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Abstract

Relational learning is concerned with learning from data where information is primarily
represented in form of relations between entities. In recent years, this branch of machine
learning has become increasingly important, as relational data is generated in an unprece-
dented amount and has become ubiquitous in many fields of application such as bioinfor-
matics, artificial intelligence and social network analysis. However, relational learning is a
very challenging task, due to the network structure and the high dimensionality of relational
data. In this thesis we propose that tensor factorization can be the basis for scalable solutions
for learning from relational data and present novel tensor factorization algorithms that are
particularly suited for this task.

In the first part of the thesis, we present the R model – a novel tensor factorization for
relational learning – and discuss its capabilities for exploiting the idiosyncratic properties of
relational data. In particular, we show that, unlike existing tensor factorizations, our proposed
method is capable of exploiting contextual information that is more distant in the relational
graph. Furthermore, we present an efficient algorithm for computing the factorization. We
show that our method achieves better or on-par results on common benchmark data sets, when
compared to current state-of-the-art relational learning methods, while being significantly
faster to compute.

In the second part of the thesis, we focus on large-scale relational learning and its appli-
cations to Linked Data. By exploiting the inherent sparsity of relational data, an efficient
computation of R can scale up to the size of large knowledge bases, consisting of mil-
lions of entities, hundreds of relations and billions of known facts. We show this analytically
via a thorough analysis of the runtime and memory complexity of the algorithm as well as
experimentally via the factorization of the Y2 core ontology and the prediction of relation-
ships in this large knowledge base on a single desktop computer. Furthermore, we derive a
new procedure to reduce the runtime complexity for regularized factorizations from O (r 5) to
O (r 3) – where r denotes the number of latent components of the factorization – by exploiting
special properties of the factorization. We also present an efficient method for including
attributes of entities in the factorization through a novel coupled tensor-matrix factorization.
Experimentally, we show that R allows us to approach several relational learning tasks
that are important to Linked Data.

In the third part of this thesis, we focus on the theoretical analysis of learning with tensor
factorizations. Although tensor factorizations have become increasingly popular for solving
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machine learning tasks on various forms of structured data, there exist only very few theoret-
ical results on the generalization abilities of these methods. Here, we present the first known
generalization error bounds for tensor factorizations. To derive these bounds, we extend
known bounds for matrix factorizations to the tensor case. Furthermore, we analyze how
these bounds behave for learning on over- and understructured representations, for instance,
when matrix factorizations are applied to tensor data. In the course of deriving generalization
bounds, we also discuss the tensor product as a principled way to represent structured data in
vector spaces for machine learning tasks. In addition, we evaluate our theoretical discussion
with experiments on synthetic data, which support our analysis.
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Zusammenfassung

Relationale Daten werden in bisher unbekanntem Ausmaß generiert und sind in vielen
Anwendungsgebieten, wie zum Beispiel der Bioinformatik, der Künstlichen Intelligenz oder
Sozialen Netzwerken allgegenwärtig, so dass das Relationale Lernen, welches das Maschinelle
Lernen auf diesen Daten behandelt, sehr stark an Bedeutung gewonnen hat. Effiziente sowie
skalierbare Methoden ür das Relationale Lernen sind somit eine wichtige und aufgrund
der besonderen Charakteristiken von Relationalen Daten herausfordernde Aufgabe. Diese
Dissertation widmet sich der Anwendung von Tensor Faktorisierung auf das Relationale
Lernen.

Im ersten Teil dieser Arbeit liegt der Fokus auf dem relationalen Aspekt des Maschinellem
Lernens auf Relationalen Daten mittels Tensor Faktorisierung. Hierür präsentieren wir das
R Modell, eine neuartige Tensor Faktorisierung ür das Relationale Lernen, welche
der inhärenten Struktur von Multi-Relationalen Daten Rechnung trägt. Wir zeigen, dass
diese Methode, im Gegensatz zu existierenden Tensor Faktorisierungen, dadurch in der
Lage ist kontextuelle Information effizient zu nutzen auch wenn sich diese weiter entfernt
ein einem Relationalen Graphen befindet. Des Weiteren präsentieren wir einen effizienten
Algorithmus zur Berechnung der Faktorisierung.Wir zeigen auf Benchmark-Datensätzen, dass
unsere Methode vergleichbare oder bessere Ergebnisse liefert als “state-of-the-art” Relationale
Lernmethoden und gleichzeitig, wesentlich schneller zu berechnen ist.

Im zweiten Teil dieser Arbeit behandeln wir Relationales Lernen auf großen Datenmengen
und Anwendungen auf Linked Data. Wir zeigen, dass eine effiziente Berechnung des R
Modells, welche der Dünn-Besetztheit von Relationalen Daten Rechnung trägt, bis zu großen
Wissensbasen skaliert, welche aus Millionen von Entitäten, Hunderten von Relationen und
Milliarden von bekannten Fakten bestehen. Wir zeigen dies einerseits analytisch durch die
Analyse der Laufzeit- und Speicherkomplexität des entwickelten Algorithmus. Wir zeigen
dies andererseits auch experimentell durch die Faktorisierung der Y2 core Ontologie
und durch die globale Vorhersage von Beziehungen auf dieser großen Wissensbasis. Des
Weiteren präsentieren wir ein neues Verfahren zur Berechnung der Faktorisierung, welches
die Laufzeitkomplexität von O (r 5) auf O (r 3) verringert – wobei r ür die Anzahl der latenten
Komponenten der Faktorisierung steht. Wir zeigen zudem experimentell, dass mit Hilfe
unseres Ansatzes wichtige Probleme des Maschinellen Lernens auf Linked Data effizient
gelöst werden können.

Im dritten Teil dieser Arbeit liegt der Fokus auf der theoretischen Analyse von Tensor Fakto-
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risierungen. Obwohl Tensor Faktorisierungen stark an Beliebtheit gewonnen haben, um Auf-
gaben des Maschinellen Lernen auf strukturierten Daten zu lösen, existieren nur sehr wenige
theoretische Resultate, welche Einsicht in die Generalisierungsähigkeiten dieser Methoden
bieten. Dieser Teil der Arbeit untersucht, wie das Tensor Produkt im Maschinellen Lernen
als genereller Ansatz verwendet werden kann um strukturierte Daten in Vektorräumen zu
repräsentieren. Um Schranken ür den Generalisierungsfehler von Tensor Faktorisierungen
abzuleiten, werden bekannte Schranken von Matrix Faktorisierungen erweitert. Des Weiteren
wird analysiert, wie sich diese Schranken im Falle von über- oder unterstrukturierten Reprä-
sentationen verhalten, zum Beispiel wenn Matrix Faktorisierung auf Tensor-Daten angewandt
wird. Wir evaluieren zusätzlich unsere theoretischen Erwägungen durch Experimente auf
synthetischen Daten, welche unsere Analyse unterstützen.



Chapter 1

Introduction

I am convinced that the crux of the problem of learning is
recognizing relationships and being able to use them

Christopher Strachey in a letter to Alan Turing, 1954

Classification of mathematical problems as linear and
non-linear is like classification of the universe as bananas
and non-bananas

Unknown Source

The relationships between entities are a rich source of information, whose exploitation has
been essential for a number of important scientific and technological advances in recent years.
For instance, social networking services, which have revolutionized the way that people
interact and communicate, are largely based on the relationships between persons whose
analysis is of great interest to the social sciences and to commercial entities alike. Similarly,
bioinformatics and molecular biology, which have contributed fundamental insights into the
life sciences, make extensive use of the relationships between proteins, genes and chemical
compounds and are considered enabling technologies for new approaches to health care such
as translational medicine. Furthermore, the World Wide Web, which has enabled the access
to information on an unprecedented scale and which can be considered as one of the most
disruptive technologies in recent years, is primarily based on the linkage of related documents
and information.

An important development with regard to knowledge representation is also the advent of
the Semantic Web and the Linked cloud, which aim to create a web of semantically structured
data. For the first time in history, these projects made large quantities of knowledge publicly
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available in a relational and across different domains interlinked form. By the time of this
writing, over 60 billion1 known facts have been published in relational form in hundreds of
interlinked databases in the Linked Data cloud (Cyganiak and Jentzsch, 2011; Auer et al., 2013)
and its size is still growing steadily. While the Semantic Web as envisioned by Berners-Lee
and Fischetti (2008, Chapter 12) has yet to be realized, efforts and projects surrounding the
Semantic Web have already made tremendous impact. The abundance of interlinked semantic
information has, for instance, enabled new ways to access biomedical knowledge in the life
sciences (Ruttenberg et al., 2009) and is also expected to drive next generation information
retrieval methods such as Google’s Knowledge Graph.
It follows immediately from this great variety of use-cases and data sources that the ability

to learn from relational data has a significant impact on many applications. Important
tasks like the prioritization of unknown gene-disease associations, the prediction of links in
social networks, or the answering of queries in incomplete knowledge bases can all benefit
greatly from an efficient and reliable method to predict unknown relationships. Moreover,
relational data, as all forms of data, can not only be incomplete but can be uncertain, noisy
and include false information; a problem that is being aggravated as knowledge bases are
being created increasingly via automatic information extraction methods. Seminal projects
like N (Carlson et al., 2010), RV (Fader et al., 2011), or P (Nakashole et al., 2012a;
Nakashole et al., 2012b) aim to create large knowledge bases via the extraction of relational
information from natural language; a very difficult task in which these projects achieve good
but not perfect precision. To improve the quality of the extracted relational data, it is therefore
important to identify objects that are likely to refer to identical entities or to determine which
relationships are likely and unlikely to exist. Relational learning is a branch of machine
learning that is concerned with all of these tasks, i.e. to learn efficiently from relational
information for tasks like link prediction, entity resolution or collective classification. It
has been shown numerous times that learning methods which model a relational domain
truthfully and that take the relationships of entities into consideration, can improve learning
results significantly over non-relational methods (Dzeroski, 2001; Singh and Gordon, 2008b;
Taskar et al., 2004; Davis et al., 2005; Getoor and Taskar, 2007; Raedt, 2008). This underlines
both the importance of relational data for knowledge representation and the importance
of learning methods that can exploit this representation. However, despite the success of
relational learning in specific applications, wider adoption has been hindered by multiple

1In this thesis, we adopt the short-scale naming system and use the term “billion” to refer to a thousand
millions (109).
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factors, such as the complexity of existing methods, their need for extensive prior knowledge,
and their considerable scalability issues. Learning from relational data, and in particular
learning from relational data on a large scale, is therefore one of the important tasks and one
of the great challenges for today’s machine learning.
The remainder of this chapter is structured as follows: Section 1.2 will provide a brief

introduction into relational learning and existing relational learning methods. This section
will underline again the importance of relational learning and discuss problems of existing
relational models in more detail. Since this thesis will make use of many concepts related to
tensors and tensor factorizations, we will provide a short introduction into these concepts in
section 1.3. At last, in section 1.4 we will provide an overview of the contributions of this
thesis.

1.1. Notation

In the following, scalars will be denoted by lowercase letters x ; vectors will be denoted by
bold lowercase letters x,y with elements xi ,yj . Vectors are assumed to be column vectors.
Matrices will be denoted by uppercase letters X ,Y with elements xij . Tensors will be indicated
by upright bold uppercase letters X,Y with elements xi1,...,in . For notational convenience, we
will often group tensor indices into a vector i = [i1, · · · ,in]T and write xi instead of xi1,...,in .
Sets will be denoted by calligraphic letters S and their cardinality will be denoted by |S|.

1.2. An Introduction to Relational Learning

Relational learning is largely characterized by the properties of relational data, the assumptions
made about the data, and the learning tasks which are sought to be solved. In this short
introduction, we will therefore begin with a definition of relational data in section 1.2.1 and
discuss the consequences of its properties for machine learning. In section 1.2.2 we will
review important tasks in relational learning tasks. In section 1.2.3 we will discuss influential
approaches to relational learning and evaluate some of their properties that have hindered
their wider adoption.

1.2.1. Learning in Relational Domains

In relational learning, various, mostly equivalent definitions exist on the nature of relational
data, which are usually based on entries in relational databases or ground predicates in
first-order logic (Friedman et al., 1999; Heckerman et al., 2007; Richardson and Domingos,
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2006). In this thesis, we adopt a mathematical definition of relational data, based on set theory
and n-tuples, which can be interpreted as underlying both, the relational database model and
the first-order logic interpretation of relational data.

Generally speaking, relations describe connections that exist between entities, e.g. whether
two persons are friends, whether a person likes a movie, or whether a university is located
in a specific country. Mathematically, or more precisely, in set theory and logic, an n-ary
relation is simply defined as a set of n-tuples. Let · × · denote the Cartesian product of sets.
An n-ary relation R is then defined as a subset of the Cartesian product of n sets (Halmos,
1998, Chapter 7), which is formally expressed as:

R ⊆ V1 × · · · × Vn,

In turn, the Cartesian product of n setsV1, . . . ,Vn is defined as the set of all possible n-tuples
overV1, . . . ,Vn (Halmos, 1998, Chapter 6), i.e. as the set

V1 × · · · × Vn ··=
{
(v1, . . . ,vn ) ��v1 ∈ V1 ∧ . . . ∧vn ∈ Vn

}
,

such that a relation R can be interpreted as being the set of all existing relationships, while
the Cartesian product can be interpreted as being the set of all possible relationships over the
entities in the domainsV1, . . . ,Vn. In the following, we will also use dom(R ) to denote the
Cartesian productV1 × · · · × Vn associated with a relation R ⊆ V1 × · · · × Vn . Furthermore,
we will refer to a single n-tuple (v1, . . . ,vn ) ∈ dom(R ) as a possible relationship between the
entities v1, . . . ,vn.

This tuple-based definition of relational data serves as a basis for the relational model
in database theory (Codd, 2001) and has also a close connection to first-order logic: For
a set X and a subset Y ⊆ X, the characteristic function of Y is a boolean-valued function
ϕY : X 7→ {0,1} which indicates for all elements in X, whether they are also an element of
the subset Y (Halmos, 1998), i.e.

∀x ∈ X : ϕY (x ) ··=

1 if x ∈ Y
0 otherwise

Hence, for a relation R ⊆ V1 × . . . × Vn, its characteristic function is a function

ϕR : V1 × . . . × Vn 7→ {0,1}.

which is true if and only if a particular relationship exists. Along the lines of Fregean
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logic, a characteristic function of a relation is also referred to as a predicate, which are the
building blocks of predicate logic. For notational convenience, we will usually denote the
existence of a particular relation ship by R (v1, . . . ,vn ) instead of the more cumbersome terms
(v1, . . . ,vn ) ∈ R or ϕR (v1, . . . ,vn ) = 1.
This thesis will mostly focus on dyadic relational data, which is an important subclass of

relational data where all relations are binary, i.e. where Rk ⊆ Vi × Vj for all relations Rk .
Modeling data in form of dyadic relations has proven to be very versatile. It is, for instance,
used in the Semantic Web’s Resource Description Framework (RDF) to represent knowledge
on the scale of the World Wide Web and is a common way to store information in knowledge
bases. N -ary relations, which involve more than two sets of entities, can be converted to
dyadic relations by introducing auxiliary entities, such as blank nodes in RDF (Antoniou and
Harmelen, 2004, Section 3.2.7). In the remainder of this thesis, we will assume that relational

data is in dyadic form, unless clearly noted otherwise. For a relationship Rk (a,b) we will, similar
to RDF, refer to a as the subject and to b as the object of the relationship. Furthermore, we
will assume that relational data is in the following normalized form: Let Em denote a set
of entities of a particular type, e.g. a set of persons, countries or Ph.D. students and let An

denote the possible values for the n-th attribute of an entity, e.g. the age of a person or the
national product of a country. Then, any relation R is either a subset of Ei × Ej , which we
will also refer to as an entity relation or it is a subset of Ei × Aj which we will also refer
to as an attribute relation.1 This corresponds to the Semantic Web’s distinction between
object- and datatype properties in its Web Ontology Language (OWL). In the following, we
will restrict the term relationship to refer to tuples from entity relations, while tuples from
attribute relations will be called attribute values.
Learning in relational domains is in many ways connected to learning the characteristic

function of relations, to predict, for instance, which relationships are true in a given domain.
One of the key insights and motivations for relational learning is that the relationships of
entities introduce rich patterns in a data set which can be exploited to improve the learning
and prediction process significantly. In a non-relational machine learning setting, data is
usually assumed to range over a single type of entities and to be attribute-valued, i.e. to consist
only of relations of the form E × Aj , where E denotes the set of all entities and the sets Aj

1The distinction between entities and attribute values is largely domain-specific and difficult to generalize.
For instance, in one domain the number 42 can occur as an attribute value as the age of a person, while it can
occur in a different domain as an object in a relation like 23 < 42. However, for all practical purposes considered
in this thesis, it is usually clear what constitutes an entity and what constitutes an attribute value and we will
assume that the distinction is given.
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correspond to the different attributes of these entities. For instance, E could consist of all Ph.D.
students in a university and the setsAj could reflect attributes like gender, age, intelligence etc.
An important assumption that is typically made in non-relational machine learning is that
attribute values of different entities are independent. For instance, the age at which a student
a ∈ E pursues his Ph.D. studies might depend on other attributes of this particular student,
like his intelligence, but it is assumed to be independent from the attributes of a second
student b ∈ E, when a , b. The setting considered in relational learning however, is different:
Relational data can not only consist of multiple types of entities, but more importantly, it also
includes relationships between these entities, i.e. relations of the form Ei × Ej . For instance,
in addition to a set of students Ei and their attributes, relational data could consist of a set
of professors Ej , a relation advisedBy ⊆ Ei × Ej that indicates which student is advised by
which professor, and a relation friendOf ⊆ Ei × Ej that indicates which students are friends.
It has been shown that this kind of relational information introduces patterns from which
dependencies can be derived across entity boundaries. Important examples of such patterns
include:

Homophily It is well-known from the analysis of social networks that a commonly occurring
pattern in these networks is homophily, i.e. the tendency of persons to be associated with
persons that share similar characteristics. In relational learning, this type of pattern
is also called autocorrelation and has shown to be present in many relational data
sets (Jensen and Neville, 2002). Homophily in relational data can be exploited to predict
unknown relationships as well as unknown attributes. For instance, a good covariate
to predict the age of a student might be the age of his friends in a social network.

Stochastic Equivalence Another pattern which is often present in relational data is stochas-
tic equivalence. It refers to the fact that entities in a data set can be partitioned into
groups such that the observed relationships can be explained via relationships between
these groups (Hoff, 2008). Stochastic equivalence can be exploited for the analysis of
relational data, e.g. to cluster entities according to their relationships or to predict un-
known relationships when the cluster memberships of entities are known.

Global Dependencies An important and very general form of patterns commonly occurring
in relational data are global dependencies between relationships, i.e. dependencies that
affect different types of relations and that can possibly range over chains of multiple
relationships. For instance, whether a student completes a course successfully might
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depend on the teaching ability of the professor who teaches the particular course. Such
a pattern ranges over multiple connected relationships of different types, what becomes
evident when the pattern is expressed in a logical formalism

holdsCourse(p,c ) ∧ teachingAbility(p,high) ⇒ completedCourse(s,c ), (1.1)

where s ranges over all students, p ranges over all professors, and c ranges over all
courses. Similar to homophily, global dependencies can be exploited to predict relation-
ships and attributes of entities from the properties of related entities. However, in the
case of global dependencies the related entities do not have to be directly connected to
an entity.

The presence of these patterns in relational data illustrates the benefits of combining a
relational representation of knowledge with learning methods that can fully exploit this
representation: It allows for the efficient exploitation of patterns and dependencies which
would otherwise not be accessible and can aid the learning process tremendously. However, all
of these dependencies can occur between attributes and relationships of different entities. It is
therefore necessary to remove the independence assumptions of traditional machine learning,
to be able to exploit these relational patterns. This is one of the main differences between
relational and non-relational machine learning. If it is necessary to clearly distinguish between
methods that truly exploit relational information from methods that learn on relational data
but do not fully exploit the relationships between entities, we will also use the term collective

learning to refer to the former learning methods.
The objective of statistical relational learning (SRL) is to derive a complete model of a

relational domain from uncertain data, i.e. relational data that can be incomplete, noisy,
and contain false information. It is also assumed that dependencies in the data are rather
statistical in nature than deterministic, e.g. that patterns such as equation (1.1) hold with
varying degrees of probability rather then being either true or false. Statistical relational
learning is the general setting considered in this thesis. In SRL, data is usually modelled in the
following way: For each relationship Rk ⊆ Va × Vb and each possible relationship Rk (vi ,vj ),
a binary random variable Xijk is created which represents the existence of the associated
relationship, meaning that it is set to the value of the characteristic function ϕRk (vi ,vj ). Let
X denote the set of all these random variables. To derive a complete model of the relational
domain, we are then interested in estimating the joint distribution P (X) . A desirable property
of relational models is that they do not only model the joint probability well, but also that
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they represent and answer queries on P (X) efficiently. The additional complexity that is
introduced through a relational model becomes apparent when examining the number of
variable states that have to be considered to specify the joint distribution in this setting. For
instance, consider a very simple data set with n entities andm binary attributes and let Aij

denote the j-th attribute of the i-th entity. The probability table of the joint distribution of k
binary variables consist of 2k entries, namely of one entry for each possible assignment of
values to these random variables. In a non-relational learning setting, the joint distribution
over the variables Aij factors nicely due to the independence assumption of non-relational
learning, such that

P
(
A11, . . . ,Anm

)
=

n∏
i=1

P
(
Ai1, . . . ,Aim

)
.

It would therefore only be necessary to specify n times the joint distribution ofm binary
variables in a non-relational setting, meaning that n times 2m different states have to be
considered. However, relational learning removes exactly this independence assumption,
such that it would be necessary to consider the joint distribution of all nm binary variables,
what leads to 2nm possible states. And this is only a very simple case where data consists
of a few binary variables. For instance, for dyadic relational data consisting of n entities
and m entity relations, the number of possible states would already rise up to 2n

2m, what
becomes intractable very quickly for any reasonable amount of entities. This illustrates the
hardness and complexity of relational learning. An important objective of relational learning
methods is therefore to reduce this complexity to a manageable size. The strategies employed
to achieve this task will be discussed in section 1.2.3.

1.2.2. Relational Learning Tasks

Relational learning is not only concerned with learning efficiently from relational data, but
also focuses on special tasks that arise with this kind of data. In the following, we will briefly
outline the most common and important of these tasks and in doing so illustrate again the
benefits of a relational approach.

Link Prediction Link prediction is central to relational learning. Its objective is to determine
whether a particular relationship exists, i.e. whether ϕR (tk ) = 1 for a particular relation R
and any valid n-tuple tk ∈ dom(R ). Typical applications of link prediction are to predict
friendships in social networks, protein-protein interactions in bioinformatics, or general
relationships in a knowledge base. It has been shown that non-relational methods, i.e. methods
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that predict the existence of a link solely on the attributes of the involved entities, can
be significantly outperformed by a relational approach on this task (Taskar et al., 2004;
Getoor and Diehl, 2005). Link prediction is not only central to relational learning because
relationships form the basis of relational data, but also because many relational learning tasks
can be cast as a link prediction problem as it will be shown in the following paragraphs.

Collective Classification Collective classification is the extension of classification to rela-
tional learning. In a standard classification setting, the classes of entities are inferred from
their attributes. The underlying idea of collective classification is that relational data provides
valuable information for classification, as related entities often share identical classes. Similar
to link prediction, it has been shown that collective classification can improve learning results
significantly over its non-relational counterpart (Sen et al., 2008; Jensen et al., 2004; Neville
and Jensen, 2003; Taskar et al., 2002). Collective classification can be cast as a link prediction
problem, by introducing classes as entities to the data, introducing a relation isClassOf and
inferring the probability of relationships isClassOf(i-th entity, j-th class).

Entity Resolution Entity resolution, which is also known as object identification, record
linkage, instance matching, and deduplication amongst others, is the problem of identifying
which objects in the data refer to the identical underlying entity. Entity resolution is an
important task in many fields of application such as database deduplication, linked data
or natural language processing and can benefit significantly from relational information.
In a relational setting, the decisions about which objects are assumed to be identical can
propagate via the relationships between these objects, such that the matching decisions are
performed collectively for all objects rather then independently for each object pair. It has
also been shown for this task that relational learning can improve learning results significantly
over a non-relational approach (Singla and Domingos, 2006a; Bhattacharya and Getoor,
2007; Whang and Garcia-Molina, 2012). Entity resolution can be cast as a link prediction
problem by introducing a new relation isEqual and inferring the probability of relationships
isEqual(i-th entity, j-th entity).

Link-Based Clustering Link-based clustering is the extension of clustering to a relational
learning setting. Similar to feature-based clustering, entities are partitioned into groups based
on their similarity. However, in link-based clustering, entities are not only grouped by the
similarity of their attributes but also by similarity of their relationships. As in entity resolution,
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this similarity of entities can propagate in a relational setting through relationships, such that
a relational modeling can add important information for this task. In social network analysis,
link-based clustering is also referred to as community detection (Fortunato, 2010).

1.2.3. Relational Models

Relational learning regained the attention of the machine learning community with the work
of Koller and Pfeffer (1998) and Friedman et al. (1999) on SRL, although its origins can be
traced back even to Winston (1975). Since then, a variety of models has been proposed for
relational learning, which also cover different learning paradigms. In this section we will
briefly review the most important and influential SRL models, as well as the concepts on
which these models are based.

R G M

The vast majority of statistical relational learning methods are based on probabilistic graphical
models (PGMs); a formalism which uses graph theory to encode the joint distribution of
multiple random variables. Roughly speaking, random variables are represented as nodes
in a graph and the edge configuration of this graph encodes the statistical dependencies
among the variables of a PGM. The most common classes of graphical models are Bayesian
networks, which are defined over directed graphs and Markov networks, which are defined
over undirected graphs. The attractiveness of graphical models for relational learning stems
from their ability to efficiently model high-dimensional probability distributions: Usually
only a small number of the dependencies between all possible relationships are reasonable to
be considered. Being able to confine the considered dependencies to this set of reasonable
dependencies would therefore reduce the complexity of learning significantly and render it
tractable in a relational setting. PGMs permit relational learning methods to achieve this
task by enabling a form of template mechanism which allows to specify these dependencies
intuitively. In the following we will review two important relational learning methods based
on Bayesian and Markov networks that employ such a template mechanism. For the sake of
simplicity, we will make no distinction between a node and its associated random variable in
a PGM.

Probabilistic Relational Models Probabilistic Relational Models (PRMs) are based on
Bayesian networks and were one of the earliest approaches to statistical relational learn-
ing (Koller and Pfeffer, 1998; Friedman et al., 1999; Getoor et al., 2007). The underlying idea of
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Intelligence

Successful

Famous

Funding

Ph.D. Student Advisor

hasStudent

(a) PRM dependency structure in a simple univer-
sity domain. The “cross-class” dependency be-
tween Famous and Successful is permitted be-
cause the classes Advisor and Ph.D. Student are
connected via the hasStudent relation, as in-
dicated by the dotted line in the diagram.

A1 Funding

A1 Famous

S1 Success

S1 Intell. S2 Intell.

S2 Success

A2 Famous

A2 Funding

S3 Success

S3 Intell.

(b) Grounded PRM for the dependency struc-
ture shown in figure 1.1a, where Advisor =
{A1,A2}, Ph.D. Student = {S1,S2,S3}, and
hasStudent = {(A1,S1), (A2,S2), (A2,S3)}.

Figure 1.1.: Example for dependency structure of Probabilistic Relational Models with associ-
ated grounded Bayesian network. This example has been adapted from Pasula and
Russell (2001).

PRMs is to use an object-oriented representation of a database as a template for the depen-
dency structure of a Bayesian network. PRMs start from a relational schema that describes
that classes in a domain, their attributes, and the relations between classes. Furthermore the
set of entities that exist in the domain is given. In its most basic form, PRMs also assume that
the relationships between entities are known and that only the attribute values are uncertain.
Then, for each class C and each attribute Ap of C , a PRM consists of

1. a specification of the parents par(Ap ) of Ap . The elements of par(Ap ) are allowed to
be either attributes of C , or to be attributes of a different class D, with the constraint
that D is directly or indirectly related to C via a chain of relations.

