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SUMMARY 

 

The timing and progression of cell recruitment, the interplay within the tissue 

microenvironment, and the differential activation of immune cells are critical factors in 

shaping the outcome of an inflammatory response. Conventional in vitro approaches to 

study experimental autoimmune encephalomyelitis (EAE), an animal model of multiple 

sclerosis, are often insufficient to investigate the highly dynamic nature of pathogenic 

immune cells during trafficking, recruitment, and infiltration of the central nervous system. In 

vivo imaging of immune cells, identification of specific activation processes in situ, and 

precise interference with individual cell subsets will help to better understand the 

development and course of the disease. 

 T cells interact with antigen-presenting cells by forming immunological synapses, and 

productive recognition of an antigen triggers various activation signals within the T cell. 

These signals include a swift rise of intracellular calcium, that is commonly utilized as a 

marker for T cell responses. Since synthetic calcium indicators are not applicable to in vivo 

studies due to their short-lived intracellular persistence, the genetically encoded calcium 

indicator TN-XXL was established as an alternative for calcium imaging in T cells. TN-XXL is 

composed of two fluorescent proteins with distinct emission wavelengths, linked by the 

calcium sensitive domain troponin C, and indicates cytosolic calcium levels through Förster 

resonance energy transfer. After extensive optimization, stable and strong expression of TN-

XXL was obtained in primary murine T cells. These cells were successfully used for calcium 

imaging studies in peripheral immune organs, as well as in the target organ during EAE. 

Robust responses could be read from T cells upon antigen encounter, however, frequent 

calcium signals independent of cognate antigen were detectable as well. This approach 

enables us for the first time to follow the migration and activation patterns of T cells in vivo 

during the course of the disease. 

B cells also play crucial roles in the pathogenesis of autoimmune disorders. They 

produce potentially pathogenic autoantibodies, act as antigen-presenting cells, and secrete 

cytokines shaping the local inflammatory milieu. To better explore the role of B cells during 

(auto-)immune responses, a new mouse model dubbed “R&D” was developed during this 

thesis. These transgenic mice express the red fluorescent protein and the human Diphtheria 

toxin receptor selectively in B cells, allowing in situ imaging of B cells and their selective 

depletion at any time. This new transgenic mouse strain will be a valuable tool to analyze the 

role of B cells in different phases of EAE and other autoimmune diseases. 
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ZUSAMMENFASSUNG 

 

Kritische Parameter im Ablauf einer entzündlichen Reaktion sind die Rekrutierung 

pathogener Immunzellen, deren Interaktion im betroffenen Gewebe, sowie daraus folgende 

Aktiverungsmuster. Traditionelle in vitro Methoden zur Untersuchung von experimenteller 

autoimmuner Enzephalomyelitis (EAE), einem Tiermodell für Multiple Sklerose, sind vielmals 

unzureichend, um den äußerst dynamischen Immunzellen während ihrer Infiltration in das 

Zentrale Nervensystem zu folgen. Mikroskopie von Immunzellen in vivo, die 

Charakterisierung von Aktivierungsprozessen in situ und eine präzise Manipulation 

spezifischer Zelltypen werden dazu beitragen, die Entwicklung und den Verlauf der 

Krankheit besser verstehen zu können. 

 T-Zellen kommunizieren mit antigenpräsentierenden Zellen durch Ausbildung einer 

immunologischen Synapse. Erfolgreiche Antigenerkennung induziert eine Kaskade von 

Aktivierungssignalen in der T-Zelle, was einen raschen Anstieg an intrazellulärem Kalzium 

hervorruft, der oftmals als T-Zell Aktivierungsmarker genutzt wird. Da synthetische 

Kalziumindikatoren aufgrund ihrer begrenzten intrazellulären Persistenz nicht für in vivo 

Experimente genutzt werden können, sollte die Mikroskopie mit dem genetisch kodierten 

Kalziumindikator TN-XXL etabliert werden. TN-XXL besteht aus zwei fluoreszenten 

Proteinen unterschiedlicher Wellenlänge, verbunden durch die kalziumsensitive Domäne 

Troponin C, und ermöglicht die Bestimmung intrazellulärer Kalziumkonzentrationen durch 

Förster-Resonanzenergietransfer. Nach eingehender Optimierung konnten primäre T-Zellen 

mit stabiler TN-XXL Expression generiert werden, welche erfolgreich zur Kalziummessung in 

peripheren Immunorganen wie auch während der EAE eingesetzt wurden. Nach 

Antigenerkennung zeigten sich starke Kalziumsignale in T-Zellen, es konnten jedoch auch 

zahlreiche antigenunabhängige Kalziumsignale detektiert werden. Dieser Ansatz ermöglich 

es zum ersten Mal, nicht nur der Migration sondern auch den Aktiverungsmustern von T-

Zellen während dem Krankheitsverlauf in vivo zu folgen. 

B-Zellen können die Manifestierung von Autoimmunerkrankungen durch die 

Produktion von pathogenen Autoantikörpern, in ihrer Funktion als antigenpräsentierende 

Zellen und durch die Sekretion von Zytokinen signifikant beeinflussen. Um ihre Rolle besser 

verstehen zu können, wurde im Rahmen dieser Doktorarbeit das neuartige Mausmodell 

„R&D“ entwickelt. In diesen transgenen Mäusen wird rot fluoreszierendes Protein zusammen 

mit dem humanen Diphtheria-Toxin-Rezeptor selektiv in B-Zellen exprimiert, was sowohl in 

situ Mikroskopie von B-Zellen als auch deren gezielte Depletion ermöglicht. Damit könnten 

die „R&D“ Mäuse dazu beitragen, den Einfluss von B-Zellen in verschiedenen Stadien der 

EAE als auch in anderen Autoimmunerkrankungen genauer zu untersuchen.  
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INTRODUCTION 
 

 

1.1 Multiple sclerosis 
 

Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central 

nervous system (CNS), affecting primarily young people with about 500,000 patients in 

Europe and 2.5 million worldwide. MS leads to disability at the level of physiological and 

cognitive functions with symptoms being primarily determined by the particular demyelinated 

CNS areas and how much neuronal tissue has been damaged. Symptoms can be quite 

diverse including sensibility disorders, fatigue, dizziness and deterioration of vision, tremors, 

muscle weakness and spasms, difficulties in balance and coordination, and eventually 

paralysis. The majority of patients develop MS with a relapsing‐remitting (RR) clinical 

course, with alternating periods of acute disease and recovery. After an initial bout, patients 

can completely recover and remain free of symptoms until the disease reinitiates. Relapses 

can last for days or weeks with varying recoveries. Over time, patients with RR MS may 

develop secondary‐progressive MS which can lead to disability. A minority of patients, 

though, suffer from primary‐progressive MS, a rather aggressive form of the disease 

developing gradually but steadily from the very beginning. 

In MS and other autoimmune disorders, such as Type 1 Diabetes or Rheumatoid 

Arthritis, the immune system reacts with tissue-specific self‐antigens by mechanisms that 

are still poorly understood. The CNS is considered as an immune-privileged organ since it 

lacks proper lymphatic vessels and is protected by the blood brain barrier (BBB). However, 

in the case of MS, immune cells attack the myelin sheath, produced by oligodendrocytes and 

enwrapping the axons of CNS neurons, which presumably leads to axonal damage and, 

ultimately, to neuronal death (Engelhardt and Coisne, 2011). This assault is mainly driven by 

autoreactive T lymphocytes. Both, cluster of differentiation (CD)4+ and CD8+ T cells, targeted 

against various CNS antigens, are widely prevalent in patients with MS, but also in healthy 

individuals. However, only after a break of tolerance leading to an inappropriate, excessive 

response, autoreactive T cells will eventually start to invade the CNS and drive the 

development of the disease (Kyewski and Klein, 2006). 

MS shows a highly complex etiology with both genetic and environmental 

contributions to the pathogenesis. Striking patterns of genetic predisposition can be found for 

MS: monozygotic twins show a higher concordance (25%) compared to dizygotic twins (2%) 

(Dyment et al., 1997). One important genetic risk factor is the major histocompatibility 

complex (MHC) or human leukocyte antigen (HLA) class II, in particular the HLA‐DR15 
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haplotype in the Caucasian population. Consistent with this, CD4+ T lymphocytes play a 

critical role in MS pathogenesis as those are activated by antigen-presenting cells (APC) in a 

HLA class II-dependent manner (Sospedra and Martin, 2005). In addition, genome wide 

association studies (GWAS) identified the cytokine receptors for interleukin (IL)-2 and IL-7, 

and the adhesion molecule CD58 as risk factors (Fugger et al., 2009). Most of the risk alleles 

identified by GWAS are linked to the immune system, stressing the influence of immune 

cells on the development of the disease.  

Environmental influences on MS pathogenesis became evident with geographical 

differences in MS occurrence, as Northern European and Northern American countries show 

a higher incidence than regions closer to the equator. This discrepancy might be explained 

by an insufficient supply of Vitamin D in northern countries due to reduced uptake or sun 

exposure, leading to a higher probability of developing MS (Smolders et al., 2008). It was 

also proposed that bacterial or viral infections, like the Epstein‐Barr virus, could trigger MS 

by means of molecular mimicry or through bystander activation of the immune system, but 

so far none has been definitely proven (Lünemann et al., 2007). 

 

 

1.2 Experimental autoimmune encephalomyelitis 
 

The studies of MS are limited to magnetic resonance imaging, sampling of peripheral 

blood and cerebrospinal fluid (CSF), and analysis of post-mortem CNS tissue. Animal 

models overcome these limitations and offer in-depth analysis of the disease processes. 

Furthermore, availability of genetically manipulated animals provides the opportunity to study 

the contributions of different genes to the disease development and progression. Moreover, 

experimental animals can be treated with various drugs in a highly controlled manner, and 

lymphoid cells can easily be obtained from donor mice, manipulated ex vivo, and transferred 

to recipient hosts.  

Experimental autoimmune encephalomyelitis (EAE) in the mouse is the most 

commonly studied animal model of MS (Handel et al., 2011). EAE was first described in 

1925, when it was shown that immunization with human brain antigen induces paralysis in 

rabbits (Koritschoner and Schweinburg, 1925). Later, similar results were obtained with a 

whole range of different experimental animals – rats, mice, sheep, or primates – using whole 

brain homogenate from various sources or purified CNS antigens (Baxter, 2007). EAE 

induced in the inbred mouse strain C57BL/6 is associated with a strong inflammation in the 

spinal cord. It results in a characteristic monophasic disease with ascending paralysis that 

starts with loss of tail tonus and is followed, from caudal to rostral, by limb weakness and 
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paralysis. Induction of EAE in the inbred SJL/J mouse strain can lead to similar symptoms, 

though in a relapsing-remitting fashion and sometimes accompanied by ataxic bouts. 

 

Induced EAE 
EAE in mice can be induced by active immunization with subcutaneous injection of 

myelin protein or peptide emulsified in complete Freund´s adjuvant (CFA) (active EAE) 

(Olitsky and Yager, 1949; Stromnes and Goverman, 2006a). CFA is composed of mineral oil 

to allow slow but steady release of the antigen, and heat-inactivated Mycobacterium 

tuberculosis to boost the innate immune response (Freund and McDermott, 1942). In 

addition, mice receive two consecutive injections of pertussis toxin which is supposed to 

open the BBB, to influence T lymphocyte migration, and to impair negative regulation of 

immune cells (Cassan et al., 2006). The most common myelin autoantigens used for active 

EAE induction are myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), 

and proteolipid protein (PLP), with the right combination of mouse strain and antigen 

determining EAE pathology (Krishnamoorthy and Wekerle, 2009). Unfortunately, the 

necessity of adjuvant and pertussis toxin for induction of active EAE limits the applicability of 

this model, especially at the initial stages of autoimmune disease processes. To circumvent 

these limitations, EAE can also be induced by transfer of pre-activated lymphocytes isolated 

from immunized donor mice which are reactivated in vitro with myelin antigen (Paterson, 

1960; Stromnes and Goverman, 2006b). Passive EAE develops faster and more 

homogeneously than active EAE, it avoids CFA inoculation, allows the manipulation of 

pathogenic T cells ex vivo, and facilitates the analysis of effector functions of transferred T 

cells (Ben-Nun et al., 1981). Nevertheless, passive EAE is also not suitable to study initial 

disease triggers. 

 

Spontaneous EAE 
All problems inherent to adjuvant-based immunization for active EAE, and bulk 

transfer of in vitro reactivated T cells for passive EAE, can be avoided using mouse models 

developing spontaneous EAE. With the advent of myelin antigen-specific T cell receptor 

(TCR) transgenic animals, mice spontaneously developing EAE became available. In the 

past years two spontaneous EAE models have been established in our group. One model on 

the C57BL/6 mouse strain background combines 2D2 mice, expressing a MOG35-55 peptide-

reactive TCR (Bettelli et al., 2003), with IgHMOG mice, expressing a B cell receptor (BCR), 

derived from a rearranged heavy chain of a MOG-specific antibody (Litzenburger et al., 

1998). Double-transgenic offspring from 2D2 x IgHMOG crosses, termed opticospinal EAE 

(OSE) mice, develop spontaneous EAE at an age of around four weeks with an incidence of 

about 50%, with close similarities to the MS‐related disease Neuromyelitis Optica 
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(Krishnamoorthy et al., 2006; Bettelli et al., 2006). The other model is a single-TCR 

transgenic mouse model on the SJL/J strain. These TCR1640 mice harbor T cells with a TCR 

recognizing the MOG92-106 peptide. These T cells recruit endogenous MOG-specific B cells 

and drive EAE at an age older than two months, with an incidence of over 80%. TCR1640 

mice represent the first spontaneous animal model for the most common form of MS in the 

Western society, RR MS (Pöllinger et al., 2009). Both spontaneous EAE models described 

above are dependent on T – B cell co-operation, and offer special advantages over induced 

EAE models due to the less artificial disease induction and the closer resemblance of the 

human disease. 

 

 

1.3 Immune cell infiltration into the CNS 
 
 MS features a highly complex pathogenic cascade, which involves the contribution 

from many immune cells. After activation in the periphery, autoreactive T cells can eventually 

enter the CNS (Figure 1.1) (Goverman, 2009). This process is a particular challenge to the T 

cells as the CNS usually is protected from infiltration by the BBB. Tight junctions between 

the endothelial cells of these barriers limit access to the CNS. However, activated T cells can 

enter the target organ due to expression of specific adhesion molecules that enable them to 

surmount these barriers (Ransohoff et al., 2003). Recently, T cells have been proposed to 

follow unique migratory steps during their entry into the CNS. Initially, T cells start to crawl 

on the inner vascular surface for some time, before they extravasate and start crawling on 

the outer surface of the vessel and the underlying leptomeningeal space. Later, these 

putatively activated T cells invade the CNS parenchyma, which coincides with the onset of 

first clinical symptoms (Bartholomäus et al., 2009). Intraluminal crawling is mediated by 

surface expression of α4β1 integrin on encephalitogenic T cells (Yednock et al., 1992). 

Blocking of this adhesion molecule interferes with tight attachment and crawling of T cells in 

the CNS blood vessels. Natalizumab, the therapeutic α4 integrin blocking antibody is highly 

effective in reducing MS relapse rate. 

Shortly after extravasation, T cells get reactivated in the CNS. This can be mediated 

by perivascular macrophages, microglia, dendritic cells (DC), or astrocytes. While the brain-

resident microglia and astrocytes are usually poor APCs, they can induce their antigen-

processing machinery, and upregulate MHC and co-stimulatory molecule expression after 

activation. In addition, due to their ubiquitous localization in the CNS, both are a potent 

source of inflammatory cytokines, influencing local T cell differentiation and global 

propagation of CNS immune response (Aloisi, 2001). Perivascular macrophages are readily 
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found around cerebral blood vessels, thus perfectly situated to interact with extravasating T 

cells. During MS and EAE, perivascular macrophages highly upregulate MHC class II and 

co-stimulatory molecules, turning them into professional APCs capable of activating invading 

T cells (Fabriek et al., 2005). DCs, on the other hand, are recruited from the peripheral 

lymphoid tissues, mature during their migration to function as professional APCs, and play a 

key role in reactivating encephalitogenic CD4+ T cells in the CNS. Depending on their 

subset, DCs can be found in inflammatory foci clustering with CD4+ T cells in perivascular 

areas, or are dispersed throughout the CNS tissue (Bailey et al., 2006). This reactivation of T 

cells is also accompanied by an activation of perivascular endothelium, which in turn allows 

 

Figure 1.1 T cell infiltration into the CNS. (1) CD4+ T cells are primed in the periphery by DCs presenting 

myelin (or myelin cross-reactive) epitopes. APCs residing in the CNS can capture myelin antigens in situ and 

migrate to the cervical lymph nodes. Alternatively, soluble myelin antigens can drain from the CNS to lymph 

nodes to be phagocytosed by local APCs. (2) CD4+ T cells enter the subarachnoid space by crossing the 

blood-CSF barrier either in the choroid plexus or the meningeal venules. (3) T cells are re-activated within the 

subarachnoid space by MHC class II-expressing macrophages and DCs presenting myelin epitopes. (4) 
Reactivated T cells activate microglial cells in the subpial region, triggering activation of distal microglial cells 

and blood vessels. (5) Activated T cells adhere to and cross the activated BBB, enter the perivascular space 

and are reactivated by perivascular macrophages and DCs. (6) T cells enter the parenchyma and, together 

with activated macrophages and microglial cells, secrete soluble mediators that trigger demyelination  

(adapted from Goverman, 2009). 
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further recruitment of encephalitogenic T cells into the perivascular space. For subsequent 

migration of T cells into the parenchyma, tumor necrosis factor α (TNFα) signaling is 

supposed to play an important role (Gimenez et al., 2006). In addition, it was shown that the 

strength of T cell reactivation determines the rate of parenchymal infiltration, rather than the 

capacity of a T cell to infiltrate the perivascular space (Kawakami et al., 2004). 

 Sustained infiltration of immune cells into the CNS parenchyma will eventually lead to 

demyelination, axon degeneration, and persistent neuronal damage. Autoreactive CD8+ T 

cells could directly attack oligodendrocytes or neurons due to their expression of MHC class 

I (Medana et al., 2001). CD4+ T cells, on the other hand, secrete the pro-inflammatory 

cytokines interferon γ (IFNγ), IL-17, or TNFα, thus activating macrophages and microglia. 

Those cells, in turn, produce inflammatory cytokines such as IL-1β or IL-12, and mediators 

like radical oxygen species (ROS) or nitric oxide (NO), leading to oligodendroglial and 

neuronal damage (Herz et al., 2010b). Oligodendrocyte destruction, followed by extensive 

myelin loss, results in increased ion currents in demyelinated axons, severe energy 

depletion, and axonal decay due to excitotoxicity. In addition, neuronal damage can also 

happen independently of myelin loss: a reduced oligodendroglial metabolic support of the 

axonal compartment can cause a pathologically impaired energy balance which leads to 

reduced axonal transport, swellings, and ultimately, axon degeneration (Nave, 2010). 

 

 

1.4 T lymphocytes in MS and EAE 
 

 The most important cellular mediators of MS pathogenesis are T cells. As described 

above, in addition to breakdown of self-tolerance, autoreactive CD4+ or CD8+ T cells have to 

be primed in peripheral lymphoid organs by endogenous antigen released from the CNS, or 

by molecular mimicry with cross-reactive antigen from exogenous pathogens. In most 

models of active EAE, myelin-specific CD4+ rather than CD8+ T cells are the central factor of 

autoimmune pathogenesis, due to the immunization protocol, which favors activation via 

MHC class II. Similarly, the adoptive transfer of pure encephalitogenic CD4+ T cell lines, but 

not CD8+ T cells, has been successfully used to induce passive EAE  (Wekerle et al., 1994). 

In contrast, in MS patients, CD8+ T cells usually outnumber CD4+ T cells in CNS lesions, and 

clonal expansion is detected more frequently among CD8+ than CD4+ T cells (Friese and 

Fugger, 2005). In addition, specific depletion of only CD4+ T cells in patients did not result in 

the amelioration of the disease, while treatment with antibodies against CD52, depleting 

multiple lymphocyte populations, including CD4+ and CD8+ T cells, provided some benefits 

(Coles et al., 2006). Also, an increased genetic susceptibility has been linked to the MHC 
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class I molecule HLA-A3. Transgenic mice expressing HLA-A3 along with a myelin-specific 

autoreactive TCR indeed developed mild CD8+ T cell-driven EAE symptoms, however, 

progression and manifestation of the disease required additional contributions from CD4+ T 

cells, suggesting cooperation between these two T cell types (Friese et al., 2008). 

 Distinct effector T cell subsets have been described to mediate EAE pathogenesis. 

Naive CD4+ T cells can be differentiated into various subclasses of T helper (TH) cells 

depending on the cytokine milieu. IL-12 and IL-18 induce differentiation into TH1 cells, 

secreting IFNγ. High concentrations of IL-4, however, yield TH2 cells, that produce IL-4, IL-5, 

and IL-13. A third subpopulation of effector T cells are TH17 cells, secreting IL-17 and IL-22, 

which can be induced by transforming growth factor β (TGFβ) and IL-6. In a similar cytokine 

milieu with high concentrations of TGFβ but void of IL-6, naive CD4+ T cells do not 

differentiate into TH17 but rather into regulatory T (Treg) cells, that can dampen inflammatory 

reactions (Leung et al., 2010). This manifold picture of different CD4+ T cell populations gets 

even more complex, since a certain plasticity between TH cell subpopulations can be found, 

too: Treg cells can convert into TH17 cells (Deknuydt et al., 2009), TH17 cells into TH1 cells, or 

T cells can express both, IFNγ and IL-17 (Lee et al., 2009). In addition, IL-9 secreting TH9 

cells (Veldhoen et al., 2008), and IL-22 secreting TH22 cells (Eyerich et al., 2009) were 

reported, however, it is still debatable whether these cell types represent true distinct T cell 

subsets. In EAE, mainly TH1 and TH17 cells are shown to drive inflammation and to 

contribute to pathogenesis (El-Behi et al., 2010), while Treg cells are essential for peripheral 

tolerance and are thought to keep TH1/TH17 cells in check (Vignali et al., 2008). 

 

 

1.5 T lymphocyte activation 
 

 As discussed above, T cell activation plays a key role during the pathogenesis of MS 

and EAE. After initial activation in the periphery, which allows myelin-specific T cells to cross 

the BBB, reactivation of those T cells happens within the CNS. These sequential activation 

steps are a strict prerequisite for initiation of the disease and ongoing demyelination of the 

CNS, inevitably leading to clinical symptoms. Therefore it is crucial to decipher T cell 

activation and to understand the most important molecular events. 

 

The immunological synapse 
When migrating through the tissue, T cells scan a large variety of cells, e.g. APCs, 

endothelium, or stromal cells. At productive recognition of a target antigen, T cells stop 

migration and form a highly specialized membrane contact, called the immunological 
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synapse (Figure 1.2). This synapse is characterized by an ordered but still dynamic 

distribution of a large range of different transmembrane and intracellular molecules, that 

contribute to the establishment of a stable contact and bidirectional signaling between T cell 

and APC. Initial events in immune synapse formation after TCR activation are characterized 

by a rapid reorganization and a marked polarization of the cytoskeleton, followed by 

clustering of cell surface receptors to form so-called supramolecular activation complexes 

(SMACs). The region of the central SMAC (cSMAC) is highly enriched in TCR/CD3-

MHC/peptide ligand pairs and associated signaling effectors, along with other co-stimulatory 

molecules like CD28 and CTLA4. In the surrounding peripheral SMAC (pSMAC), cell 

adhesion interaction partners such as LFA1-ICAM1 prevail and ensure a tight contact 

between T cell and APC. Further signaling and adhesion molecules, CD44 or CD45, were 

found in the distal SMAC (dSMAC). After formation of a mature synapse, T cell-APC 

interaction can last for several hours with ongoing downstream TCR second messenger 

events, including sustained calcium signaling, before the interacting partners finally break up 

and T cells undergo proliferation (Dustin and Depoil, 2011). 

