM) resembles a plus raised above the ground is one of most robust 

and reliable ethological test for anxiety, which consists of two open and two closed arms with 

enclosed walls. This test is based on the natural aversion of open spaces and uses conflict 

between exploration and aversion to elevated open spaces. Rodents are placed at the 

intersection of the four arms, the number of entries and time spent on the open arm over a 5 

minute period is taken as an index of anti-anxiety-related behavior (Gould, 2009).                        

The forced swim test (FST) is based on the fact that animals develop an immobile posture when 

placed in an inescapable cylinder filled with water and this immobile behavior is interpreted as a 

depression-like behavior or passive stress coping behavior (Petit-Demouliere et al., 2005). The 

FST is routinely used to screen for anti-depressants and it has good predictive validity and the 

animals show a more active stress coping behavior such as struggling when treated with 

antidepressants.  Tail-suspension test (TST) in which rodents are suspended by their tails with 

tape, such as that they cannot escape or touch any other nearby surfaces. During this test, the 

resulting escape oriented behavior of the rodents is taken as a measure of depression-like 

behavior (Castagne et al., 2011). 

1.11 Animal models of anxiety                                                                                                        

There are several animal models of anxiety described previously like the Roman high-

(RHA/Verh) and low-(RLA/Verh) rats (Steimer & Driscoll, 2003), the Syracuse strains (Brush, 

2003), the Hatano rats (Ohta et al., 1999) and HDS/LDS rats (Overstreet et al., 2003) based on 

the avoidance behavior or receptor function. As the models based on conditioned responses, 

may require training and show interference with mnemonic or motivation processes, they are not 

ethologically relevant (Steimer, 2011). There are other animal models like the Maudsley reactive 

vs. nonreactive rat lines, bred based on the criteria of open field defecation but it shows 

inconsistent results on ethological tests like EPM (Blizard & Adams, 2002), but some others are 

more ethologically relevant, like the Tsukuba high and low emotional rat strains (Fujita et al., 
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1994), infantile high vs. low ultrasonic vocalization (USV) (Brunelli, 2005) and Floripa lines 

(Ramos et al., 2003). 

 

1.12 Selective breeding and phenotyping of HAB vs. LAB rat and mice models of anxiety 

Starting from an outbred Wistar rat and CD-1 mouse population, an intra-strain, selective 

breeding approach was utilized based on the animals performance on the EPM test over more 

than 20 generations to develop the HAB vs. LAB rat and mouse model of anxiety-related 

behavior (Kromer et al., 2005; Landgraf & Wigger, 2002). Selective breeding leads to 

homozygosity at trait conferring loci, leading to two divergent populations. When this reached its 

maximum, strict sibling-mating was carried out to conserve the genetic polymorphisms 

underlying either the high or low anxiety-related traits. Overall, this approach allows us the study 

the risk factors at a higher penetrance compared to their outbred founder population. rHAB and 

rLAB (Figure 1) spend less than 5% and more than 50%, respectively, of their total test time on 

the open arm of the EPM (Landgraf & Wigger, 2002). Meanwhile, mHAB spend less than 10% 

and mLAB (Figure 2) more than 50% of total test time on open arm of the EPM (Kromer et al., 

2005).   

 

Figure 1: Selective breeding of Wistar rats based on performance in the EPM to give rHAB and 
rLAB. X-axis shows here years. Y-axis indicates % time spent on open arms. (adapted from 
(Neumann et al., 2010).  
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Figure 2: Selective breeding of CD-1 mice based on performance of EPM leading to divergent 
lines, mHAB and mLAB after several generations. X-axis indicates generations, Y-axis the % 
time spent on open arms. 
 
In addition to differences in anxiety-related behavior on the EPM, these rodents also display 

consistent differences in trait anxiety in other behavioral tests, such as the LD box and OF 

(Kromer et al., 2005; Landgraf & Wigger, 2002). This divergence in trait was further validated 

under similar conditions in four laboratories (Munich, Regensburg, Innsbruck and Lille) and 

found to be reliable and robust (Salome et al., 2002). 

In the FST, the rHAB floated more and struggled less compared to rLAB indicating passive 

coping strategy, nonetheless this behavior was reversed to active coping style on treatment with 

paroxetine (Landgraf, 2003). This indicates that the rHAB also display comorbid depression-like 

behavior. In addition, rHAB also exhibit an impaired extinction of fear memory in a fear 

conditioning task compared to rLAB (Muigg et al., 2008). Treatment with diazepam, a commonly 

used anxiolytic drug reduced anxiety-related behavior in rHAB, thus resulting in the 

pharmacological validation of the rHAB vs. rLAB animal model (Liebsch et al., 1998). Fos 

expression studies, which is a marker for neuronal activation, in rHAB vs. rLAB suggested no 

differences in neuronal activation under basal conditions. However, when challenged with mild 

stressors like open arm of EPM and OF there was higher c-fos expression in the hypothalamic 

nuclei including paraventricular nucleus (PVN) relative to rLABs. Meanwhile the latter showed 

more activation in the cingulate cortex, thalamic areas and partially the hippocampal formation 

(Landgraf et al., 2007). 
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Furthermore, in a social defeat (SD) paradigm such as resident-intruder assay, rHAB displayed 

higher freezing behavior upon confrontation indicating passive coping style. In contrast, rLAB 

exhibited higher locomotion and more aggression towards resident suggesting an active stress 

coping behavior (Frank et al., 2006). There is no difference in basal CORT between rHAB vs. 

rLAB. However, during SD rHAB secrete more CORT indicating alteration of HPA axis activity 

and more USV in contrast to rLAB (Frank et al., 2006). The SD also enhanced c-fos expression 

in amygdala and hypothalamic nuclei of rHAB, while less c-fos activity in prefrontal cortex and 

brain stem regions in contrast to rLAB (Landgraf, 2003). Cross-mated F1 offspring of HAB vs. 

LAB rats display intermediate anxiety phenotype thus proving genetic contribution to anxiety, 

and even cross-fostering did not have any effect on the strong genetic predisposition, thus 

differential emotionality is driven autosomally (Wigger et al., 2001). 

On the other hand, mHAB vs. mLAB also displayed divergent anxiety-related behavior in the LD, 

OF and elevated platform (EPF) test. The behavior on the EPM was confirmed independently in 

three different laboratories (Munich, Regensburg and Innsbruck) under similar testing conditions 

(Czibere, 2008). In the USV test, which is independent of locomotion, mHAB pups emitted more 

calls than mLAB which was decreased by treatment with diazepam (Kromer et al., 2005). mHAB 

also displays differences in depression-like behavior as measured by FST, TST where they 

exhibit more passive coping style relative to mLAB. In addition to phenotypic differences, mHAB 

gives a flattened CORT response relative to mLAB when exposed to strong physical stressor. 

Yet there is no basal difference in CORT, body weight and locomotor activity between mHAB vs. 

mLAB (Czibere, 2008). Fos expression studies revealed no difference in basal c-fos activity, 

however, when exposed to open arm of EPM there was altered activation patterns in prefrontal-

cortical, limbic and hypothalamic areas of mHAB in contrast to mLAB (Muigg et al., 2009). 

Interestingly, this differential pattern of c-fos activation was similar to that of rHAB vs. rLAB. 

Furthermore, cytochrome c oxidase (COX) activity suggests basal differences in long-term 

activity in the PVN and amygdala of mHAB vs. mLAB. Surprisingly, mHAB showed a decreased 

activity in the PVN in contrast to mLAB, whereas in the amygdala there was higher activity in 

comparison to mLAB (Czibere, 2008). This is interesting because previous studies have shown 

that amygdala is important for processing of emotional stimuli while PVN lies at the center to 

mediate adequate stress response (Bishop et al., 2004; Herman & Cullinan, 1997). The low 

amygdala activity in mLAB may be crucial to maintain a low anxiety trait. Besides the high 

activity in PVN of mLAB might explain higher HPA axis activity and subsequent more CORT 

release on exposure to physical stress in contrast to mHAB (Gonik et al., 2012). Cross-mated F1 

offspring of HAB vs. LAB mice also display intermediate anxiety phenotype thus indicating 

genetic contribution towards anxiety (Kromer et al., 2005). 
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1.13 Novel targets for anxiety disorders: Focus on Neuropeptides 

Unlike classical neurotransmitters, neuropeptides which are small proteinaceous molecules are 

the most diverse class of signaling molecules that exhibit characteristic localization patterns 

within the central and peripheral nervous system and are thus believed to possess a wide range 

of physiological functions (Hokfelt et al., 2000; Lin, 2012). Neuropeptide systems of brain, which 

are characterized by discrete synthesis and release sites, distinct receptor distribution and 

multiple behavioral functions, represent such potential targets (Ebner et al., 2009; Landgraf et 

al., 2007; Landgraf & Neumann, 2004; Slattery, D.A. & Neumann, I.D., 2010). Neuropeptides 

and their cognate receptors are encoded by DNA, thus, are vulnerable to mutations, and are 

believed to have evolved through either genome, gene, exon duplications or point mutations 

giving rise to a family of peptides performing diverse roles from invertebrates to humans (Hoyle, 

2008). Most of the mammalian neuropeptide receptors are G-protein coupled with 7-

transmembrane domains, an extraceullar amino (N) terminal and an intracellular carboxyl (C) 

terminal. Several neuropeptides, like vasopression (Landgraf et al., 2007), CRH (van Gaalen et 

al., 2002), oxytocin (Windle et al., 1997), galanin (Sciolino & Holmes, 2012), substance P (Ebner 

& Singewald, 2006), neuropeptide Y (Primeaux et al., 2005) have been shown to be important 

for anxiety and other mood disorders. 

Previous studies have shown that rHAB have higher arginine-vasopressin (Avp) mRNA and 

corresponding neuropeptide release in the hypothalamic PVN and treatment with an AVP V1 

receptor antagonist could reverse the high anxiety-related and comorbid depression-like 

behavior in rHAB (Wigger et al., 2004). In addition, treatment with the antidepressant paroxetine 

and diazepam normalized Avp mRNA expression, HPA axis activity and consequently 

decreased depression-like behavior without affecting the binding properties of the AVP V1 

receptor (Keck et al., 2003). Furthermore, a single-nucleotide polymorphism (SNP) in the Avp 

promoter of rHAB was shown to confer lower binding of a repressor element, thus resulting in an 

increase in Avp mRNA expression and also higher AVP release in the hypothalamic PVN 

(Murgatroyd et al., 2004).  

On the other hand, in the mHAB vs. mLAB and corresponding F1 offspring, there was lower 

mLAB Avp mRNA allele (Bunck et al., 2009) and also deficits in central release of AVP in mLAB 

(Kessler et al., 2007) and this difference was correlated with anxiety-related behavior (Bunck et 

al., 2009). Thus by utilizing bidirectional selective breeding approach to Wistar rats and CD-1 

mice, two divergent lines, HAB vs. LAB rats and mice, were obtained which displayed robust 

phenotypic and neuroendocrinological differences in anxiety and comorbid depression like-

behavior. In addition, these animal models obtained from two different species, were found to 
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have similar difference in at least one of the neuropeptidergic system (AVP), implicated in 

anxiety-related behavior. 

 

1.14 Novel target: Neuropeptide S (Nps) /neuropeptide S receptor 1 (Npsr1) 

Neuropeptide S (NPS) is a 20 amino acid mature peptide identified by a reverse 

pharmacological approach and named after its conserved serine residue at the N-terminal end 

except for the bat, which has proline at the corresponding position (Reinscheid, 2007). The 

primary amino acid structure of NPS is evolutionary conserved across mammals, including 

human and rodents, and even birds, reptiles and amphibians (Figure 3). 

 

 
 
 
Figure 3:  Conservation of primary amino acid structure of 20 amino acid mature peptide across 
humans, chimpanzee, mouse, rat, dog and chicken. The letters in bold indicate the divergent 
amino acids. Figure from (Xu et al., 2004). 
 
An Nps gene is absent from the currently available fish genomes (Reinscheid & Xu, 2005), 

suggesting that an Nps precursor gene appeared late in vertebrate evolution. The NPS 

precursor protein contains a hydrophobic chain following the initiator methionine residue and 

also a pair of basic residues (lysine (K) and arginine (R)), just before the serine residue of the 

mature peptide. The behavioral effects of NPS (anxiolysis coupled with arousal or wakefulness) 

are unique, because stimulants like cocaine, amphetamine, CRH or GABA antagonist induce 

arousal but are anxiogenic (Koob & Greenwell, 2004). NPS has been shown to be anxiolytic, 

inhibits all sleep stages (Leonard et al., 2008; Xu et al., 2004), activates the HPA axis (Smith et 

al., 2006) and inhibits food intake  (Cline et al., 2007; Fedeli et al., 2009; Niimi, 2006). NPS also 

works as a neuromodulator by regulating the release of several classical transmitter systems like 

dopamine (Si et al., 2010), nor-adrenaline (Raiteri et al., 2009), glycine, serotonin (Gardella et 

al., 2013) and glutamate (Han et al., 2009). 

Structure-activity studies on NPS revealed that 1-10 residues from the N-terminal end mimicks 

the activity of the full length 20 amino acid mature peptide in in vitro systems. Phenylalanine (F), 
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arginine (R) and asparagine (N), following the serine residue, are required for the biological 

activity of the peptide, while residue 8 to 10 are required for activation of the corresponding 

receptor. However, the C-terminal (11-20) residues also are important for the in vivo activity of 

the peptide as the 1-10 length peptide had very weak effect on the locomotion in mice (Roth et 

al., 2006).  

NPS acts by activating its corresponding receptor called neuropeptide S receptor 1 (NPSR1) 

which is a 7- transmembrane G-protein coupled receptor sharing moderate homology with 

oxytocin and vasopressin receptors (Reinscheid & Xu, 2005). Phylogenetic comparative analysis 

of NPSR1 revealed that its sequences are orthologous to the invertebrate cardioacceleratory 

peptide receptor (CCAPR) and vasopressin receptor-related receptor 1 (VRR1) suggesting that 

NPSR1 evolved earlier in the invertebrates, then leading to functional divergence before their 

emergence in vertebrates (Pitti & Manoj, 2012). NPS has been shown to cause increase in 

intracellular calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) in cell lines stably 

expressing human NPSR1, indicating that the NPSR1 couples to the heterotrimeric Gq and Gs 

proteins (Reinscheid et al., 2005; Xu et al., 2004). Another study used chimeric receptor 

approach by combining NPSR1 and vasopressin V1a receptor domains and concluded that 

VRR1 signals through the Gq and Gs pathway (Gupte et al., 2004). The expression of rat NPSR1 

mRNA and protein was found to be widely abundant in central nervous tissues (Leonard & Ring, 

2011; Xu et al., 2007) while Nps mRNA is mostly localized in the peri-locus coeruleus (LC) area 

(Xu et al., 2004). Previous studies could also show that intranasal application of NPS could 

reduce anxiety in the mHAB accompanied by explicit internalization of the NPS/NPSR1 complex 

in the NPSR1 expressing neurons (Ionescu et al., 2012). Local injection of NPS in the amygdala 

of mice was shown to have anxiolytic effects and facilitates extinction of conditioned fear 

responses, which was reversed by application of a NPSR1 antagonist (SHA 68) (Jungling et al., 

2008), thus indicating the presence of an endogenous NPS system in mediating anxiety and fear 

response. The NPSR1 knockout mice exhibited increased anxiety-related behavior (Duangdao 

et al., 2009), and there were no NPS-mediated effects observed (Zhu et al., 2010), thus proving 

that NPS exerts its effects only through NPSR1. 

The human NPSR1, previously called G protein-coupled receptor for asthma susceptibility 

(GPRA) or GPR154 has a unique set of polymorphisms found to be associated with increased 

risk of asthma and other allergies with high levels of serum Immunoglobulin E in Finnish and 

Canadian patients (Laitinen et al., 2004). Furthermore, one SNP (rs324981, A/T, N107I), which 

causes an asparagine (N) to isoleucine (I) substitution at position 107 in the primary amino acid 

structure of human NPSR1 (Reinscheid et al., 2005), has been associated with panic disorder, 

anxiety sensitivity, heightened amygdala responsiveness to aversive stimuli (Dannlowski et al., 
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2011; Domschke et al., 2011; Okamura et al., 2007) and sleep and circadian phenotypes 

(Gottlieb et al., 2007). This T allele has been also associated with increased activity in the 

dorsomedial prefrontal cortex, an area that supports conscious appraisal of threat stimuli 

(Raczka et al., 2010). In in vitro studies, the N107I mutation was found to cause increase in cell-

surface expression and subsequent increase in agonist efficacy without any effects on its 

binding affinity (Bernier et al., 2006; Reinscheid et al., 2005).  

 

1.15 Novel target: Transmembrane protein 132D (Tmem132D)                                                                         

TMEM132D, also called mature oligodendrocyte transmembrane (MOLT) or KIAA1944 (Nagase 

et al., 2001) encodes a single-pass type 1 integral membrane protein belonging to the TMEM132 

protein family. The human Tmem132d gene is located on chromosome 12, has two transcripts 

and the protein product is approximately 130 kDa in size. TMEM132D is predicted to contain a 

N-terminal hydrophobic signal peptide, a single pass transmembrane region and several 

posttranslational modifications like N- and O-glycosylation and phosphorylation. Primary cultures 

of rat oligodendrocyte precursor cells show no expression of either Tmem132d mRNA or protein; 

however, on differentiation they start to express the TMEM132D protein (Nomoto et al., 2003). 

Notably, there was prominent expression of TMEM132D protein in the cytoplasmic processes of 

mature oligodendrocytes in both gray and white matter, and thus they may serve as a cell 

surface marker for mature oligodendrocytes (Nomoto et al., 2003). In addition, Tmem132d 

mRNA was observed in the human pancreas, testis and lungs (Nomoto et al., 2003). However, 

another preliminary study shows that TMEM132D is a putative cell adhesion molecule and its 

colocalization with actin and neuronal markers may imply their role in neuronal sprouting (Walser 

et al., 2011). In mice, Tmem132d is located on chromosome 5 and the primary amino acid 

sequence of TMEM132D is highly conserved with more than 80% sequence identity across 

humans, rats and mice. 

In a genome-wide association study, a haplotype containing two intronic SNPs rs7309727 and 

rs11060369 in the human Tmem132d were associated with panic disorder, and three other 

SNPs were associated with severity of anxiety symptoms in German patients (Erhardt et al., 

2011). The two intronic SNPs were further replicated in additional samples of panic disorder 

patients and subsequent meta-analysis (Erhardt et al., 2012). These risk genotypes were 

associated with higher Tmem132d mRNA in the frontal cortex of panic disorder and unipolar 

depressed patients (Erhardt et al., 2011). In addition, next generation sequencing of Tmem132d 

revealed an overrepresentation of rare variants in healthy controls as compared to panic 

disorder patients, thus suggesting that rare variants decreasing the functionality of the 

corresponding gene might have a protective effect (Quast et al., 2012). Furthermore, a recent 
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study by (Sämann et al., 2012) who used functional magnetic resonance imaging (fMRI) to study 

the genotype-dependent connectivity in healthy individuals found that rs7309727 risk allele 

carriers have a lower whole brain connectivity in the ventromedial prefrontal cortex.  In addition, 

Tmem132d has been identified as a candidate gene in children with attention-deficit 

hyperactivity disorder (ADHD) (Mick et al., 2011). On the other hand, in the mHAB vs. mLAB and 

the corresponding F2 panel obtained by cross-mating F1 offspring among each other, 

Tmem132d mRNA expression and a corresponding SNP were associated with anxiety-related 

behavior in the anterior cingulate cortex, central to the processing of anxiety/fear-related stimuli 

(Erhardt et al., 2011). Likewise a Tmem132d SNP in outbred CD-1 mice has been associated 

with exploratory behavior in the LD box test (Czibere, personal communication). 

 

1.16 Aims of the present thesis 

1. To study the behavioral and molecular architecture of a novel candidate gene, 

NPS/NPSR1 in anxiety-related behavior. 

The anxiolytic and fear attenuating effects of NPS was first confirmed in HAB rodents by central 

administration. Similarly, central administration of NPSR1-A (antagonist) was found to cause 

higher anxiety in LAB rodents. This encouraged me to study the molecular basis of NPS 

mediated anxiety-related behavior. 

