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1. Introduction 

The chemistry of multinary nitrides is in comparison to oxides and sulfides quite 

unexplored and still a rather young field of science. In 1998, Niewa postulated “that 

within the next few years, many nitride compounds with new or even unique 

structures and interesting properties will be discovered”.[1] In the same year, Gregory 

wrote, concerning nitride chemistry that “one suspects we have merely scratched the 

surface of what may yet exist.”[2] Both statements turned out to be true since the 

number of publications with “nitrid” in their topic still undergoes a nearly exponential 

growth (see Figure 1).  

 

 
Figure 1. Number of publications on the topic “nitrid” until 2011 (Scifinder). 
 

Synthesis of nitride compounds can be performed by classical solid-state methods 

like high-temperature reactions, high-pressure reaction or metathesis synthesis for 

example. An important factor for synthesis of nitrides is the strong triple bond in the 
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N2 molecule. With a dissociation energy of 945 kJ/mol[3] for this bond the standard 

free energy of formation of nitrides is lower in comparison to similar compounds of 

neighboring elements.[4] As a consequence, nitrides are less stable upon heating 

through the loss of N2. Furthermore, formation of N3- requires much more energy 

than the formation of O2-.[2,4] This can be easily seen from reaction of alkali metals, all 

of them react with oxygen but only Li forms a stable nitride (Li3N) in nitrogen.[5] 

Therefore, nitrides are comparably rare and build often unusual and unique structure 

types. For synthesis of nitrides in a solid-state reaction, diffusion of the reactant 

atoms is necessary to reach an interface between reacting materials and 

subsequently, these atoms must rearrange into a new structure.[5] Diffusion rates in 

solids are very slow, therefore, higher temperatures are necessary. Increasing the 

reaction temperature will lead mostly to thermodynamic products, resulting in binary 

and ternary compounds regarding nitrides. The high stability of those compounds 

hinders further reactions to multinary compounds. Additionally, the parameter 

temperature cannot be increased infinitely due to early decomposition of ternary 

compounds.[2] Another way to increase diffusion rates is the introduction of a melt. 

Therein, also lowering of activation energy for a solid-solid reaction can be observed 

and kinetically controlled products are accessible.[6] Melts can be formed by salts or 

metals but important prerequisites like a low melting point and a wide temperature 

area between melting and boiling point are necessary. Additionally, the melt should 

be easy to remove and not react with starting materials. For synthesis of binary 

nitrides or higher nitrides with alkaline earth metals, sodium is a widely used fluxing 

agent.[7-9] In combination with sodium azide as nitrogen source, reactions above 

570 K lead to decomposition of the azide and an increased nitrogen pressure occurs 

in closed ampoules. For the growth of GaN with sodium-flux method it was shown, 

that Na can react as enhancing medium for nitride formation. Na is a quite 

electropositive element with a low ionization energy. If a N2 molecule absorbs on the 

surface of the melt it is supposed that Na transfers an electron to the N2 molecule 

and the antibonding orbital will be occupied. This results in a decrease of bond order 

and subsequently in a decrease of dissociation energy.[10,11] The solubility of nitrogen 

in liquid sodium can be further increased when alkaline earth elements Sr or Ba are 

present in the metallic melt.[11]  
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Nitrides can be divided into metallic (i.e. TiN), ionic (i.e. Li3N), or covalent (i.e. GaN) 

compounds,[12] or classified as binary, ternary, quaternary, and multinary compounds, 

depending on the number of constituting elements.[13]  

Especially the binary nitride GaN has found increasing interest in industrial 

application as a wide band gap semiconductor.[14-18] For semiconductor devices, high 

quality GaN crystals are required. Therefore, a suitable substrate has to be found and 

research efforts focused on ammonothermal synthesis for production of high quality 

GaN substrate.[19] In this method, supercritical ammonia is used as reaction medium, 

generated in high pressure autoclaves at elevated temperatures. By control of filling 

degree, reactions are reproducible and reaction pressure can be estimated.[20] By 

addition of mineralizing agents, solubility of metals and other starting materials can 

be increased.[21,22] For synthesis of GaN mostly crystal growth techniques and doping 

of this material has been studied but synthesis of higher nitrides deriving from the 

binary compound has been widely neglected as yet.[23-26]  

But not only binary nitrides have found application in industrial devices. In the past 

years, the compound class of nitridosilicates and oxonitridosilicates grew significantly 

since a general synthetic approach to these compounds was found using high-

temperature synthesis and “Si(NH)2” as starting material.[27-30] The higher structural 

variety of nitridosilicates in comparison to oxosilicates is due to the higher connecting 

ability of N3- compared to O2-.[31] Nitrogen atoms in the crystal structure of 

nitridosilicates can be connect to one, two, three or even four silicon atoms in 

tetrahedral building blocks.[29,32-34] Additionally, not only corner but also edge sharing 

can be observed in nitridic structures and the degree of condensation κ (ratio of 

tetrahedra center to N atoms, i.e. Si : N in nitridosilicates) shows a wider spectrum 

compared to oxosilicates.[27] The structural variety was even extended by addition of 

Al and or O, resulting in oxonitridosilicates, nitridoalumosilicates or so-called 

SiAlONs. Recent research also focused on Li-containing nitridosilicates that can be 

obtained from high-temperature synthesis route or from Li-flux at lower 

temperatures.[35,36] The compound class of nitridosilicates shows interesting 

properties like high hardness (i.e. SrSi7N10), Li-ion conductivity (i.e. 

Li14Ln5[Si11N19O5]O2F2 with Ln = Ce, Nd), or luminescence (i.e. Ba2Si5N8:Eu2+).[37-39]  

Luminescence can be observed when a host lattice with high covalency is doped by 

an activator ion like Eu2+ for example. Recently, Eu2+-doped nitridosilicates and 
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oxonitridosilicates turned out to be highly efficient phosphors for use in phosphor-

converted light-emitting diodes (LEDs).[13,40-42] To obtain an efficient luminescence 

the materials host lattices must be chemically and thermally highly stable.[40,43,44] 

Detailed knowledge of structural features like surrounding environment of activator 

ion, symmetry, coordination, covalence and bond length to anions as well as 

resulting crystal field strength is necessary for understanding and a possible 

influence on the color point of emission and the broadness of emission band.[13,42,45]  

Crystal structures of nitride compounds are mostly described as nitridometalate 

ions,[1] stabilized by electropositive elements like alkaline earth or rare earth. The 

crystal structures of nitridosilicates are therefore often clarified by description of SiN4 

tetrahedra sharing corners and/or edges building one-, two-, or three-dimensional 

anionic substructures, charge balanced by alkali, alkaline earth, or rare-earth atoms. 

This structural motif of tetrahedra constituted of four nitrogen atoms and a 

metal/metalloid atom in the center is also known from other ternary or multinary 

nitrides like nitridoaluminates or nitridogallates. Like nitridosilicates derive from the 

binary nitride Si3N4, the latter mentioned compound classes derives from the binary 

nitrides AlN and GaN. Only a small number of ternary nitridogallates with alkaline 

earth elements was known so far. Only two ternary compounds with Ba, namely 

Ba3Ga2N4
[46] and (Ba6N)[Ga5][47] are known whereof the latter shows [Ga5]7- clusters 

and cannot be described by an anionic nitridic substructure charge balanced with 

electropositive atoms like in Ba3Ga2N4. With alkaline earth elements Ca and Sr some 

more compounds are known, building one-, two, or three-dimensional substructures 

of GaN4 tetrahedra (i.e. 1D: Ba3Ga2N4, 2D: Ca3Ga2N4, 3D: Sr3Ga3N5).[9,46]  

Also some quaternary nitridogallates are known, containing additionally Mg or Li for 

example.[8,48] Synthesis of nitridogallates is typically carried out in weld shut tantalum 

or niobium ampoules using sodium-flux technique with NaN3 as nitrogen source.[49,50] 

Temperatures up to 800 °C are reached, comparable low for solid-state synthesis. 

The structural relation between nitridogallates and nitridosilicates raises the question, 

if similar properties like those of nitridosilicates, for example luminescence can be 

expected in the compound class nitridogallates as well. Therefore, not only from 

structural point of view but also concerning luminescence properties and possible 

application as optical material, investigations on novel crystal structures and 

properties of nitridogallates might be interesting. 
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Figure 2. Ga atoms light blue, N atoms dark blue; a) one-dimensional chains of edge-sharing GaN4 

tetrahedra in Ba3Ga2N4; b) sheets GaN4 units, sharing corners and edges in Ca3Ga2N4; c) three-

dimensional network of corner- and edge-sharing tetrahedra in Sr3Ga3N5. 

 

The objective of this thesis was the synthesis, identification and characterization of 

novel nitrides of gallium. Therefore, synthesis was carried out starting from the 

metals with sodium azide in a sodium melt in weld shut metal ampoules. Crystal 

structure elucidation with single-crystal X-ray diffraction was carried out on new 

compounds. Furthermore, investigations of band gap as well as physical properties 

like luminescence were performed on several nitridogallates. Additionally, 

ammonothermal synthesis with high pressure autoclaves is described in detail in the 

first part of this thesis and application of this method for synthesis of a novel amide 

compound is reported later. With the reported compounds, not only successful 

establishment of ammonothermal synthesis but also an extension in the class of 

nitridogallates was gained. Observation of luminescence properties on several 

nitridogallates points out their possible application as optical materials.  
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2. Ammonothermal Reaction Procedure 

Nitride materials, especially those of third and fourth main group elements are of 

great interest for application as functional materials. For synthesis of the nitride 

materials, ammonia can be used as solvent and starting material, for example in 

ammonothermal synthesis. This method is a solution-based technique, using 

supercritical NH3 as solvent. To achieve a supercritical state, reaction temperatures 

higher than 132.5 °C and reaction pressure more than 113 bar must be realized. 

Commercial available pressure vessel can be used up to 600 °C and pressures of 

400 bar. Under theses conditions, contaminations with autoclave wall material are 

observed, increased by use of mineralizing agents. Teflon-inlays can be used to 

overcome these contaminations but they decrease reaction temperature to 150 °C 

and corresponding lower pressures (~ 220 bar). For the synthesis of nitride materials, 

higher pressures are necessary. Therefore, special autoclaves were developed for 

reaction conditions up to 600 °C and 3000 bar. These conditions cannot be realized 

in any commercial available system. In the following chapter the autoclaves as well 

as the filling device will be presented in detail. Furthermore, exemplarily synthesis of 

GaN will be described and discussed. 
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2.1. Introduction 

Gallium nitride GaN turned out to be one of the most important semiconductors in 

modern technology.[1] Most available GaN based semiconductor devices use GaN 

deposited by heteroepitaxy. These thin nitride films contain large defect 

concentrations depending on substrate material.[2] For growth of homoepitaxial 

layers, an almost defect free GaN single crystal would be the ideal substrate.[3-5] 

Standard crystal growth methods (i.e. Czochralski-process) are inapplicable since 

nitrides would decompose. To avoid this decomposition, synthesis under elevated 

pressure is favorable. Reactions of liquid Ga with gaseous nitrogen at higher 

pressure would require extremely high pressures (up to 15000 bar) at temperatures 

up to 1500 °C. Using Na-flux as solvent, temperature can be lowered to 750 °C.[6] 

Changing reaction gas to ammonia, lower pressures and even lower temperatures 

are sufficient for synthesis of crystalline nitride materials.[7] The solvent ammonia is 

less polar and less protic in comparison to water but nevertheless, many inorganic 

compounds are soluble in (liquid) NH3. Similar to hydrothermal recrystallization of 

oxides, single crystals of nitrides are accessible in supercritical ammonia.[8] 

Furthermore, ammonothermal synthesis is a quite controllable and reproducible 

process. The resulting reaction pressure is dependent on the size of reaction vessel, 

filling degree and temperature. Ammonia itself can react as three-basic acid to form 

amides, imides or nitrides, whereas the reaction rates are higher and crystallinity of 

the products is improved when supercritical ammonia is employed.[9] Early 

investigations of the solubility of metals in ammonia showed that alkali and 

alkaline-earth metals as well as lanthanides dissolve well in liquid ammonia (ref. 

eq. 1).[10-16] 

 

Nevertheless, other metals and inorganic compounds dissolve poorly and additional 

reagents are necessary. Mineralizers can increase solubility by formation of 

complexes between solute and mineralizer.[5,17,18] Therefore, higher supersaturation 

is possible without spontaneous nucleation and reactivity of solution as well as 

growth rates are increased. Depending on the behavior in ammonia, mineralizers are 

differentiated as ammonobasic or ammonoacidic. Under ammonobasic reaction 

conditions amide ions NH2
- are formed, for example when alkali metals are dissolved 

Equation 1 
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in NH3 (eq. 2). An ammonoacidic mineralizer produces NH4
+-species in the solution 

like HCl or NH4Cl (eq. 3). 

 

But not only the acidity of the solution is changed by use of mineralizers, also 

different products can be obtained. For example by synthesis of bulk GaN, the 

hexagonal form h-GaN is obtained by ammonobasic reaction, metastable cubic zinc-

blende modification c-GaN can be synthesized by using ammonoacidic 

mineralizer.[3,19-21] 

The ammonothermal synthesis is already known for some time since Jacobs and 

Juza established this method as a synthesis tool for inorganic syntheses.[13,14] At that 

time, reactions to binary and ternary metal nitrides and imides as well as syntheses 

of phosphides were carried out.[13,22-26] Solid-state chemistry of nitrides was quite 

unexplored back then and Jacobs and Juza performed pioneer work in this field. 

Nevertheless, yet ammonothermal synthesis is hardly in use except for synthesis of 

GaN and AlN materials.  

The ammonothermal synthesis imposes high demands on technical equipment. First 

of all the autoclave material must be inert to reaction mixture and the supercritical 

ammonia. Therefore, nickel-based alloys are used as autoclave material. But in 

ammonoacidic conditions, often problems with contamination from autoclave material 

occur. In this case, liner technology is used but still challenging to find a suitable, cost 

effective material. Additionally, autoclaves must withstand high pressures and higher 

temperatures for ammonothermal reaction conditions. Therefore, materials for 

autoclave design and sealing technology have to equal this challenge. Also the filling 

of autoclaves has to be optimized. Often, starting materials are sensitive to moisture 

and air so inert gas atmosphere is required. The control of filling degree is highly 

important to control the maximum pressure during synthesis and to make these 

experiments reproducible.  

This synthesis tool offers a wide field of reaction variations not only for synthesis of 

nitrides but also for reactions of more complex systems.[27] Here, we present 

exemplarily ammonothermal synthesis of GaN in specially designed autoclaves, 

Equation 2 

Equation 3 
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capable to afford reaction conditions of 600 °C and 3000 bar. The autoclave and 

filling procedure will be described in detail. 

 

2.2. Experimental 

Autoclave design. The autoclave used for ammonothermal reactions is shown in 

Figure 1. They were developed from engineers at university Erlangen in the group of 

Prof. Schlücker in a research cooperation. The pressure vessel, cover and screw 

flange as well as the screws are made up of Inconel 718 (material number 2.4668). 

The whole autoclave without peripherical devices is 337 mm long with diameter 

50 mm and an inner volume of 97 ml. Construction detail of the autoclave without 

peripherical devices are given in Figures 2-5. As sealing material C-ring sealings of 

silver-coated Inconel 718 with a spring inside are used (GFD Dichtungen, type MCI-

(F7)-732-0026, 20-1s1). From the autoclave to the valve (Dieckers, type 720.1523) 

an Inconel-pipe is installed. The valve can close the autoclave to the inlet pipe that 

can be attached via DN 16 flange (Figure 1, a) to the ammonia filling device. 

Additionally, the valve connects the autoclave to the distribution rack for the bursting 

disc holder (Figure 1, b) and the pressure transmitter (Figure 1, c). The bursting disc 

holder (Dieckers, type 720.5022-2) contains a bursting disc (Dieckers, type 7282500-

4500) with a bursting pressure of 3300 bar to protect the pressure vessel.   

 
Figure 1: Autoclave with peripherical device. 
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Figure 2: Technical drawing of pressure vessel.[28] 
 

 
Figure 3: Technical drawing of screw flange.[28] 
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Figure 4: Technical drawing of cover flange.[28] 
 

 
Figure 5: Technical drawing of assembled autoclave.[28] 
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Ammonia filling device. For loading the autoclave with ammonia a special filling 

device was used. The apparatus is built up of glass, using teflon stopcocks to avoid 

contamination with vacuum grease. The ammonia filling device is schematically 

shown in Figure 6. 

 

 
Figure 6: Ammonia filling device. 

The autoclave can be evacuated and filled with ammonia or argon atmosphere. A 

rotary vane pump generates the vacuum. Connected via a metal bellow hose (flange 

DN 16) a double cooling trap (a) is attached (DN 25 flange) in front of the vacuum 

line (b) to protect the vacuum pump of corrosive gases and contamination with fine 

dust. The other glass tube can be filled by ammonia or argon, distributed by the 

allocator (c). From the side below, Ar can be filled in the gas line by opening the Ar-

valve and the stopcock on the side of the gas line (d). To obtain the demanded pure 

gas conditions, Ar is purified by a special gas cartridge (SAES Pure Gas Inc., San 

Luis Obispo USA, model FT400-902). From the side of the allocator, NH3 can be 

used when the connection to the ammonia gas cylinder is opened. Ammonia is also 

purified (SAES Pure Gas Inc., San Luis Obispo USA, model MC400-702FV) to 

remove particularly water and oxygen contaminations. Two taps can thumb the 

respective gas or vacuum where the autoclave can be flanged (DN 16) (e). 

Additionally, a glass cylinder with a volume scale (f) is attached to the gas line. 

(a) double cooling trap (d) gas line (g) vacuum sensor 
(b) vacuum line (e) taps (h) thermometer 
(c) allocator (f) glass cylinder with volume scale 
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Figure 7: 
Glass cylinder 
filled with liquid 
NH3. 

Therein, ammonia can be condensed to determine the exact ammonia volume. The 

whole system is protected from overpressure several times. The gas line has a 

mercury pressure control valve, which is not lockable. Each tap is also secured by 

such a mercury control valve. Additionally, a mechanical relief pressure valve is 

attached to the allocator (with a DN 25 flange, opposite to NH3 inlet). For control of 

vacuum a sensor (g) is flanged to the vacuum line. Additionally, a thermometer is 

attached to the gas line (h). To avoid contaminations with oxygen or air in the 

autoclave, the front part of gas piping is flushed by dry ammonia before using NH3.  

For filling an autoclave with a certain amount of NH3, the pressure 

vessel is flanged to the filling device and evacuated and filled with Ar 

three times. After the last session, the autoclave as well as the glass 

cylinder is evacuated. Both, the autoclave and the glass cylinder, are 

cooled by a mixture of dry ice and ethanol to provide temperatures 

lower than the boiling point of ammonia (-33 °C). Under continuous 

cooling the glass cylinder is then filled with gaseous NH3 for several 

minutes, depending on the desired amount of ammonia, the autoclave 

can still be evacuated in the meantime. Once enough ammonia is 

condensed (ref. Figure 7), the link to the ammonia container is closed. 

Now the connection between autoclave and glass cylinder is made by opening the 

autoclave to the gas line. By moderate heating of the liquid ammonia the gas can be 

evaporated and re-condensed in the cooled autoclave. When all ammonia is 

condensed in the pressure vessel the autoclave is closed and brought to room 

temperature, again by moderate heating or defrosting in air. With the maximum 

temperature of reaction and knowledge of the filling degree, the reaction pressure 

can be estimated (ref. Figure 8). 
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Figure 8: Temperature-pressure diagram in dependence on filling degree (in %). Solid lines are 

based on data from NIST database,[29] dotted lines are extrapolated values.  
 

Synthesis of GaN. For ammonothermal recrystallisation of GaN powder the autoclave 

was filled with 1.0 mmol Ga (69.7 mg, Sigma Aldrich, 99.99%) and 1.0 mmol GaN 

powder (83.7 mg, Sigma Aldrich, 99.99%) in an argon filled glove box (Unilab, 

MBraun, Garching; O2 < 1 ppm, H2O < 1 ppm). A mixture of ammonobasic (Na, 

3.0 mmol, Sigma Aldrich, 99.95%) and ammonoacidic (NH4Cl, 0.05 mmol, 

synthesized according to[30]) mineralizer was used. After filling the autoclave with 

starting material mixture the autoclave was closed by cover flange and the eight 

screws, coated with a BN-suspension lubricant (Henze, HeBoCoat 20E), were 

inserted and tightened firmly. Outside the glove box, the screws have been tightened 

in a star pattern with 150 Nm in three 50 Nm steps. Afterwards, the autoclave was 

connected to ammonia filling device with the DN 16 flange over a metal bellow hose. 

The autoclave was then cooled down with a dry ice acetone mixture (-78 °C), 

evacuated and filled with 40 ml (filling degree 41 %) dry, liquid ammonia by 

condensation as described above. After thawing the autoclave was heated in a tube 

furnace to 550 °C in 1.5 h, maintained at that temperature for 48 h and subsequently 

cooled down to 200 °C in 240 h. The cover flange was isolated by several layers of 

quartz wool to minimize the temperature gradient. Maximum pressure of 1805 bar 
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was reached during synthesis, after reaction the maintaining pressure was 241 bar. 

After controlled pressure release the autoclave was evacuated and filled with argon. 

The screws were loosened and the autoclave was subsequently opened in a glove 

box under argon atmosphere. The product was obtained as a white crystalline 

powder. 

 

2.3. Results and Discussion 

Crystalline GaN powder was filled in a glass capillary (Hilgenberg, 0.2 mm diameter) 

inside a glove box to prevent products from oxidation. Powder X-ray diffraction data 

were collected on a Stoe STADI P diffractometer with Cu Kα1-radiation 

(λ = 1.540596 Å). The X-ray diffraction data were first examined by the program 

package WinXPOW,[31] to identify the product phase reflection positions were 

compared to data of ICSD database, implemented in XPOW Search.[32] The crystal 

structure was refined using the Rietveld method in the TOPAS package.[33] The 

powder product contains hexagonal GaN besides an equal amount of NaNH2 as 

shown in the powder diffractogram in Figure 9. 

 
Figure 9: Observed and calculated powder diffraction pattern of GaN and NaNH2. 
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No additional reflections and therefore, no Ga reflections are observed so 

transformation from Ga into GaN was successful. Due to relatively high amount of Na 

in the starting reaction mixture, NaNH2 was obtained besides crystalline GaN. As 

indicated above, the hexagonal, wurtzite modification of GaN was achieved due to 

predominant ammonobasic mineralizer Na. Therein, both atom types, Ga and N, are 

surrounded by four atoms in a tetrahedral coordination. A picture of crystal structure 

is presented in Figure 10. The crystal data are summarized in Table 1 and agree well 

with literature values published before.  

Table 1: Crystallographic data of GaN. 
sum formula GaN this reaction GaN literature[34] 

space group P63mc (no. 186) P63mc (no. 186) 

a 3.1893(3) Å 3.18940(1) 

c 5.1858(6) Å 5.18614(2) 

RBragg 0.03881  

Rwp 0.12944  

GOF 1.154  

 

 
Figure 10: Crystal structure of wurtzite GaN, left: shown GaN4-tetrahedra in blue, right: tetrahedral 

coordination of Ga and N in GaN crystal structure. 

The resulting pressure during reaction is higher than expected from filling degree and 

reaction temperature (ref. Figure 8). This can be related to H2 formation during 

reaction and proved that chemical reaction takes place. Scanning electron 

microscopy (SEM) was performed on a JEOL JSM 6500 F equipped with a field 

emission gun at acceleration voltage of 22 kV. Sample composition was investigated 

by EDX-spectra (Detector Oxford Instruments) on powder sample. The EDX-results 
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show the presence of Ga (11 atom%), N (12 atom%) and Na (24 atom%) as well as a 

high content of oxygen (51 atom%) and little amount of Cl (~0.4 atom%) deriving 

from NH4Cl as ammonoacidic mineralizer. The oxygen content can be explained by 

the oxidation sensibility of NaNH2 when exposed to air. Although sample storage and 

preparation for SEM investigation was performed in a glove box under argon, some 

contact with air cannot be avoided during sample installation on the SEM. By PXRD, 

h-GaN structure has already been proved. In correlation with EDX-results the 

existence of GaN in the product can be assumed since the atomic ratio Ga : N is 

about 1 : 1. Additionally, the Na : O ratio can also be related to the oxidation of 

NaNH2.  

