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1   Introduction 

1.1   Cancer 

Cancer is a disorder characterized by uncontrolled growth and proliferation of cells. The 

cancerous cells, also known as malignant cells, have the ability to invade by direct growth 

into adjacent tissues by invasion or by implantation into distant sites through metastasis. 

Cancer is the leading cause of death worldwide. In 2007, cancer caused about 13% of all 

human deaths worldwide which accounted for almost 7.9 million deaths (Jemal et al., 2011). 

The most common cancer deaths each year are due to lung, stomach, liver, colorectal and 

breast cancer. However, the death rates continue to decline for lung, colorectal, breast and 

prostate cancer according to cancer statistics of 2012 (Siegel et al., 2012). Generally, people 

of all ages have the risk to develop cancer but the risk tends to increase with age probably due 

to less effective cellular repair mechanisms. 

In the course of normal development and throughout adult life, there is a balance between cell 

growth and cell death. When this balance is perturbed due to several genetic and 

environmental factors, cancer develops. The transformation from a normal cell into a 

malignant, cancerous cell is a multistage process. Broadly, the development of cancer occurs 

in three stages: 

Initiation – mutation of a single cell 

Promotion – proliferation of the mutated cell 

Progression – additional mutations in the tumor resulting in malignancy  

Normal animal cells are subdivided according to their embryonic tissue of origin. Normal 

cells arise from one of the three embryonic cell layers: endoderm, ectoderm or mesoderm. 

Cancers are classified based on their cell of origin as carcinomas if they derive from 

endoderm or ectoderm, and as sarcomas if they derive from mesoderm. The carcinomas 

include the most common cancers developing in the lung, breast, prostate, pancreas and 

colon. The sarcomas include the cancers which initiate from the connective tissue like bone, 

cartilage, nerve and fat. Leukemia is a subdivision of sarcomas arising from hematopoietic 

cells.  
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The severity of symptoms depends on several factors like the affected site, character of the 

malignancy and occurrence of metastasis. The loss of cellular regulation in cancer is caused 

by mutations in tumor suppressor genes and proto-oncogenes,. The mutations in tumor 

suppressor genes result in inappropriate growth by inactivating the tumor suppressor function 

and the mutations in proto-oncogenes result in hyperactive gene products called oncogene. 

These mutations are caused either by carcinogens or by certain viruses that can insert their 

genome into the human genome.  

 

1.2   Overview of Leukemia 

Leukemia is the malignant neoplasm of blood forming tissues which is characterized by 

abnormal proliferation of immature white blood cells called blasts that accumulate in the 

bone marrow and enter the blood stream, thus interfering with the normal hematopoiesis. 

Leukemia is associated with relatively high incidence rate and poor survival (Kampen et al., 

2011). Leukemia is the most common form of cancer in children aged 0-14 and accounts for 

about 33% of the cancer cases in children. In adults, leukemia is considered as one of the top 

15 most common forms of cancer according to World Health Organization (Kampen et al., 

2011). According to 2012 statistics, an estimated of 47,150 people will be diagnosed and 

around 23,540 people will die of leukemia in USA (Howlader et al., 2012). The incidence 

rates of leukemia development are higher among males than in females.  

Leukemia can be broadly classified as acute or chronic based on the clinical and pathological 

course of the disease; and myeloid or lymphoid depending on the lineage of the malignant 

white blood cells involved. Acute leukemia is characterized by increased proliferation of 

immature cells or blasts in the bone marrow and peripheral blood and a differentiation block. 

If the patients suffering from acute leukemia are left untreated, death usually occurs within 6 

months. Chronic leukemia results in increased numbers of mature cells. Chronic leukemia is 

characterized by slow progression depending on the subtype of the proliferating cell, taking 

months or years until the patient dies.  

Based on the above classification the following four types of leukemia can be distinguished: 

Acute myeloid leukemia 
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Acute lymphoblastic leukemia 

Chronic myeloid leukemia 

Chronic lymphocytic leukemia 

1.2.1   Acute myeloid leukemia (AML)  

AML is a disease that progresses rapidly and is characterized by the accumulation of blasts or 

immature cells of granulocyte or monocyte precursors in the bone marrow and blood (Tenen, 

2003). According to 2012 statistical estimate, a total of 13,780 people will be diagnosed with 

and 10,200 people will die of AML in USA (Howlader et al., 2012). The incidence rate of 

AML is 3.6 per 100,000 men and women per year. It is more common in adults with the 

median age of 66 years (Howlader et al., 2012). The most common classification schemes for 

AML are the French-American-British (FAB) system and the newer World Health 

Organization (WHO) system. In addition to these two schemes, a different classification 

scheme for AML is the Medical Research Council (MRC) classification. In this classification, 

AML patients are divided into favorable, intermediate and unfavorable subtypes based on 

their survival. (Tenen, 2003).  

1.2.1.1   FAB classification of AML 

This is the traditional classification system in which the cell morphology has been used to 

describe the different subtypes of AML on the basis of differentiation status (Table 1.2.1.1). 

This was first proposed in 1976. Using this classification system, AML is divided into eight 

subtypes, M0 through M7, based on the cell type from which leukemia has developed and the 

degree of maturation (Bennett et al., 1976).  

FAB subtype Description 

M0 Minimally differentiated 

M1 Myeloblastic leukemia without maturation 

M2 Myeloblastic leukemia with maturation 

M3 Promyelocytic leukemia 



I n t r o d u c t i o n 

 

4 

M4 Myelomonocytic leukemia 

M4Eo Myelomonocytic with bone-marrow eosinophilia 

M5 Monocytic leukemia 

M6 Erythroleukemia 

M7 Megakaryoblastic leukeima 

Table 1.2.1.1   FAB classification of AML 

 

1.2.1.2   WHO classification of AML 

It is sometimes difficult to identify the heterogeneity of AML based on morphology alone, 

but it can be better appreciated by taking the underlying genetic aberrations into account 

(Caceres-Cortes, 2012). Therefore, the aim of the WHO classification of AML is to 

incorporate and correlate morphology, cytogenetics, molecular genetics and immunologic 

markers that are universally applicable as well as prognostically relevant (Jaffe et al., 2001). 

This classification scheme uses different prognostic parameters to separate between more 

homogeneous classes and also identify groups of patients responding to specific drugs or 

treatment (Table 1.2.1.2a). Thus, the WHO classification is more advanced compared to the 

FAB classification. However, some changes were made to the 2001 edition of WHO 

classification and were introduced into the 2008 WHO classification of AML.  

WHO classification of AML (2001) 

AML with recurrent genetic abnormalities 

AML with t(8;21)(q22;q22); RUNX1-RUNX1T1 

Acute promyelocytic leukemia with t(15;17)(q22;q12); PML-RARA 

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

AML with 11q23 / MLL abnormalities 
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AML with multilineage dysplasia 

With prior MDS 

Without prior MDS 

AML with myelodysplastic syndrome, therapy-related 

AML not otherwise categorized 

Table 1.2.1.2a   AML subtypes defined by WHO classification (2001) 

As compared to the 2001 edition, changes were introduced into the 2008 WHO classification 

of AML (Table 1.2.1.2b). The category with recurrent genetic abnormalities was expanded, 

AML with multilineage dysplasia was renamed and the features with myeloid proliferations 

were described. These changes have benefited the diagnostic and prognostic approaches for 

AML patients (Falini et al., 2010; Vardiman et al., 2009). 

The new classification of AML and precursor-related neoplasms (WHO classification, 2008) 

is as follows:  

WHO classification of AML 2008 

AML with recurrent genetic abnormalities 

AML with t(8;21)(q22;q22); RUNX1-RUNX1T1 

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

Acute promyelocytic leukemia with t(15;17)(q22;q12); PML-RARA 

AML with t(9;11)(p22;q23); MLLT3-MLL 

AML with t(6;9)(p23;q34); DEK-NUP214 

AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 

AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1 

AML with mutated NPM1* 
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AML with mutated CEBPA* 

AML with myelodysplasia-related changes 

Therapy-related myeloid neoplasia 

Acute Myeloid Leukemia, Not Otherwise Specified (NOS) 

AML with minimal differentiation 

AML without maturation 

AML with maturation 

Acute myelomonocytic leukemia 

Acute monoblastic/monocytic leukemia 

Acute erythroid leukemia 

- Pure erythroid leukemia 

- Erythroleukemia, erythroid/myeloid 

Acute megakaryoblastic leukemia 

Acute basophilic leukemia 

Acute panmyelosis with myelofibrosis 

Myeloid sarcoma 

Myeloid proliferations related to Down’s syndrome 

Transient abnormal myelopoiesis 

Myeloid leukemia associated with Down’s syndrome 

Blastic plasmacytoid dendritic cell neoplasm 

* Provisional entities 

Table 1.2.1.2b   AML and related precursor neoplasia defined by WHO classification (2008) 
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1.2.2   Acute lymphoblastic leukemia (ALL)  

ALL is characterized by the accumulation of malignant, immature lymphoblasts in the bone 

marrow and peripheral blood. ALL is more common in children than in adults with a peak 

incidence at 2-5 years of age. The incidence rate of ALL is 3 per 100,000 children per year 

(Heim and Mitelman, 1995). It is estimated that 6,050 people will be diagnosed and 1,440 

people will die of ALL in 2012 in USA (Howlader et al., 2012).  

1.2.2.1   FAB classification of ALL 

The FAB classification scheme is widely used for subtyping various forms of ALL (Bennett 

et al., 1976) (Table 1.2.2.1).  

Cytological features L1  L2  L3  

Cell size Mainly small Large, heterogeneous 
Large, 

homogeneous 

Nuclear chromatin Fairly homogeneous Heterogeneous 
Finely stippled, 

homogeneous 

Nuclear shape Mainly regular 

Irregular; clefting 

and indentation 

common 

Regular; oval or 

round 

Nucleolus Not visible or small 
Usually visible, often 

large 
Usually prominent 

Amount of 

cytoplasm 
Scanty 

Variable, often 

abundant 

Moderately 

abundant 

Basophilia of 

cytoplasm 
Slight to moderate Variable Strong 

Cytoplasmic 

vacuolation 
Variable Variable Often prominent 

Table 1.2.2.1   FAB classification of ALL 
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1.2.2.2   WHO classification of ALL 

The WHO international panel advocates the use of immunophenotypic classification as 

follows: 

1- Acute lymphoblastic leukemia/ lymphoma (Former FABL1/L2) 

(i) Precursor B acute lymphoblastic leukemia. Cytogenetic subtypes as follows: 

- t(12;21)(p12,q22) TEL/AML-1 

- t(1;19)(q23;p13) PBX/E2A 

- t(9;22)(q34;q11) ABL/BCR 

- T(V,11)(V;q23) V/MLL 

(ii) Precursor T acute lymphoblastic leukemia/ lymphoma 

2- Burkitt’s leukemia (Former FAB L3) 

3- Biphenotypic acute leukemia (Brunning, 2003) 

1.2.3   Chronic myeloid leukemia (CML)   

CML (also known as chronic granulocytic leukemia) is characterized by increased and 

unregulated growth of granulocytes in the bone marrow and accumulation of these cells in the 

blood. CML occurs mostly in the middle-aged and elderly group of people. The annual 

incidence of CML is 1-2 per 100,000 people. In CML, blood cell differentiation occurs in an 

orderly manner without any differentiation block. Most CML cases have a t(9;22)(q34;q11), 

which is a balanced chromosomal translocation between chromosomes 9 and 22. The 

derivative chromosome 22 is known as Philadelphia chromosome. This translocation leads to 

the fusion of a portion of the ABL gene from chromosome 9 with the BCR gene on 

chromosome 22. The resulting BCR/ABL fusion gene is known to play the crucial role in the 

pathogenesis of CML (Daley et al., 1990; Pear et al., 1998). CML usually has a triphasic 

course, starting from an initial chronic phase but always progresses over time into an 

intermediate accelerated phase and a terminal blast crisis (Bhatia et al., 2003).   
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Chronic phase – This phase lasts for about three years, is usually asymptomatic and 

progresses to accelerated phase. 

Accelerated phase – This is a malignant phase, disease progresses by acquiring additional 

chromosomal abnormalities in addition to the Philadelphia chromosome, and transforms to 

blast crisis. 

Blast crisis – This represents the final phase and behaves like an acute leukemia with rapid 

progression and short survival (Tefferi, 2006). The morphologic features of the leukemic 

cells might be myeloblastic or lymphoblastic. 

1.2.4   Chronic lymphocytic leukemia (CLL)  

 CLL is the most common type of leukemia and is characterized by increased proliferation 

and accumulation of small B cells in the bone marrow and peripheral blood. CLL is more 

common in adults. More than 75% people diagnosed with CLL are over the age of 50 and 

majority of them are men. CLL is presumed to be a neoplasm of a normal subset of 

physiologic B cells which are CD5 positive (Bagg, 2007). The clinical course of the disease 

is benign. 

The four main genetic aberrations found in CLL are: 

- Deletion of 17p (found in 5-10% of patients with CLL) which targets the TP53 

gene. 

- Deletion of 11q (found in 5-10% of patients with CLL) which targets the ATM 

gene. 

- Deletion of 13q (found in 50% of patients with CLL) is the most common 

abnormality. 

- Trisomy 12 (found in 20-25% of patients with CLL) imparts an intermediate 

prognosis. 

1.2.5   Complex acute leukemias 

Morphologic studies, cytochemistry and immunophenotypic analysis allows to classify a vast 

majority (>95%) of acute leukemias into AML or ALL (Thalhammer-Scherrer et al., 2002). 
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However, at least 20% of AML and ALL cases have aberrant or cross lineage expression, i.e. 

AML coexpressing lymphoid antigens and ALL coexpressing myeloid antigens 

(Thalhammer-Scherrer et al., 2002). In addition to this, there are fewer than 5% cases of 

acute leukemias with extremely complex immunophenotypes, which includes acute leukemia 

of ambiguous lineage, acute mixed-lineage leukemia, hybrid acute leukemia, biphenotypic 

acute leukemia and acute bilineal leukemia (Bagg, 2007).  

1.2.5.1   Acute leukemia of ambiguous lineage  

This category of acute leukemia includes three major types: undifferentiated acute leukemia, 

bilineal acute leukemia and biphenotypic acute leukemia (Brunning et al., 2003). 

Undifferentiated acute leukemia: In undifferentiated acute leukemia the leukemic blasts 

lack lineage specific antigenic and morphologic markers but may express non-specific 

antigens like HLA-DR, CD34, CD38, CD7 and TdT. 

Bilineal or Biclonal acute leukemia: Bilineal acute leukemia is characterized by co-

existence of two distinct immunophenotypic blast populations, for example, myeloid and 

lymphoid or B and T. 

Acute biphenotypic leukemia: In this type of leukemia, the myeloid and lymphoid, or both 

B and T lineage markers are co-expressed on individual leukemic blasts (Altman, 1990; 

Legrand et al., 1998). But it has been observed that cases with both lymphoid lineages (B and 

T), or involving three lineages (triphenotypic) are very rare. B-lymphoid and myeloid surface 

marker coexpression is more common than T-lymphoid and myeloid in acute biphenotypic 

leukemia blasts (Matutes et al., 1997). Acute biphenotypic leukemia associate with 

cytogenetic abnormalities and have bad prognosis (Carbonell et al., 1996; Legrand et al., 

1998). This type of leukemia is more common in infants and children than adults (Altman, 

1990). Several findings have shown IgH and TCRß gene rearrangements in myeloid 

leukemias (Caudell et al., 2007; Deshpande et al., 2006; Yen et al., 1999).  

Two hypotheses have been proposed for the biphenotypic nature in the leukemic blasts of 

acute biphenotypic leukemias: lineage infidelity and lineage promiscuity. 
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Lineage infedility: The transformed or leukemic cells from one lineage start expressing 

surface markers from another lineage aberrantly (genetic reprogramming) due to the 

transformation event (Altman, 1990; Bagg, 2007; McCulloh, 1987). 

Lineage promiscuity: Neoplastic transformation of a bipotential or multipotential progenitor 

cell and the differentiation block at this stage results in the biphenotypic character of the 

leukemic blasts (Altman, 1990; Bagg, 2007; McCulloh, 1987). 

 

1.3   Hematopoiesis 

Hematopoiesis is a dynamic process. When a hematopoietic stem cell divides it can result in 

the production of another hematopoietic stem cell (HSC) or progenitor cells. The progenitors 

include cells with restricted differentiation potential which finally mature into a fully 

functional blood cell. The main cellular components of blood are red blood cells (RBCs), 

white blood cells (WBCs) and platelets. The RBCs transport respiratory gases, platelets help 

in blood coagulation and WBCs play an important role in inflammation, phagocytosis and 

immunity. 

Humans produce approximately 1016 blood cells of different types in their lifetime (Dick, 

2003a). The production of of so many blood cells without a high rate of malignancy is likely 

due to the hierarchical organization of hematopoietic system. In human beings, hematopoiesis 

starts in the yolk sac and then moves to the fetal liver and spleen during development. In 

adults bone marrow is the major hematopoietic organ. In mouse local hematopoiesis occurs in 

the yolk sac during development, while lifelong hematopoiesis occurs in the bone marrow 

(Morrison et al., 1995; Weissman, 2000). In an adult mouse, hematopoiesis produces 2.4×108 

RBCs and 4×106 non-lymphoid peripheral blood cells each day (Cheshier et al., 1999).  

1.3.1   Hematopoietic Stem Cells (HSCs) 

HSCs are the best characterized stem cell population in comparison to stem cells in other 

organs like the skin or the gut (Weissman, 2000). The self renewal and multipotency property 

of a HSC was proven in experiments in the 1950s. These experiments demonstrated that 

transfer of bone marrow from a healthy donor to a myeloablative recipient can regenerate 
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myelo-erythroid colonies in the lethally irradiated recipient (Becker et al., 1963; Till and 

McCulloch, 1961; Wu et al., 1968). 

 

 

1.3.1.1   HSC hierarchy 

Constant production of HSCs, which are capable of indefinite self-renewal, are able to 

produce different types of mature blood cells (Passegue et al., 2003). These self-renewing 

HSCs are termed long term repopulating hematopoietic stem cells (LT-HSCs). The LT-HSCs 

generate the short term repopulating hematopoietic stem cells (ST-HSCs) which are short 

lived, have limited self-renewal property and increased proliferation capability. The murine 

ST-HSCs can reconstitute hematopoiesis in a mouse for approximately 8 weeks (Passegue et 

al., 2003). The ST-HSCs then give rise to multipotent progenitors (MPPs) that have the 

potential to generate committed progenitors.  

The committed progenitors can be of different lineages, either common myeloid progenitors 

(CMPs) for myelo-erythroid lineage, or common lymphoid progenitors (CLPs) for lymphoid 

lineage (Fig. 1.3.1.1). Thus, in this stem cell hierarchy, there is a gradual decrease in 

multipotency and self-renewal capability and an increased cell cycle activity (Lemischka, 

1997).  

HSCs maintain a balance between self-renewal and differentiation (Bonnet, 2002). HSCs are 

quiescent and divide slowly under stable conditions. In this state the division is asymmetrical, 

in that one HSC divides to give rise to HSC and a ST-HSC or a progenitor cell.. After HSC 

transplantation, HSC division is mostly symmetrical to regenerate the stem cell population 

for a certain period of time and then revert back to asymmetrical division (Warner et al., 

2004). Stem cells are considered to reside in microenvironmental niches, which are required 

for the maintenance of stemness (Weiss and Geduldig, 1991; Wolf, 1979). 
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Fig. 1.3.1.1   Hematopoietic stem and progenitor cells: The hematopoietic stem and progenitor cell lineage 

comprises the long term hematopoietic stem cells (LT-HSCs), short term hematopoietic stem cells (ST-HSCs), 

multipotent progenitor (MPP) and further downstream oligolineage progenitors; common myeloid progenitor 

(CMP) and common lymphoid progenitor (CLP). These give rise to more mature progenitors, which finally 

differentiate into mature hematopoietic cells. (Adapted from Passague et al., 2003) 

 

1.3.1.2   Properties of a HSC 

Multipotency: Multipotency or multilineage differentiation is the capability of the HSCs to 

produce all mature blood cell types important in hematopoietic function (Kondo et al., 2003; 

Lemischka, 1997). A single HSC can produce at least eight to ten different lineages of mature 

cells (Bonnet, 2002; Cheshier et al., 1999).  

Self-renewal: The property of self-renewal can be defined as the ability of HSCs to produce 

daughter cells with the exact same stem cell properties as the parent cell (Warner et al., 

2004). Self-renewal can be symmetrical leading to production of two daughter HSCs or 

asymmetrical resulting in production of one HSC and one downstream progenitor with 

reduced self-renewal capability. The decision of the HSCs to enter the self-renewal process is 



I n t r o d u c t i o n 

 

14 

determined by several developmental regulators like the Wnt family members (Reya et al., 

2003), Notch genes (Karanu et al., 2000), Sonic Hedgehog (Shh) (Bhardwaj et al., 2001), 

Hox family genes (Antonchuk et al., 2002; Buske et al., 2002; Thorsteinsdottir et al., 2002) 

and Polycomb group genes (Kajiume et al., 2004; Lessard and Sauvageau, 2003). The self-

renewal property of a stem cell is also dependent on telomerase activity. As the cell 

differentiate from a HSC into MPPs, the telomerase activity is reduced (Morrison et al., 

1996).  

Cell cycle and HSC: The cell cycle is tightly regulated in HSC. The HSCs enter the G0 or 

quiescent phase to avoid stem cell exhaustion (Cheng et al., 2000). HSCs are rare among 

peripheral blood cells, 1 in 10000 to 100000 (Bonnet, 2002). It has been reported that 

approximately 8% to 10 % of LT-HSCs enter the cell cycle per day in an adult young mice 

(Passegue et al., 2003). The majority of HSCs remain inactive and are slow cycling in the 

adult hematopoietic system. The LT-HSCs are considered to be most primitive and reside in a 

quiescent state (Lemischka, 1997). Various homologues of cyclins, cyclin-dependent kinases 

and retinoblastoma (Rb) family members are differentially expressed within the 

hematopoietic system in mammals (Passague et al., 2005).  

Apoptosis: Apoptosis is an actively regulated process throughout hematopoiesis (Opferman, 

2007) and plays an important role in regulating the size of the HSC pool (Domen, 2001). For 

example, the ectopic expression of the anti-apoptotic protein BCL2 in transgenic mice 

resulted in an increase in the steady-state hematopoietic stem and progenitor cells in the bone 

marrow. In addition to this, there competitive repopulating potential of these cells was 

increased. (Domen, 2000). Murine HSCs do not express CD95 (Fas), an apoptotic triggering 

death receptor (Aguila and Weissman, 1996), and that Fas deficiency does not affect bone 

marrow hematopoiesis (Schneider et al., 1999).  

HSC migration: Both homing, the migration of HSCs from peripheral blood to bone marrow 

and mobilization, when HSCs leave the bone marrow, are conserved through evolution 

(Kondo et al., 2003). The ability of HSCs to migrate appears to be useful in developing fetus, 

during blood loss, during bone marrow transplantations and also in making cell fate decisions 

by relocating the daughter HSCs to distinct bone marrow niches (Fig. 1.3.1.2). 

HSC plasticity: The HSCs have the potential to give rise to other cell types including neural 

cells (Brazelton et al., 2000; Eglitis and Mezey, 1997; Mezey et al., 2000), skeletal muscle 
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(Bittner et al., 1999; Ferrari et al., 1998; Gussoni et al., 1999), cardiac muscle (Jackson et al., 

2001; Orlic et al., 2001a; Orlic et al., 2001b), hepatic cells (Alison et al., 2000; Lagasse et 

al., 2000; Petersen et al., 1999; Theise et al., 2000) and also lung, skin, kidney and gut 

epithelia (Perez et al., 2001). 

 

 

Fig. 1.3.1.2   Different fates of a HSC: After cell division, the daughter hematopoietic stem cell can self-renew, 

differentiate, undergo programmed cell death (apoptosis) or can acquire the property of migration under certain 

conditions and seed other organs. (Adapted from Weissman, 2000) 

 

1.3.2   Leukemia 

Leukemia occurs due to perturbance in the well orchestrated hematopoietic system by the 

acquisition of mutations. This leads to increased proliferation, block in differentiation, 

reduced apoptosis and prolonged survival. Leukemia develops from the clonal expansion of a 

transformed blast cell (Fialkow et al., 1987; McCulloch et al., 1979), is a multistep process 

(Hanahan and Weinberg, 2000) and is sustained by a leukemic stem cell (LSC). It has been 

hypothesized that at least two classes of genetic mutations are required for leukemic 

transformation – Class I mutations that result in increased cellular proliferation and/or 

survival advantage to hematopoietic progenitors and Class II mutations which result in 
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impaired differentiation of hematopoietic progenitors (Kelly and Gilliland, 2002). Mutations 

affecting tyrosine kinases that are involved in signal transduction such as FLT3, RAS, KIT are 

examples of Class I mutations. Whereas, alterations of transcription factors such as the PML-

RARα and AML1-ETO fusion genes are examples Class II mutations (Fig. 1.3.2). 

 

Several animal models have demonstrated that Class II fusion proteins alone are not 

sufficient to induce a full blown leukemia. For example, PML-RARα caused AML only in 

30% of transgene expressing mice after a long latency period (Grisolano et al., 1997). AML1-

ETO expressing animals do not develop leukemia but exhibit many abnormalities in 

hematopiesis that are also observed in leukemia patients (Guzman et al., 2002). However, 

when AML1-ETO was co-expressed with the tyrosine kinase FLT3 length mutation (FLT3-

LM), it was able to induce AML in a murine bone marrow transplantation model (Schessl et 

al., 2005). In addition to this, AML1-ETO is also known to collaborate with Wilms tumor 

(WT1), which is a proto-oncogene (Nishida et al., 2006). It has been reported that 

TEL/TDGFRß fusion gene and AML1-ETO collaborate and induces AML in mice (Grisolano 

et al., 2003). Similarly, PML-RARα is known to co-operate with FLT3-ITD (Kelly et al., 

2002; Reilly, 2002) and also with BCL2 (Wuchter et al., 1999) to induce leukemia in mice.  

 

Though perturbed proliferation and maturation arrest are the important events in 

leukemogenesis, there are other mechanisms which are essential for leukemic 

transformations. These mechanisms include alterations in apoptosis, increased telomere 

maintenance, deregulation of self-renewal process (Warner et al., 2004) and genomic 

instability (Passegue et al., 2003).  
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Fig. 1.3.2   Class I and Class II mutations: At least two classes of genetic mutations are required for leukemic 

transformation. Class I mutations result in increased proliferation and/or survival advantage and involve tyrosine 

kinases, and Class II mutations which lead to impaired differentiation involve the transcription factors. (Adapted 

from Speck and Gilliland, 2002) 

 

1.3.2.1   Leukemia stem cells (LSCs) in AML 

Earlier transplantation experiments demonstrated that only a small fraction of murine 

lymphoma cells could generate disease in the recipients (Bruce and Van Der Gaag, 1963) and 

only 1% to 4% of leukemic cells could form colonies in the spleen. These clonogenic leukemic 

cells were first described as leukemia stem cells (LSCs). The concept of LSCs is based on AML 

studies which showed that only a small subset of cells within the leukemic bulk was able to proliferate 

in vitro and in vivo (Wantzin and Killmann, 1977). Similar observations were reported in brain 

tumors, breast and colon cancers and mammary adenocarcinoma (Deshpande and Buske, 2007; 

Mendelsohn, 1962). The clonogenic assays with solid carcinoma cells also demonstrated a 

small subset of cells with tumor initiating ability (Mackillop et al., 1983). These reports 

suggest that there is a clear functional heterogeneity within the cancer cell population. This 

heterogeneity can be explained by two theories: (a) Stochastic model and (b) Cancer stem cell 

(CSC) model. 

Stochastic Model: According to this model, all cells within the tumor bulk have an equal but 

low probability to enter cell cycle and regrow the tumor (Korn et al., 1973; Till et al., 1964). 
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The cell which attains the property of extensive proliferation undergoes multiple divisions 

(Dick, 2003b; Reya et al., 2001).  

CSC Model: This model hypothesizes the existence of a rare population of CSCs which are 

functionally different from other cells (Buick and Pollak, 1984; Mackillop et al., 1983). 

These cells have extensive proliferation and self-renewal capacity which is essential to 

initiate a new tumor and produce a hierarchy of phenotypically distinct downstream 

progenitors. The descendants of CSC have limited proliferation and self-renewal potential 

and display some remnants of normal differentiation.  

In murine transplantation experiment the expression of  MLL-GAS7 fusion gene in early HSC 

or MPP led to mixed lineage leukemia with biphenotypic progenitors. But this was not the 

case when the gene was transduced into common myeloid progenitors (CMPs) or into 

common lymphoid progenitors (CLPs). These experiments show that HSC that have the 

potential to differentiate into MPP are targets for induction of mixed lineage leukemia by 

MLL (So et al., 2003). Interestingly, in contrast to the above result, when murine HSC, CMP 

and GMP were transduced with MLL-ENL the cells were arrested in their differentiation at 

the myelomonocytic stage and leukemia was initiated. These experiments suggest that MLL 

induced myeloid leukemias can also start in committed progenitors (Cozzio et al., 2003). In 

support of the MLL-ENL model, another fusion gene MOZ-TIF2 was also shown to confer 

LSC property to committed progenitor (Huntly et al., 2004). However, studies using the 

MLL-AF9 fusion gene illustrated that committed progenitor as well as more downstream 

lineage positive cells can gain the LSC properties (Krivtsov et al., 2006; Somervaille and 

Cleary, 2006). In a murine model of CALM/AF10 it was demonstrated that B220+/myeloid 

marker- cells could propagate AML and regenerate the heterogeneity of the original tumor 

(Deshpande et al., 2006). 