2. a conditional probability distribution P
(
Ap

��� par(Ap )
)

Given a set of entities, a PRM is then “compiled” into a ground Bayesian network (G,P) in
the following way: Let Aip be the random variable associated with the p-th attribute of the
i-th entity. Then, the Bayesian network graph G contains a node Aip for each attribute of
each entity. Furthermore, it contains an edge from Aip to Ajq if Ap ∈ par(Aq ) and if one of
the following conditions is satisfied:
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1. the nodes Aip , Ajq correspond to attributes of the same entity, i.e. i = j

2. entity i and entity j are directly or indirectly related via a chain of relations

Figure 1.1 shows an example of the dependency structure of a PRM and its associated grounded
Bayes net. The conditional probability distribution (CPD) associated with each node Aij is
the CPD P

(
Aj

��� par(Aj )
)
, such that all entities of one class share the same CPD. It follows

from item 2 that this basic form of PRMs requires knowledge about the relationships between
entities. Subsequently, PRMs have also been extended to handle uncertain relationships, which
is referred to as structural uncertainty within the PRM nomenclature. When the dependency
structure is known, learning a PRM consists of estimating the parameters of the CPDs what
is usually referred to as parameter learning. However, in most cases the dependency structure
will not be known and therefore has to be inferred from data, what is referred to as structure
learning.

Markov Logic Networks Markov Logic Networks (MLNs) are a combination of first-order
logic and Markov networks to create a form of probabilistic logic (Richardson and Domingos,
2006). Similarly to PRMs, Markov Logic Networks can be regarded a template based approach
to create the dependency structure of a graphical model. The template mechanism in MLNs
however is based on first-order logic, such that a set of logical formulas is used to create
a grounded Markov network over a particular domain. Formally, a MLN L is defined as a
set of weighted first-order logic formulas L = (K ,w ), where wi ∈ � denotes the weight of
the i-th formula Fi ∈ K . The set of logical formulas K is also referred to as a knowledge

base which incorporates prior knowledge about a domain. Given a finite set of entities E, a
Markov network ML,E is created from L in the following way: For each relation Rk and each
possible relationship ti ∈ dom(Rk ) a node Xi is created in ML,E . The value of a node is set
to the value of the characteristic function of the corresponding relationship, i.e. Xi = ϕR (ti ).
This construction corresponds to the setting considered in section 1.2.1. Furthermore, for
each possible grounding of a formula Fi – what corresponds to a set of nodes in ML,E – a
feature function fk is defined, which is set to 1 if the grounded formula is true and 0 otherwise.
In a graphical representation of ML,E this is equivalent to creating an edge between two
nodes if the corresponding relationships occur in at least one formula Fi . An example of this
construction is shown in figure 1.2. All groundings fk of a formula Fi share the same weight
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smokes(A)

friends(A,B)

friends(B,A)

smokes(B)

friends(A,A) friends(B,B)

Figure 1.2.: Example of a grounded Markov Logic Network, by applying the formula
friends(x,y) ⇒ smokes(x) ⇔ smokes(y) to the entities {A,B}. This example
has been adapted from Richardson and Domingos (2006).

wi , such that the probability distribution of ML,e can be written as

P
(
X1 = x1, . . .Xn = xn

)
=

1
Z

exp

∑
i

wini ({xj }
n
j=1)

 (1.2)

where {xj }nj=1 denotes the state of all random variables and ni ({xj }
n
j=1) denotes the number

of true groundings of Fi in {xj }nj=1. Just as for PRMs, learning MLNs involves parameter and
structure learning. When the knowledge base K is known, parameter learning corresponds
to learning the optimal weights wi for each formula Fi . When the knowledge base K is
unknown, structure learning has to be employed. In the context of MLNs this is equivalent
to learning the logical formulas in K . Structure learning can be accomplished by inductive
logic programming (ILP), or by more integrated approaches that evaluate the gain of adding
a formula to K via its effect on equation (1.2) (Richardson and Domingos, 2006; Kok and
Domingos, 2005).

Further Relational Graphical Models In addition to PRM and MLN, a large number
of further relational learning methods based on graphical models have been considered.
Important models based on this paradigm include Relational Dependency Networks (Neville
and Jensen, 2007), Relational Markov Networks (Taskar et al., 2002), D (Heckerman et al.,
2004; Heckerman et al., 2007) and Bayesian Logic Programs (Kersting and De Raedt, 2001;
Kersting and De Raedt, 2007).

Discussion Exact inference in PGMs, is known to be at least NP-hard (Koller et al., 2007).
For this reason, a variety of approximate inference methods has been considered, ranging from
variational inference and loopy belief propagation to Markov Chain Monte Carlo (MCMC)
methods such as Gibbs Sampling (Jordan, 1998; Murphy et al., 1999; Wainwright and Jordan,
2007). While these approximate methods made inference in graphical models tractable and
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enabled their success in many fields of machine learning, they still remain highly expensive
in terms of computational complexity; especially in a relational setting with a large number
of variables and a large number of statistical dependencies. Moreover, algorithms to compute
these inference methods can be complex and difficult to implement. A second point of consid-
eration is that nearly all methods require extensive prior knowledge about the learning task
at hand. If the required prior knowledge is unknown, it has to be inferred automatically from
data, which is often a time-consuming and error prone task. For instance, PRMs require the
dependency structure from which the grounded Bayesian network is created. Unfortunately,
finding the optimal structure of a PRM is intractable, since it is at least as hard as finding the
optimal structure of a Bayesian network, what is known to be NP-complete (Chickering,
1996; Getoor et al., 2007). The standard approach to overcome this problem is to employ some
form of heuristic or greedy search strategy to find a good solution. However, even these
approximate methods involve expensive computations such as database joins and aggregation,
in addition to the heuristic scoring function. Similarly, Markov Logic Networks require a set
of first-order logic formulas to create the grounded Markov network. Unfortunately, learning
logical formulas from data is a very difficult problem, such that state-of-the-art structure
learning methods for MLNs still require multiple hours of runtime on fairly small datasets (Kok
and Domingos, 2009; Davis and Domingos, 2010; Van Haaren and Davis, 2012). Structure
learning is in addition to these scalability problems also a considerable source of error in the
learning process – again due to the difficulty of the problem – which can deteriorate results
significantly when erroneous structure is inferred.

L V M

All relational learning methods considered so far model the statistical dependencies in the
data solely using variables that have been observed in the data. Latent variable models for
relational learning take a fundamentally different approach: Entities are modeled via latent
variables, i.e. variables that have not been observed in the data but which are assumed to
be hidden causes for the observable variables. The probability of a particular relationship
between entities is then derived from a simple operation on these latent variables. In SRL,
expressing data in terms of newly invented latent variables is also referred to as predicate
invention and considered a powerful asset for relational learning (Kok and Domingos, 2007).
Latent class models for relational learning are latent variable models in which each entity
is assigned to exactly one out of multiple latent classes, i.e. where the latent variables are
binary and mutually exclusive. The Infinite Hidden Relational Model (IHRM) and the Infinite
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Relational Model (IRM) are infinite latent class models for relational learning and have been
introduced independently by Xu et al. (2006) and Kemp et al. (2006). The underlying idea of
both models is to assign entities to classes and to derive the probability of a relationship from
the probability that there exists a relationship between members of the respective classes.
This corresponds to the concept of stochastic equivalence in relational data as discussed in
section 1.2.1. In its most simple manifestation, i.e. data consisting only of dyadic relations and
without attributes, the model for IHRM and IRM is the following: Let ck ∈ � denote the class
of entity ek . Then, the relationships between entities are created according to the generative
process

c | γ ∼ CRP(γ ) (1.3)

η(S,a,b) | β ∼ Beta(β ,β ) (1.4)

R (ei ,ej ) | c,η ∼ Bernoulli(η(R,ci ,cj )), (1.5)

where equation (1.3) assigns each entity to a class, equation (1.4) generates the probability of
a relationship in relation S between members of classes a and b, and equation (1.5) generates
the relationships between entities from these probabilities. Since the class assignments c are
drawn from a Chinese restaurant process (CRP), the number of classes is potentially infinite
and automatically inferred from data. When learning an IHRM or IRM, the task is then
to infer the class assignments ck as well as the class-relationship probabilities η(S,a,b). A
particular advantage of IHRM over the IRM model is that attributes of entities can be modeled
naturally using any appropriate probability distribution, while IRMs have to use a binary
representation. The mixed-membership stochastic block model is as a generalization of IHRM
where entities are allowed to be members of multiple classes, i.e. where the latent variables
are not mutually exclusive (Airoldi et al., 2008).

Discussion An important advantage of latent variable models compared to previously
discussed methods is that no structure learning is necessary for their functioning. The
dependency structure is already defined in the model itself, i.e. given the latent variables all
observable variables are conditionally independent. However, similar to relational learning
methods based on PGMs, scalability is a significant concern for IHRM and IRM. Due to
their Bayesian non-parametric nature they also require expensive inference methods such as
MCMC. Even with sophisticated inference methods as developed by Xu et al. (2007), inference
in IHRM remains impractical for large-scale data.
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1.3. An Introduction to Tensors and Tensor Factorizations

This thesis is concerned with learning from relational information via tensor factorization.
While tensor factorizations have long been used in psycho- and chemometrics to analyze
multi-way data (Smilde et al., 2005; Kroonenberg, 2008), they have only recently been applied
to machine learning and data mining. In the context of relational learning, tensor models
are appealing because of their balance between the expressiveness and the complexity of
their model. Tensors methods allow not only to model data with multiple modalities – such
as entities and relations in relational data – but tensor factorizations can also be related to
multilinear models, which overcome the limited expressiveness of linear models and at the
same time remain more scalable and easier to handle than non-linear approaches. In this
section, we will briefly review definitions and properties of tensors and tensor factorizations
as far as they are relevant for the course of this thesis. The review will follow closely the
discussion in Burdick (1995) and Kolda and Bader (2009), which also provide a more extensive
introduction into this subject matter.

1.3.1. Tensors and the Tensor Product

Tensors, as generalizations of vectors and matrices, are defined via the tensor product of
vector spaces. For this reason, we will first introduce the tensor product of vectors and vector
spaces before defining the concept of a tensor.

Definition 1 (Tensor Product of Vectors, Burdick, 1995). Let x ∈ V and y ∈W , whereV ⊆ �n ,

W ⊆ �m are vector spaces. The tensor product of x and y , in the following denoted by x ⊗ y , is
an array withmn entries, where

(x ⊗ y )ij = xiyj

The defining property of the tensor product of vectors is that (x ⊗ y )ij = xiyj . However,
since the “shape” of the array x ⊗ y is not defined, there exists a deliberate ambiguity in how
to compute the tensor product of vectors. In particular, for two vectors x , y we can obtain
one- or two-dimensional arrays with

x ⊗ y =
[
x1yT x2yT . . . xnyT

] T
∈ �mn (1.6)

x ⊗ y = xyT ∈ �m×n (1.7)

We will refer to equation (1.6) as a vectorized representation of the tensor product, as its
result is again a vector, while equation (1.7) will be called a structured representation. Usually,
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=

X a ⊗ b ⊗ c

Figure 1.3.: Illustration of the tensor product of three vectors a (orange), b (turquoise), c
(yellow). The resulting structured representation is a three-dimensional array.

it will be clear from context which representation is used. The tensor product of vectors
is easily extended to more than two vectors, e.g. (x ⊗ y ⊗ z)ijk = xiyjzk . In the following,
we will denote the tensor product of n vectors also by

⊗
n
vn. In the structured represen-

tation, the tensor product of n vectors corresponds to an n-dimensional array. Further-
more, the tensor product of vectors preserves their linear independence: if the vectors
X = {x1, . . . ,xn} and Y = {y1, . . . ,ym} are, respectively, linearly independent, then the
vectors {xi ⊗ y

j
| xi ∈ X ∧ y

i
∈ Y} are also linearly independent.

Definition 2 (Tensor Product of Vector Spaces, Burdick, 1995). The tensor product of the vector

spaces V andW , in the following denoted V ⊗W , is the vector space consisting of all linear

combinations
∑

i aivi ⊗ wi , where vi ∈ V and wi ∈W .

Similarly to the tensor product of vectors, the tensor product of vector spaces is easily
extended to more than two vector spaces and

⊗
n
Vn will denote the tensor product of n

different vector spaces. We will refer to a vector space that is the result of tensor products of
vector spaces also as tensor product space.
Now, the central concept of a tensor can be defined formally as:

Definition 3 (Tensor, Kolda and Bader, 2009). Let V =
⊗

n
Wn be a tensor product space with

n ≥ 1. Then, the elements X ∈ V are called n-th order tensors.

Following definition 1 and definition 3, tensors can be interpreted in different ways. One
way is as a vector in a structured vector space, what corresponds to the vectorized representation
in equation (1.6). However, since there exists the equivalent structured representation in
equation (1.7), tensors can also be regarded as multidimensional arrays, which is the more
commonly used interpretation. Here, we will use both interpretations interchangeably. It also
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follows immediately, that vectors are first-order tensors and matrices are second-order tensors.
In the following, ord(X) will denote the order of tensor X. For notational convenience, we
will write X ∈ �n1×···×nk also as X ∈ �

∏
i ni .

The tensor product of matrices, i.e. second-order tensors, is also known as the Kronecker
product,1 which is defined accordingly as:

Definition 4 (Kronecker Product). For two matrices X ∈ �n×m and Y ∈ �p×q , their Kronecker

product X ⊗ Y ∈ �np×mq is computed as

X ⊗ Y =


x11Y . . . x1mY
...
. . .

...
xn1Y . . . xnmY

 (1.8)

Important properties of the Kronecker product which will be used throughout this thesis
are (Laub, 2004, Theorem 13.3, 13.4, 13.6)

(A ⊗ B)T = AT ⊗ BT (1.9)

(A ⊗ B)−1 = A−1 ⊗ B−1 (1.10)

(A ⊗ B) (C ⊗ D) = AC ⊗ BD (1.11)

Related to the Kronecker product is the vectorization of matrices, which is defined as follows

Definition 5 (Vectorization, Golub and Loan, 2013, Section 1.3.7). The vectorization of a matrix

M ∈ �m×n, in the following denoted by vec (M ) , is a linear transformation that rearranges the

columns ofM into a column vector of lengthmn:

vec (M ) =


m:,1
...

m:,n


We also define the inverse vectorization operator, in the following denoted by vec−1r (v ) , which
rearranges a vector v ∈ �n into a matrixM ∈ �r×

n

r , such thatM = vec−1r (vec (M ) ) .

An important property of the vectorization operation in conjunction with the Kronecker
product is that the following equivalence holds for matrix product of three matrices A, X ,
B (Golub and Loan, 2013, Section 1.3.7):

Y = AXB ⇔ vec (Y ) = (BT ⊗ A) vec (X ) (1.12)
1Outside of tensor methods, the Kronecker product has also received significant recognition in the machine

learning and social network community lately, e.g. Leskovec et al., 2010
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It will prove convenient in the remainder of this thesis to define various forms of subarrays
on tensors: Fibers are one-dimensional subarrays of tensors, i.e. vectors, which are created
by keeping all but one index fixed and varying the remaining index over all entries of the
corresponding mode. The fibers of a third-order tensor X ∈ �n1×n2×n3 will be denoted by x :,j,k ,
xi,:,k , and xi,j,: with entries:

x :,j,k ··=
[
x1,j,k x2,j,k . . . xn1,j,k

] T
∈ �n1 (Mode-1 fiber)

xi,:,k ··=
[
xi,1,k xi,2,k . . . xi,n2,k

] T
∈ �n2 (Mode-2 fiber)

xi,j,: ··=
[
xi,j,1 xi,j,2 . . . xi,j,n3

] T
∈ �n3 (Mode-3 fiber)

It follows directly that for a matrix X , which is a second-order tensor, its mode-1 fibers
correspond to the columns ofX , while its mode-2 fibers correspond to the rows ofX . Slices are
two-dimensional subarrays of a tensor, i.e. matrices, which are created by keeping all but two
indices fixed and varying the remaining indices over all entries of the corresponding modes.
The slices of a third-order X ∈ �n1×n2×n3 are denoted by Xi,:,:, X :,j,:, and X :,:,k . The mode-3
slices of a tensor X :,:,k will play a special role in this thesis and will be denoted conveniently
as Xk . We will refer to mode-3 slices also as frontal slices of a tensor. Figure 1.4 visualizes the
fibers and slices of a third-order tensor.

1.3.2. Operations on Tensors

In this section, we will briefly review operations that are important to define factorization
models on tensors. Two operations which are central for this matter and which will be used
frequently throughout this thesis are the unfolding operation and the n-mode product. The
unfolding operation transforms a tensor into a matrix representation and is defined as follows:

Definition 6 (n-Mode Unfolding, Kolda and Bader, 2009). The unfolding of a tensor X in the

n-th mode, in the following denoted by X (n) , rearranges the elements of X into a matrix, by using

the mode-n fibers of X as the columns of the matrix X (n) .

Figure 1.5 illustrates the unfolding operation by visualizing all possible unfoldings of a
2 × 3 × 2 tensor. An exact mapping of the indices of X to the indices of X (n) can be found in
Kolda and Bader (2009). Often, unfolding is also referred to as matricization or flattening.
Just as matrices, tensors can be multiplied, although the notation of tensor multiplication

can be quite complex. Here, we will consider only a special case which is sufficient for the
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Mode-1 fibers x :,j,k Mode-2 fibers xi,:,k Mode-3 fibers xi,j,:

Mode-1 slices Xi,:,: Mode-2 slices X :,j,: Mode-3 slices X :,:,k

Figure 1.4.: Fibers and slices of a third-order tensor X.

Mode-1
fibers

→

X (1) ∈ �
2×6 Mode-2

fibers

→

X (2) ∈ �
3×4 Mode-3

fibers

→

X (3) ∈ �
2×6

Figure 1.5.: Illustration of all possible unfoldings of a 2 × 3 × 2 tensor.

course of this thesis, i.e. the n-mode product, what refers to the multiplication of a tensor
with a matrix in a specific mode. The n-mode product is defined as follows:

Definition 7 (n-Mode Product, Kolda and Bader, 2009). The multiplication of a k-th order

tensor X ∈ �m1× ...×mk with a matrixU ∈ �mn×p in mode n, in the following denoted by X ×nU ,

is defined as (
X ×n U

)
i1,...,in−1,j,in+1,...,ik

=

mn∑
in=1

xi1,...,ikujin

whereX ×nU is of sizem1 × · · · ×mn−1 ×p ×mn+1 × · · · ×mk . By using the unfolding operation,
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an equivalent definition of the n-mode product is

Y = X ×n U ⇔ Y(n) = UX (n)

At last, it will be useful to define the norm of a tensor, for instance to specify loss functions
and regularization functions on tensors.

Definition 8 (Norm of a Tensor, Kolda and Bader, 2009). The norm of a tensor X ∈ �n1×···×nk ,

in the following denoted by ‖X‖, is defined as the square root of the sum of its squared elements,

i.e. as

‖X‖ ··=

√√ n1∑
i1=1

n2∑
i2=1
· · ·

nk∑
ik=1

x2
i1,i2,...,ik

1.3.3. Tensor Factorizations

The rank of a matrix X can be defined in multiple, equivalent ways: Commonly, it is defined
as the minimal number of rank-one matrices whose sum generates X . However, the rank of a
matrix can also be defined as the maximal number of linearly independent columns ofX , i.e. its
column rank, or as the maximal number of linearly independent rows ofX , i.e. its row rank. For
matrices, these definitions are equivalent and a truncated singular value decomposition (SVD)
of X can be used to compute the best rank-r approximation to X for all of these definitions.
Interestingly, in the case of tensors these concepts of rank are not equivalent anymore; such
that they are referred to by two different terms and two different factorizations are used to
compute the best approximations with regard to these concepts. One concept of the rank of
tensors is called tensor-rank and refers to the minimal number of rank-one tensors whose sum
generatesX. Although tensor-rank seems to be a natural generalization of the rank of a matrix,
it is often thoroughly different from its second-order counterpart (Kolda and Bader, 2009).
Most notably, it has been shown that computing the tensor-rank is NP-complete (Håstad,
1990) and that the best rank-r approximation in terms of tensor-rank might not exist for a
particular tensor (De Silva and Lim, 2008). In the following the tensor-rank of a tensor X
will be denoted by rank(X) ∈ �+. The second concept of the rank of tensors is called n-rank,
which specifies the number of linearly independent rows for each mode-n unfolding of X,
such that it can be regarded as the generalization of the column and row rank of matrices. In
the following, the n-rank of a tensor X will be denoted by n-rank(X) ∈ �+ × · · · × �+. To
compute the best approximations according to these concepts of rank, two different tensor
decompositions are used, i.e. the C / P decompositions for tensor-rank and
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≈ + +

X a1 ⊗ b1 ⊗ c1 a2 ⊗ b2 ⊗ c2 a3 ⊗ b3 ⊗ c3

Figure 1.6.: Illustration of a CP decomposition with rank 3 of a third-order tensor X.

the T decomposition for n-rank. Both models will be relevant for the remainder of this
thesis and are briefly outlined in the following subsections:

T C / P D

The C / P (CP) decomposition corresponds to the concept of tensor-rank and
decomposes a tensor into a sum of rank-one tensors. The CP decomposition of a third-order
tensor X ∈ �n1×n2×n3 is defined as

X ≈
r∑
i=1

ai ⊗ bi ⊗ ci (1.13)

where ai ∈ �n1 , bi ∈ �n2 , ci ∈ �n3 , and where r ∈ �+ is the rank of the decomposition. The
symbol “≈” is used here and in the following to indicate the best approximation under some
arbitrary loss function ∆(·; ·). In most cases, the loss function will be the least-squares loss,
i.e.

∆(X; X̂) ··=



X − X̂ 


2

where X denotes the original tensor and X̂ its approximation. Figure 1.6 shows a visualization
of the CP decomposition. CP has been introduced independently by Carroll and Chang
(1970) and Harshman (1970), while its origins date even back to Hitchcock (1927). Although
the exact determination of tensor-rank is NP-complete, in practice the CP decomposition
can be used to compute the tensor-rank numerically by fitting multiple factorizations (Kolda
and Bader, 2009). The CP decomposition is essentially unique, meaning that except for basic
scaling and permutation indeterminacies, there exists only one possible decomposition of a
tensor into a sum of rank-one tensors under mild conditions. This is a very appealing property
when the latent components have meaning and are sought to be analyzed, as it is commonly
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the case in psycho- and chemometrics. To compute the CP decomposition of a third-order
tensor X ∈ �n1×n2×n3 under the least-squares loss, the optimization problem

argmin
A,B,C







X −
r∑
i=1

ai ⊗ bi ⊗ ci







2

(1.14)

is minimized, where the vectors ai , bi , ci correspond to the i-th column of A ∈ �n1×r ,
B ∈ �n2×r , and C ∈ �n3×r . Carroll and Chang (1970) and Harshman (1970) presented and
alternating-least squares algorithm to optimize equation (1.14) (CP-ALS), while Acar et al.
(2010) proposed an all-in-one optimization approach (CP-OPT).

T T D

The T decomposition (Tucker, 1966) corresponds to the concept of n-rank and decom-
poses a tensor into a core tensor and separate factor matrices for each mode of the tensor. The
T decomposition of a third-order tensor X ∈ �n1×n2×n3 is defined as

X ≈ G ×1 A ×2 B ×3 C (1.15)

where G ∈ �r1×r2×r3 is the core tensor of the decomposition and the matrices A ∈ �n1×r1 ,
B ∈ �n2×r2 , C ∈ �n3×r3 are the factor matrices for the three modes and where (r1,r2,r3) is
the n-rank of the factorization. When operating on unfolded tensors, equation (1.15) can be
rewritten as

X (1) ≈ AG (1) (C ⊗ B)T , (1.16)

X (2) ≈ BG (2) (C ⊗ A)
T , (1.17)

X (3) ≈ CG (3) (B ⊗ A)
T . (1.18)

which is useful to derive algorithms for the computation of the decomposition. Amongst
others, the T decomposition is also known as Higher-Order SVD (H) as introduced
in De Lathauwer et al. (2000a) and Three-Mode PCA (3) as introduced in Kroonenberg
and De Leeuw (1980).

In contrast to CP, the T decomposition is generally not unique. However, different
methods such as super-diagonalization of the core tensor or simultaneous rotations of the core
tensor and factor matrices have been developed to improve the uniqueness of the factorization.
Two variations of the T decomposition which are important for the remainder of this
thesis are the T-2 and T-1 decompositions of third-order tensors. In the case of
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X

≈

G ×1 A ×2 B ×3 C

Figure 1.7.: Illustration of a T Decomposition of a third-order tensorX into a core tensor
G (yellow) and latent factors A (green), B (orange), C (blue).

T-2, one factor matrix in the decomposition of a third-order tensor is constrained to be
the identity matrix. In tensor notation, the T-2 model can therefore be stated as

X ≈ G ×1 A ×2 B ×3 I = G ×1 A ×2 B (1.19)

From a modeling perspective, the T-2 model can be interpreted as assuming no redun-
dancies in the mode where the factor matrix is the identity matrix, i.e. in the mode that is not
factorized. In the case of T-1, two factor matrices of the decomposition are constrained
to be the identity matrix, such that it can be written in tensor notation as

X ≈ G ×1 A ×2 I ×3 I = G ×1 A (1.20)

Please note that T-1 can be regarded as a standard matrix factorization of the unfolded
tensor, since it can be written in matrix notation as

X (1) ≈ AG (1)

1.4. Contributions of this Thesis

Relational models have been shown on numerous occasions to greatly improve learning
results when relational information is available, as discussed in the previous sections. While
this underlines the importance of relational learning, existing models also exhibit deficiencies
that limited their wider application. In section 1.2.3 we argued that their limited scalability
as well as their need for extensive prior knowledge are of particular concern. Considering
that relational data is generated in an unprecedented amount – a fact often referred to by
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the newly coined term “Big Data” – this has serious ramifications for their applicability.
A single knowledge base in the Linked Open Data (LOD) cloud can consist of millions of
entities, hundreds of relations and even billions of known facts and it would be very difficult
to apply most of these methods to relational data of this size. To overcome these problems
and to enable new applications for relational learning, this thesis is concerned with relational
learning via tensor factorization. Its main contributions are the following:

Tensor Model for Relational Learning In section 1.2.1 we outlined the importance of
collective learning to exploit the patterns in relational data efficiently. To enable
collective learning via tensor factorization we propose a novel factorization model
called R in section 2.2. We will show that due to its special structure – where
entities have a unique representation in the factorization – R can be considered
one of the first tensor models that can combine collective learning with a strong
learning performance on general multi-relational data. Moreover, we will show that the
factorization offers great flexibility in how relational learning tasks can be approached
as it allows for the application of feature-based machine learning methods to relational
problems as discussed in section 2.3. In section 2.5 we derive an efficient algorithm to
compute the factorization.

Large-Scale Relational Learning on Semantic Web Data Learning from large-scale re-
lational data has become especially important with the advent of the Semantic Web and
large multi-relational knowledge bases. By exploiting the inherent sparsity of relational
data, we show in section 3.4 that the R model can be computed very efficiently,
such that it scales linearly with the number of entities, the number of predicates and
the number of known facts. As one of the first relational models, R can there-
fore be applied to large knowledge bases consisting of millions of entities, hundreds
of relations, and possibly billions of known facts. Furthermore, based on a thorough
analysis of its runtime complexity, we provide an improved algorithm to compute the
R factorization in section 3.5. We will show that this improved algorithm de-
creases the runtime complexity from O (r 5) to O (r 3), where r represents the complexity
of the factorization in term of latent components. In section 3.6 we propose an efficient
method to handle the attributes of entities in the R model via a novel coupled
tensor-matrix factorization.
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Learning Theory for Tensor Models Although tensor factorizations have become increas-
ingly popular for learning on various forms of structured data, only very few theoretical
results exist on the generalization abilities of these methods. In chapter 4 we provide
therefore a theoretical analysis of tensor methods for learning from structured and
relational data. In section 4.2.1, we discuss the tensor product as a principled way to
obtain vector space representations of structured data for machine learning tasks. In
section 4.3, we provide the first known generalization error bounds for tensor factoriza-
tions in a classification setting, what is essentially equivalent to the link-prediction task
on multi-relational data. Furthermore, in section 4.4 we analyze analytically and exper-
imentally how tensor factorization behaves when applied to over- and understructured
representations, for instance, when two-way tensor factorization, i.e. matrix factor-
ization, is applied to three-way tensor data. This analysis suggests that structuring
vector space representations via the tensor product, up to the true order of the data,
adds important information such that factorizations of these representations often scale
better with sparsity and missing data than their less structured counterparts.

