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SUMMARY 

Newly synthesized polypeptide chains must fold co- or/and post-translationally into 

precise three-dimensional conformation in order to become functionally active. Failure to 

fold correctly can result in different types of biological malfunctions. Living cells have 

developed molecular chaperones to prevent misfolding and aggregation of newly 

synthesized proteins and for the maintainance of protein homeostasis under stress 

condition.  

 

 Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) catalyses the critical 

step in CO2 fixation from the atmosphere during photosynthesis. Rubisco is inefficient and 

is subject to competitive inhibition by O2. This makes Rubisco an important target for 

possible functional improvement by protein engineering. However, such attempts are 

hampered by the complex folding and assembly pathway of Rubisco. The bacterial 

GroEL/ES system and its chloroplast homologue, the ch-cpn60/20 system, are implicated 

in the efficient folding of Rubisco. While the structure and function of GroEL/ES are well 

understood, much less is known about ch-cpn60/20. Of particular interest was cpn20, 

which consists of a tandem repeat of GroES. The present study, using electron 

microscopy, revealed that cpn60 and cpn20 form bullet shaped, asymmetric complexes, 

similar to GroEL/ES complexes. in vitro translation experiments demonstrated that ch-

cpn60/20 can functionally replace GroEL/ES in the folding of cyanobacterial Rubisco 

large subunits. In addition to the chaperonin system, a chaperone factor, called RbcX, 

has been implicated in the assembly of RbcL8 complexes of cyanobacterial Rubisco 

(Form I Rubisco).  

 

RbcX is a dimer of ~30 kDa. In the present study, a mutational analysis of 

cyanobacterial RbcX from Synechococcus sp. PCC7002 was carried out. Mutant forms of 

RbcX were analysed by crystallography and demonstrated to be structurally identical to 

wild type RbcX. A central crevice and the peripheral corner regions of the RbcX dimer 

were identified as functionally critical for Rubisco assembly. The central crevice binds the  
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conserved C-terminal sequence, EIKFEFD, of the Rubisco large subunit. The dysfunction 

of the central crevice or the peripheral corner of RbcX leads to misassembly or non-

specific Rubisco aggregation.  

 

A preliminary analysis of RbcX from Arabidopsis thaliana revealed that higher plant 

RbcX and cyanobacterial RbcX share a similarity in their secondary structure and 

function, indicating a universal role of RbcX in Rubisco assembly. The information on 

Rubisco folding and assembly provided in this study may be helpful for future efforts in 

improving the functional properties of this enzyme. 



INTRODUCTION 
 

 

3 
 

2   INTRODUCTION 

Proteins are the major components of living organisms and perform a wide range 

of essential functions in cells. The word ‘protein’ was first coined in 1838 to emphasize 

the importance of this class of molecules. The word is derived from the Greek word 

‘proteios’ which means "of the first rank". While DNA is the information molecule, it is 

proteins that do the work of all cells - microbial, plant, animal. Many proteins are enzymes 

that catalyze biochemical reactions and are vital to metabolism. Proteins also have 

structural or mechanical functions, such as actin and myosin in muscle and the proteins in 

the cytoskeleton, which form a system of scaffolding that maintains cell shape. Other 

proteins are important in cell signaling, immune responses, cell adhesion, and the cell 

cycle. 

Proteins are made of amino acids arranged in a linear chain and joined together by 

peptide bonds between the carboxyl and amino groups of adjacent amino acid residues. 

2.1   Structure of proteins 

Newly synthesized protein chains generally must fold into unique three 

dimensional structures in order to become functionally active. The shape into which a 

protein naturally folds is known as its native state. Although many proteins can fold 

unassisted, simply through the chemical properties of their amino acids, others require 

the aid of molecular chaperones to fold into their native states. Four levels of structural 

organization for proteins can be outlined: primary, secondary, tertiary, and quaternary. 

The overall conformation of a protein is the combination of these elements.  

• Primary Structure refers to the linear sequence of amino acids that make up the 

polypeptide chain. This sequence is determined by the genetic code, the sequence of 

nucleotide bases in the DNA.  

•  Secondary structure is the ordered arrangement or conformation of amino acids in 

localized regions of a polypeptide or protein molecule. Hydrogen bonding plays an 

important role in stabilizing these folding patterns. The two main secondary structures are  
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the alpha helix and the anti-parallel beta-pleated sheet. A single polypeptide or protein 

may contain multiple secondary structures. 

• The tertiary structure is the final specific geometric shape that a protein assumes. 

This final shape is determined by a variety of bonding interactions between the "side 

chains" on the amino acids. A major driving force in determining the tertiary structure of 

globular proteins is the hydrophobic effect. The polypeptide chain folds such that the side 

chains of the nonpolar amino acids are "hidden" within the structure and the side chains 

of the polar residues are exposed on the outer surface. Hydrogen bonding involving 

groups from both the peptide backbone and the side chains are important in stabilizing 

tertiary structure. The tertiary structure of some proteins is stabilized by disulfide bonds 

between cysteine residues.  As a result, bonding interactions between "side chains" may 

cause a number of folds, bends, and loops in the protein chain. Different fragments of the 

same chain may become bonded together.  

• Quaternary structure involves the association of two or more polypeptide chains into 

a multi-subunit structure. Quaternary structure is the stable association of multiple 

polypeptide chains resulting in an active unit. Not all proteins exhibit quaternary 

structure. Usually, each polypeptide within a multi-subunit protein folds more-or-less 

independently into a stable tertiary structure and the folded subunits associate with each 

other to form the final structure. Quaternary structures are stabilized mainly by 

noncovalent interactions. All types of noncovalent interactions: hydrogen bonding, van 

der Walls interactions and ionic bonding are involved in the interactions between 

subunits. In rare instances, disulfide bonds between cysteine residues in different 

polypeptide chains are involved in stabilizing quaternary structure. 

In addition to these levels of structure, proteins may shift between several related 

structures while they perform their biological function. In the context of these functional 

rearrangements, these tertiary or quaternary structures are usually referred to as 

"conformations", and transitions between them are called ‘conformational changes’. Such 

changes are often induced by the binding of a substrate molecule to an enzyme's active 

site, or the physical region of the protein that participates in chemical catalysis. In solution 
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all proteins undergo variation in structure through thermal vibration and the collision with 

other molecules (Nelson and Cox, 2005). 

2.2   Protein folding 

Protein folding is a process by which a polypeptide folds into its characteristic and 

functional three-dimensional structure. The ability of a protein to fold reliably into a pre-

determined conformation despite a near infinite number of possibilities is still poorly 

understood. It has long been known that the structure of a protein is determined purely by 

the amino acid sequence (Anfinsen, 1973) and the structure of the protein determines the 

function. By extension, the function of a protein depends entirely on the ability of the 

protein to fold rapidly and reliably to its native structure. Many proteins fold spontaneously 

into their native structure in aqueous solution. This folding process must satisfy two 

conditions - one thermodynamic, and one kinetic. The thermodynamic consideration is 

that the protein adopts a single, stable, folded conformation. The kinetic requirement is 

that the protein must fold to the native state on an appropriate timescale. 

     If a protein were to fold by sequentially sampling all possible conformations, it 

would take an enormous amount of time to do so, even if the conformations were 

sampled at a rapid rate; yet proteins are able to fold on a timescale of milliseconds to 

seconds. This suggests that only a small amount of conformational space is sampled 

during the folding process and this in turn implies the existence of kinetic folding 

pathways, as first suggested by Levinthal (Levinthal, 1968). This paradox of how proteins 

fold rapidly and reliably to their native conformation is known as the protein folding 

problem.  

The major driving force in protein folding is considered to be the hydrophobic 

effect, which causes the formation of conformations stabilized by packing the side chains 

of hydrophobic amino acids into the interior of the protein. The folding process of a protein 

generally depends on the strength of this hydrophobic effect as well as on the stability of 

the protein and can be described by the energy landscape theory.  
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The topology of the folding energy landscape can best be described as a funnel 

with a rough surface (Schultz, 2000). A folding funnel is a simplified 2D or 3D 

representation of the very high-dimensional conformational space that the polypeptide 

can access during folding (Figure 1). Energetically, all possible conformations of the chain 

(chain entropy) is represented by the width of the funnel: the broad top of the funnel 

depicts the enormous number of conformations present in the soluble denatured state, 

such as an ensemble of starting conformations populated on rapid dilution from a urea- or 

guanidine-denatured state; the needle-like point at the bottom of the funnel represents the 

unique native structure of the protein as determined by X-ray crystallography or NMR. 

The separation between the top and bottom of the funnel represents other energy 

contributions (chain enthalpy, solvent entropy and enthalpy) to each chain conformation. 

The roughness of the funnel surface, and thus the formation of the native state can vary 

significantly between different types of proteins. Pure α-helical proteins almost 

simultaneously undergo an enormous reduction in conformational space and 

hydrodynamic radius, form local segments of structure, and immediately gain some 

tertiary interactions. α/β proteins initially collapse their hydrophobic cores  (Li and 

Woodward, 1999) before assembling into ordered structures where the formation of β-

sheets seems to be the rate-limiting step. Some folding pathways therefore include the 

formation of transient intermediates or more stabilized states such as the molten globule 

(Tsai et al., 1999). 
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Figure 1. Schematic representation of the folding energy landscape of a protein molecule. 
The multiple states of the unfolded protein located at the top fall into a folding funnel consisting of an almost 
infinite number of local minima, each of which describes possible folding arrangements in the protein. Most 
of these states represent transient folding intermediates in the process of attaining the correct native fold. 
Some of these intermediates retain a more stable structure such as the molten globule, whereas other local 
minima act as folding traps irreversibly capturing the protein in a misfolded state (Schultz, 2000).  

 

2.3   Disruption of the native state 

In certain solutions and under some conditions proteins will not fold into their 

biochemically functional forms. Temperatures above (and sometimes those below) the 

range that cells tend to live in will cause thermally unstable proteins to unfold or 

"denature". High concentrations of solutes, extremes of pH, mechanical forces, and the 

presence of chemical denaturants can do the same. A fully denatured protein lacks both 

tertiary and secondary structure, and exists as a random coil. Under certain conditions 

some proteins can refold; however, in many cases denaturation is irreversible. 

 

2.4   Incorrect protein folding and disease 

Following its translation on the ribosome, the newly synthesized protein must fold 

into the conformation it requires in order to fulfill its biological role. This is not a trivial task 

because the number of theoretical interactions between each of the amino acid side 
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chains in a protein far exceeds the total number of protein molecules within the cell and 

establishing the correct interactions is vital if the protein has to fold correctly. Due to the 

fact that translation by ribosomes proceeds at a relatively low speed and in a vectorial 

manner, the elongating polypeptide chains are not available for folding at once (Frydman, 

2001; Hartl and Hayer-Hartl, 2002). Also the emerging chain must face the crowded 

environment of the cell (300 to 400 g/liter of proteins and other macromolecules in 

Escherichia coli (Ellis, 2001) and so the chance of it making inappropriate contacts with 

other proteins is very high. Yet, the driving force that pushes the protein to attain its 

lowest free energy state (i.e. its native conformation in the majority of cases) ensures that 

most proteins fold spontaneously and rapidly (in the order of micro- to milliseconds) and, 

more often than not, folding occurs without problems. Many proteins never attain a 

defined conformation, and instead, remain intrinsically disordered in their biologically 

active state, that is, they have ill-defined secondary and tertiary structures in their native 

state (Ecroyd and Carver, 2008). 

Multi-domain proteins refold inefficiently in contrast to the small, single-domain 

proteins which fold spontaneously. They could form partially folded intermediates that can 

aggregate (Figure 2) due to which the proteins are no longer able to enter their productive 

folding pathways. Owing to the high local concentration of nascent chains in 

polyribosomes and the added effect of macromolecular crowding, the probability of 

nonnative states to aggregate is increased (Hartl and Hayer-Hartl, 2002). 
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Figure 2. States accessible to a protein after its biosynthesis on the ribosome 
A newly synthesized polypeptide chain can fold to a monomeric native structure from a highly disordered 
unfolded state often through one or more partly folded intermediates. However, it can experience other 
fates such as degradation or aggregation. An amyloid fibril is just one unique form of aggregate having a 
highly organized ‘misfolded’ structure. Other assemblies, including functional oligomers, macromolecular 
complexes and natural protein fibers, contain natively folded molecules, as do the protein crystals produced 
in vitro for X-ray diffraction studies of their structures. In living systems, transitions between the different 
states are highly regulated by the environment and by the presence of molecular chaperones, proteolytic 
enzymes and other factors. Failure of such regulatory mechanisms is likely to be a major factor in the onset 
and development of misfolding diseases (Vendruscolo and Dobson, 2005). 
 
 

Under normal conditions, protein aggregation does occur up to a certain level in 

cells and this may lead to various diseases.  Aggregated proteins are associated with 

prion-related illnesses such as Creutzfeldt-Jakob disease, bovine spongiform 

encephalopathy (mad cow disease), amyloid-related illnesses such as Alzheimer's 



INTRODUCTION 
 

 

10 
 

disease and familial amyloid cardiomyopathy or polyneuropathy, as well as 

intracytoplasmic aggregation diseases such as Huntington's and Parkinson's disease. 

These age onset degenerative diseases are associated with the multimerization of 

misfolded proteins into insoluble, extracellular aggregates and/or intracellular inclusions 

containing cross-beta sheet amyloid fibrils (Figure 2) (Murphy, 2002; Vendruscolo and 

Dobson, 2005). Misfolding and excessive degradation instead of folding and function 

leads to a number of proteopathy diseases such as antitrypsin-associated Emphysema, 

cystic fibrosis and the lysosomal storage diseases, where loss of function is the origin of 

the disorder.  

The exposed hydrophobic patches might favour the interaction of the misfolded 

species with cell membranes which may lead to impairment of the function and integrity of 

the membranes involved, resulting in loss of regulation of the intracellular ion balance and 

redox status and eventually to cell death. A wide range of biological processes may be 

impaired by the interaction of misfolded proteins with other cellular components (Ellis, 

1991).  

Considering that cells are characterized by high intracellular concentrations of 

protein surfaces, there is a need for mechanisms to prevent incorrect interactions 

between these surfaces; one such mechanism is the existence of ‘Molecular chaperones’ 

(Ellis and Hartl, 1996). 

2.5   Molecular chaperones 

Chaperones are proteins that assist the non-covalent folding/unfolding and the 

assembly/disassembly of other macromolecular structures, but do not occur in these 

structures when the latter are performing their normal biological functions.  

The term ‘molecular chaperone’ was used first by Laskey (Laskey et al., 1978) to 

describe the function of nucleoplasmin to prevent the aggregation of folded histone 

proteins with DNA during the assembly of nucleosomes. The term was later extended by 

John Ellis in 1987 to describe proteins that mediate the post-translational assembly of 
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protein complexes (Ellis, 1991). Later it was realized that similar proteins mediate this 

process in both prokaryotes and eukaryotes.  

Many chaperones are expressed constitutively and their level increases under 

stress conditions (Gething and Sambrook, 1992) and hence chaperones are termed as 

stress proteins or heat-shock proteins (Hsps). In general, chaperones recognize 

hydrophobic residues and/or unstructured backbone regions in their substrates. 

Chaperone binding not only prevents intermolecular aggregation by shielding the 

interactive surfaces of non-native polypeptides, but also prevents or reverses 

intramolecular misfolding (Hartl and Hayer-Hartl, 2002). 

Molecular chaperones are found in all compartments of a cell where folding or, 

conformational rearrangements of proteins occur. Based on their molecular weight, 

molecular chaperones are divided into several classes or families. A cell may express 

multiple members of the same chaperone family. There exists significant amount of 

sequence homology among the members of the same class of molecular chaperones and 

they might be structurally and functionally related, while chaperones from different 

families are structuraly unrelated (Walter and Buchner, 2002). Major classes of 

chaperones are Hsp100 (ClpA/B/X), Hsp90 (HtpG), Hsp70 (DnaK), the chaperonin-Hsp60 

(GroEL), and the small Hsps (IbpA/B). These chaperones exhibit housekeeping functions 

under physiological conditions and damage-control functions under stress conditions 

(Ben-Zvi and Goloubinoff, 2001). 

2.5.1   Chaperones involved in de novo protein folding 

In the cytosol, de novo protein folding is accomplished by two distinct sets of 

chaperones. Trigger factor and the Hsp70s hold the nascent and newly synthesized 

chains in a state competent for folding upon release into the medium. In contrast, the 

large, cylindrical chaperonin complexes provide physically defined compartments inside 

which a complete protein or a protein domain can fold while being sequestered from the 

cytosol. These two classes of chaperones are conserved in all three domains of life 

(Figure 3) and can cooperate in a topologically and timely ordered manner (Hartl and 
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Hayer-Hartl, 2002). Some of these chaperones, including trigger factor and specialized 

Hsp70 proteins, bind directly to the ribosome near the polypeptide exit site and are 

positioned to interact generally with nascent chains.  

Most of the small proteins fold rapidly, without further assistance upon completion 

of synthesis and release from this first set of components. Longer chains interact 

subsequently with members of a second class of nascent chain-binding chaperones, 

including Hsp70s and prefoldin (Figure 3), which do not associate directly with the 

ribosome. In addition to stabilizing elongating chains, these chaperones also assist in co- 

or posttranslational folding, or facilitate chain transfer to downstream chaperones. A 

subset of slow-folding and aggregation-sensitive proteins (10 to 15% of total) interacts 

with a chaperonin for folding in both prokaryotes and eukaryotes. Many eukaryotic 

kinases and other signal-transduction proteins use an additional chaperone pathway from 

Hsp70 to Hsp90 (Figure 3), a specialized ATP-dependent chaperone that cooperates with 

ancillary factors in protein folding and regulation (Hartl and Hayer-Hartl, 2002). 

 
 
Figure 3. Models for the chaperone-assisted folding of newly synthesized polypeptides in the 
cytosol of Eubacteria, Archaea and Eukarya (Hartl and Hayer-Hartl, 2002). 
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A. In Eubacteria, nascent chains probably interact generally with trigger factor (TF), and most small proteins 
(~65 to 80% of total) fold rapidly upon synthesis without further assistance. Longer chains (10 to 20% of 
total) interact subsequently with DnaK and DnaJ and fold upon one or several cycles of ATP-dependent 
binding and release. About 10 to 15% of chains transit the chaperonin system--GroEL and GroES--for 
folding. GroEL does not bind to nascent chains and is thus receive an appreciable fraction of its substrates 
after their interaction with DnaK.  
(B) Archaea. PFD, prefoldin; NAC, nascent chain-associated complex. Only some archaeal species contain 
DnaK/DnaJ. The existence of a ribosome-bound NAC homolog, as well as the interaction of PFD with 
nascent chains, has not yet been confirmed experimentally. 
(C) In Eukarya, NAC probably interacts generally with nascent chains. The majority of small chains may fold 
upon ribosome release without further assistance. About 15 to 20% of chains reach their native states in a 
reaction assisted by Hsp70 and Hsp40, and a fraction of these must be transferred to Hsp90 for folding. 
About 10% of chains are co- or posttranslationally passed on to the chaperonin TRiC in a reaction mediated 
by PFD.   
 
 

2.5.2   Ribosome-Binding Chaperones 

In E. coli, Trigger factor (TF) is the first chaperone to meet nascent polypeptides 

(Figure 3A) as they emerge from ribosomes. It is 48 kDa in size and binds to ribosomes at 

a 1:1 stoichiometry (Hesterkamp et al., 1996). TF exhibits peptidyl-prolyl cis/trans 

isomerase (PPIase) activity in vitro; however, independent of proline residues, TF 

recognizes the target polypeptides enriched in hydrophobic (aromatic) amino acids 

(Patzelt et al., 2001). TF has an overlapping chaperone function with the main bacterial 

Hsp70 system, DnaK and DnaJ, in stabilizing nascent chains in a state competent for 

subsequent folding. E. coli cells lacking TF (∆tig) or DnaK (∆dnak) exhibit no apparent 

folding defects at 37°C; however, deletion of dnaK in a ∆tig strain is lethal (Genevaux et 

al., 2004). TF docks onto the ribosomal L23 protein and also contacts L29, both of which 

are near the polypeptide exit site of the large ribosome subunit. Because TF is an ATP-

independent chaperone, it does not actively assist folding through nucleotide-regulated 

cycles of polypeptide binding and release. TF has been shown to increase the folding 

efficiency of certain multidomain proteins concomitant with delaying their folding relative 

to translation (Agashe et al., 2004). TF is thought to function by scanning a nascent chain 

as it is extruded from the exit site and shielding hydrophobic stretches to keep them 

soluble. Active folding of the nascent and newly synthesized polypeptides can then be 
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mediated by ATP-dependent chaperones, such as DnaK or GroEL (Hartl and Hayer-Hartl, 

2002).  

In the eukaryotic cytosol, with TF being absent, NAC (nascent chain–associated 

complex) functions as the ribosome associated chaperone. It is a heterodimeric complex 

of α (33 kDa) and β (22 kDa) subunits (Wiedmann et al., 1994). NAC binds to short 

nascent chains and dissociates upon chain release from the ribosome (Beatrix et al., 

2000; Hartl, 1996). 

Yeast and other fungi have cytosolic Hsp70 homologs that are specialized in 

nascent chain binding. The Ssb1 and Ssb2 proteins in the yeast Saccharomyces 

cerevisiae interact with the ribosome and with short nascent chains. This function of the 

Ssb proteins appears to be mediated by another Hsp70, Ssz1, which forms a stable 

ribosome-associated complex with zuotin (Gautschi et al., 2001), the Hsp40 partner of 

Ssb1 and Ssb2 (Bukau et al., 2000). RAC and the Ssb proteins act in concert in 

stabilizing nascent chains (Hartl and Hayer-Hartl, 2002).  

 

2.5.3   The Hsp70 system 

Hsp70s are a highly conserved family of proteins, distributed ubiquitously in all 

prokaryotes and in cellular compartments of eukaryotic organisms. There are multiple 

homologs of Hsp70 with distinct cellular functions in some compartments. The yeast S. 

cerevisiae has four non-ribosome-binding Hsp70 proteins in the cytosol, namely, Ssa1 to 

Ssa4 and three ribosome-associated Hsp70s, called Ssb1, Ssb2, and Pdr13 (or Ssz1). 

Only Ssa-type function is essential for viability and Ssb activity cannot substitute for Ssa 

activity. Higher eukaryotes have both constitutively expressed Hsp70 homologs (Hsc70) 

and stress-inducible forms (Hsp70) in their cytosol. In an ATP-dependent manner, 

Hsp70s, assisted by Hsp40 (DnaJ) cochaperones, function by binding and releasing the 

extended polypeptide segments exposed by non-native states of the proteins (Hartl and 

Hayer-Hartl, 2002). 
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Hsp70 assists a wide range of folding processes, including the folding and 

assembly of newly synthesized proteins, refolding of misfolded and aggregated proteins, 

membrane translocation of organellar and secretory proteins, and control of the activity of 

regulatory proteins (Bukau et al., 2000; Hartl and Hayer-Hartl, 2002; Young et al., 2003).  

Hsp70s have thus housekeeping functions in the cell in which they are built-in 

components of folding and signal transduction pathways, and quality control functions in 

which they proofread the structure of proteins and repair misfolded conformers (Mayer 

and Bukau, 2005).  

The Hsp70 homolog of E. coli (DnaK), its Hsp40 cochaperone (DnaJ) and the 

nucleotide exchange factor (GrpE) are very well characterized structurally and 

mechanistically. DnaK consists of an NH2-terminal ATPase domain of ~44-kDa and a 

COOH-terminal peptide-binding domain of ~27-kDa (Figure 4A). The latter is divided into 

a β-sandwich subdomain with a peptide-binding cleft and an α-helical latch-like segment. 

The exposed hydrophobic amino acid side chains in conjunction with an accessible 

polypeptide backbone, mostly found in the nascent chains, are recognized by DnaK. The 

α-helical latch over the peptide-binding cleft is in an open conformation in the ATP-bound 

state of DnaK (Figure 4B). It is in this state that rapid peptide binding occurs. Upon 

hydrolysis of ATP to ADP, the latch closes holding the peptide in a stable state. DnaJ and 

GrpE regulate the cycling of DnaK between its different nucleotide-bound states. The 41-

kDa DnaJ protein can bind to unfolded polypeptides and prevent their aggregation 

(Langer et al., 1992a; Rudiger et al., 2001). DnaJ binds to DnaK and stimulates its 

ATPase activity, generating the ADP-bound state of DnaK, which interacts stably with the 

polypeptide substrate. The 23-kDa GrpE protein acts as a nucleotide exchange factor; it 

binds to the ATPase domain of DnaK and, by distorting the nucleotide binding pocket, 

induces release of bound ADP. Finally, rebinding of ATP triggers dissociation of the 

DnaK-substrate complex (Hartl and Hayer-Hartl, 2002). 
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Figure. 4. Structure and reaction cycle of DnaK system. 
(A) Structures of the ATPase domain and the peptide-binding domain of DnaK. The α-helical latch of the 
peptide binding domain is shown in yellow and a extended peptide substrate in pink. ATP indicates the 
position of the nucleotide binding site. The interaction of prokaryotic and eukaryotic cofactors with Hsp70 is 
shown schematically. Only the Hsp70 proteins of the eukaryotic cytosol have the COOH-terminal sequence 
EEVD that is involved in binding of tetratricopeptide repeat (TPR) cofactors.  
(B) Simplified reaction cycle of the DnaK system with DnaK colored as in (A). J, DnaJ; E, GrpE; S, substrate 
peptide. The cycle starts with the association of non native substrate proteins with either DnaJ (J) or DnaK 
(K) in the ATP-bound open conformation. DnaJ and substrate protein then stimulate the ATP hydrolysis of 
DnaK, resulting in the closure of its substrate binding pocket. The interaction of GrpE (E) with DnaK 
promotes the exchange of bound ADP for ATP. This results in the opening of the substrate binding cleft and 
the exchange of substrate proteins. The released protein can then either fold towards the native state or 
rebind to DnaJ or DnaK (Hartl and Hayer-Hartl, 2002). 
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Hsp70 also facilitates the posttranslational folding of multidomain proteins through 

cycles of binding and release. On release from Hsp70, an unfolded chain is free to 

partition to its native state. Slow-folding intermediates may rebind to Hsp70 and thus 

escape aggregation.  

 

2.5.4   Prefoldin or Gim complex 
 

In eukaryotic cells and archaea, the Gim complex (GimC, genes involved in 

microtubule biogenesis) or prefoldin, respectively, acts in an Hsp70-like manner in 

stabilizing nascent chains. Prefoldin (PFD) is a jelly fish like 90-kDa complex of two α and 

four β subunits (Figure 5). The six α-helical coiled-coil tentacles arising from the β-barrel 

body expose hydrophobic amino acid residues for the binding of nonnative protein (Figure 

5A and 5B). Substrate binding and release by PFD is ATP independent. in vitro, 

mammalian and archaeal PFD can stabilize nonnative proteins for subsequent transfer to 

a chaperonin (Vainberg et al., 1998). In eukaryotes, PFD in cooperation with the 

chaperonin TRiC assists the folding of actin and tubulin (Siegers et al., 1999). In yeast, 

combined deletion of the Ssb-class Hsp70s and of PFD resulted in a pronounced 

synthetic growth defect similar to the synthetically lethal phenotype of the TF and DnaK 

deletions in E. coli (Deuerling et al., 1999). This implicated that PFD in the archaeal 

cytosol may have a DnaK or TF-like role. 
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Figure 5. Structure of achaeal Prefoldin. 
A. Side view and dimension of the structure of achaeal PFD with the two α subunits shown in gold and the 
four β subunits in gray.  
B. Bottom view of the PFD complex showing the central space enclosed by the six coiled-coil segments 
(Hartl and Hayer-Hartl, 2002). 
 
