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SUMMARY

Summary

The ability to polarize is a fundamental property of most eukaryotic cells. For example,

essential cellular processes, such as proliferation and migration, require establishment of

a single axis. Studies in both unicellular and multicellular organisms have helped to elu-

cidate the underlying principles of how cells break symmetry in the presence and ab-

sence of spatial cues. In Saccharomyces cerevisiae, cell polarization is initiated through

spontaneous clustering of the Rho GTPase Cdc42 at the cellular cortex and subsequent

stabilization through feedback loops when spatial cues are missing.

The aim of this dissertation is to determine how polarity establishment is achieved with

spatial and temporal precision. Several key findings from a combination of genetic tools,

live-cell imaging and mathematical modelling have shown the following.

Dynamic recycling of Cdc42 at the site of polarization relies on two parallel pathways.

While one pathway is mediated by the only yeast RhoGDI Rdi1, the other pathway is

dependent on actin-mediated transport. Fluorescence recovery after photobleaching

(FRAP) experiments showed that the two pathways act on different time scales with the

GDI pathway being 4-5 times faster than the actin pathway.

In vitro and in vivo assays revealed that the fast GDI-mediated pathway relies on a func-

tional GTPase cycle. Moreover, changes in GTP hydrolysis as well as GDP exchange ac-

tivity were found to alter Cdc42 dynamics and also challenge singularity of polarization.

Furthermore, fast cable dynamics mediated by the formin Bni1 contribute to a unique

polarization site when only the actin-pathway is present.

A detailed mathematical model was able to recapitulate measured parameters of the

individual pathways and predict defects associated with changes in Cdc42 activation,

recycling and hydrolysis.

These results suggest that Cdc42 recycling relies on two pathways with distinct charac-

teristics. The fast GDI-mediated Cdc42 recycling pathway is not always able to establish

polarization but restricts it to a single site; The slower actin-mediated pathway ensures

robust cell polarization but sometimes induces multiple polarization sites. Both pathways

are coordinated by the GTPase cycle and only the combination of both pathways pro-

vides fidelity and robustness of cell polarization.
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SUMMARY

While the role of Cdc42 in polarity establishment and maintenance has been extensively

studied, details about the timing of Cdc42 and its regulators at the onset of polarity were

relatively unknown. These details included the appearance order and behaviour of po-

larity regulators at the polarization site. While the dynamics of the polarity proteins Cdc42,

the GEF Cdc24, the GAP Bem2 and the regulator Bem1 are very similar, comparing po-

larization kinetics revealed differences in the timing of appearance at the polarization

site. Single-cell time-lapse microscopy of polarity regulators showed that formation of the

polarization site is a continuous three-step process comprised of cap formation, cap con-

densation and bud formation. In the absence of Bem2, formation of the polarization site

lacks the condensation step. Furthermore, cell cycle regulated GEF activation and GAP

inactivation determine timing and speed of Cdc42 polarization.

Together, these findings provide vital evidence for how polarity establishment occurs with

spatial and temporal precision.
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INTRODUCTION

1 Introduction

In order to differentiate and also to generate shape, cells rely on the ability to establish an

internal asymmetry. For example, epithelial cells polarize into an apical and a basolateral

surface (Drubin & Nelson 1996; Fig. 1.1 B). Migrating cells, such as fibroblasts, display polar-

ized actin structures, which promote extension of the leading edge and retraction of the

rear end of the cell (Chung & Funamoto 2001; Fig. 1.1 B). In a C. elegans zygote asym-

metric distribution of proteins determines the anterior-posterior axis (Fig. 1.1 C). Not only

highly specialized cells of higher eukaryotes require the ability to polarize. Also unicellu-

lar organisms, such as S. cerevisiae, have to generate asymmetry in order to proliferate

(Fig. 1.1 D). Recruitment of the bud site selection module and the polarization machinery

to a cortical site adjacent to the previous division site (marked by the bud scar) leads to

formation of a new bud.

In all these cases external or internal signals trigger signalling cascades, which result in

effector activation and subsequent asymmetric orientation of the actin or microtubule

cytoskeleton towards the respective stimuli.

Defects in cell polarization can lead to impaired embryogenesis or development of can-

cer in adult organisms. Therefore, it has been - and still is - an important task to understand

the underlying principles required to establish and maintain cell polarity. Cell polarization

has been studied in various different cellular systems and major progress in understand-

ing the individual involved protein complexes and signalling pathways has been made.

Yet, it is poorly understood how the individual pathways are coordinated to establish cell

polarization. S. cerevisiae is an eminently suitable model organism to study cell polarity

because of its highly conserved polarity regulators. Moreover, budding yeast has a short

lifecycle and is simple to cultivate. In addition, S. cerevisiae is easily accessible to genetic

manipulation and biochemical assays.

1.1 General principles of pattern formation

Theoretical concepts of how a symmetric structure can turn into an asymmetric one have

been subject of extensive research. In 1952, Alan Turing has described a system with an

asymmetric distribution pattern that resulted from two components with different diffusion

3
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Figure 1.1: Cell polarization in different cell types and organisms. (A) Polarized actin structures in
the front and rear end of the cell promote migration in fibroblasts. (B) Epithelial cells structures
require polarized microtubules and secretion. The polarized cell orientation promotes segregation
of apical and basolateral proteins (red gradient represents asymmetric protein distribution). (C)
Polarized microtubules promote cell division and asymmetric protein distribution (red gradient) in a
C. elegans zygote. (D) In budding yeast, formation of a daughter cell requires a polarized actin
cytoskeleton and polarized secretion. Parts of the figure were adapted and modified from Etienne-
Manneville 2004.

rates (Turing 1952). This theory was extended to explain biological pattern formation rely-

ing on a local, slowly diffusing activator and a globally diffusing inhibitor (Meinhardt 1972;

Meinhardt 2000).

An asymmetric pattern is the result of internal or external cues, whereby underlying prin-

ciples are shared between organisms. One example is the ability of cells to build asym-

metry in response to an external chemical stimulus. Mating yeast cells grow towards a

pheromone gradient released by a mating partner, whereas the slime mold Dictyostelium

and human neutrophils can move along a chemical gradient to either form a multicellular

aggregate or to react to acute inflammation (Parent 2004). When this external stimulus
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is uniformly distributed, cells still migrate although in random directions. Other systems

that can spontaneously polarize in the absence external stimuli are zygotes of the Algae

Fucus (Brownlee 1998) or fertilized Xenopus laevis eggs (Gerhart et al. 1989).

In S. cerevisiae wild-type cells, the polarization site is determined by intrinsic spatial cues -

the bud scar and the bud site selection machinery. However, when the genes responsible

for bud site selection are missing, bud formation is still initiated although at a random site

(Chant 1991).

Major progress has been made in unravelling the underlying molecular mechanisms for

spontaneous symmetry breaking. In contrast to traditional models of cell polarization,

which follow hierarchical principles, spontaneous cell polarization relies on efficient feed-

back loops that lead to amplification of stochastic fluctuations. In migrating neutrophils, a

feedback loop is established through the polarized accumulation of Phosphatidylinositol-

(3,4)-bisphosphate (PIP2) and Phosphatidylinositol-(3,4,5)-triphosphate (PIP3). PIP3 polar-

ization is then stabilized through activation of the small GTPases Rac1, Cdc42 and their

downstream targets, which trigger actin polymerization and the Phosphatidyl-3-Kinase

(PI3 Kinase). In order to generate an asymmetric distribution, PIP3 needs to be inacti-

vated in other parts of the cell by its global inhibitor PTEN (Meinhardt 2000; Altschuler et

al. 2008; Weiner et al. 2002). This example of global inhibition and local activation can

explain the spontaneous and also robust polarization in neutrophils but can also be ap-

plied on other polarizing systems such as S. cerevisiae. Recent studies in yeast suggest

that actin-mediated transport plays a major role in establishing and stabilizing positive

feedback loops (Wedlich-Soldner et al. 2003). Furthermore, it has been shown that this

mechanism is sufficient to break symmetry in G1 arrested cells expressing a constitutively

active Cdc42 mutant (Wedlich-Soldner et al. 2003).

1.2 Spatial regulation

Cell polarization results from highly conserved signalling mechanisms triggered by inter-

nal or external spatial cues. In neutrophils and Dictyostelium, exposure to a chemoat-

tractant triggers signalling through G protein-coupled receptors at the cell membrane.

Activated G proteins interact with downstream effectors such as small GTPases or phos-

pholipid kinases and subsequent rearrangement of the cytoskeleton towards sites of po-
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larized growth (Chung & Funamoto 2001; Firtel & Meili 2000). Mating yeast cells react

to a chemical signal through receptor accumulation at the shmoo tip and activation of

the small GTPases Cdc42 and Rac (Arkowitz 1999). During vegetative growth, cell polar-

D
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Figure 1.2: Connection of bud site selection and cell polarization machinery. Landmark proteins
recruit the Rsr1 machinery through interactions with the Rsr1-GEF Bud5 to the polarization site. Rsr1
bound to GTP has been implicated to interact with polarity regulators Cdc24, Bem1 and Cdc42.

ization in S. cerevisiae follows a distinct budding pattern. In haploid cells the new bud

grows adjacent to the bud scar, which marks the previous devision site (axial budding

pattern), whereas in diploid cells budding is initiated either adjacent or opposite of the

bud scar (bipolar budding), depending on their genetic heritage (Chant 1991; Chant

1995). Cortical bipolar or axial landmark proteins recruit the bud site selection module to

the respective polarization site. Furthermore, the landmark proteins have been implied

to regulate the Rsr1 (Ras-related protein) GTPase module through its Guanine exchange

factor (GEF) Bud5 and GTPase-activating protein (GAP) Bud2 (Kang et al. 2001; Fig. 1.1).

Genetic studies revealed knockout of RSR1, BUD5 or BUD2 lead to randomized polariza-

tion patterns, indicating that these proteins are required for bud site selection but are not

essential for budding per se (Bender 1993; Chant 1991; Chant 1995; Park et al. 1993). The
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Rsr1 GTPase signalling module is coupled to the polarization machinery through genetic

and physical interactions between Rsr1 and Cdc24, Cdc42 and Bem1 (reviewed in Park &

Bi 2007; Fig. 1.2). Rsr1 recruits Cdc24 to the site of polarization, inducing a conformational

change that is thought to activate Cdc24 (Shimada & Gulli 2000).

1.3 Temporal control - the role of the cell cycle

In S. cerevisiae it is crucial that budding is initiated at the right time and only once per

cell cycle. Therefore, cell polarization is dependent on cell cycle signals triggered by the

M G1

S
G2

Cdc28
Cln1

Cdc28
Cln2

Cdc28
Cln3

Cdc28
Clb5Cdc28

Clb6

Cdc28
Clb1

Cdc28
Clb2

Cdc28
Clb4

Cdc28
Clb3

Figure 1.3: Cyclin/CDK complexes regulate the yeast cell cycle. The G1 cyclins (Cln1, Cln2 and
Cln3) regulate events in the G1 phase and at the G1/S transition. The S phase cyclins Clb5 and
Clb6 promote DNA replication, whereas the mitotic cyclins (Clb1, Clb2, Clb3 and Clb4) initiate
processes in Mitosis. B-type cyclins prevent exit from mitosis.

cyclin-dependent kinase1 (CDK1) Cdc28 and its cyclin partners (reviewed in Enserink &

Kolodner 2010). In yeast, three G1 (Cln1, Cln2, Cln3) and six B-type cyclins (Clb1-6) have

been identified (Fig. 1.3). Although only one G1 cyclin is sufficient for viability, they all have

slightly different functions. While Cln3 controls Cln1 and Cln2 transcription, Cln1/Cdc28
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and Cln2/Cdc28 are important for spindle body duplication and initiation of bud forma-

tion (Fig. 1.3). The B-type cyclins Clb5 and Clb6 in complex with Cdc28 are required for

S phase initiation, whereas Clb3 and Clb4 are expressed from S phase until anaphase to

regulate DNA replication, spindle assembly and G2/M transition (Fig. 1.3). Clb1/Cdc28

and Clb2/Cdc28 are involved in the regulation of mitotic events but also control pro-

cesses required for bud morphogenesis such as the switch from polar to isotropic growth.

Clb1-4 prevent exit from mitosis (Fig. 1.3) and in order to complete the cell cycle, their

activity has to be downregulated (Bloom & Cross 2007).

Bud initiation and formation are tightly coordinated with the cell cycle. In late G1 activa-

tion of Cdc28 by Cln1 or Cln2 controls actin orientation to the polarization site, whereas

activation of the B-type cyclins Clb1and Clb2 in G2 phase leads to a change from apical

to isotropic growth and subsequent depolarization (Lew 1993). Furthermore, regulation

of the GEF Cdc24 through cell cycle signals appears to play an important role for polar-

ity establishment. Cdc24 is sequestered in the nucleus by binding to Far1 in late M and

early G1 phase. Activation of Cdc28 by Cln2 at the G1/S transition triggers degradation

of Far1 and Cdc24 is relocated to the polarization site (Shimada & Gulli 2000). Binding

of Rsr1 and Bem1 to the pleckstrin homology domain (PH) and PB1 domain of Cdc24

have been suggested to release Cdc24 from its autoinhibitory state leading to its activa-

tion (Shimada et al. 2004). However, whether Rsr1 or Bem1 directly activate Cdc24 has

not been tested. Although Cdc28 activity is suggested to be required for localization of

Cdc24 to the incipient bud site (Gulli et al. 2000; Shimada & Gulli 2000; Moffat & Andrews

2004) and Cdc24 phosphorylation by Cdc28 has been confirmed in vitro (McCusker et

al. 2007), mutation of predicted CDK1 phosphorylation sites did not affect its function in

vivo (Gulli et al. 2000; Wai & Gerber 2009).

Furthermore, Cdc24 is phosphorylated by the p21-activated kinase (PAK) Cla4, which is

a downstream effector of Cdc42. Studies on the function of Cdc24 phosphorylation by

Cla4 have lead to controversial results. On the one hand, it has been proposed that

Cdc24 phosphorylation by Cla4 disrupts Cdc24 binding to Bem1 (Gulli et al. 2000), on the

other hand, no change in Cdc24-Bem1 interaction has been found (Bose et al. 2001).

Regulation of Cdc24 activity might play an important role in restricting polarization to a

single polarization site. Studies on Cdc42 mutants that can bypass Cdc24 activity, suggest
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that Cdc24 is important for the timing of the budding event (Caviston et al. 2002; Richman

& Johnson 2000).

Not only the Cdc42 GEF is an attractive target for CDK1 phosphorylation but also Cdc42

GAPs have been shown to be CDK1 substrates. Cdc28 phosphorylates Rga2 both in vitro

and in vivo (McCusker et al. 2007; Sopko et al. 2007; X. Zheng et al. 2007) and the lack

of phosphorylation leads to impaired Rga2 localization and defects in polarized growth

(Sopko et al. 2007). Furthermore, Bem2 and Bem3 have been shown to become hy-

perphosphorylated and inactivated at bud emergence in a Cdc28-dependent manner,

suggesting that they help to restrict Cdc42 activity to bud emergence (Knaus et al. 2007).

Bem1 might be a further potential candidate for linking cell polarization to the cell cycle.

Bem1 was found to be phosphorylated by Cdc28 in vitro (Ubersax et al. 2003) and in vivo

(Han et al. 2005). While in vivo analysis of Bem1 phosphorylation mutants revealed im-

paired vacuole biogenesis, no obvious defects in bud emergence have been observed

so far (Han et al. 2005).

1.4 Polarity regulators

Establishment of cell polarization requires a set of proteins that is recruited to the cell cor-

tex at the G1/S transition of the cell cycle in order to rearrange the cytoskeleton towards

the site of polarized growth.

Cdc42, a member of the Rho GTPase family, was found to be a key player in orchestrating

cell polarization in many eukaryotic cells (Johnson, 1999). In 1971 Hartwell carried out

a genetic screen in S. cerevisiae, resulting in the isolation of mutants that arrested as

unbudded cells (Hartwell 1971). One of the identified mutants was cdc24ts, which later

led to the discovery of Cdc42 (Adams et al, 1990). Both proteins were implied to play a

role in polarization since cells with inactive Cdc24 or Cdc42 arrested as unbudded cells

with multiple nuclei and an unpolarized actin cytoskeleton (Adams et al. 1990; Johnson

& Pringle 1990). Cdc42 is highly conserved from yeast to mammals (Fig. 1.4) and strikingly,

expression of the human Cdc42 can rescue Cdc42 function in S. cerevisiae (Munemitsu

et al. 1990).

Cdc42 coordinates many cellular processes that require polarization such as cell motility,

morphology and proliferation (Etienne-Manneville & Hall 2002). In yeast, Cdc42 is involved
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S.cerevisae/1-191 MQT KCVVVGDGAVGKTCLLISYTTN FP  YVPTVFDNYAVT MIG EPYTLGLFDTAGQED Y   L                          D            V                          Q  A                 D
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Figure 1.4: Alignment of Cdc42 in different organisms. Alignment of Cdc42 proteins of S. cerevisiae
(AAB67416.1), C. elegans (AAC05600.1), D. rerio (NP_956926.1), D. melanogaster (AAF49007.1),
G. gallus (AAC00027.1) and H. sapiens (AAM21109.1). Highly conserved regions are highlighted in
black. Alignment was done with ClustalW Software (http://www.ebi.ac.uk/Tools/msa/clustalw2/).

in the budding process but is also required for mating and pseudohyphal growth (John-

son, 1999). Effectors containing a Cdc42/Rac-interactive binding (CRIB) domain bind to

the switch I domain, which is located at the N-terminus of the Cdc42 protein (Fig. 1.5). The

switch II domain and Rho insert domain, which is unique to Rho-GTPases, are also implied

in effector binding (Fig. 1.5). At the C-terminus of the Cdc42 protein reside the PB (poly-

basic region) followed by the CAAX box where postranslational modifications such as

isoprenylation facilitate the binding to membranes (reviewed in (Park & Bi 2007; Fig. 1.5).

Switch I Switch II Rho Insert PB

Geranylgeranyl 
Ispoprenoid

30 40 59 70 122 135 183 187 1911

Figure 1.5: Cdc42 protein domains. The Cdc42 protein contains a Switch I domain, Switch II domain,
Rho Insert domain, Polybasic (PB) region and CAAX box (AA 188-191), which is modified by isopreny-
lation (wavy line). Numbers indicate amino acid positions. Figure was adapted and modified from
Park & Bi 2007.

At the G1/S transition of the cell cycle, Cdc42 localizes to the polarization site and later to

the tip of small buds. When the new bud switches from apical to isotropic growth, Cdc42

redistributes from its cortical location to the cytoplasm, before it localizes to the septin

ring in late anaphase (Lew 1993; Fig. 1.6).
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early G1 G1/S S/G2 G2/M Ana/Telophase

Cdc42

Figure 1.6: Cdc42 localization throughout the cell cycle. Cdc42 localizes to the cellular cortex in
a wide cap at the G1/S transition. At the transition from S phase to G2, Cdc42 localizes to the tip
of small buds. At the switch from apical to isotropic growth, Cdc42 localization distributes along
the bud cortex before it relocalizes to the bud neck in late Anaphase. Figure was adapted and
modified from Park & Bi 2007.

Like all Rho GTPases, Cdc42 cycles between an inactive GDP-bound and an active GTP-

bound state (Section 1.6.5). GDP/GTP exchange is catalyzed by the GEF Cdc24 (Zheng

& Cerione 1994; Section 1.6.5), whereas GTP hydrolysis is mediated by four GAPs Rga1,

Rga2, Bem2 and Bem3 (Stevenson et al. 1995; Smith et al. 2002; Marquitz et al. 2002;

Zheng & Cerione 1994; Section 1.6.5). Active Cdc42-GTP can bind and activate down-

stream effectors (Section 1.5). Furthermore, the multi-domain protein Bem1 has been

implied as an important Cdc42 regulator because of its ability to promote complex for-

mation of Cdc42-GTP, Cdc24 and the PAK kinase Cla4 at the polarization site (Bose et al.

2001; Gulli et al. 2000; Peterson et al. 1994; Zheng & Cerione 1994; Section 1.6.2). Rdi1, the

only RhoGDI described in yeast (Masuda et al. 1994), has been shown to extract Cdc42

from internal membranes (Eitzen et al. 2001) and the plasma membrane (PM) (Richman

et al. 2004; Tcheperegine et al. 2005; Section 1.6.4).

1.5 Cdc42 signalling - Effectors

The binding of Cdc42 to downstream effectors results in the activation of various cellular

events, such as the rearrangement of the cytoskeleton and cell growth (Bokoch 2003).

In S. cerevisiae three classes of effectors have been identified. The formin Bni1, which is

part of the polarisome, the PAKs Ste20, Cla4 and Skm1 and the yeast specific proteins

Gic1 and Gic2 (Park & Bi 2007). Rearrangement of the cytoskeleton relies on two differ-

ent actin nucleators, the Arp2/3 complex and the formins. Arp2/3 is regulated by the

Wiscott-Aldrich Syndrome protein (WASp) homolog, Bee1 and the type I myosins. The
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formins Bni1 and Bnr1 are required for actin cable formation in S. cerevisiae (Evangelista

et al, 2002; Sagot et al. 2001). Cla4, Ste20 and Skm1 belong to the family of p21-activated

kinases (PAKs). PAKs are important signalling proteins that regulate a wide range of cel-

lular functions, such as regulating polarization events, cytoskeletal dynamics and MAP

kinase pathways, not only in yeast but many other organisms (Bokoch 2003). Cdc42-GTP

interacts with PAKs via the CRIB domain, which releases PAKs from their autoinhibited state

(Zenke et al. 1999). Skm1 is thought to be involved in the down regulation of sterol-uptake

(Lin et al. 2009), whereas Ste20 and Cla4 play a role in actin organization during bud for-

mation. Moreover, Ste20 is involved in activating MAPK pathways during mating (Eby

et al. 1998; Holly 1999) and Cla4 appears to play a role during polarity establishment.

Cla4 has been shown to form a complex with the polarity regulators Bem1, Cdc24 and

Cdc42-GTP, although its function in this complex has been under debate (Gulli et al. 2000;

Bose et al. 2001). Furthermore, the redundant CRIB domain containing proteins Gic1 and

Gic2 have been identified to act as Cdc42 effectors. While their molecular function re-

mains elusive, genetic analysis implies that these proteins are involved in regulating cell

polarization processes (Brown et al. 1997; Chen & Kim 1997).

1.6 Establishment of cell polarization

Wild-type yeast cells establish cell polarity in response to internal or external spatial cues

such as the bud scar or a pheromone gradient. Yet, in the absence of directional cues,

cells are still able to polarize without displaying any defects in polarity establishment,

maintenance or cell morphology. However, their budding pattern appears to be ran-

domized (Chant 1995). In the absence of any spatial cues, active Cdc42 has been sug-

gested to cluster spontaneously and transiently at the site of polarized growth, where

it becomes stabilized through effector interactions and two independent positive feed-

back loops (Butty et al. 2002; Irazoqui et al. 2003; Wedlich-Soldner et al. 2003; Wedlich-

Soldner et al. 2004) . While one feedback loop relies on complex formation mediated

by Bem1 (Irazoqui et al. 2003), a second feedback loop depends on actin-mediated

vesicle transport (Wedlich-Soldner et al. 2003). Furthermore, two mechanisms have been

implicated in Cdc42 recycling for polarity maintenance (Slaughter et al. 2009). In the

following subsections the pathways involved in polarity establishment will be introduced
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in close detail.

1.6.1 The role of the actin cytoskeleton

The cytoskeleton not only maintains cell polarity and morphology but also enables cel-

lular movement, force transmission and growth. Actin and microtubules are major com-

ponents of the eukaryotic cytoskeleton. In order to carry out their cellular functions, they

assemble from monomers to filaments and more complex structures. While in higher eu-

karyotes both actin and microtubules are important for polarity establishment and main-

tenance only actin is required for polarity in S. cerevisiae (Jacobs et al. 1988).

Three different actin structures fulfill a variety of functions in yeast. Actin patches mark

sites of endocytosis, actin cables are required for vesicle transport and actin rings help

to constrict the mother/bud neck (reviewed in Moseley 2006). Actin patches consist of

short-branched filaments that are nucleated by the Arp2/3 complex (Rodal et al. 2005;

Pollard 2003), whereas actin cables function as intracellular transport tracks to promote

Myo2-dependent vesicle transport (Bretscher 2003). Actin cables are nucleated by the

two budding yeast formins Bnr1 and Bni1 (Evangelista et al. 2002; Sagot & Klee 2001).

We have recently shown that actin cable dynamics change during cell polarization. In

unpolarized cells, fast polymerization of actin cables is mediated by Bni1, whereas slower

polymerization is regulated by both formins Bnr1 and Bni1 in polarized cells (Yu et al. 2011).

The actin ring is formed during anaphase and constricts the bud from the mother cell with

the help of Myo1 to promote cytokinesis (Bi et al. 1998; Lippincott 1998). Furthermore,

actin has been suggested to play an important role in generating a positive feedback

loop required for polarity establishment (Wedlich-Soldner et al. 2003; Wedlich-Soldner et

al. 2004; Section 1.6.3).

1.6.2 The role of Bem1

It has been suggested that Bem1 forms a complex with Cdc42-GTP, Cdc24 and Cla4

(Bose et al. 2001; Gulli et al. 2000; Peterson et al. 1994; Zheng & Cerione 1994), thereby

promoting accumulation of active Cdc42 at the polarization site (Gulli et al, 2000, Bose

et al, 2001, Butty et al, 2002). This Bem1-mediated feedback loop is able to break sym-
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metry even in the absence of spatial cues and actin. While cells lacking Bem1 are still

viable, these cells appear to be temperature-sensitive (Bender 1993). Although Bem1 has

been implicated to act as a scaffold protein for the other complex members, it displays

rather fast protein dynamics, suggesting that it is comprised of highly dynamic molecules

(Wedlich-Soldner et al. 2004).

1.6.3 The role of feedback loops

Feedback loops have been implicated in the fundamental process of pattern formation

(Section 1.1). During the last decade, the role of feedback loops in establishing and

maintaining cell polarity in yeast has been subject of extensive research. Bem1 has been

proposed to mediate complex formation between the PAK Cla4, Cdc24 and Cdc42-GTP,

initiating a positive feedback loop by increasing the local concentration of active Cdc42

at the polarization site (Gulli et al, 2000; Bose et al, 2001; Butty et al, 2002; Fig. 1.7).

Actin

PM

Cla4

PPP Cdc2
4 Cdc42

GTP
Bem1

Cdc42
G

TP

Figure 1.7: Polarity establishment requires Bem1- and actin-mediated positive feedback loops
Cdc42 has been suggested to become stabilized through complex formation with Bem1, Cdc24
and Cla4. Actin-dependent vesicle transport leads to a further accumulation of Cdc42 at the
polarization site. PM:Plasma membrane.

Whether subsequent Cdc24 phosphorylation by Cla4 leads to disruption of the Cdc24-

Bem1 binding and hence termination of polarized growth, remains under debate (Gulli
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et al, 2000; Bose et al, 2001). Furthermore, it has been suggested that Bem1 promotes

symmetry breaking by physically linking the GEF and PAK. A GEF-PAK chimera was able

to rescue an otherwise lethal rsr1∆ bem1∆ double mutant (Kozubowski et al, 2008).

Actin-dependent transport has been implicated in a second positive feedback loop for

symmetry breaking. While actin cable nucleation requires activated Cdc42-GTP, accu-

mulation and stabilization of activated Cdc42 at the polarization site in turn also relies on

actin-dependent vesicle transport and endocytosis (Wedlich-Soldner et al. 2003; Marco

et al. 2007; Fig. 1.6). This actin-mediated feedback loop was able to break symmetry in

G1 arrested cells expressing a constitutively active Cdc42Q61L mutant (Butty et al. 2002;

Wedlich-Soldner et al. 2003). Further studies revealed that bem1∆ cells treated with the

actin-depolymerizing drug Latrunculin A (LatA), completely failed to polarize, suggesting

that coupling of a Bem1- and a actin-mediated feedback loop is required to establish

cell polarity (Wedlich-Soldner et al. 2004).

1.6.4 The role of the GDI

RhoGDIs were originally described as rather passive inhibitors of distinct Rho protein func-

tions such as inhibiting the dissociation of GDP from Rho GTPases (Chuang et al. 1993;

Leonard et al. 1992) and inhibiting the intrinsic GTPase activity (Hart et al. 1992). After

the crystal structure of RhoGDI in complex with Cdc42 had been solved (Hoffman et al.