 

 

 
  

 

Figure 1.2 The immunological synapse. The three layers on the T cell side of the immunological synapse 

are depicted on the left. The receptor layer contains the TCR-CD3 complex, CD4 or CD8, CD28, and LFA1. 

The signaling layer includes LCK, ZAP70, PKCθ, LAT, ITK, and PLCγ. The cytoskeletal layer contains 

filamentous actin, talin, paxillin, and vinculin. The right figure represents the supramolecular activation 

complexes (SMAC) of an immunological synapse. The TCR-rich central SMAC core is shown in red, the 

CD28-rich central SMAC surrounding in green, the LFA1-rich peripheral SMAC in blue, and the distal SMAC 

in yellow (adapted from Dustin and Depoil, 2011). 
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Phases of T cell priming 
 In vivo imaging of T cells interacting with APCs in a lymph node revealed several 

distinct phases of T cell priming (Figure 1.3). During the initial phase after antigen encounter, 

which lasts for about 6 hours, T cells form short interactions with APCs. However, already 

during this stage, T cells are clearly activated as seen by the upregulation of early activation 

markers, like CD69 or CD44. In phase two, from about 6 to 16 hours, T cells engage in long-

lasting interactions with APCs, express the full spectrum of activation markers, and initiate 

production of cytokines. Thereafter, in the third phase, T cells detach from APCs and again 

migrate among them performing serial but only short-lived interactions (Mempel et al., 2004). 

 T cell priming in vivo, however, depends on a complex set of parameters. Different 

APCs feature different T cell stimulatory potentials. B cells, for example, need far more 

antigen-MHC complexes on their surface for efficient T cell triggering compared to DCs 

(Delon et al., 1998). Also, depending on the activation status of the APC, antigen 

presentation and expression of co-stimulatory molecules can vary, and thereby strongly 

influence the efficiency of T cell activation. In addition, chemokines in the surrounding can 

enhance or modulate the activation of T cells engaging with APCs as well. Another very 

important factor is the affinity of the TCR to the MHC-bound antigen. Low levels of a low 

affinity antigen can induce T cells to make serial encounters with APCs over a certain period 

of time, integrating minute signals, ultimately leading to full activation. With a high dose of a 

high affinity antigen, however, T cell activation can be achieved very rapidly (Henrickson and 

von Andrian, 2007). Indeed, in an in vivo experimental setup, a high affinity antigen, loaded 

in large amounts in DCs, resulted in immediate synapse formation and long-lasting 

interactions of T cells with DCs (Shakhar et al., 2005). 

 

 

 

Figure 1.3 Phases of T cell priming. Three phases 

of T cell priming were shown, using intravital and ex 

vivo microscopy. Phase one, lasting for the first 

several hours after a T cell has entered a lymph node, 

is characterized by short interactions between T cells 

(green) and APCs (blue), with the upregulation of 

activation markers starting by the end of that phase. 

Phase two, lasting for the rest of the first day, is 

characterized by long-term APC-T cell interactions 

and the initiation of cytokine secretion. Phase three 

thereafter is characterized by a return to short-term T 

cell-APC interactions and T cell proliferation. (adapted 

from Hendrickson and von Andrian, 2007) 
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1.6 Calcium signaling in T lymphocytes 
 

Resting T cells usually feature cytosolic calcium concentrations of about 100 nM, 

while much larger concentrations of calcium can be found in intracellular endoplasmatic 

reticulum (ER) stores (500 µM). Upon activation of T cells via TCR engagement, within few 

milliseconds a signal transduction cascade leads to depletion of the intracellular calcium 

stores and a swift rise of cytoplasmic calcium. Subsequently, calcium release activated 

calcium (CRAC) channels in the plasma membrane open, leading to a sustained influx of 

calcium from the extracellular milieu (1000 µM) into the cell. This specialized mechanism 

has been termed as store operated calcium entry (SOCE), and is the main pathway for 

generating calcium signals in many non-excitable cell types (Feske, 2007). Observations on 

thymocytes and mature T cells indicate, that an increase in intracellular calcium levels is 

necessary and sufficient to deliver a migratory STOP signal to T cells. This becomes more 

evident when intracellular calcium is buffered or sustained calcium influx is blocked, a stable 

immunological synapse cannot be established (Bhakta et al., 2005). This initial increase of 

free calcium in the cytoplasm is one of the most critical steps of T cell activation, and a key 

trigger for all possible downstream events including clonal expansion or effector functions. 

 After initial activation, T cells show remarkably different calcium signals, ranging from 

infrequent calcium spikes to sustained oscillations and plateaus. This variety is the result of 

the interaction of multiple calcium sources and sinks within the cell, and offers the regulation 

of a highly complex activation machinery. For instance, the translation of various calcium 

signals allows differential regulation of T cell transcription factors: NFAT and NF-κB seem to 

favor calcium oscillations over continuously elevated calcium levels for bona fide activation. 

Specifically, NFAT activation needs stronger calcium signals at higher frequencies than 

activation of NF-κB (Quintana et al., 2005). Many of these calcium-dependent transcriptional 

responses influence gene expression patterns and shape the long-term outcome of T cell 

activation, e.g. by changing cytokine expression profiles and inducing differentiation of naïve 

T cells into various kinds of T helper cells. Effective TCR engagement with strong calcium 

signaling is supposed to produce a TH1 bias, whereas weak TCR engagement and lower 

calcium level changes evoke a TH2 response. However, calcium signals can induce 

inhibitory effects, too, as sustained calcium signaling in the absence of any co-stimulatory 

signal can induce anergy in T cells. This state of unresponsiveness is again characterized by 

induction of a specific set of anergy-related genes, leading to expression of negative 

regulators of T cell activation (Feske et al., 2001). Further, these initial calcium signals help 

to establish primary contacts between T cells and APCs by altering cell motility and inducing 

cytoskeleton rearrangements. However, only the sum of all varying parameters in amplitude, 
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course, and duration of the calcium signal over a sustained period of time guarantee an 

efficient and specific downstream gene activation. This complexity of differential calcium 

signaling contains a wealth of information that helps lymphocytes to choose between 

alternate fates in response to antigenic stimulation. 

 

Molecular mechanisms of calcium signal generation 
 After antigen recognition by the TCR, protein tyrosine kinases such as ZAP70 and 

LCK get activated, which in turn phosphorylate adapter proteins, like LAT and SLP76. This 

leads to recruitment of the IL-2 inducible T cell kinase (ITK) and activation of phospholipase 

C γ (PLCγ). Similarly, binding of G protein-coupled receptors results in activation of PLCβ, 

both catalyzing the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) to 

inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 binds to its receptor in the ER 

membrane and induces the release of calcium from the ER, leading to a first rise of calcium 

levels in the cytosol (Figure 1.4) (Feske, 2007). 

 
 
Figure 1.4 T cell activation cascade. In resting T cells, a steep gradient in calcium concentrations exists 

between the cytoplasm and the extracellular space, as well as between the cytoplasm and the lumen of the 

ER. The intracellular calcium concentrations in T cells is tightly regulated and kept between ~100 nM in 

resting cells and ~1000 nM following TCR stimulation. Antigen recognition through the TCR results in the 

activation of protein tyrosine kinases, such as LCK and ZAP70, which initiate phosphorylation events of 

adaptor proteins, such as SLP76 and LAT. This leads to the recruitment and activation of ITK and PLCγ. 

Similarly, binding of G protein-coupled chemokine receptors results in the activation of PLCβ. PLCβ and 

PLCγ catalyse the hydrolysis of the membrane PtdIns(4,5)P2 to IP3 and DAG. IP3 binds to and opens IP3 

receptors in the membrane of the ER, resulting in the release of calcium from intracellular calcium stores. A 

decrease in the calcium content of the ER is sensed by STIM1, which in turn activates CRAC channels in the 

plasma membrane. Calcium influx through CRAC channels and elevated intracellular calcium concentration 

activate calcium-dependent enzymes, such as calcineurin, and thereby transcription factors, such as NFAT 

or NF-κB (adapted from Feske, 2007). 
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The stromal interaction molecule 1 (STIM1), located in the ER membrane, senses 

the loss of calcium from the ER by its EF-hand motifs facing the ER lumen. After ER 

depletion, STIM1 molecules cluster via their protein-protein interaction domains SAM 

(sterile-a-motif) and ERM (ezrin, radixin, and moesin), and form discrete puncta. These 

STIM1 puncta along with the ER then translocate and directly interact with the pore forming 

unit ORAI1 of plasma membrane resident CRAC channels. This cellular mechanism has 

long been speculated about but has only recently been formally shown (Park et al., 2009). In 

their inactive state, CRAC channels have been proposed to exist predominantly as ORAI1 

dimers. After engagement with STIM1 clusters, CRAC channels dimerize to form ORAI1 

tetramers, and open to allow localized calcium influx (Hogan et al., 2010). Calcium influx via 

CRAC channels makes the largest contribution to overall calcium level changes in T cells 

(Lewis and Cahalan, 1988). Therefore, a major function of calcium release from intracellular 

stores is to serve as sensitive trigger for controlling a much larger flux of calcium across the 

plasma membrane. Also, intracellular stores must remain depleted for a sustained calcium 

influx through CRAC channels. While IP3 levels are back to base line within 10 minutes, 

calcium signaling via CRAC channels can last for more than one hour (Guse et al., 1993). It 

is speculated that this sustained CRAC signaling is mediated by binding of cyclic ADP ribose 

(cADPR) to ryanodine receptors (RYR3), which leads to continual depletion of internal 

calcium stores (Schwarzmann et al., 2002). 

 Elevated calcium concentrations in the cytosol eventually activate calcium-dependent 

enzymes such as calcineurin (CN) or calmodulin-dependent kinase (CaMK), which in turn 

trigger activation of several downstream transcription factors. NFAT, for example, gets 

rapidly dephosphorylated by CN, which induces a conformational change of the transcription 

factor, that exposes a nuclear localization signal and results in NFAT translocation to the 

nucleus. However, as NFAT only weakly binds to DNA, it must cooperate with other 

transcription factors to efficiently influence gene regulation. This enables integration of 

various calcium signaling patterns and intensities (Macian, 2005). 

 In addition to CRAC channel-mediated calcium signaling, other calcium influx and 

release channels have been described in lymphocytes. ATP-binding P2X receptors or 

voltage-gated calcium (CaV) channels were found to be expressed in T cells as well. 

Recently it was shown that CaV1.4 indeed is a critical regulator of TCR signaling and naive T 

cell homeostasis (Omilusik et al., 2011). 

 

Calcium signaling during disease 
 Lack of lymphocyte calcium signaling due to a mutation in ORAI1, thus abrogating 

CRAC channel current activity, can cause severe combined immunodeficiency. T cells from 

those patients show strong defects in proliferation and cytokine secretion (Ledeist et al., 
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1995). Similarly, in a mouse model of rheumatoid arthritis, a mutation of the kinase ZAP70 

results in strongly reduced TCR signaling and thereby impaired calcium signaling. However, 

in this model, signaling is not entirely abrogated, but the threshold of T cell selection in the 

thymus is changed, allowing increased numbers of autoreactive T cells to escape central 

tolerance (Sakaguchi et al., 2003). With respect to EAE it was shown that sustained calcium 

signaling is essential, since STIM1-/- mice are protected from active EAE. Disease protection 

was due to a significantly impaired generation of autoreactive myelin-specific T cell 

responses in vivo (Schuhmann et al., 2010). Further, modulating calcium signaling in 

encephalitogenic T cells by selective blockade of second messengers reduces clinical 

symptoms of EAE, opening new possibilities for therapeutic treatments of multiple sclerosis 

(Cordiglieri et al., 2010). 

 

 

1.7 Calcium imaging in T lymphocytes 
 

 About 30 years ago, with the development of the first organic fluorescent calcium 

indicators, spatiotemporal investigation of cellular calcium signals became possible (Tsien, 

1980). These small molecule indicators are usually available as cell-permeant acetoxymethyl 

ester derivatives. Once inside the cell, they become hydrolyzed by ubiquitous intracellular 

esterases, releasing the cell membrane-impermeant ion-sensitive indicator. While Fura-2 is 

still the most prominent representative of all organic dyes for calcium imaging in cells 

(Grynkiewicz et al., 1985), the list of synthetic calcium indicators has been growing ever 

since (Molecular Probes Handbook 2010). Some calcium indicators react to binding of 

calcium just with an increase in fluorescence intensity. However, most of these indicators are 

of ratiometric nature and show a shift in their excitation or emission spectrum upon binding 

of calcium. Measurement of calcium with ratiometric indicators is therefore achieved by 

using two different fluorescent excitation sources or two detection ranges, respectively. This 

way of measurement avoids artifacts due to varying probe loading concentrations, indicator 

bleaching, or changes in focus, and became essential when tracking calcium level changes 

for extended periods of time in freely moving cells migrating in and out of the focus plane 

(Dewitt et al., 2003). 

 The majority of calcium imaging experiments has been performed in neurons, and 

most calcium indicators have been optimized for neuronal imaging (Rochefort et al., 2008). 

Nonetheless, there is also a long history of calcium imaging in T cells. Measurement of 

intracellular calcium levels in lymphocytes is routinely done with synthetic calcium indicators, 

like Fura-2 or Indo-1, either on a single cell level by microscopy (Grynkiewicz et al., 1985), or 
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for whole cell populations using fluorescence-activated cell sorting (FACS) analysis 

(Griffioen et al., 1989). These measurements gave insights into the molecular mechanisms 

of calcium signaling in lymphocytes, and helped to understand intracellular calcium fluxes at 

various stages of lymphocyte development, during their maturation, or when in action (Vig 

and Kinet, 2009). 

Unfortunately, however, calcium imaging with synthetic calcium indicators has one 

major drawback: shortly after loading into the cytoplasm, these indicators can get expulsed 

from the cell again, a phenomenon attributed to the activity of multidrug resistance (MDR) 

transporters (Homolya et al., 1993). Many dyes and most ion indicators persist in the cell as 

free fluorescent anions and get rapidly exported from MDR transporter-expressing cells 

(Neyfakh, 1988), including T cells (Prechtl et al., 2000). Thus, calcium imaging in T cells with 

synthetic indicators has to be performed within few hours after labeling the cells, limiting their 

applicability to in vitro or ex vivo experiments. 

 With the advent of genetically encoded calcium indicators (GECI) (Miyawaki et al., 

1997), these limitations might be overcome and calcium imaging in T cells could be 

transferred into true in vivo experimental setups. GECIs are transgenically expressed in 

living cells, and consist of one or two fluorescent proteins (FP) and a calcium sensitive 

moiety, with no requirement of additional co-factors or chemicals. The calcium responsive 

element is either derived from the signaling molecule calmodulin (CaM), or from skeletal 

muscle troponin C (TnC). Both molecules feature calcium-binding EF hands and react with a 

conformational change upon reversible binding of calcium ions. In single fluorophore GECIs, 

CaM is inserted into a FP where a conformational change induces ionization of the 

chromophore, resulting in an increase in fluorescence intensity. These indicators include 

camgaroos (Baird et al., 1999), pericams (Nagai et al., 2001), and G-CaMPs (Figure 1.5) 

(Nakai et al., 2001), and have been successfully employed for calcium imaging in neurons. 

Unfortunately, however, single fluorophore indicators are not of ratiometric nature, and thus 

cannot be employed in freely migrating T lymphocytes. The other class of GECIs features 

two FPs of different wavelengths, linked by CaM or TnC. A conformational change of the 

calcium sensitive moiety within these indicators leads to convergence of the FPs, thus 

inducing Förster resonance energy transfer (FRET) from the shorter wavelength donor FP to 

the longer wavelength acceptor FP. Calcium binding therefore yields a ratiometric decrease 

in donor fluorescence and an increase in acceptor fluorescence, rendering these calcium 

indicators suitable for freely moving T cells. Ratiometric GECIs include the CaM-based 

yellow cameleons (YC) (Nagai et al., 2004), and the TnC-based TN-L indicators (Figure 1.5) 

(Heim and Griesbeck, 2004; McCombs and Palmer, 2008). 

 Since the first emergence of GECIs, continuous engineering efforts to gain higher 

calcium affinity, increased signal strength, better pH stability, or faster reaction kinetics, gave 
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rise to optimized versions of these indicators. Besides those benefits, however, occasional 

functional interference of transgenically expressed calcium indicators in host cells has been 

reported. CaM-based yellow cameleon GECIs were essentially inactivated during transgenic 

expression (Hasan et al., 2004), and constitutive expression of a G-CaMP GECI in the 

mouse heart induced cardiomegaly (Tallini et al., 2006), a pathologic enhancement of heart 

size resembling the effect of CaM overexpression in the heart (Gruver et al., 1993). Since 

CaM is a ubiquitous signaling protein with multiple levels of regulation in the cell, TnC with its 

highly specific function as regulator of contraction in skeletal muscle seems to be a better 

choice for constitutive expression at high levels. Therefore, in the present study, the latest 

version of TnC-based calcium indicators, TN-XXL (Mank et al., 2008), was taken as a 

starting point to establish in vivo calcium imaging in T cells. 

 

 
 

 

 

  

 
 
Figure 1.5 Genetically encoded calcium indicators. Single fluorophore indicators employ the calcium-

responsive element CaM, and a CaM-binding peptide attached to a fluorescent protein. On binding calcium, 

CaM executes a conformational change, interacting with the peptide and altering the protonation state of the 

chromophore, thus changing the fluorescence intensity of the protein (left). FRET-based indicators have a 

calcium-binding domain located between two flurophorescent proteins. At calcium binding, this domain 

undergoes a conformational change, bringing the two fluorescent proteins closer together and increasing the 

efficiency of FRET (right). Below each model are diagrams for the various available families of GECIs 

(adapted from McCombs and Palmer, 2008). 
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1.8 B lymphocytes in MS and EAE 
 

B cells and their antibodies play an important role in the pathogenesis of MS and 

EAE, too, yet their distinctive role remains elusive (Berer et al., 2011a). After antigen-specific 

activation, B cells can become effector B cells, undergo germinal center reactions, and 

eventually differentiate into plasma cells, producing large quantities of antibodies. 

Characteristic oligoclonal immunoglobulin G (IgG) bands can be found in CSF samples from 

over 90% of all patients, rendering this phenomenon a hallmark of MS diagnosis (Kabat et 

al., 1942). Clonally expanded brain resident B cells are partially accountable for the 

emergence of these oligoclonal bands, stressing the importance of B cells for the 

development or course of the disease (Obermeier et al., 2008). Indeed, ectopic lymphoid 

follicles were described, enriched with B cells and plasma cells in the meninges of a subset 

of RR MS patients, potentially providing a suitable microenvironment, where B cells can 

mature, expand, and locally produce autoantibodies (Serafini et al., 2004). 

 

The role of B cells in EAE 
Autoantibodies also play a major role in EAE, as it was shown that transfer of serum 

from diseased animals could induce subclinical demyelination in recipient animals 

(Lassmann et al., 1981). Similarly, active EAE was accelerated and showed exacerbated 

severity in transgenic IgHMOG mice, producing high levels of MOG-specific autoantibodies 

(Litzenburger et al., 1998). In many EAE models, however, a B cell component is missing, 

since immunization is mostly performed with a short encephalitogenic peptide. Thus, 

immunization with whole myelin proteins offers a better understanding of the involvement of 

B cells in disease development. In one report, B cell deficient µMT mice were susceptible to 

active EAE induced by immunization with MOG35-55 peptide, but not by recombinant MOG, 

suggesting differential processing and presentation of the encephalitogenic epitope (Lyons 

et al., 1999). In another report, µMT mice failed to recover from active EAE due to lack of B 

cell derived IL-10 (Fillatreau et al., 2002). Furthermore, clinical recovery was accounted to B 

cells interacting with Treg cells through a CD80/CD86 co-stimulatory mechanism (Mann et al., 

2007).  

Antigen presentation by B cells is of particular importance for the T – B cell crosstalk 

observed in the spontaneous EAE models mentioned before. IgHMOG B cells in the OSE 

mouse model can concentrate MOG with their antigen-specific BCR, and efficiently present it 

to MOG-reactive T cells. This results in mutual activation, proliferation, and differentiation, 

and B cells of those mice produced high titers of MOG-specific IgGs, while T cells in the 

CNS secreted more IFNγ and IL-17 than single-transgenic controls. Furthermore, activated B 
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cells in the OSE model switched isotype to produce MOG-specific IgG1 autoantibodies 

(Krishnamoorthy et al., 2006; Bettelli et al., 2006). In the TCR1640 mouse model, MOG-

specific B cells from the endogenous repertoire are recruited by MOG-reactive transgenic T 

cells and are driven into germinal center reactions, leading to the appearance of 

spontaneous anti-MOG autoantibodies in the serum of these mice. In addition to T cells, in 

the TCR1640 model B cells infiltrate into the CNS parenchyma, too. Large deposits of 

antibodies along with some activated complement can be found in demyelinated lesions of 

diseased TCR1640 mice. The recruitment of MOG-specific B cells is strictly dependent on the 

presence of the target antigen, since TCR1640 mice deficient for MOG do not develop RR-

EAE nor show any corresponding autoantibodies (Pöllinger et al., 2009). In addition, early 

infiltration of T and B cells into the CNS of TCR1640 mice could already be found at pre-

clinical stages at an age of four weeks, and anti-MOG autoantibodies were present in the 

serum at around five weeks after birth. Germinal centers and autoantibody-secreting B cells 

were found in cervical lymph nodes of TCR1640 mice, however, not in other lymphoid organs. 

One possible reason could be myelin debris draining from the subclinically inflamed CNS or 

being transported by phagocytes to cervical lymph nodes. This would induce further 

activation of MOG-specific T cells which then in turn drive B cells into germinal center 

reactions. Finally, this could mount a full attack on the target organ by autoreactive T cells 

along with the emergence of isotype class switched autoantibodies (Berer et al., 2011b). 

 

B cell depletion during EAE 
The importance and differential role of B cells on the course of EAE was shown by 

depletion experiments. Passive transfer of serum containing myelin-specific autoantibodies 

alone could not induce clinical symptoms of EAE (Lassmann et al., 1981), and early 

depletion of B cells by anti-IgM rendered animals immunized with MBP resistant to EAE 

(Willenborg and Prowse, 1983). Nonetheless, when combining both treatments – serum 

transfer into B cell depleted recipients – severity of active EAE could be restored (Willenborg 

et al., 1986). B cells can also be efficiently depleted by antibodies targeting the B cell-

specific surface marker CD20. While anti-CD20-mediated B cell depletion before the 

induction of active EAE exacerbated disease symptoms, depletion of B cells during disease 

progression profoundly suppressed symptoms. The increased severity of EAE with early B 

cell depletion resulted from an increased influx of encephalitogenic T cells into the CNS, due 

to the depletion of the rare IL-10-secreting CD1dhi/CD5+ regulatory B cell subset. During late 

depletion, B cells were removed from the system otherwise essential for continuous 

production of autoantigen-specific CD4+ T cells and sustained entry of encephalitogenic T 

cells into the CNS (Matsushita et al., 2008). Thus, B cells can have dual functions: either in 

driving autoimmunity as APCs, by producing autoantibodies, or by secreting inflammatory 
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cytokines, as IFNγ and IL-12; or in suppressing autoimmunity as IL-10-producing regulatory 

B cells, dampening the inflammatory potential of effector T cells or influencing the activity of 

other surrounding APCs (Figure 1.6) (Lund and Randall, 2010). 

 

 

 

 

 

 

 

 

  

Figure 1.6 T – B cell interactions. Effector 

and regulatory B cells can present antigen to 

CD4+ T cells and provide co-stimulation and 

cytokines. Effector B cells (‘Be1’ cells) can 

secrete cytokines, such as IFNγ and IL-12, 

that reinforce and stabilize the cytokine 

profile of TH1 effector cells. In addition, the 

effector B cells can recruit additional naive T 

cells into the inflammatory response. By 

contrast, the regulatory B cells produce IL-10 

which suppresses the inflammatory potential 

of effector T cells, alters the activity of 

antigen-presenting DCs, and promotes 

regulatory T cell development and expansion 

(adapted from Lund and Randall 2010). 
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OBJECTIVES 
 

Activation of T cells is a crucial step in disease initiation. Since sustained intracellular 

calcium signaling is a prerequisite for effective activation of T cells, this process needs to be 

studied in detail for in-depth understanding of T cell function in situ. Unfortunately, so far 

calcium imaging in T cells was restricted to in vitro experiments, due to the limited 

intracellular persistence of synthetic calcium indicators. Therefore, sustained measurement 

of intracellular calcium level changes in T cells in vivo needs to be established by the use of 

a genetically encoded calcium indicator, like TN-XXL. T cells with stable transgenic 

expression of TN-XXL are to be obtained, and must be tested in vitro and in vivo with 

respect to functionality of the calcium indicator and potential interference with the expressing 

cell. This approach then allows imaging of T cell activation in peripheral immune organs as 

well as in the central nervous system, thus transferring calcium imaging from an artificial in 

vitro to a real in vivo setting. 