 

2.5.5   The Chaperonins (Ring-Shaped Chaperones) 

The chaperonins are a group of essential proteins, highly related by sequence, 

identified in all three kingdoms of life. They form large (800-1000 kDa) oligomeric 

cylindrical complexes consisting of two stacked rings, each enclosing a central cavity to 

which unfolded polypeptides bind and reach the folded state. Chaperonins differ 

substantially from Hsp70 in architecture, as well as in their mechanism. Similar to Hsp70, 

ATP binding and hydrolysis induces conformational changes in them (Hartl and Hayer-

Hartl, 2002). This drives the substrate binding and release cycle. Nonnative substrate 

protein is first captured through hydrophobic contacts with multiple chaperonin subunits 

and is then displaced into the central cavity where it folds, protected from aggregating 

with other nonnative proteins. 
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Based on their sequence homology, they can be classified into two groups.   

Group I chaperonins (or Hsp60s) consist of members from eubacteria (GroEL), 

mitochondria (Hsp60), and chloroplasts (ch-cpn60). They cooperate with ring-shaped 

cofactor/cofactors of the Hsp10 family (GroES), which form a lid on the cage. E.coli 

GroEL and its cofactor GroES are the best studied examples of the Group I chaperonins.  

GroEL is a barrel shaped complex with fourteen identical subunits (60 kDa each) 

assembled into two seven-membered rings, thereby forming two separate cavities. The 

co-chaperone GroES has a dome-shaped ring-structure and consists of seven subunits of 

10 kDa each (Hartl and Hayer-Hartl, 2002). 

Group II chaperonins consist of members from archaea (thermosome) and the 

eukaryotic cytosol (TRiC or CCT; TCP-1 ring complex or chaperonin-containing TCP-1, 

respectively, where TCP-1 is tailless complex polypeptide-1) (Figure 3C). They also form 

a cage-like structure and are hetero-oligomeric complexes. TRiC is a ring shaped 

complex consisting of eight different, yet homologous, subunits (between 50 and 60 kDa) 

per ring (Spiess et al., 2004; Valpuesta et al., 2002). The archaeal thermosomes have 

two or three different subunits per complex (arranged in eight- or nine-fold symmetrical 

rings respectively). The Group II chaperonins lack a co-chaperone and their apical 

domain has an α-helical insertion that protrudes from the ring opening and functions as a 

built-in lid of the central cavity (Gutsche et al., 1999; Leroux and Hartl, 2000; Meyer et al., 

2003). The eukaryotic chaperonin TRiC can assist the folding of proteins such as actin 

and tubulin that cannot be folded by the GroEL/ES chaperone system (Hartl and Hayer-

Hartl, 2002). ATP binding induces encapsulation of the protein by the apical-domain 

protrusions and initiates folding through its built-in lid mechanism. TRiC transiently 

interacts with ~9-15% of newly synthesized proteins ranging from 30 to 120 kDa in size. 

TRiC may act cotranslationally in the folding of discrete domains of proteins that are too 

large to be encapsulated as a whole (Frydman, 2001; Hartl and Hayer-Hartl, 2002).  
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2.5.5.1   Group I Chaperonins  

The group I chaperonins, especially the GroEL system (Figure 3A) is perhaps the 

best characterized of all chaperones. GroEL and GroES (Figure 6) were first identified as 

proteins essential for bacteriophages λ and T5 head morphogenesis and for 

bacteriophage T4 tail assembly in E. coli. The groE genes were originally named so 

because mutations in them blocked λ growth and the first compensatory mutations 

characterized were mapped in the λE gene (hence, groE); L and S stand for large and 

small gene products (Georgopoulos, 1992). 

GroEL is a tetradecameric complex consisting of identical 57 kDa subunits. 

Electron microscopic analysis revealed that GroEL has a double-toroidal structure with 

approximate dimension of ~140 Å in diameter and 150 Å in height. The central cavity of 

the cylinder, the site for polypeptide binding, is ~50 Å wide (Hartl, 1996). The crystal 

structure of GroEL showed that each 57kDa subunit is composed of three domains: the 

equatorial domain containing the ATP binding pockets, the apical domains containing a 

patch of hydrophobic amino acids (that face the interior of the cavity and bind the 

unfolded substrate polypeptide through hydrophobic contacts) and an intermediate, 

hinge-like domain that connects the other two domains (Figure 6b). The co-chaperone 

GroES (Figure 6b) is a dome-shaped ring-structure with a diameter of 75 Å and consists 

of seven subunits. GroES has a stretch of 16 amino acids forming a mobile loop and 

these mediate its binding to GroEL. GroEL interacts with GroES in an adenosine 

nucleotide-dependent fashion (Chandrasekhar, 1986; Tilly et al., 1981), usually forming a 

bullet-like structure in electron micrographs (Ishii et al., 1992; Langer et al., 1992b; Saibil 

et al., 1991). In the presence of ATP, high magnesium concentration, and a high pH, EM 

studies show a significant increase in the proportion of football-like structures, with GroES 

binding at both ends (Azem et al., 1995; Azem et al., 1994; Schmidt, 1994). There is 

negative cooperativity between the two GroEL rings; they do not occur in the same 

nucleotide- bound state.  
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Figure 6. Structure of the GroEL-GroES chaperone system.  
a, b, Space-filling representations showing a top and side view, respectively, of the crystal structure of 
GroEL alone and GroEL in complex with GroES. Two adjacent subunits are coloured with the apical 
domains in red and purple, the intermediate domains in orange and yellow, and the equatorial domains in 
blue and green, respectively (Hartl, 1996). 

 
 

The chaperonin reaction (Figure 7) begins by the binding of substrate polypeptide 

to the free end (i.e., the trans ring) of a GroEL/ES complex. This is followed by the binding 

of seven ATP molecules and GroES, resulting in the displacement of substrate into a 

GroES capped cavity and causing the dissociation of the seven ADP molecules and 

GroES from the former cis complex. The apical domains, upon binding to GroES undergo 

a massive rotation and upward movement, resulting in an enlargement of the cavity and a 

shift in its surface properties from hydrophobic to hydrophilic. Non-native proteins up to 

~60 kDa can be encapsulated and are free to fold in the resulting GroEL-GroES cage. 

Folding is allowed to proceed for ~10 s, timed by the hydrolysis of the seven ATP 

molecules in the cis ring. Upon completion of hydrolysis, binding of seven ATP molecules 

to the trans ring triggers the opening of the cage. Both folded and nonnative protein exit at 

this point, but folding intermediates that still expose extensive hydrophobic surfaces are 

rapidly recaptured and folding cycles are repeated until the protein reaches its native 

state (Hartl and Hayer-Hartl, 2002). Oligomeric assembly occurs in solution after subunit 

folding inside the cage. In addition to preventing aggregation during folding, 
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encapsulation of nonnative proteins in the hydrophilic cage speeds up the folding reaction 

substantially. Confinement in the cage may smooth the energy landscape of folding for 

some larger proteins, either by preventing the formation of certain kinetically trapped 

intermediates or by facilitating their progression toward the compact, native state (Hartl 

and Hayer-Hartl, 2002). 

 

 
 

Figure 7. Reaction cycle of the GroEL-GroES chaperonin system.  
Simplified reaction of protein folding in the GroEL-GroES cage. I, folding intermediate bound by the apical 
domains of GroEL; N, native protein folded inside the cage. For a typical GroEL substrate, multiple rounds 
of chaperonin action are required for folding; both I and N accumulate after a single reaction cycle and exit 
the cage upon GroES dissociation. I is then rapidly re-bound by GroEL (Hartl and Hayer-Hartl, 2002). 
 
 

In E. coli, under normal growth condition, about 250 different proteins interact with 

GroEL (Ewalt et al., 1997; Kerner et al., 2005). Considering their dependence on 

GroEL/ES (based on the in vitro refolding assays), each of these 250 proteins have been 

assigned to one of three classes of GroEL substrates. 

Class I substrates, have a low tendency to aggregate upon refolding from 

denaturant, and show only small increase in yield when either GroEL/ES or DnaK and 

DnaJ are added. Class II substrates have a high tendency to aggregate and fail to refold 

until both GroEL and GroES are added to the refolding buffer, unless the temperature of 

refolding is lowered from the standard 37°C to 25°C (which allows some spontaneous 

refolding). But class II substrates also use the DnaK/J system for refolding; explaining that 

while encapsulation in the cage occurs with these proteins, it is not essential to prevent 
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them from aggregating. In contrast, class III substrates depend stringently upon the 

GroEL/ES system to refold at 37°C; this class does not use the DnaK/J system to refold, 

even though the latter chaperones bind to them (Ellis, 2005; Kerner et al., 2005). 

 
 
Figure 8. 3D reconstructions of GroEL, GroEL-ATP and GroEL-GroES-ATP from cryo-EM. The GroES ring 
is seen as a disk above the GroEL (www.cryst.bbk.ac.uk). 

 

The obligate GroEL substrates include at least 13 essential proteins, implicating 

the indispensability of the chaperonin system for E. coli viability. The limited set of class III 

proteins (less than 5% of total) define the core cytosolic proteins with an obligate 

dependence on a specific chaperone mechanism, suggesting a high degree of folding 

robustness of the E. coli proteome as a result of an extensive functional redundancy 

among chaperone classes. Proteins with the (βα)8 TIM-barrel fold are highly enriched 

among class III substrates (Kerner et al., 2005). 

 
Figure 9. The major functional sites in GroEL and the mechanism of accelerated folding.  

GroEL-GroES-
MDH-ATP

A B
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A. Schematic diagram of the subunit arrangement in a hypothetical slice through the GroEL oligomer. The 
folding complex GroEL-MDH-GroES-ATP, with the subunit domains, GroES (dark gray) and substrate 
(shaded) densities are based on cryo EM observations. 
B. Mechanisms of accelerated folding; Confinement of nonnative protein in the narrow, hydrophilic 
environment of the GroEL-GroES cage is suggested to result in a smoothing of the energy landscape such 
that formation of certain trapped intermediates is avoided (Hartl and Hayer-Hartl, 2002). 
 
 

2.5.5.2   Chaperonins in Chloroplast and cyanobacteria 

Chloroplasts contain a full set of chaperones belonging to the Hsp100, Hsp70, and 

Hsp60 protein families.  

Nuclear-encoded group I chaperonins are found within the plastids and 

mitochondria of plant cells, and it was based upon studies of the chloroplast cpn60 (or 

Rubisco large-subunit-binding protein) that the molecular chaperone concept was revived 

and extended (Hemmingsen et al., 1988). The chloroplast chaperonin 60 (ch-cpn60) was 

initially identified as an abundant oligomeric protein that transiently binds the nascent 

large subunits of ribulose-1,5-bisphosphate carboxylase (Rubisco) prior to their assembly 

into the Rubisco holoenzyme.  

The ch-cpn60 is synthesized as a nuclear-encoded precursor that is subsequently 

imported into chloroplasts. The protein is constitutively expressed, although its levels 

increase slightly during heat-shock. Similar to GroEL, the native ch-cpn60 is a cylindrical 

14-mer comprised of two stacked rings with sevenfold symmetry (Figure 10) and exhibits 

a weak intrinsic ATPase activity (Boston et al., 1996). Ch-cpn60 appears to be hetero-

oligomeric, consisting of two divergent subunits, α (61 kDa) and β (60 kDa) (Hemmingsen 

and Ellis, 1986; Musgrove et al., 1987), that are no more similar to each other than they 

are to GroEL (Martel et al., 1990). The α and β subunits of A. thaliana cpn60 are 

approximately 51% identical to each other and approximately 45% identical to the 

mitochondrial cpn60 protein. These intersubunit identities are similar to those found 

between prokaryotic cpn60 homologues and any of the eukaryotic subunits: the E. coli 

GroEL is 48%, 52%, and 57% identical to the α, β, and mitochondrial cpn60 proteins of A. 

thaliana, respectively. It remains unclear if there are distinct α and β ring structures in vivo 

or if there are structures composed of varying proportions of α and β subunits. Purified β 
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subunits can self-assemble into functional 14-mers that are active in protein folding 

(Dickson et al., 2000). The β assembly reaction requires adenine nucleotides, is highly 

dependent on protein concentration, and is potentiated by GroES homologues. In 

contrast, purified α subunits only incorporate into 14-mers in the presence of β subunits 

and this reaction also depends on adenine nucleotides (Boston et al., 1996). Analysis of 

the A. thaliana genome has revealed four homologues of the β subunit and two 

homologues of the α subunit that are targeted to chloroplasts (Hill and Hemmingsen, 

2001). 

 

 
 

Figure 10. Molecular projections of chloroplast cpn60 of pea.  
Correlation averages of top view and side view of ch-cpn60 isolated from pea (Tsuprun et al., 1991). 
 
 

Plastids contain two types of nuclear encoded co-chaperones or co-factors; cpn20 

(sometimes designated as cpn21) and cpn10. The chloroplast cpn20 (21 kDa) (Figure 11) 

is a functional homologue of the mitochondrial cpn10. cpn20 comprises two GroES-like 

domains fused head-to-tail through a short intervening linker and has twice the size of 

GroES and mitochondrial cpn10s (Hartl, 1996). Both halves of the molecule are highly 

conserved at a number of residues that are thought to be important for cpn10 function 

(Bertsch et al., 1992), and each contains a mobile loop region analogous to that of 

GroES. The two GroES-like domains show 46% sequence identity to each other 

(Hirohashi et al., 1999). Tetramers of cpn20 were detected when a cDNA corresponding 

to A. thaliana cpn20 was expressed in E. coli (Hirohashi et al., 1999; Koumoto et al., 
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1999). It has been observed that A. thaliana cpn20 is a calmodulin-binding protein and 

that the calcium-calmodulin messenger system may be involved in regulating Rubisco 

assembly in the chloroplast (Yang and Poovaiah, 2000). The ch-cpn20 was functional in 

vitro and could assist both GroEL and ch-cpn60, purified from chloroplasts, in the 

refolding of R. rubrum Rubisco and mammalian mitochondrial malate dehydrogenase 

(MDH) (Baneyx et al., 1995; Bertsch and Soll, 1995). Similar to GroES, it was able to 

partially inhibit the ATPase activity of GroEL and ch-cpn60. Each domain was able to 

support bacteriophage growth when expressed individually in E. coli, although to a lesser 

extent than the double-domain cpn20.  

 
 
Figure 11: Electron micrographs of recombinant chloroplast cpn20 of spinach.  
The protein fixed with 1% gluteraldehyde and negatively stained with 1% uranyl acetate is shown at two 
magnifications 100 nm and 20 nm (Baneyx et al., 1995).  

 

Other than ch-cpn20, A. thaliana contains cpn10 co-chaperones that are directed 

to the chloroplast (Hill and Hemmingsen, 2001). ch-cpn10 has been shown to be almost 

as efficient as GroES in assisting GroEL-mediating protein refolding. Like the bacterial 

and mitochondrial cpn10s, ch-cpn10 assembles into heptamers in solution (Sharkia et al., 

2003). It has been reported that the mRNA for chl-cpn10 is present in the leaves and 

stems, not in the roots while mRNA for ch-cpn20 is abundant in leaves and was also 

present in roots and stems (Koumoto et al., 2001; Koumoto et al., 1999). 
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2.6   Photosynthesis  

Photosynthesis is the fundamental process by which plants, algae and 

photosynthetic bacteria (like cyanobacteria) utilize the energy of sunlight to convert 

carbon dioxide and water into carbohydrates, with the green pigment chlorophyll acting as 

the energy converter. In plants, algae and certain types of bacteria, the photosynthetic 

process results in the release of molecular oxygen and the removal of carbon dioxide 

from the atmosphere that is used to synthesize carbohydrates (oxygenic photosynthesis). 

Other types of bacteria use light energy to create organic compounds but do not produce 

oxygen (anoxygenic photosynthesis). Photosynthesis is one of the most important 

biochemical pathways providing the energy and reduced carbon required for the survival 

of virtually all life on our planet, as well as the molecular oxygen necessary for the 

survival of oxygen consuming organisms. 

Photosynthesis uses light energy and carbon dioxide to make triose phosphates 

(G3P). G3P is generally considered the first end-product of photosynthesis. It can be 

used as a source of metabolic energy, or combined and rearranged to form 

monosaccharide or disaccharide sugars, such as glucose or sucrose, respectively, which 

can be transported to other cells, stored as insoluble polysaccharides such as starch, or 

converted to structural carbohydrates, such as cellulose or glucans. 

A simplified equation for photosynthesis is: 

6 CO2 + 6 H2O + photons → C6H12O6 + 6 O2  

Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or 

photosynthetic reactions capture the energy of light and use it to make high-energy 

molecules. During the second stage, the light-independent reactions (also called the 

Calvin-Benson Cycle, and formerly known as the Dark Reactions) use the high-energy 

molecules to capture and chemically reduce carbon dioxide (carbon fixation) to make the 

precursors of carbohydrates. 
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The photosynthetic process in plants and algae occurs in small organelles known 

as chloroplasts that are located inside cells. The more primitive photosynthetic organisms, 

like oxygenic cyanobacteria, prochlorophytes and anoxygenic photosynthetic bacteria, 

lack organelles.  

Chloroplasts are disk-shaped structures ranging from 5 to 10 micrometers in length 

(Figure 12). Like mitochondria, chloroplasts are surrounded by an inner and an outer 

membrane. The inner membrane encloses a fluid-filled region called the stroma that 

contains enzymes for the light-independent reactions of photosynthesis. Infolding of this 

inner membrane forms interconnected stacks of disk-like sacs called thylakoids, often 

arranged in stacks called grana (Figure 12). The thylakoid membrane, that encloses a 

fluid-filled thylakoid interior space, contains chlorophyll and other photosynthetic pigments 

(carotenoids, phycocyanins) as well as electron transport chains. Energy trapped from 

sunlight by chlorophyll is used to excite electrons in order to produce ATP by 

photophosphorylation. The light-dependent reactions that trap light energy and produce 

the ATP and NADPH needed for photosynthesis occur in the thylakoids. The light-

independent reactions of photosynthesis use this ATP and NADPH to produce 

carbohydrates from carbon dioxide and water, a series of reactions that occur in the 

stroma of the chloroplast. The outer membrane of the chloroplast encloses the 

intermembrane space between the inner and outer chloroplast membranes. Chloroplasts 

replicate giving rise to new chloroplasts as they grow and divide. They also have their 

own DNA and ribosomes. 

Photosynthetic bacteria do not have chloroplasts (or any membrane-bound 

organelles). Instead, photosynthesis takes place directly within the cell. Cyanobacteria 

contain thylakoid membranes very similar to those in chloroplasts and are the only 

prokaryotes that perform oxygen-generating photosynthesis. 
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Figure 12 Structure of a chloroplast  
Chloroplasts are surrounded by an inner and an outer membrane. The inner membrane encloses a fluid-
filled region called the stroma that contains enzymes for the light-independent reactions of photosynthesis. 
Infolding of this inner membrane forms interconnected stacks of disk-like sacs called thylakoids, often 
arranged in stacks called grana. The thylakoid membrane, that encloses a fluid-filled thylakoid interior 
space, contains chlorophyll and other photosynthetic pigments as well as electron transport chains. The 
light-dependent reactions of photosynthesis occur in the thylakoids. The outer membrane of the chloroplast 
encloses the intermembrane space between the inner and outer chloroplast membranes (Ort, 1994). 
 

The other photosynthetic bacteria have a variety of different pigments, called 

bacteriochlorophylls, and use electron donors different from water and thus do not 

produce oxygen. Some bacteria, such as Chromatium, oxidize hydrogen sulfide instead of 

water for photosynthesis, producing sulfur as waste. Few other photosynthetic bacteria 

oxidize ferrous iron to ferric iron, others nitrite to nitrate, and still others use arsenites, 

producing arsenates. 

Photosystems are arrangements of chlorophyll and other pigments packed into 

thylakoids. Many Prokaryotes have only one photosystem, Photosystem II (so numbered 

because, it was the second one discovered, though it was most likely the first to evolve). 

Eukaryotes have Photosystem II and Photosystem I. Photosystem I uses chlorophyll-a, in 

the form referred to as P700. Photosystem II uses a form of chlorophyll-a known as P680. 
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Both "active" forms of chlorophyll-a function in photosynthesis due to their association 

with proteins in the thylakoid membrane. 

2.6.1   Light Reactions 

The Light Dependent Process (Light Reactions) requires the direct energy of light 

to make energy carrier molecules and takes place in and around the thylakoid 

membranes. In the Light Dependent Processes, light strikes chlorophyll-a in such a way 

as to excite electrons to a higher energy state. In a series of reactions, the energy is 

converted (along an electron transport process) into ATP and NADPH. Water is split in 

the process, releasing oxygen as a by-product of the reaction. The ATP and NADPH are 

used to make C-C bonds in the Light Independent Process (Dark Reactions). The Z-

scheme (Figure 13) represents the steps in the light reactions, showing the pathway of 

electron transport from water to NADP+ (nicotinamide adenine dinucleotide phosphate). 

The light reaction occurs in two photosystems. Light energy absorbed by 

photosystem II causes the formation of high-energy electrons, which are transferred along 

a series of acceptor molecules in an electron transport chain to photosystem I. 

Photosystem II obtains replacement electrons from water molecules, resulting in their split 

into hydrogen ions (H+) and oxygen atoms. The oxygen atoms combine to form molecular 

oxygen (O2), which is released into the atmosphere. The hydrogen ions are released into 

the lumen. Additional hydrogen ions are pumped into the lumen by electron acceptor 

molecules, creating a high concentration of ions inside the lumen.  

The flow of hydrogen ions back across the photosynthetic membrane provides the 

energy needed to drive the synthesis of the energy-rich molecule ATP. High-energy 

electrons released as photosystem I absorbs light energy are used to drive the synthesis 

of NADPH. Photosystem I obtains electrons from the electron transport chain. ATP 

provides the energy and NADPH provides the hydrogen atoms needed to drive the 

subsequent photosynthetic dark reaction, or the Calvin cycle. 
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Figure 13. The Z scheme.  
The Z-scheme represents the steps in the light reactions, showing the pathway of electron transport from 
water to NADP+ (nicotinamide adenine dinucleotide phosphate). This leads to the release of oxygen, the 
"reduction" of NADP+ to NADPH (by adding two electrons and one proton), and the building-up of a high 
concentration of hydrogen ions inside the thylakoid lumen (needed for ATP production). 
 

2.6.2   Dark Reaction 

In the Light Independent or Dark reaction, carbon dioxide from the atmosphere (or 

water for aquatic/marine organisms) is captured and modified by the addition of hydrogen, 

to form carbohydrates. The incorporation of carbon dioxide into organic compounds is 

known as carbon fixation. These reactions occur in the stroma matrix and are also called 

the Calvin-Benson-Bassham cycle, photosynthetic carbon reduction cycle, reductive 
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pentose phosphate pathway or C3 cycle (Figure 14). The energy for this reaction comes 

from the light reactions.  

 

 
Figure 14. The Calvin cycle 
The Calvin cycle can be explained in three phases. In phase 1 (Carbon Fixation), the enzyme Rubisco 
catalyses the incorporation of CO2 into a five-carbon sugar, ribulose bisphosphate (RuBP). The product of 
the reaction is a six-carbon intermediate which immediately splits in half to form two molecules of 3-
phosphoglycerate. In phase 2 (Reduction), ATP and NADPH2 from the light reactions are used to convert 3-
phosphoglycerate to glyceraldehyde 3-phosphate, the three-carbon carbohydrate precursor to glucose and 
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other sugars. In phase 3 (Regeneration), more ATP is used to convert some of the pool of glyceraldehyde 
3-phosphate back to RuBP, the acceptor for CO2, thereby completing the cycle. For every three molecules 
of CO2 that enter the cycle, the net output is one molecule of glyceraldehyde 3-phosphate (G3P). For each 
G3P synthesized, the cycle spends nine molecules of ATP and six molecules of NADPH2. The light 
reactions sustain the Calvin cycle by regenerating the ATP and NADPH2  (Calvin, 1989). 
 

CO2 comes into the stroma of the chloroplast via the stomata of the leaves. The 

Calvin cycle (Figure 14) begins with the enzyme Rubisco (Ribulose-1,5-bisphosphate 

carboxylase/oxygenase) catalyzing the carboxylation of Ribulose-1,5-bisphosphate, a 5 

carbon compound, by carbon dioxide (a total of 6 carbons) in a two-step reaction. The 

initial product of the reaction is a six-carbon intermediate so unstable that it immediately 

splits in half, forming two molecules of glycerate 3-phosphate, a 3-carbon compound 

(also: 3-phosphoglycerate, 3-phosphoglyceric acid, 3PGA). The PGA molecules are 

further phosphorylated (by ATP produced during light reaction) and are reduced (by 

NADPH produced during light reaction) to form phosphoglyceraldehyde (PGAL). PGAL 

serves as the starting material for the synthesis of glucose and fructose. Glucose and 

fructose make the disaccharide sucrose, which travels in solution to other parts of the 

plant (e.g., fruit, roots).  Glucose is also the monomer used in the synthesis of the 

polysaccharides starch and cellulose. Majority of the PGAL is recycled and turned back 

into RuBP so that the cycle can continue (Figure 14). Overall, thirteen enzymes are 

required to catalyze the reactions in the Calvin cycle. The reactions do not involve energy 

transduction, but rather the rearrangement of chemical energy. Each molecule of CO2 

reduced to a sugar [CH2O]n requires 2 molecules of NADPH and 3 molecules of ATP. 

 
2.7   Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase)  

The enzyme Rubisco is found in most autotrophic organisms from prokaryotes 

(photosynthetic and chemoautotrophic bacteria, cyanobacteria and archaea) to 

eukaryotes (various algae and higher plants) (Andersson and Backlund, 2008). Rubisco 

catalyzes the initial step in CO2 fixation, the carboxylation of ribulose 1, 5-bisphosphate 

(RuBP), and yielding two molecules of phosphoglycerate. RuBP, the initial CO2 acceptor, 

is regenerated in the Calvin cycle, and the fixed carbon is incorporated into carbohydrates 

such as sucrose and starch. By catalyzing the photosynthetic fixation of carbon dioxide, 
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this enzyme is the agent responsible for bringing into organic combination virtually all the 

carbon atoms found in living organisms. Despite this vital role, Rubisco is a poor catalyst, 

having both a low affinity for carbon dioxide and a small turnover number (3 per second); 

thus autotrophic organisms devote a major part of their synthetic effort to making many 

molecules of the enzyme. Indeed, Rubisco is regarded as the most abundant single 

protein in the biosphere (Ellis, 1979). It is certainly the most abundant enzyme: up to 50% 

of leaf proteins in plants are Rubisco. This large amount does not result primarily from the 

enormous task the enzyme has to carry out, but rather reflects the catalytic inefficiency of 

Rubisco as a catalyst.  

Not only is the enzyme slow, it also catalyzes a competing oxygenase reaction that 

leads to loss of energy by photorespiration. In this reaction, O2 instead of CO2 is added to 

RuBP, yielding phosphoglycolate and 3-phosphoglycerate. Phosphoglycolate is 

metabolized in the glycolate pathway which involves enzymes and cytochromes located 

in the mitochondria and peroxisomes. In this process, two molecules of phosphoglycolate 

are converted to one molecule of carbon dioxide and one molecule of 3-

phosphoglycerate, which can reenter the Calvin cycle. Some of the phosphoglycolate 

entering this pathway can be retained by plants to produce other molecules such as 

glycine. At air levels of carbon dioxide and oxygen, the ratio of the reactions is about 4 to 

1, which results in a net carbon dioxide fixation of only 3.5.  

Photorespiration is an energy consuming wasteful process causing a constant 

drain on the pool of sugar substrate, RuBP and results in a decrease of the efficiency of 

carbon fixation by up to 50% (Andersson and Taylor, 2003). This photorespiratory 

pathway severely affects a plant’s water-use efficiency and nitrogen budget. It also 

produces waste ammonia that must be detoxified at a substantial cost to the cell in ATP 

and reducing equivalents. 

Carboxylation and oxygenation of RuBP occur at the same catalytic site of 

Rubisco; both gaseous substrates compete for the second substrate, RuBP. Therefore, 

the ratio of carboxylation towards oxygenation is influenced by the relative concentrations 

of CO2 and O2. Higher CO2 concentrations result in more efficient photosynthesis with 
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faster production of biomass. The efficiency with which CO2 is able to compete with O2 is 

quantified by the CO2/O2 specificity factor (referred to as Ω) and is defined as VcKo/VoKc, 

where Vc and Vo are the maximal velocities of carboxylation and oxygenation, 

respectively, and Kc and Ko are the Michaelis constants for CO2 and O2, respectively. 