Thus I measured basal Nps and Npsr1 mRNA expression by qPCR in selective brain regions of 

HAB vs. LAB, implicated in anxiety-related behavior and NPS synthesis. This was followed by 

sequencing of Npsr1 and Nps gene to determine polymorphisms that might underlie differential 

expression of the gene. The expression of any gene can be modulated by different trans-acting 

factors like synaptic input or chromatin modifications impinging on every cell of HAB or LAB 

animal. Thus, I took advantage of HAB vs. LAB crosses to analyze the differential pattern of 

Npsr1 mRNA alleles in the same cell, wherein each allele acts as an internal standard for the 

other. This method allows differential expression to be pinpointed on the cis-acting variations as 

the expression of alleles is studied in the same pool of trans-acting factors. Then to assess the 

molecular and functional differences, techniques such as in vitro promoter assays, protein 

qualitative assays and Western blots were utilized. Npsr1 mRNA expression was also studied in 

mHAB, mLAB subjected to EE and UCMS, respectively to determine its plasticity.  
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2. To study the behavioral and molecular underpinnings of a second novel candidate gene, 

Tmem132d implicated in anxiety-related behavior. 

Earlier studies from our group have shown higher expression of Tmem132d gene in the 

cingulate cortex of mHAB in contrast to mLAB. Also, two polymorphisms were found in the 

corresponding promoter region. Here, I again utilized in vitro promoter assays to explain the 

observed differential in vivo Tmem132d expression in mHABs vs. mLABs. The presence of a 

CpG island in the Tmem132d promoter region prompted me to do bisulfite sequencing in search 

of additional factors underlying differential expression. The plastic nature of the gene was also 

studied in mHAB, mLAB subjected to EE and UCMS, respectively. To study GXE interactions 

and negate the confounding trans-acting factors, mHAB vs. mLAB crosses were subjugated to 

EE and UCMS and their corresponding effects on anxiety-related and comorbid depression-like 

behavior analyzed. Subsequently, Tmem132d mRNA alleles were studied via qPCR in these 

animals. Methylation specific PCR was utilized to determine the epigenetic factors mediating the 

plastic nature of the Tmem132d gene. 
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2.0 Materials and methods 

 

2.1Animals                                                                                                                               

Adult HAB, LAB rats and mice selectively bred based on performance in EPM over more than 25 

generations were utilized for these studies. Rats and mice were housed in groups of four, until 

undergoing surgical procedures or one week before tissue harvesting, when they were single-

housed. Similarly, F1 offspring of both rat and mice were obtained by cross-mating of HAB 

mothers with LAB fathers and vice versa to rule out any imprinting effects. Animals were 

maintained on a 12-h light/dark cycle (lights on at 06:00 a.m. (rats) and 08:00 a.m. (mice)) in a 

temperature controlled colony (21-23°C, 55 % humidity). The animals had free access to food 

and water. All experimental procedures were performed in the morning (08:30 – 11:30) and 

conducted in accordance with the National Institutes of Health Guide for the care and use of 

laboratory animals and the approval of the local governments of the Oberpfalz and Oberbayern. 

 

2.2 Behavioral testing of HAB, LAB and F1 offspring of rats and mice 

The primary testing for the selection of experimental HAB, LAB and F1 offspring of rats and mice 

was performed on the EPM at the age of 9 and 7 weeks, respectively, as follows. 

 

2.2.1 Elevated plus-maze                                                                                                                       

The EPM was utilized to test anxiety-related behavior in both rats and mice. The 5 minute test 

was carried out on a plus-shaped maze, which was elevated (rats: 70 cm; mice: 37 cm) from the 

ground consisting of two closed arms (rats: 50 x 10 x 40 cm; 25-30 Lux; mice: 30 x 5 x 15 cm; 10 

Lux) and two open arms (rats: 50 x 10 cm; 90-100 Lux; mice: 30 x 5 cm; 300 Lux) joined by a 

central neutral zone (rats. 10 x 10 cm; mice: 5 x 5 cm). A camera above the maze allowed 

assessment of behavior.  The test commenced by placing the animal in the neutral zone facing a 

closed arm, and the percentage time spent on the open arms, as an anxiety index, was 

determined by an observer blind to treatment.  The number of closed arm entries (rats) or total 

distance travelled (mice; Any-maze 4.82; Stoelting co., Illinois, USA) was determined as an 

indicator of locomotor activity. Only rats spending less than 10 % and more than 35 % of their 

time on the open arms, and only mice spending less than 15% and more than 55% of their time 

on the open arms of the EPM were considered for experimental use as HAB or LAB animals, 

respectively.  
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2.2.2 Surgical and drug infusion procedures  

To assess the effects of intracerebroventricular (icv) NPS and D-Cys(tBu)5-NPS (an NPSR1 

antagonist [NPSR1-A] (Camarda et al., 2009)) infusion on anxiety-related  behavior of HAB and 

LAB, respectively, rats and mice were fixed in a stereotaxic apparatus and implanted with an 

indwelling guide cannula using isoflurane anaesthesia under semi-sterile conditions as 

previously described (Kessler et al., 2010; Slattery & Neumann, 2010). Briefly, a guide cannula 

(rat: 21-gauge, 12 mm long; mice 23-gauge, 8 mm long) was implanted 2 or 1.5 mm above the 

right lateral ventricle (rat: AP: -1.0 mm from bregma; ML: +1.6 mm; DV: +1.8 mm (Paxinos & 

Watson, 1998); mice. AP: -0.3 mm; ML: +1.1 mm; DV: +1.6 mm) (Franklin & Paxinos, 2007), and 

anchored to two stainless-steel skull screws using dental acrylic.   

Animals were allowed to recover for at least 7 days before undergoing behavioral testing. In rat 

studies, vehicle (5 µl; Ringer’s solution, pH 7.4, B. Braun Melsungen AG, Melsungen, Germany), 

NPS (0.1 – 1 nmol/5 µl, Bachem GmbH, Weil am Rhein, Germany) or NPSR1-A; 10 nmol/5 µl,) 

were infused icv acutely prior to the behavioral testing (45 min prior to the EPM) via an 28 g-

infusion cannula, which extended 2 mm beyond the tip of the guide cannula, attached via 

polyethylene tubing to a 5 µl Hamilton syringe.  In mice, vehicle (2 µl; Ringer’s solution, pH 7.4, 

B. Braun Melsungen AG, Melsungen, Germany) or NPS (1 nmol/2 µl, Bachem GmbH, Weil am 

Rhein, Germany) were infused icv 25 min before behavioral testing via a 30 g-cannula.   

 

2.2.3 mHAB vs. mLAB crosses for GXE interaction studies 

Another cohort of F1 offspring from mHAB vs. mLAB crosses and vice versa were left with 

mother in the cage from postnatal day (PND) 1 to PND 15. Subsequently, the F1 offspring were 

divided into three groups, each for UCMS, EE and a control group. For EE, the size and 

complexity of cage was enhanced by providing more nesting material such as wood chips, insets 

for climbing (ladder) or hiding (tube), raised platform and group housing with three animals per 

cage over a total period of 27 days (Markt, 2012) as these improved conditions have been 

shown to have dramatic effects on physiology and behavior of animal as shown by increased 

exploration, locomotion, foraging and more positive social interactions and less agonistic 

behavior (Baumans, 2005; Olsson & Dahlborn, 2002). On the other hand, for UCMS, F1 

offspring at PND 15 were subjected to different types of stressors like wet bedding, cage tilting, 

stroboscopic light illumination, inversion of the light/dark cycle, etc., over the same time period 

as EE to elicit anxiety and depression-like behavior (Markt et al., (submitted); Mineur et al., 

2006). After this, behavioral testing was carried out using EPM, LD box, TST and FST. The EPM 

was carried out as described above. 
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2.2.4 Light-dark box test 

The LD box test was carried out for 5 minute to measure percent time, distance travelled in the 

light compartment and entries, latency to enter the light compartment (Hascoët & Bourin 2009). 

The LD box was composed of  a dark (16 x 27 x 27 cm) and light compartment (32 x 27 x 27 cm) 

illuminated with 400 Lux and <20 Lux, respectively. 

 

2.2.5 Tail suspension test 

The mouse was suspended by its tail to a bar that was 35 cm above the ground. The mouse 

behavior was videotaped during the 6 minute trial and the duration of total immobility was 

scored. 

 

2.2.6 Forced swim test 

The FST was performed for 6 minutes by placing the mouse in a glass beaker filled with 2 liters 

of water at room temperature (22.5±1 °C). The dimensions of the beaker were 13.5 cm 

(diameter) and 28 cm (height). During the trial the mouse tail did not touch the floor of the 

cylinder and sight barriers prevented its distraction. Parameters such as total amount and 

percent time spent immobile were measured. All behavioral tests were videotaped and analyzed 

by Any-maze 4.82 (Stoelting co., Illinois, USA) or Eventlog 1.0 (EMCO software, Devon, UK). 

Further details on rat EPM test and all the other mouse behavioral tests are available here 

(Hascoët & Bourin 2009; Kromer et al., 2005; Neumann et al., 2010)      

 

2.3 Determination of Npsr1, Nps and Tmem132d mRNA expression levels 

Male and female rats and mice were sacrificed under basal conditions and brief 20-sec 

isoflurane (Curamed Pharma GmbH, Karlsruhe, Germany) anaesthesia, the brains snap-frozen 

in 2-methylbutane (Carl Roth GmbH & Co. KG, Karlsruhe, Germany), stored at -80°C, and 3 x 

200 µm PVN-targeted, 3 x 200 µm basolateral amygdala-targeted, 5 x 200 µm LC-targeted and 

6 x 200 µm cingulate cortex (Cg)-targeted sections were mounted on slides with the aid of 

histological staining and atlases (Franklin & Paxinos, 2007; Paxinos & Watson, 1998). Frozen 

tissue punches of 1.8 mm inner diameter (rats) and 0.8 mm (mice; Fine Science Tools, 

Heidelberg, Germany) from the PVN, basolateral amygdala, LC area and Cg were harvested. 

 

 

2.3.1 Quantitative PCR (qPCR) to measure mRNA expression 

Total RNA was separately extracted from PVN, amygdala, LC area or Cg punches in rats and 

mice, kept frozen at -80°C as described here. To homogenize the tissue punches, 300 µl of 
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precooled TRI® (Sigma-Aldrich GmbH, Munich, Germany) and 30 µl nuclease-free water was 

added to each tube and mixed up and down at least 40X with a 200 µl pipette tip. Subsequently, 

1 µl linear acrylamide as a coprecipitant (Life technologies, Darmstadt, Germany) and 60 µl 

chloroform which helps to remove phenol (Sigma-Aldrich GmbH, Munich, Germany) were added 

and vortexed for 30 sec. Then centrifuged for 5 minutes at 180C at 13000 rpm and the upper 

aqueous phase containing total RNA was transferred to a clean Eppendorf tube. Equal volume 

of isopropanol (Carl Roth GmbH & Co. KG, Karlsruhe, Germany) was added and the tube was 

left to precipitate overnight at -200C. 

Next day, the tubes were centrifuged at 13 000 rpm at 40C for 30 minutes to pellet the total 

RNA., the supernatant was removed and the RNA pellet was washed twice with ice cold 70 % 

ethanol. Then the supernatant was removed and pellet dried in a heated block at 500C for 5 

minutes with open lids. Finally, the pellet was redissolved in the required volume of nuclease-

free water and heated at 950C for 5 minutes before proceeding for cDNA conversion. For cDNA 

conversion, we utilized the High Capacity cDNA Reverse Transcription Kit (Life technologies, 

Darmstadt, Germany) and followed the manufacturer’s instructions. For qPCR, QuantiFastSYBR 

Green Kit (Qiagen, Hilden, Germany) was utilized and based on the manufacturer’s instructions, 

a master mix was prepared  with each sample carrying 1 µl of nuclease-free water, 1 µl of the 10 

µM respective forward and reverse primers and 5 µl  QuantiFastSYBR Green reagent and then 

2 µl of cDNA was utilized. 

The qPCR was performed on Light Cycler 2.0 equipment (Roche Diagnostics, Mannheim, 

Germany) using the following PCR conditions: Hot start to activate polymerase at 950C for 5 

min, amplification with 40 cycles (X) (Denaturation at 950C for 10 sec, Combined annealing and 

extension at 600C for 30 sec) and melting curve 1X (950C, 500C for 10 sec and 950C) and then 

cooling (420C for 30 sec). Experiments were performed in duplicates and every run included a 

1:5 and 1:25 diluted sample to generate a standard curve as well as a negative control. The 

primers used are indicated in Tables 1 and 2 for rats and mice, respectively. Relative transcript 

concentrations were calculated using the  method (Livak & Schmittgen, 2001).  
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Table 1: List of primers used for mRNA expression studies in the mHAB and mLAB. 
Gene Orientation Primer sequence (5’3’)
Housekeeping 
genes 

  

Rpl13a (+) CACTCTGGAGGAGAAACGGAAGG 
Rpl13a (-) GCAGGCATGAGGCAAACAGTC 
B2mg (+) CTATATCCTGGCTCACACTG 
B2mg (-) CATCATGATGCTTGATCACA 

Target genes   
Nps (+) TGGTGTTATCCGGTCCTCTC 
Nps (-) GGACCTTTTCATCGATGTCT 
Npsr1 (+) CTCTTCACTGAGGTGGGCTC 
Npsr1 (-) CCAGTGCTTCAGTGAACGTC 
Tmem132d (+) CATCCCTTCTTCAGCCAGAG 
Tmem132d (-) AGTGAGAACCGCTGAATGCT 

 

 

Table 2: List of primers used for mRNA expression studies in the rHAB and rLAB. 

Gene Orientation Primer sequence (5’3’)
Target and housekeeping genes for rat Nps measurements
Polr2b (+) GAAGCCAGGTTAAGAAATCTC 
Polr2b (-) GACACTCATTCAGCTCACAC 
Gapdh (+) TGGAGTCTACTGGCGTCTT 
Gapdh (-) TGTCATATTTCTCGTGGTTCA 
Actb (+) GGCACCACCATGTACCCAGGC 
Actb (-) CGATGGAGGGGCCGGACTCA 
Nps (+) ATCTTAGCTCTGTCGCTGTC 
Nps (-) CGACGTCTTCTCCAAAATTG 
Target and housekeeping genes for rat Npsr1 measurements 
18srRNA (+) ACGGACCAGAGCGAAAGCAT 
18srRNA (-) TGTCAATCCTGTCCGTGTCC 
Actb (+) TGTCACCAACTGGGACGATA 
Actb (-) GGGGTGTTGAAGGTCTCAAA 
CycA (+) AGCACTGGGGAGAAAGGATT 
CycA (-) AGCCACTCAGTCTTGGCAGT 
Gapdh (+) TCACCACCATGGAGAAGGC 
Gapdh (-) GCTAAGCAGTTGGTGGTGCA 
Hmbs (+) TCCTGGCTTTACCATTGGAG 
Hmbs (-) TGAATTCCAGGTGAGGGAAC 
Hprt1 (+) GCAGACTTTGCTTTCCTTGG 
Hprt1 (-) CGAGAGGTCCTTTTCACCAG 
Rpl13a (+) ACAAGAAAAAGCGGATGGTG 
Rpl13a (-) TTCCGGTAATGGATCTTTGC 
Ywhaz (+) TTGAGCAGAAGACGGAAGGT 
Ywhaz (-) GAAGCATTGGGGATCAAGAA 
Npsr1 (+) CTGTTCTCCATCCCCACACT 
Npsr1 (-) GCAGTTGGAAATCACCGTCT 
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2.4 PCR amplification of the Nps and Npsr1 gene products 

Genomic DNA was extracted from cerebellar tissue or tail tips of HAB and LAB rodents using the 

NucleoSpin Tissue Kit (Macherey-Nagel GmbH & Co., Düren, Germany) as per manufacturer’s 

instructions. Then, NCBI/Primer-BLAST was used to design sequencing primers for the ten 

exons and approximately 2,000 bp promoter region of the rat and mouse Nps and Npsr1 gene 

(Sigma-Aldrich GmbH, Munich, Germany). The Npsr1 and Nps DNA fragments were amplified 

using Taq-polymerase (see Tables 3 – 6 for a list of the primers used; Fermentas, St. LeonRot, 

Germany) as follows:2.5 µl of 10X PCR buffer containing (NH4)2SO4, 1.5 µl of 10 mM dNTP mix, 

1.5 µl of 2 µM respective forward and reverse primers, 3 µl of 25 mM MgCl2, 1 µl of Taq 

polymerase (1 U/µl), 1 µl DNA and nuclease-free water up to 25 µl. The PCR conditions were as 

follows: Initial denaturation at 95°C for 5 min, 35X (denaturation at 95°C for 1 min, annealing at 

(52-60)°C for 1 min, extension at 72°C for 1 min), Final extension at 72°C for 10 min and 4°C 

overnight.  

 

2.4.1 Cycle sequencing of the Npsr1 and Nps gene products 

15 µl of PCR product was loaded onto Nucleofast 96 PCR clean-up plate (Macherey-Nagel 

GmbH & Co., Düren, Germany). Then 100 µl nuclease-free water was added to each well and 

the plate centrifuged at 4500 g for 10 minutes at room temperature. This was repeated two 

times. Then the samples were resolved in 25 µl nuclease-free water on a shaker for 10 minutes. 