 

2.4. Conclusion 

Here, the ammonothermal synthesis of GaN and the instrumental equipment is 

presented. With the described technique, ammonothermal reactions with pressures 

up to 3000 bar and temperatures of 600 °C are possible. Furthermore, reactions are 

reproducible since the amount of NH3, filled in the autoclave can be easily 

determined by the use of the mentioned ammonia filling device. Nevertheless, the 

real pressure during reaction cannot be determined before the experiment due to H2-

release during reaction. Once all technical equipment is installed, this method is quite 

“straight forward” for syntheses under supercritical ammonia. Not only synthesis of 

binary nitrides is possible with this method, also higher nitrides and other nitrogen-

containing compounds could be accessible. Furthermore, to optimize the 

ammonothermal synthesis detailed knowledge of the reaction processes and arising 

intermediates has to be gained. Another still challenging aspect is the corrosive 

character of ammonia, especially in the ammonoacidic regime and therefore the 

need for cost efficient liner material. Currently, Pt liner are used to avoid 

contaminations with autoclave material but they are expensive.[17,35] Additionally, the 

liner must attach firmly to the inner wall to avoid leakage. Further research efforts 

have to be made to find a smart solution. With the current heating setup, a 

temperature gradient cannot be avoided. In some reactions and even for crystal 

growth such a gradient is essential but up to now the gradient is not defined. Initial 

assessments indicate a temperature loss through the cover flange of 200 °C which is 

a third of achieved maximum temperature. Through purposeful choice of temperature 
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gradient effects like retrograde solubility could be utilized for transport of a special 

phase for example. Additionally, further investigations on mineralizers is necessary. 

Often the mineralizing agents are kind of catalytic and still remaining after reaction. 

Therefore, phase pure products can only be obtained with further purifing steps. 

Investigations on the acidity in ammonia of common inorganic starting materials in 

nitride chemistry has been neglected yet. For synthesis of nitridosilicates in 

supercritical ammonia for example, the behavior of “Si(NH)2” would be very 

interesting. With this knowledge, a one-pot synthesis of nitride of compounds is 

conceivable, for example in the compound classes of nitridogallates, nitridosilicates 

or other nitride network based compounds.  
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3. Magnesium Nitrides as Host Lattices for Eu2+-Doping 

In the previous chapter ammonothermal synthesis of the binary nitride GaN was 

depicted. In the past decade, many researchers investigated variations of GaN to 

improve its physical properties. For example InGaN and AlGaN were found with 

slightly different band gaps compared to GaN but also well suitable for semiconductor 

application. Furthermore, doping of GaN with Mg was investigated thoroughly. Since 

the ionic radius of fourfold coordinated Mg2+ is comparable to fourfold coordinated 

Ga3+ it should easily incorporate into the crystal lattice of GaN. Due to different 

charges of these two ions, Mg2+ increases p-doping level when introduced to GaN 

crystal structure. Higher nitrides of Ga are known as nitridogallates and thereof only a 

small number is known as discussed later. In this chapter we present a novel double 

nitride containing Ga and Mg which shows an interesting crystal structure as well as 

luminescence properties upon doping. Additionally, luminescence of Eu2+-doped 

Mg3N2 is presented.  
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Abstract: The double nitride Mg3GaN3 and binary nitride Mg3N2 were synthesized 

from the elements by reaction with NaN3 in Na-flux. Reactions were carried out at 

760 °C in weld shut Ta-ampoules. Mg3GaN3 was obtained as single crystals (space 

group R3̄m (no. 166), a = 3.3939(5) and c = 25.854(5) Å, Z = 3, R1 = 0.0252 

wR2 = 0.0616 for 10 refined parameters, 264 diffraction data). This double nitride 

consists of an uncharged three-dimensional network of MgN4- and mixed (Mg/Ga)N4-

tetrahedra which share common corners and edges. First-principles DFT calculations 

predict Mg3GaN3 to have a direct band gap of 3.0 eV, a value supported by soft X-ray 

spectroscopy measurements at the N K-edge. Eu2+-doped samples show yellow 

luminescence when irradiated with UV to blue light (λmax. = 578 nm, 

FWHM = 132 nm). Doped samples of Mg3N2:Eu2+ also show luminescence at room 

temperature when excited with UV to blue light. The maximum intensity of the 

emission band is found at 589 nm (FWHM = 145 nm). 
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3.1. Introduction 

Gallium nitride has found broad application in high-performance light-emitting diodes 

(LEDs) due to its properties as a direct wide band gap semiconductor.1-5 Recently, 

crystal growth and doping of GaN have been studied thoroughly.6-10 On the contrary, 

investigations of the deriving ternary and higher nitridogallates or gallium nitrides 

have been scarcely pursued so far. Mg was found to be suited for p-doping in GaN or 

AlGaN thus increasing hole concentration.11-13 Mostly, GaN:Mg has been synthesized 

by MOCVD with bis(cyclopentadienyl) magnesium (Cp2Mg) as Mg-source.14-16 The 

influence of such doping on the GaN-lattice and its physical properties have been 

investigated in detail.17-20 So-called heavily doped GaN:Mg was obtained when Mg 

concentration was around 1020 cm-3 and resulting photoluminescence bands at 

2.8 eV (443 nm) and 3.2 eV (388 nm) were observed.19,21-23 

Binary magnesium nitride Mg3N2 has been known for some time, but has been much 

less in the focus of applications than GaN.24,25 Nevertheless, in the last few years, 

some interest in Mg3N2 has arisen. Its structure in the anti-bixbyite type was further 

investigated26,27 and a green photoluminescence was reported in the literature.28  

During the past decade, ternary and multinary alkaline-earth nitrides emerged as 

important host lattices for doping with Eu2+, exhibiting parity allowed 

4f6(7F)5d1 → 4f7(8S7/2) transitions resulting in intense broad-band emission. This is 

due to the fact that these levels lie in between the band gap as shown by P. 

Dorenbos,29,30 exemplarily on important phosphor material M2Si5N8:Eu2+.31 In order to 

estimate the performance of a luminescent material in phosphor-converted (pc)-LEDs 

at higher temperatures band-gap investigations are of special interest. These results 

allow assessment of the thermal quenching behavior. 

Some of the afore mentioned nitrides were identified as highly efficient optical 

luminescence materials and are therefore promising candidates for photon 

conversion.32 In this respect, (oxo-)nitridosilicates, nitridoalumosilicates and 

(oxo-)nitridoalumosilicates have been intensively investigated.33-39 Recent research 

has focused on Eu2+-doped nitridogallates as host lattices as well.40 The 

aforementioned materials are made up of tetrahedra-based anionic (sub-)structures 

wherein tetrahedra can be connected via common corners or edges, building either 

isolated polyhedra or one-, two- or three-dimensional structures.39,41,42 Some of these 
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materials are suitable as host lattices for Eu2+ with their emission depending on the 

coordination of Eu2+ by the surrounding anions. Basically, Eu2+ can either substitute 

other electropositive ions (typically alkaline-earth ions) when the ionic radii are 

appropriate, or it can occupy interstitial sites.  

In this contribution we report on investigation of Eu2+-doped Mg3N2:Eu2+ as well as 

the double nitride Mg3GaN3:Eu2+ with respect to their synthesis, structure elucidation 

and luminescence. These nitrides represent interesting new host lattices for Eu2+-

doping. Furthermore, we explore the electronic partial density of states (pDOS) of the 

latter and quantify its band gap through calculation and experiment.   

 

3.2. Experimental Section 

Synthesis of Mg3GaN3 was carried out in weld shut Ta-ampoules (30 mm length, 

10 mm diameter, 0.5 mm wall thickness). All manipulations were done under Ar-

atmosphere in a glove box (Unilab, MBraun, Garching; O2 < 1 ppm, H2O < 1 ppm). 

Single crystals were obtained from reaction of 0.38 mmol NaN3 (25.0 mg, Acros, 

99%), 0.59 mmol Mg (14.3 mg, Alfa Aesar, 99.9%) and 0.58 mmol Ga (40.4 mg, 

AluSuisse, 99.999%) in 2.19 mmol Na-flux (50.4 mg, Sigma Aldrich, 99.95%). For 

doping, 2 mol% of EuF3 was added. Ca was introduced into the metallic melt with the 

initial goal of finding new compounds in the system Ca-Ga-Mg-N. However, in these 

experiments Ca has not been incorporated into the final products but did appear to 

improve crystallinity. Reactions without additional Ca have been unsuccessful so far.  

Synthesis of doped Mg3N2 was performed analogously in Ta-ampoules sealed under 

inert-gas conditions in Ar-atmosphere. Single crystals were obtained from reaction of 

0.30 mmol NaN3 (20.2 mg, Acros, 99%), 0.47 mmol Mg (11.4 mg, Alfa Aesar, 99.9%) 

and 0.5·10-3 mmol EuF3 (1.2 mg, Sigma Aldrich, 99.99%) as dopant in 2.12 mmol 

Na-flux (48.7 mg, Sigma Aldrich, 99.95%). According to EDX-measurements, 

addition of Sr and Ge metal were found to improve crystallinity but were not 

incorporated into the crystalline product.  

Weld shut Ta-ampoules were placed into quartz tubings under vacuum to prevent 

oxidation of the ampoules. The respective reaction mixtures were then heated in a 

tube furnace at a rate of 0.83 °C/min to 760 °C, maintained at that temperature for 
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48 h and then cooled down to 200 °C at a rate of 0.06 °C/min. Subsequently, the 

furnace was turned off and the Ta-ampoules were opened in a glove box. The Na-

flux was removed from the reaction products by sublimation at 320 °C under vacuum 

for 10 h. 

Scanning electron microscopy was performed on a JEOL JSM 6500 F equipped with 

a field emission gun at an acceleration voltage of 30 kV. Synthesized samples were 

prepared on adhesive conductive carbon pads and coated with a likewise conductive 

carbon film. Chemical compositions were confirmed by EDX spectra (detector: 

Oxford Instruments), each spectrum was recorded on an area limited to one crystal 

face to avoid influence of possible contaminating phases and to verify that additional 

Ca or Sr and Ge were not incorporated into the crystalline products.  

 

For X-ray diffraction and luminescence investigations, single crystals of each 

compound were sealed in glass capillaries under inert conditions. 

Single-crystal X-ray diffraction data of Mg3GaN3 were collected on a Nonius Kappa-

CCD diffractometer with graded multilayer X-ray optics and monochromated Mo-Kα 

radiation (λ = 0.71073 Å). X-ray diffraction data of Mg3N2 single crystals were 

collected on a STOE IPDS I diffractometer using monochromated Mo-Kα radiation 

(λ = 0.71073 Å). Applied absorption corrections were done using WinGX and X-

RED.43,44 The structures were solved by direct methods implemented in SHELXS-

97.45,46 Refinement of crystal structures was carried out with anisotropic displacement 

parameters for all atoms by full-matrix least-squares calculation on F2 in SHELXL-

97.46,47 Further details of the structure investigations are available from the 

Fachinformationszentrum Karlsruhe, D-76344 Eggenstein Leopoldshafen, Germany 

(fax: +49-7247-808-666; email: crysdata@fiz.karlsruhe.de) on quoting the depository 

numbers CSD-425108 (Mg3GaN3) and CSD-425109 (Mg3N2), respectively. 

N K-edge soft X-ray emission and absorption spectroscopy (XES and XAS, 

respectively) measurements of Mg3GaN3 were performed at the XES endstation of 

the Resonant Elastic and Inelastic X-ray Scattering beamline of the Canadian Light 

Source located on the University of Saskatchewan campus. The monochromator’s 

resolving power (E/∆E) was approximately 1×104, and it was calibrated such that the 

lowest energy peak in the h-BN absorption spectrum appeared at 402.1 eV in the 
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bulk-sensitive total fluorescence yield (TFY) mode. All reported Mg3GaN3 absorption 

measurements were also performed in TFY mode to mitigate the possibility of 

surface contamination effects. The emission spectrometer, currently undergoing 

commission, has a theoretical resolving power of 2×103 at the N K-edge. It uses 

diffraction gratings in a Rowland circle geometry as dispersive elements, and is fitted 

with a microchannel plate detector. XES measurements were calibrated relative to 

the monochromator using a series of elastic peak measurements. The double nitride 

sample consisted of an agglomeration of single crystals, stored under Ar-atmosphere 

prior to being mounted on carbon tape. Exposure to ambient conditions was less 

than ten minutes. 

Density functional theory (DFT) calculations of the electronic structure of Mg3GaN3 

were performed with the WIEN2k software package48 using the Perdew-Burke-

Ernzerhoff generalized gradient approximation (PBE-GGA).49 The theoretical band 

gap was calculated with the modified Becke-Johnson (mBJ) exchange-correlation 

functional,50 which has been shown to improve calculated band-gap values for most 

semiconductors.51 Calculations were performed on a (5×7×12) k-point mesh with a 

plane-wave cutoff of -8.0 Ryd.  

Luminescence investigations were performed on single crystals placed in glass 

capillaries (diameter 0.2 mm, Hilgenberg) at room temperature. The capillaries were 

aligned with a Leitz Epiverts microscope. A JobinYvon Traix190 monochromator with 

365 nm wavelength was used as excitation source, while a CCD camera (LaVision 

Dyna Vision) was used to detect the luminescence through a 500 µm slit. 

 

3.3. Results and Discussion 

The ternary nitride Mg3GaN3 was obtained as a colorless to light yellow powder with 

light yellow crystals having the appearance of hexagonal plates. EDX analyses have 

confirmed the sum formula. The crystals were not sensitive to moisture and air, even 

contact with ethanol or acetone had no influence on the compound.  

The existence of a ternary nitride with stoichiometric formula Mg3GaN3 was claimed 

earlier by Verdier et al., obtained as a green powder from the reaction of GaN and 

Mg3N2 at 930 °C.52 The authors reported nonindexed powder data and postulated an 
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atomic ratio Mg:Ga:N of 3:1:3 but no structural details have been published so far. 

Here, we were able to obtain this compound as colorless single crystals and to 

elucidate the crystal structure. Calculated reflection positions and intensities from 

single-crystal data show accordance to data reported by Verdier.  

The product of the second reaction route described in the experimental section was 

obtained as heterogeneous mixture of metallic powder, orange crystals and colorless 

cube shaped crystals. EDX analysis showed the presence of only Mg and N in the 

cube shaped crystals, while the orange crystals were found to be Sr(Mg3Ge)N4.53  

 

3.3.1. Crystal Structure Description 

The crystal structure of Mg3GaN3:Eu2+ was solved using single-crystal X-ray 

diffraction data. The Eu2+ content was neglected because of its insignificant 

contribution to the scattering density. Initially, the solution was carried out in space 

group R3m (no. 160). After examination with PLATON54,55 further refinement was 

performed in space group R3̄m (no. 166) with a = 3.3939(5) and c = 25.854(5) Å. 

Crystallographic data for Mg3GaN3 are summarized in Table 1. The atomic 

coordinates and displacement parameters are listed in Table 2 and 3, while selected 

bond lengths and angles are shown in Table 4.  

Similarly to most Ga-N compounds, the structure of Mg3GaN3 is composed of metal 

centered nitrogen tetrahedra (Fig. 1). Two metal sites are present in the crystal 

structure whereby one site is occupied by an even number of Mg- and Ga-atoms, 

while the other is occupied solely by Mg. The distances Mg-N and (Mg/Ga)-N vary in 

the range 1.9815(6)-2.1915(8) Å and thus are representative for typical Ga-N or 

Mg-N distances.40,53,56 The observed bond lengths agree well with the expected sum 

of the ionic radii, even for the mixed occupied site.57-59 
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Table 1. Crystallographic Data for Mg3GaN3. 

 Mg3GaN3 

formula mass/g·mol-1 184.68 

temperature/K 293(2) 

crystal system trigonal 

space group R3̄m (no. 166) 

lattice parameters/Å a = 3.3939(5) 

c = 25.854(5) 

V/Å3 257.91(7) 

formula units/cell 3 

crystal size/mm3 0.05 · 0.04 · 0.02 

abs. coefficient µ/mm-1 8.321 

F (000) 264 

diffractometer  Nonius Kappa-CCD 

radiation,  

graphite-monochromator 

Mo-Kα (λ = 0.71073 Å) 

θ range/° 4.73– 27.48 

measured reflections 275 

independent reflections 102 

observed reflections 100 

refined parameters 10 

GOF 1.067 

R indices (Fo
2 ≥ 2σ(Fo

2)) R1 = 0.0252 
wR2 = 0.0616 

R indices (all data) R1 = 0.0255 
wR2 = 0.0617 
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The tetrahedra are connected to each other by common corners and edges, building 

a three-dimensional network. Both tetrahedra MgN4 and (Mg/Ga)N4 are connected 

via edges to themselves and via corners to the other kind. Thereby, sheets of MgN4- 

and (Mg/Ga)N4-tetrahedra are built which are linked to each other via vertices and 

stacked along [001] (Fig. 1). In their second coordination sphere each metal atom is 

coordinated by twelve further metal atoms. The mixed (Mg/Ga)-site is surrounded by 

a cuboctahedron, while the pure Mg-site is coordinated with an anti-cuboctahedron.  

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (in 10-4 pm2) of 
 Mg3GaN3 (e.s.d.’s n parentheses). 

site Wyckoff 
Position 

x y z Ueq/ Å3 

Mg1/Ga1 6c 0 0 0.12999(3) 0.0124(4) 
Mg2 6c 0 0 0.29538(7) 0.0092(4) 
N1 6c 0 0 0.21474(13) 0.0105(9) 
N2 3a 0 0 0 0.0090(11) 
 

 
Figure 1. Figure 1. Crystal structure of Mg3GaN3. Unit cell shown in solid black lines. Sheets of 

(Mg/Ga)N4-units (light blue) and MgN4-tetrahedra (dark blue) linked via corners to each 
other and via edges within the sheets. 

 

Table 3. Anisotropic displacement parameters (in 10-4 pm2) for Mg3GaN3 (e.s.d.’s in 
parentheses). 

atom U11 U22 U33 

Mg1/Ga1 0.0081(4) U11 0.0210(6) 

Mg2 0.0080(5) U11 0.0116(8) 

atom U23 U13 U12 

Mg1/Ga1 0 0 0.00406(19) 

Mg2 0 0 0.0040(3) 
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Nitridogallates containing Mg are barely known thus far. The only examples 

appearing in the literature are Ca2Ga3MgN5 and Sr(Mg2Ga2)N4.42,53 For both 

compounds, mixed occupation Mg/Ga on the tetrahedral sites has been reported. 

These tetrahedra exhibit both corner and edge sharing, forming a network that 

represents the anionic substructure charge balanced by Ca2+ or Sr2+, respectively. 

Contrary to this, in the crystal structure of Mg3GaN3 there are no further metal sites 

beside the ones in the uncharged tetrahedron network. Therefore, the atomic ratio 

(Mg/Ga) : N, representing the degree of condensation κ = 4 : 3, is much higher than κ 

of any other known nitridogallate. According to Liebau,60 Mg3GaN3 can be interpreted 

as a double nitride of Mg and Ga rather than a magnesium nitridogallate as assumed 

before.52  

 

 

Table 4. Selected bond lengths and angles in Mg3GaN3 (e.s.d.’s in parentheses). 

(Mg1/Ga1)-N1 3x 1.9815(6) Å 

(Mg1/Ga1)-N2  2.191(4) Å 

Mg2-N1 3x 2.1915(8) Å 

Mg2-N2  2.085(4) Å 
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 An alternate structural description of Mg3GaN3 can be afforded on the basis of anion-

centered polyhedra. There are two distinct nitrogen sites (Fig. 2). N1 is surrounded 

by six Mg-atoms in edge-

sharing MgN4-units in a 

slightly distorted octahedron, 

while N2 is coordinated by five 

metal atoms in a trigonal 

bipyramidal configuration, 

belonging to one MgN4- and 

four (Mg/Ga)N4-tetrahedra. 

These structural details can be compared to the respective binary nitrides Mg3N2 and 

GaN. In Mg3N2 there are two N-sites as well,27 both of which are sixfold coordinated 

with one of them showing the same hexagonal arrangement of six MgN4-tetrahedra 

as N1 in Mg3GaN3. In GaN, regardless of whether hexagonal or cubic 

modification61,67 is realized, nitrogen is coordinated by four GaN4-units in a 

tetrahedral arrangement. This arrangement is comparable to the surroundings of N2 

in Mg3GaN3, where the fivefold coordination of the N-atom can also be seen as a 

tetrahedral arrangement of three (Mg/Ga)N4- and one MgN4-unit with a further 

(Mg/Ga)N4-tetrahedron. The anion-centered polyhedra illustrate the structural relation 

to the binary nitrides and support the double nitride character of Mg3GaN3. Sr3GaN3 

is known as well and its structure has been described in the literature. Unlike 

Table 5. MAPLE values [kJ/mol] for Mg3GaN3 and Mg3N2 and respective deviation Δ [%] from 
theoretical value of constituting nitrides. 

Mg3GaN3 
calculated  
MAPLE values Δ Mg3N2 

calculated  
MAPLE values Δ 

 Mg 2206.12 - 2416.53      
 Mg/Ga 3402.19 - 3587.68   Mg 2250.57  
 N 4528.52 - 5275.71   N 4757.32 - 4764.33  

       Mg3GaN

3 
26394.85   Mg3N2 16284.66  

      model:    model:    
 Mg3N2

27   3 MgSiN2
62   

+ GaN61 26772.85 1.41 - Si3N4
63 16265.34 0.11 

Typical partial MAPLE values [kJ/mol]:Ga3+: 4500 - 6000; Mg2+: 2100 - 2400; N3-:3000 – 6000.34,64-66 

 

Figure 2. N-coordination of N-sites in Mg3GaN3. 
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Mg3GaN3 the Sr compound is made up of Sr2+ and isolated trigonal planar [GaN3]6- 

ions.68 Contrary, Mg3BN3 has to be classified as a nitridoborate nitride containing 

even linear [BN2]3- ions and isolated N3- ions besides Mg2+.69 The system Mg/Ga/N 

has been thoroughly studied in the literature,11-20 however no other ternary Mg-Ga-N 

compounds but only quaternary Mg-containing nitridogallates of formula 

Ca2Ga3MgN5 or Sr(Mg2Ga2)N4 have been described.42,53 

There are a number of other double nitrides (e. g. Li7PN4) made up of edge-sharing 

LiN4- and PN4-tetrahedra70 or phenakite-type BeP2N4 containing an uncharged three-

dimensional network of all corner-sharing BeN4- and PN4-tetrahedra.71  

Concerning the degree of condensation κ the double nitride Mg3GaN3 (κ = 4:3) is 

intermediate between the binary nitrides Mg3N2 (κ = 3:2) and GaN (κ = 1:1).  

The crystal structure of Mg3N2 was re-refined on the basis of single-crystal X-ray 

diffraction data. The solution and refinement was performed in cubic space group Ia3̄ 

(no. 206) with a = 9.955(2) Å. The refined crystal structure parameters are slightly 

different from single-crystal data published before,27 but agree well with literature 

values from powder X-ray investigations on Mg3N2.24-26,72 The results of the crystal 

structure refinement are listed in the supporting information. Mg3N2 crystallizes in the 

anti-bixbyite type and is constituted of edge-sharing MgN4-tetrahedra.27 To further 

confirm the refined crystal structures of Mg3GaN3 and Mg3N2, MAPLE calculations 

were performed on both compounds. The electrostatic consistency was proven by 

comparison of the MAPLE sum with the sum of constituting nitrides. Moreover, 

MAPLE values for each atom were compared with known MAPLE values from 

reference data previously reported.34 Results of MAPLE investigations are listed in 

Table 5. 

