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1 Summary 
The activity of rRNA gene transcription is the major determinant of cell proliferation and cell 

growth. In proliferating mammalian cells approximately 35 % of total transcription activity is 

dedicated to RNA polymerase I (Pol I) to produce the 47S rRNA precursor, which is 

subsequently processed to mature 18S, 5.8S and 28S rRNA by a number of endo- and 

exonucleolytic cleavage steps to provide the catalytical and structural core of the ribosomes. 

The aim of the presented thesis was to identify novel regulators of rRNA gene transcription to 

gain further insights into the complex network of adaptive processes that match ribosome 

amounts with the physiological needs of the cell. For this purpose, factors interacting with the 

second largest subunit of the Pol I complex, RPA116, were purified by co-

immunoprecipitation and subsequently analysed by mass spectrometry. Thereby, the protein 

Mybbp1a was identified as a promising candidate for further characterisation. Originally 

Mybbp1a has been described as an interacting partner of the proto-oncogene c-Myb and, 

since then, shown to interact with and to modulate the activity of several other regulators of 

Pol II-dependent transcription thereby modifying many different cellular key pathways. 

However, despite its predominant nucleolar localisation no function within this nuclear 

compartment has been characterised so far. The following Pol I reporter experiments as well 

as the assessment of endogenous levels of 47S rRNA precursor after siRNA-mediated 

depletion of Mybbp1a revealed the protein’s ability to regulate rRNA gene transcriptional 

activity by a repressive mechanism. Unexpectedly for a repressor of rDNA transcription, 

depletion of Mybbp1a led to a strong retardation of cellular proliferation joined by a specific 

flattened phenotype of the cells. Therefore, an additional role for Mybbp1a in growth-related 

processes other than rDNA transcription was investigated and the requirement of the protein 

for efficient processing of the rRNA precursor could be determined by metabolic labelling of 

nascent rRNA precursors. Furthermore, the purification of Mybbp1a-associated factors 

determined several processing factors important for the maturation of both, the 40S and 60S 

ribosomal subunits, thereby confirming its presence in pre-ribosomal particles. Interestingly, 

the nucleolar localisation of Mybbp1a and the association with the identified processing 

factors was dependent on a RNA component as shown by immunofluorescence and size 

exclusion chromatography experiments with RNase-treated cells further emphasising a 

physical association of Mybbp1a with the processing machinery and a direct role of Mybbp1a 

in steps of ribosome biogenesis subsequent to rDNA transcription. 

As revealed by this work, Mybbp1a integrates different functions with respect to rRNA 

synthesis. Its newly characterised role in rDNA transcription as well as rRNA processing 

discloses a potential mechanism to co-ordinate these both processes. Furthermore, the 

protein’s involvement in various other cellular key pathways makes Mybbp1a a promising 

target for signalling pathways to adapt major cellular processes with the current condition of 
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the cell. The presented experimental data together with other published information suggest 

that in proliferating cells Mybbp1a is mainly associated with the pre-ribosomal complexes 

where it acts as a scaffold for rRNA processing and assembly factors and is functionally 

required to drive efficient ribosome biogenesis. Reduced levels of ribosome biogenesis, eg. 

caused by stress signals, potentially result in the disassembly of pre-ribosomal particles and 

subsequent release of Mybbp1a to the nucleoplasm. While remaining nucleolar Mybbp1a 

would repress RNA Pol I transcription released nuclear Mybbp1a would modulate the activity 

of RNA Pol II transcription regulators to cease cell cycle progression, proliferation and energy 

production. The further characterisation of Mybbp1a will not only be interesting with respect 

to its cellular role(s) but also regarding the mechanistic understanding of fundamental cellular 

processes such as transcription regulation and co-ordination with subsequent RNA 

maturation. 
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2 Introduction 
The majority of transcriptional activity in growing cells is dedicated to the synthesis of 

ribosomal RNA (rRNA) to ensure sufficient supplies of ribosomes for the subsequent cell 

generation. This introduction will give a concise overview on the different steps of ribosome 

biogenesis and their regulation as well as their co-ordination with respect to the actual state 

of the cell. In general, it is restricted to review work on mammalian rRNA synthesis, however, 

key experiments from other systems will be discussed. Anticipating the identification of a 

novel regulator of rRNA synthesis during the here presented thesis work a short introduction 

on the factor Mybbp1a will be given. To start with the organisation of the rRNA genes and the 

nucleolus, the specialised nuclear compartment where most steps of ribosome biogenesis 

occur, will be described. 

2.1 The ribosomal RNA genes 
The synthesis of three out of the four rRNAs, the catalytical and structural core of the 

ribosome, is executed by the RNA polymerase I enzyme (Pol I) within a specialised nuclear 

compartment, the nucleolus. The multi-copy rRNA genes (rDNA) are organised in large 

clusters of tandem arrays on one or several chromosomes within the organism’s genome. 

The number of rDNA repeats greatly varies between species, from ~150 (yeast, S. 

cerevisiae) and ~200 (mammals) gene copies per haploid genome to several thousands in 

most plants (Rogers & Bendich 1987; Warner 1999; Sanij & Hannan 2009). Intriguingly, only 

a portion of these genes is actively transcribed while the remainder persists in a silent 

transcriptional state (Conconi et al. 1989; Sanij et al. 2008). The fourth rRNA and the 

ribosomal proteins are provided by RNA polymerase III and II (Pol III and II), respectively. In 

general, this introduction is restricted to review work on mammalian rRNA synthesis, 

however, key experiments from other systems will be discussed. 

2.1.1 The nucleolus - the site of ribosome biogenesis 

The nucleolus is a distinct nuclear compartment and constitutes the site of rRNA gene 

transcription, rRNA processing and ribosome assembly. This highly dynamic structure 

assembles in the late telophase in several steps around rRNA gene clusters, which are 

therefore termed the nucleolar organiser regions (NOR). It persists throughout the interphase 

and disassembles when the cell enters mitosis (Leary & Huang 2001; Leung et al. 2004). 

The nucleolus is characterised by its unique density and easily visualised by light microscopy 

(Figure 1A). By electron microscopy three distinct nucleolar substructures can be 

distinguished. They include the fibrillar centres (FCs), which are enclosed by dense fibrillar 

components (DFCs), and further embedded in granular components (GCs). The distinct sub-

compartments exhibit individual protein compositions, which are related to their specific 
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functions. While the FCs include factors exerting rDNA transcription such as Pol I subunits or 

the transcription factor UBF (upstream binding factor), the DFCs rather harbour proteins 

involved in rRNA processing like the 2’-O-methylase Fibrillarin (Figure 1B-D). Therefore it is 

suggested that rDNA transcription is initiated in the FCs or at the FC-DFC boarders and the 

nascent 47S rRNA precursors (pre-rRNA) extrude into the DFCs. There they are processed 

by the dedicated processing factors and subsequently assembled with ribosomal proteins on 

their further way to the GCs where late processing factors such as B23 are located (Figure 

1E) (Lazdins et al. 1997; Mosgoeller et al. 2001; Lam et al. 2005). 

 

 
Figure 1: The nucleolus and its subcompartments.  
(A) Light microscopic image; a nucleolus is indicated by an arrow. (B) Fluorescence microscopic image of nucleoli 
stained with antibodies against the Pol I subunit RPA39 and the processing factors fibrillarin and B23. (C) 
Schematic presentation of the nucleolar subcompartments with the respective marker proteins indicated. (D) 
Transmission electron microscopic image of nucleoli with its subcompartments indicated. (E) Sequential 
movement of rRNA. Cells were labelled with a short pulse of halogenated nucleotide, which reveals a wave of 
nascent rRNA spreading from the FC-DFC complexes to the GC regions. FC: fibrillar centre; DFC: dense fibrillar 
component; GC: granular component. (Lam et al. 2005) 

Recent studies on the nucleolar proteome by mass spectrometry-based techniques have 

identified up to 700 proteins to be present in HeLa nucleoli (Andersen et al. 2002; Scherl et 

al. 2002; Andersen et al. 2005). More than 30% of the determined proteins are associated 

with one of the processes involved in ribosome biogenesis, which confirms the central role of 

the nucleolus in this process. However there are many proteins, which can be related to 

other processes such as cell cycle regulation, DNA damage repair, pre-mRNA processing, 

senescence and stress sensing emphasising the functional complexity of the nucleolus also 

beyond ribosome biogenesis (Pederson 1998; Olson et al. 2002; Mayer et al. 2005; Mayer & 

Grummt 2005; Yuan et al. 2005). A very recent genomic approach has furthermore sought to 

characterise nucleolus-associated chromatin domains (NAD) by sequencing and microarray 

technologies (Nemeth et al. 2010). Bioinformatical analysis identified 97 chromosomal 

regions including ~1000 genes and representing approximately 4% of the whole genome. 

One of several other gene families enriched in those domains is represented for example by 
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the 5SrRNA as well as the tRNA genes, which are both transcribed by Pol III, indicating that 

spatial regulation may play a role in co-ordinating the provision of components of the 

translation machinery and proofing former results on their co-localisation with the nucleolus 

(Thompson et al. 2003; Haeusler & Engelke 2006). Undoubtedly, the nucleolar structure 

integrates an extensive variety of functional scaffolds and coordinative responsibilities, of 

which the most prominent and well-characterised role is its contribution to the synthesis of 

mature rRNAs and their assembly into ribosomal particles. 

2.1.2 The organisation of mammalian rRNA genes 

The rRNA genes in human cells are clustered as head-to-tail tandem repeats on the short 

arms of the five acrocentric chromosomes (13, 14, 15, 21, and 22) termed nucleolar 

organiser regions (Henderson et al. 1972). The mammalian transcription units comprise ~43 

kb in humans and ~45 kb in mouse and are built of a sequence encoding the 47/45S pre-

rRNA (13-14 kb) separated by long intergenic spacers (IGS; ~30 kb)(Figure 2A) (Sanij & 

Hannan 2009). The mammalian rDNA promoter comprises 170 to 200 bp and has a bipartite 

structure including a core promoter sequence adjacent to the transcription start site and an 

upstream control element (UCE) approximately 100 bp upstream (Haltiner et al. 1986; 

Learned et al. 1986; Paule 1998) (Figure 2B). The pre-rRNA transcription unit encodes the 

18S, 5,8S and 28S rRNAs, of which sequences are preceded by a 5’ external transcribed 

spacer (5’ETS), separated by internal transcribed spacers 1 and 2 (ITS 1 and 2) and 

concluded by the 3’ external transcribed spacer (3’ETS). The pre-rRNA coding region is 

concluded with 10 terminator elements, to which the Pol I-specific transcription termination 

factor I (TTF-I) binds (Grummt et al. 1985; Grummt et al. 1986; Henderson & Sollner-Webb 

1986; McStay & Reeder 1986). An additional TTF-I binding site (T0) is located upstream of 

the UCE (Paule 1998) and plays an important role in organising the chromatin structure at 

the promoter, which will be discussed in detail in the following chapters. The intergenic 

spacer has been originally termed non-transcribed spacer as it was thought to be 

transcriptionally inactive. However, several studies performed in different species have 

identified promoter sequences as well within the IGS (Coen & Dover 1982; Miller et al. 1983; 

Moss 1983; Kuhn & Grummt 1987). Subsequently different roles of IGS transcription have 

been suggested including a potential mechanism to enhance rRNA synthesis by trapping 

RNA Pol I and supplying it to the promoter (Moss 1983; Grimaldi et al. 1990) or to establish 

and maintain transcriptionally active or silent states of the rDNA repeats by modifying their 

chromatin structure (Mayer et al. 2006). Furthermore, an enhancer element is located 

adjacent to the spacer promoter, which helps to augment the probability of transcription from 

the linked gene (Moss 1983; De Winter & Moss 1987).  
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Figure 2: The organisation of mammalian rRNA gene repeats (Sanij & Hannan 2009). 
(A) A schematic of a single mouse rDNA repeat. The 45S gene consists of sequences (13–14 kb) encoding the 
transcribed region followed by an intergenic spacer (IGS, blue line) of ~30 kb in length. Scale bars in kb are 
shown below; the site of transcription initiation of the 45S transcript is indicated at 0 kb. Terminator elements 
located downstream of the coding region (T1-T10), downstream of the spacer promoter (Tsp) and upstream of the 
45S promoter (T0) are indicated by the red bars. ETS: external transcribed spacer; ITS: internal transcribed 
spacer. (B) A schematic of the mouse 45S rDNA promoter. The rDNA promoter consists of two elements, an 
upstream control element (UCE) 100 nucleotides upstream of the transcription start site and the core promoter 
immediately adjacent to the start site. Transcription termination elements T0 are located immediately before the 
UCE. The position of CpG residues at nucleotides -166, -143, -133 and +8 is indicated. The CpG di-nucleotide at 
-133, shown to be methylated by NorC is coloured in red. 

2.1.3 The two different chromatin states of the rRNA genes 

Early electron microscopic studies in amphibian oocytes displayed two different 

conformations of the rRNA gene copies (Miller & Beatty 1969). These chromatin 

preparations, which were from then on called ‘Miller spreads’, display a very characteristic 

structure for active gene units of several transcribing enzymes with extruding nascent pre-

rRNA capped by a terminal knob termed ‘Christmas trees’. The transcriptionally active 

repeats are densely populated with Pol I complexes and altered by inactive, Pol I-lacking 

gene copies (Figure 3). While in yeast the stretches of different activity states seem to be 

arbitrarily distributed (Osheim et al. 1996; French et al. 2003) in mammalian cells, however, it 

is not yet clarified if the active genes are also randomly dispersed over the distinct rDNA 

cluster on the different chromosomes and whether these patterns are maintained throughout 

the cell cycle. 

 

A 
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Figure 3: Miller spreads of yeast rRNA genes (French et al. 2003). 
Active transcribed rRNA genes are occupied by Pol I with extruding nascent pre-rRNA capped by terminal knobs 
building the so-called ‘Christmas tree’ structures (black arrows in direction of transcription). Active genes are 
separated by inactive copies randomly (gray arrows). Scale bar = 1 µm.  

These two activity states are mirrored by the co-existence of two distinct conformations of the 

rRNA gene-containing chromatin (r-chromatin), namely rDNA copies either packaged into 

regularly spaced nucleosomal arrays or lacking these structural features representing the 

transcriptionally inactive and active states, respectively (Prior et al. 1983; Dammann et al. 

1993; Ahmad & Henikoff 2002; French et al. 2003; Nemeth et al. 2008). It is not yet clarified if 

active rDNA is completely devoid of nucleosomes or if it is rather wrapped into specialised 

non-canonical nucleosome structures leading to a highly dynamic and open chromatin 

conformation. The latter assumption is supported by different approaches in various model 

systems. In specific yeast strains, which contain only a limited number of rRNA genes and 

are therefore supposed to harbour only active rDNA copies, Proudfoot and colleagues have 

determined dynamic nucleosomal structures within the rDNA repeat by chromatin 

immunoprecipitation (ChIP) and biochemical fractionation methods (Jones et al. 2007). ChIP 

and immunofluorescence experiments in human, mouse and Drosophila cells revealed 

binding of antibodies recognising histone modifications associated with active transcription or 

the deposition of histone variant H3.3 within rDNA sequences (Ahmad & Henikoff 2002; 

Espada et al. 2007; Nemeth et al. 2008). Importantly, the study by Längst and colleagues 

additionally assessed the association of histone H3 within non-methylated rDNA repeats 

corresponding to the active gene portion and could show that approximately 50% of rDNA-

associated histone H3 is bound to the active rDNA conformation (Nemeth et al. 2008). In 

contrast, different experimental approaches in yeast including electron microscopy and 

cross-linking of DNA by Psoralen, an agent supposed to intercalate only into nucleosome-

free DNA regions, indicated that yeast may be different to mammals and active genes are 

devoid of nucleosomal structures (Dammann et al. 1993; Merz et al. 2008). 

Although the definite chromatin conformation of active genes remains to be elucidated it is 

well established by different studies that in lower as well as higher eukaryotes no more than 

50% of the rRNA gene copies are maintained in an active state at any given time, even in 

exponentially growing cells. (Conconi et al. 1989; French et al. 2003; Stefanovsky & Moss 

2006; Sanij et al. 2008). Thus, the extent of rRNA synthesis is rather regulated on the level of 

transcription rates than by altering the dosage of active rRNA gene units per cell. 
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Nevertheless, the number of active rDNA units varies between certain cell types of one 

organism suggesting that the portion of active repeats alters during development and 

differentiation (Haaf et al. 1991). Interestingly, a very recent study by Hannan and colleagues 

revealed an increasing number of silenced rRNA genes during mammalian granulocyte 

differentiation, which might represent a mechanism to contribute to the propagation of 

reduced needs of rRNA synthesis during the special case of cellular differentiation (Poortinga 

et al. ; Sanij et al. 2008). However, why has such a large number of rRNA genes evolved, 

which is maintained silenced throughout a cell’s life, if its purpose was not to regulate rRNA 

synthesis. Different hypotheses address this issue. Silenced repeats might constitute a 

landing platform for factors involved into the many nucleolar functions or restrict special 

factors from entering the nucleolus (Paule & White 2000; Moss & Stefanovsky 2002). Latest 

experimental results in yeast have further supported the well-accepted postulation that 

silenced repeats may serve as matrices for recombinational repair for the heavily transcribed 

rRNA genes, which are very likely to be targets of DNA damage due to their continuously 

accessible chromatin structure (Ide et al. 2010). In their study Kobayashi and colleagues 

have demonstrated that the loss of non-transcribed copies leads to an augmented sensitivity 

of cells to DNA damage, which is dependent on the level of rDNA transcriptional activity. 

According to their data additional (silenced) copies facilitate sister chromatid cohesion and 

thereby recombinational repair indicating that high concentrations of intensively transcribed 

genes might be toxic for the cell. 

2.1.4 Epigenetic and topological features of active and inactive rRNA genes 

Several recent studies investigated the additional layer of regulation involving modification of 

DNA and associated histones. These modifications are thought to be implied in the 

inheritance of transcriptional activity states through cell division and development and as 

they are not linked to DNA sequence are referred to as epigenetic. However, it is not finally 

resolved whether active and inactive states of specific r-chromatin stretches are maintained 

during cell cycle. Active and inactive rRNA gene populations are marked by specific DNA 

and histone modifications and distinct topological conformations (Santoro & Grummt 2005; 

Nemeth et al. 2008). The absence of DNA methylation and histone acetylation is 

characteristic for active repeats. Additionally, the transcribed genes exhibit a TTF-I-mediated 

DNA loop, which connects the gene promoter with the transcription terminator region 

(Nemeth et al. 2008) suggesting a mechanism to augment transcription rates by increasing 

the efficiency of transcription re-initiation. Inactive rRNA genes, however, are marked by CpG 

methylation, histone hypo-acetylation and methylation of specific lysine residues in histone 

H3 (H3) (Santoro & Grummt 2001; Santoro et al. 2002; Zhou et al. 2002). The establishment 

of these heterochromatic marks is dependent on the recruitment of NoRC, a remodeling 
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complex containing Tip5 (TTF-I interacting protein) and the ATPase SNF2h (Strohner et al. 

2001), to the rRNA gene promoter. The recruitment of NoRC requires a non-coding (nc)RNA 

component originating from the IGS of the rDNA (Mayer et al. 2006) and TTF-I (Strohner et 

al. 2004), which is then bound to the promoter-proximal terminator element T0. In the current 

view NoRC subsequently recruits different histone modifiers to deacetylate histone H4 and 

methylate H3 K9, H3K20 and H3K27 (Santoro et al. 2002; Zhou et al. 2002) and repositions 

a distinct nucleosome at the rDNA promoter (Li et al. 2006). NoRC-dependent nucleosome 

repositioning is a prerequisite for DNA methylation by DNA methyltransferases (DNMTs) and 

the modification of a specific CpG at position -133 relative to the transcription start site (+1) 

represents a hallmark of silenced rDNA repeats (Santoro & Grummt 2005; Li et al. 2006). 

This single modification has been shown to interfere with binding of UBF to the UCE element 

thereby impairing pre-initiation complex (PIC) assembly at the rDNA promoter on 

nucleosomal templates and be sufficient for repression of rDNA transcription in vitro (Santoro 

& Grummt 2001).  

The chromatin modifications described above are thought to lead to long-term adjustments of 

transcriptional activity rather than flexible adaptations to the actual cellular conditions. 

However, it is still rather unclear to which extent the discussed chromatin modifications 

represent real epigenetic marks or must be rather regarded as a transient product of signal 

transduction pathways and restricted to a specific cell. These considerations are challenging 

not only with respect to pre-rRNA synthesis and r-chromatin modulation but obviously also 

for the understanding of these fundamental processes within the whole genome and are 

subject of intensive research (discussed in recent reviews by (Henikoff 2005; Ptashne 2007; 

Barth & Imhof 2010). While the mechanistic understanding with respect to the establishment 

and maintenance of silenced rRNA repeats increased continuously, the processes behind 

the construction of a highly mobile chromatin conformation to form transcriptionally active 

rRNA gene repeats are less understood. One of the most characterised factors in this regard 

is the Pol-I specific transcription factor UBF. The protein is associated with active NORs 

throughout mitosis and is absent from silent NORs (Roussel et al. 1993; Wright et al. 2006). 

UBF is a sequence-tolerant DNA-binding protein that interacts with the minor groove of DNA 

and binds to structured DNA. In its dimeric form the HMG-box-containing protein is able to 

bend DNA to a structure resembling a nucleosome in both DNA content and mass (Bazett-

Jones et al. 1994; Copenhaver et al. 1994; Putnam et al. 1994). UBF is bound throughout the 

IGS and the pre-rRNA coding region (O'Sullivan et al. 2002) indicating that the protein plays 

an important structural and functional role in the establishment and maintenance of 

transcriptionally active r-chromatin. This specific function and its responsibilities related to 

pre-initiation complex assembly will be subject of the following chapter. Furthermore, next to 

its role in rDNA silencing TTF-I has been shown to contribute also to the establishment of an  
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Figure 4: A model for the silencing mechanism of rRNA genes (McStay & Grummt 2008). 
(A-D) Model depicting individual steps of rDNA silencing. (A) First, NoRC is recruited to the rDNA promoter by 
TTF-I bound to the promoter-proximal terminator T0. (B) Next, NoRC interacts with the Sin3 corepressor complex, 
leading to deacetylation of histones H3 and H4, and with histone methyltransferases (HMTs) that methylate 
H3K9, H3K20, and H3K27. (C) These heterochromatic histone modifications may act as a signal for the ATPase 
SNF2h to shift the promoter-bound nucleosome 25 nt further downstream into a translational position that is 
unfavourable for pre-initiation complex formation. (D) The action of SNF2h may either relieve a steric constraint 
or expose CpG at –133 to methylation by DNA methyltransferases (DNMTs). Methylation of CpG at –133 in the 
context of chromatin impairs UBF binding and pre-initiation complex assembly. (E) Model depicting the role of 
promoter-associated RNA (pRNA) in rDNA silencing. Intergenic transcripts (dotted line) are synthesized from a 
spacer promoter located �2 kb upstream of the major 45S pre-rRNA promoter. The primary intergenic transcripts 
are degraded or processed by an as-yet-unknown mechanism. Transcripts of 150–300 nt that match the rDNA 
promoter (pRNA) bind to TIP5 (TTF-I-interacting protein 5) via the MBD (methyl-CpG-binding domain)-like TAM 
(TIP5/ARBD/MBD) domain. Association with pRNA is required for NoRC-mediated heterochromatin formation. 

active r-chromatin conformation. TTF-I binding to its promoter-proximal binding site 

stimulates rDNA transcription in vivo (Henderson & Sollner-Webb 1986) and was 

subsequently shown to lead to a re-arrangement of nucleosomal positions on a rDNA 

promoter-containing template pre-assembled into nucleosomes in vitro (Langst et al. 1997; 

Langst et al. 1998).This correlated with transcriptional activation indicating that TTF-I recruits 

specific remodeling complexes to the rDNA promoter to induce nucleosome repositioning 

thereby allowing efficient transcription initiation. Interestingly, CSB (Cockayne syndrome 

protein B), an ATPase that is capable of chromatin remodeling and localised to the 

nucleolus, has been shown to interact with Pol I, TFIIH and Pol I-related basal transcription 

factors (Bradsher et al. 2002) and to stimulate rDNA transcription in vivo (Yuan et al. 2007). 

The observed transcriptional activation by CSB requires its ATPase activity and depends on 

TTF-I binding to its promoter-proximal binding site T0. However, other factors might be 

additionally needed for the maintenance of an euchromatic conformation of active rDNA 

repeats.  

B 
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2.2 rRNA gene expression by RNA polymerase I 
In yeast almost 60 % of total transcriptional activity is dedicated solely to the production of 

ribosomal RNA by RNA polymerase I (Pol I) (Warner 1999). The following section will 

summarise current knowledge on the distinct steps and specificities of the process of 

mammalian rRNA gene expression.  

2.2.1 Initiation of rRNA gene transcription 

Pre-initiation complex assembly 

In the classical view mammalian initiation complex formation is a step-wise assembly of at 

least four essential Pol I-specific factors, namely UBF, TIF-IA, - B and –C, and the Pol I 

enzyme complex at the dedicated promoter elements (Schnapp & Grummt 1991). The 

mammalian rDNA promoter has a bipartite structure including a core promoter element 

(CPE) adjacent to the transcription start site and an upstream control element (UCE). Pol I is 

a multi-protein complex comprising 14 core subunits, of which some are shared with one or 

both of the other two eukaryotic RNA polymerases (Moss et al. 2007). The upstream-binding 

factor UBF was shown to bind to the UCE upstream the core promoter, creating a favourable 

environment for the transcription initiation factor TIF-IB complex ((selectivity factor 1 (SL1) in 

humans) to associate with the CPE (Figure 5A) (Bell et al. 1990; Jantzen et al. 1992). UBF 

contains several HMG boxes, a motif known to bend DNA (Jantzen et al. 1990), which 

enables an UBF dimer to wrap the DNA such that it forms a loop of almost 360° every 140 

bp. This conformation has been termed ‘enhancesome’ and suggests a model how the core 

promoter and UCE are brought in close proximity thereby supporting interaction with and 

parallel promoter recognition by TIF-IB (Figure 5B) (Bazett-Jones et al. 1994). The species-

specific TIF-IB complex consists of the TATA-binding protein (TBP) and three Pol I-specific 

TBP-associated factors (TAFIs), TAFI95/110, TAFI68 and TAFI48, which, instead of TBP in 

the case of Pol II transcription, mediate DNA binding to the CPE (Comai et al. 1992; Heix et 

al. 1997). Subsequently Pol I is recruited to the rDNA promoter via the interaction of UBF 

with the Pol I subunit PAF53 (Hanada et al. 1996) and the binding of Pol I-associated TIF-IA 

to promoter-bound TIF-IB (Miller et al. 2001; Yuan et al. 2002). Pol I is a multi-protein 

complex comprising 14 core subunits, some of which are shared with one or both of the other 

two eukaryotic RNA polymerases (Moss et al. 2007). TIF-IA is a regulatory factor, which is 

conserved between human and yeast (with its homologue Rrn3)(Moorefield et al. 2000), and 

is associated only with the initiation-competent portion of Pol I complexes (Buttgereit et al. 

1985; Schnapp et al. 1990; Bodem et al. 2000; Miller et al. 2001). The interaction of the 

fourth initiation factor TIF-IC with Pol I seems to be a prerequisite for Pol I-TIF-IA association 

(Schnapp & Grummt 1991) and is required for specific initiation and elongation (Schnapp et 

al. 1994; Paule 1998), however, its precise role is still elusive.  
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Figure 5: Basal transcription factors in rDNA transcription initiation and termination. 
(A) The basal transcription factors required for rDNA transcription initiation. The ellipsoids represent the factors, 
which are associated with the rDNA promoter and/or Pol I, respectively. TTF-I is associated to the terminator 
binding site upstream of the promoter, T0. Synergistic binding of UBF and TIF-IB to the promoter is required for 
the recruitment of Pol I (arrow). (B) Possible folding of the rDNA promoter by two adjacent enhancesomes 
induced by UBF binding (Moss et al. 2007). Model of two adjacent enhancesomes, of which the structure was 
determined in low-resolution by electron spectroscopic imaging, and a possible folding of rDNA promoter 
sequence. The UCE is shown checked black/yellow, the CPE in yellow, UBF in blue and DNA in red. Only the 
Core UBF region is shown and inter-HMG1 box linkers are shown generically. 