2000), the idea of GDIs as passive inhibitors had to be adjusted. RhoGDI has been shown

to actively extract Rho GTPases from membranes and to retain them in an inactive state

in the cytosol (Bustelo & Sauzeau 2007; DerMardirossian & Bokoch 2005; Cole et al. 2009;

Johnson et al. 2009). A two-step mechanism for Cdc42 extraction by the RhoGDI has

been suggested. First, the N-terminus of the RhoGDI interacts with the switch I and II do-

mains of Cdc42, and second, the geranylgeranyl moiety of the Cdc42 is inserted into the

geranylgeranyl binding pocket of the RhoGDI. This interaction is thought to be facilitated

by interactions between the polylysine region at the C-terminus of Cdc42 and the acidic

patch in the geranylgeranyl binding pocket (Hoffman et al. 2000). A single point mutation

(R66E) in the switch II region is sufficient to abolish binding between Cdc42 and RhoGDI

(Gibson & Wilson-Delfosse 2001; Fig. 1.8).

Although, the RhoGDI crystal structure revealed no preference for either the GDP- or GTP-
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R66

Figure 1.8: Cdc42 GDI structure. 3D structure of Cdc42 (surface structure (grey) overlay with ribbon
structure(blue)) in complex with GDI (green). Red region is the mutated R66 residue, which abol-
ishes Cdc42 binding to GDI. Crystal structure of Cdc42 complex with its GDI was solved by Hoffman
et al. (Hoffman et al. 2000), PDB accession code 1DOA. The figure was generated with PyMOL
software (DeLano W.L. (2008), the PyMOL Molecular Graphics system; DeLano Scientific LLC. Palo
Alto, CA, USA.

bound form (Hancock & Hall 1993; Nomanbhoy et al. 1999), controversial observations

have been reported. On the one hand, Rho-GTP has been extracted after GDI overex-

pression (Tiedje et al. 2008), on the other hand, the affinity of the RhoGDI to Cdc42-GDP

was found to be 10 fold higher compared to the GTP-bound form (Johnson et al. 2009).

The mechanism which leads to dissociation of the RhoGDI-Rho GTPase complex is still

unclear. It has been suggested, that lipids change the GDI conformation, thereby facil-

itating GTPase-activation by a GEF (Faure & Dagher 2001; Robbe et al. 2003). Further-

more, phosphorylation may promote Rho GTPase release from the GDI. In general, while

phosphorylation of Rho GTPases increases their affinity for GDIs, phosphorylation of the

GDI has the opposite effect (Garcia-Mata et al. 2011). Although GEFs seem obvious can-

didates to help dissolve the GDI-GTPase complex, little evidence for this hypothesis has

been provided so far. Insights on a possible mechanism how GEFs might act on the GDI-

GTPase interaction come from studies on a pathogenic protein DrrA, which displays GDF
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(GDI displacement factor) and GEF activity towards Rab1 (Murata et al. 2006; Mach-

ner 2006; Ingmundson et al. 2007; Wu et al. 2010). Solving the crystal structure of the

DrrA-GEF domain in complex with Rab1 and analyses of the kinetic and thermodynamic

properties revealed that GDI displacement by DrrA is directly linked to GEF- rather than

GDF activity (Schoebel et al. 2009). Rdi1, the only known RhoGDI in yeast (Masuda et al.

1994), has been shown to extract Cdc42 from vacuolar (Eitzen et al. 2001) and internal

membranes as well as from the plasma membrane (Richman et al. 2004; Tcheperegine

et al. 2005; Tiedje et al. 2008). Controversial results have been reported concerning RDI1

overexpression. While one group found cells overexpressing RDI1 to be lethal (Masuda et

al. 1994) , a different group merely observed a rounder cell morphology (Tcheperegine

et al. 2005). The different phenotypes could be explained by dose-dependent expression

of RDI1 (Tiedje et al. 2008). So far, no obvious phenotype for rdi1∆ has been reported,

although deletion of RDI1 lead to suppression of mitotic exit defects in lte1∆ cells (Tiedje

et al. 2008). Furthermore, Rdi1 has been implicated to play an essential role in the actin-

independent recycling during polarity maintenance (Slaughter et al. 2009).

1.6.5 The role of the GTPase cycle

The ability to cycle between an inactive GDP- and an active GTP-bound state is a central

feature of all GTPases. Since the affinity of small G proteins for GDP/GTP molecules is high

the dissociation rate of nucleotides is very low, hence exchange of GTP for GDP requires

GEFs to accelerate the process (Vetter 2001; Bos et al. 2007). In S. cerevisiae, only one GEF

- Cdc24 is known, which is also essential for viability (Zheng & Cerione 1994). Furthermore,

the GTP/GDP exchange step requires proteins that accelerate the hydrolysis reaction (Bos

et al. 2007). Several mutations (G12V, Q61L, D118A) (Fig. 1.9) in the putative GTP binding

and hydrolysis domains of Cdc42 lead to dominant dosage-dependent lethality, suggest-

ing that GTP hydrolysis is essential for its normal function (Ziman et al. 1991) The hydrolysis

reaction is mediated by the four potential GAPs Bem2, Bem3, Rga1 and Rga2 (Stevenson

et al. 1995; Smith et al. 2002; Marquitz et al. 2002; Zheng & Cerione 1994). Interestingly,

a triple knockout mutant bearing deletions of Rga1, Rga2 and Bem3 is still viable, merely

displaying elongated buds, which is consistent with an implied higher activity of Cdc42.

bem2∆ mutants display Cdc42 activation to multiple sites, suggesting that Bem2 func-
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tion is required to restrict Cdc42 activation to a single site (Knaus et al. 2007). Cdc42

mutants bearing a single nucleotide exchange at residue 60 (G60A and G60D; Fig. 1.9)

in the putative binding and hydrolysis domain rendered Cdc42 hyperactive, which also

lead to polarization at multiple sites in a CDC42 deletion mutant background (Caviston

et al. 2002).

G12

F28D57

G60

Figure 1.9: Cdc42 structure. 3D structure of Cdc42 (ribbon: blue; with surface model: grey) with
mutated amino acid residues highlighted in red. GDP is shown as stick model. Crystal structure
of Cdc42 complex with its GDI was solved by Hoffman et al. (Hoffman et al. 2000). The figure
was generated with PyMOL software (DeLano W.L. (2008), the PyMOL Molecular Graphics system;
DeLano Scientific LLC. Palo Alto, CA, USA.

While mutants bearing the amino acid exchange at residue 61 appeared to be locked

in the GTP-bound state, mutants at residue 60 were still able to cycle with decreased

GTP/GDP exchange. FRAP experiments of the inactive Cdc42D57Y and the constitutively

active Cdc42Q61L mutant revealed much slower recovery half-times than wild-type Cdc42

(Wedlich-Soldner et al. 2004). These results suggest that the ability of Cdc42 to cycle be-

tween the active and inactive state plays an important role in the high exchange rate

of Cdc42 between the polarization site and the cytosol. These findings are supported by

the reduced complex formation of Cdc42D57Y and Cdc42Q61L with Rdi1 in vivo (Slaugh-
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ter et al. 2009). Furthermore, the interaction between Cdc42Q61L and Cdc42 effectors is

stabilized and hence the constitutively mutant is protected from endocytosis (Slaughter

et al. 2009). This suggests that the GTPase cycle controls both Cdc42 recycling pathways

by assisting complex formation with Rdi1 and releasing Cdc42 from its effectors thereby

promoting endocytosis.

A recent computational model predicted that proteins controlling GTPase cycling have

to be tightly regulated in order to simultaneously maintain high activity of Cdc42 and fast

turnover (Goryachev & Pokhilko 2006). In fact, a mutation in the highly conserved residue

Phe28 of Ras related proteins, was shown to increase the GDP association state and ac-

tivate the protein in vivo (Reinstein et al. 1991; Fig. 1.9). The same mutation in the human

Cdc42H protein leads to accelerated GDP/GTP exchange rate. Remarkably, expression

of this mutated Cdc42 in fibroblasts led to giant, multinucleate cells, a phenotype similar

to the expression of the oncogenic Dbl (Lin et al. 1997).

1.7 Uniqueness of polarization

It is crucial that cell polarization occurs only once per cell cycle. When Cdc42 is no

longer under the control of Cdc28/G1 CDK-cyclin complex, such as in an overexpressed

constitutive mutant of Cdc42 (Cdc42Q61L, Cdc42G12V) in combination with the absence of

all G1 cyclins, polarization can still be initiated at multiple sites (Gulli et al. 2000; Wedlich-

Soldner et al. 2003). The importance of the cell cycle in singularity of polarization is also

supported by the fact that the Cdc42 GAPs are highly cell cycle regulated. Bem2 and

Bem3 have been shown to function as global inhibitors of Cdc42 activation during the G1

phase and their subsequent inactivation by Cdc28/Cln-mediated hyperphosphorylation

leads to site-specific activation of Cdc42 at bud emergence (Knaus et al. 2007). In line

with these results, it has been shown that slow hydrolyzing Cdc42 mutants bearing point

mutations at residue 60 displayed polarization at multiple cortical sites (Caviston et al.

2002). Studies on artificially rewired cells and mathematical modelling suggest that fast

competition between polarization clusters is required to restrict polarization to a single site

(Howell et al. 2009; Goryachev & Pokhilko 2008). Also, the amount of activated Cdc42

and the activity of Cdc42 itself may play an important role in ensuring a single polarization

site. Expression of an increased concentration of constitutively active Cdc42Q61L at the
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plasma membrane led to an increased number of cells initiating polarization at two or

more polarization sites (Wedlich-Soldner et al. 2003).

1.8 The role of mathematical modelling

While theoretical approaches have been very valuable in understanding symmetry break-

ing for decades (Turing 1952; Meinhardt 1972; Meinhardt 2000; Section 1.1), recently,

mathematical models have helped to advance the understanding of underlying general

principles of cell polarization in various organisms and cell types in the presence and ab-

sence of spatial cues (reviewed in Jilkine 2011 and Onsum & Rao 2009). Very few mathe-

matical models are developed in a bottom-up approach, whereby predictions are made

from known biochemical reactions (Goryachev & Pokhilko 2008). Most simulations gen-

erate predictions in a top-down approach that in turn could be experimentally tested,

or often, both approaches are combined (Onsum & Rao 2009). Budding yeast has been

an attractive model to understand the underlying principles of spontaneous cell polar-

ization not only in experiments, but also to employ theoretical approaches. In a series of

top-down modelling studies, various attempts were made to understand the involvement

of actin-dependent feedback loops in symmetry breaking. While Wedlich-Söldner et al

in 2003 suggested an actin-dependent positive feedback loop, which amplified and sta-

bilized initial stochastic fluctuations of the polarity regulator Cdc42 (Wedlich-Soldner et

al. 2003), a negative-actin-dependent feedback loop was considered to remove Cdc42

from the membrane in the absence of the Rsr1 landmark protein (Ozbudak et al. 2005).

In 2008 Goryachev & Pokhilko developed a bottom-up model to explain yeast cell po-

larization (Goryachev & Pokhilko 2008). The authors suggested a turing-like mechanism

to explain why the cell only polarizes once per cell cycle (Goryachev & Pokhilko 2008).

This model was then extended to explain experimental observations of two competing

clusters in artificially rewired cells that sometimes grow two buds (Howell et al. 2009).

A simple stochastic model developed by Altschuler et al. in 2008 suggested that one

positive feedback alone is sufficient to establish cell polarization and that polarization

frequency depends on low expression of Cdc42 (Altschuler et al. 2008). Although an

actin-dependent positive feedback loop was implied in various theoretical studies, Lay-

ton et al were the first to consider vesicle membranes in their simulations (Layton et al.
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2011).
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2 Results

2.1 Cdc42 copy number does not influence polarization be-
haviour and protein dynamics

The focus of our study lies on understanding events during polarity establishment, which

take place at the G1/S transition of the cell cycle. Hence, an enrichment for cells in

the respective cell cycle stage is desirable. To that end, we used an S. cerevisiae strain

that could be synchronized in a cell cycle dependent manner. The strain bears deletions
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Figure 2.1: Assay for determining polarization kinetics. (A) Schematic depiction of the polarization
assay. Yeast cells can be arrested in G1 by methionine (Met) addition to the growth medium.
Subsequent methionine washout releases cells from G1 in a synchronized manner (B) Visualization
of GFP-tagged Cdc42 during polarity establishment and bud development. Scale bars: 4 µm. (C)
Polarization kinetics of ectopically expressed GFP-Cdc42 (2x42). Data for each time point (mean ±
SD) are based on the analysis of three individual experiments with 50 cells each.

of CLN1, CLN2, and CLN3. CLN2 is expressed under the control of a repressible Met3

promoter (Amon et al. 1994), which allows to arrest cells in the G1 phase of the cell cycle

by adding methionine to the growth medium, resulting in repression of CLN2 expression.

Subsequent methionine washout releases cells from G1 arrest in a synchronized manner
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(Fig. 2.1 A).

In this study, all experiments were carried out with an ectopically expressed, N-terminally

GFP-tagged Cdc42 unless otherwise stated. Furthermore, the construct contains a myc

tag, which is not used in this study and therefore, the construct will be referred to as

GFP-Cdc42/Cdc42 hereafter. Information about polarization kinetics was obtained by

determining the number of cells displaying a GFP-Cdc42 signal at the cell cortex (cap)

or in the bud at different time points. On a single-cell level, Cdc42 localizes into wide

caps, which narrow gradually before forming the bud (Fig. 2.1 B). The majority of control

cells (98 %) have formed a polarization cap or bud 55 min after release from G1 arrest

(Fig. 2.1 C).

Protein dynamics were obtained by performing FRAP experiments on the polarization site

(Fig. 2.2 A). Therefore, we bleached the cap and monitored its fluorescence recovery
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Figure 2.2: Protein dynamics were determined by FRAP experiments. (A) Representative FRAP ex-
periment. Depicted is a control cell before, at and 25 min after the bleach event. Asterisks mark
the site of the FRAP event. (B) Representative recovery curve of a control cell. The curve was
generated by double exponential fitting. Scale bars: 4 µm.
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over time. The recovery curve was obtained by fitting the recovered signal at different

time points with a double exponential curve, which represented two different processes

involved in the recovery. Initial rapid recovery resulted from diffusion, whereas the slower

recovery was dependent on transport events (Fig. 2.2 B). Since we were only interested in

transport-dependent recovery, only half-times that represented this pathway were con-

sidered.

To verify that the amount of expressed Cdc42 did not affect cell behaviour, we tagged

Cdc42 at the endogenous locus (1x42) and compared polarization efficiency and pro-

tein dynamics of endogenously (1x) and ectopically (2x42) expressed GFP-Cdc42.
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Figure 2.3: Cdc42 expression level does not affect protein dynamics. (A) Comparison of polariza-
tion kinetics of endogenously tagged GFP-Cdc42 (1x42). ectopically expressed GFP-Cdc42 (2x42)
or two ectopically expressed copies of GFP-Cdc42 (3x42) in the absence and presence of LatB.
Data for each time point (mean ± SD) are based on the analysis of three individual experiments
with 50 cells each. (B) Comparison of half-life (t 1/2) of endogenously tagged GFP-Cdc42 (1x42),
ectopically expressed GFP-Cdc42 (2x42) or two ectopically expressed copies of GFP-Cdc42 (3x42)
in the absence and presence of LatB. Bar graphs correspond to the mean ± SEM. N ≥ 10. ∗ indi-
cates that the difference is statistically significant ( p < 0.05, t-test). ∗ ∗ indicates that the difference
is statistically very significant ( p < 0.01, t-test). (C) Absence of correlation between GFP-Cdc42
expression levels (intensities) and probability of polarization.

Furthermore, we generated a strain ectopically expressing two GFP-Cdc42 constructs in
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addition to the endogenous, untagged version (3x42). Neither polarization kinetics nor

proteins dynamics were affected by copy number of Cdc42 in both control and actin-

depleted (LatB-treated) cells (Fig. 2.3 A, B). In addition, we investigated whether the

polarization probability depends on Cdc42 expression levels. Therefore, we expressed

Cdc42 under the endogenous or a galactose-inducable promoter and induced cells for

30 min, 60 min, 90 min and 120 min. We counted the number of polarized cells in de-

pendence of their fluorescence intensity and found no significant correlation (Fig. 2.3 C),

indicating that expression levels had no effect on polarization probability.

2.2 Actin and Rdi1 extraction act in parallel

2.2.1 Synthetic lethal screen reveals genetic interactions be-
tween polarity regulators and actin-dependent trans-
port components

To systematically evaluate the proposed redundancy between polarity regulators and

actin-dependent transport components during polarity establishment, we performed a

synthetic lethal screen with Cdc42 and its direct regulators, the GEF Cdc24, the GAPs

(Bem2, Bem3, Rga1 and Rga2), the GDI Rdi1, the adaptor protein Bem1 and the Cdc42

effector Cla4 (Tab. A.3). The majority of the genes tested is not required for cell viability. In

a synthetic interaction screen, two (or more) single mutants were crossed and analyzed

for growth defects (Fig. 2.4 A). Analysis of synthetic lethal or synthetic sick double mu-

tants allowed the identification of genes involved in redundant rather than in the same

pathways. We included a collection of conditional alleles in our screen, in order to assay

essential genes such as Cdc42, Cdc24 and many actin associated proteins. The heat

map displayed in Fig. 2.4 B compares genetic (blue) (Tab. A.3) and physical (orange)

(Tab. A.4) interactions between polarity regulators and actin-dependent transport com-

ponents. While many genetic interactions were found (Fig. 2.4 B, blue heat map), physi-

cal interactions were rare (Fig. 2.4 B, orange heat map), indicating that components of

cell polarization and actin-related processes function in parallel rather than in the same

pathways.

In contrast to only one GEF, there are four potential GAPs, Bem2, Bem3, Rga1 and Rga2,
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Figure 2.4: Synthetic lethal screen. (A) Schematic depiction of a work flow for a systematic synthetic
lethal screen. (B) Comparison of genetic and physical interactions between polarization and trans-
port components. Above: The number of genetic (blue) and physical (orange) interactions of the
polarization proteins to proteins of the transport components were colour-coded in a heat map.
Below: the interactions between the polarization proteins are depicted in a graph. Random spore
analysis (C) and tetrad analysis (D) verify the synthetic lethal interaction between BEM2 and RDI1.
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for Cdc42 in S. cerevisiae (Zheng et al. 1994; Gladfelter et al. 2002. Smith et al. 2002; Mar-

quitz et al. 2002). Interestingly, Bem2 showed the largest number of genetic interactions

with actin related processes. Furthermore, Bem2 was found to be synthetic lethal with

Rdi1 (Fig. 2.4 B, C; Tab. A.3), the only RhoGDI known in yeast. These data suggest that

Bem2 might have an important role in polarity establishment, while the other GAPs might

be involved in later events of cell polarization (Perez 2010; Caviston & Longtine 2003).

Furthermore, the polarity regulator Rdi1 displayed interactions with actin-dependent com-

ponents supporting the redundancy of the two Cd42 recycling pathways (Fig. 2.4 B;

Tab. A.3).

2.2.2 Cdc42 polarization depends on recycling through Rdi1
and actin

In order to investigate the role of Rdi1 during polarity establishment we deleted RDI1 in

GFP-Cdc42 expressing control cells. In contrast to control cells, which displayed a high

cytosolic pool of Cdc42, we observed Cdc42 accumulation in internal and plasma mem-

branes in rdi1∆ cells (Fig. 2.5; Fig. 2.6 A).

0 min 5 min 10 min 15 min 20 min

 rdi1∆

Figure 2.5: Cap and bud formation in rdi1∆ cells. Single pictures of a time-lapse movie of GFP-
Cdc42 caps in rdi1∆ cells. The time-lapse movie was started at the beginning of cap formation
(t=0 min). Framerate: 1 min, every 5th frame is depicted in this figure.

In addition, we generated a Cdc42 mutant, deficient of Rdi1 binding (Cdc42R66E), which

displayed the same phenotype (Fig. 2.6 A). Despite the increased membrane associa-

tion of Cdc42 in rdi1∆ and Cdc42R66E cells , polarization kinetics of GFP-Cdc42 in control,

rdi1∆ cells and cells expressing Cdc42R66E were similar (Fig. 2.6 A). Next, we disrupted the

actin pathway in control, rdi1∆ and Cdc42R66E cells to investigate the suggested redun-

dancy more carefully. Polarization was completely inhibited when rdi1∆ or Cdc42R66E cells
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were treated with the actin-depolymerizing drug LatB, whereas polarization efficiency of

Cdc42 was only slightly reduced in control cells (Fig. 2.6 B; Wedlich-Soldner et al. 2004).

To rule out side-effects of the LatB treatment, we also monitored polarization efficiency

in a temperature-sensitive secretion mutant of the type V myosin Myo2 (myo2-16). While

myo2-16 polarized to 80 %, the myo2-16 rdi1∆ double mutant completely failed to polar-

ize at the restrictive temperature (35 ◦C), (Fig. 2.6 C). In addition, reduction of endocytic
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Figure 2.6: Polarization kinetics of Rdi1 and actin-dependent transport. (A) Polarization efficiency
of GFP-Cdc42 in control cells, rdi1∆ and the mutant Cdc42R66E. GFP-Cdc42 localizes to polariza-
tion caps after release from G1 arrest. (B) Polarization curves of LatB-treated control, rdi1∆ and
Cdc42R66E cells. (C) Polarization curves of Cdc42 in the endocytic mutant vps27∆ and vps27∆
rdi1∆. Colocalization of GFP-Cdc42 and the membrane dye FM4-64 shows Cdc42 accumulation in
class E compartments in vps27∆ and vps27∆ rdi1∆ mutants. (D) Polarization curves of Cdc42 in the
temperature-sensitive transport mutants myo2-16 and myo2-16 rdi1∆ at 35 ◦C. Data for each time
point (mean ± SD) are based on the analysis of three individual experiments with 50 cells each.
Scale bar: 4 µm.
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recycling by deleting the ESCRTIII component Vps27 (Katzmann et al. 2003) led to a

slowdown in polarization (Fig. 2.6 D). Colocalization experiments of GFP-Cdc42 with FM4-

64 stained endosome membranes in vps27∆ cells revealed that Cdc42 accumulated in

class E compartments (Fig. 2.6 D). This finding indicates that Cdc42 is actively recycled

through the endocytic system.

2.2.3 Cdc42 dynamics depend on recycling through Rdi1

We determined protein dynamics of Cdc42 caps using FRAP (Fig. 2.2) in control cells and

cells either compromised in actin- or Rdi1-dependent recycling.
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Figure 2.7: Protein dynamics of Cdc42 in the actin-dependent and Rdi1-dependent pathway. (A)
Recovery curve for Cdc42 in control, LatB and rdi1∆ cells. (B) Average half-life (t 1/2) of GFP-Cdc42
fluorescence recovery after photobleaching in control, LatB-treated, rdi1∆ cells and the mutant
Cdc42R66E. (C) Average half-life (t 1/2) of GFP-Cdc42 fluorescence recovery after photobleaching
in control, vps27∆, rdi1∆ and vps27∆ rdi1∆ cells. Bar graphs correspond to the mean ± SEM. N ≥
10. ∗ indicates that the difference is statistically significant ( p < 0.05, t-test).
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Cdc42 caps in control cells recovered rapidly with 2.2 s half-time (Fig. 2.7 B; Tab. A.1).

Protein dynamics were only slightly reduced to 2.5 s when control cells were treated with

LatB (Fig. 2.7 B; Tab. A.1), whereas recovery of rdi1∆ and Cdc42R66E cells was much slower

(10 s; Fig. 2.7 B; Tab. A.1).

This difference implies that Rdi1-mediated recycling acts four times faster than the actin-

dependent pathway. We also performed FRAP experiments on vps27∆ cells and found

half-times in the range of LatB-treated cells (Fig. 2.7 C; Tab. A.1). Protein dynamics in

vps27∆ rdi1∆ were significantly slower than rdi1∆ single mutants (Fig. 2.7 C; Tab. A.1), fur-

ther confirming the proposed redundancy between actin-dependent and Rdi1-mediated

recycling of Cdc42.

2.3 GTPase cycling is required for Rdi1-mediated Cdc42 re-
cycling

Cycling of Cdc42 between the GDP and GTP bound state is essential for viability of cells

(Park & Bi 2007). Cdc42 alleles containing point mutations in the putative GTP-binding

and hydrolysis domains (Cdc42G12V Cdc42Q61L Cdc42D118A) resulted in dominant-lethal or

dose-dependent dominant-lethal phenotypes (Ziman et al. 1991). FRAP analysis of the

Cdc42Q61L (expressed from a galactose-inducable promoter with the wild-type Cdc42

copy present) revealed slow half-times of 60 s (Slaughter et al. 2009; Wedlich-Soldner et

al. 2004). Similar values were found in an inactive Cdc42D57Y mutant (expressed from a

galactose-inducable promoter with the wild-type Cdc42 copy present) (Slaughter et al.

2009; Wedlich-Soldner et al. 2004), indicating that the GTPase cycle plays a prominent

role for Cdc42 dynamics. To elucidate the role of the GTPase cycle in GDI-dependent

extraction, we altered the previous approaches and performed experiments in our strain

background.

2.3.1 GTPase cycling is required for fast Cdc42 dynamics

The experiments mentioned in the previous paragraph were conducted in a strain back-

ground (cln1::hisG cln2∆ cln3::LEU2 pMET-CLN2::TRP1) that differed from the strain back-

ground used in this study (cln1::HisG cln2 cln3∆::HisG yipLac204-MET-CLN2::TRP1). In or-
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Figure 2.8: The role of the GTPase cycle. (A) Schematic depiction and localization of the GFP-
Cdc42D57Y mutant. (B) Schematic depiction and localization of the GFP-Cdc42G12V mutant. (C)
Polarization efficiency of Cdc42D57Y and Cdc42G12V in the presence and absence of LatB com-
pared to control cells treated with and without LatB. Data for each time point (mean ± SD) are
based on the analysis of three individual experiments with 50 cells each; (D) Average half-life (t
1/2) of control cells, Cdc42D57Y and Cdc42G12V. Bar graphs correspond to the mean ± SEM, N ≥
10. (E) Recovery of GFP- Cdc42G12V after partial FRAP in total internal reflection fluorescence (TIRF)
microscopy. The red arrow marks a stable unbleached Cdc42G12V patch. Scale bars: 4 µm.

der to preserve consistency, we repeated experiments in our strain background. Fur-

thermore, to avoid strong protein overexpression, we used the endogenous Cdc42 pro-

moter instead of the galactose-inducable promoter to express the constitutively active

and inactive mutant of Cdc42. However, we failed to generate a Cdc42Q61L mutant

that was able to polarize and instead expressed the constitutively active Cdc42G12V mu-

tant. Expression of Cdc42D57Y under the endogenous promoter was successful. Cdc42D57Y

mutants (with the untagged wild-type Cdc42 present) displayed a high cytosolic pool

(Fig. 2.8 B), whereas Cdc42G12V (with the untagged wild-type Cdc42 present) appeared
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to accumulate in small patches in the plasma membrane (Fig. 2.8 B). Polarization kinet-

ics and efficiency of both cycling mutants were decreased compared to control cells

(Fig. 2.8 C). Furthermore, polarization of Cdc42D57Y and Cdc42G12V was strongly actin-

dependent (Fig. 2.8 C). We could confirm previously measured (Wedlich-Soldner et al.

2004; Slaughter et al. 2009) slow recovery half-times of 12 s and 30 s, for Cdc42D57Y

and Cdc42G12V , respectively (Fig. 2.8 D; Tab. A.1). These recovery times were consistent

with values retained from FRAP experiments in rdi1∆ cells, where Cdc42 polarization was

solely actin-dependent (Fig. 2.8 D; Tab. A.1). As mentioned in the previous paragraph,

we observed Cdc42G12V localization in a patch-like pattern at the cell cortex. We used

total internal reflection microcopy (TIRFM) to visualize and bleach Cdc42G12V patches,

which recovered slowly and patches in the unbleached area remained stable over time

(Fig. 2.8 D).