Subsequently, BigDye Terminator kit v3.1 (Applied Biosystems, California, USA) was utilized for 

sequencing reaction as follows per sample: 

1.2 µl sequencing buffer (5X), 0.4 µl BigDye reagent, 1 µl corresponding forward or reverse 

primer (2 µM) and 2.4 µl of cleaned PCR product were subjected to the following PCR 

conditions: Initial denaturation at 96°C for 1 min, 35X (denaturation at 96°C for 10 sec, annealing 

at 50°C for 5 sec and extension at 60°C for 4 min). Then the reaction mixture was loaded onto 

Montage Seq 96 plate (Millipore GmbH, Schwalbach, Germany) and washed twice with 20 µl 

Montage injection solution (Millipore GmbH, Schwalbach, Germany). Finally the PCR product 

was dissolved in 20 µl injection solution and then resolved by capillary electrophoresis on a ABI 

3730 DNA analyzer (Life technologies, Darmstadt, Germany) at the Helmholtz Zentrum’s 

Institute of Human Genetics (Neuherberg, Germany).  
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Table 3: List of primers used for sequencing of the rat Npsr1 gene with location and 
exons/promoter/downstream enhancing region (DER) the primers hybridized to. 
Sequential 
order 

Location Orientation Primer sequence (5’3’) 

1 Intron1 (+) GGTGAGCAATAGCCAGAAGC 

1 Intron2 (-) CAGAATTTAAAGCCAGGGCA 

2 Intron2 (+) GCGCAAGTGACTGTGTCATC 

2 Intron3 (-) CTTCTCTCCCGCTGGTACTG 

3 Intron3 (+) TCCATGCCTCACTTTTCCTC 

3 Intron4 (-) AGCTAGGGAGAAAGGCGTGT 

4 Intron4 (+) AGCCCAGATCTGCTTCCAGT 

4 Intron5 (-) ATGGCGTGAGGATCAGGTAG 

5 Intron5 (+) GTCCTAGTGACTCCCAGCCA 

5 Intron6 (+) GTTCCCACAAGGAGTTTGGA 

6 Intron6 (-) TGGCACCTTCAGTATGAGCA 

6 Intron7 (+) CCAGATACCCCTATTTCCAGC 

7 Intron7 (-) AGCCGCCACTAATCCATCTT 

7 Intron8 (+) ACACTCCTTCCCTGCATGTC 

8 Intron8 (+) AAGAGGGATGCTTCTGGTGA 

8 Intron9 (-) GAGCATTGGGAGCACAACTT 

9 Intron9 (+) TGGAGGAAGAGGTCCAGTTG 

9 Exon10 (-) ATGGTGAAGGTCTGGGTGAG 

10 Exon10 (+) CTCTCCAAGCCTGAATTCATC 

10 Exon10 (-) CTAACATCTTCTCCTCCACATG 

11 Exon10 (+) GGAGGACAACAAAGGTTAGAC 

11 Exon10 (-) ATAAGACCAGCACTTCCTTG 

12 Exon10 (+) AAATAGTGATAGACCCTGGC 

12 Exon10 (-) ACATGTTAACGACTGAACGA 

13 Exon10 (+) CCCACAGCCCTATGACGCACG 

13 Exon10 (-) TGCTAGCTAGGACACCCGCCA 

14 Exon10 (+) GCTGACGGCTCGTTCAGTCG 

14 Exon10 (-) AGGGGATGGTGTCGGCATGTG 

15 Exon10 (+) ACAGGACTGGTGCTGAAATCGC 

15 Exon10 (-) ACTTCAACATCCTCTGCTACACTGC 

16 Exon10 (+) GTCCTATGATGCTGGATGAATCATGC 

16 Exon10 (-) CCTGAAAGGAGAGGATCTTTCGCCA 

17 Exon10 (+) GGTGCCCACCTTCCACACCAAGATG 

17 DER (-) GGCCATCAGACGTGTGGCTTCC 

18 DER (+) CCAGCTTCATAGAGACAGCTCTGC 

18 DER (-) ACCCCCATTCTCCCACCCCAC 

19 DER (+) TCATTATCCACAACAGGGCTGGACC 

19 DER (-) ATGGCCTGCAAGGCTAAGGCG 

20 DER (+) CAGCACTTGGGAGACAGAGA 

20 DER (-) TGCTGAGCTAAATGTCAAAG 

-1 Promoter (+) AGACAAACACAGACCCCTGC 

-1 Intron1 (-) GAGTTCAGTTAGCCAGGGCA 

-2 Promoter (+) TGTCATGTCGAAACCCTTCA 

-2 Promoter (-) CAGCTGAGATCGCTTTTGTCT 

-3 Promoter (+) GTCAGCAGCTTCTGTGCATC 

-3 Promoter (-) AAGGGGTATGTCCCAGGAAG 

-4 Promoter (+) TGCACCCATTTTTAGTTCCC 

-4 Promoter (-) AGGGGTATGTCCCAGGAAGT 
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Table 3 continued: List of primers used for sequencing of the rat Npsr1 gene with location and 
exons/promoter/downstream enhancing region (DER) the primers hybridized to. 
Sequential 
order 

Location Orientation Primer sequence (5’3’) 

-5 Promoter (+) GATCCTACTTTGGGCCTGTCG 

-5 Promoter (-) GAAGATGCTCAACCACATTATTAGC 

-6 Promoter (+) GTCCACCCCTGAGAGTTCCAG 

-6 Promoter (-) CAGGGCATCAAGTGAGGGCATC 

-7 Promoter (+) GGTGTGGATTTGTGAGGGAGGT 

-7 Promoter (-) GTTCAGTCAGGGAAGATGCATC 

 
 

Table 4: List of primers used for sequencing of the mouse Nps gene with location and 
exons/promoter/downstream enhancing region (DER). 
Sequential 
order 

Location Orientation Primer sequence (5’3’) 

-4 Promoter (+) CCAGGCTTCCAGCTTGGCAC 

-4 Promoter (-) GCTGCTATTGCTGCTGTTTCTGAAG 

-3 Promoter (+) GGGTATCTTTGCCCTCCAAAAGGTG 
-3 Promoter (-) GGCAATCTGTTGTCACTGGTCCCTG 
-2 Promoter (+) TCCCTGCTCAACACCCCAAACC 
-2 Promoter (-) ACTGGTTGGCCTGGCTGTGG 
-1 Promoter (+) GAGGCTCCTGGCCACCCATG 
-1 Intron2 (-) GGGCCCTCCACCATCCTGATCA 
1 Promoter (+) TGGCAAGCTCTGAGTGAAGTCAACC 
1 Intron2 (-) TTTGGGCCCTCCACCATCCTGA 
2 Promoter,E

xon1 
(+) CCCATCTGCGCAGGTCTCGG 

2 Intron2 (-) TCCACTGTGCGGGTTTTTGGT 
3 Promoter,E

xon1 
(+) CATCTGCGCAGGTCTCGG 

3 Intron2 (-) CCAGAGTTACCTACTGTCACATAC 
4 Intron2 (+) AGCCGGTGGTAGCCCTACACT 
4 Exon3 (-) ACTCTGAGCCCGTTAGGAGAAGGG 
5 Exon3 (+) CCTTTCGCAACGGAGTCGGCT 
5 Exon3 (-) CGAGCCCTTGCTGCAGGTACC 
6 Exon3 (+) GTGCCACCAAGTGCAGTGGC 
6 DER (-) GCTGGTGACCAAGGACAGGGT 
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Table 5: List of primers used for sequencing of the mouse Npsr1 gene with location and 
exons/promoter/downstream enhancing region (DER). 
Sequential 
order 

Location Orientation Primer sequence (5’3’) 

-7 Promoter (+) GCAGAGGAGACCACACTGGCG 
-7 Promoter (-) GCCTGACGACAAGGAAGATCCACG 
-6 Promoter (+) TTGTCATCTCCTGTCTGTGCCCCT 
-6 Promoter (-) CGCCAGTGTGGTCTCCTCTGC 
-5 Promoter (+) TGCAGCGTAATGAACACCCCCA 
-5 Promoter (-) GTAGGCCAACCTTTGCTTTACTGCC 
-4 Promoter (+) CTGTATGTGCAAATGTGTGTC 

-4 Promoter (-) GGAGAGCAGAATGTCATGAG 
-3 Promoter (+) AAGCCCTCATCTCTAACCTG 

-3 Promoter (-) TCATGGTTTCCCCTCCTCCA 

-2 Promoter (+) GGGCAAACAAACACTATTGATC 

-2 Promoter (-) ACATCCCCTAAATACCACTGAGT 
-1 Promoter (+) CACCTACAAACTTTTCCATC 

-1 Promoter (-) AATCTCCACATTTCCCTGAG 

1 Promoter (+) GGGCAGGTCTGTGGGATGGTG 
1 Intron2 (-) GCCTCCCTAGCAGCAGCTAAGACT 

2 Intron2 (+) CCTGGGCATTTGCTGGGCGG 

2 Intron3 (-) TGTGAGGACACTGAAGGTGGCA 
3 Intron3 (+) AGCAAGCCCTCTCCTGGGACC 

3 Intron4 (-) AAGGAGTGTCTGATTGTGCAGGAGC 

4 Intron4 (+) CTGCTTCCAGCAGGGAGGGC 

4 Intron5 (-) TGGGGTGAGGATCAGGCAGCA 
5 Intron5 (+) AGGTAGGTGGGCCTGCACCC 

5 Intron6 (-) AAGCAGGGTCCAGCCCGTGG 

6 Intron6 (+) CAAGCAGAGCTGTCAAGGATGGT 
6 Intron7 (-) GCTTTCAGGGAGGCCGAGTGG 

7 Intron7 (+) TGGGCATTTGCATTGGGTTGC 

7 Intron8 (-) TGGCTCTTGCAGCAGTCAAACAC 

8 Intron8 (+) TGTTAGCACACCCAAGGCCAC 
8 Intron9 (-) GGAAGTGTACGGAGGTTCGCAGC 

9 Intron9 (+) ACTGTCCACTAGGCTGTGATGGC 

9 Exon10 (-) TGCAGGTGCTGGGCTAACGG 
10 Exon10 (+) TGCCACCTGCAATTCACGCAC 

10 Exon10 (-) TGTGCCTGCATGGTGTCCTTGT 

11 Exon10 (+) AGCAAGAGCAAACTCCCAAGCA 
11 Exon10 (-) GCATCATAGGGCTGTGGGTGG 

12 Exon10 (+) GGCACCTCTGGCACCTCTGC 

12 Exon10 (-) CCACCATGACCTTAAGCAGGCAGTC 

13 Exon10 (+) TGGCTGACTGCTGGTTGAGTCG 
13 Exon10 (-) CAAGGGCCTGGGCCTCCTGT 

14 Exon10 (+) AGCAAGCAGAAGCATTGAGTGGC 

14 Exon10 (-) GTGGTGCCCAGAGACACAGCA 
15 Exon10 (+) GCCATCTATGCAGAACTTGCTCTACG 

15 Exon10 (-) AACACATTTGCCCGATCAGCCT 

16 Exon10 (+) AGGTGCCTACCTTCCACACCAAG 
16 DER (-) GGCTGTCAAATGTGCAGCTTCCCT 
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Table 6: List of primers used for sequencing of the rat Nps gene with location and 
exons/introns/promoter/downstream enhancing region (DER) the primers hybridized to. 
Sequential 
order 

Location Orientation Primer sequence (5’3’) 

1 Promoter (+) CCCCTGGCCACCCATGTCAC 

1 Exon2, 
Intron2 

(-) AGCCGTGAAGCCCTTACCTTGGA 

2 Promoter (+) GCAGGCTCAGACAGCGAGCG 
2 Intron2 (-) GAAACAGCCATTTCCATGTGCAGG 
3 Intron2 (+) TCAGGATGGTGGAGTGCCCAA 
3 Intron2 (-) GCTCATGGCATAGGAGCAAGGACA 
4 Intron2 (+) AAATGATTGCCTTTCTTCGGGGGT 
4 Intron2 (-) ACACCACCTTGTGGCCCAGGA 
5 Intron2 (+) TCCAAGTGGCAACTCCTGCAAGC 
5 Intron2 (-) AGGCAGCACCATCGCTCACC 
6 Intron2 (+) TGTCCCTAAAGGTTTGCTCACCGC 
6 Intron2 (-) ACTGCCCATTTTAAGTCTTGAGCCACC 
7 Intron2 (+) AGTGGCCTCTGGGAAGAGTGG 
7 Intron2 (-) GCCCTGGCTGAGTGAATGACTGG 
8 Intron2 (+) TGCACATCTTCTTTCCTCCAGAGCCA 
8 Intron2 (-) GCCTCCGATGGGAGCTGCTG 
9 Intron2 (+) TCCCAACCCCCAAACAGAGCG 
9 Intron2 (-) ACCGGGCCAAAGGAACCTGC 
10 Intron2 (+) TGGCTCTGGCGCTTGGCTTC 
10 Intron2 (-) AGCCCTAGGTTTAGCCCCCAGC 

11 Intron2 (+) CGGCCTGCCCATGCACACTTA 
11 Exon3 (-) GCCTGGCTGGGCAGGTACTC 
12 Intron2 (+) GCTGTGTTTCAGTGATGTTTCTCCCCA 
12 DER (-) GGCGGAAGTTTGAGACAGGTTTGC 
13 Exon3 (+) ACGGAGTCGGCTCAGGGGTG 
13 DER (-) CGCTGGCGATCCCTTGCTGC 
14 DER (+) ACGACGCGTGGGCGTTTCTAC 
14 DER (-) TGACCTGGCAGGGACAGCGA 
15 DER (+) CCTGGGTCTGTTTCTCCCCCTC 
15 DER (-) CTGGAAGCTGGTGCCAAGGATAC 
-6 Promoter (+) GGAGCTGCAGGCAAAGCCTCA 
-6 Promoter (-) ACCCAAACCAAGGTTCCTCACCA 
-5 Promoter (+) GATACAGCAAACAGGAGGGA 

-5 Promoter (-) TCTCCAAAGAACAGAGCTCC 

-4 Promoter (+) CAAGAAGAAGGGAAGTGATGTGGCA 
-4 Promoter (-) AGGACAAGGAGGTGACCCAGCT 
-3 Promoter (+) CCCAGGCTTCCAGCTTGGCA 
-3 Promoter (-) CGGCAGAGGAAAACGTCAGAGGG 
-2 Promoter (+) CGGATCCTTGTGCTTGCATGGC 
-2 Promoter (-) GGCCAGGGGCCTCCAAAGGA 
-1 Promoter (+) CAGCCCTGTCAGCCTGCATCA 
-1 Intron1 (-) AGGACCTTGGGTGGGATCTCACAC 
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2.5 Copy number variation (CNV) measurement of Nps and Npsr1 

To determine if CNV plays any role in differential regulation, genomic DNA was also used to 

measure corresponding gene copies using qPCR. The corresponding primers are listed in Table 

7. 

Table 7: List of primers used for the measurement of CNV of Nps and Npsr1. 
Species, gene Orientation Primersequence(5’3’) 
Rat, Npsr1 (+) GCTGCTGCTGCCCTGGCTAA 

Rat, Npsr1 (-) GCCCTCTGTGAGGTTGGCCG 

Rat, Nps (+) AGCTCTGTCGCTGTCCGTGGT 

Rat, Nps (-) AGCCGTGAAGCCCTTACCTTGG 

Rat, Gapdh (+) CGTGTGTAGCGGGCTGCTGT 

Rat, Gapdh (-) CCAGGCGTCCGATACGGCCA 

Mouse, Npsr1 (+) CAGCTGCTGCCCCGGCTAAC 

Mouse, Npsr1 (-) GGTTGGCTGGCATGGCTCAGG 

Mouse, Nps (+) ACGTGCTTTGGTGTTATCCGGTCC 

Mouse, Nps (-) TTGGGCCCTCCACCATCCTGA 

Mouse, Gapdh (+) TCCCCCTATCAGTTCGGAGC 

Mouse, Gapdh (-) AGTAGCTGGGCCTCTCTCAT 

 

2.6 Bioinformatic analysis of DNA sequences 

Rat and mouse Nps and Npsr1 DNA sequences from at least three each HAB vs. LAB were 

analyzed using BioEdit V 7.0.2 (Hall, 1999) for polymorphisms. CpG island searcher (Takai & 

Jones, 2002, 2003) was utilized to search for CpG islands using default settings 

(http://cpgislands.usc.edu/): GC%: 55%, ObsCpG/ExpCpG: 0.65, length: 500 bp and gap 

between adjacent islands: 100 bp. CpG islands are usually prone to DNA methylation and they 

may play a role in differential regulation of the gene. Potential transcription factor binding sites 

on Npsr1 and Tmem132d promoter were predicted using the Transcription Element Search 

System (TESS) (http://www.cbil.upenn.edu/cgi-bin/tess/tess) (Schug, 2008) and PROMO 

database (http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3) (Farre 

et al., 2003; Messeguer et al., 2002). Genomic coordinates are based on genome builds 

RGSC3.4 (EnsEMBL release 68) for rats and Mm10 (GRCm38, EnsEMBL release 68) for mice. 

VISTA genome browser was used for Npsr1 comparative genome analysis (Dubchak et al., 

2000; Frazer et al., 2004).  

 

2.7 Measurement of allele expression imbalance (AEI)                                                                                 

In order to assess interactions between cis- and trans-acting factors, PVN and amygdala tissues 

were punched, as described above, from F1 offspring of crossed HAB vs.LAB rats or mice, 

respectively. Both crosses (i.e. HAB father or LAB father) were performed to rule out any 

imprinting-based effects. Study of HAB and LAB alleles in the F1 offspring is a unique approach 
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where each allele acts as an internal standard for the other allele. Cross-mating of HAB and LAB 

would result in presence of both alleles in the same pool of trans-acting factors such as synaptic 

input, chromatin remodeling, factors encoded by other chromosomes, hormonal influences, etc. 

Thus any difference in allelic expression in such a system can be solely attributed to cis-acting 

variations present in the regulatory regions of the gene. Total RNA was isolated and the 

converted cDNA was used to quantify HAB and LAB alleles by qPCR as described above. The 

primers used to differentiate between the Npsr1 HAB and LAB alleles were obtained by 

incorporating the observed transcribed SNPs between the rat (A(227,016)G) and mouse 

(A(156,453)G; rs37572071) lines (Table 8) at the 3’ end of the respective primers and a 

mismatch nucleotide at penultimate position to favor allelic discrimination and a common primer 

(Figure 4).  

 
Figure 4: Schematic diagram showing cross-mated F1 offspring carrying half each of HAB, LAB 
chromosomal DNA and representative transcription factors. However, sometimes due to 
regulatory factors, there could be an allele expression imbalance, which can be detected using 
allele specific primer by incorporating respective SNP and a mismatch nucleotide at penultimate 
position. 
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A standard curve (linear regression line) was generated by making predefined mixtures of 

homozygous HAB vs. LAB cDNA in the ratio of 1:9, 5:5, 3:7 and 9:1. Then the crossing points 

(Cps) obtained from the test samples were plotted on the standard curves to obtain percentage 

of respective alleles.  

Similarly, for Tmem132d, Cg was punched from UCMS, EE and control group of F1 offspring 

and these were homogenized in 400 µl Chaotropic buffer (4.5 M Guanidinium thiocynate, 2% N-

laurylsarcosine, 50 mM EDTA, pH 8.0, 25 mM Tris-HCl, 0.1 M ß mercaptoethanol, 0.2% 

antifoam A) (Triant & Whitehead, 2009) and lysate was distributed equally for total RNA and 

DNA extraction using Qiagen’s  DNeasy Blood & Tissue Kit and RNeasy Plus Micro Kit (Qiagen 

GmbH, Hilden, Germany). For RNA extraction, 20 µl of 2 M sodium acetate (pH 4.0) was added 

to the homogenized 200 µl chaos buffer lysate, vortexed, 200 µl  acidic phenol (Carl Roth GmbH 

& Co. KG, Karlsruhe, Germany) prewarmed to room temperature, 100 µl of chloroform/isoamyl 

alcohol (23:1) (both from Sigma-Aldrich GmbH, Munich, Germany) were added to each sample. 

Then samples were incubated on ice for 10 min and centrifuged at 13200 rpm for 15 min at 40C. 

Subsequently, the upper aqueous phase was drawn out, mixed with 1 µl carrier RNA (20 ng/µl) 

and up to 350 µl of RLT plus buffer (Qiagen GmbH, Hilden, Germany). Later, the lysate was 

processed as given by manufacturer’s instructions. For the measurement of AEI, primers were 

designed using the following transcribed SNP, (C(593)T) in the mouse Tmem132d gene (Table 

8). 
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Table 8: List of primers used for measurement of AEI of HAB, LAB alleles in F1 offspring of rats and 
mice. 
 
Species, gene, 
specificity 

Orientation Primer sequence (5’3’) 

Rat, Npsr1, 
common 

(+) ACTGTGGCCAGACGACTCCT 

Rat, Npsr1, rHAB-
specific 

(-) CCTCGGTTGTAGCTGCAGCATATC 

Rat, Npsr1, rLAB-
specific 

(-) CCTCGGTTGTAGCTGCAGCATACT 

Mouse, Npsr1, 
common 

(+) GTGCTGTTCTCCACGTGCAG 
 

Mouse, Npsr1, 
mLAB-specific 

(-) TCAGGGGCCATGAAGTCTCGT 

Mouse, Npsr1, 
mHAB-specific 

(-) TCAGGGGCCATGAAGTCTCGC 

Mouse,Tmem132d, 
common 

(-) CTGATGAGCACGGGAGACCAGAG 

Mouse,Tmem132d, 
mHAB-specific 

(+) GCCCTGCTGCTCGGGTAT 

Mouse,Tmem132d, 
mLAB-specific 

(+) GCCCTGCTGCTCGGGTAC 

 
 

 

2.8 Bisulfite sequencing of mHAB vs. mLAB Tmem132d promoter region 

After having discovered a CpG island in Tmem132d promoter, genomic DNA was isolated from 

Cg of mHAB vs. mLAB to assess the corresponding DNA methylation using the Qiagen’s 

DNeasy protocol (Qiagen GmbH, Hilden, Germany). 400 ng of genomic DNA was sheared 5 

times with a 26 G needle (Josef Peske GmbH & Co. KG, Aindling-Arnhofen, Germany) and 

subjected to bisulfite conversion using the Qiagen’s EpiTect Bisulfite kit (Qiagen GmbH, Hilden, 

Germany) for 3 each HAB, LAB DNA sample from Cg as per manufacturer’s instructions. 