Publications accompanying the contributions of this thesis are listed in the following:

• Tensor Model for Relational Learning

– M. Nickel, V. Tresp, and H.-P. Kriegel. “AThree-WayModel for Collective Learning
on Multi-Relational Data”. In: Proceedings of the 28th International Conference on

Machine Learning. ICML ’11. Bellevue, WA, USA: ACM, 2011, pp. 809–816. :
978-1-4503-0619-5.

– M. Nickel and V. Tresp. “Tensor Factorization for Multi-Relational Learning”. In:
Machine Learning and Knowledge Discovery in Databases - European Conference,

ECML PKDD 2013. Ed. by H. Blockeel, K. Kersting, S. Nijssen, and F. Zelezny.
Nectar track for “high-quality research related to machine learning”. Springer,
2013, to appear.

– M. Nickel and V. Tresp. “Three-Way DEDICOM for Relational Learning”. In: NIPS
2010 Workshop - Tensors, Kernels and Machine Learning. Whistler, Canada, 2010.

– M. Nickel and V. Tresp. “Logistic Tensor-Factorization for Multi-Relational Data”.
In: ICML Workshop - Structured Learning: Inferring Graphs from Structured and

Unstructured Inputs. Atlanta, GA, USA, 2013.
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• Large-Scale Relational Learning on Semantic Web Data

– M. Nickel, V. Tresp, and H.-P. Kriegel. “Factorizing YAGO: scalable machine
learning for linked data”. In: Proceedings of the 21st international conference on
World Wide Web. WWW ’12. New York, NY, USA: ACM, 2012, pp. 271–280. :
978-1-4503-1229-5. .

– Y. Huang, V. Tresp, M. Nickel, A. Rettinger, and H.-P. Kriegel. “A scalable approach
for statistical learning in semantic graphs”. In: Semantic Web (2013), to appear. .

– M. Nickel and V. Tresp. “Learning Taxonomies from Multi-Relational Data via
Hierarchical Link-Based Clustering”. In: NIPS Workshop - Learning Semantics.
Granada, Spain, 2011.

• Learning Theory for Tensor Models

– M. Nickel and V. Tresp. “An Analysis of Tensor Models for Learning on Structured
Data”. In: Machine Learning and Knowledge Discovery in Databases - European

Conference, ECML PKDD 2013. Ed. by H. Blockeel, K. Kersting, S. Nijssen, and
F. Zelezny. ECML/PKDD’13. Springer, 2013, to appear.

• Tutorials

– M. Nickel and V. Tresp. Machine Learning on Linked Data: Tensors and their

Applications in Graph-Structured Domains. Tutorial at the 11th International
Semantic Web Conference. Boston, MA, USA, 2012. : http://www.cip.ifi.

lmu.de/~nickel/iswc2012-learning-on-linked-data/.

• Overview Chapters in Books

– V. Tresp and M. Nickel. “Relational Models”. In: Encyclopedia of Social Network
Analysis and Mining. Ed. by J. Rokne and R. Alhajj. Heidelberg: Springer, 2013, to
appear.

– V. Tresp, Y. Huang, and M. Nickel. “Querying the Web with Statistical Machine
Learning”. In: To be published as a chapter in a book reviewing the results of the

THESEUS project. 2013.

http://www.cip.ifi.lmu.de/~nickel/iswc2012-learning-on-linked-data/
http://www.cip.ifi.lmu.de/~nickel/iswc2012-learning-on-linked-data/




Chapter 2

A Three-Way Model
for Relational Learning

In this chapter, we propose a novel approach to relational learning via the factorization of
a third-order tensor. The focus of this chapter lies on its properties, and its benefits for
statistical relational learning. We will show that the proposed method can overcome problems
of existing SRL methods, that it offers a great flexibility in how relational learning tasks can be
approached and, maybe most importantly, that it learns from relational data very efficiently.
Due to the structure of the factorization, we will show that the model is able to perform
collective learning and that it can improve the learning results on relational data significantly
over standard tensor factorizations such as CP and T. In this chapter, we will only
consider entity-entity relations and focus on the learning aspect of the factorization. The
handling of attributes as well as the discussion of its scalability is deferred until chapter 3.

2.1. Introduction

During the review of relational models in section 1.2.3, we discussed some problems of
existing SRL methods that hindered their wider adoption, such as their extensive need for
prior knowledge, their complexity and their limited scalability. In this chapter, we propose a
novel approach to relational learning via the factorization of a third-order tensor to overcome
aforementioned problems and to enable new applications for statistical relational learning.
The motivation to employ a factorization approach, and in particular tensor factorizations,
for this purpose is manifold. Matrix factorization can be interpreted as maximum likelihood
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Table 2.1.: Data statistics of recent recommendation challenges.

Dataset Dimensions Entries Density

Netflix 480,189 users × 17,770 items 100,480,507 0.0118
KDD Cup 2011 1,000,990 users × 624,961 items 262,810,175 0.0004
KDD Cup 2012 2,320,895 users × 6,095 items 73,209,277 0.0052

(MLE) or maximum a posteriori (MAP) estimation in a graphical model, where the estimated
parameters correspond to latent representations of the objects and attributes in the data (Singh
and Gordon, 2008a; Salakhutdinov and Mnih, 2008a; Salakhutdinov and Mnih, 2008b). Tensor
factorizations can be interpreted in a similar way (Xiong et al., 2010). As discussed in
section 1.2.3, an important advantage of latent variable models for relational learning is that
they do not require structure learning, as the dependency structure between relationships is
already defined through their model. For factorization methods, this dependency structure is
determined through the structure of the factorization, i.e. how an observed matrix or tensor
is approximated by the product of latent factors. A focal point of this chapter lies on the
development of a factorization whose dependency structure allows for collective learning on
relational data.

Another strong motivation to use a factorization approach for relational learning is that
relational data is usually high-dimensional and sparse. For instance, there may be many
persons in a relational data set, but only a small number of them will be friends. Similarly,
there may be many items, but a single person will usually have bought only a small subset of
all possible items. This sparsity of relational data is well-known and has, for instance, been
exploited by Singla and Domingos (2006b) to improve the memory efficiency of MLNs. In
this setting of high-dimensional and sparse data, factorization methods have shown very
good results. The winning submission to the Netflix Grand Prize was heavily based on matrix
factorization (Koren, 2009), as were most of the leading solutions to the KDD Cup of 2011 and
2012 (Dror et al., 2011; Chen et al., 2012). Basic statistics about the associated data sets are
available in Table 2.1 which shows their high-dimensional and sparse nature. The size of
these data sets also indicates that factorization methods can not only be expected to provide
good learning results, but also might be able to overcome the scalability problem of SRL
methods.

From a modeling perspective, tensors are appealing because they provide an elegant way to
represent multiple dyadic relations. Similar to the graph-based interpretation of RDF (Anto-
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niou and Harmelen, 2004, Section 3.2.4), dyadic relational data can be interpreted as a labeled
directed multigraph, where entities are represented as nodes, relations are represented as edge
labels and relationships are represented as labeled directed edges which point from the subject
to the object of a relationship. Under this interpretation, dyadic relational data consisting of
n entities andm different relations can then be represented in form of an adjacency tensor

X ∈ �n×n×m with entries

xijk =

1, if the relationship relationk (entity

i
,entity

j
) exists

0, otherwise.
(2.1)

The first mode of an adjacency tensor models therefore the occurrences of all entities as a
subject, the second mode models the occurrences of all entities as an object, and the third
mode models the different relations in a data set. This interpretation of relational data as
a multigraph is not only interesting from a data representation point of view, but serves
also as an additional motivation to use a factorization approach for relational learning. On
graphs, factorizations of (weighted) adjacency matrices have long been used for tasks like
information retrieval (Brin and Page, 1998; J. M. Kleinberg, 1999), link prediction (Hoff et al.,
2002; Liben-Nowell and J. Kleinberg, 2007), community detection (Sarkar and Dong, 2011)
and clustering (Ng et al., 2002). Moreover, based on the CP tenor factorization, Kolda et al.
(2005) proposed an extension of the Hypertext-Induced Topic selection (H) algorithm of
J. M. Kleinberg (1999) to multigraphs. Franz et al. (2009) applied this extension for information
retrieval on Semantic Web data. Bader et al. (2007) used the decomposition into directional
components (D) tensor factorization to analyze time-varying graph which are modeled
as multigraphs, where each slice of the adjacency tensor corresponds to a certain time period.

In section 1.2.1, we emphasized the importance to exploit relational patterns such as ho-
mophily, stochastic equivalence for relational learning as well as the modeling of global
dependencies between relationships. In this chapter, we present a novel tensor factorization
model, for which we will show that it fulfil these requirements. Central to the proposed
model is the unique latent representation of entities in the factorization, what enables a strong
collective learning effect, such that the proposed method provides significantly better learn-
ing results on relational data than standard factorization methods like CP and T on
relational data. We will also show that our approach provides better or on-par results on
commonly used benchmark data sets for relational learning compared to current state-of-the
art SRL methods.

The remainder of this chapter is organized as follows: In section 2.2 we will describe the
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≈

i-th entity

j-th entity

k-th relation

i-th entity
j-th entity

k-th relation

X R ×1 A ×2 A

Figure 2.1.: The R tensor factorization for relational learning. The state of an individual
relationship xijk (blue cell in X) is predicted from the product of latent factors ai
(green), aj (yellow) and Rk (orange).

model of the factorization and discuss its properties from a relational learning point of view.
In section 2.3 we will discuss how canonical relational learning tasks can be approached
by using the factorization. section 2.4 we will put the proposed approach in the context of
state-of-the-art methods for relational learning and tensor factorizations. In section 2.5 we
will present an efficient algorithm to compute the factorization. At last, in section 2.6, we
evaluate the our approach through various experiments on benchmark data sets.

2.2. The R Factorization

Here, we propose R, a novel approach for learning from dyadic multi-relational data
via the factorization of a third order tensor. Given relational data consisting of n entities
andm dyadic relations, R computes a factorization of the associated adjacency tensor
X ∈ �n×n×m into a single factor matrix A ∈ �n×r and a core tensor R ∈ �r×r×m such that

X ≈ R ×1 A ×2 A, (2.2)

where r is a user-given positive integer with 0 < r < n which specifies the complexity the
model. The symbol “≈” denotes the approximation under a given loss function. Figure 2.1
shows a visualization of an adjacency tensor and its factorization according to equation (2.2).
In the following, it will often prove convenient to consider an alternative specification of the
factorization. It can be seen from equation (1.19) that equation (2.2) can be interpreted as a
T-2 factorization with the additional constraint that the factor matrices in equation (1.19)
are identical. It follows from the unfolded representation of T models and the product
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of block-partitioned matrices that equation (2.2) is equivalent to

Xk ≈ ARkA
T , for all k = 1 . . .m, (2.3)

where Xk and Rk denote the k-th frontal slice of X and R respectively. In appendix A.1 we
provide a detailed derivation of equation (2.3) from equation (2.2). Furthermore, it also follows
from equations (2.2) and (2.3) that an individual element xijk of X is approximated by

xijk ≈ aTi Rkaj (2.4)

where the column vectors ai and aj correspond to the i-th and j-th row of A respectively.
Equation (2.3) provides a convenient form for the interpretation of the R model

for relational learning. Each frontal slice Xk of an adjacency tensor X as constructed in
equation (2.1) corresponds to the adjacency matrix of the k-th relation in the data. It can
be seen from equation (2.3) that these adjacency matrices are jointly factorized, such that A
factorizes all frontal slices of X simultaneously. The matrix A can be viewed as an embedding
of the entities in a data set into an r -dimensional latent space, where the i-th row ai of
A corresponds to the latent representation of the i-th entity. In analogy to the principal
components of PCA, we will refer to the columns of A as latent components.1 Each frontal
slice Rk of R then specifies how these latent components interact for the k-th relation. Since
Rk is a full asymmetric matrix, adjacency tensors with asymmetric frontal slices, i.e. tensors
representations of directed multigraphs, can be factorized. In terms of relational data, the
asymmetry of Rk models the different interactions whether a latent component occurs in
the subject- or object-position in a relationship. The R factorization can therefore
be interpreted as a latent factor model which learns an embedding of entities into a latent
space and simultaneously learns how the components of this embedding interact for different
relations. The embedding and interactions are optimized such that the observed data X is best
explained according to a particular loss function. Here, we will employ the least-squares loss,
which is commonly used for tensor factorizations and which has also been applied for the
factorizations of graphs and multigraphs (Kolda et al., 2005; Liben-Nowell and J. Kleinberg,
2007; Bader et al., 2007; Franz et al., 2009; Huang et al., 2011). More precisely, we approximate

1Please note that unlike in prinicpal component analysis (PCA), the columns of A are not required to be
mutually orthogonal.
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X by computing the solution to the optimization problem

argmin
A,R

‖X − R ×1 A ×2 A‖2 + λA‖A‖
2 + λR‖R‖2. (2.5)

In equation (2.5), the term ‖X − R ×1 A ×2 A‖2 measures the quality of the approximation
under the least-squares loss, while the regularization terms λA‖A‖2 and λR‖R‖2 are added
to prevent overfitting of the model. An efficient algorithm to compute equation (2.5) will be
provided in section 2.5. Prior to that, we will discuss important properties of the factorization
in equation (2.2) and the optimization problem in equation (2.5) with regard to relational
learning.

P I

It has been shown by Singh and Gordon (2008a) that for appropriate loss functions1, many
matrix factorizations can be interpreted probabilistically in the followingway: Each entryxij of
a matrix X can be viewed as a random variable that follows an exponential family distribution
with natural parameter θij . A factorization X ≈ X̂ then maximizes the log-likelihood of the
observed data where the natural parameter θij corresponds to the reconstructed entry x̂ij

after factorization. The chosen loss function determines the nature of the exponential family
distribution. Since, the T-2 structure of R allows to specify its model in form of
a matrix factorization, it is straightforward to extend this interpretation to R: For an
appropriate loss function, equation (2.2) can be viewed as maximizing the log-likelihood of
the joint distribution

P (X | A,R) =
n∏
i=1

n∏
j=1

m∏
k=1

P
(
xijk

��� aTi Rkaj

)
(2.6)

where each entry xijk is drawn from an exponential family distribution with natural parameter
aTi Rkaj . Figure 2.2 shows the associated graphical model for this distribution in plate notation.
Analogously to the discussion on probabilistic matrix factorization in Salakhutdinov and
Mnih (2008a), equation (2.5) can therefore be interpreted as computing the MAP estimate for
A and R, where the observable variables xijk are drawn from a normal distribution with

xijk ∼ N (aTi Rkaj ,σ
2),

1To be precise, for loss functions from the family of decomposable regular Bregman divergences, which
subsumes loss functions such as the least-squares loss and the logistic loss.
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xijk

σA

σ

ai aj

RkσR

j = 1 . . .ni = 1 . . .n

k = 1 . . .m

Figure 2.2.: Graphical model of the R factorization in plate notation. Nodes in the
graphical model represent variables, where shaded nodes represent observable
variables and non-shaded nodes represent latent variables. Plates indicate that the
enclosed subgraph is repeated multiple times. Constants are represented as simple
letters.

and where the latent variables ai , Rk are also drawn from a normal distribution with

ai ∼ N (0,σ 2
AI )

Rk ∼ N (0,σ 2
RI ).

This interpretation follows from the choice of the least-squares loss and the `2 regularization
terms in equation (2.5). Furthermore, the variance parameters of the normal distributions are
determined by the user-given regularization parameters, such that λA =

σ 2

σ 2
A
and λR =

σ 2

σ 2
R
. It

can be seen that by choosing the least-squares loss to approximate a tensor X, we assume that
the random variation in the data is normally distributed, although a Bernoulli distribution
would be a more appropriate choice for binary random variables like xijk . Please note the we
made this choice deliberately, as it enables an efficient and scalable algorithm to compute the
factorization andwewill employ this approximation throughout this and the following chapter.
Given the factorization of an adjacency tensor, we take a similar approach as considered very
successfully by Liben-Nowell and J. Kleinberg (2007) and Huang et al. (2011) and interpret the
entries of X̂ = R ×1 A ×2 A as confidence values that a particular relationship exists, i.e. that

P
(
xijk = 1 ��� ai ,aj ,Rk

)
∝ aTi Rkaj . (2.7)
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In section 5.2 we will briefly present a variant of the factorization that explains the random
variation in the data via a Bernoulli distribution and discuss its benefits but also its considerable
shortcomings for large-scale relational learning. Furthermore, please note that the particular
choice of a loss function does not change the dependency structure of the graphical model
in¨figure 2.2, as this structure is defined through the computation of the natural parameter,
i.e. through the structure of the factorization.

G 

For multi-relational data, each possible relationship corresponds to exactly one entry xijk in
an adjacency tensor X, such that the joint distribution in equation (2.6) represents a complete
model of a relational domain. An important feature of R is that its latent variable
structure decouples inference in this relational model, meaning that global dependencies
are captured during learning the latent representations A and R, whereas the prediction of
relationships xijk relies only on a few latent variables. It can be seen from equation (2.6)
that a variable xijk is conditionally independent from all other variables given aTi Rkaj , what
enables fast query answering independently of the size of a data set and what can essentially
be computed in real-time. However, it is important to note that this locality of computation
does not imply that the confidence values for relationships are only influenced by local
information. On the contrary, the conditional independence assumptions depicted in figure 2.2
show that information is propagated globally when computing the factorization. Due to the
repeated colliders in figure 2.2, latent variables can not be d-separated from any other latent
or observable variable and thus are possibly dependent on all of these variables (Pearl, 2009,
Definition 1.2.3, Theorem 1.2.4). Since the random variable xijk depends on the latent variables
{ai ,aj ,Rk }, it depends therefore indirectly on the state of any other variable, such that global
dependencies between relationships can be captured.

L S  E  R

An important feature of R is that the latent space A reflects the similarity of entities
in the relational domain. In relational data, the similarity of entities is determined by the
similarity of their relationships, following the intuition that “if two objects are in the same
relation to the same object, this is evidence that they may be the same object” (Singla and
Domingos, 2006a). In terms of an adjacency tensor X, this notion of similarity is captured
by the similarity of the mode-1 and mode-2 slices of the respective entities as shown in
figures 2.3a and 2.3b. Due to its T-2 structure, it follows from equation (1.16) and
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equation (1.17) that the mode-1 and mode-2 unfoldings of the R model are given by

X (1) ≈ AR (1) (I ⊗ A)
T

X (2) ≈ AR (2) (I ⊗ A)
T

From this it follows immediately that the mode-1 and mode-2 slices for the i-th and j-the
entity are modeled in R by the following matrix products:

vec
(
Xi,:,:

)
≈ aiR (1) (I ⊗ A)

T vec
(
X :,i,:

)
≈ aiR (2) (I ⊗ A)

T

vec
(
X j,:,:

)
≈ ajR (1) (I ⊗ A)

T vec
(
X :,j,:

)
≈ ajR (2) (I ⊗ A)

T .

Since the terms R (1) (I ⊗ A)T and R (2) (I ⊗ A)T are constant for different values of i and j, it
follows that similar relationship patterns inXi,:,: andX j,:,: as well asX :,i,: andX :,j,: lead to similar
latent representations ai and aj . Moreover, a similar argument can be made for the similarity
of relations. In an adjacency tensor, the k-th relation in a data set is represented via the frontal
slice Xk . It follows from the application of equation (1.12) to equation (2.3) that the frontal
slices of the i-th and j-th relation are modeled in R by

vec
(
Xi

)
≈ (A ⊗ A) vec

(
Ri

)
vec

(
X j

)
≈ (A ⊗ A) vec

(
Rj

)
.

Since the termA⊗A is constant for different values of i and j it follows that the similarity of the
interaction matrices Ri and Rj reflects the similarity of the i-th and j-th relation. To determine
the relational similarity of the i-th and j-th entity, it is therefore sufficient to consider only
the similarity of the latent representations ai , aj . Importantly, as this measure of similarity
is based on latent representations, it also takes the similarity of entities and relations into
consideration, what can be seen from the element-wise formulation of the R model for
two different relationships xijk and xqrs :

xijk ≈ aTi Rkaj

xqrs ≈ aTqRsar .

If these relationships are in the same state and the relations and objects are similar to each
other, i.e. when xijk = xqrs , Rk ≈ Rs , and aj ≈ ar , the optimal values for ai and aq will also be
similar to each other. By measuring the similarity of entities through their latent similarity,
this measure is therefore not only based on counting identical relationships of identical
entities, but it also considers the similarity of the entities and relations that are involved in
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Xi,:,:

X j,:,:

(a) Outgoing relationships

X :,i,:
X :,j,:

(b) Incoming relationships

Figure 2.3.: Themode-1 andmode-2 slices of an adjacency tensor group incoming and outgoing
relationships for a specific entity. All possible relationships in which the i-th
entity occurs as a subject are grouped in the mode-1 slice Xi,:,:, whereas all possible
relationships in which it occurs as an object are grouped in the mode-2 slice X :,i,:.

a relationship. The previous intuition of Singla and Domingos (2006a) could therefore be
restated in our approach as: if two objects are in similar relations to similar objects, this is

evidence that they may be the same object.

U R  E

A central aspect that distinguishes R from tensor factorizations such as CP or T is
that two modes are factorized by the identical matrix A. For an adjacency tensor, this means
that entities have a unique representation via the latent space A, regardless of their occurrence
as a subject or an object in a relationship.1 This property of the R factorization is of
great importance for its relational learning capabilities, as it enables the efficient propagation
of information via these latent representations of entities. It has been discussed previously
that latent variables can not be d-separated from any other variable in figure 2.2, such that
global dependencies can be captured via information propagation through this network of
variables. Due to importance of this propagation effect for the learning process, it is crucial
that network of latent variables has the correct structure. Standard tensor factorization
models such as CP and T compute a bipartite factorization of an adjacency tensor,
meaning that these factorizations assume that the underlying multigraph of an adjacency
tensor is bipartite, because the employ different factor matrices for each mode. For instance,
a standard T-2 model would factorize each frontal slice Xk of an adjacency tensor X

1Please note that we use the term “unique representation” to refer to the fact that entities are represented by
a single factor matrix A and not to refer to a unique factorization in the sense of section 1.3.3. In fact, the R
factorization itself is not unique as it will be shown later in this chapter.
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Figure 2.4.: Visualization of the U.S. presidents collective learning example. Figures 2.4a
and 2.4b show unipartite and bipartite modelings of an examplary U.S. presidents
domain. Each entity is represented as a node in a multigraph and relationships are
represented as links between nodes. Furthermore, for each entity, we show the
associated latent representation consisting of three latent components. Similar
colors in the latent components indicate similar values. Since a bipartite model
treats subject and object as different entities, we introduce separate nodes for
subject- and object-occurances of the same entity in figure 2.4b. For clarity of
presentation, only the relevant parts of the multigraph are shown.

such that Xk ≈ ARkB
T . However, when this bipartite modeling is applied to unipartite data

– what is usually the case for multi-relational data – the same entities would have different
representations whether they occur subjects (through the latent factor A) or objects (through
the latent factor B). Unfortunately, this effectively breaks the flow of information from subjects
to objects, as the modeling does not account for the fact that the latent variables ai and bi refer
to the identical entity. For instance, consider the task of predicting the party membership of a
president of the United States of America. Without any additional information, this could be
done quite accurately when the party of the president’s vice president is known, since both
persons have mostly been members of the same party. Figure 2.4 shows a small excerpt of an
exemplary data set. Recall from the previous discussion that the latent variable modeling
decouples the learning process, such that the state of an unknown relationship xijk depends
only on the product of the associated latent variables. In an unipartite modeling, the latent
representation aal would encode the information that Al is a member of Dem. Party , as
it has to account for the fact aTalRpartyadem. ≈ 1. When the party membership of Bill is
unknown, a unipartite model could then access the information that his vice president is
a member of Dem. Party via the presidentOf relation, since aTbillRpresidentOfaal ≈ 1
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where aal encodes the party membership of Al. This way, the party membership information
could propagate over the latent variables, such that the model can learn the correct latent
representation of Bill, which in turn leads to the correct party membership prediction. In
a bipartite model this method of information propagation would not work as entities have
different representations as subjects or objects. The latent representation aal would still
encode that Al is a member of Dem. Party . However, all the information that abill could
access for the entity Al is bal, what does not encode the necessary information, as Al occurs
only as a subject in relationships to Dem.Party and not as an object. Consequently, the
structure of R allows the factorization to access information that is more distant in the
relational graph, while the information flow for bipartite models would effectively break over
subject-object-boundaries.

M R P

It has been emphasized in section 1.2.1 that relational patterns such as homophily and
stochastic equivalence are an important characteristic of relational data, whose exploitation
can be essential for relational learning. In this section, we will demonstrate how these patterns
can be modeled within R, to show that the model is expressive enough to capture
these patterns. Please note that the following discussion shall not imply that these patterns
have to be modeled this way, i.e. we only discuss the expressiveness of R and not its
interpretability. For this reason, we are free to choose any form of representation and only
have to show that the considered patterns can be modeled within this representation. To
improve the clearness of presentation, we chose to present these patterns in form of vectors
ai whose entries sum to one and which are confined to the interval [0,1].

Stochastic Equivalence Stochastic equivalence can be modeled within R, by inter-
preting the latent components as (soft) clusters of entities, while the cluster member-
ships of an entity are represented by the magnitude of its entries in a particular latent
component. The probability of interactions between clusters can then be modeled via
the entries in Rk , such that the probability of a particular relationship is proportional to
aTi Rkaj . For instance, consider the following interaction matrix Rk and entity represen-
tations a1, a2, a3:

Rk =

[
0.1 0.8
0.2 0.1

]
,a1 =

[
0.9
0.1

]
,a2 =

[
0.2
0.8

]
,a3 =

[
0.8
0.2

]
.

In this simple example, a link from the first latent component to the second latent
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component is very likely, such that the relationship relationk (entity1,entity2) is
likely to exist, whereas a relationship from entity1 to entity3 is very unlikely. This
modeling is very similar to the modeling of stochastic equivalence employed in IRM
and stochastic block models.

Homophily It has been discussed previously that the similarity of entities in the latent space
A reflects their similarity in a relational domain. In R, homophily can therefore be
modeled by a nearly diagonal interaction matrix Rk . Consider latent representations of
entities, all of similar length ‖ai ‖ ≈ α . It follows from Rk ≈ I that aTi Rkaj ≈ α2 aTi a j

‖ai ‖‖a j ‖
,

such that the probability of a relationship xijk depends on the cosine similarity of ai and
aj . Furthermore, the magnitude of the diagonal entries in Rk can model the importance
of a latent component for the homophily pattern in a particular relation. For instance,
consider the following interaction matrix Rk and entity representations a1, a2, a3:

Rk =

[
0.8 0.1
0.1 0.9

]
,a1 =

[
0.6
0.4

]
,a2 =

[
0.2
0.8

]
,a3 =

[
0.5
0.5

]

As the latent representations of entity1 and entity3 are more similar then the repre-
sentations of entity1 and entity2, it is more likely that a relationship exists between
the former than between the latter pair of entities.

In general, the entries in the latent components of A and R are not confined to this interval
[0,1] but are allowed to take negative values as well as values larger than one. Although this
complicates the interpretation of the latent representations this does not alter the general
ability of R to model such patterns.