2.3.2 GTP hydrolysis is required for Cdc42 extraction

After we demonstrated that efficient recycling of Cdc42 strongly depends on its ability to

cycle between the GDP- and GTP-bound state, we decided to investigate the involve-

ment of the GTPase cycle in GDI-dependent recycling in mechanistic detail. Spectro-

scopic assays were performed to determine the nucleotide-dependent dissociation ki-

netics of Mant (methylanthaniloyl-modified)-labelled Cdc42 from purified HAF (hexdecan-

oylaminofluorescein)-labelled liposomes in the presence of RhoGDI. We measured the

increase of Mant-fluorescence recovery as a result of Cdc42 dissociation from liposomes

(Fig. 2.9 A). Interestingly, Cdc42-GDP dissociated more than 10x faster than Cdc42-GTP,

confirming that RhoGDI preferentially extracts Cdc42-GDP (Fig. 2.9 B; Johnson et al 2009).

Furthermore, in the presence of a GAP domain, Cdc42-GTP dissociated with approxi-

mately the same rate as Cdc42-GDP (Fig. 2.9 B), indicating that Cdc42-GTP hydrolysis is

the rate-limiting step for its dissociation from liposomes. This observation was supported by

the fact that nonhydrolyzable Cdc42GMPPNP hardly showed any fluorescence recovery

(Fig. 2.9 B). These experiments were contributed by Jared Johnson, Cornell University.
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Figure 2.9: GDI-dependent extraction of Cdc42 from liposomes. (A) Schematic depiction of spec-
troscopic extraction assay from liposomes. (B) Dissociation rate of Mant-labelled Cdc42 from HAF-
labelled liposomes upon GDI addition in the presence of GDP (red curve), GTP (blue curve), GTP
and GAP (black curve) or GMPPNP (green curve).

Next, we investigated Cdc42 hydrolysis in vivo by deleting the GAPs BEM2, BEM3 and

RGA2. However, we failed to generate a knockout of the fourth GAP, RGA1. In contrast to

bem2∆ cells, which displayed a round morphology and wide caps (Fig. 2.10 A), bem3∆

and rga2∆ cells exhibited an oval cell shape and smaller caps (Fig. 2.10 A). Polarization

efficiency was over 80 % in all GAP mutants (Fig. 2.10 B, C). Interestingly, only few bem2∆

cells (15 %) were able to polarize in the absence of actin (Fig. 2.10 C), indicating a critical

role for GTP hydrolysis in GDI dependent recycling of Cdc42. While protein dynamics of

Cdc42 in bem3∆ and rga2∆ were similar to control cells, 2.8 s and 3.3 s, respectively

(Fig. 2.10 E; Tab. A.1), recovery half-times of Cdc42 in bem2∆ were significantly reduced
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to 6.8 s (Fig. 2.10 E; Tab. A.1). The same recovery half-time of 6.8 s was found in a slow

hydrolyzing Cdc42G60A mutant (with the untagged wild-type Cdc42 present) (FIg. 2.10 E;

Tab. A.1).

2.3.3 Increase of GDP exchange activity speeds up protein
dynamics

We have shown in the previous paragraph that GTP hydrolysis contributes to efficient

Cdc42 recycling (see 2.3.2). This result infers that the inactivation as well as the activation

part of the GTPase cycle plays a critical role in Cdc42 recycling. Hence, we decided to

investigate the effect of GDP exchange activity on GDI-mediated membrane extraction

of Rho GTPases.Therefore, we performed liposome binding assays with the small GTPase

Rac1 and its GDI (Fig. 2.11 A).
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Figure 2.11: GEF influences GTPaseGDI complex. (A) Schematic depiction of the liposome binding
assay. (B) Amounts of radioactively labelled Rac1 were measured in pellet (P) and soluble (S)
fractions after addition of GDI with or without the GEF domain of Dock180 (DHR2C).
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The GDI was not able to efficiently extract Rac1 after its association with liposomes in the

presence of the GEF domain (DHR2C) and nonhydrolyzable GTP analog (Fig. 2.11 B). In-

versely, nucleotide exchange by the GEF was reduced in the presence of GDI (Fig. 2.12 A,

B), consistent with the proposed competition between GEF and GDI for binding at the

switch II region of Rho GTPases (Schoebel et al. 2009; Ugolev et al. 2008). Increased

GEF activity is therefore expected to interfere with GDI binding and should consequently

increase Cdc42 concentration on the membrane.

(These experiments were contributed by Jared Johnson, Cornell University.)
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Figure 2.12: GEF influences GTPaseGDI complex (A) Schematic depiction of liposome extraction
assay. (B) Rac1 was preloaded with Mant-GDP in the presence of liposomes, unlabelled GTP and
GDI. Loss of Mant-fluorescence due to exchange was monitored after addition of the DHR2C GEF
domain at 2 min. The exchange curve without added GDI is shown in purple.

To evaluate the role of GEF activity on GDI-mediated Cdc42 recycling in vivo, we ectopi-

cally overexpressed Cdc24 by integrating a second copy fused to either GFP (Fig. 2.13)

or RFP (Fig. 2.14). We confirmed that Cdc24 overexpression did not alter the Cdc24

cap/cytosol intensity ratio in control and bem2∆ cells (Fig. 2.13 A). Also, polarization ef-
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ficiency of Cdc24 was not affected by copy number in the presence and absence of

LatB (Fig. 2.13 B). Further, we tested whether Cdc24 overexpression had any effect on

Cdc24 dynamics in control, LatB-treated and bem2∆ cells. FRAP experiments revealed

that Cdc24 overexpression in the presence or absence of LatB or in bem2∆ cells did not

change recovery half-times of around 2.1 s (Fig. 2.13 C; Tab. A.1).
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Figure 2.13: Cdc24 expression level does not influence Cap/Cell intensity ratio, polarization effi-
ciency or protein dynamics (A) Cdc24 cap in cells expressing endogenously GFP-tagged Cdc24
(1x24) and bem2∆ cells expressing two copies of GFP-Cdc24 plasmids. Scale bars: 4 µm. Bar
graphs depict cap/cell ratio of endogenously tagged GFP-Cdc24 (1x24) and ectopically ex-
pressed GFP-Cdc24 (2x24) in control cells as well as ectopically expressed (2x24) and two copies
of ectopically expressed GFP-Cdc24 (3x24) in bem2∆ cells. (B) Polarization kinetics of endoge-
nously tagged GFP-Cdc24 (1x24) and ectopically expressed GFP-Cdc24 (2x24) and two copies of
ectopically expressed GFP-Cdc24 (3x24) in the presence or absence of LatB. Data for each time
point (mean ± SD) are based on the analysis of three individual experiments with 50 cells each.
(C) Average half-life (t 1/2) of endogenously tagged GFP-Cdc24 (1x24) and ectopically expressed
GFP-Cdc24 (2x24), two copies of ectopically expressed GFP-Cdc24 (3x24), endogenously tagged
GFP-Cdc24 (1x24), ectopically expressed GFP-Cdc24 (2x24) in the presence of LatB and one (1x24)
and two copies (2x24) of ectopically expressed GFP-Cdc24 in bem2∆ cells. (A) und (B) Bar graphs
correspond to the mean ± SEM. N ≥ 10.
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We expressed Cdc24-RFP in strains with slower Cdc42 recycling to test whether Cdc24

overexpression changed polarization behaviour and protein dynamics. Colocalization of

GFP-Cdc42 and Cdc24-RFP showed that Cdc42 and Cdc24 were properly expressed and

colocalized in the polarization cap (Fig. 2.14 A). Polarization kinetics of Cdc42 (Fig. 2.14 B)

as well as protein dynamics were not altered by Cdc24 overexpression in the presence or

absence of actin (Fig. 2.14 C; Tab. A.1).
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Figure 2.14: Polarization kinetics and protein dynamics of control cells overexpressing Cdc24 (A)
Control cell expressing GFP-Cdc42 and Cdc24-RFP. Depicted are single channels and overlay. Scale
bar: 4 µm. Schematic depiction of Cdc24 overexpression. (B) Polarization kinetics of control cells
and cells overexpressing Cdc24 (24OE) in the presence and absence of LatB. Data for each time
point (mean ± SD) are based on the analysis of three individual experiments with 50 cells each. (C)
Average half-life (t 1/2) of control cells and cells overexpressing Cdc24 (24OE) in the presence and
absence of LatB. Bar graphs correspond to the mean ± SEM. N ≥ 10.

Next, we tested wether Cdc24 overexpression altered protein kinetics or behaviour in

cells with decreased Cdc42 hydrolysis. Although Cdc24 overexpression in bem2∆ did not

lead to changes in polarization kinetics with or without actin (Fig. 2.15 B), Cdc42 protein

dynamics were significantly decreased (Fig. 2.15 C; Tab. A.1).
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Figure 2.15: Polarization kinetics and protein dynamics of bem2∆ cells overexpressing Cdc24.
(A) bem2∆ cell expressing GFP-Cdc42 and Cdc24-RFP. Depicted are single channels and over-
lay. Scale bar: 4 µm. Schematic depiction of Cdc24 overexpression in bem2∆ cells. (B) Polarization
kinetics of bem2∆ cells and bem2∆ cells overexpressing Cdc24 (24OE) in the presence and ab-
sence of LatB. Data for each time point (mean ± SD) are based on the analysis of three individual
experiments with 50 cells each. (C) Average half-life (t 1/2) of control cells and cells overexpressing
Cdc24 (24OE) in the presence and absence of LatB. Bar graphs correspond to the mean ± SEM. N
≥ 10.

This effect was independent of actin (Fig. 2.15 C; Tab. A.1) and was also seen in the slow

hydrolyzing Cdc42G60A mutant (Fig. 2.16 C; Tab. A.1). Importantly, increase of Cdc42

dynamics after Cdc24 overexpression required Rdi1 binding, since faster FRAP dynamics

were not measured in Cdc42R66E cells (Fig. 2.16 D; Tab. A.1).

We generated a Cdc42 mutant (Cdc42F28L), which displayed high global intrinsic GDP

exchange activity (Reinstein et al. 1991; Lin et al. 1997) to explain the increase of pro-

tein dynamics in slow-hydrolyzing mutants upon increased GDP exchange activity. We

expressed Cdc42F28L in control (Fig. 2.17 A) and bem2∆ (Fig. 2.17 B) cells. Cdc42F28L

caps were smaller compared to Cdc42 caps, consistent with an increased recruitment to

membranes outside the polarization site. Polarization kinetics and efficiency of Cdc42F28L
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in control cells were comparable to Cdc42 cells but polarization of the Cdc42F28L mu-

tant strongly depended on actin (Fig. 2.17 C). Polarization of Cdc42F28L in bem2∆ cells

was 10 min delayed and less efficient compared to Cdc42 polarization in bem2∆ cells

(Fig. 2.17 C). Polarization of Cdc42F28L in bem2∆ was also highly actin dependent (Fig. 2.17 D).

Since Cdc42F28L displayed high intrinsic GDP exchange activity, it was expected to have

the same effect on protein dynamics as Cdc24 overexpression. While protein dynamics

of Cdc42F28L were in the same range as in control cells (Fig. 2.17 E; Tab. A.1), Cdc42F28L in
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bem2∆ exhibited significantly increased protein dynamics (Fig. 2.17 E; Tab. A.1).
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Figure 2.17: Polarization kinetics and protein dynamics of Cdc42F28L in control and bem2∆ cells
(A) Schematic depiction and localization of GFP-Cdc42F28L in control cells. Scale bar: 4 µm. (B)
Schematic depiction and localization of GFP-Cdc42F28L in bem2∆ cells. Scale bar: 4 µm. (C)
Polarization kinetics of Cdc42 and Cdc42F28L in control cells in the presence and absence of LatB.
(D) Polarization kinetics of Cdc42 and Cdc42F28L in bem2∆ cells in the presence and absence of
LatB. (E) Average half-life (t 1/2) of Cdc42 and Cdc42F28L in control cells and Cdc42 and Cdc42F28L

in bem2∆ cells. Bar graphs correspond to the mean ± SEM. N ≥ 10. (C) and (D) Data for each time
point (mean ± SD) are based on the analysis of three individual experiments with 50 cells each.
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2.4 Uniqueness of budding relies on fast cycling and low ac-
tivity of Cdc42

It is crucial that polarity establishment in S.cerevisiae is initiated only once per cell cycle.

Interestingly, we observed a small percentage (2.3 %) of rdi1∆ cells, which initiated polar-

ization at two different cortical sites (Fig. 2.19 A). In bem2∆ cells an even higher number

of cells displaying two polarization sites was observed (8.7 %, Fig. 2.18 A).

bem2Δ

rdi1ΔA

B

Figure 2.18: rdi1∆ cells and bem2∆ cells display Cdc42 at two polarization sites. (A) rdi1∆ cells
with two caps (arrows) and two buds. Scale bar: 4 µm. (B) bem2∆ cells with two caps (arrows) and
two buds. Scale bar: 4 µm.

We found a strong effect of increased GDP exchange activity on protein dynamics (see

2.3.3) and asked whether this activity increase also influences budding frequency. To that

end, we performed washout experiments utilizing the naturally occurring activation of

Cdc42 after G1/S transition, which is mediated by activation of its GEF (Arkowitz 1999)

and inactivation of its GAPs (Knaus et al. 2007). Cells were released from G1/S arrest in

the presence of LatB to prevent immediate polarization. The drug was washed out after

20 min or 40 min, resulting in varying increased GDP exchange activities (Fig. 2.19 A).

While only 2.3 % ∆ rdi1 cells with normal GDP exchange activity grew double buds (Fig. 2.19

B, C), this number was significantly raised to 13 % and 23 %, when GDP exchange activ-
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Figure 2.19: Washout experiment with rdi1∆ cells. (A) Workflow of the washout experiment. (B)
Percentage of cells with two buds without (-), after 20 min (a) or after 40 min (b) of LatB treatment
and subsequent washout. Bar graphs correspond to the mean ± SD. Data is based on the analysis
of three individual experiments with N ≥ 100 cells each.

ity was increased after 20 min or 40 min LatB treatment and subsequent washout, re-

spectively (Fig. 2.20 C). Next, we investigated the effect of increased GDP exchange

activity on budding frequency in bem2∆ cells. We increased GDP exchange activity by

either performing washout experiments (Fig. 2.19 A), overexpressing Cdc24 by integrating

a Cdc24-RFP plasmid (Fig. 2.20 A) or combining both approaches. In GFP-Cdc42 bem2∆

cells, washout experiments increased the percentage of cells with two buds from 9 % to

13 % and 25 % (Fig. 2.20 C). Overexpression of Cdc24 in bem2∆ cells raised the num-

ber of double buds from 9 % to 12 % (Fig. 2.20 C). This number was further increased to

17 % and 25 % of cells displaying double buds after 20 min and 40 min LatB treatment,

respectively (Fig. 2.20 C). Additionally, we performed washout experiments with bem2∆

cells expressing the fast exchanging Cdc42F28L mutant (Fig. 2.20 B), which displayed 25 %

cells with double buds (Fig. 2.20 C). Strikingly, washout after 20 min or 40 min of LatB

treatment raised the number even further to 55 % and 63 % (Fig. 2.20 C). Importantly,
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Figure 2.20: Increased GDP/GTP activity in bem2∆ cells. (A) Example for two polarization sites
(arrows) in bem2∆ cells overexpressing Cdc24. Depicted are single channels and overlay. Scale
bar: 4 µm. (B) Example for formation of two buds (arrows) in bem2∆ cells expressing Cdc42F28L.
Scale bar: 4 µm. (C) control and bem2∆ cells expressing GFP-Cdc42. GFP-Cdc42 and Cdc24-
RFP or Cdc42F28L were treated without (-) and with LatB for 20 min (a) or or 40 min (b). Bar graphs
correspond to the mean ±SD of the percentage of cells with two buds. Data is based on the
analysis of three individual experiments with N ≥ 100 cells each.

washout experiments on control cells expressing GFP-Cdc42, overexpressing Cdc24-RFP

or expressing Cdc42F28L did not have a significant effect on budding frequency (Fig. 2.20).

This indicates that the activation and inactivation part of the GTPase cycle have to be

tightly regulated in order to ensure a single polarization site. Next, we tested whether the

increased number of cells with double buds was indeed a result of Cdc24 overexpression

and increased GDP exchange activity rather than an artifact of Cdc24-RFP expression.

GDP exchange activity in bem2∆ cells was augmented by either expressing one Cdc24-

GFP or two copies of Cdc24-GFP (2xCdc24-GFP) and subsequent washout experiments

were performed. The number of cells displaying two buds was increased from 10 % to

18 % in bem2∆ cells expressing two copies of Cdc24-GFP (2xCdc24-GFP; Fig. 2.21 A).
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Figure 2.21: Influence of Cdc24 and Cdc42 expression levels on double bud formation (A) Forma-
tion of two caps and buds in bem2∆ cells ectopically expressing two copies of GFP-Cdc24 (3x24).
Depicted are single snapshots (every second frame) of a time-lapse movie with 1 min frame rate.
Maximum projection of 3 frames with 0.4 µm increment. Scale bar: 4 µm. Control and bem2∆
cells ectopically expressing one copy of Cdc24-GFP or two copies of Cdc24-GFP (2xCdc24-GFP)
were treated without (-) and with LatB for 20 min (a) or or 40 min (b). (B) Control and bem2∆ cells
without GFP- tagged Cdc42, expressing one ectopically integrated GFP-Cdc42 or two ectopically
integrated GFP-Cdc42 (2xGFP-Cdc42) were treated without (-) and with LatB for 20 min (a) or or
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or 40 min (b). (A)-(C) Bar graphs correspond to the mean ±SD of the percentage of cells with two
buds. Data is based on the analysis of three individual experiments with N ≥ 100 cells each.
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Overexpression of Cdc24 in addition to washout experiments raised the number of cells

with two buds (Fig. 2.21 A).

In contrast, expression levels of Cdc42 in bem2∆ did not have an effect on budding fre-

quency, since the percentage of double budded cells did not change with the number

of expressed GFP-Cdc42 copies (Fig. 2.21 B). To verify that the effect of GDP exchange

activity was specific to extraction and hydrolysis mutants, we performed washout exper-

iments on bem1∆ cells and found no change in the number of cells growing two buds

(Fig. 2.21 C).

2.5 Role of actin dynamics in cell polarization

Actin cable nucleation in S. cerevisiae depends on the formins Bnr1 and Bni1. Cable

formation towards the polarization site is essential for directed transport and bud growth.

Cable nucleation is mainly mediated by Bni1 in unbudded cells, whereas in large budded

cells both formins regulate actin cable formation (Yu et al. 2011). To investigate the role

of Bni1 during cell polarity establishment, we performed polarization assays with Cdc42

in ∆bni1 cells (Fig. 2.22 A). Since we were specifically interested in actin-dependent recy-
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Figure 2.22: Role of Bni1 and Rdi1 in cell polarization. (A) Polarization kinetics of Cdc42 in control
cells, rdi1∆, ∆bni1 and ∆bni1 rdi1∆ mutants. Data for each time point (mean ± SD) are based on
the analysis of three individual experiments with 50 cells each. (B) Example for split-cap (top) and
split-bud formation (bottom) in ∆bni1 rdi1∆ cells. Scale bar: 4 µm.

cling, we additionally deleted RDI1 and monitored polarization kinetics (Fig. 2.22 A). While
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Cdc42 in bni1∆ cells polarized with almost the same kinetics and efficiency as in control

and rdi1∆ cells, polarization in the bni1∆ rdi1∆ double mutant was slower (Fig. 2.22 A).

Moreover, 5 % of bni1∆rdi1∆ cells exhibited a split-bud phenotype (Fig. 2.22 B, bottom),

indicating that fast actin cable dynamics mediated by the formin Bni1 are required to

focus Cdc42 into a single polarization site. (These results were published in Yu et al. 2011)

2.6 A stochastic model for Cdc42 recycling

The stochastic model was developed and contributed by Ben Klünder, Department of

Physics, LMU. Munich.

The combination of multiple feedback loops and recycling mechanisms render it difficult

to predict effects of specific changes in our system of Cdc42 polarization. We generated

a stochastic particle-based model explicitly describing the dynamics of Cdc42 polariza-

tion in yeast cells to verify whether the experimentally determined interactions were able

to create a robust and unique symmetry axis. We assumed instant equilibration of Cdc42
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Figure 2.23: Schematic depiction of model reactions. Schematic depiction of the model reactions
describing the GDI-mediated recycling pathway, the Cdc42 GTPase cycle (left) and the actin-
mediated recycling pathway (right).

in the cytosol and lateral diffusion in the plasma membrane with a diffusion constant D

= 0.036 µm2/s (Marco et al. 2007). Nucleotide-exchange could occur spontaneously or

catalyzed by Cdc24 and was subject to a thresholded positive feedback loop involv-

ing Bem1 (Irazoqui et al. 2003; Wedlich-Soldner et al. 2004). GTP hydrolysis depended

on GAP activity and we implemented selective Cdc42-GDP extraction from the plasma

membrane by Rdi1. Membrane recruitment from the cytosolic Rdi1/Cdc42-GDP pool was
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implemented as a second positive feedback loop to represent competition between

GEF and GDI. Finally, a coarse grained description of actin-dependent endocytosis and

directed exocytosis was used based on our previous approach (Wedlich-Soldner et al.

2003), where sites of focused exocytosis were randomly generated with a rate depending

on the concentration of Cdc42-GTP. Endocytosis was modelled with a constant extrac-

tion rate. All model parameters were taken from the literature, our own measurements,

or fitted to reproduce characteristic experimental observations of cap shape, polariza-

tion efficiency and FRAP rates (Fig. 2.23). We initially adjusted the model to reproduce

characteristics of the individual recycling pathways (LatB-treated or rdi1∆ cells).
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Figure 2.24: Simulation of the Rdi1 pathway. (A) Simulated (top) and experimental (bottom) cap
profiles (linescan along dotted lines) of LatB-treated cells. (B) Representative simulated FRAP re-
covery curve of LatB-treated cells. (C) Comparison of half-life (t 1/2) of experiment (light grey) and
simulation (dark grey) of LatB-treated cells. Experimental bar graph corresponds to the mean ±
SEM. N ≥ 10.

Our mathematical model was able to separately produce Rdi1-dependent (Fig. 2.24) or

actin-dependent (Fig. 2.25) polarization of Cdc42. The model could generate polarized

caps with realistic shape (Fig. 2.24 A, B; Fig. 2.25 A, B) and FRAP dynamics (Fig. 2.24 C, D;

Fig. 2.25 C, D).

The model accurately generated control cells with cap shape (Fig. 2.26 A, B) and pro-

tein dynamics (Fig. 2.26 C, D) comparable to experimental data when both pathways
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Figure 2.25: Simulation of the actin pathway. (A) Simulated (top) and experimental (bottom) cap
profiles (linescan along dotted lines) of rdi1∆ cells. (B) Representative simulated FRAP recovery
curve of rdi1∆ cells. (C) Comparison of half-life (t 1/2) of experiment (light grey) and simulation
(dark grey) of rdi1∆ cells. Experimental bar graph corresponds to the mean ± SEM. N ≥ 10.

Simulation

0

1

2

3

t1
/2

 (s
)

Experiment

C
dc

42
 p

er
 la

tti
ce

 s
ite

membrane position [μm]
0 5 10 15 20

0

10

20

25

30

40

membrane position [μm]
2 9 17 26

Simulation

Experiment

A B
Simulation

vi
si

bl
e 

C
dc

42
 in

 F
R

A
P 

re
gi

on

time [s]
395 400 410 420415405 425
0

100

200
300

400

500

C

C
dc

42
 in

te
ns

ity

Figure 2.26: Simulation of control cells. (A) Simulated (top) and experimental (bottom) cap profiles
(linescan along dotted lines) of control cells. (B) Representative simulated FRAP recovery curve of
control cells. (C) Comparison of half-life (t 1/2) of experiment (light grey) and simulation (dark grey)
of control cells. Experimental bar graph corresponds to the mean ± SEM. N ≥ 10.
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were combined . The model predicted a reduction in polarization efficiency (Fig. 2.27 A)

and FRAP dynamics (Fig. 2.27 B) upon decreased GTP hydrolysis rates as GDI-mediated

extraction was restricted to Cdc42-GDP. These predictions were consistent with out ex-

perimental results, which showed slower protein dynamics in hydrolysis mutants (Fig. 2.10).

Temporal and cell-to-cell variations in the hydrolysis rate could also explain the reduced

polarization efficiency (Fig. 2.6 B) and unstable caps (Wedlich-Soldner et al. 2004) ob-

served in LatB-treated cells.
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Figure 2.27: Model predictions on polarization efficiency and FRAP recovery half-life. (A) Plot of
predicted polarization efficiency in the presence of LatB in dependence of the GTP hydrolysis rate.
The arrow represents the estimated hydrolysis rate for control cells. (B) Plot of predicted Cdc42
FRAP half-life in dependence of the GTP hydrolysis rate. Error bars correspond to one SD. The arrow
represents the estimated hydrolysis rate for control cells.

The GDI recycling pathway alone never generated more than one stable polarization

site, consistent with our observations of LatB-treated cells. However, yeast cells are cer-

tainly capable of simultaneously polarizing in two or more sites. For example after dele-

tion of BEM2 (Knaus et al. 2007), deletion or overexpression of BEM1 (Kozubowski et al.

2008; Howell et al. 2009) or overexpression of constitutively active Cdc42Q61L (Wedlich-

Soldner 2003). Formation of multiple polarization sites in the above mentioned examples

depended on actin and increased Cdc42 activity. We found that 2.3 % of rdi1∆ cells

formed two polarization sites and later two buds (Fig. 2.19 B, C). We used these results to

fit free parameters in the actin-mediated recycling part of our model, creating multiple

polarization sites (Fig. 2.28 A).

With these parameters the model generated two predictions. First, increased Cdc42

activation should increase the percentage of rdi1∆ cells forming multiple polarization

sites (2.28 B, black curve). Second, even cells with functional GDI should form multiple

51



RESULTS

A

0 5 10 15 20 25
0

10

20

30

40

C
dc

42
 p

er
 la

tti
ce

 s
ite

membrane position [μm]

C

hydrolysis rate a [1/s]

%
 p

ol
ar

iz
at

io
n

0

20

40

60

80

100

1 2 3 4 5 6

100

80

60

40

20

0
1 2 3 4 5 6

B

hydrolysis rate a [1/s]

%
 p

ol
ar

iz
at

io
n

Figure 2.28: Model predictions on double buds. (A) Formation of two caps in the simulation of a
rdi1∆ cell. (B) Effects of varying rates of GTP hydrolysis on total polarization (black) and formation of
two (red) polarization sites in simulations of rdi1∆ cells. (C) Effects of varying rates of GTP hydrolysis
on total polarization (black) and formation of two (red) polarization sites in simulations of control
cells. Arrows: hydrolysis rate predicted for control cells.

caps if GTP hydrolysis was sufficiently reduced (2.28 B, red curve). Our experiments could

confirm these predictions (Fig. 2.19; Fig. 2.20).
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2.7 Timing aspects of cell polarization

Timing of cell polarization is tightly regulated with the cell cycle and requires precise ac-

tivation and inactivation of polarity regulators by cell cycle signals. So far, it is unknown in

which timely order Cdc42 and its regulators cluster at the polarization site and how the

cap is formed on a single-cell level.

2.7.1 Polarity regulators polarize on different time scales

To investigate the order of appearance of polarity regulators, we performed polariza-

tion assays on endogenously GFP-tagged Cdc42, Cdc24, Bem1 and Bem2. We found

that 10-12 % of the cells expressing Cdc24 and Bem1 were polarized during G1/S arrest,

whereas no Bem2 or Cdc42 signal was visible at that time point (Fig. 2.29 A). While the

majority (over 90 %) of Bem1 and Cdc24 cells were polarized after 35 min, cells expressing

Cdc42 or Bem2 polarized with 10 min delay (Fig. 2.29 A). Interestingly, although polariza-

tion kinetics and timing appear to vary among polarity regulators, protein dynamics were

approximately the same (Fig. 2.29 B).
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Figure 2.29: Polarization kinetics and protein dynamics of polarity regulators. (A) Polarization kinet-
ics of endogenously GFP-tagged Cdc24, Cdc42, Bem1 and Bem2. Data for each time point (mean
± SD) are based on the analysis of three individual experiments with 50 cells each. (B) Average half-
life (t 1/2) of endogenously GFP-tagged Cdc24, Cdc42, Bem1 and Bem2. Bar graph corresponds
to the mean ± SEM. N ≥ 10.