Thus the relative rates for carboxylation and oxygenation are defined by the product of 

the specificity factor and the ratio of CO2 to O2 concentrations at the active site. The 

specificity values of Rubisco enzymes from different species and evolutionary lineages 

differ substantially. Some photosynthesizing bacteria of the α-proteobacteria group have 

the lowest specificity values (5-40) whereas members of the Rhodophyta (red algae) have 

the highest (180-240). Chlorophyta, such as higher plants and green algae have 

intermediate specificity values in the range of 60-100. An inverse correlation between 

specificity and turnover rate (Vc or kcat for carboxylation) has been observed with e.g. 

bacteria displaying low specificity values and high turnover rates whereas higher plants 

have high specificity values coupled to low turnover rates. In addition, intracellular CO2 

and O2 concentrations vary considerably among species because several organisms, 

including plants, have evolved mechanisms (carboxysomes, pyrenoids, C4- and CAM 

metabolisms) that concentrate CO2 at the carboxylation site (Andersson and Backlund, 

2008).  

Rubisco is slow, being able to fix only 3 carbon dioxide molecules each second. 

Nevertheless, because of its extremely large concentration, under most conditions, and 

when light is not otherwise limiting photosynthesis, the reaction of Rubisco responds 

positively to increasing carbon dioxide concentration, therefore the concentration of 

carbon dioxide is limiting. The ultimate rate-limiting factor of the Calvin cycle is Rubisco 

that cannot be ameliorated in short time by any other factor. For these reasons, genetic 

redesign of Rubisco with the aim of constructing transgenic plants with improved 

photosynthetic efficiency and thereby increased agricultural productivity has attracted a 

lot of interest (Schneider et al., 1992).  
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2.7.1   Regulation of Rubisco 

Rubisco is usually only active during the day, because RuBP is not being produced 

in the dark, due to the regulation of several other enzymes in the Calvin cycle. In addition, 

the activity of Rubisco is coordinated with that of the other enzymes of the Calvin cycle in 

several ways (Figure 15). Upon illumination of the chloroplasts, the pH of the stroma rises 

from 7.0 to 8.0 because of the proton (hydrogen ion, H+) gradient created across the 

thylakoid membrane. At the same time, magnesium ions (Mg2+) move out of the 

thylakoids, increasing the concentration of magnesium in the stroma of the chloroplasts. 

Rubisco has a high optimal pH (can be >9.0, depending on the magnesium ion 

concentration) and thus becomes "activated" by the addition of carbon dioxide and 

magnesium to the active sites (Figure 15). Rubisco and other enzymes involved in the 

cycle are affected by the oxidation-reduction state of thioredoxin. In chloroplasts, 

ferredoxin reduces thioredoxin. Glyceraldehyde 3-phosphate dehydrogenase and ribulose 

5’-phosphate kinase are regulated directly by NADPH, as well as by thioredoxin. 

A common feature of all Rubisco molecules is a chemical modification step 

necessary to convert the enzyme from its inactive to its active form. The activation 

process consists of the formation of a carbamate group by reaction of a CO2 molecule 

with the ε- amino group of a lysine residue (Lys 201) at the active site. This activator CO2 

molecule is separate from the CO2 molecule that becomes incorporated into RuBP during 

catalysis. Formation of the carbamate is followed by rapid binding of Mg2+, resulting in the 

active ternary complex-enzyme, CO2, and Mg2+ (Schneider et al., 1992). In plants and 

some algae, another enzyme, Rubisco activase is required to allow the rapid formation of 

the critical carbamate in the active site of Rubisco {Weiner, 1994 #454}. Activase is 

required because RuBP substrate binds more strongly to the active sites lacking the 

carbamate and markedly slows down the "activation" process. In the light, Rubisco 

activase promotes the release of the inhibitory or storage RuBP from the catalytic sites. In 

some plants (e.g. tobacco and many beans), in the dark, Rubisco is inhibited by a 

competitive inhibitor/ a substrate analog 2-Carboxy-D-arabitinol 1-phosphate (CA1P) 

synthesized by these plants (Figure 15). CA1P binds tightly to the active site of 
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carbamylated Rubisco and inhibits catalytic activity. During dark and in the light, Rubisco 

activase promotes the release of CA1P from the catalytic sites (Lilley and Portis, 1990). 

After the CA1P is released from Rubisco, it is rapidly converted to a non-inhibitory form by 

a light-activated CA1P-phosphatase. Once every several hundred reactions, the normal 

reactions with carbon dioxide or oxygen are not completed and other inhibitory substrate 

analogs are formed in the active site. Rubisco activase can promote the release of these 

analogs from the catalytic sites and maintain the enzyme in a catalytically active form. In 

the initial reaction of Rubisco in the light, the RuBP that was separated from Rubisco 

binds with the carbamylated enzyme and after proton abstraction produces Enediol that 

can react with carbon dioxide. A limitation of either Rubisco or RuBP at any stage will 

make the reaction insensitive to any other factor including carbon dioxide.  

 
Figure 15. Multiple factors involved in regulating the activity of Rubisco. 
Many factors like light, CO2/O2 ratio, Rubisco activase, several enzymes of the Calvin cycle regulate the 
activity of Rubisco. 
 

2.7.2   Rubisco Structure 

Rubisco in many organisms is composed of two types of subunits, the catalytic 

large (RbcL, 50 to 55 kDa), and the small (RbcS, 12 to18 kDa) subunits. Based on the 

presence or absence of the small subunit and also on the primary sequence of the large 

subunit, four forms or types of Rubisco have been distinguished (Li et al., 2005; Tabita, 

1999). Of the four forms of Rubisco, form I is the most abundant, occurring in most 
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chemoautotrophic bacteria, cyanobacteria, red and brown algae, and in all higher plants. 

It is composed of eight large and eight small subunits arranged in a hexadecameric 

structure, RbcL8S8
 (Baker et al., 1977); with a core of four RbcL2 dimers arranged around 

a four-fold axis, capped at each end by four small subunits (Figure 16 B and C). Based on 

amino acid sequences of the form I enzymes, a distinction has been made between 

green-type enzymes (forms I A and B from cyanobacteria, eukaryotic algae and higher 

plants) and red-type enzymes (forms I C and D from non-green algae and phototropic 

bacteria) (Andersson, 2008).  

The form II enzyme is a dimer of large subunits, Rbc(L2)n, and lacks small 

subunits. The form II enzyme was initially discovered in purple non-sulphur bacteria, 

Rhodospirillum rubrum, but has also been found in several chemoautotropic bacteria and 

in eukaryotic dinoflagellates. The first crystal structure of Rubisco was from 

Rhodospirillum rubrum (Figure 16D) and reveals high similarity to the large subunit 

structure of form I Rubisco (Andersson and Backlund, 2008). Several non-sulphur 

phototropic bacteria, i.e. Rhodobacter sphaeroides, R. capsulatus, several Thiobacillus 

sp., and Hydrogenovibrio marinus contain both form I and form II enzymes. 

Form III Rubisco is found only in archaea, and has been shown to form either 

dimers (RbcL2) (Finn and Tabita, 2003; Watson et al., 1999) or decamers ([RbcL2]5) 

(Maeda et al., 1999), depending on the organism. The crystal structure of the form III 

Rubisco from Thermococcus kodakaraensis (Figure 16 E and F) reveals that the protein 

is comprised of a pentamer of dimers (Kitano et al., 2001). Its dimeric interface is very 

similar to those observed in the large subunit of form I and form II Rubisco.  

Form IV, also called the Rubisco-like protein (RLP), was recently discovered to be 

a homolog of Rubisco (Hanson and Tabita, 2001; Li et al., 2005). Members of the form IV 

subfamily do not catalyze the carboxylation reaction, but have been shown to play a role 

in sulphur metabolism. RLPs from species of Bacilli (Bacillus subtilis and Geobacillus 

kaustophilus) have been found to catalyze enolisation of 2,3-diketo-5-methyl-thiopentyl-1-

phosphate, a compound with structural similarity to RuBP. A unique feature of M. 

aeruginosa is that it also harbours a gene encoding the form I Rubisco large subunit in 
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addition to form IV. Crystal structures have been reported for the RLPs from Chlorobium 

tepidum (green sulphur bacterium), Geobacillus kaustophilus, and Rhodopseudomonas 

palustris. From the phylogenetic analysis, it appears that the RLPs form an entity, and are 

not dispersed among the true Rubiscos, thus indicating a common origin for either 

Rubisco or RLPs (Andersson and Backlund, 2008). 

 

 
 

Figure 16. The different arrangement of the quaternary structure of Rubisco enzymes.  
A) The RbcL2S2 unit of form I Rubisco from spinach viewed along the 2-fold symmetry axis. Large subunits 
are blue and green, small subunits are yellow, and the substrate mimic (2CABP) is displayed as red 
spheres.  
B) The entire RbcL8S8 hexadecamer along the 2-fold axis and C) along the 4-fold axis.  
D) The dimeric form II Rubisco from Rhodospirillum rubrum showing the 2-fold symmetry.  
E) and F) The RbcL10 Rubisco from Thermococcus kodakaraensis viewed along the 2-fold and 5-fold axes, 
respectively. Sulphate ions bound in the active site are displayed as red spheres (Andersson and Backlund, 
2008).  
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Despite rather low sequence identity (25–30%), the hexadecameric (Form I) RbcL 

subunits and the dimeric (Form II) RbcL subunits have very similar three dimensional 

structures. The overall fold of the large subunit is similar in all forms of Rubisco consisting 

of a smaller amino-terminal domain consisting of a four-to-five-stranded mixed β sheet 

with helices on one side of the sheet and a larger carboxy-terminal domain (Figure 17A). 

The carboxy-terminal domain consists of eight consecutive βα-units arranged as an eight-

stranded parallel α/β barrel structure. The active site is located at the carboxy-terminal 

end of the β-strands, with the loops connecting the βα-units contributing several residues 

involved in catalysis and substrate binding. Residues from the amino-terminal domain of 

the adjacent large subunit in the dimer complete the active site. Thus, the functional unit 

structure of Rubisco is an RbcL2 dimer of large subunits harbouring two active sites 

(Andersson and Backlund, 2008).  

In the RbcL8S8 enzymes, four RbcL2 units are arranged around a fourfold 

symmetry axis with the entrances to the eight active sites facing the outside of the 

hexadecameric molecule (Figure 16 B and C). A RbcS subunit is associated with each 

RbcL subunit, also obeying these twofold and fourfold symmetries and interacting with 

three large subunits. A solvent channel traverses the molecule along its fourfold axis. 

Binding of the substrate or inhibitors to the non-activated enzyme locks the enzyme in a 

closed unproductive form. In the inactive enzyme, the active site is open and accessible 

to activating cofactors and bisphosphate substrate (Curmi et al., 1992). After formation of 

the essential carbamate and coordination of the Mg2+, RuBP substrate binds and a series 

of loops close over the site to enfold and capture the bisphosphate (Knight et al., 1990; 

Newman and Gutteridge, 1993). Closure of the loops brings together amino acids that are 

critical for catalysis and determine the fate of the substrate.  

The RbcS subunits are not absolutely required for activity, as indicated by the 

existence of the dimeric Form II and the decameric archeal Rubisco enzymes. However 

the presence of RbcS subunits improves catalysis in some rather specific, but undefined 

way. The RbcS subunits are more divergent than the L subunits, both in sequences and 

in three-dimensional structures. The common core structure consists of a four-stranded 
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anti-parallel β-sheet covered on one side by two helices (Figure 17B). The most striking 

variations occur in two distinct locations, the loop between β strands A and B of the small 

subunit, the so-called βA-βB-loop and the carboxy-terminus. The βA- βB-loops of four 

small subunits line the openings of the solvent channel that traverses the holoenzyme. 

Rubisco from prokaryotes and non-green algae have only ten residues in the loop as 

illustrated by the structure of the cyanobacterial enzyme, but Rubisco from higher plants 

have 22 and green algal Rubisco have 28. Non-green algae and some prokaryotes, which 

have ten residues in their βA- βB-loops, display carboxy-terminal extensions that form β 

hairpin structures (βE-βF loop) in the spaces that are normally occupied by the longer βA- 

βB-loops of the green algal and plant enzymes. Four β-hairpin structures form a central β-

barrel at the entrance to the central solvent channel. These enzymes also display a 

slightly longer loop between βstrands C and D (Figure 17B). The small subunits of green 

algae also have longer carboxy-termini than those of higher plants, but these do not form 

β-hairpins and do not appear to be essential to the function of the enzyme. The small 

subunits covering a substantial area at two opposite ends of the RbcL-subunit octamer 

may be necessary to assemble and concentrate the large catalytic subunits. Since 

Rubisco enzymes lacking small subunits have the lowest specificity values, they might 

contribute to the differences in kinetic properties observed among different Rubisco 

enzymes (Andersson and Backlund, 2008). 

 

 
 

A B
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Figure 17. Rubisco large and small subunits. 
A. Schematic view of the large subunit from Rhodospirillum rubrum with α subunits represented by cylinders 
and β-strands by arrows (Schneider et al., 1990).  
B. Comparison of the Rubisco small-subunit X-ray crystal structures from Chlamydomonas reinhardtii 
(yellow), spinach shown in green, Synechococcus sp. PCC6301 (blue), and Galdieria partita (red). Loops 
are labeled relative to their flanking β strands. Residues that are more than 95% conserved among all 
known small-subunit sequences are colored white (Spreitzer, 2003). 
 
 
2.7.3   Synthesis, Folding and assembly of Rubisco 
 

Synthesis and assembly of functional Rubisco in plants and green algae require 

communication between organelles, because RbcS subunits are encoded by the nuclear 

genome and synthesized in the cytosol, whereas RbcL subunits are encoded by the 

chloroplast genome and synthesized on chloroplast ribosomes. The rbcL gene in higher 

plants is present as a single copy per chloroplast genome, but because many copies of 

the genome are present in each plastid, the actual rbcL copy number per chloroplast can 

be high. With rare exceptions, rbcL in higher plants does not contain introns and encodes 

~ 475 amino acids (Gutteridge and Gatenby, 1995). Control of the expression of genes 

for Rubisco occurs both transcriptionally and posttranscriptionally, but apparently differs in 

the nucleus as compared to the chloroplast. After translation, newly synthesized S 

subunits must be translocated across the chloroplast membrane, where an N-terminal 

signal peptide is proteolyzed prior to assembly with RbcL subunits. Proteolysis of a small 

N-terminal region of nascent L subunit is also observed. Covalent posttranslational 

modifications, including acetylation, N-methylation, phosphorylation, and possibly 

transglutamination, have been noted in plant and cyanobacterial Rubiscos. Assembly of 

both RbcL2 and RbcL8S8 Rubisco from photosynthetic prokaryotes and rhodophytic algae 

is apparently simpler, as the genes encoding their subunits are found within the same 

operon and the synthesis and assembly occurs in the cytosol (Hartman and Harpel, 

1994).  

Chloroplast homologs of DnaK, DnaJ, and GrpE have been reported (Checa and 

Viale, 1997). Whereas the RbcLS of Rubisco has not been found in direct association 

with these chaperones, other polypeptides that must be imported into the chloroplast, 
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including the transit peptide of the small subunit have been shown to be associated. 

Moreover, the small subunit transit peptide has been shown to interact directly with 

chloroplast Hsp70 during import and to contain a recognition domain for Hsp70. The 

requirement for DnaK and DnaJ could be partially overcome by overexpressing the 

GroEL and GroES proteins. 

 The complexes formed between the newly translated polypeptides and the 

DnaK/DnaJ/GrpE complexes represent the first step in cooperative protein folding that 

ends with the release from the DnaK/DnaJ/GrpE complexes to the GroEL/ES 

chaperonins. A similar set of reactions probably operates in chloroplasts but with regard 

to the RbcLS of Rubisco, more information exists at the level of GroEL/ES folding than at 

the earlier steps in protein folding. Evidence for chaperonin-mediated protein folding in 

the chloroplast was found over 2 decades ago when studies revealed that newly 

synthesized Rubisco peptides were transiently associated with a large multimeric 

complex prior to appearance in the holoenzyme through an ATP-dependent reaction 

(Ellis, 1991; Milos, 1984). 

 It is now well documented that the assembly of Rubisco requires chloroplast 

homologs of the GroEL and GroES chaperonins (Gatenby and Ellis, 1990; Goloubinoff et 

al., 1989a; Gutteridge and Gatenby, 1995) and that many if not all chloroplast-imported 

proteins interact with these proteins. 

With the help of the GroEL/ES chaperone system, in vivo and in vitro refolding of 

dimeric form II Rubisco from R. rubrum have been successful (Goloubinoff et al., 1989a). 

However, very limited success has been achieved for the reconstitution of Form I 

Rubisco. While GroEL/ES dependent in vivo expression of active Rubisco holoenzyme 

from Synechococcus sp. PCC6301 was successful (Goloubinoff et al., 1989b), the in vivo 

attempts for the assembly of higher-plant Rubisco failed (Andrews and Lorimer, 1985).   

From the experiments on cyanobacterial Rubisco, the current Rubisco assembly 

model (Figure 18) states that assembly proceeds through dimeric (RbcL2) and octameric 

(RbcL8) intermediates, and that small subunits bind in the final stages (Gatenby et al., 
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1988; Goloubinoff et al., 1989a; Lee and Tabita, 1990); i.e. the folded large subunits 

dimerize into RbcL2, the dimers form tetramers leading to a core of 8 large subunits 

(RbcL8 core) to which the folded small subunits associate, resulting in the RbcL8S8 type of 

active holoenzyme.  

 

 
 
 
Figure 18. Proposed assembly pathway for Rubisco hexadecamers.  
The L2 dimer is the basic structural motif. The assembly of the hexadecameric L8S8 type of holoenzyme 
starts from the folding of large subunit monomer, formation of the L2 dimer, tetramerization of 2 dimers to 
give the L8 core and then the association of folded small subunit monomers with the L8 core (Goloubinoff et 
al., 1989b) . 

 

2.8   RbcX 

In some cyanobacteria, a gene called rbcX is present between rbcL and rbcS and 

is cotranscribed with the rbcL and rbcS genes (Larimer and Soper, 1993). The RbcX 

product (~15.5 kDa) of the intermediary rbcX gene is not part of the final Rubisco complex 
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and, unlike RbcL and RbcS whose sequences are highly conserved by functional 

constraints, the RbcX sequence is highly variable (56% similarity) amongst cyanobacterial 

species (Rudi et al., 1998). Nevertheless, the juxtaposition of rbcX within an rbcLXS 

operon is highly conserved in β-cyanobacteria, suggesting that the RbcX product may 

function in a role associated with CO2 fixation (Larimer and Soper, 1993; Li and Tabita, 

1997; Onizuka et al., 2004). RbcX from the cyanobacteria Anabaena sp. CA and 

Synechococcus sp. PCC7002 has been found to increase the amount of functional 

Rubisco correctly assembled in E. coli, consistent with a molecular chaperone-like 

function (Li and Tabita, 1997; Onizuka et al., 2004). 

In some cyanobacteria like Synechococcus sp. PCC7942, rbcX is present outside 

the operon for rbcLS and RbcX has been shown to be not affecting the assembly and 

hence the activity of its Rubisco recombinantly expressed in E. coli (Emlyn-Jones et al., 

2006).
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3   Aim of the study 
 

 Rubisco is the most abundant protein on earth. Rubisco catalyses the initial step of 

carbon dioxide fixation in photosynthesis and so is crucial for the agronomic performance 

of plants. Despite this vital role, Rubisco is inefficient as a catalyst because it participates 

not only in photosynthesis, but also in photorespiration, which is considered as a wasteful 

process (Tabita 1999). Efficiency of Rubisco varies among different photosynthetic 

organisms. Rubisco from red algae possess higher CO2 specificity compared to higher 

plants (Andersson and Backlund, 2008). in vitro mutagenesis of Rubisco has not been 

successful since all the attempts to produce active form I Rubisco from many 

cyanobacteria and higher plants, in vivo or in vitro, failed so far (Chaudhari and Roy, 

1989; Cloney et al., 1993; van der Vies et al., 1986). 

 

 Rubisco is one of the stringent substrates of GroEL (Brinker et al., 2001). Similar to 

the bacterial GroEL/ES system, the chloroplast homologue ch-cpn60/20 system is 

implicated in the efficient folding of Rubisco (Dickson et al., 2000; Gatenby and Ellis, 

1990; Goloubinoff et al., 1989a; Goloubinoff et al., 1989b; van der Vies et al., 1986). 

While the structural details for GroEL/ES are well established (Langer et al., 1992b; Saibil 

et al., 1991 Chandrasekar, 1986; Tilly et al., 1981), a detailed structural analysis of ch-

cpn60 is yet to be achieved. In contrast to GroEL, the ch-cpn60 has two types of 

cochaperone, cpn10 and cpn20, the latter consisting of a tandem repeat of cpn10 units 

(Hill and Hemmingsen, 2001). Unlike the bacterial GroES and the chloroplast cpn10, 

which are heptameric (Sharkia et al., 2003), the chloroplast cpn20 has been reported to 

form tetramers (Koumoto et al., 1999). One of the aims of this study was to structurally 

characterize chloroplast cpn60/20 complexes, using electron microscopy, to understand 

the nature of interaction of ch-cpn20 with the ch-cpn60. 

 

Recently, it has been reported that the rbcX gene of cyanobacteria enhances the 

production of enzymatically active Rubisco upon coexpression with rbcL and rbcS in E. 

coli (Emlyn-Jones et al., 2006; Li and Tabita, 1997; Onizuka et al., 2004). The structural  
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analysis of RbcX from Synechococcus sp. PCC7002, using X-ray crystallography, 

demonstrated that the RbcX dimer functions as an assembly chaperone for the 

hexadecameric Rubisco (Saschenbrecker et al., 2007). These studies revealed that the 

mutations disrupting the conserved peripheral polar surface, (Q29A) or (R70A), or those 

disrupting the central crevice (Y17A,Y20L) in the RbcX, cause a defect in the RbcX 

function (Saschenbrecker et al., 2007). The structure of RbcX mutants was to be 

analyzed by X-ray crystallography to show that the functional defects of RbcX mutants 

were not a consequence of protein misfolding.  

 

RbcX homologues and the RbcX interacting C-terminal peptide sequence of RbcL 

(Saschenbrecker et al., 2007) exist in higher plants as well. Consequently, another 

objective of this study was to characterize RbcX of A. thaliana.  
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4   Materials and methods 

4.1   Laboratory equipment 

Abimed (Langenfeld, Germany): Gilson Pipetman (2 to 1000 μl). 

Amersham Pharmacia Biotech (Freiburg, Germany): ÄKTA Explorer; SMART-System; 

chromatography columns: Mono-Q, HiTrap-Heparin, Superdex 200, Superose 6; resins: 

Source 30-Q; electrophoresis power supplies: EPS200, EPS600. 

Amicon (Beverly, MA, USA): concentration chambers: Centriprep, Centricon. 

Avestin (Mannheim, Germany): EmulsiFlex C5 homogenizer. 

Beckmann Coulter GmbH (Krefeld, Germany): centrifuges (J6-MI, GS-6R, Avanti 30, 

Avanti J-25I, Optima LE-80K ultracentrifuge), spectrophotometers (DU640, DU800), LS 

6500 multi-purpose scintillation counter. 

Biometra (Göttingen, Germany): PCR-Thermocycler. 

Bio-Rad (Munich, Germany): electrophoresis chambers: MiniProtean 2 and 3, 

electrophoresis power supply Power PAC 300. 

Branson (Connecticut, USA): Sonifier cell disruptor B15. 

Eppendorf (Hamburg, Germany): centrifuges: 5415C, 5417R; Thermomixer Comfort. 

Forma Scientific (Marietta / OH, USA): Orbital Shaker 4581 

Fuji (Tokyo, Japan): Phosphoimager FLA-2000; ImageReader LAS-3000. 

Getinge (Getinge, Sweden): autoclave. 

Hoefer Scientific Instruments (San Francisco, USA): SemiPhore blotting transfer unit. 

HORIBA Jobin Yvon GmbH (München, Germany): Spex Fluorolog 3. 

Mettler Toledo (Giessen, Germany): balances: AE160, AG285, PB602. 

Millipore (Eschborn, Germany): deionization system MilliQ plus PF; Millex-HA filters 

(0.22 μm); vacuum filtration unit (0.22 μm). 

MWG BiotechAG (Göttingen, Germany): gel documentation system BioCapt. 

New Brunswick Scientific (Nürtingen, Germany): orbital shaker and incubator 

Innova 4430. 

Philips (Amsterdam, Netherlands): electron microscope CM12. 

Raytest (Straubenhardt, Germany): AIDA gel imaging software version 3.5. 
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Savant/Thermoquest (Engelsback, Germany): Stacked Gel Dryer SGD300. 

WTW (Weilheim, Germany): pH-Meter. 

Wyatt Technology (Santa Barbara/CA, USA): FFF-MALS system, software ASTRA. 

 

4.2   Materials 

4.2.1   Chemicals 

Chemicals and biochemicals used in this work were of pro analysi grade and 

purchased from Fluka (Deisenhofen, Germany), Calbiochem (Bad Soden, Germany), 

Merck (Darmstadt, Germany), Sigma-Aldrich (Steinheim, Germany), Roth (Karlsruhe, 

Germany), and Roche (Mannheim, Germany) unless stated otherwise. 

Amersham Pharmacia Biotech (Freiburg, Germany): western blotting detection 

systems: ECL, chromatographic resins, [35S]-Methionine, NaH14CO3. 

BioMol (Hamburg, Germany): IPTG, HEPES. 

BioRad (Munich, Germany): ethidiumbromide; Bradford Protein-Assay. 

Cambrex Bio Science (Rockland / ME, USA): Sea Kem LE Agarose. 

Difco (Heidelberg, Germany): Bacto tryptone, Bacto yeast extract, Bacto agar. 

Fermentas (St. Leon-Rot, Germany): GeneRuler 1kb DNA Ladder. 

Fluka (Deisenhofen, Germany): acetic acid, acetone, Bis-Tris, H2O2, luminol, PEG. 

Hampton Research (Aliso Viejo / CA, USA): Crystallization screens. 

Invitrogen (Karlsruhe, Germany): protein marker for SDS PAGE, dNTP set. 

J.M. Gabler Saliter GmbH & Co. KG (Obergünzburg, Germany): skim milk powder. 

New England Biolabs (Frankfurt a. Main, Germany): restriction enzymes; calf intestinal 

alkaline phosphatase (CIP); T4 DNA ligase; prestained protein marker for SDS PAGE. 

Promega (Mannheim, Germany):  Wizard SV Gel and PCR Clean-Up System, Wizard 

Plus SV Miniprep DNA Purification System, PureYield Plasmid Midiprep System. 

Qiagen (Hilden, Germany): QIAprep Plasmid Mini and Midi kits; QIAquick PCR 

purification and gel extraction kit; Ni-NTA agarose. 

Roche (Mannheim, Germany): RTS in vitro translation systems: RTS 100 E. coli HY Kit, 

Complete protease inhibitor cocktail, DTT. 
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Roth (Karlsruhe, Germany): ampicillin, glycin, scintillation fluid. 

Schleicher & Schuell (Dassel, Germany): protran nitrocellulose transfer membrane; 

fluted paper filter 595-1/2 (270 mm). 

Serva (Heidelberg, Germany): Acrylamide-Bis, BSA, Coomassie blue G/R, PMSF, SDS. 

USB (Cleveland, USA): ammoniumsulfate, chloramphenicol, EDTA, MES, tricine, urea. 

 

4.2.2   Strains 
Novagen (Darmstadt, Germany): E. coli DH5α  

Stratagene (Heidelberg, Germany): E. coli BL21(DE3)  

 

4.2.3   Plasmids, DNA and oligonucleotides 
Novagen (Darmstadt, Germany): pET11a, pET15b, pET28b, pET30b. Plasmid pHUE 

was a kind gift from Dr. Spencer Whitney, ANU, Canberra, Australia. 

Metabion (Martinsried, Germany): oligonucleotides (primers). 