 

3.3.2. DFT Calculations and Soft X-ray Spectroscopy of Mg3GaN3 

Given a well-defined, periodic crystal structure, DFT calculations can be used to 

predict the electronic properties of a material, to explore the chemical bonding that 

occurs and further refine its structural parameters. In order to perform DFT 

calculations on Mg3GaN3 (Fig. 1), the mixed occupancy metal sites must be divided 

evenly into pure Mg- and Ga-sites with periodic ordering. Since the unit cell in 
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Figure 1 contains six inequivalent mixed sites, a simple way to achieve this would be 

to assign three of them as Ga-atoms and three as Mg. There are ten unique unit cells 

that can be created in this manner, all of which predict Mg3GaN3 to be either a metal 

or a narrow band gap (<0.2 eV) semiconductor when their electronic structure is 

calculated. Given the colorless nature of the double nitride crystals, such structures 

can be safely ruled out. 

In a 2×2×1 supercell, all of the 

aforementioned inequivalent sites are 

quadrupled, generating six different 

sets of four equivalent crystal 

positions. The total energy of the unit 

cell is found to decrease when each 

set of equivalent sites is half filled with 

Mg and half with Ga, and decreases 

further if each Ga-site is only 

coordinated with one more Ga-atom in the second coordination sphere, as shown in 

Figure 3. Furthermore, when the electronic structure of this particular configuration is 

calculated, a band gap compatible with colorless Mg3GaN3 crystals is predicted. If 

this structure is relaxed to minimize internal atomic forces and pressure on the unit 

cell, the resulting optimized atomic coordinates and lattice constants agree with 

results of the single-crystal X-ray diffraction experiment. The calculated band gap is 

not significantly affected by relaxing the crystal structure. 

The calculated DOS is shown in the bottom frame of Figure 4. Typically, calculations 

using the PBE-GGA exchange-correlation functional are found to underestimate the 

band gap, while mBJ calculations provide more appropriate band gap estimates but 

have been observed to horizontally contract the surrounding states.74 For Mg3GaN3, 

PBE-GGA calculations returned a band gap of 1.7 eV, while mBJ calculations 

predicted a more reasonable value of 3.0 eV. To compensate for the shortcomings of 

both techniques, Figure 4 uses the PBE-GGA calculated DOS but with the 

conduction states shifted up 1.3 eV to reflect the mBJ band gap.  

A band of Ga 3d states can be found from -15 to -11 eV relative to the Fermi energy, 

in which a narrow peak of states at -13.3 eV comprising primarily of Ga 3d character 

is surrounded by hybridized Ga 3d and N 2s states. The 6.5 eV wide valence band, 

Figure 3. A VESTA70 visualization of the 
energetically favored crystal structure of 
Mg3GaN3 with optimal Mg/Ga ordering 
and crystal symmetry. 
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terminating at the Fermi energy, is dominated by N 2p character and contains very 

little charge associated with Mg or Ga. This suggests that bonding is fairly ionic, with 

N-atoms peeling away some valence electrons from the metal sites. In fact, each Ga-

site only contributes 0.3 e of charge to the DOS in the valence band, essentially 

giving them a 3d10 valency. This could explain the energetic preference for the 

Mg/Ga-ordering in Figure 4. Any other stoichiometric configuration would include 

more than one Ga-Ga coordination in the second coordination sphere, which would 

increase the total energy of the cell through d10-d10 filled-shell Pauli repulsion.  

 

The conduction band contains relatively few states from 3 to 5 eV. N s and p 

character dominate the conduction band from 5 to 15 eV, at which point the N p 

states begin to recede and N s and Mg states become more prominent.  

Examining the ground-state band structure (Fig. 5), the weak low-energy conduction 

states are observed to be the result of a single high-curvature band at the 

Figure 4. The calculated DOS of Mg3GaN3 (bottom 
panel). The total DOS for all atoms is shown in dark gray, 
N p states are light gray, and total Ga- and Mg-states are 
blue and red, respectively. Measured and calculated soft 
X-ray emission (XES) and absorption spectra (XAS, top 
panel). Measurements are shown in black, ground state 
(GS) calculations are red, and the core hole (CH) 
absorption spectrum is blue. Dashed lines represent the 
band gap edges. 

Figure 5. The calculated ground-state band structure of 
Mg3GaN3.The blue band is responsible for the weak states 
near the conduction band minimum. The chosen k-point 
path is standard for monoclinic unit cells. 
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conduction-band minimum. This calculation also reveals that the band gap of 

Mg3GaN3 is direct across the Γ-point. 

XES and XAS offer an indirect probe of the local partial DOS in the valence and 

conduction bands, respectively. At the N K-edge, these techniques are predominantly 

sensitive to N p states. The measured N Kα emission and N 1s absorption spectra 

are shown in the top frame of Figure 4 in black.  

Significant core hole lifetime broadening effects prevent any fine details of the 

emission spectrum from being resolved. There is a single peak at 392 eV (relative to 

the N 1s core level) with a broad low energy shoulder. The measured XAS has a 

3 eV wide onset followed by four resolvable features, including an N2 gas absorption 

spectrum superimposed on the Mg3GaN3 spectrum between 400.5 and 402 eV. This 

gas likely originates from within the material, liberated by irradiation before becoming 

trapped in the pockets between agglomerated crystals.75 Successive XAS scans 

show an increase in N2 gas buildup, but no other spectral changes due to radiation 

damage are observed.  

The WIEN2k utility XSPEC, which uses the formalism described in ref. 76, is used to 

estimate ground-state N Kα emission spectra from the occupied DOS and absorption 

spectra from the unoccupied DOS. These calculated spectra are shown in the top 

frame of Figure 4 in red. The calculated XES spectrum agrees well with the 

measured emission profile in terms of valence band width and overall shape. All 

three of the Mg3GaN3 absorption features observed in the XAS measurement are 

recreated in the calculated absorption spectrum at approximately the same energy, 

as well as a fourth feature that may have been obscured by the N2 gas signal in the 

measured XAS. There is a slight disagreement in the relative peak heights between 

the measurement and calculation, which is likely the result of the N 1s core hole 

introduced in the course of an XAS measurement. Indeed, in calculations with a core 

hole present, the relative amplitudes of lower energy features are increased (Fig. 4, 

top panel, blue line). However, such calculations almost invariably overestimate the 

density of core holes and their effects on the electronic structure, placing too much 

emphasis on the low energy states and shifting the entire conduction band down in 

energy. It would be possible to decrease the core hole density by further expanding 

the supercell or introducing fractional core holes, but such calculations are 
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computationally expensive, and the observed core hole effect is too small to make 

this approach worthwhile. 

In the region of the valence-band maximum and conduction-band minimum, the 

measured and calculated spectra are in very good agreement, suggesting 

experimental confirmation of the predicted 3.0 eV band gap. Furthermore, the 

excellent overall agreement between the experimental and theoretical soft X-ray 

spectra lead us to conclude that the structure shown in Figure 3 is the correct choice 

for Mg3GaN3. 

 

3.3.3. Luminescence Investigations 

 Luminescence investigations were performed on Eu2+-doped single crystals of both 

compounds. When irradiated with UV to blue light, crystals of Mg3GaN3:Eu2+ show 

yellowish luminescence at room temperature. The 365 nm excitation yields an 

emission band peaking at 578 nm with a lumen equivalent of 132 lm/W and CIE color 

coordinates x = 0.491, y = 0.498. The full width at half maximum (FWHM) was 

measured to be 4052 cm-1 (132 nm). The emission spectrum (Fig. 6) shows a tailing 

on the right and a second order excitation peak that occurs due to instrumental 

reasons. Eu2+-doped samples of Mg3N2 were equally investigated under room 

temperature conditions. An emission band with maximum intensity at 589 nm was 

observed when excited with 365 nm light (Fig. 6). Mg3N2:Eu2+ shows a FWHM of 

4056 cm-1 (147 nm) with a lumen equivalent of 317 lm/W and CIE color coordinates 

x = 0.509 and y = 0.480. An uncommon green luminescence of non-doped Mg3N2 

powders was reported in literature.28  

Figure 6. Emission spectra of Mg3GaN3:Eu2+ (left) and Mg3N2:Eu2+ (right).  
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In both compounds the question arises as to where the Eu2+ activator ions are 

located within the crystal structure. In most nitride host lattices, Eu2+ is supposed to 

occupy an alkaline-earth site (e. g. Ba3Ga3N5:Eu2+ and Sr2Si5N8:Eu2+).34,40 The ionic 

radii of sixfold coordinated alkaline-earth ions Ba2+ (1.35 Å), Sr2+ (1.18 Å) and Ca2+ 

(1.00 Å) fit that of sixfold surrounded Eu2+ (1.17 Å) although Ba2+ is slightly larger and 

Ca2+ is smaller.58 Nevertheless, the change of lattice structure caused by this 

mismatch is often helpful for luminescence due to influence on bond lengths and 

resulting change in energy-level positions. Presumably, the fourfold coordinated 

Mg2+-site in Mg3GaN3 with an ionic radius of 0.57 Å is much too small to be occupied 

by Eu2+. The mixed metal site can also be ruled out because it is even smaller than a 

pure Mg2+-site. This leads to the assumption that Eu2+ is incorporated on interstitial 

sites of the crystal structure. In the network of Mg3GaN3 two kinds of octahedral voids 

(Fig. 7a, b) are present.  

 

The polyhedra around these voids are linked through edges to themselves and via 

faces to each other. Both octahedra offer a possible position for Eu2+. The positions 

displayed in yellow color in Figure 7 are thus suitable for Eu2+ and the observed 

distances to N-atoms of 2.320-2.489 Å are in good agreement with typical distances 

for Eu-N found in the literature.77,78 To the best of our knowledge, Mg3GaN3:Eu2+ is 

the first reported luminescent double nitride.  

Mg3N2 crystallizes in an anti-bixbyite type of structure. In this crystal structure there 

are also two different octahedral voids, but these are edge-sharing in all three spatial 

directions. Eu2+ atoms have been introduced onto these sites in order to verify the 

occurring Eu-N distances (Fig. 7c, d), which range from 2.489 to 2.525 Å. The 

Figure 7. Octahedral voids in the crystal structures of Mg3GaN3 (a and b) and Mg3N2 (c and d). The yellow 
spheres are possible Eu-atom positions and the resulting distances to coordinating N are given in Å. 
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highest remaining electron density during structure refinement of Mg3N2:Eu2+ lies on 

a special site (8a) and is therefore exactly in the center of one of these octahedral 

voids (Fig. 7d). This could be another hint for Eu2+ being located on this site. Due to 

the low doping level (2 mol% Eu), no refinement of the occupancy of Eu on this 

position has been possible.  

To reassess if the observed luminescence of Mg3GaN3:Eu2+ and Mg3N2:Eu2+ could 

be traced to these voids, known compounds with similar Eu-N distances and 

coordination numbers have been compared. One example is Li2CaSiN4 where a 

sixfold coordinated Ca-site was reported with Ca-N distances ranging from 

2.489-2.586 Å.79 In the doped compound Li2CaSiN4:Eu2+ it is assumed that Eu2+ 

occupies a Ca2+-site. The observed luminescence shows an emission-band 

maximum at 583-585 nm.80 In Eu2+-doped Li-α-SiAlON the activator Eu2+ is supposed 

to occupy the Li+-site.81 There the coordination number is seven and distances to 

N/O range from 2.052 to 2.767 Å. The reported luminescence varies between 563 

and 586 nm, depending on composition and Eu2+-concentration. This is in good 

agreement with the luminescence data of Mg3GaN3:Eu2+ and Mg3N2:Eu2+ so we can 

assume that Eu2+ occupies an interstitial position in these two nitride networks. To 

understand the origin and the quality of luminescence properties, detailed knowledge 

of the local environment of the activator ion is necessary. Recent investigations 

focused on determination of Eu-contribution in the M-sites in M2Si5N8 (M = Ca, Sr, 

Ba). With a high concentration of Eu2+, a reliable distribution and a preferred site can 

be determined based on structural refinement methods and composition 

investigations.82 These investigations give an indication of the average Eu2+-

contribution, statistically distributed over the whole crystal, but no information of the 

local structure of the activator can be achieved. Another recent approach to detect 

interstitial dopants and elucidate local surrounding of the dopant involved STEM 

investigations on β–SiAlON. There, a single dopant ion was detected in the atomic 

channel of the crystal structure.83 This method seems quite promising when the layer 

thickness is suitable for such measurements and the crystal structure reveals 

appropriate requirements. Nevertheless, it is still difficult to determine the real 

location and the amount of activator ions in such host lattices 
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3.4. Conclusion 

In this study we present a structural description of Mg3GaN3 based on single crystal 

X-ray diffraction data, which shows a three-dimensional uncharged network of 

corner- and edge-sharing MgN4- and mixed (Mg/Ga)N4-tetrahedra. Since all metal 

atoms are part of the tetrahedral network, Mg3GaN3 can be classified as a double 

nitride, in contrast to known nitridogallates which exhibit an anionic tetrahedra 

substructure with electropositive counter ions like Sr2+ or Ba2+. To our knowledge the 

compound Mg3GaN3 represents the first known stoichiometrically defined ternary 

compound in the system Mg/Ga/N. It is found to be a semiconductor with a direct 

band gap of 3.0 eV across the Γ-point. DFT calculations suggest a periodic ordering 

in the mixed occupancy metal sites, and the measured soft X-ray spectra confirm 

these calculations. The band gap of Mg3GaN3 lies with 3.0 eV in between that of 

Mg3N2 (2.8 eV)84 and GaN (3.02–3.20 eV),85 which further emphasizes the double 

nitride character of Mg3GaN3. Upon doping with Eu2+ the double nitride shows broad-

band emission due to 4f6(7F)5d1 → 4f7(8S7/2) transitions with maximum intensity at 

578 nm after excitation at 365 nm. Due to the structural characteristics of 

Mg3GaN3:Eu2+ it is assumed that activator ions are localized in interstitial octahedral 

voids of the crystal structure.  

A likewise luminescent binary nitride, Mg3N2:Eu2+ is also investigated. Structural 

details are known from the literature and presumably Eu2+ also occupies interstitial 

sites. After excitation with UV to blue light, this compound shows luminescence with 

an emission-band maximum at 589 nm with a FWHM of 4056 cm-1 (147 nm).  

Both presented nitrides are new host lattices for Eu2+-doping and show interesting 

luminescence properties. The results of this study illustrate the potential of nitrides as 

host lattices for Eu2+-doping once again. It is remarkable that double nitride Mg3GaN3 

is the first representative showing luminescence, to the best of our knowledge. 

Further optimization of synthesis and the optical properties of these materials must 

be achieved for them to have possible applications as phosphor materials. 
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4. Ba3Ga3N5 – A Novel Host Lattice for Eu2+-Doped Luminescent 
Materials  

 

In the chapter above two luminescent nitrides were reported. Even though Mg3GaN3 

is a ternary compound it is closely related to binary nitrides as discussed before. 

Herein we present a novel ternary compound Ba3Ga3N5. This compound is in 

contrast to the nitrides shown before a nitridogallate since it contains an anionic 

substructure charge balanced by Ba2+ in this case. The mentioned anionic 

substructure is built up of highly condensed GaN4-tetrahedra, sharing edges and 

additionally corners, building strands running along [010]. In between these strands 

Ba2+ ions are intercalated. Upon doping with Eu2+ Ba3Ga3N5 shows also 

luminescence properties in the orange to red spectral region when irradiated with UV 

to blue light. This compound represents the first luminescent nitridogallate and 

reveals an unexpected substructure. In this chapter, synthesis conditions as well as 

crystal structure investigations and description are presented. Additionally, band gap 

calculations and luminescence investigations were carried out and are reported in the 

following.  
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Abstract: The alkaline earth nitridogallate Ba3Ga3N5 was synthesized from the 

elements in a sodium flux at 760 °C utilizing weld shut tantalum ampoules. The 

crystal structure was solved and refined on the basis of single-crystal X-ray diffraction 

data. Ba3Ga3N5 (space group C2/c (no. 15), a = 16.801(3), b = 8.330(2), 

c = 11.623(2) Å, β = 109.92(3)°, Z = 8) contains a hitherto unknown structural motif in 

nitridogallates, namely infinite strands made up of GaN4-tetrahedra, each sharing two 

edges and at least one corner with neighboring GaN4-units. There are three 

Ba2+-sites with coordination numbers six or eight, respectively, and one Ba2+-position 

exhibiting a low coordination number 4 corresponding to a distorted tetrahedron. 

Eu2+-doped samples show red luminescence when excited by UV-irradiation at room 

temperature. Luminescence investigations revealed a maximum emission intensity at 

638 nm (FWHM = 2123 cm-1). Ba3Ga3N5 is the first nitridogallate for which parity 

allowed broadband emission due to Eu2+-doping has been found. The electronic 

structure of both Ba3Ga3N5 as well as isoelectronic but not isostructural Sr3Ga3N5 

were investigated by DFT methods. The calculations revealed a band gap of 1.53 eV 

for Sr3Ga3N5 and 1.46 eV for Ba3Ga3N5. 
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4.1. Introduction 

Gallium nitride GaN is a direct wide band gap semiconductor that has found 

increasing application in high performance light emitting diodes (LEDs).1-6 While 

synthesis, crystal growth and doping of GaN has been studied thoroughly,7-12 the 

chemistry of ternary and higher nitridogallates deriving from binary GaN has been 

widely neglected as yet. In the literature, only a small number of ternary alkaline 

earth nitridogallates has been described and thereof, only two compounds are 

containing Ba.13-18 Most nitridogallates are made up of GaN4-tetrahedra which can be 

connected through both common corners and/or common edges.13,15,16 Depending 

on the degree of condensation of the nitridogallate substructure, a broad range of 

structural motifs has been identified in nitridogallates, including one-dimensional 

chains of edge-sharing GaN4-units (e.g. in Sr3Ga2N4), two-dimensional sheets made 

up of Ga2N6-units which are further linked through corners (e.g. in Ca3Ga2N4), or 

three-dimensional networks built up from vertex- and corner-sharing tetrahedra (e.g. 

in Sr3Ga3N5).16 Synthesis of nitridogallates starts typically from the elements 

employing a sodium flux and increased nitrogen pressure. These synthesis 

conditions can be achieved easily by thermal decomposition of sodium azide in weld 

shut Ta or Nb ampoules. The solubility of nitrogen in sodium can be further enhanced 

by addition of electropositive elements like alkaline earth metals.18,19 Synthesis of 

highly condensed nitridogallates (i.e. atomic ratio Ga : N > 1 : 2) has been pursued 

for a couple of years in order to reach a higher stability against hydrolysis. To 

accomplish this goal either a higher nitrogen pressure or a lower metal amount is 

necessary.18  

During the last decade, ternary and multinary alkaline earth nitrides emerged as 

important host lattices for doping with Eu2+ exhibiting parity allowed intense broad 

band emission due to 4f6(7F)5d1 → 4f7(8S7/2) transitions. Several of these nitrides 

turned out to be excellent optical materials for application in phosphor-converted 

(pc)-LEDs.20,21 Nitridosilicates, nitridoalumosilicates and related SiAlONs have been 

intensively investigated in this respect.15,21-27 However, these investigations have 

scarcely been extended to related alkaline earth containing tetrahedra based nitride 

materials, e.g. nitridogallates or nitridophosphates.  
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4.2. Experimental 

Synthesis of Ba3Ga3N5 was carried out in a Ta ampoule (30 mm length, 10 mm 

diameter, 0.5 mm wall thickness). All manipulations were done under argon 

atmosphere in recirculated glove boxes (Unilab, MBraun, Garching; O2 < 1 ppm, 

H2O < 1 ppm). Single crystals of Ba3Ga3N5 were obtained from a reaction of 

0.312 mmol NaN3 (20.3 mg, Acros, 99 %), 0.060 mmol Ba (8.2 mg, Sigma Aldrich, 

99.99 %), 0.005 mmol Sr (0.4 mg, Sigma Aldrich, 99.99 %), 0.062 mmol Mg (1.5 mg, 

Alfa Aesar, 99.9 %) and 0.252 mmol Ga (17.6 mg, AluSuisse, 99.999 %) in 

1.992 mmol Na-flux (45.8 mg, Sigma Aldrich, 99.95 %). For doping purposes 2 mol% 

of EuF3 were added. Sr and Mg were introduced to the metallic melt in order to 

improve crystallinity of the product and for an initially targeted Ba-Mg-Ga-N 

compound. Reactions without these additional metals were unsuccessful. The filled 

Ta ampoule was weld shut under argon atmosphere by arc melting and placed into a 

quartz tubing. The reaction mixture was then heated in a tube furnace (50 °/h) to 

760 °C, maintained at that temperature for 48 h and then cooled to 200 °C with a rate 

of 3.4 °/h. Subsequently, the furnace was turned off. The Ta ampoule was opened in 

a glove box and Na was separated from the product by sublimation at 320 °C under 

vacuum (0.1 Pa) for 18 h.  

Scanning electron microscopy was performed on a JEOL JSM 6500 F equipped with 

a field emission gun at an acceleration voltage of 30 kV. To confirm the chemical 

composition the samples were prepared on adhesive conductive pads and coated 

with a conductive carbon film. Each EDX spectrum (Oxford Instruments) was 

recorded with the analyzed area limited to one crystal face to avoid influence of 

possible contaminating phases. 

Single-crystal X-ray diffraction data were collected on a STOE IPDS I diffractometer 

with graphite monochromated Mo-Kα radiation (0.71073 Å). A numerical absorption 

correction was applied using X-RED.28 The structure was solved using direct 

methods implemented in SHELXS-97.29 Refinement of the structure was carried out 

with anisotropic displacement parameters for all atoms by full-matrix least-squares 

calculation on F2 in SHELXL-97.29 

Density-functional theory (DFT) band structure calculations were carried out with the 

WIEN2k program package,30 using full potential linearized augmented plane wave 
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(LAPW)31 method and the generalized gradient approximation by Perdew, Burke and 

Ernzerhof (PBE-GGA)32 with a separation energy for core and valence states of 

−8 Ry. The energy and charge convergence criteria were chosen to be 10−5 Ry/cell 

and 10−4 e/cell, respectively, and 92 to 105 irreducible k-points were used with a 

cutoff for plane waves RmtKmax = 7.0. 

Luminescence investigations were performed on single crystals placed in a capillary 

(diameter 0.2 mm, Hilgenberg) at room temperature. The capillaries were aligned 

with a Leitz Epivert microscope. Excitation source was a JobinYvon Traix190 

monochromator with 365 nm wavelength. As detector a CCD camera (LaVision 

DynaVision) was used. For recording the emission spectra a 500 µm slit was chosen.  

 

4.3. Results and Discussion 

The heterogeneous reaction product was obtained as a light-orange powder with 

metallic impurities. Under the microscope, the title compound was observed in form 

of orange crystals with a lathy shape. The crystals were sensitive to moisture and air. 

EDX analyses revealed an atomic ratio Ba : Ga : N = 1.0 : 1.0 : 1.6 that agrees well 

with the composition of Ba3Ga3N5. No other elements were detected, although Sr and 

Mg were present in the starting material mixture and synthesis was performed in a 

sodium melt. For X-ray diffraction and luminescence investigations single crystals 

were placed in sealed capillaries to protect them from oxidation and hydrolysis. 

 

4.3.1. Crystal Structure of Ba3Ga3N5 

The crystal structure of Ba3Ga3N5 was solved by using single-crystal X-ray diffraction 

data. The solution and refinement was performed in the monoclinic space group C2/c 

(no. 15) with a = 16.801(3), b = 8.330(2), c = 11.623(2) Å and β = 109.92(3) °. The 

crystallographic data of Ba3Ga3N5 are summarized in Table 1. The atomic 

coordinates and anisotropic displacement parameters are listed in Table 2 and 3. 