Bisulfite sequencing primers were designed using Methyl Primer Express v 1.0 Software (Life 

technologies, Darmstadt, Germany) to cover the whole approximately 600 bp CpG island 

upstream from the transcription start site. The primers were designed (Table 9) using the default 

parameters and finally tailed with M13 forward and reverse primers to provide a universal primer 

binding site. These universal primers contains all the four nucleotides and after first round of 

PCR amplification the longer primer binding site provides higher melting temperature and 

specificity of the product (Life technologies, Darmstadt, Germany, catalogue: cms_039258).  In 

addition, corresponding primers for genomic DNA tailed with M13 were also designed to check 

for any false positives due to incomplete bisulfite conversion. PCR composition and conditions 

were adapted from Invitrogen handbook (cms_039258: 
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http://tools.invitrogen.com/content/sfs/manuals/cms_039258.pdf) and are as follows: 5 µl of 

Dream Taq buffer (10X), 1 µl of 10 mM dNTP mix, 4 µl of 25 mM MgCl2, all from 

Thermoscientific GmbH, Bonn, Germany and 2.5 µl of each 5 µM primers, BSA-glycerol mix (5 

mg/ml BSA+5% glycerol), 5µl of bisulfite products and nuclease-free water up to 50µl. The 

following are PCR condition: 5X (denaturation at 95°C for 30 sec, annealing at 60°C for 2 min, 

extension at 72°C for 3 min), 35X (denaturation at 95°C for 30 sec, annealing at 65°C for 1 min, 

extension at 72°C for 3 min), 60°C for 60 min for poly A tail addition, 4°C overnight. 

Subsequently, the bisulfite products were purified using 1/10th volume of 3 M sodium acetate (pH 

5.2), 1 µl glycogen (10 mg/ml) and 2.5 volumes of 95% ethanol. Then the mixture was 

centrifuged at 13000 rpm for 30 min at 4°C, washed with 300 µl 70% ethanol, centrifuged for 5 

min again at 13000 rpm, 4°C. Then the supernatant was decanted, the dried pellet resuspended 

in nuclease-free water. Then products were ligated into a pGEM®-T vector (Promega GmbH, 

Mannheim, Germany) system for blue/white screening as per manufacturer’s instructions with 

insert:vector ratio (3:1) and mixture incubated overnight at 4°C. Next day, transformation of 

ligation product into chemically competent DH5alpha cells was carried out as follows: 10 min 

incubation of ligation mixture along with 50 µl DH5alpha cells on ice, then mixture was placed on 

a heating block at 42°C for 45 sec and immediately cooled down on ice for 2 min. After addition 

of 500 µl LB medium (20 g/l) (Serva electrophoresis GmbH, Heidelberg, Germany), the cells 

were incubated at 37°C for 90 min. Then the tubes were centrifuged at 1000 g for 10 min at 

room temperature, pellet was resuspended in minimum volume and whole cell suspension was 

plated to LB agar (1%) plates containing X-gal (20 mg/ml) and IPTG (100 mM) (Thermoscientific 

GmbH, Bonn, Germany), and ampicillin (50µg/ml, Sigma-Aldrich GmbH, Munich, Germany). 

Then white clones were picked and colony PCR carried out as follows: initial denaturation at 

94°C for 5 min, 5X (denaturation at 94°C for 30 sec, annealing at 56°C for 30 sec and extension 

at 72°C for 45 sec), 35X (denaturation at 94°C for 30 sec, annealing at 48°C for 30 sec and 

extension at 72°C for 45 sec) and a final extension at 72°C for 10 min and then 4°C overnight. 

Then all the positive clonal mixtures were loaded onto Nucleofast 96 plate (Macherey-Nagel 

GmbH & Co., Düren, Germany), washed twice with nuclease-free water and centrifuged at 4000 

rpm for 10 min, resuspended in 25 µl nuclease-free water and then T7 universal primer was 

used for cycle sequencing as described above in section 2.4.1. Subsequently, the cleaned PCR 

products were resolved by capillary electrophoresis on a ABI 3730 DNA analyzer (Life 

technologies, Darmstadt, Germany) at the Max Planck institute of Biochemistry (Martinsried, 

Munich, Germany). Furthermore, the bisulfite sequence reads were analyzed using BiQ 

Analyzer (Max-Planck-Institut Informatik, Saarbrücken, Germany). 
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2.9 Quantitative Methylation specific PCR (qMSP) for mHAB, mLAB Tmem132d alleles of 

F1 offspring 

Primers were designed to detect differential methylation of mHAB, mLAB Tmem132d alleles 

using selective SNPs, A(519)G and A(310)G at the 3’ and 5’ ends for forward and reverse 

primers, respectively (Table 9). In addition, there was a penultimate mismatch base and one 

CpG dinucleotide in the primer sequence. Genomic DNA fractions isolated from remaining chaos 

buffer homogenates of the Cg of F1 offspring were subjected to bisulfite conversion and 

purification as per manufacturer’s instructions. Then, QuantiFastSYBR Green Kit (Qiagen, 

Hilden, Germany) was utilized for qPCR on a Light Cycler 2.0 equipment (Roche Diagnostics, 

Mannheim, Germany) using a protocol adapted from the following (Chan et al., 2004): Hot start 

to activate polymerase at 94°C for 6 min, 38X (denaturation at 94°C for 30 sec, annealing at 

64°C for 25 sec and extension at 72°C for 25 sec). The melting curve analysis and relative 

transcript concentration measurements were as described above using 2(-ΔΔCt) method (Livak 

& Schmittgen, 2001). 

 

2.10 Promoter constructs, cell culture, transfection and reporter gene assay 

 

2.10.1 Amplification of promoter constructs and cloning them into pGL3 basic vector 

To assess the role of polymorphisms found in the putative Npsr1 promoter, homologous 

sequences up to 2 kbp upstream of Npsr1 sequence of HAB and LAB animals were amplified by 

PCR using Phusion DNA polymerase (New England Biolabs), which included exon 1, intron 1 

and a part of exon 2 until the ATG start codon as follows: 10 µl of 5X Phusion HF buffer, 1 µl of 

Table 9: List of primers used for bisulfite sequencing and qMSP of Tmem132d gene in mHAB 
vs. mLAB. 
Species, gene, designation Orientation Primer sequence (5’3’) 
Mouse,Tmem132d, M13 
tailed bisulfite 

(+) TGTAAAACGACGGCCAGTGGAGTGATGTTGGGTTTTT
TTT 

Mouse,Tmem132d, M13 
tailed bisulfite 

(-) CAGGAAACAGCTATGACCTTTTAAACCCCACCCTTCT
AAA 

Mouse,Tmem132d, M13 
tailed genomic DNA 

(+) TGTAAAACGACGGCCAGTGGAGTGATGCTGGGTTTCC
TCT 

Mouse,Tmem132d, M13 
tailed genomic DNA 

(-) CAGGAAACAGCTATGACCTTTTAAGCCCCACCCTTCT
GGA 

Mouse,Tmem132d, HAB-
MSP-519 

(+) ATGGGTATTATGTATTTTGGTGTGAGTTCGTTTCG 
 

Mouse,Tmem132d, HAB-
MSP-310 

(-) CGCAAAAACCCCTAACATAAACTAAAATATTTCCG 
 

Mouse,Tmem132d, LAB-
MSP-519 

(+) ATGGGTATTATGTATTTTGGTGTGAGTTCGTTTCA 
 

Mouse,Tmem132d, LAB-
MSP-310 

(-) TGCAAAAACCCCTAACATAAACTAAAATATTTCCG 
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10 mM dNTP mix, 1 µl of 5% DMSO, 1 µl each respective 2 µM forward and reverse primers, 1 

µl DNA and 0.5 µl of Phusion DNA polymerase (2 U/µl) and nuclease-free water up to 50 µl. The 

purified PCR products and pGL3 basic luciferase vectors were digested with KpnIHF and NheIHF 

restriction enzymes (New England Biolabs GmbH, Frankfurt, Germany) and then ligated 

together as per manufacturer’s instructions (see Table 10 for a list of all primers used). The 

ligated mixture was then transformed into DH5alpha chemically competent cells as described 

above. Similarly, mHAB and mLAB Tmem132d promoter constructs were amplified and cloned 

into pGL3 luciferase vectors. 

 

Table 10: list of primers used for cloning rat and mice Npsr1 and Tmem132d promoter 
fragments into luciferase vector. 

Species, gene, 
designation 

Orientatio
n 

Primer sequence (5’3’) 

Rat,Npsr1,Frag.E (+) ATCGGTACCGATGGTGAGGGCTGTGCTGG 
Rat,Npsr1,Frag.D (+) ATCGGTACCCGATCTCAGCTGAAACAAACTCATAACTC 
Rat,Npsr1,Frag.C (+) ATCGGTACCCTCTAGGAATGCACACTTACTCAGCTCTG 
Rat,Npsr1,Frag.B (+) ATCGGTACCCCCACTCTAGGGCCTTTCATCTAGG 
Rat,Npsr1,Frag.A (+) ATCGGTACCCTGGGTCCTCCAGTCTCTTGAGG 
Rat,Npsr1,common (-) CAGGCTAGCGGCTCAGGCAGGGTCAAGTCTTA 
Mouse,Npsr1,Frag.S (+) ATCGGTACCGTGATACCAGCTGAAACAAACACATAACT

GAC 
Mouse,Npsr1,Frag.R (+) ATCGGTACCGAGACAAACACAGACTCCTACCTC 
Mouse,Npsr1,Frag.Q (+) ATCGGTACCGCAAAGGTTGGCCTACATGGCTC 
Mouse,Npsr1,Frag.P (+) ATCGGTACCGGATTGTCATCTCCTGTCTGTGCC 
Mouse,Npsr1,comm
on 

(-) CAGGCTAGCGGCTCAGGCAGGGTCAGGTC 

--,--,RVprimer3 (+) CTAGCAAAATAGGCTGTCCC 
--,--,GLprimer2 (-) CTTTATGTTTTTGGCGTCTTCCA 
Mouse, Tmem132d (+) GCAGGTACCCAAGGCTCTGCGGAGCAGTG 
Mouse, Tmem132d (-) GCTAGCAATTTCTCTCTCTTCCTCTCTCCC 
Mouse, Tmem132d, 
310 A sub 

(+) GTTAGGGGTTCCTGAACTGTCCTTGCCTGAAG 

Mouse, Tmem132d, 
310 A sub 

(-) CTTCAGGCAAGGACAGTTCAGGAACCCCTAAC 

Mouse, Tmem132d, 
310 del    

(+) GACGGTACCTCAGGGACAGGAATTTGAGG 

Mouse, Tmem132d, 
519 A sub 

(+) GTGTGAGTTCGCCTTAGATACCCTGGAAGG 

Mouse, Tmem132d, 
519 A sub 

(-) CCTTCCAGGGTATCTAAGGCGAACTCACAC 

 
 
 

Next day, clones were analyzed for positive insert, and then a single colony was inoculated in 10 

ml LB broth overnight.  
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2.10.2 Plasmid isolation using alkaline lysis with SDS: midipreparation 

Plasmid isolation was carried out using alkaline lysis with SDS using the following reagents and 

protocol by (Sambrook & Russell, 2001). 

 

1. Alkaline lysis solution I 

50 mM glucose, 25 mM Tris-Cl (pH 8.0), 10 mM EDTA (pH 8.0). 

2. Alkaline lysis solution II 

0.2 N NaOH, 1% (w/v) SDS 

3. Alkaline lysis solution III 

5 M potassium acetate, glacial acetic acid and distilled water up to 100 ml. 

Protocol: The 10 ml LB broth containing bacterial suspension was centrifuged to recover 

bacteria at 2000 g for 10 min at 4°C. Then the pellet was resuspended in 200 µl ice-cold alkaline 

lysis solution I by vigorous vortexing and the pellet transferred to an Eppendorf tube. Next, 400 

µl of alkaline lysis solution II was added to each bacterial suspension for lysis and the contents 

were mixed by inverting the tube five times. Then to this mixture, 300 µl of alkaline lysis solution 

III was added to renature the plasmid DNA and the mixture incubated on ice for5 minutes. 

Subsequently, the lysate was centrifuged at 13000 rpm for 5 minutes at 4°C. Then 600 µl of 

supernatant containing the plasmid DNA was mixed with an equal volume of phenol:chloroform 

(Carl Roth GmbH & Co. KG, Karlsruhe, Germany). The organic and aqueous phases were 

mixed by vortexing and then the emulsion was centrifuged at 13000 rpm for 2 minutes at 4°C. 

Next, the aqueous phase was drawn out and equal volume of isopropanol (Sigma-aldrich GmbH, 

Munich, Germany) was added to precipitate the plasmid DNA. After 2 minutes, the mixture was 

centrifuged at 13000 rpm for 5 minutes at room temperature to collect the plasmid DNA pellet. 

Then the pellet was washed with 1 ml of 70% ethanol, air dried and resuspended in nuclease-

free water. All plasmids were sequence-verified before further use. 

2.10.3 Transfection of promoter-pGL3 constructs 

The mouse Neuro-2a cells were seeded in 96 well plates at a density of 8000 cells per well in 

DMEM containing 10% FBS, 1% sodium pyruvate and 1% antibiotic-antimycotic, all purchased 

from Life technologies, Darmstadt, Germany. Next day, when the cells reached a density of 50-

70%, for each well 300 ng Npsr1/Tmem132d-pGL3 vector constructs and 10 ng pRK5-Gaussia-

KDEL expression vector (internal control vector) were diluted with 150 mM NaCl and then mixed 
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with 0.99 µl Exgen 500 in vitro reagent (Thermoscientific, Braunschweig, Germany). The pRK5-

Gaussia-KDEL expression vector was used to normalize transfection efficiency and a SV40-

pGL3 vector was also used as a positive control. The reaction mixture was vortexed for 15 sec 

and incubated at room temperature for 20 minutes to allow formation of complex. The mixture 

was then added to each well, some wells were left untransfected to measure background signal 

during luciferase assay. Subsequently, the plate was centrifuged for 5 minutes at 280 g at room 

temperature to improve transfection efficiency. Then the plate was incubated at 37°C, 5% CO2 

for 48 hr. As sequencing data suggested the introduction of a GR transcription binding site in the 

mHAB and rHAB Npsr1 promoters, shorter constructs of approximately 500 bp were stimulated 

with 1, 10 µM dexamethasone (DEX; Ratiopharm, Ulm, Germany) and water as control for 24 h 

before carrying out the dual reporter assay. Firefly and Gaussia luciferase activites were 

measured after 48 h as described in the following section.  

 

2.10.4 Dual luciferase assay 

Following are the composition of reagents required for dual luciferase assays 

0.5 M phosphate buffer (KPO4) pH 7.8 

0.5 M KH2PO4 (pH 4.1) and  

0.5 M K2HPO4 (pH 9.5), pH adjusted to 7.8 

 

Passive lysis buffer 

100 mM KPO4 buffer pH 7.8 

0.2 % Triton X-100 and then volume made up to 200 ml with distilled water. 

 

Firefly substrate solution 

2.5 mM MgCl2 

2 mM ATP (Sigma-aldrich GmbH, Munich, Germany) 

100 μM D-Luciferin (P.J.K. GmbH, Kleinblittersdorf, Germany) 

dissolved in distilled water. 
 
 
0.5 M Phosphate (KPO4) buffer pH 5.1 
0.5 M KH2PO4 (pH 4.1) and  

0.5 M K2HPO4 (pH 9.5), pH adjusted to 5.1 

 

Gaussia substrate solution (2X) 

2.2 M NaCl 
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4.4 mM Na2EDTA 

0.22 M KPO4 buffer pH 5.1 

0.88 mg/ml BSA 

6 μg/ml Coelenterazin (P.J.K. GmbH, Kleinblittersdorf, Germany) 

 

At the end of 48 h, the supernatant was gently aspirated and 50 µl passive lysis buffer was 

added to each well. Then the plate was incubated at 37°C for 30 minutes at 800 rpm. 

Subsequently, 20 µl lysate was transferred into white Nunc96 plate (Nunc GmbH & Co. KG, 

Langenselbold, Germany). The luciferase signal from Firefly and Gaussia were measured on a 

TriStar LB 941 multimode microplate reader (Berthold technologies, Bad Wildbad, Germany) as 

follows: The luminometer first injected 50 μl of firefly substrate solution and after shaking for 1 

sec, measured the Firefly luciferase signal over the period of 10 sec. Then, 50 μl Gaussia 

substrate solution was injected into the same well, causing a decrease in pH and subsequent 

quenching of the Firefly signal.  Next, the plate was shaken for 1 sec and after a 2 sec delay, the 

Gaussia luciferase signal was measured over a period of 5 sec. The data analysis commenced 

after subtracting the background signal intensity of lysates from untransfected cells from each 

data point. The promoter activity represents Firefly data normalized to Gaussia activities + SEM 

of at least three independent experiments, each performed in triplicate. 

 

2.10.5 Rat and mouse Npsr1 cDNA amplification and site-directed mutagenesis 

To determine the functional role of a single synonymous SNP found in the coding region of rHAB 

and mHAB Npsr1 gene.  

Both rat and mice HAB,LAB Npsr1 cDNA were amplified using Phusion DNA polymerase (New 

England Biolabs, Frankfurt, Germany), and the sequences were verified. Additional 

hemagglutinin signal peptide and FLAG tag were added at the N-terminal of the Npsr1 cDNA 

sequences as described (Bernier et al., 2006). Finally, the LAB Npsr1 cDNAs were cloned into 

the KpnI/NotI sites of pcDNA™3.1/Zeo (+) (Life Technologies, Darmstadt, Germany).Then LAB 

Npsr1 cDNA plasmid was used to selectively mutate an adenine (A) residue in the LAB 

sequences at 227,016 and 156,453 bp relative to the ATG start codon to guanine (G) in HAB 

rats and mice, respectively, to nullify any other PCR-based errors. Then Phusion DNA 

polymerase (New England Biolabs, Frankfurt, Germany) was used to introduce these site-

specific mutations according to the instructions of the QuikChange site-directed mutagenesis kit 

(Agilent technologies, Oberhaching, Germany). The primers are listed in listed in Table 11. 
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Table 11: List of primers used for cDNA amplification, site-directed mutagenesis and addition of 
hemagglutinin signalpeptide (HA-SP) flag tag to rat and mouse Npsr1 cDNA sequences. 
Species, gene, designation Orientation Primer sequence (5’3’)
Rat, Npsr1,complete cDNA (+) CTGCAGGTGCAGAGACATAAGACTTGA 
Rat, Npsr1,complete cDNA (-) CTGAGCTCAGCCTAGCACTGTTGC 
Rat, Npsr1, nested Tag (+) GTCAGGTACCGCCATGCCGGCCAACC 
Rat, Npsr1, nested Tag (-) GCAGCGGCCGCTTAGATGAATTCAGGCTTGGAGAGAATC 
Rat,Npsr1, A(227,016)G 
mutated to G in rHAB 

(+) CCAACTGCTCAGATGGAGAGCTATGCTGCAGCTACAACC 

Rat, Npsr1, A(227,016)G 
mutated to G in rHAB 

(-) GGTTGTAGCTGCAGCATAGCTCTCCATCTGAGCAGTTGG 

--,HA-SP,flag tag, containing 
rat Npsr1 sequence 

(+) CTGCCTGGTATTCGCCGACTACAAGGACGATGATGACGCCCCGG
CCAACCTCACAGAGGG 

--,HA-SP,flag tag, common (+) GTAGGTACCACCATGAAGACGATCATCGCCCTGAGCTACATCTT
CTGCCTGGTATTCGCCGACTAC 

Mouse, Npsr1, complete cDNA (+) CAGGGAGGGCTCTGTGC 
Mouse, Npsr1, complete cDNA (-) GGAGAGCTGACTAAGTTCAGC 
Mouse,Npsr1, rs37572071 
mutated to G in mHAB 

(+) CATTATTTGGCGATTCACGGGAGACTTCATGGC 

Mouse,Npsr1, rs37572071 
mutated to G in mHAB 

(-) GCCATGAAGTCTCCCGTGAATCGCCAAATAATG 

HA-SP,flag tag, containing 
mouse Npsr1 sequence 

(+) CTGCCTGGTATTCGCCGACTACAAGGACGATGATGACGCCCCAG
CCAACCTCACAGAGGG 

Mouse, Npsr1, cDNA, common (-) GCAGCGGCCGCTTAGATGAATTCCGGCTTGGAGAGAATCTGCAT
CTCGTGTCTCTCGCTTCTCTCTCGG 

--,--,T7 (+) TAATACGACTCACTATAGGG 
--,--,Bgh (-) TAGAAGGCACAGTCGAGG

 
 

2.10.6 Functional reporter assay  

Principle of the assay: NPS on binding NPSR1 is known to activate the downstream cAMP 

pathway (Reinscheid et al., 2005). This property is harnessed here to determine if the SNP has 

any functional impact on the HAB NPSR1 protein. Thus HAB and LAB NPSR1 cDNA was 

cotransfected with a plasmid that has cAMP response element (CRE) upstream of the luciferase 

gene. When the agonist (NPS) is added to the cells expressing HAB and LAB NPSR1, there 

would be activation of the downstream cAMP pathway. This cAMP would in turn bind at the CRE 

and cause an increase or decrease of downstream luciferase signal to indicate the functional 

impact of SNP on the NPSR1. 