The Pol I holoenzyme concept versus step-wise PIC assembly 

Beginning of last decade, biochemical purification of Pol-I containing complexes in 

combination with mass spectrometry-based analysis revealed an association of initiation, 

elongation and processing factors with the Pol I subunits (Seither et al. 1998; Hannan et al. 

1999; Fath et al. 2000; Iben et al. 2002). These findings raised the Pol I holoenzyme concept 

arguing for pre-assembled Pol-I containing complexes, which comprise the required activities 

to execute efficient rRNA synthesis. Thus, a huge ribonucleoprotein (RNP) complex purified 

from yeast contained next to Pol I and its initiation factors also rRNA processing factors such 

as Nop1p and Rrp5p along with small nucleolar RNAs (Fath et al. 2000). Furthermore this 

complex was able to support correct transcription, termination and pseudo-uridylation of 

rRNA supporting the idea of a specialised nucleolar domain, which serves as a scaffold for 

co-ordinated rRNA synthesis and processing. However, rather contrary to the Pol I 

holoenzyme concept were the results of a recent study, which assessed the movement of 

individual Pol I subunits and initiation factors by the FRAP (fluorescent recovery after photo 

bleaching) technique in vivo (Dundr et al. 2002) and rather indicated that the different Pol I 

components enter the nucleolus as distinct subunits. 

 

Initiation and promoter clearance 

Kinetic analysis of transcription initiation in vitro revealed that Pol I-dependent transcription is 

rate-limited in a step subsequent to recruitment and PIC assembly (Panov et al. 2001). The 

authors suggested that this step potentially reflects the process of the so-called promoter 

escape, a phenomenon known from Pol II-mediated transcription. Before Pol II enters a 

stable elongation phase the enzyme passes through several unproductive rounds of aborted 

synthesis and re-initiation (Dvir 2002). However, another comprehensive study on the 

B A 
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transition from initiation to elongation could not detect any short aborted transcripts 

anticipated in this case. Moreover, according to their assessment of Pol I occupancy at the 

transcribed rDNA regions and elongation rates with respect to resulting rRNA synthesis the 

authors rather define the processivity of the elongating Pol I enzyme as the rate-limiting step 

in the transcription process in vivo (Stefanovsky et al. 2006a). Still, limited data is available 

on which specific factors or signals are required for the initiation-competent complex to 

proceed with promoter clearance and switch from the initiation to the elongation mode. One 

prerequisite appears to be the phosphorylation of Pol I-associated TIF-IA at two specific 

serine residues by the casein kinase 2 (CK2), which triggers its release from the Pol I 

complex, as it was demonstrated by FRAP and CHIP experiments (Bierhoff et al. 2008). In 

support of this finding, inhibition of these modifications or the covalent fusion of TIF-IA to the 

Pol I subunit RPA43 impaired rDNA transcription.  

2.2.2 rRNA gene transcription elongation 

Approximations of RNA polymerase elongation rates by either computational analysis of 

FRAP data obtained in human cells or by directly counting Pol I molecules per DNA repeat 

with respect to rRNA transcriptional output as well as metabolic labelling and data modelling 

in yeast have ranged from approximately 30 to 100 nt per second (human and yeast, 

respectively) (Cavanaugh & Thompson 1985; Dundr et al. 2002; French et al. 2003; Kos & 

Tollervey 2010). However, so far relatively little is known on the components required for the 

constitution of an efficient elongation process. Notably, recent findings have attributed novel 

properties to UBF related to rRNA transcription elongation. Distinct chromatin 

immunoprecipitation (ChIP) studies revealed that UBF is not only associated with the rRNA 

gene promoter but also binds throughout the whole rRNA gene repeat (O'Sullivan et al. 

2002; Nemeth et al. 2008). This finding is in conflict with a sole function in transcription 

initiation and rather argues for a superior, structural function in modulating the chromatin 

conformation at active rRNA genes. Accordingly Moss and colleagues could demonstrate 

that UBF is able to modify r-chromatin structure through its DNA binding qualities in a 

growth-dependent manner thereby modulating transcription elongation rates (Stefanovsky et 

al. 2006b). Remarkably, in growth-inhibited compared to growth-stimulated 3T3 cells no 

differences in Pol I loading could be detected by run-on or ChIP assays while the 

endogenous elongation rates of Pol I increased up to 5-fold and changed direct proportional 

to rRNA synthesis (Stefanovsky et al. 2006a). Thus, these data strongly suggest that the 

elongation process represents the rate-limiting step in Pol I transcription rather than PIC 

assembly or initiation confirming previous studies by Misteli and colleagues (Dundr et al. 

2002). Another factor thought to influence transcription elongation by modifying rDNA 

chromatin conformation is CSB (Yuan et al. 2007). CSB has been shown to activate rDNA 



Introduction   14 

transcription and CSB-mediated activation required its association with G9a, a histone 

methyl transferase, which is responsible for H3K9 di- and trimethylation (Tachibana et al. 

2001; Tachibana et al. 2002). Importantly, H3K9 dimethylation and HP1γ, a protein 

harbouring a chromodomain that recognises H3K9 methylation (Font-Burgada et al. 2008), 

are present within the transcribed region of active rDNA repeats (Yuan et al. 2007). Hp1γ has 

been originally implied in heterochromatin formation but was recently also shown to bind to 

actively transcribed regions (Vakoc et al. 2005; Hediger & Gasser 2006). The association of 

both H3K9 dimethylation and HP1γ is dependent on ongoing Pol I transcription altogether 

suggesting a role of CSB in the establishment of an active r-chromatin conformation 

important for efficient elongation (Yuan et al. 2007). Further factors recently implied in the 

regulation of Pol I transcription elongation in yeast are represented by the PAF1C complex 

and Spt4 and 5, both originally known from Pol II elongation, which delivered additional clues 

on how Pol I transcription might be co-ordinated with respect to subsequent rRNA processing 

and nutrient availability (Schneider et al. 2006; Zhang et al. 2010a). In human cells TFIIH, a 

basal Pol II transcription factor with an essential role in nucleotide excision repair (Mydlikova 

et al. 2010), has been identified to interact with a subpopulation of Pol I and being essential 

for rRNA synthesis in vitro and in vivo at a post-initiation step in transcription (Iben et al. 

2002). 

2.2.3 Termination of rRNA gene transcription 

Specific factors and sequence elements are required for Pol I transcription termination. 

These terminator sites called T1-10 or Sal-boxes have a length of 18 bp in mouse and 11 bp in 

humans and are repeated 10 times downstream of the pre-rRNA coding region in the IGS of 

the rDNA gene (Grummt et al. 1985; Bartsch et al. 1988; Pfleiderer et al. 1990; Evers et al. 

1995). Transcription termination is a multistep process including Pol I pausing, release of 

both the pre-rRNA and Pol I and 3’ end-processing of the primary transcript. TTF-I binds 

sequence-specific to the terminator sites to form a barrier to Pol I elongation. The release 

factor PTRF (Pol I and transcript release factor) interacts with both TTF-I and Pol I, which 

leads to the dissociation of the transcript and Pol I from the DNA template. Notably, both a T-

rich sequence located upstream of the T1 terminator site and the orientation of the following 

terminator sites are crucial for the release and terminator functions of PTRF and TTF-I, 

respectively (Jansa et al. 1998; Jansa & Grummt 1999). Interestingly, recent experiments in 

yeast have shown a role for remodelling factors in transcription termination. Deletion of 
CHD1, ISW1 and ISW2 had no effect on transcription initiation, but caused an Pol I 

termination defect (Jones et al. 2007) indicating the requirement of a specialized chromatin 

structure directed by these remodeling factors for normal termination. A recent study 

employing the chromosome conformation capture (3C) assay revealed a TTF-I-mediated 
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interaction of the terminator and promoter sequences of active rDNA repeat adding a 

topological level of regulation and presenting a potential mechanism to enhance re-initiation 

events after successful transcription termination (Nemeth et al. 2008).  
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2.3 rRNA processing and ribosome assembly 
The mammalian ribosome is a 4-MDa structure consisting of two distinct subunits referred to 

as the large (60S) and the small (40S) subunits (LSU and SSU, respectively). It is composed 

of ribosomal RNA representing the catalytic activity and ribosomal proteins (r-proteins) likely 

to be responsible for correct processing and folding of the rRNA and their proper assembly 

into the ribosome. The LSU contains three RNA species, the 28S, 5.8S and 5S rRNAs, and 

approximately 49 r-proteins, while the SSU contains a single RNA, the 18S rRNA, and 

approximately 33 r-proteins. Several steps of pre-rRNA processing by proper cleavage and 

nucleotide modifications are required before their assembly to gain a readily utilisable 

ribosome. 

2.3.1 The cleavage events of the rRNA processing pathway 

Most knowledge available on pre-rRNA processing has emerged from research in yeast. 

Studies in S. cerevisiae have revealed the extreme complexity of ribosome synthesis and 

assembly. While in mammalian cells the 47S precursor is the source to produce mature 

18S, 5.8S and 28S rRNAs by a number of endo- and exonucleolytic cleavage steps in 

yeast the RNA Polymerase I synthesises a 35S pre-rRNA, which is processed into 

mature 25S, 18S and 5.8S rRNAs. A scheme of the pre-rRNA processing pathway 

including metabolic intermediates of both S. cerevisiae and mammals is depicted in 

Figure 6 (Gallagher et al. 2004; Prieto & McStay 2007). In S. cerevisiae proper ribosome 

assembly requires more than 170 non-ribosomal proteins, 70 small nucleolar RNAs 

(snoRNAs) and the proper covalent nucleotide modification such as 2’-O-ribose-

methylation or pseudouridylation of about 100 different sites in the pre-rRNA by the site-

specific snoRNPs complexes. Finally, the yeast ribosome is formed of 78 ribosomal 

proteins within a frame of properly folded rRNA molecules (Decatur & Fournier 2002; 

Tschochner & Hurt 2003). In a very recent study in yeast Tollervey and colleagues have 

employed a further optimised pulse-chase metabolic labelling approach integrating 

mathematical modelling to investigate the kinetics of rRNA gene transcription and 

subsequent processing (Kos & Tollervey 2010). Their results could not only confirm 

earlier studies on the Pol I transcription time needed to complete the pre-rRNA of ∼170 s 

with a corresponding elongation rate of 40 nt/s but also reveal important insights related 

to the long-lasting dispute on the order of events involved in the generation of mature 

rRNAs. There data could thereby demonstrate that pre-rRNA processing clearly occurs 

co-transcriptionally. 
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Figure 6: rRNA processing pathway. 
(A) The human rRNA processing pathway (Prieto & McStay 2007). (B) The rRNA processing pathway of S. 
cerevisiae (Gallagher et al. 2004). 
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2.3.2 Co-transcriptional processing and ribosome assembly 

Early kinetic studies of yeast ribosome biogenesis have indicated that pre-rRNA processing 

starts only at a time when the precursor is fully completed (Udem & Warner 1972; Trapman 

& Planta 1975). This assumption supported preceding electron micrographs of active rRNA 

genes in amphibian oocytes, also known as Miller spreads or Christmas trees, which 

displayed nascent transcripts constantly increasing in size over the rDNA repeat (Miller & 

Beatty 1969). However, about 20 years later it was proposed that the terminal knobs visible 

on these Christmas tree structures include factors of the pre-rRNA processing machinery 

providing the first hints on the possibility of co-transcriptional processing (Kass et al. 1990; 

Mougey et al. 1993). Subsequently, a recent affinity-tag purification followed by mass 

spectrometry-based analysis has identified a particle including pre-rRNAs, U3 snoRNA, 

processing factors, ribosomal proteins and several novel proteins, which were accordingly 

termed Utps (U three proteins) (Dragon et al. 2002). Depletion of components of this 

complex termed the SSU processome leads to disruption of the terminal knobs and 

impairment of 18S rRNA biogenesis finally giving evidence on the functional nature of the for 

long-known knob structures.  

The integration of several other experimental results has further shaped the current view of 

pre-rRNA processing as described in the following. First a common precursor particle of both 

ribosomal subunits with a sedimentation constant of 90S assembles on the pre-rRNA (Grandi 

et al. 2002). Early co-transcriptional rRNA processing is initiated after the full association of 

the SSU processome components, which mainly overlap with those of the 90S pre-ribosome 

and include the U3 snoRNA (Mougey et al. 1993; Dragon et al. 2002) that base pairs with 

sequences near the 5’ end of the pre-rRNA (Beltrame et al. 1994; Beltrame & Tollervey 

1995). SSU processome-dependent processing leads to pre-rRNA cleavage in the ITS1, 

subsequent release of most of the pre-40S components from the pre-ribosomal structure and 

assembly of 60S factors on the pre-rRNA (Osheim et al. 2004). According to a detailed 

kinetic study in yeast by Tollervey and colleagues 70% of rRNA precursors are affected by 

such co-transcriptionally cleavage events and the majority of released 20S rRNA precursor 

has undergone methylation already as nascent transcript (Kos & Tollervey 2010). 

Interestingly, the ordered integration of ribosomal proteins into the SSU processome forming 

several stable intermediates has also shown to be crucial for early pre-rRNA cleavage as 

well as for subsequent efficient SSU export and the final cytoplasmic pre-rRNA maturation 

step to yield mature 18S and a translation-competent 40S subunit (Ferreira-Cerca et al. 

2005; Rouquette et al. 2005; Ferreira-Cerca et al. 2007). Hence, this co-transcriptional phase 

of assembly and step-wise maturation probably represents a mechanism to control the 

fidelity of ribosome biogenesis. In contrast to the pre-40S particle the pre-60S complex is 

exported to the cytoplasm in an almost mature state and cytoplasmic biogenesis steps just 
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include the facilitated release of several non-ribosomal proteins, yielding fully functional 60S 

subunits (Zemp & Kutay 2007). Also, the maturation pathways of the individual subunits 

seem to be mostly independent, as impairment of one in most cases still allows completion of 

the other leading to a mature subunit (Zemp & Kutay 2007; Holzel et al. 2010). A wide range 

of factors involved in either SSU or LSU maturation and nuclear export pathways have been 

described with their according function (Dez & Tollervey 2004; Krogan et al. 2004). However, 

it remains unclear to which extent the components of the SSU and LSU pre-ribosomal 

particles overlap. There is growing evidence that some factors are shared components of 

both complexes and/or are employed in both of the respective maturation and export 

pathways (Venema & Tollervey 1996; Moy & Silver 1999; Bassler et al. 2001; Milkereit et al. 

2001; Oeffinger et al. 2004; Oeffinger et al. 2007) indicating a potential mechanism to 

coordinate the two processes and prevent nuclear export of incorrect or only partially 

assembled precursors of ribosomal subunits. Importantly, over the past years various factors 

have been determined, which are involved in several steps of the entire ribosome production, 

from transcription initiation to ribosome nuclear export, supporting an anticipated co-

ordination of these processes. Such functional interdependencies represent a potential 

mechanism for quality surveillance of ongoing ribosome biogenesis. Recent research on this 

topic will be summarised within the next chapter, and its interconnections with other cellular 

pathways to adapt ribosome biogenesis to the actual conditions of the cell will be discussed. 
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2.4 Co-ordination of ribosome biogenesis 
In yeast more than 75% of total transcription activity is dedicated to supply the RNA and 

protein components of the ribosomes, of which approximately 60% is committed solely to 

rRNA gene transcription by Pol I (Warner 1999). In proliferating mammalian cells still 35% of 

nuclear transcription is used for the synthesis of rRNA whereas in non-growing cells the 

transcription of rRNAs is greatly reduced. Therefore the production of ribosomes has to be 

tightly regulated with respect to the actual cellular conditions. Recent studies have 

demonstrated that such co-ordinative mechanisms reacting on energy status, cellular stress 

or nutrient availability directly affect the various phases of ribosome biogenesis, from the 

transcription process to ribosome nuclear export. Importantly, also reverse mechanisms 

exist, which communicate defects in ribosome biogenesis to induce appropriate cellular 

processes such as proliferation stop and eventually apoptosis. Furthermore over the past 

years several proteins have been identified, which mutually fine-tune the kinetics of the 

distinct sub-processes of ribosome biogenesis. 

2.4.1 Co-regulation of rRNA gene transcription, processing and ribosome 
assembly 

Recently, a subset of seven SSU processome proteins, the t-Utps (transcriptional-Utps), 

were determined to be also required for efficient rDNA transcription in yeast, linking rDNA 

transcription with rRNA processing and ribosome assembly (Gallagher et al. 2004). McStay 

and colleagues have identified the human orthologues of the t-Utps and confirmed their 

requirement for both efficient transcription and processing of the 47S pre-rRNA (Prieto & 

McStay 2007), indicating that this coordinated mechanism is conserved throughout evolution. 

In the following Ke and colleagues have identified human ALP (acetyltransferase-like protein) 

to be a novel t-Utp displaying several features of the classical t-Utps factors such as 

association to U3 snoRNA and rDNA and requirement for efficient rDNA transcription and 

18S pre-rRNA processing (Kong et al. 2010). Moreover they could show that the factor 

acetylates the Pol I-specific factor UBF thereby enhancing its association to the Pol I subunit 

PAF53 a pre-requisite for productive Pol I transcription initiation and suggesting a 

mechanism by which t-Utps might positively regulate transcriptional activity of Pol I. Targeting 

another step in rDNA transcription, Moss and colleagues have recently suggested a role for 

transcription elongation in rRNA processing and ribosome assembly (Stefanovsky et al. 

2006a). Erk-dependent phosphorylation of UBF directly influences RNA Pol I elongation 

rates by inducing an UBF-dependent rearrangement of the chromatin environment. This 

effect could serve as a mechanism to coordinate transcription and the assembly of pre-

ribosomal complexes on nascent rRNA by modulating the Pol I elongation rate. Further 

insights into how these processes might be coordinated came from Nomura and co-workers 
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who demonstrated a physical interaction of Pol I with the elongation factors Spt4 and Spt5 

and an rRNA processing defect upon depletion of the latter (Schneider et al. 2006). An 

interrelationship between transcription elongation and rRNA processing was further 

confirmed by using a yeast strain with a mutated RNA Pol I enzyme with reduced elongation 

rates (Schneider et al. 2007). Reduced elongation rates lead to severe defects in rRNA 

processing and ribosome assembly, suggesting an intimate link between elongation rates 

and rRNA maturation. Moreover, evidence has been reported by different laboratories on a 

regulated interplay of proper pre-ribosome assembly, correct pre-rRNA processing and 

efficient nuclear export of the pre-ribosomal particles to the cytoplasm depending on different 

ribosomal proteins and other factors (Ferreira-Cerca et al. 2005; Ferreira-Cerca et al. 2007; 

Zhang et al. 2007; Robledo et al. 2008; Oeffinger et al. 2009). However, still little is known on 

actual mechanisms, which recognise aberrant pre-rRNAs or deficient pre-ribosomal particles, 

and subsequently induce their elimination. Very recent studies in yeast and mammals have 

demonstrated that failures in proper SSU processome assembly caused by siRNA-mediated 

depletion of some of its components or accumulation of aberrant rRNA transcripts in cells 

treated with Actinomycin D indeed trigger a nucleolar surveillance pathway (Wery et al. 

2009). This switch leads to polyadenylation of pre-rRNAs by the poly(A) polymerase-

containing TRAMP complex and degradation by 3’ to 5’ exoribonucleolytic activities of the 

exosome. Importantly, Trf5, a component of the TRAMP complex, colocalised with nascent 

pre-rRNPs indicating that this control mechanism is acting co-transcriptionally. Finally, to 

ensure efficient ribosome biogenesis also transcription processes by Pol II and Pol III are 

anticipated to be co-regulated with Pol I transcription to provide the ribosomal and the 

various non-ribosomal proteins as well as the fourth rRNA, 5S, respectively, in required 

amounts. To test this postulation Chédin and colleagues have constructed a mutant yeast 

strain expressing a Pol I enzyme, which remains constitutively initiation-competent under 

stress conditions, and monitored any co-regulated actions between the three polymerase 

enzymes by metabolic labelling and genome-wide gene expression profiling (Laferte et al. 

2006; Chedin et al. 2007). Intriguingly, they could demonstrate that Pol I transcriptional 

derepression leads to derepression of Pol II gene transcription that is restricted to those 

genes encoding ribosomal proteins and rRNA processing factors, as well as concomitant 

deregulation of 5S rRNA expression. Taken together, ribosome biogenesis appears to be 

controlled by feedback mechanisms between its different steps, which ensure proper 

assembly occurs on all synthesis levels, from transcription initiation to ribosome export, as 

well as between the different involved RNA polymerase enzymes.  
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2.4.2 Adapting ribosome biogenesis to the metabolic state of the cell 

The activity of rRNA gene transcription in a given cell is the major determinant of cell 

proliferation and cell growth and is tightly regulated to match ribosome amounts with the 

current physiological needs of the cell. Accordingly, various regulatory mechanisms target 

the different steps of rRNA gene synthesis, from pre-initiation complex assembly to 

transcription termination, to adapt the transcriptional output of Pol I to the current metabolic 

state of the cell. Several qualitatively different mechanisms have been described over the 

past years. Accordingly modulation of rRNA synthesis levels with respect to the cellular 

conditions can be achieved by: 

- changing the activity of factors required for rRNA synthesis through posttranslational 

modification. 

The essential transcription initiation factor TIF-IA is a central target of a number of signalling 

pathways such as the JNK (c-Jun N-terminal kinase), the AMP-activated protein kinase 

(AMPK), the mTOR (mammalian target of rapamycin) or ERK (extracellular signal-regulated 

kinase) pathway to enhance or interfere with the pre-initiation complex formation. By 

modulating the factor’s activity through reversible posttranslational modifications these 

mechanisms directly translate actual cellular conditions such as stress stimuli, energy supply, 

nutrient availability and cell growth, respectively, into the required rRNA synthesis activity 

(Zhao et al. 2003; Mayer et al. 2004; Mayer et al. 2005; Hoppe et al. 2009). Also other 

auxiliary factors are modified according to the actual state of the cell. Thus, acetylation of 

TAFI68 by PCAF augments its DNA binding properties leading to increased rDNA 

transcription activity in vitro, while deacetylation by the HDAC Sir2a, which needs NAD+ as 

cofactor and is thereby dependent on the intracellular energy status, has the opposite effect 

(Muth et al. 2001). Probably by directly changing the conformation of the Pol I enzyme the 

PAF1C complex, originally known to have a role in Pol II elongation, was recently described 

to also influence Pol I transcription elongation in vitro (Zhang et al. 2010b). The positive 

effect of PAF1C on rRNA synthesis is dependent on nutrient availability and TOR signalling 

suggesting an additional mechanism to modulate Pol I activity with respect to metabolic 

conditions.  

There is also evidence that cell-cycle-dependent proteins target rDNA transcription activity. 

For example the activity of the Pol I-specific transcription factors UBF and TIF-IB/SL1 has 

been shown to depend on the respective cell cycle phase (Heix et al. 1998; Klein & Grummt 

1999). Thus, the cell-cycle-regulated cdc2/Cyclin B kinase phosphorylates the transcription 

initiation factor TIF-IB/SL1 subunit TAFI110 thereby impairing its interaction with UBF and 

productive pre-initiation complex formation. Furthermore, the retinoblastoma protein (Rb) has 

been shown to interfere with Pol I in vitro transcription by inhibiting UBF activity through 

direct interaction (Cavanaugh et al. 1995). Subsequent investigation revealed the underlying 
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mechanism with Rb disturbing the interaction of UBF and TIF-IB/SL1 in vitro and in vivo, 

which is prerequisite for efficient Pol I transcription initiation (Hannan et al. 2000). 

- modification of the r-chromatin structure. 

Furthermore mechanisms, which target rDNA chromatin conformation, can also be 

considered to alter Pol I transcriptional activity for example by modulating its initiation 

competency or elongation rate. As described earlier phosphorylation of the Pol I-specific 

factor UBF by the ERK kinase leads to a structural rearrangement of the r-chromatin, in 

which UBF is directly involved. The subsequent changes in Pol I elongation rates thereby 

reflect an immediate response of rDNA transcription to growth factor signalling (Stefanovsky 

et al. 2001; Stefanovsky et al. 2006a). Recently Yanagisawa and colleagues have described 

a mechanism linking nutrient availability to heterochromatin formation and rDNA silencing 

(Murayama et al. 2008). They demonstrated that an altered NAD+/NADH ratio as a result of 

glucose deprivation modulates the activity of eNOSC (energy-dependent nucleolar silencing 

complex), a complex including the newly identified Nucleomethylin, the NAD+-dependent 

histone deacetylase SIRT1 and the histone methyltransferase SUV39H1, thereby leading to 

r-chromatin modification and transcriptional silencing.  

- by adapting the supply of factors required for ribosome biogenesis. 

c-Myc is one of the best-characterised transcription factors, which is not least due to its role 

in tumorigenesis. The proto-oncogene product is a global regulator of various cellular 

processes, which include proliferation, growth, differentiation and apoptosis (Oster et al. 

2002). Recently c-Myc has been shown to directly and indirectly regulate rRNA synthesis. 

Firstly, the protein binds to the rDNA repeat and activates Pol I transcription by the 

recruitment of transcription factor TIF-IB/SL1 and modulation of chromatin composition and 

higher-order structure in response to mitogenic signals (Arabi et al. 2005; Grandori et al. 

2005; Shiue et al. 2009). Additionally, in its role as transcription factor c-Myc has been not 

only shown to positively regulate rRNA synthesis by Pol I directly but also the expression of 

genes coding for ribosomal proteins and non-ribosomal proteins engaged in ribosome 

production as well as the fourth rRNA 5S transcribed by Pol II and Pol III, respectively 

(Gomez-Roman et al. 2003; Schlosser et al. 2003). Hence, c-Myc plays a central role in the 

regulation of ribosome biogenesis as the protein controls the supplies of all required 

resources from an elevated hierarchic level.  

Recently, a mechanism has been described that targets solely the level of specific rRNA 

processing factors. Zhang and colleagues have observed an interaction between the tumor 

suppressor ARF and Nucleophosmin/B23, a riboendonuclease involved in 28S maturation 

(Savkur & Olson 1998) and demonstrated that B23 gets polyubiquitinated in an ARF-

dependent manner leading to its proteosomal degradation (Itahana et al. 2003). As expected 

decreased levels of B23 result in the inhibition of ribosome biogenesis and, importantly, also 
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to an induction of apoptosis suggesting a feedback mechanism between regulation of cellular 

proliferation and ribosome biogenesis. 

2.4.3 Feed-back mechanisms from ribosome biogenesis to cellular 
proliferation 

Several cellular stresses lead to inhibition of rRNA gene transcription and thereby 

subsequent ribosome biogenesis comes to a halt. Over the past years different studies have 

demonstrated that the fidelity of ribosome biogenesis is monitored by the cell cycle regulator 

p53. Defects in either of the maturation pathways of the 40S and 60 S ribosomal subunits 

lead to p53 accumulation and cell cycle arrest. Here, various factors of both pathways have 

been identified to play a role in targeting the p53 pathway including Bop1 (Pestov et al. 

2001), human UTP18 (Holzel et al. 2010), several ribosomal proteins of the LSU, namely L5, 

L11 and L23, and S7 belonging to the SSU (Lohrum et al. 2003; Zhang et al. 2003; Dai & Lu 

2004; Jin et al. 2004; Chen et al. 2007). L11, and subsequently also the other ribosomal 

proteins, were characterised as inhibitors of Hdm2 (and Mdm2 in mouse), an E3 ubiquitin 

ligase, which targets p53 for degradation (Harris & Levine 2005). By this mechanism 

increased levels of unbound ribosomal proteins as a result of impaired ribosome assembly 

lead to a p53 response and proliferation stop.  
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2.5 The Myb-binding protein 1a 
In the course of the project Myb-binding protein 1a (Mybbp1a) was identified as an 

interacting factor of RNA Pol I and its implication in rDNA transcription regulation and rRNA 

processing was characterised. The following chapters give a short overview on the actual 

knowledge on this protein.  

2.5.1 Characteristics and structural features of Mybbp1a 

Mybbp1a has been originally identified as an interaction partner of the c-Myb protein, which 

plays a critical role in regulating proliferation and differentiation of hematopoietic cells (Favier 

& Gonda 1994; Tavner et al. 1998; Sakamoto et al. 2006). The 160-kDa protein is 

ubiquitously expressed and localizes predominantly, but not exclusively, to the nucleolus 

(Tavner et al. 1998). Lower protein levels are also detectable in the nucleoplasm and 

cytoplasm and it has been shown that Mybbp1a is shuttling between these cellular 

compartments by using CRM1-dependent and independent nuclear export pathways 

(Keough et al. 2003).  