2.3. Solving Relational Learning Tasks

Given the factorization of an adjacency tensor, R can be used to approach all relational
learning tasks outlined in section 1.2.2 as follows:

L P

For link prediction, the task is to predict P
(
xijk = 1

)
. As discussed in section 2.2, under a

least-squares loss function, the entries in the reconstruction X̂ = R ×1 A ×2 A are not confined
to the interval [0,1] and do not have an easy interpretation as probabilities. However, usually
we are not interested in exact probabilities, but only in a ranking of relationships relative
to their likelihood. In such cases, we interpret the entries of X̂ as confidence values that



42 2. A Three-Way Model for Relational Learning

a particular relationship exists, meaning that the probability of a relationship is set to be
proportional to the corresponding entry in X̂, i.e. P

(
xijk = 1 ��� aTi Rkaj

)
∝ aTi Rkaj . Given a

reconstruction X̂, we then simply rank relationships by these confidence values. A similar
approach has successfully been used by Liben-Nowell and J. Kleinberg (2007) for link prediction
on social networks via SVD, as well as by Huang et al. (2011) for relational learning via
matrix factorization. If it is necessary to obtain valid probabilities, we apply an additional
post-processing step, which has been introduced by Platt (1999). Let sig

ε
: � 7→ [0,1] be the

sigmoidal transfer function, which is defined as

sig
ε
(x ) ··=



ε

e
exp

(
x

ε

)
, if x ≤ ε

x , if ε < x < 1 − ε

1 − ε

e
exp

(
1−x
ε

)
, if x ≥ 1 − ε

where ε ∈ [0,0.5] is a user-given parameter and e denotes Euler’s number. The probability of
a relationship xijk is then set to

P
(
xijk = 1 ��� aTi Rkaj

)
= sig

ε

(
aTi Rkaj

)
Please note the sig

ε
(·) is a monotone function, such that the relative ordering of entries

aTi Rkaj is preserved. The parameter ε is determined via cross-validation.

E R  LB C

Entity resolution and link-based clustering are both learning tasks which are defined over
the similarity of entities in a relational domain, meaning that similar entities are assumed
to be identical (entity resolution) or that similar entities are grouped in identical clusters
(link-based clustering). To approach these learning tasks, or any other task that is defined
over the relational similarity of entities, we make use of the fact that the latent spaceA reflects
the similarity of entities in the relational domain, as discussed in section 2.2. Since A is a
vector space representation of entities, any feature-based machine learning method such as
k-means or even non-linear kernel methods can be applied to these tasks and still exploit the
similarity of the entities in the relational domain.

C C

Collective classification can be approached in two alternative ways. One way, is to cast
collective classification as a link prediction problem, by introducing an additional classOf
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relation and including the classes as entities in the tensor representation, as described in
section 1.2.2. Then, the classification problem can also solved by computing the appropriate
entries x̂ijk = aTi Rkaj for the classOf slice. The collectivity of the classification, as for all other
learning tasks, is given automatically by the structure of the model. The second way, exploits
the latent similarity of entities. As the latent space A is a vector space representation of the
entities that reflects their similarity in the relational domain, any feature-based classification
algorithm such as Support Vector Machines (SVMs) can be applied to this task to collectively
classify the entities in a data set.

2.4. Discussion and Related Work

In this section, we will put the R model into the context of related work in relational
learning and tensor factorizations.

2.4.1. Comparison to Statistical Relational Learning Models

State-of-the art SRL methods have been reviewed in section 1.2.3. Compared to models such
as PRM and MLN, which employ probabilistic graphical models on observable variables,
R features two key advantages. First, the prediction of unknown relationships in
R is very fast. As mentioned in section 2.3, the probability of a random variable xijk
in R is conditionally independent of all other variables xpqr , given the latent factors,
i.e. it holds that P

(
xijk = 1 ��� ai ,aj ,Rk

)
∝ aTi Rkaj . Consequently, it is sufficient to compute

a simple vector-matrix-vector product to determine the confidence value for a particular
relationship, what can be computed very efficiently. Second, being a latent variable model
like IHRM, no structure learning is required for the functioning of R, as the dependency
structure is already defined within the factorization. However, while IHRM is an infinite

latent class model, where each entity is assigned to exactly one out of a possibly infinite
number of binary latent variables, R is a finite latent feature model, where entities are
represented via a predetermined number of continuous variables. Moreover, IHRM is a fully
Bayesian approach that estimates the distribution of latent variables, while R computes
the MAP point estimate of these variables. It will be shown in section 2.5 and chapter 3
that these differences allow for a very efficient method to compute the R factorization.
Furthermore, a conceptual advantage of latent feature models over a latent class models is that
the latter do not allow for an analysis of entities via their latent representations as discussed
in section 2.2. In latent class models, exactly one latent variable is set to one for each entity,
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while all its other variables are set to zero, such that the application of feature-based machine
learning algorithms would not be meaningful. Typically, a latent feature model is also more
economical in its latent representations, meaning that fewer latent components are required
to describe a data set.

2.4.2. Comparison to Tensor Models

It has been outlined in section 2.2 that R can be regarded a T-2 model, with the
additional constraint that the latent factor matrices have to be identical. We reasoned in
section 2.2 why these constraints are an important factor for relational learning. Compared
to unconstrained T models, it can be argued that a key advantage of R is that
its the model does not loose information about the structure of the data as it takes the
identity of entities into account. The Bayesian clustered tensor factorization (B) considered
by Sutskever et al. (2009) is an approach to relational learning that is based on such an
unconstrained T model. Huang et al. (2011) an approach to multi-relational learning
based on matrix factorization called Statistical Unit Node Sets (S). This approach is related
to a T-1 model, where an adjacency tensor X is unfolded in the first mode and then
factorized. However, unlike in a simple T-1 model, S confines the first mode to a
particular statistical unit in the data and also employs regularization by default. However,
T-1 models, on which S is based, even loose information about the distinction
between predicates and objects, such that they can also not be expected to show good
collective learning results.
CP is a popular tensor factorization – partly due to its uniqueness properties – which has

also been employed for learning from relational data (Kolda et al., 2005; Franz et al., 2009).
However, CP can not express R-type constraints and simultaneously model asymmetric
relations. By enforcing a unique representation of entities via a single latent factor A, the CP
model would become

X ≈
r∑
i=1

ai ⊗ ai ⊗ bi .

Since the outer product of identical vectors ai ⊗ ai is symmetric, each frontal slice of X would
be modeled as a symmetric relation. Unlike CP, the R factorization is not unique, as it
holds for any unitary matrix Q ∈ �r×r that

ARkA
T = AQQTRkQQ

TAT .

In R, the latent factor A could therefore be freely transformed by a unitary matrix
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A D R D ATX

≈

Figure 2.5.: The Dedicom factorization. Each frontal slice Dk of D is a diagonal matrix. Please
note that the D model can not be expressed via standard tensor operations,
but only as a joint factorization of the frontal slices of X.

Q , as long as the inverse transformation QT is applied simultaneously to the core tensor.
Uniqueness is a desirable property when the latent components should be interpretable, e.g. to
analyze physical components in chemometrics. However, for the tasks considered in this
thesis, we do not seek to interpret the latent representations directly, such that uniqueness of
the factorization is not needed.

At last, a tensor factorization that is closely related to R is the decomposition into
directional components (D) by Harshman (1978). For uni-relational data, i.e. data in
form of an adjacency matrix X , the R and D models are identical, since both
models compute the factorization X ≈ ARAT . However, this changes for data with multiple
relations, i.e. when an adjacency tensor is factorized. In this case, D factorizes a
third-order tensor X ∈ �n×n×m such that each frontal slice Xk is approximated by

Xk ≈ ADkRDkA
T

where A ∈ �n×r , R ∈ �r×r , and where Dk ∈ �
r×r is a diagonal matrix. Figure 2.5 shows a

visualization of the D factorization. Similar to R, D factorizes X, such
that two modes of X are explained by identical latent factors A. However, in contrast to
R, D requires also that all frontal slices Xk are explained by a single matrix R,
which encodes the global interactions of the latent component for all slices Xk . Furthermore,
the variation in these global interaction patterns over different slices Xk is only expressed by
diagonal matrices Dk . This are obviously much stronger constraints than in the R model,
for which the interaction patterns of each sliceXk are expressed by a separate, full, asymmetric
matrixRk . The constraints of D offer great value for its original purpose, i.e. the analysis
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of a single relation that varies over time or over different populations (Harshman, 1978; Bader
et al., 2007). However, these constraints are hard to justify for general multi-relational data,
as it is not reasonable to assume that different relations always follow a global interaction
pattern that changes only by diagonal factors Dk . Furthermore, the D model is only
applicable to third-order tensors, such that it is confined to binary relations. Although it is not
pursued in this thesis, conceptually, the R model can be easily extended to higher-order
tensors such that n-ary relations can be modeled.

2.5. Computing the Factorization

Recall from section 2.2 that to compute the R factorization we seek the solution to the
optimization problem

argmin
A,R

‖X − R ×1 A ×2 A‖2 + λA‖A‖
2 + λR‖R‖2

The dimensionality of the latent space r ∈ {r ∈ � | 0 < r < n}, as well as the regularization
parameters λA ≥ 0 and λR ≥ 0 are assumed to be known. In practice, we will use cross-
validation to find the optimal settings for these parameters. Local optima to the optimization
problem equation (2.5) can be computed by taking the partial derivatives of its objective func-
tion with respect to A and R and using any gradient-based non-linear optimization algorithm.
However, to improve the computational efficiency of the algorithm, we exploit the connec-
tions between R and D and adapt techniques from the very efficient Alternating
Simultaneous Approximation, Least Squares and Newton (A) algorithm by Bader et al.
(2007) to compute the R model.
A is based on the alternating least-squares (ALS) method, which is also the stan-

dard method to compute tensor factorizations such as CP or T for a least-squares loss
function (Acar and Yener, 2009; Kolda and Bader, 2009). Being a block coordinate descent
(BCD) method, in ALS, the variables of an optimization problem are partitioned into disjoint
blocks, such that the objective function is optimized via alternating updates of these vari-
able blocks until a certain convergence criterion is met (Sra et al., 2012). For R, the
optimization variables are already partitioned naturally via the core tensor and the factor
matrices, such that we alternatingly keep one of the factors A and R fixed and compute the
update for the remaining factor. In each of these update steps, we will use the method of
normal equations to compute closed-form solutions for the optimization subproblems. In this
context, regularization serves also another purpose, as it increases the numerical stability
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of normal-equation-based algorithms (Neumaier, 1998). In the following, we will refer to
this algorithm as R-ALS The updates for the latent factors A and R in R-ALS are
computed as follows:

Updates for A To compute updates for the factor matrix A, we keep R fixed and seek the
solution to the optimization problem

argmin
A



X − R ×1 A ×2 A

2 + λA‖A‖
2. (2.8)

Since the variable A appears twice in equation (2.8), this optimization problem can not be
reduced to linear regression anymore and it would be difficult to derive scalable closed-form
updates for it. For this reason, we use a similar approach as taken in A and use an
approximate procedure, which is based on the idea to consider the unfolding of the first and
second mode of X simultaneously. To motivate this approach, we rewrite equation (2.8) as
the constrained optimization problem

argmin
A

‖X − R ×1 A` ×2 Ar ‖
2 + λA‖A`‖

2 (2.9)

subject to A` = Ar

where A` corresponds to the left-hand A in equation (2.8) and Ar to the right-hand A. It can
be seen from the equivalence

‖X − R ×1 A` ×2 Ar ‖
2 = ‖X (1) − A`R (1) (I ⊗ Ar )

T ‖2

= ‖X (2) − ArR (2) (I ⊗ A` )
T ‖2

that A` appears as the left-hand factor for the unfolding of the first mode, while Ar appears
the left-hand factor for the unfolding of the second mode. Furthermore, it holds for both
tensors X and R that

X (1) =
[
X1 · · · Xm

]
R (1) =

[
R1 · · · Rm

]
X (2) =

[
XT

1 · · · XT
m

]
R (2) =

[
RT1 · · · RTm

]
since they are third-order tensors with square frontal slices. Now, to approximate equa-
tion (2.9), the idea is to stack X (1) and X (2) as well as R (1) and R (2) side by side and to solve
only for the left-hand factor, while keeping the right-hand factor constant. This way, the
information of both unfoldings is included in an update of A, but the optimization problem
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can be reduced to simple linear regression. Therefore, to compute an update of A, we set

X =
[
X1 XT

1 · · · Xm XT
m

]
R =

[
R1 RT1 · · · Rm RTm

]
Furthermore, let M = R (I2m ⊗ A)

T and A be constant. Then, we approximate equation (2.8),
by computing the solution to

argmin
A



X − AM

2 + λA 

A

2 (2.10)

The advantage of the optimization problem equation (2.10) over equation (2.8) is that it is in
the form of a Tikhonov regularization problem which has a closed-form solution, i.e. (Boyd
and Vandenberghe, 2004, Section 6.3.2)

A = XMT (MMT + λAI )
−1

However, computing MMT directly is not practical – other than for very small data sets
– since M is a dense matrix of size r × 2mn. Fortunately, both terms XMT and MMT can
be reduced significantly using properties of the Kronecker product and block partitioned
matrices, such that an update for A can be computed by

A←

 m∑
k=1

XkAR
T
k + XT

kARk


 m∑
k=1

Bk +Ck + λAI


−1

(2.11)

where

Bk = RkA
TARTk , Ck = RTkA

TARk

The derivation of equation (2.11) from properties of the Kronecker product and block parti-
tioned matrices is given in detail in appendix A.2.

Updates for R To update the core tensorR, we keep the matrixA fixed and seek the solution
to

argmin
R



X − R ×1 A ×2 A

2 + λR‖R‖2. (2.12)

Due to the T-2 structure of R, equation (2.12) can be written equivalently in
matrix notation as

argmin
A,R

m∑
k=1
‖Xk − ARkA

T ‖2 + λR‖Rk ‖
2, (2.13)
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where A ∈ �n×r and Rk ∈ �
r×r . It can be seen from equation (2.13), that the T-2

structure of R, renders updates of the frontal slices independent of each other, such that
each slice Rk can be updated separately. Furthermore, by vectorizing Xk as well as ARkAT we
can use equation (1.12) and rewrite the minimization problem equation (2.13) as

argmin
vec

(
Rk

) 

vec (
Xk

)
− (A ⊗ A) vec

(
Rk

) 

2 + λR 

vec (
Rk

) 

2 . (2.14)

Equation (2.14) is now again a Tikhonov regularization problem and can be solved accordingly,
i.e. by computing

vec
(
Rk

)
←

(
ZTZ + λRI

) −1
ZT vec

(
Xk

)
(2.15)

where Z = A ⊗ A. However, computing Z directly is again not practical, as it is a dense
n2 × r 2 matrix. Instead, we apply equations (1.9) and (1.11) such that ZTZ can be computed by
ATA ⊗ ATA without ever computing Z explicitly. Similarly, Z vec

(
Xk

)
can be computed via

vec
(
ATXkA

)
, which is significantly faster to compute (Golub and Loan, 2013, Section 1.3.7).

Furthermore, for non-regularized problems, i.e. where λR = 0, we can apply equation (1.10),
such that it is only necessary to compute the matrix inversion of r × r matrices ATA instead
of r 2 × r 2 matrices ATA ⊗ ATA.

Convergence and Initialization These update steps forA and Rk are iterated alternatingly
until the algorithms reaches convergence or a maximum number of iterations are exceeded.
As a convergence criterion, we employ the relative change of the objective function in
equation (2.5) compared to a user-specified threshold ε . The starting points for A and Rk can
either be set to random matrices or can be initialized as in D, i.e. by setting A to the r
largest eigenvectors of the eigendecomposition of

∑
k (Xk +XT

k ). In most cases we will employ
this eigenvector based initialization, as we found it experimentally to be far more reliable
than the random initialization.

2.6. Experiments

In the following, we evaluate the performance of the R factorization for several relational
learning tasks. All experiments have been evaluated on a personal computer with an Intel
Core 2 Duo 2.5 GHz CPU and 4 GB RAM. Table 2.2 lists the algorithms that have been used
to compute other tensor decompositions in these experiments. For MLN, we used the current
“Aug 23, 2010” release of the A toolbox (Kok et al., 2005). Due to the large skew in
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Table 2.2.: Tensor decomposition algorithms used in experiments

Decomposition Algorithm

CP CP-ALS (Kolda and Bader, 2009, Fig. 3.3)
T Higher-Order Orthogonal Iterations (HOOI) (De Lathauwer et al., 2000b)
D A (Bader et al., 2007)

the distribution of existing and non-existing relationships, we will evaluate the results via
the area under the precision-recall curve (AUC-PR), which has been shown to be a suitable
measure when the number of negative examples exceeds the number of positive examples
significantly (Davis and Goadrich, 2006).

2.6.1. Collective Learning

The first experiment in the evaluation of R has been designed to asses its collective
learning capabilities, i.e. its ability to learn from information that might be more distant in the
relational graph. To do this in a controlled setting, where any influence from non-relational
information is excluded, we created a data set specifically for this experiment: First, we
retrieved all presidents and vice-presidents of the United States of America from DBpedia,
along with all political parties, in which these persons were members. These objects, persons
and parties, formed the set of entities in our data set. Furthermore, we also retrieved all
relationships between these entities for the relations presidentOf , vicePresidentOf , and
partyOf from DBpedia. After the collection of the data, we removed duplicate entities and
corrected erroneous relationships manually. In total, the cleaned data set consisted of 78
persons, 10 parties, 49 presidentOf and vicePresidentOf relationships, and 83 partyOf

relationships. The objective was then to predict the party memberships for all presidents and
vice presidents in the data, i.e. to predict relationships of the form partyOf(person

i
,party

j
).

Such a link prediction setting can often benefit from the exploitation of relational patterns such
as homophily and stochastic equivalence and is therefore a good measure for the collective
learning capabilities of a relational model.

It can be seen from figure 2.6 that a president and his vice-president have mostly been
members of the same party. This relational pattern should enable relational models with
collective learning capabilities to predict the correct party when it is unknown. The patterns
in the data can be regarded a combination of stochastic equivalence (persons link to parties)
and homophily (related persons are members of the same party). It can also be seen that
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party memberships are very unevenly distributed overall parties, such that some parties are
far more likely to occur as an object in a partyOf relationship than others. To evaluate the
performance of R compared to standard tensor factorizations and to determine the effect
of a unique representation of entities, we included the following models in the experiment:

Baseline As a baseline method we ranked all possible party memberships for a person
randomly. Since the distribution of party memberships is very uneven across parties,
we also ranked the parties by their frequency, what should give significantly better
results than a random ranking.

Factorization Methods To compare R to related factorization methods, we included
all variants of the T family, i.e. T-1, T-2, and T-3. Since the
eigenvector-based initialization of R is different to standard T initialization
(see section 2.5), we also included a T-2 model which has been initialized like
R, to ensure that this difference in initialization is not the cause for diverging
results of R and T-2. We also included S and CP in the evaluation,
which have been used for large-scale relational learning (Huang et al., 2011; Huang
et al., 2013) and information retrieval on multigraphs (Kolda et al., 2005; Franz et al.,
2009) respectively. At last, we included D, which is the only factorization model
apart from R that enforces a unique representation of entities.

Markov Logic Networks To compare R against state-of-the-art SRL methods, we
included MLNs in three variants: MLN with structure learning and MLN with two
different sets of manually defined rules. For MLN with structure learning, in the
following denoted byMLN(Struct), we used the learnstruct command of the Alchemy
toolkit. Detailed parameter settings and the formulas that haven been learned are
listed in appendix B. For MLN with manually defined rules, we modeled the relational
patterns in the data set in form of logical formulas. The first set of rules, in the following
denoted byMLN(H), modeled the global homophily pattern that a person and his related
person are usually members of the same party, i.e.

partyOf(x ,y) ∧ presidentOf(x ,z) ⇒ partyOf(z,y)

partyOf(x ,y) ∧ vicePresidentOf(x ,z) ⇒ partyOf(z,y)

The second set of rules, in the following denoted by MLN(HF), extended the rule set
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Figure 2.6.: Visualization of the U.S. Presidents data. Each tick in the inner circle (1) indicates a
tuple (president ′s party,his vice president ′s party). For persons with more than
one party affiliation we included a separate tuple for each combination of party
memberships. Each inner ring segment (2) represents a party, while the size of an
inner segment indicates for how many tuples the president has been a member
of the respective party. The size of an arc (3) indicates how often a presidentOf
relationship existed between members of the connected party. The color of an
arc indicates the president’s party. The colored subsegments in an outer ring
segment (4) visualize the percentage of how many presidents of the respective
party have vice presidents of the party that is associated with the subsegments
color. It can been seen that a president and his vice president have been members
of the same party for more than 90% of the relationships for the Republican party,
more than 80% of the relationships for the Democratic party, more than 70% of
the relationships for the Democratic-Republican party and more than 50% of the
relationships for the Whig party.
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MLN(H) with multiple formulas such as

partyOf(x ,DemocraticParty)

partyOf(x ,RepublicanParty)
...

partyOf(x ,WhigParty)

for each individual party in the data set. These formulas are the Markov Logic Network
equivalent to the frequency baseline, as they learn how likely it is that a particular party
occurs as the object of a partyOf relation.

To evaluate these learning methods, we performed ten-fold cross-validation over all persons,
where we removed all partyOf relationships for a person in the test fold, such that the
party membership of a person has to be inferred from his/her related persons. In this setting,
collective learning methods should have a significant advantage, as the data set does not
contain any non-relational information that could help for this task. To facilitate this prediction
of party memberships from relational information, we ensured that for each person, at least
one related person was assigned to a different fold during the creation of the random test/train
splits. For R, we computed a factorization with r = 5 latent components, ranked all
parties by their predicted values in the partyOf relation for all persons in the test fold and
recorded the area under the precision-recall curve. For all other models in the evaluation
we employed an equivalent procedure. All parameters were determined via cross-validation.
Figure 2.7 shows the results of this evaluation. It can be clearly seen that R is able to
exploit the relational information in the data very efficiently, as it nearly matches the best
MLN with manually optimized rules. Furthermore, it can be seen that this ability is due to the
unique representation of entities. All bipartite factorization models show significantly worse
results and are not even matching the frequency baseline method. The D factorization
shows significantly better performance, what indicates, in combination with the results of
R, the importance of a unipartite modeling for collective learning. However, D
is not able to match the results of R, what also demonstrates that the constraints on the
core tensor of D are not appropriate for relational data. The comparison of R to
MLNs is also very favorable: R surpasses the results of MLN(HF) and nearly matches
the results of the best manual rule set MLN(H), what shows its state-of-the-art performance.
Counterintuitively, MLN(HF) performs worse than MLN(H), what points to the difficulty of
choosing the best rule set in MLNs manually. Moreover, since R does not incorporate
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Figure 2.7.: Link prediction results on U.S presidents data set

any prior knowledge about a domain, it can be argued that MLN with structure learning is
the more appropriate comparison. In this setting, R clearly outperforms MLN, what is
especially important for real-world applications where the optimal set of rules is unknown.

2.6.2. Entity Resolution

The U.S. Presidents data set demonstrated the collective learning capabilities of R on a
relatively small and specifically created data set. The Cora data set is a larger real-world data
set, consisting of a citation network in the computer science field and is commonly used to
assess the performance of relational learning methods for tasks like collective classification
and entity resolution. Moreover, it is has been shown in Sen et al. (2008) that collective
learning can improve the quality of a model significantly on this data set. Different versions
of the data have been used in the literature. Here, we use the data set, the experimental
setup, and the train-test-splits as described in Singla and Domingos (2006a).1 In this version,
the data set consists of 1295 publication records, where each publication is the subject of a
relationship to its first author, a relationship to its title, and a relationship to its publication
venue. A visualization of the relations between different types of entities in this data set
is shown in figure 2.8 The data set is generally very noisy, containing duplicate entries for

1The Cora data set together with fixed train-test-splits is available from http://alchemy.cs.washington.
edu/data/cora/cora.er.tgz.

http://alchemy.cs.washington.edu/data/cora/cora.er.tgz
http://alchemy.cs.washington.edu/data/cora/cora.er.tgz
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Figure 2.8.: Relations between types of entities in the Cora data set.

publications, authors, titles and venues. The task was then to perform entity resolution on
this data set, i.e. to identify which authors, entities and venues refer to identical entities. The
ground truth, consisting of 132 unique publications, 50 authors and 103 venues, has been
manually compiled by Singla and Domingos (2006a).

To perform entity resolutionwith R, we computed a factorization of the 2725 × 2725 × 8
adjacency tensor with r = 100 latent components. To create a ranking of the most similar en-
tities, we exploited the property that the similarity in the latent space A reflects the relational
similarity of entities. To be more precise, we computed the similarity of entities using the
heat kernel

k (x ,y) = exp
(
−
‖x − y‖2

δ

)
, (2.16)

where δ is a user-given constant. Then, we used this similarity score as a measure for the
likelihood that the entities x and y refer to the same underlying entity. Before applying the
heat kernel to A, we also normalized each of its rows by their norms, i.e. we set ai ←

ai
‖ai ‖

.
This procedure is due to the fact that the magnitude of entries in A reflects the general link
probability of an entity, such that the magnitude for entries of uncommon duplicates would be
very low compared to duplicates that occur more commonly. Since equation (2.16) considers
also the magnitude of entries, this effect would disturb the resolution process, such that we
remove it by normalizing each row. Table 2.3 shows the results of R for five-fold
cross-validation compared to the non-relational Naive Bayes algorithm, a Markov Logic
Network with very basic rules (B), a Markov Logic Network with sophisticated rules (BCTS),
and the CP tensor factorization. Detailed descriptions for Naive Bayes, MLN (B), and MLN
(BCTS) can be found in Singla andDomingos (2006a). It can be seen that R gives generally
very good results, surpassing the best MLN model on all entity types. Furthermore, the
evaluation results are also very interesting in combination with the structural representation
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Table 2.3.: Area under the precision-recall curve for entity resolution on the Cora data set
with five-fold cross validation.

AUC-PR
Entity Type Naive Bayes MLN (B) MLN (BCTS) CP R

Publications 0.913 0.915 0.988 0.991 0.991
Authors 0.986 0.987 0.992 0.984 0.997
Venue 0.738 0.736 0.807 0.746 0.810

of the data shown in figure 2.8. Since Publication is the central class in figure 2.8 and
since there exist no relations between Author , Venue , and Title , it is sufficient for the
deduplication of citations, to consider only directly connected entities. However, the case
is different for the deduplication of authors and venues. Since there are many duplicate
publications, it is very helpful for a learning method if it can look past a publication and
include the information about related venues, titles, and authors in the resolution process.
While CP shows state-of-the-art results for the deduplication of publications, i.e. the case
where collective learning is not needed, it surpasses the non-relational Naive Bayes approach
only slightly for the deduplication of venues and gives even worse results for authors. R
on the other hand shows strong results in all three experiments. This underlines again the
collective learning capabilities of R and the lack thereof for CP.

2.6.3. Link Prediction on Relational Learning Benchmark Datasets

To evaluate how well R performs for link prediction compared to current state-of-the-art
relational learningmethods, we applied it to multiple benchmark data sets introduced by Kemp
et al. (2006) and compared it to the results of B, IRM, and MRC published in Sutskever
et al. (2009) and Kok and Domingos (2007). These data sets are the following:1

Kinships The Kinships data set is based on data compiled by Denham (1973) and consists of
multiple kinship relations between members of the Alyawarra tribe in central Australia.
Among anthropologists, Australian tribes are known for their complex kinship systems
such that predicting individual relationships within these kinship systems an interesting
benchmark for relational learning methods. In total, the Kinships data consists of 10,790
kinship relationships between 104 persons over 26 relations.

UMLS The UMLS data set consists of a small semantic network which is part of the Unified
1All data sets are available from http://alchemy.cs.washington.edu/data/

http://alchemy.cs.washington.edu/data/
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Figure 2.9.: Link prediction on benchmark data sets

Medical Language System (U) ontology. U itself is a large biomedical ontology
which provides a controlled vocabulary over multiple biomedical databases and dictio-
naries. The semantic network used in the experiments describes relationships between
concepts such as Bacterium , Virus and Clinical Drug over multiple relations
such as causes , diagnoses or consistsOf . In total, there exist 6,752 relationships
between 135 concepts over 49 relations.