B cells play a critical role in the development and persistence of EAE and MS, too. 

Therefore, in addition to calcium imaging in T cells, a novel mouse model for better analysis 

of B cells was to be established. Transgenic B cells in this mouse model should be 

fluorescently labeled for sustained imaging and tracking. This allows to follow the fate of B 

cells during their development, in steady-state conditions, or during an inflammatory 

response. Furthermore, B cells should be susceptible to toxin-mediated cytotoxicity to allow 

specific and efficient depletion of B cells at any time. Thereby, basic concepts of B cell 

biology as turnover rates or homeostasis as well as the specific role of B cells during disease 

could be studied. 
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MATERIAL and METHODS 
 

 

2.1 MATERIAL 
 
2.1.1 Bacteria 
 
E. coli DH5α (Clontech, Heidelberg), F- deoR endA1 hsdR17 (rk

- mk
-) supE44 thi-1 recA1 

gyrA96 relA1 ∆(argFV196-lacZYA) φ80 lacZ∆M15 
 
E. coli GM2163 dam-/dcm- (NEB, Frankfurt), ara-14 leuB6 fhuA31 lacY1 tsx78 glnV44 galK2 
galT22 mcrA dcm-6 hisG4 rfbD1 R(zgb210::Tn10) TetS endA1 rspL136 (StrR) dam13::Tn9 
(CamR) xylA-5 mtl-1 thi-1 mcrB1 hsdR2 
 
LB (Luria Bertani) medium 
10 g tryptone, 5 g yeast extract, 5 g NaCl, ad 1 l H2O. 100 µg/ml ampicillin or 30 µg/ml 
kanamycin was added for selection. For agar plates 15 g agar was added to 1 l LB medium. 
 
 
2.1.2 Oligonucleotides 
 
Cloning primers 
Name Sequence 5´→3´ Gene Purpose 
mb1 delATG mut sens CCGACTCACTGGCAGACGCTGCCAGGGGG mb1 ∆ATG exon I (SDM) 
mb1 delATG mut antis CCCCCTGGCAGCGTCTGCCAGTGAGTCGG mb1 ∆ATG exon I (SDM) 
DTR mutUAG XbaI re CGACCTCTAGATCCTAGTGGGAATTAGTCATGC DTR Recovers stopcodon 
DTR mutUAG XhoI for CAATACTCGAGTTCGCCACCATGAAGC DTR Recovers stopcodon 
mb1 exonII mut sense CACAGGTCGCGGCCGCCCGGGCCTGCGGGTAG mb1 ∆ATG exon II (SDM) 
mb1 exonII mut antis TACCCGCAGGCCCGGGCGGCCGCGACCTGTGG mb1 ∆ATG exon II (SDM) 
pBKS MluI mut sense CCCGGGCTGCACGCGTTCGATATCAAGC pBKS- MluI-site (SDM) 
pBKS MluI mut antis GCTTGATATCGAACGCGTGCAGCCCGGG pBKS- MluI-site (SDM) 
IRES2-ECMV EcoRI f TTAAAGAATTCCGCCCCTCTCCCTCCC IRES2 Amplifies IRES2 
IRES2-ECMV XhoI re CTTGCTCTCGAGGGTTGTGGCCATATTATC IRES2 Amplifies IRES2 
WPRE EcoRI for GGAATTCAATCAACCTCTGGATTACAAAATTTGTG WPRE Takes out WPRE 
WPRE XhoI rev TATCTCGAGCAGGCGGGGAGGCGG WPRE Takes out WPRE 
NF-L link-1 SphI for TATATAGCATGCTGTCTGAGCCTTCCC NFL Amplifies NF-L130-275 
NF-L link-2 SacII rev TATTATGAGCTCCTGCATGTTCTTGGCG NFL Amplifies NF-L130-275 
YFP SacII Kozak for GGATCCCGCGGCCGCCACCATGGGCGGCGTGC YFP Amplifies YFP 
YFP EcoRI pRSETB r GTTAGCAGCCGGATCAAGCTTCG YFP Amplifies YFP 
TropC SacII Kozak fo GGATCCCGCGGCCGCCACCATGCTGAGCG ckTnC Amplifies TnC 
mTagBFP SacII for ATATACCGCGGCCGCCACCATGAGCG tBFP Amplifies mTagBFP 
mTagBFP SphI rev GCTGAGCATGCTATTAAGCTTGTGCCCC tBFP Amplifies mTagBFP 

           (SDM, site-directed mutagenesis) 
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Genotyping primers 
Name Sequence 5´→3´ Gene Mouse line 
mb1-intronI end down CGCTGCATCTAAGGTTCTGCCC mb1 intron mb1-R&D 
tdRFP N-term up CCTCGATCTCGAACTCGTGGC tdRFP mb1-R&D 
sVA-TNXXL N-term for AGGCACGTGGTTAAGCTCTCGG hCD2 intron hCD2-TN-XXL 
sVA-TNXXL N-term re TCGTGCTGCTTCATGTGGTCGG CFP hCD2-TN-XXL 
CFP/YFP N-term for AAGCTGACCCTGAAGTTCATCTGCACC CFP or YFP CAG(W)-TN-XXL 
CFP/YFP C-term rev TGTTGCCGTCCTCCTTGAAGTCGATGC CFP or YFP CAG(W)-TN-XXL 

 
 
Quantitative PCR primers 
Name Sequence 5´→3´ Gene Detection 
CMV-prom 5´ seq for TCCGCGTTACATAACTTACGG CMV promoter SYBR green 
CMV-prom mid seq rev TGATACACTTGATGTACTGCC CMV promoter SYBR green 
CFP_Chr_for CTGACCTGGGGCGTGCAGTGCTTC CFP SYBR green 
CFP/YFP C-term rev TGTTGCCGTCCTCCTTGAAGTCGATGC CFP or YFP SYBR green 
Fabpi-200 for TGGACAGGACTGGACCTCTGC Fabpi SYBR green 
Fabpi-200 rev GCTTTGCCACATCACAGGTCATTCAG Fabpi SYBR green 
pCAGGS seq for CTCTGCTAACCATGTTCATGCC CAG intron SYBR green 
CAG prom 3´e for CTGACTGACCGCGTTACTCC CAG promoter SYBR green 
CFP/YFP N-term rev ACTTGTGGCCGTTTACGTCG CFP/YFP SYBR green 
GAPDH sense SYBR GTGTCCGTCGTGGATCTGA GAPDH SYBR green 
GAPDH AS SYBR CCTGCTTCACCACCTTCTTG GAPDH SYBR green 
IFNγ sense TCAAGTGGCATAGATGTGGAAGAA IFNg FAM-TAMRA 
IFNγ AS TGGCTCTGCAGGATTTTCATG IFNg FAM-TAMRA 
IFNγ probe TCACCATCCTTTTGCCAGTTCCTCCAG IFNg FAM-TAMRA 
IL‐17 sense AACTCCCTTGGCGCAAAAGT IL-17a FAM-TAMRA 
IL‐17 AS GGCACTGAGCTTCCCAGATC IL-17a FAM-TAMRA 
IL‐17 probe CCACGTCACCCTGGACTCTCCACC IL-17a FAM-TAMRA 
IL‐5 sense CCGCTCACCGAGCTCTGTT IL-5 FAM-TAMRA 
IL‐5 AS AGATTTCTCCAATGCATAGCTGG IL-5 FAM-TAMRA 
IL‐5 probe CAGGAAGCCTCATCGTCTCATTGCTTGT IL-5 FAM-TAMRA 
IL‐10 sense CAGAGAAGCATGGCCCAGAA IL-10 FAM-TAMRA 
IL‐10 AS TGCTCCACTGCCTTGCTCTT IL-10 FAM-TAMRA 
IL‐10 probe TGAGGCGCTTGTCATCGATTTCTCCC IL-10 FAM-TAMRA 
mFoxP3 sense AGGAGAAGCTGGGAGCTATGC FoxP3 FAM-TAMRA 
mFoxP3 AS TGGCTACGATGCAGCAAGAG FoxP3 FAM-TAMRA 
mFoxP3 Probe AAGGCTCCATCTGTGGCCTCAATGGA FoxP3 FAM-TAMRA 
mTNFα sense CATCTTCTCAAAATTCGAGTGACAA TNFa FAM-TAMRA 
mTNFα AS TGGGAGTAGACAAGGTACAACCC TNFa FAM-TAMRA 
mTNFα probe CACGTCGTAGCAAACCACCAAGTGGA TNFa FAM-TAMRA 
GAPDH sense TCACCACCATGGAGAAGGC GAPDH FAM-TAMRA 
GAPDH AS GCTAAGCAGTTGGTGGTGCA GAPDH FAM-TAMRA 
GAPDH probe ATGCCCCCATGTTTGTGATGGGTGT GAPDH FAM-TAMRA 

 
All DNA oligonucleotides used in this thesis were synthesized by Metabion (Martinsried). 
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2.1.3 Plasmids 
 
Vector backbones 
pBluescript II SK- (pBSK) Bacterial cloning vector Stratagene, Heidelberg 
pCAG    Composite actin promoter (Niwa et al., 1991) 
pcDNA3   Expression vector  Invitrogen, Karlsruhe 
pEGFP-C1   EGFP fusion vector  Clontech, Heidelberg 
pIRES2-eGFP   Coexpression vector  Clontech, Heidelberg 
pmb1    B cell-specific promoter (Hobeika et al., 2006) 
pMSCVneo   Retroviral vector  Clontech, Heidelberg 
pRSET-B   Expression vector  Invitrogen, Karlsruhe 
psVAhCD2MI232  T cell-specific promoter (Zhumabekov et al., 1995) 
pUC13    Expression vector  (Messing, 1983) 
 
Subcloned plasmids 
Name Backbone Insert Sel. 
pHL-FB pEGFP-C1 tdRFP Kan 
pIRES2-EGFP expression vector none Kan 
pEGFP-N1-DTR pGEFP-N1 DTR Kan 
pCMV-tdRFP-IRES2-DTR pEGFP-C1 tdRFP-IRES2-DTR Kan 
pBKS(-)mutMluI mut cloning vector none Amp 
pBKS-mutMluINruI pBKS none Amp 
pBKS-mMN-tdRFP pBKS tdRFP Amp 
pBKS-RFP/DTR pBKS tdRFP-IRES2-DTR Amp 
pUC13-mb1-6.4E pUC13 mb1 Amp 
pUC13-mb1-delATGexonI pUC13 mb1 Amp 
pUC13-mb1-delATGexonI+II pUC13 mb1 Amp 
pmb1-RFP/DTR pUC13-mb1-delATGs tdRFP-IRES2-DTR Amp 
pcDNA3-TNXXL pcDNA3 TNXXL Amp 
sVAhCD2MI232 pBSK(-) sVAhCD2 Amp 
sVAhCD2-TNXXL sVAhCD2MI232 TNXXL Amp 
pcDNA3-TNXXL-WPRE pcDNA3 SFLTNXXL-WPRE Amp 
pCAGGS-MCS pCAGGS none Amp 
pCAGGS-SFLTNXXL pCAGGS SFLTNXXL Amp 
pCAGGS-SFLTNXXL-WPRE pCAGGS SFLTNXXL-WPRE Amp 
pCL-Eco pCK gag/pol/env Amp 
pMSCVneo-dsRed2 pMSCV dsRed2 Amp 
pMSCVneo-YFP pMSCVneo YFP only Amp 
pMSCVneo-TNXXL pMSCVneo TNXXL fulllength Amp 
pMSCVneo-TNXXL-TropC-NFL pMSCVneo TNXXL-TropC-NFL Amp 
pMSCVneo-TNXXL-delTropC pMSCVneo TNXXL-delTropC Amp 
pMSCVneo-TagBFP-link-Citcp174 pMSCVneo TagBFP-link-Citcp174 Amp 
pMSCVneo-TNXXL-CFP/Venuscp174CD pMSCVneo TNXXL-CFP/Venuscp174CD Amp 
pMSCVdelneo-TNXXL-CFP/Venuscp174CD pMSCVneo TNXXL-CFP/Venuscp174CD Amp 
pMSCVdelneo-TN3XL-CFP/Venuscp174CD pMSCVneo TN3XL-CFP/Venuscp174CD Amp 
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2.1.4 DNA analysis buffers 
 
TAE running buffer 
40 mM Tris-HCl, 40 mM acetic acid, pH 8.0, 1 mM EDTA 
 
DNA loading dye 10x 
50 mM Tris-HCl, pH 7.6, 60% glycerol, 0.05% bromophenol blue, 0.05% xylen cyanol FF 
 
Low salt / high salt buffer 
0.2 M / 2.0 M NaCl, 20 mM Tris-HCl, 1 mM EDTA, pH 7.4 
 
Microinjection buffer 
10 mM Tris-HCl, 0.2 mM EDTA, pH 7.5 
 
 
2.1.5 Cell culture 
 
EL4 – Lymphoma induced in a C57BL/6 mouse by 9,10-dimethyl-1,2-benzanthracene 
treatment (suspension cells) (Gorer, 1950) (ATCC: TIB-39). 
 
Phoenix – Retrovirus producer line based on HEK293 cells for the generation of helper free 
ecotropic retroviruses (semi-adherent cells) (Pear et al., 1993). 
 
RPMI 1640 and DMEM (complemented) 
Media RPMI 1640 and DMEM (both Sigma-Aldrich, Taufkirchen) were complemented with 
100 µM MEM non-essential amino acids, 1 mM sodium pyruvate, 50,000 units penicillin, 50 
mg streptomycin, 2 mM L-glutamine (all Gibco, Karlsruhe), and 10% fetal calf serum (FCS) 
(Biochrome, Berlin). RPMI 1640 medium was further complemented with 200 µM 2-ME. 
Prior to use FCS was inactivated for 1 h at 56°C. Media were sterilized by filtration (pore size 
0.2 µm). All quantities refer to 500 ml of medium. 
 
 
2.1.6 Western blot analysis 
 
RIPA buffer 
50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton-X 100, 0.5% sodium 
deoxycholate, 0.1% SDS 
 
Lämmli running buffer 10x 
250 mM Tris-base, pH 8.8, 1% SDS, 1.92 M glycine 
 
Lämmli loading buffer 2x 
200 mM Tris-HCl, pH 6.8, 10% SDS, 10% glycerol, 10% β-ME, bromophenol blue to taste 
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Anode buffer I 
300 mM Tris, pH 10.4, 20% methanol 
 
Anode buffer II 
25 mM Tris, pH 10.4, 20% methanol 
 
Cathode buffer 
25 mM Tris, pH 9.4, 40 mM 6-aminohexanic acid, 20% methanol 
 
Primary antibodies 
anti-GFP rabbit monoclonal, 1:5000 (Research Diagnostics Inc., Flanders, NJ, USA) 
anti-GAPDH mouse monoclonal, 1:30000 (Sigma-Aldrich, Taufkirchen) 
 
HRP-coupled secondary antibodies 
anti-rabbit IgG goat polyclonal and anti-mouse IgG horse polyclonal, both 1:2000 
(Cell Signaling Technology, Boston, MA, USA) 
 
 
2.1.7 Frequently used buffers and solutions 
 
Phosphate buffered saline (PBS) 
10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4, 140 mM NaCl, 2.7 mM KCl 
 
Mammalian saline buffer 
140 mM NaCl, 5 mM KCI, 1 mM CaCl2, 1 mM MgCl2 and 10 mM Hepes, pH 7.4 
 
Mouse tail digestion buffer 
100 mM Tris-HCl, pH 8.5, 200 mM NaCl, 5 mM EDTA, 1% Tween-20, 1 mg/ml Proteinase K 
 
ACK buffer 
150 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA 
 
Cell lysis buffer (native) 
150 mM NaCl, 20 mM Tris-HCl, 1% Triton-X 100 
 
2x BES (pH 6.95) 
50 mM N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid, 280 mM NaCl, 1.5 mM 
Na2HPO4 
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2.1.8 Flow cytometry 
 
FACS staining buffer 
1% BSA, 0.1% sodium azide, in PBS 
 
FACS markers 
Specificity Clone Antibody class Company 
CD3ε 145-2C11 Ar Ham IgG1, κ BD 
CD4 RM4-5 Rat IgG2a, κ eBioscience 
CD5 53-7.3 Rat IgG2a, κ BD 
CD8α 53-6.7 Rat IgG2a, κ eBioscience 
CD11b M1/70 Rat IgG2b, κ BD 
CD11b M1/70 Rat IgG2b, κ BD 
CD19 1D3 Rat IgG2a, κ BD 
CD21 7G6 Rat IgG2b, κ BD 
CD23 B3B4 Rat IgG2a, κ BD 
CD24 M1/69 Rat IgG2b, κ BD 
CD25 3C7 Rat IgG2b, κ eBioscience 
CD44 IM7 Rat IgG2b, κ BD 
CD62L MEL-14 Rat IgG2a, κ eBioscience 
CD69 H1.2F3 Ar Ham IgG1, λ3 BD 
CD117 2B8 Rat IgG2b, κ eBioscience 
B220 RA3-6B2 Rat IgG2a, κ eBioscience 
IgM R6-60.2 Rat IgG2a, κ BD 
F4/80 Cl:A3-1 Rat IgG2b, κ AdB Serotec 
Gr-1 RB6-8C5 Rat IgG2b, κ eBioscience 
NKp46 29A1.4 Rat IgG2a, κ eBioscience 
Ly6C AL-21 Rat IgM, κ BD 
Va3.2 RR3-16 Rat IgG2b, κ BD 
Va8.3 KT50 Rat IgG2a, κ BD 
Va2 B20.1 Rat IgG2a, l BD 
Streptavidin - - eBioscience 
AnnexinV - - BD 
TO-PRO-3 - - Invitrogen 

 
FACS markers were directly fluorescently labeled with FITC, PE, PerCP, or APC, or were 
biotinylated and used in conjunction with Streptavidin-coupled fluorescent labels. All markers 
were purchased from BD (Heidelberg), eBioscience (Frankfurt), AdB Serotec (Düsseldorf), 
or Invitrogen (Karlsruhe). 
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2.2 METHODS 
 
2.2.1 DNA techniques 
 
In silico DNA analysis.  Plasmid maps were drawn with Vector NTI 11 (Invitrogen, 
Karlsruhe); restriction enzyme digestions were designed using NEBcutter 2.0 (NEB, 
Frankfurt) and Webcutter 2.0 (Yale, New Haven, CT, USA); oligonucleotide primers were 
designed using IDT SciTools software (Integrated DNA Technologies, Coralville, IA, USA); 
DNA sequencing results were analyzed by BioEdit (Ibis Therapeutics, Carlsbad, CA, USA); 
sequence alignment was done by ClustalW (EMBL-EBI, Cambridge, UK); and DNA 
translation by ExPASy (SIB, Lausanne, Switzerland). 
 
DNA modification.  DNA was modified with enzymes using standard protocols provided by 
the manufacturers (NEB, Frankfurt; MBI Fermentas, St. Leon-Rot). 
 
Plasmid precipitation.  DNA precipitation was done by addition of 0.1 vol of 3 M sodium 
acetate and 1 vol of isopropanol, followed by centrifugation at 20,000 rcf for 20 min at 4°C. 
The DNA pellet was washed with 70% ethanol, dried in a Savant Speed Vac Concentrator 
(Thermo Fisher Scientific, Schwerte), and dissolved in H2O. 
 
DNA amplification by PCR.  DNA was amplified by polymerase chain reaction using either 
Taq (Invitrogen, Karlsruhe), Easy-A High-Fidelity (Stratagene, Amsterdam, Netherlands), or 
Expand High FidelityPLUS (Roche, Mannheim) polymerase, according to the instructions of 
the manufacturers, run on a PTC-200 DNAEngine (MJ Research, Bio-Rad, München) cycler. 
 
DNA purification.  PCR products or DNA fragments were purified by the QIAquick PCR 
Purification Kit (Qiagen, Hilden) following the manufacturer´s instructions. 
 
Agarose gel electrophoresis.  DNA fragments were separated in agarose gels (1% agarose 
in TAE buffer, 1 µg/ml ethidiumbromide) using approx. 1 V/cm2. DNA bands in analytical gels 
were visualized in the Geldoc XR system (Bio-Rad, München). For excision of DNA bands 
from preparative gels, long wavelength UV light (312 nm) on a IL 200 M transilluminator 
(Bachofer, Reutlingen) was used. 
 
DNA extraction from agarose gels.  DNA fragments were excised from agarose gels and 
DNA was isolated using the Wizard SV Gel Clean-Up System (Promega, Mannheim) 
following the instructions supplied by the manufacturer. 
 
Ligation of DNA fragments.  Following estimation of DNA concentration by Nanodrop ND-
100 (PeqLab, Erlangen) measurement, vector backbone and insert were mixed in molar 
ratios of 1:2 to 1:5. The fragments were ligated in a total volume of 20 µl T4 DNA ligase 
buffer using 400 units T4 DNA ligase (NEB, Frankfurt) for 1 hour at RT. 
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Oligonucleotide duplex insertion.  To introduce a new or modified multiple cloning site (MCS) 
into plasmids, sense and antisense oligonucleotides were designed to contain required 
restriction sites and to feature appropriate restriction site overhangs after dimerization for 
ligation into the target vector. For duplex formation, oligonucleotides were diluted to 10 µM 
each, mixed 1:1, denatured for 7 min at 95°C, and annealed for 5 min on ice. Thereafter, 
duplex was diluted to 500 nM final concentration and ligated with open target vector at 2.5 
nM concentration in a 20 µl ligation reaction. 
 
Preparation of electrocompetent E. coli.  15 ml LB medium were inoculated with E. coli 
DH5α and incubated at 37°C o/n on a Multitron 2 bacterial shaker (Infors HT, Bottmingen, 
Switzerland). From this culture, 6 ml were transferred to 500 ml LB medium, and grown to an 
OD600 of 0.6. Bacteria were chilled for 30 min on ice, harvested by centrifugation at 4,000 rcf 
for 15 min at 4°C, and washed twice, first in 500 ml, then in 250 ml of chilled sterile 10% 
glycerol. Thereafter, the bacteria were washed again in 10 ml and finally resuspended in 1 
ml of sterile 10% glycerol, of which 50 µl aliquots were shock-frozen on dry ice. 
 
Electroporation of E. coli.  Electrocompetent E. coli were thawed on ice, and 50 µl of cell 
suspension were mixed with 1 µl DNA, transferred to a chilled electroporation cuvette, and 
transfected using the GenePulser (Bio-Rad, München) at 25 µF, 1.7 kV, and 200 Ω. After 
electroporation the bacteria were immediately transferred to 500 µl LB medium and agitated 
for 30 to 45 min at 37°C. 200 µl of cell suspension were plated onto LB agar plates 
containing antibiotic selection and incubated at 37°C o/n. 
 
Long-term stocks of E. coli.  For storage of transformed bacteria, 600 µl of an overnight 
culture was mixed with 400 µl of glycerol and stored in cryotubes at -80°C. 
 
Isolation of plasmid DNA from E. coli.  Small amounts of DNA for analytical digests were 
extracted from 3 ml of an overnight culture using a standard alkaline lysis protocol 
(Sambrook and Russel, 2001). Higher quantities of plasmid DNA were isolated with the 
HiSpeed Plasmid Midi Kit (Qiagen, Hilden) according to the instructions of the manufacturer; 
DNA was eluted in H2O. The quantity of nucleic acids in solution was determined by 
Nanodrop ND-100 (PeqLab, Erlangen) measurement. 
 