Selected bond lengths and angles are shown in Table 4.  
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Table 1. Crystallographic Data for Ba3Ga3N5. 
 Ba3Ga3N5 

formula mass/g·mol-1 691.21 

temperature/K 293(2) 

crystal system monoclinic 

space group C2/c (No. 15) 

cell parameters/Å a = 16.801(3) 

b = 8.330(2) 

c = 11.623(2) 

β/° 109.92(3) 

V/Å3 1529.3(5) 

formula units/cell 8 

crystal size/mm3 0.04 · 0.04 · 0.06 

X-ray density/g·cm-3 6.004 

abs. coefficient µ/mm-1 25.553 

F (000) 2368 

diffractometer, radiation Stoe IPDS, I 

Mo-Kα (λ = 0.71073 Å) 

absorption correction numerical28  

θ range/° 2.58 – 30.42 

measured reflections 7973 

independent reflections 2305 

observed reflections 1616 

refined parameters 102 

GOF 1.008 

R indices (Fo
2 ≥ 2σ(Fo

2)) R1 = 0.0523, 
wR2 = 0.1301 

R indices (all data) R1 = 0.0781, 
wR2 = 0.1458 
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Table 2. Atomic coordinates and equivalent isotropic displacement parameters (in 10-4 pm2) of 
Ba3Ga3N5

a. 
Atom Site x y z Ueq/ Å3 

Ba1 4e ½ 0.15547(14) ¼ 0.02076(26) 

Ba2 4e ½ 0.66165(14) ¼ 0.02063(26) 

Ba3 8f 0.31113(6) 0.41011(12) 0.11565(8) 0.02632(25) 

Ba4 8f 0.29451(5) 0.87596(11) 0.16389(8) 0.02251(23) 

Ga1 8f 0.57973(9) 0.43546(19) 0.05727(13) 0.01844(31) 

Ga2 8f 0.40244(9) 0.24488(18) 0.95047(13) 0.01784(30) 

Ga3 8f 0.57938(9) 0.06821(18) 0.99844(13) 0.01861(31) 

N1 8f 0.4548(2) 0.0747(13) 0.8829(10) 0.0174(20) 

N2 8f 0.4699(7) 0.3998(14) 0.0792(10) 0.0185(20) 

N3 8f 0.3417(8) 0.4055(13) 0.8251(11) 0.0208(21) 

N4 8f 0.3484(7) 0.1039(15) 0.0399(11) 0.0205(21) 

N5 8f 0.06365(7) 0.2677(14) 0.0016(11) 0.0197(21) 
a e.s.d.’s in parentheses 

 

Table 3. Anisotropic displacement parameters (in 10-4 pm2) for Ba3Ga3N5
a. 

Atom U11 U22 U33 U23 U13 U12 

Ba1 0.0225(5) 0.0195(5) 0.0187(5) 0 0.0053(4) 0 

Ba2 0.0207(5) 0.0202(5) 0.0209(5) 0 0.0072(3) 0 

Ba3 0.0207(4) 0.0345(5) 0.0235(4) 0 0.0072(3) 0 

Ba4 0.0199(4) 0.0249(4) 0.0229(4) 0.0021(3) 0.0075(3) 0.0009(3) 

Ga1 0.0182(6) 0.0178(7) 0.0189(6) 0.0011(5) 0.0057(5) 0.0008(5) 

Ga2 0.0186(6) 0.0170(6) 0.0174(6) 0.0002(5) 0.0055(5) 0 

Ga3 0.0177(7) 0.0181(7) 0.0192(7) 0 0.0052(5) 0 

N1 0.022(5) 0.018(5) 0.017(5) 0 0.015(4) 0 

N2 0.019(5) 0.019(5) 0.017(5) 0 0.005(4) 0 

N3 0.028(6) 0.010(5) 0.0120(5) 0 0.003(4) 0 

N4 0.014(5) 0.023(5) 0.024(5) 0 0.003(4) 0 

N5 0.017(5) 0.022(5) 0.025(5) 0 0.013(4) 0 
a e.s.d.’s in parentheses 
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According to its formula, Ba3Ga3N5 exhibits a high degree of condensation κ = 3 : 5 

(i.e. the atomic ratio Ga : N). In accordance with most known nitridogallates,15,16,33 

Ba3Ga3N5 is built up from GaN4-tetrahedra (Figure 1, Figure 2). The latter, centered 

either by Ga1 or Ga3 exhibit cis-edge 

sharing while those around Ga2 show 

trans-edge sharing. The basic structural 

motif of the anionic substructure is thus 

formed by three edge-sharing tetrahedra 

(Ga1, Ga2, Ga3). By further cis-edge 

sharing, these units are connected to 

analogous units in opposite orientation 

(Ga3, Ga2, Ga1) forming infinite chains 

running along [010]. The strongly folded 

chains exhibit further corner-sharing of 

pairs of GaN4-tetrahedra around Ga1 

and Ga3, respectively, resulting in 

three-rings. Thus, the high degree of 

condensation (κ = 3 : 5) is a result of 

the dominance of edge-sharing over corner-sharing and there are no N-atoms which 

are terminally bound to Ga. The latter observation is rather untypical for strand-like 

arrangements of tetrahedra. Moreover, nitrogen atoms N[2] and N[3] occur in atomic 

ratio 3 : 2 which are bound to two or three Ga atoms, respectively.  

As mentioned above, there are only two other ternary Ba nitridogallates. Ba3Ga2N4
15 

contains edge-sharing single chains of GaN4-tetrahedra, which are not connected to 

each other while Ba6Ga5N is a barium gallide nitride containing [Ga5]7- clusters.14 In 

the field of alkaline earth nitridogallates, only Sr3Ga3N5
16 and β–Ca3Ga2N4

13 show a 

high degree of condensation of the anionic substructure, resulting in 

three-dimensional networks. Taking quaternary compounds into account, only in 

Sr(Ga2Mg2)N4 a higher degree of condensation of the (Ga/Mg)N4-tetrahedra can be 

observed, building a three-dimensional network as well. 34 Some nitridogallates build 

either chains16 or sheets16,33 of GaN4-tetrahedra. A number of alkaline earth 

nitridogallates contain no GaN4-tetrahedra at all but show non-condensed trigonal 

planar GaN3-units.17,18,35  

 

Figure 1. Highly condensed strands of 
GaN4-tetrahedra running along [010]. 

Figure 2. Crystal structure of Ba3Ga3N5, viewing 
direction along [010]. Ba2+ yellow, N3- dark blue, 
Ga3+ inside the shown tetrahedra (light blue). 
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Table 4. Selected bond lengths (Å) and angles (°) in Ba3Ga3N5
a. 

Ba1- N1 2.727(10) ·2 Ba4- N1 3.038(12) N1-Ba1-N1 90.7(5) 

N2 2.767(11) ·2 N3 2.937(11) N4-Ba1-N4 163.0(5) 

 N4 2.898(11) ·2  N4 2.719(12) N3-Ba3-N2 104.2(4) 

Ba2- N1 2.930(12) ·2 Ba3- N4 2.677(11) N4-Ba4-N3 146.1(4) 

Ga1- N2 1.970(12) Ga3- N1 2.047(11)   

 N2 2.048(11)  N1 2.067(12)   

 N3 2.034(12)  N4 2.024(12)   

 N5 1.923(11)  N5 1.913(12)   
a e.s.d.’s in parentheses 

In Ba3Ga3N5, there are four crystallographically different Ba2+-sites which 

coordination numbers vary from 4 to 8 (Figure 3). The four-fold coordination 

represents a distorted tetrahedron with rather short distances Ba3-N of 2.677 and 

2.775 Å. Ba1 and Ba4 are coordinated by six nitrogen atoms in a distorted 

octahedron. A higher coordination number of eight is observed around Ba2. The 

resulting irregular quadratic prism contains a particularly elongated Ba2-N3 distance 

(3.119 Å). This distance is slightly longer than expected from the sum of the ionic 

radii (2.88-3.0 Å) while the value for Ba3-N is smaller.36,37  

 

All other Ba-N bond lengths are in good agreement with the sum of the ionic radii. 

Typically, alkaline earth ions are coordinated by four or six nitrogen atoms in 

nitridogallates or nitridosilicates.15,16,38,39 In contrast, the coordination number eight of 

an alkaline earth ion in nitridogallates or (oxo)nitridosilicates is only known for 

LiSrGaN2
33, Sr(Mg2Ga2)N4

34 and BaSi2O2N2
25 so far.  

 

 
Figure 3. Coordination of metal ions in Ba3Ga3N5. Atoms are shown in ellipsoids with 50 % 

probability. 
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An alternative description to the crystal structure may be achieved by introducing 

anion centered polyhedra. In Ba3Ga3N5, most of the five nitrogen sites are 

coordinated by six metal atoms: N1 and N2 are each coordinated by three Ba and 

three Ga atoms, respectively. The six-fold coordination of N3 and N4 consists of two 

Ga and four Ba atoms. N2 and N4 are surrounded by quite regular octahedra, with 

typical distances Ga-N (2.006 Å - 1.974 Å) and Ba-N (2.726 Å - 2.886 Å).15,16 The 

polyhedron around N1 is quite irregular, due to the short distance N1-Ba1 of 2.727 Å. 

The anisotropic displacement ellipsoid of N1 is elongated markedly pointing towards 

Ba1. The polyhedron around N3 is an octahedron which is distorted due to the long 

bond Ba2-N resulting in a squared pyramid.  

Surprisingly, the crystal structure of the analogous Sr-compound is completely 

different. Sr3Ga3N5
16 was described recently from Clarke et al.. It was synthesized in 

a Na-flux at 760 °C. The orange-yellow compound crystallizes in triclinic space group 

P1. In this compound, a three-dimensional network of corner- and edge-sharing 

GaN4-tetrahedra typical for such a high κ-value was reported. In contrast, the anionic 

substructure of Ba3Ga3N5 contains a hitherto unknown structural motif as described 

above. In both compounds corner- and edge-sharing can be observed but in the 

Ba-compound edge-sharing is more dominant. 

Calculations of the Madelung part of the lattice energy were carried out in order to 

confirm the crystal structure of Ba3Ga3N5.40,41 The results of these MAPLE42 

calculations are summarized in Table 5. The partial MAPLE values for all atoms are 

in good agreement with reference data reported before.43 To verify the electrostatic 

consistency of the refined crystal structure, the calculated MAPLE sum of Ba3Ga3N5 

was compared with total MAPLE values of constituting binary and ternary nitrides. 

One model contains a well known nitridosilicate, the other model contains the 

hypothetical binary nitride Ba3N2.44,45  
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Table 5. Partial MAPLE and total MAPLE values [in kJ/mol]  
of Ba3Ga3N5. 

 calculated 
MAPLE value 

Δ / % 

Ba 1628.06-1824.34  

Ga 4930.00-5090.14  

N 4379.99-4821.36  

Ba3Ga3N5 41503.34  

 3 GaN  

 

43830.36 

 

 

0.75 

+ 1.5 Ba2Si5N8 

- 2.5 Si3N4 

  Ba3N2
[44,45]  

43683.77 

 

0.41 +  GaN 

 

Both models differ only slightly from the calculated value for Ba3Ga3N5. With these 

results the electrostatic consistency is proven and the refined crystal structure is 

confirmed.  

 

4.3.2. Luminescence Investigations 

Eu2+-doped samples of the title 

compound show red luminescence 

under UV-irradiation. Luminescence 

investigations were performed on 

single crystals of Ba3Ga3N5:Eu2+ 

(Eu2+ content ca. 2 mol%) sealed in 

glass capillaries. All measurements 

show comparable results so an 

exemplary spectrum of one crystal is 

shown in Figure 4. 365 nm excitation 

yield an emission band peaking at 
Figure 4. Emission spectrum of Eu2+-doped 

Ba3Ga3N5, excitation at 365 nm. 
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638 nm with a lumen equivalent of 173 lm/W and CIE color coordinates x = 0.644, 

y = 0.347. The emission band is quite narrow with a full width at half maximum 

(FWHM) of 2123 cm-1 (84.7 nm).  

Due to the strong red shift of the emission band, we expect the emission originating 

from Eu2+ in octahedral coordination,49 as found for the Ba1 and the Ba4 site. A 

comparison with other known red emitters is difficult, because to our knowledge this 

is the first time a luminescent Eu-doped nitridogallate is reported. Compared with 

other nitridic phosphor materials (e.g. Sr2Si5N8:Eu2+),22,23,50-52 Ba3Ga3N5:Eu2+ shows 

emission in the same spectral region. For Sr2Si5N8:Eu2+ (2 mol% Eu) an emission 

maximum around 620 nm is reported and also the color coordinates (x, y = 0.638, 

0.359) and emission width (FWHM ~ 1950 cm-1) are comparable.53 Other reported 

Eu2+-doped Ba-compounds (e.g. Ba1.89Eu0.11Si5N8)54 show an emission around 

600 nm. 

 

4.3.3. DFT Calculations 

Calculation of the electronic structures for 

Ba3Ga3N5 and isoelectronic Sr3Ga3N5 were 

carried out. As WIEN2k allows only settings 

with a monoclinic angle γ the calculation of 

Ba3Ga3N5 was performed in monoclinic space 

group B2/b. Therefore, the crystal parameters 

were transformed accordingly. Figure 5 shows 

the resulting density of states (DOS) of 

Ba3Ga3N5 and Sr3Ga3N5. The title compound 

shows an electronic band gap of 1.46 eV 

while the Sr-compound shows a slightly larger 

value of 1.53 eV. Due to the insufficient 

description of the exchange correlation 

potential in DFT calculations the calculated 

band gaps are usually smaller than the real 

ones. In both compounds the highest 

occupied states are mainly influenced by 

Figure 5. Calculated Density of States 
(DOS) of Ba3Ga3N3(above) and Sr3Ga3N5 
(down). Displayed are the respective 
overall DOS and the single contributions of 
the elements. 
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nitrogen contributions (over 60 %) whereas the lowest unoccupied states are 

dominated by nitrogen and Ba/Sr contributions. A similar result was reported earlier 

for LiBa5GaN3F5 where the transition also occurs from a nitrogen dominated state in 

a hybrid nitrogen metal state.43 

 

4.4. Conclusion 

In this contribution, a new ternary Ba nitridogallate, the third known at all, was 

reported. This compound exhibits a novel structural feature of GaN4-tetrahedra that 

build up highly condensed strands along [010]. The coordination of the Ba atoms 

varies from a low coordination number of four to a higher coordination of eight 

nitrogen atoms. Employing anion centered polyhedra for structure description, four 

nitrogen sites are sixfold coordinated. The N5 site is surrounded by five cations, 

building a squared pyramid. Confirmation of the crystal structure was accomplished 

by MAPLE calculations. In contrast, the crystal structure of the isoelectronic 

compound Sr3Ga3N5
16 shows a connection of GaN4-tetrahedra in all three directions, 

resulting in a three-dimensional anionic network. Luminescence investigations of 

Eu2+-doped samples of the title compound show a strongly red-shifted peak emission 

at 638 nm with FWHM of 2123 cm-1. The fact that yet Ba3Ga3N5 has only been 

obtained as a side phase, limits the further development of Ba3Ga3N5:Eu2+ as a LED 

phosphor. Nevertheless, the promising luminescence properties of this compound 

are a strong incentive to further optimize its synthesis. DFT calculations of Ba3Ga3N5 

and the isoelectronic Sr-compound were done to determine the band gap resulting in 

a value 1.46 eV for the Ba-compound (1.53 eV for Sr3Ga3N5). The transition takes 

place from a nitrogen state to a hybrid metal (Sr or Ba) nitrogen state.  

The results of this investigation illustrate the potential of nitridogallates as host 

lattices for Eu2+ doped luminescent materials. Both, from a structural point of view but 

also concerning their materials properties, there are similarities between 

nitridosilicates and nitridogallates. 
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5. Ca2Ga3MgN5 – a Highly Condensed Nitridogallate 

Hitherto, novel ternary compounds deriving from binary GaN have been presented. 

Although only a small number of ternary nitridogallates is known, the number of 

known quaternary compounds is even less. In the following a novel quaternary 

nitridogallate, namely Ca2Ga3MgN5 will be reported. The anionic substructure is 

again built up of tetrahedral units but here we observe a mixed occupation with Mg 

and Ga on the tetrahedral site. These miscellaneously occupied tetrahedra are 

sharing corners and edges whereby a three dimensional network results. In the voids 

of this network, Ca-atoms are incorporated. The crystal structure of Ca2Ga3MgN5 can 

be compared to the well known structure of Sr2Si5N8 but reveals a higher 

condensation in the anionic substructure. Synthesis as well as crystal structure 

elucidation and a detailed comparison to the crystal structure of Sr2Si5N8 is 

presented.  
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Abstract: The nitridogallate Ca2Ga3MgN5 was obtained from reaction of the 

elements in sodium flux with Na-azide at 760 °C in weld shut Nb-ampoules. Crystal 

structure solution and refinement was carried out on the basis of single-crystal X-ray 

diffraction data. Ca2Ga3MgN5 (space group C2/m (no. 12), a = 11.160(2), 

b = 3.2965(7), c = 8.006(2) Å, and β = 109.93(3)°, Z = 2) shows an anionic 

substructure made up of mixed (Mg/Ga)N4 tetrahedra which are sharing both 

common vertices and edges building a three-dimensional network. The crystal 

structure of Ca2Ga3MgN5 is related to known alkaline earth nitridosilicates (MII
2Si5N8, 

MII = Sr, Ba), but is significantly higher condensed due to additional edge-sharing in 

the anionic substructure. 
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5.1. Introduction 

Gallium nitrides have found increasing interest in the past. The binary compound 

GaN is a direct semiconductor with a wide bandgap and has been widely applied for 

manufacturing of high performance light-emitting diodes (LEDs).[1-6] Investigation of 

this compound has mainly focused on synthesis, crystal growth, and doping.[7-11] 

However, the chemistry of ternary and higher alkaline earth nitridogallates has been 

more or less neglected so far. In the literature only a small number of ternary 

nitridogallates have been reported and only a few compounds contain the alkaline 

earth element calcium.[12-14] Regarding quaternary nitridogallates, only six 

compounds are known. Sr(Mg2Ga2)N4 exhibits a mixed tetrahedral position 

(Mg/Ga),[15] the other ones are either Li-containing compounds (e.g. LiCaGaN2),[16,17] 

subnitrides (e.g. Ba2GeGaN),[18,19] or oxonitrides (e.g. Sr4GaN3O).[20]  

Most syntheses of nitridogallates start from the elements utilizing liquid sodium as 

flux and employing sealed Ta- or Nb-ampoules. Therein, an increased nitrogen 

pressure is attained by decomposition of an azide. The solubility of nitrogen in 

sodium can be increased by addition of alkaline earth metals or other electropositive 

metals.[21] Recently, highly condensed nitridogallates with an atomic ratio Ga:N > 1:2 

came into the focus due to their higher stability against hydrolysis.[12]  

Nitridogallates are mostly built up of GaN4 tetrahedra that may be connected through 

common corners and/or edges forming 1D- (e.g. in Sr3Ga2N4), 2D- (e.g. in Ca3Ga2N4) 

or 3D-substructures (e.g. in Ba3Ga3N5).[12,22] Besides, non condensed (0D) building 

units have been found as well (e.g. discrete GaN3 units in LiBa5GaN3F5).[23,24] The 

observation of tetrahedral building units illustrates the structural similarities between 

nitridogallates and nitridosilicates. The latter compounds also contain tetrahedral-

based substructures with differing dimensionality and degree of condensation.[25] 

Here, we present the novel nitridogallate Ca2Ga3MgN5 which exhibits a highly 

condensed anionic substructure related to known nitridosilicate structures of MII
2Si5N8 

(MII = Sr, Ba).[26]  
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5.2. Results and Discussion 

The reaction product was obtained as a heterogeneous mixture of crystals and 

metallic impurities. Under the microscope the title compound was observed as yellow 

rods. The crystals were not sensitive to moisture or air. An atomic ratio of 

Ca:Ga:Mg:N = 2.3:3.2:1:6 resulted from EDX-analysis and agrees passable with the 

composition of Ca2Ga3MgN5. Except a negligible amount of oxygen no other 

elements were detected by EDX analysis and thus separation of the product from the 

Na-melt was complete.  

 

Crystal Structure of Ca2Ga3MgN5 

The crystal structure of Ca2Ga3MgN5 was solved by using single-crystal X-ray 

diffraction data. The solution and refinement was performed in the monoclinic space 

group C2/m (no. 12) with a = 11.160(2), b = 3.2965(7), c = 8.006(2) Å, and 

β = 109.93(3)°. The crystallographic data of Ca2Ga3MgN5 are summarized in Table 1. 

The atomic coordinates and displacement parameters are listed in Table 2 and 3, 

selected bond lengths are shown in Table 4. Free refinement of the occupancy of the 

tetrahedra positions resulted in 83 % Ga on (Mg1/Ga1)-site and 56 % Ga on 

(Mg2/Ga2)-site. To reach electrostatic neutrality an occupancy of 90 % Ga on 

(Mg1/Ga1) and 60 % Ga on (Mg2/Ga2) were held through further refinement. Most 

known nitridogallates are built up of GaN4 tetrahedra. Regarding quaternary phases 

in this compound class, only Sr(Mg2Ga2)N4 is known from the literature with a mixed 

occupation of Ga and Mg in the tetrahedra position.[15] An analogous situation was 

observed for Ca2Ga3MgN5. In the latter we found two crystallographic tetrahedra 

positions, both occupied simultaneously by Mg and Ga (see Figure 1). A mixed 

occupation of one site by 

Ga and Mg is possible 

since the ionic radii of the 

fourfold coordinated ions 

are quite similar (0.57 Å 

and 0.47 Å for Mg+2 and 

Ga3+, respectively).[27] The 

distances (Mg/Ga)-N Figure 1. Polyhedra of mixed Mg/Ga-sites and the single Ca2+-site.  
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range from 1.9467(6) to 2.118(3) Å and agree well with the sum of the ionic radii[27,28] 

and vary in the range of known Ga-N or Mg-N distances, respectively.[15] 

 

 
 Ca2Ga3MgN5 

formula mass/g·mol-1 383.68 

temperature/K 293(2) 

crystal system monoclinic 

space group C2/m (no. 12) 

cell parameters/Å 

a = 11.160(2) 

b = 3.2965(7) 

c = 8.006(2) 

β/° 109.93(3) 

V/Å3 276.9(2) 

formula units per cell 2 

abs. coefficient µ/mm-1 16.353 

F (000) 360 

diffractometer 
Nonius Kappa 

CCD 

radiation, 

graphite-monochromator 

Mo-Kα 

(λ = 0.71073 Å) 

θ range/° 3.88 – 27.42 

measured reflections 1208 

observed reflections 1186 

independent reflections 371 

refined parameters 26 

GOF 1.081 

R indices (Fo
2 ≥ 2σ(Fo

2)) 
R1 = 0.0206 

wR2 = 0.0494 

R indices (all data) 
R1 = 0.0231 

wR2 = 0.0487 

 

 

Table 1. Crystallographic Data for Ca2Ga3MgN5. 
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Table 2. Atomic coordinates and equivalent isotropic displacement parameters (in 10-4 pm2) of 
Ca2Ga3MgN5

a. 
Atom Wyckoff-site x y z Ueq/ Å3 

Ca1 4i 0.33614(7) 0 0.3748(1) 0.0073(2) 

Mg1/Ga1 4i 0.03750(4) 0 0.27970(5) 0.0062(2) 

Mg2/Ga2 4i 0.16587(5) ½ 0.04721(7) 0.0063(2) 

N1 2c 0 0 ½  0.0050(8) 

N2 4i 0.1434(3) ½ 0.2844(4) 0.0082(6) 

N3 4i 0.8654(3) 0 0.1017(4) 0.0100(6) 
a e.s.d.’s in parentheses 

 
Table 3. Anisotropic displacement parameters (in 10-4 pm2) for Ca2Ga3MgN5

a. 
Atom U11 U22 U33 U23 U13 U12 

Ca1 0.0056(3) 0.0052(4) 0.0110(4) 0 0.0026(3) 0 

Mg1/Ga1 0.0054(3) 0.0057(2) 0.0079(3) 0 0.0026(2) 0 

Mg2/Ga2 0.0095(3) 0.0039(3) 0.0069(3) 0 0.0049(3) 0 

N1 0.006(2) 0.003(2) 0.007(2) 0 0.004(2) 0 

N2 0.009(2) 0.007(2) 0.009(2) 0 0.004(2) 0 

N3 0.004(2) 0.011(2) 0.013(2) 0 0 0 
a e.s.d.’s in parentheses 

 
Table 4. Selected bond lengths (Å) and angles (°) in Ca2Ga3MgN5

a. 
Ca1- N1 2.412(1) ·2 N2-(Mg1/Ga1)-N2 109.3(2) 

N2 2.609(2) ·2 N1-(Mg1/Ga1)-N2 106.8(1) 

(Mg1/Ga1)- N1 1.947(6) N2-(Mg2/Ga2)-N3 105.6(2) 

 N2 2.021(2) ·2 N3-(Mg2/Ga2)-N3 111.5(2) 

 N3 1.963(3) N1-Ca1-N2 169.7(7) 

(Mg2/Ga2)- N2 1.998(3) N2-Ca1-N2 93.4(1) 

 N3 1.994(2) ·2 N1-Ca1-N2 96.9(1) 

 N3 2.118(3)   
a e.s.d.’s in parentheses 
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In the crystal structure the tetrahedra are connected both through common corners 

and edges building a three-dimensional network. Along [010] the network forms 

hexagonal channels of sechser-rings and quadratic channels of vierer-rings. In each 

sechser-ring two Ca atoms are located, 

the quadrangular channels are not filled. 