HAB and LAB Npsr1 cDNA constructs carrying the exonic SNPs [A(227,016)G and [ 

A(156,453)G; rs37572071] were cotransfected with either a mixture of CRE-luciferase and 

Gaussia vector (20:1) in HEK 293 cells or cDNA constructs along with Gaussia in HEK 293 

CRE-luciferase cells  using lipofectamine 2000 (Life technologies, Darmstadt, Germany) using 

the following protocol: 
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60,000 HEK 293 cells or HEK 293 CRE-luciferase cells were seeded into 24 well plates using 

antibiotic free DMEM+10% FBS medium (Life technologies, Darmstadt, Germany). Next day, 

when the cells reached approximately 95% density, 700 ng Npsr1 cDNA vector and 100 ng 

either Gaussia or a mixture of CRE-luciferase + Gaussia vector (20:1) per well were diluted with 

opti-MEM medium (Life technologies, Darmstadt, Germany). Similarly, for each well, 2 µl 

lipofectamine 2000 (Life technologies, Darmstadt, Germany) was diluted in 50 µl opti-MEM 

medium (Life technologies, Darmstadt, Germany) and incubated at room temperature for 5 

minutes. Then plasmid DNA and lipofectamine 2000 were mixed together and incubated at room 

temperature for 20 minutes to form the DNA-liposome complex. Then the mixture was added to 

each well and plate incubated at 37°C, 5% CO2. After 5 hr media was replaced and incubation 

continued until 40 hr when the cells were stimulated with 1 nmol NPS (1mg/ml stock solution; 

Bachem, Weil am Rhein, Germany). Finally the dual luciferase assay was carried out at 48 h as 

described in section 2.10.4. 

 

2.11 Western Blotting for NPSR1 protein 

For assessment of NPSR1, protein was extracted using RIPA buffer supplemented with 

protease inhibitors (Sigma-aldrich GmbH, Munich, Germany) from PVN of rats and amygdala of 

mice. Then 60 and 15 µg of total proteins from rats and mice, respectively, were 

electrophoresed on a 8% separating gel. The proteins were transferred on a nitrocellulose 

membrane (Millipore GmbH, Schwalbach, Germany) and blocking for non-specific antibody 

binding carried out with 5% milk in tris-buffered saline (TBS) for 1 hr at room temperature. Then 

the membrane was incubated overnight with primary NPSR1 antibody (Ab1) (Leonard & Ring, 

2011): 1:500 for rats and 1:200 for mice in 2.5% milk in TBS-T, overnight at 4°C. Next day, 3X 

washes with TBS containing tween 20 (TBS-T) (Sigma-aldrich GmbH, Munich, Germany). Then 

the membranes were incubated in a 1:5000 dilution of HRP-conjugated secondary antibody 

(New England Biolabs, Frankfurt, Germany) for 2 hr at room temperature, washed 3X with TBS-

T, and then bands were visualized by chemiluminescence (PerkinElmer, Massachusetts, USA). 

β-tubulin (1:1000) was used as a loading control (New England Biolabs, Frankfurt, Germany). 

 

2.12 Statistical analyses 

The molecular characterization of Nps and Npsr1 were analyzed using a one-way (factor line), 

two-way analysis of variance (ANOVA; factors line x DEX) or unpaired t-test. EPM data were 

analyzed using either a two-way ANOVA (factors line x treatment) followed by a Fisher’s LSD 

post-hoc test or an unpaired t-test. 
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For molecular characterization of Tmem132d one-way (factor line) ANOVA test was utilized. 

Analysis of behavior of mHAB, mLAB and F1 offspring subjected to EE, UCMS and control 

group was done by one-way ANOVA (factor treatment). Subsequently, Bonferroni post-hoc test 

was used to verify group effects. Spearman's rank correlation coefficient (rho) was used to 

measure the correlation between mRNA expression and promoter methylation. All results are 

presented as mean+SEM and data was considered statistically significant at p< 0.05. Statistical 

analyses were performed using SPSS v19.0 (IBM GmbH, Ehningen, Germany) and graphs were 

prepared in graphpad prism v5 (GraphPad software, Inc., California, USA). 
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3. Results 

 

3.1.1 NPS-NPSR1 system 

 

3.1.2 Behavioral studies 

The behavioral effects of NPS and NPSR1-A administration was studied in HAB and LAB 

rodents with genetic predisposition to extremes in anxiety. The anxiolytic effect of icv NPS (1 

nmol) administration in both outbred Wistar rats and CD-1 mice (data not shown) was confirmed. 

In rHAB central NPS administration dose-dependently altered the percentage time spent in the 

open arms of the EPM (F2,26 = 17.7; P < 0.001) with 1 nmol (p < 0.001), but not 0.1 nmol leading 

to an anxiolytic effect (Figure 5A). Whereas both doses (F2,26= 12.0; p < 0.001) increased the 

number of closed arm entries (0.1 nmol; p < 0.01; 1 nmol; p < 0.001; Figure 5B).  

Central NPS administration also significantly increased the percent time spent in the open arms 

of the EPM in mHAB (p < 0.001; Figure 5C) without altering locomotor activity (Figure 5D).   

Both of these studies demonstrate that NPS is an efficient anxiolytic agent even in genetically 

predisposed HAB rodents. The anxiolytic effect was readily distinguishable from any locomotor 

induced effects except in rHAB where dose response distinguished anxiety from locomotion. 
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Figure 5: Effect of icv NPS administration on anxiety-related behavior in (A) rHAB-time spent in 
open arm (B) rHAB-closed arm entries, (C) mHAB- time spent in open arm and (D) mHAB- 
distance travelled in the EPM. Data represents mean+SEM. Numbers in parentheses indicate 
group size.  ** p < 0.01, *** p < 0.001 compared with vehicle group.   
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On the other hand, icv administration of D-Cys(tBu)5-NPS, NPSR1-A (10 nmol) decreased the 

percent time rLABs (p < 0.05; Figure 6A) and mLABs (p < 0.05; Figure 6C) spent on the open 

arms of the EPM while not affecting locomotion (Figures 6B and 6D).  
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Figure 6: Effect of icv NPSR1-A administration on anxiety-related behavior (A) rLAB- time spent 
in open arm (B) rLAB- closed arm entries, (C) mLAB-time spent in open arm, (D) mLAB-distance 
travelled in EPM. Data represent mean+SEM. Numbers in parentheses indicate group size. * p < 
0.05 compared with vehicle group.             
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The anxiogenic effect observed in LAB rodents suggests involvement of an endogenous NPS 

system in mediating anxiety-related behavior without any effects on locomotion. This 

encouraged me to study the molecular underpinnings of NPS mediated anxiety-related behavior. 

  

3.1.3 Measurement of basal Nps mRNA expression 

A nearly three-fold higher expression of Nps was detected in the LC area of rHAB compared 

with rLAB (p < 0.05; Figure 7A), while levels did not differ between mHAB vs. mLAB (Figure 7B).   

 

3.1.4 Measurement of basal Npsr1 mRNA expression 

Within the PVN, rHAB displayed lower Npsr1 mRNA expression than rLAB in both males (p < 

0.001; Figure 7C) and females (p < 0.01; Figure 7D).  
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Figure 7: Basal Nps mRNA expression in the LC area of (A) rHAB vs. rLAB and (B) mHAB vs. 
mLAB. Basal Npsr1 mRNA expression in the PVN of (C) male and (D) female rHAB vs. rLAB, 
respectively. Number in parentheses indicates group numbers. Data are represented as 
mean+SEM. *p < 0.05; **p < 0.01; ***p < 0.001 compared with respective HABs. 
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In contrast, Npsr1 mRNA expression within the amygdala did not differ between rat lines (Figure 

8A). Differences in Npsr1 mRNA levels were also found in mice, with mHAB displaying lower 

expression in the amygdala (p < 0.05; Figure 8B), but not within the PVN (Figure 8C) compared 

with mLAB. 
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Figure 8: Basal Npsr1 mRNA expression in the (A) amygdala of rHAB vs. rLAB. Basal Npsr1 
mRNA expression in the (B) amygdala and (C) PVN of mHAB vs. mLAB. Number in 
parentheses indicates group numbers. Data are represented as mean+SEM. *p < 0.05 
compared with respective HABs. 
 

Overall, there was a lower basal Npsr1 mRNA expression in the PVN of rHAB and amygdala of 

mHAB in contrast to their corresponding LABs. Thus, the next step was DNA sequencing of Nps 

and Npsr1 gene to determine the genetic factors that might underlie their differential expression. 
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3.1.5 Nps DNA sequence analysis 

The Nps DNA sequence of rHAB vs. rLAB did not differ (Figure 9A), and thus, both were 

identical to the reference strain (BN/NHsdMcwi) in the Ensembl database (release 70). While, 

the mouse Nps mRNA did not differ but the corresponding DNA sequence differed significantly 

between the mHAB vs. mLAB lines (Figure 9B). In total, 35 SNPs and one insertion were found 

within the mLAB Nps sequence, whereas the mHAB Nps sequence was identical to the 

reference mouse strain (C57BL/6J). The gene-coding locus of mLAB carried four SNPs leading 

to amino acid changes at position leucine(5)isoleucine, valine(10)isoleucine, arginine(54)glycine 

and a synonymous mutation coding for threonine at position 65 in the amino acid sequence – all 

prior to the mature 20 amino acid peptide (Table 12).  

A 

   

____________________________________________________________________________ 

B 

 
Figure 9: Schematic representation of (A) rHAB vs. rLAB and (B) mHAB vs. mLAB Nps gene 
(adapted from Ensembl database and (Yen, 2011)). Polymorphic sites are indicated as unfilled 
triangles, exons including untranslated regions (UTRs) are indicated by boxes (exons shaded, 
UTRs are white), intronic variations are not shown. 
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Table 12: Nps polymorphisms in mHAB vs. mLAB : SNPs, Deletions and Insertions. Positions relative 
to ATG start codon.  
Variation 
type HAB LAB Location in 

Nps gene
Relative 
position

SNP identifier 

SNP A T Promoter -1,031  
SNP T C Promoter -1,030  
Insertion  GTGT Promoter -995  
SNP T C Promoter -924 rs49048062 
SNP A G Promoter -920 rs42460586 
SNP T C Promoter -871  
SNP C T Promoter -868  
SNP T G Promoter -867  
SNP A G Promoter -819 rs50307957 
SNP C T Promoter -788 rs50890340 
SNP G A Promoter -712 rs49326925 
SNP A C Promoter -621 rs52014995 
SNP T C Promoter -316  
SNP C T Promoter -163  
SNP C T Promoter -13 rs33467230 
SNP T A Exon2 125  
SNP G A Exon2 140  
SNP G A Intron2 250  
SNP G A Intron2 273  
SNP A T Intron2 380  
SNP A C Intron2 460  
SNP C T Intron2 502  
SNP A G Exon3 3,624 rs33470378 
SNP A G Exon3 3,659 rs33470381 
SNP C T Exon3 3,937 rs33471194 
SNP A G Exon3 4,022 rs33471197 
SNP T C Exon3 4,127 rs33471203 
SNP A G Exon3 4,155 rs33471946 
SNP C A Exon3 4,195 rs50157889 
SNP C G Exon3 4,196 rs33466004 
SNP C T Exon3 4,215 rs47207120 
SNP A G Exon3 4,217 rs46716508 
SNP G A Exon3 4,240 rs49462104 
SNP T C Exon3 4,264 rs51623072 
SNP T A DER 4,321 rs33466010 
SNP G A DER 4,369  
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3.1.6 Npsr1 DNA sequence analyses 

rHAB vs. rLAB showed several polymorphisms across the Npsr1 DNA sequence (Figure 10; 

Table 13) with rLAB Npsr1 sequence identical to the reference rat strain (BN/NHsdMcwi). 

 

 
Figure 10: Polymorphisms and SNPs in Npsr1 of rHAB vs. rLAB. Polymorphic sites are 
indicated as unfilled triangles, exons including UTRs are indicated by boxes (exons shaded, 
UTRs are white), intronic variations are not shown. 
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Table 13: Npsr1 polymorphisms in rHAB vs. rLAB: SNPs, Deletions and Insertions. Positions relative 

to ATG start codon. 

Variation 
type HAB LAB Location in 

Npsr1 gene
Relative position 

SNP C G Promoter -1,926 
SNP T C Promoter -1,856 
SNP C A Promoter -1,813 
SNP C T Promoter -1,593 
Insertion T  Promoter -1,366 
Deletion - C Promoter -1,300 
SNP A G Promoter -908
SNP G A Promoter -867
SNP A G Promoter -388
SNP G C Promoter -221
Deletion - A Intron4 168,623 
SNP T A Intron4 198,121 
SNP C T Intron5 198,323 
Deletion - CTT Intron5 198,338~198,340 
SNP G A Exon8 227,016 
SNP C T Intron8 227,154 
SNP C T Exon10 231,601 
Deletion - C Exon10 231,993 
Insertion AGAGAGAGAGAG  Exon10 232,152 
SNP C T Exon10 232,218 
SNP C T Exon10 232,505 
Insertion TGTCTCTCTCT  DER 234,193 
SNP A G DER 234,331 
SNP A G DER 234,985 
SNP C T DER 235,041 
SNP G A DER 235,223 
SNP T C DER 235.279 

 
Similarly, the Npsr1 DNA sequence of mHAB vs. mLAB also showed several polymorphisms in 

the promoter and downstream regions (Table 14; Figure 11) with mLAB Npsr1 sequence 

identical to reference mouse strain (C57BL/6J). 
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Table 14: Npsr1 polymorphisms in mHAB vs. mLAB : SNPs, Deletions and Insertions. Positions 
relative to ATG start codon. 
Variation 
type HAB LAB Location in 

Npsr1 gene
Relative 
position

SNP identifier 

SNP G A Promoter -2,251 rs50949943 
SNP C T Promoter -2,248 rs48292984 
SNP C G Promoter -2,123 rs47083749 
SNP T C Promoter -2,112 rs49887483 
SNP T A Promoter -2,104 rs47000117 
SNP T C Promoter -2,046 rs48022291 
SNP G A Promoter -1,942 rs46860992 
SNP T C Promoter -1,863 rs51840884 
SNP T A Promoter -1,842 rs45839541 
SNP C T Promoter -1,775 rs52096988 
SNP G A Promoter -1,667  
Deletion  AA(GA)x18 Promoter -1,608~-1,571  
SNP G A Promoter -1,516  
SNP T C Promoter -1,469  
SNP G A Promoter -1,418  
SNP A G Promoter -1,376  
SNP A T Promoter -1,315  
SNP C T Promoter -1,236 rs48864073 
Deletion  T Promoter -1,227  
SNP A T Promoter -1,226 rs36643873 
SNP A T Promoter -1,132  
SNP T G Promoter -1,072 rs51941766 
SNP G A Promoter -1,032  
SNP C T Promoter -860 rs45719875 
SNP G A Promoter -816 rs37067240 
SNP C T Promoter -731 rs50871983 
SNP C T Promoter -714 rs48580633 
SNP T G Promoter -713 rs47842102 
SNP C G Promoter -674 rs46047101 
Deletion  T Promoter -648  
SNP T A Promoter -637 rs45879530 
SNP T C Promoter -612 rs51858460 
SNP T C Promoter -591 rs46930781 
SNP C A Promoter -557 rs50633535 
Insertion C  Promoter -479  
Insertion T  Promoter -478  
SNP A T Intron1 -82 rs48722200 
Insertion A  Intron3 156,233  
SNP G A Exon4 156,453 rs37572071 
SNP C T Intron7 205,648  
Deletion  C Intron7 205,718  
SNP T C Intron8 215,240  
SNP G C Intron9 215,243  
SNP G A Intron9 215,244  
SNP A G Intron9 215,245  
SNP G A Exon10 216,508 rs49543460 
SNP G A Exon10 217,782 rs49030747 
SNP A G DER 218,543  
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Figure 11: Polymorphisms and SNPs in Npsr1 of mHAB vs. mLAB. Polymorphic sites are 
indicated as unfilled triangles, exons including UTRs are indicated by boxes (exons shaded, 
UTRs are white), intronic variations are not shown. (Adapted from (Yen, 2011)). 
 

Overall, DNA sequencing of both rat and mice Npsr1 revealed several polymorphisms like 

SNPs, insertion, deletion in the upstream promoter and downstream exonic and intronic regions. 

TESS analysis accompanied by literature survey to study the role of putative transcription factors 

revealed two interesting candidates: At G(-388)A, there was nuclear factor-1 (NF-1) binding at G 

residue in rLAB, while in rHAB A residue favors binding of GR transcription factor. In addition, at 

A(-1813)C there was TATA binding protein in rLAB which on mutation allows GR binding at 

corresponding position in rHAB. 

Similarly, TESS analysis of mouse Npsr1 DNA followed by literature search also found two 

transcription factors. Surprisingly, there was an insertion of CT residue (-479,-478) in mHAB 

which also favor GR binding while in mLAB at the corresponding position there was adjacent 

binding of activator protein 1 (AP-1). A SNP (G(-1082)T) in the distal region of mHAB Npsr1, 

allowed binding of another nuclear factor NF 3-β while there was no putative transcription factor 

found for corresponding LAB position. In the downstream coding region there was a 

synonymous SNP [A(227016)G and A(156453)G; rs37572071] in exon 8 and 4 of rHAB and 

mHAB, respectively at the 3rd wobble position.  
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3.1.7 Measurement of allelic expression imbalance 

As the expression of any gene can be due to an interaction between cis- and trans-acting 

factors, HAB and LAB allelic expression was studied in cross mated F1 offspring where each 

allele acts as an internal standard for the other allele. In contrast to the lower HAB Npsr1 mRNA 

expression, both F1 rats (p < 0.001; Figure 12A) and F1 mice (p < 0.05; Figure 12B) displayed 

higher HAB than LAB allelic expression, irrespective of the maternal line. 
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Figure 12: Relative Npsr1 mRNA allelic expression in F1 offspring of (A) rHAB vs. rLAB and (B) 
mHAB vs. mLAB. Number in parentheses indicates group numbers. Data are represented as 
mean+SEM. *** p < 0.001, * p < 0.05 compared with HABs. 
 
 
The AEI data was in contrary to the observed lower basal Npsr1 mRNA expression in HAB 

rodents relative to LABs. Thus this suggests that in HABs there is an interaction between cis-

variations and trans-acting factors. Next, in vitro promoter assays were utilized to study the 

promoter activity. 

 

3.1.8 Measurement of Npsr1 promoter activity to assess the role of polymorphisms 

When rat promoter constructs of approximately 2000 bp upstream of the ATG translation start 

site were assessed, rHAB promoter activity was half that of the corresponding rLAB promoter (p 

< 0.001; Figure 13). The activity of promoter-deletion constructs was also assessed to deduce 
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the contribution of individual SNPs. No difference was observed between rHAB vs. rLAB 

Fragment B while a higher activity in rLAB than rHAB was seen in Fragment C (p < 0.01). 