Plasmids generated during this study will be described below. 

 

4.2.4   Enzymes, proteins, peptides and antibodies 
AgriSera (Vännäs, Sweden): anti-RbcL antibody. 

Amersham Bioscienses (Freiburg, Germany): porcine RNAguard ribonuclease inhibitor, 

Protein A sepharose beads. 

Merck (Darmstadt, Germany): Benzonase. 

New England Biolabs (NEB, Frankfurt Am Main, Germany): restriction endonucleases, 

T4 DNA ligase. 

Fermentas (St. Leon-Rot, Germany): restriction endonucleases. 

JPT Peptide Technologies GmbH (Berlin, Germany): peptide array. 

MPI for Biochemistry, Department Cellular Biochemistry (Martinsried, Germany): 

purified protein stocks of GroEL, GroEL-SR1 (R452E, E461A, S463A, V464A), GroES, 

DnaK, DnaJ, GrpE, Gp31, yeast mt-Hsp10, Rr-RbcL, Rr-RbcL(K168E), TEV-protease. 

MPI for Biochemistry, peptide synthesis service (Martinsried, Germany): oligopeptides. 

MPI for Biochemistry (Martinsried, Germany): antisera against purified Syn7002-RbcX 

and E. coli GroEL (produced in rabbits). 
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Pineda-Antikörper-Service (Berlin, Germany): anti-Cpn60α antibody, anti Cpn60β-

antibody (peptide antibodies, produced in rabbits). 

Promega (Mannheim, Germany): Pfu DNA polymerase. 

Roche (Basel, Switzerland): ProteinaseK, shrimp alkaline phosphatase, hexokinase, 

MDH. 

Sigma-Aldrich (Steinheim, Germany): BSA, lysozyme, 3x FLAG peptide, mouse 

monoclonal anti-FLAG M2 antibody, EZview Red ANTI-FLAG M2 Affinity Gel, HRP-

conjugated secondary antibodies. 

 

4.2.5   Media 
LB medium: 10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl, (+15 g/l agar for solid 

medium). 

 

4.2.6   Buffers and stock solutions 

PBS: 137 mM NaCl, 2.7 mM KCl, 8.4 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.4. 

PonceauS: 0.2% PonceauS, 3% trichloracetic acid. 

TAE: 40 mM Tris-Acetate, 1 mM EDTA, pH 8.0. 

TBS: 50 mM Tris, 150 mM NaCl, pH 7.5. 

TBST: 0.1% Tween-20 in TBS. 

All other buffers and solutions were prepared as convenient stock solutions and either 

autoclaved or filter sterilized before usage, if applicable. 

 

4.3   Molecular biology methods 
All experimental methods used were performed according to “Molecular Cloning” 

(Sambrook, 1989) unless stated otherwise. 

 

4.3.1   Plasmid purification 

  A single E. coli colony containing the plasmid of interest was inoculated in LB 

medium (supplemented with the appropriate antibiotic) and shaken overnight at 230 RPM 
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at 37 °C. Plasmid DNA was purified using the QIAprep Plasmid kits or Wizard Plus SV 

Miniprep DNA Purification System, according to the manufacturer`s protocol. 

 

4.3.2    DNA analytical methods 

DNA concentrations were measured by UV absorption spectroscopy at λ=260 nm. 

An optical density of OD260=1 corresponds to approximately 50 µg/ml double stranded 

DNA. The absorbance ratio 260/280 nm for pure DNA should be approximately 1.85. 

Deviations from this value are indicating quality deficiencies caused by impurities, such as 

RNA or protein (Sambrook, 1989). 

 

Agarose gel electrophoresis was performed with 0.8-2% TAE-buffered agarose 

gels supplemented with 10 µg/ml ethidiumbromide. Size fractionation of DNA fragments 

was carried out at 80-100 V in TAE buffer. Prior to electrophoresis, loading buffer 

(6x loading buffer: 60% glycerol, 0.25% bromphenol blue, 0.25% xylene cyanol FF) was 

added to the DNA samples to a 1x concentration. 

 

Primers were purchased from Metabion (Martinsried, Germany); DNA sequencing 

was performed by Medigenomix GmbH (Martinsried, Germany) or Sequiserve 

(Vaterstetten, Germany) or MPI sequencing service. 

 

 
4.3.3   PCR amplification 
 

DNA was amplified using PCR (polymerase chain reaction) according to the 

standard protocol mentioned below. Modifications in the reaction setup and the running 

conditions were made when necessary. 
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Typical PCR reaction 

DNA template    100-200 ng 

Primers    20 pmol each 

dNTPs    200 µM each  

Pfu DNA Polymerase   3 U/50 µl 

Polymerase buffer  1x 

 

Typical PCR cycling conditions (30 cyles): 

Initial denaturation  95°C for 2 min 

Cycle denaturation  95°C for 30-60 s 

Annealing    50-58°C for 30-60 s 

Extension    72°C for 2-6 min (~40 s /1.0 kb of DNA) 

Final extension   72°C for 10 min 

Pause    4°C indefinite 

 

4.3.4   DNA restriction digestions and ligations 

DNA restriction digestions were performed according to the product instructions of 

the respective enzymes. Typically, a 60 µl preparative reaction containing the purified 

PCR product or plasmid DNA: restriction enzyme = 1µg:10U, 0.1 mg/ml BSA (if 

necessary) in the appropriate reaction buffer was used. In order to avoid religation, 

dephosphorylation of vector DNA cohesive ends was carried out using calf intestinal 

alkaline phosphatase (CIP) following subsequent purification with QIAquick PCR 

purification and gel extraction kit or Wizard SV Gel and PCR Clean-Up System according 

to the manufacturer’s instructions. 
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DNA ligations were performed in the presence of T4 DNA ligase. Typically, for a 

10 µl reaction containing 1 µg DNA consisting of dephosphorylated vector DNA and an 

insert fragment in a molar ratio between 1:3 and 1:10, 1 µl T4 DNA ligase (400 U/µl) and 

1x ligase buffer was used. The ligation was carried out for 1 h at 25°C or overnight at 

16°C for increased efficiency. The complete reaction was used to transform chemically 

competent E. coli DH5α cells. 

 

For processing of constructs resulting from whole plasmid PCR (for pont mutations 

or for inserting FLAG or His6 tags) a subsequent digestion with DpnI for 1 h at 37oC was 

performed to destroy methylated original template DNA . After enzyme inactivation for 20 

min at 80oC and DNA-purification, ligation was carried out in 10 μl reactions containing 8 

μl DNA, T4 DNA ligase reaction buffer and 400 U of T4 DNA ligase. After incubation for at 

least 2 h at RT, reactions were transformed into chemically competent E. coli DH5α cells. 

 

4.3.5   Preparation and transformation of competent E. coli cells 

Chemically competent E. coli BL21(DE3) or DH5α cells were prepared by the 

Rubidium Chloride method (Hanahan, 1983). 50 ml LB medium was inoculated (1:100) 

with an overnight culture of the respective strain and grown at 370C to an OD600 of 0.4-

0.6. The culture was chilled on ice for 15 min before it was centrifuged for 15 min at 2500 

rpm and 4oC. Cells were resuspended in 16 ml buffer I (100 mM RbCl, 50 mM MnCl2, 30 

mM KOAc, 10 mM CaCl2, 15% (v/v) glycerol, pH 5.8 adjusted with acetic acid) and 

incubated on ice for 15 min. Then, cells were centrifuged again and resuspended in 4 ml 

buffer II (10 mM MOPS, 10 mM RbCl, 75 mM CaCl2, 15 % (v/v) glycerol, pH 6.8 adjusted 

with NaOH). After incubation on ice for 15 min, aliquots of 50 μl were frozen on dry ice 

and stored at -80oC. 

 

For transformations, competent cells were thawed on ice, immediately mixed with 

1 µl plasmid DNA or 10 µl of a ligation reaction and incubated on ice for 30 min. Cells 
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were then subjected to a heat shock at 42°C for 45 s and immediately chilled on ice for 

2 min. 800 µl of prewarmed LB medium was added and upon phenotypical expression for 

60 min at 37°C, the transformation reaction was plated on selective LB-agar plates and 

incubated at 37°C overnight. 

 

4.3.6   Cloning strategies 
 
  At-rbcL and At-rbcS1A and At-rbcS3B were cloned by Karnam Vasudeva Rao. 

A cDNA-library of Arabidopsis thaliana was used to amplify the genes of At-rbcL (aa 1-

479, AtCg00490), At-rbcS1A (aa 56-180, AT1G67090), At-rbcS3B (aa 56-181, 

AT5G38410), and At-rbcX (aa 83-203, AT5G19855). The transit peptide for At-RbcS1A, 

At-RbcS3B and At-RbcX was omitted based on ChloroP 1.1 Server (expasy.org) 

prediction and by multialigning (MultAlin) (Corpet, 1988) with cyanobacterial RbcS and 

RbcX respectively. Since four genes encode four types of RbcS in A. thaliana, those 

genes with highest expression levels in planta were chosen for this study (Yoon et al., 

2001). The genes were cloned between the NdeI/BamHI sites of plasmid pET11a (AmpR) 

resulting in At-rbcL-pET11a, At-rbcS-pET11a and At-rbcX-pET11a.  

 

  The reverse primer for At-rbcL contained an additional NheI site between the stop 

codon and the BamHI site, the At-rbcL expression cassette was extracted from At-rbcL-

pET11a with SphI/NheI and introduced between the SphI/XbaI sites of At-rbcX-pET11a, 

in front of the ribosomal binding site of At-rbcX. In the resulting co-expression plasmid At-

rbcLX-CoEx-pET11a, both At-rbcL and At-rbcX share the same T7-promotor for co-

transcription, but have their own ribosomal binding sites for translation.  

   

  pHUE vector has His6+Ubiquitin and a multiple cloning site (Catanzariti et al., 

2004). At-rbcX was subcloned from At-rbcX-pET11a into pHUE between the 

Sac1/BamH1 sites. The FLAG-tagged construct At-rbcXN-FLAG-pHUE was obtained by 

introducing the sequences for FLAG-tag (MDYKDDDDK) and a connecting spacer (AG) 

after the sequence encoding Ubiquitin (before At-rbcX) via whole plasmid PCR (Weiner et 

al., 1994). Point mutations in At-rbcX were introduced by the same method using 
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mutation site-specific primers. Plasmids that were generated in this study were confirmed 

by sequencing either by Medigenomix GmbH (Martinsried, Germany) or by the MPI 

sequencing service.  

 

Comparative sequence analysis was performed using BLAST 

(www.ncbi.nlm.nih.gov) and MultAlin-analysis program (Corpet, 1988) http://bioinfo. 

genotoul.fr/multalin/multalin.html). 

 

  The constructs for cyanobacterial RbcX and Rubisco components, At-ch-

cpn60, At-ch-cpn20 and At-ch-cpn10 were made by Sandra Saschenbrecker.  

 

 

4.4   Protein biochemical methods 

4.4.1   Protein analytical methods 

4.4.1.1   Determination of protein concentrations 
 

Concentrations of purified proteins were determined spectrophotometrically on the 

basis of the Beer-Lambert law and their theoretical extinction coefficients at λ=280 nm 

(Gill and von Hippel, 1989), as calculated by the ProtParam tool at the ExPASy 

proteomics server (http://www.expasy.org) unless mentioned otherwise. Molar 

concentrations of proteins present as complexes in their native sate (e.g. chaperones or 

Rubisco) are expressed for the native state oligomers.  

 

Protein concentrations of complex protein mixtures and cell lysates were 

determined spectrophotometrically at λ=595 nm using the Bio-Rad protein assay reagent 

according to the manufacturer`s recommendations (Ausubel, 1997; Bradford, 1976). 
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4.4.1.2   Sodium-dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) 
 

SDS-PAGE was performed using a discontinuous buffer system under denaturing 

and reducing conditions (Laemmli, 1970). Typically, gels were poured with a 5% 

polyacrylamide stacking gel on top of a 8-16% polyacrylamide separating gel, depending 

on the required resolution (Table i). SDS sample buffer was added to the protein samples 

to a 1x concentration. Prior to loading, samples were boiled at 95 °C for 5 min. 

Electrophoresis was carried out in Mini-Protean electrophoresis chambers in running 

buffer at a constant voltage of 150 V.  

 

 

Table i. Composition for SDS-PAGE gels.  
 
2x SDS sample buffer: 14 mM Tris-HCl, pH 6.8, 5% SDS, 20 % (v/v) glycerol, 0.1% 

(w/v) bromphenolblue, 2% (v/v) β-mercaptoethanol  

Running buffer: 25 mM Tris, 192 mM glycine, 0.1% (w/v) SDS  

 
4.4.1.3   Native PAGE  
 

In Native PAGE the separation of proteins is based on the charge and the 

hydrodynamic size.  Gels were cast as mentioned in Table ii and samples were taken up 

in 2x native loading dye (50% (v/v) glycerol, 0.25% (w/v) bromphenolblue, in native 

electrophoresis buffer). Electrophoresis was performed in Mini-Protean electrophoresis 

Chemicals 
(For 4 mini-gels) 

Separating gel Stacking gel
8 % 12.5 % 16 % 5 %

30 % Acryalmide (0.8% bis) 4.5 ml 6.8 ml 9.0 ml 1.66ml
1.875 M Tris-HCl, pH 8.8 3.5 ml 3.5 ml 3.5 ml -
0.6 M Tris-HCl, pH 6.8 - - - 1.00 ml
ddH2O 8.7 ml 6.4 ml 4.2 ml 7.20 ml
10 % (w/v) SDS 167 μl 167 μl 167 μl 100 μl
10 % (w/v) APS 100 μl 100 μl 100 μl 50 μl
TEMED 10 μl 10 μl 10 μl 10 μl
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chambers in native electrophoresis buffer (50 mM Tris, 38 mM glycin, pH not adjusted) at 

40C, employing a constant voltage of 100 V for the first 30 min and 200 V till the end of 

the run.  

 

Table ii. Composition for Native-PAGE gels.  

 
4.4.1.4   Tricine-PAGE 

Tricine gels were used for analyzing small proteins (5-20 kDa). Protein samples 

were mixed with 3x sample buffer (200 mM Tris-HCl, pH 6.8, 2% SDS, 40% (v/v) glycerol, 

0.04% (w/v) Coomassie blue G-250, 2% (v/v) β-mercaptoethanol) and boiled for 5 min at 

95 oC, before they were applied to the gels prepared according to Table iii. Gels were run 

in Mini-Protean electrophoresis chambers with separate Cathode-buffer (100 mM Tris, 

100 mM Tricine, 0.1 % (w/v) SDS) and Anode-buffer (200 mM Tris-HCl, pH 8.9) at a 

constant voltage of ≤ 130 V. 

 
Table iii. Composition for Tricine-PAGE gels.  
 

Chemicals                  
(For 2 mini-gels) 

Separating gel Stacking gel
6 % 10 % 5 %

Acrylamide/Bis (37.5:1, 30 %) 1.67 ml 2.83 ml 0.83 ml
1.875 M Tris-HCl, pH 8.8 1.75 ml 1.75 ml -
0.6 M Tris-HCl, pH 6.8 - - 0.50 ml
ddH2O 5.00 ml 3.84 ml 3.65 ml
10 % (w/v) APS 50 μl 50 μl 25 μl
TEMED 5 μl 5 μl 5 μl

Chemicals 
(For 2 mini-gels)

Separating gel Stacking gel

16 % 4 %
30 % Acryalmide (0.8% bis) 5.35 ml 0.65 ml
3 M Tris-HCl, pH 8.45 3.35 ml 1.24 ml
ddH2O 200 μl 3.10 ml
10 % (w/v) SDS 100 μl 50 μl
Glycerol 1.00 ml -
10 % (w/v) APS 100 μl 50 μl
TEMED 10μl 5 μl
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4.4.1.5   Bis-Tris Native PAGE 
 

In the Bis-Tris Native PAGE system, protein migration correlates with molecular 

masses of proteins and was performed according to described procedures (Hansen et al., 

1999; Schagger and von Jagow, 1991). Gels were prepared as mentioned in Table iv. 

Samples were mixed with loading dye to final concentrations of 50 mM Bis-Tris, pH 7.0, 

5% glycerol and 0.1% bromphenolblue. Electrophoresis was performed in cold room or on 

ice in Mini-Protean electrophoresis chambers. The cathode buffer consisted of 50 mM 

Tricine and 15 mM Bis-Tris, pH 7.0, whereas the anode buffer contained 50 mM Bis-Tris, 

pH 7.0. Initially the gels were run at 100 V for 40 minutes and further at 240 V. 

 
Table iv. Composition for Bis-Tris Native PAGE gels. 
 
 
4.4.1.6   Coomassie blue staining of polyacrylamide gels 

 

Coomassie blue staining was carried out to detect protein amounts of ≥ 0.5 μg on 

SDS-PAGEs,.To fix and to stain the proteins, gels were incubated in staining solution 

(0.16% (w/v) Coomassie brilliant blue R-250, 40% (v/v) ethanol, 8% (v/v) acetic acid) 

followed by multiple washes in destaining solution (20% (v/v) ethanol, 7% (v/v) acetic 

acid) to remove background staining. 

 

 

 

Chemicals 
(For 4 mini-gels)

Separating gel Stacking gel
12.5 % 5 %

30 % Acryalmide (0.8% bis) 4.16 ml 2.20 ml
3x gel buffer (150 mM Bis-Tris, pH 7.0, 
1.5 M ε-amino n-caproic acid)

3.34 ml 4.00 ml

Glycerol 1.58 ml -
ddH2O 0.88 ml 5.68 ml
10 % (w/v) APS 33.4 μl 96 μl
TEMED 3.4 μl 9.6 μl
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4.4.1.7   Silver staining of polyacrylamide gels 

 

After electrophoresis, gels were incubated for 30 min in fixing solution (40% (v/v) 

ethanol, 10% (v/v) acetic acid), resulting in precipitation of the proteins and diffusion of 

SDS. Subsequently, gels were placed into incubation solution (300 ml ethanol, 68 g/l 

sodium acetate x 3 H2O, 2 g/l sodium thiosulphate x 5 H2O) for 30 min to oxidize the 

proteins. Gels were then washed in water three times for 5 min and transferred into silver 

solution (1 g/l silver nitrate, 0.025% (v/v) formaldehyde added before use) for 40 min. 

Thereafter, proteins were visualized by replacement of the silver solution with developing 

solution (26 g/l sodium carbonate, 0.0125% (v/v) formaldehyde added before use). The 

sodium carbonate of the latter solution reduces the silver nitrate attached to the proteins 

and thus the proteins adopt a brown color. As soon as the desired staining intensity was 

achieved, the reaction was stopped by addition of stop solution (20% (v/v) ethanol, 7% 

(v/v) acetic acid), which was replaced by water after 20 min. 

 

4.4.1.8   Autoradiography 
 

Autoradiography was used to detect radioactively (35S) labeled proteins. 

Polyacrylamide gels were Coomassie stained, destained, rinsed in water and vacuum 

dried (Stacked Gel Dryer SGD300) on whatman paper. Migration distances of standard 

proteins were marked on the whatman paper with a radioactive dye. The radioactive 

products from the gel was transferred to a phosphoimaging plate using the 

phosphoimaging cassette (exposure time 3-8 hours) which was read by phosphoimager 

(Image Reader Fuji-FLA2000) and processed using AIDA software. 

 

4.4.1.9   Western blotting and immunodetection 
 

Western blotting was carried out in a semi dry blotting unit. Upon separation by 

SDS-PAGE, proteins were transferred to nitrocellulose membranes by applying a 

constant current of ~1 mA/cm2 gel size in 25 mM Tris, 192 mM glycine, 20% methanol for 

1.5 h. Prior to blocking the membranes with 5% skim milk powder in TBS (2.1.3.2) for 1 h, 
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transfer efficiency was verified by PonceauS (2.1.3.2) staining. The membranes were 

then incubated with primary antibodies (diluted to a suitable concentration in 5% milk 

TBS) for 1 h at RT or overnight at 4°C, followed by the incubation with HRP conjugated 

secondary antibodies (diluted 1:1000 in milk TBS) for 1 h at RT. Extensive washing 

between the incubation steps was performed with TBST. For immunodetection, ECL 

chemiluminescence solution was freshly prepared by mixing equal amounts of ECL 

solution I (100 mM Tris-HCl, pH 8.5, 2.5 mM luminol (3-aminophtalhydrazid), 400 uM p-

coumaric acid) and ECL solution II (100 mM Tris-HCl, pH 8.5, 5.4 mM H2O2). Membranes 

were incubated in the resulting solution and protein bands were detected and 

documented with the Fuji-LAS3000 luminescence and densitometry system. 

 

4.4.1.10   TCA precipitation 
 

TCA was added to the protein samples at a final concentration of 20% (v/v). After 

incubation on ice for 15 min and centrifugation (15 min, 20800 x g, 4oC), 200 μl of chilled 

acetone were added. After another centrifugation, the supernatant was removed and 

pelleted samples incubated at RT until all residual acetone was evaporated. Pellets were 

dissolved in 20 μl 1 x SDS-loading dye (7 mM Tris-HCl, pH 6.8, 2.5% SDS, 10% (v/v) 

glycerol, 0.05% (w/v) bromphenolblue, 1% (v/v) β-mercaptoethanol), mixed with 1 μl 2 M 

Tris-base, boiled for 5 min at 95oC and subjected to SDS-PAGE analysis. 

 

4.4.1.11   FFF-MALS (field flow fractionation - multiangle light scattering) 
 

Mass Determination of proteins by FFF-MALS was performed by Dr. Manajit 

Hayer-Hartl. Protein complexes (80 μg) were analyzed by field flow fractionation (FFF) 

using a 490 nm spacer and 30 kDa MWCO membrane (Wyatt Technology) with elution 

and crossflow of 1 ml/min (Roessner, 1994). The FFF was online with DAWN EOS multi-

angle light scattering (Wyatt Technology, 690 nm laser), variable wavelength UV 

absorbance set at 280 nm (Agilent 1100 series) and Optilab DSP refractive index (Wyatt 

Technology, 690 nm) detectors (Wyatt, 1993). Masses were calculated using the ASTRA 
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software (Wyatt Technology) with a value set to for dn/dc for protein of 0.185 ml/g. 

Alternatively, gel filtration (TSK Super 3000 SW, 4.5 mm x 30 cm) could precede MALS-

analysis instead of FFF. 

 

4.4.1.12   N-terminal sequencing of proteins 
 

For N-terminal sequencing, proteins were separated by SDS-PAGE and blotted 

onto a PVDF membrane, which was soaked in methanol and equilibrated with Western 

blot buffer prior to protein transfer. The membrane was stained (0.1% (w/v) Coomassie 

brilliant blue R-250, 10% (v/v) acetic acid, 40% (v/v) methanol) for 2-5 min and 

subsequently destained (10% (v/v) acetic acid, 30% (v/v) methanol), before it was rinsed 

in H2O and air-dried. Protein bands of interests were cut and analyzed via Edman 

degradation by the MPI protein sequencing service. 

 

4.4.1.13   Sequence alignments 

 

Multiple sequence alignment with hierarchical clustering was performed using 

MultAlin (Corpet, 1988) (http://bioinfo.genotoul.fr/multalin/multalin.html). 

 
4.4.2   Protein expression and purification 

 

All protein purification steps were performed at 4oC unless stated otherwise. 

Purification of At-ch-cpn60αβ, Syn7002-RbcX, Syn7002-RbcS Syn6301-RbcL8S8 and 

Syn6301-RbcS were standardized by Sandra Saschenbrecker and the protocol is as 

described below. 

 

4.4.2.1   At-ch-cpn60 (Arabidopsis thaliana ch cpn60α7β7) 

 

E. coli BL21(DE3), transformed with at-ch-cpnαβ-CoEx-pET11a, were grown at 

37oC in LB medium. After reaching mid-log phase, expression of At-ch-cpn60αβ was 
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induced with 1 mM IPTG for 3.5 h. Cells were harvested by centrifugation (25 min at 4200 

rpm), resuspended and incubated for 1 h in buffer A (20 mM Tris-HCl, pH 7.5, 20 mM 

NaCl), supplemented with 1 mM EDTA, 0.5 mg/ml lysozyme, 10 U/ml Benzonase and 

Complete protease inhibitor coctail. Cells were disrupted by freeze-thawing as well as 

ultrasonication and cell debris was removed by ultracentrifugation (35 min at 40000 rpm). 

The lysate supernatant was applied to a SourceQ column, equilibrated with buffer A/1 mM 

EDTA and eluted with a linear salt gradient from 0.02 to 1 M NaCl. Throughout the 

purification, fractions were analyzed both by SDS-PAGE and by Native PAGE to 

distinguish complexes of At-ch-cpn60α7β7 from GroEL and from At-ch-cpn60-monomers. 

Fractions containing At-ch-cpn60αβ were pooled, dialyzed against 20 mM Tris-HCl, pH 

7.5 and applied to an equilibrated MonoQ ion exchange column (Amersham Biosciences). 

Elution was performed with a linear gradient from 0 to 0.95 M NaCl and At-ch-cpnαβ 

containing fractions were subsequently applied to a Hi-Trap Heparin Sepharose column, 

equilibrated with 20 mM Tris-HCl, pH 7.5. At-ch-cpnαβ did not bind to the latter column 

and was collected in the flow through, which was concentrated using Amicon Ultra 

MWCO 100 kDa and applied to Superdex 200 gel filtration chromatography in buffer B (20 

mM Tris-HCl, pH 7.5, 50 mM NaCl, 5% (v/v) glycerol). Fractions containing At-ch-

cpn60αβ were pooled, concentrated (MWCO 100 kDa), flash-frozen in liquid nitrogen and 

stored at -80oC. Complex concentration was determined spectrophotometrically at 280 

nm (192150 M-1 complex At-ch-cpn60α7β7). Native PAGE, light scattering and functional 

assays confirmed purification of active At-ch-cpn60α7β7-complexes. ESI-MS and SDS-

PAGE (8% resolution) verified the absence of GroEL/GroES and the presence of equal 

amounts of α- and β-subunits in the purified complexes.  

 

4.4.2.2   At-ch-cpn20 (Arabidopsis thaliana ch-cpn20) 

 

E. coli BL21(DE3) cells transformed with at-ch-cpn20-pET11a were grown to mid-

log phase at 37oC and induced with 1 mM IPTG for 3 h. Harvested cells were incubated 

for 1 h in buffer C (50 mM Tris-HCl, pH 7.5, 20 mM NaCl), containing 1 mM EDTA, 0.5 

mg/ml lysozyme, 10 U/ml Benzonase and Complete protease inhibitor cocktail. After 
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ultrasonication, cell debris was removed by ultracentrifugation (35 min, 40,000 rpm). The 

supernatant was applied to a DE52 ion exchange column, equilibrated with buffer C, and 

eluted with a linear salt gradient from 0.02 to 1 M NaCl. Fractions containing cpn20 or 

cpn10 were pooled, dialyzed against 50 mM Tris-HCl, pH 8, applied to an equilibrated 

SourceQ column and eluted with a linear gradient from 0 to 1 M NaCl. The resulting 

protein pool was concentrated (MWCO 30 kDa) and subjected to Sephacryl S-200 gel 

filtration chromatography in buffer C. Fractions containing cpn20 or cpn10 were applied to 

a Hi-Trap Heparin Sepharose column, equilibrated in the same buffer. Cpn20 or Cpn10, 

eluting in the flow through, were concentrated (MWCO 30 kDa), flash-frozen in liquid 

nitrogen and stored at -80 oC. Protein concentration was determined 

spectrophotometrically at 280 nm (30720 M-1 tetramer cpn20). N-terminal sequencing 

confirmed that the proteolysis product of At-ch-cpn20, which appeared throughout the 

purification, was due to C-terminal proteolysis. Light scattering confirmed the tetrameric 

nature of cpn20.      