In viewing direction [010] each ring type 

is neighboring itself horizontally and 

alternating vertically (Figure 2). The 

tetrahedra around Mg1/Ga1 are 

connected solely through common 

vertices to four other tetrahedra. The 

tetrahedra around Mg2/Ga2 are 

connected both through common corners and edges. The edge-sharing can only be 

observed between (Mg2/Ga2)N4 units, the 

corner connection is observed to further 

(Mg1/Ga1)N4 tetrahedra. The 

(Mg2/Ga2)N4 tetrahedra are thus building 

highly condensed strands running along 

[010] and are bridged by (Mg1/Ga1)N4 

units (see Figure 3). These sheets are 

stacked along [001] and are connected 

through vertex-sharing Mg1/Ga1 

tetrahedra, building a three-dimensional 

network. As stated above there is only 

one other quaternary Mg and Ga 

containing nitridogallate known so far, 

namely Sr(Mg2Ga2)N4,[15] exhibiting a 

three-dimensional network of corner and 

edge-sharing tetrahedra with mixed (Mg/Ga)-occupancy. In Ca2Ga3MgN5 the degree 

of condensation κ (i. e. the atomic ratio (Mg,Ga) : N) is 4 : 5 which is even higher 

than κ = 4 : 4 in Sr(Mg2Ga2)N4. These quaternary compounds, containing Mg solely 

on tetrahedra position can be calssified as magnesio-nitridogallates.[29] To emphasize 

that Mg is belonging to the tetrahedral network, the sum formula can also be 

formulated as Ca2[Ga3MgN5]. 

Figure 2. 2x2x2 cell of Ca2Ga3MgN5, view  
 along [010].  

Figure 3. Sheet of (Mg/Ga)N4 tetrahedra, 
black tetrahedra show corner linked Mg1/Ga1 
units, the gray tetrahedra are the edge-sharing 
Mg2/Ga2 units. 
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The single Ca2+-site in Ca2Ga3MgN5 is surrounded by seven nitrogen atoms with 

Ca-N bond lengths ranging from 2.4117(7) to 2.845(3) Å. These distances are in 

good agreement with known values in other Ca-nitridogallates and the calculated 

sum of the ionic radii.[12,13,27,28] With respect to the angles around Ca2+ the 

geometrical arrangement can be described as a distorted capped octahedron 

(Figure 1).  

An alternative description of the crystal structure can be attained on the basis of 

anion centered polyhedra. In Ca2Ga3MgN5 all three nitrogen sites are surrounded by 

six cations in octahedral coordination. These octahedra are constituted by two to four 

Ca-atoms and four to two Mg/Ga-atoms, respectively. The octahedra are edge- and 

corner-sharing building a dense three-dimensional network with empty quadrangular 

channels running along [010]. The described crystal structure of Ca2Ga3MgN5 is 

related to the one of MII
2Si5N8 (MII = Sr, Ba).[30] The mentioned structural motifs, 

considering cation centered polyhedra, like quadrangular channels and channels of 

sechser-rings occur in MII
2Si5N8 as well (see Figure 4).  

 

Figure 4. Structure detail of Ca2Ga3MgN5 with sechser- and vierer-rings (left above) and single 
sechser-ring with edge-sharing (left below). On the right (above) a structural detail of Sr2Si5N8 with 
sechser- and vierer-rings is illustrated, right below a sechser-ring of the Sr2Si5N8 crystal structure is 
displayed. The arrows in the sechser-rings below show the difference in those structural motifs, in 
Ca2Ga3MgN5 (right) edge-sharing can be observed, in Sr2Si5N8 (left) only corner-sharing occurs. 
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Furthermore, the hexagonal channels are also filled with two alkaline earth ions. 

These channels of sechser-rings are also neighboring to each other but the 

orientation of inclination is alternating. Therefore, in Sr2Si5N8 the vierer-rings are 

situated in a wavelike array. Nevertheless, both crystal structures differ in the 

connection between the tetrahedra. In MII
2Si5N8 no edge-sharing occurs whereas in 

Ca2Ga3MgN5 the (Mg2/Ga2)N4 tetrahedra are highly condensed by connection via 

edges and vertex-sharing to (Mg1/Ga1)N4 units as already mentioned. This is also 

shown in the different degrees of condensation (κ = 5:8 for MII
2Si5N8 and κ = 4:5 for 

Ca2Ga3MgN5). Accordingly, the crystal structure of Ca2Ga3MgN5 can be viewed as a 

higher condensed variant of the MII
2Si5N8 structure as illustrated in Figure 4.  

To confirm the crystal structure of Ca2Ga3MgN5 the Madelung part of the lattice 

energy has been calculated (Table 5). A deviation of only 0.16 % between the sum of 

the respective MAPLE values of Ca2Ga3MgN5 and the constituting binary and ternary 

nitrides verifies the electrostatic consistency of the refined structure. Moreover, partial 

MAPLE values for each atom were compared with known MAPLE values and agree 

well with reference data reported before.[31]  

Table 5. MAPLE values [kJ/mol] for Ca2Ga3MgN5 and  deviation Δ [%] from model value. 
 calculated MAPLE value Δ 

 Ca 2037.03  
 Mg/Ga 3810.05-4875.74  
 N 4573.48-5081.69  
   Ca2Ga3MgN5 45853.45  
   model

: 

Ca3Ga2N4
[12]   

+  CaMgN2
[32]   

+  GaN[33]   
- ⅓ Mg3N2

[34]   
- ⅔ Ca3N2

[35] 45925.53 0.16 

Typical partial MAPLE values [kJ/mol]: Ca2+:1940-2650; Ga3+:4500-6000; Mg2+: 2100-2400; 
N3-:3000-6000.[31,36-38] 

 

5.3. Conclusion 

In this contribution we present the novel quaternary compound Ca2Ga3MgN5. All Mg-

atoms are part of the tetrahedral network. According to Liebau the quaternary 

compound can be thus classified as magnesio-nitridogallate and the sum formula 

should be formulated Ca2[Ga3MgN5].[29] One Sr-containing magnesio-nitridogallate 
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Sr(Ga2Mg2)N4 has already been reported in literature so Ca2Ga3MgN5 is the second 

example known so far.[15] The crystal structure is constituted of corner- and edge-

sharing tetrahedra. These building units have a mixed occupation of Mg and Ga on 

the tetrahedral site due to similarities in ionic radii. The (Mg/Ga)N4 tetrahedra are 

building vierer- and sechser-rings stacked along [010] building hexagonal and 

quadratic channels. The Ca-atoms are located inside these channels of sechser-

rings, the quadrangular channels are not filled. This crystal structure is related to the 

well known crystal structure of MII
2Si5N8 (MII = Sr, Ba). In the latter also filled 

hexagonal and unfilled quadratic channels are reported. The arrangement of the 

sechser- and vierer-rings to each other are slightly different. Furthermore, in MII
2Si5N8 

no edge- but only corner sharing of the SiN4 tetrahedra is observed. Therefore, the 

crystal structure of Ca2Ga3MgN5 is higher condensed than that of MII
2Si5N8 which can 

also be seen from the higher degree of condensation κ = 4 : 5 for Ca2Ga3MgN5 (cf. 

MII
2Si5N8 κ = 5 : 8). 

This example illustrates the strong relationship between nitridogallates and 

nitridosilicates. Due to different charges of the atoms in the tetrahedra center Si4+ 

compared to Ga3+ or (Ga/Mg)2.5+ the condensation of the anionic substructure varies. 

Incorporation of additional Mg-atoms in the tetrahedral network influences the 

structural variety. Introducing Mg in some or all tetrahedral position impacts the 

charge and the covalency of the anionic substructure. Therefore, the band gap and 

other physical parameter are expected to be different from nitridogallates.  

Nitridosilicates emerged as highly efficient optical materials when doped with Eu2+, 

applicable as phosphors in phosphor-converted (pc-)LEDs. Also nitridogallates were 

investigated as host lattices for Eu2+-doping recently.[22] The demonstrated structural 

relation of magnesio-nitridogallates to nitridosilicates is a strong incentive for further 

investigation of this compound class. Magnesio-nitridogallates could also be 

interesting candidates as host lattices for Eu2+-doping and possible phosphor 

materials for application in pc-LEDs.  

 

5.4. Experimental Section 

Synthesis of Ca2Ga3MgN5 was carried out in Nb-ampoules (30 mm length, 10 mm 

diameter, 0.5 mm wall thickness). All manipulations were done under argon 

atmosphere in a glove box (Unilab, MBraun, Garching; O2 < 1 ppm, H2O < 1 ppm). 
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Single crystals were obtained from reaction of 0.312 mmol NaN3 (20.3 mg, Acros, 

99%), 0.063 mmol Ca (2.5 mg, sigma Aldrich, 99.9%) 0.064 mmol Mg (1.5 mg, Alfa 

Aesar, 99.9%) and 0.245 mmol Ga (17.1 mg, AluSuisse, 99.999%) in 1.99 mmol Na-

flux (45.7 mg, Sigma Aldrich, 99.95%). The filled Nb-ampoule was shut by arc 

melting under Ar atmosphere and placed in a quartz tubing under vacuum to prevent 

oxidation of the ampoule. The reaction mixture was then heated in a tube furnace 

with 50.0 °C/h to 760 °C, maintained at that temperature for 48 h and cooled down to 

200 °C with a rate of 3.4 °C/h. Subsequently, the furnace was turned off and the Nb-

ampoule was opened in a glove box. To separate Na from the reaction product the 

opened ampoule was heated to 320 °C under vacuum to sublimate the Na-melt.  

Scanning electron microscopy was performed on a JEOL JSM 6500 F equipped with 

a field emission gun at a maximum acceleration voltage of 30 kV. Synthesized 

samples were prepared on adhesive conductive carbon pads and coated with a 

conductive carbon film. The chemical composition was confirmed by EDX 

investigations (Oxford instruments), each recorded on an area limited to one crystal 

face to avoid influence of possible contaminating phases. Single-crystal X-ray 

diffraction data were collected on a Nonius Kappa-CCD diffractometer with graded 

multilayer X-ray optics and Mo Kα radiation (λ = 0.71073 Å). The structure was 

solved using direct methods implemented in SHELXS-97.[39,40] Refinement of the 

crystal structure was carried out with anisotropic displacement parameters for all 

atoms by full-matrix least-squares calculation on F2 in SHELXL-97.[40,41] 

Further details of the structure investigations are available from the 

Fachinformationszentrum Karlsruhe, D76344 Eggenstein Leopoldshafen, Germany 

(fax: +49-7247-808-666; email: crysdata@fiz.karlsruhe.de) on quoting the depository 

number CSD-425083. 
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6. Nitridogallate Fluoride LiBa5GaN3F5 

 

In the previous described syntheses of nitridogallates, all reactions were carried out 

with an increased nitrogen pressure by decomposition of NaN3 in a sodium flux. As 

recent researches in our group showed, the use of Li as fluxing agents is also very 

promising. Therefore, a mixed melt of Na and Li was used in the next description. By 

the use of additional Li, this element was incorporated in the crystal structure. For the 

initial target of doping with Eu as described before, EuF3 was added to the starting 

materials mixture as well. By the presence of Li+ and the thermodynamically 

preferred binding to F-, both elements are present in the product but not as side 

phase. LiF6-octahedrons are part of the crystal structure, building strands by vertex 

sharing running along [010]. The Ga surrounding in this compound differs from the so 

far described nitridogallates since here, isolated GaN3-units are observed. In addition 

to crystal structure elucidation, investigations on the band gap were carried out 

through calculations and measurements on single crystals. 
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Abstract: LiBa5GaN3F5 was obtained as red crystals by reaction of Ba, Ga, NaN3 

and EuF3 in a Na/Li flux at 760 °C in weld-shut tantalum crucibles. The crystal 

structure (Pnma (no. 62), a = 15.456(3), b = 5.707(1), c = 12.259(3) Å, Z = 4) was 

solved on the basis of single-crystal X-ray diffraction data. In the solid there are 

trigonal planar [GaN3]6- ions and zigzag chains of vertex sharing LiF6 octahedrons 

surrounded by Ba2+ ions. Optical measurements and calculations of the electronic 

structure revealed a band gap of ≤ 1.9 eV. According to the calculations, the 

observed transition occurs from a nitrogen state into a hybrid Ba/N state.  
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6.1. Introduction 

Ternary nitrides of Ga in combination with alkaline earth metals (e.g. Sr, Ba) are 

known since a couple of years,[1-4] but only a small number of quaternary examples 

have been reported recently.[5-7] Most of these compounds have been synthesized in 

sodium melts which due to addition of alkaline earth metals exhibit an increased 

solubility of nitrogen.[8] Syntheses were performed in closed niobium crucibles, 

utilizing additional azides as nitrogen source. Sr3GaN3, Sr6GaN5,[2] Sr4GaN3O and 

Sr4GaN3(CN2)[5] contain non condensed (“isolated”) [GaN3]6- while Ba3Ga2N4 and 

Sr3Ga2N4 are made up of trans edge sharing GaN4 tetrahedrons building infinite 

chains.[1,4] Two- or three-dimensional networks of vertex sharing GaN4 tetrahedrons 

have been found in Ca3Ga2N4, Sr3Ga3N5
[4] and LiSrGaN2,[6] respectively. Thus, 

structural motifs similar to nitridosilicates (e.g. BaSi7N10; Eu2SiN3)[9,10] occur in the 

nitridogallates mentioned above. Recently, we have reported about synthetic 

approaches to control the dimensionality of nitridosilicates employing lithium melts.[11] 

In comparison with nitridosilicates, the field of nitridogallates is more unexplored but 

utilization of the lithium flux technique may lead to a larger structural variety 

analogously to our experience with nitridosilicates.  

 

6.2. Experimental 

The synthesis of LiBa5GaN3F5 was carried out in Ta crucibles (30 mm length, 9.5 mm 

diameter, 0.5 mm wall thickness). Under argon atmosphere (glove box Unilab, 

MBraun), 0.35 mmol (22.8 mg) NaN3 (Acros, 

99 %), 0.138 mmol (9.6 mg) Ga (AluSuisse, 

99.999 %), 0.549 mmol (75.4 mg) Ba (Sigma 

Aldrich, 99.99 %) and 0.027 mmol (5.7 mg) 

EuF3 (Sigma Aldrich, 99.99 %) were mixed 

and filled into the Ta crucible. For the flux 

2.174 mmol (50.0 mg) Na (Sigma Aldrich, 

99.95 %) and 0.145 mmol (1.0 mg) Li (Sigma 

Aldrich, 99.9 %) were added. The Ta crucible 

was sealed under argon by arc welding. To 

protect the Ta crucible from oxidation, it was 

Figure 1. SEM micrograph of 
LiBa5GaN3F5 crystals. 
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placed into a silica tube under argon atmosphere. In a tube furnace the crucible was 

heated to 760 °C with a rate of 50 °C h-1. The temperature was maintained for 48 h 

and then lowered with 3.7 °C h-1 to 200 °C. Once the temperature reached 200 °C, 

the furnace was turned off and cooled down to room temperature. The Ta crucible 

was opened and Na was separated from the reaction products by evaporation at 

320 °C under vacuum (0.1 Pa) for 18 h. From the inhomogeneous gray product, red 

needle-shaped single crystals (200 - 600 µm) were isolated (cf. Figure 1), enclosed in 

glass capillaries and sealed under argon atmosphere. X-ray diffraction data were 

collected at room temperature with a STOE IPDS I diffractometer. A numerical 

absorption correction using the programs XRED[12] and XSHAPE[13] was applied. The 

crystal structure was solved by using direct methods with SHELXS.[14] The refinement 

of the structure was carried out by the method of least-squares using SHELXL.[14] 

The chemical composition was confirmed by energy dispersive X-ray spectroscopy 

(EDX) using a JSM-6500F scanning microscope (Jeol) provided with a Si/Li EDX 

detector (Oxford Instruments, model 7418). Optical spectra of LiBa5GaN3F5 were 

measured with a modified microcrystal spectrophotometer CARY 17 (Spectra 

Services, ANU Canberra, Australia).[15-17] Calculations of the band gap were carried 

out with the program package WIEN2K[18] utilizing the structural data from the 

single-crystal structure refinement. 

 

6.3. Results and Discussion 

6.3.1. Crystal Structure 

The crystal structure was solved and refined in orthorhombic space group Pnma 

(no. 62) with a = 15.456(3), b = 5.707(1) and c = 12.259(3) Å. The crystallographic 

data of LiBa5GaN3F5 is summarized in Table 1, the atomic coordinates and the 

isotropic displacement parameters are listed in Table 2. In the crystal LiBa5GaN3F5 

zigzag chains of vertex sharing LiF6 octahedrons running along [010] (cf. Figure 2). 

Perpendicular to these chains, Ba atoms are arranged in layers. Likewise 

perpendicular to [010] “isolated” trigonal planar [GaN3]6- ions are found. 
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Table 1. Crystallographic data of LiBa5GaN3F5. 

Formula LiBa5GaN3F5 

Crystal system orthorhombic 

Space group Pnma (no. 62) 

Lattice parameters (Å) a = 15.456(3), b = 5.707(1), c = 12.259(3) 

Cell volume (Å3) 1081.3(4) 

Formula units per unit cell 4 

Density (g · cm-3) 5.531 

µ (mm-1) 20.41 

T (K) 293(2) 

F(000) 1520 

Profile range 5.8 ≤ 2θ ≤ 63.2 

Index ranges -20 ≤ h ≤ 18 

 -6 ≤ k ≤ 6 

 -15 ≤ l ≤ 15 

Independent reflections 1286 [R(int) = 0.072] 

Refined parameters 89 

Goodness of fit  1.057 

R1 (all data); R1 (F2 > 2σ(F2)) 0.0230, 0.0212 

wR2 (all data); wR2 (F2 > 2σ(F2)) 0.0512, 0.0505 

Δρmax, Δρmin (e Å–3) 1.56, -2.13 

 

Figure 2. Crystal structure 
of LiBa5GaN3F5. Big black 
circles Ba2+, small black F-, 
big gray Li+, white N3- and 
small gray Ga3+. The LiF6 
octahedrons (highlighted in 
gray) are vertex sharing and 
build zigzag chains running 
along the b-axis. 
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The Ga-N bond-lengths range from 1.90 to 1.95 Å (Figure 3) and agree well with the 

sum of the ionic radii[19-21] as well as with typical Ga-N distances (e.g. Sr4GaN3O, 

Ga-N : 1.88 – 1.92 ) Similar [GaN3]6- ions have been found in Sr3GaN3, Sr6GaN5,[2] 

Sr4GaN3O and Sr4GaN3(CN2).[5] The coordination sphere of the trigonal planar 

[GaN3]6- ions can be described as three-capped trigonal prisms of Ba2+ atoms. In 

Sr3GaN3
[2] similar trigonal prism of Sr2+ atoms have been observed. The N3- atoms 

are likewise surrounded in distorted octahedrons of five Ba2+ and one Ga3+ atom. 

 

Table 2. Atomic coordinates and isotropic displacement parameters (Å2) of LiBa5GaN3F5, standard 
 deviations in parentheses. 
Atom Wyckoff 

position 
x y z Uiso*/Ueq 

      

Ba1 4c 0.43534 (2) ¼ 0.68180 (2) 0.0092 (1) 

Ba2 4c 0.51012 (2) ¾ 0.87769 (3) 0.0090 (1) 

Ba3 4c 0.34365 (2) ¾ 0.47028 (3) 0.0089 (1) 

Ba4 4c 0.24513 (2) ¾ 0.77891 (3) 0.0100 (1) 

Ba5 4c 0.16417 (2) ¼ 0.63252 (2) 0.0109 (1) 

Ga1 4c 0.35910 (4) ¼ 0.92467 (4) 0.0076 (2) 

F1 8d 0.4111 (2) 0.0121 (5) 0.3013 (2) 0.0151 (6) 

F2 4a ½ 0 ½ 0.0131 (7) 

F3 4c 0.4075 (3) −¼ 0.6854 (3) 0.0171 (8) 

F4 4c 0.1779 (4) −¼ 0.9936 (3) 0.027 (1) 

N1 4c 0.4799 (4) ¼ 0.8980 (4) 0.014 (2) 

N2 4c 0.2813 (4) ¼ 0.8020 (4) 0.013 (2) 

N3 4c 0.3152 (4) ¼ 1.0734 (5) 0.012 (2) 

Li1 4c 0.459 (2) ¼ 0.4020 (8) 0.026 (3) 

 

Li+ does not directly coordinate to the [GaN3]6- ions but is surrounded by six F- in a 

distorted octahedron. The Li-F distances are ranging between 1.97 and 1.98 Å for the 

equatorial F2 and F1 and 2.33 to 2.39 Å for the axial F3 and F4 (cf. Figure 3). 
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The latter ones exceed 

significantly the sum of the ionic 

radii (2.06 Å)[19] while the 

equatorial Li-F distances are 

slightly shorter than reported 

distances in other LiF6 

octahedrons (K2LiAlF6, 

Li-F : 2.109 Å).[22,23] In the 

second coordination sphere, the 

octahedron LiF6 is coordinated 

by eight Ba2+ in a cubic way, comparable with the cubic Ca2+-coordination of Ti4+ in 

CaTiO3. The coordination of F- occurs in distorted octahedrons of five Ba2+ and one 

Li+. Only F2 is coordinated by two Li+ and four Ba2+. The atomic distances Ba-F and 

Li-F are mentioned above. The the thermal displacement parameter Uiso*/Ueq of F4 is 

considerably higher (cf. Table 3) in comparison with the other values for fluorine 

atoms.  

 
Table 3. Selected interatomic distances [Å] and angles [°] of LiBa5GaN3F5,  

standard deviations in parentheses. 
Ba1-N1 2.739(5) Ba5-F1 2.806(2) 

Ba1-F2 2.8286(5) Ga1-N1 1.896(5) 

Ba2-N3 2.765(6) Ga1-N2 1.925(5) 

Ba2-F1 2.853(2) Ga1-N3 1.945(5) 

Ba3-N2 2.826(5) Li1-F1 1.976(9) 

Ba3-F3 2.816(3) Li1-F2 1.972(8) 

Ba4-N3 2.687(5) Li1-F3 2.33(2) 

Ba4-F4 2.830(4) Li1-F4 2.39(2) 

Ba5-N1 2.872(5)   

N2-Ba1-F1 132.7(1) F2-Li1-F3 89.5(5) 

N3-Ba3-F1 132.8(9) F3-Li1-F4 179.3(5) 

F3-Ba4-F4 136.1(1) N1-Ga1-N3 120.3(2) 

F4-Ba5-N1 137.6(1) N1-Ga1-N2 118.7(2) 

 

Figure 3. Coordination of Ga3+ and Li+ in thermal 
ellipsoids with 50 % probability. Ga3+ has a trigonal planar 
coordination by N3-, six F- coordinate Li+ (elongated 
octahedron).  
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One reason for this observation may be the fact, that - considering the octahedron 

LiF6 - the F4 atom is a “free” one and does not connect to the next octahedrons. 