DNA purification for pronuclear injection.  25 µg of DNA were digested with restriction 
enzymes to release the transgene from the bacterial vector backbone, and the fragments 
were separated on a 0.8% agarose gel. The transgene fragment was excised under low 
intensity UV light (312 nm) and transferred into a dialysis tubing filled with TAE buffer. The 
dialysis bag was then fixed in the gel chamber across the electric field, and electrophoresis 
was continued for 1 hr at 80 V to allow the transgene DNA to migrate out of the gel. To force 
DNA back from the dialysis wall into solution, polarity was changed several times for 30 sec, 
before recovering the DNA-containing buffer from the tubing. The DNA was isolated using 
Elutip-d Purification Minicolumns (Schleicher & Schüll, Dassel) following the instructions of 
the manufacturer, EtOH precipitated, dried, and dissolved in 50 µl microinjection buffer. The 
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transgene concentration, purity and integrity was estimated by Nanodrop ND-100 (PeqLab, 
Erlangen) and gel electrophoresis, before the DNA concentration was adjusted to 100 ng/µl 
and submitted to the institute´s pronuclear microinjection service unit. 
 
Codon diversification and gene synthesis.  To optimize the calcium indicator TN-XXL for 
retroviral transduction, the original TN-XXL DNA sequence was codon diversified without 
changing the amino acid sequence and synthesized (Sloning Biotech, Puchheim). 
 
Isolation of genomic DNA.  Total genomic DNA was isolated from organs using the QIAamp 
DNA Mini Kit (Qiagen, Hilden) using the protocol provided by the manufacturer. 
 
 
2.2.2 RNA techniques 
 
RNA extraction.  Total RNA was isolated from purified cells or whole tissue by TRI Reagent 
(Sigma-Aldrich, Taufkirchen) following the instructions provided by the manufacturer. 
 
Reverse transcription.  cDNA was generated from RNA using SuperScript II Reverse 
Transcriptase (Invitrogen, Karlsruhe) or the Verso cDNA Kit (Thermo Fisher Scientific, 
Schwerte), according to the manufacturer´s instructions. 
 
Quantitative PCR.  Real-time qPCR was performed using the ABsolute QPCR Mixes 
(Thermo Fisher Scientific, Schwerte) according to the instructions of the manufacturer, and 
samples were run on a 7900HT Fast Real-Time PCR System and analyzed by SDS 2.3 
software (both Applied Biosystems, Darmstadt). 
 
 
2.2.3 Cell culture 
 
Cultivation of cell lines.  Cell lines or primary cells were cultivated in fully complemented 
RPMI or DMEM medium in standard cell culture-treated plastic dishes (BD, Heidelberg; 
Nunc, Roskilde, Denmark; Corning, Kaiserslautern) in a humidified incubator (Heraeus, 
Langenselbold) at 37°C and 5% or 10% CO2, respectively. Cells growing in suspension were 
harvested by resuspending the culture; semi-adherent cells were flushed off the culture dish 
surface; and adherent cells were first briefly rinsed with PBS and then trypsinized with 
Trypsin-EDTA (PAA Laboratories, Pasching, Austria) for 3 to 5 minutes at 37°C. Cell 
densities were regularly determined using a Neubauer hemocytometer (Neubauer, 
Marienfeld). Cultures were kept subconfluent by regular dilution with fresh medium at ratios 
from 1:2 to 1:10. Cells were pelleted by centrifugation at 250 rcf for 10 min at 4°C. 
 
Freezing and thawing of stocks.  For preparation of long-term stocks, 5 x 106 cells were 
harvested and resuspended in 500 µl 10% DMSO in FCS. Stocks were frozen in a Cryo 1°C 
Freezing Container (Thermo Fisher Scientific, Schwerte) at -80°C and subsequently stored 
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in liquid nitrogen. For thawing, stocks were transferred to 37°C and washed once with 10 ml 
fresh medium to remove DMSO, before resuspension in 10 ml warm medium. 
 
Electroporation of cell lines.  EL4 cells (7 x 106 per transfection) were centrifuged at 250 rcf 
for 10 min at 4°C and washed twice with RPMI medium. Cells were suspended in 800 µl 
RPMI and kept for 10 min on ice, before 30 µg of linearized DNA in 50 µl RPMI were mixed 
in. After another 10 min incubation time on ice, cells were electroporated in a GenePulser 
(Bio-Rad, München) with 280 V and 960 µF. Cells were allowed to rest for 10 min on ice 
before being transferred into 10 ml complemented RPMI and incubated at 37°C. 
 
Calcium phosphate transfection of Phoenix cells.  2 x 106 Phoenix cells were seeded per 10 
cm culture dish in 10 ml medium and incubated o/n. Prior to transfection 25 µM chloroquine 
(Sigma-Aldrich, Taufkirchen) was added to the medium. The transfection complex was 
generated by diluting 12 µg DNA in 438 µl H2O, mixing in 62 µl 2 M CaCl2, and adding 500 µl 
2x BES dropwise while vortexing. After 20 min incubation at 37°C the calcium phosphate-
DNA co-precipitate was transferred dropwise onto the Phoenix cells. After o/n incubation 
culture medium was replaced to detoxify from calcium phosphate and chloroquine. 
 
Retroviral transduction of primary T cells.  CD4+ T cells were purified from WT mouse 
spleens using the MagCellect negative isolation kit, and 2 x 106 cells per well were 
stimulated in 6-well plates pre-coated with 0.5 µg/ml anti-CD3 and anti-CD28 antibodies 
(both BD, Heidelberg). Alternatively, transgenic splenocytes from 2D2 x IgHMOG, TCR1640 x 
IgHMOG, or OT-II mice were used without any previous purification step, and stimulated by 
adding 20 µg/ml recombinant MOG or 10 µg/ml OVA peptide, respectively. Cells were 
incubated for 2 days prior to retroviral transduction to ensure robust proliferation. To obtain 
virus for transduction, Phoenix packaging cells were calcium phosphate transfected with 
pMSCV vectors featuring inserts of interest. Two days after transfection Phoenix supernatant 
was collected and centrifuged at 6,000 rcf for 18 hrs at 4°C in Corex II glass centrifugation 
tubes (Corning, Amsterdam, The Netherlands) to concentrate the virus. Virus pellets were 
resuspended in fresh Phoenix supernatant collected from the same transfectant, 
supplemented with 8 µg/ml polybrene, and used for spin-infection of stimulated primary T 
cells at 500 rcf for 90 min at RT in RetroNectin-coated (Takara, Ōtsu, Japan) culture dishes. 
48 hrs after transduction transgene expression was estimated by FACS analysis. 
 
Cell labeling with tracking dyes.  2 x 107 cells were suspended in 5 ml RPMI, 1% FCS, mixed 
with 2 µM CFSE (Invitrogen, Karlsruhe), 5 µM eFluor 670 (eBioscience, Frankfurt), or 5 µM 
SNARF-1 (Invitrogen, Karlsruhe), and incubated for 10 min at 37°C with occasional shaking. 
To stop labeling process, 45 ml cold PBS was added and cells were centrifuged at 250 rcf 
for 10 min at 4°C. After another washing step with cold PBS, cells were resuspended in 
growth medium for culturing or PBS for direct intravenous injection. 
 
Cell labeling with calcium dye Fura Red.  6 x 106 cells were resuspended in 1 ml 1x Hank´s 
balanced salt solution containing 1% FCS, 1x Powerload, and 10 µM Fura Red (all 
Invitrogen, Karlsruhe). After incubation for 30 min at 37°C cells were washed twice with PBS. 
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Proliferation assay.  2 x 105 lymphocytes per well were seeded in 96-well round-bottom 
plates in a total volume of 200 µl growth medium in triplicates. After a culture period of 48 
hours, 1 µCi 3H-labeled thymidine (PerkinElmer, Rodgau) was added per well. Samples 
were harvested 16 hours later and tritium incorporation was measured on a Matrix 9600 
Direct Beta Counter (Packard, Meriden, CT, USA). 
 
Cell lysate preparation (native).  Lysates were prepared by resuspending cells in 500 µl cell 
lysis buffer, followed by incubation for 30 min at 4°C with constant rotation. Cell fragments 
were spun down by centrifugation at 20,000 rcf for 1 hour, before supernatant was recovered 
and analyzed. Fluorescent proteins were measured on a Cary Eclipse fluorescent 
spectrophotometer (Varian, Darmstadt). 
 
 
2.2.4 Mouse routine 
 
Mouse license.  All animals used in this study were bred in the animal facilities of the Max 
Planck Institutes of Biochemistry and Neurobiology. The animal procedures were in 
accordance with guidelines of the committee on animals of the Max Planck Institute for 
Neurobiology, and with the license of the Regierung von Oberbayern. 
 
Generation of transgenic mice.  Purified transgene constructs were submitted to the 
pronuclear injection service unit (MPI of Biochemistry, Martinsried). Up to 300 C57BL/6 
fertilized oocytes from superovulated female mice were harvested and microinjected into the 
pronucleus. Groups of 30 embryos were reimplanted into the oviduct of pseudopregnant 
female recipients. Offspring were analyzed for transgene presence, positive mice then 
crossed to C57BL/6 mice, and F1 offspring were reanalyzed for transgene transmittance. 
 
Mouse genotyping.  Transgenic mice were genotyped either by tail biopsy digested o/n in tail 
digestion buffer followed by PCR analysis with transgene-specific primers on phenol-
chloroform (Roth, Karlsruhe) extracted DNA; by FACS analysis of PBMCs for expression of 
fluorophores or presence of certain surface markers; or by whole mount illumination to test 
for ubiquitous fluorophore expression in the skin in a custom build illumination chamber. 
 
Leukocyte isolation from peripheral blood.  2 to 5 droplets of blood were collected from 
anesthetized mice by retro-orbital bleeding into 100 µl 200 U/ml heparin (Sigma-Aldrich, 
Taufkirchen) in PBS. Erythrocytes were lysed by incubation in 1 ml ACK buffer, and 
leukocytes were spun down at 500 rcf for 5 min, washed with 1 ml ACK buffer, and finally 
resuspended in 200 µl FACS buffer. 
 
Lymphocyte preparation from isolated organs.  Mice were sacrificed and lymphoid organs 
were removed by dissection. Single cell suspensions were obtained by dissociating tissues 
through 40 µm cell strainers (BD, Heidelberg). Cells were centrifuged at 250 rcf for 10 min at 
4°C and resuspended in complemented RPMI for culturing or further downstream analysis. 



MATERIAL and METHODS 

33 
 

For spleen or bone marrow preparations, an additional erythrocyte lysis step was performed 
by incubating the cell suspension in 0.83% NH4Cl for 3 min at RT and washing with RPMI. 
 
Cell transfer for lymph node imaging.  One day after retroviral transduction, 5-15 x 106 OT-II 
T cells were adoptively transferred by i.v. injection into the tail vein of mildly irradiated (20 
Gy) C57BL/6 recipients. Mice were allowed to recover for one week before adoptive transfer 
of APCs. For imaging of T cell – DC interactions, BMDCs were obtained from C57BL/6 mice 
femurs and cultured in the presence of GM-CSF producing hybridoma-conditioned medium, 
with repeated medium exchange to deplete non-adherent cells. After 8 days in culture, 
BMDCs were trypsinized and activated o/n in fresh medium supplemented with 1 µg/ml LPS. 
Activated BMDCs were labeled with SNARF-1 (Invitrogen), and 2 x 106 BMDCs were 
injected subcutaneously into the lower leg. Imaging of the draining popliteal lymph node was 
performed on the next day. For imaging of T – B cell interactions, B cells were obtained from 
IgHMOG mice mouse spleens using the MagCellect B cell isolation kit (R&D) and cultured in 
the presence of 1 µg/ml LPS. Two days later, B cells were pulsed o/n with 20 µg/ml 
recombinant MOG, labeled with SNARF-1, and 15 x 106 B cells were injected i.v. into the tail 
vein. Popliteal lymph node imaging was performed 2 hours (early), 8 hours (intermediate), or 
24 hours (late) after B cell transfer. 
 
OT-II T cell transfer during active EAE.  C57BL/6 mice were subcutaneously immunized at 
the base of the tail with 200 µg recombinant MOG emulsified in complete Freund´s adjuvant 
(Difco, Franklin Lakes, NJ, USA). 400 ng pertussis toxin (List Biological Laboratories, 
Campbell, CA, USA) was injected i.p. on days 0 and 2. One week after immunization 10 x 
106 transduced OT-II T cells were adoptively transferred by i.v. injection into the tail vein, 
and 4-5 days later spinal cord imaging was performed. 
 
Passive EAE.  For induction of adoptive transfer EAE, T cells from in vitro cultures were 
centrifuged at 250 rcf for 10 min at 4°C, washed once with cold PBS, and resuspended in 
cold PBS. Recipient mice were fastened in a restrainer and 250 µl cells were injected i.v. 
into the tail vein. In addition 400 ng of pertussis toxin (List Biological Laboratories, Campbell, 
CA, USA) were injected intraperitoneally. Clinical symptoms were evaluated by classical 
EAE scores: score 0 – no disease; score 0.5 – reduced tail tonus; score 1: limp tail; score 
1.5 – limp tail and ataxia; score 2 – limp tail and hind limb weakness; score 2.5 – at least one 
hind limb paralyzed/weakness; score 3 – both hind limbs paralyzed/weakness; score 3.5 –
complete paralysis of hind limbs; score 4 – paralysis until hip; score 5 – moribund or dead. 
 
Diphtheria toxin treatment.  For depletion of B cells in R&D mice, Diphtheria toxin (DTx) 
(Sigma-Aldrich, Taufkirchen) was injected intraperitoneally at concentrations and time points 
as mentioned at the respective experiment. 
 
Intracardiac perfusion.  In anesthetized mice the thoracic cavity was opened and a butterfly 
needle was inserted into the left ventricle. After incising the right atrium, mice were slowly 
perfused with 30 ml PBS 4% PFA in PBS for later dissection and histological analysis. 
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2.2.5 Western blotting 
 
Preparation of protein lysates.  Tissue was cut in small pieces, frozen in liquid nitrogen, and 
pestled. Fragments were suspended in RIPA buffer and homogenized in a Polytron PT 3000 
(Kinematica, Luzern, Switzerland) on ice. Cell fragments were pelleted by centrifugation for 
10 min at 20,000 rcf before supernatants were recovered and stored at -20°C. 
 
BCA assay.  Protein concentration was estimated using the BCA protein assay following the 
manufacturer´s instructions (Thermo Scientific Pierce, Rockford, IL, USA). 
 
SDS-PAGE.  Separation of proteins was achieved by denaturing, discontinuous, one-
dimensional SDS polyacrylamide gel electrophoresis (Lämmli, 1970), using pre-cast Novex 
4-12% tris-glycine gels (Invitrogen, Karlsruhe). 2x Lämmli buffer was added to 10 µl cell 
lysate, boiled for 5 min at 100°C, and loaded to each lane. Electrophoresis was performed in 
Lämmli running buffer at 100 V for stacking, and at 130 V for resolving of proteins in a 
Mighty Small gel chamber (Hoefer, San Francisco, CA, USA). To verify appropriate sample 
loading, gels were stained with Coomassie Brilliant Blue G-250 (Bio-Rad, München). 
 
Western transfer.  Proteins were electrophoretically transferred from polyacrylamide gels to 
Immobilion-FL PVDF membranes (Millipore, Schwalbach) using the semi-dry blot technique. 
Configuration of the Western blot was: 6 layers Whatman paper wetted in anode buffer I, 3 
layers Whatman paper pre-wetted in anode buffer II, PVDF membrane (pre-equilibrated in 
methanol), polyacrylamide gel, 6 layers Whatman paper wetted in cathode buffer. The 
transfer was carried out at a current of 0.8 mA/cm2 for one hour at RT. 
 
Immunodetection of proteins.  All incubations were done on a rocking table. After transfer of 
proteins, the membrane was blocked by incubation in PBS 5% milk powder o/n in the cold 
room. The primary antibody was diluted in PBS 0.1% Tween-20 1% milk powder. Primary 
antibody incubation was done for 1 hour at RT. After four washings with PBS 0.2% Tween-
20 for 5 min, the membrane was incubated with HRP-coupled secondary antibody in PBS 
0.1% Tween-20 1% milk powder for 1 hour at RT in the dark. The membrane was washed 
four times for 5 min; final washing was done in PBS without Tween-20. Bands were detected 
using ECL Western Blotting Substrate (Thermo Scientific Pierce, Rockford, IL, USA) on 
Amersham Hyperfilm ECL (GE Healthcare, München). 
 
 
2.2.6 Flow cytometry (FACS) 
 
FACS staining.  Cells to be analyzed were transferred into 96-well V-bottom plates and 
centrifuged at 250 rcf for 10 min at 4°C. Cells were washed in 200 µl FACS buffer twice, 
resuspended in 50 µl FACS buffer containing directly labeled surface marker-binding 
antibodies at appropriate dilutions, and incubated for 20 min at 4°C. After washing and 
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resuspension in 100 µl FACS buffer, samples were acquired on a FACS Calibur or FACS 
Canto (all FACS machines from BD, Heidelberg), and analyzed using FlowJo 7.6 software 
(TreeStar, Ashland, OR, USA). 
 
FACS sorting.  Antibody stained splenocytes or transgenic cell lines expressing fluorescent 
proteins were resuspended in RPMI and sorted on a FACS Vantage SE or a FACS Aria II. 
 
In situ calcium calibration.  FACS-based intracellular calcium calibrations were obtained as 
described previously (June and Moore, 2004). Briefly, cells were resuspended in 10 mM 
MOPS buffer containing defined amounts of 10 mM CaEGTA and K2EGTA. To force cells to 
equilibrate with extracellular calcium levels, MOPS buffer was poisoned with 4 µM 
ionomycin, 10 µM carbonyl cyanide m-chlorophenyl hydrazone, 40 mM 2-deoxyglucose, and 
60 mM sodium azide. Cells were incubated for 90 minutes at 37°C to allow for clamping and 
calcium equilibration before acquisition on a FACS Canto. 
 
 
2.2.7 Fluorescence microscopy 
 
Tissue sections.  Organs from PFA perfused mice were fixed in 4% PFA in PBS for 1 hr, and 
immerged in 30% sucrose o/n. Tissues were embedded in Tissue-Tek O.C.T. Compound 
(Sakura, Staufen), and 10 µm sections were cut on a CM3050 S Cryocutter (Leica, Wetzlar). 
 
Fluorescence immunohistochemistry.  (Note: between every change of reagent, samples 
were washed 3 times with PBS at RT.) Tissue sections were thawed, fixed in cold acetone 
for 10 min, and blocked with 5% BSA in PBS for 2 hrs at RT. Incubation with anti-CD4 
antibody (rat monoclonal, 1:500, BD, Heidelberg) was done in 5% BSA in PBS o/n at 4°C. 
Incubation with Alexa Fluor 488-labeled secondary antibody (anti-rat IgG goat polyclonal, 
1:2000, Invitrogen, Karlsruhe) was done in 5% BSA in PBS for 2 hrs at RT. Cell nuclei were 
stained with DAPI (Invitrogen, Karlsruhe) in PBS for 5 min at RT, before sections were 
eventually rinsed with H2O and embedded in anti-fading mounting medium (Sigma-Aldrich, 
Taufkirchen). Images were acquired on an inverted SP2 confocal microscope (Leica, 
Wetzlar) or an inverted AxioVert 200M microscope (Carl Zeiss, München). Individual images 
were assembled for overviews of whole organs using the Photomerge function of Photoshop 
CS5 software (Adobe Systems, Unterschleißheim). 
 
In vitro widefield time-lapse microscopy.  EL4 thymoma or primary T and B cells were 
suspended in saline buffer supplemented with 10 mM glucose. Cells were seeded on a glass 
bottom culture dish (MatTek, Ashland, MA, USA) coated with type I collagen (Invitrogen, 
Karlsruhe). Time-lapse images were acquired on a Axiovert 200M microscope (Carl Zeiss, 
München) equipped with a 37°C incubation chamber. TN-XXL was excited with a 436/20 nm 
band-pass filter, and CFP and FRET emission was detected with a 480/40 nm and a 535/30 
nm band-pass filter, respectively (Semrock, Rochester, NY, USA). Microscopy data was 
processed using MetaMorph (Molecular Devices) and ImageJ (NIH) software. 
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In vivo two-photon microscopy.  Time-lapse two-photon laser-scanning microscopy was 
performed using a SP2 confocal microscope (Leica, Wetzlar) equipped with a 10 W 
Millenia/Tsunami laser (Newport Spectra Physics, Darmstadt). Excitation wavelength was 
tuned to 835 nm and routed through a Leica x25 water immersion objective (NA 0.95). 
Typically areas of 240 x 240 μm size were scanned, and 25-30 μm z-stacks were acquired 
with 3-4 μm z-step. Acquisition rate was 16-20 s interval time, with images averaged twice. 
Fluorescent signals were detected using non-descanned photomultiplier tube detectors 
(Hamamatsu, Herrsching) equipped with 475/50 nm, 537/26 nm, 630/69 nm, and 685/40 nm 
band-pass filters (Semrock, Rochester, NY, USA). Mice were anaesthetized by intra-
muscular injection of fentanyl/midazolam/medetomidine (50 μg/kg, 5 mg/kg, and 500 μg/kg 
bodyweight, respectively), orotracheally intubated, and ventilated with 1.5% isoflurane. 
Popliteal lymph nodes were exposed by cutting the skin at the hollow of the knee and careful 
dissection of the adductor musculature. For spinal cord imaging a spinal cord window was 
prepared at level Th12/L1. After midline skin incision, the paravertebral musculature was 
detached from the spine and laminectomy on one spine disc was performed. Animals were 
stabilized in a custom-made microscope stage and body temperature was regulated by a 
heated pad (37.5°C). Electrocardiograms were recorded and physiological parameters were 
constantly monitored during imaging. Blood vessels were visualized by intravenous infusion 
of Texas Red-conjugated dextran (50 μg; 70 kDa; Invitrogen, Karlsruhe). 
 
Image analysis.  Time-lapse images were acquired using Leica LCS software (Leica, 
Wetzlar), and subsequently processed and analyzed by ImageJ (NIH, Bethesda, MD, USA). 
To obtain two-dimensional movies, a Gaussian blur filter was applied and maximum intensity 
z-projections were made. Ratiometric pseudocolor pictures were generated by dividing the 
FRET by the CFP channel and applying a fire lookup table. For analysis, cell shape at each 
time point was manually outlined in the maximum projection picture, and average signal 
intensities of all pixels within this area were calculated. Motility parameters and cell 
trajectories were calculated from the obtained position coordinates using Excel (Microsoft, 
Unterschleißheim). The linearity index is defined as the sum of total displacement divided by 
the path length of a T cell, the circularity index is defined as 4π(area/perimeter2). Cell 
trajectories were calculated from the obtained coordinates and aligned for starting position. 
 
Calcium data transformation.  Calcium indicator specificities are determined by the 
dissociation constant Kd (indicating the binding affinity for calcium) and the Hill coefficient h 
(specifying the slope of the calcium binding curve). For ratiometric calcium indicators, ratio 
changes are calculated by relating the fluorescence intensities at the respective wavelength 
maximum of the calcium-bound to the calcium-free state. Values then get normalized to 
display the fractional ratio change ∆R/R in percent, with ∆R/R = (R-R0)/R0 (R = actual ratio, 
R0 = ratio at zero calcium) (Gunter and Gunter, 2001). 
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RESULTS 
 

 

3.1 THE R&D MOUSE 
 

 

3.1.1 Cloning of R&D constructs 
The aim of the R&D project was to obtain another valuable tool to study B cell 

functions in EAE by engineering B cells to simultaneously express red fluorescence protein 

(RFP) to allow in vivo tracking, and the human Diphtheria toxin receptor (DTR) to deplete 

them at any given time by injection of Diphtheria toxin (DTx) (Saito et al., 2001). Since quite 

a number of various RFPs is available (Shaner et al., 2004), a variant, tandem dimer RFP 

(tdRFP), was chosen that is suitable for sustained and high expression in murine 

lymphocytes (Luche et al., 2006). tdRFP consists of two monomeric RFPs interlinked by a 

flexible linker (Campbell et al., 2002). This duplication yields two advantages: (1) increased 

fluorescence intensity due to the presence of two identical fluorophores; (2) reduced risk of 

intermolecular protein aggregation (which RFP tends to) by promoting intramolecular 

dimerization. For simultaneous expression of tdRFP and DTR (termed R&D), both genes 

were placed in succession, separated by an internal ribosomal entry site (IRES), and 

subcloned into the cytomegalovirus (CMV) promoter-driven expression vector pCMV to 

obtain pCMV-R&D (cloning scheme in Figure 3.1.1). 