 

4.4.2.3   At-ch-cpn20N-His6   

 

For E. coli BL21(DE3) cells harboring plasmid At-ch-cpn20N-His6-pProEx, protein 

expression and cell lysis was performed as described for At-ch-cpn60 with buffer E (20 

mM Tris-HCl, pH 7.5, 500 mM NaCl), supplemented with 0.5 mg/ml lysozyme, 10 U/ml 

Benzonase and Complete protease inhibitor cocktail. Soluble cell lysate was applied to a 

Ni-NTA-agarose column, equilibrated with buffer E. After stepwise washing with buffer E 

containing 10 mM, 50 mM and 100 mM imidazole, the majority of At-ch-cpn20N-His6 eluted 

with 250 mM imidazole. This protein pool was dialyzed against buffer A and applied to a 

MonoQ column, which was equilibrated with buffer A and developed with a linear salt 

gradient from 0 to 1 M NaCl. Fractions containing At-ch-cpn20N-His6 were concentrated 

(MWCO 10 kDa) and applied to Superdex 200 gel filtration chromatography in buffer A. 

Fractions containing the desired protein were concentrated, flash-frozen in liquid nitrogen 

and stored at -80oC. Protein concentration was determined spectrophotometrically at 280 

nm. 
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 If the N-terminal His-tag had to be removed, gel filtration was preceded by overnight 

digestion with TEV-protease (1 mg TEV per 100 mg tagged protein) at 4oC, followed once 

more by Ni-NTA affinity chromatography with cpn20 eluting in the flow through.  

 

4.4.2.4   Syn6301-RbcL8S8 (Synechococcus sp. PCC6301 RbcL8S8) 

 

To increase the amount of soluble Syn6301-RbcL8S8 in the E. coli lysate, 

overexpression of GroEL/ES preceded the expression of RbcLS. For this purpose, E. coli 

BL21 (DE3) cells were transformed with Syn6301-rbcLS-pET11a and pBAD33ES/EL and 

grown to OD600 ~0.6 at 30oC. Then expression of GroEL/ES was induced with 0.4 % (w/v) 

arabinose for 1.5 h, before cells were shifted to fresh LB medium (w/o arabinose) 

containing 1 mM IPTG for expression of RbcLS for 3 h at 30 oC. Cells were harvested by 

centrifugation, incubated for 1 h in buffer C (supplemented with 1 mM EDTA, 1 mM DTT, 

0.5 mM PMSF, 0.5 mg/ml lysozyme, 10 U/ml Benzonase, Complete protease inhibitor 

cocktail), freeze-thawed and passed through a high pressure cell disruptor. Cell debris 

was removed by ultracentrifugation and the lysate supernatant was fractionated on a 

DE52 column with a linear salt gradient from 0.02 to 1 M NaCl in buffer C/1 mM DTT. 

Fractions were analyzed for Syn6301-RbcL8S8 by SDS-PAGE and immunoblotting 

against RbcL. The Syn6301-RbcL8S8 pool was supplemented with (NH4)2SO4 (20% 

saturation) and applied to a Phenyl-Sepharose column, equilibrated with 50 mM Tris-HCl, 

pH 7.5, 20% saturation (NH4)2SO4, 0.5 mM DTT. Elution was performed with a linear 

gradient from 20 to 0% saturation (NH4)2SO4. Syn6301-RbcL8S8 fractions were dialyzed 

against 20 mM Imidazol, pH 6.2. After ultracentrifugation, the supernatant was loaded 

onto an equilibrated MonoQ column and the protein was eluted with a linear gradient from 

0 to 0.7 M NaCl. Fractions containing Syn6301-RbcL8S8 were concentrated (MWCO 100 

kDa) and passed over a Superose 6 gel filtration column in buffer B. Eluted Syn6301-

RbcL8S8 was concentrated (MWCO 100 kDa), snap-frozen in liquid nitrogen and stored at 

-80oC. Complex concentration was determined spectrophotometrically at 280 nM (705520 

M-1 complex RbcL8S8). Light scattering, Native PAGE and carboxylation acitvity confirmed 

the complex nature and activity of the purified Syn6301-RbcL8S8. 
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4.4.2.5   Syn6301-RbcL8 (Synechococcus sp. PCC6301 RbcL8) 
 

E. coli BL21(DE3) cells, harboring plasmids Syn6301-rbcL-pET11a and pG-KJE8, 

were grown to mid-log phase at 30 oC. Expression of DnaK/DnaJ/GrpE was induced with 

0.4 % (w/v) arabinose for 2 h, before cells were shifted for ~3 h to fresh LB medium (w/o 

arabinose) supplemented with 1 mM IPTG as inducer for Syn6301-RbcL expression. Note 

that since purification of RbcL8 was facilitated in the absence of elevated GroEL levels, 

coexpression of DnaK/DnaJ/GrpE (instead of GroEL/ES) was carried out to increase the 

amount of soluble RbcL in E. coli. As described for At-ch-cpn60, cells were lysed and 

fractionated in 25 mM Tris-HCl, pH 8, 1 mM EDTA, 0.5 mg/ml lysozyme, 10 U/ml 

Benzonase and Complete protease inhibitor cocktail. The lysate supernatant was applied 

to a SourceQ ion exchange column, eqilibrated with buffer F (50 mM Tris-HCl, pH 8, 50 

mM NaHCO3, 10 mM MgCl2) / 1 mM EDTA, 0.5 mM DTT. Proteins were eluted with a 

linear salt gradient from 0 to 1 M NaCl. Fractions were analyzed for the presence of 

RbcL8 by SDS-PAGE and Native PAGE, followed by immunoblotting, as well as by 

measurement of carboxylation activity upon addition of RbcS. Fractions with highest 

activity and most enriched RbcL8 were pooled and dialyzed against 20 mM Imidazol, pH 

6.5, 50 mM NaHCO3, 10 mM MgCl2, resulting in a white precipitate, which was pelletet 

and dissolved in 50 mM Tris-HCl, pH 8. After filtration (0.22 μM) and dialysis against 

buffer F, the protein solution was applied to a MonoQ column and eluted with a linear salt 

gradient from 0 to 0.7 M NaCl in buffer F. The Syn6301-RbcL8 containing fractions were 

concentrated (MWCO 100 kDa) and subjected to Superdex 200 gel filtration 

chromatography in buffer F. Fractions containing Syn6301-RbcL8 were pooled, 

complemented with 10% (v/v) glycerol, concentrated (MWCO 100 kDa), flash-frozen in 

liquid nitrogen and stored at -80oC. Complex concentration was determined 

spectrophotometrically at 280 nM (553040 M-1 complex RbcL8). Light scattering and 

Native PAGE confirmed that the purified protein was assembled Syn6301-RbcL8, which 

showed carboxylation acitvity upon addition of RbcS.  
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4.4.2.6   Syn6301-RbcS and Syn7002-RbcSFLAG (Synechococcus sp. PCC6301 RbcS 

and Synechococcus sp. PCC7002 RbcSFLAG from inclusion bodies) 

 

RbcS was purified from inclusion bodies by modification of previously described 

methods (Coligan, 2000; Somerville, 1986). E. coli BL21(DE3) cells, transformed with 

Syn6301-rbcS-pET11a or Syn7002-rbcSFLAG-pET11a, were grown to mid-log phase at 37 
oC, before induction of RbcS expression with 1 mM IPTG for 3.5 h. The majority of RbcS 

was found in inclusion bodies. Harvested cells were incubated for 1 h in lysis buffer (40 

mM Tris-HCl, pH 8, 0.25 M sucrose, 10 mM EDTA, 5 % (v/v) Triton X-100, 0.5 mg/ml 

lysozyme, 10 U/ml Benzonase, Complete protease inhibitor cocktail). After freeze-

thawing, ultrasonication and centrifugation, the pellet was resuspended and washed in 40 

mM Tris-HCl, pH 8, 0.25 M sucrose, 10 mM EDTA, 5 % (v/v) Triton X-100, 2 M urea. 

Subsequent to centrifugation, washing of pellets was repeated in 40 mM Tris-HCl, pH 8, 

0.25 M sucrose, 10 mM EDTA. Pellets were finally dissolved in denaturation buffer (50 

mM Tris-HCl, pH 7.5, 6 M GdnHCl, 1 mM EDTA, 5 mM DTT). The denatured RbcS was 

refolded by dialysis against 50 mM Tris-HCl, pH 8, 1 mM EDTA, 0.1 mM GSH, 0.01 mM 

GSSG at a concentration of ca. 0.5 mg/ml and finally frozen in liquid Nitrogen for storage 

at -80oC.  The recovery of refolded protein was ca. 65 to 85 %. Protein concentration was 

determined spectrophotometrically at 280 nM (19060 M-1 monomer Syn6301-RbcS, 

24410 M-1 monomer Syn7002-RbcSFLAG). 

 
4.4.2.7   Syn7002-RbcX (Synechococcus sp. PC7002 wild-type/mutant/FLAG-tagged 
RbcX) 
 

E. coli BL21(DE3) cells, transformed with the respective RbcX plasmids, were 

used for expression of RbcX upon incuction with 1 mM IPTG for 3.5 h at at 37 oC. 

Harvested cells were incubated for 1 h in lysis buffer (50 mM Tris-HCl, pH 8.0, 1 mM 

EDTA, 0.5 mM DTT, 0.5 mg/ml lysozyme, 10 U/ml Benzonase, Complete protease 

inhibitor cocktail) and disrupted by ultrasonication.  After removal of cell debris by 

centrifugation, the supernatant was applied to a SourceQ column, equilibrated with 50 
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mM Tris-HCl, pH 8.0, 0.5 mM DTT, and eluted with a linear gradient from 0 to 1 M NaCl. 

Fractions containing RbcX were dialyzed against 20 mM imidazole, pH 6.4, 20 mM NaCl, 

0.5 mM DTT, applied to an equilibrated MonoQ column, and eluted with a linear salt 

gradient up to 0.7 M NaCl.  Fractions containing RbcX were dialyzed against buffer G (50 

mM Tris-HCl, pH 8.0, 50 mM NaCl, 10 mM MgCl2) and applied to a HiTrap Heparin 

Sepharose column. RbcX eluted in the flow through, which was then concentrated 

(MWCO 10 kDa) and subjected to Superdex 200 gel filtration chromatography in buffer G. 

Fractions containing RbcX were supplemented with 10 % glycerol, concentrated (MWCO 

10 kDa), flash-frozen in liquid nitrogen and stored at -80ºC.  Protein concentration was 

determined spectrophotometrically at 280 nM (19060 M-1 dimer Syn7002-RbcX). 

Syn7002RbcX wild type and mutant proteins were purified in cooperation with Karnam 

Vasudeva Rao. 

 
4.4.2.8   At-RbcXN-His6

 (Arabidopsis thaliana RbcXN-His6) 
  

  E. coli BL21(DE3) cells transformed with At-rbcXN-His6-pET11a plasmid, were 

used for expression of At-rbcX upon induction with 1 mM IPTG for 7 h at 18oC. Harvested 

cells were incubated for 1 h in buffer E (20 mM BisTris-HCl, pH 6, 500 mM NaCl, 10mM 

Imidazole), supplemented with 0.5 mg/ml lysozyme, 10 U/ml Benzonase and Complete 

protease inhibitor cocktail and disrupted by ultrasonication. Soluble cell lysate was 

applied to a Ni-NTA-agarose column, equilibrated with buffer E. After stepwise washing 

with buffer E containing 10 mM, 50 mM and 100 mM imidazole, the majority of At-RbcXN-

His6 eluted with 250 mM imidazole. This protein pool was dialyzed against buffer 

containing 20mM BisTris-HCl, pH6, 100mM NaCl, 8% Glycerol. The protein was 

concentrated in centricons (MWCO 10 kDa). Concentration was determined 

spectrophotometrically at 280 nm and the protein was flash-frozen in liquid nitrogen and 

stored at -80oC.  
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4.4.2.9   At-RbcXN-His6+Ub
 (Arabidopsis thaliana RbcXN-His6+ Ubiquitin) and At-RbcXN-

His6+Ub+FLAG (Arabidopsis thaliana RbcXN-His6+ Ubiquitin+FLAG) 
  

  E. coli BL21(DE3) cells, transformed with either At-rbcX-pHUE or At-rbcXN-FLAG–

pHUE plasmids, were used for expression of At-rbcX upon induction with 1 mM IPTG for 

5 h at 30oC. Harvested cells were resuspended and incubated for 1 h in buffer E (20 mM 

BisTris-HCl, pH 6, 500 mM NaCl, 10mM Imidazole), supplemented with 0.5 mg/ml 

lysozyme, 10 U/ml Benzonase and Complete protease inhibitor cocktail and disrupted by 

ultrasonication. Further the purification was performed using the modification of the 

published protocol (Catanzariti et al., 2004). Soluble cell lysate was applied to a Ni-NTA-

agarose column, equilibrated with buffer E. After stepwise washing with buffer E 

containing 10 mM, 50 mM and 100 mM imidazole, the majority of His+Ubiquitin tagged 

At-RbcX eluted with 250 mM imidazole. The fractions containing At-RbcX were pooled 

and dialyzed against buffer containing 20mM BisTris-HCl, pH6, 100mM NaCl, 8% 

Glycerol for 8 hours. After dialysis, the protein was concentrated (MWCO 10 kDa), flash-

frozen in liquid nitrogen and stored at -80oC. Protein concentration was determined 

spectrophotometrically at 280 nm.  

  

  To remove the N-terminal His+Ub-tag, the samples from the first Nickel NTA 

containing At-RbcX was incubated with the ubiquitin protease, Usp2-cc at 1:100 protease 

to protein molar ratio at 160C, overnight. 3% Glycerol and 1.5M mercaptoethanol were 

added to the cleavage reaction. After incubation this mixture was dialysed against buffer 

containing 20mM BisTris-HCl, pH9.2, 100mM NaCl, 10% Glycerol and then subjected to 

Ni-NTA chromatography. All the cleaved ubiquitin and the protease which are His-tagged 

bound to the Ni-NTA beads and At-RbcX was in the flow-through. The flow-through was 

concentrated in a 10kDa cut off centricon and applied to an equilibrated MonoQ ion 

exchange column (Amersham Biosciences). Elution was performed with a linear gradient 

from 0 to 1M NaCl and At-RbcX containing fractions were subsequently pooled and 

concentrated. The concentrated samples were flash-frozen in liquid nitrogen and stored at 

-80oC. Protein concentration was determined spectrophotometrically at 280 nm. 
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4.4.2.10   At-RbcS1A (Arabidopsis thaliana RbcS1A) from inclusion bodies 

 

  At-RbcS1A was purified from inclusion bodies. E. coli BL21(DE3) cells, transformed 

with At-rbcS1A-pET11a, were grown to mid-log phase at 37oC, before induction of rbcS 

expression with 1 mM IPTG for 3.5 h. The majority of RbcS was found in inclusion bodies. 

Harvested cells were incubated for 1 h in lysis buffer (40 mM Tris-HCl, pH 8, 0.25 M 

sucrose, 10 mM EDTA, 5% (v/v) Triton X-100, 0.5 mg/ml lysozyme, 10 U/ml Benzonase, 

Complete protease inhibitor cocktail). After freeze-thawing, ultrasonication and 

centrifugation, the pellet was resuspended and washed in 40 mM Tris-HCl, pH 8, 0.25 M 

sucrose, 10 mM EDTA, 5% (v/v) Triton X-100, 2 M urea. Subsequent to centrifugation, 

washing of pellets was repeated in 40 mM Tris-HCl, pH 8, 0.25 M sucrose, 10 mM EDTA. 

Pellets were finally dissolved in denaturation buffer (50 mM Tris-HCl, pH 7.5, 6 M 

GdnHCl, 1 mM EDTA, 5 mM DTT). The denatured RbcS was refolded by dialysis against 

50 mM Tris-HCl, pH 8, 1 mM EDTA, 0.1 mM GSH, 0.01 mM GSSG at a concentration of 

ca. 0.5 mg/ml and finally frozen in liquid Nitrogen for storage at -80oC. Protein 

concentration was determined spectrophotometrically at 280 nM.  

 

4.4.3   Functional analyses  
 
4.4.3.1   ATPase activity assay  
 

  The ATPase activity of chaperonins was determined as described (Lanzetta et 

al., 1979) . Chaperonins were diluted at a concentration of 0.5 μM into assay-buffer 1 (20 

mM MOPS-KOH, pH 7.5, 100 mM KCl, 5 mM MgCl2). If the influence of co-chaperones 

was analyzed, the latter were added at a final concentration of 1 μM. The reactions were 

incubated for 5 min at 25oC, before they were initiated by addition of 2 mM ATP. At 

indicated time points aliquots of 10 μl were withdrawn and the reaction stopped with 

CDTA (final concentration 20 mM). The resulting samples were mixed with 300 μl color 

reagent (filtered 3:1 mixture of 0.045% (w/v) malachite green hydrochloride in H2O and 

4.2% (w/v) ammonium molybdate in 4 N HCl; supplemented before use with 0.1% (v/v) 
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Triton X-100) and 40 μl 37% citric acid. After incubation for 30 min at 25oC, the absorption 

at 640 nm was measured.  

 

  For quantification of ATP hydrolysis, a standard assay was performed, in which 10 

μl of solutions containing 0, 10, 25, 50, 100, 250, 500 and 1000 μM K2HPO4 were applied 

to the colorimetric assay described above. The resulting calibration curve displayed the 

relation between phosphate concentration and the respective absorbance and could thus 

be used to determine the ATP hydrolysis rate of the chaperonins. 
 
 

4.4.3.2   In vivo co-expression of RbcL or RbcLS with chaperones in E. coli and 
Rubisco carboxylation activity 
 

E. coli BL21(DE3) cells were transformed with pET-vectors for expression of RbcL, 

RbcL/X, RbcL/S or RbcL/X/S. If necessary, the resulting strains were additionally co-

transformed with pG-KJE8 for GroEL/GroES or/and DnaK/DnaJ/GrpE expression. Single 

colonies were grown to mid-log phase at 30oC. Expression of the rbc-genes from T7-

promoters was induced with 1 mM IPTG for ~3.5 h at 30oC with or without prior transient 

overexpression of GroEL/GroES (induced with 0.4% (w/v) arabinose) or 

GroEL/GroES+DnaK/DnaJ/GrpE (induced with 0.4% (w/v) arabinose and 20 ηg/ml 

tetracycline) for 2 h at 30oC, followed by a transfer to fresh medium. 

 

Equivalent amounts of cells were pelleted, incubated in lysis buffer (50 mM Tris-

HCl, pH 8, 20 mM NaCl, 5 mM MgCl2, 1 mM EDTA, 0.1% (v/v) Triton X-100, 0.1 mg/ml 

lysozyme) on ice for 30 min, ultrasonicated and fractionated into soluble and insoluble 

fractions by centrifugation (20800 x g, 30 min at 4oC). Comparative analysis of total, 

soluble and insoluble protein was performed by SDS-PAGE. Soluble lysate fractions were 

analyzed for assembled RbcL by 6% Native PAGE, followed by immunoblotting against 

RbcL.   
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Carboxylation activity was determined by diluting aliquots of lysate supernatants 

into assay-buffer 3 (100 mM Tris-HCl, pH 7.5, 10 mM KCl, 2 mM Mg(OAc)2) containing 1 

mM DTT and 2 μM BSA. Samples containing only RbcL were supplemented with 7 μM 

Syn6301-RbcS or Syn7002-RbcSFLAG or At-RbcS1A and assembly was allowed to 

proceed for 5 min at RT. Thereafter, a 14C-Mix (in 100 mM Tris-HCl, pH 7.5, 10 mM KCl) 

was added to give final concentrations of 60 mM NaHCO3, 0.5 μCi NaH14CO3 and 10 mM 

MgCl2. After incubation for 5 min, carboxylation was initiated by addition of 2.5 mM RuBP 

and stopped with acetic acid (3 N) after 30 min. The resulting mixes were heated (96oC) 

until complete evaporation of liquid, the remaining non-volatile components were 

dissolved in 100 μl water, taken up in 1 ml scintillation fluid and radioactivity of the fixed 

carbon was quantified (LS 6500 multi-purpose scintillation counter) (Dickson et al., 2000; 

Goloubinoff et al., 1989a; Goloubinoff et al., 1989b; Viitanen et al., 1995) . 

 

4.4.3.3   in vitro translation of Rubisco, immunodepletion of GroEL from RTS E. coli 
lysate and Pulse-chase Assays 
  

T7 promoter constituted plasmid (200-300 ηg/μl) for Rr-rbcL or Syn6301-rbcL or 

Syn7002-rbcL or At-rbcL was translated in-vitro in the reconstituted E. coli lysate (coupled 

RTS100 E. coli HY transcription/ translation system from a bacterial S30 lysate) in the 

presence of 0.5 U/μl RNAguard ribonuclease inhibitor, Complete protease inhibitor 

cocktail (Stock: 1 Complete EDTA free mini tablet/1ml of RTS reconstitution buffer; Final 

amount used 2 μl/20 μl reaction volume), 0.37 MBq 35S-methionine per 20μl reaction, 50 

μM unlabelled methionine. Wherever indicated necessary chaperones and other proteins 

were added to the reaction in the concentrations mentioned in the figure legends. 

Translation was carried out at 30oC for 90 minutes and stopped by addition of 

Chloramphenicol (CAM, 200 μg/ml) on ice. Post-translational addition of proteins was 

performed after CAM addition, followed by transfer of reactions back to 30oC.  

 

When indicated, immunodepletion of GroEL from the lysate was performed by 

incubation with polyclonal GroEL antibody bound to Protein A sepharose beads by gentle 
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shaking for 45 min at 4oC and removal of beads by centrifugation. Successful depletion of 

GroEL was confirmed by SDS-PAGE followed by immunoblotting.  

 

RTS products were separated into soluble and insoluble fractions by centrifugation 

(20800 x g for 30 min at 4oC). The former was analyzed by native-PAGE and SDS-PAGE 

and the latter by SDS-PAGE followed by autoradiography. 

 

In pulse-chase experiments, translation was performed in presence of 0.5 μM 

GroEL, 1 μM GroES and 40 μM RbcX proteins (as indicated) for 6 min at 30oC, before 
35S-methionine was added. After 6 min, reactions were chased by addition of unlabelled 

methionine. Samples were collected at indicated time points and reactions stopped by 

addition of CAM on ice as described above. Soluble and insoluble fractions were 

analyzed by discontinuous Bis-Tris Native PAGE (13% resolution gel, 6% stacking gel) or 

12.5% SDS-PAGE, respectively, followed by autoradiography.  

 

The in vitro translation experiments were performed by Karnam Vasudeva Rao 

wherever indicated. 

 
4.4.3.4   Analytical gel filtration of E. coli lysate or protein complexes  
 

Gel filtration chromatography of soluble E. coli lysate or protein complexes 

(resulting from co-immunoprecipitation) performed using a Superdex 200 (10/30) gel 

filtration column, equilibrated in 50 mM Tris-HCl, pH 8, 50 mM NaCl, 5 mM MgCl2. If 

necessary, the sample volumes were reduced (MWCO 30 kDa) to 200 μl prior to 

application. The column was eluted at 250 μl/min and fractions of 250 μl were collected. If 

necessary, fractions were TCA-precipitated. Samples were analyzed for RbcL, RbcXFLAG 

or GroEL by SDS-PAGE and Coomassie staining or immunoblotting.  

 

Similarly for the analysis of purified proteins, the protein samples were injected into 

Superdex 200 (3.2/30) column equilibrated in buffer 20 mM Tris-HCl, pH 9.2, 100 mM 

NaCl and 10% Glycerol.  
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4.4.3.5   Tryptophan-fluorescence spectroscopy   
 

Tryptophan-fluorescence was measured using Spex Fluorolog 3 with the following 

parameters: excitation 295 nm, emission scan 315-450 nm, incr. 2 nm, interval time 1 

sec, slits 1/5. In order to monitor tryptophan-fluorescence of RbcL in refolding reactions, 

Rr-RbcL or Syn6301-RbcL8 was denatured in denaturation-buffer (20mM MOPS-KOH, pH 

7.5, 6 M GdnHCl, 10 mM KCl, 1 mM EDTA, 10 mM DTT) 1 for 60 min at 25 oC. The 

denatured protein was diluted 100-fold (0.25 μM RbcL monomer) into ice-cold assay-

buffer (20 mM MOPS-KOH, pH 7.5, 100 mM KCl, 5 mM Mg(OAc)2) containing 0.5 μM 

GroEL. After incubation for 10 min on ice, a tryptophan fluorescence scan was taken. 1 

μM GroES was added to this sample and a tryptophan fluorescence scan was taken 

again. Refolding was started by supplementing the reaction with 2 mM ATP and the 

kinetics of refolding was measured by monitoring the change in tryptophan fluorescence 

over time. At the end of kinetics run (after ~35 min), a tryptophan scan was performed. If 

only native or denatured substrate or merely substrate-binding to GroEL had to be 

analyzed, reactions were modified accordingly. Background fluorescence of chemically 

identical reactions lacking Rubisco was subtracted in each assay.                                                         

 
4.4.3.6   ANS-fluorescence spectroscopy 
 
  Analysis of ANS (1-anilino-8-naphthalene-sulphonate) fluorescence was 

performed by the same method as described for tryptophan fluorescence with the 

exception that assay-buffer 1 contained 1 μM ANS. Fluorescence was measured with 

Spex Fluorolog 3 applying the following parameters: excitation 350 nm, emission scan 

410-570 nm, incr. 2 nm, slits 1/5. Single ring version of GroEL was used for the refolding 

reactions and low salt buffer containing 20 mM MOPs/KOH pH 7.5, 10 mM KCl, 5 mM 

Mg(OAc)2 was used. Data were corrected for background fluorescence.  
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4.4.3.7   Circular Dichroism Spectroscopy 

Far-UV CD spectra and melting curves were measured with a Jasco J-715 

spectrometer equipped with a Peltier-thermostat using 0.1 cm cuvette. Wavelength scans 

of Syn7002-RbcX wild type and mutant proteins (Q29A, Y17AY20L, R70A, P87A, 

R102A), Syn7002-RbcXNFLAG, At-RbcXN-FLAG proteins were recorded at 30°C at a protein 

concentration of 0.1mg/ml. Syn7002-RbcX wild type and mutant proteins were analyzed 

in a buffer containing 50 mM Tris-HCl, pH 8.0, 50 mM NaCl, 10 mM MgCl2. For At-RbcXN-

FLAG, 20mM BisTris-HCl, pH 9.2, 100mM NaCl was used. 

 

4.4.4    Crystallography and structure analysis 
 

4.4.4.1   Analytical subtilisin digestion of Syn7002-RbcX 
  

 Syn7002-RbcX was digested at a concentration of 1 mg/ml by different 

concentrations of subtilisin (0-1000 μg/ml) in 20 mM HEPES-NaOH, pH 7.5, 50 mM NaCl 

on ice. Samples were withdrawn after 60 min, respectively, and supplemented with PMSF 

at a final concentration of 10 mM to stop the digest. Samples were analyzed on 16% 

Tricine-PAGE. Truncated Syn7002-RbcX was identified as Syn7002-RbcX (ΔC25) by 

Edman degradation (N-terminal sequencing) and ESI-MS (Saschenbrecker et al., 2007).  

 
4.4.4.2   Protein crystallization 
 
Syn7002-RbcX mutants 

Syn7002-RbcX mutant proteins were purified in cooperation with Karnam 

Vasudeva Rao. Crystals were grown using the hanging drop vapor diffusion method at 20 

ºC by mixing 1 μl protein sample and 1 μl reservoir solution. The conditions were chosen 

based on Syn7002RbcX wildtype crystallization trials. Syn7002-RbcX (Q29A) crystallized 

in 100mM HEPES-NaOH, pH 7.5, 1.5 M Sodium acetate. Syn7002-RbcX (Y17A,Y20L) 

crystallized in 100mM HEPES-NaOH, pH 7.5, 3 M Sodium acetate and Syn7002-

RbcX(R70A) crystals were obtained in 100mM HEPES-NaOH, pH 7.5, 2.4 M Sodium 
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acetate. For cryo-protection, the crystals were transferred stepwise into mother liquor 

containing 30 % (v/v) glycerol.  

 

Syn7002-RbcX / Syn7002-RbcL peptide  
 

Crystallization of Syn7002-RbcX/peptide complex was performed by Sandra 

Saschenbrecker (Saschenbrecker et al., 2007). Crystals of Syn7002-RbcX were 

incubated for 1 h in buffer (0.1 M HEPES-NaOH, pH 7.5, 1.4 M sodium acetate) 

containing 1 mM Syn7002-RbcL peptide, EIKFEFD. For cryo-protection, the crystals were 

transferred stepwise into mother liquor containing 1 mM peptide and 20 % (v/v) glycerol. 