Additionally, the U11 value for F4 is almost three times higher than the values for the 

other F-. The short distance between Ba4-F4 (2.83 Å) may be responsible for this 

observation. The F3 atom has an even shorter distance to Ba4 (2.76 Å) and is also a 

non-bridging one. Here we can also observe a little higher Uiso*/Ueq value. The only 

other known Li containing nitridogallate, (LiSrGaN2) contains a two-dimensional 

network of corner sharing GaN4 tetrahedrons resulting in a tetrahedral coordination of 

lithium.[6] The five crystallographically different Ba2+ ions are sevenfold or ninefold 

coordinated by N3- atoms of the [GaN3]6- and F- ions, respectively (Figure 4).  

 
Figure 4. Coordination of the five crystallographically different Ba2+. The N3- and F- around Ba2+ build 

trigonal or squared pyramids, respectively, with capped faces. 
 

Coordination of the Ba2+ atoms occurs in form of square or trigonal pyramids, 

respectively, where each face of the pyramid is additionally capped by anions. The 

distances Ba-N and Ba-F range from 2.74 to 2.87 Å and are in good accordance to 

known Ba-N and Ba-F distances (e.g. Ba3Al2N4, Ba-N : 2.607 - 2.873 Å; 

Ba3Cu2Al2F16, Ba-F : 2.597 - 2.957 Å).[24-27] Selected bond-lengths and angles of 

LiBa5GaN3F5 are given in Table 3. To proof the electrostatic consistency of the 

crystal structure MAPLE (Madelung Part of Lattice Energy) calculations of the lattice 

energy[28,29] were carried out (cf. Table 4). The partial MAPLE values (for Li+, Ba2+, 

Ga3+, N3- and F-) are in good accordance to reference values. The electrostatic 

consistency of the refined crystal structure has been verified by comparing MAPLE 
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sums of different binary and ternary nitrides with the MAPLE value of LiBa5GaN3F5. 

Both values differ only slightly by 0,19 %. The model contains the data of the 

theoretical binary nitride Ba3N2.[33,34] 

 

Table 4. Partial MAPLE values and MAPLE sums [kJ/mol] of LiBa5GaN3F5. 
LiBa5GaN3F5   Model 

Ba1 1662 N1 970 GaN 

Ba2 1760 N2 965 LiF 

Ba3 1672 N3 956 BaF2 

Ba4 1733 F1 108 Ba3N2
[33,34] 

Ba5 1826 F2 134  

Ga 5157 F3 126  

Li 629 F4 117  

Σ = 29031   Σ = 29089 ∆ = 0.19 % 

Typical partial MAPLE values [kJ/mol]: Ba2+: 1600 - 2500; Ga3+: 4500 - 6000;  
Li+: 600 - 860; N3-: 3000 - 6000; F-: 450 – 600.[30-32] 
 

6.3.2. Band Gap Determination 

To specify the optical band gap the extinction of the complete spectrum, ranging from 

UV up to near IR was measured (Figure 5). The observed absorption represents a 

permitted charge transfer transition from a N3- state to a metal state. With 

extrapolation of the linear region between 16000 and 17000 cm-1 the optical band 

gap was determined to 1.9 eV. The measured energy of the optical band gap lies 

within the red sector of the visible spectrum and is in accordance with the observed 

red color of the crystals.  
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Figure 5. Extinction of LiBa5GaN3F5 from UV up to near IR. The line shows the extinction of 

LiBa5GaN3F5. With the linear slope (16000-17000 cm-1) the energy of the band gap was 
determined to 1.9 eV. 

 

The band gap of LiBa5GaN3F5 has also been determined by calculations of the 

electronic structure. Additionally, these calculations give information about the 

character of the band gap. The density of states (DOS) was calculated for each kind 

of atom as well as for the entire compound (Figure 6). The energy of the electronic 

band gap was calculated to 1.6 eV. The highest occupied molecular orbital consists 

of 57 % nitrogen. Ba and Ga have only little contribution, Li and F are not involved 

here. The transition occurs towards the lowest unoccupied molecular orbital, 

consisting of Ba and N. The overall DOS is larger than the sum of the individual DOS 

for each atom as seen in Figure 6. The difference to the overall DOS lies in the 

so-called interstitial sphere. This is evidence that some electron density could not be 

allocated solely to single atoms, but the electron density resides beyond the atomic 

spheres. 
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Figure 6. Calculated density of states (DOS) of LiBa5GaN3F5 with contributions of each atom. 
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With 1.6 eV the calculated energy of the electronic band gap is smaller than the 

energy from the optical measurements 1.9 eV. This observation is typical for DFT 

calculations which usually underestimate the band gap. Nevertheless, both values 

are in accordance with the observed red color of the crystals.  

 

6.4. Conclusion 

The incorporation of fluorine into nitridogallates leads to a new composition. Similarly 

to nitridosilicates, the usage of a mixed Li/Na flux shows an extension of the 

structural variety of nitridogallates. In combination with the fluorine source EuF3, an 

additional structural unit, the LiF6 octahedrons could be integrated into a nitridogallate 

compound, probably due to the strong Li-F binding compared to the Li-N. Optical 

measurements on single crystals as well as calculations of the electronic structure 

are beneficial for band gap investigations.  
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7. Novel Nitrido-magnesiometalates of Ga and Al 

For synthesis of nitridogallates, mostly reactions of metals in sodium flux are 

described, using NaN3 as nitrogen source. Herein, we present several syntheses 

routes whereas the described nitrido-magnesiogallate is commonly synthesized. 

Additionally, nitrido-magnesioaluminates were obtained from a fluoride route carried 

out in Li-flux. In contrast to previous described incorporation of Li and F in the 

resulting compound, in the following products none of them is part of the crystalline 

nitride compounds but can be found in the side phase LiF. The formation of this side 

phase is the driving force for these reactions. The reported novel nitrido-

magnesioaluminates and nitrido-magnesiogallates are isostructural and solid 

solutions in and between those two compound classes were carried out.  
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Abstract: Synthesis of the novel nitrido-magnesioaluminates, nitrido-

magnesiogallates and solid solutions thereof of compositions Ca1-xSrx[Mg2Al2N4], 

Sr1-xBax[Mg2Al2N4], Sr[Mg2Al1.95Ga0.05N4], Sr1-xBax[Mg2Al1.95Ga0.05N4] and 

Ba[Mg2Al1.9Ga0.1N4] are reported employing arc-welded Ta- or Nb-ampoules, 

respectively. Most suited was the fluoride route, an expansion of the Li-flux method 

where  metal-fluorides have been added to the metallic melt. The novel nitrides were 

obtained as single crystals. Additionally, synthesis of Ba[Mg2Ga2N4] and 

Sr1-xBax[Mg2Ga2N4] was carried out using metals as starting materials. Ca[Mg2Al2N4] 

and Eu[Mg2Al2N4] were obtained by using NH4N3 as nitrogen source. All compounds 

are isostructural crystallizing in the UCr4C4-structure type (space group I4/m (no. 87), 

a = 8.0655(11) – 8.3654(12), c = 3.2857(7) – 3.4411(7) Å). The crystal structure is 

built up of edge-sharing tetrahedra, miscellaneously occupied by Mg2+ and Al3+, by 

Mg2+ and Ga3+ or by all three elements, respectively. The alkaline-earth ion or Eu2+ is 

located in channels of the tetrahedral network. The structural variability of the 

UCr4C4-structure type is nicely demonstrated with the reported compounds.  
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7.1. Introduction 

Binary nitrides e.g. Mg3N2, AlN and GaN find various industrial applications. For 

example Mg3N2 can be utilized as catalyst for synthesis of nitride ceramic materials.[1] 

AlN is employed as substrate material for fabrication of semiconductors, as heat 

conductor, and is a promising candidate for optoelectronic devices.[2,3] GaN is one of 

the most thoroughly investigated compounds nowadays due to its application as 

direct wide band gap semiconductor for high-performance LEDs.[4-6]  

Only a small number of ternary and higher nitrides with group 2 metals deriving from 

these binary nitrides are known so far. Only two ternary alkaline-earth magnesium 

nitrides, namely CaMg2N2 and SrMg2N2 have been reported in literature.[7,8] In the 

compound class of nitridoaluminates, ternary compounds AE3Al2N4 (AE = Ca, Sr, Ba) 

and Ca3AlN3 are known.[9-11] Ternary nitridogallates occur more frequently and have 

been studied recently.[12-14] However, only few higher nitrides with elemental 

combination Mg/Ga or Mg/Ge are known.[15,16] Higher nitrides of Al containing Mg are 

not known so far. All of these nitridometalate compounds are built up of tetrahedral 

building units MN4 (with M = Mg, Al, Ga). Since ionic radii of fourfold coordinated 

Ga3+ and Mg2+ (0.47 and 0.57 Å, respectively)[17] are comparable, mixed occupation 

of these elements on tetrahedral sites is possible and thus miscellaneously occupied 

(Mg/Ga)N4-tetrahedra occur in Sr[Mg2Ga2N4] and Ca2[Ga3MgN5].[15,16] Those 

tetrahedral units can be connected via common vertices and/or edges building 0D-, 

1D-, 2D- or 3D-anionic substructures. [11,13,16] 

Recently, the isostructural compounds Sr[Mg2Ga2N4] and Sr[Mg3GeN4] have been 

described by DiSalvo crystallizing in the UCr4C4-structure type with space group I4/m 

(no. 87).[16] Therein, only one alkaline-earth metal site was reported, coordinated by 

eight N-atoms in a cube-like subunit. Additionally, a single tetrahedral site, 

miscellaneously occupied by Mg/Ga or Mg/Ge has been found.[16]  

In this contribution novel nitrido-magnesioaluminates Ca[Mg2Al2N4], Sr[Mg2Al2N4] and 

Eu[Mg2Al2N4] are presented as well as a novel nitrido-magnesiogallate Ba[Mg2Ga2N4] 

and solid solutions AE[Mg2Al2-xGaxN4] (x = 0-2, AE = Ca, Sr, Ba). All quaternary 

compounds and the solid solutions are isotypic, crystallizing in UCr4C4-structure type 

and the solid solutions are substitutional variants on one or two crystallographic sites. 

Detailed structure investigations of the pure phases as well as of solid solutions are 
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performed. These compounds are nicely illustrating the structural variability of the 

UCr4C4-structure type and structural relationships between multinary 

nitridoaluminates and nitridogallates.  

 

7.2. Experimental Section 

For synthesis of M[Mg2Al2-xGaxN4] (x = 0-2, M = Ca, Sr, Ba, Eu) different approaches 

have been employed. All manipulations were carried out under Ar-atmosphere in a 

glove box (Unilab, MBraun, Garching; O2 < 1 ppm, H2O < 1 ppm). 

Metal route. In this synthetic approach mixtures of the respective metals and NaN3 as 

nitrogen source are used in a sodium melt. This route was used for synthesis of 

Ba[Mg2Ga2N4] and the solid solution of Sr1-xBax[Mg2Ga2N4]. Typically, 0.31 mmol 

NaN3 (20.1 mg, Acros, 99 %), 0.064 mmol Mg (1.53 mg, Alfa Aesar, 99.9 %), 

0.245 mmol Ga (17.1 mg, Sigma Aldrich, 99.99 %) and 1.95 mmol Na-melt (44.9 mg, 

Sigma Aldrich, 99.95 %) were used. Furthermore, 0.063 mmol alkaline-earth metal 

(Ba: Sigma Aldrich, 99.99 %; Sr: Smart Elements, 99.99 %) or the respective molar 

amount was added. The starting materials were filled into Ta- or Nb-ampoules 

(30 mm length, 10 mm diameter, 0.5 mm wall thickness). The ampoules were weld 

shut by arc melting under Ar atmosphere and placed in quartz tubings under vacuum 

to prevent oxidation of the ampoules. The respective reaction mixtures were heated 

in a tube furnace with 50 °/h to 760 °C, maintained at that temperature for 48 h and 

then cooled down to 200 °C with a rate of 3.4 °/h. After reaction, the ampoules were 

opened in a glove box and Na was separated from the reaction products by 

sublimation at 320 °C under vacuum for 10 h.  

Fluoride route. For a faster reaction compared to the metal route, the following 

synthesis technique was used. Herein, the metal fluorides together with Mg3N2 were 

used. To capture the F--ions, syntheses took place in a Li-melt with LiN3 as nitrogen-

source. Synthesis of Ca1-xSrx[Mg2Al2N4], Sr1-xBax[Mg2Al2N4], Sr[Mg2Al1.95Ga0.05N4], 

Sr1-xBax[Mg2Al1.95Ga0.05N4] and Ba[Mg2Al1.9Ga0.1N4] was possible with this route. The 

molar ratio of starting materials was AEF2 (AE = Ca, Sr, Ba; CaF2: Sigma Aldrich, 

99.99 %, SrF2: Sigma Aldrich, 99.99 %, BaF2: Sigma Aldrich, 99.99 %) : TF3 (T = Al, 

Ga; AlF3: ABCR, 99.5 %, GaF3: Sigma Aldrich, 99.99 %) = 0.3 : 0.6 mmol. Moreover, 

0.21 mmol Mg3N2 (21.0 mg, Sigma Aldrich, 99.5 %), 0.30 mmol LiN3 (14.7 mg, 
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synthesized according to Fair et al.)[18] and 3.0 mmol Li (20.8 mg, Sigma Aldrich, 

99.9 %) were added. The respective mixture of starting materials was filled into Ta-

ampoules and sealed by arc-melting under argon. The ampoules were placed in 

quartz tubes and heated in tube furnaces to 900 °C with 200 °/h, maintained at that 

temperature for 24 h and subsequently cooled down to 500 °C with a rate of 10 °/h. 

After reaction, the furnace was turned off and the Ta-ampoules were opened in a 

glove box.  

Synthesis of Ca[Mg2Al2N4]. For synthesis of Ca[Mg2Al2N4] the fluoride route was 

slightly modified since 0.30 mmol NH4N3 (18.0 mg, synthesized according to 

Fearson)[19] were used as nitrogen source instead of LiN3. The further procedure was 

as described above.  

Synthesis of Eu[Mg2Al2N4]. For synthesis of Eu[Mg2Al2N4] 0.30 mmol Eu (45.6 mg, 

Smart Elements, 99.99 %), 0.6 mmol AlF3 (50.4 mg, ABCR, 99.5 %), 0.20 mmol 

Mg3N2 (20.0 mg, Sigma Aldrich, 99.5 %) and 0.30 mmol NH4N3 (18.0 mg, 

synthesized according to Fair et al.)[18] were mixed with 3.00 mmol Li-melt (20.8 mg, 

Sigma Aldrich, 99.9 %). The reaction mixture was filled into Ta-ampoules that were 

sealed under Ar-atmosphere by arc melting. Placed in a quartz tubing, the Ta-

ampoule was heated to 900 °C in 200 °/h, held at this temperature for 12 h and 

cooled down to 500 °C in 10 °/h. Subsequently, the furnace was turned off and Ta-

ampoules were opened in a glove box.  

Scanning electron microscopy was performed on a JEOL JSM 6500 F equipped with 

a field emission gun at a maximum acceleration voltage of 30 kV. Synthesized 

samples were prepared on adhesive conductive carbon pads and coated with a 

likewise conductive carbon film. The chemical compositions were confirmed by EDX 

spectra (Detector: Oxford instruments), each recorded on an area limited to one 

crystal face to avoid influence of possible contaminating phases.  

Single-crystal X-ray data of small single crystals were collected on a Nonius Kappa-

CCD diffractometer with graded multilayer X-ray optics and Mo-Kα radiation 

(λ = 0.71073 Å). X-ray diffraction data of bigger single crystals were collected on a 

STOE IPDS I diffractometer using monochromated Mo-Kα radiation (λ = 0.71073 Å). 

Absorption correction was done using WinGX or X-RED.[20,21]  
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The structures were solved by direct methods implemented in SHELXS-97.[22,23] 

Refinement of crystal structures was carried out with anisotropic displacement 

parameters for all atoms by full-matrix least-squares calculation on F2 in SHELXL-

97.[23,24] Further details of the structure investigations are available from the 

Fachinformationszentrum Karlsruhe, D-76344 Eggenstein Leopoldshafen, Germany 

(fax: +49-7247-808-666; email: crysdata@fiz.karlsruhe.de) on quoting the depository 

numbers CSD-425319 (Ca[Mg2Al2N4]), CSD-425321 (Sr[Mg2Al2N4]), CSD-425320 

(Eu[Mg2Al2N4]), and CSD-425318 (Ba[Mg2Ga2N4]).  

 

7.3. Results and Discussion 

With the synthesis methods described above a series of new compounds was 

obtained, namely Ca[Mg2Al2N4], Sr[Mg2Al2N4], Eu[Mg2Al2N4], Ba[Mg2Ga2N4], 

SrxBa1-x[Mg2Al2N4], CaxSr1-x[Mg2Al2N4], Sr1-xBax[Mg2Al1.95Ga0.05N4], and 

Ba[Mg2A1.9Ga0.1N4]. The presented nitrido-magnesioaluminates are to the best of our 

knowledge the first reported. Since all compounds are isotypic, only Eu[Mg2Al2N4] will 

be described in the following section for reasons of clarity. Further crystallographic 

information on remaining compounds are available in the supplementary part.  

 

Crystal Structure Description 

Nitrido-magnesioaluminates and nitrido-magnesiogallates. Eu[Mg2Al2N4] was solved 

and refined in the tetragonal space group I4/m (no. 87) with a = 8.1539(12), 

c = 3.3430(7) Å. The crystallographic data of Eu[Mg2Al2N4] are listed in Table 1, the 

atomic coordinates and displacement parameters are given in Table 2. Eu[Mg2Al2N4] 

crystallizes in the UCr4C4-structure type[25] forming a three-dimensional network of 

(Mg/Al)N4-tetrahedra (Figure 1). The framework contains strands of edge-sharing 

tetrahedra which are connected to each other, forming vierer rings along [001] 

(Figure 2). The Eu2+-site is located in every second vierer-ring strand, centered in 

face-sharing cuboid like polyhedra (Figures 1 and 2) with a bond-length Eu-N of 

2.832(2) Å. Compared to the sum of the ionic radii a slight deviation is observed.[17] 

An elongation of this bond is also observed in all other compounds we report here as 

well as in Sr[Mg2Ga2N4] which crystallizes in the UCr4C4-structure type as well.[16]  
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Table 1. Crystallographic data of Eu[Mg2Al2N4]. 
Formula Eu[Mg2Al2N4] 

Crystal system tetragonal 

Space group I4/m (no. 87) 

Lattice parameters /Å a = b = 8.1539(12) 
c = 3.3430(7) 

Cell volume /Å3 222.26(7) 

Formula units /cell 2 

ρcalcd.
 /g·cm-3 4.64 

µ /mm-1 14.637 

T /K 293(2) 

F(000) 282 

Diffractometer STOE IPDS I 

Radiation,  Mo-Kα 
(λ = 0.71073 Å),  

monochromator graphite 

Absorption correction multi scan 

Max. / min. transmission 0.3894 / 0.3644 

θ range /° 3.1 - 40.3 

Index ranges -11 ≤ h ≤ 11 

 -11 ≤ k ≤ 11 

 -4 ≤ l ≤ 4 

Independent reflections 179 (Rint = 0.0415) 

Refined parameters 16 

Goodness of fit  1.105 

R1 (all data) 

R1 (F2 > 2σ(F2)) 

0.0152  

0.0152 

wR2 (all data) 

wR2 (F2 > 2σ(F2)) 

0.0333 

0.0333 

Max. / min. residual 
electron density /e·Å-3 

2.06 / -0.94 
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(Mg2+/Al3+)-atoms on the tetrahedrally coordinated site are statistically disordered. 

Since those atoms on tetrahedral position (Mg2+/Al3+) exhibit the same electron 

density in X-ray diffraction data the atomic ratio Mg : Al was additionally confirmed by 

EDX-analysis. The bond length of (Mg/Al)-N varies between 1.95 and 2.06 Å. 

Figure 1. Figure 1: Crystal structure of Eu[Mg2Al2N4]. (Mg/Al)N4-tetrahedra gray, nitrogen atoms 
bright gray and Eu2+-ions black. Left: viewing direction along [001], right: viewing 
direction along [010]. 

 

Figure 2. Structural details of Eu[Mg2Al2N4], all atoms are shown as ellipsoids with 50 % 
probability. Top left: cuboid-like coordination of Eu2+ (black) by eight nitrogen atoms 
(gray); top right: coordination of the Eu2+ centered polyhedra by (Mg/Al)N4-tetrahedra; 
bottom left: structure assembly and conjunction of (Mg/Al)N4-tetrahedra; bottom right: 
edge sharing of (Mg/Al)N4-tetrahedra strands. 
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Comparable values for Al-N and Mg-N distances appear in the structures Sr3Al2N4 

(Al-N: 1.86 - 1.96 Å) and CaMg2N2 (Mg-N: 2.13 - 2.30 Å),[8,9] while the reported bond 

length of (Mg/Al)-N in Eu[Mg2Al2N4] correspond with the average of these distances. 

Table 2. Atomic coordinates and isotropic displacement parameters / Å2 
 of Eu[Mg2Al2N4], standard deviations in parentheses. 
Atom x y z Uiso*/Ueq 

Eu 0 0 0 0.01207(18) 

Al 0.18343(14) 0.36371(13) 0 0.0105(2) 

Mg 0.18343(14) 0.36371(13) 0 0.0153(2) 

N 0.2365(5) 0.5973(4) 0 0.0207(6) 

 

For the reported gallium containing compounds similar results were obtained. 

Although Ga3+ and Mg2+ exhibit different electron density in X-ray diffraction data no 

ordering of the atoms on tetrahedral position was observed and the elemental 

distribution was confirmed by EDX-analysis as well.  

Rietveld refinement of powder-diffraction data validates the structure of Eu[Mg2Al2N4] 

obtained from single-crystal diffraction data (see Table 3 and Figure 3). Besides the 

Eu[Mg2Al2N4] structure, also some amount of LiF can be found as byproduct. This 

stems from reaction in Li-flux, using the fluoride route where the formation of LiF is 

the driving force of the reaction. This result has been confirmed by EDX-analysis 

where also fluorine was detected but could be identified as contaminations and thus 

was not incorporated into the single crystals.  

A comparison of all synthesized quaternary compounds and their crystal structure 

parameters is summarized in Table 4. The lattice parameters a and c shift as 

expected to larger values with increasing cation size. Surprisingly, a difference 

between Sr[Mg2Al2N4] and Eu[Mg2Al2N4] in lattice parameters and volume can be 

observed although ionic radii of eightfold coordinated Sr2+ (1.26 Å) and Eu2+ (1.25 Å) 

are nearly equal.[17] The relative difference of ionic radii between the alkaline-earth 

ions Ca2+ and Sr2+ is smaller than the relative difference between Al3+ and Ga3+ and 

therefore, the volume change from nitrido-magnesioaluminate to nitrido-

magnesiogallate is larger (5.5 % increase from Sr[Mg2Al2N4] to Sr[Mg2Ga2N4]) than 
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Table 3. Crystallographic data of Rietveld refinement of  
Eu[Mg2Al2N4]. 

Formula Eu[Mg2Al2N4] 

Crystal system tetragonal 

Space group I4/m (no. 87) 

Lattice parameters (Å) 
 

a = b = 8.16004(13), 
c = 3.35036(7) 

Cell volume (Å3) 223.088(8) 

Formula units per unit cell 2 

Density (g · cm-3) 4.623 

T (K) 293(2) 

Diffractometer STOE STADI P  

Radiation (Å) Cu-Kα1 
(λ = 1.54056) 

Profile range 5.0 ≤ θ ≤ 35.0 

Data points 6000 

Total number of reflections 33 

Refined parameters 57 

Background function Shifted Chebyshev  

(36 parameters) 

R values RP = 0.0273,  

wRP = 0.0345,  

R(F2) = 0.0374 

 

the change of volume in nitrido-magnesioaluminates, depending on alkaline-earth ion 

(2.1 % increase from Ca[Mg2Al2N4] to Sr[Mg2Al2N4]). Accordingly, the influence of 

different atom types positioned on the tetrahedral position on lattice parameters is 

larger than the influence of the metal atom in the channels of the vierer rings. 
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Table 4. Comparison of crystallographic data of quaternary  
nitrido-magnesioaluminates and nitrido-magnesiogallates. 