 

In a nutshell, these studies in murine AML models show that CSCs can arise either from 

HSCs which acquire mutations for transformation event or from transformed precursor cells 

or downstream progenitors which re-acquire stem cell features.  
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1.3.2.2   Cell of Origin in AML 

In addition to the stochastic and CSC model an intermediate model was proposed to explain 

the “cell of origin” and LSC in AML. In cancer biology, the cell of origin has been defined as 

a precancerous cell that gives rise to a CSC (Smith, 2006). According to this model, an initial 

event occurring in the stem cells would create a ‘preleukemic’ stem cell which has the ability 

to differentiate into downstream lineages and that additional oncogenic events or alterations 

occur in the downstream progenitors to create LSC (Reya et al., 2001). The observation from 

a study of AML1-ETO fusion genes suggests that the HSCs are not leukemic. The AML1-

ETO expression resulted in preleukemic stem cell and additional mutations are acquired by 

more committed progenitors leading to the transformation event (Miyamoto et al., 2000). The 

study of the CALM/AF10 model proposes that either a HSC, MPP, or a myeloid progenitor 

which attains the lymphoid properties due to CALM/AF10, or a rare subset of naturally 

occurring lympho-myeloid cell could be the cell of origin in this leukemia. The other 

possibility could be that initial target cells have a differentiation block at the lymphoid stage 

and CALM/AF10 induces myeloid differentiation in these cells (Deshpande and Buske, 

2007). Recent report on CD34+ AML samples suggest that LSC populations resemble a 

murine LMPP (lymphoid-primed multipotential progenitor) which is similar a normal 

progenitor rather than to stem cells or MPPs. They have also shown that the LMPP 

population coexists with a GMP-like population (Goardon et al., 2011). 

 

1.4   Causes of Leukemia 

It is well known that genetic aberrations such as chromosomal aberrations play a pivotal role 

in leukemia development (Rabbitts, 1994). Leukemia results from acquisition of mutations in 

hematopoietic precursor or stem cells. These mutations include point mutations (single base 

pair insertion, deletion or substitution), gross chromosomal rearrangements such as deletions, 

insertions, amplifications, translocations, and epigenetic changes (Lin and Aplan, 2004).  

Point mutations: These mutations have a crucial role in pathogenesis of acute leukemia. 

Activating point mutations have been identified in RAS (20%), FLT3 (30% - 35%) and KIT 

(5%). The loss-of-function mutations are frequent in CEBPA, AML1 and GATA1 (Lin and 

Aplan, 2004; Gilliland and Tallman, 2002).  
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Gene amplification: This category of mutation is rare in leukemia patients. However, a few 

gene amplifications have been observed in AML e.g. MYC amplification in AML cell lines 

(Graham et al., 1985) and MLL amplifications in AML patients (Ariyama et al., 1998).  

Chromosomal deletions: Three common deletions found in acute leukemias are 5q-, 7q- and 

20q-(Gilliland and Tallman, 2002; Pedersen and Kerndrup, 1986; Swolin et al., 1981). In 

addition to this, the deletion of the p15 and p16 genes on the short arm of chromosome  is 

common in ALL (Batova et al., 1997). 

Chromosomal translocations: This type of chromosomal rearrangement is found in up to 65% 

of the acute and chronic leukemias (Raimondi, 1993; Solomon et al., 1991). Detailed 

chromosomal translocation studies have been useful in understanding the pathogenesis as 

well as identifying therapeutic targets of hematologic malignancies (Rowley, 1999). 

Chromosomal translocations between non-homologous chromosomes are common 

occurrence in leukemias and translocations between homologous chromosomes are rare 

events as in t(14;14) in T-cell leukemias (Rabbitts and Stocks, 2003). A detailed study on 

balanced chromosomal translocation has revealed that genes encoding transcription factor 

important for hematopoietic differentiation or signalling pathway proteins like tyrosine 

kinases are frequently affected by the translocations (Lin and Aplan, 2004; Rabbitts, 1991; 

Rabbitts, 2001; Rowley, 2001). Chromosomal translocations either result in the generation of 

fusion proteins e.g. BCR-ABL (common in myeloid leukemias) or lead to deregulated 

expression of a gene close to the translocation breakpoint such as SCL or LMO2 (common in 

T-cell leukemias). The resulting fusion genes are oncogenic and activate signal pathways 

which lead to increased proliferation or block in differentiation (Ayton and Cleary, 2001; 

Sternberg and Gilliland, 2004). In about 25% of AML cases, balanced chromosomal 

translocations result in fusion proteins which are important for the development of leukemia 

(Brown et al., 1997; Heisterkamp et al., 1990; Kogan et al., 1998).  

Several studies have suggested possible causes of chromosomal translocations. These include 

illegitimate V(D)J or immunoglobulin class switch recombination, homologous 

recombination, non-homologous end joining and DNA topoisomerase II subunit exchange 

(Aplan, 2006).  
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1.5   The t(10;11)(p12;q14) translocation 

The t(10;11)(p12;q14) is a rare but recurring chromosomal translocation (Bohlander et al., 

2000) and is found mainly in undifferentiated AML or T-cell ALL and in malignant 

lymphoma (Dreyling et al., 1998; Kumon et al., 1999; Narita et al., 1999). It has also been 

identified in acute megakaryoblastic, monocytic and eosinophilic leukemias (Caudell and 

Aplan, 2008; Jones et al., 2001; Nakamura et al., 2003; Salmon-Nguyen et al., 2000). The 

t(10;11)(p12;q14) translocation was first found in a patient with diffused histiocytic 

lymphoma (Sundstroem and Nilsson, 1976). It was first cloned and characterized in the 

human monocytic cell line U937 (Dreyling et al., 1996). This translocation results in the 

fusion of CALM on chromosome 11 band q14 to AF10 on chromosome 10 band p12 (Fig. 

1.5). This leads to the expression of the CALM/AF10 and the reciprocal AF10/CALM fusion 

transcript. CALM/AF10 patients are known to have bad prognosis (Dreyling et al., 1998). The 

translocation is observed in younger patients (Kobayashi et al., 1997). Interestingly, 

CALM/AF10 fusion is found in almost 30% cases of T-ALL patients with T-cell receptor 

(TCR) γ/δ rearrangement (Asnafi et al., 2003). 

 

Fig. 1.5   t(10;11)(p12;q14) translocation: The t(10;11)(p12;q14) translocation results in the fusion of CALM 

gene on chromosome 11 and AF10 gene on chromosome 10 to generate an in frame CALM/AF10 fusion gene on 

derivative chromosome 10 and AF10/CALM fusion gene on derivative chromosome 11.  (Diagram courtesy 

Prof. Dr. S.K. Bohlander). 

 



I n t r o d u c t i o n 

 

22 

1.5.1   CALM 

The Clathrin Assembly Lymphoid Myeloid leukemia gene (CALM or PICALM) was first 

identified as a fusion partner of AF10 in t(10;11)(p12;q14) translocation. CALM is located on 

chromosome 11q14 and is a ubiquitously expressed protein. CALM encodes a 652 amino acid 

long protein containing an Epsin N-terminal homology (ENTH) domain and several other 

motifs such as DPF (ASP-Pro-Phe), NPF(Asn-Pro-Phe), and type I and II clathrin binding 

sequences (CBS I and II), which are involved in endocytosis (Klebig et al., 2003; Meyerholz 

et al., 2005; Tebar et al., 1999) (Fig. 1.5.1).  

 

 

 

Fig. 1.5.1   Schematic representation of CALM: CALM encodes a 652 amino acid long protein and contains an 

Epsin N-terminal homology domain (ENTH), clathrin binding sequences (CBS), CATS (CALM interacting 

protein expressed in thymus and spleen) binding domain and several motifs such as DPF and NPF. (Diagram 

courtesy Prof. Dr. S.K. Bohlander) 

 

There is a homology between the CALM protein and the clathrin assembly protein AP180 

(Morris et al., 1993). The CALM protein moves clathrin to the membrane by interacting with 

calthrin heavy chain through its C-terminal CBS and with phosphoinositides through its N-

terminal ENTH domain (Ford et al., 2001; Ford et al., 2002). Deregulation of CALM is 

associated with inhibition of receptor-mediated endocytosis and impairment of endosome 

trafficking in the trans golgi network (TGN) (Meyerholz et al., 2005; Tebar et al., 1999).  

N-ethyl-N-nitrosourea (ENU) induced point mutation in the mouse homologue Picalm gene 

resulted in perturbed hematopoiesis, reduced growth and improper iron metabolism in mice 

harboring this mutation (Klebig et al., 2003). Using CALM-deficient mice, it was recently 

demonstrated that CALM plays an essential role in maturation of erythroid precursor and 
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transferrin incorporation. Moreover, another important observation was that CALM deficient 

mice had shortened life span along with retarded growth in utero (Suzuki et al., 2012). Using 

a yeast two-hybrid screen, two CALM interacting protein, CATS (CALM interacting protein 

expressed in thymus and spleen) and FHL2 (four and a half LIM domain protein 2) were 

identified (Archangelo et al., 2006; Pasalic et al., 2011). The CATS protein is expressed in 

thymus, spleen and colon. The CATS interacting domain in CALM is positioned from 221-

335 amino acid of CALM and this domain is retained in the CALM/AF10 fusion protein. The 

CATS protein increases the nuclear localization of CALM as well as of the CALM/AF10 

fusion protein and interacts with CALM in vitro and in vivo (Archangelo et al., 2006). The 

FHL2 interacting domain in CALM is mapped to amino acid 294-335 of CALM. FHL2 

interacts with β-integrin (Samson et al., 2004) which in concert with clathrin has been shown 

to be involved in the endocytosis process of CALM protein (Tebar et al., 1999). FHL2 play a 

vital role in Wnt signaling (Labalette et al., 2004; Wei et al., 2003) and also influences 

several major cellular processes like transcriptional regulation, DNA replication and signal 

transduction pathways. CALM but not CALM/AF10 reduces the transcriptional activation 

potential of FHL2 (Pasalic et al., 2011).  

Altogether these findings suggest an important role of CALM in hematopoisis and basic 

cellular processes.  

 

 

1.5.2   AF10 

AF10 (ALL-1 fused gene from chromosome 10, also known as MLLT10) was first identified 

as a fusion partner of MLL in a recurring t(10;11)(p12;q23) translocation in AML (Chaplin et 

al., 1995a; Chaplin et al., 1995b). The ubiquitously expressed AF10 is located on 

chromosome 10p12 and encodes a 109-kD protein of 1027 amino acids (Fig. 1.5.2). As 

reported in murine studies, AF10 expression is highest in testis but also expressed in ovary, 

thymus, colon, peripheral blood, brain and kidney (Chaplin et al., 1995b; Linder et al., 1998). 

 



I n t r o d u c t i o n 

 

24 

 

Fig. 1.5.2   Schematic representation of AF10: AF10 encodes a 109-kD protein of 1027 amino acid and 

contains N-terminal (NH2) plant homeodomain (PHD) zinc fingers, AT (adenine-thymine) rich hook, a bipartite 

nuclear localization signal (NLS) and a highly conserved octapeptide motif-leucine zipper (OM-LZ) domain. At 

the C-terminus (COOH) there is a glutamine rich (Q) domain. (Diagram courtesy Prof. Dr. S.K. Bohlander) 

 

The domains of the AF10 protein include a plant homeodomain (PHD), an extended PHD 

finger (also known as leukemia-associated protein or LAP), AT-rich hook motif, a bipartite 

nuclear localization signal (NLS), an octapeptide motif and leucine zipper domain (OM/LZ) 

and a C-terminal glutamine-rich region. AF10 is a member of a highly conserved protein 

family, which includes AF17, BR140 and CEZF (Chaplin et al., 1995a; Linder et al., 2000). 

AF10 is a putative transcription factor due to its similarity in the structurally conserved PHD 

domain with other known transcription factors such as CBP, MLL, TRX and CCL (Aasland 

et al., 1995). The PHD and LAP domains of AF10 are highly conserved. The LAP domain is 

involved in homooligomerization and the AT-hook tends to bind to cruciform DNA (Aravind 

et al., 1998). The LZ domain of AF10, AF17 and CEZF is also reported to be conserved 

(Chaplin et al., 1995a). The LZ domain of the Drosophila homologue of AF10 Alhambra has 

been shown to deregulate the activity of PRE-mediated transcriptional silencing (Perrin et al., 

2003). Alhambra interacts with heterchomatin protein1 (HP1) and suppresses position effect 

variegation (DiMartino et al., 2002).  

Interestingly, it could be shown that the OM together with LZ domain contributes to the 

oncogenicity of AF10 in a MLL/AF10 transformation model. The small OM/LZ motif 

interacts with YEATS4 (glioma amplified sequence 41, GAS41), which in turn interact with 

the INI1 (integrase interactor 1), a component of the SWI/SNF complex (Debernardi et al., 

2002). Another important function of the OM/LZ motif is its capability of interacting with the 

histone H3K79 methyltransferase DOT1L. This interaction is critical for both MLL/AF10 and 

CALM/AF10 mediated leukemogenesis (Okada et al., 2005; Okada et al., 2006). 
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1.5.3   The CALM/AF10 Fusion 

The recurring t(10;11)(p12;q14) translocation in most cases generates a CALM/AF10 fusion 

and also the reciprocal AF10/CALM fusion transcript. However, the AF10/CALM fusion 

transcript unlike CAML/AF10 can not be detected in all patients carrying this translocation. 

Thus it seems that CALM/AF10 is critical for malignant transformation (Dreyling et al., 

1996) because in several patients this translocation is the only chromosomal abnormality and 

the AF10/CALM fusion transcript is not expressed (Abdou et al., 2002; Bohlander et al., 

2000; Carlson et al., 2000).  

The CALM/AF10 fusion comprises almost the complete open reading frames (ORFs) of both 

CALM and AF10 genes except for the last four amino acids of the C-terminal CALM gene and 

the N-terminal PHD domain of the AF10 gene (Fig. 1.5.3). In contrast, the AF10/CALM 

fusion only generates a truncated AF10 protein (Dreyling et al., 1996).  

At least four different breakpoints in AF10 and three breakpoints in CALM have been 

reported in patients with a CALM/AF10 fusion (Bohlander et al., 2000). However, there 

seems to be no correlation between the breakpoint locations and the type of disease observed 

in the patients (AML or ALL). CALM/AF10 causes global hypomethylation of H3K79 and 

increased genomic instability (Lin et al., 2009). It has also been reported that CALM/AF10 

causes H3K79 hypermethylation at the HOXA5 promoter (Okada et al., 2006). 

 

 

Fig. 1.5.3   Schematic representation of CALM /AF10 fusion gene: The CALM/AF10 fusion comprises 

almost the complete open reading frames (ORFs) of both CALM and AF10 genes except the last four amino 

acids of the C-terminal CALM gene and the N-terminal PHD domain of the AF10 gene. (ENTH: Epsin N-

terminal homology domain; CATS: CALM interacting protein expressed in thymus and spleen; CBS: clathrin 

binding sequences; PHD: plant homeodomain; OM-LZ: octapeptide motif and leucine zipper; Q: glutamine rich 

domain) 
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1.6   Mouse models of CALM/AF10 leukemia 

Several mouse models of CALM/AF10 leukemia have been established. The mouse model 

have provided valuable tools to understand the process of leukemogenesis initiated by 

chromosomal translocation as well as to study other human diseases in vivo (Rabbitts, 2001). 

Due to the fact that mice and humans are similar at the genomic level, the mouse has become 

a standard animal model for several studies related to human diseases. Chromosomal 

translocation studies in mouse models have been possible using a variety of techniques such 

as conditional or inducible knock-ins, transgenic models, targeted and random in vivo gene 

disruption and retrovirally transduced bone marrow transplantation.  

Several mouse models of the CALM/AF10 fusion protein have been generated. 

1.6.1   Classical transgenics 

Transgenic mice are created by introducing a foreign DNA (the transgene) into the male 

pronucleus which is then stably integrated into the genome (Gassmann and Hennet, 1998). 

The transgenic as well as genetically engineered mouse models are helpful in analyzing gene 

function, the identification of novel oncogenes, understanding the molecular and cellular 

basis of tumorigenesis and also for providing better clinical model for improved therapeutic 

strategies (Cheon and Orsulic, 2011). Since 1980s, several methods have been developed to 

generate mouse models of cancer. The most common ones are activation of oncogenes and 

inactivation of tumor-suppressing genes using transgenic, knock-out and knock-in mice. The 

transgenic and knock-in mice are used for gain-of-function studies and knock-out mice are 

employed in loss-of-function studies. The transgenic approach has led to a better 

understanding of the mechanisms of development and developmental genes, action of 

oncogenes, the cellular basis of the immune system (Hanahan, 1984) and also the pre-

neoplastic state (Adams et al., 1999). The proper selection of regulatory elements in these 

models is crucial to study the impact of an oncogene in the most relevant cell type(s) (Adams 

et al., 1999). 

The classical transgenic model involves the microinjection of the transgene into the male 

pronuclei of fertilized mouse oocytes. The resulting viable embryos are implanted into 

pseudo-pregnant foster mothers (Gassmann and Hennet, 1998). In 1980 this technique was 

first developed by Gordon and coworkers (Jaenisch, 1988). The advantages of the transgenic 
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approach are the straightforward assessment of the in vivo oncogenic functions of a gene, the 

short period of time to generate these mice compared to gene-targeting strategies (Cheon and 

Orsulic, 2011) and the capability to express most genes in a predictable manner (Jaenisch, 

1988). Since this method employs the injection of the transgene into a fertilized oocyte, the 

transgene is incorporated into the host chromosomes at random positions; thereby the 

transgenic mouse obtains the gene in all its tissues. The expression of the transgene is 

dependent on several factors in spite of being present in all cells such as the selected 

promoter and enhancer element, the number of copies stably integrated and the locus of 

integration. Therefore, the regulatory elements have an impact on the tissue specific gene 

expression (Palmiter and Brinster, 1985).  

This approach also has several disadvantages such as the inability to control the level and 

pattern of transgene expression, which vary among the transgenic founders lines due to 

random integration sites and different copy number of the transgene (Cheon and Orsulic, 

2011; Gassmann and Hennet, 1998). The random integration might lead to silencing of the 

transgene expression due to positional effects or might result in unexpected phenotype due to 

the disruption of an important gene by the transgene. Another drawback of this approach is 

the limited availability of tissue-specific promoter. 

However, several strategies have been employed to overcome these limitations such as using 

embryonic stem cell based transgenic mouse models which can partially overcome the 

problems with the level and pattern of expression of the transgene (Novak et al., 2000). The 

use of insulated DNA sequence elements at the boundaries of the transgene may prevent 

position effects (West et al., 2002). The copy number of the transgene can be controlled by 

employing site-specific integration of the transgene in embryonic stem cells (Beard et al., 

2006) and single-copy transgenesis through long interspersed element type 1 (An et al., 

2008). 

1.6.2   The IgH-CALM/AF10 and pLck-CALM/AF10 transgenic models 

Two classical transgenic models for CALM/AF10 were established in our group using the 

immunoglobulin heavy chain enhancer/promoter (IgHE/P) and the proximal murine Lck 

promoter (pLck) (Krause, 2006). To avoid death during early embryonic development due to 

the early transgene expression and to express the CALM/AF10 transgene in appropriate cells, 

the transcription of CALM/AF10 fusion gene was restricted to B and T cells using the above 
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mentioned promoters. The transgenic lines were established in FVB mice. Two lines were 

generated for the IgH-CALM/AF10 and three lines were generated with the CALM/AF10 

fusion gene under the control of proximal Lck promoter.  

IgH enhancer promoter 

The murine immunoglobulin heavy chain gene was the first cellular eukaryotic enhancer to 

be identified. It is located between the JH gene segment cluster and μ constant region coding 

sequences. The variable region (V) promoter is controlled by the IgH intron enhancer (EIgH) 

post V region assembly and the EIgH is of interest for its tissue specificity (Eckhardt, 1992). 

Additionally, it has been reported in transgenic mice study that the microinjection of Igμ gene 

led to specific expression of the functionally rearranged heavy chain gene in lymphoid 

tissues. The tissue specific expression is probably due to the cis-acting DNA sequences 

present in the introduced Igμ gene (Grosschedl et al., 1984). Another study showed that Ig 

heavy chain enhancer driven c-myc expression in B-cells resulted in lymphoid malignancy in 

transgenic mice (Harris et al., 1988). These studies suggested that tissue specificity in these 

mice is due to the IgH enhancer, and the immunoglobulin promoter is responsible for the 

increased level of specific expression.  

Lck promoter 

The Lck gene encodes a lymphocyte-specific protein tyrosine kinase (p56Lck), a member of 

the src family. The src family kinases are responsible in regulating cellular growth (Marth et 

al., 1988). Lck is expressed in T cells, most B cells and also in colon adenocarcinoma and 

small cell lung carcinoma derived human cell lines (Adler et al., 1988). The Lck gene has 

been implicated in the development of lymphoid malignancy (Garvin et al., 1988). 

Interestingly, in mammals, the Lck gene expression is regulated by two independent 

promoters, the proximal and the distal promoter. The proximal promoter is responsible for 

transcription of type I mRNA and is active in immature thymocytes. On the other hand, the 

distal promoter which transcribes type II mRNA, is active in mature T-cells (Brenner et al., 

2002; Reynolds et al., 1990). These two promoters can function independently (Allen et al., 

1992).  

The IgH-CALM/AF10 and pLck-CALM/AF10 transgenic animals did not show any 

leukemic phenotype even after an observation period of over 15 months. There was no 
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detectable clinical, hematological, immunological, immunohistopathological and flow 

cytometry difference between transgenic and FVB wild type mice (Krause, 2006).  

The reason for the lack of leukemia development in the IgH-CALM/AF10 transgenic mice 

could be because the expression of the CALM/AF10 fusion occured in mature B-cells which 

might not be susceptible to CALM/AF10 mediated transforamtion. There was also no 

leukemia development in the pLck-CALM/AF10 mice even though the proximal Lck 

promoter is known to be active in early immature thymocytes. Overall these observations 

suggest that the target cell for leukemic transformation by CALM/AF10 is a quite early cell 

in the hematopoietic hierarchy. This would explain the absence of leukemia development in 

these transgenic mice.    

1.6.3   The Vav-CALM/AF10 transgenic mouse model   

Interestingly, another CALM/AF10 transgenic mouse model was established, in which the 

CALM/AF10 expression is driven by Vav promoter (Caudell et al., 2007). The Vav promoter 

is a potent pan-hematopoietic promoter and is active throughout the hematopoietic 

component but is silent in non-hematopoietic cell types (Ogilvy et al., 1999). The Vav gene 

expression is first found in the fetal liver and then in all hematopoietic cell types including 

progenitor cells and their precursors (Adams et al., 1999). Vav is crucial for full lymphocyte 

development and function (Turner et al., 1997; Zhang et al., 1995).  

Prior experiments were performed on Vav transgenic mice using a mammalian reporter, 

which is a biologically inert form of the human CD4 cell surface antigen. The data from these 

experiments demonstrated that the vav-CD4 transgenes were actively expressed exclusively 

in the hematopoietic compartment in almost 80% of mice. As expected, the transgene 

expression was absent in non-hematopoietic tissues (Ogilvy et al., 1999). The hematopoietic 

cell types, which showed vav-CD4 transgene expression, included neutrophils, monocytes, 

megakaryocytes, eosinophils, B and T lymphocytes and nucleated erythroid cells.  

In the Vav-CALM/AF10 transgenic model, the Vav regulatory elements directed 

CALM/AF10 expression in the hematopoietic compartment including thymus, spleen and 

bone marrow. The Vav-CALM/AF10 transgenic mice developed acute leukemia after a 

latency period of 12 months and at a penetrance of only 40% to 50%. Immunophenotypic 

analysis revealed that more than 50% of the leukemic mice were either Mac1+/B220+ or were 
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MPO+/B220+ cells within the tumor infiltrates. B220 ‘bright’ and ‘dim’ populations 

suggested that B220 is expressed on non-B cell progenitor and that this population might 

represent the leukemic clone. In addition to this, around half of the leukemic mice had clonal 

IgH gene rearrangements. Thus, this model showed that CALM/AF10 is very leukemogenic. 

Aplan and colleagues discuss that additional collaborating genetic events are required for the 

CALM/AF10 fusion gene for complete leukemogenesis.     

1.6.4   A Murine bone marrow transplantation model of CALM/AF10 

leukemia 

This model employs retroviral transduction of primary hematopoietic cells followed by 

transplantation into lethally irradiated syngeneic recipient mice. In this model it is possible to 

assay the oncogenic potential of a gene of interest faster than with a classical transgenic 

mouse model.  

In contrast to the CALM/AF10 transgenic model, mice transplanted with retrovirally 

transduced bone marrow cells expressing CALM/AF10 developed an acute leukemia with a 

100% penetrance and after a median latency period of just 110 days. The leukemic mice were 

anemic, had circulating blasts and myeloid infiltration in different organs. The leukemic cells 

were positive for myeloid markers i.e. Gr1 (for granulocytes) and Mac1 (for macrophages), 

and also for lymphoid marker B220. Moreover, these cells had clonal DH-JH rearrangements. 

These observations led to the speculation that the target cell for CALM/AF10 was a 

multipotent progenitor cell with lymphoid features. This cell is different from a normal HSC 

and is capable of giving rise to AML. The leukemia inititating cell in this model was shown 

to reside in the Mac1-/B220+ compartment by the serial transplantation (Deshpande et al., 

2006).  

The murine bone marrow transplantation (mBMT) model is ideal to study the heterogeneity 

of a leukemic clone and also the behavior of leukemia initiating cells. The clonality analysis 

using Southern blotting demonstrated that the CALM/AF10 leukemia was of oligoclonal 

origin. This implies that transformation occurred only in a small fraction of the retrovirally 

transduced cells. These findings suggest that additional collaborative events are necessary for 

leukemia development also in the CALM/AF10 bone marrow transplantation model.  
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Different CALM/AF10 deletion mutants were generated and a detailed structure-function 

analysis of these mutants were performed in order to study the role of different domains of 

CALM and AF10 for leukemia development (Deshpande et al., 2011). The fusion of the C-

terminal 248 amino acids of CALM, which includes the clathrin domain to the OM/LZ 

domain of AF10, generates a fusion protein which was named CALM/AF10-minimal fusion 

(CALM/AF10-MF) (Fig. 1.6.4). The CALM/AF10-MF protein has enhanced transformation 

capabilities in in vitro colony forming cell assays. Bone marrow transplantation studies with 

this mutant protein however resulted in a similar phenotype like the CALM/AF10 full length 

fusion.    

 

 

Fig. 1.6.4   Schematic representation of CALM/AF10-Minimal fusion gene: CALM/AF10-Minimal fusion 

(CALM/AF10-MF) is a deletion mutant and it consists of C-terminal 248 amino acids of CALM which includes 

CBS (clathrin binding sequences) and the OM-LZ (octapeptide motif and leucine zipper) domain of AF10. This 

protein has been shown to possess enhanced transformation capability in vitro. (TAD: trans-activating domain; 

NES: nuclear export signal) (Adapted from Deshpande et al., 2011)  

 

1.7   CALM/AF10 target genes – HOXA cluster 

HOX gene expression is an important in embryogenesis, organogenesis and also 

hematopoiesis (van Oostveen et al., 1999). The HOX genes are members of homeodomain 

family of genes that encode for transcription factors. The mammalian HOX genes are 

organized in clusters on four different chromosomes (Garcia-Fernandez, 2005; Pearson et al., 

2005). The HOX clusters A, B and C have been reported to be essential for normal 

hematopoiesis (Abramovich and Humphries, 2005).  

Clinical data and studies from experimental mouse models suggest the HOX gene 

involvement in leukemic transformation. Deregulated expression of HOX genes, due to 
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translocation event is associated with leukemias. The nuclear pore complex protein 98 

(NUP98) fuses with several HOXA cluster genes including HOXA9, HOXA11, HOXA13, 

HOXC11, HOXC13, HOXD11 and HOXD13 in AML and myelodysplastic syndrome (MDS) 

patients (Lam and Aplan, 2001). Studies from mouse models demonstrated that 

overexpression of Hoxa5, Hoxa9 or Hoxa10 led to myeloid expansion and when the Hox 

cofactor Meis1 was co-expressed AML was observed (Abramovich and Humphries, 2005; 

Grier et al., 2005). Similarly, mBMT studies expressing Nup98-Hox fusions resulted in 

abnormal myeloid differentiation, but in coexpression of the Nup98-Hox fusions with Meis1 

led to AML (Kroon et al., 2001; Pineault et al., 2003; Pineault et al., 2004). Meis1 also 

collaborates with Hoxb3 to induce leukemia (Thorsteinsdottir et al., 2001). NUP98-HOXD13 

transgenic mice showed upregulated Hoxa7, Hoxa9 and Hoxa10, and developed a severe 

myelodysplastic syndrome that progressed to acute leukemia (Lin et al., 2005).  

Chromosomal translocations resulting in MLL fusions, exhibit deregulated HOX gene 

expression in AML as well as in T-cell ALL patients (Hess, 2004). Gene expression profile 

studies have revealed that HOX genes are consistently overexpressed in AML (Armstrong et 

al., 2003; Mullighan et al., 2007). Murine BMT model of MLL fusions have clearly shown 

that Hoxa9 and Hoxa7 can transform myeloid progenitors in these models (Ayton and Cleary, 

2003). HOXA cluster upregulation has been a common observation in case of CALM/AF10 

and MLL leukemias (Soulier et al., 2005).  