Nations The Nations data set describes political interactions of countries between 1950
and 1965 (Rummel, 1999). It contains information such as military alliances, trade
relationships or whether a country maintains an embassy in a particular country. The
data set contains 2,024 relationships between 14 countries over 56 dyadic relations. The
Nations data set also contains information about the attributes of countries in form of
unary relations. In particular, continuous variables have been binarized by thresholding
values at their mean and using one-out-of-n coding for categorical attributes (Kemp
et al., 2006). Using this procedure, 111 different binary attribute values and 541 unary
relationships between countries and these attribute values have been created. In our
experiments, we introduced these attribute values as new entities and modeled attribute
information as entity-entity relationships.

To get comparable results to B, IRM and MRC, we followed the experimental protocol of
Kok and Domingos (2007) and performed ten-fold cross-validation over randomly selected
relationships. For a comparison to standard tensor factorizations we also included CP and
D in the evaluation. Figure 2.9 shows the results of our evaluation. It can be seen
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Figure 2.10.: A clustering of countries in the Nations data set. Black squares indicate an
existing relation between the countries. Gray squares indicate missing values.

that R provides comparable or better results than B, IRM, and MRC on all of these
benchmark data sets.

2.6.4. Link-Based Clustering

To briefly demonstrate the link-based clustering capabilities of R, we computed a rank-20
decomposition of the Nations data set and applied k-means with k = 6 to the latent space
A. It can be seen from figure 2.10 that in doing so, similar clusters as in Kemp et al. (2006)
are obtained. The countries are partitioned into one group containing countries from the
communist block, two groups from the western block, where Brazil is separated from the
rest, and three groups for the neutral block. The six relations shown in Figure 2.10 indicate
that this is a reasonable partitioning of the data. In section 3.7 we will provide further, more
sophisticated experiments for link-based clustering on relational data.

2.6.5. Comparison to D

At last, we also conducted experiments on synthetic data to illustrate that the constraints of
D are not appropriate for multi-relational data. Consider the synthetic data set shown
in figure 2.11a. It shows a very simple network, where four persons are connected via the
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Table 2.4.: Area under the precision-recall-curve for full reconstruction setting and leave-one-
out cross-validation on the synthetic likes-dislikes-knows data.

AUC-PR
Algorithm Reconstruction Leave-one-out

R 1.0 1.0
D 0.833 0.832
T-2 1.0 0.797
Random 0.358 0.358

relations likes , dislikes , and knows . In the first experiment, the objective was to show
that these relations are already to diverse to be modeled by D, even without any form
of missing data. Therefore, we created the adjacency tensor for this network and directly
applied the D, the R, as well as the T-2 factorization to the full tensor. For
each factorization, we choose the rank that produced the largest area under the precision-recall
curve without any form of cross-validation. Figure 2.11b shows the reconstructed slices
that were produced by the best model for D and R. The column Reconstruction

in table 2.4 shows the results for the area under the precision-recall curve. It can be seen
that even in this simple setting without unknown data and with optimization of the model
parameters on the test set, D is to constrained to express this data set. R and
T-2 on the other hand have enough degrees of freedom to model all three relations
perfectly. In a second experiment, we considered a real learning setting and performed
leave-one-out cross-validation on all combinations of relations and persons. More precisely, for
each pair of relation k and person i , we setXi,:,k = 0, meaning that we removed all information
where a particular person occurs as a subject in a relation. The task was then to rank all
persons by the likelihood that they are related to person i via relation k . Due to the collective
learning effect of R and D, both factorizations can exploit the symmetry in the
data. R even gives a perfect result in this setting, although complete rows of X are
unknown. T-2 on the other hand – which does not know about the identity of entities –
gives significantly worse results, not only compared to R, but also compared to its own
results in the reconstruction setting. This underlines again the importance of the constraint
that identical entities are modeled by identical latent representations for relational learning.
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Figure 2.11.: Example of a simple multi-relational social network, where the D model
is not expressive enough to model the patterns of the three relations likes ,
dislikes and knows simultaneously.
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2.7. Summary

In this chapter, we proposed R, a novel approach to multi-relational learning via the
factorization of a third-order tensor. We have shown that the factorization can overcome
problems of existing SRL methods such as structure learning and costly inference, that it
offers a great flexibility in how relational learning tasks can be approached and, maybe
most importantly, that it learns from relational data very efficiently, showing state-of-the
art performance on multiple benchmark data sets. In section 2.2, we have reasoned how
the R model can fulfil important requirements on a relational learning method such as
collective learning and the modeling of important relational patterns. We have also shown
that the structure of the factorization decouples the random variables xijk to enable fast and
efficient predictions of relationships, while simultaneously capturing global dependencies
between relationships when inferring the state of the latent variables. A central aspect
of R is its unique representation of entities, what allows to propagate information
efficiently over the latent factors of the factorization. We have discussed the importance
of this modeling for collective learning and shown experimentally that it can improve the
learning results on relational data significantly over standard tensor factorizations such as
CP and T. Furthermore, the latent representations of entities in R provide great
flexibility in how relational learning tasks can be approached, as they make the relational
similarity of entities available to any feature-based machine learning algorithm. In entity
experiments, we have exploited this property of the factorization and achieved state-of-the-art
prediction performance. In all experiments, R showed very good results for all canonical
relational learning tasks and outperformed state-of-the-art SRL methods in many cases. Yet,
not structure learning is needed for the functioning of the factorization, what improves it
applicability significantly. Furthermore, in the next chapter we will show that the factorization
is very scalable, such that even large knowledge bases can be factorized.





Chapter 3

Large-Scale Relational Learning
and Applications on Linked Data

This chapter is mainly concerned with two topics, namely enabling an efficient algorithm for
R such that it can be used to learn from large knowledge bases and the applications
of R in the Semantic Web and on Linked Data. By exploiting the inherent sparsity of
relational data, we will show that R can be computed very efficiently, scaling linearly
with the number of entities, the number of predicates and the number of known facts, such that
it can be applied to knowledge bases consisting of millions of entities, hundreds of relations,
and possibly billions of known facts. Based on a thorough analysis of its runtime complexity,
we will also provide an improved algorithm to compute the R factorization, which
decreases the computational and the memory complexity significantly. Furthermore, we will
propose a novel way to handle attributes efficiently within R via coupled tensor-matrix
factorization. Since this chapter is mainly concerned with applications in the Semantic Web
and on Linked Data, we will adopt the terminology used in this field. Hence, we will refer to
relations as predicates and to relationships as triples.

3.1. Introduction

The Semantic Web’s Linked Data cloud aims to create the “web of data” – a global data space
of interlinked information that is created via technologies like RDF, HTTP and URIs (Bizer
et al., 2009). At the time of this writing, it consists of hundreds of interlinked databases,
where some of these databases store billions of facts in form of RDF triples and it is still
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growing rapidly (Cyganiak and Jentzsch, 2011; Auer et al., 2013). For the first time in history,
relational data from heterogeneous and interlinked domains is publicly available in large
amounts, which, in combination with relational learning, provides exciting opportunities for
many fields of application, as state-of-the-art relational learning methods can be expected
to utilize much of the information and patterns that are introduced through the relational
modeling within and across domain boundaries. Moreover, Linked Data itself can benefit
greatly from machine learning: Unlike traditional approaches to the Semantic Web, Linked
Data focuses mostly on publishing and linking data on a large scale, whereas less emphasis is
put on the formal semantics and ontological descriptions of the published data (Hitzler and
Harmelen, 2010). Traditional techniques of the Semantic Web such as reasoning or ontology
engineering face therefore some serious challenges in processing information in the Linked
Data cloud, due to its size, its inherent noisiness and its inconsistencies. For instance, Halpin
et al. (2010) showed that owl:sameAs is often misused in the Linked Data cloud, what leads
to inconsistencies between different data sources such that reasoning can be problematic in
these cases. Further examples of frequently occurring problems for traditional approaches on
Linked Data include malformed datatype literals, undefined classes and properties, misuses
of ontological terms (Hogan et al., 2010) or the modeling of a simple fact such as “Nancy
Pelosi voted in favor of the Health Care Bill” using no less than eight RDF triples (Hitzler and
Harmelen, 2010). Moreover, these are not isolated examples, as partial inconsistencies or noise
such as duplicate entities and predicates are direct consequences of the open nature of Linked
Data. For this reason, it has been recently proposed to look at alternative approaches for
new Semantic Web reasoning paradigms (Hitzler and Harmelen, 2010). The underlying idea
is that reasoning can often be reduced to the task of classifying the truth value of potential
statements. By abandoning requirements such as logical soundness and completeness, this
classification can be carried out by approximate methods, such as machine learning. Moreover,
it is reasonable to assume that there exist many dependencies in the Linked Data cloud
which are rather statistical in nature than deterministic, such that statistical methods have
the potential to add significant surplus value in addition to what logical reasoning already
provides. Reliable predictions of unknown triples in the scale of entire knowledge bases could
mark a first step towards this new reasoning paradigm for the Semantic Web. Here, in our
approach to this challenge, we focus on the Y 2 ontology (Suchanek et al., 2007), a large
knowledge base that lies, along with other databases such as DBpedia (Auer et al., 2008), at
the core of the Linked Data cloud.

Applying machine learning to Linked Data at this scale however, is not trivial. For instance,
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due to the linked nature of the data, using a relational learning approach is mandatory. But,
as discussed in section 1.2.3, many relational learning algorithms often require a considerable
amount of prior knowledge about the domain of discourse, e.g. a set of logical formulas in the
case of MLNs or the structure of a Bayesian Network for PRMs. This can become a serious
obstacle when applying machine learning to Linked Data, since it is difficult and expensive
to gather this kind of knowledge manually or automatically for complete knowledge bases.
Furthermore, many relational learning algorithms have problems to process data of the size
that is required to approach serious, real-life Semantic Web problems as these algorithms
usually do not scale well with the number of known facts or entities in the data.

Here, we address these challenges as follows: To enable large-scale relational learning from
Linked Data, we employ the R model from chapter 2, which has been shown to produce
very good results for canonical relational learning tasks and which, as it will be shown in
section 3.2, fits nicely to the triple structure of RDF(S). In section 3.3 we will discuss multiple
tasks that are important for Linked Data and how they can be approached via relational
learning in general and with R in particular. Furthermore, we will also discuss the
importance of scalable learning methods for these tasks. In section 3.4 we will show via
a thorough complexity analysis of R-ALS that an implementation which honors the
sparsity of relational data scales linearly with the size of the data such that large knowledge
bases can be factorized even on commodity hardware. Based on the complexity analysis
of section 3.4, we will identify scalability issues of the original R-ALS algorithm in
section 3.5 and propose an improved algorithm that reduces the computational complexity
with regard to the number of latent components from O (r 5) to O (r 3) and the memory
complexity from O (r 4) to O (r 2). Furthermore, in section 3.6 we will present an extension
to the R model to handle attributes of entities efficiently via coupled tensor-matrix
factorization. In section 3.7, we will evaluate the scalability of R-ALS on synthetic data
and by factorizing the Y2 core ontology. Furthermore, we will evaluate the performance
of R on learning tasks important to Linked Data. In section 3.8 we will discuss the
scalability of R-ALS with regard to related tensor factorizations and put it into context
of related machine learning methods that have been applied to Semantic Web data.

3.2. Modeling Linked Data

Creating a tensor representation of Linked Data is straightforward, as it is built upon RDF(S),
which represents information via dyadic relations just as considered in chapter 2. In general,
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we will interpret all instances of the classes rdfs:Resource and rdfs:Class in RDF(S) data
as entities, whereas instances of rdfs:Literal are interpreted as attribute values. For n
entities overm predicates, we employ the same modeling as in chapter 2 and represent Linked
Data via the third-order adjacency tensor X ∈ �n×n×m where

xijk =

1, if the triple (i-th entity, k-th predicate, j-th entity) exists
0, otherwise.

As in chapter 2, this modeling is, for now, restricted to entity-entity relationships. In section 3.6,
we will present an efficient extension to R, such that attributes of entities, i.e. literal
values, can be included in the factorization.
It is important to note that in this modeling of RDF(S) data, we do not draw a distinction

between ontological knowledge (the T -Box) and instance data (the A-Box). Instead, for a
given domain, classes and all instances of these classes are modeled equally as entities in the
adjacency tensor X. Furthermore, all predicates from the T -Box and the A-Box form the
slices Xk of X. This way, ontological knowledge is represented similarly to instance data by
an appropriate entry xijk = 1, such that facts about instances as well as data from ontologies
are integrated simultaneously in a single tensor representation. In doing so, ontologies are
handled like soft constraints, meaning that the additional information present in an ontology
guides the factorization to semantically more reasonable results, but doesn’t impose hard
constraints on the model. This makes the model more robust to erroneous or incomplete
ontological data such as the inconsistent usage of owl:sameAs. Consequently, our modeling
has aspects of both a pure data-centric and an ontology-driven Semantic Web approach.

3.3. Machine Learning Tasks on Linked Data

Once the factorization of an adjacency tensor has been computed with R, it can be used
for various learning tasks that are important to Linked Data and the Semantic Web. In the
following we will briefly describe some of these tasks and discuss the benefits of R as
well as the advantages of large-scale relational learning in these application scenarios.

Prediction of Triples The prediction of the truth value of triples is an important task in
many fields of application and can also be used to improve the data quality in automati-
cally created knowledge bases. This task corresponds the link prediction in relational
learning and can be approached with R as described in section 2.3. A very inter-
esting property of R is that the state of a single relationship xijk is conditionally
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independent from all other variables given the expression aTi Rkaj . Once a factorization
of a knowledge base has been computed – what can be done “offline” – this property
enables fast query answering, as the computational complexity of the corresponding
matrix-vector multiplications depends only on the dimensionality of the latent space
A and is independent of the size of a knowledge base. This is an important feature of
R compared to other relational learning approaches where exact inference is often
intractable and even approximate inference remains very time consuming.

Instance Matching In instance matching the task is to determine which entities from het-
erogeneous data sources refer to the same underlying entity; a task that is considered
critical for Linked Data (Ferrara et al., 2008; Ferrara et al., 2011). Instance matching is
essentially equivalent to entity resolution in relational learning and can be approached
with R, by creating a joint adjacency tensor for all data sources whose instances
should be matched and by applying the entity resolution methods as described in chap-
ter 2.

Retrieval of Similar Entities A particular strength of the R factorization is that it
computes a global latent representation of entities, i.e. the factor matrix A. Analogous
to the retrieval of documents via latent-variable models, the latent representation of
entities can be used to retrieve entities that are similar to a queried entity. As discussed
in section 2.2, the matrix A can be interpreted as an embedding of entities into a latent
space that reflects their similarity over all relations in the domain of discourse. Therefore,
in order to retrieve entities that are similar to a particular entity e with respect to all
relations in the data, it is sufficient to compute a ranking of entities by their similarity
to e in A. This can be done efficiently, since A is only an n × r matrix.

Decision Support for Knowledge Engineers Another important application of R is
the automatic creation of taxonomies from instance data. Recently, it has been proposed
that machine learning methods should assist knowledge engineers in the creation of
ontologies, such that an automated system suggests new axioms for an ontology, which
are added under the supervision of an engineer (Auer and Lehmann, 2010). Here, we
consider the simpler task of learning a taxonomy from instance data, which can be
interpreted as a hierarchical grouping of entities. Consequently, a natural approach to
learning a taxonomy for a particular domain is to compute a hierarchical clustering of the
entities in this domain and to interpret the resulting clusters according to their members.
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However, there are only very few approaches that are able to compute a hierarchical
clustering formulti-relational data (Roy et al., 2007), and even less approaches that could
be applied to complete knowledge bases. To compute such a clustering with R, we
exploit again the fact that A reflects the similarity of entities in the relational domain,
and simply compute a hierarchical clustering in this latent-component space. This
approach has the advantage that any feature-based hierarchical clustering algorithm
can be readily be applied to this task. The clustering, however, will still be determined
by the entities’ similarities in the relational domain. While this approach differs in
some important aspects from the system envisioned by Auer and Lehmann (2010), it
can be used to address some of the discussed challenges, in particular scalability.

For all of these tasks the quality of the model can be improved via the application of R
to complete knowledge bases. For tasks like instance matching and taxonomy learning the
scalability to one or multiple knowledge bases is even required, as these tasks are defined
over complete knowledge bases. Scaling R to data sets of this size can therefore be an
important step towards relational learning from complete knowledge bases in the Semantic
Web, what is one of the main motivations for the work in this chapter.

Another noteworthy aspect about learning on Linked Data is the importance of collective
learning, i.e. the inclusion of information that might be more distant in the relational graph
in learning and prediction tasks. This ability of a learning method is not only important
because of the relational nature of Linked Data as discussed in section 1.2.1, but also because
of the way how information is modeled in Linked Data. Since RDF is restricted to dyadic
relations, higher-order relations are often modeled via intermediary nodes such as blank
nodes or abstract entities, such that the actual fact is not included in a single triple but is
spread over a chain of triples. For instance, in version 3.7 of the DBpedia ontology, many
geographical locations such as river mouth locations are modeled via chains of triples such as

(Rhone, mouthPosition, Rhone-mouthPosition),
(Rhone-mouthPosition, longitude, 4.845555782318115),
(Rhone-mouthPosition, latitude, 43.330799).

To access, for instance, the longitude of the river Rhône, a learning method requires therefore
the ability to include information that is “past” the abstract entity Rhone-mouthPosition ,
what is enabled through collective learning.
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Table 3.1.: Computational complexity of standard matrix operations.

Operation Notation Relevant Parameters Complexity

Matrix Multiplicationa AB A ∈ �n×m, B ∈ �m×` O (nm`)
Kronecker Productb A ⊗ B A ∈ �p×r ,B ∈ �q×s O (pqrs )
Sparse Matrix × Dense Vectora Ab p = nnz(A) O (p)
Sparse Matrix × Dense Matrixc AB p = nnz(A),B ∈ �n×m O (pm)
Matrix Inversiond A−1 A ∈ �n×n O (n3)/O (n2.5)
Singular Value Decompositione A = U ΣVT A ∈ �m×n,m ≥ n O (mn2)

aSee Boyd and Vandenberghe (2004, Section C.1.2)
bFollows from A ⊗ B being a pq × rs matrix and the fact that each entry of A ⊗ B has to be computed

individually when there is no special structure in A or B.
cFollows from computingm times the sparse matrix × dense vector product Ab i , where b i denotes the i-th

column of B.
dSee Meyer (2000, p.119) for the standard method, Press et al. (2007, p.108) for the theoretically fastest method.

For all implementations, we consider the complexity of the standard approach O (n3).
eSee Trefethen and Bau III (1997, p.236)

3.4. Complexity Analysis of R-ALS

Scaling learning methods to large data sets, requires low computational complexity and low
memory usage. Bottou and Bousquet (2008) argue that algorithms for large-scale learning
should “scale roughly linearly” with the size of the data. It has already been discussed in
chapter 2 that an important characteristic of relational data is its sparsity, i.e. the fact that
usually only a small number of all possible relationships are true. The key insight to enable
a scalable implementation of R-ALS is that this sparsity of relational data translates
directly to its representation as an adjacency tensor. An entry xijk in an adjacency tensor X is
non-zero if and only if the corresponding relationship is true. Consequently, X is sparse if
and only if the relational data is sparse. Here, we will show that by using sparse linear algebra
it is possible to exploit this property of X such that a sparse implementation of R-ALS
has indeed only a linear computational complexity with regard to the number of entities, the
number of predicates and the number of known facts in a data set. In this analysis we will
assume that each frontal sliceXk is a sparse matrix such that the number of its non-zero entries
nnz(Xk ) is much smaller than the number of possible entries, i.e. nnz(Xk ) � n2. The latent
factors of the factorization, i.e. the matrices A and Rk , are assumed to be dense. Furthermore,
in table 3.1 we list the computational complexity of standard matrix operations that will be
used throughout this chapter.
The relevant parameters of the data and the factorization for the computational complexity
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are the number of objects n, the number of relationsm, the number of known factsp = nnz(X),
and the model complexity, i.e. the number of latent components r . It is easy to see that, due
to the T-2 structure of the R model, the update steps for A and R are linear in
the number of relationsm – regardless of the sparsity of X – since the parameterm occurs
only in the summation indices of equation (2.11) and in the iteration over all frontal slices
Rk in equation (2.15). However, the computational complexity with regard to the number
of entities n, the number of known facts p and the number of latent components r is more
elaborate. Table 3.2 summarizes the complexity of each relevant operation in the update steps
of A and R, from which it can be seen that the parameters n,m, and p occur only as linear
factors. Since these update steps are iterated only a small number of times until the algorithm
reaches convergence or until a maximum number of iterations is exceeded, it follows that a
sparse implementation of R-ALS scales linearly with the size of data. The big advantage
of a sparse over a dense implementation becomes apparent when considering the calculation
of the terms XT

kA or XkA that occur multiple times in the updates of A and Rk . Computing
these terms via dense matrix-matrix products would lead to a computational complexity of
O (n2r ), since Xk ∈ �

n×n and A ∈ �n×r . In contrast, by using sparse matrix-matrix products,
computing XkA leads to a complexity of O (pr ), such that the operation becomes independent
of the size of Xk and only depends on the non-zero entries of Xk . For relational data, this
is equivalent to becoming independent of the number of entities and being only dependent
on the number of known facts. Consequently, for relational data a large reduction in the
computational complexity can be gained by a sparse implementation as it is usually the case
that nnz(Xk ) � n2. However, it can also be seen from table 3.2 that a standard approach to
the computation of normal equations results in a computational complexity that is quintic in
the number of latent components for the updates ofR, even when considering the theoretically
fastest known matrix inversion method. Since this property would be prohibitive for problems
with a larger number of latent components, we will present an improved algorithm that is
only cubic in the parameter r in section 3.5.

The memory complexity of R-ALS is the second important factor for its scalability. For
now, consider thememory requirements of R-ALSwithout the operation F ← ATA⊗ATA

which has a memory complexity of O (r 4). In each iteration, only one frontal slice Xk has
to be kept in memory. Since sparse matrix implementations like the compressed spare
row (CSR) and compressed spare blocks (CSB) format have only a memory complexity of
O (n + nnz(Xk )) (Buluç et al., 2009), our approach scales up to billions of known facts with
regard to it memory requirements. Moreover, except for the computation of ATA ⊗ ATA, all
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Table 3.2.: Computational complexity for operations in the update steps of A and R according
to table 3.1. Variables and terms listed in column “Known Terms and Variables”
are assumed to be already computed and do not affect the complexity of the re-
spective row. Since operations which differ only in the terms ARk and ARTk have
identical computational complexity, we only list operations involvingARk . Variable
assignments are indicated by the symbol “←”.

Update A
Operation Complexity Known Terms and Variables
ATA O (nr 2) A ∈ �n×r

ARk O (mnr 2) A ∈ �n×r Rk ∈ �
r×r k = 1 . . .m

E ←
∑

k XkAR
T
k O (pr )a ARk ∈ �

n×r p = nnz(X) k = 1 . . .m
Bk ← RkA

TARTk O (mr 3) ATA ∈ �r×r Rk ∈ �
r×r k = 1 . . .m

F ← (
∑

k Bk +Ck )
−1 O (mr 2 + r 3) Bk ∈ �

r×r Ck ∈ �
r×r k = 1 . . .m

A ← EF O (nr 2) E ∈ �n×r F ∈ �r×r

Full Update O (m(r 3 + nr 2) + pr )

Update R
Operation Complexity Known Terms and Variables
ATA O (nr 2) A ∈ �n×r

E ← ATA ⊗ ATA O (r 4) ATA ∈ �r×r

F ← (E + λI )−1 O (r 5) E ∈ �r
2×r 2

Gk ← ATXkA O (mnr 2 + pr ) A ∈ �n×r p = nnz(X) k = 1 . . .m
Rk ← F vec

(
Gk

)
O (mr 4) vec

(
Gk

)
∈ �r

2
k = 1 . . .m

F ∈ �r
2×r 2

Full Update O (m(r 4 + nr 2) + r 5 + pr )

aPlease note that p denotes the non-zero entries of the complete tensor X. Hence, no additional factorm is
required.
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operations in table 3.2 that involve dense matrices are only carried out on matrices of size at
most n × r . In cases where even this very moderate memory requirement is too demanding, for
instance when a domain contains a very large number of entities, additional dimensionality
reduction techniques such as the “hashing trick” (Weinberger et al., 2009; Karatzoglou et al.,
2010) can be applied. Similar as for the computational complexity, the problematic operation
ATA ⊗ ATA is introduced through the update step of R. The improved algorithm presented in
section 3.5 will also reduce the memory complexity of these updates to a complexity that is
quadratic with regard to the number of latent components.

Concerning the scalability of R-ALS, it is also interesting to note that the algorithm
can be computed easily in a distributed way. It can be seen from Table 3.2 that the dominant
costs in each update step A are the matrix multiplications XkAR

T
k +XT

kARk , sincemnr 2 > mr 3

for r < n. Due to the sums in the update of A, this step can be computed distributedly by
using a map-reduce approach. First, the current state of A and Rk is distributed to a number
of available computing nodes. Then, these nodes compute XkAR

T
k + XT

kARk as well as the
term Bk +Ck locally for those k that have been assigned to them. Given the results of these
computations, the master node can then reduce the results and compute the matrix inversion,
which involves only r × r matrices and the final matrix product. Since the updates of Rk are
independent of each other, these steps can be computed in a similar way.

3.5. Scalable Core Tensor Updates in R-ALS

It has been shown in section 3.4 that the overall computational complexity for the update
steps of R becomes O (m(r 4 + nr 2) + r 5 + pr ) when using a standard approach to normal
equations. Moreover, the computations within this update step involve the computation of
the matrix ATA ⊗ ATA, which is of size r 2 × r 2, such that the overall memory complexity
becomes O (r 4 + nr + p). Both of these properties are unacceptable for models that require
more than a few latent components, what is very likely to occur on large-scale and complex
data. In the following, we will derive a scalable algorithm to compute updates of R within
R-ALS, by exploiting special properties of the Kronecker product. These improved
updates will feature only a computational complexity that is has cubic computational and
quadratic memory complexity with regard to the number of latent components and thus can
be applied to problems that require a moderate to large number of latent components.

For models without regularization, i.e. when λ = 0, it is relatively straightforward to reduce
the computational complexity for the updates of Rk . By using properties of the Kronecker
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product outlined in section 1.3.1, we can show that

Rk ←
[
(A ⊗ A)T (A ⊗ A)

] −1
vec

(
ATXkA

)
(3.1)

=
(
ATA

) −1
⊗

(
ATA

) −1
vec

(
ATXkA

)
(3.2)

=
(
ATA

) −1
ATXkA

(
ATA

) −1
(3.3)

where equation (3.2) follows from equations (1.9) to (1.11) and equation (3.3) follows from
equation (1.12). Now, the computation of equation (3.3) requires only the inversion of an r × r
matrix ATA, such that it has an overall computational complexity of O (r 3 + nr 2 + nnz(Xk )r ).
Unfortunately, for models with regularization, i.e. when λ , 0, the inverse in equation (2.15)
ranges over a sum of matrices, such that it can not be reduced to a simpler computation as in
the non-regularized case. Since regularization is highly desirable from a machine learning
and also from a numerical point of view, it is important to enable scalable updates for this
class of models, which we will derive in the following. Evidently, each frontal slice Rk in
equation (2.15) is computed by solving a separate ridge regression problem of the form

b =
(
MTM + λI

) −1
MTv, (3.4)

where vec
(
Rk

)
corresponds to b, M corresponds to A ⊗ A, and vec

(
Xk

)
corresponds to v . It

is well-known, that equation (3.4) can be solved via the singular value decomposition of M ,
as described in the following theorem:

Theorem 1 (Lange, 2010, Section 9.3.2). LetM = U ΣVT be the singular value decomposition

ofM . The solution to the ridge regression problem equation (3.4) is then given by

b = V Σ̂UTv

where Σ̂ is a diagonal matrix with entries

Σ̂ii =
Σii

Σ2
ii + λ

.

Since M = A ⊗ A is an n2 × r 2 matrix, the computational complexity of its SVD would be
O (n2r 4) such that a direct computation of theorem 1 would still be far too costly for reasonably
large values for n and r . However, since M is the result of a Kronecker product, we can apply
the following theorem, which enables an efficient computation of its SVD:
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Theorem 2 (Laub, 2004, Theorem 13.10). Let A = UAΣAV
T
A and B = UBΣBV

T
B be the singular

value decompositions of matrices A and B. Then

(UA ⊗ UB ) (ΣA ⊗ ΣB ) (VA ⊗ VB )
T

yields a singular value decomposition of the Kronecker product A ⊗ B.