Mybbp1a is widely conserved throughout evolution, and potential orthologues have been 

identified in animals, plants and fungi (Tavner et al. 1998; Keough et al. 1999; Yang et al. 

2003). The human Mybbp1a protein (Accession number: gi:6959304; AF147709.1) is highly 

similar to the mouse orthologue (Accession number gi:31982724; NP058056.2) with 69% of 

identical amino acids (assessed by BLASTP 2.2.23, (Altschul et al. 1997)) . Expectedly the 

two orthologues share several structural features such as leucine charged domain (LCD) 

motifs, an acidic domain and several basic amino acid repeats as summarised in Figure 7 

(Keough et al. 1999). The strict conservation of a number of polar residues in two regions 

(CR1 and 2) of the protein throughout species argues for their implication in preserved, 

highly specific interactions (Yang et al. 2003). Interestingly, the potential yeast homologue 

Pol5p has been shown to bind to the rRNA gene promoter and to have a role in rRNA 

synthesis (Shimizu et al. 2002; Yang et al. 2003; Nadeem et al. 2006). A database search 

employing the Conserved Domain algorithm ((Marchler-Bauer et al. 2009); version v.2.22) 

determined two conserved domains within the human protein, the DNA Pol phi domain (pfam 

04931; E-value: 1,54e-138), which is named after the potential yeast homologue Pol5p and 

is also present in the potential Mybbp1a homologuesin other species, and the transcription 

initiation factor IIF alpha subunit domain (TFIIF-a; pfam 05793; E-value: 6,55e-03), which is 

only found conserved in the human protein. TFIIF directly binds to Pol II and is responsible 

for its site-specific transcription initiation (Orphanides et al. 1996).  

Interestingly, in certain cell lines, a specific portion of mouse Mybbp1a is processed by 

proteolytic cleavage to generate the N-terminal fragment p67MBP (Tavner et al. 1998). The 

existence of such post-translational cleavage products has also been confirmed in human 
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cell lines. After exposing HeLa cells to UV light or chemicals that impair transcription, Ishii 

and colleagues observed the appearance of N-terminal fragments of Mybbp1a with 

molecular weights of 67 kDa and 140 kDa (p67MBP and p140MBP, respectively) and a 

translocation of the full-length protein (partially) and its cleavage products from the nucleolus 

to the nucleoplasm (Yamauchi et al. 2008). Human Mybbp1a and its post-translational 

cleavage products are summarised together with their structural features in Figure 7. 

 

 
Figure 7: Analysis of Mybbp1a sequence and complexes. 
(A) Schematic representation of the conserved regions of human Mybbp1a and its proteolytic cleavage products 
p140MBP and p67MBP. Sequence analysis of Mybbp1a (gi 6959304) with the Conserved Domain database search 
(Marchler-Bauer et al. 2009) (version v.2.22) revealed two conserved domains: the DNA polymerase phi domain 
from amino acid (aa) 70 - 836 (DNA pol phi; pfam 04931; E-value: 1,54e-138) and the transcription initiation factor 
IIF alpha subunit from aa 1147 - 1282 (TFIIF-a; pfam 05793; E-value: 6,55e-03). Their corresponding E-values 
with the Mybbp1a sequence are indicated. Conserved regions (CR) 1 (aa 70 - 106 and 130 - 166) and 2 (aa 595 - 
624 and 644 - 693) contain strictly conserved polar residues (Yang et al. 2003). The putative leucine charged 
domain motifs (∆; aa 74-78; 96-100; 419-423; 656-659; 685-693; 849-853), the basic amino acid repeats (*; aa 
1167-1172; 1179-1185; 1210-1219; 1297-1301; 1317-1324) and the acidic domain (dashed box; 696 - 784) are 
also present in the mouse orthologue (Tavner et al. 1998; Keough et al. 1999). Upon transcription impairment by 
chemical stress (indicated by the arrow ) Mybbp1a gets partially proteolyzed to generate the N-terminal 
fragments p140MBP and p67MBP (Yamauchi et al. 2008). NLS: Nuclear Localisation Signal (Keough et al. 2003). 
The length of the different proteins is indicated on the bottom. 

2.5.2 Functional properties of Mybbp1a 

Despite its predominant localisation to the nucleolus no function of Mybbp1a had been 

determined in this compartment so far. However, several publications connect Mybbp1a to 

transcriptional regulation by acting as a co-repressor on Pol II-mediated gene expression. 

Mouse Mybbp1a and p67MBP bind to the leucine zipper motif within the negative regulatory 

domain (NRD) of c-Myb and p67MBP, but not Mybbp1a, inhibits trans-activation by c-Myb 

(Favier & Gonda 1994; Tavner et al. 1998). In subsequent studies several other interaction 

partners of Mybbp1a were identified. Thus, both proteins, Mybbp1a and p67MBP, bind to the 

transcriptional co-activator PPAR gamma coactivator 1α (PGC-1α) (Fan et al. 2004), which 

is a key regulator of several aspects of mammalian metabolic processes such as 

mitochondrial biogenesis and respiration in muscle and gluconeogenesis in liver (Puigserver 

& Spiegelman 2003). By binding to PGC-1α Mybbp1a represses its transcriptional co-
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activation activity at its target genes. The Mybbp1a protein has also been characterised as a 

co-repressor of NF-κB, a transcriptional regulator of a wide range of genes including 

regulators of proliferation, cell cycle and apoptosis (Pahl 1999; Owen et al. 2007). By binding 

to the transcription activation domain of its subunit RelA/p65 Mybbp1a competes with the 

histone acetylation transferase co-activator p300 thereby repressing the trans-activating 

capability of NF-κB (Owen et al. 2007). A further piece of evidence underlining Mybbp1a’s 

capacity to act as a transcriptional co-repressor was described in the context of Period2 gene 

expression, which produces PER2, a core oscillator for maintenance of circadian clock (Hara 

et al. 2009). Initially the authors have found Mybbp1a to be interacting with another core 

oscillator, CRY1, and subsequently tested Mybbp1a’s function in circadian gene expression. 

Mybbp1a represses transcription from a Per2-luciferase reporter construct and it was shown 

to bind to the endogenous Per2 promoter. Mybbp1a also negatively regulates the 

transcriptional activity of the Prep1-Pbx1-heterodimer by competing with Pbx1 for the Prep1 

binding site (Diaz et al. 2007), both of which are homeodomain-containing transcription 

factors and co-regulators of Hox gene products (for review, see (Moens & Selleri 2006). 

Furthermore the Mybbp1a protein is part of a co-repressor complex, which contains also 

several chromatin-modulating factors like HDAC1, 2 and 3, and inhibits the activity of 

photoreceptor cell-specific nuclear receptor (PNR) (Takezawa et al. 2007). In one case 

Mybbp1a has been also characterised as a co-activator related to aromatic hydrocarbon 

receptor (AhR)-dependent gene expression (Jones et al. 2002). Moreover the protein is part 

of the B-WICH complex, which contains next to its core proteins, the Williams syndrome 

transcription factor (WSTF) and Snf2h, Pol I and III transcribed RNAs. Figure 8 summarises 

the known interaction partners of Mybbp1 with respect to the time of their identification as 

well as any connected functional data if available.  
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Figure 8: The interaction network of Mybbp1a. 
Schematic overview of so far identified proteins interacting with Mybbp1a. The respective year of data publication 
is indicated in the centre. Interaction partners, which have been identified with Mybbp1a as bait, are highlighted in 
light grey. Positive and negative regulatory impact of Mybbp1a is indicated by green and red colour, respectively. 
AhR: aromatic hydrocarbon receptor; WSTF: Williams syndrome transcription factor; CSB: Cockayne syndrome 
protein B; NM1: nuclear myosin 1; ribProt: ribosomal proteins; Topo I: Topoisomerase I: P: phosphorylation mark. 
As the accomplishment of this thesis description was delayed with regard to the completion of laboratory work, 
the period of laboratory work is marked within the centre of the diagram (bold line) with respect to the publication 
years of Mybbp1a-related information. 
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2.6 Objectives 
A mammalian genome comprises around 400 rRNA gene copies. On approximately half of 

these genes a transcriptional repressive environment is established and maintained during 

cell division. The remainder is actively transcribed but tightly regulated according to the 

metabolic state of the cell. The aim of this work was to gain more insights into the regulatory 

mechanisms, which take effect on rRNA gene transcription particularly on the level of 

transcription initiation with focus on chromatin-dependent processes. 

 

First aim 

Several recent studies suggest the Pol I complex being a so-called ‘holoenzyme’ bringing 

every activity needed for transcriptional initiation and regulation to the rDNA promoter by its 

own. It is known from the Pol II complex that several initiation factors and elongation factors 

are more or less stably associated with the enzyme (ref). The first aim of this thesis was to 

purify Pol I-associated factors with the help of a newly established mouse cell line stably 

expressing a tagged version of a Pol I subunit. 

 

Second aim 

The purification was expected to identify several proteins, which either have not been 

characterised in the context of rRNA gene transcription or found associated with the Pol I 

complex so far. Thus, the second aim of this work was to characterise these factors with 

respect to their function in rRNA gene transcription and/or associated processes thereby 

gaining further insights into the involved regulatory networks. 
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3 Materials and Methods 

3.1 Material 

3.1.1 Solutions, buffers and media 
Stock solutions and buffers were made according to standard protocols (Ausubel 1989; 

Sambrook et al. 1989; Hoffmann-Rohrer & Labaere 2000; Sambrook & Rusell 2001). 

Protease Inhibitors (either Complete® EDTA-free (Roche) or a mix of Leupeptin, Pepstatin, 

Aprotinin (all 1 µg/ml) and PMSF (0.2 mM) as well as DTT (1 mM) were freshly added. The 

most common solutions are listed below. 

EX-x buffers     AM/A-x buffers (with/without MgCl2) 
20 mM Tris-HCl pH 7.6   20 mM Tris-HCl pH 7.9 
1.5 mM MgCl2     5 mM MgCl2  
0.5 mM EGTA     0.1 mM EDTA 
10% glycerol     10% or 20% glycerol 
x mM KCl      x mM NaCl 
 
Phosphate Buffered Saline (PBS)  TE buffer  
140 mM NaCl     10 mM Tris-HCl pH 7.6 
2.7 mM KCl     1 mM EDTA 
8.1 mM Na2HPO4     
1.5 mM KH2PO4 
pH 7.4 
 
TBE buffer     TAE buffer 
90 mM Tris-HCl pH 7.6   40 mM Tris-HCl pH 7.6 
90 mM boric acid    40 mM acetate 
2 mM EDTA     1 mM EDTA 
 
DNA sample buffer (10x)   SDS protein sample (Laemmli) buffer (6x) 
50% glycerol     350 mM Tris-HCl pH 6.8 
50 mM Tris-HCl pH 7.6   10% SDS 
10 mM EDTA     30% glycerol 
0.05% bromophenol blue    5% β-Mercaptoethanol 
and xylene cyanol     0.2% bromphenol blue 
or 0.05% Orange G 
 
Stacking gel buffer (4x)    Separating gel buffer (4x)  
0.5 M Tris-HCl, pH 6.8    1.5 M Tris-HCl, pH 8.8  
0.4% SDS      0.4% SDS  
 
SDS-PAGE running buffer    Flag peptide stock solution  
192 mM glycine    5 mg/ml Flag peptide (Sigma) 
25 mM Tris     10 mM Tris-HCl, pH 7.4 
0.1% (w/v) SDS    150 mM NaCl 
 
MOPS buffer 
40mM 3-(N-morpholino)propanesulfonic acid, pH 7 
10 mM sodium acetate 
1 mM EDTA 
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Polyethylenimine (PEI) stock solution 
1 mg/ml PEI was dissolved in 150 mM NaCl solution and the pH was adjusted to 7.4 using 
HCl. The stock solution was stored in aliquots at -20 °C. 
 

For maintenance of mammalian cell lines the following commercially available media and 

solutions were used: MEM (Earle’s with Glutamax), Dulbecco's modified Eagle's medium 

(DMEM), non-essential amino acids, sodium pyruvate, newborn/fetal calf serum, 

Trypsin/EDTA (all Invitrogen) and Penicillin/Streptomycin stock solution (Pen/Strep, 10000 

U/ml penicillin, 10 mg/ml streptomycin, C. C. Pro) 

 

Any additional buffers are described in the individual method sections. 
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3.1.2  Consumables and equipment 

Unless otherwise stated, all common chemicals and materials were ordered by 

Amersham/Pharmacia (Freiburg), E. Merck (Darmstadt), NEN/Perkin Elmer (Rodgau), Pierce 

(Bonn), Promega (Mannheim), Roche (Mannheim), Roth (Karlsruhe), Serva (Heidelberg) and 

Sigma (München). Radioactive-labelled nucleotides were ordered from Amersham. 

 

Enzymes 
restriction endonucleases NEB, Fermentas, Promega, Roche 
Klenow enzyme NEB 
Shrimp alkaline phosphatase NEB 
T4 polynucleotide kinase (PNK) Promega 
T4 DNA ligase NEB 
Taq DNA polymerase Expand Promega 
M-MLV reverse transcriptase Invitrogen 
RNase A Roche 
MNase (S7 Nuclease) Roche 
DNase I (RNase-free) Roche 
Chromatographic material 
M2-agarose freezer-safe (Flag-beads) Sigma 
Protein G sepharose 4FastFlow NEB, Amersham 
Sephadex G25 spin column Roche 
Blotting material 
Hybond N+ membrane Amersham 
Whatman 3MM paper Whatman 
Other 
Flag peptide Sigma 
Polyfect transfection reagent Qiagen 
Oligofectamine transfection reagent Invitrogen 
RNasin Promega 
random primer Promega 
Peqgold protein marker II, IV (prestained) Peqlab 
DNA marker 10kb ladder NEB 
dialysis membranes Spectra Por 
filtration units Merck 
Strata Clean Resin Stratagene 
Distamycin A hydrochloride (#D6135) Sigma 
Equipment  
Superose 6 HR 10/30 gelfiltration column 
gelfiltration column 

Pharmacia 
Chromatography system (ÄKTA) Pharmacia 
Trans-Blot SD Semi-Dry Transfer Cell Biorad 
Optima-LE 80K ultracentrifuge Beckman Coulter 
Bioruptor sonicator Diagenode 
ABI PRISM 7000 Sequence detection system Applied Biosystems 
Nanodrop ND-1000 Peqlab 
table centrifuge 5415R Eppendorf 
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3.1.3 Antibodies  
 

Antibody 
Dilution 
Western 

Blot 

Dilution 
Immunofluo

rescence 

Immunoprecipitation 
(per 300 µl extract and 

15 µl Prot G-Sepharose) 
Reference 

α-mouse-p160, 
rabbit, 
polyclonal  

1:1000 1:200/400  (Tavner et al. 1998) 

α-human-p160, 
rabbit, 
polyclonal 

1:1000 1:200/400 12 µl 
(Tavner et al. 1998; 

Hochstatter et al. 
unpublished) 

α-RPA116, 
rabbit, 
polyclonal 

1:1000 1:200/400  
kindly provided by I 
Grummt (Seither & 

Grummt 1996) 
α-PAF53, 
rabbit, 
polyclonal 

1:1000 -  
kindly provided by I 

Grummt (Seither et al. 
1997) 

α-TIF-IA, 
mouse, 
monoclonal  

1:500 -  
kindly provided by I 

Grummt (Bodem et al. 
2000) 

α-mTTF-I, C7, 
rabbit, 
polyclonal 

1:2500 1:100  
kindly provided by I 

Grummt (Evers et al. 
1995) 

α-hSnf2h, 
rabbit, 
polyclonal  

1:2000 -  
kindly provided by I 

Grummt (Santoro et al. 
2002) 

α-Pes1, rat, 
monoclonal 1:2000 -  kindly provided by D. 

Eick (Holzel et al. 2005) 
α-Fibrillarin 
(P2G3), 
mouse, 
monoclonal 

1:1000 1:400  (Christensen & Banker 
1992) 

α-EBP2, rabbit, 
polyclonal 1:1000 - 3 µl 

kindly provided by L 
Frappier (Wu et al. 

2000) 

α-rpS2, rabbit, 
polyclonal 1:1000 - 3 µl 

kindly provided by M. 
Bedford (Swiercz et al. 

2005) 
α-DDX21, 
rabbit, 
polyclonal 

1:1000 - 30 µl PTG 

α-Nol1, rabbit, 
polyclonal 1:1000 - 30 µl PTG 

α-hnRNP A1 
(4b10), mouse, 
monoclonal 

1:1000  3 µl kindly provided by G. 
Dreyfuss 

α-Flag M2, 
mouse, 
monoclonal  

1:1000 1:400  Sigma 

α-Flag, rabbit, 
polyclonal  1:1000 1:200/400  Sigma 

α-BrdU, 
mouse, 
monoclonal 

- 1:200  Roche 

α-rabbit IgG 
secondary 
antibody (HRP- 
conjugated) 

1:10000 -  Amersham 
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Antibody 
Dilution 
Western 

Blot 

Dilution 
Immunofluo

rescence 

Immunoprecipitation 
(per 300 µl extract and 

15 µl Prot G-Sepharose) 
Reference 

α-mouse IgG 
secondary 
antibody (HRP-
conjugated) 

1:5000 -  Amersham 

α-rat IgG 
secondary 
antibody (HRP-
conjugated) 

1:5000 -  Dianova 

α-mouse IgG 
secondary 
antibody 
(Cy2/3-labeled) 

- 1:1000/2000  Jackson 

α-rabbit IgG 
secondary 
antibody 
(Cy3/2-labeled) 

- 1:1000/2000  Jackson 

 

3.1.4 Vectors 
 

Vector Description Reference 

pBS-RPA 116 6-2 Contains the cDNA of mouse RPA116. (Seither & Grummt 
1996) 

pEGZ-fRPA116 
Derived from the pEGZ/MCS vector (see Appendix 
6.1 for vector map). Transcript encodes mouse full-
length RPA116 with N-terminal Flag-tag. 

See chapter 3.2.1 

pact-Flag-
hMybbp1a  

Derived from the pact-c-myb vector (see Appendix 
6.1 for vector map). Transcript encodes full-length 
human Mybbp1a. 

(Keough et al. 1999; 
Hochstatter et al. 
unpublished) 

pact-Flag-
mMybbp1a  

Derived from the pact-c-myb vector (see Appendix 
6.1 for vector map). Transcript encodes full-length 
mouse Mybbp1a. 

(Tavner et al. 1998; 
Keough et al. 2003) 

pact Flag-
p67*NLS 

Derived from the pact-c-myb vector (see Appendix 
6.1 for vector map). Transcript encodes the N-
terminal 580 aa of mouse Mybbp1a fused to 
SV40NLS. 

(Tavner et al. 1998; 
Keough et al. 2003) 

pcDNA3.1-FLAG-
Tip5 

Derived from the pcDNA 3.1 vector (Invitrogen). 
Transcript encodes full-length mouse Tip5 with N-
terminal Flag-tag 

Kindly provided by I 
Grummt (Zhou et al. 
2002) 

pHrD-IRES 

Derived from pGL3 Luciferase reporter vector 
encoding the firefly luciferase (Promega). Pol II-
specific sequences were replaced by the human Pol 
I-specific promoter sequence from bp -410 to +314 
(relative to the transcription start site) and an internal 
ribosome entry site (IRES). 

Kindly provided by ST 
Jacobs (Ghoshal et al. 
2004) 

pRL-TK HSV-thymidine kinase (TK) promoter. Transcript 
encodes the Renilla luciferase. Promega 

pMrWT-T 

Artificial ‘rDNA minigene’. It contains the mouse 
rDNA promoter sequences from -170 to +155 
including the upstream terminator T0 at position -170 
and a 3.5 kb 3´-terminal rDNA fragment with 
terminator elements (T1-T8), spaced by 686 bp of 
plasmid sequences (pUC plasmid). 

(Strohner et al. 2004) 
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3.1.5 Oligonucleotides 
Name Sequence Description 
Cloning of the Flag-tagged RPA116 -expression vector 

Flag-RPA116-fw 
ATG GAT CCA TGG ACT ACA AGG 
ACG ACG ATG ACA AGG ATG TCG 
ACG GCC GG 

fw-primer for Flag-tagging (bold); 
Bam HI restriction site 5’ of start 
codon; RPA116 ORF (4-18 bp, 
italic) 

Flag-RPA116-rev GAG GAT CCT CAG ATG ACA TCC 
AGT TTC ACT 

rev-primer with Bam HI restriction 
site 3’ of stop codon; RPA116 
ORF (1288-1308 bp, italic) 

Oligos for quantitative real-time PCR  

Hs5-F CCT GCT GTT CTC TCG CGC 
(+132/+149) 

Hs5-R GGT CAG AGA CCC GGA CCC 
(+198/+181) 

Hs5-Taqman 6FAM-AGC GTC CCG ACT CCC 
GGT GC (+155/+174) 

primer for TaqMan quantitative 
PCR 
PCR product: +132/+198 bp1  

HsBac-F TGC CGA CAG GAT GCA GAA G 
(+927/+945) 

HsBac-R GCC GAT CCA CAC GGA GTA CTT 
(+1026/+1006) 

HsBac-Taqman TCA AGA TCA TTG CTC CTC CTG 
AGC (+980/+1003) 

primer for TaqMan quantitative 
PCR 
PCR product: +927/+1026 bp1 

rDNAP-F ATG GTG GCG TTT TTG GGG 

rDNAP-R AGG CGG CTC AAG GCA GGA G 

primer for SYBR quantitative 
PCR; PCR product: -133/+116 
relative to the transcription start 
site1 

IGS-F CGC TGT CCA TCT CTG TCT TTC 
TAT G  

IGS-R ATA CAC CGA GTG GGG AAG CC 

primer for SYBR quantitative 
PCR; PCR product: 
+22730/+22906 relative to the 
transcription start site1 

 

3.1.6 siRNA sequences 
Name Sequence Target mRNA 
Control (Ctrl) 5’-CUU ACG CUG AGU ACU UCG AdTdT Firefly luciferase  
Mybbp1a.1 5’-GCC GAC UUG AAU AUA AUA CdTdT human Mybbp1a  
Mybbp1a.2 5’-UGG AUC AUC UUU CGA UUG GdTdT human Mybbp1a  
Mybbp1a.3 5’-AUA CGC AAG CUG UUU CUA AdTdT human Mybbp1a  
Pes1 5’-AGG UCU UCC UGU CCA UCA AdTdT human Pes1  
TIF-IA 5’-CAA AGG ATC TAT ATC GCG AdTdT human TIF-IA  

 

3.1.7 Bacteria strains and cell lines 
XL1-Blue (Stratagene) and DH5α (Invitrogen) E. coli strains were used for DNA plasmid 

amplifications. Media and plates for bacteria were prepared according to standard protocols 

(Sambrook and Russell, 2001).  

                                                
1 human ribosomal DNA complete repeating unit; GenBank: U13369.1; GI:555853  
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The following mammalian cell lines were used: the mouse lymphoblast cell line MB III 

(ATCC® Number: CCL-32™), the human epithelial carcinoma HeLa cell line and the human 

embryonic kidney (HEK) 293T cell line. 
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3.2 Methods  

3.2.1 Generation of a mouse Flag-RPA116 expression construct 
For creation of a mouse Flag-RPA116 expression construct the coding sequence of RPA116 

was amplified from the vector pBS-RPA 116 6-2 (kind gift of I. Grummt; (14)) with the Expand 

High Fidelity PCR system (Roche) employing the primer pair flag-RPA116-fw and flag-

RPA116-rev. This primer pair additionally introduced a Flag-tag coding sequence upstream 

of the RPA116 start codon as well as flanking BamHI restriction sites. The PCR product was 

ligated into the EcoRV blunt end restriction site of the vector pT7Blue3 (Novagen) and 

subsequently digested with BamHI. The products were separated by agarose gel 

electrophoresis and the DNA band representing the Flag-RPA116 construct was extracted 

from the agarose gel. The purified DNA was then ligated into the BamHI restriction site of 

pEGZ/MCS (plasmid map see Appendix 6.1). The proper direction of the inserted construct 

was verified by restriction digest analysis. The plasmid was sequenced and named pEGZ-

fRPA116. 

3.2.2 Cell culture and generation of a MB III cells stably expressing Flag-
RPA116 

The mouse lymphoblast cell line MB III (ATCC® Number: CCL-32™) was cultured in MEM 

(Earle’s, with Glutamax) with non-essential amino acids (1%, v/v), sodium pyruvate (110 

mg/l) and 10% heat-inactivated newborn calf serum. To create a MB III cell line stably 

expressing Flag-RPA116, cells were transfected with pEGZ-fRPA116, selected with Zeocin 

(Invitrogen), cloned by serial dilution and maintained in medium supplemented with 100 

µg/ml Zeocin. HeLa and HEK293T cells were cultured in DMEM containing 10% heat-

inactivated fetal calf serum and Penicillin/Streptomycin (10000 U/ml/10 mg/ml). The cell lines 

were cultured at 37 °C in 5% CO2.  

3.2.3 DNA transfection of mammalian cells  
MBIII, HeLa and HEK 293T cells were transfected with DNA constructs either by using the 

Polyfect reagent or Polyethylenimine (PEI). Cells were seeded at least 14 h prior transfection 

and were approximately 60% confluent at the starting point. If not stated otherwise DNA 

amounts were chosen according to the manufacturer’s instruction. 

For transfection with Polyfect in the 6-well plate format 4x105 cells were seeded per well and 

transfected with 1.5 µg of DNA. In brief, DNA was diluted with serum-free DMEM medium to 

a final volume of 100 µl, 12 µl Polyfect reagent was added, mixed and incubated for 10 min 

at RT. Then 600 µl DMEM supplemented with 10% FCS/Pen/Strep were added, mixed and 

dispersed on one well, which contained 1.5 ml fresh DMEM/10% FCS/Pen/Strep. For 

transfection with the PEI protocol cells were accordingly transfected with 1.5 µg of DNA per 
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well (6-well plate format). DNA was diluted in serum-free DMEM to a final volume of 200 µl, 

4.5 µl of PEI stock solution were added and incubated at RT for 10 min. The mixture was 

then dispersed on one well, which contained 1.8 ml fresh DMEM/10% FCS/Pen/Strep. Cells 

were split 1:2 after 24 h and harvested at different time points for protein, DNA and/or RNA 

extraction. 

3.2.4 Extract preparation 

3.2.4.1 Nuclear extract from MB III and HEK293T cells  

Nuclear extracts were prepared from exponentially growing MB III control cells or MB III cells 

stably expressing Flag-RPA116 (pEGZ-fRPA116) as well as from HEK 293T cells 48 h after 

transfection with pact-Flag-hMybbp1a or vector control. Cells were harvested, washed with 

PBS and resuspended in three packed cell volumes (PCV) of buffer A (20 mM, HEPES pH 

7.9; 0.2% NP-40; 10 mM KCl; 1 mM EDTA; 10% Glycerol; 1mM DTT; protease inhibitors) 

and incubated for 10 min on ice. Cell lysis was monitored by microscope. Nuclei were 

washed in Buffer A, resuspended in three PCV of Buffer B (420 mM NaCl; 20 mM; HEPES 

pH 7.9; 10 mM KCl; 1 mM EDTA; protease inhibitors) containing 2% (v/v) Distamycin A 

hydrochloride (only for the extract preparation from MBIII cells) and incubated on a rotating 

wheel for 40 min at 4°C. After centrifugation with 17000g for 10 min the nuclear fraction was 

collected and dialysed against AM100 (100 mM NaCl; 20 mM Tris HCl, pH 7.9; 5 mM MgCl2; 

0.1 mM EDTA; 20% Glycerol; 1mM DTT; protease inhibitors).  