Like MLL fusions, leukemias with an CALM/AF10 fusion also show upregulation of HOXA 

cluster genes. In pre-T-LBL CALM/AF10 patients, HOXA5, HOXA9 and HOXA10 were 

shown to be upregulated when compared to pre-T-LBL patients without CALM/AF10 (Dik et 

al., 2005). Vav-CALM/AF10 transgenic mice (Caudell et al., 2007) demonstrated an eightfold 

upregulation of Hoxa5, Hoxa7, Hoxa10, Hoxa11 and Meis1 in hematopoietic tissues (bone 

marrow, spleen and thymus) compared with clinically healthy CALM/AF10 mice and an up to 

500 fold upregulation of these Hox genes in CALM/AF10 mice with myeloid leukemias 

(Caudell et al., 2007). Gene expression studies of CALM/AF10 patients compared to other 

leukemic subgroups showed that the HOX cofactor MEIS1 and the HOX cluster genes 

HOXA3, HOXA5, HOXA7, HOXA9 and HOXA10 were notably upregulated in CALM/AF10 

positive samples. Therefore, the upregulation of HOXA cluster genes and MEIS1 in both 

CALM/AF10 and MLL-fusion positive leukemias suggests a similar leukemogenic 

mechanism in these leukemias (Mulaw et al., 2012).  
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1.8   Myeloid ecotropic insertion site1 (Meis1) 

It is well known that Hox genes encode homeodomain (HD) containing transcription factors 

that play an important role during animal development. The Hox proteins interact with other 

DNA-binding proteins that direct the HOX activity and specificity towards distinct domains 

along the body axes (Moens and Selleri, 2006). These DNA-binding proteins are called Hox 

cofactors which include primarily the PBC (PBX and CEH-20) and MEIS classes. The Hox 

cofactors belong to the three amino acid loop extension (TALE) homeobox gene family 

(Burglin, 1997). The TALE classes of HD proteins have an additional three amino acids in 

the loop between helix 1 and helix 2. The PBC subclass of TALE HD protein includes fly 

Extradenticle (EXD) and vertebrate PBX homeoproteins. The MEIS subclass includes fly 

Homothorax (HTH) and vertebrate MEIS and PREP homeoproteins. The PBX proteins 

collaborate with HOX proteins from paralog groups 1 to 10 (Chang et al., 1996; Shen et al., 

1997) and MEIS proteins interact with HOX paralogs 9 to 13 (Shen et al., 1997). This 

interaction between Hox and Hox cofactors increases the stability of the complex with DNA 

and the specificity for the target sequence. Meis1 has two α-helicase motifs in its N-terminal 

region referred to as Meinox domains M1 and M2 (Fig. 1.8). This region is called as Pbx-

interacting motif (PIM) and binds with Pbx at this site (Mann and Affolter, 1998). At its C-

terminal, Meis1 has a HD and downstream to it there lies a transactivation domain composed 

of 49 residues. This region is highly conserved among Meis1, Meis2 and Meis3 but is not 

found in the closely related family member Prep1 (Huang et al., 2005; Mamo et al., 2006; 

Wang et al., 2005). Meis family members interact with Pbx (Chang et al., 1997) and form 

stable heterodimers in a DNA-dependent as well as independent manner (Huang et al., 2005; 

Jacobs et al., 1999; Shanmugam et al., 1999; Shen et al., 1999). Meis interacts with Pbx and 

induces nuclear localization of Pbx by preventing its nuclear export (Abu-Shaar et al., 1999; 

Berthelsen et al., 1999) and promoting its nuclear localization (Huang et al., 2003; Saleh et 

al., 2000). Moreover, it has been shown that Meis and Hox proteins can interact in an indirect 

manner in the Hox-Pbx-Meis heterotrimeric complexes (Shen et al., 1999).  

Meis1 was first identified as a common viral integration site in myeloid leukemic cells of 

BXH-2 mice and is located on proximal mouse chromosome 11 (Moskow et al., 1995). 

Meis1 plays a central role in normal hematopoiesis. Meis1 knock-out mouse embryos die by 

embryonic day 14.5 due to lack of megakaryocytes and intense reduction of myeloerythroid 

progenitors. Curiosly, the fetal liver cells from these mice were unable to radioprotect lethally 
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irradiated recipient mice and could not compete well in repopulation assays (Azcoitia et al., 

2005; Hisa et al., 2004). These observations strongly suggest an important role for Meis1 in 

self renewal and proliferation. Meis1 is highly expressed in the most primitive hematopoietic 

subpopulations and is down-regulated in later stages following differentiation (Imamura et 

al., 2002; Pineault et al., 2002). Reduced expression of MEIS1 has been linked to the restless 

leg syndrome (Winkelmann et al., 2007; Xiong et al., 2009). Whereas, overexpression of 

MEIS1 results in leukemia (Argiropoulos et al., 2007).   

 

 

Fig. 1.8   Schematic representation of Meis1: Meis1 encodes a 390 amino acid protein and contains two alpha 

helicase motifs M1 (Meinox domain 1) and M2 (Meinox domain 2) in its N-terminal, and a nuclear localization 

signal (NLS) and Homeodomain (HD) in its C-terminal. PIM represents the Pbx-interacting motif. (Adapted 

from Mamo et al., 2006)  

 

1.8.1   The Role of Meis1 in leukemogenesis 

The significance of MEIS1 in human leukemogenesis was emphasized because of its frequent 

upregulation in primary AML and ALL samples (Imamura et al., 2002; Kawagoe et al., 1999; 

Rozovskaia et al., 2001). Murine BMT studies have revealed that Meis1 synergizes with 

several Hox genes and NUP98-HOX fusion genes to accelerate the onset of AML. For 

instance, Meis1 have been shown to collaborate with NUP98-HOXA9 (Kroon et al., 2001) 

and NUP98-HOXD13 (Pineault et al., 2003) resulting in AML. MEIS1 also collaborates with 

HOXB6 and considerably shortens the onset of AML (Fischbach et al., 2005). Meis1 seems to 

collaborate with AML1-ETO leading to induction of AML (Naidu, 2009). Proviral insertional 

co-activation of Hoxa7 and Hoxa9 is associated with upregulation of Meis1 (Nakamura et al., 

1996). Meis1 cooperates with Hoxa9 leading to rapid AML development in mice (Wang et 

al., 2005). In this model, Meis1 induced the expression of FLT3 and CD34 which are 

associated with ST-HSCs. These findings suggested that the Meis1-Pbx complex regulates 
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the expansion of leukemia-initiating progenitors. Meis1 also plays a role in the regulation of 

apoptosis in the caspase dependent pathway. Transient overexpression of Meis1 in human 

and murine cell lines resulted in massive apoptosis. Moreover, it was shown that HD and 

PIM of Meis1 are necessary for apoptosis induction (Wermuth and Buchberg, 2005). 

Overexpression of Meis1 alone does not lead to leukemia development (Kroon et al., 1998; 

Thorsteinsdottir et al., 2001; Wang et al., 2005). However, when Meis1 is fused to 

transactivating domain of Vp16 transformation is observed (Mamo et al., 2006; Wang et al., 

2006).  

The collaborative effect of Meis1 in the Hoxa9 models of AML is associated with the 

expresion of several leukemic signature genes such as Flt3 (Wang et al., 2005), Cd34, Erg, 

Msi2h (Wang et al., 2006) and c-Myb (Hess et al., 2006). In addition to this, coexpression of 

Meis1 with NUP98-HOXA10 or NUP98-HOXD13 has also been linked to the upregulation of 

Flt3 (Palmqvist et al., 2006). CyclinD3 has been identified as a direct downstream target of 

MEIS1 (Argiropoulos et al., 2010). The growth promoting activities of Meis1 is linked to the 

cyclinD-pRb cell cycle control pathway. Several candidate Meis1 upregulated genes as 

identified by microarray analysis include Platelet factor 4 (Pf4 or Cxcl4), Flt3 as described 

above, Delta-like homolog 1 (Dlk1), the oncogene Tribbles 2 (Trib2), Abcb1a (Mdr1), Ccl3 

(Mip1-α), Ccl4 (Mip-1ß) and Rgs1. Two genes were significantly downregulated by Meis1: 

interferon consensus sequence-binding protein (ICSBP1), a tumor suppressor gene, also 

known as Irf8, and Notch1, which plays an important role in cellular growth, survival and 

differentiation (Argiropoulos et al., 2008).  

The core molecular mechanism responsible for the oncogenicity of Meis1 is not known yet. 

However, numerous studies have suggested that Meis1 collaborates with Hox genes for 

example Hoxa9 through MEIS1-PBX-HOX complex. MEIS1 uses its PIM, HD and 

transactivating C-terminal domain to collaborate with Hoxa9 (Mamo et al., 2006; Wang et 

al., 2005; Wong et al., 2007). This hypothesis, however, cannot explain the collaboration of 

MEIS1 with NUP98-HOXD13 in which both PBX1 and MEIS1 interacting domains of 

HOXD13 are are missing; nevertheless NUP98-HOXD13 strongly collaborates with Meis1 in 

leukemogenesis (Pineault et al., 2003). These observations suggest homeodomain-dependent 

and independent activities of MEIS1.  
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In MLL leukemogenesis, Meis1 plays a key role in induction and maintenance of the 

leukemia (Wong et al., 2007). It was shown that Meis1 regulates the differentiation block, 

cycling activity, in vivo progression and self-renewal property of MLL leukemia cells. Thus, 

Meis1 is the important and rate-limiting factor of LSC potential. Studies from murine Mll-Af9 

leukemia models have also demonstrated that Meis1 is essential for the maintenance of MLL 

associated leukemias, and that lentivirus short hairpin RNA (shRNA) mediated inhibition of 

Meis1 induces cell-cycle arrest and cell death in these leukemias (Kumar et al., 2009). 

Besides this, it was shown that MEIS1 is required in leukemogenicity of MN1 (Heuser et al., 

2011).  
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1.9   Aim of the study 

CALM/AF10 fusion has been reported to be strongly leukemogenic. CALM/AF10 patients are 

associated with a bad prognosis. Therefore, it is critical to understand the pathogenesis of 

CALM/AF10 leukemias. CALM/AF10 patients show upregulation of the HOXA cluster and 

MEIS1 genes, suggesting possible roles for these genes in CALM/AF10-mediated 

leukemogenesis. MEIS1 strongly collaborates with several HOX as well as NUP98-HOX 

genes, and this collaborative effect has been associated with several leukemic signature 

genes.  

Classical transgenic mice expressing the CALM/AF10 fusion under the control of 

immunoglobulin heavy chain enhancer-promoter or under the control of proximal Lck 

promoter did not develop leukemia even after an observation period of 15 months. Vav-

CALM/AF10 transgenic mice developed leukemia with a 50% penetrance. These results can 

only be explained if one assumes that additional collaborating factors or genetic events are 

required for CALM/AF10-mediated leukemogenesis. The overexpression of Meis1 might be 

one such collaborating factor. Therefore, the aim of this study is to analyze Meis1 as a 

cooperating factor of CALM/AF10 in leukemogenesis using the IgH-CALM/AF10 transgenic 

model. We used a murine BMT model to overexpress Meis1 in these transgenic mice and 

analyzed the resulting leukemia.    

In summary we have shown that CALM/AF10 and Meis1 could collaborate and induce acute 

myeloid leukemia when expressed in bone marrow cells. The disease was transplantable and 

represented a lympho-myeloid biphenotypic population. Hence, Meis1 could be a potential 

therapeutic target in CALM/AF10 leukemias.  
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2    Materials 

2.1   Reagents and equipment for mouse work 

 

5-Fluorouracil: 50 mg/ml stock solution Medac, Hamburg, Germany. The working solution 

was 300 µl of 5-FU stock solution mixed with 700 µl of phosphate buffered saline (3:7). 

 

Formalin: 4% Formalin was prepared using Sodium hydrogen phosphate monohydrate 

(NaH2PO4.H2O), Disodium hydrogen phosphate dihydrate (Na2HPO4.2H2O) and 37% 

Formaldehyde (CH2O) [Merck] in water. 

 

Erythrocyte lysis buffer: 0.8% NH4Cl with 0.1 mM EDTA in water (Stem Cell 

Technologies, Vancouver, Canada) 

 

Sterile syringes: BD Plastipak 1 ml syringe (BD Biosciences, Palo Alto, CA, USA) for tail 

vein injection in mice and Kendall Monoject 3 ml syringes (Tyco Healthcare, UK) for plating 

of CFCs. The stubs of 3 ml syringes were used to mash the spleens of mice. 

 

Sterile needles: 0.4 mm × 19 mm for intravenous injection of 5-FU and cells in mice. 16 inch 

× 1.5 inch blunt end needles for dispensing and plating Methocult (CFC) media (Stem Cell 

Technologies, Vancouver, Canada) 

 

Heparinized capillaries: (Microvette CB 300) plastic capillaries for collection of blood. 15 

I.E Lithium heparin per ml of blood (Sarstedt, Numbrecht, Germany) 

 

Cell Strainer: 40 µm Nylon cell strainer for mashing the spleen and filtering the tissue (BD 

Falcon, Franklin Lakes, NJ, USA) 
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2.2   Mammalian cell lines 

 

GP+E86:        Mouse fibroblast cell line 

 

293T:              Human embryonic kidney cell line 

 

NIH-3T3:        Mouse fibroblast cell line 

32D myeloid:  Mouse myeloid cell line  

 

All cell lines were procured from the American Type Culture Collection (ATCC), Manassas, 

VA, USA. 

 

 

2.3   Plasmids 

 

MSCV-IRES-GFP/YFP (MIG/MIY): This is modified form of the MSCV (murine stem 

cell virus) vector. A bi-cistronic vector with GFP/YFP expression cassette and an internal 

ribosomal entry site (IRES)  

 

Ecopac: A packaging vector coding for the gag, pol and env viral proteins. (Clontech, Palo 

Alto, CA, USA) 

 

pEYFP-C1: Mammalian expression vector used for tagging genes with fluorescent reporter 

(Invitrogen, Carlsbad, CA, USA) 
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2.4   Reagents, media and apparatus 

 

2.4.1   Molecular biology 

 

Agarose: Molecular biology tested (Sigma-Aldrich, St. Louis, MO, USA) 

 

LB Medium: LB-broth and LB-agar (Carl Roth GmbH, Germany) 

 

DNeasy Blood and Tissue Kit: Genomic DNA extraction kit (Qiagen GmbH, Hilden, 

Germany) 

 

EndoFree Plasmid Maxi Kit: For extraction of plasmid from bacteria (Qiagen GmbH, 

Hilden, Germany) 

 

Gel Extraction Kit: Qiaquick gel extraction kit (Qiagen GmbH, Hilden, Germany) 

 

PCR Purification Kit: Qiaquick PCR purification kit (Qiagen GmbH, Hilden, Germany) 

 

RNeasy Mini Kit: Total RNA extraction kit (Qiagen GmbH, Hilden, Germany) 

 

DNAzol Reagent: Genomic DNA isolation reagent (Invitrogen, Carlsbad, CA, USA) 

 

Trizol: Total RNA isolation reagent (Invitrogen, Carlsbad, CA, USA) 

 

Molecular weight markers: 1 kb plus DNA ladder, 100 bp DNA ladder and 50 bp DNA 

ladder (Fermentas GmbH, St. Leon-Rot, Germany) 

 

Dyes: 6X Orange DNA loading dye (Fermentas GmbH, St. Leon-Rot, Germany), SYBR Safe 

DNA Gel Stain (Invitrogen, Carlsbad, CA, USA) 

 

Enzymes: T4 DNA Ligase, EcoRI, XhoI, PstI from New England Biolabs (NEB, Beverly, 

MA, USA) 
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PCR:  Taq DNA polymerase, Thermo Pol buffer from New England Biolabs (NEB, Beverly, 

MA), 0.2 ml PCR tubes (Biozym Scientific GmbH, Hess. Oldendorf, Germany) 

 

Semi-quantitative RT-PCR: ThermoScript RT-PCR System for First-Strand cDNA 

Synthesis, DNase I DNA inactivating enzyme-Amplification Grade, Platinum Taq DNA 

Polymerase (Invitrogen, Carlsbad, CA, USA) 

 

dNTP mix: 2 mM dNTP mix (Fermentas GmbH, St. Leon-Rot, Germany 

 

Western blot: ECL Western blotting analysis system (Amersham Biosciences GmbH, 

Freiburg, Germany) 

 

Southern blot: Microspin S-300 HR columns and Megaprime DNA labeling system 

(Amersham Biosciences GmbH, Freiburg, Germany) 

 

Pre-hybridisation solution: 0.2 g fat free milk and 2.0 g dextran sulfate were dissolved in 17 

ml water. 6 ml 20X SSC, 2 ml formamide, 1 ml 20% SDS and 80 µl of 500 mM EDTA were 

added to the above mixture. (The mentioned chemicals were obtained separately from Sigma-

Aldrich, St. Louis, MO, USA)  

 

Denaturation solution: 1.5 M NaCl and 0.5 N NaOH in water. 

 

20X SSC: 175.3 g sodium chloride and 88.2 g sodium citrate were dissolved in 800 ml 

deionized water and the pH was adjusted to neutral (7.0). The final volume was adjusted to 

one litre. 

 

DNA Crosslinking: DNA was cross-linked using GS Gene linker UV chamber (BIO-RAD 

Laboratories, Hercules, CA, USA) 
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2.4.2   Tissue culture 

 

Methylcellulose media: Methocult GF M3434 (myeloid specific) methylcellulose medium 

with recombinant cytokines for the culture of CFCs (Stem Cell Technologies, Vancouver, 

Canada)  

 

Media: Dulbecco’s Modified Eagle Medium (DMEM) 4.5 g/l Glucose, L-Glutamine, 

Sodium pyruvate and 3.7 g/l NaHCO3 (PAN biotech GmbH, Aidenbach, Germany). 

Roswell Park Memorial Institute (RPMI - 1640) medium with L-Glutamine, 2.0 g/l NaHCO3 

(PAN Biotech GmbH, Aidenbach, Germany) 

 

Dulbecco’s phosphate buffered saline (DPBS): without magnesium and calcium, sterile 

filtered (PAN Biotech GmbH, Aidenbach, Germany)  

 

Fetal Bovine Serum (FBS): FBS Superior mycoplasma and endotoxin tested (Biochrom AG, 

Berlin, Germany) 

 

Trypsin: EDTA: 0.05% Trypsin – EDTA (1X) (Gibco, Invitrogen, Carlsbad, CA, USA) 

 

Penicillin/Streptomycin: Antibiotic solution with 10,000 µg/ml Pen G sodium and 10,000 

µg/ml Streptomycin sulfate in 0.85% saline. (Gibco, Invitrogen, Carlsbad, CA, USA) 

 

Murine cytokines: mIL3, mIL6, mSCF (lyophilized) (ImmunoTools GmbH, Friesoythe, 

Germany) 

 

Ciprofloxacin: Ciprofloxacin 400 solution (Bayer AG, Leverkusen, Germany) 

 

Propidium iodide: Propidium iodide solution (Invitrogen, Carlsbad, CA, USA) 10 mg/ml 

stock solution. 

 

Protamine sulfate: (Salamine) from Salmon, cell culture tested (Sigma-Aldrich, St. Louis, 

MO, USA) 5 mg/ml stock solution. 
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Cell Scrapers: 30 cm sterile cell scrapers (TPP, Switzerland) 

 

Filtration units: Millex syringe driven filter units 0.22 micron and 0.45 micron filters 

(Millipore, Billerica, MA, USA) 

 

Cell culture plates and dishes: Sterile 96 well, 24 well, 6 well plates (Sarstedt, Numbrecht, 

Germany) 100 mm × 20 mm dishes for adherent cells (Corning Inc., Corning, NY, USA), and 

100 mm × 20 mm tissue culture dish for suspension cells (Sarstedt, Numbrecht, Germany)  

 

Cell culture pipettes (5, 10 and 25 ml): Sterile disposable pipettes (Corning Inc., Corning, 

NY) 

 

2.4.3   Miscellaneous 

 

Giemsa’s solution: Azur-eosine-methylene blue solution for microscopy (Merck KGaA, 

Darmstadt, Germany) 

 

May-Gruenwald’s solution: Eosine-methylene blue solution modified (Merck KGaA, 

Darmstadt, Germany) 

 

Cytospin apparatus: Cytospin 2 Shandon Apparatus (Thermo Fisher Scientific, Waltham, 

MA, USA) 

 

Cytospin slides: Menzel-Glaeser superfrost microscope slides for fixing single cell 

suspensions and preparing blood smears (Gerhard Menzel GmbH, Braunschweig, Germany) 

 

Cytospin filter cards: Thermo Shandon thick white 5991022 filter cards for cytospins 

(Histocom AG, Zug, Switzerland) 

 

Flow cytometry: BD FACS Calibur System (BD Biosciences, Palo Alto, CA, USA) 
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Fluorescence Activated Cell Sorting: BD FACSVantage SE System (BD Biosciences, Palo 

Alto, CA, USA) 

 

Microscope: Leitz Diavert Inverted Microscope (Ernst Leitz Wetzlar GmbH, Wetzlar, 

Germany)   

 

Mice: Parental mice strain were bred and maintained at the Helmholtz and Biocenter animal 

facility. The donor mice (FVB/N) for primary bone marrow cells were between 10 to 20 

weeks old and recipients (FVB/N) were between 8 to 16 weeks old.  

 

Two CALM/AF10 transgenic constructs were used to generate 5 transgenic lines in FVB 

mice. The two constructs differ in their promoters. One construct has the immunoglobulin 

heavy chain enhancer promoter (IgHE/P) which expresses CALM/AF10 in the late B-cell 

compartment. The other construct has the proximal murine LcK promoter (pLcK) which 

drives the CALM/AF10 expression in early T-cell compartment. Two transgenic lines were 

established with IgHCALM/AF10 construct and three transgenic lines were established using 

the pLcKCALM/AF10 (Krause, 2006). FVB wild type mouse and IgHCALM/AF10 

transgenic line 1 were used as donors. FVB wild type mouse were used as recipients.  

 

2.4.4   Software 

 

Flow cytometry and FACS sorting: CellQuest Pro Version 3.1(f) (BD Biosciences, Palo 

Alto, CA, USA) 

 

Kaplan-Meier Curves: SigmaPlot Version 12.0 (Systat Software Inc., San Jose, CA, USA) 

 

Colony morphology and identification: Openlab software 3.0.8 (Improvision Deutschland, 

Tuebingen, Germany) 

 

Primer designing: Primer3 program, Whitehead Institute, Massachusetts Institute of 

Technology (MIT), MA, USA (http://frodo.wi.mit.edu/)  
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2.5   Oligonucleotides 

 

All the oligonucleotides were synthesized by Metabion AG, Martinsried, Germany. 

 

Primers for DJH recombination 

 

Oligonucleotide Sequence 5' to 3' 

JH 3 GTCTAGATTCTCACAAGAGTCCGATAGACCCTGG 

C-mu-5’ TGGCCATGGGCTGCCTAGCCCGGGACTT 

C-mu-3’ GCCTGACTGAGCTCACACAAGGAGGA 

B rec chk fw1 ACGTCGACTTTTGTSAAGGGATCTACTACTGT 

B rec chk fw2 ACGTCGACGCGGASSACCACAGTGCAACTG 

B rec chk rev GGGTCTAGACTCTCAGCCGGCTCCCTCAGGG 

 

Cloning primers for HA tagged Meis1 

 

Oligonucleotide Sequence 5' to 3' 

HAMeis1for1 ACGTCCCAGACTACGCTATGGCGCAAAGGTAC 

HAMeis1for2 ATGGTCTACCCATATGACGTCCCAGACTAC 

HAMeis1for3 GACGAATTCCACCATGGTCTACCCATATG 

HAMeis1rev GGCTCGAGTTACATGTAGTGCCACTGCCCCT 

 

Primers/Oligos for LM-PCR 

 

Oligonucleotide Sequence 5' to 3' 

GFP-A ACTTCAAGATCCGCCACAAC 

GFP-B ACATGGTCCTGCTGGAGTTC 

Vectorette primer 224 CGAATCGTAACCGTTCGTACGAGAATCGCT 

Nested Linker Primer B TACGAGAATCGCTGTCCTCTCCTT 

PstI Linker Top CTCTCCCTTCTCGTCCTCTCCTTCCTGCA 

PstI Linker Bottom GGAAGGAGAGGACGCTGTCTGTCGAAGGTAAGGAACGGAC

GAGAGAAGGGAGAG 
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Primers for semi-quantitative RT-PCR 

 

Oligonucleotide Sequence 5' to 3' 

Meis1_FL_For ATGGAGTAGGCATCCCCTCCACG 

Meis1_FL_Rev CATGCCCATATTCATGCCCATTCC 

β-2microglobin_M_For TGCTATCCAGAAAACCCCTC 

β-2microglobin_M_Rev CGGCCATAGTGTCATGCTTA 

Meis1_ecto_For TATGAGTGGAATGGGCATGA 

Meis1_ecto_Rev ACATTCAACAGACCTTGCAT 

Meis1_endo_For TATGAGTGGAATGGGCATGA 

Meis1_endo_Rev TGAGGGTGTCCAGGAATGTA 

 

 

2.6   Antibodies 

 

Name Company Label Dilutions used 

Gr-1 BD Pharmingen, Heidelberg PE/APC 1:200 

CD11b (Mac1) BD Pharmingen, Heidelberg PE/APC 1:200 

Ter119 BD Pharmingen, Heidelberg PE 1:200 

B220 BD Pharmingen, Heidelberg PE/APC 1:200 

Sca-1 BD Pharmingen, Heidelberg PE 1:200 

CD117 (c-kit) BD Pharmingen, Heidelberg APC 1:200 

CD4 BD Pharmingen, Heidelberg PE 1:200 

CD8 BD Pharmingen, Heidelberg APC 1:200 

Meis1/2 (C-17) Santa Cruz Biotech. Inc., CA - 1:200 

Donkey Anti-Goat Invitrogen, Carlsbad, CA HRP 1:3000 
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3   Methods 

3.1   Mouse Work 

3.1.1   Background of Constructs 

The murine stem cell virus (MSCV) vector was used for retroviral bone marrow transduction 

experiment. The MSCV vector has flanking long terminal repeat (LTR) sequences, an 

internal ribosomal entry site (IRES) and a green or yellow fluorescent protein gene 

(GFP/YFP). The IRES aids co-expression of the fluorescent protein. The MSCV vector is a 

gene vector and is replication defective i.e. within the cell it is not able to replicate and infect 

other cells. Retroviral vectors are used for making stable packaging cells. The advantage of 

retroviral vector is its long term expression through integration. The gene of interest was sub-

cloned into the multiple cloning site of the MSCV vector. MSCV IRES GFP (MIG) empty 

vector was used as control for the experiment (Fig. 3.1.1). 
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Fig 3.1.1   A schematic representation of the MIG (MSCV IRES GFP) empty vector control used for bone 

marrow transplantation experiments: MCS: multiple cloning site; IRES: internal ribosomal entry site; GFP: 

green fluorescent protein; LTR: long terminal repeat sequences. 
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3.1.2   Cloning details 

The 1.2 kb Meis1 gene was sub-cloned into the multiple cloning site of the MIG vector using 

the enzymes EcoRI and XhoI (Vegi, 2009). The 5.2 kb CALM/AF10 full length gene was sub-

cloned into the HpaI site in the multiple cloning site of the MIG vector by blunt end ligation 

(Deshpande, 2006). The 1.0 kb CALM/AF10-MF gene was sub-cloned into the multiple 

cloning site of the MIG vector using the enzymes EcoRI and BamHI (Deshpande, 2006). 

These constructs were made by Dr. Naidu Vegi (MIY-Meis1) and Dr. Deshpande (MIG-

CALM/AF10). 

3.1.3   Preparation of high titre stable virus producing cell lines 

High titre stable virus producing cell lines E86-Meis1 and E86-MIG were provided by Naidu 

(Vegi, 2009).  The E86-CALM/AF10 full length and E86-CALM/AF10-MF cell lines were 

kindly provided by Aniruddha (Deshpande, 2006).  

3.1.3.1   Methodology 

On the first day, 1.2 × 106 293T cells were seeded on a 15 cm dish and used for transient 

transfection the following day. The medium was changed 4 hours prior to transfection. 30 µg 

of plasmid DNA of the gene of interest and the retroviral packaging construct Ecopac were 

added to sterile water to make up the volume to 1 ml. To the above water-DNA mixture, 100 

µl of 2.5 M CaCl2 was added drop wise. This mixture was then added slowly into a tube 

containing 1 ml sterile HBS pH 7.2. The tube was gently mixed and incubated at room 

temperature for 3-4 minutes. Then the mixture was added drop wise to a 15 cm dish plated 

with 293T cells. The dish was carefully placed in a 37ºC incubator. The medium was changed 

after 12 hours. The virus conditioned medium (VCM) was collected after every 12 hours 

from the cells. The VCM was then filtered with a 0.45 µm Millipore filter and stored at -80ºC 

for later use or used directly to transduce GP+E86 fibroblasts or murine bone marrow 

(Schessl et al., 2005) 

5 × 104 GP+E86 fibroblasts were plated into 6 well plates. On the next day retroviral 

transduction was performed. For the transduction, 500 µl or 1 ml of fresh or frozen VCM 

from transfected 293T cells was layered on top of GP+E86 cells along with 10 µg/ml 

protamine sulfate. Fresh medium was added to the cells after 4 hours and the transduction 

procedure was repeated every 12 hours for four times. The cells were expanded for two days 
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after final transduction to allow GFP expression. The cells expressing GFP were sorted using 

fluorescence activated cell sorter (FACS) and propagated. These cells were used as stable 

virus producing cell lines to transduce murine bone marrow (Schessl et al., 2005).  

3.1.3.2   Viral titre of GP+E86 cell lines 

Titration was performed for the E86 cell lines, which were transduced with a specific virus, 

to estimate the virus production capacity of the cell line. If the viral titres of bulk cell lines 

were low after transduction, single cells were sorted into 96 well plates for expansion. After 

expansion, their viral titres were determined on NIH-3T3 cells. Clones producing highest 

titres were expanded, frozen and used for experiments.  

 

3.1.3.3   Procedure 

On the day zero, 1 × 105 NIH-3T3 cells were plated per well in 6 well plates. On the 

following day, one well was layered with 50 µl VCM from the E86 Meis1 cell line, the 

second well with 500 µl VCM and the third well was used as control containing the NIH-3T3 

without VCM. 10 µg/ml Protamine sulfate was added along with VCM. After 4 hours fresh 

medium was added. The cells were incubated for 48 hours post transduction. After incubation 

the cells were analyzed for GFP expression at the FACS Calibur.  