Formula Lattice Parameters / Å Volume / Å3 
 a c  
Ca[Mg2Al2N4] 8.0655(11) 3.2857(7) 213.74(7) 

Sr[Mg2Al2N4] 8.1008(11) 3.3269(7) 218.32(8) 

Eu[Mg2Al2N4] 8.1529(12) 3.3430(7) 222.26(8) 

Sr[Mg2Ga2N4][17]  8.2925(7) 3.3585(5) 230.95(4) 

Ba[Mg2Ga2N4] 8.3654(12) 3.4411(7) 240.81(7) 

 

 

 

 

 

 

 

 

 

 

 

 

Solid solutions. Besides the described quaternary phases, some substitutions on the 

alkaline-earth site, on the tetrahedral site or on both sites were achieved. Mixture on 

alkaline-earth site was obtained by using Sr and Ba metal, SrF2 and CaF2, or SrF2 

and BaF2, respectively, depending on the synthesis route. The tetrahedral site is 

already miscellaneously occupied by Mg and Al or Mg and Ga as mentioned above. 

However, a mixture on tetrahedral site with Mg, Al and Ga was achieved by using 

Mg3N2 together with AlF3 and GaF3 in the starting material mixture. After reaction at 

900 °C needle shaped crystals could be isolated from inhomogeneous product. 

Figure 3. Observed (black) and calculated (bright gray) X-ray powder 
diffraction pattern as well as difference profile for the 
Rietveld refinement of Eu[Mg2Al2N4]. The first line of vertical 
bars indicate possible peak positions. The second line of 
vertical bars indicates the reflections of the byproduct LiF. 
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Single-crystal X-ray data always revealed crystal structures in the UCr4C4-type as 

described above. Addition of the larger alkaline-earth ion Sr2+ on the Ca2+-site in 

Ca1-xSrx[Mg2Al2N4] or Ba2+ on the Sr2+-site in Sr1-xBax[Mg2Al2N4] leads to an increase 

of lattice parameters a and c as expected. Incorporation of Ga3+ on the tetrahedral 

site of Sr[Mg2Al2N4] is quite difficult, only 5 % of Ga were incorporated, independently 

of the weighted amount of Ga. Surprisingly, we were able to obtain a phase with 

10 % of Ga additional to Al and Mg on tetrahedral site with Ba as alkaline-earth ion 

(Ba[Mg2Al1.9Ga0.1N4]) even though no Ba-phase of nitrido-magnesioaluminate is 

known so far. Therefore, the little amount of Ga incorporated on tetrahedral position 

changes the crystal lattice as already seen from comparison of crystallographic data 

of the quaternary phases. Presumably, the change in lattice parameters made it 

possible for Ba to be introduced on the alkaline-earth site. Regarding mixture of 

alkaline earth and tetrahedral site, experiments with the fluoride route and with Ga 

metal instead of GaF3 were carried out. As alkaline-earth fluorides, only SrF2 and 

BaF2 were used, CaF2 was not considered. The experiments were performed at 

900 °C but EDX-results show that no incorporation of both alkaline-earth metals (Sr, 

Ba) and three elements on tetrahedral position (Mg, Al, Ga) in one crystal was 

possible. Investigation of powdered products gave some first hints that all atom types 

(Sr, Ba, Mg, Al, Ga) are part of the product but not as a single crystal phase. Mostly, 

in crystalline products no Ga or no Al was incorporated and solid solutions of 

nitrido-magnesioaluminates Sr1-xBax[Mg2Al2N4] or nitrido-magnesiogallates 

Sr1-xBax[Mg2Ga2N4], respectively were obtained. This is not surprising since because 

this is a hexanary system. Therefore, inhomogeneous products were expected and 

also the crystals from one reaction can differ in their amount of the respective 

elements. These solid solutions show the possibility of three elements 

miscellaneously occupied on one single crystallographic site, and stable refinement 

of all three atoms on this position is possible. Nevertheless, controlled synthesis of 

these compounds is rather difficult but the reported ones nicely demonstrate the 

broad variability in the UCr4C4-structure type and the strong structural relationship 

between nitrido-magnesioaluminates and nitrido-magnesiogallates.  

MAPLE calculations. To confirm the crystal structures, MAPLE calculations on 

quaternary compounds and on solid solutions were carried out. The electrostatic 

consistency of the crystal structures were proven by comparison of MAPLE values for 

each atom type was well as the MAPLE sum, compared with the sum of constituting 
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nitrides. Comparison with MAPLE data reported before shows good agreement of the 

calculated values. The results of MAPLE investigations are exemplarily listed for 

Ba[Mg2Ga2N4] and Sr[Mg2Al1.95Ga0.05N4] in Table 5.  

Table 5. MAPLE values in [kJ/mol] for Ba[Mg2Ga2N4] and Sr[Mg2Al1.95Ga0.05N4]. 

Ba[Mg2Ga2N4] calculated 
MAPLE value Δ Sr[Mg2Al1.95Ga0.05N4] calculated  

MAPLE value Δ 

Ba 1614.36  Sr 1721.26  
Mg/Ga 3673.89  Mg/Al/Ga 3716.06  
N 4776.03  N 4886.93  
Ba[Mg2Ga2N4] 35430.98  Sr[Mg2Al1.95Ga0.05N4] 36151.30  
      

model:   model:   
      0.3 Sr3Al2N4

[9]   
  BaMg2

[27]   + 0.05 GaN[28]   
+ 2 Ba3Ga2N4

[29]   + 0.1 SrMg2N4
[7]   

- 2 GaN[28]   + 0.6 Mg3N2
[7]   

- 2 Ba3N[30] 35250.06 0.5 % + 1.35 AlN[31] 36677.88 1.5 % 
Typical partial MAPLE values [kJ/mol]:Sr2+:1500-2100; Ba2+:1500-2000; Mg2+: 2100 – 2400; Al3+:5500-
6000; Ga3+:4500 - 6000; N3-:4300 – 6000.[32-34] 

 

7.4. Conclusion 

In this contribution we present the first nitrido-magnesioaluminates, a novel nitrido-

magnesiogallate and solid solutions as substitutional variants thereof. All presented 

compounds are isostructural, exemplarily discussed on Eu[Mg2Al2N4]. The number of 

compounds in UCr4C4-structure type is significantly increased and subsitutional 

variants of nitrido-magnesioaluminates and nitrido-magnesiogallates are 

demonstrated. This points out that with an expansion of the Li-flux method by 

introducing fluorides in the metallic melt a multitude of quaternary and higher 

compounds are accessible. Since formation of LiF is the driving force of the reaction, 

not only thermodynamic products can be obtained easily since reaction temperatures 

up to 900 °C are quite moderate for solid-state reactions. Furthermore, with this 

expansion of the Li-flux method reaction time can be decreased in comparison to 

reactions starting from metals. The synthesized products were investigated by single-

crystal X-ray diffraction and EDX-analysis as well as Rietveld refinement of powdered 

samples. To prove electrostatic consistency of the products, MAPLE calculations 

were carried out and confirm also the triply mixed occupation on tetrahedral site in 

the crystal structure.   
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8. Ammonothermal Synthesis and Crystal Structure of 
BaAl2(NH2)8 · 2 NH3 

For synthesis of BaAl2(NH2)8 · 2 NH3 supercritical NH3 was used as nitrogen source. 

The ammonothermal reaction procedure was presented in the beginning. With this 

synthesis method, the binary amide BaAl2(NH2)8 · 2 NH3 could be obtained from 

reaction of an alloy of both metals in supercritical ammonia at 550 °C. Single crystals 

were isolated from an Al-substrate and are stable at temperatures lower than -35 °C. 

X-ray diffraction was carried out under continuous cooling with liquid nitrogen. The 

crystal structure could be solved and refined and is described in the following. Due to 

synthesis with supercritical ammonia NH3-molecules are incorporated in channels of 

the crystal structure. Surprisingly, the crystal structure is completely different from 

isoelectronic CaAl(NH2)8, published before.  
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Abstract: BaAl2(NH2)8 · 2 NH3 was synthesized starting from an intermetallic phase 

with nominal composition Al2Ba under ammonothermal conditions in a stainless-steel 

autoclave at 823 K and 245 MPa. Single crystals were grown on aluminum 

substrates and prepared under low-temperature conditions. The crystal structure 

(R‾3c (no. 167), a = 15.7370(17), c = 28.804(6) Å, Z = 1, 1829 reflections, 65 

parameters, wR2 = 0.07) was solved on the basis of single-crystal X-ray diffraction 

data. BaAl2(NH2)8 · 2 NH3 contains isolated Al(NH2)4-tetrahedra forming two different 

types of channels along [001]. 
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8.1. Introduction 

Synthesis of ternary or multinary nitride materials can be carried out with a broad 

range of synthetic approaches. Due to the high kinetic stability of nitrogen (N2) 

regular high-temperature routes starting from metals and nitrogen require typically 

rather high temperatures above 1000 °C. Unfortunately, such reactions lead 

frequently to non phase-pure products.[1,2] We have recently reported on another 

approach for nitrides starting from binary amides and imides as precursor 

compounds to form nitridosilicates.[3,4] In such amides or imides the proximity of 

nitrogen and the corresponding metal ions on an atomic level facilitates a significant 

reduction of synthesis temperature. Employment of thermally less stable ternary 

amides could lead to further reduction of temperatures and may enable access to 

kinetically controlled nitridic products. This method could be of interest, especially in 

the nitridoaluminate system with respect to the thermodynamically very stable binary 

compound AlN. 

Rouxel et al. were the first to report on ternary alkaline-earth aluminum amides.[5-7] 

The syntheses were performed in liquid ammonia in sealed glass tubes starting from 

an alkaline-earth electride solution and an excess of metallic aluminum. A 

stoichiometric formula MIIAl2(NH2)8 (MII = Sr, Ba) was derived from elemental analysis 

and IR-spectroscopy as well as thermal decomposition measurements have been 

performed. The compounds showed a rapid decomposition after being extracted from 

ammonia atmosphere and thus it was not possible to determine the crystal 

structure.[5-7]  

Another method to access ternary aluminum amides has been demonstrated by 

Peters et al. employing ammonothermal conditions.[8] To increase the solubility of 

aluminum in supercritical NH3 ammonobasic mineralizers like K or K(NH2)2 are 

useful. Formation of intermediate KAl(NH2)2 and subsequent thermal decomposition 

induces the generation of AlN.  

We adapted this technique to our needs and performed the ammonothermal 

synthesis of an alkaline-earth aluminum amide employing stainless-steel autoclaves. 

Crystal structure determination was achieved by low-temperature single-crystal 

preparation and measurement. 
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8.2. Results and Discussion 

BaAl2(NH2)8 · 2 NH3 was synthesized starting from an intermetallic phase with 

nominal composition Al2Ba and dry ammonia in a stainless-steel autoclave at 823 K 

and 245 MPa under supercritical conditions. Colorless crystals, which exhibited a 

high sensitivity towards hydrolysis and thermal decomposition under ambient 

conditions, were grown on an aluminum substrate and isolated under low-

temperature conditions (213 K).  

The crystal structure of BaAl2(NH2)8 · 2 NH3 was solved from single-crystal diffraction 

data and refined in trigonal space group R‾3c (no. 167) with a = 15.7370(17) and 

c = 28.804(6) Å. The crystallographic data of BaAl2(NH2)8 · 2 NH3 are summarized in 

Table 1, atomic coordinates and isotropic displacement parameters are listed in 

Table 2. 

 

 

 

 

 

 

Figure 1. Crystal structure of BaAl2(NH2)8 · 2 NH3. Al(NH2)4-tetrahedra gray, Ba2+ black, ammonia 
nitrogen atoms bright gray. Hydrogen atoms of the amide groups and of the ammonia molecules 
are not displayed. Top: Viewing direction along [001], bottom: Viewing direction along [100]. 
 

Figure 2. Coordination of Ba2+ in 
BaAl2(NH2)8 · 2 NH3. Al(NH2)4-tetrahedra 
gray, Ba2+ black, N bright gray, H white. 
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Formula BaAl2(NH2)8·2NH3 

Crystal system trigonal 

Space group R‾3c (no. 167) 

Lattice parameters /Å a = b = 15.7370(17) 

c = 28.804(6) 

Cell volume /Å3 6177.7(16) 

Formula units /cell 1 

rcalcd.
 /g·cm-3 1.673 

m /mm-1 3.004 

T /K 200(2) 

F(000) 3036 

Diffractometer Kappa CCD 

Radiation, 

monochromator 

Mo-Kα (λ = 

0.71073 Å), 

graphite 

Absorption correction multi-scan[12] 

Max. / min. 

transmission 

0.4322 / 0.2100 

θ range /° 3.2 - 29.6 

Index ranges -21 ≤ h ≤ 21 

 -21 ≤ k ≤ 21 

 -37 ≤ l ≤ 39 

Independent 

reflections 

1829 

(Rint = 0.0685) 

Refined parameters 65 

Goodness of fit  1.021 

R1 (all data); R1 (F2 > 

2σ(F2)) 

0.0280, 0.0246 

wR2 (all data); wR2 (F2 

> 2σ(F2)) 

0.0700, 0.0674 

Max. / min. residual 

electron density /e·Å-3 

0.84 / -1.51 

 

Table 1. Crystallographic data of BaAl2(NH2)8 · 2 NH3. 
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The crystal structure of BaAl2(NH2)8 · 2 NH3 is built up of isolated Al(NH2)4-tetrahedra 

forming two different types of channels along [001] (see Figure 1). Ba2+-ions are 

located in the smaller voids, whereas the bigger channels are occupied by ammonia 

molecules. Volume calculations with PLATON[9] delivered a pore volume of 1242.5 Å3 

in the larger tubes, leading to sufficient space to enclose two NH3 molecules per unit 

cell.  

Atom x y z Ueq 

Ba1 0.35543(1) ⅓ 0.8333 0.02367(9) 

Al1 0.35806(6) 0.15825(5) 0.00234(2) 0.02902(17) 

N1 0.24822(18) 0.07955(19) -0.03310(9) 0.0404(5) 

N2 0.3991(2) 0.28800(17) -0.01122(8) 0.0407(6) 

N3 0.3232(2) 0.13391(17) 0.06434(7) 0.0377(5) 

N4 0.45903(18) 0.13427(18) -0.01033(8) 0.0368(5) 

N5 0.5474(6) 0.3481(10) 0.0731(4) 0.070(3) 

N6 0 0 -0.0832(4) 0.143(5) 

 

 

The shortest distance between ammonia molecules and surrounding amide groups 

(2.885(13) Å) is too large to form stabilizing hydrogen bonds, resulting in high mobility 

of the enclosed molecules and large isotropic displacement parameters. Therefore 

hydrogen atoms bound to ammonia nitrogen N6 were disregarded in the crystal 

structure refinement assuming severe rotational disorder in the NH3 molecules.  

Al(NH2)4-tetrahedra show interatomic distances (Al-N) of 1.85 Å, which correspond 

with Al-N distances in nitridoaluminates like LiCaAlN2 (Al-N: 1.92-1.96 Å)[10] or 

Ba3Al2N4 (Al-N: 1.91-1.98 Å).[2]  

Ba2+-ions are aligned in the smaller tubes along [001] (see Figure 1). The Ba2+-site is 

coordinated by eight amide groups and one ammonia molecule with Ba-N distances 

ranging from 2.93 to 2.98 Å (see Figure 2). Comparable values can also be observed 

in Ba(NH2)2 (Ba-N: 2.79 - 3.17 Å).[11] 

 

Table 2. Atomic coordinates and isotropic displacement parameters / Å2 of BaAl2(NH2)8 · 2 NH3, 
standard deviations in parentheses. 
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8.3. Conclusions 

In this contribution it was possible to elucidate the crystal structure of 

BaAl2(NH2)8 · 2 NH3 and to confirm the assumed stoichiometric formula given by 

Rouxel et al.[6] The structure shows tube like pores with a calculated volume of 

1242.5 Å3 leaving space for incorporation of two NH3 molecules per unit cell. 

BaAl2(NH2)8 · 2 NH3 may be a suitable precursor material for nitridoaluminate 

synthesis since constituting atoms are already arranged on an atomic level and a 

ternary compound in the system Ba-Al-N may be formed by thermal treatment and 

evolution of NH3. 

 

8.4. Experimental Section 

Synthesis: All manipulations were performed with rigorous exclusion of oxygen and 

moisture in flame-dried Schlenk-type glassware on a Schlenk line interfaced to a 

vacuum (10-4 mbar) line or in an argon-filled glove box (Unilab, MBraun, Garching, 

O2 < 1 ppm, H2O < 1 ppm). Ammonia was purified using a cleaning cartridge (Micro 

Torr MC400-702FV, SAES Pure Gas Inc., San Luis Obispo, CA).  

The synthesis of BaAl2(NH2)8 · 2 NH3 was performed in specially designed 

autoclaves made from Inconel stainless steel (no. 2.4668), sustaining a maximum 

pressure of 300 MPa and a maximum temperature of 873 K (development and 

design of the autoclaves was performed by the workgroup of Prof. Dr.-Ing. E. 

Schlücker and Dr.-Ing. Dipl.-Wirt.-Ing. N. Alt within the DFG-Forschergruppe 

FOR1600 “Chemie und Technologie der Ammonothermal-Synthese von Nitriden”). 

191.3 mg (1.00 mmol) of an intermetallic phase with nominal composition Al2Ba, 

synthesized from the elements at 1423 K, were placed into the autoclave together 

with aluminum substrates. Substrates were cut from an aluminum foil and surface-

ground with a rasp. A volume of 44 mL ammonia was condensed onto the 

compounds at 200 K, reaching a filling degree of 45 Vol.-% inside the autoclave. The 

autoclave was positioned vertically in a tube furnace. The autoclave lid protruded 

from the furnace resulting in a measured temperature gradient of 100 K from bottom 

to top. Within 3 h temperature was raised to 823 K, maintained for 700 h, gaining a 

measured pressure of 245 MPa, and quenched down to room temperature by 

switching of the furnace.  
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Single-crystal preparation: For the crystal preparation, we adapted the technique 

described by Stalke et al.[13] to our needs. After reaction the ammonia within the 

autoclave was recondensed at 200 K, the aluminum substrate was extracted and 

directly put into perfluoroether (Galden), which was cooled by an ethanol/dry-ice 

freezing mixture and a stream of cooled nitrogen to 213 K. Colorless, block-shaped 

single crystals grown on the aluminum substrate were isolated under a microscope, 

collected on the tip of a glass fiber, immediately submerged in liquid nitrogen and 

transferred to the diffractometer. 

Single-crystal X-ray diffraction: Single-crystal diffraction data were collected on a 

Nonius Kappa CCD diffractometer (Mo-Kα radiation, graphite monochromator) at 

200 K. A spherical absorption correction using the program SADABS[12] was applied. 

The crystal structure was solved by using direct methods with SHELXS.[14] The 

refinement of the structure was carried out by the method of least-squares using 

SHELXL.[14] The atomic ratio Ba:Al was confirmed by energy-dispersive X-ray 

spectroscopy (EDX) using a JSM-6500F scanning microscope (Jeol) equipped with 

an EDX detector 7418 (Oxford Instruments). An atomic ratio Ba:Al = 1:1.9 was 

measured by EDX analysis and agrees with the composition of BaAl2(NH2)8 · 2 NH3. 

As a result of the high sensitivity at ambient temperature of the compound the 

nitrogen ratio was not determinable. 

Hydrogen positions of the Al(NH2)4-tetrahedra could be determined by difference 

Fourier syntheses and were refined isotropically using restraints for nitrogen-

hydrogen distances, all other atoms were refined anisotropically. 

Further details of the crystal structure investigations can be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany 

(Fax: +49-7247-808-666; E-Mail: crysdata@fiz-karlsruhe.de) on quoting the 

depository number CSD-425323. 
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9. Discussion and Outlook  

9.1. Nitrides 

In this thesis a number of novel Ga containing compounds has been presented. All of 

them derive from the binary nitride GaN. This nitride has been synthesized in 

supercritical ammonia at elevated pressure and temperature. To realize these 

reaction conditions, the use of specially designed autoclaves was necessary. Those 

pressure vessels were developed by engineers from University of Erlangen and are 

able to stand pressures up to 3000 bar and temperatures of 600 °C. Starting from 

metallic Ga and a GaN feedstock, together with a mixture of ammonobasic and 

ammonoacidic mineralizers it was possible to obtain GaN in hexagonal 

modification.[1] During reaction, the pressure must be high enough on the one hand to 

make sure supercritical state is achieved. On the other hand, reaction pressure has 

to be within the pressure limits of the vessel. Therefore, an ammonia filling device 

was built where the autoclave can be evacuated and filled with a certain amount of 

ammonia and the filling degree can be monitored. Since the working of all technical 

equipment was demonstrated by synthesis of GaN powder, still some challenges for 

further syntheses of binary and higher nitrides are present. Even if the amount of 

ammonia at the beginning of the reaction is defined, the resulting pressure can only 

be estimated roughly. Ammonia is not only the solvent but also starting material in 

these reactions and acts as nitrogen source. Therefore, nitrogen is consumed and 

hydrogen develops during reaction. The resulting pressure, constituted of ammonia 

and hydrogen is mostly much higher than the expected pressure from filling degree. 

Careful monitoring of pressure during reaction is indispensible to make sure that the 

pressure limits are properly followed. Furthermore, corrosion of autoclave material 

must be taken into account. Especially in the ammonoacidic regime contaminations 

of products with Cr or Ni from autoclave material are known. Therefore, a suitable 

liner material is required. A material chemically and mechanically stable under the 

given reaction conditions is hard to find. The use of Pt liners is reported in 

literature,[2,3] but due to high costs of raw materials they are expensive. Nevertheless, 

this reaction method is very promising to find access to novel nitrogen based 

materials with interesting properties like high hardness or luminescence for example.  
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Further nitride materials were presented in chapter 3 with Eu2+-doped Mg3N2 and the 

double nitride Mg3GaN3. Syntheses were carried out in tantalum ampoules, starting 

from the elements using sodium azide as nitrogen source in a sodium flux. Verdier 

reported a compound with sum formula Mg3GaN3 earlier in 1970[4] but crystal 

structure was unknown yet. With the synthesis in sodium flux single crystals of 

Mg3GaN3 could be obtained and elucidation of crystal structure was carried out. The 

double nitride is comprised of mixed occupied (Mg/Ga)N4 and MgN4 tetrahedra, 

building an uncharged three-dimensional network by vertex- and corner sharing. 

Doping of this compound with Eu2+ led to luminescence properties that were 

investigated in detail. The band emission showed maximum intensity at 578 nm and 

full width at half maximum of 132 nm. This is the first time, luminescence of a double 

nitride was reported. Furthermore, the well-known binary nitride Mg3N2 showed 

comparable luminescence properties upon doping with Eu2+. In both nitrides, the 

Mg2+ or the Mg2+/Ga3+ sites respectively are too small to be occupied by Eu2+. In the 

respective crystal structure, interstitial sites were found, surrounded by six nitrogen 

atoms in an octahedral arrangement. In these voids, Eu2+ could be located with 

reasonable Eu-N distances. Lately, different approaches were attempted to elucidate 

the distribution and concentration of activator ion in host lattices. To understand the 

origin and the quality of luminescence properties, detailed knowledge of local 

surrounding of activator ions is necessary. If this can be achieved, prediction of 

luminescence properties due to structural characteristics may be possible.  

The double nitride was further investigated to determine the band gap of this 

compound. Therefore, soft X-ray absorption and emission spectroscopy was carried 

out and compared to DFT calculations. In very good agreement, both methods 

predict Mg3GaN3 to be a semiconductor with a direct band gap of 3.0 eV. In 

comparison, GaN has a direct wide band gap of 3.5 eV.[5] Unfortunately, lattice 

mismatch between those two compounds is too large to make Mg3GaN3 a suitable 

substrate material for GaN crystal growth. Furthermore, the rather broad emission 

band makes an application in phosphor converted LEDs unfavorable yet.  
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9.2. Nitridogallates 

In contrast to previously mentioned nitrides most nitridogallates are comprised of 

GaN4 tetrahedra, building an anionic substructure, typically charge balanced by 

alkaline earth ions like Ca2+, Sr2+ or Ba2+.  