Consequently, to compute the SVD ofA⊗A, it is sufficient to compute the SVD ofA – which
has only a time complexity of O (nr 2). Yet, the application of theorem 2 alone is not sufficient
to solve theorem 1 efficiently, as it would involve the dense matrix (V ⊗ V ) (Σ ⊗ Σ)(U ⊗ U )T ,
which is of size r 2 × n2 and thus intractable to compute for moderate to large values of n and
r . Fortunately, it is not necessary to compute these Kronecker products explicitly, what we
will show via the combination of equation (1.12) and the following theorem:

Theorem 3 (Minka, 2000, eq. 66). Let A ∈ �m×n and B ∈ �m×n be matrices of identical size.

Then it holds that

vec (A ∗ B) = diag (vec (A) ) vec (B) ,

where the symbol “∗” denotes the entry-wise product of matrices such that (A ∗ B)ij = aijbij

Now, let A = U ΣVT be the singular value decomposition of A, let S = Σ ⊗ Σ, and let Ŝ be a
diagonal matrix with entries

Ŝii =
Sii

S2
ii + λ

.

Furthermore, let P be the matrix such that diag (vec (P ) ) = Ŝ , which can be constructed by
rearranging the diagonal entries of Ŝ via the inverse vectorization operator vec−1r (·) from
definition 5. Then, the following equivalences apply

vec
(
Rk

)
=

(
(A ⊗ A)T (A ⊗ A) + λI

) −1
(A ⊗ A)T vec

(
Xk

)
(3.5)

= (V ⊗ V ) Ŝ (U ⊗ U )T vec
(
Xk

)
(3.6)

= (V ⊗ V ) Ŝ vec
(
UTXkU

)
(3.7)

= (V ⊗ V ) vec
(
P ∗UTXkU

)
(3.8)

where equation (3.6) follows from theorem 1, equation (3.7) follows from equation (1.12), and
equation (3.8) follows from theorem 3. It follows again from equation (1.12) that equation (3.8)
can be further reduced to

Rk = V
(
P ∗UTXkU

)
VT (3.9)
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Now, all Kronecker products have been removed in equation (3.9) such that updates for R
can be computed efficiently. Algorithm 1 lists the entire computation for an update of R
and table 3.3 lists the computational complexity of the important parts of this algorithm as
well as its overall complexity. It can be seen that the computational complexity is reduced to
O (m(r 3 + nr 2) + pr ) what matches the complexity of the non-regularized updates and what is
a large improvement over the complexity O (m(r 4 +nr 2) + r 5 +pr ) of the standard approach to
normal equations. Moreover, the memory complexity has also been reduced to O (r 2 + nr + p)
from originally O (r 4 + nr + p).

Algorithm 1 Scalable computation of updates for R
Input:

Adjacency tensor X ∈ �n×n×m; Latent entity representations A ∈ �n×r ;
Regularization parameter λR ≥ 0; Number of latent components r ∈ �+.

Output:
Core tensor R.

1: function update_R(X, A, λR , r )
2: U , s, V ← svd(A) . s: vector holding the singular values of A
3: ŝ ← s ⊗ s
4: for i = 1, . . . ,r 2 do
5: ŝi ←

ŝi(
ŝi

2+λ
)

6: end for
7: P ← reshape( ŝ, r, r )
8: for k = 1, . . . ,m do
9: Rk ← V (P ∗ (UTXkU ))VT

10: end for
11: return R
12: end function

3.6. Learning from Attributes via Coupled Tensor Factorization

In chapter 2, we were mostly concerned with collective learning over entity-entity relation-
ships and didn’t handle the attributes of entities explicitly. However, much information in the
LOD cloud and in relational data in general is in the form of attributes1 such that it is impor-
tant for a relational learning method to handle attributes efficiently. A possible approach to

1In the Semantic Web terminology, attributes are usually called datatype properties and attribute values are
called literals.
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Table 3.3.: Complexity analysis for relevant computations in Algorithm 1

Scalable Updates R
Operation Complexity Known Terms and Variables
A = U ΣVT O (nr 2) A ∈ �n×r

Ek ← UTXkU O (mnr 2 + pr ) U ∈ �n×r p = nnz(X) k = 1 . . .m
Fk ← P ∗ Ek O (mr 2) Ek ∈ �

r×r P ∈ �r×r k = 1 . . .m
Rk ← VFkV

T O (mr 3) Fk ∈ �
r×r V ∈ �r×r k = 1 . . .m

Full Update O (m(r 3 + nr 2) + pr )

include attributes in the factorization would be to discretize the attribute values in the data, to
replace all triples that include attribute values with the results of this discretization step, and
to create an adjacency tensor from these preprocessed triples. Possible ways of discretization
include the thresholding of continuous variables at their mean, the transformation of categor-
ical variables via one-out-of-n coding, and the transformation of textual data via tokenizing
and stemming. Then, all attribute triples would be replaced by triples of the form

(entity , hasAttribute , (attribute name , v))

where v is the result of the discretization step. In the following, we will refer to the tuples
(attribute name ,v) also as attribute pairs. If the discretization of an attribute value produces
multiple values v1, . . . ,vn , a single attribute triple is replaced by n different discretized triples
wherev = v1, . . . ,vn . For instance, assuming that textual data is preprocessed via tokenization,
an attribute value like

(Albert_Einstein, foaf:name, 'Albert Einstein')

would be replaced by the triples

(Albert_Einstein , hasAttribute , (foaf:name , 'Albert'))
(Albert_Einstein , hasAttribute , (foaf:name , 'Einstein'))

This is essentially the approach considered by Kemp et al. (2006) to include attributes in the
Infinite Relational Model. While this handling of attributes can work for small to medium
sized data sets, it is not well-suited for large-scale learning on the Semantic Web. The main
problem associated with this procedure is that the attribute pairs are included as true entities
in the adjacency tensor, what increases the size of the entity modes significantly. Although
the number of entities n appears only as a linear factor in table 3.2, it is important to note
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X

D

Figure 3.1.: Tensor and matrix structure in attribute modeling on relational data. The adjacency
tensor X holds the multi-relational information, while the matrix D holds the
attribute information. A combined modeling largely increases the size of a tensor
representation. Furthermore, attributes only occur as objects in the attribute slice.

that it is also multiplied by the number of predicatesm and the squared number of latent
components r 2 in the updates of A and R, such that an increase in n can have a noticeable
effect on the runtime of the algorithm. However, it lies in the nature of attribute values and
attribute pairs that they occur never as subjects in a relation or in any predicate other then
the hasAttribute predicate, such that all the additional computations that are introduced
through attribute pairs would be wasted on approximating a part of the adjacency tensor that
does not hold any information and is all zero. Figure 3.1 shows an illustration of this effect.
To overcome this problem, we propose to handle attributes by a separate matrix factorization
which we perform jointly with the tensor factorization. The basic idea is to discretize attribute
values just as described above, but to include the resulting attribute pairs not as new entities
in the adjacency tensor, but as columns in a separate entity-attributes matrix D ∈ �n×` . The
entries dij of D are then set to

dij =

1, if the i-th entity has an attribute value corresponding to the j-th attribute pair
0, otherwise.

ThematrixD is therefore constructed similar as in the relational learning algorithm S (Huang
et al., 2010; Huang et al., 2011), with the only difference, the D runs only over all attributes in
the data, while in S all relations are modeled this way. The entity-attributes matrix D is
then factorized into the matrices A ∈ �n×r and F ∈ �r×` such that

D ≈ AF . (3.10)
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The important part of this factorization is that the latent factor A is shared between the
factorization of the adjacency tensorX and the attribute matrix D. This way, relationships and
attribute values influence the latent representations of entities, such that attributes influence
also the prediction of relationships and vice versa. In the following, we will refer to this
method as coupled tensor-matrix factorization. To include equation (3.10) as an additional
constraint on A in the tensor factorization of X, we add the term ‖D − AF ‖2 + λF ‖F ‖

2 to the
minimization problem (2.5), such that the full optimization problem becomes

min
A,R,F
‖X − R ×1 A ×2 A‖2 + ‖D − AF ‖2 + λA‖A‖

2 + λR‖R‖2 + λF ‖F ‖
2 (3.11)

To adapt R-ALS to this new objective, the update step of A has to be changed such that
it takes the additional factorization of D into account and a new update step for F has to be
included in the algorithm. In particular, the update steps for A and F become:

Updates for A To adapt the updates of A to the new objective equation (3.11), we add two
additional terms DFT and FFT to the updates in equation (2.11), such that an update for
A is computed by

A←

DFT +
m∑
k=1

XkAR
T
k + XT

kARk


FFT +

m∑
k=1

Bk +Ck + λAI


−1

(3.12)

where, as in section 2.5, the matrices Bk , Ck are

Bk = RkA
TARTk , Ck = RTkA

TARk .

The derivation of this update step is essentially identical to the derivation of updates
for A in section 2.5: First, we extend equation (3.11) by considering all frontal slices Xk ,
XT
k , Rk , and RTk simultaneously and then solve the optimization problem only for the

left hand factor A. However, because of the additional term ‖D − AF ‖2, the method of
normal equations can not be applied directly as in section 2.5. Instead, we compute the
partial derivatives of equation (3.11) for the left hand A, set this gradient to zero, and
then solve for A. The result of this computation is the update step equation (3.12).

Updates for F To compute updates for F , it is sufficient to consider only the subproblem
‖D −AF ‖2 + λF ‖F ‖

2, since all other terms in equation (3.11) are independent of F . This
is again a Tikhonov regularization problem and can therefore be solved by

F ←
(
ATA + λF I

) −1
ATD.
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Table 3.4.: Computational complexity added through coupled tensor-matrix factorization for
attributes.

Update A
Additional Operation Complexity Known Terms and Variables

DFT O (qr ) F ∈ �r×` q = nnz(D)
FFT O (`r 2) F ∈ �r×`

Full Update O (m(r 3 + nr 2) + `r 2 + (p + q)r )

Update F
Operation Complexity Known Terms and Variables
(ATA + λF I )

−1 O (r 3 + r ) ATA ∈ �r×r

ATD O (qr ) A ∈ �n×r q = nnz(D)

Full Update O (r 3 + qr )

Handling attributes in this way is essentially equivalent to the naive approach, but sig-
nificantly more efficient to compute. Table 3.4 lists the computational complexity of the
additional operations that are necessary to include attributes in the factorization.1 It can be
seen, that while the additional operations will increase the runtime of the algorithm, they
do not alter the linear scalability of R-ALS. Moreover, the computational complexity
with regard to the number of attributes and predicates is greatly improved. Let n be the
number of entities, ` be the number of attributes, andm be the number of predicates. While a
naive approach that treats attributes as entities would have a computational complexity with
regard to these parameters of O (m(n + `)), the coupled tensor-matrix factorization has only a
complexity of O (mn + `), what can improve the runtime of the algorithm significantly for a
large number of attributes or predicates.

3.7. Experiments

In the following, we will evaluate the scalability of R on synthetic data as well as on
real-world data. Furthermore, we evaluate its performance for various learning tasks on
Linked Data discussed in section 3.2. In particular, we evaluate large-scale link prediction
and the automatic construction of taxonomies. For instance matching we refer to the entity
resolution experiments in section 2.6. As in chapter 2, all experiments have been evaluated
on a single Intel Core 2 Duo machine with two 2.5GHz cores and 4GB RAM, except for

1The operation ATA is not included, since it can be reused from the update step of Rk .
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Figure 3.2.: Scalability experiments on synthetic data. In the attributes plot, Entities denotes the
handling of attributes as entities, while Coupled denotes the handling of attributes
via coupled tensor factorization. In the latent components plot, Scalable denotes
the scalable update algorithm forR of section 3.5, Non-regularized denotes updates
without regularization, and Naive denotes the naive implementation of section 3.4.

experiments where noted otherwise.

3.7.1. Runtime Experiments on Synthetic Data

To evaluate the scalability of our approach, we first conducted experiments on synthetic data,
where we created various random data sets with different numbers of entities n, numbers
of predicatesm, and nonzero entries p. In each experiment we varied exactly one of these
parameters, while keeping all other parameters fixed. Then, to evaluate how well R-ALS
scales with regard to a particular parameter, we computed a factorization of the created data
set with a fixed number r of latent components and recorded the average runtime of a single
iteration in the ALS algorithm. In a further experiment, we also evaluated the runtime of
R-ALS with respect to different values for r , while keeping n,m and p fixed. At last, by
increasing the number of attribute values, we also evaluated how the coupled tensor-matrix
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Table 3.5.: Parameter values for scalability experiments. The columnsMinimum andMaximum
list the minimum and maximum values used in the experiments when the respective
parameter is varied. The column Step lists the step sizes in which the values are
increased from minimum to maximum. The column Default lists the default value
when a parameter is not varied.

Values
Parameter Minimum Maximum Step Default

Entities 105 106 105 104
Predicates 103 104 103 50
Facts 108 109 108 107
Rank 10 100 10 20
Attributes 107 108 107 0 / 108

factorization of section 3.6 scales compared to an approach where attribute values are handled
as true entities. Table 3.5 lists the value ranges that have been used for each parameter in
the experiments, while figure 3.2 shows the average runtime over 20 iterations for these
parameter settings. It can be seen that the results of this evaluation correspond nicely to the
theoretical analysis in sections 3.4 and 3.5. In figure 3.2, R-ALS shows linear scalability
with respect to the number of entities, the number of predicates and the number of known
facts. Even for large parameter values such as 109 nonzero entries, i.e. one billion known
facts, the runtime for a single iteration barely exceeds one minute. Furthermore, it can be
seen that the updates for R as developed in section 3.5 greatly improve the scalability of the
algorithm compared to a naive implementation. In fact, the improved updates for R scale
identical to the non-regularized variant of the algorithm. At last, it can also be seen that the
coupled tensor-matrix algorithm of section 3.6 greatly improves the scalability with regard to
the number of attribute values. As expected from the theoretical analysis, handling attributes
as true entities shows still linear scalability. However, the naive approach has a much steeper
slope in the runtime plot compared to the coupled factorization, because the naive approach
also tries to approximate large parts of the tensor that do not hold any valuable information.

3.7.2. Comparative Runtime Experiments

To compare the runtime performance of R to other tensor decompositions on relational
data, we computed factorizations of the benchmark data sets Kinships, Nations, UMLS, and
Cora from section 2.6. As comparison to R we included CP, which has been used by
Kolda et al. (2005) for learning from large multigraphs, and D which has been used by
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Table 3.6.: Runtime in seconds of various tensor factorization on benchmark data sets. Num-
bers in parentheses denote the number of iterations that were required to reach
convergence. |E| denotes the number of entities, |R| the number of relations in the
data. The symbol - indicates that the algorithm did not converge.

Dataset Algorithm Total Runtime
Number of Latent Components
10 20 40

Kinships CP-ALS 0.74s (30) 1.36s (36) 4.11s (72)
|E|: 104, |R|: 26 A 14.96s (36) 42.62s (57) 173.08s (61)

R-ALS 0.15s (13) 0.23s (17) 0.26s (14)

Nations CP-ALS 1.42s (75) 2.64s (101) 3.57s (79)
(|E|: 125, |R|: 57) A 41.72s (43) 109.44s (55) - (-)

R-ALS 0.76s (35) 0.15s (7) 0.06s (2)a

UMLS CP-ALS 0.58s (25) 1.66s (50) 4.45s (81)
|E|: 135, |R|: 49 A 31.71s (32) 101.61s (35) 423.95s (35)

R-ALS 0.19s (11) 0.26s (13) 0.44s (15)

Cora CP-ALS 9.94s (10) 36.36s (18) 99.92s (25)
|E|: 2497, |R|: 7 A 217s (4) 444s (5) 2085s (11)

R-ALS 2.33s (3) 15.94s (23) 4.04s (5)

aInitialization with 40 latent components already reaches nearly perfect reconstruction.

Bader et al. (2007) for learning from time-varying networks. To compute these factorizations,
we used the CP-ALS (Kolda and Bader, 2009) and A (Bader et al., 2007) algorithms.
To compute the R model, we used R-ALS. Table 3.6 lists the results of these
experiments in terms of the runtime for different numbers of latent components. It can be
seen that R-ALS is at least one order of magnitude faster to compute than A
and also outperforms CP-ALS on a consistent basis. These results are especially noteworthy
when considering that R outperforms CP and D also in terms of the learning
results on these data sets as shown in section 2.6. Furthermore, we compared the runtime
of R to the runtime of MLN, for a comparison to state-of-the-art relational learning
methods. Since there are no published sets of formulas for Kinships, Nations, and UMLS,
we applied structure learning as implemented in the A toolbox to these data sets.
Unfortunately, the structure learning process did not converge within 24 hours of runtime on
these data sets. For the Cora data set, we applied the learnwts command of the A
toolbox to the (B+N+C+T) MLN as published in Singla and Domingos (2006a) – to learn
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Table 3.7.: Statistics for Y2

Y2 core ontology

Number of Resources 2.6 million
Number of Classes 340,000
Number of Predicates 87
Number of Known Facts 33 million

the weights for this set of logical formulas.1 The weight learning process required over
27 minutes of runtime, whereas R-ALS can be computed within seconds as shown in
table 3.6. Moreover, inferring the truth-value for all SameBib relationships in a test-fold with
lifted first-order belief propagation (Singla and Domingos, 2008) required over 53 minutes of
runtime and 5GB of memory, whereas the computation for a R model with 50 latent
components requires less than 0.1 seconds of runtime and less than 170MB of memory. Again,
these results are especially noteworthy considering the learning results of R compared
to MLNs as shown in section 2.6.

3.7.3. Large-Scale Prediction of Unknown Triples

Given these very promising results in terms of runtime scalability, the next objective in our
experiments was to evaluate the ability of R to factorize complete knowledge bases and
to predict unknown triples in this large-scale setting. For this reason, we conducted several
link-prediction experiments on the entire Y2 core ontology (Suchanek et al., 2007; Hoffart
et al., 2011). In these experiments, we used the Y2 core ontology in form of the publicly
available N3 data set without reified meta-facts in version 201103152, for which statistics
relevant to R are listed in table 3.7. Out of the 87 predicates that are included in this
knowledge base, we treated 38 predicates as entity-to-entity relations, while the remaining
predicates were handled as attributes. Furthermore, we included the materialization of
all rdf:type triples and transitive rules, which can be done conveniently via the Y
conversion tools.3 This resulted in a total of 64 million triples. From the raw triple data we
constructed a tensor X of size 3,000,417 × 3,000,417 × 38 and an attribute matrix D of size
3,000,417 × 1,138,407. The attribute matrix D has been created by tokenizing and stemming

1The formulas for the (B+N+C+T) model are publicly available from http://alchemy.cs.washington.
edu/mlns/er/

2This data set has been obtained from http://yago-knowledge.org.
3For this task we used version 20111027 of the Y conversion tools, downloaded from http://

yago-knowledge.org

http://alchemy.cs.washington.edu/mlns/er/
http://alchemy.cs.washington.edu/mlns/er/
http://yago-knowledge.org
http://yago-knowledge.org
http://yago-knowledge.org
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Table 3.8.: Statistics for selected classes in Y2 core

Type Number of entities
wordnet:person 884,261
wordnet:location 429,828
wordnet:movie 62,296

attribute values of textual attributes such as rdfs:label, yago:hasPreferredMeaning etc.
The tensor X has approximately 41 million non-zero entries, while D has around 35.4 million
entries. It can be seen that bothX andD are very sparse. A tensor for the Y2 core ontology
has 4.3 × 1014 possible entries (of which 2.4 × 1013 are valid according to rdfs:range and
rdfs:domain constraints), but only 4 × 107 non-zero entries.
In the first experiments on Y2, the objective was to correctly predict links for the

rdf:type predicate for various higher level classes, namely wordnet:person, wordnet:-

location and wordnet:movie. The choice of these classes is motivated by the fact that they
occur on different levels in the subclass hierarchy and are of different size. Some statistics
for these classes are available in table 3.8. For each of these classes we performed five-fold
stratified cross-validation over all entities in the data in two different settings:

a) Only those rdf:type triples that include the class C that should be predicted were
removed from the test fold. All other type triples, including subclasses of C , are still
present in the data.

b) All rdf:type triples were deleted in the test fold.

The objective in setting a) is unusual for machine learning, since a high correlation exists
between classes and their subclasses. However, it is a very common Semantic Web problem,
as it corresponds to the materialization of rdf:type triples, given an ontology. Setting b),
on the other hand is a very common machine learning problem, as it corresponds to the
classification of entities, given their relations and attributes. As in chapter 2, we employed
the area under the precision-recall curve (AUC-PR) to evaluate the results, due to the large
skew in the distribution of existing and non-existing triples (Davis and Goadrich, 2006).
Table 3.9 shows the results of these experiments. It can be seen that R learns a

reasonable model in both settings. The results for setting a) indicate that given enough
support in the data, R can predict triples that originate from transitive rules such as

∀xyz : classOf(x ,y) ∧ subClassOf(y,z) ⇒ classO f (x ,z)
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Table 3.9.: Link-prediction experiments on Y2.

AUC-PR
wordnet:person wordnet:location wordnet:movie

Random 0.32 0.18 0.06
Setting a) 0.99 1.0 0.75
Setting b) 0.96 0.98 0.51
With attributes - - 0.85

with high precision and recall. But the results for setting b) are also very encouraging,
since they are close to the results of setting a). Not surprisingly, to achieve good results in
setting b) it is necessary to train more complex models. For instance, the results to predict
wordnet:person in setting a) were computed with r = 7, while setting b) required r = 15.
This is consistent with the higher degree of difficulty for setting b). For persons and locations
the factorization was computed without attribute information. To predict type relationships
for wordnet:movie we performed an additional experiment, where we added values of the
predicate yago:hasWikipediaCategory from the full Y2 ontology as attributes to the
factorization. The rationale behind this procedure was that this predicate provides a textual
description for movies that usually includes the token “films”, e.g. “French comedy films”,
“1997 films” etc. It can be seen from the significantly improved results that R can detect
these regularities by using the attribute extension, even to that extend that it surpasses the
results of setting a).

3.7.4. Collective Learning on the Semantic Web

As previously stated, collective learning is an important feature for learning on Linked Data,
due to relational nature of Linked Data and due to the way of how information is modeled via
dyadic relations in RDF. To demonstrate the effect of collective learning for Linked Data, we
carried out a specifically designed link prediction experiment on data extracted from Y2.
In this experiment, the objective was to predict links of the kind

(?s, rdf:type, wikicategory:?nationality_writer),

where ?nationality can be any nationality such as French , American , German etc. and
where ?s is any entity in the data set. The classification of a person as a writer of a particular
nationality is dependent on the birthplace of the writer in question. For this purpose, the
country of birth is a much better correlate than the city in which a person was born, as, for
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(a) Collective learning example on Y. The
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(b) Results for link prediction on Y2 writers
data set over ten-fold cross-validation.

Figure 3.3.: Y2 writers collective learning example and experimental results.

instance, every French writer was born in France but not every French writer was necessarily
born in Paris. However, the way knowledge is usually modeled in RDF, the country of birth
is not directly connected to a particular person, but only indirectly via the person’s city of
birth. Figure 3.3a shows an example of this modeling. Consequently, to exploit the stronger
correlation between the nationality of a writer and the writer’s country of birth, collective
learning is needed. To evaluate the performance of R for this task, we compared it
to algorithms that were previously used for machine learning on Semantic Web data. CP
has been used by Franz et al. (2009) to rank RDF data for faceted browsing, while S has
been applied for link prediction on RDF data (Huang et al., 2010; Huang et al., 2011). It has
been shown in section 2.6 that both of these algorithms have only limited collective learning
capabilities. For this reason, we also included MLNs, where we manually1 specified the rule

wasBornIn(x ,y) ∧ isLocatedIn(y,+z) ⇒ type(x ,+c )

1Unfortunately, we were again not able to get reasonable results with structure learning for MLN.
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and learned the weights for this rule via the A package.1 To create a confined setting,
we extracted a subgraph of the Y ontology consisting only of American, French, German
and Japanese writers, their birthplaces and their respective countries as well as the predicates
yago:wasBornIn, yago:isLocatedIn and rdf:type. Learning only on this subgraph has
the advantage that it is a very controlled setting, i.e. a relational learning algorithm should
only be successful on this data when it can detect the correlation between the rdf:type of
a person and the country of the person’s birthplace. The subgraph was constructed with
SPARQL queries such as

SELECT ?writer, ?birthPlace, ?location WHERE

{

?writer rdf:type wikicategory:French_writer .

?writer yago:wasBornIn ?birthPlace .

?birthPlace yago:isLocatedIn ?location

}

Converting the raw RDF data to a tensor representation, resulted in an adjacency tensor of
size 404 × 404 × 3. On this data we performed ten-fold cross-validation where the objective
was to correctly predict the rdf:type relationships. In each iteration, all rdf:type triples
were removed from the test data. Figure 3.3b shows the results of this experiment. It can
be seen that R is very successful in predicting the correct rdf:type triples, while CP
and S struggle to learn something meaningful on this data, what is due to their missing
collective learning ability.

3.7.5. Learning Taxonomies

In section 3.3 we briefly described how R can be used to learn taxonomies on Semantic
Web data. To evaluate the applicability of our approach, we conducted experiments with
the objective to rebuild an existing taxonomy as closely as possible in a fully unsupervised
setting, i.e. only from entity data without ontological information. For this purpose we
used the large version of the IIMB 2010 benchmark provided by the Ontology Alignment
Evaluation Initiative,2 which contains around 1400 entities of a movie domain. These entities
are organized in an ontology that consists of 5 distinct top-level concepts, namely Budget,
Creature, Film, Language, and Location. The concepts Creature, Film and Location

1+z and +y is Alchemy-specific syntax that replaces the variable with all occurring constants.
2available from http://oaei.ontologymatching.org/2010/im/index.html

http://oaei.ontologymatching.org/2010/im/index.html
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are again subdivided into multiple concepts such as Person and Character, Anime and
Action Movie, or Country and City. In total, there exist 80 concepts and the maximum
subclass-level is 3. A tensor representation of this data is of size 1519 × 1519 × 35. As the
hierarchical clustering algorithm to work in the latent space A, we selected O (Ankerst
et al., 1999), which is a density-based hierarchical clustering algorithm that also provides an
interpretable visual representation of its results. To evaluate the quality of our clustering, we
followed the procedure suggested by Tan et al. (2006) and assigned the F-measure score to a
particular concept that is the highest for this concept out of all clusterings. The idea behind
this approach is that there should exist one cluster for each concept that is pure and holds most
of this concept’s entities. Table 3.10 shows the results of our evaluation, using a R model
with r = 10 and an O clustering withminpts = 1. It can be seen that our approach

Table 3.10.: F-measure for selected concepts and weighted F-measure for all concepts per
subclass-level

Level 1 Level 2 Level 3
Locations 0.95 City 0.99 Capital 0.99
Films 1.0 Anime 0.67 Director 0.78
Creature 1.0 Character 0.73 Character Creator 0.53
Budget 1.0 Person 1.0 Actor 0.98
Language 1.0 Country 0.80
All 0.982 All 0.852 All 0.947

achieves good results throughout all levels, especially for top-level concepts. One reason
for this behaviour is that, on this level, every concept is represented by a sufficient number
of entities, while e.g. some level 2 movie concepts only include two or three entities and
therefore are hard to recognize. Although more sophisticated taxonomy-extraction methods
could be applied, the results are very encouraging. Moreover, it is shown once again that
the latent space A provides important information about a relational domain, even for such
difficult tasks like hierarchical link-based clustering.