53



RESULTS

2.7.2 Cap formation of polarity regulators

The polarization assay is a valuable method to elucidate protein kinetics and compare

polarization behaviour between different strain populations. Yet, no information on cap

and bud formation can be obtained with this method. To gain insights on the process of

cap and bud formation on a single-cell level, we arrested cells as previously described,

but transferred them onto glass bottom dishes one hour prior to release of G1 arrest. Then

we performed time-lapse microscopy on Cdc42 and its regulators Bem1, Cdc24 and

Bem2.
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Figure 2.30: Cdc24 and Bem1 cap formation. (A) Montage of time-lapse acquisition of Cdc24 (ex-
pression of two copies of Cdc24-GFP) cap formation. Kymograph indicates cap condensation over
time. (B) Montage of time-lapse acquisition of Bem1 (expression of ectopically integrated Bem1-
GFP) cap formation. Kymograph indicates cap condensation over time. (A) and (B) Time-lapse
acquisition was started shortly after release from G1/S arrest. Maximum projection of 2 individual
planes with 0.4 µm increment. Framerate: 1 min. Scale bar: 4 µm.

Cdc24 and Bem1 were subjected to time-lapse microscopy right after release from G1.

Interestingly, pre-polarized cells displayed wide caps in a patch-like pattern for 12-15 min

until caps started to condense with an intensifying signal before the bud started to form
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Figure 2.31: Cdc42 and Bem2 cap formation. (A) Montage of time-lapse acquisition of Cdc42
(expression of ectopically expressed GFP-Cdc42) cap formation. Kymograph indicates cap con-
densation over time. Maximum projection of three planes with 0.4 µm increment. (B) Montage
of time-lapse acquisition of Bem2 (expression of endogenously tagged GFP-Bem2) cap formation.
Kymograph indicates cap condensation over time. Maximum projection of four planes with 0.4 µm
increment. (A) and (B) Time-lapse acquisition was started 15 min after release from G1/S arrest.
Framerate: 1 min. Scale bar: 4 µm.

(Fig. 2.30 A, B). Cap formation behaviour was very similar in Cdc24 and Bem1 expressing

cells, following a continuous three step process with cap formation, cap condensation

and bud formation (Fig. 2.30 A, B). Once the caps had formed, they were very bright, with

little cytosolic signal in both strains (Fig. 2.30 A, B). In Cdc24 expressing cells, a decreasing

GFP-Cdc24 signal in the nucleus indicated relocation to the polarization site (Fig. 2.30 A).

Polarization assays revealed delayed Bem2 and Cdc42 polarization compared to Cdc24

and Bem1 (Fig. 2.29). Hence, we started time-lapse acquisition of Bem2 and Cdc42 cells

15 min after release in order to avoid unnecessary photobleaching. Cdc42 caps were

difficult to observe at early time points because of the high cytosolic pool and high sig-
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nal on internal membranes (Fig. 2.31 A). Similar to Cdc24 and Bem1 cells, the cap re-

mained wide for 14-15 min before it started to condense and subsequently formed a

bud (Fig. 2.31 A). Hence, Cdc42 also polarized in three steps comprised of cap forma-

tion, condensation and bud formation. Bem2 localization in the cap appeared much

more diffuse and less intense compared to Cdc24 and Bem1 cells (Fig. 2.31 B). Neverthe-

less, cap establishment followed the three-step process that was also observed in Cdc24,

Bem1 and Cdc42 cells (Fig. 2.30; Fig. 2.31).

2.7.3 Rapid polarization of Cdc24 and Cdc42 depends on
Bem1 and Bem2

Polarization assays of Cdc24 and Cdc42 in bem1∆ and bem2∆ cells revealed that polar-

ization was significantly delayed compared to control cells (Fig. 2.32 A, B). Furthermore,

no pre-polarization of Cdc24 and Bem1 was observed in bem2∆ cells (Fig. 2.32 B).
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Figure 2.32: Polarization kinetics in bem1∆ and bem2∆ cells. (A) Polarization kinetics of Cdc24
and Cdc42 in control and bem1∆ cells. (B) Polarization kinetics of Cdc24, Cdc42 and Bem1 in
bem2∆ cells. (A) and (B) Data for each time point (mean ± SD) are based on the analysis of three
individual experiments with 50 cells each.

We observed wide caps localizing in a patch-like pattern in bem2∆ cells expressing

Cdc24 25 min after G1/S release using time-lapse microscopy. In contrast to control cells,

Cdc24 caps in bem2∆ cells remained wide with shoulders until bud formation (Fig. 2.33).

These results indicate that Bem2 is required for Cdc24 cap condensation.
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Figure 2.33: Cdc24 cap formation in bem2∆ cells. Montage of time-lapse acquisition of Cdc24
(expression of two ectopically integrated copies of Cdc24-GFP) cap formation. Time-lapse acqui-
sition was started 20 min after release from G1/S arrest. Maximum projection of three planes with
0.4 µm increment. Framerate: 1 min. Scale bar: 4 µm

2.7.4 Polarization initiation depends on cell cycle signals

To investigate the nature of GAP activity on polarization kinetics we performed washout

experiments (Fig. 2.19 A), exploiting the naturally occurring cell cycle dependent acti-

vation of Cdc42 at G1/S transition. This requires activation of the GEF (Arkowitz 1999)

and inactivation of the GAPs (Knaus et al. 2007). We expected polarization kinetics to

be higher in washout experiments because during LatB treatment, Cdc24 has already

been released from the nucleus (Arkowitz 1999) and Bem2 is already hyperphosphory-

lated (Knaus et al. 2007). In order to accurately measure polarization kinetics, we used

rdi1∆ cells as they completely failed to polarize when treated with LatB (Fig. 2.6 B). Af-

ter washout of LatB, Cdc42 polarization in rdi1∆ was initiated earlier and was also faster

compared to polarization in a normal polarization assay (Fig. 2.34). These results con-

firmed that Cdc24 and Bem2 regulation, possibly through cell cycle signals, is involved in
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the timing and speed of Cdc42 polarization.
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Figure 2.34: Polarization kinetics in washout experiments. Polarization kinetics of Cdc42 in rdi1∆
cells during washout experiments. Cells were treated for 20 min (LatB a) or 40 min (LatB b) before
washout of the drug. Data for each time point (mean ± SD) are based on the analysis of three
individual experiments with 50 cells each.
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3 Discussion

Major progress has been previously made in identifying and characterizing the key play-

ers and individual pathways involved in cell polarization. The results presented in this study

give new insights in the interplay of different feedback loops involved in Cdc42 recycling

in the context of polarity establishment (Fig. 3.1). We found that actin-dependent trans-

port and GDI-dependent recycling act redundantly to exchange Cdc42 at the sites of

polarized growth. Furthermore, we have shown that the GTPase cycle influences Cdc42

extraction mediated by Rdi1. Uniqueness of polarization is compromised in extraction

and hydrolysis mutants. Moreover, we found that efficient GTPase cycling with tightly

regulated GDP exchange and GAP activity is essential to focus Cdc42 into a single po-

larization site. A stochastic particle-based model was able to recapitulate measured

parameters and predict changes in protein dynamics and polarization efficiency in cells

with reduced hydrolysis.

We compared the polarization behaviour and kinetics of major polarity regulators and

found that they appear at different time points at the polarization site. Single-cell time-

lapse microscopy of those regulators revealed that formation of a polarization site and

the subsequent bud follows a continuous three-step process comprised of cap formation,

cap condensation and bud formation. Interestingly, this process is altered in cells lacking

Bem2. Furthermore, we found the timing and kinetics of polarity establishment strongly

depend on the cell cycle dependent regulation of Cdc24 and Bem2.

3.1 Actin and GDI: Two pathways for Cdc42 recycling

The role of actin in polarity establishment in the absence of spatial cues has been con-

troversially debated. In contrast to actin-independent, Bem1-mediated polarity estab-

lishment in rsr1∆ cells (Irazoqui et al. 2003), symmetry breaking mediated by the consti-

tutively active Cdc42Q61L in G1 arrested cells strongly depends on actin (Wedlich-Soldner

et al. 2003). A more recent publication suggested that only the combination of an actin-

mediated and a Bem1-mediated feedback loop promotes spatial and temporal robust-

ness (Wedlich-Soldner et al. 2004).

We now found an additional redundant pathway for cell polarization by performing a
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Figure 3.1: Model for polarity establishment. Schematic depiction of involved pathways and pro-
teins required for polarity establishment. D and T indicate GDP and GTP-bound form of Cdc42.
Arrows between D and T indicate GTPase cycling, which is facilitated by the GEF Cdc24 and the
GAPs (only Bem2 is depicted). Arrows between Rdi1-bound Cdc42, membrane-bound Cdc42 and
Cdc42 at the plasma membrane represent physical recycling pathways.

synthetic lethal screen. Polarity regulators displayed many genetic interactions with actin-

dependent transport components, supporting the essential role of actin in polarity estab-

lishment. The genetic interaction between the RhoGDI Rdi1 and actin-dependent trans-

port suggested the existence of redundant pathways for the physical recycling of Cdc42.

Analysis of polarization efficiency revealed that Cdc42 polarization became completely

actin dependent in the absence of Rdi1. A major criticism in treating the cells with the

actin-depolymerizing drug LatB was the complete block of actin and possible resulting ar-

tifacts. Hence, we used a temperature-sensitive mutant (myo2-16) of the vesicle-transport

adaptor Myo2 in order to further confirm the proposed redundancy and, at the same

time, avoid the radical block of actin-polymerization. This mutant, in combination with

Rdi1 depleted cells, also resulted in the complete loss of polarization. Although we were

not able to identify a mutant that selectively blocked endocytosis, we observed reduced

polarization efficiency and protein dynamics in a mutant compromised in late endocytic

recycling. Furthermore, GFP-Cdc42 expressed in this mutant accumulated in aberrant

endocytic compartments, indicating that endocytosis is indeed involved in active Cdc42
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recycling. The observed effects were stronger in combination with rdi1∆, further support-

ing the suggested redundancy and reinforcing actin’s important contribution to polarity

establishment.

While many studies have shown that GDI extracts Cdc42 from membranes in vitro and

in vivo (Hoffman et al. 2000; Cole & McLaughlin 2007; Koch et al. 1997; Richman et

al. 2004; Tiedje et al. 2008; Slaughter et al. 2009), no obvious phenotype for a RDI1

deletion mutant has been reported so far. Indeed, polarization kinetics and efficiency

of Cdc42 in rdi1∆ cells resembled those of control cells. This could be explained by the

existence of the proposed redundant pathway for Cdc42 recycling. Our FRAP data re-

vealed slow Cdc42 fluorescence recovery in rdi1∆ cells, whereas Cdc42 in LatB treated

cells recovered within the time range of control cells, suggesting that GDI mediates a

fast pathway for Cdc42 recycling. These findings agree with a study on maintenance of

cell polarity, which showed that GDI-mediated rapid recycling of Cdc42 acts in parallel

to actin-dependent transport in order to maintain polarity and preserve cap morphol-

ogy (Slaughter et al. 2009). GDIs have long been considered as negative regulators due

to their biochemical characteristics such as inhibiting the dissociation of GDP from small

GTPases (Chuang et al. 1993) and extracting them from membranes into the cytosol

(Nomanbhoy & Cerione 1996). The finding that Rdi1 promotes fast protein dynamics of

Cdc42 suggests that GDIs regulate Cdc42 in a positive rather than in a negative manner.

We found that Cdc42 extraction through GDI- and actin-dependent transport represent

two recycling mechanisms for Cdc42, whereby each pathway displays distinct charac-

teristics. While the GDI pathway alone is responsible for fast Cdc42 recycling, it fails to

polarize in 40 % of the cells. The actin pathway alone is much slower regarding Cdc42

protein dynamics, but ensures efficient polarization through vesicle transport along sta-

ble actin cables. Yet, this particular robustness of actin cables sometimes leads to the

formation of two polarization sites (Section 3.3). Only the combination of actin- and

GDI-dependent recycling promotes robust Cdc42 polarization with high fidelity.

3.2 GDI and the GTPase cycle

FRAP experiments on the inactive Cdc42D57Y and the constitutively active Cdc42Q61L mu-

tant revealed slow recovery half-times, indicating that the GTPase cycle influenced the
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high exchange rate of Cdc42 at the site of polarization (Wedlich-Soldner et al. 2004).

We were able to confirm the slow recovery of inactive and constitutively active mutants.

However, we used a different strain background and expressed the mutants under the

endogenous Cdc42 promoter in order to avoid overexpression artifacts. Furthermore, we

used a different constitutively active point mutant of Cdc42G12V since the Cdc42Q61L mu-

tant was lethal to cells under the control of the endogenous promoter.

Interestingly, we found that Cdc42G12V localized in stable patches at the cell cortex. The

stable patches and the slow recovery time of Cdc42G12V might depend on effector in-

teractions, which prevent the protein from being endocytosed (Slaughter et al. 2009).

In line with our results, fluorescence cross correlation spectroscopy (FCCS) data showed

that the GDI interacts with Cdc42 in the cytoplasm but showed weak interaction with

Cdc42D57Y and Cdc42Q61L (Slaughter et al. 2009), indicating that Cdc42 has to cycle in

order to get extracted by the GDI.

Controversial results have been published regarding which nucleotide bound form of

Cdc42 is extracted by the GDI. While the structure of RhoGDIs indicated no preference

for any nucleotide-bound state of the RhoGTPase (Hancock & Hall 1993; Nomanbhoy et

al. 1999), the GDP-bound form displayed a 10-fold higher affinity to the RhoGDI than the

GTP-bound form (Johnson et al. 2009). However, a different group observed preferential

extraction of the constitutively active GTP-bound form of Cdc42 after RDI1 overexpres-

sion (Tiedje et al. 2008). Our in vitro extraction assays from liposomes revealed that the

GDP-bound form of Cdc42 gets extracted 10 times faster than the GTP-bound form. In

addition, we found that Cdc42-GTP in the presence of a GAP domain dissociated with

approximately the same speed as the GDP-bound form, indicating that GTP-hydrolysis is

the rate-limiting step for GDI-mediated Cdc42 extraction.

3.2.1 GDI and the GTP hydrolysis

We found a genetic interaction between RDI1 and BEM2 in our synthetic lethal screen, fur-

ther supporting the in vitro results that GDI-dependent extraction of Cdc42 requires GTP

hydrolysis. Interestingly, of the four Cdc42 GAPs, Bem2 displayed the largest number of

genetic interactions with actin-related transport components. This suggests that this GAP

plays an important role during polarity establishment, whereas the other GAPs might be
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involved in later stages of polarized growth such as maintaining cell morphology or orga-

nization of the septin ring (Perez 2010; Caviston & Longtine 2003). This would also explain

the altered morphology of bem3∆ cells and the reduced number of genetic interactions

between RDI1 and the other GAPs. Moreover, Cdc42 dynamics in rga2∆ and bem3∆

were similar to protein dynamics in control cells, indicating that these GAPs have no influ-

ence on the GDI-dependent recycling. Cdc42 polarization in bem2∆ cells was strongly

actin-dependent, suggesting that GTP hydrolysis is essential for efficient cell polarization

of the GDI-pathway. Moreover, the slow protein dynamics of Cdc42 in bem2∆ and of

the slow hydrolyzing Cdc42G60A mutant represent additional in vivo experiments, further

supporting the idea that GTP hydrolysis is required for GDI-dependent Cdc42 recycling.

3.2.2 GDI and GEF activity

In vitro liposome binding experiments revealed that the Rac1 GEF domain DHR2C in the

presence of non-hydrolysable GTP analogue was able to dissociate the GDI-Rac1 com-

plex, resulting in increased Rac1 binding to liposomes. Correspondently, liposome extrac-

tion assays showed that GEF exchange activity was reduced in the presence of the GDI,

which is consistent with a GEF-GDI competition for binding to the switch II region of Rho

GTPases (Schoebel et al. 2009; Ugolev et al. 2008). These results indicate that GEF activity

interferes with binding of GDI to Rho GTPases thereby increasing GTPase binding to mem-

branes. Similar observations were made in the small GTPase Rab1. A Rab1-specific GEF,

transferred by the bacterial pathogen L. pneumophilia named DrrA, was necessary and

sufficient to displace Rab1 from its GDI (Wu et al. 2010). Interestingly, the bacterial DrrA

displays both GEF and GDF (GDI-displacement factor) activity towards Rab1 and both

activities are required for Rab1 recruitment to membranes (Ingmundson et al. 2007). It re-

mains to be elucidated, whether eukaryotic GEFs of other small GTPases contain specific

domains with similar functions.

Our in vitro experiments showed that GDI-dependent extraction of Cdc42 from mem-

branes depended on GEF activity. When we analyzed the effect of GEF activity in vivo,

we found that an increase of GDP exchange activity in control cells did not significantly

change polarization efficiencies or recovery times of Cdc42. This might be explained by

a possible physical limit of Cdc42 and its regulators at a half-life of 2 s, since Cdc42, Bem1,
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Bem2 and also Cdc24 all showed comparable recovery times of 2 s. Surprisingly, increase

of GEF activity had a significant effect on protein dynamics in hydrolysis mutants. Protein

dynamics were faster compared to bem2∆ cells with normal GDP exchange activity.

This result was surprising as an increased GEF amount was expected to lead to elevated

Cdc42-GTP levels, hence, less extraction of Cdc42-GDP by Rdi1 and slower Cdc42 protein

dynamics in the cap.

Cdc24 overexpression was expected to globally decrease Cdc42-GDP amounts, how-

ever, recruitment of Cdc24 in the cap is a non-linear process depending on a Cdc42-

GTP-, Bem1-mediated feedback loop (Gulli et al. 2000; Butty et al. 2002; Bose et al. 2001).

Intensity comparisons of Cdc24 revealed that the amount of Cdc24 was not altered by

BEM2 deletion or Cdc24 overexpression, suggesting that the amount of Cdc24 recruit-

ment to the cap is limited and could not be further increased through higher exchange

activity. Nevertheless, Cdc24 overexpression is expected to increase Cdc42-GTP in all

other locations except the cap and Cdc42 recruitment to membranes outside the cap

would be increased through competition with the GDI. The resulting free GDI-molecules

would then be available to extract Cdc42 from the cap, leading to faster protein dynam-

ics. This hypothesis was supported by a Cdc42 mutant with high intrinsic GDP exchange

activity (Cdc42F28L), which also displayed faster protein dynamics in hydrolysis mutants.

Our in vitro and in vivo data showed that an active GTPase cycle is required for efficient

GDI-mediated Cdc42 recycling. We conclude that both GEF and GAP activity have to

be tightly regulated in order to allow rapid exchange between membranes and the cy-

tosol.

3.3 Singularity in polarization

We demonstrated that formation of a single polarization site relies on fast GTPase cycling

and GDI-dependent recycling of Cdc42. Formation of two polarization sites was only

observed in actin-containing cells, suggesting that orientation and formation of actin

cables to two different cortical sites promotes the essential stability to form a bud. Re-

cently, Howell et al. suggested that artificially rewired cells, which depend on actin for

symmetry breaking, formed two polarization sites due to slow competition of two polar-

ization clusters (Howell et al. 2009). This was based on theoretical predictions according
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to a "winner-takes it all" principle (Goryachev & Pokhilko 2008). This mathematical model

differed from our theoretical simulations (Section 3.5) and we never observed two initial

foci merging into a single polarization site in our experiments.

We found some rdi1∆ cells displayed two Cdc42 caps that later formed two buds, indi-

cating fast recycling is required to focus Cdc42 into a single polarization site. Moreover,

8.7 % of Cdc42 bem2∆ displayed two buds, suggesting that also efficient hydrolysis is re-

quired for unique polarization. Cdc24 displayed an even higher number (10 %) of cells

with two buds in line with previously published data (Knaus et al. 2007), indicating that

Bem2 is required to restrict Cdc24 activation to bud emergence. Interestingly, neither

bem3∆ nor rga2∆ cells displayed a significant number of cells with double buds. These

results support the hypothesis that those GAPs are not as important for polarity establish-

ment as Bem2, but rather fulfill their functions in later stages of cell polarization.

The role of Cdc42 hydrolysis in budding frequency has been addressed earlier for mu-

tants with an amino acid exchange at the 60 residue analyzed in a cdc42∆ background

(Caviston et al. 2002). These mutants appeared to be slow hydrolyzing and hyperactive,

resulting in a multi budded phenotype. We also analyzed a slow hydrolyzing Cdc42 mu-

tant (G60A). The reason for us not to detect a significant number of cells with two buds

might lie in the recessiveness of the mutant. We integrated Cdc42G60A in addition to the

wild-type copy, which probably takes over to regulate budding frequency. In contrast to

dominant lethal mutants bearing an amino acid exchange at the residue 61, the hyper-

active mutants were still able to undergo (reduced) cycling, explaining their viability.

Furthermore, we have shown that GDP exchange activity strongly influences the fre-

quency of double bud formation in cells compromised in GTP hydrolysis or GDI recycling.

Cells lacking Rdi1 or Bem2 with increased GDP exchange activity displayed higher num-

bers of cells with double buds compared to rdi1∆ and bem2∆ with normal exchange ac-

tivity. These findings suggest that Cdc42 has to cycle efficiently and rapidly at the same

time in order to ensure only one budding event per cell cycle. In line with our results,

mathematical modelling predicted that optimally maintained GEF and GAP concentra-

tions ensure maximized GEF activity and rapid turnover at the same time (Goryachev &

Pokhilko 2006).
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3.4 The role of actin dynamics

A study from our group revealed that Bni1 mediates fast actin dynamics in unpolarized

cells, whereas slower cable polymerization in polarized cells depended on both formins

Bnr1 and Bni1 (Yu et al. 2011). Polarization assays in a rdi1∆ bni1∆ double mutant re-

vealed slower and less efficient polarization of Cdc42, further supporting the proposed

redundancy between actin-dependent and GDI-dependent recycling. Moreover, some

rdi1∆ bni1∆ cells displayed a split-bud phenotype, which might arise from stabilized actin

cables directing Cdc42-containing vesicles to opposite sites of the septin ring, mediated

by the other formin Bnr1 (Pruyne et al. 2004). These results indicate that fast reorganization

of actin cables in unpolarized cells contributes to focus Cdc42 into a single polarization

site.

3.5 Mathematical model

We generated a stochastic particle-based model that was able to realistically recapitu-

late our measured parameters and made a number of accurate predictions. First, protein

dynamics and polarization dynamics in the presence of LatB were decreased when GTP

hydrolysis was reduced. Second, changes in the number of polarization sites upon in-

creased Cdc42 activation and decreased extraction or hydrolysis lead to an increased

percentage of cells growing two buds. While other models focus on polarity maintenance

and cap morphology (Marco et al. 2007; Slaughter et al. 2009), our model recapitulates

and predicts events and changes in Cdc42 recycling during polarity establishment. A

conceptual model based on a single feedback for Cdc42 recruitment with Cdc42 po-

larity establishment being the result of stochastic fluctuations, predicted that polariza-

tion efficiency depended on Cdc42 expression levels (Altschuler et al. 2008). However,

we could not confirm their observations when we repeated the same experiment. A

Turing-type model for polarity establishment was able to generate stable GDI-mediated

Cdc42 polarization through highly cooperative recruitment of the GEF to Cdc42-GTP on

the membrane (Goryachev & Pokhilko 2008). This would predict that the protein dynam-

ics of Cdc24 would depend on Cdc42 activity, a prediction we could not confirm. In

summary, our model accurately reflected experimentally made observations regarding
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the robust cell polarization mediated by the actin pathway in combination with the high

fidelity governed by the GDI-pathway.

3.6 The role of lipids in polarity establishment- a side note

While our study focused mainly on recycling mechanisms for Cdc42 that contribute to

establishment of cell polarization, we have not considered the role of lipids. Phosphoinos-

itols such as PtdIns(4,5)P2 and PtdIns(1,4,5)P3 have been shown to regulate small GTPases

and cell polarity and Phosphatidylethanolamine (PE) and Phosphatidylserine (PS) have

been recently implied to play a role in polarity establishment.
Cdc42

?

?

Rdi1
Cdc42

Cdc42

Endocytosis

Golgi

Vesicles

Actin

Plasma
membrane

Phosphatidylserine

Bem1
Cdc24

Cdc42

Other lipid

Figure 3.2: Lipids in polarity establishment. Schematic depiction of the role of lipids in polarity
establishment. Lipid bilayer with Phosphatidylserine (PS) and other lipids is indicated around the
polarization site. PS is concentrated at the inner leaflet of the membranes. Vesicles are represented
as black circles. Cdc42 and PS have are transported along actin cables (orange arrow) towards
the polarization site. Membrane extraction by its GDI Rdi1 is indicated. The role of PS endocytosis
and recycling on its polar localization remain unclear. The extent to which electrostatic interactions
between PS and Cdc42, Cdc24 or Bem1 contribute to polarized localization of Cdc42 and PS
remains to be determined. This figure is taken from Freisinger and Wedlich-Söldner 2011.

While PE is mainly concentrated in the outer leaflet (Yeung et al, 2008), PS appears to

be enriched in the inner leaflet of the plasma membrane (Saito et al. 2007). This asym-

metric distribution of lipids depends on the activity of flippases. The flippase complex
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Lem3 Dnf1/2 has been suggested to regulate GAP activity by flipping PE from the outer

leaflet to the inner leaflet of the PM (Iwamoto et al. 2004; Saito et al. 2007). PE remains

on the outer leaflet and Cdc42 remains polarized at the bud tip In the absence of flip-

pase activity, resulting in hyper-polarized growth due to missing GAP activity (Saito et al.

2007). More recently, PS has been implicated in regulating polarity establishment. PS

is localized at the incipient bud site similar to the localization of polarity markers (Fairn

et al. 2011). Moreover, in the absence of the PS synthase Cho1 the number of bud-

ded cells was significantly decreased and Cdc42 and Bem1 were only localized properly

in a small percentage of cells (Fairn et al. 2011). PS might play an important role in

concentrating Cdc42 directly at the membrane by changing the Cdc42 diffusion rate,

mediated by a direct lipid-protein interaction. This interaction could be facilitated by the

positively charged geranylgeranyl moiety of Cdc42 and the anionic PS. Active recycling

of PS through endocytosis, secretion and possibly GDI, similar to Cdc42, could also con-

tribute to PS polarization (Fig. 3.2) Yet, it is also possible that the PS-mediated localization

of Cdc42 is a secondary effect of PS binding to other polarity regulators that contain a

PH or PX domain such as Cdc24, Bem1 or Boi1/Boi2. The link between lipids, such as PS

and PE to the polarization machinery orchestrated by Cdc42 might be an exciting task

for future research (Freisinger & Wedlich-Soldner 2011).

3.7 Timing of cell polarization

Polarization assays and time-lapse microscopy revealed that polarity regulators arrive at

the polarization site at different time points. While the scaffold-protein Bem1 and the GEF

Cdc24 are pre-polarized, the GAP Bem2 and Cdc42 arrive approximately 15 min later at

the polarization site, suggesting that Bem2 and Cdc42 are recruited by Bem1 and Cdc24.

It has been previously shown that Cdc24 is relocated from the nucleus to the polarization

site, where it binds to Bem1 and Cdc42-GTP (Shimada et al. 2000; Butty 2002). It would

make sense for Cdc24 and Bem1 to be at the polarization site prior to Cdc42 in order to

provide a platform for the other polarity regulators. The cap remains very broad during

those early phases of Bem1 and Cdc24 polarization, displaying a patchy distribution. The

increase of cap intensity might correlate with Cdc42 arrival at the polarization site, which

leads to stabilization of the polarization site through the proposed feedback loop (Gulli et
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al. 2000; Bose et al. 2001; Butty et al. 2002). Bem2 arrives at the polarization site approx-

imately at the same time as Cdc42. In order to more accurately determine the timing

of polarity regulators relative to each other, two-colour time-lapse movies would be re-

quired. Interestingly, polarity regulators protein dynamics are the same even though their

timing is different, suggesting high exchange rates of all polarity regulators are essential

for efficient and dynamic polarity establishment.

Although the polarization assay proved to be a valuable method to determine and com-

pare polarization kinetics and behaviour between different strain populations, it does not

allow us to draw any conclusions on the process of cap/bud formation on a single-cell

level. We performed time-lapse microscopy on the polarity regulators Cdc42, Cdc24,

Bem1 and Bem2 to resolve the process of cap/bud formation and observed a continu-

ous three step process for polarization. All polarity regulators displayed initial broad caps

(step 1) that started condensing (step 2) before bud formation (step 3). We found this

three step process to be altered in cells lacking Bem2. The cap-condensation step is

missing and the broad cap directly formed the bud. These results indicate that Bem2-

mediated hydrolysis is required for the condensation step.

Polarization assays of Cdc42 in rdi1∆ cells after washout revealed earlier and faster polar-

ization, indicating that not only Cdc42 activity but also polarization speed is increased.