For co-crystallization trials, a mixture of Syn7002-RbcX (in 10 mM Tris-HCl, pH 7.5) and 

Syn7002-RbcL peptide (EIKFEFD (in H2O) at a molar ratio of 1:1.5 (467 μM RbcX-dimer, 

700.5 μM peptide) was used and crystallization performed as above. Well-diffracting 

RbcX crystals of space group I222 were obtained from PEG / Ion Screen condition 14 

(0.2 M potassium thiocyanate, 20% (w/v) polyethylene glycol 3350) (Hampton Research, 

USA). These crystals apparently contained no bound peptide. 

 

 
4.4.4.3   Structure determination  
 
 Structure determination of RbcX mutants was performed in cooperation with Dr. 

Andreas Bracher and is as follows.   

  

Diffraction data were collected at beamlines mentioned in Table1 at the European 

Synchrotron Radiation Facility (ESRF) in Grenoble, France. Diffraction data were 

integrated with Mosflm (Leslie, 1992) and Scala (Evans, 1997).  

 

 The structure of Syn7002-RbcX wild type was solved by SIRAS using crystals 

incubated with 0.2 mM K2(PtCl4) in mother liquor for 22 h. Six Platinum sites were found 

by Patterson methods using Solve (Terwilliger and Berendzen, 1999). Density 

modification was carried out with Resolve (Terwilliger, 2000). The resulting map was 
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readily interpretable, and continuous backbone density for all six RbcX chains between 

residues 4 and 109 could be traced with O (Jones et al., 1991). Subsequent iterative 

model improvement and refinement were performed with O and Refmac5 (Murshudov et 

al., 1997). The high resolution crystal form of Syn7002-RbcX was solved by molecular 

replacement using Molrep (Vagin and Isupov, 2001). This structure and the RbcX mutant 

structures were edited with Coot (Emsley and Cowtan, 2004) and refined with Refmac. In 

all structures, residues facing solvent channels without detectable side chain density were 

modeled as alanines. All models obey good stereochemistry with no Ramachandran 

outliers as judged by the program Procheck (Laskowski, 1993). Coordinates were aligned 

with Lsqman (Kleywegt, 1994). The similarity score was calculated with ESPript using the 

Rissler scoring matrix (Gouet et al., 1999). Figures were generated with the programs 

Molscript (Kraulis, 1991), Bobscript (Esnouf, 1997), Raster-3D (Merrit and Bacon, 1997), 

and Pymol 11 (DeLano, W.L. The PyMOL Molecular Graphics System (2002) on World 

Wide Web (http://www.pymol.org)). 

 

4.4.5   Electron microscopy 
 
  Electron microscopic analyses were done in collaboration with the Department of 

Molecular Structural Biology, MPI, Martinsried. 

 
4.4.5.1  Preparation of At-ch-cpn60/At-ch-cpn20 complexes for Electron microscopy 
   

  At-ch-cpn60 (1 μM final concentration), At-ch-cpn20 (0.9 μM) and 2mM ATP were 

incubated in 50 mM HEPES, pH 7.5, 50mM MgCl2, 50mM KCl, at 250C for 5 min and 

used immediately for the preparation of grids.  

 

4.4.5.2  Preparation of Negatively stained specimens 
   

  Negative staining was performed using the single droplet procedure (Harris, 1991). 

Carbon support films were briefly glow-discharged (30 sec) in a partial atmosphere to 
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render them hydrophilic and adsorptive. At-ch-cpn60αβ, At-ch-cpn60αβ/At-ch-cpn20 

complexes were diluted to 0.1 mg/ml with 20mM Tris-HCl (pH 7), 50mM NaCl, 5% 

Glycerol and applied to the carbon films. After 30 sec most of the protein solution was 

removed with a filter paper and replaced by a droplet of 2% uranyl acetate. After similarly 

removing the excess uranyl acetate, grids were dried at room temperature and observed 

under the transmission electron microscope. 

  

4.4.5.3  Recording of micrographs 
   

  Transmission electron microscopy was performed using the Philips CM12. Electron 

micrographs were recorded at 120kV and at instrumental magnifications of 22,000 or 

28,000 as mentioned. 

 

4.4.5.4  Single Particle Analysis 
   

  The image processing steps were performed using the EM software package 

(Hegerl, 1996; Hegerl and Altbauer, 1982). All particles recognizable as chaperonin side 

views and top views, not in contact with other particles were manually selected from the 

micrographs. These images were first subjected to 10 rounds of alignment and 

classification, specifying 20 output classes. A reference-free alignment, multivariate 

statistical data compression and automatic classification were used to obtain class 

averages. Unique averages were selected from the resulting class averages. 
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5   Results 

Evidence for chaperonin-mediated Rubisco folding in the chloroplasts was found 

over 2 decades ago when studies revealed that newly synthesized large subunits were 

transiently associated with a large multimeric complex prior to appearance in the 

holoenzyme through an ATP-dependent reaction (Ellis, 1991; Milos, 1984). It is now well 

documented that for the folding of higher plant Rubisco, chloroplast homologs of the 

GroEL and GroES chaperones are necessary (Gatenby and Ellis, 1990; Goloubinoff et 

al., 1989a; Gutteridge and Gatenby, 1995). The absence of an in vitro or bacterial 

expression system for the assembly of higher-plant hexadecameric Rubisco suggests a 

unique nature for the chloroplast chaperonins and is testimony to the limitations of our 

current understanding. There may be other requirements for the successful folding and 

assembly of hexadecameric Rubisco (Houtz and Portis, 2003). However, the Form II 

Rubisco from Rhodospirillum rubrum (Rr-RbcL2) can be folded and assembled as active 

enzyme in vivo in E. coli and in vitro upon interaction with GroEL/ES (Brinker et al., 2001; 

Goloubinoff et al., 1989a) .  

Numerous electron microscopic and crystallographic insights into the structure of 

GroEL are available (Langer et al., 1992b; Saibil et al., 1991; Hartl and Hayer-Hartl, 

2002). GroEL is a tetradecameric complex consisting of identical 57 kDa subunits. The 

electron microscopic studies have revealed that GroEL has a double toroidal structure 

with the central cavity of ~50 Å (Hartl, 1996). However, the structure for chloroplast cpn60 

is not well established. 
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Figure 19. Proteins used in this study 
(A) Coomassie stained SDS-PAGE of recombinantly purified E. coli GroEL, Single-Ring GroEL (SR-GroEL) 
and GroES, A. thaliana ch-pn60, ch-cpn20 and ch-cpn10, Rhodospirillum rubrum RbcL2, Synechococcus 
sp. PCC7002 RbcS, Synechococcus sp. PCC6301 RbcS.  
 

5.1   Structural characterization of chloroplast cpn60 and cpn20 from 
Arabidopsis thaliana 

5.1.1   Electron microscopic analysis of A. thaliana cpn60 

In order to know the general structure of A. thaliana chloroplast cpn60 (At-ch-

cpn60), the recombinantly purified protein (Figure 19, lane 5) was subjected to electron 

microscopic analysis. The protein was stained with uranyl acetate and the electron 

micrographs were recorded with Phillips CM12 microscope at an instrumental 

magnification of 22,000. Two distinct types of single particle projections were observed in 

the micrographs, first type resembling a ‘seven-pointed’ star (top-view or end-on view) 

(Figure 20A and 20B, red triangles) and the second resembling a rectangle (side-view or 
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side-on view) (Figure 20A and 20B, blue triangles). From the micrographs, 2543 top 

views and 477 side views were manually selected. The images were aligned with respect 

to translation and orientation using standard correlation techniques; the alignment was 

refined iteratively. In order to detect inter-image structural variations the aligned images 

were subjected to a classification procedure based on eigenvector-eigenvalue data 

analysis (van Heel and Frank, 1981).  

 
Figure 20. Electron microscopic analysis of At-ch-cpn60  
(A) and (B) Negatively stained images of At-ch-cpn60. Electron micrographs were recorded at an 
instrumental magnification of 22,000. The scale bar represents 100nm. Red triangles indicate the particles 
in the end-on orientation and the blue triangles indicate the particles in the side-on orientation.  
 

 During the analysis of the top-view a 7-fold rotational symmetry was imposed to 

each particle (Figure 21A). The final image (7-fold rotational symmetrized) has a clear 

visible handedness with seven elongated stain-excluding regions (Figure 22A). Averages 

obtained from the major classes of top views revealed that the symmetrized diameter of 

the ch-cpn60 was ~15.3 nm, which is very close to the value reported for E. coli GroEL 

(diameter 15.6 nm, Langer et al., 1992b). The major class averages obtained during the 

analysis of side views (Figure 21B) and the final image of these appear rectangular with 

four stripes parallel to the short side (Figure 22B). The dimension of ch-cpn60 rectangle 

was 16.5 x 14.8 nm which is close to the dimension of GroEL (15.5 x 14.1 nm, (Langer et 

al., 1992b)). From these observations, the tetradecameric nature of ch-cpn60 consisting 

A B



RESULTS 
 

 

82 
 

of two heptameric rings stacked back to back was evident, similar to pea ch-cpn60 

(Tsuprun, 1991). 

 

Figure 21. The major structural classes obtained during averaging of At-ch-cpn60  
The pictures represent major structural classes of end-on (A) and side-on views (B) of At-ch-cpn60 
respectively obtained by eigenvector-eigenvalue data analysis. Number in the corner depicts the number of 
particles belonging to the respective class.  

 

 
 
 
Figure 22.  Averages of end-on and side-on views of electron microscopic images of At-ch-cpn60  
 Averages of end-on (A) and side-on (B) views of At-ch-cpn60. The dimensions of the complexes are: 
symmetrized (sym.) diameter 15.27 nm (A) and 16.5 x 14.8 nm (B) respectively. 

 

 

A

B

A B
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5.1.2   Electron microscopic analysis of A. thaliana chloroplast cpn60/20  

The higher plant chloroplast co-chaperone cpn20 (ch-cpn20) comprises two 

GroES-like domains, fused head-to-tail through a short intervening linker (Figure 23C). It 

has been reported to form tetramers in solution (Hirohashi et al., 1999; Koumoto et al., 

1999). The size exclusion chromatography of purified At-ch-cpn20 and the light scattering 

experiments confirmed its tetrameric nature (Figure 23A and B).  

 In order to determine how ch-cpn20 tetramer interacts with the heptameric ring of 

ch-cpn60, the ch-cpn60/20 complexes were analyzed by electron microscopy (negative 

staining and cryo-electron microscopy).  

 
Figure 23. Gel filtration profile and model diagram to show At-ch-cpn20 domain orientation 
(A) The Superdex 200 gel elution profile for the recombinantly purified At-ch-cpn20.  
(B) Molecular weight of At-ch-cpn20 as determined by light scattering with precedent field flow fractionation 
or gel filtration (TSK Super 3000 SW) (Light scattering experiment was performed by Dr. Manajit Hayer-
Hartl). 
(C) The probable domain orientation of the ch-cpn20 tetramer with the N- and C- terminus labeled. 
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Recombinantly purified At-ch-cpn60 and At-ch-cpn20 (Figure 19, lanes 5 and 6) 

were used for the preparation of the chaperone/co-chaperone complex. At-ch-cpn60 and 

At-ch-cpn20 were incubated in the presence of nucleotide, Mg-ADP or Mg-ATP and the 

formation of the ch-cpn60/20 complex was analyzed by gel filtration chromatography 

(Figure 24A). Corresponding to the size of the cpn60/20 complex (~880 kDa), a single 

peak was observed in the chromatogram. SDS-PAGE analysis of the peak fraction 

revealed the presence of both ch-cpn60 and ch-cpn20, confirming the formation of 

cpn60/20 complex. The complexes prepared in the presence of either of the nucleotides 

were subjected to negative staining using uranyl acetate. Since the complexes prepared 

in the presence of Mg-ADP showed less number of side-views along with top-views, 

further experiments were carried out in the presence of Mg-ATP. The images were 

collected  at an instrumental magnification of 28,000 (Figure 24B and C).  

 

From the micrographs, 625 particles with side-on orientation and 1800 particles 

with end-on orientation were picked manually and subjected to eigen vector-eigen value 

data analysis. The images obtained during the analysis of side-on views revealed the 

presence of both cpn60/20 complexes and cpn60 alone (Figure 25A and B). Several 

bullet-shaped particles were observed, apparently representing asymmetric complexes of 

the ch-cpn60/20 (Figure 24B and C, blue arrows). These complexes resemble the 

electron microscopic images of GroEL/ES complexes (Figure 26B), consistent with the 

binding of cochaperone to the chaperonin asymmetrically (Ishii et al., 1982; Langer et al., 

1992b; Saibil et al., 1991). The major class averages obtained during the analysis of side-

on views (Figure 26A) revealed a dimension of 19.6 x 14.8 nm, which is close to that of 

GroEL/ES complexes  (19.9 x 13.5 nm) (Figure 26C, (Langer et al., 1992b)).  
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Figure 24.  Electron microscopic analysis of At-ch-cpn60/20 complex. 
(A) Gel filtration profile for At-ch-cpn60/20 complexes prepared in the presence of Mg-ATP. Below is the 
SDS-PAGE analysis of the peak fraction showing the presence of both At-ch-cpn60 and At-ch-cpn20. 
(B) and (C) Negatively stained images of At-ch-cpn60/20 complex. At-ch-cpn60 and At-ch-cpn20 complexes 
prepared in the presence of Mg-ATP were stained with 2% uranyl acetate and analyzed with electron 
microscope at an instrumental magnification of 28,000. The blue triangles show bullet-shaped side-views of 
At-ch-cpn60/20 complexes. The scale bar represents 100nm. 
  

  Averages obtained from the major classes of end-on views revealed that the 

diameter of the ch-cpn60/20 complex was 15.2 nm, which is very close to the values 

reported for E. coli GroEL/ES (diameter 15.4 nm, (Langer et al., 1992b)). In order to know 

differences between cpn60/20 and cpn60 end-on views, if there are any, the global 
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average of cpn60/20 and cpn60 alone were compared (Figure 26D and E). The 7-fold 

rotational symmetry of cpn60 was preserved in the cpn60/20 complex also. However, a 

mass apparently representing cpn20 was observed in the center of the cpn60/20 complex 

(Figure 26D), which was not observed in the global average of cpn60 end-on images 

(Figure 26E).  

 

However from these images, detailed information about the nature of interaction of 

the tetrameric ch-cpn20 with the heptameric ring of ch-cpn60 could not be deduced. In 

order to get further insights into the structure of At-ch-cpn60/20 complexes, the cryo-

electron microscopic analysis is being pursued in collaboration with Prof. Wah Chiu at the 

University of Texas. 

 

A

B
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Figure 25. Major classes of Electron Microscopic images for At-ch-cpn60/20 complexes 
(A) Major classes of the top-view of the complexes showing both cpn20 bound and unbound ch-cpn60 
particles. 
(B) Major classes of the side-view of the At-ch-cpn60/cpn20 complexes (cpn20 bound, blue arrow) and 
cpn60 (cpn20 unbound, green arrow) particles. Number in the corner depicts the number of particles in that 
particular class. 

 
 
 
Figure 26.  The electron microscopic structure of At-ch-cpn60/20  
(A) and (D) The major averages of side-on (A) and end-on (D) views of the At-ch-cpn60/20 complexes. The 
dimension of the particle is 19.6 x 14.8 nm (A) and the symmetrized (sym.) diameter is 15.2 nm (D). 
(B) and (E) The major averages of side-on (B) and end-on (E) views of the At-ch-cpn60 (cpn20 unbound). 
The dimension of the particle is 16.5 x 14.8 nm (B) and the symmetrized (sym.) diameter is 15.27 nm (E). 
Number in the corner depicts the number of particles belonging to the respective class. 
(C) Electron microscopic structure of GroEL/ES complex (Langer et al., 1992b) 
 

5.2   GroEL induced conformational changes in RbcL  

Intrinsic tryptophan fluorescence and l-anilinonaphthalenesulfonate (ANS) binding 

studies were performed to investigate the conformational changes of Rubisco upon 

binding and encapsulation by GroEL/ES system. 

The changes in the tertiary structure which a protein undergoes upon binding and 

encapsulation by GroEL can be monitored by observing the intrinsic tryptophan 
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fluorescence and by ANS binding studies. Most of the intrinsic fluorescence emissions of 

a folded protein are due to excitation of tryptophan residues, with some emissions due to 

tyrosine and phenylalanine. Typically, tryptophan has a wavelength of maximum 

absorption of 280 nm and an emission peak that is solvatochromic, ranging from ~ 300 to 

350 nm depending on the polarity of the local environment. ANS is a probe for apolar 

binding sites whose fluorescence is strongly dependent on the hydrophobicity of the 

environment. ANS accumulates in the solvated hydrophobic core of early folding 

intermediates generally termed ‘molten globule’. GroEL-stabilized proteins show strong 

ANS fluorescence (Martin et al., 1991).  

 

Rubisco large subunit from Rhodospirillum rubrum (Rr-RbcL) contains six 

tryptophan residues and that of Synechococcus sp. PCC6301 (Syn6301-RbcL) contains 

nine. The GroEL and GroES lack any tryptophans (Hemmingsen et al., 1988; Hohn et al., 

1979). Single ring version of GroEL (SR-EL) was used for the ANS experiments (Hayer-

Hartl et al., 1996; Weissman et al., 1995). SR-EL binds GroES in an ATP-dependent 

manner, but is unable to dissociate it due to the absence of an allosteric signal from the 

Gro-EL trans-ring. Thus GroES is believed to stably encapsulate protein substrate in the 

SR-EL/GroES complex without the possibility of active unfolding (Hayer-Hartl et al., 

1996). 

Native Rr-RbcL showed a maximum emission of tryptophan fluorescence at 335 

nm (Figure 27A, black curve), while guanidium denatured Rubisco showed the maximum 

emission of tryptophan fluorescence at 365 nm (Figure 27A, pink curve) accompanied by 

a remarkable decrease in the intensity of fluorescence. GroEL-bound Rr-RbcL showed an 

emission maximum at 348 nm (Figure 27A, green curve & blue curve), i.e. ~57% shift 

from the denatured to the folded state. High ANS-fluorescence was observed when the 

unfolded Rr-RbcL was stabilized by SR-GroEL, indicating a massive binding of ANS to 

the hydrophobic surfaces of the early folding intermediates, in a conformation lacking 

ordered tertiary structure (molten globule state) (Figure 27B).  
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Upon addition of GroEL/ES and Mg-ATP to the unfolded Rr-RbcL, the tryptophan 

fluorescence emission maximum shifted back to 335 nm, identical to the emission 

maximum of the native protein (Figure 27A, red curve). This indicates the folding and 

reconstitution of Rr-RbcL dimer. This was further supported by the decrease in the 

intensity of ANS fluorescence observed during the refolding reaction (Figure 27B). 

 

 
 
 
 
 

Figure 27.  Tryptophan and ANS fluorescence studies of Rr-RbcL upon interaction with GroEL 
A. Tryptophan fluorescence in RbcL refolding: Denatured Rr-RbcL2 was diluted 100-fold (0.25 μM RbcL 
monomer) into ice-cold assay-buffer containing 0.5 μM GroEL. After incubation for 10 min on ice, 
tryptophan fluorescence (excitation 295 nm, emission scan 315-450 nm) was measured. Then 1 μM GroES 
was added and tryptophan fluorescence was measured again. The reaction was supplemented with 2 mM 
ATP and refolding kinetics was observed by monitoring the change in tryptophan fluorescence over time. A 
tryptophan scan at the end of refolding was measured. If only native or denatured substrate had to be 
analyzed, reactions were modified accordingly. Background fluorescence of chemically identical reactions 
lacking RbcL was subtracted.  
B. ANS-fluorescence in RbcL refolding: Denatured Rr-RbcL2 was diluted 100-fold (0.25 μM RbcL monomer) 
into ice-cold assay-buffer 1 containing 1 μM ANS, 1 μM SR-GroEL and 2 μM GroES. After incubation for 10 
min on ice, ANS fluorescence (excitation 390 nm, emission scan 420-550 nm) was measured. Refolding 
was started with the addition of 2 mM ATP and the kinetics was observed by monitoring the change in ANS 
fluorescence over time. At the end of refolding, an ANS fluorescence scan was taken. If only native or 
denatured substrate had to be analyzed, reactions were modified accordingly. Data were corrected for 
background fluorescence of chemically identical reactions lacking RbcL and emission at 470 nm was 
depicted.  
 

Native Syn6301-RbcL8 showed a fluorescence maximum at 355 nm (Figure 28A, 

black curve), while that for denatured protein was 365 nm (Figure 28A, pink curve) with a 
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decrease in the emission intensity of more than 40%. The emission maximum of GroEL 

bound Syn6301-RbcL was 355 nm, identical to that of native protein, but fluorescence 

intensity was slightly lower (Figure 28A, green curve). Similar to Rr-RbcL experiments, 

high ANS-fluorescence was observed when the unfolded Syn6301-RbcL was stabilized 

by SR-GroEL (Figure 28B).  

Upon addition of GroEL/ES alone or together with Mg-ATP to the unfolded 

Syn6301-RbcL, the tryptophan fluorescence emission maximum was retained at 355 nm, 

identical to the emission maximum for native protein with a further decrease in the 

intensity (Figure 28A, blue curve & red curve). This conformation probably reflects the 

monomeric folded state of RbcL. The decrease in the ANS-fluorescence again confirms 

the changes in the tertiary or quaternary structure of the enzyme molecule during the 

refolding reaction (Figure 28B). 

 
Figure 28. Tryptophan and ANS fluorescence studies of Syn6301-RbcL upon interaction with GroEL 
A. Tryptophan fluorescence in RbcL refolding: Denatured Syn6301-RbcL8 was diluted 100-fold (0.25 μM 
RbcL monomer) into ice-cold assay-buffer containing 0.5 μM GroEL. After incubation for 10 min on ice, 
tryptophan fluorescence (excitation 295 nm, emission scan 315-450 nm) was measured. Then 1 μM GroES 
was added and tryptophan fluorescence was measured again. The reaction was supplemented with 2 mM 
ATP and refolding kinetics was observed by monitoring the change in tryptophan fluorescence over time. A 
tryptophan scan at the end of refolding was measured. If only native or denatured substrate had to be 
analyzed, reactions were modified accordingly. Background fluorescence of chemically identical reactions 
lacking RbcL was subtracted.  
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B. ANS-fluorescence in RbcL refolding: Denatured Syn6301-RbcL8 was diluted 100-fold (0.25 μM RbcL 
monomer) into ice-cold assay-buffer 1 containing 1 μM ANS, 1 μM SR-GroEL and 2 μM GroES. After 
incubation for 10 min on ice, ANS fluorescence (excitation 390 nm, emission scan 420-550 nm) was 
measured. Refolding was started with the addition of 2 mM ATP and the kinetics was observed by 
monitoring the change in ANS fluorescence over time. At the end of refolding, an ANS fluorescence scan 
was taken. If only native or denatured substrate had to be analyzed, reactions were modified accordingly. 
Data were corrected for background fluorescence of chemically identical reactions lacking RbcL and 
emission at 470 nm was depicted. 
 
 

5.3   Requirement of chaperonin system and RbcX for the folding and 
assembly of Rubisco 

As mentioned above, the GroEL/ES system is implicated in the folding of Rubisco 

(Goloubinoff et al., 1989a; Goloubinoff et al., 1989b; Gutteridge, 1995). Synechococcus 

sp. PCC6301 (also known as Anacystis nidulans) Rubisco was expressed as an active 

holoenzyme in E. coli with the help of the GroEL/ES chaperone system (Goloubinoff et 

al., 1989b). However, the coexpression studies using Rubisco from another 

cyanobacterium Synechococcus sp. PCC7002 (Syn7002) in E. coli indicated the 

GroEL/ES were not alone sufficient for the production of active holoenzyme (Figure 29A 

and B, Lane 2) (Saschenbrecker et al., 2007). In Syn7002, the product of rbcX gene, 

which is juxtaposed to rbcL and rbcS, was shown to enhance the production of Rubisco 

holoenzyme (Larimer and Soper, 1993; Li and Tabita, 1997; Onizuka et al., 2004). 

Indeed, the E. coli expression and the in vitro translation studies revealed the requirement 

of RbcX protein along with the GroEL/ES system. This study also revealed that RbcX 

interacts with RbcL upon GroEL/ES assisted folding, promoting RbcL to RbcL8 assembly 

(Figure 29C). In the absence of RbcX, RbcL forms assembly incompetent aggregates, 

demonstrated by in vitro translation experiments (Figure 29D) (Saschenbrecker et al., 

2007). 
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Figure 29.  Requirement of chaperonin system and RbcX for production of Synechococcus sp. 
PCC7002 Rubisco 
(A and B) Syn7002-rbcL and rbcS (A) or Syn7002-rbcL (B) was expressed in E. coli with or without 
coexpression of Syn7002-rbcX and GroEL/ES, as indicated. RbcL in soluble cell lysates was analyzed by 
SDS-PAGE and RbcL8S8 or RbcL8 complexes by Native-PAGE and immunoblotting. Carboxylation activity 
was measured directly in soluble cell lysates (A) or upon addition of purified RbcS (B). Activities measured 
upon coexpression with GroEL/ES and RbcX are set to 100%. Error bars indicate standard deviation of 
three independent experiments (Saschenbrecker et al., 2007). 
(C) Translation of Syn7002-rbcL was done in E. coli lysate in vitro in the presence of 35S-methionine (1.5 hr, 
300C). When indicated, GroEL/ES (0.5 µM/1.0 µM) and Syn7002-RbcX (40 µM) were added to normal 
lysate (Lanes 1–4) or GroEL-depleted lysate (Δ-GroEL, Lanes 5–8). In lane 8, GroEL was added after 
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stopping translation with CAM. Assembled RbcL8 and total RbcL protein were analyzed by Native-PAGE 
and SDS-PAGE, respectively, followed by autoradiography. 
(D) Syn7002-rbcL was translated in the presence of GroEL/ES. RbcX was either present during translation 
(Lane 1) or was added together with CAM (lane 2) or after CAM addition (Lanes 3–5) and assembled RbcL8 
was analyzed by Native-PAGE, followed by autoradiography (Saschenbrecker et al., 2007). 
  
 

5.4  Functional similarity between GroEL/ES and chloroplast-cpn60/20 
 

The overall structural resemblance of A. thaliana ch-cpn60 with E. coli GroEL and 

that of At-ch-cpn60/cpn20 complexes with GroEL/ES was evident from the electron 

microscopic analysis (Figure 22 and 26). Additionally, the reconstitution experiments 

using Form II Rubisco from Rhodospirillum rubrum have shown that the chloroplast-

cpn60/cpn20 can functionally replace the bacterial GroEL/ES system (Dickson et al., 

2000). In order to analyze if ch-cpn60/20 can functionally replace GroEL/ES, for the 

folding of cyanobacterial Rubisco, the translation of Syn7002-rbcL was carried out in the 

GroEL-depleted E. coli lysate supplemented with RbcX and ch-cpn60/20 (Figure 30, Lane 

5). The formation of Syn7002-RbcL8 complexes demonstrated that both the chaperonin 

systems share functional similarities consistent with their structural resemblance (Figure 

22 and 26).  
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Figure 30.  Ch-cpn60/20 can functionally replace GroEL/ES 
Syn7002-rbcL was translated in normal or GroEL depleted E. coli lysate in vitro in the presence of 35S-Met 
(90 minutes, 300C). When indicated, GroEL/ES or chloroplast cpn60/20 (0.5 µM/1.0 µM) and Syn7002-
RbcX (40 µM) were added to lysate. Assembled RbcL8 and total RbcL protein were analyzed by Native-
PAGE and SDS-PAGE respectively, followed by autoradiography.  