 

3.1.2 Functional characterization of the R&D construct in EL4 cells in vitro 
 The approach to specifically deplete murine cells by DTx utilizes a distinct difference 

between mice and men: rodents in general are resistant to DTx due to lack of binding of the 

toxin to the low affinity endogenous murine heparin-binding epidermal growth factor (HB-

EGF) receptor. However, transgenic expression of the high affinity human HB-EGF receptor 

renders a murine cell susceptible to DTx-mediated depletion, which blocks translation and 

thereby drives apoptosis pathways (Figure 3.1.2A) (Palmiter, 2001). 

Initial verification of the R&D construct was done in vitro in EL4 murine lymphoma 

cells. EL4 cells were transfected with linearized pCMV-R&D, and cell clones stably 

expressing the R&D construct were obtained by FACS sorting and limiting dilution. The 

clone with the highest RFP expression was chosen for further analysis. Both, FACS analysis 

and microscopy analysis confirmed strong expression of RFP in EL4 cells (Figure 3.1.2B). 

To test the efficiency of DTx-mediated killing, R&D-expressing EL4 cells were treated 

with increasing concentrations of DTx. After overnight incubation, transgenic cells showed a 
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105 higher sensitivity to DTx over wild-type (WT) EL4 cells, which were killed only at the 

highest DTx concentration (Figure 3.1.2C). To follow the actual time course of DTx-mediated 

cytotoxicity, a concentration of 50 ng/ml was applied to R&D-expressing EL4 cells. Apoptotic 

cells as detected by AnnexinV staining first emerged after 12 hours, followed by dead cells 

positive for the cell death marker TO-PRO-3 after 15 hours. At 24 hours all cells incubated 

with 50 ng/ml DTx were dead (Figure 3.1.2D). 

  

 
 
Figure 3.1.1 Generation of the construct for transgenic mb1-R&D mice. Schematic representation of the 

cloning strategy for the expression construct, pmb1-R&D, used for generation of R&D transgenic mice. The 

tandem-dimer red fluorescent protein (tdRFP) and the human Diphtheria toxin receptor (DTR), separated by 

an internal ribosomal entry site (IRES), are driven by the B cell-specific mb-1 promoter. 
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3.1.3 Generation and characterization of R&D transgenic mice 

Having successfully tested the R&D construct in vitro in EL4 cells, the construct was 

excised from the pCMV-R&D construct and further subcloned into a vector containing the B 

cell-specific mb-1 promoter to generate transgenic mice expressing R&D in B lymphocytes 

(cloning scheme in Figure 3.1.1). The mb-1 gene encodes the small Ig-α signaling subunit of 

the B cell receptor which is expressed from the early pro-B cell developmental stage on 

(Hobeika et al., 2006). After sequence verification, the final pmb1-R&D transgene was 

linearized with EcoRI and PvuI, separated from the bacterial backbone, and microinjected 

into fertilized C57BL/6 oocytes. Out of five transgenic founder lines obtained, three 

transmitted the R&D transgene to the next generation. Analysis of red fluorescence in B cells 

of peripheral blood showed bright fluorescence specifically in B cells of the F1 progeny from 

one transgenic mouse line. This mouse line with the strongest RFP expression, termed R&D 

mice, was chosen for further analysis. 

 
 
Figure 3.1.2 Transgenic expression of the R&D construct in EL4 cells. (A) Schematic depiction of 

Diphtheria toxin-mediated killing of a mouse cell: DTx cannot bind to the endogenous murine HB-EGF 

receptor, but efficiently binds to a transgenically expressed human HB-EGF receptor. After endocytosis and 

endosome release, the active DTx subunit induces a translation block which causes cell death (modified from 

Palmiter, 2001). (B) FACS histogram and microscopic image of RFP fluorescence in EL4 cells. Scale bar 10 

µm. (C, D) In vitro killing assay of R&D-expressing EL4 lymphoma cells, (C) using increasing DTx 

concentrations and measurement after 24 hrs, or (D) over time using 50 ng/ml DTx. Apoptotic cells were 

determined by AnnexinV staining, dead cells by TO-PRO-3 staining. 
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RFP expression in B cells of R&D mice was well detectable at the population level, 

with a high degree of selectivity for B cells as analyzed by FACS (Figure 3.1.3A). RFP-

expressing B cells were easily distinguishable from other cell types by live microscopy as 

well as in fixed lymph node slices (Figure 3.1.3A). The tdRFP fluorophore used for 

generation of the R&D mouse is superior for two-photon microscopy (Drobizhev et al., 2011). 

Nonetheless, higher wavelength light is necessary for efficient excitation of red fluorescent 

proteins. By using 920 nm or shorter wavelengths (as usually taken for excitation of GFP), 

almost no red fluorescence was detectable; only with wavelengths above 1000 nm, red 

fluorescence was well visible by two-photon microscopy in R&D B cells (Figure 3.1.3B). 

 

 To estimate changes in RFP expression levels in B cells during their maturation, 

bone marrow from R&D mice was stained with specific developmental surface markers 

(Figure 3.1.4A). Grouping B cells into different developmental subsets (Hardy fractions A-F 

(Li et al., 1993)) and analyzing corresponding fluorescence levels showed a constant 

increase of RFP expression paralleling  B cell maturation (Figure 3.1.4A).  

 
 
Figure 3.1.3 Transgenic expression of RFP in murine B cells from R&D mice. (A) Analysis of RFP 

expression in B220 positive B cells by FACS analysis of peripheral blood lymphocytes. Microscopic analysis 

of splenocyte suspension cells by widefield microscopy, and by confocal microscopy (DAPI nuclear stain in 

blue) as well as widefield composite microscopy of fixed spleen sections, costained with anti-CD4 (green) for 

T cell staining. (B) Two-photon microscopic acquisition of R&D B cells in suspension at various excitation 

wavelengths. Scale bars for suspension cells 10 µm, for sections 100 µm. 
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Another interesting feature of the R&D mouse appeared when analyzing transgenic 

females: only about 50% of all B cells showed expression of RFP, suggesting an X-linked 

inheritance of the transgene. This proofed to be true when interbreeding R&D mice did 

eventually yield homozygous females with 100% of all B cells showing red fluorescence 

(Figure 3.1.4B). X-linked expression of the R&D construct did not influence transgene 

properties but allowed straightforward screening for homozygous females and establishing a 

homozygous breeding scheme with hemizygous males. 

 

 
 

To exclude a possible deleterious effect of R&D transgene expression on the 

constitution of the murine immune system, distinct sets of immune cells from blood, spleen, 

bone marrow, lymph node, and peritoneum of R&D and WT mice were quantified using 

FACS analysis. In all immune compartments tested, no obvious difference could be detected 

between transgenic and WT mice, neither in developing B cells nor for mature B or T cells 

(Figure 3.1.5). 

 
 
Figure 3.1.4 RFP expression during B cell maturation. (A) FACS analysis of bone marrow cells stained by 

specific markers for B cell development allows grouping in consecutive maturation stages (Hardy fractions): 

A B220–/CD24–, B B220–/CD24+, C B220+/CD24+/IgMlo, D B220+/CD24+/IgMhi, E B220+/CD24hi/IgMhi. R&D B 

cells showed increasing levels of RFP expression in later stages of B cell development. Frac, Hardy fraction. 

(B) X-linked expression of R&D transgene as shown by random X-inactivation in heterozygous females: 

Hemizygous male mice showed red fluorescence in all B cells (left). Heterozygous female mice in contrast 

showed R&D transgene expression in only about 50% of all B cells, while homozygous female mice again 

showed red fluorescence in all B cells (right). 
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3.1.4 Live cell microscopy of in vitro cultivated R&D B cells 
 In order to verify the usability of RFP-labeling for long-term tracking during in vitro live 

cell microscopy, splenocytes from R&D x IgHMOG mice harboring MOG-specific B cells, and 

2D2 x Rag2-/- (Hao and Rajewsky, 2001) splenocytes containing MOG-specific T cells were 

mixed at a 1:1 ratio together with 20 µg/ml recombinant MOG (rMOG). The interactions 

 
 
Figure 3.1.6 R&D B cells show highly photostable RFP fluorescence. Long-term widefield live 

microscopy of cells during coculture of red fluorescent MOG-specific R&D B with unlabeled 2D2 T cells, in 

the presence of 20 μg/ml rMOG. 40 hours total imaging time, 100 min interval depicted, scale bar 100 µm. 

Figure 3.1.5 R&D expression does not 
interfere with the immune system. FACS 

analysis showed unaltered composition of the 

immune system in R&D mice in various 

lymphatic compartments, including all B cell 

subsets. MZ, marginal zone; FO, follicular. 

Depicted are mean values ± SEM. 
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between T cells and B cells were followed using a live cell imaging setup. Image acquisition 

for transmitted light and red fluorescence was performed every 5 min, continuously for over 

40 hours, providing a detailed view of progressing cell interactions (Movie 1). R&D 

transgenic B cells exhibited stable RFP fluorescence throughout the whole imaging period, 

allowing efficient tracking of cells forming dense activation clusters (Figure 3.1.6). 

 

3.1.5 B cell depletion in R&D mice 
 To analyze the efficiency of B cell depletion in R&D mice, DTx at 10 ng/g body weight 

was injected i.p. into R&D and WT mice. Peripheral blood B cell frequencies were monitored 

at regular intervals to estimate the efficiency of toxin-mediated B cell depletion. Injection of 

six consecutive doses of DTx induced a rapid and near complete depletion of B cells in R&D 

mice, while B cells in WT mice remained unaffected (Figure 3.1.7A). After stopping the toxin 

application, B cell levels started to recover, reaching normal levels about 40 days later 

(Figure 3.1.7A). B cell repopulation was characterized by an initial rapid increase of 

immature B220+/CD23+ B cells, reaching a plateau at one week after the final DTx injection, 

before giving way to fully matured B220+/CD23− B cells (Figure 3.1.7B). In addition, the body 

weight of experimental animals was monitored constantly and did not show any significant 

changes between R&D and WT mice, suggesting no side-effects by DTx injection or 

complications evoked by strong and sustained changes in B cell numbers (Figure 3.1.7C). 

 

 

Figure 3.1.7 In vivo B cell depletion in R&D 
mice. (A) Depletion and repopulation kinetics of B 

cells in the peripheral blood after injection of six 

consecutive DTx doses at indicated time points, as 

determined by FACS analysis of peripheral blood. 

(B) Increased frequency of B220+/CD23+ immature 

B cells in repopulating peripheral B cells after DTx 

treatment. (C) Weight changes in indicated animals 

after repeated DTx administration. 
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3.1.6 Comparison of B cell depletion by anti-CD20 or DTx 
 At present, anti-CD20 antibody treatment is the gold standard for efficient B cell 

depletion (Reff et al., 1994). To compare efficiencies of B cell depletion by anti-CD20 with 

the new toxin-mediated method presented in this study, R&D mice immunized with keyhole 

limpet hemocyanin (KLH) were injected i.p. with either 250 µg IgG2a control antibody, 250 

µg anti-CD20 antibody, or 1 µg DTx. Two days later B cell populations from different 

lymphoid organs were analyzed by FACS and compared between the three groups (Figure 

3.1.8). While depletion of B cells in the blood was comparable between anti-CD20 and DTx, 

major differences were seen in other lymphoid organs. The depletion of total B cells in the 

spleen was slightly more efficient in DTx than in anti-CD20 treated animals. Notably, DTx 

efficiently depleted CD21hi/CD23+ marginal zone B cells in the spleen, which are known to 

be resistant to anti-CD20 antibodies (Bekar et al., 2010). Furthermore, DTx treatment almost 

completely depleted B cells in the bone marrow of R&D mice, whereas anti-CD20 antibodies 

only partially depleted mature B cells. Similarly, while B cells are not efficiently targeted by 

anti-CD20 in the peritoneal cavity due to insufficient numbers of macrophages (Hamaguchi 

et al., 2006), DTx killed most of the B cells present in the peritoneum (Figure 3.1.8). 

 

 
 

 
 

Figure 3.1.8 Comparison of anti-CD20 and DTx-mediated B cell depletion. FACS analysis of lymphocyte 

populations two days after B cell depletion by 250 μg IgG2a control antibody, 250 μg anti-CD20, or 1 μg DTx 

i.p., in KLH-immunized R&D mice. 
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 Microscopic analysis of lymph node sections from R&D mice treated with anti-CD20 

or DTx as described above also revealed drastic architectural changes after B cell depletion. 

While confined T and B cell zones were clearly visible in control mice, B cell depletion lead 

to distorted compartmentalization, noted by a spreading of T cells throughout the lymph 

node. This effect was detectable with anti-CD20 treatment, but was even stronger after 

depletion of B cells by DTx (Figure 3.1.9). 

 

 
 

 
 

 

  

Figure 3.1.9 Depletion efficiency of anti-CD20 and DTx in lymph nodes. Composite widefield 

microscopic images of lymph node sections from KLH-immunized R&D mice, two days after treatment with 

250 μg IgG2a control antibody, 250 μg anti-CD20, or 1 μg DTx. RFP fluorescence is shown in red, anti-CD4 

staining for T cells in green. Scale bars 100 µm. 
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3.2 TN-XXL TRANSGENIC MICE 
 

 

3.2.1 Synthetic calcium indicators are not suitable for in vivo calcium imaging 
To monitor T cell activation events in vivo, synthetic calcium dyes were tested which 

have been successfully used for in vitro studies to document antigen recognition by T cells 

(Irvine et al., 2002). Murine primary T cells were loaded in vitro with the visible light-excited 

calcium dye Fura Red, and its intracellular persistence was followed by flow cytometry over 

time. In agreement with published reports (Homolya et al., 1993), a dramatic loss of Fura 

Red was observed within few hours that approached complete expulsion from cells after 

overnight incubation (Figure 3.2.1A). Quantification of the label intensity showed that after 28 

hours in culture just barely detectable levels (approximately 10x higher Fura Red 

fluorescence intensity over unlabeled control cells) were present (Figure 3.2.1B). Further, to 

test the use of calcium dyes in immune cells in vivo, murine splenocytes, double-labeled with 

the calcium indicator Fura Red along with the cell tracking dye eFluor 670 which is 

irreversibly coupled to cellular proteins, were transferred into WT host animals. After 24 

hours, total splenocytes isolated from recipient animals were analyzed, and a substantial 

loss of Fura Red in all cell tracker-tagged cells was found (Figure 3.2.1C). Collectively, these 

data confirmed the limited use of synthetic calcium dyes for in vivo calcium imaging of T 

lymphocytes. 

 

 
 

  

 
 
Figure 3.2.1 Synthetic calcium indicators are not stable in T cells. (A) Loss of synthetic calcium dye Fura 

Red from T cells within hours: Overlay of Fura Red-labeled T cells, analyzed by FACS after 0, 3, 9, and 28 

hours, along with unstained control cells. (B) Quantification of Fura Red label intensity in relation to unlabeled 

control cells. (C) Selective loss of synthetic calcium dye fluorescence from labeled splenocytes in vivo after 

adoptive transfer: Fura Red fluorescence vanishes while the cell tracking dye eFluor 670 remains stable. 
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3.2.2 Evaluation of TN-XXL in immortalized T cells 
 As a promising alternative to synthetic calcium dyes, the genetically encoded, FRET-

based calcium indicator TN-XXL (Mank et al., 2008) was examined for calcium imaging in 

lymphocytes in vivo. TN-XXL is composed of two fluorescent proteins, cyan fluorescent 

protein (CFP) as FRET donor and yellow fluorescent protein (YFP) as FRET acceptor, linked 

by the calcium sensitive moiety of troponin C (TnC) from chicken skeletal muscle. Upon 

binding free calcium, TnC undergoes a reversible conformational change, leading to energy 

transfer from CFP to YFP (Figure 3.2.2A), thus changing the ratio of YFP to CFP 

fluorescence. This ratiometric change can be used as direct measure of calcium level 

changes in the cytoplasm at a given time. Since accurate calcium calibration in a real in vivo 

 
 
Figure 3.2.2 Genetically encoded calcium indicators are suitable for calcium imaging in T cells. (A) 
Schematic depiction of the calcium indicator TN-XXL, with donor fluorophore CFP, acceptor YFP, and the 

calcium sensitive domain Troponin C, before and after binding of calcium. (B) Spectrophotometric analysis of 

cell lysate from TN-XXL-expressing EL4 cells, before (black) and after (red) addition of 1 mM calcium. FI, 

fluorescence intensity; a.u., arbitrary units. (C) FACS-based measurement of calcium influx into TN-XXL-

expressing EL4 cells after stimulation with 4 µM ionomycin: CFP fluorescence intensity drops and FRET 

intensity rises, yielding a robust ratio change. YFP fluorescence alone remains unchanged. Fluorescence 

intensities (FI) and fractional fluorescence change of the FRET/CFP ratio (∆R/R) are plotted as function of 

time. (D) Epifluorescence and phase contrast images of TN-XXL-expressing EL4 cells, before (left) and after 

(right) addition of 4 µM ionomycin. Overlay showing pseudocolor image of FRET/CFP ratio. Scale bar 10 µm. 

(E) Average fluorescence intensities of CFP and YFP, and average response of the ratiometric signal after 

induction of calcium influx into TN-XXL-expressing EL4 cells by addition of 4 µM ionomycin. 
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setting is rather error-prone, all calcium level changes shown in this report will be plotted as 

fractional change in emission ratio, expressed as ∆R/R = (R-R0)/R0 (R, actual ratio 

measured; R0, ratio at zero calcium), and are not translated into definite intracellular calcium 

concentrations. 

To assess the suitability of TN-XXL for calcium imaging in lymphoid cells, EL4 

lymphoma cells were stably transfected with a plasmid encoding TN-XXL driven by the CMV 

promoter. Spectrophotometric measurement of cell lysates from TN-XXL-expressing EL4 

cells showed a maximal fluorescence ratio change (Rmax ≈ 290%) upon addition of 1 mM 

calcium (Figure 3.2.2B), comparable to values previously estimated for purified recombinant 

TN-XXL protein (Mank et al., 2008). FACS analysis of TN-XXL-expressing EL4 cells showed 

a high fluorescence ratio change upon addition of the calcium ionophore ionomycin, 

indicating a sharp rise of intracellular calcium (Figure 3.2.2C). These results were confirmed 

by widefield fluorescence microscopy (Figure 3.2.2D and 3.2.2E, and Movie 2). Taken 

together, the results obtained with EL4 cells supported the possible applicability of TN-XXL 

for calcium imaging in T lymphocytes in vivo. 

 

3.2.3 T cell-specific TN-XXL transgenic mice (hCD2-TN-XXL) 
To obtain T cell-specific expression in transgenic mice, TN-XXL was cloned in 

between the human CD2 (hCD2) promoter and the hCD2 locus control region (LCR) (Figure 

3.2.3A). The hCD2 promoter (Zhumabekov et al., 1995) was chosen since it has been 

successfully used to generate transgenic mice with strong and T cell-specific expression of 

 
 
Figure 3.2.3 TN-XXL expression under control of the hCD2 promoter. (A) Schematic representation of 

the transgene construct used for the generation of hCD2-TN-XXL transgenic mice. (B) FACS analysis of 

splenocytes from hCD2-TN-XXL transgenic mice. 
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GFP (De Boer et al., 2003). After sequence verification, hCD2-TN-XXL was linearized with 

PmeI, separated from the bacterial backbone, and microinjected into fertilized C57BL/6 

oocytes. Out of nine transgenic founder lines, six transmitted the hCD2-TN-XXL transgene to 

the next generation. Unexpectedly, only one transgenic founder-derived F1 mouse line 

showed slight TN-XXL expression (as seen by YFP fluorescence) in peripheral blood 

lymphocytes. TN-XXL expression was largely restricted to the CD8+ T cell lineage, and none 

of the CD4+ T cells, B220+ B cells, and CD11b+ macrophages showed fluorescence. Even in 

CD8+ T cells, TN-XXL expression was marginally above background fluorescence (Figure 

3.2.3B). Therefore, none of the hCD2-TN-XXL transgenic founders could be used for further 

experiments. 

 

3.2.4 Ubiquitous TN-XXL transgenic mice (CAGW-TN-XXL) 
 Since the hCD2-TN-XXL transgenic mice did not yield the expected pattern of 

expression, the ubiquitously active CAG promoter was chosen to drive expression of TN-

XXL in murine T cells. The CAG promoter is a composite of the human CMV immediate 

early enhancer element and the chicken β-actin promoter (Niwa et al., 1991). This promoter 

was used more than a decade ago to generate the well-known GFP transgenic `green mice´ 

(Okabe et al., 1997), and was also successfully employed in several other studies to drive 

ubiquitous and robust expression of various fluorescent proteins in almost all cell types 

(Kawamoto et al., 2000; Long et al., 2005; Riedl et al., 2010). To further ensure proper 

 
 
Figure 3.2.4 TN-XXL expressed under control of the CAG promoter and the WPRE. (A) Schematic 

representation of the transgene construct used for the generation of CAGW-TN-XXL transgenic mice. CMV 

IE, cytomegalovirus immediate early enhancer; chk, chicken; WPRE, woodchuck post-transcriptional 

regulatory element; UTR, untranslated region. (B) Brightfield and fluorescent images of newborn pups: 

Homozygous animals showed brighter fluorescence (left) over heterozygous animals (right), while no 

fluorescence could be seen for WT animals (middle). 
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expression of TN-XXL, the woodchuck hepatitis virus post-transcriptional regulatory element 

(WPRE) was included into the transgenic construct, upstream of the chicken β-actin 3´UTR. 

The WPRE has been shown to boost transgene expression rates (Zufferey et al., 1999), at 

least partly by enhancing nuclear export of mRNA (Mastroyiannopoulos et al., 2005). TN-

XXL was cloned downstream of the CAG promoter, followed by WPRE and 3´UTR (Figure 

3.2.4A). After sequence verification, CAGW-TN-XXL was linearized with HindIII and SspI, 

separated from the bacterial backbone, and microinjected into fertilized C57BL/6 oocytes. 

Out of six transgenic founder lines, three transmitted the CAGW-TN-XXL transgene 

to the next generation. One line showed visible expression of TN-XXL in the skin (Figure 

 
 
Figure 3.2.5 Expression of TN-XXL in different tissues of CAGW-TN-XXL mice. (A) Western blot 

analysis of tissue lysates probed with anti-GFP (to estimate TN-XXL expression (69 kDa)) and anti-GAPDH 

antibodies (loading control (36 kDa)). (B) Cryosections (10 µm) of organs from CAGW-TN-XXL mice showing 

TN-XXL fluorescence (yellow) costained with DAPI for nuclear staining (purple). Scale bars 500 µm. 
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3.2.4B) and was chosen for further analysis. Anti-GFP western blot analysis (detecting YFP 

as well) revealed expression of TN-XXL in all organs (Figure 3.2.5A). Microscopic 

examination of cryosections from different organs further confirmed ubiquitous distribution of 

TN-XXL: Most cell types analyzed showed strong TN-XXL expression as in CNS tissue, in 

kidney, liver, and intestine, in muscle tissue, and also in skin and blood vessel endothelium 

as seen in a tail cross section. In the spleen, however, only limited TN-XXL fluorescence 

could be detected (Figure 3.2.5B). 

 

3.2.5 Expression of TN-XXL in lymphocytes of CAGW-TN-XXL mice 

 Next, TN-XXL was analyzed in lymphocyte populations in CAGW-TN-XXL mice. 