3.8. Discussion and Related Work

In this section, we will put the scalability of R-ALS into the context of related tensor
factorizations and also discuss machine learning methods that have been applied to Semantic
Web data.
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3.8.1. Comparison to Tensor Decompositions

The complexity analysis of R-ALS in sections 3.4 and 3.5 showed its high scalability with
regard to the size of relational data. Surprisingly, it is difficult to find detailed results on the
computational complexity for (sparse) tensor decompositions such as CP and T. For this
reason, we provide a brief analysis of state-of-the-art algorithms to compute CP and T in
appendix C, in which we highlight important differences to the complexity of R-ALS. It
can be seen that none of these algorithms scale linearly with the size of relational data, having
at least quadratic complexity with the number of entities and with the number of predicates
in a data set. The analysis in appendix C as well as the discussion in sections 3.4 and 3.5
suggest that multiple factors are important for the scalability of R-ALS: It has been
shown in section 3.4 that sparse linear algebra operations can reduce the runtime complexity
significantly. Similar improvements can also be applied to CP and T. However, only
in combination with the following properties it can take its full effect: Factorizations such
as CP and T-3, which factorize all modes of an adjacency tensor become quadratic
in the number of entities when factorizing the third mode. R avoids this increased
complexity via its T-2 structure, where the third mode of an adjacency tensor is not
factorized. Consequently, the redundancies between relations, which form the third mode in
an adjacency tensor, are not explicitly captured. Since we are not concerned with the analysis
of relations in this thesis, this is a good compromise for the increased scalability. In comparison
to D, R achieves higher scalability through its simpler core structure. To the
best of our knowledge, A is currently considered to be the most efficient algorithm
to compute the D factorization on large sparse data (Bader et al., 2007). To compute
updates for the core matrix R in A, it is required to compute the term

vec (R) ←

 m∑
k=1

(DkA
TADk ) ⊗ (DkA

TADk )


−1 m∑

k=1
vec

(
DkA

TXkADk

)
.

Since the matrices DkA
TADk ⊗ DkA

TADk are of size r 2 × r 2, the matrix inversion alone
would already have a runtime complexity of O (r 5). Furthermore, since the sum inside
the matrix inverse runs over multiple matrices, it is also not clear how this complexity
could be reduced. Hence, the simpler core structure of R does not only allow for
better relational models as discussed and shown experimentally in sections 2.6 and 2.7, but it
also reduces the computational complexity significantly. Another important factor for the
scalability of R is that it does not put orthogonality constraints on the latent factors, as
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required by many matrix and tensor factorizations. This constraint would lead to a quadratic
computational and a quadratic memory complexity with regard to the number of entities for
a T-type factorization such as R, when using state-of-the-art methods to compute
the factorization, as discussed in appendix C. By dropping this constraint and employing
normal equations to compute updates of latent factors, we gain linear computational and linear
memory complexity with regard to the number of entities at the expense of a non-minimal set
of latent components. Since we are not concerned with the direct interpretation of the latent
components in this thesis, this is again a good compromise for the increased scalability. In
summary, the combination of sparse linear algebra with a normal-equations based algorithm
and the T-2 structure of R enables its high scalability on relational data.

3.8.2. Comparison to Semantic Web Machine Learning Methods

To the best of our knowledge, there have yet not been any attempts to apply machine learning
methods which compute a full relational model to Linked Data of the size considered in this
chapter. In the context of the SemanticWeb, Inductive Logic Programming and kernel learning
have been the dominant approaches to machine learning so far (Bloehdorn and Sure, 2007;
d’Amato et al., 2008; Fanizzi et al., 2008). Further approaches to learn from Semantic Web data
include the work by Lin et al. (2011), which proposed to learn Relational Bayesian Classifiers
for RDF data via queries to a S endpoint. S-ML (Kiefer et al., 2008) extends S
queries to support data mining constructs. Bicer et al. (2011) employ a coevolution-based
genetic algorithm to learn kernels for RDF data. Recently, methods such as association rule
mining and knowledge base fragment extraction have been applied to large Semantic Web
databases for tasks like schema induction and learning complex class descriptions (Voelker and
Niepert, 2011; Hellmann et al., 2009). However, all these methods either do not scale to large
data sizes or do not compute a full relational model of a complete knowledge base. Huang
et al. (2011) proposed S, a regularized matrix factorization to predict unknown triples in
Semantic Web data. It has been shown in sections 2.6 and 3.7 that R can outperform
this approach significantly on data where collective learning is important. Probably most
similar to our approach are TR (Franz et al., 2009) and TH (Kolda et al., 2005),
which employ the CP decomposition for learning from Semantic Web data and multigraphs.
The limited scalability and collective learning ability of CP and CP-ALS compared to R
and R-ALS translates therefore also to these models.
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3.9. Summary

In this chapter, we demonstrated that tensor factorization in form of the R decomposition
is a suitable approach for relational learning from Linked Data and showed that the proposed
approach can scale to large knowledge bases. We showed via a thorough analysis of the
computational and of the memory complexity of R-ALS that a sparse implementation
scales linearly with the size of relational data. Furthermore, we derived a very efficient way
to compute updates of the core tensor within R-ALS, which decreases the runtime
complexity with regard to the number of latent components from O (r 5) to O (r 3) and the
memory complexity from O (r 4) to O (r 2). To handle attributes of entities efficiently, we
proposed coupled tensor-matrix factorization, which improves the scalability of the algorithm
with regard to the number of attribute values in the data. We reassessed the theoretical
analysis with experiments on synthetic data, where we showed that R-ALS scales
linearly with the number of entities, predicates, and know facts in a relational data set and can
factorize data consisting of millions of entities, hundreds of predicates and billions of known
facts. Furthermore, we showed that our approach is able to factorize the Y2 core ontology
and predict the types of entities for various higher-level classes in this large knowledge base.
Experimentally, we also demonstrated the effectiveness of the R model for difficult tasks
that are important to Linked Data such as collective link prediction and taxonomy learning.
In its present form, a limitation of R-ALS is its cubic runtime complexity with regard
to the number of latent components. While the algorithm is certainly scalable enough to
handle large knowledge bases that require only a few hundred of latent components, a full
relational model for very complex knowledge bases is currently out of reach. An interesting
direction for future work is therefore to investigate if the inclusion of prior knowledge in the
factorization can reduce the number of latent components that is needed to model complex
knowledge bases. Despite this current limitation, we think that the proposed method opens
up an interesting perspective towards learning from complete knowledge bases in the Linked
Data cloud.





Chapter 4

An Analysis of Tensor Models
for Learning on Structured Data

While tensor factorizations have become increasingly popular for learning on various forms
of structured data, only very few theoretical results exist on the generalization abilities of
these methods. In this chapter, we will discuss the tensor product as a principled way
to represent structured data in vector spaces for machine learning tasks. By extending
known bounds for matrix factorizations, we will derive the first known generalization error
bounds for tensor factorizations in a classification setting. This setting subsumes also link
prediction on multi-relational data consisting of n-ary relations. Furthermore, we will analyze
analytically and experimentally how tensor factorization behaves when applied to over- and
understructured representations, for instance, when two-way tensor factorization, i.e. matrix
factorization, is applied to three-way tensor data.

4.1. Introduction

Learning from structured data is a very active line of research in a variety of fields, including
social network analysis, natural language processing, bioinformatics, and artificial intelli-
gence. While tensor factorizations have a long tradition in psycho- and chemometrics, only
more recently have they been applied to various tasks on structured data in machine learning.
Examples include link prediction and entity resolution on multi-relational data and large
knowledge bases as discussed in this thesis or in (Jenatton et al., 2012; Bordes et al., 2011),
item recommendation on sequential data (Rendle et al., 2010; Rettinger et al., 2012), or the
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analysis of time varying social networks (Bader et al., 2007) – only to name a few examples.
A reason for the success of tensor methods in these tasks is their very appealing property
to efficiently impose structure on the vector space representation of data. Moreover, ten-
sor factorizations can be related to multilinear models, which overcome some limitations
of linear models, such as their limited expressiveness, but at the same time remain more
scalable and easier to handle than non-linear approaches. However, despite their increas-
ing popularity and their appealing properties, only very few theoretical results exist on the
generalization abilities of tensor factorizations. Furthermore, an important open question
is what kind of generalization improvements over simpler, less structured models can be
expected. For instance, propositionalization, which transforms relational data into feature-
based representations, has been considered as a means of relational learning (Kramer et al.,
2001; Huang et al., 2011). In terms of tensor factorization, propositionalization would be
equivalent to transforming a tensor into a matrix representation prior to computing the fac-
torization. While it has been shown empirically that tensor methods usually scale better
with the amount of missing data than their matrix counterparts (Tomioka et al., 2012; J. Liu
et al., 2009; Tomioka et al., 2010; Signoretto et al., 2011) and that they can yield significantly
improved results over “flat” methods which ignore a large part of the data structure as shown
in chapter 2, no theoretical justification of this behavior is known in terms of generalization
bounds.

In this chapter, wewill approach several of these open questions. First, wewill briefly discuss
the tensor product as a principled way to derive vector space representations of structured data.
Subsequently, we will present the first generalization error bounds of tensor factorizations
for classification tasks. We will analyze experimentally the effect of imposing structure on
vector space representations via the tensor product as well as the effect of constraints that
are applied to popular tensor decompositions. Based on the newly derived bounds we discuss
how these results can be interpreted analytically.

4.2. Theory and Methods

In this section we will discuss how structured data can be modeled as weighted sets of n-tuples.
Furthermore, we will show how this modeling enables a closer analysis of the relations
between tensor factorizations and structured data in the following sections of this chapter.
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4.2.1. Structured Data, the Cartesian, and the Tensor Product

To analyze the relation between the order of a tensor and the “structuredness” of data repre-
sentation we introduce the concept of the order of structured data. The general framework
in which we will describe structured data is in form of sets of weightedm-tuples, which are
defined as follows:

Definition 9 (Set of Weightedm-Tuples). LetV = V (1) × · · · ×V (m) be the Cartesian product

overm setsV (1) , . . . ,V (m) and let ϕ : E 7→ � be a real-valued function that assigns a weight to

eachm-tuple in E ⊆ V . A set of weightedm-tuples T is then defined as a 4-tuple (V ,E,ϕ,m).

The order of T is defined as the length of its tuplesm. For conciseness, we will refer to sets of

weightedm-tuples also as weighted tuple-sets.

Weighted tuple-sets can be interpreted in the following way: The elements of the sets
V (1) , . . . ,V (m) correspond to the constituents of the structured data. The set E corresponds
to the observedm-tuples, whileV corresponds to all possiblem-tuples. For a tuple t ∈ E,
the pair (t ,ϕ (t )) corresponds to an observed data point. This is a very general form of data
representation that allows us to consider many forms of structured data. For instance, dyadic
multi-relational data – as considered in previous chapters – has a natural representation as
a weighted tuple-set, where V (e ) is the set of all entities in the data, V (p) is the set of all
predicates, and the weight function ϕ : V (p) × V (e ) × V (e ) 7→ {±1} is defined as1

ϕ (pi ,ej ,ek ) =

+1, if the relationship pi (ej ,ek ) exits
−1, otherwise.

.

Furthermore, sequential or time-varying data can be modeled viam-tuples such as (user, item,
last item) triples for item recommendation (Rendle et al., 2010) or (person, person, month)
triples in time-varying social networks (Bader et al., 2007). In these cases, the function ϕ

could model the rating of a product or the interaction of persons. Traditional attribute-value
data, as it is common in many machine learning applications, can be modeled via (object,
attribute) pairs, which are weighted by the respective attribute values, e.g. ϕ (Anne,aдe ) = 36.
Tuple-sets can be modeled very naturally using tensors in the following way: Let T =

(V ,E,ϕ,m) be a weighted tuple-set and let I (i ) be the standard basis of dimension |V (i ) |, such
that it indexes all elements ofV (i ) . T can then be modeled as a tensor Y ∈

⊗m

i=1 I
(i ) with

1Please note that in this chapter we use the set {±1} to denote existing and non-existing relations instead
of the set {0,1}, which has been used in previous chapters. This is due to formal reasons, as the following
generalization bounds will be based on the number of sign patterns that a factorization can express.
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entries yi1,...,im = ϕ (vi1, . . . ,vim ) for all observed tuples (vi1, . . . ,vim ) ∈ E. For unobserved
tuples (vi1, . . . ,vim ) ∈ V \ E, the corresponding entries in Y are modeled as missing. Using
this construction, each set of objectsV (i ) is indexed separately by a mode of the tensor Y.
Therefore, it holds that the order of the tensor Y is identical to the order of the weighted
tuple-set T . This enables us to rephrase the question how the structuring of a vector space
representation affects the generalization ability of a factorization in terms of the order of
weighted tuple-sets and the order of tensors. In particular we are interested in how the
generalization ability changes for a tensor representation that has not the same order as the
underlying weighted tuple-set – compared to a tensor representation that has the identical
order.
In this work, we will only consider the problem of learning from sets of binary-weighted

tuples, i.e. tuple-sets with weight functions of the form ϕ : E 7→ {±1}. This corresponds to a
classification setting on binary tensors where yi ∈ {±1} indicates the presence or absence of
anm-tuple. Please note that this setting subsumes also the link prediction task as discussed
in earlier chapters.

4.2.2. Tensor Factorizations

In the remainder of this chapter, we will analyze the generalization ability of tensor factor-
ization via the T decomposition. For this purpose, we will first extend the definition
of the T decomposition in section 1.3.3 to tensors of arbitrary order. Furthermore, we
will discuss how different factorization methods can be expressed within this framework
through additional constraints. The T decomposition of anm-th order tensor is defined
as follows:

Definition 10 (T Decomposition). Let Y ∈ �
∏

i ni be a tensor with ord(Y) =m. The

T decomposition with n-rank (r1, . . . ,rm ) factorizes Y such that each entry of Y is described

by the multilinear polynomial

yi1,i2,...,im ≈

r1∑
j1=1

r2∑
j2=1
· · ·

rm∑
jm=1

wj1,j2,...,jm

m∏
k=1

u
(k )
ik ,jk
. (4.1)

We can now make the connection between the T decomposition of a tensor and
weighted tuple-sets as defined in definition 9: the factorization equation (4.1) can be interpreted
as learning a multilinear function γ : V (1) × · · · × V (m) 7→ �which mapsm-tuples to the
entries of Y. In contrast to the weight function ϕ of a tuple set, γ is defined over the whole
Cartesian productV (1) × · · · × V (m) .
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In the following, it will prove convenient to state equation (4.1) in different notations. In
tensor notation, equation (4.1) is equivalent to

Y ≈ X =W ×1 U
(1) ×2 · · · ×m U (m) . (4.2)

where ×k denotes the n-mode product of a tensor and a matrix in mode k as defined in
section 1.3.2. The matrix U (k ) ∈ �nk×rk denotes the latent factor matrix for mode k , while
W ∈ �r1× ...×rm is the core tensor of the factorization. Furthermore, via the unfolding operation
on tensors and the Kronecker product, equation (4.2) can be stated in matrix notation as

Y(k ) ≈ U
(k )W(k )

(
U (m) ⊗ · · · ⊗ U (k+1) ⊗ U (k−1) ⊗ · · · ⊗ U (1)

)T
. (4.3)

We will also shorten n-rank(Y) = (r1, . . . ,rm ) to n-rank(Y) = r . At last, we define some
quantities associated with the T decomposition that will prove convenient for the rest
of this chapter.

Definition 11. Let X = W ×1 U
(1) ×2 · · · ×m U (m) with n-rank(X) = r , m = ord(X) and

X ∈ �
∏

i ni . The number of variables of a T decomposition, i.e. the number of entries in

the latent factors, is then given by

var(X) =
m∏
i=1

ri +
m∑
i=1

niri .

The number of polynomials associated with X, i.e. the number of entries in X, is denoted by

pol(X) =
m∏
i=1

ni .

By applying specific constraints on the core tensor or the latent factors, various important
factorization methods can be expressed as special cases within the T decomposition
framework. One focus of this chapter is to analyze how these constraints affect the generaliza-
tion ability of a factorization. In the following, we will briefly discuss some important models
to illustrate these constraints: Most matrix factorization methods, can be considered a T
decomposition of a second-order tensor. For instance, the singular value decomposition can
be expressed as a T decomposition of a second order tensor with orthogonal factor
matrices. Furthermore, CP can be described as a T decomposition with the additional
constraints that the core tensor W is superdiagonal and r1 = r2 = · · · = rm. Similarly, the
Block-Term decomposition (BTD) (De Lathauwer, 2008) can be viewed as imposing the con-
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straint that the core tensor W is block-diagonal. While CP and BTD are decompositions that
put special constraints on the core tensor, R, as discussed in chapter 2, is a factorization
that constrains the number of different vector spaces under consideration. Specifically, it
requires that some of the latent factors are identical, which corresponds to the fact that for
some setsV (i ) ,V (j ) of the underlying tuple-set, it holds thatV (i ) = V (j ) .

4.3. Generalization Bounds for Low-Rank Factorizations

To get deeper theoretical insight into the generalization ability of tensor factorizations, we
will now present generalization error bounds. In section 4.3.1 and section 4.3.2 we will derive
generalization error bounds for the zero-one loss and real-valued loss functions respectively.
These bounds will be based on the number of different sign patterns that a tensor factorization
can express. In these sections, we will closely follow the theory developed by Srebro et
al. (Srebro, 2004; Srebro et al., 2005) and extend it to the general multilinear setting. The actual
upper and lower bounds on the number of sign patterns that a factorization can express are
then given in section 4.3.3. To derive these bounds, we will employ properties of the tensor
product as discussed in section 1.3.1.
Consider the following setting: Let Y be the tensor representation of structured data T ,

where a subset of entries yi has been observed and let the set Ω =
{
i ��yi observed} hold

the indices of these observed entries. Then, we seek to predict the missing entries in Y, by
computing a factorization such that

Y ≈ X =W ×1 U
(1) ×2 · · · ×m U (m) .

Similar to the matrix case (Srebro, 2004), we now seek to bound the true discrepancy between
the predicted tensor X and the target tensor Y as a function of the discrepancy of the observed
entries Ω of Y. The discrepancy of tensors is defined relative to a specific loss function ∆( · ; · ).
The true discrepancy of a predicted tensor X and a target tensor Y with ord(X) = ord(Y) =m
is defined as

D (X,Y) =
1∏m
i=1 ni

n1∑
i1=1

n2∑
i2=1
· · ·

nm∑
im=1

∆(xi1,...im ;yi1,...,im ),

while the empirical discrepancy is given as

DΩ (X,Y) =
1
|Ω |

∑
i∈Ω

∆(xi;yi ).

We restrict the latent tensor X to the class of fixed n-rank tensors of a given order, which will
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be denoted by
Xr ··=

{
X �� n-rank(X) ≤ r

}
Please note that by restricting the factorization to a T-type decomposition and by
fixing n-rank(X) = r , we also fix the quantity var(X), while ord(X) and pol(X) are already
determined by the target tensor Y. We now seek to derive PAC-type error bounds of the form

∀Y ∈ �
∏

n : Pr
Ω

(
∀X ∈ Xr : D (X,Y) ≤ DΩ (X,Y) + ε

)
> 1 − δ (4.4)

such that the true discrepancy for all tensors in Xr is bounded by their discrepancy on the
observed entries Ω plus a second term ε . An important assumption that will be made is that
the set of observed entries Ω is chosen uniformly at random.

4.3.1. Bounds for Zero-One Sign Agreement Loss

A reasonable choice for ∆(·; ·) in a classification setting is the zero-one loss, i.e.

∆(a;b) =

0, if sgn(a) = sgn(b)
1, otherwise..

For target entries yi ∈ {±1}, the zero-one loss ∆(xi;yi ) is independent of the magnitude
of the predictions xi and only depends on their sign. A central concept in the following
discussion will therefore be the equivalence classes of tensors with identical sign patterns,
i.e. the elements of the set

Sn,r =
{
sgn(X) ∈ {−1,0,+1}

∏
n ���X ∈ �∏

n, n-rank(X) ≤ r
}
.

The cardinality |Sn,r | specifies therefore, how many different sign patterns can be expressed
by factorizations with n-rank(X) ≤ r and pol(X) =

∏
n.

Lemma 1. Let Y ∈ {±1}
∏

n be any binary tensor with ni > 2. Furthermore, let Ω be a set of

|Ω | uniformly chosen entries of Y, let δ > 0, and let r ∈ �ord(Y)
+ . Then, it holds with probability

at least 1 − δ that

∀X ∈ Xr : D (X,Y) < DΩ (X,Y) +

√
log |Sn,r | − logδ

2|Ω |

where |Sn,r | ≤
(
4e (ord(X)+1) pol(X)

var(X)

) var(X)

Proof. The following proof is analogue to the matrix case (Srebro et al., 2005), hence we will
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only provide a brief outline. First, we fix Y and X. For an index i, chosen uniformly at
random, it holds that ∆(xi;yi ) ∼ Bernoulli(D (X,Y)). For independently and uniformly
chosen observed entries, the sum of Bernoulli distributed random variables |Ω |DΩ (X,Y)
follows a binomial distribution with mean |Ω |D (X,Y). It follows from Chernoff’s inequality
that

Pr
Ω
(D (X,Y) ≥ DΩ (X,Y) + ε ) ≤ exp

(
−2|Ω |ε2

)
Furthermore, since ∆(xi;yi ) depends only on the sign of xi , the random variable DΩ (X,Y) is
identical for all tensors X in the same equivalence class of sign patterns. Since there exist
|Sn,r | different equivalence classes, lemma 1 follows by taking a union bound of the events
D (X,Y) ≥ DΩ (X,Y) + ε for these random variables. The actual bound on |Sn,r | is deferred
until section 4.3.3. �

4.3.2. Bounds for Real-Valued Loss Functions

Before deriving upper and lower bounds for the number of sign patterns, we also provide a
bound for real-valued loss functions, which is the more commonly used setting for tensor
factorizations. However, these loss functions, and therefore also their associated discrepancies,
are not only determined by the sign of an entry xi but are also determined by the value of
this entry. We will therefore derive bounds for the pseudodimension of low-rank tensors.

Lemma 2. Let Y ∈ {±1}n be any binary tensor with ni > 2. Furthermore, let |∆(·; ·) | ≤ b be a

bounded monotone loss function, let Ω be a set of |Ω | uniformly chosen entries of Y, let δ > 0,
and let r ∈ �ord(Y)

+ . Then, it holds with probability at least 1 − δ

∀X ∈ Xr : D (X,Y) < DΩ (X,Y) +

√√√
32

log |Sn,r ,T | log
b |Ω |

var(X)
− logδ

|Ω |

Proof. Again, the following proof is analogue to the matrix case (Srebro et al., 2005), hence
we will outline it only briefly. As mentioned in section 4.2.2, tensor factorizations can be
interpreted as real-valued functions, which map from tuples of indices to entries of the tensor,
i.e. a multilinear function γ : V (1) × · · · × V (m) 7→ �, where V (i ) indexes the i-th mode.
This allows to use the pseudodimension of classes of real-valued functions to obtain similar
generalization error bounds as for matrices. The difference to the matrix case is that for
tensors the domain of the function γ ranges of tuples of fixed lengthm, while for matrices it
ranges over ordered pairs. Therefore, we first bound the pseudodimension of n-rank tensors
via the number of sign patterns relative to a threshold tensor T ∈ �

∏
n . The equivalence
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classes for these relative sign patterns are given by the set

Sn,r ,T =
{
sgn(X − T) ∈ {−1,0,+1}

∏
n ���X ∈ �∏

n,n-rank(X) ≤ r
}
.

The concrete bound for |Sn,r ,T | will be given in section 4.3.3. Using (Srebro, 2004, Theorem 44)
we can then obtain the desired bound. �

4.3.3. Bounds on the Number of Sign Patterns

Following the discussion in section 4.3.1 and section 4.3.2, we now seek to bound the number of
possible sign patterns |Sn,r | and the number of relative sign patterns |Sn,r ,T | for tensorsX ∈ Xr .
For this purpose, consider the polynomial form of the T decompositions as given in
equation (4.1). Due to the multilinearity of tensor factorizations, the degree of the polynomial
in equation (4.1) is equal to ord(X) + 1. Furthermore, for tensors of fixed size and n-rank, the
quantities pol(X) and var(X) are also fixed. Using this property of multilinear factorizations,
we can bound the number of possible sign patterns of tensors with n-rank(X) = r by using
their polynomial representation. Following Warren (1968) it has been shown, that the number
of possible sign patterns for polynomials are bounded by

Theorem 4 (Srebro, 2004, Theorem 34, 35). The number of sign patterns ofm polynomials, each

of degree at most d , over q variables is at most( 4edm
q

) q
for allm > q > 2.

By combining the polynomial form of tensor factorizations equation (4.1) and theorem 4,
we can immediately derive the following lemma which bounds the number of possible sign
patterns for n-rank tensors.

Lemma 3 (Upper Bound for Sign Patterns). The number of possible sign patterns of am-th

order tensor X ∈ �
∏

n =W ×1 U
(1) ×2 · · · ×m U (m) with n-rank(X) = r is at most

|Sn,r | ≤

( 4e (ord(X) + 1) pol(X)
var(X)

) var(X)

for pol(X) > var(X) > 2.

Furthermore, the number of relative sign patterns, i.e. |Sn,r ,T |, can be bounded in the same
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way, since for

yi1,...,im − ti1...,im =

r1∑
j1=1

r2∑
j2=1
· · ·

rm∑
jm=1

wj1,...,jm

m∏
k=1

u
(k )
ik jk
− ti1...,im

we have again pol(X) polynomials of degree ord(X) + 1 over var(X) variables.
Next, we provide a lower bound on the number of sign patterns, by interpreting tensor

factorization as multiple simultaneous linear classifications.

Lemma 4 (Lower Bound for Sign Patterns). The number of possible sign patterns of am-th

order tensor X ∈ �
∏

n =W ×1 U
(1) ×2 · · · ×m U (m) with n-rank(X) = r is at least

|Sn,r | ≥

(
ni

ri − 1

) 1
ni
(ri−1) pol(X)

Proof. First, consider the T decomposition in its unfolded variant, i.e.

X (i ) = U
(i )W(i )

(
U (m) ⊗ · · · ⊗ U (i+1) ⊗ U (i−1) ⊗ · · · ⊗ U (1)

)T
Let B = U (m)⊗· · ·⊗U (i+1)⊗U (i−1)⊗· · ·⊗U (1) ∈ �

∏
n/ni×

∏
r/ri , and fixU (k ) ∈ �nk×rk with rows

in general position for all k = 1 . . .m. We now consider the number of possible sign patterns of
matrices U (i )W(i )B

T . It follows from the rows being in general position that rank
(
U (k )

)
= rk

for all k = 1 . . .m (Hassoun, 1995, Sec. 1.3.2). Furthermore, since the tensor product preserves
the linear independence of vectors, it follows that span(B) = �

∏
r/ri (Anthony and Harvey,

2012, Sec. 6.1.4). Although B is highly structured, it follows that the matrix productW(i )B
T

varies over all possible ri ×
∏

n/ni matrices. Therefore, each column of sgn(U (i )W(i )B
T ) can

be considered an independent homogeneous linear classification of ni vectors in�ri , for which
exactly

2
ri−1∑
k=0

(
ni
k

)
>

(
ni

ri − 1

) ri−1
such classifications exists. Consequently, this many sign patterns exist for each of the∏

n/ni = pol(X)/ni columns ofU (i )W(i )B
T . �

Next we analyze the tightness of bounds in lemma 3 and lemma 4. Let m = ord(X), let
α = 4e (m + 1), let ∀i : rmin ≤ ri , and similarly let ∀i : nmax ≥ ni . Then, for rmin ≥ α1/m it
follows from lemma 3 that

|Sn,r | ≤

(
αnmmax

rmmin

) var(X)

≤

α1/mnmax

rmin


m var(X)

≤ n
m var(X)
max
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Furthermore, for low-rank factorizations with ni > r 2i and pol(X) > m

ri−1
var(X) it follows

from lemma 4 that

|Sn,r | ≥

(
ni

ri − 1

) 1
ni
(ri−1) pol(X)

≥
√
ni

1
ni
(ri−1) pol(X)

≥ n

1
2ni

m var(X)
i

Hence, the bound is tight up to a multiplicative factor in the exponent.

4.4. The Effect of Structure and Constraints

In section 4.3 we derived bounds on the generalization error of tensor factorizations. In this
section we discuss what conclusions can be drawn from the derived bounds. In particular, we
are interested in how additional structure or constraints affect the generalization ability of
tensor factorizations. For this purpose, wewill first present a setting inwhich it is reasonable to
compare tensor factorizations of different order. Furthermore, we will evaluate experimentally
how the generalization ability of tensor factorizations behaves with the change of structure
and constraints. At last, we will discuss how these results can be interpreted with respect to
the derived generalization bounds.