 

5.5   Crystal structure of Synechococcus sp. PCC 7002-RbcX mutants  

The crystal structure of the wild type Syn7002-RbcX (Saschenbrecker et al., 2007) 

and the functional analysis of Syn7002-RbcX mutants showed that a hydrophobic area 

comprising the conserved residues, Y17, Y20, and I50 of each monomer lining the groove 

in the center of the molecule and the conserved polar residues, Q29, E32 and R70 at the 

Syn7002-rbcL
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corners of the RbcX dimer (Figure 31A) were crucial for the function of RbcX (Figure 31B, 

lanes 7-9,10-11 & 18) (Saschenbrecker et al., 2007).  

 
 
Figure 31. Crucial residues of Syn7002-RbcX 

(A) Surface conservation of Syn7002-RbcX. The similarity score from an alignment of 151 sequences of 
cyanobacterial RbcX in the PFAM database was plotted onto the accessible surface of the RbcX dimer. 

A

B
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Sequence conservation is indicated by a color gradient, indicating highly conserved residues in magenta 
and variable regions in cyan. The positions of conserved surface residues are indicated (Saschenbrecker et 
al., 2007). 
(B) SDS-PAGE and Native-PAGE analysis to monitor soluble RbcL and RbcL8 complex respectively. 
Solubility of RbcL and formation of RbcL8 were analyzed upon coexpression of Syn7002-rbcL in E. coli with 
wild-type or mutant rbcX. (O), RbcX mutants supporting production of soluble and assembled RbcL; (*), 
RbcX mutants exhibiting poor solubility; and (Δ), RbcX mutants supporting formation of soluble RbcL but 
little or no assembly of RbcL8 and formation of active enzyme upon RbcS addition (Saschenbrecker et al., 
2007). 

In order to show that the functional defects of RbcX mutants, (Q29A), (R70A) and 

(Y17A,Y20L), were not a consequence of protein misfolding, we took up crystallization 

trials for RbcX mutants. We obtained the crystals for these mutants. X-ray diffraction 

studies and crystal structure analyses were performed in cooperation with Dr. Andreas 

Bracher. Below is the description of the structural and functional analyses of RbcX 

mutants and structural comparison with wild type RbcX. 
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Figure 32. Characterization of recombinantly expressed Syn7002-RbcX mutant proteins 
(A) and (B) Coomassie stained SDS-PAGE (A) and Native-PAGE (B) of recombinantly purified Syn7002-
RbcX wild type (WT) and mutant proteins. 
(C) Secondary structure analysis of Syn7002-RbcX mutants. CD analysis (left panel) and melting curve 
analysis (right panel) of recombinantly purified wild type and mutant RbcX proteins. 
 

 
 
Figure 33. Limited proteolysis of Syn7002-RbcX  
Coomassie stained Tricine-PAGE of subtilisin digested Syn7002-RbcX product. 

 Wild type or RbcX mutants were expressed recombinantly in E. coli and were 

purified as soluble proteins. On SDS-PAGE, the RbcX wild type and mutant proteins 

migrated at 15 kDa (Figure 32A). Field flow fractionation in conjunction with multi-angle 

light scattering (FFF-MALS), revealed that Syn7002-RbcX forms a dimer of 30 kDa 

(Saschenbrecker et al., 2007). On native-PAGE, the mutant proteins migrated similar to 

the wild type RbcX dimer indicating that the mutant proteins also formed dimers (Figure 

32B). To analyze their secondary structure, the recombinantly purified proteins were 

subjected to circular dichroism spectroscopy (CD) (Figure 32C). The CD analysis 

revealed that the secondary elements of these mutants were mostly α-helical, similar to 

those of wild type RbcX (Figure 32C). Syn7002-RbcX consists of 134 residues. Limited 

proteolysis using subtilisin was carried out to identify the potentially unstructured regions 

in Syn7002-RbcX. It resulted in the deletion of the residues 110-134 at the C-terminus of 

RbcX (Figure 33). The C-terminal amino acids represent a sequence element that is only 

poorly conserved among ~150 cyanobacterial RbcX homologs. In contrast, the protease 

resistant core domain (1-109) is highly conserved (Figure 34).    
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Figure 34. Alignment of amino acid sequence of selected RbcX homologs 
Amino acid sequences of RbcX homologs from Synechococcus sp. PCC7002 PR-6 (Q44177), Microcystis 
aeruginosa (Q9R3Q3), Synechocystis sp. PCC 6803 (Q55670), Synechococcus elongatus PCC6301 
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(Q5MZ09), Thermosynechococcus elongatus (Q8DIS6), Anabaena sp.PCC7120 (Q44307), Anabaena sp. 
CA (Q44212), Nodularia harveyana BECID29 (Q5K2U3), Tychonema bourrellyi (O86944), A. thaliana_gene 
I (NP_568382), Vitis vinifera (CAO21907), A. thaliana_gene II (NP_567263), Oryza sativa (japonica cultivar-
group)_gene I (Q84M38), Oryza sativa (Indica Group) (EAY92274), Oryza sativa (japonica cultivar-
group)_gene II (Q7XIH6), Chlamydomonas reinhardtii (EDP09788), Oryza sativa (japonica cultivar-
group)_gene III (Q7EZV3) were aligned using the Multialign sever. Residues indicated in red background 
are invariable and residues indicated in red are conserved in more than 50% of the sequences; a 
consensus sequences according to these criteria using the standard symbols of the MultAlin analysis 
program (Corpet, 1988) is given in the bottom row of the alignment. The secondary structure elements and 
the residue numbering for RbcX of Synechococcus sp. PCC7002 are indicated above the sequences. 
Residues of the central groove of RbcX containing the phenylalanines and isoleucines in the C-terminal 
recognition motif of RbcL are indicated by pink and green stars, respectively. Red stars denote residues at 
the corner surfaces of RbcX implicated by mutagenesis in binding to an uncharacterized surface of RbcL. 
Black stars denote structural residues involved in dimerization and blue stars indicate residues forming the 
hydrophobic core of the four-helix bundle.  
 

 

5.5.1   Structure of Syn7002-RbcX(Q29A) 
 

Q29 is one of the conserved polar residues at the corners of the RbcX dimer and is 

necessary for the function of RbcX, as evident from the functional analysis of RbcX 

(Q29A) mutant (Figure 31) (Saschenbrecker et al., 2007). The corner region of the RbcX 

dimer is formed by helices 4 of both protomers and by the turn region between the α1 and 

α2 helices of one subunit and may serve to interact with a polar protein surface 

(Saschenbrecker et al., 2007). This region occurs twice at opposing edges of the dimer 

due to the 2-fold symmetry. 

 

Crystals of Syn7002-RbcX(Q29A) were obtained using the hanging drop vapor 

diffusion method in the condition, 100mM HEPES-NaOH, pH 7.5, 1.5 M Sodium acetate 

(Figure 35A). Diffraction data were collected to 3.1 Ǻ resolution at beamline ID29 at the 

European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Diffraction data 

were integrated with Mosflm (Leslie, 1992) and Scala (Evans, 1997). RbcX(Q29A) 

crystallized in space group P41212 containing three dimers per asymmetric unit similar to 

the wild type RbcX (Table 1). While a continuous electron density was observed 

throughout the core domain of all protein chains, their termini were progressively 

disordered, presumably due to mobility as indicated by proteolytic susceptibility (Figure 
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33). 2Fo-Fc electron density for RbcX(Q29A) was calculated after refinement using the 

wild type RbcX structure as a model. The model was manually rebuilt using Coot (Emsley 

and Cowtan, 2004) and iteratively refined with Refmac (Murshudov et al., 1997). 

 
 
Figure 35. Crystal Structure of Syn7002-RbcX(Q29A) 
(A) Crystals of Syn7002-RbcX(Q29A) obtained in 100mM HEPES-NaOH, pH 7.5, 1.5 M Sodium acetate. 
The right panel shows the analyzed crystal mounted in a nylon loop.  
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(B) Ribbon representation of a RbcX(Q29A) dimer, front and side views. For one of the protomers, the 
peptide backbone is depicted from N to C terminus using a color gradient from blue to red. Secondary 
structure elements, selected residue numbers and chain termini are indicated. The other protomer is 
depicted in gray color and N- and C- terminus are labeled. 

 

The structure of the Syn7002-RbcX(Q29A) core domain shows an helix bundle 

consisting of four α-helices (α1-4) per monomer (Figure 35B) virtually identical to the wild 

type RbcX (Figure 36A-C). Helix α2 (residues 35-48) turns backward relative to α1 

(residues 4-33) with a steep interhelical angle of 151o and only one residue (N34) forming 

the turn. A similar arrangement with an inter-helix angle of 1610 is observed at the 

junction of α3 (52-63) and α4 (residues 65-107). The central helices α2 and α3 are 

comparatively short, comprising only 3 and 2 turns, respectively. α2 and α3 are 

connected by a linker of 5 residues. The core of the helical bundle is composed of 

conserved hydrophobic residues without authentic coiled-coil side-chain packing. α4 

makes an ~600 kink in the vicinity of residue 84 and forms a 35 Å long extension (α4C) 

pointing away from the helix bundle similar to wild type RbcX (Figure 36A-C). 

 

The RbcX(Q29A) dimer has an overall dimensions of ~64X33X31 Å (length X 

height X width) similar to that of wild type (Figure 36A-C) (Table 1). The long α4 helices of 

the protomers align in an almost antiparallel fashion such that the helical bundles are 

located at opposite ends (Figure 35B). The α1 helices form additional symmetrical 

contacts and together with the α2 helices delineate a narrow diagonal groove in the arc-

shaped complex (Figure 35B). Based on the structural comparison with RbcX wild type, it 

is evident that, the dimer interface is predominantly uncharged and hydrophobic. A polar 

network around the conserved residue N98, contacting the amide backbone at position 

L72 and the side chains of R75 and E76 in the opposing protomer, contributes to dimer 

stability (Saschenbrecker et al., 2007). The α2-α3 helical hairpins make no direct 

interchain contacts.  

 

 

 

 



RESULTS 
 

 

102 
 

 

 
Figure 36. Comparison of crystal structures of Syn7002-RbcX(Q29A) and Syn7002-RbcX 
wild type 
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(A) Stick representation of front view of the wild type Syn7002-RbcX dimer. Protomers are shown in green 
and red. N- and C-terminus of peptide backbone of each monomer is depicted. The selected residue 
numbers for one of the protomers (green) is shown. Secondary structure elements and chain termini are 
indicated (Saschenbrecker et al., 2007). 
(B) Stick representation of front and side views of the Syn7002-RbcX(Q29A) dimer. Both protomers are 
shown in green. N- and C-terminus of peptide backbone of each monomer is depicted. The secondary 
structure elements apply as shown in (A). 
(C) Front and side views of the superimposed dimers of Syn7002-RbcX(Q29A) (green) and wild type 
Syn7002-RbcX (red). The secondary elements apply as shown in (A) and (B). 
 
 

To further analyze the local alteration of the structure of RbcX upon alanine 

substitution at position Q29, a comparative analysis of 2Fo-Fc electron density maps of 

RbcX wild type and RbcX(Q29A) mutant was carried out. In wild type RbcX, the δ-amide 

group of Q29 is in hydrogen bond contact to the guanidinium moiety of R70. Surprisingly, 

the surface-exposed side chain of the R70 stays in place in RbcX(Q29A) (Figure 37). 

Apparently the side chain conformation of R70 is mainly governed by hydrophobic 

packing to the core of the four-helix bundle.  

 

But the effect of alanine substitution at position Q29, disrupting the peripheral polar 

surface of RbcX, was demonstrated by the coexpression of RbcL and RbcX(Q29A) in E. 

coli (Figure 31B) (Saschenbrecker et al., 2007). Though Q29A mutant allowed 

accumulation of soluble RbcL, it failed to support the assembly of RbcL to RbcL8 core 

complexes (Figure 31B, Lane 10). Further, immunoprecipitation assays confirmed the 

misassembly and aggregation of RbcL in the presence of RbcX(Q29A) (Saschenbrecker 

et al., 2007). From these results, it is evident that the peripheral surface of the RbcX 

dimer is necessary for the proper assembly of RbcL into RbcL8 core complex. 
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Figure. 37 The peripheral polar surface of RbcX  
(A) Structure of wild type RbcX dimer. The ribbon representation of the wild type RbcX dimer showing both 
the protomers in cyan.  
(B) and (C) Magnification of the boxed area in (A); Final 2Fo-FC electron density for the wild type RbcX (B) 
and RbcX(Q29A) (C) after refinement, contoured at 1.0σ. A backbone trace is shown; side chains are 
represented as sticks and electron density as meshwork in cyan. Carbon, oxygen and nitrogen atoms are 
indicated in yellow, red and blue respectively. 
 
5.5.2   Structure of Syn7002-RbcX (Y17A,Y20L) 

Y17 and Y20 are among the conserved hydrophobic residues of each monomer 

lining the groove in the center of the RbcX dimer. As mentioned above these residues are 

crucial for the function of RbcX (Saschenbrecker et al., 2007). 
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Figure 38. Comparison of crystal structures of Syn7002-RbcX(Y17A,Y20L) and Syn7002-
RbcX wild type 
 (A) Crystals of Syn7002-RbcX(Y17A,Y20L) obtained in 100mM HEPES-NaOH, pH 7.5, 3M Sodium 
acetate. 
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(B) Stick representation of front and side views of the Syn7002-RbcX(Y17A,Y20L) dimer. Both protomers 
are shown in gold. N- and C-terminus of peptide backbone of each monomer is depicted. 
(C) Front and side views of the superimposed dimers of Syn7002-RbcX(Y17A,Y20L) (gold) and wild type 
Syn7002-RbcX (red). 

 Crystals of RbcX(Y1A,Y20L) were obtained using the same method as 

explained for the RbcX(Q29A) mutant. RbcX(Y17A,Y20L) crystallized in the space group 

P41212  containing three dimers per asymmetric unit (Figure 38A) similar to wild type 

RbcX and RbcX (Q29A) (Table 1). The RbcX(Y17A,Y20L) structure was solved at a 

resolution of 3.4 Å. The structure of the Syn7002-RbcX(Y17A,Y20L) core domain was 

similar to that of RbcX wild type and Q29A (Figure 38B-C).  

 
5.5.2.1   RbcL C-terminal peptide recognition by RbcX and the effect of Y17A,Y20L 
mutations 
 

Peptide binding screens which were performed to identify one or more probable 

RbcX interacting sequence elements on RbcL revealed that the EIKFEFD close to the C-

terminus of RbcL is one of the key binding regions for RbcX (Figure 39 and 42A) 

(Saschenbrecker et al., 2007). These studies indicated that, while wild type RbcX and 

RbcX(Q29A) bind to C-terminal peptide of RbcL, RbcX(Y17A,Y20L) fails to bind to C-

terminal peptide (Saschenbrecker et al., 2007). To further analyze if there is a local 

alteration of the structure of RbcX imposed by substituting alanine residues at both the 

positions Y17 and Y20, a comparative analysis of 2Fo-Fc electron density maps of RbcX 

wild type and RbcX(Y17A,Y20L) was carried out.  

 

 
Figure 39. Interaction of RbcX with the C-terminus of RbcL 
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Overlapping peptides covering the sequence of Syn7002-RbcL synthesized on a cellulose membrane was 
probed with the indicated RbcX proteins. Peptide-bound RbcX was visualized by immunodetection with 
RbcX specific antiserum (Saschenbrecker et al., 2007). 

 

 In the wild type RbcX, the central access into the crevice is constricted to a 5.4 Å 

wide opening by the side chains of the highly conserved Q51 residues that is just wide 

enough to accommodate a polypeptide chain in an extended conformation, as 

demonstrated by the crystallographic analysis of EIKFEFD peptide bound to RbcX dimer 

(Figure 40B and E) (Saschenbrecker et al., 2007). The side chains of F462 and F464 

extend into the cavities lined by the side chains of T13, Y17, Y20, I50 and Q51 at the 

centre of the RbcX cleft (Figure 40E). The polar side chains of the peptide face outwards 

and are mostly disordered (Figures 40E) (Saschenbrecker et al., 2007). I460 of the 

peptide appears to contact Y20, R24, and S45 of one RbcX chain (Figure 40E). The 

conformations of the two Q51 side chains appear to be mainly governed by van der 

Waals contacts to the phenyl rings of peptide residues F462 and F464. Contact to the 

phenyl-rings is mediated by hydrophobic packing/exclusion of water against Y17 and Y20 

(Figure 40E).  

 

In RbcX(Y17A,Y20L), this crevice is widened extensively which makes RbcX to 

lose its ability to hold extended polypeptide chain (Figure 40C) and thus the majority of 

the contacts necessary for RbcL-RbcX interaction are lost in the RbcX(Y17A,Y20L) 

mutant. Consistent with these observations, in contrast to RbcX(Q29A), RbcX 

(Y17A,Y20L) failed to support the solubility of RbcL and hence the proper assembly of 

RbcL to RbcL8 core complex (Figure 31B, Lane 9).  

 

The mutational analysis of C-terminal RbcL peptide revealed that the phenyalanine 

residues in the C-terminal peptide of RbcL are crucial for the interaction with RbcX 

(Saschenbrecker et al., 2007).  
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Figure 40. The central groove of RbcX 
A. Structure of wild type RbcX dimer. The ribbon representation of wild type RbcX dimer showing the 
protomers in gold and gray. 
B and C. Magnification of the boxed area in A; Final 2Fo-FC electron density for wild type RbcX (B) and 
RbcX (Y17A,Y20L) (C) after refinement contoured at 1.0σ. A backbone trace is shown; side chains are 
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represented as sticks and electron density as meshwork in cyan. Carbon, oxygen and nitrogen atoms are 
indicated in yellow, red and blue respectively. 
(D) Structure of the complex of peptide EIKFEFD bound to RbcX dimer. The peptide shown in stick 
representation; RbcX is represented as ribbon with protomers coloured in green and cyan, respectively. N 
and C termini of peptide and each of the RbcX promoters are indicated.  
(E) Magnification of boxed area in (A) presenting a view of the refined peptide bound to RbcX. Residues of 
the RbcX monomers participating in peptide binding are displayed in stick representation and are numbered 
in green and blue, respectively. The important hydrophobic residues in the bound peptide are also labeled. 
Dashed lines in black represent hydrogen bonds. A backbone trace is shown; side chains are represented 
as sticks and electron density as meshwork in cyan (Adapted from Saschenbrecker et al., 2007).  
 

5.5.3   Crystallization of Syn7002-RbcX (R70A) 

Crystals of Syn7002-RbcX(R70A) were obtained in the condition 100mM HEPES-

NaOH, pH 7.5, 2.4 M sodium acetate (Figure 41). The RbcX(R70A) crystals were smaller 

than the crystals of wild type RbcX and diffracted only to 6.1 Å.  The lattice constants 

were very similar to wild type RbcX crystals (Table 1). An atomic model could not be 

refined against the RbcX(R70A) dataset because of insufficient experimental parameters 

limited by the low diffraction power of the crystals. The statistics for the rigid body and 

TLS refinement of the wild type model against this dataset as given in Table 1 indicate 

that the crystal packing in the wild type RbcX and RbcX(R70A) was very similar, 

suggesting that the structure of RbcX is not strongly perturbed by the mutation R70A. 

 
 
Figure 41. Crystals of Syn7002-RbcX(R70) 
(A and B) Crystals of Syn7002-RbcX(R70A) obtained in 100mM HEPES-NaOH, pH 7.5, 2.4 M Sodium 
acetate. 
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Table 1. Crystallographic Data Collection, Phasing and Refinement Statistics 
Values in parenthesis are for the highest resolution shell. Data statistics are given according to the 
definitions used in Scala (Evans, 1997). The Ramachandran plot distributions were determined with 
Procheck (Laskowski, 1993). An atomic model could not be refined against the RbcX(R70A) dataset 
because of insufficient experimental parameters limited by the low diffraction power of these crystals. The 
statistics for the rigid body and TLS refinement of the native I model against this dataset indicated, however 
that the crystal packing between wild type and R70A mutant RbcX was very similar.  
 
 

dataset PtCl4-2 native I Y17A/Y20L Q29A R70A 
beamline ESRF, BM14 SLS, X10SA ESRF, ID29 ESRF, ID29 ESRF, ID29
Wavelength (Å) 0.8793 0.9789 1.000 1.000 1.000
space group P41212 P41212 P41212 P41212 P41212
cell dimensions,
a, b, c (Å);

α, β, γ (0)

93, 42, 93, 42, 
407.75; 
90, 90, 90

93, 33, 93, 33,
411.99;
90, 90, 90

93, 45, 93, 45,
411.54;
90, 90, 90

93, 00, 93, 00, 
413.72;
90, 90, 90

93, 54, 93, 
54,
413.88;
90, 90, 90

resolution limits (Å)* 93.25 - 3.15
(3.32 - 3.15)

91.29 - 2.8
(2.95 - 2.8)

93.45 - 3.4
(3.58 - 3.4)

92.85 - 3.1
(3.27 - 3.1)

41.00 - 6.1
(6.43 - 6.1)

Rmerge ** 0.081 (0.621) 0.080 (0.641) 0.089 (0.0503) 0.077 (0.485) 0.107 (0.408)
I/sigma 15.9 (3.1) 26.7 (4.6) 9.5 (2.4) 10.6 (2.9) 6.7 (1.8)
multiplicity 7.0 (7.1) 14.5 (14.8) 3.4 (3.6) 3.5 (3.6) 2.0 (1.9)
completeness (%) 100 (100) 100 (100) 99.6 (99.8) 99.9 (99.9) 75.9 (75.9)
RbcX monomers 
/a.u.

6 6 6 6

solvent content (%) - 74.7 - -

Phasing
sites 6 (Pt) - - -
Mean FoM 0.31 (SIRAS) - - -

Refinement
resolution range - 20 - 2.8 20 - 3.4 20 - 3.1
reflections (test set) - 43747 (2321) 24596 (1319) 32237 (1726)
Rwork - 0.240 0.253 0.231
Rfree - 0.262 0.294 0.260
Number of atoms - 5105 4727 4976

r.m.s.d bonds (Å) - 0.011 0.010 0.010
r.m.s.d angles (0) - 1.406 1.319 1.273
Ramachandran plot 
(%) ***

% most favored 
region

- 93.0 87.8 93.9

% additionally 
allowed

- 6.8 11.9 6.1
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5.6   Affinity of RbcX for RbcL peptide   
 

Isothermal titration calorimetry performed to analyze the binding affinities between 

RbcX and the RbcL C-terminal peptide (Figure 42) showed a relatively low affinity of 

Syn7002-RbcX for peptide EIKFEFD (KD ~230 µM), comprising the core binding region. 

Slightly higher affinity (KD ~160 µM) was measured with the longer peptide 

KEIKFEFDTVD, which includes the conserved residues Lys458 and Asp468. This 

indicates that the interaction of Syn7002-RbcX with the RbcL C-terminus is highly 

dynamic.  

 

 
 
Figure 42. Isothermal Titration Calorimetry of the RbcX-peptide interaction 
Titration of Syn7002-RbcX with Syn7002-RbcL peptide 1. EIKFEFD (A) or peptide 2. KEIKFEFDTVD (B).  
The stoichiometry of binding is ~ 1 peptide per RbcX dimer (Saschenbrecker et al., 2007) 
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5.7   Role of RbcL C-terminal peptide in the RbcX assisted RbcL8 

assembly  
 

The RbcX interacting RbcL C-terminal peptide is conserved among cyanobacteria 

(Figure 43A). This peptide sequence is absent in Form II Rubisco (e.g., dimeric Rubisco 

from Rhodospirillum rubrum), (Figure 43C).  

 

To further evaluate the importance of this peptide sequence in the interaction with 

RbcX, the rbcL from either cyanobacteria (Synechococcus sp. PCC6301 or 

Synechococcus sp. PCC7002) or R. rubrum was translated in the in vitro translation 

system in the presence of Syn7002-RbcX (Figure 43B). Syn7002-RbcX enhanced the 

production of RbcL8 core complex for Synechococcus sp. PCC6301 (Figure 43B, Lane 5-

6), consistent with the presence of RbcL C-terminal peptide and RbcX in this 

cyanobacterium. Similarly, the translation of rbcL from Synechococcus sp. PCC7002 

resulted in RbcL8 core complexes only when RbcX was supplemented to the lysate along 

with GroEL/ES (Figure 43, Lane 7-9). However, Syn7002-RbcX did not enhance the yield 

of R. rubrum dimer (Figure 43B, Lane 2-3), consistent with the absence of RbcL C-

terminal peptide and RbcX in this photosynthetic bacterium. These results strongly 

support the requirement of an assembly chaperone, RbcX for the assembly of complex 

Form I Rubisco after the GroEL/ES assisted folding of RbcL. In addition, these results 

reflect that the RbcL C-terminal peptide recognition by RbcX is necessary for the proper 

assembly of RbcL subunits and this interaction is a universal mechanism in the organisms 

containing Form I Rubisco such as cyanobacteria and higher plants. The C-terminal 

sequence of RbcL is located at the surface of the Rubisco holoenzyme and has been 

implicated in regulating catalysis (Zhu, 1998). 
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Figure 43.   Importance of RbcX recognition sequence of RbcL  
(A) Alignment using MultAlin (Corpet, 1988) of C-terminal amino acid sequences of RbcL among 
cyanobacteria. Synechococcus sp. PCC 7002 (BAA03076), Synechococcus elongatus PCC 6301 
(P00880), Anabaena sp. PCC 7120 (Nostoc sp. PCC 7120) (P00879), Synechocystis sp. 6803 (P54205), 
Trichodesmium erythraeum IMS101 (Q10WH6), Synechococcus elongatus PCC 7942 (Q31NB3), 
Prochlorococcus marinus str. MIT 9215 (Q7V6F8), Synechococcus sp. WH 7803 (P96486), Cyanobium sp. 
PCC 7001 (CAM91978), Cyanothece sp. PCC 7424 (ZP_02975450), Lyngbya sp. PCC 8106 
(ZP_01622123), Microcystis aeruginosa NIES-843 (YP_001659803), Thermosynechococcus elongatus BP-

B
an

d 
in

te
ns

ity
(%

 o
f m

ax
im

um
)

0
20
40
60
80

100

Autoradiogram 
Native-PAGE

GroEL-RbcL
RbcL8

Rr-RbcL2

Rr -rbcL + + +
Syn6301-rbcL + + +
Syn7002-rbcL + + +
GroEL/ES + + + + + +
Syn7002-RbcX + + +

1   2   3   4   5   6   7   8   9

A

C

B



RESULTS 
 

 

114 
 

1(NP_682296). High consensus level (≥ 90%) is depicted in yellow background. Red background shows the 
conserved residues on C-terminus of RbcL which were detected in peptide screen by using RbcX protein. 
(B) Rr-rbcL, Syn6301-rbcL or Syn7002-rbcL was translated in E. coli lysate in vitro in the presence of 35S-
Met (1.5 hr, 300C). When indicated, GroEL/ES alone or with Syn7002-RbcX were added to the lysate. 
Assembled RbcL8 was analyzed by Native-PAGE followed by autoradiography. Below is the quantification 
of bands on Native-PAGE using Aida-densitometry program. The 35S-labelled product of translation in the 
presence of GroEL/ES and RbcX was set to 100. 
(C) Alignment using MultAlin (Corpet, 1988) of C-terminal amino acid sequences of RbcL from 
Rhodospirillum rubrum (Q2RRP5), Synechococcus sp. PCC 7002 (BAA03076), Synechococcus elongatus 
PCC 6301 (P00880), High consensus level (≥ 90%) is depicted in red background. Yellow background 
shows the conserved residues on C-terminus of RbcL which were detected in peptide screen by using 
RbcX protein. 

 

5.8   Characterization of Arabidopsis thaliana RbcX  
 

Experiments to analyze the function of Arabidopsis thaliana RbcX (At-RbcX) were 

performed in close collaboration with Karnam Vasudeva Rao. 

 

In Arabidopsis thaliana, RbcX is encoded by a nuclear gene and RbcL is encoded 

by a chloroplast gene. At-RbcX shows ~30% sequence identity to cyanobacterial RbcX 

(Figure 44A). Rubisco large subunits of cyanobacteria and A. thaliana share ~80% 

sequence identity. The EIKFEFD sequence of RbcL C-terminus, important for the RbcX 

recognition (Figure 39), is conserved in RbcL subunits of higher plants such as A. thaliana 

(Figure 43C), hinting at a possibility of an RbcX mediated Rubisco assembly similar to 

cyanobacteria. In order to analyze the function of At-RbcX in the Rubisco assembly, the 

cloning and characterization of At-RbcX was carried out. 