This effect probably results from overruled cell cycle dependent Cdc24 activation and

GAP inactivation at the G1/S transition in washout experiments. Tight regulation of polar-

ity regulators such as Cdc24 and Bem2 through cell cycle signals appears to be eminent

for the timing of cell polarization. It has been suggested that the GAPs are phosphory-

lated by Cdk1 at bud emergence (Sopko et al. 2007; Knaus et al. 2007; Zheng & Cerione

1994). While only Rga2 and Bem3 have been shown to be direct targets of Cdk1 (Sopko

et al. 2007; Knaus et al. 2007), it remains to be investigated whether Bem2 is also directly

phosphoryated by Cdk1.

3.7.1 Timing-Outlook

The link between the cell cycle and polarity establishment remains an interesting target

for future investigations. In vivo and in vitro phosphorylation targets of Cdk1 have been

identified in several studies. For example, Cdc24 is phosphorylated by Cdk1 both in vitro
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and in vivo (McCusker et al. 2007; Gulli et al. 2000; Bose et al. 2001; Wai & Gerber 2009),

however no in vivo effect has been observed so far. Either, the specific phosphorylation

site on Cdc24 has not been identified yet or a different protein represents the link be-

tween the cell cycle and polarity establishment. Bem1 is also phosphorylated by Cdk1 in

vitro and in vivo, but mutations of a conserved consensus site only resulted in defective

vacuole biogenesis rather than defective bud emergence (Han et al. 2005). A promising

candidate might be the PAK kinase Cla4, which forms a complex with Bem1, Cdc24 and

Cdc42-GTP (Gulli et al. 2000; Bose et al. 2001; Butty et al. 2002). Cla4 phosphorylation de-

pends on a Clb2-Cdk1 complex during mitosis (Tjandra & Compton 1998), but it remains

unclear whether Cla4 might also be phosphorylated by Cdk1 during G1 and whether this

phosphorylation would impact polarity establishment. Identification of possible consen-

sus sites, subsequent mutation and phenotypic analysis could help to characterize Cla4

as a possible candidate that links cell polarity establishment to the cell cycle.
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4 Materials and Methods

4.1 Materials

4.1.1 Strains

Bacteria

Echerichia coli strain The E.coli DH10B (Invitrogen) used for molecular cloning, is a deriva-

tive from the original E.coli strain K12: F−endA1 recA1 galE15 galK16 nupG rpsL

∆ lacX74Φ 80lacZ∆ M15 araD139 ∆ (ara,leu)7697mcrA∆ (mrr-hsdRMS-mcrBC)λ−

Yeast

Saccharomyces cerevisiae strains Unless otherwise stated, all yeast strains used in this

work were derived from a W303 strain expressing only one G1 cyclin (Cln2) under

the control of a methionine repressible promoter (RWS 116). All strains used in this

study were haploids.

Table 4.1: Yeast strains

STRAIN GENOTYPE SOURCE

RWS116 MATa cln1∆::HisG cln2∆ cln3∆ ::HisG YipLac204- MET-

CLN2::TRP1 ura3 his3-11,15 ade2-1 can1-100

Gulli et al., 2000

RWS119 pGal-myc-GFP-CDC42::URA3 (RWC21) Wedlich-Soldner

et al. 2004

RWS1421 pCDC42-myc-GFP-CDC42::URA3 (RWC108) this study

RWS794 pCDC24-CDC24-GFP::hphNT1 lab collection

RWS1017 bem3∆::G418pCDC42-myc-GFP-CDC42::URA3 (RWC108) this study

RWS1018 bem1∆::G418 this study

RWS1020 bni1∆::G418 this study

RWS1021 bni1∆::G418 pCDC42-myc-GFP-CDC42::URA3 (RWC108) this study

RWS1023 pCDC42-myc-GFP-CDC42D57Y::URA3 (RWC686) this study

RWS1024 pCDC42-myc-GFP-CDC42R66E::URA3 (RWC689) this study

RWS1026 bem1∆::G418 pCDC42-myc-GFP-CDC42::URA3 (RWC108) this study
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Table 4.1: Yeast strains (continued)

STRAIN GENOTYPE SOURCE

RWS1028 bem2∆::G418 this study

RWS1029 bem1∆::G418pCDC24-CDC24-GFP::LEU2 (RWC153) this study

RWS1030 bem1∆::G41 pCDC24-CDC24-GFP::LEU2 (RWC153) pCDC24-

CDC24-GFP::URA(RWC146)

this study

RWS1031 bem2∆::G418pCDC42-myc-GFP-CDC42::URA3(RWC108)

p42-GFP-Cdc42::LEU2 (RWC151)

this study

RWS1422 pCDC24-CDC24::LEU2(RWC153) lab collection

RWS1034 pCDC42-GFP-CDC42::cloNAT this study

RWS1423 rdi1∆::LEU2pCDC42-myc-GFP-CDC42::URA3 (RWC108) this study

RWS1035 bem2∆::G418pCDC42-myc-GFP-CDC42::URA3 (RWC108) this study

RWS1042 bem3∆::G418pCDC42-myc-GFP-CDC42::URA3 (RWC108) this study

RWS1035 rga2∆::G418pCDC42-myc-GFP-CDC42::URA3 (RWC108) this study

RWS1038 vps27∆::G418pCDC42-myc-GFP-CDC42::URA3 (RWC108) lab collection

RWS1039 rdi1∆::LEU2 vps27∆::G418 pCDC42-myc-GFP-CDC42::URA3

(RWC108)

lab collection

RWS1047 myo2-16 pCDC42-myc-GFP-CDC42::URA3 (RWC108) lab collection

RWS1048 rdi1∆::LEU2pCDC42-myc-GFP-CDC42::URA3 (RWC108) lab collection

RWS1036 pCDC42-myc-GFP-CDC42G60A::URA3(RWC688) this study

RWS1037 pCDC42-myc-GFP-CDC42G12V::URA3(RWC687) this study

RWS1040 pCDC24-CDC24-GFP::LEU2(RWC153)pCDC24-CDC24-

GFP::URA(RWC146)

this study

RWS1029 bem2∆::G418pCDC24-CDC24-GFP::LEU2(RWC153) this study

RWS1041 bem2∆::G418pCDC24-CDC24-GFP::LEU2 (RWC153) pCDC24-

CDC24-GFP::URA (RWC146)

this study

RWS1045 pBem1-Bem1-GFP::URA3(RWC138) lab collection

RWS1046 pBem2-GFP-Bem2::cloNAT this study

RWS786 pBem1-GFP-Bem1::cloNAT this study

RWS1091 bem2∆::G418pBem1-GFP::URA3 (RWC138) this study

RWS1094 bem1∆::G418 pBEM2-GFP-BEM2::LEU2 (RWC706) this study

RWS1096 pCDC24-CDC24-GFP::URA(RWC146)pBEM2-mRFP-Ruby-

BEM2::LEU2 (RWC707)

this study
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Table 4.1: Yeast strains (continued)

STRAIN GENOTYPE SOURCE

RWS1097 pCDC42-myc-GFP-CDC42::URA(RWC108) pBEM2-mRFP-Ruby-

BEM2::LEU2 (RWC707)

this study

RWS1099 pCDC42-myc-GFP-CDC42::URA3 (RWC108) p42-GFP-Cdc42::

LEU2 (RWC151)

this study

RWS1110 pGal-myc-GFP-CDC42G12V::URA3 (RWC127) this study

RWS1135 pCDC42-myc-GFP-CDC42F28L::URA3 (RWC790) this study

RWS1136 bem2∆::G418pCDC42-myc-GFP-CDC42F28L::URA3 (RWC790) this study

RWS1088 pCDC42-myc-GFP-CDC42::URA(RWC108)pCdc24Cdc24mRFP-

Ruby::LEU2 (RWC723)

this study

RWS1424 pCDC42-myc-GFP-CDC42::URA(RWC108)pCdc24Cdc24mRFP-

Ruby::LEU2 (RWC723)

this study

4.1.2 Kits

Agarose Gel Extraction Kit (Jena Bioscience) for DNA-fragment isolation

Agarose Gel Extraction Kit (Promega) for DNA-fragment isolation

ClonJET™ (Fermentas) for PCR product cloning

TOPO TA cloning® (Invitrogen) for PCR product cloning

EZNA™ (Omega Bio-Tek) Plasmid Mini Kit for plasmid minipreparation

QiAGEN® Plasmid Mini Kit (QIAGEN) for plasmid minipreparation
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4.1.3 Enzymes and proteins

Table 4.2: Enzymes

ENZYME SOURCE

Bovine Serum Albumin Sigma

Concanavalin A Roth

Pfu DNA Polymerase Fermentas

Phusion DNA Polymerase Finzymes

Restriction enzymes New England Biolabs

RNAse A Amersham

Taq DNA Polymerase Biolabs

T4 DNA Ligase Biolabs

Vent® (exo-) DNA Poymerase Biolabs

Zymolyase Biomolecule

4.1.4 Nucleic acids

Salmon sperm carrier DNA (Invitrogen) was used for plasmid and PCR product transfor-

mation of yeast.

GenRulers™ 1 kb DNA Ladder and GeneRuler™ DNA ladder mix were used as size stan-

dards for agarose gel-electrophoresis.

Table 4.3: Primer

NAME 5’-3’ SEQUENCE DESCRIPTION

RWS650 AGCAAAACTTATAAAACAAGAAATAAACGTATTAGCTCTTCC

ACAAAATGcgtacgctgcaggtcgac

Cdc42 genomic GFP inte-

gration

RWS651 CACGTTTTCCCAACAGCACCATCACCGACAACAACACACT

TTAGCGTTTGCatcgatgaattctctgtcg

Cdc42 genomic GFP inte-

gration

RWS618 TCCGGATTTGTGGAAGAGCTAATACGTTTATTTC Cdc42 promoter with BspEI

RWS617 GAGCTCCAGGCCGGAACTCAAAAGG Cdc42 promoter with SacI

RWS655 AAGAAATGTTGGCGGAAAACAATGAGAAATTCTTGAACATTC

GTCTGTATcgtacgctgcaggtcgac

Cdc24 genomic GFP inte-

gration

RWS654 GTTTTTTTCTTGAATTATTTAGTATTTGCTGTATACTAGTTTTA

TTTATCAatcgatgaattcgagctcg

Cdc24 genomic GFP inte-

gration
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Table 4.3: Primer (continued)

NAME 5’-3’ SEQUENCE DESCRIPTION

RWS1112 GAGCGCAACGCAATTAATG Cdc42 amplification from

RWC 21

RWS73 CTGCCCTTTCGAAAGATC Cdc42 amplification from

RWC 21

RWS1110 GATATGACAAGGGTCTCAATTCATCGTAATCTTC TTGACCG R66E mutation primer

RWS1109 GAAGATTACGATGAATTGAGACCC TTGTCATATC R66E mutation primer

RWS1112 GAGCGCAACGCAATTAATG Cdc42 amplification from

RWC 21

RWS73 CTGCCCTTTCGAAAGATC Cdc42 amplification from

RWC 21

RWS1540 GGAACATAGTCGGCTGGCAATTGA TTCGTTGTATAG F28L mutation primer

RWS1539 CTATACAACGAATCAATTGCCAGCCGA CTATGTTCC F28L mutation primer

RWS677 TCCGGATTATATGGCTTTCTTGACAA TTTC Bem1 promoter with BspEI

RWS676 GAGCTCCGAGAACGGCATCACATC Bem1 promoter with SacI

RWS670 CTGCCCTTCGACCCATTACTATCTCTT TTTG

AGAGTTTGAAGTTTTTTCAGCatcgatgaattctctgtcg

Bem1 genomic GFP inte-

gration

RWS669 CACGTTGAAAGCACTGTGTGAAAAGAATTGT

CAAGAAAGCCATATAAATGcgtacgctgcaggtcgac

Bem1 genomic GFP inte-

gration

RWS1030 GGATCCTAGACTCCTGCTTCGTT ATTTG Bem2 promoter with BamHI

RWS1029 CTCGAGCACAAGATATCAGACG GCTC Bem2 promoter with XhoI

RWS1038 GCGGCCGCTTATTGCTTGAAATAAT CATTTGG Bem2 with NotI

RWS1037 ACGCGTATGAAAGGTCTTCTCT GGTC Bem2 with MluI

RWS679 TCCGGATAGACTCCTGCTTCGTT ATTTG Bem2 promoter with BspEI

RWS678 GAGCTCCTTCACAGACTCTTCTG GTG Bem2 promoter with SacI

RWS271 CTAGCACTGGCCGTTGAAGATTTCCTGTTCT

TAGACCAGAGAAGACCTTTCatcgatgaattctctgtcg

Bem2 genomic GFP inte-

gration

RWS270 CTTTTCTGGATAGACACAAAAAAAACAAATA

ACGAAGCAGGAGTCTAATGcgtacgctgcaggtcgac

Bem2 genomic GFP inte-

gration

RWS962 GGTACCCAACTTTACATTTG Bem1 deletion primer

RWS961 GTTATTCGACATTCTTCCCG Bem1 deletion primer

RWS104 GAGAAAGTATCTTTGGGCTG Bem1 deletion test primer

RWS134 GTTACAGGTGAACATTCATG Bem1 deletion test primer
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Table 4.3: Primer (continued)

NAME 5’-3’ SEQUENCE DESCRIPTION

RWS989 GAAGTTTGAGATGCTGTTGC Bem1 deletion test primer

RWS988 CAGCAGCAGCAGCAATCC Bem1 deletion test primer

RWS347 AGGCAAGAGATCAGGCGGAAAGA Bem2 deletion primer

RWS346 AGAAGCAAGCTACGTTGCAGCCA Bem2 deletion primer

RWS885 CAGGTTTCATTGGAGGTGC Bem2 deletion test primer

RWS265 GGTGCTCAACAATTCAGTTCT Bem2 deletion test primer

RWS352 GCACCAACATACCGTTTTGC Bem2 deletion test primer

RWS351 TGATGGTAAATCCCGTCCTGC Bem2 deletion test primer

RWS626 CCTTCTTTATCTCAGCTCTTC Bem3 deletion primer

RWS1058 TCAAGATTGTTAAATACATCAAC Bem3 deletion primer

RWS1142 GTAAAGTACCAGATAAGAACC Bem3 deletion test primer

RWS625 GTTGTACTTGAGAAAGTTGC Bem3 deletion test primer

RWS295 TTTTATTATTACAAATATAT Bem3 deletion test primer

RWS297 ACATACATATCCAGTAACAA Rga1 deletion primer

RWS296 AAATTTTTAAGAAACTGAAA Rga1 deletion primer

RWS1204 ACTGGCTAATTCATTGAACG Rga1 deletion test primer

RWS1203 GTAGAGCCTCTTTCATAGAC Rga1 deletion test primer

RWS1202 CAAGTGAATTGTTGACCTCG Rga1 deletion test primer

RWS630 GCCTAAGAGATTAAGTGGG Rga2 deletion primer

RWS629 CTACCATTAAACAACGACAAG Rga2 deletion primer

RWS292 ACCTTTTCACACCCTGAACT Rga2 deletion primer

RWS291 CTTTGCATACTTGGCGTTTG Rga2 deletion test primer

RWS1081 TGCTACAGCTGCAAGTGAC Bni1 deletion primer

RWS1080 CTTCCTACAGATAAGAGGAC Bni1 deletion primer

RWS418 CTGAAGATTTACCATCGCCATC Bni1 deletion test primer

RWS417 GCTGTTGTTGGGATGCATAGGTC Bni1 deletion test primer

RWS416 CCCGACATCGGTTAGAGGAAG Bni1 deletion test primer

RWS98 CACGGAGCCTACCTTTTAG Vps27 deletion test primer

RWS97 GTTCGTGTGGTTAGACAAC Vps27 deletion test primer

RWS207 TGATGCTTTGTAGCTGTTGCTC Vps27 deletion test primer

RWS206 AGAGAAGCTGAAGAAGCGAAGC Vps27 deletion test primer
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Table 4.3: Primer (continued)

NAME 5’-3’ SEQUENCE DESCRIPTION

RWS343 TGAAATGCTTCTGAGCGAAGC Vps27 deletion test primer

RWS342 TCAAATGCCTTGCTGACCACT Vps27 deletion test primer

RWS48 GTATTCTGGGCCTCCATG KanMX test primer

RWS47 GATACTAACGCCGCCATC KanMX test primer

RWS1247 TGAGCTGCGCACGTCAAG KanMX test primer

RWS1246 TGGTCGCTATACTGCTGTC KanMX test primer

CGACTCACTATAGGGAGAGCGGC Sequencing

AAGAACATCGATTTTCCATGGCAG Sequencing

Table 4.4: Plasmids

NAME ORIGIN DESCRIPTION SOURCE

RWC21 pRS306 GFP-CDC42 under the control of Gal promoter in

a pRS306 backbone for integration into the URA3

locus after linearization

Wedlich-Soldner et

al, 2004

RWC108 pRS306 GFP-CDC42 under the control of the endoge-

nous CDC42-promoter in a pRS306 backbone for

integration into the URA3 locus after linearization

Wedlich-Soldner et

al, 2004

RWC127 pRS306 GFP-CDC42G12V under the control of Gal pro-

moter in a pRS306 backbone for integration into

the URA3 locus after linearization

lab collection

RWC138 pRS306 Bem1-GFP under the control of the endogenous

Bem1-promoter in a pRS306 backbone for inte-

gration into the URA3 locus after linearization

M.Peter

RWC146 pRS316 CDC24-GFP under the control of the endoge-

nous CDC24-promoter in a pRS316 backbone

URA3-CEN plasmid

lab collection

RWC148 pRS305 pRS305 backbone for integration into the LEU2 lo-

cus after linearization

lab collection

RWC151 pRS305 GFP-CDC42 under the control of the endoge-

nous CDC42-promoter in a pRS305 backbone for

integration into the LEU2 locus after linearization

lab collection
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Table 4.4: Plasmids (continued)

NAME ORIGIN DESCRIPTION SOURCE

RWC153 pRS305 CDC24-GFP under the control of the endoge-

nous CDC24-promoter in a pRS305 backbone for

integration into the LEU2 locus after linearization

Wedlich-Soldner et

al, 2004

RWC233 pYM-25 plasmid for C-terminal direct tagging, hphNT1, Janke et al, 2004

RWC257 pYM-N4 plasmid for N-terminal direct tagging, cloNAT, Janke et al, 2004

RWC550 pYM-N4 plasmid for N-terminal direct tagging, cloNAT un-

der the control of the endogenous CDC42 pro-

moter

Janke et al, 2004

RWC582 pYM-N4 plasmid for N-terminal direct tagging, cloNAT un-

der the control of the endogenous Bem1 pro-

moter

Janke et al, 2004

RWC583 pYM-N4 plasmid for N-terminal direct tagging, cloNAT un-

der the control of the endogenous Bem2 pro-

moter

Janke et al, 2004

RWC686 pRS306 GFP-CDC42D57Y under the control of the endoge-

nous CDC42-promoter in a pRS306 backbone for

integration into the URA3 locus after linearization

this study

RWC687 pRS306 GFP-CDC42G12V under the control of the en-

dogenous CDC42-promoter in a pRS306 back-

bone for integration into the URA3 locus after lin-

earization

this study

RWC688 pRS306 GFP-CDC42G60A under the control of the en-

dogenous CDC42-promoter in a pRS306 back-

bone for integration into the URA3 locus after lin-

earization

this study

RWC689 pRS306 GFP-CDC42R66E under the control of the endoge-

nous CDC42-promoter in a pRS306 backbone for

integration into the URA3 locus after linearization

this study

RWC706 pRS315 GFP-Bem2 under the control of the endogenous

Bem2-promoter in a pRS315 backbone LEU2 CEN

plasmid

this study

RWC707 pRS315 mRFP-Ruby-Bem2 under the control of the en-

dogenous Bem2-promoter in a pRS315 back-

bone LEU2 CEN plasmid

this study
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Table 4.4: Plasmids (continued)

NAME ORIGIN DESCRIPTION SOURCE

RWC723 pRS305 CDC24-mRFP under the control of the endoge-

nous CDC24-promoter in a pRS305 backbone for

integration into the LEU2 locus after linearization

this study

RWC790 pRS306 GFP-CDC42F28L under the control of the en-

dogenous CDC42-promoter in a pRS306 back-

bone for integration into the URA3 locus after lin-

earization

this study

4.1.5 Chemicals and reagents

Table 4.5: Chemicals

DESCRIPTION SOURCE

Acetic acid Sigma

Agarose Invitrogen

Ampicilin Carl Roth GmbH

L-Alanin VWR

Alexa Fluor 568 Phalloidine Invitrogen

Ammonium chloride Alfa Aesar

Ammonium hydrogen carbonate Alfa Aesar

Ammonium nitrate Carl Roth

Ampicillin sodium salt Carl Roth

L-Arginin VWR

L-Asparagin-Monoydrate VWR

L-Aspartic acid Sigma

Calcium chloride Serva

ClonNAT Werner

Chloroform Carl Roth

Concavalin A Carl Roth

L-Cysteine VWR

Demethyl sufoxide (DMSO) Sigma
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Table 4.5: Chemicals (continued)

DESCRIPTION SOURCE

Deoxynucleotide Solution mix New England Bio-

labs

Difco Bacto Agar Becton Dickinson

Difco Bacto Peptone Becton Dickinson

Difco Bacto Tryptone Becton Dickinson

Difco Yeast Extract Becton Dickinson

dNTP Set, 100 mM Solution Fermentas

DTT Fermentas

EDTA (Titriplex) Merck

EGTA Roth

Genticin Roth

D(+)-Glucose VWR

L-Glutamine PAA

Glycerin 86 % (w/v) p.a. Roth

Hygromycin B Merck

Kanamycin Sulfate Invitrogen

Latrunculin B Merck

Lectin from concanavalin A Sigma

L-Leucin VWR

Lipofectamine 2000 Invitrogen

Lithium acetate dihydrate SIGMA

L-Lysin-Monohydrat VWR

Magnesium chloride-Hexahydrate Roth

Magnesium sulfate-Heptahydrate Roth

2-Mercaptoethanol Sigma

L-Methionine VWR

Sodium azide Sigma

Sodium chloride Merck

Sodium dihydrogenphosphate Roth

Sodium fluoride Sigma

di-Sodium hydrogenphosphate Sigma
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Table 4.5: Chemicals (continued)

DESCRIPTION SOURCE

Nicotinic acid Alfa Aesar

dNTP Set, 100 mM solutions GE Healthcare

N-(3-triethylammoniumpropyl)-4-(4-

(dibutylamino) -

Invitrogen

styryl) pyridinium dibromide

Paraformaldehyd 37 % (w/v) Alfa Aesar

L-Phenylalanine VWR

Pimaricin, streptomyces

chattanoogensis Merck

Polyethyleneglycol (PEG2000) SIGMA

Potassium hydride Alfa Aesar

Rhodamine phalloidine Invitrogen

ROTI-Phenol/Chloroform/Isoamyl Carl Roth

Rubidiumchloride Sigma

Salmon Sperm DNA Invitrogen

SDS Roth

L-Serine VWR

Salmon Sperm DNA Eppendorf AG

Sodium azide Sigma

Sodium bicarbonate solution Sigma

Sodium carbonate Sigma

Sodium hydride Sigma

Sodium sulfate anhydrous Alfa

D(-)-Sorbitol VWR

L-Threonine VWR

Tris, HCl Merck

Triton X-100 Roth

L-Tryptophan VWR

L-Tyrosine VWR

L-Valine VWR
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Table 4.5: Chemicals (continued)

DESCRIPTION SOURCE

Yeast Nitrogen Base Becton Dickinson

4.1.6 Buffers and solutions

Table 4.6: Buffers and Solutions

DESCRIPTION RECIPE

Ampicilin solution 10 mg/ml Ampicilin In double distilled sterile H2O

clonNAT solution 20 % (w/v) clonNAT In double distilled sterile H2O

Concavalin A coating solu-

tion

0.5 mg/ml Concanavalin A 10 mM Potassium Phosphate

buffer pH 6.0 1 mM CaCl2 0.02 % NaN3

6x DNA Loading buffer 50 % (w/v) sucrose 0.25 % (w/v) bromophenol-blue in TE

buffer

DNA precipitation buffer 32M NaOAc pH 4.8

EDTA solution pH 8.0 0.5 M EDTA Na2EDTA x 2H2O pH 8.0

Geneticin solution 200 mg/ml Geneticin In double distilled sterile H2O

Hygromycin B solution 50 mg/ml Hygromycin In sterile PBS

10x Ligase buffer 50 mM MgCl2 660 mM Tris-HCl 10 mM DTT 10 mM ATP pH 7.5

Lysis buffer 2 % (v/v) Triton X-100 1 % (w/v) SDS 100 mM NaCl 10 mM

Tris-HCl 1 mM EDTA

MOPS 20 mM MOPS 8 mM NaOAc 1 mM EDTA pH 6.8

Sodium phosphate buffer 1 M NaH2PO4 1 M NaH2PO4 pH 7.0

10x PBS buffer 92 mM NaH2PO4 147 mM K2PO4 27 mM KCl 1.39 M NaCl

pH 7.2

10x Pfu buffer 200 mM Tris-HCl 100 mM KCl 100 mM (NH4)2SO4 20 mM

MgSO4 1 % Triton X-100 1 mg/ml BSA pH 8.8

PEG mix 100 mM LiOAc 10 mM Tris-HCl pH 8 1 mM EDTA 40 % (v/v)

PEG 3350

Phenol chloroform 50 % Phenol 50 % Chloroform

Potassium phosphate buffer

(10x)

1 M KH2PO4 1 M K2PO4 pH 7.0
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Table 4.6: Buffers and Solutions (continued)

DESCRIPTION RECIPE

RF1 100 mM RbCl 50 mM MnCl2 30 mM KOAc 10 mM CaCl2
15 % (w/v) Glycerol pH 5.8

RF2 10 mM MOPS 10 mM RbCl 75 mM CaCl2

Rhodamine-Phalloidine

staining solution 6.6 µM Rhodamine Phalloidine In Methanol

SORB 100 mM LiOAc 10 mM Tris-HCl 1 mM EDTA 1 M Sorbitol

50x TAE buffer 2 M Tris-Base 2 M Acetic Acid 50 mM EDTA pH 8.0

10x TBE buffer 440 mM Tris Base 440 mM Boric Acid 10 mM EDTA pH 8.0

10x TBS buffer 50 mM Tris-HCl 150 mM NaCl pH 7.5

10x TE buffer 10 mM Tris Base 1 mM EDTA pH 8.0

10x Thermopol buffer 500 mM KCl 15 mM MgCl2 100 mM Tris-HCl pH 8.3

1 M Tris buffer 619 mM Tris-HCl 38 mM Tris Base pH 8.0

VALAP 33 % Valine (w/w) 33 % Lanoline (w/w) 33 % Parafin (w/w)

4.1.7 Media

Table 4.7: Media

DESCRIPTION RECIPE

YPD-Medium (liquid) 2 % (w/v) Bacto peptone 1 % (w/v) Bacto yeast extract 2 %
(w/v) D(+)- Glucose

SD-Medium (liquid) 0.67 % (w/v) Bacto-yeast nitrogen base without amino acid
0.2 % (w/v) drop-out powder

Sporulation medium 0.1 % (w/v) Bacto yeast extract 1 % (w/v) KCl 0.05 % (w/v)
D(+)- Glucose

YPD plates 2 % (w/v) Bacto peptone 1 % (w/v) Bacto yeast extract 2 %
(w/v) D(+)- Glucose 0.8 % (w/v) Bacto agar

YPD plates + Geneticin YPD plates 300 µg/ml Geneticin

YPD plates + Hygromycin B YPD plates 300 µg/ml Hygromycin B

YPD plates + clonNAT YPD plates 100 µg/ml clonNAT

SD-plate 0.67 % (w/v) Bacto-yeast nitrogen base without amino acid
0.2 % (w/v) drop-out powder 0.8 % (w/v) Bacto agar

Different combinations of drop-out powder were added to the synthetic drop-out (SD)
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mix. To obtain the required amino acid concentration in the synthetic complete (SC)

medium, the following amounts of amino acids were added:

Table 4.8: Amino acids

AMINO ACID AMOUNT

Adenine sulfate 20 mg/l

Uracil 20 mg/L

L-tryptophan 20 mg/l

L-histidine 20 mg/l

L-arginine 40 mg/l

L-methionine 20 mg/l

L-tyrosine 50 mg/l

L-leucine 60 mg/l

L-isoleucine 60 mg/l

L-lycine 50 mg/l

L-phenylalanine 50mg/l

L-aspartic 100 mg/l

L-glutamic acid 100 mg/l

L-valine 150 mg/l

L-threonine 200 mg/l

L-serine 400 mg/l

4.1.8 Other materials

4.2 Microbiological and genetic methods

4.2.1 Escherichia coli

Culturing

E. coli strains were cultured either on YT plates or shaking in liquid at 200 rpm at 37 ◦C. For

plasmid extraction, E. coli was grown shaking overnight in YT medium. Strains were stored

at 4 ◦C on YT plates or -80 ◦C in 50 % glycerol.
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Table 4.9: Other materials

DESCRIPTION SOURCE

Coverslip Menzel Gläser

Filter paper 3 MM Whatman

Glassbeads Sigma

Glassbottom dishes MatTek

Glass slides Menzel Gläser

Lense paper Assistent

Petri dishes Greiner

Plastic cuvettes Brand

Pipet Tips Qiagen

OD measurement

E. coli density of liquid cultures was determined photometrically at 600 nm wavelength

using plastic cuvettes an a GeneSys spectrophotometer (Thermo Electron Corporation).