3.2.4.2 Whole Cell extract from MBIII cells 

The whole cell extract was prepared according to the Manley protocol (10). Cells were 

harvested by centrifugation for 5 min with 210 g, washed with 1x PBS/5 mM MgCl2, 

resuspended in four PVC of buffer Homog I (10 mM Tris/HCl pH 7.9, 1 mM EDTA, 25 % 

Saccharose, 50 % Glycerol, 5 mM DTT, PMSF) and incubated for 20 min on ice. All following 

reactions were performed on ice or at 4°C. Cells were lysed by approximately eight strokes 

with a dounce homogenizer with pestle “B”, efficient lysis was verified in the microscope and 

four PCV of buffer Homog II (50 mM Tris/HCl pH 7.9, 10 mM MgCl2, 0.1 mM EDTA, 20% 

Glycerol, 2 mM DTT, PMSF) were added slowly while stirring on a magnetic stirrer. Then one 

PCV of saturated (NH4)2SO4 solution was slowly dropped in the solution, incubated for 30 

min with gentle stirring and centrifuged for 3 h at 50000 rpm in a Ti 70 rotor in a Optima LE-

80K ultracentrifuge (Beckman). The supernatant was carefully removed, slowly mixed with 

0.33 g solid, pounded (NH4)2SO4 per ml supernatant. After adding 10 µl 1 M NaOH per g 

(NH4)2SO4 the solution was stirred for 30 min and centrifuged for 20 min at 10000 rpm in a 

SW34 rotor in a Sorvall RC5C centrifuge. The pellet was then resuspended in 1/10 volume of 

the supernatant AM100 (supplemented with PMSF, 1 mM DTT), dialysed once for 2 h and 
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subsequently overnight against AM100 (PMSF, 1 mM DTT). After centrifugation for 10 min at 

17000 g the extract was aliquoted, shock frozen in liquid N2 and stored at -80°C. 

3.2.4.3 Nuclear extract from HeLa cells 

HeLa nuclear extracts were prepared 48 h after transfection with pact-Flag-hMybbp1a or 

vector control. Cells were grown on 15 cm diameter (∅) dishes to approximately 80% 

density, washed with PBS and either harvested in 3 ml PBS by scraping or detached by 

Trypsin-EDTA and centrifuged at 210 g at 4°C. All subsequent steps were conducted on ice 

and with solutions and equipment cooled to 4°C. Cells were resuspended in PBS, counted, 

pelleted at 2500 g for 6 min, resuspended in five PCV of hypotonic Buffer C (10 mM KCl; 10 

mM HEPES, pH 7.9; 1.5 mM MgCl2; 1 mM DTT; protease inhibitors). After incubation for 15 

min on ice the samples were centrifuged at 2.000 g for 8 min and the cell pellet was 

resuspended in  two PCV of Buffer C. The cells were lysed with the help of a dounce 

homogenizer (pestle B) and cell lysis was followed by light microscopy. After two 

centrifugation steps at 1.000 g and 4.000 g, each for 10 min, the pellet was resuspended in 3 

ml of Buffer D (20 mM HEPES, pH 7.9; 420 mM NaCl; 1.5 mM MgCl2; 0.2 mM EDTA; 20% 

(v/v) Glycerol; 1 mM DTT; protease inhibitors) per 109 cells. After incubation for 30 min at 

4°C on a rotating wheel the extract was sonicated 2x 20 sec in a volume of 200 µl 

(alternatively 3x 20 sec in a volume of 250 µl) with the Bioruptor (H, Diagenode) and 

centrifuged at 17000 g for 15 min. After centrifugation the nuclear fraction was collected and 

dialysed against Buffer D containing 300 mM NaCl. 

3.2.5 Immunopurification of proteins 
For immunoprecipitation experiments extracts were incubated with pre-equilibrated anti-

Flag M2 agarose in the presence of 0.02% NP-40 or 0.25% Triton X-100, protease inhibitors 

and 1 mM DTT. After three washing steps (15 min at 4 °C on a rotating wheel) in the 

respective extract buffer proteins were eluted with 0.25 mg/ml Flag-peptide. Flag-RPA116-

containing complexes were additionally washed with AM300 buffer [300 mM NaCl] before 

elution. If needed proteins were concentrated with Strata Clean resin (Stratagene) for 15 min 

at RT on a rotating wheel or by TCA-precipitation. Proteins were separated by SDS-PAGE 

and analysed by Western blotting. For the identification of novel associated proteins gels 

were silver- or Coomassie-stained (see chapter 3.2.19.3 and 3.2.19.4), protein bands were 

cut out and subjected to MALDI-TOF mass spectrometry (Zentrallabor für Proteinanalytik, 

Adolf-Butenandt-Institut, LMU, Germany). 

3.2.6 Co-immunoprecipitation of Flag-Mybbp1a-associated factors  
Antibodies directed against human Mybbp1a, Nol1, DDX21, EBP2, ribosomal protein S2 and 

hnRNPA1 (respective volumes see chapter 3.1.3) were incubated with 300 µl HeLa nuclear 
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extract supplemented with protease inhibitors for 5 h at 4° C on a rotating wheel. Then 15 µl 

of Protein-Sepharose beads (1:1 slurry, Amersham) and 0.025% (v/v) Triton X-100 were 

added and the samples were further incubated for 1.5 h. Subsequently the beads were 

washed 3x in washing buffer (20 mM HEPES, pH 7.9; 300 mM NaCl; 1.5 mM MgCl2; 0.2 mM 

EDTA; 20% (v/v) Glycerol; 1 mM DTT; protease inhibitors; 0.025 Triton X-100) for 10 min, 

resuspended in 15 µl SDS-PAGE sample buffer and analysed by SDS-PAGE and Western 

Blotting. An equal amount of rabbit IgG was treated in parallel as control. 

3.2.7 Immunofluorescent staining and image capture 
Cells were grown on coverslips or in Labtech chambers overnight and fixed in ice-cold 

methanol/acetone (1:1, v/v) for 1 min. Alternatively, cells were fixed in PBS/2% (w/v) 

paraformaldehyde for 15 min on ice and permeabilized in PBS/0.25% Triton X-100/1% (w/v) 

paraformaldehyde for 10 min on ice. Cells were washed with PBS/0.01% Tween (PBS-T) 

and unspecific binding was blocked with PBS-T containing 2% BSA and 5% goat serum for 1 

h. Primary antibodies (dilutions see chapter 3.1.3) were incubated in blocking solution at RT 

for 1 h or at 4° C in a humidified chamber over night. Cells were washed with PBS-T and 

incubated with Cy2- or Cy3-labeled secondary antibodies in blocking solution at RT for 1 h. 

DNA was counterstained with Hoechst 33342 stain (Sigma) diluted in PBS (1:10000) and 

mounted in Vectashield (Axxora). Fluorescence images were acquired with a Zeiss Axiovert 

200 inverse microscope. 

3.2.7.1 RNA-dependent-localisation of proteins 

To assess RNA-dependent localisation of proteins by immunofluorescence HeLa cells were 

washed with PBS and incubated with PBS containing 0.1% Triton X-100 for 10 min and 

subsequently incubated with 1 mg/ml RNase A (Sigma) in PBS for 20 min at RT prior 

fixation. Control cells were incubated with either 3 µl/ml RNase-free DNase I (Roche) and 3 

mM MgCl2 or both, RNase A and DNase I. Cells were washed with PBS, fixed and prepared 

for immunofluorescence microscopy as described above. 

3.2.7.2 BrdU labeling of newly synthesised DNA 

Prior immunofluorescent labeling HeLa cells were incubated in DMEM containing 10 µM 

BrdU for 30 min at 37°C, washed with PBS-T and fixed with PBS/4% formaldehyde for 10 

min at RT. Cells were washed, permeabilized with PBS/0.2% Triton X-100 and incubated 

with PBS/2N HCl for 10 min. After two washing steps with PBS cells were analysed for the 

presence of BrdU incorporation by immunostaining with antibodies recognising BrdU. 

3.2.8 siRNA-mediated protein depletion  
The day before transfection 2x105 Hela cells were seeded per well (6 well plate format). 20 

µM siRNA was transfected using the Oligofectamine reagent (Invitrogen) according to the 
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manufacturer’s instruction. Before transfection cells were washed 2x with DMEM 

supplemented with 10% FCS and finally 0.8 ml were added. Per reaction the following 

solutions were prepared: 

Solution A:     Solution B: 
Oligofectamine 4 µl   siRNA [20µM]  10 µl 
OptiMEM  11 µl   OptiMEM  175 µl 

 

Solution A and B were mixed, incubated for 15 min at RT and added to the cells. Protein and 

RNA were extracted at different time points. 

3.2.9 Analysis of the rRNA precursor and β-actin mRNA by quantitative real-
time PCR  

3.2.9.1  Cellular RNA extraction 

RNA was extracted from HeLa cells with the QiaShredder and RNeasy kit either with or 

without additional on-column DNase I treatment (both Qiagen) according to the 

manufacturer’s instruction. RNA concentration was measured either with the Genequant II 

(Pharmacia Biotech) or the Nanodrop ND-1000 (Peqlab). 

3.2.9.2 Reverse transcription of cellular RNA 

125 to 1000 ng of cellular RNA was used to produce cDNA by reverse transcription. The 20 

µl reaction contained 2 µl of random primer (500 µg/ml, Promega), 2 µl of dNTPs (2.5 mM 

each, Bioline) and sterile water as added to a total volume of 12 µl. RNA was added and 

incubated for 5 min at 65°C. After chilling on ice the reaction was supplemented with 5x First-

Strand-Buffer (Invitrogen), 2 µl 0.1 M RNase-free DTT (Invitrogen) and 1 µl RNasin 

(Promega) and incubated for 2 min at 37°C. 200 U of M-MLV Reverse Transcriptase 

(Invitrogen) were added and the reactions were incubated for 1 h at 37°C and subsequently 

heat-inactivated for 15 min at 70°C. A control reaction was performed in absence of reverse 

transcriptase. The linearity of the reaction was analysed by titration of RNA input for each 

primer pair used in subsequent real-time PCR quantification. 

3.2.9.3 Quantitative PCR 

Quantitative PCR was carried out using the ABI PRISM 7000 Sequence detection system 

(Applied Biosystems). 0.5 – 1.5 µl of the reverse transcription reaction were used as 

template for the PCR reaction. Taqman 2xPCR Master Mix (Applied Biosystems) was used 

according to the manufacturer’s instructions. To detect the 47S rRNA precursor oligos 

recognising its 5’ETS (external transcribed spacer) were used (oligos: Hs5-F/-R/-Taqman). A 

β-actin-mRNA amplicon was used for normalisation (oligos: HsBac-F/-R/-Taqman). For both 
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amplicons the recommended annealing temperature of 60°C was applied and the following 

PCR cycles were used 

1x 2 min, 50°C 
1x 10 min, 95°C 
40x 15 sec, 95°C and 1 min, 60°C. 

3.2.10 Metabolic labeling of nascent RNA in HeLa cells 
HeLa cells were transfected with the respective siRNAs in the 6-well plate format as 

described above (chapter 3.2.8). Metabolic labeling was essentially performed as described 

previously (8). Four days after siRNA transfection the cells were incubated in phosphate-free 

DMEM supplemented with 10% FBS (Sigma) for 30 min and then supplied with 15mCi/ml 
32P-orthophosphate for 6 h. Total RNA was isolated using the RNeasy Mini kit (Qiagen). 1.5 

µg of metabolically labeled total RNA was separated on a 15 cm long agarose gel (1% 

agarose; 5.5% formaldehyde; 1xMOPS, pH 7) with 110 V at RT. The gel was dried on 

Whatman paper using a regular gel dryer (Bio-Rad) for 2–3 h at 80 °C. Metabolically labeled 

RNA was visualised and quantified by autoradiography on a PhosphoImager (FLA 3000, 

Fujifilm). In parallel efficiency of protein depletion was monitored by Western blotting. 

3.2.11 Proliferation assay 
To monitor proliferation rates HeLa cells were detached with Trypsin-EDTA and diluted in 

PBS. Subsequently cells were stained with trypan blue and living cells were counted in a 

Neubauer hemocytometer in triplets at the indicated time points. 

3.2.12 Chromatin immunoprecipitation (ChIP) 

3.2.12.1 Preparation of nucleolar chromatin 

Formaldehyde cross-linked nucleolar chromatin was prepared as described previously 

(O'Sullivan et al. 2002). Briefly, exponentially growing HeLa cells were cross-linked by 

formaldehyde (0.25%, 10 min, RT). After quenching with 125 mM glycine cells were 

harvested by being scraped. After centrifugation the cell pellet was resuspended in 0.5 ml of 

high-magnesium buffer (10 mM HEPES [pH 7.5], 0.88 M sucrose, 12 mM MgCl2, and 1 mM 

DTT, protease inhibitors) and nucleoli were released by sonication on ice (two of 10 s each at 

full power) using a Bioruptor device. The release of nucleoli was monitored by microscope. 

Nucleoli were pelleted by centrifugation in a microfuge (15000 x g for 20 sec) and the pellet 

was resuspended in 0.5 ml of low-magnesium buffer (10 mM HEPES [pH 7.5], 0.88 M 

sucrose, 1 mM MgCl2, and 1 mM DTT, protease inhibitors). Nucleoli were subject to further 

sonication on ice (10 s, microtip, amplitude 40%, Branson: digital sonifier 250D) and pelleted 

as before. Nucleoli were resuspended in 0.1 ml of 2x TE (20 mM Tris [pH 8.0], 2 mM EDTA) 

and 10 µl of 20% SDS was added. After incubation for 15 min at 37°C, disappearance of 

nucleolar structures were verified by microscopy. 0.4 ml 2x TE was added and the solution 
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was sonicated (three bursts of 30 s at full power, Bioruptor). The resulting sheared nucleolar 

chromatin was centrifuged in a microfuge (15000 x g for 1 min), and the supernatant was 

used immediately in nucleolar ChIP assays. To verify the size range of sonicated chromatin 

an aliquot of the supernatant was digested with RNase A followed by proteinase K digestion 

and formaldehyde cross-links were reversed by incubation at 65°C overnight. DNA was 

precipitated and fragment size was determined around 500–1000 bp as analysed by agarose 

gel electrophoresis. Per reaction 100 µl of nucleolar chromatin supernatant was combined 

with 1.4 ml PBS containing 0.1% BSA, 0.01% Triton X-100 and protease inhibitors and 

subjected to chromatin immunoprecipitation. 

3.2.12.2 Preparation of chromatin from whole cell extract 

Formaldehyde cross-linked whole nuclear chromatin was prepared as described previously 

(Peters et al. 2003; Martens et al. 2005). Exponentially growing HeLa cells were cross-linked 

by formaldehyde (0.5%, 10 min, RT). After quenching with glycine in a final concentration of 

125 mM cells were washed with PBS, 750 µl lysis buffer (1% SDS, 10mM EDTA, pH 8.0, 

50mM Tris-HCl, pH 8.0, protease inhibitors) was added to each 15 cm dish and incubated for 

5 min at 4°C. Cells were harvested by scraping and sonication (3x15 sec, microtip, amplitude 

45%, Branson: digital sonifier 250D) was used to disrupt cellular membranes and fragment 

chromatin. Sufficient fragmentation of chromatin was monitored as described above. Per 

reaction 420 µl of supernatant was centrifuged in a microfuge (15000 x g, 5 min), 400 µl of 

supernatant was combined with 3.6 ml of a mixture of dilution buffer (1% Triton X-100, 

150mM NaCl, 2mM EDTA, pH 8.0, 20mM Tris-HCl, pH 8.0, protease inhibitors) and lysis 

buffer (9:1) in a 15 ml Falcon tube and subjected to chromatin immunoprecipitation. 

3.2.12.3 Immunoprecipitation of chromatin 

Supernatant prepared as above was incubated with 5 µg of the indicated antibodies 

(polyclonal rabbit α-RPA116, α-TTF-I (C7), α-hMybbp1a, α-Flag, normal rabbit IgG) on a 

rotating device at 4°C overnight. Simultaneously, per reaction 50 µl (or 100 µl) of a 50% 

slurry of protein G-Sepharose beads (Amersham) were pre-equilibrated with BSA (100µg/ml) 

and yeast tRNA (100 µg/ml). After incubation of the beads with the immune complexes on a 

rotating device for 1 h at 4°C, beads were recovered by gentle centrifugation (600 x g for 15 

sec) and washed as follows (nucleolar chromatin): twice with 2xTE containing 0.2% SDS, 

0.5% Triton X-100 and 150 mM NaCl; twice with 2xTE, 0.2% SDS, 0.5% Triton X-100, and 

500 mM NaCl; and twice with 2xTE. Immunoprecipitated material was eluted twice from the 

beads with 50 µl of 2xTE containing 2% SDS at 37°C for 10 min. Eluates were pooled and 

subjected to RNase and proteinase digestion. Formaldehyde cross-links were reversed by 

incubation at 65°C overnight, DNA was precipitated and resuspended in 100 µl 1xTE. Bead-

immunoprecipitates derived from nuclear chromatin were washed 3x with washing buffer (1% 
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Triton X-100, 0.1% SDS, 150mM NaCl, 2mM EDTA, pH 8.0, 20mM Tris-HCl, pH 8.0, with 

protease inhibitors) and 1x with final washing buffer (1% Triton X-100, 0.1% SDS, 500mM 

NaCl, 2mM EDTA, pH 8.0, 20mM Tris-HCl, pH 8.0, protease inhibitors). Immunoprecipitated 

material was eluted with 450 µl elution buffer (1% SDS, 100 mM NaHCO3) and DNA was 

prepared as described above. 

3.2.12.4 Quantitative PCR 

Purified DNA derived from the chromatin immunoprecipitates and chromatin input were 

analysed by quantitative real-time PCR using the SYBR Green (Applied Biosystems) 

quantification method according to the manufacturer’s instruction on an ABI PRISM 7000 

Sequence detection system (Applied Biosystems). Results were calculated relative to 

standard curve values, corrected for non-specific binding (normal rabbit IgG ChIP) and 

presented as percentage of input DNA. The primer pairs rDNAP-F/-R and IGS-F/-R were 

used to detect rDNA promoter (product -133 to +116 relative to the transcription start site) 

and intergenic spacer (IGS, product +22730 to +22906 relative to the transcription start site) 

sequences, respectively.  

3.2.13 Extract fractionation by density gradient centrifugation 
A 10% - 45% (v/v) glycerol gradient was prepared in AM100 by using a Gradient Master 

105/106 (BioComp) set at 2:05 min/81.8° angle/speed 15. 500 µl of MB III whole cell extract 

was applied and centrifuged with 35 K (Sw 41 Ti rotor) in an Optima-LE 80K ultracentrifuge 

(Beckman Coulter) at 4°C for 12 h (no break). In parallel, Thyroglobulin (Pharmacia) was 

used as a molecular weight marker. Subsequently 500 µl fractions were collected and 15 µl 

of each fraction were separated on a 7% SDS-PAA gel and analysed by Western blotting or 

Commassie staining.  

3.2.14 Extract fractionation by gel filtration chromatography 
200 µl HeLa nuclear extract was either incubated with 10 µg/ml RNase A (Sigma) or its 

solvent for 2 h at 4 °C prior to Superose 6 HR 10/30 (Pharmacia) fractionation on a Äkta 

chromatography system. 500 µl fractions were collected and proteins were concentrated by 

incubating each fraction with 5 µl of Strata Clean resin (Stratagene) with gentle rotation for 

15 min at RT. After centrifugation the resin was resuspended in 2x Laemmli-buffer, proteins 

were separated by SDS-PAGE and analysed by Western blotting. The calibration of the 

column with the marker proteins Thyroglobulin (669 kDa), Apoferritin (443 kDa), BSA (67 

kDa) (all Pharmacia) was used for size estimation. 

3.2.15 RNA Pol I transcription reporter assay 
HeLa cells were transfected with Polyfect reagent (Qiagen) in the 6-well plate format as 

described above (chapter 3.2.3) with the indicated amounts of expression construct together 
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with empty vector DNA to adjust DNA concentration and the pHrD-IRES reporter construct 

(kind gift of ST. Jacob, (6)) as a reporter for RNA Pol I transcription activity (each reaction 

was done in duplet). The plasmid pRL-TK carrying the renilla luciferase gene under the 

control of a HSV-thymidine kinase (TK) promoter (transcribed by RNA polymerase II) was co-

transfected in each experiment to normalize for differences in transfection efficiency. 48 h 

after transfection (if not indicated otherwise), luciferase activity was measured using the Dual 

Luciferase Assay kit (Promega) according to the manufacturer’s instructions. Cells were 

washed in PBS, harvested in 500 µl PBS by scraping and centrifuged for 5 min with 3000 

rpm in a table centrifuge. Cells were incubated in 100 µl 1x lysis buffer for 15 min on ice, 

vortexed and centrifuged with 13000 rpm in a table centrifuge for 5 min. 20 µl of the 

supernatant were supplemented with 100 µl luciferase substrate (firefly) and subsequently 

100 µl Stop and Glo buffer (renilla substrate) and luminiscence was measured after each 

additiion by a luminometer. The firefly luciferase counts derived from the RNA Pol I reporter 

construct were divided by the renilla luciferase counts and compared to control transfections 

with empty vector. Protein levels were monitored by Western blotting. 

3.2.16 In vitro Pol I transcription assay 
The pMrWT-T construct (rDNA minigene), containing a fusion of the rDNA promoter (-170 - 

+155 including the upstream terminator/TTF-I binding site T0) and terminator region (3.5 kb 

3’-terminal rDNA fragment including the terminator sites T1 – T10) served as template for the 

transcription reaction (a schematic is depicted in Figure 10). A typical transcription reaction 

was prepared with a final volume of 25 µl containing transcription buffer (20 mM Tris-HCl, pH 

7.9, 0.1 mM EDTA, 0.5 mM DTT, 5 mM MgCl2, 80 mM KCl, 10 mM creatine phosphate, 10% 

glycerol, 0.66 mM of each nucleotide ATP, UTP and GTP, 12.5 µM CTP and 1.5 µCi of α-32P 

CTP) and either 10 ng of naked DNA or 40 ng chromatinised template. To start the 

transcription reaction 1 or 2 µl of MB III whole cell extract were added as source for 

transcription factors in parallel with recombinant TTF-I Δ185 (see text chapter 3.1.2.1; kindly 

provided by R. Strohner) or its solvent. The samples were incubated for 60 min at 30 °C and 

the reactions were stopped by addition of 25 µl stop buffer (10 µg glycogen, 2% SDS, 10 µg 

proteinase K, 100 mM EDTA) and further incubated for 1 h at 40 °C. For transcript 

precipitation 25 µl 7.5 M NH4Ac and 200 µl pure ethanol were added, incubated for 15 min on 

ice and centrifuged with 13000 rpm (table centrifuge) for 15 min at 4 °C. After washing once 

in 70% ethanol the pellet was dissolved in 9 µl 80% formamide containing bromphenol blue 

and shaked for 5 min at RT. Transcripts were separated on a 4.5% polyacrylamide gel in 

0.4x TBE at 250 V for approximately 1 h. The gel was dried on a Whatman paper for 2 h at 

80 °C on a gel dryer (BioRad) and documented by autoradiography on a phosphoimager or 

x-ray film (Fuji). 



Material and Methods   46 

3.2.17 Nucleosome mobility assay 
The nucleosome mobility assay allows the visualisation of nucleosome movements on a 

short DNA fragment catalysed by ATP-dependent remodelling enzymes. The reactions were 

performed in EX-75 buffer with a final volume of 12 µl containing 30 to 60 fmol of 

mononucleosomes end-positioned on a radiolabeled 247 bp DNA fragment (kindly provided 

by R. Strohner and G. Längst), 1mM ATP, 1mM DTT and 200 ng/µl CEA using siliconised 

tubes (Biozym). The nucleosomes were incubated with different dilutions of protein fractions 

immunoprecipitated with α-Flag-agarose either from MB III or Flag-RPA116-MB III whole cell 

extracts (chapter 3.2.4.2 and 3.2.5) for 90 min at 30 °C in absence or presence of ATP. 

Different dilutions of the remodelling factor ACF were used as positive control. The reactions 

were stopped by the addition of 0.4 µg plasmid competitor DNA and further incubated for 5 

min at RT. Resulting nucleosome positions were separated by native gel electrophoresis with 

4.5% polyacrylamide gels in 0.4x TBE, which were pre-electrophoresed for 1 hour. After 

electrophoresis for approximately 2 hours at 100-130 V the gels were dried on Whatman 

paper with help of a gel dryer and analysed by autoradiography. 

3.2.18 Standard protocols in molecular biology 
Preparation of competent bacteria, transformation of bacteria, DNA purification, 

concentration determination of DNA, restriction enzyme analysis, polymerase chain reaction 

(PCR), ligation of DNA fragments, agarose gel electrophoresis etc. were performed 

essentially as described in (7, 12). Furthermore plasmid DNA was extracted from bacteria 

with help of Plasmid Purification kits, DNA fragments were isolated from agarose gels with 

the Gel Extraction kit and RNA was isolated from mammalian cells with the QiaShredder and 

RNeasy Mini kit (all Qiagen). 

3.2.19 Standard protocols in protein analytics 
Protein analysis was performed according to standard protocols (7, 12). In general, proteins 

were kept on ice (4°C) and in buffers containing protease inhibitors and reducing agents. 

3.2.19.1 Determination of protein concentrations 

Protein concentration was determined with the colorimetric assay described by Bradford 

(Bradford 1976). 

3.2.19.2 SDS-polyacrylamide gel electrophoresis  

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was employed for the separation of 

denatured proteins and was performed with the Novex system (pre-assembled gel 

cassettes). Resolving and stacking gels were prepared according to standard protocols using 

ready-to-use polyacrylamide solution (Rotigel, 30%, Roth). For electrophoresis, protein 
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samples were mixed with SDS-PAGE sample buffer, denatured for 5 min at 95°C and directly 

loaded on the gel. Proteins were separated at 100 to 150 V. In parallel the molecular weight 

of proteins was estimated with the help of non- or pre-stained marker proteins (peq-gold II 

and IV, Peqlab). Following electrophoresis the gels were either Coomassie- or Silver-stained 

or subjected to Western blotting. 

3.2.19.3 Coomassie blue staining of protein gels  

Polyacrylamide gels were fixed for 30 min in fixing solution (50% methanol, 10% acetic acid) 

and stained for at least 60 min on a slowly rocking platform with Coomassie staining solution 

(0.025% (w/v) Coomassie Blue R in 10% (v/v) acetic acid). To visualize proteins, gels were 

de-stained in 10% (v/v) acetic acid. After documentation, the gels were dried on a Whatman 

paper for 2 h at 80 °C on a gel dryer (BioRad). If gels were prepared for subsequent mass 

spectrometry analysis gels were stained with colloidal Coomassie (Colloidal Blue Stain, 

Invitrogen) according to the manufacturer’s instruction, protein bands were cut out and 

handed over to the analysing facility (Zentrallabor für Proteinanalytik, Adolf-Butenandt-

Institut, Munich). 

3.2.19.4 Silver staining of protein gels 

The staining of proteins with silver nitrate solution was done essentially according to the 

protocol of Blum (2). The gel was fixed in 40% (v/v)ethanol/10% (v/v) acetic acid for at least 2 

h and washed 3x for 20 min in 30% (v/v) ethanol. After incubation in 0.02% (w/v) sodium 

thiosulfate (Na2S2O3) for 1 min the gel was washed 3x with water for 20 sec and stained with 

0.2% (w/v) AgNO3 solution for 1 h. Subsequently the gel was washed with water (3x 20 sec) 

and incubated with developing solution (3% (w/v) Na2CO3, 0.05% (v/v) H2CO, 0.0004% (w/v) 

Na2S2O3) until the protein bands were visible (approximately 5 to 10 min). After a short wash 

in water the reaction was stopped by incubating the gel in 0.5% (w/v) glycine solution for at 

least 5 min. Finally, gels were documented and dried on a Whatman paper for 2 h at 80 °C 

on a gel dryer (BioRad). 

3.2.19.5 Semi dry Western analysis 

Proteins were separated by SDS-PAGE and transferred to a nitrocellulose or PVDF 

membrane (Amersham) at 14 V for 1 h by using the Trans-Blot SD chamber (Bio-Rad). For 

protein transfer the gel was packed between gel-sized Whatman papers either soaked in 

anode or cathode buffers. 