However, Fragment D had nearly 2-fold higher rHAB promoter activity in comparison to rLAB (p 

< 0.001); analogous to the higher HAB-specific allele expression in F1 offspring. Subsequent 

deletion of the G(-388)A SNP led to Fragment E with the C(-221)G SNP, where promoter activity 

did not differ between rHAB and rLAB (Figure 13).  
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Figure 13: in vitro analyses of Npsr1 promoter fragments. Promoter constructs A to E depict the 
longest to the shortest rat Npsr1 fragments. Dual luciferase assays with rHAB vs. rLAB Npsr1 
promoter constructs (A-E) in pGL3 basic vector. Data are shown as means+SEM;  ** p < 0.01; 
*** p < 0.001 compared with corresponding rHAB. Firefly luciferase data were normalized to 
Gaussia activities and are presented as relative expression + SEM of three independent 
experiments performed in triplicate. 
 

Similarly, using homologous mouse Npsr1 promoter constructs, the activity of the full length 

mHAB construct was found to be lower than the corresponding mLAB (Fragment P: p < 0.01; 

Figure 14). As the putative promoter length decreased, no difference in the corresponding 

promoter activity between mHAB vs. mLAB was observed (Fragments Q and R). However, 

Fragment S, which harbors the putative GR binding site, displayed higher mHAB promoter 

activity than the corresponding mLAB construct (p < 0.01; Figure 14). The higher activity of 

mHAB fragment S was analogous to the higher HAB specific allelic expression in the F1 

offspring. 
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Figure 14: in vitro analyses of mouse Npsr1 promoter fragments. Promoter constructs P to S 
depict the longest to the shortest Npsr1 fragments .Dual luciferase assays with mHAB vs. mLAB 
Npsr1 promoter constructs (P-S) in pGL3 basic vector. Data are shown as mean+SEM; ** p < 
0.01 compared with corresponding mHAB. Firefly luciferase data were normalized to Gaussia 
activities and are presented as relative expression + SEM of three independent experiments 
performed in triplicate. 
 

Thus, in vitro promoter assay could recapitulate the in vivo lower basal Npsr1 mRNA expression 

observed in HAB rodents in contrast to LABs. This data indicates that there are distal repressor 

elements that down regulates HAB Npsr1 mRNA expression. However, the shortest constructs 

(Fragment D and S of rats and mice, respectively) had higher HAB specific allelic expression 

similar to that observed in F1 offspring. Next step was to verify the presence of GR binding in 

HABs as suggested by TESS analysis. 
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The in silico data of GR binding site was further validated by showing that the high activity of 

HAB Fragments D (F3,16 = 3.37; p = 0.045) and S (F3,16 = 4.12; p = 0.023), which was 

recapitulated here (p < 0.001 for all HAB vs. LAB comparisons) could be reduced by both 1 and 

10 µM DEX administration (p < 0.05 vs. water; Figure 15A and 15B).   
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Figure 15: (A) rHAB vs. rLAB fragment D treated with 1, 10 µM DEX  and water as control for 
24 h and (B) mHAB vs. mLAB fragment S carrying the putative GR binding site treated with 1, 
10 µM DEX and water as control for 24 h before the luciferase assay. Data are shown as 
mean+SEM; *** p < 0.001 compared with HAB; # p < 0.05 when compared to water. Firefly 
luciferase data were normalized to Gaussia activities and are presented as relative expression + 
SEM of three independent experiments performed in triplicate. 
 
This study could confirm GR binding. However, the lower activity of DEX administration suggests 

that GR interferes with activity of basal transcription factors like NF-1 or AP-1.  
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3.1.9 Comparative genome analysis of Npsr1 DNA sequences using VISTA browser 

The similar promoter activity observed for rats and mice Npsr1 prompted me to do a 

comparative genome analysis to search for possible homologous regions. 

 
Figure 16: Comparative genome analysis between mouse, human, rhesus monkey, horse, 
chicken, rats and dog Npsr1 DNA sequence. Dark blue, pink and light blue colored regions are 
exons, conserved non-coding sequences (CNCS) and UTR, respectively. 
 
There is high degree of homology in the UTR, CNCS and the exonic region of mouse, human, 

rhesus monkey, horse, chicken, rats and dog Npsr1 gene (Figure 16). However, in dogs there 

was no homologous CNCS region found and in chicken no similar domains were found both in 

CNCS and UTR. 

 

 
 



60 
 

 

Figure 17: Comparative genome analysis between mouse, human and rats Npsr1 DNA 
sequence. Dark blue, pink and light blue colored regions are exons, conserved non-coding 
sequences (CNCS) and UTR, respectively. 
 

A detailed look at the VISTA browser genome analysis data among rat, mice and human also 

revealed presence of homologous sequences in upstream 5’ UTR region. 

 

3.1.10 Copy number variation and search for CpG islands 

To search for additional factors that might mediate differential gene regulation. 

There was no difference in CNV in both rats and mouse Nps and Npsr1 gene (data not shown). 

There were also no CpG islands in both rat and mouse Npsr1 DNA sequence. The CpG islands 

are usually prone to DNA methylation based epigenetic processes. Thus CNV or DNA 

methylation based epigenetic processes as a factor causing differential regulation of these 

genes is ruled out. 
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3.1.11 Functional characterization of HAB vs. LAB NPSR1 and assessment of protein 

expression 

There was higher NPS-dependent luciferase expression (i.e. downstream cAMP response) in 

cells expressing the HAB NPSR1 protein in both rats and mice (both p < 0.01; Figure 18A and 

18B) akin to the human Ile107 risk isoform.  
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Figure 18: in vitro analyses of Npsr1 coding SNPs.  
(A) HEK 293 cells were co-transfected with (A) rHAB and rLAB Npsr1 cDNA constructs carrying 
A(227,016)G along with CRE-luciferase: Gaussia vector (20:1) and  
HEK 293 CRE-luciferase cells were cotransfected with (B) mHAB and mLAB Npsr1 cDNA 
constructs carrying A(156,453)G; rs37572071 along with Gaussia vector. Then these cells were 
stimulated with 1 nmol NPS at 40h post-transfection until assay at 48 h. Number in parentheses 
indicates group numbers. Data are represented as mean+SEM. **p < 0.01 compared with 
respective HABs. 
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3.1.12 Semi-quantitative Western blot analysis for NPSR1 

However, there was no difference in total NPSR1 protein expression in the PVN of rats (Figure 

19A) or amygdala of mice (Figure 19B). 
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Figure 19: Semi-quantitative Western blots for total NPSR1 protein (A) of rHAB, rLAB in the 
hypothalamic PVN and (B) of mHAB, mLAB in the amygdala with ß-tubulin as loading control. 
Data are shown as mean+SEM, numbers in parentheses indicate the group numbers. 
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3.1.13 To determine the plasticity of Npsr1 gene 

To determine if Npsr1 gene responds to the environmental challenges faced by animal we 

measured its mRNA expression in the corresponding animals. There was no difference in Npsr1 

mRNA expression in mHAB or mLAB subjected to EE or UCMS (Figure 20A and 20B), 

respectively. This suggests that Npsr1 is a non-plastic gene that is not responsive to the 

environmental manipulations applied to the animals.  
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Figure 20: qPCR measurement of Npsr1 mRNA in (A) mHAB control vs. mHAB enriched  and 
(B) mLAB control vs. mLAB stressed. Numbers in parentheses indicates group size. Data are 
represented as mean+SEM. 
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3.2. Tmem132d system 

3.2.1 Measurement of promoter activity of Tmem132d in mHAB vs. mLAB 

Earlier studies by (Erhardt et al., 2011) have shown that there is higher expression of 

Tmem132d mRNA in the anterior cingulate cotex of mHAB in comparison to mLAB. Thus to 

dissect the genetic underpinnings of this differential expression, mHAB vs. mLAB Tmem132d 

promoter carrying the A(-519)G and A(-310)G SNPs (Figure 21) were cloned into pGL3 basic 

vector and promoter activity was measured using dual luciferase assay. 

 

 

 

Figure 21: Polymorphisms in Tmem132d of mHAB vs. mLAB. Polymorphic sites are indicated 
as unfilled triangles, exons and UTRs are indicated by boxes (exons shaded, UTRs are white), 
intronic variations are not shown. The SNP position is relative to transcription start site (Figure 
adapted from (Czibere, 2008)). 
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The whole mHAB Tmem132d promoter constructs containing a G residue at -519 and -310 

position had higher promoter activity (** p < 0.01; Figure 22) compared to corresponding mLAB 

constructs. This explains the in vivo findings of higher Tmem132d mRNA expression in mHAB 

compared to mLAB. To analyze the individual contribution of SNPs, -519 or -310 G residue 

when mutated to A caused a significant decrease in promoter activity (*** p < 0.001) or (** p < 

0.01), respectively in comparison to whole mHAB constructs. This suggests that both G residues 

are required for the higher mHAB promoter activity. On the other hand, deletion of -519 A 

residue in the mLAB construct did not have any effect on its promoter activity. While, deletion of 

-519 G residue in the mHAB construct again led to significant decrease in its promoter activity (** 

p < 0.01; Figure 22), thus proving the importance of the -519 G residue. Thus, it would be 

interesting to know the putative transcription factor binding sites at these two positions. 

 

 

 

Figure 22: Dual luciferase assay with mHAB vs. mLAB Tmem132d promoter constructs. Data 
are shown as mean+SEM; ** p < 0.01; *** p < 0.001 in comparison with mHAB Tmem132d 519-
310. Firefly luciferase data were normalized to Gaussia activities and are presented as relative 
expression + SEM of three independent experiments performed in triplicate. 
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3.2.2 in silico analysis of Tmem132d promoter region 

Assessment of putative transcription factor binding sites revealed binding of nuclear factor I/C 

(CCAAT-box binding transcription factor), also known as NF-I or CTF at -519 position. This 

nuclear factor has been shown to be involved in vertebrate brain development (Singh et al., 

2011), eukaryotic transcription (Santoro et al., 1988) and was found to colocalize with RNA 

polymerase II (Zhao et al., 2005). Meanwhile, at position -310 there was binding of TFIIB which 

is one of the general transcription factor that makes the RNA polymerase II preinitiation complex 

(Kostrewa et al., 2009). Moreover, the Tmem132d gene was scanned using in silico tools for the 

presence of CpG islands and interestingly there was a 600 bp CpG island in the promoter region 

which encompasses the above described two SNPs. 

 

3.2.3 Bisulfite sequencing of mHAB vs. mLAB Tmem132d promoter region 

To determine if DNA methylation also plays any role in the differential gene regulation, genomic 

DNA from Cg was subjected to bisulfite conversion. Two types of primers were utilized, bisulfite 

specific primers that only bind bisulfite DNA and wild type primers, binding to genomic DNA to 

check for incomplete bisulfite conversion. Aliquots of bisulfite DNA were subjected to PCR with 

bisulfite specific or wild type primers. Bisulfite DNA covering 600 bp of Tmem132d gene was 

amplified only with bisulfite primers (Figure 23). There was no product observed with wild type 

primers suggesting complete bisulfite conversion. 
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Figure 23: Quality control for bisulifte conversion of mHAB vs. mLAB Tmem132d promoter 
DNA. Lane 1 and 16 are DNA ladder, lane 2 and 9 are no template control (NTC) for bisulfite 
specific and wild type primers. Lane 3-5 are mHAB and 6-8 are mLAB bisulfite PCR products at 
approximately 600 bp obtained with bisulfite specific primers. Lane 10-15 are corresponding 
mHAB, mLAB bisulfite products subjected to PCR with wild type primers. Here, no products, at 
least at the expected 600 bp suggest complete conversion of genomic DNA to bisulfite DNA. 
Thus, this acts as quality control for bisulfite conversion. 
 

3.2.4 Analysis of mHAB vs. mLAB Tmem132d promoter DNA methylation with BiQ 

analyzer 

Overall, there was DNA methylation observed in the distal regions especially around the -519 

and -310 SNP, which decreased upon nearing the transcription start site (Figure 24A, 24B).  

However, there was no difference in total percentage of methylation between basal mHAB vs. 

mLAB Tmem132d promoter (Figure 25), and not even any difference at individual CpG positions 

between mHAB vs. mLAB (data not shown). 

 

 

 

 

 

 

 

 

 



68 
 

 

A 

 

 

B 

mLAB Tmem132d promoter  region (22B) 

 

 

Figure 24: Aggregated representation of methylation data of a single (A) mHAB  and (B) mLAB 
Tmem132d promoter region containing 20 CpG positions. Each box corresponds to one CpG 
position in the genomic sequence. The colored bars summarize the methylation states of all 
sequences at that position.  
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Figure 25: Percentage of DNA methylation of mHAB vs. mLAB Tmem132d promoter region 
encompassing a CpG island of approximately 600 bp. There were at least 10 clones per animal 
except one. Data are shown as mean+SEM. 
 
 

3.2.5 To determine the plasticity of the Tmem132d gene 

To determine if Tmem132d gene responds to the environmental challenges faced by the animals 

corresponding mRNA in the Cg was measured. EE mHABs spent a higher percentage of time in 

the light compartment (p < 0.001; Figure 26A), and there was higher corresponding Tmem132d 

mRNA expression (p < 0.05; Figure 26B) in comparison to control mHABs. Conversely, stressed 

mLABs spent less percentage of time in the light compartment (p < 0.001; Figure 26C), and 

there was lower corresponding Tmem132d mRNA expression (p < 0.05; Figure 26D) in 

comparison to control mLABs. It is worth noting that the time spent by EE HABs in light zone is 

similar to that of outbred CD-1 mice. Thus EE can exert anxiolytic effects even in a genetically 

predisposed animal model (Figure 26A). 
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Figure 26: Percent time spent in the light compartment of LD box test and corresponding 
Tmem132d expression changes: (A & B) enriched mHAB vs. control mHABs. (C & D) stressed 
mLABs vs. control mLABs. Numbers in parentheses indicates group size. Data are indicated as 
mean+SEM. * p < 0.05; *** p < 0.001 compared with respective control. 
 
This suggests possible environmentally modulated epigenetic mechanisms underlying 

differential expression. Thus, to rule out any environmentally modulated factors, we cross-mated 

mHAB with mLAB and vice versa to study the relative allelic expression in the same cell. 
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3.2.6 Measurement of behavior of F1 offspring  

F1 offspring of HAB mother genotype were analyzed on a battery of behavioral tests including 

neuroendocrinological parameters such as corticosterone measurement. 
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Figure 27: Effect of UCMS and EE on F1 offspring in (A) percent time on open arm (B) distance 
travelled (C) open arm entries and (D) latency to first entry in the open arm of EPM. Data 
represented as mean+SEM. Numbers in parentheses indicate group size. (* p < 0.05; ** p < 
0.01; *** p < 0.001). 
 

F1 offspring subjected to EE or UCMS had significant percent time spent in the open arm 

(F2,48=4.86; p < 0.01; Figure 27A), open arm entries (F2,48= 11.30; p < 0.001; Figure 27C) and 
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latency to enter open arm (F2,48=5.40; p < 0.01; Figure 27D). While there was no difference in 

the distance travelled between all three groups (F2,48=0.555; p=0.578; Figure 27B). In addition, 

EE group spend higher percent time in open arm (p < 0.01; Figure 27A) and open arm entries (p 

< 0.05; Figure 27C) in comparison to control group. Likewise the UCMS group had lower open 

arm entries (p < 0.05; Figure 27C) and higher latency to entry in open arm (p < 0.05; Figure 

27D) in comparison to control F1 offspring. 

 

In the LD box test, there was significant effect of environmental challenges in the percent time in 

the light compartment (F2,48=10.10; p < 0.001; Figure 28A). F1 offspring confronted with UCMS 

had higher latency to first entry in the light compartment (p < 0.01; Figure 28B), lower entries in 

light zone (p < 0.05; Figure 28C) and less rearing (p < 0.05; Figure 28D) in comparison to 

control. 
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Figure 28: Effect of UCMS, EE on F1 offspring in (A) percent time light zone (B) latency to first 
entry in light compartment (C) entries in light zone and (D) rearing in LD box test. Data 
represented as mean+SEM. Numbers in parentheses indicate group size. (* p < 0.05; ** p < 
0.01; *** p < 0.001). 
 

On the contrary, F1 offspring subjugated to EE spend more time in light zone (p < 0.001; Figure 

28A), greater entries in light zone (p < 0.001; Figure 28C) and more rearing (p < 0.001; Figure 

28D) in comparison to control.  

To determine depression-like or stress coping behavior in different F1 groups TST and FST 

parameters were measured. Both tests show significant difference in passive coping mechanism 
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in terms of time spent immobile (F2,48=4.93; p < 0.05; Figure 29A) and F2,48=3.37, p < 0.05, 

Figure 29C), respectively between EE and UCMS groups. Especially, the UCMS group had 

significantly higher time spent immobile (p < 0.01; Figure 29A) and (p < 0.05; Figure 29C) in 

comparison to control. Besides, only UCMS group differed in latency to first immobility (p < 0.05; 

Figure 29B and Figure 29D), respectively in comparison to controls.  
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Figure 29: Effect of UCMS, EE on F1 offspring in (A & C) time immobile (B & D) latency to first 
immobility in TST and FST, respectively. Data represented as mean+SEM. Numbers in 
parentheses indicate group size. (* p < 0.05; ** p < 0.01). 
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Similarly, there was a significant difference in blood CORT measurement between the three 

groups (F2,27=3.86; p < 0.05; Figure 30A). This was coupled with significant changes in body 

weight both between UCMS and EE, UCMS and control (both  p < 0.001, Figure 30B). 
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Figure 30: Effect of UCMS, EE on (A) blood CORT and (B) body weight. Data represented as 
mean+SEM. Numbers in parentheses indicate group size. (* p < 0.05; *** p < 0.001). 
 
 
Comparatively, F1 offspring derived from LAB mother and HAB father were also subjected to EE 

and UCMS and their behavioral parameters measured on EPM, LD box, TST and FST. 
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Figure 31: F1 offspring of LAB mother subjected to EE, UCMS on (A) percent time open arm of 
EPM (B) percent time light zone in LD box (C) time immobile in TST and (D) time immobile in 
FST. Data represented as mean+SEM. Numbers in parentheses indicate group size.  
 
F1 offspring of LAB mother exposed to EE and UCMS had no difference in percent time in open 

arm (F2,29=1.202; p=0.315; Figure 31A), percent time in light zone (F2,27=1.197; p=0.318; Figure 
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31B), and time immobile in TST(F2,28=0.334; p=0.719; Figure 31C) and time immobile in FST 

(F2,28=0.833; p=0.445; Figure 31D) between the three groups.  

Overall, cross-mated F1 offspring, in particular with HAB mother genotype displayed a robust 

behavioral and neuroendocrinological phenotype with the stressed group showing higher anxiety 

and more passive stress coping behavior, which was accompanied by higher blood CORT levels 

and lower body weight. On the other hand, the EE F1 offspring displayed lower anxiety, more 

active stress coping behavior and corresponding lower blood CORT and higher body weight. 

However, F1 offspring with LAB mother genotype were resilient to both UCMS or EE. 

 

3.2.7 Measurement of Tmem132d AEI in F1 offspring subjected to EE or UCMS 

After having observed differential Tmem132d mRNA expression in the Cg of mHAB and. mLAB 

subjected to EE and UCMS, respectively its corresponding allelic expression was measured in 

F1 offspring subjugated to similar environmental challenges. F1 offspring allows us to have the 

two alleles in the same pool of trans-acting factors, thus any difference in allelic expression can 

be attributed to cis-variations.  
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Figure 32: Relative percentage of Tmem132d allelic expression in F1 offspring subjected to EE 
or UCMS. Six animals per group were utilized for measurement of AEI. Data represents 
mean+SEM. (** p < 0.01 in comparison to corresponding LAB alleles). 
 

There was no statistical difference between mHAB vs. mLAB Tmem132d mRNA alleles in the 

control F1 offspring (p=0.515). Nonetheless, both the F1 offspring subjected to EE and UCMS 
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show a significant higher mLAB specific allele expression compared to mHABs (Figure 32; p < 

0.01). This is in contrary to the observed higher Tmem132d mRNA expression in the Cg of 

mHAB. This may either suggest a non-specific effect of environmental manipulations or a 

crosstalk of genetic and environmentally mediated epigenetic factors leading to an overall higher 

LAB specific allele expression. Thus, qMSP was utilized to measure mHAB, mLAB DNA 

methylation changes in the Tmem132d promoter of these F1 offspring. 
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Figure 33: Percentage of DNA methylation in the Tmem132d promoter region in F1 offspring 
subjected to EE, UCMS and control. There were 6 animals used for measurement of AEI. Data 
represents mean+SEM.  
 