 

The NIH3T3 cells which were transduced with VCM were GFP positive cells. The 

percentage of GFP positive cells transduced with 50 µl VCM as well as 500 µl VCM was 15 

% as determined by FACS Calibur. This indicates that out of 1 × 105 NIH-3T3 cells plated, 

only 15000 cells could be transduced with virus. However, the usual titre during the 

experiments ranged from 40 % to 70 % for E86 Meis1.  
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3.1.4   Retroviral transduction of primary bone marrow 

 

Fig 3.1.4   Schematic representation of bone marrow transplantation model: 5-FU (5-Fluorouracil) treated 

bone marrow cells were transduced with the gene of interest and sorted after 48 hours for GFP/YFP positive 

cells using Fluorescence activated cell sorting. The positive cells were either injected into lethally irradiated 

recipient mice or used for functional assay like colony forming cell assay. Bone marrow cells from primary 

leukemic mice were further transplanted into secondary recipients. 

 

3.1.4.1   Bone Marrow Transplantation Model 

The murine bone marrow transplantation model employs ex vivo retroviral gene transfer of 

primary hematopoietic cells followed by transplantation into lethally irradiated syngeneic 

mouse recipients. The purpose of this model is to directly assess the oncogenic potential of 

the targeted gene. The application of this model extends to identification of new proto-

oncogenes and mechanisms of leukemic transformation.  

The FVB/N mouse strain was used for our experiments. These mice were maintained at the 

Haematologikum animal house and Biocenter animal (Martinsried) facility. The mice were 

provided with autoclaved chow and supplied with drinking water containing ciprofloxacin 

and acetic acid. The bone marrow donor mice were between 10 and 20 weeks old. Donor 

mice were injected with 90 milligrams of 5-Fluorouracil (5-FU) per kg of body weight to 

eliminate the cycling cells and to enrich for the hematopoietic progenitor cells. Four days 
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after 5-FU treatment, the bone marrow cells were extracted from these mice by the crushing 

method. In this method, the bones were crushed in serum supplemented phosphate buffered 

saline using a pestle and mortar to extract the bone marrow cells. The cells were sieved twice 

in 0.45 micron filters to remove cell debris. After sieving, the bone marrow cells were treated 

with ammonium chloride for red blood cell lysis. The lysed cells were then washed with 

serum supplemented phosphate buffered saline and used for experiments. The bone marrow 

cells were cultured for two days with a cytokine cocktail (10 ng/ml mIL6, 6 ng/ml mIL3 and 

100 ng/ml mSCF) in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 15% 

FBS. 

 

 

The GP-E86 ecotrophic packaging cell lines were irradiated with 4000 cGy one day prior to 

the retroviral transduction. On the third day, the bone marrow cells were overlaid on gamma-

irradiated GP-E86 cell lines containing the retroviral construct (co-culture). 10 µg/ml 

protamine sulfate was added as a crosslinker to the medium during viral transduction. The 

transduced bone marrow cells were removed carefully without disturbing the adherent 

monolayer of GP-E86 cell line 36 hours post transduction. On the seventh day, the GFP/YFP 

positive cells were sorted by FACSVantage and used for bone marrow transplantation or for 

in vitro assays (Fig. 3.1.4).  
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3.1.4.2   Bone marrow transplantation and assessment of mice 

Strategy: 

 

Fig 3.1.4.2   Schematic representation of BMT strategy: FVBwt mice and IgHCALM/AF10 transgenic line1 

mice were used as donors for the experiment. The donor bone marrow (BM) cells were retrovirally transduced 

with E86 cell lines containing MSCV-IRES-YFP-Meis1 (MIY-Meis1 ; experimental arm) or MSCV-IRES-GFP 

(MIG ; control arm) containing retroviral particles. The transduced cells were sorted using flow cytometry. 0.5 × 

106 of GFP/YFP positive cells and 0.5 × 106 of mock cells were injected into lethally irradiated syngeneic 

recipient mice. 

 

The recipient mice were between 8 and 16 weeks old FVB wild type mice. These mice were 

lethally irradiated with 800 cGy prior to transplantation. Retrovirally transduced bone 

marrow cells were injected together with mock transduced cells intravenously into the tail 

vein of the recipient mice using a sterile 0.4 mm × 19 mm needle (Fig. 3.1.4.2). For 

secondary and tertiary transplantations, bone marrow cells from leukemic mice were injected 

the same way with or without irradiation. The transplanted mice were kept in individually 

vented cage (IVC) systems. The mice were assessed at regular intervals for leukemic 

symptoms by blood withdrawal from the tail vein using sterile scalpels or by the observance 
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of symptoms that included crouching, frizzled body hair, paleness of the feet, heavy breathing 

and disturbed gait. Mice were considered moribund when one of these symptoms was 

observed. 

Moribund mice were sacrificed by CO2 asphyxiation. Peripheral blood was drawn with a 

sterile 0.4 mm × 19 mm needle by puncturing the heart immediately after sacrificing the 

mouse. The femurs, tibia and spleens were taken from these mice. The bones were crushed to 

obtain bone marrow cells. Spleens were macerated to produce single cell suspensions. The 

white blood cells (WBC) and red blood cells (RBC) counts were made per ml of peripheral 

blood and peripheral blood smears were prepared. Ammonium chloride buffer was used to 

lyse red blood cell (RBC) for peripheral blood, bone marrow and spleen cells by incubating 

the cells in this buffer for 20 minutes at 4ºC. After lysis, the cells were washed in serum 

supplemented phosphate buffered saline and used for cytospin and flow cytometric analysis. 

The remaining cells were frozen at -80ºC for later use. 

3.1.5   Flow cytometric analysis of murine cells 

Bone marrow, spleen and peripheral blood cells were immunostained with various 

fluorescence-conjugated antibodies. Unstained cells were used as control. Staining was 

performed in PBS with the fluorescence-conjugated antibodies using a 1:200 dilution for each 

antibody. After incubation at 4ºC for 20 minutes, the samples were washed with PBS to 

remove excess antibody. The cells were finally resuspended in FACS buffer (2% fetal bovine 

serum and 5 µg/ml propidium iodide in phosphate buffered saline). Antibodies used for flow 

cytometry were labeled with phycoerythrin for Gr-1, CD11b (Mac1), Ter119, Sca-1, CD4 

and allophycocyanin for CD11b (Mac1), B220, CD117 (c-kit) and CD8. Fluorescence was 

detected using a FACS Calibur flow cytometer and analyzed using the CellQuest Pro 

software. Dead cells were gated out using PI staining and forward scatter (FSC). 

3.1.6   In vitro assay (Colony Forming Cell assay) 

The Colony Forming Cell (CFC) assay is an in vitro assay, which is used to quantify different 

multi-potential and lineage-restricted progenitors from primary bone marrow cells. The assay 

is based on the ability of hematopoietic progenitors to proliferate and differentiate into 

colonies in semi-solid media in response to cytokine stimulation. Semi-solid media allow the 

clonal progeny of a single progenitor cell to stay together and thus to be recognized as 
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distinct colonies. The colonies formed can be enumerated and characterized according to 

their unique morphology. 

 

Methylcellulose has several advantages over other semi-solid media such as it is an inert 

polymer, has good optical clarity, provides better growth for erythroid colonies and 

multipotent progenitors can be assayed simultaneously in the same culture dish. 

Methylcellulose supplemented with cytokines 10 ng/ml mIL-6, 6 ng/ml mIL-3 and 100 ng/ml 

mSCF (Methocult M3434) was used to analyse the differentiation of clonogenic progenitors 

by plating the primary cells in this media. Methocult M3434 is myeloid specific and 

optimized for the detection and quantification of mouse hematopoietic progenitors in bone 

marrow, spleen, peripheral blood and fetal liver samples. M3434 supports the optimal growth 

of erythroid progenitors (CFU-E, BFU-E), granulocyte-macrophage progenitors (CFU-GM, 

CFU-G, CFU-M) and multipotential granulocyte, erythroid, macrophage, megakaryocyte 

progenitors (CFU-GEMM). Bone marrow cells transduced with different retroviral constructs 

expressing various genes and oncogenes were assayed for their colony forming capacity. 

 

The bone marrow cells were obtained from 5-FU injected donor mouse. The cytokine 

supplemented bone marrow cells were then retrovirally transduced with several genes of 

interest. The transduced cells were then sorted for GFP or YFP positivity using FACS. 500 

sorted cells were seeded for primary plating and 1000 cells for secondary and tertiary 

replating. The methylcellulose plates were incubated at 37ºC in presence of 5% CO2 and 

humidity for 10 days. Colony identification, counting and replating was performed on the 10th 

day in appropriate dilutions followed by cytospin preparations and FACS staining (Fig. 

3.1.6a; Fig. 3.1.6b). The experiments were performed in triplicates. 



              M e t h o d s 
 

57 

 

 



M e t h o d s 
 
 

58 

 

Fig. 3.1.6a   Colony Forming Cell assay: The 5-fluorouracil injected donor bone marrow cells were 

retrovirally transduced with the gene of interest and sorted using FACS. The sorted cells were then added to 

methocult, mixed by vortexing and plated on culture dishes using syringe and blunt-end needle. The plates were 

then incubated for 10 days in humidified incubator at 37ºC and 5% CO2. After 10 days the colonies were 

identified and counted. The culture dishes containing the methylcellulose were washed thoroughly with pre-

warmed phosphate buffered saline. The individual cells were then harvested by centrifugation. 1000 cells were 

used for replating, 50,000 cells for cytospin preparations and remaining cells were stained with fluorescence-

conjugated antibodies and analysed using FACS Calibur. 

 

5FU-BM Methylcellulose Colonies5FU-BM Methylcellulose Colonies  

Fig. 3.1.6b   Schematic representation of the in vitro CFC assay: 5-FU (5-Fluorouracil) treated bone marrow 

(BM) cells were transduced with the gene of interest. The transduced cells were FACS sorted and plated in 
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methylcellulose media. 500 cells were seeded for primary plating and incubated at 37ºC in humidified CO2 

incubator. The colonies were identified and enumerated after an incubation period of 10 days. 

 

 

3.1.7   Different types of colonies were visible in primary CFC assay 

Primary CFC assay for all the above mentioned genes led to formation of different types of 

colonies in the methylcellulose plates. The different types of colonies include colony forming 

unit-granulocyte (CFU-G), colony forming unit-macrophage (CFU-M), colony forming unit-

granulocyte/macrophage (CFU-GM), burst forming unit-erythroid (BFU-E) and colony 

forming unit-granulocyte / erythroid / macrophage / megakaryocyte (CFU-GEMM).  

 

3.1.7.1   Salient properties of different colony forming units  

CFU-G: A CFU-G contains at least 20 granulocyte cells. The colony consists of mature, 

lineage committed progenitors and the cells are round, bright, smaller and uniform in size 

(Fig. 3.1.7.1a). 

 

Fig. 3.1.7.1a   Colony forming unit – Granulocyte: Distinct, small and uniform sized granulocytes are clearly 

visible in the centre as well as in the periphery.  

 

CFU-M: A CFU-M contains at least 20 macrophage cells. This type of colony also consists 

of mature, lineage committed progenitors and the cells are large with an oval to round shape 

and appear to have a grainy or grey centre (Fig. 3.1.7.1b). 
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Fig. 3.1.7.1b   Colony forming unit – Macrophage: Large, refractile and well separated macrophage cells with 

grey centre. 

 

CFU-GM: A CFU-GM contains at least 30 granulocyte and macrophage cells. These 

colonies have a dense core surrounded by cells and often contain multiple cell clusters. The 

individual cell can be indentified and are easy to distinguish. Large, round and refractile 

macrophages as well as small, round, uniform granulocytes are clearly visible at the 

periphery (Fig. 3.1.7.1c). 

 

 

Fig. 3.1.7.1c   Colony forming unit – Granulocyte/Macrophage: Granulocyte and macrophage cells are 

clearly visible and appear in a stardust pattern. 

 

BFU-E: BFU-E colonies are immature and require erythropoietin (EPO), Interleukin 3 (IL-3) 

and stem cell factor (SCF) for their optimal growth. The colony contains a minimum of 30 

cells in a cluster. The cells are tiny and difficult to distinguish as they appear to be fused 

together (Fig. 3.1.7.1d). 
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Fig. 3.1.7.1d   Burst forming unit – Erythroid: The cells are small and fused together in a grape-like structure. 

Unlike granulocyte the BFU-E cells are difficult to distinguish. 

 

CFU-GEMM: CFU-GEMM represents the multi-potential progenitor that consists of 

erythroid and myeloid cluster. The colonies are generally large and consist of more than 500 

cells. CFU-GEMM colonies usually have a dense core with an indistinct border between the 

core and the peripheral cells (Fig. 3.1.7.1e).  

 

 

Fig. 3.1.7.1e   Colony forming unit – Granulocyte/ Erythroid/Macrophage/Megakaryocyte: Both the 

myeloid and erythroid cells are present and has a compact centre. The CFU-GEMM colonies might have more 

than one cluster. The erythroid cells are present in the centre and the myeloid cells are clearly visible in the 

periphery.  
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CFU-Blast: CFU-Blast represents the early immature precursor cells in the hematopoietic 

lineage. The blast colonies are very compact and are mostly visible in secondary and tertiary 

CFC (Fig. 3.1.7.1f). 

 

 

Fig. 3.1.7.1f   Colony forming unit - Blast: Blast cells represent the precursor cells which are immature. The 

blast cells are morphologically are very compact.  

 

3.1.7.2   CFC Replating 

The proliferative potential of the primary colony was tested by replating the primary colonies 

into secondary and tertiary CFC. After identification and enumeration of the primary CFC 

colonies, the primary plates containing the methylcellulose were washed thoroughly two to 

three times with pre-warmed phosphate buffered saline in order to get rid of the 

methylcellulose. The individual cells were then harvested and resuspended in 1 ml phosphate 

buffered saline. The number of living cells were counted using trypan blue. 1000 cells were 

used for secondary replating. The remaining cells were used for cytospin preparations and for 

staining with fluorescence-conjugated antibodies and analysed using FACS Calibur. The 

same method was used to harvest the cells from secondary and tertiary replatings (Fig 

3.1.7.3). 
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3.1.7.3   Strategy: 

 

Fig 3.1.7.3   Schematic representation of CFC Assay: BM cells were extracted from 5-FU treated FVBwt 

donor mice. The primary BM cells were transduced with different retroviral constructs taking MSCV-IRES-

GFP (MIG) as control arm, MSCV-IRES-YFP-Meis1, MSCV-IRES-GFP-CALM/AF10 full length (C/A), 

MSCV-IRES-GFP-CALM/AF10-Minimal Fusion (MF), Meis1+C/A and Meis1+MF. The transduced cells were 

FACS sorted and plated in methylcellulose media. 500 cells were seeded for primary plating and 1000 cells for 

secondary and tertiary replating. 

 

3.1.8   Cytospin preparations and Wright Giemsa staining 

The cytospin technique uses low-centrifugal force to separate and deposit a monolayer of 

cells onto a defined area of a slide. Thus, the cells are concentrated for good nuclear 

presentation and proper identification. 

Cytospins of single cell suspensions were performed by resuspending the cells in DMEM 

medium at a concentration of 1 × 105 cells per 300 µl. This was introduced into the cytospin 

apparatus and centrifuged at 450 rpm for 10 minutes. The cells were permanently fixed on 

glass slides and the slides were air-dried overnight. 

In order to carry out the Wright Giemsa staining, the slides were immersed in an undiluted 

May-Gruenwald’s stain for 3 minutes. In the next step the slides were rinsed in water for 5 
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minutes in order to remove excess stain. Then the slides were immersed in freshly prepared 

1:50 diluted Giemsa stain for 1 hour. The slides were again rinsed in water by dipping in and 

out several times and keeping in water for 5 minutes. After the rinsing process, the slides 

were air-dried overnight and observed under a light microscope for morphology. 

3.1.9   Histopathological analysis of sick mice 

The sick mice were sacrificed by CO2 asphyxiation and cervical dislocation. The sacrificed 

mice were sprayed with 70% ethanol. The peritoneal cavity of sacrificed leukemic mice was 

dissected to expose all the organs. Most of the blood was drained by cutting the peritoneal 

artery and absorbed with a tissue paper. The dissected mice along with a cut portion of their 

spleens were fixed in 4% formalin. The fixed mice were sent for histopathological analysis to 

Dr. Leticia Quintanilla-Fend, Institute for Pathology, Tuebingen.  

 

3.2   Microbiology Techniques 

3.2.1   Bacterial Cultures and glycerol stocks 

Bacterial cells from glycerol stock were streaked on a LB-agar plate containing the required 

antibiotic. After incubation for approximately 12-14 hours at 37ºC, a single colony was 

picked from the agar plate and inoculated in LB medium containing the required antibiotic.  

The medium containing the inoculum was incubated for 12-14 hours at 37ºC in a shaker at 

200 rpm. 

For preparation of glycerol stocks, 850 µl of bacterial culture was mixed with 150 µl of 

glycerol and immediately stored at -80ºC. 

3.2.2   Electrocompetent bacteria 

Electrocompetent bacterial cells of E. coli strain XL-1 blue (Stratagene) were prepared 

according to Sambrook and Russel, 2001. A single colony was picked and transferred to 10 

ml of LB medium. The medium containing the inoculum was incubated overnight in a 

shaking incubator at 37ºC and 200 rpm. This primary culture was diluted into 400 ml LB 

medium and incubated for approximately 2-3 hours at 37ºC until the OD600 reached 0.5-0.6. 
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The culture was transferred on ice in order to stop the bacterial growth. The cells were 

centrifuged at 4500 rpm for 5 minutes at 4ºC. Then the cells were washed twice with 40 ml of 

ice cold water (double distilled). In the next step, the cells were washed twice with 20 ml of 

10% glycerol and finally resuspended in 800 µl of 10% glycerol. The competent cells were 

aliquoted (50 µl) and snap frozen in liquid nitrogen. The cells were then stored at -80ºC.   

3.2.3   Electroporation 

10 pg of DNA was used for electroporation. 50 µl of electrocompetent bacteria were thawed 

on ice for 2-3 minutes. In the meantime, cuvette was kept on ice. The DNA and 

electrocompetent bacteria were mixed carefully by flicking the tube. After one minute 

incubation on ice, the DNA and bacteria were transferred to the electroporation cuvette (2 

mm electrode gap). The cuvette was placed in an electroporator (Easyjet Prima, Equibio) and 

the cells were electroporated at 2.5 KV (12.5 kV/cm, 15 µF, 335 Ω, 5 ms pulse duration). 

After electroporation, 1 ml of LB medium was added immediately to the cells and the content 

was transferred to a fresh 1.5 ml eppendorf tube from the cuvette. The 1.5 ml eppendorf tube 

was incubated at 37ºC shaker at 200 rpm for 1 hour. After 1 hour incubation, the bacteria 

were plated on LB agar plates containing the appropriate antibiotic. The LB agar plates were 

incubated at 37ºC overnight for selection of transformed bacteria.  

 

3.3   Molecular biology 

3.3.1   RNA and genomic DNA isolation and cDNA preparation 

The RNA extraction was performed using RNeasy Mini Kit (Qiagen). The kit includes a 

denaturing guanidine isothiocyanate containing buffer for cell lysis and a silica gel based 

membrane for RNA isolation. A maximum of 1 × 107 cells were used for RNA extraction. 

The RNA was extracted as per the manufacturer’s instructions. The concentration of RNA 

was quantified with a spectrophotometer and also by running on an agarose gel.  

For cDNA synthesis, Thermoscript RT-PCR Kit from Invitrogen was used. The RNA 

samples were treated with Deoxyribonuclease I to remove genomic DNA contamination. The 

cDNA was prepared according to manufacturer’s instructions for semi-quantitative PCRs.  
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Genomic DNA was extracted using DNeasy Mini kit for the DJH rearrangement PCRs, and 

DNAzol was used to extract genomic DNA for Southern blotting and LM-PCR as described 

by the manufacturer. Genomic DNA was quantified using a QUBIT Fluorimeter.  

3.3.2   Plasmid DNA extraction 

Plasmid DNA was extracted from bacteria by alkaline lysis method using Qiagen 

Endonuclease-free Maxi kit as per the manufacturer’s instructions. 

3.3.3   Agarose gel electrophoresis 

To determine the size of DNA fragments, estimate DNA concentration, DNA fragment 

extraction or analysis of PCR reaction products, horizontal agarose gel electrophoresis was 

performed. The agarose concentration of the gel was between 0.8 to 1.5% depending on the 

expected size of the DNA bands. SYBR Safe DNA Gel Stain was added to the agarose to 

allow DNA visualization in the gel under UV light. The electrophoresis was carried out in 

0.5X TAE buffer at room temperature and at a voltage range of 70 to 100 V.  

3.3.4   Extraction of DNA fragments from agarose gel 

For gel extraction of PCR products or enzymatically digested DNA, the desired DNA band 

from the gel was cut out under UV light using a sterile surgical blade. The gel extraction was 

performed using QIAquick Gel Extraction kit according to the manufacturer’s instructions. 

3.3.5   PCRs 

3.3.5.1   PCR for D-J recombination status 

 

Fig 3.3.5.1   Diagrammatic representation of immunoglobulin heavy chain locus: DJH rearrangement in the 

Immunoglobulin locus (Ig locus) was detected by multiplex PCR strategy. In this PCR, two degenerate forward 
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primers DFS and DQ52 and one reverse primer JH4A are used. With this strategy the most common DJH 

rearrangement events are detected. 

 

DJH rearrangements in the Immunoglobulin locus were detected by a multiplex PCR strategy. 

This strategy employs two upstream degenerate primers binding 50 of the DFL/DSP element 

or the DQ52 element. The reverse primer was complementary to a binding site downstream 

of the JH4 segment. All the three primers mentioned were used in a single PCR reaction. For 

the germline configuration, the DQ52 and JH4A primers were used to amplify a 2.15 kb 

germline fragment. DJH1, DJH2, DJH3 and DJH4 rearrangements involving DFL, DSP or 

DQ52 elements will be detected by the emergence of bands of 1.46, 1.15, 0.73 and 0.20 kb, 

respectively. The amplification protocol was an initial denaturation at 94ºC for 1 minute 

followed by 35 cycles of 1 minute at 94ºC, I minute at 60ºC and 1 minute 45 seconds at 72ºC. 

Final extension was carried out at 72ºC for 10 minutes. One µl of 300 ng/µl genomic DNA 

was used as template in this PCR reaction.  

3.3.5.2   PCR to evaluate gene expression in murine tissues 

Semi-quantitative reverse transcriptase PCR was performed on leukemic bone marrow, 

spleen and peripheral blood RNA to confirm the expression of ectopic (proviral) and 

endogenous Meis1 and the CALM/AF10. The mouse β-2 microglobin housekeeping gene was 

used for normalization.  

3.3.5.3   LM-PCR (Linker-mediated PCR) 

The LM-PCR is used to identify the retroviral integration sites. This was adapted to allow 

amplification of the 3’ end of integrated MIG virus from the GFP gene through the 3’ LTR 

into the adjacent genomic DNA to the next PstI site, which was ligated to the PstI bubble 

linker. The genomic DNA (1 µg) from leukemic mice was digested with PstI and the 

fragments were ligated to the bubble linker at room temperature. In the following step a PCR 

was performed (PCR A) on 10 µl of the ligation product using Vectorette primer 224 and a 

GFP primer (GFP-A). The bubble linker contains a 30-nucleotide non-homologous sequence 

in the middle which prevents binding of the Vectorette primer in the absence of the minus 

strand generated by the GFP primer. 1 µl of the PCR A reaction product (one-fifteenth) was 

used as template for a second nested PCR (PCR B) using a primer GFP-C and a Nested 
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Linker Primer B. 10 µl (one-half) of the final PCR B product was then separated by 

electrophoresis using 2% agarose gel. Individual bands were then excised, purified and then 

cloned into pGEM-T Easy vector and sequenced using Nested Linker Primer B for the 

integration site of the retrovirus (Riley et al., 1990; Schessl et al., 2005). 

 

3.4   Western Blotting 

3.4.1   Sample preparation and cell lysis (total cell extract) 

Ice-cold PBS was added to the cultured cells on 10 cm dish after removing the media. The 

cells were then scraped off and transferred to a microcentrifuge tube and centrifuged at 2000 

rpm for 5 minutes at 4ºC. The pellet was washed with ice-cold PBS. The cells were lysed 

using 100 µl of RIPA buffer (1X PBS, 1% TritonX 100, 0.5% sodium deoxycholate, 0.1% 

SDS) with protease inhibitor cocktail (100 mM PMSF, 10 mg/ml Aprotinin, 10 mg/ml 

Leupeptin, 10 mg/m, Pepstatin) by mixing them in a roller for 30 minutes at 4ºC. After the 

lysis, the sample was centrifuged at 14000 rpm for 30 minutes at 4ºC. The resulting 

supernatant was transferred to a new microcentrifuge tube and either frozen at -80ºC or kept 

on ice for the determination of the protein concentration.  

3.4.2   Determination of protein concentration 

The Bradford method was used for measuring the protein concentration. The assay is based 

on the shift of absorbance maxima for an acidic solution of Coomassie Brilliant Blue G-250 

from 465 nm to 595 nm. This shift is due to protein binding. Both hydrophobic and anionic 

interactions stabilize the anionic form of the dye, causing a visible color change. In this assay, 

the extinction coefficient of a dye-albumin solution is constant over a 10-fold concentration 

range. Dilutions of Bovine Serum Albumin (BSA) of known concentrations were used to 

establish a standard curve. The linear range of the assay was from 1 µg to 25 µg per ml. Six 

different BSA concentrations were prepared by diluting 1 µg, 5 µg, 10 µg, 15 µg, 20 µg, 25 

µg in 800 µl of distilled water. One microliter of protein extract was diluted in distilled water 

to make a final volume of 800 µl. 200 µl of Bradford reagent was added to the tubes and 

mixed well by vortexing. The contents were transferred to polystyrol cuvettes. A 

determination of the standard curve of the spectrophotometer with distilled water and the 
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protein standards was performed using the specific program for protein in the 

spectrophotometer. The samples were measured following the standard curve determination.  

3.4.3   SDS PAGE 

Total cell extract proteins were separated on a denaturing gel consisting of 10% resolving gel 

and 5% stacking gel. The percentage of resolving gel was selected based on the molecular 

weight of protein. The samples were diluted 1:1 with 2X Laemmli buffer and incubated at 

95ºC for 5 minutes. 20 µg of protein was loaded on each lane. The electrophoresis was 

initially performed at 70 V for three hours in the cold room at 4ºC.  

3.4.4   Wet transfer 

The wet transfer system was used for protein blotting. A PVDF membrane was used for 

transfer. The membrane was wetted in methanol for 30 seconds, rinsed in distilled water for 5 

minutes and equilibrated in transfer buffer for 10 minutes. The system was assembled putting 

a sponge at both ends of the sandwich, 1.5 mm Whatman paper in contact with the sponge 

and the gel over the paper towards the negative pole. A pipette was rolled over the gel to 

remove air bubbles. The membrane was placed carefully on the gel and the cassette was 

closed. The PVDF membrane was towards the positive pole to permit the protein (negatively 

charged) to migrate from the gel to the membrane. The transfer was performed overnight at 

100 mA at 4ºC with ice pack and constant stirring of the transfer buffer for keeping the 

system homogeneously cool. The observation of high molecular weight proteins of the pre-

stained protein standard on the membrane was an indicator of successful transfer.  

3.4.5   Protein detection on the blotting membrane with HRP-marked 

antibodies 

After the transfer, the antibody detection of protein was performed as per the instructions of 

the supplier (Santa Cruz Biotech. Inc., CA, USA; Invitrogen, Carlsbad, CA, USA). The 

membrane was blocked with 5% milk powder (blocking solution) to prevent non-specific 

binding of antibodies by incubating in a roller for one hour at room temperature. The 

membrane was then rinsed with TBST and incubated with primary antibody at 1:200 dilution 

in milk for 1 hour at room temperature. After incubation with primary antibody, the 

membrane was washed three times with TBST (0.1% Tween-20). The secondary antibody 
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conjugated to Horse Radish Peroxidase (HRP) was diluted 1:3000 in milk and put on the 

membrane for one-hour incubation at room temperature. The membrane was washed three 

times again with TBST. To detect the antibodies on the membrane, the ECL Plus Western 

Blotting Detection Kit was used according to the manufacturer’s instructions. After washing, 

the ECL detection solution was placed on the membrane for 3 minutes. Two solutions 

(Solution A and Solution B) from this kit were used in a ratio of 1:40 for detection of protein 

on the membrane. The membrane was then covered with plastic film and put in a cassette for 

exposure of the film. The film was exposed to the membrane in a dark room with different 

exposure times of between 5 seconds to 1 minute depending on the strength of the signal 

observed.   

 

3.5   Cell culture techniques 

3.5.1   Culture of cells 

The mammalian cells were cultivated in CO2 incubators at 37ºC, 5% CO2 and 95% relative 

air humidity. The culture media were supplemented with 15% fetal bovine serum (FBS) and 

penicillin-streptomycin (final concentration of Penicillin: 100 U/ml and Streptomycin: 100 

µg/ml). 

The adherent cell lines were grown in complete Dulbecco’s Modified Eagle Medium 

(DMEM). The cells were harvested with Trypsin-EDTA to detach the cells from the surface 

of the plate. The trypsinized cells were either used for subculturing or for preparation of 

frozen stocks.   
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4   Results 

4.1   Protein expression of Meis1 in GP+E86 (GP+E86 Meis1) 

retroviral producer cell line 

In order to determine the integrity and proper expression of the Meis1 protein, Western 

blotting was performed on the whole cell lysate of the GP+E86 Meis1 cell line. This 

retroviral producer cell line was used for the transduction of murine bone marrow cells. The 

GP+E86 MIG and native E86 cell lines were used as negative controls for Western blotting. 