YT medium was used as reference.

Preparation of competent E. coli using rubidium chloride

DH10B E. coli cultures were grown overnight in 5-10 ml LB medium at 37 ◦C and then

transferred to 500 ml LB medium. Inoculated cultures were grown to OD600 0.5, and were

cooled on ice for 15 min. The E. coli cultures were centrifuged at 4500 rpm in a Biofuge

Primo R (Thermo Scientific) for 10 min. Supernatants were discarded and the pellets were

resuspended in 30 µl RF1 (Tab. 4.6). The suspension was incubated on ice for 15 min, and

then centrifuged at 4000rpm for 5 min. The pellets were resuspended in RF2 (table 4.6) on

ice and aliquoted into 100 µl tubes and stored at -80 ◦C.

Chemical transformation of competent E. coli

50 µl-100 µl competent E. coli cells were thawed on ice before 1-10 µl of Plasmid (1-5 ng

DNA) or ligation mix were added. The mixture was incubated on ice for 20-25 min followed

by heat shock at 42 ◦C for 2 min. The cells were transferred on ice for 2 min. 150 µl YT or LB

medium was added to cells and then plated out on YT or LB plates containing 100 µg/ml

ampicillin. Plates were incubated overnight at 37 ◦C.
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4.2.2 S. cerevisiae

Culturing

S. cerevisiae strains were cultured at 30 ◦C or RT either in liquid with 200 rpm shaking or on

plates. Overnight cultures were grown in SD liquid medium to stationary phase and then

diluted and grown to log phase for storage or experiments. Strains could be either stored

longterm in 25 % glycerol at -80 ◦C or shorterm (2-3 weeks) on plates at RT.

OD measurement

The cell densities of liquid S. cerevisiae cultures were determined photometrically at 600 nm

wavelength using plastic cuvettes and a GeneSys spectrophotometer (Thermo Electron

Corporation). Culture medium was used as reference.

Transformation

S. cerevisiae strains were cultured overnight in 2-6 ml appropriate medium at 30 ◦C . The

cultures were then transferred into 50 ml medium and grown at 30 ◦C until OD600 0.4 -

0.8. Cells were centrifuged at 1000 rpm for 5 min in a Biofuge Primo R (Thermo Scientific)

and the pellets were first washed in 25 ml ddH2O and then in 10 ml SORB solution. The

pellets were resuspended in 360 µl SORB solution, aliquoted in 45 µl vials and either stored

at -80 ◦C or directly used for transformation reactions.

For transformations salmon sperm carrier DNA was heated at 95 ◦C for 5 min and then

added to the 45 µl competent cells. For transformation of PCR products 12 µl of reac-

tion mix was added to the cells, for transformation of CEN plasmids 2-5 µl were added.

Integrating plasmids were linearized in the selection marker region before 12 µl of the

reaction mix were added to the cells. Then 300 µl PEG Mix was added and reactions

were incubated for 30-60 min at 30 ◦C. Then 35 µl DMSO was added and the transforma-

tion mix was incubated at 42 ◦C for 15 min. Cells were centrifuged at 2000 rpm for 20 s

and pellets were resuspended in 150 µl appropriate medium and plated on SD plates.

When cells were transformed with an antibiotic-resistance cassette, 600 µl appropriate

medium was added and cells were incubated overnight at RT. Cells were sedimented

and resuspended in appropriate medium and plated on antibiotic containing SD plates.
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Genetic manipulation

The ability of S. cerevisiae to undergo homologous recombination during DNA replication

can be exploited to genetically manipulate a gene of interest. Therefore, PCR methods

are used to either tag or delete the gene of interest. In order to manipulate a gene,

primers were designed to generate fragments that include flanking regions of a target

gene together with promoters, selection markers and tags. For C- and N-terminal tag-

ging we used a commercially available toolbox (Janke et al. 2004), which allows the am-

plification of different combinations of promoters, selection markers and tags with a set

of only four primers. For C-terminal tagging Primers were designed to flank the sequence

around the STOP codon including the tag and the selection marker. For N-terminal tag-

ging, first the endogenous promoter had to be amplified with the respective restriction

sites and cloned into the required N-terminal tagging vector. Then primers were designed

on flanking sequences around the start codon of the target ORF, selection marker, pro-

moter and the tag. For gene knockouts, deletion cassettes were amplified by PCR from

the gene deletion library. Primers were designed to amplify the cassette with 300-500 bp

flanking regions upstream and downstream to facilitate homologous recombination. To

that end, PCR was either performed on yeast colonies or on extracted genomic DNA

(see 4.3.1) bearing the respective gene deletion. For site-directed mutagenesis, primers

were designed complementary to the gene of interest bearing the desired mutation.

Primers should have 12-15 bp on each site of the mutation. A second pair of primers is

needed upstream and downstream of the fragment amplified with the first set of primers.

Transformant selection and testing

Colonies were selected 2-4 days after transformation, streaked on fresh selective plates,

and incubated for 1-2 days at 30 ◦C. To screen for positive clones expressing a fluorescent

tag, cells were cultured in liquid medium over night at 30 ◦C, diluted and grown to log

phase. Cells were checked for correct localization of the fluorescent protein under a Zeiss

Axio Imager A1 microscope. Gene deletions were tested by PCR using primers that bind

to the flanking regions as well as inside the knockout cassette.
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Sporulation and tetrad dissection

Diploid cells were transferred onto sporulation plates in thick spots and incubated at 30 ◦C

for 2-5 days. A few colonies were resuspended in ddH2O and tetrad formation was con-

firmed under a Zeiss Axio Imager A1 microscope. A small amount of cells was resus-

pended in 10 µl 0.1 M potassium phosphate buffer. 10 µl zymolyase (5 µg/ml) was added

and cells were incubated at 30 ◦C for 5-10 mins. 100 µl of the digested cells were pipetted

onto a YPD plate in one line. A dissecting microscope was used to isolate tetrads. The

plate containing tetrads was incubated at 30 ◦C for 1-2 days before replica plating to

determine the segregation of selection markers.

4.3 Molecular biological and genetic techniques

4.3.1 Handling nucleic acids

DNA precipitation

DNA was concentrated and purified from aqueous solutions by adding DNA precipitation

buffer (3 M NaOAc, pH 4.8) in 1/10 of sample volume. 2x sample volume 100 % ethanol

was added and the sample was transferred on ice for 1-2 hr, before being centrifuged

at 14000 rpm in a table centrifuge (Galaxy 16DH, VWR) for 10-15 min. Supernatant was

discarded and pellet was washed two times with 70 % ethanol. Ethanol was removed

and pellet was air-dried at RT. Pellet was resuspended in 50-100 µl TE buffer.

Mini-preparation of plasmid DNA from E. coli

The mini-preparation of plasmid DNA was carried out according to the instructions pro-

vided in QIAGEN® Plasmid Mini Kit and EZNA™ Plasmid Mini Kit.

Isolation of genomic DNA from S. cerevisiae

Cells were grown overnight at 30 ◦C in 5-8 ml liquid SD medium. Cells were sedimented at

2000 rpm for 2 min and pellets were washed 1x with ddH2O. Pellets were resuspended in

200 µl lysis buffer. 200 µl of TE buffer and 200 µl of phenol/chloroform were added, followed

by an equal volume of glass-beads. Cells were vortexed for 5-10 min. The mixture was
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centrifuged at 14000 rpm in a table centrifuge for 10 min resulting in three distinct layers.

After transferring the aqueous top layer to a new 1.5 ml tube, 1 ml 100 % ethanol was

added to precipitate DNA. After centrifugation for 2 min at 14000 rpm, the pellet was

washed with 700 µl 70 % ethanol. Pellets were air dried and then dissolved in 50-100 µl TE

buffer containing 10 µg/ml RNAse A.

4.3.2 In vitro modification of DNA

Restriction digestion of DNA

For Restriction digest of double stranded DNA Type II restriction endonucleases (New Eng-

land Biolabs) were used in combination with recommended buffers. Digests were incu-

bated at 37 ◦C for 1-2 hr before being subjected to TBE-Agarose gel electrophoresis.

Ligation of DNA fragments

Double-stranded DNAs were covalently linked using T4 DNA ligase. All ligation reactions

in this study were carried out in order to introduce a linear insert into a digested vector.

Molar ratios between insert and vector were either 1: 3 or 1: 6. A ligation reaction con-

tained:

100 ng linearized vector

3 times of equal molar amount of insert DNA

1 U T4 DNA ligase

1 µl 10x ligase buffer

add sterile ddH2O to a total volume of 10 µl

The reaction was incubated either 1 hr at RT or overnight at 4 ◦C before transformation

into competent E. coli.
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4.3.3 Analyses of DNA

Agarose electrophoresis

Separation of DNA fragments according to their sizes was achieved by applying an elec-

tric field. Percentage of the agarose gel depends on the fragment size: 1.5 % agarose

gels were used for fragments below 500 bp, 1 % agarose gels for fragments above 500 bp

and below 1.5 kb, 0.8 % agarose gels for fragments above 1.5 kB length. The gels were

prepared with 1x TBE buffer and 1:2000 ethidiumbromide or SybrGreen. DNA samples

were mixed with 0.2 volumes of 6x DNA loading buffer and pipetted into the pockets of

the agarose gel. The DNA was separated horizontally at 90-120 V. Gel bands were visual-

ized and photographed using a GeneFlash gel imaging system (Syngene Bio Imaging)

DNA sequencing

DNA was sequenced using sequencing primers, ABI Big Dye 3.1 sequencing chemistry

and an ABI-3730 (Perkin Elmers) sequencer. The reactions were carried out by the Core

Facility of Max Planck Institute of Biochemistry.

Table 4.10: Sequencing setup

REAGENT VOLUME FINAL CONCENTRATION

Plasmid 3.0 µl 300 ng

Primer 1:10 1.0 µl 5 pM

ddH2O 3.5 µl -

Total 7.5 µl

4.3.4 Polymerase chain reaction (PCR)

Polymerase chain reaction was used to amplify DNA fragments. PCR products were used

for validation purposes, as plasmid inserts, integration cassettes or deletion and mutation

constructs. One PCR reaction requires two primers that bind to the 5’ and 3’ end of the

amplification target. The reaction was carried out using a PXE 0.2 Thermal Cycler (Thermo

Electro Corporation). PCR products were analyzed by agarose gel electrophoresis. Bands
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of interest were excised and extracted.

Standard PCR

Standard PCR reactions were carried out to validate integrated or deleted DNA and to

amplify DNA fragments used as plasmid inserts. Depending on the used polymerase (Taq,

Pfu or Phusion) the reaction mix and cycling program had to be accordingly.

Table 4.11: Taq/Pfu PCR reaction setup

REAGENT VOLUME FINAL CONCENTRATION

10x Thermo Buffer 5.0 µl -

dNTPs 1.0 µl 0.2 mM

Primer 5’ FW 0.5 µl 1.0 µM

Primer 3’ RV 0.5 µl 1.0 µM

Template DNA (genomic or
plasmid)

1.0 µl approx. 1.0 ng

Taq/Pfu-Polymerase 0.5 µl 2 U

ddH2O 42.5 µl -

Total 50.0 µl

Table 4.12: Taq/Pfu PCR reaction cycle

STEP CYCLES TIME TEMPERATURE

Initial denaturation 1x 10 min 95 °C

Denaturation 30 s 95 °C

Annealing 32x 30 s 56 °C

Elongation 1 min - 2.5 min 72 °C

Final elongation 1x 10 min 72 °C

Storage 1x hold 4 °C
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Table 4.13: Phusion® PCR reaction setup

REAGENT VOLUME FINAL CONCENTRATION

5x Phusion® HF Reaction Buffer 10.0 µl -

dNTPs 1.0 µl 0.2 mM

Primer 5’ FW 0.5 µl 1.0 µM

Primer 3’ RV 0.5 µl 1.0 µM

Template DNA (genomic or plas-
mid)

1.0 µl approx. 1.0 ng

Phusion® Polymerase 1.0 µl 2 U

ddH2O 36.0 µl -

Total 50.0 µl

Table 4.14: Phusion® PCR reaction cycle

STEP CYCLES TIME TEMPERATURE

Initial denaturation 1x 5 min 95 °C

Denaturation 32x 60 s 95 °C

Annealing 30 s 56 °C

Elongation 30 s - 90 s 72 °C

Final elongation 1x 10 min 72 °C

Storage 1x hold 4 °C

Amplification of integrative cassettes

PCR reactions to amplify integrative cassettes were performed as described by Janke et

al 2004. PCR products were analyzed by agarose gel electrophoresis (4.3.3). The PCR

product was directly used for yeast transformations 4.2.2).

Colony control PCR

Taq Polymerase was used to validate cassette integration. Four different primers were

used to validate correct gene deletion. One fragment was amplified with primers binding

upstream and downstream of the ORF of interest. The size of the product either confirmed

integration of the deletion cassette or the remaining ORF of interest. Then primers binding

inside the deletion cassette and upstream or downstream of the target ORF were used

to amplify fragments confirming correct insertion of the deletion cassette. The samples

were prepared as listed below (Tab. 4.15). Polymerase was added after 10 min at 96 °C.
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Table 4.15: Taq colony PCR reaction setup

REAGENT VOLUME FINAL CONCENTRATION

10x Taq reaction buffer 10.0 µl -

dNTPs 1.0 µl 0.2 mM

Primer 5’ FW 0.5 µl 1.0 µM

Primer 3’ RV 0.5 µl 1.0 µM

Taq Polymerase 2.0 µl approx. 4 U

ddH2O inoculated with colony tip 36.0 µl -

Total 50.0 µl

Table 4.16: Taq colony PCR reaction cycle

STEP CYCLES TIME TEMPERATURE

Initial denaturation 1x 20 min 96 °C

Denaturation 32x 60 s 96 °C

Annealing 30 s 56 °C

Elongation 1 min - 2.5 min 72 °C

Final elongation 1x 10 min 72 °C

Storage 1x hold 4 °C
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4.4 Microscopy

4.4.1 ConA coating of coverslips

Concanavalin A (ConA) is a lectin that binds to polysaccharide molecules on the yeast

cell walls, which physically fixes cells on a coverslip, allowing long-term fluorescent imag-

ing of the same cell. For coating 3 µl ConA was pipetted on coverslip, distributed evenly

and air dried.

4.4.2 Sample preparation

S. cerevisiae cultures were grown in SD medium overnight at 30 °C and diluted to OD600

0.2 the next morning. Diluted cultures were grown 2-3 hrs to OD600 0.5-0.8 before being

transferred into arrest medium (see 4.5.1). For mounting, 2.5-3 µl of liquid sample was

added in the centre of a glass slide. A ConA coated coverslip was carefully placed on

top of the liquid drop, avoiding bubble formation.

4.4.3 FM4-64 staining

For FM4-64 staining, cells were incubated with a final concentration of 0.32 µM FM4-64 for

2 min at RT. Cells were visualized after briefly washing cells with ddH2O.

4.4.4 Drug treatment

To disrupt all actin structures, cells were released from G1 arrest in medium containing

450 µM LatB.

4.4.5 Epifluorescence microscopy

Epifluorescence microscopy was used to determine protein localization and to perform

polarization assays (see 4.5.1). Samples were mounted onto a glass slide and covered

with a coverslip. For live cell imaging and quantification of cells, camera gain was set to

minimum and the exposure time was 300-500 ms depending on the intensity of the fluo-

rescent marker. The microscope is equipped with a filter set with allow the excitation and
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detection of green, red, blue and yellow fluorescence. For image aquisition, exposure

time was between 300 ms and 1000 ms. The following setup was used (Tab. 4.17).

Table 4.17: Epifluorescence microscope setup

COMPONENT SUPPLIER DESCRIPTION

Microscope Zeiss Epifluorescence microscope

Objective Zeiss 100x Oil Immersion Objective, NA of
1.40 and DIC

Camera Andor Technology iXon EM+ DU-897ECS

Lamp Xcite Xenon lamp

Lamp Andor Technology HBO-lamp

Imager Axio Imager

Table Applied Precision xy-motorized table

4.4.6 TIRF microscopy

Table 4.18: TIRF microscope setup

COMPONENT SUPPLIER DESCRIPTION

Microscopic unit TiLL photonics iMIC standing unit

Objective lense Olympus Olympus 1.45 NA 100x

Control unit TiLL photonics ICU

TIRF angle control TiLL photonics Galvanometer-drive 2-axis scan
head

Excitation laser 1 Coherent Saphire DPSS laser with 75 mW at 488 nm

Excitation laser 2 Cobolt Jive DPSS laser with 7 5mW at 56 nm

Light source for
DIC imaging

TiLL photonics LED lamp

Lamp source for
epifluorescence

TiLL photonics Polychrome unit

Laser shutter TiLL photonics AOTF unit

Camera 1 TiLL photonics Imago QE CCD

Camera 2 Andor Andor iXON DU-897 EM CCD

Climate control Workshop in MPI of Bio-
chemistry

Temperature control unit with heat-
ing block

Software TiLL photonics Live-Acquisition
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FRAP experiments and dynamics of polarity regulators were conducted using a custom-

made TIRFM set-up based on an iMIC modular microscopic unit The setup in (Tab. 4.18)

was used .

Samples were mounted onto the microscope in an inverted manner. Target cells for imag-

ing were first identified using live streaming with DIC imaging. For FRAP experiments and

time-lapse microscopy of polarity regulators the TIRF angles were set slightly below the

critical angle for total reflection, resulting in an excitation light passing through the sam-

ple with an extremely low angle (oblique illumination). Oblique illumination allows illumi-

nation of an increased area of the sample but does not cause as much photo-bleaching

as wide-field imaging (Tokunaga et al. 2008). For surface imaging of GFP-Cdc42G12V TIRF

angles were adjusted to total reflection.

4.4.7 Spinning disc microscopy

Table 4.19: Spinning disc microscope setup

COMPONENT SUPPLIER DESCRIPTION

Microscopic unit Andor Technology/Till iMIC standing unit

CSU22 spinning
disk

Yokogawa, Amersfoort confocal scanner

Objective lense Olympus Olympus 1.45 NA 100x

TIRF angle control TiLL photonics Galvanometer-drive 2-axis scan
head

Excitation laser 1 Andor Technology DPSS laser with 75 mW at 488 nm

Excitation laser 2 Andor Technology DPSS laser with 75 mW at 561 nm

FRAPPA module Andor Technology Galvanometer-drive 2-axis scan
head

Camera Andor Andor iXON D-977 EM CCD

Software Andor iQ Live Cell Imaging

Samples were mounted onto the microscope in an inverted manner. Target cells for

imaging were first identified using live streaming with DIC imaging. For 4D timelapse mi-

croscopy of polarity regulators, cells were excited with 60 % laser intensity and exposed

for 60-100 ms with 60 s frame rate. A stack of 4 frames was taken with a 40 nm increment
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for each time point. A maximum projection of 2 or 3 frames was made.

4.4.8 FRAP

To quantify protein recovery during FRAP experiments, automatic MATLAB (MathWorks.

2010a) routines were implemented. Intensities in the bleached region were corrected

for background fluorescence (using intensities in a cell free area) and photobleaching

(using a reference cell in the same image that was not bleached). The recovery curve

was normalized to the intensities before (1) and after (0) the FRAP event and fitted with

the function yfit(t) = a(1 − b(exp(−tc)) − d(exp(−te)). We used a double exponential fit

to represent two processes contributing to fluorescence recovery in the bleached re-

gion. Fast recovery of soluble Cdc42 that was bleached in the cytosol (by rapid diffu-

sion) and slower recovery of the membrane-bound Cdc42 pool (through a combina-

tion of GDI- and actin-mediated mechanisms). The half-time for the slower component,

t21/2 = −log(0.5)/e was used for further comparison. Time information was automatically

extracted from the meta data provided by the acquisition software. Results were only in-

cluded in the analysis, if the data could be reliably fitted (residual sum of squares > 0.95)

and the residuals were randomly distributed below and above the curve. Means and

SEMs were calculated from at least 10 independent FRAP experiments on different cells.

(This method was developed by Nikola Müller)

4.5 Cell biological methods

4.5.1 Polarization assay

To arrest logarithmically growing cells in the G1 phase of the cell cycle, 3 mM methionine

was added to the medium for 4 hr. Cells were then released from the cell cycle arrest by

washing 2 times and resuspension in methionine free medium. Caps of at least 50 cells

per time point were counted in at least three independent experiments
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4.5.2 Washout assay

For washout experiments, LatB treatment was performed for 20 min or 40 min, respec-

tively. The drug was removed by one wash step and polarization (number of buds) was

monitored after an additional 40-60 min. Cells with single and double buds were counted

from three independent experiments with at least 100 cells each.

4.5.3 Effect of Cdc42 expression levels on polarization prob-
ability

Cells expressing either GFP-Cdc42 under its endogenous or a galactose inducible pro-

moter were grown over night in SC-methionine and 2 % glucose, washed 3 times with

ddH2O and then diluted in SC-methionine with 2 % raffinose. Cells were arrested for 3 hr

in G1 in Sc-all supplemented with 2 % raffinose and 3 mM methionine. Cells expressing

GFP-Cdc42 under the Gal promoter were induced for 30 min, 60 min, 90 min and 120 min

by addition of 2 % galactose. Cells were treated with 150 µM LatA during G1 release.

Polarized cells were counted after 30 min and 60 min after release. Expression levels of

GFP-Cdc42 were determined by integrating fluorescence intensity for each cell.

4.5.4 SGA screen

We used the following set of query proteins: Cdc42, its GEF Cdc24, its GAPs Bem2, Bem3,

Rga1 and Rga2, and its GDI Rdi1. We also included the Cdc42 effectors Bem1 and Cla4.

Physical and genetic interaction partners were collected from public databases (BioGRID

(Breitkreutz et al. 2010), DIP (Salwinski et al. 2004) and MPACT (Mewes et al. 2011) and the

literature. Physical interactions included data from affinity purification, co-crystallization,

FRET, gel-retardation, PCA, protein-peptide interaction, reconstituted complexes and two

hybrid interactions. Genetic interactions included synthetic growth defects, haploinsuf-

ficiencies and synthetic lethality. We only included negative interactions from synthetic

genetic array (SGA) screens to focus on the redundancy of pathways We also performed

an SGA screen with Rdi1 as described elsewhere (Costanzo et al. 2010) and identified

two additional actin related interaction partners, Gos1 and Bem2. These were verified

by random spore analysis (Tong & Boone 2007) and included in the final list. All interac-
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tion partners involved in actin-related processes were grouped in four sub categories:

actin general (involved in formation of actin patches or cables), early secretion (ER-Golgi

transport), late secretion (Golgi-plasma membrane transport) and endocytic recycling.

All identified genetic and physical interactions are listed in Tables A.3 and A.4, respec-

tively. For each query protein the number of interactions to each functional group was

extracted. This strength of interaction with a functional group (determined by the num-

ber of unique interaction partners) was colour-coded in a heat map. (The heat map was

generated by Nikola Müller)

4.6 Image processing and analyses

4.6.1 Image analysis

Unless otherwise specified, images presented in this work were raw images. For better

visualization cells were background-subtracted and contrast-enhanced.

4.6.2 Cap/cytosol intensity ratio

Average intensity of cap and cytosol were measured manually with ImageJ software (U.

S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-

2008.)

4.6.3 Cap intensity profile

Cap intensity profiles were determined by measuring the average intensities along the cir-

cumference of a cell with ImageJ software, (U. S. National Institutes of Health, Bethesda,

Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-2008.)

4.6.4 Statistical analysis

Curve fitting for polarization curves was done using Prism 4 (GraphPad Software, La Jolla)

using a sigmoidal dose response equation: Y = Bottom+(Top−Bottom)/(1+10(LogEC50−

x) ∗Hillslope. All averages are given as either geometric mean ± SD or geometric mean

± SEM. Unpaired two-tailed t-tests were performed to validate significance of differences.
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4.7 Biochemistry

This part was provided by Jared Johnson, Cornell University

4.7.1 Protein purification

Cdc42 was purified as His6-tagged protein from baculovirus infected Sf21 insect cells.

All purification steps were performed at 4 °C. One liter stirred cultures of Sf21 cells were

infected for 48 h by Kinnakeet Biotechnology (Midlothian, VA). Cell pellets were resus-

pended in 40 ml of hypotonic buffer (20 mM sodium borate pH 10.2, 5 mM MgCl2, 200 µM

PMSF, 1 µg/ml aprotinin and leupeptin) and disrupted by dounce homogenization. The

membrane-containing components of the lysate were spun down at 150,000 x g in a

Ti70 rotor (Beckman Coulter) for 20 min, after which the supernatant containing non-

prenylated Cdc42 was discarded and the pellet was resuspended in 50 ml of TBSM (50 mM

Tris, pH 7.5, 150 mM NaCl, and 5 mM MgCl2). The procedure was repeated twice and

the final pellet was resuspended in TBSM containing 1 % Triton-X 100. The lysate was fur-

ther homogenized and agitated for 30 min on a rotisserie, resulting in the solubilization

of the geranylgeranylated Cdc42. The remaining insoluble fraction was pelleted in a

tabletop centrifuge at 9,000 x g for 20 min at 4 °Cand discarded. The supernatant con-

taining detergent-solubilized, isoprenylated His6-tagged Cdc42 was incubated for 30 min

with chelating Sepharose beads (Qiagen) charged with Ni2+. Beads were washed with

400 ml of high salt buffer (50 mM Tris pH 7.5, 700 mM NaCl, 5 mM MgCl2, 0.1 % CHAPS,

and 20 mM imidazole) and protein was eluted with 1 ml of elution buffer (50 mM Tris, pH

7.5, 150 mM NaCl, 5 mM MgCl2, 0.1 % CHAPS, 500 mM imidazole). The fractions con-

taining Cdc42 were pooled and concentrated to a volume of 2 ml. His6-tagged preny-

lated Rac1 was purified in the same manner as Cdc42. RhoGDI (human) and the limit

GAP domain of Cdc42-GAP (human, residues 234-462) were purified from E. coli cells har-

bouring plasmids encoding N-terminal GST fused to each construct. The limit guanine

nucleotide exchange domain of Dock180 (DHR2C domain, human) was purified from E.

coli cells harbouring plasmids encoding it as an N-terminal His6-tagged construct. Cells

were grown at 37 °Cto OD 0.8. Protein expression was induced by 1 mM isopropyl 1-thio-

β-D-galactopyranoside for 3 hr before pelleting at 6,000 x g for 10 min. Cell pellets were
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homogenized in TBSM and lysed by sonication. Cell debris was centrifuged at 20,000 x g

for 30 min, and the supernatant was used for purification. Supernatants containing GST-

tagged proteins were incubated with glutathione beads (Amersham Biosciences) and

equilibrated with TEDA buffer (20 mM Tris pH 8.0, 1 mM EDTA, 1 mM DTT, and 1 mM sodium

azide) for 30 min at 4 °C. The beads were then washed with several column volumes

of TEDA-containing 500 mM NaCl. After a final rinse with TBSM, the protein was eluted

with 10 mM glutathione in TBSM. The His6-tagged DHR2 domain was purified on chelating

Sepharose beads (Qiagen) charged with Ni2+, as described above. All proteins were con-

centrated in a 10 MWC Amicon Ultra concentrator (Fisher). Protein concentrations were

determined using the Bio-Rad Protein Assay Kit with bovine serum albumin as standard.