A novel ternary compound, Ba3Ga3N5 was presented in chapter 4. Herein, a hitherto 

unknown structural motif was found. Highly condensed tetrahedra are building 

strands running along [010]. This one-dimensional substructure is quite unexpected 

for such a high degree of condensation. This shows the broad structural variability of 

nitridogallates. Furthermore, a high degree of condensation stands in most cases for 

a stable network and therefore such compounds seem to be favorable for 

luminescence properties upon doping with Eu2+. This was confirmed by doping of 

Ba3Ga3N5 and the observed emission at 638 nm after irradiation with UV to blue light. 

This was the first reported luminescent nitridogallate. Surprisingly, the isoelectronic 

Sr-compound Sr3Ga3N5
[6] exhibits a different crystal structure, containing a three-

dimensional network of corner sharing GaN4-tetrahedra. Since the degree of 

condensation is the same, similar properties can be expected. Synthesizing this 

compound doped with Eu2+ was possible, but no luminescence was observed. DFT 

calculations of both compounds revealed a band gap of 1.46 eV for Ba3Ga3N5 and 

1.53 eV for Sr3Ga3N5. The strong red shifted emission of Ba3Ga3N5:Eu2+ illustrates 

the potential of nitridogallates as possible phosphor materials in phosphor converted 

LEDs and was the first reported luminescent nitridogallate.  

But a high degree of condensation does not always lead to luminescence properties 

like the nitridogallate Ca2Ga3MgN5 demonstrates. In this compound, the tetrahedral 

building units contain Ga and Mg, both occupying one site. These tetrahedra are 

connected via vertices and edges building a three-dimensional network. In hexagonal 

channels Ca2+ atoms are located. The crystal structure can be related to Sr2Si5N8,[7] a 

red phosphor material used in phosphor converted LEDs when it is doped with 

Eu2+.[8] Although, the degree of condensation is quite high in Ca2Ga3MgN5 (atomic 

ratio (Ga,Mg) : N = 4 : 5), even higher than in the nitridosilicate (5 : 8), no 

luminescence was observed. Mixed occupation of the tetrahedra center is already 

known from Sr(Mg2Ga2)N4, published by DiSalvo et al.[9] This compound crystallizes 

in the UCr4C4 structure type.[10] In the latter, only one tetrahedral site and a single 

further metal site is reported. The tetrahedral site in the nitridogallate is occupied by 
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Mg and Ga and the further metal site is occupied by the alkaline-earth metal. A 

number of compounds were found, crystallizing also in this structure type (see 

chapter 7), all of them with a mixed occupation, varying from mixed Mg/Ga (nitrido-

magnesiogallates) to mixed Mg/Al (nitrido-magnesioaluminates). The variability of 

this structure type was shown, since additionally solid solutions were synthesized, 

mixing the alkaline-earth site, the tetrahedral site with Mg, Ga and Al or mixing both 

sites. Most of these compounds were obtained by using a Li-flux and LiN3 as nitrogen 

source. Furthermore, the respective fluorides and Mg3N2 were used as starting 

materials. The driving force of these reactions is the formation of LiF. Therefore, not 

only thermodynamic products are accessible and temperatures can be moderate for 

solid-state reactions (900 °C) as well as reaction duration is decreased in comparison 

to syntheses starting from metals. On the other site, LiF is part of the product mixture 

and cannot easily be removed. When single crystals are desired the side phase can 

be sorted out but in powdered products LiF is always obtained as a byproduct. 

Nevertheless, Li must not incorporated in the crystal structure of the target compound 

but with modification of fluxing agents, Li can be incorporated as demonstrated with 

LiBa5GaN3F5. Here a mixed flux of Na and Li was used. Together with the fluoride 

from starting material EuF3 Li and F build edge-sharing octahedra in the crystal 

structure. In this compound, no GaN4 tetrahedra are found but trigonal planar GaN3 

units. These units are not connected to each other, so regarded as a nitridogallate 

the crystal structure is zero-dimensional. Such trigonal planar GaN3 units were 

observed earlier in Sr3GaN3 for example.[11] The single crystals of this Li-containing 

compound are deeply red. Therefore, the band gap was measured on single crystals 

and calculated by DFT methods. The measurement reveals a band gap of 1.9 eV, 

according to DFT calculations the band gap is 1.6 eV. This deviation arises since 

such calculations always underestimate the band gap and the measured value of 

1.9 eV is reasonable and in accordance to the observed color of the crystals.  

Most of the previously presented reactions started form metals or fluorides and were 

carried out in a metallic flux. The ammonothermal synthesis route offers a lot of 

potential for nitride materials and amides or imides could be synthesized and used as 

starting materials. For synthesis of nitridoaluminates, BaAl2(NH2)8 · 2NH3 seems to 

be a promising precursor. Synthesis was performed in previously presented 

autoclaves. Isolation of single crystals from the Al-substrate was rather difficult since 

the compound decomposes very rapidly and must be kept under low temperature 
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conditions. In the crystal structure, Al(NH2)4 tetrahedra are observed, not connected 

to each other but stabilized by hydrogen bonds. Furthermore, NH3 molecules are 

found in pores of the crystal structure. Starting from this material, building of AlN4 

tetrahedra and forming a nitridoaluminate seems to be reasonable. Unfortunately, the 

high sensitivity of the compound impeded further reactions with BaAl2(NH2)8 · 2NH3 

yet. But the postulated sum formula from Rouxel et al.[12] was confirmed and the 

crystal structure could be elucidated. Further synthesis and research may bring 

access to suitable precursor materials for synthesis of nitridoaluminates or 

nitridogallates as well.  

 

9.3. Outlook 

In the previous paragraph, synthesis of a precursor material was discussed. For 

synthesis of nitridogallates different starting materials than metals are conceivable. 

For example digallides SrGa2 and BaGa2 can easily be synthesized from their 

constituting metals at 1000 or 900 °C, respectively.[13,14] To form a nitridogallate, 

nitridation of the alloy material is necessary. Therefore, Further reaction with azides 

(i.e. Ba(N3)2) or in nitrogen or ammonia atmosphere at elevated temperatures is 

possible. First attempts in this direction were unsuccessful yet and further 

optimizations of reaction conditions have to be made for synthesis of nitridogallates 

starting from alloys. In the digallides, a preorganization of the alkaline-earth metal 

and Ga is achieved. Another precursor material could already include a nitrogen to 

metal bond like in alkaline earth-azides (i.e. Sr(N3)2) or amides Ba(NH2)2 for example. 

First investigations with Ba(NH2)2 as starting material revealed Ba3Ga2N4
[15] in form of 

yellow single crystals. This compound is already known, but the published synthesis 

started from the metals. This demonstrates, that synthesis of nitridogallates is 

possible starting from nitrogen containing precursor materials like amides. Therefore, 

also novel compounds could be accessible by a modified starting material mixture.  

All presented nitrogen-gallium compounds with luminescence properties nicely show 

the possibility of application in phosphor converted LEDs. All investigations of the 

band gap illustrate that the band gap is slightly too small for such an application. To 

increase the band gap, an additional element introduced to nitridogallates. 

Structurally related to nitridogallates are nitridosilicates. Since in this compound 
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class, also luminescence properties are observed and some representatives find 

already use in phosphor converted LEDs a combination of these two compound 

classes seems to be promising. Starting from an alloy material, for example 

Ba8Ga10Si36
[16] or CaGaSi[17] nitridation could be achieved with a nitrogen source like 

azides, heated up under nitrogen atmosphere at elevated temperatures or with 

supercritical ammonia in autoclaves. Additionally, “Si(NH)2” or Si3N4 could be used as 

starting materials and Si-source, well known from nitridosilicate syntheses.[8] 

Independently from starting material mixture, syntheses of nitridogallates seem to 

work only in a metallic melt like a Na-flux for example. All investigations without a flux 

revealed no crystalline products yet.  

Many isoelectronic compounds are known in the field of nitridogallates like 

Sr3Ga3N5
[6] and Ba3Ga3N5 or Sr(Mg2Ga2)N4

[9] and Ba(Mg2Ga2)N4, but they 

sometimes show considerable structural differences and exhibit different properties. 

Therefore, exchange of alkaline earth element in known nitridogallates could lead to 

novel compounds with different crystal structures and properties as well. Since 

Ca2Ga3MgN5 exhibits a highly condensed network but does not show luminescence 

properties, the respective Sr or Ba compound would be of interest. Using Sr or Ba 

metal instead of Ca was unsuccessful yet but revealed a novel compound 

Sr2GaMg3N4.33 with different structural features.[18] 

In some reactions it was observed that additional metals in the starting material 

mixture improved crystallinity of the product but were not incorporated into the 

crystals. In the synthesis of Ba3Ga3N5 for example, additional Sr and Mg improved 

crystallinity as well as additional Ca is required for the successful synthesis of 

Mg3GaN3. Therefore, so far unsuccessful syntheses could be improved by adding 

further metals. 

Synthesis in supercritical ammonia is also very promising to obtain novel, highly 

condenses nitridogallates. Furthermore, the larger reaction volume can lead to bigger 

product volumes than a few single crystals, obtained from reaction in tantalum 

ampoules. On the other hand, crystal growth of larger single crystals is possible in 

autoclaves as well. This synthesis method can not only be used for nitridogallates, 

but also synthesis of nitrdoaluminates or other nitride based materials is possible. 
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In this thesis, a number of novel Ga-N compounds was presented and their 

respective properties were investigated in detail. Luminescence properties in 

nitridogallates were reported for the first time and therefore, a novel compound class 

is accessible for use in phosphor converted LEDs. Nevertheless, further research 

effort has to be made to adjust synthesis and reaction conditions to obtain products, 

applicable in that technology. Furthermore, nitridogallates or the double nitride 

Mg3GaN3 are promising candidates as substrate materials for GaN crystal growth if 

lattice mismatch is suitable. The performed investigations on the band gap of several 

nitridogallates, gives a detailed insight into the physical background of this material 

class.  
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10. Summary 

10.1. Ammonothermal reactions  

Chapter 2, page 9 and chapter 8, page 105  

The ammonothermal synthesis method was established. Therefore, novel autoclaves 

suitable for reaction conditions of supercritical ammonia up to 600 °C and 3000 bar 

were developed from engineers at university of Erlangen. For controlled filling of 

autoclaves with ammonia a filling device was built at which the filling degree can be 

determined and the resulting pressure can be estimated by additional knowledge of 

temperature. To proof the system, synthesis of GaN was carried out. In addition to 

Ga-metal, GaN powder was used as feedstock. A mixture of ammonobasic (Na) and 

ammonoacidic (NH4Cl) mineralizer was used. The autoclave was filled with 40 ml, 

this corresponds to 41 % filing degree. During reaction at 550 °C 1805 bar pressure 

were achieved. Since this value is higher than expected a chemical reaction takes 

place and H2 is produced by decomposition of NH3 and responsible for the higher 

pressure. The obtained product consist of GaN and NaNH2 due to high amount of Na 

in the starting material mixture.  

In a further reaction in supercritical ammonia, an alloy of Ba and Al was used as 

starting material for synthesis of BaAl2(NH2)8 · 2 NH3. By the use of an Al-substrate, 

single crystals of acceptable size could be 

obtained. The crystals are stable at 

temperatures lower than -35 °C in ammonia 

atmosphere. Single-crystal X-ray diffraction 

was performed and the structure could be 

solved and refined in the space group R3̄c 

(no. 167) with a = 15.7370(17) and 

c = 28.804 Å. The crystal structure of the 

amide is built up of isolated Al(NH2)4-

tetrahedra, stabilized through hydrogen-bonds. In the resulting channels in the 

structure, Ba atoms are located, coordinated by 9 N-atoms whereof two of them 

belong to disordered NH3-molecules. Additionally, free NH3-molecules are inside 

channels as well, further stabilizing the crystal structure.  
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10.2. Magnesium Nitrides with Luminescence Properties Mg3GaN3:Eu2+ 
and Mg3N2:Eu2+ 

Chapter 3, page 24 

The double nitride Mg3GaN3 was obtained from reaction of the metals in Na-flux with 

NaN3 as nitrogen source. The crystal structure (R3̄m (no. 166), a = 3.3939(5) and 

c = 25.854(5) Å) contains MgN4-tetrahedra as well as miscellaneously occupied 

(Mg/Ga)N4-units. These tetrahedra are sharing common corners and edges whereby 

a three-dimensional network derives. This network is uncharged and all atoms are 

part of the tetrahedral network. Therefore, Mg3GaN3 is a double nitride. with MAPLE 

calculations, the crystal structure was confirmed. Upon doping with Eu2+ Mg3GaN3 

shows luminescence (λEm. = 578 nm, FWHM = 4052 cm-1 (132 nm), x = 0.491, 

y = 0.498, LE = 132 lm/W). It is assumed that Eu2+ occupies interstitial, octahedral 

voids of the crystal structure. Band gap was determined by soft X-ray absorption and 

emission measurements and compared to theoretical values from first principle DFT 

calculations. In good agreement of both methods, Mg3GaN3 reveals a band gap of 

3.0 eV. 

In an analogue synthesis Mg3N2 could be obtained from Mg-metal in Na-flux. 

Additionally, Sr and Ge were part of starting material mixture and seem to improve 
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crystallinity of the product. Single crystals were be obtained, investigated by X-ray 

diffraction. The refined lattice parameters (Ia3̄ (no. 206),a = 9.9550(11) Å) and crystal 

structure comply with values from data reported before. Eu2+-doped samples show 

also luminescence (λEm. = 589 nm, FWHM = 4056 cm-1 (147 nm), x = 0.509, 

y = 0.480, LE = 317 lm/W) when irradiated wit UV to blue light.  

 

10.3. Ternary Novel Nitridogallate Ba3Ga3N5 

Chapter 4, page 47 

The ternary nitridogallate Ba3Ga3N5 was obtained as single crystals after reaction of 

Ba and Ga in Na-flux with NaN3 at 760 °C. Sr and Ge were also present in the 

starting materials mixture but were not part of the crystalline product. The crystal 

structure was solved and refined in space group C2/c (no. 15) with a = 16.801(3), 

b = 8.3301(2), c = 11.623(2) Å and β = 109.92(3) °. The GaN4-tetrahedra are highly 

condensed, building strands 

running along [010]. The 

coordination number of the 

Ba-atoms varies from 4 to 8. 

Therefore, the crystal 

structure differs strongly from 

isoelectronic compound 

Sr3Ga3N5. Calculations of the 

electronic structure were 

carried out and revealed an 

electronic band gap of 1.46 eV for Ba3Ga3N5 and 1.53 eV for Sr3Ga3N5. Eu2+-doped 

samples of Ba3Ga3N5 show luminescence (λEm. = 638 nm, FWHM = 2123 cm-1 

(84.7 nm), x = 0.644, y = 0.347, LE = 173 lm/W) when irradiated with 365 nm. Due to 

luminescence characteristics it is assumed that Eu2+ is located on octahedrally 

coordinated sites.  

10.4. Quaternary Nitrido-magnesiogallate Ca2Ga3MgN5 

Chapter 5, page 63 
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A novel quaternary nitridogallate is reported, crystallizing in monoclinic spacegroup 

C2/m (no. 12, a = 11.160(2), b = 3.2965(7), c = 8.006(2) Å and β = 109.93(3) °). In 

this magnesio-nitridogallate, miscellaneously occupied (Mg/Ga)N4-tetrahedra are 

found since the ionic radii of fourfold coordinated Ga3+ and Mg2+ are comparable. 

These miscellaneously occupied tetrahedra are connected via vertices or edges and 

vertices, building a three-dimensional network. Along [010] hexagonal and quadratic 

rings are observed, stacked in this 

direction forming channels. In these 

hexagonal rings, the Ca-atoms of the 

crystal structure are incorporated. These 

features of the crystal structure of 

Ca2Ga3MgN5 resemble to the crystal 

structure of Sr2Si5N8 and both are 

compared.  

 

10.5. Nitridogallate Fluoride LiBa5GaN3F5 

Chapter 6, page 76 

The lithium and fluorine containing 

compound LiBa5GaN3F5 was obtained 

by variation of fluxing agent using a 

mixed Li and Na-melt. EuF3 served as F-

source and was initially employed for 

doping reasons. After reaction of the 

metals Ba and Ga with NaN3 and the 

starting materials mentioned above at 

760 °C red needle shaped crystals were 

obtained. The crystal structure (Pnma (no. 62), a = 15.456(3), b = 5.707(1) and 

c = 12.259(3) Å) contains LiF6-octahedrons, sharing vertices and zigzag chains are 

built, running along [010]. Ga is coordinated by three N-atoms in isolated trigonal 

planar units, perpendicular to the chains of octahedrons. Investigations of the band 

gap were performed on LiBa5GaN3F5 by calculations of the electronic structure 

(1.6 eV) as well as extinction measurements on single crystals (1.9 eV).  



10. Summary 

126 

10.6. Novel Nitrido-magnesiometalates of Ga and Al 

Chapter 7, page 90 

Several novel nitride-magnesioaluminates (A[Mg2Al2N4], A = Eu, Ca, Sr) and a novel 

nitride-magnesiogallate (Ba[Mg2Ga2N4]) are presented as well as solid solutions in 

and between those two compound classes. All of them crystallize in tetragonal space 

group I4/m (no. 87). The tetrahedra in 

the respective crystal structures are 

miscellaneously occupied by Al and Mg 

or Ga and Mg. The atoms of the 

electropositive elements (Ca, Sr, Ba, 

Eu) are coordinated by eight N-atoms in 

a nearly cubic surrounding. By edge and 

corner sharing the tetrahedra are 

building a three-dimensional network 

with quadrangular channels, partly filled with atoms of the electropositive elements. 

Solid solutions were carried out on nitride-magnesiogallates, mixing Sr and Ba and 

nitride-magnesioaluminates mixing Ca and Sr. Additionally, the tetrahedral site was 

occupied by all three elements Mg, Al and Ga. To obtain these compounds, different 

synthesis routes were used and are described as well as crystal structure elucidation.  
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11. Appendix 

11.1. List of Publications within this thesis 

 

Magnesium Double Nitride Mg3GaN3 and Binary Nitride Mg3N2 as New Host 
Lattices for Eu2+-Doping – Synthesis, Structural Studies, Luminescence and 
Band Gap Determination  
F. Hintze, N. W. Johnson, M. Seibald, D. Muir, A. Moewes W. Schnick, Chem 

Mater. 2013 (accepted). 

 

For this publication synthesis of the samples, literature research, formulation of the 

manuscript main part, MAPLE calculations, and localization of vacancies for Eu2+ 

in the crystal structure were done by Frauke Hintze as well as crystal structure 

determination with assistance of Markus Seibald. Synchrotron experiments and 

analysis of these data were done by Neil W. Johnson and David Muir in the group 

of Alexander Moewes. Luminescence investigations were done in LDC Aachen by 

Detlef Wiechert and Dr. Peter Schmidt. 

 

 

Novel Nitrido-magnesioaluminates, Nitrido-magnesiogallates and Solid 
Solutions of AE[Mg2Ga2-xAlxN4] (x = 0-2, AE = Ca, Sr, Ba) 
Frauke Hintze, Philipp Pust, Andras Locher, Daniela Zitnanska, Sascha Harm, 

Wolfgang Schnick, (to be submitted). 

 

Synthesis of novel nitrido-magnesiogallates, crystal structure investigation, 

comparisons to nitrido-magnesioaluminates and formulation of parts of the 

manuscript were done by Frauke Hintze. Philipp Pust synthesized with assistance 

of Andreas Locher, Daniela Zitnanska and Sascha Harm novel nitrido-

magnesioaluminates. He also wrote parts of the manuscript, carried out single 

crystal and powder diffraction investigations on nitrido-magnesioaluminates and 

produced the pictures included in this manuscript.  
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Ammonothermal Synthesis and Crystal Structure of BaAl2(NH2)8 · 2 NH3 
Philipp Pust, Sebastian Schmiechen, Frauke Hintze, Wolfgang Schnick, Z. Anorg. 

Allg. Chem. 2013, 639, 1185. 

 

For this publication, Frauke Hintze developed and installed the used autoclaves 

and the filling device. Synthesis and crystal structure determination were carried 

out by Philipp Pust. Sebastian Schmiechen also assisted in installing the filling 

device.  

 

 

Ca2Ga3MgN5 – A Highly Condensed Nitridogallate 

F. Hintze, W. Schnick, Z. Anorg. Allg. Chem. 2012, 638, 2243. 

 

For this publication, Frauke Hintze carried out synthesis of Ca2Ga3MgN5, crystal 

structure investigations, MAPLE calcualtions and comparison to nitridosilicate as 

well as formulation of the manuscript.  

 

 

Ba3Ga3N5 – A Novel Host Lattice for Eu2+-Doped Luminescent Materials with 
Unexpected Nitridogallate Substructure 
F. Hintze, F. Hummel, P.J. Schmidt, D. Wiechert, W. Schnick, Chem. Mater. 2012, 

24, 402. 

 

Frauke Hintze carried out synthesis of Ba3Ga3N5, crystal structure investigations 

and formulation of the manuscript. DFT calculations were done by Franziska 

Hummel, luminescence investigations were done by Detlef Wiechert and Peter J. 

Schmidt at the LDC Aachen.  

 

 

A Novel Nitridogallate Fluoride LiBa5GaN3F5 – Synthesis, Crystal Structure, 
and Band Gap Determination 
F. Hintze, W. Schnick, Solid State Sci. 2010, 12, 1368. 
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For this publication, Frauke Hintze carried out synthesis of LiBa5GaN3F5, crystal 

structure investigations and formulation of the manuscript. DFT calculations were 

carried out in cooperation with Daniel Bichler at LMU Munich (group of. Prof. 

Johrendt). Band-gap measurements were carried out in the group of Prof. Glaum, 

Bonn. 

 

 

11.2. Publications published prior to this thesis 

 

Utilising Metal Melts of Low-Melting Metals as a Novel Approach for MOF 

Synthesis: The 3D-Imidazolate !∞[Ga2(Im)6ImH] from Gallium and Imidazole  

A. Zurawski, F. Hintze, K. Müller-Buschbaum, Z. Anorg. Allg. Chem. 2010, 636, 

1333. 

 

Low Temperature Precursor Route for Highly Efficient Spherically Shaped 
LED-Phosphors M2Si5N8:Eu2+ (M = Eu, Sr, Ba) 
M. Zeuner, F. Hintze, W. Schnick, Chem. Mater. 2009, 21, 336. 

 

11.3. CSD Numbers 

Crystallographic data were deposited with the Fachinformationszentrum Karlsruhe 

(76344 Eggenstein-Leopoldshafen, Germany, fax: (+49)7247-808-666; e-mail: 

crysdata@fiz-karlsruhe.de) and are available on quoting the respective CSD 

depository number.  

 

Compound CSD-number Compound CSD-number 

Mg3GaN3 425108 BaAl2(NH2)8 425323 

Mg3N2 425109 CaMg2Al2N4 425319 

Ba3Ga3N5 423521 SrMg2Al2N4 425321 

Ca2Ga3MgN5 425083 EuMg2Al2N4 425320 

LiBa5GaN3F5 421592 BaMg2Ga2N4 425318 
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D. Durach, F. Hintze, C. Pösl, W. Schnick 

XIth International Krutyn Summer School 2012, “Cutting-Edge Luminescent 

Materials: Shifting the Frontiers” 23.09 – 29.09.2012, Krutyn, Polen 

 

„Hochkondensierte Nitridogallate als Wirtsgitter für Eu2+-Dotierung“ (poster) 
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„Synthesis and Analysis – Strategies for New Phosphor Materials” (poster) 

F. Hintze, M. Seibald, P. Pust, S. Schmiechen, W. Schnick 

Phosphor Global Summit 20.03. – 22.03.2012, Scottsdale AZ, USA  
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