Anode buffer I  Anode buffer II  Cathode buffer 
300 mM Tris   25 mM Tris   70 mM CAPS, pH 10.5 
15% methanol   15% methanol   15% methanol  
 
After transfer membranes were incubated in blocking solution (PBS, 5% dry milk, 0.1% 

Tween) for 1 h at RT to reduce unspecific binding and subsequently with the primary 



Material and Methods   48 

antibody diluted in blocking buffer for 1 h at RT or overnight at 4 °C (dilutions are 

summarised in chapter 3.1.3). Membranes were washed 3x in PBS supplemented with 0.1% 

Tween (PBS-T) for 10 min and incubated with the respective secondary antibody 

(horseradish peroxidase-coupled) in blocking solution for 1 h at RT. After three further 

washes for 10 min in PBS-T the membranes were analysed by using the ECL reagent 

(Amersham) and exposure to x-ray film (Fuji). 
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4 Results 

4.1 Purification of RNA Polymerase I (Pol I)-associated factors  

4.1.1 Establishment and characterisation of a MBIII cell line stably expressing 
Flag-tagged RPA116 

The expression of the rRNA genes is regulated at different levels of the rRNA metabolic 

pathway, at the stage of transcription initiation (reviewed in (Grummt 2003)), transcription 

elongation (Schneider et al. 2006; Stefanovsky et al. 2006a), rRNA processing and assembly 

(Milkereit et al. 2001; Ferreira-Cerca et al. 2007; Holmstrom et al. 2008). To reveal potential 

regulators that act at the level of transcription initiation and elongation, a murine MB III cell 

line stably expressing Flag-tagged RPA116 (Flag-RPA116-MB III), the second-largest 

subunit of RNA Pol I (Seither & Grummt 1996), was established for immunopurification of Pol 

I-associated factors. Therefore a Flag-RPA116 expression construct was generated, 

transfected into MB III cells and Flag-RPA116-MB III clones were obtained. The cloning 

strategy and establishment of the stable cell line is described in detail in Material and 

Methods, 3.2.1). Subsequent characterisation by immunofluorescence microscopy showed 

constitutive expression at low levels of the N-terminally tagged protein and its nucleolar 

localisation similarly to the endogenous protein as revealed by immunostaining with α-

RPA116 and α-Flag (Figure 9A and B). Furthermore Flag-RPA116 was fully incorporated 

into the RNA Pol I complex as shown by co-immunoprecipitation analysis and glycerol 

gradient centrifugation. Flag-immunoprecipitation co-purified PAF53, a bona-fide subunit of 

the RNA Pol I complex, from Flag-RPA116-MB III but not from MB III nuclear extracts (Figure 

9C, lane 3). Moreover, when Flag-RPA116-MB III whole cell extract was analysed by glycerol 

gradient (10 - 50%) centrifugation endogenous and Flag-tagged RPA116 eluted in the same 

fractions and no Flag-RPA116 was detected in additional fractions as confirmed by Western 

blotting with α-RPA116 and α-Flag (Figure 1D). 

4.1.2 Purification of Flag-RPA116-containing complexes 

4.1.2.1 Chromatin-specific activities in extracts and purifications 

For the purification of regulators of Pol I-mediated rDNA transcription a major focus was laid 

on the identification of chromatin-modulating factors, which modify the chromatin 

environment suchlike to enable transcription initiation and elongation. Therefore different 

extract preparations to obtain whole cell or nuclear fractions were additionally characterised 

with respect to chromatin-specific activities to select the most appropriate protocol for their 

purification. Firstly, extracts were tested in a Pol I in vitro transcription system (Langst et al. 

1998; Strohner et al. 2004) to investigate their transcriptional activity from different templates  
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Figure 9: Characterisation of the MB III cell line stably expressing Flag-RPA116. 
(A) Co-immunostaining of control MB III cells and MB III cells stably expressing Flag-RPA116 (Flag-RPA116-MB 
III) with α-RPA116 (green) and α-Flag (red) antibodies to detect the endogenous and tagged RPA116 proteins. 
(B) Immunostaining of a broader section of cells as shown in (A) with α-Flag. (C) Western Blot of 
immunoprecipitations from nuclear extracts of control MB III and Flag-RPA116-MB III cells with α-Flag agarose. 
Load (L; 6%), flow-through (FT; 6%) and eluted proteins (E) were analysed with the indicated antibodies. (D) 
Western Blot of glycerol gradient fractions. Whole cell extract was separated by glycerol gradient (10 – 50%) 
centrifugation and fractions were analysed with the indicated antibodies. 

such as ‘naked’ DNA or DNA reconstituted into chromatin. For this purpose the pMrWT-T 

construct containing a rDNA minigene with promoter and terminator elements including the 

Transcription Termination Factor I (TTF-I) binding sites T0 upstream of the transcription start 

site (+1) and T1 to T10 downstream of the rDNA minigene was used as template (upper 

cartoon; Figure 10A). The DNA was packed into nucleosomes by the salt assembly method 

and the quality of the assembly reaction was monitored by MNase digestion (for details see 

Material and Methods, 3.2.16). TTF-I is required for the termination of transcription from both 

the DNA and chromatin templates as well as for transcription initiation from the chromatin 

template. For efficient initiation and specific termination a N-terminally truncated form of TTF-

A 

B C 

D 
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I lacking the N-terminal amino acids 1-185 (TTF-IΔN185) was additionally supplemented to 

the in vitro system. The lower cartoon in Figure 10A gives an overview on the expected 

transcripts from chromatin and DNA templates in presence or absence of TTF-IΔN185 

(marked in black). While transcription is inhibited from the chromatin template in absence of 

TTF-IΔ185 a read-through transcript is made from the DNA template. On the other hand if 

TTF-IΔN185 is present a specifically terminated transcript is synthesised from both 

templates. For the in vitro transcription reaction the two different templates were incubated 

with extracts in absence or presence of TTF-IΔN185 and the radioactively labelled transcripts 

were subsequently separated by gel electrophoresis and analysed by autoradiography (for 

detail see Material and Methods, 3.2.16). Figure 10B depicts the resulting transcripts when 

the MB III whole cell extract was used as a source for Pol I and the other required factors. As 

expected long, heterogeneous read-through transcripts were synthesized from the naked 

DNA template (lane 1, 2), but transcription was suppressed on the chromatin template (lane 

5, 6). Consistent with the published data a specifically terminated transcript was detected 

when transcription was carried out with DNA and chromatin template in the presence of TTF-

IΔN185 (lane 3, 4, 7, 8). The minor fraction of terminated transcripts in the reaction with DNA 

template without TTF-IΔN185 (lane 1, 2) is probably due to the presence of DNA-binding-

competent TTF-I in the MB III extract. These observations prove the transcription activity of 

the MB III extract on free DNA and on chromatin templates confirming the presence and 

activity of factors required for Pol I transcription initiation and elongation in chromatin. 

Between several analysed extract preparations the MB III whole cell extract showed the most 

promising results with respect to the in vitro transcription assay as well as to initial 

immunoprecipitation trials and was therefore used for subsequent purifications and 

confirmatory experiments.To test whether chromatin remodelling activities would co-purify 

with the Pol I complex, the fractions immunoprecipitated with Flag-agarose from control MB 

III and Flag-RPA116-MBIII were analysed in a nucleosome mobility assay. In this approach a 

mono-nucleosome reconstituted on a radioactively labelled DNA fragment is used as a 

template. Incubation with enzymes capable of ATP-dependent chromatin remodelling would 

lead to re-positioning of the nucleosome, which can be resolved by its electrophoretic 

mobility. In this experiment isolated end-positioned mono-nucleosomes were utilised as 

template (for detail see Material and Methods, 3.2.17) and incubated with different dilutions 

of the fractions immunoprecipitated from Flag-RPA116-containing or control MB III extracts in 

presence of ATP (Figure 10C). As negative control reactions were incubated in absence of 

ATP (lane 1, 2, 9, 10, 17). The recombinantly expressed and reconstituted remodelling 

complex ACF, containing the ATPase ISWI and the Acf1 subunit, served as positive control 

(lane 17 - 22). In several experiments an enrichment of remodelling activities could be 

detected after co-immunoprecipitation with Flag-RPA116 (Figure 10C; lane 15, 16) compared 
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to the control (Figure 10C; lane 7, 8). However, only weak remodelling activitiy was 

measured. Taken together, the outcome of these chromatin-related assays show that MB III 

whole cell extract preparation and immunoaffinity purifications were performed under 

conditions that preserve complex integrity and generate transcriptionally active RNA Pol I 

complexes, which, presumably, also contain nucleosome remodelling activities. 

 

 
Figure 10: Characteristics of the extract for purification of Flag-RPA116-associated proteins. 
(A) Schematic representation of the TTF-I dependent Pol I in vitro transcription system. The pMrWT-T construct 
(rDNA minigene), containing the rDNA promoter and terminator region and serving as template in the transcription 
reaction, is shown on the top. The Pol I-specific Transcription Termination Factor I (TTF-I) is required transcription 
termination and as well for transcription activation from chromatin but not from naked DNA templates. The table 
shows the expected transcripts (black; upper left: readthrough, upper right: no transcript, lower left and right: 
terminated transcript) in dependency on the respective template (grey; DNA or DNA pre-assembled into 
chromatin) and the absence or presence of TTF-I (shaded ellipse). (B) The MB III whole cell extract has in vitro 
transcription activity from DNA and chromatin templates. The pMrWT-T construct, either as naked DNA (10 ng; 
lanes 1-4) or pre-assembled into chromatin (40 ng; lanes 5-8), was incubated with increasing amounts of MB III 
whole cell extract (WCE) in absence (lane 1, 2, 5, 6) or presence (lane 3, 4, 7, 8) of TTF-I Δ185 for the in vitro 
transcription reaction. The radioactively labelled transcripts were purified, separated by polyacrylamide 
electrophoresis and visualized by autoradiography. The positions of the non-terminated readthrough transcripts 
and the terminated transcripts are indicated. (C) Nucleosome mobility assay with Flag-RPA116-associated 
proteins. Whole cell extracts of MB III or MB III cells stably expressing Flag-RPA116 (Flag-RPA116-MB III) were 
used for immunoprecipitation (IP) with α-Flag agarose. 4 µl of a 1:3 step dilution series of co-purified protein 
fractions from the IP with MB III (IP MB III; lane 1-8) or with Flag-RPA116-MB III extracts (IP Flag-RPA116-MB III; 
lane 9-16) were incubated with mononuclesomes end-positioned on a radiolabelled 247 bp DNA fragment in 
absence (lane 1,2,9,10,17) or presence of ATP. Different dilutions of the remodelling factor ACF (lane 17-21/22) 
were used as positive control. Resulting nucleosome positions were analysed by native gel electrophoresis. The 
positions of free DNA and end- or center-positioned nucleosomes are indicated on the right. 
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4.1.2.2 Immunoprecipitation of Flag-RPA116-containing complexes 

To purify Flag-RPA116-containing complexes nuclear cell extracts were prepared from 

control MB III and Flag-RPA116-MB III cells growing in suspension. The control and Flag-

RPA116-containing extracts were incubated with α-Flag agarose, the precipitations were 

thoroughly washed with buffer containing 300 mM NaCl to reduce unspecific binding and 

subsequently eluted with Flag peptide. The eluted fractions were subjected to SDS 

polyacrylamide gel electrophoresis (SDS-PAGE), the gel was stained with Coomassie, 

protein bands were sliced out and subsequently analysed by MALDI-TOF mass 

spectrometry. 

 
 

Figure 11: Purification of Flag-RPA116-associated factors. 
(A) Coomassie-stained SDS gel of immunoprecipitations from nuclear extracts of MB III or MB III cells stably 
expressing Flag-RPA116 (Flag-RPA116-MB III) with α-Flag agarose. Eluted protein fractions were separated by 
SDS-PAGE, Coomassie stained, protein bands were cut and subjected to MALDI-TOF mass spectrometry. 
Proteins identified are indicated on the right. (B) Summary of the RPA116-associated proteins identified by mass 
spectrometry. The table shows the repective accession numbers and gene ontology terms (biological process, 
component) of the identified polypeptides. 

accession 
number 

polypeptide  biological process  component 

gi|34328146  RPA194  rRNA transcription  RNA Pol I, n, no 
gi|31982724  Mybbp1a  transcription regulation  no, n, c 
gi|6677789  RPA116  rRNA transcription  RNA Pol I, n, no 
gi|476850  Hsc 70  chaperone, stress response  c 
gi|111212  Tropomyosin 5  filament  c, cytoskeleton 

gi|6681157  DEAD box 
polypeptide 5 

helicase activity, transcription 
cofactor activity  RNP complexes, n 

gi|2078001  Vimentin  type III intermediate filament  c, cytoskeleton 

B 

A 
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Next to RPA116 and the largest Pol I subunit RPA194 five other proteins were identified as 

enriched in the Flag-RPA116-containing elution (Figure 11A; lane 2) compared to the control 

(lane 1): the transcription regulator Mybbp1a, the chaperone Hsc70, the filaments 

Tropomyosin 5 and Vimentin, and the helicase DEAD box polypeptide 5. The different factors 

are summarised in Figure 11B with their respective accession number identified by MALDI-

TOF and gene ontology (GO) terms related to biological process and component. Despite 

extensive washing steps in the presence of 300 mM NaCl a significant amount of unspecific 

binding was detected when comparing the Flag-RPA116-containing and control elution 

(Figure 11A). For that reason different immunoprecipitation conditions were tested and the 

protocol was optimised related to efficiency and background for the subsequent confirmatory 

experiments (data not shown). 

4.1.2.3 Mouse Mybbp1a interacts with the Pol I complex 

One of the proteins interacting with Flag-RPA116 was identified as mouse Mybbp1a 

(mMybbp1a) by MALDI-TOF analysis (Figure 11). This protein has been described as Pol II 

transcription regulator in several cases earlier (Fan et al. 2004; Diaz et al. 2007; Owen et al. 

2007; Hara et al. 2009) and chromatin-modifying enzymes have been implied in its mode of 

action as transcriptional co-repressor (Fan et al. 2004). These characteristics made it an 

interesting candidate protein and therefore its association with the Pol I complex was further 

investigated in detail. Firstly, the interaction of mMybbp1a and RNA Pol I was verified by 

repeated co-immunoprecipitation experiments (Figure 12). MB III and Flag-RPA116-MB III 

whole cell extracts were incubated with α-Flag agarose, the precipitates were thoroughly 

washed and eluted with Flag peptide. Load, flow-through, eluted and agarose bead fractions 

were separated by SDS-PAGE and analysed with α-RPA116 and α-Flag by Western Blotting 

to control the efficiency of Flag-RPA116 enrichment from Flag-RPA116-MB III compared to 

control extracts.  

 
Figure 12: Co-immunoprecipitation of Flag-RPA116 and Mybbp1a. 
Flag-RPA116-containing complexes were immunoprecipitated with α-Flag agarose from whole cell extracts of MB 
III and Flag-RPA116-MB III cells. For the detection with α-RPA116 and α-Flag load (L, 40%), flow-through (FT, 
40%), bead-bound (B) and eluted (E) proteins were analyzed by Western blotting. For the detection with α-
Mybbp1a antibodies 0,8% of the load and flowthrough were loaded on the gel. 
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The detection with α-mMybbp1a revealed an enrichment of mMybbp1a in the 

immunopurified and eluted fractions from RPA116-MB III extracts (lane 7, 8) compared to 

control extracts (lane 3, 4) confirming the association of mMybbp1a with the Pol I complex.To 

investigate whether Mybbp1a and RPA116 are present together in distinct complexes in the 

cell MB III whole cell extract was analysed by Superose 6 size exclusion column for 

separation by the fast protein liquid chromatography (FPLC) system (Äkta, Amersham) 

(Figure 13A) and glycerol gradient (10 - 45%) centrifugation (Figure 13B), which both allow 

separation of complexes according to their native size. Size markers were treated in parallel 

to determine the respective complex size corresponding to each fraction. Subsequently 

proteins were precipitated and separated by SDS-PAGE and analysed by Western blotting. 

The detection with antibodies against the Pol I subunits RPA116 and PAF53 and 

mMbybbp1a revealed a co-migration of the proteins over several fractions. The analysis by 

Superose 6 size exclusion showed at least two peeks of co-migration at different molecular 

weights, one in the high molecular range (around and eventually above 2 MDa; fraction 14 - 

19) and one in the middle molecular range (700 kDa; fraction 23 - 25)(Figure 13A).  
 

 
Figure 13: Analysis of RPA116 and Mybbp1a by (A) gelfiltration analysis and (B) glycerol gradient 
centrifugation. 
(A) MB III whole cell extract was separated on a Superose 6 gelfitration column. Load (L, 4%) and collected 
fractions (4%) were analyzed by Western blotting with the indicated antibodies. Unfortunately, no sufficient 
amounts of fraction 11 to 13 and load were available for the time-wise shifted investigation of mMybbp1a. (B) MB 
III whole cell extract was applied on a 10 – 45% glycerol gradient. The load (L, 2%) and every second fraction 
(3%) was analysed by Western blotting with the indicated antibodies. The size of 2 MDa, 669 kDa, 443 kDa and 
66 kDa corresponds to Dextran, Thyroglobulin, Apoferritin and bovine serum albumine, respectively. 

The evaluation by glycerol gradient revealed three distinct peeks in faction 1/3, 7 and 15 

(Figure 13B) with fraction 15 corresponding to the middle molecular range identified also by 

Superose 6 size exclusion. The peaks in fraction 1/3 and 7 of the glycerol gradient probably 

B 

A 
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reflect the enrichment in the high molecular weight range detected by size exclusion and with 

a qualitatively different resolution additionally indicate the existence of two distinct 

complexes. In parallel the Pol I-specific Transcription Initiation Factor TIF-IA was analysed as 

an example of a known Pol I complex-associated factor and co-migration with RPA116 was 

detected by both approaches at around 600 kDa, which is the size were the core Pol I 

subunits are the most enriched. Taken together these data show that mMybbp1a is indeed 

associated with the Pol I complex. The protein is part of differently composed and sized 

complexes in the cell, which might also contain the Pol I enzyme, potentially reflecting 

different steps of a ‘holoenzyme’ composition. 
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4.2 Analysis of Mybbp1a function in the nucleolus 
So far Mybbp1a function has been only characterised in the context of Pol II and III 

transcription. After the confirmation of Mybb1a being a novel interactor of the Pol I complex 

next steps were to analyse if the protein exhibits also regulatory activity on Pol I transcription. 

For this purpose human cells were chosen as model system as several tools to study Pol I 

transcription in this regard were already established and, eg concerning transfection 

efficency, better to handle.  

4.2.1 Mybbp1a localises to the nucleolus in human cell lines 

Prior functional investigation the localisation of human Mybbp1a and its anticipated 

association with the Pol I complex were confirmed by immunostaining and co-

immunoprecipitation assays in the human system. To monitor cellular localisation HeLa cells, 

either wildetype or cells transfected with a human Flag-Mybbp1a expression construct or 

control plasmid, were fixed with 1:1 (v/v) acetone/methanol 48 hours after transfection and 

incubated with α-Mybbp1a or α-Flag. For visualisation of the nucleoli the cells were either co-

stained with α-RPA116 or phase contrast images were taken. Confirming previous studies 

(Yamauchi et al. 2008; Perrera et al. 2010), human Mybbp1a was found to preferentially 

localise to the nucleolus (Figure 14). Furthermore two additional mouse expression 

constructs, which were intended for later use in functional assays, were tested for their 

localisation in human cells, mouse Flag-Mybbp1a (Flag-mMybbp1a) and the C-terminally 

truncated form Flag-mp67MBP*NLS coding only for the first 585 N-terminal aa of the protein. 

As the truncated protein does not naturally localise to the nucleus the coding sequence of the 

SV40-large-T nuclear localisation signal was C-terminally fused to the protein coding 

sequence for artificial tethering (Tavner et al. 1998). While transiently transfected Flag-

mMybbp1a consistently showed a predominant nucleolar localisation, Flag-mp67MBP*NLS 

visualisation exhibited a more diffuse nuclear staining pattern but with preference for the 

nucleolus. These observations indicate that mouse Mybbp1a might be able to complement 

the endogenous protein whereas the C-terminally truncated mutant seems to have lost 

certain functional properties. 
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Figure 14: Localization of RNA Pol I and Mybbp1a in HeLa cells. 
48 h after transfection with human Flag-Mybbp1a (Flag-hMybbp1a), mouse Flag-Mybbp1a (Flag-mMybbp1a) or 
mouse Flag-p67MBP*NLS (Flag-mp67MBP*) expression constructs cells were fixed and stained with antibodies 
against RPA116 (Cy2, green) and Flag (Cy3, red). Nuclei were stained by Hoechst reagent (blue). Non-
transfected HeLa cells stained with α-Mybbp1a recognizing the endogenous Mybbp1a are shown on the right. 
The postion of the nucleoli are indicated by arrows. Scale bar: 10 µm. 

4.2.2 Mybbp1a interacts with the Pol I complex in human cells 

Subsequently, the actual physical association of human Mybbp1a with the RNA Pol I 

complex was assessed by co-immunoprecipitation experiments using the Flag-Mybbp1a 

construct. Nuclear extracts from HEK293T cells transiently transfected with either empty 

vector or the Flag-Mybbp1a expression construct were incubated with α-Flag agarose. The 

Flag-agarose precipitates were thoroughly washed and directly resuspended in Laemmli 

buffer for further analysis. Load, flow-through and agarose bead fractions were separated by 

SDS-PAGE and analysed by Western Blotting with α-Mybbp1a and α-PAF53. Both proteins, 

Mybbp1a and the Pol I subunit PAF53, were enriched by the affinity tag purification from the 

extract containing Flag-Mybbp1a (lane 6) compared to the control (lane 3) (Figure 15). Snf2h 

has been previously described as an interacting protein of Mybbp1a (Cavellan et al. 2006) 

and was used as a positive control. The data thereby confirm a specific interaction of 

Mybbp1a and the Pol I complex also in the human system. 
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Figure 15: Immunoprecipitation with human Flag-Mybbp1a. 
Nuclear extracts of HEK239T cells either transfected with Flag-Mybbp1a expression plasmid (lanes 4 to 6) or 
control DNA (ctrl; lanes 1 to 3) were incubated with α-Flag agarose. For the detection with α-Mybbp1a and α-
Snf2h load (L, 5%), flow-through (FT, 5%), bead bound (B) and eluted (E) proteins were analyzed by Western 
blotting. For the detection with α-PAF53 0.3% of the load and flowthrough were loaded on the gel. 

4.2.3 Mybbp1a acts as a repressor of Pol I transcription 

As outlined before Mybbp1a has been described as a regulator of Pol II transcription in 

earlier studies. Considering the protein’s association with the Pol I complex a potential role of 

Mybbp1a in the regulation of rRNA gene transcription was tested accordingly. 

4.2.3.1 Mybbp1a represses the transcription from a Pol I reporter construct 

To visualise RNA Pol I activity, the human rRNA minigene construct pHrD-Ires-Luc (Ghoshal 

et al. 2004; Nemeth et al. 2004) that harbours the rRNA gene promoter (-410 bp to +314 bp 

relative to the transcription start site) followed by an internal ribosome entry site (IRES) and 

the coding sequence of the firefly luciferase protein was employed (Figure 16A). The IRES 

sequence allows translation of the rRNA Pol I transcripts and relative quantification of the 

minigene RNA levels via the luciferase activity. The possibility of protein expression driven by 

Pol I was firstly introduced by McStay and colleagues and the respective specificity controls 

have convincingly demonstrated that expression from such construct is with great probability 

exclusively dependent on the Pol I but not the Pol II enzyme (Palmer et al. 1993). A later 

study with mouse constructs comparable to the human construct utilised in this study proofed 

their Pol I specificity by employing α-amanitin, which strongly inhibits Pol II but not Pol I, 

(Nemeth et al. 2008). RNA Pol I transcription activity from the minigene construct was 

calculated relative to a co-transfected RNA Pol II-dependent construct expressing the Renilla 

luciferase (pRL-TK; Promega) to normalise for potential differences in transfection efficiency 

(Figure 16A). For the assessment of Mybbp1a’s impact on Pol I transcription activity from the 

rRNA minigene HeLa cells were transiently transfected with empty vector or different 

amounts of Flag-Mybbp1a expression construct together with the Pol I reporter pHrD-Ires-

Luc and the Renilla control pRL-TK. As example for a known modulator of Pol I transcription 

different amounts of a Tip5 expression construct were similarly transfected. Tip5 is the large 
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subunit of the nucleolar remodelling complex, NoRC, that serves to silence rRNA genes by 

changing their chromatin structure and initiating heterochromatinisation of rDNA (Strohner et 

al. 2001; Santoro et al. 2002; Li et al. 2006). 48 hours after transfection luciferase activity 

was measured by the use of the Dual Luciferase Reporter Assay System (#E1960; Promega) 

in the luminometer Lumat LB 9501 (Berthold), and protein levels were determined by 

Western Blotting. When compared to control transfections overexpression of human 

Mybbp1a in HeLa cells resulted in a dose-dependent transcriptional repression of the rRNA 

minigene expression, comparable to the repressive effect of Tip5 (Figure 16B, Figure 17). 

Thus, Mybbp1a acts on Pol I transcription by a repressive mechanism characterising a novel 

role of the protein in the nucleolus. 

 

 
Figure 16: Transcription activity from a Pol I reporter after overexpression of Mybbp1a. 
(A) Schematic representation of luciferase reporter constructs. The pHrD-IRES-Luc (Ghoshal et al. 2004) 
construct contains the human rDNA (hrDNA) promoter from -410 to + 314 (relative to the transcription start site) 
followed by an internal ribosome entry site (IRES) fused to the firefly luciferase coding region. The renilla control 
construct carrying the renilla luciferase gene under the control of a TK promoter (pRL-TK); transcribed by Pol II) 
was used to normalize for transfection efficiency. (B) HeLa cells were co-transfected with both luciferase reporter 
constructs illustrated in (B) and increasing amounts of either Mybbp1a or Tip5 expression plasmids (188 ng, 375 
ng, 750 ng). 48 h after transfection luciferase activity was measured. Firefly luciferase counts (RNA Pol I reporter) 
were normalized to renilla luciferase counts and compared to the control transfection reaction (ctrl). Average and 
standard deviation values of 3 biological replicates (each in technical duplicate) are shown. Mybbp1a protein 
levels were analyzed by Western blotting with α-Mybbp1a antibody. An unspecific band served as loading control 
(ctrl). 

To see if mouse Mybbp1a is able to function as the human protein due to their high 

conservation the impact of mouse Flag-mMybbp1a or the C-terminally truncated form Flag-

mp67MBP*NLS (see section 4.2.1, p. 57) on the human Pol I reporter was analysed (Figure 

17). While the overexpression of mouse full-length protein led to a dose-dependent 

repression of transcriptional activity similarly to the human protein, transient expression of 

even higher protein amounts of mp67MBP*NLS had no effect on Pol I-dependent transcription 
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(Figure 17). These results suggest that mouse Mybbp1a is capable of functionally 

complementing the human protein. Moreover the C-terminus of the protein seems to be 

required for efficient transcriptional repression. 

 

 
Figure 17: Transcription activity from a Pol I reporter after overexpression of human or mouse Mybbp1a 
constructs. 
HeLa cells were co-transfected with both luciferase reporter constructs, pHrD-IRES-Luc and renilla control, and 
increasing amounts (188 ng, 375 ng, 750 ng) of either human Mybbp1a, mouse Mybbp1a or Tip5 expression 
plasmids. The mouse p67MBP*NLS (p67MBP*) expression plasmid was transfected with an amount of 188 ng. 48 h 
after transfection luciferase activity was measured and firefly luciferase counts (RNA Pol I reporter) were 
normalized to renilla luciferase counts and compared to the control transfection reaction (ctrl). Average and 
standard deviation values of two technical replicates are shown. Protein levels were analyzed by Western blotting 
with α-Flag antibody on the same membrane allowing a direct comparision of the protein levels expressed from 
the different constructs.  An unspecific band (*) served as loading control. 

The Pol I reporter experiments have determined novel functional properties of Mybbp1a 

within the nucleolar compartment. However, the mechanism, which leads to Mybbp1a-

mediated repression of Pol I transcriptional activity remains unclear. A recent study by 

Spiegelman and colleagues (Fan et al. 2004) has shown mouse Mybbp1a to bind to PPAR 

gamma coactivator 1α (PGC-1α), a key regulator of metabolic processes, and thereby 

repress its transcriptional coactivator function. The authors attribute its suppressive activity at 

least in part to a histone deacetylase (HDAC)-dependent mechanism as reporter assays 

conducted in the presence of the HDAC inhibitor Trichostatin A (TSA) revealed a decreased 

repressive activity of Mybbp1a. Accordingly, the Pol I reporter assay was repeated as before 

but with cells treated with two different TSA concentrations (30 and 100 nM) or solvent prior 

harvesting to monitor for a potential HDAC-dependent process in Mybbp1a-mediated Pol I 

transcriptional repression. Tip 5 overexpression was again employed as a control as this 

protein is known to repress Pol I transcription in an HDAC-dependent manner (Santoro et al. 