A protein of 53 kDa molecular weight, the expected size for Meis1, was clearly observed in 

the GP+E86 Meis1 cell line only, confirming the expression of Meis1 in this cell line (Fig. 

4.1). 

             

Fig. 4.1 Expression of Meis1 in the retroviral producer cell line GP+E86 Meis1: The expression of Meis1 

was observed by Western blotting of the whole cell lysate from the GP+E86 Meis1 cell line, which was used for 

the transduction of murine bone marrow cells in the experiments described in this work. The retroviral producer 

cells line containing the empty retrovirus (E86 MIG) or the parent cell line (E86 native) did not express the 

Meis1 protein. 

 

4.2   Determining whether Meis1 expression cooperates with 

CALM/AF10 in the transformation of hematopoietic cells 

Since IgH-CALM/AF10 transgenic mice do not develop leukemia, our goal was to determine 

whether certain factors might cooperate with CALM/AF10 to induce leukemia development. 

We selected Meis1 as a potential co-operating factor of CALM/AF10 because Meis1 is 

known to collaborate with Hox fusion gene and because Meis1 is highly expressed in 
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CALM/AF10-positive human leukemia cells. In order to determine the collaborative effect, 

we performed in vitro CFC assay and developed in vivo mouse models. For our experiments 

we used stable retroviral producer cell lines GP+E86 expressing different genes under the 

control of the strong viral LTR promoter. We established a CALM/AF10 + Meis1 model by 

transplanting lethally irradiated recipient mice with IgH-CALM/AF10 transgenic bone 

marrow cells transduced with the Meis1 expressing retrovirus. We complemented these 

models with CFC assays, in which wild type bone marrow cells were co-transduced with 

CALM/AF10, CALM/AF10 minimal fusion (MF) and Meis1 expressing retroviruses. 

4.2.1   In vitro – Colony Forming Cell (CFC) Assay 

The CFC assay determines the colony forming capabilities of hematopoietic cells on 

methylcellulose. Cells transduced with CALM/AF10 alone do not behave differently in the 

CFC assay from cells transduced with an empty retrovirus (Deshpande et al., 2011). 

Therefore, our hypothesis was that co-expression of Meis1 with CALM/AF10 might 

transform hematopoietic cells in vitro. Thus we performed the CFC assays with cells 

transduced with Meis1 alone, CALM/AF10 alone, CALM/AF10-minimal fusion (MF), 

CALM/AF10 with Meis1 and MF with Meis1 containing retroviruses. As control we have 

used cells transduced with empty vector (MIG) containing retroviruses. The viruses which 

were produced from several GP+E86 cell lines are schematically presented in Fig. 4.2.1.  

 

Fig. 4.2.1   Schematic representation of the retroviral constructs used for bone marrow transplantation 

experiments: a) empty vector control (MIG), b) Meis1, c) full length CALM/AF10 and d) CALM/AF10-minimal 
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fusion (MF). LTR: Long terminal repeat sequences. IRES: Internal ribosome entry site, GFP: Green fluorescent 

protein, YFP: Yellow fluorescent protein. 

 

Mouse bone marrow cells were retrovirally co-transduced with the Meis1 retroviruses 

(yellow fluorescence) and one of the other two retroviruses (CALM/AF10 and MF; green 

fluorescence) produced by these different cell lines. The retrovirally transduced cells were 

double-sorted for GFP and YFP positivity and 500 GFP/YFP double-positive cells were 

plated in myeloid specific methylcellulose based semi solid media (Methocult M3434). In 

case of bone marrow cells retrovirally transduced with Meis1 alone were sorted for YFP 

positivity, and the bone marrow cells transduced with CALM/AF10 alone, MF alone and 

empty vector (MIG) were sorted for GFP positivity. After an incubation period of 10 days at 

37ºC in a humidified CO2 incubator, the colonies were identified and enumerated. 

 

4.2.1.1   Primary CFC assay 

After 10 days, the colonies were analyzed and enumerated. Since we used myeloid specific 

methocult media, the growth of cells belonging to the myeloid compartment such as 

granulocytes, macrophages and erythroid colonies was supported.  

In these primary CFC assays, the mean total colonies for CALM/AF10 was 168 (±58), Meis1 

184 (±54) and Meis1+CALM/AF10 198 (±52) CFU/500 input cells as compared to MIG 108 

(±9) CFU/500 input cells (the experiments were performed in triplicates). Whereas, the mean 

frequency of colonies for the MF and Meis1+MF arms were 164 (±7) and 144 (±45) 

CFU/500 input cells, respectively (n=3). The total number of colonies in all the experimental 

arms was higher than the MIG control arm, but the difference was not significant (Fig. 

4.2.1.1a). 
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Fig. 4.2.1.1a   Graphical representation of total number of colonies in CFC assay: Bar graph showing the 

total number of colonies observed in methylcellulose plates using different retroviral constructs: empty vector 

control EGFP (MIG), Meis1, CALM/AF10 (C/A), Meis1 in combination with CALM/AF10 (Meis1+C/A), 

CALM/AF10-minimal fusion (MF) and Meis1 in combination with MF (Meis1+MF). MF and Meis1+MF could 

be replated into secondary and tertiary CFC. The experiments were performed in triplicates (n=3). 

 

In the primary CFC assay cells transduced with viruses expressing Meis1 alone, Meis1 in 

combination with CALM/AF10 or in combination with the CALM/AF10-minimal (MF) 

fusion showed a slightly higher number of CFU-GM than empty vector control (MIG). 

However the difference was not statistically significant. There was no difference in the 

proportion of G, M, GEMM, BFU-E or blast like colonies under these experimental 

conditions.  Interestingly, only the co-expression of Meis1 and the MF resulted in a 

significant increase in the number of CFU-blast colonies 37 (±20) in the primary CFC assay. 

This increase in blast colonies was not seen when either of the genes was expressed alone 

hinting at a collaboration of Meis1 with the CALM/AF10 minimal fusion protein in the 

transformation of primary hematopietic cells in this assay system. (Fig. 4.2.1.1b; Fig. 

4.2.1.1c).  
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Fig. 4.2.1.1b   Graphical representation of different types of colonies enumerated per 500 cells plated in 

primary CFC assay: Bar graph showing the different types of colonies observed in CALM/AF10, Meis1 and 

Meis1 along with CALM/AF10 (Meis1+C/A) primary transduced bone marrow cells. G: Granulocyte, M: 

Macrophage, GM: Granulocyte/Macrophage, GEMM: Granulocyte / Erythroid / Macrophage / Megakaryocyte, 

BFU-E: Burst Forming Unit–Erythroid, Blast: Precursor cells. The experiments were performed in triplicates 

(n=3). 
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Fig. 4.2.1.1c   Graphical representation of different types of colonies enumerated per 500 cells plated in 

primary CFC assay: Bar graph showing the different types of colonies observed in CALM/AF10-MF (MF), 

Meis1 along with MF (Meis1+MF) and empty vector control MIG primary transduced bone marrow cells. G: 

Granulocyte, M: Macrophage, GM: Granulocyte/Macrophage, GEMM: Granulocyte / Erythroid / Macrophage / 

Megakaryocyte, BFU-E: Burst Forming Unit–Erythroid, Blast: Precursor cells. The experiments were 

performed in triplicates (n=3). 

 



R e s u l t s 
 

76 

4.2.1.2   Secondary and tertiary CFC assay (Replating) 

The proliferative potential of the primary colony was tested by replating the primary colonies 

into secondary CFC. The colonies from the primary plates were collected into single cell 

suspensions by multiple washings with pre-warmed phosphate buffered saline. The washed 

cells were then counted and 1000 cells were used per plate in the secondary plating. The 

same procedure was performed for the third replating.  

Surprisingly, secondary colonies were visible only in the MF and Meis1+MF experimental 

arms. Primary colonies from the other experimental arms, which included CALM/AF10, 

Meis1, Meis1+CALM/AF10, and the MIG control, did not replate. Immature blast cells 

(CFU-blast) were clearly visible in the secondary replating of MF (37 (±8)) and Meis1+MF 

(40 (±7)) transduced bone marrow cells (Fig. 4.2.1.2a). The cells transduced with MF and 

Meis1+ MF did also replate a third time. The morphology of the colonies visible in the 

second and third replating was blast-like. There were 44 (±12) CFU-blast colonies per plate 

in the MF and 51 (±4) CFU-blast colonies in the Meis1+MF arm in the third replating. Thus, 

the blast cell counts were higher in the third than in the second replating of MF and 

Meis1+MF transduced bone marrow cells (Fig. 4.2.1.2b). There was no increase in the total 

number of colonies in secondary and tertiary CFC replating (Fig. 4.2.1.1a), but there was a 

slight increase in proportion of blast like colonies, especially in the Meis1+MF transduced 

cells and a reduction in colonies with a GM morphology in the third replating.  
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Fig. 4.2.1.2a   Graphical representation of different types of colonies enumerated per 1000 cells plated in 

the second replating assay: Bar graph showing the different types of colonies observed in secondary replating 
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of CALM/AF10-MF (MF) and Meis1 along with MF (Meis1+MF). G: Granulocyte, M: Macrophage, GM: 

Granulocyte/Macrophage, GEMM: Granulocyte / Erythroid / Macrophage / Megakaryocyte, BFU-E: Burst 

Forming Unit–Erythroid, Blast: Precursor cells. The experiments were performed in triplicates (n=3). 
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Fig. 4.2.1.2b   Graphical representation of different types of colonies enumerated per 1000 cells plated in 

third replating assay: Bar graph showing the different types of colonies observed in tertiary replating of 

CALM/AF10-MF (MF) and Meis1 along with MF (Meis1+MF). G: Granulocyte, M: Macrophage, GM: 

Granulocyte/Macrophage, GEMM: Granulocyte / Erythroid / Macrophage / Megakaryocyte, BFU-E: Burst 

Forming Unit–Erythroid, Blast: Precursor cells. The experiments were performed in triplicates (n=3). 

 

4.2.1.3   Flow cytometric analyses of cells obtained from CFC assays  

The cells were harvested from primary, secondary and tertiary CFC plates and 

immunostained with various fluorescence-conjugated antibodies such as Gr1 (granulocyte), 

Mac1 (macrophage), Ter119 (erythroid), B220 (B-cells), Sca1 and cKit (stem cell marker) to 

determine the surface marker of on these cells. The cells were then analyzed in a flow 

cytometer (FACS Calibur). 

The mature marker Gr1 was more prominent in the cells transduced with CALM/AF10 (52% 

(±16%)) and MIG (53% (±4%)) (Fig. 4.2.1.3a). Cells derived from CFC plates with MF 

transduced cells were positive for Sca1 50% (±24%) and cKit 45% (±14%) (Fig. 4.2.1.3b). 

The B220 staining was slightly higher on Meis1 transduced cells (12% (±7%)) than on MIG 

transduced cells or in the other experimental arms (Fig. 4.2.1.3c). 
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The Sca1/cKit stem cell marker was most prominent in MF and Meis1+MF transduced cells 

with 40% (±8%) and 36% (±7%), respectively, compared to the other experimental arms in 

the secondary replating (Fig. 4.2.1.3d). In tertiary replating the proportion of Sca1/cKit 

positive cells increased both in the MF and Meis1+MF transduced cells with 47% (±8%) and 

45% (±7%) being positive for these markers, respectively. (Fig. 4.2.1.3e). However, there 

was not significant difference in the Sca1/cKit staining pattern between MF and Meis1+MF 

transduced cells. 
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Fig. 4.2.1.3a   Graphical representation of granulocyte and macrophage staining for different 

experimental arms in primary CFC assay: Bar graph showing the percentage stains for primary CFC of 

empty vector control MIG, Meis1, CALM/AF10 (C/A), Meis1 in combination with CALM/AF10 (Meis1+C/A), 

CALM/AF10-minimal fusion (MF) and Meis1 in combination with MF (Meis1+MF) for granulocyte (Gr-1), 

macrophage (Mac-1) and granulocyte/macrophage (Gr-1+Mac-1) in GFP positive cells. The data presented here 

are from three independent experiments (n=3). 
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Fig. 4.2.1.3b   Graphical representation of Sca-1 and cKit staining for different experimental arms in the 

primary CFC assay: Bar graph showing the percentage stains for primary CFC of empty vector control  MIG, 

Meis1, CALM/AF10 (C/A), Meis1 in combination with CALM/AF10 (Meis1+C/A), CALM/AF10-minimal 

fusion (MF) and Meis1 in combination with MF (Meis1+MF) transduced cells for Sca-1, c-Kit and Sca-1/c-Kit. 

The transduced cells were identified by GFP fluorescence. The data presented here are from three independent 

experiments (n=3). 
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Fig. 4.2.1.3c   Graphical representation of Ter-119 and B220 staining for the different experimental arms 

in the primary CFC assay: Bar graph showing the percentage stains for primary CFC of empty vector control 

MIG, Meis1, CALM/AF10 (C/A), Meis1 in combination with CALM/AF10 (Meis1+C/A), CALM/AF10-

minimal fusion (MF) and Meis1 in combination with MF (Meis1+MF) transduced cells for Ter-119, B220 and 

Ter-119/B220. The transduced cells were identified by GFP fluorescence. The data presented here are from 

three independent experiments (n=3). 
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Fig. 4.2.1.3d   Graphical representation of different surface markers present on cells of MF and 

Meis1+MF in the secondary CFC assay: Bar graph showing the percentage stains for secondary CFC of 

CALM/AF10-minimal fusion (MF) and Meis1 in combination with MF (Meis1+MF) for granulocyte (Gr1), 

macrophage (Mac1), granulocyte/macrophage (Gr1/Mac1), erythrocytes (Ter119), B cells (B220), 

Ter119/B220, stem cell markers (Sca1, cKit and Sca1/cKit) in GFP positive cells. The data presented here are 

from three independent experiments (n=3). 
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Fig. 4.2.1.3e   Graphical representation of different surface markers present on cells of MF and 

Meis1+MF in tertiary CFC assay: Bar graph showing the percentage stains for tertiary CFC of CALM/AF10-

minimal fusion (MF) and Meis1 in combination with MF (Meis1+MF) for granulocyte (Gr1), macrophage 

(Mac1), granulocyte/macrophage (Gr1/Mac1), erythrocytes (Ter119), B cells (B220), Ter119/B220, stem cell 

markers (Sca1, cKit and Sca1/cKit) in GFP positive cells. The data presented here are from three independent 

experiments (n=3). 
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4.2.2   Meis1 collaborates with the CALM/AF10 fusion gene in a murine 

bone marrow transplantation leukemia model 

The murine bone marrow transplantation model employs ex vivo retroviral gene transfer of 

primary hematopoietic cells followed by transplantation of the transduced cells into lethally 

irradiated syngeneic mouse recipients. The purpose of this model is to assess the oncogenic 

potential of a gene of interest. Using this model it is also possible to identify new proto-

oncogenes and understand the detailed mechanism of leukemic transformation. The 

advantage of this model is that the leukemia develops in an intact organism in the presence of 

growth factors and the proper micro-environment. The bone marrow transplantation model is 

widely used to increase our understanding of leukemogenesis Moreover, because of its longer 

duration, in the bone marrow transplantation model additional mutational events (e.g. point 

mutations or the consequences of the retroviral integration) can occur which might be 

required for full leukemia development. Thus, in comparison with the CFC assay the bone 

marrow transplantation model is a more realistic model to study the effect of oncogenes in 

the hematopoietic compartment. In this work, we combined the bone marrow transplantation 

model with a transgenic model in order to study the collaborative effects of Meis1 

overexpression with the CALM/AF10 fusion gene in leukemia development. 

To analyze whether Meis1 is a collaborating factor for the CALM/AF10 fusion gene in 

leukemia development, lethally irradiated recipient mice were transplanted with IgH-

CALM/AF10 transgenic bone marrow cells transduced with a Meis1 expressing retrovirus. 

As controls lethally irradiated recipient mice were transplanted with IgH-CALM/AF10 

transgenic bone marrow cells transduced with the empty retrovirus (MIG, expressing EGFP 

(enhanced green fluorescent protein) only) or with wildtype bone marrow cells transduced 

with a Meis1 expressing retrovirus. As additional controls, mice transplanted with wildtype 

bone marrow cells transduced with the empty retrovirus (MIY, expressing EYFP (enhanced 

yellow fluorescent protein) only) were used. These mice were transplanted by Sayantanee 

Dutta as a common control arm for our group. The data for these mice were kindly provided 

by her. The FVB IgH–CALM/AF10 transgenic line 1 and FVB wild type mice were used as 

bone marrow donors. The donor mice were injected with 5-fluorouracil (5-FU) 5 days prior 

to bone marrow harvest. 5-FU is a pyrimidine analogue and it affects rapidly dividing cells. 

Thus, the donor bone marrow cells are enriched with stem cells and long term repopulating 

cells. The 5-FU injected bone marrow donor cells were transduced with Meis1 expressing 
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retrovirus or with empty retrovirus MIG, and injected into lethally irradiated syngeneic 

recipient mice (Fig. 4.2.2a).  

19 mice were transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced 

with the Meis1 expressing retrovirus, 17 mice were transplanted with wildtype bone marrow 

cells transduced with Meis1 retrovirus, 8 mice were transplanted with IgH-CALM/AF10 

transgenic bone marrow cells transduced with empty retrovirus EGFP and 8 mice were 

transplanted with wildtype bone marrow cells transduced with the empty retrovirus MIY 

(Fig. 4.2.2b; Table A.1 (Appendix); Table A.2 (Appendix); Table A.3 (Appendix); Table A.4 

(Appendix)). The lethally irradiated recipient mice will die of hematopoietic crisis if the 

injected cells fail to engraft the marrow. Therefore, non-transduced or mock cells were used 

as rescuer cells. 0.5×106 of retrovirally transduced cells and 0.5×106 of mock-transduced cells 

were injected into lethally irradiated FVB wildtype mice (Fig. 4.2.2a). The transplanted mice 

were monitored closely and examined for the engraftment of the transplanted bone marrow 

cells. The actual transplantation, that is the injection of the retrovirally transduced bone 

marrow cells into the tail vain of lethally irradiated mice, was performed by my colleagues 

Naresh Koneru and Sayantanee Dutta. 

 

Fig 4.2.2a   Schematic representation of experimental strategy: FVB wildtype (FVBwt) mice and FVB IgH-

CALM/AF10 transgenic line1 mice were used as donors for the experiment. The donor bone marrow (BM) cells 
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were retrovirally transduced with E86 cell lines containing MSCV-IRES-YFP-Meis1 (MIY-Meis1; 

experimental arm) or MSCV-IRES-GFP (MIG ; control arm) containing retrovirus. The transduced cells were 

sorted using flow cytometry. 0.5 × 106 of GFP/YFP positive cells and 0.5 × 106 of mock cells were injected into 

lethally irradiated syngeneic FVB mice. 
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Fig 4.2.2b   Graphical representation of total number of mice transplanted for experimental and control 

arms: A total of nineteen lethally irradiated recipient mice (n=19) were transplanted with IgH-CALM/AF10 

transgenic bone marrow cells transduced with Meis1 expressing retrovirus (IgHC/A+Meis1); a total of 

seventeen lethally irradiated recipient mice (n=17) were transplanted with FVB wildtype bone marrow cells 

transduced with Meis1 expressing retrovirus (FVBwt+Meis1). As control for our experiments, a total of eight 

lethally irradiated recipient mice (n=8) were transplanted with IgH-CALM/AF10 transgenic bone marrow cells 

transduced with MIG empty retrovirus (IgHC/A+MIG); other control arm for our experiments was the mice 

(n=8) transplanted with FVB wildtype bone marrow cells transduced with MIY empty retrovirus (FVBwt+MIY)  

These mice were transplanted as a common control arm by Sayantanee Dutta from our group and the data for 

these mice were kindly provided by her.  

 

4.3   Meis1 expression in IgH-CALM/AF10 transgenic bone 

marrow cells increases engraftment  

0.5×106 of retrovirally transduced cells and 0.5×106 of non-transduced mock cells were 

injected into lethally irradiated recipient mice. The transplanted hematopoietic stem and 

progenitor cells thus provide short-term and long-term engraftment in the recipient mice. The 
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engraftment was measured at 4 and 8 weeks post transplantation. Peripheral blood samples 

from transplanted mice were analyzed for their engraftment percentage at 8 weeks post 

transplantation by flow cytometry using GFP fluorescence as an indicator for retrovirally 

transduced cells (Fig. 4.3).  
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Fig. 4.3 Engraftment percentages of mice transplanted with IgH-CALM/AF10 transgenic bone marrow 

cells transduced with Meis1 expressing retrovirus (IgHC/A+Meis1), mice transplanted with wildtype bone 

marrow cells transduced with Meis1 expressing retrovirus (FVBwt+Meis1), mice transplanted with IgH-

CALM/AF10 transgenic bone marrow cells transduced with empty retrovirus EGFP (IgHC/A+MIG) and 

mice transplanted with wildtype bone marrow cells transduced with empty retrovirus EYFP 

(FVBwt+MIY) at 8 weeks post transplantation: The engraftment percentages from peripheral blood were 

detected for these mice using flow cytometry to measure the proportion of cells expressing the green or yellow 

fluorescent protein (GFP or YFP). IgHC/A+Meis1 mice showed an average of 72% (±29%), FVBwt+Meis1 

mice showed 44% (±10%), IgHCA+MIG mice showed 16% (±13%) and FVBwt+MIY mice showed 18% 

(±10%) engraftment in the peripheral blood. The FVBwt+MIY mice were transplanted as a common control 

arm for our group by Sayantanee Dutta and the data for these mice were kindly provided by her.   

 

Mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with the 

Meis1 expressing retrovirus showed a higher engraftment than the mice transplanted with 

wildtype bone marrow cells transduced with the Meis1 virus or the MIY empty retrovirus and 

the mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with 
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the empty retrovirus (MIG). Thus, Meis1 seems to confer a growth advantage in vivo in the 

mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with 

Meis1 expressing retrovirus. Please note that the MIG and MIY empty retroviruses can be 

considered identical for the purpose of these experiments. They differ only in a few amino 

acids in the fluorescent protein.  

 

4.4   Meis1 expression collaborates with CALM/AF10 in leukemia 

development in vivo in a combined transgenic/bone marrow 

transplantation model 

Mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with 

Meis1 expressing retrovirus (IgHC/A+Meis1; n=19) died of aggressive acute leukemia with a 

100% penetrance ranging from 77 to 357 days after transplantation with a median latency of 

187 days. Four of 19 mice were found dead in their cages and could not be analyzed. Hence 

these mice were censored in the survival curve plot. The remaining 15 mice were analyzed 

and characterized to be leukemic. To prove that these mice had indeed developed leukemia 

we performed secondary and tertiary transplants using the leukemic cells from these mice. 

For secondary and tertiary transplantations 1×106
 leukemic cells were injected into recipient 

mice All the IgHC/A+Meis1 secondary mice (n=4) developed acute myeloid leukemia and 

died within a range of 21 to 28 days (median latency of 25 days). All the IgHC/A+Meis1 

tertiary transplanted mice (n=4) also developed an aggressive acute myeloid leukemia by 15 

days post transplantation. The Kaplan-Meier survival curves for the different experimental 

arms are shown in Fig. 4.4. 

Surprisingly, some mice transplanted with wildtype bone marrow cells transduced with 

Meis1 expressing retrovirus (FVBwt+Meis1; n=17) also developed acute leukemia with a 

median latency of 210 days (range 84 to 518 days). However, the penetrance of leukemia 

development was only 29% in this experimental arm. These 29% of Meis1 transplanted mice 

(5 out of 17) had clear symptoms of leukemia. On the other hand, 10 out of 17 mice either 

died due to some unknown reason and had no symptoms of leukemia, or were found dead in 

their cages and could not be analyzed. Hence these mice were censored in the survival curve 

plot. The remaining 2 out of 17 Meis1 transplanted mice remained healthy till the current 
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observation point i.e. 518 days post transplantation. Since we do not know the fate of these 

two mice after the current observation point, therefore these two mice were censored in the 

survival curve plot (Fig. 4.4).  

All the secondary mice injected with cells from the primary FVBwt+Meis1 leukemic mice 

(n=4) developed acute myeloid leukemia and died with a latency period of 28 to 63 days post 

transplantation (median latency of 44 days). However, as expected all the secondary recipient 

mice injected with cells from primary non-leukemic FVBwt+Meis1 mice (n=2) remained 

healthy and did not develop leukemia up to current observation period of 122 days post 

transplantation. Therefore, these two mice were also censored in this survival curve analysis. 

The tertiary mice transplanted with leukemic cells from secondary leukemic FVBwt+Meis1 

mice (n=4) developed aggressive acute myeloid leukemia and died within a range of 21 to 28 

days post transplantation (median latency of 25 days) (Fig. 4.4). 

The Kaplan-Meier survival curves for primary, secondary and tertiary transplanted mice of 

different experimental and control arms were plotted (Fig. 4.4) using SigmaPlot Version 12.0. 

Most of the mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells 

transduced with empty retrovirus EGFP (IgHC/A+MIG; n=8) remained healthy and did not 

develop leukemia up to current observation period of 392 days post transplantation. Three (3) 

out of these 8 IgHC/A+MIG mice were old and died after one year post transplantation. 

These mice did not have any symptoms of leukemia. Therefore, the mice which were 

followed up till the current observation point (5 mice) and the mice which were old and died 

(3 mice), were censored in this survival curve analysis (Fig. 4.4). 

Most of the mice transplanted with wildtype bone marrow cells transduced with empty 

retrovirus EYFP (FVBwt+MIY; n=8) remained healthy and were observed up to 224 days 

post transplantation. Three (3) out of 8 FVBwt+MIY mice died due to some unknown reason 

and were non-leukemic. The remaining five mice were healthy and followed up till the 

current observation point (224 days). Hence, all of the FVBwt+MIY mice were censored in 

the survival plot (Fig. 4.4). 

In summary, the following mice were censored in the survival curve analysis: (1) Mice which 

were found dead in their cages and could not be analyzed, (2) the mice which died due to 

some unknown reason other than leukemia, and (3) the mice which remained alive and 
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followed up till the current observation point . Since we do not know the fate of the living 

mice after the current observation point, therefore these mice were also censored (Table 4.4).  

Even though about 30% of the mice transplanted with wildtype bone marrow cells transduced 

with the Meis1 expressing retrovirus developed leukemia, this is in stark contrast to the 100% 

of mice which developed leukemia after being transplanted with CALM/AF10 transgenic 

bone marrow cells transduced with the Meis1 expressing retrovirus. It is thus pretty obvious 

from these data that Meis1 strongly collaborates with CALM/AF10 in the induction of 

leukemia. 

 

Fig. 4.4   Kaplan-Meier survival curves of primary, secondary and tertiary mice transplanted with IgH-

CALM/AF10 transgenic bone marrow cells transduced with Meis1 expressing retrovirus 

(IgHC/A+Meis1), wildtype bone marrow cells transduced with Meis1 expressing cells (FVBwt+Meis1), 

IgH-CALM/AF10 transgenic bone marrow cells transduced with empty vector MIG expressing EGFP 

(IgHC/A+MIG) and wildtype bone marrow cells transduced with empty vector MIY expressing EYFP 

(FVBwt+MIY): Kaplan Meier survival curve analysis showing the percentage of survival for different 
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experimental and control mice against number of days post transplantation. The different experimental mice 

include IgHC/A+Meis1 (n=19), FVBwt+Meis1 (n=17), IgHC/A+MIG (n=8) and FVBwt+MIY (n=8). In 

addition to the primary transplanted mice, this graph also includes the curves for secondary and tertiary 

transplanted mice (IgHC/A+Meis1 secondary transplanted mice (n=4); FVBwt+Meis1 secondary transplanted 

mice (n=6); IgHC/A+Meis1 tertiary transplanted mice (n=4); FVBwt+Meis1 tertiary transplanted mice (n=4)). 

The primary transplanted IgHC/A+Meis1 mice died within a range of 77 to 357 days (median 187 days) and 

primary transplanted FVBwt+Meis1 mice died within a range of 84 to 518 days (median 210 days). The 

IgHC/A+MIG control mice remained healthy and are still under observation for 392 days post transplantation. 

The FVBwt+MIY control mice also remained healthy and are under observation for 224 days post 

transplantation. All the IgHC/A+Meis1 secondary transplanted mice (n=4) died within a range of 21 to 28 days 

(median 25 days) and IgHC/A+Meis1 tertiary transplanted mice (n=4) died within 15 days post transplantation. 

The FVBwt+Meis1 secondary transplanted leukemic mice (n=4) died within a range of 28 to 63 days (median 

44 days). The FVBwt+Meis1 secondary mice transplanted from primary non-leukemic mice (n=2) remained 

healthy and were observed up to 122 days post transplantation. All the FVBwt+Meis1 tertiary transplanted mice 

(n=4) from secondary leukemic FVBwt+Meis1 mice died within a range of 21 to 28 days (median 25 days). The 

mice which were found dead in the cages and could not be analyzed, the mice which died due to some unknown 

reason other than leukemia, and the mice which remained alive and followed up to the current observation point 

are censored in this survival curve analysis. Different shaped dots on the lines denote the censored mice. (sec: 

secondary; ter: tertiary; Tx: transplantation).  