Surprisingly again, TN-XXL was almost not detectable in lymphocytes of CAGW-TN-XXL 

transgenic animals. TN-XXL fluorescence seen in lymphoid organs was restricted to stromal 

cells, while lymphocyte areas were devoid of any fluorescence (Figure 3.2.6A). FACS 

analysis confirmed lack of TN-XXL expression in all cells types of the hematopoietic system, 

in developing as well as in mature cells (Figure 3.2.6B). 

 

 

 
 
Figure 3.2.6 Lack of TN-XXL expression in lymphoid organs. (A) Cryosections (10 µm) of lymphoid 

organs from CAGW-TN-XXL mice showing TN-XXL fluorescence (yellow), costained with DAPI for nuclear 

staining (purple). Lymph follicles in spleen are encircled to highlight lymphocyte areas. Scale bars 200 µm. 

(B) FACS analysis of lymphocytes from various organs from CAGW-TN-XXL mice in comparison to WT. 
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To rule out a selective loss of TN-XXL transgene in lymphocyte populations, genomic 

DNA was analyzed by quantitative PCR. TN-XXL DNA amplified by transgene-specific 

primers was present in comparable amounts in kidney cells and splenocytes, ruling out a 

selective loss of transgene DNA in lymphocyte populations (Figure 3.2.7A). To determine 

TN-XXL transcript levels, pre-mRNA was quantified by using a forward primer binding in the 

promoter region, paired with a primer binding in the intron of the transgene. Mature mRNA 

was quantified using the same forward primer, however, paired with a primer binding in the 

coding region, thus amplifying only spliced mRNA. In contrast to genomic DNA levels, TN-

XXL transcript levels of both, mature and pre-mRNA, were highly reduced in splenocytes 

compared to kidney cells (Figure 3.2.7B). Nonetheless, the ratio between processed mature 

and recently transcribed pre-mRNA was comparable between both cell types, suggesting a 

robust impairment of TN-XXL transcription in splenocytes without any further downstream 

obstructions in TN-XXL mRNA processing or stability (Figure 3.2.7C). 

Transcriptional downregulation in mammalian cells could occur in many ways. CpG 

methylation of DNA and formation of inactive heterochromatin is one well-known epigenetic 

mechanism, by which gene expression can be silenced (Suzuki and Bird, 2008; Lal et al., 

2009). It was previously shown, that treatment of cells with the demethylating agent 5-aza-

2´-deoxycytidine (Aza) (Jones and Taylor, 1980), a cytidine analog, could switch on 

transcriptionally inactive, methylated promoters. Indeed, stimulation of CAGW-TN-XXL T 

cells by anti-CD3/CD28 and subsequent culture in the presence of Aza for two days 

substantially increased the frequency and intensity of TN-XXL expression in a dose-

 
 
Figure 3.2.7 Downregulation of TN-XXL transcription in lymphoid organs. (A) Comparable amounts of 

genomic transgene DNA in kidney and spleen, as measured by qPCR at two different positions of the 

construct (3´end of the chicken β-actin promoter and in the CFP part of the coding region). Fabpi, fatty acid-

binding protein. (B-C) qRT-PCR analysis of transcript levels showed (B) highly reduced mRNA amounts in 

lymphoid organs, while (C) the ratio between mature and pre-mRNA remained similar.  
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dependent manner (Figure 3.2.8A and 3.2.8B). Aza, however, was toxic to T cells at higher 

concentrations necessary to induce substantial TN-XXL expression, precluding its routine 

use for in vitro or in vivo studies. 

 

 
 

 

 Despite the lack of expression of TN-XXL in lymphoid cells, CAGW-TN-XXL mice are 

still a valuable tool for calcium imaging in non-lymphoid tissues due to the strong expression 

of the transgene in many cell types. We chose to study calcium imaging in the heart, since 

CAGW-TN-XXL mice showed robust expression of the calcium indicator in heart cells 

(Figure 3.2.5B). To validate this mouse model for calcium imaging in whole organs, hearts 

from day 8.5 embryos were excised and cultured in vitro, where they started spontaneous 

beating. Calcium waves travelling through the organ with every heart beat could be instantly 

detected (Figure 3.2.9A and Movie 3). The propagation of the calcium wave over time from 

the atria to the ventricles was illustrated by a phase plot of one heart beat cycle (Figure 

3.2.9B). Successive calcium signals with consistent spike patterns could be readily 

measured, while the calcium curve progression through different areas selected in the atrial 

and ventricular region of the heart demonstrated the temporal delay of the conduction of the 

calcium signal through the organ (Figure 3.2.9C). This experimental setup again 

demonstrates that, the ratiometric nature of TN-XXL is a prerequisite to facilitate calcium 

imaging in any migratory cell or an organ preparation that is not immobile. 

 
 

 
 

 
 
Figure 3.2.8 Induction of TN-XXL expression in lymphocytes after demethylation. (A) FACS analysis of 

activated T cells from CAG-TN-XXL transgenic mice, cultured in the presence of 0.6 µM Aza for two days, 

and (B) corresponding dose-response curve. 
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3.2.6 Ubiquitous TN-XXL transgenic mice without WPRE (CAG-TN-XXL) 
 One possible reason for lack of TN-XXL expression in lymphocytes of CAGW-TN-

XXL mice could be due to an unexpected deleterious effect of the WPRE in lymphocytes. 

The WPRE was shown to enhance transgene expression in most of the cells tested, 

however, in some certain cell types a mitigating effect of the WPRE was found (Klein et al., 

2006). Hence, while the WPRE was supposed to amplify transgene expression in CAGW-

TN-XXL mice, and potentially also did so in most tissues, transgene expression in cells of 

the hematopoietic system might have been severely attenuated by the WPRE. Therefore, 

another CAG promoter-based transgene construct was generated for TN-XXL expression, 

this time driven by the CAG promoter alone without any further influence of the WPRE 

(Figure 3.2.10A). After sequence verification, CAG-TN-XXL was linearized with HindIII and 

SspI, separated from the bacterial backbone, and microinjection into fertilized C57BL/6 

oocytes.  

 
 
Figure 3.2.9 Calcium waves during spontaneous beating in a day 8.5 embryonic heart. (A) 
Representative series of microscopic images with calcium levels changing over time for one heartbeat cycle. 

Scale bar 200 µm. (B) Left: Fluorescent image of the embryonic heart with orientation (A, atria; V, ventricles) 

and regions of interest (ROI 1-3) labeled. Right: Phase plot illustrating the calcium signal over time during 

one heartbeat cycle. Color code indicates the maximal ∆R/R at a given pixel and time, thus depicting the 

progression of the calcium wave over the organ. (C) Upper graphs: CFP and FRET intensities, and the 

corresponding ratio change for ROI 1. Lower graph: Detailed view of progressing calcium level changes for 

all three ROIs indicated. 
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Out of twelve transgenic founder lines, seven transmitted the CAG-TN-XXL 

transgene, however, only one line showed visible expression of TN-XXL in the skin. When 

analyzing lymphocytes from all transgenic CAG-TN-XXL F1 offspring by FACS, only the 

transgenic line with expression in the skin showed fluorescence in lymphocytes as well. 

Analysis of cells from lymphoid organs from this line revealed a predominant expression of 

TN-XXL in CD4+ and CD8+ T cells, and natural killer cells, while other cell types as B cells or 

macrophages mostly lacked TN-XXL fluorescence (Figure 3.2.10B). However, only less than 

 
 
Figure 3.2.10 TN-XXL expression under control of the CAG promoter. (A) Schematic representation of 

the transgene construct used for the generation of CAG-TN-XXL transgenic mice. CMV IE, cytomegalovirus 

immediate early enhancer; chk, chicken; UTR, untranslated region. (B) FACS analysis of TN-XXL expression 

in various lymphocyte subpopulations from CAG-TN-XXL lymphoid organs. Lymph node: CD3+/CD4+, CD4 T 

cells; CD3+/CD8+, CD8 T cells; B220+, B cells. Spleen: NKp46+, natural killer cells; CD11c+/F4/80+, 

macrophages; CD11b+/Gr-1+, granulocytes. Thymus: CD3+, all T cells; DP, double positive; SP, single 

positive. Bone marrow: CD24+/B220+, B cells; CD11b+/Ly6c+, monocytes; CD117+, progenitor cells. 
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half of all T cells showed transgene expression, and with a fluorescence intensity of only 20x 

higher than background levels, rendering these cells barely detectable by fluorescent 

microscopy. 

To analyze any functional influence of TN-XXL expression on T cells, CAG-TN-XXL 

and WT splenocytes were cultured in vitro after stimulation with anti-CD3. As shown by 

FACS analysis, the expression levels of various surface activation markers on T cells did not 

differ between transgenic CAG-TN-XXL T cells and control WT cells (Figure 3.2.11A). Also 

the frequencies of TN-XXL-expressing T cells remained stable over time (Figure 3.2.11B). In 

addition, no differences between CAG-TN-XXL and WT T cells in cytokine expression 

profiles on different days after activation were found (Figure 3.2.11C). Thus, the expression 

of TN-XXL did not seem to negatively influence T cells, however, also the CAG-TN-XXL 

mice could not be used for in vivo microscopy due to insufficient fluorescent intensity.  

 
 
Figure 3.2.11 T cells from CAG-TN-XXL mice do not show an abnormal phenotype. (A) FACS analysis 

of various surface markers on anti-CD3-stimulated T cells over time. (B) TN-XXL fluorescence in transgenic 

T cells. (C) Gene expression analysis of various T cell cytokines. Depicted are mean values ± SEM. 
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3.3 CALCIUM IMAGING IN T CELLS 
 

 

3.3.1 Optimization of TN-XXL for expression in primary T lymphocytes 
To obtain primary T cells expressing the calcium indicator, TN-XXL should be 

introduced into T cells by retroviral transduction (Flügel et al., 1999). While TN-XXL was 

readily expressed in retrovirus producing Phoenix packaging cells, all attempts to express 

TN-XXL in primary T cells by retroviral transduction were unsuccessful. The expression 

problems were systematically dissected using series of TN-XXL derivatives. Transduction of 

T cells with YFP alone (one of the tandem fluorophores used in TN-XXL) produced expected 

expression levels in T cells (Figure 3.3.1). However, neither the replacement of the calcium 

sensing domain TnC with an inert linker (neurofilament light aa 130-275), nor the complete 

removal of TnC improved transduction efficiencies in T cells, suggesting that the 

combination of CFP-YFP and not the TnC domain caused a problem for expression in T 

cells (Figure 3.3.1).  

Both fluorophores contained in TN-XXL are derived from jellyfish GFP, and sequence 

comparisons confirmed a very high sequence homology (97%) between CFP and YFP. It 

was speculated that this high degree of sequence homology might have a deleterious impact 

 
 
Figure 3.3.1 High sequence homology of CFP and YFP impairs efficient expression in T cells. 
Schematic representation of TN-XXL and its derivatives featuring various replacements or deletions (top). 

TN-XXL and all derivatives expressed in Phoenix packaging cells after transfection (middle). T cells efficiently 

expressed YFP alone and the variant containing a BFP-YFP pair after retroviral transduction with Phoenix 

cell supernatant, however no other variants containing the highly homologous CFP-YFP pair (bottom). 
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on the efficient expression of TN-XXL in T cells. As a proof of principle, jellyfish-derived CFP 

was replaced by coral-derived blue fluorescent protein (BFP), which shares only 62% 

homology to YFP. Indeed, this exchange led to desired expression levels in primary T cells 

(Figure 3.3.1). However, the combination of BFP and YFP is not an efficient FRET pair, and 

thus BFP cannot be used to replace CFP for calcium imaging. 

 

 
 
 

Based on these findings, the sequence homology between CFP and YFP, and also 

between the repetitive EF hands of TnC, were reduced by codon diversification while 

maintaining the amino acid sequence of the original TN-XXL intact (Appendix). Conservative 

codon diversification resulted in 80% homology between CFP and YFP, and 75% homology 

between repetitive EF hands of TnC. The modified, codon diversified calcium indicator, TN-

XXLCD, showed a 20-fold increased transduction efficiency compared to the original TN-XXL 

Figure 3.3.2 Optimization of TN-XXL for 
expression in T cells. (A) Codon diversification 

of TN-XXL yields higher transduction efficiency in 

anti-CD3 stimulated WT T cells. Further 

improvement of the expression intensity was 

obtained by reducing the size of the retroviral 

construct. LTR, long terminal repeats; Ψ, 

packaging; PGKp, phosphoglycerate kinase 

promoter; NeoR, neomycin resistance cassette; 

s, spacer. (B) Increased transduction efficiencies 

and fluorescent intensities with RetroNectin in 

anti-CD3 stimulated WT (left) as well as in rMOG 

stimulated TCR transgenic T cells (right). Mean 

fluorescent intensities along with transduction 

efficiencies are shown. 
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(Figure 3.3.2A). The fluorescence intensity was further enhanced by reducing the vector size 

by deleting the neomycin selection cassette, which resulted in a 7-fold increase of 

fluorescence intensity (Figure 3.3.2A). The use of the transduction enhancing agent 

RetroNectin additionally increased the fluorescence intensity obtained after retroviral 

transduction (Figure 3.3.2B). 

 
3.3.2 Functional characterization of TN-XXLCD in T cells 

For functional characterization of the calcium indicator TN-XXLCD in T cells, retroviral 

transduction of MOG-specific TCR transgenic CD4+ T cells from C57BL/6 2D2 mice and 

SJL/J TCR1640 mice was performed. Transduction rates were consistently greater than 30% 

of CD4+ T cells (Figure 3.3.3A), and fluorescence intensities remained stable after adoptive 

transfer of T cells into recipient animals (Figure 3.3.3B). 

 

 
 

Calcium mobilization measured with TN-XXLCD in T cells after TCR crosslinking was 

well detectable at the population level (Figure 3.3.4A). Further, to assess the functionality of 

TN-XXLCD at the single cell level, the activation of individual TN-XXLCD-expressing T cells by 

anti-CD3/CD28 beads was followed. Cells interacting with beads showed an immediate and 

swift increase in the ratiometric change, indicating a rapid rise of cytoplasmic calcium levels 

(Figure 3.3.4B and 3.3.4C, and Movie 4). Similar results were achieved when using rMOG-

 
 
Figure 3.3.3 Stable expression of TN-XXLCD in transduced T cells (A) FACS analysis of TCR transgenic 

MOG-specific C57BL/6 2D2 and SJL/J TCR1640 transgenic T cell cultures. (B) Analysis of blood lymphocytes 

from recipient animals showing stable expression of TN-XXLCD in TCR transgenic T cells five days after 

adoptive transfer. Vα3.2 as marker for 2D2 T cells, Vα8.3 for TCR1640 T cells. 
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pulsed IgHMOG B cells as functional APCs to mimic natural reactivation of TN-XXLCD-

expressing 2D2 T cells (Figure 3.3.4D and Movie 5). 

 

 
 

As documented by flow cytometric analysis, various surface activation markers on T 

cells cultured in vitro over time did not differ between transduced and non-transduced 2D2 T 

cells (Figure 3.3.5A), and frequencies of TN-XXLCD-expressing cells remained stable over 

time (Figure 3.3.5B). Further, cytokine expression (Figure 3.3.5C) and T cell proliferation in 

response to rMOG stimulation (Figure 3.3.5D) was unaffected by retroviral transduction. 

Longitudinal analysis of TN-XXLCD expression in TCR1640 T cells over a prolonged time 

showed that frequencies of TN-XXLCD positive T cells remained stable over a period of more 

than 30 days, indicating neither any selective advantage nor disadvantage for cells 

expressing the calcium indicator (Figure 3.3.5E). 

 
 
Figure 3.3.4 Functional in vitro characterization of TN-XXLCD-expressing TCR transgenic T cells. (A) 
FACS-based calcium measurements in TN-XXLCD-expressing 2D2 T cells after stimulation with anti-CD3-

biotin/streptavidin-APC complexes. FI, fluorescence intensity; a.u., arbitrary units. (B) Representative images 

of a 2D2 T cell interacting with anti-CD3/CD28 beads, taken from Movie 4 (cell #1). White circles show anti-

CD3/CD28 beads. Time stamp in seconds, scale bar 10 µm. (C) Representative tracks for intracellular 

calcium levels (red line) and cell velocities (black line) of T cells engaging with anti-CD3/CD28 beads, taken 

from Movie 4. Asterisks indicate time points of contact initiation, dots depict zero levels for calcium levels and 

cell velocities. (D) Representative tracks for intracellular calcium levels (red line) and cell velocities (black 

line) of T cells interacting with antigen-pulsed B cells, taken from Movie 5. Asterisks and dots as in (C). 
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Finally, the encephalitogenic potential of TN-XXLCD-expressing, MOG-specific T cells 

was examined by transferring TN-XXLCD-transduced, sham treated, or untreated control 

TCR1640 T cells into SJL/J recipients. All three cell lines triggered transfer EAE with a similar 

incidence, severity, and course of the disease (Figure 3.3.6). 

  

Figure 3.3.6 Adoptive transfer EAE 
with calcium indicator-expressing 
T cells. TN-XXLCD-transduced TCR 

transgenic T cells induced EAE in 

recipient animals to a similar extent 

as sham transduced or untreated 

control T cells. 

 
 
Figure 3.3.5 TN-XXLCD-transduced T cells show no altered phenotype. (A) FACS analysis of surface 

markers on 2D2 T cells stimulated with rMOG and transduced with TN-XXLCD, in comparison to 

untransduced control cells. (B) TN-XXLCD fluorescence in T cells as determined by FACS analysis. (C) 
Analysis of cytokine expression in 2D2 T cells four days after retroviral transduction. (D) Proliferation assay 

with 2D2 T cells after stimulation with rMOG; c.p.m., counts per minute. (E) Long-term expression of TN-

XXLCD in TCR1640 T cells was stable over time. Red triangles indicate restimulation time points.  
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3.3.3 In vivo imaging of calcium dynamics in T cells interacting with DCs 
Initial attempts to visualize calcium level changes in T cells in vivo by TN-XXLCD 

unfortunately only gave rise to scarce and faint signals (data not shown). To increase 

sensitivity, an advanced version of TN-XXL was employed with a higher calcium affinity 

(Thestrup and Griesbeck, unpublished data), termed TN-3XL. TN-3XL was equally codon 

diversified to produce TN-3XLCD, again yielding efficient transduction of primary T cells 

(Figure 3.3.7A). In situ calibration of fluorescence changes to intracellular calcium 

concentrations revealed an approximately 3.5x higher calcium affinity for TN-3XLCD, 

therefore rendering it more suitable to measure physiologically relevant intracellular calcium 

changes in T cells (Figure 3.3.7B). 

 

 
 

To functionally evaluate the calcium indicator in vivo, the OT-II mouse model system 

was employed. In these TCR transgenic mice all T cells recognize the ovalbumin peptide 

OVA323-339, which is not endogenously expressed. TN-3XLCD-transduced OT-II T cells 

(Barnden et al., 1998) were adoptively transferred one week before subcutaneous injection 

of activated bone marrow-derived dendritic cells (BMDC), labeled with the red fluorescent 

cell tracer SNARF-1. Next day, cells were imaged in the draining popliteal lymph node by 

two-photon microscopy, before and after i.v. injection of 100 µg OVA323-339 peptide (Movie 6). 

In the absence of cognate antigen, T cells showed high motility and a large displacement 

(Figure 3.3.8). After injection of OVA peptide, OT-II T cells immediately engaged with DCs, 

greatly reduced their motility, and presented a more rounded phenotype (Figure 3.3.8). 

 
 
Figure 3.3.7 Expression of TN-3XLCD and dissociation constants of calcium indicators. (A) FACS 

analysis of 2D2 T cells transduced with TN-3XLCD. (B) FACS-based in situ calcium calibration: titration 

curves of TN-XXLCD, TN-3XLCD, and Fura Red in T cells. The resulting dissociation constant Kd (indicating 

calcium affinity) and the corresponding Hill coefficient h (indicating cooperativity of binding) are Kd ≈ 520 nM 

and h ≈ 1.5 for TN-XXLCD, Kd ≈ 140 nM and h ≈ 1.3 for TN-3XLCD, and Kd ≈ 230 nM and h ≈ 0.9 for Fura 

Red, respectively. Grey area highlights range of physiologically relevant calcium levels in T cells. 
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Before injection of antigen, the calcium signatures in OT-II T cells were generally 

very low with few and only short-lasting calcium spikes (Figure 3.3.9A and 3.3.9B top). This 

picture dramatically changed after OVA peptide injection. Calcium levels in T cells rose to 

high values, and eventually developed into long-lasting calcium oscillations (Figure 3.3.9A 

and 3.3.9B bottom). As expected, all T cells displaying an elevated calcium signature after 

antigen application were in sustained contact with DCs (Movie 7). Quantification of calcium 

levels at each time point showed an inverse correlation with cell motility: T cells with low 

calcium levels featured a high motility, whereas T cells with elevated calcium levels 

significantly slowed down (Figure 3.3.9C). Similarly, the overall distribution of average 

calcium levels estimated for each individual cell skewed markedly towards higher values 

after injection of OVA peptide (Figure 3.3.9D). Since T cells showed some changes in 

calcium levels prior to antigen encounter, the duration of elevated calcium levels was 

analyzed as well. While spontaneous calcium spikes in the absence of antigen were short-

lived, T cells displayed long-lasting elevations of intracellular calcium after antigen 

encounter, persisting over several minutes (Figure 3.3.9E). Plotting the trajectories of T cell 

movements and highlighting phases of high calcium levels further illustrated the occurrence 

of spontaneous calcium peaks in freely migrating T cells, while T cells engaged with cognate 

antigen-presenting DCs stop their migration and undergo sustained calcium signaling 

(Figure 3.3.9F). 

 
 
Figure 3.3.8 Tracking of T cells in vivo for T cell – DC interactions. Quantification of T cell locomotion 

within the popliteal lymph node, before and after i.v. injection of 100 µg OVA peptide. Average velocities, 

mean squared displacement (MSD), movement linearity, and cell circularity are shown. 
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3.3.4 In vivo imaging of calcium dynamics in T cells interacting with B cells 
To test the calcium indicator in the context of B cells presenting antigen, TN-3XLCD-

expressing 2D2 T cells were adoptively transferred one week before intravenous injection of 

LPS activated, MOG-pulsed IgHMOG B cells, labeled with the red fluorescent cell tracer 

SNARF-1. Two-photon imaging of the popliteal lymph node was performed at three different 

 
 
Figure 3.3.9 Calcium imaging in T cells in vivo upon encounter with DCs and antigen. (A) 
Representative images from in vivo calcium imaging in the popliteal lymph node, before and after injection of 

antigen. Depicted are fluorescence overlay of TN-3XLCD-expressing OT-II T cells in green and SNARF-1 

labeled DCs in red (left), and pseudocolor ratio image with T cells encircled (right), scale bar 10 µm. (B) Two 

representative tracks each for intracellular calcium levels (red line) and T cell velocities (black line), before 

and after antigen injection. Dots depict zero levels for calcium levels and cell velocities. (C) Scatter plots 

showing cell velocity vs. intracellular calcium concentration for each individual timepoint analyzed, before and 

after antigen injection. (D) Distribution of average intracellular calcium levels. (E) Duration of elevated 

calcium levels with ∆R/R above 50%. (F) Superimposed trajectories of T cell movements, before (left) and 

after (right) antigen injection. Time points with ∆R/R above 50% are indicated in red. 
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time points after B cell transfer: early (1 h) (Movie 8), intermediate (8 h) (Movie 9), and late 

(24 h) (Movie 10). T cells showed a similar motility pattern at all three time points analyzed, 

with slightly increasing velocity from the early to the late time point. At the intermediated time 

point, T cells strongly engaged with antigen-presenting B cells, yet forming motile conjugates 

(Figure 3.3.10A). 

While T cells had a reduced velocity, and already some interacting T and B cells 

could be seen at the early stage, no strong and sustained calcium signals were detectable. 

In contrast, at the intermediate stage, all cells engaged with B cells showed strong and 

sustained calcium signaling. Intracellular calcium levels again inversely correlated with T cell 

velocity as most cells with elevated calcium levels showed a reduced motility. At the late 

imaging time point strong calcium signals were again absent, while T cells gained a higher 

velocity, (Figure 3.3.10B). Analysis of the duration of elevated calcium levels revealed 

sustained calcium signals at the intermediate time point of similar values as obtained before 

using the OT-II system, while calcium signals during the early and late time point were only 

of short-lasting nature (Figure 3.3.10C). 