2002; Zhou et al. 2002). This is mirrored by the release of transcriptional repression by Tip5 

with increasing amounts of TSA and was repeatedly observed (Figure 18). Similarly, an 

alleviation of Pol I transcriptional repression by Mybbp1a upon TSA treatment was observed 

(Figure 18) in initial experiments indicating a HDAC-dependent mechanism for Mybbp1a 

transcriptional repression. However, available experimental data is not significant yet and 

subsequent analysis is required for final confirmation. 
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Figure 18: Transcription activity from a Pol I reporter after overexpression of Mybbp1a in presence of 
Trichostatin A. 
(A) HeLa cells were co-transfected with both luciferase reporter constructs, pHrD-IRES-Luc and renilla control, 
and 750 ng of either human Mybbp1a or Tip5 expression plasmids. The cells were maintained in presence of 30 
or 100 nM Trichostatin A or vehicle (0 nM) for 12 h prior harvesting. 48 h after transfection luciferase activity was 
measured and firefly luciferase counts (RNA Pol I reporter) were normalized to renilla luciferase counts and 
compared to the control transfection reaction (ctrl). Average and standard deviation values of two technical 
replicates are shown. (B) Protein levels were analyzed by Western blotting with α-Flag antibody. An unspecific 
band served as loading control (ctrl). *: cross-reacting band. 

4.2.3.2 Mybbp1a overexpression leads to decreased Pol I occupancy at the rRNA gene 
promoter 

To obtain more insight into the action of Mybbp1a at the rDNA promoter chromatin 

immunoprecipitation (ChIP) experiments were performed. Nuclear and nucleolar extracts of 

control cells and cells overexpressing the Flag-tagged human Mybbp1a were incubated with 

antibodies against the Flag-tag and hMybbp1a. Antibodies recognising the Pol I subunit 

RPA116 and the Pol I-specific transcription factor TTF-I were used as positive controls 

(Figure 19). Subsequently the immunoprecipitated chromatin was purified and the extracted 

DNA was investigated for presence of promoter and intergenic spacer sequences of the 

rDNA repeat by quantitative real-time PCR. As expected DNA precipitated with α� � �  � � �  

α-TTF-I contained sequences from the rDNA promoter but not from the intergenic spacer. 

However, neither the α-Flag nor the α-Mybbp1a antibodies were able to co-precipitate rDNA 

fragments under the applied conditions, which suggests that Mybbp1a function is not DNA 

mediated. Interestingly, a decrease of Pol I and TTF-I occupancy at the rDNA promoter was 

detected upon overexpression of Flag-Mybbp1a. This observation correlates with a 

Mybbp1a-dependent repression of Pol I transcription upon Mybbp1a overexpression 
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suggesting a repressive mechanism through its binding to the RNA Pol I complex but not to 

rDNA itself.  

 

 
Figure 19: Chromatin immunoprecipitation (ChIP) analysis of Flag-hMybbp1a occupancy at the rDNA 
repeat. 
ChIP experiments were performed with chromatin derived from (A) purified nucleoli or (B) whole cell extracts from 
cells either transfected with human Flag-Mybbp1a expression plasmid (F-hMybbp1a) or control DNA (ctrl). For 
immuno-precipitation of Flag-hMybbp1a either monoclonal α-Flag or polyclonal α-hMybbp1a were used as 
indicated within the graphs. Polyclonal antibodies against the Pol I subunit RPA116 and the Pol I-specific 
transcription factor TTF-I served as positive controls. Polyclonal α-IgG antibody was used for background 
estimation. Relative occupancies of the factors (% input after correction of non-specific binding) at the promoter 
region or intergenic spacer (IGS) of the rDNA repeat were quantified by real-time quantitative PCR as described 
in Materials and Methods. Average and standard deviation values of 2 technical replicates are shown. Flag-
hMybbp1a protein levels in in the applied extracts derived from cells either transfected with control (ctrl, lane 1) or 
Flag-hMybbp1a (lane 2) plasmid were analyzed by Western blotting with α-Mybbp1a and α-Flag antibodies as 
indicated. An unspecific band served as loading control (Lctrl). 

4.2.3.3 siRNA-mediated depletion of Mybbp1a protein levels leads to increasing amounts 
of 47S rRNA precursor 

To study Mybbp1a’s role in endogenous rRNA gene transcription and thereby verify the data 

from the Pol I reporter experiments, knockdown of the Mybbp1a mRNA was performed in 

HeLa cells using short interfering RNA (siRNA). Knockdown experiments were performed 

with GL3-siRNA (a control siRNA directed against the luciferase gene) and two different 

amounts of Mybbp1a-specific siRNA and followed over 4 days. Mybbp1a protein levels were 

monitored by Western Blotting on day 2, 3 and 4 after siRNA transfection and additionally by 

immunostaining on day 4. Western Blotting with α-Mybbp1a revealed a minor reduction of 
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Mybbp1a levels already on day 2 and efficient depletion on day 3 and 4 after transfection 

(Figure 20A). Immunostaining with α-Mybbp1a confirmed the effective protein depletion 

when comparing wildetype cells and cells transfected with either GL3- or Mybbp1a-specific 

siRNAs (Figure 20B). To monitor the effect of protein depletion on rRNA gene transcription, 

the amounts of newly synthesised 47S rRNA precursor (pre-rRNA) were measured by 

quantitative real time PCR. Therefore total cellular RNA was isolated and reverse 

transcribed, and the level of the 5’ external transcribed spacer (5’ETS) was quantified by an 

oligo hybridising to the 5’ETS upstream of the first processing site A’ (Kass et al. 1987). This 

terminal part of the 5’ETS is instantly degraded after cleavage and taking into account the 

rapidity of the pre-rRNA cleavage processes (Warner 2001) such designed oligo is therefore 

appropriate to visualise actual rRNA transcription activity. Figure 20C shows the rRNA gene 

transcription levels 2, 3 and 4 days after transfection with Mybbp1a-specific siRNA 

normalised to an internal control, β-actin mRNA, which were expressed relative to the 

transfection with GL3 control. In agreement with the rRNA minigene expression studies, 

depletion of Mybbp1a resulted in an increase of pre-rRNA levels in the cell, again suggesting 

a role ofMybbp1a in transcriptional repression. Additionally it was observed that transfection 

of double amounts of Mybbp1a-specific siRNA led to a stronger impact on the relative 

transcription level arguing for a dose-dependent effect. However this could not be resolved 

on the protein level. Finally, the elevation of rRNA gene transcription activity (Figure 20C) 

correlated with decreasing Mybbp1a protein levels (Figure 20A), which further emphasises 

their direct dependency. 
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Figure 20: siRNA-mediated knockdown of Mybbp1a leads to increasing amounts of 47S rRNA precursor. 
(A) Western Blot of lysates from HeLa cells treated with different amounts (5 or 10 µl) of either a siRNA targeting 
Mybbp1a (Mybbp1a) or a control siRNA (ctrl). HeLA cells were harvested two, three or four days after siRNA 
transfection and lysates were separated by SDS-PAGE and analysed with α-Mybbp1a. An unspecific band 
served as loading control (ctrl). (B) Immunofluorescence and phase contrast microscopy of HeLa cells treated 
with either siRNA targeting Mybbp1a (si-Mybbp1a) or a control siRNA (si-ctrl) and wildtype cells. Four days after 
siRNA transfection cells were fixed with paraformaldehyde and stained with α-Mybbp1a. Nuclei were stained by 
Hoechst reagent. (C) Relative Pol I transcription activity corresponding to (A). HeLa cells were harvested two, 
three or four days after transfection with 5 or 10 µl siRNA targeting Mybbp1a (si-Mybbp1a-5 (black bar) and -10 
(grey bar), respectively) or 10 µl of a control siRNA (si-ctrl-10; white bar). Ongoing Pol I transcription activity was 
measured by RT-qPCR with oligos detecting the region preceding the first cleavage site in the 5’ETS of the 47S 
rRNA precursor and normalized to an internal control (β-actin). The transcription levels were expressed relative to 
ctrl. Mybbp1a protein levels are shown in (A). Scale bars: 20 µm (left column) and 10 µm (right column). 
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To exclude any off-target effects of the Mybbp1a-specific siRNA several siRNAs targeting 

different sites of the Mybbp1a mRNA were tested for their effect on rRNA gene transcription 

activity (Figure 21). Transfection of each of the three analysed siRNAs led to efficient 

depletion of Mybbp1a in HeLa cells as revealed by Western Blotting with α-Mybbp1a and 

showed an increase in relative pre-rRNA levels in approximately the same dimension. These 

results thereby convincingly rule out any off-target effects. 

 

 
Figure 21: Different siRNAs targeting Mybbp1a have a similar effect on rDNA transcription measured by 
RT-qPCR. 
HeLa cells were transfected with three different siRNAs each targeting Mybbp1a (Mybbp1a.1, .2 and .3) or GL3 
control (ctrl) siRNA. Two days after transfection ongoing RNA Pol I transcription activity was measured by RT-
qPCR with oligos detecting the region preceding the first cleavage site in the 5’ETS of the 47S rRNA precursor 
and normalized to an internal control (β-actin). The transcription levels after si-Mybbp1a.1 (grey bar), .2 (dark grey 
bar) and .3 (light grey bar) transfection were expressed relative to ctrl (black bar). Average and standard deviation 
values were calculated from 2 technical replicates. Mybbp1a protein levels were analyzed by Western blotting. 
The α-tubulin staining of the membrane served as a loading control. 

Taken together, increased protein levels of Mybbp1a has been shown to repress rDNA 

transcription from a reporter while siRNA-mediated depletion of Mybbp1a lead to an 

augmentation of endogenous pre-rRNA levels thereby convincingly proofing a negative 

regulatory function of Mybbp1a on rRNA gene transcription. 

4.2.4 Depletion of Mybbp1a influences growth characteristics of HeLa cells 

Surprisingly, initial experiments employing siRNA-mediated knockdown indicated that 

Mybbp1a-depleted cells exhibit proliferation retardation or even stop. To investigate this 

observation in more detail the proliferation behaviour of cells transfected with either control, 

TIF-IA- or Mybbp1a-specific siRNAs was monitored over a period of several days. TIF-IA is a 

Pol I–specific transcription initiation factor (Buttgereit et al. 1985; Schnapp et al. 1990) and 

was used as a control. Depletion of Mybbp1a and TIF-IA was monitored at the protein level 

and followed for up to twelve days by Western Blotting (Figure 22A). siRNA-mediated 

knockdown of Mybbp1a efficiently reduced protein levels from day 2 through to day 7, 

followed by partial (day 9) and full (day 12) recovery of Mybbp1a protein levels. siRNA-
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mediated knock down of TIF-IA was not as efficient as Mybbp1a depletion, but a visible 

reduction at the protein level was detected from day 2 to day 7.  

 

 
Figure 22: siRNA-mediated depletion of Mybbp1a augments rDNA transcription activity but delays cellular 
proliferation. 
(A) HeLa cells were transfected with siRNA targeting Mybbp1a (Mybbp1a) or TIF-IA or with the GL3 control 
siRNA (si-ctrl). Protein levels were analyzed by Western blotting 2, 4, 7, 9 and 12 days after transfection, as 
indicated. The α-tubulin staining of the membrane served as loading control. (B) Ongoing RNA Pol I transcription 
activity was measured by RT-qPCR with oligos detecting the region preceding the first cleavage site in the 5’ETS 
of the 47S rRNA precursor and normalisation to β-actin. The transcription levels after si-Mybbp1a (black bar) and 
si-TIF-IA (grey bar) transfection are shown relative to the control reaction (si-ctrl, white bar). (C) Cellular 
proliferation upon siRNA treatment of the cells, using si-Mybbp1a (white triangle), si-TIF-IA (white square) or si-
ctrl (black square), was followed from days 0 to 12 by counting the number of living cells. Cell numbers are plotted 
in log10 scale. The average and standard deviation values were calculated from three technical replicates. One of 
two independent data sets is shown. 

To monitor the effect of protein depletion on rDNA transcription, the amounts of newly 

synthesised pre-rRNA were again measured by quantifying the level of 5’ETS and 

normalising it to β-actin mRNA by quantitative real time PCR from day 2 to 7. Confirming 

previous results depletion of Mybbp1a resulted in an increase in pre-rRNA levels negatively 

correlating with the Mybbp1a protein levels in the cell, once more emphasising its role in 

transcriptional repression (Figure 22B). As expected, reduced TIF-IA levels resulted in a 

strong decrease of the endogenous rRNA gene product, as this protein is an essential 

transcription initiation factor. In parallel to the evaluation of protein levels and rRNA gene 
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transcription activity the number of living cells was assessed every two or alternatively three 

days over a period of 12 days to thoroughly record the proliferation behaviour of the 

differently treated cells (Figure 22C). As initially observed cells depleted of Mybbp1a indeed 

ceased proliferation and thereby behaved similarly to cells depleted of the transcriptional 

activator TIF-IA. Furthermore, quantification of cellular proliferation revealed a correlation 

between the time frame of decreased protein levels and proliferation arrest between day 2 

and 7 and recovery from day 9 onwards. Interestingly, visual inspection of the Mybbp1a 

knock down cells by phase contrast microscopy showed an irregular, flattened and enlarged 

morphology by day 4 (Figure 23).  

 

 
Figure 23: Mybbp1a-depleted cells show a flattened phenotype. 
Phase contrast microscopy of wildtype HeLa cells and HeLa cells 4 days after transfection with siRNA targeting 
Mybbp1a (si-Mybbp1a) or a Gl3 control siRNA (si-ctrl). Mybbp1a protein depletion seems to influence cell cycle 
progression. Scale bar: 20 µm. 

To investigate whether the proliferation stop might depend on any cell cycle-related 

parameters HeLa cells were analysed with respect to cell cycle progression after siRNA-

mediated depletion of Mybbp1a. Therefore 2 days after siRNA transfection cells were 

incubated with the desoxythymidine analogue Bromodesoxyuridine (BrdU), which 

incorporates into newly synthesising DNA and thereby allows visualisation of cells actually 

passing S-phase by immunostaining. Cells were subsequently fixed and Mybbp1a depletion 

and BrdU-positive cells were determined with α-Mybbp1a and α-BrdU antibodies, 

respectively, by immunofluorescence microscopy. An initial analysis of Mybbp1a-depleted 

cells revealed a reduced number of cells in S-phase compared to cells treated with GL3 

control (Figure 24) pointing to a disturbance of the proper cell cycle progression and 

proliferation defect. 
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Figure 24: Depletion of Mybbp1a influences cell cycle progression. 
Phase contrast and immunofluorescence microscopy of HeLa cells 2 days after transfection with siRNA targeting 
Mybbp1a (si-Mybbp1a) or a GL3 control siRNA (si-ctrl) as indicated on the left. Cells were BrdU-labelled, fixed 
and stained with the antibodies indicated on top of each panel. The lower right panels represent a magnification 
of image sections (white frames) of the left panels. Nuclei were stained with Hoecshst. The table shows the 
number of cells positive for α-BrdU staining (BrdU pos) and their percentage (BrdU pos [%]) of the total cell 
number counted (total cells). Scale bars: 10 µm (upper right panel), 20 µm (upper left panel) and 40 µm (lower left 
panel). 

Given the fact that Mybbp1a has been convincingly shown to be a repressor of rDNA 

transcription before increased proliferation rates after Mybbp1a protein depletion would have 

been expected. The observed contrary effect appears to be absolutely counterintuitive as 

rDNA transcription activity and rRNA levels are the major determinants of cellular growth and 

proliferation. Further supported by the detected defects in cell cycle progression an additional 

role for Mybbp1a in growth-related processes other than rDNA transcription must be taken 

into account. 

4.2.5 Mybbp1a is important for regular processing of the rRNA precursor 

In a recent study, Greenblatt and colleagues analysed the composition of yeast pre-rRNA-

processing complexes and found that Pol5p, the suggested yeast homologue of Mybbp1a, is 

associated with the UtpA complex (Krogan et al. 2004). UtpA is likely to be the equivalent of 

the t-Utp sub-complex of the SSU processome, which has been identified in an independent 

study and shown to be equally required for rDNA transcription and pre-rRNA processing 
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(Gallagher et al. 2004). In consideration of the proliferation behaviour of Mybbp1a-depleted 

cells and the yeast data a potential role of Mybp1a in pre-rRNA processing was studied. Pre-

rRNA processing involves a number of ordered and consecutive endo- and exonucleolytic 

cleavages of the 47S precursor rRNA to produce the 18S, 5.8S and 28S rRNAs and is 

comprehensively described in the introduction (chapter 2.3, p. 16). A short overview of the 

major mammalian rRNA processing pathway is again depicted in Figure 25A. 

 

 
Figure 25: siRNA-mediated depletion of Mybbp1a affects pre-rRNA processing. 
(A) Schematic representation of the pre-rRNA processing pathway. Cleavage events in pre-rRNAs are indicated 
by triangles. Intermediates and final processing products are shown. ETS: external transcribed spacer; ITS: 
internal transcribed spacer. (B) Metabolic labeling of nascent rRNA transcripts. 4 days after transfection with 
siRNAs targeting Mybbp1a (Mybbp1a) or Pes1 HeLa cells were incubated for 6 h with 32P-orthophosphate, total 
cellular RNA was isolated and separated on an agarose gel. The incorporated radioactivity was quantified with a 
PhosphoImager. 47S pre-rRNA levels were normalized to the total rRNA load (ethidiumbromide stain of the 18S 
rRNA) and expressed relative to the GL3 control reaction (ctrl). The individual rRNA species are indicated on the 
right. One of four independent experiments is shown. Protein levels were analyzed by Western blotting (see 
Figure 26B siRNA Mybbp1a.2) (C) Quantification of the rRNA species shown in (B). 32P incorporation was 
quantified with a PhosphoImager and the values of the rRNA species were compared to each other as indicated. 
Ratios were normalized to the control reaction. Metabolic labelling experiments were conducted in collaboration 
with M. Hölzel and D. Eick, Helmholtz Center Munich. 

To follow and quantify pre-rRNA processing after Mybbp1a depletion, newly synthesised 

RNA was metabolically labelled with 32P-orthophosphate 4 days after transfection of HeLa 

cells with Mybbp1a-specific siRNA (Figure 25B). Total cell RNA was extracted, resolved by 

gel electrophoresis, and radioactively labelled transcripts were visualised on a 

Phosphoimager. As expected the depletion of Mybbp1a led to an increase of the 47S pre-
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rRNA species as compared with the control due to the de-repression of rRNA gene 

transcription, confirming the quantitative PCR data. Furthermore, the depletion of Mybbp1a 

resulted in pre-rRNA processing defects that correlated with a relative decrease in the 18S, 

32S and 28S pre-rRNA cleavage products when compared to the 47S pre-rRNA levels. A 

quantitatively similar, but qualitatively different, processing defect was observed in control 

cells depleted of Pes1, a factor involved in the processing of the 32S precursor into 28S and 

5.8S (Lapik et al. 2004; Grimm et al. 2006). As expected, the levels of 32 S and 28S were 

strongly decreased, whereas 47S and 18S did not change as compared with the control. The 

quantification of the distinct pre-rRNA species is depicted in Figure 25 and Figure 26, for 

which pre-/rRNA levels were either expressed as ratio between the different rRNA species of 

one experiment (Figure 25C) or as absolute numbers by normalising to the total cell RNA 

(total 18S rRNA, ethidium bromide stain) load and expressing them relative to the GL3 

control transfection (Figure 25B and Figure 26). Figure 26A shows the quantification of rRNA 

levels of analogous experiments with the average and standard deviation from 4 independent 

experiments. Confirming the previous analysis the data show an increase of 47S precursor in 

combination with processing defects to a comparable extent. The application of several 

siRNAs targeting distinct sites in the Mybbp1a mRNA all led to an accumulation of 47S 

precursor after Mybbp1a protein depletion to a similar extent, again ruling out any siRNA off-

target effects (Figure 26B). All metabolic labelling experiments were conducted in 

collaboration with Michael Hölzel and Dirk Eick (Department of Molecular Epigenetics, 

Helmholtz Center Munich). The results obtained so far suggest that Mybbp1a plays a dual 

role in rDNA metabolism: firstly, regulating rDNA transcription initiation and second, being 

essential for the correct processing of the pre-rRNA. As such, Mybbp1a appears to have an 

impact on processing steps important for the synthesis of both the small and large ribosomal 

subunit rRNAs, which consequently leads to retardations within the production of the 

intermediate and mature rRNAs upon Mybbp1a depletion. However, to what extent the 

increase of 47S rRNA precursor level is effectively due to a derepression of rDNA 

transcription upon Mybbp1a protein depletion or rather reflects the consequence of disturbed 

pre-rRNA processing accompanied by an accumulation of non-processed precursor can not 

be definitely answered by the applied experimental approaches. This issue will be addressed 

in more detail within the discussion section (chapter 5.2.1, p. 86). 
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Figure 26: Different siRNAs targeting Mybbp1a have a similar effect on rDNA transcription measured by 
metabolic labeling. 
(A) Quantification of metabolic labeling of nascent rRNA transcripts. HeLa cells were transfected with Mybbp1a 
(si-Mybbp1a) or GL3 control (si-ctrl) siRNA and prepared as described above. 32P incorporation was quantified 
with a PhosphoImager and the values of the rRNA species were compared to each other as indicated. Average 
and standard devation values were calculated from four biological replicates. Protein levels were analyzed by 
Western blotting with the indicated antibodies (one example is shown). The α-tubulin staining of the membrane 
served as a loading control. (B) HeLa cells were transfected with three different siRNAs each targeting Mybbp1a 
(Mybbp1a.1, .2 and .3), Pes1 or GL3 control (ctrl) siRNAs. Four days after transfection HeLa cells were incubated 
for 6 h with 32P-orthophosphate, total cell RNA was isolated and separated on an agarose gel. The incorporated 
radioactivity was detected with a PhosphoImager. (A)The level of 47S pre-rRNA after Mybbp1a.1 (grey bar), .2 
(dark grey bar), .3 (light grey bar), Pes1 (white bar) and GL3 ctrl (black bar) siRNA transfection was normalized to 
the total rRNA load (ethidiumbromide stain of the 18S rRNA) and expressed relative to the ctrl. Metabolic labelling 
experiments were conducted in collaboration with M. Hölzel and D. Eick, Helmholtz Center Munich. 
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4.3 Purification and characterisation of Mybbp1a-associated 
factors 

The functional characterisation of Mybbp1a has revealed the protein’s involvement in the 

regulation of rRNA gene transcription potentially through direct interaction with the Pol I 

complex. Furthermore it was shown that Mybbp1a is required for a correct processing of the 

rRNA precursor to obtain mature rRNAs for subsequent ribosome biogenesis. To gain more 

insights into Mybbp1a-dependent complex compositions and thereby further obtain a better 

understanding of the functional mechanisms underlying the responsibilities of Mybbp1a in the 

nucleolus Mybbp1a-associated factors were purified by immunoprecipitation and analysed by 

a mass spectrometry-based approach. At the time of the following experiments no complex 

had so far been characterised by using Mybbp1a as bait for purification. 

4.3.1 Mybbp1a localisation to the nucleolus is RNA-dependent 

Several large RNA-containing complexes are involved in ribosome synthesis and implement 

pre-rRNA processing and pre-ribosome assembly in accordance with rDNA transcription 

(reviewed in (Granneman & Baserga 2005)). To test whether Mybbp1a is associated with 

RNA and the nucleolar ribosome biogenesis machinery in mammals, its cellular localisation 

after RNase A treatment of HeLa cells was studied by immunofluorescence microscopy firstly 

(Figure 27). Therefore HeLa cells were permeabilized and incubated with Ribonuclease A 

(RNase A) prior fixation. Immunodetection of the endogenous protein with α-Mybbp1a 

revealed a re-localisation of Mybbp1a from the nucleoli to the nucleoplasm upon RNase A 

treatment, whereas the Pol I-specific and rDNA-binding transcription factor TTF-I remained in 

the nucleoli. Further, control treatment with DNase I, an enzyme that does not hydrolyse 

RNA, did not visibly change the localisation of Mybbp1a. These findings suggest that 

nucleolar localisation of Mybbp1a depends on the interaction with an RNase A-sensitive 

complex, such as the ribosome biosynthesis machinery.  

4.3.2 Mybb1a interacts with Fibrillarin, a rRNA processing factor 

Next it was investigated whether Mybbp1a is indeed part of an RNA-containing complex, as 

suggested by the immunofluorescence experiments. Therefore, HeLa nuclear extract was 

fractionated by FPLC chromatography on a Superose 6 sizing column, and the fractions 

were assayed for the presence of Mybbp1a by Western Blotting (Figure 28A). Mybbp1a 

predominantly eluted with an apparent molecular mass in the MDa range (fraction 12, 14), 

showing that it is part of a large multi-subunit complex. In addition, comparatively lower 

amounts eluted in later fractions (fraction 22, 24) indicating a complex size of approximately 

700 kDa. The observed elution pattern of Mybbp1a in extracts derived from human HeLa 

cells thereby qualitatively reflects the findings obtained on mouse Mybbp1a again 
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emphasising their conserved functional properties (see size fractionation of mouse MB III 

extracts depicted in Figure 13). 

 

 
Figure 27: Localization of Mybbp1a is RNA-dependent. 
(A) HeLa cells were either incubated with RNase A (+RN), DNase I (+DN), RNase A and DNase I (+RN/DN) or 
mock-treated (ctrl) prior to fixation and immunofluorescence staining with the indicated antibodies. pc: phase 
contrast image. Scale bars: 20 µm. (B) Magnifications of (A). Magnified image sections of (A) are marked by white 
frames. Phase contrast, Hoechst stain and antibodies for immunofluorescence images are indicated on the left 
and right. The respective treatment of cells is marked on top. 

B 
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Furthermore, the protein was found to co-migrate with Fibrillarin, a protein involved in almost 

all major steps of ribosome biogenesis (Tollervey et al. 1993). Mybbp1a, and in part 

Fibrillarin, were shifted to fractions corresponding to lower molecular masses (fraction 22-26) 

when the extract was incubated with RNase A prior size-exclusion chromatography. The Pol 

I-specific transcription factor TTF-I and the Pol I core subunit PAF53, however, did not 

change their running behaviour RNase-dependently. Thus, Mybbp1a is very likely to be a 

part of a complex, of which its integrity is dependent on a RNA component. To confirm that 

Fibrillarin and Mybbp1a are present together in one complex, HeLa cells were transfected 

with the human Flag-Mybbp1a expression construct and co-immunoprecipitation experiments 

from nuclear extracts were performed with Flag-agarose (Figure 28B). Flag-Mybbp1a co-

precipitated Fibrillarin (lane 7), and Fibrillarin also specifically eluted with Mybbp1a from the 

affinity matrix (lane 8) when compared to the control (lane 3 and 4, respectively). The data 

thereby confirm earlier proteomics data by Takahashi and colleagues (Yanagida et al. 2004) 

and identify Mybbp1a as an interactor of Fibrillarin. 

 
Figure 28: Mybbp1a is part of a RNA-sensitive protein complex and interacts with Fibrillarin. 
(A) RNase A-treated and mock-treated (ctrl) HeLa nuclear extracts were separated on a Superose 6 gelfitration 
column. Load (8,7%) and collected fractions (every second fraction from 12 to 34) were analyzed by Western 
blotting with the antibodies indicated on the left. (B) Nuclear extracts of HeLa cells either transfected with Flag-
Mybbp1a expression plasmid (lane 5 - 8) or control DNA (ctrl; lane 1 - 4) were incubated with α-Flag agarose. 
Load (L; 5%), flowthrough (FT; 5%), bead-bound (B) and eluted proteins (E) were analyzed by Western blotting 
with the indicated antibodies. 

A 
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4.3.3 Mybbp1a interacts with the ribosome biogenesis machinery 

To reveal additional binding partners of Mybbp1a, the Flag-tagged protein was transiently 

overexpressed in HeLa cells, and associated proteins were purified by Flag-agarose affinity 

chromatography, separated by gel electrophoresis and analysed by MALDI-TOF mass 

spectrometry. Several proteins were found enriched in the Flag-Mybbp1a-containing extract 

compared to extract from cells transfected with empty vector (Figure 29A).  

 
Figure 29: Purification of Mybbp1a-interacting proteins. 
(A) Nuclear extracts of HeLa cells either transfected with Flag-Mybbp1a expression plasmid or control DNA (ctrl) 
were used for immunoprecipitation with α-Flag agarose. Eluted protein fractions were separated by SDS-PAGE, 
silver stained, protein bands were cut and subjected to MALDI-TOF mass spectrometry. Proteins identified are 
indicated on the right. (B) Schematic representation of gene ontology terms of Mybbp1a-associated proteins 
shown in (A). 