4.7.2 Liposome binding assays

All liposome vesicles were prepared by extrusion using the Avanti mini-extruder. For fluo-

rescence experiments smaller liposomes were prepared with 1 µm diameter membrane.

For pelleting experiments larger liposomes were prepared using 8 µm membranes, fol-

lowed by centrifugation at 16,000 x g for 10 min and resuspension of pellets in TBSM. All

lipids used were purchased from Avanti Polar Lipids, unless stated otherwise. The standard

lipid composition in molar percentages was 35 % PE, 25 % PS, 5 % PI, and 35 % cholesterol

(Nu Chek Preps).For radioactive assays of Rac1-liposome association, Rac1 (40 nM) was

preloaded with α[32P]GTP (2300 cpm/pmol, 10 µM) by EDTA (8 mM )-stimulated nucleotide

exchange in the presence of 8 µm liposomes (1 mg/ml). Rac1 was then allowed to hy-

drolyze its bound nucleotide to α[32P]]GDP by incubation fro 30 min on ice in the presence

of excess magnesium (14 mM). This also prevented further EDTA-stimulated nucleotide

exchange. The protein was then incubated with 45 nM GDI for 10 min, followed by a

10 min treatment with the DHR2 domain of Dock180 (500 nM), in the presence of 100 µM

unlabelled GTPγS. The mixture was pelleted by centrifugation for 10 min at 16,000 x g.

Radioactivity levels in the supernatant and pellet fractions were measured separately.

For fluorescence-based assays of Cdc42-liposome association a Varian Cary Eclipse flu-

orimeter was used in the counting mode. Excitation and emission wavelengths were 365

and 440 nm, respectively. Samples were stirred continuously at 25 °C in TBSM. To pre-

pare HAF (hexdecanoylaminofluorescein)-labelled lipids for FRET assays, 1.25 nmol of HAF
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(Molecular Probes) was vortexed with 50 µl of lipids (1 mg/ml). In order to monitor the re-

lease of Cdc42 from liposomes, Cdc42 was preloaded with a methylanthaniloyl-modified

(Mant)-nucleotide (GTP, GDP or GMP-PNP) and incubated with 30 µl of HAF-containing

liposomes at RT for 5 min. The mixture was added to the cuvette, bringing Cdc42 con-

centration to 40 nM. At the indicated timepoints, 50 nM RhoGDI and 10 nM Cdc42GAP

were added, and fluorescence was recorded for 20 min. Traces monitored the changes

in Mant fluorescence due to changes in FRET between Mant-nucleotide-bound Cdc42

and liposomes containing HAF.

4.7.3 Nucleotide exchange assay

Competition between GDI and the guanine nucleotide exchange factor Dock180 was

measured with prenylated Rac1. Rac1 was preloaded with Mant-GDP in a 25 µl volume

in the presence of 20 µl of unlabelled 1 µm liposomes. After transferring the mixture to the

cuvette (final concentration Rac1, 60 nM; Mant GDP, 500 nM), unlabelled GTP (10 µM)

and GDI (80 nM) were added for 10 min. At the indicated times, different concentra-

tions of the DHR2 domain of Dock180 were added. Traces monitored the loss of Mant

fluorescence due to nucleotide exchange.

4.8 Stochastic model

This part was provided by Ben Klünder, LMU: To further elucidate the roles of Rdi1 and

actin-dependent recycling pathways in polarization we built a stochastic particle-based

model, and simulated the emergence of polarity in budding yeast. Our model explicitly

includes as model variables the active (T) and inactive (D) forms of Cdc42, which can

be recruited to the plasma membrane and accumulate in caps. A pool of Cdc42 (TIM ,

DIM ) can be found on internal membranes (IM) and is allowed to shuttle between plasma

membrane and internal membranes via endocytosis and exocytosis. Cdc42 can also be

extracted from the plasma membrane into a well-mixed pool of cytosolic Cdc42-GDP

(Dcyt) by interaction with its GDI, Rdi1. We considered a two-dimensional model of a

circular shaped cell with radius R.

The membrane was split into n = 100 segments where reactions take place between par-

102



MATERIALS AND METHODS

ticles on the same segment i = 1,..., n. This approach allowed us to stochastically simulate

the temporal evolution of the system using the Gillespie algorithm (Gillespie 1977). We

fitted our model to recapitulate the emergence of Cdc42 caps in Latrunculin-treated

and in rdi1∆ cells, and tested its reliability by comparing the predictions of the combined

model with our experimental results on control cells and mutants altered in GTP hydrolysis.

Model Reactions: To achieve and maintain polarization, Cdc42 must be continuously

returned to the cap, as diffusion in the plasma membrane acts to flatten any inhomo-

geneities in protein distribution. We incorporated diffusion of Cdc42 in the plasma mem-

brane by jumps between neighbouring segments with the stochastic rate constant Dk.

The rate can be calculated from kD = (2πR/n)2, where D is the diffusion constant and

R the cell radius (Bernstein 2005). The intrinsic GTPase activity of Cdc42 is markedly in-

creased by its only GEF, Cdc24, which is delivered to already active Cdc42 on the mem-

brane by the effector Bem1 (Irazoqui et al. 2003; Butty et al. 2002). However, recruitment

of Cdc24 and Bem1 to the cap is bounded through depletion of the available molecules

(Wedlich-Soldner et al. 2004). We employed an effective description of this bounded

positive feedback such that the activation rate for the process

Di
b1F ({Ti})−−−−−−→ Ti , (4.1)

is given by a Michaelis-Menten law F ({Ti}) = Ti/(cth +
∑

i Ti) with amplitude b1. Here Di

and Ti denote the number of passive and active Cdc42 respectively at site i. The denom-

inator of F ({Ti}) effectively limits GEF recruitment if the total amount of active Cdc42

substantially exceeds the threshold thc. Moreover, we used the functional form F ({Ti})

to account for GEF-mediated recruitment of Cdc42 from the cytosol with subsequent

nucleotide-exchange

Dcyt
c1F ({Ti})−−−−−−→ Ti . (4.2)

to take into account our results (Fig. 2.11, Fig. 2.12) and other evidence (Gibson & Wilson-

Delfosse 2001; Schoebel et al. 2009; Ugolev et al. 2008) that GEFs can displace GTPases

from their GDI. In the absence of GEF, nucleotide-exchange and membrane attachment

of Cdc42-GDP are taken to occur with background rates 2bb and 2bc. Extraction of

Cdc42-GDP from the plasma membrane is facilitated by interaction with its GDI Rdi1
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(Fig. 2.9 and Slaughter et al. 2009; Koch et al. 1997). We assumed that Rdi1 is present in

large excess and diffuses rapidly in the cytosol. Therefore the extraction of Cdc42-GDP

into the well-mixed cytosolic pool of Cdc42 is taken to occur with a constant rate d. The

last reaction necessary for Rdi1-dependent polarization is hydrolysis of Cdc42-GTP which

we implemented as a first order reaction with rate a. The reactions of the Rdi1-dependent

polarization pathway are shown in Fig. 2.12. A second mechanism for Cdc42 recycling

and cell polarization is provided by actin-mediated transport of exocytic and endocytic

vesicles (Wedlich-Soldner et al. 2003). A promising modelling approach has been pub-

lished recently, in which vesicles were explicitly taken into account (Layton et al. 2011).

However, as we were mainly interested in how the distribution of Cdc42 affected the reor-

ganization of the cytoskeleton, we heuristically modelled the effective protein dynamics

induced by endocytosis and exocytosis. Details of the model are shown in Fig. 2.23.

We assumed that Cdc42 caps are maintained by a dynamic balance of focused exocy-

tosis, diffusive spread within the plasma membrane and endocytosis (Marco et al. 2007).

We made the simplifying assumption that the total exocytic flux of Cdc42 remains the

same before and after polarization for a given internal pool of cargo. The flux of Cdc42

from the internal membranes is equally spread over the whole plasma membrane in un-

polarized cells but is slightly focused in polarized cells. We implemented this in our model

by allowing the “nucleation” NA = 2 sites of increased exocytosis on the plasma mem-

brane similar to earlier models (Wedlich-Soldner et al. 2003). As actin reorganization is

under control of Cdc42-GTP we modelled the nucleation of stable actin bundles as

Acyt
eTi−−→ Ai . (4.3)

where Acyt and Ai represent available and nucleated stable actin bundles, respectively,

with
∑
Ai +Acyt = NA. The exocytic flux is described by the reactions

TIM
f [Ai+G(Ai)]−−−−−−−−→ Ti , (4.4)

DIM
f [Ai+G(Ai)]−−−−−−−−→ Di (4.5)

with G({Ai}) = (h−
∑

iAi)/n describing the background exocytosis rate outside of caps.
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This description allows for focused exocytosis towards nucleated actin bundles while keep-

ing the total exocytosis constant. Finally, we approximated endocytosis of Cdc42 to in-

ternal membranes by a constant endocytosis rate g. All reactions of the agent-based

model are summarized in Tab. 4.20.

Table 4.20: Model reactions

REACTION FORMULA

membrane diffusion Ti
kD→ Ti±1, Di

kD→ Di±1

hydrolysis Ti
a→ Di

nucleotide-exchange Di

b1Ti/(cth+
∑

j Tj)+b2
−−−−−−−−−−−−−−→ Ti

recruitment Dcyt

c1Ti/(cth+
∑

j Tj)
−−−−−−−−−−−−→ Ti

Dcyt
c2−→ Di

extraction Di
d→ Dcyt

actin bundle nucleation Acyt
eTi−−→ Ai

exocytosis TIM
f [Ai+(h−

∑
j Aj)/n]

−−−−−−−−−−−−−→ Ti,

DIM

f [Ai+(h−
∑

j Aj)/n]
−−−−−−−−−−−−−→ Di

endocytosis Ti
g−→ TIM

Di
g−→ DIM

Parameter estimates: To fit our model we separately considered LatB-treated wild-type

and rdi1∆ cells. The diffusion constant D of Cdc42, the total number N42 of Cdc42 and the

intrinsic activation rate b2 were taken from published data (Marco et al. 2007; Wedlich-

Soldner et al. 2004; Ghaemmaghami et al. 2003; Zheng & Cerione 1994). The aver-

age cell radius R was determined to be 3.95 µm. As LatB-treated wild-type cells show a

Cdc42 mobility (FRAP) rate of approximately 0.28/s, we estimated the extraction rate d

to be 0.5/s. As initial conditions for LatB-treated cells we distributed on average 20 % of

all Cdc42 to the plasma membrane, with the remaining Cdc42 was being split equally

between internal membranes and cytosol (Wedlich-Soldner et al. 2004). In simulations of

rdi1∆ cells the cytosolic fraction was redistributed to the membranes, with 1/3 located to

the plasma membrane. To begin our simulation, we assumed that the GEF had just arrived

at the plasma membrane, and started with an average fraction of active Cdc42 on all

membranes determined by the ratio of intrinsic activation and hydrolysis. The activation

threshold cth limiting the total amount of active GEF was estimated to be 100, given that
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roughly 300 Cdc42 molecules are localized to steady-state caps (Wedlich-Soldner et al.

2004; Ghaemmaghami et al. 2003). The remaining parameters were chosen such that

the caps of LatB-treated and rdi1∆ cells satisfied a set of constraints over an average

of 400 runs. We fitted the GEF-dependent activation and recruitment rates b1 and c1,

and the hydrolysis and background insertion rates a and c2 in LatB simulations assuming

exocytosis and endocytosis to be zero. Using FRAP and fractionation experiments from

(Wedlich-Soldner et al. 2004) we estimated the fraction of Cdc42 in the cap at steady

state to be 10 % with the same amount spread over the remaining plasma membrane.

From previous data (Marco et al. 2007; Slaughter et al. 2009) we estimated the height

and width of Cdc42 caps to 10 times the background density and 10 % of the circum-

ference, respectively. The fitting constraints were a Cdc42 FRAP time in steady-state LatB

caps between 2 s and 3 s, a total amount of Cdc42 on the plasma membrane between

15-25 %, a cap height of 7-12 times the background, and a cap width of 8-12 %. Each

simulation was terminated after tend = 1300 s internal simulation time - comparable to the

duration of our experiments and the time cells need to polarize after GEF release from the

nucleus (Caviston et al. 2002; Shimada & Gulli 2000). A cap was detected if a spatially

averaged profile of Cdc42 (over 5 % of the membrane) was higher than twice its average

value. At the end of the simulation the number of caps and the particle density of Cdc42

were detected and a Gaussian distribution was fitted to the Cdc42 profile to quantify its

shape. We defined the cap width as twice the distance between the turning points of

the fit. To simulate FRAP values, at time tfrap = 1200 s the number of caps was determined.

For simulations with a single cap Cdc42 in a region corresponding to 20 % of the plasma

membrane and centered at the cap position was changed into a non-fluorescent ver-

sion of Cdc42. The recovery of fluorescent Cdc42 into the cap was then monitored and

the recovery half time t 1/2 was calculated by fitting with a single exponential function.

After fitting the model to LatB-treated cells we used some of the parameters obtained to

fit the actin nucleation rate e, the exocytosis parameters f and h, and the endocytosis

rate g. Model parameters for rdi1∆ cells were chosen such that steady-state caps had

a FRAP recovery time of 10-12 s, with 30-40 % of all Cdc42 on the plasma membrane, a

cap height of 7-12 times background, 0-10 % cells with double caps and 90-100 % total

polarization. The results shown in Fig. 2.24, Fig. 2.25, Fig. 2.26 were obtained from 400 runs
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for each point in parameter space with the same simulation time and evaluation proce-

dure as described for fitting the model above. Model parameters used in simulations are

summarized in Tab. 4.21.

Table 4.21: Model parameters

PARAMETER VALUE

N 100

R 3.95 µm

D 0.036 µm2/s

kD 0.585 /s

N42 3000

NA 2

a 2.74/s

b1 63.1/s

b2 0.0002/s

c1 0.04472/s

c2 0.0015/s

d 0.5/s

e 0.000139/s

f 0.02236/s

h 4

g 0.04472/s

cth 100
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A Annex

A.1 Tables

Table A.1: FRAP recovery half-time

STRAIN N t 1/2 (s) SEM

Cdc42 (1x) 24 2.0 0.15

Cdc42 (2x) 56 2.2 0.08

Cdc42 (3x) 10 2.3 0.16

Cdc42 (1x)+LatB 11 2.8 0.12

Cdc42 (2x)+LatB 14 2.7 0.09

Cdc42 (3x)+LatB 12 3.3 0.25

rdi1∆Cdc42 (2x) 20 10.6 0.45

Cdc42R66E 11 9.1 0.66

Cdc42R66E+Cdc24OE 10 11.0 0.57

vps27∆ Cdc42 (2x) 15 2.4 0.13

rdi1∆ vps27∆Cdc42 (2x) 10 13.5 0.54

bem2∆Cdc42 (2x) 20 6.6 0.39

bem2∆Cdc42 (2x)+LatB 12 9.6 0.57

bem2∆Cdc42 (3x) 10 7.0 0.47

bem2∆Cdc42( 3x)+LatB 17 9.3 0.40

bem3∆Cdc42 (2x) 14 2.7 0.25

rga2∆Cdc42 (2x) 11 3.3 0.23

Cdc42G60A 11 6.8 0.40

Cdc42G60A+Cdc24OE 10 5.4 0.22

Cdc42G12V 16 33.4 2.20

Cdc42D57Y 16 11.9 0.68

Cdc42F28L 13 2.1 0.07

Cdc24 (1x) 10 2.1 0.14

Cdc24 (2x) 20 2.1 0.15

Cdc24 (3x) 11 2.2 0.14

N = cell number
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Table A.1: FRAP recovery half-time (continued)

STRAIN N T 1/2 (S) SEM

Cdc24 (2x)+LatB 14 2.2 0.12

Cdc24 (3x)+LatB 17 2.0 0.09

bem2∆Cdc24 (2x) 10 2.1 0.15

bem2∆Cdc24 (3x) 10 2.3 0.18

Cdc42(2x)+Cdc24OE 17 2.0 0.09

Cdc42(2x)+Cdc24OE+latB 16 2.6 0.13

bem2∆Cdc42 (2x)+Cdc24OE 17 4.8 0.32

bem2∆Cdc42

(2x)+Cdc24OE+LatB

11 6.7 0.35

bem2∆Cdc42F28L 11 4.8 0.18

GFP-Bem1 (1x) 14 2.0 0.17

GFP-Bem2 (1x) 12 2.2 0.18

N = cell number

Table A.2: Cells with two buds

STRAIN EXPERIMENT N 2 BUDS(%) SEM

GFP-Cdc42 (integr. Plasmid) / 300 0.0 0.0

a 300 0.0 0.0

b 300 0.7 0.6

2x GFP-Cdc42 (2x integr. Plasmid) / 500 0.0 0.0

a 300 0.0 0.0

b 300 0.3 0.6

GFP-Cdc42+Cdc24OE / 900 0.0 0.0

a 300 0.0 0.0

b 300 0.0 0.0

Cdc42F28L / 500 0.0 0.0

a 300 0.0 0.0

b 300 0.0 0.0

bem1∆ GFP-Cdc42 / 500 3.3 0.9

N = cell number; / = no LatB treatment; a =

20 min LatB treatment; b = 40 min LatB treat-

ment
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Table A.2: Cells with two buds (continued)

STRAIN EXPERIMENT N 2 BUDS (%) SEM

a 300 3.0 1.0

b 300 2.7 1.2

rdi1∆ GFP-Cdc42 / 400 2.3 0.5

a 300 13.0 1.0

b 300 23.0 0.6

bem2∆ (no tag) / 200 7.0 1.4

a 300 14.0 1.5

b 300 25.0 1.5

bem2∆ GFP-Cdc42 / 600 8.7 0.8

a 300 13.0 1.5

b 300 25.0 0.6

bem2∆ 2x GFP-Cdc42 / 500 9.8 1.5

a 300 17.0 1.2

b 300 26.0 1.5

bem2∆ GFP-Cdc42+Cdc24OE / 900 12.0 1.3

a 300 24.0 1.5

b 300 30.0 2.6

bem2∆Cdc42F28L / 500 25.0 1.5

a 300 55.0 0.6

b 300 63.0 3.1

Cdc24-GFP (integr. Plasmid) / 700 0.0 0.0

a 300 0.0 0.0

b 300 0.0 0.0

2xCdc24-GFP (integr.+CEN Plasmid) / 700 0.0 0.0

a 300 0.0 0.0

b 300 0.0 0.0

bem2∆ Cdc24-GFP / 1000 10.0 1.3

a 300 21.0 1.0

b 300 28.0 2.0

bem2∆ 2xCdc24-GFP / 600 19.0 1.5

N = cell number; / = no LatB treatment; a =

20 min LatB treatment; b = 40 min LatB treat-

ment
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Table A.2: Cells with two buds (continued)

STRAIN EXPERIMENT N 2 BUDS (%) SEM

a 300 26.0 1.0

b 300 26.0 2.1

N = cell number; / = no LatB treatment; a =

20 min LatB treatment; b = 40 min LatB treat-

ment

Table A.3: Genetic interactions

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

BEM1 RSR1 (This study) CDC42 SIGNALLING

BEM1 VPS9 (This study) ENDOCYTIC RECYCLING

RDI1 GOS1 (This study) EARLY SECRETION

BEM2 RDI1 (This study) CDC42 MODULE

CDC42 MSB3 SYNTHETIC GROWTH DEFECT LATE SECRETION

CDC42 CAP1 SYNTHETIC GROWTH DEFECT ENDOCYTIC RECYCLING

CDC42 BUD6 SYNTHETIC GROWTH DEFECT ACTIN GENERAL

CDC42 GIC2 SYNTHETIC GROWTH DEFECT CDC42 SIGNALLING

CDC42 CAP2 SYNTHETIC GROWTH DEFECT ACTIN GENERAL

BEM2 PXL1 SYNTHETIC GROWTH DEFECT ACTIN GENERAL

CLA4 RGA1 SYNTHETIC GROWTH DEFECT CDC42 MODULE

CLA4 RGA2 SYNTHETIC GROWTH DEFECT CDC42 MODULE

BEM2 GET2 SYNTHETIC GROWTH DEFECT EARLY SECRETION

BEM2 GET1 SYNTHETIC GROWTH DEFECT EARLY SECRETION

BEM2 BEM3 SYNTHETIC GROWTH DEFECT CDC42 MODULE

CLA4 RVS161 SYNTHETIC GROWTH DEFECT ACTIN GENERAL

CLA4 PEA2 SYNTHETIC GROWTH DEFECT ACTIN GENERAL

RGA1 RIC1 SYNTHETIC GROWTH DEFECT ENDOCYTIC RECYCLING

CLA4 RVS167 SYNTHETIC GROWTH DEFECT ACTIN GENERAL

CLA4 ICE2 SYNTHETIC GROWTH DEFECT EARLY SECRETION

CDC42 SPA2 SYNTHETIC GROWTH DEFECT ACTIN GENERAL

CDC42 RSR1 SYNTHETIC GROWTH DEFECT CDC42 SIGNALLING
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Table A.3: Genetic interactions (continued)

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

CLA4 CHS6 SYNTHETIC GROWTH DEFECT LATE SECRETION

CLA4 CHS5 SYNTHETIC GROWTH DEFECT LATE SECRETION

BEM1 ACT1 SYNTHETIC HAPLOINSUFFICIENCY ACTIN GENERAL

BEM2 ACT1 SYNTHETIC HAPLOINSUFFICIENCY ACTIN GENERAL

BEM2 SMY1 SYNTHETIC LETHALITY LATE SECRETION

CLA4 CHS5 SYNTHETIC LETHALITY LATE SECRETION

CLA4 SMY1 SYNTHETIC LETHALITY LATE SECRETION

CLA4 EDE1 SYNTHETIC LETHALITY ENDOCYTIC RECYCLING

CLA4 CHS6 SYNTHETIC LETHALITY LATE SECRETION

CLA4 BNI1 SYNTHETIC LETHALITY ACTIN GENERAL

CLA4 BEM4 SYNTHETIC LETHALITY CDC42 SIGNALLING

CLA4 ARP2 SYNTHETIC LETHALITY ACTIN GENERAL

BEM1 BBC1 SYNTHETIC LETHALITY ACTIN GENERAL

BEM2 TPM1 SYNTHETIC LETHALITY ACTIN GENERAL

CLA4 BUD6 SYNTHETIC LETHALITY ACTIN GENERAL

CLA4 RVS167 SYNTHETIC LETHALITY ACTIN GENERAL

CLA4 RVS161 SYNTHETIC LETHALITY ACTIN GENERAL

CLA4 VAC14 SYNTHETIC LETHALITY ENDOCYTIC RECYCLING

BEM2 CHS5 SYNTHETIC LETHALITY LATE SECRETION

CLA4 SPA2 SYNTHETIC LETHALITY ACTIN GENERAL

CLA4 MYO2 SYNTHETIC LETHALITY LATE SECRETION

BEM2 SAC6 SYNTHETIC LETHALITY ACTIN GENERAL

CLA4 FAB1 SYNTHETIC LETHALITY ENDOCYTIC RECYCLING

BEM2 MYO2 SYNTHETIC LETHALITY LATE SECRETION

BEM1 ARP2 SYNTHETIC LETHALITY ACTIN GENERAL

CLA4 PEA2 SYNTHETIC LETHALITY ACTIN GENERAL

CDC42 PEA2 SYNTHETIC LETHALITY ACTIN GENERAL

CDC24 SEC15 SYNTHETIC LETHALITY LATE SECRETION

CDC42 MSB3 SYNTHETIC LETHALITY LATE SECRETION

CDC42 SEC10 SYNTHETIC LETHALITY LATE SECRETION

CDC42 RSR1 SYNTHETIC LETHALITY CDC42 SIGNALLING
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Table A.3: Genetic interactions (continued)

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

BEM1 BNI1 SYNTHETIC LETHALITY ACTIN GENERAL

CDC42 BUD6 SYNTHETIC LETHALITY ACTIN GENERAL

CDC42 BEM4 SYNTHETIC LETHALITY CDC42 SIGNALLING

CDC42 BNI1 SYNTHETIC LETHALITY ACTIN GENERAL

CDC42 GIC2 SYNTHETIC LETHALITY CDC42 SIGNALLING

CDC42 CAP2 SYNTHETIC LETHALITY ACTIN GENERAL

CDC42 SEC8 SYNTHETIC LETHALITY LATE SECRETION

CDC42 SEC66 SYNTHETIC LETHALITY EARLY SECRETION

CDC42 SEC5 SYNTHETIC LETHALITY LATE SECRETION

CLA4 ARC40 SYNTHETIC LETHALITY ACTIN GENERAL

CDC42 SPA2 SYNTHETIC LETHALITY ACTIN GENERAL

CDC42 SEC9 SYNTHETIC LETHALITY LATE SECRETION

CDC42 SEC2 SYNTHETIC LETHALITY LATE SECRETION

CDC42 SEC15 SYNTHETIC LETHALITY LATE SECRETION

CDC42 CAP1 SYNTHETIC LETHALITY ENDOCYTIC RECYCLING

CDC24 BEM4 SYNTHETIC LETHALITY CDC42 SIGNALLING

CDC42 SEC3 SYNTHETIC LETHALITY LATE SECRETION

CDC42 SEC4 SYNTHETIC LETHALITY LATE SECRETION

BEM2 BNI1 SYNTHETIC LETHALITY ACTIN GENERAL

BEM2 ARC40 SYNTHETIC LETHALITY ACTIN GENERAL

RGA1 RIC1 SYNTHETIC LETHALITY ENDOCYTIC RECYCLING

BEM2 CDC24 SYNTHETIC LETHALITY CDC42 MODULE

BEM2 RGA1 SYNTHETIC LETHALITY CDC42 MODULE

BEM2 ARP2 SYNTHETIC LETHALITY ACTIN GENERAL

BEM2 CLA4 SYNTHETIC LETHALITY CDC42 MODULE

BEM1 ARC40 SYNTHETIC LETHALITY ACTIN GENERAL

BEM1 CDC42 SYNTHETIC LETHALITY CDC42 MODULE

BEM1 CDC24 SYNTHETIC LETHALITY CDC42 MODULE

BEM1 BEM2 SYNTHETIC LETHALITY CDC42 MODULE

BEM2 ACT1 SYNTHETIC LETHALITY ACTIN GENERAL

BEM1 SMY1 SYNTHETIC LETHALITY LATE SECRETION
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Table A.3: Genetic interactions (continued)

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

BEM1 CLA4 SYNTHETIC LETHALITY CDC42 MODULE

BEM3 CDC24 SYNTHETIC LETHALITY CDC42 MODULE

CDC24 CDC42 SYNTHETIC LETHALITY CDC42 MODULE

CDC42 CLA4 SYNTHETIC LETHALITY CDC42 MODULE

BEM1 MYO2 SYNTHETIC LETHALITY LATE SECRETION

CDC24 CDC42 SYNTHETIC LETHALITY (CONDI-

TIONAL)

CDC42 MODULE

BEM1 RDI1 Costanzo et al. 2010 CDC42 MODULE

BEM1 CDC42 Costanzo et al. 2010 CDC42 MODULE

BEM1 BOI1 Costanzo et al. 2010 CDC42 SIGNALLING

BEM1 CAP2 Costanzo et al. 2010 ACTIN GENERAL

BEM1 CHS6 Costanzo et al. 2010 LATE SECRETION

CDC42 SRO7 Costanzo et al. 2010 LATE SECRETION

CDC42 TPM1 Costanzo et al. 2010 ACTIN GENERAL

BEM1 ACT1 Costanzo et al. 2010 ACTIN GENERAL

CLA4 RGA1 Costanzo et al. 2010 CDC42 MODULE

BEM1 BEM4 Costanzo et al. 2010 CDC42 SIGNALLING

CDC42 SPA2 Costanzo et al. 2010 ACTIN GENERAL

BEM1 AIP1 Costanzo et al. 2010 ACTIN GENERAL

BEM2 CLA4 Costanzo et al. 2010 CDC42 MODULE

CDC42 GIC2 Costanzo et al. 2010 CDC42 SIGNALLING

BEM3 RGA1 Costanzo et al. 2010 CDC42 MODULE

BEM2 RGA1 Costanzo et al. 2010 CDC42 MODULE

BEM1 BUD6 Costanzo et al. 2010 ACTIN GENERAL

BEM2 BEM3 Costanzo et al. 2010 CDC42 MODULE

CDC42 CAP1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM1 ARC18 Costanzo et al. 2010 ACTIN GENERAL

BEM1 CAP1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM2 CDC42 Costanzo et al. 2010 CDC42 MODULE