The total percentage of DNA methylation of each mLAB allele is lower than corresponding 

mHAB allelic expression, albeit not statistically significant (F5,29=3.644; p=0.011; Figure 33). Rho 

was calculated for percentage of Tmem132d mRNA and corresponding methylated promoter 

alleles. Comparison of mHAB Tmem132d (mRNA vs. methylated promoter alleles) gave (Rho = 

-0.690; ** p < 0.01). Thus, there is a negative correlation between mHAB Tmem132d mRNA 

allelic expression and corresponding promoter methylation. However, comparison of 

corresponding mLAB Tmem132d (mRNA vs. methylated promoter alleles) gave Rho=0.584; 

p=0.014). 
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Please note that the following data were obtained in collaboration with other people: 

 Figure 7C and 8A - Dr. Gregers Wegener, Aarhus University, Denmark.                                

 Figure 5C, 5D, 6C, 6D, 7B, 8B, 8C, 9B(Table 12), 11(Table 14)- Dr. Yi-Chun Yen, MPI 

psychiatry. These data were also part of her Ph.D. thesis. 

 Figure 5A, 5B, 6A, 6B, 19A, 19B - Dr. David Slattery, University of Regensburg.     

 Figure 26A, 26C, 27-31- Sergey Sotnikov and Natalia Chekmareva, MPI psychiatry. 
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4.0 Discussion 

Earlier studies with rHAB vs. rLAB have discovered Avp (Murgatroyd et al., 2004) and with 

mHAB vs. mLAB also Avp (Bunck et al., 2009), glyoxalase-I (Kromer et al., 2005),  enolase 

phosphatase (Ditzen et al., 2010) and cathepsin B (Czibere et al., 2011) as candidate genes for 

anxiety-related behavior. In the current study, these selectively bred rats and mice called HAB 

vs. LAB showing stark differences in anxiety-related and comorbid depression-like behavior 

were utilized to unearth their molecular differences in the Nps/Npsr1 and Tmem132d system.  

These studies revealed robust differences in both systems, which may contribute to their 

behavioral phenotypes and mark these genes as candidates for novel treatment options or 

aetiological factors in depression and anxiety disorders. 

4.1 Nps/Npsr1 system 

The anxiolytic and fear attenuating role of NPS in rodents (Jungling et al., 2008; Xu et al., 2004) 

prompted us to test their effects in HAB rodents. Central administration of NPS was found to 

cause decrease in anxiety as indicated by higher percent time on the open arm of EPM (Figure 

5A and 5C). Acting in the opposite direction, central administration of NPSR1-A in LABs caused 

a significant decrease in percent time on open arm of EPM, thus leading to higher anxiety 

(Figure 6A and 6C). Importantly in both cases, NPS and NPSR1-A application, locomotion was 

generally not  affected, except for rHAB (Figure 5B, 5D, 6B, 6D), which is often a confounding 

factor in distinguishing trait anxiety (Escorihuela et al., 1999; Fraser et al., 2010; Rodgers et al., 

1997). However, dose-response separated anxiety and locomotor effects of NPS in rHAB.  The 

HAB vs. LAB lines were found to have several differences in the NPS system. The NPS mRNA, 

which is moderately expressed in lateral parabrachial nucleus, principal sensory 5 nucleus and 

strongest expression in the LC area (Xu et al., 2004) was three fold higher in rHAB vs. rLAB 

(Figure 7A). However, there was no difference in the corresponding DNA, which was identical to 

the reference rat stain (BN/NHsdMcwi). Thus, the differential expression cannot currently be 

explained. Comparative studies revealed no difference in mHAB vs. mLAB Nps mRNA 

expression (Figure 7B). Nevertheless, there were several polymorphisms like SNPs and a 

insertion found in the promoter and coding region of the cognate DNA sequence of mLAB (Table 

12). The mHAB Nps sequence was identical to the reference mouse strain (C57BL/6J). The 

SNPs in the mLAB promoter do not seem to affect Nps mRNA expression, at least in the LC 

area. The four SNPs in the coding region included three missense mutations 

(leucine(5)isoleucine, valine(10)isoleucine, arginine(54)glycine) and a synonymous mutation 

coding for threonine at position 65, were all prior to the mature 20 amino acid peptide. The 
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leucine(5)isoleucine and valine(10)isoleucine substitutions occur in the presumed hydrophobic 

signal peptide sequence of the mouse NPS precursor (Reinscheid & Xu, 2005). A mutation in 

the signal peptide for example, in the dentin sialophosphoprotein (Dspp) gene has been shown 

to affect protein translocation to the endoplasmic reticulum and subsequent defective dentine 

biomineralization (Rajpar et al., 2002). However, the functional implications of the SNPs in the 

mouse NPS precursor are currently unknown. There were also no CNV or CpG islands, in the 

rat and mice Nps gene that could probably explain its differential expression or copy numbers. A 

recent study utilized transgenic enhanced green fluorescent protein (EGFP) expressing mouse 

line under the control of Nps promoter and found that stress, and in particular CRH causes 

release of the NPS (Jungling et al., 2012). A previous study has also found higher CRH mRNA 

expression in the LC area of rHAB compared to rLAB (Plotsky et al., 2000). Thus, the high NPS 

mRNA expression observed in the LC area of rHAB in contrast to rLAB could be attributed to 

higher CRH expression in the same region. However, whether this translates to protein level 

and/or NPS release remains unknown currently. The LC area housed in the brain stem has 

projections going into amygdala and PVN, and this has been linked with autonomic sympathetic 

response to stress (Damasio, 1998; Sands & Morilak, 1999). Activation of LC area can lead to 

activation of amygdala and higher anxiety, and conversely, anxious stimuli that enhance 

amygdalar activity can also increase LC activity (Samuels & Szabadi, 2008).  

As NPS acts by binding to its cognate transmembrane protein called NPSR1, its subsequent 

mRNA expression was measured in the limbic brain regions, particularly in the hypothalamic 

PVN and the amygdalar region. These two brain regions were earlier implicated in local NPS-

mediated anxiety, fear response and activation of HPA axis (Jungling et al., 2008; Meis et al., 

2008; Smith et al., 2006). In rHAB there was lower expression of Npsr1 mRNA only in the PVN 

of both, males and females (Figure 7C and 7D) but not in amygdala (Figure 8A) in comparison to 

rLAB. On the other hand, there was lower Npsr1 mRNA expression only in the amygdala of 

mHAB (Figure 8B), while not in the PVN (Figure 8C) in contrast to mLAB.  

To dissect the genetic underpinnings of this differential expression Npsr1 gene was sequenced. 

The Npsr1 gene is located on chromosome 8 and 9 of rat and mouse, respectively and contains 

10 exons. Sequencing of approximately 2000 bp promoter and downstream Npsr1 DNA 

revealed several polymorphisms such as SNPs, insertions, deletions in the promoter, exon, 

intron and DER (Table 13 and 14) with the LAB sequence similar to the reference strain.  

The differential expression of any gene can be due to interaction between cis- and trans-acting 

factors in the cellular milieu of HAB or LAB animals. Thus, simultaneously HAB vs. LAB were 

cross-mated to obtain F1 offspring which allows us to study the expression of each allele in the 

same cellular environment, where each allele acts as an internal standard for the other. Both 
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crosses i.e., HAB mother with LAB father and vice versa were utilized to rule out any imprinting 

based mechanism underlying differential expression of the Npsr1 gene. Interestingly, in the F1 

offspring of both, rats and mice, there was a higher HAB-specific allele expression (Figure 12A 

and 12B) in comparison to the LAB-specific one.  

The Npsr1 promoter and deletion fragments of rat and homologous mouse were cloned into 

luciferase vector to measure their promoter activity. The dual luciferase assays recapitulated the 

in vivo findings as whole HAB rat and mouse constructs had lower promoter activity than their 

respective LAB construct (Figure 13 and 14). In silico TESS analyses suggest that the 

introduction of a GR binding site A(-1813)C in rHAB at a putative TATA binding protein (TBP) 

site may be responsible for the lower activity, as TBP is an essential componentto make pre-

initiation complex which is required for downstream gene transcription (Meyer et al., 1997). In 

mHAB, the introduction of a hepatocyte NF 3-β may also lead to repression of transcription, as 

described previously for glucagon (Philippe et al., 1994). However, both these hypotheses are 

yet to be tested. In contrast, as the putative promoter length was decreased, there was a 2-fold 

higher promoter activity in rHAB and mHAB (Figure 13 and 14), analogous to the higher HAB-

specific allelic expression in F1 offspring. This indicates the importance of the whole promoter 

and a cross-talk between cis-acting polymorphisms and trans-acting factors. Intriguingly, TESS 

analyses revealed the introduction of plausible GR binding sites in the HAB sequence in place of 

a NF-1 or AP-1 site in the corresponding LAB promoters. The cis-trans interaction was 

confirmed by in vitro stimulation of promoter constructs with DEX, which only decreased HAB 

promoter activity (Figure 15A and 15B). A previous study by (Mori et al., 1997) demonstrated 

that GR causes suppression of downstream interleukin-5 gene expression by interfering with 

activities of AP-1 or NF-kB. Moreover, it has also been shown that the presence of AP-1 and NF-

1 can enhance chromatin accessibility and resultant GR binding, which in turn helps to recruit 

other co-activators in absence of glucocorticoids (Belikov et al., 2004; Biddie et al., 2011). Thus, 

in HAB rodents, it is possible that the adjacent NF-1 or AP-1 site enhances GR binding and that 

this would, in turn, probably recruit other co-activators causing an enhanced HAB-specific 

expression of Npsr1. In contrast, DEX stimulation leads to GR activation, which may interfere 

with activity of basal transcription factors like AP-1, NF-kB leading to trans-repression (Newton & 

Holden, 2007).  

The similar in vitro and in vivo Npsr1 data in rat and mouse prompted me to do comparative 

genome analysis along with human Npsr1 DNA. Indeed, there was high degree of sequence 

conservation in the 5’ UTR, promoter, CNCS and downstream exonic region (Figure 17). This is 

an interesting finding, because of a previous study also suggesting binding of AP-1 transcription 

factor in the 500 bp upstream region of human Npsr1 gene (Anedda et al., 2011). Besides Npsr1 
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polymorphisms, other factors such as possible CNV and CpG islands were estimated but they 

were not differing between HAB vs. LAB lines. Thus, CNV or CpG islands as additional causal 

elements in the differential expression of the gene could be ruled out. The role of SNPs in the 

downstream coding region of Npsr1 was further pursued due to their putative functional role on 

the final protein product. There was a deletion of exon 4 observed in the rLAB Npsr1 cDNA 

sequence. The deletion of a single exon in the rat Npsr1 can give rise to different corresponding 

mRNA isoforms as described for the human Npsr1 gene (Laitinen et al., 2004). There are two 

human Npsr1 isoforms described, which differ in their intracellular carboxyl terminus and show 

distinct expression patterns and differ in their downstream signaling properties (Pietras et al., 

2011). As an illustration, deletion of a particular exon in human epidermal growth factor receptor 

(EGFR) gene has been reported to improve treatment outcome in lung cancer patients 

(Jackman et al., 2006). Likewise, a selective deletion of exon in mouse ferrochelatase gene 

causes mild protoporphyria (Magness et al., 2002). Similarly, the deletion of exon 4 in rHAB vs. 

rLAB may give rise to a different Npsr1 isoform, which exhibits differential expression only in the 

hypothalamic PVN. Meanwhile, the corresponding mHAB vs. mLAB without any deletion of 

exonic region in Npsr1 may exhibit distinct properties only in the amygdala. 

Furthermore, there was a synonymous SNP [A(227016)G and A(156453)G; rs37572071] in exon 

8 and 4 of rHAB and mHAB, respectively at the third base wobble position. As per Francis 

Crick’s ‘Wobble hyothesis’ only the first two bases of codon have precise pairing with 

corresponding anticodon bases in the mRNA. While the pairing between the 3rd base of codon 

and anticodon may wobble i.e. nonspecific binding. This may lead to different translation 

efficiency, if HAB (G) or LAB (A) alleles are recognized at different frequency or they might 

influence stability of codon-anticodon bonds (Angov, 2011). Specifically the guanine (G) 

nucleotides are more frequently observed than adenine (A) nucleotides in the third position of 

synonymous substitutions (Hunt et al., 2009) and that this may impact both, the incorporation 

rate of amino acids into newly synthesized proteins as well as its subsequent translocation. 

Although synonymous mutations do not lead to altered amino acid sequences, they are not 

always silent and have been shown to affect mRNA splicing, stability, protein structure, 

synthesis and folding (Cartegni et al., 2002; Cartegni & Krainer, 2002). For instance, a 

synonymous mutation due to codon usage bias in the human dopamine receptor D2 (DRD2) 

altered mRNA folding, leading to decrease in mRNA stability and translation (Duan et al., 2003). 

This, in turn, affected the dopamine induced upregulation of the DRD2 expression in in vitro 

studies (Duan et al., 2003). Another synonymous SNP in the same gene annulled the effects of 

above SNP, which was consequently found in linkage disequilibrium (LD) with other 

polymorphisms, previously associated with schizophrenia and alcoholism (Lafuente et al., 2008; 
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Rodriguez-Jimenez et al., 2006). Similarly, other studies have shown how a synonymous SNP 

changes substrate specificity in the multidrug resistance 1 (MDR1) gene (Kimchi-Sarfaty et al., 

2007), and another study showed a synonymous codon in the Lamin A/C (LMNA) gene, which 

altered mRNA splicing leading to limb girdle muscular dystrophy type 1B (Todorova et al., 2003). 

This encouraged testing of both rat and mice HAB vs. LAB NPSR1 protein carrying the 

synonymous SNP, and in an in vitro system, the HAB NPSR1 protein carrying the G residue was 

found to produce higher luciferase expression i.e., cAMP response on stimulation with NPS 

(Figure 18A and 18B). This may be due to higher surface receptor expression in HABs but there 

was no difference in total receptor expression in HAB vs. LAB; at least in vivo (Figure 19A and 

19B). These studies are analogous to the human NPSR1 Ile107 isoform which causes higher 

surface receptor expression and NPS efficacy without any difference in the total receptor 

expression (Bernier et al., 2006; Reinscheid et al., 2005). Thus, the in vitro promoter and protein 

assay indicates that the lower HAB Npsr1 mRNA expression due to SNPs in the promoter region 

is overridden by a functional SNP in the coding region. These results along with those of others, 

unlike in the past, would motivate the researchers to include synonymous SNPs in genome-wide 

association studies (Duan et al., 2003). 

 Moreover, there were also few polymorphisms in the 3’ UTR or DER region of the Npsr1 gene 

which could be of functional significance. For example, a SNP in the 3’ UTR region of thrombin-

activable fibrinolysis inhibitor (TAFI) has been shown to affect mRNA stability and consequently 

its concentration in the human plasma (Boffa et al., 2008). Similarly, microRNAs are known to 

bind at 3’ UTR position and regulate mRNA degradation and translation control (Valencia-

Sanchez et al., 2006). Likewise, Encyclopedia Of DNA Elements (ENCODE) project has 

suggested enrichment of functional disease causing polymorphisms in the non-coding parts of 

genes ("An integrated encyclopedia of DNA elements in the human genome," 2012). Thus the 

polymorphisms in the 3’ UTR or DER region of Npsr1 might as well affect mRNA degradation or 

protein translation leading finally to the observed similar protein expression between HAB vs. 

LAB lines.  

The anxiolytic effect of NPS is intriguing because adult mHAB have been shown to be resistant 

to benzodiazepine (Sartori et al., 2011). On the other hand, icv administration of NPSR1-A 

increased anxiety in rLAB and mLAB, at a dose that effectively antagonized the anxiolytic effects 

of NPS in rNAB (Slattery et al., (submitted)). 

This provides evidence for an involvement of the endogenous NPS system in hypoanxiety 

particularly as no icv effects of an NPSR1-A alone have been reported to date and that NPSR1 

knockout mice do not display an overtly anxious phenotype (Fendt et al., 2011; Pulga et al., 

2012; Ruzza et al., 2012).  
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The fact that NPS administration can rescue the phenotypes of HAB rodents, coupled with the 

above molecular findings, strongly suggests that a lack of endogenous NPSR1 activity, probably 

via a lack of NPS release, may underlie the high anxiety- phenotype. A similar situation may 

exist in higher risk Ile107 NPSR1 carriers, therefore, future studies should assess both basal and 

stress-induced NPS release in HAB rodents and human Ile107 NPSR1 allele carriers (centrally in 

rodents and peripherally in humans to give an indication of central release). Interestingly, a study 

from our institute showed the effects of intranasal NPS application after 4 h in mHAB, and 

decrease in anxiety was accompanied by explicit internalization of the NPS-NPSR1 complex 

(Ionescu et al., 2012). In search of novel drug targets owing to drug resistance, NPS might work 

as an easy, cost effective target to treat patients carrying the Ile107 risk form. Finally, these 

results support the notion that HAB rodents are a useful tool to resolve discrepancies between 

preclinical studies showing pronounced anxiolytic effects mediated by NPS and clinical 

association studies, emphasizing the association of the human NPSR1 Ile107 polymorphism with 

anxiety or panic disorder (Domschke et al., 2011; Okamura et al., 2007). 

These findings suggest that differences in the brain NPS system underlie, at least partly, the 

HAB vs. LAB behavioral phenotypes, which seems all the more probable given that genetic and 

expression differences have evolved in both rat and mouse lines underlining their evolutionary 

impact. After having identified and characterized an interesting candidate gene for anxiety-

related behavior, the plasticity nature of the gene was studied in animals facing different 

environmental challenges. mHAB and mLAB subjected to EE or UCMS did not differ in Npsr1 

mRNA in relative to their corresponding controls (Figure 20A, 20B). Thus, Npsr1 is a non-plastic 

gene in line with the differential susceptibility hypothesis proposed by (Belsky et al., 2009).  

 

4.2 TMEM132D system 

The second candidate gene in the focus of this thesis was Tmem132d, as a recent study 

emphasized its importance in the frontal cortex of panic disorder and unipolar depressed 

patients. The higher Tmem132d mRNA expression in the frontal cortex of panic disorder patients 

was associated with risk alleles in the corresponding gene (Erhardt et al., 2011). Genome-wide 

association studies revealed a haplotype containing two intronic SNPs namely, rs7309727 and 

rs11060369 associated with panic disorder across three independent German samples (Erhardt 

et al., 2011). Furthermore, three independent SNPs, also in the intronic region, chiefly, 

rs900256, rs879560 and rs10847832 were associated with severity of anticipatory anxiety 

(Erhardt et al., 2011). The three SNPs are in high LD and their structure suggests that functional 

variants earmarked by these associations are unlikely to lie in exonic or upstream regulatory 
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regions of the gene (Erhardt et al., 2011).  Regulatory regions in introns have been found for 

instance, to affect transcription of human dopamine transporter gene (Greenwood & Kelsoe, 

2003), and an intronic SNP has been linked with overexpression of thyroid hormone receptor β2 

in thyroid hormone resistance syndrome (Alberobello et al., 2011). The rs7309727 and 

rs11060369 intronic SNPs were further replicated in additional panic disorder patients of 

European ancestory (EA), and a meta-analysis finally confirmed that Tmem132d gene 

contributes to genetic susceptibility to panic disorder patients of EA (Erhardt et al., 2012).  

TMEM132D also called mature oligodendrocyte transmembrane (MOLT) or KIAA1944 encodes 

a single-pass type 1 integral membrane protein. The human Tmem132d contains 9 exons and 

encodes a protein of 130 kDa in size. Previous studies by (Nagase et al., 2001) reported 

substantial expression of Tmem132d mRNA in the caudate nucleus and lower expression in the 

amygdala, corpus callosum, hippocampus, substantia nigra, subthalamic nucleus, and thalamus 

of fetal and adult brain. This diverse expression suggests that Tmem132d probably plays a 

crucial role in the brain. 