As suggested by the previous experiments, Mybbp1a interacts with proteins belonging to the 

ribosome biogenesis pathway and the small and large ribosomal proteins that are assembled 

during rRNA transcription. Figure 29B gives an overview on the functional nature (gene 

ontology terms) of the purified proteins. Additionally, proteins, which have been directly 

connected to ribosome biogenesis before, are listed in Table 1 with their detailed function 

described in this pathway. 
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factor  pre­40S  pre­60S  export  citation 

Nop2    +    y (Hong et al. 1997; Hong 
et al. 2001) 

DDX21  +  +    m, x (Henning et al. 2003; 
Yang et al. 2005) 

Karyopherin α6 
(Importin α7)      potential 

function  y (Moy & Silver 1999) 

RRS1  +  +    y (Tsuno et al. 2000; 
Zhang et al. 2007) 

EBP2    +   
y (Huber et al. 2000; 
Tsujii et al. 2000; 

Lebreton et al. 2008) 

hnRNP A1        mRNA processing 
(Michael et al. 1995) 

ribosomal 
proteins  +  +  +  m (Michael & Dreyfuss 

1996) 

Fibrillarin  +  +  +  y (Tollervey et al. 1991; 
Tollervey et al. 1993) 

 
Table 1: Overview on Mybbp1a-associated factors with a function in ribosome biogenesis. 
This table lists Mybbp1a-associated factors recorded in Figure 29, which have been shown to be involved in 
ribosome biogenesis, with their respective function in this pathway. The particular publications describing the 
proteins’ functions are cited in the last column together with the respective model system. (y):yeast; (x): Xenopus 
laevis; (m): mammals. 

4.3.4 Initial characterisation of Mybbp1a-associated proteins 

Within the timely scope of the thesis work only an initial analysis of some of the proteins 

identified by mass spectrometry was possible to confirm their interaction with Mybbp1a. 

Additionally, the purified Mybbp1a-containing complex or complexes were further 

characterised with respect to protein and potential RNA composition. 

4.3.4.1 Co-immunoprecipitation of Mybbp1a and associated factors 

To confirm the interaction of Mybbp1a with the co-purifying proteins identified by mass 

spectrometry nuclear extract from HeLa cells was incubated with antibodies against the 

respective proteins, and immunoprecipitates were subsequently purified with Protein G-

coated sepharose 4 Fast Flow (Amersham). Load, flow-through and precipitated fractions 

were analysed by Western Blotting with the according antibodies and α-Mybbp1a to monitor 

precipitation efficiency and co-purification of Mybbp1a, respectively (Figure 30). In parallel, 

Protein G sepharose was incubated with extract to visualise potential background binding. 

The data confirm the interaction of Mybbp1a with hnRNP1A when comparing α-Mybbp1a 

staining in α-hnRNP A1-precipitated fractions (lane 6) with the IgG control precipitation (lane 

3). The results for EBP2 and Nol1 were not equally clear due to a relatively high background 

in the IgG control precipitations when stained with α-EBP2 and α-Nol1, respectively (lane 3). 

However, when comparing the Mybbp1a staining in the bound fraction to the corresponding 

load fraction of the IgG control lane (lane 3 to lane 1) and the specific antibody precipitation 
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(lane 6 to lane 4), a relative enrichment of Mybbp1a in both precipitations with the specific 

antibody seems to be indicated. Yet, this needs to be confirmed by further experiments.  
 

 
Figure 30: Co-immunoprecipitation of Mybbp1a and associated factors. 
(A) Western Blot of immunoprecipitations from HeLa nuclear extract with antibodies against the newly identified, 
Mybbp1a-associated factors. Antibodies against the proteins indicated on top of each panel were incubated with 
nuclear extract and subsequently precipitated with Protein G-Sepharose. α-Ig G was used as background control. 
Immunopurified protein fractions were analysed with the antibodies indicated on the left.  

4.3.4.2 Mybbp1a and its associated factors form a RNase-sensitive complex 

To characterise the composition of the purified Mybbp1a-containing complexes several of the 

identified proteins were tested for their running behaviour on a Superose 6 size exclusion 

column in the presence or absence of RNA. Nuclear extracts were therefore treated with 

RNase A or with the vehicle, FPLC chromatography was conducted and the collected 

factions were analysed by Western Blotting with the according antibodies. Interestingly, all of 

the proteins assayed co-migrated with Mybbp1a in a large complex in the MDa range 

(fraction 12, 14) but were present in distinct smaller complexes when HeLa nuclear extracts 

were treated with RNase A prior chromatography (Figure 31). Thus, the results further 

support the presence of these factors and Mybbp1a in one RNase-sensitive complex. 

However, the exact composition of the smaller RNase-resistent modules still remains to be 

answered. 
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Figure 31: Mybbp1a and associated factors form a RNA-sensitive complex. 
RNase A-treated (+) and mock-treated (-) HeLa nuclear extracts were separated on a Superose 6 gelfitration 
column. Load (8,7%) and collected fractions (every second fraction from 12 to 34) were analyzed by Western 
blotting with the indicated antibodies. 

Overall, the data obtained during this thesis work demonstrate that Mybbp1a plays a direct 

role in the regulation of rRNA gene transcription, very likely through the interaction with the 

Pol I enzyme, and is a functional and structural component of the ribosome biogenesis 

machinery at the same time, placing the protein at the interface of transcription and 

processing. Thereby the so far unknown function of Mybbp1a in the nucleolus, the site of its 

predominant localisation, could be determined. In the following section the results will be 

precisely analysed and discussed in the context of currently available knowledge, particularly 

with respect to potential mechanisms underlying Mybbp1a’s function and its interconnection 

with other cellular pathways. Next steps to further investigate the Mybbp1a protein and its 

cellular role will be evaluated. 
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5 Discussion 
Despite its predominant localisation to the nucleolus a function of Mybbp1a in this nuclear 

compartment remained unknown. The data obtained during this thesis work determined two 

novel functions of Mybbp1a in the nucleolus. Firstly, the protein was shown to associate with 

the Pol I complex and serve as a negative regulator of rRNA gene transcription. At the same 

time it is a structural component of the ribosome biogenesis machinery and needed for 

efficient maturation of the single rRNAs and cellular proliferation, placing the protein at the 

interface of rRNA gene transcription and processing. In the following the experimental 

outcome will be discussed with regard to contents and technical particularities in the light of 

current knowledge. A major focus will be laid on the potential functional mechanisms 

underlying Mybbp1a’s distinct responsibilities in rRNA gene transcription and rRNA 

processing. Furthermore, potential insights on Mybbp1a’s contribution to the co-ordination of 

both processes as well as to regulatory events on cellular basis will be elaborated. Finally, 

prospective approaches for further characterisation of the Mybbp1a protein and its nucleolar 

and cellular role are evaluated. 

5.1 Mybbp1a as a regulator of rRNA gene transcription: the 
mechanism behind 

The activity of rRNA gene transcription in a given cell is the major determinant of cell 

proliferation and cell growth, and transcription is tightly regulated to match ribosome amounts 

with the physiological needs of the cell. The data achieved during the first part of this doctoral 

thesis revealed the ability of mammalian Mybbp1a to regulate rRNA gene transcriptional 

activity by a repressive mechanism. Transfection of a Pol I-specific reporter plasmid with 

parallel overexpression of different amounts of Mybbp1a disclosed a dose-dependent 

repression of Pol I-dependent transcription. The protein’s repressive effect was further 

confirmed by siRNA-mediated depletion of Mybbp1a, which led to an augmentation of 

endogenous pre-rRNA levels. Originally Mybbp1a had been described as an interacting 

partner of the proto-oncogene c-Myb (Favier & Gonda 1994) and, since then, it has been 

shown to interact with, and to modulate the activity of, several other regulators of Pol II-

dependent transcription. In this context, Mybbp1a was described to negatively modulate the 

activity of transcriptional regulators such as PGC-1α (Fan et al. 2004), NFκB (Owen et al. 

2007) or the homeobox protein Prep1 (Diaz et al. 2007), thereby modifying many different 

cellular pathways. Thus, it appears as Mybbp1a might play an important role as a central 

regulator of proliferation, cell cycle progression and differentiation in the mammalian system, 

an idea that specially fits with its role in the regulation of rDNA transcription described in this 

study. However, the actual regulatory mechanism of Mybbp1a with respect to rRNA gene 

transcription is not yet fully resolved. Given the absence of any enzymatic domains as 
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revealed by the Conserved Domain algorithm and the presence of several potential protein-

protein or protein-nucleic acid interaction motifs (Tavner et al. 1998; Keough et al. 1999; 

Keough et al. 2003; Yang et al. 2003) a rather non-enzymatic function of Mybbp1a for 

example as scaffold protein is indicated. Integrating the data from previous Mybbp1a studies 

and the results of this thesis work support several interesting conclusions on the potential 

events during Mybbp1a-mediated transcriptional repression. 

5.1.1 Mybbp1a represses rRNA synthesis at early steps of transcription 

Findings from distinct experiments presented here strongly suggest that Mybbp1a-mediated 

repression is targeting Pol I transcription already at the step of transcription initiation. Thus, 

the employed Pol I reporter construct contains solely the rDNA promoter sequence spanning 

the base pairs from -410 to +314 with respect to the transcription start site (Ghoshal et al. 

2004). Therefore, Mybbp1a is ought to interrupt Pol I transcription either during the initiation 

process or at early steps of elongation. Importantly, transient overexpression of Mybbp1a in 

HeLa cells resulted in reduced binding of Pol I and the Pol I-specific transcription factor TTF-I 

at the rRNA gene promoter as monitored by ChIP experiments. Taken together these 

findings strongly suggest a repressive mechanism through a Mybbp1a-mediated perturbation 

of pre-initiation complex formation, most probably by directly interacting with the Pol I 

machinery leading to decreased rRNA synthesis. Interestingly, two different studies dealing 

with Mybbp1a-mediated repression of Pol II transcription report on a transcriptional 

impairment also at the stage of transcription initiation. Blasi and colleagues have shown by in 

vitro protein interaction and EMSA (electro mobility shift assay) experiments that Mybbp1a 

can directly disturb the interaction of Prep1 with its binding partner Pbx1, both of which are 

homeodomain-containing transcription factors and conjoint co-regulators of Hox-gene 

expression, and impede DNA-binding activity of the heterodimer to Hox-gene enhancer 

elements. Ectopic expression of Mybbp1a furthermore inhibited the activating role of Prep1-

Pbx1 on Hox-gene expression (Diaz et al. 2007). Similar indications for a regulatory role of 

Mybbp1a during transcription initiation came from the work of Hottiger and colleagues, which 

revealed a direct interaction of Mybbp1a with the activation domain of RelA/p65, a subunit of 

the transcription factor NF-κB, and co-repression of NF-κB-dependent transcription by 

Mybbp1a in vitro. Importantly, in vitro transcription from DNA templates assembled into 

chromatin was only repressed when the template and RelA/p65 were pre-incubated with 

Mybbp1a prior to the addition of the transcriptional-active extract suggesting an intervention 

of Mybbp1a in a step even preceding the assembly of the pre-initiation complex. Still, also 

different mechanisms and time points of Mybbp1a-mediated transcriptional repression can 

be taken into account and will be briefly discussed in the following. 
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5.1.2 Is a chromatin-dependent process involved in Mybbp1a-mediated 
repression 

The first hint to an involvement of chromatin-dependent processes in the repressive 

mechanism of Mybbp1a came from the work of Spiegelman and colleagues (Fan et al. 

2004). When investigating the inhibitory activity of Mybbp1a on the transcriptional co-

activator PGC-1α in C2C12 muscle cells overexpressing Mybbp1a they found cellular protein 

levels of PGC-1α and its promoter occupancy unchanged compared to the control, which is 

in contrast to the here presented data related to Pol I at the rDNA promoter. The authors 

have therefore suggested that Mybbp1a either has an intrinsic or is recruiting repressive 

activity and confirmed this assumption by tethering Mybbp1a alone to the promoter of a Pol 

II-dependent reporter gene. Their experiments further showed a dependency of its repressive 

activity on chromatin-related processes as Mybbp1a-mediated repression was relieved in the 

presence of the HDAC inhibitor TSA. Initial Pol I reporter experiments presented in this work 

also hinted to a chromatin-related mechanism for Mybbp1a repressor activity with respect to 

rRNA synthesis as incubation of cells with TSA led to a mild relieve of Mybbp1a-mediated 

repression compared to non-treated cells. Therefore Mybbp1a could be targeted to the Pol I 

promoter through the association with the Pol I machinery to subsequently recruit chromatin-

dependent modifiers leading to the formation of a repressive chromatin structure. However, 

this initial observation needs to be thoroughly confirmed preferably by the help of a different 

experimental approach. The Pol I reporter assay uses a second reporter plasmid, which is 

Pol II-dependent and is co-transfected in order to adjust for potential differences in 

transfection efficiencies. As TSA also influences Pol II-dependent transcription it was difficult 

to gain reproducible results since too many parameters were affected at the same time and 

difficult to dissect. Interestingly, Hottiger and colleagues have added another and 

mechanistically different piece of evidence for chromatin-dependent transcriptional co-

repression by Mybbp1a by showing a competition of Mybbp1a with the histone acetyl-

transferase p300 for the binding to NFκB (Owen et al. 2007). Furthermore, Mybbp1a binding 

to the promoter of the Per2 gene, which gets subsequently repressed, has been shown to 

correlate with di-methylation of the Lysine 9 residue of associated histone H3 (H3K9) (Hara 

et al. 2009), a histone modification tightly linked to transcriptional repression (Melcher et al. 

2000; Rea et al. 2000). Particularly interesting, Ishida and colleagues subsequently 

demonstrated the capacity of Mybbp1a to bind to a H3 peptide di-methylated at K9 in vitro, 

which was two-fold higher compared to unmodified or acetylated peptide by peptide 

immunoprecipitation (Hara et al. 2009). Until now only few factors are identified to directly 

bind to histone modifications. One of the most characterised chromatin-binding proteins is 

HP1, which interacts specifically with di- and trimethylated lysine 9 of histone H3, and is 

mostly found in silenced chromatin (reviewed in (Fanti & Pimpinelli 2008)). 
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Taken together the information discussed above strongly indicates a chromatin-dependent 

process to be involved in the general regulatory mechanism of Mybbp1a. Still, it remains 

unclear if this is also true for the Mybbp1a-dependent regulation of Pol I transcription. An 

important issue to consider in this regard is the outcome and technical valuation of the 

performed ChIP experiments, which will be discussed in the subsequent chapter. 

5.1.3 Conclusions from chromatin immunoprecipitation experiments 

With respect to the data discussed above and given the interaction with the Pol I machinery a 

specific chromatin-binding pattern of Mybbp1a might be expected at the rRNA gene repeat, 

especially in or near the promoter region. Indeed, such binding has been identified for the 

potential Mybbp1a homologue Pol5p in budding and baker’s yeast (Shimizu et al. 2002; 

Nadeem et al. 2006). Yet, none of several experimental approaches during the course of this 

thesis work revealed binding of Mybbp1a to rDNA associated chromatin in the mammalian 

system by chromatin immunoprecipitation. While binding of the Pol I subunit RPA116 and 

other factors related to rRNA gene transcription to the rDNA repeat was repeatedly identified, 

an association of Mybbp1a could not be detected despite the usage of different antibodies 

detecting endogenous or Flag-tagged Mybbp1a as well as qualitatively different chromatin 

preparations from HeLa cells either transiently overexpressing Flag-Mybbp1a or wildetype 

cells.  

The negative outcome does certainly not rule out any existing direct or indirect chromatin 

interaction of Mybbp1a and therefore technical limits should be thoroughly considered. The 

conditions used for cross-linking (0,25% or 0,5% formaldehyde) prior chromatin preparation 

to covalently stabilise the protein-chromatin interactions were applied relatively mild. In the 

case that Mybbp1a does not directly bind to rDNA but via other factors such as the Pol I 

machinery association to r-chromatin might require higher concentration of or qualitatively 

different cross-linking agents, which particularly target protein-protein interactions and allow 

more sensitive detection of indirect chromatin association (Zeng et al. 2006). Furthermore, 

Mybbp1a was characterised as a repressor of rRNA gene transcription and it is therefore well 

possible that the chromatin association is additionally rather week in proliferating cells, which 

exhibit strong rRNA gene transcription activity. Re-evaluation of the immunoprecipitation 

experiment with extracts derived from proliferating mouse MB III cells stably expressing the 

Flag-tagged Pol I subunit RPA116 (presented in Figure 12, p. 54) led to a rough estimation of 

less than 1% of whole cell protein amounts of Mybbp1a to be associated with the Pol I 

complex. It might be therefore interesting to reassess a potential association of Mybbp1a to 

the Pol I complex and r-chromatin, respectively, after exposing cells to a repressive, stressful 

environment e.g. through nutrient starvation or growth factor deprivation. Finally, another 
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technical issue might be represented by an unsuitability of the employed antibodies or an 

inaccessible Flag-epitope under the selected conditions.  

However, Mybbp1a function might actually not require association to r-chromatin, which is 

also indicated by the herein presented immunofluorescence studies of Mybbp1a localisation 

showing its RNA- but not DNA-dependent localisation to the nucleolus. Following this line of 

thought a hypothesis, in which Mybbp1a impairs pre-initiation complex formation by binding 

to the Pol I complex prior its recruitment to the rRNA gene promoter, is favourable. How this 

model could integrate chromatin-related processes to play a role in the repressive 

mechanism of Mybbp1a as indicated by the Pol I reporter assay in presence of TSA and the 

comprehensive data of other groups in the context of Pol II transcription remains to be 

investigated. 

5.1.4 Insights from the potential yeast Mybbp1a-homologue Pol5p 

Before finally concluding the discussion on the regulatory mechanism of Mybbp1a with 

respect to rRNA gene transcription, it is still important to briefly focus on the potential yeast 

homologue of Mybbp1a, Pol5p, which has been connected with an essential role in rRNA 

synthesis in earlier studies (Shimizu et al. 2002; Nadeem et al. 2006). S. pombe and S. 

cerevisiae Pol5p knockout strains have exhibited reduced amounts of newly synthesised 

rRNAs compared to wildetype in [3H]-uridine pulse-labelling experiments, which seems, at 

first sight, to contradict our results of Mybbp1a being a transcriptional repressor in the 

mammalian system. However, the functional outcomes of Pol5p or Mybbp1a depletion are 

similar and can be explained by the second role of human Mybbp1a in ribosome biogenesis 

determined during this work. In the absence of Mybbp1a, the level of the rRNA precursor 

was increased as anticipated for a transcriptional repressor, but unexpectedly HeLa cells 

ceased proliferation. A detailed metabolic labelling analysis revealed that rRNA production 

was defective at the level of rRNA processing with decreased levels of newly matured 

rRNAs. While early yeast studies did not particularly look at rRNA precursor levels in Pol5p-

deficient yeast strains the analysis by Hughes and colleagues delivered very detailed data 

sets on cellular levels of precursor and mature rRNAs by microarray analysis of whole cell 

RNA from numerous mutant strains. Their characterisation of a strain lacking Pol5p 

confirmed the decrease of mature rRNAs but also revealed the accumulation of the initial 

rRNA precursor (Peng et al. 2003), which nicely correlates with the here presented data from 

human cells depleted of Mybbp1a. Therefore it appears that the functional role of Mybbp1a 

and its potential yeast homologue, Pol5p, rather involves the coordination of transcription 

and processing than a stimulation of rRNA gene transcription. Remarkably, Pol5p was also 

found associated with the Pol I transcription machinery in yeast as the protein co-eluted with 

Rrn3, the yeast homologue of the rRNA transcription initiation factor TIF-Ia, after TAP-tag 
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purification (Robert Steinbauer, Herbert Tschochner, University of Regensburg, 2010; 

personal communication). This interaction remained intact during several biochemical 

purification steps with a final complex size of approximately 250 kDa corresponding to the 

size of a Pol5p-Rrn3-heterodimer. This association would certainly need to be confirmed in 

the mammalian system. Such assumed conserved interaction would further support that 

Mybbp1a represses rRNA synthesis prior transcription start through an impediment of TIF-IA 

co-activator function thereby antagonising the assembly of an initiation-competent Pol I 

complex. The following sections will now focus on Mybbp1a’s function in rRNA processing 

and discuss it with respect to its role in Pol I transcription regulation. 
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5.2 Mybbp1a as part of a rRNA processing complex 

Impaired proliferation in Mybbp1a-depleted cells early indicated an additional role for 

Mybbp1a in growth-related processes other than rDNA transcription and subsequently a 

defect at the stage of rRNA processing was confirmed by metabolic labelling of cellular RNA. 

Furthermore Mybbp1a was identified as a component of a pre-ribosomal complex 

associating with several rRNA processing factors as well as ribosomal proteins of the small 

and large ribosome subunits. Together, these results strongly argue for a direct role of 

Mybbp1a in the rRNA processing step of ribosome biogenesis. Even if the detailed functional 

mechanism of Mybbp1a and the exact processing step, in which the protein is involved, were 

not finally determined, the results of this thesis work allow certain implications on its purpose 

and indications for future work. 

5.2.1 Accumulation of pre-rRNA upon Mybbp1a depletion is likely to be a 
combined consequence of transcriptional de-repression and impaired 
processing 

As initially revealed by quantitative real-time PCR also metabolic labelling of nascent rRNA 

transcripts after siRNA-mediated depletion of Mybbp1a confirmed the accumulation of 

47/45S precursor rRNA matching with Mybbp1a’s role as a repressor of rRNA transcription. 

Importantly, the visualisation of not only the rRNA precursor but also its processed 

intermediates and final mature rRNAs has disclosed Mybbp1a’s necessity for efficient and 

correct rRNA processing. Upon Mybbp1a depletion the mature rRNAs 18S and 28S as well 

as 32S, the rRNA intermediate preceding mature 28S, decreased below the levels of control 

cells when compared to the initial 47S rRNA amount. However, the employed assays 

systems cannot distinguish to which extent the accumulation of 47S pre-rRNA upon 

Mybbp1a depletion is caused by a transcription up-regulation due to de-repression of the 

rRNA gene or reflects the consequence of impaired rRNA processing. An effect similar to the 

latter was suggested for Pwp2 (Utp1), a component of the SSU processome (Bernstein et al. 

2007), whose depletion led to pre-rRNA accumulation due to stalling rRNA processing. 

Yet, it is possible to exclude an accumulation of 47/45S due to an overloading of the rRNA 

processing machinery after de-repression of rRNA gene transcription. In this case one would 

at least expect levels of newly synthesised intermediate and mature rRNA in Mybbp1a-

depleted cells comparable to the amount in control-treated cells but no reduction. This is 

disproved by the results of the metabolic labelling experiments displayed earlier showing a 

clear decrease of the processed rRNAs (Figure 26, p. 72). A promising approach to 

distinguish between the transcription and processing reaction to analyse their respective 

effects after Mybbp1a depletion could include another set of Pol I reporter assays with 

different reporter plasmids. Such constructs could be composed of different sections and 
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lengths of the rDNA sequence, potentially also in association with mutated promoter 

sequences respectively processing sites, leading to different combinations of rRNA 

processing sites. By employing such strategy Huang and colleagues were able to investigate 

the stepwise recruitment of transcription and processing factors to specific rDNA sequences 

in dependency of Pol I transcription activity and the nature and length of rDNA sequence 

incorporated into Pol I reporter constructs (Kopp et al. 2007). 

5.2.2 Mybbp1a is involved in early to middle but not in late steps of pre-rRNA 
processing 

Depletion of Mybbp1a leads to a decrease of newly synthesised mature rRNAs needed for 

both, the SSU and the LSU of the ribosome. Unlike Pes1, which has been shown to be  

important for 28S maturation nicely confirmed by the metabolic labelling experiments, 

mybbp1a seems to be important for either several steps of rRNA processing or in very early 

processing steps, which would have an impact on both subsequent pathways. Notably, a 

comprehensive study by the Hughes lab using microarrays to measure the abundance of 

non-coding RNAs in several mutant yeast strains showed a qualitative similar pattern of pre-

rRNA and newly processed mature rRNA levels in a strain lacking Pol5p as was observed for 

Mybbp1a-depleted mammalian cells. The authors subsequently classify this aberrant pattern 

as a processing defect related to the cleavage sites in the 5’ETS and A2 located in the 

intergenic spacer 1 (ITS1), which is similar to some of the mutants lacking components of the 

U3- (or SSU-)processome (Peng et al. 2003) and indicate a defect in very early processing 

steps. These indications from the potential yeast homologue overlap with the observations 

on mammalian Mybbp1a made during the work presented here or executed in collaboration 

with other laboratories. 

Thus, the involvement of Mybbp1a in rather early processing steps is supported by the 

analysis of the sub-nucleolar distribution of Mybbp1a at sub-diffraction resolution, which was 

conjointly conducted by Dr. Attila Nemeth (Längst laboratory, Biochemie III, University of 

Regensburg, Germany) and Dr. Lothar Schermelleh (Department of Biology, LMU München, 

Germany). To distinguish the different functional parts of the nucleolus antibodies against the 

Pol I subunit RPA43, fibrillarin and B23/nucleophosmin were employed serving as markers 

for the fibrillar centre, dense fibrillar component and granular component, respectively. The 

images revealed that Mybbp1a localizes closer to, or overlaps in part with RNA Pol I and 

fibrillarin, but not with B23/nucleophosmin (Figure 32) suggesting a role in transcription and 

earlier but not in late processing events. Also nucleoplasmic and cytoplasmic staining of 

Mybbp1a was detected in agreement with previous studies, in which Mybbp1a was shown to 

shuttle between the nucleus and the cytoplasm (Keough et al. 2003; Yamauchi et al. 2008). 
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Figure 32: Subnuclear localization of MYBBP1A in relation to nucleolar marker proteins analyzed with 
super-resolution structured illumination microscopy (Schermelleh et al. 2008). 
Co-immunofluorescence staining of HeLa cells with anti-MYBBP1A antibody vs anti-B23 antibody (granular 
component, top panel), anti-Fibrillarin antibody (dense fibrillar component, middle panel) and GFP-RPA43 (fibrillar 
center, bottom panel). DNA was counterstained with 4',6-diamidino-2-phenylindole (DAPI). Mid-section with 
conventional optical resolution are shown for comparison (left column). Scale bars: 5 µm and 0.5 µm (inset). 
Taken from (Hochstatter et al. unpublished). 

Evidence that Mybbp1a is part of distinct rRNA processing complexes important for 

maturation of both the small and the large ribosomal subunits came from the analysis of 

Mybbp1a’s sedimentation behaviour on a so-called polysome (sucrose) gradient, which 

visualises pre-ribosomal, ribosomal and polysomal particles by measuring the RNA 

absorbance and was performed in collaboration with Prof. Dr. Dirk Eick and Dr. Michaela 

Rohrmoser (Helmholtz Zentrum München, Germany) (Hochstatter et al. unpublished). The 

distribution of RNA and protein levels displayed in Figure 33 indicate a co-migration of 

Mybbp1a with the pre-40S and pre-60S particles but rather no integration into the 90S pre-

ribosomal particle, which is responsible for the very early processing steps. The parallel 

control detection of Pes1 shows a different pattern and, as expected, the protein co-migrates 

predominantly with pre-ribosomal complexes important for the maturation of the large 

ribosomal subunit.  

 
Figure 33: Sedimentation behaviour of Mybbp1a and (pre-)ribosomal particles on a sucrose gradient. 
Polysome fractionation was performed on a sucrose gradient and Mybbp1a and Pes1 protein levels of the 
fractions were detected by immunoblotting. Pre-assembled ribosomal subunit, monosome and polysome fractions 
were detected by measuring UV absorbance at 254 nm as indicated on the graph. Taken from (Hochstatter et al. 
unpublished). 

The involvement of Mybbp1a in maturation pathways of both ribosomal subunits is further 

supported by the characterisation of Mybbp1a-associated complexes presented in this thesis 
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work. Hence, Flag-affinity purification of Mybbp1a-associated factors from HeLa cells 

overexpressing Flag-Mybbp1a identified ribosomal proteins and rRNA processing factors 

required for the assembly of both the small and the large ribosomal subunit and the detailed 

composition of Mybbp1a-associated complexes and related functional implications will be 

subject of the following chapter.  

Taken together, Mybbp1a is supposed to be part of pre-ribosomal complexes important for 

the maturation of both ribosomal subunits, which are involved in early to middle but not in the 

late processing steps. However, to definitely determine the individual processing steps, in 

which Mybbp1a is required, different types of experiments would be needed such as 

extended pulse labelling experiments to follow the maturation of the different rRNA species 

over time and/or Northern Blot analyses to be able to distinguish the entireness of rRNA 

processing intermediates and potential aberrations. 