Gene 
No. of mice 

transplanted 

Days of 

survival 

No. of 

Leukemic 

mice 

No. of censored mice 

Died 

in 

cage 

Non-

leukemic 
Remained alive 

IgHC/A+Meis1 19 77-357 15 4 0 0 

FVBwt+Meis1 17 84-518  5 5 5 2 

IgHC/A+MIG 8 343-392  0 0 3 5 

FVBwt+MIY 8 161-224  0 0 3 5 

IgHC/A+Meis1 

sec. Tx 
4 21-28 4 0 0 0 

FVBwt+Meis1 

sec. Tx 
6 28-122  4 0 - 2 

IgHC/A+Meis1 

ter. Tx 
4 15 4 0 0 0 

FVBwt+Meis1 

ter. Tx 
4 21-28 4 0 0 0 

Table 4.4   Summary of Kaplan Meier survival curve for different primary, secondary and tertiary 

transplanted mice 
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4.5   Mice transplanted with IgH-CALM/AF10 transgenic bone 

marrow cells transduced with a Meis1 expressing retrovirus 

develop an aggressive acute myeloid leukemia 

A total of 19 FVB wildtype mice were transplanted with IgH-CALM/AF10 transgenic bone 

marrow cells transduced with the Meis1 expressing retrovirus. The transplanted mice were 

monitored for leukemic symptoms such as frizzled body hair, paleness of the foot pads, 

breathing problems and lethargy. Moribund mice were sacrificed and further analyzed for 

leukemia (Table 4.5). The parameters considered for leukemic mice included measurement of 

WBC and RBC counts from peripheral blood, spleen weight and length and peripheral blood 

smears. The sacrificed and dissected mice were then fixed in 4% formalin and sent for 

histopathological examination. 

 

Summary of IgHC/A+Meis1 mice 

No. of transplanted mice 19 

No. of leukemic mice analyzed 15 

No. of mice not analyzed 4 

Remaining mice 0 

Median latency (days) 187 

 

Table 4.5   Summary of mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells 

transduced with Meis1 expressing retrovirus (IgHC/A+Meis1). 

 

The sacrificed, leukemic mice showed a median bone marrow engraftment levels of 92% 

(±12%), peripheral blood engraftment levels of 78% (±17%) and spleen engraftment levels of 

79% (±27%) (Table A.5 (Appendix)). 
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4.5.1   Analysis of leukemic mice transplanted with IgH-CALM/AF10 

transgenic bone marrow cells transduced with Meis1 expressing retrovirus 

 

4.5.1.1   WBC and RBC counts 

The peripheral blood of sacrificed mice was characterized by a dramatic increase in the 

number of WBCs (hyperleukocytosis) ranging from 12×106 to 440×106 of WBCs per 

milliliter as compared to control mice ranging from 3×106 to 8×106 WBCs per milliliter 

(Fig.4.5.1.1a; Table A.6 (Appendix)). The leukemic mice also had a decreased red blood cell 

(RBC) counts (anemia) ranging from 1×109 to 4×109 per milliliter as compared to control 

mice (n=4) with RBC counts ranging from 8×109  to 10×109 RBCs per milliliter (Fig. 

4.5.1.1b; Table A.6 (Appendix)). 
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Fig. 4.5.1.1a Graphical representation of WBC counts in the peripheral blood of leukemic mice 

transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with Meis1 expressing 

retrovirus (IgHC/A+Meis1): The leukemic mice demonstrated increase in WBC counts (hyperleukocytosis). 

The average WBC count per ml for IgHC/A+Meis1 mice is 123×106
 and the average WBC count per ml for 

control mice is 6×106. 
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Fig. 4.5.1.1b   Graphical representation of RBC counts in the peripheral blood of leukemic mice 

transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with Meis1 expressing 

retrovirus (IgHC/A+Meis1): The leukemic mice demonstrated decrease in RBC counts (anemia). The average 

RBC count per ml for IgHC/A+Meis1 mice is 2×109
 and the average RBC count per ml for control mice is 

9×109. 

 

4.5.1.2   The leukemic mice were characterized by splenomegaly 

Enlargement of the spleen was a common feature of these leukemic mice (Fig. 4.5.1.2a; Fig. 

4.5.1.2b; Fig. 4.5.1.2c; Table A.7 (Appendix)).  

 

 

Fig. 4.5.1.2a   Comparison of the spleen from a mouse transplanted with IgH-CALM/AF10 transgenic 

bone marrow cells transduced with Meis1 expressing retrovirus (IgHC/A+Meis1) mouse with the spleen 

of a control mouse: The spleens of IgHC/A+Meis1 diseased mice were larger (a) compared to the control 

mouse (b). The average spleen weight of IgHC/A+Meis1 leukemic mice was 475 mg as compared to an average 

of 126 mg in control mice. 
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Fig. 4.5.1.2b   Graphical representation of spleen weight of leukemic mice transplanted with IgH-

CALM/AF10 transgenic bone marrow cells transduced with Meis1 expressing retrovirus 

(IgHC/A+Meis1): The leukemic mice demonstrated enlargement of the spleen (splenomegaly). The average 

spleen weight of IgHC/A+Meis1 leukemic mice was 475 mg as compared to an average of 126 mg in control 

mice. 
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Fig. 4.5.1.2c   Graphical representation of spleen length of leukemic mice transplanted with IgH-

CALM/AF10 transgenic bone marrow cells transduced with Meis1 expressing retrovirus 

(IgHC/A+Meis1): The leukemic mice demonstrated enlargement of the spleen (splenomegaly). The average 

spleen length of IgHC/A+Meis1 leukemic mice was 2.5 cm as compared to an average of 1.6 cm in control 

mice. 
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4.5.1.3   Histopathology demonstrated leukemic blast infiltration in multiple organs 

Hematoxylin and eosin (H&E) staining was performed in histology. The hematoxylin stains 

the nuclei of cells blue and eosin stains the cytoplasm red. Histopathological analyses of 

multiple organs including spleen, liver, lungs, kidneys, thymus and lymph nodes showed 

blast infiltration (Fig. 4.5.1.3). Leukemic blasts are characterized by the presence of large 

nucleus, prominent nucleolus and moderate amount of cytoplasm. The infiltration of 

leukemic blasts in non-hematopoietic organs emphasized the aggressive nature of the disease. 

 

 

Fig. 4.5.1.3   Immunohistopathology of diseased mice transplanted with IgH-CALM/AF10 transgenic 

bone marrow cells transduced with Meis1 expressing retrovirus: (a) Histological study demonstrated 

infiltration of myeloid blasts in multiple organs. (b and c) In the spleen the blastic cells were predominantly in 

the red pulp. (d) The lymph node and liver also showed infiltration of blast cells. Diffuse infiltrations of blast 

cells were found in kidney. 
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4.5.1.4   The leukemic cells from mice transplanted with IgH-CALM/AF10 transgenic 

bone marrow cells transduced with Meis1 expressing retrovirus were positive for 

myeloid markers on immunohistochemical analyses 

Several histochemical and immunohistochemical stains are used to identify the type and stage 

of different cells, and also to differentiate between myeloid and lymphoid leukemias. The 

myeloperoxidase (MPO) stain is used as a myeloid marker in the diagnosis of AML. MPO 

staining is negative in case of acute lymphoid leukemia (ALL). Thus MPO staining is used to 

distinguish between AML and ALL. Another stain called choloro-acetate esterase (CAE) is 

also used to confirm the myeloid nature of AML cells. B220 and CD3 stainings differentiate 

between B and T lymphoid cells, respectively. 

 

Immunohistochemical stainings demonstrated MPO positive blasts and thus the myeloid 

nature of the leukemia (Fig. 4.5.1.4). 

 

 

Fig. 4.5.1.4   Histochemical and immunohistochemical staining of leukemic blasts for diseased mice 

transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with Meis1 expressing 

retrovirus: (a, b, c and d) Immunohistochemical analyses demonstrated the presence of blasts positive for 

myeloperoxidase (MPO) in high number in spleen, lymph node, liver and kidney. (e) Immunohistochemical 

staining in the spleen for CD3 showed the residual reactive T-cells around the central arteries. (f) The B220 

staining shows the residual B-cells. 
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4.5.1.5   Morphological analysis of cells from hematopoietic organs of leukemic mice 

transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with 

Meis1 expressing retrovirus revealed their myeloid nature and a high number of 

infiltrating blast like cells 

 

Cytospin slides of cells from different hematopoietic organs including bone marrow, spleen 

and peripheral blood of leukemic mice were prepared and stained with May-Grunwald-

Giemsa stain (Fig. 4.5.1.5). Cytological studies of the leukemic mice revealed differentiated 

myeloid cells and a large number of blast cells (Table 4.5.1.5a; Table 4.5.1.5b). 

 

 

 

Fig. 4.5.1.5   Blast like cells from organs of leukemic mice transplanted with IgH-CALM/AF10 transgenic 

bone marrow cells transduced with a Meis1 expressing retrovirus: May-Grünwald-Giemsa stained cytospins 

of bone marrow (BM), peripheral blood (PB) and spleen from mice transplanted with IgH-CALM/AF10 

transgenic bone marrow cells transduced with Meis1 expressing retrovirus showed differentiated myeloid cells 

(dotted arrows) and a number of blast cells (firm arrows). 
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Experiment 

no. 

% Blast 

like cells 

BM 

% Blast like 

cells Spleen 

% Blast 

like cells PB 
Diagnosis 

5576B#1 85 56 56 AML 

5576B#2 55 57 47 AML 

5592A#2 74 59 68 AML 

5592C#1 48 53 39 AML 

5602A#1 55 51 62 AML 

5602A#3 57 51 32 AML 

5680A#2 29 47 49 AML 

 
Table 4.5.1.5a   Percentage of blast like cells from different organs of mice transplanted with IgH-

CALM/AF10 transgenic bone marrow cells transduced with the Meis1 expressing retrovirus: 100 cell 

differential counts from bone marrow (BM), spleen and peripheral blood (PB) showed a very high percentage of 

blast cells. The cytospin slides revealed accumulation of myeloid blasts with an average of 58% in BM, 53% in 

spleen and 50% in PB. Staining of cytospin preparations from the BM, spleen and PB of control mice showed 

absence of blast like cells.  

Experiment 

no. 

% myeloid 

PB 
% lymphoid PB 

Lymphoid/Myeloid 

ratio 

5576B#1 98 2 0.02:1 

5576B#2 96 4 0.04:1 

5592A#2 96 4 0.04:1 

5592C#1 98 2 0.02:1 

5602A#1 88 12 0.14:1 

5602A#3 87 13 0.15:1 

5680A#2 91 9 0.09:1 

 
Table 4.5.1.5b   Percentage myeloid and lymphoid cells in peripheral blood (PB) of mice transplanted 

with IgH-CALM/AF10 transgenic bone marrow cells transduced with the Meis1 expressing retrovirus 
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(IgHC/A+Meis1): There was a reversal of the lymphoid to myeloid ratio in the PB of IgHC/A+Meis1 leukemic 

mice with an enormous myeloid proliferation and decrease in lymphoid growth in this compartment. The 

lymphoid to myeloid ratio in PB of control mice was 2:1. 

 

The morphological and immunohistochemical findings in the leukemic mice were diagnostic 

of an AML.  

 

4.6   Mice transplanted with wildtype bone marrow cells 

transduced with the Meis1 expressing retrovirus also developed 

acute myeloid leukemia 

A total of 17 mice transplanted with FVB wildtype bone marrow cells transduced with the 

Meis1 expressing retrovirus were monitored for leukemic symptoms. The engraftment of 

these mice was analyzed at 4 and 8 weeks (Fig. 4.3) post transplantation. The sacrificed mice 

showed a median bone marrow engraftment levels of 80% (±26%), peripheral blood 

engraftment levels of 66% (±19%) and spleen engraftment levels of 62% (±15%) (Table A.8 

(Appendix)). 

Out of the total of 17 mice transplanted (n=17), only 29% of them (5 out of 17) were 

diagnosed to be leukemic based on several parameters including WBC count, spleen weight, 

immunohistochemical stainings and morphological analysis. On the other hand, 10 out of 17 

mice either died due to some unknown reasons and had no symptoms of leukemia (5 mice), 

or were found dead in their cages and could not be analyzed (5 mice). The remaining 2 out of 

17 Meis1 transplanted mice remained healthy and were followed up till 518 days post 

transplantation (Table 4.6). The engraftment percentages from peripheral blood of these two 

mice were 33% and 36% at 60 days post transplantation. However, the engraftment 

percentages decreased to 12% and 17% respectively at 200 days post transplantation. 



R e s u l t s 
 

98 

 
Summary of FVBwt+Meis1 mice 

No. of transplanted mice 17 

No. of leukemic mice analyzed 5 

No. of non-leukemic mice analyzed 5 

No. of mice could not be analyzed 5 

No. of mice remained alive 2 (518 days post Tx) 

Median latency (days) 210 

 

Table 4.6   Summary of mice transplanted with FVB wildtype bone marrow cells transduced with the 

Meis1 expressing retrovirus (FVBwt+Meis1) (Tx= transplantation) 

 

4.6.1   Characterization of mice transplanted with wildtype bone marrow 

cells transduced with Meis1 expressing retrovirus 

 

4.6.1.1   WBC and RBC counts 

The peripheral blood of the leukemic mice was characterized by an increase in the number of 

WBCs ranging from 20×106 to 175×106 per milliliter (Fig. 4.6.1.1a; Table A.9 (Appendix)) 

and a decrease in the RBC counts ranging from 1×109 to 6×109 per milliliter (Fig. 4.6.1.1b; 

Table A.9 (Appendix)). On the other hand, the non-leukemic mice exhibited normal WBC 

counts ranging from 2×106 to 5×106 per milliliter (Fig. 4.6.1.1a; Table A.10 (Appendix)) and 

normal RBC counts ranging from 2×109 to 7×109 per milliliter (Fig. 4.6.1.1b; Table A.10 

(Appendix)). 
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Fig. 4.6.1.1a   Graphical representation of WBC counts in the peripheral blood of mice transplanted with 

FVB wildtype bone marrow cells transduced with the Meis1 expressing retrovirus (FVBwt+Meis1): The 

leukemic mice demonstrated an increase in WBC counts (hyperleukocytosis). The average WBC count per ml 

for leukemic FVBwt+Meis1 mice is 69×106. On the other hand, the non-leukemic mice demonstrated normal 

WBC counts. The average WBC count per ml for non-leukemic FVBwt+Meis1 mice is 2×106. For control mice, 

the average WBC count per ml is 6×106
 and is shown as a dashed line in the graph. 
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Fig. 4.6.1.1b   Graphical representation of RBC counts in the peripheral blood of mice transplanted with 

FVB wildtype bone marrow cells transduced with the Meis1 expressing retrovirus (FVBwt+Meis1): The 

leukemic as well as the non-leukemic mice demonstrated a decrease in RBC counts (anemia). The average RBC 
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count per ml for leukemic FVBwt+Meis1 mice is 3×109
 and for non-leukemic mice is 4×109. The average RBC 

count for control mice is 9×109/ml and is shown as a dashed line in the graph.  

 

4.6.1.2   Mice transplanted with wildtype bone marrow cells transduced with the Meis1 

expressing retrovirus were characterized by splenomegaly 

All the leukemic mice had enlarged spleen (Fig. 4.6.1.2a; Fig. 4.6.1.2b; Fig. 4.6.1.2c; Table 

A.11 (Appendix)). Surprisingly, 2 out of 5 non-leukemic mice from this experimental arm 

also had enlarged spleen (Fig. 4.6.1.2b; Fig. 4.6.1.2c; Table A.12 (Appendix)). Therefore, 

detailed analyses were performed for these mice.  

 

Fig. 4.6.1.2a   Comparison of spleen from mice transplanted with wildtype bone marrow cells transduced 

with the Meis1 expressing retrovirus (FVBwt+Meis1) and a control mouse: The spleens of FVBwt+Meis1 

mice (a) were larger compared to the control mouse (b). The average spleen weight of FVBwt+Meis1 mice was 

384 mg as compared to an average of 126 mg in control mice. 
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Fig. 4.6.1.2b   Graphical representation of spleen weight of mice transplanted with FVB wildtype bone 

marrow cells transduced with the Meis1 expressing retrovirus (FVBwt+Meis1): The leukemic mice 
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demonstrated enlargement of the spleen (splenomegaly). The average spleen weight of FVBwt+Meis1 leukemic 

mice was 537 mg. Two of the non-leukemic mice demonstrated enlargement of the spleen and other three non-

leukemic mice had normal spleens. The average spleen weight of FVBwt+Meis1 non-leukemic mice was 232 

mg. The average spleen weight for control mice is 126 mg and is shown as a dashed line in the graph.  

 

0

1

2

3

4

57
45

D#5
7

57
45

D#5
8

57
55

A#9
7

57
55

A#9
8

57
87

B#1
30

57
55

A#9
9

57
87

A#1
28

57
87

A#1
29

57
87

B#1
31

57
55

B#1
07

S
p

le
en

 le
n

gt
h

 (
cm

)

Leukemic

Non-leukemic

Dashed line represents 
the average spleen length 
for control mice

 

Fig. 4.6.1.2c   Graphical representation of spleen length of mice transplanted with FVB wildtype bone 

marrow cells transduced with the Meis1 expressing retrovirus (FVBwt+Meis1): The leukemic mice 

demonstrated enlargement of the spleen (splenomegaly). The average spleen length of FVBwt+Meis1 leukemic 

mice was 2.7 cm. Two of the non-leukemic mice also demonstrated enlargement of the spleen and other three 

non-leukemic mice had normal spleen. The average spleen length of FVBwt+Meis1 non-leukemic mice was 2.0 

cm. The average spleen length of control mice is 1.6 cm and is shown as a dashed line in the graph. 

 

4.6.1.3   Histopathology demonstrated leukemic blast infiltration in multiple organs of 

leukemic mice transplanted with wildtype bone marrow cells transduced with the Meis1 

expressing retrovirus  

Histologically the spleen, liver, lungs, kidneys, heart and pancreas showed diffuse 

infiltrations characterized by the presence of large tumor cells with blastic chromatin, one or 

more prominent nucleoli and moderate amount of cytoplasm (Fig. 4.6.1.3). 
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Fig. 4.6.1.3   Immunohistopathology of leukemic mice transplanted with wildtype bone marrow cells 

transduced with the Meis1 expressing retrovirus (FVBwt+Meis1): Histological study demonstrated 

infiltration of myeloid blasts in multiple organs. (a) In the heart the neoplastic cells were observed between the 

muscle fibers. (b) In the kidneys blast infiltration was predominatly subcpasular. (c) In the liver the blastic cells 

occupied the periportal regions and sinusoidal spaces. (d and e) The lung and spleen were also infiltrated with 

blast cells. H&E: Hematoxylin and eosin stain 

4.6.1.4   Immunohistochemical analysis of leukemic mice transplanted with wildtype 

bone marrow cells transduced with the Meis1 expressing retrovirus showed positivity 

for myeloid markers 

Immunohistochemical staining demonstrated the presence of MPO and CAE positive blasts, 

thus confirming the myeloid nature of the disease (Fig. 4.6.1.4). 

 

Fig. 4.6.1.4   Histochemical and immunohistochemical staining of leukemic blasts for leukemic mice 

transplanted with wildtype bone marrow cells transduced with the Meis1 expressing retrovirus 
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(FVBwt+Meis1): (a, b, d and e) Immunohistochemical analysis demonstrated the presence of blasts positive 

for myeloperoxidase (MPO) in high numbers in kidney, liver, lung and spleen. (c and f) Immunohistochemical 

staining in the liver and spleen for CAE (chloro-acetate esterase) also demonstrated the presence of myeloid 

blasts. 

 

4.6.1.5   Morphological analysis of cells from hematopoietic organs of mice transplanted 

with wildtype bone marrow cells transduced with Meis1 expressing retrovirus  

Cytospin preparations from different hematopoietic organs including bone marrow, spleen 

and peripheral blood of leukemic mice transplanted with wildtype bone marrow cells 

transduced with the Meis1 expressing retrovirus (FVBwt+Meis1) showed differentiated 

myeloid cells and high numbers of blast cells (Fig. 4.6.1.5a; Table 4.6.1.5a; Table 4.6.1.5b). 

Thus the morphological and immunohistochemical analyses of FVBwt+Meis1 leukemic mice 

are diagnostic of AML. 

 

 

Fig. 4.6.1.5a   Blast like cells from organs of leukemic mice transplanted with wildtype bone marrow cells 

transduced with the Meis1 expressing retrovirus (FVBwt+Meis1): May-Grünwald-Giemsa stained cytospin 

preparations of bone marrow (BM), peripheral blood (PB) and spleen from leukemic FVBwt+Meis1 mice 

showed differentiated myeloid cells (dotted arrows) and a number of blast cells (firm arrows). 
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Experiment 

no. 

% Blast like 

cells BM 

% Blast 

like cells 

Spleen 

% Blast like 

cells PB 
Diagnosis 

5745D#57 26 57 35 AML 

5745D#58 62 75 34 AML 

5755A#97 63 30 38 AML 

5755A#98 50 34 36 AML 

5787B#130 21 23 22 AML 

 

Table 4.6.1.5a   Percentage of blast like cells from leukemic FVBwt+Meis1 mice bone marrow (BM), 

spleen and peripheral blood (PB): 100 cell differential counts from BM, spleen and PB showed a high 

percentage of blast cells. The cytospin slides revealed accumulation of myeloid blasts with an average of 44% in 

BM, 44% in spleen and 33% in PB. Staining of cytospin preparations from BM, spleen and PB of control mice 

showed no blast like cells. 

 

Experiment 

no. 

% myeloid 

PB 
% lymphoid PB 

Lymphoid/Myeloid 

ratio 

5745D#57 90 10 0.11:1 

5745D#58 86 14 0.16:1 

5755A#97 98 2 0.02:1 

5755A#98 97 3 0.03:1 

5787B#130 70 30 0.43:1 

 

Table 4.6.1.5b   Percentage myeloid and lymphoid in peripheral blood (PB) of from leukemic 

FVBwt+Meis1 mice: The reversal in the lymphoid to myeloid ratio in PB of FVBwt+Meis1 leukemic mice 

showed an enormous myeloid proliferation and a decrease in lymphoid cells in this compartment. The lymphoid 

to myeloid ratio in PB of control mice is 2:1. 
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However, cytological studies from non-leukemic mice transplanted with wildtype bone 

marrow cells transduced with the Meis1 expressing retrovirus (FVBwt+Meis1) revealed a 

normal phenotype (Fig. 4.6.1.5b; Table 4.6.1.5c; Table 4.6.1.5d). 

  

 

Fig. 4.6.1.5b   Cytospin analysis of FVBwt+Meis1 non-leukemic mice: Cytological studies of May-

Grünwald-Giemsa stained bone marrow (BM), peripheral blood (PB) and spleen from non-leukemic 

FVBwt+Meis1 mice were normal. 

 

Experiment 

no. 

% Blast 

like cells 

BM 

% Blast like 

cells Spleen 

% Blast like 

cells PB 
Diagnosis 

5755A#99 NA 0 NA No disease 

5787A#128 0 0 0 No disease 

5787A#129 0 0 0 No disease 

5787B#131 0 0 0 No disease 

5755B#107 0 0 0 No disease 

 

Table 4.6.1.5c   Percentage of blast like cells from non-leukemic FVBwt+Meis1 non-leukemic mice bone 

marrow (BM), spleen and peripheral blood (PB): 100 cell differential counts from BM, spleen and PB 

showed absence of blast cells. The cytospin slides revealed a normal phenotype (NA= not available). 
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Experiment 

no. 

% myeloid 

PB 

% lymphoid 

PB 
Lymphoid/Myeloid ratio 

5755A#99 NA NA NA 

5787A#128 52 48 0.92:1 

5787A#129 47 53 1.13:1 

5787B#131 42 58 1.38:1 

5755B#107 40 60 1.50:1 

 

Table 4.6.1.5d   Percentage myeloid and lymphoid in peripheral blood (PB) from non-leukemic 

FVBwt+Meis1 mice: The lymphoid to myeloid ratio in PB of FVBwt+Meis1 non-leukemic mice was normal 

(NA= not available). 

 

4.7   Flow cytometric analyses of transplanted mice 

In order to characterize the leukemia based on different surface markers present on the 

leukemic cells, cell suspensions were prepared from the hematopoietic organs of sacrificed 

mice and stained with different lineage specific markers including Gr-1 and Mac-1 for the 

myeloid lineage, B220 for B-cells, Ter-119 for erythroid cells, Sca-1 and c-Kit for stem cells 

and CD4 and CD8 for T-cells. 

The leukemic cells of the mice transplanted with IgH-CALM/AF10 transgenic bone marrow 

cells transduced with the Meis1 expressing retrovirus, showed expression of myeloid the 

markers Gr-1 and Mac-1 in bone marrow, spleen and peripheral blood (BM: 50% (±32%); 

spleen: 40% (±27%); PB: 46% (±33%)) (Fig. 4.7a; Fig. 4.7c; Fig. 4.7e; Fig. 4.7g). In addition 

to this, the B220 cell surface marker in leukemic bone marrow cells was consistently 

observed on about half of the cells (54% (±25%)) (Fig. 4.7c; Fig. 4.7g). The leukemia was 

also characterized by the co-expression of myeloid and lymphoid markers 

(Gr1+Mac1+/B220+) which is a typical feature of CALM/AF10-associated leukemias (Fig. 

4.7a; Fig. 4.7c; Fig. 4.7e; Fig. 4.7i). The myeloid-lymphoid double positive population was 

observed in all the leukemic mice with an average of 41% (±21%) in bone marrow, 37% 
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(±26%) in the peripheral blood and 39% (±24%) in the spleen. Interestingly, these mice had a 

very low percentage of Sca-1/c-Kit positive cells (2% (±2%)) and were negative for the T-

cell lineage markers CD4/CD8 (Fig. 4.7b; Fig. 4.7d; Fig. 4.7f).  

In contrast, on the leukemic cells of the mice transplanted with wildtype bone marrow cells 

transduced with Meis1 expressing retrovirus, the lymphoid-myeloid Gr1+Mac1+/B220+ co-

expression was absent or very low (BM: 5% (±5%); spleen: 7% (±7%); PB: 6% (±5%)) (Fig. 

4.7a; Fig. 4.7c; Fig. 4.7e; Fig. 4.7j). Cells obtained from all organs from the Meis1 

transplanted mice were highly positive for Gr-1/Mac-1 co-staining (BM: 68% (±20%); 

spleen: 36% (±27%); PB: 45% (±23%)) (Fig. 4.7a; Fig. 4.7c; Fig. 4.7e; Fig. 4.7h). The 

leukemic cells from these mice were also negative for the T-cell markers CD4/CD8 and the 

stem cell markers Sca-1/c-Kit (Fig. 4.7b; Fig. 4.7d; Fig. 4.7f). 
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Fig. 4.7a   Graphical representation of the percentage of cells staining positive for various markers in the 

peripheral blood of IgHC/A+Meis1 and FVBwt+Meis1 mice: The cells from the peripheral blood of 

IgHC/A+Meis1 mice showed a marked increase in Gr1/Mac1+B220 myeloid-lymphoid double positive cells 

(37% (±26%)) as compared to FVBwt+Meis1 mice (6% (±5%)). The percentage of Gr1+Mac1 population is 

almost same in the peripheral blood of IgHC/A+Meis1 (46% (±33%)) and FVBwt+Meis1 (45% (±23%)) 

leukemic mice. IgHC/A+Meis1: Mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells 

transduced with Meis1 expressing retrovirus. FVBwt+Meis1: Mice transplanted with FVB wildtype bone 

marrow cells transduced with Meis1 expressing retrovirus. 
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Fig. 4.7b   Graphical representation of Sca-1/cKit staining in peripheral blood of IgHC/A+Meis1 and 

FVBwt+Meis1 mice: The Sca1+cKit double positive population is present at a very low percentage in the 

peripheral blood of IgHC/A+Meis1 2% (±2%) while it is absent in FVBwt+Meis1. IgHC/A+Meis1: Mice 

transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with the Meis1 expressing 

retrovirus. FVBwt+Meis1: Mice transplanted with FVB wildtype bone marrow cells transduced with the Meis1 

expressing retrovirus. 
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Fig. 4.7c   Graphical representation of myeloid-lymphoid double positive population in the bone marrow 

of IgHC/A+Meis1 and FVBwt+Meis1 mice: Bone marrow cells from the IgHC/A+Meis1 mice showed a 

marked elevation of Gr1/Mac1+B220 myeloid-lymphoid co-staining with 41% (±21%) compared to cells from 

FVBwt+Meis1 mice (5% (±5%)). The % of Gr1+Mac1 population is higher in the bone marrow of 

FVBwt+Meis1 (68% (±20%)) than IgHC/A+Meis1 (50% (±32%)) leukemic mice. IgHC/A+Meis1: Mice 

transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with the Meis1 expressing 
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retrovirus. FVBwt+Meis1: Mice transplanted with FVB wildtype bone marrow cells transduced with the Meis1 

expressing retrovirus. 
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Fig. 4.7d   Graphical representation of Sca-1/cKit staining in the bone marrow of IgHC/A+Meis1 and 

FVBwt+Meis1 mice: The Sca1+cKit double positive population is present in the bone marrow of 

IgHCA+Meis1 4% (±4%) while it is absent in FVBwt+Meis1. IgHC/A+Meis1: Mice transplanted with IgH-

CALM/AF10 transgenic bone marrow cells transduced with the Meis1 expressing retrovirus. FVBwt+Meis1: 

Mice transplanted with FVB wildtype bone marrow cells transduced with the Meis1 expressing retrovirus. 
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Fig. 4.7e   Graphical representation of myeloid-lymphoid double positive population in the spleens of 

IgHC/A+Meis1 and FVBwt+Meis1 mice: Speen cells from the IgHC/A+Meis1 mice showed a significantly 

higher Gr1/Mac1+B220 double positive population (39% (±24%)) than spleen cells from FVBwt+Meis1 mice 
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(7% (±7%)). The proportion of Gr1+Mac1 postive cells is almost same in the spleen of IgHC/A+Meis1 (40% 

(±27%)) and FVBwt+Meis1 (36% (±27%)) leukemic mice. IgHC/A+Meis1: Mice transplanted with IgH-

CALM/AF10 transgenic bone marrow cells transduced with the Meis1 expressing retrovirus. FVBwt+Meis1: 

Mice transplanted with FVB wildtype bone marrow cells transduced with the Meis1 expressing retrovirus. 
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Fig. 4.7f   Graphical representation of Sca-1/cKit staining in the spleen of IgHC/A+Meis1 and 

FVBwt+Meis1 mice: The Sca1+cKit double positive population in cells from the spleen of IgHC/A+Meis1 

mice is slightly higher (5% (±5%)) than in the spleen cells from FVBwt+Meis1 mice (2% (±1%)). 