 

 
 

 

 
 
Figure 3.3.10 Calcium imaging in T cells in vivo for T cell – B cell interactions. (A) Quantification of T 

cell locomotion within the popliteal lymph node at early, intermediate, and late time points after B cell 

transfer. Average velocities, mean squared displacement (MSD), movement linearity, and cell circularity are 

shown. (B) Scatter plots showing cell velocity vs. intracellular calcium concentration for each individual time 

point. (C) Duration of elevated calcium levels with ∆R/R above 50%. 
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3.3.5 Presentation of antigen to ovalbumin-specific T cells in the inflamed CNS 
Presentation of autoantigen by leptomeningeal APCs is a key event in the initiation of 

EAE (Bartholomäus et al., 2009; Kivisäkk et al., 2009). To directly assess the antigen-

presenting potential of leptomeningeal APCs, OT-II T cells were transduced with TN-3XLCD 

and adoptively transferred into WT recipient animals immunized with MOG for EAE 

induction. The OT-II T cells, like all non-self-specific T cells, are generally excluded from the 

brain, but can be piloted into the autoimmune CNS infiltrates by encephalitogenic T cells. As 

bystanders, they remain there quiescent, but respond promptly to the presentation of infused 

cognate antigen (Odoardi et al., 2007). 

 
 
Figure 3.3.11 Calcium imaging in OVA-specific T cells during EAE. (A) Example images from in vivo 

calcium imaging of OT-II T cells in the spinal cord during EAE, before and after injection of antigen and 

Texas Red dextran. Depicted are fluorescence overlay of TN-3XLCD-expressing OT-II T cells and i.v. infused 

Texas Red dextran (left), and pseudocolor ratio image with T cells encircled and blood vessel walls retraced 

(right), scale bar 5 µm. (B) Quantification of T cell locomotion in the spinal cord, before and after i.v. antigen 

injection. Average velocities, mean squared displacement (MSD), movement linearity, and cell circularity are 

plotted. (C) Scatter plots showing cell velocity vs. calcium indicator ratio change for each individual time point 

analyzed, before and after antigen injection. (D) Superimposed trajectories of T cell movements, before (left) 

and after (right) antigen injection. Time points with ∆R/R above 50% are indicated in red.  
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Two-photon imaging of extravasated OT-II T cells in the inflamed spinal cord 

confirmed, that in the absence of cognate antigen T cells migrated randomly through the 

leptomeningeal space (Figure 3.3.11A and B, and Movie 11), and their calcium signatures 

were generally very low (Figure 3.3.11C). However, after i.v. injection of OVA peptide (100 

µg) along with Texas Red dextran for the visualization of blood vessels, a proportion of the 

OT-II T cells became arrested, and, like in lymph nodes, most of the immobilized T cells 

showed elevated calcium levels (Figure 3.3.11C). Plotting the trajectories of T cell 

movements and highlighting phases of high calcium levels similarly showed the occurrence 

of elevated calcium levels after application of antigen (Figure 3.3.11D). 

 
3.3.6 In vivo imaging of calcium dynamics in encephalitogenic T cells during EAE 

 For calcium measurements in MOG-specific, encephalitogenic T cells during EAE, 

2D2 T cells were retrovirally transduced with TN-3XLCD and adoptively transferred into 

lymphopenic Rag2-/- mice (Hao et al., 2001). Recipient mice succumbed to EAE at about 11 

days after T cell transfer and showed a classical monophasic disease course (Domingues et 

al., 2010). In vivo two-photon imaging revealed intravascular T cells as well as extravasated 

T cells (Bartholomäus et al., 2009). Interestingly, most T cells rolling on the intravascular 

lumen showed high intracellular calcium levels (Figure 3.3.12) (Movie 12).  

 
 
Figure 3.3.12 Rolling T cells show high calcium levels. Five example series from independent in vivo 

calcium imaging in the spinal cord at early EAE time points. T cells roll at high velocity in the leptomeningeal 

blood vessel, and thus are seen only for one imaging time frame and appear as successive dots. Depicted 

are fluorescence overlay of TN-3XLCD-expressing 2D2 T cells and i.v. infused Texas Red dextran (left), and 

pseudocolor ratio image with T cells encircled and blood vessel walls retraced (right). Arrows indicate 

direction of blood flow. Imaging frames were taken at 20 seconds time interval, scale bar 10 µm. 
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In vivo calcium imaging of extravasated T cells during EAE onset (score 0.5) (Movie 

12) showed T cells closely associated to blood vessels or freely migrating throughout the 

leptomeningeal space. T cells moved autonomously throughout the tissue or were found in 

clusters. Elevated intracellular calcium levels along with ongoing calcium oscillations was 

seen in T cells localized in such local hot spots (Figure 3.3.13). 

 

 
 

In vivo calcium imaging during peak EAE (score 2) (Movie 13) revealed differential 

calcium signaling patterns in extravasated T cells. T cells were again found in clusters and 

showed elevated intracellular calcium levels and calcium oscillations (Figure 3.3.14A). At 

times T cells stalled their migration to interact with potential antigen-presenting phagocytes 

(revealed by increased fluorescent Texas Red dextran uptake) and showed sustained 

intracellular calcium signaling (Figure 3.3.14B). In rare cases presumable intercellular 

signaling was observed: T cells adjacent to a T cell with persistently elevated calcium levels 

showed bursts of short-lasting intracellular calcium with high intensity (Figure 3.3.14C). 

Furthermore, in some T cells subcellular calcium signaling was evident at sites where a T 

cell remained stationary while stretching out its processes (Figure 3.3.14D). 

Quantification of T cell movement and intracellular calcium concentrations during 

onset and peak EAE revealed comparable values for both disease states. T cells had a 

velocity of approximately 5 µm/min with predominantly free movement and average 

migration linearity (Figure 3.3.15A). Interestingly, many T cells showed constantly elevated 

 
 
Figure 3.3.13 Calcium signaling in T cell cluster. Series from in vivo calcium imaging in the inflamed 

spinal cord from an early EAE time point (Movie 12). Depicted are pseudocolor ratio images with T cells 

encircled and blood vessel walls retraced. Time interval in minutes, scale bar 10 µm. 
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calcium levels while migrating through the leptomeningeal space, thus resulting in a less 

pronounced inverse correlation of T cell motility and intracellular calcium concentrations 

compared to peripheral immune organs (Figure 3.3.15B). Constantly elevated calcium in T 

cells, however, was retained at intermediate levels and only transitionally reached peak 

values accompanied by distinct reductions in cell velocity. In line with these observations, 

during EAE T cells showed durations of elevated calcium levels well above those base line 

values of T cells in the popliteal lymph node before antigen encounter (Figure 3.3.15C). 

Plotting T cell trajectories and highlighting phases of high intracellular calcium similarly 

revealed the presence of many T cells with constantly elevated calcium levels while 

maintaining a migratory phenotype, during onset and peak EAE (Figure 3.3.15D). 

 
 
Figure 3.3.14 Differential calcium signaling in T cells during peak EAE. Selected series from in vivo 

calcium imaging in the spinal cord meninges at peak EAE (Movie 13). Depicted are pseudocolor ratio images 

with T cells encircled and blood vessel walls retraced. Time interval in minutes, scale bar 10 µm. (A) Calcium 

signaling in a T cell cluster. (B) T cell arrest and elevated calcium levels after APC (grey) encounter. (C) 
Potential intercellular signaling between a T cell with persistently high intracellular calcium and adjacent T 

cells. (D) Subcellular calcium signaling in a stationary T cells. 
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Figure 3.3.15 Analysis of calcium imaging in T cells in vivo during EAE. (A) Quantification of T cell 

locomotion in the spinal cord at onset and peak EAE. Average velocities, mean squared displacement 

(MSD), movement linearity, and cell circularity are plotted. (B) Scatter plots showing cell velocity vs. 

intracellular calcium concentration. (C) Duration of elevated calcium levels with ∆R/R above 50%. (D) 
Superimposed trajectories of T cell movements at onset (left) and peak (right) EAE. Time points with ∆R/R 

above 50% are indicated in red. 
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DISCUSSION 
 

 

4.1 THE R&D MOUSE 
 

The R&D mouse is a promising new model for in vivo B cell tracking and depletion. 

Transgenic expression of RFP and the human DTR under control of the mb-1 promoter gave 

rise to bright red fluorescent B cells, that can be depleted by injection of Diphtheria toxin. 

RFP fluorescence was detectable by all means of standard microscopy, and is resistant to 

photobleaching over an extended period of time. For effective two-photon imaging in vivo, 

however, a excitation wavelength of over 1000 nm is necessary, which requires a high-end 

laser source or an optical parametric oscillator (Herz et al., 2010a). Mature peripheral B cells 

showed a homogeneous fluorescence intensity, whereas variable RFP fluorescence was 

seen in bone marrow B cells depending on their maturation stage. Along with a progress 

through development, B cells showed increasing levels of RFP fluorescence, from 

background levels in pre-pro B cells to full expression of RFP in mature B cells. This 

stepwise gain in fluorescence intensity most probably reflects the increasing activity of the 

mb-1 promoter in successive stages of B cell development (Sakaguchi et al., 1988). 

Specific depletion of target cells in mouse models by means of Diphtheria toxin offers 

several advantages. Since a single molecule of DTx is sufficient to kill a target cell 

(Yamaizumi et al., 1978), only minute concentrations of the toxin are necessary for depletion 

in vivo. Nonetheless, since rodents are highly insensitive to DTx (Pappenheimer et al., 

1982), large amounts of the toxin are tolerated when a very fast and complete depletion of 

cells needs to be achieved. On the other hand, while DTx itself is rapidly cleared from the 

systemic circulation, antibodies such as anti-CD20 can persist in circulation for weeks (Vieira 

and Rajewsky, 1988). Therefore, the use of DTx allows a rather fast ON-OFF system. 

However, continuous injection of the toxin is necessary, when a sustained depletion is 

desired. Since the anti-CD20 antibody persists in circulation for extended periods of time and 

only gradually declines, B cell repopulation kinetics after instantaneous withdrawal of the 

depleting agent could not be studied so far. Six consecutive injections of DTx removed all 

circulating B cells in the peripheral blood of R&D mice. Then, only few days after application 

of the last dose, B cell levels immediately started to recover from depletion, in line with the 

short half-life of DTx (Yamaizumi et al., 1982). Full recovery, however, was achieved only 

after about 40 days. Depletion of B cells in the bone marrow already very early in their 

development, along with a duration of complete B cell maturation in the bone marrow of 

about two weeks (Arakawa and Takeda, 1996), may account for this long recovery phase. 
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While antibody-mediated depletion is dependent on helper mechanisms involving 

other cell types such as macrophages (Uchida et al., 2004), toxin-mediated depletion directly 

acts on the target cell itself. This effect could be visualized by full depletion of R&D B cells in 

the peritoneum by DTx, where effectiveness of anti-CD20 treatment is rather limited. Similar 

results were obtained for B cells of the marginal zone in the spleen which were spared by 

anti-CD20. Microscopic analysis of B cell depletion in draining lymph nodes from immunized 

animals revealed, that not all B cells could be depleted by anti-CD20 treatment as already 

shown before by FACS analysis (Hamel et al., 2008). DTx-mediated depletion, however, 

eliminated almost all B cell subsets. Another striking observation seen with both depletion 

methods was the rapid redistribution of T cells throughout the whole lymph node, occupying 

all former B cell areas within two days. While a certain degree of rearrangement of cells in a 

lymph node after removal of one population is anticipated, the rate of this process was still 

surprising and needs further investigation. 

In summary, the R&D mouse is a novel tool to analyze B cell function in vivo. B cells 

can be effectively visualized by RFP fluorescence, and are depletable in any organ at any 

time in a highly controlled fashion. The R&D mouse can be a valuable tool for EAE studies, 

especially during relapses and remission where B cell functions are not fully understood so 

far. Furthermore, B cell migration and locomotion inside the CNS could be eventually 

analyzed using R&D mice. 

 

 

 

4.2 TN-XXL TRANSGENIC MICE 
 

Transgenic mice with T cell-specific, strong expression of the genetically encoded 

calcium indicator TN-XXL would be an excellent source for all kinds of calcium imaging 

experiments. Unfortunately, however, the TN-XXL transgenic mice generated in this thesis 

did not meet these expectations. In a first attempt to express TN-XXL in T cells, the hCD2 

promoter was used (Zhumabekov et al., 1995). However, this promoter failed to drive strong 

expression of the transgene in CD4+ T cells, and only CD8+ T cells in one transgenic mouse 

line showed faint expression of the calcium indicator. Previously, the hCD2 promoter has 

successfully been used to generate transgenic mice with T cell-specific expression of 

transgenes such as mCD8α, Cre recombinase (Wilson et al., 2002; De Boer et al., 2003), or 

human TCRs (Quaratino et al., 2004). In addition, the hCD2 promoter was also shown to 

efficiently drive expression of GFP, yielding brightly fluorescent T cells. GFP expression in 

those hCD2-GFP mice, however, was mostly restricted to CD8+ T cells with CD4+ T cells 
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featuring a fairly reduced fluorescence intensity (Singbartl et al., 2001). This CD8 bias of the 

hCD2 promoter was also observed in hCD2-TN-XXL mice, nonetheless, the expression 

strength of TN-XXL in these mice was far too low for efficient microscopic imaging. 

In another attempt to obtain transgenic mice with expression of TN-XXL in T cells, 

the ubiquitously active β-actin promoter was chosen. Quite a number of transgenic mice with 

all kinds of fluorescent proteins under control of the β-actin promoter has successfully been 

generated so far, rendering this promoter probably the best candidate for guaranteed, strong 

expression of any transgene. To further boost expression of TN-XXL, the viral WPRE 

element, which was shown to enhance expression levels (Zufferey et al., 1999), was 

included into the transgenic construct CAGW-TN-XXL. One mouse line indeed showed 

bright TN-XXL fluorescence in most of the organs analyzed. Unfortunately, however, 

expression of the calcium indicator was absent from all cell types of the hematopoietic 

system, including T cells. Transgenic DNA amounts in extracts from lymphocytes and non-

lymphoid cells were comparable, ruling out a specific deletion of the transgene. RNA levels, 

in contrast, were highly reduced in lymphocytes. Since the ratio of pre-mRNA to mature RNA 

was still comparable between fluorescent and non-fluorescent cells, a problem with mRNA 

stability could be ruled out as well. TN-XXL expression in T cells most likely failed due to 

transcriptional silencing of the transgene in lymphocytes, since incubation with the 

demethylating agent Aza (Jones et al., 1980) rendered non-expressing lymphocytes brightly 

fluorescent. Aza, however, is globally inducing transcriptional activity in the cell, thereby 

massively interfering with all kinds of cellular mechanisms, and furthermore inducing cell 

death at the concentrations necessary to obtain fluorescent T cells. Lack of expression in 

CAGW-TN-XXL lymphocytes could be due to position effects: Integration of the transgene 

into heterochromatin itself or in close proximity to a heterochromatin domain can lead to 

transcriptional repression (Wilson et al., 1990). Though the β-actin promoter construct is 

supposed to yield global and strong expression, the transgenic construct could have 

integrated at a position in the genome, that is heavily methylated and thereby inactivated 

specifically in lymphocytes. Nonetheless, it was still very surprising that at all only one 

transgenic mouse line with strong fluorescence in all organs (except hematopoietic cells) 

was obtained with the CAGW-TN-XXL construct. In addition to any possible position effects, 

the WPRE element itself could have had some deleterious effects on the expression of TN-

XXL in lymphocytes. While WPRE is supposed to increase expression yields (Zufferey et al., 

1999), it was also shown, that in few cell lines the presence of WPRE in a transgene 

construct could dampen expression levels (Klein et al., 2006). A similar effect was also 

shown for specific cell lines when combining the CAG promoter with the WPRE (Ramezani 

et al., 2000). Thus, the integration of the WPRE into the CAGW-TN-XXL transgene might 
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have boosted expression of the calcium indicator in most cell types, while dampening the 

expression in cells of the hematopoietic system. 

 The CAGW-TN-XXL mice, nonetheless, are a useful tool for calcium imaging in a 

wide variety of non-lymphoid cell types. While cells usually have to be loaded with a calcium 

sensitive dye prior to calcium measurements, cells from CAGW-TN-XXL mice can be directly 

used for experiments. In addition, cells could be repeatedly analyzed over an extended 

period of time. Furthermore, these mice allow calcium imaging in whole organs, which 

otherwise are very difficult to be homogeneously loaded with a calcium dye. As exemplarily 

presented in this thesis, calcium waves traveling over explanted, spontaneously beating 

embryonic hearts could be readily measured without any further pretreatment of the organ. 

Since the WPRE might have had negatively influenced the expression of TN-XXL in 

lymphoid cells, a final attempt using the CAG promoter without the WPRE was initiated to 

obtain transgenic mice with strong expression of the calcium indicator in T cells. Again, only 

one line with peripheral fluorescence was obtained with the transgene construct CAG-TN-

XXL, this time, however, with expression of TN-XXL also in some cells of the hematopoietic 

system. When analyzing expression in different immune organs, fluorescence could be 

found in about 40% of CD4+, CD8+, and natural killer cells, while all other immune cells 

showed only marginal expression levels. Analysis of the expression patterns of various 

activation markers or cytokines in T cells after stimulation showed no difference between 

transgenic and WT T cells, suggesting no negative influence by the persistent expression of 

the calcium indicator. The fluorescence intensity of TN-XXL in CD4+ T cells, however, was 

still close to the detection limits of normal widefield microscopy, thus rendering the CAG-TN-

XXL line also not suitable for effective two-photon in vivo imaging. 

  Since three attempts to generate transgenic mice with strong TN-XXL expression in 

T cells failed, and since all attempts produced no more than one line each with at least minor 

amounts of TN-XXL expression, these problems do not need to be fully attributed to the 

promoter or the transgene integration site, but could also be intrinsic to the calcium indicator 

itself. Interference between calcium indicator and host cell has already been reported 

previously. The FRET-based calcium indicator YC3.12 – similar in design to TN-XXL but 

featuring calmodulin as calcium sensing moiety – was also inactivated during transgenic 

expression, while single fluorophore calcium indicators as camgaroo or pericam did at least 

yield few functional transgenic lines (Hasan et al., 2004). Furthermore, expression of YC3.0 

under control of the β-actin promoter in transgenic mice led to sequestered and mosaic 

expression of the calcium indicator (Tsai et al., 2003). While expression of GECIs for 

functional characterization in bacteria or in cell lines seems to be practicable, these 

indicators might feature elements that render generation of transgenic animals problematic. 
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4.3 CALCIUM IMAGING IN T CELLS 
 

As described in the previous chapter, the calcium indicator TN-XXL could not be 

expressed in T cells of transgenic mice. To overcome these problems, ex vivo stimulated T 

cells were retrovirally transduced with TN-XXL. Again, while transfection of Phoenix 

packaging cells was efficient, no TN-XXL fluorescence was seen in CD4+ T cells retrovirally 

transduced with Phoenix cell supernatant. In contrast, transduction of the single fluorophore 

YFP yielded brightly fluorescent T cells. A series of experiments with TN-XXL derivatives 

suggested, that the high sequence homology of CFP and YFP alone was sufficient to 

impede expression in T cells. Similar observations were made previously, when it was 

shown that large direct sequence repeats in retroviral vectors were deleted at a high 

frequency. These deletions occurred during virus replication, and no full-length viruses from 

plasmids with large direct repeats could be obtained (Rhode et al., 1987). To reduce the 

sequence homology between the donor and acceptor fluorophore in TN-XXL, YFP was 

codon diversified by introducing silent mutations without changing the amino acid sequence. 

This gave rise to TN-XXLCD which was efficiently expressed in CD4+ T cells after retroviral 

transduction. The fluorescence intensity was further enhanced by reduction of the retroviral 

vector. Retroviruses are supposed to tolerate a genome size of up to 8 kb (Coffin et al., 

1997). Nonetheless, deletion of the neomycin resistance cassette along with the PGK 

promoter decreased the size of the retroviral vector by 25% from 5.24 kb to 3.91 kb, and 

resulted in a 7-fold increase in fluorescence intensity. Removal of the selection cassette was 

feasible since transduced T cells showed stable fluorescence even in the absence of 

selecting antibiotics due to stable integration of the retrovirus into the T cell genome. 

Calcium measurements in TN-XXLCD-expressing T cells showed a swift rise of 

intracellular calcium after TCR crosslinking. On a population level only a minor increase was 

detected, since many cells did not respond to the stimulus. This is most probably due to an 

anergic state of the T cells after the strong initial stimulation necessary to introduce TN-

XXLCD by  retroviral transduction (LaSalle and Hafler, 1994). Nonetheless, cells responding 

to the trigger showed a high ratio change, reflecting strong intracellular calcium level 

changes. Similar results were obtained with T cells interacting with anti-CD3/CD28 beads as 

tracked by microscopy. T cells needed to encounter stimulating beads with their leading 

edge, where they are more sensitive than at their trailing edge (Wei et al., 1999), and 

reacted with strong calcium spikes followed by ongoing calcium oscillations. Calcium 

elevations in TN-XXLCD-expressing 2D2 T cells could also be triggered by co-culture with 

IgHMOG B cells presenting the cognate antigen. Here, calcium peaks were of comparable 

intensity as with anti-CD3/CD28 beads, however, seemed to last longer with a reduced 
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oscillatory frequency. This could resemble the differential response of T cells with respect to 

varying intracellular calcium signaling after different stimulations (Quintana et al., 2005). 

Genetically encoded calcium indicators have been shown to affect host cells. Strong 

overexpression of fluorescent proteins alone can already induce pathogenic phenotypes: the 

common actin-GFP transgenic mice, for example, are infertile and smaller in size when bred 

to homozygosity, and were shown to have already minor defects when heterozygous (Guo et 

al., 2007). Calcium indicators feature with their calcium-sensing moiety another component 

that might interfere with the physiology of a cell. When CaM is employed as calcium-sensing 

domain, overexpression of this ubiquitous signaling molecule could influence other signaling 

pathways (Hasan et al., 2004). The use of TnC as calcium-binding domain in TN-XXL should 

overcome this issue; nonetheless, all calcium indicators have a potential calcium buffering 

capacity that can affect physiological calcium signaling (Ferkey et al., 2007). To rule out a 

negative influence of TN-XXLCD on T cells, the expression of various surface markers, the 

transcriptional activity of different cytokines, and the proliferation rate of transduced T cells 

were compared to control cells. Fortunately, no adverse effect was seen in TN-XXLCD-

expressing T cells. Similarly, transduced T cells induced EAE at the same incidence and 

severity as control cells, a prerequisite for reliable calcium imaging in T cells during EAE. 

T cells transduced with TN-XXLCD were readily visible in vivo by two-photon 

microscopy, but showed only modest ratio changes. While it is commonly accepted that T 

cells feature an intracellular calcium baseline of 50-100 nM, published maximum calcium 

values vary quite drastically. In vitro calcium experiments with naive T cells or T cell lines 

stimulated by anti-CD3 or calcium release agents reported peak calcium concentrations 

above 1500 nM (Donnadieu et al., 1992; Murgia et al., 1994). Experiments with naive T cells 

interacting with APCs in vitro, however, reported maximum calcium values lower than 1000 

nM (Donnadieu et al., 1994; Negulescu et al., 1994). And the only report somewhat close to 

in vivo settings by using lymph node explants for calcium imaging in T cells interacting with 

APCs showed intracellular peak calcium levels of only 500 nM (Wei et al., 2007). Therefore, 

calcium levels measured so far in vitro could have been exaggerated, and lower values 

might actually be present in vivo. In T cells, the calcium indicator TN-XXLCD features a 

dissociation constant Kd of 520 nM, corresponding to an optimal dynamic range of 100-2600 

nM intracellular calcium (Kd/5 to Kdx5). This is ranging far beyond a presumable maximum 

intracellular calcium concentration of 500 nM in T cells in vivo, and could explain the lack of 

strong ratio changes during in vivo imaging with TN-XXLCD. To increase sensitivity, an 

optimized version of the calcium indicator, termed TN-3XLCD, with an increased calcium 

affinity was used. TN-3XLCD is structurally equivalent to TN-XXLCD, but features a Kd of 140 

nM, which corresponds to a dynamic range of 30-700 nM and thus should be optimal to 

indicate intracellular calcium level changes in T cells in vivo. And indeed, initial in vivo 
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calcium imaging experiments with TN-3XLCD promptly revealed spontaneous calcium spikes 

in migrating T cells, confirming the advantage of this higher sensitivity calcium indicator. 