5.2.3 Lessons from the composition of the Mybbp1a-associated proteins 

To get further information on Mybbp1a’s mode of action Mybbp1a-containing complexes 

were investigated in detail. Analysis of HeLa nuclear extracts by size-exclusion 

chromatography has revealed Mybbp1a to be present in large multi-protein complexes, in 

which RNA seems to be an integral part as it is required for complex integrity and the 

nucleolar targeting of Mybbp1a. Directed interaction studies disclosed the association of 

Mybbp1a with Fibrillarin, a 2'-O-methyltransferase and a known component of box C/D small 

nucleolar ribonucleoprotein (snoRNP) particles (Tollervey et al. 1993), supporting a direct 

role of Mybbp1a in the rRNA processing events. Furthermore, a mass spectrometry-based 

purification of Mybbp1a-associated proteins identified a large variety of ribosomal proteins of 

both the SSU and LSU, as well as several other factors such as DDX21, Rrs1, Ebp2 and 

Nol1 (yeast Nop2), to which a role in rRNA processing and ribosome assembly has been 

assigned by previous studies (Tollervey et al. 1993; Hong et al. 1997; Tsujii et al. 2000; 

Tsuno et al. 2000; Henning et al. 2003). Although initial confirmatory co-immunopurification 

experiments with subsequent immunodetection of the proteins again indicated the interaction 

of Mybbp1a with some of these factors the results still need to be more thoroughly assessed 

and quantified by further co-immunopurification experiments or in vitro binding assays. Yet, 

mass spectrometry data is further supported by experiments from other laboratories 

confirming interaction of Mybbp1a with some of the purified factors (Yamauchi et al. 2008; 

Kuroda et al. 2011). The identified factors Rrs1 and Ebp2 were shown to affect rRNA 

processing, interestingly mirroring the effects observed for Mybbp1a, an accumulation of 

rRNA precursor and decrease of mature rRNAs (Tsujii et al. 2000; Tsuno et al. 2000). Rrs1 is 

a ribosome assembly factor that recruits the 5S rRNA and the ribosomal proteins rpL5 and 

rpL11 into nascent ribosomes (Zhang et al. 2007). Intriguingly, Rrs1 seems to be involved in 
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rDNA transcription regulation, as a yeast rrs1 mutant has been shown to reduce 

transcriptional repression of the rRNA gene (Tsuno et al. 2000). Interestingly, both proteins, 

Mybbp1a and Rrs1 have recently been connected to a role in the progression of mitosis. 

Mybbp1a is phosphorylated by the mitotic kinase Aurora B, and it has been revealed that 

depletion of Mybbp1a or Rrs1 leads to a mitotic delay and abnormalities in spindle 

organisation (Gambe et al. 2009; Perrera et al. 2010). These findings are especially 

interesting in the light of the proliferation defects upon Mybbp1a depletion observed by the 

here presented study and will be revisited again in the following. Even though expected, this 

purification approach did not identify any factors belonging to the Pol I complex. This might 

be due to the fact that an interaction of Pol I and Mybbp1a might be rather rare in strongly 

proliferating cells and is only present in cells with impaired rRNA biogenesis (see also 5.1.3, 

p 83, 2nd paragraph).  

According to the mass spectrometry results and the data from size-exclusion 

chromatography, Mybbp1a is part of a large pre-ribosomal complex including an RNA 

component. Upon hydrolysis of the RNA the large complex is degraded into distinct sub-

complexes, suggesting that the RNA functionally links the different sub-complexes. However, 

the detailed composition of the Mybbp1a-containing sub-complex remains to be uncovered. 

The existence of these distinct RNA-depleted sub-complexes potentially reflects the 

existence of various modules that constitute the ribosome biogenesis machinery, as shown 

by Krogan and co-workers for the SSU processome in yeast. In their work, they were able to 

identify three sub-complexes, called UTP A, B and C. Interestingly, Pol5p associates with the 

UTP A complex, which additionally includes the t-Utps (transcriptional U three proteins) 

(Krogan et al. 2004). As shown by Baserga and colleagues, these factors are not only 

required for proper rRNA processing, but also for efficient rDNA transcription (Gallagher et al. 

2004). However, purification of the SSU processome by the group of Baserga did not reveal 

any association of Pol5p (Gallagher et al. 2004). Still, it would be interesting to assess a 

potential interaction of Mybbp1a with the human t-Utp homologues, which have been 

recently characterised by McStay and colleagues (Prieto & McStay 2007), in future to learn 

more on Mybbp1a’s mode of action. 

To summarise, the data presented here clearly show that Mybbp1a is a component of pre-

ribosomal complexes and is functionally and structurally involved in pre-rRNA processing. 

Furthermore there is convincing evidence that Mybbp1a is involved in several, rather early 

steps of rRNA processing contributing to the maturation of both, the LSU and SSU of the 

ribosome. Therefore it is tempting to speculate that Mybbp1a links and coordinates the 

maturation of the SSU and LSU. Due to the fact that the protein lacks enzymatic domains but 

harbours several protein-protein interaction domains, Mybbp1a might act as a kind of 

scaffold to recruit and connect enzymatic activities and other factors needed for proper pre-
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rRNA processing. However, the exact functional mechanism of Mybbp1a’s contribution to an 

efficient and correct rRNA maturation remains unknown. A final characterisation of the 

Mybbp1a-containing RNase-resistant sub-complex was started, but could not be concluded 

during this thesis work. Its outcome may be expected to contribute conclusive insights on 

Mybbp1a’s functional mechanism. Besides, the results obtained thus far deliver promising 

aspects for further directions of analyses and interesting cross-references to other cellular 

pathways. 
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5.3 Nucleolar business of Mybbp1a - integrating transcription and 
rRNA processing?  

Almost all processes leading to mature ribosomes are organised within one specialised 

cellular compartment, the nucleolus. Pol I transcription, rRNA processing and ribosome 

assembly are therefore, even if localised in 3 different morphological sub-domains, in close 

proximity (Schwarzacher & Mosgoeller 2000). Although anticipated for long time evidences 

for directed co-ordination of these different processes remained unknown. First hints on 

molecular basis came from Tschochner and colleagues when biochemically purifying the Pol 

I complex in yeast. Next to the expected core Pol I subunits and transcription initiation factors 

they have additionally found rRNA processing factors associated (Fath et al. 2000). 

Intriguingly, the large complex was not only transcriptionally active but also capable of 

modifying RNA in vitro. Further evidence was subsequently provided by the visualisation of 

chromatin spreads of the rDNA loci, also known as ‘Christmas trees’, which impressively 

display the SSU processome capping the nascent rRNA precursors (Dragon et al. 2002) 

nicely visualising co-transcriptional rRNA processing. Eight years later Tollervey and 

colleagues have put a number to these images by measuring kinetics of Pol I transcription 

coupled with the quantification of cleavage events in nascent precursors. Thereby they could 

show that approximately 70% of nascent transcripts are cleaved co-transcriptionally at the 

early processing site to generate the precursor to mature 18S rRNA (Kos & Tollervey 2010). 

However, at present still only few data is available enlightening the co-ordinative 

mechanisms behind and their respective factors. Experimental results of this work have 

identified Mybbp1a as an interactor of RNA Pol I and demonstrated that Mybbp1a serves 

both as a negative regulator of rRNA gene transcription and as a functional subunit of the 

ribosome biogenesis machinery. As such, Mybbp1a plays a dual role in rRNA metabolism 

and by this means might serve to coordinate rRNA gene transcription and processing. 

Different mechanisms by which Mybbp1a might execute this function are discussed in the 

following.  

5.3.1 A potential Mybbp1a-mediated feedback mechanism from aberrant rRNA 
processing to Pol I and II transcriptional activity 

Mybbp1a is part of a large multi-protein complex and experimental results of this thesis work 

have demonstrated RNA being an integral part of this complex as it is required for complex 

integrity and the nucleolar targeting of Mybbp1a. A potential regulatory mechanism to adapt 

transcription rates to the actual presence of effective processing complexes for efficient 

rRNA processing may involve an intact RNA, potentially the rRNA precursor itself, and 

tethering of Mybbp1a to the rRNA processing machinery. Upon defects in rRNA processing, 
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Mybbp1a may be released from the processing complex to repress rDNA transcription and 

thereby coordinate the activity of transcription and processing.  

Interestingly, Yamauchi and colleagues have recently shown that Mybbp1a is processed 

upon ribosomal stress induction (Yamauchi et al. 2008). Treatment of cells with actinomycin 

D, cisplatin or UV, all of which inhibit ribosome biogenesis, lead to a partial proteolytical 

cleavage of Mybbp1a to generate C-terminally truncated p140MBP and p67MBP proteins and 

their partial translocation to the nucleoplasm (Yamauchi et al. 2008). These findings conform 

to an earlier proteomic study by Lamond, Mann and colleagues, in which the whole set of 

nucleolar proteins was determined and subsequently investigated for their presence after 

Actinomycin D treatment (Andersen et al. 2002; Andersen et al. 2005). After translocation to 

the nucleoplasm Mybbp1a might then be able to also adapt cellular pathways other than 

rRNA expression to the actual state of the cell. As previously reported Mybbp1a as well as its 

posttranslational cleavage product p67MBP are able to regulate several cellular key pathways 

by interacting with their respective transcriptional regulators such as NFκB, PGC-1α or c-

Myb (Tavner et al. 1998; Fan et al. 2004; Owen et al. 2007). Furthermore, Yamauchi and 

colleagues found the full-length Mybbp1a and the processed forms to be present in distinct 

complexes possibly emphasising different responsibilities. While both complexes share 

nucleolin and nucleophosmin, the larger complex including full-length Mybbp1a contains as 

well many ribosomal proteins, topoisomerase I, nucleostemin and histone H1x and the 

smaller complex EBP1 (Erb3-binding protein) (Yamauchi et al. 2008). The Mybbp1a-

containing ribosome assembly/processing machinery identified in this study is likely to be the 

equivalent to the large complex purified by Yamauchi and colleagues as it is of similar size 

and as well contains a large set of different ribosomal proteins. However, both studies did not 

succeed to identify the complete set of proteins purified and therefore might have missed 

several interaction partners, which could explain the remaining differences.  

5.3.2 Is Mybbp1a a typical t-Utp? 

As mentioned before a group of the U3-snoRNA-associated proteins, the t-Utps, has been 

found essential not only for proper rRNA processing but also for optimal rDNA transcription in 

vivo by Baserga and colleagues (Gallagher et al. 2004). Next to their capability of binding to 

the 5’ETS region of rDNA chromatin, the assembly of these factors revealed to be 

independent of the presence of U3 snoRNA or ongoing rDNA transcription. Their capacity to 

participate in both reactions, rDNA transcription and rRNA processing, make these proteins 

potential candidates for co-ordination of these processes. Shortly beforehand Greenblatt and 

colleagues had independently affinity-purified these factors as a sub-complex of the SSU 

processome when investigating the composition of yeast RNA-processing complexes and 

named it the UTP A complex (Krogan et al. 2004). Presumably reflecting the same 
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complexes the UTP A complex purification still slightly differed from the t-Utp sub-complex by 

lacking one of the t-Utps (t-Utp 5) but, interestingly, including the yeast homologue of 

Mybbp1a, Pol5p. The presence of Pol5p in this rRNA processing complex nicely supports 

our finding of Mybbp1a being important for proper rRNA processing in the mammalian 

system. However, the epitope-tagged purification of Mybbp1a-associated components of this 

thesis work did not identify any interaction with the human t-Utp homologues. Their 

requirement for both, efficient transcription and processing of the 47S pre-rRNA, could be 

confirmed (Prieto & McStay 2007) indicating that this coordinative mechanism is conserved 

throughout evolution. As an interaction between the human t-Utps and Mybbp1a was not 

explicitly assessed, a re-investigation might be of benefit to confirm their structural 

relationship in the mammalian system. However it is already evident now that Mybbp1a does 

not exhibit the mechanistic features of a typical t-Utp as Mybbp1a seems to functionally 

antagonise these factors. Even though t-Utps as well as Mybbp1a are both important for 

efficient rRNA processing t-Utps are needed to guarantee efficient rRNA gene transcription 

while Mybbp1a was shown to contrariwise repress rRNA gene transcription activity. Hence, 

Mybbp1a seems to play a distinct role in a feedback mechanism adapting transcription 

activity to later steps in ribosome biogenesis. 

5.3.3 Nucleolin - lessons from a factor with similar functional features 

Nucleolin, a more well-characterised factor present in both differently sized, Mybbp1a-

containing complexes determined by Yamauchi and colleagues, is especially interesting 

since it displays several functional features, which have been also described for Mybbp1a. 

Thus, nucleolin is required for several steps in ribosome biogenesis such as efficient pre-

rRNA maturation (Ginisty et al. 1998), ribosome assembly (Ginisty et al. 2000) and 

subsequent nuclear export (Borer et al. 1989; Schmidt-Zachmann et al. 1993) and, notably, 

has been also implicated in negative regulation of rDNA transcription (Roger et al. 2002, 

2003). Furthermore nucleolin is not only a regulator of ribosome biogenesis but has been 

additionally connected to the modulation of Pol II-dependent transcription in several cases 

(nucleolin’s multiple functions are reviewed in (Mongelard & Bouvet 2007)). Intriguingly, 

nucleolin was identified as a direct interaction partner of c-Myb and co-transfection of 

nucelolin reduced c-Myb regulated transcriptional activity (Ying et al. 2000), which is identical 

to the findings of Gonda and colleagues related to the N-terminal cleavage product of 

Mybbp1a, the p67MBP protein (Tavner et al. 1998). A very recent study by Bouvet and 

colleagues has assessed the capacities of nucleolin from a different point of view aiming to 

integrate the distinct aspects of nucleolin function (Angelov et al. 2006). According to their 

data nucleolin exhibits histone chaperone activity by promoting the destabilisation of the 

histone octamer and stimulating a SWI/SNF-mediated transfer of H2A-H2B dimers. 



Discussion    95 

Furthermore the protein facilitates transcription through chromatin in vitro thereby acting as 

an elongation factor. Suggested by the authors its capability of stimulating different 

remodelling enzymes could thereby explain the different roles of the nucleolin factor. 

Interestingly, Mybbp1a has been also found in a complex containing the Snf2h remodeler, 

the B-WICH complex, for which a role in Pol III transcription has been suggested (Cavellan et 

al. 2006). Taken together nucleolin-related data might further underline a potential chromatin-

related function of Mybbp1a and give a possible explanation of the various influences of 

Mybbp1a on different metabolic pathways in distinct cellular compartments. In this context it 

would remain to uncover if Mybbp1a acts by recruitment of other factors or harbours intrinsic 

chromatin-specific activity, which could be assessed in diverse experimental settings for 

example as its application as co-factor in the nucleosome mobility assay or its binding 

capacity to chromatin exhibiting different histone modifications. Furthermore Mybbp1a’s 

ability to migrate between nuclear structures under specific conditions might further 

emphasize a role of the protein in the mutual adjustment of important cellular pathways. 

Here, the final chapter will focus on the impact of Mybbp1a on cell cycle regulation and 

cellular proliferation. 
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5.4 Mybbp1a - an interface for ribosome biogenesis and cell cycle 
regulation? 

The experimental results of this thesis work have clearly shown an essential role of Mybbp1a 

in cellular proliferation, an effect that may relate either to its function in pre-rRNA processing 

or in the regulation of extra-nucleolar interaction partners. The presented experiments cannot 

discriminate between these scenarios. Notably, Mybbp1a-depleted cells exhibit a flattened 

and enlarged morphology that is clearly visible on day 4 after siRNA-mediated knockdown 

(Figure 23, p. 68). This phenotype mirrors the ‘flat cell phenotype’ of Retinoblastoma (Rb)-

negative SAOS-2 sarcoma cells, when overexpression of Rb leads to a cell cycle arrest in 

late G1 phase (Hinds et al. 1992). Interestingly, in yeast, the potential Mybbp1a homologue 

Pol5p has recently been described to interact with Cdc10p (Nadeem et al. 2006), a 

component of the cell cycle-regulating complex MluI Cell Cycle Box [MCB] Binding Factor 

(MBF), which is the functional equivalent of the mammalian E2F-DP (Aligianni et al. 2009). 

These factors participate in the specific gene expression wave during the G1-S transition, 

named ‘Start’ in yeast and ‘restriction point’ in mammalian cells (Caligiuri & Beach 1993). A 

number of studies suggest a co-regulation of ribosome biogenesis and cell cycle progression 

in the yeast and mammalian systems. Regulation occurs at various steps during the cell 

cycle and employs several factors, including components of both the SSU and LSU 

processome, such as Utp 1-15, 17, 18 (Bernstein & Baserga 2004), human Utp 18 (Holzel et 

al. 2010) and Bop1 (Pestov et al. 2001), as well as ribosomal proteins (Lohrum et al. 2003; 

Zhang et al. 2003; Jin et al. 2004). These factors are crucial for proper cell cycle progression 

and target p53- and Whi5- (the yeast functional equivalent of Rb (Jorgensen et al. 2002; de 

Bruin et al. 2004)) mediated control mechanisms. A first hint on a direct interaction came 

from a very recent study, which has characterised a physical association of Mybbp1a with 

p53 in the nucleoplasm leading to a Mybbp1a-dependent stabilisation of a p53-p300 

complex. As a consequence p53 gets acetylated and stabilised by the acetyl transferase and 

subsequent p53-dependent gene expression leads to cell cycle arrest (Kuroda et al. 2011). 

Thus, it would be interesting to further address a possible direct role of Mybbp1a in 

coordinating transcription regulation, pre-rRNA processing and cell cycle progression in 

future studies.  
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5.5 The working hypothesis and implications for a future 
characterisation of Mybbp1a 

Based on the experimental outcome of this thesis work and in consideration of the available 

literature a future working hypothesis is introduced in the following. Suggestions for potential 

future experiments to further explore Mybbp1a function under different aspects have been 

already given throughout the discussion part. Still, this final chapter aims at integrating 

potential future approaches to provide a concluding comprehensive picture of the actual state 

of experiments. The transcription of rRNA genes, subsequent pre-RNA processing and 

ribosome assembly processes together constitute the major energy-consuming process in 

the cell and therefore the rate of ribosome biogenesis needs to be tightly linked to cellular 

proliferation. Currently available data suggest that in proliferating cells, Mybbp1a is mainly 

associated with the pre-ribosomal complexes where it acts as a scaffold for rRNA processing 

and assembly factors and is functionally required to drive efficient ribosome biogenesis. 

Reduced levels of ribosome biogenesis upon stress signals and/or reduced demands of 

ribosomes potentially result in the disassembly of pre-ribosomal particles, which involves the 

partial processing of Mybbp1a and its release to the nucleoplasm.  

 

 
Figure 34: A future working hypothesis - Mybbp1a is part of a feed back mechanism to co-ordinate Pol I 
transcription and rRNA processing with the actual conditions of the cell. 
(A) Under proliferative conditions Mybbp1a (blue ellipse) is part of the pre-rRNA processing complex and supports 
efficient ribosome biogenesis and cellular proliferation. (B) Nucleolar stress might lead to disruption of pre-
ribosomal particles, partial processing of Mybbp1a and its release to the nucleoplasm. While full length Mybbp1a 
would repress rDNA transcription nucleoplasmic Mybbp1a would influence Pol II-dependent gene expression and 
p53 stabilisation leading to cell cycle arrest and eventually apoptosis (see also text). 

While nucleolar full-length Mybbp1a would repress RNA Pol I transcription, potentially by 

disturbing pre-initiation complex formation or recruitment of chromatin-related factors to the 

B 

A 
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rDNA promoter, processed nuclear Mybbp1a would modulate the activity of transcription 

regulators, such as c-Myb, PGC-1α or NF-κB, to cease cell cycle progression, proliferation 

and energy production. It is well established that internal and external signalling pathways 

target Pol I-associated factors to translate the current demand of ribosomes in pre-initiation 

complex formation and subsequent rRNA synthesis rates. It will be interesting to assess such 

a role for the heavily phosphorylated Mybbp1a protein (Beausoleil et al. 2004; Beausoleil et 

al. 2006; Nousiainen et al. 2006; Olsen et al. 2006; Yu et al. 2007; Dephoure et al. 2008; 

Wang et al. 2008; Gauci et al. 2009). 

 

The suggested hypothesis raises two major questions for future characterisation with respect 

to Mybbp1a function. On the one hand a definite mode of action or even different 

mechanisms underlying Mybbp1a function could not be finally determined during this thesis 

work. Here, three different aspects would be especially interesting for future assessment. 

First, the detailed characterisation of direct interaction partners of Mybbp1a could allow 

further insights on how Mybbp1a exerts its function as rDNA transcriptional repressor or 

component of the rRNA processing machinery. It would be interesting to see by the help of in 

vitro binding studies with recombinant proteins if Mybbp1a directly interacts with a subunit of 

the Pol I enzyme complex or rather with one of its associated factors such as TIF-IA. In 

addition, a final identification of the associated factors within the RNase-resistant complex or 

the assessment of existing interaction of Mybbp1a with the human t-Utps would be helpful to 

further shape the protein’s role in rRNA processing. Second, taking into account the 

experimental results of this thesis work and others it seems prospective to investigate a 

potential involvement of chromatin-related processes in Mybbp1a’s mode of action in more 

detail. Besides the reassessment of Mybbp1a binding to r-chromatin by qualitatively modified 

and extended ChIP experiments the analysis of potential interaction with specific chromatin 

modifications or modifiers such as remodelling machines or histone modifiers as well as its 

impact on chromatin-related processes such as nucleosome remodelling by functional 

assays would allow further conclusions on this issue. Finally, it would be important to 

distinguish between the impact of Mybbp1a on rDNA transcription and rRNA processing, 

which is rather difficult on the endogenous level. Therefore a dissection of these processes 

could be better realised by transient transfection of various Pol I reporter constructs including 

different lengths of rRNA coding sequence to analyse Pol I transcriptional output and 

eventually the recruitment of the rRNA processing machinery including Mybbp1a. 

The second major issue for further investigation is the potential involvement of Mybbp1a in 

cell cycle regulation and/or other specific signalling pathways. Different data sets from the 

yeast and mammalian systems point in this direction. It will be especially interesting to test 

any physic interaction or functional impact of Mybbp1a with or on the Rb or the p53 pathway. 
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Intriguingly, very recently Yanagisawa and colleagues have determined a Mybbp1a-

dependent stabilisation of p53-p300 interaction upon nucleolar stress to enhance p53-

mediated transcription activation (Kuroda et al. 2011). Furthermore, it will be interesting to 

analyse, which signalling pathways target Mybbp1a by phosphorylation and in which way this 

might modulate its activity and function with the of help mutation analysis and the application 

of small molecule inhibitors directed against these pathways. 

Importantly, several of the latest Mybbp1a-related publications also put a clinical relevance to 

the protein. For example, Mybbp1a was found to interact with the survival of motor neurons 

protein (SMN), of which reduced levels cause the inherited disorder spinal muscular atrophy 

(SMA). Mybbp1a partially co-localised with SMN in Cajal bodies in HeLa cell nucleoplasm 

and, like SMN, was reduced in cells from an SMA patient (Fuller et al. 2010). Most notably in 

this regard is the identification of Mybbp1a interaction with PGC-1α, a key regulator of 

energy metabolism, as well as Prep1, a homeodomain transcription factor (Fan et al. 2004; 

Diaz et al. 2007). The Prep1 factor has subsequently been shown to have a role in glucose 

homeostasis and insulin sensitivity in mouse models mediated, at least in part, by the 

interactor Mybbp1a (Oriente et al. 2008). These findings thereby contribute important 

implications for the understanding of energy balance and the development of diabetes.  
 

Taken together Mybbp1a integrates many interesting functional features with respect to 

rRNA metabolism as revealed by this thesis work and various other important cellular 

pathways such as regulation of cellular proliferation, cell cycle and energy metabolism. 

Additionally, its further characterisation is not only important with regard to its cellular role(s) 

but most probably also to the understanding of mechanisms underlying fundamental cellular 

processes such as transcription regulation and co-ordination with subsequent RNA 

processing. 

 



Appendix   100 

6 Appendix 

6.1 Plasmid maps 
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6.2 Abbreviations 
3'/5’ETS   3'/5’ external transcribed spacer 

3C    chromosome conformation capture assay 

aa    amino acid 

ALP    acetyltransferase-like protein 

ATP   adenosine-5'-triphosphate 

AM-X   Tris based buffer containing X mM KCl 

bp   base pairs 

BSA   bovine serum albumine 

CEA   chicken egg albumin 

CHIP   chromatin Immunoprecipitation 

Ci   Curie 

CK2   casein kinase 2 

CPE   core promoter element 

CSB   Cockayne syndrome protein B 

DMEM   Dulbecco's modified Earle's medium 

DNA   deoxyribonucleic acid 

DNase I   deoxyribonucleosidase I 

DNMT   DNA methyl transferase 

dNTP   deoxyribonucleoside triphosphate 

DTT   dithiothreitol 

E. coli    Escherichia coli 

EDTA    ethylenediaminetetraacetic acid 

ERK    extracellular signal-regulated kinase 

EX-X    Tris based buffer containing X mM KCl 

FBS/FCS   foetal bovine/calf serum 

FRAP    fluorescent recovery after photo bleaching 

g   gram or relative centrifugal force 

HDAC   histone deacetylase 

HMG   high mobility group 

HRP   horse radish peroxidase  

h   hour 

Ig   immunoglobulin 

IGS   intergenic spacer 

IRES   internal ribosome entry site 

ITS1/2   internal transcribed spacers 1 and 2 

JNK   c-Jun N-terminal kinase 
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kDa   kilo daltons 

LSU   large subunit of the ribosome 

M   molar 

MBD   methyl-CpG-binding domain 

MEM   modified Earle's medium 

min   minute(s) 

MNase   Micrococcus Nuclease 

MOPS   3-(N-morpholino)propanesulfonic acid 

mTOR   mammalian target of rapamycin 

Mybbp1a   Myb-binding protein 1a 

NAD   nucleolus-associated chromatin domains 

ncRNA   non-coding RNA 

NLS   nuclear localisation sequence 

NOR   nucleolar organiser region 

NoRC   nucleolar remodeling complex 

NP-40   Nonidet P-40 

Nt    nucelotide 

N-terminal   amino-terminal 

p67MBP   N-terminal fragment of Mybbp1a (67 kDa) 

p67MBP*NLS  N-terminal fragment of Mybbp1a (67 kDa) containing the SV40 

T-antigen NLS 

p140MBP   N-terminal fragment of Mybbp1a (140 kDa) 

PAGE    polyacrylamide gelelectrophoresis  

PBS   phosphate-buffered saline 

PBS-T    Phophate buffered saline –Tween [0,1%] 

PCR   polymerase chain reaction 

PCV   packed cell volume 

PEI   Polyethylenimine 

Pen/Strep   Penicillin/Streptomycin 

PIC    pre-initiation complex 

Pol I, II, III   RNA polymerase I, II, III 

pre-rRNA   precursor of ribosomal RNA 

PTRF   polymerase I transcript release factor 

r-chromatin   rRNA gene-containing chromatin 

rDNA   ribosomal DNA 

RNA   ribonucleic acid 

RNP   ribonucleoprotein 
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rpm   rounds pro minute 

r-proteins   ribosomal proteins  

rRNA   ribosomal RNA 

RT   room temperature 

RT-qPCR   real-time quantitative PCR 

S   Svedberg unit 

SDS   sodium Dodecyl Sulphate  

sec   second 

siRNA   small interfering RNA 

SL1   selectivity factor 1 

Snf   sucrose non-fermenting 

Snf2h   Snf2 homolog protein 

snoRNA   small nucleolar RNA 

SSU   small subunit of the ribosome 

TAF   TBP-associated factor 

TBE   Tris borate EDTA buffer 

TBP   TATA-binding protein 

TIF-IA / B / C   transcription initiation factors for RNA polymerase I 

Tip5   TTF-I interacting protein 5  

Tris   Tris(hydroxymethyl)-amino-methane 

TSA   Trichostatin A 

TTF-I   transcription termination factor for RNA polymerase I  

TTFΔN185   N-terminal (aa 1 to 185) truncated form of TTF-I  

t-Utp   transcriptional-Utps 

Tween-20   polyoxyethylene-sorbitan monolaurate 

UBF   upstream binding factor 

UCE   upstream control element 

Utp   U three proteins 

V   Volt 
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