IgHC/A+Meis1: Mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with the 

Meis1 expressing retrovirus. FVBwt+Meis1: Mice transplanted with FVB wildtype bone marrow cells 

transduced with the Meis1 expressing retrovirus. 

  

Fig. 4.7g   Scatter plot of flow cytometric analyses of BM, PB and spleen cells from IgHC/A+Meis1 

leukemic mouse 5602A#2: The majority of cells from the leukemic bone marrow (BM), peripheral blood (PB) 
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and spleen stained positive for myeloid markers Gr-1 and Mac-1, and also for lymphoid marker B220. The 

staining percentages are indicated in the quadrants of the plots. IgHC/A+Meis1: Mice transplanted with IgH-

CALM/AF10 transgenic bone marrow cells transduced with the Meis1 expressing retrovirus.  

  

Fig. 4.7h   Scatter plot of flow cytometric analyses of BM, PB and spleen cells from FVBwt+Meis1 

leukemic mouse 5787B#130: The majority of cells from the leukemic bone marrow (BM), peripheral blood 

(PB) and spleen stained highly positive for myeloid markers Gr-1 and Mac-1, but less so for the lymphoid 

marker B220. The staining percentages are indicated in the quadrants of the plots. FVBwt+Meis1: Mice 

transplanted with FVB wildtype bone marrow cells transduced with the Meis1 expressing retrovirus. 

   

Fig. 4.7i   Co-staining of myeloid and lymphoid markers (Gr-1/Mac-1+B220) on cells from IgHCA+Meis1 

leukemic mice: Scatter plot of BM, PB and spleen cells showing a Gr-1/Mac-1+B220 double positive cell 
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population which is typical of CALM/AF10-associated leukemias. The staining percentages are indicated in the 

quadrants of the plots. IgHC/A+Meis1: Mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells 

transduced with the Meis1 expressing retrovirus.  

   

Fig. 4.7j   Co-staining of myeloid and lymphoid markers (Gr-1/Mac-1+B220) for FVBwt+Meis1 leukemic 

mice: Unlike IgHCA+Meis1 leukemic mice, FVBwt+Meis1 mice showed a very small myeloid-lymphoid 

double positive population in the bone marrow, peripheral blood and spleen. The staining percentages are 

indicated in the quadrants of the plots. FVBwt+Meis1: Mice transplanted with FVB wildtype bone marrow cells 

transduced with the Meis1 expressing retrovirus. 

 

4.8   Transplantation of secondary and tertiary recipient mice 

According to Bethesda proposals, leukemia can be distinguished from other, less severe 

hematopoietic disorders by the fact that leukemia can be transplanted into secondary 

recipients and is able to lead to leukemia in these secondary recipients (Kogan et al., 2002). 

Therefore, to test whether the primary leukemic cells could repopulate and outnumber the 

normal hematopoietic compartment, secondary transplantations were performed. We injected 

the leukemic cells from the bone marrow of primary leukemic mice into the tail vein of 

secondary recipient mice. The secondary recipient mice were either lethally irradiated and 

then injected with primary leukemic cells along with mock cells, or they were directly 

injected with primary leukemic cells without irradiation. To further examine the 
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aggressiveness of the leukemia, tertiary transplantations were also performed. In tertiary 

transplantation the bone marrow cells from sacrificed secondary mice were injected directly 

into the tail vein of tertiary recipient mice.  

Some of the secondary recipient mice were injected with 1×106 primary leukemic cells 

without irradiation. The rest of the mice were myeloablated using 800 cGy total body 

irradiation and injected with 1×106 primary leukemic cells and 2×106 mock cells. All the 

tertiary recipient mice were injected with 1×106 of secondary leukemic cells without 

irradiation.  

4.8.1   Secondary and tertiary transplantations of primary leukemic mice 

transplanted with IgH-CALM/AF10 transgenic bone marrow cells 

transduced with the Meis1 expressing retrovirus (IgHC/A+Meis1) 

All the IgHC/A+Meis1 secondary mice (n=4) developed acute myeloid leukemia and died 

within a range of 21 to 28 days (median latency = 25 days, Table A.13 (Appendix)). The 

disease phenotype was similar to that seen in the primary leukemic mice. All the 

IgHC/A+Meis1 tertiary transplanted mice (n=4) also developed an aggressive acute myeloid 

leukemia by 15 days post transplantation (Table A.14 (Appendix)). The tertiary leukemic 

mice had the same leukemia phenotype as the primary and secondary transplanted mice (Fig. 

4.4). 

4.8.2   Secondary and tertiary transplantations of primary leukemic and 

non-leukemic mice transplanted with FVB wildtype bone marrow cells 

transduced with the Meis1 expressing retrovirus (FVBwt+Meis1) 

Cells from FVBwt+Meis1 primary leukemic as well as non-leukemic mice were injected into 

secondary recipients. All the secondary mice injected with primary leukemic cells (n=4) 

developed acute myeloid leukemia and died within a latency period of 28 to 63 days post 

transplantation (median latency = 44 days, Table A.15 (Appendix)). The disease phenotype 

was similar the one seen in the primary leukemic mice. However, as expected, all the 

secondary recipient mice injected with cells from primary non-leukemic mice (n=2) remained 

healthy and did not develop leukemia even up to 122 days post transplantation. These mice 

are still under observation (Table A.15 (Appendix)). The FVBwt+Meis1 tertiary transplanted 
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mice (n=4) from secondary leukemic mice developed an aggressive acute myeloid leukemia 

and died within a range of 21 to 28 days post transplantation (median latency = 25 days, 

Table A.16 (Appendix)). The tertiary leukemic mice had the same leukemia phenotype as the 

primary and secondary transplanted mice. 

All the secondary and tertiary mice showed the same disease as the primary leukemic mice 

(Table 4.8.2a; Table 4.8.2b). Therefore, the disease was retransplantable and fulfilled to 

criteria for leukemia. 

Gene No. of transplanted mice Average latency period (days) 

IgHC/A+Meis1 4 25 

FVBwt+Meis1 4 (leukemic mice) 44 

FVBwt+Meis1 2 (non-leukemic mice) 

Remained healthy up to an 

observation period of 122 days  

 

Table 4.8.2a   Summary of IgHC/A+Meis1 and FVBwt+Meis1 secondary transplanted mice: 

IgHC/A+Meis1: Mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with the 

Meis1 expressing retrovirus; FVBwt+Meis1: Mice transplanted with wildtype bone marrow cells transduced 

with the Meis1 expressing retrovirus. 

 

Gene No. of transplanted mice Average latency period (days) 

IgHC/A+Meis1 4 15 

FVBwt+Meis1 4 25 

 

Table 4.8.2b   Summary of IgHC/A+Meis1 and FVBwt+Meis1 tertiary transplanted mice: IgHC/A+Meis1: 

Mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with the Meis1 expressing 

retrovirus; FVBwt+Meis1: Mice transplanted with wildtype bone marrow cells transduced with the Meis1 

expressing retrovirus. 
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4.9   DJH rearrangement PCR from the leukemic bulk 

 

Some of the leukemic cells of the primary leukemic mice transplanted with IgH-

CALM/AF10 transgenic bone marrow cells transduced with the Meis1 expressing retrovirus 

(IgHC/A+Meis1) stained positive for both the B-cell marker B220 and myeloid markers 

(Gr1+Mac1+/B220+), which is a characteristic feature of CALM/AF10-associated leukemia 

(Deshpande et al., 2006). Therefore, we thought that these leukemic cells might have the 

properties of B cells such as IgH gene rearrangement. 

 

Genomic rearrangements of the diversity (D) and joining (J) segments in the immunoglobulin 

heavy chain locus are markers of lymphoid cells. Our multiplex PCR strategy detects the 

most common DJH rearrangements. In this PCR, wild type mouse spleen cells served as the 

positive control with the rearranged bands DJH3 and DJH4. The 32D murine myeloid cell line 

was used as the negative control. There were bands indicating a rearrangment in the 

multiplex PCR when DNA from the 32D murine myeloid cells was used as template. In this 

PCR, only the 2.1 kb germline band was visible. 

 

The DNA obtained from the leukemic cells of the IgHC/A+Meis1 mice was positive for 

clonal DJH rearrangements. Since the multiplex PCR was performed from unsorted bulk bone 

marrow, in addition to a major bright band, which is indicative of the clonal rearrangement, 

other faint bands were also visible indicating that normal B cells contaminated the leukemic 

cells. Moreover, different leukemias had different rearrangement patterns indicating the 

different clonalities of the different leukemias. DNA from a secondary leukema showed a 

similar rearrangement pattern as the primary leukemia it was derived from (Fig. 4.9a). 
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Fig. 4.9a   Analysis of IgH DJ rearrangements in the bone marrow from IgHC/A+Meis1 leukemic mice: 

PCR analysis of genomic DNA extracted from unsorted bone marrow of leukemic IgHC/A+Meis1 mice showed 

different bands. The PCR template in the different PCR reactions is given in the following description. (a) Lane 

1: DNA marker, lane 2: DNA from IgHC/A+Meis1 mouse 1 with band of 0.7 kb corresponding to a DJH3 

rearrangement; lane 3: DNA from IgHC/A+Meis1 mouse 2 with bands of 0.7 kb and 0.2 kb corresponding to a 

DJH3 or DJH4 rearrangement, respectively; lane 4: DNA from IgHC/A+Meis1 mouse 3 with bands of 1.1 kb and 

0.2 kb corresponding to a DJH2 or DJH4 rearrangement, respectively; lane 5: water control. (b) Lane 1: DNA 

marker; lane 2: DNA from a IgHC/A+Meis1 secondary mouse with band of 0.7 kb corresponding to a DJH3 

rearrangement (This secondary mouse was transplanted from the primary leukemic mouse 1). (c) Lane 1: DNA 

marker; lane 2: DNA from wild type normal mouse spleen as positive control with bands of 0.7 kb and 0.2 kb 

corresponding to a DJH3 or DJH4 rearrangement respectively. (d) Lane 1: DNA marker; lane 2: DNA from the 

32D murine myeloid cell line as negative control with the germline (GL) band of 2.1 kb and without any 

rearranged bands. 

 

Mice transplanted with FVB wildtype bone marrow cells transduced with the Meis1 

expressing retrovirus (FVBwt+Meis1) mice were also positive for DJH rearrangements. 

However, the pattern of rearrangement was different from IgHC/A+Meis1 leukemic mice. 

Unlike IgHC/A+Meis1 mice, all the FVBwt+Meis1 mice had similar pattern of bands after 

PCR analyses. Three major rearrangements (DJH2, DJH3 and DJH4) were clearly visible in all 

the mice and were almost similar to the wild type murine spleen. The secondary mouse 

showed the similar rearrangement as the primary mouse (Fig. 4.9b). This polyclonal 

rearrangement pattern seen after our multiplex PCR is most likely due to the contamination of 

the DNA from mature B cells. The germline amplification product, which should be visible 



R e s u l t s 
 

 117

from the DNA of the leukemia, was not visible probably due the fact that this 2.1 kb fragment 

was not amplified as efficiently as the smaller fragments, which are derived from rearranged 

loci. 

 

  

Fig. 4.9b   Analysis of IgH DJ rearrangement in the bone marrow of FVBwt+Meis1 mice: PCR analysis of 

genomic DNA extracted from bone marrow of all FVBwt+Meis1 mice showed a similar pattern of rearranged 

bands, which is probably due to the presence of DNA from normal B cells with DJH rearrangements. (a) Lane 1: 

water control, lane 2: DNA from FVBwt+Meis1 mouse 1 with bands of 1.1 kb, 0.7 kb and 0.2 kb corresponding 

to a DJH2, DJH3, or DJH4 rearrangement, respectively lane 3: DNA from FVBwt+Meis1 mouse 2 with bands of 

0.7 kb and 0.2 kb corresponding to a DJH3 or DJH4 rearrangement respectively; lane 4: DNA from 

FVBwt+Meis1 mouse 3 with bands of 1.1 kb and 0.7 kb corresponding to a DJH2 or DJH3 rearrangement 

respectively; lane 5: DNA from FVBwt+Meis1 mouse 4 with bands of 1.1 kb, 0.7 kb and 0.2 kb corresponding 

to a DJH2, DJH3 or DJH4 rearrangement, respectively; lane 6: DNA marker. (b) Lane 1: DNA marker; lane 2: 

DNA from FVBwt+Meis1 secondary mouse with bands of 0.7 kb and 0.2 kb corresponding to a DJH3 or DJH4 

rearrangement, respectively (This secondary mouse was transplanted from the primary leukemic mouse 2). 

Normal mouse spleen DNA was taken as positive control (Fig. 4.8.a (c)) and DNA from the 32D murine 

myeloid cell line was taken as the negative control (Fig. 4.8.a (d)). 
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5   Discussion 

Chromosomal translocations are frequently found in human leukemias. Some of these 

translocations result in the formation of fusion genes. The fusion proteins play an important 

role in leukemogenesis. To dissect the various factors necessary for the development of 

leukemia, we concentrated on the CALM/AF10 fusion protein as a model for our study 

(Dreyling et al., 1996). The CALM/AF10 results from the recurring t(10;11)(p12;q14) 

translocation which is rare and is associated with a poor prognosis (Bohlander et al., 2000). 

The t(10;11)(p12;q14) translocation has been observed in acute leukemias of several lineages 

including myeloid, lymphoid, megakaryocytic, eosinophilic and undifferentiated leukemias. 

It has also been described in malignant lymphomas.  

Several studies on patients bearing the t(10;11)(p12;q14) translocation revealed this to be the 

only chromosomal abnormality. This strongly suggests CALM/AF10 to be the key event 

leading to malignant transformation of the hematopoietic cells (Bohlander et al., 2000). This 

is in line with a murine retroviral transduction and bone marrow transplantation model of 

CALM/AF10 (Deshpande et al., 2006), in which the expression of CALM/AF10 after 

retroviral transduction of bone marrow cells  results in the development of an aggressive 

acute leukemia with relatively short latency period of 110 days. This suggests that only a few 

additional mutations might be required for CALM/AF10-mediated leukemogenesis. Gilliland 

and colleagues suggested that at least two genetic events are required for leukemic 

transformation – increased cellular proliferation (Class I mutations) and block in 

differentiation (Class II mutations) (Kelly and Gilliland, 2002). However, the concept of just 

two classes of mutations does not reflect reality accurately. It is also often difficult to classify 

a given mutation into any one of the two classes.  

This is also seen in recent studies on the molecular pathways involved in leukemogenesis. 

The development of AML is a multistep process and requires more than the two classes of 

mutations described above. Recently two approaches were used to decipher more genetic 

events involved in leukemogenesis. The first approach involves the karyotyping and DNA 

hybridization onto oligonucleotide arrays like SNP-arrays and array-CGH. The second 

approach involves the identification of mutations using classical Sanger sequencing or more 

advanced next generation sequencing (Murati et al., 2012). Thus, several studies using these 

techniques have suggested that leukemogenic alterations affect as many as five different 
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classes of genes. The five different classes of proteins encoded by these genes include 

signaling pathway components, transcription factors, epigenetic regulators, tumor suppressors 

and RNA maturation or DNA repair related factors (Fig. 5a) (Murati et al., 2012; Thiede, 

2012). 

 

 

 

Fig. 5a   Schematic representation of five classes of leukemogenic genes. (Adapted from Murati et al., 2012 

and Thiede, 2012) 

 

Thus, the long latency period and incomplete penetrance observed in CALM/AF10 transgenic 

mice under the control of Vav promoter can be explained by the requirement for additional 

genetic events affecting genes in the five classes described above (Caudell et al., 2007). The 

requirement for additional mutations might also explain the long latency (median 187 days) 

observed in our mouse model. 

As described earlier, IgHCALM/AF10 transgenic mice did not develop leukemia possibly 

due to the late expression of CALM/AF10 fusion gene in mature B-cells, which might not be 
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susceptible to CALM/AF10 mediated transformation anymore. A finding that supports this 

view is the fact that CALM/AF10 primarily targets lineage-uncommitted progenitors and that 

CALM/AF10 patients develop hematologic malignancy of multi-lineages. This implies that 

CALM/AF10-driven leukemias arise from stem cells or progenitors with multi-lineage 

potential (Kobayashi et al., 1997). The upregulation of the Hoxa cluster including Meis1 is a 

common phenomenon in CALM/AF10-positive leukemias (Mulaw et al., 2012; Dik et al., 

2005; Caudell et al., 2007). Moreover, Meis1 has been shown to collaborate with several Hox 

genes and the NUP98-HOXD13 fusion gene to accelerate leukemia development 

(Thorsteinsdottir et al., 2001; Pineault et al., 2003). 

Therefore, we sought to evaluate the role of Meis1 as a collaborating factor of CALM/AF10. 

To achieve this, lethally irradiated recipient mice were transplanted with IgH-CALM/AF10 

transgenic bone marrow cells transduced with a Meis1 expressing retrovirus. In these mice 

CALM/AF10 is expressed late in the mature B-cell compartment. Mice transplanted with IgH-

CALM/AF10 transgenic bone marrow cells transduced with the Meis1 expressing retrovirus 

showed rapid engraftment with GFP positive cells at 8 weeks post transplantation. All the 

mice succumbed to an aggressive acute leukemia with a median latency of 187 days and with 

100% penetrance. This relatively long latency indicates that additional mutations were 

required for the development of the leukemia. The massive infiltration of leukemic blasts in 

non-hematopoietic organs of leukemic mice transplanted with IgH-CALM/AF10 transgenic 

bone marrow cells transduced with the Meis1 expressing retrovirus underscored the 

aggressive nature of the leukemia. The acute leukemias that developed in these mice were 

predominantly myeloid leukemias. The myeloid nature of the leukemia was confirmed by 

immunohistology and staining for myeloid markers.  The leukemic cells also stained positive 

for the B-cell marker B220 in addition to myeloid markers. Indeed, a biphenotypic population 

of myeloid and lymphoid markers (Gr1+Mac1+/B220+) was present, which is a typical 

characteristic feature of CALM/AF10-driven leukemias (Deshpande et al., 2006). These 

leukemic mice had clonal DJH rearrangements. This hints at the lymphoid identity of these 

cells.  

Altogether, the myeloid nature of the leukemia, the positive staining for B-cell marker B220, 

the presence of clonal DJH rearrangements in the unsorted leukemic bone marrow and the 

presence of a myeloid-lymphoid biphenotypic population suggest that the target of 

transformation of CALM/AF10 might have be an early progenitor capable of both lymphoid 
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as well as myeloid differentiation. Another possibility could be that the leukemia is 

propagated by lymphoid progenitor (positive for B220+ with IgH DJ rearrangement) which is 

impaired in its lymphoid development by the action of CALM/AF10 and which then enters a 

default myeloid differentiation program. In our model the IgH promoter driven CALM/AF10 

expression is late in the B-cell compartment. Therefore, Meis1 seems to play an important 

role in leukemogenesis by still being able to initiate transformation of rather differentiated 

cells with the help of CALM/AF10. 

The endogenous expression of Meis1 and Hox genes is highest in the early hematopoietic 

compartment and is downregulated with differentiation (Pineault et al., 2002). However, in 

our model the expression of Meis1 is driven by LTR retroviral promoter. Therefore, Meis1 is 

expressed throughout the hematopoietic compartment and the expression is stronger than the 

expression of the endogenous Meis1. It could be possible that expression of Meis1 (a 

transcription factor) in the early hematopoietic compartment is causing increased 

proliferation and thereby more replication resulting in occurrence of more mutations. In this 

way, Meis1 promotes the accumulation of additional mutations. The acquisition of additional 

mutations and expression of CALM/AF10 in the B cell compartment is thus creating a 

differentiation block in these cells. In this scenario the default myeloid differentiation 

program is initiated in these cells leading to myeloid leukemias. In addition to this, 

CALM/AF10 expression is known to cause genomic instability (Lin et al., 2006). Thus, both 

CALM/AF10 and Meis1 expression might promote the acquisition of additional mutation, 

which are required for leukemia development. This hypothesis explains the relative long 

latency of leukemia development in our model.  

To gain a better understanding of the leukemia models developed here, it will be important to 

perform transcriptional profiling of both IgH-CALM/AF10 transgenic mice as well as of 

leukemic mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced 

with the Meis1 expressing retrovirus to determine the downstream targets and the genes 

which are differentially regulated. Finally, sequencing the genome or exomes of these 

leukemias should directly reveal additional mutations that are driving the disease.  

Surprisingly, mice transplanted with FVB wildtype bone marrow cells transduced with the 

Meis1 expressing retrovirus also died at a median latency of 210 days. Among the sacrificed 

mice only 29% were diagnosed with acute myeloid leukemia. This observation was very 
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surprising to us, since it is reported that the overexpression of Meis1 alone has no 

transforming activity (Kroon et al., 1998; Thorsteinsdottir et al., 2001). It is crucial to note 

that the most important difference between our model and the ones reported in literature is 

the mouse strain. The bone marrow transplantation experiments with Meis1 alone were 

conducted in the C57BL/6 background but we used FVB strain. In a recent report, the 

selection of the mouse strains was shown to have a great effect on the result of bone marrow 

transplantation experiments (Otsuru et al., 2010). The FVB mouse strain is widely used for 

generating transgenic animals because of their high reproductive performance and large 

prominent pronuclei which facilitate micro injection of DNA (Taketo et al., 1991). A detailed 

study on spontaneous lesions in aging FVB mice indicated that the incidence of tumors in 

these mice is higher than in other mouse strains. Especially, lung cancer is observed at an 

increased frequency in FVB mice (Mahler et al., 1996). Another study has reported that 

keratinocytes from FVB mice are more susceptible to malignant progression than other 

strains suggesting an increased sensitivity of this strain (Woodworth et al., 2004). The 

analysis of the sensitivity to chemical induction of squamous cell carcinomas in the skin 

showed that FVB mice are more likely to develop squamous cell carcinomas than other 

mouse strains (Hennings et al., 1993). 

From these observations a hypothesis could be drawn based on the mouse genetic 

background, retroviral insertion event and accumulation of rare events to explain the 

occurrence of leukemia in mice transplanted with FVB wildtype bone marrow cells 

transduced with the Meis1 expressing retrovirus (Fig. 5b). The “rare events” could be the 

activating oncogenes or inactivating tumor suppressor genes. At this point it is important to 

note that FVB wild type mice retrovirally transduced with the empty MIY vector remained 

healthy and were followed up to an observation period of 224 days post transplantation. In 

addition to this, mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells 

transduced with the empty MIG retrovirus remained healthy and were kept under observation 

for 392 days post transplantation. 
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Fig 5b   Diagram of the proposed differences in the genetic background of C57BL/6 and FVB mice: The 

base line level of the FVB strain is closer to the threshold level required for leukemic transformation than in the 

C57/BL6 strain. Therefore, in C57BL/6 mice Meis1 retrovirally transduced bone marrow cells could not 

accumulate enough additional “rare events” to cross the threshold to leukemia. In contrast to this, the injection 

of FVB bone marrow cells overexpressing Meis1 leads to consistent leukemia development because the 

threshold is reached much faster than in the the C57/BL6 strain.  

 

Therefore, these studies support the fact that the difference in mouse strain should be taken 

into consideration.  

 In summary, we could show in a combined transgenic bone marrow transplantation mouse 

model that Meis1 collaborates with CALM/AF10 to induce an acute myeloid leukemia. The 

cells from the primary mice were transplantable into secondary and tertiary recipients 

confirming their leukemic nature. This collaboration between Meis1 and CALM/AF10 was 

not seen in colony forming cell assays. In CFCs CALM/AF10 together with Meis1 failed to 

induce the transformation of hematopoietic progenitors. This difference between the two 

assay systems could either be due to the lack of required growth factors and conditions 

necessary for the proliferation of the leukemia initiating cell or lack of additional mutational 
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events required for transformation in the CFC setting. A detailed analyses of the leukemia 

generated in this model might uncover additional genetic events required for the development 

of CALM/AF10-induced leukemia. 
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6   Summary 

Chromosomal translocations are common in human leukemias. Detailed studies of 

chromosomal translocation have been useful in understanding the pathogenesis and 

identifying therapeutic targets in hematologic malignancies. Some translocations result in the 

formation of fusion genes. These fusion proteins play an important role in leukemogenesis. 

The t(10;11)(p12;q14) translocation is rare but recurring and results in the formation of the 

CALM/AF10 fusion protein. Patients with this translocation have a bad prognosis. 

To understand how CALM/AF10 leads to leukemia, various mouse models have been 

established. In a murine bone marrow retroviral transduction and transplantation model 

Deshpande et al. (2006) showed that mice expressing CALM/AF10 in their bone marrow 

cells developed an acute myeloid leukemia with a penetrance of 100% and a short latency 

period of 110 days. Using a transgenic mouse model, in which CALM/AF10 was under the 

control of Vav promoter, Peter Aplan and colleagues demonstrated that only 40% to 50% of 

mice developed leukemia after a long latency of 10 to 12 months. Two classical transgenic 

CALM/AF10 models were established in our group using the immunoglobulin heavy chain 

enhancer/promoter (IgH-CALM/AF10) and proximal murine LcK promoter (pLck-

CALM/AF10) to drive CALM/AF10 expression. These transgenic mice did not show any 

leukemic phenotype even after an observation period of 15 months. Taken together these 

studies strongly suggest that additional collaborating factors are required for the CALM/AF10 

fusion gene to induce leukemia.  

Meis1, a Hox cofactor, is known to collaborate with several Hox genes and Hox fusion genes 

such as HOXA9 and NUP98-HOXD13. In these studies, Meis1 played a critical role in 

accelerating the development of leukemia. It could also be shown that MEIS1 is highly 

expressed in CALM/AF10 positive human leukemia cells. Therefore, I sought to determine 

whether the homeobox gene Meis1 collaborates with CALM/AF10 in inducing leukemia.  

In order to achieve this goal, lethally irradiated non-transgenic mice were transplanted with 

IgH-CALM/AF10 transgenic bone marrow cells transduced with a Meis1 expressing 

retrovirus. The transplanted mice developed an acute leukemia with a penetrance of 100% 

and a median latency period of 187 days. The leukemia showed predominantly myeloid 

features such as the presence of myeloid marker positive cells. The myeloid blast cells 
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infiltrated in multiple hematopoietic as well as non-hematopoietic organs. The leukemic cells 

were also positive for the B-cell marker B220. Cells that were positive for both lymphoid and 

myeloid markers, a characteristic feature of CALM/AF10-induced leukemia, were also 

detected in all the mice. The leukemic cells had clonal DJH rearrangements. Overall, these 

data suggest that the transformed cell might be an early progenitor cell capable of lymphoid 

as well as myeloid differentiation or that the leukemia was initiated by a B220
+
 IgH DJ 

rearranged cell with blocked lymphoid differentiation, which started a default myeloid 

differentiation program. By performing serial secondary and tertiary transplantations the 

leukemic nature of the disease could be confirmed. Colony forming cell assays showed that 

CALM/AF10 in collaboration with Meis1 failed to induce the transformation of 

hematopoietic progenitors in vitro. This could either be due to the lack of required growth 

factors and conditions necessary for the proliferation of the transformable cell or lack of 

additional events essential for progression towards leukemia development.  

In conclusion, I have demonstrated that Meis1 collaborates with CALM/AF10 in inducing 

acute myeloid leukemia. Additional, detailed analyses of the leukemia initiating cell in these 

models would help to better understand the pathogenesis of CALM/AF10-induced leukemia. 
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7   Zusammenfassung 

Translokationen treten bei humanen Leukämien sehr häufig auf. Die Analyse von 

Chromosomentranslokationen hat sowohl zum Verständnis der Pathogenese von Leukämien 

als auch zur Identifizierung von therapeutischen Zielen geführt. Manche Translokationen 

führen zur Bildung von Fusionsgenen. Diese Fusionsproteine spielen in der Leukämogenese 

eine wichtige Rolle. Das Fusionsprotein CALM/AF10 entsteht durch die seltene, aber 

wiederholt auftretende Translokation t(10;11)(p12;q14). Patienten mit dieser Translokation 

haben eine schlechte Prognose. 

Um zu verstehen, wie es von der Expression des Proteins CALM/AF10 zum Ausbruch der 

Leukämie kommt, wurden verschiedene Mausmodelle etabliert. Deshpande et al. (2006) 

konnten in einem Mausknochenmarktransplantationsmodell nach retroviraler Transduktion  

zeigen, dass die Expression von CALM/AF10 zu einer akuten myeloischen Leukämie mit 

einer Penetranz von 100% und einer kurzen Latenzzeit von 110 Tagen führt. In einem 

transgenen Mausmodell, bei dem CALM/aF10 unter der Kontrolle des Vav-Promotors 

exprimiert wurde, wurden von Peter Aplan und Kollegen in lediglich 40 - 50% der Mäuse 

nach einer langen Latenzzeit von 10 bis 12 Monaten Leukämien beobachten. In unserer 

Gruppe wurden zwei klassische transgene CALM/AF10-Mausmodelle entwickelt, bei denen 

CALM/AF10 vom Immunglobulin Heavy-Chain Enhancer Promotor (IgH-CALM/AF10) 

bzw. vom proximalen murinen Lck-Promoter (pLck-CALM/AF10) gesteuert wurde. Diese 

transgenen Mäuse zeigten auch nach 15 monatiger Beobachtungszeit noch immer keinen 

leukämischen Phänotyp. Zusammenfassend zeigen diese Studien, daß neben dem 

Fusionsgene CALM/AF10 weitere Faktoren zur Induktion von Leukämie notwendig sind.  