To characterize the functionality of TN-3XLCD in T cells during in vivo calcium 

imaging, the OT-II model system was employed: Ovalbumin-specific T cells were transduced 

with the calcium indicator and adoptively transferred into WT recipients. One week later, 

activated dendritic cells were injected subcutaneously, from where they migrated to the 

draining popliteal lymph node. There they could be imaged in vivo together with the OT-II T 

cells. In the absence of cognate antigen, T cells were highly mobile and randomly migrated 

through the lymph node tissue, showing sporadic, short-lasting calcium spikes. Such calcium 

spikes might result from antigen-independent interactions with activated DCs (Montes et al., 

1999; Revy et al., 2001), integrin-mediated calcium signaling during migration (Sjaastad and 

Nelson, 1997), or calcium mobilization in response to chemokine receptor signaling (Ngo et 

al., 1998; Kershaw et al., 2002). After application of antigen, OT-II T cells stopped and 

engaged in long-lasting interactions with DCs. Most T cells showed high calcium signaling 

which correlated with a drastic decrease of cell velocity, similar to thymocytes during positive 

selection (Bhakta et al., 2005). Many T cells also showed oscillatory calcium signals which 

lasted far longer than the casual calcium spikes observed in the absence of antigen. 

To further test TN-3XLCD in peripheral lymphoid organs in the context of an 

encephalitogenic antigen, MOG-binding transgenic mouse B cells were used as APCs for 

MOG-specific 2D2 T cells. Again, TN-3XLCD-transduced 2D2 T cells were adoptively 

transferred into WT recipients, before MOG-pulsed IgHMOG B cells were injected i.v. one 

week later. Early in vivo calcium imaging in the popliteal lymph node at around 1 hour after 

adoptive transfer showed, that plenty of B cells already migrated into the lymph node and a 

fraction of them was interacting with 2D2 T cells. Nonetheless, only sparse calcium signals 

were detected at this early time point, in freely moving as well as in T cells engaged with 

MOG presenting IgHMOG B cells. This picture dramatically changed, when T and B cells were 

imaged at an intermediate time point, at around 8 hours after adoptive transfer. Most 2D2 T 

cells were interacting with IgHMOG B cells and showed strong and long-lasting, oscillatory 

calcium signals, comparable to values measured before in OT-II T cells interacting with DCs 

presenting OVA peptide. 2D2 T cells, however, mostly retained their velocity and formed 

motile conjugates with MOG-pulsed IgHMOG B cells, as was already described before for 

HEL-specific T and B cells (Okada et al., 2005). When imaging was performed at a late time 

point, about 24 hours after adoptive transfer, almost no T and B cell interactions were seen, 

and likewise strong calcium signals in 2D2 T cells were absent. Furthermore, at this late time 

point T cells showed the highest velocity of all three stages. 

The calcium imaging results obtained with MOG-specific T and B cells fit very well to 

the model of three different phases of T cell priming (Mempel et al., 2004). While at the early 
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stage transitional interactions between T and B cells can already be seen, these do not lead 

to the formation of fully matured immunological synapses, yet, and thus no strong calcium 

signaling can be observed. T cells seem to integrate small incremental signals over a series 

of encounters, since only after a sustained period of time T cells fully engage with antigen-

presenting B cells and show strong and lasting intracellular calcium signaling. The third 

phase then is characterized by a return to short-term T and B cell interactions, lacking strong 

calcium signals. These observations are in contrast to the calcium measurements obtained 

before from OT-II T cells interacting with antigen-presenting DCs. In this setting, DCs were 

pulsed with OVA peptide in vivo, which lead to a virtually instantaneous arrest of antigen-

specific T cells and immediate strong calcium signaling. The rapid T cell activation was most 

probably due to the strong antigenic stimulation: DCs are known to be much better APCs 

than B cells (Delon et al., 1998), and a high dose of soluble antigen was injected which 

forms a very stable complex with the MHC II (Buus et al., 1986). As described previously in a 

comparable experimental system (Shakhar et al., 2005), the sum of these factors might have 

exposed T cells to a sufficiently strong level of stimulation to directly induce an immediate 

arrest of T cells recognizing antigen presented by DCs. 

 In vivo imaging of ovalbumin-specific T cells introduced into the CNS as bystanders 

of a developing EAE inflammation (Odoardi et al., 2007) revealed only few calcium signals in 

these T cells in the absence of antigen, like in lymph nodes. Injection of antigen, however, 

arrested some of the T cells and induced strong calcium signals. This shows that CNS APCs 

are capable to efficiently present antigen and to trigger T cell activation. When imaging 

MOG-specific, encephalitogenic T cells during early EAE time points in the spinal cord, 

numerous T cells were observed rolling in inflamed vessels with most cells showing high 

intracellular calcium levels. During rolling, T cells transitionally bind to vascular addressins, 

which slows down their movement but is too weak to allow extravasation. During rolling, T 

cells recognize chemokines locally bound in the extracellular matrix, which leads to integrin 

activation after G protein-coupled receptor (GPCR) signaling and induces firm adhesion of 

rolling T cells under shear flow (Woolf et al., 2007). GPCR signaling induces calcium fluxes 

as well and could account for the higher basal calcium levels observed in rolling T cells. 

Similarly it was reported, that high calcium levels in rolling neutrophils precede firm adhesion 

(Schaff et al., 2008; Schaff et al., 2010). Prior to T cell extravasation, crawling of T cells 

inside the blood vessel lumen was described in a rat model system (Bartholomäus et al., 

2009). In the mouse model utilized in this thesis, however, only very few crawling T cells 

were found during EAE. Due to a less predictable course of the disease in the mouse, 

imaging was done only after animals succumbed to disease. Most T cell crawling, however, 

takes place before any clinical signs emerge. Thus, no data was collected on calcium levels 
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in crawling T cells, and the rat model system appears to be much more suitable to study this 

aspect of T cell infiltration into the brain. 

 In vivo imaging of TN-3XLCD-expressing T cells, however, revealed first insights into 

calcium signaling in T cells during EAE. Many extravasated T cells were migrating freely 

throughout the leptomeningeal space, with elevated calcium levels or located in clusters with 

ongoing calcium oscillations. This suggests that the majority of T cells features an activated 

phenotype in the CNS. Since this is the first report of in vivo calcium imaging, all data 

obtained from EAE movies could only be compared to in vitro calcium measurements. Yet 

both, steady calcium elevations and calcium spikes or oscillations have been described, 

depending on the type and strength of stimulation (Lewis and Cahalan, 1989; Donnadieu et 

al., 1992; Dolmetsch and Lewis, 1994). Since extravasated T cells were reported to be 

reactivated by brain resident APCs (Flügel et al., 2001), elevated calcium levels in T cells 

could be a consequence of in situ reactivation. Indeed, during in vivo calcium imaging in the 

spinal cord several instances of T cells interacting with brain resident APCs could be 

visualized, which resulted in a swift rise of intracellular calcium in those T cells. These 

interactions were most probably antigen-dependent and led to local reactivation of infiltrating 

T cells. In addition, during EAE imaging, presumably antigen-independent calcium signals 

were detected. Freely migrating T cells showed brief calcium spikes, similar to signals seen 

in T cells during popliteal lymph node imaging in the absence of antigen. As discussed 

above, such calcium spikes could derive from short-lasting, antigen-independent interactions 

with APCs, GPCR-mediated calcium mobilization after chemokine receptor triggering, or 

integrin signaling. Along with concise calcium signals, subcellular changes of intracellular 

calcium levels could be observed, too, pointing to localized signaling events in T cells 

interacting with their environment. This was already seen before for neuronal growth cone 

motility (Dunican and Doherty, 2000) and initiation of cell-cell adhesion between fibroblasts 

(Ko et al., 2001). Furthermore, T cells showed putative intercellular communication. Wave-

like spreading of transient calcium level rises, initiated by an individual cell was observed 

during EAE imaging. This could result from a release of ATP from an activated cell, 

triggering a robust change in the concentration of intracellular calcium in neighboring cells 

(Osipchuk and Cahalan, 1992; Ross et al., 1997; Yegutkin et al., 2006). 

 Using TN-3XLCD for calcium imaging during EAE, a range of differential calcium 

signaling patterns was visualized in the inflamed spinal cord, both antigen-dependent and 

independent. Further in-depth analysis, however, will be necessary to evaluate the origin of 

all calcium signaling variants observed. Genetic or molecular interference with different 

signaling pathways in the autoreactive T cell, combined with in vivo calcium imaging in the 

CNS will help to decipher the molecular nature of the disease and shall provide clues for 

future therapeutic directions.  
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 Experimental autoimmune encephalomyelitis is an animal model of multiple sclerosis, 

which provided many insights into the mysteries of this autoimmune disease. Observation of 

autoreactive immune cells on their way to and also within the target organ helped to gain 

more knowledge, yet a more detailed analysis of all processes involved in the manifestation 

of EAE is necessary for a complete understanding. During this thesis, novel tools were 

established and verified to help visualizing the interplay of various immune cells during the 

course of the disease. 

 

In chapter 3.1, entitled “THE R&D MOUSE”, a new transgenic mouse model was 

generated which features fluorescently labeled B cells that can be efficiently depleted. 

Expression of the transgene under control of the mb-1 promoter did not show any adverse 

effects on the composition of the immune system. Interestingly, B cells showed gradually 

increasing levels of red fluorescence during their development in the bone marrow, which 

could be used to study B cell development. Since red fluorescence was fully restricted to B 

cells and highly stable during imaging, this mouse model would be a useful tool for in vivo B 

cell tracking and imaging. B cells can play important roles during disease development, yet 

so far only limited data is available on the detailed functions of B cells. Well-defined 

information about the behavior of infiltrating B cells in vivo could provide a better 

understanding of the development of the disease. B cells in the R&D mouse can be depleted 

at any time by the injection of diphtheria toxin. Depletion occurs rapidly and with a similar or 

greater efficiency as anti-CD20 antibody-mediated depletion. Since B cells can have various 

functions during development or manifestation of a disease, timed depletion could help to 

decipher their particular contribution. Furthermore, since diphtheria toxin exhibits only a very 

short half-life in vivo in contrast to anti-CD20 antibodies, short-term depletion experiments, 

wiping out the established B cell population to allow repopulation with naive B cells, become 

feasible. Due to lack of time and the focus of this thesis on calcium imaging in T cells, no 

additional experiments could be performed to investigate in depth the observations obtained 

so far, and to further evaluate the full potential of the R&D mouse. Altogether, the R&D 

mouse is a promising tool for immunological research, for general investigations into B cell 

development and function, or following the fate of B cells during disease processes. 
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In chapter 3.2, entitled “TN-XXL TRANSGENIC MICE”, three attempts were made to 

generate transgenic mice with expression of the calcium indicator TN-XXL in CD4+ T cells. 

The first attempt, using a T cell-specific promoter, only gave rise to faint expression of TN-

XXL in CD8+ T cells. Also the second attempt employing the ubiquitously active CAG 

promoter along with the WPRE enhancer did not work out for CD4+ T cells. Nonetheless, 

one mouse line was obtained with otherwise ubiquitous expression of TN-XXL in all cell 

types of the body, but sparing cells of the hematopoietic lineage. This mouse proved to be a 

very useful tool for calcium imaging in single cells, as well as in whole-mount organ 

preparations. The last attempt also used the CAG promoter, however, without the WPRE 

enhancer. This time the TN-XXL transgene was expressed in CD4+ T cells, albeit only in a 

small fraction of T cells and with a fluorescence intensity too dim for effective in vivo 

imaging.  

 

In chapter 3.3, entitled “CALCIUM IMAGING IN T CELLS”, retroviral transduction 

was used to drive expression of the calcium indicator in T cells. Initially, no expression was 

obtained using the original TN-XXL construct. Only after codon diversification, which 

reduced the sequence homology between the two fluorophores in the calcium indicator, 

effective transduction was achieved. The problems encountered were most probably due to 

homologous recombination of the transgenic construct during virus production. This effect 

was possibly independent of the problems already encountered during the generation of 

transgenic mice, and adding another complexity to calcium indicator expression in T cells. 

Calcium imaging with TN-XXLCD in T cells after retroviral transduction was feasible in vitro. 

Nonetheless, the higher sensitivity calcium indicator TN-3XLCD was necessary to efficiently 

detect intracellular calcium level changes in vivo. Strong and sustained calcium signals could 

be measured in TCR transgenic T cells specific for OVA or MOG antigen, presented by DCs 

or B cells, respectively. While antigen presentation by DCs induced an immediate T cell 

arrest accompanied by strong calcium signaling, T cell priming during antigen presentation 

by B cells followed a multiphase process. Initially, T cells only engaged in short-lasting 

interactions with B cells in the absence of strong calcium signals. Only after an extended 

period of time, T cells fully engaged with B cells and showed strong and lasting calcium 

signals. These differences can be attributed to the differential strength in antigenic signaling 

between T cells and APCs. Calcium signal characteristics, however, were in the similar 

range for both types of antigen presentation employed. 

When performing calcium imaging in T cells during EAE, various signaling patterns 

were observed. T cells rolling in inflamed blood vessels in the CNS showed high calcium 

levels, presumably due to activation of T cells by chemokines deposited on the inner lumen 

of the vessel. Most extravasated T cells showed a high velocity, yet accompanied by 
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elevated intracellular calcium. These calcium levels mostly remained in an intermediate level 

and could be indicative of an activated status of infiltrated T cells. In addition, various other 

calcium signaling events were detected, such as T cell activation after APC encounter and 

potential intercellular or subcellular signaling. 

Calcium imaging during EAE, diabetes, or rheumatoid arthritis will always necessitate 

a genetically encoded calcium indicator, since effector T cells are activated and proliferating, 

which dilutes any synthetic dye. Calcium imaging with TN-3XLCD in T cells presented the 

highest calcium signals ever measured so far with a ratiometric calcium indicator in an in 

vivo system without direct interference with the cell analyzed. A ratio change of about 15% in 

pyramidal neurons of mice during visual stimulation was observed using TN-XXL (Mank et 

al., 2008); up to 60% in cortical astrocytes of mice after electrical forepaw stimulation using 

YC3.60 (Atkin et al., 2009); and up to 50% in the AWA neuron of C. elegans in response to 

odor exposure using GEM-GECO1 (Zhao et al., 2011). With TN-3XLCD, however, values of 

150% ratio change and greater could be measured in T cells, which facilitates robust signal 

detection, a fair differentiation from artificial background fluctuations, and yet a highly 

sensitive graduation of the calcium level changes observed. 

A decade after the first dynamic in vivo imaging of T cells interacting with antigen-

presenting DCs in lymph nodes (Stoll et al., 2002), one essential parameter of T cell 

functionality can now be visualized by live calcium imaging in T cells in vivo. So far, spatial 

information such as velocity and directionality could be extracted from in vivo imaging of T 

cells in the tissues; however, no functional information could be obtained from these data. A 

crosstalk of a T cell with an APC can be reckoned from a long-lasting, close contact of two 

cell types. Whether such an interaction, though, is indeed taking place, and whether such an 

interaction is of productive nature, can only be visualized by obtaining a functional response 

from those cells. By establishing calcium imaging in T cells in vivo, this additional information 

can now be obtained which will help to understand basic as well as distinct processes of the 

immune response. 
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ABBREVIATIONS 
 

 

ADP  Adenosine diphosphate 
APC  Antigen-presenting cell 
ATP  Adenosine triphosphate 
a.u.  Arbitrary units 
Aza   Aza-2´-deoxycytidine 
BBB  Blood brain barrier 
BCR  B cell receptor 
BFP  Blue fluorescent protein 
BMDC  Bone marrow-derived DC 
BSA  Bovine serum albumin 
cADPR  Cyclic ADP ribose 
CAG   CMV early enhancer/chicken beta actin 
CaM   Calmodulin 
CaMK  Calmodulin-dependent kinase 
CaV  Voltage-gated calcium 
CD  Cluster of differentiation 
CFA  Complete Freund´s adjuvant 
CFSE  Carboxy-fluorescein diacetate succinimidyl ester 
CFP  Cyan fluorescent protein 
CMV  Cytomegalovirus 
CN  Calcineurin 
CNS  Central nervous system 
c.p.m.  Counts per minute 
CRAC  Calcium release activated calcium 
CSF  Cerebrospinal fluid 
Ct  Cycle threshold 
CTLA4  Cytotoxic T-Lymphocyte Antigen 4 
DAG  Diacylglycerol 
DC  Dendritic cell 
DMEM  Dulbecco´s Modified Eagle´s Medium 
DTR  Diphtheria toxin receptor 
DTx  Diphtheria toxin 
EAE  Experimental autoimmune encephalomyelitis 
EF2  Elongation factor 2 
EGF  Epidermal growth factor 
ER  Endoplasmatic reticulum 
ERM  Ezrin, radixin, and moesin 
FACS   Fluorescence-activated cell sorting  
FI  Fluorescence intensity 
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FO  Follicular 
FP  Fluorescent protein 
FRET  Förster resonance energy transfer 
FSC  Forward scatter 
GAPDH  Glyceraldehyde 3-phosphate dehydrogenase 
GECI   Genetically encoded calcium indicator 
GFP  Green fluorescent protein 
GPCR  G protein-coupled receptor 
GWAS  Genome wide association study 
HB-EGF  Heparin-binding EGF 
hCD2  human CD2 
HLA  Human leukocyte antigen 
HRP  Horseradish peroxidase 
ICAM1  Inter-Cellular Adhesion Molecule 1 
IE  Internal enhancer 
IFNγ  Interferon gamma 
Ig  Immunoglobulin 
IL  Interleukin 
IP3  Inositol-1,4,5-trisphosphate 
i.p.  Intraperitoneal 
IRES   Internal ribosomal entry site 
ITK  Inducible T cell kinase 
i.v.  Intravenous 
KLH   Keyhole limpet hemocyanin 
LAT   Linker for activation of T cells 
LCK  Lymphocyte-specific protein tyrosine kinase 
LCR  Locus control region 
LFA1  Lymphocyte function-associated antigen 1 
LTR  Long terminal repeat 
MBP  Myelin basic protein 
MCS  Multiple cloning site 
MDR   Multidrug resistance 
MHC  Major histocompatibility complex 
MOG  Myelin oligodendrocyte glycoprotein 
MS  Multiple sclerosis 
MSD  Mean squared displacement 
MZ  Marginal zone 
NAD  Nicotinamide adenine dinucleotide 
NeoR  Neomycin resistance cassette 
NF-κB  Nuclear factor kappa-light-chain-enhancer of activated B-cells 
NFAT  Nuclear factor of activated T-cells 
NFL  Neurofilament light 
NO  Nitric oxide 
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OD  Optical density 
OSE  Opticospinal EAE 
OVA  Ovalbumin 
PBMC  Peripheral blood mononuclear cells 
PBS  Phosphate buffered saline 
PCR  Polymerase chain reaction 
PFA  Paraformaldehyde 
PGKp  Phosphoglycerate kinase promoter 
PLCγ  Phospholipase C gamma 
PLP  Proteolipid protein 
Ψ signal Packaging signal 
PtdIns(4,5)P2 Phosphatidylinositol-4,5-bisphosphate 
PVDF  Polyvinyliden fluoride 
R  Ratio 
rcf  Relative centrifugal force 
RFP  Red fluorescent protein 
rMOG  Recombinant MOG 
ROI  Region of interest 
ROS  Radical oxygen species 
RPMI  Roswell park memorial institute 
RR  Relapsing remitting 
RT  Room temperature 
RYR3  Ryanodine receptors 
SAM  Sterile-a-motif 
SLP76  SH2 domain containing leukocyte protein 76 
SMAC  Supramolecular activation complex 
SNARF-1 Seminaphthorhodafluor 1 
SOCE   Store operated calcium entry 
SSC  Sideward scatter 
STIM  Stromal interaction molecule 
TCR  T cell receptor 
tdRFP  Tandem dimer red fluorescent protein 
TGFβ  Transforming growth factor beta 
TH  T helper 
TnC  Troponin C 
TNFα  Tumor necrosis factor alpha 
Treg  T regulatory 
UTR  Untranslated region 
WPRE  Woodchuck post-transcriptional element 
WT  Wild type 
YC  Yellow cameleon 
YFP  Yellow fluorescent protein 
ZAP70  Zeta-chain-associated protein kinase 70  
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MOVIE LEGENDS 

 

Movie 1 R&D B cells show highly photostable RFP fluorescence. Cluster formation of activated 
lymphocytes, during coculture of MOG-specific R&D B and 2D2 T cells with 20 μg/ml MOG. 
 
Movie 2 Visualization of calcium influx in EL4 cells by TN-XXL. EL4 lymphoma cells stably 
expressing TN-XXL were imaged in vitro, before and after addition of 4 μM ionomycin. 
 
Movie 3 Whole-organ calcium imaging. Calcium waves travelling through an explanted, 
spontaneously beating CAGW-TN-XXL embryonic heart. 
 
Movie 4 CD3 binding triggers strong calcium flux in T cells. TN-XXLCD-expressing 2D2 T cells 
interacting with anti-CD3/CD28 beads were imaged in vitro. 
 
Movie 5 APC encounter triggers strong calcium flux in T cells. TN-XXLCD-expressing 2D2 T cells 
interacting with rMOG-pulsed IgHMOG B cells were imaged in vitro. 
 
Movie 6 T cells strongly respond to antigen presented by DCs. TN-3XLCD-expressing OT-II cells 
were transferred into WT recipient hosts, one week before injection of SNARF-1-labeled BMDCs. One 
day later, the popliteal lymph node was imaged, before and after i.v. injection of 100 μg OVA peptide. 
 
Movie 7 All T cells displaying strong calcium signals are engaged with DCs. Same experimental 
settings as Movie 4 after injection of antigen, but highlighting positions of DCs. 
 
Movie 8 Early T – B cell interactions. TN-3XLCD-expressing 2D2 T cells were transferred into WT 
recipient hosts, and imaged one week later in the popliteal lymph node. SNARF-1-labeled, rMOG-
pulsed B cells were injected 1 hour before imaging. 
 
Movie 9 Intermediate T – B cell interactions. Same as Movie 8, but B cells injected 8 hours before. 
 
Movie 10 Late T – B cell interactions. Same as Movie 8, but B cells injected 24 hours before. 
 
Movie 11 CNS resident APCs efficiently present antigen to infiltrating T cells. TN-3XLCD-
expressing OT-II cells were adoptively transferred into MOG peptide-immunized WT mice, followed by 
two-photon microscopy of the spinal cord, before and after i.v. injection of 100 μg OVA peptide. 
 
Movie 12 Extravasated encephalitogenic T cells show calcium oscillations in the CNS. TN-
3XLCD-expressing 2D2 cells were adoptively transferred into Rag2-/- recipients, and two-photon 
microscopy of the spinal cord was performed at the onset of EAE (score 0.5). 
 
Movie 13 Differential calcium signaling in encephalitogenic T cells during peak EAE. Same 
experimental settings as Movie 12, but with imaging at the peak of EAE (score > 2).  

(Movies are enclosed on the CD at the back of this thesis) 
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Comparison of codon diversified TN-XXL sequence with original sequence. Shown is the amino acid 

sequence of CFP (blue), TnC (red), and YFP (yellow), with codons highlighted when altered. 
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RESOURCES 
 

 

Microscopic imaging and data analysis of calcium signals in the spontaneously beating 

CAGW-TN-XXL embryonic heart was performed by Stephan Direnberger. 

 

Mouse surgery and two-photon in vivo imaging, along with comprehensive support in 

microscopic data analysis, was provided by Ingo Bartholomäus. 
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