The corresponding protein is predicted to contain an N-terminal hydrophobic signal peptide, 

seven N-glycosylation sites, two O-glycosylation sites, a number of phosphorylation sites, and a 

C-terminal transmembrane domain (Nomoto et al., 2003). The rat and mouse Tmem132d gene 

is located on chromosome 12 and 5 and its protein product shares 83.4% and 83.2% amino acid 

identities, respectively, with the corresponding human protein (Nomoto et al., 2003). The high 

degree of protein homology among rat, mouse and human indicates that TMEM132D function is 

likely evolutionary conserved. Rat oligodendrocytic precursor cells show no expression of either 

Tmem132d mRNA or protein, however on differentiation they start to express the corresponding 

protein (Nomoto et al., 2003).  Thus, TMEM132D has been proposed as a cell surface marker 

for mature oligodendrocytes. However, another study also found Tmem132d expression in 

neurons and  their colocalization with actin filaments suggests their role in cell-cell adhesion 

(Walser et al., 2011). Interestingly, TMEM132D shares moderate homology with neural cell 

adhesion molecule (NCAM) (NCBI database). Thus the involvement of Tmem132d in 

oligodendrocyte maturation and/or cell adhesion may be important for efficient connection of Cg 

with other brain regions implicated in anxiety-related behavior. 

Characterization of the human Tmem132d promoter in an oligodendrocytic cell line has identified 

several inhibitory transcription factors such as MYT1, SP1, HES1, ZNF219 whose expression is 

reduced in differentiating oligodendrocytic cells (Herrmann, 2012). Except ZNF 219, the other 
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transcription factors have been earlier shown to be involved in oligodendrocytic differentiation 

(Armstrong et al., 1995; Guo et al., 2010; Wu et al., 2003).  

In mHAB vs. mLAB, Tmem132d mRNA expression was studied in several brain regions like 

PVN, basolateral amygdala, central amygdala, dentate gyrus, but difference was found only in 

the Cg (Czibere, 2008). In more detail, there was higher expression of Tmem132d mRNA in 

mHABs compared to mLAB with intermediate levels in the CD-1 mice. This expression 

difference was consistent throughout in microarray, qPCR (Czibere, 2008) and also in in situ 

hybridization experiments (Steiner, 2009) irrespective of gender. The Cg has intricate 

connections with amygdala, where heightened responses to anticipatory signals are associated 

with the Cg and treatment response in anxiety disorders (Nitschke et al., 2009). At the synaptic 

level, fear conditioning has been found to exhibit synaptic plasticity changes in the amygdala 

and Cg (Toyoda et al., 2011). Several fMRI studies have also suggested connections between 

Cg and amygdala during emotional processing events in anxiety disorder patients (Kim & 

Whalen, 2009; Stein, M. B. et al., 2007). As anxiety-related brain circuits are conserved across 

species (Cryan & Sweeney, 2011), the altered expression profile of Tmem132d in the Cg may 

contribute to differential modulation of anxious stimuli in this brain region and subsequent 

predisposition to higher anxiety in HABs. This is the first oligodendrocytic gene, to the best of my 

knowledge, to be involved in anxiety-related phenotype. 

Apart from expression differences, two SNPs A(-519)G and A(-310)G from the transcription start 

site were described in the Tmem132d promoter up to 1000 bp (Czibere, 2008). To understand 

the genetic foundation of this differential expression, mHAB or mLAB promoters containing two 

G or A residues at positions -519 and -310 each, respectively, were tested in a dual luciferase 

assay. The mHAB fragment containing both G residues had significantly higher promoter activity 

than corresponding mLAB (Figure 22). When either -519 or -310 G residue was mutated to A, 

there was complete loss of promoter activity suggesting the importance of these two loci. 

However, deletion of the -519 A residue in mLAB did not have any effect on its promoter activity. 

In silico analysis of Tmem132d promoter predicted binding of nuclear factor I/C at -519 position. 

This transcription factor has been shown to be involved in eukaryotic transcription (Santoro et 

al., 1988), co-localization with RNA polymerase II (Zhao et al., 2005) and participation in 

vertebrate brain development (Singh et al., 2011). A previous study showed that binding of 

nuclear factor I/C is blocked by CpG methylation causing an increase in promoter activity of Igf2 

(Jaenisch & Bird, 2003). Whereas the -310 SNP was also found to bind TFIIB, which is a general 

transcription factor involved in formation of RNA polymerase II preinitiation complex (Kostrewa et 

al., 2009; Sainsbury et al., 2013). Thus, both the G residue in mHAB seem to interact with RNA 
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polymerase II and interestingly, a recent study found that presence of RNA polymerase II, stalled 

or active, predicts the epigenetic fate of promoter CpG islands (Takeshima et al., 2009). 

Other genetic factors were studied that might act either synergistically or alone in Tmem132d 

gene regulation. Among them CNV of Tmem132d was measured, which was not different 

between mHAB vs. mLAB (Steiner, 2009). In addition, there was a 600 bp CpG island in the 

promoter region encompassing the above described two SNPs. These CpG islands are usually 

prone to DNA methylation based epigenetic mechanism, but bisulfite sequencing of Tmem13d 

promoter did not reveal any difference in total percentage of DNA methylation between basal 

mHAB vs. mLAB lines (Figure 25). Thus, this suggests that SNPs in the Tmem132d promoter 

are sufficient to cause differential gene regulation in accordance with the observed in vivo 

expression data.  

Moreover, in the coding region two SNPs in the 5’ UTR (C(470)T, C(593)T), one SNP each in 

exon 3 (A/G, rs36596918) and exon 9 (A/G, rs13478518) of Tmem132d have been described 

(Steiner, 2009). The rs36596918 causes substitution from arginine to lysine (Czibere, 2008). 

However, the functional significance of these SNPs is currently unknown. The rs13478518 of 

Tmem132d was found to co-segregate with anxiety-related behavior in an F2 panel, 

independent of depression-like behavior and locomotor activity (Czibere, 2008), advocating 

causal role of the Tmem132d gene in anxiety-related behavior. The F2 panel is obtained by 

cross mating F1 offspring among each other and the subsequent alleles and traits should 

segregate freely to resolve genetic contribution of the involved loci.  However, the small number 

of meiosis and resultant recombination events from the parental mHAB vs. mLAB to the F2 

generation may lead to false positive association of alleles with anxiety-related behavior 

(Steiner, 2009). Subsequently, in a group of 80 outbred CD-1 mice, this SNP was also 

associated with anxiety-related behavior (Czibere, 2008). As the alleles in outbred CD-1 mice 

got separated by recombination over several generations, a positive association in this group of 

mice validates the F2 panel studies (Steiner, 2009). 

Subsequently, in search for a plasticity gene that is responsive to environmental challenges, 

Tmem132d mRNA expression was measured in mHAB and mLAB subjected to EE or UCMS, 

respectively. Interestingly, Tmem132d mRNA was found to be differentially regulated with EE 

mHAB showing higher expression while, in contrast, UCMS mLAB had lower expression 

compared to their respective controls (Figure 26B and 26D). Thus, we have here a good 

example of plasticity gene in accordance with the Belsky’s differential susceptibility hypothesis 

(Belsky et al 2009). At the behavioral level, there were corresponding increases or decreases of 

percent time spent in light compartment in mHAB or mLAB, respectively (Figure 26A and 26C) 

i.e., decreased and increased anxiety, respectively. However, the expression data was in 
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contrary, with EE mHAB expected to have lower Tmem132d expression and vice versa for 

stressed LABs, as higher Tmem132d expression previously associated with higher anxiety-

related behavior.  

Earlier studies in our group have shown that homozygous mHAB and mLAB subjected to EE 

and UCMS, respectively causes a bidirectional shift in their anxiety-related behavior towards 

normality (Markt et al (submitted)). Thus, in the next step, cross -mated F1 offspring were 

similarly subjugated to groups of EE, UCMS and control. The idea here was to simulate an 

outbred situation where the risk (mHAB) and protective (mLAB) alleles interact with other 

factors, to help the animal cope with different environmental challenges. As mouse behavior is 

multimodal, a battery of behavioral tests was utilized to measure anxiety and comorbid 

depression-like behavior (Crawley et al., 1997). F1 offspring of HAB mother genotype 

experiencing EE or UCMS had significant percent time in the open arm, open arm entries and 

latency to enter open arm without affecting locomotion on the EPM. In particular, the EE group 

spent more time in open arm (Figure 27A) and had more open arm entries (Figure 27C) in 

contrast to control F1 offspring, indicating decreased anxiety. Likewise, the UCMS group had 

lower open arm entries (Figure 27C) and higher latency to entry in open arm (Figure 27D) in 

comparison to control F1 offspring; suggesting an anxiogenic effect. Besides in the LD box test, 

significant effects of environmental challenges were observed in percent time in light 

compartment.  

In the LD box test, F1 offspring from EE group unlike their control batch spend more time (Figure 

28A) and exhibited more entries (Figure 28C) into light zone, including more rearing (Figure 

28D), which is an index of exploratory behavior in mice. The F1 offspring confronted with UCMS 

had higher latency to enter (Figure 28B) and fewer entries (Figure 28C) into light zone, in 

contrast to control F1. There was also less corresponding rearing (Figure 28D) compared to 

control F1 offspring. This again shows the contrasting effects of EE and UCMS on the same F1 

offspring. 

Regarding depression-like or stress-coping behavior, F1 offspring of EE and UCMS differed in 

their passive stress-coping as reflected by higher time spent immobile in both, TST and FST 

(Figure 29A and 29C). Consequently, blood CORT and body weight also differed significantly 

between the three groups (Figure 30A, 30B), In particular, UCMS batch exhibited higher CORT 

and lower body weight in contrast to their control F1 offspring. Decrease in body weight has 

been found earlier in UCMS exposed mice which was reversed on SSRI treatment and has been 

used as a marker for UCMS evoked conditions (Surget et al., 2011). Increased CORT suggests 

hyperactivity of HPA axis which is an endophenotype and impairment of this has been found in 

anxiety disorders (Kallen et al., 2008). Interestingly, CORT usually goes hand in hand with 
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depression in human patients (Holsboer & Barden, 1996; Seckl et al., 1990). The higher 

depression-like behavior has also been shown in animals repeatedly administered with CORT 

(Kalynchuk et al., 2004), and in an animal model selectively bred for differences in CORT 

response to a stressor, the mice  

with higher CORT in blood plasma also displays higher depression-like behavior in FST (Touma 

et al., 2008). However, the lower body weight observed in UCMS F1 group is in contrast to 

studies in depressed human patients where higher body weight has been reported (Berlin & 

Lavergne, 2003; Shioiri et al., 1993). Nonetheless, studies have also shown that the body weight 

differences are due to different subtypes of depression in human patients (Saarni et al., 2011). 

Conversely, F1 offspring of LAB mothers subjected to EE or UCMS were also analyzed on 

several behavioral tests. Here, these F1 offspring did not differ in any parameter such as EPM, 

LD box test, FST and TST (Figure 31). Thus F1 offspring of LAB mothers were mostly resilient to 

different environmental challenges suggesting that LAB mothers probably confer a protective 

effect. F1 offspring of LAB mothers when cross-fostered with HAB mother, it did not have any 

effect on its anxiety-related behavior (Sotnikov, personal communication). However, F1 offspring 

of HAB mothers when cross-fostered with LAB mothers there was a significant decrease in 

anxiety-related behavior (Sotnikov, personal communication). Thus this suggests that F1 

offspring of LAB mother are somehow resilient owing to their genetic make up or they learn to 

cope with different environmental challenges. 

As Tmem132d was found to be a plastic gene in mHAB vs. mLAB, its corresponding allelic 

expression was measured in these F1 offspring, too. F1 offspring from both mHAB and mLAB 

mother subjected to EE or UCMS had significantly higher mLAB allelic expression in contrast to 

mHAB (Figure 32). Meanwhile, there was no statistical difference between mHAB and mLAB 

alleles in the control F1 offspring in contrast to studies by (Czibere  et al., 2011), which showed 

higher expression of mHAB allele overriding the corresponding mLAB. 

This was an unexpected finding owing to in vitro data showing that SNPs in mHAB cause higher 

Tmem132d mRNA expression, thus this suggests probably non-specific effect or a probable 

GXE interaction. Since there was a CpG island in the promoter region of this gene, qMSP was 

utilized to measure DNA methylation differences in the Tmem132d mHAB and mLAB alleles. 

Surprisingly, the total percentage of DNA methylation of Tmem132d promoter of each mLAB 

allele is lower than corresponding mHAB allelic expression, although not statistically significant 

(Figure 33). Nevertheless, this is in line with the above higher mLAB Tmem132d mRNA allelic 

expression as there was a significant negative correlation with each other at least in mHAB 

alleles. Thus, these studies indicate an interaction between genetic and environmentally 

mediated epigenetic factors like DNA methylation.  Also, a recent study presented at a 
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conference reported higher symptom severity and lower methylation in intronic region of human 

Tmem132d suggesting overexpression of corresponding mRNA in PTSD patients (Erhardt, 

2012).  

It is worth mentioning that studies by (Quast et al., 2012) in the human Tmem132d gene of 

healthy controls found an overrepresentation of rare variants with protective effects. Thus in a 

similar way, in the heterozygous F1 offspring, the mLAB Tmem132d allele might have a 

protective role to buffer the animals against any kind of environmental challenges. Thus, the 

subsequent observed higher mLAB Tmem132d allelic expression. Studies by (Taylor et al., 

2006) showed that the combination and proportion of 5-HTT polymorphic alleles confer either 

susceptibility or protective effects based on the prevailing situation. Thus, although there was 

higher mLAB allelic expression in both EE and UCMS group of F1 offspring compared to mHAB, 

the proportion of each allele may determine at least partially the animal’s response to the 

environmental challenges faced by it.  Although I would like to add that Tmem132d is not the first 

plasticity gene discovered for anxiety-related behavior. Studies by (Sztainberg et al., 2010) 

showed that the high Crhr1 mRNA expression which is associated with higher anxiety-related 

behavior, is reduced in the amygdala when the mice are exposed to EE with a concomitant 

reduction in anxiety-related behavior. Subsequently, in our group Crhr1 mRNA was found to be 

differentially expressed with basal mHAB having higher Crhr1 mRNA expression relative to 

mLAB in the amygdala (Markt et al., (submitted)). Interestingly, when the mHAB was subjected 

to EE there was a corresponding decrease in Crhr1 mRNA expression relative to its control in 

the amygdala. In contrary, mLAB experiencing UCMS had higher Crhr1 mRNA expression 

compared to their respective controls in the amygdala. The Crhr1 promoter was further 

characterized for differential methylation in EE mHAB and UCMS mLAB and the dissimilar 

expression was suggested to be a result of an interaction between DNA methylation and Yin-

Yang (YY1) transcription factor binding in the upstream Crhr1 promoter region (Markt et al 

(submitted)). These findings support the notion of differential susceptibility hypothesis (Belsky et 

al., 2009) that there is neither good nor bad genes. They simply respond to environmental 

challenges thereby increasing phenotypic plasticity for adaptation and aid in the survival of the 

species.  

Thus the above behavioral and molecular findings further emphasize the use of selective 

breeding to study anxiety-related and depression-like behavior. The study of these two 

candidate genes i.e., Nps/Npsr1 and Tmem132d would pave the way for further studies in 

humans to determine their translational potential.  
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5.0 Perspectives 

The high degree of similarity among the mature 20 amino acid NPS peptide suggests 

conservation of its function across different phyla. This is also indicated by the fact that the 

commercial NPS peptide, which is based on the corresponding human sequence, nonetheless 

works well in rats and mice. The mutations observed in the mLAB NPS precursor could be 

artificially engineered and its post-translational processing studied in an in vitro set up. The 

effects of NPSR1-A showing higher anxiety in LAB rodents suggested an involvement of an 

endogenous NPS system. On the contrary, in HAB rodents, these data hint towards a 

dysfunctional endogenous NPS. This could be verified by measuring basal NPS release in target 

brain regions of HAB vs. LAB rodents and also it would be interesting to look at corresponding 

protein levels, localized within CRH positive cells. This idea is based on the fact that Crh mRNA 

was higher in rHAB and thus this maybe a reason for increased Nps mRNA. The interesting 

study by (Jungling et al., 2012) demonstrating release of NPS by CRH, further warrants its 

investigation in the HAB vs. LAB rodents, because of CRH involvement in HPA axis activity, 

which is also altered in these animal models. This would enhance understanding of HPA axis 

activity and its corresponding interactions with other peptide molecules. 

On the other hand, in Npsr1 gene the conservation of exonic and 5’ regulatory region along with 

our promoter characterization data would help other researchers working in diverse fields such 

as sleep medicine, respiratory disease and inflammatory bowel disease, where the role of Npsr1 

is currently being investigated. In addition, the fact the a single exonic SNP in NPSR1 has 

similar behavioral and physiological correlates with its human NPSR1 Ile107 isoform, advocates 

use of NPS  in anxiety or panic disorder patients carrying the risk allele. Nevertheless, it is worth 

noting that in humans NPSR1 the exchange of hydrophilic asparagine to hydrophobic isoleucine 

residue may additionally affect protein folding, conformation, etc. Thus, normal rats and mice 

which carry non-polar hydrophobic tryptophan and isoleucine, respectively, in NPSR1 at the 

corresponding position could be mutated to asparagine and its corresponding behavioral and 

physiological outcomes studied. Furthermore, the in vitro demonstration of increase in cAMP in 

HAB NPSR1 relative to LAB in rats and mice could be utilized to find other downstream 

coplayers that might modulate the activity of this GPCR. Also, it would be interesting to do an 

enzyme-linked immuno sorbent assay (ELISA) in cells overexpressing HAB, LAB NPSR1 to 

verify if difference in cAMP response is due to differences in total and surface receptor 

expression. Finally, the fact that Npsr1 mRNA expression did not differ in mHAB vs. mLAB 

subjugated to EE or UCMS, suggests that not all candidate genes are plastic but they have other 

roles as discussed above. 
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The second candidate gene, TMEM132D which is expressed on mature oligodendrocytes and 

neurons further emphasizes the role of neuron-glia interactions and cell-cell adhesion in 

governing the physiology of brain. There is a need to do bisulfite sequencing of Tmem132d 

promoter in mHAB, mLAB and the corresponding F1 offspring subjected to EE or UCMS, owing 

to its observed differential mRNA expression. The identification of TFIIB and nuclear factor I/C in 

the Tmem132d promoter region warrants use of electrophoretic mobility shift assay (EMSA) and 

chromatin immunoprecipiation (ChIP) techniques to verify the binding of these factors and its 

interaction with adjacent methylation groups as suggested by MSP in mHAB vs. mLAB alleles of 

F1 offspring. In addition, the Cre-Lox site-specific recombinase technology could be utilized to 

achieve deletion of Tmem132d and subsequent evaluation of behavioral consequences in 

animals. Additionally reverse pharmacology or chimeric receptor (combining TMEM132D and 

NCAM domains) approaches could be used to discover ligands for TMEM132D. There is a need 

to verify the protein expression differences using Western blot once a suitable antibody is 

available.  

Furthermore, to elucidate functional aspects of TMEM13D, the yeast two hybrid system (Y2H) 

could be utilized with Tmem132d cDNA as a bait and a random library as the prey. The protein-

protein interactions could be further validated in a mass spectrometry set up once a good 

antibody is available. The differential expression of Tmem132d in light of the environmental 

challenges faced by animal and subsequent detection of epigenetic factors like DNA methylation 

further highlights the role of GxE interactions in mediating complex phenotypes. 

To conclude, identification and functional characterization of risk factors at a higher penetrance 

in these animal models would help in finding novel biomarkers for anxiety and comorbid 

depression-like behavior. The hope is that, once these risk factors are also discovered in 

corresponding patient group as for the above two candidates, the preclinical studies would 

contribute to the diagnosis and treatment of these disorders. Also, HAB NPSR1 or TMEM132D 

could be overexpressed into wild-type mice to see the corresponding phenotype. Similarly, small 

interfering RNA (siRNA) could be used to see if alterations in Nps, Npsr1 or Tmem132d 

observed in HAB, LAB rodents leads to similar phenotype when only that one change 

introduced. 
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