CDC42 CAP2 Costanzo et al. 2010 ACTIN GENERAL

CLA4 SHE4 Costanzo et al. 2010 LATE SECRETION
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Table A.3: Genetic interactions (continued)

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

RDI1 YCK2 Costanzo et al. 2010 ENDOCYTIC RECYCLING

CLA4 RVS161 Costanzo et al. 2010 ACTIN GENERAL

RDI1 VRP1 Costanzo et al. 2010 ACTIN GENERAL

BEM1 ARF1 Costanzo et al. 2010 EARLY SECRETION

CLA4 PEA2 Costanzo et al. 2010 ACTIN GENERAL

CLA4 CHS5 Costanzo et al. 2010 LATE SECRETION

RGA1 ACT1 Costanzo et al. 2010 ACTIN GENERAL

BEM1 ARF3 Costanzo et al. 2010 ENDOCYTIC RECYCLING

CLA4 YEL1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

CLA4 TPM1 Costanzo et al. 2010 ACTIN GENERAL

RDI1 TOS2 Costanzo et al. 2010 CDC42 SIGNALLING

RDI1 BEM4 Costanzo et al. 2010 CDC42 SIGNALLING

RDI1 PEA2 Costanzo et al. 2010 ACTIN GENERAL

CLA4 SMY1 Costanzo et al. 2010 LATE SECRETION

CLA4 SLA1 Costanzo et al. 2010 ACTIN GENERAL

CLA4 SPA2 Costanzo et al. 2010 ACTIN GENERAL

RDI1 VPS27 Costanzo et al. 2010 ENDOCYTIC RECYCLING

RGA1 SRO7 Costanzo et al. 2010 LATE SECRETION

CLA4 BUD6 Costanzo et al. 2010 ACTIN GENERAL

CLA4 CAP2 Costanzo et al. 2010 ACTIN GENERAL

CLA4 CAP1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

RGA2 GET1 Costanzo et al. 2010 EARLY SECRETION

CLA4 BEM4 Costanzo et al. 2010 CDC42 SIGNALLING

RGA1 VPS9 Costanzo et al. 2010 ENDOCYTIC RECYCLING

RGA1 VRP1 Costanzo et al. 2010 ACTIN GENERAL

RGA1 BUD14 Costanzo et al. 2010 ACTIN GENERAL

BEM1 ATG8 Costanzo et al. 2010 EARLY SECRETION

CLA4 EDE1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

RGA1 CMD1 Costanzo et al. 2010 ACTIN GENERAL

CLA4 ICE2 Costanzo et al. 2010 EARLY SECRETION

RGA1 SLA1 Costanzo et al. 2010 ACTIN GENERAL
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Table A.3: Genetic interactions (continued)

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

RGA1 SLY41 Costanzo et al. 2010 EARLY SECRETION

BEM1 BBC1 Costanzo et al. 2010 ACTIN GENERAL

CLA4 CHS6 Costanzo et al. 2010 LATE SECRETION

BEM2 CCZ1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM2 BUL1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM2 BUD6 Costanzo et al. 2010 ACTIN GENERAL

BEM2 BUD14 Costanzo et al. 2010 ACTIN GENERAL

BEM2 CCZ1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM2 CAP2 Costanzo et al. 2010 ACTIN GENERAL

BEM2 CAP1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM2 BST1 Costanzo et al. 2010 EARLY SECRETION

BEM2 APL1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM2 ACT1 Costanzo et al. 2010 ACTIN GENERAL

BEM1 SEC61 Costanzo et al. 2010 LATE SECRETION

BEM2 BNI1 Costanzo et al. 2010 ACTIN GENERAL

BEM2 ARF1 Costanzo et al. 2010 EARLY SECRETION

BEM2 APS2 Costanzo et al. 2010 ENDOCYTIC RECYCLING

CDC24 RIC1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM1 FAR10 Costanzo et al. 2010 CDC42 SIGNALLING

BEM1 GIC1 Costanzo et al. 2010 CDC42 SIGNALLING

BEM2 GCS1 Costanzo et al. 2010 EARLY SECRETION

BEM2 MYO2 Costanzo et al. 2010 LATE SECRETION

BEM2 ICE2 Costanzo et al. 2010 EARLY SECRETION

BEM2 GIC1 Costanzo et al. 2010 CDC42 SIGNALLING

BEM2 ERV14 Costanzo et al. 2010 EARLY SECRETION

BEM2 CLC1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM2 CHS6 Costanzo et al. 2010 LATE SECRETION

BEM2 CHS5 Costanzo et al. 2010 LATE SECRETION

BEM2 COG7 Costanzo et al. 2010 EARLY SECRETION

BEM2 COG6 Costanzo et al. 2010 EARLY SECRETION

BEM2 CMD1 Costanzo et al. 2010 ACTIN GENERAL
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Table A.3: Genetic interactions (continued)

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

BEM1 RVS167 Costanzo et al. 2010 ACTIN GENERAL

BEM1 RVS161 Costanzo et al. 2010 ACTIN GENERAL

BEM1 RUD3 Costanzo et al. 2010 EARLY SECRETION

BEM1 SEC3 Costanzo et al. 2010 LATE SECRETION

BEM1 SEC15 Costanzo et al. 2010 LATE SECRETION

BEM1 SEC10 Costanzo et al. 2010 LATE SECRETION

BEM1 KES1 Costanzo et al. 2010 EARLY SECRETION

BEM1 PEA2 Costanzo et al. 2010 ACTIN GENERAL

BEM1 MYO2 Costanzo et al. 2010 LATE SECRETION

BEM1 KIN1 Costanzo et al. 2010 LATE SECRETION

BEM1 RHB1 Costanzo et al. 2010 EARLY SECRETION

BEM1 RGP1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM1 PXL1 Costanzo et al. 2010 ACTIN GENERAL

BEM1 YPT31 Costanzo et al. 2010 LATE SECRETION

BEM1 VPS74 Costanzo et al. 2010 EARLY SECRETION

BEM1 VPS51 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM1 VPS17 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM1 YEL1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM1 VRP1 Costanzo et al. 2010 ACTIN GENERAL

BEM1 GIC2 Costanzo et al. 2010 CDC42 SIGNALLING

BEM1 TPM1 Costanzo et al. 2010 ACTIN GENERAL

BEM1 SHE4 Costanzo et al. 2010 LATE SECRETION

BEM1 SEC72 Costanzo et al. 2010 EARLY SECRETION

BEM1 SEC63 Costanzo et al. 2010 LATE SECRETION

BEM1 SYT1 Costanzo et al. 2010 LATE SECRETION

BEM1 SPA2 Costanzo et al. 2010 ACTIN GENERAL

BEM1 SMY1 Costanzo et al. 2010 LATE SECRETION

CDC24 CAP2 Costanzo et al. 2010 ACTIN GENERAL

CDC24 CAP1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

CDC24 BUD6 Costanzo et al. 2010 ACTIN GENERAL

CDC24 PEA2 Costanzo et al. 2010 ACTIN GENERAL
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Table A.3: Genetic interactions (continued)

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

CDC24 GIC2 Costanzo et al. 2010 CDC42 SIGNALLING

CDC24 COG7 Costanzo et al. 2010 EARLY SECRETION

CDC24 BEM4 Costanzo et al. 2010 CDC42 SIGNALLING

BEM3 EDE1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM3 CHS5 Costanzo et al. 2010 LATE SECRETION

BEM2 SPA2 Costanzo et al. 2010 ACTIN GENERAL

BEM3 SMY1 Costanzo et al. 2010 LATE SECRETION

BEM3 SLA1 Costanzo et al. 2010 ACTIN GENERAL

BEM3 SHE4 Costanzo et al. 2010 LATE SECRETION

CDC42 BEM4 Costanzo et al. 2010 CDC42 SIGNALLING

CDC24 VPS41 Costanzo et al. 2010 ENDOCYTIC RECYCLING

CDC24 VAM7 Costanzo et al. 2010 ENDOCYTIC RECYCLING

CDC24 VAM6 Costanzo et al. 2010 ENDOCYTIC RECYCLING

CDC24 YPT7 Costanzo et al. 2010 ENDOCYTIC RECYCLING

CDC24 YPT32 Costanzo et al. 2010 LATE SECRETION

CDC24 YJL206C-

A

Costanzo et al. 2010 LATE SECRETION

CDC24 VAM3 Costanzo et al. 2010 ENDOCYTIC RECYCLING

CDC24 SPA2 Costanzo et al. 2010 ACTIN GENERAL

CDC24 SNX41 Costanzo et al. 2010 ENDOCYTIC RECYCLING

CDC24 RSR1 Costanzo et al. 2010 CDC42 SIGNALLING

CDC24 TPM1 Costanzo et al. 2010 ACTIN GENERAL

CDC24 TLG2 Costanzo et al. 2010 EARLY SECRETION

CDC24 SPH1 Costanzo et al. 2010 LATE SECRETION

BEM2 SHE4 Costanzo et al. 2010 LATE SECRETION

BEM2 SEC72 Costanzo et al. 2010 EARLY SECRETION

BEM2 SEC66 Costanzo et al. 2010 LATE SECRETION

BEM2 SNC2 Costanzo et al. 2010 LATE SECRETION

BEM2 SMY1 Costanzo et al. 2010 LATE SECRETION

BEM2 SHE4 Costanzo et al. 2010 LATE SECRETION

BEM2 SEC3 Costanzo et al. 2010 LATE SECRETION
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Table A.3: Genetic interactions (continued)

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

BEM2 RSR1 Costanzo et al. 2010 CDC42 SIGNALLING

BEM2 PXL1 Costanzo et al. 2010 ACTIN GENERAL

BEM1 ERV41 Costanzo et al. 2010 EARLY SECRETION

BEM2 SEC15 Costanzo et al. 2010 LATE SECRETION

BEM2 SEC10 Costanzo et al. 2010 LATE SECRETION

BEM2 RUD3 Costanzo et al. 2010 EARLY SECRETION

BEM3 BNI1 Costanzo et al. 2010 ACTIN GENERAL

BEM2 YCK1 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM2 VPS74 Costanzo et al. 2010 EARLY SECRETION

BEM2 VPS51 Costanzo et al. 2010 EARLY SECRETION

BEM3 ARC15 Costanzo et al. 2010 ACTIN GENERAL

BEM2 YPT32 Costanzo et al. 2010 LATE SECRETION

BEM2 YCK2 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM2 VPS30 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM2 SYT1 Costanzo et al. 2010 LATE SECRETION

BEM2 SSO2 Costanzo et al. 2010 LATE SECRETION

BEM2 SSO1 Costanzo et al. 2010 LATE SECRETION

BEM2 VPS21 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM2 VAC14 Costanzo et al. 2010 ENDOCYTIC RECYCLING

BEM2 TPM1 Costanzo et al. 2010 ACTIN GENERAL
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Table A.4: Physical interations

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

BEM1 ACT1 AFFINITY CAPTURE-WESTERN ACTIN GENERAL

BEM1 ACT1 AFFINITY PRECIPITATION ACTIN GENERAL

BEM1 ACT1 PHYSICAL INTERACTION ACTIN GENERAL

BEM1 ACT1 TWO HYBRID ACTIN GENERAL

BEM1 LAS17 AFFINITY CAPTURE-WESTERN ACTIN GENERAL

BEM1 LAS17 PHYSICAL INTERACTION ACTIN GENERAL

BEM2 BUD14 AFFINITY CAPTURE-MS ACTIN GENERAL

BEM2 BUD14 PHYSICAL INTERACTION ACTIN GENERAL

BEM2 SPA2 AFFINITY CAPTURE-MS ACTIN GENERAL

CDC42 BNI1 PHYSICAL INTERACTION ACTIN GENERAL

CDC42 BNI1 TWO HYBRID ACTIN GENERAL

CLA4 ABP1 PHYSICAL INTERACTION ACTIN GENERAL

CLA4 ABP1 TWO HYBRID ACTIN GENERAL

CLA4 SLA2 PHYSICAL INTERACTION ACTIN GENERAL

CLA4 SLA2 TWO HYBRID ACTIN GENERAL

RGA1 CMD1 AFFINITY CAPTURE-MS ACTIN GENERAL

BEM1 BOI1 AFFINITY CAPTURE-MS CDC42 SIGNALLING

BEM1 BOI1 AFFINITY PRECIPITATION CDC42 SIGNALLING

BEM1 BOI1 PCA CDC42 SIGNALLING

BEM1 BOI1 PHYSICAL INTERACTION CDC42 SIGNALLING

BEM1 BOI1 TWO HYBRID CDC42 SIGNALLING

BEM1 BOI2 AFFINITY CAPTURE-MS CDC42 SIGNALLING

BEM1 BOI2 PHYSICAL INTERACTION CDC42 SIGNALLING

BEM1 BOI2 RECONSTITUTED COMPLEX CDC42 SIGNALLING

BEM1 BOI2 TWO HYBRID CDC42 SIGNALLING

BEM1 FAR1 AFFINITY CAPTURE-WESTERN CDC42 SIGNALLING

BEM1 FAR1 AFFINITY CHROMATOGRAPHY CDC42 SIGNALLING

BEM1 FAR1 PHYSICAL INTERACTION CDC42 SIGNALLING

BEM1 FAR1 RECONSTITUTED COMPLEX CDC42 SIGNALLING

BEM1 FAR1 TWO HYBRID CDC42 SIGNALLING

BEM1 RSR1 AFFINITY CHROMATOGRAPHY CDC42 SIGNALLING
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Table A.4: Physical interations (continued)

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

BEM1 RSR1 PHYSICAL INTERACTION CDC42 SIGNALLING

BEM1 RSR1 RECONSTITUTED COMPLEX CDC42 SIGNALLING

BEM3 BEM4 PHYSICAL INTERACTION CDC42 SIGNALLING

BEM3 BEM4 TWO HYBRID CDC42 SIGNALLING

CDC24 BEM4 PHYSICAL INTERACTION CDC42 SIGNALLING

CDC24 BEM4 TWO HYBRID CDC42 SIGNALLING

CDC24 BOI1 AFFINITY CAPTURE-MS CDC42 SIGNALLING

CDC24 BOI1 AFFINITY CAPTURE-WESTERN CDC42 SIGNALLING

CDC24 BOI2 AFFINITY CAPTURE-MS CDC42 SIGNALLING

CDC24 BOI2 AFFINITY CAPTURE-WESTERN CDC42 SIGNALLING

CDC24 BOI2 PHYSICAL INTERACTION CDC42 SIGNALLING

CDC24 FAR1 AFFINITY CAPTURE-WESTERN CDC42 SIGNALLING

CDC24 FAR1 AFFINITY PRECIPITATION CDC42 SIGNALLING

CDC24 FAR1 PHYSICAL INTERACTION CDC42 SIGNALLING

CDC24 FAR1 RECONSTITUTED COMPLEX CDC42 SIGNALLING

CDC24 FAR1 TWO HYBRID CDC42 SIGNALLING

CDC24 RSR1 AFFINITY CAPTURE-WESTERN CDC42 SIGNALLING

CDC24 RSR1 AFFINITY PRECIPITATION CDC42 SIGNALLING

CDC24 RSR1 PHYSICAL INTERACTION CDC42 SIGNALLING

CDC24 RSR1 RECONSTITUTED COMPLEX CDC42 SIGNALLING

CDC24 RSR1 TWO HYBRID CDC42 SIGNALLING

CDC24 TOS2 PHYSICAL INTERACTION CDC42 SIGNALLING

CDC24 TOS2 TWO HYBRID CDC42 SIGNALLING

CDC42 BEM4 AFFINITY CAPTURE-MS CDC42 SIGNALLING

CDC42 BEM4 PHYSICAL INTERACTION CDC42 SIGNALLING

CDC42 BEM4 TWO HYBRID CDC42 SIGNALLING

CDC42 BOI1 PHYSICAL INTERACTION CDC42 SIGNALLING

CDC42 BOI1 TWO HYBRID CDC42 SIGNALLING

CDC42 BOI2 PHYSICAL INTERACTION CDC42 SIGNALLING

CDC42 BOI2 TWO HYBRID CDC42 SIGNALLING

CDC42 FAR1 PHYSICAL INTERACTION CDC42 SIGNALLING
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Table A.4: Physical interations (continued)

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

CDC42 FAR1 TWO HYBRID CDC42 SIGNALLING

CDC42 GIC1 AFFINITY CAPTURE-WESTERN CDC42 SIGNALLING

CDC42 GIC1 PHYSICAL INTERACTION CDC42 SIGNALLING

CDC42 GIC1 RECONSTITUTED COMPLEX CDC42 SIGNALLING

CDC42 GIC1 TWO HYBRID CDC42 SIGNALLING

CDC42 GIC2 AFFINITY CAPTURE-WESTERN CDC42 SIGNALLING

CDC42 GIC2 PHYSICAL INTERACTION CDC42 SIGNALLING

CDC42 GIC2 RECONSTITUTED COMPLEX CDC42 SIGNALLING

CDC42 GIC2 TWO HYBRID CDC42 SIGNALLING

CDC42 RSR1 AFFINITY CAPTURE-WESTERN CDC42 SIGNALLING

CDC42 RSR1 RECONSTITUTED COMPLEX CDC42 SIGNALLING

CDC42 SKM1 PHYSICAL INTERACTION CDC42 SIGNALLING

CLA4 BOI2 PHYSICAL INTERACTION CDC42 SIGNALLING

CLA4 BOI2 TWO HYBRID CDC42 SIGNALLING

CLA4 GIC1 PHYSICAL INTERACTION CDC42 SIGNALLING

CLA4 GIC1 TWO HYBRID CDC42 SIGNALLING

CLA4 GIC2 PHYSICAL INTERACTION CDC42 SIGNALLING

CLA4 GIC2 TWO HYBRID CDC42 SIGNALLING

CLA4 SKM1 AFFINITY CAPTURE-MS CDC42 SIGNALLING

RGA1 GIC2 PHYSICAL INTERACTION CDC42 SIGNALLING

RGA1 GIC2 TWO HYBRID CDC42 SIGNALLING

RGA2 RSR1 TWO HYBRID CDC42 SIGNALLING

BEM3 APL6 PHYSICAL INTERACTION EARLY SECRETION

CLA4 SEC23 AFFINITY CAPTURE-MS EARLY SECRETION

CDC24 ENT2 PHYSICAL INTERACTION ENDOCYTIC RECYCLING

CDC24 ENT2 TWO HYBRID ENDOCYTIC RECYCLING

RGA1 ENT1 AFFINITY CAPTURE-WESTERN ENDOCYTIC RECYCLING

RGA2 ENT1 AFFINITY CAPTURE-WESTERN ENDOCYTIC RECYCLING

BEM1 SEC10 RECONSTITUTED COMPLEX LATE SECRETION

BEM1 SEC15 AFFINITY CAPTURE-WESTERN LATE SECRETION

BEM1 SEC15 PHYSICAL INTERACTION LATE SECRETION
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Table A.4: Physical interations (continued)

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

BEM1 SEC15 RECONSTITUTED COMPLEX LATE SECRETION

BEM1 SEC15 TWO HYBRID LATE SECRETION

BEM1 SEC5 PCA LATE SECRETION

BEM1 SEC5 RECONSTITUTED COMPLEX LATE SECRETION

BEM1 SEC8 AFFINITY CAPTURE-WESTERN LATE SECRETION

CDC24 SEC15 PHYSICAL INTERACTION LATE SECRETION

CDC24 SEC15 TWO HYBRID LATE SECRETION

CDC42 MSB3 RECONSTITUTED COMPLEX LATE SECRETION

CDC42 MSB4 RECONSTITUTED COMPLEX LATE SECRETION

CDC42 SEC3 PHYSICAL INTERACTION LATE SECRETION

CDC42 SEC3 RECONSTITUTED COMPLEX LATE SECRETION

CLA4 SEC23 AFFINITY CAPTURE-MS LATE SECRETION

RGA1 MLC1 AFFINITY CAPTURE-MS LATE SECRETION

BEM1 CDC24 AFFINITY CAPTURE-MS CDC42 MODULE

BEM1 CDC24 AFFINITY CAPTURE-WESTERN CDC42 MODULE

BEM1 CDC24 AFFINITY PRECIPITATION CDC42 MODULE

BEM1 CDC24 PCA CDC42 MODULE

BEM1 CDC24 PHYSICAL INTERACTION CDC42 MODULE

BEM1 CDC24 PROTEIN-PEPTIDE CDC42 MODULE

BEM1 CDC24 RECONSTITUTED COMPLEX CDC42 MODULE

BEM1 CDC24 TWO HYBRID CDC42 MODULE

BEM1 CDC42 AFFINITY CAPTURE-WESTERN CDC42 MODULE

BEM1 CDC42 PHYSICAL INTERACTION CDC42 MODULE

BEM1 CDC42 RECONSTITUTED COMPLEX CDC42 MODULE

BEM1 CDC42 TWO HYBRID CDC42 MODULE

BEM1 CLA4 AFFINITY CAPTURE-WESTERN CDC42 MODULE

BEM1 RGA2 AFFINITY CAPTURE-MS CDC42 MODULE

BEM3 CDC42 TWO HYBRID CDC42 MODULE

BEM3 CLA4 PHYSICAL INTERACTION CDC42 MODULE

BEM3 CLA4 TWO HYBRID CDC42 MODULE

CDC24 CDC42 AFFINITY CAPTURE-WESTERN CDC42 MODULE
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Table A.4: Physical interations (continued)

QUERY INTERACTOR EXPERIMENT INTERACTOR CATEGORY

CDC24 CDC42 AFFINITY PRECIPITATION CDC42 MODULE

CDC24 CDC42 PHYSICAL INTERACTION CDC42 MODULE

CDC24 CDC42 RECONSTITUTED COMPLEX CDC42 MODULE

CDC24 CDC42 TWO HYBRID CDC42 MODULE

CDC24 CLA4 AFFINITY CAPTURE-WESTERN CDC42 MODULE

CDC24 RGA2 AFFINITY CAPTURE-MS CDC42 MODULE

CDC24 RGA2 AFFINITY CAPTURE-WESTERN CDC42 MODULE

CDC42 CDC24 AFFINITY CAPTURE-WESTERN CDC42 MODULE

CDC42 CDC24 AFFINITY PRECIPITATION CDC42 MODULE

CDC42 CDC24 PHYSICAL INTERACTION CDC42 MODULE

CDC42 CDC24 RECONSTITUTED COMPLEX CDC42 MODULE

CDC42 CDC24 TWO HYBRID CDC42 MODULE

CDC42 CLA4 AFFINITY CAPTURE-WESTERN CDC42 MODULE

CDC42 CLA4 PHYSICAL INTERACTION CDC42 MODULE

CDC42 CLA4 RECONSTITUTED COMPLEX CDC42 MODULE

CDC42 CLA4 TWO HYBRID CDC42 MODULE

CDC42 RDI1 AFFINITY CAPTURE-WESTERN CDC42 MODULE

CDC42 RDI1 AFFINITY PRECIPITATION CDC42 MODULE

CDC42 RDI1 FRET CDC42 MODULE

CDC42 RDI1 PHYSICAL INTERACTION CDC42 MODULE

CDC42 RDI1 TWO HYBRID CDC42 MODULE

CDC42 RGA1 PHYSICAL INTERACTION CDC42 MODULE

CDC42 RGA1 RECONSTITUTED COMPLEX CDC42 MODULE

CDC42 RGA1 TWO HYBRID CDC42 MODULE

CDC42 RGA2 TWO HYBRID CDC42 MODULE

CLA4 RGA1 PHYSICAL INTERACTION CDC42 MODULE

CLA4 RGA1 TWO HYBRID CDC42 MODULE
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A.2 Abbreviations

aa Amino acid

ADP Adenosine-5’-diphosphate

ATP Adenosine-5’-triphosphate

ATPase Adenoisine triphosphate hydrolase

bp Base pair(s)

C-terminal Carboxyl terminal

CCD Charge-coupled device

Cdc Cell division cycle

CDK Cyclin-dependent kinase

CEN plasmid Centromeric plasmid

ConA Concanavalin A

CRIB domain Cdc42/Rac-interactive binding domain

DAD domain Diaphanous autoregulatory domain

ddH2O Double distilled water

DIC Differential interference contrast microscopy

DID diaphanous inhibitory domain

DMSO Dimethylsulfoxide

DNA Deoxyribonucleic acid

DRF Diaphanous related formin

EDTA Ethylenediaminetetraacetic acid

EGFP Enhanced green fluorescent protein

EGTA Ethylene glycol tetraacetic acid

EM Electron microcopy

ER Endoplasmic reticulum

F-actin Filamentous actin

FCCS Fluorescence correlation spectroscopy

FH Formin homology

Fig. Figure

FRAP Fluorescence recovery after photobleaching
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G-actin Globular actin

G1 GAP phase 1

G2 GAP phase 2

GAP GTPase-activating protein

GDF GDP dissociation factor

GDI GDP dissociation inhibitors

GDP Guanosine-5’-biphosphate

GEF Guanine-nucleotide-exchange factor

GEN Geneticin

GFP Green fluorescent protein

GTP Guanosine-5’-triphosphate

GTPase Guanosine triphosphate hydrolase

HAF Hexdecanoylaminofluorescei

HYG Hygromycin B

KAN Kanamycin

LatB Latrunculin B

LB Luri-Bertani medium

M Mitosis

Mant Methylanthaniloyl-modified

MAPK Mitogen-activated protein kinase

MOPS 3-(N-morpholino) propanesulfonic acid

N Sample size

N-terminal Amino terminal

Nat Nourseothricin

ORF Open-reading frame

PAK p21-activated kinase

PBS Phosphate-buffered saline

PCR Polymerase chain reaction

PE Phosphatidylethanolamine

PEG Polyethylenglycol
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PH domain Pleckstrin homology domain

PI3 Kinase Phosphatidyl-3-Kinase

Pi Phosphate

PIP2 Phosphatidylinositol 4,5-bisphosphate

PIP3 Phosphatidylinositol(3,4,5)-triphosphate

PM Plasma membrane

PS Phosphatidylserine

PTEN Phosphatase and tensin homolog

RFP Red fluorescent protein

RNA Ribonucleic acid

rpm Rounds per minute (centrifugation)

RT Room temperature

S phase Synthesis phase

SC Synthetic complete

SD Standard deviation

SD Synthetic drop-out

SDS Sodium dodecyl sulfate

SEM Standard error of mean

TAE Tris-acetate-EDTA

TBE Tris-Borate-EDTA

TE Tris-EDTA

TIRFM Total internal reflection microscopy

Tris Tris(hydroxymethyl)aminomethane

ts Temperature sensitive

U Unit (enzyme activity unit)

v/v Volume over volume

w/v Weight over volume

WASp Wiscott-Aldrich Syndrome

YPD Yeast extract (Y)-peptone (P)- Glucose (D)

YT Yeast extract (Y)-tryptone (T)
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A.3 Declaration

Declaration according to the "Promotionsordnung der LMU München für die Fakultät Bi-

ologie"

Hiermit erkläre ich, dass die vorgelegte Arbeit in der Zeit vom 8.10.2007 bis März 2012 in der

Arbeitsgruppe zelluläre Dynamik und Musterbildung von Dr. Roland Wedlich-Söldner am

Max-Planck-Institut für Biochemie in Martinsried entstanden ist. Die Arbeit wird erstmalig

einer Prüfungskommission vorgelegt und weiterhin habe ich weder an einem anderen Ort

eine Promotion angestrebt noch angemeldet noch versucht eine Doktorprüfung abzule-

gen.

Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir selbständig

und ohne unerlaubte Hilfe angefertigt wurde.

München, den 12. März 2012

Tina Freisinger
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A.4 Contributions

All FRAP analyses were conducted with a Matlab GUI developed by Nikola Müller.

Results 3.2.1: The synthetic lethal screen was performed in collaboration with Prof. Dr.

Charles Boone’s lab at the University of Toronto. While members of the Boone lab con-

ducted the screening and computational analysis, I performed random spore analysis

and tetrad dissection to verify genetic interactions of interest. Nikola Müller collected

genetic and physical interactions from our own experiments, literature and databases

to compare genetic and physical interactions in the heat map and interaction map de-

picted in Figure 3.4 B.

Results 3.3: The biochemical in vitro experiments in Figure 3.9, 3.11 and 3.12 were con-

tributed by Jared Johnson from Prof. Dr. Eric Cerione’s lab at Cornell University.

Results 3.6: The stochastic model was developed and contributed by Ben Klünder from

Prof. Dr. Erwin Frey’s group at the LMU.
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