4.4.1. Comparable Tensors

Since it is not reasonable to compare arbitrary tensor factorizations, consider the following
setting: Let T = (V ,E,ϕ,m) be a weighted tuple-set of order m and let Y be the tensor
representation of T . Furthermore, let Y− be a tensor representation of T such that the k-th
mode of Y− is indexed by the set

V (k )− =

V (k ) ,k , i , j

V (i ) × V (j ) ,k = i .

This means that for two index setsV (i ) ,V (j ) of T only a single vector space representation
is used in Y−. Consequently, it holds that ord(Y−) = ord(Y) − 1. This setting corresponds,
for example, to propositionalization in multi-relational learning. We will refer to Y− as
an understructured representation of T . The opposite setting would be an overstructured

representation where the tensor Y− is the correct representation of T , while Y represents one
true index setV (i )− of T by two modes. For both, the under- and the overstructured case,
we are interested in seeing how the generalization ability of a tensor factorization changes by
factorizing Y compared to Y−. Without loss of generalization, let i =m−1 and let j =m where
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m = ord(Y) and ` = ord(Y−) =m − 1. Furthermore, let X =W ×1 U
(1) ×2 · · · ×m U (m) ∈ �n

and X− = W− ×1 U
(1)− ×2 · · · ×` U

(`)− ∈ �n− be factorizations of Y and Y−. Since we are
only interested in the effect that the order of data representation has on the generalization
ability, we want to exclude the effect of different ranks. Therefore, analogously to section 4.3,
we restrict the tensors X and X− to be of similar n-rank, in order to get comparable models.
Since it holds for the Kronecker product that rank(V ⊗W ) = rank(V ) rank(W ), we require
that

r−k =

rk ,k ,m , `

rmr` ,k = `

It also follows immediately from the construction of Y and Y− and the properties of the
Cartesian product that

n−k =

nk ,k ,m , `

nmn` ,k = `

In the following, we will refer to tensors X and X− that have these properties as compara-

ble tensors. Please note that for comparable tensors, it holds that var(X−) > var(X), since
nmn`rmr` > nmrm + n`r` . Furthermore, it holds that ord(X−) + 1 = ord(X) and pol(X−) = pol(X).

4.4.2. Experimental Results

Given comparable tensors, we evaluated experimentally how tensor factorization behaves
under the change of structure and constraints. The experiments were carried out on synthetic
data with different amounts of missing data. To evaluate the effects of structure, we created
a third-order tensor T =W ×1 A ×2 B ×3 C , where W ∈ �5×10×2, A ∈ �50×5, B ∈ �100×10,
C ∈ �20×2 and where all entries of the core tensor and the factor matrices had been drawn
from the standard normal distribution N (0,1). From T we created the target tensor Y by
setting yijk = sgn(tijk ). Furthermore, the set of observed entries Ω has been drawn uniformly
at random, where we increased the ratio of missing entries from [0.1,0.9]. To evaluate the
effects of under- and overstructured representations, we compared three models: a T-3
decomposition, which is the correct model, the singular value decomposition which is an
understructured model and a T-4 decomposition, which is an overstructured model.
Moreover, the SVD has been computed on all possible unfoldings Y(i ) , where i ∈ {1,2,3}. For
the T-4 decomposition, we split the second mode of Y into two size-10 modes, such
that Y4 ∈ �

50×10×10×20. For each model and each ratio of missing entries we computed 100
factorizations and recorded the F1-score for the classification of the missing entries compared
to the ground truth. Figure 4.1a shows the results of these experiments. As expected, the
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Figure 4.1.: Mean and standard error of the F1-Score over 100 iterations per percentage of
missing data. SVD (i) denotes the singular value decomposition of Y(i ) , i.e. the
unfolding of the i-th mode of Y.

true model provides the best overall performance. One understructured model, i.e. SVD (3),
shows comparable results to the true model for low amounts of missing entries but scales
significantly worse as the missing data increases. The overstructured model displays the
opposite behaviour; it shows reduced overall generalization ability compared to the true
model but is more stable with the amount of missing data.

In similar experiments we also evaluated the effects of constraints. For this purpose, we cre-
ated synthetic CP and R models under similar conditions as in the previous experiment.
However, in this experiment we evaluated how the correct model compared to an uncon-
strained T model. Figure 4.1b and figure 4.1c show the results of these experiments.
Again, the true models show the best overall performance in both experiments. Furthermore,
in both settings, the constrained models scale better with the amount of missing data than
the unconstrained T model.

4.4.3. Discussion

The previously derived generalization bounds can provide insight in how to interpret these
experimental results. First, note that both terms in equation (4.4), i.e. DΩ (X,Y) and ε , are
influenced by the number of sign patterns that a factorization can express. For DΩ (X,Y) this
is the case because the discrepancy will increase when a model X is not expressive enough to
model the sign patterns of a target tensor Y. Furthermore, it has been shown in section 4.3
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that the term ε grows with the number of sign patterns. Since it has also been shown that
the upper bound on the number of sign configurations in lemma 3 is tight at least up to a
multiplicative factor in the exponent, we consider how this bound changes with the order
of the data representation – to see what possible effects the change of structure can have in
terms of the generalization ability.

Corollary 1. For comparable tensors X ∈ �n , X− ∈ �n− with ord(X) = ord(X)− + 1,
n-rank(X) = r and n-rank(X)− = r−, the ratio of upper bounds on then number of possi-

ble sign patterns is at most

1 <
O ( |S−n,r |)

O ( |Sn,r |)
<

( 4e (ord(X−) + 1) pol(X)
var(X−)

)v
where v = nmn`rmr` − (n`r` + nmrm ) > 0

Proof. It follows straight from the definition of comparable tensors that var(X−) can be
rewritten as var(X−) = var(X) +v . Furthermore, let

α = 4e (ord(X−) + 1) pol(X)

β = 4e (ord(X) + 1) pol(X) = α + 4e pol(X)

Then, it holds that

O ( |S−n,r |)

O ( |Sn,r |)
=

αvar(X)+v

var(X−)var(X)+v
var(X)var(X)

βvar(X)

=

(
α

var(X−)

)v αvar(X)

βvar(X)

var(X)var(X)

(var(X) +v )var(X)
≤

(
α

var(X−)

)v
�

The main result of corollary 1 for this discussion is that the bound increases as we decrease
the order of the tensor. This suggests that as we increase the order of the data representation,
we will reduce the term ε in equation (4.4). As the amount of missing data increases, it is
therefore likely to see increasingly severe overfitting for X− compared to X. However, when
X− is the correct and X is an understructured representation, O ( |S−n,r |) > O ( |Sn,r |) also
suggests that the model X might not be expressive enough to model the sign patterns of Y−.
This corresponds nicely to the experimental results shown in figure 4.1a. The understructured
models are expressive enough to model the sign patterns of Y, as seen in the case of SVD (3).
However, they also scale significantly worse than the correct model with the amount of
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missing data. The overstructured T-4 model scales even better with missing data than
the true model, but at the same time gives significantly worse overall results, what suggests
that it might not be expressive enough. A possible interpretation is therefore, that the ratio
between expressiveness and overfitting is superior for a correct model specification. Since
the correct model X has a much smaller number of variables, it should also be noted that the
memory complexity of X is significantly reduced compared to X−.

Similar arguments apply for the effect of constraints. Here, the key insight is that both
CP-type and R-type constraints decrease the number of variables in a model. Models like
CP or the Block-Term Decompostion require that W is superdiagonal or block-superdiagonal
and therefore set most entries in the core tensor towi = 0. Models like R on the other
hand, decrease the number of variables through the constraint that some factor matrices U (i ) ,
U (j ) have to be identical. Since O ( |Sn,r |) depends exponentially on var(X), conclusions similar
to the effects of structure can be drawn with regard to the effects of constraints. It suggests
that a model with a larger number of variables, i.e. fewer constraints, has more capacity to
model sign patterns, but at the same time is more likely to overfit as the amount of missing
data increases. Again, this corresponds nicely to the experimental results in figure 4.1b and
figure 4.1c.

4.5. Related Work

We are not aware of any previous generalization error bounds for tensor factorizations or
of any theoretical results that relate the order of a tensor and the order of structured data
to the generalization ability of factorizations. Our derivation of error bounds for the tensor
case builds strongly on the work of Srebro et al. (Srebro et al., 2005; Srebro, 2004), which
provided error bounds for matrix factorizations with zero-one loss and general loss functions.
Wolf et al. (2007) derived similar bounds in the context of rank-k SVMs. For general matrices,
Candès and Recht (2009) and Candès and Plan (2010) show that under suitable conditions
a low-rank matrix can be recovered from a minimal set of entries via convex optimization
and also provide theoretical bounds. Gandy et al. (2011) and Tomioka et al. (2012) extend
these methods to tensor completion, although without providing error bounds. It has also
been shown experimentally that by adding structure to the vector space representations via
the tensor product, the amount of data needed for exact recovery can be greatly reduced
(Tomioka et al., 2012; Tomioka et al., 2010).
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4.6. Conclusion

To obtain a deeper understanding of the generalization ability of tensor factorizations, we
derived the first known generalization error bounds based on the number of sign patterns
that a tensor factorization can express. Using a general framework to describe structured
data based on weighted tuple-sets, we analyzed how tensor factorizations behave when their
order does not match the true order of the data. We showed experimentally that structuring
vector space representations via the tensor product, up to the true order of the data, adds
important information such that tensor models often scale better with sparsity or missing data
than their understructured counterparts. We also discussed analytically how this behaviour
can be explained in the light of the newly derived generalization bounds. In this work, we
only considered binary values for the target tensor Y, which corresponds to a classification
setting. For future work, it would prove very valuable to also derive error bounds for the
more general case of real-valued weight functions. Since the current error bounds are based
on the assumption that the observed entries are independently and identically distributed,
what – especially for structured data – might not hold, it might also be useful to consider
techniques as developed by Mohri and Rostamizadeh (2009), to overcome this limitation.



Chapter 5

Conclusion

In this thesis, we examined several aspects of tensor factorization for relational learning,
which we want to summarize in this chapter and furthermore discuss interesting directions
for future research.

5.1. Summary

In chapter 2 we proposed R, a novel tensor factorization for relational learning, and
discussed its properties and applications. Due to its latent variable structure, R is able
to capture global dependencies in relational data and also shows a strong collective learning
effect such that information that is more distant in the relational graph can be efficiently
exploited. Furthermore, the model does not require deep domain knowledge such that it can
be applied easily to most relational domains. These factors contributed all to a very good
performance of the factorization for different relational learning tasks. On various benchmark
data sets, R was usually able to outperform related tensor factorization approaches and
moreover, to provide better or on-par results when compared to state-of-the-art relational
learning methods. Another feature of R is that it renders relational learning very
manageable, what is less quantifiable than its prediction performance but also very important
for its applicability. As previously noted, no prior knowledge about a domain of application
is needed for the functioning of the model, what facilitates the learning process significantly.
Moreover, R enables the application of non-relational algorithms to relational data via
its latent representation of entities for a wide range of tasks. This way, existing and proven
machine learning methods that solve these tasks for vector space representations can be
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reused. At last, we also want to make a case for the simplicity of implementing R-ALS,
which requires less than 200 lines of code in P, NP and SP (Jones et al., 2001; T. E.
Oliphant, 2007). Moreover, any implementation of R-ALS can directly exploit highly
optimized linear algebra libraries via the B and L interface (Anderson et al., 1999)
since the algorithm uses only standard matrix operations in its computations.

In chapter 3 we showed that an efficient computation of R scales linearly with the
number of entities, the number of relations and the number of known facts, such that complete
knowledge bases of the size of the Y2 core ontology can be factorized on a single desktop
computer. Moreover, we showed how attributes of entities can be handled efficiently via
coupled tensor-matrix factorization and also reduced the runtime as well as the memory
complexity of R-ALS significantly. Both of these improvements also increased the
applicability of R to Linked Data, where learning tasks such as instance matching or
taxonomy learning require algorithms to scale up to the size of complete knowledge bases
and where much of the information about entities exists in form of attribute values.

One of the main results of this thesis is the fact that the results of chapter 2 and chapter 3
were achieved with a single relational learning approach that combines both, state-of-the-art
learning results and linear scalability with the size of relational data. This property of R,
in combination with its versatility to approach different learning tasks, can be an important
step towards relational learning from complete knowledge bases in the web of data.

In chapter 4 we discussed tensor factorization as a principled way for learning from struc-
tured data. For this purpose, we derived the first known generalization error bounds for
tensor factorizations in a classification setting on structured data, which also subsumes link
prediction on relational data as a special case. Moreover, these bounds are not only inter-
esting with regard to the analysis of the generalization ability of tensor factorizations in
this setting, but they also give valuable insight how the improved scalability with missing
data of higher-order factorizations can be interpreted. While the bounds presented in this
thesis are currently confined to a classification setting where the observed entries uniformly
distributed, it can be a first step to a rigorous analysis of the advantages of higher-order data
representations.

5.2. Outlook

The R model has shown very good results, both in its ability to learn from relational data
and in its scalability with the size of relational data. In the following, we want to briefly outline
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interesting directions for future research that can further improve its relational learning
capabilities and its applicability to large knowledge bases.

L D  O V

A limiting factor for the scalability of R is its computational complexity and its memory
complexity with regard to the number of latent components r , which is cubic for R-ALS.
Hence, relational domains that require a very large number of latent components are currently
out of reach for computational reasons. A very interesting and valuable line of research is
therefore to reduce the complexity of the factorization with regard to this parameter. An
interesting observation in this context is that relations that require a large number of latent
components can often be explained efficiently via simple patterns on the observable variables
of the data. For instance, consider a simplified instance of the relation marriedTo, where
each person is married to exactly one other person. The adjacency matrix for this relation –
after appropriate reordering of columns and rows – would be a square matrix A with entries
aij such that

aij =

1, if j = i + 1 ∨ j = i − 1
0, else.

Hence, all super- and subdiagonal entries of A are set to one and all other entries are set to
zero. It is easy to show that this adjacency matrix can be created via A = P ⊗ I , where

P =

[
0 1
1 0

]

and where I is the identity matrix whose size corresponds to the number of marriages in the
data. Since both matrices P and I are of full rank, and since rank(A ⊗ B) = rank(A) rank(B),
the matrix A = P ⊗ I would also be of full rank. Therefore, while R would certainly be
able to learn the model for such a high-rank relation – what we also verified experimentally
on synthetic data – it would also need a large number of latent components to reconstruct

the data exactly, what limits its scalability on such relations. Interestingly, although such an
instance of marriedTo would have a high complexity when explained via latent variables, it
could be explained very easily via the simple rule

marriedTo(a,b) ⇔ marriedTo(b,a),

which operates on the observable variables of the data. Being able to exploit these kind of
patterns on observable variables efficiently could therefore be a very valuable extension to
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Figure 5.1.: Log-log plots of the in-degree distribution for various relations in the Y2
ontology. In such log-log plots, the degree distribution in scale-free networks
tends to form a straight line for large k with slope −γ (Jeong et al., 2000).

the R model, for which we examine in ongoing research the use of additive tensor
factorizations.

SF R

Many networks in social network analysis, computer science or biology are assumed to be
scale-free and heavy-tailed (Clauset et al., 2009). In a scale-free network, the probability of
a randomly selected node having exactly k links to other nodes in the network follows a
power-law distribution

P (k ) ∼ k−γ ,

where the scaling parameter γ lies typically within 2 ≤ γ ≤ 3. Interestingly, similar degree
distributions can be observed on large-scale multi-relational data. For instance, figure 5.1
shows a few examples of relations in the Y2 ontology, where the in-degrees of entities,
i.e. their occurrences of objects in the particular relation, are distributed very similar to
a power-law distribution. In its present form, R does not explicitly account for
the scale-free nature of many networks, what can potentially diminish its ability to model
such networks. An interesting extension of R could therefore be to include power-law
distributed bias terms in the factorization, such that

P (xijk = 1) ∝ aTi Rkaj + bini + boutj ,

where bini and boutj represent the general probability of nodes i and j to be the subject or the
object in a relationship respectively. By grouping these bias terms into vectors bin and bout
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any by enforcing a power-law distribution of their entries, the desired effect of scale-free
degree distributions could be modeled. Possible ways to enforce such power-law distributions
have been considered in form of reweighted `1 regularization (Q. Liu and Ihler, 2011) and
Pitman-Yor processes (Teh, 2006) which could, similarly as t-logistic regression (Ding and
Vishwanathan, 2010), be interesting starting points to extend the R model to scale-free
networks.

S L M

It has been discussed in section 2.2 that by using the least-squares loss to compute the R
factorization, we implicitly assume that the random variation in an observed tensor X is
normally distributed, i.e. that

xijk ∼ N (aTi Rkaj ,σ
2).

However, for binary-valued variables xijk as in relational data, the Bernoulli distribution
would usually be the preferred distribution to model the random variation of these variables.
Conveniently, the Bernoulli distribution is also a member of the family of exponential distribu-
tions, such that under an appropriate loss function, R can be interpreted as computing
the MAP estimates of A and R, where

xijk ∼ Bernoulli(aTi Rkaj ).

In the theory of the exponential family, the logistic function describes the inverse parameter
mapping of the Bernoulli distribution. In Nickel and Tresp (2013b), we examined therefore a
logistic variant of the R factorization to describe the random variation in the data via a
Bernoulli distribution, by changing the loss function to the logistic loss and by optimizing

argmax
A,R

n∑
i=1

n∑
j=1

m∑
k=1

xijk logh(aTi Rkaj )+ (1−xijk ) log(1−h(aTi Rkaj ))+λA‖A‖2+λR‖R‖2 (5.1)

where
h(aTi Rkaj ) ··=

1
1 + exp(−aTi Rkaj )

denotes the logistic function. Independently, a similar logistic extension of the R
factorization has also been proposed by London et al. (2013). Unfortunately, there exists
no closed form solution to compute equation (5.1), such that we employed a gradient-based
approach via quasi-Newton optimization this objective. Using the logistic extension of R,
it was possible to improve the link prediction results compared to R-ALS as shown
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Table 5.1.: Area under the precision-recall curve on the Kinships, Nations, and U.S. Presidents
data sets for logistic and least-squares R models.

AUC-PR
Kinships Nations U.S. Presidents

R-ALS 0.966 0.843 0.805
R-Logit 0.981 0.851 0.800

in table 5.1. Especially the improvements on Kinships are noteworthy, considering the already
very good results of R-ALS on this data set. Unfortunately, the partial gradients of
equation (5.1) include terms of the form(

h
(
ARkA

T
)
− Xk

)
A,

which can not be reduced to a significantly simpler form, due to the logistic function h(·).
Currently, the logistic variant of R requires therefore to compute the dense matrix
ARkA

T , what limits its scalability as it results in a quadratic runtime and memory complexity
in the number of entities. Hence, a valuable direction of future work would be to improve
the scalability of logistic R, as it is currently too limited for practical use on larger data
sets but simultaneously shows encouraging results on benchmark data.



Appendix A

Block-Partitioned Matrix Multiplication

In R, products of block-partitioned matrices occur in the model itself as well as in the
alternating least-squares algorithm to compute the factorization. For general block-partitioned
matrices A ∈ �p×q , B ∈ �m×n

A =


A11 · · · A1q
...
. . .

...
Ap1 · · · Apq

 , B =


B11 · · · B1n
...
. . .

...
Bm1 · · · Bmn


with compatible partitions it holds that the matrix product C = AB is a block-partitioned
matrix with (Golub and Van Loan, 1996, Theorem 1.3.2)

Cij =

q∑
k=1

AikBkj (A.1)

In the following, we will use this property of block-partitioned matrices to explain the
equivalence of the tensor and matrix view of R as well as to simplify the computations
in R-ALS.

A.1. Tensor and Matrix View of R

The equivalence of equation (2.2) and equation (2.3) follows immediately from equation (A.1)
and the unfolded representation of a T-2 model: According to equation (1.16), the
unfolding of equation (2.2) in the first mode is equivalent to X (1) ≈ AR (1) (I ⊗ A)T . Please
note, that the unfolding of an arbitrary third-order tensor T ∈ �n×m×` in its first mode is a
block-partitioned matrix where each block correspond to a frontal slices of T, i.e.

T(1) =
[
T1 T2 . . . T`

]
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Furthermore, (I ⊗ A)T is also a block-partitioned matrix, where

(I ⊗ A)T =



AT 0 · · · 0
0 AT · · · 0
...
...
. . .

...
0 0 · · · AT


Consequently, it follows from the mode-1 unfolding of equation (2.2) and equation (A.1) that

X (1) =
[
X1 X2 . . . Xm

]
≈ AR (1) (I ⊗ A)

T

= A
[
R1 R2 . . . Rm

] 

AT 0 · · · 0
0 AT · · · 0
...
...
. . .

...
0 0 · · · AT


=

[
AR1A

T AR2A
T . . . ARmA

T
]
,

what is equivalent to equation (2.3).

A.2. Simplification of R-ALS

To simplify thematrix productsXM andMMT in the update step ofA, we use similar properties
as in appendix A.1. First, recall that M equals R (I ⊗ A)T and that the matrices X , R are block
partitioned, where each block corresponds to a frontal slices of X and R or its transpose. As
in appendix A.1, the matrix (I ⊗ A)T is block-partitioned with

(I ⊗ A)T =



AT 0 · · · 0
0 AT

· · · 0
...
...
. . .

...

0 0 · · · AT


Applying Equation A.1 to XMT and MMT respectively, it follows that

XM =

K∑
k=1

XkAR
T
k + XT

kARk , MMT =

K∑
k=1

RkA
TARTk + RTkA

TARk

This concludes the full derivation of the update step of A in section 2.5.



Appendix B

MLN on U.S. Presidents

The MLN experiments in section 2.6.1 have been carried out using the current “Aug 23,

2010” release of the A toolbox.1. To learn the weights of manually specified formulas,
we used A’s learnwts command with the parameters listed in table B.1.

Table B.1.: Parameters for MLN weight learning with learnwts.

Parameter Description Value

-ne Non-evidence predicates party
-d Discriminative Learning True

For structure learning, we tried different combinations of parameter settings; what produced
a quite diverse set of formulas, but in all settings we did not succeed to learn a good set of
formulas. In the following we list an example for one of the better parameter settings in
table B.3 and the formulas that have been learned by A’s learnstruct in table B.2.
These are also the settings used for structure learning in the experiments of section 2.6.1. All
parameters not listed in table B.3 were set to default values by A.

Table B.2.: Formulas learned with MLN structure learning.

Formula Weight

party(a1,a2) 0.332
¬party(a1,a2) ∨ ¬party(a1,a3) 1.645
¬party(a1,a2) ∨ ¬party(a3,a2) ∨ ¬president(a3,a1) -4.00777
party(a1,a2) ∨ ¬party(a1,a3) ∨ ¬party(a4,a1) 0.128603

1Available from http://alchemy.cs.washington.edu

http://alchemy.cs.washington.edu
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Table B.3.: Parameters for MLN structure learning with learnstruct.

Parameter Description Value

-minWt Minimum Weight to accept formulas 0
-startFromEmptyMLN Start structure learning from an empty MLN True
-ne Non-evidence predicates party
-penalty Penalty for each difference between previous

and current candidate clauses
0.001



Appendix C

Complexity Analysis of
CP and T Algorithms

In the following, we will provide a brief complexity analysis of state-of-the-art algorithms to
compute the CP and T factorizations, in which we will show important differences to
the complexity of R-ALS.

C.1. Computational Complexity of CP-ALS

First, we consider the computational complexity of CP-ALS, which is a state-of-the art
approach to compute the CP factorization based on alternating least squares updates. For
a tensor X ∈ �n1×n2×n3 it computes updates for factors A ∈ �n1×r , B ∈ �n2×r , C ∈ �n3×r as
follows (Kolda and Bader, 2009, Section 3.4):

A← X (1) (C � B) (CTC ∗ BTB)−1 (C.1)

B ← X (2) (C � A) (C
TC ∗ATA)−1 (C.2)

C ← X (3) (B � A) (B
TB ∗ATA)−1. (C.3)

The symbol “�” denotes the column-wise Khatri-Rao product, which is defined as:

Definition 12 (Column-wise Khatri-Rao Product). Let A ∈ �p×r , B ∈ �q×r be two matrices

with an identical number of rows. The column-wise Khatri-Rao product of A and B, in the

following denoted by A � B, is a matrix of size pq × r , such that

A � B ··=
[
a:,1 ⊗ b:,1 a:,2 ⊗ b:,2 . . . a:,r ⊗ b:,r

]
.

It follows from definition 12 that the matrix B � A in equation (C.3) is of size n2 × r .
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Algorithm 2 Higher-Order Orthogonal Iterations (De Lathauwer et al., 2000b)
1: function tucker_hooi(X,r1, . . . ,rN )
2: A(1) , . . . ,A(N ) ← initialize with HOSVD
3: while not converged do
4: for i = 1 . . .N do
5: Y ← X ×1 A(1)T ×2 · · · ×i−1 A

(i−1)T ×i+1 A
(i+1)T ×i+1 · · · ×N A(N )T

6: A(i ) ← rn leading left singular vectors of Y(i )
7: end for
8: end while
9: G ← X ×1 A(1)T ×2 · · · ×N A(N )T

10: return G, A(1) , . . . , A(N )

11: end function

According to table 3.1, the computational complexity for updates of C would therefore be
O (n2r +nr 2+r 3) for an adjacency tensor of size n × n × m. It follows that CP-ALS would scale
quadric with the number of objects in the data instead of linearly as in the case of R-ALS.

C.2. Computational Complexity of the T decomposition

Higher-Order Orthogonal Iterations (HOOI) are the state-of-the-art method to compute the
T decomposition. The detailed algorithm for HOOI is listed in algorithm 2. A particular
problem regarding the computation of the T decomposition is that the intermediate
computations within line 5 of algorithm 2 can become top large to fit into memory as these
intermediate results are relatively large dense tensors. This is known as the “intermediate
blowup problem” and can be approached with a memory efficient version to calculate the
tensor-times-matrix product under the cost of computational efficiency (Kolda and Sun, 2008).
However, the requirements for orthogonal factor matrices are even more demanding. In the
Tensor Toolbox (Bader and Kolda, 2012; Bader and Kolda, 2007), which is a state-of-the-art
toolkit to compute tensor decompositions, this constraint leads to the computation of the first
r eigenvectors of the matrix Y(i )YT

(i ) , where Y(i ) denotes the unfolding of the tensor Y in line 5
of algorithm 2. This unfolding Y(i ) is a dense matrix of size ni ×

∏
j,i ri , such that the product

Y(i )Y
T
(i ) would already have a computational complexity of O (n2r 2) for r = r1 = r2 = r3. For

a T-2 model such as R, where r3 = m and r = r1 = r2, the complexity of this
operation would amount to O (n2mr ). An orthogonal T decomposition would therefore
become at least quadratic in the number of entities. Moreover, since Y(i ) is dense, the memory
complexity would also be quadratic in the number of entities, as Y(i )YT

(i ) is a n × n matrix.



Appendix D

Number of Variables
for Comparable Tensors

Let X and X− be comparable tensors with ord(X) = o = ord(X−) + 1. Also, recall that for
comparable tensors it holds that var(X−) > var(X). Then, we can rewrite var(X) in the
following way: The number of variables for X− is given by

var(X−) =
o−1∏
i=1

r−i +
o−1∑
i=1

n−i r
−
j .

From the construction of comparable tensors it follows that

var(X−) = ro−1ro
o−2∏
i=1

ri +
o−2∑
i=1

niri + no−1noro−1ro

=

o∏
i=1

ri +
o∑
i=1

niri + no−1noro−1ro − no−1ro−1 − noro

By substituting var(X) =
∏

i ri +
∑

i niri it follows immediately that

var(X−) = var(X) + no−1noro−1ro − no−1ro−1 − noro

Furthermore, since no > ro > 2 and no−1 > ro−1 > 2, it follows that

no−1noro−1ro − (no−1ro−1 + noro ) > 0
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