Von Meis1, einem Hox–Kofaktor, ist bekannt, dass es mit mit einigen Hox Genen und auch 

Hox Fusionsgenen, wie HOXA9 und NUP-HOXD13, kollaboriert. In diesen Studien spielte 

Meis1 eine wichtige Rolle in der Beschleunigtung der Leukämieentwicklung. Ebenfalls 

konnte gezeigt werden, daß MEIS1 in CALM/AF10 positiven humanen Leukämiezellen sehr 

hoch exprimiert wird. Aufgrund dieser Beobachtungen beschloss ich nachzuweisen, ob das 

Homeoboxgen Meis1 mit CALM/AF10 bei der Leukämieentwicklung kollaboriert. 

Um dieses Ziel zu erreichen, wurden letal bestrahlte, nicht transgene Mäuse mit IgH-

CALM/AF10 transgenen Knochenmarkszellen transplantiert, die mit Meis1 exprimierendem 
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Retrovirus transduziert wurden. Die transplantierten Mäuse entwickelten eine akute 

Leukämie mit einer Penetranz von 100% und einer mittleren Latenzzeit von 187 Tagen. Die 

Leukämie zeigte vorwiegend myeloische Eigenschaften mit myeloischen 

Oberflächenmarkern. Die Blasten infiltrierten sowohl hämatopoetische als auch in nicht 

hämatopoetische Organe. Die Leukämiezellen waren ebenfalls positiv für den B-Zellmarker 

B220. Auch Zellen, die sowohl für lymphoide als auch myeloische Marker positiv waren – 

dies ist ein charakteristisches Zeichen für CALM/AF10 induzierte Leukämie – wurden in 

allen Mäusen gefunden. Die Leukämiezellen hatten klonale DJH Umlagerungen. Insgesamt 

lassen diese Daten den Schluss zu, dass die transformierte Zelle eine frühe Vorläuferzelle 

sein könnte, die sowohl zur lymphatischen als auch zur myeloischen Differenzierung fähig ist 

oder daß die Leukämie in einer  B220
+ 

IgH DJ rearrangierten Zelle mit blockierter 

lymphatischer Differenzierung entstanden ist, bei der das Standardprogramm der 

myeloischen Differenzierung abgerufen wurde. Durch Transplantation in sekundäre und 

tertiäre Rezipientenmäuse konnte bestätigt werden, dass es sich in der Tat um eine Leukämie 

handelte. Im Colony Forming Cell-Assay hingegen führte die Kollaboration von  

CALM/AF10 mit Meis1 nicht zur Transformation von hämatopoetischen Vorläuferzellen. 

Dies könnte zum einen daran liegen, dass notwendige Wachstumsfaktoren und 

Wachstumsbedingungen für die Proliferation der transformierbaren Zellen fehlten, oder, dass 

zusätzlichen genetische Ereignissen, die für die Leukämieentstehung essentiell sind, nicht 

vorhanden waren. 

Zusammenfassend konnte ich zeigen, daß Meis1 mit CALM/AF10 bei der Induktion der 

akuten myeloischen Leukämie kollaboriert. Zusätzliche, detailliert Analysen der Leukämie 

induzierenden Zellen in diesem Modell würden helfen, die Pathogenese der CALM/AF10 

induzierten Leukämie besser zu verstehen. 
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APPENDIX: Tables 

 

Serial no. Experiment no. Gene 

1 5576A#1 IgHC/A+Meis1 

2 5576A#2 IgHC/A+Meis1

3 5576A#3 IgHC/A+Meis1

4 5576B#1 IgHC/A+Meis1

5 5576B#2 IgHC/A+Meis1

6 5576C#1 IgHC/A+Meis1

7 5592A#1 IgHC/A+Meis1

8 5592A#2 IgHC/A+Meis1

9 5592B#2 IgHC/A+Meis1

10 5592C#1 IgHC/A+Meis1

11 5592C#2 IgHC/A+Meis1

12 5602A#1 IgHC/A+Meis1

13 5602A#2 IgHC/A+Meis1

14 5602A#3 IgHC/A+Meis1

15 5602B#1 IgHC/A+Meis1

16 5680A#1 IgHC/A+Meis1

17 5680A#2 IgHC/A+Meis1 

18 5680A#3 IgHC/A+Meis1 

19 5680B#1 IgHC/A+Meis1 

 

Table A.1   0.5×106 of transduced bone marrow cells and 0.5×106 of mock cells were injected into lethally 
irradiated syngeneic recipient mice (n = 19). Mock cells indicate the mock transduced GFP negative bone 
marrow cells (IgHC/A+Meis1: Mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells 
transduced with Meis1 expressing retrovirus) 
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Serial no. Experiment no. Gene 

1 5745C#65 FVBwt+Meis1 

2 5745C#66 FVBwt+Meis1 

3 5745D#56 FVBwt+Meis1 

4 5745D#57 FVBwt+Meis1 

5 5745D#58 FVBwt+Meis1 

6 5755A#96 FVBwt+Meis1 

7 5755A#97 FVBwt+Meis1 

8 5755A#98 FVBwt+Meis1 

9 5755A#99 FVBwt+Meis1 

10 5755A#101 FVBwt+Meis1 

11 5755B#107 FVBwt+Meis1 

12 5787A#127 FVBwt+Meis1 

13 5787A#128 FVBwt+Meis1 

14 5787A#129 FVBwt+Meis1 

15 5787B#130 FVBwt+Meis1 

16 5787B#131 FVBwt+Meis1 

17 5787B#132 FVBwt+Meis1 

 

Table A.2   0.5×106 of transduced bone marrow cells and 0.5×106 of mock cells were injected into lethally 
irradiated syngeneic recipient mice (n = 17). Mock cells indicate the mock transduced GFP negative bone 
marrow cells (FVBwt+Meis1: Mice transplanted with wildtype bone marrow cells transduced with Meis1 
expressing retrovirus) 
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Serial no. Experiment no. Gene 

1 5852A#187 IgHC/A+MIG 

2 5852B#189 IgHC/A+MIG

3 5856A#191 IgHC/A+MIG

4 5856A#192 IgHC/A+MIG

5 5856A#193 IgHC/A+MIG

6 5856A#194 IgHC/A+MIG

7 5856B#190 IgHC/A+MIG 

8 5856C#197 IgHC/A+MIG

 

Table A.3   0.5×106 of transduced bone marrow cells and 0.5×106 of mock cells were injected into lethally 
irradiated syngeneic recipient mice (n = 8). Mock cells indicate the mock transduced GFP negative bone 
marrow cells (IgHC/A+MIG: Mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells 
transduced with empty retrovirus EGFP)   

 

 

 

 

Serial no. Experiment no. Gene 
1 5926#303 FVBwt+MIY 
2 5939A#5 FVBwt+MIY 
3 5939A#6 FVBwt+MIY 
4 5939A#7 FVBwt+MIY 
5 5939A#8 FVBwt+MIY 
6 5939A#9 FVBwt+MIY 
7 5939B#10 FVBwt+MIY 
8 5939B#11 FVBwt+MIY 

 

Table A.4   0.5×106 of transduced bone marrow cells and 0.5×106 of mock cells were injected into lethally 
irradiated syngeneic recipient mice (n = 8). Mock cells indicate the mock transduced YFP negative bone 
marrow cells (FVBwt+MIY: Mice transplanted with FVB wildtype bone marrow cells transduced with 
empty retrovirus EYFP)   
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Experiment 
No. 

Engraftment 

Peripheral blood Bone marrow Spleen 

5576A#3 NA 96% 78% 

5592C#1 98% 99% 94% 

5576B#2 93% 98% 95% 

5602A#1 50% 53% 46% 

5592A#2 96% 97% 88% 

5592C#2 96% 98% 89% 

5576B#1 94% 96% 90% 

5576A#1 77% 97% 84% 

5592A#1 91% 97% 91% 

5602A#2 80% 98% 74% 

5680A#2 2% 77% 43% 

5680A#3 4% 1% 6% 

5602B#1 92% 95% 81% 

5680A#1 82% 91% 64% 

5602A#3 70% 95% 72% 
 

Table A.5   Percentage engraftment of peripheral blood, bone marrow and spleen of leukemic mice 
transplanted with IgH-CALM/AF10 transgenic bone marrow cells transduced with Meis1 expressing 
retrovirus: The sacrificed mice showed a median peripheral blood engraftment levels of 78% (±17%), bone 
marrow engraftment levels of 92% (±12%) and spleen engraftment levels of 79% (±27%) (NA = not available)   
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Mouse no. Retroviral construct 
Peripheral blood RBC 

per ml×109 
Peripheral blood WBC 

per ml×106 

5576A#3 IgHC/A+Meis1 NA NA 

5592C#1 IgHC/A+Meis1 1.5 440 

5576B#2 IgHC/A+Meis1 1.0 210 

5602A#1 IgHC/A+Meis1 2.1 40 

5592A#2 IgHC/A+Meis1 2.4 125 

5592C#2 IgHC/A+Meis1 2.0 53 

5576B#1 IgHC/A+Meis1 1.4 285 

5592A#1 IgHC/A+Meis1 1.1 27 

5602A#2 IgHC/A+Meis1 4.3 19 

5680A#2 IgHC/A+Meis1 2.0 21 

5602B#1 IgHC/A+Meis1 4.0 12 

5680A#1 IgHC/A+Meis1 1.0 12 

5602A#3 IgHC/A+Meis1 5.0 235 

 

Table A.6   RBC and WBC counts in the peripheral blood of leukemic mice transplanted with IgH-
CALM/AF10 transgenic bone marrow cells transduced with Meis1 expressing retrovirus 
(IgHC/A+Meis1) (NA = not available) 
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Mouse no. Retroviral construct Spleen weight (mg) Spleen length (cm) 

5576A#3 IgHC/A+Meis1 370 2.3 

5592C#1 IgHC/A+Meis1 714 3.5 

5576B#2 IgHC/A+Meis1 511 2.5 

5602A#1 IgHC/A+Meis1 626 2.7 

5592A#2 IgHC/A+Meis1 775 3.2 

5592C#2 IgHC/A+Meis1 282 2.5 

5576B#1 IgHC/A+Meis1 592 2.5 

5592A#1 IgHC/A+Meis1 840 2.7 

5602A#2 IgHC/A+Meis1 360 2.5 

5680A#2 IgHC/A+Meis1 97 1.5 

5602B#1 IgHC/A+Meis1 232 2.0 

5680A#1 IgHC/A+Meis1 167 1.9 

5602A#3 IgHC/A+Meis1 608 2.9 

 

Table A.7   Splenomegaly in mice transplanted with IgH-CALM/AF10 transgenic bone marrow cells 
transduced with Meis1 expressing retrovirus (IgHC/A+Meis1) 

 

Experiment 
No. 

Engraftment 

Peripheral blood Bone marrow Spleen 

5745D#58 86% 91% 83% 

5755A#97 91% 97% 70% 

5745D#57 75% 92% 69% 

5755A#99 55% NA 53% 

5787A#128 71% 82% 68% 

5787B#130 71% 84% 76% 

5755A#98 74% 91% 54% 

5787B#131 35% 16% 39% 

5787A#129 40% 90% 46% 
 

Table A.8   Percentage engraftment of peripheral blood, bone marrow and spleen of mice transplanted 
with FVB wldtype bone marrow cells transduced with Meis1 expressing retrovirus: The sacrificed mice 
showed median peripheral blood engraftment levels of 66% (±19%), bone marrow engraftment levels of 80% 
(±26%) and spleen engraftment levels of 62% (±15%). 
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Mouse no. Retroviral construct 
Peripheral blood RBC 

per ml×109 
Peripheral blood WBC 

per ml×106 

5745D#57 FVBwt+Meis1 3 60 

5745D#58 FVBwt+Meis1 1 55 

5755A#97 FVBwt+Meis1 3 175 

5755A#98 FVBwt+Meis1 4 35 

5787B#130 FVBwt+Meis1 6 20 

 

Table A.9   RBC and WBC counts in the peripheral blood of leukemic mice transplanted with FVB 
wildtype bone marrow cells transduced with Meis1 expressing virus (FVBwt+Meis1). 

 

 

 

Mouse no. Retroviral construct 
Peripheral blood RBC 

per ml×109 
Peripheral blood WBC 

per ml×106 

5755A#99 FVBwt+Meis1 1.6 2.5 

5787A#128 FVBwt+Meis1 2 5 

5787A#129 FVBwt+Meis1 5 1 

5787B#131 FVBwt+Meis1 5 2 

5755B#107 FVBwt+Meis1 7 1 

 

Table A.10   RBC and WBC counts in the peripheral blood of non-leukemic mice transplanted with FVB 
wildtype bone marrow cells transduced with Meis1 expressing virus (FVBwt+Meis1) 
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Mouse no. Retroviral construct Spleen weight (mg) Spleen length (cm) 

5745D#57 FVBwt+Meis1 828 3.3 

5745D#58 FVBwt+Meis1 480 2.6 

5755A#97 FVBwt+Meis1 421 2.5 

5755A#98 FVBwt+Meis1 552 2.7 

5787B#130 FVBwt+Meis1 404 2.6 

 

Table A.11   Spleen details of mice transplanted with wildtype bone marrow cells transduced with Meis1 
expressing retrovirus (FVBwt+Meis1) leukemic mice 

 

 

 

 

Mouse no. Retroviral construct Spleen weight (mg) Spleen length (cm) 

5755A#99 FVBwt+Meis1 584 2.9 

5787A#128 FVBwt+Meis1 242 2.3 

5787A#129 FVBwt+Meis1 100 1.7 

5787B#131 FVBwt+Meis1 100 1.7 

5755B#107 FVBwt+Meis1 132 1.6 

 

Table A.12   Spleen details of mice transplanted with wildtype bone marrow cells transduced with Meis1 
expressing retrovirus (FVBwt+Meis1) non-leukemic mice 
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Experiment 
no. 

Gene 
w or w/o 

irradiation 

Primary 
leukemic 

cells 

Mock 
cells 

Days of 
survival 

Disease 

5688A#1 IgHC/A+Meis1 w irradiation 1.0×106 2.0×106 28 AML 

5688B#1 
IgHC/A+Meis1 w/o 

irradiation 
1.0×106  28 AML 

5901C#268 IgHC/A+Meis1 w irradiation 1.0×106 2.0×106 21 AML 

5901F#265 
IgHC/A+Meis1 w/o 

irradiation 
1.0×106  21 AML 

 

Table A.13   IgHC/A+Meis1 secondary transplanted mice: The secondary recipient mice transplanted with 
primary leukemic cells developed aggressive acute myeloid leukemia with a median latency of 25 days post 
transplantation (w or w/o – with or without). IgHC/A+Meis1: Mice transplanted with IgH-CALM/AF10 
transgenic bone marrow cells transduced with Meis1 expressing retrovirus. 

 
 
 

Experiment 
no. 

Gene w/o irradiation 
Secondary 

leukemic cells 
Days of 
survival 

Disease 

5764A#61 IgHC/A+Meis1 w/o irradiation 1.0×106 15 AML 

5764B#62 IgHC/A+Meis1 w/o irradiation 1.0×106 15 AML 

5782A#93 IgHC/A+Meis1 w/o irradiation 1.0×106 15 AML 

5782B#125 IgHC/A+Meis1 w/o irradiation 1.0×106 15 AML 

 

Table A.14   IgHC/A+Meis1 tertiary transplanted mice: The tertiary recipients transplanted with secondary 
leukemic cells developed aggressive acute myeloid leukemia with a median latency of 15 days post 
transplantation (w/o – without). IgHC/A+Meis1: Mice transplanted with IgH-CALM/AF10 transgenic bone 
marrow cells transduced with Meis1 expressing retrovirus. 
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Experiment 
no. 

Gene 
w or w/o 

irradiation 

Primary 
leukemic 

cells 

Mock 
cells 

Days of 
survival 

Disease 

5901B#257 FVBwt+Meis1 
w 

irradiation 
1.0×106 2.0×106 28 AML 

5901E#258 FVBwt+Meis1 
w/o 

irradiation 
1.0×106  28 AML 

5901A#256 FVBwt+Meis1 
w 

irradiation 
1.0×106 2.0×106 63 AML 

5901D#252 FVBwt+Meis1 
w/o 

irradiation 
1.0×106  56 AML 

6012#50 FVBwt+Meis1 
w/o 

irradiation 
1.0×106  

under 
observation 

(122) 

No 
Disease 

6012#51 FVBwt+Meis1 
w/o 

irradiation 
1.0×106  

under 
observation 

(122) 

No 
Disease 

 

Table A.15   FVBwt+Meis1 secondary transplanted mice: Four (4) of the secondary recipient mice 
transplanted with primary leukemic cells developed acute myeloid leukemia with a median latency of 44 days. 
Two (2) of the secondary recipient mice transplanted with cells from primary non-leukemic mice did not 
develop leukemia even after 122 days post transplantation (w or w/o – with or without). FVBwt+Meis1: Mice 
transplanted with FVB wildtype bone marrow cells transduced with Meis1 expressing retrovirus. 

 

Experiment 
no. 

Gene w/o irradiation 
Secondary 
leukemic 

cells 

Days of 
survival 

Disease 

5969A#35 FVBwt+Meis1 w/o irradiation 1.0×106 28 AML 

5969A#37 FVBwt+Meis1 w/o irradiation 1.0×106 28 AML 

5969B#36 FVBwt+Meis1 w/o irradiation 1.0×106 21 AML 

5969B#38 FVBwt+Meis1 w/o irradiation 1.0×106 21 AML 

 

Table A.16   FVBwt+Meis1 tertiary transplanted mice: The tertiary recipients transplanted with leukemic 
cells from secondary leukemic mice developed acute myeloid leukemia with a median latency of 25 days post 
transplantation (w/o –without). FVBwt+Meis1: Mice transplanted with FVB wildtype bone marrow cells 
transduced with Meis1 expressing retrovirus. 
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ABBREVIATIONS 

 

5-FU    5-Fluorouracil 

μ    Micro (1 x 10-6) 

μF    Microfarad 

μg    Microgram 

μl    Microlitre 

μM    Micromolar 

μm    Micrometer 

Ω    Ohm 

AF10    ALL 1 fused gene from chromosome 10 (MLL10) 

ALL    Acute lymphoblastic leukemia 

AML    Acute myeloid leukemia 

Amp    Ampicillin 

ANTH   AP180 N-terminal homology 

APC    Allophycocyanin 

APS    Ammonium persulfate 

AT    Adenine-thymine 

B220    B-cell marker 

BFU-E   Burst forming unit-erythroid 

BMT    Bone marrow transplantation 

bp    base pairs 

BSA    Bovine serum albumin 

CaCl2    Calcium chloride 

CAE    Chloro-acetate esterase 

cALL    Common acute lymphoblastic leukemia 

CALM   Clathrin Assembly Lymphoid Myeloid Leukemia Gene 

CBS    Clathrin binding sequences 
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CD3    Cluster of differentiation 3 

CD4    Cluster of differentiation 4  

CD8    Cluster of differentiation 8 

cDNA    Complementary DNA 

CFC    Colony forming cell 

CFU    Colony forming unit 

CFU-G   Colony forming unit-granulocyte 

CFU-M   Colony forming unit-macrophage 

CFU-GM   Colony forming unit-granulocyte/macrophage 

CFU-GEMM  Colony forming unit-granulocyte / erythroid / macrophage 
/megakaryocyte 

CGH    Comparative genomic hybridization 

cGy    Centigray 

CH2O    Formaldehyde 

CLL    Chronic myeloid leukemia 

CLP    Common lymphoid progenitor 

cm    Centimeter 

CML    Chronic lymphocytic leukemia 

CMP    Common myeloid progenitor  

CO2    Carbondioxide 

CSC    Cancer stem cell 

D-J    Diversity-Joining 

DMEM   Dulbecco’s Modified Eagle Medium 

DMSO   Dimethylsulfoxide 

DNA    Deoxyribonucleic acid 

dNTP    Deoxyribonucleotide triphosphate 

DPBS    Dulbecco’s phosphate buffered saline 

DPF    ASP-Pro-Phe 

DTT    Dithiothreitol 
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e.g.    Example 

ECL    Enhanced chemiluminescence 

EDTA    Ethylenediaminetetraacetic acid 

EGFP    Enhanced green fluorescent protein 

ENTH    Epsin N-terminal homology 

ENU    N-ethyl-N-nitrosourea 

ext-PHD   Extended plant homeodomain 

EYFP    Enhanced yellow fluorescent protein 

FAB    French-American-British classification for acute leukemia 

FACS    Fluorescence activated cell sorting 

FBS    Fetal bovine serum 

FVB    Friend virus B 

FVBwt BM   FVB wildtype bone marrow 

FVB IgHC/A   FVB wildtype IgH-CALM/AF10 

g    gram 

GF    Growth factor 

GFP    Green fluorescent protein 

GP+E86   3T3-based retroviral packaging cell line 

Gr-1    Granulocyte marker 

H&E    Hematoxylin and eosin 

HBS    Hank's balanced salt 

HD    Homeodomain 

HR    High resolution 

hr(s)    hour(s) 

HRP    Horse radish peroxidase 

HSC    Hematopoietic stem cell 

Ig    Immunoglobulin 

IgH    Immunoglobulin heavy chain 

IRES    Internal ribosome entry site 
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IV    Intravenous 

IVC    Individually vented cage 

kb    kilobases 

kD    kilodalton 

KV    kilovolts 

l    liter 

LAP    Leukemia-associated protein 

LB    Luria Bertani medium 

Lck    Lymphocyte-specific protein tyrosine kinase 

LMPP    Lymphoid-primed multipotential progenitor 

LSC    Leukemic stem cell 

LT-HSC   Long-term hematopoietic stem cell 

LTR    Long terminal repeat sequences 

M    molar 

M1    Meinox domain 1 

M2    Meinox domain 2 

m    milli (1 x 10-3) 

mM    millimolar 

Mac-1    Macrophage marker 

MCS   Multiple cloning site 

MDS    Myelodysplastic syndrome 

MEIS1   Myeloid Ecotropic viral Integration Site 1 

mg    milligram 

MIG    MSCV IRES GFP 

min    minute(s) 

ml    milliliter 

mm    millimeter 

MIY    MSCV IRES YFP 

MPO    Myeloperoxidase 
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MPP    Multipotent progenitor 

MRC  Medical Research Council classification for acute myeloid leukemia 

mRNA   messenger RNA 

ms    millisecond 

MSCV   Murine stem cell virus 

n    nano (1 x 10-9) 

NaCl    Sodium chloride 

NaHCO3  Sodium bicarbonate 

Na2HPO4.2H2O  Disodium hydrogen phosphate dihydrate 

NaH2PO4.H2O  Sodium hydrogen phosphate monohydrate 

NaOAc   Sodium acetate 

NaOH    Sodium hydroxide 

ng    nanogram 

NH4Cl   Ammonium chloride 

NLS    Nuclear localization signal 

NPF    Asn-Pro-Phe 

nt    nucleotide 

OM/LZ   Octapeptide motif and leucine zipper 

O/N    overnight 

ºC    degree Celsius 

OD    Optical density 

p    pico (1 x 10-12) 

PAGE    Polyacrylamid Gel Electrophoresis 

PB    Peripheral blood 

PBS    Phosphate buffered saline 

PCR    Polymerase chain reaction 

PE    Phycoerythrin 

PHD    Plant homeodomain 

pg    picogram 
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PIM    Pbx-interacting motif 

PMSF    Phenylmethanesulfonylfluoride or phenylmethylsulfonyl fluoride 

PtdIns(4,5)P2   Phosphatidylinositol-4,5-bisphosphate 

PVDF    Polyvinylidene difluoride 

RBC    Red blood cells 

RIPA    Radio-Immunoprecipitation Assay 

RNA    Ribonucleic acid 

RNAse A   Ribonuclease A 

rpm    revolutions per minute 

RPMI    Roswell Park Memorial Institute medium 

RT    Room temperature 

RT-PCR   Reverse transcriptase PCR 

Sca-1    Stem cell antigen 1 

SCF    Stem cell factor 

SDS    Sodium dodecylsulfate 

sec    second(s) 

SNP    Single-nucleotide polymorphism 

Spl    Spleen 

SSC    Saline sodium citrate buffer 

ST-HSC   Short-term hematopoietic stem cell 

TALE    Three amino acid loop extension 

TBE    Tris-borate-EDTA 

TBS    Tris-buffered saline 

TBST    Tris-Buffered Saline and Tween 20 

TCA    Tris-chloro-acetate 

TCR    T-cell receptor 

TE    Tris-EDTA buffer 

Ter119   Erythroid marker 

TGN    Trans golgi network 
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Tm    melting temperature 

Tx    Transplantation 

U    unit 

UV    Ultraviolet 

V    volts 

VCM    Viral conditioned medium 

V-D-J    Variable diversity joining 

vol.    volume 

WB    Western blot 

WBC    White blood cells 

WHO    World Health Organization 

YFP    Yellow fluorescent protein 
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SINGLE LETTER CODES FOR AMINO ACIDS 

 

A (Ala)   Alanine 

M (Met)   Methionine 

B    Asparagine or Aspartic acid 

N (Asn)   Asparagine 

C (Cys)   Cysteine 

P (Pro)   Proline 

D (Asp)   Aspartic acid 

Q (Glu)   Glutamine 

E (Glu)   Glutamic acid 

R (Arg)   Arginine 

F (Phe)   Phenylalanine S (Ser) Serine 

G (Gly)   Glycine 

T (Thr)   Threonine 

H (His)   Histidine 

V (Val)   Valine 

I (Ile)    Isoleucine 

W (Trp)   Tryptophan 

K (Lys)   Lysine 

Y (Tyr)   Tyrosine 

L (Leu)   Leucine 

Z    Glutamine or Glutamic acid 

 

 



 

177 

ACKNOWLEDGEMENTS 

It gives me immense pleasure to express my gratitude towards the people who have 

accompanied and supported me in completing this thesis work.  

I feel honored to express my deepest gratitude and appreciation to my advisor, Prof. Dr. 

Stefan K. Bohlander, who advised, supported and encouraged me throughout the course of 

my thesis work in his laboratory. His profound knowledge and wisdom, dedication to 

research, and continuous inspiration and support guided me to the right direction of scientific 

pursuit.  

I would like to extend my heartfelt thanks to my parents and my husband Debasis for their 

never-ending support, motivation, sacrifice and selfless love without which I could not have 

reached at this stage of my life. I am also thankful to my sweet sister Adity, my “jiju” 

Tapasda and my nephew Aarav for their consistent enthusiasm. I owe sincere thanks to my 

parents-in-law, my “didi” Maitri, brother-in-law Ramkrishnada and my nephew Swarnendu 

for their love, support and co-operation. My family has always been an inspiration to move 

on with a smiling face. I would like to express my sincere gratitude to my former group 

leader Dr. M. D. Bashyam from Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 

and my lecturer Dr. R. P. Sinha from Banaras Hindu University, Varanasi for their constant 

encouragement and motivation. Thanks are also due to my lecturers “Nambiar Sir” (Dr. K. 

M. R. Nambiar) and “Ravikanth Sir” (G. Ravikanth) from Aurora’s Degree College, 

Hyderabad for their persistent inspiration towards academic achievements. 

I am extremely grateful to Koneru Naresh and Sayantanee Dutta for helping me with the 

mouse work. I owe earnest thanks especially to Naresh for performing all my transplantations 

and helping me out whenever a mouse was sick. I express my heartfelt gratitude to Purvi for 

her help and care from the first day I stepped into Germany. I am really thankful and indebted 

to my colleague Anna Vetter for always helping me to understand all my German letters as 

well as helping me to communicate with the customer care regarding my phone and internet 

connection. I would pay special thanks to Bianka Ksienzyk for her immense help in sorting 

the cells to perform my experiments. I am obliged to Dr. Klaus Metzeler for helping me 

regarding the Kaplan-Meier survival plot. I am thankful to my thesis committee members Dr. 

Ursula Strobl and Prof. Dr. Gunnar Schotta for their important comments and suggestions 



A c k n o w l e d g e m e n t s 

 

178 

regarding my thesis work. Belay Tizazu has always been very friendly and kind to me. I 

really enjoyed his company all throughout my Ph.D. coursework. I am also gratified to 

Monica Cusan, Medhanie Mulaw and Philipp Greif for their important suggestions and 

discussion. Monica helped me a lot and she has always been an inspiration for me.  

I greatly appreciate different kinds of help from Nikola Konstandin, Sebastian Vosberg and 

Zlatana Pasalic for my research. I would also like to express my deepest thanks to Pawandeep 

Kaur for helping me during my initial days in Munich. I am thankful to Naidu M. Vegi and 

Aniruddha Deshpande for their important suggestions and clearing my doubts. I am 

extremely obliged to Dr. Karsten Spiekermann and Frau Simone Schwarz for allowing me to 

take pictures under microscope in Leukemia Diagnostics Laboratory for my experiments. I 

owe immense of thanks to Frau Leticia from Tuebingen for performing the histopathological 

analysis of the sacrificed mice. I am thankful to our secretary Margit Schiller for her kind 

help with all the official work. 

I am thankful to all the members of 039 laboratory (Harald, Nadine, Verena, Judith, Diana, 

Steffi, Judith Hecker, Werner, Juliane and Eva) who have always been a motivation for me to 

work more and more. I would also like to thank all the members of Helmholtz Zentrum 

München, Clinical Cooperative Group, Leukemia and Leukemia Diagnostic Laboratory at the 

Klinikum Grosshadern.  

I wish to pay special thanks to Ajoy for sending me the journal papers whenever I needed. I 

would like to thank my previous labmates Ratheesh, Kalyan, Ramaswamy, Ajayji, 

Chandrakanth, Raju, Nirmala Ma’m, Khursheed and Purushottam from Laboratory of 

Molecular Oncology in Centre for DNA Fingerprinting and Diagnostics, Hyderabad. In 

addition, I would also like to thank Praveen “bhaiya”, Amitabhda, Michael, Jyoti, Nora, 

MRK, Sreelakshmi, Sweta and Shweta for their kind support and encouragement. In Munich 

I cherished the company of Padma, Reena, Prajakta, Aditi, Megha, Chitra and Sneha in the 

social gatherings. I am thankful to Munich as well as Germany.  

Last but not least I am thankful to the “Almighty” for everything. 

 