 

5.8.1   Cloning and purification of At-RbcX  
 

The pHUE vector provides cleavable ubiquitin and His6 tags and has been 

extensively used for recombinant expression of broad range of proteins in E. coli  (Figure 

44B) (Catanzariti et al., 2004). At-rbcX without the transit peptide was cloned into pHUE 

vector (Figure 44B). The sequence for the transit peptide was predicted using ChloroP 

program (Emanuelsson et al., 1999) and confirmed by aligning the amino acid sequences 

of RbcX proteins from A. thaliana and cyanobacteria (Figure 44A).  At-RbcX was 
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expressed in E. coli and purified by affinity chromatography using Ni-NTA column. At-

RbcX runs at an apparent molecular weight of ~15 kDa on SDS-PAGE (Figure 44C). Size 

exclusion chromatography showed that At-RbcX forms dimers of ~30 kDa similar to 

Syn7002-RbcX (Figure 45A). 
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Figure 44. Cloning and Purification of A. thaliana RbcX  
 (A) Alignment of amino acid sequences of RbcX homologs from Synechococcus sp. PCC7002 PR-6 
(Q44177), Synechococcus elongatus PCC6301 (Q5MZ09), Anabaena sp. CA (Q44212) and A. thaliana 
_gene I (NP_568382) (with (A) and (B) without transit peptide) using MultAlin analysis program (Corpet, 
1988). Residues indicated in blue background are invariable and residues indicated in blue are conserved 
in more than 50% of the sequences; a consensus sequences according to these criteria using the standard 
symbols of the MultAlin analysis program is given in the bottom row of the alignment. The secondary 
structure elements for RbcX of Synechococcus sp. PCC7002 are indicated above the sequences.  
(B) At-rbcX was cloned into pHUE vector  which provides a cleavable Ubiquitin tag and was expressed in 
E.coli and purified as mentioned in Materials and Methods section (Cloning and purification was done in 
collaboration with Karnam Vasudeva Rao). 
(C) SDS-PAGE followed by Coomassie staining of purified RbcX proteins. 
 
 
5.8.2   Secondary structure and predicted tertiary structure of At-RbcX  
 

Though Syn7002-RbcX and At-RbcX share sequence identity of ~30% only, the 

functionally important residues mentioned earlier in the study are conserved in At-RbcX 

also (Figure 44A). 

 

Circular dichroism (CD) studies were performed to analyze the secondary structure 

of At-RbcX. CD analysis revealed that At-RbcX is mostly alpha helical, similar to RbcX of 

Synechococcus sp. PCC7002 (Figure 45B). The secondary structure predictions, which 

were performed using the server http://bioinformatik.biochemtech.uni-halle.de/cdnn, 

predicted about 73% and 65% of alpha helical content for Syn7002-RbcX and At-RbcX, 

respectively (Figure 45C and D).  
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Figure 45. Size determination and secondary structure analysis of RbcX from A. thaliana 
(A) Gel filtration analysis of Syn7002-RbcXFLAG and At-RbcXFLAG. 
(B) CD analysis of recombinantly purified At-RbcXFLAG and Syn7002-RbcXFLAG proteins. 
(C) and (D) Secondary structure prediction of Syn7002-RbcX (C) and At-RbcX (D) proteins using cdnn 
server (http://bioinformatik.biochemtech.uni-halle.de/cdnn). 
 

The X-ray crystal structure of Syn7002-RbcX was used as a template to predict the 

tertiary structure of At-RbcX. The sequence alignment-based superimposition revealed 

that the polar residues like Q29, E32, R70 located at the corner of the RbcX dimer are 

conserved in A. thaliana RbcX (Figure 46 and 44A). The residues Y17, Y20, and I50 of 

each monomer, lining the groove in the center of the molecule, are also conserved 

(Figure 465 & 44A). Most of these residues were shown to be essential for the proper 

function of Syn7002-RbcX (Figure 31). 
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Figure 46. Superimposed Model of A. thaliana RbcX 
Surface conservation in At-RbcX. The similarity score from an alignment of amino acid sequences of 
Syn7002-RbcX and At-RbcX was plotted onto the accessible surface of the RbcX dimer. Sequence 
conservation is indicated by a color gradient, indicating highly conserved residues in magenta and variable 
regions in cyan. The positions of conserved surface residues are indicated (These figures were prepared in 
cooperation with Dr. Andreas Bracher). 
 

 

5.8.3   At-RbcX functions similar to Syn7002-RbcX 
 

To further analyze the function of At-RbcX, an in vitro translation experiment using 

either Syn7002-rbcL or At-rbcL and At-RbcX was performed. Earlier to this, RbcS1A of A. 

thaliana used in the translation experiment was cloned and purified as mentioned below. 

 

Four different small subunits exist in A. thaliana (RbcS1A, RbcS1B, RbcS2B and 

RbcS3B), each one encoded by a separate gene in the nuclear genome (Figure 47). The 

small subunits possess transit peptides, for import into the chloroplasts, which are 

processed in the chloroplast stroma where assembly of Rubisco takes place (Gatenby 

and Ellis, 1990). The small subunits of cyanobacteria and higher plants share only 40% 

sequence identity (Newman and Gutteridge, 1993) (Figure 47). RbcS1A without the 

transit peptide sequence was cloned into pET vector, expressed in E. coli and purified 

from inclusion bodies. 
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Translation of Syn7002-rbcL in the presence of purified Syn7002-RbcS and At-

RbcX instead of Syn7002-RbcX, was carried out (Figure 48). Efficient production of active 

Syn7002-RbcL8S8 complex was observed (Figure 48, Lane 2), similar to the Syn7002-

RbcX scenario (Figure 48, Lane 1). In contrast, translating At-rbcL in the presence 

GroEL/ES or At-ch-cpn60/20 and varying amounts of At-RbcX and At-RbcS1A did not 

yield active Rubisco (Figure 48, Lanes 3-11), suggesting a requirement of an additional 

factor for the assembly of higher plant Rubisco. 

 

 

 
 
Figure 47.  A. thaliana Rubisco small subunits 
Alignment using MultAlin analysis program (Corpet, 1988) of representative small subunits primary 
structures of Rubisco from Synechococcus sp. PCC7002 (Q44178), Synechococcus sp. PCC 6301 
(P04716), RbcS1A (NP_176880), RbcS1B (NP_198657), RbcS2B (NP_198658) and RbcS3B (NP_198657) 
of A. thaliana without transit peptide sequences. Residues indicated in red background are invariable and 
residues indicated in red are conserved in more than 50% of the sequences.   

 



RESULTS 
 

 

120 
 

 

 
Figure 48. Functional Analysis of At-RbcX 
Syn7002-rbcL (Lanes 1 and 2) or At-rbcL (Lanes 3-11) was translated in E.coli lysate in vitro supplemented 
with 35S-methionine, GroEL/ES (0.5µM/1.0µM), Syn7002-RbcS (14 µM) (Lanes 1 and 2) or At-RbcS1A (14 
µM) and 20µM Syn7002-RbcX (Lane 1) or At-RbcX (Lanes 2 and 4-11). Translation was inhibited by the 
addition of CAM. The soluble products of the translation reactions were analyzed by Native-PAGE, followed 
by autoradiography. For the assay of carboxylation activity, translation reactions were carried out in the 
presence of unlabelled methionine and after the CAM addition, products were analyzed for the Rubisco 
activity (This experiment was performed by Karnam Vasudeva Rao). 
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6   Discussion 
 

Hexadecameric Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) in 

chloroplasts has been an important paradigm in studies of protein folding and assembly 

because of its high abundance and functional importance. Rubisco catalyses the initial 

steps of two competing reactions: photosynthetic carbon fixation (CO2 as the substrate) 

and photorespiration (O2 as the substrate) (Andrews and Lorimer, 1987). Photosynthesis 

results in the synthesis of usable sugars and thus is necessary for plant growth and yield, 

whereas photorespiration is an energy consuming wasteful process (Andersson and 

Taylor, 2003). 

 

6.1   Structural and functional similarity of chloroplast cpn60/20 to 
GroEL/ES  
 

Rubisco is one of the stringent substrates of GroEL (Brinker et al., 2001). The 

bacterial GroEL/ES system and the chloroplast homologue ch-cpn60/20 system are 

implicated in the efficient folding of Rubisco (Gatenby and Ellis, 1990; Goloubinoff et al., 

1989a; Goloubinoff et al., 1989b; van der Vies et al., 1986). The structure of GroEL is well 

understood (Braig et al., 1994; Langer et al., 1992b, Ranson et al., 2001, Roseman et al., 

2001). Whereas GroEL is homooligomeric, ch-cpn60 is heterooligomeric, consisting α 

and β subunits (Hemmingsen and Ellis, 1986; Musgrove et al., 1987). However, a 

detailed structural analysis of ch-cpn60 was yet to be achieved.  

 

The electron microscopic analysis using purified ch-cpn60 from Arabidopsis 

thaliana revealed that the At-ch-cpn60 resembles a ‘seven-pointed’ star in the top-views 

(Figure 20A and 20B, red triangles) and a rectangle in the side-on view (Figure 20A and 

20B, blue triangles), indicating that the ch-cpn60 has a double toroidal, tetradecameric 

structure, similar to GroEL (Langer et al., 1992b; Saibil et al., 1991). Averages obtained 

from the major classes of top views and side views had the diameter and dimension 
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comparable to those of GroEL, indicating an overall resemblance of ch-cpn60 to GroEL 

(Figure 22A and B).  

 

GroEL interacts with its co-chaperone GroES in an adenosine nucleotide-

dependent fashion (Chandrasekar, 1986; Tilly et al., 1981) and usually forms a bullet-

shaped structure in electron micrographs (Ishii et al., 1982; Langer et al., 1992b; Saibil et 

al., 1991). In contrast to GroEL, the ch-cpn60 has two types of cochaperone, cpn10 and 

cpn20, the latter consisting of a tandem repeat of cpn10 units (Hill and Hemmingsen, 

2001). Unlike the bacterial GroES and the chloroplast cpn10, which are heptameric 

(Sharkia et al., 2003), the chloroplast cpn20 has been reported to form tetramers 

(Koumoto et al., 1999).  

 

The electron microscopic analyses of the At-ch-cpn60/20 complexes revealed the 

presence of several bullet shaped particles representing asymmetric complexes of ch-

cpn60/20, similar to GroEL/ES complexes (Figure 24 and 25) (Langer et al., 1992b). In 

addition, the averages obtained from the major classes of top-views and side-on views of 

ch-cpn60/20 had the diameter and dimension close to those observed for GroEL/ES 

complexes (Figure 26) (Langer et al., 1992b). These results indicate that the ch-cpn60/20 

complex structurally resembles that of GroEL/ES. Consistently, the translation of 

cyanobacterial Syn7002-rbcL in GroEL-depleted E. coli lysate in vitro, in the presence of 

RbcX and At-ch-cpn60/20 resulted in efficient production of RbcL8 complex, indicating the 

functional similarity between bacterial and higher plant-chloroplast chaperonins (Figure 

30). However from these images, the symmetry mis-match occurring due to the 

interaction of the tetrameric ch-cpn20 with the heptameric ring of ch-cpn60 could not be 

explained. To evaluate this aspect, a cryoelectron microscopic analysis of At-ch-cpn60/20 

complexes is being pursued. 
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6.2   Folding and assembly of Form I Rubisco 
 

The folding and assembly of Form II Rubisco from Rhodospirillum rubrum (RbcL2) 

has been reconstituted with the bacterial GroEL/ES system (Goloubinoff et al., 1989a). 

Similarly, expression of cyanobacterial Form I Rubisco (RbcL8S8) from Synechococcus 

sp. PCC6301 in E. coli was reported to result in the chaperonin-dependent production of 

enzymatically active holoenzyme (Goloubinoff et al., 1989b). However, in vivo and in vitro 

reconstitution of  Form I Rubisco from other cyanobacteria and higher plants have not 

been successful so far (Chaudhari and Roy, 1989; Cloney et al., 1993; van der Vies et al., 

1986). Recently, it has been reported that the rbcX gene of cyanobacteria enhances the 

production of enzymatically active cyanobacterial Rubisco upon coexpression with rbcL 

and rbcS in E. coli (Emlyn-Jones et al., 2006; Li and Tabita, 1997; Onizuka et al., 2004). 

However, the mechanism of RbcX function was not clearly understood. The structural 

analysis of RbcX from Synechococcus sp. PCC7002, using X-ray crystallography, 

demonstrated that the RbcX dimer functions as an assembly chaperone for the 

hexadecameric Rubisco (Saschenbrecker et al., 2007). These studies revealed that the 

mutations disrupting the conserved peripheral polar surface, (Q29A) or (R70A), or those 

disrupting the central crevice (Y17A,Y20L) in RbcX cause a defect in the RbcX function 

(Saschenbrecker et al., 2007). 

Consequently, one of the objectives was to analyze in detail the structure of RbcX 

mutants by X-ray crystallography, to show that the functional defects of RbcX mutants 

were not a consequence of protein misfolding. RbcX homologues exist in higher plants as 

well. Another objective was therefore to characterize RbcX of A. thaliana.  

 

6.2.1   RbcX structure and mechanism 
 

Structural and functional analysis carried out with RbcX wild type (Saschenbrecker 

et al., 2007) and the present study with RbcX mutants guided us to present the following 

model for RbcX function (Figure 49). 
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Figure 49. Model-RbcX mediated assembly of form I Rubisco 
The newly-synthesized RbcL peptides are folded and released by GroEL/ES system (1). Other chaperones 
might interact with the RbcL peptides before their interaction with GroEL/ES (1). RbcX (dimer) recognizes 
the C-terminus of RbcL peptide and binds to it (2). RbcX binds to the early intermediates of RbcL8 assembly 
(2) and supports the formation of RbcL8 core complex (3). Then small subunits assemble individually on top 
and bottom of the RbcL8 core complex, thereby displacing RbcX from RbcL8 to form RbcL8S8 holoenzyme 
(4). In the absence of RbcX (5) or in the presence of either RbcX(Y17A,Y20L) (6) or RbcX(Q29A) (7), RbcL 
subunits form aggregates incompetent to form holoenzyme.  
 
 

RbcX interacts with the RbcL subunits subsequent to their GroEL/ES-mediated 

folding (Figure 49, step 1). Folded RbcL monomers may spontaneously form dimers or 

interact with RbcX immediately upon release from GroEL, resulting in stabilization of 

assembly intermediates competent for efficient progression to RbcL8 core particles 

(Figure 49, steps 2 and 3). RbcX recognizes the conserved C-terminal RbcL peptide. The 

complex between RbcL and RbcX is dynamic, facilitating the eventual displacement of 

RbcX by RbcS subunits to form the functional holoenzyme (Figure 49, steps 4). In the 

absence of RbcX, RbcL subunits are prone to aggregation (Figure 49, step 5). In the 

presence of RbcX with a mutation in the central crevice (RbcX(Y17A,Y20L)), RbcL 
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subunits are insoluble, forming assembly incompetent aggregates (Figure 49, step 6). 

Whereas, in the presence of RbcX with a mutation in the peripheral polar surface (RbcX 

(Q29A)), RbcL subunits misassemble (Figure 49, step 7). 

 

The structural analysis of Synechococcus sp. PCC7002 RbcX using X-ray 

crystallography revealed that the RbcX forms an arc-shaped homodimer (Saschenbrecker 

et al., 2007). The mutational analysis of RbcX protein identified two critical regions on 

RbcX, the central hydrophobic crevice and a peripheral polar surface of the molecule. 

Whereas the central crevice is essential for the production of soluble RbcL subunits 

(demonstrated by mutations at Y17 and Y20), disruption of the polar surface results in the 

production of soluble but misassembled RbcL suggesting a role of the RbcX polar surface 

in proper subunit arrangement of RbcL (demonstrated by mutation at Q29) (Figure 31) 

(Saschenbrecker et al., 2007).  

 

 The crystallographic analysis of Syn7002-RbcX(Q29A) core domain revealed that it 

consists of a helix bundle with four α-helices (α1-4) per monomer (Figure 35B) similar to 

wild type RbcX (Figure 36A-C). The crystal structure of Syn7002-RbcX(Q29A) was 

virtually identical to the structure of wild type Syn7002-RbcX. In wild type RbcX, the δ-

amide group of Q29 is in hydrogen bond contact to the guanidinium moiety of R70. 

Surprisingly, the surface-exposed side chain of the R70 stays in place in RbcX (Q29A) 

(Figure 37). Apparently the side chain conformation of R70 is mainly governed by 

hydrophobic packing to the core of the four-helix bundle. The functional analysis revealed 

that RbcX(Q29A) allowed accumulation of soluble RbcL, however, it failed to support the 

assembly of RbcL to RbcL8 core complexes (Figure 31B, Lane 10). Furthermore, 

immunoprecipitation assays confirmed the misassembly and aggregation of RbcL in the 

presence of RbcX(Q29A) (Saschenbrecker et al., 2007), indicating that the peripheral 

surface of the RbcX dimer promotes the proper assembly of RbcL into RbcL8 core 

complexes. 

 

 The structure of the RbcX groove mutant (Y17A,Y20L) revealed that its core domain 

is similar to that of RbcX wild type and RbcX(Q29A) (Figure 38B-C). In the wild type 
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RbcX, the central access into the crevice is constricted to a 5.4Å wide opening by the side 

chains of the highly conserved Q51 residues; that is just wide enough to accommodate a 

polypeptide chain in an extended conformation (Figure 40B and E) (Saschenbrecker et 

al., 2007).  Whereas, in RbcX(Y17A,Y20L), this groove is widened extensively which 

makes this mutant to lose its ability to hold extended polypeptide chain (Figure 40C). 

Most of the contacts necessary for the binding of RbcL C-terminal peptide are lost in the 

RbcX(Y17A,Y20L). Consistent with these observations, RbcX(Y17A,Y20L) failed to 

support the solubility of RbcL and hence the proper assembly of RbcL to RbcL8 core 

complexes (Figure 31B, Lane 9).  

These results revealed that, the point mutations disrupting a peripheral polar 

surface or the central cleft of RbcX caused a defect in RbcX function and that these 

defects were not a consequence of protein misfolding.   

 

 

6.2.2   Importance of RbcL C-terminal peptide 
 

The EIKFEFD motif of the RbcL C-terminus was shown to be a site for RbcX 

interaction (Figure 39 and 43A) (Saschenbrecker et al., 2007). The RbcL C-terminal 

peptide is assumed to have a regulatory function in catalysis and cycle during the 

enzymatic reaction between a more open conformation and a tightly bound state, 

stabilizing the lid segment of the active site to enclose the substrate ribulose-

bisphosphate (or the transition state analog, carboxyarabinitol bisphosphate [CABP]; 

(Duff et al., 2000; Zhu, 1998). Asp468 of RbcL, located adjacent to the RbcX recognition 

motif, participates in the formation of the closed state. In the crystal structure of Rubisco 

from Synechococcus sp. PCC6301 (in complex with CABP; Figure 50A), the C-terminal 

RbcL peptide is not covered by RbcS but would nevertheless be inaccessible to RbcX as 

it is not sufficiently detached from the complex, and its hydrophobic side chains are only 

partially solvent exposed. Thus, RbcX may interact with the C-terminal sequence until its 

attachment to the main body of Rubisco occurs (Saschenbrecker et al., 2007).  
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It was also demonstrated that RbcX failed to recognize the RbcL C-terminal 

peptide (EIKFEFD) with phenylalanines mutated to alanines (EIKAEAD) (Saschenbrecker 

et al., 2007). So the specific recognition of the C-terminal RbcL peptide by a central 

RbcX-binding cleft is critical for the function of RbcX. This C-terminal peptide sequence is 

highly conserved in organisms possessing Form I Rubisco and RbcX (Figure 43A). This 

sequence is absent in the RbcL of organisms possessing Form II Rubisco, e.g., 

Rhodospirillum rubrum (Figure 43C). Indeed, the translation of RbcL from Synechococcus 

sp. PCC6301 in the presence of Syn7002-RbcX resulted in the enhanced production of 

RbcL8 core complexes (Figure 43B, Lane 5-6). Similarly, translation of RbcL from 

Synechococcus sp. PCC7002 resulted in the production of RbcL8 complex only when 

RbcX was added to the lysate (Figure 43B, Lane 7-9). However, Syn7002-RbcX could not 

enhance the yield of R. rubrum dimer (Figure 43B, Lane 2-3), indicating that the RbcL C-

terminal peptide sequence is necessary for interaction with RbcX and this interaction is a 

universal mechanism in the organisms containing Form I Rubisco and RbcX, such as 

cyanobacteria and higher plants. 

 

 
Figure 50.  Crystal structure of Syn6301-RbcL8S8 and Model of RbcL8-RbcX complex. 
A. Molecular representation of Rubisco complex of Synechococcus sp. PCC6301 bound to CABP (Newman 
et al., 1993). RbcL subunits are shown in surface representation, with the exception of the C-terminal 
peptides comprising residues 460-475 which is indicated as blue coils. This conformation is found only in 
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complex with the enzyme substrate. Subunits comprising RbcL dimers are colored white and blue; residues 
interacting with RbcS are shown in red. The small subunits themselves are shown as green ribbons. 
B. Hypothetical model of binding of eight RbcX2 to the assembled RbcL8 core using similar representation 
as in A. the model is based on the structures of Syn6301-RbcL8S8 and the RbcX-peptide complex. One 
edge of RbcX fills the gap between adjacent RbcL dimers, masking most of the surface covered by the 
globular domain of RbcS in the holoenzyme complex. In this arrangement, the C-termini of RbcL (shown in 
red) kink horizontally immediately N-terminal to the recognition motif, leaving the secondary structure 
composition of RbcL intact. (These figures were prepared by Dr. Andreas Bracher). 
 

6.3   Implications for Rubisco assembly in higher plants 
 

The C-terminal RbcX recognition sequence is conserved in higher plant RbcL 

(Figure 43), and homologs to rbcX genes are present in plant genomes exhibiting ~30% 

sequence similarity to the cyanobacterial RbcX (Figure 34 and 44A). This suggests a 

general role of RbcX in ensuring the assembly of RbcL8 and in turn RbcL8S8.  

 

The secondary structure elements for A. thaliana RbcX were similar to 

cyanobacterial RbcX (Figure 45). The functional studies revealed that A. thaliana RbcX 

can functionally replace cyanobacterial RbcX in assisting the assembly of cyanobacterial 

Rubisco, despite their low sequence identity (Figure 44A). However, the preliminary 

attempts to express A. thaliana Rubisco as an active enzyme in the E.coli based 

translation system in vitro, in the presence of RbcX and chaperonins, were not successful 

(Figure 48, Lanes 3-11), suggesting the need for an additional factor for plant Rubisco 

assembly.  

 

The RbcX mechanism may serve as a model for explaining the efficient assembly 

of oligomeric protein complexes in the cell by specialized cellular machinery. It also 

explains the general route the assembly chaperones follow to perform their function by 

recognizing the surface exposed N- or C-terminal segments. It seems plausible that the 

function of RbcX needs to be considered when attempting to improve the catalytic 

properties of crop plant Rubisco by protein engineering.  
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8.   APPENDICES 
8.1   Abbreviations 
 
AA    Acrylamide 
aa    amino acid 
ADP    Adenosine 5'-diphosphate 
Amp    Ampicillin 
AmpR   Ampicillin resistance 
AMP-PNP  Adenosine 5′-(β,γ-imido)triphosphate 
Ana    Anabaena 
ANS    1-anilino-8-naphthalene-sulphonate 
APS    Ammonium persulfate 
At    Arabidopsis thaliana 
ATP    Adenosine 5'-triphosphate 
AU   Arbitrary unit 
BLAST   Basic Local Alignment Search Tool 
β-NADH   β-nicotinamide adenine dinucleotide 
bp    base pairs 
BSA    Bovine serum albumin 
oC    degree Celsius 
14C    Carbon-14 
Cam    Chloramphenicol 
CamR   Chloramphenicol resistance 
CAPB   Carboxy-arabinitol-1,5-bisphosphate 
cDNA   copy DNA 
CDTA   trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid 
Ch   Chloroplast 
CIP   Calf intestinal alkaline phosphatase 
Cpn    Chaperonin 
cryo-EM  Cryoelectron microscopy 
Δ (delta)   deletion 
DE    Diethylaminoethyl 
DNA    Deoxyribonucleic acid 
DnaJ   Bacterial Hsp40 chaperone 
DnaK   Bacterial Hsp70 chaperone 
dNTP   2’-desoxyribonucleotide-triphosphate 
DTT    Dithiothreitol 
ECL   Enhanced chemiluminescence 
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E. coli   Escherichia coli 
EDTA   Ethylenediaminetetraacetic acid 
FFF   Field flow fractionation 
Fig.    Figure 
FPLC   Fast protein liquid chromatography 
FT    flowthrough 
g    Acceleration of gravity, 9.81 m/s2 
GdnHCl   Guanidinium hydrochloride 
GroEL   Bacterial Hsp60 chaperonin 
GroES   Bacterial Hsp10 co-chaperone 
GrpE   Bacterial nucleotide exchange factor of DnaK 
GSH   reduced glutathione 
GSSG   oxidized glutathione 
h    hour 
HEPES   N-(2-hydroxyethyl)piperazin-N’-2-ethanesulfonic acid 
His6                   Hexa histidine-tag 
HRP    Horseradish peroxidase 
Hsp    Heat shock protein 
IPTG   isopropyl-β-D-1-thiogalactopyranoside 
ITC    Isothermal titration calorimetry 
Kan    Kanamycin 
KanR   Kanamycin resistance 
KD    Dissociation constant 
kDa    kilodalton 
LB    Luria Bertani 
MDH   Malate dehydrogenase 
MES   2-morpholinoethanesulfonic acid 
Met   Methionine 
MLS    Multiangle light scattering 
MOPS   3-(N-morpholino)propanesulfonic acid 
MS    Mass spectrometry 
mt    mitochondrial 
MW    Molecular weight 
MWCO   Molecular weight cut off 
N-    N-terminal 
NADPH   β-nicotinamide adenine dinucleotide 2'-phosphate 
Ni-NTA   Nickel-nitrilotriacetic acid 
OAc    acetate 
OD    Optical density 
PAGE   Polyacrylamide gel electrophoresis 
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PCR    Polymerase chain reaction 
PEG    Polyethylene glycol 
Pfu    Pyrococcus furiosus 
pH   reverse logarithm of relative hydrogen proton (H+) concentration 
Pi   inorganic phosphate 
PK   Proteinase K 
PMSF   Phenyl-methyl-sulfonyl fluoride 
RbcL   RuBisCO large subunit 
RbcS   RuBisCO small subunit 
Rubisco   Ribulose-1,5-bisphosphate carboxylase/oxygenase 
RuBP   Ribulose-1,5-bisphosphate 
PVDF   Polyvinylidenfluorid 
RNA    Ribonucleic acid 
RNase A  Ribonuclease A 
rpm    revolutions per minute 
Rr    Rhodospirillum rubrum 
RT    room temperature 
RTS    Rapid Transcription/Translation System 
35S    Sulphur-35 
SDS    Sodium dodecyl sulfate 
SeMet   selenomethionine 
So    Spinacia oleracea 
sp.    species 
Syn    Synechococcus 
TAE   Tris-acetate-EDTA (EDTA; Tris) 
TBS   Tris-buffered saline (Tris) 
TBS-T  TBS containing Tween20 (TBS; Tween20) 
TCA   Trichloroacetic acid 
TEMED   N,N,N',N'-tetramethylethylenediamine 
TEV    Tobacco etch virus 
TF    Trigger factor 
Tris    Trishydroxymethylaminomethane 
TritonX-100 octyl phenol ethoxylate 
Tween20  polyoxyethylene-sorbitan-monolaurate 
tRNA   transfer-RNA 
UV/VIS  Ultraviolet/visible 
w/o    without 
v/v    volume per volume 
w/v    weight per volume 
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